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Topoloǵıa y geometŕıa aplicada al estudio de algunas ecuaciones diferenciales

de segundo orden

Resumen: En esta tesis estudiamos la existencia y multiplicidad de soluciones a algu-
nas ecuaciones diferenciales de segundo orden con condiciones de Dirichlet o periódicas.
Los resultados de existencia se deducen principalmente de la teoŕıa de grado topológico
de Leray-Schauder. Usando métodos de geometŕıa diferencial en espacios de funciones se
consigue complementar estos resultados con dependencia continua y genericidad. Las her-
ramientas utilizadas involucran tanto el análisis como la topoloǵıa algebraica y diferencial,
y también hay resultados que usan teoŕıa de nudos.

Mostramos que hay profundas conexiones entre la existencia de soluciones y la topoloǵıa
de algunos espacios relacionados con la ecuación.

Palabras claves: ecuaciones diferenciales, teoŕıa de grado, teoŕıa de Morse, teoŕıa de
nudos, teorema de Sard-Smale
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Topology and geometry applied to the study of some second order

differential equations

Abstract: In this thesis we study existence and multiplicity of solutions to some dif-
ferential equations of second order, with dirichlet or periodic boundary conditions. The
existence results are inferred mainly from the topological degree theory of Leray and
Schauder. Using methods from differential geometry in function spaces we may comple-
ment these results with continuous dependence and genericity. The tools we use involve
analysis as much as differential and algebraic topology, and also there are results using
knot theory.

We show that there are deep connections between the existence of solutions and the
topology of some spaces related to the equation.

Key Words: differential equations, degree theory, Morse theory, knot theory, Sard-
Smale theorem
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álgebra, a Andrea Solotar de quien aprend́ı a hacer álgebra, a Diego Rial y Enrique Pujals
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Chapter 1

Introduction

Topology provides effective methods to describe qualitative aspects of dynamical systems,
where elementary analysis fails. This is the case, for example, of weakly nonlinear equa-
tions with boundary conditions where the nonlinearity has no useful algebraic properties.
Using abstract and powerful tools like topological degree theory, variational methods and
Conley theory (among others) one may easily obtain some amount of information about
very general type of equations.

A prototypical example which we shall treat in detail in the next chapter is the now
classical theorem of Landesman and Lazer which states that a scalar equation of the form
u′′(t) = g(u(t)) + p(t) with p a periodic function, admits at least one periodic solution
when the average of p lies between the limits of g at ±∞. The importance of this theorem
relies in the fact that the condition depends only on the average, so p is allowed to have
a very nasty behaviour like rapid and ample oscilations, or fail to be differentiable.

An other nice example is a theorem of Mawhin and Bereanu [11] which states the
existence of solutions for the homogeneous relativistic acceleration equation

{
φ(u′)′ = f(t, u, u′)
u(0) = u(1) = 0

(1.1)

for φ(x) = x√
1−|x|2

and f continuous, under no other condition!

An advantage of these tools is that they give information which is robust and global
so they help to describe the solution set more than a single solution.

On the other hand, geometry provides methods to describe things locally. For exam-
ple, using the inverse function theorem on Banach spaces we can deduce continuous (or
differentiable) dependence on the parameters and local uniqueness of solutions. Combin-
ing degree theory with the differentiability properties of functionals a lot of information
can be obtained.

This thesis focuses mainly on the problem of existence and multiplicity of periodic
motions of weakly nonlinear second order systems and is organized as follows:

In the next chapter we introduce some of the basic notions and techniques which are
involved in the results presented in this work.

Chapter 3 treats the general equation u′′(t) = f(t, u(t), u′(t)) under some geometric
assumptions on f , which are generalizations of the Hartman-Nagumo conditions for second
order systems. This generalization puts in evidence the geometry behind these conditions
which are often presented as a complicated set of inequalities.

ix
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Chapters 4, 5 and 6 deal with singular problems of Kepler type u′′(t)± u(t)
|u(t)|q+1 = λh(t).

We study the existence and multiplicity of periodic solutions in relation to some topological
data which depends on the parameters of the equation. For example in dimension 2 we
deduce existence of solutions by counting the connected components of a space and the
winding numbers of a curve. In dimension 3 the existence of solutions is related to the
first homology group of a space and, in some cases, to the knot type of a curve. In the
same lines of these results we also study the restricted N -body problem and obtain similar
results considering links in R3.

Finally in Chapter 7 we study an elliptic partial differential ecuation with Neumann
boundary conditions.

Some of the results in this thesis have been published in research articles in [4], [5] and
[6]
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Chapter 2

Preliminaries

2.1 Degree Theory

Since one of the common lines along the chapters of this work is the use of the Leray-
Schauder degree, we start with a short overview on the subject.

A precise and elementary definition of the Brouwer degree would take too long so for
that purpose we refer the reader to the book of N.G. Lloyd [32]. Here we will give just
the idea of the definition and list its most important properties. Curiously enough, these
properties are undoubtedly true knowing just the idea of what the degree should be, and
the consequences of its existence are numerous and non trivial.

2.1.1 The Brouwer degree

Let us give an informal definition of the Brouwer degree in a very specific context:

Definition 1. Let B ⊆ Rn be an open ball and f : B → Rn a continuous function. Take
p ∈ Rn and assume that f(∂B) 6∋ p. Then the Brouwer degree deg(f,B, p) ∈ Z is the
signed number of laps that f(∂B) turns around the point p.

Without worrying about the precise meaning of this, the following properties are ob-
viously satisfied:

1. The degree depends only on the values of the function f in ∂B.

2. deg(f,B, p) = deg(f − p,B, 0).

3. If x0 6= p and f : B → Rn is the constant function f(x) = x0 then deg(f,B, p) = 0.

4. Let id be the identity function, then deg(id, B, p) =

{
1 if p ∈ B
0 if p 6∈ B̄

A continuous function of two variables f : R × Rn → Rn can be considered as a
deformation of the function f0(x) = f(0, x). Using the notation ft(x) = f(t, x) we also
have:

5. If ft : B → Rn is a deformation of f such that ft(∂B) 6∋ p for all t then deg(ft, B, p)
is independent of t.

1



2 CHAPTER 2. PRELIMINARIES

It is clear that if p 6∈ f(B) then we can take a deformation ft such that f1 = f and
f0 is constantly a point x0: just take ft(x) = f(tx). Then using the properties 5 and 3 it
follows that deg(f,B, 0) = 0. We obtain the following important property:

6. If deg(f,B, p) 6= 0 then there exists an x ∈ B such that f(x) = p.

Also by using property 5 and by taking the linear homotopy between two continuous
functions f, g, we obtain:

7. If p 6∈ f(∂B) and |f(x)− g(x)| < dist(f(∂B), p) for all x ∈ ∂B, then p 6∈ g(∂B) and
deg(g,B, p) = deg(f,B, p).

For the special case n = 2 the degree is just the winding number of a curve, a basic
notion from complex analysis:

Assume f : B → R2 is C1, B is a ball of radius r centered at s0 and let us identify
R2 with the complex plane. Parametrize ∂B with the curve γ(t) = x0 + re2πit and then
define

deg(f,B, p) =
1

2πi

∫

fγ

1

z − p
dz =

1

2πi

∫ 1

0

∂
∂tf(γ(t))

f(γ(t))− p
dt. (2.1)

While the second expression provides us an explicit formula for the calculation of the
degree, it depends on the first derivatives of f . On the other side, the first expression
doesn’t need the differentiability of f and is well defined for continuous functions.

Let us discuss some toy examples showing the usefulness of the Brouwer degree.

Example 2. Fundamental Theorem of Algebra

Let p be a polynomial of the form p(z) = zd + q(z) with q of degree less than d and
d ≥ 1. Clearly there exists a constant R > 0 such that

Rd > |q(z)| for |z| = R. (2.2)

We take the deformation pt(z) = zd + tq(z) for t ∈ [0, 1] and set B = B(R, 0). The
inequality (2.2) implies that pt(∂B) 6∋ 0 for all t ∈ [0, 1]. Then using property 5 we obtain
deg(p,B, 0) = deg(zd, B, 0) = d 6= 0 and conclude using 6 that p must have at least one
zero.

Example 3. Non-retraction of the n-sphere

Let Dn, Sn−1 denote the closed unit ball of Rn and its boundary, respectively. The
non-retraction theorem says that there is no continuous function Dn → Sn−1 leaving the
boundary fixed.

This classic theorem from topology is highly non-trivial and has many consequences
like the Brouwer fixed point theorem and the hairy ball theorem. For a beautiful proof by
Milnor and Rogers using only analysis we refer to [41] and [57]. The proof using topological
degree is as follows:

Suppose by contradiction that there exists a retraction f : Dn → Sn−1 (i.e. f is contin-
uous and f |Sn−1 is the identity). By properties 1 and 4, deg(f,Dn, 0) = deg(id,Dn, 0) = 1.
Using 6 we obtain a zero of f which is a contradiction.

Example 4. Global implicit function theorem
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Let f : R × Rn → Rn be a function satisfying the hypotheses of the implicit function
theorem, namely that f is C1, f(0, 0) = 0 and ∂2f is invertible at (0, 0). It is easy to
see that we can find a small ball B centered at 0 for which f0(∂B) 6∋ 0 and in that case
deg(f0, B, 0) = ±1 (the sign depends on the orientation properties of ∂2f(0, 0) ) roughly
speaking, because f0 is close to its derivative. Since the deformation ft is continuous we
have that ft(∂B) 6∋ 0 for small t. Using properties 5 and 6 we deduce that the equation
f(t, x) = 0 admits at least one solution x(t) ∈ D.

Although the conclusion is weaker than the one in the classic implicit function theorem
(neither local uniqueness nor continuous dependence are deduced), we don’t use deeply
the differentiable structure of f ; we only need deg(f0, B, 0) 6= 0 for some open set B, which
is a condition a lot easier to verify than the invertibility of ∂2f . This principle will be
widely used in chapters 4 and 6.

We also obtain a solution x(t) for t far from 0, as long as ft(∂B) 6∋ 0. So this technique
provides global information, in contrast to the local information given by the implicit
function theorem.

The notion of degree can be extended to continuous functions defined in the closure of
any open bounded set. In this exposition we have chosen B to be a ball because otherwise
property 3 would be far from obvious.

2.1.2 Definition using algebraic topology

For the special case we are dealing with (namely that B is a ball) we can easily give a
definition of deg using the sophisticated machinery of homology theory.

As before, let B ⊆ Rn be the unit ball and let f : B → Rn be a continuous function
such that f(∂B) 6∋ 0. Restrict f to ∂B and normalize it as f(x) = f(x)

|f(x)| . We obtain a

(well defined) continuous map Sn−1 → Sn−1. Now applying the singular homology functor
Hn−1(−,Z) we obtain a group homomorphism f∗ : Z → Z. This morphism is obviously
a multiplication by an integer d which depends only on f . We define deg(f,B, 0) = d =
f̄∗(1).

All properties from 1 to 6 are immediate from the functoriality of H∗ and its homotopy
invariance.

Kronecker gave a definition of degree for C1 mappings based on the integration of
differential forms in [29], see also [38]. This is an elegant generalization of formula (2.1)
for dimension n but ultimately it is just the image of a generator through the morphism
f̄∗ when one applies the de Rham co-homology functor instead of singular homology.

When f : D̄ → Rn is C1, D is an open bounded set and p ∈ Rn \ ∂D is a regular
value of f it’s easy to see that the equation f(x) = p can only have finitely many solutions
x1, . . . , xk. In this case there is an explicit formula

deg(f,D, p) =

k∑

i=1

sg(detDxif) (2.3)

which is well defined presicely because of the regularity of p.
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2.1.3 The Leray-Schauder degree

A degree theory for a class of mappings between Banach spaces was defined for the first
time by Leray and Schauder in 1933 in a foundational paper [59]. Several applications of
this tool were found in the field of differential equations and non-linear analysis in general.

The key notion to develop this theory is the following:

Definition 5. Let X be a Banach space.

A map T : X → X is said to be compact if it is continuous and T (B) is compact for
every bounded set B.

A map F : X → X of the form F (x) = x− T (x) where T is a compact map, is said to
be a compact perturbation of the identity.

The Leray-Schauder degree degLS(F,D, 0) ∈ Z is defined for D an open bounded set
in X, and for F : D → X a compact perturbation of the identity. As always we require
that F (∂D) 6∋ 0. It fulfills the following set of properties:

I The degree depends only on the values of the function f in ∂D.

II deg(f,D, p) = deg(f − p,D, 0).

III If x0 6= p and f : D → Rn is the constant function f(x) = x0 then deg(f,D, p) = 0.

IV Let id be the identity function, then deg(id,D, p) =

{
1 if p ∈ D
0 if p 6∈ D̄

V If ft : D → Rn is a deformation of f such that for all t, ft is a compact perturbation
of the identity and ft(∂D) 6∋ p then deg(ft, D, p) is independent of t.

VI If deg(f,D, p) 6= 0 then there exists an x ∈ D such that f(x) = p.

VII If D1, D2 are disjoint open bounded sets and f(∂Di) 6∋ p for i = 1, 2 then deg(f,D1∪
D2, p) = deg(f,D1, p) + deg(f,D2, p).

VIII If E ⊂ D are open bounded sets and f(E) 6∋ p then deg(f,D, p) = deg(f,D \ E, p).

IX If T : X → V ⊂ X is compact and its range lies in a closed linear subspace V
containing p, and if f = idX − T then f |V : V → V and deg(f,D, p) = deg(f |V , D ∩
V, p).

X If f is a diffeomorphism from D onto a neighbourhood of p then deg(f,D, p) = ±1.

The feature that makes compact mappings relevant to this theory is that when re-
stricted to bounded sets they can be uniformly approximated by functions of finite rank.

The construction of the Leray-Schauder degree is as follows: Take a compact map
T : D ⊂ X → X defined on a bounded domain. For each ε > 0 there exists a function
Tε whose image lies in a finite dimensional subspace Vε and such that ‖T − Tε‖∞ ≤ ε.
Then using property IX for finite dimensional mappings one can prove that the degrees
of the restricted functions idVε − Tε : D ∩ Vε → Vε are independent of the approximation
provided that ε is sufficiently small. In this way a degree for compact perturbations of
the identity may be defined. Afterwards the properties I to X are proved in the finite
dimensional case, and extended to the general case by taking uniform limits.
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2.2 Setting differential equations as point equations in func-

tion spaces

2.2.1 Non-resonant problems

Consider the scalar two point boundary value problem

{
u′′(t) = f(t, u(t))
u(0) = u(1) = 0

(2.4)

with f continuous.
The general form of this equation is

L(u) = N(u) (2.5)

where L is the linear operator L(u) = u′′ and N is the non-linear operator N(u)(t) =
f(t, u(t)). The boundary conditions are encoded in the space where we define these
functions. Take X to be the Banach space of C2 functions u : [0, 1] → R such that
u(0) = u(1) = 0 and Y the space of C0 functions on [0, 1]. The expression “non-resonant”
refers to the fact that the operator L : X → Y is invertible. We call K : Y → Y the
composition of L−1 with the inclusion X →֒ Y . Using the Arzelá-Ascoli theorem one can
see that K is a compact mapping (indeed, L−1 is continuous and the inclusion is compact).
Equation (2.5) transforms to F(u) = u−K(N(u)) = 0 and now F : Y → Y is a compact
perturbation of the identity.

The same approach can be used to state very different problems like vector equations
and elliptic partial differential equations, as point equations in function spaces.

2.2.2 Resonant problems

Consider the same equation as (2.4) but with periodic conditions





u′′(t) = f(t, u(t))
u(0) = u(1)
u′(0) = u′(1)

(2.6)

The general form of the equation is still the one in (2.5) but this time L is not invertible
and the problem is called resonant. Take X to be the space of C2 functions u : [0, 1] → R

satisfying the periodic conditions in (2.6) and Y the space of C0 functions on [0, 1]. Now L
is a Fredholm operator of index 0 and dim(Ker(L)) = codim(R(L)) = 1, namely Ker(L)
is the space of constant functions and R(L) is the space of C0 functions of zero average. We
decompose as a direct sumX = X⊕X̃ and Y = Y ⊕Ỹ , where Y = X = Ker(L), Ỹ = R(L)
and X̃ is the space of periodic C2 functions of zero average. Write z = (z, z̃) for z in X
or Y . Under this decomposition equation (2.5) looks like

(0, L(ũ)) = (N(u), Ñ(u)) (2.7)

Now we may take K to be the partial inverse L−1 : Ỹ → X̃ composed with the inclusion
X̃ →֒ Ỹ , then the equation takes the form

(0, ũ) = (N(u),KÑ(u)) (2.8)
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Finally this is equivalent to F(u) := (u, ũ)− (u−N(u),KÑ(u)) = 0 which is clearly a
compact perturbation of the identity.

A similar strategy will be employed in section 3 in a different context.

An other kind of resonant equation is u′′+u = f(t, u(t)) with periodic conditions. The
linear operator L(u) = u′′ + u is still Fredholm of index 0 but this time its kernel is 2
dimensional, namely it is the linear space generated by the functions sin(2πt), cos(2πt).

2.2.3 An application: the Landesman-Lazer theorem

Theorem 2.2.1. Let g : R → R be continuous, bounded, with finite limits at ±∞ and
p : [0, 1] → R a continuous periodic function. Consider the equation





u′′(t) = g(u(t)) + p(t)
u(0) = u(1)
u′(0) = u′(1)

(2.9)

and denote p =
∫ 1
0 p(t)dt the average of p. Then the condition

g(−∞) < p < g(+∞) (2.10)

is sufficient for the existence of a solution of (2.9).

Proof. Clearly we are in the conditions of the previous discussion on resonant problems.

We take the deformation Fλ(u) = (u, ũ) − (u − N(u), λKÑ(u)). For every λ ∈ [0, 1], a
solution of Fλ(u) = 0 is a solution of the differential equation u′′ = λ(g(u) + p). Notice
that from the first coordinate of the equality (2.8), such a function must satisfy g(u) = p.

The boundedness of g ensures that the diameter of the image of any periodic solution
is bounded by a constant C > 0 depending only on g and p. Condition (2.10) implies that
for |x| larger than a constant, say M , we must have g(x) > p or g(x) < p depending on
the sign of x. This fact together with the previous observation implies that the solutions
of the equation for λ ∈ [0, 1] are uniformly bounded by a constant R > 0 depending only
on g and p. Now if D = B(0, R) ⊆ Y we conclude that Fλ(∂D) 6∋ 0 for all λ ∈ [0, 1] so we
may apply property V, and deg(F,B, 0) = deg(F0, D, 0).

Since F0(u) = (N(u), ũ) we may apply property IX where V is the space of constant
functions which we now identify with R. We see that deg(F,B, 0) = deg(g−p, [−R,R], 0) =
deg(g, [−R,R], p) which is obviously 1, again because of condition (2.10).

Lastly by property VI we obtain a u0 ∈ D a zero of F which is a solution of the
problem.

This theorem may be proved using only elementary analysis by considering the Poincaré
map in the phace space. But this technique has an advantage. It uses almost no informa-
tion about the equation itself or about the solutions (we don’t speak here about regularity,
stability or continuity respect of initial values). It only involves the properties of the func-
tionals associated to the equation. Thus the proof has more range of applicability. In fact
the original theorem of Landesman and Lazer is stated with much more generality, see
[31].
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2.3 Morse theory

We give here a brief exposition on Morse theory without any proof. For a complete and
detailed introduction on the subject we refer to the books of Milnor [43] and Banyaga [10].

Morse theory studies the homotopy type of the level sets of a real smooth function f
defined on a manifold M . Roughly speaking, the central result of the theory is that the
topology of M is closely related to the structure of the critical points of f .

The typical example is the two-dimensional tours embedded vertically in R3 like in
figure 2.1 and f :M → R the height function f(x1, x2, x3) = x3.

Figure 2.1: Level sets of the height function in the torus

Let us denote the level sets of f as {f ≤ α} := {x ∈M/f(x) ≤ α}.
The critical points of f are the points where the tangent space ofM is horizontal, thus

orthogonal to the gradient of f in R3 which is allways (0, 0, 1). We see that there are 4
critical values c1, · · · , c4 corresponding to 4 critical points. A global maximum c4, a global
minimum c1 and two saddle points corresponding to the values c2, c3.

Let us consider the level sets {f ≤ α} as α varies along R. For α < c1 the level set
is empty while for α = c1 we have only one point. As α varies from c1 to c2 the level
sets are all homeomorphic to a 2-disk which is in turn homotopy equivalent to a point.
When α crosses c2, we see that two points of the boundary of our 2-disk touch each other,
now changing the homotopy type of {f ≤ α} (figure 2.1, second diagram from the left).
This change in the homotopy type is equivalent to attaching a 1-handle i.e., for small ε
there is an embeded curve e1 ⊂ M such that {f ≤ c2 + ε} is homotopy equivalent to
{f ≤ c2 − ε} ∪ e1. The same happens when α crosses c3 (figure 2.1, fourth diagram from
the left). When α approaches c4 from below the level set is like M with a hole at the top
(diagram of the right of figure 2.1). Finally when α reaches c4 this hole is filled. This
filling operation is equivalent to attaching a 2-cell.

Unfortunately this nice behaviour of passing from one level set to an other by attaching
cells is valid for almost, but not all critical values. We can see in figure 2.2 several examples
of critical values for which the level sets have a very complicated relation.

Figure 2.2: functions with degenerate critical points
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We need then to restrict our attention to a special class of functions called the Morse
functions. Observe for example in the function in the left of figure 2.2 that the level set
passes from the empty set to a one dimensional circle directly. However if we tilt the
graphic of the function a little to the right (see figure 2.3) then the circle now appears in
two steps. Firstly a local minimum forces a disk-like shape to appear, then a saddle point
makes a 1 dimensional connection between points on the boundary of the disk. Again we
construct the homotopy type of the level set by attaching handles.

Figure 2.3: A suitable perturbation of a function with degenerate critical points

Let us formalize the above discusion. Assume from now on that M is a differentiable
manifold of dimension m without boundary and that f :M → R is a C2 function.

Definition 1. 1. A point x ∈ M is a critical point of f if the differential vanishes at
x, i.e dxf = 0. In that case the second differential d2xf : TxM × TxM → R is a well
defined symmetric bilinear form.

2. For a critical point x ∈ M we define its index λx as the negative signature of d2xf
i.e. the largest dimension of a subspace of TxM where d2xf is definite negative.

3. A critical point x ∈M is said to be non degenerate if d2xf is non degenerate.

4. A function is called a “Morse function” if all critical points of f are non degenerate.

Morse theory relies in the following 4 basic lemmas:

Lemma 2 (Morse functions are generic). The set of Morse functions on M is a countable
intersection of open and dense subspaces with the C1 topology.

In particular Morse functions are dense in the space C1(M).

Lemma 3 (Morse lemma). Let f : M → R be C2 and p ∈ M a non-degenerate critical
point of index λp = k. Then there exists a coordinate chart (x1, . . . , xm) : U ⊆ M → Rm

sending p to 0 and such that

f = f(p)− (x21 + · · ·+ x2k) + (x2k+1 + · · ·+ x2m)

in U .

Lemma 4 (Deformation lemma). Assume that f :M → R is a Morse function, all values
in [a, b] are regular and f−1([a, b]) is compact.

Then {f ≤ a} is a strong deformation retract of {f ≤ b}. Furthermore, the deforma-
tion is an isotopy and the sets are thus diffeomorphic.
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Lemma 5 (Handle attachment). Let f : M → R be a C2 smooth function. Suppose that
f−1([a, b]) is compact and inside f−1((a, b)) there is exactly one critical point. Assume
that this critical point is non-degenerate and of index k. Then {f ≤ b} has the homotopy
type of {f ≤ a} with one k-cell attached. Actually, there exists a set ek ⊂ {f ≤ b}
diffeomorphic to the closed k-disk Dk such that {f ≤ a} ∪ ek is a deformation retract of
{f ≤ b}.

Let us look for a moment at these lemmas. There is a list of m types of singularities
that characterize the non-degenerate critical points, up to change of coordinates. Once we
know this, lemma 5 has to be proved only in this finite number of cases. For example a
critical point of index 1 of a function in R2 looks like x2 − y2. Its level sets are diagramed
in figure 2.4.

Reasoning by induction we deduce from lemmas 4 and 5 that the whole manifold M
is homotopy equivalent to a CW -complex with a cell of dimension λ = 0, · · · ,m for each
critical point of index λ.

Figure 2.4: Level sets of the function x2 − y2 in the plane

Morse theory is usually employed in the following fashion:

A Morse function with few critical points gives a description of the manifold as a
CW -complex with few cells which, in turn, provides a bound for the ranks of the cellular
homology groups. On the other hand, a Morse function defined in a manifold with a very
complicated homology must have lots of critical points. Both points of view will be used
in this work, specifically in theorems 3.5.1, 3.5.2 and 6.6.3

Consider the cellular complex of the CW -structure induced by a Morse function f :
M → R

Hm(Xm, Xm−1) → · · · → H2(X2, X1) → H1(X1, X0) → H0(X0) → 0

where Xk is the k-skeleton. We know from cellular homology theory that the k-th term
of this complex is isomorphic to Znk where nk is the number of cells of the k-skeleton.

Since the alternated sum of the ranks of a complex equals the alternated sum of
the ranks of the homology groups, we deduce the following beautiful fact about Morse
functions:

Theorem 2.3.1. Let M be a compact manifold and f :M → R a Morse function. Let ni
be the number of critical points of index i, for i = 0, . . . ,m. Then

∑m
i=0(−1)ini = χ(M)

is the Euler characteristic of M .
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Going back to deree theory, take an open bounded set D in Rn with smooth boundary.
Consider the normal map n : ∂D → Rn. The degree deg(n,D, 0) is defined as the degree
of any continuous extension to D̄. Since this degree is the same as for any vector field
homotopic to n, it is easy to construct a non-positive Morse function f : D̄ → R for which
deg(n,D, 0) = deg(∇f,D, 0) and f ≡ 0 at the boundary. Consider formula 2.3 for the
degree. The sign of the determinant of a hessian at a critical point is exactly (−1)i where
i is the Morse index. Then formula 2.3 applied to the gradient vector field ∇f equals the
sum on the left hand side in the previous theorem and thus, the Euler characteristic. We
deduce that

deg(n,D, 0) = χ(D).

This is a formula we will be using repeatedly in the present work.

2.4 Some classical problems from differential equations

A number of differential equations motivated the development of global analysis techniques
during the 20th century. These equations can be approached from several distinct angles
and using very different theories covering analysis, geometry, chaotic dynamics, differential
and algebraic topology, etc. There are many interesting open problems around them and
they are a fruitful source of challenging problems.

2.4.1 The pendulum equation

The equation

x′′(t) + cx′(t) + a sin(x(t)) = h(t) (2.11)

describes the evolution of a pendulum of length a > 0 with friction determined by the
parameter c, under a time-dependent force h.

This apparently simple equation led to one century of research in analysis on Banach
spaces, and constitutes a paradigmatic example of a system with chaotic motions. The
survey paper [34] has a good recount of results and open problems around the pendulum
equation.

Some of the first results on existence of periodic solutions of period 1 of equation
(2.11) for the frictionless case (c = 0) where achieved using the direct method of calculus
of variations. One can prove that the “action functional”

A(x) :=

∫ 1

0

x′(t)2

2
+ a cos(x(t)) + x(t)h(t)dt

has a global minimum in an appropriate function space and that this minimum is a periodic
solution (see [16]). The existence of a second solution was proved by Mawhin and Willem
using a variant of the Ambrosetti-Rabinowitz mountain pass lemma in [48].

The problem of describing the set of functions h for which (2.11) has a periodic solution
can be stated as describing the range R of the operator x 7→ x′′ + cx′ + a sin(x). Over the
space of periodic functions of class C2 of a period 1.

Integrating the equation, we see that a necessary condition for the existence of a
periodic solution is

|h̄| =
∣∣∣∣
∫ 1

0
h(t)dt

∣∣∣∣ ≤ a.
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Using a Lyapunov-Schmidt argument, topological degree and the method of upper and
lower solutions, it is shown in the papers [19, 48, 33] that for h̃ a function of zero average,
the set

{h̄ ∈ R/h̄+ h̃ ∈ R} = Ih̃

is a compact interval whose endpoints depend continuously on h̃ ∈ Ỹ (the Banach space
defined in 2.2.2). In fact there exist at least two different periodic solutions when h̄ ∈ I◦

h̃
.

An interesting open question around the pendulum equation is whether the interval Ih̃
may or may not be a single point. If this happens, the equation is called degenerate and
a very special behaviour of the solution set is to be expected (see [55]).

2.4.2 The forced Kepler problem

The equation

x′′(t) +
x(t)

|x(t)|3 = h(t) (2.12)

describes the motion of a particle x : R → R3 under a singular central force, and a time-
dependent forcing h. This equation and some variations of it, is studied in chapters 4, 5
and 6 when the forcing term h is significant.

The two-body problem, where two masses orbit around each other under gravitational
force, is solved by reducing it to equation (2.12) with h = 0. Here the center of mass is
translated to the origin.

The term x(t)
|x(t)|3

may be replaced by a more general singular gradient vector field

∇V (x, t) to describe other kinds of forces.

The most commonly used tools for studying this problem are variational techniques.
A natural difficulty arises in the fact that a critical point of the functional may in fact be
a collision orbit, meaning an orbit which crosses the singularity of the potential V at some
time. This leads to the “Gordon strong force” condition which requires the potential V to
grow at a certain rate at the singularity to guarantee that the “action functional” blows
up at collision orbits (see [22]). Unfortunately this condition excludes the case V (x) = 1

|x| ,
which is the potential of the Kepler problem. Even in the scalar case, a weak singularity
may lead to collisions.

2.4.3 The N-body problem

The N -body problem is the system of equations

x′′k(t) = −
∑

i 6=k

xk(t)− xi(t)

|xk(t)− xi(t)|3
for k = 1, 2, . . . N (2.13)

that describes the motion of N particles at positions x1(t), . . . , xN (t) moving under the
forces of mutual gravitational attraction.

The existence, stability and bifurcation of periodic solutions has been the center of
attention of many mathematicians since the works of Poincaré, who studied the N body
problem, specially the case N = 3 in his work “Les méthodes nouvelles de la mécanique
céleste” [56] where he develops a number of techniques still used today.

A particular simplification of this equation is called the “restricted N -body problem”
in which the trajectories of N−1 bodies x1(t), · · · , xN−1(t) are known and the mass of the
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n-th body is negligible with respect to the other masses. The equations take the simpler
form

x′′n(t) = −
N−1∑

i=1

xn(t)− xi(t)

|xn(t)− xi(t)|3
. (2.14)

Here x1(t), · · · , xN−1(t) are given functions and xn(t) is the only unknown.
Many different methods have been used to establish the existence of periodic solutions

for the N -body problem, specially for the restricted 3-body problem, for example: the
averaging method of Moser [45], special fixed-point theorems (see [49]), and recurrence
theorems.

Also the use of critical point theory may provide multiple solutions to the N -body
problem but sometimes the “Gordon strong force” condition must be present. The work
of Faddel and Husseini [18] is a nice example of abstract theory applied to this concrete
example.

Some results of section 6 will be applied to prove existence of periodic solutions to the
restricted N -body problem.

Now we turn to the actual results of this thesis.



Chapter 3

A Hartman-Nagumo type

condition for a class of

contractible domains

3.1 Introduction

In 1960, Hartman [24] showed that the second order system in Rn for a vector function
x : I = [0, 1] → Rn satisfying 




x′′ = f(t, x, x′)
x(0) = x0
x(1) = x1

(3.1)

with f : I × Rn × Rn → Rn continuous, has at least one solution when f satisfies the
following conditions:

〈f(t, x, y), x〉+ |y|2 > 0 for all (t, x, y) ∈ I × Rn × Rn,
with |x| = R, 〈x, y〉 = 0

(3.2)

for some R ≥ |x0|, |x1|.

|f(t, x, y)| ≤ φ(|y|) where φ : [0,∞) → R+ and

∫ ∞

0

x

φ(x)
dx = ∞, (3.3)

|f(t, x, y)| ≤ α(〈f(t, x, y), x〉+ |y|2) + C, where α,C > 0. (3.4)

A stronger version of (3.2) is easier to understand:

〈f(t, x, y), x〉 > 0 for all (t, x, y) ∈ I × Rn × Rn,
with |x| = R, 〈x, y〉 = 0.

(3.5)

Indeed, this condition means that whenever x ∈ ∂B(0, R), the vector field f points
outwards the ball B(0, R). Condition (3.2) allows f to point inwards, but not too much if
the velocity is small.

The proof basically uses the Schauder fixed point theorem. It can also be proved using
Leray-Schauder continuation theorem [35] in the open set of curves lying inside B(0, R).
The key argument is that a solution u cannot be tangent to the ball of radius R from

13
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inside because (from (3.2)) the second derivative of |u|2 is positive when |u| is close to R.
Conditions (3.3) and (3.4) guarantee that the C1 norm of the solutions remains bounded
during the continuation.

Hartman’s result has been extended in several ways, for different boundary conditions
(see [28] for a first result of this type under periodic conditions) and for more general
second order operators (see e.g. [39], [46] and the references therein). However, less
generalizations are known if one replaces the ball B(0, R) by an arbitrary domain D.

In view of the geometrical interpretation of (3.5), it is not difficult to prove existence
of solutions using (3.3), (3.4) and (3.5) when D is convex. Condition (3.5) takes, in
consequence, the following form:

〈f(t, x, y), nx〉 > 0 for all (t, x, y) ∈ I × Rn × Rn,
with x ∈ ∂D, 〈nx, y〉 = 0

where nx is an outer normal of ∂D at the point x. For periodic conditions, this result has
been obtained by Bebernes and Schmitt in [12] assuming, instead of (3.4) and (3.5), that
f has some specific subquadratic growth on y. In this work, we extend the result for a
more general (not necessarily convex) domain D ⊂ Rn.

Some results in this direction have been given in [37] and [20] (see also [21] and the
survey [40]), where the concept of curvature bound set is introduced in order to ensure that
solutions starting inside an appropriate domain remain there all the time, thus allowing
the use of the continuation method. Roughly speaking, at any point of the boundary of
such a set D there exists a smooth surface that is tangent from outside and measures the
curvature of the solutions touching ∂D from inside.

In this work we shall show that, in some sense, if D has C2 boundary and the role of
the surfaces in the previous definition is assumed by ∂D itself, then a precise geometric
condition involving its second fundamental appears. In this context, our version of (3.2)
reads as follows:

〈f(t, x, y), nx〉 > IIx(y) for all (t, x, y) ∈ I × T∂D (3.6)

where T∂D is the tangent vector bundle identified, as usual, with a subset of Rn × Rn,
IIx(y) is the second fundamental form of the hypersurface and nx is the outer-pointing
normal unit vector field. This condition requires f to point outside D as much as ∂D is
“bended outside” in the direction of the velocity. In particular, when D = B(0, R) its
curvature is constantly 1

Rn−1 ; moreover, IIx(y) = − 1
R |y|2 and nx = x

R , so our new Hartman
condition takes the form of the original one.

The chapter is organized as follows. In the next section, we recall the basic facts
about Gaussian curvature and state some preliminary results concerning the generalized
Hartman condition (3.6). In section 3.3, we introduce some growth conditions that extend
(3.3) and (3.4) on the one hand, and the growth condition in [12] (used also in [21]), on
the other hand. In section 3.4 we establish and prove our main results on existence of
solutions under Dirichlet and periodic conditions using the Leray-Schauder continuation
method. Finally, in section 3.5 we prove that the growth conditions force the domain D
to be contractible, thus restricting the class of examples to which the main theorems are
applicable.
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3.2 Curvature

Let D be an open subset of Rn such that M := ∂D is a C2 oriented manifold and let
nx be the outer unit normal vector at x ∈ M . The application x 7→ nx defines a smooth
function n : M → Sn−1 and its differential defines a linear map TxM → TnxS

n−1. Since
both linear spaces are orthogonal to nx, they may be identified and we obtain a linear
endomorphism known as the Gauss map gx : TxM → TxM . This map is easily seen to be
self-adjoint with respect to the inner product inherited from Rn. The associated quadratic
form IIx(v) = −〈gx(v), v〉 is called the second fundamental form of the hypersurface. It is
important to remark that IIx is independent -up to a sign- of the orientation given by n.

The next lemma is essentially proved in do Carmo’s book [13]:

Lemma 1. Let α : R → D be a C2 curve such that α(0) = p ∈ M . Let np be the outer
unit normal vector at p. Then 〈α′′(0), np〉 ≤ IIp(α

′(0))

Proof. As a direct application of the inverse function theorem, we obtain near p a coor-
dinate system of the form (m,λ) ∈ M × R given by x = m(x) + λ(x)nm(x). The curve α
may be written as α(t) = γ(t) + λ(t)nγ(t) for some C2 functions γ, λ. Let n(t) = nγ(t) so
n′(t) = gγ(t)(γ

′(t)) and compute

〈n(t), α′(t)〉 = 〈n(t), γ′(t)〉+ λ′(t) + λ(t)〈n(t), n′(t)〉 = λ′(t),

since γ′(t) and n′(t) are orthogonal to n(t).
Observe that λ′(0) = 〈np, α′(0)〉 = 0. Moreover, as the image of α is contained in D,

its λ-coordinate is always non-positive. But λ(0) = 0, and hence λ′′(0) ≤ 0. We deduce
that d

dt〈n(t), α′(t)〉 |t=0 ≤ 0.
Now 〈n(t), α′′(t)〉 = 〈n(t), α′(t)〉′ − 〈n′(t), α′(t)〉; thus,

〈n(0), α′′(0)〉 ≤ −〈gα(0)(α′(0)), α′(0)〉 = IIp(α
′(0)).

Corollary 3.2.1. Let f : R× Rn × Rn → Rn be such that (3.6) holds.
Then there are no solutions of the differential equation x′′ = f(t, x, x′) inside D touch-

ing the boundary.

The following definition will be useful.

Definition 2. We define curv(D,x) = λ1, where λ1 ≤ . . . ≤ λn−1 are the eigenvalues of
the self-adjoint operator gx.

Remark 3.

1. It is clear from the definition that −|y|2curv(D,x) ≥ IIx(y), and equality holds when

y is an eigenvector of gx associated with the eigenvalue λ1.

2. If x is a point of convexity of the surface, then curv(D,x) ≥ 0.

3. It may be deduced, as in the proof of Lemma 1, that:

• If curv(D,x) < 0 then −curv(D,x)−1 is the radius of the largest ball which is

tangent from outside to D at the point x.

• If curv(D,x) > 0 then curv(D,x)−1 is the radius of the smallest ball B such

that D is tangent from inside to ∂B at x.
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3.3 Growth conditions

In order to apply the Leray-Schauder method [35], it is necessary to find a priori bounds
of the solutions during the continuation. As the nonlinear term depends on u and u′, we
will need estimates for the C1 norm.

To this end, following [24], we shall impose some growth conditions on f . These
conditions must be compatible with the deformations used in the main theorems.

We shall make use of the next two lemmas, proved in [24] (Lemmas 2 and 3 respec-
tively), conveniently adapted to our situation. Without loss of generality, we may assume
that D = η−1(−∞, 0) where η : Rn → R is a C2 function and 0 is a regular value of η,
then M = ∂D = η−1(0). We can use the function η itself to replace r in Lemma 3 of [24].

Lemma 1. Let R,C be non-negative constants and φ : [0,∞) → (0,∞) a continuous
function such that ∫ ∞

0

s

φ(s)
ds = ∞. (3.7)

Then there exists a constant N = N(R,C, ‖η‖∞, φ) such that if x ∈ C2(I,Rn) satisfies

|x| ≤ R, |x′′| ≤ η(x(t))′′ + C and |x′′| ≤ φ(|x′|)

then
|x′| ≤ N.

Now η(x(t))′′ may be easily calculated as

d2x(t)η(x
′(t), x′(t)) + dx(t)η(x

′′(t)),

where d2xη stands for the quadratic form induced by the Hessian. The condition thus
obtained is

|f(t, x, y)| ≤ d2xη(y, y) + dxη(f(t, x, y)) + C

|f(t, x, y)| ≤ φ(|y|).
(3.8)

This condition obviously generalizes the original assumptions (3.3) and (3.4) given in
[24], setting η(x) = |x|2 −R2 and D = B(0, R).

Remark 2. 1. The function η might also depend on the time t, although the expression
for η(x(t))′′ in this case would become more complicated.

2. As d2xη(y, y) + dxη(f(t, x, y)) = (−IIx(y) + 〈f(t, x, y), nx〉).|∇xη| for x ∈ ∂D, the
fact that the expression 〈f(t, x, y), x〉+ |y|2 appears both in (3.2) and (3.4) is not a
coincidence.

From the discussion in [24, Corollary 1], we get a simpler (but somewhat more restric-
tive) growth condition on f . Let us firstly recall from [24] the following

Lemma 3. Let R, γ, C be non-negative constants where Rγ < 1. Then there exist N =
N(R, γ, C) such that if x ∈ C2(I,Rn) satisfies

|x| ≤ R and |x′′| ≤ γ|x′|2 + C

then
|x′| ≤ N.
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With this last result in mind, we may impose, instead of (3.8), the condition:

|f(t, x, y)| ≤ γ|y|2 + C (3.9)

for every x ∈ D, where C and γ are constants with γRD < 1. Here, RD is the radius of
D, defined as the radius of the smallest ball containing D (notice that diam(D) ≤ 2RD).
In particular, (3.9) generalizes the growth condition imposed in [12].

Unfortunately our version of the Hartman condition combined with (3.9) requires that
R−1
D |y|2 +C > IIx(y) for all y, so the theorem is not applicable for arbitrary domains. For

instance, taking y as an eigenvector of gx such that |y| ≫ 0, it is easy to see that (3.9)
together with (3.6) implies that RDcurv(D,x) > −1. Thus, our results cannot be applied
if for example D = B(0, R)\B(0, r) for some r < R.

In section 3.5 we shall prove that, furthermore, the domain D must be contractible.
The same happens with condition (3.8), independently of (3.6).

Remark 4. It is worth observing that as far as an a priori bound N is obtained for
the derivative of the solutions, condition (3.6) can be relaxed to consider only those points
(x, y) ∈ T∂D such that |y| ≤ N . This shows that, in fact, condition (3.9) is not necessarily
incompatible with (3.6) when the domain is non-contractible. We shall not pursue this
direction here;

The following result is a refinement of Lemma 3 that shall be needed for the proof of
Theorem 3.4.1.

Lemma 5. Let R, γ, C be non-negative constants where Rγ < 1, and 0 < T ≤ 1. Then
there exist N = N(R, γ, C) (independent of T ) such that if x ∈ C2([0, T ],Rn) satisfies

|x| ≤ R, |x′′| ≤ γ|x′|2 + C

and

x(0) = x(T ) = x0

then

|x′| ≤ N.

Proof. Following the remarks of [24, Lemma 3] and the proof of [24, Lemma 2], let ρ :
[0, T ] → R be defined by

ρ(t) = α|x|2 + K

2
t2

where

α =
γ

2(1− γR)
, K =

C

1− γR
.

Then ‖ρ‖∞ ≤M1(C, γ,R), and |x′′| ≤ ρ, since

ρ′′(t) = 2α(〈x′′, x〉+ |x′|2) +K ≥ 2α(|x′|2 −R(γ|x′|2 + C)) +K

= |x′|22α(1− γR)− 2αRC +K ≥ |x′′| − C

γ
2α(1− γR)− 2αRC +K

= |x′′| − C − 2αRC +K = |x′′|.
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From the discussion in [24] sections 3 to 5, we obtain the formula

|Φ(|x′(t)|)− Φ(|x′(T/2)|)| ≤
∫ T/2

t
M2(C, γ,R)/T ± ρ′(s)ds

for all t ∈ [0, T ] (the ± sign depends on whether t < T/2 or t > T/2 ). Hence,

|Φ(|x′(t)|)− Φ(|x′(T/2)|)| ≤M2(C, γ,R) + 2‖ρ‖∞. (3.10)

Unless x is constant, as x(0) = x(T ) there must exist a tangent ball B ⊇ Im(x) of
radius R to x, at a point x(t0) 6= x0. Now, let n be the outer unit normal vector of B at
x(t0). Then

γ|x′(t0)|2 + C ≥ |x′′(t0)| ≥ −〈x′′(t0), n〉 ≥
1

R
|x′(t0)|2

|x′(t0)| ≤
√

C

1/R− γ
.

Using inequality (3.10) twice, for t = t0 and for arbitrary t, we get

|Φ(|x′(t0)|)− Φ(|x′(t)|)| ≤ 2M2(C, γ,R) + 4‖ρ‖∞
and hence

|Φ(|x′(t)|)| ≤ |Φ(|x′(t0)|)|+ 2M2(C, γ,R) + 4‖ρ‖∞ ≤M3(C, γ,R).

Next we show an example where the main theorems stated in section 3.4 are applicable
for a function on a non-convex set in the plane D ⊂ R2. In this situation the boundary
may be described locally by C2 curves b : (−ε, ε) → R2. The second fundamental form
is simply IIx(y) = −k(x)|y|2 where k is the curvature of b. When b is parametrized by
arc-length, |k| is the norm of the vector b′′.

Example 6.

Let

η(x) = (|x|2 − 1)(|x+ (δ, 0)|2 − 1

γ2
),

where γ ∈ (0, 1), δ ∈ (1/γ − 1, 1/γ + 1) are fixed constants. Take Dǫ to be the connected
component of η−1(−∞,−ǫ) on the right side, where ǫ > 0 is small enough.
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Observe that D0 = B(0, 1) \ B((−δ, 0), 1γ )). The singular points of η are the intersec-

tions of ∂B(0, 1) with ∂B((−δ, 0), 1γ )) and the centers of these circles.

Define

f(t, x, y) = |y|2 ∇η
|∇η| + p(t, x, y)

where p is bounded.

We have always Dǫ ⊆ D0 ⊆ B(0, 1), so RDǫ < 1 and (3.9) is satisfied since γ < 1.
Next, we need to check condition (3.6).

Let k(x) be the curvature of the curve ∂Dη(x) in the point x. It is obvious that k is a
continuous function of x for the regular points of η. From the choice of f , we only need
to show that k(x) > −1. This is true for all regular points of ∂D0 because of Remark 3.3.
The differential d2η can be explicitly calculated to show that k(x) > 0 for points of ∂Dǫ

near the singular points of D0.

Condition (3.6) takes the form

〈nx, p(t, x, y)〉 > −|y|2(k(x) + 1)

Moreover, k+ 1 is strictly positive, so if for example 〈nx, p(t, x, y)〉 ≥ 0, then the periodic
and Dirichlet problems admit at least one solution.

Now we give an example of non-existence of solutions, showing that the growth condi-
tions cannot be easily dropped.

Let x0, x1 ∈ Rn and ǫ, r > 0 such that x1 6∈ B(x0, r + 2ǫ). Let η : Rn → R be a C∞,
bounded function such that

η(x) =

{
1 if ||x| − r| ≤ ǫ
0 if ||x| − r| ≥ 2ǫ.

(3.11)

Let f0(t, x, y) = −Ky(|y|2 + 1)η(x) where K > 2πǫ . Finally, let g(t, x, y) be any function
equal to 0 for x ∈ B(x0, r + 2ǫ).

Claim 7. There is no solution of the problem





x′′ = (f0 + g)(t, x, x′)
x(0) = x0
x(1) = x1

(3.12)

Proof. Let x be a solution and t0 ∈ I such that |x(t0) − x0| = r. For all t such that
|x(t)− x(t0)| ≤ ǫ we have

x′′ = −Kx′(|x′|2 + 1).

Let w(t) = |x′|. We compute

2ww′ = (w2)′ = 2〈x′, x′′〉 = −2K|x′|2(|x′|2 + 1) = −2Kw2(w2 + 1)

w′ = −w(w2 + 1).

The unique solution of this differential equation is

w(t)2 = ((1 + w−2(t0))e
2Kt − 1)−1
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which satisfies

∫ t

t0

w(s)ds =
1

K
ArcTan

(√
(1 + w−2(t0))e2Kt − 1

)∣∣∣∣
t

t0

≤ π

K
.

Since K > 2πǫ we have

|x(t)− x(t0)| =
∣∣∣∣
∫ t

t0

w(s)ds

∣∣∣∣ ≤
ǫ

2
.

Then we know that x lies in B(x(t0),
ǫ
2) whenever x lies in B(x(t0), ǫ). This means

that x lies in B(x(t0),
ǫ
2) for all t ≥ t0, a contradiction.

For any domain D and points x0, x1 ∈ D we may choose ǫ, r, g for which the counter-
example applies and f0 + g satisfies condition (3.6). For example, for r, ǫ small and g = 0
we have a counter-example to the original Hartman condition when D = B(0, R).

Other counter-examples for scalar equations (also with cubic growth in |x′|) can be
found in [27].

A more delicate question is whether if condition γRD < 1 in (3.9) may be relaxed or
dropped. The negative answer is illustrated in the following counterexample:

Let us use complex notation for R2. Define

f(t, x, y) = − x

|x|2 |y|
2 + 2ix

Claim 8. The system x′′ = f(t, x, x′) has no classical periodic solutions.

Proof. Let x be a periodic solution. Notice that d2

dt2
|x|2 = 2(〈f(t, x, x′), x〉+ |x′|2) = 0 so

by periodicity, |x| = r is constant. Writing x(t) = reiθ(t) it follows that θ′′ ≡ 2, and hence
x′(t) cannot be equal to x′(0) for any t > 0, a contradiction.

Also it is seen that 〈f(t, x, y), x|x|〉 = − |y|2

|x| , so if

D = {x ∈ R2 : r1 < |x| < r2} for r2 > r1 > 0,

then (3.6) is satisfied for suitable perturbations of f . Condition (3.9) is not satisfied
because of the requirement γRD < 1.

Now, the general theory of compact perturbations of the identity in Banach spaces
implies that there are no periodic solutions in D of the equations x′′ = g(t, x, x′) for g in
a neighborhood of f . Indeed one may take g : Rn → Rn continuous such that

〈g(u), u〉 > 0 if |u| = r2,

〈g(u), u〉 < 0 if |u| = r1,

then (3.6) holds for fn := f+ 1
ng. If xn is a periodic solution of the problem x′′ = fn(t, x, x

′)
such that xn(t) ∈ D for all t, then xn = xn +K(fn(xn)) where x denotes the average of
the function x and K is the right inverse of the operator Lx := x′′ satisfying Kϕ = 0 for
ϕ ∈ C([0, 1]) with ϕ = 0. As {xn} is bounded, passing to a subsequence we may assume
that xn +K(fn(xn)) converges to some function x, so xn → x, and x is a solution of the
problem, a contradiction.

We conclude that condition (3.9) is sharp.
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3.4 Main theorems

3.4.1 Dirichlet conditions

Throughout this section, we shall use the following notations:

T = C(I × Rn × Rn,Rn), equipped with the usual compact open topology.

Ci = Ci(I,Rn) as Banach spaces with the standard norms.

X0 = {x ∈ X/x(0) = x(1) = 0} for X = C,C1, . . .

It is well-known that the map L : C2
0 → C,Lu = u′′ is a Banach space isomorphism;

let K : C → C2
0 be its inverse and ι : C2 → C1 the compact inclusion.

Moreover, let N : T × C1 → C be the nonlinear operator

N (f, x)(t) = f(t, x(t), x′(t)),

which is clearly continuous. Finally, let B : Rn × Rn → C1 be the segment B(x, y)(t) =
ty + (1 − t)x and F : T × C1 × Rn × Rn → C1 the operator defined by F (f, u, x, y) =
u− ιKN (f, u)−B(x, y).

Lemma 1. F (f, u, x, y) = 0 if and only if u is a solution of the nonlinear problem





u′′ = f(t, u, u′)
u(0) = x
u(1) = y

(3.13)

Our main theorem for Dirichlet conditions reads as follows:

Theorem 3.4.1. Let D be a bounded domain in Rn with C2 boundary, x0, x1 ∈ D and
f : R× Rn × Rn → Rn such that (3.6) and (3.9) hold.

Then there exists a solution of x′′ = f(t, x, x′) satisfying the Dirichlet conditions x(i) =
xi.

Proof. Let N be the bound provided by (3.9) (see Lemma 5 in previous section) and define

D = {x ∈ C1/Im(x) ⊂ D and ‖x′‖∞ < N + 1}.

We shall construct a homotopy starting from the functional u 7→ F (f, u, x0, x1), so we
may calculate its degree in the open set D, provided that it does not vanish on ∂D along
the homotopy.

The homotopy shall be constructed in three steps:

Step 1

Let F 1
λ (u) := F (f, u, x0, γ(λ)) where γ : [0, 1] → D is a path joining x0, x1. It is obvious

from Corollary 3.2.1 and from the choice of N that F 1
λ has no zeros on the boundary

of D. The problem is now homotopic to the same problem with boundary conditions
x(0) = x(1) = x0.

Step 2

Let λ0 > 0 be such that B(x0, λ0N) ⊂ D and set

f2λ(t, x, y) := λ2f(t, x, λ−1y).
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The function

R → T
λ 7→ f2λ

(3.14)

is continuous for λ ∈ [λ0, 1].

Next, define

F 2
λ (u) := F (f2λ , u, x0, x0)

so F 2
1 = F 1

0 .

Remark 2. The function f2λ satisfies (3.6), because IIx(y) is quadratic in y. This means
(from Corollary 3.2.1) that there are no solutions tangent to ∂D from inside. Also, as
x0 ∈ D we know that solutions do not touch the boundary at t = 0, 1.

Now we have to estimate the derivative of the solutions xλ of the equation F 2
λ (x) = 0

satisfying xλ(t) ∈ D.

Let y(t) = xλ(λ
−1t) for t ∈ [0, λ], then

y′′(t) = λ−2x′′λ(λ
−1t) = λ−2f2λ(λ

−1t, xλ(λ
−1t), x′λ(λ

−1t))

= f(λ−1t, xλ(λ
−1t), λ−1x′λ(λ

−1t))

= f(λ−1t, y(t), y′(t)).

So y is a solution of y′′(t) = f(λ−1t, y(t), y′(t)) for t ∈ [0, λ] and (3.9) applies (here we
use the fact that N in Lemma 5 does not depend on the interval of definition of y). Then
we get

N > |y′(t)| = |λ−1x(λ−1t)| for t ∈ [0, λ],

which implies

‖x′λ‖∞ < λN. (3.15)

Step 3

For λ ∈ [0, λ0], let us define

f3λ(t, x, y) := λ2f(t, x, yλ−1
0 )

F 3
λ (u) := F (f3λ , u, x0, x0).

Let xλ ∈ D be a solution of F 3
λ (x) = 0. If λ > 0 it is clear that |f3λ | ≤ |f2λ0 | so

|x′λ| ≤ λ0N still holds. Hence xλ ∈ B(x0, λ0N) ⊂⊂ D so xλ 6∈ ∂D.

Finally, F 3
0 (u) = F (0, u, x0, x0) = u−x0 so deg(F 3

0 ,D, 0) = 1 and the proof is complete.
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3.4.2 Periodic conditions

The periodic case of a second order ecuation is in general much harder than the two
point boundary value problem. The difference was explained in 2.2.2 in the introduction,
roughly speaking is that now the operator Lx = x′′ has non-trivial kernel. In order to
state our existence result for periodic conditions, now we shall consider:

T = {f ∈ C(I × Rn × Rn,Rn)/f(0, x, y) = f(1, x, y)}.
Ciper = {x ∈ Ci/x(j)(0) = x(j)(1), j < i}.
C̃i = {x ∈ Ci/x = 0}.
The map L : C2

per ∩ C̃ → C̃ given by Lx = x′′ is an isomorphism, denote by K : C̃ →
C2
per ∩ C̃ its inverse and ι : C2 → C1 the compact inclusion.

Let P : C1 → C̃1 be the projection associated with the decomposition C1 = Rn ⊕ C̃1

and let N : T ×C1 → C as before. Following [35], define F : T ×C1 → C1 as the operator
given by

F (f, u) = u− u−N (f, u) + ιKPNu

and G : T × C1 × R → C1 by

G(f, u, µ) = u− u−N (f, u) + µιKPNu.

The following result is easily verified as in [35]:

Lemma 3. F (f, u) = 0 if and only if u is a solution of the nonlinear problem





u′′ = f(t, u, u′)
u(0) = u(1)
u′(0) = u′(1).

(3.16)

Hence we may establish our main result for periodic conditions:

Theorem 3.4.2. Let f : R×Rn ×Rn → Rn be such that (3.6) holds, and either (3.8) or
(3.9) is satisfied.

Then there exists a periodic solution of x′′ = f(t, x, x′).

Proof. The proof follows the same outline of Theorem 3.4.1, conveniently modified for
this situation. In first place, it is obvious that we do not need to move the boundary
conditions.

Let us set again D = {x ∈ C1/Im(x) ⊂ D and ‖x′‖∞ < N+1} with N = N(C+1, 2φ)
where C and φ are as in (3.8) or (3.9), and let F (u) = F (f, u) as before.

The problem of adapting the previous proof to this new context relies in the fact that,
due to the resonance of the operator L, the bound for x′λ does not force solutions to be
far from the boundary. To overcome this difficulty we need f to point outwards the open
set D, for every t and y.

Step 1

As M is a C1 manifold, we may suppose nx is a continuous and bounded function
defined in Rn. Furthermore, we may suppose that |nx| ≤ 1 (for example using Dugundji’s
extension theorem). In fact, as we are assuming that D = η−1(−∞, 0) for some smooth
η, we may choose the vector field ∇η(x), properly normalized in a neighborhood of M .
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For λ ∈ [0, 2], set

f1λ(t, x, y) = f(t, x, y) + nxλ(max{0,−〈f(t, x, y), nx〉}+
1

2
min{1, φ(y)})

where, when (3.9) is assumed, φ(y) := γ|y|2 + C, and

F 1(λ, u) = F (f1λ , u)

so that F 1(0, u) = F (f, u).
By Lemma 4 below, we know that |f1λ | ≤ |f | + min{1, φ}. Thus, in both cases (3.8)

and (3.9) it is easy to see that fλ also satisfies it as well, with Ĉ = C + 1 and φ̂ = 2φ.
Indeed, for condition (3.8)

|f1λ | ≤ |f |+min{1, φ} ≤ d2xη(y, y) + dxη(f(t, x, y)) + C + 1

≤ d2xη(y, y) + dxη(f
1
λ(t, x, y)) + Ĉ

|f1λ | ≤ |f |+ φ ≤ 2φ = φ̂

(3.17)

and for condition (3.9)
|f1λ | ≤ |f |+ 1 ≤ γ|y|2 + C + 1.

Moreover, condition (3.6) is trivially satisfied and it is easy to prove that there are no
solutions of x′′ = f1λ(t, x, x

′) on the boundary of D, for any λ ∈ [0, 2]. Furthermore,
〈f1λ(t, x, y), nx〉 =

{
〈f(t, x, y), nx〉(1− λ) + λ

2 min{1, φ(y)} if 〈f(t, x, y), nx〉 < 0

〈f(t, x, y), nx〉+ λ
2 min{1, φ(y)} otherwise

(3.18)

and hence
〈f12 (t, x, y), nx〉 > 0 (3.19)

for all t, y and x ∈M . Thus,

deg(f12 (t, x, 0), D, 0) = deg(nx, D, 0). (3.20)

Now the problem is homotopic to x′′(t) = f12 (t, x, x
′), where f12 points outwards over

the boundary (namely, it satisfies (3.19)).

Step 2

Following the idea from Step 2 in Theorem 3.4.1, let

f2λ(t, x, y) = λ2f12 (t, x, λ
−1y)

F 2(λ, u) = F (f2λ , u).

Both Remark 2 and the bound obtained in (3.15) apply here (in contrast with the
Dirichlet case, Lemma 5 is not needed here since now we may extend solutions periodically)
so we deduce that solutions of x′′λ = f2λ(t, xλ, x

′
λ) are not on ∂D.

Now we claim there exists λ0 > 0 such that there are no solutions of x′′(t) = µf2λ0(t, x, y)
in ∂D for µ ∈ (0, 1]. Suppose again, by contradiction, that there exists a sequence xλ ∈ ∂D
of solutions of x′′λ(t) = µλf

2
λ(t, x, y) with µλ ∈ (0, 1] and λ→ 0. By (3.15), from Theorem
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3.4.1 we know that |x′λ| ≤ λN and by compactness we can suppose that xλ → p uniformly

for some p ∈ ∂D. By periodicity,
∫ T
0 x′′λ = 0, so

0 =

∫ T

0
〈µ−1
λ λ−2x′′λ, np〉 =

∫ T

0
〈f12 (t, xλ, λ−1x′λ), np)〉dt.

Passing to a subsequence, we may assume that

f12 (t, xλ, λ
−1x′λ)− f12 (t, p, λ

−1x′λ) → 0

uniformly, and we deduce:

∫ T

0
〈f12 (t, p, λ−1x′λ), np)〉dt→ 0.

This is a contradiction, because (3.19) implies that 〈f12 (t, p, y), np〉 has a positive minimum

over the compact set I × {p} ×B(0, N), which contains (t, p, λ−1x′λ) for all t.

Step 3

Now we set

F 3
µ(u) = G(f2λ0 , u, µ)

where G is defined as before, and observe that a zero of F 3
µ with µ ∈ (0, 1] is a solution of

the equation x′′(t) = µλ20f
1
2 (t, x, λ

−1
0 y), so it does not belong to ∂D.

Finally F 3
0 (u) = u−u−N (f2λ0 , u) and its Leray-Schauder degree is equal to the Brouwer

degree on D of the function −ψ, where ψ : D −→ Rn is given by

ψ(p) :=

∫ T

0
f12 (t, p, 0)dt.

Using (3.19), we deduce that
∫ T
0 〈f12 (t, x, 0), nx〉dt > 0 when x ∈ ∂D, so the function ψ is

linearly homotopic to the normal unit vector field n. Due to a theorem by Hopf [26], the
degree of n is equal to χ(D), where χ denotes the Euler characteristic. In section (3.5) we
shall prove that D is contractible, so χ(D) = 1 and the proof is complete.

Lemma 4. Let v, n ∈ Rd with |n| ≤ 1. Then for λ ∈ [0, 2] we have:

|v − λn〈v, n〉| ≤ |v|.

Proof. We compute

|v − λn〈v, n〉|2 = |v|2 − 2λ〈v, n〉2 + λ2〈v, n〉2|n|2

≤ |v|2 − 2λ〈v, n〉2 + λ2〈v, n〉2

= |v|2 + (λ2 − 2λ)〈v, n〉2 ≤ |v|2

for λ ∈ [0, 2].
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3.5 Topology of the domain

In this section we will show that the conditions in the preceding results imply that D
must be contractible. This is proved in Theorems 3.5.1 and 3.5.2 using two preliminary
lemmas. Our main tool shall be Morse theory for manifolds with boundary.

Definition 1. Let M,N ⊆ Rn be oriented C2 manifolds with normal unit vector fields nN
and nM . We shall say that M and N are outside tangent at p ∈ N ∩M if TpM = TpN
and nN (p) = −nM (p).

Lemma 2. Let η : Rn → R be C2 and suppose S = {η = η0} is a C2 manifold oriented
in the direction of ∇η. Then d2xη(y, y) = −|∇η|.IISx (y).

Proof. Let x be a curve such that x(0) = x and x′(0) = y. As

〈 d
dt
(∇η(x(t))), x′(t)〉 = d2xη(x

′, x′),

and writing ∇x(t)η = δ(t).nS(x(t)) where δ = |∇η|, we obtain:

d

dt
(∇η(x(t))) = δ′(t)nS + δ.g(x′)

and hence

d2xη(x
′, x′) = δ〈g(x′), x′〉 = −|∇η|IIx(x′).

Lemma 3. Let x be a curve in M , S as before and suppose M and N are outside tangent
at x(0). If IIM < −IIS then (η ◦ x)′′(0) > 0.

Proof. Using the previous lemma, we deduce

(η ◦ x)′′ = d2xη(x
′, x′) + dxη(x

′′) = −|∇η|IISx (x′) + |∇η|〈nS , x′′〉

(η ◦ x)′′(0) = −(IIS + IIM )|∇η| > 0

Theorem 3.5.1. Let D satisfy RDcurv(D, p) > −1 for all p ∈ M = ∂D. Then D is
contractible.

Proof. Without loss of generality, we may assume that D is centered at 0, that is: D ⊆
B(RD, 0). Let R > RD be such that curv(D, p) > − 1

R for every p ∈M . Let η : D → R

η(x, y) = x−
√
R2 − |y|2

where x ∈ R and y ∈ Rn−1. Clearly η is a C∞ function defined also in a neighborhood
of D which is an n-dimensional manifold with boundary ∂D. Consider S(t) = {η = t} =
∂B((t, 0), R) ∩ {x ≥ t} with the orientation given by ∇η.

Let us prove that η is a Morse function in D. First of all, there are no critical points
inside D. A critical point of η|M is a point p such that S(t) is tangent to M in p for some
t. A critical point of η as a Morse function in a manifold with boundary is a critical point
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of η|M such that ∇η points inwards D. In such a point p, S(t) andM are outside tangent.
Also

IIS(t)p (v) = −|v|2 1
R
< |v|2curv(D, p) ≤ −IIMp (v)

for every t ∈ R, v ∈ Rn.
The previous lemma applies and we get that p is a nondegenerate local minimum.
Morse theory implies now that D has the homotopy type of a disjoint union of points,

one per each critical point. As D is connected, we deduce that D is contractible.

Remark 4. As we saw in Remark 3.3, curv(D, p) can be calculated using tangent balls.
This might suggest a generalization of the notion of curvature for arbitrary open sets if one
defines the concept of exterior tangent ball in the following way: B is an exterior tangent
ball at p ∈ ∂D if p ∈ B and there exists a neighborhood V of p such that D ∩ V ⊂ Rn\B.

Then it is natural to ask if Theorem 3.5.1 is still valid in this context. The answer is
negative:

Consider for example n = 3,

D = B(0, 1) \
(
B((0, 1, 0), 1 + ǫ) ∪B((0,−1, 0), 1 + ǫ)

)

for small ǫ > 0. This set obviously satisfies RDcurv(D, p) > −1 because for every point
in the boundary there is an external tangent ball of radius 1 + ǫ, but it has the homotopy
type of S1.

However, if we approximate D by smooth domains, it is clear that the condition fails.
This shows that the previous definition of curvature for arbitrary domains is not accurate.

Theorem 3.5.2. Let D satisfy (3.8) for some η and some f . Then D is contractible.

Proof. Using (3.8), let us firstly notice that if |∇η| < 1, then 0 ≤ d2xη(y, y)+C for arbitrary
y, so d2xη must be positive semidefinite. Let Ka = {x ∈ D : dxη = 0, η(x) = a} be the
critical set of level a and ηa = {x ∈ D : η(x) < a} the level set.

As∇η is continuous inD there is an ǫ > 0 such that for all a, d2η is positive semidefinite
in Oa = B(Ka, ǫ). Since η ≥ a in Oa, we deduce that if b > a then Ob ∩ Ka = ∅. This
implies that there are only finite critical values. Also it is clear that Oa ∩ ηa = ∅, so
the Morse deformation Lemma shows that D has the homotopy type of the finite disjoint
union of the level sets Ka. Again, since D is connected there is only one critical set Ka

which is also the minimum set of η. Now let δ > 0 be small enough such that ηa+δ ⊆ Oa
(where a is the minimum). The set ηa+δ is a level set of a (non strict) convex function so
it is a convex set. Then the critical set Ka is the intersection of all such convex sets so it
is again convex.
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Chapter 4

Periodic motions in forced

problems of Kepler type

4.1 Introduction and main results

Consider the second order equation in the plane

z̈ ± z

|z|q+1
= λh(t), z ∈ C \ {0} (4.1)

where q ≥ 2, λ ≥ 0 is a parameter and h : R → C is a continuous and 2π-periodic function
satisfying ∫ 2π

0
h(t)dt = 0.

This equation models the motion of a particle under the action of a central force
F (z) = ∓ z

|z|q+1 and an external force λh(t). The force F can be attractive or repulsive

depending on the sign + or − in the equation (4.1). For q = 2 the vector field F becomes
the classical gravitational or Coulomb force. For general information on this type of
problems we refer to [2].

For the repulsive case it is known that (4.1) has no 2π-periodic solutions when λ is
small enough (see [61] and [7]). In this chapter we will discuss the existence of 2π-periodic
solutions when λ is large. Before stating the main result we recall the notion of index as
it is usually employed in Complex Analysis (see [17]). Given a continuous and 2π-periodic
function γ : R → C and a point z lying in C \ γ(R), the index of z with respect to the
circuit γ is an integer denoted by j(z, γ). When γ is smooth, say C1, this index can be
expressed as an integral,

j(z, γ) =
1

2πı

∫

γ

dξ

z − ξ
=

1

2πı

∫ 2π

0

γ̇(t)

z − γ(t)
dt.

It is well known that z 7→ j(z, γ) is constant on each connected component Ω of
C \ γ(R). From now on we write j(Ω, γ) for this index. Let φ(t) be a 2π-periodic solution
of (4.1), the index j(0, φ) is well defined and can be interpreted as the winding number of
the solution φ around the singularity z = 0.

Theorem 4.1.1. Let H(t) be a 2π-periodic solution of

Ḧ(t) = −h(t)

29
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and let Ω1, . . . ,Ωr be bounded components of C\H(R). Then there exists λ∗ > 0 such that
the equation (4.1) has at least r different solutions φ1(t), . . . , φr(t) of period 2π if λ ≥ λ∗.
Moreover,

j(0, φk) = j(Ωk, H), k = 1, . . . , r.

Next we discuss the applicability of the theorem in three simple cases.

Example 1. h(t) ≡ 0.

We also have H(t) ≡ 0 and so C\H(R) = C\{0}. This set has no bounded components
and so the theorem is not applicable. This is reasonable since the equation z̈ − z

|z|q+1 = 0

has no periodic or even bounded solutions. This is easily checked since all solutions satisfy

1

2

d2

dt2
(|z|2) = |ż|2 + 1

|z|q−1
> 0 .

On the contrary, in the attractive case the equation (4.1) has many periodic solutions for
h ≡ 0. Notice that φ(t) = eı(t+c) is a 2π periodic solution for any c ∈ R.

Example 2. h(t) = eıt

The second primitive of −h is H(t) = eıt and C\H(R) has one bounded component, the
open disk {|z| < 1}. The theorem asserts the existence of a 2π-periodic solution φ1(t) with
j(0, φ1) = 1 for λ large enough. Indeed this result can be obtained using very elementary
techniques. The change of variables z = eıtw transforms (4.1) into

ẅ + 2ıẇ − w ± w

|w|q+1
= λ .

This equation has, for large λ, two equilibria. These equilibria become 2π-periodic solutions
with index one in the z-plane. After lengthy computations it is possible to find the spectrum
of the linearization of the w equation around the equilibria. This allows to apply Lyapunov
center theorem in some cases to deduce the existence of sub-harmonic and quasi-periodic
solutions in the z-plane (see [49] for more details on this technique).

Example 3. h(t) = eıt + 27e3ıt.

The function H(t) = eıt + 3e3ıt is a parametrization of an epicycloid.
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We observe that C \H(R) has five bounded connected components with corresponding
indices 3, 2, 2, 1, 1. Hence we obtain five 2π-periodic solutions.

For some forcings h(t) the set C \H(R) has infinitely many bounded components. In
such a case the previous result implies that the number of 2π-periodic solutions grows
arbitrarily as λ→ ∞.

4.2 Brouwer degree and weakly nonlinear systems

This section is devoted to describe a well known result on the existence of periodic solutions
of the system

ẋ = εg(t, x; ε), x ∈ U ⊆ Rd (4.2)

where U is an open and connected subset of Rd, ε ∈ [0, ε∗] is a small parameter and
g : R × U × [0, ε∗] → Rd is continuous and 2π-periodic with respect to t. Later it will be
shown that our original system (4.1) can be transformed into a system of the type (4.2).
Following the ideas of the averaging method (see [45]), we define the function

G(c) =
1

2π

∫ 2π

0
g(t, c; 0)dt, c ∈ U .

Next we assume that G does not vanish on the boundary of a certain open set W , whose
closure W is compact and contained in U . In such a case the degree of G on W is well
defined.

Proposition 1. In the above conditions assume that

deg(G,W, 0) 6= 0.

Then the system (4.2) has at least one 2π-periodic solution xε(t) lying in W for ε > 0
sufficiently small.

This result is essentially contained in Cronin’s book [15]. We also refer to the more
recent paper by Mawhin [36] containing more general results and some history.

Before applying this Proposition to (4.1) it will be convenient to have some information
on the behaviour of xε(t) as ε ց 0. The function g is bounded on the compact set
[0, 2π]×W × [0, ε∗] and so

‖ẋε‖∞ = O(ε) as εց 0.

Let εn ց 0 be a sequence such that xεn(0) converges to some point c in W . Then xεn(t)
converges uniformly to the constant c in [0, 2π]. Integrating the equation (4.2) over a
period we obtain

∫ 2π

0
g(t, xεn(t); εn)dt = 0

and letting n→ ∞ we deduce that G(c) = 0. In other words, as εց 0 the solutions xε(t)
given by the previous Proposition must accumulate on G−1(0), the set of zeros of G.
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4.3 Reduction to a problem with small parameters

Let us start with the original equation (4.1) and consider the change of variables

z = λ(w −H(t))

where w = w(t) is the new unknown. Then (4.1) is transformed into

ẅ = ∓ε2 w −H(t)

|w −H(t)|q+1
(4.3)

with ε2 = 1
λq+1 .

In principle, this equation can have solutions passing through H(R) but we will look
for solutions lying in one of the components Ωk of C\H(R). On this domain the equation
(4.3) is equivalent to a first order system of the type (4.2) with x = (w, ξ) ∈ C2, U = Ωk×C

and

ẇ = εξ, ξ̇ = ∓ε w −H(t)

|w −H(t)|q+1
.

The averaging function is

G(c1, c2) = (c2,Φ(c1)), c1 ∈ Ωk, c2 ∈ C

and

Φ(c1) = ∓ 1

2π

∫ 2π

0

c1 −H(t)

|c1 −H(t)|q+1
dt .

In the next section we will prove the following

Claim 1. For each k = 1, . . . , r there exists an open and bounded set Ω∗
k, whose closure

is contained in Ωk, and such that

Φ(c1) 6= 0 if c1 ∈ ∂Ω∗
k, deg(Φ,Ω∗

k, 0) = 1.

Assuming for the moment that this claim holds, we notice that G does not vanish on
the boundary of W = Ω∗

k × B where B is the unit disk |c2| < 1. Moreover G can be
expressed as

G = L ◦ (Φ× id)

where L : C2 → C2 is the linear map (c1, c2) 7→ (c2, c1) and id is the identity in C. The
general properties of degree imply that

deg(G,W, (0, 0)) = sign(detL) · deg(Φ× id,Ω∗
k ×B, (0, 0))

= deg(Φ,Ω∗
k, 0) = 1.

In consequence Proposition 1 is applicable and we have proved the first part of Theorem
4.1.1. Namely, the existence of 2π-periodic solutions φ1(t), . . . , φr(t) for large λ (or small
ε).

Notice that φk(t) = λ(ψk(t)−H(t)), where ψk is a 2π-periodic solution of (4.3) lying
in Ω∗

k. For convenience we make explicit the dependence of φk with respect to ε and write
φk(t) = φk(t, ε).

To prove the identity
j(0, φk(., ε)) = j(Ωk, H)
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when ε is small enough, we proceed by contradiction. Let us assume that for some sequence
εn ց 0, j(0, φk(., εn)) 6= j(Ωk, H). After extracting a subsequence of εn we can assume
that ψk(t, εn) → z, ψ̇k(t, εn) → 0, uniformly in t, where z is some point in Ω∗

k ⊂ Ωk with
Φ(z) = 0. This is a consequence of the discussion after Proposition 1. Computing indexes
via integrals and passing to the limit

j(0, φk(·, εn)) = − 1

2πı

∫ 2π

0

ψ̇(t, εn)− Ḣ(t)

ψ(t, εn)−H(t)
dt→

→ 1

2πı

∫ 2π

0

Ḣ(t)

z −H(t)
dt = j(z,H) = j(Ωk, H).

Since we are dealing with integer numbers, j(0, φk(., εn)) and j(Ωk, H) must coincide for
large n. This is a contradiction with the definition of εn. By now the proof of the main
theorem is complete excepting for the above claim.

4.4 Degree of gradient vector fields

The purpose of this section is to prove the claim concerning the function Φ. To do this
we first prove a result valid for general gradient maps in the plane.

Proposition 1. Let Ω be a bounded, open and simply connected subset of C and let
V : Ω → R be a C1 function (in the real sense). In addition assume that

V (z) → +∞ as z → ∂Ω . (4.4)

Then there exists an open set Ω∗, whose closure is contained in Ω, such that

1. ∇V (z) 6= 0 for each z ∈ ∂Ω∗

2. deg(∇V,Ω∗, 0) = 1 .

Remark. The condition (4.4) says that V blows up in the boundary of Ω. More precisely,
given r > 0 there exist δ > 0 such that if z ∈ Ω with dist(x, ∂Ω) < δ then V (z) > r.

Notice also that, by the properties of degree in two dimensions,

deg(∇V,Ω∗, 0) = deg(−∇V,Ω∗, 0) .

Proof. By Sard’s lemma we know that V has many regular values in the interval (minΩ V,+∞).
Let us pick one of these values, say α. Then the set M = V −1(α) is a one-dimensional
manifold of class C1. Since V blows up at the boundary, M is compact and so it has to
be composed by a finite number of disjoint Jordan curves. Let γ be one of these Jordan
curves and let us define Ω∗ as the bounded component of C \ γ. Notice that the closure
of Ω∗ is contained in Ω because Ω is simply connected.

We know that
V (z) = α and ∇V (z) 6= 0 if z ∈ γ

and so ∇V (z) must be colinear to n(z), the outward unitary normal vector to the curve
γ. This implies that 〈∇V (z), n(z)〉 does not vanish on the curve γ. Assume for instance
that

〈∇V (z), n(z)〉 > 0 if z ∈ γ,
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the other case being similar. Then it is easy to prove that ∇V (z) is linearly homotopic to
any continuous vector field which is tangent to γ on every point of this curve. The proof
is complete because it is well known that these tangent vector fields have degree one. See
for instance Th. 4.3 (Ch. 15) of [14].

We are ready to prove the claim concerning the function

Φ : Ωk → C, Φ(z) = ± 1

2π

∫ 2π

0

z −H(t)

|z −H(t)|q+1
dt

where Ωk is a bounded component of C \H(R).
To do this we will apply Proposition 1 and the crucial observation is that Φ is a gradient

vector field. Namely
Φ = ∓∇V on Ωk

where V is the real analytic function on Ωk,

V (z) =
1

2π(q − 1)

∫ 2π

0

dt

|z −H(t)|q−1
.

Using very standard arguments of planar topology one can prove that Ωk is simply con-
nected and so we only have to check that (4.4) holds. We finish this chapter with a proof
of this fact.

Lemma 2. In the above setting,

V (z) → +∞ as z → ∂Ωk.

Proof. By a contradiction argument assume the existence of a sequence {zn} in Ωk with
dist(zn, ∂Ωk) → 0 and such that V (zn) remains bounded. Since Ωk is bounded it is
possible to extract a subsequence (again zn) converging to some point p ∈ ∂Ωk. Let us
define the set A = {t ∈ [0, 2π] : H(t) = p} and the function

µ(t) =

{
1

|H(t)−p|q−1 , t ∈ [0, 2π] \A
+∞, t ∈ A.

(4.5)

Then the sequence of functions 1
|H(t)−zn|q−1 converges to µ pointwise. By Fatou’s Lemma

∫ 2π

0
µ(t)dt ≤ lim inf

n→∞

∫ 2π

0

dt

|H(t)− zn|q−1
= 2π(q − 1) lim inf

n→∞
V (zn) <∞.

Hence µ(t) is integrable in the sense of Lebesgue . In particular the set A has measure
zero. Since the boundary of Ωk is contained in H(R), the set A is non-empty and we can
fix τ ∈ [0, 2π] with H(τ) = p. The previous discussion shows that

µ(t) =
1

|H(t)− p|q−1
, a.e. t ∈ [0, 2π].

Let L > 0 be a Lipschitz constant for H, then

µ(t) ≥ 1

Lq−1|t− τ |q−1
a.e. t ∈ [0, 2π].
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At this point the condition q ≥ 2 plays a role,

∫ 2π

0
µ(t)dt ≥ 1

Lq−1

∫ 2π

0

dt

|t− τ |q−1
= +∞

and this is a contradiction with the integrability of µ.
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Chapter 5

Differentiable functions in Banach

spaces

Now we turn to the subject of diferential calculus in Banach spaces.
The well known results stated in sections 5.1 and 5.3 are the cornerstone theorems

for the study of local properties of differentiable functions in Banach spaces and Banach
manifolds. For details on Banach manifolds and smooth functions we refer the reader to
[30]. An excellent overview on the subject is [47] Chapter 3, and the references therein.

5.1 Local singularities

We noticed in example 2 of section 4 that in the repulsive case there exists a solution
which does not lie in the corresponding bounded connected component. Its existence is
not explained by theorem 4.1.1. We intend to show that this extra solution has its origins
in the fact that the operator associated to the equation has a “fold” singularity. Later in
section 6.2 we will give the global version of this fact.

Definition 1. A bounded linear map between Banach spaces T : X → Y is called a
Fredholm operator if Im(T ) ⊆ Y is closed and Ker(T ), coker(T ) are finite dimensional.
The Fredholm index of T is defined as ind(T ) = dim(Ker(T ))− codim(Im(T )). The set of
Fredholm operators is denoted K ⊂ L(X,Y ).

Let f : U ⊆ X → Y be a C1 function between Banach spaces, defined in an open set
U . We say that f is a (nonlinear) Fredholm map if for every x ∈ X the differential dxf
is a Fredholm operator.

Notice that since the index is continuous in the space of Fredholm operators K ⊂
L(X,Y ) and f is C1 then the index is constant in connected components of U .

The goal of this section is to prove theorem 5.1.2 for which we will make use of the
powerfull theorem 5.1.1.

Since all theorems are of local nature, we shall use terms like ‘local function at the
point x’ or ‘local diffeomorphism at the point x’ refering to functions defined in a small
open neighbourhood of x. For convenience, we will avoid mentioning this open set and
denote simply f : X → Y .

Lemma 2. Let f : X → Y be a C1 map and x0 ∈ X such that dx0f is suryective and
K = Ker(dx0f) is complemented in X.

37
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Then there exists a local diffeomorphism φ : K ⊕ Y → X sending 0 to x0 such that
fφ(k ⊕ y) = y.

Proof. Let V ⊂ X be a (closed) direct sumand of K in X. Notice that the restriction
dx0f : V → Y is a Banach space isomorphism (use the open mapping theorem).

Consider
F : K ⊕ V → K ⊕ Y
k ⊕ v 7→ k ⊕ f(k + v)

(5.1)

and compute the differential

dx0F =

[
idK 0
dKf dV f

]

which is also a Banach space isomorphism. By the inverse function theorem there exists
a local diffeomorphism φ : K ⊕ Y → X = K ⊕ V such that Fφ = idK⊕Y . By composing
φ with a translation, we may assume that φ is defined in a neighbourhood of 0 and that
φ(0) = x0. The conclusion follows.

Some observations:

Remark 3. 1. Since d0φ is invertible, Ker(d0(fφ)) = K.

2. From the definition of F we know that for x in the domain of φ, dxφ|K = idK

Lemma 4. Let f : X → Y be a C1 map such that K = Ker(dx0f) is complemented in X
and R = Im(dx0f) is complemented in Y . Then there exists a Banach space C and local
diffeomorphisms

φ : K ⊕R→ X

ψ : Y → C ⊕R

such that ψfφ(k, y) = (f̃(k, y)⊕ y) for some C1 function f̃ .

Proof. Let R = Im(dx0f), K = Ker(dx0f). Let V,C be the direct sumands of K and R
respectively, let PR, PC : Y → R,C be the associated projections.

Obviously dx0(PRf) = PRdx0f is surjective and Ker(dx0(PRf)) = Ker(dx0f) which
is complemented so we may apply the previous theorem to PRf instead of f and obtain
φ : K ⊕R→ X such that PRfφ(k, r) = r. Then

fφ(k, r) = PCfφ(k, r)⊕ r = f̃(k, r)⊕ r

and the function ψ is just the canonical isomorphism.

Remark 5. Clearly Ker(d0(ψfφ)) = K

Definition 6. We say that two local functions f : X → Y, g : Z → W at points x ∈
X, z ∈ Z respectively are locally conjugated if there exist local diffeomorphisms φ, ψ at
x, f(x) such that the following diagram is commutative.

X
f

//

φ
��

Y

ψ
��

Z
g

// W

(5.2)
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Local conjugacy is an equivalence relation. For a function f : X → Y we are interested
in determining its local conjugacy class because this equivalence relation captures the
structure of point preimages. That is, if f and g are locally conjugated at points x, z then
for each y near f(x), φ is a diffeomorphism between f−1(y) and g−1(ψ(y)). The simplest
example is the local conjugacy class of a diffeomorphism where the preimage of a point is
always one point.

The next theorem characterizes the local conjugacy class of Fredholm mappings.

Theorem 5.1.1 (Local representative theorem for Fredholm maps). Let f : X → Y be a
Fredholm map, let n = dim(Ker(dx0f)),m = codim(Im(dx0f)).

Then there exists a (closed) subspace E ⊂ X, and a C1 function f̃ : Rn ⊕ E → Rm

such that f is locally conjugated to the function

Rn ⊕ E → Rm ⊕ E

x⊕ e 7→ f̃(x, e)⊕ e
(5.3)

Proof. Since Ker(dx0f) and Im(dx0f) are finite dimensional and codimensional respectively
they are complemented. The theorem therefore follows from the previous lemma.

Remark 7. 1. Ker(d0(ψfφ)) = Rn and Im(d0(ψfφ)) = E

2. The preimage of a point (x, e) is the set of points {(p, e)/f̃(p, e) = x}.

Theorem 5.1.2 (Characterization of fold singularities). Let f : X → Y be a C2 Fredholm
map and x0 ∈ X such that

1. ind(f) = 0

2. Ker(dx0f) is one-dimensional

3. if ρ is a generator of the kernel then d2x0f(ρ, ρ) 6∈ Im(dx0f)

Then there exists a (closed) subspace E ⊂ X such that f is locally conjugated to the
‘fold’ function

R⊕ E → R⊕ E
t⊕ e 7→ t2 ⊕ e

. (5.4)

In this case the map f is said to have a local ‘fold’ singularity at x0.

Remark 8.

The ‘fold’ function presents a particular structure with respect to preimages. The set
of singular values (i.e. the images of points where the differential is not surjective) is
the surface M1 = {0} × E which divides the space R × E into 2 connected components
M0 = {(t, e)/t < 0} and M2 = {(t, e)/t > 0}. Clearly a point (t, e) ∈ R× E has exactly i
preimages when (t, e) ∈Mi for i = 0, 1, 2.

The local conjugacy relation preserves this structure. Namely, if φ, ψ are the local
conjugacy functions such that ψ.f.φ−1 is the fold map then the set S1 = ψ−1(M1) is a
smooth manifold defined near f(x0) (and passing through f(x0)) which divides a small
neighbourhood of f(x0) in the two regions S0 = ψ−1(M0), S2 = ψ−1(M2). The behaviour
of the preimages of points near f(x0) is (locally) the same as for the ‘fold’ function. That
is, y ∈ Si has exactly i preimages near x0.
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Proof of Theorem 5.1.2: In the proof we will show that the conjugacy functions φ, ψ are
homeomorphisms but it is not hard to see that they are in fact diffeos.

By the previous theorem, f is conjugated to the function t⊕e 7→ f̃(t, e)⊕e and Remark

7 implies, ∂f̃∂t (0, 0) = 0.

We make now an observation on the previous lemma: The function f̃ : K ⊕R→ C is
f̃ = PCfφ. So if we take ρ, k ∈ K with k small,

d(k,0)f̃(ρ) = PC ◦ dφ(k,0)f ◦ d(k,0)φ(ρ) = PCdφ(k,0)f(ρ).

(the last equality is consequence of the last item in Remark 3)
Using this expresion for the first derivative of f̃ we may calculate the second derivative

∂2f̃

∂t2
(0, 0) = d2(0,0)f̃(ρ, ρ) = PCd

2
x0f(ρ, d(0,0)φ(ρ)) = PCd

2
x0f(ρ, ρ)

We deduce that ∂2f̃
∂t2

(0, 0) 6= 0 because of the third hipothesis, and we may assume that it
is positive by composing if necessary with (t⊕ e) 7→ (−t⊕ e).

Using the implicit function theorem we obtain a function t(e) such that ∂f̃
∂t (t(e), e) = 0.

Since the local map t ⊕ e 7→ t + t(e) ⊕ e is again a local diffeomorphism, f is conjugated
to t⊕ e 7→ g̃(t, e)⊕ e where

∂g̃

∂t
(0, e) = 0.

Now t⊕e 7→ t− g̃(0, e)⊕e is again a local diffeo so f is conjugated to t⊕e 7→ h̃(t, e)⊕e
where

h̃(0, e) = 0,
∂h̃

∂t
(0, e) = 0,

∂2h̃

∂t2
(0, 0) > 0.

From the last inequality we obtain

∂2h̃

∂t2
(t, e) > 0

for all t, e in a small ball at 0. Since in this ball, the function ∂h̃
∂t (., e) is strictly increasing

and is 0 for t = 0, the function

t⊕ e 7→
√
h̃(t, e).sg(t)⊕ e

is a local homeomorphism. We conclude that f is conjugated to the ‘fold map’ as desired.

Corollary 5.1.1. Let f : X → Y be a local fold map in x0 ∈ X.
Then through f(x0) passes a differentiable manifold M1 which divides a small ball

centered at f(x0) in two regions M0,M2 such that the equation f(x) = y has exactly i
solutions for y ∈Mi, i = 0, 1, 2

5.2 An application to the repulsive singular problem

Let X = C2
per([0, 2π],C), Y = C0([0, 2π],C) be the Banach spaces with boundary condi-

tions as defined in section 2.2.2. Namely X = {u ∈ C2([0, 2π],C)/u(0) = u(2π), u′(0) =
u′(2π)}.
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Define g(x) = x
|x|3

and consider the map f : X → Y, f(x) = x′′ − g(x) (here g(x) is an

abuse of notation to denote the composition g ◦ x). This functional is associated to the
repulsive problem of Chapter 4. We will see below that f is a C2 Fredholm map.

For s ∈ R define zs ∈ X as zs(t) = seit so

f(zs)(t) = (−s− s−2)eit.

The equation of example 2, section 4 is

f(x) = λeit. (5.5)

From the expression for f at the points zs we only need to solve the equation λ = −s−s−2

for s, which has 0, 1 or 2 solutions depending on the value of λ. This suggests the presence
of a fold singularity for f at x0 = zµ where 1− 2µ−3 = 0. Let’s prove this assertion.

Compute the differential

df(x0)(v)(t) = v′′(t)− dg(x(t))(v(t)).

This is the sum of a Fredholm operator of index 0 and a compact operator, so we deduce
that f is a Fredholm map. We must see if the kernel is one-dimensional. Since g is rotation
invariant we can compute for r, v ∈ R

dg(reit)(veit) = eitdg(r)(v)

dg(r)(1) = −2r−3, dg(r)(i) = ir−3

or in matrix notation

dg(r) =

[
−2 0
0 1

]
r−3.

To calculate the kernel of df(x0) we need to study the system v′′(t) − dg(x(t))(v(t)) = 0
and check that the solution space is only one dimensional. Let ṽ(t)eit = v(t). We compute
the derivatives

v′(t) = (iṽ(t) + ṽ′(t))eit

v′′(t) = (2iṽ′(t) + ṽ′′(t)− ṽ(t))eit.

The system transforms as

(ṽ′′(t) + 2iṽ′(t)− ṽ(t))− dg(µ)(ṽ(t)) = 0.

Let ṽ(t) = u1(t) + iu2(t). Taking real and imaginary parts we have

{
u′′1(t)− 2u′2(t)− (1− 2µ−3)u1(t) = 0
u′′2(t) + 2u′1(t)− (1 + µ−3)u2(t) = 0

and the system can be stated in the form of a first order equation




u1
u′1
u2
u′2




′

=




0 1 0 0
h 0 0 2
0 0 0 1
0 −2 l 0







u1
u′1
u2
u′2
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where

h = (1− 2µ−3) = 0

l = (1 + µ−3) > 0

which is linear and autonomous (we write h instead of 0 to highlight the specific value of
µ). The dimension of the space of periodic solutions is the number of purely imaginary
eigenvalues of the 4× 4 matrix.

The characteristic polynomial is

(X2 − hX)(X2 − l) + 4X = X2(X2 − l) + 4X

that has no nonzero, purely imaginary roots, and 0 has multiplicity one.

Now we have to look at the second derivative of f to check the third condition of
Theorem 5.1.2.

d2f(x)(v, w)(t) = d2g(x(t))(v(t), w(t))

and after some computations we obtain

d2g(r) =




(
6 0
0 −3

)

(
0 −3
−3 0

)


 r

−4

A generator of the kernel is the function x0 itself.

d2f(x0)(x0, x0) = eitd2g(µ)(µ, µ) = eitµ−26

Now notice that df(x0) is a self-adjoint operator with respect to the L2 inner product.
Since 〈d2f(x0)(x0, x0), x0〉L2 6= 0 this implies that

d2f(x0)(x0, x0) 6∈ 〈x0〉⊥ = Ker(df(x0))
⊥ ⊇ Im(df(x0))

so the last condition is satisfied and now we can assert that f has a local fold in x0.

The final conclusion is the following quite interesting result:

Corollary 5.2.1. Let µ = 2−
1

3 , ν = −µ − µ−2 and zs(t) = seit for s ∈ R. As we
mentioned at the beginning of the section, the functions zs belong to the Banach space
X = C2

per([0, 2π],C) and zµ is a periodic solution of the equation

z′′(t)− g(z(t)) = zν(t).

Then through zν passes a codimension 1 submanifold M1 ⊆ X which divides a small
ball centered at zν in two regions M0,M2 in such a way that the equation

z′′(t)− g(z(t)) = y(t)

has exactly i periodic solutions near zµ for y ∈ Mi, i = 0, 1, 2. Of course we could have
more solutions which are not close to zµ.
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5.3 The Sard-Smale theorem

Here we shall prove (Theorem 5.3.1) a generalization of the Sard theorem for infinite
dimensions due to Smale in 1965 (see [60]). This theorem will be used repeatedly in
sections 6.3 and 6.6. The present section has no results but is included in this chapter to
make this thesis more legible and self-contained.

Definition 1. Let f : X → Y be a differentiable function between Banach manifolds.

1. x ∈ X is a regular point if dxf : TxX → Tf(x)Y is surjective. We say it is a singular
point if it is not regular.

2. y ∈ Y is a regular value if every preimage x ∈ f−1(y) is a regular point. We say it
is a singular value if it is not regular. We denote the set of regular values of f by
R(f)

3. A subset of a topological space is said to be “meager” or “of first category” if it is
a countable union of closed sets of X with empty interior. Conversely, a subset of
a topological space is said to be “residual” or “of second category” if its complement
is of first category, equivalently if it is a countable intersection of open and dense
subsets.

Recall the Baire category theorem which states that in a complete metric space, a
second category subset is dense.

The conclusion of the Baire category theorem may usually be underestimated: If two
sets A,B are of the second category then the intersection is (obviously from the definition)
again of the second category, thus A ∩ B is dense. So the property of being a second
category set is much stronger than being just dense, and in a sense behaves very much
like the property of being a “full Lebesgue measure” set, only that the first notion makes
sense in an abstract metric space.

Theorem 5.3.1 (Sard-Smale). Let f : X → Y be a C∞ (nonlinear) Fredholm map and
suppose the topology of X has a countable basis.

Then the set of singular values of f is of the first category.

For the proof we shall need the following lemmas.

Lemma 2. Fredholm maps are locally closed. Morover, the image of a closed and bounded
subset is closed.

Proof. Take charts such that f looks like the theorem of local representative of Fredholm
maps.

Let (xn, en) be a sequence such that f(xn, en) = (f̃(xn, en), en) converges to some point
(x, e). Obviously en → e and xn is bounded. Then xn has a convergent subsequence and
we deduce that (x, e) is in the image.

Lemma 3. The set of regular points of a Fredholm map is open.

The proof of this lemma is quite simple, but it can be deduced from the continuity of
df : X → L(X,Y ) and a general and deep result known as the Graves theorem (see [30]):
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Let X,Y be Banach spaces. The set of surjective linear continuous maps Epi ⊂ L(X,Y )
is open.

Now we are in conditions to prove the main theorem:

Proof of Theorem 5.3.1: Let f : X → Y be our nonlinear Fredholm map. Since X is
second countable it is enough to show that there is a covering of X by open sets U so that
the regular values of f |U are residual. In fact, we will show that we can find U so that
the regular values of f |U are open and dense. Take some point x0 in X. Since f is locally
closed and the critical point set of f is closed, for any bounded U the regular values of
f |U form an open set. Now choose charts about the point in question so that the local
representative of f has the form guaranteed by Lemma 5.1.1. f : E⊕Rn → E⊕Rm. The
differential of the local representative of f has the form

[
I 0

∗ d(e,x)f̃ |Rn

]

so that d(e,x)f is surjective if and only if d(e,x)f̃ |Rn is surjective. In other words (e, x)

is a regular value for f |U if and only if x is a regular value of k 7→ f̃(e, k) (defined in
{k ∈ Rn/(e, k) ∈ U}). Now that the map in question is finite dimensional, we may apply
the Sard theorem. Thus the intersection of R(f |U ) with each slice {e} × Rn is dense and
hence R(f |U ) is dense. This completes the proof.



Chapter 6

On existence of periodic solutions

for Kepler type problems

6.1 Introduction

In this chapter we return to the periodic singular problem treated in Chapter 4,





u′′(t)± u(t)
|u(t)|q+1 = λh(t)

u(0) = u(1)
u′(0) = u′(1)

(6.1)

for a vector function u : I = [0, 1] → Rn, where q ≥ 2 and h ∈ C(I,Rn) with h :=∫ 1
0 h(t) dt = 0.

Here u describes the motion of a particle under a singular central force that can be
attractive or repulsive depending on the sign ±, and an arbitrary perturbation h.

In Chapter 4 we studied the case n = 2, for which we proved in Theorem 4.1.1 the
existence of periodic solutions under a non-degeneracy condition. In more precise terms,
we obtained a lower bound of the number of solutions that depends purely on a topological
property of the second primitive of h. Here we extend Theorem 4.1.1 in several directions.

In section 6.2 we consider the repulsive case. We obtain at least one extra solution
from the direct computation of the Leray-Schauder degree over the set of curves that are
bounded away from the origin and from infinity. More precisely, we obtain a lower bound
of the number of solutions that depends not only on the number of connected components
of R2 \ Im(H) but also on the winding number of H with respect to these components.

The main idea is the following: first, we prove that solutions of (6.1) are uniformly
bounded for λ ≤ λ∗ and that there are no solutions for λ = 0. Thus, if we picture the
solution set S = {(u, λ) ∈ C2([0, 1],R2) × R/u is a solution of (6.1)} then S contains a
continuum which starts at a solution (u∗, λ∗) given by Theorem 4.1.1 and is bounded both
in the λ and the u directions. Then S must ‘turn around’ in the λ direction and intersect
again the subspace λ = λ∗.

Furthermore, in section 6.3 we prove that for a ‘generic’ forcing term h the repulsive
problem has in fact at least 2r periodic solutions. More specifically, take C̃0

per the Banach
space of continuous periodic functions of zero average. Then there exists a residual set
Σ ∈ C̃0

per such that if λh ∈ Σ then all solutions of (6.1) are non-degenerate. As a
consequence, all of them have multiplicity one and depend differentiably on h.

45
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In section 6.4 we give some examples illustrating existence and non existence of solu-
tions in some particular situations.

In section 6.5 we extend Theorem 4.1.1 to higher dimensions. Our proofs make use of
some classical results of algebraic topology. The case n = 3 is treated separately because
the homology of open sets with smooth boundary is simple and easy to understand, while
the case n > 3 needs more restrictive hypotheses.

In section 6.6 we obtain further results for the case n = 3, assuming that H is an
embedded knot. The lower bounds for the number of solutions will depend on the knot
type of H, specifically on a knot invariant called the tunnel number t(H). For example,
we prove existence of at least 3 solutions if H is a nontrivial knot and at least 5 solutions
when it is a composite knot.

Finally, in section 6.7 we apply the methods of section 6.6 to the restricted N -body
problem.

6.1.1 Preliminaries

Theorem 4.1.1 is proved in Chapter 4 using a result contained in Cronin’s book [15] about
the averaging method. However, for our purposes it shall be convenient to describe the
procedure in a precise way. As before, let us make the change of variables

u(t) = λ(z(t)−H(t))

so equation (6.1) becomes





z′′(t) = ∓ǫ z(t)−H(t)
|z(t)−H(t)|q+1

z(0) = z(1)
z′(0) = z′(1)

(6.2)

where
ǫ = λ−(q+1). (6.3)

We shall associate a functional between Banach spaces

Gǫ : C2
per(I,R

n) → C2
per(I,R

n)

to this system, which is continuous (in fact, analytic) and such that solutions of (6.2) are
characterized as points z ∈ C2

per(I,R
n) which are zeros of Gǫ. We shall use the Leray-

Schauder degree in order to prove that the zeros of G0 can be continued to zeros of Gǫ for
small values of ǫ. Then, it is enough to study the function G0, which can be identified with
its restriction to the finite dimensional space of constant functions, namely the function
F : Rn \ Im(H) → Rn given by

F (x) =

∫ 1

0

x−H(t)

|x−H(t)|q+1
dt. (6.4)

Specifically, for each open set D ⊆ Rn \Im(H) we may associate the open set of curves
D = {z ∈ C2

per(I,R
n)/Im(z) ⊆ D} and hence deg(G0,D, 0) = deg(F,D, 0); thus, it suffices

to look for open sets D such that the latter degree is different from zero. For each of these
sets D there exists a solution of (6.2) for ǫ > 0 small. In the situation of Theorem 4.1.1,
if Ω1, . . . ,Ωr are the bounded connected components of R2 \ Im(H), we may construct as
in section 4.4, open sets Ω∗

i ⊂ Ω∗
i ⊂ Ωi where all the respective degrees are equal to 1.
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Moreover, there is also a functional F associated to equation (6.1) such that

Gǫ(x) =
1

λ
F(λ(x−H)) +H (6.5)

so it is conjugated to Gǫ by affine homeomorphisms. The functional F is independent of
λ. It shall be constructed explicitly in section 6.2 and then we shall define Gǫ by formula
(6.5).

The relation between these two functionals is the following: the function u is a solution
of (6.1) if and only if F(u) = −λH, if and only if Gǫ(uλ +H) = Gǫ(z) = 0, if and only if
z = u

λ +H is a solution of (6.2). Also, the degrees are related by

deg(F , E ,−λH) = deg(Gǫ,D, 0)

where ǫ and λ are related by (6.3) and D and E are related by

D = H +
1

λ
E . (6.6)

For convenience, let us define the function

g : Rn \ {0} → R, g(u) =
1

|u|q−1
,

so ∇g(u) = −(q−1) u
|u|q+1 . From now on, H : S1 → Rn shall be a periodic second primitive

of −h, which is unique up to translations.

6.2 The repulsive case

In this section we shall improve Theorem 4.1.1 for the repulsive case. In first place, let us
prove the existence of an extra solution by a direct degree argument:

Theorem 6.2.1. In the conditions of Theorem 4.1.1, the repulsive case of problem (6.1)
admits at least r + 1 solutions.

It is worth noticing, however, that Theorem 6.2.1 shall be improved as well at the
end of this section by studying the winding number of H with respect to the connected
components of R2 \ Im(H).

We will make use of the following two lemmas, which shall provide us a priori bounds
for the solutions. Later on, these bounds will be used also in the proofs of Theorems
6.5.1 and 6.5.2 for higher dimensions, so the results will be stated in Rn. We remark that
nothing of this can be extended to the attractive case.

Lemma 1. Given λ∗ > 0 there exist constants R, r > 0 such that

r ≤ u(t) ≤ R ∀t ∈ I

for any u : I → Rn solution of (6.1) with λ ≤ λ∗.

Proof. Let prove first that solutions are uniformly bounded away from the origin. Let u
be a solution. We define the energy and compute its derivative

E(t) =
1

2
|u′(t)|2 + 1

(q − 1)|u(t)|q−1
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E′(t) = 〈u′, u′′〉 − 〈u′, u〉
|u|q+1

= 〈u′, λh〉

|E′(t)| ≤ λ|u′||h| ≤ λ‖h‖∞
√

2E(t) ≤ Cλ∗
√
E(t). (6.7)

Now multiply the equation 6.1 by u and integrate,

∫ 1

0
〈u, u′′〉 −

∫ 1

0

1

|u|q−1
= λ

∫ 1

0
〈h, u〉

−‖u′‖22 −
∫ 1

0

1

|u|q−1
= λ

∫ 1

0
〈h, u〉 = λ

∫ 1

0
〈h, u− u〉

1

2
‖u′‖22 +

∫ 1

0

q − 2

q − 1

1

|u|q−1
+

∫ 1

0
E = −λ

∫ 1

0
〈h, u− u〉

∫ 1

0
E ≤ λ

∣∣∣∣
∫ 1

0
〈h, u− u〉

∣∣∣∣ ≤ λ‖h‖2‖u− u‖2

∫ 1

0
E ≤ λ∗C‖u′‖2 ≤ λ∗C

√∫ 1

0
E. (6.8)

From this inequality, a bound for E(t0) for some t0 is obtained. Using (6.7), we get a
bound for E(t) for all t, and hence a bound for 1

|u(t)|q−1 depending only on λ∗.

Next, let us prove that solutions are uniformly bounded. By contradiction, suppose
there exists a sequence {un} such that ‖un‖∞ → ∞. Then ‖un − un‖∞ ≤ C‖u′n‖∞ ≤
C
√
‖E‖∞ ≤ C which, in turn, implies that if n is large then the image of un lies in a

half-space. This contradicts the fact that g(un) = 0.

Lemma 2. Problem (6.1) has no solutions for λ = 0.

Proof. Let λ = 0 and suppose u is a solution. Multiply equation (6.1) by u and integrate,
then

−
∫ 1

0
|u′|2 =

∫ 1

0
u′′u =

∫ 1

0

1

|u|q−1
,

a contradiction.

Lemma 3. Solutions of (6.1) are also uniformly bounded in C2(I,Rn).

Proof. We know from Lemma 1 that ‖u‖∞ and ‖u′‖∞ are bounded. From (6.1), it follows
that ‖u′′‖∞ is bounded as well.

Lemma 4. Let F : E ⊂ C2(I,Rn) → C2(I,Rn) where F is the functional associated to
(6.1) and E = {u ∈ C2 : r < |u| < R, ‖u′‖ < C, ‖u′′‖ < C} where r, R and C are the
bounds obtained in the preceding lemmas.

Then deg(F , E ,−λ∗H) = deg(Gǫ∗ ,D, 0) = 0 where ǫ∗ and D are defined as in (6.3)
and (6.6).

Proof. It follows immediately from the continuation theorem.



6.2. THE REPULSIVE CASE 49

Using this fact, we are able to obtain an extra solution of (6.1).

Proof of Theorem 6.2.1: Following the notation and the proof of Theorem 4.1.1, set

Ak := {z ∈ C2(I,R2) : Im(z) ⊆ Ω∗
k, ‖z′‖∞ < C, ‖z′′‖∞ < C}

with Ω∗
k ⊆ Ωk such that deg(∇g,Ω∗

k, 0) = 1, and take E as in the previous lemma.

We know that, for some ǫ∗ small enough, deg(Gǫ∗ ,Ak, 0) = 1 and the problem has a
solution in Ak.

By formula (6.6), D = {z/ r
λ∗
< |z−H| < R

λ∗
}, so taking R large enough it is seen that

Ak ⊆ D for all k. By the previous lemma, deg(Gǫ∗ ,D, 0) = 0. Defining B = D \⋃r
k=1Ak

we obtain deg(Gǫ∗ ,B, 0) = −r, so there exists at least one more solution in B, which is
obviously different from the others.

In the preceding proof, when r > 1 it is worth observing that, although the degree of
Gǫ∗ is equal to −r we cannot assert the existence of r different extra solutions since we
are not able to ensure that they are non-degenerate. But we are still able to distinguish
solutions using properties that are invariant under continuation.

We recall the definition of the index given in chapter 4

Definition 5. Let γ : I → R2 be a continuous curve and let x ∈ R2\Im(γ). Let j(x, γ) ∈ Z

be defined as the winding number of γ around x. The function x 7→ j(x, γ) is constant in
each connected component of R2 \ Im(γ). Thus, if Ω ⊆ R2 is one of these components, we
define the winding number j(Ω, γ) of γ around Ω.

Theorem 6.2.2. In the conditions of Theorem 6.2.1, let Ω1, . . . ,Ωr be the connected
components of R2 \ Im(H) and let s be the cardinality of the set {j(Ωk, H)/k = 1, . . . , r}.
Then the repulsive case of (6.1) admits at least r + s solutions.

Proof. Let E be defined as before and consider the ‘winding number function’ J : E → Z

defined by J(x) = j(0, x), which determines in E the connected components Ei = {u ∈
E/J(x) = i} for i ∈ Z. Since ∂E =

⋃
i∈Z ∂Ei, we deduce from Lemmas 1 and 2 that

deg(F , Ei,−λH) = 0 for every i. Using again formula (6.6), we obtain the decomposition
D =

⋃
i∈ZDi and deg(Gǫ∗ ,Di, 0) = 0. Repeating the argument of the previous theorem for

each k, Ak ⊆ Di where i = j(Ωk, H), so if

Bi = Di \
⋃

k/j(Ωk,H)=i

Ak

then deg(Gǫ∗ ,Bi, 0) = −#{k/j(Ωk, H) = i} (which might be eventually 0, if there is no k
such that j(Ωk, H) = i).

We conclude that there exists one solution for each Bj(Ωk,H).

As an example, in 3 we considered, using complex notation, h(t) := eit + 27e3it. The
function H(t) = eit + 3e3it is a parameterization of the epicycloid:
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As observed, R2 \ H(R) has five bounded connected components with corresponding
indices 3, 2, 2, 1, 1. Hence we obtained five periodic solutions. But according to theorem
6.2.2, in the repulsive case the number of solutions is at least 8.

In general, there is no way to guarantee that solutions of a given problem are non-
degenerate without knowing them explicitly. But since our functional is smooth, this
property can be achieved by arbitrarily small perturbations. It is in some sense a ‘generic’
property. This is the content of the next section.

6.3 Genericity

Some of the results of this section are proved in [44] in a more general situation. We
include the proofs for the sake of completeness and clarity.

Let us define the spaces

Ciper = {x ∈ Ci(I,Rn) : x(j)(0) = x(j)(1), 0 ≤ j < i}

so C0
per is just C

0 = C0(I,Rn). Also, if X is any of these spaces, we define

X̃ = {x ∈ X : x = 0}
We shall prove the following theorem:

Theorem 6.3.1. There is a residual subset Σ2 ⊆ C̃2
per with the following property: if

O ⊆ C2
per is an open bounded set such that deg(F , O, y) = n for some y ∈ Σ2, then the

equation F(x) = y has at least n distinct solutions.

As a corollary, we shall obtain:

Corollary 6.3.1. In the conditions of Theorem 6.2.1, there exists a residual subset Σ0 ⊂
C̃0
per such that (6.1) has at least 2r solutions for λh ∈ Σ0 and λ large enough.

It is interesting to compare this result with the fact, mentioned in [7], that (6.1) has
no solutions when ‖λh‖0 ≤ η for some η > 0 depending only on q. In particular, the image
of the operator F is not dense.

In order to prove our results, let us recall the Sard-Smale theorem stated in Chapter
5.
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Theorem 6.3.2. (Sard-Smale) Let f : X → Y be a Fredholm map between Banach
manifolds. i.e, f is C1 and df(x) : TxX → Tf(x)Y is a Fredholm operator for all x. Then
the set of regular values is a residual set in Y .

The main difficulty for applying the Sard-Smale theorem to our situation is the fact
that we need to solve an equation of the form F̂ (x) = −λH with H ∈ C̃0, but C0 \ C̃0

is already a residual set. No information can be obtained from the theorem applied to
F̂ : C2

per → C0. Thus, we need to study a suitable restriction of the functional.

We shall use the notation F̂ for functions defined in the ambient spaces C2
per, C

0 and
F for their restrictions to subspaces or submanifolds.

Consider the operators

N : U i ⊆ Ci → Ci, N(u)(t) = n(u(t)) :=
u(t)

|u(t)|q+1
,

Q : Ci → Rn, Q(u) = u

where U i = {x ∈ Ci : x(t) 6= 0, ∀t}.

Lemma 1. N : U2 → C0 is C1. In particular, as Q is linear and continuous, then QN is
C1.

Proof. Take x ∈ U2 and let η := d(Im(x), 0)/2. If v ∈ TxU2 = C2 satisfies ‖v‖∞ ≤ η, then

n(x(t) + v(t)) = n(x(t)) + dn(x(t))(v(t)) +R(v(t)), R(x) = o(x).

In fact, we have |R(x)| ≤ C|x|2 with C depending only on η. Then

N(x+ v) = N(x) + dN(x)(v) +R ◦ v, ‖R ◦ v‖∞ = |o(‖v‖∞)| ≤ o(‖v‖C2)

and the proof follows.

Lemma 2. The operator QN : C2
per → Rn has 0 as a regular value. In particular, the set

M := {x ∈ C2
per : QN(x) = 0} is a differentiable manifold.

Proof. For each w ∈ Rn take v(t) = dn(x(t))−1(w), then

d(QN)(x)(v) = Q(dN(x)(v)) =

∫ 1

0
dn(x(t))(v(t))dt = w

and hence d(QN)(x) is an epimorphism for every x.

Let us consider the operator D̂ : C2
per → C0

per defined by D̂(x) := x′′, so its restriction

D : C̃2
per → C̃0

per is an isomorphism of Banach spaces. Let F̂ : U2 ∩ C2
per → C0

per be given
by

F̂ (x) = D(x)−N(x)

and consider its restriction F :M → C̃0
per.

Lemma 3. The operator F is a Fredholm map of index 0.
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Proof. Clearly dF̂ (x) = D−dN(x) is the sum of a Fredholm map of index 0 and a compact
operator. Thus, dF̂ (x) is a Fredholm linear operator.

The fact that dF (x) : TxM → C̃0
per is Fredholm of index 0 follows from the following

general argument on vector spaces:

Let L̂ : X → Y be any linear Fredholm operator and let L : V → W be its restriction
to spaces of finite codimension. Consider the following commutative diagram of Banach
spaces

0 // V //

L

��

X //

L̂
��

X/V //

ι

��

0

0 // W // Y // Y/W // 0

where ι is canonical.

The long exact sequence given by the snake lemma has only finite dimensional spaces,
which implies that ind(L)− ind(L̂) + ind(ι) = 0.

In our particular case, X/V = Y/W = Rn and QdxF̂ = dxQN , so ι = id.

The following lemma is an immediate consequence of the above argument:

Lemma 4. For x ∈M , dxF is an isomorphism if and only if dxF̂ is an isomorphism.

Combining the previous results, we obtain:

Lemma 5. The set of regular values of F is a residual set Σ0 ⊆ C̃0
per. Moreover:

1. For y ∈ C̃0
per F−1(y) = F̂−1(y) and regular values of F are also regular values of F̂ .

2. For each y ∈ Σ0 and x ∈ F−1(y), F̂ is a local diffeomorphism between neighborhoods
of x ∈ C2

per and y ∈ C0
per.

Next, let us compose F̂ with the isomorphism id⊕D−1 so we get

F : C2
per → C2

per,F(x) = QNx⊕D−1PNx+ Px.

This is the functional associated to equation (6.1). It is clear that u is a solution of (6.1)
if and only if F(u) = −λH.

Now we are in conditions to prove the main theorem of this section:

Proof of Theorem 6.3.1: Take y ∈ Σ0 ⊆ C̃0
per. For every x ∈ F−1(y), the function F is

a diffeomorphism between neighborhoods of x ∈ C2
per and D−1(y) ∈ C2

per. Taking Ox
a small neighborhood of x, from the product formula for the Leray-Schauder degree we
obtain:

deg(F , Ox, D−1(y)) = ±1.

Finally, take Σ2 = D−1(Σ0) ⊆ C̃2
per, which is residual since D is an isomorphism. The

result now follows by excision and additivity (properties VIII and VII from the introduc-
tion).
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6.4 Some examples

Proposition 1. For the repulsive case, if Im(H) is contained in a line then the equation
6.2 has no solution for any ǫ > 0.

Proof. Let us take coordinates (x, y) ∈ R× Rn−1. We may assume that the y coordinate
of H is zero, that is H(t) = (H1(t), 0).

Let z(t) = (x(t), y(t)) be a solution. Multiply y′′ by y and integrate, then

−
∫ 1

0
|y′(t)|2dt =

∫ 1

0
〈y(t), y′′(t)〉dt =

∫ 1

0
〈y(t), ǫy(t)

|z(t)−H(t)|q+1
〉dt ≥ 0,

so y ≡ 0.
Now, as z lies in the same line as H, we have H1 > x or H1 < x for all t so either x′′

is positive or negative. This contradicts the fact that z is periodic.

Example 2. In Theorem 4.1.1 the existence of connected components of R2 \ Im(H) is
not necessary to deduce the existence of solutions.

Indeed, take Hl(t) = eil sin(t). The curve Hl ⊆ R2 is degenerate for l < π, in the sense
that R2 \ Im(Hl) has no bounded connected components.

For l = π, we may construct as in 4.4 an open set Ω∗ with deg(F,Ω∗, 0) = 1, where
F is the function defined in (6.4). Using the continuity of the Brouwer degree, we deduce
that deg(F,Ω, 0) = 1 for some l < π close to π. This provides a periodic solution of (6.1),
although R2 \ Im(Hl) has no bounded connected components.

Theorem 6.4.1. Assume that Im(H) is not contained in a line. Then for λ large there
exists a solution of the repulsive problem for some reparameterization of H.

Proof. Take sǫ : I → I such that sǫ is C1 and increasing for ǫ > 0, and s0 is piecewise
constant, s0([0, a]) = t0, s0((a, 1]) = t1. Define Hǫ(t) = H(sǫ(t)). It is easy to see that
F has one non-degenerate zero x0 of index −1. Choosing a, t0, t1 appropriately we can
ensure that x0 is not in Im(H) (here we use the fact that Im(H) is not contained in a line)
and we take a small neighborhood U of x0 not touching H. We obtain a zero x1 ∈ U of
F for small values of ǫ as a non-degenerate zero of index −1, which is isolated by U . This
point is continued to a small solution of (6.1) for λ large enough and such that

deg(Fλ,U , 0) = −1

where
U = {x ∈ C2

per/ Im(x) ⊆ U}.

6.5 Higher dimensions

Theorem 4.1.1 and the extensions Theorem 6.2.1 and Theorem 6.3.1 can be carried out in
dimension n > 2 without any modification of the proofs, as long as we can find open sets
Ω ∈ Rn \ Im(H) such that the degree over Ω of the map F : Rn \ Im(H) → Rn defined in
the introduction is well defined and different from zero.

In this section we shall construct open sets with this property. We make use of singular
homology theory with coefficients in a field to obtain information about the degree of F .
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6.5.1 Dimension 3

For convenience, let us define the function G : Rn \ Im(H) → R given by

G(x) :=

∫ 1

0
g(x−H(t))dt =

∫ 1

0

1

|x−H(t)|q−1
dt.

Theorem 6.5.1. If R3 \ Im(H) is not simply connected then there exists an open set
Ω ⊆ R3 \ Im(H) such that deg(∇G,Ω, 0) 6= 0. Moreover, if r := dim(H1(R

3 \ Im(H)))
then r 6= 0 and deg(∇G,Ω, 0) ≥ r.

As a consequence we obtain

Corollary 6.5.1. If R3\Im(H) is not simply connected then equation 6.1 admits a periodic
solution for λ large enough.

Remark 1. The number r counts the self-intersections of H. In the case that Im(H) is
contained in a plane P , it is exactly the number of connected components of P \ Im(H).
In this way, we recover Theorem 4.1.1, although not in its full generality.

Also, it is worth noticing that the fundamental group of R3 \ Im(H) distinguishes
whether H is or not a non-trivial knot, but the homology does not. In fact, using Alexander
duality (Lemma 7), one can show that in most cases r depends on the image of H and not
on how this image is embedded in R3.

Our proof of Theorem 6.5.1 will require several lemmas; all of them shall be stated in
Rn.

Lemma 2. The function G is C∞ smooth in Rn \ Im(H).

Lemma 3.

• G(x) → ∞ when x→ x0 ∈ H.

• G(x) → 0 when |x| → ∞.

• G(x) < g(d(x,H))

Lemma 4. The function G is sub-harmonic for q > n − 1 and harmonic for q = n − 1.
In particular, it has no local maxima in the interior of the domain of definition. In
consequence, if U ⊆ Rn is an open and bounded set such that H ∩ U = ∅ then it attains
its maximum at the boundary.

Proof. It follows directly from the fact that g is sub-harmonic for q > n− 1 and harmonic
for q = n− 1, and that ∆G =

∫ 1
0 ∆g(x−H(t))dt.

Lemma 5. If B is a large ball centered at the origin then −∇G is homotopic to the
identity in ∂B by a homotopy of non vanishing vector fields.

Proof. As

dG(x)(x) =

∫ 1

0
dg(x−H(t))(x)dt

and
dg(x−H(t))(x) = −(q − 1)|x−H(t)|−(q+1)(〈x, x〉 − 〈H(t), x〉),

then for |x| > ‖H‖∞ the value of 〈∇G(x), x〉 is negative.
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Now some general lemmas

Lemma 6. For n ≥ 3 the set Rn \ Im(H) is arcwise-connected.

Proof. It follows as an application of transversality:
If a smooth curve γ joins two points not in Im(H), it can be homotoped with fixed end-

points in R3 to be transversal to H. Since the dimensions of the images of the differentials
of two curves sum at most 2, transversality in this case means γ and H are disjoint.

Lemma 7. (Alexander duality, see [62, p. 296, thm 16])
Let U be an open set in Sn with smooth boundary. If k∗ and e∗ denote the reduced

Betti numbers of U and Sn \ U respectively then

kq = en−1−q.

For convenience, if U ⊂ Rn is open and bounded and φ : ∂U → Rn \ {0} is continuous,
we shall use the notation deg(φ, ∂U, 0) := deg(φ̂, U, 0) where φ̂ : U → Rn is any continuous
extension of φ.

Lemma 8. (Hopf, see [25, Satz VI])
Let U be an open bounded set in Rn with smooth boundary.

Let n : ∂U → Rn be the outer-pointing unit normal vector field. Then deg(n, ∂U, 0) =
χ(U), where χ denotes the Euler characteristic.

Proof of Theorem 6.5.1: We will construct an open set U with the following properties:

• ∂U is smooth.

• U ⊇ Im(H).

• G is constant and ∇G 6= 0 in ∂U .

• χ(U) ≤ 1− r where r := dim(H1(R3 \ Im(H))).

Once we have this set U , we may notice that −∇G is orthogonal to ∂U , so clearly
deg(−∇G, ∂U, 0) = deg(n, ∂U, 0) where n is the outer-pointing unit normal vector field.

Then using Lemma 8 it follows that deg(−∇G, ∂U, 0) = χ(U) ≤ 1 − r. Next, take
a large ball B given by Lemma 5 and observe that deg(−∇G, ∂B, 0) = 1. Finally, as
Im(H) ⊆ U , it follows that G is well defined in Ω = B \ U and deg(−∇G,Ω, 0) ≥ r.

Now we may construct U as follows. For convenience, we shall regard R3 as embedded
in S3, and callN ∈ S3 the north pole. We remark that the functionG extends continuously
to N by setting G(N) = 0.

It follows from the hypothesis that there exist smooth curves γ1 . . . γr ∈ R3 \ Im(H)
generating H1(R

3 \ Im(H)) as a basis. By Lemma 6, each γi is connected to N by another
curve δi. Since G is continuous in

⋃
γi ∪ δi, then it is bounded there by a number α0. By

Sard’s lemma, there exists a regular value α > α0.
Next, take V the connected component of {G < α} that contains N and let U = V

c
.

U and V are manifolds with common boundary in S3. Moreover, U has a finite number of
connected components that are disjoint manifolds with boundary. Obviously Im(H) ⊆ U .

We claim that U is in fact connected. Indeed, let U ′ be a connected component of U .
Then U ′∩Im(H) 6= ∅: otherwise, from Lemma 4 we deduce that G|U ′ attains its maximum
at some x0 ∈ ∂U ′ ⊆ ∂U so G(x0) = α. But also G ≤ α in V , so x0 is a local maximum of
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G in R3 \ Im(H), a contradiction since α is a regular value. As Im(H) ⊆ U is connected,
we conclude that U is connected.

Since G = α in ∂U and G < α in
⋃
γi ∪ δi, it follows that γi ⊆ V and that U is

bounded.
Notice that there is a homomorphism induced by the inclusion

H1(V ) → H1(R
3 \ Im(H)), which sends [γi]H1(V ) to the generators, so it is surjective and

hence e1 = dim(H1(V )) ≥ r (using the notation of Lemma 7).
Using the Alexander duality (Lemma 7), from the fact that V is connected we obtain

k2 = e0 = 0. Also, k0 = 0 because U is connected, and k1 = e1 ≥ r. The Euler
characteristic of U is χ(U) = 1 + k0 − k1 + k2 ≤ 1− r, and this completes the proof.

6.5.2 Dimension n > 3

In this section we shall prove, for n > 3, the existence of a set U as in the proof of Theorem
6.5.1.

Theorem 6.5.2. If H is an embedding and q > 2 then there exists an open set U ⊆ Rn

such that H ⊆ U and deg(∇G,U, 0) = 0.

As a consequence, we may construct an open set Ω such that

deg(−∇G,Ω, 0) = 1

thus proving that equation 6.1 has a periodic solution for λ large enough.

Lemma 9. If H is an embedding and q > 1 then the critical points of G do not accumulate
in H.

Proof. Assume, by contradiction, that there is a sequence xn of critical points ofG accumu-
lating somewhere in H. Without loss of generality we may assume xn → x0 ∈ Im(H). Fix
tn ∈ I such that the distance from xn to Im(H) is realized in H(tn). Let vn = xn−H(tn)
and λn = |vn|−1. Again without loss of generality, we may assume λnvn → y ∈ Rn and
tn → t0. By periodicity we may also assume t0 = 0. Let us compute dG(xn):

0 = dG(xn) =

∫ 1

0
dg(xn −H(t))dt = λqn

∫ 1

0
dg(λnxn − λnH(t))dt

= λq−1
n

∫ λn

0
dg(λnxn − λnH(

s

λn
+ tn))ds

= λq−1
n

∫ λn

0
dg(λn(xn −H(tn))− λn(H(

s

λn
+ tn)−H(tn))ds.

It follows from the assumptions and the regularity of H that

λn(xn −H(tn)) → y and λn(H(
s

λn
+ tn)−H(tn)) → sH ′(t0)

for every s. In order to establish the convergence of the integral, let us estimate λnxn −
λnH( s

λn
+ tn).

Consider the continuous function

γ(t, s) :=

{
|H(t+s)−H(t)|

|s| if t 6= s

|H ′(t)| if t = s
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AsH is an embedding, γ(s, t) > 0 for all s and t then by compactness |H(t+s)−H(t)| ≥
ǫ|s| for all s, t and some small ǫ > 0.

Using this we obtain

∣∣∣∣λnxn − λnH

(
s

λn
+ tn

)∣∣∣∣ ≥ λn

(∣∣∣∣H
(
s

λn
+ tn

)
−H(tn)

∣∣∣∣− |vn|
)

≥ ǫ|s| − 1.

As H(tn) is the nearest point to xn, the left hand side is also bounded from below by
λn|vn| = 1 so

|dg(λnxn − λnH(
s

λn
+ tn))| ≤ max{1, (ǫ|s| − 1)−q}(q − 1)

which is integrable in R for q > 1.

By dominated convergence we conclude that λ
−(q−1)
n dG(xn) converges to

∫∞
0 dg(y −

sH ′(t0))ds. Notice that 〈H ′(tn), λnvn〉 = 0 and, taking limits, 〈H ′(t0), y〉 = 0 so the
integral can be explicitly calculated and is different from zero, a contradiction.

Proof of Theorem 6.5.2: Using Lemma 3 we can take α > 0 large enough so that U :=
{G > α} is close to Im(H). By Lemma 9 we can ensure that there are no critical points
of G in U .

Applying the Morse deformation lemma to G at level +∞ we deduce that Im(H) is a
deformation retract of U so deg(−∇G, ∂U, 0) = χ(U) = χ(H) = χ(S1) = 0.

Remark 10. As the set of embeddings of S1 in Rn for n ≥ 3 is open in the C1 topology
and dense in the C∞ topology, Theorem 6.5.2 is a result about the generic situation.

6.6 On Morse functions and knots

In this section we prove that, generically, the function G has some differential structure
that allows us to obtain more solutions when H is a knotted curve in R3. The results
involving knot theory will require G to be a Morse function and in order to emphasize
the dependence on H, we shall use the notation GH(x) :=

∫ 1
0 g(x−H(t))dt. So firstly we

shall prove the following

Theorem 6.6.1. There exists a residual set Σ ⊆ C2
per(I,R

n) such that if H ∈ Σ then GH
is a Morse function.

To this end let us consider the parametric version of the Sard-Smale’s theorem. Firstly,
we need the following

Definition 1. Let f : X → Y ⊃ W be a smooth function between Banach manifolds and
W a submanifold. We shall say that f is transversal to W and write f ⋔ W if for each
x ∈ f−1(W ) we have that the composition

TxX → Tf(x)Y → Tf(x)Y/Tf(x)W

is a submersion (namely, it is surjective and its kernel is complemented).
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Theorem 6.6.2. (see [9])
Let f : X × B → Y ⊃ W be a smooth function between Banach manifolds and W a

submanifold. Assume that X is finite dimensional and W is finite codimensional.
If f ⋔ W then fb ⋔ W for b in a residual subset of B, where fb is the function

x 7→ f(x, b).

We write E = Rn the Euclidean space and consider the function

DG : C2
per(I,R

n)× E → E∗

DG(H,x) =

∫ 1

0
dg(x−H(t))dt

where, as before, g(x) = 1
|x|q−1 .

Proof of Theorem 6.6.1: The theorem is consequence of the following two lemmas:

Lemma 2. The function DG is transversal to 0 ∈ E∗.

Proof. Notice that d2g(x) ∈ L(E,E∗) is always invertible. For given γ ∈ E∗, H ∈ C2, x ∈
E take Ĥ(t) = (d2g(x−H(t)))−1(γ), Ĥ ∈ C2(S1,Rn). Then d(DG)(H,x)(Ĥ, 0) = −2πγ.
Since Ker(d(DG)) is finite codimensional, it splits. Then DG is transversal to 0 (notice
that DG−1(0) is a differentiable Banach manifold).

Lemma 3. DGH is transversal to 0 if and only if GH is a Morse function.

Proof. Note that dGH(x) = DG(H,x) so DGH is transversal to 0 ∈ E∗ if an only if dGH is
transversal to 0, if and only if for each critical point x of GH , d

2
xGH = dx(dGH) ∈ L(E,E∗)

is invertible. This GH is a Morse function.

Now Morse functions may be used as follows:

Lemma 4. Let f : U → R be a Morse function and let x0 be a critical point of index λ.
Then there exists a neighborhood V that isolates x0 as a critical point, and such that

deg(∇f, V, 0) = (−1)λ.

Proof. Using the Morse lemma we obtain a chart (V̂ , x1, . . . , xn) such that f(x1, . . . , xn) =
−∑

i<λ x
2
i +

∑
i≥λ x

2
i . Take a square inside V̂ of the form

V := {(x1, . . . , xn) : ‖(x1, . . . , xλ)‖ ≤ ǫ, ‖(xλ+1, . . . , xn)‖ ≤ ǫ}.

This is the required neighborhood.

As a consequence, when H ∈ Σ we obtain at least one solution of (6.1) for each critical
point of GH .

Remark 5. In the present case, in which G is a Morse function, the use of Leray-Schauder
degree may be avoided by simply invoking the implicit function theorem for Banach spaces.

The following theorems give us relations between the number of critical points of G
and some knot invariants of H (see [3] for a general overview on knot theory). Although
its statement is contained in that of Theorem 6.6.4, we shall give an independent proof
because it is much simpler, it uses different tools and part of it shall be used later.



6.6. ON MORSE FUNCTIONS AND KNOTS 59

Theorem 6.6.3. Assume H is a non-trivial knot embedded in R3 and that G is a Morse
function. Then G has at least 3 critical points in R3.

Proof. Changing the functionG near Im(H) we may assume that−G is a Morse function in
S3 with a global minimumm ∈ Im(H) and an index 1 critical point in p ∈ Im(H). Consider
the Morse decomposition of S3 through the function −G. Call M c = {x/−G(x) ≤ c} and
M−∞ = Im(H) = S1.

We have a cell complex given by the Morse decomposition of S3.

0 → H3(X3, X2) → H2(X2, X1) → H1(X1, X0) → H0(X0) → 0

0 → Zm3 ⊕N.Z → Zm2 → Zm1 ⊕H.Z → Zm0 ⊕m.Z → 0

with homology H∗(S
3) = {Z, 0, 0,Z}.

Here mi is the number of critical points of −G of index i in R3 \ Im(H) and N is the
north pole, where we have a global maximum. Since G is subharmonic we have m0 = 0.

Computing the Euler characteristic we have

χ(S3) = χ(Im(H)) +m0 −m1 +m2 − (m3 + 1)

0 = 0−m1 +m2 − (m3 + 1)

m2 −m1 = m3 + 1 ≥ 1. (6.9)

We see that the only way to have just 1 critical point in R3 is m2 = 1,m1 = 0,m3 = 0.
All other possibilities give 3 or more. Then the cell complex reduces to

0 → N.Z
0−→ e.Z → H.Z

0−→ m.Z → 0

where we think of H as the curve generated by the index 1 critical point p.

We know that d(N) = 0 because H3(S3) = Z, and d(H) = m−m = 0.

Now consider the attaching map f : S1 = ∂e→ X1 corresponding to the unique 2-cell
e.

Since d : e.Z → H.Z is an isomorphism we must have d(e) = ±H.

Now we may consider f : D2 → S3 as the inclusion of the 2-cell. Composing with the
isotopy generated by the negative gradient, we may assume that G(f(S1)) is uniformly
large so Im(f) is uniformly close to Im(H) and thus lies in a tubular neighborhood of
Im(H). It is clear that f is homotopic to H or H−1 inside that tubular neighborhood.

It follows that f(S1) is a satellite knot whose companion is H. Since f is homotopically
nontrivial in the tubular neighbourhood we see that f(S1) is a nontrivial companion of
a non trivial knot and is therefore itself non trivial. This may be deduced for example
from the genus formula for satellite knots. But this is a contradiction, since f(S1) is the
boundary of an embedded 2-cell in R3.

Remark 6. A lower bound for the number of solutions may be also obtained by considering
the presentation of the knot group given by the Morse decomposition of the knot comple-
ment. Namely, a Morse function in S3 \ Im(H) gives a presentation of π1(S

3 \ Im(H))
with one generator for each critical point of index 1 and one relation for each critical point
of index 2. Thus an obvious lower bound for the number of critical points would be the
minimal numbers of generators (and relations) of a presentation of the group.
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A knot invariant that seems to be closely related to the minimal number of critical
points of G is the following:

Definition 7. Let K ⊆ S3 be a knot. A tunnel is an embedded arc with endpoints in
K. The tunnel number of K, t(K) is the minimal number of tunnels ti such that if
N = N(K, ti) is a tubular neighbourhood of the knots and the tunnels, then S3 \ N is a
handlebody. We call this set of tunnels a tunnel decomposition.

The only knot with tunnel number zero is the trivial knot, so Theorem 6.6.3 is a
particular case of our next result.

Theorem 6.6.4. Assume H is a knot embedded in R3 and that G is a Morse function.
Then G has at least 2t(H) + 1 critical points and consequently equation (6.1) has at least
2t(H) + 1 periodic solutions for λ large enough.

Remark 8. If a knot has tunnel number one, it will be a one-relator knot and therefore
prime [51]. Then for any composite knot we will have at least 5 critical points. Also, it is
worth noting that a decomposition with t tunnels gives a presentation of π1(S

3 \ Im(H))
with t relations so the present theorem provides a better bound for the number of solutions
than the one stated in the previous remark.

Proof of Theorem 6.6.4: By the Kupka-Smale theorem [10, pp 159, thm 6.6], we may
perturb G (preserving the critical points and its indices), in order to obtain a Morse-
Smale function.

For each critical point p of −G of index 1, denote γp : R → S3 the embedding of the
unstable manifold.

Clearly γp is connected with Im(H) because G is Morse-Smale. Now take a tubular
neighborhood U of Im(H)∪Im(γp1)∪. . .∪Im(γpk). We will show that S3\U is a handlebody
then k, the number of γ curves, is greater than or equal to t(H).

For each critical point q of −G of index 2, denote δq : R → S3 the embedding of the
stable manifold. Again, δq connects with N ∈ S3 because G is Morse-Smale. Obviously,
γpi , δqj are disjoint.

We shall construct a tubular neighborhood V of {N} ∪ Im(δq1) ∪ . . . ∪ Im(δqs). V is a
handlebody and we will show that S3 \ U retracts to V .

Consider the positive gradient flow of −G (i.e. −∇G ) denoted by φt(x). Take a point
x ∈ S3 \U . If the orbit of x converges to a critical point q then it belongs to the unstable
manifold of −G at q. We know that x cannot belong to any γpi so q is a critical point of
−G of index 2 or q = N . We deduce that q ∈ V .

Orbits always converge to critical points, then every point in (S3\U)\V must eventually
enter at V . If we manage to construct V so that its boundary is transversal to the flow,
then, by the inverse function theorem, the arrival time at V is a continuous function t(x).
This allows us to construct the required deformation as

ψ(t, x) = φmin{t,t(x)}(x).

Finally, using formula (6.9) we obtain at least t(H) + 1 critical points of index 2.

Now we shall construct V . With this purpose, take a critical point q of index 2 and a
Morse like system of coordinates xi in a neighborhood of q of the form U = [−1, 1] ×D2

where {±1} ×D2 is the exit set. We know that δq converges to the attractor N .
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Consider

α± : R+ ×D2 → S3

α±(t, x) = φt(±1, x)

Let us show that α± is an embedding.

Clearly t 7→ φt(x) is injective because f is strictly decreasing in the integral curves.
Moreover, points leaving U can never return since f restricted to the exit set is less or
equal to f restricted to the entrance set. We conclude that the orbits of the points in
{±1} × D2 are all different and then α± is injective. It is clear, also, that the image is
open and α is an embedding.

Notice that α sends R+ × {x} to integral lines. Now we may easily construct a neigh-
borhood Vq of R+ × {0} with boundary transversal to the horizontal flow t, x 7→ t+ s, x.
Call F = Vq ∩{0}×D2. It follows that α+(Vq)∪ ([−1, 1]×F )∪α−(Vq) is a neighborhood
of δq. Taking the union of these neighborhoods and an attracting neighborhood of N we
obtain the set V with the desired properties.

6.7 Links and the restricted n-body problem

Consider the equation

{
z′′(t) =

∑n−1
i=1 ∇g(z − λpi(t)) + λh(t)

z(0) = z(1), z′(0) = z′(1)
(6.10)

for z ∈ R3, where pi : I → R3 are arbitrary periodic functions.

This equation describes the motion of a particle z under the force of the gravitational
attraction of n − 1 bodies moving along large periodic trajectories λpi(t), and under an
arbitrary force λh(t) of comparable intensity. The letter n stands for the number of bodies
and not for the dimension, which is now equal to 3.

As before, assume h = 0 so we are able to make the change of variables

z = λ(x−H(t))

where H is a periodic second primitive of −h.
With the new variables, the equation is transformed into:

{
x′′(t) = ǫ

∑n−1
i=1 ∇g(x− (H(t) + pi(t)))

x(0) = x(1), x′(0) = x′(1).
(6.11)

Let Gt :W → R be given by

Gt(x) =
∑

g(x− (H(t) + pi(t))),

then clearly

∇Gt(x) =
∑

∇g(x− (H(t) + pi(t)))

so the equation becomes

{
x′′(t) = ǫ∇Gt(x)

x(0) = x(1), x′(0) = x′(1).
(6.12)
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Thus, solutions of (6.10) are related to the function G(x) =
∫ 1
0 Gt(x)dt in the same manner

as in the previous sections.
The set in which G = ∞ is the union of the curves ki = H + pi, so we define K =⋃n−1

i=1 Im(ki).
Theorem 6.5.1 may easily be generalized as follows:

Theorem 6.7.1. Let r = dim(H1(R3 \K)). Then there exists an open set Ω ⊆ R3 \K
such that deg(∇G,Ω, 0) ≥ r − n+ 2.

Proof. The proof follows exactly as in the proof of Theorem 6.5.1 except that now the
set U is not connected. From the discussion in the mentioned proof, it follows that every
connected component of U touches K and thus U has at most n−1 connected components.
We deduce that χ(U) ≤ n− 1− r and so completes the proof.

Remark 1. Notice that the trajectories of the curves ki may have self-intersections and
intersect each other. In the statement of the preceding theorem, the number r−n+2 may
be replaced by r − c+ 1, where c is the number of connected components of K.

Theorem 6.6.4 may be generalized as follows:

Theorem 6.7.2. Assume K is a link embedded in R3 and that G is a Morse function.
Then G has at least 2t(K) + 1 critical points.

Remark 2. It is easy to see that G is a Morse function for ‘generic’ K.

The proof requires no modification at all with respect to that of Theorem 6.6.3, but
some explanation about formula (6.9) is needed. Indeed, now we have to represent each
strand of the link K by one 0-cell and one 1-cell attached. The cell complex has to be
replaced by

0 → Zm3 ⊕N.Z → Zm2 → Zm1 ⊕ Zn−1 → Zm0 ⊕ Zn−1 → 0

so formula (6.9) still holds.
We are already in conditions to establish the main results of this section

Theorem 6.7.3. Define r as in Theorem 6.7.1. If r ≥ n−1, then for λ large enough there
exist at leasts one periodic solution of (6.10), and generically r− n+2 distinct solutions.

Theorem 6.7.4. Assume that K is a link embedded in R3 and that G is a Morse function.
Then equation (6.10) has at least 2t(K) + 1 distinct solutions for λ large enough. In
particular, it must have at least 2n− 3 distinct solutions even if K is the unlink.



Chapter 7

On resonant elliptic systems with

rapidly rotating nonlinearities

7.1 Introduction

Finally we turn our attention to a partial differential equation which is a generalization of
the Landesman-Lazer theorem. The problem becomes quite interesting because we shall
see effects of the geometry of the domain of definition, apart from the geometric conditions
for the non-linear part.

We consider the Neumann problem for the elliptic system

{
∆u+ g(u) = p in Ω,
∂u
∂ν = 0 on ∂Ω,

(7.1)

where Ω ⊂ RN is a smooth bounded domain, g ∈ C(Rn,Rn) and p ∈ C(Ω,Rn) has zero
average, i.e.

p :=
1

meas(Ω)

∫

Ω
p = 0.

This problem has been extensively studied. Due to its resonant structure, it is still
an open problem to characterize the range of the semilinear operator ∆u+ g(u), i.e. the
set of all possible functions p such that (7.1) admits at least one weak solution. For a
single equation it takes the form of the well-known Landesman-Lazer theorem stated at
the introduction in 2.2.1.

This theorem has been generalized in several ways. On the one hand, analogous ver-
sions have been obtained for nonlinear operators of p-Laplacian or Φ-Laplacian type. On
the other hand, the assumption on the existence of limits can be relaxed. For instance, it
is easy to prove that the result is still valid under the weaker condition

g(−u)g(u) < 0 for u ≥ R (7.2)

for some large enough R. From a topological point of view, condition (7.2) says two
different things: firstly, that g does not vanish outside a compact set; secondly, that its
Brouwer degree over the interval (−R,R) is different from zero when R is large. Thus, one
might believe that a natural extension of the preceding result for a system of n equations
could be to require that

g(u) 6= 0 for |u| ≥ R (7.3)

63
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and
deg(g,BR(0), 0) 6= 0, (7.4)

where ‘deg’ refers to the Brouwer degree of the function g ∈ C(Rn,Rn) and BR(0) is
the open ball of radius R centered at the origin. For N = 1 this possible extension was
analyzed by Ortega and Sánchez in [53], where they constructed an example showing that
(7.3) and (7.4) are not sufficient to guarantee the existence of a solution. Specifically, for
n = 2 they defined, in complex notation,

g0(z) :=
z√

1 + |z|2
eiRe(z),

g(z) := g0(z)− γ with 0 < γ < 1, (7.5)

and showed that problem
z′′ + g(z) = λ sin t

does not have a 2π-periodic solution when λ is large enough.
Already in the early seventies Nirenberg [50] proved the following generalization of the

Landesman-Lazer result for systems:

Theorem 7.1.1 (Nirenberg). Let g ∈ C(Rn,Rn) be bounded. Assume that the radial
limits

gv := lim
s→+∞

g(sv)

exist uniformly and gv 6= 0 for every v ∈ Sn−1 := {x ∈ Rn : |x| = 1}. Furthermore, assume
that (7.4) holds for R sufficiently large. Then for each p ∈ C(Ω,Rn) with p = 0 problem
(7.1) admits at least one solution.

As for a single equation, it is possible to replace the hypothesis on existence of limits
at infinity by an interpretation of (7.2) for n > 1 which is more accurate than (7.3)-(7.4).
This was done by Ruiz and Ward in [58]. The following result is adapted from their main
theorem.

We write Br(v) := {x ∈ Rn : |x− v| < r} and Br(v) for its closure, and co(A) for the
convex hull of a subset A of Rn.

Theorem 7.1.2 (Ruiz-Ward). Assume that g ∈ C(Rn,Rn) is bounded and satisfies the
following condition:
For each r > 0 there exists R > r such that

0 /∈ co(g(Br(v))) if v ∈ Rn and |v| = R. (7.6)

Then, if (7.4) holds, problem (7.1) admits at least one solution for each p ∈ C(Ω,Rn) with
p = 0.

This result was established in [58] for a system of ordinary differential equations with
periodic boundary conditions although, as the authors mention, its generalization to the
Neumann problem (7.1) in a bounded smooth domain of higher dimension is straightfor-
ward. Theorem 7.1.2 still holds if g is unbounded but sublinear, that is,

g(u)

|u| → 0 as |u| → ∞. (7.7)
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In a recent work [8], the result has been extended also for singular g.

The role of condition (7.6) becomes clear when (7.1) is solved by Leray-Schauder
degree methods. Indeed, the key step for proving Theorem 7.1.2 consists in showing that,
for 0 < λ ≤ 1, problem

{
∆u = λ(p− g(u)) in Ω,
∂u
∂ν = 0 on ∂Ω,

(7.8)

has no solution on ∂U , where

U := {u ∈ C(Ω,Rn) : ‖u− u‖∞ < r, |u| < R}

for some suitable r and the corresponding R given by condition (7.6). An appropriate
value of r is obtained after observing that, if u is satisfies (7.8), then

‖∇u‖∞ ≤ Q‖∆u‖∞ ≤ Q (‖p‖∞ + ‖g‖∞) (7.9)

for some constant Q, independent of p and g (but depending on Ω). This yields the a
priori bound ‖u−u‖∞ < r for r large enough. Next, if we assume that |u| = R, we obtain
a contradiction as follows: since the convex hull of g(Br(u)) is compact, the geometric
version of the Hahn-Banach theorem asserts that there exists a hyperplane H passing
through the origin such that g(Br(u)) ⊂ Rn r H. As ‖u − u‖∞ < r, we conclude that
g(u(x)) remains on the same side of H for every x ∈ Ω. This contradicts the fact that∫
Ω g(u(x)) dx =

∫
Ω p(x) dx = 0.

Condition (7.6) sheds some light on the counter-example (7.5) of Ortega and Sánchez
where the ‘pathological’ g rotates rapidly. Condition (7.6) does not allow fast rotation, as
it forces g(Br(v)) to remain at one side of a hyperplane for v ∈ ∂BR(0).

One may ask, in first place, if rotation has the same effect as shown in [53] for higher
dimensions. We shall prove that, indeed, the example by Ortega and Sánchez may be
extended as follows:

Proposition 1. Let φ : Ω → R be a non-constant eigenfunction of −∆ with Neumann
boundary condition and let pλ = (λφ, 0). Then, problem

{
∆u+ g(u) = pλ in Ω,
∂u
∂ν = 0 on ∂Ω,

(7.10)

with g as in (7.5) has no solution for λ large enough.

A closer look at the function (7.5) shows that the effect of rotation appears only when
we consider the image of the whole ball Br(z) under the function g, whereas the image of
a vertical strip

S(z) := {u ∈ Br(z) : |Re(u)− Re(z)| < δ}

under g remains in the same half-plane for δ small enough.
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g0(4 + t), t ∈ [−π, π]

g0(4 + it), t ∈ [−π, π]

This suggests replacing assumption (7.6) in Theorem 7.1.2 by a weaker one. We shall
prove that g(Br(v)) can be allowed to intersect all the hyperplanes passing through the
origin, provided that, for some particular Hv, the function g maps some ‘strip’ in Br(v)
sufficiently far away from Hv.

To make this statement precise, we need to introduce some notation. A strip of width
2δ in Br(v) is a set

S(v) := {u ∈ Br(v) : |〈u− v, ξv〉| < δ},
for some ξv ∈ Sn−1. We consider the metric in Ω given by

d(x, y) := inf{length(γ) : γ is a smooth curve in Ω joining x and y}.

The open ball of radius ρ for this metric will be denoted by Uρ(x), i.e.

Uρ(x) := {y ∈ Ω : d(x, y) < ρ}.

Further, we define
c(ρ) := inf

x∈Ω
meas(Uρ(x)).

Assume that (7.7) holds. For α > 1 we choose K > 0 as follows: fix ε ∈ [0,+∞) such
that

Mε := sup
u∈Rn

(|g(u)| − ε |u|) <∞ (7.11)
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and Qε diamd(Ω)(1+α) < 1, where Q is the constant in (7.9) and diamd(Ω) is the diameter
of Ω with respect to the metric d. Next, choose K > 0 such that

K >
Q(‖p‖∞ +Mε)

1−Qε diamd(Ω)(1 + α)
> 0.

Our main result is the following:

Theorem 7.1.3. Assume that g ∈ C(Rn,Rn) satisfies (7.7). Let p ∈ C(Ω,Rn) with p = 0,
and α > 1. Fix K > 0 as above and set r := K diamd(Ω). Assume there exists a domain
D ⊂ Bαr(0) with the following properties:
(D1) For every v ∈ ∂D there exist a hyperplane Hv passing through the origin and a strip
S(v) of width 2δ in Br(v) such that g(S(v)) ⊂ Rn rHv and

dist(g(S(v)), Hv) > κ dist(g(u), Hv)

for every u ∈ Br(v) with g(u) ∈ H−
v , where H−

v denotes the closure of the connected

component of Rn rHv not containing g(S(v)), and κ := meas(Ω)
c(δ/K) − 1.

(D2) deg(g,D, 0) 6= 0.
Then (7.1) admits at least one solution u such that u ∈ D and ‖u− u‖∞ < r.

Here ‘dist’ denotes the euclidean distance in Rn.
For a system of ordinary differential equations with periodic boundary conditions this

result was recently established in [1]. Note that, for N = 1, meas(Ω) = diamd(Ω) = r/K
and c(δ/K) = δ/K, so κ = r

δ − 1 coincides with the constant given by Theorem 1.2 in [1],
conveniently adapted for the Neumann conditions.

The following figures, taken from [1], illustrate the difference between condition (7.6)
in Theorem 7.1.2 and condition (D1) in Theorem 7.1.3.

Condition (7.6) requires that the image under g of the whole ball Br(v) lies on one side
of a hyperplane Hv through the origin, whereas condition (D1) only requires the image of
some strip S(v) to lie on one side of Hv but the image of the rest of the ball may cross the
hyperplane, thus allowing for fast rotations of g. Note that (D1) is trivially satisfied for
any κ if (7.6) holds. The effect of the constant κ only appears when g rotates fast enough,
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that is, when g(Br(v)) intersects Hv. Then, the distance of the image of the strip to Hv is
not only restricted by the rotational effect of g, as in the ODE case considered in [1], but
also by the geometry of Ω, as the following example shows.

Example 2. Assume that g is bounded and that condition (D1) holds for some domain
Ω which contains the origin, some p ∈ C(Ω,Rn), some D ⊂ Rn and some δ > 0. Let
Tθ,η := {(t, y) ∈ R× RN−1 : t ∈ [0, θ], |y| ≤ η} and let Ωη be a bounded smooth domain in
RN such that Ω ∪ Tθ,0 ⊂ Ωη ⊂ Ω ∪ Tθ+1,η for η > 0 and some θ to be established.

Observe that the best constant Qη for the inequality (7.9) associated to the domain Ωη is
bounded from below by

Q∗ := sup
u∈C2

0
(Ω)\{0}

‖∇u‖∞
‖∆u‖∞

≤ sup
u∈A(Ωη)\{0}

‖∇u‖∞
‖∆u‖∞

=: Qη

for every η > 0, where

A(Ωη) := {u ∈ C1(Ωη,R
n) : ‖∆u‖∞ <∞,

∂u

∂ν
|∂Ωη = 0}.

Let pη ∈ C(Ωη,R
n) be an extension of p. Since g is bounded, we may take ε = 0 in (7.11),

and K = Kη > Qη(‖pη‖∞ + ‖g‖∞). Then,

δ

Kη
<

δ

Q∗(‖p‖∞ + ‖g‖∞)
:= d0

for all η > 0. Setting θ such that dist((θ, 0),Ω) > d0, we have that the open ball Uδ/Kη
(θ, 0)

for the metric d in Ωη satisfies Uδ/Kη
(θ, 0) ⊂ Tθ+1,η. Therefore,

c (δ/Kη) := inf
x∈Ωη

meas(Uδ/Kη
(x)) ≤ meas(Tθ+1,η) → 0 as η → 0.

Thus,

κη :=
meas(Ωη)

c (δ/Kη)
− 1 → ∞ as η → 0.

So condition (D1) will not hold for η sufficiently small.

7.2 The proof of the main result

For the sake of completeness, let us firstly prove the existence of the constant Q introduced
in (7.9).

By standard regularity results (see e.g. [23, Thm. 2.3.3.2]), if u ∈ C(Ω,Rn) is a solution
of (7.8) then u ∈ A(Ω) ⊂ W 2,s(Ω,Rn) for any s < ∞, where A(Ω) is defined as in the
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previous section. Next, suppose that, for a sequence (uk) ⊂ A(Ω), ‖∇uk‖∞ > k‖∆uk‖∞.
Let vk := uk/‖∇uk‖∞, then ‖∆vk‖∞ → 0 and hence ‖∆vk‖L2 → 0. This implies that
‖∇vk‖L2 → 0 and, consequently, that ‖vk − vk‖H1 → 0. Thus ‖vk − vk‖H2 → 0 which,
in turn, implies that ‖vk − vk‖W 1,2∗ → 0. Again, we conclude that ‖vk − vk‖W 2,2∗ → 0
and by a standard bootstrapping argument we deduce that ‖vk − vk‖W 2,s → 0 for some
s > N . By the Sobolev imbedding W 2,s(Ω,Rn) →֒ C1(Ω,Rn), this implies ‖∇vk‖∞ → 0,
a contradiction.

Proof of Theorem: Consider the set

U = {u ∈ C(Ω,Rn) : ‖u− u‖∞ < r, u ∈ D}.

By the classical continuation theorems [35], it suffices to prove that problem (7.8) has no
solution on ∂U for λ ∈ (0, 1].

Assume that u satisfies (7.8) for some λ ∈ (0, 1]. Then

‖∇u‖∞ ≤ Q‖∆u‖∞ ≤ Q(‖p‖∞ + ε‖u‖∞ +Mε),

where ε > 0 is the number such that Qε diamd(Ω)(1 +α) < 1 chosen to define K, and Mε

is given by (7.11). Thus,

‖∇u‖∞ ≤ Q‖∆u‖∞ ≤ Q (‖p‖∞ +Mε + ε [|u|+ diamd(Ω)‖∇u‖∞]) . (7.12)

As D ⊂ Bαr(0), it follows that |u| < αKdiamd(Ω). We claim that

‖∇u‖∞ < K and ‖u− u‖∞ < r. (7.13)

Indeed, if ‖∇u‖∞ ≥ K, inequality (7.12) would yield

K [1−Qε diamd(Ω)(1 + α)] ≤ Q(‖p‖∞ +Mε),

contradicting our choice of K. Thus, ‖∇u‖∞ < K, which implies ‖u−u‖∞ < r. It remains
to prove that u /∈ ∂D.

Taking wv as the unit normal vector toHv such that 〈g(v), wv〉 > 0, it is straightforward
to check that condition (D1) is equivalent to
(D′

1) For each v ∈ ∂D there exist a vector wv ∈ Sn−1 and a strip S(v) of width 2δ in Br(v)
such that

inf
y∈S(v)

〈g(y), wv〉+
(
meas(Ω)

c(δ/K)
− 1

)
〈g(u), wv〉 > 0 (7.14)

for every u ∈ Br(v) such that 〈g(u), wv〉 ≤ 0.
Next, arguing by contradiction, suppose that u ∈ ∂D and take wu ∈ Sn−1 and the

strip S(u) = {u ∈ Br(u) : |〈u− u, ξu〉| < δ} with ξu ∈ Sn−1 such that (7.14) holds for
v = u. As u solves (7.8), we have that

0 =

∫

Ω
〈g(u(x)), wu〉 dx =

∫

Ω
〈g(u(x))− Twu, wu〉 dx+ T meas(Ω),

where
T := inf

x∈Ω
〈g(u(x)), wu〉.

Hence, T ≤ 0.
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Define ϕ(u) := 〈u, ξu〉. From the mean value theorem for vector integrals we deduce
that u ∈ co(Im(u)). Thus, ϕ(u) ∈ ϕ(Im(u)). Consequently, we may fix x ∈ Ω such that
ϕ(u(x)) = ϕ(u), and from (7.13) we obtain

|ϕ(u(x))− ϕ(u)| ≤ |u(x)− u(x)| ≤ K d(x, x).

This implies that u(x) ∈ S(u) for d(x, x) < δ
K . Thus, if

A := {x ∈ Ω : u(x) ∈ S(u)},

then Uδ/K(x) ⊂ A, and hence meas(A) ≥ c(δ/K). Moreover, as Ω is compact, we may

choose x0 ∈ Ω such that 〈g(u(x0)), wu〉 = T ≤ 0. Then,

0 ≥
∫

A
〈g(u(x))− Twu, wu〉 dx+ Tmeas(Ω)

≥ c(δ/K) inf
v∈S(u)

〈g(v), wu〉+ T (meas(Ω)− c(δ/K))

= c(δ/K)

[
inf

v∈S(u)
〈g(u), wu〉+

(
meas(Ω)

c(δ/K)
− 1

)
〈g(u(x0)), wu〉

]
,

which contradicts (7.14).

7.3 The proof of the nonexistence result

The following lemma will be used to prove Proposition 1.

Lemma 1. Let U ⊂ RN be a smooth bounded domain, Γ ∈ C1(R,R), hk ∈ C1(U,R),
ϕ, ωk ∈ C2(U,R), Ak, λk ∈ R and α > 1 be such that

|∇ϕ(x)| ≥ 1

α
for all x ∈ U,

‖Γ‖C1 , ‖hk‖C1 , ‖ϕ‖C2 , ‖ωk‖C1 ≤ α,
∥∥ω′′

k

∥∥
∞

≤ αλk.

Assume that λk → +∞. Then

lim
k→∞

∫

U
hk(x)Γ

′(λkϕ(x) + ωk(x) +Ak) dx = 0.

Proof. We consider two cases.
Case 1: N = 1.
Let U = (a, b). Since |ϕ′(t)| ≥ 1

α for all t ∈ [a, b] and ‖ω′
k‖C0 ≤ α, there exists λ∗ > 0,

independent of k, such that
∣∣ϕ′(t) + 1

λω
′
k(t)

∣∣ ≥ 1
2α for all t ∈ [a, b] and λ ∈ [λ∗,∞). In

particular, the function

fk(t) :=
hk(t)

ϕ′(t) + 1
λk
ω′
k(t)

is well defined for λk ∈ [λ∗,∞). Since

f ′k(t) :=
h′k(t)

(
ϕ′(t) + 1

λk
ω′
k(t)

)
− hk(t)

(
ϕ′′(t) + 1

λk
ω′′
k(t)

)

(
ϕ′(t) + 1

λk
ω′
k(t)

)2 ,
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we have that ‖fk‖∞ ≤ 2α2, ‖f ′k‖∞ ≤ 16α4. Integrating by parts we obtain

∫ b

a
hk(t)Γ

′(λkϕ(t) + ωk(t) +Ak) dt =
1

λk

∫ b

a
fk(t)

d

dt
[Γ(λkϕ(t) + ωk(t) +Ak)] dt

=
1

λk

[
fk(·)Γ(λkϕ(·) + ωk(·) +Ak)

∣∣∣
b

a
−
∫ b

a
f ′k(t)Γ(λkϕ(t) + ωk(t) +Ak) dt

]
.

Hence, if λk ∈ [λ∗,∞),

∣∣∣∣
∫ b

a
hk(t)Γ

′(λkϕ(t) + ωk(t) +Ak) dt

∣∣∣∣ ≤
16α5(b− a+ 1)

λk
.

As λk → ∞, the result follows.
Case 2: N > 1.
Let U1, . . . , UN be open subsets such that U = ∪Ni=1U i and

∣∣∣∣
∂ϕ

∂xi
(x)

∣∣∣∣ ≥
1√
Nα

for all x ∈ U i.

Write x = (t, y) ∈ R × RN−1, and set J1,y := {t ∈ R : (t, y) ∈ U1}. Then, for each
y ∈ RN−1, we may apply the case N = 1 to conclude that

∫

J1,y

hk(t, y)Γ
′(λkϕ(t, y) + ωk(t, y) +Ak) dt→ 0.

Since U1 is bounded and {hkΓ′(λkϕ + ωk + Ak)} is uniformly bounded in U , Fubini’s
theorem and the dominated convergence theorem yield

lim
k→∞

∫

U1

hk(x)Γ
′(λkϕ(x) + ωk(x) +Ak) dx = 0.

Similarly for U2, . . . , UN . Thus, the result follows.

Proof of Proposition: Arguing by contradiction, assume there is a sequence λk → ∞ such
that problem (7.10) has a solution zk. For convenience, from now on we shall write pk
instead of pλk . Define wk = zk +

1
µpk, where µ is the eigenvalue associated to φ. Then

∆wk = ∆zk +
1

µ
∆pk = pk − g(zk)− pk,

that is to say,

∆wk + g0(wk −
1

µ
pk) = γ. (7.15)

Next, observe that
∫

Ω
∆wk =

∫

∂Ω

∂wk
∂ν

=

∫

∂Ω

∂zk
∂ν

+
1

µ

∫

∂Ω

∂pk
∂ν

= 0,

so integrating (7.15) yields

∫

Ω
g0(wk −

1

µ
pk) = γmeas(Ω). (7.16)
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Fix a positive ε < γmeas(Ω). Since the critical set C of φ is a compact subset of Ω
and has zero measure (see Lemma 2 below), we may fix a smooth domain Uε with U ε ⊂ Ω
such that U ε ∩ C = ∅ and

∣∣∣∣∣

∫

Ω\Uε

g0(wk −
1

µ
pk)

∣∣∣∣∣ ≤ meas(Ω\Uε) < ε.

Writing wk = xk + iyk we compute

g0(wk −
1

µ
pk) =

wk − 1
µpk√

1 + |wk − 1
µpk|2

e
iRe(wk−

1

µ
pk)

=
(xk − λk

µ φ) cos(xk −
λk
µ φ)− yk sin(xk − λk

µ φ)√
1 + |wk − 1

µpk|2

+i
yk cos(xk − λk

µ φ) + (xk − λk
µ φ) sin(xk −

λk
µ φ)√

1 + |wk − 1
µpk|2

.

Next we write the previous equality as g0 = g10 + g20 + i(g30 + g40) and apply Lemma 1 to
each one of these four summands. For example, for the first one we set

hk :=
xk − λk

µ φ√
1 + |wk − 1

µpk|2
, Γ := sin, ϕ :=

1

µ
φ

ωk := xk − xk, Ak := xk.

As ‖∆wk‖∞ ≤ |γ|+1, a uniform bound (i. e. independent of k) for ωk in C
1(Uε,R) follows

from the standard Sobolev estimates. However, Lemma 1 cannot be applied yet since
‖hk‖C1(Uε,R)

or ‖ωk/λk‖C2(Uε,R)
might not be uniformly bounded. In order to overcome

this difficulty, take a subsequence if necessary to define

ρ := lim
k→∞

µxk
λk

.

Suppose firstly that |ρ| <∞. As ‖wk − wk‖∞ is bounded, µxkλk converges uniformly to
ρ.

For each δ > 0 there exists a constant cδ > 0 such that

|wk −
1

µ
pk| ≥ |Re(wk −

1

µ
pk)| =

λk
µ

∣∣∣∣
µxk
λk

− φ

∣∣∣∣ ≥ cδλk

on Ωδ := φ−1([ρ− δ, ρ+ δ]c). Moreover, as ‖∇wk‖∞ is bounded, it follows that ‖∇(wk −
1
µpk)‖∞ = O(λk). Thus, if we set

θ(x, y) :=
x√

1 + x2 + y2
,

then |∇θ(wk − 1
µpk)| ≤ 1

√

1+|wk−
1

µ
pk|2

≤ 1
cδλk

on Ωδ. Using the chain rule, we conclude

that θ(wk − 1
µpk) is bounded in C1(Ωδ,R).
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The same conclusion holds for

χ(x, y) :=
y√

1 + x2 + y2
;

in particular, ‖∇g0(wk − 1
µpk)‖∞ = O(λk). Thus, using (7.15), the interior Schauder

estimates provide a uniform C2 bound for ωk

λk
over Uε ∩ Ωδ.

As Ω = φ−1(ρ) ∪ ⋃
k∈NΩ1/k and meas(φ−1(ρ)) = 0, we may fix δ > 0 such that

meas(Ω \ Ωδ) is arbitrarily small.
Taking α large enough, Lemma 1 implies that

lim
k→∞

∫

Uε∩Ωδ

g10(wk −
1

µ
pk) = 0

and hence

lim
k→∞

∫

Uε

g10(wk −
1

µ
pk) = 0.

If we suppose, on the contrary, that ρ = ±∞, then it is immediately seen that for some
c > 0

|wk −
1

µ
pk| ≥ cλk

on Ω, and the conclusion follows.
The procedure is similar for the other summands. We conclude that

lim sup
k→∞

∣∣∣∣
∫

Ω
g0(wk −

1

µ
pk)

∣∣∣∣ ≤ ε,

which contradicts (7.16).

Lemma 2. Let ψ : Rn → R be analytic with ψ 6≡ 0. Then meas{ψ = 0} = 0.

Proof. We proceed by induction. The case n = 1 is trivial. For each x ∈ Rn−1 the
functions ψt(x) = ψx(t) = ψ(t, x) are analytic.

Fix t such that ψt 6≡ 0. From the inductive hypothesis,

meas({x/ψt(x) = 0}) = 0

and also
meas({x/ψx ≡ 0}) = 0.

On the other hand, meas({t/ψx(t) = 0}) = 0 for every x such that ψx 6≡ 0. Thus, if
we define

NZ = {(t, x)/ψ(t, x) = 0 and ψx 6≡ 0},
then by Fubini’s Theorem we deduce that meas(NZ) = 0. We conclude that

{ψ = 0} = R× {x/ψx ≡ 0} ∪NZ

has zero measure.
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