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Resumen

El propósito de esta tesis puede dividirse en dos incisos. Por un lado está enfocada en la
caracterización de la adsorción y la reactividad sobre superficies de óxidos, tanto en inter-
fases sólido-gas como sólido-líquido, a partir de un tratamiento computacional de primeros
principios, basado en la teoría del funcional de la densidad (DFT) en el contexto de ondas
planas y pseudopotenciales. Por otro lado, nuestro objetivo es desarrollar herramientas
metodológicas en el marco de DFT, apropiadas para la descripción de materiales en en-
tornos complejos, a fin de abordar una variedad de problemas en química y en ciencia de
los materiales, tales como los considerados en esta tesis. Primeramente, hemos explorado
diferencias de energía libre y barreras cinéticas involucradas en la disociación de agua y
metanol sobre superficies de TiO2 en fase gaseosa. Esto se ha llevado a cabo mediante
la combinación de los métodos de Umbrella Sampling y de dinámica molecular de Car-

Parrinello. En otra línea, hemos examinado la ionización de funciones aminopropilo en su-
perficies de SiO2 sustituidas, en el marco de una colaboración computacional-experimental
para determinar el comportamiento ácido-base de materiales híbridos mesoporosos. Este
análisis fue realizado tanto en fase gaseosa como en presencia de una bicapa de agua, para
evaluar el efecto de una capa de hidratación en los resultados. Seguidamente, introduci-
mos un modelo de solvente continuo diseñado para la realización de simulaciones de DFT
en superficies de sólidos en contacto con una solución. Tal esquema—ideado en condi-
ciones periódicas de contorno dentro del método de Car-Parrinello— es el primero que
permite realizar dinámica molecular de primeros principios en la interfaz sólido-líquido.
Esta metodología es utilizada a continuación para caracterizar los procesos de adsorción
de moléculas pequeñas en la interfase TiO2-agua. Una via alternativa para la descrip-
ción del entorno en las simulaciones de estructura electrónica es la metodología híbrida
de Mecánica Cuántica-Mecánica Clásica (conocida por las siglas QM-MM), en la cual un
número limitado de átomos (el soluto) es tratado mediante mecánica cuántica, mientras
que el resto del sistema (el solvente) se describe usando un campo de fuerzas clásico. Esta
técnica está ampliamente difundida en aplicaciones en química relacionadas con molécu-
las o sistemas finitos. En esta tesis introducimos una formulación híbrida QM-MM en
condiciones periódicas de contorno, concebida para la simulación de sistemas extendidos

Palabras claves: DFT, superficie de titania, QM-MM, modelo de solvente continuo, PPW,
Car Parrinello, Umbrella Sampling, simulación computacional, superficie de sílica
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Abstract

The purpose of this thesis is twofold: on one hand, it is aimed to characterize adsorp-
tion and reactivity on oxide surfaces both at the solid-gas and solid-liquid interfaces, from
a first-principles computational standpoint, based in density functional theory (DFT) in
a plane waves-pseudopotential setting. On the other hand, our objective is to develop
methodological tools in a DFT framework, appropriate to describe materials in complex
environments, to address a variety of problems in chemistry and materials science, such
as those considered in this thesis. Firstly, we explore the free energy differences and
kinetic barriers involved in the dissociation of water and methanol at TiO2 surfaces in
the gas phase. This is achieved through the combination of the Umbrella Sampling tech-
nique and the Car-Parrinello molecular dynamics method. In a different line, we examine
the ionization of aminopropyl functions in substituted SiO2 surfaces, in the context of an
experimental-computational collaboration to determine the acid-base behavior of hybrid
mesoporous materials. This is done both in the gas phase and in the presence of a water
bilayer, to assess the effect of an hydration shell in the results. Next, we present a contin-
uum solvent model designed to perform DFT simulations at solid surfaces in contact with a
solution. Such scheme—devised in periodic boundary conditions within the Car-Parrinello
method—is the first one to allow for ab-initio molecular dynamics at solid-liquid inter-
faces. This methodology is then applied to characterize the adsorption processes of small
molecules at the TiO2-water interface. An alternative pathway to describe the environment
in electronic structure calculations is the hybrid Quantum Mechanics-Molecular Mechan-
ics (QM-MM) methodology, in which a limited number of atoms (the solute) are treated
quantum-mechanically, whereas the rest of the system (the solvent) is described using clas-
sical force-fields. This technique is widespread in chemistry applications for molecules or
finite systems: in this thesis we introduce a QM-MM formulation in periodic boundary
conditions, conceived for the simulation of extended systems.

Keywords: DFT, titania surface, QM-MM, continuum solvent model, PPW, Car-Parrinello,
Umbrella Sampling, computer simulation, silica surface
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Chapter 1

Introduction

Molecular simulation techniques constitute a valuable research tool to complement exper-

imental observations, but also to predict physical properties and chemical reactivity under

specific conditions with a degree of detail that experiments are sometimes unable to pro-

vide. On the other hand, and generally speaking, experimental conditions involve complex

situations and environments, while theoretical models tend to describe simpler systems un-

der a number of assumptions. It is essential to be well aware of these simplifications and

assumptions, by the time of interpreting and assessing the reach and the limitations of

the results coming from simulations. In particular, this thesis is centered on the chemical

behavior of small molecules on oxide surfaces from an atomistic perspective.

There is a great amount of computational work addressing adsorption and reactivity

on oxide surfaces in the gas phase. However, many of the relevant applications of oxide

materials are related to heterogeneous catalysis, where the chemical reactions occur at the

solid-liquid interface. The thermodynamic feasibility of these processes strongly depends

on the medium, which affects the energetic balance between the products, reactants and

intermediates. In the present work we consider the inclusion of the solvent in the simula-

tion through different approaches.

Molecular simulation studies can be performed through different theories, the choice

of which depends on the type of answer that is sought. This thesis is focused on surface

chemistry and reactivity, which implies the transformation of a molecular entity into an-

other one. Quantum mechanics (QM) is the theory that adequately characterizes the cleav-

age and formation of atomic bonds. Among the available molecular simulation methods,

QM simulations (also called simulations from first-principles) are the most detailed, and

consequently the computationally most demanding. In particular, we employ techniques

based on density functional theory (DFT), which is today the first choice for first-principles

simulations of systems comprising from a few tens up to a few hundred of atoms, because

of its excellent balance between efficiency and accuracy. We utilize this methodology to

study adsorption energies and configuration of small molecules upon surfaces, and also

dissociation free energy profiles and finite temperature dynamics.
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In many occassions the reactive processes are circumscribed to only a few atoms, sur-

rounded by a larger matrix or environment which does not experience directly any break-

ing or formation of chemical bonds. In such cases, it may not be necessary to apply the

QM description to the whole system, considering instead a partition in two regions, each

one described at a different level of theory, but still keeping the interaction between them.

By mixing these different degrees of accuracy in the description, it is possible to represent

more complex environments without dramatically increasing the computational cost. In

this line of thought, this thesis considers two different approaches to address solid-liquid

interfaces: the continuum solvent model, and the hybrid QM-MM methodology. Before

going into any detail regarding these approaches, we notice that solid-liquid interfaces are

complex systems very appropriate to be divided in two regions, according to the kind of

partitioning proposed above. The QM level of description must be applied to the surface

atoms as well as to the molecules immersed in the liquid phase that interact directly with

the surface. The rest of the system: all or most of the solvent molecules, and sometimes

the atoms at deeper layers of the solid, can be characterized at a less expensive level.

The first of these approaches discussed and implemented in this thesis is the contin-

uum solvent model, which represents the liquid phase as a continuum dielectric medium.

Within this scheme the characterization of the liquid phase is considered from a macro-

scopical standpoint: the average solvation effect is captured by the model, but at the same

time specific solute-solvent interactions and the structure of the solvent are neglected. The

second approach considered is the hybrid QM-MM methodology, which combines molecu-

lar mechanics (consisting in a classical force field) and quantum mechanics. Within this

approach, the QM and the MM subsystem are usually called the solute and the solvent,

respectively.

While the discussion up to this point has considered surfaces in general, this thesis is

mainly focused on titania and silica surfaces. Both titania and silica have a high scientific

and technological impact. Titania surfaces are often found in a crystalline phase, while

the amorphous phase is the most usual for silica. From the point of view of quantum-

mechanics simulations in periodic boundary conditions, crystalline structures are easier to

recreate than amorphous phases. The strategy followed to represent the silica surface is

discussed in subsection 1.3. The adsorption and reactivity at these interfaces is studied

here for a variety of small molecules and moieties, including water, hydroxide, methanol,

hydrogen peroxide, carboxylic acid and the aminopropyl group.

2



CHAPTER 1. INTRODUCTION

1.1 The study of surfaces with DFT

Density functional theoretical studies constitute an important approach to describe solids

and surfaces. Electronic structure simulations of surfaces have been carried out using

both finite and extended models. In the former case, localized basis sets methods are

employed, and surfaces are represented by a cluster of atoms, hopefully big enough to

minimize the finite size effects. On the other hand, extended models require the use

of methods in periodic boundary conditions, based on pseudopotentials and delocalized

basis functions, typically plane waves. We consider this is the most natural and realistic

approach to address periodic surfaces and materials, and therefore this is the path adopted

in the present thesis. The fundamentals of the DFT methodology for extended systems is

explained in detail in Chapter 2. In the following, we will give a brief glimpse on what

are the models used in the context of electronic structure methods for surfaces in periodic

boundary conditions. Crystalline solids and surfaces are extended systems periodically

repeated in three dimensions (3D) and in two dimensions (2D), respectively. Only one unit

cell is needed to characterize the system in the simulation. The mathematical formalism in

periodic boundary conditions naturally produces the unit cell replication along the three

directions. Since the method imposes periodicity in all axis, 1 in order to model a surface

it is necessary to leave an empty space in between the structure and its periodic images

along one of the directions (conventionally the z-axis, which is the one perpendicular

to the surface). The model generated in this way is called a slab: it is infinite in its

x and y dimensions, and exposes two faces perpendicular to the z-axis. Computational

experiments like relaxations, reconstructions, or adsorption, can be done on any of these

faces, or in both at the same time. The thickness of the slab is chosen so that geometrical

and energetic properties, in particular the surface energy, are converged. Usually, four or

five atomic layers are enough to reproduce the properties of the semi-infinite surface [1,2].

The atoms of the inner layers are frozen to their bulk positions, and the two or three outer

layers are optimized.

Internal energy vs free energy

The system reactivity is extremely conditioned by temperature. The vast majority of elec-

tronic structure simulations, and in particular almost all DFT calculations of surfaces, ex-

plore adsorption and dissociation energies of optimized, equilibrium structures at zero

temperature. Results of energetics at 0 K are usually taken to determine the stability or

the thermodinamically favored species at room temperature, because the calculation of

1The mixing of periodic with non-periodic boundary conditions in different axis in electronic structure
calculations would involve a complex formulation and is not usual.
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reaction free energies requires first principles, expensive molecular dynamics simulations,

in combination with a statistical sampling scheme. The Car-Parrinello molecular dynamics

approach [3], to be introduced in Chapter 2, has helped significantly to the realization of

finite temperature simulations of extended systems. In this thesis we investigate the free

energy dissociation profiles of water and methanol on the clean surfaces of anatase(101)

and rutile(110). To this end, we combine Car-Parrinello molecular dynamics simulations

with the umbrella sampling [4] methodology. These results are presented in Chapter 3.

1.2 Scientific relevance and modelling of titanium diox-

ide

For many reasons, titanium dioxide (TiO2) surfaces are among the most widely studied to

date. This material has found applications in heterogeneous catalysis, coatings, solar cells,

sensors, and, more recently, the design of biomaterials [5–8]. Its use in photo-assisted

degradation of organic molecules to O2 and H2O has arised a lot of interest for purification

or desinfection of wastewater [9, 10]. TiO2 and silica (SiO2) constitute the typical pre-

cursors used in the soft sol-gel synthesis technique, for the preparation of thin films and

mesoporous materials [11–14]. Furthermore, TiO2 is inexpensive and undefective faces

are relatively easy to prepare, which has made of it a prototype oxide in surface science

research.

Up to date, there exists a number of experimental techniques capable to provide infor-

mation concerning the atomic and electronic structure of a surface, including the type of

adsorption of a given species at the interface and the surface site where this adsorption

takes place. Some of these techniques are: temperature programmed desorption (TPD),

x-ray photoelectron spectroscopy (XPS), Low Energy Electron Difraction (LEED), scanning

tunnelling microscopy (STM), atomic force microscopy (AFM), among others [15]. Crys-

talline and amorphous titania surfaces have been analyzed with these methods, which

have revealed the nanostructure of the surface, and the configurations of molecules and

atoms adsorbed on them [5,16–20]. The majority of these techniques operate in conditions

of high or ultrahigh vacuum. First-principles simulations, in particular density functional

theory calculations [21, 22], have played a crucial role to complement and interpret the

data from experiments in vacuum. The microscopic insight provided by atomistic simula-

tions has shed light on the structure and reactivity of solids and surfaces, explaining some

experimental results as well as predicting others [5,7,16,20,23].

4
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Figure 1.1. Unit cell corresponding to a)anatase and b)rutile bulk structures.

Bulk description

There are three different crystalline phases of titanium dioxide, with the corresponding

crystal structures: brookite(rhombohedrical, D15
2h-Pbca, a = 5.436 Å, b = 9.166 Å, c =

5.135 Å), anatase (tetragonal, D19
4h-I4/amd, a = b = 3.782 Å, c = 9.502 Å) [24] and

rutile(tetragonal, D14
4h-P42/mnm, a = b = 4.584 Å, c = 2.953 Å) [25]. Anatase and rutile

are the thermodinamically most stable [26], and as a consequence they have been the most

exhaustively studied. One and the other are also investigated along this thesis. Figure 1.1

shows the crystal structures for anatase and rutile.

It can be seen from figure 1.1 that, in both crystals, every titanium atom is inside a

octahedrical hole, exhibiting a coordination number of six. This Ti atom is sometimes

denoted as Ti(6c). On the other hand, oxygen is coordinated to three neighbors, and

so is known as O(3c). Before proceeding with surface calculations, the description for

anatase and rutile must reproduce the bulk experimental parameters. The pseudopotential

plane waves method is applied to perform the simulations of this thesis, in particular the

Quantum Espresso implementation [27] with ultrasoft pseudopotentials [28] and the PW91

exchange correlation functional [29, 30]. This functional has widely proved to correctly

describe energy and structure of titanium dioxide [16,31–33]. The simulation parameters

mentioned above have been applied to the computations throughout this thesis; the mean-

ing of each one will be explained in Chapter 2. In our simulations the unit cell parameters

are fixed to experimental values, whereas the optimized Ti-O bond distances were checked

to reproduce experiments.

5
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Figure 1.2. Slab models for the a) rutile (110) and b) anatase(101) surfaces, four layers deep.

Surface description

The bulk structure can be cut along different planes, leaving in each case two surfaces as

a product. The resulting faces are named according to their relative orientation; Miller in-

dices are used to name planes as well as the corresponding surfaces. For each polymorph

there is one particular face involving the lowest surface energy, i.e., the most stable: ex-

periments and calculations indicate that the (101) and (110) surfaces are the most stable

for anatase and rutile, respectively [1,2,5,7,34–36].

Due to the different environment of the surface atoms respect to the bulk, these atoms

usually experience some displacements to minimize the surface energy. This process is

called relaxation, or reconstruction when it is accompanied by a redistribution of chemical

bonds. For the previously mentioned surfaces, reconstruction is not observed, and surfaces

can be represented by a minimal structure with the same pattern as the bulk unit cell,

identified with the label (1x1) [5,7,37].

Rutile(110) and Anatase(101)

It can be seen from figure 1.2 that these surfaces exhibit two new types of atoms: Ti(5c),

which is the five-coordinated, exposed titanium atom, and O(2c), usually called bridge

oxygen, because it connects two Ti atoms on the surface. Both Ti(5c) and O(2c) appear

as a consequence of breaking one Ti-O bond. The insaturated valence enhances reactivity

on these sites, aside from causing inward and upward relaxations of the atomic positions

with respect to the bulk [5,7], to minimize the surface energy; these changes in the atomic

positions are usually small, and in our calculations they were checked to be in agreement

with experiments and previous simulations.

Slabs between three and seven layers have been employed to model the rutile (110)

6
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surface [1,32,34,38,39], while the anatase (101) slab is most often built with four atomic

layers [40–44]. In figure 1.2 the anatase (101) surface is represented by a (2 × 2) slab

four layers deep, whereas in the case of rutile (110), a (2 × 1) surface made of four layers

of atoms is shown. The supercell dimensions are 7.55 × 10.20 × 22.00 Å3 for anatase and

6.01 × 6.48 × 24.00 Å3 for rutile, both of them containing a total of 48 atoms 2.

Insaturated coordination of the surface atoms not only enhances surface reactivity, but

also promotes the presence of defects. One of the most common deffects on titanium

dioxide surfaces are a consequence of a missing O(2c) atom [5, 39, 45–47]. These are

called reduced surfaces.

1.3 Modelling of silica systems

Silica constitutes one of the most common mineral materials on earth. It is used as the

raw material for countless products: from all kind of commodities as desiccants, glasses,

ceramics and cement, to elaborated technological articles as optical fibers and dielectrics

for microelectronic devices. More specifically, applications of SiO2 in the chemical sciences

include catalysts, chemical separators, and more recently the preparation of mesoporous

inorganic materials [12,13,48,49]. The flexibility of the Si-O-Si bond explains the wide va-

riety of existing polymorphs, including quartz, cristobalite and diatomite. However, silica

is generally found as an amorphous system [50].

Silica became a subject of this thesis as a result of a collaboration with a group of

experimentalists working in materials synthesis and characterization [51] (see Chapter

4). Computer simulation was applied to the investigation of the acid-base equilibrium in

aminopropyl functions decorating the walls of mesoporous silica and titania. To address

this problem, a proper representation of the surface has to be considered. The formation

of silica surfaces involves the cleavage of the Si-O bond, which, in the presence of water,

leads to silanol (-Si-OH) surface groups [52]. Silanol moieties can be detected in spectro-

scopic experiments via the Si–OH stretching mode around 3750 cm−1 [53, 54], and may

be classified in two types: simple (or terminal) and geminal, denoting respectively one

and two hydroxyl groups attached to a Si surface atom. The density and type of these

-Si-OH groups determine most properties and reactivity of silica surfaces, therefore, model

structures adopted in simulations attempt to recreate these parameters.

As it was mentioned before, silica is usually found in an amorphous phase, whose

representation by simulation techniques is not straightforward. Amorphous materials are

extended systems with no periodic arrangement and therefore pose a challenge to simula-

2Even though these surfaces can be represented by a (1x1) cell, we adopt larger supercells compatible
with Γ point sampling, and to reduce lateral interactions between adsorbates and their images.
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tions in both finite and periodic frameworks. Non-periodic studies with localized basis sets

were carried out in small silica clusters in order to understand reactivity and the formation

of silanol groups [55]. Hybrid QM-MM methods were also employed in finite models [56].

On the other hand, there are two strategies to solve this problem using a periodic approach:

(1) to simulate the system including a huge number of atoms in the unit cell, so that peri-

odicity effects are minimized, or (2) to find a proper crystal face which recreates the most

important features of the amorphous surface.

The first strategy is the most accurate—providing the unit cell is large enough—but

more demanding, not always within reach of first-principles calculations. A few examples

of calculations on amorphous silica models in periodic boundary conditions can be found in

the recent literature, in which unit cells containing around 100-120 atoms were adopted

to describe the hydroxylated surface [50, 57]. Simulations of much larger amorphous

structures have been performed with molecular mechanics approaches, computationally

less demanding, but not able to explore reactivity [58–60].

In the second approach, the amorphous phase is replaced by a crystaline structure ex-

hibiting similar surface properties. The β-cristobalite phase has been chosen in several

ab initio studies [61–64], because the silanol density and the refractive index are similar

to those present in amorphous silica. In particular, terminal silanols are well represented

by the β-cristobalite (111) surface [61, 63–65], while the geminal silanols are character-

istic of the (100) surface [63]. Terminal silanols account for the major part of the sub-

stituted Si atoms at the surface, and therefore the (111) face has been the most usual

choice to represent the amorphous structure in DFT calculations in periodic boundary con-

ditions [61,63–65]. In view of these results, in this thesis the amorphous silica is modelled

through the β-cristobalite (111) surface. A model for this structure is shown in figure 1.3.

The β-cristobalite (111) is represented by a (2 x 2) slab four layers deep, and supercell

dimensions of 8.74 × 10.08 × 37.14 Å3 containing a total of 60 atoms.

1.4 Solid-liquid interfaces

The majority of the computational research cited up to this point, refers to calculations at

the solid-gas interface. However, a broad range of titania (and silica) applications related

to heterogeneous catalysis and electrochemistry involve the solid-liquid interfaces. The

explicit inclusion of the solvent into the simulation scheme dramatically increases the cost

of first-principles calculations of periodic surfaces. This implies to fill the vacuum space

with a large amount of water molecules (or any other solvent) to represent the bulk liq-

uid phase. Yet, to get a realistic description of the fluid, it is necessary to perform long

molecular dynamics or extensive Monte-Carlo simulations in which the system visits all

8



CHAPTER 1. INTRODUCTION

Figure 1.3. Model structure of the SiO2 β-cristobalite (111) surface. The slab is four SiO2 layers
deep. A terminal silanol group is enclosed in a black trace.

configurations characterizing the liquid phase [66]. Given the high computational cost,

this strategy is not very usual.

It is then desirable to have alternative computational approaches specially designed

to perform calculations and obtain thermodynamic data at the solid-liquid interface. The

need for reliable computational approaches to explore surfaces in contact with a solution

becomes even more urgent when many surface techiques capable to provide atomistic

information, such as XPS or surface-difraction methods (LEED) [15], are only operative

under high vacuum conditions. Alternatives to the explicit solvation are the continuum

(or implicit) solvent models [67, 68], in which the solvent is introduced in the simulation

scheme in the form of a continuum dielectric medium represented by a permittivity func-

tion. This function takes the value of 1 (corresponding to vacuum) inside the molecule or

surface, and the value of the dielectric constant of the solvent outside. This transition be-

tween the vacuum and the bulk solvent dielectric can occur smoothly [69] or abruptly [70].

Continuum models incorporate the solvent polarization effects in an average fashion, the

cost of the computation becoming closer to the corresponding cost in vacuum. On the

other hand, the representation of the solvent structure is omitted, disregarding any possi-

ble solute-solvent specific interactions. Still, to overcome this problem, all or part of the

first solvation shells can be included explicitly; within this scheme the dielectric medium

extends beyond the limits of a cluster composed by the solute plus a few solvent molecules.

The continuum model has a long tradition in quantum chemistry, and has proved to be

reliable and efficient to extract properties of a large variety of molecular systems in solu-

tion [66–68]. The application of this methodology to extended systems, and in particular
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to solid-liquid interfaces, has been much less common. In this thesis we develop a con-

tinuum solvent method within the Car-Parrinello approach and the pseudopotential plane

waves method, to perform first-principles molecular dynamics at surfaces in contact with a

solution. This implementation is presented in Chapter 5, and in the following chapter it is

used to understand the interaction between small molecules and titania at the solid-water

interface.

As mentioned at the openning paragraphs of the present chapter, another way to get

around the high computational cost of QM calculations with explicit solvation, is to divide

the system into two regions, described respectively with QM and MM Hamiltonians. A

significant efficiency gain can be achieved if the solvent molecules are treated at the MM

level. While this kind of hybrid methodologies has been extensively applied to molecular

and biomolecular systems, adaptations involving plane waves DFT codes capable to deal

with surfaces or solids in fully periodic boundary conditions for the QM and the MM parts

have not been reported. The first stage in the implementation of this technique is exposed

in Chapter 7.
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Chapter 2

Methodological background

To simulate a chemical system the first thing to do is to select a proper way to describe it. In

general, there are two ways to address the atomistic simulation of a molecular system: one

that describes the rupture and formation of chemical bonds, where the electronic structure

changes significantly, and another one used to study processes where no chemical bond

is modified. The first has necessarily to deal with the quantum mechanical side of the

system, in particular with the electrons, and is known as electronic structure methodology,

whereas the second one treats the atoms as classical particles and is known as classical

methodology.

There is also a third type of methodology known as hybrid quantum mechanics-molecular

mechanics (QM-MM) where the system is divided in two regions, one of them described

by quantum mechanics (QM) and the other one by molecular mechanics (MM). Both re-

gions interact with each other throughout a proper Hamiltonian. This approach will be

explained in detail in chapter 7.

2.1 Electronic structure methods

To study the physics of small particles, such as electrons, we need to resort to quantum

mechanical theory. This theory establishes that every system can be described by a wave

function, which contains all the information of the system. The wave function obeys the

time dependent Schrödinger equation [1]:

i~
∂Ψ (r, t)

∂t
= − ~

2

2m
∇2Ψ (r, t) + V (r, t) Ψ (r, t) (2.1)

Ψ is the wave function for a particle which depends on position r and time t, m is the mass

of the particle, ∇2 is the Laplacian operator, ~ is the Planck constant divided by 2π, and

V (r, t) is the external potential.

If the external potential does not depend on time, this equation can be rewritten as:
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EΨ (r) = − ~
2

2m
∇2Ψ (r) + V (r) Ψ (r) (2.2)

By the definition of the following Hamiltonian operator:

Ĥ = − ~
2

2m
∇2 + V (r) (2.3)

equation 2.2 can be written as:

Ĥψ (r) = Eψ (r) (2.4)

To solve this equation for a system of electrons and nuclei, firstly we need to define pre-

cisely the Hamiltonian operator. In order to simplify the problem, the Born-Oppenheimer

approximation is generally adopted, which consists in decoupling the electron movement

from that of the nuclei, considering that the mass of the proton is three orders of mag-

nitude larger than the electron mass. Within the Born-Oppenheimer approximation the

electrons adapt instantaneously to the coordinates of the nuclei, and the Hamiltonian can

be described as: Ĥ = Ĥel + Ĥnucl. In this way, Ĥel depends only parametrically on the

coordinates of the nuclei. From now on, we will neglect the kinetic energy of the nuclei,

and hence, for a set of N electrons in the field of M nuclei, Ĥ expressed in atomic units

assumes the following form:

Ĥ = −
N
∑

i=1

∇2
i

2
−

N
∑

i=1

M
∑

A=1

ZA

riA

+
N
∑

i=1

N
∑

j>i

1

rij

+
M
∑

A=1

M
∑

B>A

ZAZB

RAB

(2.5)

The first term stands for the kinetic energy N electrons, the second one represents the

attraction between nuclei and electrons, the third one the repulsion between electrons,

and the last one the repulsion between nuclei. Even though the exact expression for the

Hamiltonian can be written as pointed above, the Schrödinger equation can not be solved

analytically for systems with more than one electron. To find the solution for many elec-

trons systems, a number of approximations aside from Born-Oppenheimer’s are needed.

Depending on the type of approximations employed to solve the Schrödinger equation,

different electronic structure methodologies have been developed ever since the consolida-

tion of quantum mechanics. These can be divided in three groups: semiempirical, ab initio,

and methods based on density functional theory (DFT), which are the ones employed in

this thesis. An important tool to find the wave-function of the system in the context of any

of these electronic structure methods is the variational principle. In particular, the varia-

tional method is usually employed to solve the DFT equations, and therefore it is going to
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be explained next.

Variational method The variational theorem states that, given an approximate wave

function φ, the ground state energy of the system E0 verifies the following relation [1]:

W =

〈

φ
∣

∣

∣
Ĥ
∣

∣

∣
φ
〉

〈φ|φ〉 ≥ E0 (2.6)

When the wave-function is the exact solution to the corresponding Schrödinger equa-

tion (or, what is the same, the Hamiltonian eigenfunction) the equality arises. The more

alike the approximate wave function is to the eigenfunction of Ĥ, the lower the value of W .

Thereafter, a strategy to find an approximate wave-function is to minimize a trial function

by minimizing W . This procedure is known as the variational method.

2.1.1 Ab initio methods

The ab initio methods, also called from first principles,1 are based only on quantum me-

chanics and universal constant, without resorting to any empirical assumptions or addi-

tional experimental information in the form of parameters.

Historically, the first methodology developed to compute the energies of atoms and

molecules with chemical accuracy is the Hartree-Fock (HF) method [1,2]. It has settled the

basis for a wide range of electronic structure methods, including density functional theory

in its present format, and for that reason it is briefly discussed in this section. Hartee-

Fock was preceded by the Hartree or orbital approximation, where the many electrons

wavefunction of N particles is approximated as a product of one-electron functions:

Ψ(r1, . . . , rN) = ϕ1(r1) . . . ϕN(rN) (2.7)

Here ϕn are one electron spin-orbital functions and ri are the spatial coordinates for

each electron i. These spin-orbitals do not have a direct physical meaning, but the sum

of their squares gives the total charge density, ρ(r) =
∑

n |ϕn(r)|2. Due to the fermionic

nature of the electrons, the antisymmetry principle must be satisfied. This is taken into

account if this product is replaced by a determinant (called a Slater determinant) which

columns contain the N one electron functions, and which rows account for the coordinates

of the N electrons:

1Some authors reserve the term ab initio for methods related to the Hartree-Fock approximation, and the
term first-principles to denote DFT methods. We will, instead, use one or the other denomination indistinctly.
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Ψ =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϕ1(r1) ϕ2(r1) · · · ϕN(r1)

ϕ1(r2) ϕ2(r2) · · · ϕN(r2)
...

... . . . ...

ϕ1(rN) ϕ2(rN) · · · ϕN(rN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.8)

The electronic energy E is calculated in terms of the Hamiltonian Ĥ given in equation

2.5, omitting the internuclear Coulomb term.

E =
〈

Ψ
∣

∣

∣
Ĥ
∣

∣

∣
Ψ
〉

(2.9)

Combining equations 2.5, 2.8 and 2.9, the system energy E can be expressed as:

E =
N
∑

i=1

Hi +
1

2

N
∑

i=1

N
∑

j=1

(Jij −Kij) (2.10)

where Hi defines a one electron integrals matrix containing the electron kinetic energy

and the attraction between electron i and the nuclei, Jij is known as the Coulomb integral

and represents the repulsion between electrons i and j, and Kij is called Exchange integral

which contains the interaction of two electrons as a result of the exclusion principle. Each

of these matrix elements can be described as follows:

Hii = −1

2

〈

ϕi(r1)
∣

∣∇2
1

∣

∣ϕi(r1)
〉

−
〈

ϕi(r1)

∣

∣

∣

∣

∣

M
∑

A=1

ZA

r1A

∣

∣

∣

∣

∣

ϕi(r1)

〉

(2.11)

Jij =

〈

ϕi(r1)ϕj(r2)

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

ϕi(r1)ϕj(r2)

〉

(2.12)

Kij =

〈

ϕi(r1)ϕj(r2)

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

ϕj(r1)ϕi(r2)

〉

(2.13)

Implementation of the variational theorem requires the minimization of the energy

with respect to the orbitals, which leads to a set of N equations:

F̂ (r1) |ϕi(r1)〉 =
N
∑

j=1

ǫij |ϕj(r1)〉 (2.14)

where ǫij are the Lagrange multipliers arising from the orthonormality constraint included

in the minimization, 〈ϕi(r1)|ϕj(r1)〉 = δij. The N spin-orbitals ϕi which solve these equa-

tions are called molecular Hartree Fock orbitals, and F̂ is the Fock operator:
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F̂ (r1) = Ĥi(r1) +
N
∑

j=1

[

Ĵj(r1)− K̂j(r1)
]

(2.15)

Ĥi, Ĵj and K̂j operators are defined as:

Ĥi(r1)ϕi(r1) = −1

2
∇2

1ϕi(r1)−
N
∑

A=1

ZA

r1A

ϕi(r1) (2.16)

Ĵij(r1)ϕi(r1) =

[
∫

dr2ϕ
∗
j(r2)r

−1
12 ϕj(r2)

]

ϕi(r1) (2.17)

K̂ij(r1)ϕi(r1) =

[
∫

dr2ϕ
∗
j(r2)r

−1
12 ϕi(r2)

]

ϕj(r1) (2.18)

It is convenient to diagonalize the matrix associated with equation 2.14, to arrive to an

eigenvalue problem:

F̂ (r1) |ϕi(r1)〉 = ǫi |ϕi(r1)〉 (2.19)

where the eigenfunctions ϕi(r1) are the so called canonical spin-orbitals, with energies

given by their eigenvalues ǫi. We note that these eigenvalue equations must be solved self-

consistently, because the Fock operator F̂ (r1) depends on the orbitals ϕi(r1) (see equations

1.15, 1.17 and 1.18), which in turn depend on F̂ (r1). The procedure to solve this system

consists in providing a starting guess for the orbitals to compute F̂ (r1), from which a new

set of orbitals is obtained by diagonalizing 2.19. This iterative procedure is known as a

self consistent field (SCF) calculation. When the iterative procedure converges, as a final

result a group of molecular orbitals and their energies are found.

Due to the great complexity of the spin-orbitals and the iterative procedure, direct

numerical solution of ϕi(r) wave functions has been applied successfully only in the case

of atoms and diatomic molecules. In order to deal with larger systems, Roothaan and Hall

introduced another approximation [1,2] in which the molecular orbitals are expressed as

a linear combination of basis functions φk:

ϕi =
L
∑

k=1

ckiφk (2.20)

Under this approximation, the problem reduces to obtaining the matrix of the cki coef-

ficients that minimize the energy. After some algebraic manipulation of the Hartree-Fock

equations and introducing the basis expansion 2.20, the Roothaan equations can be de-
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rived:

L
∑

k=1

cki

(〈

φν

∣

∣

∣
F̂
∣

∣

∣
φk

〉

− ǫi 〈φν |φk〉
)

= 0 (2.21)

where a set of matrix elements depending on the basis functions are defined as:

Fkν =
〈

φν

∣

∣

∣
F̂
∣

∣

∣
φk

〉

(2.22)

Skν = 〈φν |φk〉 (2.23)

Equation 2.21 can be expressed as FC = SCǫ, where C represents the coefficient ma-

trix, and ǫ the diagonal matrix of the orbital energies. If the elements of the F matrix

are known, it is possible to compute the coefficient matrix and the energies solving the

following system:

det (F− ǫS) = 0 (2.24)

Again, the matrix F depends on the cki and the problem must be solved in an iterative

way. First, an initial guess for the coefficients has to be provided to compute the F. Then

the eigenvalues ǫi are obtained and a set of new coefficients is calculated. The procedure

starts all over again, and a series of cycles is performed until the coefficient matrix remains

invariable.

The Hartree-Fock method can be very accurate for certain applications, but on the

other hand it systematically overestimates some molecular properties and underestimates

others [1]. The HF method is not exact, essentialy because of two limitations. One lies on

the quality of the basis functions: the better the basis set, the higher the accuracy of the cal-

culation (and the lower the energy). The basis set size can be systematically increased until

the energy is converged with respect to the basis, i.e., addition of extra basis functions does

not produce any significant decrease in the energy. This is called the Hartree-Fock limit.

But even at this limit, the energy Elimit
HF is somehow larger than the experimental value.

This is inherent to the construction of the wavefunction as a single Slater determinant: the

description of the exact wavefunction can only be achieved through a sum of Slater deter-

minants (technically, an infinite sum). From a physical viewpoint, the inaccuracy can be

ascribed to the way the electron-electron interaction is computed: the Coulomb integrals

consider the energy of each electron in the averaged potential of all the rest, a treatment

known as the mean field approximation, which ignores the instantaneous distribution of

the electronic charge. In particular, this approach does not forbid the possibility of two

electrons of different spin sharing the same spatial coordinates. However, the probability
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of finding two electrons at the same point in space must be zero, regardless of their spins.

Since this requirement is not verified in the HF approach, it is said that the electrons are

uncorrelated, and this inaccuracy is called the correlation energy:

Ecorr = Eexact − Elimit
HF (2.25)

To improve the HF method by the inclusion of the correlation energy, post- Hartree-

Fock methods were developed. To mention three important examples,2 the Configuration

Interaction method (CI), Møller-Plesset perturbation theory (MP), and Density Functional

Theory (DFT), are all different approaches to the wave-function which take into account

the correlation energy in some way or the other.

In the CI method, the system wave-function is expressed as a linear combination of

different Slater determinants which represent several electronic configurations related to

the ground and excited states. The variant including all possible excited configurations for

a given basis set is called Full-CI and constitutes the most accurate approach to the corre-

lation energy, but its computational cost diverges very fast and only very small systems are

manageable at this level [2].

On the other hand, the Møller-Plesset method is based on perturbation theory, which es-

timates the energy and the wave-function of a system described by a Hamiltonian Ĥ, from

the knowledge of the solution of a similar Hamiltonian Ĥo. Then, a perturbation Ĥ ′ is de-

fined: Ĥ ′ = Ĥ − Ĥo. Within the Møller-Plesset technique Ĥ represents the true molecular

electronic Hamiltonian and Ĥo the HF Hamiltonian. Solutions can be achieved through

this method considering corrections at different orders: the widespread MP2 scheme takes

corrections to the energy and the wave-function up to second order [1,2], and provides re-

sults of an intermediate accuracy between HF and CI, being of course computationally less

demanding than the later. At the same time, perturbation methods are not based on the

variational principle, meaning that energies lower than the exact energy can be obtained.

Finally, the density functional methodology takes into account the correlation energy in

a distinctive way. In comparison to other methods, it offers an excellent trade-off between

computational cost and accuracy, and for this reason in the last two decades it became the

first choice for ab initio simulations involving some tens of atoms in chemistry and physics.

In particular, the simulations in this thesis are based on density functional theory. In the

following section the DFT approach is examined in detail.

2There exists a long list of correlated methods coming from the areas of quantum chemistry and con-
densed matter physics, including Coupled Cluster methods (CC) [1], Time Dependent Density Functional
theory (TDDFT) [3], and the GW approximation [4], among others.
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2.1.2 Density Functional Theory

Thomas and Fermi were the first to propose the electronic density as the main variable of

a quantum system. This idea is extremely attractive due to the simplification entailed in

this new conception. While the wave function of a polielectronic system depends on the

coordinates of the N particles (ψ = ψ(r1, ....rN)), the charge density is a function of the

the spatial coordinates (ρ = ρ(x, y, z)), thus translating a problem of 3N variables to just

3.

Around 1960 Hohenberg and Kohn [5] introduced two theorems which provided the

grounds to develop a quantum methodology based on the electron density. The first the-

orem states that the electronic charge density (ρ) is univocally determined by the Hamil-

tonian, or, more specifically, by the external potential v(r), and viceversa, that is, a given

charge density may only be associated with a particular potential.3 Since the Hamiltonian

determines univocally the wave function of the system (ψ), ρ must also determine the en-

ergy and all the other properties that are calculated from ψ. Therefore, the ground state

energy can be expressed as functional of the ground state charge density: E0 = E0[ρ0].

The reciprocity between the external potential v(r) and the ground state electronic

density ρ0 can be proved by reduction to the absurd [6]. To this purpose it can be as-

sumed that two different potentials v(r) and v′(r) produce the same ground state density,

ρ0. As there are two different external potentials, there must be two different Hamiltoni-

ans Ĥ and Ĥ ′ corresponding to v(r) and v′(r) respectively. If we call Ψ and Ψ′ the two

solutions of these two Hamiltonians associated with the same electronic density, we have:
∫

· · ·
∫

|Ψ|2dr2 · · · drN =
∫

· · ·
∫

|Ψ′|2dr2 · · · drN = ρ0(r). Considering the variational princi-

ple:

E0 < 〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|Ĥ ′|Ψ′〉+ 〈Ψ′|Ĥ − Ĥ ′|Ψ′〉 (2.26)

Recalling that the difference between Ĥ and Ĥ ′ originates exclusively in the external

potential, we can expand the last term in the equation above as:

〈Ψ′|Ĥ − Ĥ ′|Ψ′〉 = 〈Ψ′|v(r)− v′(r)|Ψ′〉

=

∫

[v(r)− v′(r)] |Ψ′|2 dr

=

∫

[v(r)− v′(r)] ρ0(r) dr (2.27)

3In the jergon of density functional theory, the external potential is v(r) =
∑

I
ZI

|r−RI |
, the electrostatic

field of the nuclei. The other terms in the electronic Hamiltonian (the kinetic energy of the electrons and the
electron-electron repulsion) are invariant from system to system, so it is really v(r) who characterizes Ĥel.
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Substituting this result in equation 2.26 the following inequality is obtained:

E0 < E′
0 +

∫

[v(r)− v′(r)] ρ0(r) dr (2.28)

The above derivation can be repeated, replacing Ψ′ by Ψ and Ĥ by Ĥ ′ in equation 2.26,

in which case a different inequality is obtained:

E ′
0 < E0 +

∫

[v′(r)− v(r)] ρ0(r) dr (2.29)

Combining equations 2.28 and 2.29 the following absurd relation arises:

E0 + E ′
0 < E′

0 + E0 (2.30)

which proves that the hypothesis of two different external potentials linked to the same

ground state electronic density is incorrect.

As discussed above, the Hohenberg-Kohn theorem implies that ρ determines the system

wave-function and all the molecular properties, in particular the total energy:

E[ρ] = T [ρ] + Vee[ρ] + VeN [ρ] (2.31)

where T denotes the electronic kinetic energy, Vee the potential energy due to the electro-

static repulsion between electrons, and VeN the potential energy arising from the attraction

between nuclei and electrons.

The second theorem is known as the variational Hohenberg-Kohn theorem. It postu-

lates that for any ρ′ which satisfies
∫

ρ′(r)dr = N and ρ′(r) ≥ 0 for the whole space, then

E[ρ′] ≥ E0. The equality is verified only if ρ′ is the ground state density, implying that ρ0

minimizes the energy functional E[ρ] as ψ0 minimizes the total energy
〈

ψ
∣

∣

∣
Ĥ
∣

∣

∣
ψ
〉

.

This framework establishes interesting connections between the charge density and the

energy, but says nothing regarding the practical procedure to compute one or the other. A

few years later, in 1965, Kohn and Sham [7] set out a formulation based on a fictitious

reference system of non-interacting electrons which density (ρs) is identical to the ground

state density of the real system (ρ0) [6]. In this approach the external potential for the

non-interacting particles, vs, induces a density ρs = ρ0. The advantage resides in the fact

that the kinetic energy T [ρ] of this reference system is simple to calculate. The Hamiltonian

operator Ĥs of such reference system can be written as:

Ĥs =
∑

[−1

2
∇2

i + vs(ri)] ≡
N
∑

i=1

ĥKS
i (2.32)

where ĥKS
i is the Kohn-Sham one-electron operator. In a similar way as was proposed for
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the case of the Hartree-Fock method, the wavefunction Ψs of theN -electrons system can be

expressed as the Slater determinant of the ĥKS
i eigenfunctions. Exploiting the variational

Hohenberg-Kohn theorem, the energy functional can be minimized with respect to the one-

electron functions ϕKS (known as the Kohn-Sham spin-orbitals), which can be calculated

solving an eigenvalue problem analogous to the HF equations:

ĥKS
i ϕKS

i = ǫiϕ
KS
i (2.33)

Ψs(r1, r2, .....rN) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϕ1(r1) ϕ2(r1) · · · ϕN(r1)

ϕ1(r2) ϕ2(r2) · · · ϕN(r2)
...

... . . . ...

ϕ1(rN) ϕ2(rN) · · · ϕN(rN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.34)

The electronic density of the system can be obtained as:

ρs =
N
∑

i

∣

∣ϕKS
i

∣

∣

2
(2.35)

As mentioned above, the reason for introducing a non-interacting system of electrons

lies on the simplicity to compute the kinetic energy:

Ts = −1

2
〈Ψs|

∑

i

∇2
i |Ψs〉 = −1

2
〈ϕKS

i |
∑

i

∇2
i |ϕKS

i 〉 (2.36)

By calling ∆T to the difference between the kinetic energies of the fictitious and the real

systems, and ∆Vee to the non-classical contribution to the interaction between electrons,

∆T [ρ] = T [ρ]− Ts[ρ] (2.37)

∆Vee[ρ] = Vee[ρ]−
1

2

∫∫

ρ(r1)ρ(r2)

r12
dr1dr2 (2.38)

Exc[ρ] = ∆T [ρ] + ∆Vee[ρ] (2.39)

then equation 2.31 can be rewritten as:

E[ρ] = Ts[ρ] + VeN [ρ] +
1

2

∫∫

ρ(r1)ρ(r2)

r12
dr1dr2 + Exc[ρ] (2.40)

In principle, equation 2.40 is an exact expression for the electronic energy. The first term

on the right hand side is the kinetic energy of a non-interacting system of electrons, the

second amounts to the potential energy between nuclei and electrons, the third one spec-

ifies the Coulomb potential energy arising from a classical distribution of negative charge,
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and the fourth one, called the exchange correlation energy functional, accounts for the

contributions not considered in the previous terms. These contributions are essentially

corrections considering the quantum nature of the electron-electron interaction, and the

corresponding effects on their kinetic energy. In practice, the exact expression of Exc as a

function of the density is not known, and therefore different schemes to estimate this term

have been devised [6].

Given a functional to describe EXC [ρ], the electronic energy in 2.40 can be written as

a function of ρ and the form of the Kohn-Sham operator can be established. This leads to

the Kohn-Sham (KS) equations:

[

−1

2
∇2

1 −
∑

A

ZA

r1A

+

∫

ρ(r2)

r12
dr2 + vxc(1)

]

∣

∣ϕKS
i

〉

= ǫKS
i

∣

∣ϕKS
i

〉

(2.41)

where the exchange-correlation potential vxc is the functional derivate of Exc with respect

to ρ. The sum of Coulombic interactions plus the exchange correlation potential defines

the total KS potential:

vKS(1) = −
∑

A

ZA

r1A

+

∫

ρ(r2)

r12
dr2 + vxc(1) (2.42)

so that equation 2.41 can be written as:

[

−1

2
∇2

1 + vKS(1)

]

∣

∣ϕKS
i

〉

= ǫKS
i

∣

∣ϕKS
i

〉

(2.43)

Similarly to the HF orbitals, the KS orbitals can be expanded as a linear combination of

basis functions as in 2.20. This leads to a new set of equations analogous to the Roothaan

equations, which can be expressed in a matricial format:

h
KS

C = SCǫ (2.44)

Hence, the Kohn-Sham framework builds a path from the Hohenberg-Kohn theorems

to a practical method for the calculation of a set of orbitals, the charge density, the total

energy, and the other properties of the system. Also in this case the KS operator ĥKS

depends on the matrix of the coefficients C, therefore the system 2.44 is solved in an

iterative way.

The introduction of an approximate form for Exc constitutes the main approximation

in the KS formulation (beyond the use of a finite basis set), and consequently the accuracy

of DFT methods heavily relies on the quality of the exchange-correlation functional [6].

There are many different approximations to Exc. In most of them, EXC [ρ] is splitted into

two contributions: correlation and exchange. The first kind of functionals developed was
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known as the Local Density Approximation (LDA) [8], where the exchange and correla-

tion effects are treated exclusively in a local way. The basic idea was to define Exc[ρ] equal

to the exchange and correlation energies of an homogeneous gas of electrons of density ρ.

This approximation performs well when the density does not vary sharply in space, as is the

case for metals and systems with a delocalized electronic charge. For molecules, the next

generation of functionals, developed in the late 80’s and 90’s, brought about significant

improvement. The common feature about this family of functionals, known as the Gener-

alized Gradient Approximation (GGA), is the incorporation of the gradient of the charge

density (∇ρ) in the formulation, either in an empirical way,4 or based on first-principles

derivations. The inclusion of∇ρ gave a higher flexibility to GGA [9,10], making it possible

to describe more accurately the electronic density variation and localization. Within this

group, the PBE [11] and the PW91 [12, 13] exchange-correlation functionals are widely

used in chemistry and condensed matter simulations. In particular, the PW91 formulation

is the one used in this thesis. Other important family of energy functionals incorporate

the exact exchange provided by HF [14, 15], and are therefore known as hybrid function-

als. Among them, B3LYP is perhaps the most frequently employed in quantum chemistry

simulations. Aside from these, there has been a huge development of new functionals in

recent years [4], but in general terms the performance of GGAs—considering the balance

between accuracy and cost—has not been excelled. In many cases, the recent develop-

ments were desinged for high accuracy in a particular family of compounds, or for the

estimation of a specific property.

2.2 Quantum mechanics for extended systems

In the previous sections, electronic structure methods were discussed in general. To rep-

resent systems that exhibit periodicity in one or more dimensions, such as solids (3D),

surfaces (2D) or polymers (1D), periodic boundary conditions (PBC) must be included in

the formulation, which will lead to periodic charge densities and potentials. In the follow-

ing, the main concepts regarding the calculation of the electronic structure of infinitely

repeated systems are going to be introduced in a DFT framework.

Before starting, though, we want to call the attention on two technical issues. In the

Kohn-Sham equations 2.41, the external potential and the electronic density are:

vext =−
P
∑

I=1

ZI

|r− RI |
(2.45)

4For this reason DFT methods were once not considered to be part of the ab initio category.
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ρ(r) =
N
∑

i=1

fi |ϕ(r)|2 (2.46)

where N is the number of electrons, and fi are the occupation number for each one-

electron eigenstates. For spin-unpolarized insulators or closed-shell molecules, fi = 2 for

the N/2 lowest states and fi = 0 otherwise. In periodic boundary conditions, the infinite

sum in 2.45 does not converge. On the other hand, the expansion of a periodic charge den-

sity requires periodic spin-orbitals, and therefore a set of periodic basis functions. These

are part of the features which characterize electronic structure implementations in PBC,

and mark the difference with respect to calculations of isolated systems.

2.2.1 Periodic structures, Bloch´s theorem and Brillouin zone

For any periodic structure as a perfect solid, it is always possible to identify a group of

atoms which is infinitely replicated along the three directions in space. In fact, there

are many ways of characterizing this group of atoms [16, 17]. However, there is a mini-

mal choice that contains the whole symmetry of the system. This is called a Wigner-Seitz

cell, which, together with the unit or primitive vectors that indicate the cell size, and

the directions of replication, contain the information to reproduce the whole crystal. If

we call a1, a2, a3 the primitive vectors, then the volume of the unit cell, Ω, is given by

Ω = a1 · (a2 × a3). The set of integer combinations of these vectors make up a structure

known as the Bravais lattice.

Although the Wigner-Seitz cell comprises the minimum group of atoms required to

specify the structure of a solid, in cases in which the primitive vectors are not orthogonal, it

might be preferable to describe the solid with a cubic or rectangular cell. Not all solids can

be described with the minimum quantity of atoms in a cubic system, and may require the

specification of the positions of additional atoms that will allow the correct representation

of the solid by replication in a cubic system.

Bloch’s Theorem The eigenstate ψ of a one-electron Hamiltonian Ĥ = − ~
2

2m
∇2 + u(r),

where u(r) is a potential with the periodicity of the lattice,5 can be written as a function of

the same periodicity times a phase factor eik·R arising from the translational symmetry. In

other words, the Bloch’s theorem proposes that

ψk(r) = eik·ruk(r) (2.47)

with
5This implies that u(r) = u(r+R) for all R = m1a1 +m2a2 +m3a3 in a Bravais lattice, where m1, m2 and

m3 are integers.
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uk(r) = uk(r + R) (2.48)

The wave vector k is going to be introduced in the next section. The eigenstates ψk are

also known as the Bloch functions. Equations 2.47 and 2.48 imply that

ψk(r + R) = eik·Rψk(r) (2.49)

It can be seen that the probability density is periodic in the lattice (|ψk(r)|2 = |ψk(r + R)|2),
even if the wave function is not necessarily periodic because of the phase factor.

Brillouin zone There is a minimum set of k vectors which satisfy eik·ai = 1, giving rise to

a wave function in equation 2.47 that is in phase in all the replicas of the unit cell. Vectors

belonging to this particular set, denoted bi, are known as primitive reciprocal lattice vectors.

They must satisfy the relation ai·bj = 2πδij, from which the definition of the reciprocal

vectors can be obtained:

b1 = 2π
a2 × a3

Ω
; b2 = 2π

a3 × a1

Ω
; b3 = 2π

a1 × a2

Ω
(2.50)

This set of vectors define a primitive cell volume ΩR = b1 · (b2 × b3) = (2π)3/Ω in

the reciprocal space. The region circunscribed in this volume receives the name of first

Brillouin zone or simply Brillouin zone (BZ). It can be seen that reciprocal vectors contained

in the first BZ are enough to determine all possible electronic wave functions satisfying

2.47. Given the fact that uk is periodic, it can be replaced in equation 2.47 by the Fourier

series expansion:

ψk(r) = eik·r
∑

G

Ck+Ge
iG·r (2.51)

where G = n1b1 + n2b2 + n3b3 are all the reciprocal lattice vectors. In principle, any k

vector is allowed in an infinite system, but wave vectors outside the BZ can be expressed

as k´ = k + G0, with k inside the BZ, and the expression for ψk´(r)

ψk´(r) = eik´·r
∑

G

Ck´+Ge
iG·r (2.52)

turns out to be equal to ψk(r). As a result, we have that an infinite solid (with an

infinite number of electrons) can be mapped in a unit cell containing a finite number of

electrons and an infinite number of k vectors in the BZ. Since nearby k vectors carry very

similar information, the number of k vectors can be reduced.
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Brillouin zone sampling From equation 2.49, the general expression for the electronic

density associated with a single electronic state ψk of the periodic potential is:

ρ(r) =
∑

kǫBZ

ωk |ψk(r)|2 (2.53)

where the sum runs over all the k vectors inside the BZ and the weight factor ωk depends

on the symmetry of the unit cell. In the same way, the energy and all molecular properties

depend on ψk for k points. Since k is a continuous index, the summation 2.53 becomes an

integral. In practical computational approaches, however, it is only feasible to solve ψk for

a finite number of wave vectors, and the full BZ integral is replaced by a sum over a finite

set of k-points [4], a technique called Brillouin zone sampling. The number and locations

of the k-points included in the sum depend on the nature of the system, and in general

is proportional to ΩR, i.e., inversely proportional to the size of the cell. It is common to

replace the unit cell by the so called supercell, which is composed by more than one unit

cell, thus reducing the number of k-points required in the BZ sampling. For metals, a fine

sampling is typically needed to reproduce the main features of the electronic structure (the

eigenvalues ψk may vary significantly along the reciprocal space), while semiconductors

and insulatores may get a satisfactory description with a sampling on a few selected k-

points. A standard procedure consists in sampling the eigenfunctions in a regular grid in

the reciprocal space, which density is increased until the energy or any other properties are

converged. This scheme is called the Monkhorst-Pack grid sampling [18]. In some cases,

when large supercells are employed, a single k-point may suffice to obtain reasonable

results. A sampling limited to k=(0,0,0) is known as Γ-point sampling.6

As a consequence of the Bloch´s theorem, the Kohn-Sham equations (see expression

2.41) in a periodical external potential can be written as:

{

−1

2
∇2 + vext(r) +

∫

ρ(r´)

|r− r´|dr + vxc[ρ]

}

ϕ
(k)
i (r) = ε

(k)
i ϕ

(k)
i (r) (2.54)

where now a set of coupled KS equations have to be solved, one for each k-point included

in the BZ. The coupling between different k-points results from the electronic density,

which is calculated as a BZ average. By replacing ψk in equation 2.53 by the sum over the

set of occupied electronic states, we obtain:

ρ(r) =
∑

kǫBZ

ωk

Nk
∑

i=1

f
(k)
i

∣

∣

∣
ϕ

(k)
k (r)

∣

∣

∣

2

(2.55)

where Nk is the number of electronic states occupied at each k-point, and f (k)
i is the occu-

6Conventionally, the coordinates origin in reciprocal space is known as the Γ-point.
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pation number of band i at wave vector k.7 For systems with a band gap (insulators and

semiconductors), Nk=N and f (k)
i = 1 independently of i and k.

2.2.2 Pseudopotentials

The following part of the discussion will be focused on two technical but important ques-

tions arisen at the beginning of this section and related to the periodic setting: (1) the way

to represent the external potential, vext(r), and (2) the appropriate basis set to describe

accurately the physics of the system. It turns out that these two questions are linked. It

would not be a good idea to choose a basis set without answering first how the strong

interaction between nuclei and electrons will be represented, or putting this the other way

around, the better way to represent this interaction would depend on the basis set that is

going to be used.

In the history of solid state methods, different approaches were employed to describe

the electronic states of materials, depending on their nature. For metals, where electrons

can be thought as not strongly bound to the ions, a free electron model which includes

just the kinetic energy in the electronic Hamiltonian (the Sommerfeld model [16]) was

among the first quantum-mechanical treatments proposed for solids. This approximation

was successful to reproduce qualitatively some general features of metals, as in the case

of the dependence of the thermal capacity with temperature. In this framework, plane

waves functions were the solutions to the Schrödinger equation in the periodic boundary

conditions.

The next step, applicable to weakly bound electrons, where the external potential of

the nuclei is very small with respect to the kinetic energy, was to consider this potential

as a perturbation [16]. Within this approach the PBC are satisfied through the Bloch´s

theorem and electronic bands and gaps emerge as a consequence of the potential. This

model accounts for the general behavior of metals and can describe reasonably well some

semiconductors.

On the other side, for strongly bound electrons such as insulators, the Tight-Binding

model was developed [19]. In general terms, combinations χk,l of localized basis func-

tions,8 which in turn satisfy the Bloch’s theorem, are proposed to expand the solutions

of the electronic Hamiltonian, ψk =
∑

l ck,lχk,l. In the spirit of the HF method, the ener-

gies and the ck,l coefficients are obtained by solving a non-linear eigenvalue problem. A

basic approximation of the method is to neglect most off-diagonal elements in the Hamil-

tonian matrix, which reduces significantly the number of integrals and calculations. In this

7Bands are defined by the eigenvalues εi as a function of k.
8These combinations are called Bloch sums and have the form of χk,l(r) =

∑

n
eiknRφl(r − nR), where

R are the lattice vectors and φl are localized basis functions.
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way systems of thousands of electrons become tractable, but the description deteriorates

with delocalization. Tight-binding models perform well in solids with localized electrons,

whereas the free-electron or nearly free-electron models provide reasonable descriptions

of metals. In between these two extremes, more elaborate treatments are needed.

Bloch’s theorem and the models discussed above suggest that the natural basis func-

tions to expand the eigenstates of the Hamiltionian in a periodic potential are plane waves.

It is then indispensable to find an appropriate form for the external potential that would

allow to solve computationally equation 2.54 when the electronic states are expanded in

plane waves.

The electronic states can be classified in three categories: (1) core states, which are

highly localized and not involved in chemical bonds, (2) valence states, which are extended

and responsible of chemical bonding, and (3) semi-core states, which are localized and

polarizable but in general do not contribute directly to the chemical bond.

Considering that the core states are not fundamental to chemical bonding, and that for

most applications an accurate representation of the core region is not strictly necessary,

only valence states are considered. On the same reasoning, there is no crucial informa-

tion lost if the inner part of the valence wave function is replaced by a smooth, nodeless

pseudo-wavefunction. The advantage in this framework is the decrease in the number

of basis functions (or plane waves) needed in the Fourier series expansion of the elec-

tronic states (equation 2.51). The strong, point-charge potential originated by the nuclei

is replaced inside the core region by a pseudopotential that is smooth and nodeless, and

which solution is the pseudo-wavefunction mentioned above. Consistently, the full nu-

clear charge is replaced by an effective charge which must be equal to the valence charge.

This pseudopotential (PS) is constructed aiming to reproduce as accurately as possible the

bonding properties of the true potential.

Pseudopotential theory The origin of this methodology is inspired in the work of Philips

and Kleinman [20], where it is shown that a nodeless (not orthogonal to the core states ϕc)

smooth wave function ϕ̃v can be constructed by combining the core and the true valence

wave functions (ϕv):

|ϕ̃v〉 = |ϕv〉+
∑

c

αcv |ϕc〉 (2.56)

where αcv = 〈ϕc|ϕ̃v〉 6= 0. This pseudo-wave function satisfies the modified Schrödinger

equation:

[

Ĥ +
∑

c

(εv − εc) |ϕc〉 〈ϕc|
]

|ϕ̃v〉 = εv |ϕ̃v〉 (2.57)
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where Ĥ is the Hamiltonian involving the kinetic plus the potential energy, Ĥ = T̂ + V̂ .

This potential represents the electrostatic interaction between the electron and the nucleus:

V̂ = −Zc

r
, where Zc is the ionic charge. At this point it is useful to rename the operator on

the left hand side of equation 2.57 as a pseudopotential V̂PS,

V̂PS = −Zc

r
+
∑

c

(εv − εc) |ϕc〉 〈ϕc| (2.58)

The core atomic wavefunctions are the spherical harmonics Ylm(θ, φ) times a radial

function. Then, the pseudopotential V̂PS can be written in a more general form as [4]:

V̂PS(r) =
∞
∑

l=0

l
∑

m=−l

vl
PS(r) |lm〉 〈lm| =

∞
∑

l=0

vl
PS(r)P̂l (2.59)

where |lm〉 represent the spherical harmonics Ylm. When V̂PS acts on a specific electronic

wave function, the projector operators P̂l select the different angular components of the

wave function which are then multiplied by the pseudopotential vl
PS(r). If lmax is the num-

ber of occupied core states, then the effect of the ionic core on all the valence wavefunc-

tions of angular momenta greater than lmax must be the same, and V̂PS can be expressed as

a sum of two contributions which resemble the form in 2.58. These two contributions are

normally known as local (containing the radial dependence) and non-local (discriminating

between angular momenta):

V̂PS =
∞
∑

l=0

vloc
PS(r)P̂l +

lmax
∑

l=0

[

vl
PS(r)− vloc

PS(r)
]

P̂l = vloc
PS(r)Î +

lmax
∑

l=0

∆vl
PS(r)P̂l (2.60)

The local contribution (vloc
PS(r)) is an average potential representing the screened Coulomb

interaction. The non-local part (
∑

l ∆v
l
PSP̂l) acts differently on the various angular com-

ponents of the wavefunction, to represent the exchange effect of the implicit core states.

The short ranged ∆vl
PS functions are confined to the core region, since at longer distances

the nuclei must appear as point charge, irrespective of the angular component.

So far, we discussed two major points of the PS theory: (i) core electrons are removed

from the calculations, and the interaction of the valence electrons with the nucleus plus

core states (which we call the pseudocore) are replaced by a screened potential, which

accounts for the orthonormality of valence and implicit core states. (ii) the full nuclei-

electron interaction, including the orthogonality of the valence functions with respect

to the core states, is replaced by a softer and nodeless pseudopotential. The absence

of nodes inside the core region reduces the size of the Fourier expansion of the pseudo-

wavefunction, which is also nodeless and matches the all-electron wavefunction beyond
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a cut-off radius. Even if both wavefunctions differ inside the core region, the pseudo-

wavefunction accurately captures the bonding properties of the true solution. Figure 2.1

shows the all-electron and the pseudo-wavefunctions obtained for silicon [21]. Difference

in softness for each kind of function can be appreciated. In what follows, the technical

aspects of how pseudopotentials are constructed is outlined.

Construction of pseudopotentials There is no single recipe to build a pseudopotential.

In the past, PS were generated by fitting experimental energy bands [22, 23]. The main

problem about these PS was that they were created to reproduce a specific solid structure

and were not accurate to model the same atomic species in a different environment. The

aptitude of a PS to represent a given atom in different environments is called transferabil-

ity.

A pseudopotential must fulfill the following requirements: (1) beyond a certain dis-

tance both the all-electron and the pseudo wavefunctions must exhibit the same decay,

and (2) the pseudo-wave function has to be an eigenstate of the pseudo-Hamiltonian with

the same eigenvalue of the all-electron wave function. Then, given a pseudo-wavefunction,

the PS can then be constructed through the inversion of the radial Schödinger equation.

This is done for a reference configuration which in general is the neutral atom configu-

ration, but it could also be an ionized electronic configuration that represents better the

atom in the desired, solid environment [21].

An additional requirement which can be added to the construction scheme, is for the

pseudo-wavefunction to preserve the norm inside the cutoff radius. Pseudopotentials of

this kind are known as norm-conserving, first introduced in 1979 [24]. This extra require-

ment ensures, through the Friedel sum rule [23,25], that a PS created in a specif environ-

ment can be exported to other environment without a significant loss in accuracy, because

the variation of the pseudo-wave function resulting from the environmental change repro-

duces the variation of the all-electron wave function. In other words, the norm conserva-

tion ensures transferability. However, a disadvantage of norm-conserving PS is its hardness,

which means that a relatively large amount of plane waves is required to represent the

electronic wave functions ψ in the core region [26,27].

Looking to reduce the hardness imposed by the norm-conserving condition, Vanderbilt

[28] developed in the 90’s a new smooth and highly transferable family of PS which is

conventially called ultrasoft. These pseudopotentials do not conserve the norm, but in

exchange the mathematics around their construction is quite complicated, and beyond the

scope of this thesis. Within this approach, the corresponding wavefunctions exhibit a much

smoother variation around the core region, which allows for a significant decrease in the

required basis set size, typically reduced by a half or a thirth. For this reason, ultrasoft PS
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Figure 2.1. All-electron wavefunctions (AE) and pseudo-wavefunctions (PS) obtained for the sil-
icon atom. The 3D state is an excited wavefunction. Data taken from P. Gianozzi Notes, refer-
ence [21].

were adopted in the calculations of this thesis.

2.2.3 Plane Wave basis sets

Bloch´s theorem establishes that the eigenstates ψk(r) of a Hamiltonian Ĥ = T̂ + Û have

the form

ψk(r) = eik·ruk(r) (2.61)

where u(r) = u(r + R) for R in a Bravais lattice. On the other hand, any periodic function

in the real space can be expressed as a sum:

uk(r) =
∑

G

Ck(G)eiG·r (2.62)

where the G vectors are the reciprocal lattice vectors (G = n1b1 + n2b2 + n3b3), and Ck(G)

the Fourier coefficients. Combining these last two equations, the wave function can be

expressed as:

ψk(r) =
eik·r

√
Ω

∞
∑

G=0

Ck(G)eiG·r (2.63)
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where 1/Ω was added as a normalization factor. In this way, the plane waves (PW) basis

functions can be singled out,

φG =
1√
Ω
eiG·r (2.64)

so that {φG} conforms an orthonormal basis set, 〈φG|φG´〉 = δG,G´. For a polielectronic

system, if we label with the index j each of the eigenstates, equation 2.63 becomes:

ψk,j(r) = eik·r

∞
∑

G=0

Cjk(G)φG(r) =
∞
∑

G=0

Cjk(G)φk
G(r) (2.65)

where in the last expression the phase factor eik·r was incorporated to the basis func-

tions. Now, if we insert this basis in the integral form of the Kohn-Sham equations (2.44),

we arrive to the following set of equations:

∑

G´

(H
(k)
G,G´ − ε

(k)
j S

(k)
G,G´)c

(k)
j (G´) = 0 (2.66)

where SG,G´ = δG,G´ , and H(k)
G,G´ = T

(k)
G,G´ +V

(k)
G,G´. We note that there is one of these equations

for every possible value of G, j, and k. The matrix elements of the kinetic and potential

operators assume in atomic units the following form:

T k
G,G´ =−

〈

φk
G|

1

2
∇2|φk

G´

〉

=
1

2
|k + G|2δG,G´ (2.67)

V k
G,G´ =

〈

φk
G|V̂ |φk

G´

〉

=
1

Ω

∫

V (r)e−i(G−G´)·rdr = Ṽ (G− G´) (2.68)

In this way, the kinetic energy is a diagonal matrix in a PW representation. On the

other hand, the elements of the potential energy operator matrix, Ṽ (G − G´), are the

Fourier transforms of the potential in real space, which can have different functional forms

depending on the pseudopotential method. Therefore, the Kohn-Sham equations 2.66 can

be reduced to:

∑

G´

(

1

2
|k + G|2δG,G´ + Ṽ (G− G´)

)

Cjk(G´) = εjkCjk(G) (2.69)

PW energy cutoff The number of G´ reciprocal lattice vectors entering the expansion

2.63 are in principle infinite, but in practice the sum must contain a finite number of

terms. The Fourier coefficients Ck(G) can be computed from the scalar product of the

corresponding basis element and the eigenfunction:
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Cjk(G) =

∫

Ω

φk∗
G (r)ψk,j(r)dr =

1√
Ω

∫

Ω

e−i(k+G)·rψk,j(r)dr (2.70)

from where it is seen that the coefficients of the wavefunctions tend to decrease with

increasing |k + G|. Then, it is reasonable to select the G vectors in the PW expansion so

that the kinetic energy of the basis functions be lower than a given energy cutoff Ecut:

|k + G|2 < Ecut (2.71)

This truncation leads to an error in the computed physical quantities, which can be

variationally reduced as the Ecut is increased. All the periodic functions, such as electronic

density (ρ), the external potential (vext(r)), or the other components of the Kohn-Sham

potential, can be represented as Fourier series with a PW basis set. As shown in equation

2.53, the electronic density is constructed by squaring the wavefunction in the real space,

and consequently the number of G vectors in the expansion of ρ is twice as many, |G| =

2Gcut. Then, the energy cutoff fot the expansion of the charge density is ED = 4Ecut.

Advantages and disadvantages of plane waves One of the major advantages of this

kind of basis set is the fact that the kinetic term in the one-electron Hamiltonian is diagonal

in reciprocal space, and therefore straightforward to calculate, while the potential is local

in real space, independent of the k vector of the BZ. It has to be mentioned that the

algorithm that transforms functions from reciprocal to real space and viceversa, known as

Fast Fourier Transform technique, is extremely efficient in terms of computational cost.

Other advantages lie on the simplicity gained in the calculation of the energy and its

derivates, such as the forces. Aside from the numerical advantages, PW represent all

space with same accuracy, at variance with localized basis, which impose a bias toward

the regions where they are centered. Plane waves are extended in all space, and so are the

natural basis for periodic systems. Finally, a remarkable virtue is that they are free from

the basis set superposition error (BSSE) [29, 30], which is inherent to localized basis set

such as gaussians.

When systems with low dimensionality, such as surfaces, polymers or molecules, are

described within this framework, the direction where the system is not periodic is filled

with vacuum in the unit cell in order to avoid the interaction between replicas. In such

cases there is a loss of computational resources in describing the vacuum. One the other

hand, systems with regions in which the wave functions vary rapidly need a great amount

of PW basis functions to describe properly the high-frequency modes. At last, in principle

no charged systems can be represented in this framework due to the divergent Coulomb

interaction between replicas, although this limitation actually arises from the periodical
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symmetry rather than from the nature of the basis. This problem, however, is avoided

through the addition of a compensating background charge.

2.2.4 The pseudopotential plane wave method

In this section we will examine the practical implementation of the previous artifacts in

an efficient electronic structure method for extended systems, known generically as the

pseudopotential plane wave method (PPW) [4, 31]. Within this framework the KS equa-

tions expanded in plane waves are given by expression 2.69, with the potential replaced

by vKS[ρ] as defined in 2.42:

∑

G´

(

1

2
|k + G|2δG,G´ + vKS[ρ](G− G´)

)

Cjk(G´) = εjkCjk(G) (2.72)

This replacement introduces the need for a self-consistent solution, because the KS poten-

tial vKS[ρ] depends on the electronic density and therefore on Cjk. In a DFT-pseudopotential

framework the KS potential is written as:

v̂KS[ρ] =
{

vloc
PS(r,R) + vH [ρ(r)] + vXC [ρ(r)]

}

Î +
lmax
∑

l=0

∆vl
PS(r)P̂l (2.73)

The first term on the right hand side of the above equation, vloc
PS(r,R), represents the local

pseudopotential contribution with R referring to the atomic positions. The second term

vH [ρ(r)] denotes the Hartree or Coulombic potential, which, as will be discussed, is a

function of ρ. vXC [ρ(r)] accounts for the exchange correlation, which is also function of ρ.

Both, the second and third terms, arise from the electron-electron interaction. ∆vl
PS(r) is

the non-local part of the pseudopotential, which is neither local in reciprocal space nor in

real space.

Energy functional The energy per unit cell can be partitioned in the following terms:

EKS[ρ] = Te[ρ] + EH [ρ] + EXC [ρ] + Eii + Enl
PS + Eloc

PS[ρ] (2.74)

where Te[ρ] represents the kinetic energy, EH [ρ] the electrostatic repulsion between elec-

trons, and EXC [ρ] the exchange correlation energy . Eii is the ion-ion interaction, i.e., the

electrostatic repulsion between the pseudo-cores (ions). Eloc
PS[ρ] and Enl

PS account for the

electron-ion attraction.

Due to the long-range decay of electrostatic interactions, the Coulomb energy of a

non-neutral arrange of periodic charges diverges. For this reason, EH [ρ], Eloc
PS[ρ] and Eii

diverge if they are calculated separately. A converged value can be obtained only when the
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electrostatic energy is computed for the overall neutral system of ions and electrons. The

electrostatic contribution is:

Ees[ρ] = EH [ρ] + Eloc
PS[ρ] + Eii

=
1

2

∫∫

ρ(r)ρ(r’)

|r− r’| drdr’ +
Ns
∑

s=1

Ps
∑

l=1

∫

ρ(r)vloc,s
PS (|r− RI |)dr +

1

2

P
∑

I=1

P
∑

J=1,J 6=I

ZIZJ

|RI − RJ |
(2.75)

where ρ(r) is the electronic charge distribution, s runs over the atomic species, Ns is the

total number of species, Ps is the number of atoms for the s atomic species, and P is

the total number of ions. vloc,s
PS is the local part of the pseudopotential for each s species.

ZI is the ionic charge and RI its location. For computational convenience, in computer

implementations the electronic charge is often taken as positive and the ionic charge as

negative.

In order to arrive to the final equations in PBC, an auxiliary continuous charge distri-

bution ρα(r) associated with the nuclear subsystem is added to the Hartree energy term

and substructed from the other two. In this way, a total neutral charge density is defined,

ρT (r) = ρα(r) + ρ(r), and the electrostatic energy can be rewritten as:

Ees[ρ] =
1

2

∫∫

ρT (r)ρT (r’)

|r− r’| drdr’ +

∫

ρ(r)

(

Ns
∑

s=1

Ps
∑

l=1

vloc,s
PS (|r− RI |)dr−

∫

ρα(r’)

|r− r’|

)

dr

+
1

2

(

P
∑

I=1

P
∑

J=1,J 6=I

ZIZJ

|RI − RJ |
−
∫∫

ρα(r)ρα(r’)

|r− r’| drdr’

)

(2.76)

Introducing the following definitions:

ẼH [ρ] =
1

2

∫∫

ρT (r)ρT (r’)

|r− r’| drdr’ (2.77)

Ẽloc
PS[ρ] =

∫

ρ(r)

(

Ns
∑

s=1

Ps
∑

l=1

vloc,s
PS (|r− RI |)dr−

∫

ρα(r’)

|r− r’|

)

dr (2.78)

Ẽii =
1

2

(

P
∑

I=1

P
∑

J=1,J 6=I

ZIZJ

|RI − RJ |
−
∫∫

ρα(r)ρα(r’)

|r− r’| drdr’

)

(2.79)

the electrostatic energy turns out to be the sum of all three, Ees[ρ] = ẼH [ρ] + Ẽloc
PS[ρ] + Ẽii.

The first of these terms can be expressed as a sum in reciprocal space using the following

relation arising from the convolution theorem:
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∫

ρT (r’)

|r− r’|dr’ =
∑

G

ρ̃T (G)
4π

G2
eiG·r (2.80)

where ρ̃T (G) is the Fourier transform of ρ(r). The divergent term of G = 0 is avoided

thanks to the electroneutrality of the system, ρ̃T (G = 0) =
QT

Ω
, and as a consequence

equation 2.77 becomes:

ẼH [ρ] =
1

2

∫∫

ρT (r)ρT (r’)

|r− r’| drdr’ =
Ω

2

∑

G 6=0

4π

G2
ρ̃T (G)ρ̃T (-G) (2.81)

To work out expression 2.78, we resort to the convolution theorem again, which states

that

∫

ρ(r)vloc,s
PS (|r− RI |)dr = Ω

∑

G

eiG·RI ṽloc,s
PS (G)ρ̃(−G) (2.82)

If we define an atomic structure factor for each species s,

Ss(G) =
Ps
∑

I=1

e−iG·Rs
I (2.83)

where Rs
I are the positions of the atoms belonging to that species (and Ps, as before, the

number of atoms of each species), then we can get Ẽloc
PS[ρ] as a function of G by combining

expressions 2.81, 2.82 and 2.83:

Ẽloc
PS[ρ] = Ω

∑

G

[

Ns
∑

s=1

Ss(G)ṽloc,s
PS (G)− 4π

G2
ρ̃α(G)

]

ρ̃(−G) (2.84)

The G = 0 term requires careful consideration. It does not diverge, but it is not zero as

it was for equation 2.81. First, we notice that Ss(0) = Ps and ρ̃α(0) = −Q/Ω, with Q the

total electronic charge. As ρ̃α(G) is multiplied by 4π/G2, we expand ρ̃α(G) around G = 0

up to terms of G2: ρ̃α(G) = ρ̃α(0) + ρ̃′′α(0), where ρ̃′′α(0) is the second derivative evaluated

at G = 0. Then, the G = 0 term of equation 2.84 can be written as:

lim
G→0

[

Ω
Ns
∑

s=1

Psṽ
loc,s
PS (G) +

4πQ

G2

]

ρ̃(G)− 2πΩρ̃′′α(0)ρ̃(0) (2.85)

Moreover, noting that vloc,s
PS (r) = −Zs/r for r > rc, the Fourier transform of the local

part of the PS can be expressed as

39



Verónica Muriel Sánchez

ṽloc,s
PS (G) =

1

Ω

∫

Ω

vloc,s
PS (r)e−iG·rdr

=
1

Ω

[
∫

Ωc

vloc,s
PS (r)e−iG·rdr +

∫

Ω−Ωc

vloc,s
PS (r)e−iG·rdr

]

=
1

Ω

[
∫

Ωc

vloc,s
PS (r)e−iG·rdr−

∫

Ω−Ωc

Zs

r
e−iG·rdr

]

(2.86)

where Ωc is the volume of the pseudized region. Adding and substracting 1/Ω
∫

Ωc
Zs/re

−iG·rdr

we have

ṽloc,s
PS (G) =

1

Ω

[
∫

Ωc

(

vloc,s
PS (r) +

Zs

r

)

e−iG·rdr +−
∫

Ω

Zs

r
e−iG·rdr

]

(2.87)

The second term of the rigth hand side of 2.87 is the Fourier transform of −Zs/r and

equals −4πZs/ΩG
2. Then, if the integral on Ωc in 2.87 is denoted by ∆ṽloc,s

PS for G = 0, the

term corresponding to G = 0 in equation 2.84 can be written as:

Ns
∑

s=1

Ps∆ṽ
loc,s
PS ρ̃(0) + lim

G→0

[

−
Ns
∑

s=1

PsZs +Q

]

4π

G2
ρ̃(0)− 2πΩρ̃′′α(0)ρ̃(0) (2.88)

The sum of the charge of each species times the number of atoms per species amounts

to the total charge, and therefore the second term in equation 2.88 must vanish, thus

getting rid of the divergence for G = 0. At last, substituting ρ̃(0) by Q/Ω, equation 2.78

achieves its final expression:

Ẽloc
PS[ρ] = Ω

∑

G 6=0

[

Ns
∑

s=1

Ss(G)ṽloc,s
PS (G)− 4π

G2
ρ̃α(G)

]

ρ̃(−G)

+
Q

Ω

Ns
∑

s=1

Ps∆ṽ
loc,s
PS − 2πQρ̃′′α(0) (2.89)

Ewald sum Equation 2.79 involves the computation of the Coulomb energy of a periodic

arrange of point-like particles. Since this non-neutral summation diverges in PBC, a usual

procedure is to include in the sum the ionic auxiliary distribution ρα(r), so as to impose

neutrality, that is, the self-interaction of the density ρα(r) is substracted to the ionic inter-

action to exactly cancel out the total charge. In 1917, Ewald developed a mathematical

scheme to compute this infinite sum [32]. The idea behind the Ewald method is to screen

the long-range Coulomb interactions between the point-like particles by surrounding each

of them by a diffusive charge distribution of the opposite sign, so that the total charge of

this cloud exactly cancels each point charge. The advantage of this scheme lies on the fact
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that the interactions between the point-like particles decay more rapidly due to the screen-

ing of the diffuse charge distribution. This can be simply a gaussian distribution (ρgauss,α).

Then, an equivalent distribution but of opposite charge (−ρgauss,α) must be included in

the sum in order to counteract the effect of ρgauss,α. A possible definition for the auxiliary

gaussian charge is:

ρgauss,α(r) = − η3

π3/2

P
∑

I=1

ZIe
−2η2|r−RI |

2

(2.90)

where 1/η is a cutoff distance. With this definition, each term in the sum 2.90 contributes

with a charge ZI . The corresponding Fourier transform is:

ρ̃gauss,α(G) = − 1

Ω
e−G2/8η2

(

Ns
∑

s=1

ZsSs(G)

)

(2.91)

Then the electrostatic interaction of ρgauss,α and the point charges ZI can be calculated

as:

1

2

∑

I

∫

ρgauss,α(r)

|RI − r| drZI =
1

2Ω

∑

G

4π

G2
eG2/4η2

∣

∣

∣

∣

∣

∑

s

ZsSs(G)

∣

∣

∣

∣

∣

2

(2.92)

where the integral on the left hand side represents the electrostatic potential of the gaus-

sian distribution. This electrostatic energy includes the interaction between the cloud of

charge ZI and the point charge ZI located at the center of the gaussian, which we call

Eself , and which turns out to be independent of the atomic positions RI .

Eself =
η√
π

P
∑

I=1

Z2
I (2.93)

Eventually, this self-interaction term needs to be substructed from the energy. There is

also the electrostatic interaction of the point charges screened by the gaussians of opposite

sign. This screening kills the long-range tails of the point charge potential, giving instead

a short-ranged interaction. Such a screened electrostatic potential is:

φshort−range =
ZI

r
−
∫

ρgauss,α(r)

|RI − r| dr =
ZI

r
− ZI

r
erf(

√

2ηr) =
ZI

r
erfc(

√

2ηr) (2.94)

from which the corresponding electrostatic energy can be calculated:

Eshort−range =
1

2

P
∑

I=1

P
∑

J 6=1

ZIZJ

[

∞
∑

m=−∞

erfc(|RI +mL− RJ |η)
|RI +mL− RJ |

]

(2.95)
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where them index accounts for the cell number. The short-ranged nature of this interaction

ensures that the sum converges in very few terms: typically, only first neighbours need

to be considered. As a result, the electrostatic energy associated with the point charges

interaction contains sums in both real and reciprocal space:

Eii =
1

2

P
∑

I=1

P
∑

J 6=1

ZIZJ

[

∞
∑

m=−∞

erfc(|RI +mL− RJ |η)
|RI +mL− RJ |

]

+
1

2Ω

∑

G

4π

G2
eG2/4η2

∣

∣

∣

∣

∣

∑

s

ZsSs(G)

∣

∣

∣

∣

∣

2

− η√
π

P
∑

I=1

Z2
I (2.96)

Yet, this expression diverges because it corresponds to a non-neutral charge distribution.

Therefore, it is combined with the self-interaction energy of the auxiliary charge density

ρα(r), so that now the definition in 2.79 makes sense:

1

2

∫∫

ρα(r)ρα(r’)

|r− r’| drdr’ =
Ω

2

∑

G 6=0

4π

G2
ρ̃α(G)ρ̃α(-G) (2.97)

Ẽii =
1

2

P
∑

I=1

P
∑

J 6=1

ZIZJ

[

mmax
∑

m=−mmax

erfc(|RI +mL− RJ |η)
|RI +mL− RJ |

]

+
1

2Ω

∑

G 6=0

4π

G2



eG2/4η2

∣

∣

∣

∣

∣

∑

s

ZsSs(G)

∣

∣

∣

∣

∣

2

− Ω2|ρ̃α(G)|2




− η√
π

P
∑

l=1

Z2
I −

πQ2

2Ωη2
− 2πΩρ̃′′α(0)ρ̃α(0) (2.98)

If ρα is the same as ρα,gauss, then ρ̃α(G) = −1/Ωe−G2/8η2

(
∑

ZsSs(G)), and the middle

term on the right hand side of the last equation vanishes. In conclusion, gathering all

the contributions 2.81, 2.89 and 2.98, the following expression is achieved for the total

electrostatic energy:

Ees[ρ] =
Ω

2

∑

G 6=0

4π

G2
ρ̃T (G)ρ̃T (−G) + Ω

∑

G 6=0

Ns
∑

s=1

Ss(G)ũloc,s
PS (G)ρ̃(−G)

+
1

2

P
∑

I=1

P
∑

J 6=1

ZIZJ

[

mmax
∑

m=−mmax

erfc(|RI +mL− RJ |η)
|RI +mL− RJ |

]

− η√
π

P
∑

I=1

Z2
I −

Q

Ω

(

Ns
∑

s=1

Ps∆ṽ
loc,s
PS +

πQ

2η2

)

(2.99)

where the function uloc,s
PS is equal to the local pseudopotential plus the potential of the
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ionic charge:

uloc,s
PS (r) = vloc,s

PS (r)− ZI

r
erf(

√

2ηr) (2.100)

ũloc,s
PS = ṽloc,s

PS (G) +
4π

G2

Zs

Ω
e−G2/8η2

(2.101)

In this treatment special attention was payed to the electrostatic interaction due to the

known divergence of Coulomb interactions in infinite systems. The electrostatic energy

accounts for three of the six terms in equation 2.74: EH [ρ], Eloc
PS[ρ] and Eii. The kinetic

energy term, on the other hand, can be computed in terms of the PW coefficients Cik(G):

Te[ρ] =
∑

kǫBZ

ωk

Nk
∑

i=1

f
(k)
i

∑

G

|k + G|2|Cik(G)|2 (2.102)

where Nk is the number of electronic states occupied at each k-point, and f (k)
i is the occupa-

tion number of band i at wave vector k. Finally, the exchange correlation term is calculated

by numerically integrating the exchange correlation energy density in real space:

EXC(G) =
Ω

NR

NR
∑

n=1

ρ(rn)ǫXC [ρ(rn)] (2.103)

where NR indicates the number of mesh points, and rn are the spatial coordinates associ-

ated with each point.

Derivation of a final expression for the non-local pseudopotential energy is arduous be-

cause of its dependence on the angular momentum. In principle it can be computed in real

or in reciprocal space, depending on the specific electronic structure computational pack-

age. The mathematics behind this contribution is complicated and is considered beyond

the scope of this thesis.

The PPW methodology presented in this section is implemented in several computa-

tional packages, such as the PWscf-Quantum Espresso [33] and the VASP [34–36] codes. In

recent years it has become the main tool to study extended systems as solids and surfaces

from first-principles.

2.3 Born Oppenheimer Molecular Dynamics

The PPW electronic method can be used to follow the evolution of an atomistic system

in real time. First-principles molecular dynamics (MD) can then be performed under the

Born-Oppenheimer (BO) approximation:
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M
d2R(t)

dt2
= −∇ε(R) (2.104)

where R represents the atomic coordinates, and ε(R) the adiabatic potential energy sur-

face (PES). The points on this surface (or the values of ε(R)) are computed quantum-

mechanically for a fixed configuration of the nuclei, {RI}. In doing this, it is assumed

that the electronic degrees of freedom adapt instantaneously to the nuclear coordinates

{RI}. This is equivalent to decouple the electronic and ionic coordinates, defining an elec-

tronic wavefunction with a parametrical dependence on the nuclear coordinates. In this

framework, the atoms are treated as classical objects following a Newtonian dynamics, but

subject to the quantum-mechanical forces of the electrons. Such is the adiabatic or Born

Oppenheimer approximation [4, 31], which has proved to be highly accurate to describe

the molecular dynamics of most atomistic systems. The approximation declines for light

nuclei at low temperatures, where the De Broglie wave lengths of the nuclei may not be

negligible compared to that of the electrons.

Geometry minimizations (or geometry optimizations) consist in finding the atomic co-

ordinates that minimize the system energy. For the initial atomic configuration, in the

context of density functional theory, the KS equations are solved through a variational

scheme and the PW coefficients are obtained. The forces are calculated and the coordi-

nates are updated according to a minimization algorithm, to start a new calculation of the

energy. This cycle proceeds until the forces are negligible and the energy is minimized,

reaching the minimum of the PES and the optimized geometry, solution of the station-

ary problem ∇εn(R) = 0. On the other hand, Born-Oppenheimer molecular dynamics

(BO-MD) consists in evolving the atomic coordinates according to the classical equations

of motion 2.104. For each geometry configuration the KS equations are equally solved

to obtain the energy and forces, which in this case are used to feed equation 2.104 and

generate trajectories of the atoms in space and time. Normally, to sample a meaningful

time window, many more configurations (and electronic structure minimization cycles)

are involved in a molecular dynamics simulation than in the optimization of a geometry.

The typical numbers of steps in a single MD simulation can be of several thousands. First-

principles MD simulations are costly, but useful to study mechanisms and to understand

chemical processes involving rupture and/or creation of chemical bonds.

Equation 2.104 can be expressed in terms of the electronic wavefunctions ψ(R) thanks

to the Hellmann-Feynman theorem [37,38],

M
d2R(t)

dt2
= −

〈

ψ(R)

∣

∣

∣

∣

∣

∂Ĥ

∂RI

∣

∣

∣

∣

∣

ψ(R)

〉

(2.105)

where R represents the classical nuclear configuration, and:
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〈

ψ(R)|Ĥ|ψ(R)
〉

= EKS[ρ](R) = TR[ρ] +
1

2

∫

ρ(r)ρ(r’)

|r− r’| drdr’ + EXC [ρ]

+
P
∑

I=1

∫

ρ(r)vext(r− RI)dr +
1

2

P
∑

I=1

P
∑

J 6=I

ZIZJ

|RI − RJ |
(2.106)

The forces on the nuclear coordinates of atom I are obtained by derivation. Since the

first three terms in equation 2.106 do not have an explicit dependence on RI , only the two

last have to be considered in the derivative:

FI = −
∫

ρ(r)
∂vext(r− RI)

∂RI

dr +
P
∑

J 6=I

ZIZJ
RI − RJ

|RI − RJ |3
(2.107)

The most common technique algorithm to evolve (or to numerically integrate) the

equations of motion 2.104, is the Verlet Algorithm.

Verlet algorithm Once the forces acting on all particles have been computed, the New-

ton’s equations can be integrated. Several algorithms were developed to do this, the sim-

plest and most widely used being the Verlet Algorithm [39,40]. This algorithm is based on

the Taylor expansion of the coordinates r of a particle around time t,

r(t+ ∆t) = r(t) + v(t)∆t+
F(t)

2M
∆t2 +

∆t3

3!

dr

dt3
+O(∆t4) (2.108)

where v is the particle velocity, M its mass, F the force, and ∆t is the integration step,

known as the time-step. Similarly,

r(t−∆t) = r(t)− v(t)∆t+
F(t)

2M
∆t2 − ∆t3

3!

dr

dt3
+O(∆t4) (2.109)

Summing these two equations,

r(t+ ∆t) + r(t−∆t) = 2r(t) +
F(t)

M
∆t2 +O(∆t4)

or:

r(t+ ∆t) ≈ 2r(t)− r(t−∆t) +
F(t)

M
∆t2 (2.110)

This last approximation leads to an error of 4th order in ∆t. The velocity, on its part,

can be calculated as:

v(t) =
r(t+ ∆t)− r(t−∆t)

2∆t
+O(∆t2) (2.111)

This expression for the velocity, with an error of a higher order than the one for the
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coordinates, is usually only needed for the calculation of the kinetic energy.

The time step is a crucial parameter in a molecular dynamics simulation and has to be

carefully selected. If it is too small, the atoms will move too slowly and the simulation

will take more time than actually needed. On the other hand if the time step is too large,

the integration of the Newton’s equation would be not accurate enough, and the energy

of the system will diverge after some time. In a microcanonical ensemble, the total energy

(kinetic plus potential) must be conserved: therefore the time step can be chosen in a

preliminary tests so that energy conservation is verified.

2.4 Car-Parrinello Molecular Dynamics

In 1985, Car and Parrinello [41] proposed a different approach to perform quantum molec-

ular dynamics. Its implementation is known today as the Car Parrinello molecular dynam-

ics (CPMD) scheme [42], which rapidly acquired a great relevance because in many cases

it can outperform BO-MD. The idea behind this approach was to exploit the quantum-

mechanical adiabatic time scale separation of slow nuclear and fast electronic motions, to

transform it into a classical-mechanical adiabatic separation in energy scale. In this way,

the energy of the electronic subsystem
〈

ϕi(r)|Ĥ|ϕi(r)
〉

is a function of the atomic positions

(RI) and can be considered to be a functional of some wavefunction ϕi(r). In classical dy-

namics, forces on the nuclei are obtained as a derivation of a Lagrangian with respect to

the nuclear positions. Similarly, within CPMD, forces on the orbitals ϕi(r) are obtained

from the derivation of the CP Lagrangian with respect to these orbitals, thus considered as

classical objects. The CPMD Lagrangian assumes the following form:

LCP =
1

2

P
∑

I=1

MIṘ
2
+ µ

N
∑

i=1

fi

∫

|ϕ̇i(r)|2dr− EKS[ϕi(r)](R)

+
N
∑

i=1

fi

N
∑

i=1

Λij

(
∫

ϕ∗
i (r)ϕj(r)dr− δij

)

(2.112)

where the first and second terms represent the nuclear kinetic energy and the electronic

kinetic energy, respectively. The third term is the potential energy of the electrons, and the

last contribution arises from an orthonormality constraint applied to the electronic orbitals.

Such a constraint is necessary because the dynamics may affect the orthonormality of the

ϕi(r). µ is known as the fictitious electronic mass, and consists in an adjustable parameter

that is tunned to achieve conservative molecular dynamics.

Car-Parrinello equations of motion As it was already mentioned, the equations of mo-

tions are obtained from the partial derivates of the CPMD Lagrangian:
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d

dt

(

∂LCP

∂ṘI

)

= −∂LCP

∂ṘI

(2.113)

d

dt

(

∂LCP

∂ϕ̇∗
i (r)

)

= − ∂LCP

∂ϕ̇∗
i (r)

(2.114)

Each of these relations leads to the following equations of motion:

MIR̈I = −∂EKS[ϕi(r)](R)

∂RI

(2.115)

µϕ̈i(r, t) = −∂EKS[ϕi(r)](R)

∂ϕ∗
i (r)

+
N
∑

j=1

Λijϕj(r, t) (2.116)

These equations must be integrated in time, analogously to equation 2.104, which can

be done using an integration technique such as the already discussed Verlet Algorithm.

In the case of the electronic dynamics, where orbitals must satisfy the orthogonalization

condition, and additional algorithm has to be used to force the constraint. This is typically

achieved by means of the SHAKE algorithm [43].

CPMD performance As it can be seen from equation 2.112, both nuclei and electrons

are said to evolve at their own physical temperature, proportional to ∝
∑

I MIṘI and to

∝
∑

i 〈ϕ̇|ϕ̇〉 respectively. In the CPMD scheme the conservative quantity during a molecular

dynamics simulation in a microcanonical system is: Econs = Ke + Kn + EKS, where the

first two terms are the kinetic energy of the electronic wavefunctions (not to be confused

with T [ρ] of equation 2.31) and of the nuclei. The payoff in the Car-Parrinello approach

is in avoiding the need to reach the Born-Oppenheimer (BO) surface for each geometry

step. If the starting electronic configuration is already on the BO surface and Ke is kept

small during the dynamics, then the oscillations around the BO surface are going to be

small too, ensuring that the electronic states be near the BO surface at each step. Actually,

two conditions must be satisfied to remain close to the BO surface during a CP molecular

dynamics [44]: (1) Ke ≪ Kn, and (2) the energy exchange between nuclei and orbitals

must be minimum. In particular, these two requirements are related. Ke depends on

the fictitious mass (µ) and on EKS as a consequence of the nuclei motion which dragg

the orbitals with them. On the other hand, the orbitals influence on the nuclei dynamics,

through damping it.

The µ parameter controls the energy transfer between nuclei and electrons and also

controls the time step. A larger value of µ allows the use of a higher time step. On the other

hand, a larger fictitious mass closes the gap between Ke and Kn, incrasing the chances of

energy exchange between nuclei and electrons. In consequence, the µ parameter has to be

selected carefully, the optimal choice depending on the system.
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Within the Car Parrinello approach, quantum molecular dynamics can be performed at

a cost which is typically below the cost involved in BO-MD, though this depends on the

particular system and implementation. Specifically, this is usually the case for extended

systems. The CP method in combination with the PPW scheme has entailed a signifi-

cant contribution to the field of molecular simulation in condensed matter chemistry and

physics. This scheme can also be adapted to perform geometry optimizations through a

damping molecular dynamics approach [45]. However, the computational efficiency in

this case may not be as good as that of the BO scheme, and the CPMD is not widely used

for geometry optimization.
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Chapter 3

Dissociation free energy profiles for

water and methanol on TiO2 surfaces

In response to the huge interest in understanding surface reactivity of titania, theoretical

studies based on DFT in periodic boundary conditions have been devoted to investigate

the interaction and also the reaction pathways of small molecules on a variety of TiO2

faces [1–8]. A great amount of simulations have addressed the adsorption of inorganic

species as water or hydrogen peroxide, and also of organic compounds such as methanol

or formic acid, as it will be referred in Chapter 6. All this work has contributed price-

less information regarding the structure and the energetics of adsorption processes on

TiO2. The vast majority of these studies, however, have involved static calculations at

zero temperature. Only in very few cases, finite temperature statistical sampling or spe-

cial pathway-scanning techniques have been employed to obtain reaction free energies

or kinetic barriers [9–11]. These thermodynamic variables are among the most relevant

quantities involved in chemical processes at constant temperature and pressure, because

they determine the equilibrium and the kinetic parameters ruling the reaction. Thereafter

our purpose is twofold. On the one hand, we intend to establish the values of the kinetic

barriers and the reaction free energies for key processes in the context of the surface chem-

istry of TiO2. On the other, we seek to assess how the energies obtained at 0 K—which

amount to the majority of the published data—compare to the free energies collected at

room temperature. 1

Along this research direction, we combine Car-Parrinello [13] molecular dynamics sim-

ulations with the umbrella sampling [14] methodology to investigate the dissociation free

energy profiles of water and methanol on clean faces of TiO2. Examples abound regarding

the utilization of this method to investigate chemical reactions in vacuum or in biological

environments, however, we are unaware of previous applications to study the reactivity of

interfaces. In particular, we consider the dissociation of water on rutile (110) and anatase

1The results presented in this chapter have been summarized in an article appeared in the Journal of
Physical Chemistry C, see reference [12].
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Figure 3.1. Schematics representing the dissociation of (a) the O-H bond in water, (b) the O-H
bond in methanol, and (c) the C-O bond in methanol.

(101), and for this last surface we also examine the dissociation of methanol through the

rupture of the O-H and the C-O bonds. These processes are schematized in Figure 3.1.

3.1 Molecular dynamics in the canonical ensemble: Nosé-

Hoover thermostat

In order to introduce the umbrella sampling technique employed in this chapter, a few con-

cepts regarding molecular dynamics simulations at constant temperature will be covered

in in this section. As discussed in sections 2.3 and 2.4, the molecular dynamics technique

enables to simulate the evolution of a system with time. So far, only the microcanoni-

cal framework was considered, where the number of particles, the total energy, and the

volume of the system remain constant along the calculation (NVE ensemble). Molecular

dynamics simulations in this chapter are carried in the canonical system, in which the

fixed variables are the same as in the microcanonical system, but now the temperature is

conserved instead of the energy (NVT ensemble). To this end the temperature must be

controlled or thermostated [15]. In a molecular dynamics run, the temperature of the sys-

tem is related to the particle velocities through the average kinetic energy (〈K〉) according

to:

〈K〉 =
3

2
NkBT =

1

M

M
∑

j=1

1

2

N
∑

i,j

ẋi
2mi (3.1)
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where N denotes the number of particles, kB the Boltzmann constant, T the temperature,

M the number of steps or configurations visited along the dynamics, and ẋi and mi the

velocity and the mass of particle i, respectively.

One popular thermostating procedure is to couple the molecular system to a heat bath

through the Nosé method [16]. In this approach, an extra degree of freedom correspond-

ing to the heat bath is added to the system. A kinetic energy and a potential energy repre-

senting the heat bath are included in the Hamiltonian, allowing the energy to flow between

the heat bath and the atoms. Lately, this scheme was reformulated by Hoover [17], becom-

ing what is known as the Nosé-Hoover thermostat, which is the method we use along the

simulations of the present chapter. Within the Nosé-Hoover thermostat, a velocity depen-

dent friction term is introduced in the equations of motion:

miẍi = Fi −miẋiλ (3.2)

where ẍi and Fi denote the acceleration and the force acting on particle i, respectively. λ

is the friction term which obeys its own equation of motion:

Qλ̈ = 2

[

∑

i

1

2
miλ̇

2 − 1

2
gkBT

]

(3.3)

As a result, the kinetic energy of the nuclei fluctuates about the mean value (1/2)gkBT ,

where g is the number of degrees of freedom associated with the nuclear coordinates,

and T is the desired physical temperature of the simulation. The inertial parameter Q in

equation 3.3, that can be viewed as the “mass of the bath ”, controls the time scale of the

thermal fluctuations. It must be noted that a simulation performed using the Nosé-Hoover

thermostat also conserves energy if the thermostat potential, gkBTλ , and kinetic energy,

(1/2)Qλ2, are considered.

3.2 Calculation of the free energy: the Umbrella Sampling

technique

The free energy along a specific reaction coordinate is an extremely valuable piece of

information, since in this profile, kinetic, energetic and mechanistic features of the reaction

are enclosed. This free energy profile can be calculated through the following relation:

A(ξ) = −kBT ln g(ξ) + constant (3.4)

where A(ξ) represents the free energy and ξ the reaction coordinate. The function g(ξ)

is the probability distribution, which can be evaluated from a molecular dynamics run by
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Figure 3.2. Representation of the energy as a function of the reaction coordinate

constructing a histogram registering the relative frequency in which configurations were

visited along the reaction coordinate. To this end, the domain of ξ must be partitioned in

small windows covering all the accessible configurations (each configuration is associated

to a value of ξ). This gives an estimate to the probability density as a function of the

reaction coordinate, from which the free energy profile can be calculated according to

equation 3.4. However, to obtain a fair estimation of g(ξ) ensuring an accurate statistical

sampling, the system must visit every ξ value a considerable number of times. This will

be generally the case only in shallow potential energy surfaces. Instead, unstable regions

of the energy landscape, such as point (2) in Figure 3.2, will be difficult to access. When

energy barriers of a few kT are present, performing long molecular dynamics may not be

sufficient to recover a reliable distribution function, due to an unbalanced sampling of the

different ξ points. To clarify this concept, we analyze the reaction scheme in Figure 3.2: in

a molecular dynamics simulation, zones (1) and (2) would be visited 104 and 108 times less

than zone (3). 2 In fact, for this energy profile the probability of reaching zone (1) is even

reduced by the barrier (2), hence in a molecular dynamics simulation of a few thousand

of steps, we may not have the chance to ever reach zone (1), remaining trapped in zone

(3). Extending the total sampling times will not be of help, since an increase of more than

4 orders of magnitude would be needed, unfeasible in any practical case. Consequently,

equation 3.4 is not the most common path to evaluate the free energy profile along a

reaction coordinate.

In order to precisely determine the free energy values along the whole reaction coordi-

nate, the potential energy surface can be modified according to:

2Probabilities calculated considering the Boltzmann factor e−∆E/kT .
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V ′(ξ) = V (ξ) + VW (ξ) (3.5)

where V (ξ) and VW (ξ) represent the potential energy of the system and an additional

potential, respectively. By selecting the correct VW (ξ), it is possible to bias the apparent

energy landscape and get access to a suitable amount of data for every point along the

reaction coordinate, specially for those that were more rarely visited (shown as number

(2) and (3) in figure 3.2). From statistical thermodynamics [18] it can be deduced that

every average system property 〈Q〉 of the original system can be calculated conforming to:

〈Q〉 =
〈Q〉W
〈W (ξ)〉W

(3.6)

where the subscript W denotes the modified system and W (ξ) is defined as:

W (ξ) = e−VW (ξ)/kT (3.7)

The functional form of VW (ξ) is:

VW (ξ) =
1

2
ku(ξ − ξ0)2 (3.8)

Combining equations 3.8 and 3.5 the total energy of the system within the DFT frame-

work can be written:

Etot = EKS +
1

2
ku(ξ − ξ0)2 (3.9)

where Etot represents the total energy of the system and EKS the Kohn-Sham energy. Con-

sidering equations 3.6, 3.7 and 3.8, the probability distribution as a function of ξ can be

recovered from the biased sampling:

P (ξ) =
PW (ξ)

e−1/2ku(ξ−ξ0)2
(3.10)

where PW (ξ) is the distribution function evaluated in the modified potential. Inserting

this result in equation 3.4, the free energy of the system can be calculated as:

A(ξ) = −kBT ln(PW (ξ))− 1

2
ku(ξ − ξ0)2 + constant (3.11)

Within this approach the free energy profile in the original potential is calculated from

a biased sampling. This method is known as the Umbrella Sampling technique [14].

The implementation of this scheme involves adjusting two parameters, ξ and ku, which

would make possible to sample the whole reaction coordinate in a proper way. Generally

it is not possible to sample the whole reaction coordinate with only one pair of values for

55



Verónica Muriel Sánchez

ξ and ku, therefore the problem is divided in different reaction coordinate windows that

are sampled separately using a pair of parameters for each one. Then these pieces are

assembled all together, so that the value of A(ξ) at the border of every window matches

the value of A(ξ) at the contiguous window. This is equivalent to choose the values of the

constants appearing as the last term in eq 3.11 so that A(ξ) be continuous along the full

profile.

It is important to notice that, to apply the methodology, a reaction coordinate has to be

proposed in advance. In this thesis the Umbrella Sampling technique was coupled to Car-

Parrinello [13] molecular dynamics in the Quantum Espresso [19] package and different

reaction coordinates were studied as exposed in section 3.5.

3.3 Specif knowledge of the system

According to DFT calculations by Harris and Quong, water adsorbs molecularly on rutile

(110) below monolayer coverage [5]. The barrier to dissociation was assumed to be very

small, as suggested by TPD (Temperature Programmed Desorption) experiments showing

that a fraction of the molecules belonging to the first layer dissociated at 160 K [20]. In

fact, spontaneous dissociation had been previously reported in molecular dynamics tra-

jectories at 500 K [21]. In later works, the internal energy barrier was computed on

the same surface trough different approaches. Lindan and Zhang applied a constrained

optimization scheme to find an energy barrier of 8.3 kcal/mol at a coverage of half a

monolayer [10]. Oviedo et al., on the other hand, estimated a value of 6.9 kcal/mol us-

ing the Nudged Elastic Band (NEB) method [11].3 For methanol on rutile (110), static

DFT calculations rendered dissociative adsorption more favorable than molecular adsorp-

tion by just 4 kcal/mol [24]. On anatase (101), electronic structure studies indicate that

molecular adsorption predominates for both water and methanol [3, 6, 7, 25]. Barrier to

dissociation was studied for the case of water on an oxygen vacancy: a free energy barrier

of 2.8 kcal/mol was obtained through the blue moon ensemble method [9].

3.4 Computational Settings

All calculations were performed using density functional theory in periodic boundary con-

ditions as implemented in the Quantum-Espresso package [19]. The Kohn-Sham orbitals

and charge density were expanded in plane-waves basis sets up to a kinetic energy cutoff

of 25 Ry and 200 Ry, respectively. The Perdew-Wang (PW91) approach to the exchange-

3The NEB method performs a search of the reaction pathway between given initial and final states and
provides an estimate of the internal energy profile [22,23].
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correlation energy [26, 27] and Vanderbilt ultrasoft pseudopotentials [28] were adopted

to compute the total energies and forces. Geometry optimizations were performed at the

Born-Oppenheimer approximation, while molecular dynamics simulations were carried

out within the Car-Parrinello method [13] using a Nóse Hoover [17] thermostat at 300 K

and a time step of 0.17 fs. Reciprocal space sampling was restricted to the Γ-point.

The anatase (101) surface was represented by a (2×2) slab four layers deep, whereas

in the case of rutile (110), a (2×1) surface made of four layers of atoms was adopted. The

supercell dimensions were 7.55 × 10.20 × 22.00 3 for anatase and 6.01 × 6.48 × 24.00 3

for rutile, both of them containing a total of 48 atoms excluding the adsorbates.

Application of the umbrella sampling approach requires a specific reaction path to be

decided in advance (see section 3.2). A series of molecular dynamics runs were performed

for different values of ξ0 along the selected reaction coordinate, covering the full pathway

between reactants and products, in steps of 0.1 - 0.2 . The force constant ku was tuned

for appropriate sampling. A histogram was produced for each value of ξ0, reflecting the

(logarithmic) probability distribution of ξ along the whole trajectory. For each ξ0, simula-

tion times varying from 1 to 4 ps were necessary to get converged distributions, depending

on ku and the width of the spanned ξ-space. Every histogram was then weighted by the

exponential factor e−
1

2
ku(ξ−ξ0)2 as exposed in equation 3.10, to extract a piece of curve rep-

resenting the free energy around ξ0. Finally, the free energy profile was constructed by

matching these pieces corresponding to adjacent values of ξ0 [14,29].

3.5 Results and Discussion

3.5.1 Water dissociation on rutile (110) and anatase (101)

On rutile (110), energy minimizations yield the molecular state of water as the most stable.

In agreement with previous results [5], we find it is only 3.4 kcal/mol below the dissoci-

ated state, in which a proton is transferred to a bridge oxygen atom on the surface (see

Figure 3.1a). This difference is close to the chemical accuracy of density functional theory,

and it has been shown that is quite sensitive to surface coverage and slab thickness [5].

For those reasons, the adsorption mode of water on rutile (110) has been a matter of con-

troversy in the literature until recently [5, 30]. To investigate the free energy associated

with the break of the O-H bond, we proposed the following reaction coordinate:

ξ = |r(Oa)− r(Hb)| − |r(Oa)− r(Oc)| (3.12)

where r(Oa), r(Oc) and r(Hb) refer, respectively, to the spatial coordinates of the water

oxygen atom, the bridge oxygen atom of the surface, and the transferred proton (Fig-
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Figure 3.3. Free energy profile for the dissociation of H2O on rutile (110).

ure 3.1a). The first term on the right hand side of equation 3.12 induces the rupture of the

Oa-Hb bond consistently with the increase of the reaction coordinate, whereas the second

term directs the hydroxyl group toward the bridge atom Oc. With this choice, which of

course is not unique, ξ varies from around -1.6 to -0.9 as the reaction evolves from the

molecular (reactant) to the dissociative (product) state. This kind of reaction coordinate

has been already employed in the study of simple reaction pathways through restrained

minimization techniques [31] or umbrella sampling simulations [32, 33]. Figure 3.3 dis-

plays the free energy as a function of ξ. The dissociation free energy is only 0.4 kcal/mol,

which gives an equilibrium constant of nearly 0.5. In turn, the activation free energy to

dissociate the proton turns out to be 2.7 kcal/mol or ca. 4 kT , significantly lower than

the barriers estimated previously on the basis of zero temperature calculations [10, 11].

Our results suggest that molecular and dissociated water would coexist on the undefective

(110) surface, exhibiting a fast dissociation-recombination behavior at room temperature.

Such conclusions are consistent with TPD spectra [20] and with spontaneous dissociation

observed during molecular dynamics at 500 K [21]. A positive entropic contribution can

be estimated from the difference between the reaction energy at zero temperature (as-

suming it to be a reasonable approximation to the reaction enthalpy and disregarding its

temperature dependence) and the free energy at 300 K. This data is collected in Table 3.1.

In the case of water on anatase (101), two H-bonds arise between the adsorbed molecule

and the two closest bridge oxygen atoms of the surface. The internal energy turns out to

be 12.2 kcal/mol lower for molecular adsorption than for the dissociative path. A similar
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Table 3.1. Reaction internal energies (∆E), reaction free energies (∆G), activation free energies
(∆G♯) and entropies (∆S) involved in the dissociation of water and methanol.

∆E ∆G ∆G♯ ∆S
kcal/mol kcal/mol kcal/mol J K−1 mol−1

rutile (110)
H2O→ OH + H 3.4 0.4 2.7 42
anatase (101)

H2O→ OH + H 12.2 6.7 10.5 77
CH3OH→ CH3O + H 7.3 8.5 13.6 -17
CH3OH→ CH3 + OH 6.2 7.2 60.3 -14

structure and energy difference were found by Vittadini et al. [3]. In Figure 3.4, the reac-

tion coordinate corresponding to reactants is slightly more negative than in rutile, because

the distance from H2O to the bridge atom in anatase is longer. Umbrella sampling analysis

yields a reaction free energy of 6.7 kcal/mol (Figure 3.4 and Table 13.1). This leads to a

dissociation entropy of 77 J K−1 mol−1, more positive than for rutile (110), even though

in both surfaces the reactions involve breaking and forming of the same bonds. The acti-

vation energy to go from the dissociated to the molecular state is also larger than on rutile

(3.8 kcal/mol versus 2.3 kcal/mol), reflecting the longer distances between the surface

sites in the (101) face.

Inspection of the trajectories at 300 K reveals that most of the time the water molecule

maintains simultaneously the two hydrogen bonds evinced in the geometry optimization.

This behavior is illustrated in Figure 3.5, where the distances between the H2O protons

and the oxygen sites on the TiO2 surface are monitored during 5 ps of dynamics. In

the lower panel the identity of the oxygen atoms is inverted with respect to the upper

panel. At the beginning of the simulation, water hydrogen atoms labeled H1 and H2 are

bonded to atoms O1 and O2 of the interface, respectively. These bonds tend to subsist

with some interruptions during the first 1.5 ps of dynamics; then the molecule flips and

the interactions are exchanged, to produce bonds H1-O2 and H2-O1. Finally, at around

4.5 ps the original connectivity is restored.

3.5.2 Methanol dissociation on anatase (101)

The same reaction coordinate as introduced in equation 3.12 was used to examine dissoci-

ation of the O-H bond in methanol on the anatase surface. In this case, r(Oa) represents

the position of the methanol oxygen atom. Table 3.1 shows that the internal reaction en-

ergy is slightly lower than for the dissociation of water on the same surface. This result
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Figure 3.4. Free energy profile for the dissociation of H2O on anatase (101).

Figure 3.5. Time evolution of the distances from the hydrogen atoms H1 and H2 of the H2O
molecule to the oxygen atoms O1 and O2 on the surface, according to Car-Parrinello molecular
dynamics of water on anatase (101). H-bonding interactions H1-O1 and H2-O2 alternate every
few picoseconds with H1-O2 and H2-O1.
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Figure 3.6. Time evolution of the distances from the hydrogen atoms of the methanol molecule
to the oxygen atoms O1 and O2 on the surface, according to Car-Parrinello molecular dynamics of
water on anatase (101). Hydrogen bonds form alternatively with O1 and O2.

is consistent with the larger proton acidity in methanol as compared to water, and is in

agreement with previous calculations [25].

The molecular dynamics simulations show that the OH group forms short-living H-

bonds rapidly alternating between two equidistant oxygen atoms of the surface. Figure

3.6 depicts the evolution of the interatomic distances between the proton and such oxygen

atoms at 300 K. It can be seen that the molecule spends most of the simulation time H-

bonded to either oxygen site: as soon as the distance to one of the O atoms increases, the

other decreases.

From the thermodynamical analysis, ∆G turns out to be larger than ∆E (Figure 3.7 and

Table 3.1), and so, conversely to the case of water, we find a negative dissociation entropy

for this reaction. We note that in spite of being a dissociative process, the number of

chemical bonds remains constant when evolving from reactants to products, and therefore

the sign of ∆S is not an obvious question. Even so, the difference in the sign of ∆S for

the dissociation of water in comparison to methanol is certainly intriguing, since in both

cases a O-H bond is broken and a proton is transferred to a bridge oxygen site of the

surface. As will be shown below, the entropy change for the rupture of methanol across

the C-O bond is also negative. These results suggest that the methanol adsorbed on the

surface, at variance with H2O, exhibits an excess molecular entropy (in comparison with

the dissociated species), which is lost regardless of the dissociation mechanism. The source

of this entropy might be attributed to the rotation of the methyl group: this mode is lost

upon dissociation, since the radicals CH3-O or CH3 are more strongly bound to the surface.

We recall, as discussed above, that for both water and methanol there are two accessible,

degenerate H-bonded stable configurations, which are visited at intervals of 1 - 2 ps. This

itineracy of the hydroxyl moiety might involve an entropic contribution which is lost with

the molecular rupture, but should be equally present in both adsorbates.
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Figure 3.7. Free energy profile for the dissociation of methanol across the O-H bond on rutile
(110).

Alternatively, we have considered the dissociation of methanol through breaking the

C-O bond. To this end, a reaction coordinate depending on the positions of four nuclei was

chosen:

ξ = |r(Oa)− r(C)| − |r(Od)− r(C)| − |r(Oa)− r(Ti)| (3.13)

where r(Oa), r(C), r(Od) and r(Ti) refer, respectively, to the spatial coordinates of the

methanol oxygen atom, the methanol carbon atom, the bridge oxygen atom of the surface,

and the five-coordinate titanium atom to which the hydroxyl is bound (Figure 3.1). Given

the large activation barrier to break the C-Oa bond (see below), the use of a reaction

coordinate analogous to that in equation 3.12 implemented for the dissociation of the

O-H bond, led in the present case to the rupture of the Ti-Oa link, which offers a lower

dissociation barrier. For this reason, it was necessary to include the Ti-Oa distance in the

choice of ξ, to force the C-Oa breaking while preserving the Ti-Oa bond. This reaction

coordinate assumes that C-Oa dissociation proceeds concertedly with the formation of the

C-Od bond. Under this definition, ξ is approximately -4.0 for reactants and -0.5 for

products.

Table 3.1 indicates that the internal and free energy differences for this reaction are

comparable to (or slightly smaller than) those found when the O-H bond is broken. How-

ever, the barrier to dissociation is huge, of nearly 60 kcal/mol (Figure 3.8), due to the

strength of the C-O bond that needs to be disrupted. The formation of a new C-O link with

the surface energetically compensates, to some extent, the original one; but the activation
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Figure 3.8. Free energy profile for the dissociation of methanol across the C-O bond on anatase
(101).

barrier could never be surmounted in the absence of a catalytic agent.

As a final remark, it is worth noting that the (negative) entropic term for this reaction

is surprisingly close to that corresponding to the dissociation across the O-H bond (-14 J

K−1 mol−1 versus -17 J K−1 mol−1). This reinforces the notion that most of the entropy

change in both reactions comes from the disappearance of the methanol molecule.

3.6 Conclusions

In this chapter we have reported and discussed activation and free energies for the dis-

sociation of water and methanol on perfect titania surfaces. In spite of the relevance of

these processes in the context of surface reactivity of TiO2, to the best of our knowledge,

estimates of the free energies involved had not been published before. Our results show,

consistently with previous simulations at zero temperature, that on anatase (101) molec-

ular adsorption of water and methanol are strongly favored. Spontaneous dissociation of

these molecules on anatase would only be feasible in the presence of defects, as demon-

strated by other authors [9]. In the case of rutile (110), the stability of the dissociated and

the molecular forms of water becomes comparable. Thus, both are likely to coexist on the

surface, displaying a fast, reversible interconversion.

It can be observed that for most of the cases examined in this study, the entropic term

contributed less than 3 kcal/mol—in absolute value—to the reaction free energies at 300
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K. Only for major value of ∆E a larger entropic term was found. This result constitutes,

to some extent, and at least for simple dissociative processes with lower ∆E values, a

validation of the widespread use of energies at 0 K to assess the adsorption mode at room

temperature. The entropic effect, however, might play a role to the point of altering the

relative trends predicted by the computations at zero temperature. This is the case of

CH3OH and H2O on anatase (101): the ∆E values suggest methanol should dissociate

more easily than water, which turns out to be false when the entropy is considered.

The umbrella sampling technique proved to be an efficient, valuable tool to compute ac-

tivation barriers and reaction free energies for dissociative processes at interfaces. Whereas

this technique exhibits the disadvantage that tentative pathways must be provided before-

hand, this requirement has little impact on elementary reactions as those proposed here,

where simplicity rules out the chance of alternative routes. Yet, we do not imply the appli-

cation of the umbrella sampling method is restricted to these kind of basic processes. With

the exploration of a proper set of reaction coordinates judiciously selected, we envision it

could become an extremely useful instrument to look into many kinds of surface chemistry

problems, from catalytic transformations to vacancy diffusion.

3.7 Appendix

This section compiles, for each reaction studied, the histograms representing the proba-

bility distributions according to the umbrella sampling molecular dynamics simulations,

for all combinations of ξ0 and ku employed. On the side of each graph, the values of ξ0
are given in Å and the values of ku in kcal/mol × Å2. Note that the repetition of pairs

(ξ0; ku) in the same system corresponds to two trajectories started from different initial

configurations.
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Figure 3.9. Probability distributions obtained via the umbrella sampling method for the dissocia-
tion of water on rutile (110).

Figure 3.10. Probability distributions obtained via the umbrella sampling method for the dissocia-
tion of water on anatase (110).
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Figure 3.11. Probability distributions obtained via the umbrella sampling method for the dissocia-
tion of methanol across the O-H bond on anatase (101).

Figure 3.12. Probability distributions obtained via the umbrella sampling method for the dissocia-
tion of methanol across the C-O bond on anatase (101).
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Chapter 4

Proton transfer in aminopropyl

functionalized SiO2 and TiO2 surfaces

4.1 Introduction

The capability to synthesize reproducible mesoporous materials of controlled size and

structure constitutes one of the most innovative developments among the recent achieve-

ments in the field of material chemistry [1–4]. The diameter of the pores, their connectiv-

ity, and the possibility of attaching biological or organic functions, are all tunable features

along the synthetic route. Mesoporous matrices exhibit unprecedented surfaces areas (100

– 1000 m2 g−1) and can be based on a variety of inorganic compounds, such as silica and ti-

tania. Hybrid mesoporous materials made of inorganic oxides functionalized with organic

molecules [2, 5] constitute very interesting assemblies, which chemistry is determined by

the nature of the organic functions decorating the mesopore. The field of hybrid meso-

porous materials is nowadays expanding very fast. Mesoporous hybrid thin films (MHTFs)

present a great interest for their potential in domains such as optics, electronics, chem-

ical sensing, catalysis, separation, and so forth [6–8]. The introduction of organic or

metallo-organic functions on the surface of pores is a step forward toward the creation

of complex chemical systems with tuned reactivity [9–11], including the possibility of

accommodating molecular functions with a well-defined location in space [12, 13]. Sev-

eral organic functions have been introduced in both silica and nonsilica matrices [5, 14].

In particular, amino groups (-NH2) are interesting because of the possibility of creating

pH-responsive charged surfaces with perm-selective properties, biomolecule binding, or

creation of enzyme-like surface sites for advanced catalysis [15–17].

In particular in this chapter we focused on the speciation of amino-propyl groups as

a function of pH in silica and titania matrices, i.e., the ratio between the -NH2 and -NH+
3

(ammonium) species. Experimental work on the acidic behavior of amino functionalized

groups [18,19], and in particular experimental data obtained in the groups of G. Soler Illia

and F. Williams, suggested the possibility of modulating the -NH2 group acidity through the
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Figure 4.1. Proposed model for the speciation and interactions of the surface groups as a response
to pH, according to experiments and simulations.

negative oxygen atoms, present at the surface for pHs above the isoelectric point1 of the

oxide [21]. This idea is depicted in Figure 4.1. The intermediate step was proposed consid-

ering data reported in the literature, where titration measurements on aminopolysiloxane

gels and powders in equilibrium with an aqueous solution have established that ammo-

nium is the major species, either forming an ion pair with counterions at low pH, or inter-

acting with Si-O− sites at hig pH values [22].

Ab initio calculations of the silica and titania surfaces with amino-propyl functions were

performed, in order to complement X-ray photoelectron spectroscopy (XPS) and other

experimental data obtained in the group of G. Soler Illia, aiming to determine whether the

ammonium-amino ratio is controlled by the acidic surface groups. To this end, the silica

and titania surfaces were modelled through the β-cristobalite (111) and anatase (101)

faces, respectively2.

The experimental syntethic route to obtain the aminopropyl functionalized MHTFs uti-

lizes tetraethoxysilane (TEOS) and TiCl4 as inorganic precursors and APTES

((CH3CH2O)3Si(CH2)3NH2) to introduce the amino function [21]. Therefore, to simulate

these systems we introduce the APTES in replacement of one silanol group (-Si-OH) in the

case of silica, and of one Ti(5c) surface atom in the case of titania. Consistently with the

synthetic route, the titania surface was modelled as an hydroxilated surface. The model

structures are depicted in Figure 4.2.

Our simulations were performed in vacuum and in the presence of two water monolay-

ers, to examine the amino-ammonium equilibrium at the surface under different environ-

ments. Molecular dynamics simulations at room temperature were carried out to assess the

possibility of proton transfer from the ammonium to the surface. Eventually, counterions

were explicitly included in the simulation, to evaluate their effect on the ionization of the

1The isoelectric point, or pHiep, is the pH value at which the surface charge is zero because equals
amounts of positive and negative charges are present [20].

2Details about these surface structures were given in Chapter 1
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Figure 4.2. Scheme of aminopropyl functionalized surfaces: (a)titania and (b)silica. APTES re-
places a surface Ti atom in (a), and a silanol group in (b).

amino-propyl group. In combination with experiments, the present simulations provide a

complete picture of the surface behavior 3.

4.2 Methodology

Density Functional Theory (DFT) calculations were carried out within both the Born-

Oppenheimer and the Car-Parrinello [23] approaches, using the parallel codes included

in the Quantum-ESPRESSO package [24], which is based on DFT, periodic-boundary con-

ditions, plane-wave basis sets, and pseudopotentials to represent the ion-electron interac-

tions. The Kohn-Sham orbitals and charge density were expanded in plane waves up to a

kinetic energy cutoff of 25 and 200 Ry, respectively. The Perdew-Wang (PW91) approach

to the exchange-correlation energy [25,26] and Vanderbilt ultrasoft pseudopotentials [27]

were adopted to compute the total energies and forces. In our simulations the Ti and

Si oxide surfaces were modeled using, respectively, anatase(101) and β-cristobalite (111)

slabs, four layers deep. Molecular dynamics simulations were carried out within the Car-

Parrinello method [23] in a microcanonical ensemble, at around 300K and using a time

step of 0.17 fs. Reciprocal space sampling was restricted to the Γ-point.

4.3 Experimental analysis: surface chemistry as a func-

tion of pH

In the context of the XPS technique, X-Rays are emitted from the source and penetrate into

the surface to a depth of the order of a micrometer, interacting with the core electrons of

the sample [28]. The specific energy value required to remove a core electron with respect

3These results have been compiled in an article published in the journal Chemistry of Materials, see
reference [21].
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Figure 4.3. XPS N 1s spectra of (a) TiO2 and (b) SiO2 hybrid films submitted to extreme pH values
(indicated in each curve). Fitted peaks I and II resulting of signal deconvolution are shown in thin
lines.

to the Fermi level is called Binding Energy (BE), and is characteristic of each particular

atom. Therefore, every peak obtained in the XPS spectra is related to a specific type of

atom.

Along this work, XPS measurements were used to identify the chemical speciation of

the aminopropyl functional surface groups. This experimental data was obtained in the

laboratory of F. Williams and G. Soler Illia [21]. We note that XPS measurements probe

not only the N-containing functional groups attached to the topmost layer, but also nitro-

genated functional groups inserted in the top layers of the solid matrix.

Figure 4.3 shows representative N 1s XPS spectra for aminopropyl functionalized films

of mesoporous silica and titania in extreme pH conditions. In both cases, the N 1s XPS

signal contains two components at ∼402 and ∼400 eV in the BE spectrum (peaks I and

II, respectively). On the basis of their BE position and behavior with pH, both peaks can

be attributed to ammonium (Peak I, -NH+
3 at 402 eV) and amino (Peak II, -NH2 at 400 eV)

species in agreement with previous reported values [29].

Figure 4.4 shows the integrated peak area ratio R = [-NH+
3 ]/[-NH2] as a function of pH

for SiO2 and TiO2 films. Measurements performed on Si-supported thin films (full symbols)

or on powder scratched films, presenting all possible orientations (open symbols) lie on

the same curve. Observing this graphic, two trends can be immediately distinguished: (a)

R decreases as the pH increases for all systems, and (b) the pH dependence of R changes

with the chemical nature of M. These trends will be separately discussed below.

The first observation reflects the acidic character of the -NH+
3 groups in TiO2 and SiO2

films: as pH increases, the fraction of protonated amino groups (and therefore R) de-

creases, due to proton release from ammonium. Two differences can be observed with

respect to soluble ammonium salts: (i) the speciation changes from ammonium to amine
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Figure 4.4. Evolution of the R = AI/AII peak intensity ratio with pH. Squares, M = Si; and circles,
M = Ti. Closed symbols represent XPS analysis on deposited films; open symbols, analysis on
scratched films. Curves in the Figure are a guideline to the eye.

take place at relatively low pH values (ca. 1-2 for SiO2 and 6-8 for TiO2), and the acidity of

the ammonium group is higher compared to soluble propylammonium, with a pKa value

of 10.71; (ii) the R value changes in a broader pH range than the one corresponding to

ammonium-amino in solution. These differences between propylamonium surface acidity

with respect to the one exhibited in solution can be explained as a result of the variation

in the chemical environment. The existence of surface charged groups as well as the ultra

high vacuum conditions at which the XPS data was collected, may influence the relative

stability of the -NH+
3 group with respect to -NH2.

The second point to discuss is the different pH dependences of R with the chemical

nature of M. According to Figure 4.4, the effective acidity of the ammonium group in

these mesoporous matrices is greater for SiO2 than for TiO2. This seems to correlate with

the surface acidity of the corresponding MO2 oxides. Although surface pKa values present

a large variability, isoelectric point values (pHiep) of the -M-OH surface groups can be an

indicator to understand this trend. Silica and titania surfaces have reported pHiep values

of 2 and of 6-7, respectively [30]. Higher pHiep values imply less acidic hydroxyl surface

groups (-M-OH), i.e., the interface becomes negatively charged at higher pH.

4.4 Molecular Modelling

To get a microscopic insight into the state of the aminopropyl functions, DFT calculations

were carried out on the model structures of the substituted SiO2 β-cristobalite (111) and

TiO2 anatase (101) surfaces described above. Geometry relaxations started from zwitteri-
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Figure 4.5. Initial (A) and relaxed (B) structures of a aminopropyl substitued SiO2 surface, as
obtained from DFT calculations in vacuum. The optimized geometry (B) exhibits a hydrogen bond
between the M-OH and the -NH2 functional groups. Atoms involved in the H-bond are depicted in
green.

onic configurations for the aminopropyl moiety, show that the -NH+
3 function collapses on

the surface to irreversibly transfer a proton to a neighboring M-O− group (see Figure 4.5).

According to this result, the amino must be the predominant species at high pH values,

when the surface is negatively charged because of the ionization of the -M-OH groups. This

gas phase results are in agreement with the XPS results collected in high vacuum. In other

words, these results support the idea that deprotonation of M-OH sites at pH > pHiep leads

to a strong interaction between M-O− groups and the less acidic propylammonium, which

may actually “bend” onto the surface. The bending interaction is observed for both titania

and silica surfaces. Figure 4.5 shows the initial and the optimized configurations for the

silica model. If this bending could be controlled via the pH of the medium, this mechanism

might be used to regulate the accessible volume of the pore. However, we will see below

that this bending effect dissapears in the presence of water.

In the limit of high vacuum, simulation results show that -NH+
3 groups in the vicinity

of -M-O− groups are unstable, leading to -NH2 and -M-OH. Below pHiep, the -M-O− groups

become -M-OH groups, which can coexist with -NH+
3 functions. According to Figure 4.4,

the concentration of -NH2 on the silica surface is significantly above [-NH+
3 ] for all the

range of pH. This is also true for the titania surface, except for very low pH values. This

predominance of the amino with respect to ammonium is possibly reflecting the vacuum

conditions corresponding to the XPS measures, which favor the neutralization of the zwit-

terionic state. Even so, the curves in Figure 4.4 are sensitive to pH, and also to the nature

of the M-OH groups, both of which seem to determine the state of charge of the surface

(Figure 4.1). The fact that a dependence with pH and with the chemical composition of

the surface is seen in XPS, indicates that the degree of protonation of the oxide in solution

is partially preserved under the XPS chamber conditions.

Under the experimental conditions corresponding to the XPS measurements, we can
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not rule out the possibility that a small amount of water, present during the preparation of

the sample, remain attached to the surface, affecting to some extent the -NH+
3 /M-O− equi-

librium. To assess the feasibility of proton transfer in the presence of adsorbed solvent,

molecular dynamics simulations including up to two water monolayers were performed

at ∼300 K on the silica and titania surfaces. Two different runs starting from different

(random) configurations were carried for both surfaces. In the case of silica, these sim-

ulations showed that the transfer still proceeds through a concerted pathway resembling

the well-known Grotthus mechanism for proton transfer. The -NH+
3 moiety yields a pro-

ton to a proximate water molecule, which in turn transfers a second proton to the -M-O−

surface group. This transfer is verified within a few picoseconds of simulation and leads

to the formation of -NH2 and M-OH, which now are not in direct contact. These calcu-

lations reinforce the proposed model, where the amino functions are prevalent, even in

the presence of some water surface layers. This process is illustrated in Figure 4.6 for one

of the simulations performed: the distances involving the transferred protons are plotted

as a function of time. Ha, initially bonded to the ammonium group, is transferred to a

water molecule. In turn, this water releases one of its protons, Hb, which is accepted by

the -M-O− moiety. This mechanism indicates that the effect is not necessarily local; that is,

the proton exchange may occur between groups which are not next to each other on the

surface.

This proton transfer reaction was not observed on the titania model during the elapsed

simulation time of around 4 ps. The typical sampling times accessible to first-principles

molecular dynamics are too short to observe processes with barriers over a few kT . We

expect, however, that the proton transfer must be thermodinamically feasible, since the

isoelectric point of this surface is higher than that of silica [30].

We stress that in this system the ammonium and the hydroxyl groups are only partially

solvated, representing some intermediate situation in between the vacuum and the bulk

limits. During the simulation time, the aminopropyl chain was not observed to bend to-

ward the surface, as in the case of the gas phase relaxation. Longer simulations might be

needed to assess the average state of the functional group in the presence of water mono-

layers, however, our results suggest that in the process of solvation of the -NH2 and -M-OH

functions, H-bonds established with water molecules diminish the chances that these two

groups be in direct contact.

4.4.1 Counterions effect on the speciation of the amino group

It might be expected that ions present in the experimental conditions, remaining from the

synthesis, may have a screening effect with respect to surface charged groups, contributing

to stabilize the charges and inhibiting the proton transfer. In the following, we examine
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Figure 4.6. N-Ha and Osup-Hb distances as a function of time according to a DFT molecular dy-
namics simulation on the functionalized silica surface, including two water monolayers. At zero
time the system contains one -NH+

3 group and one -M-O− function. Ha is initially bonded to the
ammonium group, while Hb belongs to one of the water molecules acting as an intermediate. A
concerted proton transfer resembling the Grotthus mechanism takes places at around 4.2 ps, to
produce -NH2 and -M-OH groups.

this counterion effect on the ammonium group by including a pair of ions in the simulation:

Na+ and Cl−, to preserve electroneutrality. Particularly, we placed the Cl− anion near

the -NH+
3 group, in a configuration that would favor the electrostatic stabilization of the

ammonium, minimizing the probability of a proton transfer event. Molecular dynamics

simulations were performed under the same conditions as those adopted before, except for

the incorporation of these ions. However, also in this case we found that the -NH+
3 group

turns out to be unstable in the presence of the -M-O− function: a proton transfer from

-NH+
3 to -Si-O− proceeds through the Grotthus mechanism, involving two water molecules

in the pathway between the ammonium and the silanol. In Figure 4.7 it can be seen that

the proton transfer is accomplished within the first 4.7 ps of dynamics. It is apparent

that the counterions, at the conditions examined in the simulations, do not provide an

additional stabilization to the ammonium group capable to inhibit the proton transfer. We

note that the simulated conditions amount to a surface concentration of 1.3 ion pairs

per nm2, which is a quite high value presumably above the experimental concentration.

Hence, according to these results, we can expect the counterions will not modify the acidic

behavior significantly.
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Figure 4.7. N-Ha and Osup-Hb distances as a function of time according to a DFT molecular dy-
namics simulation on the functionalized silica surface, including two water monolayers and a pair
of ions: Na+ and Cl−. At zero time the system contains one -NH+

3 group and one -M-O− function.
Hc is initially bonded to the ammonium group, while Hb, Ha and Oa belong to water a and water
b molecules that are acting as intermediates. A concerted proton transfer resembling the Grotthus
mechanism takes places at around 4.7 ps, to produce -NH2 and -M-OH groups.

4.5 Final remarks

These calculations have shown that charged propyl-ammonium is not stable in the pres-

ence of ionized hydroxil groups on silica and titania surfaces. This is observed in the gas

phase, but also in the presence of a water bilayer for silica surface, and at high concentra-

tions of counterions. These simulations have contributed to rationalize XPS measurements

of the variation of the ratio R = [−NH+
3 ]/[−NH2] with pH and with the nature of M. Com-

bination of experiments and simulations have thus allowed for a complete model of the

surface behavior.

From experimental measurements, it turns out that the ammonium/amino ratio de-

creases as pH increases. This is of course related to the acidity of the organic function, but

this dependence is modulated by the nature of the inorganic oxide. In other words, the

acidity (or the pHiep) of the oxide dictates the degree of protonation of the surface -M-OH

groups, which in turn determines the state of the aminopropyl functions. A high density

of -M-O− surface anions will promote the deprotonation of the ammonium groups, and for

this reason the ratio R is shifted to lesser values with respect to aminopropyl in aqueous

solution. In the same way, the lower the isoelectric point of the oxide, the smaller the

concentration of ammonium at a given pH.

Experiments discussed in this chapter probe the combined effects of the pH of the solu-
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tion and the surface charge on the ammonia-amino ratio. On the other hand, simulations

can explore the second effect, but not the first one: while the surface charge may be

easily set in a simulation, the pH of the medium is a macroscopic parameter, whose rep-

resentation in an atomistic framework is far from straightforward. To consider the proton

concentration explicitly, a huge simulation cell would be needed. For example, a solution

at pH = 2 (neglecting activity coefficients) implies a concentration of nearly one proton

in 200 nm3. Simulation cells used in first-principles calculations are typically between one

and two orders of magnitude below this size. Even if a cell of this size were affordable, a

single H+ in the system would possibly not be an accurate representation of an aqueous

solution of pH = 2.

In any case, the discrimination of effects which can be attained by simulations, is not

always possible in experiments. While in simulations we are usually examining simplifica-

tions of the real chemical system, such simplifications may at the same time be helpful to

examine how every single factor affects the behavior. Of course, at the time of analyzing

these results, it is important to recall that the whole is not always the sum of its parts.

References

[1] M. Davis, Nature 417, (2002), 813.

[2] G. J. de A. A. Soler-Illia, C. Sanchez, B. Lebeau, and J. Patarin, Chem. Rev. 102,

(2002), 4093–4138.

[3] G. Férey, Chem. Soc. Rev. 37, (2008), 191.

[4] J. Lee, M. C. Orilall, S. C. Warren, M. Kamperman, F. J. Disalvo, and U. Wiesner, Nat

Mater 7, (2008), 222.

[5] P. C. Angelomé and G. J. de A. A. Soler-Illia, Chem. Mater. 2005, 17, 322-331 17,

(2005), 322–331.

[6] J. L. Shi, Z. L. Hua, and L. X. Zhang, J. Mater. Chem. 14, (2004), 795.

[7] G. J. A. A. Soler-Illia and P. Innocenzi, Chem. Eur. J. 12, (2006), 4478.

[8] M. Etienne, A. Quach, D. Grosso, L. Nicole, C. Sanchez, and A. Walcarius, Chem.

Mater. 19, (2007), 844.

[9] S. L. Burkett, S. D. Sims, and S. Mann, Chem. Commun. page 1367.

[10] M. H. Lim, C. F. Blanford, and A. Stein, J. Am. Chem. Soc. 119, (1997), 4090–4091.

78



REFERENCES

[11] A. Stein, B. J. Melde, and R. C. Schroden, Adv. Mater. 12, (2000), 1403.

[12] J. Liu, Y. Shin, Z. Nie, J. H. Chang, L.-Q. Wang, G. E. Fryxell, W. D. Samuels, and

G. J. J. Exarhos, Phys. Chem. A 104, (2000), 8328.

[13] V. Dufaud and M. E. Davis, J. Am. Chem. Soc. 125, (2003), 9403.

[14] N. Liu, R. A. Assink, B. Smarsly, and C. J. Brinker, Chem. Commun. page 370.

[15] M. R. Newton, A. K. Bohaty, H. S. White, and I. Zharov, J. Am. Chem. Soc. 127, (2005),

7268.

[16] H. H. P. Yiu and P. A. Wright, J. Mater. Chem. 15, (2005), 3690.

[17] D. Fattakhova-Rohlfing, M. Wark, and J. Rathouský, Chem. Mater. 19, (2007), 2640.

[18] R. P. Bagwe, L. R. Hilliard, and W. Tan, Langmuir 22, (2006), 4357.

[19] J.-J. Shyue, M. R. D. Guire, T. Nakanishi, Y. Masuda, K. Koumoto, and C. N. Sukenik,

Langmuir 20, (2004), 8693.

[20] J.-P. Jolivet, Metal Oxide Chemistry and Synthesis, John Wiley & Sons (2000).

[21] A. Calvo, P. C. Angelomé, V. M. Sánchez, D. A. Scherlis, F. J. Williams, and G. J. A. A.

Soler-Illia, Chem. Mater. 20, (2008), 4661–4668.

[22] B. V. Zhmud and A. B. Pechenyi, J. Colloid Interface Sci. 173, (1995), 71.

[23] R. Car and M. Parrinello, Phys. Rev. B 55, (1985), 2471–2474.

[24] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,

G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris,

G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-

Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto,

C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and

R. M. Wentzcovitch, J. Phys.: Condens. Matter 21, (2009), 395502.

[25] J. P. Perdew and Y. Wang, Phys. Rev. B 45, (1992), 13244.

[26] J. P. Perdew and et al, Phys. Rev. B 46, (1992), 6671.

[27] D. Vanderbilt, Phys. Rev. B 41, (1990), 7892–7895.

[28] J. C. Vickerman, Surface Analysis - The principal Techniques, John Wiley & Sons

(2005).

79



Verónica Muriel Sánchez

[29] J. J. Shyue, M. R. De Guire, T. Nakanishi, Y. Masuda, K. Koumoto, and C. N. Sukenik,

Langmuir 20, (2004), 8693.

[30] M. Kosmulski, J. Colloid Interface Sci. 253, (2002), 77.

80



Chapter 5

Continuum solvent model for first

principles molecular dynamics at

solid-liquid interfaces

Including the solvent in first-principles simulations Most chemical processes of basic

and technological relevance, from acid-base equilibrium to enzymatic catalysis and electro-

chemistry, take place in a solvent environment. For this reason, inclusion of the solvation

effects in the framework of different computational methodologies has been a very active

line of research in the last two decades. To a first approximation, there are two ways

to incorporate the solvent into the simulation scheme: (i) adding the solvent molecules

explicitly, or (ii) representing them through a continuum dielectric medium.

In comparison to the second choice, the first one comes with the remarkable advantage

that specific solute-solvent interactions are taken into consideration. This is specially im-

portant when strong, directional interactions such as hydrogen bonds are present. On the

other hand, the obvious drawback about this approach is the increment of the computa-

tional cost. This rise in the cost has two major causes: on one hand, there is the increment

of the number of atoms in the simulation. On the other, with this increment in degrees

of freedom, a converged sampling of all the configurations associated with the liquid state

is needed to represent the fluid phase. The liquid state involves an enormous number of

local minima very close in energy, and therefore long molecular dynamics (MD) or exten-

sive Monte Carlo (MC) simulations at finite temperature are required to get converged

averages over a representative ensamble of configurations. A single optimized structure

(or a limited number of them) will reflect the frozen phase rather than the liquid.

Quantum Mechanics-Molecular Mechanics methods (QM-MM) can be used to reduce

the computational cost, still keeping an explicit solvation framework able to capture the

specific solute-solvent interactions. Within the context of QM-MM hybrid schemes (see

chpater 7) the solute and the solvent are treated with quantum and classical mechanics

respectively. While this approach still requires long molecular dynamics or Monte Carlo
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sampling, the major part of the system is represented with empirical potentials, which

implies significant savings in terms of computer time.

The continuum solvent model, which is the approach we implement and discuss in this

chapter, describes the polarization effect of the solvent in an averaged way. The solvent

molecules are replaced by a continuum dielectric medium with a single permittivity (or

dielectric constant), which is set equal to the value of the solvent in the bulk phase. One

major advantage of this representation relays on keeping the same amount of atoms as in

vacuum, and on the possibility of performing geometry optimizations that reflect equilib-

rium geometries in solution, since the dielectric represents the solvent effect in an average

fashion. As a consequence of not considering the solvent structure, specific solute-solvent

interactions are neglected. When needed, this problem can be in part avoided by the inclu-

sion of an appropriate amount of solvent molecules around the QM system. Usually, this

is done by annexing the first solvation shell explicitly, which in general has a well defined

geometry as a result of the strong solute-solvent reciprocal action.

In particular, we are interested in the description of solid-liquid interfaces. For a broad

range of applications, the relevant phenomena occur in the presence of a liquid phase, as

is often the case in processes related to electrochemistry and catalysis. The realization

of liquid phase DFT simulations is therefore a much pursued objective—especially when

many of the standard x-ray techniques such as XPS or LEED are unsuited to provide atomic

scale information in solution. It is possible to find in the literature a few number of stud-

ies in which one or several layers of water molecules are incorporated to represent the

solvent (see for example ref. [1] or [2]), but the explicit inclusion of solvent molecules

considerably increases the cost of first-principles calculations of periodic surfaces and is

therefore a rather uncommon practice. In recent years a small number of implementations

of the continuum model have been proposed in the context of DFT and periodic boundary

conditions, based on plane-wave basis sets, and the Car–Parrinello method [3–6]. To the

best of our knowledge, none of them have been employed in molecular dynamics simula-

tions of periodic surfaces.1 Along this chapter, we present a continuum model formulation

designed for ab-initio molecular dynamics simulations at solid-liquid interfaces. In the

first place, we outline the general ideas behind continuum solvent models. Secondly, we

briefly introduce a previous scheme which has been considered as the starting point for the

current implementation. Next, the model is presented in detail, including the numerical

1T. Arias and co-workers have devised a form of density functional theory for the self-consistent embed-
ding of quantum-mechanical systems in a dielectric medium. This approach has been applied to investigate
the atomic and electronic structure of the Cr2O3 surface in solution by means of static calculations. See [7,8].
Also zero temperature simulations were performed by Wang and Liu [9], who implemented a continuum sol-
vation model based on the Fattebert and Gygi work [4] in the SIESTA package [10]. This approach was used
to study the formic acid oxidation at Pt/H2O interface [9] and the catalytic pathways of oxygen on anatase
in an aqueous surroundings [11].
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Figure 5.1. Contiuum solvent scheme: a boundary surface is defined around the solute to delimi-
tate the space filled by the dielectric medium.

machinery used to address the electrostatic problem. To finish, the performance of the

model is examined in the light of molecular dynamics on the TiO2-anatase surface. 2

5.1 The continuum solvent model: an overview and pre-

vious implementation

As it was already mentioned, the continuum model considers the polarization effect of

the solvent in an average manner, by the embedding in dielectric medium. Within this

framework, the dielectric fills the space outside a cavity where the solute is confined. This

is schemed in Figure 5.1

In what follows we adopt the definition introduced by Ben-Naim [13] for the solvation

free energy ∆Gsolv as corresponding to the process of transferring the solute molecule from

a fixed position in the gas phase to a fixed position in the solution at constant temperature,

pressure, and chemical composition. In this context, the interaction between solvent and

solute can be conceived as a sum of three different contributions:

∆Gsolv = ∆Gel + ∆Gcav + ∆Gdis−rep (5.1)

The first term on the right hand side accounts for the electrostatic part of the solvation

free energy, which considers the interaction between the dielectric and the charge distribu-

tion of the solute. This one constitutes the dominant contribution for polar and charged so-

lutes. The second term is known as the cavitation energy and denotes the energy involved

in creating a cavity inside the solvent, overcoming the surface tension. The last term gath-

ers the dispersive London attraction and the quantum-mechanical repulsion between the

solvent and solute molecules. This dispersion-repulsion energy may be important in the

case of bulky and highly polarizable molecules, as hydrophobic and aromatic species. It is

much smaller than the other two for the kind of solutes considered in this study, and so this

2Results in this chapter are reported in an article appeared in the Journal of Chemical Physics, reference
[12].
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term is neglected in our model. Moreover, since the model is parametrized to reproduce

experimental solvation energies, the dispersive-repulsive effect is partly captured by the

the electrostatic term. It should be noticed that since none of these terms can be directly

measured in experiments, these contributions are constructions of the model. Only the

sum of all of them, ∆Gsolv, is a mensurable physical quantity.

5.1.1 Cavitation energy

It is defined as the work involved in creating the appropiate cavity inside the solution to

contain the solute, in the absence of solute-solvent interactions [14]. Different approaches

exist to calculate this contribution; the unavailability of experimental values makes it dif-

ficult to assess their accuracy. In principle, ∆Gcav depends only on the properties of the

solvent and on the shape of the cavity. Macroscopic variables as temperature and pression

will as well have an influence on the energy needed to create a cavity. There are two main

pathways to compute ∆Gcav, depending on how the solvent is described, namely, based

on the solvent cavity surface, or on a statistical mechanics approach for the liquid state.

In the last situation the scaled particle theory (SPT) is generally used, which character-

izes the solvent molecules as hard spheres, with radii suitably modified through a scaling

procedure to satisfy some macroscopic experimental quantities. In this context, the cavita-

tion energy is thought as the work involved in excluding the center of solvent molecules

around a specific region. For nonspherical cavities the Pierotti-Claverie formula [15, 16],

where every single sphere in the SPT term is weighted by its area exposed to the solvent,

is expressed as:

∆Gcav =
N
∑

k=1

Ak

4πR2
k

Gcav(Rk) (5.2)

Equation 5.2 defines the cavity as the volumen occupied by N interlocked spheres

centered on the atoms k. Rk and Ak are, respectively, the van der Waals radius and the

area exposed to the solvent of atom k, and Gcav(Rk) represents the cavitation free energy

due to the creation of a spherical cavity of radius Rk according to Pierotti’s definition. [17].

From a macroscopic perspective based on the solvent surface tension γ , Uhlig [18]

defined the ∆Gcav as a product between γ and the area of the sphere, ∆Gcav = 4πR2γ.

While this is strictly valid for macroscopic size spheres, the theory of Tolman for the surface

tension of a droplet [19] demonstrates that the formula for γ does not change significantly

with the cavity size. In fact, this “microscopic surface tension”equals the macroscopic γ

minus a corrective term inversely proportional to the radius of the cavity. In the present

model the cavitation energy is defined as the product of the surface tension and the area

of the cavity, S(ρ0) [6]:
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∆Gcav = γS(ρ0) (5.3)

A practical way to define the boundaries of the cavity is by an isosurface of the charge

density corresponding to a density threshold ρ0. The choice of ρ0 determines the extension

of the cavity: since the charge density ρ decays away from the molecule, the lower ρ0, the

larger the cavity. Numerically, the cavity area can be calculated as the volume of a thin

film delimited between two close values of ρ (slightly above and below ρ0), divided by its

thikness. This idea was proposed by Cococcioni et al [20] to define a “quantum surface” in

the context of extended electronic-enthalpy functionals. The surface can be expressed as:

S(ρ0) =

∫

dr{υρ0−∆/2
[ρ(r)]− υρ0+∆/2

[ρ(r)]} × |∇ρ(r)|
∆

(5.4)

where ∆ determines the separation between the two isosurfaces, with ρ0−∆/2 and ρ0+∆/2

being the density thresholds associated with the external and internal isosurfaces, respec-

tively. The ratio ∆/|∇ρ(r)| is the spatial separation between the isosurfaces. If υ is a

smoothed step function,

υ[ρ(r)] =
1

2

[

(ρ(r)/ρ0)
2β − 1

(ρ(r)/ρ0)2β + 1
+ 1

]

(5.5)

then the volumen of the cavity can be formulated as the integral over the space of the step

function:

Vc(ρ0) =

∫

υρ0
[ρ(r)] (5.6)

Due to the dependence of the ∆Gcav on the electronic density, a new term appears in

the Kohn-Sham potential,

δ∆Gcav

δρ
(r) =

γ

∆
× [υρ0−∆/2

[ρ(r)]−υρ0+∆/2
[ρ(r)]]×

[

∑

i

∑

j

δiρ(r)δjρ(r)δijρ(r)

|∇ρ(r)|3 −
∑

i

δ2
i ρ(r)

|∇ρ(r)|

]

(5.7)

where the indices i and j run over the x, y and z coordinates. Up to here, there are two

adjustable parameters: ρ0 and ∆. Whereas the former establishes the size of the cavity (eq.

5.4), the later can take any value provided it is large enough to minimize the numerical

noise, but small enough to render an accurate measure of the surface. In reference [6] it

is remarked, on one hand, that the cavity area is quite insensitive to the value of ∆ within

a large range, and on the other, that for a given ∆, the calculated areas change about

25% for an increment of 3 times in ρ0. Figure 5.2, taken from that work, illustrates this

behavior.
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Figure 5.2. ∆Gcav dependence on ∆ parameter for different ρ0 values in a water molecule. Taken
from Scherlis et al. [6].

5.1.2 Electrostatic energy: the dielectric constant as a function of the

electronic density

The electrostatic interaction can be calculated as proposed by Fattebert and Gygi [4, 21],

who defined the dielectric constant ǫ as a smooth function of the electronic density of the

system. As exposed in chapter 2, the total DFT energy within a pseudopotential framework

and in periodic boundary conditions can be written as:

E[ρ] = T [ρ] + EXC +
1

2

∫

φ(r)ρtot(r)dr +
∑

I<J

ZIZJ

RIJ

erfc

(

RIJ
√

(Rc
I)

2 + (Rc
J)2

)

− 1√
2π

∑

I

Z2
I

RI
c

+ EPS[ρ] (5.8)

where T [ρ] denotes the electronic kinetic energy, and EXC the exchange-correlation energy.

The sum of the last four terms in the right hand side of the equation accounts for the

total electrostatic energy in a crystal, considering the full interaction between nuclei and

electrons.3 The non-local part of the pseudopotential is omitted since it is does not need

to be taken into consideration in the solvation effects.

The third term is called the Hartree energy:

3The last four terms on the right hand side of this equation are equivalent to the electrostatic energy in
equation 2.99. The cutoff radius RI

c is equal to 1/
√

2η in 2.99.
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EH =
1

2

∫

φ(r)ρtot(r)dr (5.9)

where ρtot represents the sum of electronic plus ionic charge densities 4, and the electro-

static potential φ is the solution to the Poisson equation in vacuum,

∇2φ(r) = −4πρtot(r) (5.10)

In the presence of a dielectric continuum with a permittivity ǫ[ρ], the Poisson equation

becomes

∇ · (ǫ[ρ]∇φ(r)) = −4πρtot(r) . (5.11)

Using equation 5.11, the formula for the Hartree energy EH , can be integrated by parts

to yield:

EH =
1

8π

∫

ǫ[ρ](∇φ(r))2dr. (5.12)

As a result of the dependence on the electronic density, an extra term, the functional

derivative of EH with respect to the charge density, has to be added to the Kohn-Sham

potential V KS[ρ],

δEH

δρ
(r) = φ(r) + Vǫ(r), (5.13)

Vǫ(r) = − 1

8π
(∇φ(r))2 δǫ

δρ
(r). (5.14)

The dielectric medium and the electronic density respond self-consistently to each other

through the dependence of ǫ on ρ and vice versa.

In quantum chemistry continuum models as PCM [15], the dielectric constant ǫ is a

step function taken to be 1 inside the cavity, and a fixed value outside. For molecular

dynamics applications, such a discontinuity needs to be removed to calculate accurately

the analytic derivatives of the potential with respect to the ionic positions. Besides, in

the particular case of plane-waves implementations based on real space grids, a smoothly

varying dielectric function is more appropriate for numerical reasons. Fattebert and Gygi

proposed the following smoothed step function for the dielectric:

ǫ(ρ(r)) = 1 +
ǫ∞ − 1

2

(

1 +
1− (ρ(r)/ρ0)

2β

1 + (ρ(r)/ρ0)2β

)

. (5.15)

This function asymptotically approaches ǫ∞ (the permittivity of the bulk solvent) in

4This was outlined in chapter 2. This term is equivalent to Eq. 2.77.
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Figure 5.3. Total energy during two different Car-Parrinello electronic minimizations in a contin-
uum solvent (the structure is the TiO2 slab in Figure 5.10 ). The squares indicate the results for
a dielectric function depending on the charge density, whereas the circles correspond to the same
computational experiment, but removing Vǫ from the total potential (see text). Both runs used the
same calculation parameters and were restarted from the wavefunction converged in vacuum.

regions of space where the electron density is low, and 1 in those regions where it is high

(inside the solvation cavity). The parameter ρ0 is the density threshold determining the

cavity size, whereas β modulates the smoothness of the transition from ǫ∞ to 1. This

function described in equation 5.15 is in concordance with equation 5.5, where the step

function υ was defined as a function of ρ.

5.2 The continuum solvent model for solid-liquid inter-

faces

When the scheme described above is applied on structures extended in two dimensions, it

typically fails to achieve self-consistency, as shown in Figure 5.3. We found the electrons

heat up during the Car-Parrinello relaxation of the wavefunction, causing the total energy

to diverge. In other cases the kinetic energy of the electrons is observed to decrease at the

beginning, but thereafter it experiences irregular oscillations without ever reaching zero.

The influence on the convergence of the calculation was examined for each term con-

tributing to the Kohn-Sham potential. As a result, the source of the abnormal numerical

behaviour was detected in the inclusion of the additional potential term Vǫ. In other words,

neglection of the Vǫ term in the electronic minimization leads to a smooth convergence of

the electron kinetic energy. Of course, omitting this term does not constitute an acceptable
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Figure 5.4. Variation of Vǫ , the sum of all the other contributions to the KS potential and permi-
tivitty as a function of cell position along z direction, keeping x and y fixed. [12]

solution to this problem, because energy conservation would be lost during molecular dy-

namics simulations. The reason for the instability associated with Vǫ is evinced in Figure

5.4, where the dielectric contribution to the potential is plotted separately from the rest,

as a function of the z-direction (perpendicular to the surface) at fixed x and y. The value

of the permittivity is also shown along the same axis. In particular, these results corre-

spond to a calculation in a slab of anatase which is described in detail in section 5.3, yet

the behavior reported was similarly observed in different slabs. The x-y coordinates were

selected to coincide with one of the Ti atom on the surface.

In Figure 5.4 it is possible to appreciate that Vǫ does not represent a minor addition,

but exhibits a sharp peak at the solid-liquid boundary, of a larger magnitude than all the

other contributions combined. Since Vǫ depends on ∂ǫ/∂ρ (equation 5.14), the explosion

is seen at the region where the charge density decays abruptly, producing a rapid variation

in ǫ[ρ] from the value in the solid to the value in the solvent. Considering the dielectric

model of equation 5.15, we have:

∂ǫ

∂ρ
(r) =

1−
ρ0

2β(ρ(r)/ρ0)
2β−1

(1 + (ρ(r)/ρ0)2β)2
. (5.16)

This expression goes to zero when ρ(r) ≫ ρ0 or ρ(r) ≪ ρ0, and is dominated by 1/ρ0

otherwise. Then the magnitude of Vǫ ultimatly depends on the value of the density thresh-

old ρ0. Unfortunatly, this parameter can not be freely tuned to get rid of the blowup
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in ∂ǫ/∂ρ, but is adjusted coupled with β to reproduce the experimental solvation free

energies. Alternative models to describe the dielectric medium as a function of the elec-

tronic density were considered, such as gaussian or trigonometric functions of ρ. However,

energy converge was not achieved in any case. None of these functions entailed any sig-

nificant improvement, as far as all of them have in common a sudden change associated

with the transition from 1 to ǫ∞, which redounds in large values ∂ǫ/∂ρ at the interface.

The transition can be smoothed enough as to avoid the sharp peaks in Vǫ, but in doing so

the solvation effect is ruined. In other words, we found that a simple redefinition of the

dielectric function does not suffice to recover numerical stability; we were unable to find a

functional form for ǫ providing at the same time good convergence and a realistic solvation

energy. The discussed behavior is a consequence of the dependence of ǫ on ρ, irrespective

of the kind of function chosen to model the dielectric.

Understanding the divergence in the potential as a consequence of the dependence of

the dielectric medium on the electronic density, we turned into a different strategy, i.e.,

to define the dielectric medium independently of the electron density. This have led to a

different formulation, exposed in the next subsection 5.2.1.

5.2.1 Electrostatic energy: Dielectric constant as a function of atomic

coordinates

It can be argued that convergence fails because the noise in the representation of the

almost-divergent potential does not allow the system to make steps in the correct (mini-

mum) direction. In such a case, the implementation of denser grids should bring some

relief to the computational convergence. Trial runs with the number of mesh points in-

creased up to 50% on each direction—meaning an increment of more than 3 times in the

density of the real space grids—, however, didn’t improve the situation in any noticeable

way. This suggests exceedingly high energy cutoffs should be used to restore convergence.

In the absence of a dielectric, or for a dielectric defined independently of the charge

density, the functional derivative of EH with respect to ρ turns out to be equal to the

electrostatic potential φ[ρ] (see reference [22]). The additional term Vǫ emerges from

the dependence of EH on ǫ, which is a function of ρ, and thus, the instability of the

model emanates from the self-consistency between the charge density and the dielectric.

A possible alternative would be to use instead a non-self-consistent or “fake” density since

the role of the charge density in this context is simply to shape the dielectric medium,

omitting the dependence of the potential on the dielectric function. Such an approach,

however, does not conserve the constant of motion in molecular dynamics simulations. Yet

another path to relax the explicit dependence of the potential on the permittivity would be

to define ǫ as a function of the atomic coordinates, which is the usual strategy in quantum
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chemistry methods. The idea of a dielectric determined by the atomic positions may be

less attractive from a physical viewpoint, because some advantages associated with the

electronic density dependence are lost: the size and shape of the cavity depend on the

identity of the atoms only, and are not longer modulated by the electronic structure or

the environment; the polarization of the solvent is lost, and, on top of these, many more

parameters are needed—at least one per atom.

Anyway, in practice it is possile to set up a suitable dielectric function depending on

the atomic positions that reproduce the ρ-dependence solvation because the effect of the

self-consistency and the polarization of the solvent on ∆Gsolv are quite minor. In this way,

we keep the expression for ǫ given in equation 5.15, but feed it with a dummy density γ(r)

determined by the ionic positions RI,

γ(r) =
∑

I

e−(|r−RI|−RI
vdw), (5.17)

where RI
vdw is the van der Waals radius for the corresponding species. Hence the dielectric

function takes the following form:

ǫ(γ(r)) = 1 +
ǫ∞ − 1

2

(

1 +
1− γ(r)2β

1 + γ(r)2β

)

. (5.18)

Using this definition, the transition of ǫ(γ(r)) between 1 and ǫ∞ is centered around the

van der Waals radius. Aside from RI
vdw, which values are tabulated, β is left as the only

adjustable parameter to fit the experimental solvation energies. The aspect of the dielectric

function around an oxygen atom for different β is shown in Figure 5.5. This parameter

must be large enough to ensure most of the transition occurs within a small length window,

but at the same time the numerical accuracy needs to be preserved, so there is an upper

bound for β, which depends on the given grid size.

Within this framework, the electrostatic contribution to V KS[ρ] is simply the electro-

static potential φ[ρ], and the stability of Car-Parrinello dynamics in periodic slabs is recov-

ered. Table 5.1 presents, for several neutral and charged solutes, a comparison between

the values of ∆Gsol obtained with the dielectric functions of equations 5.15 and 5.18, re-

spectively. The small differences proceed exclusively from ∆Gel since ∆Gcav is the same in

both cases (∆Gsol = ∆Gel + ∆Gcav). As mentioned above, with a proper choice of β the

position-dependent dielectric is able to provide solvation energies in close agreement with

the previous model and with experiments. The results shown correspond to β = 2.4.

The gas phase energies of the charged species in Table 5.1 (required to obtain the

solvation energies) were calculated considering the Makov-Payne correction [27], which

takes into account how the gas phase energy of charged systems is affected by its periodic
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Figure 5.5. The permittivity around an oxygen atom as a function of the distance, for different
values of the parameter β, according to the position-dependent dielectric defined in equations 5.17
and 5.18. The transition, centered around the van der Waals radius, becomes sharper as β is
increased.

Table 5.1. Solvation free energies (kcal/mol) for selected molecules and ions in water, calculated
with the solvation model based on a dielectric function ǫ = ǫ(ρ) determined by the electron density,a

and ǫ = ǫ(γ(RI)) determined by the atomic positions with β=2.4 (see text). Experimental valuesb

and results from PCMc are also shown.

Expt. ǫ = ǫ(ρ) ǫ = ǫ(γ) PCM
H2O -6.3 -8.4 -8.8 -5.4
CH3CONH2 -9.7 -10.5 -8.0 -4.6
CH3NH+

3 -73 -81.0 -81.9 -65.1
NO−

3 -65 -57.8 -60.6 -62.6
Cl− -75 -66.9 -68.6d -72.6

a From reference [6]. b From references [23, 24]. c Obtained with the Polarizable Contin-
uum Model as implemented in Gaussian 03. [15, 25] d The van der Waals radius for ionic
chlorine was set equal to 2.059 Å, from reference [26].
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images in supercell calculations,

Egas = EPBC +
q2α

2L
− 2πqQ

3L3
+O[L−5] (5.19)

where Egas and EPBC are the isolated and the supercell energies, respectively, q is the

charge of the system, Q is its quadrupole moment, L is the lattice parameter, and α is the

Madelung constant. In practice, various single point calculations were performed for a

given ion in cubic cells of different sizes, and the gas phase energy corresponding to an

infinite cell was extrapolated using equation 5.19 to the leading order in L.

The explicit dependence of ǫ on the ionic positions involves a new contribution to the

forces arising from the derivative of EH with respect to RI, which must be taken into ac-

count to perform conservative molecular dynamics simulations. After some manipulation

involving the use of equations 5.11 and 5.12, this derivative can be expressed as follows

(the full derivation is given in the Appendix at the end of the chapter):

∂EH

∂RI

= − 1

8π

∫

∂ǫ(RI)

∂RI

(∇φ(r))2dr +

∫

φ(r)
∂ρtot(r)

∂RI

dr (5.20)

The computation of the first term on the right is straightforward since we know, from

equations 5.17 and 5.18, the explicit dependence of ǫ on RI:

∂ǫ(RI)

∂τI
(r) = 2β (ǫ∞ − 1)

(

τ − τ0
R

) e−(R−RI
vdw)

(

∑

I e
−(R−RI

vdw)
)2β−1

[

1 +
(

∑

I e
−(R−RI

vdw)
)2β
]2 (5.21)

with τ a generic coordinate x, y, or z, RI = (x0, y0, z0) and R = |r−RI|.

On the other hand, if φ(r) is transformed to Fourier space so that φ(r) =
∑

G
φ̃(G)eiGr

(see next section), the second term in equation 5.20 can be evaluated as

∫

φ(r)
∂ρtot(r)

∂RI

dr = −Ω
∑

G

iGφ̃∗(G)ρ̃I(G)e−iGRI (5.22)

with ρ̃I(G) the form factor of the ionic densities, ρI(r−RI) =
∑

G ρ̃I(G)e−iGre−iGRI.

To ensure the conservation of the total energy during the molecular dynamics simu-

lations, the contributions given in equations 5.21 and 5.22 must take the place of the

derivative of the Hartree energy in the absence of the dielectric:

∂EH

∂RI

= −4πΩ
∑

G

iG

(

ρ̃∗(G)

G2

)

ρ̃I(G)e−iGRI . (5.23)
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5.2.2 The multigrid scheme

In standard plane waves codes based on real space grids, the electrostatic potential φ(r)

is obtained from the Poisson equation 5.10, which can be efficiently inverted with the

use of fast Fourier transforms (FFT). Both the total charge density ρtot(r) and φ(r) can be

expanded in plane waves,

ρtot(r) =
∑

G

ρ̃(G)eiGr, φ(r) =
∑

G

φ̃(G)eiGr.

Replacing into the Poisson equation ∇2φ = −4πρtot, and equating coefficients:

G
2φ̃(G) = 4πρ̃(G) , φ(r) =

∑

G

4π

G2
ρ̃(G)eiGr (5.24)

Unfortunately, the Poisson equation in the presence of an arbitrary dielectric, equation

5.11, can not be addressed in the same way, and an alternative numerical scheme is re-

quired. To that end, we have implemented from scratch a sixth-order multigrid code,

which solves in real space the Poisson equation with non-constant coefficients and periodic

boundary conditions. Today, multigrid methods are possibly the most efficient, versatile,

and general numerical schemes to address linear partial differential equations [28–30] In

the following, we provide the essential concepts regarding linear multigrid algorithms.

Expansion of differential equations in finite differences and the Gauss-Seidel method

To make the following discussion simpler, we will consider for now the one-dimensional

form of equation 5.11 with constant coefficients (ǫ = 1), which reduces to the Poisson

equation in the gas phase:

∂2φ

∂x2
= −4πρ (5.25)

This differential equation is written for continuous functions, but can be rewritten for

discrete functions, defined by its value for each point in the grid: φ(x) → φi, where

i represent the grid point. In this way, equation 5.25 can be expressed using a finite

differences expansion up to second order:

∂2φi

∂i2
=
φi+1 + φi−1 − 2φi

h2
= −4πρi (5.26)

where h represents the distance between two consecutive grid points. The larger this value,

the lesser the accuracy of the discretization, in which case it is said that the grid is coarser.

On the contrary, when the spacing is smaller, the accuracy is higher and the grid is finer
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Figure 5.6. A one-dimensional grid (top) and a two-dimensional grid (bottom), showing the red
points (◦) and the black points (•) for red-black relaxation. Figure taken from reference [28].

(or denser).

The solution of equation 5.26 can be found numerically using an iterative procedure.

This type of relaxation methods departs from an initial guess which is succesively improved

along a series of updating steps: the simplest way to do this is to write φi as a function of

all the other numerical components,

φj+1
i ← 1

2
(φj

i−1 + φj
i+1 + h2ρi) , 1 ≤ j ≤ n (5.27)

where the arrow notation stands for replacement or overwritting, j for the iteration num-

ber, and n for the number of grid points. In the so called Gauss-Seidel algorithm, the

components of φ are overwritten as soon as they are computed, so as to use updated val-

ues within the same iteration. Once all {φi} are calculated, a new iteration follows, until

φj+1
i does not differ significantly from φj

i . In particular, the red-black Gauss-Seidel method

updates all the even number first (equation 5.28) and then all the odd ones (equation

5.29).

φ2i ←
1

2
(φ2i−1 + φ2i+1 + h2fi) (5.28)

φi ←
1

2
(φi−1 + φi+1 + h2f2i+1) (5.29)

This strategy is illustrated in Figure 5.6 for one and two dimensional systems. This

method has a clear advantage in terms of parallel computing, where equations 5.29 and

5.28 might be easily distributed onto different processors.

While the Gauss-Seidel algorithm is quite robust, achieving convergence in most cases,

it is at the same time extremely slow: it takes too many iterations to converge, becoming

impractical for real applications. The reason behind this behavior can be understood if the
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Figure 5.7. Some Fourier modes of different frequency (left) and their convergence rate (right).
Data taken from reference [28].

function φ is expressed as a Fourier series (for simplicity let’s consider only sine terms):

φi =
∑

k

cksin

(

2πk

L

i

n

)

, 0 ≤ i ≤ n , 1 ≤ k ≤ n− 1 (5.30)

where i denotes a grid point, k is called the wavenumber (or frequency) of each Fourier

mode, and L is the length of the domain where the function is being expanded. If each

term of expansion 5.30 is analyzed separately, it turns out that the rate of convergence

for each Fourier mode is strongly dependent on the wavenumber: the low frequency (or

slow) modes require many more iterations than the high frequency components. Figure

5.7 illustrates this behavior.

The convenience of using a multigrid scheme

The error in the components of higher wavenumber decrease very fast, so that the cost

of the relaxation scheme falls on the smooth modes. In general terms, there are two

strategies to improve the relaxation technique: (1) depart from a better initial guess and

(2) accelerate the convergence rate of the smooth modes. The multigrid scheme works

in this last direction. The principle behind multigrid methods is depicted in Figure 5.8:

representation of a given function in coarser grids increases the frequency of all modes,

thus accelerating the general convergence rate.

In multigrid calculations, the Gauss-Seidel method is performed on different grid sizes.

This requires to move all functions from one grid size to another. The procedure of ex-

panding a numerical function in a finer grid is called an interpolation operation, while

the movement to a coarser grid is a restriction operation. Convergence in coarser grids

is faster but inaccurate (rapidly oscillating modes can not be accurately represented in

coarser grids), so multigrid methods involve an alternation of relaxation steps back and

forth in different grid levels. There are several multigrid schemes that can be used (Figure
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Figure 5.8. Representation of one Fourier mode in two different grids. Data taken from reference
[28].

Figure 5.9. Restriction-interpolation grid schedules for a) V-cycle, b) W-cycle, and c) Full Multigrid
scheme, allways on four levels. Figure taken from reference [28].

5.9). The Full Multigrid scheme is the one adopted in our implementation. Figure 5.9 dis-

plays multigrid schemes of up to four levels, but the number of levels can vary, depending

on the system.

To understand how multigrid calculations proceed, it should be noted that equation

5.26 can be expressed in a generic matrix way:

A.u = f (5.31)

where u represents the exact solution and f is the rigth hand side, for example, in equation

5.25 u is the unknown function φ, f is −4πρ, and A is the matrix representation of the

Laplacian operator, ∇2. v will be used to denote an approximation to the exact solution,

which is given in the first step of the procedure as an initial guess. The residual, defined as

r = f−A.v, is a measure of how well v approximates u. The error of this approximation is

simply e = u− v. Naturally, the error e is just as inaccessible as the exact solution itself.

By construction e = 0 if r = 0. However, a small norm of r does not guarantee a small

norm of e. A residual equation can be obtained if 5.31 is rewritten in terms of r and e:

A.e = r (5.32)

In multigrid methods, equation 5.32 is relaxed employing the Gauss-Seidel scheme in

the coarser grid to get an approximation to e from r. The error function is then interpolated

to the next (finer) grid, where a new approximation to v is computed according to the
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definition of the error:

v = v + e (5.33)

This idea of improving the approximation v is known as residual correction. A new series

of Gauss-Seidel relaxation steps are performed at this level, and the procedure continues

to complete a V-cycle (or wathever schedule is being used).

Multigrid implementation for the continuum solvent method

Eq. 5.11 can be rewritten as:

∂ǫ

∂x

∂φ

∂x
+
∂ǫ

∂y

∂φ

∂y
+
∂ǫ

∂z

∂φ

∂z
+ ǫ

(

∂2ǫ

∂x2
+
∂2ǫ

∂y2
+
∂2ǫ

∂z2

)

= −4πρ. (5.34)

We developed equation 5.34 in finite differences, expanding the derivatives of φ and ǫ

to sixth-order according to the following relations for the gradient and the Laplacian:

∂f(r)

∂τ
=

1

h

3
∑

n=−3

αn ui+n +O(h7) (5.35)

∂2f(r)

∂τ 2
=

1

h2

3
∑

n=−3

βn ui+n +O(h7) (5.36)

where τ is a generic coordinate x, y, or z; h is the grid spacing in the direction τ ; and u is

the discretization of a continuous function f(r), representing φ(r), ρ(r), or ǫ(r). ui refers

to u evaluated at a mesh point associated with r, while ui+n corresponds to a neighboring

point n positions to the right in the direction τ (if n < 0, ui+n is located to the left of ui) 5.

In the case of ǫ(r) = 1 for all r, this method provides a solution for φ(r) which is indistin-

guishable from the one obtained with FFT. It also demonstrated an excellent performance

when tried on functions with non-constant coefficients and oscillation frequencies compa-

rable to those of interest. For example, for φ = e−ar and ǫ = e−br (0.5 < a, b < 2.0) the

relative error in φ(r) was less than 10−4 in a mesh of 80×80×80 points.

At the initial steps of a molecular dynamics simulation, the convergence of the potential

may require 15-30 multigrid cycles. Given the self-consistent nature of the procedure,

however, after a few time steps the number of cycles necessary to reach convergence is

typically decreased to less than five. Even so, the multigrid algorithm is still significantly

more expensive than FFTs. Propitiously, multigrid methods can be adapted to any kind

of boundary conditions, and this feature can be exploited to reduce the size of the mesh

involved. To implement this idea, a region in the supercell—preferably the slab—must

5The coefficients αn and βn are given by: α0 = 0, α1 = 3

4
, α2 = − 3

20
, α3 = 1

60
, α−n = −αn, β0 =

− 49

18
, β1 = 27

18
, β2 = − 27

180
, β3 = 2

180
, β−n = βn.
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Figure 5.10. Contour plot of the dielectric function ǫ(r) in a supercell containing a four layers slab
representing the anatase (101) face of TiO2. An isosurface corresponding to ǫ(r)=1.4 is displayed
in yellow. In (a) the solvent percolates through the surface, whereas in (b) it is excluded from the
slab by virtue of the artifact given in relation (19).

remain inaccessible to the solvent, so that ǫ(r) = 1 within it. In practice, the dielectric

function of equations 5.15 or 5.18 is not diffuse enough as to encompass all the volume of

the slab—if it were, the solvation effect would fade at the molecular boundaries—, so the

solvent occupies the interstitial space left by the atomic structure (Figure 5.10a). This is

inconvenient not only because it increases the numerical complexity of the problem, but

also because it is not physical, i.e., the solvent does not penetrate the atomic structure of

the surface. A simple device to exclude the solvent from the solid interspaces is to modify

γ(r) in the following way:

γ(r) =

{

∑

I e
−(|r−RI|−RI

vdw) zI > zlim
∑

I e
−

z−zI
|z−zI |(|r−RI|−RI

vdw) zI ≤ zlim

(5.37)

where zI is the z-component of RI (we recall z is the coordinate perpendicular to the

surface; it is zero at the bottom of the unit cell and maximum at the top). The factor z−zI

|z−zI |

produces a rapid increase in γ(r) underneath the atom I, which saturates the value of ǫ(r)

for all atoms I located below zlim. Thus, only the upper face of the slab is in contact with

the solution, the dielectric function becoming equal to 1 throughout the lower section of

the supercell. Figure 5.10b depicts ǫ(r) when zlim is chosen equal to the z coordinate of an

ion belonging to the second layer.

5.3 Performance of the continuum solvent method

The performance of the method, i.e., its capability to recreate chemistry in solution, is

going to be examined in the next subsections through the study of charge polarization and
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Figure 5.11. Electron density integrated on the xy plane, and displayed as a function of the z
coordinate, for the hydroxyl anion situated 4 Å above the surface. The approximate positions of
the upper Ti layer and of the OH− ion are indicated with arrows. Enlargement of the interfacial
region shows a depletion of the electron density in solution with respect to vacuum: there is an
average charge difference of about 0.5 e between the two curves, originating in the stabilization of
the negative charge of the hydroxyl surrounded by the dielectric. Both curves coincide beyond the
position of the OH− anion.

molecular dynamics at the TiO2 solid-liquid interface.

5.3.1 Electron density distribution for OH− anion

Replacement of explicit solvation by a dielectric continuum medium neglects the structural

features of the solvation shell, but retains the basic polarization effect. This is manifested

in the charge of the hydroxyl group: if an extra electron is added to a neutral system

consisting of an anatase (101) slab plus a distant OH moiety situated 4 Å away from

the surface in the gas phase, about one half (0.5 e) of the additional negative charge

flows to the surface and the other half to the OH group. Noticeably, in the presence

of the dielectric medium, the excess electron spontaneously localizes on the hydroxyl, as

expected in solution. This result indicates that the polarization effect of the medium is able

to stabilize isolated charges in solution, which are unstable in the gas phase. In Figure 5.11

the integrated total electron density along the z direction is plotted in vacuum and in the

continuum solvent: differences between both curves are due to the charge redistribution

induced by the medium.
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5.3.2 Molecular Dynamics at the TiO2 interface

It is well known that surface groups of most inorganic oxides ionize in solution, exhibiting

the following equilibria:

M-Oz + H3O+ ⇔ M-OHz+1 + H2O⇔ M-OHz+2
2 + HO−

with z the surface group charge, which can be negative, positive, or zero, depending on

the nature of the oxide [31]. Understanding the acid-base behavior resulting from these

equilibria is crucial in almost every application of these materials in solution. Isoelectric

points of many oxides have been known for years [32], however, it is very difficult to probe

the surface of bulk materials or nanoparticles in solution, and most of the data collected

corresponds to the average behavior of the different surfaces exposed in a given exper-

iment. More recently, researchers have sought to take advantage of density functional

theory to establish the degree of dissociation and protonation at different titania-water

interfaces with an explicit representation of the solvent [33–36]. For the reasons already

discussed, such an approach is costly and has been employed only in a limited number

of cases. In what follows, we apply our continuum solvent model to characterize the hy-

drated (101) surface of the anatase structure of TiO2, which is possibly the most stable and

abundant [37]. The adsorption of H2O on perfect TiO2 surfaces in the gas phase has been

thoroughly investigated using both experimental and theoretical approaches [38–43]. In

the case of the (101) face of anatase, there is consensus in the fact that molecular ad-

sorption of water is thermodynamically the most stable. Electronic structure calculations

suggest that the difference between the two possible adsorption modes—molecular versus

dissociated—is of nearly 10 kcal/mol [41]. We have performed calculations in four layers

slabs representing the (101) surface of the anatase structure. As previously reported, our

own calculations in vacuum summarized in Table 5.2 show that at different water cover-

ages, the molecular pathway is the most favored. The adsorption energies from the liquid

phase, given in the same Table, indicate that molecular adsorption prevails also in the pres-

ence of the continuum solvent. It should be noted, though, that because of the dielectric

embedding, the binding energy of H2O can not be computed in a straightforward manner

as in the gas phase: the values informed in Table 5.2 are energy differences between the

explicit and implicit hydration of the interface. In other words, the slightly negative num-

ber (-3.0 kcal/mol) corresponding to molecular adsorption is just the difference between

the interaction of the surface with a water monolayer and with the implicit solvent, and

must not be misinterpreted in the sense that TiO2 affinity for water is weakened in solu-

tion. Such a small energy is indeed a quite remarkable result, because it states that the

continuum model retains the magnitude of the explicit water-oxide interaction. Moreover,

the stabilization of up to 3 kcal/mol with respect to implicit hydration could be in part
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Table 5.2. Adsorption energies for water on the anatase (101) surface in the gas phase and in
solution, in both the molecular and dissociative configurations at different coverages. Note that
data in solution represent the energetic cost of exchanging implicit for explicit water. Values are
given in kcal per H2O molecule.

Molecular Dissociative
θ = 0.25 θ = 1 θ = 0.25 θ = 1

Gas phase -19.4 -17.8 -10.3 -7.4
Solution - -3.0 - 6.6

ascribed to the hydrogen bonding network arising within the monolayer, not accounted

for in the continuum model. In the same way, the positive energy reported for dissocia-

tive adsorption does not imply that dissociation in solution is not exothermic, but it is just

less exothermic than molecular hydration. The main result driven from these data is that

the energy difference between the two kinds of adsorption mechanisms, of 9.6 kcal/mol,

remains about the same as in the gas phase. In solution, however, dissociation is likely to

occur, controlled by the pH of the medium (see below).

The quantitative effect of pH on the ionization of the surface is quite difficult to assess

from first principles simulations, since a huge supercell would be needed to have a mean-

ingful representation of the proton concentration in the system. In this preliminary study,

we limit ourselves to examine the proton exchange between an adsorbed water molecule

and a hydroxyl anion from the solution, using molecular dynamics at 300 K. This compu-

tational experiment is meant to provide a qualitative picture of the abstraction of a proton

from the surface in the presence of OH−, illustrating at the same time the performance of

the continuum solvent method. Solvation of hydrophilic surfaces often give rise to struc-

tured contact layers in which the dielectric constant and other properties can significantly

differ from those of bulk water, rendering unreliable the use of an implicit solvent model.

In such cases, explicit consideration of a few water molecules belonging to the first solva-

tion layers could be important. Recent molecular dynamics simulations at the TiO2-water

interface using classical potentials have shown that the properties of the interface con-

verge very rapidly to those of the bulk phase beyond the second adsorbed layer [44, 45].

In light of this, we include in our system eight water molecules making up the first two

solvation layers, which should be enough to retrieve a qualitatively correct representation

of the interface within the scope of the present analysis. The inset of Figure 5.12 shows

the initial and final structures corresponding to two molecular dynamics simulations, one

in vacuum and the other in solution, started from the same geometry and with identical

computational parameters. In the initial configuration an OH− group exhibits an H-bond

with a water molecule of the second hydration layer. Figure 5.12 presents the intramolec-
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Figure 5.12. Interatomic Oa-Ha distance during molecular dynamics simulations of a water bilayer
adsorbed on titania and in contact with an OH− ion, in vacuum and in a continuum solvent. Oa and
Ha are atoms of a water molecule H-bonded to the OH− group at the beginning of the simulation.
Proton transfer is seen in vacuum but not in solution. The starting geometry is shown on the
left, while the upper and lower figures on the right depict the atomic structures in vacuum and in
solution for the final time steps.

ular Oa-Ha distance, where Ha is the proton involved in the H-bond with the hydroxide.

Early in the gas phase simulation, the covalent Oa-Ha bond in H2O is disrupted and the Ha

atom is transferred to the neighboring OH− group, triggering a Grotthuss like exchange

of protons to leave an hydroxyl function on the surface. This is not at all surprising, but

is just reflecting the fact that a negative charge would rather localize on the oxide surface

than on an hydroxide ion exposed to the gas phase. In the continuum solvent, this trend

is reverted. The negatively charged hydroxide is stabilized in the polar environment and

remains as part of the hydrogen-bonding network.

Had the simulation been started from a random configuration in the presence of the

implicit solvent, the OH− anion might have explored the supercell for several picoseconds

without ever reacting with the water molecules of the contact layers. In the absence of the

solvent, instead, the unscreened interaction between the hydroxide and the H2O molecules

leads to an immediate reaction, and the final result is the hydroxylation of the TiO2 sur-

face, as already commented. This distinctive behavior is displayed in Figure 5.13, which

presents the Ob-Ha distances for two simulations in vacuum and in solution, departing

from the same configuration, with Ob the oxygen atom of the hydroxide, and Ha the atom

abstracted from the hydration layer in vacuum.

The observed contrast between the two dynamics evinces how the dielectric medium

stabilizes the hydroxide in the liquid phase. Interestingly enough, dissociation of an ad-
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Figure 5.13. Interatomic distance Ob-Ha during the molecular dynamics simulations of a water
bilayer adsorbed on titania in the presence of an hydroxide ion initially situated 2.5 Å away from
the closest water molecule. Ob is the oxygen atom of the hydroxide and Ha is one of the nearest
H2O protons, which is rapidly exchanged during the gas phase dynamics. In solution, instead, the
interaction between the OH− ion and the interface is efficiently screened. The starting geometry
is shown on the left, while the figures on the center and on the right depict the atomic structures
after 1 ps of dynamics in vacuum and in solution, respectively. A spontaneously dissociated water,
enclosed in a black trace, is observed in the continuum solvent.

sorbed water molecule takes place during the simulation in the implicit solvent (see inset,

Figure 5.13). Spontaneous dissociation of water has never been observed in simulations of

the stoichiometric (101) anatase surface with up to three hydration monolayers [1,2,34],

suggesting that the continuum solvent may play a significant role even when several water

layers are considered.

5.4 Closing remarks

We have shown that a dielectric medium defined as a function of the self-consistent charge

density provokes a strong response in the effective potential, which in solid-liquid systems

may spoil the convergence of the Car-Parrinello electronic dynamics. Such a response

can be avoided with a dielectric based on a non self-consistent charge, preserving in this

way the potential and allowing for conservative molecular dynamics simulations. This

approach is equivalent to have a position-dependent permittivity, and therefore a new

term in the ionic forces must be considered.

The methodology presented here is a powerful instrument to explore the thermodynam-

ics and the reactivity of surfaces and nanoparticles in solution. Replacement of the solvent
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molecules by a dielectric continuum may neglect the structural features of the liquid phase,

but it does capture the essential polarization effect of the medium. This is apparent in the

localization of entire negative charge on the solvated hydroxyl group. In the gas phase,

instead, the additional charge splits between the OH− and the slab.

A compelling application for this continuum solvent scheme, as well as a natural contin-

uation of this work, would be the characterization of the adsorption energies and geome-

tries of water and other species on the different surfaces of titanium dioxide. We deem

especially worthwhile the calculation of the reaction energies for the kind of equilibria

mentioned above, e.g., Ti-OH2 + OH− ⇔ Ti-OH− + H2O, as a function of the surface

structure. In particular, the adsorption of small molecules at the solid-liquid interface of

titanium dioxide, is studied in the next chapter of this thesis.

At this point it should be noted that it would not be feasible to have an estimate of

reaction energies involving charged species without the solvation model: in the absence

of the dielectric, the interaction between the surface and the OH− ion (or between the

charged slab and the water molecule) is extremely dependent on the distance separating

them, and therefore it is not possible to establish unequivocally the energies for reactants

and products. When the dielectric is included, the long range interaction between charged

and polar fragments is efficiently screened, and the total energy of the system becomes

independent of the position of the molecule (or the ion) with respect to the slab. This

property makes it possible to evaluate reaction energies on periodic surfaces in solution

which could not be calculated by other means, except perhaps with extensive molecular

dynamics simulations.

5.5 Future challenges

Two ample research horizons are envisioned following this work: (i) the assessment of the

role of the solvent in a great diversity of problems in surface chemistry; (ii) the improve-

ment and further development of the continuum solvent implemementation itself.

Along the first line, the influence of the solvent on structure, on surface polarization and

equilibria, on vibrational frequencies, or on charge transfer phenomena, are all problems

of the greatest relevance where the present approach can make a significant contribution.

The use of this kind of methodology in combination with weighted importance sampling

techniques (e.g., Umbrella sampling) [46] could provide estimates for the acid-base equi-

librium constants corresponding to different oxide surfaces and phases. The Umbrella

sampling technique has been already implemented in the Car-Parrinello approach within

the Quantum Espresso package and used in this thesis to account for the activation en-

ergies of dissociative processes upon anatase (101) and rutile (110) in vacuum [47], as
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explained in chapter 3.

Concering the second line of research, computational programming is still needed to

improve the efficiency of the multigrid algorithm. Parallelization of the entire algorithm is

in due course. A parallel implementation of the model would expand the sizes and time

windows that can be explored with this method.

Ionic strenght effects can be considered through the linearized Poisson-Boltzmann equa-

tion [48]:

∇ · (ǫ[γ(r)]∇φ(r)) = −4πρtot(r) + ǫk2φ(r) (5.38)

where the additional term ǫk2φ(r) represents the effect of the ionic atmosphere. k2 =
8πe2I

ǫkBT
, is the inverse of the Debye length square6 and I represents the ionic strength of the

solution. 7 The linearized Poisson-Boltzmann equation can be applied to describe systems

of low salt concentrations, typically below 0.01 M for a monovalent ionic compound such

as NaCl.

5.6 Appendix: derivative of EH with respect to the ionic

positions

In the absence of a dielectric (ǫ = 1), equation 5.24 can be inserted in the expression for

the Hartree energy to give

EH = 2πΩ
∑

G

|ρ̃(G)|2
G2

(5.39)

where ρ̃(G) are the Fourier coefficients for the expansion of ρtot(r), ρ̃(G) = ρ̃e(G) +
∑

I ρ̃I(G)e−iGRI. Since the only explicit dependence of ρ̃(G) on {RI} is through the struc-

ture factor (e−iGRI), the derivative of equation 5.39 with respect to the atomic positions is

just
∂EH

∂RI

= −4πΩ
∑

G

iG

(

ρ̃∗(G)

G2

)

ρ̃I(G)e−iGRI . (5.40)

In the presence of a dielectric medium determined by the ionic coordinates, equation

5.39 does not hold. To calculate ∂EH/∂RI we replace ǫ[ρ] for ǫ(RI) in equation 5.11 and

derivate:
∂EH

∂RI

=
1

8π

∫

∂ǫ(RI)

∂RI

(∇φ(r))2dr +
1

8π

∫

ǫ(RI)
∂(∇φ(r))2

∂RI

dr. (5.41)

6The Debye length is the scale over which mobile charge carriers, in this case electrolytes, screen out
electric fields.

7I =
1

2

∑n
i=1

CiZ
2
i is the ionic strenght of the solution and is a function of the molar concentration (Ci)

of the ionic ions of charge Zi.
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The second term on the right member can be further developed as follows:

1

8π

∫

ǫ(RI)
∂(∇φ(r))2

∂RI

dr =
2

8π

∫

ǫ(RI)∇φ(r)

(

∇∂φ(r)

∂RI

)

dr =

− 1

4π

∫

∇ · [ǫ(RI)∇φ(r)]
∂φ(r)

∂RI

dr =

∫

ρtot(r)
∂φ(r)

∂RI

dr (5.42)

where we have integrated by parts and used equation 5.11. Then, it is possible to rewrite

equation 5.41:

∂EH

∂RI

=
1

8π

∫

∂ǫ(RI)

∂RI

(∇φ(r))2dr +

∫

ρtot(r)
∂φ(r)

∂RI

dr. (5.43)

On the other hand, the derivation of the general expression for the Hartree energy leads

to:
∂EH

∂RI

=
1

2

∫

ρtot(r)
∂φ(r)

∂RI

dr +
1

2

∫

φ(r)
∂ρtot(r)

∂RI

dr. (5.44)

Equating 5.43 and 5.44 we find the following relation:

∫

ρtot(r)
∂φ(r)

∂RI

dr = − 1

4π

∫

∂ǫ(RI)

∂RI

(∇φ(r))2dr +

∫

φ(r)
∂ρtot(r)

∂RI

dr. (5.45)

Ultimately, replacing eq. 5.45 into eq. 5.43 we obtain the final result,

∂EH

∂RI

= − 1

8π

∫

∂ǫ(RI)

∂RI

(∇φ(r))2dr +

∫

φ(r)
∂ρtot(r)

∂RI

dr. (5.46)
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Chapter 6

Adsorption of R-OH molecules on TiO2

surfaces at the solid-liquid interface

The basic surface processes of molecules in solution (as adsorption and dissociation) are

not easy to probe experimentally with microscopic resolution. Consistently, available ther-

modynamic and structural information is significantly less than for the gas phase, even

though the solid-liquid environment is the most relevant for many applications. As has

been discussed in previous chapters, limitations arise also at the simulation level. Along

this chapter, we apply the methodology developed in this thesis to treat chemical processes

of simple molecules at the solid-liquid boundary. In this first application of the current

methodology, we start by a systematic investigation of the structural and thermodynam-

ical features characterizing the interaction of polar molecules in solution with the most

stable TiO2 surfaces, anatase (101) and rutile(110). In particular, we have selected four

hydrophilic compounds, which together are representative of the family of R-OH small

adsorbates: water, hydrogen peroxide, methanol and formic acid.

6.1 Introduction

A large amount of computational research based on density functional theory (DFT) has

been conducted on periodic slabs of TiO2 in the gas phase. On anatase (101), Selloni

and co-authors have shown that water adsorbs molecularly either for 1 monolayer (ML),

2 ML or 3 ML in vacuum [1–3]. There is now a general agreement about the fact that

water adsorbs molecularly on anatase (101), either from the theory as well as from exper-

iments, as it was indicated by Temperature Programmed Desorption (TPD) data [4] and

confirmed by XPS results [5]. In the previous chapter, we have shown that water adsorbs

molecularly at the anatase(101)-water interface. We will go back to this result with more

detail along this chapter. In the case of methanol, several adsorption configurations were

also investigated, for which it was found, at less than 1 ML coverage, that the molecular

state is the most favored, exhibiting a dissociated stable state about 6 kcal/mol above [6].
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Mattioli et al. [7] examined the interaction of the H2O2 molecule on the anatase surface in

the presence of a water bilayer, finding that it adsorbs molecularly on the anatase surface.

Vittadini et al [8] studied the formic acid adsorption energies for several geometry config-

urations, including molecular and dissociative processes. Their calculations showed that a

monodentate molecular adsorption was the most stable.

Regarding first principles calculation of water on rutile (110), a discussion arouse in

the literature concerning the type of adsorption in vacuum [9–13]. Harris et al. [9] pointed

out that the energetics of dissociative and molecular adsorption are comparable, so much

so that the DFT predicted adsorption mode depends on the number of layers used to

model the rutile (110) surface. For a sufficiently deep slab and coverages below 1 ML,

it was concluded that the molecular state is more stable than the dissociated state. At

higher surface coverages, the same calculations suggest the preeminence of either a mixed

state (molecular and dissociated) or a molecular state, depending on the quantity of TiO2

layers [9], separated in all cases by slight energy differences. Our own recent free-energy

calculations have shown that both states of water would be likely to coexist on the surface

at 300 K [14] (see Chapter 3). Water coverages of 2 ML and 3ML have been studied by

Zhang et al. [15], who showed that increasing water layers favor molecular adsorption.

Calculations by Kowalski and co-workers [16] suggested that water adsorbs molecularly in

ambient conditions, in agreement with Zhang et al. [15] investigation. Experimental data

as TPD spectra exhibited four different peaks [17–20]. The lowest three were ascribed to

molecularly adsorbed H2O in the first monolayers, whereas the highest temperature peak

was assigned to dissociated water on bridging oxygen vacancies [13]. Overall, experiments

and simulations support the idea of coexistence of the molecular and dissociative modes

for water on rutile (110), the presence of multilayers further stabilizing the former with

respect to the later.

Static DFT calculations have been employed as well to study adsorption of a few small

molecules as methanol [10,21,22] and hydrogen peroxide [10,13] on rutile (110). In both

cases, the molecular and dissociative states have exhibited similar adsorption energies:

depending on the authors, either the dissociated or the molecular state of methanol was

identified as the most stable by a few kcal/mol, [21, 22] while for H2O2 the dissociated

state turned out to be the lowest by nearly 2 kcal/mol [10]. These results correspond to

coverages of 1ML or less. Adsorption energies were also investigated for formic acid upon

rutile (110) [10, 13], through the characterization of several geometry configurations. At

variance with findings in anatase (101) [8, 23], the authors concluded that the bidentate

dissociated state was the most stable adsorption configuration in vacuum conditions.

The adsorption phenomena from a solution has been much less explored from a micro-

scopic perspective using either experimental or computational tools, mostly because of the
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complexity arising in the presence of a liquid phase. On one hand, most surface techniques

with atomic resolution like XPS or LEED are not yet suited to be operative in solution. At

the same time, the explicit inclusion of the solvent in first-principles simulations is still a

very expensive practice, because of the large number of molecules required in any reason-

able representation of a liquid phase. Remarkable exceptions are the computational works

of Köppen and Langel [24], of Cheng and Sprik [25, 26], and of Cheng and Selloni [27],

who have applied molecular dynamics approaches in the context of DFT to investigate pro-

cesses at the TiO2-water interface. In the first case, the competitive adsorption between

water and hydrocarbons was studied with metadynamics, assessing that the greater affinity

of water for the oxide would displace the organics pollutants from the surface [24]. In ref-

erence [25], the same kind of sampling was used to estimate the protonation free-energies

of the interface, to eventually obtain the PZC (point of zero charge) of the titania surface.

Finally, in the article by Cheng and Selloni, Car-Parrinello molecular dynamics simulations

were employed to characterize the chemistry of the hydroxide ions at the water-anatase

interface [27].

These studies have involved demanding molecular dynamics simulations at finite tem-

perature, which are necessary to reliably reproduce the behavior of the system with an

explicit solvent model, since a static calculation provides an inaccurate representation of

the liquid state. As it is explained in the previous chapter, our continuum solvent im-

plementation represents the solvation effect in an average way, making it meaninful to

perform geometry optimization calculations [28–31]. Even if the solvent structure is omit-

ted, all or part of the first solvation shells can be included explicitly to recover the specific

solute-solvent interactions.

This is the path we follow in the present work, to examine the heterogeneous adsorp-

tion of H2O, CH3OH, H2O2 and HCOOH on anatase (101) and rutile (110) from an aqueous

solution, and to study the effect of the dielectric constant in the absorption of these species.

We use our recent implementation of the continuum solvent model for the treatment of

solid-liquid interfaces, recently devised in the framework of DFT and the Car-Parrinello

method [32].

6.2 Computational Methods

Electronic structure calculations in vacuum were performed using DFT in periodic bound-

ary conditions, as implemented in the Quantum Espresso package [33]. This simulation

code employs plane wave basis sets and pseudopotentials to represent the ion-electron in-

teractions. The Kohn-Sham orbitals and charge density were expanded in planewaves up

to a kinetic energy cutoff of 25 and 200 Ry, respectively. k-sampling was restricted to the
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Figure 6.1. Representation of the adsorption process for ROH (H2O, H2O2 or CH3OH) in a contin-
uum solvent.

Γ point. The Perdew-Wang approach (PW91) to the exchange-correlation energy [34, 35]

and Vanderbilt [36] ultrasoft pseudopotentials were adopted to compute total energies

and forces. The same standards and parameters were employed for the energy calcula-

tions and geometry optimizations in the presence of the solvent, for which we utilized the

continuum model reported in Chapter 5. In this scheme the permittivity is defined as a

function of the van der Waals radii, varying smoothly from 1.0 inside the surface up to the

corresponding dielectric constant into the solvent region (set, in the case of water, to 79 in

relative units) [32]. To represent the rutile (110) and anatase (101) surfaces, supercells of

area (2x1) and (2x2) were respectively considered. In both cases, slabs were represented

with four layers of TiO2 units.

6.3 Results and Discussion

6.3.1 Water

In the first place, we calculated the energy involved in adsorbing one water molecule from

the liquid phase: this process is sketched in Figure 6.1. We emphasize that the energy

difference obtained from these calculations does not represent the adsorption energy of

H2O, but is the result of exchanging implicit and explicit water at the interface. In an

optimal model, this energy difference should be equal to zero. In the present case, values

of 0.28 and 0.14 kcal/mol were obtained, respectively, on anatase (101) and rutile (110)

for a water molecule adsorbed molecularly. Such small values—compared to absolute ad-

sorption energies, which are in the range of 20 kcal/mol—indicate that implicit solvation

of the interface reproduces quite remarkably the energetics of explicit hydration. Figure

6.2 depicts the model structure of the slab with an adsorbed H2O molecule, including a

contour plot of the dielectric medium.

As it is the case for water, we note that also for any other molecule, the solvation
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Figure 6.2. Slab model of the anatase (101) surface with an adsorbed water molecule, displaying
a contour plot of the dielectric medium.

model employed here does not provide the absolute adsorption energy, but the relative

energy associated with the replacement of continuum solvation by the given adsorbate.

Alternatively, in a more elaborate treatment, specific interactions at the interface can be

captured to a great extent by including explicitly a water monolayer. This approach is

represented in Figure 6.3.

Whereas water on the anatase (101) surface has been characterized from first-principles

at the gas interface in a series of studies [1–3], we are not aware of any equivalent ef-

fort addressing the adsorption in solution, aside from the work on hydroxide ions cited

above [27]. According to our computations at low coverage, the gap between the molec-

ular and dissociative modes is roughly 12 kcal/mol. Interactions in the monolayer tend

to equalize the two adsorption modes: for a monolayer in the gas phase, the energy of

the molecular state lies only 3.3 kcal/mol below the dissociative state (Table 6.1). In the

presence of a continuum solvent this energy difference is barely modified, diminishing in

just 0.3 kcal/mol. In general, it will be seen that the dielectric medium contributes to

increase the hydrogen bond lengths in 10-20%. This is the consequence of the dielectric

screening on the H-bonds, which are mostly electrostatic interactions. Geometry optimiza-

tion of a water ML on the (101) face, shows that for the molecular mode the distance

between O(2c)1 and H-OH (the hydrogen belonging to the water molecule) is enlarged

from 1.9 Å in vacuum to 2.5 Å in the solvent. This is displayed in Figure 6.4, where the

1From now on, we denote O(2c) to the bi-coordinated bridging oxygen atom on the surface, and Ti(5c)
to the 5-fold coordinated titanium atom.
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Figure 6.3. Representation of the adsorption process for ROH (H2O2 or CH3OH) in a continuum
solvent, considering the first hydration layer explicitly.

Figure 6.4. Optimized structures for a water monolayer molecularly adsorbed on anatase (101):
(a) in vacuum; (b) in the continuum solvent.

water molecules are shown to rotate from their vacuum positions, to expose one hydrogen

atom in the direction perpendicular to the surface. Interestingly, the dielectric is inducing

the same kind of configuration as expectable in an explicit solvation framework, in which

the adsorbed H2O would be involved in hydrogen bonding with the bulk molecules. This

reorientation was actually observed in molecular dynamics simulations including explicit

water molecules [27].

A similar effect on bond lengths can be observed in the dissociated ML: the distance

from the hydrogen H-O(2c) and the oxygen bound to Ti(5c) is increased from 2.8 Å in

vacuum to 3.1 Å in the dielectric. It can be seen in Figure 6.5 how the hydrogen atoms

adsorbed to O(2c) become perpendicular to the surface in the presence of the solvent. The

weakening of the H-bonding network is similar in both the dissociated and the molecular
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Figure 6.5. Optimized structures for a water monolayer dissociatively adsorbed on anatase (101):
(a) in vacuum; (b) in the continuum solvent.

states, and as a consequence the energy difference is virtually not affected by the dielectric.

According to previous reports mentioned above [9–13], energy differences between the

different adsorption modes in rutile (110) may be small. In view of this, the composition

of a water monolayer at the heterogeneous interface was analyzed taking into account

the possibility of mixed states. In vacuum, for slabs of four layers width or wider, water

monolayers exhibit molecular adsorption. In our own gas phase calculations, mixed and

dissociative modes turn out to be 2.0 and 6.1 kcal/mol higher in energy than the molecu-

lar adsorption. Incorporation of solvent effects does not alter this trend, predicting energy

differences of 2.5 and 5.9 kcal/mol with respect to the mixed and dissociative pathways,

respectively. Changes in bond lengths resulting from the dielectric medium in the mono-

layer of molecular adsorbed water indicate a strengthening of the Ti(5c)-water bond, and

a strong screening of the hydrogen bonds existing between water and the surface and with

itself. In the case of the dissociative adsorption, the major effect of the presence of the di-

electric medium is on the hydrogen bonding network within the water monolayer. On one

hand it produces some destabilization by elongating of the hydrogen bonds between adja-

cent water molecules, while on the other it provokes the shortening of the distance among

the H-O(2c) and the oxygen of OH-Ti(5c). As a result, there is only a small difference

between the vacuum and solution energetics, as indicated above.

Our results are consistent with previous simulations in the presence of multilayers,

which found that the molecular adsorption will be the preferred path [2,15]. In the litera-

ture, water adsorption at the TiO2-liquid interface is often assumed to be dissociative and

therefore represented with ionized OH− groups. We note here that this qualitative and

widespread conception of the interface, possibly correct for amorphous and defective sur-
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Table 6.1. Adsorption energies of water in the different conditions examined, including the contin-
uum solvent with and without an explicit water monolayer. Energies are given in kcal/mol and are
relative to the molecular state, which is the most stable.

anatase (101) rutile (110)
dissociated dissociated mixed

Gas phase 12.2 3.7 —
Solvent 11.3 5.6 —
Gas phase/Water ML 3.3 6.1 2.0
Solvent/Water ML 3.0 5.9 2.5

faces, may not be accurate for anatase (101) and rutile (110), as shown by the DFT results

in the presence of several water layers or in the continuum solvent. Instead, molecular

adsorption will predominate on stoichiometric surfaces, with only a very small fraction

of the sites occupied by ionized OH− anions, in equilibrium with the dissociation of bulk

water. Dissociation, on the other hand, can most likely occur at vacancies [1,37].

The adsorption energies for water on anatase (101) and rutile (110) are summarized

in Table 6.1. 2 Energies are given with respect to molecular adsorption, which is the most

stable for all cases. In the following sections, results for methanol and hydrogen peroxide

adsorption energies are presented and analyzed, in the absence and in the presence of a

molecularly adsorbed water monolayer, which, as discussed in this section, is the stable

form of water at the solid-liquid interface.

6.3.2 Methanol

For the methanol molecule, we have examined three different adsorption paths: molecu-

lar, dissociative via the C-O bond, and dissociative via the O-H bond. We will denote these

mol, disCO, and disOH respectively. These different configurations are displayed in Figure

6.6, and the adsorption energies are shown in Table 6.2. In agreement with previous cal-

culations [6, 23], we have found that in the gas phase methanol adsorbs molecularly on

anatase (101).3 On rutile, the dissociative (disOH) and the molecular adsorption modes

are almost energetically degenerate, in line with the recent calculations by Sánchez and

coworkers [22]. Besides, it can be seen that the relative stability of the three adsorp-

2As in the case of methanol, cited in the next footnote, for water dissociation process exist the same two
different configurations. For this reason the adsorption energy value varies with respect to the one cited in
the previous chapter 5, table 5.2. See reference [3].

3We note that upon dissociation of the C-O bond on anatase (101), two inequivalent oxygen surface sites
are available to accommodate the CH3 fragment. In particular, the adsorption energy reported in Table 6.2
for the disCO configuration differs from the value informed in reference [6] because they correspond to
different configurations.
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Figure 6.6. Adsorption modes examined for methanol: (a) disOH, (b) disCO, (c) mol, standing
for, respectively, dissociation across the O-H bond, dissociation across the C-O bond, and molecular
adsorption. The structures correspond to the anatase (101) surface.

Table 6.2. Adsorption energies of methanol (kcal/mol) in the different conditions examined, in-
cluding the continuum solvent with and without an explicit water monolayer. The different adsorp-
tion modes disOH, disCO and mol, are depicted in Figure 6.6.

anatase (101) rutile (110)
mol disOH disCO mol disOH disCO

Gas phase -19.0 -15.6 -12.8 -19.2 -17.2 -13.9
Solvent 3.6 6.4 12.1 3.4 6.6 8.1
Solvent/Water ML 0.5 3.8 12.4 2.4 4.7 8.9

tion modes remains unaltered throughout the three distinct environments. However, the

adsorption energies in the solvent are positive in all cases, meaning that methanol adsorp-

tion from an aqueous solution would be unfavored, having to compete against water. It

is interesting to note that the surface larger affinity for water in a solvent environment is

not always reflecting the trends in the gas phase. While water exhibits a higher adsorption

energy than methanol on anatase (20.3 and 19.0 kcal/mol for H2O and CH3OH, respec-

tively), the opposite is true on rutile (16.7 and 19.2 kcal/mol). The reason for this can be

tracked in the hydrogen bond network arising within the water monolayer, which further

stabilizes the adsorption with respect to the low coverage case.

A recurrent consequence of the dielectric screening is the disruption of hydrogen bonds.

On the (101) face, an hydrogen bond between the molecularly adsorbed methanol and the

bridging oxygen is present in vacuum. This bond is lost when immersed in the dielectric

medium, but is recovered when the first water monolayer is included explicitly. In rutile

(110), on the other hand, this hydrogen bond continues to exist when the dielectric effect

is introduced. When covered by a water monolayer, in both interfaces an additional H-
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bond is formed between methanol and one of the H2O molecules. Hence, addition of the

dielectric medium without considering the first water ML explicitly can affect the hydrogen

bond network, depending on surface structure. For rutile(110), where the surface atoms

Ti(5c) and O(2c) are nearer than in anatase (101), the hydrogen bonds between methanol

and the surface do not disappear in the presence of the dielectric medium. This is not the

case for anatase (101). When the first water ML is included explicitly, it has two main

consequences for anatase (101): the formation of new hydrogen bonds with H2O, and the

restoration of the lost H-bonds with the surface. For rutile(110), only the first consequence

is observed, and for this reason, the effect seen in Table 6.2 when the first solvation shell

is included, is greater in anatase.

Turning now to the dissociated states, Table 6.2 shows that addition of explicit water

has a stabilization effect in the disOH configuration on both surfaces, but not in disCO.

While the dissociated CH3O group may establish an extra hydrogen bond with one of

the water molecules, this does not occur in the case of disCO in which the CH3 moiety

tenuously interact with the water monolayer.

These results support the idea that an aqueous phase promotes the desorption of

methanol into the solution. Moreover, explicit consideration of the first solvation layer

is important to account for specific interactions. In general it was observed that the dielec-

tric screening tends to weaken the hydrogen-bonds between the surface and the adsorbate,

and also the O-Ti adsorbate-surface interactions. Incorporation of explicit water molecules

reverts this effect, by excluding the dielectric from the region adjacent to the surface. In

a typical electrochemical model based on a continuum representation of the interface, the

permittivity is taken to vary slowly from 1 to its value in bulk, several angstroms away from

the surface. The reduced mobility of the molecules belonging to the first solvation layer

restricts the ability of these molecules to align their dipoles in an electric field, which is a

measure of the dielectric constant [38]. Inclusion of the first solvation layer reestablishes

specific interactions and at the same time acts as a shield to the dielectric.

In Figure 6.7, we investigate the effect of the dielectric constant on the adsorption of

methanol on anatase. For a solvent of intermediate or low permittivity, exhibiting no hy-

drogen bonds, the effect of an explicit monolayer would be less important than in water.

The interaction energies in Figure 6.7 were computed in the absence of a solvation layer,

and for this reason, we expect the lower the permittivity, the more reliable the estimates

to the adsorption energies in solution. The graph suggests that methanol would not signif-

icantly adsorb from solutions with a dielectric constant larger than 45, and that molecular

adsorption will be the most favored in any case.
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Figure 6.7. Influence of the dielectric constant on the adsorption energy of methanol on anatase
(101)

6.3.3 Hydrogen peroxide

Adsorption energies for H2O2 in vacuum are reported in Table 6.3. In agreement with

previous calculations [10], dissociative adsorption turns out to be the most stable on rutile

(110). For anatase (101), instead, the molecular adsorption exhibits the lowest energy.

Figure 6.8 depicts the relaxed configuration on the (101) face in solution. It can be seen in

Table 6.3 that the solvent stabilizes the dissociated form on anatase: this effect is observed

in the presence and in the absence of the water monolayer. The dissociative adsorption

predicted here seems to be at variance with the results by Mattioli and collaborators [7],

who examined the surface interaction of H2O2 embbeded in a water bilayer. Whether total

energy calculations in a continuum solvent and an explicit monolayer are more reliable

than in a water bilayer to represent the solid-liquid interface, remains an open question.

Understanding the effect of a limited number of layers in comparison to the dielectric

medium, would require an analysis involving a progressive increase of the number of

water molecules in the simulation.

Adsorption energies are close to zero, implying that affinities of H2O and H2O2 for

the oxide surface are comparable in solution. In vacuum, hydrogen peroxide is around 4

kcal/mol less stable than water on the (101) surface. This difference decreases in the sol-

vent, yet the water continues to exhibit the largest adsorption energy. For rutile (110), dis-

sociative and molecular adsorption become energetically equivalent, and, as for the (101)
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Table 6.3. Adsorption energies of hydrogen peroxide (kcal/mol) in the different conditions exam-
ined, including the continuum solvent with and without an explicit water monolayer.

anatase (101) rutile (110)
molecular dissociated molecular dissociated

Gas phase -16.5 -14.7 -16.3 -17.3
Solvent 4.9 3.9 5.3 2.5
Solvent/Water ML 2.2 0.9 0.1 0.3

Figure 6.8. Adsorption modes examined for H2O2: (a) dissociated, (b) molecular. The structures
correspond to the anatase (101) surface.

surface, also comparable with the adsorption of water. The adsorption energies when only

the dielectric medium is considered, are more positive than the ones obtained by including

water molecules explicitly. An inspection of the relaxed geometries in solution shows that,

once again, this is a consequence of the dielectric environment in the immediacy of the

surface, weakening specific interactions such as hydrogen bonds between the adsorbate

and the surface.

6.3.4 Formic acid

The adsorption of the formic acid molecule exhibits a complex scenario due to two ma-

jor causes: the possibility to adsorb via two inequivalent oxygen atoms belonging to

the carboxylic group, and the particular molecular geometry. The inequivalent oxygen

atoms allow for molecular monodentate adsorption in two different configurations, de-

noted as mono-O and mono-OH along this work (see Figure 6.9 (a) and (b)). Besides, the

formic acid molecular dimensions admit a bidentate adsorption mode, through both oxy-

gen atoms of the -COOH group. This is shown in Figure 6.9 (c) and (d), where (c) and (d)

describe a dissociative and a molecular mode, respectively. Finally, a monodentate disso-

ciative adsorption mode can be proposed as shown in Figure 6.9 (e). Other configurations

could be conceived, nevertheless, given the large amount of accessible configurations, we

restrict this charaterization to the five different modes shown in Figure 6.9.

Our simulations on anatase (101) as well as on rutile (110) in the gas phase (Table
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Figure 6.9. Adsorption modes examined for formic acid molecule: (a) mono-O, (b) mono-OH, (c)
bi-d, (d) bi-m and (e) mono-d. Mono-O (a) and mono-OH (b) stand for the monodentate molecular
adsorption through the inequivalent oxygen atoms belonging to the carboxyl group (-COOH). Bi-
d (c) and bi-m (d) refer to the bidentate dissociative and molecular modes. Finally, mono-d (e)
identifies the dissociative adsorption through one oxygen atom, which in the case of our gas phase
simulations on anatase (101) converges to the mono-O (a) configuration. The shown structures
correspond to the anatase (101) surface.
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Table 6.4. Adsorption energies (kcal/mol) of formic acid in the different conditions examined, in
the presence and in the absence of the continuum solvent and of an explicit water monolayer. The
different adsorption modes (mono-O, mono-OH, mono-d, bi-m and bi-d) are depicted in Figure 6.9.
Not stable indicates that no optimizations converged to that structure.

anatase (101)
mono-O mono-OH bi-m mono-d bi-d

Gas phase -26.7 -14.2 -7.2 not stable -25.2
Solvent 4.5 7.9 7.2 7.6 12.6
Solvent/Water ML -2.1 3.2 -2.7 -1.2 0.8

rutile (110)
mono-O mono-OH bi-m mono-d bi-d

Gas phase -14.2 -14.3 -23.9 -18.2 -29.4
Solvent 1.5 8.1 not stable 0.8 -0.7
Solvent/Water ML 0.5 0.9 not stable 1.5 -6.2

6.4) reproduce most of the adsorption energies published before [8, 10, 13, 23], finding

agreement in both surfaces regarding the most stable geometry configurations. Some dif-

ferences arise on the energies for configurations with intermediate affinities, such as the

mono-d configuration on anatase (101). This last example converges to a stable adsorption

geometry in a previous investigation [8], but we found it unstable in our present simula-

tions, where it reverts to the mono-O configuration as a in the optimization procedure. We

believe such a difference may be related to the initial configurations adopted to perform

the calculations.

It can be observed from Table 6.4 that the adsorption energies in the gas phase for

the bidentate modes depend on the surface. As mentioned before, adjacent bridge oxy-

gen atoms in the rutile (110) surface are at a closer distance than in the anatase (101)

surface. In general, however, the dissociated form of the bidentate interaction seems to

predominate on both surfaces.

Results in Table 6.4 show that the dielectric medium plays a destabilizing role, origi-

nating in the competence against the implicit water for the surface sites. As in the case

of methanol, inclusion of the dielectric induces a loss of the hydrogen bonds exhibited in

vacuum, as those formed by the mono-OH configuration on both surfaces. Addition of

the explicit water monolayer reverts this effect establishing an hydrogen-bond network.

The mono-d mode constitutes an exception in the sense that implicit or explicit hydration

stabilize its adsorption on anatase. On the other hand, the solvent modifies the preferred

adsorption mode on anatase: it switches from a monodentate molecular configuration in

vacuum to a molecular bidentate mode in solution. On rutile, instead, the bidentate disso-

ciative mode is always the most favored. We note that for reasons related to the supercell
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size, we have not considered the case of the bidentate species co-adsorbed with a water

ML in rutile4. When the continuum solvent plus the first solvation shell are considered for

anatase, negative adsorption values are obtained for the mono-O, bi-m, and the mono-d

species. The first two appear to be the only capable to displace molecular water from the

surface.

6.4 Conclusions

In general, in this study it was found that even though the solvent may marginally affect

the energies of the different accessible absorption modes, its effect has never proved to

be large enough as to revert the trend observed in vacuum, with the sole exceptions of

H2O2 on the (101) surface, for which the solvent environment induces the dissociative

adsorption, and of the bidentate mode of HCOOH, also on anatase (101), for which the

solvent inverts the energetics and induces molecular adsorption. Our results support the

idea that water adsorbs molecularly at the interface of anatase (101) and rutile (110). In

the surface oxide literature, the TiO2 interface is envisioned as consisting predominantly

of ionized hydroxyl groups (—O−) [39]. We think this representation is not accurate in

the context of crystalline surfaces: most water molecules at the interface will be undisso-

ciated, in equilibrium with some amount of —O− groups (the experimental PZC of rutile

and anatase are around 7 and 4, respectively) [40]. In any case, we want to emphasize

that the degree of hydroxylation of the interface will depend very much on the synthetic

route: amorphous TiO2 materials obtained from sol-gel processes involving hydrolysis and

condensation [41] will be more likely to leave terminal, exposed Ti-OH functions, which

will partially ionize and yield Ti-O− groups in solution.

The neglect of the first solvation shell when using the continuum model, tends to debil-

itate the electrostatic interactions between the adsorbate and the surface, enhancing the

intermolecular distances. For configurations exhibiting hydrogen bonds in vacuum, the

presence of the dielectric medium will normally lead to a loss of stability. The explicit ad-

dition of the first water monolayer prevents the weakening of intermolecular interactions,

allowing at the same time the formation of hydrogen bonds within the monolayer. The

dielectric constant of a liquid represents accurately its electrostatic screening in bulk; as

the interface is approached, the reduced mobility of the solvent layers will diminish their

ability to respond to an external electric field, resulting in a smaller effective dielectric con-

stant. For these reasons, we remark the importance of including the first water monolayer

explicitly in solid oxides-liquid interfaces. Alternatively, a model with a distance-dependent

4The representation of explicit solvation in the case of rutile for bidentate species would have requested
the expansion of the supercell, because the adopted (110) surface model exposes only two Ti(5c) sites.
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permittivity could be implemented [38], but this will require a number of additional pa-

rameters.

The positive adsorption energies reported in Tables 6.2, 6.3 and 6.4 suggest that the

adsorption process for methanol, hydrogen peroxide and formic acid on anatase (101) and

rutile (110) will not be thermodynamically favored in aqueous solution. Yet, some of these

values are small or slightly negative—within the accuracy of the method—, and therefore

we can not rule out that at room temperature a small fraction of the molecules present

in the solution might be adsorbed on the surface in those particular modes reflecting the

most stable configurations.
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Chapter 7

A hybrid Quantum Mechanics Molecular

Mechanics formulation for extended

systems

7.1 Introduction

As it was pointed out in chapter 1, hybrid Quantum Mechanics-Molecular Mechanics (QM-

MM) schemes consider the simulation system as a sum of two different subsystems: solute

(QM fragment) and solvent (MM fragment) [1–6]. The particles are assigned to these two

groups according to their role: atoms directly involved in bonds breaking or forming, or

in polarization or charge transfer effects, must be considered in the QM region, whereas

those atoms not participating in these processes can be part of the MM subsystem. These

two groups are described at different levels with different Hamiltonians, but they interact

with each other self-consistently.

This hybrid methodology has been applied exhaustively for finite chemical and biologi-

cal systems. In particular, it was employed to describe chemical reactions inside the active

site of proteins. In this type of simulations the solute described quantum-mechanically

comprises the active site, while the rest of the protein plus hydration water molecules is

called the solvent [6–10]. Hybrid QM-MM methodologies were also used to model proton

transfer reactions in water clusters environments [3, 11]. Applications to solids included

different type of interfaces, where the surface was modeled as a finite cluster: these works

have addressed solid-liquid interfaces [12], metal-organic interfaces [13], and oxide inter-

faces [14]. On the other hand, the QM-MM methodology applied in periodic boundary

conditions (PBC) has been rarely reported in the literature. A few examples in which pe-

riodicity was imposed to the MM region only to simulate dilute solutions can be found for

semiempirical [2,15,16] or first-principles approaches [15,16]. Laino et al. [1,17] devel-

oped a QM-MM hybrid method in periodic boundary conditions based on Gaussian basis

sets, which was tested on the simulation of surface defects present at the α-quartz phase
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of silica. To the best of our knowledge only Yarne et al. [4] developed a hybrid QM/MM

methodology imposing PBC to the whole system in a PPW-DFT framework. In this case

electrons were confined to a smaller unit cell inside the supercell needed to describe the

whole system, and periodicity was limited to 1 or 2-D.

QM approximations to solve the Schrödinger equation have been introduced in chapter

2. For the MM region, the potential energy of the system is computed from a force field,

expressed as a sum of simple functions of the atomic coordinates and a series of param-

eters [18]. In the MM approach, atoms are typically treated as point charges of charge

qi interacting with each other through electrostatics, dispersive-repulsive and harmonic

potentials, so that the molecular mechanics energy EMM is the sum of three contributions:

EMM = Eele + ELJ + Ebond (7.1)

where Eele, ELJ and Ebond stand for the electrostatic, the Lennard-Jones, and the bonding

energy respectively. In turn, these terms are normally computed as:

Eele =
N
∑

i=1

N
∑

j=i+1

qiqj
4πǫ0Rij

(7.2)

ELJ =
∑

I

∑

J

4ǫIJ

[

(

σIJ

|RI − RJ |

)12

−
(

σIJ

|RI − RJ |

)6
]

(7.3)

Ebond =
∑

bonds

ki

2
(li − li0)2 +

∑

angles

ai

2
(θi − θi0)

2 +
∑

dihedrals

vn

2
(1 + cos(nω − γ)) (7.4)

In the second of these three equations σIJ and ǫIJ are the Lennard-Jones radius and

interaction energy between atoms I and J . In the last expression, ki, ai, and vn, represent

force constants for the harmonic potentials controlling bond lengths, angles and torsions,

respectively.

In the QM-MM methodology the Hamiltonian and the energy of the system are written

as:

Ĥtot = ĤQM + ĤMM + ĤQM−MM (7.5)

Etot = EQM + EMM + EQM−MM (7.6)

where HQM−MM (and the related energy EQM−MM) is a coupling term describing the in-

teraction between the two regions of the system. In this thesis we present the formu-
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lation of a hybrid QM-MM method in a PPW framework, more specifically in the Car-

Parrinello approach of the Quantum Espresso code [19]. We have implemented in the

present setting the electrostatic and van der Waals interactions between QM and MM wa-

ter molecules. The ultimate goal is to have available a hybrid QM-MM methodology in

PBC to describe two phases at different levels, e.g., the solid quantum-mechanically and

the solvent classically. This one is a very interesting approach to undertake molecular

dynamics studies of surface reactivity on intefaces with high accuracy at an affordable

computational cost. Before this methodology can be applied to the simulation of solid in-

terfaces, though, the incorporation of potentials to describe the solid phase is still needed.

Even so, we deemed important to include the fundamentals of this approach at the present

stage, namely because—to the best of our knowledge—no other QM-MM model has been

based on this framework, but also because its development has been a core subject of this

thesis work.

7.2 Implementation of the hybrid QM-MM methodology

in a PPW framework

7.2.1 The energy

Within a QM-MM hybrid methodology the energy can be calculated as a sum of three

different contributions, as stated in Eq.7.6. In the Pseudopotential Plane Wave (PPW)

approach (see section 2.2.4), used in the Quantum Espresso code, the QM energy can be

cast as:

EQM = EKS[ρ] = Te[ρ] + EH [ρ] + Eii + Eloc
PS[ρ] + Enl

PS + EXC [ρ] (7.7)

On the right hand side of the above equation, from left to right, there is the kinetic

energy of the electrons, the Hartree energy, the ion-ion repulsion, the local and non-local

contributions to the pseudopotential energies, and the exchange-correlation functional.

One of the key points in our hybrid approach is to conceive the MM atoms in the same

way as the pseudoions of the QM region within the PPW framework. There are basically

two differences between MM and QM ions in this case: (i) the MM atoms do not include

a non-local pseudopotential term, and (ii) the MM ions can have a partial charge, which

can be either negative or positive, according to the charge parameter in the force field.

In the PPW method, the electrostatic contribution comes from the sum of the second,

third and fourth terms on the right hand side of equation 7.7:
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Ees,QM [ρ] = EH [ρ] + Eloc
PS[ρ] + Eii

=
1

2

∫∫

ρ(r)ρ(r’)

|r− r’| drdr’ +
Ns
∑

s=1

Ps
∑

l=1

∫

ρ(r)vloc,s
PS (|r− RI |)dr +

1

2

P
∑

I=1

P
∑

J=1,J 6=I

ZIZJ

|RI − RJ |
(7.8)

where ρ(r) is the electronic charge distribution, s indicates the atomic species, Ns is the

number of different atomic species, and vloc,s
PS is the local pseudopotential for each species.

ZI is the ionic charge of the nuclei (which amounts to the atomic number minus the

valence electrons) and RI their positions. P stands for the number of ions and Ps for

the number of ions corresponding to the atomic species s. In the computational code the

electronic charge is taken as positive and the ionic charge as negative: in this chapter we

will follow the same convention.

If we define the Hartree energy ẼH [ρ] as a function of the total charge density ρT
1

(ρT = ρα + ρ, with ρα the total ionic density as defined in section 2.2.4 to be used in the

Ewald sum), then equation 7.8 can be rewritten in the following way2:

Ees,QM = ẼH [ρ] + Ẽii + Ẽloc
PS[ρ] (7.9)

where each term above is:

ẼH [ρ] =
1

2

∫∫

ρT (r)ρT (r’)

|r− r’| drdr’ (7.10)

Ẽloc
PS[ρ] =

∫

ρ(r)

(

Ns
∑

s=1

Ps
∑

l=1

vloc,s
PS (|r− RI |)dr−

∫

ρα(r’)

|r− r’|

)

dr (7.11)

Ẽii =
1

2

(

P
∑

I=1

P
∑

J=1,J 6=I

ZIZJ

|RI − RJ |
−
∫∫

ρα(r)ρα(r’)

|r− r’| drdr’

)

(7.12)

To get these three expression from the previous ones, ρα is added to EH and substracted

from Eloc
PS and from Eii, so that the sum of the three terms (the electrostatic energy) is

conserved. In our QM-MM method, the electrostatic energy is expanded to include the

MM atoms:

Ees[ρ] = ẼH [ρ] + Ẽloc
PS[ρ] + Ẽem[ρ] + Ẽim (7.13)

where the four terms on the right hand side represent, respectively from left to right, the

Hartree energy, the interaction of the electron density with the local pseudopotential, with

1In Car-Parrinello implementations, the Hartree energy is usually expressed as ẼH [ρtot].
2As it is shown below, this reformulation is helpful to sum an infinite arrange of charges to compute the

total electrostatic energy in periodic boundary conditions
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the classical charges, and the Coulomb interaction involving all ions, both QM and MM. In

particular, the last two terms of Eq. 7.13 can be written as:

Ẽem[ρ] =

∫

ρ(r)

(

Nm
∑

m=1

vm
MM (|r− RI |)dr−

∫

ρI(r’)

|r− r’|

)

dr (7.14)

Ẽim =
1

2

(

T
∑

I=1

T
∑

J=1,J 6=I

ZIZJ

|RI − RJ |
−
∫∫

ρI(r)ρI(r’)

|r− r’| drdr’

)

(7.15)

where m runs over the number of classical atomic species, while Nm and Mm are, respec-

tively, the number of classical species and the number of atoms for the m species. The func-

tion vm
MM is the pseudopotential associated with the classical species m, and is defined be-

low. ZI is the ionic charge of every atom (irrespective of being quantum or classical) and RI

its location. T denotes the total number of atoms in the system (T =
∑Ns

s Ps +
∑Nm

m Mm).

The pseudopotential of the classical atoms, vm
MM , has to verify a few properties: has to

be a smooth continuous function to be numerically tractable with Fast Fourier Transforms,

has to decay as the inverse of the distance r at long ranges, and must avoid the divergence

when r → 0. We have adopted the functional form proposed by Laio et al. [5] for the

representation of the QM atoms in a previous QM-MM implementation:

vm
MM (|r− RI |) = vm

MM (r) = Zm
r4
cm − r4

r5
cm − r5

(7.16)

where m denotes the classical atom species, Zm its charge, and rcm a cutoff radius associ-

ated to every species. This function approaches Zm/r for r ≫ rcm, and goes smoothly to

Zm/rcm for r = 0. Even if the exact value of vMM at short ranges is not critical, it has to

be small enough not to become a trap for the electrons. In the case of plane-wave basis,

sharp MM potentials of positive species may cause electronic charge localization on the

classical atoms: this is called the spill out effect. The possibility of electron density flowing

to the MM region can be minimized using a classical pseudopotential which varies softly

and has a small magnitude at short distances. The function defined in 7.16 satisfies these

conditions, providing at the same time an appropriate interaction between MM and QM

atoms.

As discussed in section 2.2.3, the Coulomb energy of a periodic arrange of charges is

conditionally convergent: to achieve convergence, the sum is decomposed in three contri-

butions, one of which is computed in the reciprocal space. Analogously to the treatment

in 2.2.4, all terms in equation 7.13 can be transformed to Fourier space, and the total

electrostatic energy of the QM-MM system can be evaluated as a function of the G-vectors:
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Ees[ρ] =
Ω

2

∑

G 6=0

4π

G2
ρ̃T (G)ρ̃T (−G)

+Ω
∑

G

Ns
∑

s=1

Ss(G)ũloc,s
PS (G)ρ̃(−G) + Ω

∑

G

Nm
∑

m=1

Sm(G)ũm
MM (G)ρ̃(−G)

+
1

2

T
∑

I=1

T
∑

J 6=1

ZIZJ

[

nmax
∑

n=−nmax

erfc(|RI + nL− RJ |η)
|RI + nL− RJ |

]

− η√
π

T
∑

I=1

Z2
I (7.17)

The first term on the right hand side in 7.17 is the Hartree energy. The second and

third terms account for the interaction of quantum nuclei and classical atoms, respectively,

with the electronic density. The fourth term represents the electrostatic interactions of all

ions with themselves, in the MM and QM regions. The last term arises from the Ewald sum

technique and is usually called Eself . The structure factors Ss(G) and Sm(G) correspond the

QM and MM species, respectively. ρ̃T (G) and ρ̃(G) are the Fourier transforms of the total

and electronic densities. The functions ũloc,s
PS (G) and ũloc,s

MM (G) are the Fourier transforms of

the corresponding pseudopotentials minus the ionic charge contribution: 3

uloc,s
PS = vloc,s

PS (r)− Zs

r
erf

(

√

2ηsr
)

(7.18)

um
MM = vm

MM (r)− Zm

r
erf

(

√

2ηmr
)

(7.19)

We note that equations 2.99 and 7.17 are similar, aside from the fact that in 2.99

the G = 0 terms were singled out and written explicitly. In particular, the third term in

equation 7.17 does not appear in 2.99, and the sums in the fourth and fifth terms obviously

include the MM atoms. As mentioned in section 2.2.4, it turns out that the fast (gaussian)

decay of ρα implies that the lattice sum running over periodic images up to nmax, can be

truncated after a small number of terms. Normally, nmax does not need to be larger than

1.

Since in the present implementation the MM atoms receive a similar treatment as the

QM nuclei, equation 7.6 is not the most natural way to split the total energy. With the

exception of the second and third terms in equation 7.17, the rest of the terms included in

the electrostatic energy Ees carry at the same time the contributions from MM atoms and

QM nuclei.

3The parameters ηm or ηs determine the width of the Gaussians used to model the ionic charges ρα, see
equation 2.90.
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There is a non-electrostatic contribution to the QM-MM energy, which is represented

with a Lennard-Jones potential:

ELJ,im =
∑

I

∑

J

4ǫIJ

[

(

σIJ

|RI − RJ |

)12

−
(

σIJ

|RI − RJ |

)6
]

(7.20)

where ǫIJ and σIJ are the parameters for the Lennard-Jones interaction of the classical

atom I with a quantum atom J . This energy is important to prevent the MM charges of

negative sign to collapse on the positive QM nuclei. The Lennard-Jones parameters for

the mixed QM-MM interaction is usually set equal to those employed for a pair of classical

atoms of the corresponding species. In particular, in the present approach, the values of σ

and ǫ for the oxygen-oxygen interaction are not dependent on the QM or MM identity of

the oxygen atoms.

Finally, combining all the contributions together, we compute the total energy as:

Etot[ρ] = Ees[ρ] + Te[ρ] + EXC [ρ] + Enl
PS + ELJ,im + ELJ,MM + Eb,MM (7.21)

where ELJ,MM considers the Lennard-Jones interactions within the MM region, and Eb,MM

the bonds between connected MM atoms.

7.2.2 The forces

The atomic forces can be calculated for the QM and for the MM atoms as the derivative of

the total energy (equation 7.21) with respect to the ionic positions. In the case of the QM

atoms, there is no explicit dependence of Te[ρ] and EXC [ρ] on RI , and therefore only three

terms survive in the derivative:

FI = −dEtot

dRI

= −∂Ees

∂RI

− ∂ELJ,im

∂RI

− ∂Enl
PS

∂RI

(7.22)

The former of these terms on the right hand side above can be developed as:

−∂Ees

∂RI

=
ZI

2

T
∑

J 6=I

nmax
∑

n=−nmax

(RI + l − RJ)×
[

erfc(|RI + l − RJ |η)
|RI + l − RJ |3

+
ηe−η2|RI+l−RJ |

2

|RI + l − RJ |

]

+Ω
∑

G 6=0

iGeiG·RI (ũloc,s
PS (G) + ũm

MM (G))ρ̃(−G) (7.23)

where l denotes the cell dimension. On the other hand, the Lennard-Jones contribution to

the force is simply:

−∂ELJ

∂RI

= 4ǫ

[

12σ12

|RI − RJ |13
− 6σ6

|RI − RJ |7
]

(7.24)
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Figure 7.1. Structure of the water dimer close to its energy minimum. The distance between the
oxygen atoms is denoted as dO−O.

The contribution originating in the non local part of the pseudopotential energy is part

of the standard QM implementation and will not be discussed in the context of this thesis.

On the other hand, the expression for the forces on the MM atoms will be similar to that

given in equation 7.25, but for the third term and for the derivatives of the pure MM

contributions:

FJ = −∂Ees

∂RJ

− ∂ELJ,im

∂RJ

− ∂ELJ,MM

∂RJ

∂Eb,MM

∂RJ

(7.25)

7.3 Tests in the water dimer

The potential energy curve of a water dimer, consisting of one water molecule in the QM

domain and the other in the MM zone, was calculated to get an assessment of the hybrid

QM-MM methodology. The geometry of the dimer was optimized using DFT, and then the

binding energy was computed at different separations. It is important to note that there

are two inequivalent configurations in which this curve can be obtained, depending on

whether the MM molecule plays the role of donor or acceptor of the hydrogen bond. In

the water dimer of Figure 7.1, the hydrogen bond donor is the molecule on the left and

the acceptor is on the right. Therefore, two curves were obtained. Along these curves, the

geometry of the QM water molecule was frozen to the optimized DFT structure, while the

geometry of the MM molecule was the one given by the SHAKE algorithm. The energy

was scanned along the O-H-O axis as a function of the H-bond distance, or the oxygen-

oxygen separation, denoted dO−O in the Figure. The geometry at the minimum is in fair

agreement with both theoretical [3,20,21] and experimental studies [22,23]. The curves

are compared with those obtained using either the pure QM or the pure MM approaches.
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Figure 7.2. The parameters characterizing the SPC water model: the H-O-H angle θ, the O-H bond
length I1, the atomic charges q1 and q2, and the Lennard Jones radius σ. Values are given in Table
7.1. Figure taken from reference [27].

Table 7.1. Parameters used in the SPC water model. Data taken from reference [18].

ǫ (Å) σ (KJ/mol) I1(Å) q1(e) q2(e) θ◦

3.166 0.650 1.000 +0.410 -0.820 109.47

7.3.1 Molecular Mechanics description of water

There are several water models which enable to characterize a water molecule from a

classical description. Different models may vary in the functional form of the potentials,

and in particular, in the number and the values of the required parameters [18]. Such

parameters are adjusted to reproduce different thermodynamical and structural properties

of water, typically in its liquid state: liquid density, heat capacity, or radial distribution

functions4 for O-O or O-H pairs [24–26]. Most atomistic force-fields for water have the

form of equation 7.1, in which case the Lennard-Jones parameters (ǫ and σ) are needed

to get ELJ and the partial charges of hydrogen and oxygen (q1 and q2 respectively) are

required to compute Eele. Atomistic models for water may be flexible or rigid, and this

dictates the form of Ebond. We will use a rigid model of water; in these type of models

internal degrees of freedom are eliminated, and Ebond may be replaced by the specification

of the O-H bond length and the H-O-H bond angle, which are kept frozen.

For this preliminary implementation of the QM-MM method we adopt the SPC [24]

water model, which is one of the simplest and most used in classical molecular dynamics

simulation of liquid H2O. The parameters characterizing the SPC model are indicated in

Figure 7.2 and their values are listed in Table 7.1.5 The distance I1 and the angle θ are kept

4The radial distribution function, conventionally denoted g(r), represents the atomic density of one kind
of atoms as a function of the distance to atoms of another kind.

5In our hybrid scheme charges q1 and q2 have the opposite sign due to the current convention in which
electrons are positive entities.
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fixed. To this end the SHAKE algorithm was added to the program [28]. In this procedure,

interatomic distances and angles remain fixed along the dynamics through the application

of a constraint force acting on top of the MM potential. For example, for the constraint on

the bond length between atoms i and j, we have σij = (ri − rj)
2 − d2

ij = 0. The associated

constraint forces Fci and Fcj are:

Fci = λ
∂σ

∂ri

Fcj = λ
∂σ

∂rj

= −Fci

The incorporation of these forces into the equations of motion perturbe the coordinates

of atoms i and j, so that the distance between them remains a constant, without affecting

the potential or kinetic energies. The Lagrange multiplier λ is determined from the integra-

tion algorithm and the constraint equation [28]. When there is more than one constraint,

as in the case of rigid water, then more than one Lagrange multiplier has to be obtained

self-consistently. The SHAKE algorithm solves the values of λ iteratively.

7.3.2 Quantum Mechanical setting

We provide here the computational parameters involved in the QM calculations. In order

to perform the hybrid QM/MM calculation, some parameters regarding the QM part has to

be settled. The O-H-O axis was oriented on the x direction. In principle, a large supercell

was employed to minimize the interactions of the water dimer with their periodic images.

The cell dimensions, 50×20×20 bohr, are longer on the x axis because this is the direction

in which the potential energy is scanned.

The BLYP approach to the DFT exchange-correlation energy [29,30], and norm-conserving

pseudopotentials [31] were adopted to compute total energies and forces. The Kohn-Sham

orbitals and charge density were expanded in planewaves up to a kinetic energy cutoff of

80 and 360 Ry, respectively6. k-sampling was restricted to the Γ point.

7.3.3 Interaction energy curves

Before going into the QM-MM calculations, we compare the curves provided by the pure

QM and MM methodologies for the water dimer. As already mentioned, the MM curve

was calculated with the SPC model, and the QM curve was obtained with DFT using the

computational parameters specified above. The results are plotted in Figure 7.3. The

difference in the description is readily apparent: the QM curve is shifted to a weaker

interaction and a longer distance at the minimum with respect to the MM curve. Reported

experimental values of 5.4± 0.7 kcal/mol and 2.9 Å [23] for the oxygen-oxygen separation

6Notice that the energy cutoff values are more demanding for norm-conserving pseudopotentials than for
ultrasoft, where cuttofs of 25 and 200 Ry are typically used.
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Figure 7.3. Interaction energy for a water dimer as a function of the O-O distance, according to
DFT (QM) and SPC (MM) calculations. Experimental value at the minimun is shown in green with
its error bar [23].

are better reproduced by the classical model, which provides an hydrogen bond energy of

5.8 kcal/mol at 2.8 Å. This better agreement stems from the fact that the SPC parameters

are fitted to reproduce water H-bonding.

On the other hand, the quantum-mechanical water dimer interaction, of 3.6 kcal/mol,

is underestimated with respect to experiments. This can be in part ascribed to the well

known flaw of density functional theory to describe long-ranged interactions [32], though

DFT calculations based on localized basis sets have provided results in better agreement

with experimental data [20,21,33]. Convergence of the present plane waves calculations

with respect to the basis set, pseudopotentials, supercell size,7 and other computational

parameters, has been thoroughly checked. On the other hand, plane waves calculations

reported in the past are consistent with our results [34, 35], suggesting that the under-

estimation of the H-bond energy is somehow related to the PW setting. Together with a

weaker interaction, a slightly longer equilibrium distance of around 3.0 Å is obtained.

Since we are tied to the PPW energies, we are limited in the accuracy of the QM-MM

description, which will reflect the behavior of the QM and MM Hamiltonians. In fact, the

QM-MM potential energy curves, shown in Figure 7.4, turn out to be quite interesting. As

discussed above, two configurations can be considered for the hybrid model, depending on

the identity of the donor of the H-bond: these curves are depicted together with the results

corresponding to the pure SPC and DFT calculations. Examination of the curves leads to

7The energy of the system was insensitive to further enlargement of the cell dimensions. We note that the
zero energy, corresponding to a non-interacting dimer, was defined at the point of maximum O-O separation,
of 25 bohr or 13.23 Å, i.e., one half of the unit cell constant on x.
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Figure 7.4. Interaction energy for a water dimer as a function of the O-O distance, according to
DFT (QM), SPC (MM), and hybrid QM-MM calculations. The QM-MM curves correspond to the
MM molecule in the role of H-bond donor and H-bond acceptor.

the following observation: the QM-MM curve in which the acceptor is the MM molecule,

roughly reproduces the SPC curve, whereas the QM-MM curve with this molecule in the

place of the H-bond donor, is closer to the DFT results. In other words, we conclude that

the curves are essentially reflecting the identity of the acceptor. This is a meaningful result,

understandable when we recall that most of the charge density involved in the bond, and

therefore the polarization effect, corresponds to the oxygen atom. The electron density

associated with the H atom is much lower, and there is not a major effect if this electron

density is replaced by a bare pseudopotential.

The reason why the hybrid curves have a stronger binding character than their par-

ents QM and MM curves, respectively, is more difficult to explain. In the case of the MM

acceptor, both the hybrid and the SPC curves overlap at long distances, but for smaller

separations the hybrid dimer is more strongly bound. The polarization of the charge den-

sity around the H atom can explain this enhancement of the interaction with respect to

the purely classical binding with non-polarizable charges. On the other hand, the second

hybrid curve—where the QM water plays the acceptor—follows closely the DFT behavior,

but is shifted to more negative energies. The cause for this shift is not evident to us, but

might be related to the way the reference energies defining the non-interacting dimers

were calculated. Anyway, a fine adjustment of the QM-MM curves can be made through

the cutoff radii rcm in equation 7.16. The values employed for the present results are

0.5 bohr and 0.4 bohr for oxygen and hydrogen respectively. A decrease in these radii

provokes a weakening of the interaction.
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Table 7.2. Atomic forces calculated analytically (F a) and through finite differences (F fd), for an
atomic displacement on the i-coordinate of 0.01 bohr between the initial and final states. The index
i denotes at the same time the component of the force and the direction of the displacement.

Atom type r Initial Fa Final Fa Fn

OQM x 5.97E-002 5.58E-002 5.8E-002
OQM y 3.96E-004 -3.71E-003 -1.0E-003
HQM x -2.95E-002 -3.12E-002 -3.0E-002
OMM x 3.71E-002 3.73E-002 3.7E-002
OMM y 8.87E-002 8.91E-002 8.9E-002
HMM x -6.97E-002 -6.88E-002 -6.9E-002

7.3.4 Atomic forces

To test the computation of the forces, we compare the analytical forces implemented in

equations 7.23 and 7.24 with the forces F fd obtained from finite differences as:

F fd
i,I = − ∂E

∂i(I)
= −E(RI + ∆i)− E(RI)

∆i
(7.26)

where i refers to any of the three directions, x, y or z, F fd
i,I denotes the i-component of the

force on atom I, E is the total energy, and ∆i is an atomic displacement applied to the

i-coordinate of atom I. The agreement between the finite difference approximation and

the values coming from the analytical expressions 7.23 and 7.24 prove the consistency

between energy and forces. The results of these tests are included in Table 7.2, where the

value of F fd
i,I is shown together with the forces analytically obtained at RI (initial state)

and at RI + ∆i (final state).

As expected, the finite difference forces always fall in between the two analytical re-

sults F a. The values of the last column in Table 7.2 were calculated as differences between

two close energies and were treated with a lower numerical precision. The apparent dis-

agreement in the values of the second row (y-component of the force on OQM) is simply

because of their very low magnitudes, close to zero. Yet, F fd is comprised between the

forces obtained for the initial and final states. The z-components of the forces were also of

a low magnitude and are not shown.

This preliminarly analysis supports the consistency of energies and forces. A more

stringent test would require to monitor the total energy conservation during long enough

molecular dynamics simulations in the microcanonical ensemble, for which the Verlet al-

gorithm needs to be implemented. This remains for the next stage of this development.
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7.4 Final comments

Evidently, the disagreement between the two QM-MM curves in Figure 7.4 is not a de-

sirable effect. However, we can not expect a much better agreement given the current

discrepancy between the DFT and SPC energies. This exceeds the domains of the QM-MM

formulation, however, the exploration of alternative forces-fields with behaviors closer to

the one exhibited by DFT must lead to a partial reconciliation between the two QM-MM

curves. Water models with more than three centers to represent the electrostatic interac-

tions (e.g. TIP4P [18] or TIP5P [26]), in which the charges are spatially less localized, are

candidates to be better partners of the quantum-mechanical potential. The possibility of

reparametrizing any of these existing models is also envisioned.

One of the central conclusions we draw from this study is that the simple idea of rep-

resenting the classical atoms in the same way as the pseudoions of the PPW approach,

turns out to be a viable strategy toward a QM-MM model. The empirical pseudopoten-

tials of equation 7.16 are another ingredient which could be tuned to fit the experimental

curves. In any case, the present pseudopotential functions have proved appropriate to

reproduce the MM or the QM behavior in each hybrid configuration, exhibiting no evi-

dence of spill-out effect (this was confirmed through the integration of the electron charge

density around the classical hydrogen atoms).

This implementation of the QM-MM hybrid methodology inside the Quantum Espresso

code, allows us to combine both levels of atomic description with the purpose of accelerat-

ing future PBC calculations and extending the size of the affordable systems. In particular,

our objective is the representation of solid-liquid interfaces through an all-atom technique

computationally less demanding than pure DFT treatments. Yet another interesting range

of applications would involve chemical connectivity between the QM and the MM sub-

systems. In this case the frontier between the QM and MM regions would be inside the

material, allowing for example a QM description of the surface atoms (interacting with an

adsorbate) and a molecular mechanics treatment of the rest of the slab. The same kind

of approach would be also useful to address amorphous materials in periodic boundary

conditions. To this end, a model to represent a covalent bond between a classical and a

quantum atom should be implemented. The link-atom method [36, 37] is typically used

to represent QM-MM bonds in molecular systems. To the best of our knowledge, however,

no equivalent approach has been developed for bonds in solids, and is therefore a future

challenge to be addressed at an advanced stage of the present development.
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Chapter 8

Conclusions and Prospects

Along this thesis we have studied both the solid-gas and solid-liquid interfaces of inor-

ganic oxides. In the former case, combination of the Umbrella Sampling technique with

Car-Parrinello molecular dynamics simulation enabled to determine the dissociation free

energy profiles for small molecules upon titanium dioxide clean surfaces. To the best of

our knowledge, this is the first example of the application of a biased statistical sampling

method to study the dissociation on surfaces at finite temperatures. Reaction and acti-

vation free energies are the most relevant thermodynamic variables involved in chemical

processes at constant temperature, because they determine the equilibrium and the kinetic

parameters ruling the reaction. At the same time, they are not trivially accessible by com-

puter simulation, nor by experiments, and so they are seldom reported in the literature.

Our calculations do not only provide an estimate for the values of the kinetic barriers and

the reaction free energies for key processes in TiO2 surface chemistry: they also tell us,

thanks to the computation of the dissociation entropies, to what extent the energies ob-

tained at 0 K are a measure of the stability at room temperature, which is a widespread

assumption in computational surface chemistry.

One of the main drawbacks of the Umbrella Sampling method is the need to provide

the reaction coordinate in advance, which could be a difficult task for processes of greater

complexity than those studied here. In those cases, the employment of this technique

in combination with the NEB method 1 could be an interesting strategy to investigate

catalytic reactions. In this framework, the NEB method could be used to determine the

most suitable reaction coordinates before performing the statistical sampling, extracting

at the same time the internal and free energy profiles for a given reaction. In particular,

among the possible processes that could be investigated with this scheme, a very appealing

direction would be the determination of the PZC (point of zero charge) of oxide surfaces,

by studying the dissociation of water at the solid-liquid interface. To realize this at a

feasible computational cost, we envision the combination of Umbrella Sampling with either

1NEB denotes the Nudgest Elastic Band method, an algorithm to explore the pathways between products
and reactants in order to compute internal energy profiles [1,2]
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the hybrid QM-MM methodology or the continuum solvent model devised in this thesis to

represent the solution.

A successfull collaboration with an experimental group has shown how simulations

can complement and allow for the interpretation of spectroscopic data. While in this case

the data came from XPS measurements, the results from gas phase PPW-DFT calculations

often admit direct comparison against surface microscopies and spectroscopies providing

atomistic detail, such as STM, AFM, EXAFS or NEXAFS [3]. On the other hand, the de-

velopment of a continuun solvent model in periodic boundary conditions based on DFT

and the Car-Parrinello scheme, brings closer the possibility of studying reactivity at solid-

liquid interfaces. Using this method, we examined the adsorption of small molecules on

titania surfaces through total energy calculations. Our results were in close agreement

with more expensive calculations in which the solvent was explicitly included, every time

these calculations were available, as in the work by Langel et al. on the adsorption of

organic species [4], or by Cheng and Selloni about the chemistry of the hydroxide ions at

the water-anatase interface [5].

One of the most interesting features of the continuum solvent model developed in this

thesis is the possibility of performing molecular dynamics simulations at the solid-liquid

interface. This possibility has not been fully explored in this thesis mainly because of

the unavailability of a parallel version of the multigrid computer code implemented to

solve the Poisson equation. Today, most state of the art simulations from first-principles

in materials science are carried out in multiprocessor architectures which allow for the

treatment of larger system over longer times. Work is in progress in this direction to have

a paralell multigrid algorithm. In particular, as mentioned above, the potential to perform

long molecular dynamics within the continuum solvent model would allow, in combination

with the Umbrella Sampling technique, to determine in an accurate way the PZC of oxide

surfaces: in the last two or three years, a small number of studies attempting to recover

this important property from ab-initio calculations have been reported [6, 7]. PZC values

can be measured experimentally in a variety of ways such as potentiometric titration, or

through electrokinetic and electroacustic methods [8]. All these provide results which are

averages on the different exposed faces of the material; in contrast, simulations can pro-

vide information concerning a specific surface. Empirical models exist for the estimation

of the PZC of oxides, the MUSIC 2 model [9, 10] being among the most employed in ma-

terials chemistry. The applicability of this and other models relies on a large amount of

parameters. Different studies have sought to use DFT calculations to improve the MUSIC

parameters [11–14], but the possibility of realizing calculations in contact with the liquid

phase opens the way to PZC estimations based fully on first-principles [7], without the aid

2MUSIC denotes MULtiSIte Complexation empirical model

148



REFERENCES

of empirical models. In this line, we have already started a study of the PZC of silica and

titania surfaces, based on the computation of dissociation energies in the presence of the

continuum solvent.

Finally, we have invested a lot of effort in the first stage toward the implementation of

a hybrid QM-MM technique for extended systems. For now, only the MM-parameters cor-

responding to water have been incorporated. For this methodology to be used in surface

chemistry simulations, a second stage of parametrization must be carried out to include

the water-surface interaction potentials. Even though not in its final stage, the model pre-

sented so far is, to the best of our knlowledge, the first QM-MM scheme implemented with

Ewald sums in periodic boundary conditions. Our hope is this methodology will open the

path to study the surface chemistry of defects as well as nanostructured surfaces exhib-

ing terraces and hinks. Moreover, the same method can be adapted to include discrete

or continuous distributions of charge which could be used to represent an electric field

in the simulations, with the ultimate goal of describing an electrode embedded in an MM

liquid phase. This would allow for molecular dynamics simulations of electrochemical pro-

cesses, which is today one of the most appealing challenges in the field of first-principles

simulations in chemistry and materials science.

Above all, one of the main objectives of this thesis—which we believe was accomplished—

was to set up the basis for the computational study of solid-liquid interfaces, as the starting

point from where to continue working.
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