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Productos tensoriales simétricos:
teorı́a métrica, isomorfa y aplicaciones

Resumen

Esta tesis tiene como objeto contribuir al desarrollo de la teorı́a métrica e isomorfa de

productos tensoriales simétricos en espacios de Banach. Mostramos varios ejemplos donde la

teorı́a de ideales de polinomios homogéneos resulta enriquecida con el uso de técnicas tenso-

riales.

Probamos que la extensión de Aron-Berner preserva la norma para todo ideal maximal

y minimal de polinomios homogéneos. Este resultado puede interpretarse como una versión

polinomial de uno de los “Cinco Lemas Básicos” de la teorı́a de productos tensoriales. Más

aún, enunciamos y probamos análogos simétricos de dichos lemas y damos, a lo largo del texto,

varias aplicaciones.

Estudiamos las cápsulas inyectivas y projectivas de una norma tensorial simétrica, anali-

zando sus propiedades y relaciones. Describimos los ideales de polinomios maximales asocia-

dos a dichas normas en términos de ideales de composición e ideales cocientes. Examinamos

las normas naturales de Grothendieck en el n-ésimo producto tensorial simétrico y mostramos

que, para n ≥ 3, hay exactamente seis de ellas, a diferencia del caso n = 2 donde hay cuatro.

Definimos la propiedad de Radón-Nikodým simétrica para normas s-tensoriales y mostramos,

bajo ciertas hipótesis, que los ideales de polinomios maximales asociados a normas con dicha

propiedad coinciden isométricamente con su núcleo minimal. Como consecuencia, probamos

la existencia de ciertas estructuras en algunos ideales de polinomios clásicos (existencia de

bases o la propiedad de Radon-Nikodým). Por otra parte, damos una demostración alternativa

del hecho que el ideal de los polinomios integrales coincide isométricamente con el ideal de los

polinomios nucleares en espacios Asplund.

Analizamos la existencia de bases incondicionales en ideales de polinomios. Para esto, estu-

diamos incondicionalidad en productos tensoriales simétricos. Damos un criterio sencillo para

determinar si un ideal de polinomios carece de base incondicional. Utilizando dicho criterio

mostramos que muchos de los ideales usuales no poseen estructura incondicional. Entre ellos,

los r-integrales, r-dominados, extendibles y r-factorizables. Para muchos de estos ejemplos

obtenemos incluso que la sucesión básica monomial no es incondicional.

Estudiamos la preservación de otro tipo de estructuras en el producto tensorial simétrico: la

estructura de álgebra de Banach y la estructura de M -ideal. Mostramos cuáles de las normas

s-tensoriales de Grothendieck preservan la estructura de álgebra. Por otra parte, probamos que

la norma inyectiva simétrica destruye la estructura de M -ideal (opuesto a lo que pasa en el

producto tensorial completo con la norma inyectiva). Si bien dicha estructura se pierde en el

caso simétrico, mostramos que, si E es Asplund y M -ideal en F , entonces los polinomios

integrales sobre E se extienden a F preservando la norma de manera única.

Palabras clave: Productos tensoriales simétricos, normas s-tensoriales, ideales de poli-

nomios, polinomios homogéneos, estructuras en productos tensoriales.
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Symmetric tensor products:
metric and isomorphic theory and applications

Abstract

This thesis aims to contribute to the development of the metric and isomorphic theory of

symmetric tensor products on Banach spaces. We show several examples where the theory of

polynomial ideals is enriched with the use of tensor techniques.

We prove that the Aron-Berner extension preserves the norm for every maximal and mini-

mal ideal of homogeneous polynomials. This result can be interpretated as a polynomial version

of one of the “Five basic Lemmas” of the theory of tensor products. Moreover, we state and

prove symmetric analogues of these lemmas and give, throughout the text, several applications.

We study the injective and projective associates of a symmetric tensor norm, analyzing

their properties and relations. We describe the maximal polynomial ideals associated with

these norms in terms of composition ideals and quotient ideals. We examine Grothendieck’s

natural norms on the n-fold symmetric tensor product and show that there are exactly six natural

symmetric tensor norms for n ≥ 3, unlike the 2-fold case in which there are four.

We define the symmetric Radón-Nikodým property for s-tensor norms and show, under

certain hypothesis, that maximal polynomial ideals associated with norms with this property

coincide isometrically with their minimal kernel. As a consequence, we prove the existence

of certain structures on some classical polynomial ideals (existence of basis or the Radón-

Nikodým property). On the other hand, we give an alternative proof of the fact that the ideal of

integral polynomials coincide isometrically with the ideal of nuclear polynomials on Asplund

spaces.

We analyze the existence of unconditional basis on polynomial ideals. For this, we study

unconditionality on symmetric tensor products. We provide a simple criterium to check wether

a polynomial ideal lacks of unconditional basis. Using this criterium, we show that many usual

polynomial ideals do not have unconditional structure. Among them we have the r-integral,

r-dominated, extendible and r-factorable polynomials. For many of these examples we also

get that the monomial basic sequence is not unconditional.

We study the preservation of other kind of structures on the symmetric tensor product: the

Banach algebra structure and the M -ideal structure. We show which of the Grothendieck’s

natural symmetric tensor norms preserve the algebra structure. On the other hand, we prove

that the injective s-tensor norm destroys the M -ideal structure (opposite to what happens in the

full tensor product with the injective norm). Even though this structure is lost in the symmetric

case, we show that, if E is Asplund and M -ideal in F , every integral polynomial in E has a

unique norm preserving extension to F .

Keywords: Symmetric tensor products, s-tensor norms, polynomial ideals, homoge-

neous polynomials, structures in tensor products.
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Introducción

Grothendieck, en su “Résumé de la théorie métrique des produits tensoriels topologiques”

[Gro53], creó las bases de lo que luego se llamó “teorı́a local”, y mostró la importancia del

uso de productos tensoriales en la teorı́a de espacios de Banach e ideales de operadores. Los

productos tensoriales aparecieron en el análisis funcional en la década del treinta, en trabajos

de Murray, Von Neumann y Schatten (ver [Sch50]). Pero fue Grothendieck quien observó la

naturaleza local de muchas de las propiedades de productos tensoriales, permitiéndole estable-

cer una teorı́a de dualidad sumamente útil. Si bien hoy en dı́a el “Résumé” es considerado uno

de los artı́culos más inspiradores del análisis funcional, dicho trabajo permaneció inadvertido

por muchos años. Hay dos razones que explican por qué ocurrió esto. La primera de ellas, una

razón “práctica”, es que el artı́culo fue publicado en una revista a la que no muchas bibliotecas

suscribı́an. La otra, una razón “académica”, es que el artı́culo era muy difı́cil de entender: la

notación utilizada era un poco engorrosa y no contenı́a demostraciones (con la excepción del

teorema principal, la llamada desigualdad de Grothendieck).

Recién en 1968 el “Résumé” de Grothendieck fue apreciado por completo. Ese año, Lin-

denstrauss y Pełczyński [LP68] presentaron importantes aplicaciones a la teorı́a de operadores

absolutamente p sumantes, traduciendo aquellos resultados escritos en términos de normas ten-

soriales por Grothendieck en propiedades de ideales de operadores. Al mismo tiempo, una

teorı́a general de ideales de operadores en espacios de Banach fue desarrollada por Pietsch y

su escuela en Jena, sin el uso de las normas tensoriales. Nuevas ideas y definiciones se dieron,

haciendo de la teorı́a de ideales de operadores uno de los temas centrales de estudio para los

analistas funcionales. Dicho avance culminó con el libro de Pietsch “Operator Ideals” [Pie78],

el cual era enciclopedia de lo que se sabı́a hasta el momento. En esa época, los investigadores

generalmente preferı́an el lenguage de ideales de operadores al oscuro lenguaje de productos

tensoriales, por lo que la primera teorı́a recibió más antención.

Durante los ochenta, las técnicas tensoriales resultaron más fuertes y populares. Fue el

trabajo de Pisier [Pis83, Pis88] el que mostró que tener una perspectiva tensorial podrı́a dar un

panorama más claro y fortalecer la investigación. Defant y Floret emprendieron la dificultosa

tarea de describir la teorı́a de productos tensoriales y la teorı́a de ideales de operadores en

conjunto. Lograron llenar el vacı́o en la literatura y publicaron su monografı́a “Tensor Norms

and Operator Ideals” [DF93]. Este libro tuvo un tremendo impacto, iniciando un perı́odo en

el cual los autores utilizan indistintamente ambos lenguajes. Como dos perspectivas diferentes

son siempre mejor que sólo una, hoy resulta común atacar algunos problemas usando la manera

de pensar categórica de Pietsch o el ciclo de ideas tensoriales de Grothendieck. Como dicen

Defant y Floret en su libro, “ambas teorı́as, la teorı́a de normas tensoriales y la de ideales de

operadores, son más sencillas de entender y ricas si uno trabaja con ambas simultaneamente”.

El estudio de polinomios es uno los tópicos más antiguos en matemáticas. Al principio del

1
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siglo veinte la investigación sistemática de una teorı́a abstracta de polinomios en espacios de

dimensión infinita empezó a florecer. Dentro de los matemáticos interesados en esta área pode-

mos mencionar a Fréchet, Gâteaux, Michal y Banach. Banach mismo sugirió la importancia

de estudiar esta teorı́a no lineal. Incluso tuvo la intención de escribir un segundo volumen de

su libro famoso [Ban32] basado, en parte, en la teorı́a de polinomios en espacios normados.

Lamentablemente, murió en 1945 sin comenzar este proyecto.

En el libro de Dineen [Din99] se menciona que el progreso en la teorı́a de polinomios puede

ser dividido en dos perı́odos. En el primer perı́odo, que empezó a mediados de los treinta,

nuevos conceptos y resultados se dieron en polinomios en infinitas variables. En esos tiempos,

la investigación estaba basada en el estudio de funciones holomorfas en espacios de dimensión

infinita, análisis de Fourier y series de Dirichlet. La investigación en polinomios homogéneos,

los cuales aparecen naturalmente cuando se estudian expansiones en series (series de Taylor)

de funciones holomorfas, resultó ser crucial para la teorı́a de análisis complejo en espacios de

dimensión infinita. El segundo perı́odo empezó en los ochenta, cuando diferentes espacios de

polinomios y propiedades de ciertas clases se convirtieron en el principal objeto de estudio. Tal

como en la teorı́a lineal, se dio la definición de ideales de polinomios. Este concepto apareció

por primera vez en [Bra84, Hol86] como una adaptación de la definición de ideales de formas

multilineales dada por Pietsch [Pie84]. Básicamente, los ideales de polinomios son clases de

polinomios que tienen ciertas propiedades en común.

Fue Ryan quien introdujo en su tesis [Rya80] los productos tensoriales simétricos en espa-

cios de Banach como una herramienta para estudiar polinomios (y también funciones analı́ticas).

Es conocido que los productos tensoriales linealizan las formas multilineales. De la misma

manera, los productos tensoriales simétricos linealizan polinomios homogéneos. En otras pala-

bras, cada polinomio homogéneo de grado n definido en un espacio E puede ser visto como

una funcional lineal en ⊗n,sE (el n-ésimo producto tensorial simétrico de E), y viceversa.

La filosofı́a involucrada en esta perspectiva es la siguiente: identificamos polinomios con fun-

ciones más simples (funcionales) con la contrapartida que los dominios de estas funciones

(producto tensoriales simétricos) resultan más complicados.

A partir del trabajo de Ryan, muchos pasos se dieron en la teorı́a métrica de productos

tensoriales simétricos y la teorı́a de ideales de polinomios. Como en el caso lineal, ambas

teorı́as (la teorı́a de normas tensoriales simétricas y la teorı́a de ideales de polinomios) influyen

y contribuyen una a otra. En su ensayo [Flo97], Floret presentó los conceptos algebraicos

básicos del n-ésimo producto tensorial simétrico, conjuntamente con un tratamiento de resulta-

dos métricos fundamentales de dos normas tensoriales extremas: la norma proyectiva simétrica

πn,s y la norma inyectiva simétrica εn,s. A pesar de que algunos aspectos de la teorı́a de pro-

ductos tensoriales simétricos y la teorı́a de ideales de polinomios evolucionaron continuamente

en las últimas décadas, lamentablemente no hay un tratamiento general de normas tensoriales

simétricas. En palabras de Floret [Flo97], “parece adecuado desarrollar una teorı́a métrica en

el n-ésimo producto tensorial simétrico en el espı́ritu de Grothendieck”.

El principal resultado de [Flo01b] afirma que toda norma s-tensorial en el n-ésimo producto

tensorial simétrico de espacios normados es equivalente a la restricción al producto tensorial

simétrico de una norma tensorial completa en el n-ésimo producto tensorial. Como conse-

cuencia, gran parte de la teorı́a isomorfa puede ser deducida de la teorı́a de normas tensoriales

completas. Si bien la teorı́a isomorfa puede ser trasladada de un contexto a otro, la teorı́a

métrica puede ser bastante diferente. Incluso en los casos donde la teorı́a métrica es parecida,
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la simetrı́a introduce ciertos tecnicismos. Debemos también mencionar lo siguiente: si bien la

teorı́a de productos tensoriales de orden 2 ha sido muy estudiada, puede diferir bastante res-

pecto de la teorı́a de productos tensoriales de orden n (para n ≥ 3). Por lo que muchos de los

resultados isomorfos en el n-ésimo producto tensorial simétrico (para n ≥ 3) también suelen

ser difı́ciles de obtener.

El propósito de esta tesis es doble: contribuir al desarrollo sistemático de la teorı́a métrica

e isomorfa en productos tensoriales de espacios de Banach y mostrar muchos contextos en los

cuales las técnicas tensoriales pueden ser aplicadas para fortalecer la teorı́a de ideales de poli-

nomios. Esperamos que esta perspectiva pueda dar una visión más clara además de favorecer la

investigación. También esperamos que, en un futuro, las ideas y resultados presentados puedan

ser usadas en otras áreas (como por ejemplo en holomorfı́a infinito dimensional).

El trabajo está organizado en seis capı́tulos.

El Capı́tulo 1 está dedicado al material necesario para entender la tesis. Damos la notación,

algunas definiciones básicas y explicamos la dualidad entre productos tensoriales simétricos e

ideales de polinomios. Varias nociones básicas de la teorı́a de normas tensoriales simétricas y

de la teorı́a de ideales de polinomios son presentadas. También describimos algunos ideales

clásicos y recordamos una forma muy conocida de extender un polinomio sobre un espacio al

bidual (la extensión de Aron-Berner).

En el Capı́tulo 2 presentamos los “Cinco Lemas Básicos” (ver Sección 13 del libro de De-

fant y Floret [DF93]) para el contexto de productos tensoriales simétricos. Estos son el Lema de

Aproximación, el Lema de Extensión, el Lema de Inclusión, el Lema de Densidad y el Lema de

Técnica Local-Lp. Este capı́tulo es crucial ya que los cinco lemas básicos y sus consecuencias

son utilizados en todo el texto. Si bien seguimos las lı́neas de [DF93], la naturaleza simétrica

de los productos tensoriales introducen varias dificultades, como se puede ver, por ejemplo,

en la versión simétrica del Lema de Extensión 2.1.3, cuya prueba es mucho más complicada

que su versión 2-tensorial completa. Este resultado afirma que la extensión de Aron-Berner

es una isometrı́a bien definida para todo ideal de polinomios maximal. También obtenemos el

mismo resultado para ideales de polinomios minimales (ver Teorema 2.2.6). Otras importantes

aplicaciones a la teorı́a métrica de normas tensoriales simétricas e ideales de polinomios son

dadas.

En el Capı́tulo 3 damos la definición de la cápsula inyectiva y proyectiva de una norma

s-tensorial y estudiamos algunas de sus propiedades interesantes. Describimos los ideales de

polinomios maximales asociados a dichas normas en términos de ideales de composición o

ideales cociente (ver Teorema 3.4.4). El estudio de normas s-tensoriales naturales de orden

arbitrario, en el espı́ritu de Grothendieck es también presentado: basándonos en [Gro53] defi-

nimos las normas naturales simétricas como aquellas que pueden ser obtenidas de la n-ésima

norma s-tensorial proyectiva πn,s aplicándole un número finito de operaciones básicas (cápsula

inyectiva, cápsula proyectiva, y adjunto). En el Teorema 3.12 mostramos que hay exactamente

seis normas naturales simétricas para n ≥ 3, una diferencia notable respecto del caso de orden

2 donde hay cuatro.

El objetivo del Capı́tulo 4 es encontrar condiciones para las cuales un ideal de polinomios

maximal coincide isométricamente con su núcleo minimal. En términos de productos tenso-

riales simétricos, buscamos propiedades en una norma s-tensorial que aseguren la isometrı́a

⊗̃n,sα E ′ =
(
⊗̃n,sα′ E

)′
. Para esto, introducimos la propiedad de Radon-Nikodým simétrica para
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normas s-tensoriales y mostramos el principal resultado del capı́tulo, el Teorema 4.1.2: si una

norma s-tensorial proyectiva α tiene la propiedad de Radon-Nikodým simétrica (propiedad

RNs), tenemos que la aplicación natural

⊗̃n,sα E ′ →
(
⊗̃n,sα′ E

)′

es cociente para todo espacio Asplund E. Como consecuencia, si Q es un ideal maximal (de

polinomios n-homogéneos) asociado a una norma s-tensorial proyectiva α con la propiedad

RNs, entonces Qmin(E) = Q(E) isométricamente (i.e., Q coincide isométricamente con su

núcleo minimal sobre el espacio E). Esto puede ser visto como una versión simétrica del Teo-

rema de Lewis (ver [Lew77] y [DF93, 33.3]). Con este resultado damos una demostración

alternativa del isomorfismo isométrico entre polinomios integrales y nucleares en espacios As-

plund y también mostramos que el ideal de polinomios extendibles coincide con su núcleo

minimal para este tipo de espacios. Por ende, el espacio de polinomios extendibles en E tiene

base monomial si E ′ tiene base. Ejemplos de normas s-tensoriales asociadas a ideales de poli-

nomios conocidos son presentados. También relacionamos la propiedad RNs para una norma

s-tensorial con la propiedad Asplund. Precisamente, si α es una norma s-tensorial proyectiva

con la propiedad RNs, probamos que ⊗̃n,sα′ E es Asplund siempre y cuando E lo es.

El Capı́tulo 5 contiene el estudio de incondicionalidad para productos tensoriales simétricos

(y completos). Examinamos cuándo una norma destruye incondicionalidad en el sentido que,

para todo espacio E con base incondicional, el correspondiente producto tensorial carece de

base incondicional. Damos un test simple (Teorema 5.1.5) para determinar si una norma tenso-

rial destruye incondicionalidad o no. Con esto obtenemos que toda norma s-tensorial inyectiva

y projectiva (resp. norma tensorial completa) diferente de εn,s y πn,s (resp. εn y πn) destruye

incondicionalidad. También investigamos incondicionalidad en ideales de polinomios y formas

multilineales y exhibimos varios ejemplos de ideales de polinomios Q tal que, para todo espa-

cio de Banach E con base incondicional, el espacio Q(E) carece de la propiedad de Gordon-

Lewis. Dentro de estos ideales tenemos los polinomios r-integrales, r-dominados, extendibles

y r-factorizables. Para muchos de estos ejemplos mostramos que la base monomial nunca es

incondicional.

En el Capı́tulo 6 focalizamos nuestra atención en la preservación de dos importantes estruc-

turas para normas s-tensoriales especı́ficas: la estructura de álgebra de Banach y la estructura

de M -ideal. Basándonos en el trabajo de Carne [Car78], estudiamos cuáles son las normas s-

tensoriales naturales que preservan la estructura de álgebra. En el Teorema 6.1.3 mostramos que

las dos normas s-tensoriales naturales que preservan álgebras de Banach son πn,s y \/πn,s\/.

También probamos que la estructura de M -ideal es destruida por εn,s para todo n. En con-

creto, en el Teorema 6.2.7 mostramos que, para espacios de Banach reales E y F , si E es

un M -ideal en F , entonces ⊗̃n,sεn,s
E (el producto tensorial simétrico inyectivo de E) no es M -

ideal en ⊗̃n,sεn,s
F . Este resultado muestra una gran diferencia con el comportamiento de tensores

completos ya que, si E es M -ideal en F , es sabido que ⊗̃nεnE (el producto tensorial inyectivo

completo de E) es un M -ideal en ⊗̃nεnF . Si bien la M -estructura es destruida para productos

simétricos, mostramos, en el Teorema 6.2.9, que si E es espacio Asplund y M -ideal no trivial

en F , entonces todo polinomio n-homogéneo integral en E tiene una única extensión a F que

preserva la norma integral. También describimos explı́citamente dicha extensión.

Los principales resultados de esta tesis aparecen en [CG10, CG11a, CG11b, CG11c, CG12,

DGG12].



Introduction

Grothendieck, in his “Résumé de la théorie métrique des produits tensoriels topologiques”

[Gro53], created the basis of what was later known as ‘local theory’, and exhibited the impor-

tance of the use of tensor products in the theory of Banach spaces and operator ideals. Tensor

products had appeared in functional analysis since the late thirties, in works of Murray, Von

Neumann and Schatten (see [Sch50]). But it was Grothendieck who realized the local nature

of many properties of tensor products, and this allowed him to establish a very useful theory

of duality. Although nowadays the “Résumé” is considered a one of the most inspiring papers

in functional analysis, the article remained widely unnoticed for many years. There are two

reasons that explain why this occurred. The first one, a ‘practical’ reason, is that the article was

published in a journal to which not many libraries would subscribe. The other, an ‘academi-

cal’ reason, is that the article was highly difficult to understand: the notation used was a bit

annoying and it did not contain proofs (with the exception of the main theorem, the so-called

Grothendieck’s inequality).

It was not until 1968 when Grothendieck’s “Résumé” was fully appreciated. That year, Lin-

denstrauss and Pełczyński [LP68] presented important applications to the theory of absolutely

p-summing operators, translating results written in terms of tensor norms by Grothendieck, into

properties of operator ideals. By the same time, a general theory of operator ideals on the class

of Banach spaces was developed by Pietsch and his school in Jena, without the use of tensor

norms. Novel ideas and definitions were given, leading the theory of operator ideals as one of

the central themes of study for functional analysts. The break out culminated in Pietsch’s book

“Operator Ideals” [Pie78], which was some sort of encyclopedia of what was known so far.

At that moment, researchers generally preferred the language of operator ideals to the more

abstruse language of tensor products, and so the former theory received more attention.

During the eighties, tensor product techniques became stronger and more popular. It was

Pisier’s work [Pis83, Pis88], which showed that having a tensor perspective would give a clearer

picture and would strengthen the investigation. Defant and Floret undertook the difficult task

of describing the the theory of tensor products and the the theory of operator ideals in tandem.

They manage to fill the gap in the literature and published their monograph “Tensor Norms

and Operator Ideals” [DF93]. This book had a tremendous impact, initiating a period in which

authors use indistinctly both languages. Since two different perspectives are always better than

just one, it is now common to attack certain problems using the categorical way of thinking due

to Pietsch, or Grothendieck’s cycle of ideas on tensor products. As stated by Defant and Floret

in their book, “both theories, the theory of tensor norms and of norm operator ideals, are more

easily understood and also richer if one works with both simultaneously”.

The study of polynomials is one of the oldest topics in mathematics. At the beginning of the

twentieth century a systematic research on an abstract theory of polynomials defined on infinite

5
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dimensional spaces was flourishing. Among the mathematicians focused on this area we can

mention Fréchet, Gâteaux, Michal and Banach. Banach himself suggested the importance of

studying this non-linear theory. He even intended to write a second volume of his famous book

[Ban32] based, in part, on the theory polynomials on normed spaces. Unfortunately, he died in

1945 without commencing this project.

In Dineen’s book [Din99] it is mentioned that the progress of theory of polynomials can be

divided into two periods. In the first period, which started in the mid thirties, new concepts and

results were developed on polynomials in infinite many variables. At that time, research was

based on the study of holomorphic functions on infinite dimensional spaces, Fourier analysis

and Dirichlet series. Research on homogeneous polynomials, which naturally appear when

studying series expansions (Taylor series) of holomorphic functions, resulted to be crucial for

the theory of complex analysis on infinite dimensional spaces. The second period started in the

eighties, when different spaces of polynomials and properties of polynomials of certain class

became the main subject of study. Such as in the linear theory, the definition of polynomial ideal

showed up. This concept appeared first in [Bra84, Hol86] as an adaptation of the definition of

ideals of multilinear mappings given by Pietsch [Pie84]. Loosely speaking, polynomial ideals

are classes of polynomials which have certain properties in common.

It was Ryan who introduced in his thesis [Rya80] symmetric tensor products of Banach

spaces as a tool for the study of polynomials (and also holomorphic mappings). It is well

know that tensor products linearize multilinear forms. Likewise, the symmetric tensor product

linearize homogeneous polynomials. In other words, each n-homogeneous polynomial defined

on a space E can be seen as a linear function on ⊗n,sE (the n-fold symmetric tensor product

of E), and vice versa. The philosophy involved of this perspective is the following: we identify

polynomials by simpler functions (linear functionals) with the counterpart that the domains of

these functions (symmetric tensor products) get more complicated.

Since the work of Ryan, many steps were given towards a metric theory of symmetric tensor

products and a theory of polynomial ideals. As in the linear case, both theories (the theory

of symmetric tensor norms and products and the theory of polynomial ideals) influence and

contribute to each other. In his survey [Flo97], Floret presented the algebraic basics of n-fold

symmetric tensor products, together with a thorough account of fundamental metric results for

the two extreme tensor norms: the symmetric projective tensor norm πn,s and the symmetric

injective tensor norm εn,s. Despite some aspects of the theory of symmetric tensor products

and polynomial ideals steadily evolved in the last decades, sadly there is not such a treatise on

general symmetric tensor norms. In the words of Floret [Flo97] “it seems to be adequate to

develop a metric theory on n-th symmetric tensor products in the spirit of Grothendieck”.

The main result of [Flo01b] states that every s-tensor norm on an n-symmetric tensor prod-

uct of normed spaces is equivalent to the restriction to the symmetric tensor product of a tensor

norm on a full n-fold tensor product. As a consequence, a large part of the isomorphic theory of

norms on symmetric tensor products can be deduced from the theory of full tensor norms. Al-

though the isomorphic theory can be translated from one context to the other, the metric theory

can be quite different. Even in the cases where the metric theory is very much alike, symmetry

sometimes introduces certain technicalities. Another thing should be mention: although the

2-fold tensor product theory has been widely studied, it can vary considerably with respect to

the theory of tensor products of order n (for n ≥ 3). Therefore, many of the isomorphic results

on the n-th symmetric tensor product (for n ≥ 3) are usually hard to obtain.
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The purpose of this dissertation is twofold: contributing to a systematic development of

the metric and isomorphic theory of symmetric tensor products of Banach spaces and showing

several contexts in which tensor techniques can be applied to enroot the theory of polynomials

ideals. We expect that this perspective would yield more insight and would enhance research.

We also hope that, in the future, the ideas and results presented here can be used in other areas

(e.g., infinite dimensional holomorphy).

The material is organized into six chapters as follows.

Chapter 1 is devoted to background material. We set some notation, give basic definitions

and explain the duality between symmetric tensor products and polynomial ideals. Several

basic notions on the theory of symmetric tensor norms and the theory of polynomial ideals are

presented. We also describe some classical ideals and recall a well-known way of extending a

polynomial defined on a Banach space into its bidual (namely, the Aron-Berner extension).

In Chapter 2 we present the “Five Basic Lemmas” (see Section 13 in Defant and Floret’s

book [DF93]) for the symmetric tensor product setting. They are the Approximation Lemma,

the Extension Lemma, the Embedding Lemma, the Density Lemma and the Lp-Local Tech-

nique Lemma. This chapter is crucial since the five basic lemmas and its consequences are

used throughout the whole text. Although we follow the lines of [DF93], the symmetric na-

ture of our tensor products introduces several difficulties, as we can see, for example, in the

symmetric version of the Extension Lemma 2.1.3, whose proof is much more complicated than

that of its full 2-fold version. This result states that the Aron-Berner extension is a well de-

fined isometry for every maximal polynomial ideal. We also obtain the same result for minimal

polynomial ideals (see Theorem 2.2.6). Other important applications to the metric theory of

symmetric tensor norms and polynomial are given.

In Chapter 3 we give the definitions of the injective and projective associates of an s-tensor

norm and examine some of their interesting properties. We describe the maximal polynomial

ideals associated with these norms in terms of composition ideals and quotient ideals (see The-

orem 3.4.4). The study of natural symmetric tensor norms of arbitrary order, in the spirit of

Grothendieck’s norms is given as well: based on [Gro53] we define natural symmetric tensor

norms as those that can be obtained from the n-fold projective s-tensor norm πn,s by a finite

number of basic operations (injective associate, projective associate, and adjoint). In Theo-

rem 3.12 we show that there are exactly six natural symmetric tensor norms for n ≥ 3, a

noteworthy difference with the 2-fold case in which there are four.

The goal of Chapter 4 is to find conditions under which a maximal polynomial ideal co-

incide isometrically with its minimal kernel. In terms of symmetric tensor products, we seek

for properties on an s-tensor norms ensuring the isometry ⊗̃n,sα E ′ =
(
⊗̃n,sα′ E

)′
. For this, we in-

troduce the symmetric Radon-Nikodým property for s-tensor norms and show our main result,

Theorem 4.1.2: if a projective s-tensor norm α has the symmetric Radon-Nikodým property

(sRN property), we have that the natural mapping

⊗̃n,sα E ′ →
(
⊗̃n,sα′ E

)′

is a metric surjection for every Asplund space E. As a consequence, if Q is the maximal ideal

(of n-homogeneous polynomials) associated with a projective s-tensor norm α having the sRN

property, thenQmin(E) = Q(E) isometrically (i.e.,Q coincides isometrically with its minimal

kernel over the space E). This can be seen as a symmetric version of Lewis’ Theorem (see
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[Lew77] and [DF93, 33.3]). With this result we reprove the isometric isomorphism between

integral and nuclear polynomials on Asplund spaces and also show that the ideal of extendible

polynomials coincide with its minimal kernel for this type of spaces. As a consequence, the

space of extendible polynomials onE has a monomial basis wheneverE ′ has a basis. Examples

of s-tensor norms associated with well known polynomial ideals which have the sRN property

are presented. We also relate the sRN property of an s-tensor norm with the Asplund property.

More precisely, if α is a projective s-tensor norm with the sRN property, we prove that ⊗̃n,sα′ E
is Asplund whenever E is.

Chapter 5 contains the study of unconditionality for symmetric (and full) tensor products.

We examine when a tensor norm destroys unconditionality in the sense that, for every Banach

spaceE with unconditional basis, the corresponding tensor product has not unconditional basis.

We provide a simple test (Theorem 5.1.5) to check wether a tensor norm destroys uncondition-

ality or not. With this we obtain that every injective and every projective s-tensor norm (resp.

full tensor norm) other than εn,s and πn,s (resp. εn and πn) destroys unconditionality. We also

investigate unconditionality in ideals of polynomials and multilinear forms and exhibit several

examples of polynomials ideals Q such that, for every Banach space E with unconditional

basis, the space Q(E) lacks the Gordon-Lewis property. Among these ideals we have the r-
integral, r-dominated, extendible and r-factorable polynomials. For many of these examples

we also get that the monomial basic sequence is never unconditional.

In Chapter 6 we focus our attention on the preservation of two important structures for

specific s-tensor norms: the Banach-algebra structure and the M -ideal structure. Based on

the work of Carne [Car78], we describe which natural s-tensor norms preserve the algebra

structure. In Theorem 6.1.3 we show that the two natural s-tensor norms preserving Banach

algebras are πn,s and \/πn,s\/. We also prove that the M -ideal structure is destroyed by εn,s
for every n. More precisely, in Theorem 6.2.7, we show that for real Banach spaces E and F ,

if E is a non trivial M -ideal in F , then ⊗̃n,sεn,s
E (the injective symmetric tensor product of E) is

never an M -ideal in ⊗̃n,sεn,s
F . This result shows a big difference with the behavior of full tensors

since, when E is an M -ideal in F , it is known that ⊗̃nεnE (the injective full tensor product of

E) is an M -ideal in ⊗̃nεnF . Even though the M -structure is destroyed for symmetric tensors,

we show, in Theorem 6.2.9, that if E is an Asplund space which is a non trivial M -ideal in F ,

then every integral n-homogeneous polynomial in E has a unique extension to F that preserves

the integral norm. We also describe explicitly this unique extension.

The main results of this thesis appear in [CG10, CG11a, CG11b, CG11c, CG12, DGG12].



Chapter 1

Preliminaries

This chapter contains all the background material. Several basic notions on the theory of poly-

nomial ideals and the theory of symmetric tensor norms are presented. We also set some no-

tation and explain the duality between symmetric tensor products and polynomial ideals. The

Arens-extension of a multilinear form and the Aron-Berner extension of a polynomial is de-

scribed. For a complete discussion on the material that appears in this chapter we recommend

to read the following bibliography: we refer to [Flo97, Flo01a, Flo01b, Flo02, FH02, Din99]

for the theory of s-tensor norms and polynomial ideals and [Zal05] for the Arens and the Aron-

Berner extensions.

A little bit of notation

Throughout the dissertation E and F will be real or complex normed spaces and the scalar field

(R or C) will be denoted with the letter K. On the other hand, E ′ will stand for the dual space

of E, κE : E −→ E ′′ will be the canonical embedding of E into its bidual, and BE will denote

the closed unit ball of E. We denote by FIN(E) the class of all finite dimensional subspaces

of E and denote by COFIN(E) the class of all finite codimensional closed subspaces of the

space E.

A surjective mapping T : E → F is called a metric surjection or a quotient if ‖T (x)‖F =
inf{‖y‖E : T (y) = x}, for all x ∈ E. As usual, a mapping I : E → F is called an isometry

if ‖Ix‖F = ‖x‖E for all x ∈ E. We use the notation
1
։ and

1→֒ to indicate a metric surjec-

tion or an isometry, respectively. We also write E
1
= F whenever E and F are isometrically

isomorphic spaces (i.e., there exist a surjective isometry I : E → F ).

For L ∈ COFIN(E) we denote by QE
L : E

1
։ E/L the canonical quotient mapping onto

E/L .

1.1 Polynomial ideals

An application p : E → K is an n-homogeneous polynomial if there exist an n-linear mapping

A : E × n. . .× E → F such that p(x) = A(x, . . . , x) for every x ∈ E. In this case we say that

p is a polynomial associated with A.

9
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Given a polynomial p there are many n-linear forms which satisfy the condition given

above, but there exists only one which is symmetric (an n-linear mapping A is symmetric if

A(x1, . . . , xn) = A(xσ(1), . . . , xσ(n)) for every x1, . . . , xn and every σ ∈ Sn, the group of

permutations of {1, . . . , n}). This symmetric n-linear form, denoted by
∨
p, may be obtained

from p via the polarization formula:

∨
p(x1, . . . , xn) =

1

2nn!

∑

εi=±1
ε1 . . . εnp

( n∑

i=1

εixi
)
.

Conversely, to each symmetric n-linear form we can associate an n-homogeneous polynomial.

Thus there exist a one to one and onto correspondence between n-homogeneous polynomials

and n-linear symmetric forms.

Continuous n-homogeneous polynomials are exactly those bounded on the unit ball. The

space of all continuous n-homogeneous polynomials on E is denoted by Pn(E). This class is

a Banach space endowed with the norm

‖p‖Pn(E) = sup
‖x‖≤1

|p(x)|.

Denote by Ls(nE) the space of continuous scalar valued symmetric n-linear forms on E.

This space is a Banach space with the norm ‖A‖ = sup{‖A(x1, . . . , xn)‖ : x1, . . . , xn ∈ BE}.
Then the polarization formula implies that

‖p‖ ≤ ‖∨p‖ ≤ nn

n!
‖p‖.

The simplest class of polynomials is the class of finite type polynomials, Pnf (E). An n-

homogeneous polynomial p is of finite type if there exist x′1, . . . , x
′
r ∈ E ′, such that p(x) =∑r

j=1(x
′
j(x))

n for every x in E. If E is finite dimensional then every polynomial on E is of

finite type. The closure of finite type polynomials in Pn(E) are the approximable polynomials.

The space of approximable polynomials is denoted by Pnapp(E). In general, the class of ap-

proximable polynomials is strictly smaller than the the class of all continuous polynomials. For

example, the 2-homogeneous polynomial p(x) =
∑∞

j=1 x
2
j on ℓ2 is continuous but not approx-

imable. It should be mentioned that there are also spaces for which these two classes coincide

(e.g., c0 [Din99, Propositions 1.59 and 2.8]).

The concept of polynomial ideals appeared for the first time in [Bra84, Hol86], as an adap-

tation of the definition of ideals of multilinear mappings given by Pietsch [Pie84] (and also, of

course, of operator ideals).

Let us recall some definitions extracted from [Flo02]: a normed (Banach) ideal of continu-

ous scalar valued n-homogeneous polynomials is a pair (Q, ‖ · ‖Q) such that:

(i) Q(E) = Q∩Pn(E) is a linear subspace of Pn(E) and ‖ · ‖Q is a norm which makes the

pair (Q, ‖ · ‖Q) a normed (Banach) space.

(ii) If T ∈ L(E1, E), p ∈ Q(E) then p ◦ T ∈ Q(E1) and

‖p ◦ T‖Q(E1) ≤ ‖p‖Q(E)‖T‖n.
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(iii) z 7→ zn belongs to Q(K) and has norm 1.

It is well-known that the only scalar ideal of 1-homogeneous polynomials (that is, of linear

functionals) is, for each Banach space E, equal to E ′.

We now recall the definition of some classical polynomial ideals which appear in the text.

• Continuous polynomials, Pn.

The ideal of all continuous n-homogeneous polynomials, with its usual norm is a Banach

ideal of homogeneous polynomials. Other polynomial ideals with the usual norm of

polynomials are:

– Finite type polynomials, Pnf , and approximable polynomials, Pnapp, which were al-

ready defined.

– Weakly continuous on bounded sets polynomials, Pnw.

A polynomial p ∈ Pn(E) is weakly continuous on bounded sets if the restriction of

p to any bounded set of E is continuous when the weak topology is considered on

E.

– Weakly sequentially continuous polynomials, Pnwsc.
A polynomial p ∈ Pn(E) is weakly sequentially continuous if for every weakly

convergent sequence xn
w−→ x we have p(xn)→ p(x).

• Nuclear polynomials, PnN .

A polynomial p ∈ Pn(E) is said to be nuclear if it can be written as

p(x) =
∞∑

i=1

λj(x
′
j(x))

n,

where λj ∈ K, x′j ∈ E ′ for all j and
∑∞

j=1 |λj|‖x′j‖n < ∞. The space of nuclear n-

homogeneous polynomials is denoted by PnN(E). It is a Banach space when we consider

the norm

‖p‖Pn
N (E) = inf

{ ∞∑

j=1

|λj|‖x′j‖n
}

where the infimum is taken over all representations of p as above.

• Integral polynomials, PnI .

A polynomial p ∈ Pn(E) is integral if there exists a regular Borel measure µ, of bounded

variation on (BE′ , w∗) such that

p(x) =

∫

BE′

(x′(x))n dµ(x′)

for every x ∈ E. The space of n-homogeneous integral polynomials is denoted byPnI (E)
and the integral norm of a polynomial p ∈ PnI (E) is defined as

‖P‖Pn
I (E) = inf {|µ|(BE′)} ,

where the infimum is taken over all measures µ representing p.
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• Extendible polynomials, Pne .

A polynomial p : E → K is extendible if for any Banach space G containing E there

exists p̃ ∈ Pn(G) an extension of p. We denote the space of all such polynomials by

Pne (E). For p ∈ Pne (E), its extendible norm is given by

‖p‖Pn
e (E) = inf{c > 0 : for all G ⊃ E there is an extension of p to G

with norm ≤ c}.

• r-dominated polynomials, Dnr .

For x1, . . . , xm ∈ E, we define

wr
(
(xi)

m
i=1

)
= sup

x′∈BE′

(
∑

i

|x′(xi)|r
)1/r

.

A polynomial p ∈ Pn(E) is r-dominated (for r ≥ n) if there exists c > 0 such that for

every finite sequence (xi)mi=1 ⊂ E the following holds

(
m∑

i=1

|p(xi)|
r
n

)n
r

≤ Cwr((xi)
m
i=1)

n.

We denote the space of all such polynomials by Dnr (E). The least of such constants c is

called the r-dominated norm and denoted by ‖p‖Dn
r (E).

• r-factorable polynomials, Lnr .

For n ≤ r ≤ ∞, a polynomial p ∈ Pn(E) is called r-factorable if there is a positive

measure space (Ω, µ), an operator T ∈ L
(
E,Lr(µ)

)
and a polynomial q ∈ Pn(Lr(µ))

with p = q ◦ T . The space of all such polynomials is denoted by Lnr (E). It is a Banach

space if it is endowed with the following norm

‖p‖Lnr (E) = inf{‖q‖‖T‖n : p : E
T−→ Lr(µ)

q−→ K as before}.

• Positively r-factorable polynomials, J n
r .

An n-homogeneous polynomial q : F → K on a Banach lattice F is called positive, if

q̌ : F → K is positive, i.e., q̌(f1, . . . , fn) ≥ 0 for f1, . . . , fn ≥ 0. For n ≤ r ≤ ∞,

a polynomial p ∈ Pn(E) is called positively r-factorable if there is a positive measure

space (Ω, µ), an operator T ∈ L
(
E,Lr(µ)

)
and a positive polynomial q ∈ Pn(Lr(µ))

with p = q ◦ T . The space of all such polynomials endowed with the norm

‖p‖J n
r (E) = inf{‖q‖‖T‖n : p : E

T−→ Lr(µ)
q−→ K as before}

is denoted by J n
r (E).
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• r-integrable polynomials, Inr .

If µ is a finite, positive measure on Ω and n ≤ r ≤ ∞, the n-th integrating polynomial

is defined by qnµ,r(f) :=
∫
fndµ. It is straightforward to see that ‖qnµ,r‖ = µ(Ω)1/s where

s = ( r
n
)′. A polynomial p ∈ Pn(E) is r-integral if it admits a factorization

p : E
T−→ Lr(Ω)

qnµ,r−→ K

with a finite, positive measure µ and T ∈ L(E,Lr(Ω)). We denote the space of all such

polynomials by Inr (E), which is a Banach space with the norm

‖p‖Inr (E) = inf{‖qnµ,r‖‖T‖n : p = qnµ,r ◦ T as before}.

We will need also, for our purposes, the following definition. A polynomial p : ℓ2 → K is

Hilbert-Schmidt if

(
∞∑

k1,...,kn=1

|∨p(ek1 , . . . , ekn)|2)1/2

is finite. The space of all such polynomials will be denoted by PnHS(ℓ2) and it is a Banach space

with the norm ‖p‖Pn
HS(ℓ2)

= (
∑∞

k1,...,kn=1 |
∨
p(ek1 , . . . , ekn)|2)1/2.

1.1.1 Minimal kernel

The minimal kernel of Q is defined as the composition ideal Qmin := Q ◦ F, where F stands

for the ideal of approximable operators. In other words, a polynomial p belongs to Qmin(E) if

it admits a factorization

E
p //

T

��

K

F

q
?? , (1.1)

where F is a Banach space, T : E → F is an approximable operator and a polynomial q is in

Q(F ). The minimal norm of p is given by ‖p‖Qmin := inf{‖q‖Q(F )‖T‖n}, where the infimum

runs over all possible factorizations as in (1.1).

We have the following properties.

Proposition 1.1.1. [Flo01a]

• Qmin ⊂ Q with ‖ · ‖Q ≤ ‖ · ‖Qmin .

• (Qmin)min 1
= Qmin.

• Qmin is the smallest ideal of n-homogeneous polynomials such that Qmin(M)
1
= Q(M)

for every finite dimensional Banach space M .

• If E ′ has the metric approximation property (see Definition 2.1.1), then Qmin(E)
1→֒

Q(E) and Qmin(E)
1
= Pnf (E)

‖·‖Q
.

A Banach polynomial ideal is said to be minimal if Qmin 1
= Q.

For example, the ideals of nuclear and approximable polynomials are minimal. Moreover,

(PnI )min = PnN and (Pn)min = Pnapp.
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1.1.2 Maximal hull

Let (Q, ‖ · ‖Q) be an ideal of continuous scalar valued n-homogeneous polynomials and, for

p ∈ Pn(E), define

‖p‖Qmax(E) := sup{‖p|M‖Q(M) :M ∈ FIN(E)} ∈ [0,∞].

The maximal hull of Q is the ideal given by Qmax := {p ∈ Pn : ‖p‖Qmax <∞}.
An ideal Q is said to be maximal if Q 1

= Qmax. For example, Pn,PnI ,Pne ,Dnr ,Lnr are

maximal ideals. Also,

(PnN)max = PnI and (Pnapp)max = Pn.
We have the following relations.

Proposition 1.1.2. [Flo01a]

• Q ⊂ Qmax with ‖ · ‖Qmax ≤ ‖ · ‖Q.

• (Qmax)max 1
= Qmax.

• Qmax is the greatest ideal of n-homogeneous polynomials such that Qmax(M)
1
= Q(M)

for every finite dimensional Banach space M .

• (Qmax)min 1
= Qmin and (Qmin)max 1

= Qmax.

1.2 Tensor products and tensor norms

For a normed space E, we denote by⊗nE the n-fold tensor product of E . For simplicity, ⊗nx
will stand for the elementary tensor x⊗ · · ·⊗x. The subspace of⊗nE consisting of all tensors

of the form
∑r

j=1 λj ⊗n xj , where λj is a scalar and xj ∈ E for all j, is called the symmetric

n-fold tensor product of E and it is denoted by ⊗n,sE. When E is a vector space over C, the

scalars are not needed in the previous expression. For simplicity, we use the complex notation,

although most of our results will hold for real and complex spaces. Denote by δn the canonical

mapping from E to⊗n,sE. The symmetric tensor product has the following universal property:

for every n-homogeneous polynomial p : E → K there exist a unique linear functional Lp such

that the diagram

E
p //

δn

##

K

⊗n,sE

Lp

;; (1.2)

commutes. Moreover, every linear functional on the symmetric tensor product L : ⊗n,sE →
K defines an n-homogeneous polynomial given by L ◦ δn. So, from now on, we identify

indistinctly n-homogeneous polynomials with linear functionals on the n-fold symmetric tensor

product. We often write

〈p,
r∑

j=1

⊗nxj〉 := Lp(
r∑

j=1

⊗nxj) =
r∑

j=1

p(xj).
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If σ ∈ Sn, then the n-linear mapping En → ⊗nE defined by

(x1, . . . , xn) 7→ xσ−1(1) ⊗ . . . xσ−1(n),

has a linearization ⊗nE → ⊗nE which will be denoted by z 7→ zσ. For x1, . . . , xn we define

x1 ∨ · · · ∨ xn :=
1

n!

∑

σ∈Sn
xσ−1(1) ⊗ . . . xσ−1(n) ∈ ⊗nE (1.3)

and for z ∈ ⊗nE we define

σnE(z) :=
1

n!

∑

σ∈Sn
zσ ∈ ⊗nE, (1.4)

which is a linearization of the symmetric n-linear form ∨ : En → ⊗nE. The symmetric

tensor product ⊗n,sE is a complemented subspace of the n-fold tensor product ⊗nE, and the

projection is given precisely by σnE (this mapping is referred to as the symmetrization operator).

Given a normed space E and a continuous operator T : E → F , the symmetric n-tensor

power of T (or the tensor operator of T ) is the mapping from ⊗n,sE to ⊗n,sF defined by

(
⊗n,s T

)
(⊗nx) = ⊗n(Tx)

on the elementary tensors and extended by linearity.

Since Pnf (E) can be canonically identified with ⊗n,sE ′, given a finite-type polynomial

p =
∑r

j=1(x
′
j)
n ∈ Pnf (E) we say that the tensor z :=

∑r
j=1⊗nx′j ∈ ⊗n,sE ′ represents p.

Analogously, any given tensor z =
∑s

j=1⊗ny′j always represents a finite-type polynomial (for

example, the one given by
∑s

j=1(y
′
j)
n).

The symmetric projective norm, πn,s, is computed in the following way:

πn,s(z) = inf

{
r∑

j=1

‖xj‖n
}
,

where the infimum is taken over all the representations of the tensor z of the form
∑r

j=1⊗nxj .
We denote by ⊗n,sπn,s

E the symmetric n-fold tensor product of E endowed with the norm πn,s.
This norm is uniquely defined by the property

Pn(E) 1
= (⊗n,sπn,s

E)′.

On the other hand, ⊗n,sεn,s
E the symmetric n-fold tensor product of E equipped with the

norm εn,s (the symmetric injective norm) satisfies, by definition,

⊗n,sεn,s
E

1→֒ Pn(E ′).

In other words, for a tensor z ∈ ⊗n,sE we have

εn,s(z) = sup
x′∈BE′

∣∣∣∣∣

r∑

j=1

x′(xj)
n

∣∣∣∣∣ ,
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where
∑r

j=1⊗nxj is any fixed representation of z. We also get the isometric identification

PnI (E)
1
= (⊗n,sεn,s

E)′.

For a complete treatment of these two classical norms (εn,s and πn,s) see [Flo97].

More generally, reasonable symmetric tensor norms are defined as follows. We say that α
is an s-tensor norm of order n if α assigns to each normed space E a norm α

(
. ;⊗n,sE

)
on

the n-fold symmetric tensor product ⊗n,sE such that

1. εn,s ≤ α ≤ πn,s on ⊗n,sE.

2. ‖ ⊗n,s T : ⊗n,sα E → ⊗n,sα F‖ ≤ ‖T‖n for each operator T ∈ L(E,F ).

Condition (2) will be referred to as the metric mapping property. We denote by ⊗n,sα E the

tensor product ⊗n,sE endowed with the norm α
(
. ;⊗n,sE

)
, and we write ⊗̃n,sα E for its com-

pletion. When not stated, we will always assume that α has order n.

An s-tensor norm α is called finitely generated if for every normed space E and z ∈ ⊗n,sE,

we have:

α(z,⊗n,sE) = inf{α(z,⊗n,sM) :M ∈ FIN(E), z ∈ ⊗n,sM}.
For example, πs and εs are finitely generated s-tensor norms.

The norm α is called cofinitely generated if for every normed space E and z ∈ ⊗n,sE, we

have:

α(z,⊗n,sE) = sup{α
(
(⊗n,sQE

L )(z),⊗n,sE/L
)
: L ∈ COFIN(E)},

where QE
L : E

1
։ E/L is the canonical quotient mapping.

If α is an s-tensor norm of order n, then the dual tensor norm α′ is defined on FIN (the

class of finite dimensional spaces) by

⊗n,sα′ M :
1
= (⊗n,sα M ′)′ (1.5)

and on NORM (the class of normed spaces) by

α′(z,⊗n,sE) := inf{α′(z,⊗n,sM) : z ∈ ⊗n,sM},

the infimum being taken over all of finite dimensional subspaces M of E whose symmetric

tensor product contains z. By definition, α′ is always finitely generated. It follows that π′n,s =
εn,s and ε′n,s = πn,s.

Given a tensor norm α its “finite hull” −→α is defined by the following way. For z ∈ ⊗n,sE,

we set
−→α (z,⊗n,sE) := inf{α(z;⊗n,sM) :M ∈ FIN(E), z ∈ ⊗n,sM}.

Another important remark is in order: since α and α′′ coincide on finite dimensional spaces

we have

−→α (z;⊗n,sE) = inf{α′′(z;⊗n,sM) :M ∈ FIN(E), z ∈ ⊗n,sM} = α′′(z;⊗n,sE),
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where the second equality is due to the fact that dual norms are always finitely generated.

Therefore,
−→α = α′′; (1.6)

and α = α′′ if and only if α is finitely generated.

The “cofinite hull”←−α is given by

←−α (z;⊗n,sE) := sup{α
(
(⊗n,sQE

L )(z);⊗n,sE/L
)
: L ∈ COFIN(E)}.

Is not hard to see that the “finite hull” −→α (the “cofinite hull” ←−α ) is the unique finitely

generated s-tensor norm (cofinitely generated s-tensor norm) that coincides with α on finite

dimensional spaces. By the metric mapping property, it is enough to take cofinally many M (or

L) in the definitions of the finite (or cofinite) hull. Using the metric mapping property again we

have
←−α ≤ α ≤ −→α .

If Q is a Banach polynomial ideal, its associated s-tensor norm is the unique finitely gen-

erated tensor norm α satisfying

Q(M)
1
= ⊗n,sα M,

for every finite dimensional space M . For example, the s-tensor norm associated with Pn and

Pnapp is εn,s and the s-tensor norm associated with PnI and PnN is πn,s.

Notice that Q, Qmax and Qmin have the same associated s-tensor norm since they coincide

isometrically on finite dimensional spaces.

Since any s-tensor norm satisfies α ≤ πn,s, we have a dense inclusion

⊗n,sα E →֒ ⊗n,sπ E.

As a consequence, any p ∈ (⊗n,sα E)′ identifies with a continuous n-homogeneous polynomial

onE. Different s-tensor norms α give rise, by this duality, to different polynomial ideals. Ideals

which are of this type are exactly the maximal ones, as it is seen in the following theorem.

Theorem 1.2.1. (Representation Theorem for Maximal Polynomial Ideals.) [FH02] A

normed ideal of n-homogeneous polynomials Q is maximal if and only if

Q(E) 1
= (⊗n,sα′ E)

′, (1.7)

where α is the s-tensor norm associated with Q. The norm α′ is sometimes called the predual

norm of Q.

In particular, if α is associated with a given polynomial ideal Q we have:

Qmax(E) 1
= (⊗n,sα′ E)

′.

Let Q be a maximal polynomial ideal with associated s-tensor norm α. The following

theorem due to Floret [Flo01a, Theorem 4.2] exhibits the close relation between ⊗n,sα E ′ and

Qmin(E).
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Theorem 1.2.2. (Representation Theorem for Minimal Polynomial Ideals.) Let Q be a

minimal polynomial ideal with associated s-tensor α. There is a natural quotient mapping

⊗̃n,sα E ′
1
։ Q(E) (1.8)

defined on ⊗n,sE ′ by the obvious rule z =
∑r

j=1⊗nx′j 7→
∑r

j=1(x
′
j)
n (the polynomial repre-

sented by the tensor z).

In particular, if α is associated with a given polynomial ideal Q we have:

⊗̃n,sα E ′
1
։ Qmin(E).

We now recall the definition of adjoint ideal [Flo01a], which is closely related with the

theory of s-tensor norms. For q ∈ Pn(E) we define

‖q‖Q∗(E) := sup{|〈q|M , p〉|M ∈ FIN(E), ‖p‖Q(M ′) ≤ 1} ∈ [0,∞],

Here 〈q|M , p〉 stands for 〈q|M , z〉, where z is any given tensor in ⊗n,sM that represents the

finite type polynomial p ∈ Pn(M ′).

The adjoint ideal of Q, denoted by Q∗, is the class of all polynomials q such that ‖q‖Q∗ <
∞. It is not difficult to prove that

(
Q∗, ‖ ‖Q∗

)
is a maximal Banach ideal of continuous n-

homogeneous polynomials. Moreover, if α is the s-tensor norm associated with the ideal Q
then α′ is the one associated with Q∗. Therefore, we have

Q∗(E) 1
= (⊗n,sα E)′.

For example,

(Pn)∗ = (Pnapp)∗ = PnI and (PnN)∗ = (PnI )∗ = Pn.

We denote byQα the maximal Banach ideal of α-continuous n-homogeneous polynomials,

that is, Qα(E) := (⊗n,sα E)′. We observe that, with this notation, Qα is the unique maximal

polynomial ideal associated with the s-tensor norm α′.

The theory of full tensor norms of order n and the theory of ideals of multilinear forms

are not defined in this text since the basics are completely analogous to the theory of s-tensor

norms and the theory of polynomial ideals presented. We refer to [Flo01a, FG03, FH02] and

the references therein for more information on these topics. Everything we are going to use is

a straightforward generalization of the case n = 2.

1.3 The Arens extension morphism and the Aron-Berner ex-

tension

Let E1, . . . , En be normed spaces and A : E1 × · · · × En → K be an n-linear form. There is

an easy way to extend the k-th variable, Ek, to the bidual E ′′k . Namely, by weak-star continuity.

In other words, we define the k-th canonical extension of A,

EXTk(A) : E1 × . . . Ek−1 × E ′′k × Ek+1 × · · · × En → K
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in the following way:

EXTk(A)(x1, . . . , xk−1, x
′′
k, xk+1, . . . , xn) := lim

xk,γ
w∗
→x′′k

T (x1, . . . , xk−1, xk,γ, xk+1 . . . , xn),

for all xj ∈ Ej (for 1 ≤ j ≤ n, j 6= k), x′′k ∈ E ′′k , where xk,γ
w∗

→ x′′k stands for any bounded net

on Ek weak-star convergent to x′′k. We denote by EXTk the linear operator

L(E1, . . . Ek−1, Ek, Ek+1, . . . , En)→ L(E1, . . . Ek−1, E
′′
k , Ek+1, . . . , En)

defined by the above formula.

The Arens-extension morphism EXT is the linear mapping

EXT : L(E1, . . . , En)→ L(E ′′1 , . . . , E ′′n)

given by (EXTn) ◦ · · · ◦ (EXT1) (we extend from the left to the right). This extension is also

referred to as the iterated canonical extension.

Let A : E × · · · × E → K be a symmetric n-linear form. The Arens extension of A,

EXT (A), is an n-linear form on E ′′ which, in general, is not symmetric. Moreover, we have

chosen an order to pick the variables of A, and usually, the extension obtained depends on this

order. However, it has the following properties:

• If x ∈ E and x′′1, . . . , x
′′
n−1 ∈ E ′′ then

EXT (A)(x, x′′1, . . . , x
′′
n−1) = EXT (A)(x′′1, x, . . . , x

′′
n−1)

= . . .

= EXT (A)(x′′1, . . . , x
′′
n−1, x).

• It is w∗-w∗-continuous in the n-th variable (the last variable we extended).

• ‖EXT (A)‖L(nE′′) = ‖A‖L(nE).

• EXT (A) is separately w∗-continuous on each variable if and only if EXT (A) is sym-

metric.

We now define a way of extending polynomials into the bidual. If p ∈ Pn(E), then its

Aron-Berner extension [AB78] AB(p) ∈ Pn(E ′′) is defined as

AB(p)(x′′) := EXT (
∨
p)(x′′, . . . , x′′).

In order to show that some holomorphic functions defined on the unit ball of E can be ex-

tended to the ball of E ′′, Davie and Gamelin [DG89] proved that the Aron-Berner extension

preserves the norm of the polynomial. In other words, the Aron-Berner extension morphism

AB : Pn(E) → Pn(E ′′) is an isometry. Moreover, they extended Goldstine’s theorem: they

showed that BE is polynomial-star dense in BE′′ , that is, for each x′′ ∈ BE′′ there exists a net

(xγ)γ ⊂ BE , such that p(xγ)→ AB(p)(x′′) for every polynomial p.
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Chapter 2

The Five Basic Lemmas for symmetric

tensor products

In the theory of full 2-fold tensor norms, “The Five Basic Lemmas” (see Section 13 in De-

fant and Floret’s book [DF93]) are rather simple results which turn out to be “basic for the

understanding and use of tensor norms”. Namely, they are the Approximation Lemma, the

Extension Lemma, the Embedding Lemma, the Density Lemma and the Lp-Local Technique

Lemma. Applications of these lemmas can be seen throughout the book. We present here the

analogous results for the symmetric setting. We also exhibit some applications as example of

their potential. In order to obtain our five basic lemmas and their applications we follow the

lines of [DF93]. Although some proofs are similar to the 2-fold case, the symmetric nature of

our tensor products introduces some difficulties, as we can see, for example, in the symmetric

version of the Extension Lemma 2.1.3, whose proof is much more complicated than that of its

full 2-fold version.

In Section 2.1 we state and prove the five basic lemmas, together with some direct conse-

quences. Applications to the metric theory of symmetric tensor norms and Banach polynomial

ideals are given in Section 2.2.

2.1 The lemmas

Here we give in full detail the symmetric analogues to the five basic lemmas that appear in

[DF93, Section 13]. Recall first the following definition.

Definition 2.1.1. A normed space E has the λ-approximation property if there is a net (Tη)η
of finite rank operators in L(E,E) with norm bounded by λ such that Tη conveges to IdE (the

identity operator on E) uniformly on compact subsets of E. A given space has the bounded ap-

proximation property if it has the λ-approximation property for some λ. The 1-approximation

property is referred to as the metric approximation property.

The first of the five basic lemmas states that for normed spaces with the bounded approxima-

tion property, it is enough to check dominations between s-tensor norms on finite dimensional

subspaces.

21
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Lemma 2.1.2. (Approximation Lemma.) Let α and β be s-tensor norms and E be a normed

space with the λ-approximation property and c ≥ 0 such that

α ≤ cβ on ⊗n,sM,

for cofinally many M ∈ FIN(E) (i.e., for every N ∈ FIN(E) there exist a bigger finite

dimensional subspace M ⊃ N satisfying α ≤ cβ on ⊗n,sM ). Then

α ≤ λncβ on ⊗n,s E.

Proof. Take (Tη)η a net of finite rank operators with ‖Tη‖ ≤ λ and Tηx→ x for all x ∈ E. Fix

z ∈ ⊗n,sE and take ε > 0. Since the mapping x 7→ ⊗nx is continuous from E to ⊗n,sα E, we

have α(z − Tη(z),⊗n,sE) < ε for some η large enough. If we take M ⊃ Tη(E) satisfying the

hypothesis of the lemma, by the metric mapping property of the s-tensor β we have

α(z;⊗n,sE) ≤ α(z −⊗n,sTη(z);⊗n,sE) + α(⊗n,sTη(z);⊗n,sE)
≤ ε+ α(⊗n,sTη(z);⊗n,sM)

≤ ε+ cβ(⊗n,sTη(z);⊗n,sM)

≤ ε+ c‖Tη : E →M‖nβ(⊗n,sz;⊗n,sE)
≤ ε+ λncβ(⊗n,sz;⊗n,sE).

Since this holds for every ε > 0, we have α(z;⊗n,sE) ≤ λncβ(z;⊗n,sE).

As we mention in Chapter 1, in order to show that some holomorphic functions defined on

the unit ball of E can be extended to the ball of E ′′, Davie and Gamelin [DG89] proved that the

Aron-Berner extension preserves the norm of the polynomial. If we look at the duality between

polynomials and symmetric tensor products in (1.2), Davie and Gamelin’s result states that for

p in (⊗̃n,sπn,s
E)′, its Aron-Berner extensionAB(p) belongs to (⊗̃n,sπn,s

E ′′)′, and has the same norm

as p. A natural question arises: if a polynomial p belongs to (⊗̃n,sα E)′ for some s-tensor norm

α, does its Aron-Berner extension AB(p) belong to (⊗̃n,sα E ′′)′? And what about their norms?

The answer is given in the following result, which can be seen as a symmetric version of the

Extension Lemma [DF93, 6.7.].

Lemma 2.1.3. (Extension Lemma.) Let α be a finitely generated s-tensor norm and p ∈
(⊗̃n,sα E)′ a polynomial. The Aron-Berner extension AB(p) of p to the bidual E ′′ belongs to

(⊗̃n,sα E ′′)′ and

‖p‖(⊗̃n,s
α E)′ = ‖AB(p)‖(⊗̃n,s

α E′′)′ .

We will postpone the proof of this lemma to the end of this section, where we treat exten-

sions to ultrapowers.

As a consequence of the Extension Lemma 2.1.3 we also obtain a symmetric version of

[DF93, Lemma 13.3], which shows that there is a natural isometric embedding from the sym-

metric tensor product of a Banach space and that of its bidual.

Lemma 2.1.4. (Embedding Lemma.) If α is a finitely or cofinitely generated tensor norm,

then the natural mapping

⊗n,s κE : ⊗n,sα E −→ ⊗n,sα E ′′

is an isometry for every normed space E.
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Proof. If z ∈ ⊗n,sE, by the metric mapping property we have

α(⊗n,sκE(z);⊗n,sE ′′) ≤ α(z;⊗n,sE).

Suppose α is finitely generated and let p a norm one polynomial in (⊗n,sα E)′ such that the norm

α(z;⊗n,sE) is 〈p, z〉. Now notice that 〈p, z〉 = 〈AB(p),⊗n,sκE(z)〉 which, by the Extension

Lemma 2.1.3, is less than or equal to α(⊗n,sκE(z);⊗n,sE ′′). This shows the reverse inequality

for finitely generated tensor norms.

Suppose now that α is cofinitely generated and let L ∈ COFIN(E). Then L00 (the bian-

nihilator in E ′′) is in COFIN(E ′′) and the mapping

κE/L : E/L→ (E/L)′′ = E ′′/L00

is an isometric isomorphism. Moreover, we have QE′′

L00 ◦ κE = κE/L ◦QE
L .

Thus,

α(⊗n,sQE
L (z);⊗n,sE/L) = α(⊗n,s(κF/L ◦QE

L )(z);⊗n,s(E/L)′′)
= α((⊗n,sQE′′

L00 ◦ ⊗n,sκE)(z);⊗n,sE ′′/L00)

≤ α(⊗n,sκE(z),⊗n,sE ′′).

If we take supremum over all L ∈ COFIN(E) we obtain the desired inequality.

Since E and its completion Ẽ have the same bidual, the Embedding Lemma 2.1.4 shows

that finitely generated and cofinitely generated s-tensor norms respect dense subspaces. More

precisely, we have the following.

Corollary 2.1.5. Let α be a finitely or cofinitely generated s-tensor norm, E a normed space

and Ẽ its completion. Then,

⊗n,sα E → ⊗n,sα Ẽ

is an isometric and dense embedding.

We obtain as a direct consequence the symmetric version of the Density lemma [DF93,

Lemma 13.4.].

Lemma 2.1.6. (Density Lemma.) Let α be a finitely or cofinitely generated tensor norm, E a

normed space and E0 a dense subspace of E. If p is an n-homogeneous continuous polynomial

such that

p|⊗n,sE0 ∈ (⊗n,sα E0)
′,

then p ∈ (⊗n,sα E)′ and ‖p‖(⊗n,s
α E)′ = ‖p‖(⊗n,s

α E0)′ .

Before we state the fifth lemma, we need some definitions. For 1 ≤ p ≤ ∞ and 1 ≤ λ <∞
a normed space E is called an Lgp,λ-space, if for each M ∈ FIN(E) and ε > 0 there are

R ∈ L(M, ℓmp ) and S ∈ L(ℓmp , E) for some m ∈ N factoring the embedding IEM :

M � �
IME //

R

  

E

ℓmp

S

?? , (2.1)
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such that ‖S‖‖R‖ ≤ λ+ ε.

The space E is called an Lgp-space if it is an Lgp,λ-space for some λ ≥ 1. Loosely speaking,

Lgp-spaces share many properties of ℓp, since they locally look like ℓmp . The spaces C(K) and

L∞(µ) are Lg∞,1-spaces, while Lp(µ) are Lgp,1-spaces. For more information and properties of

Lgp-spaces see [DF93, Section 23].

Now we state and prove our fifth basic lemma.

Lemma 2.1.7. (Lp-Local Technique Lemma.) Let α and β be s-tensor norms and c ≥ 0 such

that

α ≤ cβ on ⊗n,s ℓmp ,
for every m ∈ N. If E is an Lgp,λ-space then

α ≤ λnc
−→
β on ⊗n,s E.

Proof. Fix z ∈ ⊗n,sE and M ∈ FIN(E) such that z ∈ ⊗n,sM . Thus, for the finite dimen-

sional subspace M we take a factorization as in (2.1) with ‖R‖‖S‖ ≤ λ(1 + ε). We therefore

have

α(z;⊗n,sE) = α(⊗n,s(S ◦R)(z),⊗n,sM) ≤ ‖S‖α(⊗n,sR(z),⊗n,sℓmp )
≤ ‖S‖ncβ(⊗n,sR(z),⊗n,sℓmp ) ≤ c‖S‖n‖R‖nβ(z;⊗n,sM).

≤ λnc(1 + ε)nβ(z;⊗n,sM).

Since ε is arbitrary, taking infimum over all finite dimensional subspaces M such that z ∈
⊗n,sM , we obtain

α ≤ λnc
−→
β

as desired.

Extensions to Ultrapowers and the proof of the Extension Lemma

Before giving the proof of the Extension Lemma 2.1.3 we need to recall some basic properties

of ultrapowers. The reader is referred to [Hei80, Kür76] for further details. Let U be an ultrafil-

ter on a set I . Whenever the limit with respect to U of a family {ai : i ∈ I} exists, we denote it

by limi,U ai. For a Banach space E, (E)U, the ultrapower of E respect to the filter U, consists in

classes of elements of the form z = (zi)U, with zi ∈ E, for each i ∈ I , where the norm of (zi)
is uniformly bounded, and where we identify (zi) with (yi) if limi,U ‖zi − yi‖ = 0. The space

(E)U is a Banach space under the norm

‖(zi)U‖ = lim
i,U
‖zi‖.

We may consider E as a subspace of the ultrapower (E)U by means of the canonical em-

bedding hE : E →֒ (E)U given by hEx = (xi)U where xi = x for all i.

Let us now define the ultrapower of an operator. If T : E → F is a bounded linear operator,

the ultrapower operator of T associated with the ultrafilter U will be the operator from (E)U
to (F )U defined according the following rule (zi)U 7→ (Tzi)U. We denote this operator (T )U. It

can be seen that ‖(T )U‖ is equal to ‖T‖.
We also need a special property of ultrapowers [Hei80, Proposition 6.1], [Kür76, Statz 4.1.].
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Proposition 2.1.8. (Local determination of ultrapowers.) Let E be a Banach space and

M ∈ FIN((E)U). For each i ∈ I there exist an operator Ri ∈ L(M,E) such that

(1) z = (Riz)U for all z ∈M ;

(2) ‖Ri‖ ≤ 1 for all i ∈ I and there is an U ∈ U with ‖Ri‖ = 1 for all i ∈ U;

(3) for all ε > 0 there is an Uε ∈ U such that the inverse R−1i : Ri(M) → M exist and

‖Ri‖ ≤ 1 + ε for all i ∈ Uε.

We shall only use (1) and the first part of (2).

Let (E)U be an ultrapower of a Banach space E. For a continuous n-linear form Φ on E we

define an n-linear form Φ on (E)U by

Φ(z1, . . . , zn) = lim
i1,U

. . . lim
in,U

Φ(z
(1)
i1
, . . . , z

(n)
in

),

for zj = (z
(j)
ij
)U ∈ (E)U (1 ≤ j ≤ n). The n-linear form Φ defined on (E)U will be referred

to as the ultra-iterated extension of Φ. If p is an n-homogeneous continuous polynomial and

A is its associated symmetric n-linear mapping, the ultra-iterated extension, p, of p to (E)U is

defined by

p((zi)U) := A((zi)U, . . . , (zi)U) = lim
i1,U

. . . lim
in,U

A(zi1 , . . . , zin).

Theorem 2.1.9. Let α be a finitely generated s-tensor norm and p ∈ (⊗̃n,sα E)′ a polynomial.

The ultra-iterated extension p of p to the ultrapower (E)U belongs to (⊗̃n,sα (E)U)
′ and

‖p‖(⊗̃n,s
α E)′ = ‖p‖(⊗̃n,s

α (E)U)′
.

We need some remarks and lemmas to prove this theorem.

First, let A be the symmetric multilinear form associated with a polynomial p (i.e., A =
∨
p).

For each fixed j, 1 ≤ j ≤ n, x1, . . . , xj−1 ∈ E, and zj, zj+1, . . . zn ∈ (E)U, we have

A(hEx1, . . . , hExj−1, zj, zj+1, . . . , zn) = lim
ij ,U

A(hEx1, . . . , hExj−1, hEz
(j)
ij
, zj+1, . . . , zn),

where A is the ultra-iterated extension of A to (E)U.

Now, we imitate the procedure used by Davie and Gamelin in [DG89]. Let A be the sym-

metric n-linear form associated with p. We have the following lemma:

Lemma 2.1.10. Let M ∈ FIN((E)U) and z1, . . . , zr ∈ M . For a given natural number m,

and ε > 0 there exist operators R1, . . . , Rm ∈ L(M,E) with norm less than or equal to 1 such

that ∣∣A(Ri1zk, . . . , Rinzk)− A(zk, . . . , zk)
∣∣ < ε (2.2)

for every i1, . . . , in distinct indices between 1 and m and every k = 1, . . . , r.
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Proof. Since A is symmetric, in order to prove the Lemma it suffices to obtain (2.2) for i1 <
· · · < in. We select the operator R1, . . . , Rm inductively by the following procedure: by

Proposition 2.1.8, for each i ∈ I there exist an operator Ri ∈ L(M,E) with norm less than or

equal to 1 such that zk = (Rizk)U.

Since zk = (Rizk)U for each k, the set

{i ∈ I : A(hERizk, zk, . . . , zk)− A(zk, zk, . . . , zk)
∣∣ < ε/n}

belongs to the filter U. Therefore, we can pick R1 ∈ L(M,E) such that
∣∣A(hER1zk, zk, . . . , zk)− A(zk, zk, . . . , zk)

∣∣ < ε/n,

for every k = 1, . . . , r. In a similar way we can choose R2 such that
∣∣A(hER2zk, zk, . . . , zk)− A(zk, zk, . . . , zk)

∣∣ < ε/n,

and moreover,
∣∣A(hER1zk, hER2zk, zk, . . . , zk)− A(hER1zk, zk, . . . , zk)

∣∣ < ε/n,

for every k1, . . . , r. Proceeding in this way, we get Rl’s so that

∣∣A(hERi1zk, . . . , hERir−1zk, hERirzk, zk, . . . , zk)− A(hERi1zk, . . . , hERir−1zk, zk, . . . , zk)
∣∣

is less than ε/n, whenever i1 < · · · < ir and k = 1, . . . r.

Then, ∣∣A(hERi1zk, . . . , hERinzk)− A(zk . . . , zk)
∣∣

is estimated by the sum of n terms
∣∣A(hERi1zk, . . . , hERinzk)− A(hERi1zk, . . . , hERin−1zk, zk)

∣∣+ . . .

+
∣∣A(hERi1zk, zk . . . , zk)− A(zk, . . . , zk)

∣∣,
each smaller than ε/n, for all k = 1 . . . , r.

Proposition 2.1.11. Let M ∈ FIN((E)U), z1, . . . , zr ∈ M , p : E → K a continuous polyno-

mial and ε > 0. There exist operators (Ri)1≤i≤m in L(M,E) with norm less than or equal to

1, such that
∣∣

r∑

k=1

p(zk)−
r∑

k=1

p(
1

m

m∑

i=1

Rizk)
∣∣ < ε.

Proof. For ε > 0, fix m large enough and choose R1, . . . , Rm as in the previous lemma, such

that ∣∣A(zk, . . . , zk)− A(Ri1zk, . . . , Rinzk)
∣∣ < ε/2r

for every i1, . . . , in distinct indices between 1 and m and every k = 1, . . . , r. We have for

k ∈ {1, . . . , r},
∣∣p(zk)− p(

1

m

m∑

i=1

Rizk)
∣∣ =

∣∣ 1

mn

m∑

i1,...,in=1

[A(zk, . . . , zk)− A(Ri1zk, . . . , Rinzk)]
∣∣

≤
∣∣Σk

1

∣∣+ ≤ |Σk
2|,



2.1. THE LEMMAS 27

where Σk
1 is the sum over the n-tuples of non-repeated indices (which is less than ε/2r) and Σk

2

is the sum over the remaining indices. It is easy to show that there are exactlymn−∏n−1
j=0 (m−j)

summands in Σk
2, each bounded by a constant C > 0 (obviously we can assume that C is

independent of k), thus

∣∣Σk
2| ≤

1

mn

(
mn −

n−1∏

j=0

(m− j))C =
[
1− (1− 1

m
) . . . (1− n− 1

m
)
]
C.

Taking m sufficiently large this is less than ε/2r.

We can now give a proof of Theorem 2.1.9.

Proof. (of Theorem 2.1.9.)

Let w ∈ ⊗n,sM , where M ∈ FIN((E)U). Since α is finitely generated, we only have to

show that

|〈p, w〉| ≤ ‖p‖(⊗̃n,s
α E)′ α(w,⊗n,sM).

Now, w =
∑r

k=1⊗nzk with zk ∈ M . Given ε > 0, by Proposition 2.1.11 we can take

operators (Ri)1≤i≤m with ‖Ri‖L(M,E) ≤ 1 such that
∣∣∑r

k=1 p(zk)−
∑r

k=1 p(
1
m

∑m
i=1Rizk)

∣∣ <
ε. Therefore,

∣∣〈p, w〉
∣∣ =

∣∣
r∑

k=1

p(zk)
∣∣ ≤

∣∣
r∑

k=1

p(zk)−
r∑

k=1

p(
1

m

m∑

i=1

Rizk)
∣∣+
∣∣

r∑

k=1

p(
1

m

m∑

1=1

Rizk)
∣∣

≤ ε+
∣∣〈p,

r∑

k=1

⊗n 1

m

m∑

i=1

Rizk〉
∣∣

≤ ε+ ‖p‖(⊗̃n,s
α E)′α(

r∑

k=1

⊗n 1

m

m∑

i=1

Rizk ; ⊗n,sE)

≤ ε+ ‖p‖(⊗̃n,s
α E)′α(⊗n,sR(

r∑

k=1

zk) ; ⊗n,sE),

where R = 1
m

∑m
i=1Ri (note that ‖R‖L(M,E) ≤ 1 since each ‖Ri‖L(M,E) ≤ 1). By the metric

mapping property of α and the previous inequality we get

∣∣〈p, w〉
∣∣ ≤ ε+ ‖p‖(⊗̃n,s

α E)′ α(
r∑

k=1

⊗nzk ; ⊗n,sM),

which ends the proof.

To prove the Extension Lemma 2.1.3 we need to construct a special ultrapower (the local

ultrapower of E), so we give the details. First, we recall the

Theorem 2.1.12. (Principle of Local Reflexivity.) For each M ∈ FIN(E ′′), N ∈ FIN(E ′)
and ε > 0, there exists an operator T ∈ L(M,E) such that

(1) T is an ε-isometry; that is, (1− ε)‖x′′‖ ≤ ‖T (x′′)‖ ≤ (1 + ε)‖x′′‖;
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(2) T (x′′) = x′′ for every x′′ ∈M ∩ E;

(3) x′(T (x′′)) = x′′(x′) for x′′ ∈M and x′ ∈ N .

Let I be the set of all triples (M,N, ε), where M and N are finite dimensional subspaces

of E ′′ and E ′ respectively and ε > 0. For each i ∈ I , we denote by Mi, Ni and εi the three

elements of the triple. We define an ordering on I by setting i < j if Mi ⊂ Mj, Ni ⊂ Nj and

εi > εj. The collection of the set of the form Bi = {j ∈ I : i ≤ j} form a filter base. Let U be

an ultrafilter on I which contains this filter base. The filter U constructed here is called a local

ultrafilter for E, and (E)U is called a local ultrapower of E.

Finally, let us fix, for each i ∈ I , an operator Ti :Mi → E in accordance with the Principle

of Local Reflexivity. The canonical embedding of E into the ultrapower (E)U extends to a

canonical embedding JE : E ′′ → (E)U defined by JE(x
′′) = (xi), where xi is equal to Ti(x

′′)
if x′′ ∈ Mi and 0 otherwise. In this way, JE(E

′′) is the range of a norm one projection defined

in (E)U by the following rule

(xi)U 7→ JE(w
∗ − lim

i,U
xi)

(where w∗ − limi,U xi stands for the weak-star limit in E ′′ of the collection (xi)).

The following proposition is due to Lindström and Ryan [LR92, Proposition 2.1], it states

that the Aron-Berner extension can be recovered from the ultra-iterated extension to a local

ultrapower of E:

Proposition 2.1.13. If (E)U is a local ultrapower ofE, then the restriction of p to the canonical

image of E ′′ in (E)U coincides with the Aron-Berner extension of p to E ′′.

With all this we can give a proof of the Extension Lemma 2.1.3.

Proof. (of the Extension Lemma 2.1.3.)

Let (E)U a local ultrapower of E and JE : E ′′ → (E)U the canonical embedding. By

Proposition 2.1.13 the ultra-iterated extension to the local ultrapower of E restricted to E ′′

coincides with the Aron-Berner extension of p. In other words, AB(p) = p ◦ JE . Hence,

‖AB(p)‖(⊗n,s
α E′′)′ = ‖p ◦ JE‖(⊗n,s

α E′′)′

≤ ‖p‖(⊗n,s
α EU)′‖JE‖n

= ‖p‖(⊗n,s
α E)′ .

The other inequality is immediate.

2.2 Some applications to the metric theory of symmetric ten-

sor products and polynomial ideals

In this section we present applications of the five basic lemmas to the study of symmetric

tensor norms, specifically to their metric properties. We also obtain several results concerning

the theory of polynomial ideals. The first application of the lemmas that we get relates the finite

hull of an s-tensor norm with its cofinite hull on⊗n,sE when E has the bounded approximation

property.
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Proposition 2.2.1. Let α be an s-tensor norm and E be a normed space with the λ-bounded

approximation property. Then

←−α ≤ α ≤ −→α ≤ λn←−α on ⊗n,s E.

In particular,←−α = α = −→α on ⊗n,sE if E has the metric approximation property.

Proof. The result is a direct consequence of the Approximation Lemma 2.1.2 and the fact that
←−α = α = −→α on ⊗n,sM for every M ∈ FIN(E)

This proposition together with the Embedding Lemma 2.1.3 give the following corollary,

which should be compared to the Embedding Lemma 2.1.4. Note that the assumptions on the

s-tensor norm α in the Embedding Lemma are now substituted by assumptions on the normed

space E.

Corollary 2.2.2. Let α be an s-tensor norm and E be a normed space with the metric approx-

imation property. Then

⊗n,s κE : ⊗n,sα E −→ ⊗n,sα E ′′

is an isometry.

Proof. If z ∈ ⊗n,sE, by the metric mapping property

α(⊗n,sκEz;⊗n,sE ′′) ≤ α(⊗n,sz;⊗n,sE).

On the other hand, since E has the metric mapping property, Proposition 2.2.1 asserts that

α =←−α on ⊗n,sE. We then have

α(⊗n,sz;⊗n,sE) =←−α (⊗n,sz;⊗n,sE) =←−α (⊗n,sκEz;⊗n,sE ′′) ≤ α(⊗n,sκEz;⊗n,sE ′′),

where the second equality is due to the Embedding Lemma 2.1.3 applied to the cofinitely

generated s-tensor norm←−α .

From the definition of dual tensor norm, for every finite dimensional space M we always

have the isometric isomorphisms

⊗n,sα′ M
1
= (⊗n,sα M ′)′, (2.3)

⊗n,sα M ′ 1
= (⊗n,sα′ M)′. (2.4)

The next theorem and its corollary show the behavior of the mappings in (2.3) and (2.4) in

the infinite dimensional framework.

Theorem 2.2.3. (Duality Theorem.) Let α be an s-tensor norm. For every normed space E
the following natural mappings are isometries:

⊗n,s←−α E →֒ (⊗n,sα′ E
′)′, (2.5)

⊗n,s←−α E
′ →֒ (⊗n,sα′ E)

′. (2.6)



30 CHAPTER 2. THE FIVE BASIC LEMMAS

Proof. Let us prove that the first mapping is an isometry. Observe that

FIN(E ′) = {L0 : L ∈ COFIN(E)}.

Now, by the duality relations for finite dimensional spaces (2.3) and (2.4), and the fact that dual

norms are finitely generated we obtain

←−α (z;⊗n,sE) = sup
L∈COFIN(E)

α(QE
L (z);⊗n,sE/L)

= sup
L∈COFIN(E)

sup{〈QE
L (z), u〉 : α′(u;⊗n,sL0) ≤ 1}

= sup{〈QE
L (z), u〉 :

−→
α′(u;⊗n,sE ′) ≤ 1}

= sup{〈QE
L (z), u〉 : α′(u;⊗n,sE ′) ≤ 1},

and this shows (2.5).

For the second mapping, note that the following diagram commutes

⊗n,s←−α E ′
� � 1 //

((

(⊗n,sα′ E ′′)′ ∋ AB(p)

(⊗n,sα′ E)′
?�

1

OO

∋ p

OO
. (2.7)

Then, the Extension Lemma 2.1.3 gives the isometry ⊗n,s←−α E ′ →֒ (⊗n,sα′ E)′, which is (2.6).

Corollary 2.2.4. Let α be an s-tensor norm. For every normed space the mappings

⊗n,sα E →֒ (⊗n,sα′ E
′)′, (2.8)

⊗n,sα E ′ →֒ (⊗n,sα′ E)
′ (2.9)

are continuous and have norm one.

IfE ′ has the metric approximation property or α is cofinitely generated, then both mappings

are isometries.

If E has the metric approximation property the mapping in (2.8) is an isometry.

Proof. Since ←−α ≤ α, continuity and that the norm of both mappings is one follow from the

Duality Theorem 2.2.3. If E ′ has the metric approximation property, by Proposition 2.2.1,
←−α = α on ⊗n,sE and on ⊗n,sE ′, so the conclusion follows again from the Duality Theorem.

The same happens if α is cofinitely generated.

If E has the metric approximation property, by Proposition 2.2.1←−α = α on ⊗n,sE, we can

apply the Duality Theorem to show that the mapping in (2.8) is an isometry.

The isometry (2.9) for the case of E ′ having the metric approximation property can also be

obtained from [Flo01a, Corrollary 5.2 and Proposition 7.5]. Note also that if E (resp. E ′) has

the λ-approximation property, then the mapping (2.8) (resp. (2.9)) is an isomorphism onto its

range.

We now compile some consequences of the obtained results to the theory of polynomial

ideals.
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A natural question in the theory of polynomials is whether a polynomial ideal is closed

under the Aron-Berner extension and, also, if the ideal norm is preserved by this extension.

Positive answers for both questions were obtained for particular polynomial ideals in [CZ99,

Car99, Mor84] among others. However, some polynomial ideals are not closed under the Aron-

Berner extension (for example, the ideal of weakly sequentially continuous polynomials). Since

dual s-tensor norms are always finitely generated, we can rephrase the Extension Lemma 2.1.3

in terms of maximal polynomial ideals and give a positive answer to the question for ideals of

this kind.

Theorem 2.2.5. (Extension lemma for maximal polynomial ideals.) Let Q be a maximal

ideal of n-homogeneous polynomials and p ∈ Q(E), then its Aron-Berner extension is in

Q(E ′′) and

‖p‖Q(E) = ‖AB(p)‖Q(E′′).

Floret and Hunfeld showed in [FH02] that there is another extension to the bidual, the so

called uniterated Aron-Berner extension, which is an isometry for maximal polynomial ideals.

The isometry and other properties of the uniterated extension are rather easy to prove. However,

this extension is hard to compute, since its definition depends on an ultrafilter. On the other

hand, the Aron-Berner extension is not only easier to compute, but also has a simple charac-

terization that allows to check if a given extension of a polynomial is actually its Aron-Berner

extension [Zal90]. Moreover, the iterated nature of the Aron-Berner extension makes it more

appropriate for the study of polynomials and analytic functions. The next result shows that the

Aron-Berner extension is also an isometry for minimal polynomial ideals.

Theorem 2.2.6. (Extension lemma for minimal polynomial ideals.) Let Q be a minimal

ideal. For p ∈ Q(E), its Aron-Berner extension AB(p) belongs to Q(E ′′) and

‖p‖Q(E) = ‖AB(p)‖Q(E′′).

Proof. Since p ∈ Q(E) 1
= ((Qmax)min)(E) (see [Flo01a, 3.4]), given ε > 0 there exist a

Banach space F , an approximable operator T : E → F and a polynomial q ∈ Qmax(F ) such

that p = q ◦ T (as in (1.1)) and with ‖q‖Qmax(F )‖T‖n ≤ ‖p‖Q(E) + ε.

It is not hard to see that AB(p) = AB(q) ◦ T ′′ (see for example [Car99, Section 1]). By

Theorem 2.2.5 we have ‖q‖Qmax(F ) = ‖AB(q)‖Qmax(F ). Since T is approximable, so is T ′′.
With this we conclude that AB(p) belongs to Q(E ′′) and

‖AB(p)‖Q(E′′) ≤ ‖AB(q)‖Qmax(F ′′)‖T ′′‖n
= ‖q‖Qmax(F )‖T‖n
≤ ‖p‖Q(E) + ε,

for every ε. The reverse inequality is immediate.

The concept of holomorphy type was introduced by Nachbin in [Nac69] (see also [Din71]).

The most natural holomorphy types can be seen as sequences of polynomial idealsQ = {Qk}k
(Qk is an ideal of polynomials of degree k, k = 1, 2, . . . ), where some kind of affinity between

ideals of different degrees is necessary [BBJP06, CDM09]. In [CDM07], given such a sequence

of polynomial ideals, an associated Fréchet space of entire functions is defined. In [Mur10,

Mur12] the corresponding definition for analytic functions defined on the unit ball of a Banach

is given:
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Definition 2.2.7. LetQ = {Qk}k be a sequence of polynomial ideals andE be a Banach space.

The space of Q-holomorphic functions of bounded type on BE is defined as

HbQ(BE) =

{
f ∈ H(BE) :

dkf(0)

k!
∈ Qk(E) and lim

k→∞

∥∥∥d
kf(0)

k!

∥∥∥
1/k

Qk(E)
< 1

}
.

Examples of this kind of spaces are: the classical space of holomorphic functions of bounded

type in the ball Hb(BE), the space of nuclearly entire functions of bouded type in the ball

HbN(BE) (defined by Gupta and Nachbin, see [Din99, Gup70]) and the space of integral en-

tire functions of bounded type in the ball HbI(BE) (defined by Dimant, Galindo, Maestre and

Zalduendo in [DGMZ04]).

An immediate consequence of our results is the following: let Q = {Qk}k be a sequence

of polynomial ideals, eachQk being either maximal or minimal. If E is a Banach space, then a

holomorphic function f belongs to HbQ(BE) if and only if its Aron-Berner extension belongs

to HbQ(BE′′).

Lassalle and Zalduendo [LZ00] and Cabello, Castillo and Garcia [CCG00] obtained, inde-

pendently, that if two Banach spaces E and F are symmetrically Arens-regular (the definition

is given after the statement of Proposition 2.2.9) and E ′ and F ′ are isomorphic (resp. isomet-

ric), then Pn(E) and Pn(F ) are isomorphic (resp. isometric). We will extend their result to a

wider class of polynomial ideals but, before this, some definitions are necessary.

Definition 2.2.8. Given an ideal of n-homogeneous polynomials Q closed under the Aron-

Berner extension and a continuous linear morphism s : E ′ → F ′, we can construct the follow-

ing mapping s : Q(E)→ Q(F ) given by

s(p) := AB(p) ◦ s′ ◦ κF ,

where κF : F → F ∗∗ is the canonical inclusion. The mapping s is referred to as the extension

morphism of s .

In general s ◦ t(p) 6= s ◦ t(p) (see [Zal05, Example 2.3.]), but in the presence of some

symmetry the procedure is sufficiently well-behaved to produce the following result which can

be found in [LZ00, Corollary 2.2].

Proposition 2.2.9. Let p ∈ Pn(E) a polynomial,A its associated symmetric n-linear form, and

suppose s : E ′ → F ′ is an isomorphism. If EXT (A), the Arens extension of A, is symmetric

then s−1 ◦ s(p) = p.

Recall that a Banach space E is called Arens-regular (resp. symmetrically Arens-regular)

if all linear operators (resp. symmetric linear operators) E → E ′ are weakly compact (see

[AGGM96] and the references therein). Reflexive spaces are obviously Arens-regular. Also

the spaces c0 and C(K) (the space of continuous functions over the compact set K) have this

property (see [Are51]). Another example is the Tsirelson-James space [AD97]. A classical

space that do not have this property is ℓ1 (see [AGGM96]).

We say that a polynomial ideal Q is regular [CDM12] if, for every Banach space E and

every polynomial p ∈ Q(E), the Arens-extension of A (the symmetric n-linear form associ-

ated to p) is symmetric. For example, the ideal of integral polynomials PnI [CL05, Proposi-

tion 2.14], the ideal of extendible polynomials Pne [CL05, Proposition 2.15] and the ideal of
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weakly-continuous on bounded sets polynomials Pnw are regular [AHV83]. Since the ideal of

approximable polynomials Pnapp is regular, we obtain that every minimal ideal is regular. Us-

ing the regularity of the ideal of extendible polynomials it is shown in [CDM12] that every

polynomial ideal associated with a projective s-tensor norm (see Chapter 3) is regular.

With the help of Theorems 2.2.5 and 2.2.6 we can extend the main results of [CCG00] and

[LZ00] to a wider class of polynomial ideals.

Theorem 2.2.10. For a pair of Banach spacesE and F and a polynomial idealQ the following

holds.

(1) If Q is minimal and E ′ and F ′ are isomorphic (resp. isometric), then Q(E) and Q(F )
are isomorphic (resp. isometric).

(2) IfQ is maximal, E and F are symmetrically Arens-regular andE ′ and F ′ are isomorphic

(resp. isometric), thenQ(E) andQ(F ) are isomorphic (resp. isometric). Moreover, ifQ
is also regular the hypothesis on E and F can be removed.

Proof. (1) Let s : E ′ → F ′ be an isomorphism. Since minimal ideals are regular we have, by

Proposition 2.2.9 that s ◦ s−1(p) = p for every polynomial p ∈ Q(E). Analogously, for every

polynomial q ∈ Q(F ) we have s−1 ◦ s(q) = q. Now, by 2.2.6 we obtain

‖s(p)‖Q(F ) = ‖AB(p) ◦ s′ ◦ κF‖Q(F ) ≤ ‖AB(p)‖Q(E′′)‖s′‖n‖κF‖n = ‖p‖Q(E)‖s′‖n,

and the same for s−1 and q.

The proof of (2) is analogous.

It is easy to see that if E and F are isomorphic, and one is Arens-regular, then so is the

other (see for example [LZ00, Remark 2.2.]). Therefore the last theorem asserts that if a given

space is Arens-regular, its dual determines the structure of the majority of the know classes of

polynomials over itself.

The next statement is a polynomial version of the Density Lemma 2.1.6.

Lemma 2.2.11. (Density Lemma for maximal polynomial ideals.) Let Q be a polynomial

ideal, E a Banach space, E0 ⊂ E a dense subspace and C ⊂ FIN(E0) a cofinal subset (i.e.,

for every N in FIN(E0) there exist a bigger finite dimensional subspace M that belongs to

C). Then

‖p‖Qmax(E) = sup{‖p|M‖Q(M) :M ∈ C}.

Proof. For α the s-tensor norm associated withQ, by the Representation Theorem for Maximal

Polynomial ideals 1.2.1:

Qmax(E) = (⊗n,sα′ E)
′.

Using the Density Lemma 2.1.6 (since α′ is finitely generated) we get

‖p‖Qmax(E) = ‖p‖(⊗n,s

α′ E)′ = ‖p‖(⊗n,s

α′ E0)′ = ‖p‖Qmax(E0).

On the other hand, by the very definition of the norm in Qmax, we have

‖p‖Qmax(E0) = sup{‖p|M‖Q(M) :M ∈ C},

which ends the proof.
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From the previous Lemma we obtain the next useful result: in the case of a Banach space

with a Schauder basis, a polynomial belongs to a maximal ideal if and only if the norms of the

the restrictions of the polynomial to the subspaces generated by the first elements of the basis,

are uniformly bounded.

Corollary 2.2.12. Let Q a maximal polynomial ideal, E a Banach space with Schauder ba-

sis (ek)
∞
k=1 and Mm the finite dimensional subspace generated by the first m elements of the

basis, i.e., Mm := [ek : 1 ≤ k ≤ m]. A polynomial p belongs to Q(E) if and only if

supm∈N ‖p|Mm‖Q(Mm) <∞. Moreover,

‖p‖Q(E) = sup
m∈N
‖p|Mm‖Q(Mm).

Proof. Is a direct consequence the previous lemma and the fact that C := {Mm}m is a cofinal

subset of FIN([en : n ∈ N]).

As a consequence of the Duality Theorem 2.2.3 we have the following.

Theorem 2.2.13. (Embedding Theorem.) Let Q be the maximal polynomial ideal associated

with the s-tensor norm α. Then the relations

⊗n,s←−α E →֒ Q(E
′),

⊗n,s←−α E
′ →֒ Q(E)

hold isometrically.

In particular, the extensions

HE
α : ⊗̃n,sα E → (⊗̃n,sα′ E ′)′ = Q(E ′) (2.10)

and

JEα : ⊗̃n,sα E ′ → (⊗̃n,sα′ E)′ = Q(E) (2.11)

of ⊗n,sα E ′ →֒ Q(E) and ⊗n,sα E ′ → Q(E) respectively are well defined and have norm one.

The following proposition shows how dominations between s-tensor norms translate into

inclusions between maximal polynomial ideals, and vice versa.

Proposition 2.2.14. LetQ1 andQ2 be maximal polynomial ideals with associated tensor norms

α1 and α2 respectively, E be a normed space and c ≥ 0. Consider the following conditions.

(1) α′2 ≤ cα′1 on ⊗n,sE;

(2) Q2(E) ⊂ Q1(E) and ‖ ‖Q1 ≤ c ‖ ‖Q2 ;

(3) ←−α1 ≤ c←−α2 on ⊗n,sE ′.

Then,

(a) (1)⇔ (2)⇒ (3);
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(b) if E ′ has the metric approximation property then (1), (2) and (3) are equivalent.

Proof. (a) The statement (1) ⇔ (2) can be easily deduced from the Representation Theorem

for Maximal Polynomial Ideals 1.2.1.

Let us show (2)⇒ (3). Let z ∈ ⊗n,sE ′. By the Embedding Theorem 2.2.13 we have:

⊗n,s←−α1
E ′

1→֒ Q1(E),

⊗n,s←−α2
E ′

1→֒ Q2(E).

Denote by p ∈ Pn(E) the polynomial that represents z. Thus,

←−α1(z) = ‖p‖Q1(E) ≤ c‖p‖Q2(E) = c←−α2(z).

(b) Since E ′ has the metric approximation property, so does E (see Corollary 1 in [DF93,

16.3.]). Thus, by Proposition 2.2.1, for i = 1, 2 we have −→αi = αi and
←−
α′i = α′i on ⊗n,sE ′ and

⊗n,sE respectively. Condition (3) states that the mapping (∗∗) in the following diagram has

norm at most c.

⊗n,sα′
1
E = ⊗n,s←−

α′
1

E

(∗)
��

� � 1 // (⊗n,sα′′
1
E ′)′ = (⊗n,s−→α1

E ′)′ = (⊗n,sα1
E ′)′

(∗∗)
��

⊗n,sα′
2
E = ⊗n,s←−

α′
2

E � � 1 // (⊗n,sα′′
2
E ′)′ = (⊗n,s−→α2

E ′)′ = (⊗n,sα2
E ′)′

, (2.12)

Since the diagram commutes we can conclude that the mapping (∗) is continuous with norm

≤ c. Therefore (3) implies (1).

The previous proposition is a main tool for translating results on s-tensor norms into results

on polynomial ideals. As an example, we have the following polynomial version of the Lp-
Local Technique Lemma 2.1.7.

Theorem 2.2.15. (Lp-Local Technique Lemma for maximal ideals.) Let Q1 and Q2 be

polynomial ideals with Q1 maximal and let c > 0. Consider the following assertions.

(1) ‖ ‖Q1(ℓmp ) ≤ c ‖ ‖Q2(ℓmp ) for all m ∈ N;

(2) Q2(ℓp) ⊂ Q1(ℓp) and ‖ ‖Q1(ℓp) ≤ c ‖ ‖Q2(ℓp).

Then (1) and (2) are equivalent and imply that

Q2(E) ⊂ Q1(E) and ‖ ‖Q1(E) ≤ cλn ‖ ‖Q2(E)

for every Lgp,λ-space E.

Proof. Using Corollary 2.2.12 we easily obtain that (1) implies (2).

On the other hand, since the subspace spanned by the first m canonical vectors in ℓp is a 1-

complemented subspace isometrically isomorphic to ℓmp , we get that (2) implies (1) by the

metric mapping property.

Let us show that (1) implies the general conclusion. Denote by α1 and α2 the s-tensor

norms associated with Q1 and Q2 respectively. By (1) and the Representation Theorem for
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Maximal Polynomial Ideals 1.2.1, we have α′1 ≤ cα′2 on⊗n,sℓmp . Using theLp-Local Technique

Lemma 2.1.7 we get α′2 ≤ cλnα′1 on ⊗n,sE. Notice that α2 is also associated with (Q2)
max,

thus by Proposition 2.2.14 we obtain (Q2)
max(E) ⊂ Q1(E) and ‖ ‖Q1(E) ≤ cλn ‖ ‖(Q2)max(E).

Since Q2(E) ⊂ (Q2)
max(E) and ‖ ‖(Q2)max(E) ≤ ‖ ‖Q2(E), we finally obtain Q2(E) ⊂ Q1(E)

with ‖ ‖Q1(E) ≤ cλn ‖ ‖Q2(E).

For the case p = ∞, ℓp in assertion (2) should be replaced, in principle, by c0. Since ℓ∞
is a Lg∞,1-space and ℓn∞ is 1-complemented in ℓ∞ for each n we therefore have: two maximal

ideals coincide on c0 if and only if they coincide on ℓ∞. Note that every polynomial on ℓ∞ is

extendible, since ℓ∞ is an injective Banach space. Consequently, although c0 is not injective,

we get that every polynomial on c0 is extendible (by our previous comment). We remark that

the extendibility of polynomials on c0 is a known fact, and that it can also be obtained from the

Extension Lemma 2.1.3.

Since Hilbert spaces are Lgp for any 1 < p < ∞ (see Corollary 2 in [DF93, 23.2]), we get

also the following.

Corollary 2.2.16. Let Q1 and Q2 be polynomial ideals, Q1 maximal. If for some 1 < p < ∞
we have Q2(ℓp) ⊂ Q1(ℓp), then we also have Q2(ℓ2) ⊂ Q1(ℓ2).

As a consequence, if two maximal polynomial ideals do not coincide on ℓ2, then they are

different in every ℓp with 1 < p <∞.

Proposition 2.2.14, Theorem 2.2.15 and Corollary 2.2.16 have their analogues for minimal

ideals. For Theorem 2.2.15 and Corollary 2.2.16, the hypothesis on maximality of Q1 should

be changed for the requirement that Q2 be minimal.

We end this chapter with a few words about accessibility of s-tensor norms and polynomial

ideals.

Definition 2.2.17. We say that an s-tensor norm α is accessible if

−→α = α =←−α

(i.e., α is finitely and cofinitely generated).

An example of an s-tensor norm of this type is εn,s. Moreover, we will see in Corollary 3.3.3

that every injective s-tensor norm is accessible (injectivity will be explained in the next chapter).

The definition of accessible polynomial ideals (a term coined in [Flo01a, 3.6.]) is less

direct.

Definition 2.2.18. We say that a polynomial ideal Q is accessible if the following condition

holds: for every normed space E, q ∈ Pnf (E) and ε > 0, there is a closed finite codimensional

space L ⊂ E and p ∈ Pn(E/L) such that q = p ◦ QE
L (where QE

L is the canonical quotient

map) and ‖p‖Q ≤ (1 + ε) ‖q‖Q.

One may wonder how the definition of accessibility of a polynomial ideal relates with the

one for its associated s-tensor norm. The next proposition sheds some light on this question.

Proposition 2.2.19. Let Q be a polynomial ideal and let α be its associated s-tensor norm.

Then, α is accessible if and only if Qmax is, in which case Q is also accessible.
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Proof. Suppose that α is accessible, which means that α is finitely and cofinitely generated.

Fix E a normed space, q ∈ Pnf (E) and ε > 0. Let z ∈ ⊗n,sE ′ be the tensor that repre-

sents the polynomial q. Since α is cofinitely generated, by the Duality Theorem 2.2.3 and the

Representation Theorem for Maximal polynomial ideals 1.2.1 we have

⊗n,sα E ′
1→֒ (⊗n,sα′ E)

′ = Qmax(E).

Thus, α(z;⊗n,sE ′) = ‖q‖Qmax(E).Using that α is finitely generated we can findM ∈ FIN(E ′)
such that z ∈ ⊗n,sM and

α(z;⊗n,sM) ≤ (1 + ε)‖q‖Qmax(E).

Set L := M0 ⊂ E, identify M ′ with E/L and denote by p the polynomial that represents the

tensor z ∈ ⊗n,sM defined in E/L. Therefore,

‖p‖Qmax(E/L) = α(z;⊗n,sM) ≤ (1 + ε)‖q‖Qmax(E)

and obviously q = p◦QE
L where QL

E : E → E/L is the natural quotient mapping. This implies

that Qmax is accessible.

For the converse we must show that α( · ;⊗n,sE) = ←−α ( · ,⊗n,sE). By the Embedding

Lemma 2.1.4 it is sufficient to prove that α( · ,⊗n,sE ′′) = ←−α ( · ,⊗n,sE ′′). Set F := E ′ and

take z ∈ ⊗n,sF ′ and ε > 0. By the Duality Theorem 2.2.3 we have

⊗n,s←−α F
′ 1→֒ (⊗n,sα′ F )

′ = Qmax(F ).

Denote by q the polynomial represented by z inQmax(F ); by hypothesis there exist a subspace

L ∈ COFIN(F ) and a polynomial p ∈ Qmax(F/L) such that q = p◦QF
L with ‖p‖Qmax(F/L) ≤

(1 + ε)‖q‖Qmax(F ). If w is the tensor that represents p in ⊗n,sL0 = ⊗n,s(F/L)′, we have

(⊗n,sQF
L)(w) = z. Using the metric mapping property we obtain

α(z;⊗n,sF ) ≤ α(w;⊗n,sF/L)
= ‖p‖Qmax(F/L)

≤ (1 + ε)‖q‖Qmax(F )

= (1 + ε)←−α (z;⊗n,sF ),

which proves that α is accessible.

Finally, we always have ‖ · ‖Qmax ≤ ‖ · ‖Q, with equality in finite dimensional spaces. The

definition of accessibility then implies that, if Qmax is accessible, then so is Q.

Note that the operator JEα defined in equation (2.11) can be seen as the composition operator

⊗̃n,sα E ′
1
։ Qmin(E)→ Q(E) 1

= (⊗̃n,sα′ E)′, (2.13)

where the quotient mapping ⊗̃n,sα E ′
1
։ Qmin(E) is the one given by the Representation Theo-

rem for Minimal Ideals 1.2.2. The mapping JEα will be referred to as the natural mapping from

⊗̃n,sα E ′ to (⊗̃n,sα′ E)′.

As a consequence of the Embedding Theorem 2.2.13 we recover the following results of

[Flo01a] stated, also, in Proposition 1.1.1.
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Corollary 2.2.20. Let Q be a maximal polynomial.

(1) If Q is accessible or E ′ has the metric approximation property then

Qmin(E) 1→֒ Q(E) and ⊗̃n,sα E ′
1
= Qmin(E) and they coincide with Pnf (E)

Q
.

(2) IfE ′ has the bounded approximation property then ‖ ‖Qmin(E) and ‖ ‖Q(E) are equivalent

in Qmin and

⊗̃n,sα E ′
1
= Qmin(E) and they coincide with Pnf (E)

Q
.

Proof. Let α be the s-tensor norm associated with Q. Since Q is accessible, by Proposition

2.2.19 we have α =←−α . Now the Embedding Theorem 2.2.13 shows that the natural mapping

JEα : ⊗̃n,sα E ′
1
։ Qmin(E)→ (⊗̃n,sα′ E)′

is an isometry. This implies that Qmin(E) 1→֒ Q(E) and ⊗̃n,sα E ′
1
= Qmin(E). The fact that

Qmin(E) = Pnf (E)
Q

now easily follows.

If E ′ has the metric approximation property then α =←−α on ⊗n,sE ′ (Proposition 2.2.1) and

we can reason as before.

If E ′ has the bounded approximation property then ←−α is equivalent to α on ⊗n,sE ′ by

Proposition 2.2.1. Hence, with the help of the Embedding Theorem 2.2.13, we obtain that the

mapping JEα is injective. Now the result follows.



Chapter 3

Injective and projective associates of

s-tensor norms

In this chapter we treat injectivity and projectivity for s-tensor norms. In Section 3.1 and Sec-

cion 3.2 we define the injective associate and projective associate, respectively, of an s-tensor

norm and study some of their interesting properties. In Section 3.3 we give some relations be-

tween the injective and projective associates of a given tensor norm. We also study the maximal

polynomial ideals associated with these norms in terms of composition ideals and quotient ide-

als. This is contained in Section 3.4. In Section 3.5 we study natural symmetric tensor norms

of arbitrary order, in the spirit of Grothendieck’s norms: we define natural symmetric tensor

norms as those that can be obtained from the n-fold projective s-tensor norm πn,s by a finite

number of basic operations (injective associate, projective associate, and adjoint) and conclude

that there are exactly six natural symmetric tensor norms for n ≥ 3, a noteworthy difference

with the 2-fold case in which there are four.

3.1 The injective associate

We say that an s-tensor norm α is injective if, for every normed spaces E and F and every

isometric embedding I : E
1→֒ F , the tensor product operator

⊗n,sI : ⊗n,sα E → ⊗n,sα F,

is also an isometric embedding. Loosely speaking, α “respects subspaces”.

It is well know that, in general, s-tensor norms do not respect subspaces (if not, this will

become clear later). An example of a norm that does respect subspaces is the injective norm

εn,s: if E is a subspace of F and z =
∑r

j=1⊗n,sxj ∈ ⊗n,sE, we have

εn,s(z;⊗n,sE) = sup
x′∈BE′

∣∣∣∣∣

r∑

j=1

x′(xj)
n

∣∣∣∣∣ = sup
x′∈BF ′

∣∣∣∣∣

r∑

j=1

x′(xj)
n

∣∣∣∣∣ = εn,s(z;⊗n,sF ),

where the third equality is due to the Hahn-Banch Theorem.

Note that, if I : E
1→֒ F is an isometric embedding and α is injective we obtain also, as a

consequence of the Hahn-Banach Theorem, that every α-continuous linear form on ⊗n,sE can

39
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be extended to an α-continuos linear form on⊗n,sF with the same norm. Thus, any polynomial

p ∈ Qα(E) has an extension p ∈ Qα(F ) such that p ◦ I = p and ‖p‖Qα(E) = ‖p‖Qα(F ). In

particular, since εn,s-continuous polynomials are the integral ones, ifE is a subspace of F every

integral polynomial p ∈ PnI (E) can be extended to an integral polynomial p ∈ PnI (F ) that has

the same integral norm (i.e., ‖p‖Pn
I (E) = ‖p‖Pn

I (F )).

This special property will be referred to as the extension property. More precisely, we have

the following definition.

Definition 3.1.1. We say that Q has the extension property if whenever E is a subspace of F ,

then every polynomial in Q(E) can be extended to a polynomial in Q(F ) with the same ideal

norm.

We have seen that, if α is injective, then Qα has the extension property. The converse is

also true, as we will see in Proposition 3.1.3.

For a normed space E, we always have the isometry IE : E
1→֒ ℓ∞(BE′) given by

IE(x) =
(
x′(x)

)
x′∈BE′

. (3.1)

This mapping is referred to as the canonical embedding of E.

Therefore, for an injective s-tensor norm α, we always have the metric injection

⊗n,sIE : ⊗n,sα E
1→֒ ⊗n,sα ℓ∞(BE′). (3.2)

An interesting fact is that equation (3.2) characterize the injectivity of α (in the sense that

α satisfies equation (3.2) for every normed space E if and only if α is injective). To see this,

we first recall a definition.

Definition 3.1.2. A Banach space spaceE is called injective if for every Banach space F , every

subspace G ⊂ F and every T ∈ L(G,E) there is an extension T ∈ L(F,E) of T . The space

E has the λ-extension property (λ ≥ 1) if some extension satisfies ‖T‖ ≤ λ‖T‖.

It is not hard to see that ℓ∞(I) has the 1-extension property (usually called the metric

extension property). We therefore have

Proposition 3.1.3. For an s-tensor norm α the following conditions are equivalent.

(a) The ideal Qα has the extension property;

(b) for every normed space E, the mapping

⊗n,sIE : ⊗n,sα E
1→֒ ⊗n,sα ℓ∞(BE′)

is a metric injection;

(c) the s-tensor norm α is injective.
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Proof. Let us show that (a) implies (b). Fix z ∈ ⊗n,sE and take p ∈ Qα(E) =
(
⊗n,sα E)′ with

‖p‖Qα(E) = 1 such that |〈p, z〉| = α(z). Since Qα has the extension property, we can extend p
to a polynomial p in Qα(ℓ∞(BE′ )) with the same norm. Therefore,

α(⊗n,sI(z);⊗n,sℓ∞(BE′ )) ≤ α(z;⊗n,sE) = |〈p,⊗n,sI(z)〉| ≤ α(⊗n,sI(z);⊗n,sℓ∞(BE′ )).

To see that (b) implies (c), fix E and F two normed spaces, z an element of ⊗n,sE and

I : E
1→֒ F an isometric injection. Observe that the following diagram commutes

ℓ∞(BE′) �
� I∞ // ℓ∞(BF ′)

E
?�

IE

OO

� � I // F
?�

IF

OO
, (3.3)

where I∞ is the isometry given by the following rule

(ax′)x′∈B′
E
7→ (aI′(y′))y′∈B′

E
.

Denote by J the index set given by Bℓ∞(BE′ )′ and Iℓ∞(BE′ ) : ℓ∞(BE′) → ℓ∞(J) the canonical

inclusion. Since ℓ∞(I) has the metric extension property there exist a norm one mapping

Iℓ∞(BE′ ) that makes the next diagram commute:

ℓ∞(BF ′)
Iℓ∞(BE′ )

((
ℓ∞(BE′)

?�

I∞

OO

� �
Iℓ∞(BE′ ) // ℓ∞(J)

, (3.4)

Now,

α(⊗n,sI(z);⊗n,sF ) ≤ α(z;⊗n,sE)
= α(⊗n,sIE(z);⊗n,sℓ∞(BE′)) by (b)

= α(⊗n,s(Iℓ∞(BE′ ) ◦ IE)(z);⊗n,sℓ∞(J)) by (b)

= α(⊗n,s(Iℓ∞(BE′ ) ◦ I∞ ◦ IE)(z);⊗n,sℓ∞(J)) by diagram (3.4)

≤ α(⊗n,s(I∞ ◦ IE)(z);⊗n,sℓ∞(BF ′)) by the metric mapping property

≤ α(⊗n,s(IF ◦ I)(z);⊗n,sℓ∞(BF ′)) by diagram (3.3)

= α(⊗n,sI(z);⊗n,sF ) by (b).

That (c) implies (a) was mentioned before (it is just the Hahn-Banach Theorem).

For α any fixed s-tensor norm, the ideal of integral polynomials PnI = Qεn,s is always

contained in Qα (since εn,s ≤ α) and has the extension property. In general there is a bigger

polynomial ideal that has the extension property contained in Qα. Or, in other words, a wider

class of α-continuous polynomials that can be extended to any larger space. Therefore, it is

reasonable to seek for the biggest maximal polynomial ideal contained in Qα which has the

extension property. In terms of tensor norms, a moment of thought shows that our search

translates into finding the greatest injective s-tensor norm smaller than or equal to α. This

motivates the following definition.
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Definition 3.1.4. The injective associate of α, denoted by /α\, is the (unique) greatest injective

s-tensor norm smaller than α.

This is well-defined, as seen in Theorem 3.1.5. Therefore, Q/α\ has to be the biggest

maximal polynomial ideal contained in Qα which has the extension property.

Let us give an intuitive argument of how we should construct /α\. Suppose for a moment

the existence of /α\, the (unique) greatest injective s-tensor norm smaller than α and fix a

normed space E. Since the space ℓ∞(BE′) is injective, we obtain that every α-continuous

polynomial in ℓ∞(BE′) can be extended (with the same norm) to any bigger space containing

it (recall that ℓ∞(BE′) is always 1-complemented in a bigger space). Having in mind the

idea that Q/α\ is the biggest class contained in Qα with the extension property, we should

get thatQ/α\(ℓ∞(BE′)) andQα(ℓ∞(BE′)) coincide (moreover, we can expect them to coincide

isometrically). So, in terms of s-tensor products, we would have⊗n,s/α\ℓ∞(BE′)
1
= ⊗n,sα ℓ∞(BE′).

Now, by Proposition 3.1.3, we get the metric injection

⊗n,sIE : ⊗n,s/α\E
1→֒ ⊗n,s/α\ℓ∞(BE′)

1
= ⊗n,sα ℓ∞(BE′).

This formula is the only ingredient we need to construct the injective associate of α as we

see in the next theorem.

Theorem 3.1.5. Let α be an s-tensor norm, there is a unique injective s-tensor norm /α\ ≤ α
with the following property: if β ≤ α is injective, then β ≤ /α\.

Moreover, we can explicitly define it as

⊗n,sIE : ⊗n,s/α\ E
1→֒ ⊗n,sα ℓ∞(BE′), (3.5)

where E is normed space and IE is the canonical embedding (3.1).

Proof. Let γ be the s-tensor norm defined according equation (3.5). More precisely, for every

normed space E and z ∈ ⊗n,sE we define

γ(z;⊗n,sE) := α(⊗n,sIE;⊗n,sℓ∞(BE′)).

First we have to see that γ is actually an s-tensor norm. Let us check that εn,s ≤ γ ≤ πn,s.
Fix E a normed space and z ∈ ⊗n,sE. By the injectivity of εn,s we have

εn,s(z;⊗n,sE) = εn,s(⊗n,sIE(z);⊗n,sℓ∞(BE′)) ≤ α(⊗n,sIE(z);⊗n,sℓ∞(BE′)) = γ(z;⊗n,sE).

On the other hand,

γ(z;⊗n,sE) = α(⊗n,sIE(z);⊗n,sℓ∞(BE′)) ≤ πn,s(⊗n,sIE(z);⊗n,sℓ∞(BE′)) ≤ πn,s(z;⊗n,sE).

Now we see that, with this definition, the metric mapping property is verified. Let T ∈
L(E,F ) an operator, by the metric extension property of ℓ∞(BE′) we have and operator T
with ‖T‖ = ‖T‖ such that

ℓ∞(BE′) T // ℓ∞(BF ′)

E
?�

IE

OO

T // F
?�

IF

OO
.
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Therefore, for z ∈ ⊗n,sE,

γ(⊗n,sT (z);⊗n,sF ) = α((⊗n,sIF ◦ ⊗n,sT )(z);⊗n,sℓ∞(BF ′))

= α((⊗n,sT ◦ ⊗n,sIE)(z);⊗n,sℓ∞(BF ′))

≤ ‖T‖nα(⊗n,sIE(z);⊗n,sℓ∞(BE′))

= ‖T‖nγ(z;⊗n,sF )

We have shown that γ is a well defined s-tensor norm. Now we see that γ is the unique

injective s-tensor norm smaller than α with the following property: if β ≤ α is injective, then

β ≤ γ.

Using the definition of γ and the fact the ℓ∞(BE′) is 1-complemented in any larger space

we get that γ coincides (isometrically) with α in ⊗n,sℓ∞(BE′). Hence,

⊗n,sγ ℓ∞(BE′)
1
= ⊗n,sα ℓ∞(BE′).

By definition, for every normed space E we get the metric injection

⊗n,sIE : ⊗n,sγ E
1→֒ ⊗n,sα ℓ∞(BE′)

1
= ⊗n,sγ ℓ∞(BE′).

Thus, by Proposition 3.1.3 γ is injective. Let β be an injective s-tensor norm such that β ≤ α.

By the injectivity of β,

β(z;⊗n,sE) = β(⊗n,sIE(z);⊗n,sℓ∞(BE′)),

which is less than or equal to

α(⊗n,sIE(z);⊗n,sℓ∞(BE′)) = γ(z;⊗n,sE).

We have seen that β ≤ γ, so γ has the desired property. Uniqueness becomes trivial. To follow

previous notation, we define /α\ := γ.

Note that every Banach space with the λ-extension property is λ-complemented in ℓ∞(BE′).
As a consequence, we have the following proposition.

Proposition 3.1.6. Let α be an s-tensor norm and E be a Banach space with the λ-extension

property, then

/α\ ≤ α ≤ λn/α\ on ⊗n,s E.
In particular,

α
1
= /α\ on ⊗n,s ℓ∞(I) and Qα(ℓ∞(I)) 1

= Q/α\(ℓ∞(I)),

for every index set I .

An s-tensor norm that appears in the literature that comes from the construction given in

Theorem 3.1.5 is the norm η [KR98, Car99], which is exactly /πn,s\. This norm is the predual

s-tensor norm of the ideal of extendible polynomialsPne . The fact thatPne is justQ/πn,s\ is quite

reasonable since, roughly speaking,Q/πn,s\ is the biggest class of πn,s-continuous polynomials

that can be extended to any larger space. This should be clear with the following description.
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Proposition 3.1.7. For an s-tensor norm α and a Banach space E we have

Q/α\(E)
(∗)
= {p ∈ Pn(E) : there exist a C > 0 such that for every F ⊃ E there is

an α-continous extension p of p to F, with norm ‖p‖Qα(F ) ≤ C} .

Moreover, the norm in Q/α\(E) is given by

‖p‖Q/α\(E)
(∗∗)
= inf{C > 0 : for every F ⊃ E there is an α-continous extension p of p to F,

with norm ‖p‖Qα(F ) ≤ C}.

Proof. For simplicity denote by S the set on the right of (∗) and D the number on the right of

(∗∗). Let p ∈ Q/α\(E) and F be a space containing E; since /α\ is injective, by Proposition

3.1.3, Q/α\ has the extension property and therefore p can be extended to a polynomial p such

that ‖p‖Q/α\(E) = ‖p‖Q/α\(F ). Note that, since /α\ ≤ α, p is α-continuous. Since this holds

for every F ⊃ E, we obtain the inclusion ⊂ in (∗) and D ≤ ‖p‖Q/α\(E).

For the reverse inclusion, fix p ∈ S and ε > 0. We can extended p to an α continuous

polynomials p on ℓ∞(BE′) with ‖p‖Qα(ℓ∞(BE′ )) ≤ D + ε. But, by Proposition 3.1.7,

‖p‖Q/α\(ℓ∞(BE′ )) = ‖p‖Qα(ℓ∞(BE′ )).

This implies that the extension p is /α\-continuous and therefore, so does p. We therefore

obtain the inclusion ⊃ in (∗) and ‖p‖Q/α\(E) ≤ D + ε. Since ε was arbitrary we get (∗∗).

3.2 The projective associate

We have described injective s-tensor norms as those norms that ‘respect subspaces’. Now we

devote our efforts to deal with norms that ‘respect quotient mappings’. An s-tensor norm α is

projective (or projective on NORM ) if, for every pair of normed spaces G and E, and every

metric surjection Q : G
1
։ E, the tensor product operator

⊗n,sQ : ⊗n,sα G→ ⊗n,sα E

is also a metric surjection. When the same conclusion holds only for Banach space we say that

α is projective on BAN .

An example of a norm with this property is the projective norm πn,s. Indeed, if Q : G
1
։

E is a metric surjection and z ∈ ⊗n,sE, take
∑r

j=1⊗n,sxj a representation of z such that∑r
j=1 ‖xj‖n < πn,s(z;⊗n,sE) + ε

2
. We can find vectors yj satisfying Q(yj) = xj and ‖yj‖n ≤

‖xj‖n + ε
2j+1 . Therefore, if w =

∑r
j=1 yj , we see that ⊗n,sQ(w) = z and

πn,s(w;⊗n,sE) ≤
r∑

j=1

‖yj‖n ≤
r∑

j=1

‖xj‖n +
ε

2
≤ πn,s(z;⊗n,sE) + ε.

This shows that the mapping ⊗n,sQ : ⊗n,sπn,s
G→ ⊗n,sπn,s

E results a metric surjection.

The following proposition reveals that s-tensor norms that are projective on BAN are al-

ways finitely generated and also projective on NORM .
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Proposition 3.2.1. (1) If α is projective on BAN , then α is finitely generated.

(2) If α is an s-tensor norm on NORM , and α is projective on BAN , then α is projective

on NORM .

To prove this, we make use of the following useful lemmas.

Lemma 3.2.2. Let α be an s-tensor norm. If α is finitely generated on BAN (α = −→α on

⊗n,sE, for every Banach space E) then α is also finitely generated. Moreover,

⊗n,sα E
1→֒ ⊗n,sα Ẽ for every normed space E,

where Ẽ denotes the completion of E.

Proof. Let E be a normed space and z ∈ ⊗n,sE; by the metric mapping property we have

−→α (z;⊗n,sẼ) = α(z;⊗n,sẼ) ≤ α(z;⊗n,sE) ≤ −→α (z;⊗n,sE).

Let M ∈ FIN(Ẽ), such that z ∈ ⊗n,sM and

α(z;⊗n,sM) ≤ (1 + ε)−→α (z;⊗n,sẼ).

By the well know Principle of Local Reflexivity (see Theorem 2.1.12) we can find an operator

T ∈ L(M,E) such that ‖T‖ ≤ 1 + ε satisfying Tx = x for every x ∈M ∩ E. Thus,

−→α (z;⊗n,sE) ≤ α(z;⊗n,sTM) ≤ (1 + ε)α(z;⊗n,sM) ≤ (1 + ε)2α(z;⊗n,sẼ).

This concludes the proof.

The previous lemma also shows that a finitely generated s-tensor norm α defined on BAN
has a unique extension to NORM (which obviously result finitely generated). Now we can

prove Proposition 3.2.1.

Now we state an easy lemma, which can be found in [DF93, 7.4.]

Lemma 3.2.3. Let E and F be normed spaces, Q ∈ L(E,F ) surjective, E0 ⊂ E dense and

Q0 := Q|E0 : E0 → Q(E0) the surjective restriction. Then Q0 is a metric surjection if and

only if kerQ0 = kerQ and Q is a metric surjection.

We are now ready to prove Proposition 3.2.1.

Proof. (of Proposition 3.2.1.)

(1) Suppose α is projective on BAN . Let E be a Banach space, consider the quotient

mapping

QE : ℓ1(BE) ։ E.

Since ℓ1(BE) has the metric approximation property by the approximation Lemma 2.1.2 we

have α = −→α on ⊗n,sℓ1(BE). Thus, for each element z ∈ ⊗n,sE and each ε > 0 there is an

M ∈ FIN(ℓ1(BE)) and a w ∈ ⊗n,sM with ⊗n,sQE(w) = z and

α(w;⊗n,sM) ≤ (1 + ε)α(z;⊗n,sE).
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Hence,

α(z;⊗n,sE) ≤ −→α (z;⊗n,sE)
≤ α(z;⊗n,sQE(M))

≤ α(w;⊗n,sM)

≤ (1 + ε)α(z;⊗n,sE).

Since this holds for arbitrary ε, we have α = −→α on ⊗n,sE. This shows that α is finitely

generated on BAN . Now Lemma 3.2.2 applies.

(2) Take again, a metric surjection Q : G։ E between normed spaces and consider

Q̃ : G̃։ Ẽ

the completion mapping, which is also a metric surjection withKer Q̃ = Ker Q ( Lemma 3.2.3).

Since α is projective on BAN , using Lemma 3.2.2 we obtain the following commutative dia-

gram:

⊗n,sα G

⊗n,sQ

��

� � 1 // ⊗n,sα G̃

⊗n,sQ̃����

⊗n,sα E � � 1 // ⊗n,sα Ẽ

.

Now notice that Ker(⊗n,sQ̃) is exactly

(
Ker(Q̃)⊗ Ẽ⊗· · ·⊗ Ẽ + Ẽ⊗Ker(Q̃)⊗· · ·⊗ Ẽ + · · · + Ẽ⊗· · ·⊗ Ẽ⊗Ker(Q̃)

)
∩⊗n,sẼ.

In other words, we can write Ker(⊗n,sQ̃) as

σn
Ẽ

(
Ker(Q̃)⊗ Ẽ ⊗ · · · ⊗ Ẽ + Ẽ ⊗Ker(Q̃)⊗ · · · ⊗ Ẽ + · · · + Ẽ ⊗ · · · ⊗ Ẽ ⊗Ker(Q̃)

)
,

where σn
Ẽ

is the symmetrization operator defined in Equation (1.4). Therefore,

Ker(⊗n,sQ̃) = σn
Ẽ

(
Ker(Q̃)⊗ Ẽ ⊗ · · · ⊗ Ẽ + · · · + Ẽ ⊗ · · · ⊗ Ẽ ⊗Ker(Q̃)

)

= σn
Ẽ

(
Ker(Q)⊗ E ⊗ · · · ⊗ E + · · · + E ⊗ · · · ⊗ E ⊗Ker(Q)

)

⊂ σnE
(
Ker(Q)⊗ E ⊗ · · · ⊗ E + · · · + E ⊗ · · · ⊗ E ⊗Ker(Q)

)⊗n,sẼ

= Ker(⊗n,sQ)⊗
n,sẼ

.

Hence Ker(⊗n,sQ)⊗
n,sẼ

= Ker(⊗n,sQ̃), which by Lemma 3.2.3 concludes the proof.

Note that every s-tensor norm α is less than or equal to πn,s. Since πn,s is projective, it is

reasonable to search for smaller projective s-tensor norms that also dominate α. This motivates

the following definition.

Definition 3.2.4. The projective associate of α, denoted by \α/, will be the (unique) smallest

projective s-tensor norm greater than α. The next theorem shows its existence.
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To prove its existence we need a definition which is dual to the extension property.

Definition 3.2.5. A Banach space E has the lifting property or is projective if the following

holds: given a surjective mapping Q ∈ L(F ;G) between Banach spaces and an operator T ∈
L(E;F ) and ε > 0 there exist an operator T̃ (a lifting of T ) with norm ‖T̃‖ ≤ (1+ ε)‖T‖ such

that T = Q ◦ T̃ , i.e.,

G

Q
��

E

T̃

88

T // F

.

An easy exercise is to show that ℓ1(I) has the lifting property for every index set I . Recall

that, for a Banach space E, we have a metric surjection QE : ℓ1(BE)
1
։ E given by

QE

(
(ax)x∈BE

)
=
∑

x∈BE

axx. (3.6)

This mapping is referred to as the canonical quotient mapping of E.

Now we are ready to prove the following.

Theorem 3.2.6. Let α be an s-tensor norm on NORM , there is a unique projective s-tensor

norm \α/ ≥ α with the following property: if β ≥ α is projective, then β ≥ \α/. Moreover, if

E is a Banach space, we can explicitly define it as

⊗n,sQE : ⊗n,sα ℓ1(BE)
1
։ ⊗n,s\α/E,

where QE : ℓ1(BE) ։ E is the canonical quotient mapping defined in (3.6).

Proof. We define the projective associate first on BAN and then extend it to NORM . For a

Banach space E, define γ on BAN by the quotient mapping

⊗n,sQE : ⊗n,sα ℓ1(BE)
1
։ ⊗n,sγ E,

where QE : ℓ1(BE) ։ E is the canonical quotient mapping defined in (3.6). Strictly speaking,

for z ∈ ⊗n,sE,

γ(z) := inf{α(w) : w ∈ ⊗n,sℓ1(BE), ⊗n,sQE(w) = z}.

Let us see that, with this definition, β is an s-tensor norm. Obviously, εn,s ≤ α ≤ β ≤ πn,s. Fix

ε > 0 and T ∈ L(E,F ). Using the lifting property of the spaces spaces ℓ1(I) we can consider

an operator T̃ such that the next diagram commutes

ℓ1(BE)
T̃ //

1
����

ℓ1(BF )

1
����

E
T // F

,
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and ‖T̃‖ ≤ (1 + ε)‖T‖. Hence ‖ ⊗n,s T̃ : ⊗n,sα E → ⊗n,sα F‖ ≤ ‖T̃‖n ≤ (1 + ε)n‖T‖n. Using

the definition of γ given above we also obtain,

γ
(
⊗n,s T (z)

)
= inf{α(w) : w ∈ ⊗n,sℓ1(BF ), ⊗n,sQF (w) = ⊗n,sT (z)}
≤ inf{α

(
⊗n,s T̃ (u)

)
: u ∈ ⊗n,sℓ1(BE), ⊗n,sQE(u) = z}

≤ (1 + ε)n‖T‖n inf{α
(
u
)
: u ∈ ⊗n,sℓ1(BE), ⊗n,sQE(u) = z}

= (1 + ε)n‖T‖nγ
(
z
)
.

Since ε is arbitrary small, the metric mapping property follows.

Let us now show that γ is projective (on BAN ). For this, take a metric surjection Q :
E ։ F between Banach spaces. Again, by the lifting property ℓ1(BF ) we have and operator

Q̃ : ℓ1(BF )→ ℓ1(BE), with ‖Q̃‖ ≤ (1+ε) such thatQ◦QE ◦Q̃ = QF .The fact that the tensor

operator ⊗n,sQ : ⊗n,sγ E → ⊗n,sγ F is a metric surjection now follows from the commutative

diagram

⊗n,sα ℓ1(BE)

1
����

⊗n,sα ℓ1(BF )

1
����

⊗n,sQ̃oo

⊗n,sγ E
⊗n,sQ // ⊗n,sγ F

.

Indeed, for z ∈ ⊗n,sF we have

inf{\α(w)/ : w ∈ ⊗n,sE, ⊗n,sQ(w) = z}
≤ inf{α(u) : u ∈ ⊗n,sE,

(
⊗n,s Q ◦ ⊗n,sQE

)
(u) = z}

≤ (1 + ε)n inf{α(v) : v ∈ ⊗n,sℓ1(BF ),
(
⊗n,s Q ◦ ⊗n,sQE ◦ ⊗n,sQ̃

)
(v) = z}

= (1 + ε)n inf{α(v) : v ∈ ⊗n,sℓ1(BF ), ⊗n,sQF (v) = z}
= (1 + ε)n\α(z)/.

The other inequality \α(z)/ ≤ inf{\α(w)/ : w ∈ ⊗n,sE, ⊗n,sQ(w) = z} is a consequence

of the metric mapping property. Thus, γ is projective (on BAN ).

We would like to extend the definition γ to NORM . Recall that, by Proposition 3.2.1 we

know that γ is finitely generated on BAN . Since we already know how to compute the norm

for the s-tensor product of finite dimensional spaces, we can easily extend γ to NORM by the

following way: for a normed spaces G and z ∈ ⊗n,sG, we define

\α/
(
z;⊗n,sG

)
:= inf{γ(z;⊗n,sM) : z ∈ ⊗n,sM, M ∈ FIN(G)}.

Note that, according to Proposition 3.2.1 and Lemma 3.2.2, this is the only way we can extend

γ to NORM . With this definition, \α/ coincides with γ on BAN and, by Proposition 3.2.1

again, results projective on NORM .

Let us now show that \α/ is the unique projective s-tensor norm \α/ ≥ αwith the following

property: if β ≥ α is projective, then β ≥ \α/. Take any projective s-tensor norm β ≥ α,

E a Banach space and z ∈ ⊗n,sE. Therefore, if QE : ℓ1(BE)
1
։ E is the canonical quotient
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mapping,

\α/(z;⊗n,sE) = γ(z;⊗n,sE)
= inf{α(w) : w ∈ ⊗n,sℓ1(BE), ⊗n,sQE(w) = z}
≤ inf{β(w) : w ∈ ⊗n,sℓ1(BE), ⊗n,sQE(w) = z}
= β(z;⊗n,sE).

We have seen that \α/ ≤ β on BAN , since both norms are finitely generated we have the

same inequality on NORM . Uniqueness is trivial.

The next result shows that an s-tensor norm coincides with its projective associate on the

symmetric tensor product of ℓ1(I), where I is any index set.

Proposition 3.2.7. Let α be an s-tensor norm, then

α = \α/ on ⊗n,s ℓ1(I),

for every index set I .

Proof. Let Qℓ1(I) : ℓ1
(
Bℓ1(I)

)
։ ℓ1(I) the natural quotient mapping. Since ℓ1(I) is projective

then there is a lifting T : ℓ1(I) → ℓ1
(
Bℓ1(I)

)
of idℓ1(I) (i.e., Qℓ1(I) ◦ T = idℓ1(I)) having norm

less than or equal to 1 + ε. Thus, by the diagram

⊗n,sα ℓ1(I)
⊗n,sid //

⊗n,sT

))

⊗n,s\α/ℓ1(I)

⊗n,sα ℓ1
(
Bℓ1(I)

)
⊗n,sQℓ1(I)

OOOO
,

we have \α/ ≤ (1 + ε)α. Since α ≤ \α/ always holds, we have the desired equality.

A particular but crucial case of Proposition 3.2.7 and Proposition 3.1.6 is obtained with I a

finite set: we get for every s-tensor norm α and m ∈ N,

α = \α/ on ⊗n,s ℓm1 ,

α = /α\ on ⊗n,s ℓm∞.
The previous equalities allow us to use Lp-Local Technique Lemma 2.1.7 to give the following.

Corollary 3.2.8. Let α an s-tensor norm

(1) If E is Lg1,λ-space, then

α ≤ \α/ ≤ λn−→α on ⊗n,s E.

(2) If E is Lg∞,λ-space, then

α ≤ /α\ ≤ λn−→α on ⊗n,s E.
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3.3 Some relations between the injective and projective asso-

ciates

The next result show the relation between finite hulls, cofinite hulls, projective associates, in-

jective associates and duality.

Proposition 3.3.1. For an s-tensor norm α we have the following relations:

(1) /α\ = /−→α \ = −−→/α\;

(2) /α\ = /←−α \ =←−−/α\;

(3) \α/ = \−→α / = −−→\α/;

(4) \α/ = \←−α /;

(5) (\α/)′ = /α′\ and (/α\)′ = \α′/.

It is important to remark that the identity \←−α / =
←−−\α/ fails to hold in general. To see this,

notice that←−πn,s = πn,s on ⊗n,sℓm1 . Then, by Lemma 3.3.2 below we have \←−πn,s/ = \πn,s/ =
πn,s (since πn,s is projective). But πn,s is not cofinitely generated [Flo01a, 2.5.]. Thus,

\←−πn,s/ = \πn,s/ = πn,s 6=←−πn,s =
←−−−\πn,s/.

To prove Proposition 3.3.1 we need the following lemma.

Lemma 3.3.2. Let α and β be s-tensor norms.

(1) The equality α = β holds on ⊗n,sℓm1 for every m ∈ N if and only if \α/ = \β/.

(2) The equality α = β holds on ⊗n,sℓm∞ for every m ∈ N, if and only if /α\ = /β\.

Proof. (1) Suppose that ⊗n,sα ℓm1
1
= ⊗n,sβ ℓm1 for every m. If E is a Banach space and QE :

ℓ1(BE) ։ E is the canonical quotient mapping defined in equation (3.6), we have

⊗n,sQE : ⊗n,sα ℓ1(BE)
1
։ ⊗n,s\α/E,

⊗n,sQE : ⊗n,sβ ℓ1(BE)
1
։ ⊗n,s\β/E.

Since ℓ1(BE) has the metric approximation property, by the Lp-Local Technique Lemma 2.1.7

and Propositon 2.2.1 we have α = β on ⊗n,sℓ1(BE). As a consequence, we have

\α/ = \β/ on ⊗n,s E,

for every Banach space E. Since these norms are finitely generated (according Lemma 3.2.1)

and coincide on the tensor product of any Banach space (in particular, in the tensor product of

any finite dimensional space) we have the equality.

The converse is a direct consequence of Proposition 3.2.7.
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The proof in (2) is similar. Suppose α = β on ⊗n,sℓm∞ for every m. Again by the Lp-Local

Technique Lemma 2.1.7 and Propositon 2.2.1, we have α = β on ℓ∞(BE′). To finish the proof

we just use the isometric embeddings

⊗n,sIE : ⊗n,s/α\ E
1→֒ ⊗n,sα ℓ∞(BE′),

⊗n,sIE : ⊗n,s/β\ E
1→֒ ⊗n,sβ ℓ∞(BE′).

The converse follows from Proposition 3.1.6.

Now we are ready to prove Proposition 3.3.1.

Proof. (of Proposition 3.3.1.)

(1) Since α = −→α on ⊗n,sℓm∞, for every m, by the Lemma 3.3.2 we have

/α\ = /(−→α )\ on ⊗n,s E.

To prove that /α\ =
−−→
/α\, we first note that if z ∈ ⊗n,sM with M ∈ FIN(E), by the

injectivity of /α\ we have

/α\(z;⊗n,sM) = /α\(z;⊗n,sE).

As a consequence,

−−→
/α\(z;⊗n,sE) = inf{/α\(z;⊗n,sM) : z ∈ ⊗n,sM and M ∈ FIN(E)}

= inf{/α\(z;⊗n,sE)}
= /α\(z;⊗n,sE).

(2) Since α =←−α on ⊗n,sℓm∞ for every m, the equality

/α\ = /(←−α )\ (3.7)

on ⊗n,sE follows Lemma 3.3.2. On the other hand, Proposition 2.2.1 gives
←−−
/α\ ≤ /α\. To

show the reverse inequality, note that

/α\ = /(/α\)\ = /(
←−−
/α\)\,

where the second equality is just (3.7) applied to /α\. Since by definition of the injective

associate we have /µ\ ≤ µ for every s-tensor norms µ, taking µ =
←−−
/α\we get /(

←−−
/α\)\ ≤ ←−−/α\,

which gives de desired inequality.

(3) The equality \α/ = \(−→α )/ is again a consequence of Lemma 3.3.2. On the other hand,

Proposition 2.2.1 gives \α/ ≤
←−−
\α/. To show the reverse inequality, note that

\α/ = \(\α/)/ = \(←−−\α/)/.

Since by definition of the projective associate we have µ ≤ \µ/ for every s-tensor norms µ,

taking µ =
←−−\α/ we have the reverse inequality. Therefore, \α/ = −−→\α/ on ⊗n,sE.



52 CHAPTER 3. INJECTIVE AND PROJECTIVE ASSOCIATES

(4) Is a direct consequence of Lemma 3.3.2.

(5) Let us see first that (\α/)′ is injective. Consider an isometric embedding E
1→֒ F and

z ∈ ⊗n,sM , where M is a finite dimensional subspace of E. Fix ε > 0, since (\α/)′ is finitely

generated we can take N ∈ FIN(F ) such that z ∈ ⊗n,sN and

(\α/)′(z;⊗n,sN) ≤ (\α/)′(z;⊗n,sF ) + ε.

Denote by S the finite dimensional subspace of F given by M + N and i : M → S the

canonical inclusion. Observe that ⊗n,si′ : ⊗n,s\α/S ′
1
։ ⊗n,s\α/M ′ is a quotient mapping since the

s-tensor norm \α/ is projective. Thus, its adjoint

(⊗n,si′)′ :
(
⊗n,s\α/M ′)′ 1→֒

(
⊗n,s\α/ S ′

)′
,

is an isometric embedding. Using the definition of the dual norm on finite dimensional spaces

and the right identifications, it is easy to show that the following diagram commutes

⊗n,s(\α/)′M
⊗n,si // ⊗n,s(\α/)′S

(
⊗n,s\α/M ′)′ � � (⊗n,si′)′ //

(
⊗n,s\α/ S ′

)′

. (3.8)

Therefore⊗n,si : ⊗n,s(\α/)′M → ⊗
n,s
(\α/)′S is also an isometric embedding. With this, we have the

equality (\α/)′(z;⊗n,sM) = (\α/)′(z;⊗n,sS). Now,

(\α/)′(z;⊗n,sE) ≤ (\α/)′(z;⊗n,sM) ≤ (\α/)′(z;⊗n,sS)
≤ (\α/)′(z;⊗n,sN) ≤ (\α/)′(z;⊗n,sF ) + ε.

Since this holds for every ε > 0, we obtain (\α/)′(z;⊗n,sE) ≤ (\α/)′(z;⊗n,sF ). The other

inequality always holds, so (\α/)′ is injective.

We now show that (\α/)′ coincides with /α′\. Note that for m ∈ N,

⊗n,s(\α/)′ℓ
m
∞ =

(
⊗n,s\α/ ℓm1

)′
=
(
⊗n,sα ℓm1

)′
= ⊗n,sα′ ℓ

m
∞ = ⊗n,s/α′\ℓ

m
∞.

Therefore, the s-tensor norms (\α/)′ and /α′\ coincide in ⊗n,sℓm∞ for every m ∈ N and, by

Lemma 3.3.2, their corresponding injective associates coincide. But both (\α/)′ and /α′\ are

injective, which means that they actually are their own injective associates, therefore (\α/)′
and /α′\ are equal.

Let us finally prove that (/α\)′ = \α′/. We already showed that (\β/)′ = /β′\ for every

tensor norm β. Thus, for β = α′ we have (\α′/)′ = /α′′\ = /−→α \ = /α\, where the third

equality comes from (1). Thus, by duality, the fact that \α′/ is finitely generated (by (2)) and

equation (1.6) we have

\α′/ =
−−→
\α′/ = (\α′/)′′ =

(
(\α′/)′

)′
= (/α\)′,

which is what we wanted to prove.
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As a consequence of Proposition 3.3.1 we obtain the following.

Corollary 3.3.3. Let α be an s-tensor norm. The following holds.

(1) If α is injective then it is accessible.

(2) If α then is projective then it is finitely generated.

(3) If α is finitely or cofinitely generated then: α is injective if and only if α′ is projective.

Proof. Note that (1) is a consequence of (1) and (2) of Proposition 3.3.1 and that (2) follows

from (3) of Proposition 3.3.1. Let us show (3). If α is injective, we have α = /α\. Thus, we

can use (5) of Proposition 3.3.1 to take dual norms:

α′ = (/α\)′ = \α′/.

Since the last s-tensor norm is projective, so is α′. Note that for this implication we have not

used the fact that α is finitely or cofinitely generated.

Suppose now that α is finitely generated and α′ is projective (i.e., α′ = \α′/). Thus, by (5)
in Proposition 3.3.1 we have

α′′ = (\α′/)′ = /α′′\.
Since α is finitely generated, we have α = α′′, see equation (1.6). Thus, α = /α\, which

asserts that α is injective.

Finally, suppose that α is cofinitely generated and α′ is projective. Consider an isometric

embedding i : E
1→֒ F . Since α′ is projective, ⊗n,si′ : ⊗n,sF ′ 1

։ ⊗n,sE ′ is a quotient mapping

and, therefore, its adjoint (⊗n,si′)′ is an isometry. Consider the commutative diagram

⊗n,sα E = ⊗n,s←−α E
⊗n,si

��

� � 1 //
(
⊗n,sα′ E ′

)′

(⊗n,si′)′

��

⊗n,sα F = ⊗n,s←−α F
� � 1 //

(
⊗n,sα′ F ′

)′

. (3.9)

By the Duality Theorem 2.2.3 the horizontal arrows are isometries. This forces⊗n,si to be also

an isometry, which means that α respects subspaces isometrically.

3.4 Maximal polynomial ideals associated with injective and

projective associates

We now describe the maximal Banach ideal of polynomials associated with injective and pro-

jective associates of an s-tensor norm. Some notation and a couple of definitions are needed.

Definition 3.4.1. Let (U , ‖ ‖U) be a Banach ideal of operators. The composition idealQ◦U is

defined in the following way: a polynomial p belongs to Q ◦ U(E) if it admits a factorization

E
p //

T

��

K

F

q
?? , (3.10)
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for some Banach space F , T ∈ U(E,F ) and q ∈ Q(F ). The composition quasi-norm is given

by

‖p‖Q◦U := inf{‖q‖Q‖T‖nU},
where the infimum runs over all possible factorizations as in (3.10).

When the quasi-norm ‖ ‖Q◦U is actually a norm, (Q ◦ U , ‖ ‖Q◦U) forms a Banach ideal

of continuous polynomials. All the composition ideals that will interest us in the sequel are

normed.

Let (U , ‖ ‖U) be a Banach ideal of operators. For p ∈ Pn(E) we define

‖p‖Q◦U−1(E) := sup{‖p ◦ T‖Q : T ∈ U , ‖T‖U ≤ 1, p ◦ T is defined} ∈ [0,∞].

Definition 3.4.2. The quotient ideal Q ◦ U−1 is defined in the following way: a polynomial p
is in Q ◦ U−1(E) if ‖p‖Q◦U−1(E) <∞.

It is not difficult to prove that
(
Q ◦ U−1, ‖ ‖Q◦U−1

)
is Banach ideal of continuous n-

homogeneous polynomials with the property that p ∈ Q ◦ U−1 if and only if p ◦ T ∈ Q
for all T ∈ U . In other words, Q ◦ U−1 is the largest ideal satisfying (Q ◦ U−1) ◦ U ⊂ Q.

We also need the definition of some classical operator ideals.

Definition 3.4.3. Let p, q ∈ [1,+∞] such that 1/p+1/q ≥ 1. An operator T : E → F is (p, q)-
factorable if there are a finite measure µ, operators R ∈ L

(
E,Lq′(µ)

)
and S ∈ L

(
Lp(µ), F

′′)

such that kF ◦ T = S ◦ I ◦R,

E
T−→ F

kF→֒ F ′′

R ↓ րS

Lq′(µ) −→
I

Lp(µ),

where I and kF are the natural inclusions. We denote the space of all such operators by

Γp,q(E,F ). For T ∈ Γp,q(E,F ), the (p,q)-factorable norm is given by γp,q(T ) = inf{‖S‖‖I‖‖R‖},
where the infimum is taken over all such factorizations.

If 1/p + 1/q = 1, Γp,q coincides isometrically with the classical ideal Γp of p-factorable

operators [DJT95, Chapter 9]. In this section, we only use Γ∞ and Γ1.

The next theorem describes the maximal Banach ideal of polynomials associated with the

injective and projective associates of an s-tensor norm in terms of composition and quotient

ideals.

Theorem 3.4.4. Let α be an s-tensor norm of order n. We have the following identities:

Q/α\ 1
= Qα ◦ Γ∞ and Q\α/ 1

= Qα ◦ (Γ1)
−1.

To prove this, we need a polynomial version of the Cyclic Composition Theorem [DF93,

Theorem 25.4.].

Lemma 3.4.5. (Polynomial version of the Cyclic Composition Theorem.) Let (Q1, ‖ ‖Q1),
(Q2, ‖ ‖Q2) be two Banach ideals of continuous n-homogeneous polynomials and (U , ‖ ‖U) a

Banach operator ideal with (Udual, ‖ ‖Udual) right-accessible (see [DF93, 21.2]). If

Q1 ◦ U ⊂ Q2,
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with ‖ ‖Q2 ≤ k‖ ‖Q1 ◦ U for some positive constant k, then we have

Q∗2 ◦ Udual ⊂ Q∗1,

and ‖ ‖Q∗
1
≤ k‖ ‖Q∗

2 ◦ Udual .

Proof. Fix q ∈ Q∗2◦Udual(E), M ∈ FIN(E) and p ∈ Q1(M
′) with ‖p‖Q1(M ′) ≤ 1. For ε > 0,

we take T ∈ Udual(E,F ) and q1 ∈ Q∗2(F ) such that q = q1 ◦ T and

‖q1‖Q∗
2
‖T‖nUdual ≤ (1 + ε)‖q‖Q∗

2 ◦ Udual .

Since (Udual, ‖ ‖Udual) is right-accessible, by definition there are N ∈ FIN(F ) and S ∈
Udual(M,N) with ‖S‖Udual ≤ (1 + ε)‖T |M‖Udual ≤ (1 + ε)‖T‖Udual satisfying

M
T |M //

S

&&

F

N
?�

iN

OO , (3.11)

Thus, since the adjoint S ′ of S belongs to U(N ′,M ′), we have

∣∣〈q|M , p〉
∣∣ =

∣∣〈q1 ◦ T |M , p〉
∣∣ =

∣∣〈q1 ◦ iN ◦ S, p〉
∣∣

=
∣∣〈q1 ◦ iN , p ◦ S ′〉

∣∣ ≤ ‖q1 ◦ iN‖Q∗
2
‖p ◦ S ′‖Q2

≤ k‖q1‖Q∗
2
‖p ◦ S ′‖Q1 ◦ U ≤ k‖q1‖Q∗

2
‖p‖Q1 ‖S ′‖nU

≤ k‖q1‖Q∗
2
‖S‖nUdual ≤ k(1 + ε)n‖q1‖Q∗

2
‖T‖nUdual

≤ k(1 + ε)n+1‖q‖Q∗
2 ◦ Udual .

This holds for every M ∈ FIN(E) and every p ∈ Q1(M
′) with ‖p‖Q1(M ′) ≤ 1, thus q ∈ Q∗1

and ‖q‖Q∗
1
≤ k(1+ε)‖q‖Q∗

2 ◦ Udual . Since ε > 0 is arbitrary we get ‖q‖Q∗
1
≤ k‖q‖Q∗

2 ◦ Udual .

Notice that the condition of (Udual, ‖ ‖Udual) being right-accessible is fulfilled whenever

(U , ‖ ‖U) is a maximal left-accessible Banach ideal of operators [DF93, Corollary 21.3.].

Proposition 3.4.6. Let (Q, ‖ ‖Q) a Banach ideal of continuous n-homogeneous polynomials

and (U , ‖ ‖U) a Banach ideal of operators. If U is maximal and accessible (or U and Udual are

both right-accessible), and Q ◦ U is a Banach ideal of continuous polynomials, then

(Q ◦ U)∗ 1
= Q∗ ◦ (Udual)−1.

Proof. Lemma 3.4.5 applied to the inclusionQ◦U ⊂ Q◦U implies that (Q◦U)∗◦Udual ⊂ Q∗.
Therefore, (Q ◦ U)∗ ⊂ Q∗ ◦ (Udual)−1 and ‖ ‖Q∗◦(Udual)−1 ≤ ‖ ‖(Q◦U)∗ .

For the reverse inclusion we proceed similarly as in proof of Lemma 3.4.5. Fix q ∈ Q∗ ◦
(Udual)−1(E), M ∈ FIN(E) and p ∈ Q ◦ U(M ′) with ‖p‖Q◦U(M ′) ≤ 1. For ε > 0, we take

T ∈ U(M ′, F ) and p1 ∈ Q(F ) such that p = p1◦T and ‖p1‖Q‖T‖nU ≤ (1+ε). Since (U , ‖ ‖U)
is accessible, there are N ∈ FIN(F ) and S ∈ U(M ′, N) with

‖S‖Udual ≤ (1 + ε)‖T |M‖Udual ≤ (1 + ε)‖T‖U
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satisfying T |M = iN ◦S. Note that S ′ ∈ Udual and ‖S ′‖Udual ≤ (1+ε)‖T‖U . Thus, q|M ◦(S)∗ ∈
Q∗ and ‖q|M ◦ (S)∗‖Q∗ ≤ (1 + ε)n‖q‖Q∗◦(Udual)−1‖T‖nU . Now we have:

∣∣〈q|M , p〉
∣∣ =

∣∣〈q|M , p1 ◦ T 〉
∣∣ =

∣∣〈q|M , p1 ◦ iN ◦ S〉
∣∣

≤
∣∣〈q|M ◦ S ′, p1 ◦ iN〉

∣∣ ≤ ‖q|M ◦ S ′‖Q∗ ‖p1 ◦ iN‖Q
≤ (1 + ε)n‖q‖Q∗◦(Udual)−1 ‖p1‖Q ‖T‖nU
≤ (1 + ε)n+1‖q‖Q∗◦(Udual)−1 .

This holds for every M ∈ FIN(E), every p ∈ Q ◦ U(M ′) with ‖p‖Q◦U(M ′) ≤ 1 and every

ε > 0. As a consequence, q ∈ (Q ◦ U)∗ and ‖q‖(Q◦U)∗ ≤ ‖q‖Q∗◦(Udual)−1 .

Now we can prove Theorem 3.4.4.

Proof. (of Theorem 3.4.4)

We have already mentioned that any p ∈ Q/α\(E) extends to a polynomial p defined on

ℓ∞(BE′) with ‖p‖Qα(ℓ∞(BE′ )) = ‖p‖Q/α\(E). Therefore, p belongs to Qα ◦ Γ∞ and

‖p‖Qα◦Γ∞ ≤ ‖p‖Qα(ℓ∞(BE′ ))‖i‖n = ‖p‖Q/α\(E).

On the other hand, for p ∈ Qα ◦ Γ∞ and ε > 0 we can take T ∈ Γ∞(E,F ) and q ∈ Qα(F )
such that p = q ◦ T and ‖q‖Q‖T‖nΓ∞

≤ (1 + ε)‖p‖Qα◦Γ∞ . We choose R ∈ L(E,L∞(µ)) and

S ∈ L(L∞(µ)), F ′′) factoring κF ◦ T : E → F ′′ with ‖R‖‖S‖ ≤ (1 + ε)‖T‖Γ∞ . Also, since

Qα is a maximal polynomial ideal, its Aron-Berner extension AB(q) : F ′′ → K belongs toQα
and satisfy ‖AB(q)‖Qα = ‖q‖Qα . We have the following commutative diagram:

E
p //

T
��R{{

K

L∞(µ)
S

##

F

q

88

� _

κF
��
F ′′

AB(q)

JJ .

Since AB(q) ◦ S ∈ Qα(L∞(µ)) 1
= Q/α\(L∞(µ)) we obtain

‖p‖Q/α\
≤ ‖AB(q) ◦ S‖Q/α\

‖R‖n

= ‖AB(q) ◦ S‖Qα ‖R‖n
≤ ‖AB(q)‖Qα ‖S‖n ‖R‖n
≤ (1 + ε)n ‖q‖Qα ‖T‖nΓ∞

≤ (1 + ε)n+1‖p‖Qα◦Γ∞ .

Thus, Q/α\ 1
= Qα ◦ Γ∞.

Now we show the second identity. First notice that Γ1 = Γdual∞ (this follows, for example,

from Corollary 3 in [DF93, 17.8.] and the information on the table in [DF93, 27.2.]). Since Γ∞
is maximal and accessible [DF93, Theorem 21.5.] and Q/α\ is a Banach ideal of continuous

polynomials, we can apply Proposition 3.4.6 to the equalityQ/α′\
1
= Qα′ ◦Γ∞ to obtainQ\β/ =

Qβ ◦ Γ−11 with ‖ ‖Qβ◦Γ−1
1

= ‖ ‖Q\β/
.
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As a consequence of Theorem 3.4.4 we recover the following classical result [Flo02, Propo-

sition 3.4].

Corollary 3.4.7. The polynomial ideal Pne coincides with Ln∞.

3.5 Natural symmetric tensor norms

Alexsander Grothendieck’s article “Résumé de la théorie métrique des produits tensoriels

topologiques” [Gro53] is considered one of the most influential papers in functional analysis.

In this masterpiece, Grothendieck invented ‘local theory’, and exhibited the important connec-

tion between Operator ideals and tensor products. As part of his contributions, the Résumé

contained the list of all natural tensor norms. Loosely speaking, this norms come from ap-

plying basic operations to the projective norm. More precisely, Grothendieck defined natural

2-fold norms as those that can be obtained from π2 by a finite number of the following opera-

tions: right injective associate, left injective associate, right projective associate, left projective

associate and adjoint (see [DF93]). Grothendieck proved that there were at most fourteen pos-

sible natural norms, but he did not know the exact dominations among them, or if there was

a possible reduction on the table of natural norms (in fact this was one of the open problems

posed in the Résumé). This was solved, several years later, thanks to very deep ideas of Gordon

and Lewis [GL74]. All this results are now classical and can be found for example in [DF93,

Section 27] and [DFS08, 4.4.2.].

Our aim of to define and study natural symmetric tensor norms of arbitrary order, in the

spirit of Grothendieck’s norms.

Definition 3.5.1. Let α be an s-tensor norm of order n. We say that α is a natural s-tensor norm

if α is obtained from πn,s with a finite number of the operations \ · /, / · \ and ′.

For (full) tensor norms of order 2, there are exactly four natural norms that are symmetric

[DF93, Section 27]. It is easy to show that the same holds for s-tensor norms of order 2 (see the

proof of Theorem 3.5.2). These are π2,s, ε2,s, /π2,s\ and \ε2,s/, with the same dominations as

in the full case. It is important to mention that, for n = 2, \εn,s/ and \/πn,s\/, or equivalently,

/πn,s\ and /\εn,s/\, coincide. However, for n ≥ 3, we have the following

Theorem 3.5.2. For n ≥ 3, there are exactly 6 different natural symmetric s-tensor norms.

They can be arranged as it is seen in Figure 3.1 on page 58.

Note that what we do not have in the n-fold case is the double sense of the word natural: at

most three among the six obtained tensor norms can be considered really natural, if by natural

we understand those symmetric tensor norms that naturally appear in the theory. These are the

symmetric projective and injective tensor norms and (arguably) the so-called tensor norm η (or

/πn,s\), which appears in relation to extension of polynomials. We then stress that by natural

we just mean those s-tensor norms which are obtained from the projective one by the already

mentioned operations.

Before we prove Theorem 3.5.2, we need some previous results and definitions. Let δ be

a full tensor norm of order n. Following the definitions given in Sections 3.1 and 3.2 we say



58 CHAPTER 3. INJECTIVE AND PROJECTIVE ASSOCIATES

πn,s
PnI

��

\/πn,s\/
PnI ◦ (Γ1)

−1 ◦ Γ∞

xx &&
/πn,s\

PI ◦ (Γ1)
−1

&&

\εn,s/
Pne

xx

/\εn,s/\
Pne ◦ (Γ1)

−1

��

εn,s
Pn

(3.12)

Here α→ β means that α dominates β. There are no other dominations than those showed in

the scheme. Below each tensor norm we find its associated maximal polynomial ideal.

Figure 3.1: Natural s-tensor norms.

that δ is injective if, whenever Ii : Ei → Fi are isometric embeddings between normed spaces

(i = 1 . . . n), the tensor product operator

⊗ni=1Ii :
(
⊗ni=1 Ei, δ

)
→
(
⊗ni=1 Fi, δ

)
,

is an isometric embedding. The norm δ is projective if, whenever Qi : Ei → Fi are quotient

mappings between normed spaces (i = 1 . . . n), the tensor product operator

⊗ni=1Qi :
(
⊗ni=1 Ei, δ

)
→
(
⊗ni=1 Fi, δ

)
,

is also a quotient mapping.

The injective associate of δ, /δ\, will be the (unique) greatest injective tensor norm smaller

than δ. As in Theorem 3.1.5 we get,

(
⊗ni=1 Ei, /δ\

) 1→֒
(
⊗ni=1 ℓ∞(BE′

i
), δ
)
.

The projective associate of δ, \δ/, will be the (unique) smallest projective tensor norm greater

than δ. As in Theorem 3.2.6, if E1, . . . , En are Banach spaces, we have

(
⊗ni=1 ℓ1(BEi

), δ
) 1
։

(
⊗ni=1 Ei, \δ/

)
,

We denote by δ the dwarfed full tensor norm of order n− 1 given by

δ(z,⊗n−1i=1 Ei) := δ(z ⊗ 1, E1 ⊗ · · · ⊗ En−1 ⊗ C),
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where z ⊗ 1 :=
∑m

i=1 x
i
1 ⊗ . . . xin ⊗ 1, for z =

∑m
i=1 x

i
1 ⊗ . . . xin (this definition can be seen as

dual to some ideas on [BBJP06] and [CDM09]).

Lemma 3.5.3. For any tensor norm δ, we have: (/δ\) = /δ\ and (\δ/) = \δ/. Also, if δ and

ρ are full tensor norms and there exists C > 0 such that δ ≤ Cρ, then δ ≤ Cρ.

Proof. Let z ∈ ⊗ni=1Ei. For the first statement, if IEi
: Ei → ℓ∞(BE′

i
) are the canonical

embeddings, we have

/δ\
(
z, E1 ⊗ · · · ⊗ En−1

)
= δ
(
⊗ni=1 IEi

(z), ℓ∞(BE′
1
)⊗ · · · ⊗ ℓ∞(BE′

n−1
)
)

= δ
(
⊗ni=1 IEi

(z)⊗ 1, ℓ∞(BE′
1
)⊗ · · · ⊗ ℓ∞(BE′

n−1
)⊗ C

)

= /δ\
(
z ⊗ 1, E1 ⊗ · · · ⊗ En−1 ⊗ C

)

= (/δ\)
(
z, E1 ⊗ · · · ⊗ En−1

)
.

For the second statement we will only prove it on BAN , the details can be completed fol-

lowing what was done in the proof of Theorem 3.2.6. Let E1, . . . , En Banach spaces, if

QEi
: ℓ1(B(Ei)) ։ Ei are the canonical quotient mappings, we get

\δ/
(
z, E1 ⊗ . . . En−1

)

= inf
{t : ⊗n−1

i=1 Pi(t)=z}
δ
(
t, ℓ1(BE1)⊗ · · · ⊗ ℓ1(BEn−1)

)

= inf
{t : ⊗n−1

i=1 Pi(t)=z}
δ
(
t⊗ 1, ℓ1(BE1)⊗ · · · ⊗ ℓ1(BEn)⊗ C

)

= inf
{t : (P1⊗...Pn−1⊗idC)(t⊗1) = z⊗1}

δ
(
t⊗ 1, ℓ1(BE1)⊗ · · · ⊗ ℓ1(BEn−1)⊗ C

)

= \δ/
(
z ⊗ 1, E1 ⊗ · · · ⊗ En−1 ⊗ C

)

= (\δ/)
(
z, E1 ⊗ · · · ⊗ En−1

)
.

The third statement is immediate.

If δ is a full tensor norm of order n, we denote by δ|s the restriction of δ to the symmetric

tensor product.

Floret in [Flo01b] showed that for every s-tensor norm α of order n there exist a full tensor

norm Φ(α) of order nwhich is equivalent to αwhen restricted on symmetric tensor products. In

other words, there is a constant dn depending only on n such that d−1n Φ(α)|s ≤ α ≤ dnΦ(α)|s
on ⊗n,sE for every normed space E. As a consequence, a large part of the isomorphic theory

of norms on symmetric tensor products can be deduced from the theory of “full” tensor norms,

which is usually easier to handle and has been more studied. We give some details of the

construction.

Let E1, . . . , En be Banach spaces, denote ℓn2 (Ei) the direct sum
⊕n

i=1Ei equipped with the

ℓ2-norm. We define the mapping WE1,...,En : ⊗ni=1Ei → ⊗n,sℓn2 (Ei) by

WE1,...,En : ⊗ni=1Ei

√
nI1⊗···⊗In // ⊗nℓn2 (Ei)

σn
ℓn2 (Ei) // ⊗n,sℓn2 (Ei) , (3.13)

where Ii : Ei → ℓn2 (Ei) (1 ≤ i ≤ n) are the natural inclusion. Note that

WE1,...,En(x1 ⊗ · · · ⊗ xn) =
√
n(x1, 0, . . . , 0) ∨ · · · ∨ (0, . . . , 0, xn).
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Definition 3.5.4. Let α be an s-tensor norm. The extension of α will be the full tensor norm of

order n, Φ(α), given by

Φ(α)(z;⊗ni=1Ei) := K2(α)
−1α
(
WE1,...,En(z);⊗n,sℓn2 (Ei)

)
,

where K2(α) =
√
n α(e1 ∨ · · · ∨ en;⊗n,sℓn2 ).

It does not matter why K2(α) is included in the definition. What we need to know about

K2(α) is that it is just a number depending only on α satisfying

(
n!

nn
)1/2 ≤ K2(α) ≤ (

nn

n!
)1/2.

Below we list four important properties of this extension that appear in [Flo01b].

Theorem 3.5.5. Let α be an s-tensor norm of order n and Φ(α) its extension. The following

holds.

(1) The restriction of Φ(α) to the symmetric tensor product is equivalent to α. More pre-

cisely,

n!

nn
Φ(α)|s ≤ (

n!

nn
)1/2K2(α)Φ(α)|s ≤ α ≤ (

nn

n!
)1/2K2(α)Φ(α)|s ≤

nn

n!
Φ(α)|s.

(2) If α ≤ Cβ then K2(α)Φ(α) ≤ CK2(β)Φ(β).

(3) For the dual norm α′ one has Φ(α′) ∼ Φ(α)′:

Φ(α)′ ≤ K2(α)K2(α
′)Φ(α′) ≤ nn/2Φ(α)′.

(4) If δ is a full symmetric tensor norm of order n, then Φ(δ|s) ∼ δ:

1√
n
K2(δ|s)Φ(δ|s) ≤ δ ≤

√
n K2(δ|s)Φ(δ|s).

For our purposes we need the following result.

Lemma 3.5.6. Let α be an s-tensor norm of order n. Then Φ(/α\) and /Φ(α)\ are equivalent

s-tensor norms. Also, Φ(\α/) and \Φ(α)/ are equivalent s-tensor norms.

Proof. For simplicity, we consider the case n = 2, the proof of the general case being com-

pletely analogous. The definition of the injective associate gives

E1 ⊗/Φ(α)\ E2
1→֒ ℓ∞(BE′

1
)⊗Φ(α) ℓ∞(BE′

2
).
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We therefore have

/Φ(α)\
( r∑

j=1

xj ⊗ yj
)
= Φ(α)

( r∑

j=1

IE1(xj)⊗ IE2(yj), ℓ∞(BE′
1
)⊗ ℓ∞(BE′

2
)
)

=
√
2K2(α)

−1α
( r∑

j=1

(IE1(xj), 0) ∨ (0, IE2(yj)),⊗2,s{ℓ∞(BE′
1
)⊕2 ℓ∞(BE′

2
)}
)

≍
√
2K2(α)

−1α
( r∑

j=1

(IE1(xj), 0) ∨ (0, IE2(yj)),⊗2,s{ℓ∞(BE′
1
)⊕∞ ℓ∞(BE′

2
)}
)

=
√
2K2(α)

−1/α \
( r∑

j=1

(IE1(xj), 0) ∨ (0, IE2(yj)),⊗2,s{ℓ∞(BE′
1
)⊕∞ ℓ∞(BE′

2
)}
)

≍
√
2K2(α)

−1/α \
( r∑

j=1

(IE1(xj), 0) ∨ (0, IE2(yj),⊗2,s{ℓ∞(BE′
1
)⊕2 ℓ∞(BE′

2
)}
)

=
√
2K2(α)

−1/α \
( r∑

j=1

(xj, 0) ∨ (0, yj),⊗2,s{E1 ⊕2 E2})

= Φ(/α\)(
r∑

j=1

xj ⊗ yj),

where ≍ means that the two expressions are equivalent up to universal constants. The second

equivalence follows from the first one by duality, since by Theorem 3.5.5 we have Φ(\α/) =
Φ((/α′\)′) ∼ Φ(/α′\)′ ∼ /Φ(α′)\′ = \Φ(α′)′/ ∼ \Φ(α)/.

As a consequence of these results we can see that no injective norm α can be equivalent to

a projective norm β. Indeed, if they were equivalet, we would have \εn,s/ ≤ \α/ ≤ C1β ≤
C2α ≤ C2/πn,s\. Since Φ respects inequalities (Theorem 3.5.5 (2)), an application of Lem-

mas 3.5.6 and 3.5.3, together with the obvious identities εn+1 = εn, πn+1 = πn would give

\ε2/ ∼ w′2 ≤ D/π2\ ∼ w2, a contradiction.

Another consequence is that π2,s, ε2,s, /π2,s\ and \ε2,s/ are the non-equivalent natural s-

tensor norms for n = 2. This follows from the 2-fold result (see [DF93, Chapter 27]), which

states that π2, ε2, /π2\ and \ε2/ are the only natural 2-fold tensor norms that are symmetric.

So Lemma 3.5.6 and the properties of Φ give our claim, as well as the following dominations:

ε2,s ≤ \ε2,s/ ≤ /π2,s\ ≤ π2,s.

Now we are ready to prove Theorem 3.5.2.

Proof. (of Theorem 3.5.2.)

To prove that all the possible natural n-fold s-tensor norms (n ≥ 3) are listed in (3.12), it

is enough to show that /\/πn,s\/\ coincides with /πn,s\. From the inequality \/πn,s\/ ≤ πn,s
we readily obtain /\/πn,s\/\ ≤ /πn,s\. Also, the inequality εn,s ≤ /\εn,s/\ gives \εn,s/ ≤
\/\εn,s/\/ and, by duality, we have /πn,s\ ≤ /\/πn,s\/\.

Now we see that the listed norms are all different. First, /πn,s\ and \/πn,s\/ cannot be

equivalent, since the first one is injective and the second one is projective. Analogously, \εn,s/
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is not equivalent to /\εn,s/\. Until now, everything works just as in the case n = 2. The dif-

ference appears when we consider the relationship between \/πn,s\/ and \εn,s/: we will see in

Theorem 3.5.7 below that \/πn,s\/ and \εn,s/ cannot be equivalent on any infinite dimensional

Banach space, which is much more than we need. By duality, conclude that the six listed norms

in Theorem 3.5.2 are different.

It is clear that all the dominations presented in (3.12) hold, so we must show that /πn,s\ does

not dominate \εn,s/ nor \εn,s/ dominates /πn,s\. Note that the inequality /πn,s\ ≤ C\εn,s/
would imply the equivalence between /πn,s\ and εn,s on ⊗n,sℓ1, which is impossible (see

[CD07, Per04a, Var75]). Finally, if /πn,s\ dominates \εn,s/, then we can reason as in the com-

ments after Lemma 3.5.6 and conclude that /π2\ dominates \ε2/, which contradicts [DF93,

Chapter 27].

The maximal polynomial ideals associated with the natural norms are easily obtained using

Proposition 3.4.4 and the fact thatQ/α\ andQ\β/ are associated with the norms (/α\)′ = \α′/
and (\β/)′ = /β′\ respectively.

Theorem 3.5.7 below shows that there is no infinite dimensional Banach space E such that

\εn,s/ and \/πn,s\/ are equivalent in ⊗n,sE for n ≥ 3. This means that the splitting of \εn,s/
when passing from n = 2 to n ≥ 3 is rather drastic.

Theorem 3.5.7. For n ≥ 3, \εn,s/ and \/πn,s\/ are equivalent in ⊗n,sE if and only if E is

finite dimensional. The same happens if /πn,s\ and /\εn,s/\ are equivalent on E.

Proof. We first prove that if E is infinite dimensional, then /πn,s\ and /\εn,s/\ are not equiv-

alent in ⊗n,sE. Suppose they are. Then, we have

Pne (E) =
(
⊗n,s/πn,s\ E

)′
=
(
⊗n,s/\εn,s/\ E

)′
= Q/\εn,s/\(E).

By the open mapping theorem, there must be a constant M > 0 such that

‖p‖Q/\εn,s/\(E) ≤M‖p‖Pn
e (E),

for every extendible polynomial p on E. If F is a subspace of E, any extendible polynomial

on F extends to an extendible polynomial on E with the same extendible norm. Therefore, for

every subspace F of E and every extendible polynomial q on F , we have

‖q‖Q/\εn,s/\(F ) ≤M‖q‖Pn
e (F ).

Since E is an infinite dimensional space, by Dvoretzky’s theorem it contains (ℓk2)k uni-

formly. Then there must be a constant C > 0 such that for every k and every n-homogeneous

polynomial q on ℓk2, we have

‖q‖Q/\εn,s/\(ℓ
k
2)
≤ C‖q‖Pn

e (ℓk2)
.

Since the ideal of extendible polynomials is maximal (it is dual to an s-tensor norms), by the

Lp-Local Technique Lemma for Maximal Ideals 2.2.15 we deduce that

Pne (ℓ2) ⊂ Q/\εn,s/\(ℓ2). (3.14)
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Let us show that this is not true. Recall that we have an inclusion ℓ2 →֒ L1[0, 1] (Khintchine

inequalities) thus, since /\εn,s/\ is injective, each p ∈ Q/\εn,s/\(ℓ2) can be extended to a

/\εn,s/\-continuous polynomial p̃ on L1[0, 1]. Now, by Corollary 3.2.8, εn,s coincides with

\εn,s/ on L1[0, 1], which dominates /\εn,s/\. Therefore, the polynomial p̃ is actually εn,s-
continuous or, in other words, integral. Since p̃ extends p, this must also be integral; we have

shown that Q/\εn,s/\(ℓ2) is contained in PnI (ℓ2). But it is shown in [CD07, Per04a, Var75] that

there are always extendible non-integral polynomials on any infinite dimensional Banach space,

so (3.14) cannot hold. This contradiction shows that /πn,s\ and /\εn,s/\ cannot be equivalent

on E.

Now we show that \εn,s/ and \/πn,s\/ are not equivalent in ⊗n,sE, for any infinite di-

mensional Banach space E. Suppose they are. By duality, we have Q\εn,s/ = Q\/πn,s\/ with

equivalent norms. The polynomial ideals Q\εn,s/, Q\/πn,s\/ are associated with the injective

norms (\εn,s/)′ = /πn,s\, and (\/πn,s\/)′ = /\εn,s/\ respectively. Since this norms are ac-

cessible (Corollary 3.3.3) we have, by the Embedding Theorem 2.2.13,

⊗̃n,s/πn,s\E
′ 1→֒ Q\εn,s/(E), and ⊗̃n,s/\εn,s/\E

′ 1→֒ Q\/πn,s\/(E).

But this implies that /πn,s\ and /\εn,s/\ are equivalent in ⊗n,sE ′, which is impossible by the

already proved first statement of the theorem.
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Chapter 4

The Symmetric Radon-Nikodým property

for tensor norms

A result of Boyd and Ryan [BR01] and also of Carando and Dimant [CD00] implies that, for an

Asplund space E, the space PnI (E) of integral polynomials is isometric to the space PnN(E) of

nuclear polynomials (the isomorphism between these spaces was previously obtained by Alen-

car in [Ale85a, Ale85b]). In other words, if E is Asplund, the space of integral polynomials on

E coincides isometrically with its minimal kernel (PnI )min(E) = PnN(E). This fact was used,

for example, in [BR01, BL10, Din03] to study geometric properties of spaces of polynomials

and tensor products (e.g., extreme and exposed points of their unit balls), and in [BL05, BL06]

to characterize isometries between spaces of polynomials and centralizers of symmetric tensor

products. When the above mentioned isometry is stated as the isometric coincidence between

a maximal ideal and its minimal kernel, it resembles the Lewis theorem for operator ideals

and (2-fold) tensor norms (see [Lew77] and [DF93, 33.3]). The Radon-Nikodým property for

tensor norms is a key ingredient for Lewis theorem.

The aim of this chapter is to find conditions under which the equality Q(E) = Qmin(E)
holds isometrically for a maximal polynomial ideal Q. In terms of symmetric tensor products,

we want conditions on an s-tensor norms ensuring the isometry ⊗̃n,sα E ′ =
(
⊗̃n,sα′ E

)′
. To this

end, we introduce the symmetric Radon-Nikodým property for s-tensor norms and show our

main result, a Lewis-type Theorem (Theorem 4.1.2): if an s-tensor norm has the symmetric

Radon-Nikodým property (sRN property), we have that the natural mapping JE\α/ : ⊗̃
n,s

\α/E
′ →(

⊗̃n,s/α′\E
)′

is a metric surjection for every Asplund space E (see the notation below). As a

consequence, if Q is the maximal ideal (of n-homogeneous polynomials) associated with a

projective s-tensor norm α with the sRN property, then Qmin(E) = Q(E) isometrically.

As an application of this result, we reprove the isometric isomorphism between integral and

nuclear polynomials on Asplund spaces. We also show that the ideal of extendible polynomials

coincide with its minimal kernel for Asplund spaces, and obtain as a corollary that the space of

extendible polynomials on E has a monomial basis whenever E ′ has a basis.

We present examples of s-tensor norms associated with well known polynomial ideals

which have the sRN property. We also relate the sRN property of an s-tensor norm with the

Asplund property. More precisely, we show that if α is a projective s-tensor norm with the sRN,

then α′ preserves the Asplund property, in the sense that ⊗̃n,sα′ E is Asplund whenever E is. As

an application, we show that the space of extendible polynomials onE has the Radon-Nikodým

65
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property if and only if E is Asplund. One might be tempted to infer that a projective s-tensor

norm α with the sRN property preserves the Radon-Nikodým property, but this is not the case,

as can be concluded from a result by Bourgain and Pisier [BP83]. However, we show that this

is true with additional assumptions on the space E.

In order to prove our main theorem, we must show an analogous result for full tensor norms,

which we feel can be of independent interest.

4.1 The symmetric Radon-Nikodým property

We refresh some classical definitions. A Banach space E has the Radon-Nikodým property if

for every finite measure µ every operator T : L1(µ) → E is representable, i.e., there exists a

bounded µ-measurable function g : Ω→ E with

Tf =

∫
fgdµ for all f ∈ L1(µ).

A Banach space E is Asplund if its dual E ′ has the Radon-Nikodým property. A simple char-

acterization must be mentioned: a Banach space E is Asplund if and only if every separable

subspace of E has separable dual. In particular, reflexive spaces or spaces that have separable

duals (e.g., c0) are Asplund. For more information of these two properties (Radon-Nikodým or

Asplund) and examples see [DU76].

It is well know that the Radon-Nikodým and Asplund properties permit to understand the

full duality of a tensor norm π and ε, describing conditions under which E ′⊗̃πF ′ = (E⊗̃εF )′
holds. Lewis in [Lew77] obtained many results of the form E ′⊗̃δF ′ = (E⊗̃δ′F )′ or, in other

words, results about Umin(E,F ′) = U(E,F ′) (if U is the maximal operator ideal associated

with δ).

For Q a maximal ideal of n-homogeneous polynomials, we want to find conditions under

which the next equality holds:

Qmin(E) = Q(E). (4.1)

A related question is the following: if α is the s-tensor norm of order n associated with Q,

when does the natural mapping

JEα : ⊗̃n,sα E ′
1
։ Qmin(E) →֒ Q(E) 1

=
(
⊗̃n,sα′ E

)′
,

defined in (2.13) become a metric surjection? Note that, in this case, we get the equality (4.1).

To give an answer to this question we need the next definition. In a sense, it is a symmetric

version of the one which appears in [DF93, 33.2].

Definition 4.1.1. A finitely generated s-tensor norm α of order n has the symmetric Radon-

Nikodým property (sRN property) if

⊗̃n,sα ℓ1
1
=
(
⊗̃n,sα′ c0

)′
. (4.2)

Here equality means that canonical mapping J c0α : ⊗̃n,sα ℓ1 −→
(
⊗̃n,sα′ c0

)′
is an isometric iso-

morphism.
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Since ℓ1 and c0 are, respectively, L1,λ and L∞,λ spaces for every λ > 1, α and \α/ coincide

in ⊗n,sℓ1 and (\α/)′ = /α′\ coincides with α′ on ⊗n,sc0. As a consequence, from the very

definition we obtain that an s-tensor norm α has the sRN property if and only if its projective

associate \α/ has it.

Also, ℓ1 has the metric approximation property and, by Proposition 2.2.1 and the Duality

Theorem 2.2.3, the mapping JEα is always an isometry. Therefore, to prove that α has the

sRN property we only have to check that JEα is surjective. Note that, for Q the maximal n-

homogeneous polynomial ideal associated with α, (4.2) is equivalent to

Qmin(c0) = Q(c0), (4.3)

and the isometry is automatic.

Our interest in the sRN property is the following Lewis-type theorem.

Theorem 4.1.2. Let α be an s-tensor norm with the sRN property and E be an Asplund space.

Then we have

⊗̃n,s\α/E ′
1
։

(
⊗̃n,s/α′\E

)′
,

i.e., the natural mapping JE\α/ is a metric surjection. As a consequence,

(Q/α′\)
min(E) = Q/α′\(E) isometrically.

One may wonder if the projective associate of the tensor norm α is really necessary in

Theorem 4.1.2. Let us see that, in general, it cannot be avoided. For this, we use two results

that are stated and proved in the next chapter. Take any injective s-tensor norm and letQ be the

associated maximal polynomial ideal. If T is the dual of the original Tsirelson space (which is

reflexive and therefore Asplund), then we can see that Q(T ) 6= Qmin(T ). Indeed, we consider

for each m, the polynomial on ℓ2 given by pm =
∑m

j=1(e
′
j)
n, where (e′j)

∞
j=1 stands for the

canonical dual basis. We have

‖pm‖Q(ℓ2) = α
( m∑

j=1

⊗ne′j;⊗n,sℓ2
)

≤ /πn,s\
( m∑

j=1

⊗ne′j;⊗n,sℓ2
)

≤ C/πn\
( m∑

j=1

e′j ⊗ · · · ⊗ e′j;⊗nℓ2
)

≤ C Kε
( m∑

j=1

e′j ⊗ · · · ⊗ e′j;⊗n,sℓ2
)
≤ C K,

where the third inequality and the constant K are taken from Lemma 5.1.10 (in Chapter 5), and

the fourth inequality is immediate. So we have shown that ‖pm‖Q(ℓ2) is uniformly bounded.

Since T does not contain (ℓm2 )m nor (ℓm∞)m uniformly complemented (see [CS89, pages 33 and

66]), we can conclude that Q(T ) cannot be separable by Proposition 5.2.8. As a consequence,

Q(T ) cannot coincide with Qmin(T ).
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In order to prove Theorem 4.1.2, an analogous result for full tensor products (and multi-

linear forms) will be necessary. As a consequence, we decided to postpone the proof to next

section.

Let us then present different tensor norms with the sRN. We begin with two basic examples.

The following identities are simple and well known:

(
⊗̃n,sπ′

n,s
c0
)′
=
(
⊗̃n,sεn,s

c0
)′
= ⊗̃n,sπn,s

ℓ1

and (
⊗̃n,sε′n,s

c0
)′
=
(
⊗̃n,sπn,s

c0
)′
= ⊗̃n,sεn,s

ℓ1

(they easily follow from the analogous identities for full tensor products, since the symmetriza-

tion operator is a continuous projection). Therefore, we have:

Example 4.1.3. The tensor norms πn,s and εn,s have the sRN property.

It should be noted the (2-fold) tensor norm ε2 does not have the classical Radon-Nikodým

property [DF93, 33.2]. Therefore, the sRN property defined here for s-tensor norms and for

full tensor norms in Section 4.2 is less restrictive than the Radon-Nikodým property for tensor

norms.

In [Ale85a, Ale85b], Alencar showed that ifE is Asplund, then integral and nuclear polyno-

mials on E coincide, with equivalent norms. Later, Boyd and Ryan [BR01] and, independently,

Carando and Dimant [CD00], showed that this coincidence is isometric (with a slightly more

general assumption: that ⊗̃n,sεn,s
E does not contain a copy of ℓ1). The proof of this result was

based on the study of extreme point of the unit ball of PnI (E). Note that the isometry be-

tween nuclear and integral polynomials on Asplund spaces is an immediate consequence of

Theorem 4.1.2 for α = πn,s.

Corollary 4.1.4. If E is Asplund, then PnN(E) = PnI (E) isometrically.

Let α be an s-tensor norm. An important result due to Grecu and Ryan states that if E has

a Schauder basis, then so does ⊗̃n,sα E. We now describe how the basis in the tensor product is

constructed. We denote by N
n
d the set of decreasing n-multi-indices

{j ∈ N
n : j1 ≥ j2 ≥ · · · ≥ jn}.

An order is given in N
n
d recursively: j < h if j1 < h1 or j1 = h1 and (j2, . . . , jn) < (h2, . . . , hn)

in N
n−1
d . This order is usually referred to as the square order.

Theorem 4.1.5. [GR05] Let E be a Banach space with Schauder basis (ej)
∞
j=1 and α be an

s-tensor norm. Then (σnE(ej))j∈Nn
d

with the square order is a Schauder basis of ⊗̃n,sα E, where

ej := ej1 ⊗ · · · ⊗ ejn .

The tensors (σnE(ej))j∈Nn
d

are called the monomials associated with the basis (ej)
∞
j=1.

If we apply Theorem 4.1.2 and Corollary 2.2.20 to α = εn,s, we obtain for E ′ with the

bounded approximation property

Pne (E) = (Pne )min(E) = ⊗̃
n,s

\εn,s/E
′ isometrically,

where Pne stands for the ideal of extendible polynomials. Combining this with Theorem 4.1.5

we have the following.
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Corollary 4.1.6. Let E be a Banach space such that E ′ has a basis. Then, the monomials

associated with this basis are a Schauder basis for the space of extendible polynomials Pne (E).

We now give other examples of s-tensor norms associated with well know maximal poly-

nomial ideals having the sRN property.

Example 4.1.7. Let ρrn be the s-tensor norm associated with Lnr (r ≥ n ≥ 2). Then, ρrn has the

s-RN property.

Proof. We can assume that r < ∞ since Ln∞(c0) = Pne (c0) (see Corollary 3.4.7) which

coincides with Pn(c0). For p ∈ Lnr (c0) there is a measure space (Ω, µ), an operator T ∈
L
(
c0, Lr(µ)

)
and a polynomial q ∈ Pn

(
Lr(µ)

)
with p = q ◦ T . Since Lr(µ) is reflexive, as a

direct consequence of the Schauder Theorem and the Schur property of ℓ1 we get that T is ap-

proximable. On the other hand q is trivially inLnr (Lr(µ)). Hence p belongs to (Lnr )min(c0).

Using the the ideas of the previous proof we have the following.

Example 4.1.8. Let δrn be the s-tensor norm associated with J n
r (2 ≤ n ≤ r < ∞). Then, δrn

has the s-RN property.

In [CDS07, Section 4], a n-fold full tensor norm γnr′ was introduced, so that the ideal of

dominated multilinear forms is dual to γnr′ . If we use the same notation for the analogous

s-tensor norm, we have that (γnr′)
′ is the s-tensor norm associated with Dnr .

Example 4.1.9. The s-tensor norm (γnr′)
′ associated with Dnr has the s-RN property.

Proof. By [Sch91] we know thatDnr = Pn ◦Πr, where Πr is the ideal of r-summing operators.

Thus, for p ∈ Dnr (c0) we have the factorization p = q ◦T where T : c0 −→ G is an r-summing

operator and q : G −→ K an n-homogeneous continuous polynomial. We may assume without

loss of generality that G = F ′ for a Banach space F (think on the Aron-Berner extension). By

[DF93, Proposition 33.5] the tensor norm (γr′,1)
′ has the Radon Nikodým property. Using this,

and the identity (γt)′ = (γ′)t (which holds for every tensor norm of order two γ) we easily get:

Πr(c0, G) = Πr(c0, F
′) =

(
c0 ⊗γ1,r′ F

)′
=
(
F ⊗γr′,1 c0

)′
=

= F ′ ⊗(γr′,1)
′ ℓ1 = ℓ1 ⊗(γ1,r′ )

′ F ′ = ℓ1 ⊗(γ1,r′ )
′ G.

Therefore, we have proved that Πr(c0, G) = (Πr)
min(c0, G). Now it is easy to conclude that

Dnr (c0) = (Dnr )min(c0).

A natural and important question about a tensor norm is if it preserves some Banach space

property. The following result shows that the symmetric Radon-Nikodým is closely related to

the preservation of the Asplund property under tensor products.

Theorem 4.1.10. Let E be Banach space and α a projective s-tensor norm with sRN property.

The tensor product ⊗̃n,sα′ E is Asplund if an only if E is Asplund.
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Proof. Necessity is clear. For the converse, let S be a separable subspace of ⊗̃n,sα′ E and let

us see that it has a separable dual. We can take (xk)k∈N a sequence of vectors in E and

F := [xk : k ∈ N] such that S is contained in ⊗n,sF . Since α′ is injective, we have the iso-

metric inclusion S
1→֒ ⊗̃n,sα′ F . Now, F ′ is separable (since E is Asplund) and therefore, by

Theorem 4.1.2, the mappping

⊗̃n,sα′ F ′ −→
(
⊗̃n,sα′ F

)′

is surjective. So,
(
⊗̃n,sα′ F

)′
is a separable Banach space and hence is also S ′ (since we have a

surjective mapping
(
⊗̃n,sα′ F

)′
։ S ′).

The following is an application of the previous theorem to α = \εn,s/.

Corollary 4.1.11. For a Banach space E and n ∈ N, Pne (E) has the Radon-Nikodým property

if and only if E is Alplund.

Looking at Theorem 4.1.10 a natural question arises: if α is a projective s-tensor norm

with the sRN property, does ⊗̃n,sα E have the Radon-Nikodým property whenever E has the

Radon-Nikodým property? Burgain and Pisier [BP83, Corollary 2.4] presented a Banach space

E with the Radon-Nikodým property such that E⊗πE contains c0 and, consequently, does not

have the Radon-Nikodým property. This construction gives a negative answer to our question

since the copy of c0 in E ⊗π E is actually contained in the symmetric tensor product of E and

π2,s (which has the sRN property) is equivalent to the restriction of π2 to the symmetric tensor

product.

However, ⊗̃n,sα E inherits the Radon-Nikodým property of E if, in addition, E is a dual

space with the bounded approximation property (this should be compared to [DU76], where an

analogous result for the 2-fold projective tensor norm π is shown).

Corollary 4.1.12. Let α be a projective s-tensor norm with the sRN property and E a dual

Banach space with the bounded approximation property. Then, ⊗̃n,sα E has the Radon-Nikodým

property if and only if E does.

Proof. Let F be a predual of E and suppose E has the Radon-Nikodým property. The space

F is Asplund hence, by Theorem 4.1.10, so is ⊗̃n,sα′ F . On the other hand, by Theorem 4.1.2 we

have a metric surjection ⊗̃n,sα E
1
։

(
⊗̃n,sα′ F

)′
. Since E = F ′ has the bounded approximation

property, by Corollary 2.2.20, the mapping is injective. Thus, ⊗̃n,sα E
1
=
(
⊗̃n,sα′ F

)′
. Hence,

⊗̃n,sα E is the dual of an Asplund Banach space and has the Radon-Nikodým property.

The converse follows from the fact that E is complemented in ⊗̃n,sα E (see [Bla97]).

Any Banach space E with a boundedly complete Schauder basis (ej)
∞
j=1 is a dual space

with the Radon-Nikodým property and the bounded approximation property. Indeed, E turns

out to be the dual of the subspace F of E ′ spanned by the dual basic sequence (e′j)
∞
j=1 (which

is, by the way, a shrinking basis of F ). Then we have

⊗̃n,sα E
1
=
(
⊗̃n,sα′ F

)′
(4.4)

The monomials associated to (ej)
∞
j=1 and to (e′j)

∞
j=1 with the appropriate ordering (see Theorem

4.1.5) are Schauder basis of, respectively, ⊗̃n,sα E and ⊗̃n,sα′ F . By the equality (4.4), monomials

form a boundedly complete Schauder basis of ⊗̃n,sα E and a shrinking Schauder basis of ⊗̃n,sα′ F .
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On the other hand, if we start with a Banach space E with a shrinking Schauder basis and

take F as its dual, we are in the analogous situation with the roles of E and F interchanged. So

we have

Corollary 4.1.13. Let α be a projective s-tensor norm with the sRN property.

(1) If E has a boundedly complete Schauder basis, then so does ⊗̃n,sα E.

(2) If E has a shrinking Schauder basis, then so does ⊗̃n,sα′ E.

The corresponding statement for the 2-fold full tensor norm π was shown by Holub in [Hol71].

4.2 The sRN property for full tensor norms

In order to prove Theorem 4.1.2 we must first show an analogous result for full tensor products

(see Theorem 4.2.6 below). It should be noted that, although we somehow follow some ideas

of Lewis Theorem’s proof in [DF93, Section 33.3], that proof is based on some factorizations

of linear operators and not on properties of bilinear forms. Therefore, the weaker nature of

the symmetric Radon-Nykodým property introduced in this work together with our multilin-

ear/polynomial framework makes our proof much more complicated.

Let us first introduce the sRN property for full tensor products in the obvious way.

Definition 4.2.1. A finitely generated full tensor norm δ of order n has the symmetric Radon-

Nikodým property (sRN property) if

(⊗̃ni=1ℓ1, δ) =
(
⊗̃ni=1c0, δ

′)′.

As in [DF93, Lemma 33.3.] we have the following symmetric result for ideals of multilin-

ears form.

Proposition 4.2.2. Let δ be a finitely generated full tensor norm of order n with the sRN prop-

erty. Then,

(⊗̃ni=1ℓ1(Ji), δ) =
(
⊗̃ni=1c0(Ji), δ

′)′

holds isometrically for all index sets J1, . . . , Jn.

Proof. Fix J1, . . . , Jn index sets, let A be the maximal multilinear ideal associated with the

norm δ. We must show A(c0(J1), . . . , c0(Jn)) = Amin(c0(J1), . . . , c0(Jn)) with equal norms.

For T ∈ A
(
c0(J1), . . . , c0(Jn)

)
, let us see that the set

L = {(j1, . . . , jn) : T (ej1 , . . . , ejn) 6= 0} (4.5)

is countable. If not, there exist (jk1 , . . . , j
k
n)k∈N different indexes such that

|T (ejk1 , . . . , ejkn)| > ε.

Without loss of generality we can assume that the sequence of first coordinates jk1 has all its

elements pairwise different. Passing to subsequences we can also assume that ejki is weakly
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null. Since every n-linear form on c0 is weakly continuous on bounded sets (by the Littlewood-

Bogdanowicz-Pełczyński property of c0 [Bog57, Pel57]) we have an absurd. So the set L in

(4.5) is countable.

Let Ωk : J1 × · · · × Jn −→ Jk be given by (j1, . . . , jn) 7→ jk, and set Lk := Ωk(L) ⊂ Jk.

Consider the mapping ξk : c0(Jk)→ c0(Lk) given by

(aj)j∈Jk 7→ (aj)j∈Lk
.

We also have the inclusion ık : c0(Lk)→ c0(Jk) defined by

(aj)j∈Lk
7→ (bj)j∈Jk ,

where bj is aj if j ∈ Lk and zero otherwise. Then, we can factor

c0(J1)× · · · × c0(J1) T //

ξ1×···×ξn
��

K

c0(L1)× · · · × c0(Ln)

T

55 ,

where T := T ◦ (ı1 × · · · × ın). Since δ has the symmetric Radon-Nikodým property we

have A(c0(L1), . . . , c0(Ln)) = Amin(c0(L1), . . . , c0(Ln)) with equal norms. Therefore T is in

Amin(c0(L1), . . . , c0(Ln)) with

‖T‖Amin = ‖T‖A ≤ ‖T‖A.

Thus, T belongs to Amin(c0(L1), . . . , c0(Ln)) which implies that T is also in Amin(c0(J1), . . . , c0(Jn)).
Moreover,

‖T‖Amin ≤ ‖T‖Amin‖ξ1 × · · · × ξn‖ ≤ ‖T‖A,

which ends the proof.

For A : E1 × · · · × En → K we denote by An the associated (n − 1)-linear mapping

An : E1 × · · · ×En−1 → E ′n. Now, if T : E ′n → F ′ is a linear operator, then the (n− 1)-linear

formB : E1×· · ·×En−1 → F ′ given by T ◦An induces an n-linear form onE1×· · ·×En−1×F .

It is not hard to check that

B(e1, . . . , en−1, f) = (EXTn)A(e1, . . . , en−1, T
′κF (f)),

where κF : F → F ′′ is the canonical inclusion mapping and EXTn is the canonical extension

of a multilinear form to the bidual in the n-th coordinate.

For every k = 1, . . . , n we define an operator

Ψk :
(
(⊗̃k−1j=1Ej)⊗̃c0(BE′

k
)⊗̃(⊗̃nj=k+1Ej), /δ

′\
)′ →

(
⊗̃ni=1Ei, /δ

′\
)′
,

by the composition
(
(⊗̃k−1j=1IdEk

)⊗̃IEk
⊗̃(⊗̃nj=k+1IdEk

)
)′ ◦ EXTk.

The next remark is easy to check.
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Remark 4.2.3. LetE1, . . . , En be Banach spaces. For every k the following diagram conmutes.
(
(⊗̃k−1j=1E

′
j)⊗̃ℓ1(BE′

k
)⊗̃(⊗̃nj=k+1E

′
j), \δ/

)
//

(⊗̃k−1
j=1 IdE′

j
)⊗̃QEk

⊗̃(⊗̃n
j=k+1IdE′

j
)

��

(
(⊗̃k−1j=1Ej)⊗̃c0(BE′

k
)⊗̃(⊗̃nj=k+1Ej), /δ

′\
)′

Ψk

��(
(⊗̃k−1j=1E

′
j)⊗̃E ′k⊗̃(⊗̃

n

j=k+1E
′
j), \δ/

)
//
(
⊗̃ni=1Ei, /δ

′\
)′
.

The following proposition is crucial for our purposes.

Proposition 4.2.4. Let E1, . . . , En be Banach spaces. If Ek is Asplund then Ψk is a metric

surjection.

To prove it we need a classical result due to Lewis and Stegall.

Theorem 4.2.5. (The Lewis-Stegall Theorem.) If the Banach space E has the Radon-Nikodým

property, then for every T ∈ L(L1(µ), E) and ε > 0 there exist an operator S ∈ L(L1(µ), ℓ1(BE))
with ‖S‖ ≤ (1 + ε) such that the following diagram commutes

L1(µ)
T //

S

$$

E

ℓ1(BE)

QE

<< << . (4.6)

Now we are ready to prove Proposition 4.2.4.

Proof. (of Proposition 4.2.4.) We prove it assuming that k = n (the other cases are analogous).

Notice that Ψn has norm less or equal to one (since EXTn is an isometry).

Fix A ∈
(
⊗̃ni=1Ei, /δ

′\
)′

and ε > 0 and let Ã ∈
(
(⊗̃n−1i=1 Ei)⊗̃ℓ∞(BE′

n
), /δ′\

)′
be a Hahn-

Banach extension of A. Since E ′n has the Radon-Nikodým property, by the Lewis-Stegall

Theorem the adjoint of the canonical inclusion IEn : En → ℓ∞(BE′
n
) factors through ℓ1(BE′

n
)

via

ℓ∞(BE′
n
)′

I′En //

S

&&

E ′n

ℓ1(BE′
n
)

QEn

;; ;;
(4.7)

whith ‖S‖ ≤ (1 + ε). Let B : E1 × · · · × En−1 × c0(BE′
n
) → K be given by the formula

B(x1, . . . , xn−1, a) = (EXTn)Ã(x1, . . . , xn−1, S ′Jc0(BE′
n
)(a)). Note that B is the n-linear

form on E1× · · ·×En−1× c0(BE′
n
) associated with S ◦ (Ã)n. Using the ideal property and the

fact that the extension to the bidual is an isometry we have B ∈
(
(⊗̃n−1i=1 Ei)⊗̃c0(BE′

n
), /δ′\

)′
and ‖B‖ ≤ ‖A‖(1 + ε).

If we show that Ψn(B) = Awe are done. It is an easy exercise to prove that I ′En
(Ã)n = An.

It is also easy to see that IEn(x)(a) = QEn(a)(x) for x ∈ En and a ∈ ℓ1(BE′
n
).
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Now, Ψn(B) = (⊗̃n−1i=1 IdEi
⊗̃IEn)

′ ◦ (EXTn)(B). Then,

Ψn(B)(x1, . . . , xn) = (IEnxn)[B(x1, . . . , xn−1, ·)]
= (IEnxn)S(Ã)

n(x1, . . . , xn−1)

= QEnS(Ã)
n(x1, . . . , xn−1)(xn)

= I ′En
(Ã)n(x1, . . . , xn−1)(xn)

= An(x1, . . . , xn−1)(xn)

= A(x1, . . . , xn),

which ends the proof.

The following result is the version of Theorem 4.1.2 for full tensor products. It should be

noted that it holds for tensor products of different spaces.

Theorem 4.2.6. Let δ be a tensor norm with the sRN property and E1, . . . , En be Asplund

spaces. Then

(⊗̃ni=1E
′
i, \δ/)

1
։

(
⊗̃ni=1Ei, /δ

′\
)′
.

In particular,

(A/δ′\)
min(E1, . . . , En) = A/δ′\(E1, . . . , En),

where A/δ′\ stands for the maximal ideal of /δ′\-continuous n-linear forms.

Proof. Take a close look at the diagram in Figure 4.1 on page 77. Using Remark 4.2.3 we

know that this diagram commutes in each square. Now examine the first commutative square.

Since δ has the sRN property, R0 is a metric surjection by Proposition 4.2.2. Moreover, by

Proposition 4.2.4 we get that the composition mapping
(
(⊗̃n−1i=1 Idc0(BE′

i
))⊗̃IEn

)′◦EXTn is also

a metric surjection. As a consequence of these two facts we get that R1 is a metric surjection.

The same argument can be applied to the second commutative square, now that we know that

R1 is metric surjection. Thus, R2 is also a metric surjection. Reasoning like this, it follows that

Rn : (⊗̃ni=1E
′
i, \δ/)→

(
⊗̃ni=1Ei, /δ

′\
)′

is a metric surjection.

Let us call Ψ :
(
⊗̃ni=1c0(B

′
Ei
)
)′ →

(
⊗̃ni=1E

′
i

)′
the composition of the downward mappings in

the right side of the last diagram. The following proposition shows how to describe the mapping

Ψ more easily (this will be useful to prove the polynomial version of the last theorem).

Proposition 4.2.7. The mapping Ψ :
(
⊗̃ni=1c0(B

′
Ei
, /δ′\)

)′ →
(
⊗̃ni=1Ei, /δ

′\
)′

is the composi-

tion mapping

(
⊗̃ni=1c0(B

′
Ei
), /δ′\

)′ EXT−→
(
⊗̃ni=1ℓ∞(B

′
Ei
), /δ′\

)′ (⊗̃n
i=1IEi

)′−→
(
⊗̃ni=1Ei, /δ

′\
)′
,

where EXT stands for the iterated extension to the bidual given by (EXTn) ◦ · · · ◦ (EXT1)
(we extend from the left to the right).
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Proof. For the readers’ sake we give a proof for the case n = 2. Let B a linear form in(
c0(BE′

1
)⊗̃c0(BE′

2
), /δ′\

)′
, then

Ψ(B)(e1, e2) = (idE1⊗̃IE2)
′(EXT2)(IE1⊗̃Idc0(BE′

2
))
′(EXT1)(B)(e1, e2)

= (EXT2)(IE1⊗̃Idc0(BE′
2
))
′(EXT1)(B)(e1, IE2(e2))

= IE2(e2)
(
(IE1⊗̃Idc0(BE′

2
))
′(EXT1)(B)(e1, ·)

)

= IE2(e2)
(
a 7→ IE1(e1)B(·, a)

)

= IE2(e2)
(
(EXT1)(B)(IE1(e1), ·)

)

= (EXT )(B)(IE1(e1), IE2(e2))

= (IE1⊗̃IE2)
′(EXT )(B)(e1, e2),

which concludes the proof.

Now, this proposition shows that the diagram

(⊗̃ni=1ℓ1(BE′
i
), \δ/) // //

p
����

(
⊗̃ni=1c0(BE′

i
), /δ′\

)′

Ψ
����

(⊗̃ni=1E
′
i, \δ/) //

(
⊗̃ni=1Ei, /δ

′\
)′

conmutes and, by the proof of the Theorem 4.2.6, we have that, forE1, . . . , En Asplund spaces,

the mapping Ψ is a metric surjection.

The next remark will be very useful. It can be proved following carefully the proof of

Proposition 4.2.4 and using Proposition 4.2.7.

Remark 4.2.8. Let E be an Asplund space and S : ℓ∞(BE′)′ → ℓ1(BE′) be the operator

obtained by the Lewis-Stegall Theorem with ‖S‖ ≤ 1 + ε as in diagram (4.7). Given A ∈(
⊗̃ni=1E, /δ

′\
)′

, if we take a Hahn-Banach extension Ã ∈
(
⊗̃ni=1ℓ∞(BE′), /δ′\

)′
, then the linear

functional B ∈
(
⊗̃ni=1c0(BE′), /δ′\

)′
given by

B(a1, . . . , an) := (EXT )(Ã)(S ′J(a1), . . . , S
′J(an)), (4.8)

satisfies Ψ(B) = A and ‖B‖ ≤ ‖A‖(1 + ε)n.

We end this section with the statement of the non-symmetric versions of Theorem 4.1.10,

Corollary 4.1.12 and Corollary 4.1.13, which readily follow.

Theorem 4.2.9. Let E1, . . . , En be Banach spaces and δ a full tensor norm with sRN. The

tensor product
(
E1⊗̃ . . . ⊗̃En, /δ′\

)
is Asplund if an only if Ei is Asplund for i = 1 . . . n .

Corollary 4.2.10. Let δ be a projective full tensor norm with the sRN property and E1, . . . , En
dual Banach spaces with the bounded approximation property. Then,

(
E1⊗̃ . . . ⊗̃En, δ

)
has

the Radon-Nikodým property if and only if each Ei does.

Corollary 4.2.11. Let δ be a projective full tensor norm with the sRN property and E1, . . . , En
be Banach spaces.

(1) If each Ei has a boundedly complete Schauder basis, then so does
(
E1⊗̃ . . . ⊗̃En, δ

)
.

(2) If each Ei has a shrinking Schauder basis, then so does
(
E1⊗̃ . . . ⊗̃En, δ′

)
.



76 CHAPTER 4. THE SRN PROPERTY FOR TENSOR NORMS

The proof of Theorem 4.1.2

Now that we have our multilinear Lewis-type theorem, we are ready to prove Theorem 4.1.2.

Proof. (of Theorem 4.1.2)

As in the multilinear case, the next diagram commutes:

⊗̃n,s\α/ℓ1(BE′) // //

⊗̃n,s
QE′

����

(
⊗̃n,s/α′\c0(BE′)

)′

Ψ
��

⊗̃n,s\α/E ′ //
(
⊗̃n,s/α′\E

)′

,

where Ψ is the composition mapping

(
⊗̃n,s/α′\c0(BE′)

)′ AB−→
(
⊗̃n,s/α′\ℓ∞(BE′)

)′ (⊗̃n,s
IE)′−→

(
⊗̃n,s/α′\E

)′
.

Fix p ∈
(
⊗̃n,s/α′\E

)′
. Let p ∈

(
⊗̃n,s/α′\ℓ∞(BE′)

)′
be a Hahn-Banach extension of p, by the

Lewis-Stegall Theorem 4.2.5 we can obtain an operator S such that ‖S‖ ≤ 1 + ε satisfying

diagram (4.7). Since the Aron-Berner is an isometry for maximal ideals (Theorem 2.2.5) we

have, as in Remark 4.2.8, that the linear functional q ∈
(
⊗̃n,s/α′\c0(BE′)

)′
given by q(a) :=

(AB)(p)(S ′Jc0(BE′ )a) satisfies that Ψ(q) = p and ‖q‖(
⊗̃n,s

/α′\c0(BE′ )
)′ ≤ ‖p‖(

⊗̃n,s

/α′\E
)′(1 + ε)n.

Thus, Ψ is a metric surjection and, by the diagram, we easily get that ⊗̃n,s\α/E ′ →
(
⊗̃n,s/α′\E

)′
is

also a metric surjection.
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(
⊗̃ni=1ℓ1(BE′

i
), \δ/

) R0 //

⊗̃n−1
i=1 Idℓ1(BE′

i
)⊗̃Pn

����

(
⊗̃ni=1c0(BE′

i
), /δ′\

)′

EXTn
��(

(⊗̃n−1i=1 c0(BE′
i
))⊗̃ℓ∞(BE′

n
), /δ′\

)′
(
(⊗̃n−1

i=1 Idc0(BE′
i
))⊗̃IEn

)′
����

((⊗̃n−1i=1 ℓ1(BE′
i
))⊗̃E ′n, \δ/)

R1 //

(⊗̃n−2
i=1 Idℓ1(BE′

i
))⊗̃Pn−1⊗̃IdE′

n

����

(
(⊗̃n−1i=1 c0(BE′

i
))⊗̃En, /δ′\

)′

EXTn−1

��(
(⊗̃n−2i=1 c0(BE′

i
))⊗̃ℓ∞(BE′

n−1
)⊗̃En, /δ′\

)′
(
(⊗̃n−1

i=1 Idc0(BE′
i
))⊗̃In−1⊗̃IdE′

n

)′
����

((⊗̃n−2i=1 ℓ1(BE′
i
))⊗̃E ′n−1⊗̃E ′n, \δ/)

R2 //

����

(
(⊗̃n−2i=1 c0(BE′

i
))⊗̃En−1⊗̃En, /δ′\

)′

��. . .

... . . .
...

����

. . .

��

(ℓ1(BE′
1
)⊗̃(⊗̃ni=2E

′
i), \δ/)

Rn−1 //

P1⊗̃(⊗̃n
i=2IdE′

i
)

����

(
c0(BE′

1
)⊗̃(⊗̃ni=2Ei), /δ

′\
)′

EXT1
��(

ℓ∞(BE′
1
)⊗̃(⊗̃ni=2Ei), /δ

′\
)′

(
IE1
⊗̃(⊗̃n

i=2IdE′
i
)
)′

����

(⊗̃ni=1E
′
i, \δ/)

Rn //
(
⊗̃ni=1Ei, /δ

′\
)′

Figure 4.1: Commutative diagram used in the proof of Theorem 4.2.6
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Chapter 5

Unconditionality in tensor products and

ideals of polynomials, multilinear forms

and operators

There has been a great interest in the study of unconditionality in tensor products of Banach

spaces and, more recently, in spaces of polynomials and multilinear forms. As a probably un-

complete reference, we can mention [DDGM01, DK05, DP08, PV04, PV05, Pis78, Sch78].

A fundamental result obtained by Schütt [Sch78] and independently by Pisier [Pis78] (with

additional assumptions) simplified the study of unconditionality in tensor products: in order

to know if a tensor product of Banach spaces with unconditional basis has also unconditional

basis, just look at the monomials. The extension of these results to symmetric tensor norms

(of any degree n) was probably motivated by the so called Dineen’s problem or conjecture. In

his book [Din99], Sean Dineen asked the following question: if the dual of a Banach space E
has an unconditional basis, can the space of n-homogeneous polynomials have unconditional

basis? He conjectured a negative answer. Defant, Diaz, Garcia and Maestre [DDGM01] devel-

oped the symmetric n-fold versions of Pisier and Schütt’s work and, also, obtained asymptotic

estimates of the unconditionality constants of the monomial basis for spaces ℓmp . As a result,

they made clear that a counterexample to Dineen’s conjecture should be very hard to find. Fi-

nally, Defant and Kalton [DK05] showed that if E has unconditional basis, then the space of

polynomials on E cannot have unconditional basis. Defant and Kalton’s result is based on a

sort of dichotomy that they managed to establish: the space of polynomials either lacks the

Gordon-Lewis property or is not separable. Therefore, should the space of polynomials have a

basis, this cannot be unconditional.

On the other hand, in [PV04] Perez-Garcia and Villanueva illustrated the bad behavior of

many tensor norms with unconditionality. They showed, for example, than no natural tensor

norm (in the sense of Grothendieck) preserve unconditionality: for any natural 2-fold tensor

norm, there exists a Banach space with unconditional basis whose tensor product fails to have

the Gordon-Lewis property.

In this chapter we investigate when a tensor norm (of any degree, and either on the full or

on the symmetric tensor product) destroys unconditionality in the sense that, for every Banach

spaceE with unconditional basis, the corresponding tensor product has not unconditional basis.

We establish a simple criterion to check wether a tensor norm destroys unconditionality or not.

79
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With this we obtain that every injective and every projective s-tensor norm (resp. full tensor

norm) other than εn,s and πn,s (resp. εn and πn) destroys unconditionality.

We also study unconditionality in ideals of polynomials and multilinear forms. We show

that there are idealsQ of n-homogeneous polynomials such that, for every Banach spaceE with

unconditional basis, the spaceQ(E) lacks the Gordon-Lewis property. Among these ideals we

have the r-integral, r-dominated, extendible and r-factorable polynomials. For the last three

examples we even get that the monomial basic sequence is never unconditional.

We consider ideals of multilinear forms and ideals of operators, where some results have

their analogous. We also see that, for n = 2, the only natural tensor norms that destroy un-

conditionality are symmetric but, for n ≥ 3, there are non-symmetric natural tensor norms

that destroy unconditionality. A new contrasting situation between the n = 2 and n ≥ 3 is

obtained for n-linear forms defined on the product of n different spaces: for instance (see Ex-

ample 5.3.10), if E1, . . . , En are Banach spaces with unconditional basis, then the space of

extendible n-linear forms Le(E1, . . . , En) cannot have the Gordon-Lewis property whenever

n ≥ 3, while Le(c0, ℓ2), the space of extendible bilinear forms on c0 × ℓ2, has unconditional

basis.

5.1 Tensor norms that destroy unconditionality

A Schauder basis (ej)
∞
j=1 of a Banach space E is said to be unconditional if, for every x ∈ E,

the representing series
∑∞

j=1 ajej = x converges unconditionally. More precisely, for every

bijection σ : N→ N the permutated sum
∑∞

j=1 aσ(j)eσ(j) converges (obviously to x).

An equivalent condition is the following: a Schauder basis (ej)
∞
j=1 of a Banach space E is

unconditional if and only if there is a constantC ≥ 1 such that for all n ∈ N, all a1, . . . , an ∈ K,

all signs µ1, . . . , µr ∈ {−1,+1}, and all subset W of {1, . . . , n}

‖
∑

j∈W
µjajej‖ ≤ C‖

r∑

j=1

µjajej‖, (5.1)

and in this case the best constant in the inequality is called the unconditional basis constant of

(ej)
∞
j=1 and denoted by χ((ej)

∞
j=1;E). Moreover, if E admits an unconditional basis we can

define the unconditional basis constant of E by the following way

χ(E) := inf{χ((ej)∞j=1;E) : (ej)
∞
j=1 is an unconditional basis of E}.

We set χ(E) = ∞ if E does not admit an unconditional basis. A basic sequence (ej)
∞
j=1 is

called an unconditional basic sequence if its an unconditional basis of [ej : j ∈ N]; we write

χ((ej)
∞
j=1;E) =∞ whenever this is not the case.

A space invariant closely related to unconditionality is the Gordon-Lewis property. A Ba-

nach spaceE has the Gordon-Lewis property if every absolutely summing operatorR : E → ℓ2
is 1-factorable. In this case, there is a constant C ≥ 0 such that for all R : E → ℓ2,

γ1(R) ≤ Cπ1(R),

and the best constant C is called the Gordon-Lewis constant of E and denoted by gl(E).
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It can be shown that if a Banach space E has an unconditional basis then it has the Gordon-

Lewis property. Moreover,

gl(E) ≤ χ(E). (5.2)

This says that the latter property is weaker than having an unconditional basis. Moreover, the

Gordon-Lewis property is preserved under complementation: if F is a complemented subspace

of a space E with the Gordon-Lewis property, then F has the Gordon-Lewis property (a prop-

erty that is unknown for unconditional basis).

Pisier [Pis78] and Schütt [Sch78] made a deep study of unconditionality in tensor products

of Banach spaces. They showed (independently) that for any full tensor norm δ on the tensor

product E ⊗ F of two Banach spaces with unconditional basis (ei) and (fj), respectively, the

monomials (ei⊗fj)i,j form an unconditional basis if and only ifE⊗̃δF has some unconditional

basis if and only if E⊗̃δF has the Gordon Lewis property. This was generalized by Defant,

Diaz, Garcia y Maestre in [DDGM01] to the symmetric tensor product.

Theorem 5.1.1. Let E be a Banach space and (ej)
∞
j=1 a 1-unconditional basis for E. For each

s-tensor norm of order n we have

χmon(⊗̃
n,s

α E) := χ((σnE(ej))j∈Nn
d
; ⊗̃n,sα E) ≤ cngl

(
⊗̃n,sα E

)
,

where cn ≤ (n
4n

n!2
)2n.

As a consequence of Equation (5.2) and the previous theorem it is easy to obtain the fol-

lowing result.

Corollary 5.1.2. [DDGM01, Corollary 1.] Let E be a Banach space with unconditional basis

(ej)
∞
j=1. Then for each s-tensor norm α of order n, the following are equivalent.

(1) The monomials of order n with respect to (ej)
∞
j=1 form an unconditional basis of ⊗̃n,sα E;

(2) ⊗̃n,sα E has unconditional basis;

(3) ⊗̃n,sα E has the Gordon-Lewis property.

An interesting result due to Pérez-Garcia and Villanueva [PV04, Proposition 2.3] is that, if(
⊗̃nc0, δ

)
has unconditional basis, then δ has to coincide (up to constants) with the injective

norm εn on ⊗nc0. On the other hand, if the tensor product
(
⊗̃nℓ1, δ

)
has unconditional basis

then δ has to be equivalent to the projective norm πn on ⊗nℓ1 [PV04, Proposition 2.6].

A similar statement holds when considering Hilbert spaces [PV05, Theorem 2.5.]. More

precisely, if
(
⊗̃nℓ2, δ

)
has unconditional basis then δ has to coincide with the Hilbert-Schmidt

norm σn (again, up to constants) (the definition of this norm is a straightforward generalization

of the classical Hilbert-Schmidt tensor norm of order 2, see [DF93]).

For our purposes we need symmetric versions of [PV04, Propositions 2.3 and 2.6] and

[PV05, Theorem 2.5.]. They follow from the properties given in Theorem 3.5.5 for the ex-

tension of an s-tensor norm. We remark that the spaces ⊗̃n,sεn,s
c0, ⊗̃

n,s

πn,s
ℓ1 and ⊗̃n,sσn,s

ℓ2 have

unconditional basis (they are isomorphic to c0, ℓ1 and ℓ2 respectively).

Theorem 5.1.3. Let α be a s-tensor norm of order n, the following assertions hold.
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(1) If ⊗̃n,sα c0 has unconditional basis, then α is equivalent to εn,s on ⊗n,sc0.

(2) If ⊗̃n,sα ℓ1 has unconditional basis, then α is equivalent to πn,s on ⊗n,sℓ1.

(3) If ⊗̃n,sα ℓ2 has unconditional basis, then α is equivalent to σn,s on ⊗n,sℓ2.

Proof. Let us prove (1). First notice that ⊗̃n,sα ℓn2 (c0),≃ ⊗̃
n,s

α ℓn∞(c0) ≃ ⊗̃
n,s

α c0, has the Gordon-

Lewis property. Denote by Φ(α) the extension norm of α (see Definition 3.5.4). Since the

space
(
⊗̃nc0,Φ(α)

)
is a complemented subspace of ⊗̃n,sα ℓn2 (c0) (by construction) we have, ac-

cording Corollary 5.1.2, that
(
⊗̃nc0,Φ(α)

)
has unconditional basis. Thanks to Pérez-Garcia

and Villanueva’s result [PV04, Proposition 2.3] we can conclude that Φ(α) ∼ εn. Now using

the fact that Φ(α)|s ∼ α (Theorem 3.5.5 (1)) and εn|s ∼ εn,s we get α ∼ εn,s.

The assertions (2) and (3) follow similarly.

It should be noted that the last assertion in Theorem 5.1.3 was already stated in [PV05,

Theorem 2.].

Definition 5.1.4. We say that an s-tensor norm α destroys unconditionality if the tensor product

⊗̃n,sα E does not have unconditional basis for any Banach space E with unconditional basis.

As a consequence of Theorem 5.1.3, an s-tensor norm that preserves unconditionality has

to be equivalent to εn,s, σn,s and πn,s in ⊗n,sc0, ⊗n,sℓ2, ⊗n,sℓ1 respectively. As we see in the

next theorem, if none of these conditions are satisfied, we have just the opposite: α destroys

unconditionality.

Theorem 5.1.5. (Destruction Test for s-tensor norms.) Let α be an s-tensor norm of order

n. The norm α destroys unconditionality if and only if α is not equivalent to εn,s, πn,s and σn,s
on ⊗n,sc0, ⊗n,sℓ1 and ⊗n,sℓ2 respectively.

To prove this we will need a definition, a simple lemma and a result of Tzafriri. We start

with the definition.

Definition 5.1.6. A Banach spaceE contains an uniformly complemented sequence of (ℓmp )
∞
m=1

(1 ≤ p ≤ ∞) if there exist a positive constant C such that for every m ∈ N, there are operators

Sm : ℓmp → E and Tm : E → ℓmp satisfying TmSm = Idℓmp and ‖Tm‖‖Sm‖ ≤ C.

In other words, a Banach space contains an uniformly complemented sequence of (ℓmp )
∞
m=1

if, for every m, there is a complemented subspace Fm ⊂ E isomorphic to ℓmp with projection

constant independent of m. We now state a simple lemma.

Lemma 5.1.7. Let S : F → E and T : E → F be operators such that TS = IdF . Then,

gl(F ) ≤ ‖T‖‖S‖gl(E).

Proof. Without loss of generality we can suppose that gl(E) < ∞. Let R : F → ℓ2 be a

1-summing operator, therefore RT : E → ℓ2 also is 1-summing and γ1(RT ) ≤ gl(E)π1(RT ).
On the other hand, R = RTS therefore

γ1(R) = γ1(RTS) ≤ γ1(RT )‖S‖ ≤ gl(E)π1(RT )‖S‖ ≤ gl(E)‖T‖‖S‖π1(R).

Hence, gl(F ) ≤ ‖T‖‖S‖gl(E) which is exactly what we want to prove.
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The follwing theorem is a deep result of Tzafriri.

Theorem 5.1.8. [Tza74] Let E be a Banach space with unconditional basis then E contains

uniformly complemented at least one of the three sequences (ℓmp )
∞
m=1 with p ∈ {1, 2,∞}.

We can now prove the Destruction Test for s-tensor norms.

Proof. (of Theorem 5.1.5.)

It is clear that a tensor norm that destroys unconditionality cannot enjoy any of the three

equivalences in the statement. Conversely, suppose that α is not equivalent to εn,s, πn,s and σn,s
on ⊗n,sc0, ⊗n,sℓ1 and ⊗n,sℓ2 respectively.

Let us see that if E is a Banach space with unconditional basis, then ⊗̃n,sα E cannot have

the Gordon-Lewis property. By Theorem 5.1.8 we know that E contains an uniformly com-

plemented sequence of (ℓmp )
∞
m=1 for p = 1, 2 or ∞. So, fixed such p, there exist a positive

constant C such that for every m ∈ N, there are operators Sm : ℓmp → E and Tm : E → ℓmp
satisfying TmSm = Idℓmp and ‖Tm‖‖Sm‖ ≤ C. Now, the operators ⊗̃n,sSm : ⊗n,sα ℓmp → ⊗̃

n,s

α E

and ⊗̃n,sTm : ⊗̃n,sα E → ⊗n,sα ℓmp satisfy ⊗̃n,sTm ◦ ⊗̃
n,s
Sm = Id⊗n,s

α ℓmp
and

‖⊗̃n,sSm : ⊗n,sα ℓmp → ⊗̃
n,s

α E‖‖⊗̃n,sTm : ⊗̃n,sα E → ⊗n,sα ℓmp ‖ ≤ ‖Tm‖n‖Sm‖n ≤ Cn.

Therefore, by Lemma 5.1.7 we have gl(⊗̃n,sα ℓmp ) ≤ Cngl(⊗̃n,sα E), for every m. If gl(⊗̃n,sα E) is

finite then, by Theorem 5.1.1

χmon(⊗̃
n,s

α ℓp) = sup
m
χmon(⊗n,sα ℓmp ) <∞, if p = 1 or 2,

or

χmon(⊗̃
n,s

α c0) = sup
m
χmon(⊗n,sα ℓmp ) <∞ if p =∞.

This implies that either ⊗̃n,sα ℓ1 or ⊗̃n,sα ℓ2 or ⊗̃n,sα c0 has unconditional basis. Now using Theo-

rem 5.1.3 we get that either α ∼ εn,s on ⊗nc0, or α ∼ πn,s on ⊗nℓ1, or α ∼ σn,s on ⊗nℓ2,
which leads us to a contradiction. So, gl(⊗̃n,sα E) is infinite and the statement is proved.

Since π′n,s = εn,s, ε
′
n,s = πn,s and σ′n,s = σn,s, as a simple consequence of the Symmetric

Destruction Test 5.1.5 and Corollary 2.2.4 we have the following result.

Corollary 5.1.9. An s-tensor norm α destroys unconditionality if and only if its dual s-tensor

norm α′ destroys unconditionality.

We now show that injective or projective s-tensor norms other than εn,s and πn,s destroy

unconditionality. To see this we need to relate the full tensor norms /πn\ and εn of certain

tensor on ⊗nℓ2. First, note that from [CDS06, Proposition 3.1] (and its proof), we can see that

if S is a diagonal extendible multilinear form on ℓp (2 ≤ p ≤ ∞), then S is nuclear and

‖S‖N ≤ C‖S‖e. (5.3)

The definition of nuclear and extendible multilinear forms can also found in [CDS06] and are

analogous to the definition presented for polynomials in this text.

If T is any multilinear form on ℓp, we denote by D(T ) the multilinear form obtained from

T setting to zero all the coefficients outside the diagonal (see [CDS07] for details).
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Lemma 5.1.10. Let 2 ≤ p ≤ ∞. There exist a constant K such that for every sequence of

scalars a1, . . . , am,

/πn\(
m∑

k=1

akek ⊗ · · · ⊗ ek,⊗nℓmp ) ≤ Kεn(
m∑

k=1

akek ⊗ · · · ⊗ ek,⊗nℓmp )

Proof. Notice that

/πn\
( m∑

k=1

akek ⊗ · · · ⊗ ek,⊗nℓmp
)

= sup
‖T‖e≤1

∣∣
m∑

k=1

akT (ek, . . . , ek)
∣∣

= sup
‖T‖e≤1

∣∣
m∑

k=1

akD(T )(ek, . . . , ek)
∣∣,

≤ sup

{
∣∣
m∑

k=1

akS(ek, . . . , ek)
∣∣ : S ∈ Ln(ℓmp ) diagonal : ‖S‖e ≤ 1

}
,

where the last inequality is a consequence of the inequality ‖D(T )‖e ≤ ‖T‖e [CDS07, Propo-

sition 5.1.]. Now, using (5.3), we have

/πn\
( m∑

k=1

akek ⊗ · · · ⊗ ek,⊗nℓmp
)

≤ C−1 sup

{
∣∣
m∑

k=1

akS(ek, . . . , ek)
∣∣ : S ∈ Ln(ℓmp ) diagonal, ‖S‖N ≤ 1

}

≤ C−1εn
( m∑

k=1

akek ⊗ · · · ⊗ ek,⊗nℓmp
)
.

This concludes the proof.

Now, what we are ready to show the following.

Theorem 5.1.11. (Destruction Theorem.) Every injective or projective s-tensor norms other

than εn,s and πn,s destroy unconditionality.

Proof. Let us see first that /πn,s\ destroys unconditionality. By the Destruction Test (Theo-

rem 5.3.2) we need to show that /πn,s\ is not equivalent to εn,s, πn and σn,s on ⊗n,sc0, ⊗n,sℓ1
and ⊗n,sℓ2 respectively.

The tensor norm /πn,s\ is not equivalent to εn,s on ⊗nc0: since /πn,s\ = πn,s on ⊗n,sc0
(see Corollary 3.2.8), this would imply πn,s ∼ εn,s, which clearly false.

The tensor norm /πn,s\ is not equivalent to πn,s on⊗nℓ1: if it were, every polynomial on ℓ1
would be extendible, but this cannot happen (see, for example, [Car01, Corollary 12]). Since

/πn,s\ ≤ πn,s, this shows that

‖id : ⊗n,s/πn,s\ℓ
m
1 −→ ⊗n,sπn,s

ℓm1 ‖ → ∞, (5.4)
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as m→∞.

The tensor norm /πn,s\ is not equivalent to σn,s on⊗nℓ2: Lemma 5.1.10 states the existence

of a constant K such that:

/πn\
( m∑

k=1

ek ⊗ · · · ⊗ ek,⊗nℓ2
)
≤ Kεn

( m∑

k=1

ek ⊗ · · · ⊗ ek,⊗nℓ2
)
≤ K.

On the other hand,

σn
( m∑

k=1

ek ⊗ · · · ⊗ ek,⊗nℓ2
)
= m1/2.

Since the restrictions of /πn\ and σn to the symmetric tensor product ⊗n,sℓ2 are equivalent to

/πn,s\ and σn,s respectively, we get that /πn,s\ is not equivalent to σn,s on ⊗nℓ2. Moreover,

‖id : ⊗n,s/πn\ℓ
m
2 −→ ⊗n,sσn,s

ℓm2 ‖ → ∞, (5.5)

as m→∞, a fact that will be used below.

Thus, we have shown that /πn,s\ destroys unconditionality. From Equations (5.5) and (5.4),

if α is an s-tensor norm that is dominated by /πn,s\, then it cannot be equivalent to πn,s or σn,s
on ⊗mℓ1 or ⊗mℓ2 respectively. If it is equivalent to εn,s on ⊗n,sc0, we would have that /α\
must be equivalent to εn,s (on NORM ). Therefore, the only (up to equivalences) injective

tensor norm that does not destroy unconditionality is εn,s. By duality, a projective s-tensor

norm that is not equivalent to πn,s must destroy unconditionality.

5.2 Unconditionality in ideals of polynomials

We begin with a reformulation of the Destruction test in terms of ideals of polynomials.

Proposition 5.2.1. If Q is a Banach ideal of n-homogeneous polynomials, the following are

equivalent.

(1) For any Banach space E with unconditional basis,Q(E) fails to have the Gordon-Lewis

property.

(2) ‖Id : Q(ℓm∞)→ PnI (ℓm∞)‖ → ∞, ‖Id : Pn(ℓm1 )→ Q(ℓm1 )‖ → ∞ and

max
(
‖Id : Q(ℓm2 )→ PnHS(ℓm2 )‖, ‖Id : PnHS(ℓm2 )→ Q(ℓm2 )‖

)
→∞ as m→∞.

If Q is maximal, this is also equivalent to

(3) Q(c0) 6= PnI (c0), Q(ℓ1) 6= Pn(ℓ1) and Q(ℓ2) 6= PnHS(ℓ2).
Proof. It is clear that (1) implies any of the other statements. To see that (2) implies (1), by

Tzafriri’s result (Theorem 5.1.8) it is enough to see that gl
(
Q(ℓmp )

)
→ ∞ as m → ∞ for all

these p = 1, 2,∞. We can suppose p = 1, the other cases being completely analogous. Let α
be the s-tensor norm associated withQ. SinceQ(ℓm∞) = ⊗n,sα ℓm1 , if gl(⊗n,sα ℓm1 ) were uniformly

bounded we would have that α ∼ πn,s on ⊗n,sℓ1 by Theorem 5.1.3. Therefore, the norms of

Q(ℓm∞) and PnI (ℓm∞) would be equivalent (with constants independent of m), a contradiction.

TheLp-Local Technique Lemma for maximal ideals 2.2.15 ensures that, if ‖Id : Pn(ℓm1 )→
Q(ℓm1 )‖ is uniformly bounded on m and Q is maximal, then Pn(ℓ1) = Q(ℓ1) and, of course,

the converse is also true. The same holds for the other two conditions in (2) and (3).
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For a Banach spaceE with unconditional basis (ej)
∞
j=1, the authors of [DK05] studied when

Pn(E) was isomorphic to a Banach lattice. It turned out that this happens precisely when the

monomials associated to the dual basis (e′j)
∞
j=1 form an unconditional basic sequence. The

same holds for maximal polynomial ideals as we see in the next theorem.

Proposition 5.2.2. Let Q be a maximal ideal of n-homogeneous polynomials and E be a Ba-

nach space with unconditional basis (ej)
∞
j=1. The following are equivalent.

(1) The monomials (e′j)j∈Nn
d

form an unconditional basic sequence in Q(E);

(2) Q(E) is isomorphic to a Banach lattice;

(3) Q(E) has the Gordon-Lewis property.

The proposition can be proved similarly to [DK05, Proposition 4.1] with the help of Corol-

lary 2.2.12.

Now we present some examples of Banach polynomial ideals that destroy the Gordon-

Lewis property (in the sense of the Proposition 5.2.1). An immediate consequence of Theo-

rem 5.1.11 is the following:

Proposition 5.2.3. If Q is a Banach ideal of n-homogeneous polynomials associated with in-

jective or projective s-tensor norm different from εn,s and πn,s, then Q(E) does not have the

Gordon-Lewis property for any Banach space with unconditional basis.

As an example of the latter, we have the following.

Example 5.2.4. Let E be a Banach space with unconditional basis, then Pne (E) does not have

the Gordon-Lewis property and the monomial basic sequence is not unconditional.

The next example shows that the ideal of r-dominated polynomials Dnr lacks of uncondi-

tionality.

Example 5.2.5. LetE be a Banach space with unconditional basis and r ≥ n, thenDnr (E) does

not have the Gordon-Lewis property and the monomial basic sequence is not unconditional.

Proof. By Proposition 5.2.1 we must show that Dnr (ℓ1) 6= Pn(ℓ1), Dnr (c0) 6= PnI (c0) and

Dnr (ℓ2) 6= PnHS(ℓ2).
If Dnr (ℓ1) = Pn(ℓ1), using [CDM09, Lemma 1.5] we would have that D2

r(ℓ1) = P2(ℓ1)
(since Dr and P are coherent sequences of polynomial ideals [CDM09, Examples 1.9, 1.13]).

In this case, we would have: P2(ℓ1) = D2
r(ℓ1) = D2

2(ℓ1) = P2
e (ℓ1) (where the second equality

is due to [DF93, Proposition 12.8] and the third to [DF93, Proposition 20.17]), but we already

know that P2
e (ℓ1) cannot be equal to P2(ℓ1).

Using coherence again, it is easy to show that PnHS(ℓ2) 6⊂ Dnr (ℓ2) (recall that Hilbert

Schmidt polynomials coincide with multiple 1-summing polynomials, which form a coher-

ent sequence of ideals [CDM09, Example 1.14]): if PnHS(ℓ2) ⊂ Dnr (ℓ2), we would have

P2
HS(ℓ2) ⊂ D2

r(ℓ2) = D2
2(ℓ2) = P2

e (ℓ2) (again by [DF93, Proposition 12.8, 20.17]), which

is not true, for example, by (5.5) and duality.

Similarly,Dnr (c0) 6= PnI (c0) (PI is also a coherent sequence [CDM09, Example 1.11]).
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The ideal of r-integral polynomials Inr also lacks of unconditionality as we see below.

Example 5.2.6. Let E be a Banach space with unconditional basis and r ≥ n, then Inr (E)
does not have the Gordon-Lewis property.

Proof. As in the proof of [CDS07, Theorem 3.5] we can see that, if M is a finite dimensional

space, then (Dnr )∗(M) = Inr (M). For p ∈ {1, 2,∞}, we have gl
(
Inr (ℓmp )

)
= gl

(
Dnr (ℓmp )

)
,

which we already know by the previous example that this goes to∞ with m.

Note that in the proofs of the previous examples we have actually shown the following

limits, which we will use below:

‖Id : PnHS(ℓm2 )→ Dnr (ℓm2 )‖ → ∞ (5.6)

‖Id : Inr (ℓm2 )→ PnHS(ℓm2 )‖ → ∞ (5.7)

as m goes to infinity.

Unconditionality is also destroyed by the ideal of r-factorable polynomials Lnr .

Example 5.2.7. LetE be a Banach space with unconditional basis and r ≥ n, thenLnr (E) does

not have the Gordon-Lewis property and the monomial basic sequence is not unconditional.

Proof. By [CDS07, Theorem 3.5] and then [Flo02, Proposition 4.3.], we have D∗r = Imaxr ⊂
Lr (Lr is maximal [Flo02, Proposition 3.1]). Therefore, using Proposition 5.2.1 and Equa-

tion (5.7), we have ‖Id : Lnr (ℓm∞) → PnI (ℓm∞)‖ → ∞ and ‖Id : Lnr (ℓm2 ) → PnHS(ℓm2 )‖ → ∞.

It remains to show that Lnr (ℓ1) 6= Pn(ℓ1). We show this first for n = 2. Suppose this happens,

then every symmetric operator T : ℓ1 → ℓ∞ would factorize by a reflexive Banach space, then

must be weakly compact, a contradiction to the fact that ℓ1 is not symmetrically Arens regular

[ACG91, Section 8]. For n ≥ 3 we use coherence for composition ideals [CDM09, Proposition

3.3] since Lr = P ◦ Γr [Flo97, 3.5.], where Γr is the ideal of r-factorable operators.

In [DK05], Defant and Kalton showed that the space Pn(E) of all n-homogeneous polyno-

mials cannot have unconditional basis whenever E is a Banach space with unconditional basis.

However, Pn(E) can have the Gordon-Lewis property (for example, when E = ℓ1). When this

happens, Pn(E) is not separable and therefore it has no basis at all. One may wonder if there

are other ideals with that property: that never have unconditional bases but sometimes enjoy

the Gordon-Lewis property. We will present such an example but first we extend the range of

ideals for which [DK05, Proposition 3.2.] apply. For each m, we define pm ∈ Pn(ℓ2) by

pm =
m∑

j=1

(e′j)
n.

Proposition 5.2.8. Let E be a Banach space with unconditional basis and let Q be a polyno-

mial ideal such that (‖pm‖Q(ℓ2))m is uniformly bounded. If (Q)max(E) is separable, then E
must contain (ℓm2 )

∞
m=1 or (ℓm∞)

∞
m=1 uniformly complemented.

Proof. Let (ek)
∞
k=1 be an unconditional basis of E. By the proof of [DK05, Proposition 3.2.]

we know that if E does not contain any of the sequences (ℓm2 )
∞
m=1, (ℓm∞)

∞
m=1 uniformly comple-

mented then we may extract a subsequence (fj)
∞
j=1 of (ek)

∞
k=1 such that for any x ∈ F := [(fj)],
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∑
j=1 |f ′j(x)|2 <∞ (where (f ′j)j is the corresponding subsequence of the dual basic sequence).

This means that, as sequence spaces, we have a continuous inclusion i : F →֒ ℓ2. For x ∈ F ,

we define qm(x) =
∑m

j f
′
j(x)

n. We have

‖qm‖Q(F ) = ‖pm ◦ i‖Q(F ) ≤ ‖pm‖Pn(ℓ2)‖i‖n,

which is bounded uniformly on m. It follows from [CDS08, Lemma 5.4] that (Q)max(F )
cannot be separable. Hence, (Q)max(E) cannot be separable either, since F is a complemented

subspace of E.

The uniform bound for (‖pm‖Q(ℓ2))m is necessary for the result to be true, as the following

example shows.

Example 5.2.9. Let E be the dual of the original Tsirelson’s space. Since E is a reflexive

Banach space with unconditional basis, by Corollary 4.1.6 we get that Pne (E) is separable.

But, E does not contain either ℓm2 nor ℓm∞ uniformly complemented [CS89, Pages 33 and 66].

Corollary 5.2.10. Let Q be a maximal Banach ideal of n-homogeneous polynomials such that

(‖pm‖Q(ℓ2))m is uniformly bounded. Suppose also that not ever polynomial in Qn(c0) is inte-

gral. If E or its dual has unconditional basis, then Q(E) does not have unconditional basis.

Proof. Suppose first that E has unconditional basis. IfQ(E) is separable, by Proposition 5.2.8

E must contain either (ℓm∞)
∞
m=1 or (ℓm2 )

∞
m=1 uniformly complemented. If E contains the se-

quence (ℓm∞)
∞
m=1 uniformly complemented, since not every polynomial on c0 is integral, we

have

gl(Qn(ℓm∞))→∞ as m→∞,
by the proof of Proposition 5.2.1, so Q(E) cannot have the Gordon-Lewis property. If E
contains (ℓm2 )

∞
m=1 uniformly, since (‖pm‖Q(ℓ2))m is uniformly bounded and (‖pm‖Pn

HS(ℓ2)
)m =√

m, we can conclude that

gl(Qn(ℓm2 ))→∞ as m→∞,

by the proof of Theorem 5.1.5. Therefore, ifE is reflexive,Q(E) either fails the Gordon-Lewis

property or is non-separable. In any case, it has no unconditional basis.

If E ′ has unconditional basis and is reflexive, then E also has unconditional basis and we

are in the previous case. If E ′ is not reflexive and has unconditional basis, then E ′ contains

complemented copies of c0 or ℓ1. If it contains c0, it also contains ℓ∞, so E ′ is not separable,

a contradiction. If E ′ contains ℓ1 and we denote by α the s-tensor norm associated with Q, we

obtain that Q(E) contains the spaces ⊗n,sα ℓm1 which are uniformly isomorphic to Qn(ℓm∞). As

in the reflexive case, the Gordon-Lewis constant ofQn(ℓm∞) goes to infinity, soQn(E) does not

have the Gordon-Lewis property.

As a consequence of the previous corollary, we conclude that Pn(E) cannot have an uncon-

ditional basis for any Banach space E that has (or its dual has) unconditional basis. Since there

are Banach spaces without unconditional basis whose duals have one (see for example the re-

mark after [LT77, 1.c.12.]), this somehow extends the answer to Dineen’s question in [DK05].

However, it should be stressed that our arguments strongly rely on Defant and Kalton’s work.
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Another consequence is the following: suppose that E ′ has a Schauder basis (e′j)
∞
j=1 and

Qn is as in the previous corollary. Then, the monomials associated with (e′j)
∞
j=1 cannot be an

unconditional basis of Qn(E). Indeed, should the monomials be an unconditional sequence,

then (e′j)
∞
j=1 would be also unconditional, so we can apply Corollary 5.2.10.

Now we present another example of a maximal Banach ideal of polynomials which behaves

just as Pn.

Example 5.2.11. The polynomial idealQ = Dnn ◦Γ−1∞ never has unconditional basis but it may

enjoy the Gordon-Lewis property. For n ≥ 3, this ideal is different from Pn.

Here we follow the notation given in Definition 3.4.2 for quotient ideals. More precisely, a

polynomial p belongs toQ(E) if there exists a constant C > 0 such that for every∞-factorable

operator T : F → E with γ∞(T ) ≤ 1, the composition p◦T is n-dominated and ‖p◦T‖Dn
n
≤ C.

We define

‖p‖Q := sup{‖p ◦ T‖Dn
n
: γ∞(T ) ≤ 1},

where Dnn is the ideal of n-dominated polynomials.

It is not hard to see that Q is in fact a Banach ideal of n-homogeneous polynomials. We

now see that Q is maximal: take p ∈ (Q)max(E) and let us show that p ∈ Q(E), that is,

‖p ◦ T‖Dn
n
≤ C for every T ∈ Γ∞(F,E) with γ∞(T ) ≤ 1. Since Dn

n is a maximal ideal,

it is sufficient to prove that ‖p ◦ T |M‖Dn
n
≤ C for every M ∈ FIN(F ) and T as before.

But, p ◦ T |M = p|Im(T |M ) ◦ T |M and since p ∈ (Q)max(E) we have ‖p|N‖Q ≤ K for every

N ∈ FIN(E). This means that supγ∞(T )≤1 ‖p|N ◦ T‖Dn
n
≤ K and we are done.

We also haveQ(ℓ1) = Pn(ℓ1). Indeed, take p ∈ Pn(ℓ1) and T ∈ Γ∞(F, ℓ1) with unit norm

and let us find a constant C such that ‖p ◦T‖Dn
n
≤ C. If S : F → L∞(µ) and R : L∞(µ)→ ℓ1

are operators which satisfy ‖S‖‖R‖ ≤ 2 and T = S ◦ R, then p ◦ T = p ◦ R ◦ S. By

Grothendieck’s theorem [DJT95, 3.7], R is n-summing and πn(R) ≤ KG‖R‖. Since Dnn is the

composition ideal Pn◦Πn [Sch91] we have ‖p◦R‖Dn
n
≤ Kn

G‖p‖‖R‖n. Therefore ‖p◦T‖Dn
n
≤

Kn
G‖p‖‖R‖n‖S‖n ≤ (2KG)

n‖p‖ and we are done.

Using a similar argument it can be shown thatQ(ℓ2) = Pn(ℓ2), so the sequence (‖pm‖Q(ℓ2))m
is uniformly bounded. We also have Q(c0) = Dnn(c0) 6⊃ PnI (c0).

Thus, Corollary 5.2.10 says that Q(E) has not unconditional basis if E or its dual has

unconditional basis. On the other hand, Q(ℓ1) = Pn(ℓ1) has the Gordon-Lewis property.

Since Q(c0) = Dnn(c0), Lemma 5.4 in [JPPV07] ensures that Q is different from Pn for

n ≥ 3 (for n = 2 we actually have Q = P2).

5.3 Unconditionality for full tensor norms and multilinear

ideals

We now study unconditionality for full tensor norms. We have the obvious definition.

Definition 5.3.1. We say that a full tensor norm δ destroys unconditionality if the tensor

product
(
⊗̃nE, δ

)
does not have unconditional basis for any Banach spaceE with unconditional

basis.
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We list the analogous versions of Theorem 5.1.5 and Theorem 5.1.11 for full tensor norms.

They can be proved similarly, using the ideas of the proofs we saw and [DDGM01, Remark 1].

Theorem 5.3.2. Destruction Test: A full tensor norm δ destroys unconditionality if and only

if δ is not equivalent to εn, πn and σn on ⊗nc0, ⊗nℓ1, ⊗nℓ2 respectively.

Theorem 5.3.3. Every injective or projective full tensor norms other than εn and πn destroy

unconditionality.

Note that the previous result asserts that nontrivial (different from εn and πn) natural full-

symmetric tensor norms destroy unconditionality. A natural question arises: what about the

other (non-symmetric) natural norms? We know that none of them preserve unconditionality,

but which of them destroy it? Again, the answer will depend on n being 2 or greater.

Remark 5.3.4. For n = 2, /π2\ and \ε2/ are the only natural norms that destroy uncondition-

ality.

Proof. We know that /π2\ and \ε2/ destroy unconditionality and that π and ε do not.

On the other hand, since (/π2\)/ ∼ d2 is equivalent to σ2 in ⊗2ℓ2, we have that (/π2\)/
does not destroy unconditionality and, by duality, neither does \(/π2\) ∼ g2.

By [Sch90, Corollary 3.2] we know that Π1(ℓ2, ℓ2) has the Gordon-Lewis property. So,

ε2/ = d∞ cannot destroy unconditionality. Transposing and/or dualizing, neither do \ε2 = g∞,

π2\ = d′∞ or /π2 = g′∞.

If we show that \(/π2) = \g′∞ does not destroy unconditionality, we obtain the same con-

clusion for (π2\)/ = d′∞/, (ε2/)\ = d∞\ and /(\ε2) = /g∞ (again by duality and transposi-

tion). Now, since ℓ∞ is injective, every operator from ℓ1 to ℓ∞ is extendible. Therefore, /π2
and π2 are equivalent on ⊗2ℓ1, which implies also the equivalence of \(/π2) and π2 on ⊗2ℓ1,

and thus \(/π2) ∼ \g′∞ does not destroy unconditionality, which ends the proof.

We have just shown that, for n = 2, nontrivial symmetric tensor norms are exactly those

that destroy unconditionality. Let us see that for n ≥ 3, there are non-symmetric natural tensor

norms that destroy unconditionality. We have never defined nor introduced the notation for

non-symmetric natural tensor norms, but for the following examples, it is enough to say that

injk means to take injective associate in the kth place (e.g., for n = 2, inj1δ is the left injective

associate /δ).

Example 5.3.5. There are non-symmetric natural norms that destroy unconditionality.

Consider δ = inj2 inj1πn. Note that E ⊗/π2\ E is isometric to a complemented subspace

of
(
⊗n E, δ

)
for any Banach space E. Since /π2\ destroy unconditionality, it destroys the

Gordon-Lewis property, and therefore so does δ.

It is not true that every natural tensor norm different from π and ε destroys unconditionality.

For example, if we take δ = inj1π3 we have

(ℓ1 ⊗ ℓ1 ⊗ ℓ1, δ) ≃ (ℓ1 ⊗/π2 ℓ1)⊗π2 ℓ1 ≃
(
⊗3 ℓ1, π3

)
.

Hence, δ = inj1π does not destroy unconditionality.
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Our original motivation was the unconditionality problem for spaces of polynomials (Di-

neen’s problem), and so it was reasonable to consider tensor products of a single space. How-

ever, the question about unconditionality in full tensor products is interesting also when differ-

ent spaces are considered. Moreover, we see that in this case, there is a new difference between

n = 2 and n ≥ 3. First we have the following lemma.

Lemma 5.3.6. Let δ be a 2-fold full injective norm. There exist a constant C ≥ 0 such that

m1/2 ≤ Cgl
(
ℓm1 ⊗δ ℓm2

)
≤ Cm1/2 for every m ∈ N. In particular, gl

(
ℓm1 ⊗δ ℓm2

)
→ ∞, as

m→∞.

Proof. For the lower estimate, notice first that by [DF93, Exersice 31.2] ℓ1 ⊗ε2 ℓ2 ≃ ℓ1 ⊗δ ℓ2
(since ℓ1 and ℓ2 have cotype 2). Then, ℓm1 ⊗δ ℓm2 is isomorphic to ℓm1 ⊗ε2 ℓm2 with constants

independent of m. So we have to estimate gl
(
ℓn1 ⊗ε2 ℓn2

)
.

First we have:

‖
m∑

i,j

ei ⊗ ej‖ℓm1 ⊗ε2ℓ
m
2
= sup

a∈Bℓm∞
,b∈Bℓm2

∣∣
m∑

i,j

aibj
∣∣ ≥ m sup

b∈Bℓm2

∣∣
m∑

j

bj
∣∣ = mm1/2 = m3/2.

We now consider the aleatory matrices

R : Ω→ ℓm1 ⊗ε2 ℓm2 R(ω) :=
m∑

i,j

ri,j(ω)ei ⊗ ej

G : Ω→ ℓm1 ⊗ε2 ℓm2 G(ω) :=
m∑

i,j

gi,j(ω)ei ⊗ ej,

where (Ω, µ) is a probability space and ri,j’s and gi,j’s forms a family of m2 independent

Bernoulli and Gaussian variables on Ω, respectively.

Then, for all ω ∈ Ω

m3/2 ≤ ‖
m∑

i,j

ei ⊗ ej‖ℓm1 ⊗ε2ℓ
m
2
= ‖

m∑

i,j

ri,j(ω)ri,j(ω)ei ⊗ ej‖ℓm1 ⊗ε2ℓ
m
2

≤ χ((ei ⊗ ej)i,j)‖R(ω)‖ℓm1 ⊗ε2ℓ
m
2
.

On the other hand, we know that χ((ei ⊗ ej)i,j) ≤ 23gl(ℓn1 ⊗ε2 ℓn2 ) by [DDGM01, Remark

1] (which is a ‘full’ version of Theorem 5.1.1). Therefore, for every ω ∈ Ω we have:

m3/2 ≤ ‖
m∑

i,j

ei ⊗ ej‖ℓm1 ⊗ε2ℓ
m
2
≤ 23gl(ℓm1 ⊗ε2 ℓm2 )‖R(ω)‖ℓm1 ⊗ε2ℓ

m
2
.

Integrating the last expression,

m3/2 ≤ ‖
m∑

i,j

ei ⊗ ej‖ℓm1 ⊗ε2ℓ
m
2
≤ 23gl(ℓm1 ⊗ε2 ℓm2 )

∫

Ω

‖R(ω)‖ℓm1 ⊗ε2ℓ
m
2
dµ(ω).
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Now, since Gaussian averages dominate, up to a uniform constant, Bernoulli averages ([Tom89,

Page 15.], [DJT95, Proposition 12.11.]) we get:

∫

Ω

‖R(ω)‖ℓm1 ⊗ε2ℓ
m
2
dµ(ω) ≤ L

∫

Ω

‖G(ω)‖ℓm1 ⊗ε2ℓ
m
2
dµ(ω).

It is time to use Chevet inequality.

Chevet Inequality [Tom89, (43.2)]: Let E and F be Banach spaces. Fix x′1, . . . , x
′
m ∈ E ′

and y1, . . . , ym ∈ F . If {gij}, {gi}, {gj} are independent Gaussian random variables in some

probability space (Ω, µ). Then there is a constant b such that,

∫

Ω

‖
m∑

i,j=1

gijx
′
i ⊗ yj‖L(E,F ) dµ ≤ b sup‖x‖E≤1

(
m∑

i=1

|x′i(x)|2
)1/2 ∫

Ω

‖
m∑

j=1

gjyj‖ dµ

+ b sup‖y′‖F ′≤1

(
m∑

j=1

|y′(yj)|2
)1/2 ∫

Ω

‖
m∑

i=1

gix
′
i‖ dµ.

To conclude with our estimations it remains to observe that

‖
m∑

i,j

gi,j(ω)ei ⊗ ej‖ℓm1 ⊗ε2ℓ
m
2
= ‖

m∑

i,j

gi,j(ω)ei ⊗ ej‖L(ℓm∞,ℓm2 ).

Then,
∫

Ω

‖G(ω)‖ℓm1 ⊗ε2ℓ
m
2
dµ(ω) ≤ b supx∈Bℓm∞

(∑m
i=1 |xi|2

)1/2 ∫
Ω
‖
∑m

j=1 gj(ω)ej‖ℓm2 dµ(ω)

+b supy∈Bℓm2

(∑m
j=1 |yj|2

)1/2 ∫
Ω
‖
∑m

i=1 gi(ω)ei‖ℓm1 dµ(ω).

Using [Tom89, Proposition 45.1] we have that the last member is less or equal to Dm, where

D is a constant. Gathering all together we get that m1/2 ≤ Cgl
(
ℓm1 ⊗ε2 ℓm2

)
.

The upper estimate follows from the fact that d(ℓm1 ⊗ε2 ℓm2 , ℓm1 ⊗ε2 ℓm∞) ≤ d(ℓm2 , ℓ
m
∞) = m1/2

(the Banach-Mazur distance, see [Tom89]) together with χ(ℓm1 ⊗ε2 ℓm∞) = 1 (since ℓm1 ⊗ε2 ℓm∞
1
=

ℓm∞(ℓ
m
1 )).

The following proposition shows that the tensor product of three or more spaces lacks the

Gordon-Lewis property.

Proposition 5.3.7. Fix n ≥ 3 and let δ be an n-fold natural full symmetric tensor norm other

than πn or εn. If E1, . . . , En have unconditional bases, then
(
⊗̃ni=1Ei, δ

)
does not have the

Gordon-Lewis property (nor unconditional basis).

To prove this proposition we will need next remark which follows from the metric mapping

property and the definition of the operation (·) (see the comments before Lemma 3.5.3).

Remark 5.3.8. Let E1, . . . , En Banach spaces, xj ∈ SEj
(j = 3, . . . , n) and δ a full tensor

norm of order n. Then
(
E1 ⊗ E2 ⊗ [x3] ⊗ · · · ⊗ [xn], δ

)
is a complemented subspace of(

E1 ⊗ · · · ⊗ En, δ
)

and this space is isometrically isomorphic to
(
E1 ⊗ E2, δ̃

)
, where δ̃ is the

2-fold tensor norm which comes from applying n− 2 times the operation (·) to the norm δ.
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Proof. (of Proposition 5.3.7)

Let δ̃ as in Remark 5.3.8; it is easy to show that δ̃ is the 2-fold natural analogous to δ,
thus must be one of the tensor norms that appear in (5.9) below. Recall that nontrivial natural

symmetric tensor norms destroy unconditionality, therefore for p ∈ {1, 2,∞}

gl
(
ℓmp ⊗δ̃ ℓmp

)
(5.8)

goes to infinity as m goes to infinity.

On the other hand, we have

gl
(
ℓm1 ⊗/π2\ ℓm2

)
≍ gl

(
ℓm1 ⊗/\ε2/\ ℓm2

)
= gl

(
ℓm∞ ⊗\/π2\/ ℓm2

)
≍ gl

(
ℓm∞ ⊗\ε2/ ℓm2

)
, (5.9)

and, by the previous lemma, all go to infinity as m goes to infinity.

By Theorem 5.1.8, the spaces E1, E2 and E3 must contain, respectively, uniformly com-

plemented copies of (ℓmp1)
∞
m=1, (ℓmp2)

∞
m=1 and (ℓmp3)

∞
m=1, with p1, p2, p3 ∈ {1, 2,∞}. If p1, p2 and

p3 are all different, then they must be 1, 2 and ∞ in some order. As a consequence, we can

choose two of them, say p and q, such that gl
(
ℓmp ⊗δ̃ ℓmq

)
goes to infinity as in (5.9), the choice

depending on the tensor norm δ̃. If p1, p2 and p3 are not all different, we choose p = q as two

of them that coincide. In this case, gl
(
ℓmp ⊗δ̃ ℓmq

)
goes to infinity as in (5.8).

In any case, we have two spaces, say E1 and E2, containing respectively ℓmp ’s and ℓmq ’s

uniformly complemented, so that gl
(
ℓmp ⊗δ̃ ℓmq

)
→ ∞. Observe that, for fixed xj ∈ SEj

(j =

3, . . . , n), the spaces ℓmp ⊗δ̃ ℓmq
1
=
(
ℓmp ⊗ ℓmq ⊗ [x3]⊗ · · ·⊗ [xn], δ

)
are uniformly complemented

in
(
⊗̃ni=1Ei, δ

)
by Remark 5.3.8 and the proof is complete.

With a similar proof the same result holds for δ an n-fold nontrivial injective (nontrivial

projective) full tensor norm such that δ̃ 6∼ ε2 (δ̃ 6∼ π2). It is important to note that Proposi-

tion 5.3.7 is false for n = 2: the space c0 ⊗/π2\ ℓ2 has the Gordon-Lewis property. Indeed,

c0 ⊗/π2\ ℓ2 = c0 ⊗π2\ ℓ2 = c0 ⊗d′∞ ℓ2, so if we show that there exists C > 0 such that

gl(ℓm∞ ⊗d′∞ ℓm2 ) ≤ C for every m, we are done. We have

gl
(
ℓm∞ ⊗d′∞ ℓm2

)
= gl

(
ℓm1 ⊗d∞ ℓm2

)
= gl

(
(ℓm1 ⊗d∞ ℓm2 )

′) = gl
(
Π1(ℓ

m
1 , ℓ

m
2 )
)
.

In [Sch90], I. Schütt showed that the last expression is uniformly bounded. This fact can

be deduced easily in a different way. Well, by Grothendieck’s Theorem [DJT95, 1.13] we

have Π1(ℓ1, ℓ2) = L(ℓ1, ℓ2), then gl
(
Π1(ℓ

m
1 , ℓ

m
2 )
)
≍ gl

(
L(ℓm1 , ℓm2 )

)
= gl

(
ℓm∞ ⊗ε2 ℓm2

)
. Since

ℓm∞ ⊗ε2 ℓm2
1
= ℓm∞(ℓ

m
2 ) and this space has a 1-unconditional basis, therefore the result follows.

We have presented examples of several polynomial ideals that lack the Gordon-Lewis prop-

erty for any Banach space with unconditional basis. It is easy to obtain the same conclusions for

ideals of multilinear forms on a single space. For example, Theorem 5.1.11 gives the following

proposition.

Proposition 5.3.9. Let An be a Banach ideal of n-linear forms associated with a nontrivial

injective or projective tensor norm. If E has unconditional basis, then An(E) does not have

the Gordon-Lewis property.

From the previous result and Proposition 5.3.7 we have the following statement for the ideal

of extendible n-linear forms Lne .
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Example 5.3.10. (1) If E is a Banach space with unconditional basis, then Lne (E) does not

have the Gordon-Lewis property (n ≥ 2).

(2) If E1, . . . , En are Banach spaces with unconditional basis (n ≥ 3), then Le(E1, . . . , En)
does not have the Gordon-Lewis property.

On the other hand, the comments after Proposition 5.3.7 show that we cannot expect (2) to

hold for n = 2. Moreover, the space Le(c0, ℓ2) not only enjoys the Gordon-Lewis property, in

fact it has unconditional basis: since \ε2/ has the Radon-Nikodým property [DF93],

Le(c0, ℓ2) = (c0⊗̃/π2\ℓ2)′ = ℓ1⊗̃\ε2/ℓ2,

and therefore Le(c0, ℓ2) has a monomial basis. Since we have shown that c0 ⊗/π2\ ℓ2 has the

Gordon-Lewis property, this monomial basis must be unconditional.

An example that does not follow from the injective/projective result is the ideal of r-
dominated multilinear forms:

Definition 5.3.11. Let r ≥ n, an n-linear form T : E1× · · · ×En → K is r-dominated if there

is a constant C ≥ 0 such that, however we choose finitely many vector (xji )
m
i=1 ∈ Ej , we have

( m∑

i=1

|T (x1i , . . . , xni )|r/n
)n/r ≤ Cwr

(
(x1i )

m
i=1

)
. . . wr

(
(xni )

m
i=1

)
.

The space of all such T will be denoted Dr(E1, . . . , En) with the norm δr(T ) = minC.

Since the ideal of r-dominated polynomials Dnr (E) is isomorphic to a complemented sub-

space of Dr(E, . . . , E) (the ideal of r-dominated n-linear forms), from the polynomial result

(Example 5.2.5) we obtain the following.

Example 5.3.12. Let E be a Banach space with unconditional basis, then the space Dnr (E) :=
Dr(E, . . . , E) does not have the Gordon-Lewis property.

Let us mention that, when working with different spaces, we can obtain that dominated

multilinear forms behaves exactly as the extendible ones in Example 5.3.10. The case n = 2
follows from the coincidence between dominated and extendible bilinear forms. The case n ≥
3 is similar to the proof of Proposition 5.3.7, using again that for bilinear forms extendibility is

equivalent to domination.

Analogously, just as in the polynomial case, the results for r-integral and r-factorable mul-

tilinear forms (with the obvious definitions) can be deduced from the r-dominated case.

We end this section with some remarks on unconditionality for certain Banach operator

ideals. We have seen that unconditionality may be present in tensor products of two different

spaces, even for tensor norms that destroy unconditionality. Therefore, it is reasonable to expect

that, in order to obtain results of “unconditionality destruction” type for operator ideals, certain

conditions on the involved spaces must be imposed.

Example 5.3.13. Let E and F be Banach spaces with unconditional basis such that E ′ and F
have both finite cotype, then Γp,q(E,F ) does not have the Gordon-Lewis property.
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Proof. By Theorem 5.1.8 we know that, for r ∈ {2,∞} and s ∈ {1, 2}, E and F contain the

uniformly complemented sequences (ℓmr )
∞
m=1, (ℓms )

∞
m=1 respectively. This easily implies that

Γp,q(E,F ) must contain the uniformly complemented sequence (Γp,q(ℓ
m
r , ℓ

m
s ))

∞
m=1. Therefore,

if show that gl
(
Γp,q(ℓ

m
r , ℓ

m
s )
)
→∞ as m→∞ we are done.

By [DF93, 17.10] we know that (Γp,q, γp,q) is a maximal operator ideal associated with the

tensor norm γp,q of Lapresté (see [DF93, 12.5] for definitions). Thus,

Γp,q(ℓ
m
r , ℓ

m
s ) = ℓmr′ ⊗γp,q ℓms .

Now by [DF93, Exercise 31.2. (a)] we have

gl
(
Γp,q(ℓ

m
r , ℓ

m
s )
)
= gl

(
ℓmr′ ⊗γp,q ℓms

)
≍ gl

(
ℓmr′ ⊗/π2\ ℓms

)

which goes to infinity as m→∞ (this is a direct consequence of the proof of Proposition 5.2.1

for P2
e and Lemma 5.3.6).

In particular, for 1 < r < ∞ and 1 ≤ s < ∞ the spaces Γp,q(ℓr, ℓs) and Γp,q(c0, ℓs) do

not have the Gordon-Lewis property. The case r = ∞ and 1 ≤ s < ∞ can be established

just following the previous proof. In fact, proceeding as above and using [Sch78, Proposition

7], something more can be stated: for 2 ≤ r ≤ ∞ and 1 ≤ s ≤ 2, if E and F be Banach

spaces such that E contains the sequence (ℓmr )
∞
m=1 uniformly complemented and F contains

the sequence (ℓms )
∞
m=1 uniformly complemented, then Γp,q(E,F ) does not have the Gordon-

Lewis property. Note that in this case, we do not require that E nor F have unconditional

bases.

Let us now introduce a classical operator ideal.

The ideal of (p,q)-dominated operators [DF93, Section 19]: Let p, q ∈ [1,+∞] such that

1/p+1/q ≤ 1. An operator T : E → F is (p, q) dominated if for everym ∈ N, x1, . . . , xm ∈ E
and y′1, . . . , y

′
m ∈ F ′ there exist a constant C ≥ 0 such that:

ℓr(< y′k, Txk >) ≤ Cwp(xk)wq(y
′
k),

where 1/p + 1/q + 1/r′ = 1. We denote the space of all such operators by Dp,q(E,F ) with

the norm Dp,q(T ) being the minimum of these C. Equivalently, T ∈ Dp,q(E,F ) if there are a

constant B ≥ 0 and probability measures µ and ν such that

| < y′, Tx > | ≤ B
( ∫

BE′

| < x′, x > |pµ(dx′)
)1/p(

∫

BF ′′

| < y′′, y′ > |qν(dy′′)
)1/q

,

holds for all x ∈ E and y′ ∈ F ′, (replace the integral by ‖ ‖ if the exponent is ∞). In this

case, the (p, q)-dominated norm of T , Dp,q(T ), is the infimum of the constants B for which

the previous inequality hold (see [DF93, Corollary 19.2.]). If 1/p + 1/q = 1, Dp,q coincides

isometrically with the classical ideal of p-dominated operators [DJT95, Chapter 9].

By [DF93, Sections 17 and 19] we know that the ideal of (p,q)-dominated operators [DF93,

Section 19] Dp,q is the adjoint of Γp′,q′ , the ideal of (p′, q′)-factorable operators. Using the

duality that this implies on finite dimensional spaces, we can deduce the following.

Example 5.3.14. Let E and F be Banach spaces with unconditional basis such that E and F ′

have both finite cotype, then Dp,q(E,F ) does not have the Gordon-Lewis property.
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As above, we can see that for 1 ≤ r ≤ 2 and 2 ≤ s ≤ ∞, if E contains the sequence

(ℓmr )
∞
m=1 uniformly complemented and F contains the sequence (ℓms )

∞
m=1 uniformly comple-

mented, then Dp,q(E,F ) does not have the Gordon-Lewis property.

We have, in particular, that for 1 ≤ r < ∞ and 1 ≤ s ≤ ∞ the spaces Dp,q(ℓr, ℓs) and

Dp,q(ℓr, c0) do not have the Gordon-Lewis property.

Let us give a procedure to obtain more examples: if U is a Banach operator ideal and δ is

its associated tensor norm, by U inj sur we denote the maximal operator ideal associated with

the norm /δ\ [DF93, Sections 9.7 and 9.8]. Using the ideas of Example 5.3.13 and the fact that

/δ\ ≤ /π2\, we have:

Example 5.3.15. Let E and F be Banach spaces with unconditional basis such that E ′ and F
have both finite cotype, then U inj sur(E,F ) does not have the Gordon-Lewis property.

For example, let us consider U to be the ideal of (p, q)-factorable operators Γp,q. An operator

T belongs to Γinj surp,q (E,F ) if and only if there is a constant C ≥ 0 such that for all natural

numbers m ∈ N, all matrices (ak,l), all x1, . . . , xm ∈ E and all y′1, . . . , y
′
m ∈ F ′

∣∣
m∑

k,l=1

ak,l < y′k, Txl >
∣∣ ≤ C‖(ak,l) : ℓmp′ → ℓmq ‖ℓp′(xl)ℓq′(y′k).

In this case, γinj surp,q (T ) := minC (see [DF93, Theorem 28.4]).



Chapter 6

Structures in the symmetric tensor

product

In the previous chapter we have shown that the unconditionality structure is not preserved in

general for the symmetric tensor product. Now we devote our efforts to study the preservation

of certain structures for specific s-tensor norms. Namely, the Banach algebra structure and the

M -ideal structure.

In Section 6.1, we describe which natural s-tensor norms preserve the algebra structure.

Based on the work of Carne [Car78], we show that the two s-tensor norms preserving Banach

algebras are πn,s and \/πn,s\/.

In Section 6.2 we show that the M -ideal structure is destroyed by εn,s for every n. More

precisely, we prove that for real Banach spaces E and F , if E is a non trivial M -ideal in F ,

then ⊗̃n,sεn,s
E is never an M -ideal in ⊗̃n,sεn,s

F . This result marks up a difference with the behavior

of full tensors since, when E is an M -ideal in F , it is known that ⊗̃nεnE is an M -ideal in

⊗̃nεnF . Even though the M -structure for symmetric tensors fails, one may wonder whether the

consequence about unique norm preserving extensions holds. That is, being E a non trivial

M -ideal in F , has every integral n-homogeneous polynomial in E a unique extension to F that

preserves the integral norm? We give in Theorem 6.2.9 a positive answer for the case of E
being an Asplund space and describe explicitly this unique extension.

6.1 s-tensor norms preserving Banach algebra structures

Carne in [Car78] showed that there are exactly four natural 2-fold tensor norms that preserve

Banach algebras, two of which are symmetric: π2 and \ε2/. Based on his work we describe

which natural s-tensor norms preserve this structure.

If A is a Banach algebra the n-fold symmetric tensor product ⊗n,sA inherits a natural alge-

braic structure give by

( r∑

j=1

⊗nxj
)
·
( s∑

k=1

⊗nyk
)
=

r∑

j=1

s∑

k=1

⊗n(xj · yk).

For a given Banach algebra A we denote m(A) : A ⊗π2 A → A the map induced by the

97
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multiplication A × A → A. The following theorem is a symmetric version of Carne [Car78,

Theorem 1]. Its proof is obtained by adapting the one in [Car78] for the symmetric setting.

Theorem 6.1.1. For an s-tensor norm α of order n the following conditions are equivalent:

(1) If A is Banach algebra, the n-fold symmetric tensor product ⊗̃n,sα A is a Banach algebra

with the natural algebra structure.

(2) For all Banach spaces E and F there is a natural continuous linear map

f :
(
⊗n,sα E

)
⊗π2

(
⊗n,sα F

)
→
(
⊗n,sα (E ⊗π2 F )

)

with

f
(
(⊗nx)⊗ (⊗ny)

)
= ⊗n(x⊗ y).

(3) For all Banach spaces E and F there is a natural continuous map

g :
(
⊗n,sα′ (E ⊗ε2 F )

)
→ (⊗n,sα′ E)⊗ε2 (⊗n,sα′ F )

given by

g
(
⊗n (x⊗ y)

)
= (⊗nx)⊗ (⊗ny).

(4) For all Banach spaces E and F there is a natural continuous map

h : ⊗n,sα′ L(E,F )→ L(⊗n,sα E,⊗n,sα′ F ),

with

h(⊗nT )(⊗nx) = ⊗n(Tx).

If one, hence all, of the above hold, then there are constants c1, c2, c3, c4 so that

(1) ‖m(⊗̃n,sα A)‖ ≤ c1‖m(A)‖n.

(2) ‖f‖ ≤ c2 for all E and F .

(3) ‖g‖ ≤ c3 for all E and F .

(4) ‖h‖ ≤ c4 for all E and F .

and the least values of these four agree.

If the s-tensor norm α preserves Banach algebras, then we call the common least value of

the constants in the theorem, the Banach algebra constant of α.

An important comment is in order: if we take E = F and T = idE in (4), then we obtain

‖h(⊗n,sidE)‖ ≤ c4. But it is plain that h(⊗nidE) is just id⊗n,sE . Therefore, we have

‖id⊗n,sE : ⊗n,sα E → ⊗n,sα′ E‖ ≤ c4,

which means that α′ ≤ c4α. So we can state the following remark.

Remark 6.1.2. If α is an s-tensor norm which preserves Banach algebras there is a constant n
such that α′ ≤ kα.
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The following Theorem is the main result of this section. The proof that πn,s preserves

Banach algebra is similar to one for π2 in [Car78], and we include it for completeness.

Theorem 6.1.3. The only natural s-tensor norms of order n which preserves Banach algebras

are: πn,s and \/πn,s\/. Furthermore, the Banach algebra constants of both norm are exactly

one.

It follows from Theorem 3.5.2 and Remark 6.1.2 that πn,s and \/πn,s\/ are the only candi-

dates among natural s-tensor norms to preserve Banach algebras.

First we prove that πs preserves Banach algebra. By Theorem 6.1.1, it is enough to show,

for any pair of Banach spaces E and F , that the mapping

f :
(
⊗n,sπn,s

E
)
⊗π2

(
⊗n,sπn,s

F
)
→
(
⊗n,sπn,s

(E ⊗π2 F )
)

defined by

f
(
(⊗nx)⊗ (⊗ny)

)
= ⊗n(x⊗ y),

has norm less than or equal to 1. Fix ε > 0. Given w ∈
(
⊗n,s E

)
⊗
(
⊗n,s F

)
, we can write it

as

w =
r∑

i=1

ui ⊗ vi,

with

r∑

i=1

πn,s(ui)πn,s(vi) ≤ π2(w)(1 + ε)1/3.

Also, for each i = 1, . . . , r we write ui and vi as

ui =

J(i)∑

j=1

⊗nxij ∈ ⊗n,sE, vi =

K(i)∑

k=1

⊗nyik ∈ ⊗n,sF,

with

J(i)∑

j=1

‖xij‖n ≤ πn,s(ui)(1 + ε)1/3,

K(i)∑

k=1

‖yik‖n ≤ πn,s(vi)(1 + ε)1/3.

We have

f(w) =
r∑

i=1

∑

1≤j≤J(i)
1≤k≤K(i)

⊗n(xij ⊗ yik),
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and then

πn,s(f(w)) ≤
r∑

i=1

∑

1≤j≤J(i)
1≤k≤K(i)

π2(x
i
j ⊗ yik)n

=
r∑

i=1

∑

1≤j≤J(i)
1≤k≤K(i)

‖xij‖n‖yik‖n

=
r∑

i=1

( ∑

j≤J(i)
‖xij‖n

)( ∑

k≤K(i)

‖yik‖n
)

=
r∑

i=1

πn,s(ui)(1 + ε)1/3πn,s(vi)(1 + ε)1/3

= (1 + ε)2/3
r∑

i=1

π2(ui)π2(vi) ≤ (1 + ε)π2(w).

From this we conclude that ‖f‖ ≤ 1.

To prove that \/πn,s\/ preserves Banach algebras we need two technical lemmas.

Lemma 6.1.4. Let Y and Z be Banach spaces. The operator

φ : ⊗n,s/πn,s\L(ℓ1(BY ), Z)→ L
(
⊗n,s/πn,s\ ℓ1(BY ),⊗n,s/πn,s\Z

)

given by

φ(⊗nT )(⊗nu) = ⊗nTu,
has norm less than or equal to 1.

Proof. The mapping

L
(
ℓ1(BY ), ℓ∞(BZ′)

)
→ L

(
⊗n,s/πn,s\ ℓ1(BY ),⊗n,s/πn,s\Z

)

T 7→ ⊗nT

is an n-homogeneous polynomial, which has norm one by the metric mapping property of

the norm /πn,s\. As a consequence, its linearization is a norm one operator from the s-tensor

product⊗n,sπn,s
L
(
ℓ1(BY ), ℓ∞(BZ′)

)
toL

(
⊗n,s/πn,s\ℓ1(BY ),⊗n,s/πn,s\Z

)
. SinceL

(
ℓ1(BY ), ℓ∞(BZ′)

)

is an L∞ space, by Corollary 3.2.8 we have

⊗n,s/πn,s\L
(
ℓ1(BY ), ℓ∞(BZ′)

) 1
= ⊗n,sπn,s

L
(
ℓ1(BY ), ℓ∞(BZ′)

)
.

This shows that the canonical mapping

⊗n,s/πn,s\L
(
ℓ1(BY ), ℓ∞(BZ′)

)
// L
(
⊗n,s/πn,s\ ℓ1(BY ),⊗n,s/πn,s\ℓ∞(BZ′)

)

has norm 1.
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On the other hand, the following diagram commutes

⊗n,s/πn,s\L
(
ℓ1(BY ), ℓ∞(BZ′)

)
// L
(
⊗n,s/πn,s\ ℓ1(BY ),⊗n,s/πn,s\ℓ∞(BZ′)

)

⊗n,s/πn,s\L(ℓ1(BY ), Z)
φ //

?�

OO

L(⊗n,s/πn,s\ℓ1(BY ),⊗n,s/πn,s\Z)
?�

OO
.

Here the vertical arrows are the natural inclusion, which are actually isometries since the norm

/πn,s\ is injective. The horizontal arrow above is the canonical mappings whose norm was

shown to be one. Therefore, the norm of φ must be less than or equal to one.

Before we state our next lemma, we observe that linear operators from X1 to L(X2, X3)
identify (isometrically) with bilinear operators from X1 × X2 to X3 and, consequently, with

linear operators from X1 ⊗π X2 to X3. The isometry is given by

L(X1,L(X2, X3)) → L(X1 ⊗π X2, X3)

T 7→ BT , (6.1)

where BT (x1 ⊗ x2) = T (x1)(x2).

Lemma 6.1.5. Let E and F be Banach spaces. The operator

ρ :
(
⊗n,s/πn,s\ ℓ1(BE)

)
⊗π2

(
⊗n,s/πn,s\ ℓ1(BF )

)
→ ⊗n,s/πn,s\

(
ℓ1(BE)⊗π2 ℓ1(BF )

)

given by

ρ
(
(⊗nu)⊗ (⊗nv)

)
= ⊗n(u⊗ v),

has norm less than or equal to 1.

Proof. If we take Y = F and Z = ℓ1(BE)⊗π2 ℓ1(BF ) in Lemma 6.1.4, we see that the operator

φ : ⊗n,s/πn,s\L(ℓ1(BF ), ℓ1(BE)⊗π2 ℓ1(BF ))→ L
(
⊗n,s/πn,s\ ℓ1(BE),⊗n,s/πn,s\(ℓ1(BE)⊗π2 ℓ1(BF ))

)

has norm at most 1. Also the application J : ℓ1(BE)→ L
(
ℓ1(BF ), ℓ1(BE)⊗π2 ℓ1(BF )

)
defined

by Jz(w) = z ⊗ w has norm 1. Hence, the norm of the map ψ := φ ◦ ⊗n,sJ between the

corresponding /πn,s\-tensor products is at most one.

Now, with the identification given in (6.1), the operator ρ is precisely Bψ and therefore we

conclude that ρ has norm at most one.

Now we are ready to prove that \/πn,s\/ preserves Banach algebras with Banach algebra

constant 1. Again by Theorem 6.1.1, it is enough to show that, for Banach spaces E and F , the

map

f :
(
⊗n,s\/πn,s\/ E

)
⊗π2

(
⊗n,s\/πn,s\/ F

)
→ ⊗n,s\/πn,s\/(E ⊗π2 F )

defined by

f
(
(⊗nx)⊗ (⊗ny)

)
= ⊗n(x⊗ y),
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has norm at most one. The following diagram, where the vertical arrows are the canonical

quotient maps, commutes:

(
⊗n,s/πn,s\ ℓ1(BE)

)
⊗π2

(
⊗n,s/πn,s\ ℓ1(BF )

) ρ //

����

(
⊗n,s/πn,s\ (ℓ1(BE)⊗π2 ℓ1(BF ))

)

����(
⊗n,s\/πn,s\/ E

)
⊗π2

(
⊗n,s\/πn,s\/ F

) f //
(
⊗n,s\/πn,s\/ (E ⊗π2 F )

)

.

By the previous Lemma, ρ has norm less than or equal to one, and so is the norm of f , since

the other mappings are quotients. We have finished the proof of Theorem 6.1.3.

We end the section with a new perspective on the the n-fold symmetric analogue of the

classical norm w′2 for n ≥ 3:

The 2-fold tensor norms π2 and \ε2/ which is equivalent w′2 (the dual of the norm associ-

ated the classical ideal Γ2 of 2-factorable operator, see Definition 3.4.3) share two character-

istic properties. The first property is that they dominate their dual tensor norm. Indeed, the

inequality π′2 = ε2 ≤ π2 is clear, and we see in [DF93, 27.2] that w2 is dominated by w′2 (or,

analogously, /π2\ is dominated by \ε2/). The second property is that both π2 and w′2 preserve

the Banach algebra structure [Car78]. These two properties are enjoyed, of course, by their

corresponding 2-fold s-tensor norms. As we have already seen, the n dimensional analogue of

the s-tensor norm \ε2,s/ splits into two non-equivalent ones when passing from tensor products

of order 2 to tensor products of order n ≥ 3. Namely, \εn,s/ and \/πn,s\/. It is remarkable

that the two mentioned properties are enjoyed only by \/πn,s\/ and not by \εn,s/, as seen in

Theorem 3.5.2 and Theorem 6.1.3. Therefore, we could say that, in some sense, the n-fold

symmetric analogue of w′2 for n ≥ 3 should be \/π2,s\/ rather than the simpler (and probably

nicer) \ε2,s/.

6.2 Preservation of the M -ideal structure and unique norm

preserving extensions

In 1972, Alfsen and Effros [AE72] introduced the notion of an M -ideal in a Banach space.

Recall the following definition.

Definition 6.2.1. A closed subspace E of a Banach space F is an M -ideal in F if

F ′ = E♯ ⊕1 E
⊥,

where E♯ is a closed subspace of F ′ and E⊥ is the annihilator of E.

Since E♯ can be (isometrically) identified with E ′, it is usual to denote F ′ = E ′ ⊕1 E
⊥.

However, we often prefer to state explicitly the isomety s : E ′ → F ′, thus obtaining the

decomposition F ′ = s(E ′)⊕1 E
⊥. The space E is said to be M -embedded if E is an M -ideal

in its bidual E ′′. The presence of an M -ideal E in a Banach space F in some way expresses

that the norm of F is a sort of maximum norm (hence the letter M ).
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A number of authors have examined M -ideal structures in tensor products, operator spaces,

spaces of polynomials or Banach algebras (see e.g., D. Werner [Wer88], W. Werner [Wer87],

Dimant [Dim11] and Harmand-Werner-Werner [HWW93] and the references therein).

It is well known, that if E is an M -ideal in F then the full tensor product
⊗̃n

εn
E is an

M -ideal in
⊗̃n

εn
F (use [HWW93, Proposition VI.3.1], the associativity of the injective norm

and the transitivity of M -ideals). Since most of the results of the theory of tensor products

and tensor norms have their natural analogue in the symmetric context, one should expect

that whenever E is a non trivial M -ideal in F , then ⊗̃n,sεn,s
E would be an M -ideal in ⊗̃n,sεn,s

F .

Surprisingly, we see in Theorem 6.2.7 that, for real Banach spaces, this never happens. To

prove this, we make use of a characterization of the extreme points of the unit ball of the space

of integral polynomials over real Banach spaces, which is interesting in its own right. We

therefore devote some time to recall definitions, known results and remarks on extreme points

of the ball.

A point x ∈ BE is said to be a real extreme point whenever {x+ζy : |ζ| ≤ 1, ζ ∈ R} ⊂ BE

for y ∈ E implies y = 0. Analogously, a point x ∈ BE is said to be a complex extreme point

whenever {x + ζy : |ζ| ≤ 1, ζ ∈ C} ⊂ BE for y ∈ E implies y = 0. In complex Banach

spaces, it is easy to check that every real extreme point of BE is also a complex extreme point.

The converse however is not true, since, for instance, every point of Sℓ1 is a complex extreme

point of Bℓ1 . We denote by Ext(BE) the set of real extreme points of the ball BE .

Ruess-Stegall [RS82], Ryan-Turett [RT98], Boyd-Ryan [BR01], Dineen [Din03] and Boyd-

Lassalle [BL10] in their investigations studied the extreme points of the unit ball of the space of

(integral) polynomials defined on a Banach space. In [BR01] the authors showed the following

facts:

(a) For a real Banach space E, {±(x′)n : x′ ∈ SE′ and x′ attains its norm } ⊆ Ext(BPn
I (E)).

(b) For a real or complex Banach space E, Ext(BPn
I (E)) ⊆ {±(x′)n : x′ ∈ SE′} (see also

[CD00]).

Time after, Boyd and Lassalle proved in [BL10] the following result: if E is a real Ba-

nach space, E ′ has the approximation property and ⊗̃n,sεn,s
E does not contain a copy of ℓ1, then

Ext(BPn
I (E)) is {±(x′)n : x′ ∈ SE′}. In the following theorem we use the Aron-Berner exten-

sion to show that the hypotheses of their result can be removed.

Theorem 6.2.2. For a real Banach space E, the set of real extreme points of the unit ball of

PnI (E) is {±(x′)n : x′ ∈ SE′}.

Proof. Let x′ ∈ SE′ . Since x′ is a norm attaining element of SE′′′ , by part (a) of the the

previous comment, (x′)n is an extreme point of the unit ball of PnI (E ′′). We use the fact that

Ext(B) ∩ A ⊆ Ext(A) whenever A ⊆ B. Consider the isometric inclusion

AB : PnI (E)
1→֒ PnI (E ′′)

given by the Aron-Berner extension morphism. It is not difficult to prove that AB maps (x′)n

to (x′)n seen as an n-homogeneous polynomial over E ′′ or, more precisely, (κE′(x′))n). Thus,

Ext(BPn
I (E′′)) ∩ BPn

I (E) ⊆ Ext(BPn
I (E)).

Finally,
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{±(x′)n : x′ ∈ SE′} ⊆ Ext(BPn
I (E′′)) ∩BPn

I (E) ⊆ Ext(BPn
I (E)) ⊆ {±(x′)n : x′ ∈ SE′},

and this concludes the proof.

We now state some observations on the above result.

Remark 6.2.3. Theorem 6.2.2 is not true for complex Banach spaces. Indeed, Dineen [Din03,

Proposition 4.1] proved that, if E is a complex Banach space, then Ext(BPn
I (E)) is contained

in {(x′)n : x′ is a complex extreme point of BE′}. Let us consider E the complex space ℓ1. It

is clear that x′ = (0, 1, . . . , 1, . . .) ∈ ℓ∞ is not a complex extreme point of Bℓ∞ . Hence, (x′)n

is not an extreme point of BPI(nℓ1).

Remark 6.2.4. Although the spaces PnI (E) and LI(nE) can be isomorphic (for example if

E is stable [AF98]), they are very different from a geometric point of view since the set

Ext(BLI(nE)) is equal to {x′1x′2 · · · x′k : x′i ∈ Ext(BE′)} (see [BR01, RS82]).

Remark 6.2.5. As it will be stated in Lemma 6.2.17, in a maximal ideal of polynomials, thew∗-
convergence of a bounded net is equivalent to the pointwise convergence. So, from Theorem

6.2.2, if Q is a maximal ideal of n-homogeneous polynomials that satisfies that, on some real

Banach space E, the set of real extreme points of its unit ball is {±(x′)n : x′ ∈ SE′}, then we

should have Q(E) = PnI (E).

We now return to our main goal: exhibit that the M-ideal structure is destroyed. The last

characterization of the real extreme points of the ball of integral polynomials leads us to show

that for a real Banach space E, ⊗̃n,sεn,s
E is never an M -ideal in ⊗̃n,sεn,s

E ′′, unless E is reflexive.

As we have already said, this is a big difference with what happens in the non symmetric case

where, forE anM -embedded space, it follows that the full tensor product
⊗̃n

εn
E is anM -ideal

in
⊗̃n

εn
E ′′.

Theorem 6.2.6. If the real Banach space E is not reflexive, then ⊗̃n,sεn,s
E is not an M -ideal in

⊗̃n,sεn,s
E ′′.

Proof. Suppose that ⊗̃n,sεn,s
E is an M -ideal in ⊗̃n,sεn,s

E ′′. Then, by [HWW93, Lemma I.1.5] we

would have:

Ext(BPI(nE′′)) = Ext(BPn
I (E)) ∪ Ext

(
B(⊗̃n,s

εn,s
E)⊥

)
.

By the description of the real extreme points of integral polynomials given in Theorem 6.2.2,

this equality would imply

Ext
(
B(⊗̃n,s

εn,s
E)⊥

)
= {±(x′′′)n : x′′′ ∈ SE′′′ \ SE′}.

This is not possible since through the decompositionE ′′′ = E ′⊕E⊥ if we choose x′′′ ∈ SE′′′

such that x′′′ = x′′′1 + x′′′2 , with x′′′1 ∈ E ′, x′′′2 ∈ E⊥, x′′′1 , x
′′′
2 6= 0, then x′′′ ∈ SE′′′ \ SE′ but

(x′′′)n 6∈ (⊗̃n,sεn,s
E)⊥. This finishes the proof.

With almost the same argument (only changing the decomposition E ′′′ = E ′ ⊕ E⊥ to

F ′ = E ′ ⊕1 E
⊥) we derive the following theorem.
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Theorem 6.2.7. If E and F are real Banach spaces and E is a nontrivial M -ideal in F , then

⊗̃n,sεn,s
E is not an M -ideal in ⊗̃n,sεn,s

F .

As it is quoted in the book written by Harmand, Werner and Werner [HWW93]: “The fact

that E is an M -ideal in F has a strong impact on both F and E since there are a number of

important properties shared byM -ideals, but not by arbitrary subspaces”. One of the interesting

properties shared by M -ideals is the following: if E is an M -ideal in F then every linear

functional defined in E has a unique norm preserving extension to a functional in F ′ [HWW93,

Proposition I.1.12]. For E an M -ideal in F , we know that the full injective tensor product⊗̃n

εn
E is an M -ideal in

⊗̃n

εn
F . Hence, any n-linear integral form on E (being an element of

the dual of
⊗̃n

εn
E) has a unique (integral) norm preserving extension to a n-linear integral form

on F .

Now that we are aware that the M -structure for symmetric tensors fails, we can wonder

about a weaker property: whether the unique norm preserving extension property holds. That

is, being E a non trivial M -ideal in F , has every integral n-homogeneous polynomial in E a

unique extension to F that preserves the integral norm? We give in Theorem 6.2.9 a positive

answer for the case of E being Asplund. Since M -embedded spaces are Asplund [HWW93,

Theorem III.3.1], if E is M -embedded then the Aron-Berner extension is the unique norm

preserving extension to E ′′.

Let E be an M -ideal in F ; note that in this case the natural inclusion s : E ′ → F ′ induces,

according Definition 2.2.8, a canonical isometry s : PnN(E)→ PnN(F ) given by

s(p) := AB(p) ◦ s′ ◦ κF .

To be precise, if p ∈ PnN(E), we have

‖s(p)‖Pn
N (F ) = ‖AB(p) ◦ s′ ◦ κF‖Pn

N (F )

≤ ‖AB(p)‖Pn
N (E′′)‖s′‖n‖κF‖n

= ‖p‖Pn
N (E)

≤ ‖s(p)‖Pn
N (F ),

where the second equality is due to Theorem 2.2.6 and the last inequality is clear since s(p) is

actually an extension of p.

Aron, Boyd and Choi [ABC01, Proposition 7] proved that if E is an M -ideal in E ′′ then

the Aron-Berner extension is the unique norm preserving extension from PnN(E) to PnN(E ′′).
Their argument can be easily adapted to the situation ofE being anM -ideal in F . We therefore

have the following result.

Proposition 6.2.8. Let E be an M -ideal in F and let s : E ′ → F ′ be the associated isometric

inclusion. For each p ∈ PnN(E), s(p) is the unique norm preserving extension to PnN(F ).

We want to prove a similar statement for integral polynomials. If E is an Asplund space

(which always holds when E is an M -ideal in E ′′) we have a positive result. In this case,

nuclear and integral polynomials over E coincide isometrically as we saw in Corollary 4.1.4.

So, by the previous proposition, there is only one nuclear norm preserving extension to F . But

if F is not Asplund we could presumably have integral non nuclear extensions of the same

integral norm. We show that this is impossible.
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Theorem 6.2.9. Let E be an Asplund space which is an M -ideal in a Banach space F and let

s : E ′ → F ′ be the associated isometric inclusion. If p ∈ PnI (E) then the canonical extension

s(p) is the unique norm preserving extension to PnI (F ).

To prove Theorem 6.2.9 we need the following lemma.

Lemma 6.2.10. Let E be an Asplund space which is a subspace of a Banach space F and let

q be a fixed polynomial in PnI (F ). Given ε > 0 there exists q̃ ∈ PnN(F ) such that q and q̃
coincide on E and

‖q̃‖Pn
N (F ) ≤ ‖q‖Pn

I (F ) + ε.

Proof. Since the restriction of q to E is nuclear, we can take sequences (x′j)j ⊂ E ′ and (λj)j ⊂
K such that q|E =

∑∞
j=1 λj(x

′
j)
n and

∞∑

j=1

|λj|‖x′j‖n ≤ ‖q|E‖Pn
N (E) + ε

= ‖q|E‖Pn
I (E) + ε

≤ ‖q‖Pn
I (F ) + ε.

For each j, let y′j be a Hahn-Banach extension of x′j to F . If we define q̃ =
∑∞

j=1 λj(y
′
j)
n, then

q̃ coincides with q in E and

‖q̃‖Pn
N (F ) ≤

∞∑

j=1

|λj|‖y′j‖n =
∞∑

j=1

|λj|‖x′j‖n ≤ ‖q‖Pn
I (F ) + ε.

This ends the proof.

Now we are ready to prove Theorem 6.2.9.

Proof. (of Theorem 6.2.9.)

The argument is modeled on the proof of [ABC01, Proposition 7]. We include all the steps

for the sake of completness.

Let p ∈ PnI (E) and suppose there exists a norm preserving extension q ∈ PnI (F ) different

from s(p). Pick y a norm one vector in F such that 0 < δ = |q(y)− s(p)(y)|.
Note that E ⊕ [y] is an Asplund space since E also is. So, by Lemma 6.2.10 applied to

E ⊕ [y], there exists q̃ ∈ PnN(F ) such that q and q̃ coincide on E ⊕ [y] and

‖q̃‖Pn
N (F ) ≤ ‖q‖Pn

I (F ) +
δ

4

= ‖p‖Pn
I (E) +

δ

4
.

Take a nuclear representation of q̃ =
∑∞

j=1 λj(x
′
j)
n such that

∑∞
j=1 |λj|‖x′j‖n ≤ ‖p‖Pn

I (E) +
δ
2
.

Since E is an M -ideal in F each x′j ∈ F ′ can be written as the sum of s
(
x′j|E

)
and (x′j)

⊥.

Moreover, ‖x′j‖ = ‖s
(
x′j|E

)
‖+ ‖(x′j)⊥‖.
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Recall that q̃ coincides with p on E, thus, for every x ∈ E,

p(x) =
∞∑

j=1

λj
(
s
(
x′j|E

)
(x) + (x′j)

⊥(x)
)n

=
∞∑

j=1

λj(x
′
j|E(x))n.

Using this, we easily get that s(p) =
∑∞

j=1 λj

(
s
(
x′j|E

))n
. Naturally,

‖p‖Pn
I (E) = ‖p‖Pn

N (E) = ‖s(p)‖Pn
N (E) ≤

∞∑

j=1

|λj|‖x′j|E‖n.

Now,

0 < δ =
∣∣q(y)− s(p)(y)

∣∣ =
∣∣q̃(y)− s(p)(y)

∣∣

≤
∣∣∣∣∣

∞∑

j=1

λj
(
s
(
x′j|E

)
(y) + (x′j)

⊥(y)
)n − λjs

(
x′j|E

)
(y)n

∣∣∣∣∣

≤
∞∑

j=1

|λj|
n∑

i=1

(
k

i

)∥∥s
(
x′j|E

)∥∥k−i‖(x′j)⊥‖i

=
∞∑

j=1

|λj|
(∥∥s

(
x′j|E

)∥∥+ ‖(x′j)⊥‖
)n
− |λj|

∥∥s
(
x′j|E

)∥∥n

=
∞∑

j=1

|λj|‖x′j‖n −
∞∑

j=1

|λj|‖x′j|E‖n

≤ ‖p‖Pn
I (E) +

δ

2
− ‖p‖Pn

I (E) =
δ

2
.

This is a contradiction. Thus, the result follows.

Since M -embedded spaces are Asplund we have a neater statement in this case.

Corollary 6.2.11. Let E be an M -ideal in E ′′. If p ∈ PnI (E) then the Aron-Berner extension

AB(p) is the unique norm preserving extension to PnI (E ′′).

It is known that on ℓ∞ integral and nuclear polynomials do not coincide. By the fact that c0
is an M -ideal in ℓ∞ and the previous corollary, we derive the following remark.

Remark 6.2.12. Let p be a non-nuclear polynomial in PnI (ℓ∞) then its restriction to c0 has a

strictly smaller integral norm, i.e.,

‖p|c0‖Pn
I (c0) < ‖p‖Pn

I (ℓ∞).

Unique norm preserving extension for a polynomial belonging to a maxi-

mal ideal

We have shown that, if E is an M -embedded space and p is a fixed polynomial in PnI (E),
then AB(p) is the unique norm preserving extension to PnI (E ′′). Now we want to answer the
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following related question: letQ be a maximal polynomial ideal and let p be a fixed polynomial

belonging to Q(E), under what conditions do we have a unique norm preserving extension of

p to the bidual E ′′? Since the Aron-Berner extension preserves the ideal norm for maximal

polynomial ideals (Theorem 2.2.5), the question can be rephrased in the following way: when

is the Aron-Berner extension the only norm preserving extension (for a given polynomial) in

Q? We will see necessary and sufficient conditions for this to happen that are related with the

continuity of the Aron-Berner extension morphism.

Godefroy gave in [God81] a characterization of norm-one functionals having unique norm

preserving extensions to the bidual as the points of SE′ where the identity is w∗- w continuous.

Proposition 6.2.13. [HWW93, Lemma III.2.14] Let E be a Banach space and x′ ∈ SE′ . The

following are equivalent:

(1) x′ has a unique norm preserving extension to a functional defined on E ′′;

(2) The function IdBE′ : (BE′ , w∗) −→ (BE′ , w) is continuous at x′.

The previous proposition says that unique norm preserving extensions is related with some

kind of continuity. Aron, Boyd and Choi presented in [ABC01] a polynomial version of this

result.

Proposition 6.2.14. [ABC01, Theorem 6] LetE be a Banach space such thatE ′′ has the metric

approximation property and p ∈ SPn(E). The following are equivalent:

(1) p has a unique norm preserving extension to Pn(E ′′);

(2) if {pγ}γ ⊂ BPn(E) converges pointwise to p, then {AB(Pγ)}γ converges pointwise to

AB(p) in E ′′.

We are interested on having a similar characterization for unique norm preserving exten-

sions to the bidual of polynomials belonging to a maximal polynomial ideal. In this case,

obviously, the norm that we want to preserve is the ideal norm.

Theorem 6.2.15. Let α be an s-tensor norm of order n, E be a Banach space and p ∈ Qα(E)
with ‖p‖Qα(E) = 1. If α is cofinitely generated or E ′′ has the metric approximation property,

then the following conditions are equivalent:

(1) p has a unique norm preserving extension to Qα(E ′′);

(2) the morphism AB :
(
BQα(E), σ(Qα(E), ⊗̃

n,s

α E)
)
−→

(
BQα(E′′), σ(Qα(E ′′), ⊗̃

n,s

α E ′′)
)

is

continuous at p;

(3) if the net {Pγ}γ ⊂ BQα(E) converges pointwise to p, then {AB(pγ)}γ converges point-

wise to AB(p) in E ′′.

We postpone the proof of this theorem since we need some technical tools first. Let us

define a canonical application from ⊗̃n,sα E ′′ to (⊗̃n,sα E)′′ by

ΘE
α : ⊗̃n,sα E ′′ −→ (⊗̃n,sα E)′′ = Qα(E)′

z 7−→
(
p 7→ 〈AB(p), z〉

)
.
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Proposition 6.2.16. Let α be an s-tensor norm and E be a Banach space. If α is cofinitely

generated or E ′′ has the metric approximation property then the mapping

ΘE
α : ⊗̃n,sα E ′′ → (⊗̃n,sα E)′′

is an isometric embedding.

Proof. Let us see that ΘE
α is a norm one operator: if z ∈ ⊗̃n,sα E ′′ and p ∈ BQα(E) then

∣∣〈AB(p), z〉
∣∣ ≤ ‖AB(p)‖Qα(E′′) α(z; ⊗̃

n,s
E ′′)

= ‖p‖Qα(E) α(z; ⊗̃
n,s
E ′′)

≤ α(z; ⊗̃n,sE ′′),

Therefore ‖ΘE
α (z)‖ ≤ α(z; ⊗̃n,sE ′′).

To prove the other inequality, we first see that the following diagram commutes:

⊗̃n,sα E ′′ �
� JE′

α //

ΘE
α

%%

(⊗̃n,sα′ E ′)′

(⊗̃n,sα E)′′,

(HE
α )′

88 88

where the mappings HE
α and JE

′

α are the ones that appear in (2.10) and (2.11) respectively.

Indeed, by density and linearity it is enough to prove that JE
′

α (⊗nx′′)(⊗nx′) is equal to (HE
α )
′ ◦

ΘE
α (⊗nx′′)(⊗nx′) for every x′ ∈ E ′. Note that JE

′

α (⊗nx′′)(⊗nx′) is just (x′′(x′))n. On the

other hand,

(HE
α )
′ ◦ΘE

α (⊗nx′′)(⊗n,sx′) = ΘE
α (⊗nx′′)

(
HE
α (⊗nx′)

)

= ΘE
α (⊗nx′′)

(
(x′)n

)

= 〈AB
(
(x′)n

)
,⊗nx′′〉

= 〈(κ′Ex′)n,⊗nx′′〉
= x′′(x′)n.

If α = ←−α or E ′′ has the metric approximation property then, by Proposition 2.2.1 and the

Embedding Theorem 2.2.13 we have that JE
′

α is an isometry and also that (HE
α )
′ is a quotient

mapping. Therefore,

α(z; ⊗̃n,sE ′′) = ‖JE′

α (z)‖ = ‖(HE
α )
′ ◦ΘE

α (z)‖ ≤ ‖ΘE
α (z)‖.

We have shown that the mapping ΘE
α is an isometry.

To prove Theorem 6.2.15 we also need the following equivalence for the convergence of

nets of polynomials. The proof is straightforward.

Lemma 6.2.17. Suppose that the polynomial p and the net {pγ}γ are contained in the unit ball

of Qα(E). Then, the following are equivalent:
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(1) pγ(x)→ p(x) for all x ∈ E;

(2) pγ → p in the topology σ(Qα(E), ⊗̃
n,s

α E);

(3) pγ → p in the topology σ(Pn(E), ⊗̃n,sπn,s
E).

We can now prove Theorem 6.2.15.

Proof. (of Theorem 6.2.15.)

(1)⇒ (2):

Let {pγ}γ ⊂ BQα(E) such that pγ
w∗

→ p. We want to see that AB(p)γ
w∗

→ AB(p) in

Qα(E ′′). By the compactness of
(
BQα(E′′), w

∗), the net {AB(pγ)}γ has a subnet {AB(pγ)}γ
w∗-convergent to a polynomial q ∈ BQα(E′′).

For each x ∈ E, we have, on one hand, that AB(pγ)(x) = pγ(x)→ p(x) and, on the other

hand, that AB(pγ)(x) → q(x). So, q|E = p. Also, ‖q‖ ≤ 1 = ‖p‖ implies ‖q‖Qα(E′′) =
‖p‖Qα(E). This means that q is a norm preserving extension of p and by (1) it should be

q = AB(p). Since for every subnet of {pγ}γ we can find a sub-subnet such that the Aron-

Berner extensions are w∗-convergent to AB(p), we conclude that AB(p)γ
w∗

→ AB(p).

(2)⇒ (1):

Let q ∈ Qα(E ′′) be an extension of p with ‖q‖Qα(E′′) = 1. From Proposition 6.2.16, the

mapping

ΘE
α : ⊗̃n,sα E ′′ −→

(
⊗̃n,sα E

)′′

is an isometry. Due to this, each polynomial q ∈ Qα(E ′′) =
(
⊗̃n,sα E ′′

)′
has a Hahn-Banach

extension q̃ ∈
(
⊗̃n,sα E

)′′′
= Qα(E)′′. By Goldstine’s Theorem, there exist a net {pγ}γ ⊂

BQα(E) such that pγ → q̃ in the topology σ(Qα(E)′′,Qα(E)′).
Let z ∈ ⊗̃n,sα E ⊂ Qα(E)′. So we have

〈pγ, z〉 → 〈q̃, z〉 = 〈q, z〉 = 〈p, z〉.

This means that pγ → p in the topology σ(Qα(E), ⊗̃
n,s

α E). By (2), this implies thatAB(pγ)→
AB(p) in the topology σ(Qα(E ′′), ⊗̃

n,s

α E ′′).

Now, if v ∈ ⊗̃n,sα E ′′, it follows that

〈AB(p)α, v〉 → 〈AB(p), v〉.

But also, since v ∈ Qα(E)′,

〈AB(pγ), v〉 = 〈v, pγ〉 → 〈v, q̃〉 = 〈q, v〉.

Therefore, AB(p) = q.

The equivalence between (2) and (3) is a consequence of the Lemma 6.2.17.
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Doctoral Thesis, Leipzig. (1976).

[LZ00] S. Lassalle and I. Zalduendo. To what extent does the dual Banach space E’

determine the polynomials over E?. Ark. Mat., 38 (2000), 343–354.

[Lew77] D.R. Lewis. Duals of tensor products. Banach Spaces anal. Funct., Proc. Pel-

czynski Conf., Kent 1976, Lect. Notes Math. 604 (1977), 57-66.

[LT77] J. Lindenstrauss and L. Tzafriri. Classical Banach spaces I. Sequence spaces.,

Ergebnisse der Mathematik und ihrer Grenzgebiete. 92. Berlin-Heidelberg-New

York: Springer-Verlag. XIII, 190 p., 1977.



116 BIBLIOGRAPHY

[LR92] M. Lindström and R. A. Ryan. Applications of ultraproducts to infinite dimen-

sional holomorphy. Math. Scand., 71(2) (1992), 229–242.

[LP68] J. Lindenstrauss and A. Pelczynski. Absolutely summing operators in Lp-spaces

and their applications. Studia Math., 29 (1968), 275–326.

[Mor84] L. A. Moraes. The Hahn-Banach extension theorem for some spaces of n-

homogeneous polynomials., Functional analysis: surveys and recent results III,

Proc. Conf., Paderborn/Ger. 1983, North-Holland Math. Stud. 90 (1984), 265-

274.

[Mur10] S. Muro. Funciones holomorfas de tipo acotado e ideales de polinomios ho-
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EXT , Arens extension morphism, 19

Arens-regular, 32

Asplund space, 66

bounded approximation property, 21

λ-approximation property, 21

QE
L , canonical quotient mapping onto E/L, 9

ΘE
α , canonical application form ⊗̃n,sα E ′′

to (⊗̃n,sα E)′′, 108

κE : E −→ E ′′, canonical embedding, 9

IE , canonical embedding of E, 40

QE , canonical quotient mapping of E, 47

Chevet inequality, 92

Q ◦ U , composition ideal, 53

cyclic composition theorem

polynomial version, 54

density lemma, 23

for maximal polynomial ideals, 33

destruction

of unconditionality

for a full tensor norm, 89

for an s-tensor norm, 82

test

for full tensor norms, 90

for s-tensor norms, 82

theorem, 84

duality theorem, 29

δ, dwarfed tensor norm, 58

embedding

lemma, 22

theorem, 34

EXTk, k-th canonical extension, 18

extension lemma, 22

for maximal polynomial ideals, 31

for minimal polynomial ideals, 31

s, extension morphism of s, 32

extension of an s-tensor norm, 60

Φ(α), the extension of α, 60

extension property

of a polynomial ideal, 40

extreme point

complex, 103

real, 103

Gordon-Lewis

gl(E), constant, 80

property, 80

Grothendieck’s natural s-tensor norms, see natu-

ral s-tensor norms

Hilbert-Schmidt polynomial, 13

homogeneous polynomial, see polynomial

ideal of polynomials, 10

Q∗, adjoint ideal, 18

Qmax, maximal hull, 14

Qmin, minimal kernel, 13

Qα, the maximal ideal of α-continuous n-

homogeneous polynomials, 18

Dnr , r-dominated, 12

Inr , r-integral, 13

J n
r , positively r-factorable, 12

Lnr , r-factorable, 12

Pn, continuous polynomials, 11

Pnw, weakly continuous on bounded sets,

11

PnI , integral, 11

PnN , nuclear, 11

Pnapp, approximable, 10

Pne , extendible, 12
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Pnwsc, weakly sequentially continuous, 11

injective associate

/α\, of an s-tensor norm, 42

/δ\, of a full tensor norm, 58

injective Banach space, 40
1→֒, isometry, 9

iterated canonical extension, see EXT , Arens

extension morphism

lifting property, 47

local determination of ultrapowers, 25

local ultrafilter, 28

local ultrapower of a space, 28

Lp-local technique lemma, 24

for maximal ideals., 35

Lgp,λ-space, 23

Lgp-space, 24

M -embedded, 102

M -ideal, 102

maximal ideal, 14

maximal polynomial ideal, 14

metric approximation property, 21

metric mapping property, 16
1
։, metric surjection, 9

minimal ideals, 13

minimal kernel of a polynomial ideal, 13

minimal polynomial ideal, 13

monomials associated with a basis, 68

multilinear forms

Dr, r-dominated, 94

JEα , natural mapping from ⊗̃n,sα E ′

to (⊗̃n,sα′ E)′, 37

natural s-tensor norms, 57, 58

operator ideal

Γp,q, (p,q)-factorable operators, 54

Dp,q, (p,q)-dominated operators, 95

Sn, group of permutations, 10

polarization formula, 10

polynomial, 9

r-integral, 13

continuous, 10

dominated, 12

extendible, 12

factorable, 12

finite type, 10

Hilbert-Schmidt, 13

integral, 11

nuclear, 11

positively factorable, 12

weakly continuous, 11

weakly sequentially continuous, 11

principle of local reflexivity, 27

projective associate

\α/, of an s-tensor norm, 46

\δ/, of a full tensor norm, 58

projective Banach space, 47

HbQ(BE),Q-holomorphic functions of bounded

type on BE , 32

Q ◦ U−1, quotient ideal, 54

quotient mapping, see metric surjection

Radon-Nikodým property, 66

regular polynomial ideal, 32

representarion theorem

for maximal polynomial ideals, 17

for minimal polynomial ideals, 18

restriction of full tensor norm to the symmetric

tensor product, 59

s-tensor norm, 16
←−α , cofinite hull, 17
−→α , finite hull, 16

πn,s, symmetric projective norm, 15

εn,s, symmetric injective norm, 15

associated with a polynomial ideal, 17

cofinitely generated, 16

dual tensor norm, 16

finitely generated, 16

injective, 39

projective, 44

square order, 68

symmetric Radon-Nikodým property

for full tensor norms, 71

for s-tensor norms, 66

⊗n,sE, symmetric n-fold tensor product of E,

14

symmetrically Arens-regular, 32

σnE , symmetrization operator, 15
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⊗n,sT , tensor operator of T , 15

tensor representing a polynomial, 15

ultra-iterated extension

Φ, of a multilinear form, 25

p, of a polynomial, 25

(E)U, ultrapower of E respect to the filter U,

24

(T )U, ultrapower operator of T associated with

the ultrafilter U, 24

unconditional

χ((ej)
∞
j=1;E), basis constant, 80

Schauder basis, 80

uniformly complemented sequence of (ℓmp )
∞
m=1,
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