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Caraterizaiones estruturales de grafos de interseiónEn esta tesis estudiamos araterizaiones estruturales para grafos aro-irulares, grafos írulo, grafos probe de intervalos, grafos probe de interva-los unitarios, grafos probe de bloques y grafos probe o-bipartitos. Un grafoes aro irular (írulo) si es el grafo de interseión de una familia de aros(uerdas) en una irunferenia. Dada una familia hereditaria de grafos G,un grafo es probe G si sus vérties pueden partiionarse en dos onjuntos:un onjunto de vérties probe y un onjunto de vérties nonprobe, de formatal que el onjunto de vérties nonprobe es un onjunto independiente yes posible obtener un grafo en la lase G agregando aristas entre ellos. Losgrafos probe G forman una superlase de la familia G. Por lo tanto, losgrafos probe de intervalos y los grafos probe de intervalos unitarios gener-alizan la lase de los grafos de intervalos y los grafos de intervalos unitariosrespetivamente.Caraterizamos parialmente a los grafos aro-irulares, grafos írulo,grafos probe de intervalos y probe de intervalo unitario mediante subgrafosprohibidos dentro de iertas familias hereditarias de grafos. Finalmente, espresentada una araterizaión de los grafos probe o-bipartitos que lleva aun algoritmo de reonoimiento de tiempo polinomial para diha lase y losgrafos probe de bloques son araterizados mediante una lista de subgrafosprohibidos.Palabras lave: grafos aro irulares, grafos írulo, subgrafos induidosprohibidos, grafos probe de bloques, grafos probe o-bipartitos, grafos probede intervalos, grafos probe de intervalos unitarios.
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Strutural haraterizations of intersetion graphsIn this Thesis we study strutural haraterizations for six lasses ofgraphs, namely irular-ar graphs, irle graphs, probe interval graphs,probe unit interval graphs, probe o-bipartite graphs, and probe blokgraphs. A irular-ar graph (irle graph) is the intersetion graph of afamily of ars (hords) on a irle. Let G be a hereditary lass of graphs. Agraph is probe G if its verties an be partitioned into two sets: a set of probeverties and a set of nonprobe verties, so that the set of nonprobe vertiesis a stable set and it is possible to obtain a graph belonging to the lass Gby adding edges with both endpoints in the set of nonprobe verties. ProbeG graphs form a superlass of the lass G. Hene, probe interval graphs andprobe unit interval graphs are extensions of the lasses of interval graphsand unit interval graphs, respetively.We partially haraterize irular-ar graphs, irle graphs, probe inter-val graphs and probe unit interval graphs by forbidden indued subgraphswithin ertain hereditary families of graphs. Finally, a strutural harater-ization for probe o-bipartite graphs that leads to a polynomial-time reog-nition algorithm and a omplete haraterization of probe blok graphs bya list of forbidden indued subgraphs are presented.Keywords: irular-ar graphs, irle graphs, forbidden indued subgraph,probe blok graphs, probe o-bipartite graphs, probe interval graphs, probeunit interval graphs.
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ixIntroduiónLos grafos aro-irulares son los grafos de interseión de una familiaS de aros en una irunferenia, al onjunto S se lo llama modelo aro-irular. Los primeros trabajos sobre esta lase de grafos fueron publiadospor Hadwiger y otros en 1964 [HDK64℄ y por Klee [Kle69℄ en 1969 respetiva-mente. Sin embargo, el primero en trabajar en el problema de araterizarpor subgrafos prohibidos esta familia de grafos fue A. Tuker en su tesisdotoral en 1969 [Tu60℄. Fue él mismo quien introdujo y onsiguió ar-aterizar por subgrafos prohibidos dos sublases de grafos aro-irulares:grafos aro-irulares unitarios y grafos aro-irulares propios. La primerasublase onsiste en aquellos grafos aro-irulares que poseen un modeloaro-irular on todos sus aros de la misma longitud y la segunda sub-lase son los grafos aro-irulares on un modelo donde ningún aro estáontenido en otro.Caraterizar la lase ompleta de grafos aro-irulares por subgrafosprohibidos es un problema abierto desde hae muho tiempo. Sin embargovarios autores han presentado algunos avanes en esta direión. Trotter yMoore dieron una araterizaión por subgrafos prohibidos induidos dentrode la lase de grafos o-bipartitos [TM76℄. J. Bang-Jensen y P. Hell presen-taron un teorema estrutural para grafos aro-irulares propios dentro dela lase de grafos ordales [BH94℄, del ual se desprende la araterizaiónpor subgrafos induidos prohibidos para los grafos aro-irulares propiosrestringidos a la lase de los grafos ordales.Los grafos aro-irulares son una generalizaión de la familia de grafosde interseión de intervalos en la reta real, llamados grafos de intervalos.Los grafos de intervalos fueron araterizados por Boland y Lekkerkerkeren 1962 [LB62℄. La lista ompleta de subgrafos induidos prohibidos quearateriza los grafos de intervalos fue hallada exitosamente via una arater-izaión por medio de triplas asteroidales presentada por los mismos autores.Todo onjunto de intervalos en la reta real satisfae la propiedad de Helly;es deir, ualquier onjunto de intervalos mutuamente interseantes en lareta real tiene un punto en omún. Por lo tanto una sublase de grafosaro-irulares que generaliza a los grafos de intervalos de forma naturalson los grafos aro-irulares Helly; es deir, aquellos grafos aro-irularesque tienen un modelo que satisfae la propiedad de Helly. Lin y Szwar-�ter presentaron una araterizaión para esta lase mediante estruturasprohibidas dentro de la lase de los grafos aro-irulares [LS06a℄. Dihaaraterizaión lleva a un algoritmo de reonoimiento lineal para la lasede los grafos aro-irulares Helly. Lin y otros introdujeron y araterizaron



xla lase de los grafos aro-irulares propios Helly [LSS07℄, aquellos grafosque tienen un modelo aro-irular que es simultáneamente propio y Helly.P. Hell probó que la familia de los bigrafos de intervalos son exatamenteaquellos grafos aro-irulares on número de ubrimiento por lique dos yposeen un modelo aro-irular sin dos aros que ubran la irunferen-ia ompleta. Los grafos aro-irulares que satisfaen diha ondiión sononoidos en la literatura omo grafos aro-irulares normales. Esta termi-nología fue introduida en [LS06b℄. Generalizando los grafos aro-irulares,L. Alón y otros introdujeron la lase de los grafos bule.A pesar de que muhos investigadores han tratado de enontrar la listade subgrafos prohibidos que araterie la lase de los grafos aro-irulares,el problema aún permanee abierto. En esta tesis presentamos algunos pa-sos en esta direión, aportando araterizaiones de grafos aro-irularespor subgrafos induidos prohibidos minimales uando el grafo pertenee aalguna de las siguientes lases: grafos sin P4, grafos sin paw, grafos ordalessin law y grafos sin diamante. Además, omo los grafos aro-irularesque perteneen a estas lases tienen un modelo aro-irular normal, estosresultados implian que los subgrafos induidos prohibidos para la lase delos grafos aro-irulares normales neesariamente ontienen un diamanteinduido, un P4 induido, un paw induido, y o bien un law o un agujeroomo subgrafo induido. También introduimos y araterizamos la lase delos grafos semiirulares, grafos aro-irulares que tienen un modelo aro-irular donde todos sus aros son semiirunferenias. Cabe destaar quetodas estas lases fueron estudiadas a lo largo del amino haia la prueba delTeorema Fuerte de los Grafos Perfetos [Con89, Ola88, PR76, Sei74, Tu87℄.Un grafo se die írulo si es el grafo de interseión de un onjunto deuerdas en una irunferenia, a tal onjunto se lo llama modelo de írulo.Los grafos írulo fueron introduidos por Even e Itai en [EI71℄ para resolverun problema de ordenamiento on el mínimo número de pilas en paralelo sinla restriión de argar antes que la desarga sea ompletada. Ellos tambiénprobaron que este problema se puede traduir en el problema de hallar elnúmero romátio de un grafo írulo. Desafortunadamente este problemaresulta ser NP-ompleto [GJMP80℄.Naji araterizó los grafos írulo en términos de la soluión de un sis-tema lineal de euaiones que lleva a un algoritmo de reonoimiento O(n7)para esta lase [Naj85℄. El omplemento de un grafo G on respeto a unvértie u 2 V (G) es el grafo G � u que se obtiene a partir de G reem-plazando el subgrafo induido G[NG(u)] por su omplemento. Este tipode operaión se denomina omplementaión loal. Se die que dos grafosG y H son loalmente equivalentes si y solo si G se obtiene a partir de Hmediante una suesión de omplementaiones loales. Bouhet probó quelos grafos írulo son errados bajo omplementaión loal, también probó



xique un grafo es írulo si y solo si todo grafo loalmente equivalente no on-tiene tres determinados grafos omo subgrafo induido [Bou94℄. Geelen yOum [GO09℄ dieron una nueva araterizaión de grafos írulo en términosde la operaión de pivoteo. El resultado de pivotear un grafo G on respetoa una arista uv es la grafo G� uv = G � u � v � u (donde � representa a laomplementaión loal). Un grafo G0 es equivalente por pivoteo a G si G0se obtiene a partir de G mediante una seuenia de operaiones de pivoteo.Ellos probaron, on la ayuda de una omputadora, que G es un grafo írulosi y solo si ada grafo equivalente por pivoteo a G no ontiene ninguno de15 grafos determinados omo subgrafo induido.Un grafo írulo que posee un modelo tal que todas sus uerdas tienenla misma longitud se llama grafo írulo unitario. La lase de grafos aro-irulares propios está propiamente ontenida en la lase de los grafos ír-ulo. Más aún, la lase de los grafos aro-irulares unitarios oinide onla lase de los grafos írulo unitario.Deimos que G tiene una desomposiión split si existen dos grafos G1y G2 on jV (Gi)j � 3, i = 1, 2, tal que G = G1 �G2 on respeto a algunosvérties destaados (ver Ch. 3). Si esto suede llamamos a G1 y G2 fatoresde la desomposiión split. A aquellos grafos que no poseen una desom-posiión split se los llama primos. El onepto de desomposiión split esdebido a Cunningham [Cun82℄. Los grafos írulo resultaron ser erradospor desomposiión split [Bou87℄ y en 1994 Spinrad presentó un algoritmode tiempo uadrátio que se aproveha de esta peuliaridad.Los grafos írulo son una superlase de los grafos de permutaión. Deheho, los grafos de permutaión pueden ser de�nidos omo aquellos grafosírulo tales que una uerda que interseque todas las uerdas del modelopuede ser agregada. Por otro lado los grafos de permutaión son aquellosgrafos de omparabilidad uyo grafo omplemento es también de ompa-rabilidad. Como los grafos de omparabilidad han sido araterizados porsubgrafos prohibidos induidos en [Gal67℄, tal araterizaión implia unaaraterizaión por subgrafos induidos prohibidos para la lase de los grafosde permutaión.Los grafos de írulo Helly son aquellos grafos de írulo que tienen unmodelo uyas uerdas satisfaen la propiedad de Helly; es deir, todo on-junto de uerdas que se intersean dos a dos tienen un punto en omún.Esta familia de grafos fue introduida por Durán en [Dur00℄. Él tambiénonjeturó que un grafo írulo es írulo Helly si y solo si no ontiene un dia-mante omo subgrafo induido. Reientemente, ésta onjetura fue probada.Sin embargo, los grafos írulo Helly aún no han sido araterizados porsubgrafos prohibidos.En esta tesis presentamos algunas araterizaiones pariales por sub-grafos prohibidos induidos. Caraterizamos los grafos írulo dentro de los



xiigrafos domino lineales usando la desomposiión split. Conseuentemente,araterizamos los grafos írulo Helly dentro de la lase de los grafos sinlaw. Caraterizaiones por subgrafos induidos prohibidos dentro de dossuperlases de ografos, tree-ographs y P4�tidy, son presentadas omo unaapliaión de la araterizaión de Gallai para grafos de omparabilidad. Fi-nalmente introduimos y araterizamos la lase de los grafos írulo Hellyunitarios, aquellos grafos írulo que tienen un modelo que es simultánea-mente Helly y unitario.Sea G una lase hereditaria de grafos. Un grafo se die probe G si susvérties pueden ser partiionados en dos onjuntos: un onjunto de vértiesprobe y un onjunto de vérties nonprobe, de forma tal que el onjuntode vérties nonprobe es un onjunto independiente y se puede obtener ungrafo perteneiente a la lase G agregando aristas on ambos extremos en elonjunto de vérties nonprobe.En 1994 Zhag introdujo los grafos probe de intervalos omo una he-rramienta de investigaión en el maro del proyeto del genoma humano,[ZSF+94℄. Desde entones, los grafos probe G han sido estudiados paradiferentes familias hereditarias de grafos G. Sheng araterizó por subgrafosinduidos prohibidos aquellos árboles que son probe de intervalo [She99℄.Brown y otros presentaron una araterizaión por subgrafos induidos pro-hibidos dentro de la lase de los árboles [BLS09℄. Prºulj y Corneil estudiaronlos subgrafos prohibidos para grafos probe de intervalos dentro de la lase delos 2�tree [PC05℄. Brown y Lundgren probaron que los grafos probe de in-tervalos bipartitos son equivalentes a el omplemento de una lase de grafosaro-irulares on número de ubrimiento lique dos [BL06℄. En [BBd09℄,Bayer y otros araterizaron dos sublases de los grafos probe de intervalos,los grafos probe threshold y los grafos probe trivialmente perfetos, en tér-minos de iertas fórmulas 2�SAT. En el mismo artíulo ellos presentan unaaraterizaión por subgrafos prohibidos para los grafos probe threshold.Las lases de los grafos probe G, on G diferentes de los grafos de inter-valos y de intervalos unitarios, han sido estudiadas para importantes lasesde grafos omo por ejemplo: grafos ordales [GL04, CGLS10℄, grafos depermutaión [CCK+09℄ y grafos split [LdR07℄ entre otros.Con el objetivo de estudiar el omportamiento del operador join paralos grafos probe de intervalos e intervalo unitario introduimos el oneptode lases hereditarias de grafos on un ompañero. También presentamosla lista ompleta de todos los subgrafos induidos prohibidos uyo omple-mento es disonexo para la lase de los grafos probe de intervalos. A pesarde no onseguir haer lo mismo para la lase de los grafos probe de interva-los unitarios, presentamos la lista de subgrafos induidos prohibidos dentrode la lases de tree-ographs y P4�tidy. Damos una araterizaión en tér-minos de subgrafos induidos prohibidos para aquellos grafos o-bipartitos



xiiique son probe de intervalos, esta araterizaión implia que los grafos o-bipartitos probe de intervalos y los grafos o-bipartitos probe de intervalosunitarios son la misma lase. Los grafos probe de intervalos y de intervalosunitarios son araterizados por subgrafos induidos prohibidos dentro de lalase de los tree-ographs, generalizando las araterizaiones presentadasen [She99℄ y [BLS09℄, respetivamente. Finalmente, araterizamos porsubgrafos prohibidos induidos los grafos probe de intervalos y de intervalosunitarios dentro de la lase de los grafos P4�tidy. También estudiamos laslase de grafos probe de grafos o-bipartitos y grafos de bloques. Los grafosprobe de bloques son una sublase de los grafos probe ordales estudiadosen [GL04, CGLS10℄. Los grafos probe ordales no han sido aún arater-izados por subgrafos prohibidos induidos. En esta tesis presentamos unaaraterizaión para grafos probe de grafos de bloques por subgrafos pro-hibidos induidos y probamos que la lase de los grafos probe de grafos debloques es la interseión entre las lases de grafos ordales y probe de grafossin diamante. También presentamos una araterizaión estrutural para lalase de los grafos probe o-bipartitos que lleva a un simple algoritmo dereonoimiento de tiempo polinomial para esta lase.Esta tesis está organizada omo sigue. En el Capítulo 1 damos algunasde�niiones y un breve resumen sobre las lases de grafos estudiadas en estatesis. El Capítulo 2 está dediado a los grafos aro-irulares. En el Capí-tulo 3 presentamos araterizaiones para grafos írulo. Los grafos probede intervalos y los grafos probe de intervalos unitarios son estudiados en elCapítulo 4. En el Capítulo 5 presentamos araterizaiones estruturalespara los grafos probe de grafos de bloques y probe de grafos o-bipartitos.
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IntrodutionCirular-ar graphs are the intersetion graphs of a set S of ars on a irle,suh a set S is alled a irular-ar model. The �rst works about thislass of graphs were published by Hadwiger et al. in 1964 [HDK64℄ andby Klee [Kle69℄ in 1969. Nevertheless, the �rst researher who dealt withthe problem of haraterizing by forbidden subgraphs this family of graphswas A. Tuker in his Ph.D. Thesis in 1969 [Tu60℄. He introdued andmanaged to haraterize by forbidden indued subgraphs two sublasses ofirular ar-graphs: unit irular-ar graphs and proper irular-ar graphs.The �rst sublass onsists of those irular-ar graphs having a irular-armodel with all its ars having the same length and the seond one onsistsof those irular-ar graphs having a irular-ar model without any arontained in another.Charaterizing by forbidden indued subgraphs the whole lass of irular-ar graphs is a long standing open problem. Nevertheless, several authorshave presented some advanes in this way. Trotter and Moore gave a har-aterization by forbidden indued subgraphs within the lass of o-bipartitegraphs [TM76℄. J. Bang-Jensen and P. Hell presented a strutural theoremfor proper irular-ar graphs within the lass of hordal graphs [BH94℄,that implies the haraterization by forbidden indued subgraphs for properirular-ar graphs restrited to the lass of hordal graphs.Cirular-ar graphs are a generalization of the family of the intersetiongraphs of intervals in the real line, alled interval graphs. Interval graphswere haraterized by Boland and Lekkerkerker in 1962 [LB62℄. The wholelist of forbidden indued subgraphs that haraterizes interval graphs wassuessfully found via a haraterization by means of asteroidal triples pre-sented by the same authors. Any set of interval in the real line satis�esthe Helly property; i.e., any set of pairwise interseting intervals in thereal line have a ommon point. Consequently, a sublass of irular-argraphs that naturally generalizes interval graphs are the Helly irular-argraphs; i.e., those irular-ar graphs having an intersetion model of arssuh that any subset of pairwise interseting ars has a ommon point. Linand Szwar�ter presented a haraterization by forbidden strutures for thislass within the lass of irular-ar graphs [LS06a℄. Suh a haraterizationxvii



xviii Contentsyields a linear-time reognition algorithm for the lass of Helly irular-argraphs. Lin et al. introdued and haraterized the lass of proper Hellyirular-ar graphs [LSS07℄, those graphs having a irular-ar model whihis simultaneously proper and Helly.A irular-ar graph having a irular-ar model without two ars ov-ering the whole irle is alled normal irular-ar graph. This terminologywas introdued in [LS06b℄. P. Hell proved that interval bigraphs are exatlythose irular-ar graphs with lique overing number two and having a nor-mal irular-ar model [HH04℄. Generalizing irular-ar graphs, L. Alónet al. introdued the lass of loop graphs [ACH+07℄.In spite of the fat that many researhers have been trying to �nd thelist of forbidden subgraphs that haraterizes the lass of irular-ar graph,the problem still remains open. In this thesis we present some steps in thisdiretion by providing haraterizations of irular-ar graphs by minimalforbidden indued subgraphs, when the graph belongs to any of the follow-ing four di�erent lasses: P4-free graphs, paw-free graphs, law-free hordalgraphs and diamond-free graphs. In addition, sine irular-ar graphs be-longing to these lasses have a normal irular-ar model, these results implythat forbidden indued subgraphs for the lass of normal irular-ar graphsneessarily ontain a diamond, an indued P4, an indued paw and either alaw or a hole as indued subgraph. We also introdue and haraterize thelass of semiirular graphs, irular-ar graphs having a irular-ar modelwhere its ars are semiirles. It is worth pointing out that all of theselasses were studied along the way towards the proof of the Strong PerfetGraph Theorem [Con89, Ola88, PR76, Sei74, Tu87℄. The aforementionedresults have been published in [BDGS09℄.A graph is de�ned to be irle if it is the intersetion graph of a set Cof hords on a irle, suh a set is alled a irle model. Cirle graphs wereintrodued by Even and Itai in [EI71℄ to solve an ordering problem with theminimum number of parallel staks without the restrition of loading beforeunloading is ompleted, proving that the problem an be translated into theproblem of �nding the hromati number of a irle graph. Unfortunately,this problem turns out to be NP-omplete [GJMP80℄.Naji haraterized irle graphs in terms of the solvability of a sys-tem of linear equations, yielding a O(n7) reognition algorithm for thislass [Naj85℄. The loal omplement of a graph G with respet to a vertexu 2 V (G) is the graph G � u that arises from G by replaing the induedsubgraph G[NG(u)] by its omplement. Two graphs G and H are loallyequivalent if and only if G arises from H by a �nite sequene of loal om-plementations. Bouhet proved that irle graphs are losed under loalomplementation, as well as that a graph is irle if and only if every loallyequivalent graph ontains non of three presribed graphs [Bou94℄. Inspired



Contents xixby this result, Geelen and Oum [GO09℄ gave a new haraterization of irlegraphs in terms of pivoting. The result of pivoting a graph G with respet toan edge uv is the graph G�uv = G �u � v �u (where � stands for loal om-plementation). A graph G0 is pivot-equivalent to G if G0 arises from G by asequene of pivoting operations. They proved, with the aid of a omputer,that G is a irle graph if and only if eah graph that is pivot-equivalent toG ontains none of 15 presribed indued subgraphs.A irle graph with a irle model having all its hords of the same lengthis alled a unit irle graph. It is well-known that the lass of proper irular-ar graphs is properly ontained in the lass of irle graphs. Furthermore,the lass of unit irular-ar graphs and the lass of unit irle graphs arethe same [Dur00℄.We say that G has a split deomposition if there exist two graphs G1and G2 with jV (Gi)j � 3, i = 1, 2, suh that G = G1 �G2 with respetto some pair of marker verties (Ch. 3 of this thesis). If so, G1 and G2are alled the fators of the split deomposition. Those graphs that do nothave a split deomposition are alled prime graphs. The onept of splitdeomposition is due to Cunningham [Cun82℄. Cirle graphs turned out tobe losed under this deomposition [Bou87℄ and in 1994 Spinrad presented aquadrati-time reognizing algorithm for irle graphs that bene�ting fromthis peuliarity [Spi94℄.Cirle graphs are a superlass of permutation graphs. Indeed, permu-tation graphs an be de�ned as those irle graphs having a irle modelsuh that a hord an be added in suh a way that this hord meets allthe hords belonging to the irle model. On the other hand, permutationsgraphs are those omparability graphs whose omplement graph is also aomparability graph. Sine omparability graphs have been haraterizedby forbidden indued subgraphs [Gal67℄, suh a haraterizations implies aforbidden indued subgraphs haraterization for the lass of permutationgraphs.Helly irle graphs are those graphs having a irle model whose hordssatisfy the Helly property; i.e, every set of pairwise adjaent hords havea ommon point. This family of graphs was introdued by Durán [Dur00℄.He also onjetured that a irle graph is Helly irle if and only if it doesnot ontain a diamond as indued subgraph. Reently, this onjeture waspositively settled [DGR10℄. Nevertheless, Helly irle graphs have not beenharaterized by forbidden indued subgraphs yet.In this thesis we present some partial haraterizations by forbiddenindued subgraphs. We haraterize irle graphs among linear dominographs by pro�ting from split deomposition. Consequently, we harater-ize Helly irle graphs within the lass of law�free graphs. Charateriza-tions by forbidden indued subgraphs within two superlasses of ographs,



xx Contentstree-ographs and P4�tidy graphs, are presented as an appliation of theharaterization of Gallai for omparability graphs. Finally, we introdueand haraterize the lass of unit Helly irle graphs, irle graphs havinga irle model whih is simultaneously Helly and unit. This results werepublished in [BDGS℄.Let G be a hereditary lass of graphs. A graph is de�ned to be probe Gif its vertex set an be partitioned into two sets: a set of probe verties anda set of nonprobe verties, so that the set of nonprobe verties is a stable setand it an be obtained a graph belonging to G by adding edges with bothendpoints in the set of nonprobe verties.In 1994 Zhag introdued probe interval graphs as a researh tool in theframe of the genome projet, [ZSF+94℄. Sine then, probe G graphs have beenstudied for di�erent hereditary families of graphs G. Sheng haraterized byforbidden indued subgraphs those trees whih are probe interval [She99℄.Brown et al. presented a haraterization by forbidden indued subgraphsof probe unit interval graphs within the lass of trees [BLS09℄. Prºulj andCorneil studied the forbidden subgraphs for probe interval graphs amongthe lass of 2-tree graphs [PC05℄. Brown and Lundgren proved that bipar-tite probe interval graphs are equivalent to a the omplement of a lass ofirular-ar graphs whose lique number is two [BL06℄. In [BBd09℄, Bayeret al. haraterize two sublasses of probe interval graphs, probe thresholdand probe trivially perfet graphs, in terms of ertain 2-SAT formulas . Inthe same artile they present a haraterization by forbidden subgraphs forprobe threshold graphs. Classes of probe G graphs, with G di�erent frominterval and unit interval graphs, have been also studied for many importantlasses of graphs; e.g., hordal graphs [GL04, CGLS10℄, permutation graphs[CCK+09℄ and split graphs [LdR07℄, among others.In order to study the behavior of the join operation for probe intervaland probe unit interval graphs, we introdue the onept of hereditary lassof graphs with a ompanion. We also present the whole list of all forbid-den indued subgraphs whose omplement is disonneted for the lass ofprobe interval graphs. In spite of we annot manage to do so for the lassof probe unit interval graphs, we present the list of forbidden subgraphs,whose omplement is disonneted, for probe unit interval graphs, withinthe lasses of tree-ographs and P4�tidy graphs. We give a haraterizationin terms of forbidden indued subgraphs for those o-bipartite graphs thatare probe interval, this haraterization implies that o-bipartite probe in-terval graphs and o-bipartite probe unit interval graphs are the same lassof graphs. In addition, probe interval graphs and probe unit interval graphsare haraterized by forbidden subgraphs within the lass of tree-ographs,generalizing the haraterizations presented in [She99℄ and [BLS09℄, re-spetively. This results will be published in [DGS℄. Finally, we haraterize



Contents xxiby forbidden indued subgraphs probe interval graphs and probe unit in-terval graphs within P4�tidy graphs. We also study the lasses of probe o-bipartite graphs and blok graphs, presenting a strutural haraterizationfor probe o-bipartite graphs that leads to a polynomial-time reognizingalgorithm for this lass. Probe blok graphs are a sublass of probe hordalgraphs, studied in [GL04, CGLS10℄. Probe hordal graphs have not beenharaterized by forbidden subgraphs yet. In this Thesis we present a har-aterization for probe blok graphs by forbidden indued subgraphs and weprove that the lass of probe blok graphs is the intersetion between thelasses of hordal graphs and probe diamond-free graphs [BDd+℄.This Thesis is organized as follows. In Chapter 1 we give some de�ni-tions and a brief overview on the lasses we studied throughout this thesis.Chapter 2 is devoted to partial haraterizations for irular-ar graphs. InChapter 3 we present partial haraterizations for irle graphs. Partialharaterizations for probe interval graphs and probe unit interval graphsare studied in Chapter 4. Finally, in Chapter 5 we present strutural har-aterization for probe o-bipartite graphs and probe blok graphs.
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Chapter 1Preliminaries1.1 De�nitions and notationA graph G is an ordered pair (V (G),E(G)) onsisting of a set V (G) alledverties and a set E(G) onsisting of unordered pairs of elements of V (G)alled edges . When the ontext is lear, we use V and E instead of V (G)and E(G) respetively. If V = ;, G is alled empty graph . For notationalsimpliity, we write uv to represent the unordered pair fu, vg and u and vare alled the endpoints of the edge uv. If u, v 2 V (G) and uv /2 E(G), uvis alled a nonedge of G. If uv 2 E(G) we say that the vertex u is adjaentto v or vieversa. By jAj we denote the ardinal of a set A. G denotes theomplement graph of G whose vertex set is V (G) and whose edge set isformed by the set of nonedges of G. Notie that, nonedges in G are edges inG. A digraph G is an orderer pair (N ,D) formed by a set V alled vertiesand a set D of ordered pairs of elements of N .Let G1 = (V1,E1) and G2(V2,E2) two graphs. G1 is said to be isomor-phi to G2 and vieversa, if there exists a one-to-one funtion f : V1 ! V2preserving the adjaenies; i.e, vw 2 E1 if and only if f(v1)f(v2) 2 E2.Let G = (V ,E) be a graph. The set of verties adjaent to a vertex v 2 Vis alled neighborhood of v and denoted by NG(v). NG[v] := NG(v) [ fvgis de�ned to be the lose neighborhood of v. dG(v) denotes jNG(v)j and isalled the degree of v. Verties with degree 0 and jV j � 1 are alled isolatedvertex and universal vertex, respetively. A pendant vertex is a vertexof degree one. H = (V 0,E0) is said to be a subgraph of G if V 0 � V andE0 � E. If, in addition, E0 = fuv 2 E : u, v 2 V 0g, H is alled induedsubgraph of G and we say that the vertex set V (H) indues the graphH. Given a subset A � V (G), G[A] stands for the subgraph indued byA. Two verties u, v 2 V are said to be false twins if N(v) = N(w) andthey are said to be true twins if N [v] = N [w]. Let A,B � V (G). We saythat A � V is omplete to B � V if every vertex of A is adjaent to everyvertex of B; and A is antiomplete to B if A is omplete to B in G.1



2 Chapter 1. PreliminariesLet G and H be two graphs. We say that a graph G does not ontainH as indued subgraph or does not ontain an indued H if any induedsubgraph of G is not isomorphi to H. Given a olletion of graphs H, Gis de�ned to be H�free if for any graph F 2 H, G does not ontain anindued F . If H is a set with a single element H, we just use H�free forshort. The disjoint union of G and H is the graph G[H whose vertex setis V (G)[ V (H) and whose edge set is E(G)[E(H). The disjoint union islearly an assoiative operation, and for eah nonnegative integer t we willdenote by tG the disjoint union of t opies of G. The join of G and His a graph G+H whose vertex set is V (G) [ V (H) and whose edge set isE(G)[E(H)[ fvw : v 2 V (G), w 2 V (H)g. If V (H) � V (G), we denoteby G�H the graph G[V (G)� V (H)]. If H is formed by an isolated vertexv; i.e, H is a subgraph of G whose vertex set is fvg and whose edge set isempty, G� v stands for G�H. Given E0 � E(G), G�E0 stands for thegraph whose vertex set is V (G) and whose edge set is E(G)�E0.Given a lass of graphs G, we denote by o-G the lass of graphs formedby the omplements of graphs belonging to G. A lass of graph G is saidto be hereditary if for every indued subgraph G 2 G, any subgraph of itbelongs to G. We say that a graph G is non-G, if G does not belong to thelass G. If G is a hereditary lass, a graph G is de�ned to be minimallynon-G if G does not belong to G but every proper indued subgraph does.A stable set is a subset of pairwise non-adjaent verties. A ompleteset is a set of pairwise adjaent verties. A omplete graph is a graph whosevertex set is a omplete set. A lique is a omplete graph maximal underinlusion. Kn (n � 0) denotes the omplete graph on n verties. K3 is alsoalled triangle . A diamond is the graph obtained from a omplete K4 byremoving exatly one edge. A paw is the graph obtained from a triangle Tby adding a vertex adjaent to exatly one vertex of T . A lique is a subsetof verties induing a omplete subgraph. A graph G is bipartite if V (G)an be partitioned into two stable sets V1, V2; G is omplete bipartite ifV1 is omplete to V2. Denote by Kr,s the omplete bipartite graph withjV1j = r and jV2j = s. A law is the omplete bipartite graph K1,3.A path is a linear sequene of di�erent verties P = v1, : : : , vk suh thatvi is adjaent to vi+1 for i = 1, : : : , k� 1. fv2, : : : , vn�1g are alled internalverties of the path. Sums in this paragraph should be understood modulok. If there is no any edge vivj suh that ji� jj � 2; i.e., all its internalverties have degree two, P is said to be either hordlees path or induedpath . Denote by jP j the number of verties of P . A yle yle C is a linearsequene of verties C = v1, : : : , vk, v1 suh that vi is adjaent to vi+1 fori = 1, : : : , k. If there is no any edge vivj suh that ji� jj � 2, C is saidto be either hordlees yle or indued yle . By Pn and Cn we denotea indued path and an indued yle on n verties, respetively. An edge



1.2. Overview on some lasses of graphs 3
Figure 1.1: From left to right: law, diamond, gem, and 4-wheeljoining two non-onseutive verties of a path or a yle in a graph is alleda hord . A hole is an indued yle of length at least 4.The operation of edge subdivision in a graph G onsists on seleting anedge uv of G and replaing it with an indued path u = v1, v2 : : : , vk�1, vk =v with k � 3 a positive integer. A prism is a graph that onsists of twodisjoint triangles fa1, a2, a3g and fb1, b2, b3g linked by three indued pathsP1, P2, P3 where Pi links ai and bi for i = 1, 2, 3.A graph G is alled onneted if there is a path linking any two of itsverties. A maximal (under inlusion) onneted subgraph of G is alledomponent of G. A graph G is antionneted if G is onneted; an anti-omponent of G is the subgraph ofG indued by the verties of a omponentof G.Let G be a graph. v is alled a ut vertex if the number of omponentsof G� v is greater than the number of omponents of G. G is said to be2-onneted if G is onneted and does not have any ut vertex. A maximal2-onneted subgraph is alled a blok .1.2 Overview on some lasses of graphsThe aim of this setion is to give a brief overview of some lasses of graphs,espeially those we use throughout this Thesis. The main fous is strutural.1.2.1 Domino graphsA graph G is domino if eah vertex belongs to at most two liques. If, inaddition, eah of its edges belongs to at most one lique, then G is a lineardomino graph.The following theorem gives a forbidden indued subgraph harateriza-tion for the lass of dominoes graphs.Theorem 1. [KKM95℄ G is a domino graph if and only if G is a{gem,law,4�wheel}�free graph.Notie that, given a graph G, then every edge belongs to at most onelique if and only if G is diamond�free. Consequently, the following orollaryis obtained.
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eFigure 1.2: Interval graph and its interval modelCorollary 1. [KKM95℄ G is a linear domino graph if and only if G isa {law,diamond}�free graph.1.2.2 Intersetion graphsGiven a family of sets F , a graph G = (V ,E) is de�ned to be an intersetiongraph respet on F if there is a one-to-one funtion f : V ! F , suh thatuv 2 E if and only if f(u) and f(v) interset. Intersetion graphs have beenwidely studied in the literature. Having good strutural qualities, intervalgraphs, hordal graphs, irular-ar graphs and irle graphs are some of themost studied intersetion graph families. In this setion we will fous onsummarizing some features of some of the aforementioned lasses of graphs.Interval graphsA graph G = (V ,E) is de�ned to be an interval graph if there exists afamily of open intervals I = fIvgv2V in the real line and a one-to-onefuntion f : V ! I suh that uv 2 E if and only if f(u) and I(v) interset.Suh a family of intervals I is alled an interval model of G.Before introduing the well-known forbidden indued subgraph hara-terization for interval graphs, we will de�ne a tool that play a very importantrole in this haraterization. Three verties in a graph G form an asteroidaltriple if, for eah two of three verties, there exists a path ontaining thosetwo but no neighbor of the third.Boland and Lekerker haraterized interval graph by forbidden induedsubgraphs. They managed to do so having haraterized interval graphs asthose graphs not ontaining asteroidal triple [LB62℄.Theorem 2. [LB62℄ A graph is an interval graph if and only if it on-tains no indued bipartite-law, umbrella, n-net for any n � 2, n-tentfor any n � 3, or Cn for any n � 4.Notie that all graphs depited in Fig. 1.3 ontain an asteroidal triple.A proper interval graph is an interval graph having an interval modelsuh that none of its intervals is properly ontained in another, suh aninterval model is alled proper interval model. A unit interval is an



1.2. Overview on some lasses of graphs 5
Figure 1.3: Minimal forbidden indued subgraphs for the lass of intervalgraphsinterval graph having an interval model with all its intervals having thesame length, suh an interval model is alled unit interval model.Proper interval graphs were introdued by Roberts [Rob69℄. It was him-self that haraterized those interval graphs that are proper interval.Theorem 3 ([Rob69℄). Let G be an interval graph. G is unit interval ifand only if G does not ontain an indued law.Wegner [Weg67℄ and Robert [Rob69℄ introdued unit interval graphs.Notie that every unit interval graph is a proper interval graph. Robertswas able to prove that the onverse is also true. Consequently, by ombiningTheorem 2 and Theorem 3 follows the below theorem.Theorem 4 ([Rob69℄). Let G be a graph. G is unit interval graph if andonly if G does not ontain an indued law, a net,a tent, or Cn for anyn � 4.Permutation graphsIn order to introdue permutation graphs we �rst de�ne omparabilitygraphs. We said that a digraph G0 = (V 0,E0) is an orientation of a graph Gif V 0 = V (G) and uv 2 E if and only if either (u, v) 2 E0 or (v,u) 2 E0. Anorientation is said to be a transitive orientation if it is a transitive binaryrelation on V 0; i.e., if (u, v) 2 E0 and (v,w) 2 E0, then (u,w) 2 E0. A graphis said to be omparability if it has a transitive orientation. Comparabilitygraphs were haraterized by Galai by means of a list of forbidden induedsubgraphs [Gal67℄.Theorem 5. [Gal67℄ A graph is a omparability graph if and only if itdoes not ontain as an indued subgraph any graph in Figure 1.4 andits omplement does not ontain as an indued subgraph any graph inFigure 1.6.Let � : f1, : : : ,ng ! f1, : : : ,ng be a permutation of Vn = f1, : : : ,ng; i.e,� is a one-to-one funtion. By G(�) we denote the graph whose vertex set is



6 Chapter 1. Preliminaries
Figure 1.4: Some minimal forbidden indued subgraphs for omparabilitygraphs.Vn and whose edge set is formed by those unordered pairs ij satisfying i < jand ��1(i) > ��1(j). A graph G is de�ned to be a permutation graph ifthere exists a permutation � suh that the graph G(�) is isomorphi to G.Notie that if you plae {1,. . . ,n} in two parallel vertial opies of the realline and join i of the line on the left with �(i) in the line on the right, theintersetion graph of these segments is isomorphi to G(�). For instane,onsider the permutation � : V4 ! V4 suh that �(1) = 3, �(2) = 1,�(3) = 4 and �(4) = 2, the graph G[�] is isomorphi to the intersetiongraph of the segments depited in Figure 1.5. Pnueli et al. presented aharaterization of permutation graphs that shows the relationship betweenthis lass and omparability graphs.
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ab cdFigure 1.5: The intersetion graph of the set of segments on the left whoseendpoints belong to the vertial lines is isomorphi to the graph on the right.Theorem 6. [PLE71℄ A graph G is a permutation graph if and only ifG and G are omparability graphs.Therefore, the haraterization of omparability graphs in [Gal67℄ leadsimmediately to a forbidden indued subgraph haraterization of permuta-tion graphs.Corollary 2. A graph G is a permutation graph if and only if G andG do not ontain as an indued subgraph any graph in Figure 1.4 andFigure 1.6.



1.2. Overview on some lasses of graphs 7

Figure 1.6: Some graphs whose omplements are minimal forbidden induedsubgraphs for omparability graphs.Chordal graphs an its sublassesA graph G is de�ned to be hordal if G does not ontain any indued ylewith at least four verties. Consequently, interval graphs are a sublass ofhordal graphs. Furthermore, sine the graph tent is hordal but not interval(see, Fig. 1.3), the lass of interval graphs is properly ontained in the lassof hordal graphs. Chordal graphs were haraterized as the intersetiongraph of subtrees in a tree [Gav74℄.Split graphs are those graphs whose vertex set an be partitioned intotwo sets: a omplete set and an stable set. Split graphs are a sublass ofographs and were haraterized by forbidden indued subgraphs as follows.Theorem 7. [HF77℄ Let G be a graph. G is a split graph if and only ifG does not ontain any indued 2K2, C4 and C5.Split omplete graphs are those split graphs suh that an be parti-tioned into a stable set and a omplete set in suh a way that the ompleteset is omplete to the stable set. Split omplete graphs will be also alledprobe omplete . The above theorem implies the following result whoseproof is straightforward.Lemma 1. Let G be a graph. G is split omplete if and only if G doesnot ontain any indued C4 and P 3.G is a blok graph if it is onneted and every blok is a omplete. It iswell-known that blok graphs are onneted diamond-free hordal graphs.



8 Chapter 1. PreliminariesGiven two verties v and w of a onneted graph G, d(v,w) stands forthe number of edges of a path with the minimum number of edges linkingv and w.A onneted graph is de�ned to be ptolemai if and only if satis�es theptolemai inequality; i.e., for any four verties u, v,w and xd(u, v)d(w,x) � d(u,w)d(v,x) + d(u,x)d(v,w).Howorka proved that a graph is ptolemai if and only if it is hordal andgem-free [How81℄(see F2 in Fig. 5.2).1.2.3 Cographs and its superlassesIn this setion we are going to overview the most important strutural har-aterization of ograph and some of its superlasses. First, we will startde�ning ographs reursively.A ograph an be reursively onstruted as follows:1. The trivial graph is a ograph.2. If G1 and G2 are ographs, then G1 [G2 is a ograph.3. If G is a ograph, then G is a ograph.There are several ways of haraterizing ographs (see e.g., [CO00, CLS81,CPS84, Sei74℄). Next, we give a haraterization by foribidden indued sub-graph for this lass.Theorem 8. [CLS81, CPS84℄ Let G = (V ,E) a graph. G is a ograph ifand only if G is P4-free.The following theorem shows a property of ographs whih is a usefultool to deal with this lass.Theorem 9. [Sei74℄ If G is a ograph, then G is either not onnetedor not antionneted.Let G be a graph and let A be a vertex set induing a P4 in G. A vertexv of G is said a partner of A if G[A [ fvg] ontains at least two induedP4's. Finally, G is alled P4-tidy if eah vertex set A induing a P4 in Ghas at most one partner [GRT97℄.The lass of P4-tidy graphs is an extension of the lass of ographs and itontains many other graph lasses de�ned by bounding the number of P4'saording to di�erent riteria; e.g., P4-sparse graphs [Hoà85℄, P4-lite graphs[JO89℄, and P4-extendible graphs [JO91℄.



1.2. Overview on some lasses of graphs 9A spider [Hoà85℄ is a graph whose vertex set an be partitioned intothree sets S, C, and R, where S = fs1, : : : , skg (k � 2) is a stable set;C = f1, : : : , kg is a omplete set; si is adjaent to j if and only if i = j (athin spider), or si is adjaent to j if and only if i 6= j (a thik spider); Ris allowed to be empty and if it is not, then all the verties in R are adjaentto all the verties in C and nonadjaent to all the verties in S. The triple
(S,C,R) is alled the spider partition. By think(H) and thikk(H) werespetively denote the thin spider and the thik spider with jCj = k andH the subgraph indued by R. If R is an empty set we denote them bythink and thikk, respetively. Clearly, the omplementof a thin spider isa thik spider, and vie versa. A fat spider is obtained from a spider byadding a true or false twin of a vertex v 2 S [C. The following theoremharaterizes the struture of P4-tidy graphs.Theorem 10. [GRT97℄ Let G be a P4-tidy graph with at least two ver-ties. Then, exatly one of the following onditions holds:1. G is disonneted.2. G is disonneted.3. G is isomorphi to P5, P5, C5, a spider, or a fat spider.Let G be a graph and let A be a vertex set that indues a P4 in G. Avertex v of G is said a partner of A if G[A [ fvg] ontains at least twoindued P4's. Finally, G is alled P4-tidy if eah vertex set A that indues aP4 in G has at most one partner [GRT97℄. The lass of P4-tidy graphs is anextension of the lass of ographs and it ontains many other graph lassesde�ned by bounding the number of P4's aording to di�erent riteria; e.g.,P4-sparse graphs, P4-lite graphs [JO89℄, and P4-extendible graphs [JO91℄.A spider is a graph whose vertex set an be partitioned into three sets S,C, and R, where S = fs1, : : : , skg (k � 2) is a stable set; C = f1, : : : , kgis a omplete set; si is adjaent to j if and only if i = j (a thin spider),or si is adjaent to j if and only if i 6= j (a thik spider); R is allowed tobe empty and if it is not, then all the verties in R are adjaent to all theverties in C and nonadjaent to all the verties in S. The triple (S,C,R)is alled the spider partition. Clearly, the omplement of a thin spider isa thik spider, and vie versa. A fat spider is obtained from a spider byadding a true or false twin of a vertex v 2 S [C.Tree-ographs [Tin89℄ are another generalization of ographs. They arede�ned reursively as follows: trees are tree-ographs; the disjoint unionof tree-ographs is a tree-ograph; and the omplement of a tree-ographis also a tree-ograph. It is immediate from the de�nition that, if G is atree-ograph, then G or G is disonneted, or G or G is a tree.
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Chapter 2Cirular-ar graphs2.1 IntrodutionA graph G is a irular-ar (CA) graph if it is the intersetion graph of a setS of open ars on a irle, i.e., if there exists a one-to-one funtion f : V ! Ssuh that two verties u, v 2 V (G) are adjaent if and only the ars f(u)and f(v) interset. Suh a family of ars is alled a irular-ar model (CAmodel) of G. CA graphs an be reognized in linear time [MC03℄. Notiethat a graph is an interval graph if it admits a CA model suh that the setof ars does not over the irle. Interval graphs have been haraterized byminimal forbidden indued subgraphs [LB62℄ (see Chapter 1, Setion 1.2).A graph G is a proper irular-ar (PCA) graph if it admits a CA modelin whih no ar is ontained in another ar. Tuker gave a haraterizationof PCA graphs by minimal forbidden indued subgraphs [Tu74℄. Further-more, this sublass an be reognized in linear time [DHH96℄. A graphG is a unit irular-ar (UCA) graph if it admits a CA model in whihall the ars have the same length. Tuker gave a haraterization by min-imal forbidden indued subgraphs for this lass [Tu74℄. Reently, linearand quadrati-time reognition algorithms for this lass have been shown[LS06b, DGM+06℄. Finally, the lass of CA graphs that are omplements ofbipartite graphs was haraterized by minimal forbidden indued subgraphs[TM76℄. T. Feder et al. haraterized those CA graphs that are obipartiteby edge asteroids [FHH99℄. Nevertheless, the problem of haraterizing thewhole lass of CA graphs by forbidden indued subgraphs remains open.In this hapter we present some steps in this diretion by providing har-aterizations of CA graphs by minimal forbidden indued subgraphs whenthe graph belongs to any of four di�erent lasses: P4-free graphs, paw-freegraphs, law-free hordal graphs and diamond-free graphs. All of theselasses were studied along the way towards the proof of the Strong PerfetGraph Theorem [Con89, Ola88, PR76, Sei74, Tu87℄. The results presentedin this hapter were published in [BDGS09℄.11



12 Chapter 2. Cirular-ar graphs2.2 Preliminaries2.2.1 De�nitionsDenote by G� the graph obtained from G by adding an isolated vertex. If tis a non-negative integer, then tG will denote the disjoint union of t opiesof G. A graph G is a multiple of another graph H if G an be obtainedfrom H by replaing eah vertex x of H by a non-empty omplete graphMx and adding all possible edges between Mx and My if and only if x andy are adjaent in H.Let G and H be graphs. G is an augmented H if G is isomorphi to H orif G an be obtained from H by repeatedly adding a universal vertex. G is abloomed H if there exists a subsetW � V (G) suh that G[W ] is isomorphito H and V (G)�W is either empty or it indues in G a disjoint union ofnon-empty omplete graphs B1,B2, : : : ,Bj for some j � 1, where eah Biis omplete to one vertex of G[W ], but antiomplete to any other vertexof G[W ]. If eah vertex in W is omplete to at least one of B1,B2, : : : ,Bj ,we say that G is a fully bloomed H. The omplete graphs B1, : : : ,Bj willbe referred as the blooms . A bloom is trivial if it is omposed of only onevertex.2.2.2 Previous resultsSpeial graphs needed throughout this hapter are depited in Figure 2.1.For notational simpliity, in this hapter, we will use net and tent as ab-breviations for 2-net and 3-tent, respetively.Bang-Jensen and Hell proved the following result.Theorem 11. [BH94℄ Let G be a onneted graph ontaining no induedlaw, net, C4, or C5. If G ontains a tent as indued subgraph, then Gis a multiple of a tent.Theorem 11 allows to provide the following desription of all the minimalnon-PCA graphs within the lass of onneted hordal graphs.Theorem 12. [BH94℄ Let G be a onneted hordal graph. Then, G isPCA if and only if it ontains no indued law or net.Reall that Lekkerkerker and Boland determined all the minimal for-bidden indued subgraphs for the lass of interval graphs (f. Chapter 1,Theorem 2). This haraterization yields some minimal forbidden induedsubgraphs for the lass of CA graphs. Let H be a minimal forbidden in-dued subgraph for the lass of interval graphs. Notie that if H is non-CA,
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Figure 2.1: Some minimally non-CA graphs.then H is minimally non-CA. Otherwise, if H is CA, then H� is minimallynon-CA, and furthermore all non-onneted minimally non-CA graphs areobtained this way. Sine the umbrella, net, n-tent for all n � 3, and Cn forall n � 4 are CA, but the bipartite law and n-net for all n � 3 are not,this observation and Theorem 2 lead to the following result.Corollary 3. [TM76℄ The following graphs are minimally non-CA graphs:bipartite law, net�, n-net for all n � 3, umbrella�, (n-tent)� for alln � 3, and C�n for every n � 4. Any other minimally non-CA graph isonneted.We all the graphs listed in Corollary 3 basi minimally non-CA graphs.Any other minimally non-CA graph will be alled non-basi. The followingresult, whih gives a strutural property for all non-basi minimally non-CAgraphs, an be dedued from Theorem 2 and Corollary 3.Corollary 4. If G is a non-basi minimally non-CA graph, then G hasan indued subgraph H that is isomorphi to an umbrella, a net, a j-tent for some j � 3, or Cj for some j � 4. In addition, eah vertex vof G�H is adjaent to at least one vertex of H.Proof. Sine G is non-CA, in partiular, G is not an interval graph. ByTheorem 2, G has an indued subgraph H isomorphi to a bipartite law,umbrella, j-net for j � 2, j-tent for j � 3, or Cj for some j � 4. Sine G isnon-basi minimally non-CA, H is isomorphi to umbrella, net, j-tent forsome j � 3, or Cj for some j � 4. Moreover, sine G is not isomorphi toH�, every vertex v of G�H is adjaent to at least one vertex of H.Figure 2.1 introdues the graphs Gi, for i 2 f1, 2, : : : , 9g.



14 Chapter 2. Cirular-ar graphsTheorem 13. Let G be a minimally non-CA graph. If G is not isomor-phi to K2,3, G2, G3, G4, or C�j , for j � 4, then for every hole H of Gand for eah vertex v of G�H, either v is omplete to H, or NH(v)indues a non-empty path in H.Proof. Let G be a minimally non-CA graph, and suppose that G is notisomorphi to K2,3, G2, G3, G4, or C�j for j � 4. Suppose, by way ofontradition, that there is a hole H of G and there is a vertex v of G�Hsuh that v is not omplete to H and NH(v) does not indue a path in H.Note that NH(v) is non-empty beause G is minimally non-CA and it isnot isomorphi to C�j for j � 4.So, H �NH(v) is non-empty and is neither a path nor a hole, hene itis not onneted. Let Q1 and Q2 be two omponents of H �NH(v). Then,there are indued paths P 1 and P 2 on H suh that the interior verties ofP i are Qi, for i = 1, 2. Therefore, the following onditions hold:1. eah of P 1 and P 2 has at least three verties,2. v is adjaent to none of the interior verties of P 1 and P 2, and3. v is adjaent to the endpoints of P 1 and the endpoints of P 2.By de�nition, P 1 and P 2 have no interior verties in ommon.Suppose, by way of ontradition, that P 1 and P 2 have no ommonendpoints. Let w be an interior vertex of P 1, so w is antiomplete to thehole indued by fvg [ V (P 2) on G. Then, fv,wg [ V (P 2) indues a propersubgraph of G (it is proper sine it does not ontain the endpoints of P 1)that is not a CA graph, a ontradition.Suppose next that P 1 and P 2 have exatly one endpoint in ommon.Suppose, by way of ontradition, that P 1 has at least two interior verties.Then, there is an interior vertex w of P 1 that is non-adjaent to the ommonendpoint of P 1 and P 2. Sine fwg is antiomplete to fvg [ V (P 2), fv,wg [V (P 2) indues a proper subgraph in G (it is proper beause it does notontain the endpoint of P 1 that is not a vertex of P 2) that is non-CA,a ontradition. This ontradition proves that eah one of P 1 and P 2has exatly one interior vertex. Then, fvg [ V (P 1) [ V (P 2) would indueon G a subgraph isomorphi to either G3 or G7, both of whih are non-CA graphs. Sine G is minimally non-CA, V (G) = fvg [ V (P 1) [ V (P 2).Sine V (P 1) [ V (P 2) � V (H), neessarily V (H) = V (P 1) [ V (P 2). SineH indues a hole in G, G is isomorphi to G3, a ontradition.Finally suppose that P 1 and P 2 have exatly two endpoints in om-mon. Suppose, by way of ontradition, that P 1 has more than two interior



2.3. Partial haraterizations 15points. Let w be an interior vertex of P 1 that is adjaent to none of its end-points. Then, w is antiomplete to fvg [ V (P 2) and thus fv,wg [ V (P 2)indues a proper subgraph on G (it is proper beause it does not ontainthe neighbours of w in H) that is non-CA, a ontradition. This ontradi-tion shows that eah one of P 1 and P 2 has at most two interior verties.Thus, fvg [ V (P 1)[ V (P 2) indues on G either K2,3, G2 or G4, whih areminimally non-CA graphs. Sine G is minimally non-CA, G is isomorphito one of them, a ontradition.2.3 Partial haraterizations2.3.1 CographsResults on ographs used throughout this subsetion an be found in Sub-setion 1.2.3.De�ne semiirular graphs to be the intersetion graphs of open semi-irles on a irle. Notie that semiirular graphs are UCA graphs.Theorem 14. Let G be a graph. The following onditions are equiva-lent:1. G is fP4, 3K1g-free.2. G is an augmented multiple of tK2 for some non-negative integert.3. G is a semiirular graph.Proof. (1) ) (2) Assume that G is a fP4, 3K1g-free graph. If G has lessthan two verties, then G is a omplete (note that tK2 with t = 0 is anempty graph). So, we an assume that G has at least two verties. Sine Gis P4-free, by Theorem 9, G is either not onneted or not antionneted.Sine G is 3K1-free, if G is not onneted, then G has exatly two om-ponents. Moreover, both omponents are omplete graphs. Thus, G is amultiple of K2. Suppose now that G is non-antionneted, and let H bean antiomponent of G. Sine H is fP4, 3K1g-free and antionneted, H iseither trivial or non-onneted and, in the seond ase, by the argumentsabove H indues on G a multiple of K2. Let s be the number of antiompo-nents of G that are trivial and t be the number of antiomponents of G thatindue on G a multiple of K2. Sine G is the join of its antiomponents, Gis the join of a multiple of tK2 and a omplete Ks for some non-negativeintegers t and s. Consequently, G is an augmented multiple of tK2 for somenon-negative integer t.
(2)) (3) Assume that G is an augmented multiple of tK2 for some non-negative t. In partiular, G is a multiple of tK2 [ sK1 for some non-negative
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Figure 2.2: The graph 2K2 [K1 and its semiirular model.t and some s = 0 or 1. In order to prove that G is a semiirular graph, itsu�es to prove that tK2 [ sK1 is a semiirular graph. Fix a irle C. Letfp1, p01g, : : : , fpt, p0tg, fq1, q01g, : : : , fqs, q0sg be t+ s pairwise distint pairs ofantipodal points of C. For i = 1, : : : , t, let S1i and S2i be the two disjointopen semiirles on C whose endpoints are pi and p0i. For j = 1, : : : , slet Tj be an open semiirle on C whose endpoints are qj and q0j . ThenS11 ,S21 , : : : ,S1t ,S2t ,T1, : : : ,Ts is a semiirular model for tK2 [ sK1 (see Fig.2.2).
(3) ) (1) We now prove that semiirular graphs are fP4, 3K1g-freegraphs. It is lear that 3K1 is not a semiirular graph beause there isnot enough spae on a irle for three pairwise disjoint semiirles. We nowshow that P4 is not a semiirular graph. Assume, by way of ontradition,that there is a semiirular graph model for P4. Let V (P4) = fv1, v2, v3, v4g,where vi is adjaent to vi+1 for i = 1, 2, 3 and let S = fS1,S2,S3,S4g be asemiirular model for P4, where the semiirle Si orresponds to the vertexvi. Sine v1 and v3 are non-adjaent, S1 and S3 are disjoint and have thesame endpoints. Sine v1 and v4 are also non-adjaent, the same holds for S1and S4, hene S3 = S4. This ontradits the fat that S2 \S3 is non-emptybut S2 \S4 is empty. This ontradition shows that P4 is not a semiirulargraph. Sine the lass of semiirular graphs is hereditary, a semiirulargraph is f3K1,P4g-free.Theorem 15. Let G be a ograph that ontains an indued C4, and suhthat all its proper indued subgraphs are CA graphs. Then, exatly oneof the following onditions holds:1. G is isomorphi to K2,3 or C�4 .2. G is an augmented multiple of tK2, for some integer t � 2.



2.3. Partial haraterizations 17Proof. Clearly, K2,3 and C�4 are not augmented multiples of tK2, for anyinteger t � 2. Assume that G is isomorphi to neither C�4 nor K2,3. Sine allproper indued subgraphs of G are CA graphs, C�4 and K2,3 are not properindued subgraphs of G. We must prove that G is an augmented multipleof tK2, for some integer t � 2. Let H be the indued subgraph of G that isisomorphi to C4. Sine C4 = 2K2, we may suppose that there is a vertexv in G�H. Sine C�4 is not an indued subgraph of G, v is adjaent toat least one vertex of H. Sine G is fP4,K2,3g-free, either v is adjaent tothree verties of H or v is omplete to H. In ase that v is adjaent to threeverties of H we will denote by C(v) the interior vertex of the path induedby NH(v) in H. Suppose there exists a vertex w of G�H, w 6= v, thatis non-adjaent to v. If v were adjaent to three verties of H and w wereomplete to H, then the subgraph indued by fv,wg [ V (H) in G wouldontain an indued P4, a ontradition. Thus, v and w are both adjaentto three verties of H or they are both omplete to H. Next assume thatv and w are both adjaent to three verties of G. If C(v) = C(w), thenfv,wg [ (V (H)� fC(v)g) would indue in G a graph isomorphi to K2,3.If C(v) and C(w) were adjaent, then fv,wg [ V (H) would ontain anindued P4. We onlude that if v and w are both adjaent to three vertiesof H, then C(v) and C(w) must be distint and non-adjaent verties of H.We now prove that G does not ontain 3K1 as indued subgraph. As-sume, by way of ontradition, that there is an indued subgraph S of Gisomorphi to 3K1. Clearly H and S have at most two verties in ommon.If H and S had two verties in ommon, then the remaining vertex of Swould be a vertex of G�H adjaent to at most two verties of H, a on-tradition. If H and S had exatly one vertex in ommon, then the othertwo verties of S would be adjaent to the same three verties of H. Aswe notied above, this leads to a ontradition. We onlude that H andS must have no verties in ommon. Let fv1, v2, v3g = V (S). Sine theverties of S are verties of G�H and pairwise non-adjaent, all of themare adjaent to three verties of H or all of them are omplete to H. If all ofthem were adjaent to three verties of H, then C(v1), C(v2), C(v3) wouldbe pairwise distint and non-adjaent verties of H, a ontradition. If all ofthem were omplete to H, then H [ fv1, v2, v3g indues in G a graph whihontains an indued K2,3, a ontradition. We onlude that G is 3K1-free.Sine G is also P4-free, by Theorem 14, G is an augmented multiple of tK2.Finally, sine G ontains C4 as an indued subgraph, t � 2.We an now present the main haraterization of this subsetion.Theorem 16. Let G be a ograph. Then, G is a CA graph if and onlyif G ontains no indued K2,3 or C�4 .



18 Chapter 2. Cirular-ar graphsProof. Let H be a ograph. Suppose, by way of ontradition, that H isa minimally non-CA graph but H is not isomorphi to K2,3 or C�4 . SineH is not an interval graph and it is P4-free, by Theorem 2, H ontains anindued C4. By Theorem 15, H is an augmented multiple of tK2, for somet � 2. Thus, by Theorem 14, H is a CA graph, a ontradition.2.3.2 Paw-free graphsA paw-free graph is a graph with no indued paw. Paw-free graphs werestudied in [Ola88℄.Theorem 17. Let G be a paw-free graph ontaining an indued C4 andsuh that all its proper indued subgraphs are CA graphs. Then, at leastone of the following onditions holds:1. G is isomorphi to K2,3, G2, G7, or C�4 .2. G is a bloomed C4 with trivial blooms.3. G is an augmented multiple of tK2 for some t � 2.Proof. Assume that G is not isomorphi to K2,3, G2, G7, or C�4 . Sine allproper indued subgraphs of G are CA, G does not ontain any of thesegraphs as indued subgraphs.Let H be an indued subgraph of G isomorphi to C4. If G = H, thenthe theorem holds. Otherwise, let v be any vertex of G�H. Sine G isC�4 -free, v is adjaent to at least one vertex of H. Sine G is paw-free,v annot be adjaent to either exatly three verties of H or exatly twoadjaent verties of H. Sine G is K2,3-free, v annot be adjaent to exatlytwo non-adjaent verties of H. We onlude that eah vertex v of G�His either adjaent to exatly one vertex of H or omplete to H.Suppose that there are two verties w, w0 in G � H suh that w isomplete to H and w0 is adjaent to exatly one vertex x of H. If w and w0are non-adjaent, then w,w0,x and any neighbour of x in H indue a pawin G; if w and w0 are adjaent, then w,w0,x and the non-neighbour of x inH indue a paw in G. Sine G is paw-free, either all verties of G�H areomplete to H, or eah vertex of G�H is adjaent to exatly one vertex ofH (not neessarily all of them to the same vertex).Assume �rst that eah vertex of G�H is adjaent to exatly one vertexof H. Let us prove that G�H is a stable set. Assume, by way of ontra-dition, that there are two adjaent verties v and w in G�H. Sine G ispaw-free, v and w annot be adjaent to the same vertex. Sine G ontainsno indued G7, v and w must be adjaent to non-adjaent verties of H.Similarly, sine G ontains no indued G2, v and w annot be adjaent tonon-adjaent verties of H, a ontradition. Thus, G�H is a stable set.



2.3. Partial haraterizations 19Sine eah vertex of G�H is adjaent to exatly one vertex of H, G is abloomed C4 with trivial blooms.Assume now that all verties of G�H are omplete to H. If G�Hontains three pairwise non-adjaent verties, then these verties and twonon-adjaent verties of H indue K2,3, a ontradition. If G�H ontainsP4, then three non-onseutive verties of P4 and any vertex of H indue apaw, a ontradition. Thus, G�H is f3K1,P4g-free. Sine H is ompleteto G�H, every indued subgraph of G with at least one vertex in H andat least one vertex in G�H is non-antionneted. Sine P4 and 3K1 areantionneted, if G ontains an indued subgraph isomorphi to either 3K1or P4, then it must be entirely ontained in either H or G�H. As observedabove, this situation is not possible, hene G is f3K1,P4g-free. By Theo-rem 14, G is an augmented multiple of tK2 for some non-negative t. Finally,sine G ontains an indued C4, t � 2.Theorem 18. Let k � 5. Let G be a paw-free graph suh that all itsproper indued subgraphs are CA graphs. If G ontains an indued sub-graph H isomorphi to Ck, then exatly one of the following onditionsholds:1. G is isomorphi to G2, G4, or C�k.2. G is a bloomed Ck with trivial blooms.Proof. Assume that G is not isomorphi to G2, G4, or C�k . Sine all properindued subgraphs of G are CA, G does not ontain any of these graphsas indued subgraph. Moreover, G ontains no indued C�j , for any j � 4.G is paw-free, so it is not isomorphi to G3; G ontains an indued yleof length at least �ve, so it is not isomorphi to K2,3. If G = H, then thetheorem holds. Otherwise, by Theorem 13, if v is a vertex of G�H, theneither v is omplete to H or NH(v) indues a non-empty path on H. But,sine H is isomorphi to Ck, k � 5, and G is paw-free, every vertex of G�Hmust be adjaent to exatly one vertex of H. We will show now that G�His a stable set of G. Let v and w be two verties of G�H. Suppose, byway of ontradition, that v and w are adjaent. Sine G is paw-free, v andw annot be adjaent to the same vertex of H. If v and w were adjaent totwo adjaent verties of H, then G would properly ontain an indued C�4 .We an assume now that v and w are adjaent to non-adjaent verties ofH. Let P 1 and P 2 be the two distint paths joining the neighbours of v andw within H. By hypothesis, eah of P 1 and P 2 has at least three verties,and at least one of them has four verties, sine H has at least �ve verties.Sine G ontains no indued C�j , j � 4, eah of P 1 and P 2 has at mostfour verties. If P 1 and P 2 have three and four verties respetively, thenfv,wg [ V (H) would indue in G the graph G4, a ontradition. Finally, ifeah of P 1 and P 2 has four verties, then fv,wg [ V (H)�NH(v) indues



20 Chapter 2. Cirular-ar graphsproperly on G a bipartite law, a ontradition. We onlude that G�H isa stable set of G, and sine eah vertex of G�H is adjaent to exatly onevertex of H, G is a bloomed Ck with trivial blooms.We an prove now the main result of this setion.Theorem 19. Let G be a paw-free graph. Then, G is a CA graph if andonly if G ontains no indued bipartite law, K2,3, G2, G4, G7, or C�j ,for any j � 4.Proof. Let H be a paw-free graph. Suppose, by way of ontradition, thatH is not isomorphi to the bipartite law, K2,3, G2, G4, G7, or C�j , forj � 4, but H is still a minimally non-CA graph. Sine H is paw free, H isnon-basi and, by Corollary 4, H ontains an indued Cj for some j � 4.By Theorem 17 and Theorem 18, H is either an augmented multiple of tK2for some t � 2 or a bloomed Cj with trivial blooms. It is easy to see that abloomed Cj with trivial blooms is CA, and an augmented multiple of tK2 isshown to be CA in Theorem 14. In both ases, we get a ontradition.2.3.3 Claw-free hordal graphsA graph is law-free hordal if it ontains neither an indued law nor ahole. Claw-free graphs are widely studied in the literature, see for example[PR76℄ or reent results in [CS05℄. Besides, as PCA graphs are law-free, thestudy of law-free hordal graphs arises naturally from the haraterizationof PCA graphs within the lass of hordal graphs.Lemma 2. Let G be a {law,net�,G5,G6}-free hordal graph that on-tains a net L indued by ft1, t2, t3, b1, b2, b3g, where ft1, t2, t3g indues atriangle and bi is adjaent to ti for i = 1, 2, 3. If v is a vertex in G�L,then NL(v) is either fbi, tig, or ft1, t2, t3, big or fbi+1, ti+1, ti+2, bi+2g, forsome i 2 f1, 2, 3g (indies should be understood modulo 3).Proof. We will analyze the di�erent ases for jNL(v)j. If jNL(v)j = 0,then L [ fvg indues net�, a ontradition. If jNL(v)j = 1, then eitherNL(v) = fbig or NL(v) = ftig for some i 2 f1, 2, 3g. In the �rst ase,L[ fvg indues G5; in the seond ase, bi, ti, ti+1, v indue a law. In bothases, we get a ontradition.If jNL(v)j = 2, then the representative ases for NL(v) up to symmetryare: fbi, bi+1g, fti, ti+1g, fbi, ti+1g, fbi, tig. In the �rst ase, bititi+1bi+1v isa hole; in the seond and third ases, ti+1, ti+2, bi+1, v indue a law. So, ifjNL(v)j = 2, then NL(v) = fbi, tig for some i 2 f1, 2, 3g. If jNL(v)j = 3,then the representative ases up to symmetry are: fb1, b2, b3g, fbi, bi+1,ti+2g, ft1, t2, t3g, fbi, bi+1, ti+1g, fbi, ti+1, ti+2g, fbi, ti, ti+1g. In the
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M1Figure 2.3: Cirles represent liques. Two irles are adjaent, non-adjaentor joined by a dotted line if the orresponding liques are mutually omplete,antiomplete, or not neessarily omplete or antiomplete, respetively.�rst two ases, NL(v) [ fvg indues a law; in the third ase, NL(v) [ fvgindues G6; in the fourth an �fth ases, bititi+1v is a hole; in the last aseti+1, bi+1, ti+2, v indue a law. In all the ases we get a ontradition.Finally, if v is adjaent to bi+1, bi+2 and to either bi or ti, then eitherfv, bi+1, bi+2, big or fv, bi+1, bi+2, tig indues a law, respetively. So, ifjNL(v)j � 4, then NL(v) is either ft1, t2, t3, big or fbi+1, ti+1, ti+2, bi+2g,for some i 2 f1, 2, 3g.Theorem 20. Let G be a law-free hordal graph that ontains an in-dued net, and suh that all its proper indued subgraphs are CA graphs.Then, exatly one of the following onditions holds:1. G is isomorphi to net�, G5 or G6.2. G is a CA graph.Proof. Assume that G is not isomorphi to net�, G5 or G6. Sine thesegraphs are non-CA and all proper indued subgraphs of G are CA, G on-tains no indued net�, G5 or G6. We laim that G has as an induedsubgraph H that is a multiple of a net; i.e., the verties of H an be parti-tioned into six non-empty liques B1,B2,B3,T1,T2,T3 suh that T1,T2,T3are mutually omplete and Ti is omplete to Bi and antiomplete to Bi+1and Bi+2, for eah i = 1, 2, 3 (from now on, the indies should be under-stood modulo 3). Moreover, the verties of G�H an be partitioned intothree (possibly empty) liques M1,M2,M3 suh that, for eah i = 1, 2, 3,Mi is omplete to Bi+1, Bi+2, Ti+1 and Ti+2 and antiomplete to Bi andTi. A sheme of this situation an be seen in Figure 2.3.We will prove the laim by indution on the number n of verties of G.Clearly, if G is a net, then the laim holds. Assume that n > 6 and that



22 Chapter 2. Cirular-ar graphsthe desired result holds for graphs with less than n verties. Sine n > 6,there exists a vertex v of G suh that G0 = G�fvg ontains an indued net.By indutive hypothesis, sine G0 is law-free hordal, G0 has an induedsubgraph H that is a multiple of a net and the verties of G0 �H an bepartitioned into three liques M1,M2,M3 satisfying the onditions above.Choose ti 2 Ti, bi 2 Bi for eah i = 1, 2, 3 (reall that Ti and Bi are non-empty for i = 1, 2, 3). Let L be the subgraph indued by ft1, t2, t3, b1, b2, b3g.By Lemma 2, either NL(v) = fbi, tig, NL(v) = ft1, t2, t3, big or NL(v) =fbi+1, ti+1, ti+2, bi+2g, for some i 2 f1, 2, 3g.Suppose �rst that NL(v) = fti, big for some i 2 f1, 2, 3g. Let j 2f1, 2, 3g, b0j 2 Bj , and L0 be the net indued by ft1, t2, t3, b0j , bj+1, bj+2g.Applying Lemma 2 to L0, it follows that v is adjaent to b0j if and only ifj = i. Thus, v is omplete to Bi and antiomplete to Bi+1 and Bi+2. Usingthe same strategy, we an prove that v is omplete to Ti and antiompleteto Ti+1 and Ti+2. Sine G is law-free, v must be omplete to Mi+1 (if wwere a non-neighbour of v in Mi+1, then ti, ti+1,w, v would indue a law)and, by symmetry, v is also omplete toMi+2. Moreover, sine G is C4-free,v is antiomplete to Mi (if w were a neighbour of v in Mi, then ti, ti+1,w, vwould indue C4). Thus, the laim holds for G replaing Bi by Bi [ fvg.Next, suppose that NL(v) = ft1, t2, t3, big for some i 2 f1, 2, 3g. Rea-soning as in the �rst ase, it follows that v is omplete to T1, T2, T3, Biand antiomplete to Bi+1 and Bi+2. Sine G is C4-free, v must be ompleteto Mi+1 (if w were a non-neighbour of v in Mi+1, then bi, v, ti+2,w wouldindue a C4) and, by symmetry, also to Mi+2. Sine G is law-free, v mustbe antiomplete toMi (if w were a neighbour of v inMi, then w, bi+1, bi+2, vwould indue a law). Thus, the laim holds for G replaing Ti by Ti [ fvg.Finally, suppose thatNL(v) = fbi+1, ti+1, ti+2, bi+2g for some i 2 f1, 2, 3g.Reasoning again as in the �rst ase, it follows that v is omplete to Bi+1,Ti+1, Ti+2, Bi+2 and antiomplete to Bi and Ti. Sine G is law-free, v mustbe omplete to Mi (if w were a non-neighbour of v in Mi, then ti, ti+1,w, vwould indue a law). Thus, the laim holds for G replaingMi byMi[fvg.This ends the proof of the laim.IfMi andMi+1 are non-empty andmi,mi+1 are verties inMi andMi+1,respetively, then either miti+1timi+1bi+2 indue a C5 or miti+1timi+1 in-due a C4. Sine G is hordal, at most one of fM1,M2,M3g is non-empty.Consequently, G is either a multiple of a net (if every Mi is empty) or amultiple of the graph S depited in Figure 2.4. Sine the net and S areeasily seen to be a CA graph, G is also a CA graph.We an now prove the main result of this setion.



2.3. Partial haraterizations 23
Figure 2.4: The graph S.Theorem 21. Let G be a law-free hordal graph. Then, G is CA ifand only if G ontains no indued tent�, net�, G5 or G6.Proof. Let H be a law-free hordal graph. Suppose, by way of ontradi-tion, that H is not isomorphi to tent�, net�, G5 or G6, but H is still aminimally non-CA graph. Sine H is law-free and hordal, H is non-basiand, by Corollary 4, H ontains an indued net or tent. If H ontains anindued net, then by Theorem 20, H is isomorphi to a net�, G5 or G6, aontradition. Thus, H ontains no indued net but an indued tent. SineH is non-basi, it is onneted (Corollary 3). So, by Theorem 11, H is amultiple of a tent and, in partiular, a CA graph, a ontradition.2.3.4 Diamond-free graphsA diamond-free graph is a graph with no indued diamond. Diamond-freegraphs have been extensively studied. (See, for example, [CY81, Con89,Tu87℄.)Theorem 22. Let G be a diamond-free graph that ontains a hole, andsuh that all its proper indued subgraphs are CA graphs. Then, exatlyone of the following onditions holds:1. G is isomorphi to K2,3, G2, G3, G4, G7, C6, G9, or C�j for somej � 4.2. G is a CA graph. More preisely, if H is any indued hole of G,and V (H) = fh1, : : : ,hkg where hi is adjaent to hi+1 for eah i =1, : : : , k (indies should be understood modulo k), then the vertiesof G�H an be partitioned into k+ 1 (possibly empty) pairwiseantiomplete sets U1, : : : ,Uk,S suh that the following onditionshold:� For eah i = 1, : : : , k, G[Ui] is the union of vertex-disjointliques and for eah u 2 Ui, NH(u) = fhig.



24 Chapter 2. Cirular-ar graphs� For eah s 2 S there is an integer i, 1 � i � k, suh thatNH(s) = fhi,hi+1g; in addition, if s1, s2 2 S, then s1 and s2are adjaent if and only if NH(s1) = NH(s2).Proof. Assume that G is not isomorphi to K2,3, G2, G3, G4, G7, C6, G9,or C�j for any j � 4. Sine all of these graphs are non-CA and all properindued subgraphs of G are CA, G ontains none of these graphs as induedsubgraphs.Let H be an indued hole on G of length k and let v be any vertex ofG�H. Sine G is not isomorphi to K2,3, G2, G3, G4, or C�j , for any j � 4,by Theorem 13, either v is omplete to H or NH(v) indues a non-emptypath in H. Sine G is diamond-free, v is adjaent to at most two vertiesof H. So, eah vertex of G�H is adjaent to either a single vertex or twoadjaent verties of H.Let V (H) = fh1, : : : ,hkg, where hi is adjaent to hi+1 for eah i =1, : : : , k (from now on, indies should be understood modulo k). Let Ui bethe set of verties v of G�H with NH(v) = fhig. Sine hi is adjaent toall verties of Ui and G is diamond-free, G[Ui] ontains no indued P3 andtherefore G[Ui] is the union of vertex disjoint liques.We now show that if i 6= j, then Ui is antiomplete to Uj . Suppose, byway of ontradition, that there exist i and j, i 6= j, suh that some vertexui 2 Ui is adjaent to some vertex uj 2 Uj . Let P 1 and P 2 be the twodistint paths onH joining hi and hj . If P 1 has more than four verties, thenthere is an interior vertex w of P 1 that is antiomplete to P 2, so fui,ujg [V (P 2) [ fwg indues on G a graph isomorphi to C�m for some m � 4,a ontradition. Thus, eah one of P 1 and P 2 has at most four verties.Without loss of generality, we may assume that jP 1j � jP 2j. If jP 1j = 2 andjP 2j = 4, then fui,ujg [ V (H) indues G7; if jP 1j = 3 and jP 2j = 3, thenfui,ujg [ V (H) indues G2; if jP 1j = 3 and jP 2j = 4, then fui,ujg [ V (H)indues G4; if jP 1j = 4 and jP 2j = 4, then fui,ujg [ (V (H)�fhig) induesa bipartite law. In all the ases, we get a ontradition. We onlude thatif i 6= j, then Ui is antiomplete to Uj .Let S be the set of verties v of G�H that are adjaent to two verties ofH. Let s1, s2 be two verties of S, i and j be suh that NH(s1) = fhi,hi+1gand NH(s2) = fhj ,hj+1g. Sine G is diamond-free, if i = j, then s1 and s2must be adjaent and if ji� jj = 1, then s1 and s2 must be non-adjaent.Suppose now that ji� jj > 1, so hi, hi+1, hj and hj+1 are pairwise distint.Assume for ontradition that s1 and s2 are adjaent. Let P 1 be the path onH whose verties are fhi+1,hi+2, : : : ,hjg and P 2 be the path on H whoseverties are fhj+1,hj+2, : : : ,hig. If P 1 and P 2 have no internal verties,then fs1, s2g [ V (H) indues C6, a ontradition. We an assume, withoutloss of generality, that P 1 has at least one internal vertex w. But, then



2.3. Partial haraterizations 25w is antiomplete to the hole indued on G by fs1, s2g [ V (P 2), henefs1, s2,wg[V (P 2) indues on G a graph isomorphi to C�m for some m � 4,a ontradition. So, s1 and s2 are non-adjaent.Now we will prove that Ui is antiomplete to S for eah i = 1, : : : , k.Suppose, by way of ontradition, that there exist adjaent verties ui 2 Uiand s 2 S, and let j be suh that NH(s) = fhj ,hj+1g. Sine G is diamond-free, i is di�erent from j and j + 1. Let P 1 be the path on H whoseverties are fhi,hi+1, : : : ,hjg and P 2 the path on H whose verties arefhj+1, : : : ,hi�1,hig. If P 2 has more than three verties, then hj+2 is an-tiomplete to the hole indued by fs,uig [ V (P 1), a ontradition. Anal-ogously, P 1 has at most three verties. If jP 1j = 2 and jP 2j = 3, thenfui, sg [ V (H) indues G3; if jP 1j = 3 and jP 2j = 3, then fui, sg [ V (H)indues G9. We may assume jP1j � jP2j. In both ases, we have a ontra-dition. We onlude that Ui is antiomplete to S for eah i = 1, : : : , k.Finally, it is not di�ult to see that a graph satisfying these onditionsis a CA graph. This onludes the proof.Theorem 23. Let G be a diamond-free hordal graph that ontains anindued net, and suh that all its proper indued subgraphs are CAgraphs. Then, exatly one of the following onditions holds:1. G is isomorphi to a net�, G5, or G6.2. G is a fully bloomed triangle.Proof. Assume that G is not isomorphi to net�, G5, or G6. Sine all ofthese graphs are non-CA and all proper indued subgraphs of G are CA, Gontains none of these graphs as indued subgraphs.We will show that G is a fully bloomed triangle, and, as a onsequene,a CA graph. We will argue by indution on the number of verties of G.Clearly, a net is a fully bloomed triangle. Suppose that G has n > 6verties and that the result holds for graphs with n� 1 verties. Sine Ghas more than six verties, there exists a vertex v of G suh that G� fvgontains an indued net.Moreover, G� fvg is diamond-free hordal, all its proper indued sub-graphs are CA graphs and it is not isomorphi to net�, G5, or G6. So, byindutive hypothesis, G� fvg is a fully bloomed triangle. That is, thereexists a triangle T of G� fvg suh that the remaining verties of G� fvgindue a disjoint union of omplete graphs M1,M2, : : : ,Mm, where eah Miis omplete to one vertex of T and antiomplete to the others, and eahvertex of T is omplete to at least one of M1,M2, : : : ,Mm. The vertex v isadjaent to at least one vertex of G� fvg beause G ontains no indued



26 Chapter 2. Cirular-ar graphsnet�. On the other hand, sine G is hordal and diamond-free and G�fvgis onneted, N(v) indues a omplete graph on G. So, either N(v) � T orN(v) �Mi [ ftg, where t 2 T and Mi is a bloom omplete to t. In the �rstase, sine G ontains no indued G6, jN(v)j 6= 3, and sine G is diamondfree, jN(v)j 6= 2. Therefore, N(v) = ftg for some t 2 T and fvg is a newbloom omplete to t. In the seond ase, sine G is diamond-free, eitherjN(v)j = 1 or N(v) = Mi [ ftg. If N(v) = ftg with t 2 T , then fvg is anew bloom for t; if N(v) = fwg with w 2Mi, then G ontains an induedG5, a ontradition; if N(v) = Mi [ ftg, then G is a fully bloomed trianglereplaing Mi by Mi [ fvg.Finally, we an prove the main result of this setion.Corollary 5. A diamond-free graph G is CA if and only if G ontainsno indued bipartite law, net�, K2,3, G2, G3, G4, G5, G6, G7, C6, G9,or C�j , for any j � 4.Proof. Let H be a diamond-free graph. Suppose, by way of ontradition,that H is not isomorphi to the bipartite law, net�, K2,3, G2, G3, G4, G5,G6, G7, C6, G9, or C�j , for any j � 4, but H is still a minimally non-CAgraph. Sine H is not an interval graph but it does not ontain a bipartitelaw and it is diamond-free, by Theorem 2, H ontains either a hole or anindued net. If H ontains a hole, H ontradits Theorem 22. Otherwise,H is hordal. Then, H ontains an indued net, and so H ontraditsTheorem 23 beause fully bloomed triangles are CA.2.4 Summary and further resultsThe partial haraterizations of irular-ar graphs by forbidden induedsubgraphs obtained in this thesis are summarized in Table 2.1.Graph lasses Minimal forbidden indued subgraphs RefereneP4-free graphs K2,3, C�4 x 2.3.1Paw-free graphs bipartite law, K2,3, G2, x 2.3.2G4, G7, C�j (j � 4)Claw-free hordal graphs tent�, net�, G5, G6 x 2.3.3Diamond-free graphs bipartite law, net�, K2,3, G2, G3, G4, x 2.3.4G5, G6, G7, C6, G9, C�j (j � 4)Table 2.1: Minimal forbidden indued subgraphs for irular-ar graphs ineah studied lass.A CA graph is a normal irular-ar (NCA) graph if it admits airular-ar model suh that no two ars over the whole irle. For exam-ple, interval graphs and semi-irular graphs are NCA graphs. An example
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Chapter 3Cirle graphs3.1 IntrodutionA graph G = (V ,E) is a irle graph if there exists a one-to-one funtionf : V ! L (f(v) = Cv) where L = fCvgv2V (G) is a family of hords on airle, whose extremes are all di�erent, suh that uv 2 E if and only if u 6= vand Cu \Cv 6= ;. L is alled a irle model of G. A graph G = (V ,E) isoverlap interval if there exists a bijetive funtion f : V ! I (f(v) = Iv)where I = fIvgI2V (G) is a family of intervals on the real line, suh thatuv 2 E if and only if Iu and Iv overlap; i.e., Iu \ Iv 6= ;, Iu 6� Iv andIv 6� Iu. It is well-known that irle graphs and overlap interval graphs arethe same lass, see for instane [Gol04℄.Cirle graphs were introdued by Even and Itai in [EI71℄ to solve aproblem of parallel staks without the restrition of loading before unloadingis ompleted. In addition, the problem under this restrition is handle inthe same artile. A stak is a linear storage devie whih has only one entry.The problem onsist in �nding the minimum number m of staks neessaryto transfer a set of items f1, : : : ,ng stored in A, whose order is given bya permutation P of f1, : : : ,ng, by using a set of parallel staks S1, : : : ,Smwhih an be unloaded to load a stak B before the stak A is ompletelyunloaded (P�1(i) stands for the position in whih the item i is plaed in A).Even and Itai proved that this problem an be translated into the problem of�nding the hromati number of a irle graph. Unfortunately, this problemturns out to be NP-omplete [GJMP80℄.Naji [Naj85℄ haraterized irle graphs in terms of the solvability of asystem of linear equations, yielding a polynomial-time reognition algorithmfor this lass. Then, Gasses gave a shorter proof of Naji's haraterizationin [Gas97℄ by using a Bouhet's theorem.Di�erent polynomial-time reognition algorithms for irle graphs werepresented in the literature. These algorithms are strongly based on the29



30 Chapter 3. Cirle graphs
Figure 3.1: Graphs W5, W7 and BW3notion of split deomposition. The best one has a quadrati time omplexityand is due to Spinrad [Spi94℄.The loal omplement of a graph G with respet to a vertex u 2 V (G)is the graph G � u that arises from G by replaing the indued subgraphG[NG(u)] by its omplement. Two graphs G and H are loally equivalentif and only if G arises fromH by a �nite sequene of loal omplementations.It is easy to see that being loally equivalent is an equivalene relation andthus any lass of graphs an be partitioned into equivalene lasses underthis equivalene relation. A lass of graphs is said to be losed by loalomplementation if and only if given any graph G in the lass implies thatany graph belonging to the same lass of equivalene also belongs to thelass.Theorem 24. [Bou94℄ The lass of irle graphs is losed by loal om-plementations.Moreover, Bouhet gave the following haraterization of irle graphsin terms of forbidden indued subgraphs and loal equivalene.Theorem 25. [Bou94℄ Let G be a graph. Then, G is a irle graph ifand only if no graph loally equivalent to G ontains W5, W7, or BW3as indued subgraph (see Figure 3.1).We would like to emphasize whih is the most important disadvantage ofthe haraterization above respet to a lassial haraterization by meansof a list of forbidden indued subgraphs. Whereas in the lassial hara-terization ontaining none of the graphs of a possibly in�nite list of induedsubgraphs implies that the graph belongs to the lass, in the harateriza-tion of Theorem 25 we have to hek that any graph belonging to the lass ofequivalene of the given graph ontains none of the three presribed graphsof the list as indued subgraph.Geelen and Oum [GO09℄ gave a new haraterization of irle graphsin terms of pivoting. The result of pivoting a graph G with respet toan edge uv is the graph G� uv = G � u � v � u (where � stands for loalomplementation). A graph G0 is pivot-equivalent to G if G0 arises fromG by a sequene of pivoting operations. They proved, with the aid of a



3.1. Introdution 31omputer, that G is a irle graph if and only if eah graph that is pivot-equivalent to G ontains none of 15 presribed indued subgraphs.In [CDG02℄ a superlass of irle graphs (denoted as Bouhet graphs)is de�ned. A graph G is Bouhet if and only if no indued subgraph of Gis loally equivalent to W5, W7, or BW3. The list of 33 minimal forbiddenindued subgraphs for this lass is obtained using a omputer, losing underloal omplementation the graphs W5, W7 and BW3. Clearly, the graphs ofthis family are also minimal forbidden subgraphs for irle graphs, however,this list is not enough to haraterize irle graphs ompletely. In the samework it is shown that irle graphs are a proper sublass of Bouhet graphs.In spite of the mentioned works, there are not known haraterizationsof irle graphs only by forbidden indued subgraphs; i.e., not involvingadditionally the notions of loal equivalene or pivoting operations. In thisthesis, we present some results in this diretion, providing forbidden induedsubgraphs haraterizations of irle graphs within di�erent graph lasses.These results appear in [BDGS℄.Let G1 and G2 be two graphs suh that jV (Gi)j � 3, for eah i = 1, 2,and assume that V (G1)\V (G2) = ;. Let vi be a distinguished vertex of Gi,for eah i = 1, 2. The split omposition of G1 and G2 with respet to v1 andv2 is the graph G1 �G2 whose vertex set is V (G1 �G2) = (V (G1)[V (G2)) nfv1, v2g and whose edge set is E(G1 �G2) = E(G1�fv1g)[E(G2�fv2g)[fuv : u 2 NG1(v1) and v 2 NG2(v2)g. The verties v1 and v2 are alled themarker verties . We say that G has a split deomposition if there existtwo graphs G1 and G2 with jV (Gi)j � 3, i = 1, 2, suh that G = G1 �G2with respet to some pair of marker verties. If so, G1 and G2 are alledthe fators of the split deomposition. Notie that G1 and G2 are induedsubgraphs of G. Those graphs that do not have a split deomposition arealled prime graphs. It is worth pointing out that those prime irle graphshave a unique irle model up to re�etions. Notie that if any of the fatorsof a split deomposition admits a split deomposition we an ontinue theproess until every fator is prime, a star or a omplete. The resultingdeomposition into prime graphs, stars and ompletes might not be unique.Nevertheless, in [Cun82℄ it is proved that if the number of fators is minimumthen the deomposition is unique (up to reordering of the fators). Theonnetion between irle graphs and split deomposition was disoveredby Bouhet [Bou87℄ who proved that irle graphs are losed under splitomposition.Theorem 26. [Bou87℄ Let G be a graph that has a split deompositionG = G1 �G2. Then, G is a irle graph if and only if both G1 and G2are irle graphs.As a onsequene of Theorem 24, we an prove the following result.



32 Chapter 3. Cirle graphsTheorem 27. Let G be a graph. If G is not a irle graph, then anygraph H that arises from G by edge subdivisions is not a irle graph.Proof. Suppose that H arises from G by edge subdivisions. So, H is ob-tained from G by replaing some edges fu1w1, : : : ,urwrg of G by induedpaths fP1, : : : ,Prg of length at least two. On the one hand, sine uiwi wasreplaed by an indued path P = u = v1, : : : , vk = v with k � 3. It is easyto see that if loal omplementation is applied suessively in the interiorverties of Pi = ui = v11, vi2, : : : , viki = wi from vi2 to viki�1, u and v are ad-jaent in the resulting graph. Applying this proedure for eah i = 1, : : : , kwe learly obtain a graph H 0 whih ontains G as indued subgraph andbelongs to the same lass of equivalene as H. Sine G is not a irle graphand the lass is hereditary, H 0 is not a irle graph. Hene, by Theorem 24,H is not a irle graph.The remaining setions of this hapter are organized as follows. In Se-tion 3.2 we haraterize irle graphs within linear domino graphs by usingsplit deomposition. In Setion 3.3, the same task is done within two su-perlasses of ographs (namely, P4-tidy graphs and tree-ographs), by usingthe forbidden indued subgraphs haraterization of permutation graphs.Finally, in the last Setion, we introdue and ompletely haraterize byminimal forbidden indued subgraphs the lass of unit Helly irle graphs.3.2 Linear domino graphsIn this setion we will haraterize irle graphs by minimal forbidden in-dued subgraphs within the lass of linear domino graphs, using a onstru-tive way (f. Subsetion 1.2.1).The graph C6 is a prism where eah triangle is linked by indued pathP1, P2 and P3 having just one edge eah. This graph is loally equivalent toW5, so by Theorem 25, C6 is not a irle graph. Besides, sine every prismarises from C6 by edge subdivision, Theorem 27 implies that prisms are notirle graphs.The following theorem haraterizes those linear domino graphs that areirle graphs.Theorem 28. Let G be a linear domino graph. Then, G is a irlegraph if and only if G ontains no indued prisms.Proof. The �only if� part follows immediately from Theorem 27 and thefat that the lass of irle graphs is hereditary. Suppose now that G is alinear domino graph not ontaining indued prisms. We shall prove thatG is a irle graph. Consider the fators of a split deomposition of Ginto prime graphs, stars and ompletes. It is easy to see that stars and



3.2. Linear domino graphs 33ompletes are irle graphs. Therefore, by Theorem 26, we may supposethat G is a prime graph. Sine a graph is a irle graph if and only if eahof its onneted omponents is a irle graph, we an assume also that Gis onneted. Sine trees are irle graphs, we an suppose that G ontainsat least one hordless yle. Consider a hordless yle of G of maximumlength, say C = v1v2 : : : vnv1, and let X � V (G) be the set of all theverties having at least one neighbor in C. We will prove that atuallyV (C)[X = V (G) and that G is a irle graph. We will split the proof intothree ases: n = 3, n = 4 or 5, and n � 6. (From now on, all the operationsbetween indexes should be understood modulo n.)Case 1: n = 3. In this ase we will prove that G is isomorphi to C.Suppose by the way of ontradition that G is not isomorphi to C andthus, sine G is onneted, X 6= ;. If v is a vertex in X, it neessarilyhas either one or three neighbors on C, otherwise G would ontain an in-dued diamond. Besides, if v,w 2 X with jNC(v)j = 1 (say NC(v) = fv1g)and jNC(w)j = 3, then they are not adjaent. Beause, if they were ad-jaent, then v,w, v1, v2 would indue a diamond in G. On one hand, ifv,w 2 X and jNC(v)j = jNC(w)j = 1, then they are adjaent if and onlyif NC(v) = NC(w). Indeed, if NC(v) = NC(w) = fvig and v and w werenot adjaent, then the verties v,w, vi, vi+1 would indue a law, a ontra-dition. Conversely, if NC(v) = fvig, NC(w) = fvi+1g and vw 2 E(G), theset of verties fv,w, vi, vi+1g would indue a C4. This is a ontradition,beause we are assuming that C is a hordless yle of maximum length.On the other hand, if v,w 2 X and jNC(v)j = jNC(w)j = 3, then v andw are adjaent beause otherwise v,w, v1, v2 would indue a diamond. Asa onsequene of these observations, it follows that X = Q1 [Q2 [Q3 [Qwhere Q1,Q2,Q3,Q are ompletes, Qi is omplete to vi and antiomplete toV (C) n fvig for every i = 1, 2, 3, Q is omplete to V (C), and Q1,Q2,Q3,Qare pairwise antiomplete. We will prove that Q1,Q2,Q3,Q (when they arenon-empty) belong to di�erent onneted omponents of G�V (C) beauseof the maximality of C. By the way of ontradition, let P be a path inG� V (C) of minimum length joining two verties of X that belong to dif-ferent sets of the partition X = Q1 [Q2 [Q3 [Q. By onstrution, P haslength at least 2 and has no internal vertex in V (C) [X. By symmetry,we just have to onsider two ases: the extremes of P are either wi 2 Qiand wj 2 Qj with i 6= j, or wi 2 Qi and w 2 Q. In the former ase,V (P )[ fvi, vjg would indue a hordless yle of length at least �ve. In thelatter ase, V (P ) [ fvig would indue a hordless yle of length at leastfour. Both ontraditions prove that indeed Q1,Q2,Q3,Q (if non-empty)belong to di�erent onneted omponents of G� V (C) that will be denoteby R1,R2,R3,R, respetively. Sine G is a prime graph, Qi = ; for alli = 1, 2, 3. Otherwise, V (Ri) [ fvi, vi+1g and V (G) n V (Ri) form a splitdeomposition of G, with vi+1 and vi as marker verties, respetively. For



34 Chapter 3. Cirle graphsa similar reason, Q = ;. Thus, V (G) = fv1, v2, v3g and G is learly a irlegraph.Case 2: n = 4 or 5. Sine G is a linear domino graph, jNC(v)j = 2for every vertex v belonging to X and the two neighbors are onseutivein C. We will prove that if v,w 2 X, then vw 2 E(G) if and only ifNC(v) = NC(w). Suppose that NC(v) 6= NC(w). On one hand, if NC(v)\NC(w) = fzg and vw 2 E(G), then G[fv,w, y, zg] would be isomorphi toa diamond for eah y 2 (NC(v)[NC(w)) n fzg, ontradition. On the otherhand, if NC(v)\NC(w) = ; and vw 2 E(G), then C [fv,wg would induea prism in G, another ontradition. So, if NC(v) 6= NC(w), then v and ware nonadjaent. Finally, if NC(v) = NC(w) = fy, zg, then v and w areadjaent, otherwise fv,w, y, zg would indue a diamond, a ontradition.Hene X = Q1 [ � � � [ Qn, where eah Qi is a omplete and NC(x) =fvi, vi+1g for every x 2 Qi. We will prove that the non-empty Qi's belong toa di�erent onneted omponent of G�V (C). By the way of ontradition,onsider path P in G� V (C) of minimum length joining two verties wi 2Qi and wj 2 Qj with i 6= j. By symmetry, we just have to onsider twoases: j = i+ 1 and j = i+ 2. By onstrution, P has at least two edgesand has no internal vertex in V (C) [X. In the �rst ase, V (P ) [ (V (C) nfvi+1g) indues a yle of length stritly greater than n. In the seondase, V (P ) [ V (C) indues a prism whose triangles are fwi, vi, vi+1g andfwi+2, vi+2, vi+3g. Both ontraditions prove that indeed eah non-emptyQi belongs to a di�erent onneted omponent Ri of G� V (C). Sine G isprime, it follows that if Qi is non-empty then jV (Ri)j = 1. Otherwise, letwi 2 Qi. Then, V (Ri) [ fvig and (V (G) n V (Ri)) [ fwig would be a splitdeomposition of G, with vi and wi as marker verties, respetively.So, G onsists of C and a (possibly empty) stable set X with at mostone vertex wi for eah 1 = 1, : : : ,n, whose only neighbors in G are vi andvi+1. It is easy to build a irle model for G.Case 3: n � 6. First, notie that, sine G is a linear domino graph,every vertex v 2 X satis�es either NC(v) = fvi, vi+1g or NC(v) = fvi, vi+1,vi+k, vi+k+1g with 3 � k � n� 3. We will all the �rst kind of verties 2-verties and the seond kind of verties 4-verties. It an be easily proved,as above, that if v and w are 2-verties, then v and w are adjaent if andonly if NC(v) = NC(w). Let us see that if v 2 X is a 2-vertex and w 2 Xis a 4-vertex, then v is adjaent to w if and only if NC(v) � NC(w). LetNC(w) = fvi, vi+1, vi+k, vi+k+1g. Suppose �rst that vw 2 E(G). Sine w isnot the enter of a law, v should be adjaent to at least one vertex of eahpair of nonadjaent neighbors of w. Besides, sine NC(v) onsists of twoonseutive verties of C, they should be either fvi, vi+1g or fvi+k, vi+k+1g.Conversely, suppose that NC(v) � NC(w). Again, sine NC(v) onsists oftwo onseutive verties of C, then NC(v) should be either fvi, vi+1g orfvi+k, vi+k+1g. Sine G is diamond-free, v and w must be adjaent.



3.2. Linear domino graphs 35Let v and w be two 4-verties. We assert that jNC(v) \ NC(w)j 2f0, 1, 2g and that vw 2 E(G) if and only if NC(v) \NC(w) onsists of twoonseutive verties of C. If NC(v) \NC(w) ontains two nonadjaent ver-ties x and y, then v and w should be nonadjaent, otherwise fx, y, v,wgwould indue a diamond in G. On the other hand, if NC(v) \NC(w) on-tains two adjaent verties x and y, then v and w should be adjaent,otherwise fx, y, v,wg would indue a diamond in G. Therefore, v and wan share neither three nor four neighbors, and the �if� of the seond partof our assertion holds. Conversely, suppose vw 2 E(G). Sine w is notthe enter of a law, v should be adjaent to at least one vertex of any pairof nonadjaent neighbors of w, so NC(v) \NC(w) ontains two adjaentverties. If NC(v) \NC(w) ontained two nonadjaent verties x and y,then fx, y, v,wg would indue a diamond in G, so NC(v) \NC(w) onsistsexatly of two onseutive verties of C.Therefore, X is a disjoint union of the sets of verties Q1, � � � ,Qn,Q,where the verties in Q are the 4-verties and the verties in Q1 [ � � � [Qnare the 2-verties suh that NC(x) = fvi, vi+1g for eah x 2 Qi. Eah Qiis a omplete and antiomplete to Qj if i 6= j. Sine two 4-verties shareat most two neighbors in C, in partiular there are no two verties in Qwith the same neighbors in C. Therefore, the set Q is a subset of fqi,j :1 � i < j � n, i+ 3 � j � n+ i� 3g, where NC(qi,j) = fvi, vi+1, vj , vj+1g,qi,j is omplete to Qi and Qj and antiomplete to Qk for k 6= i, j, andqi,jqi0,j0 2 E(G) if and only if jfi, jg \ fi0, j0gj = 1. Notie that no vertexqi,j of Q has a neighbor z not in C [X, otherwise fqi,j , vi, vj , zg wouldindue a law in G, a ontradition.We will prove now that the non-empty Qi's belong to di�erent onnetedomponents of G� (V (C) [Q). By the way of ontradition, let P be apath in G� (V (C) [Q) of minimum length joining two verties wi 2 Qiand wj 2 Qj with i 6= j. By onstrution, P has length at least twoand has no internal verties that belong to V (C) [X. On one hand, ifjNC(wi) \NC(wj)j = 1, then G would ontain a hordless yle of lengthgreater than n, a ontradition. On the other hand, if NC(wi)\NC(wj) =;, then G would ontain an indued prism, also a ontradition.So, indeed eah of the non-empty Qi's belong to a di�erent onnetedomponent Ri of G� (V (C)[Q). Sine G is prime, it follows that if Qi werenon-empty then jV (Ri)j = 1. Otherwise, let wi 2 Qi. Then V (Ri) [ fvigand (V (G) n V (Ri)) [ fwig would be a split deomposition of G, with viand wi as marker verties, respetively.Consider now two nonadjaent 4-verties v and w. Then, the edges ofC with either both endpoints in NC(v) (say v-edges) or both endpoints inNC(w) (say w-edges) are exatly four. We will prove that traversing theedges of C in lokwise order, v-edges and w-edges do not alternate, other-
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Figure 3.2: Prime graph and its irle model.wise G would ontain an indued prism. Suppose by the way of ontraditionthat the edges in lokwise order are e1, e2, e3, e4 where e1, e3 are v-edgesand e2, e4 are w-edges. Either e1 and e2, or e2 and e3 are nononseutive inC, sine e1 and e3 are at least two edges apart in C. Suppose without lossof generality that e1 and e2 are nononseutive in C. Let zi1 and zi2 be theendpoints of ei in lokwise order. Then, by removing verties z32 and z41and the lokwise path in C linking them from G[V (C) [ fv,wg], a prismarises: the triangles are fz11 , z12 , vg and fw, z21 , z22g; w is linked with z11 viaz42 and the path in C joining z42 and z11 (they might be the same vertex);z12 and z21 are di�erent and linked by a path in C; z22 an v are linked via z31and the path in C joining z22 and z31 (they might be the same vertex).Next, we will build a irle model for G. Draw a irle C and markon C, in lokwise order, the following points: n, a1, fn,3, : : : , fn,n�3,bn, dn, 1, a2, f1,4, : : : , f1,n�2, b1, d1, 2, a3, f2,5, : : : , f2,n�1, b2, d2, : : : ,n�1, an, fn�1,2, : : : , fn�1,n�4, bn�1, dn�1. Finally, draw the hords aibifor i = 1, : : : ,n, the hord idi for eah i in f1, : : : ,ng suh that Qi is non-empty, and the hord fi,jfj,i for eah i, j in f1, : : : ,ng suh that qi,j 2 Q(see Fig 3.2).Remark 1. A theta is a graph arising from K2,3 by edge subdivision.Chudnovsky and Kapadia [CK08℄ gave a polynomial-time algorithmthat deides whether a graph ontains a theta or a prism as induedsubgraphs. Sine linear domino graphs ontain no indued theta, theharaterization above and the existene of polynomial-time algorithmsfor reognizing irle graphs imply alternative polynomial-time algo-rithms to deide the existene of an indued theta or prism restritedto linear domino graphs. Interestingly enough, the problem of deidingwhether a graph ontains an indued prism is NP-omplete in general[LLMT09℄.



3.3. Superlasses of ographs 373.3 Superlasses of ographsIn this setion we haraterize irle graph within two important super-lasses of ographs: P4-tidy graphs and tree-ographs. The reader interestedin an overview of this lasses is referred to Subsetion 1.2.3.Let G1 and G2 be two graphs and assume that V (G1)\V (G2) = ;. Thedisjoint union of G1 and G2 is the graph G1 [G2 suh that V (G1 [G2) =V (G1)[ V (G2) and E(G1 [G2) = E(G1)[E(G2). We denote by G1 +G2the join graph of G1 and G2, where V (G1 +G2) = V (G1) [ V (G2) andE(G1 +G2) = E(G1)[E(G2) [ fuv : u 2 V (G1) and v 2 V (G2)g.Theorem 29. [Gol04, p. 252℄. Permutation graphs are exatly thoseirle graphs that have a irle model admitting an equator, i.e. anadditional hord meeting all the hords of the model.As an immediate onsequene, we obtain the following orollary.Corollary 7. G+ is a irle graph if and only if G is a permutationgraph.The following result is a onsequene of the orollary above.Lemma 3. The join G = G1 +G2 is a irle graph if and only if bothG1 and G2 are permutation graphs.Proof. Straightforward.3.3.1 P4-tidy graphsThe following lemma an be easily proved by means of elementary geomet-rial arguments.Lemma 4. Let G be a graph and let H be a graph obtained from Gby adding either a pendant vertex, or a true or false twin of a vertex.Then, H is a irle graph if and only if G is a irle graph.Theorem 30. Let G be a P4-tidy graph. Then, G is a irle graph if andonly if G ontains no W5, net+, tent+, or tent-with-enter as induedsubgraph.Proof. It is easy to see that net+, tent+, and tent-with-enter are not irlegraphs. Sine the lass of irle graphs is hereditary, a irle graph ontainsno indued net+, tent+, or tent-with-enter.Conversely, let G be a P4-tidy graph that is not a irle graph. Then,G ontains some indued graph H that is minimally not irle; i.e., H isnot a irle graph but all proper indued subgraphs of H are irle graphs.



38 Chapter 3. Cirle graphsBeause of the minimality, H is onneted. Suppose �rst that H is dison-neted; i.e., H = H1 +H2 for some graphs H1 and H2. By Lemma 3, sineH is not a irle graph, H1 or H2 is not a permutation graph. By Corol-lary 2, H1 or H2 ontains an indued C5, net, or tent. Thus, H = H1 +H2ontains an indued W5, net+, or tent+. By minimality, H = W5, net+,or tent+. Suppose, on the ontrary, that H is onneted. By Theorem 10,sine H is a P4-tidy graph, either H is C5, P5, P5, a spider, or a fat spider.Sine H is not a irle graph, H is di�erent from C5, P5, and P5. Thus, His a spider or a fat spider. By Lemma 4 and the minimality, H has no trueor false twins, so H is not a fat spider. We onlude that H is a spider. Let
(S,C,R) be the spider partition of H. By Lemma 4 and the minimality, His neessarily a thik spider with jSj � 3. Sine tent is a irle graph, eitherjSj � 4 or R 6= ;. In both ases, H ontains an indued tent-with-enterand, by minimality, H = tent-with-enter.3.3.2 Tree ographsTheorem 31. Let G be a tree-ograph. Then, G is a irle graph ifand only if G ontains no indued (bipartite-law)+ and no induedo-(bipartite-law).Proof. It is easy to see that bipartite-law+ and o-(bipartite-law) are notirle graphs and thus a irle graph ontains none of those graphs as induedsubgraph. Conversely, let G be a tree-ograph that is not a irle graph.Therefore, there exists some onneted omponent H of G that is not a irlegraph. Notie that H annot be a tree beause trees are irle graphs. SineH is a tree-ograph and H is onneted, H is disonneted or H is a tree.Suppose �rst that H is disonneted. Then, H = H1 +H2 for some graphsH1 and H2. By Lemma 3, we an assume without loss of generality thatH1 is not a permutation graph. Corollary 2 implies that H1 would ontainan indued bipartite-law, and so H = H1 +H2 would ontain an indued(bipartite-law)+ . Finally, onsider the ase when H is a tree. Sine H is nota irle graph, in partiular it is not a permutation graph. By Corollary 2,H ontains an indued o-(bipartite-law).3.4 Unit Helly irle graphsA graph G is a unit irle graph if it admits a irle model in whih allthe hords have the same length. This lass oinides with the lass of unitirular-ar graphs (i.e., the intersetion graphs of a family of ars on airle, all of the same length) [Dur03℄. Tuker gave a haraterization byminimal forbidden indued subgraphs for this lass [Tu74℄. Reently, linearand quadrati-time reognition algorithms for this lass have been proposed[LS06b, DGM+06℄.



3.4. Unit Helly irle graphs 39The onept of Helly irle graph is due to Durán [Dur03℄. A graphbelongs to this lass if it has a irle model whose hords are pairwise di�er-ent and satisfy the Helly property (i.e., every subset of pairwise intersetinghords has a ommon point). In [Dur03℄, it was onjetured that a irlegraph is a Helly irle graph if and only if it is diamond-free. This onjeturewas reently settled a�rmatively in [DGR10℄, yielding a polynomial-timereognition algorithms for Helly irle graphs.In the theorem below we ompletely haraterize unit Helly irle graphs.Theorem 32. Let G be a graph. Then, the following assertions areequivalent:1. G is a unit Helly irle graph.2. G ontains no indued law, paw, diamond, or C�n for any n � 3.3. G is a hordless yle, a omplete graph, or a disjoint union ofhordless paths.Proof. Let us onsider the ase when G is triangle-free. Suppose �rst that 1holds. Sine G is a unit irle graph, G is a unit irular-ar graph. Thus,G ontains no indued law or C�n for any n � 4 [Tu74℄. This proves 1) 2(in the ase when G is triangle-free). Suppose now that 2 holds. If G has noyles, then eah onneted omponent of G is a law-free tree, i.e., G is thedisjoint union of hordless paths. So, assume that G has some yle. SineG is triangle-free, the shortest yle H of G is a hordless yle of length atleast 4. Sine G ontains no indued law, triangle, or C�n for any n � 4,G = H. We onlude that 2 ) 3. Finally, it is easy to build unit Hellyirle models of hordless yles and of disjoint unions of hordless paths.Consequently, 3) 1 also holds.Let us now onsider the ase when G is not triangle-free. Suppose that 1holds and let L = fLigni=1 be a unit Helly model of G on a irle C, wheren = jV (G)j. If two di�erent hords L1 and L2 on C have the same length,then L1 and L2 are diameters of C or both of them are tangent to a irleC0 onentri with C. Sine G is not triangle-free, we an assume that L1,L2, and L3 are three pairwise interseting hords and, sine L has the Hellyproperty, there is a point P 2 L1 \ L2 \ L3. We laim that L1, L2, andL3 are diameters of C. Otherwise, L1, L2, and L3 would be three di�erenttangents to a irle C0 through P and this would lead to a ontradition,beause it is well-known that there are at most two di�erent tangents toa irle passing through a given point. Sine all hords of L have all thesame length, then L is a family of diameters of C and, therefore, G is aomplete. We onlude that 1 , 3 beause omplete graphs are learlyunit Helly irle graphs. Finally, given that G ontains a triangle, it isstraightforward that G is omplete if and only if G ontains no indued



40 Chapter 3. Cirle graphsC�3 , paw, or diamond. (Notie that C�3 , paw, and diamond are all the four-vertex graphs that ontain the triangle as indued subgraph and that arenot omplete.) We onlude that 2, 3 also holds.



Chapter 4Probe interval graphsIn 1994, Zhang et al. introdued probe interval graphs as a researh tool inthe frame of the genome projet [ZSF+94℄. In this hapter we investigateprobe interval graphs and probe unit interval graphs from a ombinatorialviewpoint. We partiularly fous on forbidden indued subgraphs hara-terizations for probe interval graphs and probe unit interval graphs. Someanteedents on the subjet an be found in [She99℄, [BLS09℄, [BL06℄, and[PC05℄. During the last years, probe G graphs have been studied for manyhereditary lasses of graphs G, probe hordal graphs [GL04℄, probe permu-tation graphs [CCK+09℄ and probe split graphs [LdR07℄ among others. Weharaterize by a set of minimal forbidden indued subgraph probe intervalgraphs and probe unit interval graphs within tree-ographs, P4-tidy graphsand o-bipartite graphs.This hapter is organized as follows. In Setion 2 we state the nees-sary results used throughout of this hapter. In Setion 3, we haraterizeprobe interval graphs within the lass of o-bipartite graphs. In Setion 4,we give the forbidden subgraphs haraterizations of probe interval graphsamong tree-ographs and P4-tidy graphs. Even though these results anbe proved using tools developed in the following setion, we preferred topostpone their use for the onveniene of the reader, presenting an alterna-tive proof that impliitly uses these tools. Setion 5 is devoted to introduethe onept of ompanion of a hereditary lass of graphs. In Setion 6 andSetion 7, using the onept of ompanion introdued in Setion 5, we har-aterize probe f3K1,C4,C5g- free graphs and probe unit interval graphs,respetively. These results appear in [DGS℄.4.1 PreliminariesLet G = (V ,E) be a graph. Denote by (N ,P ) a partition of V suh that Nis a stable set. Let F be a set of nonedges of G whose endpoints belong to N .A ompletion of G is a graph G� = (V ,E0) whose edge set is E0 = E [ F .41
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Figure 4.1: Some small graphs
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2 3Figure 4.2: Example of a probe interval graph. The white verties of thegraph on the left represent the nonprobe verties.Let G be a hereditary lass of graphs. The graph G is de�ned to be probeG and denoted by P(G) if there exists a partition (N ,P ) of V and a set ofnonedges F in G whose endpoints belong to N suh that the ompletionG� = (V ,E [F ) of G belongs to G. Under suh onditions, (N ,P ) is alleda probe G partition of G, the verties in N and P are alled nonprobeverties and probe verties , respetively.Let us see an example of probe interval graph. Consider the graphH = (V ,E) isomorphi to the tent whose verties are labelled as in Figure4.2 and let H� = (N [ P ,E [ F ) be a probe interval ompletion of H.Notie that if (N ,P ) is a probe interval partition of H, then i 2 N forsome i = 1, 2, 3. Suppose, by way of ontradition, that i 2 P for alli = 1, 2, 3. Therefore, sine H is not interval, at least two verties of theset fs1, s2, s3g belong to N and at least a nonedge sisj with i 6= j belongsto F . Consequently, fsi, sj , i, jg indues the graph C4 in H�, this leadsto a ontradition beause H� is an interval graph. Suppose, without lossof generality, that 1 2 N . So, si, i 2 P for i = 2, 3 and thus s1 2 N andF = f1, s1g (see the graph on the left in Figure 4.2). It is easy to hek thatsuh a ompletion is an interval graph (see the graph on the right in Figure4.2). Some graphs used throughout this hapter are depited in Figure 4.1.Those trees that are probe interval graphs or probe unit interval graphshave been haraterized by means of forbidden indued subgraphs in [She99℄and [BLS09℄, respetively.



4.2. Co-bipartite graphs 43
Figure 4.3: Minimally non-probe interval trees.

Figure 4.4: Minimally nonprobe unit interval trees.Theorem 33. [She99℄ Let G be a tree. Then, G is a probe intervalgraph if and only if G ontains no indued Π1 or Π2 (see Fig. 4.3).Theorem 34. [BLS09℄ Let G be a tree. Then, G is a probe unit intervalgraph if and only if G ontains no indued bipartite law, L, or Hn forany n � 0 (see Fig 4.4).4.2 Co-bipartite graphsIn [BL06℄, is presented a haraterization by means of forbidden induedsubgraphs of those bipartite graphs that are probe interval. In addition, itis showed the relationship between probe interval graphs, bigraphs and theomplements of irular-ar graphs within the lass of bipartite graphs. Inthis setion we present a forbidden indued subgraph haraterization forprobe interval graphs within the lass of those graphs whose omplement isbipartite. Furthermore, we show that, restrited to the lass of o-bipartitegraphs, probe interval graphs, probe f3K1,C4,C5g-free graphs and probeunit interval graphs are the same lasses.Given a graph G, D � V (G) is alled a dominating set if every vertexv 2 V (G) either belongs to D or is adjaent to a vertex in D.Lemma 5. [GT04℄ Odd yles of length at least �ve are nonprobe in-terval.Lemma 6. [LZ94℄ Let G be a triangle free graph. G is fP6,C6g-free ifand only if every indued onneted subgraph of G has a dominatingomplete bipartite subgraph isomorphi to Kn,m with n,m � 1.



44 Chapter 4. Probe interval graphsThe following lemma follows from Lemma 6.Lemma 7. Let G = (V ,E) be a onneted bipartite f2P3, 3K2,P6,C6,Fg-free graph. Then, either G has diameter at most 3, or there exists apendant vertex v 2 V suh that H = G[V � v] has diameter at most 3.Proof. Let G be a onneted bipartite f2P3, 3K2,P6,C6,Fg-free graph. ByLemma 6, sine G is bipartite and fP6,C6g-free there exists a dominatingomplete bipartite graph H = (V 0,E0) suh that V 0 an be partitioned intotwo stable sets A and B. Sine G is bipartite, either NV (H)(v) \A = ;or NV (H)(v) \B = ; for every vertex v 2 V � (A [B). We will all A0the set of verties of V n V 0 whose neighbors belong to A and B0 the set ofverties of V n V 0 whose neighbors belong to B. Assume that there existtwo verties u, v 2 V suh that d(u, v) = 4. Notie that either u, v 2 A0 oru, v 2 B0. Suppose, without loss generality, that u, v 2 A0, let u0 2 A andv0 2 A be a neighbor of u and v, respetively. On the one hand, sine G isF�free, Tb02B0 N(b0) 6= ;; i.e., all verties in B0 have a ommon neighbor.Consequently, given a vertex b0 2 B0, d(b0, z) � 3 for all verties z 2 V . Onthe other hand, sine G is 3K2�free, every vertex w 2 A0 is either adjaentto u0 or adjaent to v0. Sine G is 2P3�free, either u or v is a pendant vertex.If A0 = fu, vg, u or v would satisfy the ondition of the lemma. So, we anassume that A0 n fu, vg 6= ;. Suppose, without loss of generality that u isthe pendant vertex. Sine G is 2P3�free, if u1 2 A0 n fug is adjaent to u0and v1 2 A0 n fvg is adjaent to v0, then u1 is adjaent to v0 or v1 is adjaentto u0. Consequently, u is a pendant vertex satisfying the onditions of thelemma.Lemma 7 implies the following haraterization.Theorem 35. Let G be a o-bipartite graph. Then, the following state-ments are equivalent:1. G is a probe interval graph;2. G is a probe unit interval graph;3. G is probe f3K1,C4,C5g-free;4. G is f2P3, 3K2,P6,C6,Fg-free.Proof. It is easy to see that 2P3, 3K2,P6,C6 and F are neither probe inter-val, nor probe unit interval, nor probe f3K1,C4,C5g-free.Conversely, let G = (V ,E) be a f2P3, 3K2,P6,C6,Fg-free o-bipartitegraph. Consider the omplement graph of G, G. By Theorem 2, if G haddiameter at most 3; i.e., G were 2K2�free, then G would be an intervalgraph. Therefore, we an assume that G has diameter 4. By Lemma 7,there exists a pendant vertex v 2 V , whose neighbor we will all v0, suh



4.2. Co-bipartite graphs 45that H = G[V � v] has diameter at most 3. Consequently, the ompletionG�(N [ P ,E [ F ), where N = fv, v0g, P = V n N and F = fvv0g, isan interval graph. Finally, sine G� is also o-bipartite and interval, G isfC4,C5g�free, 3K1�free (onsequently, law-free) and thus f3K1,C4,C5g-free and unit interval. Therefore, G is probe f3K1,C4,C5g-free and probeunit interval.As a onsequene of Lemma 7, we obtain the following orollary.Corollary 8. Let G be the omplement of a tree. Then, the followingassertions are equivalent:1. G is a probe f3K1,C4,C5g-free graph.2. G is a probe unit interval graph.3. G is a probe interval graph.4. G is f3K2, 2P3,P6g-free.5. G is fo-bipartite-law,H,P6g-free.(Here, 4. is a minimal forbidden indued subgraph haraterization,while 5. is a minimal forbidden onneted indued subgraph harater-ization.)Proof. The equivalene between the �rst four statements follows from The-orem 35.Let us see the equivalene between 4. and 5.. Sine G is f3K2, 2P3,P6g-free, then G is fbipartite-law,H,P6g-free. Conversely, let G be a P6�freetree. If G ontains either an indued 2P3 or an indued 3K2, then G ontainseither an indued H or an indued bipartite-law, respetively.The following theorem gives a forbidden indued subgraph harateriza-tion of probe f3K1,C4,C5g-free graphs among trees. The lass of the probef3K1,C4,C5g-free graphs will be useful in the following setions when deal-ing with the lass of probe unit interval graphs.Theorem 36. Let G be a tree. Then, the following assertions are equiv-alent:1. G is a probe f3K1,C4,C5g-free graph.2. G ontains no indued 2K2 [K1 or P4 [K1.3. G ontains no indued E or P6.(Here, 2. is a minimal forbidden indued subgraph haraterization,while 3. is a minimal forbidden onneted indued subgraph harater-ization.)



46 Chapter 4. Probe interval graphsProof. First, we will prove the equivalene between 1. and 3.. It is straight-forward to verify that E and P6 are nonprobe f3K1,C4,C5g-free graphs.Conversely, suppose that G is fE,P6g-free. Let P = v1v2v3 � � � vn be apath of maximum length of G. Sine G is a tree and P is of maximumlength, v1 and vn are pendant verties of G. Sine G ontains no induedP6, n � 5. Sine G is an E-free tree and P is of maximum length, for eahi 2 f2, : : : ,n� 1g, the neighbors of vi in G di�erent from vi�1 and vi+1 arependant verties of G. If n � 3, G is probe omplete and, in partiular, itis a probe f3K1,C4,C5g-free graph. So, assume that 4 � n � 5. If n = 5,dG(v3) = 2 beause G ontains no indued E. Let N1 = NG(v2) n fv3gand let N2 = NG(vn�1) n fv2g (so, if n = 5, N2 = NG(vn�1)). Hene, wesplit V (G) into N = N1 [N2 whih is learly an independent set of G andP = V (G)�N . The graph G� that arises from G by adding all the edgesjoining two verties of N1 and all the edges joining two verties of N2 is3K1-free and hordal. Thus, G� is a f3K1,C4,C5g-free ompletion of G.It an be easily seen that if G is f2K2 [K1,P4 [K1g-free, then G doesnot ontain any indued E and P6. Conversely, ifG is P6�free andG ontainseither an indued 2K2 [K1 or an indued P4 [K1 and G is a tree, then Gontains an indued E. Consequently, if G is a fE,P6g�free tree, then Gontains no indued 2K2 [K1 or P4 [K1.
4.3 Probe interval graphsLemma 8. Let G1 and G2 be two graphs. Then, G1 +G2 is an intervalgraph if and only if one of G1 and G2 is interval and the other one isomplete.Proof. Sine interval graphs are a hereditary lass, if G1 +G2 is an intervalgraph then G1 and G2 are interval graphs. Suppose that none of G1 andG2 is omplete. Then, there exist two nonadjaent verties vi1, vi2 2 V (Gi)for i = 1, 2. Consequently, fv11 , v12 , v21 , v22g indues C4 in G1 +G2 and thusG1 +G2 is not interval. Conversely, suppose that G1 or G2 is interval andthe other one a omplete, say G1 is interval and G2 is a omplete. So, wean onstrut an interval model for G1 +G2 from the interval model I ofG1 by adding as many intervals as the number of verties of G2, overingthe whole interval model I.Lemma 9. Let G1 and G2 be two graphs. Then, G1 +G2 is a probeinterval graph if and only if only if one of the following assertionsholds:1. One of G1 and G2 is omplete and the other one is probe interval.



4.3. Probe interval graphs 472. One of G1 and G2 is probe omplete and the other one is interval.Proof. Let G1 and G2 be two graphs and let H = G1+G2 be probe interval.Therefore, there exists a probe interval ompletion H� = (N [P ,E [F ) ofH suh that H� is an interval graph. Sine H = G1+G2, either N � V (G1)or N � V (G2). Assume, without loss of generality, that N � V (G1); i.e.,H� = G�1 + G2 with G�1 = (V (G1),E(G1) [ F ). By Lemma 8, sine H�is an interval graph, one of G�1 and G2 is a omplete and the other one isinterval. So, either G1 is probe omplete and G2 is an interval graph or G1is a probe interval and G2 is a omplete.Notie the following immediate lass inlusion:omplete � probe omplete � interval � probe interval.The following Theorem haraterizes all minimal nonprobe interval graphswhose omplement is disonneted.Theorem 37. The minimally nonprobe interval graphs whose omple-ment is disonneted are bipartite-law+ 2K1, umbrella+ 2K1, n-net+2K1 for any n � 2, n-tent+ 2K1 for any n � 3, 3K2, or 2P3.Proof. Let G be a minimally nonprobe interval graph whose omplement isdisonneted. Therefore, there exist two graphs G1 and G2 suh that G isthe join between them; i.e., G = G1 +G2. By minimality, G1 and G2 areprobe interval. Sine G = G1 +G2 is nonprobe interval, by Lemma 8, noneof G1 and G2 is omplete.Suppose that one of G1 and G2 is probe omplete, say G2. Then, G1 isnot interval beause otherwise G1 +G2 would be probe interval. Sine, foreah v1 2 V (G1), (G1 � v1) +G2 is probe interval and G2 is not omplete,G1 � v1 is an interval graph. Thus, G1 is a minimally not interval graph.Sine, for eah v2 2 V (G2), G1 + (G2 � v2) is probe interval and G1 is notinterval, G2� v2 is omplete. Sine G2 is not omplete, G2 = 2K1. Sine G1is probe interval, G1 is not a yle of length at least 5 (see Lemma 5). Weonlude that G equals bipartite-law + 2K1, umbrella+ 2K1, n-net+ 2K1for some n � 2, n-tent+ 2K1 for some n � 3, or C4 + 2K1 = 3K2.We an now assume that G1 and G2 are nonprobe omplete. Therefore,sine (G1 � v1) +G2 is probe interval, G1 � v1 is probe omplete, for eahv1 2 V (G1). So G1 is a minimally nonprobe omplete, i.e., P3 or C4 (seeLemma 1). Symmetrially, G2 is P3 or C4. If G1 = C4 or G2 = C4, then Gontains a proper indued C4 + 2K1, a ontradition. So, G = 2P3.The following theorem haraterizes those probe interval graphs amongtree-ographs.



48 Chapter 4. Probe interval graphs
Figure 4.5: Some spiders.Theorem 38. Let G be a tree-ograph. Then, G is a probe interval graphif and only if G ontains no indued Π1, Π2, bipartite-law+ 2K1, 3K2,2P3, or P6.Proof. It su�es to prove that if G is a tree-ograph nonprobe intervalgraph, then G ontains an indued Π1, Π2, bipartite-law + 2K1, 3K2, 2P3,or P6.So, assume that G is not a probe interval tree-ograph. Therefore, G on-tains an indued subgraph H that is a minimally nonprobe interval graph.Sine G is a tree-ograph, H is also a tree-ograph. Consequently, H is dis-onneted, or the omplement ofH is disonneted, orH is a tree, orH is theomplement of a tree. By minimality of H, H is not disonneted beausethe disjoint union of probe interval graphs is also a probe interval graph.If the omplement of H is disonneted, then (by Theorem 37) H equalsbipartite-law + 2K1, 3K2 or 2P3 (notie that umbrella+ 2K1, n-net+ 2K1for any n � 2, and n-tent+ 2K1 for any n � 3 are not tree-ographs). If His a tree, Theorem 33 implies that H equals Π1 or Π2. Finally, onsider thease when H is the omplement of a tree. By Theorem 8, H equals 3K2,2P3, or P6.In order to haraterize those probe interval graphs among P4-tidy graphs,we need the following lemma that haraterizes those spiders that are probeinterval.Lemma 10. Let H be a spider with spider partition (C,S,R). Then, His probe interval if and only if one of the following onditions holds:1. jCj = 3 and H [R] is interval.2. jCj = 2 and H [R] is probe interval.Moreover, if H is probe interval, then a fat spider H 0 that arises fromH is also probe interval exept when jCj = 2, H 0 arises by making afalse twin of a vertex of C, and H [R] is not interval.Proof. Let H = (V ,E) be a thik (thin) spider with partition (C,S,R) thatis probe interval with a ompletion H� = (V ,E [ F ) and probe intervalpartition (N ,P ). Suppose that jCj � 4 and let 1, 2, 3, 4 be di�erent



4.3. Probe interval graphs 49verties in C. Notie that if a tent (net) is an indued subgraph of H, thenexatly a vertex of degree four (three) belongs to N . Let s1, s2, s3, s4 bedi�erent verties of S suh that si adjaent to any vertex in C but i (siis only adjaent to i) for all 1 � i � jCj. So, f1, 2, 3, s1, s2, s3g induesa tent (net) and thus one of 1, 2, 3 belongs to N , say 1. Analogously,f2, 3, 4, s2, s3, s4g also indues a tent (net) and one of 2, 3, 4 belongsto N , but all of them are adjaent to 1, a ontradition. Consequently,2 � jCj � 3. Assume that jCj = 3. Sine H is probe interval, H [C [R] =H [C ] + H [R] is also probe interval. On the one hand, sine H [C ] is aomplete, by Lemma 9, H [R] is probe interval. On the other hand, sinefs1, s2, s3, 1, 2, 3g indues a tent (net), one of the verties in C is nonprobeand thus any vertex in R is probe. So, H [R] is interval. Now, assume thatjCj = 2. Sine C is a omplete and H is probe interval, H [C ] +H [R] isprobe interval. Thus, by Lemma 9, H [R] is probe interval. Conversely, it isstraightforward to onstrut a probe interval model of a thik (thin) spiderthat satis�es ondition 1. or 2..Let H 0 be a fat spider that arises from H. If H 0 arises by making atwin of a vertex s 2 S, then H 0 is also probe interval. Indeed, if H� =
(V (H),E(H)[F ) is a probe interval ompletion of H with a probe intervalpartition (N ,P ) hosen (by symmetry) in suh a way that s 2 N if s0 is afalse twin and sinP if s0 is a true twin, then (N ,P ) an be extended to aprobe interval partition (N 0P 0) of H 0 by taking also the twin s0 of s as anonprobe vertex (N 0 = N [ fsg) if it is a false twin and as a probe vertex(P 0 = P [ fsg) if it is a true twin. Therefore, H 0� = (N 0 [P ,E(H 0) [ F 0),with F 0 = F [ fss0g [ fvs0 : vs 2 Fg if s0 is a false twin and F 0 = F if s0is a true twin, is interval beause the graph obtained by adding true twinsto an interval graph is also interval. Suppose now that H 0 arises from avertex  2 C by making a true twin. Then H 0 is probe interval. In fat,any partition (N ,P ) of H where  2 P an be extended to a partition ofH 0 where the new vertex is also a probe vertex. Finally, onsider the asewhere H arises by making a false twin of a vertex  2 C. If H [R] were notinterval and thus jCj = 2, then H would ontain H [R] + 2K1, where H [R]is a forbidden indued subgraph for the lass of interval graphs. Therefore,H 0 would not be probe interval. Notie that if H [R] is interval, then learlyH 0 is an interval, simply look for a partition where  and the false twin ofit are both nonprobe, and the verties of R are all probe.Let H be the set formed by all the minimally not interval graphs exeptthe indued yles with at least �ve verties.The graphs belonging to H are probe interval. In addition, it an beproved that every probe interval partition of a graph belonging toH ontainsat least two nonadjaent probe interval verties. Therefore, the graph thatarises from a graph belonging to H by adding two nonadjaent universal



50 Chapter 4. Probe interval graphsverties is a minimally nonprobe interval.Corollary 9. The minimally nonprobe interval graphs that are spidersor fat spiders are the graphs: thik3(H), thin3(H), for H 2 H, thin4and thik4.Proof. It is straightforward to hek that all the graphs of the orollary areminimally nonprobe interval. Let G be a thik (thin) spider with partition
(C,S,R) that is minimally nonprobe interval. If jCj were of size at least 4,then G would ontain thik4 (thin4) as indued subgraph and by minimalityG = thik4 (G = thin4). Now, we may assume that jCj � 3. Indeed, byLemma 10, sine G is nonprobe interval, it su�es to onsider jCj = 3.By minimality, G[R] is probe interval and by Lemma 10 it annot be aninterval graph. By Theorem 2, the only minimal not interval graphs thatare probe interval are those graphs belonging to H. Therefore, G ontainsthik3(H) (thin3(H)) for some H 2 H as indued subgraph. Furthermore,by minimality, G is exatly that graph.Let G be a fat spider that is a minimally nonprobe interval. By Corollary10, G arises from a spider with jCj = 2 and H [R] is not an interval graph bymaking a false twin of a vertex in C. Assume that C = f1, 2g, S = fs1, s2gand v is a false twin of 1. By minimality G� v is probe interval. By Lemma10 and minimality, H [R] is probe interval but it is not an interval graph.Consequently, H [R] ontains an indued minimally not interval graph W .By minimality, W 2 H. Sine v is not adjaent to 1 and they are ompleteto W , G ontains an indued U = W + 2K2 with W 2 H. By Lemma 9 itfollows that U is minimally nonprobe interval. By minimality, G = U , thisleads to a ontradition beause U is not a spider.Theorem 39. Let G be a P4-tidy graph. Then, G is a probe inter-val graph if and only if G ontains no indued net+ 2K1, tent+ 2K1,3K2, 2P3, C5, thin3(net), thik3(net), thin3(tent), thik3(tent), thin4, orthik4.Proof. Let G be a minimally nonprobe interval graph that is a P4-tidygraph. By minimality, G is onneted. If G were disonneted then, byTheorem 37, G would be isomorphi to either net+ 2K1, or tent+ 2K1, or3K2, or 2P3. So, we may assume that G is onneted. By Theorem 10, G isC5, P5, P5, a spider or a fat spider. Notie that P5 and P5 are probe intervalgraphs. So, G is isomorphi to C5 or, by Corollary 9, G is isomorphi toeither thin3(H), or thik3(H), for H 2 fnet, tentg, or thin4, or thik4.4.4 Graphs lasses with a ompanionLet G be a hereditary lass. We say that a lass H is the ompanion ofG if and only if, given any two graphs G1 and G2, the following holds:



4.4. Graphs lasses with a ompanion 51G1 +G2 2 G if and only if one of G1 and G2 is omplete and the otherone belongs to H.For example, by Lemma 8, the lass of interval graphs is its own om-panion and the ompanion. Using the Robert's haraterizations for unitinterval graphs [Rob69℄ it follows that the ompanion of the lass of unitinterval graphs is the lass of f3K1,C4,C5g-free graphs. Notie also thatthe ompanion of the lass f3K1,C4,C5g-free is itself.In what follows, we denote by K the lass of nonempty omplete graphs.Lemma 11. Let G be a hereditary graph lass and H be its ompanion.Then, the following assertions hold:1. K � H � G.2. H is a hereditary lass.3. H is its own ompanion.4. C4 /2 G.5. If H 6= K, then C4 is a minimally not G graph and a probe Hgraph.Proof. Let H 2 H. Sine H is the ompanion of G, Kn + H 2 G forevery positive integer n. Sine G is hereditary, K � G and H � G. SineK � G, Kn +Kn 2 G for every positive integer n, and therefore K � H.We onlude that K � H � G. On the other hand, sine G is an hereditarylass H 0 +K1 2 G for any H 0 subgraph of H. Therefore, H 0 2 K � H orH 0 2 H. Consequently, H is a hereditary lass. 3. is immediate from 1. andthe de�nition of hereditary lass with a ompanion. C4 does not belong toG beause C4 = 2K1 + 2K1 and 2K1 /2 K.Assume now that H 6= K. Sine H is hereditary, 2K1 2 H and onse-quently P3 = K1 + 2K1 2 G. Moreover, sine 2K1 2 H, K1 + diamond =K3+ 2K1 2 G, whih implies that diamond 2 H. Therefore, C4 is minimallynot a G graph but it is a probe H graph.The following lemma shows the behavior of the join operator respet toa hereditary lass with a ompanion.In what follows, a graph G is said to be a G�graph for a lass G if Gbelongs to the lass G.Lemma 12. Let G be a hereditary graph lass with ompanion H andlet G1 and G2 be two nonempty graphs. Then, G1 +G2 is a probe Ggraph if and only if at least one of the following onditions holds:



52 Chapter 4. Probe interval graphs1. One of G1 and G2 is omplete and the other one is a probe H�graph.2. One of G1 and G2 is probe omplete and the other one is an H�graph.Proof. The �if� part is straightforward. So, we are going to prove the�only if� part. Let G = G1 +G2 be a probe G graph, with G a hereditarylass with a ompanion H. Therefore, there exists a ompletion G� =
(V (G),E(G)[F ) with a probe interval partition (N ,P ) suh that G� 2 G.Sine N is an independent set, N � V (G1) or N � V (G2). Assume, withoutloss of generality, that N � V (G1) and we all G�1 to the graph whose vertexset is V (G1) and whose edge set is E(G1)[F . Consequently, sine H is theompanion of G, either G�1 is omplete (G1 is probe omplete) or G�1 2 H(G1 is probe H) and G2 2 H or G2 is omplete, respetively.The following theorem gives a tool to alulate the minimally not probeG graphs for a hereditary lass G with a ompanion H 6= K.Theorem 40. Let G be a hereditary graph lass and H be its ompanion.If H 6= K, then the only minimally nonprobe G graphs with disonnetedomplements are:1. the graphs F +K1 for eah F 2 P(G) that is minimally nonprobeH;2. the graphs F + 2K1 for eah F 2 P(G) that is minimally not X ,where X = P(K) [H;3. the graphs F1 + F2 for eah F1,F2 2 P(K) that are minimally notH;4. the graph 2P3.Proof. Let G be a minimally nonprobe G graph with disonneted omple-ment. Then, G = G1 +G2 where G1 and G2 are nonempty graphs.Suppose that G2 is a omplete. Sine G1+G2 is not a probe G graph, G1is not a probe H graph, see Lemma 12. By minimality and Lemma 12, G2 isisomorphi to K1 and thus G1 +K1 is nonprobe G. Sine G1 is not a probeH graph, in partiular, G1 is not omplete. Sine (G1 � v1) +K1 is probeG, G1 � v1 is a probe H graph for eah v1 2 V (G1). So, G is isomorphi toF +K1 where F is minimally nonprobe H and a probe G graph. In whatfollows, we an assume that G1 and G2 are not omplete.Suppose that G2 ontains an indued C4. Sine (G1� v1) +C4 is probeG and C4 is neither anH graph nor probe omplete, then G1� v1 is ompletefor eah v1 2 V (G1). So, by Lemma 12, sine G1 is not omplete, G1 is



4.5. Partial haraterization of probe f3K1,C4,C5g-free graphs 53isomorphi to 2K1. Sine C4 + 2K1 is not a probe G graph, by minimalityG = C4 + 2K1. Notie that C4 is minimally not X and probe G. In whatfollows, we an assume that G1 and G2 ontain no indued C4.Suppose that G2 is probe omplete and an H graph. Sine G1 +G2 isnot a probe G graph, G1 is not a X graph. Sine (G1 � v1) +G2 is probea G graph, G1 � v1 is a X graph. So, G1 is minimally not X graph. SineG1+ (G2� v2) is a probe G graph, G2� v2 is omplete for eah v2 2 V (G2).Sine G2 is not omplete, G2 = 2K1. So, G = F + 2K1 where F is aminimally not X graph that is probe G.Suppose that G2 is probe omplete but it is not an H graph. SineG1+G2 is not a probe G graph, G1 is not an H graph. Sine (G1� v1) +G2is a probe G graph, G1 � v1 is an H graph. So, G1 is minimally not H.Suppose, by way of ontradition, that G1 is nonprobe omplete. SineG1+ (G2� v2) is a probe G graph, G2� v2 is omplete for eah v2 2 V (G2).Sine G2 is not omplete, G2 is isomorphi to 2K1. Sine G2 is not an Hgraph, then H � K, a ontradition. The ontradition arose by assumingthat G1 is nonprobe omplete. Therefore, G1 is probe omplete. Sine G1 isnot an H graph, by symmetry, G2 is a minimally not H graph. We onludethat G = F1 + F2 where F1 and F2 are minimally not H graphs and probeomplete.Finally, we an assume that G1 and G2 are nonprobe omplete. Sine G1and G2 ontain no indued C4, by Lemma 1, G1 and G2 ontain an induedP3 eah. By minimality, G is isomorphi to 2P3.Notie that Theorem 37 follows easily from the above theorem. Indeed,by Lemma 8, the lass I of interval graphs is the ompanion of itself. SineP(K) � I, P(K) [ I = I and none of the minimally not I graphs is probeomplete, the only minimally not I graphs that are nonprobe I graphs arethe yles Cn for eah n � 5.Remark 2. If H = K, the graphs belonging to G are P3-free (i.e., aredisjoint unions of ompletes) and the minimally nonprobe G graphswith disonneted omplement are C4 and P3, if P3 /2 G; or C4 and paw,otherwise.4.5 Partial haraterization of probe f3K1,C4,C5g-free graphsThreshold graphs, introdued by Chvátal and Hammer in 1975 [CH75℄, anbe de�ned as f2K2,P4,C4g-free graphs. Threshold graphs are a sublass ofsplit graphs. For more details of this lass of graphs see [Gol04℄ or Setion1.2.



54 Chapter 4. Probe interval graphsLemma 13. The minimally nonprobe f3K1,C4,C5g-free graphs that aredisonneted are 2K2 [K1, P4 [K1, and C4 [K1.Proof. It is straightforward to hek that 2K2 [K1, P4 [K1, and C4 [K1are minimally nonprobe f3K1,C4,C5g-free graphs.Conversely, let H be a disonneted minimally nonprobe f3K1,C4,C5g-free graph. Suppose, by the way of ontradition, that H does not ontain2K2 [K1, P4 [K1, and C4 [K1 as indued subgraph. Consequently, H iseither a threshold graph or the union of two threshold graphs H1, H2 withno indued K2 [K1 (i.e., split omplete graphs).In the �rst ase, let N be the stable set in the split partition of H. Thegraph H� that arises from H by adding all the edges uv with u, v 2 Nis o-bipartite. So, H� is a ompletion of H with partition (N ,P ) (P =V (H) � N) that is f3K1,C5g-free. Next, we will prove that H� is alsoC4-free. Let A = fu, v,x, yg be a set of verties of H� suh that H�[A]is isomorphi to C4. Notie that, by onstrution, we an assume thatu, v 2 N , x, y 2 P , u is adjaent to x and v is adjaent to y. But then Aindues a P4 in H, a ontradition.In the seond ase, let N be the union of the stable sets in the splitpartitions of H1 and H2. Let H� be the graph that arises from H by addingall the edges uv with u, v 2 N . Then H� an be obtained from P4 by addingtrue twin verties. It is easy to see then that it is f3K1,C4,C5g-free.As a onsequene of Theorem 40 we an alulate all minimally nonprobef3K1,C4,C5g-free graphs whose omplement are disonneted.In what follows, T and L denote the lass of f3K1,C4,C5g-free graphsand P(K) [ T respetively.Lemma 14. The minimally nonprobe f3K1,C4,C5g-free graphs with dis-onneted omplement are (K2[2K1)+ 2K1, (P3[K1)+ 2K1, 3K2, K3,3,and 2P3.Proof. Reall that the lass T is its own ompanion. Let F be a minimallynot L graph. We laim that F isomorphi to either K2 [ 2K1, or P3 [K1,or C4, or C5. Indeed, sine F is not a T graph, F ontains an indued 3K1,C4, or C5. If F ontained an indued C4 or C5, then, by minimality, Fwould be either isomorphi to C4, or isomorphi to C5. So, we may assumethat F ontains an indued 3K1 and no indued C4 or C5. Let S be a setthat indues a 3K1 in F . Sine F is nonprobe omplete and F ontains noindued C4, F ontains an indued P3 (see Lemma 1). Let W be a set thatindues a P3 in F and e = uv be the only edge joining two verties of Win F . If e has one endpoint either in S or adjaent to a vertex in S (sayu), then F ontains an indued K2 [ 2K1 or P3 [K1, or S [ fvg indues alaw. If F ontains an indued K2 [ 2K1 or P3 [K1, then, by minimality,



4.5. Partial haraterization of probe f3K1,C4,C5g-free graphs 55F is either isomorphi to K2 [ 2K1 or isomorphi to P3 [K1. Suppose,by way of ontradition, that F ontains neither an indued K2 [ 2K1 noran indued P3 [K1. Then, S [ fvg indues a law. Let w be suh thatW = fu, v,wg. Sine F ontains no indued P3 [K1, w is adjaent toboth verties of S � fug and onsequently F ontains an indued C4, aontradition. Notie that K2 [ 2K1, P3 [K1, C4 are probe f3K1,C4,C5g-free graphs, but C5 is not a probe f3K1,C4,C5g-free graphs. Finally, theonly minimally not T graph that is probe omplete is 3K1. The resultsfollows now from Theorem 40.Theorem 41. Let G be a tree-ograph. Then, G is a probe f3K1,C4,C5g-free graph if and only if G ontains no indued 2K2 [K1, P4 [K1,C4 [K1, (K2 [ 2K1) + 2K1, (P3 [K1) + 2K1, 3K2, K3,3, 2P3, or P6.Proof. Let H be a minimally nonprobe f3K1,C4,C5g-free graph that is atree-ograph. If H is disonneted, H is 2K2 [K1, P4 [K1, or C4 [K1. IfH is disonneted, H is (K2 [ 2K1) + 2K1, (P3 [K1) + 2K1, 3K2, K3,3, or2P3. By Theorem 36, there are no minimal probe f3K1,C4,C5g-free graphsthat are trees. If H is the omplement of a tree, by Theorem 8, H is P6, or2P3, or 3K2.Lemma 15. Let H be a spider with spider partition (S,C,R). Then, His probe f3K1,C4,C5g-free graph if and only if H = thin2(tK1) for somet � 0. Moreover, if H is a probe f3K1,C4,C5g-free graph and H 0 is afat spider that arises from H, then H 0 is also a probe f3K1,C4,C5g-freegraph exept when t � 1 and H 0 arises from H by making a false twinof a vertex of C.Proof. Let H be a spider with partition (S,C,R). Sine H is P4 [K1�free and tent�free, jCj = 2. Notie that R is an independent set beausethin2(K2) is nonprobe f3K1,C4,C5g-free graph. We onlude that H =thin2(tK1) for some t � 0. Clearly, thin2(tK1) is a probe f3K1,C4,C5g-freegraph. By setting all verties of S [C as probe verties (P ) and the vertiesof R as nonprobe verties (N) and adding all the edges whose endpointsbelong to N (F ), we obtain the ompletion H� = (N [ P ,E(H)[ F ) of Hthat is f3K1,C4,C5g-free. Therefore, H is probe f3K1,C4,C5g-free.Suppose that H is a probe f3K1,C4,C5g-free graph and let H 0 be afat spider arising from H. Let v a false twin of a vertex s 2 S. Considerthe following probe partition (N ,P ): N = R [ fv, sg and P = V (H)�Nand denote by F the edges whose endpoints belong to N . Consequently,the ompletion H� = (N [ P ,E(H) [ F ) is f3K1,C4,C5g-free. Now, letv be a true twin of a vertex s 2 S. Consider the following (N ,P ) probepartition: N = R [ (S n fs, vg) and P = V (H)�N . So, the ompletionH� = (V (H),E(H) [ F ) with probe partition (N ,P ), where F are theedges whose endpoints belong to N , is f3K1,C4,C5g-free. Therefore, if H 0



56 Chapter 4. Probe interval graphsarises by making a twin of a vertex s 2 S, then H 0 is a probe f3K1,C4,C5g-free graph. We have already seen a probe interval partition of H where eah 2 C is a probe vertex having a f3K1,C4,C5g-free ompletion. Therefore,if H 0 arises by making a true twin of a vertex of C, H 0 is also a probef3K1,C4,C5g-free graph. Finally, assume that H 0 arises by making a falsetwin of a vertex  2 C. If t = 0, then H 0 is learly a probe f3K1,C4,C5g-freegraph. If t � 1, then H 0 is not a probe f3K1,C4,C5g-free graph beause itontains an indued C4 [K1.Lemma 16. The minimally nonprobe f3K1,C4,C5g-free graphs that arespiders or fat spiders are tent and thin2(K2).Proof. By minimality jCj � 3 (otherwise ontains P4 [K1 or tent as properindued subgraphs). If jCj = 3, then H is a thik spider (otherwise itontains P4 [K1 as proper indued subgraph). If jCj = 3 and H is thik,then H ontains an indued tent and, by minimality, H = tent. Therefore,we an assume that jCj = 2. If H [R] were a stable set, then, by the abovelemma, H is a spider, a ontradition. Therefore, R is not a stable set. So,H ontains an indued thin2(K2) and, by minimality, H = thin2(K2).Suppose, by way of ontradition, that there is a fat spider H 0 thatis minimally nonprobe f3K1,C4,C5g-free graph. By minimality, H 0 arisesfrom a spider H that is a probe f3K1,C4,C5g-free graph. So, by the abovelemma, H = thin2(tK1) for some t � 1 and H arises by making a false twinof a vertex of C. Then, H 0 ontains an indued C4 [K1. By minimality,H 0 = C4 [K1, this leads to a ontradition beause H 0 is a fat spider.This ontradition proves that there are no minimally not f3K1,C4,C5g-free graph that are fat spiders.By ombining Lemmas 13, 14 and 16 it is obtained the following har-aterization.Theorem 42. Let G be a P4-tidy graph. Then, G is a probe f3K1,C4,C5g-free graph if and only if G ontains no indued 2K2 [K1, P4 [ K1,C4 [K1, (K2 [ 2K1) + 2K1, (P3 [K1) + 2K1, 3K2, K3,3, 2P3, C5, tent,or thin2(K2).Proof. Let H be a minimally not f3K1,C4,C5g-free graph that is a P4-tidygraph. If H is disonneted, then H is isomorphi to either 2K2 [K1, orP4 [K1, or C4 [K1. If H is disonneted, then H is isomorphi to either
(K2 [ 2K1) + 2K1, or (P3 [K1) + 2K1, or 3K2, or K3,3, or 2P3. If H wereC5, P5, or P5, then H would be neessarily isomorphi to C5. Finally, if His a spider or a fat spider, then H is tent or thin2(K2).



4.6. Partial haraterizations of probe unit interval graphs 574.6 Partial haraterizations of probe unit intervalgraphsTo the best of our knowledge, the problem of �nding all minimally nonprobeunit interval graphs whose omplement is disonneted remains open. Nev-ertheless, we solve this problem for the lasses of tree-ographs and P4-tidygraphs.Lemma 17. The minimally nonprobe unit interval graphs that are tree-ographs or P4-tidy and whose omplement is disonneted are (2K2 [K1) +K1, (P4 [K1) +K1, (C4 [K1) +K1, thin2(K2) +K1, (K2 [ 2K1) +2K1, (P3 [K1) + 2K1, 3K2, K3,3, and 2P3.Proof. The result follows from Theorem 40. Indeed, the ompanion of thelass of unit interval graphs it the lass T , and: (i) the minimally non-probe T graphs that are tree-ographs or P4-tidy and are probe unit intervalgraphs are 2K2 [K1, P4 [K1, C4 [K1, and thin2(K2); (ii) by the proof ofLemma 14, the minimal forbidden subgraphs of P(K) [ T are K2 [ 2K1,P3 [K1, C4, and C5 (all of whih are probe unit interval exept for C5);and (iii) the only minimally not T graph that is probe omplete graph is3K1.Theorem 43. Let G be a tree-ograph. Then, G is a probe unit intervalgraph if and only if G ontains no indued bipartite law, L, Hn forany n � 1, P6, (2K2 [K1) +K1, (P4 [K1) +K1, (C4 [K1) +K1, (K2 [2K1) + 2K1, (P3 [K1) + 2K1, 3K2, K3,3, or 2P3.Proof. Let H be a minimally nonprobe unit interval graph that is a tree-ograph. By minimality, H is onneted. IfH is a tree, then, by Theorem 34,H is bipartite law, L, or Hn for some n � 1. If H is the omplement ofa tree, then, by Theorem 8, H is P6. If H is disonneted, by Lemma 17,H is (2K2 [K1) +K1, (P4 [K1) +K1, (C4 [K1) +K1, (K2 [ 2K1) + 2K1,
(P3 [K1) + 2K1, 3K2, K3,3, 2P3 (beause thin2(K2) +K1 is not a tree-ograph).Lemma 18. Let H be a spider with spider partition (S,C,R). Then,H is a probe unit interval if and only if jCj = 2 and H [R] is probeomplete. Moreover, if H is probe unit interval and H 0 is a fat spiderthat arises from H, then H 0 is also probe unit interval exept when H [R]is not omplete and H 0 arises by making a false twin of a vertex of C.Proof. Let H be a probe unit interval spider with spider partition (S,C,R).Notie that jCj = 2 beause otherwise H would ontain either an induednet or an indued tent. In addition, H [R] is fP3,C4g-free (otherwise, Hontains an indued thin2(P3) whih is not a probe unit interval graph or



58 Chapter 4. Probe interval graphs
(C4 [K1) +K1). So, H [R] is probe omplete. Conversely, if H [R] is probeomplete and jCj = 2, learly H is a probe unit interval.Suppose now that H is probe unit interval. The verties of S in anyprobe interval partition of H an be probe or nonprobe, so if H 0 arises bymaking a twin of a vertex of S, then H 0 is also a probe unit interval. Theverties of C in any probe interval partition of H an be an be set as probe,so if H 0 arises by making a true twin of C, H 0 is also probe unit interval.Finally, suppose that H 0 arise from H by making a false twin of C. If H [R]is omplete, then H 0 is learly probe interval, but if H [R] is not omplete,H 0 ontains an indued (P3 [K1) + 2K1.Lemma 19. The minimally nonprobe unit interval graphs that are spi-ders or fat spiders are net, tent, and thin2(P3).Proof. Let H be a spider with spider partition (S,C,R) that is a minimallynonprobe unit interval graph. If jCj � 3, by minimality H is net or tent.So we may assume that jCj = 2. Sine H is not a probe unit interval graph,H [R] is nonprobe omplete. So, H [R] ontains an indued P3 or C4. If H [R]ontained an indued C4, H would ontain an indued (C4 [K1) +K1 and,by minimality, H = (C4 [K1) +K1, ontraditing the fat that H is aspider. So, neessarily H [R] ontains an indued P3. Therefore, H ontainsan indued thin2(P3) and, by minimality, H = thin2(P3).Suppose by way of ontradition that there is a fat spider H 0 that isa minimally not unit interval graph. By the minimality and the abovelemma, H 0 arises from a spider H with jCj = 2 and H [R] probe ompleteby making a false twin of a vertex of C. But then, H 0 ontains an indued
(C4 [K1) +K1 and, by minimality, H = (C4 [K1) +K1, ontraditingagain the fat that H is a fat spider.Theorem 44. Let G be a P4-tidy graph. Then, G is a probe unit intervalgraph if and only if G ontains no indued (2K2 [K1) +K1, (P4 [K1) +K1, (C4 [K1) +K1, thin2(K2) +K1, (K2 [ 2K1) + 2K1, (P3 [K1) + 2K1,3K2, K3,3, 2P3, C5, net, tent, or thin2(P3).Proof. Let H be a minimally not unit interval graph that is P4-tidy. Byminimality, H is onneted. If H is disonneted, by Lemma 17, H is
(2K2 [K1) +K1, (P4 [K1) +K1, (C4 [K1) +K1, thin2(K2) +K1, (K2 [2K1) + 2K1, (P3 [K1) + 2K1, 3K2, K3,3, or 2P3. If H were C5, P5, or P5,neessarily H = C5. If H is a spider or a fat spider, H is net, tent, orthin2(P3).



Chapter 5Probe o-bipartite and probeblok graphsIn this hapter we present a strutural haraterization for probe o-bipartitegraphs that leads to a polynomial-time reognition algorithm for this lass.We also give a forbidden indued subgraph haraterization for probe diamond-free graphs that implies a forbidden indued subgraph haraterization forprobe blok graphs. Notie that blok graphs are a sublass of hordalgraphs. Probe hordal graphs have been studied in [GL04, CGLS10℄. Twoimportant sublasses of probe hordal graphs, probe split graphs and probePtolemai graphs, have been studied in [LdR07℄ and [CCK+08℄, respetively.In [SHKP09℄, a linear-time reognition algorithm for probe blok graphs ispresented. Part of the results presented in this hapter were obtained duringa visit to Universidade Federal do Rio de Janeiro [BDd+℄.This hapter is organized as follows. Setion 5.1 is devoted to probe o-bipartite graphs. In Setion 5.2 is given a haraterization of probe diamond-free graphs that implies a haraterization for probe blok graphs presentedin the same setion.5.1 Probe o-bipartite graphsDenote by T (G) the spanning subgraph of G formed by the edges ontainedin a triangle of G.Before presenting the haraterization of probe o-bipartite graphs, wewould like to remark that if G is probe o-bipartite, then there exists aomplete set C 0 in G ontaining a set of edges E0 suh that G�E0 is bipar-tite. Consequently, G�E(C 0) is also bipartite. Moreover, for any lique Containing C 0, G�E(C) is bipartite.Consequently, we have the following results.59



60 Chapter 5. Probe o-bipartite and probe blok graphsLemma 20. Let G be a triangle-free graph. Then, G is probe o-bipartiteif and only if G ontains an edge e suh that G� e is bipartite.Lemma 21. Let G be a graph ontaining triangles. Then, G is probeo-bipartite if and only if T (G) has a lique C suh that G�E(C) isbipartite.Proof. Suppose that G is probe o-bipartite. Then, G has a lique suhthat G� E(C) is bipartite. However, eah edge of C is ontained in atriangle. Therefore, C is a subgraph of T (G), meaning that is a liqueof T (G). Conversely, suppose T (G) has a lique C, where G� E(C) isbipartite. Clearly any lique of T (G) is also a lique of G. Consequently,G has a lique C, suh that G�E(C) is bipartite meaning that G is probeo-bipartite.Theorem 45. Let G be a probe o-bipartite graph ontaining triangles.Then, T (G) is a split graph.Proof. By Lemmas 20 and 21, T (G) has a lique C suh that G�E(C)is bipartite. Let S be the subset of verties of T (G) not ontained in C.Suppose T (G) has an edge e linking two verties of S. Then e forms atriangle with some vertex v. However, suh a triangle has none of its edgesin C and thus G�E(C) annot be bipartite, a ontradition. Therefore,T (G) is a split graph.Algorithmi aspets: If G is triangle-free, then hek if for some edgee, G� e is bipartite. Otherwise, �nd all the triangles of G and onstrutT (G). Find eah lique C of T (G) and verify for any C if G�E(C) isbipartite. All these steps an be performed in polynomial time.5.2 Probe blok graphs5.2.1 Probe diamond-free graphsPartitioned probe diamond-free graphsIn what follows, we say that a graph G = (P [N ,E) is a partitioned graphif its vertex set is partitioned into two sets: a set P of probe verties anda stable set N of nonprobe verties. Let G be a hereditary lass of graphs,we say that G is a partitioned probe G graph if there exists a ompletionG� = (P [N ,E [ F ) of G belonging to G, remember that all the edgesbelonging to F have both endpoints in N .Let G = (P [N ,E) and H = (P 0 [N 0,E0) two partitioned graphs withN and N 0 stable sets. H is de�ned to be a partitioned subgraph (an induedpartitioned subgraph) of G, if H is a subgraph (an indued subgraph) ofG, N 0 � N and P 0 � P . When the ontext is lear, we just say that H is



5.2. Probe blok graphs 61
H1 H2 H3 H4 H5

H5Figure 5.1: Partitioned forbidden subgraph for probe diamond-free graphs.Blak verties and white verties represent probe verties and nonprobeverties, respetively.(an indued) a subgraph of G. We say that G is isomorphi to H if andonly if there exists a one-to-one funtion f : P [N ! P 0 [N 0 preservingadjaeny and f(v) 2 N 0 for all v 2 N , and f(v) 2 P 0 for all v 2 P . Wesay that the partitioned graph G does not ontain H as indued subgraphor does not ontain an indued H if no indued partitioned subgraph of Gis isomorphi to H. Given a set of partitioned graphs H, G is de�ned tobe H�free if G does not ontain an indued H belonging to H. If H is aset with a single element H, we use H�free for short. We all tips to theverties of degree two of the diamond.In order to haraterize probe blok graphs, in this setion we studythe struture of probe diamond�free graphs. Giving the �rst step in har-aterizing probe blok graphs, partitioned probe diamond�free graphs areharaterized by forbidden partitioned subgraphs, by means of the followingtheorem.Theorem 46. Let G = (P [N ,E) be a partitioned graph. Then, G is apartitioned probe diamond-free graph if and only if G does not ontainany partitioned graph depited in Figure 5.1.Proof. Let G be a partitioned graph not ontaining any indued partitionedgraph depited in Fig. 5.1. Let F be the set of non edges of G whoseendpoints belong to N and are the tip of an indued diamond of G. It su�esto prove that the ompletion G� = (N [ P ,E [ F ) of G is diamond-free.The proof follows by ontradition and is split into three ases. Suppose bythe way ontradition that G� is not diamond�free. Notie that it does notontaining H1, H2 and H3 as indued subgraph, G� does not ontain anyindued diamond with at most a nonprobe vertex and thus F is well-de�ned.In what follows, for any vertex v, d(v) and d�(G) denote dG(v) and dG�(v),respetively.



62 Chapter 5. Probe o-bipartite and probe blok graphsCase 1: G� ontains a diamond with exatly two non probe verties.Assuming that u, v 2 N , uv 2 F and x, y 2 P , and suppose that H =G�[fu, v,x, yg] is an indued diamond of G�. First, suppose, without lossof generality, that d�H(u) = d�H(x) = 2 and d�H(v) = d�H(y) = 3. Sine,uv 2 F , there exists a vertex w1 2 P suh that u, v and w1 belong toan indued diamond D in G and thus w1 is adjaent to u and v. SineG is fH2,H3g-free, w1 is not adjaent to x and y. Consequently, thereexists a vertex w2 2 D �H suh that G[fw1,w2,u, vg] = D and thusfu, v,w1,w2, yg indues H4 in G, leading to a ontradition. Therefore,we an assume, without loss of generality, that d�H(x) = d�H(y) = 2 andd�H(u) = d�H(v) = 3. Again, there exists a vertex w1 2 P suh that u, vand w1 belong to a diamond D in G. Sine G is fH3,H4g-free, NG(w1) \V (H) = fu, vg. Consequently, there exists a vertex w2 2 D�H suh thatG[fu, v,w1,w2g] = D and NG(w2)\V (H) = fu, vg. Thus, fu, v,w1,w2, ygindues H4 in G, a ontradition again.In what follows we an assume that G� does not ontain any indueddiamond with at most two verties in N .Case 2: G� ontains a diamond with exatly three non probe ver-ties. Let u, v,w 2 N be three verties induing a triangle in G�. We aregoing to prove it implies that there exits an edge e = xy 2 E(G) whose end-points are omplete to A = fu, v,wg. Sine uv 2 F , there exist two vertiesx1, y1 belonging to P suh that fu, v,x1, y1g indues a diamond in G weall D1. Consequently, it su�es to prove that w is adjaent to x1 and y1.Suppose, by the way of ontradition, that w is adjaent to at most on of x1and y1. Suppose that w is adjaent to x1 and not adjaent to y1. Therefore,there exists a vertex x2 2 P not belonging to D1 and adjaent to u and w.Sine there is no indued diamond in G� with at most two nonprobe ver-ties, x2 is adjaent to x1. Consequently, x2 is adjaent to v and thus x2 isadjaent to y1. Therefore, fv,w, y1,x2g indues a diamond with exatly twononprobe verties, a ontradition. The ontradition arose by supposingthat w is adjaent to x1 and not adjaent to y1. Now, suppose that w is nei-ther adjaent to x1 nor adjaent to y1. Therefore, there exist two verties x2and y2 suh that fu,w,x2, y2g indues a diamond D2 in G. By symmetry, vannot have exatly one neighbor in fx2, y2g. Notie also that if v were om-plete to fx2, y2g, then we ould hoose e = x2y2. Let set B = fx1, y1, vg. Ifx2 (y2) is adjaent to at least one of the verties belonging to B, sine thereis no diamond with exatly two nonprobe verties, then x2 (y2) is ompleteto B. Therefore, fv,w, y1,x2g (fv,w, y1, y2g) indues a diamond in G� withexatly two nonprobe verties, a ontradition. Consequently, x2 and y2are antiomplete to B. Symmetrially, assuming that there is no edge in Gomplete to fu, v,wg, it an be proved that there exist two verties x3 andy3 antiomplete to the triangles indued by fxi, yi,ug for i = 1, 2 suh thatfx3, y3, v,wg indues a diamond D3 in G. Thus, D1 [D2 [D3 indues H5



5.2. Probe blok graphs 63in G, a ontradition again. So, there exists an edge xy 2 E(G) omplete toA. Finally, we will prove that if uv, vw,uw 2 F there is no probe vertex zadjaent to u and v and not adjaent to w. Sine fu, v,wg indues a trianglein G� there exists an edge xy whose endpoints belong to P suh that u, vand w are omplete to xy. Suppose, by way of ontradition, that thereexists a vertex z 2 P suh that z is adjaent to u and v and not adjaent tow. Sine there is no indued diamond with exatly two nonprobe vertiesin G�, z is adjaent to x and y. Consequently, fx, y, v, zg indues H2 in G,a ontradition.Case 3: G� ontains a diamond with four non probe verties. Fi-nally, we will prove that there is no diamond in G� with all its edges be-longing to F . Suppose, by way of ontradition, that there exist four ver-ties u, v,w and z belonging to N and induing a diamond in G� suh thatd�(w) = d�(z) = 2, fu, v,wg and fu, v, zg both indue a triangle in G�. Weknow that there exist two adjaent verties x and y belonging to P suhthat fu, v,wg is omplete to fx, yg and two probe adjaent verties r and somplete to fu, v, zg. Set e = xy and e0 = rs. Notie that e 6= e0, beauseotherwise w would be adjaent to z in G�. Indeed, fx, yg \ fr, sg = ;.First, suppose that r = x. If y were not adjaent to s, fx, y, v, sg wouldindue H3. Consequently, sine G is H3�free s is adjaent to y. Therefore,s is adjaent to w beause, otherwise, fx, y, s,wg would indue H2. So,fx, s,w, zg indues a diamond in G and thus w is adjaent to z in G�, thisis a ontradition that arises from supposing that r = x. Now, supposethat xy and rs are edges without endpoints in ommon. If fx, y,wg wereantiomplete to fr, s, zg, fu, v,w, z,x, y, r, sg would indue H6. So, we anassume, without loss of generality, that r is either adjaent to x or adjaentto w. First, suppose that r is adjaent to x. Sine there is no indueddiamond with exatly two nonprobe verties in G�, r is adjaent to w. Wehave proved that if r is adjaent to x, then r is adjaent to w. So, we anassume that w is adjaent to r. Therefore, sine G� does not ontain anyindued diamond with exatly two nonprobe verties, s is adjaent to w.Consequently, fs, r, y,wg indues a diamond in G and thus w is adjaent toz in G�, a ontradition.Nonpartitioned probe diamond-free graphsLet G and H be a graph and a olletion of graphs, respetively. We willsay that F is a subgraph of G with indued H if F is a subgraph of G andsome H 2 H is an indued subgraph of F . Notie that in that ase, H isalso an indued subgraph of G. If H is formed by only one graph H, we justsay that F is a subgraph of G with indued H.Before presenting the haraterization by forbidden indued subgraphsfor probe diamond-free graphs, we need to prove the following tehnial
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F1 F2 F3 F4 F5

F6
F 7Figure 5.2: Some forbidden graph for probe diamond-free.lemma.Lemma 22. Let G be a fF1,F2,F3,F4g�free graph. If G ontains eitherS or T1 as a subgraph with indued diamonds, then G ontains one ofthe graphs depited in Figure 5.3 as indued subgraph.Proof. In what follows, we mean by �S (T1) is a subgraph of G�, S (T1) isa subgraph of G with indued diamonds. Let G be a fF1,F2,F3,F4g�freegraph. We will prove the lemma by ontradition. Suppose that G does notontain any graph depited in Fig. 5.3 as indued subgraph. We are goingto split the proof into two ases.Case 1: G ontains a subgraph H isomorphi to S. Suppose that thevertex set of the subgraph H is labeled by the set fa, b, , d, f , gg. Assume,without loss of generality, that the set fa, b, , dg indues one of the diamondsof H whose triangles are fa, b, g and fb, , dg; and fb, e, f , gg indues theother diamond whose triangles are fb, e, fg and fe, f , gg. Sine G ontainsS as subgraph but S is not an indued subgraph of G, there is at least oneedge whose endpoints belong to fa, b, , d, f , gg and are di�erent from theedges belonging to the diamonds indued by fa, b, , dg and fb, e, f , gg.First, suppose that a is adjaent to e. So, a is either adjaent to f oradjaent to g beause, otherwise, fa, b, e, f , gg would indue F2. On theone hand, if a were adjaent to g and not adjaent to f , fa, b, e, f , gg wouldindue F4. On the other hand, if a were adjaent to g and not adjaent to f ,fa, b, e, f , gg would indue F1. Consequently, sine G is fF1,F4g�free, a isadjaent to f and g. By symmetry, e is adjaent to  and d. Therefore, if fwere neither adjaent to  nor adjaent to d, fa, , d, e, fg would indue F2.Hene, on the one hand, f is either adjaent to a or . If f were adjaent to and not adjaent to d, fa, , d, e, fg would indue F1. On the other hand,if f were adjaent to d and not adjaent to , fa, , d, e, fg would indue F4.Consequently, f is adjaent to  and d. Therefore, if  were not adjaent tog, fb, , e, f , gg would indue F1. Therefore,  is adjaent to g. So, if g were



5.2. Probe blok graphs 65not adjaent to d, fa, b, , d, gg would indue F2. Therefore, sine g is notadjaent to b and G is F4�free, g is adjaent to d. Consequently, fa, b, , d, ggindues F4, a ontradition. This ontradition arose from supposing that ais adjaent to e. So, in what follows, we an assume that a is not adjaentto e. Symmetrially, we an also assume that a is not adjaent to f and dis not adjaent to f .Suppose now that a is adjaent to g. Then, sine a is not adjaent toe and f , fa, b, e, f , gg indues F3, a ontradition. This ontradition arosefrom supposing that a is adjaent to g. Therefore, we an assume that a isnot adjaent to g. By symmetry, we an also assume that d is not adjaentto g. Suppose now that  is adjaent to g. Consequently, fb, , e, f , ggindues F3, a ontradition again. Therefore, we an also assume that  isnot adjaent to g.Now, suppose that  is adjaent to e. Hene, fb, , e, f , gg indues F2,a ontradition again. So, we an assume that  is not adjaent to e. Bysymmetry,  an be also assumed not to be adjaent to f . Therefore, V (H)indues a subgraph isomorphi to S, a ontradition.In what follows, we an assume that G ontains no subgraph isomorphito S.Case 2: G ontains a subgraph H isomorphi to T1 with indueddiamonds.Suppose that the vertex set of the subgraph H is labeled by the setfa, b, , d, r, s, t,ug. Assume, without loss of generality, that the set fa, b, , dgindues one diamond in H with indued triangles fa, b, g and fb, , dg andfr, s, t,ug indues the other diamond with indued triangles fr, s, tg andfs, t,ug, and a is adjaent to r. Sine G ontains T1 as subgraph but T1 isnot an indued subgraph of G, there is at least one edge whose endpointsbelong to fa, b, , d, f , gg di�erent from the edges ar and the edges belongingto the diamonds indued by fa, b, , dg and fr, s, t,ug, respetively.First, suppose that a is adjaent to s. Notie that a is not adjaent to sbeause, otherwise, G[a, b, , d, r, s,u] would ontain a subgraph isomorphiF to S and thus F would be a subgraph of G. Consequently, fa, r, s, t,ugwould indue a subgraph in G either isomorphi to F1 or isomorphi toF2, a ontradition. Therefore, we an assume that a is not adjaent to s.By symmetry, we an also assume that a is not adjaent to t and r is notadjaent to b and . Hene, if a were adjaent to u, then fa, r, s, t,ug wouldindue F3. So, we an assume that a is not adjaent to u. By symmetry,we an also assume that r is not adjaent to d.Suppose now that b is adjaent to s. Notie that, if b were adjaent to t,fa, b, r, s, tg would indue F3. So, we an assume that b is not adjaent to tand s is not adjaent to  (by symmetry). Therefore, if b were adjaent to u,



66 Chapter 5. Probe o-bipartite and probe blok graphsthen fb, r, s, t,ug would indue F2, a ontradition. Hene, we an assumethat b is not adjaent to u and, by symmetry, s is not adjaent to d. Supposenow that  is adjaent to t. Sine G is T5�free, d is adjaent to u. Therefore,fa, b, , d, r, s, t,ug indues T6, a ontradition. Therefore, we an assumethat  is not adjaent to t. Suppose that d is adjaent to u. If  were adjaentto u, then fb, , d,u, sg would indue F3, a ontradition. Therefore, we anassume that  is not adjaent to u. By symmetry, we an also assumethat t is not adjaent to d. Consequently, fa, b, , d, r, s, t,ug indues T10,a ontradition. The ontradition arose from supposing that d is adjaentto u. Therefore, we an assume that d is not adjaent to u. If  and t wereadjaent to u and d respetively, then fa, b, , d, r, s, t,ug would indue T8.Therefore, we may assume that d is not adjaent to t. Therefore, on the onehand, if  were adjaent to u, then fa, b, , d, r, s, t,ug would indue T4. Onthe other hand, if  were not adjaent to u, then fa, b, , d, r, s, t,ug wouldindue T2. Both ases lead to a ontradition beause G is fT4,T8g�free.This ontradition arose from supposing that b is adjaent to s. In whatfollows, we an assume that b is not adjaent to s and t and  is not adjaentto t and s.Suppose that d is adjaent to u. Sine G is T7�free, either  is adjaent tou, or b is adjaent to u, or s is adjaent to d, or t is adjaent to d. Suppose,without loss of generality, that, u is either adjaent to b or adjaent to .If  were adjaent to u and d were not adjaent to u, fa, b, , d,ug wouldindue F2. Therefore, we an assume that  and b are adjaent to u andby symmetry s and t are not adjaent to d. Consequently, fa, b, , d,ugindues F1, a ontradition. So, in what follows, we an assume that d isnot adjaent to u.Suppose now that b is adjaent to u. If  were adjaent to u, sine G isT11�free, d would be either adjaent to s or adjaent to t. Suppose, with-out loss of generality, that d is adjaent to s. Consequently, fb, , d,u, sgindues F3, a ontradition. Therefore, we an assume that  is not adja-ent to u. Suppose now that d is adjaent to s. If d were adjaent to t,fb, d, s, t,ug would indue F3. Therefore, d is not adjaent to t and thusfa, b, , d, r, s, t,ug indues T9, a ontradition. This ontradition arosefrom supposing that b is adjaent to u. Therefore, we an assume by sym-metry that b and  are not adjaent to u; and s and t are not adjaent to d.Finally, fa, b, , d, r, s, t,ug indues T1, a ontradition.Theorem 47. Let G be a graph. G is probe diamond-free if and onlyif G does not ontain any graph depited in Figures 5.2 and 5.3 asindued subgraph.Proof. Let G be a graph not ontaining any graph depited in Figures 5.2and 5.3 as indued subgraph. Let N be the set of verties of G belonging to



5.2. Probe blok graphs 67
S

T1 T2 T3 T4 T5 T6

T7 T8 T9 T10 T11Figure 5.3: Some forbidden subgraphs for probe diamond-free graphs.a tip of an indued diamond and P = V nN . Let F be a set of non-edgesof G whose endpoints are tips of the same diamond.First, we are going to prove that N is a stable set of G. Suppose, bythe way of ontradition, that there exist two adjaent verties u and abelonging to N . Suppose that u belongs to a diamond D1 indued by theverties fu, v,w,xg whose other tip is x and a belongs to another diamondD2 indued by fa, b, , dg whose other tip is d. Suppose that u is adjaent toa. If V (D1) did not meet V (D2), then D1 [D2 would indue a subgraph inG that ontains T1 as subgraph. By Lemma 22, sine G does not ontain Fifor i = 1, : : : , 4 as indued subgraph, G ontains one of the graphs depitedin Figure 5.3 as indued subgraph, a ontradition. Hene, we an assumethat the diamonds D1 and D2 have at least one vertex in ommon. First,suppose that d = x and fv,wg \ fb, g = ;. Sine G is F6�free, thereexists at least one edge di�erent from au suh that one of its endpointsbelong to fu, v,w,xg and the other one belongs to fa, b, , dg. Suppose thatw is adjaent to a. Sine G is F2�free, v is adjaent to a. Consequently,fa, d,u, v,wg indues F1, a ontradition. Therefore, we an assume that ais not adjaent to w. By symmetry, we an also assume that v is not adjaentto a and u is not adjaent to b and . Suppose now that w is adjaent tob. Sine G is F2 �free and w is not adjaent to a, w is adjaent to . So,fa, b, , d,wg indues F1, a ontradition. Therefore, w is not adjaent tob. Symmetrially, w is not adjaent to  and v is not adjaent to b and notadjaent to . This leads to a ontradition beause G is F6�free. Hene,we an assume that D1 and D2 have at least two verties in ommon.Suppose that x = d and b = w. Notie that v is not adjaent to aand  is not adjaent to u beause, otherwise, fa, b, d,u, vg and fa, b, , d,ugwould indue F1, respetively. Therefore, sine G is F2�free, v is adjaentto . Consequently, fa, b, ,u, vg indues F4, a ontradition. Hene, wean assume that D1 and D2 have exatly three verties in ommon. Wean assume, without loss of generality, that x = d, w = b and v = .



68 Chapter 5. Probe o-bipartite and probe blok graphsConsequently, fa, b, , d,ug indues F1, a ontradition.Finally, in order to prove that N is a stable set, it su�es to prove thata is di�erent from w. Suppose, by the way of ontradition, that a = w. Ifv and x were di�erent from b,  and d, then G would ontain S as subgraph.By Lemma 22, G would ontain one of the graphs depited in Figure 5.3as indued subgraph, a ontradition. Suppose now that u = b. Sine G isfF1,F2g�free, d is adjaent to v and x. So, if x were not adjaent to , thenfa, b, , d,xg would indue F3. Consequently, x is adjaent to  and thusfa, b, , d, ,xg indues F4, a ontradition. Therefore, we an assume thatd = v. Sine G is F2�free,  is adjaent to x. Consequently, fa, b, , d,xgindues F4 , a ontradition. Finally, we have proved that the set N is astable set.It remains to prove that the ompletion G� = (V ,E [ F ) is diamond�free. By Theorem 46, it su�es to prove that the partitioned graph G =
(N [ P ,E) with probe partition (N ,P ) does not ontain any of the parti-tioned graphs depited in Figure 5.2.1. By the onstrution of the partition
(N ,P ), G = (N [P ,E) does not ontain H1, H2 and H3. Finally, sine Gis fF3,F5,F7g�free, the partitioned graph G = (N [P ,E) does not ontainthe partitioned subgraphs H4, H5 and H6.5.2.2 Probe blok graphsIn this setion the haraterization for probe diamond-free graphs is used toharaterize probe blok graphs. Notie that if every omponent of a graphis probe blok then the graph is probe blok. Indeed, suppose that fCig1�i�kare the omponents of a graph G = (V ,E) and G[Ci] are probe blok withprobe blok partitions (Pi,Ni) and ompletions G�i = (Ni [Pi,E(Ci)[Fi)for i = 1, : : : , k. Let vi 2 Ni (if Ni = ;, vi is hosen arbitrarily amongthe verties of Ci). Then, we an onstrut a probe blok ompletion G� =
(N [ P ,E [ F ) with N formed by all the verties belonging to some Niand the ones hosen arbitrary when Ni = ;; and F formed by those edgesbelonging to some Fi and vivi+1 for i = 1, : : : , k� 1. Consequently, we anrestrit our analysis to onneted graphs.The following two lemmas are preliminary results to prove the mainharaterization of this setion.Lemma 23. [GL04℄ Let G be a probe hordal graph. Then, G has noindued C2k+1 for k � 2.Lemma 24. [GL04℄ Let G be a probe hordal graph. Then, for anypartition into probe and nonprobe verties, probe and nonprobe vertiesalternate for any hordless yle in G.



5.2. Probe blok graphs 69By ombining the two above Lemmas, we an obtain the following result.Theorem 48. Let G be a onneted probe blok graph. Then, G ishordal.Proof. Let G = (V ,E) be a probe blok graph. Sine blok graphs arehordal, G is probe hordal. Consequently, by Lemma 23, G has no C2k+1for k � 2 as indued subgraph. Suppose, by the way of ontradition, thatG ontains an even indued yle H = v1v2 � � � v2kv1 for some k � 2. ByLemma 24, for any probe blok partition of G into probe (P ) and nonprobe(N) verties, verties belonging to P and N alternate in H. In what follows,sums should be onsidered modulo 2k. Suppose, without loss of generality,that v2i�1 2 P for i = 1, : : : , k and v2i 2 N for i = 1, : : : , k. Notie that, ifG� = (V ,E [ F ) is a ompletion of G suh that G� is a blok graph, sineG� is hordal, v2i�1v2i+1 2 F for i = 1, : : : , k. Otherwise, G� would ontaina hordless yle greater than 4. Consequently, if k = 2, 3 it is easy to seethat G� ontains a diamond, a ontradition. Therefore, we an assume thatk � 4. Sine G� is hordal, v2iv2i+2 2 F for i = 1, : : : , k. In addition, ifv2v6 did not belong to F , fv2, v4, v6g would be ontain in an indued yleof G� of length at least 4. Consequently, fv2, v3, v4, v6g indues a diamondin G�, a ontradition.We have already proved that the lass of probe blok graphs is probediamond�free and hordal. The following Lemma proves that the graphobtained by adding all the edges to a hordal probe diamond-free graphwhose endpoints are tips of a diamond remains hordal. Consequently, everygraph hordal and probe diamond�free is probe blok.Lemma 25. Let G = (V ,E) be a onneted probe blok graph and F bethe set of edges of G whose endpoints are tips of some diamond in G.Then, G� = (V ,E [F ) is hordal.Proof. Throughout the proof, sums should be onsidered modulo k. LetF be the subset of edges of G� de�ned as in the lemma. Suppose, by wayof ontradition, that G� = (V ,E [ F ) ontains an indued yle H =v1, : : : , vkv1 for k � 4 as indued subgraph. By Theorem 48, vivi+1 2 F forsome i = 1, : : : , k. Assume that the yle ontains the minimum numberof nonprobe verties among all the indued yles ontained in G�. Byonstrution, there exists a vertex w1 2 P adjaent to vi and vi+1. Byminimality on the number of nonprobe verties ofH and sine G� is diamondfree, w1 is antiomplete to V (H)� fvi, vi+1g in G�. If E(H)\ F = vivi+1,then G[V (H) [ fw1g] would indue a yle in G, a ontradition. Thus,we an assume that there exists an edge vjvj+1 2 F with i 6= j suh thatvjvj+1 2 F . Therefore, there exists a vertex w2 6= w1 belonging to P andadjaent to vj and vj+1 whih is also antiomplete to E(H)�fvjvj+1g. Inaddition, by the minimality on the number of nonprobe verties in H, it



70 Chapter 5. Probe o-bipartite and probe blok graphsfollows that w1w2 /2 E(G). Again, if there were no other edges belonging toH in F , G would ontain an indued yle greater than 4, a ontradition.Repeating this proedure, if were neessary, for any edge of H belonging toF , we onlude that G is not hordal, a ontradition again.By ombining Theorem 47, Lemma 48 and Lemma 25, it follows theharaterization for probe blok graphs. This haraterization pointed outthe relationship between the lass of probe blok graphs and Ptolemaigraphs. Indeed, the below theorem shows that probe blok graphs are asublass of Ptolemai graphs.Theorem 49. Let G be a onneted graph. The following statementsare equivalent:1. G is a probe blok graph.2. G is hordal and probe diamond-free.3. G is Ptolemai and fF1,S,T1g-free.Proof. 1. ) 2.On the one hand, sine blok graphs are hordal and diamond-free, the lass of probe blok graphs is ontained in the lass of probediamond�free graphs. On the other hand, by Theorem 48, it follows thatthe lass of probe blok graphs is ontained in the lass of probe hordalgraphs.2. ) 3. Let G be a probe diamond-free and hordal graph. By Theo-rem 47, G is F2 free. Consequently, sine G is hordal, G is Ptolemai. Inaddition, all the graphs depited in Figures 5.2 and 5.3 are hordal but F1,F2, S and T1. Therefore, G is Ptolemai and fF1,S,T1g�free.3. ) 2. Straightforward.



Chapter 6Conlusions and future workIn this Thesis we study strutural haraterizations for irular-ar graphs,irle graphs, probe interval graphs, probe unit interval graphs, probe o-bipartite graphs, and probe blok graphs. We partially haraterize irular-ar graphs, irle graphs, probe interval graphs and probe unit intervalgraphs by forbidden indued subgraphs within ertain hereditary families ofgraphs. Finally, a strutural haraterization for probe o-bipartite graphsthat leads to a polynomial-time reognition algorithm and a omplete har-aterization of probe blok graphs by a list of forbidden indued subgraphsare presented.In Chapter 2 irular-ar graphs are haraterized within ographs (The-orem 16), paw-free graphs (Theorem 19) and law-free hordal graphs (Theo-rem 21). Some open questions for irular-ar graphs from a strutural pointof view are the following.Question 1. Give a forbidden indued subgraph haraterization forirular-ar graphs within the lass of hordal graphs.Question 2. Give a forbidden indued subgraph haraterization forirular-ar graphs within the lass of K4�free graphs.Question 3. Charaterize irular-ar graphs within the lass of law-free graphs. A good start point ould be to haraterize irular-argraphs within the lass of graphs with stability number at most two.Question 4. Find a haraterization by forbidden indued subgraphsfor normal irular-ar graphs.Question 5. Find a haraterization by forbidden indued subgraphsfor Helly irular-ar graphs.In Chapter 3, irle graphs are haraterized within the lasses of lin-ear domino graphs (Theorem 28), P4�tidy graphs (Theorem 30) and tree-ographs (Theorem 31). Finally, the lass of Helly unit irle graphs is in-71



72 Chapter 6. Conlusions and future worktrodued and ompletely haraterized (Theorem 32). Next, we will presentsome open questions for the lass of irle graphs.Question 6. Charaterize the whole lass of irle graphs by forbiddenindued subgraphs.Question 7. Find a deomposition suh that Helly irle graphs arelosed under this deomposition (analogous to the split deompositionfor irle graphs).Question 8. Charaterize Helly irle graphs by forbidden indued sub-graphs.In Chapter 4, we provide forbidden indued subgraphs haraterizationsfor probe interval graphs (resp. probe unit interval graphs) within two super-lasses of ographs, namely tree�ographs (Theorem 38) (resp. Theorem 43)and P4�tidy graphs (Theorem 39) (resp. Theorem 44). We would like tomention some open questions.Question 9. Charaterize probe unit interval graphs by forbidden in-dued subgraphs within the lass of probe interval graphs.Question 10. Charaterize the whole lass of probe interval graphs andprobe unit interval graphs by forbidden indued subgraphs.Question 11. Charaterize probe irular ar-graphs by forbidden in-dued subgraphs within the lass of trees.In Chapter 5, we present a strutural haraterization for probe o-bipartite graphs (Theorem 45) that leads to a polynomial-time reognitionalgorithm for this lass and a haraterization by forbidden subgraphs forthe lass of probe blok graphs (Theorem 49). Some open problems inonnetion with this topi are the following.Question 12. Charaterize by forbidden indued subgraph the lass ofprobe hordal graphs.Question 13. Deide whether a given graph is probe line graph.
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