
Di r ecci ó n:      Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. 
Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293

Co nta cto :     digital@bl.fcen.uba.ar

Tesis Doctoral

Caracterizaciones estructurales de
grafos de intersección

Grippo, Luciano Norberto

2011

Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca
Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser
acompañada por la cita bibliográfica con reconocimiento de la fuente.

This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico
Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding
citation acknowledging the source.

Cita tipo APA:

Grippo, Luciano Norberto. (2011). Caracterizaciones estructurales de grafos de intersección.
Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.

Cita tipo Chicago:

Grippo, Luciano Norberto. "Caracterizaciones estructurales de grafos de intersección". Facultad
de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2011.

http://digital.bl.fcen.uba.ar
http://digital.bl.fcen.uba.ar
mailto:digital@bl.fcen.uba.ar


UNIVERSIDAD DE BUENOS AIRES

Facultad de Ciencias Exactas y Naturales

Departamento de Matemática
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Cara
teriza
iones estru
turales de grafos de interse

iónEn esta tesis estudiamos 
ara
teriza
iones estru
turales para grafos ar
o-
ir
ulares, grafos 
ír
ulo, grafos probe de intervalos, grafos probe de interva-los unitarios, grafos probe de bloques y grafos probe 
o-bipartitos. Un grafoes ar
o 
ir
ular (
ír
ulo) si es el grafo de interse

ión de una familia de ar
os(
uerdas) en una 
ir
unferen
ia. Dada una familia hereditaria de grafos G,un grafo es probe G si sus vérti
es pueden parti
ionarse en dos 
onjuntos:un 
onjunto de vérti
es probe y un 
onjunto de vérti
es nonprobe, de formatal que el 
onjunto de vérti
es nonprobe es un 
onjunto independiente yes posible obtener un grafo en la 
lase G agregando aristas entre ellos. Losgrafos probe G forman una super
lase de la familia G. Por lo tanto, losgrafos probe de intervalos y los grafos probe de intervalos unitarios gener-alizan la 
lase de los grafos de intervalos y los grafos de intervalos unitariosrespe
tivamente.Cara
terizamos par
ialmente a los grafos ar
o-
ir
ulares, grafos 
ír
ulo,grafos probe de intervalos y probe de intervalo unitario mediante subgrafosprohibidos dentro de 
iertas familias hereditarias de grafos. Finalmente, espresentada una 
ara
teriza
ión de los grafos probe 
o-bipartitos que lleva aun algoritmo de re
ono
imiento de tiempo polinomial para di
ha 
lase y losgrafos probe de bloques son 
ara
terizados mediante una lista de subgrafosprohibidos.Palabras 
lave: grafos ar
o 
ir
ulares, grafos 
ír
ulo, subgrafos indu
idosprohibidos, grafos probe de bloques, grafos probe 
o-bipartitos, grafos probede intervalos, grafos probe de intervalos unitarios.
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Stru
tural 
hara
terizations of interse
tion graphsIn this Thesis we study stru
tural 
hara
terizations for six 
lasses ofgraphs, namely 
ir
ular-ar
 graphs, 
ir
le graphs, probe interval graphs,probe unit interval graphs, probe 
o-bipartite graphs, and probe blo
kgraphs. A 
ir
ular-ar
 graph (
ir
le graph) is the interse
tion graph of afamily of ar
s (
hords) on a 
ir
le. Let G be a hereditary 
lass of graphs. Agraph is probe G if its verti
es 
an be partitioned into two sets: a set of probeverti
es and a set of nonprobe verti
es, so that the set of nonprobe verti
esis a stable set and it is possible to obtain a graph belonging to the 
lass Gby adding edges with both endpoints in the set of nonprobe verti
es. ProbeG graphs form a super
lass of the 
lass G. Hen
e, probe interval graphs andprobe unit interval graphs are extensions of the 
lasses of interval graphsand unit interval graphs, respe
tively.We partially 
hara
terize 
ir
ular-ar
 graphs, 
ir
le graphs, probe inter-val graphs and probe unit interval graphs by forbidden indu
ed subgraphswithin 
ertain hereditary families of graphs. Finally, a stru
tural 
hara
ter-ization for probe 
o-bipartite graphs that leads to a polynomial-time re
og-nition algorithm and a 
omplete 
hara
terization of probe blo
k graphs bya list of forbidden indu
ed subgraphs are presented.Keywords: 
ir
ular-ar
 graphs, 
ir
le graphs, forbidden indu
ed subgraph,probe blo
k graphs, probe 
o-bipartite graphs, probe interval graphs, probeunit interval graphs.
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ixIntrodu

iónLos grafos ar
o-
ir
ulares son los grafos de interse

ión de una familiaS de ar
os en una 
ir
unferen
ia, al 
onjunto S se lo llama modelo ar
o-
ir
ular. Los primeros trabajos sobre esta 
lase de grafos fueron publi
adospor Hadwiger y otros en 1964 [HDK64℄ y por Klee [Kle69℄ en 1969 respe
tiva-mente. Sin embargo, el primero en trabajar en el problema de 
ara
terizarpor subgrafos prohibidos esta familia de grafos fue A. Tu
ker en su tesisdo
toral en 1969 [Tu
60℄. Fue él mismo quien introdujo y 
onsiguió 
ar-a
terizar por subgrafos prohibidos dos sub
lases de grafos ar
o-
ir
ulares:grafos ar
o-
ir
ulares unitarios y grafos ar
o-
ir
ulares propios. La primerasub
lase 
onsiste en aquellos grafos ar
o-
ir
ulares que poseen un modeloar
o-
ir
ular 
on todos sus ar
os de la misma longitud y la segunda sub-
lase son los grafos ar
o-
ir
ulares 
on un modelo donde ningún ar
o está
ontenido en otro.Cara
terizar la 
lase 
ompleta de grafos ar
o-
ir
ulares por subgrafosprohibidos es un problema abierto desde ha
e mu
ho tiempo. Sin embargovarios autores han presentado algunos avan
es en esta dire

ión. Trotter yMoore dieron una 
ara
teriza
ión por subgrafos prohibidos indu
idos dentrode la 
lase de grafos 
o-bipartitos [TM76℄. J. Bang-Jensen y P. Hell presen-taron un teorema estru
tural para grafos ar
o-
ir
ulares propios dentro dela 
lase de grafos 
ordales [BH94℄, del 
ual se desprende la 
ara
teriza
iónpor subgrafos indu
idos prohibidos para los grafos ar
o-
ir
ulares propiosrestringidos a la 
lase de los grafos 
ordales.Los grafos ar
o-
ir
ulares son una generaliza
ión de la familia de grafosde interse

ión de intervalos en la re
ta real, llamados grafos de intervalos.Los grafos de intervalos fueron 
ara
terizados por Boland y Lekkerkerkeren 1962 [LB62℄. La lista 
ompleta de subgrafos indu
idos prohibidos que
ara
teriza los grafos de intervalos fue hallada exitosamente via una 
ara
ter-iza
ión por medio de triplas asteroidales presentada por los mismos autores.Todo 
onjunto de intervalos en la re
ta real satisfa
e la propiedad de Helly;es de
ir, 
ualquier 
onjunto de intervalos mutuamente interse
antes en lare
ta real tiene un punto en 
omún. Por lo tanto una sub
lase de grafosar
o-
ir
ulares que generaliza a los grafos de intervalos de forma naturalson los grafos ar
o-
ir
ulares Helly; es de
ir, aquellos grafos ar
o-
ir
ularesque tienen un modelo que satisfa
e la propiedad de Helly. Lin y Szwar
-�ter presentaron una 
ara
teriza
ión para esta 
lase mediante estru
turasprohibidas dentro de la 
lase de los grafos ar
o-
ir
ulares [LS06a℄. Di
ha
ara
teriza
ión lleva a un algoritmo de re
ono
imiento lineal para la 
lasede los grafos ar
o-
ir
ulares Helly. Lin y otros introdujeron y 
ara
terizaron



xla 
lase de los grafos ar
o-
ir
ulares propios Helly [LSS07℄, aquellos grafosque tienen un modelo ar
o-
ir
ular que es simultáneamente propio y Helly.P. Hell probó que la familia de los bigrafos de intervalos son exa
tamenteaquellos grafos ar
o-
ir
ulares 
on número de 
ubrimiento por 
lique dos yposeen un modelo ar
o-
ir
ular sin dos ar
os que 
ubran la 
ir
unferen-
ia 
ompleta. Los grafos ar
o-
ir
ulares que satisfa
en di
ha 
ondi
ión son
ono
idos en la literatura 
omo grafos ar
o-
ir
ulares normales. Esta termi-nología fue introdu
ida en [LS06b℄. Generalizando los grafos ar
o-
ir
ulares,L. Al
ón y otros introdujeron la 
lase de los grafos bu
le.A pesar de que mu
hos investigadores han tratado de en
ontrar la listade subgrafos prohibidos que 
ara
teri
e la 
lase de los grafos ar
o-
ir
ulares,el problema aún permane
e abierto. En esta tesis presentamos algunos pa-sos en esta dire

ión, aportando 
ara
teriza
iones de grafos ar
o-
ir
ularespor subgrafos indu
idos prohibidos minimales 
uando el grafo pertene
e aalguna de las siguientes 
lases: grafos sin P4, grafos sin paw, grafos 
ordalessin 
law y grafos sin diamante. Además, 
omo los grafos ar
o-
ir
ularesque pertene
en a estas 
lases tienen un modelo ar
o-
ir
ular normal, estosresultados impli
an que los subgrafos indu
idos prohibidos para la 
lase delos grafos ar
o-
ir
ulares normales ne
esariamente 
ontienen un diamanteindu
ido, un P4 indu
ido, un paw indu
ido, y o bien un 
law o un agujero
omo subgrafo indu
ido. También introdu
imos y 
ara
terizamos la 
lase delos grafos semi
ir
ulares, grafos ar
o-
ir
ulares que tienen un modelo ar
o-
ir
ular donde todos sus ar
os son semi
ir
unferen
ias. Cabe desta
ar quetodas estas 
lases fueron estudiadas a lo largo del 
amino ha
ia la prueba delTeorema Fuerte de los Grafos Perfe
tos [Con89, Ola88, PR76, Sei74, Tu
87℄.Un grafo se di
e 
ír
ulo si es el grafo de interse

ión de un 
onjunto de
uerdas en una 
ir
unferen
ia, a tal 
onjunto se lo llama modelo de 
ír
ulo.Los grafos 
ír
ulo fueron introdu
idos por Even e Itai en [EI71℄ para resolverun problema de ordenamiento 
on el mínimo número de pilas en paralelo sinla restri

ión de 
argar antes que la des
arga sea 
ompletada. Ellos tambiénprobaron que este problema se puede tradu
ir en el problema de hallar elnúmero 
romáti
o de un grafo 
ír
ulo. Desafortunadamente este problemaresulta ser NP-
ompleto [GJMP80℄.Naji 
ara
terizó los grafos 
ír
ulo en términos de la solu
ión de un sis-tema lineal de e
ua
iones que lleva a un algoritmo de re
ono
imiento O(n7)para esta 
lase [Naj85℄. El 
omplemento de un grafo G 
on respe
to a unvérti
e u 2 V (G) es el grafo G � u que se obtiene a partir de G reem-plazando el subgrafo indu
ido G[NG(u)] por su 
omplemento. Este tipode opera
ión se denomina 
omplementa
ión lo
al. Se di
e que dos grafosG y H son lo
almente equivalentes si y solo si G se obtiene a partir de Hmediante una su
esión de 
omplementa
iones lo
ales. Bou
het probó quelos grafos 
ír
ulo son 
errados bajo 
omplementa
ión lo
al, también probó



xique un grafo es 
ír
ulo si y solo si todo grafo lo
almente equivalente no 
on-tiene tres determinados grafos 
omo subgrafo indu
ido [Bou94℄. Geelen yOum [GO09℄ dieron una nueva 
ara
teriza
ión de grafos 
ír
ulo en términosde la opera
ión de pivoteo. El resultado de pivotear un grafo G 
on respe
toa una arista uv es la grafo G� uv = G � u � v � u (donde � representa a la
omplementa
ión lo
al). Un grafo G0 es equivalente por pivoteo a G si G0se obtiene a partir de G mediante una se
uen
ia de opera
iones de pivoteo.Ellos probaron, 
on la ayuda de una 
omputadora, que G es un grafo 
ír
ulosi y solo si 
ada grafo equivalente por pivoteo a G no 
ontiene ninguno de15 grafos determinados 
omo subgrafo indu
ido.Un grafo 
ír
ulo que posee un modelo tal que todas sus 
uerdas tienenla misma longitud se llama grafo 
ír
ulo unitario. La 
lase de grafos ar
o-
ir
ulares propios está propiamente 
ontenida en la 
lase de los grafos 
ír-
ulo. Más aún, la 
lase de los grafos ar
o-
ir
ulares unitarios 
oin
ide 
onla 
lase de los grafos 
ír
ulo unitario.De
imos que G tiene una des
omposi
ión split si existen dos grafos G1y G2 
on jV (Gi)j � 3, i = 1, 2, tal que G = G1 �G2 
on respe
to a algunosvérti
es desta
ados (ver Ch. 3). Si esto su
ede llamamos a G1 y G2 fa
toresde la des
omposi
ión split. A aquellos grafos que no poseen una des
om-posi
ión split se los llama primos. El 
on
epto de des
omposi
ión split esdebido a Cunningham [Cun82℄. Los grafos 
ír
ulo resultaron ser 
erradospor des
omposi
ión split [Bou87℄ y en 1994 Spinrad presentó un algoritmode tiempo 
uadráti
o que se aprove
ha de esta pe
uliaridad.Los grafos 
ír
ulo son una super
lase de los grafos de permuta
ión. Dehe
ho, los grafos de permuta
ión pueden ser de�nidos 
omo aquellos grafos
ír
ulo tales que una 
uerda que interseque todas las 
uerdas del modelopuede ser agregada. Por otro lado los grafos de permuta
ión son aquellosgrafos de 
omparabilidad 
uyo grafo 
omplemento es también de 
ompa-rabilidad. Como los grafos de 
omparabilidad han sido 
ara
terizados porsubgrafos prohibidos indu
idos en [Gal67℄, tal 
ara
teriza
ión impli
a una
ara
teriza
ión por subgrafos indu
idos prohibidos para la 
lase de los grafosde permuta
ión.Los grafos de 
ír
ulo Helly son aquellos grafos de 
ír
ulo que tienen unmodelo 
uyas 
uerdas satisfa
en la propiedad de Helly; es de
ir, todo 
on-junto de 
uerdas que se interse
an dos a dos tienen un punto en 
omún.Esta familia de grafos fue introdu
ida por Durán en [Dur00℄. Él también
onjeturó que un grafo 
ír
ulo es 
ír
ulo Helly si y solo si no 
ontiene un dia-mante 
omo subgrafo indu
ido. Re
ientemente, ésta 
onjetura fue probada.Sin embargo, los grafos 
ír
ulo Helly aún no han sido 
ara
terizados porsubgrafos prohibidos.En esta tesis presentamos algunas 
ara
teriza
iones par
iales por sub-grafos prohibidos indu
idos. Cara
terizamos los grafos 
ír
ulo dentro de los



xiigrafos domino lineales usando la des
omposi
ión split. Conse
uentemente,
ara
terizamos los grafos 
ír
ulo Helly dentro de la 
lase de los grafos sin
law. Cara
teriza
iones por subgrafos indu
idos prohibidos dentro de dossuper
lases de 
ografos, tree-
ographs y P4�tidy, son presentadas 
omo unaapli
a
ión de la 
ara
teriza
ión de Gallai para grafos de 
omparabilidad. Fi-nalmente introdu
imos y 
ara
terizamos la 
lase de los grafos 
ír
ulo Hellyunitarios, aquellos grafos 
ír
ulo que tienen un modelo que es simultánea-mente Helly y unitario.Sea G una 
lase hereditaria de grafos. Un grafo se di
e probe G si susvérti
es pueden ser parti
ionados en dos 
onjuntos: un 
onjunto de vérti
esprobe y un 
onjunto de vérti
es nonprobe, de forma tal que el 
onjuntode vérti
es nonprobe es un 
onjunto independiente y se puede obtener ungrafo pertene
iente a la 
lase G agregando aristas 
on ambos extremos en el
onjunto de vérti
es nonprobe.En 1994 Zhag introdujo los grafos probe de intervalos 
omo una he-rramienta de investiga
ión en el mar
o del proye
to del genoma humano,[ZSF+94℄. Desde enton
es, los grafos probe G han sido estudiados paradiferentes familias hereditarias de grafos G. Sheng 
ara
terizó por subgrafosindu
idos prohibidos aquellos árboles que son probe de intervalo [She99℄.Brown y otros presentaron una 
ara
teriza
ión por subgrafos indu
idos pro-hibidos dentro de la 
lase de los árboles [BLS09℄. Prºulj y Corneil estudiaronlos subgrafos prohibidos para grafos probe de intervalos dentro de la 
lase delos 2�tree [PC05℄. Brown y Lundgren probaron que los grafos probe de in-tervalos bipartitos son equivalentes a el 
omplemento de una 
lase de grafosar
o-
ir
ulares 
on número de 
ubrimiento 
lique dos [BL06℄. En [BBd09℄,Bayer y otros 
ara
terizaron dos sub
lases de los grafos probe de intervalos,los grafos probe threshold y los grafos probe trivialmente perfe
tos, en tér-minos de 
iertas fórmulas 2�SAT. En el mismo artí
ulo ellos presentan una
ara
teriza
ión por subgrafos prohibidos para los grafos probe threshold.Las 
lases de los grafos probe G, 
on G diferentes de los grafos de inter-valos y de intervalos unitarios, han sido estudiadas para importantes 
lasesde grafos 
omo por ejemplo: grafos 
ordales [GL04, CGLS10℄, grafos depermuta
ión [CCK+09℄ y grafos split [LdR07℄ entre otros.Con el objetivo de estudiar el 
omportamiento del operador join paralos grafos probe de intervalos e intervalo unitario introdu
imos el 
on
eptode 
lases hereditarias de grafos 
on un 
ompañero. También presentamosla lista 
ompleta de todos los subgrafos indu
idos prohibidos 
uyo 
omple-mento es dis
onexo para la 
lase de los grafos probe de intervalos. A pesarde no 
onseguir ha
er lo mismo para la 
lase de los grafos probe de interva-los unitarios, presentamos la lista de subgrafos indu
idos prohibidos dentrode la 
lases de tree-
ographs y P4�tidy. Damos una 
ara
teriza
ión en tér-minos de subgrafos indu
idos prohibidos para aquellos grafos 
o-bipartitos



xiiique son probe de intervalos, esta 
ara
teriza
ión impli
a que los grafos 
o-bipartitos probe de intervalos y los grafos 
o-bipartitos probe de intervalosunitarios son la misma 
lase. Los grafos probe de intervalos y de intervalosunitarios son 
ara
terizados por subgrafos indu
idos prohibidos dentro de la
lase de los tree-
ographs, generalizando las 
ara
teriza
iones presentadasen [She99℄ y [BLS09℄, respe
tivamente. Finalmente, 
ara
terizamos porsubgrafos prohibidos indu
idos los grafos probe de intervalos y de intervalosunitarios dentro de la 
lase de los grafos P4�tidy. También estudiamos las
lase de grafos probe de grafos 
o-bipartitos y grafos de bloques. Los grafosprobe de bloques son una sub
lase de los grafos probe 
ordales estudiadosen [GL04, CGLS10℄. Los grafos probe 
ordales no han sido aún 
ara
ter-izados por subgrafos prohibidos indu
idos. En esta tesis presentamos una
ara
teriza
ión para grafos probe de grafos de bloques por subgrafos pro-hibidos indu
idos y probamos que la 
lase de los grafos probe de grafos debloques es la interse

ión entre las 
lases de grafos 
ordales y probe de grafossin diamante. También presentamos una 
ara
teriza
ión estru
tural para la
lase de los grafos probe 
o-bipartitos que lleva a un simple algoritmo dere
ono
imiento de tiempo polinomial para esta 
lase.Esta tesis está organizada 
omo sigue. En el Capítulo 1 damos algunasde�ni
iones y un breve resumen sobre las 
lases de grafos estudiadas en estatesis. El Capítulo 2 está dedi
ado a los grafos ar
o-
ir
ulares. En el Capí-tulo 3 presentamos 
ara
teriza
iones para grafos 
ír
ulo. Los grafos probede intervalos y los grafos probe de intervalos unitarios son estudiados en elCapítulo 4. En el Capítulo 5 presentamos 
ara
teriza
iones estru
turalespara los grafos probe de grafos de bloques y probe de grafos 
o-bipartitos.
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Introdu
tionCir
ular-ar
 graphs are the interse
tion graphs of a set S of ar
s on a 
ir
le,su
h a set S is 
alled a 
ir
ular-ar
 model. The �rst works about this
lass of graphs were published by Hadwiger et al. in 1964 [HDK64℄ andby Klee [Kle69℄ in 1969. Nevertheless, the �rst resear
her who dealt withthe problem of 
hara
terizing by forbidden subgraphs this family of graphswas A. Tu
ker in his Ph.D. Thesis in 1969 [Tu
60℄. He introdu
ed andmanaged to 
hara
terize by forbidden indu
ed subgraphs two sub
lasses of
ir
ular ar
-graphs: unit 
ir
ular-ar
 graphs and proper 
ir
ular-ar
 graphs.The �rst sub
lass 
onsists of those 
ir
ular-ar
 graphs having a 
ir
ular-ar
model with all its ar
s having the same length and the se
ond one 
onsistsof those 
ir
ular-ar
 graphs having a 
ir
ular-ar
 model without any ar

ontained in another.Chara
terizing by forbidden indu
ed subgraphs the whole 
lass of 
ir
ular-ar
 graphs is a long standing open problem. Nevertheless, several authorshave presented some advan
es in this way. Trotter and Moore gave a 
har-a
terization by forbidden indu
ed subgraphs within the 
lass of 
o-bipartitegraphs [TM76℄. J. Bang-Jensen and P. Hell presented a stru
tural theoremfor proper 
ir
ular-ar
 graphs within the 
lass of 
hordal graphs [BH94℄,that implies the 
hara
terization by forbidden indu
ed subgraphs for proper
ir
ular-ar
 graphs restri
ted to the 
lass of 
hordal graphs.Cir
ular-ar
 graphs are a generalization of the family of the interse
tiongraphs of intervals in the real line, 
alled interval graphs. Interval graphswere 
hara
terized by Boland and Lekkerkerker in 1962 [LB62℄. The wholelist of forbidden indu
ed subgraphs that 
hara
terizes interval graphs wassu

essfully found via a 
hara
terization by means of asteroidal triples pre-sented by the same authors. Any set of interval in the real line satis�esthe Helly property; i.e., any set of pairwise interse
ting intervals in thereal line have a 
ommon point. Consequently, a sub
lass of 
ir
ular-ar
graphs that naturally generalizes interval graphs are the Helly 
ir
ular-ar
graphs; i.e., those 
ir
ular-ar
 graphs having an interse
tion model of ar
ssu
h that any subset of pairwise interse
ting ar
s has a 
ommon point. Linand Szwar
�ter presented a 
hara
terization by forbidden stru
tures for this
lass within the 
lass of 
ir
ular-ar
 graphs [LS06a℄. Su
h a 
hara
terizationxvii



xviii Contentsyields a linear-time re
ognition algorithm for the 
lass of Helly 
ir
ular-ar
graphs. Lin et al. introdu
ed and 
hara
terized the 
lass of proper Helly
ir
ular-ar
 graphs [LSS07℄, those graphs having a 
ir
ular-ar
 model whi
his simultaneously proper and Helly.A 
ir
ular-ar
 graph having a 
ir
ular-ar
 model without two ar
s 
ov-ering the whole 
ir
le is 
alled normal 
ir
ular-ar
 graph. This terminologywas introdu
ed in [LS06b℄. P. Hell proved that interval bigraphs are exa
tlythose 
ir
ular-ar
 graphs with 
lique 
overing number two and having a nor-mal 
ir
ular-ar
 model [HH04℄. Generalizing 
ir
ular-ar
 graphs, L. Al
ónet al. introdu
ed the 
lass of loop graphs [ACH+07℄.In spite of the fa
t that many resear
hers have been trying to �nd thelist of forbidden subgraphs that 
hara
terizes the 
lass of 
ir
ular-ar
 graph,the problem still remains open. In this thesis we present some steps in thisdire
tion by providing 
hara
terizations of 
ir
ular-ar
 graphs by minimalforbidden indu
ed subgraphs, when the graph belongs to any of the follow-ing four di�erent 
lasses: P4-free graphs, paw-free graphs, 
law-free 
hordalgraphs and diamond-free graphs. In addition, sin
e 
ir
ular-ar
 graphs be-longing to these 
lasses have a normal 
ir
ular-ar
 model, these results implythat forbidden indu
ed subgraphs for the 
lass of normal 
ir
ular-ar
 graphsne
essarily 
ontain a diamond, an indu
ed P4, an indu
ed paw and either a
law or a hole as indu
ed subgraph. We also introdu
e and 
hara
terize the
lass of semi
ir
ular graphs, 
ir
ular-ar
 graphs having a 
ir
ular-ar
 modelwhere its ar
s are semi
ir
les. It is worth pointing out that all of these
lasses were studied along the way towards the proof of the Strong Perfe
tGraph Theorem [Con89, Ola88, PR76, Sei74, Tu
87℄. The aforementionedresults have been published in [BDGS09℄.A graph is de�ned to be 
ir
le if it is the interse
tion graph of a set Cof 
hords on a 
ir
le, su
h a set is 
alled a 
ir
le model. Cir
le graphs wereintrodu
ed by Even and Itai in [EI71℄ to solve an ordering problem with theminimum number of parallel sta
ks without the restri
tion of loading beforeunloading is 
ompleted, proving that the problem 
an be translated into theproblem of �nding the 
hromati
 number of a 
ir
le graph. Unfortunately,this problem turns out to be NP-
omplete [GJMP80℄.Naji 
hara
terized 
ir
le graphs in terms of the solvability of a sys-tem of linear equations, yielding a O(n7) re
ognition algorithm for this
lass [Naj85℄. The lo
al 
omplement of a graph G with respe
t to a vertexu 2 V (G) is the graph G � u that arises from G by repla
ing the indu
edsubgraph G[NG(u)] by its 
omplement. Two graphs G and H are lo
allyequivalent if and only if G arises from H by a �nite sequen
e of lo
al 
om-plementations. Bou
het proved that 
ir
le graphs are 
losed under lo
al
omplementation, as well as that a graph is 
ir
le if and only if every lo
allyequivalent graph 
ontains non of three pres
ribed graphs [Bou94℄. Inspired



Contents xixby this result, Geelen and Oum [GO09℄ gave a new 
hara
terization of 
ir
legraphs in terms of pivoting. The result of pivoting a graph G with respe
t toan edge uv is the graph G�uv = G �u � v �u (where � stands for lo
al 
om-plementation). A graph G0 is pivot-equivalent to G if G0 arises from G by asequen
e of pivoting operations. They proved, with the aid of a 
omputer,that G is a 
ir
le graph if and only if ea
h graph that is pivot-equivalent toG 
ontains none of 15 pres
ribed indu
ed subgraphs.A 
ir
le graph with a 
ir
le model having all its 
hords of the same lengthis 
alled a unit 
ir
le graph. It is well-known that the 
lass of proper 
ir
ular-ar
 graphs is properly 
ontained in the 
lass of 
ir
le graphs. Furthermore,the 
lass of unit 
ir
ular-ar
 graphs and the 
lass of unit 
ir
le graphs arethe same [Dur00℄.We say that G has a split de
omposition if there exist two graphs G1and G2 with jV (Gi)j � 3, i = 1, 2, su
h that G = G1 �G2 with respe
tto some pair of marker verti
es (Ch. 3 of this thesis). If so, G1 and G2are 
alled the fa
tors of the split de
omposition. Those graphs that do nothave a split de
omposition are 
alled prime graphs. The 
on
ept of splitde
omposition is due to Cunningham [Cun82℄. Cir
le graphs turned out tobe 
losed under this de
omposition [Bou87℄ and in 1994 Spinrad presented aquadrati
-time re
ognizing algorithm for 
ir
le graphs that bene�ting fromthis pe
uliarity [Spi94℄.Cir
le graphs are a super
lass of permutation graphs. Indeed, permu-tation graphs 
an be de�ned as those 
ir
le graphs having a 
ir
le modelsu
h that a 
hord 
an be added in su
h a way that this 
hord meets allthe 
hords belonging to the 
ir
le model. On the other hand, permutationsgraphs are those 
omparability graphs whose 
omplement graph is also a
omparability graph. Sin
e 
omparability graphs have been 
hara
terizedby forbidden indu
ed subgraphs [Gal67℄, su
h a 
hara
terizations implies aforbidden indu
ed subgraphs 
hara
terization for the 
lass of permutationgraphs.Helly 
ir
le graphs are those graphs having a 
ir
le model whose 
hordssatisfy the Helly property; i.e, every set of pairwise adja
ent 
hords havea 
ommon point. This family of graphs was introdu
ed by Durán [Dur00℄.He also 
onje
tured that a 
ir
le graph is Helly 
ir
le if and only if it doesnot 
ontain a diamond as indu
ed subgraph. Re
ently, this 
onje
ture waspositively settled [DGR10℄. Nevertheless, Helly 
ir
le graphs have not been
hara
terized by forbidden indu
ed subgraphs yet.In this thesis we present some partial 
hara
terizations by forbiddenindu
ed subgraphs. We 
hara
terize 
ir
le graphs among linear dominographs by pro�ting from split de
omposition. Consequently, we 
hara
ter-ize Helly 
ir
le graphs within the 
lass of 
law�free graphs. Chara
teriza-tions by forbidden indu
ed subgraphs within two super
lasses of 
ographs,



xx Contentstree-
ographs and P4�tidy graphs, are presented as an appli
ation of the
hara
terization of Gallai for 
omparability graphs. Finally, we introdu
eand 
hara
terize the 
lass of unit Helly 
ir
le graphs, 
ir
le graphs havinga 
ir
le model whi
h is simultaneously Helly and unit. This results werepublished in [BDGS℄.Let G be a hereditary 
lass of graphs. A graph is de�ned to be probe Gif its vertex set 
an be partitioned into two sets: a set of probe verti
es anda set of nonprobe verti
es, so that the set of nonprobe verti
es is a stable setand it 
an be obtained a graph belonging to G by adding edges with bothendpoints in the set of nonprobe verti
es.In 1994 Zhag introdu
ed probe interval graphs as a resear
h tool in theframe of the genome projet, [ZSF+94℄. Sin
e then, probe G graphs have beenstudied for di�erent hereditary families of graphs G. Sheng 
hara
terized byforbidden indu
ed subgraphs those trees whi
h are probe interval [She99℄.Brown et al. presented a 
hara
terization by forbidden indu
ed subgraphsof probe unit interval graphs within the 
lass of trees [BLS09℄. Prºulj andCorneil studied the forbidden subgraphs for probe interval graphs amongthe 
lass of 2-tree graphs [PC05℄. Brown and Lundgren proved that bipar-tite probe interval graphs are equivalent to a the 
omplement of a 
lass of
ir
ular-ar
 graphs whose 
lique number is two [BL06℄. In [BBd09℄, Bayeret al. 
hara
terize two sub
lasses of probe interval graphs, probe thresholdand probe trivially perfe
t graphs, in terms of 
ertain 2-SAT formulas . Inthe same arti
le they present a 
hara
terization by forbidden subgraphs forprobe threshold graphs. Classes of probe G graphs, with G di�erent frominterval and unit interval graphs, have been also studied for many important
lasses of graphs; e.g., 
hordal graphs [GL04, CGLS10℄, permutation graphs[CCK+09℄ and split graphs [LdR07℄, among others.In order to study the behavior of the join operation for probe intervaland probe unit interval graphs, we introdu
e the 
on
ept of hereditary 
lassof graphs with a 
ompanion. We also present the whole list of all forbid-den indu
ed subgraphs whose 
omplement is dis
onne
ted for the 
lass ofprobe interval graphs. In spite of we 
annot manage to do so for the 
lassof probe unit interval graphs, we present the list of forbidden subgraphs,whose 
omplement is dis
onne
ted, for probe unit interval graphs, withinthe 
lasses of tree-
ographs and P4�tidy graphs. We give a 
hara
terizationin terms of forbidden indu
ed subgraphs for those 
o-bipartite graphs thatare probe interval, this 
hara
terization implies that 
o-bipartite probe in-terval graphs and 
o-bipartite probe unit interval graphs are the same 
lassof graphs. In addition, probe interval graphs and probe unit interval graphsare 
hara
terized by forbidden subgraphs within the 
lass of tree-
ographs,generalizing the 
hara
terizations presented in [She99℄ and [BLS09℄, re-spe
tively. This results will be published in [DGS℄. Finally, we 
hara
terize



Contents xxiby forbidden indu
ed subgraphs probe interval graphs and probe unit in-terval graphs within P4�tidy graphs. We also study the 
lasses of probe 
o-bipartite graphs and blo
k graphs, presenting a stru
tural 
hara
terizationfor probe 
o-bipartite graphs that leads to a polynomial-time re
ognizingalgorithm for this 
lass. Probe blo
k graphs are a sub
lass of probe 
hordalgraphs, studied in [GL04, CGLS10℄. Probe 
hordal graphs have not been
hara
terized by forbidden subgraphs yet. In this Thesis we present a 
har-a
terization for probe blo
k graphs by forbidden indu
ed subgraphs and weprove that the 
lass of probe blo
k graphs is the interse
tion between the
lasses of 
hordal graphs and probe diamond-free graphs [BDd+℄.This Thesis is organized as follows. In Chapter 1 we give some de�ni-tions and a brief overview on the 
lasses we studied throughout this thesis.Chapter 2 is devoted to partial 
hara
terizations for 
ir
ular-ar
 graphs. InChapter 3 we present partial 
hara
terizations for 
ir
le graphs. Partial
hara
terizations for probe interval graphs and probe unit interval graphsare studied in Chapter 4. Finally, in Chapter 5 we present stru
tural 
har-a
terization for probe 
o-bipartite graphs and probe blo
k graphs.
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Chapter 1Preliminaries1.1 De�nitions and notationA graph G is an ordered pair (V (G),E(G)) 
onsisting of a set V (G) 
alledverti
es and a set E(G) 
onsisting of unordered pairs of elements of V (G)
alled edges . When the 
ontext is 
lear, we use V and E instead of V (G)and E(G) respe
tively. If V = ;, G is 
alled empty graph . For notationalsimpli
ity, we write uv to represent the unordered pair fu, vg and u and vare 
alled the endpoints of the edge uv. If u, v 2 V (G) and uv /2 E(G), uvis 
alled a nonedge of G. If uv 2 E(G) we say that the vertex u is adja
entto v or vi
eversa. By jAj we denote the 
ardinal of a set A. G denotes the
omplement graph of G whose vertex set is V (G) and whose edge set isformed by the set of nonedges of G. Noti
e that, nonedges in G are edges inG. A digraph G is an orderer pair (N ,D) formed by a set V 
alled verti
esand a set D of ordered pairs of elements of N .Let G1 = (V1,E1) and G2(V2,E2) two graphs. G1 is said to be isomor-phi
 to G2 and vi
eversa, if there exists a one-to-one fun
tion f : V1 ! V2preserving the adja
en
ies; i.e, vw 2 E1 if and only if f(v1)f(v2) 2 E2.Let G = (V ,E) be a graph. The set of verti
es adja
ent to a vertex v 2 Vis 
alled neighborhood of v and denoted by NG(v). NG[v] := NG(v) [ fvgis de�ned to be the 
lose neighborhood of v. dG(v) denotes jNG(v)j and is
alled the degree of v. Verti
es with degree 0 and jV j � 1 are 
alled isolatedvertex and universal vertex, respe
tively. A pendant vertex is a vertexof degree one. H = (V 0,E0) is said to be a subgraph of G if V 0 � V andE0 � E. If, in addition, E0 = fuv 2 E : u, v 2 V 0g, H is 
alled indu
edsubgraph of G and we say that the vertex set V (H) indu
es the graphH. Given a subset A � V (G), G[A] stands for the subgraph indu
ed byA. Two verti
es u, v 2 V are said to be false twins if N(v) = N(w) andthey are said to be true twins if N [v] = N [w]. Let A,B � V (G). We saythat A � V is 
omplete to B � V if every vertex of A is adja
ent to everyvertex of B; and A is anti
omplete to B if A is 
omplete to B in G.1



2 Chapter 1. PreliminariesLet G and H be two graphs. We say that a graph G does not 
ontainH as indu
ed subgraph or does not 
ontain an indu
ed H if any indu
edsubgraph of G is not isomorphi
 to H. Given a 
olle
tion of graphs H, Gis de�ned to be H�free if for any graph F 2 H, G does not 
ontain anindu
ed F . If H is a set with a single element H, we just use H�free forshort. The disjoint union of G and H is the graph G[H whose vertex setis V (G)[ V (H) and whose edge set is E(G)[E(H). The disjoint union is
learly an asso
iative operation, and for ea
h nonnegative integer t we willdenote by tG the disjoint union of t 
opies of G. The join of G and His a graph G+H whose vertex set is V (G) [ V (H) and whose edge set isE(G)[E(H)[ fvw : v 2 V (G), w 2 V (H)g. If V (H) � V (G), we denoteby G�H the graph G[V (G)� V (H)]. If H is formed by an isolated vertexv; i.e, H is a subgraph of G whose vertex set is fvg and whose edge set isempty, G� v stands for G�H. Given E0 � E(G), G�E0 stands for thegraph whose vertex set is V (G) and whose edge set is E(G)�E0.Given a 
lass of graphs G, we denote by 
o-G the 
lass of graphs formedby the 
omplements of graphs belonging to G. A 
lass of graph G is saidto be hereditary if for every indu
ed subgraph G 2 G, any subgraph of itbelongs to G. We say that a graph G is non-G, if G does not belong to the
lass G. If G is a hereditary 
lass, a graph G is de�ned to be minimallynon-G if G does not belong to G but every proper indu
ed subgraph does.A stable set is a subset of pairwise non-adja
ent verti
es. A 
ompleteset is a set of pairwise adja
ent verti
es. A 
omplete graph is a graph whosevertex set is a 
omplete set. A 
lique is a 
omplete graph maximal underin
lusion. Kn (n � 0) denotes the 
omplete graph on n verti
es. K3 is also
alled triangle . A diamond is the graph obtained from a 
omplete K4 byremoving exa
tly one edge. A paw is the graph obtained from a triangle Tby adding a vertex adja
ent to exa
tly one vertex of T . A 
lique is a subsetof verti
es indu
ing a 
omplete subgraph. A graph G is bipartite if V (G)
an be partitioned into two stable sets V1, V2; G is 
omplete bipartite ifV1 is 
omplete to V2. Denote by Kr,s the 
omplete bipartite graph withjV1j = r and jV2j = s. A 
law is the 
omplete bipartite graph K1,3.A path is a linear sequen
e of di�erent verti
es P = v1, : : : , vk su
h thatvi is adja
ent to vi+1 for i = 1, : : : , k� 1. fv2, : : : , vn�1g are 
alled internalverti
es of the path. Sums in this paragraph should be understood modulok. If there is no any edge vivj su
h that ji� jj � 2; i.e., all its internalverti
es have degree two, P is said to be either 
hordlees path or indu
edpath . Denote by jP j the number of verti
es of P . A 
y
le 
y
le C is a linearsequen
e of verti
es C = v1, : : : , vk, v1 su
h that vi is adja
ent to vi+1 fori = 1, : : : , k. If there is no any edge vivj su
h that ji� jj � 2, C is saidto be either 
hordlees 
y
le or indu
ed 
y
le . By Pn and Cn we denotea indu
ed path and an indu
ed 
y
le on n verti
es, respe
tively. An edge



1.2. Overview on some 
lasses of graphs 3
Figure 1.1: From left to right: 
law, diamond, gem, and 4-wheeljoining two non-
onse
utive verti
es of a path or a 
y
le in a graph is 
alleda 
hord . A hole is an indu
ed 
y
le of length at least 4.The operation of edge subdivision in a graph G 
onsists on sele
ting anedge uv of G and repla
ing it with an indu
ed path u = v1, v2 : : : , vk�1, vk =v with k � 3 a positive integer. A prism is a graph that 
onsists of twodisjoint triangles fa1, a2, a3g and fb1, b2, b3g linked by three indu
ed pathsP1, P2, P3 where Pi links ai and bi for i = 1, 2, 3.A graph G is 
alled 
onne
ted if there is a path linking any two of itsverti
es. A maximal (under in
lusion) 
onne
ted subgraph of G is 
alled
omponent of G. A graph G is anti
onne
ted if G is 
onne
ted; an anti-
omponent of G is the subgraph ofG indu
ed by the verti
es of a 
omponentof G.Let G be a graph. v is 
alled a 
ut vertex if the number of 
omponentsof G� v is greater than the number of 
omponents of G. G is said to be2-
onne
ted if G is 
onne
ted and does not have any 
ut vertex. A maximal2-
onne
ted subgraph is 
alled a blo
k .1.2 Overview on some 
lasses of graphsThe aim of this se
tion is to give a brief overview of some 
lasses of graphs,espe
ially those we use throughout this Thesis. The main fo
us is stru
tural.1.2.1 Domino graphsA graph G is domino if ea
h vertex belongs to at most two 
liques. If, inaddition, ea
h of its edges belongs to at most one 
lique, then G is a lineardomino graph.The following theorem gives a forbidden indu
ed subgraph 
hara
teriza-tion for the 
lass of dominoes graphs.Theorem 1. [KKM95℄ G is a domino graph if and only if G is a{gem,
law,4�wheel}�free graph.Noti
e that, given a graph G, then every edge belongs to at most one
lique if and only if G is diamond�free. Consequently, the following 
orollaryis obtained.
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c d

a b

e

a
b c

d
eFigure 1.2: Interval graph and its interval modelCorollary 1. [KKM95℄ G is a linear domino graph if and only if G isa {
law,diamond}�free graph.1.2.2 Interse
tion graphsGiven a family of sets F , a graph G = (V ,E) is de�ned to be an interse
tiongraph respe
t on F if there is a one-to-one fun
tion f : V ! F , su
h thatuv 2 E if and only if f(u) and f(v) interse
t. Interse
tion graphs have beenwidely studied in the literature. Having good stru
tural qualities, intervalgraphs, 
hordal graphs, 
ir
ular-ar
 graphs and 
ir
le graphs are some of themost studied interse
tion graph families. In this se
tion we will fo
us onsummarizing some features of some of the aforementioned 
lasses of graphs.Interval graphsA graph G = (V ,E) is de�ned to be an interval graph if there exists afamily of open intervals I = fIvgv2V in the real line and a one-to-onefun
tion f : V ! I su
h that uv 2 E if and only if f(u) and I(v) interse
t.Su
h a family of intervals I is 
alled an interval model of G.Before introdu
ing the well-known forbidden indu
ed subgraph 
hara
-terization for interval graphs, we will de�ne a tool that play a very importantrole in this 
hara
terization. Three verti
es in a graph G form an asteroidaltriple if, for ea
h two of three verti
es, there exists a path 
ontaining thosetwo but no neighbor of the third.Boland and Lekerker 
hara
terized interval graph by forbidden indu
edsubgraphs. They managed to do so having 
hara
terized interval graphs asthose graphs not 
ontaining asteroidal triple [LB62℄.Theorem 2. [LB62℄ A graph is an interval graph if and only if it 
on-tains no indu
ed bipartite-
law, umbrella, n-net for any n � 2, n-tentfor any n � 3, or Cn for any n � 4.Noti
e that all graphs depi
ted in Fig. 1.3 
ontain an asteroidal triple.A proper interval graph is an interval graph having an interval modelsu
h that none of its intervals is properly 
ontained in another, su
h aninterval model is 
alled proper interval model. A unit interval is an
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Figure 1.3: Minimal forbidden indu
ed subgraphs for the 
lass of intervalgraphsinterval graph having an interval model with all its intervals having thesame length, su
h an interval model is 
alled unit interval model.Proper interval graphs were introdu
ed by Roberts [Rob69℄. It was him-self that 
hara
terized those interval graphs that are proper interval.Theorem 3 ([Rob69℄). Let G be an interval graph. G is unit interval ifand only if G does not 
ontain an indu
ed 
law.Wegner [Weg67℄ and Robert [Rob69℄ introdu
ed unit interval graphs.Noti
e that every unit interval graph is a proper interval graph. Robertswas able to prove that the 
onverse is also true. Consequently, by 
ombiningTheorem 2 and Theorem 3 follows the below theorem.Theorem 4 ([Rob69℄). Let G be a graph. G is unit interval graph if andonly if G does not 
ontain an indu
ed 
law, a net,a tent, or Cn for anyn � 4.Permutation graphsIn order to introdu
e permutation graphs we �rst de�ne 
omparabilitygraphs. We said that a digraph G0 = (V 0,E0) is an orientation of a graph Gif V 0 = V (G) and uv 2 E if and only if either (u, v) 2 E0 or (v,u) 2 E0. Anorientation is said to be a transitive orientation if it is a transitive binaryrelation on V 0; i.e., if (u, v) 2 E0 and (v,w) 2 E0, then (u,w) 2 E0. A graphis said to be 
omparability if it has a transitive orientation. Comparabilitygraphs were 
hara
terized by Galai by means of a list of forbidden indu
edsubgraphs [Gal67℄.Theorem 5. [Gal67℄ A graph is a 
omparability graph if and only if itdoes not 
ontain as an indu
ed subgraph any graph in Figure 1.4 andits 
omplement does not 
ontain as an indu
ed subgraph any graph inFigure 1.6.Let � : f1, : : : ,ng ! f1, : : : ,ng be a permutation of Vn = f1, : : : ,ng; i.e,� is a one-to-one fun
tion. By G(�) we denote the graph whose vertex set is
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Figure 1.4: Some minimal forbidden indu
ed subgraphs for 
omparabilitygraphs.Vn and whose edge set is formed by those unordered pairs ij satisfying i < jand ��1(i) > ��1(j). A graph G is de�ned to be a permutation graph ifthere exists a permutation � su
h that the graph G(�) is isomorphi
 to G.Noti
e that if you pla
e {1,. . . ,n} in two parallel verti
al 
opies of the realline and join i of the line on the left with �(i) in the line on the right, theinterse
tion graph of these segments is isomorphi
 to G(�). For instan
e,
onsider the permutation � : V4 ! V4 su
h that �(1) = 3, �(2) = 1,�(3) = 4 and �(4) = 2, the graph G[�] is isomorphi
 to the interse
tiongraph of the segments depi
ted in Figure 1.5. Pnueli et al. presented a
hara
terization of permutation graphs that shows the relationship betweenthis 
lass and 
omparability graphs.

1

2

3

4

1

2

3

4

a

b

c

d

ab cdFigure 1.5: The interse
tion graph of the set of segments on the left whoseendpoints belong to the verti
al lines is isomorphi
 to the graph on the right.Theorem 6. [PLE71℄ A graph G is a permutation graph if and only ifG and G are 
omparability graphs.Therefore, the 
hara
terization of 
omparability graphs in [Gal67℄ leadsimmediately to a forbidden indu
ed subgraph 
hara
terization of permuta-tion graphs.Corollary 2. A graph G is a permutation graph if and only if G andG do not 
ontain as an indu
ed subgraph any graph in Figure 1.4 andFigure 1.6.
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Figure 1.6: Some graphs whose 
omplements are minimal forbidden indu
edsubgraphs for 
omparability graphs.Chordal graphs an its sub
lassesA graph G is de�ned to be 
hordal if G does not 
ontain any indu
ed 
y
lewith at least four verti
es. Consequently, interval graphs are a sub
lass of
hordal graphs. Furthermore, sin
e the graph tent is 
hordal but not interval(see, Fig. 1.3), the 
lass of interval graphs is properly 
ontained in the 
lassof 
hordal graphs. Chordal graphs were 
hara
terized as the interse
tiongraph of subtrees in a tree [Gav74℄.Split graphs are those graphs whose vertex set 
an be partitioned intotwo sets: a 
omplete set and an stable set. Split graphs are a sub
lass of
ographs and were 
hara
terized by forbidden indu
ed subgraphs as follows.Theorem 7. [HF77℄ Let G be a graph. G is a split graph if and only ifG does not 
ontain any indu
ed 2K2, C4 and C5.Split 
omplete graphs are those split graphs su
h that 
an be parti-tioned into a stable set and a 
omplete set in su
h a way that the 
ompleteset is 
omplete to the stable set. Split 
omplete graphs will be also 
alledprobe 
omplete . The above theorem implies the following result whoseproof is straightforward.Lemma 1. Let G be a graph. G is split 
omplete if and only if G doesnot 
ontain any indu
ed C4 and P 3.G is a blo
k graph if it is 
onne
ted and every blo
k is a 
omplete. It iswell-known that blo
k graphs are 
onne
ted diamond-free 
hordal graphs.



8 Chapter 1. PreliminariesGiven two verti
es v and w of a 
onne
ted graph G, d(v,w) stands forthe number of edges of a path with the minimum number of edges linkingv and w.A 
onne
ted graph is de�ned to be ptolemai
 if and only if satis�es theptolemai
 inequality; i.e., for any four verti
es u, v,w and xd(u, v)d(w,x) � d(u,w)d(v,x) + d(u,x)d(v,w).Howorka proved that a graph is ptolemai
 if and only if it is 
hordal andgem-free [How81℄(see F2 in Fig. 5.2).1.2.3 Cographs and its super
lassesIn this se
tion we are going to overview the most important stru
tural 
har-a
terization of 
ograph and some of its super
lasses. First, we will startde�ning 
ographs re
ursively.A 
ograph 
an be re
ursively 
onstru
ted as follows:1. The trivial graph is a 
ograph.2. If G1 and G2 are 
ographs, then G1 [G2 is a 
ograph.3. If G is a 
ograph, then G is a 
ograph.There are several ways of 
hara
terizing 
ographs (see e.g., [CO00, CLS81,CPS84, Sei74℄). Next, we give a 
hara
terization by foribidden indu
ed sub-graph for this 
lass.Theorem 8. [CLS81, CPS84℄ Let G = (V ,E) a graph. G is a 
ograph ifand only if G is P4-free.The following theorem shows a property of 
ographs whi
h is a usefultool to deal with this 
lass.Theorem 9. [Sei74℄ If G is a 
ograph, then G is either not 
onne
tedor not anti
onne
ted.Let G be a graph and let A be a vertex set indu
ing a P4 in G. A vertexv of G is said a partner of A if G[A [ fvg] 
ontains at least two indu
edP4's. Finally, G is 
alled P4-tidy if ea
h vertex set A indu
ing a P4 in Ghas at most one partner [GRT97℄.The 
lass of P4-tidy graphs is an extension of the 
lass of 
ographs and it
ontains many other graph 
lasses de�ned by bounding the number of P4'sa

ording to di�erent 
riteria; e.g., P4-sparse graphs [Hoà85℄, P4-lite graphs[JO89℄, and P4-extendible graphs [JO91℄.



1.2. Overview on some 
lasses of graphs 9A spider [Hoà85℄ is a graph whose vertex set 
an be partitioned intothree sets S, C, and R, where S = fs1, : : : , skg (k � 2) is a stable set;C = f
1, : : : , 
kg is a 
omplete set; si is adja
ent to 
j if and only if i = j (athin spider), or si is adja
ent to 
j if and only if i 6= j (a thi
k spider); Ris allowed to be empty and if it is not, then all the verti
es in R are adja
entto all the verti
es in C and nonadja
ent to all the verti
es in S. The triple
(S,C,R) is 
alled the spider partition. By think(H) and thi
kk(H) werespe
tively denote the thin spider and the thi
k spider with jCj = k andH the subgraph indu
ed by R. If R is an empty set we denote them bythink and thi
kk, respe
tively. Clearly, the 
omplementof a thin spider isa thi
k spider, and vi
e versa. A fat spider is obtained from a spider byadding a true or false twin of a vertex v 2 S [C. The following theorem
hara
terizes the stru
ture of P4-tidy graphs.Theorem 10. [GRT97℄ Let G be a P4-tidy graph with at least two ver-ti
es. Then, exa
tly one of the following 
onditions holds:1. G is dis
onne
ted.2. G is dis
onne
ted.3. G is isomorphi
 to P5, P5, C5, a spider, or a fat spider.Let G be a graph and let A be a vertex set that indu
es a P4 in G. Avertex v of G is said a partner of A if G[A [ fvg] 
ontains at least twoindu
ed P4's. Finally, G is 
alled P4-tidy if ea
h vertex set A that indu
es aP4 in G has at most one partner [GRT97℄. The 
lass of P4-tidy graphs is anextension of the 
lass of 
ographs and it 
ontains many other graph 
lassesde�ned by bounding the number of P4's a

ording to di�erent 
riteria; e.g.,P4-sparse graphs, P4-lite graphs [JO89℄, and P4-extendible graphs [JO91℄.A spider is a graph whose vertex set 
an be partitioned into three sets S,C, and R, where S = fs1, : : : , skg (k � 2) is a stable set; C = f
1, : : : , 
kgis a 
omplete set; si is adja
ent to 
j if and only if i = j (a thin spider),or si is adja
ent to 
j if and only if i 6= j (a thi
k spider); R is allowed tobe empty and if it is not, then all the verti
es in R are adja
ent to all theverti
es in C and nonadja
ent to all the verti
es in S. The triple (S,C,R)is 
alled the spider partition. Clearly, the 
omplement of a thin spider isa thi
k spider, and vi
e versa. A fat spider is obtained from a spider byadding a true or false twin of a vertex v 2 S [C.Tree-
ographs [Tin89℄ are another generalization of 
ographs. They arede�ned re
ursively as follows: trees are tree-
ographs; the disjoint unionof tree-
ographs is a tree-
ograph; and the 
omplement of a tree-
ographis also a tree-
ograph. It is immediate from the de�nition that, if G is atree-
ograph, then G or G is dis
onne
ted, or G or G is a tree.
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Chapter 2Cir
ular-ar
 graphs2.1 Introdu
tionA graph G is a 
ir
ular-ar
 (CA) graph if it is the interse
tion graph of a setS of open ar
s on a 
ir
le, i.e., if there exists a one-to-one fun
tion f : V ! Ssu
h that two verti
es u, v 2 V (G) are adja
ent if and only the ar
s f(u)and f(v) interse
t. Su
h a family of ar
s is 
alled a 
ir
ular-ar
 model (CAmodel) of G. CA graphs 
an be re
ognized in linear time [M
C03℄. Noti
ethat a graph is an interval graph if it admits a CA model su
h that the setof ar
s does not 
over the 
ir
le. Interval graphs have been 
hara
terized byminimal forbidden indu
ed subgraphs [LB62℄ (see Chapter 1, Se
tion 1.2).A graph G is a proper 
ir
ular-ar
 (PCA) graph if it admits a CA modelin whi
h no ar
 is 
ontained in another ar
. Tu
ker gave a 
hara
terizationof PCA graphs by minimal forbidden indu
ed subgraphs [Tu
74℄. Further-more, this sub
lass 
an be re
ognized in linear time [DHH96℄. A graphG is a unit 
ir
ular-ar
 (UCA) graph if it admits a CA model in whi
hall the ar
s have the same length. Tu
ker gave a 
hara
terization by min-imal forbidden indu
ed subgraphs for this 
lass [Tu
74℄. Re
ently, linearand quadrati
-time re
ognition algorithms for this 
lass have been shown[LS06b, DGM+06℄. Finally, the 
lass of CA graphs that are 
omplements ofbipartite graphs was 
hara
terized by minimal forbidden indu
ed subgraphs[TM76℄. T. Feder et al. 
hara
terized those CA graphs that are 
obipartiteby edge asteroids [FHH99℄. Nevertheless, the problem of 
hara
terizing thewhole 
lass of CA graphs by forbidden indu
ed subgraphs remains open.In this 
hapter we present some steps in this dire
tion by providing 
har-a
terizations of CA graphs by minimal forbidden indu
ed subgraphs whenthe graph belongs to any of four di�erent 
lasses: P4-free graphs, paw-freegraphs, 
law-free 
hordal graphs and diamond-free graphs. All of these
lasses were studied along the way towards the proof of the Strong Perfe
tGraph Theorem [Con89, Ola88, PR76, Sei74, Tu
87℄. The results presentedin this 
hapter were published in [BDGS09℄.11



12 Chapter 2. Cir
ular-ar
 graphs2.2 Preliminaries2.2.1 De�nitionsDenote by G� the graph obtained from G by adding an isolated vertex. If tis a non-negative integer, then tG will denote the disjoint union of t 
opiesof G. A graph G is a multiple of another graph H if G 
an be obtainedfrom H by repla
ing ea
h vertex x of H by a non-empty 
omplete graphMx and adding all possible edges between Mx and My if and only if x andy are adja
ent in H.Let G and H be graphs. G is an augmented H if G is isomorphi
 to H orif G 
an be obtained from H by repeatedly adding a universal vertex. G is abloomed H if there exists a subsetW � V (G) su
h that G[W ] is isomorphi
to H and V (G)�W is either empty or it indu
es in G a disjoint union ofnon-empty 
omplete graphs B1,B2, : : : ,Bj for some j � 1, where ea
h Biis 
omplete to one vertex of G[W ], but anti
omplete to any other vertexof G[W ]. If ea
h vertex in W is 
omplete to at least one of B1,B2, : : : ,Bj ,we say that G is a fully bloomed H. The 
omplete graphs B1, : : : ,Bj willbe referred as the blooms . A bloom is trivial if it is 
omposed of only onevertex.2.2.2 Previous resultsSpe
ial graphs needed throughout this 
hapter are depi
ted in Figure 2.1.For notational simpli
ity, in this 
hapter, we will use net and tent as ab-breviations for 2-net and 3-tent, respe
tively.Bang-Jensen and Hell proved the following result.Theorem 11. [BH94℄ Let G be a 
onne
ted graph 
ontaining no indu
ed
law, net, C4, or C5. If G 
ontains a tent as indu
ed subgraph, then Gis a multiple of a tent.Theorem 11 allows to provide the following des
ription of all the minimalnon-PCA graphs within the 
lass of 
onne
ted 
hordal graphs.Theorem 12. [BH94℄ Let G be a 
onne
ted 
hordal graph. Then, G isPCA if and only if it 
ontains no indu
ed 
law or net.Re
all that Lekkerkerker and Boland determined all the minimal for-bidden indu
ed subgraphs for the 
lass of interval graphs (
f. Chapter 1,Theorem 2). This 
hara
terization yields some minimal forbidden indu
edsubgraphs for the 
lass of CA graphs. Let H be a minimal forbidden in-du
ed subgraph for the 
lass of interval graphs. Noti
e that if H is non-CA,
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Figure 2.1: Some minimally non-CA graphs.then H is minimally non-CA. Otherwise, if H is CA, then H� is minimallynon-CA, and furthermore all non-
onne
ted minimally non-CA graphs areobtained this way. Sin
e the umbrella, net, n-tent for all n � 3, and Cn forall n � 4 are CA, but the bipartite 
law and n-net for all n � 3 are not,this observation and Theorem 2 lead to the following result.Corollary 3. [TM76℄ The following graphs are minimally non-CA graphs:bipartite 
law, net�, n-net for all n � 3, umbrella�, (n-tent)� for alln � 3, and C�n for every n � 4. Any other minimally non-CA graph is
onne
ted.We 
all the graphs listed in Corollary 3 basi
 minimally non-CA graphs.Any other minimally non-CA graph will be 
alled non-basi
. The followingresult, whi
h gives a stru
tural property for all non-basi
 minimally non-CAgraphs, 
an be dedu
ed from Theorem 2 and Corollary 3.Corollary 4. If G is a non-basi
 minimally non-CA graph, then G hasan indu
ed subgraph H that is isomorphi
 to an umbrella, a net, a j-tent for some j � 3, or Cj for some j � 4. In addition, ea
h vertex vof G�H is adja
ent to at least one vertex of H.Proof. Sin
e G is non-CA, in parti
ular, G is not an interval graph. ByTheorem 2, G has an indu
ed subgraph H isomorphi
 to a bipartite 
law,umbrella, j-net for j � 2, j-tent for j � 3, or Cj for some j � 4. Sin
e G isnon-basi
 minimally non-CA, H is isomorphi
 to umbrella, net, j-tent forsome j � 3, or Cj for some j � 4. Moreover, sin
e G is not isomorphi
 toH�, every vertex v of G�H is adja
ent to at least one vertex of H.Figure 2.1 introdu
es the graphs Gi, for i 2 f1, 2, : : : , 9g.
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ular-ar
 graphsTheorem 13. Let G be a minimally non-CA graph. If G is not isomor-phi
 to K2,3, G2, G3, G4, or C�j , for j � 4, then for every hole H of Gand for ea
h vertex v of G�H, either v is 
omplete to H, or NH(v)indu
es a non-empty path in H.Proof. Let G be a minimally non-CA graph, and suppose that G is notisomorphi
 to K2,3, G2, G3, G4, or C�j for j � 4. Suppose, by way of
ontradi
tion, that there is a hole H of G and there is a vertex v of G�Hsu
h that v is not 
omplete to H and NH(v) does not indu
e a path in H.Note that NH(v) is non-empty be
ause G is minimally non-CA and it isnot isomorphi
 to C�j for j � 4.So, H �NH(v) is non-empty and is neither a path nor a hole, hen
e itis not 
onne
ted. Let Q1 and Q2 be two 
omponents of H �NH(v). Then,there are indu
ed paths P 1 and P 2 on H su
h that the interior verti
es ofP i are Qi, for i = 1, 2. Therefore, the following 
onditions hold:1. ea
h of P 1 and P 2 has at least three verti
es,2. v is adja
ent to none of the interior verti
es of P 1 and P 2, and3. v is adja
ent to the endpoints of P 1 and the endpoints of P 2.By de�nition, P 1 and P 2 have no interior verti
es in 
ommon.Suppose, by way of 
ontradi
tion, that P 1 and P 2 have no 
ommonendpoints. Let w be an interior vertex of P 1, so w is anti
omplete to thehole indu
ed by fvg [ V (P 2) on G. Then, fv,wg [ V (P 2) indu
es a propersubgraph of G (it is proper sin
e it does not 
ontain the endpoints of P 1)that is not a CA graph, a 
ontradi
tion.Suppose next that P 1 and P 2 have exa
tly one endpoint in 
ommon.Suppose, by way of 
ontradi
tion, that P 1 has at least two interior verti
es.Then, there is an interior vertex w of P 1 that is non-adja
ent to the 
ommonendpoint of P 1 and P 2. Sin
e fwg is anti
omplete to fvg [ V (P 2), fv,wg [V (P 2) indu
es a proper subgraph in G (it is proper be
ause it does not
ontain the endpoint of P 1 that is not a vertex of P 2) that is non-CA,a 
ontradi
tion. This 
ontradi
tion proves that ea
h one of P 1 and P 2has exa
tly one interior vertex. Then, fvg [ V (P 1) [ V (P 2) would indu
eon G a subgraph isomorphi
 to either G3 or G7, both of whi
h are non-CA graphs. Sin
e G is minimally non-CA, V (G) = fvg [ V (P 1) [ V (P 2).Sin
e V (P 1) [ V (P 2) � V (H), ne
essarily V (H) = V (P 1) [ V (P 2). Sin
eH indu
es a hole in G, G is isomorphi
 to G3, a 
ontradi
tion.Finally suppose that P 1 and P 2 have exa
tly two endpoints in 
om-mon. Suppose, by way of 
ontradi
tion, that P 1 has more than two interior
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terizations 15points. Let w be an interior vertex of P 1 that is adja
ent to none of its end-points. Then, w is anti
omplete to fvg [ V (P 2) and thus fv,wg [ V (P 2)indu
es a proper subgraph on G (it is proper be
ause it does not 
ontainthe neighbours of w in H) that is non-CA, a 
ontradi
tion. This 
ontradi
-tion shows that ea
h one of P 1 and P 2 has at most two interior verti
es.Thus, fvg [ V (P 1)[ V (P 2) indu
es on G either K2,3, G2 or G4, whi
h areminimally non-CA graphs. Sin
e G is minimally non-CA, G is isomorphi
to one of them, a 
ontradi
tion.2.3 Partial 
hara
terizations2.3.1 CographsResults on 
ographs used throughout this subse
tion 
an be found in Sub-se
tion 1.2.3.De�ne semi
ir
ular graphs to be the interse
tion graphs of open semi-
ir
les on a 
ir
le. Noti
e that semi
ir
ular graphs are UCA graphs.Theorem 14. Let G be a graph. The following 
onditions are equiva-lent:1. G is fP4, 3K1g-free.2. G is an augmented multiple of tK2 for some non-negative integert.3. G is a semi
ir
ular graph.Proof. (1) ) (2) Assume that G is a fP4, 3K1g-free graph. If G has lessthan two verti
es, then G is a 
omplete (note that tK2 with t = 0 is anempty graph). So, we 
an assume that G has at least two verti
es. Sin
e Gis P4-free, by Theorem 9, G is either not 
onne
ted or not anti
onne
ted.Sin
e G is 3K1-free, if G is not 
onne
ted, then G has exa
tly two 
om-ponents. Moreover, both 
omponents are 
omplete graphs. Thus, G is amultiple of K2. Suppose now that G is non-anti
onne
ted, and let H bean anti
omponent of G. Sin
e H is fP4, 3K1g-free and anti
onne
ted, H iseither trivial or non-
onne
ted and, in the se
ond 
ase, by the argumentsabove H indu
es on G a multiple of K2. Let s be the number of anti
ompo-nents of G that are trivial and t be the number of anti
omponents of G thatindu
e on G a multiple of K2. Sin
e G is the join of its anti
omponents, Gis the join of a multiple of tK2 and a 
omplete Ks for some non-negativeintegers t and s. Consequently, G is an augmented multiple of tK2 for somenon-negative integer t.
(2)) (3) Assume that G is an augmented multiple of tK2 for some non-negative t. In parti
ular, G is a multiple of tK2 [ sK1 for some non-negative
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Figure 2.2: The graph 2K2 [K1 and its semi
ir
ular model.t and some s = 0 or 1. In order to prove that G is a semi
ir
ular graph, itsu�
es to prove that tK2 [ sK1 is a semi
ir
ular graph. Fix a 
ir
le C. Letfp1, p01g, : : : , fpt, p0tg, fq1, q01g, : : : , fqs, q0sg be t+ s pairwise distin
t pairs ofantipodal points of C. For i = 1, : : : , t, let S1i and S2i be the two disjointopen semi
ir
les on C whose endpoints are pi and p0i. For j = 1, : : : , slet Tj be an open semi
ir
le on C whose endpoints are qj and q0j . ThenS11 ,S21 , : : : ,S1t ,S2t ,T1, : : : ,Ts is a semi
ir
ular model for tK2 [ sK1 (see Fig.2.2).
(3) ) (1) We now prove that semi
ir
ular graphs are fP4, 3K1g-freegraphs. It is 
lear that 3K1 is not a semi
ir
ular graph be
ause there isnot enough spa
e on a 
ir
le for three pairwise disjoint semi
ir
les. We nowshow that P4 is not a semi
ir
ular graph. Assume, by way of 
ontradi
tion,that there is a semi
ir
ular graph model for P4. Let V (P4) = fv1, v2, v3, v4g,where vi is adja
ent to vi+1 for i = 1, 2, 3 and let S = fS1,S2,S3,S4g be asemi
ir
ular model for P4, where the semi
ir
le Si 
orresponds to the vertexvi. Sin
e v1 and v3 are non-adja
ent, S1 and S3 are disjoint and have thesame endpoints. Sin
e v1 and v4 are also non-adja
ent, the same holds for S1and S4, hen
e S3 = S4. This 
ontradi
ts the fa
t that S2 \S3 is non-emptybut S2 \S4 is empty. This 
ontradi
tion shows that P4 is not a semi
ir
ulargraph. Sin
e the 
lass of semi
ir
ular graphs is hereditary, a semi
ir
ulargraph is f3K1,P4g-free.Theorem 15. Let G be a 
ograph that 
ontains an indu
ed C4, and su
hthat all its proper indu
ed subgraphs are CA graphs. Then, exa
tly oneof the following 
onditions holds:1. G is isomorphi
 to K2,3 or C�4 .2. G is an augmented multiple of tK2, for some integer t � 2.
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hara
terizations 17Proof. Clearly, K2,3 and C�4 are not augmented multiples of tK2, for anyinteger t � 2. Assume that G is isomorphi
 to neither C�4 nor K2,3. Sin
e allproper indu
ed subgraphs of G are CA graphs, C�4 and K2,3 are not properindu
ed subgraphs of G. We must prove that G is an augmented multipleof tK2, for some integer t � 2. Let H be the indu
ed subgraph of G that isisomorphi
 to C4. Sin
e C4 = 2K2, we may suppose that there is a vertexv in G�H. Sin
e C�4 is not an indu
ed subgraph of G, v is adja
ent toat least one vertex of H. Sin
e G is fP4,K2,3g-free, either v is adja
ent tothree verti
es of H or v is 
omplete to H. In 
ase that v is adja
ent to threeverti
es of H we will denote by C(v) the interior vertex of the path indu
edby NH(v) in H. Suppose there exists a vertex w of G�H, w 6= v, thatis non-adja
ent to v. If v were adja
ent to three verti
es of H and w were
omplete to H, then the subgraph indu
ed by fv,wg [ V (H) in G would
ontain an indu
ed P4, a 
ontradi
tion. Thus, v and w are both adja
entto three verti
es of H or they are both 
omplete to H. Next assume thatv and w are both adja
ent to three verti
es of G. If C(v) = C(w), thenfv,wg [ (V (H)� fC(v)g) would indu
e in G a graph isomorphi
 to K2,3.If C(v) and C(w) were adja
ent, then fv,wg [ V (H) would 
ontain anindu
ed P4. We 
on
lude that if v and w are both adja
ent to three verti
esof H, then C(v) and C(w) must be distin
t and non-adja
ent verti
es of H.We now prove that G does not 
ontain 3K1 as indu
ed subgraph. As-sume, by way of 
ontradi
tion, that there is an indu
ed subgraph S of Gisomorphi
 to 3K1. Clearly H and S have at most two verti
es in 
ommon.If H and S had two verti
es in 
ommon, then the remaining vertex of Swould be a vertex of G�H adja
ent to at most two verti
es of H, a 
on-tradi
tion. If H and S had exa
tly one vertex in 
ommon, then the othertwo verti
es of S would be adja
ent to the same three verti
es of H. Aswe noti
ed above, this leads to a 
ontradi
tion. We 
on
lude that H andS must have no verti
es in 
ommon. Let fv1, v2, v3g = V (S). Sin
e theverti
es of S are verti
es of G�H and pairwise non-adja
ent, all of themare adja
ent to three verti
es of H or all of them are 
omplete to H. If all ofthem were adja
ent to three verti
es of H, then C(v1), C(v2), C(v3) wouldbe pairwise distin
t and non-adja
ent verti
es of H, a 
ontradi
tion. If all ofthem were 
omplete to H, then H [ fv1, v2, v3g indu
es in G a graph whi
h
ontains an indu
ed K2,3, a 
ontradi
tion. We 
on
lude that G is 3K1-free.Sin
e G is also P4-free, by Theorem 14, G is an augmented multiple of tK2.Finally, sin
e G 
ontains C4 as an indu
ed subgraph, t � 2.We 
an now present the main 
hara
terization of this subse
tion.Theorem 16. Let G be a 
ograph. Then, G is a CA graph if and onlyif G 
ontains no indu
ed K2,3 or C�4 .
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 graphsProof. Let H be a 
ograph. Suppose, by way of 
ontradi
tion, that H isa minimally non-CA graph but H is not isomorphi
 to K2,3 or C�4 . Sin
eH is not an interval graph and it is P4-free, by Theorem 2, H 
ontains anindu
ed C4. By Theorem 15, H is an augmented multiple of tK2, for somet � 2. Thus, by Theorem 14, H is a CA graph, a 
ontradi
tion.2.3.2 Paw-free graphsA paw-free graph is a graph with no indu
ed paw. Paw-free graphs werestudied in [Ola88℄.Theorem 17. Let G be a paw-free graph 
ontaining an indu
ed C4 andsu
h that all its proper indu
ed subgraphs are CA graphs. Then, at leastone of the following 
onditions holds:1. G is isomorphi
 to K2,3, G2, G7, or C�4 .2. G is a bloomed C4 with trivial blooms.3. G is an augmented multiple of tK2 for some t � 2.Proof. Assume that G is not isomorphi
 to K2,3, G2, G7, or C�4 . Sin
e allproper indu
ed subgraphs of G are CA, G does not 
ontain any of thesegraphs as indu
ed subgraphs.Let H be an indu
ed subgraph of G isomorphi
 to C4. If G = H, thenthe theorem holds. Otherwise, let v be any vertex of G�H. Sin
e G isC�4 -free, v is adja
ent to at least one vertex of H. Sin
e G is paw-free,v 
annot be adja
ent to either exa
tly three verti
es of H or exa
tly twoadja
ent verti
es of H. Sin
e G is K2,3-free, v 
annot be adja
ent to exa
tlytwo non-adja
ent verti
es of H. We 
on
lude that ea
h vertex v of G�His either adja
ent to exa
tly one vertex of H or 
omplete to H.Suppose that there are two verti
es w, w0 in G � H su
h that w is
omplete to H and w0 is adja
ent to exa
tly one vertex x of H. If w and w0are non-adja
ent, then w,w0,x and any neighbour of x in H indu
e a pawin G; if w and w0 are adja
ent, then w,w0,x and the non-neighbour of x inH indu
e a paw in G. Sin
e G is paw-free, either all verti
es of G�H are
omplete to H, or ea
h vertex of G�H is adja
ent to exa
tly one vertex ofH (not ne
essarily all of them to the same vertex).Assume �rst that ea
h vertex of G�H is adja
ent to exa
tly one vertexof H. Let us prove that G�H is a stable set. Assume, by way of 
ontra-di
tion, that there are two adja
ent verti
es v and w in G�H. Sin
e G ispaw-free, v and w 
annot be adja
ent to the same vertex. Sin
e G 
ontainsno indu
ed G7, v and w must be adja
ent to non-adja
ent verti
es of H.Similarly, sin
e G 
ontains no indu
ed G2, v and w 
annot be adja
ent tonon-adja
ent verti
es of H, a 
ontradi
tion. Thus, G�H is a stable set.
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e ea
h vertex of G�H is adja
ent to exa
tly one vertex of H, G is abloomed C4 with trivial blooms.Assume now that all verti
es of G�H are 
omplete to H. If G�H
ontains three pairwise non-adja
ent verti
es, then these verti
es and twonon-adja
ent verti
es of H indu
e K2,3, a 
ontradi
tion. If G�H 
ontainsP4, then three non-
onse
utive verti
es of P4 and any vertex of H indu
e apaw, a 
ontradi
tion. Thus, G�H is f3K1,P4g-free. Sin
e H is 
ompleteto G�H, every indu
ed subgraph of G with at least one vertex in H andat least one vertex in G�H is non-anti
onne
ted. Sin
e P4 and 3K1 areanti
onne
ted, if G 
ontains an indu
ed subgraph isomorphi
 to either 3K1or P4, then it must be entirely 
ontained in either H or G�H. As observedabove, this situation is not possible, hen
e G is f3K1,P4g-free. By Theo-rem 14, G is an augmented multiple of tK2 for some non-negative t. Finally,sin
e G 
ontains an indu
ed C4, t � 2.Theorem 18. Let k � 5. Let G be a paw-free graph su
h that all itsproper indu
ed subgraphs are CA graphs. If G 
ontains an indu
ed sub-graph H isomorphi
 to Ck, then exa
tly one of the following 
onditionsholds:1. G is isomorphi
 to G2, G4, or C�k.2. G is a bloomed Ck with trivial blooms.Proof. Assume that G is not isomorphi
 to G2, G4, or C�k . Sin
e all properindu
ed subgraphs of G are CA, G does not 
ontain any of these graphsas indu
ed subgraph. Moreover, G 
ontains no indu
ed C�j , for any j � 4.G is paw-free, so it is not isomorphi
 to G3; G 
ontains an indu
ed 
y
leof length at least �ve, so it is not isomorphi
 to K2,3. If G = H, then thetheorem holds. Otherwise, by Theorem 13, if v is a vertex of G�H, theneither v is 
omplete to H or NH(v) indu
es a non-empty path on H. But,sin
e H is isomorphi
 to Ck, k � 5, and G is paw-free, every vertex of G�Hmust be adja
ent to exa
tly one vertex of H. We will show now that G�His a stable set of G. Let v and w be two verti
es of G�H. Suppose, byway of 
ontradi
tion, that v and w are adja
ent. Sin
e G is paw-free, v andw 
annot be adja
ent to the same vertex of H. If v and w were adja
ent totwo adja
ent verti
es of H, then G would properly 
ontain an indu
ed C�4 .We 
an assume now that v and w are adja
ent to non-adja
ent verti
es ofH. Let P 1 and P 2 be the two distin
t paths joining the neighbours of v andw within H. By hypothesis, ea
h of P 1 and P 2 has at least three verti
es,and at least one of them has four verti
es, sin
e H has at least �ve verti
es.Sin
e G 
ontains no indu
ed C�j , j � 4, ea
h of P 1 and P 2 has at mostfour verti
es. If P 1 and P 2 have three and four verti
es respe
tively, thenfv,wg [ V (H) would indu
e in G the graph G4, a 
ontradi
tion. Finally, ifea
h of P 1 and P 2 has four verti
es, then fv,wg [ V (H)�NH(v) indu
es
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 graphsproperly on G a bipartite 
law, a 
ontradi
tion. We 
on
lude that G�H isa stable set of G, and sin
e ea
h vertex of G�H is adja
ent to exa
tly onevertex of H, G is a bloomed Ck with trivial blooms.We 
an prove now the main result of this se
tion.Theorem 19. Let G be a paw-free graph. Then, G is a CA graph if andonly if G 
ontains no indu
ed bipartite 
law, K2,3, G2, G4, G7, or C�j ,for any j � 4.Proof. Let H be a paw-free graph. Suppose, by way of 
ontradi
tion, thatH is not isomorphi
 to the bipartite 
law, K2,3, G2, G4, G7, or C�j , forj � 4, but H is still a minimally non-CA graph. Sin
e H is paw free, H isnon-basi
 and, by Corollary 4, H 
ontains an indu
ed Cj for some j � 4.By Theorem 17 and Theorem 18, H is either an augmented multiple of tK2for some t � 2 or a bloomed Cj with trivial blooms. It is easy to see that abloomed Cj with trivial blooms is CA, and an augmented multiple of tK2 isshown to be CA in Theorem 14. In both 
ases, we get a 
ontradi
tion.2.3.3 Claw-free 
hordal graphsA graph is 
law-free 
hordal if it 
ontains neither an indu
ed 
law nor ahole. Claw-free graphs are widely studied in the literature, see for example[PR76℄ or re
ent results in [CS05℄. Besides, as PCA graphs are 
law-free, thestudy of 
law-free 
hordal graphs arises naturally from the 
hara
terizationof PCA graphs within the 
lass of 
hordal graphs.Lemma 2. Let G be a {
law,net�,G5,G6}-free 
hordal graph that 
on-tains a net L indu
ed by ft1, t2, t3, b1, b2, b3g, where ft1, t2, t3g indu
es atriangle and bi is adja
ent to ti for i = 1, 2, 3. If v is a vertex in G�L,then NL(v) is either fbi, tig, or ft1, t2, t3, big or fbi+1, ti+1, ti+2, bi+2g, forsome i 2 f1, 2, 3g (indi
es should be understood modulo 3).Proof. We will analyze the di�erent 
ases for jNL(v)j. If jNL(v)j = 0,then L [ fvg indu
es net�, a 
ontradi
tion. If jNL(v)j = 1, then eitherNL(v) = fbig or NL(v) = ftig for some i 2 f1, 2, 3g. In the �rst 
ase,L[ fvg indu
es G5; in the se
ond 
ase, bi, ti, ti+1, v indu
e a 
law. In both
ases, we get a 
ontradi
tion.If jNL(v)j = 2, then the representative 
ases for NL(v) up to symmetryare: fbi, bi+1g, fti, ti+1g, fbi, ti+1g, fbi, tig. In the �rst 
ase, bititi+1bi+1v isa hole; in the se
ond and third 
ases, ti+1, ti+2, bi+1, v indu
e a 
law. So, ifjNL(v)j = 2, then NL(v) = fbi, tig for some i 2 f1, 2, 3g. If jNL(v)j = 3,then the representative 
ases up to symmetry are: fb1, b2, b3g, fbi, bi+1,ti+2g, ft1, t2, t3g, fbi, bi+1, ti+1g, fbi, ti+1, ti+2g, fbi, ti, ti+1g. In the
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T1

B1

T3

B3

T2

B2

M3M2

M1Figure 2.3: Cir
les represent 
liques. Two 
ir
les are adja
ent, non-adja
entor joined by a dotted line if the 
orresponding 
liques are mutually 
omplete,anti
omplete, or not ne
essarily 
omplete or anti
omplete, respe
tively.�rst two 
ases, NL(v) [ fvg indu
es a 
law; in the third 
ase, NL(v) [ fvgindu
es G6; in the fourth an �fth 
ases, bititi+1v is a hole; in the last 
aseti+1, bi+1, ti+2, v indu
e a 
law. In all the 
ases we get a 
ontradi
tion.Finally, if v is adja
ent to bi+1, bi+2 and to either bi or ti, then eitherfv, bi+1, bi+2, big or fv, bi+1, bi+2, tig indu
es a 
law, respe
tively. So, ifjNL(v)j � 4, then NL(v) is either ft1, t2, t3, big or fbi+1, ti+1, ti+2, bi+2g,for some i 2 f1, 2, 3g.Theorem 20. Let G be a 
law-free 
hordal graph that 
ontains an in-du
ed net, and su
h that all its proper indu
ed subgraphs are CA graphs.Then, exa
tly one of the following 
onditions holds:1. G is isomorphi
 to net�, G5 or G6.2. G is a CA graph.Proof. Assume that G is not isomorphi
 to net�, G5 or G6. Sin
e thesegraphs are non-CA and all proper indu
ed subgraphs of G are CA, G 
on-tains no indu
ed net�, G5 or G6. We 
laim that G has as an indu
edsubgraph H that is a multiple of a net; i.e., the verti
es of H 
an be parti-tioned into six non-empty 
liques B1,B2,B3,T1,T2,T3 su
h that T1,T2,T3are mutually 
omplete and Ti is 
omplete to Bi and anti
omplete to Bi+1and Bi+2, for ea
h i = 1, 2, 3 (from now on, the indi
es should be under-stood modulo 3). Moreover, the verti
es of G�H 
an be partitioned intothree (possibly empty) 
liques M1,M2,M3 su
h that, for ea
h i = 1, 2, 3,Mi is 
omplete to Bi+1, Bi+2, Ti+1 and Ti+2 and anti
omplete to Bi andTi. A s
heme of this situation 
an be seen in Figure 2.3.We will prove the 
laim by indu
tion on the number n of verti
es of G.Clearly, if G is a net, then the 
laim holds. Assume that n > 6 and that



22 Chapter 2. Cir
ular-ar
 graphsthe desired result holds for graphs with less than n verti
es. Sin
e n > 6,there exists a vertex v of G su
h that G0 = G�fvg 
ontains an indu
ed net.By indu
tive hypothesis, sin
e G0 is 
law-free 
hordal, G0 has an indu
edsubgraph H that is a multiple of a net and the verti
es of G0 �H 
an bepartitioned into three 
liques M1,M2,M3 satisfying the 
onditions above.Choose ti 2 Ti, bi 2 Bi for ea
h i = 1, 2, 3 (re
all that Ti and Bi are non-empty for i = 1, 2, 3). Let L be the subgraph indu
ed by ft1, t2, t3, b1, b2, b3g.By Lemma 2, either NL(v) = fbi, tig, NL(v) = ft1, t2, t3, big or NL(v) =fbi+1, ti+1, ti+2, bi+2g, for some i 2 f1, 2, 3g.Suppose �rst that NL(v) = fti, big for some i 2 f1, 2, 3g. Let j 2f1, 2, 3g, b0j 2 Bj , and L0 be the net indu
ed by ft1, t2, t3, b0j , bj+1, bj+2g.Applying Lemma 2 to L0, it follows that v is adja
ent to b0j if and only ifj = i. Thus, v is 
omplete to Bi and anti
omplete to Bi+1 and Bi+2. Usingthe same strategy, we 
an prove that v is 
omplete to Ti and anti
ompleteto Ti+1 and Ti+2. Sin
e G is 
law-free, v must be 
omplete to Mi+1 (if wwere a non-neighbour of v in Mi+1, then ti, ti+1,w, v would indu
e a 
law)and, by symmetry, v is also 
omplete toMi+2. Moreover, sin
e G is C4-free,v is anti
omplete to Mi (if w were a neighbour of v in Mi, then ti, ti+1,w, vwould indu
e C4). Thus, the 
laim holds for G repla
ing Bi by Bi [ fvg.Next, suppose that NL(v) = ft1, t2, t3, big for some i 2 f1, 2, 3g. Rea-soning as in the �rst 
ase, it follows that v is 
omplete to T1, T2, T3, Biand anti
omplete to Bi+1 and Bi+2. Sin
e G is C4-free, v must be 
ompleteto Mi+1 (if w were a non-neighbour of v in Mi+1, then bi, v, ti+2,w wouldindu
e a C4) and, by symmetry, also to Mi+2. Sin
e G is 
law-free, v mustbe anti
omplete toMi (if w were a neighbour of v inMi, then w, bi+1, bi+2, vwould indu
e a 
law). Thus, the 
laim holds for G repla
ing Ti by Ti [ fvg.Finally, suppose thatNL(v) = fbi+1, ti+1, ti+2, bi+2g for some i 2 f1, 2, 3g.Reasoning again as in the �rst 
ase, it follows that v is 
omplete to Bi+1,Ti+1, Ti+2, Bi+2 and anti
omplete to Bi and Ti. Sin
e G is 
law-free, v mustbe 
omplete to Mi (if w were a non-neighbour of v in Mi, then ti, ti+1,w, vwould indu
e a 
law). Thus, the 
laim holds for G repla
ingMi byMi[fvg.This ends the proof of the 
laim.IfMi andMi+1 are non-empty andmi,mi+1 are verti
es inMi andMi+1,respe
tively, then either miti+1timi+1bi+2 indu
e a C5 or miti+1timi+1 in-du
e a C4. Sin
e G is 
hordal, at most one of fM1,M2,M3g is non-empty.Consequently, G is either a multiple of a net (if every Mi is empty) or amultiple of the graph S depi
ted in Figure 2.4. Sin
e the net and S areeasily seen to be a CA graph, G is also a CA graph.We 
an now prove the main result of this se
tion.



2.3. Partial 
hara
terizations 23
Figure 2.4: The graph S.Theorem 21. Let G be a 
law-free 
hordal graph. Then, G is CA ifand only if G 
ontains no indu
ed tent�, net�, G5 or G6.Proof. Let H be a 
law-free 
hordal graph. Suppose, by way of 
ontradi
-tion, that H is not isomorphi
 to tent�, net�, G5 or G6, but H is still aminimally non-CA graph. Sin
e H is 
law-free and 
hordal, H is non-basi
and, by Corollary 4, H 
ontains an indu
ed net or tent. If H 
ontains anindu
ed net, then by Theorem 20, H is isomorphi
 to a net�, G5 or G6, a
ontradi
tion. Thus, H 
ontains no indu
ed net but an indu
ed tent. Sin
eH is non-basi
, it is 
onne
ted (Corollary 3). So, by Theorem 11, H is amultiple of a tent and, in parti
ular, a CA graph, a 
ontradi
tion.2.3.4 Diamond-free graphsA diamond-free graph is a graph with no indu
ed diamond. Diamond-freegraphs have been extensively studied. (See, for example, [CY81, Con89,Tu
87℄.)Theorem 22. Let G be a diamond-free graph that 
ontains a hole, andsu
h that all its proper indu
ed subgraphs are CA graphs. Then, exa
tlyone of the following 
onditions holds:1. G is isomorphi
 to K2,3, G2, G3, G4, G7, C6, G9, or C�j for somej � 4.2. G is a CA graph. More pre
isely, if H is any indu
ed hole of G,and V (H) = fh1, : : : ,hkg where hi is adja
ent to hi+1 for ea
h i =1, : : : , k (indi
es should be understood modulo k), then the verti
esof G�H 
an be partitioned into k+ 1 (possibly empty) pairwiseanti
omplete sets U1, : : : ,Uk,S su
h that the following 
onditionshold:� For ea
h i = 1, : : : , k, G[Ui] is the union of vertex-disjoint
liques and for ea
h u 2 Ui, NH(u) = fhig.
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 graphs� For ea
h s 2 S there is an integer i, 1 � i � k, su
h thatNH(s) = fhi,hi+1g; in addition, if s1, s2 2 S, then s1 and s2are adja
ent if and only if NH(s1) = NH(s2).Proof. Assume that G is not isomorphi
 to K2,3, G2, G3, G4, G7, C6, G9,or C�j for any j � 4. Sin
e all of these graphs are non-CA and all properindu
ed subgraphs of G are CA, G 
ontains none of these graphs as indu
edsubgraphs.Let H be an indu
ed hole on G of length k and let v be any vertex ofG�H. Sin
e G is not isomorphi
 to K2,3, G2, G3, G4, or C�j , for any j � 4,by Theorem 13, either v is 
omplete to H or NH(v) indu
es a non-emptypath in H. Sin
e G is diamond-free, v is adja
ent to at most two verti
esof H. So, ea
h vertex of G�H is adja
ent to either a single vertex or twoadja
ent verti
es of H.Let V (H) = fh1, : : : ,hkg, where hi is adja
ent to hi+1 for ea
h i =1, : : : , k (from now on, indi
es should be understood modulo k). Let Ui bethe set of verti
es v of G�H with NH(v) = fhig. Sin
e hi is adja
ent toall verti
es of Ui and G is diamond-free, G[Ui] 
ontains no indu
ed P3 andtherefore G[Ui] is the union of vertex disjoint 
liques.We now show that if i 6= j, then Ui is anti
omplete to Uj . Suppose, byway of 
ontradi
tion, that there exist i and j, i 6= j, su
h that some vertexui 2 Ui is adja
ent to some vertex uj 2 Uj . Let P 1 and P 2 be the twodistin
t paths onH joining hi and hj . If P 1 has more than four verti
es, thenthere is an interior vertex w of P 1 that is anti
omplete to P 2, so fui,ujg [V (P 2) [ fwg indu
es on G a graph isomorphi
 to C�m for some m � 4,a 
ontradi
tion. Thus, ea
h one of P 1 and P 2 has at most four verti
es.Without loss of generality, we may assume that jP 1j � jP 2j. If jP 1j = 2 andjP 2j = 4, then fui,ujg [ V (H) indu
es G7; if jP 1j = 3 and jP 2j = 3, thenfui,ujg [ V (H) indu
es G2; if jP 1j = 3 and jP 2j = 4, then fui,ujg [ V (H)indu
es G4; if jP 1j = 4 and jP 2j = 4, then fui,ujg [ (V (H)�fhig) indu
esa bipartite 
law. In all the 
ases, we get a 
ontradi
tion. We 
on
lude thatif i 6= j, then Ui is anti
omplete to Uj .Let S be the set of verti
es v of G�H that are adja
ent to two verti
es ofH. Let s1, s2 be two verti
es of S, i and j be su
h that NH(s1) = fhi,hi+1gand NH(s2) = fhj ,hj+1g. Sin
e G is diamond-free, if i = j, then s1 and s2must be adja
ent and if ji� jj = 1, then s1 and s2 must be non-adja
ent.Suppose now that ji� jj > 1, so hi, hi+1, hj and hj+1 are pairwise distin
t.Assume for 
ontradi
tion that s1 and s2 are adja
ent. Let P 1 be the path onH whose verti
es are fhi+1,hi+2, : : : ,hjg and P 2 be the path on H whoseverti
es are fhj+1,hj+2, : : : ,hig. If P 1 and P 2 have no internal verti
es,then fs1, s2g [ V (H) indu
es C6, a 
ontradi
tion. We 
an assume, withoutloss of generality, that P 1 has at least one internal vertex w. But, then
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omplete to the hole indu
ed on G by fs1, s2g [ V (P 2), hen
efs1, s2,wg[V (P 2) indu
es on G a graph isomorphi
 to C�m for some m � 4,a 
ontradi
tion. So, s1 and s2 are non-adja
ent.Now we will prove that Ui is anti
omplete to S for ea
h i = 1, : : : , k.Suppose, by way of 
ontradi
tion, that there exist adja
ent verti
es ui 2 Uiand s 2 S, and let j be su
h that NH(s) = fhj ,hj+1g. Sin
e G is diamond-free, i is di�erent from j and j + 1. Let P 1 be the path on H whoseverti
es are fhi,hi+1, : : : ,hjg and P 2 the path on H whose verti
es arefhj+1, : : : ,hi�1,hig. If P 2 has more than three verti
es, then hj+2 is an-ti
omplete to the hole indu
ed by fs,uig [ V (P 1), a 
ontradi
tion. Anal-ogously, P 1 has at most three verti
es. If jP 1j = 2 and jP 2j = 3, thenfui, sg [ V (H) indu
es G3; if jP 1j = 3 and jP 2j = 3, then fui, sg [ V (H)indu
es G9. We may assume jP1j � jP2j. In both 
ases, we have a 
ontra-di
tion. We 
on
lude that Ui is anti
omplete to S for ea
h i = 1, : : : , k.Finally, it is not di�
ult to see that a graph satisfying these 
onditionsis a CA graph. This 
on
ludes the proof.Theorem 23. Let G be a diamond-free 
hordal graph that 
ontains anindu
ed net, and su
h that all its proper indu
ed subgraphs are CAgraphs. Then, exa
tly one of the following 
onditions holds:1. G is isomorphi
 to a net�, G5, or G6.2. G is a fully bloomed triangle.Proof. Assume that G is not isomorphi
 to net�, G5, or G6. Sin
e all ofthese graphs are non-CA and all proper indu
ed subgraphs of G are CA, G
ontains none of these graphs as indu
ed subgraphs.We will show that G is a fully bloomed triangle, and, as a 
onsequen
e,a CA graph. We will argue by indu
tion on the number of verti
es of G.Clearly, a net is a fully bloomed triangle. Suppose that G has n > 6verti
es and that the result holds for graphs with n� 1 verti
es. Sin
e Ghas more than six verti
es, there exists a vertex v of G su
h that G� fvg
ontains an indu
ed net.Moreover, G� fvg is diamond-free 
hordal, all its proper indu
ed sub-graphs are CA graphs and it is not isomorphi
 to net�, G5, or G6. So, byindu
tive hypothesis, G� fvg is a fully bloomed triangle. That is, thereexists a triangle T of G� fvg su
h that the remaining verti
es of G� fvgindu
e a disjoint union of 
omplete graphs M1,M2, : : : ,Mm, where ea
h Miis 
omplete to one vertex of T and anti
omplete to the others, and ea
hvertex of T is 
omplete to at least one of M1,M2, : : : ,Mm. The vertex v isadja
ent to at least one vertex of G� fvg be
ause G 
ontains no indu
ed
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ular-ar
 graphsnet�. On the other hand, sin
e G is 
hordal and diamond-free and G�fvgis 
onne
ted, N(v) indu
es a 
omplete graph on G. So, either N(v) � T orN(v) �Mi [ ftg, where t 2 T and Mi is a bloom 
omplete to t. In the �rst
ase, sin
e G 
ontains no indu
ed G6, jN(v)j 6= 3, and sin
e G is diamondfree, jN(v)j 6= 2. Therefore, N(v) = ftg for some t 2 T and fvg is a newbloom 
omplete to t. In the se
ond 
ase, sin
e G is diamond-free, eitherjN(v)j = 1 or N(v) = Mi [ ftg. If N(v) = ftg with t 2 T , then fvg is anew bloom for t; if N(v) = fwg with w 2Mi, then G 
ontains an indu
edG5, a 
ontradi
tion; if N(v) = Mi [ ftg, then G is a fully bloomed trianglerepla
ing Mi by Mi [ fvg.Finally, we 
an prove the main result of this se
tion.Corollary 5. A diamond-free graph G is CA if and only if G 
ontainsno indu
ed bipartite 
law, net�, K2,3, G2, G3, G4, G5, G6, G7, C6, G9,or C�j , for any j � 4.Proof. Let H be a diamond-free graph. Suppose, by way of 
ontradi
tion,that H is not isomorphi
 to the bipartite 
law, net�, K2,3, G2, G3, G4, G5,G6, G7, C6, G9, or C�j , for any j � 4, but H is still a minimally non-CAgraph. Sin
e H is not an interval graph but it does not 
ontain a bipartite
law and it is diamond-free, by Theorem 2, H 
ontains either a hole or anindu
ed net. If H 
ontains a hole, H 
ontradi
ts Theorem 22. Otherwise,H is 
hordal. Then, H 
ontains an indu
ed net, and so H 
ontradi
tsTheorem 23 be
ause fully bloomed triangles are CA.2.4 Summary and further resultsThe partial 
hara
terizations of 
ir
ular-ar
 graphs by forbidden indu
edsubgraphs obtained in this thesis are summarized in Table 2.1.Graph 
lasses Minimal forbidden indu
ed subgraphs Referen
eP4-free graphs K2,3, C�4 x 2.3.1Paw-free graphs bipartite 
law, K2,3, G2, x 2.3.2G4, G7, C�j (j � 4)Claw-free 
hordal graphs tent�, net�, G5, G6 x 2.3.3Diamond-free graphs bipartite 
law, net�, K2,3, G2, G3, G4, x 2.3.4G5, G6, G7, C6, G9, C�j (j � 4)Table 2.1: Minimal forbidden indu
ed subgraphs for 
ir
ular-ar
 graphs inea
h studied 
lass.A CA graph is a normal 
ir
ular-ar
 (NCA) graph if it admits a
ir
ular-ar
 model su
h that no two ar
s 
over the whole 
ir
le. For exam-ple, interval graphs and semi-
ir
ular graphs are NCA graphs. An example
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12Figure 2.5: Minimally non-NCA graph that is CA, and its 
ir
ular-ar
model.of a graph whi
h is not NCA is given in Figure 2.5. This 
on
ept was stud-ied in [DGM+06, Gol04, HH04℄, but the terminology NCA was introdu
edin [LS06b℄. The 
hara
terization of non-NCA graphs by minimal forbiddenindu
ed subgraphs is not known. The proofs in this paper show that, forthe 
lasses analyzed here, all CA graphs are also NCA. So, the 
hara
ter-izations obtained for CA graphs also hold for NCA graphs. Moreover, we
an state the following result.Corollary 6. If H is a minimally non-NCA graph and H is a CA graph,then H 
ontains an indu
ed diamond, an indu
ed P4, an indu
ed paw,and either an indu
ed 
law or a hole.
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Chapter 3Cir
le graphs3.1 Introdu
tionA graph G = (V ,E) is a 
ir
le graph if there exists a one-to-one fun
tionf : V ! L (f(v) = Cv) where L = fCvgv2V (G) is a family of 
hords on a
ir
le, whose extremes are all di�erent, su
h that uv 2 E if and only if u 6= vand Cu \Cv 6= ;. L is 
alled a 
ir
le model of G. A graph G = (V ,E) isoverlap interval if there exists a bije
tive fun
tion f : V ! I (f(v) = Iv)where I = fIvgI2V (G) is a family of intervals on the real line, su
h thatuv 2 E if and only if Iu and Iv overlap; i.e., Iu \ Iv 6= ;, Iu 6� Iv andIv 6� Iu. It is well-known that 
ir
le graphs and overlap interval graphs arethe same 
lass, see for instan
e [Gol04℄.Cir
le graphs were introdu
ed by Even and Itai in [EI71℄ to solve aproblem of parallel sta
ks without the restri
tion of loading before unloadingis 
ompleted. In addition, the problem under this restri
tion is handle inthe same arti
le. A sta
k is a linear storage devi
e whi
h has only one entry.The problem 
onsist in �nding the minimum number m of sta
ks ne
essaryto transfer a set of items f1, : : : ,ng stored in A, whose order is given bya permutation P of f1, : : : ,ng, by using a set of parallel sta
ks S1, : : : ,Smwhi
h 
an be unloaded to load a sta
k B before the sta
k A is 
ompletelyunloaded (P�1(i) stands for the position in whi
h the item i is pla
ed in A).Even and Itai proved that this problem 
an be translated into the problem of�nding the 
hromati
 number of a 
ir
le graph. Unfortunately, this problemturns out to be NP-
omplete [GJMP80℄.Naji [Naj85℄ 
hara
terized 
ir
le graphs in terms of the solvability of asystem of linear equations, yielding a polynomial-time re
ognition algorithmfor this 
lass. Then, Gasses gave a shorter proof of Naji's 
hara
terizationin [Gas97℄ by using a Bou
het's theorem.Di�erent polynomial-time re
ognition algorithms for 
ir
le graphs werepresented in the literature. These algorithms are strongly based on the29
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Figure 3.1: Graphs W5, W7 and BW3notion of split de
omposition. The best one has a quadrati
 time 
omplexityand is due to Spinrad [Spi94℄.The lo
al 
omplement of a graph G with respe
t to a vertex u 2 V (G)is the graph G � u that arises from G by repla
ing the indu
ed subgraphG[NG(u)] by its 
omplement. Two graphs G and H are lo
ally equivalentif and only if G arises fromH by a �nite sequen
e of lo
al 
omplementations.It is easy to see that being lo
ally equivalent is an equivalen
e relation andthus any 
lass of graphs 
an be partitioned into equivalen
e 
lasses underthis equivalen
e relation. A 
lass of graphs is said to be 
losed by lo
al
omplementation if and only if given any graph G in the 
lass implies thatany graph belonging to the same 
lass of equivalen
e also belongs to the
lass.Theorem 24. [Bou94℄ The 
lass of 
ir
le graphs is 
losed by lo
al 
om-plementations.Moreover, Bou
het gave the following 
hara
terization of 
ir
le graphsin terms of forbidden indu
ed subgraphs and lo
al equivalen
e.Theorem 25. [Bou94℄ Let G be a graph. Then, G is a 
ir
le graph ifand only if no graph lo
ally equivalent to G 
ontains W5, W7, or BW3as indu
ed subgraph (see Figure 3.1).We would like to emphasize whi
h is the most important disadvantage ofthe 
hara
terization above respe
t to a 
lassi
al 
hara
terization by meansof a list of forbidden indu
ed subgraphs. Whereas in the 
lassi
al 
hara
-terization 
ontaining none of the graphs of a possibly in�nite list of indu
edsubgraphs implies that the graph belongs to the 
lass, in the 
hara
teriza-tion of Theorem 25 we have to 
he
k that any graph belonging to the 
lass ofequivalen
e of the given graph 
ontains none of the three pres
ribed graphsof the list as indu
ed subgraph.Geelen and Oum [GO09℄ gave a new 
hara
terization of 
ir
le graphsin terms of pivoting. The result of pivoting a graph G with respe
t toan edge uv is the graph G� uv = G � u � v � u (where � stands for lo
al
omplementation). A graph G0 is pivot-equivalent to G if G0 arises fromG by a sequen
e of pivoting operations. They proved, with the aid of a
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omputer, that G is a 
ir
le graph if and only if ea
h graph that is pivot-equivalent to G 
ontains none of 15 pres
ribed indu
ed subgraphs.In [CDG02℄ a super
lass of 
ir
le graphs (denoted as Bou
het graphs)is de�ned. A graph G is Bou
het if and only if no indu
ed subgraph of Gis lo
ally equivalent to W5, W7, or BW3. The list of 33 minimal forbiddenindu
ed subgraphs for this 
lass is obtained using a 
omputer, 
losing underlo
al 
omplementation the graphs W5, W7 and BW3. Clearly, the graphs ofthis family are also minimal forbidden subgraphs for 
ir
le graphs, however,this list is not enough to 
hara
terize 
ir
le graphs 
ompletely. In the samework it is shown that 
ir
le graphs are a proper sub
lass of Bou
het graphs.In spite of the mentioned works, there are not known 
hara
terizationsof 
ir
le graphs only by forbidden indu
ed subgraphs; i.e., not involvingadditionally the notions of lo
al equivalen
e or pivoting operations. In thisthesis, we present some results in this dire
tion, providing forbidden indu
edsubgraphs 
hara
terizations of 
ir
le graphs within di�erent graph 
lasses.These results appear in [BDGS℄.Let G1 and G2 be two graphs su
h that jV (Gi)j � 3, for ea
h i = 1, 2,and assume that V (G1)\V (G2) = ;. Let vi be a distinguished vertex of Gi,for ea
h i = 1, 2. The split 
omposition of G1 and G2 with respe
t to v1 andv2 is the graph G1 �G2 whose vertex set is V (G1 �G2) = (V (G1)[V (G2)) nfv1, v2g and whose edge set is E(G1 �G2) = E(G1�fv1g)[E(G2�fv2g)[fuv : u 2 NG1(v1) and v 2 NG2(v2)g. The verti
es v1 and v2 are 
alled themarker verti
es . We say that G has a split de
omposition if there existtwo graphs G1 and G2 with jV (Gi)j � 3, i = 1, 2, su
h that G = G1 �G2with respe
t to some pair of marker verti
es. If so, G1 and G2 are 
alledthe fa
tors of the split de
omposition. Noti
e that G1 and G2 are indu
edsubgraphs of G. Those graphs that do not have a split de
omposition are
alled prime graphs. It is worth pointing out that those prime 
ir
le graphshave a unique 
ir
le model up to re�e
tions. Noti
e that if any of the fa
torsof a split de
omposition admits a split de
omposition we 
an 
ontinue thepro
ess until every fa
tor is prime, a star or a 
omplete. The resultingde
omposition into prime graphs, stars and 
ompletes might not be unique.Nevertheless, in [Cun82℄ it is proved that if the number of fa
tors is minimumthen the de
omposition is unique (up to reordering of the fa
tors). The
onne
tion between 
ir
le graphs and split de
omposition was dis
overedby Bou
het [Bou87℄ who proved that 
ir
le graphs are 
losed under split
omposition.Theorem 26. [Bou87℄ Let G be a graph that has a split de
ompositionG = G1 �G2. Then, G is a 
ir
le graph if and only if both G1 and G2are 
ir
le graphs.As a 
onsequen
e of Theorem 24, we 
an prove the following result.
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le graphsTheorem 27. Let G be a graph. If G is not a 
ir
le graph, then anygraph H that arises from G by edge subdivisions is not a 
ir
le graph.Proof. Suppose that H arises from G by edge subdivisions. So, H is ob-tained from G by repla
ing some edges fu1w1, : : : ,urwrg of G by indu
edpaths fP1, : : : ,Prg of length at least two. On the one hand, sin
e uiwi wasrepla
ed by an indu
ed path P = u = v1, : : : , vk = v with k � 3. It is easyto see that if lo
al 
omplementation is applied su

essively in the interiorverti
es of Pi = ui = v11, vi2, : : : , viki = wi from vi2 to viki�1, u and v are ad-ja
ent in the resulting graph. Applying this pro
edure for ea
h i = 1, : : : , kwe 
learly obtain a graph H 0 whi
h 
ontains G as indu
ed subgraph andbelongs to the same 
lass of equivalen
e as H. Sin
e G is not a 
ir
le graphand the 
lass is hereditary, H 0 is not a 
ir
le graph. Hen
e, by Theorem 24,H is not a 
ir
le graph.The remaining se
tions of this 
hapter are organized as follows. In Se
-tion 3.2 we 
hara
terize 
ir
le graphs within linear domino graphs by usingsplit de
omposition. In Se
tion 3.3, the same task is done within two su-per
lasses of 
ographs (namely, P4-tidy graphs and tree-
ographs), by usingthe forbidden indu
ed subgraphs 
hara
terization of permutation graphs.Finally, in the last Se
tion, we introdu
e and 
ompletely 
hara
terize byminimal forbidden indu
ed subgraphs the 
lass of unit Helly 
ir
le graphs.3.2 Linear domino graphsIn this se
tion we will 
hara
terize 
ir
le graphs by minimal forbidden in-du
ed subgraphs within the 
lass of linear domino graphs, using a 
onstru
-tive way (
f. Subse
tion 1.2.1).The graph C6 is a prism where ea
h triangle is linked by indu
ed pathP1, P2 and P3 having just one edge ea
h. This graph is lo
ally equivalent toW5, so by Theorem 25, C6 is not a 
ir
le graph. Besides, sin
e every prismarises from C6 by edge subdivision, Theorem 27 implies that prisms are not
ir
le graphs.The following theorem 
hara
terizes those linear domino graphs that are
ir
le graphs.Theorem 28. Let G be a linear domino graph. Then, G is a 
ir
legraph if and only if G 
ontains no indu
ed prisms.Proof. The �only if� part follows immediately from Theorem 27 and thefa
t that the 
lass of 
ir
le graphs is hereditary. Suppose now that G is alinear domino graph not 
ontaining indu
ed prisms. We shall prove thatG is a 
ir
le graph. Consider the fa
tors of a split de
omposition of Ginto prime graphs, stars and 
ompletes. It is easy to see that stars and
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ompletes are 
ir
le graphs. Therefore, by Theorem 26, we may supposethat G is a prime graph. Sin
e a graph is a 
ir
le graph if and only if ea
hof its 
onne
ted 
omponents is a 
ir
le graph, we 
an assume also that Gis 
onne
ted. Sin
e trees are 
ir
le graphs, we 
an suppose that G 
ontainsat least one 
hordless 
y
le. Consider a 
hordless 
y
le of G of maximumlength, say C = v1v2 : : : vnv1, and let X � V (G) be the set of all theverti
es having at least one neighbor in C. We will prove that a
tuallyV (C)[X = V (G) and that G is a 
ir
le graph. We will split the proof intothree 
ases: n = 3, n = 4 or 5, and n � 6. (From now on, all the operationsbetween indexes should be understood modulo n.)Case 1: n = 3. In this 
ase we will prove that G is isomorphi
 to C.Suppose by the way of 
ontradi
tion that G is not isomorphi
 to C andthus, sin
e G is 
onne
ted, X 6= ;. If v is a vertex in X, it ne
essarilyhas either one or three neighbors on C, otherwise G would 
ontain an in-du
ed diamond. Besides, if v,w 2 X with jNC(v)j = 1 (say NC(v) = fv1g)and jNC(w)j = 3, then they are not adja
ent. Be
ause, if they were ad-ja
ent, then v,w, v1, v2 would indu
e a diamond in G. On one hand, ifv,w 2 X and jNC(v)j = jNC(w)j = 1, then they are adja
ent if and onlyif NC(v) = NC(w). Indeed, if NC(v) = NC(w) = fvig and v and w werenot adja
ent, then the verti
es v,w, vi, vi+1 would indu
e a 
law, a 
ontra-di
tion. Conversely, if NC(v) = fvig, NC(w) = fvi+1g and vw 2 E(G), theset of verti
es fv,w, vi, vi+1g would indu
e a C4. This is a 
ontradi
tion,be
ause we are assuming that C is a 
hordless 
y
le of maximum length.On the other hand, if v,w 2 X and jNC(v)j = jNC(w)j = 3, then v andw are adja
ent be
ause otherwise v,w, v1, v2 would indu
e a diamond. Asa 
onsequen
e of these observations, it follows that X = Q1 [Q2 [Q3 [Qwhere Q1,Q2,Q3,Q are 
ompletes, Qi is 
omplete to vi and anti
omplete toV (C) n fvig for every i = 1, 2, 3, Q is 
omplete to V (C), and Q1,Q2,Q3,Qare pairwise anti
omplete. We will prove that Q1,Q2,Q3,Q (when they arenon-empty) belong to di�erent 
onne
ted 
omponents of G�V (C) be
auseof the maximality of C. By the way of 
ontradi
tion, let P be a path inG� V (C) of minimum length joining two verti
es of X that belong to dif-ferent sets of the partition X = Q1 [Q2 [Q3 [Q. By 
onstru
tion, P haslength at least 2 and has no internal vertex in V (C) [X. By symmetry,we just have to 
onsider two 
ases: the extremes of P are either wi 2 Qiand wj 2 Qj with i 6= j, or wi 2 Qi and w 2 Q. In the former 
ase,V (P )[ fvi, vjg would indu
e a 
hordless 
y
le of length at least �ve. In thelatter 
ase, V (P ) [ fvig would indu
e a 
hordless 
y
le of length at leastfour. Both 
ontradi
tions prove that indeed Q1,Q2,Q3,Q (if non-empty)belong to di�erent 
onne
ted 
omponents of G� V (C) that will be denoteby R1,R2,R3,R, respe
tively. Sin
e G is a prime graph, Qi = ; for alli = 1, 2, 3. Otherwise, V (Ri) [ fvi, vi+1g and V (G) n V (Ri) form a splitde
omposition of G, with vi+1 and vi as marker verti
es, respe
tively. For
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le graphsa similar reason, Q = ;. Thus, V (G) = fv1, v2, v3g and G is 
learly a 
ir
legraph.Case 2: n = 4 or 5. Sin
e G is a linear domino graph, jNC(v)j = 2for every vertex v belonging to X and the two neighbors are 
onse
utivein C. We will prove that if v,w 2 X, then vw 2 E(G) if and only ifNC(v) = NC(w). Suppose that NC(v) 6= NC(w). On one hand, if NC(v)\NC(w) = fzg and vw 2 E(G), then G[fv,w, y, zg] would be isomorphi
 toa diamond for ea
h y 2 (NC(v)[NC(w)) n fzg, 
ontradi
tion. On the otherhand, if NC(v)\NC(w) = ; and vw 2 E(G), then C [fv,wg would indu
ea prism in G, another 
ontradi
tion. So, if NC(v) 6= NC(w), then v and ware nonadja
ent. Finally, if NC(v) = NC(w) = fy, zg, then v and w areadja
ent, otherwise fv,w, y, zg would indu
e a diamond, a 
ontradi
tion.Hen
e X = Q1 [ � � � [ Qn, where ea
h Qi is a 
omplete and NC(x) =fvi, vi+1g for every x 2 Qi. We will prove that the non-empty Qi's belong toa di�erent 
onne
ted 
omponent of G�V (C). By the way of 
ontradi
tion,
onsider path P in G� V (C) of minimum length joining two verti
es wi 2Qi and wj 2 Qj with i 6= j. By symmetry, we just have to 
onsider two
ases: j = i+ 1 and j = i+ 2. By 
onstru
tion, P has at least two edgesand has no internal vertex in V (C) [X. In the �rst 
ase, V (P ) [ (V (C) nfvi+1g) indu
es a 
y
le of length stri
tly greater than n. In the se
ond
ase, V (P ) [ V (C) indu
es a prism whose triangles are fwi, vi, vi+1g andfwi+2, vi+2, vi+3g. Both 
ontradi
tions prove that indeed ea
h non-emptyQi belongs to a di�erent 
onne
ted 
omponent Ri of G� V (C). Sin
e G isprime, it follows that if Qi is non-empty then jV (Ri)j = 1. Otherwise, letwi 2 Qi. Then, V (Ri) [ fvig and (V (G) n V (Ri)) [ fwig would be a splitde
omposition of G, with vi and wi as marker verti
es, respe
tively.So, G 
onsists of C and a (possibly empty) stable set X with at mostone vertex wi for ea
h 1 = 1, : : : ,n, whose only neighbors in G are vi andvi+1. It is easy to build a 
ir
le model for G.Case 3: n � 6. First, noti
e that, sin
e G is a linear domino graph,every vertex v 2 X satis�es either NC(v) = fvi, vi+1g or NC(v) = fvi, vi+1,vi+k, vi+k+1g with 3 � k � n� 3. We will 
all the �rst kind of verti
es 2-verti
es and the se
ond kind of verti
es 4-verti
es. It 
an be easily proved,as above, that if v and w are 2-verti
es, then v and w are adja
ent if andonly if NC(v) = NC(w). Let us see that if v 2 X is a 2-vertex and w 2 Xis a 4-vertex, then v is adja
ent to w if and only if NC(v) � NC(w). LetNC(w) = fvi, vi+1, vi+k, vi+k+1g. Suppose �rst that vw 2 E(G). Sin
e w isnot the 
enter of a 
law, v should be adja
ent to at least one vertex of ea
hpair of nonadja
ent neighbors of w. Besides, sin
e NC(v) 
onsists of two
onse
utive verti
es of C, they should be either fvi, vi+1g or fvi+k, vi+k+1g.Conversely, suppose that NC(v) � NC(w). Again, sin
e NC(v) 
onsists oftwo 
onse
utive verti
es of C, then NC(v) should be either fvi, vi+1g orfvi+k, vi+k+1g. Sin
e G is diamond-free, v and w must be adja
ent.
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es. We assert that jNC(v) \ NC(w)j 2f0, 1, 2g and that vw 2 E(G) if and only if NC(v) \NC(w) 
onsists of two
onse
utive verti
es of C. If NC(v) \NC(w) 
ontains two nonadja
ent ver-ti
es x and y, then v and w should be nonadja
ent, otherwise fx, y, v,wgwould indu
e a diamond in G. On the other hand, if NC(v) \NC(w) 
on-tains two adja
ent verti
es x and y, then v and w should be adja
ent,otherwise fx, y, v,wg would indu
e a diamond in G. Therefore, v and w
an share neither three nor four neighbors, and the �if� of the se
ond partof our assertion holds. Conversely, suppose vw 2 E(G). Sin
e w is notthe 
enter of a 
law, v should be adja
ent to at least one vertex of any pairof nonadja
ent neighbors of w, so NC(v) \NC(w) 
ontains two adja
entverti
es. If NC(v) \NC(w) 
ontained two nonadja
ent verti
es x and y,then fx, y, v,wg would indu
e a diamond in G, so NC(v) \NC(w) 
onsistsexa
tly of two 
onse
utive verti
es of C.Therefore, X is a disjoint union of the sets of verti
es Q1, � � � ,Qn,Q,where the verti
es in Q are the 4-verti
es and the verti
es in Q1 [ � � � [Qnare the 2-verti
es su
h that NC(x) = fvi, vi+1g for ea
h x 2 Qi. Ea
h Qiis a 
omplete and anti
omplete to Qj if i 6= j. Sin
e two 4-verti
es shareat most two neighbors in C, in parti
ular there are no two verti
es in Qwith the same neighbors in C. Therefore, the set Q is a subset of fqi,j :1 � i < j � n, i+ 3 � j � n+ i� 3g, where NC(qi,j) = fvi, vi+1, vj , vj+1g,qi,j is 
omplete to Qi and Qj and anti
omplete to Qk for k 6= i, j, andqi,jqi0,j0 2 E(G) if and only if jfi, jg \ fi0, j0gj = 1. Noti
e that no vertexqi,j of Q has a neighbor z not in C [X, otherwise fqi,j , vi, vj , zg wouldindu
e a 
law in G, a 
ontradi
tion.We will prove now that the non-empty Qi's belong to di�erent 
onne
ted
omponents of G� (V (C) [Q). By the way of 
ontradi
tion, let P be apath in G� (V (C) [Q) of minimum length joining two verti
es wi 2 Qiand wj 2 Qj with i 6= j. By 
onstru
tion, P has length at least twoand has no internal verti
es that belong to V (C) [X. On one hand, ifjNC(wi) \NC(wj)j = 1, then G would 
ontain a 
hordless 
y
le of lengthgreater than n, a 
ontradi
tion. On the other hand, if NC(wi)\NC(wj) =;, then G would 
ontain an indu
ed prism, also a 
ontradi
tion.So, indeed ea
h of the non-empty Qi's belong to a di�erent 
onne
ted
omponent Ri of G� (V (C)[Q). Sin
e G is prime, it follows that if Qi werenon-empty then jV (Ri)j = 1. Otherwise, let wi 2 Qi. Then V (Ri) [ fvigand (V (G) n V (Ri)) [ fwig would be a split de
omposition of G, with viand wi as marker verti
es, respe
tively.Consider now two nonadja
ent 4-verti
es v and w. Then, the edges ofC with either both endpoints in NC(v) (say v-edges) or both endpoints inNC(w) (say w-edges) are exa
tly four. We will prove that traversing theedges of C in 
lo
kwise order, v-edges and w-edges do not alternate, other-
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Figure 3.2: Prime graph and its 
ir
le model.wise G would 
ontain an indu
ed prism. Suppose by the way of 
ontradi
tionthat the edges in 
lo
kwise order are e1, e2, e3, e4 where e1, e3 are v-edgesand e2, e4 are w-edges. Either e1 and e2, or e2 and e3 are non
onse
utive inC, sin
e e1 and e3 are at least two edges apart in C. Suppose without lossof generality that e1 and e2 are non
onse
utive in C. Let zi1 and zi2 be theendpoints of ei in 
lo
kwise order. Then, by removing verti
es z32 and z41and the 
lo
kwise path in C linking them from G[V (C) [ fv,wg], a prismarises: the triangles are fz11 , z12 , vg and fw, z21 , z22g; w is linked with z11 viaz42 and the path in C joining z42 and z11 (they might be the same vertex);z12 and z21 are di�erent and linked by a path in C; z22 an v are linked via z31and the path in C joining z22 and z31 (they might be the same vertex).Next, we will build a 
ir
le model for G. Draw a 
ir
le C and markon C, in 
lo
kwise order, the following points: 
n, a1, fn,3, : : : , fn,n�3,bn, dn, 
1, a2, f1,4, : : : , f1,n�2, b1, d1, 
2, a3, f2,5, : : : , f2,n�1, b2, d2, : : : ,
n�1, an, fn�1,2, : : : , fn�1,n�4, bn�1, dn�1. Finally, draw the 
hords aibifor i = 1, : : : ,n, the 
hord 
idi for ea
h i in f1, : : : ,ng su
h that Qi is non-empty, and the 
hord fi,jfj,i for ea
h i, j in f1, : : : ,ng su
h that qi,j 2 Q(see Fig 3.2).Remark 1. A theta is a graph arising from K2,3 by edge subdivision.Chudnovsky and Kapadia [CK08℄ gave a polynomial-time algorithmthat de
ides whether a graph 
ontains a theta or a prism as indu
edsubgraphs. Sin
e linear domino graphs 
ontain no indu
ed theta, the
hara
terization above and the existen
e of polynomial-time algorithmsfor re
ognizing 
ir
le graphs imply alternative polynomial-time algo-rithms to de
ide the existen
e of an indu
ed theta or prism restri
tedto linear domino graphs. Interestingly enough, the problem of de
idingwhether a graph 
ontains an indu
ed prism is NP-
omplete in general[LLMT09℄.



3.3. Super
lasses of 
ographs 373.3 Super
lasses of 
ographsIn this se
tion we 
hara
terize 
ir
le graph within two important super-
lasses of 
ographs: P4-tidy graphs and tree-
ographs. The reader interestedin an overview of this 
lasses is referred to Subse
tion 1.2.3.Let G1 and G2 be two graphs and assume that V (G1)\V (G2) = ;. Thedisjoint union of G1 and G2 is the graph G1 [G2 su
h that V (G1 [G2) =V (G1)[ V (G2) and E(G1 [G2) = E(G1)[E(G2). We denote by G1 +G2the join graph of G1 and G2, where V (G1 +G2) = V (G1) [ V (G2) andE(G1 +G2) = E(G1)[E(G2) [ fuv : u 2 V (G1) and v 2 V (G2)g.Theorem 29. [Gol04, p. 252℄. Permutation graphs are exa
tly those
ir
le graphs that have a 
ir
le model admitting an equator, i.e. anadditional 
hord meeting all the 
hords of the model.As an immediate 
onsequen
e, we obtain the following 
orollary.Corollary 7. G+ is a 
ir
le graph if and only if G is a permutationgraph.The following result is a 
onsequen
e of the 
orollary above.Lemma 3. The join G = G1 +G2 is a 
ir
le graph if and only if bothG1 and G2 are permutation graphs.Proof. Straightforward.3.3.1 P4-tidy graphsThe following lemma 
an be easily proved by means of elementary geomet-ri
al arguments.Lemma 4. Let G be a graph and let H be a graph obtained from Gby adding either a pendant vertex, or a true or false twin of a vertex.Then, H is a 
ir
le graph if and only if G is a 
ir
le graph.Theorem 30. Let G be a P4-tidy graph. Then, G is a 
ir
le graph if andonly if G 
ontains no W5, net+, tent+, or tent-with-
enter as indu
edsubgraph.Proof. It is easy to see that net+, tent+, and tent-with-
enter are not 
ir
legraphs. Sin
e the 
lass of 
ir
le graphs is hereditary, a 
ir
le graph 
ontainsno indu
ed net+, tent+, or tent-with-
enter.Conversely, let G be a P4-tidy graph that is not a 
ir
le graph. Then,G 
ontains some indu
ed graph H that is minimally not 
ir
le; i.e., H isnot a 
ir
le graph but all proper indu
ed subgraphs of H are 
ir
le graphs.
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le graphsBe
ause of the minimality, H is 
onne
ted. Suppose �rst that H is dis
on-ne
ted; i.e., H = H1 +H2 for some graphs H1 and H2. By Lemma 3, sin
eH is not a 
ir
le graph, H1 or H2 is not a permutation graph. By Corol-lary 2, H1 or H2 
ontains an indu
ed C5, net, or tent. Thus, H = H1 +H2
ontains an indu
ed W5, net+, or tent+. By minimality, H = W5, net+,or tent+. Suppose, on the 
ontrary, that H is 
onne
ted. By Theorem 10,sin
e H is a P4-tidy graph, either H is C5, P5, P5, a spider, or a fat spider.Sin
e H is not a 
ir
le graph, H is di�erent from C5, P5, and P5. Thus, His a spider or a fat spider. By Lemma 4 and the minimality, H has no trueor false twins, so H is not a fat spider. We 
on
lude that H is a spider. Let
(S,C,R) be the spider partition of H. By Lemma 4 and the minimality, His ne
essarily a thi
k spider with jSj � 3. Sin
e tent is a 
ir
le graph, eitherjSj � 4 or R 6= ;. In both 
ases, H 
ontains an indu
ed tent-with-
enterand, by minimality, H = tent-with-
enter.3.3.2 Tree 
ographsTheorem 31. Let G be a tree-
ograph. Then, G is a 
ir
le graph ifand only if G 
ontains no indu
ed (bipartite-
law)+ and no indu
ed
o-(bipartite-
law).Proof. It is easy to see that bipartite-
law+ and 
o-(bipartite-
law) are not
ir
le graphs and thus a 
ir
le graph 
ontains none of those graphs as indu
edsubgraph. Conversely, let G be a tree-
ograph that is not a 
ir
le graph.Therefore, there exists some 
onne
ted 
omponent H of G that is not a 
ir
legraph. Noti
e that H 
annot be a tree be
ause trees are 
ir
le graphs. Sin
eH is a tree-
ograph and H is 
onne
ted, H is dis
onne
ted or H is a tree.Suppose �rst that H is dis
onne
ted. Then, H = H1 +H2 for some graphsH1 and H2. By Lemma 3, we 
an assume without loss of generality thatH1 is not a permutation graph. Corollary 2 implies that H1 would 
ontainan indu
ed bipartite-
law, and so H = H1 +H2 would 
ontain an indu
ed(bipartite-
law)+ . Finally, 
onsider the 
ase when H is a tree. Sin
e H is nota 
ir
le graph, in parti
ular it is not a permutation graph. By Corollary 2,H 
ontains an indu
ed 
o-(bipartite-
law).3.4 Unit Helly 
ir
le graphsA graph G is a unit 
ir
le graph if it admits a 
ir
le model in whi
h allthe 
hords have the same length. This 
lass 
oin
ides with the 
lass of unit
ir
ular-ar
 graphs (i.e., the interse
tion graphs of a family of ar
s on a
ir
le, all of the same length) [Dur03℄. Tu
ker gave a 
hara
terization byminimal forbidden indu
ed subgraphs for this 
lass [Tu
74℄. Re
ently, linearand quadrati
-time re
ognition algorithms for this 
lass have been proposed[LS06b, DGM+06℄.



3.4. Unit Helly 
ir
le graphs 39The 
on
ept of Helly 
ir
le graph is due to Durán [Dur03℄. A graphbelongs to this 
lass if it has a 
ir
le model whose 
hords are pairwise di�er-ent and satisfy the Helly property (i.e., every subset of pairwise interse
ting
hords has a 
ommon point). In [Dur03℄, it was 
onje
tured that a 
ir
legraph is a Helly 
ir
le graph if and only if it is diamond-free. This 
onje
turewas re
ently settled a�rmatively in [DGR10℄, yielding a polynomial-timere
ognition algorithms for Helly 
ir
le graphs.In the theorem below we 
ompletely 
hara
terize unit Helly 
ir
le graphs.Theorem 32. Let G be a graph. Then, the following assertions areequivalent:1. G is a unit Helly 
ir
le graph.2. G 
ontains no indu
ed 
law, paw, diamond, or C�n for any n � 3.3. G is a 
hordless 
y
le, a 
omplete graph, or a disjoint union of
hordless paths.Proof. Let us 
onsider the 
ase when G is triangle-free. Suppose �rst that 1holds. Sin
e G is a unit 
ir
le graph, G is a unit 
ir
ular-ar
 graph. Thus,G 
ontains no indu
ed 
law or C�n for any n � 4 [Tu
74℄. This proves 1) 2(in the 
ase when G is triangle-free). Suppose now that 2 holds. If G has no
y
les, then ea
h 
onne
ted 
omponent of G is a 
law-free tree, i.e., G is thedisjoint union of 
hordless paths. So, assume that G has some 
y
le. Sin
eG is triangle-free, the shortest 
y
le H of G is a 
hordless 
y
le of length atleast 4. Sin
e G 
ontains no indu
ed 
law, triangle, or C�n for any n � 4,G = H. We 
on
lude that 2 ) 3. Finally, it is easy to build unit Helly
ir
le models of 
hordless 
y
les and of disjoint unions of 
hordless paths.Consequently, 3) 1 also holds.Let us now 
onsider the 
ase when G is not triangle-free. Suppose that 1holds and let L = fLigni=1 be a unit Helly model of G on a 
ir
le C, wheren = jV (G)j. If two di�erent 
hords L1 and L2 on C have the same length,then L1 and L2 are diameters of C or both of them are tangent to a 
ir
leC0 
on
entri
 with C. Sin
e G is not triangle-free, we 
an assume that L1,L2, and L3 are three pairwise interse
ting 
hords and, sin
e L has the Hellyproperty, there is a point P 2 L1 \ L2 \ L3. We 
laim that L1, L2, andL3 are diameters of C. Otherwise, L1, L2, and L3 would be three di�erenttangents to a 
ir
le C0 through P and this would lead to a 
ontradi
tion,be
ause it is well-known that there are at most two di�erent tangents toa 
ir
le passing through a given point. Sin
e all 
hords of L have all thesame length, then L is a family of diameters of C and, therefore, G is a
omplete. We 
on
lude that 1 , 3 be
ause 
omplete graphs are 
learlyunit Helly 
ir
le graphs. Finally, given that G 
ontains a triangle, it isstraightforward that G is 
omplete if and only if G 
ontains no indu
ed
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le graphsC�3 , paw, or diamond. (Noti
e that C�3 , paw, and diamond are all the four-vertex graphs that 
ontain the triangle as indu
ed subgraph and that arenot 
omplete.) We 
on
lude that 2, 3 also holds.



Chapter 4Probe interval graphsIn 1994, Zhang et al. introdu
ed probe interval graphs as a resear
h tool inthe frame of the genome proje
t [ZSF+94℄. In this 
hapter we investigateprobe interval graphs and probe unit interval graphs from a 
ombinatorialviewpoint. We parti
ularly fo
us on forbidden indu
ed subgraphs 
hara
-terizations for probe interval graphs and probe unit interval graphs. Someante
edents on the subje
t 
an be found in [She99℄, [BLS09℄, [BL06℄, and[PC05℄. During the last years, probe G graphs have been studied for manyhereditary 
lasses of graphs G, probe 
hordal graphs [GL04℄, probe permu-tation graphs [CCK+09℄ and probe split graphs [LdR07℄ among others. We
hara
terize by a set of minimal forbidden indu
ed subgraph probe intervalgraphs and probe unit interval graphs within tree-
ographs, P4-tidy graphsand 
o-bipartite graphs.This 
hapter is organized as follows. In Se
tion 2 we state the ne
es-sary results used throughout of this 
hapter. In Se
tion 3, we 
hara
terizeprobe interval graphs within the 
lass of 
o-bipartite graphs. In Se
tion 4,we give the forbidden subgraphs 
hara
terizations of probe interval graphsamong tree-
ographs and P4-tidy graphs. Even though these results 
anbe proved using tools developed in the following se
tion, we preferred topostpone their use for the 
onvenien
e of the reader, presenting an alterna-tive proof that impli
itly uses these tools. Se
tion 5 is devoted to introdu
ethe 
on
ept of 
ompanion of a hereditary 
lass of graphs. In Se
tion 6 andSe
tion 7, using the 
on
ept of 
ompanion introdu
ed in Se
tion 5, we 
har-a
terize probe f3K1,C4,C5g- free graphs and probe unit interval graphs,respe
tively. These results appear in [DGS℄.4.1 PreliminariesLet G = (V ,E) be a graph. Denote by (N ,P ) a partition of V su
h that Nis a stable set. Let F be a set of nonedges of G whose endpoints belong to N .A 
ompletion of G is a graph G� = (V ,E0) whose edge set is E0 = E [ F .41
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Figure 4.1: Some small graphs
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2 3Figure 4.2: Example of a probe interval graph. The white verti
es of thegraph on the left represent the nonprobe verti
es.Let G be a hereditary 
lass of graphs. The graph G is de�ned to be probeG and denoted by P(G) if there exists a partition (N ,P ) of V and a set ofnonedges F in G whose endpoints belong to N su
h that the 
ompletionG� = (V ,E [F ) of G belongs to G. Under su
h 
onditions, (N ,P ) is 
alleda probe G partition of G, the verti
es in N and P are 
alled nonprobeverti
es and probe verti
es , respe
tively.Let us see an example of probe interval graph. Consider the graphH = (V ,E) isomorphi
 to the tent whose verti
es are labelled as in Figure4.2 and let H� = (N [ P ,E [ F ) be a probe interval 
ompletion of H.Noti
e that if (N ,P ) is a probe interval partition of H, then 
i 2 N forsome i = 1, 2, 3. Suppose, by way of 
ontradi
tion, that 
i 2 P for alli = 1, 2, 3. Therefore, sin
e H is not interval, at least two verti
es of theset fs1, s2, s3g belong to N and at least a nonedge sisj with i 6= j belongsto F . Consequently, fsi, sj , 
i, 
jg indu
es the graph C4 in H�, this leadsto a 
ontradi
tion be
ause H� is an interval graph. Suppose, without lossof generality, that 
1 2 N . So, si, 
i 2 P for i = 2, 3 and thus s1 2 N andF = f
1, s1g (see the graph on the left in Figure 4.2). It is easy to 
he
k thatsu
h a 
ompletion is an interval graph (see the graph on the right in Figure4.2). Some graphs used throughout this 
hapter are depi
ted in Figure 4.1.Those trees that are probe interval graphs or probe unit interval graphshave been 
hara
terized by means of forbidden indu
ed subgraphs in [She99℄and [BLS09℄, respe
tively.
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Figure 4.3: Minimally non-probe interval trees.

Figure 4.4: Minimally nonprobe unit interval trees.Theorem 33. [She99℄ Let G be a tree. Then, G is a probe intervalgraph if and only if G 
ontains no indu
ed Π1 or Π2 (see Fig. 4.3).Theorem 34. [BLS09℄ Let G be a tree. Then, G is a probe unit intervalgraph if and only if G 
ontains no indu
ed bipartite 
law, L, or Hn forany n � 0 (see Fig 4.4).4.2 Co-bipartite graphsIn [BL06℄, is presented a 
hara
terization by means of forbidden indu
edsubgraphs of those bipartite graphs that are probe interval. In addition, itis showed the relationship between probe interval graphs, bigraphs and the
omplements of 
ir
ular-ar
 graphs within the 
lass of bipartite graphs. Inthis se
tion we present a forbidden indu
ed subgraph 
hara
terization forprobe interval graphs within the 
lass of those graphs whose 
omplement isbipartite. Furthermore, we show that, restri
ted to the 
lass of 
o-bipartitegraphs, probe interval graphs, probe f3K1,C4,C5g-free graphs and probeunit interval graphs are the same 
lasses.Given a graph G, D � V (G) is 
alled a dominating set if every vertexv 2 V (G) either belongs to D or is adja
ent to a vertex in D.Lemma 5. [GT04℄ Odd 
y
les of length at least �ve are nonprobe in-terval.Lemma 6. [LZ94℄ Let G be a triangle free graph. G is fP6,C6g-free ifand only if every indu
ed 
onne
ted subgraph of G has a dominating
omplete bipartite subgraph isomorphi
 to Kn,m with n,m � 1.



44 Chapter 4. Probe interval graphsThe following lemma follows from Lemma 6.Lemma 7. Let G = (V ,E) be a 
onne
ted bipartite f2P3, 3K2,P6,C6,Fg-free graph. Then, either G has diameter at most 3, or there exists apendant vertex v 2 V su
h that H = G[V � v] has diameter at most 3.Proof. Let G be a 
onne
ted bipartite f2P3, 3K2,P6,C6,Fg-free graph. ByLemma 6, sin
e G is bipartite and fP6,C6g-free there exists a dominating
omplete bipartite graph H = (V 0,E0) su
h that V 0 
an be partitioned intotwo stable sets A and B. Sin
e G is bipartite, either NV (H)(v) \A = ;or NV (H)(v) \B = ; for every vertex v 2 V � (A [B). We will 
all A0the set of verti
es of V n V 0 whose neighbors belong to A and B0 the set ofverti
es of V n V 0 whose neighbors belong to B. Assume that there existtwo verti
es u, v 2 V su
h that d(u, v) = 4. Noti
e that either u, v 2 A0 oru, v 2 B0. Suppose, without loss generality, that u, v 2 A0, let u0 2 A andv0 2 A be a neighbor of u and v, respe
tively. On the one hand, sin
e G isF�free, Tb02B0 N(b0) 6= ;; i.e., all verti
es in B0 have a 
ommon neighbor.Consequently, given a vertex b0 2 B0, d(b0, z) � 3 for all verti
es z 2 V . Onthe other hand, sin
e G is 3K2�free, every vertex w 2 A0 is either adja
entto u0 or adja
ent to v0. Sin
e G is 2P3�free, either u or v is a pendant vertex.If A0 = fu, vg, u or v would satisfy the 
ondition of the lemma. So, we 
anassume that A0 n fu, vg 6= ;. Suppose, without loss of generality that u isthe pendant vertex. Sin
e G is 2P3�free, if u1 2 A0 n fug is adja
ent to u0and v1 2 A0 n fvg is adja
ent to v0, then u1 is adja
ent to v0 or v1 is adja
entto u0. Consequently, u is a pendant vertex satisfying the 
onditions of thelemma.Lemma 7 implies the following 
hara
terization.Theorem 35. Let G be a 
o-bipartite graph. Then, the following state-ments are equivalent:1. G is a probe interval graph;2. G is a probe unit interval graph;3. G is probe f3K1,C4,C5g-free;4. G is f2P3, 3K2,P6,C6,Fg-free.Proof. It is easy to see that 2P3, 3K2,P6,C6 and F are neither probe inter-val, nor probe unit interval, nor probe f3K1,C4,C5g-free.Conversely, let G = (V ,E) be a f2P3, 3K2,P6,C6,Fg-free 
o-bipartitegraph. Consider the 
omplement graph of G, G. By Theorem 2, if G haddiameter at most 3; i.e., G were 2K2�free, then G would be an intervalgraph. Therefore, we 
an assume that G has diameter 4. By Lemma 7,there exists a pendant vertex v 2 V , whose neighbor we will 
all v0, su
h



4.2. Co-bipartite graphs 45that H = G[V � v] has diameter at most 3. Consequently, the 
ompletionG�(N [ P ,E [ F ), where N = fv, v0g, P = V n N and F = fvv0g, isan interval graph. Finally, sin
e G� is also 
o-bipartite and interval, G isfC4,C5g�free, 3K1�free (
onsequently, 
law-free) and thus f3K1,C4,C5g-free and unit interval. Therefore, G is probe f3K1,C4,C5g-free and probeunit interval.As a 
onsequen
e of Lemma 7, we obtain the following 
orollary.Corollary 8. Let G be the 
omplement of a tree. Then, the followingassertions are equivalent:1. G is a probe f3K1,C4,C5g-free graph.2. G is a probe unit interval graph.3. G is a probe interval graph.4. G is f3K2, 2P3,P6g-free.5. G is f
o-bipartite-
law,H,P6g-free.(Here, 4. is a minimal forbidden indu
ed subgraph 
hara
terization,while 5. is a minimal forbidden 
onne
ted indu
ed subgraph 
hara
ter-ization.)Proof. The equivalen
e between the �rst four statements follows from The-orem 35.Let us see the equivalen
e between 4. and 5.. Sin
e G is f3K2, 2P3,P6g-free, then G is fbipartite-
law,H,P6g-free. Conversely, let G be a P6�freetree. If G 
ontains either an indu
ed 2P3 or an indu
ed 3K2, then G 
ontainseither an indu
ed H or an indu
ed bipartite-
law, respe
tively.The following theorem gives a forbidden indu
ed subgraph 
hara
teriza-tion of probe f3K1,C4,C5g-free graphs among trees. The 
lass of the probef3K1,C4,C5g-free graphs will be useful in the following se
tions when deal-ing with the 
lass of probe unit interval graphs.Theorem 36. Let G be a tree. Then, the following assertions are equiv-alent:1. G is a probe f3K1,C4,C5g-free graph.2. G 
ontains no indu
ed 2K2 [K1 or P4 [K1.3. G 
ontains no indu
ed E or P6.(Here, 2. is a minimal forbidden indu
ed subgraph 
hara
terization,while 3. is a minimal forbidden 
onne
ted indu
ed subgraph 
hara
ter-ization.)



46 Chapter 4. Probe interval graphsProof. First, we will prove the equivalen
e between 1. and 3.. It is straight-forward to verify that E and P6 are nonprobe f3K1,C4,C5g-free graphs.Conversely, suppose that G is fE,P6g-free. Let P = v1v2v3 � � � vn be apath of maximum length of G. Sin
e G is a tree and P is of maximumlength, v1 and vn are pendant verti
es of G. Sin
e G 
ontains no indu
edP6, n � 5. Sin
e G is an E-free tree and P is of maximum length, for ea
hi 2 f2, : : : ,n� 1g, the neighbors of vi in G di�erent from vi�1 and vi+1 arependant verti
es of G. If n � 3, G is probe 
omplete and, in parti
ular, itis a probe f3K1,C4,C5g-free graph. So, assume that 4 � n � 5. If n = 5,dG(v3) = 2 be
ause G 
ontains no indu
ed E. Let N1 = NG(v2) n fv3gand let N2 = NG(vn�1) n fv2g (so, if n = 5, N2 = NG(vn�1)). Hen
e, wesplit V (G) into N = N1 [N2 whi
h is 
learly an independent set of G andP = V (G)�N . The graph G� that arises from G by adding all the edgesjoining two verti
es of N1 and all the edges joining two verti
es of N2 is3K1-free and 
hordal. Thus, G� is a f3K1,C4,C5g-free 
ompletion of G.It 
an be easily seen that if G is f2K2 [K1,P4 [K1g-free, then G doesnot 
ontain any indu
ed E and P6. Conversely, ifG is P6�free andG 
ontainseither an indu
ed 2K2 [K1 or an indu
ed P4 [K1 and G is a tree, then G
ontains an indu
ed E. Consequently, if G is a fE,P6g�free tree, then G
ontains no indu
ed 2K2 [K1 or P4 [K1.
4.3 Probe interval graphsLemma 8. Let G1 and G2 be two graphs. Then, G1 +G2 is an intervalgraph if and only if one of G1 and G2 is interval and the other one is
omplete.Proof. Sin
e interval graphs are a hereditary 
lass, if G1 +G2 is an intervalgraph then G1 and G2 are interval graphs. Suppose that none of G1 andG2 is 
omplete. Then, there exist two nonadja
ent verti
es vi1, vi2 2 V (Gi)for i = 1, 2. Consequently, fv11 , v12 , v21 , v22g indu
es C4 in G1 +G2 and thusG1 +G2 is not interval. Conversely, suppose that G1 or G2 is interval andthe other one a 
omplete, say G1 is interval and G2 is a 
omplete. So, we
an 
onstru
t an interval model for G1 +G2 from the interval model I ofG1 by adding as many intervals as the number of verti
es of G2, 
overingthe whole interval model I.Lemma 9. Let G1 and G2 be two graphs. Then, G1 +G2 is a probeinterval graph if and only if only if one of the following assertionsholds:1. One of G1 and G2 is 
omplete and the other one is probe interval.



4.3. Probe interval graphs 472. One of G1 and G2 is probe 
omplete and the other one is interval.Proof. Let G1 and G2 be two graphs and let H = G1+G2 be probe interval.Therefore, there exists a probe interval 
ompletion H� = (N [P ,E [F ) ofH su
h that H� is an interval graph. Sin
e H = G1+G2, either N � V (G1)or N � V (G2). Assume, without loss of generality, that N � V (G1); i.e.,H� = G�1 + G2 with G�1 = (V (G1),E(G1) [ F ). By Lemma 8, sin
e H�is an interval graph, one of G�1 and G2 is a 
omplete and the other one isinterval. So, either G1 is probe 
omplete and G2 is an interval graph or G1is a probe interval and G2 is a 
omplete.Noti
e the following immediate 
lass in
lusion:
omplete � probe 
omplete � interval � probe interval.The following Theorem 
hara
terizes all minimal nonprobe interval graphswhose 
omplement is dis
onne
ted.Theorem 37. The minimally nonprobe interval graphs whose 
omple-ment is dis
onne
ted are bipartite-
law+ 2K1, umbrella+ 2K1, n-net+2K1 for any n � 2, n-tent+ 2K1 for any n � 3, 3K2, or 2P3.Proof. Let G be a minimally nonprobe interval graph whose 
omplement isdis
onne
ted. Therefore, there exist two graphs G1 and G2 su
h that G isthe join between them; i.e., G = G1 +G2. By minimality, G1 and G2 areprobe interval. Sin
e G = G1 +G2 is nonprobe interval, by Lemma 8, noneof G1 and G2 is 
omplete.Suppose that one of G1 and G2 is probe 
omplete, say G2. Then, G1 isnot interval be
ause otherwise G1 +G2 would be probe interval. Sin
e, forea
h v1 2 V (G1), (G1 � v1) +G2 is probe interval and G2 is not 
omplete,G1 � v1 is an interval graph. Thus, G1 is a minimally not interval graph.Sin
e, for ea
h v2 2 V (G2), G1 + (G2 � v2) is probe interval and G1 is notinterval, G2� v2 is 
omplete. Sin
e G2 is not 
omplete, G2 = 2K1. Sin
e G1is probe interval, G1 is not a 
y
le of length at least 5 (see Lemma 5). We
on
lude that G equals bipartite-
law + 2K1, umbrella+ 2K1, n-net+ 2K1for some n � 2, n-tent+ 2K1 for some n � 3, or C4 + 2K1 = 3K2.We 
an now assume that G1 and G2 are nonprobe 
omplete. Therefore,sin
e (G1 � v1) +G2 is probe interval, G1 � v1 is probe 
omplete, for ea
hv1 2 V (G1). So G1 is a minimally nonprobe 
omplete, i.e., P3 or C4 (seeLemma 1). Symmetri
ally, G2 is P3 or C4. If G1 = C4 or G2 = C4, then G
ontains a proper indu
ed C4 + 2K1, a 
ontradi
tion. So, G = 2P3.The following theorem 
hara
terizes those probe interval graphs amongtree-
ographs.
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Figure 4.5: Some spiders.Theorem 38. Let G be a tree-
ograph. Then, G is a probe interval graphif and only if G 
ontains no indu
ed Π1, Π2, bipartite-
law+ 2K1, 3K2,2P3, or P6.Proof. It su�
es to prove that if G is a tree-
ograph nonprobe intervalgraph, then G 
ontains an indu
ed Π1, Π2, bipartite-
law + 2K1, 3K2, 2P3,or P6.So, assume that G is not a probe interval tree-
ograph. Therefore, G 
on-tains an indu
ed subgraph H that is a minimally nonprobe interval graph.Sin
e G is a tree-
ograph, H is also a tree-
ograph. Consequently, H is dis-
onne
ted, or the 
omplement ofH is dis
onne
ted, orH is a tree, orH is the
omplement of a tree. By minimality of H, H is not dis
onne
ted be
ausethe disjoint union of probe interval graphs is also a probe interval graph.If the 
omplement of H is dis
onne
ted, then (by Theorem 37) H equalsbipartite-
law + 2K1, 3K2 or 2P3 (noti
e that umbrella+ 2K1, n-net+ 2K1for any n � 2, and n-tent+ 2K1 for any n � 3 are not tree-
ographs). If His a tree, Theorem 33 implies that H equals Π1 or Π2. Finally, 
onsider the
ase when H is the 
omplement of a tree. By Theorem 8, H equals 3K2,2P3, or P6.In order to 
hara
terize those probe interval graphs among P4-tidy graphs,we need the following lemma that 
hara
terizes those spiders that are probeinterval.Lemma 10. Let H be a spider with spider partition (C,S,R). Then, His probe interval if and only if one of the following 
onditions holds:1. jCj = 3 and H [R] is interval.2. jCj = 2 and H [R] is probe interval.Moreover, if H is probe interval, then a fat spider H 0 that arises fromH is also probe interval ex
ept when jCj = 2, H 0 arises by making afalse twin of a vertex of C, and H [R] is not interval.Proof. Let H = (V ,E) be a thi
k (thin) spider with partition (C,S,R) thatis probe interval with a 
ompletion H� = (V ,E [ F ) and probe intervalpartition (N ,P ). Suppose that jCj � 4 and let 
1, 
2, 
3, 
4 be di�erent
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es in C. Noti
e that if a tent (net) is an indu
ed subgraph of H, thenexa
tly a vertex of degree four (three) belongs to N . Let s1, s2, s3, s4 bedi�erent verti
es of S su
h that si adja
ent to any vertex in C but 
i (siis only adja
ent to 
i) for all 1 � i � jCj. So, f
1, 
2, 
3, s1, s2, s3g indu
esa tent (net) and thus one of 
1, 
2, 
3 belongs to N , say 
1. Analogously,f
2, 
3, 
4, s2, s3, s4g also indu
es a tent (net) and one of 
2, 
3, 
4 belongsto N , but all of them are adja
ent to 
1, a 
ontradi
tion. Consequently,2 � jCj � 3. Assume that jCj = 3. Sin
e H is probe interval, H [C [R] =H [C ] + H [R] is also probe interval. On the one hand, sin
e H [C ] is a
omplete, by Lemma 9, H [R] is probe interval. On the other hand, sin
efs1, s2, s3, 
1, 
2, 
3g indu
es a tent (net), one of the verti
es in C is nonprobeand thus any vertex in R is probe. So, H [R] is interval. Now, assume thatjCj = 2. Sin
e C is a 
omplete and H is probe interval, H [C ] +H [R] isprobe interval. Thus, by Lemma 9, H [R] is probe interval. Conversely, it isstraightforward to 
onstru
t a probe interval model of a thi
k (thin) spiderthat satis�es 
ondition 1. or 2..Let H 0 be a fat spider that arises from H. If H 0 arises by making atwin of a vertex s 2 S, then H 0 is also probe interval. Indeed, if H� =
(V (H),E(H)[F ) is a probe interval 
ompletion of H with a probe intervalpartition (N ,P ) 
hosen (by symmetry) in su
h a way that s 2 N if s0 is afalse twin and sinP if s0 is a true twin, then (N ,P ) 
an be extended to aprobe interval partition (N 0P 0) of H 0 by taking also the twin s0 of s as anonprobe vertex (N 0 = N [ fsg) if it is a false twin and as a probe vertex(P 0 = P [ fsg) if it is a true twin. Therefore, H 0� = (N 0 [P ,E(H 0) [ F 0),with F 0 = F [ fss0g [ fvs0 : vs 2 Fg if s0 is a false twin and F 0 = F if s0is a true twin, is interval be
ause the graph obtained by adding true twinsto an interval graph is also interval. Suppose now that H 0 arises from avertex 
 2 C by making a true twin. Then H 0 is probe interval. In fa
t,any partition (N ,P ) of H where 
 2 P 
an be extended to a partition ofH 0 where the new vertex is also a probe vertex. Finally, 
onsider the 
asewhere H arises by making a false twin of a vertex 
 2 C. If H [R] were notinterval and thus jCj = 2, then H would 
ontain H [R] + 2K1, where H [R]is a forbidden indu
ed subgraph for the 
lass of interval graphs. Therefore,H 0 would not be probe interval. Noti
e that if H [R] is interval, then 
learlyH 0 is an interval, simply look for a partition where 
 and the false twin ofit are both nonprobe, and the verti
es of R are all probe.Let H be the set formed by all the minimally not interval graphs ex
eptthe indu
ed 
y
les with at least �ve verti
es.The graphs belonging to H are probe interval. In addition, it 
an beproved that every probe interval partition of a graph belonging toH 
ontainsat least two nonadja
ent probe interval verti
es. Therefore, the graph thatarises from a graph belonging to H by adding two nonadja
ent universal
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es is a minimally nonprobe interval.Corollary 9. The minimally nonprobe interval graphs that are spidersor fat spiders are the graphs: thi
k3(H), thin3(H), for H 2 H, thin4and thi
k4.Proof. It is straightforward to 
he
k that all the graphs of the 
orollary areminimally nonprobe interval. Let G be a thi
k (thin) spider with partition
(C,S,R) that is minimally nonprobe interval. If jCj were of size at least 4,then G would 
ontain thi
k4 (thin4) as indu
ed subgraph and by minimalityG = thi
k4 (G = thin4). Now, we may assume that jCj � 3. Indeed, byLemma 10, sin
e G is nonprobe interval, it su�
es to 
onsider jCj = 3.By minimality, G[R] is probe interval and by Lemma 10 it 
annot be aninterval graph. By Theorem 2, the only minimal not interval graphs thatare probe interval are those graphs belonging to H. Therefore, G 
ontainsthi
k3(H) (thin3(H)) for some H 2 H as indu
ed subgraph. Furthermore,by minimality, G is exa
tly that graph.Let G be a fat spider that is a minimally nonprobe interval. By Corollary10, G arises from a spider with jCj = 2 and H [R] is not an interval graph bymaking a false twin of a vertex in C. Assume that C = f
1, 
2g, S = fs1, s2gand v is a false twin of 
1. By minimality G� v is probe interval. By Lemma10 and minimality, H [R] is probe interval but it is not an interval graph.Consequently, H [R] 
ontains an indu
ed minimally not interval graph W .By minimality, W 2 H. Sin
e v is not adja
ent to 
1 and they are 
ompleteto W , G 
ontains an indu
ed U = W + 2K2 with W 2 H. By Lemma 9 itfollows that U is minimally nonprobe interval. By minimality, G = U , thisleads to a 
ontradi
tion be
ause U is not a spider.Theorem 39. Let G be a P4-tidy graph. Then, G is a probe inter-val graph if and only if G 
ontains no indu
ed net+ 2K1, tent+ 2K1,3K2, 2P3, C5, thin3(net), thi
k3(net), thin3(tent), thi
k3(tent), thin4, orthi
k4.Proof. Let G be a minimally nonprobe interval graph that is a P4-tidygraph. By minimality, G is 
onne
ted. If G were dis
onne
ted then, byTheorem 37, G would be isomorphi
 to either net+ 2K1, or tent+ 2K1, or3K2, or 2P3. So, we may assume that G is 
onne
ted. By Theorem 10, G isC5, P5, P5, a spider or a fat spider. Noti
e that P5 and P5 are probe intervalgraphs. So, G is isomorphi
 to C5 or, by Corollary 9, G is isomorphi
 toeither thin3(H), or thi
k3(H), for H 2 fnet, tentg, or thin4, or thi
k4.4.4 Graphs 
lasses with a 
ompanionLet G be a hereditary 
lass. We say that a 
lass H is the 
ompanion ofG if and only if, given any two graphs G1 and G2, the following holds:
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lasses with a 
ompanion 51G1 +G2 2 G if and only if one of G1 and G2 is 
omplete and the otherone belongs to H.For example, by Lemma 8, the 
lass of interval graphs is its own 
om-panion and the 
ompanion. Using the Robert's 
hara
terizations for unitinterval graphs [Rob69℄ it follows that the 
ompanion of the 
lass of unitinterval graphs is the 
lass of f3K1,C4,C5g-free graphs. Noti
e also thatthe 
ompanion of the 
lass f3K1,C4,C5g-free is itself.In what follows, we denote by K the 
lass of nonempty 
omplete graphs.Lemma 11. Let G be a hereditary graph 
lass and H be its 
ompanion.Then, the following assertions hold:1. K � H � G.2. H is a hereditary 
lass.3. H is its own 
ompanion.4. C4 /2 G.5. If H 6= K, then C4 is a minimally not G graph and a probe Hgraph.Proof. Let H 2 H. Sin
e H is the 
ompanion of G, Kn + H 2 G forevery positive integer n. Sin
e G is hereditary, K � G and H � G. Sin
eK � G, Kn +Kn 2 G for every positive integer n, and therefore K � H.We 
on
lude that K � H � G. On the other hand, sin
e G is an hereditary
lass H 0 +K1 2 G for any H 0 subgraph of H. Therefore, H 0 2 K � H orH 0 2 H. Consequently, H is a hereditary 
lass. 3. is immediate from 1. andthe de�nition of hereditary 
lass with a 
ompanion. C4 does not belong toG be
ause C4 = 2K1 + 2K1 and 2K1 /2 K.Assume now that H 6= K. Sin
e H is hereditary, 2K1 2 H and 
onse-quently P3 = K1 + 2K1 2 G. Moreover, sin
e 2K1 2 H, K1 + diamond =K3+ 2K1 2 G, whi
h implies that diamond 2 H. Therefore, C4 is minimallynot a G graph but it is a probe H graph.The following lemma shows the behavior of the join operator respe
t toa hereditary 
lass with a 
ompanion.In what follows, a graph G is said to be a G�graph for a 
lass G if Gbelongs to the 
lass G.Lemma 12. Let G be a hereditary graph 
lass with 
ompanion H andlet G1 and G2 be two nonempty graphs. Then, G1 +G2 is a probe Ggraph if and only if at least one of the following 
onditions holds:
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omplete and the other one is a probe H�graph.2. One of G1 and G2 is probe 
omplete and the other one is an H�graph.Proof. The �if� part is straightforward. So, we are going to prove the�only if� part. Let G = G1 +G2 be a probe G graph, with G a hereditary
lass with a 
ompanion H. Therefore, there exists a 
ompletion G� =
(V (G),E(G)[F ) with a probe interval partition (N ,P ) su
h that G� 2 G.Sin
e N is an independent set, N � V (G1) or N � V (G2). Assume, withoutloss of generality, that N � V (G1) and we 
all G�1 to the graph whose vertexset is V (G1) and whose edge set is E(G1)[F . Consequently, sin
e H is the
ompanion of G, either G�1 is 
omplete (G1 is probe 
omplete) or G�1 2 H(G1 is probe H) and G2 2 H or G2 is 
omplete, respe
tively.The following theorem gives a tool to 
al
ulate the minimally not probeG graphs for a hereditary 
lass G with a 
ompanion H 6= K.Theorem 40. Let G be a hereditary graph 
lass and H be its 
ompanion.If H 6= K, then the only minimally nonprobe G graphs with dis
onne
ted
omplements are:1. the graphs F +K1 for ea
h F 2 P(G) that is minimally nonprobeH;2. the graphs F + 2K1 for ea
h F 2 P(G) that is minimally not X ,where X = P(K) [H;3. the graphs F1 + F2 for ea
h F1,F2 2 P(K) that are minimally notH;4. the graph 2P3.Proof. Let G be a minimally nonprobe G graph with dis
onne
ted 
omple-ment. Then, G = G1 +G2 where G1 and G2 are nonempty graphs.Suppose that G2 is a 
omplete. Sin
e G1+G2 is not a probe G graph, G1is not a probe H graph, see Lemma 12. By minimality and Lemma 12, G2 isisomorphi
 to K1 and thus G1 +K1 is nonprobe G. Sin
e G1 is not a probeH graph, in parti
ular, G1 is not 
omplete. Sin
e (G1 � v1) +K1 is probeG, G1 � v1 is a probe H graph for ea
h v1 2 V (G1). So, G is isomorphi
 toF +K1 where F is minimally nonprobe H and a probe G graph. In whatfollows, we 
an assume that G1 and G2 are not 
omplete.Suppose that G2 
ontains an indu
ed C4. Sin
e (G1� v1) +C4 is probeG and C4 is neither anH graph nor probe 
omplete, then G1� v1 is 
ompletefor ea
h v1 2 V (G1). So, by Lemma 12, sin
e G1 is not 
omplete, G1 is
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hara
terization of probe f3K1,C4,C5g-free graphs 53isomorphi
 to 2K1. Sin
e C4 + 2K1 is not a probe G graph, by minimalityG = C4 + 2K1. Noti
e that C4 is minimally not X and probe G. In whatfollows, we 
an assume that G1 and G2 
ontain no indu
ed C4.Suppose that G2 is probe 
omplete and an H graph. Sin
e G1 +G2 isnot a probe G graph, G1 is not a X graph. Sin
e (G1 � v1) +G2 is probea G graph, G1 � v1 is a X graph. So, G1 is minimally not X graph. Sin
eG1+ (G2� v2) is a probe G graph, G2� v2 is 
omplete for ea
h v2 2 V (G2).Sin
e G2 is not 
omplete, G2 = 2K1. So, G = F + 2K1 where F is aminimally not X graph that is probe G.Suppose that G2 is probe 
omplete but it is not an H graph. Sin
eG1+G2 is not a probe G graph, G1 is not an H graph. Sin
e (G1� v1) +G2is a probe G graph, G1 � v1 is an H graph. So, G1 is minimally not H.Suppose, by way of 
ontradi
tion, that G1 is nonprobe 
omplete. Sin
eG1+ (G2� v2) is a probe G graph, G2� v2 is 
omplete for ea
h v2 2 V (G2).Sin
e G2 is not 
omplete, G2 is isomorphi
 to 2K1. Sin
e G2 is not an Hgraph, then H � K, a 
ontradi
tion. The 
ontradi
tion arose by assumingthat G1 is nonprobe 
omplete. Therefore, G1 is probe 
omplete. Sin
e G1 isnot an H graph, by symmetry, G2 is a minimally not H graph. We 
on
ludethat G = F1 + F2 where F1 and F2 are minimally not H graphs and probe
omplete.Finally, we 
an assume that G1 and G2 are nonprobe 
omplete. Sin
e G1and G2 
ontain no indu
ed C4, by Lemma 1, G1 and G2 
ontain an indu
edP3 ea
h. By minimality, G is isomorphi
 to 2P3.Noti
e that Theorem 37 follows easily from the above theorem. Indeed,by Lemma 8, the 
lass I of interval graphs is the 
ompanion of itself. Sin
eP(K) � I, P(K) [ I = I and none of the minimally not I graphs is probe
omplete, the only minimally not I graphs that are nonprobe I graphs arethe 
y
les Cn for ea
h n � 5.Remark 2. If H = K, the graphs belonging to G are P3-free (i.e., aredisjoint unions of 
ompletes) and the minimally nonprobe G graphswith dis
onne
ted 
omplement are C4 and P3, if P3 /2 G; or C4 and paw,otherwise.4.5 Partial 
hara
terization of probe f3K1,C4,C5g-free graphsThreshold graphs, introdu
ed by Chvátal and Hammer in 1975 [CH75℄, 
anbe de�ned as f2K2,P4,C4g-free graphs. Threshold graphs are a sub
lass ofsplit graphs. For more details of this 
lass of graphs see [Gol04℄ or Se
tion1.2.



54 Chapter 4. Probe interval graphsLemma 13. The minimally nonprobe f3K1,C4,C5g-free graphs that aredis
onne
ted are 2K2 [K1, P4 [K1, and C4 [K1.Proof. It is straightforward to 
he
k that 2K2 [K1, P4 [K1, and C4 [K1are minimally nonprobe f3K1,C4,C5g-free graphs.Conversely, let H be a dis
onne
ted minimally nonprobe f3K1,C4,C5g-free graph. Suppose, by the way of 
ontradi
tion, that H does not 
ontain2K2 [K1, P4 [K1, and C4 [K1 as indu
ed subgraph. Consequently, H iseither a threshold graph or the union of two threshold graphs H1, H2 withno indu
ed K2 [K1 (i.e., split 
omplete graphs).In the �rst 
ase, let N be the stable set in the split partition of H. Thegraph H� that arises from H by adding all the edges uv with u, v 2 Nis 
o-bipartite. So, H� is a 
ompletion of H with partition (N ,P ) (P =V (H) � N) that is f3K1,C5g-free. Next, we will prove that H� is alsoC4-free. Let A = fu, v,x, yg be a set of verti
es of H� su
h that H�[A]is isomorphi
 to C4. Noti
e that, by 
onstru
tion, we 
an assume thatu, v 2 N , x, y 2 P , u is adja
ent to x and v is adja
ent to y. But then Aindu
es a P4 in H, a 
ontradi
tion.In the se
ond 
ase, let N be the union of the stable sets in the splitpartitions of H1 and H2. Let H� be the graph that arises from H by addingall the edges uv with u, v 2 N . Then H� 
an be obtained from P4 by addingtrue twin verti
es. It is easy to see then that it is f3K1,C4,C5g-free.As a 
onsequen
e of Theorem 40 we 
an 
al
ulate all minimally nonprobef3K1,C4,C5g-free graphs whose 
omplement are dis
onne
ted.In what follows, T and L denote the 
lass of f3K1,C4,C5g-free graphsand P(K) [ T respe
tively.Lemma 14. The minimally nonprobe f3K1,C4,C5g-free graphs with dis-
onne
ted 
omplement are (K2[2K1)+ 2K1, (P3[K1)+ 2K1, 3K2, K3,3,and 2P3.Proof. Re
all that the 
lass T is its own 
ompanion. Let F be a minimallynot L graph. We 
laim that F isomorphi
 to either K2 [ 2K1, or P3 [K1,or C4, or C5. Indeed, sin
e F is not a T graph, F 
ontains an indu
ed 3K1,C4, or C5. If F 
ontained an indu
ed C4 or C5, then, by minimality, Fwould be either isomorphi
 to C4, or isomorphi
 to C5. So, we may assumethat F 
ontains an indu
ed 3K1 and no indu
ed C4 or C5. Let S be a setthat indu
es a 3K1 in F . Sin
e F is nonprobe 
omplete and F 
ontains noindu
ed C4, F 
ontains an indu
ed P3 (see Lemma 1). Let W be a set thatindu
es a P3 in F and e = uv be the only edge joining two verti
es of Win F . If e has one endpoint either in S or adja
ent to a vertex in S (sayu), then F 
ontains an indu
ed K2 [ 2K1 or P3 [K1, or S [ fvg indu
es a
law. If F 
ontains an indu
ed K2 [ 2K1 or P3 [K1, then, by minimality,
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hara
terization of probe f3K1,C4,C5g-free graphs 55F is either isomorphi
 to K2 [ 2K1 or isomorphi
 to P3 [K1. Suppose,by way of 
ontradi
tion, that F 
ontains neither an indu
ed K2 [ 2K1 noran indu
ed P3 [K1. Then, S [ fvg indu
es a 
law. Let w be su
h thatW = fu, v,wg. Sin
e F 
ontains no indu
ed P3 [K1, w is adja
ent toboth verti
es of S � fug and 
onsequently F 
ontains an indu
ed C4, a
ontradi
tion. Noti
e that K2 [ 2K1, P3 [K1, C4 are probe f3K1,C4,C5g-free graphs, but C5 is not a probe f3K1,C4,C5g-free graphs. Finally, theonly minimally not T graph that is probe 
omplete is 3K1. The resultsfollows now from Theorem 40.Theorem 41. Let G be a tree-
ograph. Then, G is a probe f3K1,C4,C5g-free graph if and only if G 
ontains no indu
ed 2K2 [K1, P4 [K1,C4 [K1, (K2 [ 2K1) + 2K1, (P3 [K1) + 2K1, 3K2, K3,3, 2P3, or P6.Proof. Let H be a minimally nonprobe f3K1,C4,C5g-free graph that is atree-
ograph. If H is dis
onne
ted, H is 2K2 [K1, P4 [K1, or C4 [K1. IfH is dis
onne
ted, H is (K2 [ 2K1) + 2K1, (P3 [K1) + 2K1, 3K2, K3,3, or2P3. By Theorem 36, there are no minimal probe f3K1,C4,C5g-free graphsthat are trees. If H is the 
omplement of a tree, by Theorem 8, H is P6, or2P3, or 3K2.Lemma 15. Let H be a spider with spider partition (S,C,R). Then, His probe f3K1,C4,C5g-free graph if and only if H = thin2(tK1) for somet � 0. Moreover, if H is a probe f3K1,C4,C5g-free graph and H 0 is afat spider that arises from H, then H 0 is also a probe f3K1,C4,C5g-freegraph ex
ept when t � 1 and H 0 arises from H by making a false twinof a vertex of C.Proof. Let H be a spider with partition (S,C,R). Sin
e H is P4 [K1�free and tent�free, jCj = 2. Noti
e that R is an independent set be
ausethin2(K2) is nonprobe f3K1,C4,C5g-free graph. We 
on
lude that H =thin2(tK1) for some t � 0. Clearly, thin2(tK1) is a probe f3K1,C4,C5g-freegraph. By setting all verti
es of S [C as probe verti
es (P ) and the verti
esof R as nonprobe verti
es (N) and adding all the edges whose endpointsbelong to N (F ), we obtain the 
ompletion H� = (N [ P ,E(H)[ F ) of Hthat is f3K1,C4,C5g-free. Therefore, H is probe f3K1,C4,C5g-free.Suppose that H is a probe f3K1,C4,C5g-free graph and let H 0 be afat spider arising from H. Let v a false twin of a vertex s 2 S. Considerthe following probe partition (N ,P ): N = R [ fv, sg and P = V (H)�Nand denote by F the edges whose endpoints belong to N . Consequently,the 
ompletion H� = (N [ P ,E(H) [ F ) is f3K1,C4,C5g-free. Now, letv be a true twin of a vertex s 2 S. Consider the following (N ,P ) probepartition: N = R [ (S n fs, vg) and P = V (H)�N . So, the 
ompletionH� = (V (H),E(H) [ F ) with probe partition (N ,P ), where F are theedges whose endpoints belong to N , is f3K1,C4,C5g-free. Therefore, if H 0



56 Chapter 4. Probe interval graphsarises by making a twin of a vertex s 2 S, then H 0 is a probe f3K1,C4,C5g-free graph. We have already seen a probe interval partition of H where ea
h
 2 C is a probe vertex having a f3K1,C4,C5g-free 
ompletion. Therefore,if H 0 arises by making a true twin of a vertex of C, H 0 is also a probef3K1,C4,C5g-free graph. Finally, assume that H 0 arises by making a falsetwin of a vertex 
 2 C. If t = 0, then H 0 is 
learly a probe f3K1,C4,C5g-freegraph. If t � 1, then H 0 is not a probe f3K1,C4,C5g-free graph be
ause it
ontains an indu
ed C4 [K1.Lemma 16. The minimally nonprobe f3K1,C4,C5g-free graphs that arespiders or fat spiders are tent and thin2(K2).Proof. By minimality jCj � 3 (otherwise 
ontains P4 [K1 or tent as properindu
ed subgraphs). If jCj = 3, then H is a thi
k spider (otherwise it
ontains P4 [K1 as proper indu
ed subgraph). If jCj = 3 and H is thi
k,then H 
ontains an indu
ed tent and, by minimality, H = tent. Therefore,we 
an assume that jCj = 2. If H [R] were a stable set, then, by the abovelemma, H is a spider, a 
ontradi
tion. Therefore, R is not a stable set. So,H 
ontains an indu
ed thin2(K2) and, by minimality, H = thin2(K2).Suppose, by way of 
ontradi
tion, that there is a fat spider H 0 thatis minimally nonprobe f3K1,C4,C5g-free graph. By minimality, H 0 arisesfrom a spider H that is a probe f3K1,C4,C5g-free graph. So, by the abovelemma, H = thin2(tK1) for some t � 1 and H arises by making a false twinof a vertex of C. Then, H 0 
ontains an indu
ed C4 [K1. By minimality,H 0 = C4 [K1, this leads to a 
ontradi
tion be
ause H 0 is a fat spider.This 
ontradi
tion proves that there are no minimally not f3K1,C4,C5g-free graph that are fat spiders.By 
ombining Lemmas 13, 14 and 16 it is obtained the following 
har-a
terization.Theorem 42. Let G be a P4-tidy graph. Then, G is a probe f3K1,C4,C5g-free graph if and only if G 
ontains no indu
ed 2K2 [K1, P4 [ K1,C4 [K1, (K2 [ 2K1) + 2K1, (P3 [K1) + 2K1, 3K2, K3,3, 2P3, C5, tent,or thin2(K2).Proof. Let H be a minimally not f3K1,C4,C5g-free graph that is a P4-tidygraph. If H is dis
onne
ted, then H is isomorphi
 to either 2K2 [K1, orP4 [K1, or C4 [K1. If H is dis
onne
ted, then H is isomorphi
 to either
(K2 [ 2K1) + 2K1, or (P3 [K1) + 2K1, or 3K2, or K3,3, or 2P3. If H wereC5, P5, or P5, then H would be ne
essarily isomorphi
 to C5. Finally, if His a spider or a fat spider, then H is tent or thin2(K2).



4.6. Partial 
hara
terizations of probe unit interval graphs 574.6 Partial 
hara
terizations of probe unit intervalgraphsTo the best of our knowledge, the problem of �nding all minimally nonprobeunit interval graphs whose 
omplement is dis
onne
ted remains open. Nev-ertheless, we solve this problem for the 
lasses of tree-
ographs and P4-tidygraphs.Lemma 17. The minimally nonprobe unit interval graphs that are tree-
ographs or P4-tidy and whose 
omplement is dis
onne
ted are (2K2 [K1) +K1, (P4 [K1) +K1, (C4 [K1) +K1, thin2(K2) +K1, (K2 [ 2K1) +2K1, (P3 [K1) + 2K1, 3K2, K3,3, and 2P3.Proof. The result follows from Theorem 40. Indeed, the 
ompanion of the
lass of unit interval graphs it the 
lass T , and: (i) the minimally non-probe T graphs that are tree-
ographs or P4-tidy and are probe unit intervalgraphs are 2K2 [K1, P4 [K1, C4 [K1, and thin2(K2); (ii) by the proof ofLemma 14, the minimal forbidden subgraphs of P(K) [ T are K2 [ 2K1,P3 [K1, C4, and C5 (all of whi
h are probe unit interval ex
ept for C5);and (iii) the only minimally not T graph that is probe 
omplete graph is3K1.Theorem 43. Let G be a tree-
ograph. Then, G is a probe unit intervalgraph if and only if G 
ontains no indu
ed bipartite 
law, L, Hn forany n � 1, P6, (2K2 [K1) +K1, (P4 [K1) +K1, (C4 [K1) +K1, (K2 [2K1) + 2K1, (P3 [K1) + 2K1, 3K2, K3,3, or 2P3.Proof. Let H be a minimally nonprobe unit interval graph that is a tree-
ograph. By minimality, H is 
onne
ted. IfH is a tree, then, by Theorem 34,H is bipartite 
law, L, or Hn for some n � 1. If H is the 
omplement ofa tree, then, by Theorem 8, H is P6. If H is dis
onne
ted, by Lemma 17,H is (2K2 [K1) +K1, (P4 [K1) +K1, (C4 [K1) +K1, (K2 [ 2K1) + 2K1,
(P3 [K1) + 2K1, 3K2, K3,3, 2P3 (be
ause thin2(K2) +K1 is not a tree-
ograph).Lemma 18. Let H be a spider with spider partition (S,C,R). Then,H is a probe unit interval if and only if jCj = 2 and H [R] is probe
omplete. Moreover, if H is probe unit interval and H 0 is a fat spiderthat arises from H, then H 0 is also probe unit interval ex
ept when H [R]is not 
omplete and H 0 arises by making a false twin of a vertex of C.Proof. Let H be a probe unit interval spider with spider partition (S,C,R).Noti
e that jCj = 2 be
ause otherwise H would 
ontain either an indu
ednet or an indu
ed tent. In addition, H [R] is fP3,C4g-free (otherwise, H
ontains an indu
ed thin2(P3) whi
h is not a probe unit interval graph or
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(C4 [K1) +K1). So, H [R] is probe 
omplete. Conversely, if H [R] is probe
omplete and jCj = 2, 
learly H is a probe unit interval.Suppose now that H is probe unit interval. The verti
es of S in anyprobe interval partition of H 
an be probe or nonprobe, so if H 0 arises bymaking a twin of a vertex of S, then H 0 is also a probe unit interval. Theverti
es of C in any probe interval partition of H 
an be 
an be set as probe,so if H 0 arises by making a true twin of C, H 0 is also probe unit interval.Finally, suppose that H 0 arise from H by making a false twin of C. If H [R]is 
omplete, then H 0 is 
learly probe interval, but if H [R] is not 
omplete,H 0 
ontains an indu
ed (P3 [K1) + 2K1.Lemma 19. The minimally nonprobe unit interval graphs that are spi-ders or fat spiders are net, tent, and thin2(P3).Proof. Let H be a spider with spider partition (S,C,R) that is a minimallynonprobe unit interval graph. If jCj � 3, by minimality H is net or tent.So we may assume that jCj = 2. Sin
e H is not a probe unit interval graph,H [R] is nonprobe 
omplete. So, H [R] 
ontains an indu
ed P3 or C4. If H [R]
ontained an indu
ed C4, H would 
ontain an indu
ed (C4 [K1) +K1 and,by minimality, H = (C4 [K1) +K1, 
ontradi
ting the fa
t that H is aspider. So, ne
essarily H [R] 
ontains an indu
ed P3. Therefore, H 
ontainsan indu
ed thin2(P3) and, by minimality, H = thin2(P3).Suppose by way of 
ontradi
tion that there is a fat spider H 0 that isa minimally not unit interval graph. By the minimality and the abovelemma, H 0 arises from a spider H with jCj = 2 and H [R] probe 
ompleteby making a false twin of a vertex of C. But then, H 0 
ontains an indu
ed
(C4 [K1) +K1 and, by minimality, H = (C4 [K1) +K1, 
ontradi
tingagain the fa
t that H is a fat spider.Theorem 44. Let G be a P4-tidy graph. Then, G is a probe unit intervalgraph if and only if G 
ontains no indu
ed (2K2 [K1) +K1, (P4 [K1) +K1, (C4 [K1) +K1, thin2(K2) +K1, (K2 [ 2K1) + 2K1, (P3 [K1) + 2K1,3K2, K3,3, 2P3, C5, net, tent, or thin2(P3).Proof. Let H be a minimally not unit interval graph that is P4-tidy. Byminimality, H is 
onne
ted. If H is dis
onne
ted, by Lemma 17, H is
(2K2 [K1) +K1, (P4 [K1) +K1, (C4 [K1) +K1, thin2(K2) +K1, (K2 [2K1) + 2K1, (P3 [K1) + 2K1, 3K2, K3,3, or 2P3. If H were C5, P5, or P5,ne
essarily H = C5. If H is a spider or a fat spider, H is net, tent, orthin2(P3).



Chapter 5Probe 
o-bipartite and probeblo
k graphsIn this 
hapter we present a stru
tural 
hara
terization for probe 
o-bipartitegraphs that leads to a polynomial-time re
ognition algorithm for this 
lass.We also give a forbidden indu
ed subgraph 
hara
terization for probe diamond-free graphs that implies a forbidden indu
ed subgraph 
hara
terization forprobe blo
k graphs. Noti
e that blo
k graphs are a sub
lass of 
hordalgraphs. Probe 
hordal graphs have been studied in [GL04, CGLS10℄. Twoimportant sub
lasses of probe 
hordal graphs, probe split graphs and probePtolemai
 graphs, have been studied in [LdR07℄ and [CCK+08℄, respe
tively.In [SHKP09℄, a linear-time re
ognition algorithm for probe blo
k graphs ispresented. Part of the results presented in this 
hapter were obtained duringa visit to Universidade Federal do Rio de Janeiro [BDd+℄.This 
hapter is organized as follows. Se
tion 5.1 is devoted to probe 
o-bipartite graphs. In Se
tion 5.2 is given a 
hara
terization of probe diamond-free graphs that implies a 
hara
terization for probe blo
k graphs presentedin the same se
tion.5.1 Probe 
o-bipartite graphsDenote by T (G) the spanning subgraph of G formed by the edges 
ontainedin a triangle of G.Before presenting the 
hara
terization of probe 
o-bipartite graphs, wewould like to remark that if G is probe 
o-bipartite, then there exists a
omplete set C 0 in G 
ontaining a set of edges E0 su
h that G�E0 is bipar-tite. Consequently, G�E(C 0) is also bipartite. Moreover, for any 
lique C
ontaining C 0, G�E(C) is bipartite.Consequently, we have the following results.59



60 Chapter 5. Probe 
o-bipartite and probe blo
k graphsLemma 20. Let G be a triangle-free graph. Then, G is probe 
o-bipartiteif and only if G 
ontains an edge e su
h that G� e is bipartite.Lemma 21. Let G be a graph 
ontaining triangles. Then, G is probe
o-bipartite if and only if T (G) has a 
lique C su
h that G�E(C) isbipartite.Proof. Suppose that G is probe 
o-bipartite. Then, G has a 
lique su
hthat G� E(C) is bipartite. However, ea
h edge of C is 
ontained in atriangle. Therefore, C is a subgraph of T (G), meaning that is a 
liqueof T (G). Conversely, suppose T (G) has a 
lique C, where G� E(C) isbipartite. Clearly any 
lique of T (G) is also a 
lique of G. Consequently,G has a 
lique C, su
h that G�E(C) is bipartite meaning that G is probe
o-bipartite.Theorem 45. Let G be a probe 
o-bipartite graph 
ontaining triangles.Then, T (G) is a split graph.Proof. By Lemmas 20 and 21, T (G) has a 
lique C su
h that G�E(C)is bipartite. Let S be the subset of verti
es of T (G) not 
ontained in C.Suppose T (G) has an edge e linking two verti
es of S. Then e forms atriangle with some vertex v. However, su
h a triangle has none of its edgesin C and thus G�E(C) 
annot be bipartite, a 
ontradi
tion. Therefore,T (G) is a split graph.Algorithmi
 aspe
ts: If G is triangle-free, then 
he
k if for some edgee, G� e is bipartite. Otherwise, �nd all the triangles of G and 
onstru
tT (G). Find ea
h 
lique C of T (G) and verify for any C if G�E(C) isbipartite. All these steps 
an be performed in polynomial time.5.2 Probe blo
k graphs5.2.1 Probe diamond-free graphsPartitioned probe diamond-free graphsIn what follows, we say that a graph G = (P [N ,E) is a partitioned graphif its vertex set is partitioned into two sets: a set P of probe verti
es anda stable set N of nonprobe verti
es. Let G be a hereditary 
lass of graphs,we say that G is a partitioned probe G graph if there exists a 
ompletionG� = (P [N ,E [ F ) of G belonging to G, remember that all the edgesbelonging to F have both endpoints in N .Let G = (P [N ,E) and H = (P 0 [N 0,E0) two partitioned graphs withN and N 0 stable sets. H is de�ned to be a partitioned subgraph (an indu
edpartitioned subgraph) of G, if H is a subgraph (an indu
ed subgraph) ofG, N 0 � N and P 0 � P . When the 
ontext is 
lear, we just say that H is
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H1 H2 H3 H4 H5

H5Figure 5.1: Partitioned forbidden subgraph for probe diamond-free graphs.Bla
k verti
es and white verti
es represent probe verti
es and nonprobeverti
es, respe
tively.(an indu
ed) a subgraph of G. We say that G is isomorphi
 to H if andonly if there exists a one-to-one fun
tion f : P [N ! P 0 [N 0 preservingadja
en
y and f(v) 2 N 0 for all v 2 N , and f(v) 2 P 0 for all v 2 P . Wesay that the partitioned graph G does not 
ontain H as indu
ed subgraphor does not 
ontain an indu
ed H if no indu
ed partitioned subgraph of Gis isomorphi
 to H. Given a set of partitioned graphs H, G is de�ned tobe H�free if G does not 
ontain an indu
ed H belonging to H. If H is aset with a single element H, we use H�free for short. We 
all tips to theverti
es of degree two of the diamond.In order to 
hara
terize probe blo
k graphs, in this se
tion we studythe stru
ture of probe diamond�free graphs. Giving the �rst step in 
har-a
terizing probe blo
k graphs, partitioned probe diamond�free graphs are
hara
terized by forbidden partitioned subgraphs, by means of the followingtheorem.Theorem 46. Let G = (P [N ,E) be a partitioned graph. Then, G is apartitioned probe diamond-free graph if and only if G does not 
ontainany partitioned graph depi
ted in Figure 5.1.Proof. Let G be a partitioned graph not 
ontaining any indu
ed partitionedgraph depi
ted in Fig. 5.1. Let F be the set of non edges of G whoseendpoints belong to N and are the tip of an indu
ed diamond of G. It su�
esto prove that the 
ompletion G� = (N [ P ,E [ F ) of G is diamond-free.The proof follows by 
ontradi
tion and is split into three 
ases. Suppose bythe way 
ontradi
tion that G� is not diamond�free. Noti
e that it does not
ontaining H1, H2 and H3 as indu
ed subgraph, G� does not 
ontain anyindu
ed diamond with at most a nonprobe vertex and thus F is well-de�ned.In what follows, for any vertex v, d(v) and d�(G) denote dG(v) and dG�(v),respe
tively.
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o-bipartite and probe blo
k graphsCase 1: G� 
ontains a diamond with exa
tly two non probe verti
es.Assuming that u, v 2 N , uv 2 F and x, y 2 P , and suppose that H =G�[fu, v,x, yg] is an indu
ed diamond of G�. First, suppose, without lossof generality, that d�H(u) = d�H(x) = 2 and d�H(v) = d�H(y) = 3. Sin
e,uv 2 F , there exists a vertex w1 2 P su
h that u, v and w1 belong toan indu
ed diamond D in G and thus w1 is adja
ent to u and v. Sin
eG is fH2,H3g-free, w1 is not adja
ent to x and y. Consequently, thereexists a vertex w2 2 D �H su
h that G[fw1,w2,u, vg] = D and thusfu, v,w1,w2, yg indu
es H4 in G, leading to a 
ontradi
tion. Therefore,we 
an assume, without loss of generality, that d�H(x) = d�H(y) = 2 andd�H(u) = d�H(v) = 3. Again, there exists a vertex w1 2 P su
h that u, vand w1 belong to a diamond D in G. Sin
e G is fH3,H4g-free, NG(w1) \V (H) = fu, vg. Consequently, there exists a vertex w2 2 D�H su
h thatG[fu, v,w1,w2g] = D and NG(w2)\V (H) = fu, vg. Thus, fu, v,w1,w2, ygindu
es H4 in G, a 
ontradi
tion again.In what follows we 
an assume that G� does not 
ontain any indu
eddiamond with at most two verti
es in N .Case 2: G� 
ontains a diamond with exa
tly three non probe ver-ti
es. Let u, v,w 2 N be three verti
es indu
ing a triangle in G�. We aregoing to prove it implies that there exits an edge e = xy 2 E(G) whose end-points are 
omplete to A = fu, v,wg. Sin
e uv 2 F , there exist two verti
esx1, y1 belonging to P su
h that fu, v,x1, y1g indu
es a diamond in G we
all D1. Consequently, it su�
es to prove that w is adja
ent to x1 and y1.Suppose, by the way of 
ontradi
tion, that w is adja
ent to at most on of x1and y1. Suppose that w is adja
ent to x1 and not adja
ent to y1. Therefore,there exists a vertex x2 2 P not belonging to D1 and adja
ent to u and w.Sin
e there is no indu
ed diamond in G� with at most two nonprobe ver-ti
es, x2 is adja
ent to x1. Consequently, x2 is adja
ent to v and thus x2 isadja
ent to y1. Therefore, fv,w, y1,x2g indu
es a diamond with exa
tly twononprobe verti
es, a 
ontradi
tion. The 
ontradi
tion arose by supposingthat w is adja
ent to x1 and not adja
ent to y1. Now, suppose that w is nei-ther adja
ent to x1 nor adja
ent to y1. Therefore, there exist two verti
es x2and y2 su
h that fu,w,x2, y2g indu
es a diamond D2 in G. By symmetry, v
annot have exa
tly one neighbor in fx2, y2g. Noti
e also that if v were 
om-plete to fx2, y2g, then we 
ould 
hoose e = x2y2. Let set B = fx1, y1, vg. Ifx2 (y2) is adja
ent to at least one of the verti
es belonging to B, sin
e thereis no diamond with exa
tly two nonprobe verti
es, then x2 (y2) is 
ompleteto B. Therefore, fv,w, y1,x2g (fv,w, y1, y2g) indu
es a diamond in G� withexa
tly two nonprobe verti
es, a 
ontradi
tion. Consequently, x2 and y2are anti
omplete to B. Symmetri
ally, assuming that there is no edge in G
omplete to fu, v,wg, it 
an be proved that there exist two verti
es x3 andy3 anti
omplete to the triangles indu
ed by fxi, yi,ug for i = 1, 2 su
h thatfx3, y3, v,wg indu
es a diamond D3 in G. Thus, D1 [D2 [D3 indu
es H5
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k graphs 63in G, a 
ontradi
tion again. So, there exists an edge xy 2 E(G) 
omplete toA. Finally, we will prove that if uv, vw,uw 2 F there is no probe vertex zadja
ent to u and v and not adja
ent to w. Sin
e fu, v,wg indu
es a trianglein G� there exists an edge xy whose endpoints belong to P su
h that u, vand w are 
omplete to xy. Suppose, by way of 
ontradi
tion, that thereexists a vertex z 2 P su
h that z is adja
ent to u and v and not adja
ent tow. Sin
e there is no indu
ed diamond with exa
tly two nonprobe verti
esin G�, z is adja
ent to x and y. Consequently, fx, y, v, zg indu
es H2 in G,a 
ontradi
tion.Case 3: G� 
ontains a diamond with four non probe verti
es. Fi-nally, we will prove that there is no diamond in G� with all its edges be-longing to F . Suppose, by way of 
ontradi
tion, that there exist four ver-ti
es u, v,w and z belonging to N and indu
ing a diamond in G� su
h thatd�(w) = d�(z) = 2, fu, v,wg and fu, v, zg both indu
e a triangle in G�. Weknow that there exist two adja
ent verti
es x and y belonging to P su
hthat fu, v,wg is 
omplete to fx, yg and two probe adja
ent verti
es r and s
omplete to fu, v, zg. Set e = xy and e0 = rs. Noti
e that e 6= e0, be
auseotherwise w would be adja
ent to z in G�. Indeed, fx, yg \ fr, sg = ;.First, suppose that r = x. If y were not adja
ent to s, fx, y, v, sg wouldindu
e H3. Consequently, sin
e G is H3�free s is adja
ent to y. Therefore,s is adja
ent to w be
ause, otherwise, fx, y, s,wg would indu
e H2. So,fx, s,w, zg indu
es a diamond in G and thus w is adja
ent to z in G�, thisis a 
ontradi
tion that arises from supposing that r = x. Now, supposethat xy and rs are edges without endpoints in 
ommon. If fx, y,wg wereanti
omplete to fr, s, zg, fu, v,w, z,x, y, r, sg would indu
e H6. So, we 
anassume, without loss of generality, that r is either adja
ent to x or adja
entto w. First, suppose that r is adja
ent to x. Sin
e there is no indu
eddiamond with exa
tly two nonprobe verti
es in G�, r is adja
ent to w. Wehave proved that if r is adja
ent to x, then r is adja
ent to w. So, we 
anassume that w is adja
ent to r. Therefore, sin
e G� does not 
ontain anyindu
ed diamond with exa
tly two nonprobe verti
es, s is adja
ent to w.Consequently, fs, r, y,wg indu
es a diamond in G and thus w is adja
ent toz in G�, a 
ontradi
tion.Nonpartitioned probe diamond-free graphsLet G and H be a graph and a 
olle
tion of graphs, respe
tively. We willsay that F is a subgraph of G with indu
ed H if F is a subgraph of G andsome H 2 H is an indu
ed subgraph of F . Noti
e that in that 
ase, H isalso an indu
ed subgraph of G. If H is formed by only one graph H, we justsay that F is a subgraph of G with indu
ed H.Before presenting the 
hara
terization by forbidden indu
ed subgraphsfor probe diamond-free graphs, we need to prove the following te
hni
al
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k graphs
F1 F2 F3 F4 F5

F6
F 7Figure 5.2: Some forbidden graph for probe diamond-free.lemma.Lemma 22. Let G be a fF1,F2,F3,F4g�free graph. If G 
ontains eitherS or T1 as a subgraph with indu
ed diamonds, then G 
ontains one ofthe graphs depi
ted in Figure 5.3 as indu
ed subgraph.Proof. In what follows, we mean by �S (T1) is a subgraph of G�, S (T1) isa subgraph of G with indu
ed diamonds. Let G be a fF1,F2,F3,F4g�freegraph. We will prove the lemma by 
ontradi
tion. Suppose that G does not
ontain any graph depi
ted in Fig. 5.3 as indu
ed subgraph. We are goingto split the proof into two 
ases.Case 1: G 
ontains a subgraph H isomorphi
 to S. Suppose that thevertex set of the subgraph H is labeled by the set fa, b, 
, d, f , gg. Assume,without loss of generality, that the set fa, b, 
, dg indu
es one of the diamondsof H whose triangles are fa, b, 
g and fb, 
, dg; and fb, e, f , gg indu
es theother diamond whose triangles are fb, e, fg and fe, f , gg. Sin
e G 
ontainsS as subgraph but S is not an indu
ed subgraph of G, there is at least oneedge whose endpoints belong to fa, b, 
, d, f , gg and are di�erent from theedges belonging to the diamonds indu
ed by fa, b, 
, dg and fb, e, f , gg.First, suppose that a is adja
ent to e. So, a is either adja
ent to f oradja
ent to g be
ause, otherwise, fa, b, e, f , gg would indu
e F2. On theone hand, if a were adja
ent to g and not adja
ent to f , fa, b, e, f , gg wouldindu
e F4. On the other hand, if a were adja
ent to g and not adja
ent to f ,fa, b, e, f , gg would indu
e F1. Consequently, sin
e G is fF1,F4g�free, a isadja
ent to f and g. By symmetry, e is adja
ent to 
 and d. Therefore, if fwere neither adja
ent to 
 nor adja
ent to d, fa, 
, d, e, fg would indu
e F2.Hen
e, on the one hand, f is either adja
ent to a or 
. If f were adja
ent to
 and not adja
ent to d, fa, 
, d, e, fg would indu
e F1. On the other hand,if f were adja
ent to d and not adja
ent to 
, fa, 
, d, e, fg would indu
e F4.Consequently, f is adja
ent to 
 and d. Therefore, if 
 were not adja
ent tog, fb, 
, e, f , gg would indu
e F1. Therefore, 
 is adja
ent to g. So, if g were
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k graphs 65not adja
ent to d, fa, b, 
, d, gg would indu
e F2. Therefore, sin
e g is notadja
ent to b and G is F4�free, g is adja
ent to d. Consequently, fa, b, 
, d, ggindu
es F4, a 
ontradi
tion. This 
ontradi
tion arose from supposing that ais adja
ent to e. So, in what follows, we 
an assume that a is not adja
entto e. Symmetri
ally, we 
an also assume that a is not adja
ent to f and dis not adja
ent to f .Suppose now that a is adja
ent to g. Then, sin
e a is not adja
ent toe and f , fa, b, e, f , gg indu
es F3, a 
ontradi
tion. This 
ontradi
tion arosefrom supposing that a is adja
ent to g. Therefore, we 
an assume that a isnot adja
ent to g. By symmetry, we 
an also assume that d is not adja
entto g. Suppose now that 
 is adja
ent to g. Consequently, fb, 
, e, f , ggindu
es F3, a 
ontradi
tion again. Therefore, we 
an also assume that 
 isnot adja
ent to g.Now, suppose that 
 is adja
ent to e. Hen
e, fb, 
, e, f , gg indu
es F2,a 
ontradi
tion again. So, we 
an assume that 
 is not adja
ent to e. Bysymmetry, 
 
an be also assumed not to be adja
ent to f . Therefore, V (H)indu
es a subgraph isomorphi
 to S, a 
ontradi
tion.In what follows, we 
an assume that G 
ontains no subgraph isomorphi
to S.Case 2: G 
ontains a subgraph H isomorphi
 to T1 with indu
eddiamonds.Suppose that the vertex set of the subgraph H is labeled by the setfa, b, 
, d, r, s, t,ug. Assume, without loss of generality, that the set fa, b, 
, dgindu
es one diamond in H with indu
ed triangles fa, b, 
g and fb, 
, dg andfr, s, t,ug indu
es the other diamond with indu
ed triangles fr, s, tg andfs, t,ug, and a is adja
ent to r. Sin
e G 
ontains T1 as subgraph but T1 isnot an indu
ed subgraph of G, there is at least one edge whose endpointsbelong to fa, b, 
, d, f , gg di�erent from the edges ar and the edges belongingto the diamonds indu
ed by fa, b, 
, dg and fr, s, t,ug, respe
tively.First, suppose that a is adja
ent to s. Noti
e that a is not adja
ent to sbe
ause, otherwise, G[a, b, 
, d, r, s,u] would 
ontain a subgraph isomorphi
F to S and thus F would be a subgraph of G. Consequently, fa, r, s, t,ugwould indu
e a subgraph in G either isomorphi
 to F1 or isomorphi
 toF2, a 
ontradi
tion. Therefore, we 
an assume that a is not adja
ent to s.By symmetry, we 
an also assume that a is not adja
ent to t and r is notadja
ent to b and 
. Hen
e, if a were adja
ent to u, then fa, r, s, t,ug wouldindu
e F3. So, we 
an assume that a is not adja
ent to u. By symmetry,we 
an also assume that r is not adja
ent to d.Suppose now that b is adja
ent to s. Noti
e that, if b were adja
ent to t,fa, b, r, s, tg would indu
e F3. So, we 
an assume that b is not adja
ent to tand s is not adja
ent to 
 (by symmetry). Therefore, if b were adja
ent to u,
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k graphsthen fb, r, s, t,ug would indu
e F2, a 
ontradi
tion. Hen
e, we 
an assumethat b is not adja
ent to u and, by symmetry, s is not adja
ent to d. Supposenow that 
 is adja
ent to t. Sin
e G is T5�free, d is adja
ent to u. Therefore,fa, b, 
, d, r, s, t,ug indu
es T6, a 
ontradi
tion. Therefore, we 
an assumethat 
 is not adja
ent to t. Suppose that d is adja
ent to u. If 
 were adja
entto u, then fb, 
, d,u, sg would indu
e F3, a 
ontradi
tion. Therefore, we 
anassume that 
 is not adja
ent to u. By symmetry, we 
an also assumethat t is not adja
ent to d. Consequently, fa, b, 
, d, r, s, t,ug indu
es T10,a 
ontradi
tion. The 
ontradi
tion arose from supposing that d is adja
entto u. Therefore, we 
an assume that d is not adja
ent to u. If 
 and t wereadja
ent to u and d respe
tively, then fa, b, 
, d, r, s, t,ug would indu
e T8.Therefore, we may assume that d is not adja
ent to t. Therefore, on the onehand, if 
 were adja
ent to u, then fa, b, 
, d, r, s, t,ug would indu
e T4. Onthe other hand, if 
 were not adja
ent to u, then fa, b, 
, d, r, s, t,ug wouldindu
e T2. Both 
ases lead to a 
ontradi
tion be
ause G is fT4,T8g�free.This 
ontradi
tion arose from supposing that b is adja
ent to s. In whatfollows, we 
an assume that b is not adja
ent to s and t and 
 is not adja
entto t and s.Suppose that d is adja
ent to u. Sin
e G is T7�free, either 
 is adja
ent tou, or b is adja
ent to u, or s is adja
ent to d, or t is adja
ent to d. Suppose,without loss of generality, that, u is either adja
ent to b or adja
ent to 
.If 
 were adja
ent to u and d were not adja
ent to u, fa, b, 
, d,ug wouldindu
e F2. Therefore, we 
an assume that 
 and b are adja
ent to u andby symmetry s and t are not adja
ent to d. Consequently, fa, b, 
, d,ugindu
es F1, a 
ontradi
tion. So, in what follows, we 
an assume that d isnot adja
ent to u.Suppose now that b is adja
ent to u. If 
 were adja
ent to u, sin
e G isT11�free, d would be either adja
ent to s or adja
ent to t. Suppose, with-out loss of generality, that d is adja
ent to s. Consequently, fb, 
, d,u, sgindu
es F3, a 
ontradi
tion. Therefore, we 
an assume that 
 is not adja-
ent to u. Suppose now that d is adja
ent to s. If d were adja
ent to t,fb, d, s, t,ug would indu
e F3. Therefore, d is not adja
ent to t and thusfa, b, 
, d, r, s, t,ug indu
es T9, a 
ontradi
tion. This 
ontradi
tion arosefrom supposing that b is adja
ent to u. Therefore, we 
an assume by sym-metry that b and 
 are not adja
ent to u; and s and t are not adja
ent to d.Finally, fa, b, 
, d, r, s, t,ug indu
es T1, a 
ontradi
tion.Theorem 47. Let G be a graph. G is probe diamond-free if and onlyif G does not 
ontain any graph depi
ted in Figures 5.2 and 5.3 asindu
ed subgraph.Proof. Let G be a graph not 
ontaining any graph depi
ted in Figures 5.2and 5.3 as indu
ed subgraph. Let N be the set of verti
es of G belonging to
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S

T1 T2 T3 T4 T5 T6

T7 T8 T9 T10 T11Figure 5.3: Some forbidden subgraphs for probe diamond-free graphs.a tip of an indu
ed diamond and P = V nN . Let F be a set of non-edgesof G whose endpoints are tips of the same diamond.First, we are going to prove that N is a stable set of G. Suppose, bythe way of 
ontradi
tion, that there exist two adja
ent verti
es u and abelonging to N . Suppose that u belongs to a diamond D1 indu
ed by theverti
es fu, v,w,xg whose other tip is x and a belongs to another diamondD2 indu
ed by fa, b, 
, dg whose other tip is d. Suppose that u is adja
ent toa. If V (D1) did not meet V (D2), then D1 [D2 would indu
e a subgraph inG that 
ontains T1 as subgraph. By Lemma 22, sin
e G does not 
ontain Fifor i = 1, : : : , 4 as indu
ed subgraph, G 
ontains one of the graphs depi
tedin Figure 5.3 as indu
ed subgraph, a 
ontradi
tion. Hen
e, we 
an assumethat the diamonds D1 and D2 have at least one vertex in 
ommon. First,suppose that d = x and fv,wg \ fb, 
g = ;. Sin
e G is F6�free, thereexists at least one edge di�erent from au su
h that one of its endpointsbelong to fu, v,w,xg and the other one belongs to fa, b, 
, dg. Suppose thatw is adja
ent to a. Sin
e G is F2�free, v is adja
ent to a. Consequently,fa, d,u, v,wg indu
es F1, a 
ontradi
tion. Therefore, we 
an assume that ais not adja
ent to w. By symmetry, we 
an also assume that v is not adja
entto a and u is not adja
ent to b and 
. Suppose now that w is adja
ent tob. Sin
e G is F2 �free and w is not adja
ent to a, w is adja
ent to 
. So,fa, b, 
, d,wg indu
es F1, a 
ontradi
tion. Therefore, w is not adja
ent tob. Symmetri
ally, w is not adja
ent to 
 and v is not adja
ent to b and notadja
ent to 
. This leads to a 
ontradi
tion be
ause G is F6�free. Hen
e,we 
an assume that D1 and D2 have at least two verti
es in 
ommon.Suppose that x = d and b = w. Noti
e that v is not adja
ent to aand 
 is not adja
ent to u be
ause, otherwise, fa, b, d,u, vg and fa, b, 
, d,ugwould indu
e F1, respe
tively. Therefore, sin
e G is F2�free, v is adja
entto 
. Consequently, fa, b, 
,u, vg indu
es F4, a 
ontradi
tion. Hen
e, we
an assume that D1 and D2 have exa
tly three verti
es in 
ommon. We
an assume, without loss of generality, that x = d, w = b and v = 
.
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o-bipartite and probe blo
k graphsConsequently, fa, b, 
, d,ug indu
es F1, a 
ontradi
tion.Finally, in order to prove that N is a stable set, it su�
es to prove thata is di�erent from w. Suppose, by the way of 
ontradi
tion, that a = w. Ifv and x were di�erent from b, 
 and d, then G would 
ontain S as subgraph.By Lemma 22, G would 
ontain one of the graphs depi
ted in Figure 5.3as indu
ed subgraph, a 
ontradi
tion. Suppose now that u = b. Sin
e G isfF1,F2g�free, d is adja
ent to v and x. So, if x were not adja
ent to 
, thenfa, b, 
, d,xg would indu
e F3. Consequently, x is adja
ent to 
 and thusfa, b, 
, d, 
,xg indu
es F4, a 
ontradi
tion. Therefore, we 
an assume thatd = v. Sin
e G is F2�free, 
 is adja
ent to x. Consequently, fa, b, 
, d,xgindu
es F4 , a 
ontradi
tion. Finally, we have proved that the set N is astable set.It remains to prove that the 
ompletion G� = (V ,E [ F ) is diamond�free. By Theorem 46, it su�
es to prove that the partitioned graph G =
(N [ P ,E) with probe partition (N ,P ) does not 
ontain any of the parti-tioned graphs depi
ted in Figure 5.2.1. By the 
onstru
tion of the partition
(N ,P ), G = (N [P ,E) does not 
ontain H1, H2 and H3. Finally, sin
e Gis fF3,F5,F7g�free, the partitioned graph G = (N [P ,E) does not 
ontainthe partitioned subgraphs H4, H5 and H6.5.2.2 Probe blo
k graphsIn this se
tion the 
hara
terization for probe diamond-free graphs is used to
hara
terize probe blo
k graphs. Noti
e that if every 
omponent of a graphis probe blo
k then the graph is probe blo
k. Indeed, suppose that fCig1�i�kare the 
omponents of a graph G = (V ,E) and G[Ci] are probe blo
k withprobe blo
k partitions (Pi,Ni) and 
ompletions G�i = (Ni [Pi,E(Ci)[Fi)for i = 1, : : : , k. Let vi 2 Ni (if Ni = ;, vi is 
hosen arbitrarily amongthe verti
es of Ci). Then, we 
an 
onstru
t a probe blo
k 
ompletion G� =
(N [ P ,E [ F ) with N formed by all the verti
es belonging to some Niand the ones 
hosen arbitrary when Ni = ;; and F formed by those edgesbelonging to some Fi and vivi+1 for i = 1, : : : , k� 1. Consequently, we 
anrestri
t our analysis to 
onne
ted graphs.The following two lemmas are preliminary results to prove the main
hara
terization of this se
tion.Lemma 23. [GL04℄ Let G be a probe 
hordal graph. Then, G has noindu
ed C2k+1 for k � 2.Lemma 24. [GL04℄ Let G be a probe 
hordal graph. Then, for anypartition into probe and nonprobe verti
es, probe and nonprobe verti
esalternate for any 
hordless 
y
le in G.
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k graphs 69By 
ombining the two above Lemmas, we 
an obtain the following result.Theorem 48. Let G be a 
onne
ted probe blo
k graph. Then, G is
hordal.Proof. Let G = (V ,E) be a probe blo
k graph. Sin
e blo
k graphs are
hordal, G is probe 
hordal. Consequently, by Lemma 23, G has no C2k+1for k � 2 as indu
ed subgraph. Suppose, by the way of 
ontradi
tion, thatG 
ontains an even indu
ed 
y
le H = v1v2 � � � v2kv1 for some k � 2. ByLemma 24, for any probe blo
k partition of G into probe (P ) and nonprobe(N) verti
es, verti
es belonging to P and N alternate in H. In what follows,sums should be 
onsidered modulo 2k. Suppose, without loss of generality,that v2i�1 2 P for i = 1, : : : , k and v2i 2 N for i = 1, : : : , k. Noti
e that, ifG� = (V ,E [ F ) is a 
ompletion of G su
h that G� is a blo
k graph, sin
eG� is 
hordal, v2i�1v2i+1 2 F for i = 1, : : : , k. Otherwise, G� would 
ontaina 
hordless 
y
le greater than 4. Consequently, if k = 2, 3 it is easy to seethat G� 
ontains a diamond, a 
ontradi
tion. Therefore, we 
an assume thatk � 4. Sin
e G� is 
hordal, v2iv2i+2 2 F for i = 1, : : : , k. In addition, ifv2v6 did not belong to F , fv2, v4, v6g would be 
ontain in an indu
ed 
y
leof G� of length at least 4. Consequently, fv2, v3, v4, v6g indu
es a diamondin G�, a 
ontradi
tion.We have already proved that the 
lass of probe blo
k graphs is probediamond�free and 
hordal. The following Lemma proves that the graphobtained by adding all the edges to a 
hordal probe diamond-free graphwhose endpoints are tips of a diamond remains 
hordal. Consequently, everygraph 
hordal and probe diamond�free is probe blo
k.Lemma 25. Let G = (V ,E) be a 
onne
ted probe blo
k graph and F bethe set of edges of G whose endpoints are tips of some diamond in G.Then, G� = (V ,E [F ) is 
hordal.Proof. Throughout the proof, sums should be 
onsidered modulo k. LetF be the subset of edges of G� de�ned as in the lemma. Suppose, by wayof 
ontradi
tion, that G� = (V ,E [ F ) 
ontains an indu
ed 
y
le H =v1, : : : , vkv1 for k � 4 as indu
ed subgraph. By Theorem 48, vivi+1 2 F forsome i = 1, : : : , k. Assume that the 
y
le 
ontains the minimum numberof nonprobe verti
es among all the indu
ed 
y
les 
ontained in G�. By
onstru
tion, there exists a vertex w1 2 P adja
ent to vi and vi+1. Byminimality on the number of nonprobe verti
es ofH and sin
e G� is diamondfree, w1 is anti
omplete to V (H)� fvi, vi+1g in G�. If E(H)\ F = vivi+1,then G[V (H) [ fw1g] would indu
e a 
y
le in G, a 
ontradi
tion. Thus,we 
an assume that there exists an edge vjvj+1 2 F with i 6= j su
h thatvjvj+1 2 F . Therefore, there exists a vertex w2 6= w1 belonging to P andadja
ent to vj and vj+1 whi
h is also anti
omplete to E(H)�fvjvj+1g. Inaddition, by the minimality on the number of nonprobe verti
es in H, it
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o-bipartite and probe blo
k graphsfollows that w1w2 /2 E(G). Again, if there were no other edges belonging toH in F , G would 
ontain an indu
ed 
y
le greater than 4, a 
ontradi
tion.Repeating this pro
edure, if were ne
essary, for any edge of H belonging toF , we 
on
lude that G is not 
hordal, a 
ontradi
tion again.By 
ombining Theorem 47, Lemma 48 and Lemma 25, it follows the
hara
terization for probe blo
k graphs. This 
hara
terization pointed outthe relationship between the 
lass of probe blo
k graphs and Ptolemai
graphs. Indeed, the below theorem shows that probe blo
k graphs are asub
lass of Ptolemai
 graphs.Theorem 49. Let G be a 
onne
ted graph. The following statementsare equivalent:1. G is a probe blo
k graph.2. G is 
hordal and probe diamond-free.3. G is Ptolemai
 and fF1,S,T1g-free.Proof. 1. ) 2.On the one hand, sin
e blo
k graphs are 
hordal and diamond-free, the 
lass of probe blo
k graphs is 
ontained in the 
lass of probediamond�free graphs. On the other hand, by Theorem 48, it follows thatthe 
lass of probe blo
k graphs is 
ontained in the 
lass of probe 
hordalgraphs.2. ) 3. Let G be a probe diamond-free and 
hordal graph. By Theo-rem 47, G is F2 free. Consequently, sin
e G is 
hordal, G is Ptolemai
. Inaddition, all the graphs depi
ted in Figures 5.2 and 5.3 are 
hordal but F1,F2, S and T1. Therefore, G is Ptolemai
 and fF1,S,T1g�free.3. ) 2. Straightforward.



Chapter 6Con
lusions and future workIn this Thesis we study stru
tural 
hara
terizations for 
ir
ular-ar
 graphs,
ir
le graphs, probe interval graphs, probe unit interval graphs, probe 
o-bipartite graphs, and probe blo
k graphs. We partially 
hara
terize 
ir
ular-ar
 graphs, 
ir
le graphs, probe interval graphs and probe unit intervalgraphs by forbidden indu
ed subgraphs within 
ertain hereditary families ofgraphs. Finally, a stru
tural 
hara
terization for probe 
o-bipartite graphsthat leads to a polynomial-time re
ognition algorithm and a 
omplete 
har-a
terization of probe blo
k graphs by a list of forbidden indu
ed subgraphsare presented.In Chapter 2 
ir
ular-ar
 graphs are 
hara
terized within 
ographs (The-orem 16), paw-free graphs (Theorem 19) and 
law-free 
hordal graphs (Theo-rem 21). Some open questions for 
ir
ular-ar
 graphs from a stru
tural pointof view are the following.Question 1. Give a forbidden indu
ed subgraph 
hara
terization for
ir
ular-ar
 graphs within the 
lass of 
hordal graphs.Question 2. Give a forbidden indu
ed subgraph 
hara
terization for
ir
ular-ar
 graphs within the 
lass of K4�free graphs.Question 3. Chara
terize 
ir
ular-ar
 graphs within the 
lass of 
law-free graphs. A good start point 
ould be to 
hara
terize 
ir
ular-ar
graphs within the 
lass of graphs with stability number at most two.Question 4. Find a 
hara
terization by forbidden indu
ed subgraphsfor normal 
ir
ular-ar
 graphs.Question 5. Find a 
hara
terization by forbidden indu
ed subgraphsfor Helly 
ir
ular-ar
 graphs.In Chapter 3, 
ir
le graphs are 
hara
terized within the 
lasses of lin-ear domino graphs (Theorem 28), P4�tidy graphs (Theorem 30) and tree-
ographs (Theorem 31). Finally, the 
lass of Helly unit 
ir
le graphs is in-71



72 Chapter 6. Con
lusions and future worktrodu
ed and 
ompletely 
hara
terized (Theorem 32). Next, we will presentsome open questions for the 
lass of 
ir
le graphs.Question 6. Chara
terize the whole 
lass of 
ir
le graphs by forbiddenindu
ed subgraphs.Question 7. Find a de
omposition su
h that Helly 
ir
le graphs are
losed under this de
omposition (analogous to the split de
ompositionfor 
ir
le graphs).Question 8. Chara
terize Helly 
ir
le graphs by forbidden indu
ed sub-graphs.In Chapter 4, we provide forbidden indu
ed subgraphs 
hara
terizationsfor probe interval graphs (resp. probe unit interval graphs) within two super-
lasses of 
ographs, namely tree�
ographs (Theorem 38) (resp. Theorem 43)and P4�tidy graphs (Theorem 39) (resp. Theorem 44). We would like tomention some open questions.Question 9. Chara
terize probe unit interval graphs by forbidden in-du
ed subgraphs within the 
lass of probe interval graphs.Question 10. Chara
terize the whole 
lass of probe interval graphs andprobe unit interval graphs by forbidden indu
ed subgraphs.Question 11. Chara
terize probe 
ir
ular ar
-graphs by forbidden in-du
ed subgraphs within the 
lass of trees.In Chapter 5, we present a stru
tural 
hara
terization for probe 
o-bipartite graphs (Theorem 45) that leads to a polynomial-time re
ognitionalgorithm for this 
lass and a 
hara
terization by forbidden subgraphs forthe 
lass of probe blo
k graphs (Theorem 49). Some open problems in
onne
tion with this topi
 are the following.Question 12. Chara
terize by forbidden indu
ed subgraph the 
lass ofprobe 
hordal graphs.Question 13. De
ide whether a given graph is probe line graph.
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