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Resumen

La teoŕıa de gravedad de Lovelock es la extensión natural de la teoŕıa
de Einstein a dimensiones mayores que cuatro. Esta es una teoŕıa de gran
importancia en f́ısica teórica ya que incluye a la Relatividad general y a las
llamadas Gravedades de Chern-Simons como ejemplos particulares. Además,
la teoŕıa de Lovelock emerge como una corrección de segundo orden en la
parte gravitacional de la acción efectiva de bajas enerǵıas de ciertas teoŕıas
de cuerdas.

En esta tesis, estudiamos soluciones de agujero negro y solitones gravita-
torios en la teoŕıa de Lovelock. Comezamos nuestro estudio discutiendo las
motivaciones para considerar esta teoŕıa de gravedad en particular. Luego,
revemos cómo, en el régimen de distancias cortas, la f́ısica de los agujeros
negros resulta modificada con respecto a lo que aprendimos de la mano de
la Relatividad General. Discutimos en detalle los aspectos geométricos y
termodinámicos. Luego, atacamos el problema de incluir términos de borde,
y usamos éstos para construir soluciones de vaćıo que pueden ser pensadas
como solitones gravitatorios de la teoŕıa de Lovelock en cinco dimensiones.
Analizamos detalladamente la (in)estabilidad y la estructura global de las
nuevas soluciones. De la gran familia de nuevas soluciones que encontramos,
prestamos particular atención a las soluciones de vaćıo tipo wormhole y tipo
vacuum-shells, esféricamente simétricas. La existencia de este tipo de solu-
ciones nos lleva a mostrar que los teoremas tipo Birkhoff en la teoŕıa de
Lovelock resultan ser válidos sólo localmente, a diferencia de lo que ocurre
en la teoŕıa de Einstein. También estudiamos la naturaleza de la singularidad
en la teoŕıa de Lovelock. En esta teoŕıa, existen soluciones de masa positiva
que, aún aśı, exhiben singularidades de curvatura desnudas. Probamos que,
cuando estas singularidades son analizadas con el método de quantum probes,
estos espacios singulares pueden ser considerados como regulares en el con-
texto cuántico.

Esta tesis está basada en los resultados que la autora ha publicado en las
referencias [81, 80, 82]. El contenido también fue presentado por la autora
en dos seminarios dictados en el Martin A. Fisher Physics Department de
Brandeis University.

PALABRAS CLAVE: Agujeros Negros, Gravedad Cuántica, Dimensiones
adicionales



Abstract

Lovelock theory of gravity is the natural extension of Einstein theory
to higher dimensions. This is a theory of great importance in theoretical
physics because it includes General Relativity and the so called Chern-Simons
gravities as particular examples. Besides, Lovelock theory arises as next-to-
leading corrections in the gravitational part of the low energy effective action
of certain string theories.

In this thesis we study black hole solutions and gravitational solitons in
Lovelock theory. We begin by discussing the motivation for considering this
particular theory of gravity. Then, we review how, in the short-distance
regime, black hole physics gets modified with respect to what we know from
General Relativity. Geometrical and thermodynamical aspects are discussed
in detail. Then, we address the problem of including boundary terms, and
use them to construct vacuum solutions that can be thought of as gravita-
tional solitons of five-dimensional Lovelock theory. We carefully analyse the
(in)stability and global structure of the new solutions. Among the large fam-
ily of new exact solutions we found, particular attention is focused on vacuum
spherically symmetric wormholes and vacuum-shells. The existence of such
solutions leads us to show that Birkhoff-like theorems only hold locally in
Lovelock theory, in contrast to Einstein theory. We also study the nature
of the singularity. Solutions of positive mass exhibiting naked curvature sin-
gularity exist, and we prove that when testing with quantum probes these
singular spaces can be regarded as regular within a quantum mechanical
context.

This thesis is based on the results the author has published in references
[81, 80, 82]. The material was also presented by the author in two lectures
delivered in the Martin A. Fisher Physics Department of Brandeis University.

KEY WORDS: Black Holes, Quantum Gravity, Higher-Dimensions
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Chapter 1

Introduction

1 Why higher-curvature corrections?

It is a common belief that General Relativity, despite its fabulous success
in describing our Universe at middle and large scale, has to be corrected at
short distance. In particular, the apparent tension between Einstein’s theory
and quantum field theory supports the idea that General Relativity is merely
an effective model that would be replaced in the UV regime by a different
theory, and such a new theory would ultimately permit to make sense of what
we call Quantum Gravity. The natural scale at which one expects such short
distance corrections to manifestly appear is the Planck scale lP , determined
by the Newton’s coupling constant G = l2P/16¼.

At present, the most successful candidate to represent a quantum theory
of gravity is String Theory (or its mother theory, M-theory). In fact, one of
the predictions of string theory is the existence of a massless particle of spin
2 whose dynamics at classical level is governed by Einstein equation

R¹º = 0. (1.1)

In addition, string theory also predicts next-to-leading corrections to
(1.1), which would be relevant at distances comparable with the typical
length scale of the theory ls =

√
®′ ≲ lP . These short-distance corrections

are typically described by supplementing Einstein-Hilbert action by adding
higher-curvature terms, correcting General Relativity in the UV regime. As
a result, the spin 2 interaction turns out to be renormalizable, and this raises
the hope to finally have access to a consistent theory of quantum gravity.
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In addition to higher-curvature corrections to Einstein theory, string the-
ory makes other strong predictions about nature. Probably, the most im-
portant ones are: the existence of supersymmetry, and the existence of extra
dimensions. In fact, one of the requirements for superstring theory to be
consistent is the space-time to have 9+1 dimensions. Besides, we learn from
our daily experience that six of these extra dimensions have to be hidden
somehow.

This digression convinces us that studying higher-curvature modification
of General Relativity in higher dimensions seems to be crucial to address the
problem of quantum gravity. This is precisely the subject we will study in
this Thesis. More precisely, in this Thesis we will investigate how the string
inspired higher-curvature corrections to Einstein-Hilbert action modify the
black hole physics in the UV regime. This turns out to be a very important
question since the black holes are known to be a fruitful arena to explore
gravitational phenomena.

To investigate black hole physics in higher-curvature gravity theories, the
first question we have to answer is whether such theories actually induce
short-distance modifications to the black hole geometry or not. Actually,
despite one naively expects that the inclusion of higher-curvature terms in
the gravitational action yields modifications to General Relativity, it is not
necessary the case that such modifications manifestly appear in the static
spherically symmetric sector of the space of solutions. In fact, as we will
see below, Schwarzschild geometry usually resists to be modified. In turn,
first it is important to identify which are the theories of gravity that yield
modifications to the spherically symmetric Schwarzschild solution.

1.1 Schwarzschild metric as a persistent solution

To warm up, let us start by considering a very simple example of higher-
curvature term. Consider the action

S =
1

16¼G

∫

d4x
√−g

(

R− 2Λ + ®R2
)

(1.2)

which corresponds to Einstein-Hilbert action in four dimensions augmented
with the square of the curvature scalar. This action is a particular case of the
so-called f(R)-gravity theories, which are defined by adding to the Einstein-
Hilbert Lagrangian a function of the Ricci scalar f(R). It is well known that
f(R)-gravity theories are equivalent (after field redefinition that involves a
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conformal transformation) to General Relativity coupled to a scalar field
Á, provided a suitable self-interaction potential V (Á) that depends on the
function f (see [149] and references therein). In this sense, these theories are
not different from particular models of quintessence. Here, we are interested
in less simple models; however, let us consider (1.2) as the starting point of
our discussion.

A remarkable point is that the theory defined by action (1.2) admits
(Anti-) de Sitter-Schwarzschild metric as its static spherically symmetric so-
lution.

Theory (1.2) is not the only theory of gravity that admits Schwarzschild
metric as a persistent solution. Actually, this is a common feature of theories
with higher-curvature terms. A second example is given by Einstein gravity
coupled to conformally invariant gravity; namely

S =
1

16¼G

∫

d4x
√−g

(

R− 2Λ + ® C®¯¹ºC
®¯¹º

)

, (1.3)

where ® is a coupling constant and C®¯¹º is the Weyl tensor, whose quadratic
contraction reads

C®¯¹ºC
®¯¹º =

1

3
R2 − 2R®¯R

®¯ +R®¯¹ºR
®¯¹º . (1.4)

The equations of motion associated to this action read

R¹º −
1

2
Rg¹º + Λg¹º + ®W¹º = 0, (1.5)

where W¹º is the Bach tensor,

W¹º = □R¹º −
1

6
g¹º□R− 1

3
∇¹∇ºR + 2R¹½º¾R

½¾

−1

2
g¹ºR½¾R

½¾ − 2

3
RR¹º +

1

6
g¹ºR

2, (1.6)

It is easy to show that, when Λ = 0, Scwarzschild metric solves equations
(1.5) as well. This follows from the fact that Bach tensor (1.6) vanishes if
Ricci tensor vanishes, and thus all solutions to General Relativity are also
solutions to (1.5).

Another example of a modified theory that admits Schwarzschild metric
as a solution is the Jackiw-Pi theory [102]. This theory has recently attracted

6



much attention due to its phenomenological predictions1. It is defined by the
action

S =
1

16¼G

∫

d4x
√−g

(

R− 2Λ +
µ

4
∗R®¯¹ºR

®¯¹º

)

, (1.7)

where the function µ is a Lagrange multiplier that couples to the Pontryagin
density ∗R®¯¹ºR

®¯¹º , constructed via the dual curvature tensor

∗R® ¹º
¯ =

1

2
"½¾¹ºR®

¯½¾,

where "½¾¹º is the volume 4-form. The inclusion of the non-dynamical field µ
comes from the fact that the Pontryagin form ∗R®¯¹ºR

®¯¹º is a total deriva-
tive. Action (1.7) is often called Chern-Simons modified gravity; however,
this has to be distinguished from the Chern-Simons gravitational theories we
will discuss in this Thesis.

The equations of motion derived from the Jackiw-Pi action (1.7) take the
form

G¹º + Λg¹º + C¹º = 0, (1.8)

where,
C¹º = ∇®

(

∇¯µ
∗R®¹¯º

)

+∇®

(

∇¯µ
∗R®º¯¹

)

. (1.9)

In addition, we have the constraint

∗R®¯½¾R
®¯½¾ = 0 (1.10)

which implies the conservation of the field equations

∇¹C¹º =
1

8
∗R®¯½¾R

®¯½¾∇ºµ = 0, (1.11)

It is not hard to see that equations (1.8) and (1.10) are solved by Schwarzschild
metric. This is because the Pontryagin density ∗R®¯½¾R

®¯½¾ of Schwarzschild
metric vanishes. In contrast, Kerr metric has not vanishing Pontryagin form,
and thus it is not a solution of Jackiw-Pi theory. In fact, the rotating solu-
tion of this theory has not yet been found, and this represents an interesting
open problem as the Jackiw-Pi theory is considered as a phenomenologically
viable correction to Einstein theory.

Summarizing, there are several models that, while representing short dis-
tance corrections to General Relativity, still admit the Schwarzschild metric

1For instance, this theory predicts polarization and birefingence in gravitational waves.
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as an exact solution. In particular, this implies that such models can not
be the solution to problems like the issue of singularity. On the other hand,
there are other examples which, still being integrable, do yield deviations
from General Relativity solutions even in the static spherically symmetric
sector. In this Thesis we will be concerned with one of such models. We
will study a very special case of higher-curvature corrections to Einstein
gravity in higher dimensions, and we will see that substantial modifications
to Schwarzschild solution are found at short distances. The model we will
study is the five-dimensional Lovelock theory, which arises in the low energy
effective action of M-theory.

1.2 Higher-curvature terms in higher dimensions

Before introducing the Lovelock theory in five-dimensions, let us begin by
considering a much more general example. Consider the action

S[g¹º ] =

∫

dDx
√−g

(

R− 2Λ + ®R2 + ¯R®¯R
®¯ + °R®¯¹ºR

®¯¹º
)

(1.12)

where the constants ®, ¯, and ° are the coupling constants for each quadratic
term. The field equations obtained by varying the action (1.12) with respect
to the metric read

0 = G¹º + Λg¹º + (¯ + 4°)□R¹º +
1

2
(4® + ¯) g¹º□R+ (1.13)

− (2® + ¯ + 2°)∇¹∇ºR + 2°R¹°®¯R
°®¯

º + 2 (¯ + 2°)R¹®º¯R
®¯ +

−4°R¹®R
®

º + 2®RR¹º −
1

2

(

®R2 + ¯R®¯R
®¯ + °R®¯°±R

®¯°±
)

g¹º

Action (1.12) is the most general quadratic action one can write down in
D-dimensions. For D ≤ 4, the Gauss-Bonnet theorem permits to fix ° = 0
without loss of generality. In D > 4, however, three quadratic invariants are
needed to describe the most general Lagrangian of this type.

For generic values of the coupling constants ®, ¯ and °, the equations of
motion (1.13) are fourth-order differential equations for the metric (e.g. there
are terms like ∇¹∇ºR, and □R¹º , etc.). Nevertheless, a remarkable property
of (1.12) is that there exists one particular choice of the coupling constants
®, ¯ and ° that results in the cancellation of the higher order terms, yielding
second order differential equations. It is not hard to see that this choice is
® = ° = −¯/4, which only gives a non-trivial modification to Einstein theory
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for D > 4. It is worth emphasizing that this choice of coupling constants
is unique (up to a free parameter ®), and this feature is a consequence of
a more general result known as ”the Lovelock theorem”, which we will be
discuss in Chapter 2.

In this Thesis we will be mainly concerned with the theory defined by
action (1.12) with ® = ° = −¯/4. That is, the five-dimensional Lovelock
theory of gravity. Besides the uniqueness of the choice ® = ° = −¯/4, what
already makes this model interesting in its own right, let us say that this
is exactly the effective Lagrangian that appears in the low energy action of
some string theories (or M-theory).

2 Higher-curvature terms from M-theory

Now, let us discuss how the five-dimensional Lovelock theory arises in the
low energy limit of M-theory (and, consequently, of string theory) when the
theory is compactified from 11D (resp. 10D) to 5D.

2.1 The M-theory effective action

M-theory is supposed to be a generalization of string theory; a theory in
eleven dimensions that, in certain regime, would flow to string theory [166].
Presumably, the basic degrees of freedom of this theory are extended objects
(often called M-branes).

This Mother-theory, if it exists, is yet to be found; nevertheless, we do
know what it has to look like in the low energy limit: it has to look like eleven-
dimensional supergravity augmented with higher-curvature terms. That is,
the bosonic sector of the M-theory effective action is given by the graviton
g¹º (i.e. the metric) and the 3-form gauge field A¹º½ (with field strength
F¹º½¾ = 1

4
∂[¹Aº½¾]). Including the pure gravitational fourth order corrections
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O(R4), this effective action takes the form2 [157]

SM =
1

(2¼)5l9P

[∫

d11x
√
gR − 1

48

∫

d11x
√
gF¹1¹2¹3¹4

F ¹1¹2¹3¹4+ (1.14)

− 1

36(4!)2

∫

d11x"¹1¹2..¹11
A¹1¹2¹3F ¹4¹5¹6¹7F ¹8¹9¹10¹11 +

+
l6P
27

(

3

213

∫

d11x
√
gt¹1¹2...¹8tº1º2...º8R

º1º2
¹1¹2

Rº3º4
¹3¹4

Rº5º6
¹5¹6

Rº7º8
¹7¹8

− 1

216

∫

d11x
√
g"¹1¹2...¹8®¯°"º1º2...º8®¯°R

º1º2
¹1¹2

Rº3º4
¹3¹4

Rº5º6
¹5¹6

Rº7º8
¹7¹8

)]

+ ...

where the ellipses stand for the fermionic content and higher-order contribu-
tions. These higher order contributions include terms like O(F 4) and also
couplings of the form O(A R4); we will not consider these terms here.

The tensor t¹1...¹8 in the third line of (1.14) is defined in terms of the way
it acts on antisymmetric tensors of second rank, namely

t¹1¹2...¹8B¹1¹2
B¹3¹4

B¹5¹6
B¹7¹8

= 24tr(B4)− 6tr(B2)2,

where tr(Bn) refers to the trace of Bn.
The term in the fourth line in (1.14) is actually one of the terms that

appear in the Lagrangian of Lovelock theory (see Section 2, where this term
is expressed in an alternative way). However, the term in the third line,
which is of the same order, does not correspond to a term in the Lovelock
theory3.

2.2 Calabi-Yau compactifications and Gauss-Bonnet

Now, let us analyze what happens when the M-theory effective action we
discussed above (including the higher-curvature terms ℛ4) is compactified to
five dimensions. Let us assume we reduce from 11D to 5D by compactifying
six of the eleven dimensions in compact Calabi-Yau (CY6) threefold. It is
known that, in that case, the effective action of the five-dimensional theory
takes the form

2The eleven-dimensional Newton constant is given by the Planck scale G(11D) = 2¼4l9P .
3Actually, while second-order terms of heterotic string theory expressed in a particular

frame agree with the second-order term of the Lovelock theory, the fourth-order terms of
Type IIA and IIB string theories (and M-theory) do not agree with the fourth-order term
of the Lovelock theory.
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Seff =

∫

d5x
√−g

(

R−2Λ+
1

16
cI(2)VI(R

2−4R¹ºR
¹º+R®¯¹ºR

®¯¹º)

)

, (1.15)

where we used units such that G(5D) = 1/16¼, and where the coupling cI(2)VI

is a quantity that depends on the ”details” of the internal CY6 manifold
(more precisely, cI(2) are the components of the second Chern-class of the 6D

Calabi-Yau space, while V I are the so-called scalar components of the vector
multiplet, which are proportional to the Kähler moduli of the Calabi-Yau).

We observe that action (1.15), at least in the approximation where the
coupling cI(2)VI = 16® can be considered constant, corresponds to a particular

case of (1.12); namely the case D = 5, ® = ° = −¯/4. And this is exactly
the (only) case for which the equations of motion (1.13) turn out to be of
second order. This is precisely the theory we will study in this Thesis: the
most general quadratic theory of gravity with equations of motion of second
order, which, on the other hand, is the one that arises as Calabi-Yau com-
pactifications of M-theory. It is worth mentioning that this quadratic action
also appears in the low energy effective action of heterotic string theory.

2.3 AdS/CFT correspondence and holography

Because action (1.15) also appears in the effective action of the heterotic
string, it is usually called ”string inspired higher-curvature corrections”. In
turn, it represents a nice model to explore the effects of next-to-lading con-
tributions of string theory to gravitational physics. In particular, this five-
dimensional (Lovelock) model of gravity was recently considered in the con-
text of AdS/CFT holographic correspondence: One of the applications of
the Lovelock theory to AdS/CFT that has attracted attention recently was
that of showing that the so-called Kovtun-Starinets-Son (KSS) bound may
violated in a theory that contains higher-curvature corrections. The KSS
bound is a conjecture that states that: the ratio between the shear viscosity
´ to the entropy s of all the materials obey the relation

´

s
≥ 1

4¼
(1.16)

In Refs. [26] it was observed that when action (1.12) with ® = ° = −¯/4
and Λ = −l−2 < 0 is considered in asymptotically locally AdS5 space, then
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the conformal field theory (CFT) that would be dual to such a theory of
gravity would satisfy

´

s
=

1

4¼

(

1− 4®

3l2

)

(1.17)

what then would violate (1.16) for ® > 0. Therefore, the KSS bound would
be violated for all the CFTs with a Einstein-Gauss-Bonnet gravity duals with
positive ®, and this is precisely the sign of ® predicted by string theory.

The consideration of five-dimensional Lovelock theory as a working exam-
ple to study the effects of including higher-curvature terms in AdS/CFT has
been one of the most active lines of research in the last year. This represents
one of the main motivations to study this theory in detail herein.

3 Overview

3.1 Motivation

In summary, we can mention two main reasons to study Lovelock gravity in
five dimensions:

∙ First, this theory is interesting in its own right as it is the natural
generalization of Einstein gravity to higher dimensions. It contains
General Relativity and Chern-Simons gravity as particular cases, and
can be thought of as a unique theory under certain natural assumptions.

∙ Secondly, as discussed above, the five-dimensional Lovelock theory emerges
in a low energy effective action of M-theory. Because of it, this model
of gravity has recently been considered as a prototype to explore the
effects of higher-curvature terms in the context of AdS/CFT correspon-
dence.

∙ The aim of this Thesis is to investigate the implications of including
higher-curvature corrections to Einstein equations, studying the UV
effects in black hole physics. Surprising phenomena, absent in General
relativity, are discovered.

3.2 Overview

This Thesis is organized as follows: In Chapter 2, we will introduce Love-
lock theory of gravity. In Chapter 3, the black hole solutions of this theory
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will be studied. In particular, we will analyze in detail the Boulware-Deser
static spherically symmetric black hole solution. The geometrical aspects,
causal structure, and thermodynamical properties, will be discussed in de-
tail. In Chapter 4, we will consider the boundary terms and use such contri-
butions to construct special cases of gravitational solitons of the theory. We
will show how vacuum solutions with non-trivial topological properties arise.
Wormhole-like objects and vacuum-shells will be explicitly constructed by
geometric surgery. In Chapter 5 we will describe the dynamical configura-
tions of these gravitational solitons and study their (in)stability. In Chapter
6, we will study naked singularities in Lovelock theory using quantum probes.
We will show in what sense the Lovelock spaces can be regarded as regular
spaces in a quantum mechanical context.

13



Chapter 2

The Lovelock Theory

As we mentioned in the introduction, Lovelock theory is the most general
metric theory of gravity yielding conserved second order equations of motion
in arbitrary number of dimensions D. In turn, it is the natural generalization
of Einstein’s general relativity (GR) to higher dimensions [115, 116]. In three
and four dimensions Lovelock theory coincides with Einstein theory [113], but
in higher dimensions both theories are actually different. In fact, for D > 4
Einstein gravity can be thought of as a particular case of Lovelock gravity
since the Einstein-Hilbert term is one of several terms that constitute the
Lovelock action. Besides, Lovelock theory also admits other quoted models
as particular cases; for instance, this is the case of the so called Chern-Simons
gravity theories, which in a sense are actual gauge theories of gravity.

On the other hand, Lovelock theory resembles also string inspired models
of gravity as its action contains, among others, the quadratic Gauss-Bonnet
term, which is the dimensionally extended version of the four-dimensional Eu-
ler density. This quadratic term is present in the low energy effective action
of heterotic string theory [34, 36, 89], and it also appears in six-dimensional
Calabi-Yau compactifications of M-theory; see [91] and references therein. In
[169] Zwiebach earlier discussed the quadratic Gauss-Bonnet term within the
context of string theory, with particular attention on its property of being
free of ghost about the Minkowski space. Besides, the theory is known to
be free of ghosts about other exact backgrounds [24]. For a nice and concise
review on stringy corrections to gravity actions [35, 134, 133] see the intro-
duction of [130] and references therein. For interesting recent discussions on
higher order curvature terms see [91, 90, 18, 108, 151] and related works.

The Lovelock theory represents a very interesting scenario to study how
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the physics of gravity results corrected at short distance due to the presence of
higher order curvature terms in the action. In this work we will be concerned
with the black hole solutions of this theory, and we will discuss how short
distance corrections to black hole physics substantially change the qualitative
features we know from our experience with black holes in GR. So, let us
introduce the Lovelock theory.

The Lagrangian of the theory is given as a sum of dimensionally extended
Euler densities, and it can be written as follows1 [115, 116]

ℒ =
√−g

t
∑

n=0

®n ℛn, ℛn =
1

2n
±¹1º1...¹nºn
®1¯1...®n¯n

n
∏

r=1

R®r¯r

¹rºr (2.1)

where the generalized Kronecker ±-function is defined as the antisymmetric
product

±¹1º1...¹nºn
®1¯1...®n¯n

=
1

n!
±¹1

[®1
±º1¯1

...±¹n

®n
±ºn¯n]

. (2.2)

Each term ℛn in (2.1) corresponds to the dimensional extension of the
Euler density in 2n dimensions2, so that these only contribute to the equa-
tions of motion for n < D/2. Consequently, without lack of generality, t in
(2.1) can be taken to be D = 2t for even dimensions and D = 2t+ 1 for odd
dimensions3.

The coupling constants ®n in (2.1) have dimensions of [length]2n−D, al-
though it is convenient to normalize the Lagrangian density in units of the
Planck scale ®1 = (16¼G)−1 = l2−D

P . Expanding the product in (2.1) the
Lagrangian takes the familiar form

ℒ =
√−g (®0+®1R+®2

(

R2 +R®¯¹ºR
®¯¹º − 4R¹ºR

¹º
)

+®3O(R3)), (2.3)

where we see that coupling ®0 corresponds to the cosmological constant Λ,
while ®n with n ≥ 2 are coupling constants of additional terms that represent
ultraviolet corrections to Einstein theory, involving higher order contractions
of the Riemann tensor R®¯

¹º . In particular, the second order term ℛ2 =

1Here we are ignoring the boundary terms. We will consider these terms in section 6.
2The 2n-dimensional Euler density Â is given by Â(M) =

(−)n+1Γ(2n+1)
22+n¼nΓ(n+1)

∫

M
d2nx

√−g ℛn, where, again, we are not considering the boundary
terms.

3See [51] for a related discussion on gravitational dynamics and Lovelock theory.

15



R2 + R®¯¹ºR
®¯¹º − 4R¹ºR

¹º is precisely the Gauss-Bonnet term discussed
above. The cubic term still has a moderate form [131], namely

ℛ3 = R3 + 3RR¹º®¯R®¯¹º − 12RR¹ºR¹º + 24R¹º®¯R®¹R¯º + 16R¹ºRº®R
®
¹+

+ 24R¹º®¯R®¯º½R
½
¹ + 8R¹º

®½R
®¯
º¾R

½¾
¹¯ + 2R®¯½¾R

¹º®¯R½¾
¹º . (2.4)

The fourth order term ℛ4 has a more abstruse expression. It can be shown
to coincide with that of the last line in (1.14).

Even though the way of writing Lovelock action in its tensorial form (2.3)-
(2.4) may result clear to introduce the theory, it is not the most efficient way
for most of the calculations one usually deal with. A more convenient way of
working out these expressions is to resort to the so-called first-order formal-
ism, which turns out to be useful both for formal purposes and for practical
ones. Nevertheless, it is important to point out that the first-order formal-
ism is not necessarily equivalent to the second-order formalism, so it should
not be regarded merely as a different nomenclature. In the first-order for-
malism, both the vielbein ea¹ and the spin connection !ab

¹ are considered as
independent degrees of freedom, and the torsion acquires in general propa-
gating degrees of freedom [156]. It is only in the torsion-free sector where
both formulations are equivalent; notice that the vanishing torsion condition
is always allowed by the equations of motion; see [167], see also [66]. We will
make use of the first-order formalism in section 4, as it is almost unavoid-
able in the discussion of Chern-Simons theory. However, with the intention
to make the exposition as friendly as possible, we will avoid abstruse tech-
nology in the rest of this work. In any case, since we could not afford to
give all the definitions necessary to introduce the subject, we will assume the
reader is familiarized with basic notions of the theory of gravity and with the
standard nomenclature.
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Chapter 3

Black holes in Lovelock theory

1 Spherically symmetric solutions

Let us first consider the theory in five dimensions. Since in D < 7 the ℛ3

and higher order terms do not contribute to the equations of motion, the
five-dimensional Lovelock theory basically corresponds to Einstein gravity
coupled to the dimensional extension of the four dimensional Euler den-
sity, i.e. the theory that is usually referred as Einstein-Gauss-Bonnet theory
(EGB), defined by the following Lagrangian

ℒ =
√−g (®0 + ®1R + ®2

(

R2 +R®¯¹ºR
®¯¹º − 4R¹ºR

¹º
)

), (3.1)

The spherically symmetric static solution of EGB theory was obtained by
Boulware and Deser in Ref. [24]. The metric takes the simple form [70]

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
3 (3.2)

where dΩ2
3 is the metric of a unitary 3-sphere, and where the metric function

f(r) is given by

f(r) = 1 +
r2

4®
+ »

r2

4®

√

1 +
16®M

r4
+

4®Λ

3
, (3.3)

with »2 = 1. Here we used the standard convention ®0/®1 = −2Λ, ®2/®1 =
®, and, besides, we have set the Newton constant to a specific value for short.
From (3.3) we notice that there exist two different branches of solutions to

17



the spherically symmetric ansatz (3.2), namely f+(r) in the case » = +1
and f−(r) in the case » = −1, and this reflects the fact that the equations
of motion give a differential equation quadratic in the metric function f(r).
As usual, the parameter M arises here as an integration constant, and it
corresponds to the mass of the solution1, up to the factor we absorbed2 in
M .

It is worth mentioning that (3.2)-(3.3) is the most general spherically sym-
metric solution to EGB theory, provided the fact that the metric is smooth
everywhere and that the parameters Λ and ® are generic enough. In turn,
a Birkhoff theorem holds for this model [67, 168, 43, 73]. It is important
to emphasize that for very particular choices of the set of parameters ®n,
degeneracy in the space of solutions can appear, and in those special cases
the Birkhoff’s theorem can be circumvented; see [168] for a very interesting
discussion. To our knowledge, the most complete analysis of the EGB ana-
logue of Birkhoff’s theorem was performed in [120], where the Nariai-type
solutions [40] where also discussed.

As it was already mentioned, the Boulware-Deser metric presents two
different branches, corresponding to » = −1 and » = +1. Interestingly, these
two branches have substantially different behaviors, and only one of them
tends to the GR solution in the small ® limit. In fact, in the limit ® → 0 the
branch » = −1 looks like

f 2
−(r) ≃ 1− 2M

r2
− Λ

6
r2, (3.4)

where we see it approaches the five-dimensional (Anti)-de Sitter-Schwarzschild-
Tangherlini solution [152]. On the other hand, in the ® → 0 limit the solution
corresponding to the branch » = +1 behaves like

f 2
+(r) ≃ 1 +

2M

r2
+

Λ

6
r2 +

1

2®
r2, (3.5)

and we see it acquires a large effective cosmological constant term ∼ r2/2®.
In particular, this implies that microscopic (A)dS space-time is a solution of

1For the discussion on the computation of charges in this theory see the list of references
[5, 128, 127, 7, 8, 126, 59, 112, 120, 71]; see also [142, 141, 72, 64, 28].

2More precisely, in the definition of M we absorbed a factor 8¼G
(D−2)ΩD−2

where Ωn =

(n+1)¼(n+1)/2

Γ((n+3)/2) is the surface of the n-sphere, and where G is the Newton constant, given by

G ∼ ®−1
1 , which has been fixed to a specific values such that ®1 = 1.
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the theory even for Λ = 0. This feature was expressed by Boulware and Deser
[24] by saying that EGB theory has its own cosmological constant problem,
with Λeff ∼ −1/®. In a sense, the branch » = +1 is commonly believed to be
a false vacuum of the theory, and it is known to present ghost instabilities
[24]; see also [25].

The branch » = −1, on the other hand, is well-behaved, and it represents
short distance corrections to GR black holes (3.4). While at short distances
the black hole solutions of both theories are substantially different due to the
effects of the Gauss-Bonnet term, in the large distance regime r2 >> ®, and
in the case of non-vanishing cosmological constant, the Lovelock black hole
(3.2) with » = −1 behaves like a GR black hole whose parameters M and Λ
get corrected by finite-® subleading contributions O(®Λ) [2]. Namely

f−(r) = 1− 2md

¼r2
− Λd

6
r2 +O(®r−6) (3.6)

where the dressed parameters md and Λd are given by

Λd = Λ

Ã

1 +
∞
∑

n=2

cn xn−1

)

= 1−
√
1 + x, md = m

Ã

1 +
∞
∑

n=2

n cn (−x)n−1

)

,

with

cn =
(2n− 3)!!

2n−1n!
, x :=

4

3
Λ®.

It is important to emphasize the difference existing between (3.4) and (3.6):
While the first corresponds to the actual limit ® → 0, the second represents
the large r2/® regime which takes into account finite-® contributions. For
instance, the finite-® corrections to the mass are found by simply collecting
the coefficients of the Newtonian term ∼ r2. The parameter x controls
the dressing of the whole set of black hole parameters. The above power
expansion converges for values such that x < 1. On the other hand, for x > 1
we find a different expansion, leading to the following dressed parameters in
the large r regime

md =
m

√

∣x∣

Ã

1 +
∞
∑

n=2

n cn (−x)1−n

)

Thus, we note that the Newtonian term∼ mdr
−2 vanishes in the limit ∣Λ®∣ →

∞. The particular case x = 1 is discussed below. Moreover, it is possible to
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see that, if one considers the case ®Λ > 0, the effective cosmological constant
in the large x limit turns out to be

Λd =

√

3Λ

®
− 3

2®
+O(1/

√

∣x∣) .

One of the relevant differences existing between the black hole solutions in
Einstein theory and in Einstein-Gauss-Bonnet theory is the fact that, in the
latter, the metric does not diverge at the origin of Schwarzschild coordinates,
r = 0, though its curvature is still singular. From (4.9), we easily observe

f±(r = 0) = 1±
√

M

®
.

In particular, this implies that the metric presents a angular deficit around
the origin, and, also, that massive objects with no even horizon exist; thus,
these correspond to naked singularities.

So in the large r limit, the next-to-leading r-dependent contribution to
(3.4) goes like O(®r−6). The damping of this additional term, which in D
dimensions goes like O(®r4−2D), is actually strong, and, for distance large
enough, it is negligible even in comparison with semiclassical corrections to
the metric due to field theory backreaction, which typically go likeO(ℏr5−2D).

For Λ = 0, the » = +1 branch depends on ® asymptotically, while
the asymptotically flat branch » = −1 does not. Also, the sign of the
Schwarzschild type of term depends on the branch: the two branches view the
energy M differently, i.e. the exotic metric of the Boulware-Deser solution
does not reduce to Einstein solution in the “infrared” limit.

If ® > 0, the solution corresponding to » = −1 in (3.3) may represent
a black hole solution whose horizon, in the case Λ = 0, is located at r+ =
√

2(M − ®). On the other hand, as long as ® > 0 and M > 0, the branch
» = +1 has no horizon but presents a naked singularity at r = 0.

The sign » is in some sense a charge which determines how a certain
energy M enters a metric and thus if the field will be attractive or repulsive.
As noted in [25], the graviton is a ghost on the asymptotic » = +1 branch,
because the linear Einstein tensor appears to have the opposite overall sign
(that is, this metric is classically unstable). This wrong sign is reflected in
the inverted sign of the Schwarzschild term.

Another interesting feature of the presence of the Gauss-Bonnet term is
that, for the particular choice of the parameters ®Λ = −3

4
, the solution takes
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the form

f±(r) =
r2

4®
−ℳ (3.7)

where we have considered Λ < 0 and ® > 0, and where ℳ+ 1 =
√

M
®
. This

solution resembles the Bañados-Teitelboim-Zanelli black hole [14, 12]. Actu-
ally, the solution (3.7) shares several properties with the three-dimensional
black hole geometry, as it is the case of its thermodynamics properties. Pa-
rameter ℳ in Eq. (3.7) plays the role of the mass M in the BTZ solution.
For instance, just like AdS3 space-time is obtained as a particular case of
the BTZ geometry by setting the negative mass M = −(8G)−1, the five-
dimensional Anti-de Sitter space corresponds to setting ℳ = −1 in Eq.
(3.7). Moreover, notice that in the large ℳ−1 limit the solution becomes
the metric to which AdS5 tends in the near boundary limit. Similarly, the
massless BTZ corresponds to the boundary of AdS3. Besides, as it was al-
ready mentioned, a conical singularity is found in the range 0 < M < ®
(corresponding to −1 < ℳ < 0), and this completes the parallelism with
the three-dimensional black hole. We will study this case with further detail
in section 4.

All these features are essentially due to the nature of the Gauss-Bonnet
term, and also hold in higher dimensions. In fact, it is straightforward to
generalize solution (3.2) to the case of EGB gravity in D > 5 dimensions,
and the metric is seen to adopt a very similar form [24]. Actually, it is given
by simply replacing the element of the 3-sphere in (3.2) by the element of the
unitary (D− 2)-sphere dΩ2

D−2, and by replacing the piece 16®/r4 in (3.3) by
16®/rD−1.

In spite of the non-polynomial form of (3.3), the horizon structure of
Boulware-Deser solution is quite simple, and in D dimensions the horizon
location is given by the roots of the polynomial

Λ

6
rD−1 − rD−3 − 2®rD−5 + 2M = 0, (3.8)

where Λ has been appropriately rescaled by a D-dimensional constant factor.
The five-dimensional case is actually a remarkable example since, among

other special features, it allows to have massive solutions with naked singu-
larities. Actually, the metric (3.2) turns out to be finite at the origin, namely
f 2
(r=0) = 1 + »

√

M/®, nevertheless, the curvature still diverges at the origin,
although not in a dramatic way. We will return to this point in chapter 5
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where we will discuss naked singularities. We mentioned above that if D = 5
and Λ = 0 the black hole horizon is located at r2+ = 2(M−®), and this implies
a lower bound for the spherical solution not to develop a naked singularity,
namely M > ®. That is, for 0 < M < ® we do find naked singularities even
for the well-behaved branch » = −1 with positive M . For the model with
a second order term ℛ2 this only occurs in D = 5. In seven dimensions,
for instance, the Boulware-Deser solution with Λ = 0 develops horizons at
r2+ = ®

√

1 + 2M/®2 −® and then the horizon always exists provided ® > 0,
M > 0. Naked singularities in D = 2n + 1 dimensions usually arise when a
term of order ℛn is present in the action. So, for the EGB theory this only
occurs for D = 5.

It could be important to mention that the analysis of the dynamical
stability of EGB black holes is also special for D = 5. The stability analysis
under tensor mode perturbations has been explored recently, and it has been
shown that the EGB theory exhibits some differences with respect to Einstein
theory; at least, it seems to be the case for sufficiently small values of the
mass in five and six dimensions [74] where instabilities arise; see also Refs.
[75, 21, 85]. In this sense, the cases D = 5 and D = 6 are special ones. See
Ref. [96] for an interesting recent discussion.

Now, let us be reminded of the fact that inD > 6 dimensions the Lovelock
action (2.1) presents also additional terms of higher order n > 2, so that in
D ≥ 7 the Boulware-Deser black hole geometry (3.2)-(3.3) only corresponds
to a very special example of Lovelock black hole.

Spherically symmetric solutions in higher dimensions containing arbitrary
higher order terms ℛn in (2.1) can be implicitly found by solving a polyno-
mial equation of degree n whose solutions give the metric function f(r); this
was originally noticed by Wheeler in [160, 161]. Moreover, several explicit
examples containing arbitrary amount of terms ℛ,ℛ2, ... ℛn−1,ℛn are also
known. These correspond to particular choices of the couplings ®n in (2.1).
One of these explicitly solvable cases corresponds to the Chern-Simons the-
ory, which exists in odd dimensions. We will briefly discuss this special case
in section 4. A remarkable fact is that in the case a term ℛn of the Lovelock
expansion (2.1) is considered in the action, then the spherically symmetric
solution may still take a very simple expression, and, depending on the cou-
pling constants ®n, it may merely correspond to replacing the square root in
(3.3) by a power 1/n; see [63, 58, 32, 49] for explicit examples.

On the other hand, it is quite remarkable that electrically charged black
hole solutions in Lovelock theory also present a very simple form. The so-
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lutions charged under both Maxwell and Born-Infeld electrodynamics have
been known for long time [164, 163], and these solutions were reconsidered
recently [2]. In general, the metric function of a charged solution takes the
form (3.3) but replacing the mass parameterM by a mass functionM(r) that
depends on the radial coordinate r. Function M(r) depends on the particu-
lar electromagnetic Lagrangian one considers. In the case of Maxwell theory,
and in five dimensions, this function is given by the energy contribution
M(r) ∼

∫ r

"
dr Q2/r3 ∼ −Q2/r2 +M0, where Q represents the electric charge

of the black hole, and where the UV cut-off in the integral is absorbed in the
definition of the additive constantM0. More precisely, for charged black holes
in Einstein-Gauss-Bonnet-Maxwell theory we have M(r) −M0 = −Q2/6r2,
as it was originally noticed by Wiltshire [164].

In the next section we will consider a generalization of the black hole
solutions reviewed here. We will discuss extended black objects in EGB
theory.

2 Topological black holes

One of the interesting aspects of Lovelock theory is that it admits another
class of black objects, whose horizons are not necessarily positive curvature
hypersurfaces. These solutions are usually called topological black holes,
and their metric are obtained by replacing the (D − 2)-sphere dΩ2

D−2 in
(3.2) by a base manifold dΣ2

D−2 of constant (but not necessarily positive)
curvature, provided a suitable shifting in the metric function f(r). Namely,
these solutions read

ds2 = −K2(r)dt2 +K−2(r)dr2 + r2dΣ2
D−2 (3.9)

where the metric function is now given by K2(r) = f(r) + k − 1, being k
the sign of the curvature of the horizon hypersurface whose line element is
r2+dΣ

2
D−2. For k = 1 the Boulware-Deser solution (3.2)-(3.3) is recovered.

In general, the base manifold dΣ2
D−2 here may be given by a more general

constant curvature space: For instance, it can be given by the product of hy-
perbolic spaces dΣ2

D−2 = dH2
D−2 for the case of negative curvature k = −1,

or merely by a flat space piece dΣ2
D−2 = dxidx

i. In turn, solutions (3.9) cor-
respond to black brane type geometries. Such black objects represent fibra-
tions over constant curvature (D − 2)-dimensional hypersurfaces, implying
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that the event horizon, in the cases it exists, is not necessarily a compact
simply connected manifold.

Consider for example the five-dimensional EGB theory with negative cos-
mological constant Λ < 0, and its black brane solution of the form

ds2 = −K2
(k=0)(r)dt

2 +K−2
(k=0)(r)dr

2 + r2dxidxi (3.10)

with

K2
(k=0)(r) =

r2

4®
−

√

r4

16®2
(1− 4∣Λ∣®/3) + M

®
, (3.11)

where xi = x1, x2, x3. These objects (brane-like configurations and topologi-
cal black holes) have attracted some attention recently due to their curious
properties, and, more recently, these were considered in applications inspired
in string theory; see for instance [26, 27].

In [76], an exhaustive classification of static topological black hole solu-
tions of five-dimensional Lovelock theory was presented. The authors con-
sidered an ansatz such that spacelike sections are given by warped product
of the radial coordinate r and an arbitrary base manifold dΣ2

D−2, and they
showed that, for values of the coupling constant ®2 generic enough, the base
manifold must be necessarily of constant curvature, and then the solutions of
the theory reduce to the topological extension of the Boulware-Deser metric
of the form (3.9). In addition, they showed that for the special case where
the coupling ®2 is appropriately tuned in terms of the cosmological constant
®0, then the base manifold could admit a wider class of geometries, and
such enhancement of the freedom in choosing dΣ2

D−2 allows to construct very
curious solutions with non-trivial topology. We will return to this point in
section 4.

The existence of black holes with generic horizon structure was also an-
alyzed in [76], where selection criteria for the base manifold dΣ2

D−2 were
discussed, and the authors concluded that sensible physical models strongly
restrict most of the examples of exotic black holes with non-constant curva-
ture horizons. Moreover, the different horizon structures were also studied
in [9, 155] together with its relation to the asymptotic behavior of the cor-
responding solutions; see also [54, 55, 62, 56, 140]. Recently, the electrically
charged topological black hole solutions were also analyzed, both for the case
of the second order Lovelock theory in [154, 54] and for the case of the third
order3 Lovelock theory in [56].

3Recently, references [95, 61, 60, 93, 92, 4] discussed other classes of solutions. We will
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Figure 3.1: Horizons with non-trivial topology are admitted.
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One of the most interesting aspects of these objects with non-trivial hori-
zon geometries is that they enable to construct a very simple class of Kaluza-
Klein black holes with interesting properties from the four-dimensional view-
point. For instance, such a solution was recently studied by Maeda and
Dadhich in Ref. [118]. These Kaluza-Klein black holes are given by a
product M4×HD−4 between a four-dimensional manifold M4 and a (D − 4)-
dimensional hyperbolic space HD−4. It turns out that the four-dimensional
piece of the geometry asymptotically approaches the charged black hole in
locally AdS4 space. In turn, the Gauss-Bonnet term acts by emulating the
Reissner-Nordström term for large r, while it changes the geometry at short
distances [125, 52, 119]. In addition to these solutions, other exotic Kaluza-
Klein Lovelock black hole solutions with arbitrary order terms of the form
ℛn and for a specific values of the coefficients ®n were studied in [84]. These
black holes are different from those studied in [118], and are obtained by
considering black p-brane geometries of the form MD−p×Tp in the Lovelock
theory with ®i = ±i,n and 2n = D − p. These solutions exist for D − p even,
and, in addition, the horizon structure also depends on n. Analogous toric
compactifications of the form MD−p×Tp were studied in [107], and warped
brane-like configurations were also discussed in both [84] and [107].

It was shown in [84] that, in spite of the difference between Lovelock
theory and Einstein theory, the qualitative features of thermodynamic sta-
bility of brane-like configurations in both theories are considerable similar,
although the higher order terms ℛn can be seen to contribute. For exam-
ple, the thermodynamical analogue of Gregory-Laflamme transition between
black hole and black string configurations was discussed in [84]. Extended
string-like objects in Lovelock theory and their thermodynamics were also
discussed in [111, 146, 28]. We discuss black hole thermodynamics in the
next section.

3 Black hole thermodynamics

The purpose of this section is to describe the general aspects of black hole
thermodynamics in Lovelock theory. In fact, one of the most interesting fea-
tures of the Lovelock theory regards the thermodynamics of its black hole
solutions. This is because it is in the analysis of the black hole thermodynam-

not comment on these solutions here.
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ics where the substantial differences between Lovelock theory and Einstein
theory manifest themselves.

Pioneer works where the Lovelock black hole thermodynamics was dis-
cussed in detail are references [135, 162]; see also [103, 105, 104]. In [106],
Jacobson and Myers derived a close expression for the entropy of these solu-
tions in D dimensions, and they showed that the entropy of these black holes
does not satisfy the area law, but contains additional terms that are given
by a sum of intrinsic curvature invariants integrated over the horizon.

The thermodynamics of charged solutions was originally studied by Wilt-
shire in Refs. [164, 163], while the thermodynamics of topological black
holes was studied more recently, in Refs. [33, 9, 29]. The study of charged
topological black holes in presence of cosmological constant was addressed
in [50], where the most general solution of this type in EGB theory was ob-
tained. References [45, 136, 137] also analyze topological black holes and
their thermodynamics; see also [62, 30].

The aim of this section is to discuss the more relevant thermodynami-
cal features of Lovelock solutions. To do this, we will consider again the
five-dimensional case (3.2)-(3.3). Actually, besides it represents a simple in-
structive example, the five-dimensional case is also special in what concerns
thermodynamical properties. It is the best example to see that substantial
differences between Lovelock gravity and Einstein gravity exist.

It is easy to verify that the Hawking temperature associated to the solu-
tion in D = 5 with Λ = 0 is given by

T =
ℏ

2¼

r+
4® + r2+

. (3.12)

Then, we see that, as expected, (3.12) behaves like the Hawking temper-
ature of a GR solution if the black hole is large enough, r+ >> ®, going like
T ≃ ℏ/8¼r+ − O(®/r3+). On the other hand, temperature tends to zero for
small values of r+, going like T ≃ ℏr+/8¼® + O(r3+/®

2). This implies that
the specific heat changes its sign at length scales of order r+ ∼ √

®, and
a direct consequence of this phenomenon is that five-dimensional Lovelock
black holes turn out to be thermodynamically stable, as they yield eternal
remnants. This can be easily verified by considering the rate of thermal ra-
diation which goes like ∂tM ∼ −T 5r3+, behaving like dt ∼ −dr+/r

7
+ at short

distances.
Nevertheless, it is worth pointing out that for dimension D > 5 the

functional form of the temperature is substantially different from the case
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D = 5, as it includes an additional term which is actually proportional to
(D − 5). The general formula reads

T =
ℏ

4¼

(D − 3)r2+ + 2®(D − 5)

4®r+ + r3+
. (3.13)

which implies that, in D > 5, the short distance limit is given by T ≃
(D−5)ℏ/8¼r+, and the specific heat is then negative. This is the reason why
the thermodynamic behavior of higher dimensional Einstein-Gauss-Bonnet
black holes turns out to be more similar to that in Einstein theory if D ∕= 5.
In general, eternal black holes arise in D = 2n+1 dimensions if an nth-order
term ℛn is present in the action.

So, let us return to our instructive example of five dimensions. The
entropy associated to (3.12) is given by

S =
A

4Gℏ
+O(®r+) ∼ r3+ + 12®r+, (3.14)

from what we observe that black holes of Lovelock theory do not in general
obey the Bekenstein-Hawking area law. Actually, some particular solutions,
corresponding to topological black holes with flat horizon geometry dΣ2

3 =
dxidx

i, do obey the area law [57, 30], but it is not the case for spherically
symmetric static solutions. A very interesting discussion on the area law4 is
that of Ref. [140], where a version of the area law for symmetric dynamical
black holes defined by a future outer trapping horizon was derived. There,
the authors discussed the differences between the branches of solutions with
GR limit and those without it, and argue how for the latter one still can
define a concept of increasing dynamical entropy.

Notice that the second term in the right hand side of (3.14) implies that
if ® < 0 then the entropy turns out to be negative for sufficiently small black
holes5. This was discussed in [47], where it was argued there that an additive
ambiguity in the definition of the entropy could be a solution for the negative
entropy contributions; see also the related discussion in [9]. In any case, the
theory for negative values of the coupling constant ® is somehow pathological
in several respects. It not only gives negative contributions to the entropy,

4In [147] other corrections to area law were studied. The authors thank S. Shankara-
narayanan for pointing out this references to them.

5Refs. [138, 114] discuss related features. The authors thank S. Odintsov for pointing
out these references to them.
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but also ghost instabilities and strange causal structure arise if ® < 0. We
will not consider the negative values of ® here.

Because of the current interest in black hole thermodynamics of higher
order theories, we consider convenient to mention that the entropy function
formalism, recently proposed by A. Sen [150] within the context of the at-
tractor mechanism, works nicely for the case of Lovelock black holes. In
particular, this was recently studied in [129] for the case of EGB black holes,
and it was explicitly shown that (3.14) is recovered by analyzing the near
horizon geometry. A rather general analysis was presented in Ref. [41]. Very
interesting discussions are those of Refs. [11, 10].

The thermodynamic properties of topological black holes are also very
interesting; see for instance [31, 30]. As we already mentioned, it can be
shown that those black objects whose horizons are of zero curvature do obey
the area law for the entropy density. For instance, consider the black brane
geometry (3.10), which is solution of the theory with negative cosmological
constant, Λ < 0. It is straightforward to check that the Hawking temperature
of this solution is given by

T =
ℏ

6¼
∣Λ∣r+, (3.15)

and that the area formula for the entropy density does hold in this special
case. Remarkably, identical expression for the temperature is obtained in the
particular case of the Chern-Simons theories of gravity, which we discuss in
the next section.

4 Chern-Simons Black Holes

Now, let us move on, and analyze a very particular case of Lovelock theory
which exist in odd dimensions. This is the so-called Chern-Simons gravity
(CS), and can be thought of as a higher-dimensional generalization of the
Chern-Simons description of three-dimensional Einstein gravity [165]. Basi-
cally, these theories are those particular cases of Lovelock Lagrangian (2.1)
that admit a formulation in terms of a Chern-Simons action. As we will dis-
cuss, these models are given by a very precise choice of the set of coefficients
®n.

To discuss CS gravity theories6 it is convenient to resort to the first-order

6It is worth pointing out that the CS theories we are referring to herein are different
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formalism which, in spite of its advantage, it is paradoxically avoided in
physics discussions. So, let us first review some basic notions: Consider the
vielbein ea¹, which defines the metric as g¹º = ´abe

a
¹e

b
º , where we are using

the standard notation such that the greek indices ¹, º, ... correspond to the
space-time while the latin indices a, b, ... are reserved for the tangent space.
Now, consider the 1-form associated to the vielbein, defined by ea = ea¹dx

¹,
and the corresponding 1-form associated to the spin connection !ab

¹ , defined
by !ab = !ab

¹ dx¹. These quantities enable us to define the so-called curvature
2-form, which is given by

Rab = d!ab + !a
c ∧ !cb = Rab

¹º dx¹ ∧ dxº ≡ 1

2
Rab

¹º (dx¹dxº − dxºdx¹),

and is related to the Riemann tensor by R®
¯¹º = ´bce

®
ae

c
¯R

ab
¹º . The torsion-

free condition is then given by

T a = dea + !a
b ∧ eb = 0.

In this language, local Lorentz invariance of the theory is expressed in
terms of the covariant derivative

±¸!
a
b = d¸a

b + !a
c ∧ ¸c

b − !c
b ∧ ¸a

c , ±¸e
a = −¸a

be
b, (3.16)

where ¸a
b represent the parameters of the transformation.

The remarkable fact is that, for particular cases of the action (2.1), if the
coupling constants are chosen appropriately, the theory exhibits an additional
local symmetry. For instance, if we consider the case Λ = 0, such additional
symmetry turns out to be given by the invariance of the Lagrangian density
under the gauge transformation

±¸e
a = d¸a + !a

b ∧ ¸b, ±¸!
a
b = 0. (3.17)

That is, the CS theory possesses a local symmetry under gauge trans-
formation ±¸e

a
¹ = ∂a

¹¸ + !a
b¹¸

b, with ¸a being a parameter. This is actually
an off-shell local gauge symmetry of the theory (2.1) that arises for spe-
cial choices of the coupling constants ®n, as far as the boundary conditions
are also chosen in the appropriate way. Besides, it can be easily verified
that transformation (3.17), once considered together with (3.16), satisfies

to those discussed in Refs. [69, 68].
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the Poincaré algebra ISO(2, 1), and this is why these theories are usually
referred as Poincaré-Chern-Simons gravitational theories [17]; see also [167]
for an excellent introduction to Chern-Simons gravity.

So, let us specify which are the theories that possess the gauge symmetry
like7 (3.16)-(3.17), namely the CS theories. To do this, first it is convenient to
rewrite the Lovelock Lagrangian. In the first-order formalism, the Lovelock
action corresponding to (2.1) in D = 2t+ 1 dimensions can be written as

S =

∫

"a1b1a2b2...atbtc
⋀t

n=1

(

Ranbn + l−2
n ean ∧ ebn

)

∧ ec (3.18)

where l−2
n correspond to t independent coefficients that are a rearrangement

of the coefficients ®n. In (3.18), the convention is such that the tth coupling
®n=t has been set to 1 (or, alternatively speaking, it has been absorbed
in the definition of the curvature Rab), so that in this notation we have
∣Λ∣ ∼ ∏t

n=1 l
−2
n , and G−1 ∼ ∑t

m=1

∏

n∕=m l−2
n .

It is worth noticing that, in order to represent the most general form of
(2.1), the coefficients l−2

n in (3.18) should be allowed to take complex values.
In fact, Lovelock action (2.1) with real coefficients ®n can correspond to (3.18)
with imaginary l−2

n . An example is given by the five-dimensional theory
whose action reads S =

∫

"abcdf
(

Rab + i¯2 ea ∧ eb
)

∧
(

Rcd − i¯2 ec ∧ ed
)

∧
ef , which leads to the particular form of (2.1) where no Einstein-Hilbert
contribution is present, but only the cosmological constant and the Gauss-
Bonnet term appear, with ®/Λ ∼ ¯−4 for a real ¯.

The CS gravity theories, however, are given by real values of l−2
n . More

precisely, CS theory correspond to the special case where all the coupling
l2n in (3.18) are equal, namely l21 = l22 = ... = l2t ≡ l2. In terms of the
Lagrangian density (2.1) this corresponds to taking the coupling constants
®n to be ®n = (−1)n+1l2n−Dm!/((D − 2n)(m− n)!n!) for n > 0, while ®0 is
given by the cosmological constant Λ = −®0/2®1. It is important to mention
that (3.18) corresponds to the case of negative cosmological constant, which
yields the CS theory with the AdSD group (i.e. the group SO(D − 1, 2))
as the one that generates the gauge symmetry. The case of positive Λ is
simply obtained by changing l2 → −l2, while the Poincaré invariant theory
is obtained through the Inonu-Winger contraction of (A)dS group; see [167]

7Notice that, as mentioned, (3.17) is the transofrmation that corresponds to the case
Λ = 0. The analogous tranformation for the case l2 ∕= 0 takes a slightly different form, see
[167].
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for details. An example of Poincaré invariant CS is given by the Lagrangian
containing only the quadratic Gauss-Bonnet

√−gℛ2 term in five dimensions,
without the Einstein-Hilbert term and with Λ = 0.

As it is well known, an example of the CS gravity theory is given by
three-dimensional Einstein theory, whose action8,

S =

∫

d3x ℒ =

∫

d3x
√−g (R− 2Λ) , (3.19)

admits to be formulated as a CS theory. To see this, and then extend the
construction to higher dimensional cases, let us first point out that (5.1) can
be written as follows,

S =

∫

M3

"abc(R
ab ∧ ec − l−2ea ∧ eb ∧ ec), (3.20)

with Λ ∼ l−2.
It turns out that (5.1)-(3.20) admits to be formulated as a CS theory [165]

for the groups SO(2, 2), SO(3, 1) and ISO(2, 1), depending on whether the
cosmological constant Λ is negative, positive or zero, respectively. To make
contact with the usual form of the CS action, let us introduce a (D + 1)-
dimensional 1-form Aab whose indices run over a, b = 0, 1, 2, ..., 2t+ 1 (recall
D = 2t + 1), and its strength field F ab = dAab + Aa

c ∧ Acb, which are given
by

Aab =

(

!ab ea/l
−eb/l 0

)

, F ab =

(

Rab − l−2ea ∧ eb l−1 (dea + !a
c ∧ ec)

−l−1
(

deb + !b
c ∧ ec

)

0

)

.

That is, Aab = !ab for a, b = 0, 1, 2, ..., 2t, while AaD = −ADa = ea/l for
a = 0, 1, 2...2t. Analogously, F ab = Rab − l−2ea ∧ eb for a, b = 0, 1, ...2t, while
F aD = −FDa = T a/l for a = 0, 1, 2, ...2t.

Then, making use of these definitions, (5.1)-(3.20) can be alternatively
expressed in its Chern-Simons form

S =

∫

M3

Tr (A ∧ dA+
2

3
A ∧ A ∧ A), (3.21)

8For simplicity here we have fixed the Newton constant according to 16¼G = 1.
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where the trace is over the indices a, b that run from 0 to 3 (corresponding to
D = 3, i.e. t = 1). Local symmetry under (3.16) and (3.17) is then gathered
by gauge symmetry of (3.21).

The next example we could consider is the five-dimensional one, which
corresponds to the Lovelock theory (3.1) for the particular case ®0®2 = 3/2
(i.e. ®Λ = −3/4). Then, the action reads

S =

∫

d5x ℒ =

∫

d5x
√−g(R+

2

l2
−3l2

4
(R+R¹º®¯R

¹º®¯−4R¹ºR¹º)) (3.22)

where Λ = −l−2 and ®2 = 3/2®0 = −3/4Λ = 3l2/4. This can be also written
as

S =

∫

M5

"abcdf (Rab ∧Rcd +
2

3l2
Rab ∧ ec ∧ ed +

1

5l4
ea ∧ eb ∧ ec ∧ ed)∧ ef (3.23)

and, again, it admits to be written in its Chern-Simons form

S =
1

·2

∫

M5

Tr (A ∧ (dA)∧2 +
3

2
(A)∧3 ∧ dA+

3

5
(A)∧5) (3.24)

Actually, this structure goes on as D increases, and it expands a whole
family of theories which, still being particular cases of Lovelock theory (2.1),
represent odd-dimensional field theories with local off-shell symmetry under
the (A)dS (or Poincaré) group.

Now, once we have introduced the theories, let us analyze their black
hole solutions. Going back to solution (3.2), and considering again the five-
dimensional case as an example, we observe that replacing the Chern-Simons
condition9 ®Λ = −3/4 in the metric function (3.3) leads to a rather different
geometry, given by

f(r) =
r2

4®
−ℳ with ℳ+ 1 = −»

√

M/®. (3.25)

This solution still may represent a black hole, provided ℳ > 0, with
the horizon located at r+ = 2

√

ℳ/®. However, this is a black hole of a
different sort. In particular, it does not present a limit where GR is recovered,

9It is helthy to consider the case ® > 0 and Λ < 0.
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and this can be understood in terms of the condition ® = −3/4Λ in the
following way: While the cosmological constant Λ introduces an infrared cut-
off (the length scale 1/

√

∣Λ∣) where the cosmological term dominates over the
Einstein-Hilbert term, the Gauss-Bonnet term introduces an ultraviolet cut-
off (the length scale

√
®) where the quadratic terms dominate. Therefore,

the condition ® = −3/4Λ basically states that in Chern-Simons theory both
length scales are of the same order, and consequently there is no range where
the Einstein-Hilbert term is the leading one. This explains why there is
no range where (3.25) approaches Schwarzschild-Tangherlini solution. This
asphyxia of the Einstein-Hilbert term is a typical feature of Chern-Simons
theories for D > 3, where a unique free parameter l2 appears in the action.

The Hawking temperature associated to black hole solution (3.25) is given
by

T =
ℏ

8®¼
r+ =

ℏ

6¼
∣Λ∣r+, (3.26)

which in turn agrees with (3.15), although now it corresponds to a spherically
symmetric solution. As it is well known [14, 14] in D = 3 formula (3.26)
agrees with the area law.

Certainly, solution (3.25) is reminiscent of the Bañados-Teitelboim-Zanelli
three-dimensional black hole (BTZ), which, after all, also corresponds to a
CS black hole. In fact, this is not a coincidence, and regarding this, let us
make a historical remark: It turns out that, even though one could imagine
that CS black holes (3.25) were discovered as higher-dimensional extensions
of the BTZ, the story was precisely the opposite: In 1992, Bañados, Teit-
elboim and Zanelli discovered the BTZ as a particular case of a family of
Lovelock black holes they were studying at that time [13, 16, 15].

The analogy between the BTZ black hole and those solutions for higher-
dimensional CS theories was discussed in detail in [2]. In particular, it was
emphasized there that five-dimensional solution (3.25) shares several prop-
erties with its three-dimensional analogue. For instance, it is the case of
their thermodynamics properties, which, after all, are actually encoded in
the function f(r). This is also why all CS black holes have infinite lifetime.

Notice that the parameterℳ in Eq. (3.25) plays the role that the massM
plays in the BTZ solution. Also, as in the three-dimensional case, the Anti-
de Sitter space is obtained for a particular value of this parameter, namely
ℳ = −1, and a naked singularity is developed for the range −1 < ℳ < 0.

In [49] the CS black holes and their dimensional extensions were exhaus-
tively studied, together with their topological and charged extensions. There,
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a very interesting class of black holes was found by considering the particular
choice of coefficients that leads to the (2t + 1)-dimensional CS theory, but
dimensionally extending the action from D = 2t+1 to D ≥ 2t+1. The met-
rics of such solutions are given by replacing the constant ℳ in (3.25) by the
quantity 1 −ℳr(2t+1−D)/t. A further generalization of the solutions of [49]
would be given by adding a volume term to the gravitational action, which
in turn corresponds to shifting the coupling ®0 → ®0 + ±Λ but keeping the
rest of ®n>0 tuned as they are in the (2t + 1)-dimensional CS theory, given
in terms of the length scale l2. The solution for this case is given by replac-

ing the constant ℳ in (3.25) by a term 1 −
(

r2t + ¸r2t +ℳr2t+1−D
)1/t

/l2,
where ¸ + 1 ∼ ±Λ/®0. These black holes do have a GR limit since now the
cosmological length scale can be pushed away by choosing ±Λ appropriately.

It is also important to mention that black hole solution (3.25) is also a
solution of the CS theory with torsion [38, 39, 37].

The solutions of Chern-Simons theory are very special ones, and this is
due to the fact that for that specific choice of the coupling constants ®n the
equations of motion of Lovelock theory somehow degenerate. In particular,
it is remarkable that the obstruction imposed by Birkhoff-like theorems does
not hold for CS theories.

5 Towards Rotating Black Holes

The problem of finding a rotating solution in Einstein-Gauss-Bonnet grav-
ity, which would generalize the Kerr’s spinning black hole of GR, is a very
interesting and still unsolved problem. Some recent claims in the literature
[3] turned out to be incorrect, and this gave rise to some activity in this
direction.

Recently, it was proven in [6] that the Kerr-Schild ansatz doesn’t work in
Lovelock theory (except for very special cases as Einstein theory and Chern-
Simons theory) which manifestly shows how difficult this classical problem
can be.

Nevertheless, some advances in this area were recently achieved: In [6]
an exact analytic rotating solution was found for Chern-Simons gravity in
five dimensions. This Einstein-Gauss-Bonnet solution, however, does not
present a horizon, and thus it does not represent a black hole. Nevertheless,
the numerical analysis carried out in [28] suggests that the rotating solu-
tions actually exist. Besides, approximate analytic solutions at first order in
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the angular momentum parameter were found in [109]. Other solutions are
known which represent rotating flat branes. However, these are, indeed, a
trivial extension of the topological black holes with k = 0.

Despite these results, the problem of finding an exact analytic rotating
black hole solution in Lovelock theory still remains an open problem.
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Chapter 4

Gravitational solitons in
Lovelock Theory

1 Why do we expect wormholes?

The next class of solutions we would like to discuss is a class of vacuum solu-
tions of Lovelock theory which represents wormhole geometries that connect
two disconnected asymptotic regions of the space-time. Recently, several
examples of such solutions were found [81, 22, 79, 121, 145, 48], describing
vacuum wormholes with different asymptotic behaviors, and in different num-
ber of dimensions. So, the first question we might ask is: why do wormholes
exist in Lovelock theory?

The main reason why vacuum wormholes exist in a theory like (3.1) is
actually simple, and it can be heuristically explained as follows: Consider the
equations of motion corresponding to Lagrangian (3.1), which can be always
written as

R¹º −
1

2
Rg¹º + Λg¹º − T¹º = 0 (4.1)

where the higher order terms act as an effective stress tensor that here we
denoted T¹º . In the case of EGB theory it reads

1

®
T¹º =

1

2
g¹º

(

R½¾®¯R
½¾®¯ − 4R®¯R

®¯ +R2
)

−2RR¹º+4R¹½R
½
º+R®¯R

®¯
¹º−2R¹®¯½R

®¯½
º ,

where, as usual, ® = ®2/®1, 2Λ = −®0/®1. The key point is that this
effective stress tensor T¹º , thought of as a kind of matter contribution, can
be shown to violate the energy conditions for ® large enough. Actually, this
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does not represent an actual problem from the conceptual point of view since
this ”matter” is actually made of pure gravity. However, a consequence of
this violation of the energy conditions is that Eqs. (4.1) allow the existence
of vacuum wormhole solutions at scales of order

√
®, unlike the case of GR,

where such solutions of this sort require the consideration of exotic matter.
Furthermore, there is a second reason for such curious solutions to exist

in Lovelock theory. As mentioned above, when the coefficients ®n in (3.1)
correspond to the CS theory, the space of solutions experiments an unusual
enhancement, which translates into a large degeneracy of the metric of spaces
with enough symmetry. Roughly speaking, for such particular cases, Lovelock
theory is somehow degenerated enough to admit metric with very special
properties, and wormholes are some of them [82].

Nevertheless, here we will focus our attention on wormhole solutions that
exist in five-dimensional EGB theory without requiring the coefficients Λ and
® to be those that correspond to CS theory. Therefore, the existence of such
solutions, regarded as an anomaly, is ultimately attributed to the issue of the
energy conditions mentioned above.

The particular configurations we will consider are the so-called thin-shell
wormholes, which correspond to connecting two regions of the space through
a codimension-one hypersurface that plays the role of the wormhole throat.
For such a geometry to be constructed, we have to make use of the junction
conditions of the EGB theory [132, 81]. In particular, we will consider the
configuration of two Boulware-Deser spaces connected through a hypersur-
face on which the induced stress-tensor vanishes. Such geometries are not
possible in GR, where wormholes require the energy conditions to be violated
on the thin-shell. However, in Lovelock theory, and because of the higher or-
der terms, spherically symmetric vacuum wormholes with positive mass can
be constructed, as shown by Gravanis and Willison in [88]. Let us review the
procedure here.

Let Σ be a four-dimensional timelike orientable hypersurface of codimen-
sion one, whose normal vector is denoted by n¹. Suppose Σ separates two
regions of the space, which we call ℳI and ℳII . Then, junction conditions
read

⟨Kij −Kℎij⟩Σ + 2®
〈

3Jij − Jℎij + 2PikljK
kl
〉

Σ
= 8¼Sij (4.2)

where ⟨X⟩Σ denotes the jump of the quantity X across the hypersurface Σ,
which means ⟨X⟩Σ = X∣II ± X∣I , where the sign ± depends on the relative
orientation of the regions. Above, tensor Sij represents the induced stress-
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tensor on the hypersurface Σ, in complete analogy with the Israel junction
conditions in Einstein theory. In fact, we see that the first two terms in (4.2)
actually correspond to the Israel junction conditions constructed with the
extrinsic curvature Kj

i and its trace K. In addition, the junction conditions
corresponding to the EGB theory contains contributions cubic in the extrinsic
curvature1,

Jij =
1

3
(KklK

klKij + 2KKikK
k
j −K2Kij − 2KikK

klKlj), (4.3)

and also contributions that involve the Riemann curvature tensor of the
hypersurface

Pijkl = Rijkl+Rjkℎil−Rjlℎik+Rilℎjk−Rikℎjl+
1

2
Rℎikℎjl−

1

2
Rℎilℎjk. (4.4)

The notation used here is such that latin indices i, j, k, l refer to co-
ordinates on the four-dimensional hypersurface that separate the two five-
dimensional regions of the space. The induced metric is denoted by ℎij. In
this work we sudy the most general case, including the case of space-like junc-
tures, which corresponds to a cosmological-type geometries that experiment
a change of behavior at a given time characterized by the hypersurface Σ. It
was pointed out by H. Maeda that this kind of space-like junction conditions
could be used to construct regular black hole solutions by means of geometric
surgery procedure inside the black hole horizon.

2 Towards wormholes in Lovelock theory

As we discussed in the previous sections, the presence of the Gauss-Bonnet
term introduces some exotic features not found in General Relativity. One
such feature is related to the problem of causality; this was treated in Ref.
[153] in the Hamiltonian formalism (see also Ref. [46] for an alternative treat-
ment of the Cauchy problem). Because of the non-linearity of the theory, the
canonical momenta are not linear in the extrinsic curvature; and there ex-
ist quite generically points in the phase space where the Hamiltonian turns
out to be multiple-valued. In such a situation, there is a breakdown in the
deterministic evolution of the metric from the initial data. This can also be

1See [42] for a recent review. See also [124] where boundary terms in odd-dimensions
are discussed.
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seen explicitly using the junction conditions [53, 87]. In fact, it can be shown
that there exist vacuum solutions where the extrinsic curvature can jump
spontaneously at some spacelike hypersurface in a way that is not predicted
by the initial data2. This breakdown in predictability is induced by the pres-
ence of terms in the junction conditions which, unlike the Israel conditions
valid for Einstein’s theory, contain non-linear contributions coming from the
Gauss-Bonnet term.

On the other hand, the timelike version of such a jump in the extrinsic
curvature is also of great interest. This is realized by the existence of a
kind of gravitational solitons in the theory, which resemble a kink solution.
These solitons correspond to spacetimes that contain timelike hypersurfaces
where the metric is C0 continuous but where the extrinsic curvature jumps.
Although the Riemann curvature tensor contains delta-function singularities
on the hypersurface, these spacetimes can still be vacuum solutions because
of a nontrivial cancelation coming from additional terms in the junction
conditions. Some explicit examples have appeared in the literature [123,
98, 110, 94], and a spherically symmetric realization of such solutions were
studied in detail in Ref. [88] for the case of pure Gauss-Bonnet gravitational
theory. Here, the systematical analysis made in Ref. [88] will be extended
to the more phenomenologically important case where Einstein-Hilbert term
and cosmological constant are included in the gravitational action. We will
show that vacuum shell solutions are indeed found in Einstein-Gauss-Bonnet
theory described by the following action :

S =

∫ √−g (®0 + ®1R + ®2

(

R2 +R®¯¹ºR
®¯¹º − 4R¹ºR

¹º
)

(4.5)

More precisely, we will consider the junction conditions for spherical thin
shells in Einstein-Gauss-Bonnet theory, and discuss the case where the in-
duced stress tensor on the shell vanishes. Then, we will show that geometries
associated with two spherically symmetric spaces with different masses (and
different effective cosmological constant) can be joined without resorting to
the introduction of matter fields as a source. Depending on the orientation
of the two spaces to be joined, different global structures may arise. For
instance, for one choice of orientation the resulting geometries corresponds

2The junction condition in vacuum gives precisely that the jump in the canonical mo-
menta is zero. The existence of solutions with non-zero jump in the extrinsic curvature at
a spacelike shell is therefore equivalent to the problem of a multiple-valued Hamiltonian.
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to vacuum wormholes in five-dimensions. These wormholes are gravitational
solitons that connect two regions with different masses and/or effective cos-
mological constants. The regions are asymptotically either flat, Anti de Sitter
(AdS) or de Sitter (dS) depending on the sign of the effective cosmological
constant. Besides, other choices in the orientation are possible and lead to
vacuum shells that separate two different spherically symmetric region of the
space. All the cases we will study in detail are such that the singular hy-
persurfaces where the jump in extrinsic curvature is located correspond to a
sphere. We will call them“vacuum shells”.

3 The setup

First, we will present some introductory material and notation and conven-
tions and then we will show how these junction conditions permit to join two
spherically symmetric spaces without resorting to the introduction of matter
source.

With respect to the style of presentation, we have chosen to organize our
results in a series of remarks, propositions and theorems in order to highlight
key facts, but descriptions such as ‘theorem’ should not be taken in the most
strict mathematical sense.

3.1 The bulk metric

Let us consider the Einstein-Gauss-Bonnet theory. The field equations asso-
ciated with the action (3.1) coupled to some matter action take the form

GA
B + Λ±AB + ®HA

B = ·2TA
B , (4.6)

where TA
B is the stress tensor, GA

B ≡ −1
4
±ACD
BEF ℛEF

AB = ℛA
B − 1

2
±AB ℛ is the

Einstein tensor and

HA
B ≡ −1

8
±AC1...C4

BD1...D4
ℛD1D2

C1C2
ℛD3D4

C3C4
,

and where the antisymmetrized Kronecker delta is defined as ±
A1...Ap

B1...Bp
≡

p!±A1

[B1
⋅ ⋅ ⋅ ±Ap

Bp]
.

We are mainly interested in the static spherically symmetric solution
(without matter) to Einstein-Gauss-Bonnet theory in five dimensions. In this
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case, of space-times fibered over (constant radius) 3-spheres, the solutions
correspond to the analogues of the Schwarzschild geometry, and its form
was found by D. Boulware and S. Deser in Ref. [24]. More generally, the
solutions that correspond to fiber bundles over 3-surfaces of constant negative
(or vanishing) curvature were subsequently studied in Ref. [29] (and also [49]
in a special class of Lovelock theories in arbitrary dimension). Let us discuss
these solutions here. First, let us write the ansatz for the metric as follows

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2 dΩ2

k , (4.7)

where dΩ2
k is the metric of the constant curvature three-manifold (of normal-

ized curvature k = +1, −1 or 0). From T 0
0 = 0 (the other field equations are

equivalent to it) one obtains

f ′{r2 + 4® (k − f)
}

= −2r3
Λ

3
+ 2r (k − f) . (4.8)

This is integrated for (k − f) to give

f(r) = k +
r2

4®

Ã

1 + »

√

1 +
4Λ®

3
+

16M®

r4

)

(4.9)

where »2 = 1. The case » = +1 corresponds to the “exotic branch” of the
Boulware-Deser metrics which for Λ = 0 and M = 0 gives a “microscopic”
anti-de Sitter or de Sitter metric, with f(r) = 1+ r2/2®. It is usually argued
that this exotic branch turns out to be an unstable vacuum of the theory,
containing ghost excitations [24, 169]. Unlike the case » = −1, this branch
does not have a well defined ® → 0 limit. As in the case of Schwarzschild
solution, M here is a constant of integration, and is also associated with
the mass of the solution. In fact, when there is an asymptotic region at the
infinity of the coordinate r, i.e. 1 + 4®Λ

3
≥ 0, the total energy w.r.t. each

constant curvature background is calculated to be

mass = »2M
6¼2

·2
= M

6¼2

·2
, (4.10)

so that, in general, we will call M the mass parameter or simply the mass of
the metric3.

3It should be kept in mind that the masses M in each branch », by being the total
energy w.r.t. the M = 0 spacetime in that branch, can not be directly compared.
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The general features of the black holes (4.7)-(4.9), such as horizons struc-
ture, singularities, etc, were studied systematically in Ref. [155]; for further
details see the Appendix. Unlike General Relativity, the Einstein-Gauss-
Bonnet theory admits massive solutions with no horizon but with a naked
singularity at the origin. From (4.9) we see that this always happens for
the exotic branch » = +1, and might also happen for the branch » = −1,
provided M < ®. A related feature occurs for electrically charged solutions
[163, 164]. Among other interesting properties, it can be seen that charged
black holes in Einstein-Gauss-Bonnet theory have a single horizon if the mass
reaches a certain critical value. Another substantial difference between the
Schwarzschild solution and the Boulware-Deser solution concerns thermody-
namics. Unlike black holes in General Relativity, the Einstein-Gauss-Bonnet
black holes turn out to be eternal. The thermal evaporation process leads
to eternal remnants due to a change of the sign in the specific heat for suffi-
ciently small black holes. This and the other unusual phenomena discussed
above are ultimately due to the ultraviolet corrections introduced by the
Gauss-Bonnet term.

The discussion about a spherically symmetric solution of a given the-
ory of gravity immediately raises the obvious question about its unique-
ness. Regarding this, there is a subtlety that deserves to be pointed out.
The uniqueness of the Boulware-Deser solution, discussed previously in Refs.
[160, 161, 43], is only valid under certain assumptions. This was formalized
in a theorem proven by R. Zegers [168], and which also holds for generic
Lovelock theory in any dimension. Let us state the result as applies for
Einstein-Gauss-Bonnet theory in five dimensions:

Theorem 1 (Ref.[168]). Any solution with spherical (or planar or hyperbolic)
symmetry in the second-order Einstein-Gauss-Bonnet theory of gravity has
to be locally static and given by the Boulware-Deser solution provided two
key conditions are satisfied: i) The coefficients of the Lovelock expansion are
generic enough, which means that the exceptional combination ®Λ = −3/4
is excluded; ii) the solution is C2 smooth.

Condition i) is certainly a necessary assumption. Indeed, the non-uniqueness
in the case of ®Λ = −3/4, corresponding to the (A)dS-invariant Chern-
Simons theory, is a well-known result and was explicitly shown in Refs.
[43, 78]. In this work, we will see that condition ii) is also necessary. In
fact, the vacuum shell solutions we will present are C0 spacetimes which are
only piecewise of the Boulware-Deser form.
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In order to analyze C0 solutions, we will need to use the junction condi-
tions in the theory, which will now be discussed.

3.2 Junction Conditions

The next ingredient in our discussion is the junction conditions in Einstein-
Gauss-Bonnet theory. These are the analogues of the Israel conditions [101]
in General Relativity, and were worked out in Refs. [53, 87]. In particular,
the junction conditions will be employed to join two different spherically
symmetric spaces.

We will organize the discussion as follows: First, we will discuss the
timelike junction condition; namely, the case where the surgery is performed
on a timelike hypersurface. We will call this case the “timelike shell”. After
studying this we will briefly discuss its spacelike analogue.

Timelike shell

Let Σ be a timelike hypersurface separating two bulk regions of spacetime,
region VL and region VR (“left” and “right”). Conveniently, we introduce the
coordinates (tL, rL) and (tR, rR) and the metrics

ds2L = −fL dt
2
L +

dr2L
fL

+ r2LdΩ
2 , (4.11)

ds2R = −fR dt2R +
dr2R
fR

+ r2RdΩ
2 , (4.12)

in the respective regions. We shall be interested in the case where the bulk
regions are empty of matter so fL(rL) and fR(rR) are the Boulware-Deser
metric functions given by equation (4.9). In general, the mass parameter
MR will be different from ML. Moreover, we will also consider the possibility
of having »R different from »L, so that the two different branches of the
Boulware-Deser solution can be considered to the two spaces to be joined.

It is convenient to parameterize the shell’s motion in the r− t plane using
the proper time ¿ on Σ. In region VL we have rL = a(¿), tL = TL(¿) and in
region VR we have rR = a(¿), tR = TR(¿). The induced metric on Σ induced
from region VL is the same as that induced from region VR, and is given by

dŝ2 = −d¿ 2 + a(¿)2dΩ2 . (4.13)
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This guarantees the existence of a coordinate system where the metric is
continuous (C0).

Here, dΩ2 will be chosen to be the line element of a 3-manifold with
(intrinsic) curvature k = ±1, 0 i.e. it is a unit sphere, a hyperboloid or
flat space respectively. Although our interest will be mainly focused on the
spherical shell similar features to those we will discuss hold also for the cases
k = 0 and k = −1. The hypersurface Σ is the shell’s world-volume, i.e. the
four-dimensional history of the shell in spacetime. The intrinsic geometry is
well defined on Σ and given by (4.13). However, since the metric is only C0

and not necessarily differentiable, the geometry of the embedding of Σ into
VL is independent of the embedding of Σ into VR. The geometric information
about the embedding is quantified by the extrinsic curvature as well as the
orientation of Σ with respect to each bulk region.

To be precise, let us consider the following conventions for a timelike shell
outside of any event horizon:

∙ The hypersurface Σ has a single unit normal vector n which points
from left to right.

∙ The orientation factor ´ of each bulk region is defined as follows: ´ =
+1 if the radial coordinate r points from left to right, while ´ = −1 if
the radial coordinate r points from right to left.

This is depicted in Fig. 4.1, where the wormhole-like geometry on the
left corresponds to the orientation ´L´R < 0, while the “standard shell” on
the right corresponds to the case ´L´R > 0. Notice also that the wormhole
depicted in such figure is not the only possibility for among those of orien-
tation ´L´R < 0. While this geometry roughly speaking corresponds to join
two “exterior regions” of a spherical solution, it is also feasible to construct
a space by joining two “interior regions”, instead. This corresponds to the
case ´L´R < 0 as well.

Definition 2. The orientation defined by ´L´R > 0 will be called the standard
orientation. A shell with standard orientation will be called a standard shell.
The orientation defined by ´L´R < 0 will be called the wormhole orientation.
Such a shell shall be referred to as a wormhole. [This makes actual sense
when ´R = +1. When ´R = −1 the latter case represents a closed universe,
containing singularities.]
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Figure 4.1: The figure on the left corresponds to a wormhole-like solution,
defining the orientation ´L´R < 0. The throat connects two different asymp-
totically de-Sitter spaces. The figure on the right corresponds to a vacuum
shell, connecting two Boulware-Deser solutions of different branches. In this
second case the orientation is such that ´L´R > 0.

The components of the normal vector with respect to the basis eA :=
(∂tL , ∂rL , eµ, eÂ, e') of Vℒ and the basis eA′ := (∂tR , ∂rR , eµ, eÂ, e') of Vℛ are
respectively given by

nA = ´L

(

ȧ

fL
,
√

fL + ȧ2, 0, 0, 0

)

, nA′

= ´R

(

ȧ

fR
,
√

fR + ȧ2, 0, 0, 0

)

.

where dot denotes differentiation with respect to ¿ . This formula for the
normal vector extends the definition of the orientation factors to the situation
where the shell is inside the horizon when r is a timelike coordinate.

We can introduce the basis ea = (∂¿ , eµ, eÂ, e') intrinsic to Σ. The
extrinsic curvature is then defined as Kab := ea ⋅ ∇eb

n = −n ⋅ ∇eb
ea. In

terms of a coordinate basis we have eAa = ∂XA

∂³a
and the extrinsic curvature
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takes the explicit form

Kab = −nA

(

∂2XA

∂³a∂³b
+ ΓA

BC

∂XB

∂³a
∂XC

∂³b

)

,

and in our case the components read

K¿
¿ = ´

ä+ 1
2
f ′

√

ȧ2 + f
, Kµ

µ = KÂ
Â = K'

' =
´

a

√

ȧ2 + f .

We denote the extrinsic curvature with respect to the embedding into VL and
VR by (KL)ab and (KR)ab respectively. At a singular shell (KL)ab ∕= (KR)ab,
i.e. the extrinsic curvature jumps from one side to the other. This is a covari-
ant way of expressing the fact that the metric is not C1 (i.e. there does not
exist any coordinate system where the metric is C1). In General Relativity
this amounts to saying that (non-null) vacuum shells do not exist since Israel
conditions cannot be satisfied without the introduction of a induced stress
tensor on the spherical shell. Things are different in the case of the grav-
ity theory defined by action (4.5). This is because the Gauss-Bonnet term
induces additional terms in the junction conditions, which supplements the
Israel equation. In section 3.3 we will show how both contributions can be
combined to yield vacuum spherically symmetric thin shells. First we briefly
discuss spacelike shells.

Spacelike shell

Solutions of a different sort are those constructed by joining two spaces
through a spacelike juncture. Let us suppose now that Σ is now a space-
like hypersurface. The motion of the shell in the r− t plane is parameterized
by (t, r) = (T (¿), a(¿)), where it is necessary to remember that ¿ is now a
spacelike coordinate on Σ. The induced metric on Σ is then given by

dŝ2 = +d¿ 2 + a(¿)2dΩ2 . (4.14)

The components of the normal vector with respect to the basis eA := (∂tL , ∂rL , eµ, eÂ, e')
of VL and the basis eA′ := (∂tR , ∂rR , eµ, eÂ, e') of VR are respectively:

nA = ´L

(

ȧ

fL
,
√

ȧ2 − fL, 0, 0, 0

)

, nA′

= ´R

(

ȧ

fR
,
√

ȧ2 − fR, 0, 0, 0

)

.
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This defines the orientation factors in the case of a spacelike shell. The
components of the extrinsic curvature are:

K¿
¿ = ´

ä− 1
2
f ′

√

ȧ2 − f
, Kµ

µ = KÁ
Á = KÂ

Â =
´

a

√

ȧ2 − f .

3.3 The junction condition for a vacuum shell

The Einstein-Gauss-Bonnet field equations are well-defined distributionally
at Σ due to the property of quasi-linearity in second derivatives (see e.g.
Refs [65, 88] ). Thus, one can define a distributional stress tensor TAB =
±(Σ) ebAe

b
BSab, where Sab is the intrinsic stress tensor induced on the shell

and ±(Σ) denotes a Dirac delta function with support on the shell world-
volume Σ.

Integrating the field equations from left to right in an infinitesimally thin
region across Σ one obtains the junction condition. This relates the discon-
tinuous change of spacetime geometry across Σ with the stress tensor Sb

a. For
the Einstein-Gauss-Bonnet theory the general formulas can be found in the
Refs. [53, 87, 88].

(QR)
b
a − (QL)

b
a = −·2Sb

a , (4.15)

where the symmetric tensor Qa
b is given by

Q
a
b = ∓±acbdK

d
c + ® ±acdebfgℎ

(

∓Kf
c R

gℎ
de +

2

3
Kf

c K
g
dK

ℎ
e

)

. (4.16)

Above, the sign ∓ depends on the signature of the junction hypersurface:
it is minus for the timelike case and plus for the spacelike case. In this
expression, lower case Roman letters from the beginning of the alphabet a,
b etc. represent four-dimensional tensor indices on the tangent space of the
world-volume of the shell. The symbol Ka

b refers to the extrinsic curvature,
while the symbol Rab

cd appearing here corresponds to the four-dimensional
intrinsic curvature (see the appendix for details).

Once applied to the spherically symmetric (or k = −1, 0) case the tensor
Qb

a turns out to be diagonal with components

Q
¿
¿ = −3¾ a−3

(

´ a2
√

ȧ2 + f + 4® ´
√

ȧ2 + f
(

k +
2

3
¾ȧ2 − 1

3
f
)

)

, (4.17)

Q
µ
µ = Q

Â
Â = Q

'
' . (4.18)
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The precise form of Qµ
µ will not be needed but is given in the appendix for

completeness. The above formula was written in a way that is valid for both
timelike and spacelike shells, where we have defined

¾ = +1 (timelike shell) , ¾ = −1 (spacelike shell) .

Also, let us be reminded of the fact that ´L and ´R (with ´2 = 1) are the
orientation factors in each region, which are independent one from each other.
Above, the subscripts L, R signify the quantity evaluated on Σ induced by
regions VL and VR respectively (e.g. QL is a function of ´L and fL(a))

4.
One may verify that the following equation is satisfied

d

d¿

(

a3Q¿
¿

)

= ȧ 3a2Qµ
µ , (4.19)

which expresses the conservation of Sb
a. The reason why one obtains exact

conservation, i.e. no energy flow to the bulk, is that the normal-tangential
components of the energy tensor in the bulk is the same in both sides of the
junction hypersurface [53, 88].

The main point here is that, unlike the Israel conditions in Einstein grav-
ity, non-trivial solutions to (4.15) are possible even when Sb

a = 0. That is, the
extrinsic curvature can be discontinuous across Σ with no matter on the shell
to serve as a source. The discontinuity is then self-supported gravitationally
and this is due to non-trivial cancelations between the terms of the junction
conditions. Similar configurations are impossible in Einstein gravity. From
now on we consider the vacuum case

Sb
a = 0 . (4.20)

In the next section we will treat the static shell in detail. An exhaustive
study of the space of solutions describing both static and dynamical shells
is left to sections 1 through 2.3. Let us now first briefly introduce the basic
features of the general solution for a dynamical shell.

Equation (4.19) tells us that when ȧ ∕= 0, the components of the junction
condition are not independent; namely

(QR)
¿
¿ − (QL)

¿
¿ = 0 ⇒ (QR)

µ
µ − (QL)

µ
µ = 0 .

4From now on we shall be concerned with f(a), i.e. the metric function evaluated at
the shell. In an abuse of notation we shall just write f instead of f(a).
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Therefore, for time-dependent solutions it suffices to impose only the first
condition. This can be factorized as follows,
(

´R
√

ȧ2 + ¾fR − ´L
√

ȧ2 + ¾fL

)

×

×
{

a2 + 4®(k + ¾ȧ2)− ¾
4®

3

(

fR + fL + 2¾ȧ2 + ´R´L
√

¾fR + ȧ2
√

¾fL + ȧ2
)

}

= 0 .

(4.21)

Equation (4.21) contains all the information about the spherically sym-
metric junctions in empty space, which we generically call “vacuum shells”.
The solutions to this equation includes both wormhole-like and bubble-like
geometries, depending on whether the orientation is ´L´R < 0 or ´L´R > 0
respectively. Certainly, there exist several cases to be explored. First of all,
there are the parameters k, M and », which characterize each of the two
Boulware-Deser metrics to be joined. On the other hand, there are two pos-
sible orientation for each one of both spaces, and this is given by the sign of
the respective ´. The convention for the orientations is such that ´ = +1 if
the ∂r is parallel to the normal vector n, and ´ = −1 in the opposite case.
Furthermore, there is the sign of ¾, what tells us whether the signature of
the junction hypersurface is timelike (¾ = +1) or spacelike (¾ = −1). So,
this permits a very interesting catalogue of geometries which we survey in
section 5 and further explore in subsequent sections.

The vanishing of the first factor in (4.21) would imply that the metric is
smooth across Σ. Rejecting this as the trivial solution, we demand that the
second factor vanishes. From the second factor, squaring appropriately, we
obtain

ȧ2 = ¾

(

fR + fL − 3(k + a2/4®)
)2

− fRfL

3
(

fR + fL − 2(k + a2/4®)
) =: −V (a) , (4.22)

along with two inequalities discussed below. The system, because of the
symmetry, has reduced to an essentially one-dimensional problem, given by
the ordinary differential equation (4.22). It is seemingly equivalent to the
problem of a particle moving in a potential5 V (a). Nevertheless, it is worth
pointing out that, unlike the equation for a single particle, here we find that

5Notice that the effective potential for the spacelike shell is simply minus the potential
for the timelike shell.
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the energy ℎ is unavoidably fixed to zero instead of arising as an constant of
motion. An important difference arises in the case where there is a minimum
of V (a) precisely at V = 0. The constraint ℎ = 0, provided the fact that the
minimum of V (a) is precisely at zero energy, would lead to the conclusion that
the shell can not move but it would be stacked at the bottom of the potential.
Actually, this is the case if no external system acts as a perturbation. One
such perturbation can be thought of as being an incoming particle which,
after perturbing the shell, scatters back to infinity spending an energy ±ℎ
through the process. This would provide energy for the vacuum shell to
move. One can also think about a slight change in the parameters of the
solution yielding a shifting V (a) → V (a)− ±ℎ, see [158]. We will discuss the
dynamical case in detail in the next Chapter.

Now, let us notice that since we have squared the junction condition, we
must substitute (4.22) back into (4.21) to check the consistency. When doing
so, the solutions of equation (4.22) are solutions of the junction condition if
and only if the following restrictions are obeyed

−´R´L (2fR + fL − 3(k + a2/4®)) (2fL + fR − 3(k + a2/4®)) ≥ 0 ; (4.23)

and

(fR + fL − 2(k + a2/4®)) > 0 timelike shell (4.24)

(fR + fL − 2(k + a2/4®)) < 0 spacelike shell . (4.25)

Furthermore, we also have an inequality which is not an extra condition
but rather follows as a consequence of equation (4.22). The fact that ȧ2 is
positive in (4.22) implies that

(

fR + fL − 3(k + a2/4®)
)2

− fRfL ≥ 0 .

for both timelike and spacelike. This inequality provides further information
about the space of solutions of (4.22).

Proposition 3. For a dynamical vacuum shell with a timelike world-volume
Σ, the scale factor of the metric (4.13) on Σ is governed by (4.22), under the
inequalities (4.23) and (4.24).
On the other hand, for a dynamical vacuum shell with a spacelike world-
volume Σ, the scale factor of the metric (4.14) on Σ is governed by (4.22),
under the inequalities (4.23) and (4.25).
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Now, let us begin by studying the inequalities to give idea of what kinds
of solutions exist. With this in mind, let us translate the restrictive inequal-
ities (4.23-4.25) into simpler terms. The metric function evaluated on the
hypersurface is

fL(a) = k +
a2

4®

(

1 + »LYL(a)
)

, YL(a) ≡
√

1 +
4®Λ

3
+

16®ML

a4
, (4.26)

and similarly for fR. Recall that »L and »R are independent of each other,
with » = +1 being the exotic branch of the Boulware-Deser solution. It is
convenient to write the inequalities in terms of the square roots YL(a) and
YR(a); namely

−´R´L (2»RYR + »LYL) (2»LYL + »RYR) ≥ 0 ; (4.27)

and

®(»RYR + »LYL) > 0 timelike shell (4.28)

®(»RYR + »LYL) < 0 spacelike shell . (4.29)

These inequalities contain relevant information about the global structure of
the solutions. Let us summarize this information in the following table

Timelike Product of Product of Inequalities
shells orientation branch signs imposed on

(¾ = +1) factors (´L´R) (»L»R) solutions

Standard +1 +1 No solution
orientation

+1 -1 1
2
YL ≤ YR(a) ≤ 2YL(a) ;
»R(MR −ML) > 0

“Wormhole” -1 +1 ®»R > 0 ; YL, YR > 0
orientation

-1 -1 YR ≥ 2YL or YR ≤ 1
2
YL ;

»R(MR −ML) > 0
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Spacelike Product of Product of Inequalities
shells orientation branch signs imposed on

(¾ = −1) factors (´L´R) (»L»R) solutions

Standard +1 +1 No solution
orientation

+1 -1 1
2
YL ≤ YR(a) ≤ 2YL(a) ;
»R(MR −ML) > 0

“Wormhole” -1 +1 ®»R < 0 ; YL, YR > 0
orientation

-1 -1 YR ≥ 2YL or YR ≤ 1
2
YL ;

»R(MR −ML) < 0

From the conditions obtained here we conclude the following:

Remark 4. Vacuum shells with the standard orientation always involve the
gluing of a plus branch (» = +1) metric with a minus branch (» = −1)
metric.

Now the plus branch has a different effective cosmological constant to
the minus branch. In this sense, standard shells are a kind of false vacuum
bubble. This is discussed further in section 5.1.

Remark 5. Vacuum shells which involve the gluing of two minus branch
(» = −1) metrics exist only when the Gauss-Bonnet coupling constant ®
satisfies ® < 0. They always have the wormhole orientation.

In the analysis above it has been explicitly assumed that ȧ ∕= 0. Never-
theless, the case ȧ = 0 is also of considerable interest. This describes static
shells in the timelike case, and also an analogous situation for the spacelike
case which we call instantaneous shells. In the next section, the case of con-
stant a shells is considered in detail. It can be checked that, as expected,
all the information about the constant a solutions can be obtained from the
dynamical case by imposing both V (a0) = 0 and V ′(a0) = 0. Thus, proposi-
tion 3 gives the general solution of all the vacuum shells, including the static
ones.
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Closing the general discussion of the dynamical vacuum we note the fol-
lowing. The potential V (a) in (4.22) and the restrictive inequalities (4.23)
and (4.24), (4.25) are symmetric in the exchange

»L,ML ↔ »R,MR . (4.30)

That is, the same kinds of motion are possible for the two situations obtained
if we swap the values of the parameters »,M in VL and VR. In the constant a
case, governed by V (a0) = 0 = V ′(a0), the symmetry means that the solution
is left unchanged under the swapping.

4 Static vacuum shells

Now, let us discuss the solutions at constant a. That is, the static and
instantaneous solutions, depending on whether the juncture corresponds to
the timelike or spacelike case respectively.

The bulk metric in each of the two region is assumed to be of the Boulware-
Deser form (4.9) with (k = ±1, 0) and considering a = a0 fixed. Although
the main focus will be on the spherically symmetric case k = +1, the analysis
can be straightforwardly extended to the cases k = −1 and k = 0. Then,
there are two possibilities to be distinguished; namely,

∙ Static shell: For the timelike case the shell is located at fixed radius
rL = rR = a0. The proper time on the shell’s world-volume is ¿ =
tL
√

fL(a) = tR
√

fR(a) so that the induced metric on Σ turns out to
be dŝ2 = −d¿ 2 + a20dΩ

2. Then, the extrinsic curvature components

are K¿
¿ = ´ f ′

2
√
f
, Kµ

µ = KÂ
Â = K'

' = ´
√
f

a
and the intrinsic curvature

components are Rµ'
µ' = k/a20, etc.

∙ Instantaneous shell: In the spacelike case there is an exotic kind of
shell, which exists when f is negative. The metric function is negative
inside of an event horizon or outside of a cosmological horizon, where r
actually plays the role of a timelike coordinate. Matching two metrics
at time r± = a0 therefore describes an instantaneous transition from
one smooth metric to another. We can introduce ¿ = tL

√

−fL(a) =

tR
√

−fR(a) which is a spacelike intrinsic coordinate on the shell, so
that the induced metric on Σ is ds2 = +d¿ 2 + a20dΩ

2. The extrinsic

curvature components are K¿
¿ = −´ f ′

2
√
−f

, Kµ
µ = KÂ

Â = K'
' = ´

√
−f
a

.
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It is worth noticing that both the static and instantaneous shells can be
analyzed together, provided the presence of ¾ in the equations. Recall that
the sign of ¾ carries the information about the signature of the junction
hypersurface. Then, by considering the quantities introduced above, and by
substituting this in the junction conditions with Sa

b = 0, we get

S¿
¿ = 0 ⇒

(

´R
√

fR − ´L
√

fL
)

(

a20 +
4®

3

{

3k − fR − fL − ¾´L´R
√

fLfR
}

)

= 0 .

(4.31)

Sµ
µ = 0 ⇒

( ´R√
fR

− ´L√
fL

)(

k − Λa20
3

− ¾´L´R
√

fLfR

)

= 0 ,

(4.32)

where ¾ = +1 is the static shell and ¾ = −1 is the instantaneous shell. The
l.h.s. of (4.8) conveniently appears in the µ − µ component of the junction
condition and we have used it to eliminate the derivative of f from the
formula. This is why Λ appears explicitly in equation (4.31).

In both equations (4.32) and (4.31), the first factor vanishes if and only if
the metric is smooth. Again, rejecting this as the trivial solution, we demand
that the second factor vanishes in both equations. So, we have

Proposition 6. A static vacuum shell is described by

fL + fR = 2k +
3a20
4®

+
Λa20
3

, (4.33)

´L´R
√

fLfR = k − Λa20
3

, (4.34)

under the condition fL, fR > 0. On the other hand, an instantaneous vacuum
shell is described by

fL + fR = 2k +
3a20
4®

+
Λa20
3

, (4.35)

−´L´R
√

fLfR = k − Λa20
3

, (4.36)

under the condition fL, fR < 0.

We have included for completeness the instantaneous shells. Now, let us
consider some examples of the static case with more attention. As mentioned,
a more complete analysis of the space of solutions will be given in sections 1
and 2.
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4.1 The moduli space of solutions

Now, to continue the study of the different solutions we find it convenient
to introduce some notation. For the rest of this section it is convenient to
define the dimensionless parameters

x ≡ 4®Λ

3
, y ≡ Λ

3
a20 , M̄ ≡ M

®
. (4.37)

By x and y we measure the Gauss-Bonnet coupling and the vacuum shell
radius respectively in units of Λ. The parameter y is useful for our purposes
but it is meaningful only when Λ ∕= 0. In terms of these parameters, the
Boulware-Deser solution evaluated at r = a0 has the form

fL,R(a0) ≡ 1 +
y

x

Ã

k + »L,R

√

1 + x+
x2

y2
M̄L,R

)

. (4.38)

The general solution will be derived in the following way: We will solve
the junction conditions for M̄L and M̄R in terms of (x, y). The range of
admissible values of (x, y) turns out to be restricted by inequalities coming
from demanding the metric to be real-valued. So there is a continuous space
of solutions.

Definition 7. The range of values of (x, y) for which solutions exist will be
called the moduli space.

The parameters x and y are coordinates of this moduli space. The com-
plete description of the moduli space will be given in more appropriate pa-
rameters introduced in section 2.3. For the moment, let us consider x, y and
M̄ .

Since the moduli space is two dimensional, it can be plotted. So by
obtaining a formula for the masses and by plotting the moduli space, we
obtain all the solutions. Let us now do this explicitly for the case of non-
vanishing cosmological constant.

4.2 Static spherical shells with Λ ∕= 0

Consider static spherically symmetric shells with Λ ∕= 0. For definiteness, let
us focus on the case of timelike shells with k = 1. From Proposition 6 we
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have the following pair of equations

fL + fR =
y

x
(3 + x) + 2 , (4.39)

√

fLfR = ´L´R (1− y) , (4.40)

where fL, fR > 0. We can see immediately from (4.40) that solutions with
the wormhole orientation, i.e. ´L´R = −1, only exist for y ≡ Λa20/3 > 1.

Remark 8. Static vacuum shell wormholes exist only when Λ > 0.

Solving the equations above we see that fL and fR obey the same quadratic
equation where one f has the + root of the solution and the other has the
− root. So we define a solution f(+) which corresponds to the + root of
the solution and an f(−) which corresponds to the − root. So there are two
solutions to the problem:

fL = f(−) , fR = f(+) or, fL = f(+) , fR = f(−) . (4.41)

Substituting the explicit expression (4.38) for fL,R(a0) we have: In the
first case of (4.41), ML = M(−), »L = »(−) and MR = M(+), »R = »(+), and in
the second case + ↔ −, for constants »(±) and M(±) satisfying

1 + x−
√
3

√

x(1 + x)
(4

y
+

3

x
− 1

)

= 2»(−)

√

1 + x+
x2M̄(−)

y2
, (4.42)

1 + x+
√
3

√

x(1 + x)
(4

y
+

3

x
− 1

)

= 2»(+)

√

1 + x+
x2M̄(+)

y2
. (4.43)

For a solution to exist, the square root in the l.h.s. of must be real, so
that we demand

x(1 + x)
(4

y
+

3

x
− 1

)

≥ 0 (Existence of solutions) . (4.44)

Since we have squared the equations we must substitute back to check the
consistency. So we get the following inequalities:6

y

x
(3 + x) + 2 > 0 (Timelike shells) ; (4.45)

6Note that the timelike condition (4.45), when combined with the reality condition
(4.44) can be equivalently stated

xy(1 + x) > 0 (Timelike shell) .

This is useful for plotting the graphs.
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y < 1 (Standard orientation) , y > 1 (Wormhole orientation) .
(4.46)

The above inequalities are plotted in figures 8.2 and 8.3. Also we find
the regions of the moduli space corresponding to the allowed branch signs
(»(−), »(+)).

»(−) »(+) Inequality

+1 1 + x > 0
∩

x
(

3
y
+ 2

x
− 1

)

< 0

−1 1 + x < 0
∪

x
(

3
y
+ 2

x
− 1

)

> 0

+1 1 + x > 0
∪

x
(

3
y
+ 2

x
− 1

)

< 0

−1 1 + x < 0
∩

x
(

3
y
+ 2

x
− 1

)

> 0

(Branches).

The standard shells are always (−,+). The regions (+,+), (−,+) and
(−,−) for the wormholes are shown in figure 8.4.

Remark 9. Provided Λ > 0 and assuming the existence of two asymptotic
regions we find ® > 0. Consequently, at least one of the two spherically
symmetric spaces connected through the throat turns out to be asymptotically
Anti-de Sitter.

The next step is computing the masses. We can solve (4.42) and (4.43)
to give the parameter M in each region, namely

M̄(−) =
y(1 + x)

2x2

{

6x+ 3y − xy − y
√
3

√

x(1 + x)
(4

y
+

3

x
− 1

)

}

, (4.47)

M̄(+) =
y(1 + x)

2x2

{

6x+ 3y − xy + y
√
3

√

x(1 + x)
(4

y
+

3

x
− 1

)

}

. (4.48)

As mentioned above, relations (4.41), the left-metric can be either a metric
with parameters (»(−),M(−)) or a metric with (»(+),M(+)), and the other
way around for the right-metric. For wormholes the two solutions (4.41)
correspond to the same spacetime looked at from the opposite way around.
In the case of standard shells, they correspond to swapping the mass and
branch sign of the interior with those of the exterior region.

The metrics with parameters (»(−),M(−)) and (»(+),M(+)) as determined
by the solutions we found above have different properties. We will call these
metrics minus- and plus-metrics respectively.
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Also we note the following useful expression: we can eliminate y to get
an implicit equation for the masses and x. The solution lies on sections of
the curves

1 +
9

4

x(x+ 1)

3− x

1

M̄(+) + M̄(−)

Ã

1 + (−1)p

√

1 +
4

9

(3− x)

x(x+ 1)
(M̄(+) + M̄(−))

)

= (−1)q

√

1 +
(3− x)

(1 + x)

(M̄(+) − M̄(−))2

(M̄(+) + M̄(−))2

(4.49)

where the signs (−1)p and (−1)q are to be determined by consistency.

4.3 Instantaneous shells

Before concluding this section, let us briefly comment on spacelike junction
conditions with ȧ = 0. For instance, consider the case Λ ∕= 0. From Propo-
sition 6 we have the following pair of equations:

fL + fR =
y

x
(3 + x) + 2 , (4.50)

√

fLfR = −´L´R (1− y) , (4.51)

The solution is exactly the same as the above except that the inequalities
(4.45) and (4.46) are reversed. That means

y

x
(3 + x) + 2 < 0 (Spacelike shells) ; (4.52)

y > 1 (Standard orientation) , y < 1 (Wormhole orientation) .
(4.53)

The inequality (4.44) and mass formulae are the same. The moduli space of
these solutions is plotted in figure 8.5. They exist for ® < 0.

4.4 Static spherical shells with Λ = 0

First, we can consider the case of static spherically symmetric shells with Λ =
0. This is an interesting special case. The analysis simplifies considerably
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and, besides, there are some qualitative differences between this and the case
Λ ∕= 0. In this case, the equations reduce to

fL + fR = 2 +
3a20
4®

, (4.54)

´L´R
√

fLfR = 1 , (4.55)

We see from the second equation that ´L´R must be +1, i.e. static wormholes
do not exist for Λ = 0. Then, the solution is either ML = M(−),MR = M(+)

or ML = M(+),MR = M(−) where

M(±)

®
=

1

2

a20
4®

⎛

⎝6 +
3a20
4®

±

√

12
a20
4®

+ 9

(

a20
4®

)2
⎞

⎠ . (4.56)

The consistency of the solution requires

® > 0 , (»(−), »(+)) = (−1,+1) , (4.57)

so that M(−) and M(+) correspond to minus branch and exotic plus branch
metrics respectively. There are solutions for all positive values of M(−) (the
plus branch mass parameter is also positive but in that case the bulk space-
time asymptotically takes the form of a negative mass AdS-Schwarzschild
solution). When the throat radius is small compared to the scale set by the
Gauss-Bonnet coupling constant, a20 << ®, the masses are also small com-
pared to ®, namely M(−)/® ∼ M(+)/® ∼ 3a20/4®. On the other hand, for
large radius a20 >> ®, the masses are large, M(−)/® ∼ a20/2®, M(+)/® ∼
3a40/16®

2. Figure 8.1 shows a plot of the masses as a function of ® and also
an implicit plot of M(+) as a function of M(−).

5 Surveying static vacuum solutions

In the previous section we have shown the existence of static vacuum shells in
the spherically symmetric case and found some basic qualitative features, as
well as a formula for the mass parameters in each region. A more exhaustive
treatment of the static shells will be left for section 2. Before going any
further let us summarize the catalogue of vacuum solutions that arise through
the geometric surgery we described above. The first cases of interest are
those corresponding to the standard orientation ´L´R > 0, what we have
called “standard shells”.
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5.1 Standard shells and false vacuum bubbles

The vacuum shells with the standard orientation are always (»(−), »(+)) =
(−1,+1) branch. So region VL has a different effective cosmological constant
to region VR, as can be seen from the expansion of the metric for large r. For
example, when the bare cosmological constant Λ = 0 we have on one side of
the shell the effective cosmological constant Λ

(+)
d = −3/2® and on the other

Λ
(−)
d = 0. In the region with Λ

(+)
d the graviton is expected to have ghost

instability. In this sense the shell is like the false vacuum bubbles7 studied
in Refs.[19, 122, 23, 1, 44, 148, 44], but for a false vacuum which is of purely
gravitational origin.

Being allowed to cut out a region of the space (here described by a given
Boulware-Deser metric) and replace such region with a different piece of
geometry (such as a Boulware-Deser metric with different parameters M
and ») might lead to curious implications. For instance, let us consider the
following construction: Suppose we have a “well behaved” minus branch
(»L = −1) solution with positive mass ML; where by “well behaved” we
mean a solution in which the singularity is hidden behind an event horizon
and for which we get a suitable GR limit for small ®. Now, let us cut out the
black hole at some radius r = a(¿) > rH and then replace it with the interior
of a plus branch (»R = +1) solution, i.e. a naked singularity. By doing this
we would be constructing a vacuum solution whose geometry, from the point
of view of an external observer, would coincide with that of a black hole but,
instead, would not possess a horizon. A particle in free fall would not find
a horizon but rather a naked singularity as soon as it passes through the
C0 junction hypersurface located at r = a > rH . The solutions with Λ = 0
and ® > 0 are a clear example of this. As can be seen from figure 8.1 there
are solutions for all positive M(−); so that we can indeed cut out the event
horizon and replace it with a naked singularity!

Also, for Λ ∕= 0 “false vacuum bubble” solutions gluing a positive mass
Boulware-Deser branch with a naked singularity do exist. This is seen by
looking at the moduli space described in figure 8.3. One might expect that
such cosmic-censorship-spoiling shells be unstable and in section 1.1 we will
confirm that they are unstable with respect to small perturbations.

7Strictly speaking, this label of false vacuum bubble would be correct if the minus
branch metric were lower total energy with respect to the plus branch metric and if the
classical transition were impossible.
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Figure 4.2: A spherically symmetric spacetime with metric of the class C0.
A vacuum shell with the standard orientation always connects two regions
with different branch signs » (and generically with different mass parameters
M). Each region has a different effective cosmological constant.

5.2 Vacuum wormhole-like geometries

So far, we have discussed different kinds of geometries constructed by a
cut and paste procedure of two spaces that were initially provided with the
Boulware-Deser metric on them. The strategy was to make use of the junc-
tion conditions holding in Einstein-Gauss-Bonnet theory and, in particular,
we have shown that solutions with non-trivial topology, which have no ana-
logues in Einstein gravity, do arise through this method. A remarkable ex-
ample is the existence of vacuum wormhole-like geometries, corresponding to
the case ´L´R < 0. These “wormholes” can be thought of as belonging to two
different classes: The first class describes actual wormholes, presenting two
different asymptotic regions which are connected through a throat located
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at radius rL = rR = a; the radius of the throat being larger than the radius
where the event horizons (or naked singularities) would be. The two asymp-
totic regions are rL → ∞ and rR → ∞ as measured by the radial coordinate
in the respective sides of the junction. This type of geometry is an example
of a vacuum spherically symmetric wormhole solution in Lovelock theory and
its existence is a remarkable fact on its own. On the other hand, a second
class of wormhole-like geometry with no asymptotic regions also exists. This
second class is obtained also by considering the orientation ´L´R < 0, this
time cutting away the exterior region of both geometries and gluing the two
interior regions together. We shall discuss this later; first let us discuss the
static wormhole solutions with two asymptotic regions (actual wormholes).

Geometries presenting two asymptotic regions

Let us begin by emphasizing that such static wormhole solutions only exist
if at least one of the two bulk regions corresponds to » = +1. That is, at
least one of the two Boulware-Deser metrics has to correspond to what we
have called the exotic branch. This could have deep implications in what
regards semiclassical stability [24]. It is also remarkable that for these static
wormholes to exist it is necessary that Λ > 0. Furthermore, the existence
of two asymptotic regions demands ® > 0 (for values ® < 0 there are only
solutions with“closed universe” geometry to be discussed below). Moreover,
since the static wormholes only exist if at least one of the branches corre-
sponds to » = +1, then at least one of the regions connected through the
throat possesses a negative effective cosmological constant.

Another interesting feature concerns the stability under radial perturba-
tions. This is seen in Fig 8.6. In particular, it can be shown that stable static
wormholes only exist for the case »L = »R = +1; namely, the case where both
Boulware-Deser metrics correspond to the exotic branch. Nevertheless, no
stable wormholes exist for the case ML = MR, and thus, concisely, the static
symmetric wormholes are unstable under perturbations that preserve the
spherical symmetry.

An interesting possibility is that of having wormhole solutions whose
Boulware-Deser metrics would correspond to negative mass parameters. For
instance, one can construct a static wormhole with one side being of the
“good branch” »L = −1 and having a negative mass ML < 0. In that case,
from the point of view of a naive external observer, the vacuum solution
would seem to correspond to a naked singularity. However, now we know
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Figure 4.3: Static vacuum wormhole solution. The junction conditions are
satisfied on the timelike hypersurface Σ for the case of the orientation ´L´R <
0. This solution presents two disconnected asymptotically de-Sitter regions.

that the inclusion of non-trivial junctures makes it possible to replace such a
singularity by an exterior region on the other side of a non-smooth wormhole
throat. This has a deep implication in what concerns the “cosmic censorship
principle” since for the appropriate values of the coupling constants, and
unlike what usually happens in pure gravitational theories, the spherically
symmetric vacuum solutions presenting naked singularity cannot be unam-
biguously classified (and consequently systematically excluded) in terms of
the mass parameter.

Another particular case that deserves to be mentioned as a special one
is that of having a massless solution in one of the sides of the wormhole
geometry. For instance, such a construction is achieved if the massless side
corresponds to the exotic branch » = +1 and the massive side to the branch
» = −1. In these cases, the wormhole throat turns out to be a kind of
puncture of the (A)dS spacetime, let us call it a “hole in the vacuum”. Since
(A)dS is homogeneously isotropic, a spherically symmetric matching can be
done anywhere: remarkably, several of these “holes” could be located at
different places in the spacetime and each “hole” would not influence the
others. We shall discuss this kind of geometry in more detail in section 3.2.
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The massless side may then correspond to a microscopic de-Sitter geometry
and, presumably, its cosmological horizon, yielding thermal radiation, could
be seen from the massive sides. This is an intriguing possibility that deserves
to be further explored.

Closed universe type geometries

Now, let us comment on the second class of wormholes; namely those with
no asymptotic regions. As mentioned, these geometries are constructed by
gluing the interior of the throat of both regions, instead of the exterior. One
can perform the matching by keeping the region that is inside the throat but
still outside the horizons. Consequently, one gets a geometry that resem-
bles a “static closed universe” with horizons. This exotic geometry has no
asymptotic regions at all, and, because of this, this second type of geometry
does not represent what one would usually call a wormhole. Nevertheless,
we shall abuse the notation and call “wormhole” any timelike junction with
the orientation ´L´R < 0.

Static solutions of this kind without naked singularities (i.e. with hori-
zon) exist for negative values of the coupling ® and x ≡ 4®Λ/3 < −1. In
this range of the coupling constants the Boulware-Deser metric develops a
branch singularity at fixed radius r4c = 16M®

∣x∣−1
, where the curvature diverges.

This branch singularity represents the maximum three-sphere radius: the
metric becomes non-real for r > rc. In addition there is a curvature singu-
larity at r = 0. In this region of the space of parameters we would say that
the Boulware-Deser geometry is somehow pathological. However, if junction
conditions are appropriately applied, then a well-behaved C0 vacuum geom-
etry can be constructed by simply taking a pair of such pathological spaces,
cutting out the naked singularities and joining them together. To see that
this is possible, it is sufficient to consider the symmetrical case. It can be
checked from equations (4.47) and (4.48) that two bulk regions with equal

masses ML/® = MR/® = 4(1+x)
(x−3)

can be matched at a throat radius a = 16∣®∣
3−x

.

Consulting figure 8.4 (these solutions are located on the upper bounding
curve of the left part of the moduli space) we see that wormhole solutions
exist when the bulk regions have branch signs (»L, »R) = (−1,−1). The bulk
metric has a horizon rH , which separates r = 0 (a timelike naked singularity)
from r = rc, which is a spacelike singularity. The static shell is located at
a < rH . So by cutting out the regions r < a and joining with the wormhole
orientation the naked singularities can be removed. The causal diagram of
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(c)(b)

aa

(a)

r=0rH

r = rc

Figure 4.4: (a) The causal diagram of the smooth spherically symmetric
solution for ® < 0, 1+ 4®Λ

3
< 0. (b) The vacuum shell is introduced at radius

r = a cutting out the r = 0 singularity. (c) Causal diagram of the resulting
spacetime (a C0, spherically symmetric vacuum solution).

the original pathological spacetimes and the extended causal diagram of the
C0 closed universe, which results from the matching, with horizons are shown
in figure 4.4.
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Chapter 5

Dynamical Solitons of Lovelock
Theory

1 Dynamical vacuum shells

In general, vacuum shells will be dynamical objects. We discuss the dynamics
here and also discuss the issue of radial stability of the static solutions.

1.1 General solution

Let us briefly recapitulate upon the equation (4.22), which governs the dy-
namics of the shells. We can treat both the timelike and spacelike together
since, as we noticed in section 3, the analysis is completely analogous. A
dynamical vacuum shell is governed by a differential equation of the form

ȧ2 + V (a) = 0 ; (5.1)

see (4.22) above. It is useful to express V (a) in terms of the non-negative

quantity Y =
√

1 + 4®Λ
3

+ 16M®
a4

, and the effective potential then reads

V (a) = ¾

(

k +
a2

4®

)

− ¾a2

4®

(

3(»RYR + »LYL)
2 + (»RYR − »LYL)

2

12(»RYR + »LYL)

)

. (5.2)

In addition to the differential equation, the solution must obey the inequali-
ties (4.27)-(4.28). It is convenient to rewrite them as follows

−´R´L

(

9(»RYR + »LYL)
2 − (»RYR − »LYL)

2
)

≥ 0 , (5.3)
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¾®(»RYR + »LYL) > 0 . (5.4)

Note that the effective potential (5.2), V (a) = ¾a2

4®
+ ¾k + ΔV (a), con-

sists of a quadratic piece, a constant determined by the three-dimensional
curvature k of the shell, and another piece which, by inequality (5.4) obeys
ΔV < 0.

To analyze the motion of a shell we shall need to know the derivatives of
the potential. This is worked out in appendix 3. Differentiating the potential
we get the following expression for the acceleration of a moving shell,

ä = −¾
a

4®

[

1− 1 + 4®Λ/3

»RYR + »LYL

]

. (5.5)

Considering the sign of this acceleration and making use of inequality (5.4)
we can make some general observations:

Remark 10. For a timelike shell (¾ = +1):
When 1 + 4®Λ

3
≥ 0 and ® < 0 a vacuum shell always experiences a repulsive

force away from r = 0;
When 1+ 4®Λ

3
≤ 0 and ® > 0 a vacuum shell always experiences an attractive

force towards r = 0.

In the situations not covered by Remark 10 the potential may have an
extremum. From (5.5) we deduce that there is an extremum at r = ae iff

»RYR(ae) + »LYL(ae) = 1 +
4®Λ

3
. (5.6)

Recalling inequality (5.4), we conclude that an extremum can exist only if

¾®

(

1 +
4®Λ

3

)

> 0 . (5.7)

The extremum will be a minimum or maximum depending on the sign of
the second derivative of the potential evaluated there,

V ′′(ae) =
¾

®

(

1 + 4®Λ/3

»R»LYR(ae)YL(ae)
− 1

)

. (5.8)

There is a general result for vacuum shells separating different branch metrics.
From (5.7) we see that V ′′(ae) in (5.8) must be negative for 1 + 4®Λ

3
≥ 0.
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Proposition 11. In the range1 1+ 4®Λ
3

≥ 0 for the product of Gauss-Bonnet
coupling and cosmological constant: Let Σ be a vacuum shell such that »L»R =
−1. Then the potential never has a minimum. If Σ is a timelike shell it will
either be in an (unstable) static state, or, if it is moving, will continue to
expand or collapse, it can not be bound.

We have already remarked in section 3 that any shell with standard ori-
entation must match two bulk metrics of opposite branch sign (»L»R = −1),
except in the trivial case of a smooth matching. So we obtain the following
general result about instability of standard shells:

Corollary 12. Let 1+ 4®Λ
3

≥ 0. A timelike shell with standard orientation is
either in an (unstable) static motion, or, if it is moving, will continue either
to expand or collapse.

We have already seen in section 4 that static shells with standard orien-
tation are always in a state of unstable equilibrium in the (physical) regime
1+ 4®Λ

3
≥ 0. The proposition above strengthens this result to include dynami-

cal shells. A dynamical shell with standard orientation can not be oscillatory.
It must either disappear into a singularity or fly out towards spatial infinity.

There is not such a strong result for shells with the wormhole orientation.
Indeed in section 4 we found stable static wormholes for 1 + 4®Λ

3
≥ 0 which

matched two bulk metrics of the plus branch. We can however derive a strong
result about instability concerning bulk metrics of the minus branch. When
»L = »R = −1 we see from (5.6) that for 1 + 4®Λ

3
≥ 0 an extremum is not

possible. Furthermore, combining the results of Remarks 5 and 10 we see
that the shell is always expanding:

Proposition 13. Let 1 + 4®Λ
3

≥ 0 and let Σ be a timelike vacuum shell
with wormhole orientation, and VL and VR be minus branch bulk metrics
(»L, »R) = (−1,−1). Then the shell always experiences a repulsive force
away from r = 0.

So in summary, we have found some general results for the range of pa-
rameters 1 + 4®Λ

3
≥ 0. This range is important because it includes the case

∣®Λ∣ << 1 and therefore applies when the Gauss-Bonnet term is a small
correction. Combining these results, we conclude that, in this range of pa-
rameters, all timelike vacuum shells involving the minus branch are unstable.

1In the case of the wormhole orientation, by using the inequality (5.3), the result can
be extended to apply to the range 1 + 4®Λ

3 > − 1
2 .
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The only vacuum shell solutions which can be static or oscillatory are worm-
holes which match two regions of the exotic plus branch.

1.2 Comment on the stability of static shells

Dynamical equation (5.1) resembles the equation for a particle moving under
the influence of an effective potential (5.2). Nevertheless, as pointed out in
section 3, this is not strictly the case due to the presence of the vanishing
energy constraint. This is important for the case when the extremum of
the potential is at a = a0 with V (a0) = 0, i.e. when static solutions exist.
When V ′′(a0) < 0 we conclude that the shell is unstable with respect to the
radial component of a perturbation- a slight shift a → a0 + ±a will cause
the shell to accelerate away from the (unstable) equilibrium radius. When
V ′′(a0) > 0 we conclude that the shell is stable with respect to radial per-
turbations. There is however a slight subtlety: as mentioned previously the
energy is unavoidably fixed instead of arising as a constant of motion. So
for a fixed potential, there is no real solution for a when V > 0. We can
consider spherically symmetric solutions which are close-by in the space of
the solutions, i.e. with slightly different parameters ML,R and w such that
the value of the potential at ae is slightly negative: let us say V (ae) = 0−.
This means that such a solution oscillates between two radii around ae at
which the potential vanishes. This is certainly a stable solution though not
static, a ‘bounded excursion’ [158]. Now if we let ae coincide with the a0 of
the original static solution, this means that for slightly different parameters
than those for which a0 is a static solution, there exists an oscillating solution
around a0. Therefore a static solution a0 which is a minimum of the potential
gives information about when infinitesimal bounded excursions can happen.
More generally, the dynamics of the perturbed shell can be thought of as
corresponding to a perturbation of the above equation V (a) → V (a) − ±ℎ,
provided energy ±ℎ from an external excitation. The stable regions of the
moduli space of static solutions are plotted in figures 8.6 and 8.7. The graph
will take an elegant form in terms of the change of variables to be introduced
in section 2 (see fig 5.4).

In the rest of this section we present some illustrative examples of dy-
namical vacuum shells, first in symmetrical wormhole solutions and then in
the context of Chern-Simons gravity.
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1.3 Symmetric dynamical wormholes

Now let us consider the case where the masses in each bulk region are the
same, being ML = MR = M . The inequalities (5.3) and (5.4) are equivalent
to:

Remark 14. If Σ is a vacuum shell joining two bulk regions with the same
mass MR = ML then:
i) The bulk solutions must have the same branch sign »L = »R = sign(¾®);
ii) The shell must have wormhole orientation.

So the spacetime is completely left-right mirror-symmetric. The equation
of motion reads

¾ȧ2 +
a2

4®

[

1− »
Y (a)

2

]

+ k = 0 . (5.9)

The general solution is rather complicated. Next we proceed to consider a
simple case where both masses vanish.

The case where ML,R = 0 is an interesting special case of the symmetric
wormholes, which exists for 1 + 4®Λ

3
> 0. The equation of motion reduces to

¾ȧ2 +
a2

4®

⎛

⎝1− »

√

1 + 4®Λ
3

2

⎞

⎠+ k = 0 . (5.10)

Remark 15. Consider a timelike shell (¾ = +1), that is sign(®) = ».
Bounded motions: » = +1, 4®Λ

3
< 3, k = +1 ; » = +1, 4®Λ

3
= 3, k = 0.

Unbounded motions: » = +1, 4®Λ
3

= 3, k = −1 ; » = +1, 4®Λ
3

> 3, any k
; » = −1, 4®Λ

3
> −1, any k.

The same bounded or unbounded configurations exist in the spacelike case
provided one replaces k with −k, for the opposite sign of ®.

The hyperbolic shell, k = −1, admits a stationary vacuum wormhole
solution: for sign(®) = » = +1 and 4®Λ/3 = 3 we have that ä = 0 and
ȧ2 = 1.

When Λ = 0 and » = −1 the two bulk regions have flat Minkowski
metrics, spherical timelike vacuum wormholes with an expanding throat of
minimum radius squared 8∣®∣/3 are possible when spacetime is Minkowski
on both sides. On the other hand, we may cut a Minkowski spacetime along
the spacelike hypersurface t2 − r2 = 8∣®∣/3 (up to shifts of t) and match it
with a similar region of another Minkowski spacetime.
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1.4 Chern-Simons dynamical vacuum junctions

When 1 + 4®Λ
3

= 0 some very special things happen. For this choice of cou-
pling constants the Einstein-Gauss-Bonnet theory (in first order formalism)
is equivalent to a Chern-Simons theory for the deSitter (® < 0) or Anti de
Sitter (® > 0) group2. In this case the metric function takes the very simple
form

f(r) = 1 +
r2

4®
− ¹ , (5.11)

where ¹ is a constant and the mass is proportional to ¹2−1[49]. When ¹ > 0
the bulk solution is a black hole. When ¹ < 0 the bulk metric would have a
naked singularity at the origin.

The dynamics of vacuum shells takes a very simple form. The quantity
a2»Y/4® = −¹ for each bulk region is a constant and therefore the non-
harmonic part of the potential ΔV is a constant. The equation of motion
takes the form

ȧ2 +
¾

4®
a2 = ℰ , ℰ = −¾

(

k +
3(¹R + ¹L)

2 + (¹R − ¹L)
2

12(¹R + ¹L)

)

. (5.12)

The potential is like that of a harmonic oscillator potential (or an upside-
down harmonic potential if ¾® is negative), although it should be remem-
bered that the origin r = 0 of the bulk spacetimes is singular so the shell
can not really oscillate. The solution is constrained according to the two
inequalities (5.3) and (5.4), which now read

−´L´R(9(¹R + ¹L)
2 − (¹R − ¹L)

2) ≥ 0 , (5.13)

−¾ (¹R + ¹L) > 0 . (5.14)

The last inequality tells that ℰ > −¾k. These inequalities are generally
consistent with ℰ > 0 so that solutions do indeed exist.

For instance, consider the timelike shells in this theory. Note that, from
inequality (5.14), at least one out of ¹R or ¹L must be negative. So it is not
possible to match two black hole spacetimes. From inequality (5.13) we see
that shells with the standard orientation must obey ¹R¹L < 0.

Remark 16. For the Chern-Simons combination 1 + 4®Λ
3

= 0, timelike vac-
uum shells always represent either:

2The case of Poincaré Chern-Simons theory was discussed in Ref. [88].
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i) a matching between a bulk region of a black hole spacetime with bulk region
of a naked singularity spacetime; or
ii) a matching, with wormhole orientation, between two bulk regions of naked
singularity spacetimes.

Now, let us analyze the de-Sitter invariant Chern-Simons gravity, which
corresponds to ®Λ = −3/4 with ® < 0. In this case, the potential is like an
inverted harmonic oscillator centered at the origin. There are solutions for ℰ
positive, negative and zero.

Let us just focus on the case ℰ > 0. The trajectory of a timelike shell is
then given by

a(¿) = 2
√

∣®ℰ∣ sinh
(

± ¿

2
√

∣®∣
+ const.

)

, (5.15)

which is a shell either emerging from the past white hole or falling into the
future black hole, depending on the sign ± in the argument.

For ℰ < 0 the hyperbolic sine is replaced by the cosine. ℰ = 0 gives an
increasing and a decreasing exponential.

On the other hand, for ℰ > 0 and k = 1, one could consider Euclideaniza-
tion of the problem. Presumably, this could be relevant in describing the
decay of the exotic negative ¹ spacetime. Define an angle Â by

Â =
¿E

2
√

∣®∣
(5.16)

up to a constant, where ¿E is the Euclidean proper time of the shell. The
metric on the Euclidean world sheet of the shell reads

ds2Σ = 4∣®∣
(

dÂ2 + ℰ sin2 ÂdΩ2
)

. (5.17)

When ℰ < 1 we have a deficit solid angle, and, when ℰ > 1, an excess. In
both cases the space has a curvature singularity at the poles Â = 0 and Â = ¼.
Therefore, the smoothness of the Euclidean shell requires ℰ = 1. This metric
is spherically symmetric in the five dimensional sense in this case, whence it
describes a 4-sphere. The 4-sphere separates a ball of Euclidean black-hole
solution with mass parameter ¹R from another solution with ¹L, obeying the
relation

¹2
L + ¹2

R + ¹L¹R + 6(¹L + ¹R) = 0 . (5.18)
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It is interesting to note that the size of the Euclidean world sheet depends
essentially only on ® and not on the ¹L,R; the latter change its shape, which
is fixed to spherical by the above relation.

The curve (5.18) is an ellipse. It is symmetrical around the line ¹L = ¹R

and tangential with the line ¹L+¹R = 0 at ¹L = ¹R = 0. It exists completely
in the region ¹L + ¹R ≤ 0. In view of the inequality (5.14) all points of the
curve are included except ¹L = ¹R = 0. Therefore the 4-sphere Euclidean
world sheet does exists for certain values of the parameters. Whether this
interesting configuration is a mere curiosity or it is related to semiclassical
transitions between the ¹L and ¹R spacetime is an open question.

We can also consider the Anti-de Sitter invariant Chern-Simons theory,
corresponding to ® > 0. In this case, the effective potential V turns out to be
a quadratic potential centered at the singularity at the origin. The analysis
is similar to that of the dS case except that there are solutions only with
ℰ > 0.

On the other hand, we can also think about the spacelike shells for this
case of Chern-Simons couplings Λ® = −3/4. These shells represent a sudden
classical transition from a spacetime with some mass parameter ¹in to another
with a different mass parameter ¹out. Such transitions occur for quite general
values of ¹in, and this is a concise manifestation of the extreme degeneracy
of the field equations of the Chern-Simons theories.

2 Constant solutions revisited

In this section we will perform an exhaustive analysis of the space of constant
solutions, what we have called the moduli space.

2.1 Static and instantaneous spherical vacuum shells

To begin, it will be convenient to introduce new dimensionless parameters,
defined as follows

u ≡
√
3

√

x(x+ 1)
(4

y
+

3

x
− 1

)

, w ≡ x+ 1 . (5.19)

On should think of u and w as functions of ®, Λ and a20, via the definitions
(4.37). Here,

u ≥ 0 .

74



The inverse transformation is given by

y =
12w(w − 1)

u2 + 3(w2 − 4w)
, x = w − 1 . (5.20)

Each point on the (w, u) plane such that u2 + 3(w2 − 4w) ∕= 0 uniquely
determines the values of the basic dimensionless ratios x and y and therefore
the solution3. The line w = 0 is peculiar as it implies that either a0 = 0, or
® = ∞ and Λ = 0. The latter is the case of pure Gauss-Bonnet gravity. We
will see that for ∣®∣ < ∞ the line w = 0 is excluded from the moduli space
as it corresponds to smooth geometries.

Definition 17. We will call the allowed domain on the (u, w) plane as the
(u, w) parameter space representing the moduli space of the vacuum shell.
Similarly the allowed domain on the plane of x and y is the (x, y) parameter
space for the vacuum shell for non-zero Λ. The various possible pairs of
parameters that uniquely represent all possible points of the moduli space can
be thought of its coordinates.

In terms of these new variables we have that the vacuum shells are de-
scribed by equations

fL+fR =
2(u2 + 9w2)

u2 + 3(w2 − 4w)
,

√

fLfR = ¾´R´L
u2 − 9w2

u2 + 3(w2 − 4w)
, (5.22)

with fL,R > 0 for the timelike vacuum shell (which corresponds to ¾ = +1),
and fL,R < 0 for the spacelike vacuum shell (¾ = −1). After squaring the
equations above, we obtain

f(±) =
(3w ± u)2

u2 + 3(w2 − 4w)
. (5.23)

which turns out to be always real. The solution for fL,R is given by (4.41) as
discussed there. Then from (5.22) we first have

3It is useful to remember that the radius a0 of the vacuum shell is given in terms of
these variables by

a20 = 4® ⋅ 12w

u2 + 3(w2 − 4w)
. (5.21)
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Proposition 18. Let the total moduli space be described in the (w, u) param-
eter space. Then it necessarily is a subset of the upper half plane u ≥ 0 from
which the points on the curves ±u = 3w and u2 + 3(w2 − 4w) = 0 are ex-
cluded. The four disconnected regions are divided according to the type of the
matching by combinations of the following. Timelike: u2 + 3(w2 − 4w) > 0.
Spacelike: u2+3(w2−4w) < 0. Same orientation i.e. ´L´R > 0 : u2−9w2 > 0.
Opposite orientation, i.e. ´L´R < 0 : u2 − 9w2 < 0.

It is good to remember

Remark 19. The points (0, 0), (1, 3) and (0, 4) in the (w, u) plain do not
belong to the moduli space. The point (1, 3) corresponds to the line x = 0
and y ∕= 0.

We have already used the fact that fL,R(r) are the Boulware-Deser metric
functions. In order to completely solve our problem we must substitute
for fL,R using the Boulware-Deser expression evaluated at r = a0 given in
equation (4.38),

fL = fL(a0) , fR = fR(a0) . (5.24)

Recall (4.41). Similarly to equations (4.42) and (4.43) we have that, within
the space of Proposition 18, (5.24) amount to

w (w ± u) = 2w »(±)

√

w +

(

u2 + 3(w2 − 4w)
)2

144w2
M̄(±) . (5.25)

The solution w = 0 is possible only if M̄L,R = 0. Then for ∣®∣ < ∞ we
have that ML,R = 0 and the bulk metrics are simply fL,R(r) = 1 + r2/(4®).
We have

Remark 20. The line w = 0, which lies in the “cone” u2 − 9w2 > 0 and
entirely within the timelike standard shell region, is excluded from the moduli
space as it merely corresponds to smooth geometries.

Therefore we work with non-zero w. Squaring the previous relation we
find the mass parameters of f(±)(r) which are consistent with the vacuum
shell solution; namely

M̄(±) =
36w2((w ± u)2 − 4w)

(u2 + 3(w2 − 4w))2
. (5.26)
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Substituting back into (5.25) we have the condition

»(±) ∣w ± u∣ = w ± u . (5.27)

The sign of »(+) is completely determined over the moduli space if u+w ∕= 0
by »(+)(w + u) > 0. Similarly, the sign of »(−) is determined if w − u ∕= 0 by
»(−)(w − u) > 0. Now for w + u = 0 we find that »(−)∣w∣ = w = −u < 0.
Similarly for w − u = 0 we find that »(+) > 0, and this happens for w > 0.

We see that the signs »± are specified for each point on the moduli space,
i.e. a solution of the vacuum shell. We will say that this is a solution of the
vacuum shell of type (»(−), »(+)). The exception is along the partition curve
u2 − w2 = 0 where one of the signs is undetermined. We can summarize

Proposition 21. The moduli space consists of the regions of the parameter
space (w, u) given in Proposition 18 such that: i) the line w = 0 is excluded,
ii) according to the branch signs (»(−), »(+)) of the bulk regions the parameter
space is divided as follows: (+,+) for u < w; (−,+) for −u < w < u, (−,−)
for w < −u.

The points along the partition curve u2 − w2 = 0 satisfy: if w > 0 then
»(+) > 0 and »(−) arbitrary, if w < 0 then »(−) < 0 and »(+) arbitrary. The
mass parameters M(±) are well defined and given over the moduli space by
formula (5.26).

Propositions 18 and 21 categorize the allowed spherically symmetric vac-
uum shell solution at constant r in terms of spacelike/timelike and branch
signs. This is plotted in figure 5.1. In what follows we further categorize the
solutions according to other physical properties. The entire information we
will get is given in the Fig.5.2.

Note also the following: Formula (5.26) says that we can define a function

M̄∗(w, u) :=
36w2((w + u)2 − 4w)

(u2 + 3(w2 − 4w))2
, (5.28)

defined on the whole of the (w, u) plain (minus the curve u2+3(w2−4w) = 0)
and not only on the upper half. Then for u > 0, M̄(+) = M̄∗(w, u) and
M̄(−) = M̄∗(w,−u). More generally, recalling also equations (5.23), and
(5.27), one may extend also f(a0) and », regarded as functions of w and u,
over the whole of the (w, u) plane.
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Lemma 22. Let X denote any of the quantities M̄ , f , », or combinations
of them. One may define a function X∗(w, u) such that X(+) = X∗(w, u)
for u ≥ 0. Then, X(−) = X∗(w,−u). At u = 0 we have X(+) = X(−) i.e.
XR = XL.

The parameter space can be extended over the whole of the (u, w) plane.
The mirror transformation u → −u has the effect of sending (+) ↔ (−).
So one may specify one type of quantities »(+), M̄(+) on the whole plane and
mirror image the results to obtain the values of »(−) and M̄(−).

Now, we will also return to discuss in a more detailed manner the two
most basic distinct types of constructions here (recall Definition 2): matching
with the same orientation, i.e. standard shell solutions, and matching with
opposite orientation, which we call collectively wormholes. Though the fol-
lowing definition has been already in use in our work, it is useful to formalize
the following

Definition 23. A plus-metric, corresponding to the metric function f(+)(r),
is one whose mass parameters is given by M̄(w, u) = M(+) and branch by
(w+u)/∣w+u∣ = »(+) over the moduli space. A minus-metric, corresponding
to the metric function f(−)(r)), is one whose mass parameters is given by
M̄(w,−u) = M̄(−) and branch by (w − u)/∣w − u∣ = »(−) over the moduli
space.

Now, let us make a remark on the sign of ®. As a20 > 0 it can be
determined by the sign of y/x and is given by

sign(®) = sign
(

w (u2 + 3(w2 − 4w))
)

. (5.29)

Therefore we have

Remark 24. ® > 0 only for timelike vacuum shells and in the region w > 0
(for standard or wormhole orientation). Inside the ellipse of the spacelike
vacuum shells (see fig. 5.1), or for w < 0, we have: ® < 0.

From the definition of w, the sign of the cosmological constant Λ is de-
termined according to

sign(Λ) = sign(®) sign(w − 1). (5.30)

When Λ = 0 i.e. w = 1 > 0, the sign of ® depends on the whether the shell
is time- or space-like as we mentioned just above.
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2.2 The masses over the moduli space

Important physical properties of the solutions have to do with what values
the masses M(±) take, w.r.t. sign, magnitude and relative magnitude, over
the moduli space. Let us comment on it below.

Equal mass solutions

A question with a very simple answer is where on the moduli space we could
have M(+) = M(−). We have seen that this happens at u = 0. Explicitly,
from (5.26) we have

M̄(+) − M̄(−) =
144uw3

(

u2 + 3(w2 − 4w)
)2 . (5.31)

Proposition 25. M(+) = M(−) only at the boundary u = 0. Therefore such
solutions exist only for wormholes.

From Proposition 21 we have that at the points where M(+) = M(−) we
have also that »(+) = »(−).

Lemma 26. Symmetric configuration are such ML = MR and »L = »R.
They exist only at the boundary u = 0 of the moduli space and they can be
either time- or space-like shell wormholes.

The equal mass M̄ = M̄(±) of the symmetric case reads

M̄ =
4w

w − 4
. (5.32)

So, symmetric configurations exist for all w ∕= 4 and M̄ can take all real
values except 4.

Zero mass solutions

The masses M̄(±) change sign crossing the curves where they vanish, and of
course these curves are where M(±) vanish too. From the formula (5.26) and
Proposition 21 we have that M̄(±) = 0 along the curves

(u± w)2 = 4w , (5.33)

respectively. They exist only for w > 0. The masses cannot vanish for w < 0.
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Using Lemma 22 we may look only at one of the curves e.g. (u−w)2 = 4w,
which also reads u = ±2

√
w + w, over the whole plane. The other mass is

M̄
(±)
0 =

9w
√
w

(w − 3)
√
w ± 2

. (5.34)

The curve (u− w)2 − 4w = 0 goes to negative values of u for 0 < w < 4.
On the u > 0 side appears disconnected emerging into two pieces ar w = 0
and w = 4, fig. 5.2. Therefore

Proposition 27. M̄(−) = 0 for u = ±2
√
w + w > 0 where M̄(+) = M̄

(±)
0

respectively. M̄(+) = 0 for u = 2
√
w − w > 0 where M̄(−) = M̄

(−)
0 .

Independently of whether the mass that vanishes is an M(+) or an M(−)

note also the following

Remark 28. When the zero mass is of branch » the massive side has mass
M̄

(−»)
0 and the matching happens according to u = ∣w − 2»

√
w∣ > 0. The

branch of the massive side depends, as always, on which side of the line
u = w we are.

Sign of the mass parameters

Now, let us discuss the positivity of the mass parameters.
The signs of M̄(±) behave quite simply. From formula (5.26) we have:

Proposition 29. M̄(±) < 0 at the convex region defined by the curves (5.33)
i.e. where (u±w)2 − 4w < 0 respectively. They have an overlap for 0 ≤ u <
2
√
w − w, inside the spacelike shell wormhole region. M̄(+) < 0 only in this

overlap.

Remark 30. The entire curve u − w = 0 exists within the region where
M̄(−) < 0. This is also seen by the fact that the r.h.s. of (5.25) vanishes
there. M̄(+) > 0 along u− w = 0.

The above mean that M̄(−) < 0 in a very large part of the moduli space
for w > 0. Therefore the metrics f(−) will have inner branch singularities,
discussed in appendix 1.

The signs of M(±) = ®M̄(±) themselves are depicted in the figure 5.3 using
also formula (5.29).
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Mass as a function of the radius of the shell

We see from (5.26) that given a mass M(±), for given ® and Λ, the radius a0
of the shell where the matching takes place is determined by a fourth order
polynomial of u, namely

(u2 + 3(w2 − 4w))2 M̄∗ − 36w2 (u2 + 2wu+ w2 − 4w) = 0 ; (5.35)

given a u we can obtain a20 by (5.21). As discussed above, Lemma 22, M̄∗ is
an M̄(+) when u is non-negative and an M̄(−) when u is non-positive.

The equation above does not seem to be very enlightening. However,
we can combine it with some pieces of information we have: First we know
that u takes values on the entire real line. Secondly, there is at least one
real solution u, since M̄∗ is defined by (5.26) to correspond to some real u.
Besides, M̄∗ takes all real values itself as one may verify.

So, one may ask the following: For a given M̄∗, and a given w, how many
different real solutions u exist and what is their sign? Now, the l.h.s. of
(5.35) is an even order polynomial. Then we know that there must be at
least a second u producing the same M∗. What we a priori do not know is
whether the second u is of the same sign or of the opposite.

There is one case where the second solution coincides with the first, and
therefore has the same sign. This is when the root u is also an extremum of
the polynomial. It is easy to verify when this happens. We simply differen-
tiate the polynomial w.r.t. u and use (5.26) to find the following answer

(u+ 3w)(u2 − w2 + 4w) = 0 . (5.36)

The points on the orientation curve u+3w = 0 are not included in the moduli
space. Therefore we have that there is a single u when M̄∗ and w are such
that u2 − w2 + 4w = 0. We will see below that this is the stability curve i.e.
the curve which separates the radially stable from the unstable solutions on
the moduli space as we will see below (see also figure 5.4).

A related fact is given in the following

Remark 31. For fixed ® and Λ we can think of the masses as functions of
the radius of the shell a0: M(±) = M(±)(a0). The function M(+)(a0) has a
global minimum and the function M(−)(a0) has a global maximum for radii
a0 given by u2 − w2 + 4w = 0.

Thus, there is simpler question one may ask: Given pair of masses M(+)

and M(−), when can the matching happen at more than one shell radii a0?
The answer is that this can never happen:
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Proposition 32. For any w, any u such that (w, u) belongs to the moduli
space gives a pair of mass parameters M̄(+) and M̄(−). Then, this is the
unique u that gives these mass parameters.

Let us prove this proposition. For a given w, let u0 be such that the
corresponding point (u0, w) belongs to the moduli space. We have

M̄(+) = 36w2 (u0 + w)2 − 4w

(u2
0 + 3(w2 − 4w))2

, M̄(−) = 36w2 (u0 − w)2 − 4w

(u2
0 + 3(w2 − 4w))2

.

(5.37)
Of course u0 ≥ 0.

There are two special cases to deal with before proceeding. First, consider
M̄(+) = M̄(−). We know that this is possible if and only if u0 = 0. So for
non-unique solutions we may restrict ourselves to u0 > 0. The second case is
when M̄(+) + M̄(−) = 0. This happens in the moduli space along the circle:
u2
0+w2−4w = 0. Clearly there is a unique positive u0 solving this equation.
Therefore it is adequate to consider u0 > 0 and masses such that M̄(+) ±

M̄(−) ∕= 0. The proof is by contradiction. Let us suppose that u0 is not
unique in the sense that there exists some u1 > 0 in the moduli space such
that u1 ∕= u0 and which gives the same masses

M̄(+) = 36w2 (u1 + w)2 − 4w

(u2
1 + 3(w2 − 4w))2

, M̄(−) = 36w2 (u1 − w)2 − 4w

(u2
1 + 3(w2 − 4w))2

.

(5.38)
With a little rearranging subtracting the respective equations we have

(u1 − u0)
{

(u1 + u0)
(

u2
1 + u2

0 + 6(w2 − 4w)
)

M̄(+) − 36w2 (u1 + u0 + 2w)
}

= 0 ,

(u1 − u0)
{

(u1 + u0)
(

u2
1 + u2

0 + 6(w2 − 4w)
)

M̄(−) − 36w2 (u1 + u0 − 2w)
}

= 0 .

u1 ∕= u0 so the quantities in the big brackets vanish. Adding and subtracting
them we obtain the equations

u2
1+u2

0+6(w2−4w) =
72w2

M̄(+) + M̄(−)

, u1+u0 = 2w
M̄(+) + M̄(−)

M̄(+) − M̄(+)

. (5.39)

Via (5.37) these equations express u1 in terms of u0 and w. The second of
these tells us that

u1 = −3w2

u0

< 0 . (5.40)
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So we conclude that u1 is negative, contradicting the assumption. This com-
pletes our proof.

Therefore, remembering that u is single valued in terms of the shell radius
a0, the junction conditions define a single-valued function a0 = a0(M(−),M(+)),
in fact one-to-one on the space of the allowed values of M(±). As we know
from section 3.3 a0 is a symmetric function of ML and MR and it is given by
a0 = a0(M(−),M(+)), via the correspondence implied in (4.41). Thus given
the bulk metrics, the a =constant vacuum shell is unique. So we see that a
weakened version of uniqueness of solutions does survive. Note that for shells
with standard orientation there are exactly two inequivalent configurations
corresponding to the same shell radius, depending on whether M(+) is the
mass of the inner or the outer region.

2.3 The spectrum of curves

We notice that, throughout the computations, the quantity

W ≡ w2 − 4w = w(w − 4) , (5.41)

appears often. Now we comment on how it turns out to be convenient to ex-
tract information on the moduli space. First, notice that W clearly vanishes
at w = 0 and w = 4. We also encounter the curves

u2 = ±W, (5.42)

u2 = ±3W,

u = ±w,

u = ±3w,

u = 0 ;

which in detail they correspond to

u2 = 3(w2 − 4w) : M̄(+) + M̄(−) = 2M̄ curve,

u2 = −3(w2 − 4w) : causality curve,

u2 = (w2 − 4w) : stability curve,

u2 = −(w2 − 4w) : M̄(+) + M̄(−) = 0 curve, (5.43)

u = ±3w : orientation curve,

u = ±w : branch curve,

u = 0 : boundary curve (where M̄(±) = M̄) .
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We also found the curve where M̄(±) = 0 to be

(u− w)2 − 4w = 0 , i.e. u = u(±) = ±2
√
w + w : zero minus-mass curve ,

(u+ w)2 − 4w = 0 , i.e. u = −u(−) = 2
√
w − w : zero plus-mass curve ,

respectively. And notice that in terms of W this simply reads

u(+)u(−) = W . (5.44)

The first four curves in our list, which involve W , are conic sections with
symmetry axes the lines w = 2 and u = 0. The orientation and branch
curves on the other hand have symmetry axes the lines w = 0 and u = 0.
The conic sections and especially the causality curve which is an ellipse,
u2 + 3(w − 2)2 = 12, break the symmetry between positive and negative
values of w. The image of the causality curve around w = 0 would be
centered at w = −2 i.e. x = −3.

The above analysis manifestly shows that the quantity W ≡ w2 − 4w
captures much important information about the moduli space.

Actually, the parameterization of the space of solutions in terms of vari-
ables (u, w) had shown to present advantages in order to classify the whole
set of solutions. To emphasize this, and for completeness, let us also express
the regions of radial stability over the moduli space in terms of these vari-
ables. Such regions are known to be characterized by the second derivative
of the effective potential, which in terms of u and w is seen to be

V ′′(a0) = − 1

a20

w
(

u2 − w2 + 4w
)

(u2 − w2)
(

u2 + 3(w2 − 4w)
) . (5.45)

The regions where V ′′(a0) > 0 are shown in figure 5.4. V ′′(a0) = 0 along the
curve u2 −w2 + 4w = 0 which we have already called the stability curve, for
reasons that become clear now. According to remark 31 this is where the
mass M̄(±)(a0) have extrema.

3 Nontrivial features of C0 metrics

3.1 Topology

In Einstein gravity in four dimensions there is a variety of smooth, everywhere
non-singular vacuum configurations in general characterized by some non-
trivial topological property, e.g. Euler number. Any topological property
they may have is an intrinsic feature of the smooth solution.
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In five dimensions and in Einstein-Gauss-Bonnet gravity similar config-
urations may exist as well. The equations of motions though are such that
one can manufacture, by cut and paste along the world-volume of vacuum
shells, similar kind of solutions with the difference that they are not smooth,
i.e. not C1. In this case there is no intrinsic property in the vacuum solution,
we are simply building objects which are much simpler locally. For that rea-
son one may call these objects non-topological, though they certainly have
non-trivial topological features. An analogy for this would be the difference
existing between an object with an exactly given smooth metric which has
the topology, e.g. of the sphere, and tetrahedra built out of flat pieces.

This digression leads us to recognize a great difference with respect to
four dimensions. Unlike in four dimensions, in five-dimensional Lovelock
theory, spacetimes which are defined by some simple property locally, for
example being vacuum and spherically symmetric, are by no means well
defined globally, if smoothness is given up. For each such metric, which may
itself have non-trivial topological features, one can construct infinitely many
other spacetimes by cut and paste which locally are given by the same simple
property. That is, the theory allows for many different topologies where one
would expect it to allow only for different coordinates.

A general analysis of the objects obtained by geometric surgery along
vacuum shells is an interesting problem and contains much of the actual
physics of five-dimensional Lovelock gravity (that is, Einstein plus the Gauss-
Bonnet term). In this work we mainly focus on the direct implications of
their existence illustrated by appropriate examples. A systematic analysis is
left for future work. Below we analyze how a constant curvature vacuum is
modified by wormholes (and related configurations). It turns out that, the
smaller such constructions with wormholes are with respect to the scale set
by ®, the more complicated the topology can be.

3.2 Holes in the vacuum

An interesting special case of a wormhole is when on one side we have pure
vacuum, as mentioned already in section 5. Starting from a constant cur-
vature background, by introducing the vacuum wormhole we cut a hole in
the constant curvature manifold, replacing it with an “outgoing” spacetime
region of mass parameter M . Of course the topology of the vacuum is not
the same anymore; there are now non-contractible 3-spheres. Nevertheless,
it turns out that these configurations are everywhere non-singular in the
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following sense: the only singularities that exist in spacetime are integrable4.
Besides, there is a second kind of feasible construction: A natural pos-

sibility for this construction is that of being a standard shell instead of a
wormhole. That is, we may consider to match two metrics with the same
orientation, with one having mass parameter equal to zero. In this case the
topology is the same as before, up to the inhomogeneities introduced by the
open balls which belong to a different spacetime. These configurations con-
tain singularities since there is a singularity at the origin of each ball. This
is the case where the inner spacetime is the massive one. A third conceivable
type of configurations is when the inner spacetime is the one with zero mass.
(This is actually not of “holes in the vacuum” kind exactly but it is obviously
related).

The analysis gets simplified and clarified if we express everything in terms
of the constant curvature. When the mass parameter is zero the metric is
defined as

f(r) = 1−Kr2 . (5.46)

This means that for the metric of branch » we have:

4®K = −(1 + »
√
w) . (5.47)

These configurations exist for w > 0.
We consult Remark 28 and also Proposition 27. The relevant points on the

moduli space are on the curve u = ∣w−2»
√
w∣ > 0. According to Proposition

18 the points on this curve such that u > 3w correspond to standard shell
configurations. In detail, standard shells are the configurations corresponding
to: u = 2

√
w − w for w ∈ (0, 1/4), and u = 2

√
w + w for w ∈ (0, 1).

u = ∣w− 2»
√
w∣ is a continuous curve. The points with w = 0 and w = 4

do not belong in the moduli space. The same for the points with w = 1/4
and w = 1. So in all, from (5.47) we have that 4®K ∕= −3,−3/2,−1, 0.

Now from Remark 28 and Proposition 27 one finds that the mass in all
cases is

M = 9®
(4®K + 1)3

(4®K)2(4®K + 3)
. (5.48)

Also
Λ = 6K + 12®K3.

4The curvature and Lovelock tensor are singular at the shell but only in the sense of
delta functions. Local integrals of these quantities are finite and the physical laws defined
by the field equations do not break down there. In this sense the solutions are not singular.
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We have that this construction is possible when w > 0. Therefore, from
Remark 24, we have that the sign of ® depends solely on the causal character
of the vacuum shell. Namely, it is ® > 0 when the shell is timelike, and ® < 0
when the shell is spacelike. We have the following

Remark 33. All standard orientation shell configurations with zero mass in
one of the bulk regions are spacelike.

Remark 34. The variable 4®K takes values on the entire real line with the
exception of the points −3,−3/2,−1, 0. With these exceptions in mind we
have:

Spacelike shells i.e. ® < 0: 4®K ∈ (−3, 0). In the interval (−3/2, 0) exist
all the standard shell configurations.

Timelike shells i.e. ® > 0: 4®K ∈ (−∞,−3) ∪ (0,∞).

The mass M has poles at the boundary of the spacelike shell region. One
may note that thought of as a function of ® both poles are of first order.

From the formula u = ∣w − 2»
√
w∣ > 0 we find for the radius of the shell

in all cases is

a20 = K−1

(

1 +
4®K

3

)−1

. (5.49)

The vacuum of constant curvature K is a locally homogeneous spacetime
and in particular is locally spatially homogeneous. Having placed one vacuum
shell around some arbitrarily chosen origin, we have seen that outside of the
shell the homogeneity is everywhere maintained. As long as it does not cross
the first, we may place a second vacuum shell and in fact an arbitrary number
of them modifying the manifold in a way depicted in Fig. 5.5.

Let K > 0 and ® > 0. It is useful to rewrite this as

®K =
3

8

{√

16

3

®

a20
+ 1− 1

}

. (5.50)

It is clear from both the last formula that in units of ® the radius of the shell
is an increasing function of the radius of universe 1/

√
K. When the shell

is microscopic, i.e. small in units of ®, we have that Ka20 ≪ 1. When the
shell is macroscopic we have that Ka20 ≃ 1. A microscopic universe could fit
roughly

(Ka20)
−2 =

1

4

Ã √

16

3

®

a20
+ 1 + 1

)2

(5.51)
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vacuum shells of radius a0. So the more microscopic the universe the more
complicated its topology can be.

3.3 Black hole spectrum and degeneracy

Reversing in a sense our viewpoint from the previous section, we may think
of the matching of a massive metric with one of constant curvature along a
vacuum shell, as a way to eliminate the singularity at the origin, or better
to replace it with an integrable singularity along the vacuum shell.

Consider for example configurations along the curve u = 2
√
w + w and

® > 0 i.e. w > 1 (and the vacuum shell is static). Then K > 0, that is
M > 0 and Λ > 0, and the massive branch is an exotic branch (» = +1).
This metric alone has a naked singularity at the origin. By constructing the
vacuum wormhole we have managed to replace a region around the origin
with a region of a de Sitter spacetime which contains the horizon. That
is, the spacetime which asymptotically looks like an exotic branch, massive,
Boulware-Deser spacetime is actually everywhere non-singular and has hori-
zons. We might reasonably expect that thermal effects of the horizons will
be felt in this would-be singular spacetime.

The mass parameter M in the massive region is determined by the cur-
vature K of the de Sitter region. So then, the de Sitter space mimics a
particle, or some fairly localized mass, as viewed from sufficiently far away.
The entropy S related to the existence of the de Sitter horizon depends on
K and therefore on M . We expect ∂S/∂K > 0. We know that ∂M/∂K < 0.
Therefore that entropy will decrease with M . This is not surprising since a
positive mass in the exotic branch behaves effectively like a negative gravi-
tational mass.

The previous example shows that the spectrum of black holes in Einstein
gravity modified by the Gauss-Bonnet term is not the same when C0 metrics
are allowed, compared to the smooth Boulware-Deser metrics. A space which
by an asymptotic observer who thinks in terms of smooth metrics would
not be recognized as a black hole might actually be one. Conversely, a
spacetime which asymptotically would be a recognized as a Boulware-Deser
black hole, could actually be a spacetime with a naked singularity, or a black
hole different to the one expected.

Consider, for example, the case Λ = 0 and ® < 0. From the analysis
in appendix 1 we see that this spacetime is a black hole for M > ∣®∣ (and
» = −1). The horizon hides an inner branch singularity. Our analysis in
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section 2 shows that we can cut this spacetime and match it with wormhole
orientation along a spacelike shell, i.e. within the horizon, with another
spacetime of exotic branch metric. In that spacetime r is everywhere a
timelike variable. Thus although outside the horizon spacetime looks like
a specific Boulware-Deser black hole spacetime it can actually be a different
one. The two different states have the same energy as measured at spatial
infinity and horizons with the same properties: as black holes they must
be degenerate. Whether the usual entropy calculations take into account
the effects of this degeneracy in the number of states is not clear to us. It
is amusing to think that the modifications to the usual Bekenstein-Hawking
formula in the presence of the Gauss-Bonnet term, see e.g. [29], are essentially
due to such degeneracies.

3.4 Other types of shells

The analysis has focused on the spherically symmetric case (k = 1). This can
readily be extended to the case of k = −1 (where the bulk metrics are taken
to be topological black holes, with horizons some compactified hyperbolic
space, or the corresponding naked singularity spacetime). Similar features
are expected to occur (wormholes and shells of standard orientation exist,
typically involving the exotic plus branch.) Also the case of k = 0 for toroidal
black holes or naked singularity spacetimes, can be investigated.

We have seen that spacelike shells exist, representing a sudden transition
from one solution to another. These present problems in terms of the pre-
dictability of the field equations. It would be useful to know whether the
shells are generic or if they only occur for a certain range of the coupling
constants and mass parameters.

The Euclidean version of the C0 wormholes may be important for estimat-
ing the transition rate between the (unstable) plus branch and the (stable)
minus branch solutions.

These are left for future work.

3.5 On uniqueness and staticity of solutions

In this work we construct and analyze solutions of Einstein-Gauss-Bonnet
gravity whose metric is class C0, piecewise analytic in the coordinates. The
solutions are made by joining together two spherically symmetric pieces.
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Since the shell itself admits SO(4) isometry group, the resulting global space-
time is spherically symmetric. To put things into this context and discuss the
special implications of low differentiability we start by reviewing the existing
relevant theorems in Einstein and Lovelock gravity.

We start with a uniqueness and staticity theorem, applying to Lovelock
gravity in general, which imposes the stronger conditions on differentiability.

Theorem 35 (Ref. [168]). For generic values of the couplings (including
the cosmological constant), class C2 solutions of the Lovelock gravity field
equations with spherical, planar or hyperbolic symmetry are isometric to the
corresponding static solutions.

In particular, in Einstein-Gauss-Bonnet gravity in five dimensions C2

solutions with spherical symmetry are isometric to the Boulware-Deser solu-
tions when Λ ∕= −3/4®.

When we let the metric become merely continuous at hypersurfaces, we
have seen already that one can construct many different time-independent
solutions of the vacuum field equations: for example, when Λ = 0 with ® >
0, one can construct multiple concentric vacuum discontinuities separating
Boulware-Deser solutions. So uniqueness of black hole solutions does not
hold for C0 metrics in Lovelock gravity. In fact neither does staticity. We
return to discuss this below, after we revisit the corresponding theorems in
Einstein gravity.

Theorem 36 (Ref. [143][20]). A differentiability class C0 and spherically
symmetric vacuum solution of Einstein gravity is: i) static, ii) equivalent to
the Schwarzschild solution.

That a spherically symmetric vacuum solution is static can be shown by
finding a timelike Killing vector, which also happens to be hypersurface or-
thogonal, even when the solution is given in forms that don’t look very much
like the usual Schwarzschild metric and which assume lower differentiability
[144], see [20].

Theorem 37 (Ref. [143]). A C0 solution of the Einstein gravity field equa-
tions is well defined as the limit of a sequence of (at least) C2 solutions. The
metric is assumed to become C0 only at smooth hypersurfaces.

Fields of low differentiability, e.g. with a discontinuous first derivative,
can be understood as solutions of field equations in the weak sense, as limits
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of sequences of smoother fields. The fact that this limit is well defined makes
the junction conditions of Israel well defined (the above work appeared earlier
than Israel’s famous work). Now based on the junction conditions one may
conclude: any hypersurfaces where the metric is not smooth must be a null
hypersurfaces (we may call them shock waves). Then one may show that
there are no spherically symmetric shock waves in Einstein gravity, see e.g.
[20].

The result regarding limits of smooth metrics holds in Einstein-Gauss-
Bonnet and in fact in Lovelock gravity in general (see the appendix of Ref.
[88]).

Theorem 38. A C0 solution of Lovelock gravity field equations is well defined
as the limit of a sequence of (at least) C2 solutions. The metric is assumed
to become C0 only at smooth hypersurfaces and their intersections.

So considerations related to uniqueness or non-uniqueness similar to the
above are meaningful in Lovelock gravity as well. In this paper we have
demonstrated:

Theorem 39. There exist spherically symmetric C0 solutions of Einstein-
Gauss-Bonnet gravity in five dimensions which are not given by the Boulware-
Deser metric, but rather they are piecewise of the Boulware-Deser form.
There exist solutions which are not static.

In section 2 we found that for any value of the couplings ® and Λ such
that5 Λ > −3/4®, there exist static (time-independent) vacuum shells: spher-
ically symmetric C0 vacuum metrics are not unique for a wide range of cou-
plings ® and Λ in Einstein-Gauss-Bonnet gravity in five dimensions. One
can in fact construct arbitrarily complicated spherically symmetric configu-
rations by having an infinity of concentric discontinuities. The exotic branch
(» = +1) is typically involved. Though the radius of a static vacuum shell
is uniquely fixed by the metrics in the bulk, C0 static metrics are to a high
degree non-unique as one does not a priori know how many vacuum shells
there may be in spacetime.

5According to that section, y(w−1)w = yx(x+1) > 0 for timelike i.e. static shells and
yx(x + 1) < 0 for spacelike i.e. instantaneous shells. Via the simple relations of x and y
to the couplings these read for non-zero Λ: 3/4®+ Λ > 0 and 3/4®+ Λ < 0 respectively.
As we saw in the end of 2.1 they actually hold for Λ = 0 as well.
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Now recall section 1.1. The time-dependent solutions, i.e. non-static ones,
exist always : For any non-zero value of ® and any value of Λ there exists6

a time-dependent vacuum shell solution a(¿). The shell radius function a(¿)
and the orientation signs ´L and ´R, completely define the world-volume
of the shell intrinsically as well as its embedding in spacetime (section 3.2).
That is, they define a C0 metric in spacetime. Therefore a non-static C0 met-
ric which respects everywhere spherical symmetry can always be constructed
in Einstein-Gauss-Bonnet gravity with cosmological constant (which can be
also zero).

Looking back at the propositions and remarks of the previous sections
one may come up with a conjecture.

Conjecture 40. Consider a subspace of the space of C0 solutions of Einstein-
Gauss-Bonnet gravity such that, i) they are piecewise smooth, such that all
smooth regions have a well-defined Einstein gravity limit (® → 0), ii) they do
not contain naked singularities. Then, vacuum wormhole or standard shell
solutions are not possible and uniqueness and staticity theorems essentially
hold.

Theorem 39 shows that uniqueness does not apply to C0 metrics. How
is this to be interpreted? One could simply reject non-smooth metrics as
unphysical. However, according to Theorem 38 these C0 solutions are well
defined as the limit of a family of smooth geometries. As such, they ap-
proximate arbitrarily closely to some smooth solution of the theory. Now
suppose g

(n)
¹º is a family of smooth metrics which converge to a spherically

symmetric vacuum shell solution as n → ∞. For finite n, g
(n)
¹º can not be

a spherically symmetric vacuum solution, because the uniqueness theorem
holds for smooth metrics. So it must either deviate slightly from spherical
symmetry or have some small amount of matter as source. Assuming that
suitable g

(n)
¹º can be constructed which obey the energy conditions, our results

can be taken as evidence for the generic existence of such exotic features as
smooth wormholes in this theory.

6In fact, it exists for a wide range of the bulk metric masses ML and MR, possibly for
all values of the masses for which the metrics are real. What is more important, for given
values of the couplings ® and Λ, for any given Boulware-Deser metric one can construct a
time-dependent vacuum shell for some other Boulware-Deser metric on the other side.
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Figure 5.1: The space of constant radius solutions, which we have called
the moduli space, is depicted here. The dimensionless variables w and u are
defined at the beginning of section 2.1. The ellipse divides solutions into
spacelike (inside) and timelike (outside); The diagonal lines divide solutions
into standard orientation (light grey) which have well-defined inner and outer
region of the shell, and wormhole orientation (dark grey), where both regions
can be thought of as exterior or interior depending on whether a non-compact
or compact region is maintained. Solutions exist for u ≥ 0.
The line w = 0, u > 0 for finite ® does not actually belong to the moduli
space as being trivial: the junction condition require the metric across the
shell must be continuous in this case. In terms of the couplings ® and Λ, w
is given simply by w ≡ 1 + 4®Λ

3
. The combination of the couplings w = 0

corresponds to the case where Einstein-Gauss-Bonnet gravity can be written
as a Chern-Simons theory with (A)dS gauge group. It for this combination
that the smooth C2 metrics fail to be unique [43, 168]. Note that the pure
Gauss-Bonnet case, which formally corresponds to w = 0, Λ = 0 in the limit
that ® → ∞ but M® is finite, does have nontrivial solutions, which were
considered separately in Ref. [88].
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Figure 5.2: The moduli space showing the various curves listed in section 2.3.

The basic division according to the time- or space-likeness of the world-volume of

the shell and the orientation of the matching were described in the figure 5.1 and

are shown in black lines here: the points along them they do not belong to the

moduli space.

The diagonal (red) lines divide the space according to the branches of the bulk

metrics which we classify by the pair of signs (»(−), »(+)) explained in section 4.2

and 2.1: in the region on the left the branch signs are (+,+) i.e. both the bulk

metrics on each side of the shell belong to the “exotic” Boulware-Deser branch

which does not have a well-defined limit ® → 0; the region in between the diagonal

lines is (−,+); in the region on the left the branches are (−,−) i.e. both metrics

belong to the branch with a well-defined ® → 0 limit (however the vacuum juncture

requires that these solutions only exist for w ≡ 1 + 4®Λ
3 < 0, i.e. they have no

asymptotics: certain curvature singularities appear at finite radius [78]).

The hyperbola that exists on the outside of and touches the elliptic region of

spacelike solutions only at the border of the ellipse at the points w = 0 and w = 4

(blue line), is what we have called the stability curve: crossing this curve the second

derivative V ′′(a0) of the potential (4.22) or (5.1) evaluated at the constant solutions

a = a0 changes sign, which is a measure of (in)stability under perturbations. The

constants solutions for which V ′′(a0) > 0 are depicted in figure 5.4.

The remaining two lines (yellow lines) are symmetric around the horizontal line

u = 0. Each curve corresponds to solutions such that one of the mass parameters

vanishes i.e. one of the bulk regions is pure vacuum. Note that they exist only

for w = 1 + 4®Λ
3 > 0. These configurations are discussed in sections 3.2 and 3.3

as an interesting example of certain non-trivial features C0 metrics acquire when

Einstein gravity is supplemented by the Gauss-Bonnet term is five dimensions.94



Figure 5.3: In the upper half plain, the shaded region is where M(+) > 0. The

inequality M(−) > 0 has been plotted in the lower half plain, making use of Lemma

22 (it should be remembered that in the lower half plane we have actually plotted

M(−)(−u))). We note that M(+) and M(−) are both negative for all w < 0, which

is the left half of the diagram.
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Figure 5.4: The shaded regions are where V ′′(a0) > 0. For the timelike shells

(outside of the ellipse), the unshaded regions correspond to solutions unstable

with respect to radial perturbations.
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Figure 5.5: K > 0. When ® > 0 the solution is a multi-soliton, with multiple

asymptotic massive regions joined to a de Sitter space. A spatial slice of a multi-

soliton is sketched above. When ® < 0 and 3/8∣®∣ < K < 3/4∣®∣ the solutions are

multi-instantons. The radii of the instantons have a lower bound: a20 > 16∣®∣/3.
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Chapter 6

Naked singularities

1 Singularity and Quantum Mechanics

As we have seen in the previous chapters, there are many features of Lovelock
solutions that are not present in GR. Eternal black holes and wormholes are
remarkable examples. Another example is the existence of positive mass
solutions with naked singularities1. In fact, naked singularities appear in
all the catalog of solutions, for both spherically symmetric and extended
objects, for both solutions with a suitable GR limit and solutions without
it. But, what kind of naked singularities are these? For instance, we could
ask whether these are stable under gravitational perturbations [83, 86]; or
whether these turn out to be ”bad” singularities when probed with wave
functions [97].

Regarding the question about the stability, this issue was studied recently
within the framework of the Kodama-Ishibashi formalism, and some evidence
of instabilities was found [77]. On the other hand, here we will address
the second question, the one about how these naked singularities look like
when analyzed with quantum probes. To do this we will employ the method
developed by Horowitz and Marolf in Ref. [97], based on the pioneer work
of Wald [159]. The basic idea es the following: Unlike what happens in the
classical regime, where a singular space is defined by the concept of geodesic
incompleteness, in the quantum mechanical regime the singular character of
the space-time is defined in terms of the ambiguity in the definition of the
Hamiltonian evolution of wave functions on it [97]. More specifically, the

1For a discussion on the formation of naked singularities, see[117, 139].
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singular nature of a given space is determined in terms of the ambiguity
when trying to find a self-adjoint extension of the Hamiltonian operator to
the whole space. When such self-adjoint extension exists and is unique,
then it is said that the space is quantum mechanically regular, in spite of
the singularities it might present at classical level. Notice that this is not
matter of deforming the space or somehow resolving it, but it is rather a
reconsideration of what is the relevant physical dynamics on it. In fact, a
space can be classically singular but still regular when it is analyzed with
quantum probes.

2 Quantum Probes Method

Here, we will apply the concept of quantum probes to the singular solutions
of Lovelock theory discussed above. But, first, let us review the method
developed in [97, 100]. Consider the quantum dynamics of a scalar field ' on
the spherically symmetric space (3.2), which is governed by the Klein-Gordon
equation

(

∇¹∇¹ −m2 − 2»R
)

' = 0. (6.1)

This equation can be written as follows

∂2
t '+ℋ2' = 0, with ℋ2 = −V(r)∇i

(

V(r)∇i'
)

+V 2
(r)m

2'+2V 2
(r)»R' (6.2)

where ∇i is the covariant derivative on the spacelike hypersurfaces defined by
constant t foliations, and where the metric function V 2(r) is given by (3.3).
The piece V(r)∇i

(

V(r)∇i'
)

in (6.2) involves the Laplacian operator on the
unitary 3-sphere, whose eigenvalues are known to be given by −l(l+2) with
positive integers l = 0, 1, 2, 3, ...

Now, equation (6.2) can be written in its Schrödinger-like form, schemat-
ically,

i∂t' = ℋ',

and then the problem to deal with is to decide whether the Hamiltonian
operatorℋ admits a unique self-adjoint extension in spite of the fact the space
is singular at the origin r = 0. As mentioned, in the quantum mechanical
context the existence of singularity is associated to the non-existence of a
unique self-adjoint extension of the Hamiltonian operator rather than to a
geodesical completeness. Then, the problem of determining whether the
space is regular is translated into the problem of verifying whether ℋ2 admits
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a unique self-adjoint extension ℋ2
E. If such extended operator exists, then

the Hamiltonian evolution of the wave function in this space would be given
by

'(t) = exp(−it ℋE) '(0),

and it would be well-defined.
It turns out that a sufficient condition for ℋ2

E to exist and be unique is
that at least one of the solutions of the differential equation

∂2
rÁ(r) + ∂r log

(

r3V 2
(r)

)

∂rÁ(r) − V −2
(r)

(

r−2l(l + 2)−m2 + »R± iV −2
(r)

)

Á(r) = 0

(6.3)
fails to be of finite norm near the origin for any value of l and for any of
the two possible signs ± in (6.3); see [97] for details. In other words, for the
space to be considered regular quantum mechanically it is necessary to see
that at least one solution Á to (6.3) is non-normalizable around the origin.
This criterion strongly depends on which norm ∣∣Á∣∣ is considered.

The well-posedness of an initial value problem requires not only the exis-
tence and uniticity of conditions, but also continuous dependence of solutions
on initial data. Then, the norm ∣∣Á∣∣ to be considered should select a the func-
tion space that fulfills these requirements. A sensitive norm in this sense is
the Sobolev norm [99].

To see how the method works in the case we are interested in, let us
consider again the five-dimensional Boulware-Deser space (3.2)-(3.3). The
branch ¾ = +1 of this space presents a naked singularity for all positive
values of M , while the branch ¾ = −1 only presents naked singularities
within the range 0 < M < ®. Then, let us solve the wave equation for
these spaces. To analyze the solutions of (6.3) near the singular point r = 0
it is convenient to write this equation as ∂2

rÁ + r−1p(r)∂rÁ + r−2q(r)Á = 0,
with p(r) and q(r) being two functions analytic at the origin. This is a
Fuchsian equation and so it admits solutions with the form Á(r) = r´f(r)
for certain analytic function f(r) and a complex number ´ that is known to
solve the indicial equation ´2 + (p(r=0) − 1)´ + q(r=0) = 0. Then, replacing

(3.3) in (6.3) we find p(r=0) = 3, q(r=0) = −l(l + 2)/(1 + ¾
√

M/®), and two
independent solutions to (6.3) are then given by the two values of ´ that
solve (´ + 1)2 = 1 + l(l + 2)/(1 + ¾

√

M/®). Therefore, we find that one of
the solutions to (6.3) always diverges at least as rapidly as ∣Á∣2 ≃ r−2, and
so it fails to be integrable with respect to the Sobolev norm.
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Summarizing, there exists a unique self-adjoint extension ℋ2
E, from what

we conclude that five-dimensional Boulware-Deser metric turns out to be
regular when tested by quantum probes. It is remarkable that the positive
(but small) mass solutions of five-dimensional black holes are in a sense
regular quantum mechanically, despite the naked curvature singularity they
exhibit at the origin [80].

3 Concluding Remarks

Before concluding, we wish to make a remark about the consistency of study-
ing naked singularities in this way. The reason why we find convenient to
discuss this point is that the reader could be concerned about whether prob-
ing naked singularities in a theory with a finite higher curvature expansion
makes sense or not. For instance, in string inspired models, as soon as one
approaches the singularity, neglecting higher order corrections seems to be
impossible since higher and higher order terms start to dominate as we go
close enough to the singularity. However, let us argue here that, even though
this is true, this is not necessarily an obstruction for testing singularities with
quantum probes up to certain order in the higher curvature expansion. The
argument is the following: Let us be reminded of what we do when we solve
the Schrödinger equation for the Coulombian potential (e.g. for hydrogen
atom in quantum mechanics). In fact, the analogy is quite direct since such
problem also corresponds to solving a wave function equation in presence of a
central potential whose classical counterpart breaks down at the origin. The
key argument is that, even though the Coulombian potential diverges at the
origin, we know that the quantum problem still makes sense, and we do solve
the wave equation without complaining about the fact that other corrections
to the potential (e.g. effective screening due to quantum effects, or short
distance corrections to the Coulombian potential) could in principle appear
at very short distances. Heuristically speaking, what one really has to do to
make sure the whole procedure makes sense is comparing the typical size of
the wave packet with the length scale where the terms that were neglected
would dominate. For example, above we were dealing with the EGB action,
and the terms ℛ3 were certainly neglected, and so the analysis carried out
could still make sense as long as the Compton length of the wave packet is
small enough in comparison with the length scale imposed by the coupling
constant ®n with n > 2, and provided the fact higher curvature terms act as
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a perturbation.
For some particular models where the couplings ®n are given in terms

of the same fundamental scale (like the models inspired in string theory
where the scale is given by l2s ∼ ®′) the story could be a little more subtle,
and so the argument above would not be valid since neglecting higher order
contributions near the singularity in that case would be impossible. However,
it is likely the case that higher order terms would contribute by smoothing out
the singularity even more, although not necessarily resolving it in a classical
sense.

102



Chapter 7

Conclusions

In this Thesis we studied black hole physics in the Lovelock theory of gravity.
As we argued throughout the discussion, this theory is the natural extension
of Einstein’s General Relativity to higher dimensions. In fact, this is the most
general theory of gravity yielding second order conserved equations of motion.
Unlike Einstein theory, Lovelock theory is non-linear in the second derivatives
of the metric, and this ultimately yields a richer family of solutions, exhibiting
different brances and exotic causal structure.

In this Thesis we have explicitly constructed a large family of vacuum
solutions which can be thought of as gravitational solitons of the theory.
These correspond to localized solutions in vacuum for which a notion of
finite energy can be accomplished.

Even though Lovelock theory of gravity is interesting in its own right, one
finds the additional motivation that five-dimensional Lovelock Lagrangian
emerges in low energy effective actions of heterotic string theory and in M-
theory compactifications. Nevertheless, we were not concerned with this
stringy origin herein. Instead, we focussed our attention on the black hole
content of the theory and on the solitons we could construct starting from
them.

First, we exhaustively review the black hole solutions in Lovelock theory.
These correspond to exact solutions to a theory of gravity that contains
higher-curvature corrections, and were first found by Boulware and Deser.
Is remarkable that, in spite of the non-trivial structure of the theory, the
spherically symmetric sector of theory is exactly solvable.

As mentioned above, the space of solutions present different branches.
More precisely, if the Lagrangian contains O(Rn) terms, then n different
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Figure 7.1: Einstein-Rosen bridge geometry as a vacuum solution.

branches of static spherically symmetric solutions exist, and more than one
of them may be considered physical. Apart from that, a Birkhoff like theorem
was proven for this theory, which states that, at least locally, the spherically
symmetric solution to Einstein-Gauss-Bonnet Lagrangian in vacuum in D
dimensions, with arbitrary D, and with coupling constant not corresponding
to those of the Chern-Simons gravity in five-dimensions, is: (a) static, (b)
unique, and (c) given by the two branches of the Boulware-Deser metric1.

In this Thesis we have proven that the Birkhoff theorem doesn’t hold
globally, and this is the first counterexample found which does not require a
fine tuning of the parameters to circunvent the uniqueness argument. The
way we proved it was by explicitly constructing spherically symmetric solu-
tions in vacuum which, still being of the Boulware-Deser form in patches,
globally corresponds to the junction of two different solutions which obey
junction conditions of the theory. This is one of the original result of this
Thesis.

Unlike the Israel junction conditions of General Relativity, the boundary
conditions in Lovelock theory admit the existence of vacuum thin shells.
Solutions with non-trivial topology also arise, as wormholes in vacuum. In
five dimensions, we studied the existence and stability of these solutions
under perturbations that preserve the spherical symmetry. We explored the

1Here, we are rephrasing this Birkhoff theorem in such a way that the statement con-
tains all the hypotesis that were missing in the original statement. That is, our version of
the theorem incorporates hypotesis that were shown to be strictly necessary just recently.
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space of solutions exhaustively, considering different orientations, different
signs for the curvature of the base manifold, etc. This is the first analysis of
this kind performed for Lovelock theory.

We also studied solutions with naked singularity. By using the method of
quantum probes, we tested the singular nature of these spaces in the quantum
mechanical context. The analogous discussion for the case of negative mass
Schwarzschild black hole gave raise to intense debate in the context of General
Relativity recently. Unlike the case of General Relativity, naked singularities
exist for positive mass objects in Lovelock theory. For such solutions we
have proven that, while singular in the classical context, the spaces can be
thought of as regular solutions when tested with quantum probes. That is,
spaces which are timelike geodesically incomplete turn out to be quantum
mechanically regular in Lovelock theory. This observation is also an original
result of this Thesis.

More recently, five-dimensional Lovelock theory was considered as a work-
ing example to study the effects of including higher-curvature terms in AdS/CFT
correspondence. This turns out to be a very active line of research. Just re-
cently, papers discussing the interplay between causality and higher-curvature
terms in the context of AdS/CFT appeared. Also, holographic supercon-
ductors in five-dimensional Lovelock gravity were considered, showing that
higher-curvature corrections affect the condensation phenomenon. In turn,
the applications of Lovelock theory to holographic duality seems to be a very
interesting line of research to follow our investigations.
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Chapter 8

Appendix

1 Horizon Structure of the Boulware-Deser

Metric

An interesting issue about the Boulware-Deser solutions is that it contains
a square root, whose reality imposes constraints. From (4.9) we see that:
when w < 0 there is a maximum radius; when M/® < 0 there is a minimum
radius in spacetime. At those finite radii there exists curvature singularities,
known as branch singularities [78]. We call them outer and inner branch
singularities, respectively to the cases above. These unusual spacetimes can
also have horizons behind which the singularities are hidden.

We turn now to discuss the horizon structure of the Boulware-Deser space-
times. The following does not intend to be an exhaustive analysis, it is rather
a list of general formulas in our notation useful for our purposes. We will use
the dimensionless parameters w and M̄ . Recall the Boulware-Deser metric
function f(r) given in (4.9) and define rH by f(rH) = 0. One finds that if
w ∕= 1

r2H± = 4®
1±

√

M̄(w)

w − 1
. (1.1)

We have defined the useful quantity

M̄(w) = w + (1− w)M̄ , (1.2)

which looks an interpolation between M̄ and 1.
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From the definition of rH+ we see that rH+ > 0 if:

3

Λ
=

4®

w − 1
> 0 . (1.3)

That is Λ > 0. Also rH− > 0 one finds that it is equivalent to M > ®.
Therefore we have:

Remark 41. Elementary conditions for the existence of rH+ is Λ > 0 and
for the existence of rH− the condition M > ®.

When 0 < ∣®∣ < ∞, w = 1 ⇔ Λ = 0. So the previous formula holds
for non-zero Λ. When Λ = 0, the correct result can be obtained as the limit
w → 1 of the previous formula for rH−. It reads

r2H− = 2® (M̄ − 1) . (1.4)

We must substitute (1.1) back to f(rH) = 0 to solve for the signs. We
have:

−» = sign

Ã

w ±
√

M̄(w)

1±
√

M̄(w)

)

, (1.5)

for rH± respectively. Again the case w = 1 i.e. Λ = 0 can be correctly
obtained from the limit w → 1 for rH−. Explicitly it reads

−» = sign

(

M̄ + 1

M̄ − 1

)

. (1.6)

We have used the sign function defined by sign(x) = x/∣x∣. When x = 0 it
is ambiguous.

Before continuing note the following. One implicit inequality that should
be respected for horizons to exist is

M̄(w) ≥ 0 . (1.7)

This is related to the reality of the square root of the Boulware-Deser metric
function (4.9). M̄ and w cannot be both negative. That is, if w M̄ ≥ 0 then
it must be w + M̄ ≥ 0. This is precisely what is guarantied by (1.7).

From remark 41 we have
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Remark 42. rH+ > 0 is equivalent to sign(®) = sign(w − 1). rH− > 0 is
equivalent to sign(®) = sign(M̄ − 1).

Note that, as we will solve the problem of existence for the real numbers
r2H±/4® the positivity conditions above essentially restrict the sign of ®.

Now

r2H+ − r2H− =
4®

w − 1
2
√

M̄(w) , (1.8)

and (1.3) tell us that

Remark 43. If rH+ exists then rH+ ≥ rH−.

A solution rH corresponds to a horizon if rH > 0 and there exist r1 <
rH < r2 such that f(r1)f(r2) < 0.

Recall (1.5). We have some Special cases :

i). w±
√

M̄(w) = 0 ⇔ M̄ = −w. (Note again that the correct result for
w = 1 is obtained as the limit). Then one of the two solutions rH± coincides
with the branch singularity rE: Y (rE) = 0 = f(rE). I.e. in this case the
branch singularity is null. [This is possible for ® < 0 otherwise this solution
doesn’t exist.]

There is a single horizon solution given by

r2H = 4®
w + 1

w − 1
, (1.9)

It is a horizon of the branch » according to

−» = sign(w (w + 1)) . (1.10)

[Of course the case w = 0 = M̄ does not have two branches.] The case
w = −1 i.e. M̄ = 1 does not have a horizon as rH vanishes (if » = −sign(®)),
or f which reads

f = 1 +
r2

4®
+ »sign(®)

√

(

1− r2

4®

)(

1 +
r2

4®

)

, (1.11)

can vanish only at the branch singularity when ® < 0.
Finally one should bear in mind that rH = rH− when M̄ = −w > 0 and

rH = rH+ when M̄ = −w < 0.
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ii). 1 −
√

M̄(w) = 0 ⇔ M̄(w) = M̄ = 1. (Note again that the correct
result for w = 1 is obtained as the limit). We just learned that when we also
we have w = −1 there are no horizons. So we assume that w ∕= −1. We
observe that rH− = 0. This actually happens if » = −sign(®) otherwise this
solution doesn’t exist.

The single horizon solution is

r2H+ = 4®
2

w − 1
=

6

Λ
. (1.12)

It is a horizon of the branch » according to

−» = sign(w + 1) . (1.13)

iii). M̄(w) = 0. This is the saturated case where the two radii coincide:
r2H± = 4®/(w − 1) = 3/Λ. Condition (1.5) works well in this case: » =
−sign(w). Also from r2H > 0 we have sign(®) = sign(w − 1).

In this case rH is not a horizon radius. It is the (single) zero of f which
has the same sign everywhere else. There are three non-trivial cases. w < 0.
Then there is an outer branch singularity and f(r) ≥ 0. 0 < w < 1. Then
there is an inner branch singularity and f(r) ≤ 0. w > 1. Then 0 < r < ∞
and f(r) ≤ 0. □

Recall (1.5).

Proposition 44. With the exception of cases covered in i) and ii) we have:
The radius rH+ is a horizon of the branch » if

−» = sign

(

w +
√

M̄(w)

)

; (1.14)

the radius rH− is a horizon of the branch » if

−» = sign((M̄ + w)(M̄ − 1)) sign

(

w +
√

M̄(w)

)

. (1.15)

The type of the horizon, i.e. whether it is black hole, inner or cosmo-
logical horizon, can be determined by the sign of the first derivative of f(r)
(combined with Remark 43). We have

rH±f
′(rH±) = ∓2

√

M̄(w) ⋅ 1±
√

M̄(w)

w ±
√

M̄(w)
. (1.16)
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Therefore for M̄(w) > 0, when rH− or rH+ does correspond to a horizon,
the type is determined by

sign(f ′(rH±)) = ±» . (1.17)

Remarks 42 and 43, Proposition 44, and formula (1.17) provide criteria
for the existence and the type of horizons for each branch » of the Boulware-
Deser metric.

For the exotic branch (» = +1) a black hole horizon must be and rH+.
This is not possible by (1.14). Thus there no black holes in the exotic branch.
For the good branch (» = −1) a black hole horizon must be an rH−. From
(41), this is possible only for M > ®.

2 The Junction conditions

For our purposes, a singular shell Σ is a submanifold of codimension one
at which the metric is continuous but the extrinsic curvature has a finite
discontinuity. The field equations of Einstein-Gauss-Bonnet theory are given
by (4.6). Integrating the field equations across Σ, one obtains the junction
condition [53, 87, 88].

(Q+)ab − (Q−)ab = −·2Sa
b . (2.1)

Where the symmetric tensor Qa
b is given by1

Q
a
b = −±acbdK

d
c + ® ±acdebfgℎ

(

−Kf
c R

gℎ
de +

2

3
Kf

c K
g
dK

ℎ
e

)

(2.3)

1The notation of Ref. [88] has been used. However in that reference there was an
unconventional sign convention used (in equation A3) for the definition of extrinsic curva-
ture. Although none of the results of that paper were not affected by this, unfortunately
the formulae B13-B17 for the Einstein-Gauss-Bonnet in the appendix were a mixture of
inconsistent sign conventions. Here we correct this sign error by choosing the standard
sign convention as in Refs. [101] and [53]. The developed expression is:

[

&(Ka
b − ±abK) + 2®

(

3Ja
b − ±ab J − 2&P ac

bdK
d
c

)

]+

−

= −·2Sa
b , (2.2)

where & is +1 for a timelike shell and −1 for a spacelike shell, Pabcd := Rabcd+2Rb[cgd]a−
2Ra[cgd]b+Rga[cgd]b is the trace-free part of the intrinsic curvature and Jab := (2KKacK

c
b+

KcdK
dKab − 2KacK

cdKdb − K2Kab)/3. In the case of a timelike shell (& = +1), this
expression agrees with that given in Ref. [53, 87].
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for the timelike case, and by

Q
a
b = ±acbdK

d
c + ® ±acdebfgℎ

(

Kf
c R

gℎ
de +

2

3
Kf

c K
g
dK

ℎ
e

)

(2.4)

for the spacelike case. Here, lower case Roman letters from the beginning
of the alphabet a, b etc. represent four-dimensional tensor indices on the
tangent space of the world-volume of the shell. The Rab

cd appearing in the
junction condition is the four-dimensional intrinsic curvature. The antisym-
metrized Kronecker delta is defined as ±

a1...ap
b1...bp

≡ p! ±a1[b1 ⋅ ⋅ ⋅ ±
ap
bp]
.

Now we calculate the intrinsic curvature of the world-volume of a spherical
shell of radius a(¿) and the extrinsic curvature (which takes a diagonal form).
There are two cases: For the timelike case the components are

R¿Á
¿Á =

..
a

a
, RÁµ

Áµ = RµÂ
µÂ = RÂÁ

ÂÁ =
(k +

.
a
2
)

a2
,

K¿
¿ = ´

ä+ 1
2
f ′

√

ȧ2 + f
, Kµ

µ = KÁ
Á = KÂ

Â =
´

a

√

ȧ2 + f ;

while for the spacelike case these are

R¿Á
¿Á = −

..
a

a
, RÁµ

Áµ =
(k − .

a
2
)

a2
,

K¿
¿ = ´

ä− 1
2
f ′

√

ȧ2 − f
, Kµ

µ = KÁ
Á = KÂ

Â =
´

a

√

ȧ2 − f .

In this paper we are interested in pure vacuum shells, i.e. when Sa
b = 0.

It is clear that in this case one can pull out a factor of ΔKd
c ≡ (K+ −K−)

d
c ,

which is the jump in the extrinsic curvature across the shell.

ΔKd
c (⋅ ⋅ ⋅ ) = Sa

b = 0 . (2.5)

In the case of interest in this paper, the extrinsic curvature is diagonal.
Thus, one expects each component of the junction conditions to factorize
conveniently.

Using the above formulae, we derive Q¿
¿ given in (4.17). The angular

components are, for the timelike case:

Q
µ
µ = −2! a−2

{

´
1
2
f ′{a2 + 4®(k − f)}

√

ȧ2 + f
+ ´ 2a

√

ȧ2 + f + ´ 4®
ä

√

ȧ2 + f

(

k + f + 2ȧ2 +
a2

4®

)

}

(2.6)
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3 The derivatives of the potential

As before, let us denote the derivative with respect to a by a prime. In
analysing dynamical shells and the stability of static shells it is useful to
calculate the derivatives of V (a) with respect to a, V ′, V ′′ etc. First we
recall the definition of Y (a); namely

f(a) ≡ k +
a2

4®
(1 + »Y (a)) , Y :=

√

w +
16M®

a4
. (3.1)

Note that Y obeys the simple differential equation:

(Y a2)′ =
2wa

Y
, (3.2)

where we recall that w := 1 + 4®Λ
3
.

In terms of YR and YL, the effective potential defined in (4.22) takes the
form:

¾V =

(

k +
a2

4®

)

− a2

12®

(

»RYR + »LYL − »R»LYRYL

»RYR + »LYL

)

. (3.3)

This can be also written as

V (a) = ¾

(

k +
a2

4®

)

− ¾a2

4®

(

3(»RYR + »LYL)
2 + (»RYR − »LYL)

2

12(»RYR + »LYL)

)

. (3.4)

By repeated application of the differential equation (3.2) we obtain:

¾V ′ =
a

2®

(

1− w

»RYR + »LYL

)

, (3.5)

¾V ′′ =
1

2®

(

1− 3w

»RYR + »LYL

+
2w2

»R»LYRYL(»RYR + »LYL)

)

, (3.6)

Note that the second derivative of V depends on a only implicitly through
Y (a).

Let ae be the radius at which V is an extremum, V ′(ae) = 0. From (3.5)
we have

»RYR(ae) + »LYL(ae) = w . (3.7)
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It is of interest to know whether the extremum is minimum or maximum.
The second derivative evaluated at the extremum is:

V ′′(ae) =
¾

®

(

w

»R»LYR(ae)YL(ae)
− 1

)

, (3.8)

If the right hand side of (3.8) is positive, the extremum is a minimum.
Let us look for a solution where the minimum of the potential coincides

with V = 0. Imposing at some radius a0 that V (a0) = V ′(a0) = 0 implies:

»RYR + »LYL = w , (3.9)

»R»LYRYL = w2 −
(

3 +
12k®

a20

)

w . (3.10)

One can verify as a consistency check that the static and instantaneous
shell solutions of section 4 are recovered. In terms of the metric functions f
the above two equations are:

fR + fL =

(

3

4®
+

Λ

3

)

a20 + 2k , fRfL =

(

Λa20
3

− k

)2

,

c.f. the junction conditions for static and instantaneous shells in proposition
6. Upon imposing the inequalities (4.23-4.25) we recover exactly the solutions
of that section.

It is important in analyzing the stability of the static (¾ = +1) vacuum
shells to know the sign of V ′′ evaluated at the static radius a0.

V ′′(a0) =
1

®

⎛

⎝

w

w2 −
(

3 + 12k®
a2
0

) − 1

⎞

⎠ , (3.11)

Note that this can also be written

V ′′(a0) = − 1

®

Ã

1 +

ka2
0

4®

3 + (2− 4®Λ
3
)
ka2

0

4®

)

= − 1

®

xy − 3kx− 3y

xy − 3kx− 2y

in terms of the original variables and of the variables of section 4 respectively.
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4 Diagrams of the moduli space

Here we collect the diagrams referred to in section 4.
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Figure 8.1: For Λ = 0, spherically symmetric shells exist only with stan-
dard orientation and for ® > 0. Masses M(−), M(+) and shell radius a0 are
measured in units of the Gauss-Bonnet coupling, ®.

5 Adding matter: A working example

So far, we have discussed junction conditions for spherical thin shells in
Einstein-Gauss-Bonnet gravity. We focussed our attention on vacuum worm-
holes and bubble-type solutions; the latter were called vacuum-shells. Now,
let us consider the presence of matter; that is, let us consider matter on
the thin-shell. This will enable us to discuss an application of the junction
conditions to the black hole thermodynamics.

In this Appendix we will analyze the effect of “bubble absortion” by a
black hole. This will allow us to conclude the consistency between the junc-
tion conditions we worked out in this Thesis and black hoe thermodynamics.

Consider again a Bolware-Deser black hole, whose metric takes the form

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
3.

with

f(r) = 1 +
r2

4®
− r2

4®

√

1 +
16M®

r4
+

4Λ®

3
.
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Figure 8.2: Static vacuum shells exist
in the dark grey region. Instantaneous
vacuum shells with a = a0 exist in the
light grey region.
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Figure 8.3: The static vacuum shells
can have the standard orientation
´L´R > 0 (light grey) or wormhole ori-
entation ´L´R < 0 (dark grey).

As we discussed, the large r2/® limit of this metric mimics the (A)dS-
Schwarzschild black hole in five dimensions. The radius of the event horizon
r+ is located at

r2+ =
3

Λ

Ã

1−
√

1 +
4

3
Λ(®−M)

)

,

while the cosmological horizon r++ is located at

r2++ =
3

Λ

Ã

1 +

√

1 +
4

3
Λ(®−M)

)

.

We also mentioned that the Hawking temperature of this solution is given
by

T =
ℏ

2¼

r+
4® + r+

,

while the entropy goes like

S ∝ r3+ + 12®r+.

In this Appendix, let us consider the positive sign for ®, and positive Λ as
well. From the expression for the horizon radius, we can find the following
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expression by differenciating it

dM = r+dr+

√

1 +
4

3
Λ(®−M)− r4+

12
dΛ (5.1)

Now, supose that our configuration is such that outside the black hole, at
a fixed radius a > r+, a thin shell is located, creating a bubble outside which
the space is full of a cosmological constant2 of value Λ, while in the interior
its value is Λ + ±Λ (inside such bubble). This kind of configurations was
considered in four-dimensional general relativity by Teitelboim in the 1980’s.
The scenario for providing Λ of such a non-constant behaviour is thinking
that the effective value of Λ is actually given by a field strengh F¹º½±¾ of a
4-form field A¹º½¾ which couples to the thin shell in a non-trivial way. In
such a framework the thin-shell (which we will thought of as having tension
T ) represents an spherical 3-brane charged under the 4-form field F¹º½±¾, so
that the bubble would tend to collapse for ±Λ > 0 due to the effect of gravity
and the negative presure.

Then, the question arises as to how the laws of black hole thermodynamics
work in such a scenario having Λ as a thermodynamics parameter. More
precisely, what happens with the law that states the “increassing of the
entropy” when the bubble colapses inside the black hole? If the bubble
collapses, and then Λ changes, can the entropy decrease?

Giving an answer to this question requires an analysis of the thin-shell
dynamics in the background described above. In four-dimensional GR, Teit-
elboim argued that the laws of black hole thermodynamics still appear to
hold when Λ is considered as a black hole parameter, and so one can won-
der whether such a conclusion also can be obtained for the case of five-
dimensional black holes in Einstein-Gauss-Bonnet theory too, where both
the classical solutions and the junctions conditions are quite different. We
will show that the same mechanism found by Teitelboim works here, and so
the laws of thermodynamics still hold when Λ is considered as a black hole
parameter in the Lovelock theory of gravity.

To show this, we first have to consider the junction conditions

8¼T = −3 < KÁ
Á > +4® < (KÁ

Á)
3 − 3KÁ

ÁP
¿Á
¿Á >,

where we recall that T represents the tension of the 3-brane (henceforth
called thin-shell), and where the symbol < O > means that the quantity O

2Notice that, strictly speacking, Λ is not the cosmological constant when ® is not zero,
but it contributes to it.
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is evaluated computing the difference between the value it takes inside the
region defined by the shell and the value it takes outide it. To evaluate the
above equation, one has to notice that the metric inside and outside the shell
takes different values, given by

finside(r) = 1 +
r2

4®
− r2

4®

√

1 +
16(M + ±M)®

r4
+

4(Λ + ±Λ)®

3
.

and

foutside(r) = 1 +
r2

4®
− r2

4®

√

1 +
16M®

r4
+

4Λ®

3
,

respectively. Notice that the difference between the masses Minside = M and
Moutside = M + ±M , denoted by ±M , is a constant of motion and turns out
to be given by the (kinetic and tension) energy that the thin shell has at the
moment of collapsing into the black hole. Hence, with these metrics, at first
order in ±M and ±Λ the junction conditions read

8¼T =
3

2a
√

f(a) + ȧ2

(

2±M

a2
+

±Λa2

6

)

,

where f(a) refers to the value that finside(r) takes on the radius where the
shell is located. It is remarkable that this expression agrees with the one for
General Relativity, up to the explicit form of the function f(r), despite the
rather different junction conditions. Then, the next step is writting the last
equation in a convenient way; namely

±M =
8¼Ta3

3

√

f(a) + ȧ2 − ±Λa4

12
. (5.2)

The quantity ±M corresponds to the increassing of the black hole mass
due to the colapse of the thin shell. The first term in this expression for ±M
represents the kinetic energy of the thin shell at the (proper) moment of the
colapse, which is proportional to the product between the tension T and the
world-volume of the 3-brane ∼ a3. On the other hand, the second term is
a sort of “potential energy” due to the varying Λ. Since M is a constant of
motion, we can evaluate the right hand side of the last equation in proper
time ¿+, when the bubble cross the horizon. Then, we find

±M =
8¼Tr3+

3
∣ṙ(¿+)∣ −

±Λr4+
12

,
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with r(¿+) = r+. Thus, as in the case of Einstein theory, the remarkable
occurrence is now that the ±Λ term in the last equation exactly cancels the
contribution proportional to dΛ appearing explicitly in (5.1), so that one
has3

dr+ =
8¼T ∣ṙ(¿+)∣r2+

1− Λr2
+

3

> 0,

where it is worth noticing that the black hole horizon radius r2+ < 3/Λ
(unlike the cosmological horizon, which is located beyond the distance 3/Λ).
Therefore, exactly the same arguments that works for GR work here, and
even in presence of a changing Λ the change in the horizon radius comes
solely from the inertial of the bubble and thus the general laws of black hole
thermodynamics stating that dS ∼ 3(r2+ + 4®)dr+ > 0, still appear to hold.

This can be regarded as a consistency check of the junction conditions we
derived in this paper.

3This argument exactly parallels the one by Teitelboim for the case of four-dimensional
Einstein theory.
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Figure 8.4: There are three types
of static wormholes according to the
branch signs (»L, »R) in each bulk re-
gion: (−,−) lightest grey; (−,+)
medium grey; (+,+) dark grey.
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V ′′(a0) > 0 for wormholes is shown
in light grey. For positive ® this is a
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Chapter 9

Objetivos y Logros

1 Objetivos

Este trabajo de tesis de doctorado pretende estudiar las soluciones de agujero
negro y solitones gravitatorios (localmente) esféricamente simétricos en la
teoŕıa de gravedad de Lovelock, la cual es la generalización natural de la
Relatividad General de Einstein a dimensión D mayor que cuatro. El tipo
de solitones gravitatorios que se pretende estudiar son generalizaciones de
la solución de Boulware-Deser, la cual corresponde a la solución general de
tal simetŕıa en la teoŕıa de gravedad definida por la acción que resulta de
suplementar a la acción de Einstein-Hilbert con términos cuadráticos en la
curvatura, los cuales coinciden con la extensión dimensional de la densidad
de Euler en D = 4. Esta acción remeda la acción efectiva de bajas enerǵıas
de ciertas teoŕıas de cuerdas, debido a lo cual ha recibido mucha atención
recientemente en el marco de la correspondencia AdS/CFT.

Una de las motivaciones originales de nuestra investigación fue la de re-
sponder a la pregunta acerca de la existencia de soluciones de vaćıo con es-
tructura causal no-trivial, del tipo wormhole, en la teoŕıa de Lovelock. Esta
pregunta se origina en la no-existencia de este tipo de soluciones en la teoŕıa
de Einstein.

2 Logros

Nuestro estudio nos llevó al descubrimiento de una gran familia de nuevas
soluciones de vaćıo en cinco dimensiones, las cuales pueden ser consider-
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adas solitones gravitatorios, y se construyen mediante un método de ciruǵıa
geométrica a partir de las soluciones de Boulware-Deser. La motivación orig-
inal de nuestro trabajo ha sido, no sólo el descubrir nuevas soluciones, sino el
de efectuar una clasificación exhaustiva de este tipo de solitones gravitatorios.
Esta clasificación nos llevó, como primer resultado, a demostrar la no-validez
de los teoremas tipo Birkhoff en la teoŕıa de Lovelock. Nuestros contraejem-
plos expĺıcitos son los primeros obtenidos para las teoŕıas de Lovelock fuera
de los llamados Chern-Simons points.

La enorme gama de nuevas soluciones que encontramos en nuestra clasi-
ficación de geometŕıas de vaćıo contiene soluciones tipo wormhole, solu-
ciones del tipo burbujas de vaćıo, universos cerrados, estructuras causales
no-triviales, agujeros negros topológicos, y otras geometŕıas de topoloǵıa muy
variada.

Aunque nuestras soluciones presentan un salto en las derivadas de la
métrica, son inconsútiles en el sentido de que satisfacen las condiciones de jun-
tura de la teoŕıa de Lovelock. En particular, descubrimos la primera solución
de wormhole (esféricamente simétrica) en una teoŕıa gravitatoria en vaćıo.
Nuestra solución es asintóticamente de-Sitter y localmente Boulware-Deser.
Para cierta región del espacio de parámetro, la solución resulta, además, es-
table ante perturbaciones que respetan la simetŕıa. Encontramos también
soluciones inestables y estudiamos también la comunión entre las dos difer-
entes ramas de la solución de Boulware-Deser cuando se unen éstas con difer-
entes orientaciones.

Nuestros resultados de clasificación de nuevas soluciones fueron reporta-
dos en las siguientes publicaciones

∙ C. Garraffo, G. Giribet, E. Gravanis y S. Willison, J. Math. Phys. 49
(2008) 042502, [arXiv:0711.2992].

∙ C. Garraffo, G. Giribet, E. Gravanis y S. Willison, Proceeding of the
XII Marcel Grossmann Meeting, Paŕıs (2009), por aparecer.

El descubrimiento de soluciones estables que conectan una rama asintóticamente
de-Sitter con una burbuja de vaćıo cuyo interior corresponde a una rama con
singularidades desnudas, nos hizo replantear el significado de este tipo de
singularidades en la teoŕıa de Lovelock. Básicamente, surgió la pregunta ac-
erca de la peligrosidad de este tipo de singularidades en el contexto f́ısico. A
efectos de responder esta cuestión, nos dispusimos a analizar las soluciones de
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masa positiva y singularidad desnuda en la teoŕıa de Lovelock con el método
de quantum probes. Nuestro análisis develó que, mientras las soluciones de
masa positiva con singularidad desnuda en la teoŕıa de Lovelock en cinco
dimensiones corresponden a geometŕıas de curvatura singular en el contexto
clásico, desde el punto de vista cuántico corresponden a geometŕıas regulares.

Nuestros resultados sobre el estudio de singularidades desnudas de masa
positiva en la teoŕıa de Lovelock fueron publicados en

∙ C. Garraffo y G. Giribet, Mod. Phys. Lett. A23 (2008) 1801, [arXiv:0805.3575],

y fueron reportados en una serie de seminarios dictados en el Martin A.
Fisher Physics Department de Brandeis University, MA, USA, y en otros
centros de investigación en Chile, Francia y los Estados Unidos.
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