BIBLIOTECA CENTRAL LUIS F LELOIR

BibliOteca Digital BIBLIOTECA CENTRAL]EJLOIR

F c E N - U B A FACULTAD DE CIENCIAS EXACTAS Y NATURALES UBA

Tesis Doctoral

Caracterizaciones estructurales de
grafos de interseccién

Grippo, Luciano Norberto

201

Este documento forma parte de la coleccidon de tesis doctorales y de maestria de la Biblioteca
Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilizaciéon debe ser
acompafiada por la cita bibliografica con reconocimiento de la fuente.

This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico
Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding
citation acknowledging the source.

Citatipo APA:
Grippo, Luciano Norberto. (2011). Caracterizaciones estructurales de grafos de interseccién.
Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.

Citatipo Chicago:
Grippo, Luciano Norberto. "Caracterizaciones estructurales de grafos de interseccion”. Facultad
de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2011.

UBA

Universidad de Buenos Aires

EXACTAS:

Facultad de Ciencias Exactas y Naturales

Direccidn: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Contacto: digital@bl.fcen.uba.ar

Intendente Giiiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293



http://digital.bl.fcen.uba.ar
http://digital.bl.fcen.uba.ar
mailto:digital@bl.fcen.uba.ar

UNIVERSIDAD DE BUENOS AIRES
Facultad de Ciencias Exactas y Naturales
Departamento de Matemética

Caracterizaciones Estructurales de Grafos de Interseccion

Tesis presentada para optar al titulo de Doctor de la Universidad de Buenos Aires en el drea
Ciencias Matematicas

Luciano Norberto Grippo

Director de tesis: Dr. Guillermo Alfredo Duran
Director Asistente: Dra. Flavia Bonomo
Consejero de estudios: Dra. Claudia Lederman

Lugar de trabajo: Departamento de Computacion, FCEyN, UBA.

Buenos Aires, 2011






Caracterizaciones estructurales de grafos de intersecciéon

En esta tesis estudiamos caracterizaciones estructurales para grafos arco-
circulares, grafos circulo, grafos probe de intervalos, grafos probe de interva-
los unitarios, grafos probe de bloques y grafos probe co-bipartitos. Un grafo
es arco circular (circulo) si es el grafo de interseccién de una familia de arcos
(cuerdas) en una circunferencia. Dada una familia hereditaria de grafos G,
un grafo es probe G si sus vértices pueden particionarse en dos conjuntos:
un conjunto de vértices probe y un conjunto de vértices nonprobe, de forma
tal que el conjunto de vértices nonprobe es un conjunto independiente y
es posible obtener un grafo en la clase G agregando aristas entre ellos. Los
grafos probe G forman una superclase de la familia G. Por lo tanto, los
grafos probe de intervalos y los grafos probe de intervalos unitarios gener-
alizan la clase de los grafos de intervalos y los grafos de intervalos unitarios
respectivamente.

Caracterizamos parcialmente a los grafos arco-circulares, grafos circulo,
grafos probe de intervalos y probe de intervalo unitario mediante subgrafos
prohibidos dentro de ciertas familias hereditarias de grafos. Finalmente, es
presentada una caracterizacién de los grafos probe co-bipartitos que lleva a
un algoritmo de reconocimiento de tiempo polinomial para dicha clase y los
grafos probe de bloques son caracterizados mediante una lista de subgrafos
prohibidos.

Palabras clave: grafos arco circulares, grafos circulo, subgrafos inducidos
prohibidos, grafos probe de bloques, grafos probe co-bipartitos, grafos probe
de intervalos, grafos probe de intervalos unitarios.
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Structural characterizations of intersection graphs

In this Thesis we study structural characterizations for six classes of
graphs, namely circular-arc graphs, circle graphs, probe interval graphs,
probe unit interval graphs, probe co-bipartite graphs, and probe block
graphs. A circular-arc graph (circle graph) is the intersection graph of a
family of arcs (chords) on a circle. Let G be a hereditary class of graphs. A
graph is probe G if its vertices can be partitioned into two sets: a set of probe
vertices and a set of nonprobe vertices, so that the set of nonprobe vertices
is a stable set and it is possible to obtain a graph belonging to the class G
by adding edges with both endpoints in the set of nonprobe vertices. Probe
G graphs form a superclass of the class G. Hence, probe interval graphs and
probe unit interval graphs are extensions of the classes of interval graphs
and unit interval graphs, respectively.

We partially characterize circular-arc graphs, circle graphs, probe inter-
val graphs and probe unit interval graphs by forbidden induced subgraphs
within certain hereditary families of graphs. Finally, a structural character-
ization for probe co-bipartite graphs that leads to a polynomial-time recog-
nition algorithm and a complete characterization of probe block graphs by
a list of forbidden induced subgraphs are presented.

Keywords: circular-arc graphs, circle graphs, forbidden induced subgraph,
probe block graphs, probe co-bipartite graphs, probe interval graphs, probe
unit interval graphs.
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Introduccion

Los grafos arco-circulares son los grafos de interseccién de una familia
S de arcos en una circunferencia, al conjunto S se lo llama modelo arco-
circular. Los primeros trabajos sobre esta clase de grafos fueron publicados
por Hadwiger y otros en 1964 [HDK64| y por Klee [Kle69| en 1969 respectiva-
mente. Sin embargo, el primero en trabajar en el problema de caracterizar
por subgrafos prohibidos esta familia de grafos fue A. Tucker en su tesis
doctoral en 1969 [Tuc60]. Fue él mismo quien introdujo y consiguié car-
acterizar por subgrafos prohibidos dos subclases de grafos arco-circulares:
grafos arco-circulares unitarios y grafos arco-circulares propios. La primera
subclase consiste en aquellos grafos arco-circulares que poseen un modelo
arco-circular con todos sus arcos de la misma longitud y la segunda sub-
clase son los grafos arco-circulares con un modelo donde ningin arco esta
contenido en otro.

Caracterizar la clase completa de grafos arco-circulares por subgrafos
prohibidos es un problema abierto desde hace mucho tiempo. Sin embargo
varios autores han presentado algunos avances en esta direccién. Trotter y
Moore dieron una caracterizaciéon por subgrafos prohibidos inducidos dentro
de la clase de grafos co-bipartitos [TM76|. J. Bang-Jensen y P. Hell presen-
taron un teorema estructural para grafos arco-circulares propios dentro de
la clase de grafos cordales [BH94|, del cual se desprende la caracterizacion
por subgrafos inducidos prohibidos para los grafos arco-circulares propios
restringidos a la clase de los grafos cordales.

Los grafos arco-circulares son una generalizaciéon de la familia de grafos
de interseccién de intervalos en la recta real, llamados grafos de intervalos.
Los grafos de intervalos fueron caracterizados por Boland y Lekkerkerker
en 1962 [LB62]. La lista completa de subgrafos inducidos prohibidos que
caracteriza los grafos de intervalos fue hallada exitosamente via una caracter-
izacion por medio de triplas asteroidales presentada por los mismos autores.
Todo conjunto de intervalos en la recta real satisface la propiedad de Helly;
es decir, cualquier conjunto de intervalos mutuamente intersecantes en la
recta real tiene un punto en comun. Por lo tanto una subclase de grafos
arco-circulares que generaliza a los grafos de intervalos de forma natural
son los grafos arco-circulares Helly; es decir, aquellos grafos arco-circulares
que tienen un modelo que satisface la propiedad de Helly. Lin y Szwarc-
fiter presentaron una caracterizacién para esta clase mediante estructuras
prohibidas dentro de la clase de los grafos arco-circulares [LS06a]. Dicha
caracterizacién lleva a un algoritmo de reconocimiento lineal para la clase
de los grafos arco-circulares Helly. Lin y otros introdujeron y caracterizaron




la clase de los grafos arco-circulares propios Helly [LSS07|, aquellos grafos
que tienen un modelo arco-circular que es simultdneamente propio y Helly.

P. Hell probé que la familia de los bigrafos de intervalos son exactamente
aquellos grafos arco-circulares con nimero de cubrimiento por clique dos y
poseen un modelo arco-circular sin dos arcos que cubran la circunferen-
cia completa. Los grafos arco-circulares que satisfacen dicha condicién son
conocidos en la literatura como grafos arco-circulares normales. Esta termi-
nologia fue introducida en [LS06b|. Generalizando los grafos arco-circulares,
L. Alcon y otros introdujeron la clase de los grafos bucle.

A pesar de que muchos investigadores han tratado de encontrar la lista
de subgrafos prohibidos que caracterice la clase de los grafos arco-circulares,
el problema atn permanece abierto. En esta tesis presentamos algunos pa-
sos en esta direccion, aportando caracterizaciones de grafos arco-circulares
por subgrafos inducidos prohibidos minimales cuando el grafo pertenece a
alguna de las siguientes clases: grafos sin Py, grafos sin paw, grafos cordales
sin claw y grafos sin diamante. Ademads, como los grafos arco-circulares
que pertenecen a estas clases tienen un modelo arco-circular normal, estos
resultados implican que los subgrafos inducidos prohibidos para la clase de
los grafos arco-circulares normales necesariamente contienen un diamante
inducido, un P, inducido, un paw inducido, y o bien un claw o un agujero
como subgrafo inducido. También introducimos y caracterizamos la clase de
los grafos semicirculares, grafos arco-circulares que tienen un modelo arco-
circular donde todos sus arcos son semicircunferencias. Cabe destacar que
todas estas clases fueron estudiadas a lo largo del camino hacia la prueba del
Teorema Fuerte de los Grafos Perfectos [Con89, [Ola88, [PR76), [Sei74) [Tuc87].

Un grafo se dice circulo si es el grafo de intersecciéon de un conjunto de
cuerdas en una circunferencia, a tal conjunto se lo llama modelo de circulo.
Los grafos circulo fueron introducidos por Even e Itai en [EI71| para resolver
un problema de ordenamiento con el minimo ntmero de pilas en paralelo sin
la restriccién de cargar antes que la descarga sea completada. Ellos también
probaron que este problema se puede traducir en el problema de hallar el
namero cromatico de un grafo circulo. Desafortunadamente este problema
resulta ser NP-completo [GJMP80].

Naji caracterizd los grafos circulo en términos de la solucién de un sis-
tema lineal de ecuaciones que lleva a un algoritmo de reconocimiento O(n")
para esta clase [Naj85]. El complemento de un grafo G con respecto a un
vértice u € V(G) es el grafo G * u que se obtiene a partir de G reem-
plazando el subgrafo inducido G[Ng(u)| por su complemento. Este tipo
de operacién se denomina complementacién local. Se dice que dos grafos
G y H son localmente equivalentes si y solo si G se obtiene a partir de H
mediante una sucesién de complementaciones locales. Bouchet probd que
los grafos circulo son cerrados bajo complementacién local, también probd
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que un grafo es circulo si y solo si todo grafo localmente equivalente no con-
tiene tres determinados grafos como subgrafo inducido [Bou94]|. Geelen y
Oum [GOQ9] dieron una nueva caracterizaciéon de grafos circulo en términos
de la operacién de pivoteo. El resultado de pivotear un grafo G con respecto
a una arista uv es la grafo G x uv = G*u x v x u (donde * representa a la
complementacién local). Un grafo G’ es equivalente por pivoteo a G si G’
se obtiene a partir de G mediante una secuencia de operaciones de pivoteo.
Ellos probaron, con la ayuda de una computadora, que G es un grafo circulo
si y solo si cada grafo equivalente por pivoteo a G no contiene ninguno de
15 grafos determinados como subgrafo inducido.

Un grafo circulo que posee un modelo tal que todas sus cuerdas tienen
la misma longitud se llama grafo circulo unitario. La clase de grafos arco-
circulares propios estd propiamente contenida en la clase de los grafos cir-
culo. M4s atn, la clase de los grafos arco-circulares unitarios coincide con
la clase de los grafos circulo unitario.

Decimos que G tiene una descomposicidén split si existen dos grafos G;
y Gy con |V (G;)| > 3, 1= 1,2, tal que G = G; * G5 con respecto a algunos
vértices destacados (ver Ch. [3]). Si esto sucede llamamos a G; y G» factores
de la descomposicién split. A aquellos grafos que no poseen una descom-
posicién split se los llama primos. El concepto de descomposicion split es
debido a Cunningham [Cun82]. Los grafos circulo resultaron ser cerrados
por descomposicion split [Bou87] y en 1994 Spinrad presentd un algoritmo
de tiempo cuadratico que se aprovecha de esta peculiaridad.

Los grafos circulo son una superclase de los grafos de permutaciéon. De
hecho, los grafos de permutacién pueden ser definidos como aquellos grafos
circulo tales que una cuerda que interseque todas las cuerdas del modelo
puede ser agregada. Por otro lado los grafos de permutacién son aquellos
grafos de comparabilidad cuyo grafo complemento es también de compa-
rabilidad. Como los grafos de comparabilidad han sido caracterizados por
subgrafos prohibidos inducidos en [Gal67|, tal caracterizacién implica una
caracterizacién por subgrafos inducidos prohibidos para la clase de los grafos
de permutacion.

Los grafos de circulo Helly son aquellos grafos de circulo que tienen un
modelo cuyas cuerdas satisfacen la propiedad de Helly; es decir, todo con-
junto de cuerdas que se intersecan dos a dos tienen un punto en comin.
Esta familia de grafos fue introducida por Duran en [Dur00]. El también
conjetur6 que un grafo circulo es circulo Helly si y solo si no contiene un dia-
mante como subgrafo inducido. Recientemente, ésta conjetura fue probada.
Sin embargo, los grafos circulo Helly atin no han sido caracterizados por
subgrafos prohibidos.

En esta tesis presentamos algunas caracterizaciones parciales por sub-
grafos prohibidos inducidos. Caracterizamos los grafos circulo dentro de los
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grafos domino lineales usando la descomposicidén split. Consecuentemente,
caracterizamos los grafos circulo Helly dentro de la clase de los grafos sin
claw. Caracterizaciones por subgrafos inducidos prohibidos dentro de dos
superclases de cografos, tree-cographs y P,—tidy, son presentadas como una
aplicacion de la caracterizacion de Gallai para grafos de comparabilidad. Fi-
nalmente introducimos y caracterizamos la clase de los grafos circulo Helly
unitarios, aquellos grafos circulo que tienen un modelo que es simultédnea-
mente Helly y unitario.

Sea G una clase hereditaria de grafos. Un grafo se dice probe G si sus
vértices pueden ser particionados en dos conjuntos: un conjunto de vértices
probe y un conjunto de vértices nonprobe, de forma tal que el conjunto
de vértices nonprobe es un conjunto independiente y se puede obtener un
grafo perteneciente a la clase G agregando aristas con ambos extremos en el
conjunto de vértices nonprobe.

En 1994 Zhag introdujo los grafos probe de intervalos como una he-
rramienta de investigaciéon en el marco del proyecto del genoma humano,
|ZSF794]. Desde entonces, los grafos probe G han sido estudiados para
diferentes familias hereditarias de grafos G. Sheng caracterizé por subgrafos
inducidos prohibidos aquellos arboles que son probe de intervalo [She99).
Brown y otros presentaron una caracterizacién por subgrafos inducidos pro-
hibidos dentro de la clase de los arboles [BLS09]. Przulj y Corneil estudiaron
los subgrafos prohibidos para grafos probe de intervalos dentro de la clase de
los 2—tree [PC05|. Brown y Lundgren probaron que los grafos probe de in-
tervalos bipartitos son equivalentes a el complemento de una clase de grafos
arco-circulares con nimero de cubrimiento clique dos [BL06]. En [BBdO09],
Bayer y otros caracterizaron dos subclases de los grafos probe de intervalos,
los grafos probe threshold y los grafos probe trivialmente perfectos, en tér-
minos de ciertas formulas 2-SAT. En el mismo articulo ellos presentan una
caracterizacién por subgrafos prohibidos para los grafos probe threshold.

Las clases de los grafos probe G, con G diferentes de los grafos de inter-
valos y de intervalos unitarios, han sido estudiadas para importantes clases
de grafos como por ejemplo: grafos cordales [GLO04, [CGLS10], grafos de
permutaciéon [CCK™09] y grafos split [LARO7| entre otros.

Con el objetivo de estudiar el comportamiento del operador join para
los grafos probe de intervalos e intervalo unitario introducimos el concepto
de clases hereditarias de grafos con un compafiero. También presentamos
la lista completa de todos los subgrafos inducidos prohibidos cuyo comple-
mento es disconexo para la clase de los grafos probe de intervalos. A pesar
de no conseguir hacer lo mismo para la clase de los grafos probe de interva-
los unitarios, presentamos la lista de subgrafos inducidos prohibidos dentro
de la clases de tree-cographs y Ps—tidy. Damos una caracterizacién en tér-
minos de subgrafos inducidos prohibidos para aquellos grafos co-bipartitos
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que son probe de intervalos, esta caracterizacién implica que los grafos co-
bipartitos probe de intervalos y los grafos co-bipartitos probe de intervalos
unitarios son la misma clase. Los grafos probe de intervalos y de intervalos
unitarios son caracterizados por subgrafos inducidos prohibidos dentro de la
clase de los tree-cographs, generalizando las caracterizaciones presentadas
en [She99] y [BLS09|, respectivamente. Finalmente, caracterizamos por
subgrafos prohibidos inducidos los grafos probe de intervalos y de intervalos
unitarios dentro de la clase de los grafos P;—tidy. También estudiamos las
clase de grafos probe de grafos co-bipartitos y grafos de bloques. Los grafos
probe de bloques son una subclase de los grafos probe cordales estudiados
en [GLO04, [CGLS10]. Los grafos probe cordales no han sido ain caracter-
izados por subgrafos prohibidos inducidos. En esta tesis presentamos una
caracterizacién para grafos probe de grafos de bloques por subgrafos pro-
hibidos inducidos y probamos que la clase de los grafos probe de grafos de
bloques es la interseccién entre las clases de grafos cordales y probe de grafos
sin diamante. También presentamos una caracterizacién estructural para la
clase de los grafos probe co-bipartitos que lleva a un simple algoritmo de
reconocimiento de tiempo polinomial para esta clase.

Esta tesis estd organizada como sigue. En el Capitulo [[] damos algunas
definiciones y un breve resumen sobre las clases de grafos estudiadas en esta
tesis. El Capitulo 2 estd dedicado a los grafos arco-circulares. En el Capi-
tulo [3] presentamos caracterizaciones para grafos circulo. Los grafos probe
de intervalos y los grafos probe de intervalos unitarios son estudiados en el
Capitulo 4 En el Capitulo [ presentamos caracterizaciones estructurales
para los grafos probe de grafos de bloques y probe de grafos co-bipartitos.
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Introduction

Circular-arc graphs are the intersection graphs of a set S of arcs on a circle,
such a set S is called a circular-arc model. The first works about this
class of graphs were published by Hadwiger et al. in 1964 [HDK64| and
by Klee [Kle69] in 1969. Nevertheless, the first researcher who dealt with
the problem of characterizing by forbidden subgraphs this family of graphs
was A. Tucker in his Ph.D. Thesis in 1969 [Tuc60]. He introduced and
managed to characterize by forbidden induced subgraphs two subclasses of
circular arc-graphs: unit circular-arc graphs and proper circular-arc graphs.
The first subclass consists of those circular-arc graphs having a circular-arc
model with all its arcs having the same length and the second one consists
of those circular-arc graphs having a circular-arc model without any arc
contained in another.

Characterizing by forbidden induced subgraphs the whole class of circular-
arc graphs is a long standing open problem. Nevertheless, several authors
have presented some advances in this way. Trotter and Moore gave a char-
acterization by forbidden induced subgraphs within the class of co-bipartite
graphs [TM76]. J. Bang-Jensen and P. Hell presented a structural theorem
for proper circular-arc graphs within the class of chordal graphs [BH94],
that implies the characterization by forbidden induced subgraphs for proper
circular-arc graphs restricted to the class of chordal graphs.

Circular-arc graphs are a generalization of the family of the intersection
graphs of intervals in the real line, called interval graphs. Interval graphs
were characterized by Boland and Lekkerkerker in 1962 [LB62]. The whole
list of forbidden induced subgraphs that characterizes interval graphs was
successfully found via a characterization by means of asteroidal triples pre-
sented by the same authors. Any set of interval in the real line satisfies
the Helly property; i.e., any set of pairwise intersecting intervals in the
real line have a common point. Consequently, a subclass of circular-arc
graphs that naturally generalizes interval graphs are the Helly circular-arc
graphs; i.e., those circular-arc graphs having an intersection model of arcs
such that any subset of pairwise intersecting arcs has a common point. Lin
and Szwarcfiter presented a characterization by forbidden structures for this
class within the class of circular-arc graphs [L.S06a]. Such a characterization

xvii
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yields a linear-time recognition algorithm for the class of Helly circular-arc
graphs. Lin et al. introduced and characterized the class of proper Helly
circular-arc graphs [LSS07], those graphs having a circular-arc model which
is simultaneously proper and Helly.

A circular-arc graph having a circular-arc model without two arcs cov-
ering the whole circle is called normal circular-arc graph. This terminology
was introduced in [LS06b]. P. Hell proved that interval bigraphs are exactly
those circular-arc graphs with clique covering number two and having a nor-
mal circular-arc model [HHO4]. Generalizing circular-arc graphs, L. Alcon
et al. introduced the class of loop graphs |[ACH™07].

In spite of the fact that many researchers have been trying to find the
list of forbidden subgraphs that characterizes the class of circular-arc graph,
the problem still remains open. In this thesis we present some steps in this
direction by providing characterizations of circular-arc graphs by minimal
forbidden induced subgraphs, when the graph belongs to any of the follow-
ing four different classes: P,-free graphs, paw-free graphs, claw-free chordal
graphs and diamond-free graphs. In addition, since circular-arc graphs be-
longing to these classes have a normal circular-arc model, these results imply
that forbidden induced subgraphs for the class of normal circular-arc graphs
necessarily contain a diamond, an induced P4, an induced paw and either a
claw or a hole as induced subgraph. We also introduce and characterize the
class of semicircular graphs, circular-arc graphs having a circular-arc model
where its arcs are semicircles. It is worth pointing out that all of these
classes were studied along the way towards the proof of the Strong Perfect
Graph Theorem [Con89, [Ola88| [PR76) [Sei74) Tuc87]. The aforementioned
results have been published in [BDGS09].

A graph is defined to be circle if it is the intersection graph of a set C
of chords on a circle, such a set is called a circle model. Circle graphs were
introduced by Even and Itai in [EI71] to solve an ordering problem with the
minimum number of parallel stacks without the restriction of loading before
unloading is completed, proving that the problem can be translated into the
problem of finding the chromatic number of a circle graph. Unfortunately,
this problem turns out to be NP-complete [GIMP80].

Naji characterized circle graphs in terms of the solvability of a sys-
tem of linear equations, yielding a O(n”) recognition algorithm for this
class [Naj85]. The local complement of a graph G with respect to a vertex
u € V(G) is the graph G x u that arises from G by replacing the induced
subgraph G[Ng(u)] by its complement. Two graphs G and H are locally
equivalent if and only if G arises from H by a finite sequence of local com-
plementations. Bouchet proved that circle graphs are closed under local
complementation, as well as that a graph is circle if and only if every locally
equivalent graph contains non of three prescribed graphs [Bou94|. Inspired
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by this result, Geelen and Oum [GO09| gave a new characterization of circle
graphs in terms of pivoting. The result of pivoting a graph G with respect to
an edge uv is the graph G x uv = G xu x v * u (where * stands for local com-
plementation). A graph G’ is pivot-equivalent to G if G’ arises from G by a
sequence of pivoting operations. They proved, with the aid of a computer,
that G is a circle graph if and only if each graph that is pivot-equivalent to
G contains none of 15 prescribed induced subgraphs.

A circle graph with a circle model having all its chords of the same length
is called a unit circle graph. It is well-known that the class of proper circular-
arc graphs is properly contained in the class of circle graphs. Furthermore,
the class of unit circular-arc graphs and the class of unit circle graphs are
the same [Dur00].

We say that G has a split decomposition if there exist two graphs G,
and G» with |V(G;)| > 3, ¢ = 1,2, such that G = G x G2 with respect
to some pair of marker vertices (Ch. [3| of this thesis). If so, G; and Gj
are called the factors of the split decomposition. Those graphs that do not
have a split decomposition are called prime graphs. The concept of split
decomposition is due to Cunningham [Cun82]. Circle graphs turned out to
be closed under this decomposition [Bou87] and in 1994 Spinrad presented a
quadratic-time recognizing algorithm for circle graphs that benefiting from
this peculiarity [Spi94].

Circle graphs are a superclass of permutation graphs. Indeed, permu-
tation graphs can be defined as those circle graphs having a circle model
such that a chord can be added in such a way that this chord meets all
the chords belonging to the circle model. On the other hand, permutations
graphs are those comparability graphs whose complement graph is also a
comparability graph. Since comparability graphs have been characterized
by forbidden induced subgraphs [Gal67], such a characterizations implies a
forbidden induced subgraphs characterization for the class of permutation
graphs.

Helly circle graphs are those graphs having a circle model whose chords
satisfy the Helly property; i.e, every set of pairwise adjacent chords have
a common point. This family of graphs was introduced by Durén [Dur00].
He also conjectured that a circle graph is Helly circle if and only if it does
not contain a diamond as induced subgraph. Recently, this conjecture was
positively settled [DGR10]. Nevertheless, Helly circle graphs have not been
characterized by forbidden induced subgraphs yet.

In this thesis we present some partial characterizations by forbidden
induced subgraphs. We characterize circle graphs among linear domino
graphs by profiting from split decomposition. Consequently, we character-
ize Helly circle graphs within the class of claw—free graphs. Characteriza-
tions by forbidden induced subgraphs within two superclasses of cographs,
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tree-cographs and P,-tidy graphs, are presented as an application of the
characterization of Gallai for comparability graphs. Finally, we introduce
and characterize the class of unit Helly circle graphs, circle graphs having
a circle model which is simultaneously Helly and unit. This results were
published in [BDGS].

Let G be a hereditary class of graphs. A graph is defined to be probe G
if its vertex set can be partitioned into two sets: a set of probe vertices and
a set of nonprobe vertices, so that the set of nonprobe vertices is a stable set
and it can be obtained a graph belonging to G by adding edges with both
endpoints in the set of nonprobe vertices.

In 1994 Zhag introduced probe interval graphs as a research tool in the
frame of the genome projet, [ZSF794]. Since then, probe G graphs have been
studied for different hereditary families of graphs G. Sheng characterized by
forbidden induced subgraphs those trees which are probe interval [She99].
Brown et al. presented a characterization by forbidden induced subgraphs
of probe unit interval graphs within the class of trees [BLS09]. Przulj and
Corneil studied the forbidden subgraphs for probe interval graphs among
the class of 2-tree graphs [PC05]. Brown and Lundgren proved that bipar-
tite probe interval graphs are equivalent to a the complement of a class of
circular-arc graphs whose clique number is two [BLO06]. In [BBd09], Bayer
et al. characterize two subclasses of probe interval graphs, probe threshold
and probe trivially perfect graphs, in terms of certain 2-SAT formulas . In
the same article they present a characterization by forbidden subgraphs for
probe threshold graphs. Classes of probe G graphs, with G different from
interval and unit interval graphs, have been also studied for many important
classes of graphs; e.g., chordal graphs [GL04, (CGLS10], permutation graphs
ICCK™09| and split graphs [LdROT7], among others.

In order to study the behavior of the join operation for probe interval
and probe unit interval graphs, we introduce the concept of hereditary class
of graphs with a companion. We also present the whole list of all forbid-
den induced subgraphs whose complement is disconnected for the class of
probe interval graphs. In spite of we cannot manage to do so for the class
of probe unit interval graphs, we present the list of forbidden subgraphs,
whose complement is disconnected, for probe unit interval graphs, within
the classes of tree-cographs and P,-tidy graphs. We give a characterization
in terms of forbidden induced subgraphs for those co-bipartite graphs that
are probe interval, this characterization implies that co-bipartite probe in-
terval graphs and co-bipartite probe unit interval graphs are the same class
of graphs. In addition, probe interval graphs and probe unit interval graphs
are characterized by forbidden subgraphs within the class of tree-cographs,
generalizing the characterizations presented in [She99] and [BLS09], re-
spectively. This results will be published in [DGS]. Finally, we characterize
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by forbidden induced subgraphs probe interval graphs and probe unit in-
terval graphs within P,-tidy graphs. We also study the classes of probe co-
bipartite graphs and block graphs, presenting a structural characterization
for probe co-bipartite graphs that leads to a polynomial-time recognizing
algorithm for this class. Probe block graphs are a subclass of probe chordal
graphs, studied in [GLO04, [CGLS10]. Probe chordal graphs have not been
characterized by forbidden subgraphs yet. In this Thesis we present a char-
acterization for probe block graphs by forbidden induced subgraphs and we
prove that the class of probe block graphs is the intersection between the
classes of chordal graphs and probe diamond-free graphs [BDd™].

This Thesis is organized as follows. In Chapter [I] we give some defini-
tions and a brief overview on the classes we studied throughout this thesis.
Chapter 2l is devoted to partial characterizations for circular-arc graphs. In
Chapter [3| we present partial characterizations for circle graphs. Partial
characterizations for probe interval graphs and probe unit interval graphs
are studied in Chapter 4l Finally, in Chapter [l we present structural char-
acterization for probe co-bipartite graphs and probe block graphs.
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Chapter 1

Preliminaries

1.1 Definitions and notation

A graph G is an ordered pair (V(G), E(G)) consisting of a set V(G) called
vertices and a set E(G) consisting of unordered pairs of elements of V (G)
called edges. When the context is clear, we use V and E instead of V(G)
and E(G) respectively. If V = 0, G is called empty graph. For notational
simplicity, we write uv to represent the unordered pair {u,v} and » and v
are called the endpoints of the edge uv. If u,v € V(G) and uwv ¢ E(G), uv
is called a nonedge of G. If uv € E(G) we say that the vertex u s adjacent
to v or viceversa. By |A| we denote the cardinal of a set A. G denotes the
complement graph of G whose vertex set is V(G) and whose edge set is
formed by the set of nonedges of G. Notice that, nonedges in G are edges in
G. A digraph G is an orderer pair (N, D) formed by a set V called vertices
and a set D of ordered pairs of elements of N.

Let Gy = (V4, E1) and G2(V2, E2) two graphs. G; is said to be isomor-
phic to G5 and viceversa, if there exists a one-to-one function f: V3 —
preserving the adjacencies; i.e, vw € E; if and only if f(vy)f(v2) € Es.

Let G = (V, E) be a graph. The set of vertices adjacent to a vertex v € V
is called neighborhood of v and denoted by Ng(v). Ng[v] := Ng(v) U{v}
is defined to be the close neighborhood of v. dg(v) denotes |[Ng(v)| and is
called the degree of v. Vertices with degree 0 and |V| — 1 are called zsolated
vertex and universal vertez, respectively. A pendant vertex is a vertex
of degree one. H = (V', E') is said to be a subgraph of G if V! C V and
E' C E. If, in addition, E' = {uv € E : u,v € V'}, H is called induced
subgraph of G and we say that the vertez set V(H) induces the graph
H. Given a subset A C V(G), G[A] stands for the subgraph induced by
A. Two vertices u,v € V are said to be false twins if N(v) = N(w) and
they are said to be true twins if Nv] = N|[w]. Let A, B C V(G). We say
that A C V 1s complete to B C V if every vertex of A is adjacent to every
vertex of B; and A is anticomplete to B if A is complete to B in G.
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Let G and H be two graphs. We say that a graph G does not contain
H as induced subgraph or does not contain an induced H if any induced
subgraph of G is not isomorphic to H. Given a collection of graphs H, G
is defined to be H—free if for any graph F' € H, G does not contain an
induced F. If H is a set with a single element H, we just use H—free for
short. The disjoint union of G and H is the graph G U H whose vertex set
is V(G)UV (H) and whose edge set is E(G) U E(H). The disjoint union is
clearly an associative operation, and for each nonnegative integer ¢ we will
denote by tG the disjoint union of ¢ copies of G. The join of G and H
is a graph G + H whose vertex set is V(G) UV (H) and whose edge set is
E(G)UEH)U{vw:v e V(G), we V(H)}. If V(H) C V(G), we denote
by G — H the graph G[V(G) —V(H)]. If H is formed by an isolated vertex
v; i.e, H is a subgraph of G whose vertex set is {v} and whose edge set is
empty, G — v stands for G — H. Given E' C E(G), G — E’' stands for the
graph whose vertex set is V(G) and whose edge set is B(G) — E'.

Given a class of graphs G, we denote by co-G the class of graphs formed
by the complements of graphs belonging to G. A class of graph G is said
to be hereditary if for every induced subgraph G € G, any subgraph of it
belongs to G. We say that a graph G is non-G, if G does not belong to the
class G. If G is a hereditary class, a graph G is defined to be minimally
non-G if G does not belong to G but every proper induced subgraph does.

A stable set is a subset of pairwise non-adjacent vertices. A complete
set is a set of pairwise adjacent vertices. A complete graph is a graph whose
vertex set is a complete set. A clique is a complete graph maximal under
inclusion. K, (n > 0) denotes the complete graph on n vertices. K3 is also
called triangle. A diamond is the graph obtained from a complete K4 by
removing exactly one edge. A paw is the graph obtained from a triangle T'
by adding a vertex adjacent to exactly one vertex of T'. A clique is a subset
of vertices inducing a complete subgraph. A graph G is bipartite if V(G)
can be partitioned into two stable sets Vi, Vo; G is complete bipartite if
V1 is complete to V5. Denote by K. s the complete bipartite graph with
|V1|] = r and |Vz| = s. A claw is the complete bipartite graph K 3.

A path is a linear sequence of different vertices P = vq,..., vg such that
v, is adjacent to v;41 forte =1,...,k — 1. {ve,...,vn_1} are called internal
vertices of the path. Sums in this paragraph should be understood modulo
k. If there is no any edge v;v; such that |s —j] > 2; i.e., all its internal
vertices have degree two, P is said to be either chordlees path or induced
path. Denote by |P| the number of vertices of P. A cycle cycle C is a linear
sequence of vertices C = vy, ..., Vg, v; such that v; is adjacent to v;; for
¢ = 1,...,k. If there is no any edge v;v; such that |2 —j| > 2, C is said
to be either chordlees cycle or induced cycle. By P, and C, we denote
a induced path and an induced cycle on n vertices, respectively. An edge
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Figure 1.1: From left to right: claw, diamond, gem, and 4-wheel

joining two non-consecutive vertices of a path or a cycle in a graph is called
a chord. A hole is an induced cycle of length at least 4.

The operation of edge subdivision in a graph G consists on selecting an
edge uv of G and replacing it with an induced path v = v1,v2 ..., V%1,V =
v with £ > 3 a positive integer. A prism is a graph that consists of two
disjoint triangles {a1,a2,a3} and {b1,b2,bs} linked by three induced paths
Py, Py, P; where P; links a; and b; for 2 = 1, 2, 3.

A graph G is called connected if there is a path linking any two of its
vertices. A maximal (under inclusion) connected subgraph of G is called
component of G. A graph G is anticonnected if G is connected; an anti-
component of G is the subgraph of G induced by the vertices of a component
of G.

Let G be a graph. v is called a cut vertez if the number of components
of G — v is greater than the number of components of G. G is said to be
2-connected if G is connected and does not have any cut vertex. A maximal
2-connected subgraph is called a block.

1.2 Overview on some classes of graphs

The aim of this section is to give a brief overview of some classes of graphs,
especially those we use throughout this Thesis. The main focus is structural.

1.2.1 Domino graphs

A graph G is domino if each vertex belongs to at most two cliques. If, in
addition, each of its edges belongs to at most one clique, then G is a linear
domino graph.

The following theorem gives a forbidden induced subgraph characteriza-
tion for the class of dominoes graphs.

Theorem 1. [KKM95] G is a domino graph if and only if G is a
{gem, claw,4—wheel}—free graph.

Notice that, given a graph G, then every edge belongs to at most one
clique if and only if G is diamond—free. Consequently, the following corollary
is obtained.
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Figure 1.2: Interval graph and its interval model

Corollary 1. [KKM95] G 1s a linear domino graph if and only if G 1is
a {claw,diamond}—free graph.

1.2.2 Intersection graphs

Given a family of sets 7, a graph G = (V, E) is defined to be an intersection
graph respect on F if there is a one-to-one function f : V' — F, such that
uwv € E if and only if f(u) and f(v) intersect. Intersection graphs have been
widely studied in the literature. Having good structural qualities, interval
graphs, chordal graphs, circular-arc graphs and circle graphs are some of the
most studied intersection graph families. In this section we will focus on
summarizing some features of some of the aforementioned classes of graphs.

Interval graphs

A graph G = (V,E) is defined to be an interval graph if there exists a
family of open intervals Z = {I,},cv in the real line and a one-to-one
function f : V — Z such that uv € E if and only if f(u) and I(v) intersect.
Such a family of intervals Z is called an wnterval model of G.

Before introducing the well-known forbidden induced subgraph charac-
terization for interval graphs, we will define a tool that play a very important
role in this characterization. Three vertices in a graph G form an asteroidal
triple if, for each two of three vertices, there exists a path containing those
two but no neighbor of the third.

Boland and Lekerker characterized interval graph by forbidden induced
subgraphs. They managed to do so having characterized interval graphs as
those graphs not containing asteroidal triple [LB62].

Theorem 2. [LB62] A graph is an interval graph if and only if it con-
tains no wnduced bipartite-claw, umbrella, n-net for any n > 2, n-tent
for any n >3, or C, for any n > 4.

Notice that all graphs depicted in Fig. [1.3] contain an asteroidal triple.

A proper interval graph is an interval graph having an interval model
such that none of its intervals is properly contained in another, such an
interval model is called proper interval model. A unit interval is an
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Figure 1.3: Minimal forbidden induced subgraphs for the class of interval
graphs

interval graph having an interval model with all its intervals having the
same length, such an interval model is called unit interval model.

Proper interval graphs were introduced by Roberts [Rob69|. It was him-
self that characterized those interval graphs that are proper interval.

Theorem 3 (J[Rob69]). Let G be an interval graph. G s unit interval if
and only if G does not contain an induced claw.

Wegner [Weg67] and Robert [Rob69] introduced unit interval graphs.
Notice that every unit interval graph is a proper interval graph. Roberts
was able to prove that the converse is also true. Consequently, by combining
Theorem [2 and Theorem [3] follows the below theorem.

Theorem 4 ([Rob69]). Let G be a graph. G is unit interval graph if and
only if G does not contain an induced claw, a net,a tent, or C, for any
n > 4.

Permutation graphs

In order to introduce permutation graphs we first define comparability
graphs. We said that a digraph G’ = (V', E) is an orientation of a graph G
if V! = V(G) and uv € E if and only if either (u,v) € E' or (v,u) € E'. An
orientation is said to be a transitive orientation if it is a transitive binary
relation on V'; i.e., if (v,v) € E' and (v, w) € E’, then (u,w) € E'. A graph
is said to be comparability if it has a transitive orientation. Comparability
graphs were characterized by Galai by means of a list of forbidden induced
subgraphs [Gal67].

Theorem 5. [Gal67| A graph is a comparability graph if and only if it
does not contain as an induced subgraph any graph in Figure and
its complement does not contain as an induced subgraph any graph in
Figure [I.6.

Let 7:{1,...,n} — {1,...,n} be a permutation of V,, = {1,...,n}; i.e,
7 is a one-to-one function. By G(7) we denote the graph whose vertex set is
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Figure 1.4: Some minimal forbidden induced subgraphs for comparability
graphs.

V,» and whose edge set is formed by those unordered pairs 25 satisfying ¢ < 3
and m~1(¢) > n71(j). A graph G is defined to be a permutation graph if
there exists a permutation 7 such that the graph G() is isomorphic to G.
Notice that if you place {1,...,n} in two parallel vertical copies of the real
line and join ¢ of the line on the left with (%) in the line on the right, the
intersection graph of these segments is isomorphic to G(m). For instance,
consider the permutation 7 : V4 — V4 such that 7(1) = 3, n(2) = 1,
m(3) = 4 and 7(4) = 2, the graph G[n] is isomorphic to the intersection
graph of the segments depicted in Figure .5l Pnueli et al. presented a
characterization of permutation graphs that shows the relationship between
this class and comparability graphs.

b
54
44 IR

Figure 1.5: The intersection graph of the set of segments on the left whose
endpoints belong to the vertical lines is isomorphic to the graph on the right.

Theorem 6. [PLE71] A graph G s a permutation graph if and only if
G and G are comparability graphs.

Therefore, the characterization of comparability graphs in [Gal67] leads
immediately to a forbidden induced subgraph characterization of permuta-
tion graphs.

Corollary 2. A graph G 1s a permutation graph if and only if G and
G do not contain as an induced subgraph any graph in Figure[1.4] and
Figure [1.6.
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Figure 1.6: Some graphs whose complements are minimal forbidden induced
subgraphs for comparability graphs.

Chordal graphs an its subclasses

A graph G is defined to be chordal if G does not contain any induced cycle
with at least four vertices. Consequently, interval graphs are a subclass of
chordal graphs. Furthermore, since the graph tent is chordal but not interval
(see, Fig. [1.3]), the class of interval graphs is properly contained in the class
of chordal graphs. Chordal graphs were characterized as the intersection
graph of subtrees in a tree [Gav74].

Split graphs are those graphs whose vertex set can be partitioned into
two sets: a complete set and an stable set. Split graphs are a subclass of
cographs and were characterized by forbidden induced subgraphs as follows.

Theorem 7. [HET7]| Let G be a graph. G is a split graph if and only if
G does not contain any induced 2K,, Cy and Cs.

Split complete graphs are those split graphs such that can be parti-
tioned into a stable set and a complete set in such a way that the complete
set is complete to the stable set. Split complete graphs will be also called
probe complete. The above theorem implies the following result whose
proof is straightforward.

Lemma 1. Let G be a graph. G 1is split complete if and only if G does
not contain any induced Cy and Ps.

G is a block graph if it is connected and every block is a complete. It is
well-known that block graphs are connected diamond-free chordal graphs.
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Given two vertices v and w of a connected graph G, d(v,w) stands for
the number of edges of a path with the minimum number of edges linking
v and w.

A connected graph is defined to be ptolemasc if and only if satisfies the
ptolemaic inequality; i.e., for any four vertices u,v,w and z
d(u,v)d(w,z) < d(u,w)d(v,z) + d(u,z)d(v,w).

Howorka proved that a graph is ptolemaic if and only if it is chordal and
gem-free [How81|(see F» in Fig. £.2)).

1.2.3 Cographs and its superclasses

In this section we are going to overview the most important structural char-
acterization of cograph and some of its superclasses. First, we will start
defining cographs recursively.

A cograph can be recursively constructed as follows:

1. The trivial graph is a cograph.

2. If G; and G> are cographs, then G; UG5 is a cograph.
3. If G is a cograph, then G is a cograph.

There are several ways of characterizing cographs (see e.g., [CO00, [CLS81,
CPS84) [Sei74]). Next, we give a characterization by foribidden induced sub-
graph for this class.

Theorem 8. [CLS81, [CPS84] Let G = (V,E) a graph. G s a cograph if
and only if G 1s Py-free.

The following theorem shows a property of cographs which is a useful
tool to deal with this class.

Theorem 9. [Sei74]| If G is a cograph, then G s either not connected
or not anticonnected.

Let G be a graph and let A be a vertex set inducing a P4 in G. A vertex
v of G is said a partner of A if G[AU {v}] contains at least two induced
Py’s. Finally, G is called P,-tidy if each vertex set A inducing a P, in G
has at most one partner [GRT97].

The class of P;-tidy graphs is an extension of the class of cographs and it
contains many other graph classes defined by bounding the number of P,’s
according to different criteria; e.g., Ps-sparse graphs [Hoa85|, P,-lite graphs
[JO89|, and P,-extendible graphs [JO91].
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A spider [Hoda85| is a graph whose vertex set can be partitioned into
three sets S, C, and R, where S = {s1,...,S8k} (kK > 2) is a stable set;
C = {c1,...,cr} is a complete set; s; is adjacent to c; if and only if ¢ = 7 (a
thin spider), or s; is adjacent to c; if and only if ¢ # j (a thick spider); R
is allowed to be empty and if it is not, then all the vertices in R are adjacent
to all the vertices in C and nonadjacent to all the vertices in S. The triple
(S,C,R) is called the spider partition. By thing(H) and thickg(H) we
respectively denote the thin spider and the thick spider with |C| = k and
H the subgraph induced by R. If R is an empty set we denote them by
thin, and thickg, respectively. Clearly, the complementof a thin spider is
a thick spider, and vice versa. A fat spider is obtained from a spider by
adding a true or false twin of a vertex v € SUC. The following theorem
characterizes the structure of P,-tidy graphs.

Theorem 10. [GRT97] Let G be a P,-tidy graph with at least two ver-
tices. Then, ezactly one of the following conditions holds:

1. G s disconnected.
2. G s disconnected.
3. G 1is isomorphic to Ps, Ps, Cs, a spider, or a fat spider.

Let G be a graph and let A be a vertex set that induces a P, in G. A
vertex v of G is said a partner of A if G[A U {v}] contains at least two
induced P,’s. Finally, G is called Py-t:dy if each vertex set A that induces a
P, in G has at most one partner [GRT97]. The class of P,-tidy graphs is an
extension of the class of cographs and it contains many other graph classes
defined by bounding the number of P,’s according to different criteria; e.g.,
P,-sparse graphs, P;-lite graphs [JO89|, and P;-extendible graphs [JO91].
A spider is a graph whose vertex set can be partitioned into three sets S,
C, and R, where S = {s1,...,5k} (k > 2) is a stable set; C = {c1,...,ck}
is a complete set; s; is adjacent to c; if and only if ¢ = j (a thin spider),
or s; is adjacent to c; if and only if 7 # j (a thick spider); R is allowed to
be empty and if it is not, then all the vertices in R are adjacent to all the
vertices in C and nonadjacent to all the vertices in S. The triple (S,C, R)
is called the spider partition. Clearly, the complement of a thin spider is
a thick spider, and vice versa. A fat spider is obtained from a spider by
adding a true or false twin of a vertex v € SUC.

Tree-cographs [Tin89] are another generalization of cographs. They are
defined recursively as follows: trees are tree-cographs; the disjoint union
of tree-cographs is a tree-cograph; and the complement of a tree-cograph
is also a tree-cograph. It is immediate from the definition that, if G is a
tree-cograph, then G or G is disconnected, or G or G is a tree.




10

Chapter 1.

Preliminaries




Chapter 2

Circular-arc graphs

2.1 Introduction

A graph G is a circular-arc (C'A) graph if it is the intersection graph of a set
S of open arcs on a circle, i.e., if there exists a one-to-one function f : V. — S
such that two vertices u,v € V(G) are adjacent if and only the arcs f(u)
and f(v) intersect. Such a family of arcs is called a circular-arc model (C A
model) of G. C' A graphs can be recognized in linear time [McC03]. Notice
that a graph is an interval graph if it admits a C'A model such that the set
of arcs does not cover the circle. Interval graphs have been characterized by
minimal forbidden induced subgraphs [LB62| (see Chapter [, Section [1.2]).
A graph G is a proper circular-arc (PCA) graph if it admits a C A model
in which no arc is contained in another arc. Tucker gave a characterization
of PC A graphs by minimal forbidden induced subgraphs [Tuc74]|. Further-
more, this subclass can be recognized in linear time [DHH96]. A graph
G is a unit circular-arc (UCA) graph if it admits a CA model in which
all the arcs have the same length. Tucker gave a characterization by min-
imal forbidden induced subgraphs for this class [Tuc74]. Recently, linear
and quadratic-time recognition algorithms for this class have been shown
[LS06b, DGM™06|. Finally, the class of C'A graphs that are complements of
bipartite graphs was characterized by minimal forbidden induced subgraphs
[TMT76]. T. Feder et al. characterized those C A graphs that are cobipartite
by edge asteroids [FHH99|. Nevertheless, the problem of characterizing the
whole class of C'A graphs by forbidden induced subgraphs remains open.
In this chapter we present some steps in this direction by providing char-
acterizations of C'A graphs by minimal forbidden induced subgraphs when
the graph belongs to any of four different classes: P,-free graphs, paw-free
graphs, claw-free chordal graphs and diamond-free graphs. All of these
classes were studied along the way towards the proof of the Strong Perfect
Graph Theorem [Con89, [Ola88), PR76), [Sei74), Tuc87|. The results presented
in this chapter were published in [BDGS09).

11
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2.2 Preliminaries

2.2.1 Definitions

Denote by G* the graph obtained from G by adding an isolated vertex. If ¢
is a non-negative integer, then tG will denote the disjoint union of ¢ copies
of G. A graph G is a multiple of another graph H if G can be obtained
from H by replacing each vertex z of H by a non-empty complete graph
M and adding all possible edges between M, and M, if and only if z and
y are adjacent in H.

Let G and H be graphs. G is an augmented H if G is isomorphic to H or
if G can be obtained from H by repeatedly adding a universal vertex. G is a
bloomed H if there exists a subset W C V (G) such that G[W] is isomorphic
to H and V(G) — W is either empty or it induces in G a disjoint union of
non-empty complete graphs Bi, Bs, ..., B; for some 7 > 1, where each B;
is complete to one vertex of G[W], but anticomplete to any other vertex
of G[W]. If each vertex in W is complete to at least one of By, Bs,..., Bj,
we say that G is a fully bloomed H. The complete graphs Bj,..., B; will
be referred as the blooms. A bloom is trivial if it is composed of only one
vertex.

2.2.2 Previous results

Special graphs needed throughout this chapter are depicted in Figure 2.1l
For notational simplicity, in this chapter, we will use net and tent as ab-
breviations for 2-net and 3-tent, respectively.

Bang-Jensen and Hell proved the following result.

Theorem 11. [BH94] Let G be a connected graph containing no induced
claw, net, Cyq, or Cs. If G contains a tent as induced subgraph, then G
15 a multiple of a tent.

Theorem [I1lallows to provide the following description of all the minimal
non-PC A graphs within the class of connected chordal graphs.

Theorem 12. [BH9j] Let G be a connected chordal graph. Then, G 1s
PCA if and only if it contains no induced claw or net.

Recall that Lekkerkerker and Boland determined all the minimal for-
bidden induced subgraphs for the class of interval graphs (cf. Chapter [T,
Theorem [2). This characterization yields some minimal forbidden induced
subgraphs for the class of CA graphs. Let H be a minimal forbidden in-
duced subgraph for the class of interval graphs. Notice that if H is non-C4,
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Figure 2.1: Some minimally non-C'A graphs.

then H is minimally non-C A. Otherwise, if H is C A, then H* is minimally
non-C'A, and furthermore all non-connected minimally non-C' A graphs are
obtained this way. Since the umbrella, net, n-tent for all n > 3, and C,, for
all n > 4 are CA, but the bipartite claw and n-net for all n > 3 are not,
this observation and Theorem 2] lead to the following result.

Corollary 3. [TM76] The following graphs are minimally non-C A graphs:
bipartite claw, net*, n-net for all n > 3, umbrella*, (n-tent)* for all
n > 3, and C} for every n > 4. Any other minimally non-C A graph 1s
connected.

We call the graphs listed in Corollary [3] basic minimally non-C' A graphs.
Any other minimally non-C A graph will be called non-basic. The following
result, which gives a structural property for all non-basic minimally non-C'A
graphs, can be deduced from Theorem [2] and Corollary [3l

Corollary 4. If G is a non-basic minimally non-C A graph, then G has
an nduced subgraph H that is isomorphic to an umbrella, a net, a j-
tent for some j > 3, or C; for some j > 4. In addition, each vertez v
of G — H 1s adjacent to at least one verter of H.

Proof. Since G is non-C'4, in particular, G is not an interval graph. By
Theorem [2, G has an induced subgraph H isomorphic to a bipartite claw,
umbrella, j-net for j > 2, j-tent for 7 > 3, or C; for some j > 4. Since G is
non-basic minimally non-C'A, H is isomorphic to umbrella, net, j-tent for
some 7 > 3, or C; for some 7 > 4. Moreover, since G is not isomorphic to
H*, every vertex v of G — H is adjacent to at least one vertex of H. O

Figure 2.T] introduces the graphs G;, for ¢ € {1,2,...,9}.
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Theorem 13. Let G be a minimally non-C A graph. If G is not tsomor-
phic to Ky 3, G, G3, Gg, or C’]*, for 7 > 4, then for every hole H of G
and for each vertex v of G — H, either v is complete to H, or Ng(v)
induces a non-empty path in H.

Proof. Let G be a minimally non-C A graph, and suppose that G is not
isomorphic to Ky3, Ga, Gz, G, or C’;-‘ for 7 > 4. Suppose, by way of
contradiction, that there is a hole H of G and there is a vertex v of G — H
such that v is not complete to H and Ny (v) does not induce a path in H.
Note that Ny (v) is non-empty because G is minimally non-C A and it is
not isomorphic to C7 for j > 4.

So, H — Ng(v) is non-empty and is neither a path nor a hole, hence it
is not connected. Let @; and Q> be two components of H — Ny (v). Then,
there are induced paths P! and P? on H such that the interior vertices of
P* are Q;, for 1 = 1,2. Therefore, the following conditions hold:

1. each of P! and P? has at least three vertices,
2. v is adjacent to none of the interior vertices of P! and P?, and

3. v is adjacent to the endpoints of P! and the endpoints of P2.

By definition, P! and P? have no interior vertices in common.

Suppose, by way of contradiction, that P! and P? have no common
endpoints. Let w be an interior vertex of P!, so w is anticomplete to the
hole induced by {v} UV (P2) on G. Then, {v,w} UV (P?) induces a proper
subgraph of G (it is proper since it does not contain the endpoints of P!)
that is not a C' A graph, a contradiction.

Suppose next that P! and P? have exactly one endpoint in common.
Suppose, by way of contradiction, that P! has at least two interior vertices.
Then, there is an interior vertex w of P! that is non-adjacent to the common
endpoint of P! and P2. Since {w} is anticomplete to {v} UV (P?), {v,w}U
V(P?) induces a proper subgraph in G (it is proper because it does not
contain the endpoint of P! that is not a vertex of P?) that is non-CA,
a contradiction. This contradiction proves that each one of P! and P?
has exactly one interior vertex. Then, {v} UV (P!) UV (P?) would induce
on G a subgraph isomorphic to either G3 or G, both of which are non-
C A graphs. Since G is minimally non-CA4, V(G) = {v}UV(P!) UV (P?).
Since V(P') UV (P?) C V(H), necessarily V(H) = V(P*) UV (P?). Since
H induces a hole in G, G is isomorphic to Gs, a contradiction.

Finally suppose that P! and P2 have exactly two endpoints in com-
mon. Suppose, by way of contradiction, that P! has more than two interior
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points. Let w be an interior vertex of P! that is adjacent to none of its end-
points. Then, w is anticomplete to {v} UV (P?) and thus {v,w} UV (P?)
induces a proper subgraph on G (it is proper because it does not contain
the neighbours of w in H) that is non-C' A, a contradiction. This contradic-
tion shows that each one of P! and P? has at most two interior vertices.
Thus, {v} UV (P') UV (P?) induces on G either K»3, G2 or G, which are
minimally non-C'A graphs. Since G is minimally non-C'A4, G is isomorphic
to one of them, a contradiction. O

2.3 Partial characterizations

2.3.1 Cographs

Results on cographs used throughout this subsection can be found in Sub-

section [[.2.3]

Define semicircular graphs to be the intersection graphs of open semi-
circles on a circle. Notice that semicircular graphs are UC' A graphs.

Theorem 14. Let G be a graph. The following conditions are equiva-
lent:

1. G 15 {P, 3K }-free.

2. G 1s an augmented multiple of tK, for some non-negative integer
t.

3. G 1s a semicircular graph.

Proof. (1) = (2) Assume that G is a {P,,3K;}-free graph. If G has less
than two vertices, then G is a complete (note that tK, with ¢ = 0 is an
empty graph). So, we can assume that G has at least two vertices. Since G
is P,-free, by Theorem [9] G is either not connected or not anticonnected.

Since G is 3K;-free, if G is not connected, then G has exactly two com-
ponents. Moreover, both components are complete graphs. Thus, G is a
multiple of K,. Suppose now that G is non-anticonnected, and let H be
an anticomponent of G. Since H is {P4, 3K, }-free and anticonnected, H is
either trivial or non-connected and, in the second case, by the arguments
above H induces on G a multiple of K,. Let s be the number of anticompo-
nents of G that are trivial and ¢ be the number of anticomponents of G that
induce on G a multiple of K,. Since G is the join of its anticomponents, G
is the join of a multiple of ¢K, and a complete K, for some non-negative
integers ¢ and s. Consequently, G is an augmented multiple of tK, for some
non-negative integer .

(2) = (3) Assume that G is an augmented multiple of ¢K> for some non-
negative £. In particular, G is a multiple of tK5 U sK; for some non-negative
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Figure 2.2: The graph 2K, U K; and its semicircular model.

t and some s = 0 or 1. In order to prove that G is a semicircular graph, it
suffices to prove that {Ks U sK; is a semicircular graph. Fix a circle C. Let
{p1,p1},..  {pt,Pi },{a1,4:},- -, {gs,q.} be t + s pairwise distinct pairs of
antipodal points of C. For 1 = 1,...,t, let S! and S? be the two disjoint
open semicircles on C whose endpoints are p; and p,. For 7 = 1,...,s
let T; be an open semicircle on C whose endpoints are g; and q;-. Then
St s2....,8} 82, T,...,Ts is a semicircular model for tK, U sK; (see Fig.

22).

(3) = (1) We now prove that semicircular graphs are {P,,3K;}-free
graphs. It is clear that 3K; is not a semicircular graph because there is
not enough space on a circle for three pairwise disjoint semicircles. We now
show that P, is not a semicircular graph. Assume, by way of contradiction,
that there is a semicircular graph model for P,. Let V (Py) = {v1,vs,v3,vs},
where v; is adjacent to v, 41 for 2 = 1,2,3 and let S = {51, S2, 53,54} be a
semicircular model for P,, where the semicircle S; corresponds to the vertex
v;. Since v; and vz are non-adjacent, S; and S3 are disjoint and have the
same endpoints. Since v; and v, are also non-adjacent, the same holds for Sy
and S4, hence S; = S;. This contradicts the fact that Sy N.Ss is non-empty
but S, NSy is empty. This contradiction shows that P, is not a semicircular
graph. Since the class of semicircular graphs is hereditary, a semicircular
graph is {3K, Py}-free. O

Theorem 15. Let G be a cograph that contains an induced Cy, and such
that all its proper induced subgraphs are C A graphs. Then, ezactly one
of the following conditions holds:

1. G 1s 1.somorphic to Ky 3 or Cj.

2. G 1s an augmented multiple of tK,, for some integer t > 2.
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Proof. Clearly, K>3 and Cj are not augmented multiples of tK>, for any
integer ¢ > 2. Assume that G is isomorphic to neither Cj nor K3 3. Since all
proper induced subgraphs of G are C A graphs, C; and K 3 are not proper
induced subgraphs of G. We must prove that G is an augmented multiple
of tK,, for some integer ¢ > 2. Let H be the induced subgraph of G that is
isomorphic to Cy. Since C; = 2K,, we may suppose that there is a vertex
v in G — H. Since Cj is not an induced subgraph of G, v is adjacent to
at least one vertex of H. Since G is {P4, K 3}-free, either v is adjacent to
three vertices of H or v is complete to H. In case that v is adjacent to three
vertices of H we will denote by C(v) the interior vertex of the path induced
by Ng(v) in H. Suppose there exists a vertex w of G — H, w # v, that
is non-adjacent to v. If v were adjacent to three vertices of H and w were
complete to H, then the subgraph induced by {v,w}UV(H) in G would
contain an induced P4, a contradiction. Thus, v and w are both adjacent
to three vertices of H or they are both complete to H. Next assume that
v and w are both adjacent to three vertices of G. If C(v) = C(w), then
{v,w}U (V(H)—{C(v)}) would induce in G a graph isomorphic to Kj 3.
If C(v) and C(w) were adjacent, then {v,w} UV (H) would contain an
induced P;. We conclude that if v and w are both adjacent to three vertices
of H, then C(v) and C(w) must be distinct and non-adjacent vertices of H.

We now prove that G does not contain 3K; as induced subgraph. As-
sume, by way of contradiction, that there is an induced subgraph S of G
isomorphic to 3K;. Clearly H and S have at most two vertices in common.
If H and S had two vertices in common, then the remaining vertex of S
would be a vertex of G — H adjacent to at most two vertices of H, a con-
tradiction. If H and S had exactly one vertex in common, then the other
two vertices of S would be adjacent to the same three vertices of H. As
we noticed above, this leads to a contradiction. We conclude that H and
S must have no vertices in common. Let {vy,vs,v3} = V(S). Since the
vertices of S are vertices of G — H and pairwise non-adjacent, all of them
are adjacent to three vertices of H or all of them are complete to H. If all of
them were adjacent to three vertices of H, then C(vy), C(v2), C(vs) would
be pairwise distinct and non-adjacent vertices of H, a contradiction. If all of
them were complete to H, then H U{v;,v2,v3} induces in G a graph which
contains an induced K> 3, a contradiction. We conclude that G is 3K;-free.
Since G is also P,-free, by Theorem [14], G is an augmented multiple of ¢K>.
Finally, since G contains Cy as an induced subgraph, ¢ > 2. O

We can now present the main characterization of this subsection.

Theorem 16. Let G be a cograph. Then, G is a CA graph if and only
if G contains no induced K3 or Cy.
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Proof. Let H be a cograph. Suppose, by way of contradiction, that H is
a minimally non-C'A graph but H is not isomorphic to K3 or Cj;. Since
H is not an interval graph and it is P,-free, by Theorem [2] H contains an
induced C;. By Theorem [I5, H is an augmented multiple of K>, for some
t > 2. Thus, by Theorem [14] H is a C'A graph, a contradiction. O

2.3.2 Paw-free graphs

A paw-free graph is a graph with no induced paw. Paw-free graphs were
studied in [Ola88].

Theorem 17. Let G be a paw-free graph containing an induced Csy and
such that all its proper induced subgraphs are C A graphs. Then, at least
one of the following conditions holds:

1. G 1s 1.somorphic to Ky 3, Ga, G, or Cj.
2. G 15 a bloomed C4 with trivial blooms.
3. G 1s an augmented multiple of tK, for somet > 2.

Proof. Assume that G is not isomorphic to K3, G2, G7, or Cj. Since all
proper induced subgraphs of G are CA, G does not contain any of these
graphs as induced subgraphs.

Let H be an induced subgraph of G isomorphic to Cy. If G = H, then
the theorem holds. Otherwise, let v be any vertex of G — H. Since G is
Cj-free, v is adjacent to at least one vertex of H. Since G is paw-free,
v cannot be adjacent to either exactly three vertices of H or exactly two
adjacent vertices of H. Since G is K> 3-free, v cannot be adjacent to exactly
two non-adjacent vertices of H. We conclude that each vertex v of G — H
is either adjacent to exactly one vertex of H or complete to H.

Suppose that there are two vertices w, w' in G — H such that w is
complete to H and w’ is adjacent to exactly one vertex z of H. If w and w’
are non-adjacent, then w,w’,z and any neighbour of z in H induce a paw
in G; if w and w' are adjacent, then w,w’, z and the non-neighbour of z in
H induce a paw in G. Since G is paw-free, either all vertices of G — H are
complete to H, or each vertex of G — H is adjacent to exactly one vertex of
H (not necessarily all of them to the same vertex).

Assume first that each vertex of G — H is adjacent to exactly one vertex
of H. Let us prove that G — H is a stable set. Assume, by way of contra-
diction, that there are two adjacent vertices v and w in G — H. Since G is
paw-free, v and w cannot be adjacent to the same vertex. Since G contains
no induced Gv, v and w must be adjacent to non-adjacent vertices of H.
Similarly, since G contains no induced G2, v and w cannot be adjacent to
non-adjacent vertices of H, a contradiction. Thus, G — H is a stable set.
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Since each vertex of G — H is adjacent to exactly one vertex of H, G is a
bloomed C, with trivial blooms.

Assume now that all vertices of G — H are complete to H. If G— H
contains three pairwise non-adjacent vertices, then these vertices and two
non-adjacent vertices of H induce Kj 3, a contradiction. If G — H contains
Py, then three non-consecutive vertices of P, and any vertex of H induce a
paw, a contradiction. Thus, G — H is {3K3, P;}-free. Since H is complete
to G — H, every induced subgraph of G with at least one vertex in H and
at least one vertex in G — H is non-anticonnected. Since P, and 3K; are
anticonnected, if G contains an induced subgraph isomorphic to either 3K;
or P4, then it must be entirely contained in either # or G — H. As observed
above, this situation is not possible, hence G is {3K3, P, }-free. By Theo-
rem[I4, G is an augmented multiple of ¢K, for some non-negative t. Finally,
since G contains an induced Cy, t > 2. O

Theorem 18. Let k > 5. Let G be a paw-free graph such that all its
proper induced subgraphs are CA graphs. If G contains an induced sub-

graph H isomorphic to Ck, then ezactly one of the following conditions
holds:

1. G 1s 1somorphic to Gy, G4, or Cj.
2. G 15 a bloomed C} with trivial blooms.

Proof. Assume that G is not isomorphic to Gy, G4, or C}. Since all proper
induced subgraphs of G are CA, G does not contain any of these graphs
as induced subgraph. Moreover, G contains no induced C'J*-‘, for any 7 > 4.
G is paw-free, so it is not isomorphic to G3; G contains an induced cycle
of length at least five, so it is not isomorphic to K>3. If G = H, then the
theorem holds. Otherwise, by Theorem [13] if v is a vertex of G — H, then
either v is complete to H or Ny (v) induces a non-empty path on H. But,
since H is isomorphic to Cy, k > 5, and G is paw-free, every vertex of G — H
must be adjacent to exactly one vertex of H. We will show now that G — H
is a stable set of G. Let v and w be two vertices of G — H. Suppose, by
way of contradiction, that v and w are adjacent. Since G is paw-free, v and
w cannot be adjacent to the same vertex of H. If v and w were adjacent to
two adjacent vertices of H, then G would properly contain an induced Cj.
We can assume now that v and w are adjacent to non-adjacent vertices of
H. Let P! and P? be the two distinct paths joining the neighbours of v and
w within H. By hypothesis, each of P! and P? has at least three vertices,
and at least one of them has four vertices, since H has at least five vertices.
Since G contains no induced C}, j > 4, each of P' and P? has at most
four vertices. If P! and P? have three and four vertices respectively, then
{v,w}UV(H) would induce in G the graph G4, a contradiction. Finally, if
each of P! and P2 has four vertices, then {v,w} UV (H) — Ng(v) induces
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properly on G a bipartite claw, a contradiction. We conclude that G — H is
a stable set of G, and since each vertex of G — H is adjacent to exactly one
vertex of H, G is a bloomed Cj with trivial blooms. O

We can prove now the main result of this section.

Theorem 19. Let G be a paw-free graph. Then, G 1s a C A graph if and
only if G contains no induced bipartite claw, Ka3, G2, G4, G7, or C’]*,
for any 7 > 4.

Proof. Let H be a paw-free graph. Suppose, by way of contradiction, that
H is not isomorphic to the bipartite claw, K3, G2, G4, G7, or CJ’-‘, for
J >4, but H is still a minimally non-C A graph. Since H is paw free, H is
non-basic and, by Corollary [, H contains an induced C; for some j > 4.
By Theorem [17] and Theorem [I8], H is either an augmented multiple of tK,
for some t > 2 or a bloomed C); with trivial blooms. It is easy to see that a
bloomed C; with trivial blooms is CA, and an augmented multiple of tK; is
shown to be CA in Theorem [I4l In both cases, we get a contradiction. [

2.3.3 Claw-free chordal graphs

A graph is claw-free chordal if it contains neither an induced claw nor a
hole. Claw-free graphs are widely studied in the literature, see for example
[PRT6] or recent results in [CS05|. Besides, as PC A graphs are claw-free, the
study of claw-free chordal graphs arises naturally from the characterization
of PC A graphs within the class of chordal graphs.

Lemma 2. Let G be a {claw,net*,Gs,Gs }-free chordal graph that con-
tains a net L induced by {t1,t2,t3,b1,b2,b3}, where {t1,t2,t3} tnduces a
triangle and b; 1s adjacent to t; fori1=1,2,3. If v 1s a vertez .n G— L,
then NL(v) s either {b;,t;}, or {t1,t2,t3,b;} or {bit1,tit1,tis2,bita}, for
some 1 € {1,2,3} (indices should be understood modulo 3).

Proof. We will analyze the different cases for |Ng(v)|. If |[NL(v)] = 0,
then L U {v} induces net*, a contradiction. If |[Nj(v)] = 1, then either
Np(v) = {b;} or Ny(v) = {¢t;} for some ¢ € {1,2,3}. In the first case,
L U {v} induces Gs; in the second case, b;,t;,t;+1,v induce a claw. In both
cases, we get a contradiction.

If [Ny (v)| = 2, then the representative cases for Nz (v) up to symmetry
are: {b;,b;41}, {ti,tiv1}, {bi,tit1}, {b:,t:i}. In the first case, b;t;t; 110,110 is
a hole; in the second and third cases, ¢;1,tit2,bit1, v induce a claw. So, if
|NL(v)| = 2, then N (v) = {b;,¢;} for some 7 € {1,2,3}. If |Np(v)| = 3,
then the representative cases up to symmetry are: {b1,b2,b3}, {b;, bit1,
tiva}, {ti,t2,t3}, {bi, bit1, tiv1}, {bs, tiv1, tive}, {b:, &, ti11}. In the
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Figure 2.3: Circles represent cliques. Two circles are adjacent, non-adjacent
or joined by a dotted line if the corresponding cliques are mutually complete,
anticomplete, or not necessarily complete or anticomplete, respectively.

first two cases, Nz (v) U{v} induces a claw; in the third case, Ni(v) U{v}
induces Gg; in the fourth an fifth cases, b;t;t;+1v is a hole; in the last case
tiv1,bi+1,tit2,v induce a claw. In all the cases we get a contradiction.

Finally, if v is adjacent to b;4+1,b;12 and to either b; or ¢;, then either
{v,bi+1,bi12,b;} or {v,b;11,b;12,t;} induces a claw, respectively. So, if
|NL(v)| > 4, then Np(v) is either {t1,¢2,t3,b:} or {bit1,tit1,tit2,bit2},
for some ¢ € {1,2, 3}. O

Theorem 20. Let G be a claw-free chordal graph that contains an in-
duced net, and such that all its proper induced subgraphs are C A graphs.
Then, ezactly one of the following conditions holds:

1. G 1s isomorphic to net*, Gs or Gs.
2. G 1s a CA graph.

Proof. Assume that G is not isomorphic to net*, Gs or Gg. Since these
graphs are non-C'A and all proper induced subgraphs of G are C A, G con-
tains no induced net*, Gs or Gg. We claim that G has as an induced

subgraph H that is a multiple of a net; i.e., the vertices of H can be parti-
tioned into six non-empty cliques By, Bs, B3, T1,T>, T3 such that Ty,T5,T3
are mutually complete and T; is complete to B; and anticomplete to B;1
and B;.», for each ¢« = 1,2,3 (from now on, the indices should be under-
stood modulo 3). Moreover, the vertices of G — H can be partitioned into
three (possibly empty) cliques M;, Ma, M3 such that, for each ¢ = 1,2, 3,
M; is complete to B;i1, Bits, T;+1 and T;,» and anticomplete to B; and
T;. A scheme of this situation can be seen in Figure 2.3]

We will prove the claim by induction on the number n of vertices of G.
Clearly, if G is a net, then the claim holds. Assume that n > 6 and that
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the desired result holds for graphs with less than n vertices. Since n > 6,
there exists a vertex v of G such that G’ = G — {v} contains an induced net.
By inductive hypothesis, since G’ is claw-free chordal, G’ has an induced
subgraph H that is a multiple of a net and the vertices of G’ — H can be
partitioned into three cliques M;, Ms, M3 satisfying the conditions above.

Choose t; € T;, b; € B; for each ¢ = 1,2, 3 (recall that T; and B; are non-
empty for 2 = 1,2,3). Let L be the subgraph induced by {¢;, t2, ts, b1, b2, b3}.
By Lemma [2] either Ni(v) = {b;,t;}, Np(v) = {t1,t2,%3,b;} or Np(v) =
{bi+1,ti+1,ti+2,bi+2}, for some 2 € {1, 2, 3}.

Suppose first that Ny(v) = {t;,b;} for some ¢ € {1,2,3}. Let j €
{1,2,3}, b; € By, and L' be the net induced by {t1,%2,t3,b},b;+1,bj+2}.
Applying Lemma [2 to L', it follows that v is adjacent to b} if and only if
) = 4. Thus, v is complete to B; and anticomplete to B;;; and B;». Using
the same strategy, we can prove that v is complete to 7; and anticomplete
to T341 and T;4o. Since G is claw-free, v must be complete to M; ; (if w
were a non-neighbour of v in M4, then ¢;,¢;,11,w,v would induce a claw)
and, by symmetry, v is also complete to M;, 5. Moreover, since G is C,-free,
v is anticomplete to M; (if w were a neighbour of v in M;, then ¢;,t;11, w,v
would induce C4). Thus, the claim holds for G replacing B; by B; U {v}.

Next, suppose that Ni(v) = {t1,ts,ts,b;} for some ¢ € {1,2,3}. Rea-
soning as in the first case, it follows that v is complete to 71, Tb, 15, B;
and anticomplete to B; 1 and B; 5. Since G is Cy-free, v must be complete
to M,y (if w were a non-neighbour of v in M;,,, then b;,v,%; 12, w would
induce a C4) and, by symmetry, also to M;.». Since G is claw-free, v must
be anticomplete to M; (if w were a neighbour of v in M;, then w, b;11,b;42,v
would induce a claw). Thus, the claim holds for G replacing T; by T; U {v}.

Finally, suppose that Ny (v) = {b;+1,ti+1,tit2, bito} for somes € {1,2,3}.
Reasoning again as in the first case, it follows that v is complete to B;. 1,
Ti+1, Tito, Bi1o and anticomplete to B; and T;. Since G is claw-free, v must
be complete to M; (if w were a non-neighbour of v in M;, then ¢;,t;11, w,v
would induce a claw). Thus, the claim holds for G replacing M; by M; U {v}.
This ends the proof of the claim.

If M; and M, are non-empty and m;, m; 1 are vertices in M; and M; 1,
respectively, then either m;t; . 1t;m; 116,15 induce a Cs or m;t;1t;m;41 in-
duce a Cy. Since G is chordal, at most one of {M;, M2, M3} is non-empty.
Consequently, G is either a multiple of a net (if every M; is empty) or a
multiple of the graph S depicted in Figure Since the net and S are
easily seen to be a CA graph, G is also a CA graph. O

We can now prove the main result of this section.
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S

Figure 2.4: The graph S.

Theorem 21. Let G be a claw-free chordal graph. Then, G 1s CA if
and only if G contains no induced tent*, net*, Gs or Gs.

Proof. Let H be a claw-free chordal graph. Suppose, by way of contradic-
tion, that H is not isomorphic to tent*, net*, Gs or Gg, but H is still a
minimally non-C'A graph. Since H is claw-free and chordal, H is non-basic
and, by Corollary 4 H contains an induced net or tent. If H contains an
induced net, then by Theorem 20, H is isomorphic to a net*, G5 or Gg, a
contradiction. Thus, H contains no induced net but an induced tent. Since
H is non-basic, it is connected (Corollary [3)). So, by Theorem [II] H is a
multiple of a tent and, in particular, a C' A graph, a contradiction. O

2.3.4 Diamond-free graphs

A diamond-free graph is a graph with no induced diamond. Diamond-free
graphs have been extensively studied. (See, for example, [CY81, [Con89,
Tucs7].)

Theorem 22. Let G be a diamond-free graph that contains a hole, and
such that all its proper induced subgraphs are C A graphs. Then, ezactly
one of the following conditions holds:

1. G 1s 1somorphic to Ka3, Go, Gz, G4, Gy, Cs, Gg, or CJ’-‘ for some
>4

2. G 1s a CA graph. More precisely, if H s any induced hole of G,
and V(H) = {hy,...,hi} where h; is adjacent to h; 1 for each i =
1,...,k (indices should be understood modulo k), then the vertices
of G — H can be partitioned into k + 1 (possibly empty) pairwise
anticomplete sets Uy,...,Ug, S such that the following conditions
hold:

e For each i = 1,...,k, G[U;] is the union of vertez-disjoint
cligues and for each u € U;, Ng(u) = {h;}.
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e For each s € S there 1s an integer ¢, 1 < i < k, such that
Ny (s) = {h;,hit1}; in addition, if s1,52 € S, then s; and s
are adjacent if and only if Ny(s1) = Ny (s2).

Proof. Assume that G is not isomorphic to K» 3, G2, Gs, Ga, G7, Cs, Go,
or C’]* for any 57 > 4. Since all of these graphs are non-C'A and all proper
induced subgraphs of G are C A, G contains none of these graphs as induced
subgraphs.

Let H be an induced hole on G of length k& and let v be any vertex of
G — H. Since G is not isomorphic to K53, G2, G3, Gy, or C'J’-‘, for any 5 > 4,
by Theorem [I3] either v is complete to H or Ny (v) induces a non-empty
path in H. Since G is diamond-free, v is adjacent to at most two vertices
of H. So, each vertex of G — H is adjacent to either a single vertex or two
adjacent vertices of H.

Let V(H) = {h1,...,hr}, where h; is adjacent to h;;; for each ¢ =
1,...,k (from now on, indices should be understood modulo k). Let U; be
the set of vertices v of G — H with Ny (v) = {h;}. Since h; is adjacent to
all vertices of U; and G is diamond-free, G[U;] contains no induced P; and
therefore G[U;] is the union of vertex disjoint cliques.

We now show that if 7 # j, then U; is anticomplete to U;. Suppose, by
way of contradiction, that there exist ¢z and 7, ¢ # 7, such that some vertex
u; € U; is adjacent to some vertex u; € U;. Let P! and P? be the two
distinct paths on H joining h; and h;. If P! has more than four vertices, then
there is an interior vertex w of P! that is anticomplete to P2, so {u;,u;} U
V(P?) U {w} induces on G a graph isomorphic to C}, for some m > 4,
a contradiction. Thus, each one of P! and P? has at most four vertices.
Without loss of generality, we may assume that |P!| < |P?|. If |P!| = 2 and
|P?| = 4, then {u;,u,;} UV (H) induces Gv; if |P!| = 3 and |P?| = 3, then
{ui,u;} UV (H) induces Go; if |P!| = 3 and |P?| = 4, then {u;,u;} UV (H)
induces Gy, if |P!| = 4 and |P?| = 4, then {u;,u;} U (V(H) — {h;}) induces
a bipartite claw. In all the cases, we get a contradiction. We conclude that
if 2 # j, then U; is anticomplete to U;.

Let S be the set of vertices v of G — H that are adjacent to two vertices of
H. Let s1, s2 be two vertices of S, ¢ and j be such that Ny (s1) = {hi, hit1}
and Ng(s2) = {h;, h;+1}. Since G is diamond-free, if 2 = 7, then s; and s;
must be adjacent and if [¢ — j| = 1, then s; and s must be non-adjacent.
Suppose now that |¢ —j| > 1, so h;, hs11, hj and hj, are pairwise distinct.
Assume for contradiction that s; and s, are adjacent. Let P! be the path on
H whose vertices are {A;;1, hit2,...,h;} and P? be the path on H whose
vertices are {hji1,Rjt2,...,hi}. If P! and P? have no internal vertices,
then {s1,s2} UV (H) induces Cs, a contradiction. We can assume, without
loss of generality, that P! has at least one internal vertex w. But, then
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w is anticomplete to the hole induced on G by {si, s>} UV (P?), hence
{s1, 82, w} UV (P?) induces on G a graph isomorphic to C, for some m > 4,
a contradiction. So, s; and s» are non-adjacent.

Now we will prove that U; is anticomplete to S for each z = 1,...,k.
Suppose, by way of contradiction, that there exist adjacent vertices u; € U;
and s € S, and let 5 be such that Ny(s) = {h;, hj41}. Since G is diamond-
free, i is different from j and j + 1. Let P! be the path on H whose
vertices are {hi,hit1,...,h;} and P? the path on H whose vertices are
{hj+1,---,hi_1,h;}. If P? has more than three vertices, then h; o is an-
ticomplete to the hole induced by {s,u;} UV (P?!), a contradiction. Anal-
ogously, P! has at most three vertices. If |P!| = 2 and |P?| = 3, then
{u;,s} UV (H) induces G3; if |[P!| = 3 and |P?| = 3, then {u;, s} UV (H)
induces Gg. We may assume |P;| < |P;|. In both cases, we have a contra-
diction. We conclude that U; is anticomplete to S for each 2 = 1,...,k.

Finally, it is not difficult to see that a graph satisfying these conditions
is a C' A graph. This concludes the proof. O

Theorem 23. Let G be a diamond-free chordal graph that contains an
induced net, and such that all its proper induced subgraphs are CA
graphs. Then, ezactly one of the following conditions holds:

1. G 1s isomorphic to a net*, Gs, or Gs.
2. G 1s a fully bloomed triangle.

Proof. Assume that G is not isomorphic to net*, Gs, or Gg. Since all of
these graphs are non-C'A and all proper induced subgraphs of G are CA, G
contains none of these graphs as induced subgraphs.

We will show that G is a fully bloomed triangle, and, as a consequence,
a C A graph. We will argue by induction on the number of vertices of G.

Clearly, a net is a fully bloomed triangle. Suppose that G has n > 6
vertices and that the result holds for graphs with n — 1 vertices. Since G
has more than six vertices, there exists a vertex v of G such that G — {v}
contains an induced net.

Moreover, G — {v} is diamond-free chordal, all its proper induced sub-
graphs are C A graphs and it is not isomorphic to net*, Gs, or Gg. So, by
inductive hypothesis, G — {v} is a fully bloomed triangle. That is, there
exists a triangle T' of G — {v} such that the remaining vertices of G — {v}

induce a disjoint union of complete graphs My, Mo, ..., M,,, where each M;
is complete to one vertex of T' and anticomplete to the others, and each
vertex of T' is complete to at least one of My, Ms,..., M,,. The vertex v is

adjacent to at least one vertex of G — {v} because G contains no induced
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net*. On the other hand, since G is chordal and diamond-free and G — {v}
is connected, N(v) induces a complete graph on G. So, either N(v) C T or
N(v) C M; U{t}, where t € T and M; is a bloom complete to ¢. In the first
case, since G contains no induced Gg, |[N(v)| # 3, and since G is diamond
free, |[N(v)| # 2. Therefore, N(v) = {t} for some ¢t € T" and {v} is a new
bloom complete to £. In the second case, since G is diamond-free, either
IN(v)] = 1or N(v) = M; U{t}. If N(v) = {t} with ¢t € T, then {v} is a
new bloom for ¢; if N(v) = {w} with w € M;, then G contains an induced
Gs, a contradiction; if N(v) = M; U {t}, then G is a fully bloomed triangle
replacing M; by M; U {v}. O

Finally, we can prove the main result of this section.

Corollary 5. A diamond-free graph G 1s CA if and only if G contains
no induced bipartite claw, net*, K3, G2, Gs, Ga, Gs, Gg, G7, Cs, Go,
or C7, for any j > 4.

Proof. Let H be a diamond-free graph. Suppose, by way of contradiction,
that H is not isomorphic to the bipartite claw, net*, K3, G2, G3, G4, G5,
Gs, G, Cs, Gy, or C¥, for any j > 4, but H is still a minimally non-C A
graph. Since H is not an interval graph but it does not contain a bipartite
claw and it is diamond-free, by Theorem 2] H contains either a hole or an
induced net. If H contains a hole, H contradicts Theorem 221 Otherwise,
H is chordal. Then, H contains an induced net, and so H contradicts
Theorem [23| because fully bloomed triangles are C' A. O

2.4 Summary and further results

The partial characterizations of circular-arc graphs by forbidden induced
subgraphs obtained in this thesis are summarized in Table 2.1]

Graph classes Minimal forbidden induced subgraphs Reference

P,-free graphs K>3, C} §[2.3.1]

Paw-free graphs bipartite claw, K2 3, G2, §[2.3.2
Gg, G, C; (71>4)

Claw-free chordal graphs tent*, net*, Gs, Gs §[2.3.3]

Diamond-free graphs bipartite claw, net*, K2 3, G2, G3, Ga, §[2.3.4

Gs, Gs, G7, Cs, Go, C} (7 > 4)

Table 2.1: Minimal forbidden induced subgraphs for circular-arc graphs in
each studied class.

A CA graph is a normal circular-arc (NCA) graph if it admits a
circular-arc model such that no two arcs cover the whole circle. For exam-
ple, interval graphs and semi-circular graphs are NC'A graphs. An example
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Figure 2.5: Minimally non-NCA graph that is CA, and its circular-arc
model.

of a graph which is not NC'A is given in Figure This concept was stud-
ied in [DGM ™06, [Gol04], [HHO4], but the terminology NC A was introduced
in [LS06b]. The characterization of non-NCA graphs by minimal forbidden
induced subgraphs is not known. The proofs in this paper show that, for
the classes analyzed here, all C' A graphs are also NC'A. So, the character-
izations obtained for C'A graphs also hold for NC' A graphs. Moreover, we
can state the following result.

Corollary 6. If H is a minimally non-NC A graph and H s a C A graph,
then H contains an induced diamond, an induced Py, an induced paw,
and either an induced claw or a hole.
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Chapter 3

Circle graphs

3.1 Introduction

A graph G = (V, E) is a circle graph if there exists a one-to-one function
f:V = L (f(v) =C,) where L = {Cy},cv(g) is a family of chords on a
circle, whose extremes are all different, such that uv € F ifand only if u # v
and C, NC, # 0. L is called a circle model of G. A graph G = (V,E) is
overlap interval if there exists a bijective function f: V — I (f(v) = L)
where I = {I,};cv (@) is a family of intervals on the real line, such that
uwv € E if and only if I, and I, overlap; ie.,, I, NI, # 0, I, I, and
I, Z I,. It is well-known that circle graphs and overlap interval graphs are
the same class, see for instance [Gol04].

Circle graphs were introduced by Even and Itai in [EI71] to solve a
problem of parallel stacks without the restriction of loading before unloading
is completed. In addition, the problem under this restriction is handle in
the same article. A stack is a linear storage device which has only one entry.
The problem consist in finding the minimum number m of stacks necessary
to transfer a set of items {1,...,n} stored in A, whose order is given by
a permutation P of {1,...,n}, by using a set of parallel stacks Si,...,Sn,
which can be unloaded to load a stack B before the stack A is completely
unloaded (P~1(7) stands for the position in which the item i is placed in A).
Even and Itai proved that this problem can be translated into the problem of
finding the chromatic number of a circle graph. Unfortunately, this problem
turns out to be NP-complete [GIMPS80].

Naji [Naj85| characterized circle graphs in terms of the solvability of a
system of linear equations, yielding a polynomial-time recognition algorithm
for this class. Then, Gasses gave a shorter proof of Naji’s characterization
in [Gas97] by using a Bouchet’s theorem.

Different polynomial-time recognition algorithms for circle graphs were
presented in the literature. These algorithms are strongly based on the

29
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W5 W? B WS

Figure 3.1: Graphs W5, Wy and BW3

notion of split decomposition. The best one has a quadratic time complexity
and is due to Spinrad [Spi94].

The local complement of a graph G with respect to a vertex u € V(G)
is the graph G x u that arises from G by replacing the induced subgraph
G[Ng(u)] by its complement. Two graphs G and H are locally equivalent
if and only if G arises from H by a finite sequence of local complementations.
It is easy to see that being locally equivalent is an equivalence relation and
thus any class of graphs can be partitioned into equivalence classes under
this equivalence relation. A class of graphs is said to be closed by local
complementation if and only if given any graph G in the class implies that
any graph belonging to the same class of equivalence also belongs to the
class.

Theorem 24. [Bou94|] The class of circle graphs s closed by local com-
plementations.

Moreover, Bouchet gave the following characterization of circle graphs
in terms of forbidden induced subgraphs and local equivalence.

Theorem 25. [Bou94| Let G be a graph. Then, G s a circle graph if
and only if no graph locally equivalent to G contains Wy, Wy, or BWs
as induced subgraph (see Figure [31]).

We would like to emphasize which is the most important disadvantage of
the characterization above respect to a classical characterization by means
of a list of forbidden induced subgraphs. Whereas in the classical charac-
terization containing none of the graphs of a possibly infinite list of induced
subgraphs implies that the graph belongs to the class, in the characteriza-
tion of Theorem 25| we have to check that any graph belonging to the class of
equivalence of the given graph contains none of the three prescribed graphs
of the list as induced subgraph.

Geelen and Oum [GOO09] gave a new characterization of circle graphs
in terms of pivoting. The result of pivoting a graph G with respect to
an edge uv is the graph G x uv = G *xu *x v x u (where % stands for local
complementation). A graph G’ is pivot-equivalent to G if G’ arises from
G by a sequence of pivoting operations. They proved, with the aid of a
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computer, that G is a circle graph if and only if each graph that is pivot-
equivalent to G contains none of 15 prescribed induced subgraphs.

In [CDGO02] a superclass of circle graphs (denoted as Bouchet graphs)
is defined. A graph G is Bouchet if and only if no induced subgraph of G
is locally equivalent to Ws, Wy, or BW3. The list of 33 minimal forbidden
induced subgraphs for this class is obtained using a computer, closing under
local complementation the graphs Ws, W7 and BW3. Clearly, the graphs of
this family are also minimal forbidden subgraphs for circle graphs, however,
this list is not enough to characterize circle graphs completely. In the same
work it is shown that circle graphs are a proper subclass of Bouchet graphs.

In spite of the mentioned works, there are not known characterizations
of circle graphs only by forbidden induced subgraphs; i.e., not involving
additionally the notions of local equivalence or pivoting operations. In this
thesis, we present some results in this direction, providing forbidden induced
subgraphs characterizations of circle graphs within different graph classes.
These results appear in [BDGS].

Let G; and G2 be two graphs such that |V (G;)| > 3, for each ¢ = 1,2,
and assume that V' (G1) NV (G2) = 0. Let v; be a distinguished vertex of G;,
for each 2 = 1,2. The split composition of G; and G, with respect to v; and
vo is the graph G; * G2 whose vertex set is V(G ¥ G2) = (V(G1) UV (G2)) \
{v1,v2} and whose edge set is E(G1 xGy) = E(G1 —{v1}) UE(G2 — {v2}) U
{uv:u € Ng, (v1) and v € Ng,(v2)}. The vertices v; and v, are called the
marker vertices. We say that G has a split decomposition if there exist
two graphs G; and G» with |V(G;)| > 3, ¢ = 1,2, such that G = G1 x G2
with respect to some pair of marker vertices. If so, G; and G- are called
the factors of the split decomposition. Notice that G; and G5 are induced
subgraphs of G. Those graphs that do not have a split decomposition are
called prime graphs. It is worth pointing out that those prime circle graphs
have a unique circle model up to reflections. Notice that if any of the factors
of a split decomposition admits a split decomposition we can continue the
process until every factor is prime, a star or a complete. The resulting
decomposition into prime graphs, stars and completes might not be unique.
Nevertheless, in [Cun82] it is proved that if the number of factors is minimum
then the decomposition is unique (up to reordering of the factors). The
connection between circle graphs and split decomposition was discovered
by Bouchet [Bou87] who proved that circle graphs are closed under split
composition.

Theorem 26. [Bou87| Let G be a graph that has a split decomposition
G = G1%G5. Then, G 1s a circle graph if and only if both G, and Gq
are circle graphs.

As a consequence of Theorem [24], we can prove the following result.
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Theorem 27. Let G be a graph. If G is not a circle graph, then any
graph H that arises from G by edge subdivisions is not a circle graph.

Proof. Suppose that H arises from G by edge subdivisions. So, H is ob-
tained from G by replacing some edges {u ws,...,u,w,} of G by induced
paths {Pi,..., P} of length at least two. On the one hand, since u;w; was
replaced by an induced path P = u = vy,...,vx = v with k£ > 3. It is easy
to see that if local complementation is applied successively in the interior
vertices of P; = u; = v}, v%,... ,'U,"CZ_ = w; from v% to virl, u and v are ad-
jacent in the resulting graph. Applying this procedure for each 2 =1,...,k
we clearly obtain a graph H' which contains G as induced subgraph and
belongs to the same class of equivalence as H. Since G is not a circle graph
and the class is hereditary, H' is not a circle graph. Hence, by Theorem [24],
H is not a circle graph. O

The remaining sections of this chapter are organized as follows. In Sec-
tion [3.2] we characterize circle graphs within linear domino graphs by using
split decomposition. In Section [3.3] the same task is done within two su-
perclasses of cographs (namely, P;-tidy graphs and tree-cographs), by using
the forbidden induced subgraphs characterization of permutation graphs.
Finally, in the last Section, we introduce and completely characterize by
minimal forbidden induced subgraphs the class of unit Helly circle graphs.

3.2 Linear domino graphs

In this section we will characterize circle graphs by minimal forbidden in-
duced subgraphs within the class of linear domino graphs, using a construc-
tive way (cf. Subsection [1.2.1]).

The graph Cg is a prism where each triangle is linked by induced path
P, P; and P; having just one edge each. This graph is locally equivalent to
Ws, so by Theorem 28], Cg is not a circle graph. Besides, since every prism
arises from Cg by edge subdivision, Theorem 27 implies that prisms are not
circle graphs.

The following theorem characterizes those linear domino graphs that are
circle graphs.

Theorem 28. Let G be a linear domino graph. Then, G 1s a circle
graph if and only if G contains no induced prisms.

Proof. The “only if” part follows immediately from Theorem [27] and the
fact that the class of circle graphs is hereditary. Suppose now that G is a
linear domino graph not containing induced prisms. We shall prove that
G is a circle graph. Consider the factors of a split decomposition of G
into prime graphs, stars and completes. It is easy to see that stars and
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completes are circle graphs. Therefore, by Theorem [26] we may suppose
that G is a prime graph. Since a graph is a circle graph if and only if each
of its connected components is a circle graph, we can assume also that G
is connected. Since trees are circle graphs, we can suppose that G contains
at least one chordless cycle. Consider a chordless cycle of G of maximum
length, say C = vjvy...vnv1, and let X C V(G) be the set of all the
vertices having at least one neighbor in C. We will prove that actually
V(C)UX =V (G) and that G is a circle graph. We will split the proof into
three cases: n =3, n =4 or 5, and n > 6. (From now on, all the operations
between indexes should be understood modulo 7.)

Case 1: n = 3. In this case we will prove that G is isomorphic to C.
Suppose by the way of contradiction that G is not isomorphic to C' and
thus, since G is connected, X # 0. If v is a vertex in X, it necessarily
has either one or three neighbors on C, otherwise G would contain an in-
duced diamond. Besides, if v,w € X with |[N¢(v)| =1 (say Ng(v) = {v1})
and |N¢(w)| = 3, then they are not adjacent. Because, if they were ad-
jacent, then v, w,v;,v2 would induce a diamond in G. On one hand, if
v,w € X and |N¢(v)| = |Neg(w)| = 1, then they are adjacent if and only
if No(v) = Ng(w). Indeed, if No(v) = No(w) = {v;} and v and w were
not adjacent, then the vertices v, w, v;, v;+1 would induce a claw, a contra-
diction. Conversely, if N¢(v) = {v;}, N¢(w) = {vi+1} and vw € E(G), the
set of vertices {v,w,v;,v;+1} would induce a C4. This is a contradiction,
because we are assuming that C is a chordless cycle of maximum length.
On the other hand, if v,w € X and |N¢g(v)| = |[N¢(w)| = 3, then v and
w are adjacent because otherwise v, w, v1,v2 would induce a diamond. As
a consequence of these observations, it follows that X = Q: UQ>U Qs UQ
where Q1, @2, @3, @ are completes, Q; is complete to v; and anticomplete to
V(C)\{v;} for every i = 1,2,3, Q is complete to V(C), and Q1,Q2, @3,Q
are pairwise anticomplete. We will prove that Q1, @2, @3, @ (when they are
non-empty) belong to different connected components of G — V (C') because
of the maximality of C. By the way of contradiction, let P be a path in
G — V(C) of minimum length joining two vertices of X that belong to dif-
ferent sets of the partition X = @1 U Q2 U Q3 U Q. By construction, P has
length at least 2 and has no internal vertex in V(C)U X. By symmetry,
we just have to consider two cases: the extremes of P are either w; € @Q;
and w; € @; with 7 # 7, or w; € Q; and w € Q. In the former case,
V (P)U{v;,v;} would induce a chordless cycle of length at least five. In the
latter case, V(P) U {v;} would induce a chordless cycle of length at least
four. Both contradictions prove that indeed Qi, @2, @3, Q@ (if non-empty)
belong to different connected components of G — V(C) that will be denote
by Ri, Rs, Rs, R, respectively. Since G is a prime graph, Q; = 0 for all
¢ = 1,2,3. Otherwise, V(R;) U{vi,v;+1} and V(G) \ V(R;) form a split
decomposition of G, with v;1; and v; as marker vertices, respectively. For
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a similar reason, @ = 0. Thus, V(G) = {v1,v2,v3} and G is clearly a circle
graph.

Case 2: n = 4 or 5. Since G is a linear domino graph, |N¢(v)| = 2
for every vertex v belonging to X and the two neighbors are consecutive
in C. We will prove that if v,w € X, then vw € E(G) if and only if
N¢(v) = No(w). Suppose that No(v) # No(w). On one hand, if No(v) N
N¢(w) = {2} and vw € E(G), then G[{v,w,y, 2}| would be isomorphic to
a diamond for each y € (N¢g(v) UNg(w)) \ {2}, contradiction. On the other
hand, if N¢(v) N Ne(w) = 0 and vw € E(G), then C U {v, w} would induce
a prism in G, another contradiction. So, if No(v) # Ng(w), then v and w
are nonadjacent. Finally, if No(v) = Ng(w) = {y,2}, then v and w are
adjacent, otherwise {v,w,y, 2z} would induce a diamond, a contradiction.
Hence X = Q1 U---UQ,, where each Q; is a complete and N¢(z) =
{v;,vi+1} for every z € Q;. We will prove that the non-empty Q;’s belong to
a different connected component of G — V' (C). By the way of contradiction,
consider path P in G — V(C) of minimum length joining two vertices w; €
Q; and w; € @; with 7+ # j. By symmetry, we just have to consider two
cases: j =t + 1 and 7 = 2+ 2. By construction, P has at least two edges
and has no internal vertex in V(C) U X. In the first case, V(P)U (V(C) \
{v;+1}) induces a cycle of length strictly greater than n. In the second
case, V(P)UV(C) induces a prism whose triangles are {w;,v;,v;+1} and
{Wi+2,Vi12,vi+3}. Both contradictions prove that indeed each non-empty
Q: belongs to a different connected component R, of G — V(C). Since G is
prime, it follows that if Q; is non-empty then [V (R;)| = 1. Otherwise, let
w; € Q;. Then, V(R;)U{v;} and (V(G) \ V(R;)) U{w;} would be a split
decomposition of G, with v; and w; as marker vertices, respectively.

So, G consists of C' and a (possibly empty) stable set X with at most
one vertex w; for each 1 = 1,...,n, whose only neighbors in G are v; and
v;+1. It is easy to build a circle model for G.

Case 8: n > 6. First, notice that, since G is a linear domino graph,
every vertex v € X satisfies either No(v) = {v;, vi+1} or No(v) = {v;, vit1,
Vitk, Vitk+1y With 3 < k <n —3. We will call the first kind of vertices 2-
vertices and the second kind of vertices 4-vertices. It can be easily proved,
as above, that if v and w are 2-vertices, then v and w are adjacent if and
only if No(v) = No(w). Let us see that if v € X is a 2-vertex and w € X
is a 4-vertex, then v is adjacent to w if and only if Ng(v) C Ng(w). Let
Neo(w) = {vi, Vit1, Vitk, Vitk+1}. Suppose first that vw € E(G). Since w is
not the center of a claw, v should be adjacent to at least one vertex of each
pair of nonadjacent neighbors of w. Besides, since Ng(v) consists of two
consecutive vertices of C, they should be either {v;, v;+1} or {vitg, Vitk+1}-
Conversely, suppose that No(v) C No(w). Again, since Ngo(v) consists of
two consecutive vertices of C, then N¢(v) should be either {v;,v;+1} or
{Vi+k, Vitr+1}. Since G is diamond-free, v and w must be adjacent.




3.2. Linear domino graphs 35

Let v and w be two 4-vertices. We assert that |Ng(v) N Ng(w)| €
{0,1,2} and that vw € E(G) if and only if No(v) N No(w) consists of two
consecutive vertices of C. If No(v) N Ng(w) contains two nonadjacent ver-
tices z and y, then v and w should be nonadjacent, otherwise {z,y,v,w}
would induce a diamond in G. On the other hand, if No(v) N No(w) con-
tains two adjacent vertices z and y, then v and w should be adjacent,
otherwise {z,y,v,w} would induce a diamond in G. Therefore, v and w
can share neither three nor four neighbors, and the “if” of the second part
of our assertion holds. Conversely, suppose vw € E(G). Since w is not
the center of a claw, v should be adjacent to at least one vertex of any pair
of nonadjacent neighbors of w, so Ng(v) N No(w) contains two adjacent
vertices. If No(v) N Ng(w) contained two nonadjacent vertices z and v,
then {z,y,v,w} would induce a diamond in G, so N¢(v) N N (w) consists
exactly of two consecutive vertices of C.

Therefore, X is a disjoint union of the sets of vertices Qq, -, @n, @,
where the vertices in ) are the 4-vertices and the vertices in Q: U--- U@,
are the 2-vertices such that N¢(z) = {v;,v;;+1} for each z € Q;. Each Q;
is a complete and anticomplete to Q; if ¢+ # j. Since two 4-vertices share
at most two neighbors in C, in particular there are no two vertices in @
with the same neighbors in C. Therefore, the set Q is a subset of {g;; :
1<i<j<n,i+3<j<n+i—3}, where No(gi;) = {vi, vit1,v5,v541},
g;; is complete to @; and Q; and anticomplete to Q for k # 4,7, and
2:;9v 5 € E(G) if and only if [{z,57} N {¢,7'}| = 1. Notice that no vertex
gi; of @ has a neighbor z not in C U X, otherwise {g; ;,v;,v;,2} would
induce a claw in G, a contradiction.

We will prove now that the non-empty @;’s belong to different connected
components of G — (V(C)UQ). By the way of contradiction, let P be a
path in G — (V(C)U Q) of minimum length joining two vertices w; € Q;
and w; € Q; with ¢+ # j. By construction, P has length at least two
and has no internal vertices that belong to V(C)U X. On one hand, if
|Nc(w;) N Ng(wj)| = 1, then G would contain a chordless cycle of length
greater than n, a contradiction. On the other hand, if No(w;) N Ne(w;) =
0, then G would contain an induced prism, also a contradiction.

So, indeed each of the non-empty @;’s belong to a different connected
component R; of G — (V(C)UQ). Since G is prime, it follows that if Q; were
non-empty then |[V(R;)| = 1. Otherwise, let w; € Q;. Then V(R;) U{v;}
and (V(G)\ V(R;)) U{w;} would be a split decomposition of G, with v;
and w; as marker vertices, respectively.

Consider now two nonadjacent 4-vertices v and w. Then, the edges of
C with either both endpoints in N¢(v) (say v-edges) or both endpoints in
N¢(w) (say w-edges) are exactly four. We will prove that traversing the
edges of C in clockwise order, v-edges and w-edges do not alternate, other-
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Figure 3.2: Prime graph and its circle model.

wise G would contain an induced prism. Suppose by the way of contradiction
that the edges in clockwise order are e;, e, es,es where e;, es are v-edges
and es, e4 are w-edges. Either e; and e, or es and e3 are nonconsecutive in
C, since e; and e3 are at least two edges apart in C. Suppose without loss
of generality that e; and e, are nonconsecutive in C. Let z! and 2% be the
endpoints of e; in clockwise order. Then, by removing vertices z5 and 2}
and the clockwise path in C linking them from G[V(C) U {v,w}|, a prism
arises: the triangles are {z{,z,v} and {w, 22, 22}; w is linked with 2} via

z5 and the path in C joining z3 and 2z} (they might be the same vertex);

z3 and z? are different and linked by a path in C; 22 an v are linked via 23

and the path in C joining 22 and z} (they might be the same vertex).

Next, we will build a circle model for G. Draw a circle C and mark
on C, in clockwise order, the following points: c,, a1, frn3, .-+, frn-3,
bp, dn, c1, @2, f14, --., fin-2, b1, d1, C2, a3, fo5, ..., fon-1, b2, d2, ...,
Cn—1, @ny fn-12, .-+, fn—1,n—4, bn_1, dn_1. Finally, draw the chords a;b;
for 2 = 1,...,n, the chord c;d; for each 7 in {1,...,n} such that Q; is non-
empty, and the chord f; ;f;; for each 7,7 in {1,...,n} such that ¢;; € Q
(see Fig[3.2]). O

Remark 1. A theta 1s a graph arising from K3 by edge subdivision.
Chudnovsky and Kapadia [CKO08] gave a polynomaial-time algorithm
that decides whether a graph contains a theta or a prism as induced
subgraphs. Since linear domino graphs contain no induced theta, the
characterization above and the existence of polynomial-time algorithms
for recognizing circle graphs imply alternative polynomial-time algo-
rithms to decide the existence of an wnduced theta or prism restricted
to linear domino graphs. Interestingly enough, the problem of deciding
whether a graph contains an induced prism s NP-complete in general
ILLMTO0Y].
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3.3 Superclasses of cographs

In this section we characterize circle graph within two important super-
classes of cographs: P,-tidy graphs and tree-cographs. The reader interested
in an overview of this classes is referred to Subsection [1.2.3

Let G1 and G» be two graphs and assume that V(G1) NV (G3) = 0. The
disjoint union of Gy and G is the graph G; U G such that V(G1 UG2) =
V(G]_) U V(Gg) and E(Gl U Gz) = E(Gl) U E(Gg) We denote by G; + G2
the join graph of G; and G2, where V(G; + G2) = V(G1) UV(G2) and
E(G1+G2) =E(G1)UE(G2)U{uv:ucV(Gy) and v € V(G2)}.

Theorem 29. [Gol04, p. 252]. Permutation graphs are ezactly those
circle graphs that have a circle model admitting an equator, i.e. an
additional chord meeting all the chords of the model.

As an immediate consequence, we obtain the following corollary.

Corollary 7. G 1s a circle graph if and only if G is a permutation
graph.

The following result is a consequence of the corollary above.

Lemma 3. The join G = G1 + G2 s a circle graph if and only if both
G1 and G2 are permutation graphs.

Proof. Straightforward. O

3.3.1 P,-tidy graphs

The following lemma can be easily proved by means of elementary geomet-
rical arguments.

Lemma 4. Let G be a graph and let H be a graph obtained from G
by adding either a pendant vertex, or a true or false twin of a vertex.
Then, H 1s a circle graph if and only if G s a circle graph.

Theorem 30. Let G be a Py-tidy graph. Then, G is a circle graph if and
only if G contains no Ws, net", tent™, or tent-with-center as induced
subgraph.

Proof. 1t is easy to see that net™, tent™, and tent-with-center are not circle
graphs. Since the class of circle graphs is hereditary, a circle graph contains
no induced net™, tent™, or tent-with-center.

Conversely, let G be a P,-tidy graph that is not a circle graph. Then,
G contains some induced graph H that is minimally not circle; i.e., H is
not a circle graph but all proper induced subgraphs of H are circle graphs.
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Because of the minimality, H is connected. Suppose first that H is discon-
nected; i.e., H = H; + H for some graphs H; and H>. By Lemma [3] since
H is not a circle graph, H; or H, is not a permutation graph. By Corol-
lary 2, H;, or H, contains an induced Cf, net, or tent. Thus, H = H; + Hy
contains an induced Ws, net™, or tent™. By minimality, H = Ws, net™,
or tent™. Suppose, on the contrary, that H is connected. By Theorem [10],
since H is a P,-tidy graph, either H is Cs, Ps, Ps, a spider, or a fat spider.
Since H is not a circle graph, H is different from Cs, Ps, and Ps. Thus, H
is a spider or a fat spider. By Lemma 4] and the minimality, A has no true
or false twins, so H is not a fat spider. We conclude that H is a spider. Let
(S,C, R) be the spider partition of H. By Lemma [ and the minimality, H
is necessarily a thick spider with |S| > 3. Since tent is a circle graph, either
|S| > 4 or R # 0. In both cases, H contains an induced tent-with-center
and, by minimality, H = tent-with-center. O

3.3.2 Tree cographs

Theorem 31. Let G be a tree-cograph. Then, G 1s a circle graph if
and only if G contains no induced (bipartite-claw)t and no induced
co-(bipartite-claw).

Proof. 1t is easy to see that bipartite-claw ™ and co-(bipartite-claw) are not
circle graphs and thus a circle graph contains none of those graphs as induced
subgraph. Conversely, let G be a tree-cograph that is not a circle graph.
Therefore, there exists some connected component H of G that is not a circle
graph. Notice that H cannot be a tree because trees are circle graphs. Since
H is a tree-cograph and H is connected, H is disconnected or H is a tree.
Suppose first that H is disconnected. Then, H = H; + H for some graphs
H, and H,. By Lemma [3] we can assume without loss of generality that
H; is not a permutation graph. Corollary 2 implies that H; would contain
an induced bipartite-claw, and so H = H; + H» would contain an induced
(bipartite-claw) ™. Finally, consider the case when H is a tree. Since H is not
a circle graph, in particular it is not a permutation graph. By Corollary 2]
H contains an induced co-(bipartite-claw). O

3.4 Unit Helly circle graphs

A graph G is a unit circle graph if it admits a circle model in which all
the chords have the same length. This class coincides with the class of unit
circular-arc graphs (i.e., the intersection graphs of a family of arcs on a
circle, all of the same length) [Dur03|. Tucker gave a characterization by
minimal forbidden induced subgraphs for this class [Tuc74]. Recently, linear
and quadratic-time recognition algorithms for this class have been proposed
[LS06b, DGMT06].
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The concept of Helly circle graph is due to Durdn [Dur03]. A graph
belongs to this class if it has a circle model whose chords are pairwise differ-
ent and satisfy the Helly property (i.e., every subset of pairwise intersecting
chords has a common point). In [Dur03|, it was conjectured that a circle
graph is a Helly circle graph if and only if it is diamond-free. This conjecture
was recently settled affirmatively in [DGRI10|, yielding a polynomial-time
recognition algorithms for Helly circle graphs.

In the theorem below we completely characterize unit Helly circle graphs.

Theorem 32. Let G be a graph. Then, the following assertions are
equivalent:

1. G 1s a unit Helly circle graph.
2. G contains no induced claw, paw, diamond, or C} for any n > 3.

3. G 1s a chordless cycle, a complete graph, or a disjoint union of
chordless paths.

Proof. Let us consider the case when G is triangle-free. Suppose first that[ll
holds. Since G is a unit circle graph, G is a unit circular-arc graph. Thus,
G contains no induced claw or C for any n > 4 [Tuc74]. This proves [l =2
(in the case when G is triangle-free). Suppose now that 2l holds. If G has no
cycles, then each connected component of G is a claw-free tree, i.e., G is the
disjoint union of chordless paths. So, assume that G has some cycle. Since
G is triangle-free, the shortest cycle H of G is a chordless cycle of length at
least 4. Since G contains no induced claw, triangle, or C} for any n > 4,
G = H. We conclude that 2] ={3] Finally, it is easy to build unit Helly
circle models of chordless cycles and of disjoint unions of chordless paths.
Consequently, Bl ={1] also holds.

Let us now consider the case when G is not triangle-free. Suppose that[ll
holds and let £ = {L;}? ; be a unit Helly model of G on a circle C, where
n = |V(G)|. If two different chords L; and Ly on C have the same length,
then L; and L, are diameters of C or both of them are tangent to a circle
C' concentric with C. Since G is not triangle-free, we can assume that L,
Ly, and L3 are three pairwise intersecting chords and, since £ has the Helly
property, there is a point P € L; N Ly N Ls. We claim that L;, Lo, and
L3 are diameters of C. Otherwise, L1, Lo, and Lz would be three different
tangents to a circle ¢’ through P and this would lead to a contradiction,
because it is well-known that there are at most two different tangents to
a circle passing through a given point. Since all chords of £ have all the
same length, then £ is a family of diameters of C and, therefore, G is a
complete. We conclude that [1] <[3] because complete graphs are clearly
unit Helly circle graphs. Finally, given that G contains a triangle, it is
straightforward that G is complete if and only if G contains no induced
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C3, paw, or diamond. (Notice that Cj, paw, and diamond are all the four-
vertex graphs that contain the triangle as induced subgraph and that are
not complete.) We conclude that 2] <[3] also holds. O




Chapter 4

Probe interval graphs

In 1994, Zhang et al. introduced probe interval graphs as a research tool in
the frame of the genome project [ZSF794]. In this chapter we investigate
probe interval graphs and probe unit interval graphs from a combinatorial
viewpoint. We particularly focus on forbidden induced subgraphs charac-
terizations for probe interval graphs and probe unit interval graphs. Some
antecedents on the subject can be found in [She99|, [BLS09], [BL06|, and
[PC05]. During the last years, probe G graphs have been studied for many
hereditary classes of graphs G, probe chordal graphs [GL04|, probe permu-
tation graphs [CCK'09] and probe split graphs [LdR07] among others. We
characterize by a set of minimal forbidden induced subgraph probe interval
graphs and probe unit interval graphs within tree-cographs, Ps-tidy graphs
and co-bipartite graphs.

This chapter is organized as follows. In Section 2 we state the neces-
sary results used throughout of this chapter. In Section 3, we characterize
probe interval graphs within the class of co-bipartite graphs. In Section 4,
we give the forbidden subgraphs characterizations of probe interval graphs
among tree-cographs and P,-tidy graphs. Even though these results can
be proved using tools developed in the following section, we preferred to
postpone their use for the convenience of the reader, presenting an alterna-
tive proof that implicitly uses these tools. Section 5 is devoted to introduce
the concept of companion of a hereditary class of graphs. In Section 6 and
Section 7, using the concept of companion introduced in Section 5, we char-
acterize probe {3K3,Cy,Cs}- free graphs and probe unit interval graphs,
respectively. These results appear in [DGS].

4.1 Preliminaries

Let G = (V, E) be a graph. Denote by (N, P) a partition of V such that N
is a stable set. Let F' be a set of nonedges of G whose endpoints belong to N.
A completion of G is a graph G* = (V, E') whose edge set is ' = EU F.

41
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Figure 4.1: Some small graphs

Figure 4.2: Example of a probe interval graph. The white vertices of the
graph on the left represent the nonprobe vertices.

Let G be a hereditary class of graphs. The graph G is defined to be probe
G and denoted by P(G) if there exists a partition (N, P) of V and a set of
nonedges F' in G whose endpoints belong to N such that the completion
G* = (V,EUF) of G belongs to G. Under such conditions, (N, P) is called
a probe G partition of G, the vertices in N and P are called nonprobe
vertices and probe vertices, respectively.

Let us see an example of probe interval graph. Consider the graph
H = (V, E) isomorphic to the tent whose vertices are labelled as in Figure
£2 and let H* = (NUP,EUF) be a probe interval completion of H.
Notice that if (N, P) is a probe interval partition of H, then ¢; € N for
some ¢ = 1,2,3. Suppose, by way of contradiction, that ¢; € P for all
1 = 1,2,3. Therefore, since H is not interval, at least two vertices of the
set {s1,52,$3} belong to N and at least a nonedge s;s; with 7 # j belongs
to F'. Consequently, {s;,s;,c;,c;} induces the graph C4 in H*, this leads
to a contradiction because H* is an interval graph. Suppose, without loss
of generality, that ¢c; € N. So, s;,c; € P for + = 2,3 and thus s; € N and
F = {c1, 51} (see the graph on the left in Figure[4.2]). It is easy to check that
such a completion is an interval graph (see the graph on the right in Figure
[£.2). Some graphs used throughout this chapter are depicted in Figure [4.1]

Those trees that are probe interval graphs or probe unit interval graphs
have been characterized by means of forbidden induced subgraphs in [She99]
and [BLS09], respectively.
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A

Figure 4.3: Minimally non-probe interval trees.

ap by c1 oa; by ¢ an by cp

R T e

Figure 4.4: Minimally nonprobe unit interval trees.

Theorem 33. [She99] Let G be a tree. Then, G is a probe interval
graph if and only +f G contains no induced I1; or Iy (see Fig. [{.3).

Theorem 34. [BLS09| Let G be a tree. Then, G s a probe unit interval
graph if and only if G contains no induced bipartite claw, L, or H, for

any n >0 (see Fig[{.4)).

4.2 Co-bipartite graphs

In [BLO6|, is presented a characterization by means of forbidden induced
subgraphs of those bipartite graphs that are probe interval. In addition, it
is showed the relationship between probe interval graphs, bigraphs and the
complements of circular-arc graphs within the class of bipartite graphs. In
this section we present a forbidden induced subgraph characterization for
probe interval graphs within the class of those graphs whose complement is
bipartite. Furthermore, we show that, restricted to the class of co-bipartite
graphs, probe interval graphs, probe {3K, Cy, Cs}-free graphs and probe
unit interval graphs are the same classes.

Given a graph G, D C V(G) is called a dominating set if every vertex
v € V(G) either belongs to D or is adjacent to a vertex in D.

Lemma 5. [GTO04] Odd cycles of length at least five are nonprobe in-
terval.

Lemma 6. [LZ94] Let G be a triangle free graph. G s {Ps, Cs}-free if
and only if every induced connected subgraph of G has a dominating
complete bipartite subgraph isomorphic to Ky, ,, with n,m > 1.
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The following lemma follows from Lemma [6]

Lemma 7. Let G = (V, E) be a connected bipartite {2Ps,3K>, Ps,Cq, F'}-
free graph. Then, either G has diameter at most 3, or there exists a
pendant vertez v € V such that H = G[V —v] has diameter at most 3.

Proof. Let G be a connected bipartite {2P;, 3K, Ps, Cs, F'}-free graph. By
Lemma [, since G is bipartite and {Ps,Cgs}-free there exists a dominating
complete bipartite graph H = (V', E') such that V' can be partitioned into
two stable sets A and B. Since G is bipartite, either Ny (g)(v) NA = 0
or Ny(g)(v)NB = 0 for every vertex v € V — (AU B). We will call A’
the set of vertices of V' \ V' whose neighbors belong to A and B’ the set of
vertices of V' \ V' whose neighbors belong to B. Assume that there exist
two vertices u,v € V such that d(u,v) = 4. Notice that either u,v € A’ or
u,v € B'. Suppose, without loss generality, that u,v € A', let v/ € A and
v’ € A be a neighbor of u and v, respectively. On the one hand, since G is
F—free, Nycp N(V') # 0; i.e., all vertices in B’ have a common neighbor.
Consequently, given a vertex b’ € B, d(b',2) < 3 for all vertices z € V. On
the other hand, since G is 3K,—free, every vertex w € A’ is either adjacent
to u' or adjacent to v'. Since G is 2P;—free, either u or v is a pendant vertex.
If A" = {u,v}, u or v would satisfy the condition of the lemma. So, we can
assume that A’ \ {u,v} # 0. Suppose, without loss of generality that u is
the pendant vertex. Since G is 2P;—free, if u; € A’ \ {u} is adjacent to v’
and v; € A"\ {v} is adjacent to v', then u, is adjacent to v' or v; is adjacent
to /. Consequently, u is a pendant vertex satisfying the conditions of the
lemma. O

Lemma [7] implies the following characterization.

Theorem 35. Let G be a co-bipartite graph. Then, the following state-
ments are equivalent:

1. G s a probe interval graph;
2. G 1s a probe unit interval graph;

3. G 1is probe {3K1, Cy, Cs }-free;

4. G 1s {2Ps,3K>, Ps, Cg, F}-free.

Proof. It is easy to see that 2P;, 3K, P, Cs and F are neither probe inter-
val, nor probe unit interval, nor probe {3K3, C4, Cs }-free.

Conversely, let G = (V, E) be a {2P3,3K3, Ps, Cs, F }-free co-bipartite
graph. Consider the complement graph of G, G. By Theorem [} if G had
diameter at most 3; i.e., G were 2K,—free, then G would be an interval
graph. Therefore, we can assume that G has diameter 4. By Lemma [7]
there exists a pendant vertex v € V, whose neighbor we will call v', such
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that H = G[V — v] has diameter at most 3. Consequently, the completion
G*(NUP,EUF), where N = {v,v'}, P = V\N and F = {v'}, is
an interval graph. Finally, since G* is also co-bipartite and interval, G is
{C4, Cs}—free, 3K;—free (consequently, claw-free) and thus {3K;,Cy,Cs}-
free and unit interval. Therefore, G is probe {3K;, Cs, Cs}-free and probe
unit interval. O

As a consequence of Lemma [7] we obtain the following corollary.

Corollary 8. Let G be the complement of a tree. Then, the following
assertions are equivalent:

1. G s a probe {3K;,C4,Cs}-free graph.
2. G 1s a probe unit interval graph.

3. G 1s a probe interval graph.

4. G 1s {3K,,2P;, Pg}-free.

5. G 1is {co-bipartite-claw, H, Ps }-free.

(Here, [{]. ©s a minimal forbidden induced subgraph characterization,
while [8 s a minimal forbidden connected induced subgraph character-
1zation.)

Proof. The equivalence between the first four statements follows from The-

orem [35]

Let us see the equivalence between 4. and 5.. Since G is {3K>, 2P, Ps}-
free, then G is {bipartite-claw, H, Ps}-free. Conversely, let G be a Ps—free
tree. If G contains either an induced 2P; or an induced 3K>, then G contains
either an induced H or an induced bipartite-claw, respectively. O

The following theorem gives a forbidden induced subgraph characteriza-
tion of probe {3K7, C4, Cs}-free graphs among trees. The class of the probe
{3K3, C4, Cs }-free graphs will be useful in the following sections when deal-
ing with the class of probe unit interval graphs.

Theorem 36. Let G be a tree. Then, the following assertions are equiv-
alent:

1. G 1s a probe {3K1,Cy,Cs}-free graph.
2. G contains no induced 2Ko U Ky, or P,UK;.
3. G contains no induced E or Ps.

(Here, [2 is a minimal forbidden induced subgraph characterization,
while [3 s a minimal forbidden connected induced subgraph character-
1zation.)
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Proof. First, we will prove the equivalence between 1. and 3.. It is straight-
forward to verify that E and Ps are nonprobe {3K;,C4,Cs}-free graphs.
Conversely, suppose that G is {E, Ps}-free. Let P = vjvpvus---v, be a
path of maximum length of G. Since G is a tree and P is of maximum
length, v; and v, are pendant vertices of G. Since G contains no induced
Ps, n < 5. Since G is an E-free tree and P is of maximum length, for each
1 € {2,...,n — 1}, the neighbors of v; in G different from v; ; and v;; are
pendant vertices of G. If n < 3, G is probe complete and, in particular, it
is a probe {3K3, C4, Cs}-free graph. So, assume that 4 <n < 5. If n =5,
dc(vs) = 2 because G contains no induced E. Let Ny = Ng(v2) \ {vs}
and let N> = Ng(v, 1) \ {v2} (so, if n =5, N, = Ng(v,_1)). Hence, we
split V(G) into N = N; U N» which is clearly an independent set of G and
P =V(G)— N. The graph G* that arises from G by adding all the edges
joining two vertices of N; and all the edges joining two vertices of N, is
3K,-free and chordal. Thus, G* is a {3K, C4, Cs }-free completion of G.

It can be easily seen that if G is {2K» U K3, P, U K }-free, then G does
not contain any induced E and Ps. Conversely, if G is Ps—free and G contains
either an induced 2K, U K; or an induced P, U K; and G is a tree, then G
contains an induced E. Consequently, if G is a {E, Ps}-free tree, then G
contains no induced 2K, U K; or P, U Kj.

O

4.3 Probe interval graphs

Lemma 8. Let G; and G be two graphs. Then, G1 + G5 15 an interval
graph if and only if one of G1 and G> 1s interval and the other one 1s
complete.

Proof. Since interval graphs are a hereditary class, if G; + G» is an interval
graph then G; and Gy are interval graphs. Suppose that none of G; and
G is complete. Then, there exist two nonadjacent vertices v, vs € V(G;)
for 4 = 1,2. Consequently, {vi, v}, v?,v2} induces Cy in G; + G and thus
G1 + G» is not interval. Conversely, suppose that G; or G» is interval and
the other one a complete, say G; is interval and G, is a complete. So, we
can construct an interval model for G; + G5 from the interval model Z of
G1 by adding as many intervals as the number of vertices of G», covering
the whole interval model Z. U

Lemma 9. Let G; and G2 be two graphs. Then, G; + G2 s a probe
interval graph if and only if only if one of the following assertions
holds:

1. One of G1 and G, 1s complete and the other one 1s probe interval.
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2. One of G1 and G2 1s probe complete and the other one is interval.

Proof. Let G; and G, be two graphs and let H = G; + G be probe interval.
Therefore, there exists a probe interval completion H* = (NUP,EUF) of
H such that H* is an interval graph. Since H = G; + Go, either N C V(G1)
or N C V(G2). Assume, without loss of generality, that N C V(Gy); i.e.,
H* = G} + G3 with G7 = (V(G1),E(G1) U F). By Lemma [8, since H*
is an interval graph, one of G} and G» is a complete and the other one is
interval. So, either G; is probe complete and G» is an interval graph or G;
is a probe interval and Gs is a complete. O

Notice the following immediate class inclusion:

complete C probe complete C interval C probe interval.

The following Theorem characterizes all minimal nonprobe interval graphs
whose complement is disconnected.

Theorem 37. The minimally nonprobe interval graphs whose comple-
ment s disconnected are bipartite-claw + 2K, umbrella+ 2K, n-net +
2K, for any n > 2, n-tent+ 2K, for any n > 3, 3K,, or 2P;.

Proof. Let G be a minimally nonprobe interval graph whose complement is
disconnected. Therefore, there exist two graphs G; and G, such that G is
the join between them; i.e., G = G; + G3. By minimality, G; and G, are
probe interval. Since G = G; + G5 is nonprobe interval, by Lemma [8], none
of G; and G5 is complete.

Suppose that one of G; and Gs is probe complete, say G». Then, G; is
not interval because otherwise G; + G2 would be probe interval. Since, for
each v; € V(G1), (G1 —v1) + G is probe interval and G is not complete,
G1 — v; is an interval graph. Thus, G; is a minimally not interval graph.
Since, for each vy € V(G2), G1 + (G2 — v2) is probe interval and G; is not
interval, G5 — v, is complete. Since Gs is not complete, G, = 2K;. Since G,
is probe interval, G; is not a cycle of length at least 5 (see Lemma [5]). We
conclude that G equals bipartite-claw + 2K, umbrella + 2K, n-net + 2K
for some n > 2, n-tent + 2K, for some n > 3, or Cy + 2K; = 3Ko.

We can now assume that G; and G> are nonprobe complete. Therefore,
since (G1 —v1) + G2 is probe interval, G; — vy is probe complete, for each
vy € V(G1). So Gy is a minimally nonprobe complete, i.e., P3 or Cy (see
Lemma [I). Symmetrically, G» is P;or Cy. If Gy = Cy or Gy = Cy, then G

contains a proper induced C4 + 2K3, a contradiction. So, G = 2P;. O

The following theorem characterizes those probe interval graphs among
tree-cographs.
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thin4 thiCk4 thiHQ (KQ) thiHQ (KQ U Kl)

Figure 4.5: Some spiders.

Theorem 38. Let G be a tree-cograph. Then, G is a probe interval graph
if and only if G contains no induced 11, Iy, bipartite-claw+ 2K, 3K,
2P;, or Ps.

Proof. 1t suffices to prove that if G is a tree-cograph nonprobe interval
graph, then G contains an induced I1;, Iy, bipartite-claw + 2K, 3K, 2Ps,
or Ps.

So, assume that G is not a probe interval tree-cograph. Therefore, G con-
tains an induced subgraph H that is a minimally nonprobe interval graph.
Since G is a tree-cograph, H is also a tree-cograph. Consequently, H is dis-
connected, or the complement of H is disconnected, or H is a tree, or H is the
complement of a tree. By minimality of H, H is not disconnected because
the disjoint union of probe interval graphs is also a probe interval graph.
If the complement of H is disconnected, then (by Theorem [37]) H equals
bipartite-claw + 2K, 3K or 2P; (notice that umbrella + 2K, n-net + 2K;
for any n > 2, and n-tent + 2K for any n > 3 are not tree-cographs). If H
is a tree, Theorem [33]implies that H equals I'l; or I'ls. Finally, consider the
case when H is the complement of a tree. By Theorem B, H equals 3K,
2P;, or Ps. O

In order to characterize those probe interval graphs among P,-tidy graphs,
we need the following lemma that characterizes those spiders that are probe
interval.

Lemma 10. Let H be a spider with spider partition (C,S,R). Then, H
15 probe interval if and only if one of the following conditions holds:

1. |C| =3 and H|[R] is interval.
2. |C| =2 and H|[R] is probe interval.

Moreover, if H is probe interval, then a fat spider H' that arises from
H 1is also probe interval except when |C| = 2, H' arises by making a
false twin of a vertez of C, and H[R] s not interval.

Proof. Let H = (V, E) be a thick (thin) spider with partition (C, S, R) that
is probe interval with a completion H* = (V,E U F') and probe interval
partition (N, P). Suppose that |C| > 4 and let ¢,co,c3,cq be different
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vertices in C. Notice that if a tent (net) is an induced subgraph of H, then
exactly a vertex of degree four (three) belongs to N. Let si,s2,s3,54 be
different vertices of S such that s; adjacent to any vertex in C but ¢; (s;
is only adjacent to ¢;) for all 1 <2 < |C|. So, {c1,c2,c3, 51, S2, S3} induces
a tent (net) and thus one of c;, c2, c3 belongs to N, say c;. Analogously,
{c2, 3,4, $2, 83,54} also induces a tent (net) and one of c,c3,cs belongs
to N, but all of them are adjacent to c;, a contradiction. Consequently,
2 < |C| < 3. Assume that |C| = 3. Since H is probe interval, H[C UR] =
HI[C]| + H|R)] is also probe interval. On the one hand, since H[C] is a
complete, by Lemma [0 H[R] is probe interval. On the other hand, since
{s1, 82, 83, €1, C2, c3} induces a tent (net), one of the vertices in C' is nonprobe
and thus any vertex in R is probe. So, H[R] is interval. Now, assume that
|C| = 2. Since C is a complete and H is probe interval, H[C| + H[R] is
probe interval. Thus, by Lemma [0, H[R] is probe interval. Conversely, it is
straightforward to construct a probe interval model of a thick (thin) spider
that satisfies condition 1. or 2..

Let H' be a fat spider that arises from H. If H' arises by making a
twin of a vertex s € S, then H' is also probe interval. Indeed, if H* =
(V(H),E(H)UF) is a probe interval completion of H with a probe interval
partition (N, P) chosen (by symmetry) in such a way that s € N if ' is a
false twin and sinP if s’ is a true twin, then (N, P) can be extended to a
probe interval partition (N'P’) of H' by taking also the twin s’ of s as a
nonprobe vertex (N’ = N U{s}) if it is a false twin and as a probe vertex
(P = PU{s}) if it is a true twin. Therefore, H* = (N'UP,E(H') U F'),
with F/ = FU{ss'} U{vs' : vs € F} if s’ is a false twin and F' = F if &
is a true twin, is interval because the graph obtained by adding true twins
to an interval graph is also interval. Suppose now that H' arises from a
vertex ¢ € C by making a true twin. Then H' is probe interval. In fact,
any partition (N, P) of H where ¢ € P can be extended to a partition of
H' where the new vertex is also a probe vertex. Finally, consider the case
where H arises by making a false twin of a vertex ¢ € C. If H[R| were not
interval and thus |C| = 2, then H would contain H[R| + 2K, where H[R)|
is a forbidden induced subgraph for the class of interval graphs. Therefore,
H' would not be probe interval. Notice that if H[R] is interval, then clearly
H' is an interval, simply look for a partition where ¢ and the false twin of
it are both nonprobe, and the vertices of R are all probe. O

Let H be the set formed by all the minimally not interval graphs except
the induced cycles with at least five vertices.

The graphs belonging to H are probe interval. In addition, it can be
proved that every probe interval partition of a graph belonging to H contains
at least two nonadjacent probe interval vertices. Therefore, the graph that
arises from a graph belonging to H by adding two nonadjacent universal
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vertices is a minimally nonprobe interval.

Corollary 9. The minimally nonprobe interval graphs that are spiders
or fat spiders are the graphs: thicks(H), thing(H), for H € H, thing
and thicky.

Proof. 1t is straightforward to check that all the graphs of the corollary are
minimally nonprobe interval. Let G be a thick (thin) spider with partition
(C, S, R) that is minimally nonprobe interval. If |C| were of size at least 4,
then G would contain thicks (thing) as induced subgraph and by minimality
G = thicky (G = thing). Now, we may assume that |C| < 3. Indeed, by
Lemma [10, since G is nonprobe interval, it suffices to consider |C| = 3.
By minimality, G[R] is probe interval and by Lemma [I0 it cannot be an
interval graph. By Theorem [2] the only minimal not interval graphs that
are probe interval are those graphs belonging to 7. Therefore, G contains
thicks(H) (thing(H)) for some H € H as induced subgraph. Furthermore,
by minimality, G is exactly that graph.

Let G be a fat spider that is a minimally nonprobe interval. By Corollary
[0}, G arises from a spider with |C| = 2 and H|[R] is not an interval graph by
making a false twin of a vertex in C. Assume that C' = {c;,c2}, S = {51, 52}
and v is a false twin of ¢;. By minimality G — v is probe interval. By Lemma
[10 and minimality, H[R] is probe interval but it is not an interval graph.
Consequently, H[R| contains an induced minimally not interval graph W.
By minimality, W € H. Since v is not adjacent to ¢; and they are complete
to W, G contains an induced U = W + 2K, with W € H. By Lemma [0l it
follows that U is minimally nonprobe interval. By minimality, G = U, this
leads to a contradiction because U is not a spider. O

Theorem 39. Let G be a P,-tidy graph. Then, G s a probe inter-
val graph if and only if G contains no induced net+ 2K, tent+ 2K,
3K>, 2P, Cs, thing(net), thicks(net), thinz(tent), thicks(tent), thing, or
thicks.

Proof. Let G be a minimally nonprobe interval graph that is a P,-tidy
graph. By minimality, G is connected. If G were disconnected then, by
Theorem [37], G would be isomorphic to either net + 2K, or tent 4+ 2K, or
3K,, or 2P3. So, we may assume that G is connected. By Theorem [10, G is
Cs, Ps, Ps, a spider or a fat spider. Notice that Ps and Ps are probe interval
graphs. So, G is isomorphic to Cs or, by Corollary [0 G is isomorphic to
either thing(H), or thicks(H), for H € {net, tent}, or thing, or thicky. O

4.4 Graphs classes with a companion

Let G be a hereditary class. We say that a class H is the companion of
G if and only if, given any two graphs G; and Gp, the following holds:
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G1+ Gy € G if and only if one of G1 and G» 1s complete and the other
one belongs to H.

For example, by Lemma [8] the class of interval graphs is its own com-
panion and the companion. Using the Robert’s characterizations for unit
interval graphs [Rob69] it follows that the companion of the class of unit
interval graphs is the class of {3K;, Cs, Cs}-free graphs. Notice also that
the companion of the class {3K1, Cy, Cs}-free is itself.

In what follows, we denote by K the class of nonempty complete graphs.

Lemma 11. Let G be a hereditary graph class and H be its companion.
Then, the following assertions hold:

1. KCHCG.
2. H 1s a hereditary class.
3. H 1s 1ts own companion.

4. C4 £ G.

5. If H # K, then Cq 1s a minimally not G graph and a probe H
graph.

Proof. Let H € H. Since H is the companion of G, K, + H € G for
every positive integer n. Since G is hereditary, K C G and ‘H C G. Since
K Cg, K,+ K, € G for every positive integer n, and therefore K C H.
We conclude that £ C H C G. On the other hand, since G is an hereditary
class H' + K; € G for any H' subgraph of H. Therefore, H' € K C H or
H' € H. Consequently, H is a hereditary class. 3. is immediate from 1. and
the definition of hereditary class with a companion. C; does not belong to
G because Cy = 2K; +2K; and 2K; € K.

Assume now that H # K. Since H is hereditary, 2K; € H and conse-
quently P; = K; 4+ 2K; € G. Moreover, since 2K; € H, K; + diamond =
K3+ 2K, € G, which implies that diamond € H. Therefore, C4 is minimally
not a G graph but it is a probe H graph. O

The following lemma shows the behavior of the join operator respect to
a hereditary class with a companion.

In what follows, a graph G is said to be a G—graph for a class G if G
belongs to the class G.

Lemma 12. Let G be a hereditary graph class with companion H and
let G1 and Gy be two nonempty graphs. Then, Gi1+ G2 is a probe G
graph if and only if at least one of the following conditions holds:
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1. One of G1 and Gy 1s complete and the other one is a probe H—
graph.

2. One of G1 and G2 1s probe complete and the other one is an H—
graph.

Proof. The “f” part is straightforward. So, we are going to prove the
“only if” part. Let G = G; + G be a probe G graph, with G a hereditary
class with a companion H. Therefore, there exists a completion G* =
(V(G), E(G)U F) with a probe interval partition (N, P) such that G* € G.
Since N is an independent set, N C V(G1) or N C V(G2). Assume, without
loss of generality, that N C V(G;) and we call G} to the graph whose vertex
set is V(G1) and whose edge set is E(G1) U F. Consequently, since H is the
companion of G, either G} is complete (G, is probe complete) or G} € H
(G, is probe H) and G> € H or G, is complete, respectively. O

The following theorem gives a tool to calculate the minimally not probe
G graphs for a hereditary class G with a companion H # K.

Theorem 40. Let G be a hereditary graph class and H be its companion.
If H # K, then the only minimally nonprobe G graphs with disconnected
complements are:

1. the graphs F + K, for each F € P(G) that is minimally nonprobe
H;

2. the graphs F + 2K, for each F € P(G) that is minmimally not X,
where X = P(K) UH,

3. the graphs Fy + F5 for each Fi, F> € P(K) that are mintmally not
H;

4. the graph 2P3.

Proof. Let G be a minimally nonprobe G graph with disconnected comple-
ment. Then, G = G; + G where G; and G» are nonempty graphs.

Suppose that G, is a complete. Since G; + G5 is not a probe G graph, G
is not a probe H graph, see Lemmal(l2] By minimality and Lemmal(l2] G; is
isomorphic to K; and thus G; + K; is nonprobe G. Since G; is not a probe
‘H graph, in particular, G; is not complete. Since (G; —v1) + K; is probe
G, G1 — vy is a probe H graph for each v; € V(G1). So, G is isomorphic to
F 4 K; where F' is minimally nonprobe A and a probe G graph. In what
follows, we can assume that G; and G, are not complete.

Suppose that G, contains an induced Cy. Since (Gy —v1) + Cy is probe
G and C, is neither an H graph nor probe complete, then G; — v; is complete
for each v; € V(G1). So, by Lemma [I2] since G; is not complete, Gy is
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isomorphic to 2K;. Since Cy 4 2K is not a probe G graph, by minimality
G = Cy + 2K;. Notice that C4 is minimally not X and probe G. In what
follows, we can assume that G; and G5 contain no induced C,.

Suppose that Gs is probe complete and an H graph. Since G; + G3 is
not a probe G graph, G; is not a X graph. Since (G; —v1) + G2 is probe
a G graph, G; —v; is a X graph. So, G; is minimally not X graph. Since
G1+ (G2 —v2) is a probe G graph, G2 — v2 is complete for each v € V(G>).
Since G, is not complete, Go = 2K;. So, G = F + 2K; where F is a
minimally not X graph that is probe G.

Suppose that G, is probe complete but it is not an A graph. Since
G1+ G2 is not a probe G graph, G; is not an H graph. Since (G1 —v1) + G»
is a probe G graph, G; —v; is an ‘H graph. So, G is minimally not H.
Suppose, by way of contradiction, that G; is nonprobe complete. Since
G1+ (G2 —v2) is a probe G graph, G2 — vs is complete for each v € V(G>).
Since G, is not complete, G, is isomorphic to 2K;. Since G is not an H
graph, then H C K, a contradiction. The contradiction arose by assuming
that G; is nonprobe complete. Therefore, G; is probe complete. Since G, is
not an H graph, by symmetry, G is a minimally not H graph. We conclude
that G = F; 4+ F> where F7 and F5 are minimally not A graphs and probe
complete.

Finally, we can assume that G; and G> are nonprobe complete. Since G;
and G contain no induced Cy, by Lemmalll G; and G, contain an induced
P; each. By minimality, G is isomorphic to 2P;. O

Notice that Theorem [37] follows easily from the above theorem. Indeed,
by Lemma [8] the class Z of interval graphs is the companion of itself. Since
P(K) CZ, P(K)UZ = T and none of the minimally not Z graphs is probe
complete, the only minimally not Z graphs that are nonprobe Z graphs are
the cycles C,, for each n > 5.

Remark 2. If H = K, the graphs belonging to G are Ps-free (i.e., are
disjoint unitons of completes) and the minimally nonprobe G graphs
with disconnected complement are Cy and P, if P3 ¢ G; or Cy and paw,
otherwise.

4.5 Partial characterization of probe {3Kj,Cy, Cs}-
free graphs

Threshold graphs, introduced by Chvatal and Hammer in 1975 [CHT75|, can
be defined as {2K3, P,, Cy}-free graphs. Threshold graphs are a subclass of
split graphs. For more details of this class of graphs see [Gol04] or Section

12
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Lemma 13. The minimally nonprobe {3K1,Cs, Cs}-free graphs that are
disconnected are 2K, UKy, P,UKy, and Cy U K7.

Proof. 1t is straightforward to check that 2K, U Ky, P, U K3, and Cy U K3
are minimally nonprobe {3K;, Cj, Cs}-free graphs.

Conversely, let H be a disconnected minimally nonprobe {3K, Cy, Cs}-
free graph. Suppose, by the way of contradiction, that H does not contain
2K, UK;, P,UK,;, and Cy U K; as induced subgraph. Consequently, H is
either a threshold graph or the union of two threshold graphs Hi, Hs with
no induced K> U K (i.e., split complete graphs).

In the first case, let N be the stable set in the split partition of H. The
graph H* that arises from H by adding all the edges uv with u,v € N
is co-bipartite. So, H* is a completion of H with partition (N,P) (P =
V(H) — N) that is {3K;,Cs}-free. Next, we will prove that H* is also
Cy-free. Let A = {u,v,z,y} be a set of vertices of H* such that H*[A]
is isomorphic to Cs. Notice that, by construction, we can assume that
u,v € N, z,y € P, u is adjacent to z and v is adjacent to y. But then A
induces a P, in H, a contradiction.

In the second case, let N be the union of the stable sets in the split
partitions of H; and Hs. Let H* be the graph that arises from H by adding
all the edges uv with w,v € N. Then H* can be obtained from P, by adding
true twin vertices. It is easy to see then that it is {3K7, Cy, Cs}-free. O

As a consequence of Theorem 40| we can calculate all minimally nonprobe
{3K3, C4, Cs }-free graphs whose complement are disconnected.

In what follows, 7 and L denote the class of {3K1, C4, Cs}-free graphs
and P(K) U T respectively.

Lemma 14. The minimally nonprobe {3K1, Cy, Cs}-free graphs with dis-
connected complement are (K U2K1) +2K1, (PsUK1) +2K1, 3Ks, Ks 3,
and 2P;.

Proof. Recall that the class 7 is its own companion. Let F be a minimally
not £ graph. We claim that F' isomorphic to either Ky U2K;, or P3 U Kj,
or Cy, or Cs. Indeed, since F' is not a 7 graph, F contains an induced 3K,
Cy, or Cs. If F contained an induced C, or Cs, then, by minimality, F
would be either isomorphic to Cy, or isomorphic to Cs. So, we may assume
that F' contains an induced 3K; and no induced C4 or Cs. Let S be a set
that induces a 3K; in F'. Since F' is nonprobe complete and F' contains no
induced Cy, F contains an induced P; (see Lemmall]). Let W be a set that
induces a Pz in F' and e = uv be the only edge joining two vertices of W
in F. If e has one endpoint either in S or adjacent to a vertex in S (say
u), then F' contains an induced K> U2K; or P3U K1, or S U{v} induces a
claw. If F' contains an induced K, U2K; or P; U K1, then, by minimality,




4.5. Partial characterization of probe {3K1, C4, Cs}-free graphs 55

F' is either isomorphic to K5 U2K; or isomorphic to P; U K;. Suppose,
by way of contradiction, that F' contains neither an induced K, U2K; nor
an induced P; U K;. Then, SU{v} induces a claw. Let w be such that
W = {u,v,w}. Since F contains no induced P; U K;, w is adjacent to
both vertices of S — {u} and consequently F' contains an induced Cj, a
contradiction. Notice that Ko U 2K, P; U Ky, C4 are probe {3Ki,Cs,Cs}-
free graphs, but Cs is not a probe {3K;, C4, Cs}-free graphs. Finally, the
only minimally not 7 graph that is probe complete is 3K;. The results
follows now from Theorem O

Theorem 41. Let G be a tree-cograph. Then, G s a probe {3K1,Cy,Cs}-
free graph if and only if G contains no induced 2K, U K1, Py U K;,
CaUKi1, (K2 U2K,) +2K1, (P3UK:) +2K1, 3Ks, K3, 2P3, or Ps.

Proof. Let H be a minimally nonprobe {3Kj, Cy, Cs}-free graph that is a
tree-cograph. If H is disconnected, H is 2K, U K3, P,UK;, or C4 U K. If
H is disconnected, H is (K, U2K;) + 2K, (PsUK1) + 2Ky, 3K, K33, or
2P;. By Theorem [36], there are no minimal probe {3Ki, Cy, Cs }-free graphs
that are trees. If H is the complement of a tree, by Theorem B, H is Ps, or
2P;, or 3K,. O

Lemma 15. Let H be a spider with spider partition (S,C,R). Then, H
1s probe {3K1, Cy, Cs}-free graph if and only if H = thina(tK1) for some
t > 0. Moreover, if H 1s a probe {3Ki,C4s,Cs}-free graph and H' s a
fat spider that arises from H, then H' is also a probe {3Ki,C4,Cs}-free
graph except when t > 1 and H' arises from H by making a false twin
of a vertez of C.

Proof. Let H be a spider with partition (S,C,R). Since H is P, U K-
free and tent—free, |C| = 2. Notice that R is an independent set because
thiny(K>) is nonprobe {3Ki, Cy, Cs}-free graph. We conclude that H =
thin, (¢K; ) for some ¢t > 0. Clearly, thiny(¢K) is a probe {3K, Cy, Cs }-free
graph. By setting all vertices of S U C' as probe vertices (P) and the vertices
of R as nonprobe vertices (N) and adding all the edges whose endpoints
belong to N (F'), we obtain the completion H* = (NUP,E(H)UF) of H
that is {3K, C4, Cs }-free. Therefore, H is probe {3Ki, C4, Cs}-free.

Suppose that H is a probe {3Kji,Cs,Cs}-free graph and let H' be a
fat spider arising from H. Let v a false twin of a vertex s € S. Consider
the following probe partition (N,P): N = RU{v,s} and P =V (H) - N
and denote by F' the edges whose endpoints belong to N. Consequently,
the completion H* = (NUP,E(H)UF) is {3K;,C4,Cs}-free. Now, let
v be a true twin of a vertex s € S. Consider the following (N, P) probe
partition: N = RU(S\{s,v}) and P = V(H) — N. So, the completion
H* = (V(H),E(H)U F) with probe partition (N,P), where F' are the
edges whose endpoints belong to N, is {3K;, Cs, Cs}-free. Therefore, if H'
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arises by making a twin of a vertex s € S, then H' is a probe {3K3, C4, Cs}-
free graph. We have already seen a probe interval partition of H where each
c € C is a probe vertex having a {3K1, Cs, Cs}-free completion. Therefore,
if H' arises by making a true twin of a vertex of C, H' is also a probe
{3K1, C4, Cs}-free graph. Finally, assume that H' arises by making a false
twin of a vertex ¢ € C. Ift = 0, then H' is clearly a probe {3K7, C4, Cs}-free
graph. If ¢ > 1, then H' is not a probe {3Kj, C4, Cs}-free graph because it
contains an induced Cy U K. O

Lemma 16. The munimally nonprobe {3K;,Cs,Cs}-free graphs that are
spiders or fat spiders are tent and thiny(Koz).

Proof. By minimality |C| < 3 (otherwise contains P, U K or tent as proper
induced subgraphs). If |C| = 3, then H is a thick spider (otherwise it
contains P, U K as proper induced subgraph). If |C| = 3 and H is thick,
then H contains an induced tent and, by minimality, H = tent. Therefore,
we can assume that |C| = 2. If H[R] were a stable set, then, by the above
lemma, H is a spider, a contradiction. Therefore, R is not a stable set. So,
H contains an induced thiny(K>) and, by minimality, H = thins(K>).

Suppose, by way of contradiction, that there is a fat spider H' that
is minimally nonprobe {3K3, C4, Cs}-free graph. By minimality, H' arises
from a spider H that is a probe {3K3, Cy4, Cs }-free graph. So, by the above
lemma, H = thin,(¢K;) for some ¢ > 1 and H arises by making a false twin
of a vertex of C. Then, H' contains an induced C; U K;. By minimality,
H' = C, UK, this leads to a contradiction because H' is a fat spider.
This contradiction proves that there are no minimally not {3K;,Cs,Cs}-
free graph that are fat spiders. O

By combining Lemmas [13], [I4] and [16] it is obtained the following char-
acterization.

Theorem 42. Let G be a P;-tidy graph. Then, G is a probe {3K1,C4,Cs}-
free graph if and only if G contains no induced 2K, UKy, PoU K;,
Cys UK, (Kg U 2K1) + 2K, (Pg U Kl) + 2K, 3—}'{2, K3,3, E, Cs, tent,
or thiny(Ka2).

Proof. Let H be a minimally not {3K, Cj4, Cs}-free graph that is a P,-tidy
graph. If H is disconnected, then H is isomorphic to either 2K5 U K, or
P,UK;,, or C4UK,. If H is disconnected, then H is isomorphic to either
(Kz U2K1) + 2K, or (P3 U K]_) + 2Ky, or 3—.K-2, or K3,3, or 2—.Pg If H were
Cs, Ps, or Ps, then H would be necessarily isomorphic to Cs. Finally, if H
is a spider or a fat spider, then H is tent or thin,(K>). O
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4.6 Partial characterizations of probe unit interval
graphs

To the best of our knowledge, the problem of finding all minimally nonprobe
unit interval graphs whose complement is disconnected remains open. Nev-
ertheless, we solve this problem for the classes of tree-cographs and P,-tidy
graphs.

Lemma 17. The minimally nonprobe unit interval graphs that are tree-
cographs or Py-tidy and whose complement is disconnected are (2Ko U
Kl) + K3, (P4 U K]_) + K3, (04 U Kl) + K3, thing(Kg) + K3, (Kg U 2K1) +
2K, (P3 U K]_) + 2Ky, 3K, K33, and 2P;.

Proof. The result follows from Theorem Indeed, the companion of the
class of unit interval graphs it the class 7 , and: (i) the minimally non-
probe 7 graphs that are tree-cographs or P;-tidy and are probe unit interval
graphs are 2K, U K3, P, U K1, C4 U Ky, and thiny(K>); (ii) by the proof of
Lemma [14] the minimal forbidden subgraphs of P(K) U T are K, U2Kj,
P; UK, C4, and Cs (all of which are probe unit interval except for Cs);
and (iii) the only minimally not 7 graph that is probe complete graph is
3K;. O

Theorem 43. Let G be a tree-cograph. Then, G 1s a probe unit interval
graph if and only if G contains no induced bipartite claw, L, H, for
anyn>1, Fﬁ, (2K2 UK]_) + K, (P4 UK]_) + K, (04 UK]_) + K, (Kg U
2K1) + 2K, (Pg U K]_) + 2K, 3Ks, K3,3, or 2—133

Proof. Let H be a minimally nonprobe unit interval graph that is a tree-
cograph. By minimality, H is connected. If H is a tree, then, by Theorem [34]
H is bipartite claw, L, or H, for some n > 1. If H is the complement of
a tree, then, by Theorem 8] H is Ps. If H is disconnected, by Lemma [I7,
His (2K2 U K]_) + K, (P4 U K]_) + K, (04 U Kl) + Ki, (Kg U 2K1) + 2K;,

(P3 UK]_) + 2K, 3K, K3’3, 2P; (because thlnz(Kz) + K is not a tree-
cograph). O

Lemma 18. Let H be a spider with spider partition (S,C,R). Then,
H s a probe unit interval if and only if |C| = 2 and H[R]| is probe
complete. Moreover, if H is probe unit interval and H' is a fat spider
that arises from H, then H' is also probe unit interval except when H|R]
18 not complete and H' arises by making a false twin of a vertez of C.

Proof. Let H be a probe unit interval spider with spider partition (S, C, R).
Notice that |C| = 2 because otherwise H would contain either an induced
net or an induced tent. In addition, H[R] is {Ps, C4}-free (otherwise, H
contains an induced thiny(P;) which is not a probe unit interval graph or
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(C4 UKy) + Ki). So, H[R] is probe complete. Conversely, if H[R] is probe
complete and |C| = 2, clearly H is a probe unit interval.

Suppose now that H is probe unit interval. The vertices of S in any
probe interval partition of H can be probe or nonprobe, so if H' arises by
making a twin of a vertex of S, then H' is also a probe unit interval. The
vertices of C in any probe interval partition of H can be can be set as probe,
so if H' arises by making a true twin of C, H' is also probe unit interval.
Finally, suppose that H' arise from H by making a false twin of C. If H[R]
is complete, then H' is clearly probe interval, but if H[R] is not complete,
H' contains an induced (P; U K;) + 2K. O

Lemma 19. The minimally nonprobe unit 'L'n_terval graphs that are spi-
ders or fat spiders are net, tent, and thiny(Ps).

Proof. Let H be a spider with spider partition (S, C, R) that is a minimally
nonprobe unit interval graph. If |C| > 3, by minimality H is net or tent.
So we may assume that |C| = 2. Since H is not a probe unit interval graph,
H|R] is nonprobe complete. So, H[R] contains an induced P; or Cy. If H[R]
contained an induced Cy, H would contain an induced (Cy U K;) + K and,
by minimality, H = (C4 U K1) + K, contradicting the fact that H is a
spider. So, necessarily H|[R| contains an induced P;. Therefore, H contains
an induced thiny(Ps) and, by minimality, H = thin,(Ps).

Suppose by way of contradiction that there is a fat spider H' that is
a minimally not unit interval graph. By the minimality and the above
lemma, H' arises from a spider H with |C| = 2 and H|R]| probe complete
by making a false twin of a vertex of C. But then, H' contains an induced
(C4 UK1) + Ky and, by minimality, H = (Cy U K;) + K3, contradicting
again the fact that H is a fat spider. O

Theorem 44. Let G be a Py-tidy graph. Then, G is a probe unit interval
graph if and only if G contains no induced (2K2 U K1)+ K1, (PaUK;) +
Ky, (C4 U Kl) + Ky, thing(Kg) + Ky, (Kg U 2K1) + 2K, (Pg U K]_) + 2K,
3K, K33, 2P3, Cs, net, tent, or thiny(P;).

Proof. Let H be a minimally not unit interval graph that is P,-tidy. By
minimality, H is connected. If H is disconnected, by Lemma [I7, H is
(2K2 U K]_) + Kj, (P4 U K]_) + K, (04 U K]_) + K, thlnz(Kz) + K, (Kz U
2K1) + 2K, (P3 U K]_) + 2K, 3Ks, K33, or ﬁ If H were Cs, B, or FE’,,
necessarily H = Cs. If H is a spider or a fat spider, H is net, tent, or




Chapter 5

Probe co-bipartite and probe
block graphs

In this chapter we present a structural characterization for probe co-bipartite
graphs that leads to a polynomial-time recognition algorithm for this class.
We also give a forbidden induced subgraph characterization for probe diamond-
free graphs that implies a forbidden induced subgraph characterization for
probe block graphs. Notice that block graphs are a subclass of chordal
graphs. Probe chordal graphs have been studied in [GLO04, [CGLS10]. Two
important subclasses of probe chordal graphs, probe split graphs and probe
Ptolemaic graphs, have been studied in [LdR07] and [CCK 08|, respectively.
In [SHKPO09], a linear-time recognition algorithm for probe block graphs is
presented. Part of the results presented in this chapter were obtained during
a visit to Universidade Federal do Rio de Janeiro [BDd"].

This chapter is organized as follows. Section [5.1]is devoted to probe co-
bipartite graphs. In Section[5.2]is given a characterization of probe diamond-
free graphs that implies a characterization for probe block graphs presented
in the same section.

5.1 Probe co-bipartite graphs

Denote by T'(G) the spanning subgraph of G formed by the edges contained
in a triangle of G.

Before presenting the characterization of probe co-bipartite graphs, we
would like to remark that if G is probe co-bipartite, then there exists a
complete set C’ in G containing a set of edges B’ such that G — E' is bipar-
tite. Consequently, G — E(C') is also bipartite. Moreover, for any clique C
containing C’, G — E(C) is bipartite.

Consequently, we have the following results.

59
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Lemma 20. Let G be a triangle-free graph. Then, G 1s probe co-bipartite
if and only if G contains an edge e such that G — e 1s bipartite.

Lemma 21. Let G be a graph containing triangles. Then, G 1s probe
co-bipartite if and only if T(G) has a clique C such that G — E(C) 1s
bipartite.

Proof. Suppose that G is probe co-bipartite. Then, G has a clique such
that G — E(C) is bipartite. However, each edge of C is contained in a
triangle. Therefore, C is a subgraph of T'(G), meaning that is a clique
of T(G). Conversely, suppose T(G) has a clique C, where G — E(C) is
bipartite. Clearly any clique of T'(G) is also a clique of G. Consequently,
G has a clique C, such that G — E(C) is bipartite meaning that G is probe

co-bipartite. O

Theorem 45. Let G be a probe co-bipartite graph containing triangles.

Then, T(G) 1s a split graph.

Proof. By Lemmas 20 and 21, T'(G) has a clique C such that G — E(C)
is bipartite. Let S be the subset of vertices of T'(G) not contained in C.
Suppose T'(G) has an edge e linking two vertices of S. Then e forms a
triangle with some vertex v. However, such a triangle has none of its edges
in C and thus G — E(C) cannot be bipartite, a contradiction. Therefore,

T(G) is a split graph. O

Algorithmic aspects: If G is triangle-free, then check if for some edge
e, G — e is bipartite. Otherwise, find all the triangles of G and construct
T(G). Find each clique C of T(G) and verify for any C if G — E(C) is
bipartite. All these steps can be performed in polynomial time.

5.2 Probe block graphs

5.2.1 Probe diamond-free graphs
Partitioned probe diamond-free graphs

In what follows, we say that a graph G = (PUN, E) is a partitioned graph
if its vertex set is partitioned into two sets: a set P of probe vertices and
a stable set N of nonprobe vertices. Let G be a hereditary class of graphs,
we say that G is a partitioned probe G graph if there exists a completion
G* = (PUN,EUF) of G belonging to G, remember that all the edges
belonging to F' have both endpoints in N.

Let G=(PUN,E) and H = (P'UN', E') two partitioned graphs with
N and N’ stable sets. H is defined to be a partitioned subgraph (an induced

partitioned subgraph) of G, if H is a subgraph (an induced subgraph) of
G, N' C N and P’ C P. When the context is clear, we just say that H is
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H1 Ho H3 Hyg Hs

Hs

Figure 5.1: Partitioned forbidden subgraph for probe diamond-free graphs.
Black vertices and white vertices represent probe vertices and nonprobe
vertices, respectively.

(an induced) a subgraph of G. We say that G is isomorphic to H if and
only if there exists a one-to-one function f : PUN — P’ U N’ preserving
adjacency and f(v) € N’ for all v € N, and f(v) € P’ for all v € P. We
say that the partitioned graph G does not contain H as induced subgraph
or does not contain an induced H if no induced partitioned subgraph of G
is isomorphic to H. Given a set of partitioned graphs H, G is defined to
be H-free if G does not contain an induced H belonging to H. If H is a
set with a single element H, we use H—free for short. We call ¢ips to the
vertices of degree two of the diamond.

In order to characterize probe block graphs, in this section we study
the structure of probe diamond-free graphs. Giving the first step in char-
acterizing probe block graphs, partitioned probe diamond-free graphs are
characterized by forbidden partitioned subgraphs, by means of the following
theorem.

Theorem 46. Let G = (PUN, E) be a partitioned graph. Then, G is a
partitioned probe diamond-free graph if and only if G does not contain
any partitioned graph depicted in Figure [5.1l.

Proof. Let G be a partitioned graph not containing any induced partitioned
graph depicted in Fig. Let F' be the set of non edges of G whose
endpoints belong to N and are the tip of an induced diamond of G. It suffices
to prove that the completion G* = (NUP,EUF) of G is diamond-free.
The proof follows by contradiction and is split into three cases. Suppose by
the way contradiction that G* is not diamond—free. Notice that it does not
containing H;, Hs and Hj as induced subgraph, G* does not contain any
induced diamond with at most a nonprobe vertex and thus F' is well-defined.
In what follows, for any vertex v, d(v) and d*(G) denote dg(v) and dg+(v),
respectively.
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Case 1: G* contains a diamond with ezactly two non probe vertices.
Assuming that u,v € N, uv € F and z,y € P, and suppose that H =
G*[{u,v,z,y}| is an induced diamond of G*. First, suppose, without loss
of generality, that d};(u) = d};(z) = 2 and d}(v) = d};(y) = 3. Since,
uv € F, there exists a vertex w; € P such that u, v and w; belong to
an induced diamond D in G and thus w; is adjacent to w and v. Since
G is {Hy, Hs}-free, w; is not adjacent to z and y. Consequently, there
exists a vertex wp € D — H such that G[{wi,w2,u,v}] = D and thus
{u,v,w;, w2, y} induces Hy in G, leading to a contradiction. Therefore,
we can assume, without loss of generality, that d};(z) = d}(y) = 2 and
di(u) = d¥(v) = 3. Again, there exists a vertex w; € P such that u, v
and w; belong to a diamond D in G. Since G is {H3, Hy}-free, Ng(wq) N
V(H) = {u,v}. Consequently, there exists a vertex ws € D — H such that
Gl{u,v, w1, w2} = D and Ng(w2) NV (H) = {u,v}. Thus, {u,v,w:, w2, y}
induces Hy in G, a contradiction again.

In what follows we can assume that G* does not contain any induced
diamond with at most two vertices in N.

Case 2: G* contains a diamond with exactly three non probe ver-
tices. Let u,v,w € N be three vertices inducing a triangle in G*. We are
going to prove it implies that there exits an edge e = zy € E(G) whose end-
points are complete to A = {u, v, w}. Since uv € F, there exist two vertices
z1,y1 belonging to P such that {u,v,z1,y1} induces a diamond in G we
call D;. Consequently, it suffices to prove that w is adjacent to z; and ;.
Suppose, by the way of contradiction, that w is adjacent to at most on of z;
and y;. Suppose that w is adjacent to z; and not adjacent to y;. Therefore,
there exists a vertex zo € P not belonging to D; and adjacent to u and w.
Since there is no induced diamond in G* with at most two nonprobe ver-
tices, zo is adjacent to z;. Consequently, z5 is adjacent to v and thus z; is
adjacent to y;. Therefore, {v,w, y1,z2} induces a diamond with exactly two
nonprobe vertices, a contradiction. The contradiction arose by supposing
that w is adjacent to z; and not adjacent to y;. Now, suppose that w is nei-
ther adjacent to z; nor adjacent to y;. Therefore, there exist two vertices z,
and y» such that {u,w, 2, y2} induces a diamond D, in G. By symmetry, v
cannot have exactly one neighbor in {z»,y>}. Notice also that if v were com-
plete to {z2,y2}, then we could choose e = zoy>. Let set B = {z1,y1,v}. If
z2 (y2) is adjacent to at least one of the vertices belonging to B, since there
is no diamond with exactly two nonprobe vertices, then z» (y2) is complete
to B. Therefore, {v,w, y1,z2} ({v, w, y1,¥2}) induces a diamond in G* with
exactly two nonprobe vertices, a contradiction. Consequently, zo and y,
are anticomplete to B. Symmetrically, assuming that there is no edge in G
complete to {u,v,w}, it can be proved that there exist two vertices z3 and
y3 anticomplete to the triangles induced by {z;,v;,u} for 2 = 1,2 such that
{z3,y3,v,w} induces a diamond D3 in G. Thus, D; U Dy U D3 induces Hs
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in G, a contradiction again. So, there exists an edge zy € E(G) complete to
A. Finally, we will prove that if uv, vw,uw € F there is no probe vertex z
adjacent to » and v and not adjacent to w. Since {u, v, w} induces a triangle
in G* there exists an edge zy whose endpoints belong to P such that u, v
and w are complete to zy. Suppose, by way of contradiction, that there
exists a vertex z € P such that z is adjacent to w and v and not adjacent to
w. Since there is no induced diamond with exactly two nonprobe vertices
in G*, z is adjacent to ¢ and y. Consequently, {z,v, v, z} induces H; in G,
a contradiction.

Case 3: G* contains a diamond with four mon probe vertices. Fi-
nally, we will prove that there is no diamond in G* with all its edges be-
longing to F'. Suppose, by way of contradiction, that there exist four ver-
tices u, v, w and z belonging to N and inducing a diamond in G* such that
d*(w) = d*(2) = 2, {u,v,w} and {u,v, 2z} both induce a triangle in G*. We
know that there exist two adjacent vertices z and y belonging to P such
that {u,v,w} is complete to {z,y} and two probe adjacent vertices 7 and s
complete to {u,v,2}. Set e = zy and e’ = rs. Notice that e # €', because
otherwise w would be adjacent to z in G*. Indeed, {z,y} N{r,s} = 0.
First, suppose that » = z. If y were not adjacent to s, {z,v,v, s} would
induce Hjz. Consequently, since G is Hs—free s is adjacent to y. Therefore,
s is adjacent to w because, otherwise, {z,v,s,w} would induce H». So,
{z,s,w, z} induces a diamond in G and thus w is adjacent to z in G*, this
is a contradiction that arises from supposing that » = z. Now, suppose
that zy and rs are edges without endpoints in common. If {z,y, w} were
anticomplete to {r,s, 2}, {u,v,w, z,z,y,r, s} would induce Hg. So, we can
assume, without loss of generality, that r is either adjacent to = or adjacent
to w. First, suppose that r is adjacent to z. Since there is no induced
diamond with exactly two nonprobe vertices in G*, r is adjacent to w. We
have proved that if r is adjacent to z, then r is adjacent to w. So, we can
assume that w is adjacent to r. Therefore, since G* does not contain any
induced diamond with exactly two nonprobe vertices, s is adjacent to w.
Consequently, {s, 7, vy, w} induces a diamond in G and thus w is adjacent to
z in G*, a contradiction. O

Nonpartitioned probe diamond-free graphs

Let G and H be a graph and a collection of graphs, respectively. We will
say that F' is a subgraph of G with induced H if F' is a subgraph of G and
some H € H is an induced subgraph of F'. Notice that in that case, H is
also an induced subgraph of G. If H is formed by only one graph H, we just
say that F' is a subgraph of G with induced H.

Before presenting the characterization by forbidden induced subgraphs
for probe diamond-free graphs, we need to prove the following technical
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Figure 5.2: Some forbidden graph for probe diamond-free.

lemma.

Lemma 22. Let G be a {F}, F», F3, Fy}—free graph. If G contains either
S or T1 as a subgraph with induced diamonds, then G contains one of
the graphs depicted in Figure as induced subgraph.

Proof. In what follows, we mean by “S (T}) is a subgraph of G”, S (T1) is
a subgraph of G with induced diamonds. Let G be a {F}, F», F3, Fy}—free
graph. We will prove the lemma by contradiction. Suppose that G does not
contain any graph depicted in Fig. 5.3 as induced subgraph. We are going
to split the proof into two cases.

Case 1: G contains a subgraph H isomorphic to S. Suppose that the
vertex set of the subgraph H is labeled by the set {a,b,c,d, f,g}. Assume,
without loss of generality, that the set {a, b, c, d} induces one of the diamonds
of H whose triangles are {a,b,c} and {b,c,d}; and {b,e, f, g} induces the
other diamond whose triangles are {b,e, f} and {e, f, g}. Since G contains
S as subgraph but S is not an induced subgraph of G, there is at least one
edge whose endpoints belong to {a,b,c,d, f,g} and are different from the
edges belonging to the diamonds induced by {a,b,c,d} and {b,e, f, g}.

First, suppose that a is adjacent to e. So, a is either adjacent to f or
adjacent to g because, otherwise, {a,b,e, f,g} would induce F». On the
one hand, if a were adjacent to g and not adjacent to f, {a,b,e, f, g} would
induce Fy. On the other hand, if a were adjacent to g and not adjacent to f,
{a,b,e, f,g} would induce F;. Consequently, since G is {F, Fy}—free, a is
adjacent to f and g. By symmetry, e is adjacent to c and d. Therefore, if f
were neither adjacent to ¢ nor adjacent to d, {a,c,d,e, f} would induce Fs.
Hence, on the one hand, f is either adjacent to a or c. If f were adjacent to
c and not adjacent to d, {a,c,d, e, f} would induce F;. On the other hand,
if f were adjacent to d and not adjacent to c, {a,c,d,e, f} would induce Fj.
Consequently, f is adjacent to c and d. Therefore, if ¢ were not adjacent to
g, {b,c,e, f, g} would induce F;. Therefore, c is adjacent to g. So, if g were
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not adjacent to d, {a,b,c,d, g} would induce F». Therefore, since g is not
adjacent to b and G is Fy—free, g is adjacent to d. Consequently, {a,b,c,d, g}
induces Fy, a contradiction. This contradiction arose from supposing that a
is adjacent to e. So, in what follows, we can assume that a is not adjacent
to e. Symmetrically, we can also assume that a is not adjacent to f and d
is not adjacent to f.

Suppose now that a is adjacent to g. Then, since a is not adjacent to
e and f, {a,b,e, f, g} induces F3, a contradiction. This contradiction arose
from supposing that a is adjacent to g. Therefore, we can assume that a is
not adjacent to g. By symmetry, we can also assume that d is not adjacent
to g. Suppose now that c is adjacent to g. Consequently, {b,c,e, f, g}
induces Fj3, a contradiction again. Therefore, we can also assume that c is
not adjacent to g.

Now, suppose that ¢ is adjacent to e. Hence, {b,c, e, f, g} induces Fs,
a contradiction again. So, we can assume that c is not adjacent to e. By
symmetry, ¢ can be also assumed not to be adjacent to f. Therefore, V(H)
induces a subgraph isomorphic to S, a contradiction.

In what follows, we can assume that G contains no subgraph isomorphic
to S.

Case 2: G contains a subgraph H isomorphic to Ty with induced
diamonds.

Suppose that the vertex set of the subgraph H is labeled by the set
{a,b,c,d,r,s,t,u}. Assume, without loss of generality, that the set {a, b, c, d}
induces one diamond in H with induced triangles {a,b,c} and {b,c,d} and
{r,s,t,u} induces the other diamond with induced triangles {r,s,t} and
{s,t,u}, and a is adjacent to r. Since G contains T as subgraph but T} is
not an induced subgraph of G, there is at least one edge whose endpoints
belong to {a,b,c,d, f, g} different from the edges ar and the edges belonging
to the diamonds induced by {a,b,c,d} and {r, s, t, u}, respectively.

First, suppose that a is adjacent to s. Notice that a is not adjacent to s
because, otherwise, G|a, b, c,d, T, s,u| would contain a subgraph isomorphic
F to S and thus F' would be a subgraph of G. Consequently, {a,r,s,t,u}
would induce a subgraph in G either isomorphic to F; or isomorphic to
Fs, a contradiction. Therefore, we can assume that a is not adjacent to s.
By symmetry, we can also assume that a is not adjacent to ¢ and r is not
adjacent to b and c. Hence, if a were adjacent to u, then {a,r,s,t,u} would
induce F3. So, we can assume that a is not adjacent to u. By symmetry,
we can also assume that r is not adjacent to d.

Suppose now that b is adjacent to s. Notice that, if b were adjacent to ¢,
{a,b,r,s,t} would induce F3. So, we can assume that b is not adjacent to ¢
and s is not adjacent to ¢ (by symmetry). Therefore, if b were adjacent to u,
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then {b,7,s,t,u} would induce F», a contradiction. Hence, we can assume
that b is not adjacent to w and, by symmetry, s is not adjacent to d. Suppose
now that cis adjacent to ¢t. Since G is Ts—free, d is adjacent to w. Therefore,
{a,b,c,d,r,s,t,u} induces Ty, a contradiction. Therefore, we can assume
that c is not adjacent to . Suppose that d is adjacent to u. If c were adjacent
to u, then {b,c,d,u, s} would induce F3, a contradiction. Therefore, we can
assume that c is not adjacent to w. By symmetry, we can also assume
that ¢ is not adjacent to d. Consequently, {a,b,c,d,,s,t,u} induces Tig,
a contradiction. The contradiction arose from supposing that d is adjacent
to u. Therefore, we can assume that d is not adjacent to w. If ¢ and ¢t were
adjacent to w and d respectively, then {a,b,c,d,r,s,t,u} would induce Tj.
Therefore, we may assume that d is not adjacent to t. Therefore, on the one
hand, if ¢ were adjacent to u, then {a,b,c,d,r,s,t,u} would induce T;. On
the other hand, if ¢ were not adjacent to u, then {a,b,c,d,r,s,t,u} would
induce T,. Both cases lead to a contradiction because G is {T4, Ts}—free.
This contradiction arose from supposing that b is adjacent to s. In what
follows, we can assume that b is not adjacent to s and £ and c is not adjacent
to t and s.

Suppose that d is adjacent to u. Since G is T—free, either c is adjacent to
u, or b is adjacent to u, or s is adjacent to d, or ¢ is adjacent to d. Suppose,
without loss of generality, that, u is either adjacent to b or adjacent to c.
If ¢ were adjacent to u and d were not adjacent to u, {a,b,c,d,u} would
induce F,. Therefore, we can assume that ¢ and b are adjacent to w and
by symmetry s and t are not adjacent to d. Consequently, {a,b,c,d,u}
induces Fi, a contradiction. So, in what follows, we can assume that d is
not adjacent to u.

Suppose now that b is adjacent to u. If ¢ were adjacent to u, since G is
Ti1—free, d would be either adjacent to s or adjacent to ¢. Suppose, with-
out loss of generality, that d is adjacent to s. Consequently, {b,c,d,u, s}
induces F3, a contradiction. Therefore, we can assume that c is not adja-
cent to u. Suppose now that d is adjacent to s. If d were adjacent to ¢,
{b,d,s,t,u} would induce F;. Therefore, d is not adjacent to ¢t and thus
{a,b,c,d,r,s,t,u} induces Ty, a contradiction. This contradiction arose
from supposing that b is adjacent to u. Therefore, we can assume by sym-
metry that b and c are not adjacent to w; and s and ¢ are not adjacent to d.
Finally, {a,b,c,d,r,s,t,u} induces T}, a contradiction.

O

Theorem 47. Let G be a graph. G 1s probe diamond-free if and only
if G does not contain any graph depicted in Figures and as
induced subgraph.

Proof. Let G be a graph not containing any graph depicted in Figures
and [5.3 as induced subgraph. Let N be the set of vertices of G belonging to
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Figure 5.3: Some forbidden subgraphs for probe diamond-free graphs.

22
DD G

a tip of an induced diamond and P = V' \ N. Let F be a set of non-edges
of G whose endpoints are tips of the same diamond.

First, we are going to prove that N is a stable set of G. Suppose, by
the way of contradiction, that there exist two adjacent vertices u and a
belonging to N. Suppose that u belongs to a diamond D; induced by the
vertices {u, v, w, z} whose other tip is z and a belongs to another diamond
D, induced by {a, b, ¢, d} whose other tip is d. Suppose that u is adjacent to
a. If V(D;) did not meet V(D>), then D; U D would induce a subgraph in
G that contains T3 as subgraph. By Lemma [22] since G does not contain F;
for2 =1,...,4 as induced subgraph, G contains one of the graphs depicted
in Figure [5.3] as induced subgraph, a contradiction. Hence, we can assume
that the diamonds D; and D> have at least one vertex in common. First,
suppose that d = z and {v,w} N {b,c} = 0. Since G is Fg—free, there
exists at least one edge different from au such that one of its endpoints
belong to {u,v,w, z} and the other one belongs to {a,b,c,d}. Suppose that
w is adjacent to a. Since G is Fo—free, v is adjacent to a. Consequently,
{a,d,u,v,w} induces Fy, a contradiction. Therefore, we can assume that a
is not adjacent to w. By symmetry, we can also assume that v is not adjacent
to a and u is not adjacent to b and c. Suppose now that w is adjacent to
b. Since G is Fy —free and w is not adjacent to a, w is adjacent to c. So,
{a,b,c,d,w} induces F;, a contradiction. Therefore, w is not adjacent to
b. Symmetrically, w is not adjacent to c and v is not adjacent to b and not
adjacent to c. This leads to a contradiction because G is Fs—free. Hence,
we can assume that D; and D, have at least two vertices in common.

Suppose that £ = d and b = w. Notice that v is not adjacent to a
and c is not adjacent to u because, otherwise, {a,b,d,u,v} and {a,b,c,d, u}
would induce Fi, respectively. Therefore, since G is Fo—free, v is adjacent
to c. Consequently, {a,b,c,u,v} induces Fj, a contradiction. Hence, we
can assume that D; and D, have exactly three vertices in common. We
can assume, without loss of generality, that £ = d, w = b and v = c.
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Consequently, {a,b,c,d,u} induces Fi, a contradiction.

Finally, in order to prove that N is a stable set, it suffices to prove that
a is different from w. Suppose, by the way of contradiction, that a = w. If
v and ¢ were different from b, c and d, then G would contain S as subgraph.
By Lemma [22] G would contain one of the graphs depicted in Figure [£.3]
as induced subgraph, a contradiction. Suppose now that © = b. Since G is
{F1, Fx}—free, d is adjacent to v and z. So, if z were not adjacent to c, then
{a,b,c,d,z} would induce F;. Consequently, z is adjacent to ¢ and thus
{a,b,c,d,c,z} induces F,, a contradiction. Therefore, we can assume that
d = v. Since G is Fr—free, c is adjacent to z. Consequently, {a,bd,c,d,z}
induces Fy , a contradiction. Finally, we have proved that the set N is a
stable set.

It remains to prove that the completion G* = (V,E U F) is diamond-
free. By Theorem [46] it suffices to prove that the partitioned graph G =
(N UP, E) with probe partition (N, P) does not contain any of the parti-
tioned graphs depicted in Figure By the construction of the partition
(N,P), G=(NUP,E) does not contain H;, H» and H3. Finally, since G
is { F3, F5, F7}—free, the partitioned graph G = (N U P, E) does not contain
the partitioned subgraphs H4, Hs and Hg.

O

5.2.2 Probe block graphs

In this section the characterization for probe diamond-free graphs is used to
characterize probe block graphs. Notice that if every component of a graph
is probe block then the graph is probe block. Indeed, suppose that {C;}1<;<
are the components of a graph G = (V, E) and G|[C;] are probe block with
probe block partitions (P;, N;) and completions G} = (N; U P;, E(C;) U F;)
fore = 1,...,k. Let v; € N; (if N; = 0, v; is chosen arbitrarily among
the vertices of C;). Then, we can construct a probe block completion G* =
(NUP,EUF) with N formed by all the vertices belonging to some N;
and the ones chosen arbitrary when N; = 0; and F formed by those edges
belonging to some F; and v;v;41 for 2 =1,...,k — 1. Consequently, we can
restrict our analysis to connected graphs.

The following two lemmas are preliminary results to prove the main
characterization of this section.

Lemma 23. [GL04/ Let G be a probe chordal graph. Then, G has no
induced Cor11 for k > 2.

Lemma 24. [GL04] Let G be a probe chordal graph. Then, for any
partition into probe and nonprobe vertices, probe and nonprobe vertices
alternate for any chordless cycle in G.
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By combining the two above Lemmas, we can obtain the following result.

Theorem 48. Let G be a connected probe block graph. Then, G 1s
chordal.

Proof. Let G = (V,E) be a probe block graph. Since block graphs are
chordal, G is probe chordal. Consequently, by Lemma 23] G has no Cory1
for £ > 2 as induced subgraph. Suppose, by the way of contradiction, that
G contains an even induced cycle H = v1vs---vv1 for some k > 2. By
Lemma [24] for any probe block partition of G into probe (P) and nonprobe
(N) vertices, vertices belonging to P and N alternate in H. In what follows,
sums should be considered modulo 2k. Suppose, without loss of generality,
that vo;_1 € Pfori=1,...,k and v9; € N for 2 = 1,...,k. Notice that, if
G* = (V,EUF) is a completion of G such that G* is a block graph, since
G* is chordal, vs;_1v9;41 € F for1 =1,...,k. Otherwise, G* would contain
a chordless cycle greater than 4. Consequently, if &k = 2,3 it is easy to see
that G* contains a diamond, a contradiction. Therefore, we can assume that
k > 4. Since G* is chordal, vy;ug; 10 € F for ¢ = 1,...,k. In addition, if
vV did not belong to F, {v2,vs,vs} would be contain in an induced cycle
of G* of length at least 4. Consequently, {v2, v3,vs,v6} induces a diamond
in G*, a contradiction. O

We have already proved that the class of probe block graphs is probe
diamond—free and chordal. The following Lemma proves that the graph
obtained by adding all the edges to a chordal probe diamond-free graph
whose endpoints are tips of a diamond remains chordal. Consequently, every
graph chordal and probe diamond-free is probe block.

Lemma 25. Let G = (V, E) be a connected probe block graph and F be
the set of edges of G whose endpoints are tips of some diamond in G.
Then, G* = (V,EUF) 1is chordal.

Proof. Throughout the proof, sums should be considered modulo k. Let
F be the subset of edges of G* defined as in the lemma. Suppose, by way
of contradiction, that G* = (V,E U F) contains an induced cycle H =
v1,...,VxV1 for k > 4 as induced subgraph. By Theorem (8] v;v;11 € F for
some ¢ = 1,...,k. Assume that the cycle contains the minimum number
of nonprobe vertices among all the induced cycles contained in G*. By
construction, there exists a vertex w; € P adjacent to v; and v;1;. By
minimality on the number of nonprobe vertices of H and since G* is diamond
free, w; is anticomplete to V(H) — {v;,v;+1} in G*. If BE(H) N F = v;v;11,
then G[V(H) U {w;}] would induce a cycle in G, a contradiction. Thus,
we can assume that there exists an edge v;v; 1 € F with 1 # j such that
v;vj41 € F. Therefore, there exists a vertex wp # w; belonging to P and
adjacent to v; and ;41 which is also anticomplete to E(H) — {v;v;11}. In
addition, by the minimality on the number of nonprobe vertices in H, it
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follows that wiyws ¢ E(G). Again, if there were no other edges belonging to
H in F, G would contain an induced cycle greater than 4, a contradiction.
Repeating this procedure, if were necessary, for any edge of H belonging to
F, we conclude that G is not chordal, a contradiction again. O

By combining Theorem [47, Lemma [48] and Lemma [25], it follows the
characterization for probe block graphs. This characterization pointed out
the relationship between the class of probe block graphs and Ptolemaic
graphs. Indeed, the below theorem shows that probe block graphs are a
subclass of Ptolemaic graphs.

Theorem 49. Let G be a connected graph. The following statements
are equivalent:

1. G s a probe block graph.
2. G 1s chordal and probe diamond-free.
3. G 1s Ptolemaic and {Fy,S,T;}-free.

Proof. 1. = 2. On the one hand, since block graphs are chordal and diamond-
free, the class of probe block graphs is contained in the class of probe
diamond—free graphs. On the other hand, by Theorem [48] it follows that
the class of probe block graphs is contained in the class of probe chordal
graphs.

2. = 3. Let G be a probe diamond-free and chordal graph. By Theo-
rem (7, G is F» free. Consequently, since G is chordal, G is Ptolemaic. In
addition, all the graphs depicted in Figures [5.2] and [5.3] are chordal but £,
F5, S and T. Therefore, G is Ptolemaic and {F}, S, T} }—free.

3. = 2. Straightforward.




Chapter 6

Conclusions and future work

In this Thesis we study structural characterizations for circular-arc graphs,
circle graphs, probe interval graphs, probe unit interval graphs, probe co-
bipartite graphs, and probe block graphs. We partially characterize circular-
arc graphs, circle graphs, probe interval graphs and probe unit interval
graphs by forbidden induced subgraphs within certain hereditary families of
graphs. Finally, a structural characterization for probe co-bipartite graphs
that leads to a polynomial-time recognition algorithm and a complete char-
acterization of probe block graphs by a list of forbidden induced subgraphs
are presented.

In Chapter 2| circular-arc graphs are characterized within cographs (The-
orem[16]), paw-free graphs (Theorem [19]) and claw-free chordal graphs (Theo-
rem [21]). Some open questions for circular-arc graphs from a structural point
of view are the following.

Question 1. Gwe a forbidden induced subgraph characterization for
circular-arc graphs within the class of chordal graphs.

Question 2. Give a forbidden induced subgraph characterization for
circular-arc graphs within the class of K4s—free graphs.

Question 3. Characterize circular-arc graphs within the class of claw-
free graphs. A good start point could be to characterize circular-arc
graphs within the class of graphs with stability number at most two.

Question 4. Find a characterization by forbidden induced subgraphs
for normal circular-arc graphs.

Question 5. Find a characterization by forbidden induced subgraphs
for Helly circular-arc graphs.

In Chapter [3] circle graphs are characterized within the classes of lin-
ear domino graphs (Theorem [28]), P,-tidy graphs (Theorem [30) and tree-
cographs (Theorem [31]). Finally, the class of Helly unit circle graphs is in-
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troduced and completely characterized (Theorem [32]). Next, we will present
some open questions for the class of circle graphs.

Question 6. Characterize the whole class of circle graphs by forbidden
induced subgraphs.

Question 7. Find a decomposition such that Helly circle graphs are
closed under this decomposition (analogous to the split decomposition
for curcle graphs).

Question 8. Characterize Helly circle graphs by forbidden induced sub-
graphs.

In Chapter 4, we provide forbidden induced subgraphs characterizations
for probe interval graphs (resp. probe unit interval graphs) within two super-
classes of cographs, namely tree—cographs (Theorem [38]) (resp. Theorem [43])
and P,-tidy graphs (Theorem [39]) (resp. Theorem [44). We would like to
mention some open questions.

Question 9. Characterize probe unit interval graphs by forbidden in-
duced subgraphs within the class of probe interval graphs.

Question 10. Characterize the whole class of probe interval graphs and
probe unit interval graphs by forbidden induced subgraphs.

Question 11. Characterize probe circular arc-graphs by forbidden in-
duced subgraphs within the class of trees.

In Chapter B we present a structural characterization for probe co-
bipartite graphs (Theorem [45]) that leads to a polynomial-time recognition
algorithm for this class and a characterization by forbidden subgraphs for
the class of probe block graphs (Theorem [49). Some open problems in
connection with this topic are the following.

Question 12. Characterize by forbidden induced subgraph the class of
probe chordal graphs.

Question 13. Decide whether a giwven graph 1s probe line graph.
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