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Resumen

Técnicas de razonamiento automático para lógicas h́ıbridas

Las ”lógicas h́ıbridas” extienden a las lógicas modales tradicionales con el
poder de describir y razonar sobre cuestiones de identidad, lo cual es clave
para muchas aplicaciones. Aunque lógicas modales que hoy llamaŕıamos
”h́ıbridas” pueden rastrearse hasta cuatro décadas atrás, su estudio sis-
temático data de fines de la década del ’90. Parte de su interés proviene
de que llenan un hueco de expresividad importante de las lógicas modales
tradicionales.

Uno de los temas de esta tesis es el problema de la satisfacibilidad
para la lógica h́ıbrida más conocida, denominada H(@, ↓), y algunas de sus
sublógicas. El de la satisfacibilidad es el problema fundamental en razon-
amiento automático. En el caso de las lógicas h́ıbridas, éste se ha estudiado
fundamentalmente a partir del método de tableaux. En esta tesis intentamos
completar el panorama del área investigando el problema de la satisfacibil-
idad para lógicas h́ıbridas usando resolución clásica de primer orden (v́ıa
traducciones) y variaciones de un cálculo basado en resolución que opera
directamente sobre fórmulas h́ıbridas.

Presentamos, en primer lugar, traducciones de complejidad lineal de
fórmulas de H(@, ↓) a lógica de primer orden, que preservan satisfacibili-
dad. Éstas están concebidas de manera de reducir el espacio de búsqueda
de un demostrador automático basado en resolución de primer orden.

Luego cambiamos nuestra atención a cálculos que operan directamente
sobre fórmulas h́ıbridas. En particular, consideramos el cálculo llamado
de”resolución directa”. Inspirados por el caso clásico, transformamos este
cálculo en uno de resolución ordenada con funciones de selección y probamos
que posee la ”propiedad de reducción de contraejemplos”, de lo cual se
deduce que es completo y compatible con el criterio de redundancia estándar.
Mostramos también que un refinamiento de este cálculo es un método de
decisión para la sublógica decidible H(@).

En la última parte de esta tesis, consideramos ciertas formas normales
para lógicas h́ıbridas y otras lógicas modales extendidas. En particular nos
interesan formas normales donde se garantice que ciertas modalidades no
aparecen por debajo de otros operadores modales. Este tipo de transforma-
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ciones puede ser aprovechadas en una etapa de preprocesamiento a fin de
reducir el número de inferencias requeridas por un demostrador modal.

Al intentar expresar estos resultados de extractibilidad de una manera
que comprenda también otras lógicas modales extendidas, llegamos a una
formulación de la semántica modal basada en un tipo novedoso de modelos
definidos de manera coinductiva. Muchas lógicas modales extendidas (in-
cluyendo las lógicas h́ıbridas) pueden verse en términos de clases de modelos
coinductivos. De esta manera, resultados que antes deb́ıan probarse por sep-
arado para cada lenguaje (pero cuyas pruebas eran en general rutinarias)
pueden establecerse de manera general.

Palabras clave: lógicas h́ıbridas, demostración automática, traducciones a
primer orden, resolución directa, métodos de decisión, modelos coinductivos,
formas normales, extractabilidad de modalidades.



Abstract

Automated reasoning techniques for hybrid logics

Hybrid logics augment classical modal logics with machinery for describing
and reasoning about identity, which is crucial in many settings. Although
modal logics we would today call “hybrid” can be traced back to the work
of Prior in the 1960’s, their systematic study only began in the late 1990’s.
Part of their interest comes from the fact they fill an important expressivity
gap in modal logics. In fact, they are sometimes referred to as “modal logics
with equality”.

One of the unifying themes of this thesis is the satisfiability problem for
the arguably best-known hybrid logic, H(@, ↓), and some of its sublogics.
Satisfiability is the basic problem in automated reasoning. In the case of hy-
brid logics it has been studied fundamentally using the tableaux method. In
this thesis we attempt to complete the picture by investigating satisfiability
for hybrid logics using first-order resolution (via translations) and variations
of a resolution calculus that operates directly on hybrid formulas.

We present firstly several satisfiability-preserving, linear-time transla-
tions from H(@, ↓) to first-order logic. These are conceived in a way such
that they tend to reduce the search space of a resolution-based theorem
prover for first-order logic. notations can be safely ignored.

We then move our attention to resolution-based calculi that work di-
rectly on hybrid formulas. In particular, we will consider the so-called direct
resolution calculus. Inspired by first-order logic resolution, we turn this cal-
culus into a calculus of ordered resolution with selection functions and prove
that it possesses the reduction property for counterexamples from which it
follows its completeness and that it is compatible with the well-known stan-
dard redundancy criterion. We also show that certain refinement of this
calculus constitutes a decision procedure for H(@), a decidable fragment of
H(@, ↓).

In the last part of this thesis we investigate certain normal forms for
hybrid logics and other extended modal logics. We are interested in normal
forms where certain modalities can be guaranteed not to occur under the
scope of other modal operators. We will see that these kind of transforma-
tions can be exploited in a pre-processing step in order to reduce the number
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of inferences required by a modal prover.
In an attempt to formulate these results in a way that encompasses

also other extended modal logics, we arrived at a formulation of modal
semantics in terms of a novel type of models that are coinductively defined.
Many extended modal logics (such as hybrid logics) can be defined in terms
of classes of coinductive models. This way, results that had to be proved
separately for each different language (but whose proofs were known to be
mere routine) now can be proved in a general way.

Keywords: hybrid logics, automated reasoning, first-order translations, di-
rect resolution, decision methods, coinductive models, normal forms, ex-
tractability of modalities.



Acknowledgments

A lot of people helped me out, one way or the other (even without noticing
it!), throughout all the years since I started to work in this thesis. I’m
grateful to all of them.

I’d like to express my deepest gratitude to Carlos Areces. I can’t imagine
having a more supportive, guiding, enlightening and hard-working supervi-
sor. And that is only half of the story. He has been a great tour guide and
trip advisor, amazing cook and outstanding host (he used to run the best
B&B in the whole Lorraine). I very much enjoyed browsing, discussing and
borrowing things from his personal “médiathèque”.
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Chapter 1

Hybrid logics

The first modern approach to modal logics is commonly attributed to Lewis
[1918]. In those early times, modal logics were all about modes of truth:
necessity, obligation, etc. More than ninety years have passed since. Suc-
cessful uses of modal logics can be found in an amazingly heterogeneous list
of areas: from topology to software verification, from artificial intelligence
to proof-theory, from linguistics to game-theory and the list goes on (see,
e.g., part 4 of [Blackburn et al., 2006]).

Modal languages have been studied under an equally diverse number of
interpretations: relational models and frames, neighborhood semantics, al-
gebraic and co-algebraic settings, etc. The downside for the contemporary
modal logician is that he can no longer give an answer that is both com-
prehensive and comprehensible when confronted by the layman with the
recurrent question of what a modality is.

We won’t attempt to give an answer to that question here either. In fact,
we will restrict our attention to modal logics under relational semantics.
Models in this setting are simply relational structures and therefore modal
languages can be seen as languages for describing and reasoning about la-
beled graphs. This is, arguably, the interpretation that better suits computer
scientists, who tend to see graphs everywhere.

Now, relational structures can be described with a variety of languages,
including modal logics, first-order logics and even higher-order logics. The
choice of a particular language for a particular application can be seen as
a compromise between expressiveness (the properties we can express in the
language) and computational complexity (the cost of performing inference
tasks). Modal logics offer a particularly interesting balance of both. More-
over they can be used in a modular way: one can try to pick the modal
operators that offer the best balance for each particular setting.

Hybrid logics augment modal logics with machinery for describing and
reasoning about identity, which is a crucial in many settings. Before going
into formal definitions, we will try to give an informal introduction to both

3



4 CHAPTER 1. HYBRID LOGICS

modal and hybrid logics.

1.1 An example-driven introduction

One of the outstanding uses of logic in computer science is in the specifica-
tion of software contracts. The most successful use of modal languages in
this field is, arguably, in the specification of temporal properties for model-
checking based verification of software and hardware [Clarke et al., 1999,
Vardi, 2006]. In this section, however, we will use these languages –as a way
to familiarize the reader with them– to describe recursive datastructures
residing in the heap of some imperative Java-like programming language.
These descriptions can be used, for example, as part of the declaration of
a class invariant [Meyer, 1992]. Later in this example we will extend the
range of these descriptions to method contracts.

Let us start by considering the code in Figure 1.1a, which describes a
node type that can be used, for example, to build trees of arbitrary fan-out.
Using only boolean connectives1 we can state, for example, that “a node is
a circle but not a red one”:

shape = Circle ∧ color 6= Red (1.1)

Now, to state that the same is true of every immediate succesor of the
node (i.e., of every node contained in the succs set), we use a modal operator:

[succs](shape = Circle ∧ color 6= Red) (1.2)

Observe that (1.2) is simply (1.1) with a prefixed [succs]. The intended
interpretation is that for this formula to be true, (1.1) must be true at every
immediate successor of the current node. Of course, if the node has no
successor (i.e., if the set succs is empty), then (1.2) will be vacuously true.
We can express that the node must have at least one successor using:

¬[succs]¬⊤ (1.3)

where ⊤ is any tautology. Since [succs] has universal semantics (“every
successor”), it comes as no surprise that an existential property (“some
successor”) is expressed this way. In fact, the existential dual of [succs] is
typically written 〈succs〉; that is, for every formula ϕ, 〈succs〉ϕ is shorthand
for ¬[succs]¬ϕ. Thus, (1.3) can be alternatively expressed as:

〈succs〉⊤ (1.4)

Operator [succs] is an example of a basic (relational) modality, that is,
one that is interpreted universally using the labeled edges of an arbitrary

1We will assume throughout this section some suitable background theory that gives
meaning to symbols such as =, 6=, Red, Circle, shape, etc.



1.1. AN EXAMPLE-DRIVEN INTRODUCTION 5

class NodeRose {
Color c o l o r ;
Shape shape ;
Set 〈NodeRose 〉 succs ;

}

(a) Rose tree

class NodeBin {
Bool hasMark ;
NodeBin? l e f t ;
NodeBin? r i g h t ;

}

(b) Binary tree

Figure 1.1: Data structure definitions in a Java-like language

graph. Certainly, every boolean tautology is a tautology in the language
enriched with this modal operator, but now we also have new non-boolean
ones. Consider, for example, the following one:

[succs](color = Red → [succs]⊥) →
(

[succs](color = Red) → [succs][succs]⊥
) (1.5)

To see that (1.5) is a valid formula, assume an arbitrary node of which
you know that every (if any) successor satisfies (color = Red → [succs]⊥).
If it also happens that every successor satisfies color = Red, then every
successor satisfies both (color = Red → [succs]⊥) and color = Red, and
from here we conclude that every successor satisfies also [succs]⊥.

Here is another example of valid formula:

[succs](color = Red ∨ color 6= Red) (1.6)

Since (color = Red∨ color 6= Red) is a (boolean) tautology, every successor
must surely make it true.

But observe that in this argument we haven’t used any other property of
the formula (color = Red∨ color 6= Red) other of it being universally valid,
so we can replace it with any other tautology. This justifies the following
inference rule, known as the Neccessitation rule.

if ϕ is valid, then [succs]ϕ is valid too. (1.7)

Similarly, we can generalize the analysis we did for (1.5) above and con-
clude that for any formulas ϕ and ψ, the following holds:

[succs](ϕ→ ψ) → [succs]ϕ→ [succs]ψ is valid (1.8)

This is the so-called axiom K applied to modality [succs].
Interestingly axiom K and Necessitation, together, characterize the set

of valid formulas of the basic modal logic. This is a decidable set (unlike,



6 CHAPTER 1. HYBRID LOGICS

Blue

Red

Green

succs

succs

Figure 1.2: 〈succs〉(color = Red) → [succs](color = Red) is not valid

for instance, the set of valid formulas of first-order logic) and membership
in this set is a PSPACE -complete problem [Ladner, 1977].

Consider now the type NodeBin defined in Figure 1.1b. We use notation
“NodeBin? left” to express that the field left may be empty (i.e., it may
contain the null value). In other words, every instance of NodeBin may have
at most one immediate left -successor and at most one immediate right-
successor. Say we now want to express that “the right successor (if present)
of the left succesor (if present) of the current node is marked”; this is very
succinctly stated as:

[ left ][right]hasMark (1.9)

Obviously enough, [ left ] and [right] are modal operators in the same sense
[succs] is too: they satisfy axiom K and the Necessitation rule. They satisfy
additional properties, though. For example, for every ϕ, the following are
universally valid:

〈 left 〉ϕ→ [ left ]ϕ (1.10)

〈right〉ϕ→ [right]ϕ (1.11)

For the case of (1.10), if there exists some successor via left that satisfies ϕ,
then this must be the only such successor, so it is true that every successor
via left satisfies ϕ. On the other hand, Figure 1.2 shows this is not the case
of [succs].

In fact, (1.10) and (1.11) are instances of axiom Alt1 , which together with
axiom K and Necessitation characterizes the set of valid formulas when the
relation used to interpret the operator is a partial function.

Instead of constraining the interpretation, one can also obtain other
modal operators by adding new constructions to the language. The next two
modalities we will introduce illustrate this. They are part of Propositional
Dynamic Logic (PDL) [Harel et al., 2000].

To motivate the first one, observe that although it is easy to express a
class invariant requiring that “every immediate successor of a NodeBin has
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to be marked”:
[ left ]hasMark ∧ [right]hasMark (1.12)

if we want to say instead that “every node at distance two has to be marked”
things start to become verbose:

[ left ]([ left ]hasMark ∧ [right]hasMark) ∧

[right]([ left ]hasMark ∧ [right]hasMark)
(1.13)

And things get worse as we increase the depth of the nodes we want to talk
about. This can be expressed very succinctly using PDL’s non-deterministic
choice modality constructor. For example, the following formula expresses
that “every node at distance four is marked”

[ left ∪ right][ left ∪ right][ left ∪ right][ left ∪ right]hasMark (1.14)

The relevant axiom in this case is: [α ∪ β]ϕ ↔ [α]ϕ ∧ [β]ϕ, for [α] and
[β] modalities in our language. But we can go further. We can use PDL’s
transitive-closure modality constructor to express, for example, that “every
node reachable in a finite number of steps has to be marked”:

hasMark ∧ [( left ∪ right)+]hasMark (1.15)

Notice that we have used a modal language to write a property not ex-
pressible in first-order logic (namely, transitive closure). And we are staying
decidable: validity for PDL is an EXPTIME -complete problem [Pratt, 1979,
Fischer and Ladner, 1979].

It’s time for a quick recap. We have seen that modal languages are well-
suited for describing properties of graphs. Moreover, we have also seen that
they are intrinsically modular : one can simply put together a bunch of modal
operators and obtain a new logic. By adding appropriate modalities one
can augment the expressive power of the resulting logic. But the additional
expressive power often results in an increased computational complexity. In
short, modal logics lend well to what has been called logic engineering : the
ability to, given a concrete application, pick the language that expresses as
much as one needs without paying in terms of complexity more than one
can afford [Areces, 2000].

We will rely on our running example to also motivate and introduce
hybrid logics. Consider the structures on Figure 1.3; call M the one depicted
on (a) and N the one on (b). Pick any of the two marked nodes of M, call
it v and let v′ be the marked node of N . Using a very simple inductive
argument one can show that for any formula ϕ of any of the languages we
have considered so far, ϕ is true at v iff it is true at v′. Intuitively, v and
v′ are indistinguishable at the propositional level and because they have no
successors, they trivially satisfy any formula of the form [α]ψ. Now, call
w the unmarked element of M and w′ the unmarked element of N ; using
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¬hasMark

hasMark hasMark

left right

(a)

¬hasMark

hasMark

left
right

(b)

Figure 1.3: Two structures undistinguishable without hybrid operators.

another induction one can show that ϕ is true at w iff is is true at w′. Here,
the important step is that (because of the first induction) the left -successor
of w satisfies ψ iff the left -successor of w′ satisfies ψ (and therefore, w
satisfies [ left ]ψ iff w′ satisfies it too), etc2.

Put in another way, even with the very expressive PDL operators, we
have no way to state in the class invariant of a NodeBin that there must be
no aliasing3 between the immediate successors of a NodeBin.

Hybrid logics can be regarded as filling this expressive gap. These logics
are built around a special sort of proposition symbol, that is required to be
true at one and only one node of the model. These special symbols are called
nominals. By simply adding nominals we obtain a richer logic, as illustrated
by the following formula which is universally valid when i is a nominal:

(〈succs〉(i ∧ color = Red) ∧ 〈succs〉(i ∧ shape = Circle)) →

〈succs〉(color = Red ∧ shape = Circle)
(1.16)

Whenever the antecedent holds, we must have the only node named i as an
immediate successor, but since this node must satisfy both color = Red and
shape = Circle, the consequent must hold too.

Once we have nominals, we can add some interesting operators. Firstly,
to every nominal i we can associate a modal operator @i, that makes the
evaluation of its subformula relative to the node named i. This is usually
called the satisfaction operator. To continue developing our running exam-
ple, observe that program variables make a fine example of nominals. For
instance, in the following function declaration both a and b denote one and
only one node each:

void doSomething (NodeRose a , NodeRose b )

2In fact, readers familiar with the concept of bisimulation will reckon that the structures
of Figure 1.3a and 1.3b are bisimilar. It is well-known that modal formulas in the languages
we considered so far are invariant under bisimulation and this constitutes a shorter proof
of their indistinguishability.

3In computing, aliasing occurs when the same object or memory location can be ac-
cessed through different pointers or references.
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Until now our example formulas were thought of as class invariants. In
a class invariant there is no need to explicitly name the instance where it
will be evaluated. But using the satisfaction operator we can start writing
more general predicates, such as Hoare-style pre and postconditions or loop
invariants. For instance, we can state that “a has no successors and b is red
and has only red successors”:

@a[succs]¬⊤ ∧ @b(color = Red ∧ [succs](color = Red)) (1.17)

Moreover, we can also state that there is no aliasing between a and b:

@a¬b (1.18)

That is, we are saying that the node named a is not also named b, which is
only possible if a and b designate distinct nodes. Thus, the combination of
nominals with the satisfaction operator is incorporating a notion of equality
to the modal language.

It is fairly easy to express the requirement that “b is not a successor of
itself”:

@b[succs]¬b (1.19)

but this is because we already have a name for b. What if we wanted to say
also that “no successor of b is successor of itself”? Here enters the second
hybrid operator we will introduce. Given a nominal i, the ↓i operator names
the current node with i for the rest of its subformula. The last statement is
thus expressed as:

@b[succs]↓i.[succs]¬i (1.20)

This can be alternatively read as “let i be any successor of b, then i is not
one of its own successors”. We typically say that the occurrence of nominal
i in (1.20) is bound by ↓i, and therefore, ↓ by itself is sometimes called a
binder or binding operator.

Observe that using all the hybrid operators we can now write a formula
that distinguishes the structures in Figure 1.3:

↓root .〈 left 〉↓leftChild .@root〈right〉¬leftChild (1.21)

To verify this, let again w and w′ be the unmarked nodes of Figures 1.3a
and 1.3b, respectively. We start by verifying that (1.21) is true at w. First,
observe it starts requiring we assume w is denoted by nominal root . Next,
it asks w to have some left -successor (which w does) and requires also
↓leftChild .@root〈right〉¬leftChild to be true at it, which we have to verify.
This starts by assuming this left -successor is called leftChild and then moves
us back to w (remember it was assumed to be called root) and requires of w
that 〈right〉¬leftChild holds. But w indeed has a right-successor and it is a
node distinct from the left -successor of w which was named leftChild . It is
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this last bit that fails in the case of w′: the right-successor of w′ is indeed
the node that previously was named leftChild .

It comes as no surprise that this additional expressive power comes with
a price: hybrid logics that include the ↓ binder have in general an undecid-
able validity problem. On the other hand, the satisfiability problem for the
hybrid logic with nominals and the satisfaction operator remain PSPACE -
complete [Areces et al., 1999].

Hopefully, the example in this section served to give an idea of what
one can expect from modal languages and what is the role played by hybrid
operators. Of course, we have barely started to scratch the surface. A
thorough presentation of these and other modal languages, as well as some
of their applications, can be found in [Blackburn et al., 2006].

1.2 All the due formalities

It is time to complement the intuitions we have developed so far with formal
definitions. We will introduce here the basic concepts to be used throughout
the thesis, although some of them will be later revised in Chapter 10.

1.2.1 Syntax and semantics

Let’s begin by properly defining the hybrid language. We will usually work
with a fixed signature S, defined as the triple 〈Prop,Nom,Rel〉, where Prop,
Nom and Rel are infinite, enumerable, pairwise disjoint sets. Occasionally,
we will need to work with more than one signature (e.g., an expanded one)
and when that happens we will make them explicit.

Rel is the set of relation symbols; in the previous example succs, left and
right were used as relation symbols but we will stick to the more abstract
r1, r2, r3 . . . (sometimes omitting the subscript) from now on, instead. Sim-
ilarly, we won’t use complex propositions like “color = Red” as elements of
Prop but letters p, q (perhaps with subscripts). We reserve letters i, j, k, . . .
for nominals in Nom. Finally, we will use letters a, b, c . . . to denote any
atomic symbol, i.e., either a nominal or a proposition.

Definition 1.1 (Basic syntax). The set of formulas of the hybrid logic
H(@, ↓) (over signature S) is defined as follows:

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | [r]ϕ | @iϕ | ↓i.ϕ

We will also use all the usual abbreviations:

ϕ ∨ ψ
def
= ¬(¬ϕ ∧ ¬ψ)

ϕ→ ψ
def
= ¬ϕ ∨ ψ

ϕ↔ ψ
def
= (ϕ→ ψ) ∧ (ψ → ϕ)

〈r〉ϕ
def
= ¬[r]¬ϕ
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The sublogics H(@) and H(↓) are obtained by removing from H(@, ↓) every
formula containing ↓ and @, respectively.

Operator ↓ is usually called a binder and, as such, induces the standard
notions of free and bound nominals.

Definition 1.2 (Free and bound nominals). The sets Free(ϕ) and Bnd(ϕ)
of free and bound nominals occurring in ϕ are inductively defined as follows:

Free(p) = ∅ Bnd(p) = ∅
Free(i) = {i} Bnd(i) = ∅

Free(¬ψ) = Free(ψ) Bnd(¬ψ) = Bnd(ψ)
Free(ψ ∧ χ) = Free(ψ) ∪ Free(χ) Bnd(ψ ∧ χ) = Bnd(ψ) ∪ Bnd(ψ)
Free([r]ψ) = Free(ψ) Bnd([r]ψ) = Bnd(ψ)
Free(@iψ) = Free(ψ) ∪ {i} Bnd(@iψ) = Bnd(ψ)
Free(↓i.ψ) = Free(ψ) \ {i} Bnd(↓i.ψ) = Bnd(ψ) ∪ {i}

Moreover, we say i is free in ϕ whenever i ∈ Free(ϕ) and that i is bound in
ϕ whenever i ∈ Bnd(ϕ).

In many presentations of hybrid logics (e.g., [Areces and ten Cate, 2006])
↓ does not bind nominals but another sort of symbols, typically called state
variables. We have opted to drop state variables from our definitions basi-
cally to avoid redundancies both in syntax and semantics. There is a small
price we have to pay for this, though. Proof methods for H(@, ↓) usually
rely on substitutions of variables by nominals. For example, the following is
an axiom-scheme of a Hilbert-style system for H(@, ↓) (cf. Chapter 4):

⊢ @i(↓x.ϕ↔ ϕ(x/i)) (1.22)

where x is a state variable and ϕ(x/i) is the substitution inside ϕ of the free
occurrences of x by i. But by dropping state variables we open the door
to the possibility of the accidental capture of nominals during replacement.
For example, if we simply replaced (1.22) by the following:

⊢ @i(↓j.ϕ↔ ϕ(j/i)) (1.23)

we would get, for ϕ = 〈r〉↓i.¬j, the spurious axiom

⊢ @i(↓j.〈r〉↓i.¬j ↔ 〈r〉↓i.¬i) (1.24)

which is not valid. The workaround for this problem will be simply to adopt
a convention in the spirit of the Variable Convention for the λ-calculus
used by Barendregt [1984] that restores in practice the distinction between
nominal and variable but without all the associated formal burden.

Convention 1. We will always assume that if ϕ is a well-formed formula
of H(@, ↓), then Free(ϕ) ∩ Bnd(ϕ) = ∅.
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This convention is not too restrictive since one can always rename appro-
priately the bound nominals. It is also convenient since every subformula
of a well-formed formula will conform to the convention by construction.
Finally, because of this convention, it will be enough to use a naive notion
of substitution:

Definition 1.3 (ϕ(i/j)). Let ϕ be a H(@, ↓) formula and j 6∈ Bnd(ϕ).
We define the uniform substitution of free occurrences of i by j, ϕ(i/j),
inductively as follows:

i(i/j)
def
= j

a(i/j)
def
= a, if a 6= i

(¬ψ)(i/j)
def
= ¬(ϕ(i/j))

(ψ ∧ χ)(i/j)
def
= ψ(i/j) ∧ χ(i/j)

([r]ψ)(i/j)
def
= [r](ψ(i/j))

(@iψ)(i/j)
def
= @j(ψ(i/j))

(@kψ)(i/j)
def
= @k(ψ(i/j)), if k 6= i

(↓i.ψ)(i/j)
def
= ↓i.ψ

(↓k.ψ)(i/j)
def
= ↓k.(ψ(i/j)), if k 6= i

Notice condition j 6∈ Bnd(ϕ) in Definition 1.3 above. Its presence guar-
antees that no substitution may break the convention by replacing a free
nominal by one that is also bound.

Having formally defined the hybrid language, we should warn upfront
that this is not the only characterization of H(@, ↓) we are going to use. In
Parts II and III we will assume formulas are in negation normal form (nnf).
In this form, negations occur only in front of atoms. We will provide an
inductive definition of nnf-formulas to allow for proofs by induction.

Definition 1.4 (Basic syntax (nnf)). The set of formulas in negation normal
form of the hybrid logic H(@, ↓) (over signature S) is defined as follows:

ϕ ::= a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | [r]ϕ | 〈r〉ϕ | @iϕ | ↓i.ϕ

Of course, there is a linear translation nnf such that, for all ϕ, nnf (ϕ)
is in negation normal form and equivalent to ϕ. It is shown in Figure 1.4.
In any case, it shall always be clear what language we are working in.

Time to move to semantics. As usual, we need a suitable notion of
interpretation for the symbols in the signature.

Definition 1.5 (Models). A hybrid model is a tuple 〈W,R, V, g〉 where W
is a non-empty set, R : Rel → 2W×W , V : Prop → 2W , g : Nom →W .
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nnf (a)
def
= a nnf −(a)

def
= ¬a

nnf (¬ψ)
def
= nnf −(ψ) nnf −(¬ψ)

def
= nnf (ψ)

nnf (ψ1 ∧ ψ2)
def
= nnf (ψ1) ∧ nnf (ψ2) nnf −(ψ1 ∧ ψ2)

def
= nnf −(ψ1) ∨ nnf −(ψ2)

nnf ([r]ψ)
def
= [r]nnf (ψ) nnf −([r]ψ)

def
= 〈r〉nnf −(ψ)

nnf (@iψ)
def
= @innf (ψ) nnf −(@iψ)

def
= @innf −(ψ)

nnf (↓i.ψ)
def
= ↓i.nnf (ψ) nnf −(↓i.ψ)

def
= ↓i.nnf −(ψ)

Figure 1.4: The nnf transformation.

A model 〈W,R, V, g〉 can be seen as a directed graph with the edges
labeled by relation symbols. Function g assigns a node of the graph to each
nominal, and since type Prop → 2W is isomorphic to W → 2Prop, we can
view V as decorating each node of the graph with a propositional valuation.

If M = 〈W,R, V, g〉 we say that W is the domain of M and sometimes
denote it by |M|. Following traditional practices, we may refer to elements
of W as nodes, states or worlds.

Definition 1.6 (Mw
i ). Given a model M = 〈W,R, V, g〉, an element w ∈W

and a nominal i, we define the model Mw
i as 〈W,R, V, g′〉 where g′ is identical

to g except perhaps for i for which g′(i) = w.

Since we’ve given two alternative characterizations of the set of hybrid
formulas, we will formally define the semantics of the language for all the
operators involved.

Definition 1.7 (Semantics). Given a hybrid model M = 〈W,R, V, g〉 and
an element w ∈ W , the satisfiability relation M, w |= ϕ (read “model M
satisfies formula ϕ at state w”) is defined as follows:

M, w |= p iff w ∈ V (p)

M, w |= i iff w = g(i)

M, w |= ¬ϕ iff M, w 6|= ϕ

M, w |= ϕ1 ∧ ϕ2 iff M, w |= ϕ1 and M, w |= ϕ2

M, w |= ϕ1 ∨ ϕ2 iff M, w |= ϕ1 or M, w |= ϕ2

M, w |= [r]ϕ iff (w, v) ∈ R(r) implies M, v |= ϕ, for every v ∈W

M, w |= 〈r〉ϕ iff (w, v) ∈ R(r) and M, v |= ϕ, for some v ∈W

M, w |= @iϕ iff M, g(i) |= ϕ

M, w |= ↓i.ϕ iff Mw
i , w |= ϕ.

We write M |= ϕ whenever M, w |= ϕ for every w ∈ |M|.
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From this definition it is clear that the @i operator moves the point of
evaluation to the state named i and therefore M, w |= @iϕ iff M |= @iϕ.
Formulas whose outermost operator is an @ will play an important role in
this thesis and will be called @-formulas. From all @-formulas, those of
the form @ij will be called equalities; this is because for M = 〈W,R, V, g〉,
M |= @ij iff g(i) = g(j).

We say ϕ and ψ are equivalent, denoted ϕ ≡ ψ whenever, |= ϕ ↔ ψ.
Observe that ¬@iϕ ≡ @i¬ϕ and ¬↓i.ϕ ≡ ↓i.¬ϕ. That is, they are self-dual
operators.

Even though this thesis is about hybrid logics, we will often discuss the
classic modal case too, typically when exploring in the hybrid setting ideas
that have been used for the basic modal logic.

A modal signatures S is simply a tuple 〈Prop,Rel〉. A hybrid signature
may be seen as a modal signature by simply ignoring Nom.

Definition 1.8 (Basic modal logic – syntax). The set of formulas of the
basic modal logic ML (over signature S) is defined as follows:

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | [r]ϕ

We will also use all the usual abbreviations (cf. Definition 1.1).

Models of the basic modal logic are usually called Kripke models. Having
presented hybrid models first, Kripke models can be view as hybrid models
without an interpretation for nominals.

Definition 1.9 (Kripke models). A Kripke model is a tuple 〈W,R, V 〉 where
W is a non-empty set, R : Rel → 2W×W and V : Prop → 2W .

Sometimes it is convenient to consider pointed Kripke models, which is
simply a pair 〈M, w〉, where M is a Kripke model and w an element of the
domain of M. We will come back to pointed models in Part IV.

Definition 1.10 (Basic modal logic – semantics). Given a Kripke model
M = 〈W,R, V 〉 and an element w ∈W , the satisfiability relation M, w |= ϕ
(read “model M satisfies formula ϕ at state w”) is defined as follows:

M, w |=K p iff w ∈ V (p)

M, w |=K ¬ϕ iff M, w 6|=K ϕ

M, w |=K ϕ1 ∧ ϕ2 iff M, w |=K ϕ1 and M, w |=K ϕ2

M, w |=K [r]ϕ iff (w, v) ∈ R(r) implies M, v |=K ϕ, ∀v ∈W.

We write M|=K ϕ whenever M, w |=K ϕ for every w ∈ |M|. Finally, we
define K = {ϕ | M |=K ϕfor all M}.
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In most logics, a formula is typically said to be satisfiable when there
exists some interpretation that makes it true, and valid when every inter-
pretation makes it true. For example, in the case of H(@, ↓), we say ϕ is
satisfiable whenever there exists M such that M, w |= ϕ for some w ∈ |M|
and that it is valid if M, w |= ϕ for every M and every w ∈ |M|.

The satisfiability problem of a logic is that of determining, given a for-
mula ϕ, if ϕ is satisfiable or not. Similarly, the validity problem is that of
deciding if a formula ϕ is valid. Validity and satisfiability are dual concepts:
ϕ is valid iff ¬ϕ is unsatisfiable. Therefore, any (deterministic) algorithm
for the satisfiability problem can be trivially turned into one for the validity
problem and vice versa.

The satisfiability problem for H(@) is PSPACE -complete, just like the
one for ML. On the other hand, the satisfiability problem for H(↓) is
undecidable (therefore, satisfiability for H(@, ↓) is undecidable too), but
validity (or unsatisfiability) is semi-decidable [Areces et al., 1999].

As is usual when discussing complexity in the context of automated rea-
soning, it is worth noticing that one should not be necessarily discouraged by
this hard complexities. After all, complexity-theorists refer to NP -complete
problems as intractable while advanced satisfiability solvers are used nowa-
days on problems in this complexity class containing tens of thousands of
variables. Assume P 6= NP for a moment; NP -completeness of the propo-
sitional satisfiability problem then says that for every algorithm there exist
pathological formulas for which it will require non-polynomial time. But it
does not follow that these pathological formulas need to occur frequently in
practice.

1.2.2 Bisimulations and modal invariance

The notion of bisimulation is central in modal model theory, but also in
areas as diverse as concurrency theory or non-well founded set theory, in
which they were independently discovered. In modal logics, bisimulations
were introduced by van Benthem [1976]. See [Sangiorgi, 2009] for a historical
review.

Definition 1.11 (Bisimulations for ML). Let M = 〈W,R, V 〉 and M′ =
〈W ′, R′, V ′〉 be two Kripke models. A bisimulation between M and M′ is a
non-empty binary relation Z ⊆W ×W ′ such that, if (w,w′) ∈ Z, then:

(atom) w ∈ V (p) iff w′ ∈ V ′(p), for all p ∈ Prop.

(zig) if (w, v) ∈ R(r), then (w′, v′) ∈ R′(r) and (v, v′) ∈ Z, for some v′.

(zag) if (w′, v′) ∈ R′(r), then (w, v) ∈ R(r) and (v, v′) ∈ Z, for some v.

When there exists a bisimulation Z between M and M′ such that (w,w′) ∈
Z, we say that w and w′ are bisimilar, notated M, w↔M′, w′.
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Theorem 1.1 (Invariance under bisimulations for ML). Let M and N be
two Kripke models. If M, w↔N , v, then M, w |=K ϕ iff N , v |=K ϕ, for all
formula ϕ of ML.

Stronger links between modal equivalence (i.e., agreement on all modal
formulas) and bisimulations can be found. Hennessy and Milner [1985] show
that for models that are finitely branching (i.e., models where every node has
finitely many successors) modal equivalence implies existence of a bisimula-
tion (this does not hold in the general case). Moreover, van Benthem [1976]
proved that every first-order logic formula that is invariant under bisimula-
tions is equivalent to some modal formula (this is known as the van Benthem
Characterization Theorem; we will delay a formal presentation of the links
between first-order logic and modal logics until Part II of this thesis).

One can use bisimulations to prove that modal logics are invariant under
certain operations on models. Classical operations for the basic modal case
include bounded morphic images, generated submodels and disjoint unions.
We formally define the latter next as we will need it in Chapter 6 (generated
submodels for the hybrid case are presented in Definition 1.14).

Definition 1.12. Given two Kripke models M1 = 〈W1, R1, V1〉 and M2 =
〈W2, R2, V2〉, we define M1 ⊎M2, the disjoint union of M1 and M2, as the
model 〈W,R, V 〉, where:

W
def
= {(0, w) | w ∈W1} ∪ {(1, w) | w ∈W2}

R(r)
def
= {((0, w), (0, v)) | (w, v) ∈ R1(r)} ∪ {((1, w), (1, v)) | (w, v) ∈ R2(r)}

V (p)
def
= {(0, w) | w ∈ V1(p)} ∪ {(1, w) | w ∈ V2(p)}.

Intuitively, 0 and 1 are used to index the elements of the domain of the
disjoint union according to which set they originated in. Now, consider the
following binary relations:

Z0 = {(w, (0, w)) | w ∈ |M1|} (1.25)

Z1 = {(w, (1, w)) | w ∈ |M2|} (1.26)

Clearly, Z1 is a bisimulation between M1 and M1 ⊎ M2, while Z2 is a
bisimulation between M2 and M1 ⊎M2. This justifies the following result.

Proposition 1.1 (Invariance under disjoint unions). Let M1 and M2 be
two Kripke models. Then, for all w1 ∈ |M1|, w2 ∈ |M2| and all formula ϕ
of ML, we have:

1. M1, w1 |=K ϕ iff M1 ⊎M2, (0, w1) |=K ϕ,

2. M2, w2 |=K ϕ iff M1 ⊎M2, (1, w2) |=K ϕ.
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The link between bisimulations and modal logics goes beyond the basic
language. Variations of the basic notion of bisimulation given in Defini-
tion 1.11 are typically used to characterize the expressive power of more
expressive modal logics (but we will come back to this subject in Part IV).
To illustrate this, we consider next the adequate notion of bisimulation for
H(@) (the notion for H(@, ↓) requires heavier machinery, details can be
found in [Areces, 2000]).

Definition 1.13 (Bisimulations for H(@)). Let M = 〈W,R, V, g〉 and M′ =
〈W ′, R′, V ′, g′〉 be two hybrid models. A bisimulation between M and M′ is
a relation Z ⊆W ×W ′ that it is a modal bisimulation (cf. Definition 1.11)
between 〈W,R, V 〉 and 〈W ′, R′, V ′〉 and additionally satisfies:

(atom’) if (w,w′) ∈ Z, then g(i) = w iff g′(i) = w′, for all i ∈ Nom.

(nom) Z extends {(g(i), g′(i)) | for all i ∈ Nom}.

A bisimulation for H(@) is simply a bisimulation for ML with the addi-
tional condition that every named world must be in the bisimulation. Intu-
itively, this accounts for the fact that using @ one can jump to any element
of the domain named by a nominal.

Theorem 1.2 (Invariance under bisimulations for H(@)). Let M and N
be two hybrid models. If M, w↔N , v, then M, w |= ϕ iff N , v |= ϕ, for all
formula ϕ of H(@).

As an example of a formula preserving operation on hybrid models, we
define next the equivalent of generated submodels for the hybrid case; we
will use it in Chapter 6.

Definition 1.14 (Generated submodels). Let M = 〈W,R, V, g〉 and M′ =
〈W ′, R′, V ′, g′〉 be two hybrid models. We say that M′ is a generated sub-
model of M whenever:

1. W ′ ⊆W ,

2. R′(r) is the restriction of R(r) to W ′ (i.e., R′(r) = R(r)∩ (W ′×W ′)),

3. V ′ is the restriction of V to W ′ (i.e., V ′ = V ∩ (W ′ ×W ′)),

4. g′ = g, which implies that W ′ contains the image of g, and

5. if w ∈W ′ and (w, v) ∈ R(r) for some r ∈ Rel, then v ∈W ′.

Observe that from Theorem 1.2 and the fact that the identity on the
domain of M′, a generated submodel of M, is a bisimulation between M
and M′, one concludes that H(@)-formulas are invariant under generated
submodels. Areces et al. [2001a] show that this also holds in the case of
H(@, ↓) (in fact, they prove that if a first-order logic formula is invariant
under generated submodels, it is equivalent to a formula of H(@, ↓)).
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Proposition 1.2 (Invariance under generated submodels). If M′ is a gen-
erated submodel of M, then M, w |= ϕ iff M′, w |= ϕ, for all w ∈ |M′| and
every formula ϕ of H(@, ↓).

The classical notion of generated submodel for ML simply ignores the
condition on the interpretation of nominals. The invariance result is analo-
gous.

Bisimulations characterize the expressive power of modal logics in a way
that reminds of partial isomorphisms in the case of first-order logic. By
considering bisimulations up to a finite number of steps one obtains a modal
equivalent of the classical Ehrenfeucht-Fräıssé characterization.

Definition 1.15 (k-bisimulations for H(@)). Given two hybrid models M =
〈W,V,R, g〉 and M′ = 〈W ′, V ′, R′, g′〉 and two elements w ∈ W , w′ ∈ W ′,
we say that w and w′ are k-bisimilar (notation, M, w↔kM

′, w′) if there
exists a sequence of binary relations W ×W ′ ⊇ Z0 ⊇ Z1 ⊇ · · · ⊇ Zk such
that

1. (w,w′) ∈ Zk,

2. {(g(i), g′(i)) | i ∈ Nom} ⊆ Zk,

3. if (v, v′) ∈ Z0, then v ∈ V (p) iff v′ ∈ V ′(p), for all p ∈ Prop, and

4. if (v, v′) ∈ Zi+1, then

(a) if (v, u) ∈ R(m), (u, u′) ∈ Zi and (v′, u′) ∈ R′(m), for some u′,

(b) if (v′, u′) ∈ R′(m), (u, u′) ∈ Zi and (v, u) ∈ R(m), for some u.

Where in first-order logic one uses the quantifier depth of a formula,
in modal settings we use the modal depth (sometimes called degree) of a
formula instead.

Definition 1.16 (Modal depth). The modal depth of a formula ϕ of H(@, ↓),
(notation, md(ϕ)) is defined as:

md(p) = 0

md(i) = 0

md(¬ϕ) = md(ϕ)

md(ϕ ∧ ψ) = max{md(ϕ),md(ψ)}

md([m]ϕ) = md(ϕ) + 1

md(@iϕ) = md(ϕ) + 1

md(↓i.ϕ) = md(ϕ) + 1

First, notice that although the next result will use it only for formulas
of H(@), md is defined for the language H(@, ↓). Second, observe that in
terms of counting modal nesting, @i and ↓i are treated as regular (relational)
modal operators (but we will come back to this subject in Part IV).
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Theorem 1.3 (Invariance under k-bisimulations for H(@)). Let M and N
be two hybrid models. If M, w↔kN , v, then M, w |= ϕ iff N , v |= ϕ, for
all formula ϕ of H(@) such that md(ϕ) ≤ k.

1.2.3 Models and frames

If we drop the valuation V from a Kripke model 〈W,R, V 〉 we obtain what
is usually called a frame 〈W,R〉. Alternatively, a Kripke model 〈W,R, V 〉
can be seen as a frame 〈W,R〉 plus a valuation V . There is a long-standing
tradition of studying modal logics from the perspective of frames. One of
the key concept here is that of frame definability.

Definition 1.17 (Frame definability). Let C be a class of frames and ϕ a
formula of ML. We say that ϕ defines C whenever for every F = 〈W,R〉,
F belongs to C iff 〈W,R, V 〉 |=K ϕ, for every valuation V .

Figure 1.5 shows some well-known examples of frame-defining formulas.
The formula known as 5, for example, characterizes the class of frames whose
relation r is euclidean, that is those that satisfy the first-order condition:

∀xyz.((r(x, y) ∧ r(x, z)) → r(y, z)). (1.27)

We met Alt1 already, in Section 1.1; the first-order condition of the class of
frames it defines is:

∀xyz.((r(x, y) ∧ r(x, z)) → y = z). (1.28)

Now, observe the frame condition imposed by Löb’s formula. Using a
routine compactness argument, one can show that the class of frames defined
by this formula is not elementary. The second-order quantification hidden
in Definition 1.17 is responsible for this.

However, despite its second-order expressive power, there are elementary
classes of frames that are not definable using a basic modal formula. Gold-
blatt and Thomason [1975] gave a precise characterization of the elementary
frames that are modally definable.

Theorem 1.4 (Goldblatt-Thomason Theorem). A first-order definable class
of frames is modally definable if and only if it is closed under taking bounded

(T ) [r]p→ p r is reflexive
(4) [r]p→ [r][r]p r is transitive
(5) 〈r〉[r]p→ [r]p r is euclidean

(Alt1 ) 〈r〉p→ [p] r is a partial function
(Löb) [r]([r]p→ p) → [r]p r is transitive and r−1 is well-founded

Figure 1.5: Examples of modal frame definability.
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morphic images, generated subframes, disjoint unions, and reflects ultrafilter
extensions.

Of the conditions mentioned in Theorem 1.4, we have presented so far
only disjoint unions and generated subframes4, the remaining ones can be
found in any textbook on modal logics (e.g., [Blackburn et al., 2002]).

We can get an idea of what kind of elementary classes are not modally
definable by looking for frame classes that are not closed under either disjoint
unions or generated subframes. For the first-case, consider the class of frames
where relation r is the total relation, that is, it satisfies:

∀x∀y.r(x, y) (1.29)

This class is clearly not closed under disjoint unions and therefore is not
modally definable. For the case of generated subframes, consider the class
of frames such that every node is reached via relation r; or, in first-order
terms:

∀x∃y.r(y, x) (1.30)

Now, frame F1 = 〈Z, R1〉 where R1(r) = {(w, v) | w < v} satisfies condi-
tion (1.30) while frame F2 = 〈N, R2〉 where R2(r) = {(w, v) | w < v} is a
generated subframe of F1 but does not satisfy (1.30). Therefore, the class
is not closed under generated subframes and is not definable by a modal
formula.

What about definability using hybrid formulas? Definition 1.17 is triv-
ially extended to the hybrid case: a formula ϕ in H(@, ↓) defines a class
C if a frame F = 〈W,R〉 is in C iff 〈W,R, V, g〉 |= ϕ, for all V and all g.
Interestingly, the frame class given by (1.29) is defined by the hybrid for-
mula 〈r〉i. However, frames that are not closed by generated subframes are
not definable by hybrid formulas either. A precise characterization of frame
definability in the hybrid case is given by ten Cate [2005].

Let C be a fixed class of models; the satisfiability problem with respect
to C consists in determining if there exists a model belonging to C that
satisfies a given formula. In general, satisfiability (that is, with respect to
the class of all models) and satisfiability with respect to an arbitrary class
are independent problems.

It is well-known that H(@, ↓) is a conservative reduction class, that is,
there exists a recursive function τ that maps arbitrary first-order logic for-
mulas to H(@, ↓) such that for all ϕ, τ(ϕ) is satisfiable iff ϕ is, and τ(ϕ)
has a finite model iff ϕ has. ten Cate [2005] provides a proof of this prop-
erty from which it follows that for any elementary class of models C, there
exists a recursive mapping fC such that, for any formula ϕ of H(@, ↓), ϕ is

4They were presented as operations on models, they are turned into operations on
frames by ignoring the valuation.
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satisfiable with respect to C iff fC(ϕ) is satisfiable with respect to the class
of all models.

While this means that, in theory, satisfiability of a formula of any sublog-
ic of H(@, ↓) with respect to a first-order definable class C may be reduced
to general H(@, ↓)-satisfiability, in practice this will be far from optimal.
Observe, for example, that H(↓)-satisfiability with respect to the class of
models where all the relations are transitive is a decidable problem (in fact,
NEXPTIME -complete [Mundhenk et al., 2005]).

In any case, the main concern of this thesis will be satisfiability over the
class of all models. In the following chapter we review the basic resolution-
based techniques we will consider.
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Chapter 2

Resolution

Having introduced hybrid logics, it is time to talk about the second theme
of this thesis: resolution-based automated reasoning techniques. There is
a large diversity of such techniques a detailed survey is out of our scope.
We will only present, to make this thesis self-contained, the methods (some
standard, some non-standard) that we will revisit in the remaining chapters.
For reference on classical automated deduction techniques, the reader is
referred to [Robinson and Voronkov, 2001]. Horrocks et al. [2006] survey
reasoning techniques for modal logics.

2.1 Classical resolution and paramodulation

The resolution method for first-order logic was introduced by Robinson
[1965] as a reasoning principle suitable for mechanic computation. Its main
advantage over other early theorem proving methods is that unification, as a
selection mechanism for inferences, provides an effective way of interleaving
instantiation and refutation. Most modern automatic theorem provers for
first-order logic are saturation-based and implement, at their core, varia-
tions of the original resolution rule. Throughout this section we will present
the calculus of ordered resolution with selection, following the presentation
by Bachmair and Ganzinger [2001].

The resolution method works on quantifier-free first-order formulas in
clausal form. A formula in this form is a conjunction of clauses, where
each clause is a disjunction of first-order literals. Implicitly, variables are
universally quantified. Using some form of skolemization plus structural
transformation rules, it is possible to put any formula in clausal form in a
satisfiability preserving way requiring only polynomial time. For details on
these transformations, refer to [Nonnengart and Weidenbach, 2001].

The inference rules of the ordered resolution calculus, denoted here as
R≻
S , are shown in Figure 2.1. These rules are parameterized by an admissible

ordering ≻ and a selection function S. Essentially, an admissible ordering
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Resolution
C ∨ ¬A1 A2 ∨D

(C ∨D)σ
Positive factoring

C ∨A1 ∨A2

(C ∨A1)σ

Global conditions

i. σ is the most general unifier of atoms A1 and A2.

ii. ¬A1 ∈ S(C) or, else, S(C) = ∅ and ¬A1σ is ≻-maximal wrt Cσ.

iii. S(D) = ∅ and A2σ is strictly ≻-maximal wrt Dσ.

Figure 2.1: Inference rules of R≻
S

(on clauses) is the multiset extension1 of an admissible ordering on liter-
als, that is, a well-founded ordering that is total on the ground level and
such that ¬A ≻ A, for every atom A. Admissible orderings are lifted to
non-ground clauses by stipulating C ≻ D iff Cσ ≻ Dσ for every ground
substitution σ. A selection function S assigns to each clause a possibly
empty set of occurrences of negative literals.

The resolution rule can be seen as a combination of variable instantiation
with modus-ponens. To illustrate this, consider the following instance of the
rule, where we resolve on P1:

¬P1(g(x)) ∨ ¬P2(x) ∨ P3(g(y)) ∨ P4(y) P1(g(g(c))) ∨ ¬P5(z) ∨ P6(g(z))

¬P2(g(c)) ∨ P3(g(y)) ∨ P4(y) ∨ ¬P5(z)) ∨ P6(g(z))

The inference is based on the the mgu σ = {x 7→ g(c)}. Rewriting these
clauses to use →, ∨ and ∧ and applying σ eagerly to the premises we obtain
the equivalent inference:

P1(g(g(c))) ∧ P2(g(c)) → P3(g(y)) ∨ P4(y) P5(z) → P1(g(g(c))) ∨ P6(g(z))

P2(g(c)) ∧ P5(z)) → P3(g(y)) ∨ P4(y) ∨ ∨P6(g(z))

To avoid accidental variable capture, the premises of the resolution rule
are typically assumed to share no variables. Of course, it is safe to rename
variables whenever required.

The calculus R≻
S is refutationally complete: a saturated set of clauses

(i.e., closed by the inference rules of Figure 2.1) is unsatisfiable if and only
if it contains the empty clause. The goal of a resolution based theorem

1 An ordering ≻ on a set X is extended to an ordering ≻mul on finite multisets of X
as follows: Σ1 ≻mul Σ2 if i) Σ1 6= Σ2 and ii) whenever Σ2(x) > Σ1(x) then Σ1(y) > Σ2(y),
for some y such that y ≻ x. Here Σ(x) stands for the number of times x occurs in a
multiset Σ. The multiset extension of an ordering is a standard notion; see, e.g., [Baader
and Nipkow, 1998], for more information.
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Paramodulation
C ∨ s = t D

(C ∨D(t)p)σ
Reflexivity

C ∨ s 6= s

C

i. σ = mgu(s,D|p), where D|p is the subterm of D at position p.

ii. D|p is not a variable ([Brand, 1975]).

iii. D(t)p is the result of replacing in D the subterm at position p by t.

Figure 2.2: The (unordered) paramodulation rules.

prover is to derive a contradiction (in the form of an empty clause) from an
unsatisfiable set of input clauses and the derivation process amounts to a
saturation of the input set. In this respect, resolution is a saturation-based,
refutational method.

The specific ordering and selection function used determine the infer-
ences that can occur. Certain heuristics (e.g., heuristics that ensure ter-
mination on decidable fragments) can be defined by picking an admissible
ordering together with a particular selection function. The completeness
result for R≻

S guarantee the completeness of these heuristics.

One could combine R≻
S with the classical equality axioms of first-order

logic (reflexivity, symmetry, congruence, etc.) to reason in a language that
contains equality. However, this is known to be impractical. Robinson and
Wos [1969] introduced the paramodulation rule and showed that in combi-
nation with R≻

S and some additional reflexivity axioms, it is refutationally
complete for first-order logic with equality. It was later shown by Brand
[1975] that many reflexivity axioms were not required for completeness, as
well as paramodulation into variables (cf. condition ii. in Figure 2.2).

The rules of Figure 2.2 combined with resolution and positive factoring
are enough for completeness. In fact, it is interesting to observe that in this
setting the resolution rule is no longer needed since everything can be done
equationally: take any first-order atom l and use l = true and l 6= true, for
a suitable constant true, instead of l and ¬l.

However, the paramodulation rule is difficult to control unless additional
refinements are considered. An important tool in restricting the number of
inferences is the use of term orderings. For example, superposition is the
restricted version of paramodulation in which inferences only consider the
biggest term (wrt an ordering ≻) of an equation. Bachmair and Ganzinger
[1994] proved the completeness of an inference system for full first-order
clauses with equality, based on strict superposition: paramodulation involv-
ing only maximal terms of maximal equations of clauses.

For further details on paramodulation based reasoning, the reader is
referred to [Nieuwenhuis and Rubio, 2001].
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Deletion
N ∪M

N
† Deduction

N

N ∪M
‡

Side conditions

† M ⊆ R(N).

‡ M ⊆ C(Γ(N)) where C(Γ(N)) are the consequents of Γ(N).

Figure 2.3: Derivations for a calculus Γ with redundancy criterion R.

A straightforward, naive implementation of a saturation-based calculus
in which one exhaustively applies inferences to previously derived clauses
will be hopelessly inefficient in all but the most trivial cases. In a clausal,
saturation-based, refutational theorem-prover, each derived clause is a po-
tential partial derivation of the empty clause and is increasing the search
space. A partial derivation of the empty clause that is subsumed by another
one is redundant and should be deleted to avoid useless computations. In
most refutational provers, the deductive core accounts for a rather small part
of the system, while most of its complexity derives from the implementation
of redundancy elimination and simplification techniques.

Now, while redundancy elimination techniques are crucial from a prac-
tical point of view, it is not a priori clear to what extent they can be
performed without compromising refutational completeness. Bachmair and
Ganzinger [2001] address this issue by introducing a theoretical framework
for saturation-based theorem proving. We give a very short overview of this
framework next.

Theorem proving is presented as a series of derivations that transform
a set of clauses2 by additions and removals. The rules of derivation are
shown in Figure 2.3. Observe that this is a very general (and abstract)
presentation, where the calculus is represented by a map Γ from a set of
clauses to the set of all inferences that may be drawn from those clauses
and R is a redundancy criterion that maps a set of clauses N to a set of
clauses deemed redundant by N . There are certain theoretical properties
that a redundancy criterion must satisfy (e.g., “removing redundant clauses
from an unsatisfiable set preserves unsatisfiability”) that we won’t list here.

A clause set is said to be saturated up to redundancy (with respect to
Γ and R) if all inferences in Γ with non-redundant premises are redundant
in N , i.e., C(Γ(N \ R(N))) ⊆ R(N). It can be shown that saturation up
to redundancy can be achieved by “fair” derivations, that is, intuitively,
derivations where no non-redundant inference is delayed indefinitely.

2We will only consider here the case for ground clauses. For general clauses, an addi-
tional lifting has to be done.
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Bachmair and Ganzinger [2001] also define what they call the standard
redundancy criterion and give very general conditions under which a refu-
tationally complete calculus Γ induces a system that is derivationally com-
plete, i.e., every unsatisfiable set saturated up to redundancy contains the
empty clause. In their words, the standard redundancy criterion “justifies
most, if not all, of the common simplification and deletion techniques used
in refutational theorem provers”.

Standard redundancy applies to ordered calculi like R≻
S . Intuitively, a

clause C is said to be redundant with respect to a set N of clauses if there
exist clauses C1, . . . Ck in N such that C1, . . . , Ck |=FO

C and C ≻ Ci for all
1 ≤ i ≤ k.

As an example, observe that standard redundancy already comprehends
the most classical form of redundancy elimination: the subsumption prin-
ciple [Robinson, 1965]. It is said that a clause C subsumes a clause D
whenever Cσ ⊆ D, for some substitution σ. The subsumption principle
says that if a set N of clauses contains two distinct non-empty clauses C
and D, and C subsumes D, then N is satisfiable iff N \ D is too. For the
ground case, if C subsumes D, then we have C ⊂ D which implies C |=

FO
D

and, because ≻ is a multiset extension, D ≻ C. Therefore, D is redundant
with respect to N . The non-ground case is similar but requires a suitable
lifting.

Now, what are the general conditions that guarantee that the standard
redundancy criterion turns a refutationally complete system into a deriva-
tionally complete one? What Bachmair and Ganzinger [2001] show is that
any calculus that possess what they call the reduction property for coun-
terexamples is refutationally complete and induces a derivationally complete
system in conjunction with the standard redundancy criterion. The upshot
is that given a saturation-based refutational calculus, if one can establish its
completeness by proving the reduction property for counterexamples, one
gets an “adequacy for implementations” result for free. In a way, it can
be regarded as an scheme of completeness proof that comes with an added
value.

In Part III of this thesis we will prove completeness of various calculi
following this scheme. Completeness proofs in general tend to be long and
technical, and the ones we will present are no exception, but being familiar
with the proof-scheme used makes them easier to follow. Therefore, we close
this section with an overview of this method.

We will take a rather abstract view. First, clauses are just sets of ground
formulas (each clause represents the disjunction of the formulas it contains).
Second, a calculus is presented as a collection of inference rules; when a rule
has more than one premise, we assume that one of them is tagged as the
main premise, the others will be called side premises. Finally, we take as
given a satisfaction relation |= defined between models and formulas, clauses,
etc.
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A set of clauses N is called saturated with respect to a set of rules R if
every clause obtained from N by the application of one of the rules in R is
already in N . A set of clauses N is inconsistent with respect to R whenever
the saturation of N with respect to R contains the empty clause, otherwise
it is consistent. A saturation-based calculus R is refutationally complete (or
complete for short) if every unsatisfiable set of clauses is inconsistent with
respect to R.

A completeness proof can be reduced to showing that every saturated
consistent clause set is satisfiable, i.e., has a model. One of the main in-
gredients of this proof-scheme is a procedure that builds a model (termed
candidate model) from any consistent (but not necessarily saturated nor
satisfiable) set of clauses N . Let us call IN the model obtained from a con-
sistent set N using such a procedure. What is ultimately shown is that if
IN 6|= N , then N is not saturated.

To prove this, the proof-scheme relies on a well-founded total ordering
on clauses ≻c (e.g., the admissible ordering mentioned above). These two
conditions guarantee that whenever N is consistent and IN 6|= N , then
there exists a minimum (with respect to ≻c) clause C ∈ N such that IN 6|=
C; we call C the minimum counterexample of IN . The reduction property
for counterexamples (with respect to ≻ and the candidate model building
procedure) holds if for every N and every minimum counterexample C of
IN , there exists an inference from N with main premise C and a conclusion
D such that C ≻ D and D is also a counterexample of IN . Observe that
this trivially implies that N is not saturated and, therefore, this property
implies refutational completeness.

The proof of this property is typically split in two lemmas which trivially
imply it:

Lemma 1 (Main premise reduction lemma). On every inference rule, every
consequent is smaller than its main premise.

Lemma 2 (Counterexample lemma). Let N be consistent, and let C ∈ N
be a clause such that IN 6|= C; then there exists some valid inference with
C as main premise and the side premises, if any, in N , such that for some
consequent D, IN 6|= D.

We haven’t said much about IN yet. In a classical first-order setting,
Herbrand models are used [Herbrand, 1930]. These are models whose do-
main is the set of (ground) syntactic terms of the language and that may
be represented succinctly by a set of positive ground literals. Therefore,
building a model from N in the classical setting amounts to generating a set
of positive ground literals occurring in N .

The model building procedure is relatively simple. Every clause C ∈ N
contributes at most one formula to IN . Let εC be what C contributes to the
model IN , then εC is either a singleton set containing a (positive) literal, or
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the empty set. When εC is not empty, C is said to be a productive clause.
Now, it is important to observe that the content of εC depends on the con-
tributions of the clauses which are ≻c-smaller than C. Its precise definition
has to be carefully tailored in order to prove the Counterexample lemma.
The set of contributions of clauses ≻c-smaller then C we just mentioned
(i.e.

⋃

C≻D εD) plays an important role throughout the proof and is usually
called IC .

The general structure of the completeness proof is essentially simple (and
very elegant), but carrying it out usually relies on the following two rather
technical lemmas:

Lemma 3 (Downwards preservation lemma). If IN 6|= C, then IC 6|= C.

Lemma 4 (Upwards preservation lemma). Let D be the consequent of an
inference whose main premise is C. If IN 6|= C and IC 6|= D, then IN 6|= D.

Let’s see the role these two lemmas usually play. Given a clause C such
that C ∈ N and IN 6|= C, using the Downwards preservation lemma we can
conclude that it is also the case that IC 6|= C. But since IC =

⋃

C≻D εD,
one needs to show that some productive clause D must have contributed a
formula to IC that “made” C not true (of course, the details of this vary
with every proof). This fact should make D a suitable side premise for an
inference from C such that for at least one consequent E, IC 6|= E. Finally,
we need the Upwards preservation lemma to conclude IN 6|= E.

For Part III this is all what we need as we will always be working with
ground clauses. For first-order logic, the result for ground clauses must be
lifted to general clauses (containing variables). This can be done by using
liftable orders, i.e., orders which are invariant under substitution of variables
by terms [Bachmair and Ganzinger, 2001].

2.2 Direct resolution for modal and hybrid logics

In Part II of this thesis we will see that it is possible to translate modal and
hybrid formulas to first-order logic and apply resolution theorem proving
techniques like the ones sketched in the previous section. But one can con-
sider instead resolution based calculi that work directly on the source logic.
This has been studied in the modal case by various authors, e.g., [Fariñas
del Cerro, 1982, Mints, 1990, Enjalbert and Fariñas del Cerro, 1989, Auffray
et al., 1990, Fitting, 1990].

For the hybrid case, Areces et al. [2001b] present the direct resolution
calculus DR, which is refutationally complete for H(@, ↓). Part III of this
thesis will be devoted to study some refinements of DR. In particular, we will
be able to show that it remains complete if one restricts to ordered inferences.
In fact, we will see it possesses the reduction property for counterexamples
and therefore is amenable to efficient implementations.
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RES
C ∨ @i¬p D ∨ @ip

C ∨D
REF

C ∨ @i¬i

C

SYM
C ∨ @ji

C ∨ @ij
PAR

C ∨ ϕ(i) D ∨ @ij

C ∨D ∨ ϕ(i/j)

∧
C ∨ @i(ϕ1 ∧ ϕ2)

C ∨ @iϕ1 C ∨ @iϕ2
∨

C ∨ @i(ϕ1 ∨ ϕ2)

C ∨ @iϕ1 ∨ @iϕ2

[r]
C ∨ @i[r]ϕ D ∨ @i〈r〉j

C ∨D ∨ @jϕ
〈r〉

C ∨ @i〈r〉ϕ

C ∨ @i〈r〉j C ∨ @jϕ
†

@
C ∨ @i@jϕ

C ∨ @jϕ
↓

C ∨ @i↓j.ϕ

C ∨ @iϕ(j/i)

Side conditions

† j ∈ Nom is fresh.

Figure 2.4: The direct resolution calculus DR.

Like in the resolution calculus for first-order logic, the DR calculus works
on sets of clauses. A clause, in this context, is a (finite) disjunction of arbi-
trary H(@, ↓) @-formulas. That is, unlike the first-order case, formulas in a
clause need not be literals. For simplicity, we will assume clauses contain no
repeated disjuncts and will identify every formula @iϕ with the (singleton)
clause @iϕ ∨ ⊥ and ⊥ with the empty clause.

Of course, restricting to @-formulas is not an expressivity limitation in
terms of satisfiability: a formula ϕ is satisfiable iff for some arbitrary nominal
i not occurring in ϕ, @iϕ is satisfiable.

The rules of DR are shown in Figure 2.4. Here, i and j are arbitrary
nominals, p stands for a proposition symbol, ϕ,ϕ1, ϕ2 are arbitrary H(@, ↓)-
formulas and C and D are arbitrary clauses. In the antecedent of the PAR

rule, ϕ(i) indicates that the nominal i appears in ϕ. Observe that this
presentation assumes formulas are in negation normal form.

We can group the rules in Figure 2.4 according to their role. Rules ∧, ∨,
@ and ↓ handle formula decomposition. Rule 〈r〉 is a form of skolemization,
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assigning a new name (through a new nominal) to an element of the model
which was existentially quantified. Rule RES is a ground version of the
resolution rule for first-order logic, while rule [r] encodes a non-trivial uni-
fication plus a resolution step. Finally, rules SYM, REF and PAR handle
equalities; observe that the latter is essentially the paramodulation rule of
first-order logic.

Rule 〈r〉 is clearly satisfaction-preserving (i.e., if a model satisfies the
antecedent, then there is a model that satisfies the consequent); the rest
of the rules preserve satisfaction even in the same model (i.e., if a model
satisfies the antecedent, then the same model satisfies the consequent), in
the case of rule ↓ under the assumption that i does not occur bound in ϕ.

Given an H(@, ↓)-formula ϕ, we define ClSet(ϕ) = {@iϕ}, for i an arbi-
trary nominal not occurring in ϕ. ClSet∗(ϕ), the saturated set of clauses for
ϕ, is then defined as the smallest set that includes ClSet(ϕ) and is closed
under the rules of DR. Areces et al. [2001b] show that the construction of
ClSet∗(ϕ) is a correct and complete (alas, hopelessly inefficient) algorithm
for the satisfiability problem of H(@, ↓): ϕ is unsatisfiable if and only if the
empty clause ⊥ is an element of ClSet∗(ϕ).

The size of ClSet∗(ϕ) cannot be bounded in terms of the subformulas
of ϕ because each application of rule 〈r〉 introduces a new nominal. Thus,
the construction of ClSet∗(ϕ) is not necessarily a decision procedure for the
decidable logic H(@). In Part III we will see that, in fact, it is possible to
obtain infinite derivations (even on a restricted version of the calculus).

We haven’t said much, so far, on how we will use all these techniques in
the context of this thesis. That will be the subject of the following chapter.
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Chapter 3

What this thesis is about

One of the unifying themes of this thesis is the satisfiability problem for
the hybrid logic H(@, ↓) and some of its sublogics, most notably, H(@). It
seems therefore appropriate to discuss now some of the previous work on
satisfiability (or validity) for hybrid logics.

Seligman [2001] developed a sound, complete and cut-free sequent cal-
culus for H(@, ↓) by a series of transformations from a sequent calculus for
first-order logic. This technique is quite general and can be applied to de-
rive sequent calculi for a wide range of modal and hybrid logics. Although
the resulting calculus does not posses the Subformula Property (a proof
may contain formulas not occurring as subformulas in the end sequent), a
weaker form of this property can be exploited in automating proof-searches.
Earlier proof-theoretical results for what we would now recognize as hybrid
languages, also based on sequent calculi, can be found in [Seligman, 1991,
1997]

Natural deduction systems for hybrid logics were investigated by Braüner
[2004a,b]. In the first paper, he introduces a sound, complete and normaliz-
ing calculus for the very expressive hybrid logic H(@, ↓,∀) (i.e., the extension
of H(@, ↓) with the classical ∀ binder of first-order logic). In the second one,
this system is compared to one due to Seligman [1997]. Although several
results could be transferred from one system to the other, normalization of
the latter remains an open problem.

Tableaux calculi pervade in modal logics so it is not surprising to find sev-
eral tableaux systems that have been developed for hybrid logics. Tzakova
[1999] presented Fitting-style prefix tableaux, for the expressive H(@, ↓,∀).
The paper also discusses a tableaux-based decision procedure for H(@).
Blackburn [2000] exploits nominals and the satisfaction operator @ to de-
velop labeled tableaux that require no additional meta-logical support (in
the form of labels, prefixes, etc). These kind of tableaux are now known as
internalized tableaux. This form of tableaux were extended to other systems
(including the hybrid equivalents of quantified modal logics) by Blackburn

33
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and Marx [2002]. Bolander and Brauner [2006] presented terminating search
strategies for some of the prefixed and internalized tableaux systems we just
mentioned. These strategies are based on, so-called, loop-checks –a well-
known technique from the description logics community– and apply to the
logic H(@,A) (i.e., the logic that contains nominals, @ and the universal
modality A that satisfies M, w |= Aϕ iff M, v |= ϕ for all v ∈ |M|; we
will revisit this operator in Part IV). Later, Bolander and Blackburn [2007,
2009] extended these results by developing terminating tableaux strategies
for more expressive hybrid logics (e.g., converse modalities, transitive frames,
etc.).

Kaminski and Smolka [2009] show that loop-checking can be replaced
in, many cases, by a saturation condition that is local (i.e., involves only
information about one node of the tableaux). They refer to this approach
as pattern-based blocking. It is shown that even the hybrid logic with the
difference modality (which subsumes the universal modality) can be decided
using pattern-based blocking, although for the converse modality, a form of
loop-checking is needed.

It is well-known that there exists a close link between hybrid logics and
description logics that include the “one-of” concept constructor, which can
be seen, from a modal viewpoint, as a disjunction of nominals. Although
nominals were known to fill an important expressivity gap in description
logics, it was not clear how to incorporate them to the mix in an effective
way. Nominals interact “badly” with inverse roles and number restrictions,
leading to the loss of the finite model property and even very weak forms of
the tree model property. Only recently Horrocks and Sattler [2007] proposed
a tableaux-based, goal directed, decision procedure for the very expressive
description logic SHOIQ. Kazakov and Motik [2008], on the other hand,
exhibit a decision procedure for SHOIQ using a translation to first-order
logic and basic superposition extended with some non-standard simplifica-
tion rules.

In this thesis, we will approach the satisfiability problem for H(@, ↓)
using first-order resolution and variations of the direct resolution calculus
described in Chapter 2. In a way, we can say that resolution is the sec-
ond unifying theme of this thesis. It must be observed, though, that both
techniques (i.e., first-order resolution via formula translations vs. direct res-
olution) are quite different in nature and differ in their motivations. In the
following sections we describe in more detail our motivations and outline
our results.

3.1 Translation-based methods

An efficient automated theorem prover for an expressive logic is a complex
piece of software. Its performance crucially depends on the choice of datas-
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tructures and the nature and quality of the implemented heuristics and
optimizations. In order to spot such opportunities for optimizations, one
needs a profound knowledge of the underlying logic.

And efficiency is only half of the story. Innocent looking heuristics and
optimizations may interact badly with each other, compromising the overall
correctness. A combination of theoretical analysis with thorough, continuous
testing is needed to avoid these pitfalls.

Before embarking in the adventurous task of writing an automated the-
orem prover of his own, a logic engineer might want to consider potentially
more cost-effective alternatives, and this is the motivation for the first part
of this thesis.

Propositional modal logics are usually less expressive than first-order
logic. This means that we can find a (computable) translation of modal
formulas to first-order formulas such that ϕ is satisfiable if and only if its
translation ϕ∗ is first-order satisfiable. Such translation is called satisfiability
preserving.

On the other hand, state-of-the-art resolution-based theorem provers for
first-order logic are –together with SAT solvers for propositional logic– the
most advanced automated reasoners available today.

By composing a computable satisfiability preserving translation with a
first-order logic prover, we get a sound and complete theorem prover for our
logic for free. From a practical point of view, we shall only be interested in
polynomial (preferably linear) time translations1.

Now, since many modal logics are decidable and first-order logic is un-
decidable (in general), we are, a priori, reducing a decidable problem to an
undecidable one. Theoretically, this is not necessarily the case; for example,
the basic modal logic can be embedded in the two-variable fragment of first-
order logic, which is known to be decidable [Mortimer, 1975]. However, the
decidability of the fragment does not imply that every complete theorem
prover for first-order logic will be able to decide it. In practice, we may end
up obtaining a semi-decision procedure instead of a decision procedure.

Part II of this thesis will review several known families of translations of
modal logics to first-order logic and try to adapt each to the hybrid setting.

We begin in Chapter 4 visiting translations based on the idea of encoding,
as first-order logic formulas, the conditions that make a formula a theorem
in a Hilbert-style system for modal logics. Because of strong completeness
of these systems, this kind of encodings can be used to decide, using a
first-order prover, if a modal formula is valid with respect to any class of
frames that is modally definable; and this includes non-elementary classes
of frames. Regrettably, it is known that in practice this technique gives very

1Interestingly, Sebastiani and Vescovi [2009] report on some experiments using state-
of-the-art propositional SAT solvers in combination with a translation of ML-formulas to
propositional ones which can be exponentially larger and conclude that this can also be a
feasible approach.
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poor results already at the propositional level [McCune and Wos, 1992].
We will only briefly develop the hybrid case, but will pay attention to one
point: the first-order encoding of hybrid theoremhood requires us to use
the equality symbol. In a way, this is not surprising since it was claimed
in Chapter 1 that hybrid logics add identity (and, therefore, notions of
equality) to classical modal logics. However, while equality is easily seen
in the semantics, it was not that evident, we believe, where it lied when
looked from a Hilbert-style proof-theoretic point of view. The translation
developed in this chapter makes clear this fact.

Chapter 5 is devoted to first-order encoding of modal and hybrid seman-
tics. This is usually known as the standard translation of modal logics to
first-order logic. It is known that even for the basic modal case, the standard
translation behaves rather poorly in combination with a resolution-based
theorem prover. The layered translation proposed by Areces et al. [2000]
overcomes some of these limitations by exploiting the tree-model property
to obtain a translation that “helps” a resolution-based prover to avoid many
unnecessary inferences. This is achieved by introducing additional relation
symbols that block unification of certain clauses. Hybrid logics don’t posses
the tree-model property; we will nonetheless develop a layered translation
for H(@, ↓) that follows the spirit of the one for the basic modal logic.

Finally, in Chapter 6 we turn to the so-called functional translations.
These can be seen as the first-order encoding of an alternative semantics
for modal logics based on functional models, that is, models where sets
of functions are used instead of relations. These translations are known
to behave well in combination with resolution-based theorem provers, in
particular the optimized functional translation which requires the use of
skolem constants only. We will see in this chapter that hybrid logics fit in
quite naturally in this framework.

The functional translations are typically presented using a sorted logic.
Arguably, they simplify their presentation but they may also introduce a
slight increase in complexity. We finish Chapter 6 by discussing the need for
sorts when using the (optimized) functional translation. We will see that
for reasoning with respect to any class of models that is modally definable,
sorts are not required (i.e., they can be simply removed from translated
formulas). However, we will show that this is not the case in general and, in
particular, we will exhibit a class of models that is definable with a hybrid
formula where removing sorts in this way is unsound.

3.2 Direct resolution

In Part III of this thesis we turn to the direct resolution calculus DR of Are-
ces et al. [2001b] that we already introduced in Chapter 2. This calculus is
described by its authors as a blend of the labeling method used in tableaux
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with resolution and paramodulation, that is, a combination of two tech-
niques, tableaux and resolution, that proved to be efficient in dealing with
modal logics and first-order logic with equality, respectively. Since hybrid
logics can be described as “modal logics with equality”, DR seems like an
interesting basis for automated reasoning in this context. However, since
DR incorporates no mechanism to regulate the generation of clauses it is, in
this form, of little practical interest.

In first-order logic, this regulation is achieved by relying on orderings on
formulas, as is illustrated by the ordered resolution calculus R≻

S described
in Chapter 2. Intuitively, the general idea is to show that one can choose
a literal from each ground clause such that rules are to be applied to a
clause only to eliminate its chosen literal. In R≻

S , the chosen ground literal
is the maximum one according to ≻ unless it is overriden by the selection
function S. As long as ≻ satisfies certain “admissibility” conditions, R≻

S is
refutationally complete.

Inspired by the first-order case, our contribution in Chapter 7 is to turn
DR into a calculus of ordered resolution with selection functions. The re-
sulting calculus, DR≻

S , will be parameterized by an ordering on formulas ≻
and a suitable selection function S and we will give sufficient admissibil-
ity conditions on ≻ to guarantee its refutational completeness. We will, in
fact, prove the stronger result that DR≻

S possesses the reduction property for
counterexamples and is therefore compatible with the standard redundancy
criterion (cf. Chapter 2). We will be, therefore, establishing the theoretical
basis for the development of realistic provers for hybrid logics with direct
resolution as deductive core.

The proof of the reduction property for counterexamples we give follows
the scheme outlined in Chapter 2. Observe that in order to pursue it, we
have to provide an adequate notion of Herbrand model for hybrid logics,
which is also done in Chapter 7.

In Chapter 8 we will introduce two successive refinements of DR≻
S . First,

we obtain DRL≻
S which, conceptually, differs from DR≻

S in that the paramod-
ulation rule only needs to replace the nominal occurring in the label of a
formula. Given that paramodulation is a computationally expensive rule,
restricting its application to only labels in formulas in the clause set should
result in improved performance.

Establishing the refutational completeness of DRL≻
S proved to be a chal-

lenging task. As will be discussed in Chapter 8, in this case it is simply
not possible to follow the proof scheme outlined in Chapter 2, unless one
replaces the usage of the satisfiability relation |= during the proof in favor
of a stronger relation we termed |≈.

The second calculus introduced in Chapter 8 is called DRLǫ≻S and it is
shown to be complete for H(@, ↓) and terminating for H(@) (that is, the
smallest set that contains an H(@)-formula and is saturated by the rules
of DRLǫ≻S is always finite). This means that any implementation of DRLǫ≻S
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(even one without any redundancy elimination techniques) will constitute a
decision procedure for the satisfiability problem of H(@).

The main difference between DRLǫ≻S and DRL≻
S lies in the way on-the-

fly skolemization is performed. While the latter simply introduces a fresh
nominal every time (similar to what is done in DR), the former relies on an
additional sort of atomic symbols, called ǫ-terms. From a first-order logic
point of view, these are an alternative to skolem functions, that can be used
in tableaux systems [Giese and Ahrendt, 1999]. We will see that, in our case,
they provide us with a natural notion of derivation history that we can use
to avoid the generation of an unbounded number of clauses.

Finally, in Chapter 9 we will discuss some lessons learnt from the imple-
mentation of a prototypic automated theorem prover based on DRLǫ≻S .

3.3 Coinduction, extractability, normal forms

The results in the last part of this thesis were motivated by the search for
normal forms that simplify the task of automated reasoners for hybrid logics.
Be that as it may, it must be said that this quest took us in some unexpected
directions.

In automated deduction, transformations to normal form often serve to
simplify the formulation of inference calculi. Throughout Parts II and III,
for example, we will often assume formulas to be in negation normal form
to simplify definitions and proofs. Another example is the clause normal
form which is used in classical resolution (cf. Chapter 2) but also in the
Davis-Putnam algorithm, clausal first-order tableaux, etc.

Clausal normal forms are ubiquitous in automated reasoning, and this
means formulas often have to be transformed into this form beforehand.
There are many ways in which this transformation may be performed; in
practice, it makes a lot of difference the transformation used. For starters,
if we are willing to obtain a formula equivalent to the initial one, then
the clause normal form transformation may result in a transformed formula
that is exponentially larger. Typically one only needs an equisatisfiable
formula in clausal form, and there are many such transformations with only
a linear overhead. Nonnengart and Weidenbach [2001] review clause normal
form transformations for first-order logic that aim to: i) reduce the final
size, and ii) simplify the resulting formula by removing trivial tautologies,
redundancies, etc.

Our investigations began when considering formulas like this one:

ϕ ∧ [r]@iψ (3.1)

We observed that, because of the way labeled calculi work, the subformula
@iψ is in certain way “trapped” inside the box [r] and this may lead to its
repeated processing. To help clarify this idea, consider Figure 3.1, where
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C1: @j ((p1 ∨ 〈r〉k1) ∧ (p2 ∨ 〈r〉k2) ∧ [r]@iψ)
C2: @j(p1 ∨ 〈r〉k1) (by ∧ on C1)
C3: @j(p2 ∨ 〈r〉k2) (ditto)
C4: @j [r]@iψ (ditto)
C5: @jp1 ∨ @j〈r〉k1 (by ∨ on C2)
C6: @jp2 ∨ @j〈r〉k2 (by ∨ on C3)
C7: @jp1 ∨ @k1@iψ (by [r] on C4 and C5)
C8: @jp1 ∨ @iψ (by 〈r〉 on C7)
C9: @jp2 ∨ @k2@iψ (by [r] on C4 and C6)
C10: @jp2 ∨ @iψ (by 〈r〉 on C8)

Figure 3.1: From [r]@iψ (C1) to two copies of @iψ (C8 and C10).

a (partial) derivation using the rules of the calculus DR (cf. Chapter 2) is
shown. Every time rule [r] is applied, a new “copy” of @iψ is obtained. The
end result, in this example, is that clauses C8 and C10 both contain @iψ;
hence, the rules of the calculus needed to, say, reduce @iψ will have to be
applied twice. Clearly, we can modify this example to obtain as many copies
of @iψ as we wish. A similar example that illustrates this problem but in a
tableau calculus would be:

@j((〈r〉k1 ∨ 〈r〉k2 ∨ · · · ∨ 〈r〉kn) ∧ [r]@iψ) (3.2)

In this case, we will be forced to explore at least n branches, and on each
branch @iψ will have to be processed from scratch.

But @iψ is a global formula, in the sense that its truth value does not
depend on where in the model it is evaluated. If we apply whatever rules
are needed on @iψ more than once we are, in a way, wasting effort.

Now, observe that “globality” also means that (3.1) is logically equivalent
to the following:

ϕ ∧ ([r]⊥ ∨ @iψ) (3.3)

Since in (3.3) @iψ does not appear in the scope of [r], it is easy to ensure
that @iψ is effectively processed only once2. We will typically say that @iψ
was extracted from within the scope of [r] and, therefore, call a formula in
“extracted form” whenever no @-subformula is extractable.

We will define in Chapter 11 transformations to extracted form, both
into equivalent and equisatisfiable formulas (one can assure there is no ex-
ponential blow-up only for the equisatisfiable transformation). But we will
go beyond H(@, ↓). In a way, one question we will try to answer throughout

2In the case of direct resolution, we need to use selection functions (introduced in
Part III) or a similar technique.
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Chapter 11 is “what is so special about @i that allows us to extract it from
other modalities?”

It turns out that even properly characterizing the concept of “extractabil-
ity” is far from trivial. As we will see, one rather needs to consider “ex-
tractability” as a directed relation among the set of modalities in the lan-
guage. We end Chapter 11 discussing complexity issues related to extracted
forms.

A hybrid logic such as H(@, ↓) is usually called an extension of the basic
modal logic ML. We say it is an “extension” because additional semantic
clauses are needed to give meaning to the additional modal operators @i

and ↓i (cf. Definition 1.7). We were interested in transferring our results to
other extensions of the basic modal logic (e.g., memory logics, which can be
seen as weaker forms of hybrid logics [Areces et al., 2008]), but since different
extensions have different semantics (i.e., different semantic clauses), this was
not possible without redoing the proofs in each case.

We found we can overcome this apparent limitation by expressing modal
semantics in terms of a novel type of models that are coinductively de-
fined. Intuitively, these models can be seen as a form of coalgebraic abstract
datatype whose observable behaviour determines the semantics of the modal
operators of the logic (Jacobs and Rutten [1997] wrote a nice introduction
to coinduction and its links to coalgebras).

The basic modal logic is complete with respect to the class of all the
coinductive models; moreover we can define many extended modal logics
such as hybrid logics and memory logics by restricting our attention to
particular classes of coinductive models. This way, results that had to be
proved separately for each different language (but whose proofs were known
to be mere routine) now can be proved in a general way. We will see, for
example, that we can have a unique definition of bisimulation for all these
languages, and prove a single invariance-under-bisimulation theorem.

This setting is presented in Chapter 10. Being outside of the scope of this
thesis, we will just scratch its surface and develop only those basic notions
required in Chapter 11. A more systematic study is left as future work.
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Translation-based methods
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Chapter 4

Theoremhood encodings

There is a long standing tradition of defining Hilbert-style systems for modal
logics. A theorem in this kind of systems is either one of the formulas in a
recursive set of axioms or is derived from them by finitely applying certain
inference rules. It is known that in the modal case one can encode these
derivability conditions using first-order logic without equality. This means
that given a modal formula ϕ one can recursively obtain a first-order formula
ϕ⋆ such that ϕ⋆ is satisfiable if and only if there exists a proof for ϕ.

Since there exist Hilbert-style modal systems that are sound and com-
plete with respect to classes of models that are not first-order definable,
these kind of translations enable the use of first-order provers in cases where
translations based in modal semantics (like the ones we are going to present
in Chapter 5) are of no use.

In this chapter we will begin by briefly reviewing this type of encoding
and we will then discuss how it can be extended to the hybrid case. We
will observe that the latter requires that we move to first-order logic with
equality. This in a sense is not unexpected, after all, hybrid logics are
sometimes referred to as “modal logics with equality”. However, while,
semantically, it is clear where equality comes from, it will be interesting to
pinpoint, of all the axioms and inference rules added in a hybrid system,
which are responsible for incorporating equality to the mix.

4.1 The case of classical modal systems

Let us start by considering a Hilbert-style system for propositional logic.
Figure 4.1 shows such a system, which shall be referred to as P . It consists
of three axioms (KN1-KN3) and two inference rules: modus ponens (MP)
and universal substitution (Subst). One can find similar systems in the
literature; they usually differ only in the choice of axioms. This one is due
to Rosser [1953]; we have picked it because it has few and quite simple
axioms.

43
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Axioms

(KN1) ⊢P p→ (p ∧ p)
(KN2) ⊢P (p ∧ q) → p
(KN3) ⊢P (p→ q) → ¬(q ∧ r) → ¬(p ∧ r)

Inference rules

(MP) If ⊢P ϕ→ ψ and ⊢P ϕ then ⊢P ψ
(Subst) If ⊢P ϕ then ⊢P ϕσ (σ substitutes propositions by formulas)

Figure 4.1: System P for the propositional calculus.

The set of theorems of P is the smallest set of propositional formulas
that contains axioms KN1-KN3 and is closed by the rules MP and Subst.
We write ⊢P ϕ whenever ϕ is a theorem of P .

Consider now the set of ground first-order terms built using constants
cp, cq, cr, . . . (that is, one constant per propositional variable) and function
symbols f¬, f∧ and f→, where the first one is unary and the rest are binary.
There is a trivial bijection between first-order terms in this vocabulary and
propositional formulas:

p∗ = cp

(¬ϕ)∗ = f¬(ϕ∗)

(ϕ ∧ ψ)∗ = f∧(ϕ∗, ψ∗)

(ϕ→ ψ)∗ = f→(ϕ∗, ψ∗)

One can easily show that the set of theorems of P , codified in this lan-
guage, is first-order definable. That is, one can give a first-order theory ΓP
for a one-place relation symbol Thm such that, the following holds, for all
propositional formula ϕ:

⊢P ϕ iff ΓP |=
FO

Thm(ϕ∗) (4.1)

For example, it is simple to encode (MP) adding this formula to ΓP :

∀x∀y.((Thm(f→(x, y)) ∧ Thm(x)) → Thm(y)) (4.2)

Observe that when interpreted over any Herbrand model (that is, one whose
domain of interpretation is the set of all ground terms), the universally
quantified variables x and y in (4.2) range over all possible propositional
formulas. This gives the intuitive justification for the encoding of (MP).
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Similarly, the axioms of P could, in principle, be accounted for in a
naive, straightforward manner; e.g., for (KN1) one could simply add to ΓP
this formula:

Thm((p→ (p ∧ p))∗) (4.3)

This naive approach would complicate matters when trying to encode rule
(Subst), that requires us to substitute occurrences of propositional symbols
by formulas. If we were to pursue this encoding of axioms, we would be
forced to define a first-order theory of substitution. But since we are coding
propositional formulas as first-order terms, we can exploit first-order logic’s
proof-theoretical instantiation mechanism, instead. The idea is simply to
codify the three axioms of P using first-order variables instead of a constants
cp, cq, and cr.

Definition 4.1 (ΓP ). We define, ΓP , the first-order theory of P -derivability
as the set containing the following formulas:

∀x.Thm(f→(x, f∧(x, x))) (4.4)

∀x.Thm(f→(f∧(x, x), x)) (4.5)

∀xyz.Thm(f→(f→(x, y), f→(f¬(f∧(y, z)), f¬(f∧(x, z))))) (4.6)

∀xy.((Thm(f→(x, y)) ∧ Thm(x)) → Thm(y)) (4.7)

Observe that, for example, (4.4) is simply the universal closure of the
formula obtained by replacing every occurrence of constant cp in (4.3) by
variable x.

Theorem 4.1. For all propositional formula ϕ, ⊢P ϕ iff ΓP |=
FO
ϕ∗.

Time to move to the basic modal case. Figure 4.2 presents system Kr,
which characterizes the set of valid formulas of the basic multimodal logic. A
quick inspection shows that it differs from system P (Figure 4.1) only in the
addition of one axiom and one inference rule: (Kr) and (Necr), respectively.

It is fairly straightforward to extend the encoding for system P to the
case of Kr. First, we need to add a new unary function symbol f[r] to the
language and make (·)∗ a bijection with modal formulas adding the following
clause:

([r]ϕ)∗ = f[r](ϕ
∗) (4.8)

Finally, we need a first-order theory ΓKr
for Kr-derivability, which we obtain

quite simply from ΓP by adding suitable formulas to account for (Kr) and
(Necr).

Definition 4.2 (ΓKr
). We define, ΓKr

, the first-order theory of derivability
in Kr as the set that extends ΓP with the following formulas:

∀xy.Thm(f→(f[r](f→(x, y)), f→(f[r](x), f[r](y)))) (4.9)

∀x.(Thm(x) → Thm(f[r](x))) (4.10)
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Axioms

(KN1) ⊢Kr
p→ (p ∧ p)

(KN2) ⊢Kr
(p ∧ q) → p

(KN3) ⊢Kr
(p→ q) → ¬(q ∧ r) → ¬(p ∧ r)

(Kr) ⊢Kr
[r](p→ q) → [r]p→ [r]q

Inference rules

(Necr) If ⊢Kr
ϕ then ⊢Kr

[r]ϕ

(MP) If ⊢ ϕKr
→ ψ and ⊢Kr

ϕ then ⊢Kr
ψ

(Subst) If ⊢Kr
ϕ then ⊢Kr

ϕσ (σ substitutes propositions by formulas)

Figure 4.2: System Kr for the basic multimodal logic.

Theorem 4.2. For every formula ϕ of the basic modal logic, it follows that
⊢Kr

ϕ iff ΓKr
|=

FO
ϕ∗.

We have already sketched the idea of the proof of this theorem; more
details can be found, for example, in [Rabe et al., 2009].

Many classical modal logics can be obtained by adding new axioms to this
system. For example, if we add formula [r]p→ [r][r]p to Kr as a new axiom,
we obtain a system that is sound and complete with respect to the class of
models where r is a transitive relation; while adding [r]([r]p → p) → [r]p
instead leads to a system sound and complete with respect to the class
of those models where r is a finite trasitive tree. Notice that these are,
respectively, formulas 4 and Löb from Figure 1.5. Clearly, we can extend
ΓKr

accounting for these new axioms by adding, respectively, the following
formulas, which encode 4 and Löb, respectively, in the expected way:

∀x.Thm(f→(f[r](x), f[r](f[r](x)))) (4.11)

∀x.Thm(f→(f[r](f→(f[r](x), x)), f[r](x))) (4.12)

Observe that in the case of the Löb formula, this means we can prove in
first-order logic modal validity with respect to a non-elementary class.

The main advantage of this translation is that it is simple to extend in
order to handle additional modal axioms. However, experiments have shown
that already for the propositional fragment the search space for this kind of
encoding is very large [McCune and Wos, 1992]. In a way, finding a model
for a first-order formula obtained by encoding derivability in a Hilbert-style
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system amounts to finding a proof in such a system, which is (because these
systems are not goal-oriented) inherently inefficient.

Nevertheless, Rabe et al. [2009] recently report on successful results using
automated theorems provers to establish the subset relationship between
hundreds of modal axiomatizations using this encoding. This suggests that
there may be some place for applications based on this approach.

4.2 Hybrid systems

Several Hilbert-style axiomatizations for H(@) and H(@, ↓) are known. We
will use the ones due to Blackburn and ten Cate [2006]. We begin by con-
sidering the one for H(@), displayed in Figure 4.3. How does this system
compare with system Kr in Figure 4.2? It is clearly an extension of it, that
adds six new axioms and four new inference rules.

Observe first that one of the additional inference rules is also a sub-
stitution rule, (Substij). Unlike (Subst), which replaces propositions by
formulas, this one uniformly replaces nominals by nominals. The transla-
tions we reviewed in the previous section avoid explicitly having to encode
the substitution rule and, of course, we would like to achieve the same with
(Substij). However, in order to enforce that nominals are not replaced by
arbitrary formulas, we will need to take some additional provisions.

Of the other three inference rules, only (Name) and (BG) are worth men-
tioning. Because of their side-conditions, they are considered non-othodox
rules1. Blackburn and ten Cate [2006] observe that this kind of rules are
somewhat displeasing from an algebraic point of view but they show that,
in the case of H(@) they cannot be replaced by a finite number of orthodox
rules without losing completeness for all pure extensions.

In the side-conditions of both rules we can find an expression of the form
i 6∈ Free(ϕ), which is just a formal way of expressing that “i does not occur
in ϕ”. As we will later see, these conditions are the reason why we will
have to introduce equality to the language when developing the first-order
encoding.

Our main plan is to follow the same type of encoding used for Kr in
the previous section. One of the problems we have to face now, is that of
rule (Substij). That is, we want to rely on first-order logic’s instantiation
mechanism, as we did with (Subst), but instantiation in this case must be
of a different kind. We will see this is easy to achieve once we move to a

1Following Blackburn and ten Cate [2006], we consider a modal rule to be orthodox
(in the presence of the modus-ponens rule) when it is of the form

⊢ ψ(α1, . . . , αn)

⊢ ϕ(α1, . . . , αn)

where α1, . . . , αn range over arbitrary formulas and are implicitly universally quantified.
Of course, uniform substitution rules are excluded from this definition.
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Axioms

(KN1) ⊢ p→ (p ∧ p)
(KN2) ⊢ (p ∧ q) → p
(KN3) ⊢ (p→ q) → ¬(q ∧ r) → ¬(p ∧ r)

(Kr) ⊢ [r](p→ q) → [r]p→ [r]q
(K@) ⊢ @a(p→ q) → @ap→ @aq

(SD@) ⊢ @ap↔ ¬@a¬p
(Ref@) ⊢ @aa
(Agree) ⊢ @a@bp↔ @bp
(Intro) ⊢ a→ (p↔ @ap)
(Backr) ⊢ 〈r〉@ap→ @ap

Inference rules

(MP) If ⊢ ϕ→ ψ and ⊢ ϕ then ⊢ ψ

(Necr) If ⊢ ϕ then ⊢ [r]ϕ
(Nec@) If ⊢ ϕ then ⊢ @aϕ

(Subst) If ⊢ ϕ then ⊢ ϕσ
(Substij) If ⊢ ϕ then ⊢ ϕ(i/j)

(Name) If ⊢ @iϕ then ⊢ ϕ (i 6∈ Free(ϕ))
(BGr) If ⊢ @i〈r〉j then ⊢ @j [r]ϕ (j 6= i and j 6∈ Free(ϕ))

Notes:

• 〈r〉ϕ is short for ¬[r]¬ϕ.
• ϕ↔ ψ is short for (ϕ→ ψ) ∧ (ψ → ϕ).
• a and b are fixed nominals.

Figure 4.3: Hilbert-style system for the hybrid logic H(@).
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many-sorted logic. Since it is simple to embed a sorted logic in classical
(unsorted) logic, we won’t lose generality.

In many-sorted logic, a sort symbol can be viewed as a unary predicate
and denotes a subset of the domain of interpretation. Quantification can
restrict variables to a sort; for example ∀x:α.ϕ and ∃x:α.ϕ, with α a sort
symbol, are interpreted as ∀x.(α(x) → ϕ) and ∃x.(α(x) ∧ ϕ) respectively.
Similarly, a function sort declaration like, f : α1 ×α2 → α3 is interpreted as
∀xy.(α1(x)∧α2(y) → α3(f(x, y))) while a predicate declaration P : α1 ×α2

is interpreted as ∀xy.(P (x, y) → (α1(x) ∧ α2(y))). Finally, we allow for
subsort declarations of the form α1 ⊑ α2, which corresponds to the axiom
∀x.(α1(x) → α2(x)). Refer to [Walther, 1987] for a thorough presentation
of many-sorted logic.

Our approach will be clear once we define the sorted language we will
work with.

Definition 4.3. We will work in a language with two sorts η and ρ, that
satisfy η ⊑ ρ. Terms will be formed with constants cp, cq, . . . of sort ρ; and
ci, cj , . . . of sort η; together with the following function symbols:

f¬ : ρ→ ρ f[r] : ρ→ ρ

f∧ : ρ× ρ→ ρ f@ : η × ρ→ ρ

f→ : ρ× ρ→ ρ

Intuitively, ρ is the sort of (arbitrary) formulas while η is the sort of
nominals. Nominals are formulas as expressed by the constraint η ⊑ ρ.

Function symbols f¬, f∧, f→ and f[r] are simply those of the previous
section adapted to this many-sorted setting. Observe that they combine
arbitrary formulas into new formulas. The axioms and inference rules of
Kr can be encoded almost exactly like was done before. For example, the
inference rule (Necr) would be now encoded as:

∀x:ρ.(Thm(x) → Thm(f[r](x))) (4.13)

Notice this formula differs from (4.10) only in the sort declaration for x.
Observe also that because of the subsort declaration η ⊑ ρ, the formula
Thm(ci) → Thm(f[r](ci)) for constant ci of sort η is also a valid instance
of (4.13).

Function symbol f@ is new. It takes a nominal (sort η) and a formula
(sort ρ). Intuitively, f@ will be used to encode hybrid formulas of the form
@iϕ.

Let us present a couple of examples in order to get a clearer picture
of what we plan to do. Consider, for instance axiom (Ref@). Since a is
a nominal, inference rule (Substij) may be applied and, therefore, we have
that ⊢ @ii holds for any i. We will encode this axiom as follows:

∀x:η.Thm(f@(x, x)) (4.14)
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p∗
def
= cp p⋆

def
= xp

i∗
def
= ci i⋆

def
= xi

(¬ϕ)∗
def
= f¬(ϕ∗) (¬ϕ)⋆

def
= f¬(ϕ⋆)

(ϕ ∧ ψ)∗
def
= f∧(ϕ∗, ψ∗) (ϕ ∧ ψ)⋆

def
= f∧(ϕ⋆, ψ⋆)

(ϕ→ ψ)∗
def
= f→(ϕ∗, ψ∗) (ϕ→ ψ)⋆

def
= f→(ϕ⋆, ψ⋆)

([r]ϕ)∗
def
= f[r](ϕ

∗) ([r]ϕ)⋆
def
= f[r](ϕ

⋆)

(@iϕ)∗
def
= f@(i∗, ϕ∗) (@iϕ)⋆

def
= f@(i⋆, ϕ⋆)

Figure 4.4: Translations (·)∗ and (·)⋆ take H(@)-formulas to ground and
non-ground first-order terms in the language of Definition 4.3.

Notice that x stands for things of sort η (nominals) and, therefore, cannot
be instanced in an arbitrary formula (sort ρ). That is, while Thm(f@(ci, ci))
is a valid instance of (4.14) for ci of sort η, Thm(f@(cp, cp)), for cp of sort ρ,
is not (in fact, it is not even a well-formed formula).

Before moving to the encoding of rules (Name) and (BGr), it is worth
formalizing what we discussed so far. Figure 4.4 shows two encodings of
formulas of H(@) as ground and non-ground first-order terms, respectively.
One of them corresponds to bijection (·)∗ of the previous section, while the
other one will be used to mechanically encode axioms, instead of doing it by
hand, as until now. Notice that they only differ in the way atoms are han-
dled: while (·)∗ encodes them as constants, (·)⋆ employs variables, instead.
Now, let ϕ be any axiom of the system of Figure 4.3; then ϕ is encoded
by taking the well-sorted universal closure of Thm(ϕ⋆). Observe that, for
example, (4.14) is the (well-sorted) universal closure of Thm((@aa)

⋆).
Let us now take a look at the inference rule (Name). This rule looks sim-

ilar to the converse of (Nec@), except for its side-condition. This condition,
i 6∈ Free(ϕ), is not easy to enforce. We will have to introduce an additional
predicate symbol Occursη : η×ρ and we will interpret Occursη(y, x) as “the
nominal y occurs free in formula x”. Using this predicate, we can encode
(Name) as follows:

∀x:ρ∀y:η.((¬Occursη(y, x) ∧ Thm(f@(y, x))) → Thm(x)) (4.15)

Using equality, it is possible to define a first-order theory that gives the
desired meaning to Occursη. Figure 4.5 shows such a theory, which we call
ΣOccursη . Although ΣOccursη requires an infinite number of axioms (for there
is a formula that must be instantiated for every constant cp of sort ρ) this
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∀x:η∀y:η.(Occursη(y, x) ↔ y = x)

∀y:η.(¬Occursη(y, cp)), for every constant cp of sort ρ

∀x:ρ∀y:η.(Occursη(y, f¬(x)) ↔ Occursη(y, x))

∀u:ρ∀vρ∀y:η.(Occursη(y, f∧(u, v)) ↔ (Occursη(y, u) ∨ Occursη(y, v)))

∀u:ρ∀vρ∀y:η.(Occursη(y, f→(u, v)) ↔ (Occursη(y, u) ∨ Occursη(y, v)))

∀x:ρ∀y:η.(Occursη(y, f[r](x)) ↔ Occursη(y, x))

∀u:ρ∀v:η∀y:η.(Occursη(y, f@(v, u)) ↔ (y = v ∨ Occursη(y, u)))

Figure 4.5: ΣOccursη , many-sorted theory of nominal occurrence in a formula.

is easy to overcome (e.g., using a Peano-like finite encoding of the infinite
constants cp, cq, . . . or introducing a new subsort of ρ for propositions) so
we will not worry about this.

Finally, one can encode rule (BGr) in a similar way:

∀x:ρ∀yz:η.((y 6= z ∧ ¬Occursη(z, x) ∧ Thm(f@(y, f〈r〉(z)))) →

Thm(f@(z, f[r](x))))
(4.16)

where f〈r〉(t) is a shortcut for f¬(f[r](f¬(t))). We can now put all the pieces
together.

Definition 4.4 (ΓH(@)). We define, ΓH(@), the first-order theory of deriv-
ability in the system of Figure 4.3 as the minimum set such that:

1. it contains all the formulas of ΣOccursη ,

2. if ϕ is an axiom of the system of Figure 4.3, then it contains the
well-sorted universal closure of Thm(ϕ⋆),

3. it contains the encoding of the inference rules (Name) and (BGr),
namely, formulas (4.15) and (4.16),

4. it contains the following formulas (encoding the axiom schemes (MP),
(Necr) and (Nec@)):

∀x:ρ∀y:ρ.((Thm(f→(x, y)) ∧ Thm(x)) → Thm(y))

∀x:ρ.(Thm(x) → Thm(f[r](x)))

∀x:ρ∀y:η.(Thm(x) → Thm(f@(y, x)))

It is not hard to see that this encoding indeed works as expected.
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Theorem 4.3. For every formula ϕ of H(@), we have ⊢ ϕ iff ΓH(@) |=FO
ϕ∗.

We close this chapter discussing the modifications that need to be done
to handle an axiomatization for H(@, ↓).

It is customary to present hybrid logics containing the ↓ operator making
a syntactical distinction between bindable and non-bindable nominals. The
former are usually called world variables or state variables and the latter
simply nominals. For simplicity, we have preferred to avoid such distinction,
so far. The systems of Blackburn and ten Cate [2006] assume there is indeed
such distinction; so we need a way to overcome this slight asymmetry. We
will achieve this by assuming defined a countable infinite set Var ⊆ Nom such
that Nom \Var is countably infinite. Observe this assumption is compatible
with Convention 1 so there is no generality lost.

Blackburn and ten Cate [2006] show that one can obtain a complete
axiomatization for H(@, ↓) by taking the one for H(@) we have considered
so far and “just” adding an axiom scheme (i.e., an infinite, recursive, set of
new axioms). Actually, the notion of substitution has to be modified as well
to account for safe substitution of nominals by variables and of variables
by variables. Here, by “safe” we mean that accidental captures of variables
must be avoided. While this is mentioned only casually in that paper, it
has some impact from the point of view of encoding theoremhood: we need
to add inference rules to handle various forms of non-uniform substitution
and, unlike uniform substitution, these rules require a non-trivial encoding.

Figure 4.6 displays the rules of this system. It introduces the axiom
scheme (DA) and two new (non-uniform) substitution rules, (Substit) and
(Substst). We have introduced some slight modifications (in the form of side
conditions) with respect to the system of Blackburn and ten Cate [2006]
in order to avoid the derivation of theorems that do not conform to Con-
vention 1; incidentally, this allows us to formulate (safe) instantiations of
variables by nominals in terms of direct substitutions of nominals.

Let us pay some attention to the axiom scheme (DA). It introduces an
instance of formula @a(↓s.ϕ↔ ϕ(s/a)) for each bindable nominal s and each
formula ϕ, as long as s does not occur bound in ϕ. Here a is a fixed nominal
the belongs to Nom \ Var. Notice that the side-condition, guarantees that
↓s.ϕ conforms to Convention 1 and also that in the substitution ϕ(s/a), a
cannot be accidentally captured.

The additional substitution rules are similar to (Substij); they differ in
the side-conditions and in whether they involve nominals in Var or Nom\Var.
Rule (Substst), for example, replaces an arbitrary variable s by an arbitrary
variable t in a theorem ϕ, as long as t does not occur at all in ϕ. This side-
condition guarantees that Convention 1 is preserved which, in turn, prevents
accidental captures. This rule allows both for the substitution of both free
and bound variables in ϕ. Rule (Substit), on the other hand, substitutes a
nominal i by a free variable t in a theorem ϕ; t must not occur bound in ϕ
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Axioms

(KN1) ⊢ p→ (p ∧ p)
(KN2) ⊢ (p ∧ q) → p
(KN3) ⊢ (p→ q) → ¬(q ∧ r) → ¬(p ∧ r)

(Kr) ⊢ [r](p→ q) → [r]p→ [r]q
(K@) ⊢ @a(p→ q) → @ap→ @aq

(SD@) ⊢ @ap↔ ¬@a¬p
(Ref@) ⊢ @aa
(Agree) ⊢ @a@bp↔ @bp
(Intro) ⊢ a→ (p↔ @ap)
(Backr) ⊢ 〈r〉@ap→ @ap

Axiom schemes

(DA) ⊢ @a(↓s.ϕ↔ ϕ(s/a)) (s 6∈ Bnd(ϕ))

Inference rules

(MP) If ⊢ ϕ→ ψ and ⊢ ϕ then ⊢ ψ

(Necr) If ⊢ ϕ then ⊢ [r]ϕ
(Nec@) If ⊢ ϕ then ⊢ @aϕ

(Subst) If ⊢ ϕ then ⊢ ϕσ
(Substij) If ⊢ ϕ then ⊢ ϕ(i/j)
(Substit) If ⊢ ϕ then ⊢ ϕ(i/t) (t 6∈ Bnd(ϕ))
(Substst) If ⊢ ϕ then ⊢ ϕ(s/t) (t 6∈ Bnd(ϕ) ∪ Free(ϕ))

(Name) If ⊢ @iϕ then ⊢ ϕ (i 6∈ Free(ϕ))
(BGr) If ⊢ @i〈r〉j then ⊢ @j [r]ϕ (j 6= i and j 6∈ Free(ϕ))

Notes:

• 〈r〉ϕ is short for ¬[r]¬ϕ.
•ϕ↔ ψ is short for (ϕ→ ψ) ∧ (ψ → ϕ).
• a and b are fixed nominals such that a 6∈ Var and b 6∈ Var.
• i and j are arbitrary nominals such that i 6∈ Var and j 6∈ Var.
• s and t are arbitrary nominals such that s ∈ Var and t ∈ Var.

Figure 4.6: Hilbert-style system for the hybrid logic H(@, ↓).
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in order to conform to Convention 1.
In order to encode this system, we first need to accommodate the ad-

ditional constructs in the hybrid language by expanding the first-order vo-
cabulary with a new sort declaration ν ⊑ ρ, constants cs, ct, . . . of sort ν,
and function symbols f ′@ : ν × ρ → ρ and f↓ : ν × ρ → ρ. Bijection (·)∗ of
Definition 4.4 must be extended with these additional clauses, for s ∈ Var2:

(s)∗
def
= cs

(@sϕ)∗
def
= f ′@(cs, ϕ

∗)

(↓s.ϕ)∗
def
= f↓(cs, ϕ

∗)

In a similar way, we must extend theory ΓOccursη of Figure 4.5 to account
for the new terms by adding these formulas:

∀x:ν∀y:η.(¬Occursη(y, x)) (4.17)

∀u:ρ∀v:ν∀y:η.(Occursη(y, f
′
@(v, u)) ↔ Occursη(y, u)) (4.18)

∀u:ρ∀v:ν∀y:η.(Occursη(y, f↓(v, u)) ↔ Occursη(y, u)) (4.19)

Let us now consider the encoding of axiom scheme (DA). The first thing
to observe is that, just like (Subst) and (Substij), it involves a substitution.
However, we can’t just use the same technique in this case: not only we
have a side-condition to check, but we now need to build a new formula with
occurrences of both the subformula ϕ before and after the replacement. The
way to deal with this scheme is with the following formula:

∀x:ρ∀y:η∀z:ν.(¬IsBnd(z,x) →

Thm(f@(y, f↔(f↓(z, x), rpl
ν
η(x, z, y)))))

(4.20)

where f↔(x, y) is a shorthand for f∧(f→(x, y), f→(y, x)) and where we would
like to interpret function symbol rplνη : ρ× ν× η → ρ as “replacement inside
an arbitrary formula (sort ρ) of the free occurrences of a variable (sort ν)
by a non-bindable nominal (sort η)” and predicate IsBnd : ν × ρ as “the
variable (sort ν) occurs bound in a formula”.

Using equality, it is possible to define first-order theories that gives the
desired meaning to rplνη and IsBnd . Figure 4.7, for example, shows a theory
for rplνη , which we call Σrplνη

. A theory ΣIsBnd for IsBnd is analogous to
ΣOccursη so we will skip its details.

We finally turn to the new substitution rules. Rule (Substit) resembles
axiom scheme (DA) in many ways, so it is not surprising we can encode it in a
similar way. We need an additional function symbol rplην : ρ×η×ν → ρ that,
intuitively, represents the uniform replacement of a non-bindable nominal
(sort η) by a variable (sort ν) in an arbitrary formula.

∀x:ρ∀y:η∀z:ν.((¬IsBnd(z, x) ∧ Thm(x)) → Thm(rplην(x, y, z))))) (4.21)

2There is no need to extend also (·)∗ since no axiom contains variables.
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∀y:ν∀z:η∀x:η.(rplνη(x, y, z) = x)

∀y:ν∀z:η∀x:ν.(x = y → rplνη(x, y, z) = z)

∀y:ν∀z:η∀x:ν.(x 6= y → rplνη(x, y, z) = x)

∀y:ν∀z:η.(rplνη(cp, y, z) = cp), for every constant cp of sort ρ

∀y:ν∀z:η∀x:ρ.(rplνη(f¬(x), y, z) = f¬(rplνη(x, y, z)))

∀y:ν∀z:η∀x:ρ.(rplνη(f[r](x), y, z) = f[r](rpl
ν
η(x, y, z)))

∀y:ν∀z:η∀u:ρ∀v:ρ.(rplνη(f∧(u, v), y, z) = f∧(rplνη(u, y, z), rpl
ν
η(v, y, z)))

∀y:ν∀z:η∀u:ρ∀v:ρ.(rplνη(f→(u, v), y, z) = f→(rplνη(u, y, z), rpl
ν
η(v, y, z)))

∀y:ν∀z:η∀x:ρ∀u:η.(rplνη(f@(u, x), y, z) = f@(u, rplνη(x, y, z)))

∀y:ν∀z:η∀u:ν∀x:ρ.(u = y → rplνη(f
′
@(u, x), y, z) = f@(z, rplνη(x, y, z)))

∀y:ν∀z:η∀u:ν∀x:ρ.(u 6= y → rplνη(f
′
@(u, x), y, z) = f ′@(u, rplνη(x, y, z)))

∀y:ν∀z:η∀u:ν∀x:ρ.(u = y → rplνη(f↓(u, x), y, z) = f↓(u, x))

∀y:ν∀z:η∀u:ν∀x:ρ.(u 6= y → rplνη(f↓(u, x), y, z) = f↓(u, rpl
ν
η(x, y, z)))

Figure 4.7: Σrplνη
, a many-sorted, first-order theory of instantiation.

Similarly, in order to encode rule (Substst) we will rely on a function
symbol rplνν : ρ×ν×ν → ρ that represents uniform substitution of bindable
nominals and on a predicate symbol Occursν : ν × ρ that expresses the
concept “a bindable nominal occurs in a formula”. The idea is analogous to
that of (4.21):

∀x:ρ∀y:ν∀z:ν.((¬Occursν(z, x) ∧ Thm(x)) → Thm(rplνν(x, y, z))))) (4.22)

We leave to the reader the details of defining the theories Σrpl
η
ν
, Σrplνν

and ΣOccursν that give the desired meaning to rplην , rplνν and Occursν , re-
spectively. The first two are analogous to Σrplνη

while the last one is similar
to ΣOccursη . We can now put all the pieces together.

Definition 4.5 (ΓH(@,↓)). We define, ΓH(@,↓), the first-order theory of deriv-
ability in the system of Figure 4.6 as the extension of ΓH(@) with:

1. formulas (4.17), (4.18) and (4.19), to extend ΣOccursη ,

2. all the formulas in Σrplνη
, Σrpl

η
ν
, Σrplνν

, ΣIsBnd and ΣOccursν ,

3. the encoding of axiom scheme (DA), and inference rules (Substit)
and (Substst), namely, formulas (4.20), (4.21), and (4.22).

Theorem 4.4. For ϕ of H(@, ↓), we have ⊢ ϕ iff ΓH(@,↓) |=FO
ϕ∗.
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Blackburn and ten Cate [2006] observe that in the case of H(@, ↓) the
non-orthodox inference rules (Name) and (BGr) may be replaced by:

Axioms

(BGr↓) ⊢ @a[r]↓x.@a〈r〉x (x ∈ Var is fixed)

Axiom schemes

(Name↓) ⊢ ↓s.(s→ ϕ) → ϕ (s 6∈ Bnd(ϕ) ∪ Free(ϕ))

Inference rules

(Nec↓) If ⊢ ϕ then ⊢ ↓s.ϕ

One can easily adapt the encoding we developed so far in order to handle
these rules instead.

The authors also observe that, even though in this case all the inference
rules are orthodox, axiom schemes (Name↓) and (DA) are still somewhat
displeasing from an algebraic point of view. We may add that the non-
uniform substitution rules (Substit) and (Substst), not explicitly mentioned
in their presentation, seem rather unorthodox too.

Notice that in the encodings we developed in this chapter, the need
for equality came always from rules of this kind. Blackburn and ten Cate
[2006] conjecture that H(@, ↓) cannot be axiomatized using a finite number
of orthodox axiom schemes and inference rules. If this wouldn’t be the case,
then we would be able to encode them in first-order logic without equality;
which seems to be strong evidence of the correctness of the conjecture.

In this chapter, we have seen how to adapt the well-known first-order
encoding of modal Hilbert-style systems to the hybrid case. In the process,
we identified to unorthodox rules and axiom schemes as responsibles for the
introduction of equality in the first-order language. This kind of encodings
are known to have poor computational behaviour, but if reasoning over some
non-elementary classes of models is required, they might constitute the only
choice. In the next two chapters, we will investigate translations based on
semantic intuitions which, in general, are better behaved and appropriate
for applications.



Chapter 5

Relational translations

One can usually see a logic from either a semantic or syntactical point of
view. In the former, one uses rules that determine what it means for a
formula to be true under a suitable interpretation, for the latter one char-
acterizes what constitutes a formally valid chain of deductions. We have
already seen modal and hybrid logics from both points of view: in Chap-
ter 1 we defined the semantics of both ML and H(@, ↓) while in Chapter 4
we considered Hilbert-style axiomatic systems that describe valid reasonings
for both logics. Moreover, we saw in the latter that the valid proofs charac-
terized by these systems can also be described in first-order logic. Similarly,
it is possible to encode in first-order logic the semantics of modal and hybrid
logics we saw in Chapter 1; this will be the subject of this chapter.

We will see that the encoding of modal and hybrid semantics (customar-
ily know as the standard translations) is quite simple and straightforward.
This is related to the fact that modal and hybrid models are no more than
first-order models in disguise.

Simple as the standard translations may be, when employed as a tool
in translation-based automated reasoning, they tend to give poor results.
This is a well-known fact. The so-called layered translation is a variation
of the standard translation for the basic modal logic that was proposed to
help a resolution-based first-order theorem prover avoid some of the pitfalls
it usually run into when processing formulas generated by the standard
translation. We will review this translation as well as its motivations, and
we will finish this chapter developing a layered translation for H(@, ↓).

5.1 The standard translation

A Kripke model can be alternatively seen as a standard first-order model over
an appropriate first-order language: every p ∈ Prop is seen as a one-place
predicate symbol while every r ∈ Rel is considered a two-place predicate
symbol. We shall call this the correspondence language of ML. Thus, we can
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identify a Kripke model M = 〈W,R, V 〉 with the first-order interpretation

IM = 〈W, ·I
M

〉 such that:

rI
M

= R(r)

pI
M

= V (p).

In practice, we won’t normally make the distinction between M and IM

and simply use M also as a first-order interpretation.
Using this correspondence language, it is straightforward to encode in

first-order logic the semantic clauses of Definition 1.10. This leads to the
so-called standard translation of modal formulas.

Definition 5.1 (ST x). The standard translation to first-order logic ST x

maps basic modal formulas into first-order logic formulas in the correspon-
dence language with a free variable x as follows:

ST x(p)
def
= p(x)

ST x(¬ϕ)
def
= ¬ST x(ϕ)

ST x(ϕ ∧ ψ)
def
= ST x(ϕ) ∧ ST x(ψ)

ST x([r]ϕ)
def
= ∀y.r(x, y) → ST y(ϕ), y is fresh

Theorem 5.1. Let ϕ be a modal formula. Then the following hold:

1. For every M and w ∈ |M|, we have M, w |=K ϕ iff M|=
FO

ST x(ϕ)[w].

2. |=K ϕ iff |=
FO

∀x.ST x(ϕ).

3. ϕ is satisfiable iff ∃x.ST x(ϕ) is satisfiable.

Gabbay [1981] observed that we actually only need two variables to carry
out the standard translation:

ST x([r]ϕ)
def
= ∀y.r(x, y) → ST y(ϕ)

ST y([r]ϕ)
def
= ∀x.r(y, x) → ST x(ϕ)

Since the fragment of first-order logic with two variables is known to be
decidable [Scott, 1962, Mortimer, 1975] using this version of the standard
translation one can have (at least theoretically) a decision method for ML,
unlike the encoding of Chapter 4. It was later observed that even with-
out restricting the number of variables used, the standard translation also
falls into a decidable fragment: the so called guarded fragment of first-order
logic [Andréka et al., 1998].

The decidability of these fragments by itself, of course, does not guar-
antee that a complete, off-the-shelf theorem prover will include strategies to
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decide them. In fact, as of today most don’t. But even if we can’t expect
to simply compose a translation to first-order logic with an automated the-
orem prover and obtain a decision procedure, it does make sense (and may
be even more important from a practical point of view) to try to obtain
good “average” performance out of this lightweight approach. As it will be
discussed next, it is known that this is actually not the case with the plain
standard translation, and smarter translations are required.

But before moving on, it should be mentioned that there are indeed
some known procedures based on first-order logic resolution for deciding the
aforementioned fragments. For example, de Nivelle and Pratt-Hartmann
[2001], show how to decide the function-free1 two-variable fragment con-
taining equality using a resolution-based procedure. Their technique is not
trivial to implement, though: an initial set of clauses has to be saturated,
then a renaming phase takes place, and finally the resulting clause set has
to be saturated again. Ganzinger and de Nivelle [1999], on the other hand,
prove that the function-free guarded fragment with equality can be decided
using superposition and standard term-orderings provided a special clausi-
fication method is employed. A similar method was later employed by de
Nivelle and de Rijke [2003] to show that the function-free guarded fragment
without equality is decidable using plain resolution. However, we are not
aware of any published performance evaluation of any of these methods.
Moreover, the lack of support for constants and/or equality would make
them unsuitable for handling the first-order translation of hybrid logics.

Simple experiments have shown that even for unsatisfiable formulas
(where because of refutational completeness the prover shall, in theory,
terminate), the performance of the standard translation may seriously lag
behind procedures that have been purpose-built for modal reasoning (see,
e.g., [Ohlbach et al., 2001]). Two proposals have been put forward to over-
come this; one exploits the so-called tree-model property of many modal
logics while the other takes advantage of an alternative to relational seman-
tics based on the use of functions instead of relations. We devote the rest
of this chapter to introduce the first approach and discuss its extension to
hybrid logics; the same will be done for the second method in the following
chapter.

5.2 The layered translation

Areces et al. [2000] identified one aspect of the relatively poor performance
of modern first-order theorem provers on the standard translation of modal
formulas and proposed a way to improve it. In order to understand both
their analysis and solution, we first need to introduce some classical concepts.

1“Function-free” in this thesis will always imply “constant-free”.
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A binary relation T ⊆ A× A is called a tree if its transitive closure T+

is total and irreflexive, and its converse T−1 is a partial function defined for
all but one r ∈ A; such r is called the root of T . We say that a Kripke model
M = 〈W,R, V 〉 is a tree-model with root w if

⋃

r∈RelR(r) is a tree with root
w. Finally, we say that a logic possesses the tree-model property whenever
every satisfiable formula is satisfiable in a tree-model.

Proposition 5.1. The basic modal logic has the tree-model property.

The tree-model property is a classical tool used, for example, in many
decidability results (see, e.g., [Blackburn et al., 2002], which also includes a
proof of Proposition 5.1). In fact, it has been identified by some authors as
a key property in explaining the robust decidability2 of modal logics [Vardi,
1996, Grädel, 2001].

Areces et al. [2000] used the tree-model property to identify one of the
reasons why resolution-based automated theorem provers perform badly on
the standard translation of modal formulas, at least when compared to
modal theorem provers. The following is an illustrative example.

Example 5.1 (Areces et al. [2000]). Consider the following formula:

[r](p→ 〈r〉p) (5.1)

Needless to say, it is trivially satisfiable. But let’s take our modal logician’s
hat off for a moment, and put us in the place of a “mechanical”, first-order
theorem prover, instead.

By Theorem 5.1, formula (5.1) is satisfiable if and only if the following
formula is satisfiable:

∃x∀y.
(

r(x, y) →
(

p(y) → ∃z.(r(y, z) ∧ p(z))
))

(5.2)

And this formula is equivalent, in terms of satisfiability, to:

∀y.
((

r(c, y) → (p(y) → r(y, f(y)))
)

∧
(

r(c, y) → (p(y) → p(f(y)))
))

(5.3)

where f and c are introduced by skolemization. Notice that (5.3) is in
clause normal form and, therefore, processable by a resolution-based first-
order theorem prover. The aim of such a prover would be to show that the
following clauses are simultaneously satisfiable:

¬p(u) ∨ ¬r(c, u) ∨ p(f(u)) (5.4)

¬p(v) ∨ ¬r(c, v) ∨ r(y, f(v)) (5.5)

Here we are following the standard convention in which variables in different
clauses must be disjoint (in this case, u and v). Since we have put ourselves
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1:¬p(u) ∨¬r(c, f0(u)) ∨p(f1(u))
2:¬p(v) ∨¬r(c, f0(v)) ∨r(f0(v), f1(v))
3:¬p(w)∨¬r(c, f1(w))∨r(f1(w),f2(w))∨¬r(c, f0(w))
4:¬p(x) ∨¬r(c, f2(x)) ∨r(f2(x), f3(x)) ∨¬r(c, f1(x)) ∨¬r(c, f0(x))
5:¬p(y) ∨¬r(c, f3(y)) ∨r(f3(y), f4(y)) ∨¬r(c, f2(y)) ∨¬r(c, f1(y))∨¬r(c, f0(y))

...

where f0(t)
def
= t and fn+1(t)

def
= fn(t)

Figure 5.1: For n > 0, clause n + 2 is obtained by resolving on p between
clauses n+ 1 and 1 using {zn+1 7→ f(zn+2), z1 7→ zn+2} as unifier, where zi
is the unique free variable in clause i.

in the place of a resolution-based prover, we have to mechanically saturate
this set, which quickly leads us into trouble, as shown in Figure 5.1.

In order to highlight the pattern in the infinite derivation, we have opted
to use the fn(t) notation, even preferring f0(t) over t in some cases. With
this in mind, it is easy to recognize in clauses 1 and 2 formulas (5.4) and (5.5)
respectively. Also for the sake of symmetry, Figure 5.1 omits the following
ground clause, that results from resolving 1 and 2 on r using as unifier
{u 7→ f(c), v 7→ c}:

3′ : ¬p(c) ∨ ¬p(f1(c)) ∨ ¬p(f2(c)) ∨ ¬r(c, f0(c))

The reader may verify that no other inference is possible. Moreover, none
of these infinitely many clauses is redundant (in the technical sense of the
word, cf. Chapter 2) and can be deleted.

Time to put our modal logician’s hat on again. The first thing to observe
is that for a formula as trivially satisfiable as (5.1) it is far from appropri-
ate to require a large number of inferences to determine it, not to say an
infinite number of them. In order to better understand what went wrong in
Example 5.1, let us take a finer look at the inference that lead to clause 3
in Figure 5.1.

The unifier used in this inference was {v 7→ f(w), u 7→ w}, which means
we are considering the case v ≈ f(w) and u ≈ w, which implies, v ≈ f(u).
Now, recall that in (5.4) and (5.5), variables u and v where introduced only
to fulfill the requirement of variables in different clauses to be disjoint; but
they both stand for the universally quantified variable y in (5.3). Therefore,
the case considered in this inference is, in essence, that y ≈ f(y) in (5.3).

2By “robust” it is meant that it remains decidable even under very expressive exten-
sions, such as transitive closure and fixed-point operators.
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So far, so good. What does it mean in a model for (5.3) the require-
ment that every y and f(y) denote the same element? The term f(y) was
introduced as the skolemization of the existentially quantified variable z oc-
curring in (5.2) and z was introduced to witness an r-successor of x during
translation of (5.1).

Summing up, this inference is considering the case where the successor
of universally quantified variable y is y itself. But such a model, even if it
satisfies (5.2), would not be a tree-model and, because of Proposition 5.1,
may be left “unexplored” without compromising completeness. In other
words, because of the tree-model property, it is safe to block the generation
of clause 3 (and, therefore, all the infinitely many clauses derived after it)
altogether.

The layered translation achieves this by generating the following initial
clauses instead of (5.4) and (5.5):

¬p1(u) ∨ ¬r0(c, u) ∨ p2(f(u)) (5.6)

¬p1(v) ∨ ¬r0(c, v) ∨ r1(y, f(v)) (5.7)

where r0, r1, p1 and p2 are distinct predicate symbols. There are clearly no
resolvents for this set of clauses. But where do these subindices come from?
Observe that these clauses correspond to the standard translation of:

[r0](p1 → 〈r1〉p2) (5.8)

which is simply (5.1) with every relation and proposition symbol annotated
with its modal depth. The intuition is that any tree-model for (5.1), e.g.
the one in Figure 5.2a, can be turned into a model for (5.8) by simply
replacing every proposition symbol in a node with a version annotated with
the distance from the node to the root and partitioning the interpretation
of relation r into interpretations for r0, r1 . . . depending on the distance to
the root of the source node in the relation. This is shown in Figure 5.2b.

In short, tree-models naturally induce a notion of layers while the syntax
and semantics of modal logic allows us to reify this layering in the formula
in a satisfiability-preserving way. This explicit layering, in turn, constraints
the search space of a resolution-based first-order theorem prover.

Time to formalize this translation. We assume a fixed modal signature
S = 〈Prop,Rel〉 and define S×ω = 〈Prop × ω,Rel × ω〉. For every p ∈ Prop,
r ∈ Rel and i ∈ ω we will typically write pi and ri for p × i and r × i
respectively.

Definition 5.2 (LT x). The layered translation to first-order logic, LT x,
that maps basic modal formulas of signature S into first-order logic formulas
with a free variable x in the correspondence language for S×ω is defined as
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Figure 5.2: Tree-model (b) is obtained from (a) by “annotating” proposition
and relation symbols with the distance to the root of the node where they
occur.

LT x(ϕ) = LT 0
x(ϕ) where:

LTn
x(p)

def
= pn(x)

LTn
x(¬ϕ)

def
= ¬LTn

x(ϕ)

LTn
x(ϕ ∧ ψ)

def
= LTn

x(ϕ) ∧ LTn
x(ψ)

LTn
x([r]ϕ)

def
= ∀y.rn(x, y) → LTn+1

y (ϕ), y is fresh

Theorem 5.2. Let ϕ be a modal formula. Then the following hold:

1. |=K ϕ iff |=
FO

∀x.LT x(ϕ).

2. ϕ is satisfiable iff ∃x.LT x(ϕ) is satisfiable.

Of course, the layered translation only preserves satisfiability, but this
is enough for translation-based automated reasoning. Areces et al. [2000]
report on experiments comparing the standard and layered translations,
where the latter consistently outperforms the former for up to four orders
of magnitude.

In the case of multi-modal logics (i.e., those where |Rel| > 1) we can still
make a further optimization to the translation. Figure 5.3a is a tree-model
for a modal logic with at least two relations r and s. Now, observe the
two leaves labeled with p: one is a node reachable from the root by first
taking an r-relation and then an s-relation, while the second one requires
first taking an s-relation followed by an r-relation. Let us refer to them
as the rs-successor and sr-successor of the root, respectively. Just like in
the analysis of Example 5.1, if we would like the first-order prover to avoid
considering the case where a node is both an rs-successor and a sr-successor.
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Figure 5.3: Tree-model (b) is obtained from (a) by annotating all symbols
with distances to the root (cf. Fig. 5.3b), while (c) is annotated with “paths”
instead of distances.

Unfortunately, we cannot rely on layering as per Definition 5.2 to do this:
as Figure 5.3b illustrates, modal depth as the only form of annotation is not
enough to syntactically distinguish an sr-successor from an rs-successor.

The solution is to use paths expressions instead of distances as anno-
tations. Figure 5.3c illustrates the idea. “Path expressions” are simply
sequences of symbols in Rel (plus a new symbol ∗ reserved for the root)
and represent a path from the node back to the root. For example, the
path expression ∗ means we are already at the root, r∗ means taking an r-
relation (backwards) takes you to the root and sr∗ mean “to reach the root
first go through an s-relation and then through an r-relation”. Adapting
Definition 5.2 to use path expressions instead of distances is trivial.

5.3 A layered translations for hybrid logics

We now turn to hybrid logics. Here too, hybrid models can be seen as
first-order models over a correspondence language that extends the one for
the basic modal logic with the equality relation and a constant i for every
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i ∈ Nom. Although we will make a distinction between first-order constants
and variables (e.g., we will distinguish ground and non-ground terms), we
will sometimes find convenient to treat constants as variables; most typically
we will use constants as argument of ∀ and ∃. In this particular case, we
will simply assume ∀c.ϕ(c) (with c a constant) to be equivalent to ∀xc.ϕ(xc)
for some fresh variable xc.

Definition 5.3 (STH
x ). The standard hybrid translation STH

x maps hybrid
formulas into first-order logic formulas in the correspondence language with
(at most) a free variable x by extending ST x with the following clauses:

STH
x (i)

def
= (x = i)

STH
x (@iϕ)

def
= STH

i (ϕ)

STH
x (↓i.ϕ)

def
= ∃i.(i = x ∧ STH

x (ϕ))

Observe that for every nominal i, STH
i (ϕ) is a ground formula. Similarly,

even for a variable x, STH
x (@iϕ) is ground.

Theorem 5.3. Let ϕ be a hybrid formula. Then the following hold:

1. For every M and w ∈ |M|, we have M, w |= ϕ iff M|=
FO

STH
x (ϕ)[w].

2. |= ϕ iff |=
FO

∀x.STH
x (ϕ).

3. ϕ is satisfiable iff ∃x.STH
x (ϕ) is satisfiable.

For every basic modal formula ϕ, STH
x (ϕ) = ST x(ϕ) holds. In partic-

ular, we have STH
x

(

[r](p → 〈r〉p)
)

= ST x

(

[r](p → 〈r〉p)
)

which shows that

for translation-based reasoning, STH
x must suffer of the same performance

problems ST x does. Unfortunately, as soon as we have nominals in the
language we lose the tree-model property. For example, observe that no
tree-model can satisfy i ∧ 〈r〉i since the node that satisfies i would have to
be an r-successor of itself. But the tree-model property played a key role in
the correctness of the layered translation LT x.

In the rest of this section we will exploit weaker forms of the tree-model
property in order to have a layered translation for the hybrid setting. But
before proceeding, we should verify that there are indeed (proper) hybrid
formulas that exhibit a behavior similar to that of Example 5.1.

Example 5.2. Consider the following trivially satisfiable formula:

@i[r]¬p ∧ @j [r](p→ 〈r〉p) (5.9)

By applying STH
x and then transforming to clausal form we obtain the

following formula:

∀y.
(

r(i, y) → ¬p(y)
)

∧ ∀y.
(

r(j, y) ∧ p(y) → ∃z.(r(y, z) ∧ p(z))
)

(5.10)
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1 :¬p(u) ∨¬r(j, f0(u))∨p(f1(u))
2 :¬p(v) ∨¬r(i, f0(v))
3 :¬p(w)∨¬r(i, f1(w))∨¬r(j, f0(w))
4 :¬p(x) ∨¬r(i, f2(x)) ∨¬r(j, f0(x)) ∨¬r(j, f1(x))
5 :¬p(y) ∨¬r(i, f3(y)) ∨¬r(j, f0(y)) ∨¬r(j, f1(y))∨¬r(j, f2(y))
6 :¬p(z) ∨¬r(i, f4(z)) ∨¬r(j, f0(z)) ∨¬r(j, f1(z))∨¬r(j, f2(z))∨r(j, f3(z))

...

Figure 5.4: For n > 0, clause n + 2 is obtained by resolving on p between
clauses n+ 1 and 1 using {zn+1 7→ f(zn+2), z1 7→ zn+2} as unifier, where zi
is the unique free variable in clause i.

From which, by introducing a function symbol f to skolemize z, we obtain
the following clause set, suitable for a resolution-based theorem-prover:

¬p(u) ∨ ¬r(j, u) ∨ p(f(u)) (5.11)

¬p(v) ∨ ¬r(i, v) (5.12)

¬p(w) ∨ ¬r(j, w) ∨ r(w, f(w)) (5.13)

Figure 5.4 shows an infinite derivation by resolution from this set of
clauses. In fact, notice only formulas (5.11) and (5.12) are used (they corre-
spond to clauses 1 and 2). Moreover, (5.13) may also resolve against every
clause in Figure 5.4 but clause 1, leading in every case to a ground clause.

Just like in Example 5.1, we want to argue that the inference that lead to
clause 3 is irrelevant. For this we will first introduce the H(@) counterpart
of the tree-model property and use it to analyze this example and guide us
towards a suitable layered translation. Unsurprisingly, the property we are
about to introduce will not hold for H(@, ↓) and we will have to review the
developed translation in that case.

In the basic modal logic there is only one point of evaluation; in H(@),
using the @ operator we can have several simultaneous such points. This
already suggests we have to move from trees to forests.

Definition 5.4 (Forest-models). Let M = 〈W,R, V, g〉 be a hybrid model.
We say M is a forest-model whenever there exists a collection of tree-models
Mk = 〈Wk, Rk, Vk〉 such that all the Wk are pairwise disjoint, W =

⋃

iWi,
R(r) =

⋃

Ri(r) for all r, V (p) =
⋃

Vi(p) for all p, and for every nominal i
there exists a k such that g(i) is the root of Mk.

Alternatively, we say M is a quasi-forest-model if M′ = 〈W,R′, V, g〉,
with R′(r) = {(w, v) | (w, v) ∈ R(r) and g(i) 6= v,∀i}, is a forest-model.

Forest-models are, intuitively, a collection of trees such that nominals
only name nodes that are a root; a quasi-forest-model, on the other hand,
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Figure 5.5: Models (a) and (b) are H(@)-equivalent but (b) is a quasi-forest-
model.

is turned into a proper forest-model by removing every arrow arriving at a
named node. Figure 5.5 shows two models that satisfy (5.9). None of them
is a forest-model, although model (b) is indeed a quasi-forest-model.

A closer look at Figure 5.5 shows these two models are related in other
ways. First, they are in fact bisimilar models, which implies they coincide
on every @-formula of H(@). Second, it is possible to derive (b) from (a)
using a construction similar to classical unravelings [Blackburn et al., 2002].
In fact, it is easy to show that one can “unravel” any hybrid model into
a bisimilar one that is also a quasi-forest-model. From this, one gets the
following result.

Proposition 5.2 (Quasi-forest-model property). Let ϕ be a satisfiable for-
mula of H(@), then ϕ is satisfiable in a quasi-forest-model. Moreover, if
nominals occur in ϕ only as first arguments of @, then ϕ is satisfiable in a
forest-model.

So we can now take a new look at Example 5.2 in the light of Proposi-
tion 5.3. The first thing to observe is that when considering the satisfiability
of (5.9) we can restrict our attention to forest-models. We can use this fact
to show that deriving clause 3 is not necessary. Observe that the inference
that leads to this clause uses {u 7→ w, v 7→ f(w)} as unifier. An analysis
analogous to the one performed for Example 5.1 shows that, in essence, this
unifier covers the case where there is some node reachable both from i and
from j; since this is not possible in a forest-model, it is safe to ignore it
altogether.

We saw that for the case of the basic modal logic one can annotate
each relation and predicate symbol with a path-expression, in order to avoid
unifications between terms that can be assumed to denote nodes on different
paths on a tree-model. In the case of H(@)-formulas that are satisfiable in a
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1: ¬p∗i
(i)

2: r∗j
(j, c)

3: c = i
4: pr∗j

(c)
5: ¬p∗i

(c) (by Paramodulation on 1 and 3)
6: r∗j

(j, i) (by Paramodulation on 2 and 3)
7: p∗j

(i) (by Paramodulation on 4 and 3)

Figure 5.6: No contradiction is derived from clauses (5.18)–(5.21).

forest-model, we can use the same idea in order to avoid unifications between
terms we know may be assumed to denote elements on different trees. We
simply need to extend path expressions with a ∗i symbol for every nominal
i, to account for the fact that nominals are roots of trees in forest-models.

The trivial extension of Definition 5.2 to H(@) formulas where nominals
occur only as first argument of @ would produce, for formula (5.9), the
following clauses, from which no inference can be drawn:

¬pr∗j
(u) ∨ ¬r∗j

(j, u) ∨ prr∗j
(f(u)) (5.14)

¬pr∗i
(v) ∨ ¬r∗i

(i, v) (5.15)

¬pr∗j
(w) ∨ ¬r∗j

(j, w) ∨ rr∗j
(y, f(w)) (5.16)

This approach is not correct for arbitrary H(@)-formulas. though. To
see this consider the following formula:

@i¬p ∧ @j〈r〉(i ∧ p) (5.17)

It is clearly an unsatisfiable formula and, therefore, we expect to be able
to derive a contradiction from the following clauses (here c is a skolem con-
stant):

¬p∗i
(i) (5.18)

r∗j
(j, c) (5.19)

c = i (5.20)

pr∗j
(c) (5.21)

However, as shown in Figure 5.6, no contradiction can be derived from
these clauses. Let us try to see what the problem is. According to the path
expression of clauses 2 and 4, c is expected to be “reachable” from a tree
with root j. But from clause 3, since c must coincide with the node named
i, we conclude that c is also “reachable” from i and, therefore, predicates
referring to c should also be annotated with ∗i. That is, from clauses 4 and
3 in Figure 5.6 we would like to derive not only 7, but also:

7′ : p∗i
(c)
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With this clause it would be trivial to derive a contradiction.
In a way, the problem comes from the fact that, unlike the case of forest-

models, on quasi-forest-models, there may be more than one path-expression
applicable to a node. For example, in the model of Figure 5.5b, we can assign
to node i the expressions ∗i and rrr∗j .

The way out of this problem is simply to encode path expressions as
ground first-order terms which become an additional parameter of the pred-
icates. We illustrate the idea by giving the resulting clause set for (5.17).
Here ∗i and ∗j will be constants and ṙ a unary function:

¬p(∗i, i) (5.22)

r(∗j , j, c) (5.23)

c = i (5.24)

∗i = ṙ(∗j) (5.25)

p(ṙ(∗j), c) (5.26)

It is interesting to compare these formulas with (5.18)–(5.21). Not only
the path expressions are now first-order terms, but we have an additional
formula stating that path expressions ∗i and ṙ(∗j) match, meaning that
there may be elements reachable following both kind of paths.

Time to formalize this translation. First, the correspondence language
will extend that of the standard translation with a constant ∗i for every
nominal i, and a unary function symbol ṙ for every r ∈ Rel. We will use an
additional constant ∗ for the (anonymous) point of evaluation. Path expres-
sions are encoded as first-order terms using exclusively these new symbols.
Such terms will be called p-terms. Second, the arity of all relational sym-
bols is increased by one to accommodate the new parameter used for path
expressions. To simplify the definitions and subsequent proofs, we will work
with formulas in negation normal form for the rest of this chapter.

Definition 5.5 (LTH). For any H(@)-formula ϕ in negation normal form
the layered translation LTH

x (ϕ) is defined as LTH
x,∗(ϕ) where

LTH
x,t(i)

def
= x = i ∧ ∗i = t

LTH
x,t(¬i)

def
= x 6= i

LTH
x,t(p)

def
= p(t, x)

LTH
x,t(¬p)

def
= ¬p(t, x)

LTH
x,t(ϕ ∧ ψ)

def
= LTH

x,t(ϕ) ∧ LTH
x,t(ψ)

LTH
x,t(ϕ ∨ ψ)

def
= LTH

x,t(ϕ) ∨ LTH
x,t(ψ)

LTH
x,t(〈r〉ϕ)

def
= ∃y.r(t, x, y) ∧ LTH

y,ṙ(t)(ϕ), y is fresh
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LTH
x,t([r]ϕ)

def
= ∀y.r(t, x, y) → LTH

y,ṙ(t)(ϕ), y is fresh

LTH
x,t(@iϕ)

def
= LTH

i,∗i
(ϕ)

Theorem 5.4. For every H(@)-formula ϕ in negation normal form, and
every p-term t, LTH

x,t(ϕ) is satisfiable iff ϕ is satisfiable.

Proof. For the right-to-left implication, observe that equality of p-terms
occurs only positively in LTH

x,t(ϕ) and, thus, any model for ϕ is trivially

turned into a model for LTH
x,t(ϕ) by making all the p-terms denote the same

domain element.
For the other direction, let I = 〈D, ·I〉 be such that I |=

FO
LTH

x,t(ϕ)[a]
for some a ∈ D. We define the hybrid model MI = 〈W,R, V, g〉 where

W
def
= D ×D

R(r)
def
= {

(

(tI , x), (ṙ(t)I , y)
)

| t is a p-term and (tI , x, y) ∈ rI}

V (p)
def
= {(tI , x) | t is a p-term and (tI , x) ∈ pI}

g(i)
def
= (∗i

I , iI)

We show by induction on ϕ that it must be the case MI , (t
I , a) |= ϕ. We

prove only the relevant cases:

Case ϕ ≡ i. If I |=
FO

LTH
x,t(i)[a] then I |= (x = i∧t = ∗i)[a] and, therefore,

iI = a and tI = ∗i
I . But this means that (tI , a) = (∗i

I , iI) = g(i)
and, thus, MI , (t

I , i) |= i.

Case ϕ ≡ p. We know that I |=
FO
p(t, x)[a], that is (tI , a) ∈ pI . Conse-

quently, MI , (t
I , a) |= p.

Case ϕ ≡ 〈r〉ψ. Since I |=
FO

∃y.r(t, x, y) ∧ LTH
y,ṙ(t)(ψ)[a], then there must

exist some b ∈ D such that (tI , a, b) ∈ rI and I |=
FO

LTH
y,ṙ(t)(ψ)[b].

But (tI , a, b) ∈ rI implies
(

(tI , a), (ṙ(t)I , b)
)

∈ R(r) and by inductive
hypothesis MI , (ṙ(t)

I , b) |= ψ. Thus, we have MI , (t
I , a) |= 〈r〉ψ.

Case ϕ ≡ @iψ. From I |=
FO

LTH
x,t(@iψ)[a] we conclude I |=

FO
LTH

i,∗i
(ψ)[a]

but since this is a ground formula, it must also be the case that
I |=

FO
LTH

x,∗i
[iI ]. Then, by inductive hypothesis, we may conclude

that MI , (∗i
I , iI) |= ψ. Finally, since by definition g(i) = (∗i

I , iI), we
get MI , (t

I , a) |= @iψ.
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Corollary 5.1. For all H(@)-formula ϕ, ϕ is satisfiable iff ∃x.LTH
x (ϕ) is

satisfiable.

Once we move to H(@, ↓) the quasi-forest-model property no longer
holds. Intuitively, since ↓ can be used to “name worlds on-the-fly”, a satis-
fiable formula may force relations between unnamed worlds to occur. Con-
sider, for example the following satisfiable formula:

〈r〉p ∧ 〈r〉¬p ∧ [r]〈r〉p ∧ [r]〈r〉¬p ∧ [r]↓i.[r]〈r〉i (5.27)

It is not hard to see that in any model M that satisfies (5.27) there must
be at least two nodes with fan-in greater than one. But if we restrict to
a signature with only one nominal i, then only one of these nodes may be
labeled with i and, therefore, M cannot be a quasi-forest-model.

Nevertheless, this will not be a problem in extending the layered trans-
lation to H(@, ↓). The reader may have already noticed that in the proof
of Theorem 5.4, the quasi-forest-model property was not used at all. This
property was more a guiding principle that lead us to the formulation of the
translation than a theoretical justification for its correctness. In fact, the
same can be said about the tree-model property and the layered translation
for ML: one can proof the correctness of the former without employing the
latter.

With this in mind, it is not hard to extend Definition 5.5 to handle ↓
in a sound way. The intuition is that whenever a satisfiable formula ϕ has
no quasi-forest-model it is because certain occurrences of ↓i in ϕ are forcing
some otherwise unnamed nodes to have greater fan-in. But this can be easily
expressed in terms of p-terms:

LTH
x,t(↓i.ψ)

def
= ∗i = t ∧ ∃i.(i = x ∧ LTH

x,t(ψ)) (5.28)

The proof of correctness is similar. It is interesting to observe that with
this translation, the nominals occurring bound in ϕ may influence the per-
formance of a resolution-based prover on LTH(ϕ).

To see this, suppose that ϕ and ϕ′ only differ in the choice of bound
nominals, and that in ϕ some nominal is bound more than once while in ϕ′

none does. It is easy to see that the set of clauses obtained from LTH(ϕ)
and LTH(ϕ′) will only differ on path expressions; moreover in the set cor-
responding to LTH(ϕ) there may be path expressions occurring more often
than in the one for LTH(ϕ′), but the reciprocal is not true. The bottom line
is: every valid inference in LTH(ϕ′) will be a valid inference in LTH(ϕ), but
there may be inferences in LTH(ϕ) that are not valid in LTH(ϕ′) because
a mismatch of path expressions. Therefore, in order to maximize this kind
of blocking, one should restrict to formulas where nominals are bound only
once.
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Chapter 6

Functional translations

In the late 1980’s and early 1990’s the functional translation approach ap-
peared simultaneously and independently in a number of publications (see,
e.g. [Ohlbach, 1988b,a, Fariñas del Cerro and Herzig, 1988, Zamov, 1989,
Auffray and Enjalbert, 1989, 1992]). Based on an alternative view of rela-
tional structures, this translation produces formulas that can be much more
compact and with a more shallow term structure than those obtained with
the standard translation. These are good properties from a practical point
of view. Moreover, just like the layered translation, the functional transla-
tion avoids many of the pitfalls of the standard translation. Although it is
harder to understand the correctness of this translation when compared to
those of Chapter 5, we will later see that the hybrid case blends in quite
naturally.

The functional translation is often presented using a many-sorted logic,
like the one employed in Chapter 4. While this simplifies the presentation,
it also hides part of the complexity of the resulting formula. In Section 6.4
we will investigate conditions under which sort annotations can be safely
removed from a translated formula without changing its satisfiability status.

6.1 Functional models, functional translation

The key to understand the functional translation is via an alternative rep-
resentation of relational structures. To simplify this presentation, we will
discuss relational structures with only one relation and later generalize this
to the multi-relational case. Consider, then, Figure 6.1a which shows a re-
lational structure with domain W = {a, b, c} and one relation r. One can
alternatively represent this structure using three total functions f , g and h,
and a predicate de, as long as the following property holds:

∀xy.
(

r(x, y) ↔ (¬de(x) ∧ (f(x) = y ∨ g(x) = y ∨ h(x) = y))
)

(6.1)

73
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a

b c

(a)

a

b

de

c

f

g h

f, g
h

f, g, h

(b)

a

b

de

c

h

g
f

f
g, h

g

f, h

(c)

Figure 6.1: A relational structure (a) is represented in (b) and (c) using
total functions f, g, h and a predicate de.

The idea is to use de (for “dead end”) to “mark” those states that have no r-
successor, and to use f , g and h on each state to “witness” each r-successor.
There are many valid arrangements for f , g and h; Figures 6.1b, and c show
two such representations. It is straightforward to verify they both satisfy
condition (6.1).

Proposition 6.1. Let I be a finite first-order interpretation for a language
with a two-place relation symbol r. Then there exists an interpretation I ′

extending I to a language that additionally contains a one-place relation
symbol de and unary function symbols f1, f2 . . . fn, such that:

I ′ |=
FO

∀xy.
(

r(x, y) ↔ (¬de(x) ∧ (f1(x) = y ∨ f2(x) = y . . . ∨ fn(x) = y))
)

But functions f1, f2, . . . fn can be alternatively represented using only
one binary function f , that takes a function index as an additional argument.
This is easily expressed in a language with two sorts ω and ι, the former will
refer to proper nodes of the model, the latter to function indices.

Proposition 6.2. Let I be a first-order interpretation for a language with
a relation symbol of sort r : ω × ω. Then there exists an interpretation I ′

extending I to a language that additionally contains a relation symbol de : ω
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and a function symbol f : ι× ω → ω, such that:

∀xy:ω.
(

r(x, y) ↔ (¬de(x) ∧ ∃z:ι.f(z, x) = y)
)

Observe that, unlike Proposition 6.1, this encoding is suitable for infinite
interpretations too.

We now have everything in place to define a notion of functional Kripke
model. Observe that we will be generalizing the previous propositions to
the multi-relational case in the obvious way.

Definition 6.1 (Functional Kripke models). A functional Kripke model for
a modal signature S = 〈Prop,Rel〉 is a many-sorted interpretation

〈W, I, {fr | r ∈ Rel}, {der | r ∈ Rel}, V 〉

where W and I are non-empty domains for sorts ω and ι, respectively;
V : Prop → 2W ; and, for each r ∈ Rel, fr : I ×W →W and der : 2W .

Clearly, every functional Kripke model induces a (relational) Kripke
model such that for every relation r the following holds:

∀x, y:ω.r(x, y) ↔ (¬der(x) ∧ ∃z:ι.f(z, x) = y) (6.2)

Therefore, we say that a functional model MF satisfies a modal formula ϕ if
and only if its induced relational model satisfies ϕ. We will later be interested
in maximal models, that is, functional models where every possible function
is realized.

Definition 6.2 (Maximal models). Consider a functional Kripke model
I = 〈W, I, {fr | r ∈ Rel}, {der | r ∈ Rel}, V 〉 and let rI be the relation
induced by (6.2) for each r ∈ Rel. We say I is maximal if for each total
function γ : W → W such that (w, γ(w)) ∈ rI for all w ∈ W , there exists
an i ∈ I for which fr(i, x) = γ(x), for all x.

Any functional model can trivially be extended to a maximal one.

Proposition 6.3. A formula of the basic modal logic is satisfiable iff there
exists a (maximal) functional Kripke model that satisfies it.

Just like relational Kripke models can be seen also as first-order models
in the correspondence language, it is clear that functional Kripke models
are first-order models in the functional (sorted) correspondence language:
we use two sorts ω and ι, each der and every p ∈ Prop are seen as one-
place predicate symbols of sort ω, while there is a binary function symbol
fr : ι×ω → ω for every r ∈ Rel. Finally, we can see the functional translation
simply as a “standard” translation to many-sorted first-order logic over the
functional correspondence language.
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Definition 6.3 (FT ). The functional translation to first-order logic FT x

that maps basic modal formulas into first-order logic formulas in the func-
tional correspondence language with a free variable x of sort ω is defined as
FT x(ϕ) = FT ′

x(ϕ) where, for every term t:

FT ′
t(p)

def
= p(t)

FT ′
t(¬ϕ)

def
= ¬FT ′

t(ϕ)

FT ′
t(ϕ ∧ ψ)

def
= FT ′

t(ϕ) ∧ FT ′
t(ψ)

FT ′
t([r]ϕ)

def
= ¬der(t) → ∀z:ι.FT ′

fr(z,t)(ϕ), z is fresh

Theorem 6.1. Let ϕ be a formula of ML. Then the following hold:

1. |=K ϕ iff |=
FO

∀x:ω.FT x(ϕ).

2. ϕ is satisfiable iff ∃x:ω.FT x(ϕ) is satisfiable.

In fact, it is straightforward to see that Theorem 6.1 can be extended
to work also in the case where we are reasoning with respect to a first-
order definable class of frames. For example, suppose we require r to be
interpreted as a transitive relation, which is expressible in first-order logic
as:

∀xyz.(r(x, y) ∧ r(y, z) → r(x, z)) (6.3)

By combining it with the equivalence (6.2) and doing some valid transfor-
mations we obtain the functional equivalent:

∀x:ω.(¬de(x) → ∀ab:ι∃c:ι.fr(b, fr(a, x)) = fr(c, x)) (6.4)

Finally, formula ϕ of ML will be satisfiable in the class of models where r
is transitive if and only if the conjunction of (6.4) and FT (ϕ) is satisfiable.

Of course, this is also true in the case of the standard (relational) transla-
tion. Notice, however, that for the layered translation discussed in Chapter 5
it is not clear in general how to express frame conditions without interfering
with the layering.

One of the major appeals of the functional translations is that there
are some interesting “optimizations” that can be done on it, in particu-
lar one that guarantees termination in the modal case when any modern
resolution-based first-order theorem prover is employed. This will be dis-
cussed in Section 6.3, but before that we will introduce a suitable functional
translation for hybrid logics.

6.2 Functional translation for hybrid logics

Let us recapitulate for a minute. In the functional translation, objects of the
domain are represented by functional terms. These terms are of the form:

frn(yn, frn−1
(yn−1, . . . fr1(y1, x) . . .)) (6.5)
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Here x represents the initial point-of-evaluation, while y1, . . . yn are “indices”
of functions. Intuitively, this term is denoting an element that is reachable
from x by first following r1, then r2, etc. and the index yi is encoding which
is the ri-successor in each case.

But basically this means we can extend the functional translation to
hybrid logics in a way similar to what was done for the standard translation:
simply use first-order constants to represent nominals. Then the first-order
term i will denote the element of the domain where the nominal i holds,
while fr(y, i) will denote the r-successor of i indexed by y.

Formally, we will then extend the functional correspondence language
with a constant i of sort ω for each i ∈ Nom, and define a functional hybrid
model in the expected way.

Definition 6.4 (Hybrid functional models). A hybrid functional model for
a modal signature S = 〈Prop,Nom,Rel〉 is a structure

〈W, I, {fr | r ∈ Rel}, {der | r ∈ Rel}, V, g〉

where W and I are non-empty domains for sorts ω and ι, respectively;
V : Prop → 2W ; g : Nom → W and, for each r ∈ Rel, fr : I ×W → W and
der : 2W .

Again, every hybrid functional model induces a hybrid model. The hy-
brid functional translation is finally defined as follows.

Definition 6.5 (FTH). The hybrid functional translation to first-order logic
FTH

x , that maps H(@, ↓)-formulas into first-order logic formulas in the func-
tional correspondence language with a free variable x of sort ω, is defined
as FTH

x (ϕ) = FTH
x

′
(ϕ) whereFTH

t

′
extends FT ′

t with the following clauses:

FTH
t

′
(i)

def
= (i = t)

FTH
t

′
(@iϕ)

def
= FTH

i

′
(ϕ)

FTH
t

′
(↓i.ϕ)

def
= ∃i:ω.(i = t ∧ FTH

t

′
(ϕ))

Theorem 6.2. Let ϕ be an H(@, ↓)-formula. Then the following hold:

1. |= ϕ iff |=
FO

∀x:ω.FTH
x (ϕ).

2. ϕ is satisfiable iff ∃x:ω.FTH
x (ϕ) is satisfiable.

The proof is straightforward.

6.3 Optimized functional translations

Let us revisit the formula of Example 5.1:

[r](p→ 〈r〉p) (6.6)
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By Theorem 6.1, this formula is satisfiable if and only if its functional trans-
lation is satisfiable too (the r subscript is omitted):

∃x:ω.
(

¬de(x) →

∀y:ι.(p(f(y, x)) → (¬de(f(y, x)) ∧ ∃z:ι.p(f(z, f(y, x)))))
) (6.7)

And by skolemizing x and z with fresh constant c and function g we obtain
the equisatisfiable formula:

¬de(c) → ∀y:ι.
(

p(f(y, c)) → (¬de(f(y, c)) ∧ p(f(g(y), f(y, c))))
)

(6.8)

Formula (6.8) contains two skolem symbols: a constant and a unary function.
The so-called “optimized functional translation” [Ohlbach and Schmidt,
1997] guarantees that only constants need to be introduced during skolem-
ization, and since this is achieved by simply reordering quantifiers, the trans-
lated formula is essentially the same. Because skolem functions may cause
complex terms to be built up during resolution, the optimized translation
may drastically reduce the saturation process. Moreover, this simplifies the
development of terminating resolution strategies [Schmidt, 1999].

To illustrate the idea behind the optimized translation, let us consider
again formula (6.6). Figure 6.2a shows a model that satisfies (6.6) when
evaluated on node w. Figure 6.2b, on the other hand, shows a functional
model for (6.8), the functional translation of (6.6). Clearly, using (6.2) this
model induces the one of Figure 6.2a.

Observe now that for x 7→ w there are two possible values for y, namely
f and g. If y 7→ f , then we must pick z 7→ f , while for y 7→ g we must
select z 7→ g. Therefore, the right value for z is effectively a function of y,
as witnessed by the skolemization. But here comes the interesting part: we
can “rearrange” the assignment of functions in a way that makes the choice
of z independent of y. An example is shown in Figure 6.2c; this model also
induces (a) but here the right choice is z 7→ g independent of the value of y.
Maximal models (cf. Definition 6.2) include all possible “rearrangement” of
functions and therefore allow us to prove that, in terms of satisfiability, this
can always be assumed.

Ohlbach and Schmidt [1997] take advantage of this observation and prove
that it is sound, in terms of satisfiability, to swap two consecutive quantifiers.
Therefore one can take a formula obtained using the basic functional trans-
lation and simply make all the existential quantifiers come before universal
ones, effectively avoiding the introduction of skolem functions.

Proposition 6.4 (Ohlbach and Schmidt [1997]). If ϕ is a formula in prenex
normal form with a quantifier-free matrix ϕ′ and ϕ is equivalent to the func-
tional translation of a formula of ML, then ϕ is satisfiable iff ∃x:ι∀y:ιϕ′ is
satisfiable too, where all the x and y are existentially and universally quan-
tified, respectively, in ϕ.
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Figure 6.2: A model (a) for formula (6.6) and two models (b) and (c) for its
functional translation

We will follow the proof given by Ohlbach and Schmidt [1997] to verify
that the result also holds in the hybrid case. This proof will be later reused
in Section 6.4 to exhibit certain conditions under which all sort annotations
can simply be removed.

Ohlbach [1988b] exhibits a syntactic invariant for the functionally trans-
lated terms, which he calls “prefix stability” (known also as “unique path
property” [Auffray and Enjalbert, 1992]). Intuitively, what this property
says is that we can build a tree (or a forest) out of the set of terms and
subterms occurring in a formula such that: i) nodes of the tree are terms,
ii) arcs are labeled with variables of sort ι, iii) t1 is the father of t2 using an
arc labeled by y iff t2 = fr(y, t1) for some r ∈ Rel and iv) every variable of
sort ι labels only one arc.

Definition 6.6 (Prefix stability). We say a formula ϕ is prefix-stable if,
given the set Tϕ of all terms occurring in ϕ, it holds that for every variable
y of sort ι in Tϕ, there exist a term t and an r ∈ Rel such that if y occurs in
a term in Tϕ, then every occurrence of y is of the form fr(y, t). We will call
fr(y, t) the context of y in ϕ.
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As an example, consider the variable y that occurs in the functional
translation of (6.6): all its occurrences have the same context, namely,
f(y, x). It is straightforward to see that this property follows from the
way functional terms are built in the translation and, in particular, it holds
in the hybrid case too.

This syntactic property has something to say from a semantic point of
view. Again, suppose all occurrences of a variable y of sort ι are in the con-
text fr(y, t) for a fixed t. Then, for any given model, the function “indexed”
by y will be relevant only to determine successors of (the interpretation of)
t. This is formally expressed in the following lemma.

Lemma 6.1. Let ϕ be a prefix-stable formula in the functional correspon-
dence language and let y be a free variable in ϕ that occurs in context fr(y, t),
with all the variables in t free in ϕ. Furthermore, let I be a functional model
and v a valuation. If i1 and i2 are two elements of the domain of I for sort ι
such that fIr (i1, v(t)) = fIr (i2, v(t)), where v(t) is the interpretation of term
t using I and v, then

I |=
FO
ϕ[v(y 7→ i1)] iff I |=

FO
ϕ[v(y 7→ i2)]

Proof. The proof goes by induction on ϕ. We will look only at the base
case, so assume ϕ is of the form p(t′), with fr(y, t) a subterm of t′. Let us
define v1 = v(y 7→ i1) and v2 = v(y 7→ i2). The first thing to observe is that
because y does not occur in t, we have v1(t) = v2(t) = v(t). Therefore, we
also have v1(fr(y, t)) = v2(fr(y, t)). Finally, again because of prefix-stability,
we know there is no other occurrence of y in t′ and, therefore, v1(t

′) = v2(t
′),

from which the expected result follows. An analogous reasoning can be used
to handle the case where ϕ is an equality of the form t1 = t2. The inductive
cases follow simply by inductive hypothesis.

This lemma is a corrected version of a lemma by Ohlbach and Schmidt
[1997]. In Lemma 4.6 of their paper, variables in t are allowed to occur
bound in ϕ (this is explicitly considered in their proof), but in that case one
can build a simple counterexample (as long as the functions indexed by i1
and i2 are requested to coincide only on one point of the domain). In any
case, using this lemma, one can prove the following result (cf. [Ohlbach and
Schmidt, 1997, Theorem 4.7 ]).

Theorem 6.3. Let ϕ be a prefix-stable formula in the functional correspon-
dence language and let y be a free variable in ϕ that occurs in context fr(y, t),
with all the variables in t free in ϕ. Finally, let I be a maximal functional
model. Then, for every valuation v we have:

I |=
FO

∀x1 . . . xk:ι∃y:ι.ϕ[v] iff I |=
FO

∃y:ι∀x1 . . . xk:ι.ϕ[v]
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Proof. The right-to-left implication is already valid in the general case, so
we only have to consider the left-to-right one. Suppose, then, that the
antecedent holds. This means there must exist some function γ : Ik → I
such that, I |=

FO
ϕ[v(x1 7→ i1 . . . xk 7→ ik, y 7→ γ(i1 . . . ik))] holds, for every

i1 . . . ik ∈ I (here I is taken to be the interpretation of sort ι). Now, let
g ∈ I be such that, fIr (g, v′(t)) = γ(i1 . . . ik) for v′ = v(x1 7→ i1 . . . xk 7→
ik). Such a g must exist since I is a maximal model. Therefore, using
Lemma 6.1 we may conclude that I |=

FO
ϕ[v(x1 7→ i1 . . . xk 7→ ik, y 7→ g)]

must hold. But since g is independent of i1 . . . ik, we finally obtain that
I |=

FO
∃y:ι∀x1 . . . xk:ι.ϕ[v].

We have everything in place now to define the so-called optimized func-
tional translation. The idea is simply to take the standard functional trans-
lation and move all existential quantifiers to the front. We will work directly
on the hybrid case.

Definition 6.7 (OFTH
x ). The hybrid optimized functional translation to

first-order logic OFTH
x , that maps H(@, ↓)-formulas into first-order logic

formulas in the functional correspondence language with a free variable x, is
defined as OFTH

x (ϕ) = ϑ(FTH(ϕ)), where ϑ(ψ) takes ψ to prenex normal
form and moves all existential quantifiers of sort ι to the front.

Theorem 6.4. Let ϕ be an H(@, ↓)-formula. Then the following hold:

1. |= ϕ iff |=
FO

∀x:ω.OFTH
x (ϕ).

2. ϕ is satisfiable iff ∃x:ω.OFTH
x (ϕ) is satisfiable.

Proof. It is enough to prove that FTH
x (ϕ) is satisfiable iff ϑ(FTH

x (ϕ)). The
right-to-left implication is valid in general. For the, other direction, suppose
then that I |=

FO
FTH

x (ϕ)[v] for some I and v. Without loss of generality, we
may assume that I is maximal. Let ψ be the result of taking OFTH

x (ϕ) and
moving all existential quantifiers of sort ι after every universal quantifier.
Observe that FTH

x (ϕ) → ψ′ is universally valid, and, therefore, I |=
FO
ψ[v].

Now, using Theorem 6.3, we can move every existential quantifier in ψ to
the front, one at a time (for there must always exist one such that its bound
variable y occurs in a context fr(y, t) and all the variables in t are either
universally quantified or their existential quantifiers have been moved to the
top already). This process can be repeated only finitely many times and the
resulting formula ψ′ satisfies I |=

FO
ψ′[v] and is equivalent to ϑ(FTH

x (ϕ)).

Observe that the above proof only requires that a maximal model is
always available for a satisfiable formula. But this means that the optimized
functional translation also works in case we are interested in satisfiability
with respect to a first-order definable frame condition.
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Schmidt [1999] shows that if we restrict to the basic modal case, then any
refinement of resolution plus the (eagerly applied) condensing rule [Joyner,
Jr., 1976] is terminating for the output of the optimized functional trans-
lation. Most first-order theorem provers have factoring and subsumption
deletion rules, and hence condensing is in fact implicit when the implemen-
tation is fair. This means that, in practice, any standard (complete and fair)
resolution theorem prover used along with the optimized translation consti-
tutes a decision method. Termination conditions for some frame classes are
also investigated. As future work, it would be interesting to see if termina-
tion can also be achieved in the case of H(@).

6.4 Sort erasure

The (optimized) functional translation is typically presented using a many-
sorted first-order logic, just like we did so far in this chapter. From a prac-
tical point of view, if we are interested in using these translations for auto-
mated reasoning, we have roughly two alternatives: i) use a theorem prover
based on a calculus designed for the many-sorted first-order logic, ii) simu-
late sorts in unsorted first-order logic using additional one-place predicate
symbols.

There has been work on automated reasoning in the presence of sorts,
and in particular in the case of resolution and paramodulation. The basic
idea in this case is to use what is called well-sorted unification. Walther
[1989] gives a brief survey of the area. Weidenbach [2001] describes the
implementation of a superposition-based theorem prover with support for
sorts. SPASS [Weidenbach et al., 2007] is an advanced theorem prover built
on these ideas. Nevertheless, it is rather an exception: most modern first-
order theorem provers have no internal support for sorts.

It is argued by Walther [1989] that the simulation of sorts by way of
proposition symbols leads to irrelevant inferences. A system like SPASS,
avoids these inferences but one has to consider also the additional complex-
ity of well-sorted unification. We may conclude that there is some hidden
complexity in the use of sorts that must be taken into account.

What we will show in this section is that in many situations it is safe to
simply “erase” sort annotations (that is, without introducing anything else).
That this can be done in the case of the basic modal logic (when reasoning
over the class of all models) was already observed by Hustadt and Schmidt
[1999], although without providing a proof.

We will not claim that it is desirable to always remove sort annotations
in this way. It could well be the case that these annotations actually help
a particular prover to avoid useless inferences, outweighing the additional
formula complexity. We simply want to point out that one is actually allowed
to remove sort annotations (under certain conditions) in case this provides
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benefits in practice.
Let us start from the beginning. We first properly formalize what we

mean by sort erasure.

Definition 6.8. The sort erasure transformation (·)− takes a many-sorted
logic formula to unsorted logic as follows:

a− = a, for a a first-order atom

(ϕ ∧ ψ)− = ϕ− ∧ ψ−

(¬ϕ)− = ¬(ϕ−)

(∃x:α.ϕ)− = ∃x.(ϕ)−

Second, we need to make precise what are the models for the target logic
of this sort erasure transformation.

Definition 6.9 (Unsorted hybrid functional models). An unsorted hybrid
functional model for a modal signature S = 〈Prop,Nom,Rel〉 is a structure
〈W, {fr | r ∈ Rel}, {der | r ∈ Rel}, V, g〉 where W is a non-empty set,
V : Prop → 2W , g : Nom →W and, for each r ∈ Rel, fr : W ×W →W and
der : 2W .

In this case, we say that every unsorted model induces a (relational)
hybrid one such that for every relation r the following holds:

∀x, y.r(x, y) ↔ (¬der(x) ∧ ∃z.f(z, x) = y) (6.9)

Clearly, ϕ is not equivalent to ϕ− in the general case. But consider
again the Kripke model of Figure 6.1a. It can be represented using three
functions (cf. Figures 6.1b and 6.1c); but we can certainly represent it using
an additional function i as long as we satisfy this condition:

∀xy.r(x, y) ↔ (¬de(x)∧(f(x) = y∨g(x) = y∨h(x) = y∨ i(x) = y)) (6.10)

In general, by stipulating, for example i(x) = f(x) for all x, one can take
any structure satisfying condition (6.1) and extend it in order to satisfy
also (6.10). This shows that we can pick any n ≥ 3 and represent the
structure of Figure 6.1a using n total functions (and a predicate de). But
can we represent it with less than three functions? The answer is clearly
“no”: since node a has a fan-out of three, we require at least three functions
to witness all the successors of a. Since the maximum fan-out (via a relation
r) of a relational structure with domain W is |W | we arrive at the following
proposition.

Proposition 6.5. For any H(@)-formula ϕ, the following are equivalent:

1. ϕ is satisfiable
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2. FTH(ϕ) is satisfiable

3. FTH(ϕ)− is satisfiable

Proof. From the previous discussion, FTH(ϕ) is satisfiable iff it is satisfiable
by a functional model such that its domains W and I (for sorts ω and ι,
respectively) both have the same cardinality. But by using any bijection
between W and I we define an unsorted model that satisfies FTH(ϕ)− (this
is shown by a trivial induction).

Because the number of possible functions of W → W is |W ||W |, this
cardinality argument is not compatible with maximal models. However,
using classical preservation results it is not hard to see that we can do
with a weaker form of maximality, that is, we only need to have all the
realizations of functions for worlds that are “reachable” from the initial
point of evaluation.

Definition 6.10 (w-maximal models). Consider an unsorted hybrid func-
tion model I = 〈W, I, {fr | r ∈ Rel}, {der | Rel}, V, g〉, and let rI be the
relation induced by (6.9) for each r ∈ Rel. Moreover, let w be a non-empty
subset of W , and let Ww be the generated submodel (cf. Definition 1.14) of
the hybrid model induced by I whose domain is the smallest one containing
w. We say I is w-maximal if for each total function γ : Ww →Ww such that
(v, γ(v)) ∈ rI for all v ∈Ww, there exists an i ∈W for which fr(i, x) = γ(x),
for all x.

In order to obtain an equivalent version of Theorem 6.3 we need a syn-
tactic way of distinguishing variables that stand for function indices (former
sort ι) from those that stand for domain elements (former sort ω). The
first class is composed of those variables x that occur in a term of the form
fr(x, t), while the second class is of those that occur as fr(y, x). Prefix-
stability will guarantee disjointedness of these classes.

Definition 6.11 (Domain variables). The set of domain variables of a for-
mula ϕ in the functional correspondence language is defined as:

{x | fr(y, x) occurs in ϕ, for some variable y, and x is free}

Theorem 6.5. Let ϕ be a prefix-stable formula in the functional corre-
spondence language, and let y be a free variable in ϕ that occurs in context
fr(y, t), with all the variables in t free in ϕ. Moreover, let z1 . . . zn be the do-
main variables of ϕ. Finally, let I be a w1 . . . wn-maximal functional model.
Then, for every valuation v such that v(z1) = w1, . . . v(zn) = wn, we have:

I |=
FO

∀x1 . . . xk∃y.ϕ[v] iff I |=
FO

∃y∀x1 . . . xk.ϕ[v]
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The proof is analogous to the one for Theorem 6.3. Now, while Propo-
sition 6.3 shows that in the many-sorted case we can assume a satisfiable
formula is satisfied by a maximal model, what can we say about satisfiability
by w-maximal models? For the basic case, the answer is simple.

Proposition 6.6. An formula ϕ of H(@, ↓) is satisfiable iff there exists an
unsorted hybrid functional model I such that;

1. I induces a model that satisfies ϕ at some world w,

2. I is w-maximal.

Proof. We only need to prove the left-to-right direction, so let the hybrid
model M = 〈W,R, V, g〉 be such that M, w |= ϕ and pick any unsorted
functional model I = 〈W, {fr | r ∈ Rel}, {der | r ∈ Rel}, V, g〉 such that I
induces M. Now, let Γr = {γ | ¬der(v) implies (v, γ(v)) ∈ R(r),∀v} for
each r ∈ Rel, and Γ =

⋃

Γr. Define then an unsorted functional model
I ′ = 〈W ∪ Γ, {f ′r | r ∈ Rel}, {de ′r | r ∈ Rel}, V ′, g〉, where de ′r = der ∪ Γ,
V ′(p) = V (p) for all p ∈ Prop, and, for every r ∈ Rel, f ′r : W ∪Γ×W ∪Γ →
W∪Γ is any arbitrary function that satisfies f ′r(γ, v) = γ(v) for all γ ∈ Γr and
all v ∈ W . It is straightforward to verify that I ′ is w-maximal. Moreover,
the identity on W is a bisimulation between M and the model induced by
I ′, so the latter must also satisfy ϕ at w.

Using Proposition 6.6 it is simple to reproduce the proof of Theorem 6.4
and obtain the following result.

Theorem 6.6. Let ϕ be a formula of H(@, ↓). The following are equivalent:

1. ϕ is satisfiable.

2. ∃x:ω.OFTH
x (ϕ) is satisfiable.

3. ∃x.OFTH
x (ϕ)− is satisfiable.

Now, what happens if we are interested in satisfiability with respect to
some particular class of models? The first thing to observe is that the proof
of Proposition 6.6 does not always go through. For example, it breaks if
we are interested in satisfiability with respect to the class of models where
relation r satisfy the seriality condition:

∀x∃y.r(x, y) (6.11)

This class is captured by the modal axiom [r]p→ 〈r〉p. The reason why the
proof is not valid is simply that the w-maximal model obtained does not
satisfy the frame condition (6.11). What we will see next is that we can give
a different, general proof that works whenever we are reasoning with respect
to a first-order definable class of models closed by disjoint unions. The class
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defined by (6.11) falls in this category. In fact, by a well-known result due
to Goldblatt and Thomason, every class of models that is both first-order
and modally definable (that is, definable by a basic modal formula) must be
closed by disjoint unions [Goldblatt and Thomason, 1975]. Hence, this will
be a very general result.

We begin by defining an operation Ψκ on models. Intuitively, Ψκ(M) is
the model obtained by taking κ isomorphic copies of M.

Definition 6.12. Let M = 〈W,R, V, g〉 be a hybrid model over signature
S = 〈Prop,Nom,Rel〉 and let κ be an ordinal, then Ψκ(M) is defined as the
model 〈W ′, R′, V ′, g′〉, where:

W ′ def= κ×W,

R′(r)
def
= {((a,w), (a, v)) | a ∈ κ and (w, v) ∈ R(r)},

V ′(p)
def
= κ× V (p),

g′(i)
def
= (0, g(i)).

Clearly, we have the following bisimulation, for all κ: M, w↔Ψκ(M), (0, w).
In fact, when restricted to Kripke models (i.e., ignoring the clause for g′)
this operation is isomorphic to taking disjoint unions of M with itself κ
times. That means that if a class of models C is modally definable, then C
is closed by Ψκ.

Proposition 6.7. Let C be a class of models that is closed by Ψκ and let
ϕ be formula of H(@, ↓). Then, ϕ is satisfiable with respect to C iff there
exists an unsorted hybrid functional model I such that:

1. I induces a model that is in C and satisfies ϕ at some world w,

2. I is w-maximal.

Proof. The argument is very similar to that of Proposition 6.6. Given a
hybrid model M with domain W such that M, w |= ϕ we first build the
model M′ = Ψκ(M) with κ = |W ||W |. By construction, M′ is in C and
since it is bisimilar to M it also satisfies ϕ at world (0, w). It is easy to turn
any functional model inducing M′ into a w-maximal one.

Corollary 6.1. Let C be a class of modally definable models let ϕ be a
formula of H(@, ↓). The following are equivalent:

1. ϕ is satisfiable in C.

2. ∃x:ω.OFTH
x (ϕ) is satisfiable in C.

3. ∃x.OFTH
x (ϕ)− is satisfiable in C.
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Figure 6.3: A C-model for ψ (relation s is omitted).

This result covers every class of models definable with a basic modal
axiom. What about classes definable with hybrid axioms (i.e., formulas
containing nominals)? The definable classes in this case may be but are not
necessarily closed under Ψκ. In fact, we will close this chapter exhibiting a
class of models, definable by a hybrid formula, for which sort erasure is not
sound in the case of the optimized translation.

Consider the hybrid axiom 〈s〉i. It is well-known that it modally defines
the class of models that satisfy the first-order formula:

∀xy.s(x, y) (6.12)

Since, under this class, s behaves like a universal modality it is possible to
combine it with the expressive power of hybrid logics to impose cardinality
conditions on a model. For example, the following formula is satisfiable only
by models with exactly four elements, each of them labeled i, j, k and l,
respectively:

[s](i ∨ j ∨ k ∨ l) ∧ @i¬j ∧ @i¬k ∧ @i¬l ∧ @j¬k ∧ @j¬l ∧ @k¬l (6.13)

Now, let ψ be the conjunction of formula (6.13) with the following additional
formulas:

@i(〈r〉j ∧ 〈r〉k ∧ 〈r〉l ∧ [r]¬i) (6.14)

@j(〈r〉i ∧ 〈r〉k ∧ 〈r〉l ∧ [r]¬j) (6.15)

@k(〈r〉i ∧ 〈r〉j ∧ 〈r〉l ∧ [r]¬k) (6.16)

@l(〈r〉i ∧ 〈r〉j ∧ 〈r〉k ∧ [r]¬l) (6.17)

Clearly, ψ is satisfiable in C. In fact, any model for ψ will be isomor-
phic (modulo the valuation) to the one in Figure 6.3. Finally, let ϕ be the
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conjunction of the following formulas:

[s]〈r〉(i ∨ j) (6.18)

[s]〈r〉(i ∨ k) (6.19)

[s]〈r〉(i ∨ l) (6.20)

[s]〈r〉(j ∨ k) (6.21)

[s]〈r〉(j ∨ l) (6.22)

[s]〈r〉(k ∨ l) (6.23)

The model of Figure 6.3 also satisfies ϕ and, therefore, satisfies ψ∧ϕ. Now,
consider the formula OFTH

x (ψ ∧ ϕ), which has to be satisfiable in C as
well. What is the minimum number of elements of sort ι that a C-model
for OFTH

x (ψ ∧ ϕ) requires? We will see that at least six are necessary (the
precise answer is, in fact, “exactly six”, but we won’t show the upper-bound)
and since it also requires exactly four elements of sort ω we will conclude
that sorts cannot be safely removed in this case.

To see this, first observe that we have an upper bound for the number
of elements of sort ι required, and it is given by the number of existentially
quantified variables in OFTH

x (ψ ∧ ϕ), which coincides with the number of
diamonds in ψ ∧ ϕ; namely, eighteen. We need a function for each of these
existentially quantified variables, and the minimum number of elements of
sort ι is simply the minimum number of distinct functions needed.

We will restrict our attention to formulas (6.18)–(6.23). Exactly one
diamond occurs in each of them, and we will therefore informally say that
we require a function to satisfy each of these six formulas. In the end, we
will conclude that six distinct functions are needed for this.

Let M be the model of Figure 6.3 and let |M| = {i, j, k, l}. Consider
formula (6.18) and assume γ1 is a function that can be used to satisfy it.
Regardless the initial point of evaluation the [s] is universal, so, for every w
in M, we must have M, w |= 〈r〉(i ∨ j), and, therefore, M, γ1(w) |= (i ∨ j).
Since M is irreflexive, this means γ1 must satisfy γ1(i) = j and γ1(j) = i.
We can do this analysis for all the six formulas and find that these are the
constraints to be fulfilled:

γ1(i) = j γ2(i) = k γ3(i) = l

γ1(j) = i γ2(j) ∈ {i, k} γ3(j) ∈ {i, l}

γ1(k) ∈ {i, j} γ2(k) = i γ3(k) ∈ {i, l}

γ1(l) ∈ {i, j} γ2(l) ∈ {i, k} γ3(l) = i

γ4(i) ∈ {j, k} γ5(i) ∈ {j, l} γ6(i) ∈ {k, l}

γ4(j) = k γ5(j) = l γ6(j) ∈ {k, l}

γ4(k) = j γ5(k) ∈ {j, l} γ6(k) = l
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γ4(l) ∈ {j, k} γ5(l) = j γ6(l) = k

Because γ1, γ2 and γ3 differ in the value for i, they must be all distinct
functions. Similarly, γ4 differs from γ1 in the value for j, from γ2 in the
value for k and from γ3 everywhere. The same can be said about γ5 and
γ6 and, therefore, we may conclude that six distinct functions are needed to
satisfy these six formulas.
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Part III

Direct resolution
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Chapter 7

Ordered direct resolution

with selection

The direct resolution calculus DR introduced in Chapter 2, although sound
and complete, is simply not suitable for a realistic theorem-prover implemen-
tation: because every formula in each clause may lead to some inference,
the set of clauses will tend to grow in an unmanageable way for all but the
most trivial cases.

In this chapter we will turn DR into an ordered resolution calculus. That
is, we will use an ordering on formulas to restrict which formulas in a clause
may participate in inferences. Selection functions will be used as a mecha-
nism to optionally override the default ordering-based method of selection
of formulas.

We will have to give suitable admissibility conditions on the ordering
with which we can prove refutational completeness. Contrasting with the
case of resolution in first-order logic where partial orderings are used to ac-
count for unification of non ground terms, we will work with total orderings.
Hence, at most one formula in each clause will be available for inferences.
This property simplifies implementations and may result in efficiency gains.

For the completeness proof we will actually establish the reduction prop-
erty for counterexamples from which it will also follow that the calculus is
compatible with the standard redundancy criterion. The reader is assumed
to be familiarized with the proof scheme presented in Chapter 2.

This chapter (as well as the following one) is closely based on [Areces
and Goŕın, 2009]. Some proofs were omitted or reduced to only the most
relevant cases. The complete versions can be found in the technical appendix
of the paper. Throughout this chapter we will assume all formulas to be in
negation normal form.
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7.1 The ordered direct resolution calculus DR
≻
S

We begin by formalizing our notion of selection function. Our focus is on
selection functions that pick at most one formula per clause. In the case
of first-order logic, selection formulas typically may choose only negative
literals and we will follow essentially the same approach. However, as we
work with clauses which can contain arbitrary @-formulas from H(@, ↓),
we will not use the concept of “negative literals” when defining selection
functions but rather that of “not being a positive literal”. In this case, the
set of positive literals PLit is defined as:

PLit ::= @ij | @ip | @i〈r〉j (7.1)

for i, j ∈ Nom, p ∈ Prop and r ∈ Rel. Observe that in classical resolution
being a negative literal is the same as not being a positive literal.

Definition 7.1 (Selection function). A selection function S assigns to each
clause C a set of @-formulas S(C) such that S(C) ⊆ C, |S(C)| ≤ 1 and
S(C) ∩ PLit = ∅.

Figure 7.1 defines the ordered direct resolution calculus DR≻
S , param-

eterized over an ordering on formulas ≻ and a selection function S. The
leftmost premise in each binary rule is always the main premise. We denote
as ClSet∗

S≻
(ϕ) the minimum set that contains ClSet(ϕ) and is closed under

the rules of DR≻
S .

Observe that DR≻
S differs from DR only in its global and side conditions.

The side conditions prevent certain redundant inferences by: i) enforcing a
normal form on equalities (rules SYM and PAR); ii) making the choice of
the main premise unique (rule PAR) and iii) avoiding useless skolemizations
(rule 〈r〉). The global conditions, on the other hand, ensure that only one
formula in each clause may be involved in inferences. We will call this
formula the distinguished formula of the clause.

Definition 7.2 (max≻ and distS≻). Given an ordering ≻ and a selection
function S, we define max≻(C) as the maximum formula (with respect to
≻) in C, and distS≻(C) as the function such that distS≻(C) = ϕ whenever
either S(C) = {ϕ}, or both S(C) = ∅ and max≻(C) = ϕ.

We define next a class of orderings for which we will guarantee refuta-
tional completeness (Section 7.4) using the notion of Herbrand model intro-
duced in Section 7.3.

7.2 Admissible orderings

In a strict sense, any ordering ≻ such that DR≻
S is refutationally complete

would be admissible. This notion of admissibility, undeniably general, would
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RES
C ∨ @i¬p D ∨ @ip

C ∨D
REF

C ∨ @i¬i

C

SYM
C ∨ @ji

C ∨ @ij
† PAR

C ∨ ϕ(i) D ∨ @ij

C ∨D ∨ ϕ(i/j)
‡

∧
C ∨ @i(ϕ1 ∧ ϕ2)

C ∨ @iϕ1 C ∨ @iϕ2
∨

C ∨ @i(ϕ1 ∨ ϕ2)

C ∨ @iϕ1 ∨ @iϕ2

[r]
C ∨ @i[r]ϕ D ∨ @i〈r〉j

C ∨D ∨ @jϕ
〈r〉

C ∨ @i〈r〉ϕ

C ∨ @i〈r〉j C ∨ @jϕ
⋆

@
C ∨ @i@jϕ

C ∨ @jϕ
↓

C ∨ @i↓j.ϕ(j)

C ∨ @iϕ(j/i)

Side conditions

† i ≻ j

‡ i ≻ j and ϕ(i) ≻ @ij

⋆ ϕ 6∈ Nom and j ∈ Nom is fresh.

Global conditions

• in C∨ψ, ψ must be selected by S or ≻-maximum in the clause.

• inD∨ψ, ψ is ≻-maximum in the clause and nothing is selected.

Figure 7.1: The ordered direct resolution calculus DR≻
S , for S a selection

function and ≻ an ordering.
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not be of much use. Instead, we will give the name “admissible” to a non-
empty class of orderings satisfying certain conditions that can be effectively
checked. We will later prove that any admissible ordering (in this sense)
induces a complete calculus (in fact, a calculus with the reduction property
for counterexamples).

Throughout this section, we will use some classical notions that come
from term-rewriting theory but have found applications in automated the-
orem proving. We include formal definitions next for the sake of self-
containness and refer the reader to any textbook on term-rewriting for more
details (e.g., [Baader and Nipkow, 1998]).

Definition 7.3. A binary relation ≻ is called an ordering if it is transitive
and irreflexive; if, additionally, for any two distinct elements x and y one
of x ≻ y or y ≻ x holds, ≻ is said to be total. An ordering ≻ is called
well-founded when there is no infinite chain x1 ≻ x2 ≻ x3 . . .

Let ≻ be an ordering on formulas, and let’s indicate with ϕ[ψ]p a formula
ϕ where ψ appears at position p. We say that ≻ has the subformula property
if ϕ[ψ]p ≻ ψ whenever ϕ[ψ]p 6= ψ, and that it is a rewrite ordering when
ϕ[ψ1]p ≻ ϕ[ψ2]p iff ψ1 ≻ ψ2.

A well-founded rewrite ordering is called a reduction ordering, and if it
also has the subformula property, it is called a simplification ordering.

We will typically work with a lifting to clauses ≻c of an ordering on
formulas ≻. We require ≻c to be total, well-founded and to satisfy that if
C ≻c D, then either D = ∅ or max≻(C) � max≻(D). We include, for the
sake of completeness, a possible lifting.

Definition 7.4. For ≻ a total ordering on formulas, ≻c is the unique or-
dering on clauses such that C ≻c D if and only if C 6= ∅, and either

• D = ∅, or

• max≻(C) ≻ max≻(D), or

• max≻(C) = max≻(D) and C \ max≻(C) ≻c D \ max≻(D).

It is easy to see that Definition 7.4 is just a specialization of the multiset
ordering to the case of finite sets. Therefore, ≻c is a total ordering, and well-
founded whenever ≻ is well-founded too (see [Baader and Nipkow, 1998]).

From now on, we will use ≻ to denote both an ordering on formulas an
its lifting to clauses. The one thing to keep in mind is that whenever we
say that C1 ≻ C2 for clauses C1 = @iψ1 ∨ @jψ2 and C2 = @kχ1 ∨ @lχ2

this must be understood as {@iψ1,@jψ2} ≻c {@kχ1 ∨ @lχ2} and not as
@iψ1 ∨@jψ2 ≻ @kχ1 ∨@lχ2 (of course, since a disjunction of @-formulas is
not a singleton clause, there is no ambiguity).
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Definition 7.5 (Admissible orderings). We will say that an ordering ≻ on
H(@, ↓)-formulas is admissible for DR≻

S whenever it satisfies the following
conditions, for all ϕ, ψ ∈ H(@, ↓) and all i, j ∈ Nom:

A1 – ≻ is a total simplification ordering,

A2 – ϕ ≻ i for all ϕ 6∈ Nom,

A3 – if ϕ ≻ ψ, then @iϕ ≻ @jψ,

A4 – if ψ is a proper subformula of ϕ, then ϕ ≻ ψ(i/j),

A5 – [r]i ≻ 〈r〉j.

Definition 7.5 looks rather arbitrary but this is because it is simply list-
ing conditions that are used throughout the completeness proof. We shall
motivate them by way of examples.

• Conditions A1 and A3 induce a notion of subformula property for @-
formulas (e.g., @i〈r〉ϕ ≻ @jϕ). This is used in the proof of the Main
premise reduction lemma (i.e., Lemma 7.1).

• Conditions A2 and A3 imply that equalities (i.e., formulas of the form
@ij) are the smallest @-formulas, and this will be important when
proving the Upwards and downwards preservation lemmas.

• Condition A4 is required to guarantee that @i↓j.ϕ ≻ @iϕ(j/i) in the
proof of the Main premise reduction lemma. It is also used in the
Upwards preservation lemma.

• Condition A5 is needed, for example, to guarantee that, in the [r] rule,
the side premise is smaller than the main premise and, thus, that the
Main premise reduction lemma holds.

Now that we have in place our notion of admissible ordering, we are able
to give our first step in following the proof-scheme outlined in Section 2.1.

Lemma 7.1 (Main premise reduction for DR≻
S ). Let ≻ be an admissible

ordering. If C is the main premise of an inference of DR≻
S with a conclusion

D, then C ≻ D.

Proof. The proof is straightforward but rather tedious due to the numerous
rules to consider. We will show the interesting case, namely, that of rule [r].
Hence, let C = C ′ ∨ @i[r]ϕ and let E = E′ ∨ @i〈r〉j be the premises of an
inference producingD = C ′∨E′∨@jϕ. Because of A1, ≻ has the subformula
property and, thus, [r]ϕ ≻ ϕ which implies, by A3, @i[r]ϕ ≻ @jϕ. Observe
also that it must be the case @i[r]ϕ ≻ @i〈r〉j: by A2 there exists some
nominal k such that ϕ � k which implies [r]ϕ � [r]k and, because of A5,
[r]ϕ � [r]k ≻ 〈r〉j. We conclude that @i[r]ϕ ≻ @i〈r〉j ≻ ψ, for all ψ ∈ E′;
so, of ψ is a formula in D and ψ ≻ @i[r]ϕ, then ψ ∈ C ′. Finally, since
obviously @i[r]ϕ 6∈ D we conclude, from Definition 7.4, that C ≻ D.
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Finally, we only need to show that the conditions in Definition 7.5 are
not too restrictive, and that there actually exist orderings satisfying them.
We will exhibit one such ordering, based on the so-called Knuth-Bendix
ordering (KBO), after its first use by Knuth and Bendix [1970].

The KBO is an ordering on the set Term(F ,V) of first-order terms de-
fined over the set of function symbols F and set of variables V. It is param-
eterized by a precedence >, that is a partial ordering on F , and a weight
function w : F ∪ V → N. The weight function must be compatible with
respect to >, this means: i) w(x) = µ, for all x ∈ V, for some µ > 0
and ii) if f ∈ F is a unary function symbol with w(f) = 0, then f > g
for all g ∈ F , g 6= f . The weight function w is extended to terms by
w(f(t1, . . . tm)) = w(f) + w(t1) + · · · + w(tn).

Definition 7.6 (KBO). Let > be a precedence on F , w a weight function
and s, t ∈ Term(F ,V). Then s ≻kbo t iff

• s = f(s1, . . . sn), t = g(t1m. . . tm), and

1. |s|x ≥ |t|x, ∀x ∈ V. |u|x is “the occurrence count of x in u”, and

2a. w(s) > w(t), or

2b. w(s) = w(t), f > g, or

2c. w(s) = w(t), f = g, and ∃k.s1 = t1, . . . sk−1 = sk−1, sk ≻kbo tk.

• s = f(s1, . . . sn), t = x ∈ V and x occurs in s.

If a precedence > is total, then any KBO extension of > is a total sim-
plification ordering on ground terms (see, e.g. [Baader and Nipkow, 1998]).

We plan to use KBO to define an admissible ordering for H(@, ↓). There-
fore, we will consider every H(@, ↓)-formula as a ground term over the set
of function symbols

F = Prop ∪ Nom ∪ Rel ∪ {¬,∧,∨,@, ↓, 〈 〉, [ ]}

with the obvious arities, the only proviso being that the nominal argument of
every @-formula is considered as the rightmost argument in the correspond-
ing term (e.g., the formula @i〈r〉p will correspond to the term @(〈 〉(r, p), i)).

Proposition 7.1. Let > be any total ordering on O and let w : O → N\{0}
be any weight function such that

1. w(i) = w(j) for all i, j ∈ Nom

2. w(f) > w(i) for all f ∈ O \ Nom, i ∈ Nom

3. w([ ]) > w(〈 〉).

Then, ≻kbo is an admissible ordering, where ≻kbo is the Knuth-Bendix or-
dering based on > and w.
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Proof. Since > is total, ≻kbo is a total simplification ordering on ground
terms. Condition 2 guarantees that w(ϕ) > w(i) for all ϕ 6∈ Nom and, thus,
A2 holds. For A3, observe that, from the Definition 7.6, if ϕ ≻kbo ψ (and
w(ϕ) = w(ψ)) then @(ϕ, i) ≻ @(ψ, j). If ϕ has a proper subformula ψ,
it is because ϕ is of the form f(ϕ1, . . . ϕk) and, from Condition 2 we have
w(f) > 0 which implies w(ϕ(ψ)) > w(ψ). But from Condition 1 we have
w(ψ) = w(ψ(i/j)) and, thus, ϕ ≻kbo ψ(i/j), which establishes A4. Finally,
A5 follows trivially from Conditions 1 and 3.

7.3 Herbrand models for hybrid logics

In order to carry out the completeness proof sketched in Chapter 2 we shall
provide a suitable notion of Herbrand model for H(@, ↓). But before going
into the details of this, we ought to give the abstract conditions we expect
such models to satisfy.

There are two features of classical Herbrand models we want to mimic.
First, we want Herbrand models to be syntactic in nature: in first-order
logic, the domain of a Herbrand model is the set of all ground terms of the
language (or a partition of that set if dealing with equality) and, thus, the
interpretation function for constants and function symbols is trivial. Second,
we want to mirror the fact that any set of ground first-order atoms Γ induces
a Herbrand model HΓ such that HΓ |= Γ. With this in mind, we are now
ready to define hybrid Herbrand models.

Definition 7.7 (∼I). Given I ⊆ PLit, define ∼I⊆ Nom × Nom as the
reflexive, symmetric and transitive closure of {(i, j) | @ij ∈ I}. Nom/∼I

is
the set of equivalence classes of ∼I , and [i]I is the equivalence class assigned
to i by ∼I . We will usually write [i] instead of [i]I when I is clear from
context.

Definition 7.8 (Hybrid Herbrand models). A hybrid Herbrand model is
just a set I ⊆ PLit. Furthermore, let 〈Prop,Nom, Rel〉 be the signature
of PLit and i ∈ Nom; we will say that I, i |= ϕ iff MI , [i] |= ϕ, where
MI = 〈W I , RI , V I , gI〉 with

W I = Nom/∼I

RI(r) = {([i], [j]) | @i〈r〉j ∈ I}
V I(p) = {[i] | @ip ∈ I}
gI(i) = [i].

Summing up, we identify hybrid Herbrand models with sets of positive
literals, and interpret them as hybrid models whose domain is a partition of
the set of all nominals.

Proposition 7.2. If I is a hybrid Herbrand model, then I |= I.

Proof. Straightforward from Definition 7.8.
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7.4 Refutational completeness of DR
≻
S

We are now ready to prove that if ≻ is an admissible ordering, then DR≻
S is

refutationally complete. In what follows we take ≻ to be a fixed admissible
ordering (cf. Definition 7.5).

The only ingredient still missing from the sketch in Chapter 2 is the
model-building procedure. Before going into its formal definitions, let us
explain what we will be trying to achieve.

Candidate models for N are hybrid Herbrand models defined using εC ,
i.e., the contribution of each clause C to the final model. Because we want
every productive clause (i.e., clauses with a non-empty contribution) to be
a potential side premise for a binary rule, we will stipulate that only clauses
C such that S(C) = ∅ and max≻(C) ∈ PLit may be productive.

Moreover, in order to properly deal with equality, we require an addi-
tional technical property on every productive clause C: the contribution of C
must not be reducible by paramodulation with another productive clause.
A similar requirement is usually demanded in the proof of completeness
for other paramodulation-based calculi (cf. Nieuwenhuis and Rubio [2001]).
This notion of reducedness is properly formalized in Definition 7.11. Ob-
serve, however, that it must be necessarily defined along with εC in a mutu-
ally recursive way. In defining this reduced form, we will use a substitution
σI of nominals by the smallest nominal in the equivalence class induced by
a Herbrand interpretation I.

Definition 7.9 (σI). Given a hybrid Herbrand interpretation I, we define
the substitution of nominals by nominals:

σI = {i 7→ j | i ∼I j ∧ (∀k)((k ∼I j ∧ k 6= j) =⇒ k ≻ j)}.

In words, σI substitutes each nominal with the least nominal of its class,
which is taken as the class representative. We now define the set Simp of
formulas that cannot be further simplified using unary rules.

Definition 7.10 (Simp). The set of simple formulas of H(@, ↓) is defined
as:

Simp ::= @ij (with i ≻ j) | @ip | @i¬a | @i〈r〉j | @i[r]ϕ

where i, j ∈ Nom, p ∈ Prop, a ∈ Atom, r ∈ Rel and ϕ ∈ H(@, ↓).

We define next the candidate model building procedure. Observe that
Definitions 7.11 and 7.12 are mutually recursive.

Definition 7.11 (Reduced form). Let C be a clause and ϕ = max≻(C).
If ϕ ∈ Simp and either a) ϕ ∈ PLit and ϕ = ϕσIC , or b) ϕ = @i[r]ψ and
i = iσIC , then we say that both ϕ and C are in reduced form.

Definition 7.12 (IN , IC , IC and εC). Let N be an arbitrary set of clauses,
C an arbitrary clause (not necessarily in N), and let ϕ = max≻(C).
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• IN , a candidate model for N , is defined as IN =
⋃

C∈N I
C .

• IC , the partial interpretation of N above C is defined as IC = IC ∪ εC .

• IC , the partial interpretation of N below C is defined as IC =
⋃

C≻D εD.

• εC , the contribution of C to the candidate model, is defined as εC = {ϕ}
whenever it simultaneously holds that:

1. C ∈ N ,

2. C is in reduced form,

3. ϕ ∈ PLit,

4. IC 6|= C, and

5. S(C) = ∅.

and εC = ∅ otherwise. If εC 6= ∅ then we call C productive.

Note that, because of the admissibility conditions, equalities are the
smallest @-formulas. Hence, if C is productive and distS≻(C) is an equality
then every formula in C must also be an equality. Furthermore, if distS≻(C)
is not an equality, then σIC = σID for all D ≻ C.

From here on when not specified otherwise, N is taken to be an arbitrary
but fixed set of clauses, and C an arbitrary but fixed clause not necessarily
in N .

Lemma 7.2 (Downwards preservation for DR≻
S ). If IN 6|= C, then IC 6|= C.

Proof. We prove the contrapositive form, so assume, for the sake of contra-
diction, that for some ϕ ∈ C, IC |= ϕ but IN 6|= ϕ. Observe that it cannot
be the case ϕ ∈ PLit. Now, consider the least D � C such that ID |= ϕ
but ID 6|= ϕ. From Definition 7.12 there are only three cases that we have
to consider, namely: εD = {@ij}, εD = {@ip} and εD = {@i〈r〉j}. We
will only look here at the last one. In this case there must exist ψ1 and
ψ2 such that [r]ψ2 is a subformula of ψ1 and ϕ = @kψ1. But, by condi-
tions A1, A2 and A5 of Definition 7.5, ψ1 ≻ [r]ψ2 ≻ 〈r〉j, and, thus, we get
@i〈r〉j � max≻(C) � ϕ ≻ @i〈r〉j.

By requiring productive clauses to be in reduced form, we can give a
syntactic description of equalities occurring in IN that allows us to prove
the Upwards preservation lemma.

Lemma 7.3. If iσIN 6= i, then IN contains only one equality where i occurs,
and it is of the form @ij with j = jσIN .

Lemma 7.4 (Upwards preservation for DR≻
S ). Let D be the consequent of

an inference with main premise C. If IN 6|= C and IC 6|= D, then IN 6|= D.
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Proof. Because of the Main premise reduction lemma, max≻(C) � ϕ for all
ϕ ∈ D. Since IN 6|= C, we already know IN 6|= max≻(C). Hence, we can
reduce the proof to showing that, for any ϕ, if max≻(C) ≻ ϕ and IC 6|= ϕ,
then IN 6|= ϕ. Now, suppose, for the sake of contradiction, that E � C is the
least clause such that ϕ is true under IE but false under IE . Of the three
alternatives, here we will only consider the most interesting one, namely,
εE = {@ij}.

Clearly, for this to be possible ϕ must be of the form @kl. Now, by
Lemma 7.3, we get that either εE ⊂ {@kl,@lk}, or εE ⊂ {@km,@lm} ⊂ IE .
However, the latter cannot be true since that would imply k ≻ m and
l ≻ m and, because ≻ is a rewrite ordering, we would have @kl ≻ @km and
@kl ≻ @lm (notice, for the second case, that if k ≻ l then we may conclude
that @kl ≻ @km ≻ @lm, while, if l ≻ k, then @kl ≻ @lk ≻ @lm). Thus,
εE ⊂ {@kl,@lk} should hold. However, εE = {@kl} cannot be the case,
since that would imply @kl � max≻(C) ≻ @kl. Finally, if εE = {@lk}, then
l ≻ k and @kl ≻ @lk � ϕ ≻ @kl.

An inspection of the above proof shows that we can actually assert a
more general result: if max≻(C) ≻ ϕ and IC 6|= ϕ then ID 6|= ϕ for all
D � C. From this, we get the following:

Corollary 7.1. If C is a productive clause and ϕ ∈ C but εC 6= {ϕ}, then
ID 6|= ϕ for all D � C.

Lemma 7.5. Let C ∈ N be such that C 6= ∅ and IC 6|= C. If C is not
productive, then there exists an inference in DR≻

S such that

1. C is the main premise

2. the side premise (if present) is productive, and

3. some consequent E is such that IC 6|= E.

Proof. Let ϕ = distS≻(C). If ϕ 6∈ Simp, C is trivially the premise of some
unary rule and the proposition holds. Now, suppose ϕ ∈ Simp is not in
reduced form; this means, using Lemma 7.3, that some clause D (with
C ≻ D) contributes an @ij for an i occurring in ϕ. It is easy to check that,
in this case, PAR can be applied on D and C. Finally, if ϕ is in reduced
form, it must be of the form @i¬i (note that @i¬j cannot be in reduced
form if IC |= @ij and i 6= j), @i¬p or @i[r]ψ. We show how to proceed in
the last case using the [r] rule; the remaining two cases are analogous.

For IC 6|= @i[r]ψ to happen, it must be the case that, for some nominal j,
IC , i |= 〈r〉j but IC , j 6|= ψ. This implies, together with the fact that C is in
reduced form, that @i〈r〉k ∈ IC for some k such that IC |= @jk. Therefore,
there must exist a clause D such that C ≻ D and εD = {@i〈r〉k} which,
hence, may be the side premise in an instance of the [r] rule with C as the
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main premise. Now, let E = C ′ ∨ D′ ∨ @jψ, where C = C ′ ∨ @i[r]ψ and
D = D′ ∨ @i〈r〉k be the consequent of the inference. IC 6|= E follows from:

1. IC 6|= C implies IC 6|= C ′,

2. C ≻ D implies (using Corollary 7.1) IC 6|= D′, and

3. IC |= @jk and IC 6|= @kψ, implies IC 6|= @jψ.

We can finally put all the pieces together as was sketched in Chapter 2.
Lemmas 7.2, 7.4 and 7.5 fit together nicely into a Counterexample lemma
which, together with Lemma 7.1, gives us the completeness result.

Theorem 7.1. DR≻
S has the reduction property for counterexamples and,

therefore, is refutationally complete.

Summing up, then, with Theorem 7.1 we have established refutational
completeness of DR≻

S and, moreover, the proof was obtained by adapting the
standard proof for first-order saturation based methods. In addition, except
perhaps for the details in the notion of admissible ordering, the framework
obtained seems quite natural and, arguably, susceptible to be used for es-
tablishing completeness for other hybrid calculi.
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Chapter 8

More effective calculi

In this chapter we will pursue the definition of a terminating direct resolution
based calculus for H(@) and we will introduce two refinements of DR≻

S .
The first one will allow us to limit the paramodulation inferences needed
to guarantee completeness. This time, however, the completeness proof
will have to be less standard and more involved. Finally, this calculus will
be extended with machinery to control the generation of witnesses by rule
〈r〉. The completeness proof will be essentially the same, but additionally
we will be able to prove termination for H(@) (even without redundancy
elimination).

8.1 Paramodulation restricted to labels: DRL
≻
S

From the proof of Lemma 7.5 we can see that refutational completeness of
DR≻

S is preserved even if paramodulation is restricted to Simp formulas (cf.
Definition 7.10). What we will see now is that by adding a simple sound
rule to the calculus and using a construction slightly more involved, one
can repeat the completeness proof of the previous chapter establishing the
stronger result that paramodulation inferences can be further restricted to
the following rule:

C ∨ @iϕ D ∨ @ij

C ∨D ∨ @jϕ
i ≻ j, ϕ ≻ j,@iϕ ∈ Simp.

That is, we need not consider any other nominal but the label i of the
distinguished formula @iϕ of the main premise and we don’t have to replace
other occurrences of i inside ϕ. This by itself is a nice property from a
practical point of view. Moreover, by taking advantage of this restriction
we will be able to define in Section 8.2 a terminating calculus for H(@).

In Figure 8.1 we define DRL≻
S . Observe that not only we replaced PAR

by the aforementioned rule, but we added a new inference rule: SYM
¬.

105
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SYM
¬ C ∨ @j¬i

C ∨ @i¬j
† PAR

@ C ∨ @iϕ D ∨ @ij

C ∨D ∨ @jϕ
‡

Side conditions

† i ≻ j

‡ i ≻ j, ϕ ≻ j and @iϕ ∈ Simp

Figure 8.1: DRL≻
S is obtained from DR≻

S by replacing PAR by SYM
¬ and

PAR
@.

The calculus would not be complete without this additional rule. This is
witnessed by the following example.

Example 8.1. Consider the set of (singleton) clauses N = {C1, C2} where
C1 = @ij and C2 = @j¬i with an ordering such that i ≻ j. N is evidently
unsatisfiable so, if SYM

¬ were not required for the completeness of DRL≻
S ,

one should be able to find a DRL≻
S -derivation of the empty clause that does

not use the SYM
¬ rule. However, we cannot use PAR

@ to replace i by j in
C2, and since i ≻ j we cannot use SYM on C1 to derive the singleton @ji
aiming to replace j by i in C2. Without SYM

¬ we would be stuck. But if
we use it, we can derive the empty clause as follows:

C3: @i¬j (by SYM
¬ on C2)

C4: @j¬j (by PAR
@ on C3 and C1)

⊥ (by REF on C4)

In order to prove the refutational completeness of DRL≻
S we simply have

to “tweak” the constructions used for the completeness proof of DR≻
S until

everything fits together again. It must be said upfront that, in this case,
the required notions and definitions are much less intuitive. We will try to
motivate them by giving a short account of the problems we will have to
face when adapting the proof.

Example 8.2. Let i ≻ j ≻ k and let the set N = {C1, C2, C3}, where
C1 = @jk, C2 = @ik∨@ij and C3 = @i¬j. It follows that, for any admissible
ordering, C3 ≻ C2 ≻ C1; therefore, we expect C1 to be productive and, thus,
we should have IC2

= {@jk}.
If we use the definitions from the completeness proof for DR≻

S , C2 would
have to be non-productive (since it is not in reduced form) and this would
make it the minimum counterexample for IN , only reducible by PAR with
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C1. However, this would not be a valid inference in DRL≻
S . Remember that

the notion of “reduced form” was introduced to characterize those clauses
that cannot be the main premise of a paramodulation inference using a
productive clause as side premise. Hence, we can already see that we need
to adjust the notion of “being in reduced form” in order to account for the
fact that C2 cannot be reduced by paramodulation. The natural way to do
this would be by demanding only the label of the maximum formula to be
reduced (this notion will be called weak reduced form in Definition 8.2).

But here comes the tricky part. If C2 becomes a reduced clause, it will
also turn into a productive one. In that case, C3 would be the minimum
counterexample for IN and the only inference we can draw from it is by using
the PAR

@ rule on C2 obtaining D = @ik ∨ @j¬j. However, now IN |= D,
and thus we don’t obtain a new counterexample. A closer inspection of this
example shows that it is actually the Upwards preservation lemma that is
failing.

Summing up, in order to prove that DRL≻
S has the reduction property

for counterexamples we need an Upwards preservation lemma. But from
Example 8.2, that implies that the following should hold:

IN |= @ij IN |= @jk IN 6|= @ik

which is simply not possible (because |= (@ij ∧ @jk) → @jk). To escape
from this apparent dead end, what we do is to drop the |= relation altogether
and repeat the steps of the completeness proof we did for DR≻

S , but now in
terms of a carefully tailored relation |≈ for which we shall have IN |≈@ij
and IN |≈@jk while IN 6 |≈@ik.

Of course, we will also have to ensure that whenever IN |≈ϕ |/≈, then
IN |= ϕ too, thus from proving that every saturated consistent set of clauses
is |≈-satisfiable we shall infer that every saturated consistent set of clauses is
also |=-satisfiable. Before moving to the definition of |≈, it is worth observing
that a similar example can be devised for relations.

Example 8.3. Let i ≻ j ≻ k ≻ l and let N = {C1, C2, C3, C4} where
C1 = @il, C2 = @jk, C3 = @l〈r〉j ∨ @i〈r〉k, and C4 = @l[r]¬j. This
time any admissible order entails C4 ≻ C3 ≻ C2 ≻ C1 and, clearly, C1 and
C2 must be productive clauses. According to the notion of reducedness of
Definition 7.11, C3 would be reducible and, therefore non-productive and the
minimum counterexample for IN . However, no inference can be drawn from
C3. Just like in Example 8.2 everything suggests we need to consider C3 as
a reduced clause, since its distinguished formula is @l〈r〉j and l is indeed
reduced, but this also makes it productive and C4 becomes the minimum
counterexample for IN . The only clause we can derive from C4 is D =
@j¬j ∨ @i〈r〉k, but IN |= D (because IN |= @i〈r〉k) and therefore we don’t
obtain a smaller counterexample as required in the completeness proof.



108 CHAPTER 8. MORE EFFECTIVE CALCULI

It turns out that Examples 8.2 and 8.3 are sufficiently general, in the
sense that every other counterexample can be seen as an instance of one
of these two. Essentially, we can say that the exhibited problem relates
to some form of aliasing due to the presence of nominals: in a productive
clause, there is some non-distinguished formula that also becomes true when
the distinguished formula is included in the candidate model (e.g. @ik in C2

of Example 8.2 and @i〈r〉k in C3 of Example 8.3); we shall call them aliased
formulas.

Fortunately, given some candidate model IN , we can give a syntactic
characterization of all the potential aliased formulas even without knowledge
of N . So, we will basically stipulate that I |≈ϕ holds whenever I |= ϕ and
ϕ is not potentially aliased, according to I.

Definition 8.1 (|≈). We define |≈ as the largest relation between hybrid
Herbrand models and @-formulas, such that:

1. I |≈ϕ implies I |= ϕ,

2. I |≈@ij iff I |≈@ji,

3. I |≈@ij and i ≻ j implies that for no k such that I |= @jk and k ≻ j,
@ik ∈ I,

4. I |≈@i〈r〉j implies that for no k and l such that I |= @ik, I |= @jl and
l ≻ j, @k〈r〉l ∈ I.

Revisiting Example 8.2 may help grasp the ideas behind Definition 8.1.

• IN |≈@jk holds because @jk ∈ IN and no other equality labeled with
j occurs in IN .

• IN |≈@ij holds for analogous reasons.

• Now, observe that IN |≈@ik does not hold, because IN |= @jk, @ij ∈
IN but j ≻ k. The last part is crucial; it implies that @ij ≻ @ik and,
thus, it means that @ik is a potentially aliased formula in the clause
that contributed @ij to IN (in fact, in Example 8.2 it is aliased).

The slight asymmetry between cases 3 and 4 in Definition 8.1 is due to the
fact that, as shown in Example 8.3, in the case of relations the labels of
the maximum formula and the aliased formula may differ1. The remaining
definitions are more natural.

1 At this point some readers may wonder if Definition 8.1 couldn’t be made simpler, e.g.,
by reducing case 3 to “I |≈@ij implies @ij ∈ I”. We encourage those readers to verify
that with the simpler definition no counterexample can be inferred from the minimum
counterexample for IN , when N is C1 = @jk, C2 = @ik, C3 = @kj, C4 = @ij and
C5 = @i¬j; with i ≻ j ≻ k.
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Definition 8.2 (Weak reduced form). Let C be a clause and ϕ = max≻(C).
If ϕ ∈ Simp is of the form @iψ with i = iσIC , then we say that both ϕ and
C are in weak reduced form.

As in the previous section, let N be an arbitrary but fixed set of clauses.

Definition 8.3 (εC for DRL≻
S ). Let C be a clause (not necessarily in N)

and let ϕ = max≻(C). If it simultaneously holds that:

1. C ∈ N ,

2. C is in weak reduced form,

3. ϕ ∈ PLit,

4. IC |/≈C, and

5. S(C) = ∅

then εC = {ϕ}; otherwise, εC = ∅.

Lemma 8.1 (Main clause reduction for DRL≻
S ). If C is the main premise

of an inference of DRL≻
S and D is one of its conclusions, then C ≻ D.

Proof. For SYM
¬, the property follows from its side-condition. For the rest

of the rules, it follows from the Main clause reduction lemma for DR≻
S .

Lemma 8.2 (Downwards preservation for DRL≻
S ). If IN |/≈C, then IC |/≈C

Proof. The proof runs similar to that of the equivalent lemma for DR≻
S . We

take D � C to be the least clause such that ID |≈C but ID |/≈C. Now, it
must be the case that for some ϕ ∈ C, ID |≈ϕ, but this implies that ID |= ϕ.
At this point, one can copy almost verbatim the proof of Lemma 7.2 to
conclude that it must also be the case that ID |= ϕ. Hence, if ID |/≈ϕ, it
must be because one of Conditions 3 or 4 of Definition 8.1 does not hold.

For the first case, assume ϕ = @ij and, thus, ID |/≈@ij. Since we know
ID |= @ij, it must be the case that for some k ≻ j, ID |= @jk and @ik ∈ ID.
This opens up two possibilities:

1. @ik ∈ ID. Since ID |= @ij, ID |= @jk, but that would imply ID |/≈@ij.

2. εD = {@ik}. We know ID |= @ij, but since D is productive, it must
be in weak reduced form, hence, jσID = i which implies j � i. But
since @ik ∈ Simp, i ≻ k and, by hypothesis, k ≻ j, which leads to
j � i ≻ k ≻ j.

For the second case, let ϕ = @i〈r〉j. Since ID |≈@i〈r〉j, ID must contain
formulas other than equalities and ǫD cannot be an equality. Hence, it must
be the case that ǫD = {@l〈r〉k} for l and k such that l ≻ j, ID |= @ik and
ID |= @jl. But since D is in weak reduced form we have lσID = l which
implies jσID = l and, thus, j � l. This contradicts l ≻ j.
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Observe that as a corollary we get that if C is productive, then IN |≈C,
which given conditions 3 and 4 of Definition 8.1, was not obvious.

Lemma 8.3 (Upwards preservation for DRL≻
S ). Let D be the consequent of

an inference whose main premise is C. If IN |/≈C and IC |/≈D, then IN |/≈D.

Proof. The proof follows that of Lemma 7.4. Thus, let ϕ be such that
max≻(C) ≻ ϕ and IC |/≈ϕ, and let E � C be the least clause such that
IE |/≈ϕ but IE |≈ϕ. Of the three possible cases, εE = {@ip} is handled
exactly like in the proof for Lemma 7.4 (details can be found in [Areces and
Goŕın, 2009]). We sketch the procedure for the case where εE is an equality,
the remaining case runs similarly.

If εE = {@ab} with a, b ∈ Nom, then a ≻ b, aσIE = a and ϕ has to be
an equality. That is, for some i, j ∈ Nom, i ≻ j, then either ϕ = @ij or
ϕ = @ji. In any case, we have ϕ � @ij and also I |≈@ij iff I |≈ϕ. We can
arrive to a contradiction proving, by case analysis, that it cannot be the case
a ≻ i nor i ≻ a nor a = i. The first two rely only on properties of admissible
orders, so we will only cover the last case here.

Let us assume that εE is {@ib}. If j � b, then @ij � @ib = max≻(E) �
max≻(C) ≻ ϕ � @ij. Now suppose b ≻ j. For this case, we will rely on
Condition 3 of Definition 8.1. Since IE |≈@ij, it must be the case IE |= @ij.
Now, from this and @ib ∈ IE , we get IE |= @jb, but since b ≻ j, @ib ≻ @ij
and, thus, we get the contradiction IE |/≈@ij

The path is finally downhill: from here we can essentially repeat all the
steps that lead us to Theorem 7.1. The only additional step is to verify that
if the distinguished formula of the minimum counterexample is of the form
@i¬j and is in weak reduced form, then we must have j ≻ i and, thus, the
SYM

¬ rule is applicable, which is straightforward (details in [Areces and
Goŕın, 2009]).

Theorem 8.1. DRL≻
S has the reduction property for counterexamples and,

therefore, is refutationally complete.

8.2 On the termination of DRL
≻
S for H(@)-formulas

As was observed in Chapter 1, H(@) is a decidable fragment of H(@, ↓).
A natural question to ask is then: can we obtain a decision procedure for
H(@) out of DR≻

S and/or DRL≻
S ?

There are roughly two ways in which one resolution is shown to be a
decision procedure for some class of formulas. The first one is showing that
for some orderings, every finite satisfiable set of clauses can be saturated in a
finite number of steps. The second one is similar, but one has to show that
resolution in conjunction with the eager application of some redundancy
elimination techniques (cf. Chapter 2) saturates a finite satisfiable set in
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finite steps. An example of such a redundancy elimination technique is
condensing : the replacement of a clause by the smallest instance of the
clause which subsumes it.

If any of these condition holds, implementing an effective algorithm that
computes this set in finite time is straightforward (e.g., using the “given
clause algorithm” [Voronkov, 2001]). Joyner, Jr. [1976] was the first one to
study first-order logic resolution as a decision procedure for fragments of the
language. Schmidt [1999] shows that resolution with condensing decide the
optimized functional translation of various classic modal logics (cf. Chap-
ter 6).

We will say that a calculus that saturates every satisfiable set of clauses
in finite steps is terminating. So, let’s consider the question if there are
admissible orderings for which DR≻

S and/or DRL≻
S are terminating. We

will assume that rule 〈r〉 is applied only once per clause. The previous
completeness proofs justify this assumption. Unfortunately, the answer is
strongly negative.

Proposition 8.1. There is a formula ϕ such that for every admissible or-
dering ≻ and every selection function S, DR≻

S and DRL≻
S require infinite

steps to saturate ClSet(ϕ).

Proof. Consider the formula @i[r](i∨@i〈r〉p)∧@i〈r〉p. Figure 8.2a show an
infinite derivation starting from this formula. In this derivation only rules
∧, ∨, @, 〈r〉 and [r] are used and, therefore, is a valid derivation both for
DR≻

S and DRL≻
S . Observe that every non-singleton clause contains exactly

one formula that is not an equality. By admissibility of ≻ this formula must
be the maximum one in the clause and since equalities are not selectable,
this cannot be overridden by any selection function.

What Proposition 8.1 is saying is that to find a decision procedure for
H(@) based on direct resolution we need either a redundancy elimination
strategy or a more refined calculus. In any case, observe that as no other
symbols but nominals are introduced by the calculus, and given that formu-
las in consequents are never larger (in number of operators) than those in
the antecedent, if we can control the generation of nominals we will ensure
termination2. So let’s begin by analyzing the conditions that give rise to the
generation of infinite nominals.

There are essentially two ways in which an infinite number of nominals
can be introduced by the rules of DR≻

S (or DRL≻
S ) when applied to a H(@)-

formula:

Type 1. A formula of the form @i〈r〉ϕ introduces a new nominal which, in
turn, contributes to the derivation of a new clause containing @i〈r〉ϕ.

2When devising terminating resolution strategies for fragments of first-order logic, the
related problem one usually has to face is term-depth growth.
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C1: @i[r](i ∨ @i〈r〉p) ∧ @i〈r〉p
C2: @i[r](i ∨ @i〈r〉p) (by ∧ on C1)
C3: @i〈r〉p (ditto)
C4: @i〈r〉k1 (by 〈r〉 on C3)
C5: @k1(i ∨ @i〈r〉p) (by [r] on C2 and C4)
C6: @k1i ∨ @k1@i〈r〉p (by ∨ on C5)

C7: @k1i ∨ @i〈r〉p (by @ on C6)

C8: @k1i ∨ @i〈r〉k2 (by 〈r〉 on C7)

C9: @k1i ∨ @k2(i ∨ @i〈r〉p) (by [r] on C2 and C8)

C10: @k1i ∨ @k2i ∨ @k2@i〈r〉p (by ∨ on C9)

C11: @k1i ∨ @k2i ∨ @i〈r〉p (ditto)
...

C15: @k1i ∨ @k2i ∨ @k3i ∨ @i〈r〉p (by ∨ on C14)
...

C4n+3: @k1i ∨ · · · ∨ @kn
i ∨ @i〈r〉p (by ∨ on C4n+2)

(a) Type 1: @j〈r〉p introduces kn which is used to produce @j〈r〉p again. The maxi-
mum formula of each non-singleton clause is underlined.

C1: @i[r](i ∧ 〈r〉p) ∧ @i〈r〉p
C2: @i[r](i ∧ 〈r〉p) (by ∧ on C1)
C3: @i〈r〉p (ditto)
C4: @i〈r〉k1 (by 〈r〉 on C3)
C5: @k1(i ∧ 〈r〉p) (by [r] on C2 and C4)
C6: @k1i (by ∧ on C5)
C7: @k1〈r〉p (ditto)
C8: @k1〈r〉k2 (by 〈r〉 on C7)

C9: @i〈r〉k2 (by PAR
@ on C8 and C6)

C10: @k2(i ∧ 〈r〉p) (by [r] on C2 and C9)
C11: @k2i (by ∧ on C10)
C12: @k2〈r〉p (ditto)
C13: @k2〈r〉k3 (by 〈r〉 on C12)

C14: @i〈r〉k3 (by PAR
@ on C13 and C11)

...

C19: @i〈r〉k4 (by PAR
@ on C18 and C16)

...

C5n−1: @i〈r〉kn (by PAR
@ on C5n−2 and C5n−3)

(b) Type 2: Nominals k1, k2, . . . are such that each kn+1 is introduced by @kn
〈r〉p. i

is assumed to be the smallest nominal (wrt. ≻).

Figure 8.2: Infinite derivations assuming that ≻ is an admissible ordering.



8.3. HILBERT’S ǫ-OPERATOR AND DRLǫ≻S 113

i0

i1
i2
i3
i4
...

(a) Type 1 derivations

i0 i1 i2 i3 . . .

(b) Type 2 deriations

Figure 8.3: i→ j means j was introduced from C ∨ @i〈r〉ϕ by rule 〈r〉.

All of these new nominals are immediate successors of i and they are
actually representing the same state in the model, but the calculus
cannot detect it. This form of infinite derivation was the one used in
the proof of Proposition 8.1, illustrated in Figure 8.2a.

Type 2. There is a formula ϕ and an infinite sequence of distinct nominals
i0, i1, i2, . . . such that, for all n ≥ 0, some @in〈r〉ϕ in the saturated
set introduces, by way of rule 〈r〉, the nominal in+1. The calculus is
exploring a cycle in the model and cannot detect when to stop the
search. Figure 8.2b shows an example of this type of derivations.

Figure 8.3 can be used to verify that derivations of Type 1 and 2 cover
all the possible cases. If an infinite number of nominals is generated we need
to have either infinite branching (corresponding to Type 1 derivations) or
an infinite chain (Type 2 derivations).

This analysis shows that, to ensure termination, we need to impose some
control both on the nominals generated by rule 〈r〉 and on the way chains
of nominal successors are treated.

We devote the rest of this chapter to this issue. It turns out that to tame
Type 1 derivations it suffices to make the fresh nominal introduced by rule
〈r〉 on C ∨@i〈r〉ϕ a function of @i〈r〉ϕ. Controlling Type 2 derivations will
require a careful refinement of rule PAR

@. The upshot is we will introduce
a refinement of DRL≻

S for which we will be able to guarantee termination for
H(@) without requiring additional redundancy elimination rules.

Before introducing this final calculus, we will have to take a detour and
introduce a hybrid version of Hilbert’s ǫ-operator. Terms built using this
new operator will replace “fresh” nominals and will provide us the notion of
derivation history) we need to control the generation of infinite chains.

8.3 Hilbert’s ǫ-operator and DRLǫ
≻
S

The ǫ-operator was introduced by Hilbert as part of his program to establish
the consistency of arithmetic by finitary means. A first-order ǫ-term is
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of the form ǫx.ϕ(x) where ϕ(x) is a formula and its intended meaning is:
“some element e such that ϕ(e) holds, or an arbitrary element if no such e
exists” [Hilbert and Bernays, 1939, Leisenring, 1969]. The ǫ-terms were later
investigated in the context of linguistics, philosophy and non-classical logics.
From the point of view of automated reasoning, ǫ-terms can be seen as an
alternative to skolem functions [Giese and Ahrendt, 1999]. Our interest in ǫ-
terms lies in that, unlike “fresh” nominals (i.e., skolem constants) an ǫ-term
keeps track of its own derivation history.

In first-order logic enriched with the ǫ-operator, the notion of formula
and term become mutually recursive. In hybrid logics, on the other hand, the
boundary between formula and term vanishes; hence, they are an interesting
setting on their own in which to introduce and investigate ǫ-operators.

We will enrich H(@, ↓) with ǫ-terms of the form ǫ〈l, r, ϕ〉 (for l a nominal
or an ǫ-term and r ∈ Rel) denoting “an r-successor of l where ϕ holds if such
exists, or any element (not necessarily a successor of l) otherwise”. Observe
that unlike their first-order cousins, hybrid ǫ-terms do not bind variables.

Definition 8.4 (Syntax of H(@, ↓, ǫ)). We will define the set of ǫ-formulas
and the hybrid language H(@, ↓, ǫ) in a mutually recursive way. Assume
a fixed signature S = 〈Prop,Nom,Rel〉. We define the set of ǫ-formulas as
ǫ-forms = {ǫ〈l, r, ϕ〉 | ϕ ∈ H(@, ↓, ǫ)}. For convenience we will use the set of
labels Lab = Nom∪ǫ-forms when we don’t want to distinguish nominals from
ǫ-formulas. Elements of Lab will be denoted l,m, n, . . . Finally, H(@, ↓, ǫ) is
defined as:

ϕ ::= p | l | ¬ϕ | ϕ ∧ ϕ | [r]ϕ | @lϕ | ↓i.ϕ

Observe that ǫ-formulas can occur nested, as in the following formula:

@ǫ〈ǫ〈i,r,¬p〉,s,p〉(q ∧ [s]ǫ〈i, r, q〉) (8.1)

The subsets of H(@, ↓) that were used until now are lifted to H(@, ↓, ǫ)
in a trivial way (e.g. we assume PLit ::= @lm | @lp | @l〈r〉m).

Definition 8.5 (Semantics of H(@, ↓, ǫ)). We shall call pre-structure to any
tuple 〈M, A〉 where M = 〈W,R, V, g〉 is a conventional hybrid model, and
A : ǫ-forms →W . The satisfaction relation |= is defined as follows:

〈M, A〉, w |= p iff w ∈ V (p)

〈M, A〉, w |= i iff w = g(i)

〈M, A〉, w |= ǫ〈l, r, ϕ〉 iff w = A(ǫ〈l, r, ϕ〉)

〈M, A〉, w |= ¬ϕ iff 〈M, A〉, w 6|= ϕ

〈M, A〉, w |= ϕ1 ∧ ϕ2 iff 〈M, A〉, w |= ϕ1 and 〈M, A〉, w |= ϕ2

〈M, A〉, w |= [r]ϕ iff (w, v) implies 〈M, A〉, v |= ϕ, for all v ∈W

〈M, A〉, w |= @iϕ iff 〈M, A〉, g(i) |= ϕ
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〈M, A〉, w |= @ǫ〈l,r,ϕ〉ϕ iff 〈M, A〉, A(ǫ〈l, r, ϕ〉) |= ϕ

〈M, A〉, w |= ↓i.ϕiff〈Mw
i , A〉, w |= ϕ

A pre-structure 〈M, A〉 will be called a model when the following condition
holds: if 〈M, A〉 |= @l〈r〉ϕ then 〈M, A〉 |= @l〈r〉ǫ〈l, r, ϕ〉 and 〈M, A〉 |=
@ǫ〈l,r,ϕ〉ϕ. In addition, whenever 〈M, A〉 |= @lm implies A(ǫ〈l, r, ϕ〉) =
A(ǫ〈m, r, ϕ〉) we will say that 〈M, A〉 is closed under renaming of labels.

Intuitively, a model is a pre-structure where A interprets ǫ-formulas cor-
rectly. A model closed under renaming of labels is, in a way, minimizing the
number of witnesses for ǫ-formulas.

Proposition 8.2. Let ϕ be a formula where no ǫ-formula occurs. Then ϕ
is satisfiable iff it is satisfiable by a model closed under renaming of labels.

Proof. The right-to-left implication is trivial. Now, for the other direction,
since no ǫ-formula occurs in ϕ, that means that 〈M, A〉 |= ϕ implies M |= ϕ.
So we only need to check that given M = 〈W,R, V, g〉 we can always pick
an A′ such that 〈M, A′〉 is closed under renaming of labels. For this, take
any total and well-founded ordering on W , let w⊥ be some fixed element of
W and simply define:

A′(ǫ〈l, r, ϕ〉)
def
=

{

min{w | (v(l), w) ∈ R(m),M, w |= ϕ} if M |= @l〈r〉ϕ
w⊥ otherwise

v(l)
def
=

{

g(l) if l ∈ Nom

A′(l) if l ∈ ǫ-forms

A′ is well-defined and it is trivial to verify that 〈M, A′〉 is closed under
renaming of labels.

As we have been doing so far, for the rest of this section we will assume
formulas are in negation normal form.

In Figure 8.4 we introduce the calculus DRLǫ≻S , which we will prove
complete for H(@, ↓) and terminating for the fragment H(@). It is important
to keep in mind that DRLǫ≻S is intended to be sound but not complete for
H(@, ↓, ǫ).

This calculus differs from DRL≻
S in only a few aspects: i) the rules are

written in terms of formulas that may be labeled by nominals or ǫ-formula),
ii) rule 〈r〉ǫ uses ǫ-formulas instead of fresh nominals and, iii) the PAR

@

rule is replaced by four rules: PAR
@
6✸, PAR

@
✸i, PAR

@
✸ǫ and PAR

@↓
✸ǫ . The

first two are simply the PAR
@ rule over a restricted domain, namely that

where the distinguished formula is not of the form @l〈r〉ǫ〈m, s, ϕ〉. The last
two handle this case. Observe PAR

@
✸ǫ handles the case where l = m and

r = s. As we will later see, this rule is crucial to avoid the generation of
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RES
C ∨ @l¬p D ∨ @lp

C ∨D
REF

C ∨ @l¬l

C

SYM
C ∨ @ml

C ∨ @lm
† SYM

¬ C ∨ @m¬l

C ∨ @l¬m
†

PAR
@
✸ǫ

C ∨ @l〈r〉ǫ〈l, r, ϕ〉 D ∨ @lm

C ∨D ∨ @m〈r〉ǫ〈m, r, ϕ〉
C ∨D ∨ @ǫ〈l,r,ϕ〉ǫ〈m, r, ϕ〉

† PAR
@
✸i

C ∨ @l〈r〉i D ∨ @lm

C ∨D ∨ @m〈r〉i
†

PAR
@↓
✸ǫ

C ∨ @l〈r〉ǫ〈n, s, ϕ〉 D ∨ @lm

C ∨D ∨ @m〈r〉ǫ〈n, s, ϕ〉
‡ PAR

@
6✸

C ∨ @lϕ D ∨ @lm

C ∨D ∨ @mϕ
⋆

∧
C ∨ @l(ϕ1 ∧ ϕ2)

C ∨ @lϕ1 C ∨ @lϕ2
∨

C ∨ @l(ϕ1 ∨ ϕ2)

C ∨ @lϕ1 ∨ @lϕ2

[r]
C ∨ @l[r]ϕ D ∨ @l〈r〉m

C ∨D ∨ @mϕ
〈r〉ǫ

C ∨ @l〈r〉ϕ

C ∨ @l〈r〉ǫ〈l, r, ϕ〉
C ∨ @ǫ〈l,r,ϕ〉ϕ

∗

@
C ∨ @l@mϕ

C ∨ @mϕ
↓

C ∨ @l↓i.ϕ

C ∨ @lϕ(i/l)

Side conditions

† l ≻ m

‡ l ≻ m and, l 6= n or r 6= s

⋆ l ≻ m, ϕ ≻ m, @lϕ ∈ Simp and ϕ 6= 〈r〉n

∗ ϕ 6∈ Lab

Global conditions

• in C∨ψ, ψ must be selected by S or ≻-maximum in the clause.

• inD∨ψ, ψ is ≻-maximum in the clause and nothing is selected.

Figure 8.4: The ordered resolution calculus DRLǫ≻S , for S a selection function
and ≻ an ordering.
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infinite chains of nominals (cf. Figure 8.3b). We will also see that the case
handled by rule PAR

@↓
✸ǫ (namely, l 6= m or r 6= s) can only occur if the input

formula contains the ↓ operator and therefore the name of the rule.
Because of the ǫ-formulas, soundness of the calculus is not self-evident

as in the previous cases.

Theorem 8.2. DRLǫ≻S is sound with respect to H(@, ↓ǫ) (and, therefore, to
H(@, ↓)).

Proof. It is easy to see that, except for PAR
@
✸ǫ, all the rules of DRLǫ≻S are

truth-preserving; that is, every model that makes true the antecedent of
a rule satisfies also the consequents. In particular this is true of the 〈r〉ǫ,
unlike rule 〈r〉 in the previous calculi where the fresh nominal had to be
conveniently interpreted and was, therefore, satisfaction-preserving. Rule
PAR

@
✸ǫ, on the other hand, is truth-preserving but only when restricted to

the class of models closed under renaming of variables and therefore the
whole calculus is sound with respect to this class. But from Proposition 8.2,
a H(@, ↓, ǫ)-formula is satisfiable iff it is satisfiable in the class of models
closed under renaming of variables, from which soundness trivially follows.

We now move to the issue of refutational completeness. For this, we first
need to extend the notion of admissible order to the new language.

Definition 8.6 (Admissible ordering). We say an ordering ≻ on formulas
of H(@, ↓, ǫ) is admissible for DRLǫ≻S if it satisfies the following conditions,
for all i ∈ Nom, every l,m ∈ Lab and all ϕ, ψ ∈ H(@, ↓, ǫ):

A1) ≻ is a total simplification order

A2) ϕ ≻ l for all ϕ 6∈ Lab

A3) if ϕ ≻ ψ, then @lϕ ≻ @mψ

A4) if ψ is a proper subformula of ϕ, then ϕ ≻ ψ(l/m)

A5) [r]l ≻ 〈r〉m

A6) l ≻ m implies ǫ〈l, r, ϕ〉 ≻ ǫ〈m, r, ϕ〉.

The reader should check that conditions AA1) to AA5) are essentially
those of Definition 7.5 but generalized to Lab. It is straightforward to extend
the Knuth-Bendix ordering we used in Proposition 7.1 to obtain an ordering
that also satisfies Condition AA6). Notice that this condition guarantees
that the main premise of rule PAR

@
✸ǫ is greater than its consequents. With

this, it is easy to see that the Main premise reduction lemma holds.

Theorem 8.3. DRLǫ≻S is refutationally complete for H(@, ↓).
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Proof. The proof is an almost verbatim reproduction of the completeness
proof we already did for DRL≻

S . The only thing to be adjusted is that
now a set I of PLit formulas shall denote the pre-structure 〈I, AI〉, where
AI(l) = [l], i.e., the equivalence class of l in I. Observe that for the case
where the least counterexample is not in weak-reduced form, we can derive
a new counterexample by using one of rules PAR

@
6✸, PAR

@
✸ǫ, PAR

@↓
✸ǫ or

PAR
@
✸i.

Notice that the calculus DRLǫ≻S is not complete for H(@, ↓, ǫ). For ex-
ample, the formula @i(〈r〉p∧ [r]¬q)∧@ǫ〈i,r,p∨q〉¬p leads to a saturated set of
clauses that does not contain the empty clause, although it is unsatisfiable.
This is because if 〈M, A〉 |= @i(〈r〉p∧ [r]¬q) then 〈M, A〉 |= @i〈r〉ǫ〈i, r, p〉 ∧
@ǫ〈i,r,p〉(p∧¬q) and, therefore, 〈M, A〉 |= @i〈r〉ǫ〈i, r, p∨q〉∧@ǫ〈i,r,p∨q〉(p∧¬q).
The catch in the proof of Theorem 8.3 is that the pre-structure 〈I, AI〉 does
not necessarily satisfy the conditions imposed in Definition 8.5 for it to be
a model of H(@, ↓, ǫ).

8.4 DRLǫ
≻
S is terminating for H(@)

We finally turn to the problem of proving that there exist admissible order-
ings ≻ such that, when the input formula is in H(@), DRLǫ≻S doesn’t generate
infinite saturated sets. To do this, we define the function level : Lab → IN:

level(i) = 0
level(ǫ〈l, r, ϕ〉) = level(l) + 1.

Now we can define the class of terminating orders.

Definition 8.7. We say ≻ is terminating if it is admissible for DRLǫ≻S and
for every l,m ∈ Lab, level(l) > level(m) implies l ≻ m.

Now we can formally state what we will prove, namely that if ≻ is
terminating then, for every ϕ ∈ H(@), the following conditions hold:

T1(ϕ): {l | level(l) = k and l occurs in ClSet∗
S≻T

(ϕ)} is finite, for all k ≥ 0.

T2(ϕ): {level(l) | l occurs in ClSet∗
S≻T

(ϕ)} is finite.

where ClSet∗
S≻T

(ϕ) is the least set that contains ClSet(ϕ) and is closed under
the rules of DRLǫ≻S . The reader should check that these conditions guarantee,
respectively, that the problems of Type 1 and 2 previously discussed cannot
occur. In what follows, ≻ is taken to be an arbitrary terminating order.

Theorem 8.4. For every ϕ ∈ H(@), T1(ϕ) holds.

Proof. First, two rather trivial observations:

1. If ǫ〈l, r, ψ〉 occurs in ClSet∗
S≻T

(ϕ), then so does l.
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2. If ǫ〈l, r, ψ〉 occurs in ClSet∗
S≻T

(ϕ), then 〈r〉ψ is a subformula of ϕ.

Clearly the last condition does not hold if the ↓ operator occurs in ϕ3.
Now, let us define Ck = {l | level(l) = k and l occurs in ClSet∗

S≻T
(ϕ)}, and

proceed by induction on k. C0 is finite: it contains only the finitely many
nominals in ClSet(ϕ). For the inductive case, let us suppose, that Ck is
finite but Ck+1 is not. By Observation 1, it must be the case that for
some l ∈ Ck there exist infinitely many 〈r0〉ψ0, 〈r1〉ψ1, 〈r2〉ψ2 . . . such that
ǫ〈l, ri, ψi〉 ∈ Ck+1 for i ≥ 0. However, this clearly contradicts Observation 2,
for ϕ has only finitely many subformulas.

To prove that condition T2(ϕ) holds for ϕ ∈ H(@), we need to find an
upper bound for the level of the labels that may appear in ClSet∗

S≻T
(ϕ).

The modal depth md(ϕ) (cf. Definition 1.16) gives us the desired bound.
The proof relies heavily on the fact that, as long as the ↓ operator does not
occur in the input formula, terms of the form ǫ〈l, r, ψ〉 may occur only in
restricted positions. The following lemma formalizes this statement.

Lemma 8.4. For all ϕ ∈ H(@), ǫ〈l, r, ψ〉 occurs in ClSet∗
S≻T

(ϕ) only in the
following kind of formulas:

1. @mǫ〈l, r, ψ〉, with m 6= ǫ〈l, r, ψ〉

2. @l〈r〉ǫ〈l, r, ψ〉

3. @ǫ〈l,r,ψ〉θ, and if an ǫ-term occurs in θ, then @ǫ〈l,r,ψ〉θ is also a formula
of kind 1 or 2.

Proof. The proof is by induction on the derivation of a formula where
ǫ〈l, r, ψ〉 occurs. For the base case, an ǫ-formula simply cannot occur in
ϕ. For the inductive case, consider the last rule used to derive a formula
containing ǫ〈l, r, ψ〉. We discuss only the few interesting cases. It cannot be
the case that the SYM

¬ rule generates @m¬ǫ〈l, r, ψ〉 because the premise
would have to be @ǫ〈l,r,ψ〉¬m and, since by inductive hypothesis m could not
be an ǫ-term, level(ǫ〈l, r, ψ〉) > level(m) and this implies, by Definition 8.7,
that ǫ〈l, r, ψ〉 ≻ m which contradicts the side-condition of the rule. For the
PAR

@
6✸ rule, the interesting case is when both premises are equalities but in

that case the side condition guarantees that @mm cannot be derived. Fi-
nally, observe that, by inductive hypothesis, there are no suitable premises
for rule PAR

@↓
✸ǫ .

Now, Lemma 8.4 is roughly saying4 that, when restricted to input for-
mulas in H(@), ǫ〈l, r, ψ〉 may occur in ClSet∗

S≻T
(ϕ) only as label of @-

formulas, or as the right-hand-side of equalities and relations. However,

3For an example of this, consider ϕ = @i〈r〉↓j.〈r〉(j ∧ p).
4 This lemma also formally proves that rule PAR

@↓
✸ǫ is only required when the input

formula contains the ↓ operator.
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in the last case they are restricted to this form: @l〈r〉ǫ〈l, r, ψ〉 and we know
that level(ǫ〈l, r, ψ〉) = level(l)+1. Hence, in order to show that T2(ϕ) holds,
we only need to find a bound for the level of ǫ-formulas occurring in labels
and in the right-hand-side of equalities.

Theorem 8.5. If ϕ ∈ H(@) then:

• @lψ occurs in ClSet∗
S≻T

(ϕ) implies level(l) + md(ψ) ≤ md(ϕ)

• @lm occurs in ClSet∗
S≻T

(ϕ) implies level(m) ≤ md(ϕ).

The proof is carried out by a longish yet straightforward induction on
the derivation of formulas. It is presented in full detail in [Areces and Goŕın,
2009].

Corollary 8.1. For all ϕ ∈ ClSet∗
S≻T

(ϕ), T2(ϕ) holds.

Since, for ϕ ∈ H(@), every formula in ClSet∗
S≻T

(ϕ) is made of subformu-
las of ϕ and ǫ-terms, and from Theorem 8.4 and Corollary 8.1 there only
finitely many of these, it follows that ClSet∗

S≻T
(ϕ) must be finite.

Theorem 8.6. DRLǫ≻S is a decision procedure for the satisfiability of H(@).



Chapter 9

Notes from an implementor

In the last two chapters we developed the theoretical basis that allows an ef-
fective implementation of the direct resolution calculus. As Voronkov [2001]
points out, a good theory alone is not enough to implement a realistic prover.
One needs to combine it with both efficient algorithms and data structures,
and clever heuristics.

Fortunately, since all our completeness proofs follow the framework de-
veloped by Bachmair and Ganzinger [2001] (cf. Chapter 2), we can take
advantage of many crucial techniques developed for resolution-based first-
order theorem proving. This is, roughly, the idea that guided us in the
design of the prototypic theorem prover HyLoRes.

The aim of this prover was to serve as a proof-of-concept, with the fo-
cus set on simplifying its extension with new rules, strategies and language
constructs rather than speed. Nevertheless, most, if not all, of the basic
simplification and redundancy elimination techniques that one expects to
find in a modern saturation-based theorem prover were incorporated.

A large part of the complexity of first-order resolution-based theorem
provers comes from the fact that inferences, simplification and redundancy
detection need to be done modulo some form of unification. In fact, a lot
of research effort has been put in term indexing techniques, roughly “tech-
niques for the design and implementation of structures that facilitate rapid
retrieval of set of candidate terms satisfying some property (such as general-
izations, instances, unifiability, etc.) from a large collection of terms.” [Sekar
et al., 2001].

It is widely accepted that these term-indexing techniques share a large
portion of the merit for the outstanding performance of modern first-order
provers. However, this also means that some enhancements that are well-
known in theory cannot be implemented until their compatibility with ex-
isting term indexing techniques is shown or radically new techniques are
developed (Voronkov [2001] cites the basic strategy [Nieuwenhuis and Ru-
bio, 1992] as a classical example of this).

121
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The direct resolution calculus, on the other hand, is a ground calculus
so there is no need for this kind of complex apparatus. It is, arguably,
simpler to implement. Still, we have found that some well-known techniques
must be adapted to this setting with a lot of care or they may compromise
the completeness of the calculus. Many of these issues were identified only
after very long hours of going through derivations that failed to arrive at a
contradiction. It is in the best interests of anyone willing to implement the
direct resolution calculus that we will present here our findings.

9.1 The architecture of HyLoRes

In HyLoRes we have implemented the calculus DRLǫ≻S presented in Chap-
ter 8 extended with some rules to handle additional language constructs
(cf. Section 9.4). This makes HyLoRes an effective decision procedure for
H(@).

Conceptually, HyLoRes follows the approach described in Chapter 2:
it attempts to derive a contradiction while building a saturation up to re-
dundancy of the initial set of clauses. The redundancy criterion used is
comprehended by the standard criterion: it include the subsumption prin-
ciple, the identification of trivially tautological clauses and the observation
that the premise of an inference using any of the unary rules of DRLǫ≻S is
always deemed redundant by its consequents.

Like almost every modern saturation-based automated theorem prover,
HyLoRes implements a variant of the given clause algorithm, whose first
use, according to Lusk [1992], dates back to the resolution-based Function-
less Theorem Prover implemented by Overbeek in the mid seventies. It is
regarded today as a versatile algorithm to compute the closure of any set
with respect to a collection of inference rules.

In this algorithm, the clause set is partitioned in two: Active and Pas-

sive clauses. The important invariant is that every possible inference be-
tween Active clauses has already been performed. Passive is a fair priority
queue (by “fair” we mean that it is guaranteed that no clause may be queued
indefinitely long). At every step, the “most promising” clause (i.e., the one
with highest priority) is selected from Passive and every possible inference
between this given clause and Active clauses is computed; the given clause
then becomes an Active clause. This conceptually simple idea is compli-
cated slightly by the introduction of redundancy elimination checks at some
stages.

Figure 9.1 describes the actual given clause loop used in HyLoRes.
Notice that newly inferred clauses are temporarily accumulated in a set New

prior to entering Passive. Observe also that the main loop may terminate
in steps 1 or 3; in the first case, this means the input was unsatisfiable, in
the second one, that the clause set is saturated with respect to redundancy
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Inference

engine

Passive

Active

NewGiven clause

➊ Clauses in New are normal-

ized. Those trivial or subsumed by

Passive ∪ Active are discarded. If

New contains a contradiction, stop.

➋ Surviving clauses

are moved to Passive.

➌ Clauses in Passive ∪ Active

subsumed by the newly added are

removed. If Passive is empty,

stop.

➍ Clause with highest

priority is picked as

“given clause” and

removed from

Passive.

➎ Results of all possible inferences

between given and active clauses

are computed an stored in New.

➏ Every clause that was a premise

in some inference and is subsumed

by one of its consequents is re-

moved from Active.

➐ Given clause

is moved to Active,

unless subsumed by New.

Figure 9.1: Description of the given clause algorithm used in HyLoRes.

and no contradiction was found (therefore, the input was satisfiable).

There are three distinct subsumption checks, at steps 1, 3, and 6. The
first one is usually called a forward subsumption check and is known to
be crucial in resolution-based theorem proving. The last two are backward
subsumption checks, where newly derived clauses are checked to see if they
subsume a clause already in the clause set. Backward subsumption does not
play a role as important as forward subsumption; the check on step 3 may
be computationally expensive and, in many cases, it is better to disable it
altogether (this can be configured in HyLoRes). On the other hand, the
check in step 6 is local, can be performed cheaply on every inference and is
therefore always enabled.

Forward subsumption check is a computationally expensive operation.
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It is efficiently implemented in HyLoRes using an auxiliary data structure,
which represents clauses in Passive ∪ Active as an ordered trie: every
branch of the trie represents a clause and formulas on each branch occur in
ascending order. The forward subsumption check then reduces to finding a
branch in the trie that only contain formulas occurring in the clause to be
checked.

If a clause in New is found not to be subsumed by the clause set, it
is added to the trie and, therefore may be used to subsume the remaining
clauses in New. This is why in HyLoRes clauses with fewer formulas are
tested for subsumption first.

If the loop ends because Passive is found to be empty (step 3), then
Active contains a set of clauses saturated up to redundancy and we can
use the candidate model construction to build a model that satisfies all the
clauses in Active (as well as the initial formulas). HyLoRes actually im-
plements this feature, which has proved to be invaluable in detecting errors in
the implementation: these errors typically compromise completeness which
means that the prover will answer “satisfiable” on an unsatisfiable formula.
By combining model-generation with model-checking, one can automatically
detect bogus satisfiability claims.

9.2 Normalization and tautology elimination

The first step in the given clause algorithm displayed in Figure 9.1 includes
the normalization of clauses in New. An important aspect of normalization
is the orientation of equalities and inequalities. That is, for any two labels
l ≻ m, neither @ml nor @m¬l can occur in a normalized clause. Orientation
of (in)equalities can be seen as an eager application of the unordered version
of rules SYM and SYM

¬ of DRLǫ≻S and is therefore a sound operation and
is easily shown to preserve completeness. It also means that these rules need
not be implemented and that the side conditions of the form l ≻ m in the
paramodulation rules need not be checked.

Clearly, if a disjunct on some clause is a contradiction then it is safe
to remove it from the clause. As part of the clause normalization process,
some trivial contradictions (e.g., formulas of the form @i⊥, @i〈r〉⊥ or @i¬i)
are searched for and removed when found. Observe that by removing such
contradiction one can obtain an empty clause, proving the unsatisfiability
of the input. Because of this form of normalization, it is not necessary to
implement rule REF.

Normalization in HyLoRes also involves the pre-calculation of data that
is relevant for the internal representation of clauses that enter Passive, but
we won’t go into those details here.

Tautological clauses are intuitively redundant, but they are also “redun-
dant” in the technical sense defined by Bachmair and Ganzinger [2001]. In
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C1: @j¬l
C2: @k〈r〉i
C3: @i[r]¬k
C4: @ik ∨ @ij

C5: @jl ∨ @jk

C6: @ik ∨ @j [r]¬k (by PAR
@
6✸ on C3 and C4)

C7: @jl ∨ @k¬l (by PAR
@
6✸ on C1 and C5)

C8: @jl ∨ @ik ∨ @k[r]¬k (by PAR
@
6✸ on C6 and C5)

✚✚❩❩C9: @jl ∨ @ik ∨ @i¬k (by [r] on C8 and C2, tautology)

Figure 9.2: Clauses C1–C5 are unsatisfiable, but this derivation fails to
arrive at the empty clause. We assume i, j, k, l to be nominals such that
i ≻ j ≻ k ≻ l. The maximum disjunct of a clause is underlined.

fact, they are trivially comprehended by the standard redundancy criterion.
Because we have shown the direct resolution calculi of the previous chapters
to be compatible with standard redundancy, it is safe to discard these type
of clauses in their implementations without compromising completeness. Or
is it?

While experimenting with an early version of HyLoRes we stumbled
upon an unsatisfiable formula which the prover could not refute. This, as
anyone who implemented a theorem prover knows, is, unfortunately, a fairly
typical scenario and simply signals a bug in the implementation. What
was rather perplexing in this particular case was that, even after radically
reducing the size of the failed derivation, we were unable to identify a missing
inference that would explain this failure.

In Figure 9.2 we reproduce this puzzling derivation. The first thing to
notice is that clauses C1–C5 cannot be simultaneously satisfied. To see this,
observe that from C1 and C5 a model for these clauses would have to satisfy
j = k and, because of C4, it would additionally have to satisfy i = j = k.
But C2 and C3 cannot be simultaneously true with i = k. The second thing
to observe is that the derived clause C9 is a tautology; in fact, one that
HyLoRes was able to detect and discard. But once this clause is ignored
there is no other inference to be made.

This was a very frustrating example; indeed one which would cast a
shadow of doubt on the validity of our completeness proof for DRLǫ≻S . Were
the proof correct, then DRLǫ≻S would possess the reduction property for
counterexamples and this example seemed to show this was not the case.
It was quite reassuring when we ultimately found out that it was not the
completeness of the calculus what we got wrong, but the appropriate notion
of tautology, instead.

To better see this, let N be the set containing clauses C1–C8. According
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C1: @j¬l
C2: @k〈r〉i
C3: @i[r]¬k
C4: @ik ∨ @ij

C5: @jl ∨ @jk

C6: @ik ∨ @j [r]¬k (by PAR
@
6✸ on C3 and C4)

C7: @jl ∨ @k¬l (by PAR
@
6✸ on C1 and C5)

C8: @jl ∨ @ik ∨ @k[r]¬k (by PAR
@
6✸ on C6 and C5)

C9: @jl ∨ @ik ∨ @i¬k (by [r] on C8 and C2)

C10: @jl ∨ @ik ∨ @j¬k (by PAR
@
6✸ on C9 and C4)

C11: @jl ∨ @ik ∨ @k¬k (by PAR
@
6✸ on C10 and C5)

C12: @jl ∨ @ik (by REF on C11)

C13: @jl ∨ @k[r]¬k (by PAR
@
6✸ on C3 and C12)

✟
✟❍
❍C14: @jl ∨ @ik ∨ @kj (by PAR

@
6✸ on C4 and C12, subs. by C12)

✟
✟❍
❍C15: @jl ∨ @ik ∨ @k¬k (by PAR

@
6✸ on C9 and C12, subs. by C12)

C16: @jl ∨ @i¬k (by [r] on C13 and C2)

✟
✟❍
❍C17: @jl ∨ @ik ∨ @j¬k (by PAR

@
6✸ on C16 and C4, subs. by C12)

C18: @jl ∨ @k¬k (by PAR
@
6✸ on C16 and C12)

C19: @jl (by REF on C18)

C20: @l¬l (by PAR
@
6✸ on C3 and C19)

C21: ⊥ (by REF on C20)

Figure 9.3: If C9 in Figure 9.2 is kept, the empty clause is eventually derived.

to Definition 8.3, IN = {@jk,@ij,@k〈r〉i}, which means C8 is the smallest
counterexample, and C9 is the only inference that can be drawn from it
(using a productive clause, C2, as predicted). By Theorem 8.1 we should
have that C9 must be a counterexample for IN too, but C9 is a tautology,
how could that be?

Technically speaking, what Theorem 8.1 predicts is IN |/≈C9 and this is
indeed the case! To see this, observe that while IN |= @ik holds, we have
IN |/≈@ik, and this is because IN |= @kj, j ≻ k and @ij ∈ IN .

Summing up, one has to keep in mind that both DRL≻
S and DRLǫ≻S

have the reduction property for counterexamples, but with respect to |≈.
This means that the correct notion of standard redundancy for these calculi
would be that a clause C is redundant with respect toN if there exist clauses
C1, . . . Ck in N such that C1, . . . , Ck |≈C and C ≻ Ci for all 1 ≤ i ≤ k. A
clause like C9 is a tautology with respect to |=, but not with respect to |≈
and, therefore, it is not redundant and cannot be eliminated. Figure 9.3
shows that if C9 is kept, a contradiction is derived.
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Similarly, it is not possible to consider @i〈r〉j ∨ @i[r]¬j a redundant
clause. However, for every Herbrand model I, it is always the case that
either I |≈@ip or I |≈@i¬p, so it is safe to remove as redundant a clause of
the form @ip ∨ @i¬p.

9.3 Paramodulation and rewriting

We have seen that DRL≻
S (and, therefore, also DRLǫ≻S ) differs from DR≻

S

in that paramodulation rules only replace labels of distinguished formulas.
This is a good property from the point of view of implementation. For
example, if the distinguished formula of the given clause is of the form @ij,
then we only need to retrieve from Active those clauses whose distinguished
formula has i as label and by simply indexing clauses in Active by label
this can be done efficiently.

Notice, however, that once a clause is retrieved one may opt to replace
every occurrence of the matched nominal in the formula and not only its
label. This would be effectively equivalent to adding the PAR rule from DR≻

S

to the calculus.

In HyLoRes we have implemented paramodulation in such a way that
if the distinguished formula of the main premise is of the form @i[r]ϕ, then
i is also replaced by j inside ϕ. Similarly, for @i〈r〉i we generate @j〈r〉j

1.

As is customary in paramodulation-based reasoning, unit clauses of the
form @ij are handled in a special way in HyLoRes (this was not reflected in
Figure 9.1). We will refer to this kind of clauses as unit equalities. A clause
set that contains a unit equality of the form @ij can only be satisfied by
models where i and j denote the same element and, therefore, it is sound to
rewrite every formula occurring in every clause in the clause set, eliminating
i. This transformation can be seen as a generalization of the unit propagation
rule,2 and we shall refer to it as unit rewriting.

While conceptually simple, a correct implementation of unit rewriting is,
in general, tricky. We review next some subtle details that should be kept
in mind if implementing DRLǫ≻S .

In HyLoRes we have decided to rewrite clauses occurring both in Ac-

tive and Passive (some provers rewrite only active clauses and, from
then on, attempt to rewrite every given clause). Therefore, whenever a
given clause is a unit equality of the form @ij, every clause occurring in
Passive ∪ Active that contains nominal i is removed from its set, rewrit-
ten, and re-inserted in New. The given clause is then added to Active. A
record of occurrences of nominals across clauses must be kept in some data

1The reader might wonder if this can interfere with |≈ in some way, like it was shown
in Section 9.2. In this case it is harmless, though: it is easy to see that if IN is such that
@ij ∈ IN and IN |/≈@i〈r〉i, then, because i ≻ j, it cannot be the case that IN |≈@j〈r〉j.

2Unit propagation, on the other hand, has not been implemented in HyLoRes yet.
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structure in order to retrieve the clauses to be rewritten efficiently.

Notice that rewriting the clauses in-place (as opposed to removing and
re-inserting them in New) would compromise the completeness of the al-
gorithm. Actual examples are long, depend heavily on the order in which
clauses are dequeued from Passive and the redundancy elimination em-
ployed, and are, therefore, not worth exhibiting. For an intuition, it suffices
to observe that by rewriting a clause, its maximum formula might change,
breaking the invariant that says that every possible inference between clauses
in Active has been performed.

One may also wonder if after processing a unit equality @ij it is safe to
simply discard it instead of moving it to Active. After all, the sole idea
of unit rewriting is to eliminate every occurrence of i. The answer, again,
is that this is not avoidable. There are several reasons for this. First, one
will need to take into account this clause if building a model for the initial
formula from a saturated set. Second, suppose the unit clause is of the form
@ǫ〈i,r,ϕ〉j; even if we remove every occurrence of ǫ〈i, r, ϕ〉 by rewriting, new

instances can later appear via applications of rules 〈r〉ǫ and PAR
@
✸ǫ. This

means @ǫ〈i,r,ϕ〉j must be still considered for inferences.

We have found two further complications implementing unit rewriting.
First, suppose the given clause is a unit equality C1 : @ij and the clause
set contains the (unit) clause C2 : @i〈r〉ǫ〈i, r, ϕ〉. Rewriting C2 using C1

corresponds to the inference:

@i〈r〉ǫ〈i, r, ϕ〉 @ij

@j〈r〉ǫ〈i, r, ϕ〉

But this is not a valid instance of rule PAR
@
✸ǫ. The correct instance would

be:
@i〈r〉ǫ〈i, r, ϕ〉 @ij

@j〈r〉ǫ〈i, r, ϕ〉 @ǫ〈i,r,ϕ〉ǫ〈j, r, ϕ〉

In fact, what we would need is to introduce, for every r and every ϕ
occurring in the clause set, a clause of the form @ǫ〈i,r,ϕ〉ǫ〈j, r, ϕ〉 . This
approach seems a little impractical, though. What we have done, instead,
is perform the rewriting also inside ǫ-terms. For example, for clauses C1

and C2 above, we would generate clause @j〈r〉ǫ〈j, r, ϕ〉. This rewriting is
clearly sound but we have not attempted to formally show that it preserves
completeness yet. We were not able to find any counterexample either, after
extensive testing.

For the second complication, suppose Passive contains unit equalities
C1 : @ij and C2 : @ik with i ≻ j ≻ k. The following is not a valid instance
of PAR

@
6✸:

@ik @ij

@jk



9.4. SUPPORT FOR THE CONVERSE MODALITY 129

This is because k ≻ j is not the case, which violates the side condition of
PAR

@
6✸. But this means that if C1 is selected as given and C2 is rewritten

then we might be skipping an inference using PAR
@
6✸ and this might com-

promise completeness. We have opted to be conservative, and avoid the
rewriting of C2 using C1 altogether.

9.4 Support for the converse modality

The converse modality [r] of a modality [r] is defined by extending Defini-
tion 1.7 with the following clause:

M, w |= [r]ϕ iff (v, w) ∈ R(r) implies M, v |= ϕ, for every v ∈W

This is a classical modal operator also known as the past modality in tem-
poral logics. We have included experimental support in HyLoRes for the
converse modality, in order to initially assess the modularity of the ordered
calculus.

In order to extend DRLǫ≻S , we assume that both r and r are elements of
Rel, that r denotes r and add the following rule to the calculus:

[r]
C ∨ @m[r]ϕ D ∨ @l〈r〉m

C ∨D ∨ @lϕ

The resulting calculus is clearly sound. Moreover, since the consequent of
rule [r] is smaller than its main premise, it is fairly easy to extend the proof
of Theorem 8.1 to this calculus (one need to introduce a slight modification
in the candidate model construction in order to guarantee that @i〈r〉j and
@j〈r〉j are equivalent formulas) and show that it has the reduction property
for counterexamples.

Interestingly, one can repeat the proofs of Theorem 8.4, Lemma 8.4 and
Theorem 8.5 almost verbatim: the case for rule [r] on each induction is
analogous to the one for [r]. With this, one can show that HyLoRes is a
decision procedure for H(@, [r]) (that is, H(@) extended with the converse
modality).
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Part IV

Coinduction, extractability,

normal forms
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Chapter 10

Modal semantics based on

coinductive models

In Chapter 11 we will investigate certain normal forms for modal logics. To
be a little more precise, our aim is to associate a normal form to each modal
logic, the details of the normal form will vary depending on the interrelation
of the modalities occurring in each logic. Needless to say, we are looking for
a very general result. This poses a problem on its own: how can we express
it in a way that is sufficiently general?

Before trying to answer this question, let’s see why this may be a problem
in the first place. For this, consider, on the one hand, logics such as ML(4)
and ML(Alt1 ), that is, ML restricted to models where r is, respectively, a
transitive relation and a partial function, and, on the other, the hybrid logic
H(@, ↓). All of these are modal logics and more expressive than the basic
modal logic ML, in the sense that the set of tautologies of each logic extends
the set of tautologies of ML. There is some important difference between
H(@, ↓) and the first two logics, though; the kind of difference that make
people refer to hybrid logics as “extensions of standard modal logics” [Areces
and ten Cate, 2006] instead of simply “modal logics”.

Both ML(4) and ML(Alt1 ) are particular cases of ML. A model for
ML(4) (or for that matter ML(Alt1 )) is also a model for ML. Once we fix
such a model, it makes no difference (from the point of view of semantics)
if we are working in ML(4) or in ML.

We defined Kripke models and hybrid models to be different objects
(cf. Definition 1.5 and 1.9), but this is really only a matter of presentation.1

The important difference is in the semantics of H(@, ↓), in that it extends
that of ML with new clauses, namely those that give formal meaning to @i

and ↓i (cf. Definitions 1.7 and 1.10).

1Hybrid models are frequently defined as Kripke models 〈W,R, V 〉 where V (i) is re-
quired to be a singleton set when i is nominal. Nominals in this case are treated as a sort
of proposition symbols.

133
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Being an “extension of ML” means that there are many result that
hybrid logics cannot directly inherit from standard modal logics; instead
these must be proven again in the hybrid setting. Bisimulations constitute
a typical example of this: the notion of bisimulation for ML is not appro-
priate for H(@) and has to be adapted to account for the semantics of @i

(cf. Definitions 1.11 and 1.13); this in turn means we need two different
Invariance under bisimulations theorems (cf. Theorems 1.1 and 1.2) with
slightly different proofs.

Now, H(@, ↓) contains at its core the basic modal logic ML. There-
fore, general results proven using the semantics of H(@, ↓) can indeed be
extrapolated to ML and, hence, to logics such as ML(4), ML(Alt1 ), etc.
If H(@, ↓) were the only direction in which ML could be extended, this
would be fine; but it is clearly not. Moreover, we already know other “ex-
tensions of standard modal logics” which would benefit from the results in
Chapter 11 and that are not particular cases of H(@, ↓). One such logic is
presented in the following example.

Example 10.1 (Memory logics). Motivated by the search of binding opera-
tors that are somehow weaker than ↓, Areces et al. [2008] introduce the fam-
ily of so-called memory logics. Intuitively, memory logics are modal logics
whose semantics is specified in terms of Kripke models enriched with addi-
tional data structures to represent memory. The logical language is extended
with a collection of operations to access and modify the data structures.

In the simplest case, a Kripke model M is paired with a set S ⊆ |M|
which can be interpreted as a set of states that are “known” to us, and
which represent the current “memory” of the model. We can now define the
following operators (|=M extends |=K for the basic modal case):

〈M, S〉, w |=M k iff w ∈ S,

〈M, S〉, w |=M rϕ iff 〈M, S ∪ {w}〉, w |=M ϕ,

〈M, S〉, w |=M fϕ iff 〈M, S \ {w}〉, w |=M ϕ,

〈M, S〉, w |=M eϕ iff 〈M, ∅〉 |=M ϕ.

The remember operator r is a unary modality that marks the current state
as being “known” or “already visited” by storing it in the “memory” S.
Similarly, the operator f “forgets” the current state by removing it from S.
The erase operator e wipes out the whole memory. These are the operators
used to update the memory. The zero-ary operator k (read known) queries
S to check if the current state has already been visited. Observe that r ,
k and e can be seen as binding the instances of k occurring under their
scope.

In the following sections we will introduce a novel semantics for the ba-
sic modal logic ML. The distinguishing feature is the use of coinductively
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defined models that can be seen as a generalization of Kripke models. Stan-
dard modal logics and extensions such as hybrid logics and memory logics
will fit in this framework in a natural way.

10.1 The coinductive framework

In order to describe the new framework, we will now have to redefine some
notation and terminology that was already introduced in Chapter 2 We begin
by redefining the modal language we will be using. A modal signature S will
now be a pair S = 〈Atom,Mod〉 where Atom and Mod are two countable,
disjoint sets. We will use a, b, . . . to refer to elements in Atom and m,n, . . .
for modal symbols in Mod. We reserve Prop, Nom and Rel for later use.

Definition 10.1 (Modal formula). The set of modal formulas over the sig-
nature S = 〈Atom,Mod〉 is defined as:

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | [m]ϕ,

where a ∈ Atom and m ∈ Mod. Again, ⊤ and ⊥ will stand for an arbitrary
tautology and contradiction, respectively. We will use classical connectives
such as ∧,→ and 〈m〉, taken to be defined in the usual way.

We will write ϕ(ψ) to indicate that ψ is a subformula of ϕ and use ϕ(ψ/θ)
to denote the formula obtained by uniformly substituting all appearances of
ψ in ϕ by θ.

The language we just defined is exactly the same language of the basic
modal logic ML. Interestingly, we will be able to cast “extensions” of modal
logics containing binders and operators (e.g., those in hybrid and memory
logics) into this same language, in a very natural way. How we do this will
become clear once we provide our definition of models.

Recall that a pointed Kripke model is a tuple 〈M, w〉 where M is a
(standard) Kripke model and w ∈ |M| (cf. Definition 1.9). That is, in
a pointed model the “point of evaluation” is part of the (pointed) model.
For convenience, throughout this chapter we will restrict our attention to
pointed models. In particular, the models we are about to define will be
pointed too.

The main difference between a classical pointed Kripke models and the
ones we will introduce next is in the way relation symbols are interpreted.
In a Kripke model every relation symbol is interpreted as a binary relation
over the domain of the model or, what is equivalent, as a function that
assigns to each element a subset of the domain, corresponding to the set
of its successors. In our case, relations will be interpreted as functions that
assign, to each element of the domain a set of models (over the same domain).
Since the successors of an element will be models instead of other elements,
our definition of models will have to be coinductive.
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Definition 10.2 (Coinductive models). Let S = 〈Atom,Mod〉 be a modal
signature and W be a fixed, non-empty set. ModsW , the class of all models
with domain W (over signature S) is the set of tuples 〈w,W, V,R〉 such that:

w ∈ W,
V (a) ⊆ W for a ∈ Atom,

R(m,w) ⊆ ModsW for m ∈ Mod and w ∈W .

Mods is the class of all models over all domains, i.e., Mods
def
=

⋃

W ModsW .
We will keep traditional practice and call w the point of evaluation, W

the domain, V the valuation, and R the accessibility relation. For M an
arbitrary model we will often write |M| for its domain, wM for its point
of evaluation, VM for its valuation and RM for its accessibility relation.
We will sometimes write succsM(m) for the set RM(m,wM) of immediate
m-successors of wM.

Observe that for each W , ModsW is well-defined (coinductively), and so is
Mods, the class of all models. Being the class of all possible models, Mods
enjoys some nice closure properties that will be useful when considering
subclasses of Mods. In particular, we will confine our attention to model
classes which are closed under accessibility relations.

Definition 10.3 (Extension of a model). Given M ∈ ModsW , let Ext(M),
the extension of M, be the smallest subset of ModsW that contains M and
is such that if N ∈ Ext(M), then RN (m, v) ⊆ Ext(M) for all m ∈ Mod,
v ∈W .

Definition 10.4 (Closed class). A non-empty class of models C is closed
under accessibility relations (we will say that C is a closed class, for short)
whenever M ∈ C implies Ext(M) ⊆ C.

In other words, the extension of a model is simply the class of models reach-
able via the transitive closure of the union of its accessibility relations; and
a class of models C is closed if for every model M ∈ C the extension of M
is also included in C. Clearly, Mods is a closed class and, as we will dis-
cuss below, it seems natural to restrict ourselves to investigate only closed
classes.

Having properly defined what models are, the definition of the satisfia-
bility relation |= is straightforward:

Definition 10.5 (Semantics). For each M = 〈w,W, V,R〉 in Mods we
define:

M |= a iff w ∈ V (a)
M |= ¬ϕ iff M 6|= ϕ
M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ
M |= [m]ϕ iff M′ |= ϕ, for all M′ ∈ R(m,w).
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If C is a closed class, we write C |= ϕ whenever M |= ϕ for every M in C,
and we say that ΓC = {ϕ | C |= ϕ} is the logic defined by C.

It is instructive to compare Definitions 1.10 and 10.5. If we abstract
away the details on how a model is represented in each case, we can say that
they are roughly equivalent. But if we restrict ourselves to the appropriate
class of models, we can actually ensure that [m] behaves in very different
ways. Let us see an example.

Example 10.2 (The universal modality A). Given a Kripke model M with
domain W the usual semantic clause for the universal modality A would be

M, w |= Aϕ iff M, w′ |= ϕ, for all w′ ∈W .

Instead, let S = 〈Atom,Mod〉 with A ∈ Mod, and let CA be the largest class
of models in this signature such that

if M ∈ CA, then RM(A, w) = {〈w′, |M|, VM, RM〉 | w′ ∈ |M|}.

That is, the A-successors of w are those models identical to M except
in that their point of evaluation is an arbitrary element of the domain.
Clearly, the semantic condition of [A] in CA (as given in Definition 10.5)
coincides exactly with the semantic definition of the universal modality A

over standard Kripke models.

By taking suitable classes of models, we can naturally capture many
different modal operators. This follows in spirit classical modal semantics,
where one obtains a richer logic by considering certain classes of Kripke
models. In fact, already in the classical case, if one considers the class of
Kripke models where the relational symbol A is interpreted as a total relation
(i.e., those models where ∀xy.A(x, y) holds), one obtains the logic CA of
Example 10.2. What we will see in Section 10.2 is that in this coinductive
setting we can also capture this way binders and other non-relational modal
operators.

When defining classes of models it is necessary to require the classes to
be closed (cf. Definition 10.4). If a class C is not closed, the evaluation of
some modal formulas on a model in C might require the inspections of models
which are outside the class. Moreover, as it follows from Proposition 10.1
below, every closed class induces a normal modal logic [Blackburn et al.,
2002]. In the rest of this thesis we will usually implicitly assume that every
class is closed and that all its models conform to some particular, but
arbitrary, signature. We will only mention these conditions explicitly for
additional emphasis.

Proposition 10.1. Let C be a (closed) class. Then

i. ΓC contains all instances of propositional tautologies.
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ii. ΓC is closed under modus-ponens.

iii. ΓC is closed under necessitation, i.e., if ϕ ∈ ΓC, [m]ϕ ∈ ΓC.

iv. ΓC contains every instance of axiom Km, i.e., for every formula ϕ and
all m ∈ Mod, [m](ϕ→ ψ) → ([m]ϕ→ [m]ψ) ∈ ΓC.

Proof. Closure under tautologies and modus-ponens follows trivially from
the semantics of the boolean operators.

Necessitation is straightforward: suppose ϕ ∈ ΓC , then M |= ϕ for all
M ∈ C, but since C is a closed class this implies M |= [m]ϕ and consequently
[m]ϕ ∈ ΓC . (This is the only case were we need to assume that C is closed).

Finally, let [m](ϕ → ψ) → ([m]ϕ → [m]ψ) be an instance of axiom Km
and suppose M |= [m](ϕ→ ψ) and M |= [m]ϕ, for some M ∈ C. It follows
that for every M′ ∈ R(m,wM), M′ |= ϕ → ψ and M′ |= ϕ both hold and,
therefore, M′ |= ψ holds too. Hence, M |= [m]ψ.

By Proposition 10.1 then, the minimal logic (generated by the class of
all possible models) ΓMods is a normal modal logic. As we will show in
Proposition 10.2 below, it coincides with the basic modal logic K (cf. Defini-
tion 1.10). In particular, ΓMods is closed under uniform substitution, that
is:

if ϕ ∈ ΓMods then ϕ(a/ψ) ∈ ΓMods for a ∈ Atom.

But for an arbitrary C, ΓC doesn’t need to be closed under uniform substi-
tution (we will see some examples of this in the following section).

We are interested in defining subclasses of Mods, in particular, classes
that are closed under accessibility relations. To simplify definitions we in-
troduce the following piece of notation.

Definition 10.6 (Defining conditions). Predicate P is a defining condition
for C if C is the largest class such that M ∈ C implies that P (M) holds.

Observe that if P is a defining condition for C, then C is necessarily a
closed class. We can use this notation to properly define the class of models
where the accessibility relations are standard relational modalities.

Definition 10.7 (Relational modalities: the classes CK
m and CK). For each

m ∈ Mod, let CK
m be the class defined by the following defining condition:

PK
m(M) ⇐⇒ ∀v ∈ |M|, RM(m, v) ⊆ {〈v′, |M|, VM, RM〉 | v′ ∈ |M|}

Observe that PK
m is true of a model M if every successor of wM is identical

to M except perhaps on its point of evaluation. We will call m a relational
modality when it is interpreted in CK

m. Define the class of models CK over
the signature S = 〈Atom,Mod〉 as follows: M ∈ CK iff for every modality
m ∈ Mod, M ∈ CK

m. That is, all modalities are interpreted in CK as relational
modalities.
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Proposition 10.2. Let S = 〈Atom,Mod〉. The following properties hold:

i. CK ⊂ Mods.

ii. ΓCK coincides with the basic modal logic K (over signature S).

iii. ΓMods coincides with the basic modal logic K (over signature S).

Proof. i. It should be clear that CK is a strict subset of Mods. Take for
example a signature 〈{p}, {m}〉 and consider models M and N in Mods
where

M = 〈a, {a}, {(m, a) 7→ {N}}, {p 7→ {a}}〉

N = 〈a, {a}, {(m, a) 7→ {M}}, {p 7→ ∅}〉.

As M ∈ Mods but M 6∈ CK, we have that CK ⊂ Mods.

ii. We will use the well-known fact that K is complete with respect to the
class of all (classical) pointed Kripke models. Now, to every M ∈ CK we
associate a unique pointed Kripke model f(M) = 〈〈WM, R, VM〉, wM〉,
where R(m,u) = {v | 〈v,WM, RM, VM〉 ∈ RM(m,u)}.

Clearly, f is a bijection between CK and the class of all pointed Kripke
models, such that for every M ∈ CK, M |= ϕ iff f(M) |=K ϕ. Therefore,
ΓCK = K.

iii. Since CK ⊂ Mods we may conclude ΓMods ⊆ ΓCK . By Proposition 10.1
we conclude K ⊆ ΓMods ⊆ K.

Proposition 10.2 shows that the basic modal logic K can be recast (in
two different ways) using the new semantics. The same can be done for
many other modal languages, and we will show some examples in the next
section, focusing on hybrid and hybrid-related languages.

10.2 Hybrid logics as classes of models

Consider again the sets Prop, Nom and Rel from Chapter 1, and define with
them a “hybrid” signature S = 〈Atom,Mod〉 where

Atom = Prop ∪ Nom ∪ { k },

Mod = Rel ∪ {A} ∪ {@i | i ∈ Nom} ∪ {↓i | i ∈ Nom} ∪ { r , f , e }.

In what follows, we will work with formulas from the language of Defini-
tion 10.1 over either S or over some S ′ contained in S.

In Figure 10.1 we present several closed classes via their defining con-
ditions. These conditions are of different kind and, in general, give the
expected semantics to a modal symbol. The only exception is Ca which can
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Class Defining condition

Ca Pa(M) ⇐⇒ V (a) is a singleton

CA PA(M) ⇐⇒ R(A, w) = {〈v,W, V,R〉 | v ∈W}

C@i
P@i

(M) ⇐⇒ R(@i, w) = {〈v,W, V,R〉 | v ∈ V (i)}

C↓i P↓i(M) ⇐⇒ R(↓i, w) = {〈w,W, V [i 7→ {w}], R〉}

C r P r (M) ⇐⇒ R( r , w) = {〈w,W, V [ k 7→ V ( k ) ∪ {w}], R〉}

C f P f (M) ⇐⇒ R( f , w) = {〈w,W, V [ k 7→ V ( k ) \ {w}], R〉}

C e P e (M) ⇐⇒ R( e , w) = {〈w,W, V [ k 7→ ∅], R〉}

Figure 10.1: Several classes and their defining conditions. It is assumed that
M = 〈w,W, V,R〉.

be described as the class of models where atom a is, semantically, a nomi-
nal. For distinct a and b, Ca and Cb are, of course, distinct classes. Observe
that uniform substitution fails in Ca: (a ∧ b ∧ 〈m〉a) → 〈m〉b ∈ ΓCa but
(⊤ ∧ b ∧ 〈m〉⊤) → 〈m〉b 6∈ ΓCa .

The other classes in Figure 10.1 are defined by imposing conditions on
the accessibility relation. Consider, first, CA and C@i

; the former was already
discussed in Example 10.2, the latter captures the “jump-to-i” meaning of
the @i operator of hybrid logics but in a slightly generalized way: i need
not be a nominal (i.e., interpreted as a singleton) in C@i

.

Both CA and C@i
share a common feature: they are relational modalities,

that is, CA ⊆ CK
A and C@i

⊆ CK
@i

. This is just another way to state the fact
that the semantics of the universal modality A, and satisfiability operators
@i of hybrid logics can all be captured on Kripke models by restricting
evaluation to the class of models where the relation that interprets them is,
respectively, the total relation and the “point-to-i” relation.

On the other hand, C↓i, the class of models where [↓i] behaves like the ↓i
operator of hybrid logics, is defined by imposing conditions on the valuation
of the accessible models: “there is only one ↓i-successor of M and differs
from M only in that i must be interpreted as w”. This means, that C↓i is
not a subclass of CK

↓i (that is, [↓i] is not a relational modality in C↓i). It is
not surprising, then, that uniform substitution fails on this class: while it
is clear that C↓i |= [↓i]i, the uniform substitution of atom i by p yields the
formula [↓i]p which is not C↓i-valid.

Finally, classes C r , C f and C e define the classes associated to the opera-
tors of memory logics presented in Example 10.1. It is interesting to compare
their defining conditions with that of C↓i. It becomes quite evident, then,
that these memory operators bind atom k in exactly the same way in which
[↓i] binds i.

The classes defined in Figure 10.1 give semantics to isolated operators
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CNom
def
=

⋂

i∈Nom

Ci

CRel
def
=

⋂

m∈Rel

CK
m

C@
def
=

⋂

i∈Nom

C@i

C↓
def
=

⋂

i∈Nom

C↓i

CH(@,↓)
def
= CNom ∩ CRel ∩ C@ ∩ C↓

Figure 10.2: Closed classes defined as intersections of other classes.

and atoms. In order to define a logic like H(@, ↓) we need to combine this
classes. Now, observe that if C and C′ are closed classes, then the intersection
of both classes is also a (perhaps empty) closed class.

Figure 10.2 exhibit several classes defined in this way. For instance,
CNom is the class of models where every atom i in Nom has the semantics
of a nominal (true at exactly one point of the model) while CRel is the
class where every modality in Rel behaves like a relational modality (recall
that we are working with a “hybrid” signature S, where Nom ⊂ Atom and
Rel ⊂ Mod). Similarly, C↓ and C@ are the classes of models where, for every
i ∈ Nom, [@i] and [↓i] behave like (a generalization of) the hybrid operators.
Finally, CH(@,↓) captures the hybrid logic H(@, ↓).

It is worth stressing one point: in the class C@, the [@i] operator behaves
slightly different than the hybrid operator @i of H(@). For example, C@ 6|=
[@i]ϕ↔ 〈@i〉ϕ; that is @i is not self dual. But if we force every nominal i to
be true at exactly one point of the domain, then every @i becomes self-dual
again; i.e., CNom ∩ C@ |= [@i]ϕ↔ 〈@i〉ϕ.

Unless otherwise stated, from here on we assume that all operators for
which we introduced a special notation (i.e., A, @i, ↓i, k , r , f , e and
nominals) are interpreted on classes of models that satisfy the corresponding
defining conditions introduced in this section.

10.3 Coinductive models and bisimulations

We will end this chapter revisiting the notion of bisimulation, which is cen-
tral in modal model theory. Also here, the coinductive take on models brings
interesting surprises.

Definition 10.8 (Bisimulations). Let M and M′ be two models. A bisim-
ulation between M and M′ is a relation Z ⊆ Ext(M)×Ext(M′) such that
(M,M′) ∈ Z and if (〈w,W, V,R〉, 〈w′,W ′, V ′, R′〉) ∈ Z then:
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(atom) w ∈ V (a) iff w′ ∈ V ′(a), for all a ∈ Atom,

(zig) N ∈ R(m,w) implies (N ,N ′) ∈ Z for some N ′ ∈ R′(m,w′),

(zag) N ′ ∈ R′(m,w′) implies (N ,N ′) ∈ Z for some N ∈ R(m,w).

When there exists a bisimulation Z between M and M′ we say that M and
M′ bisimilar, notated M↔M′.

The classic result of invariance of modal formulas under bisimulation we
reviewed in Chapter 1 (cf. Theorem 1.1) can easily be proved in this setting.

Theorem 10.1. If M↔M′, then M |= ϕ iff M′ |= ϕ, for all ϕ.

The interesting thing to observe is that this very general notion of bisim-
ulation works for every modal logic definable as a closed subclass of Mods.
In other words, this definition is capturing a variety of notions of bisim-
ulation. Many well known bisimulations can be seen as specializations of
Definition 10.8. We illustrate this with an example.

Example 10.3. We discussed in Chapter 1 that the adequate notion of
bisimulation for the hybrid logic H(@) requires agreement of models on all
named worlds (cf. Definition 1.13). Consider now the closed class

CH(@)
def
= CNom ∩ CRel ∩ C@ (10.1)

which corresponds (by an argument similar to the one used in the proof of
Proposition 10.2) to the class of (pointed) hybrid models, and suppose we
have M↔N for M,N ∈ CH(@). This means that (M,N ) ∈ Z, for some

bisimulation Z. Let Mi = 〈w, |M|, VM, RM〉 and Ni = 〈v, |N |, V N , RN 〉
be two models such that {w} = VM(i) and {v} = V N (i). By definition, we
know that:

Ci ⊆ CNom ⊂ CH(@). (10.2)

Therefore, M,N ∈ CH(@) implies Mi,Ni ∈ CH(@). Moreover, from this and

the defining condition for C@i
, we may conclude succsM(@i) = {Mi} and

succsN (@i) = {Ni}. Using either (zig) or (zag), we obtain (Mi,Ni) ∈ Z.

Unsurprisingly, we can also take a finer look, and adapt the notion of k-
bisimulations to the present setting. Here too, Definition 10.9 will subsume
not only that of k-bisimulations for the basic modal logic, but also notions
such as the k-bisimulation for H(@) of Definition 1.15.

Definition 10.9 (k-bisimulations). Given two models M and M′ we say
that M and M′ are k-bisimilar (notation M↔kM

′) if there exists a se-
quence of binary relations Z0 ⊇ Z1 ⊇ · · · ⊇ Zk such that (M,M′) ∈ Zk and
for all N = 〈w,W, V,R〉 ∈ Ext(M) and N ′ = 〈w′,W ′, V ′, R′〉 ∈ Ext(M′):

1. (N ,N ′) ∈ Z0 implies w ∈ V (a) iff w′ ∈ V ′(a), for all a ∈ Atom,
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2. if (N ,N ′) ∈ Zi+1, then

(a) N2 ∈ R(m,w) implies (N2,N
′
2) ∈ Zi for some N ′

2 ∈ R′(m,w′),

(b) N ′
2 ∈ R′(m,w′) implies (N2,N

′
2) ∈ Zi for some N2 ∈ R(m,w).

Such a sequence is called a k-bisimulation between M and M′.

One can also prove an “invariance under k-bisimulations” theorem; no-
tice also how the simple notion of modal depth of Definition 10.10 handles
the additional cases of Definition 1.16.

Definition 10.10 (Modal depth). The modal depth of a formula ϕ (nota-
tion, md(ϕ)) is a function from formulas to natural numbers defined as:

md(a) = 0, for a ∈ Atom

md(¬ϕ) = md(ϕ)
md(ϕ ∨ ψ) = max{md(ϕ),md(ψ)}
md([m]ϕ) = 1 + md(ϕ).

Theorem 10.2 (Invariance under k-bisimulations). If M↔kM
′, then, for

all ϕ such that md(ϕ) ≤ k, M |= ϕ iff M′ |= ϕ.

We have now in place all the tools we need to tackle the main technical
results of Chapter 11 and, therefore, we will stop here. If we came to an
abrupt end is simply because a thorough development of this coinductive
framework is out of the scope of this thesis. We reckon this view on modal
models deserves further investigation and we expect to pursue it in future
work.
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Chapter 11

Extractability and normal

forms

When working with the basic modal logic, it is standard to take the modal
depth of a formula as a measure of its complexity. For example, from the
tree-model property (Proposition 5.1) and the invariance under k-bisimula-
tions theorem (Theorems 1.3 and 10.2), we know that when searching for
a model of a formula ϕ in the basic modal logic, it is enough to consider
models which are trees of depth at most the modal depth of ϕ. We will
take a closer look at this notion, in the general set up that we presented in
Chapter 10.

Consider, for example, the universal modality A (cf. Example 10.2). If
Rel is a set of relational modalities (cf. Definition 10.7), then every formula
in the signature 〈Atom,Rel ∪ {A}〉 is equivalent to a formula where the [A]
operator only appears at modal depth zero. It suffices to verify the following
equivalence:

ϕ([A]ψ) ↔
(

[A]ψ → ϕ([A]ψ/⊤)
)

∧
(

¬[A]ψ → ϕ([A]ψ/⊥)
)

(11.1)

In other words, we can check [A]ψ once and for all at an arbitrary state
in the model, and depending of the outcome replace it by ⊤ or ⊥ through-
out the formula. This kind of behavior is not particular to the universal
modality; the @i operators behave in a similar way (independently even of
whether i is a nominal or not). And indeed we have that, for Rel a set of
relational modalities, every formula in the signature 〈Atom,Rel ∪ {@i}〉 is
equivalent to a formula where [@i] only appears at modal depth zero, witness
the equivalence:

ϕ([@i]ψ) ↔
(

[@i]ψ → ϕ([@i]ψ/⊤)
)

∧
(

¬[@i]ψ → ϕ([@i]ψ/⊥)
)

(11.2)

Let us come back, then, to the idea of using modal depth as a complexity
measure. Clearly, if the language contains operators which behave like [A]
and [@i] we will have to do better than just count the maximum nesting of

145



146 CHAPTER 11. EXTRACTABILITY AND NORMAL FORMS

operators. If we know that these modalities can be ‘extracted’ from the scope
of other operators, we should rather consider some complexity measure that
takes this into account. For example, we know that every formula containing
only the [@i] modality, is equivalent to a formula of modal depth one. Saying
that the complexity of [@i]

np, for example, is n seems way out of line.
But deciding when a modality can be extracted is not trivial. Consider

the following examples:

Example 11.1. Let M ∈ CH(@,↓) be such that wM ∈ VM(p) and VM(i) 6⊆

VM(p). Then we have M |= [↓i](p∧ [@i]p) while M 6|= ¬[@i]p→ [↓i](p∧⊥)
(since M 6|= [@i]p) which contradicts (11.2).

Example 11.2. Let C ⊆ C r ∩CA. It is easy to verify that C |= [ r ]¬[A]¬ k .

Now, for every M ∈ C with VM( k ) = ∅, we have M 6|= [A]¬ k → [ r ]¬⊤,
contradicting (11.1).

In other words, ‘extractability’ is not a property of a single modality, but
rather of the whole language interpreted in a given class of models. We will
provide a definition of extractability in the next section, and investigate ways
of determining when a modality can be extracted. Our final goal will be to
define a notion of extracted modal depth that closer reflects the complexity
of a formula.

11.1 Extractable Modalities

We have seen that extractability is not a simple notion to characterize, es-
pecially when the language contains non-relational modalities like ↓i or r

which can block the extraction. But what do we mean when we say that a
modality can be extracted from another? Let us start by defining when a
modality has not been extracted.

Definition 11.1 (Immediate scope). Given two modalities m and n and a
formula ϕ, we say that n occurs in ϕ in the immediate scope of m if and
only if in the syntactic formation tree of ϕ there are two nodes e1 and e2
such that e1 is labeled [m], e2 is labeled [n], e1 is an ancestor of e2, and in
the path from e1 to e2 there are only boolean operators.

Now, if n is C-extractable from m, then every formula ϕ is equivalent
in C to a formula where n does not occurs in the immediate scope of of m.
Formally,

Definition 11.2. We say that n is C-extractable from m if for any formula
ϕ there exists a formula ϕ′ such that n is not in the immediate scope of m
in ϕ′ and C |= ϕ↔ ϕ′.

Definition 11.2 does the job when the language contains only two modal-
ities, but consider the following example:
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Example 11.3. Pick a class of models C over signature S = 〈Prop, {m,n}〉
such that n is not C-extractable from m (e.g., C can be the class of relational
models over S). Let S ′ = 〈Prop, {m,n, n′}〉 and let C′ be the class of models
over S ′ such that 〈W,R′, V, n〉 ∈ C′ iff 〈W,R, V, n〉 ∈ C, where R′(m,x) =
R(m,x) and R′(n, x) = R′(n′, x) = R(n, x), for all x ∈ W . That is, the
models of C′ are obtained from those of C by interpreting n′ exactly like n.

Clearly, n is C′-extractable from m because any formula ϕ containing [n]
is equivalent in C′ to the formula ϕ′ obtained by replacing each appearance of
[n] by [n′] and in ϕ′ no n is in the immediate scope of m. Symmetrically, n′

is also C′-extractable from m by replacing all appearances of [n′] by [n]. But
it is not true that every formula is C′-equivalent to one where neither n nor
n′ occur in the immediate scope of m, or otherwise n would be C-extractable
from m, which would be a contradiction.

We need then a slightly more involved definition of extractability:

Definition 11.3 (C-extractability). Let S ⊆ Mod×Mod be a set of pairs of
modalities. We say that S is C-extractable if for any formula ϕ there exists
a formula ϕ′ such that

1. for all (m,n) ∈ S we have that n is not in the immediate scope of m
in ϕ′,

2. C |= ϕ↔ ϕ′.

If S is the singleton {(m,n)} then S is C-extractable if and only if n is
C-extractable from m.

Notice that the notion of C-extractability is defined in terms of a set of
pairs of modalities and for a given model class. Extractability depends not
only on the modalities but on the full language (i.e., in which other operators
can appear in a formula) and this is captured by restricting the definition
to a given class C.

Example 11.4. Let us consider again the signatures and classes of models
of Example 11.3. While {(m,n)} and {(m,n′)} are both C′-extractable,
{(m,n′), (m,n′)} is not C′-extractable.

Although extractability depends on the full language, the good news is
that once you know that a modality is extractable from another, the property
is preserved when considering a more expressive logic. This follows directly
from Definition 11.3. If m is C-extractable from n and C′ ⊆ C then m is
C′-extractable from n too. For example, let C1 = CA ∩ CKm and assume we
already proved that A is C1-extractable from m. If we want to add ↓i to the
language we will be working in the class C2 = C1 ∩ C↓i, but since C2 ⊂ C1 we
still know A is C2-extractable from m.

In the rest of this section, we will discuss some sufficient conditions that will
ensure C-extractability.



148 CHAPTER 11. EXTRACTABILITY AND NORMAL FORMS

The first sufficient condition we will mention can be motivated by the
following observation: if the truth value of an arbitrary [n]ϕ does not change
when moving from one state to an m-successor in C, then n should be ex-
tractable from m.

Definition 11.4 (m-invariant in C). We say that n is m-invariant in C
whenever for every M ∈ C, every N ∈ succsM(m) and every formula ϕ,
M |= [n]ϕ iff N |= [n]ϕ.

We can then prove the following result:

Proposition 11.1. Let m and n be two modalities and let C be a class of
models. The following two conditions are equivalent:

1. n is m-invariant in C

2. C |= ([n]ϕ→ [m][n]ϕ) ∧ (〈m〉[n] → [n]ϕ), for all ϕ.

Moreover, if n is m-invariant in C then n is C-extractable from m.

Proof. We only prove that 1 and 2 are equivalent. The fact that whenever
n is m-invariant in C then n is C-extractable from m will be a corollary of
Theorem 11.1.

1 ⇒ 2) Assume 1; we have to prove that both M |= [n]ϕ → [m][n]ϕ and
M |= 〈m〉[n] → [n]ϕ hold. For the former, assume also M |= [n]ϕ, in which
case 1 directly implies M |= [m][n]ϕ. For the latter, assume M |= 〈m〉[n]ϕ
and let N ∈ succsM(m) be such that N |= [n]ϕ; again 1 directly implies
M |= [n]ϕ.

2 ⇒ 1) Assume 2 and let N ∈ succsM(m). If M |= [n]ϕ then M |= [m][n]ϕ
and N |= [n]ϕ. If N |= [n]ϕ then M |= 〈m〉[n]ϕ and hence M |= [n]ϕ.

Saying that n is m-invariant in C is strictly stronger than saying that n is
C-extractable from m (and it is for that reason that we say thatm-invariance
is only a necessary condition for extractability). But the additional strength
carried out by this notion results in some useful properties. In particular,
invariance of a set of pairs of modalities implies its extractability.

Proposition 11.2. Let C be a class of models, and let S be a set of pairs
of modalities such that (m,n) ∈ S implies that n is m-invariant in C. Then
S is C-extractable.

Proof. The result follows from Theorem 11.1.

Notice that Proposition 11.2 is not true if we only require that for each
pair (m,n) ∈ S, n is C extractable from m, as was shown in Example 11.4.

Fix a class of models C, and let S be the set of all pairs (m,n) such
that n is m-invariant in C. Proposition 11.2 says that any formula ϕ is C-
equivalent to a formula ϕ′ where no n occurs in the immediate scope of m
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for (m,n) ∈ S. But this is implicitly defining a normal form for C, one where
all the modalities that are extractable (because of m-invariance) are in fact
extracted. Example 11.4 shows that we cannot derive a similar normal form
from general extractability.

Definition 11.5 (C-extracted form). We say that ϕ is in C-extracted normal
form (or C-extracted form for short) if for every n that occurs in ϕ in the
immediate scope of m, n is not m-invariant in C.

We will see in Section 11.2 how to compute C-extracted forms. Before
that, we will show that it is possible to give (sufficient) conditions on classes
of models that ensure m-invariance. That is, we can define conditions under
which we may guarantee m-invariance by looking only at the accessibility
relation for the involved modalities (i.e., disregarding the rest of the lan-
guage). Item 2 in Proposition 11.1 gives us a hint for this purely structural
characterization.

Definition 11.6 (C-transitive and C-euclidean pair). Given modalities m
and n, we say that (m,n) is a C-transitive pair if for every M ∈ C and
every N ∈ succsM(m), succsN (n) ⊆ succsM(n). Similarly, we say that
(m,n) is a C-euclidean pair if for every M ∈ C and every N ∈ succsM(m),
succsM(n) ⊆ succsN (n).

If the pair (m,m) is C-transitive we will just say that m is C-transitive
and, similarly, we will say that m is C-euclidean if (m,m) is C-euclidean.

Proposition 11.3. If (m,n) is a C-transitive and C-euclidean pair, then n
is m-invariant in C (and, hence, C-extractable from m).

Proof. Suppose M ∈ C and N ∈ succsM(m). Since m and n form a C-
transitive and a C-euclidean pair we know succsN (n) = succsM(n), from
which it follows that M |= [n]ϕ iff N |= [n]ϕ.

There are cases where even simpler conditions can be given.

Definition 11.7 (C-relational and C-constant). We say that a modality
m is C-relational whenever C ⊆ CKm , and we say that m is C-constant if
RM(m,u) = RM(m, v), for all M ∈ C and all u, v ∈ |M|.

Example 11.5. As an example of a modality that is constant but not
relational, we can consider the reseti modality (for some i ∈ Nom) with
respect to the class Creseti ⊂ CNom given by the following defining condition:

Preseti(M) ⇐⇒ RM(reseti, x) = {〈w0, |M|, V, RM〉}, where

V (x) =

{

w0 if x ∈ Nom

VM(x) otherwise

{w0} = VM(i).
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It is easy to see that reseti is Creseti-constant: the reseti-successor of M
depends exclusively on VM. And since the valuation of this successor may
be different from that of M it is clear that it is not Creseti-relational.

Observe that if C′ ⊆ C and m is C-relational (C-constant) then m is
also C′-relational (C-constant). It is straightforward to verify that @i is
C@i

-relational and C@i
-constant (i needs not be a nominal). Similarly, A is

CA-relational and CA-constant.
One can prove that if m is C-relational and n is C-constant then (m,n)

is a C-transitive and C-euclidean pair, and hence, n is C-extractable from m.

Proposition 11.4. If m is C-relational and n is C-constant, then n is m-
invariant in C.

As particular instances of Proposition 11.4 we obtain the following results
(where we call a modality m self C-invariant if m is m-invariant in C).

Corollary 11.1.

1. If C ⊆ CKm ∩ C@i
, then @i is m-invariant in C.

2. If C ⊆ CKm ∩ CA, then A is m-invariant in C.

3. If m ∈ {A,@i, ↓i, e , r , f } then m is self Cm-invariant.

But Proposition 11.4 is strictly weaker than Proposition 11.3. As an
example, it is easy to use Proposition 11.3 to show that e is C e ∩ C r -
extractable from r and C e∩C f -extractable from f . None of these modalities
is relational.

11.2 Computing Formulas in Extracted Form

In this section we will show that for every class C there exists a computable
function fC such that fC(ϕ) is in C-extracted form (cf. Definition 11.5) and
C |= ϕ ↔ fC(ϕ), for all ϕ. Throughout this section we will make use of
formulas in modal conjunctive normal form (CNF✷).

Definition 11.8 (CNF✷). We say that a formula is a CNF✷-literal when it
is of the form a, ¬a, [m]ψ or ¬[m]ψ, for a ∈ Atom and ψ a CNF✷-clause. We
say ϕ is a CNF✷-clause whenever ϕ is a CNF✷-literal or is of the form ψ1∨ψ2

with ψ1 and ψ2 CNF✷-clauses. Finally a CNF✷-formula is a “conjunction”
¬(

∨

i ¬ψi) of CNF✷-clauses ψi.

It follows from this definition that a CNF✷-formula ϕ cannot contain
two consecutive negations (i.e., ¬¬ψ is not a subformula of ϕ). Moreover, if
[m]ψ occurs in a CNF✷-formula, then ψ must be either a (negated) atom, a
disjunction where no disjunct is a conjunction, or a (negated) formula of the
form [n]χ (with m and n not necessarily different). We use this observation
to show that it is simple to obtain a C-extracted formula from one in CNF✷.
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Lemma 11.1. For every class C, there exists a computable function fC such
that for all ϕ in CNF✷, fC(ϕ) is a CNF✷-formula in C-extracted form and
C |= ϕ↔ fC(ϕ).

Proof. Given a class C, let EC be the rewrite system that contains, for every
n that is m-invariant in C, the following rules (modulo commutativity of ∨):

[m][n]ϕ −→EC
[m]⊥ ∨ [n]ϕ (11.3)

[m]¬[n]ϕ −→EC
[m]⊥ ∨ ¬[n]ϕ (11.4)

[m](ψ ∨ [n]ϕ) −→EC
[m]⊥ ∨ ([m]ψ ∨ [n]ϕ) (11.5)

[m](ψ ∨ ¬[n]ϕ) −→EC
[m]⊥ ∨ ([m]ψ ∨ ¬[n]ϕ) (11.6)

It is not hard to see that EC is terminating (but not confluent, although
this is not relevant here). From the observations above, it is also straightfor-
ward to see that if a CNF✷-formula ϕ is not in C-extracted form, then there
is an occurrence of m and n that satisfies the left-hand-side of one of the
rules. Moreover, since the rules preserve clausal form, we can conclude that
every CNF✷-formula is rewritten to a CNF✷-formula in C-extracted form.

It only remains to see that the resulting formula is C-equivalent; for this,
it suffices to show that both sides of each rule are actually C-equivalent. We
will discuss C |= [m](ψ ∨ ¬[n]ϕ) ↔ [m]⊥ ∨ ([m]ψ ∨ ¬[n]ϕ), the other cases
are analogous. Suppose, then, that for M ∈ C, M |= [m](ψ ∨ ¬[n]ϕ). It
could be the case that M has no m-successors, or that every m-successor
satisfies ψ, but then, clearly, M |= [m]⊥ ∨ [m]ψ. Suppose, then that for
some N ∈ succsM(m), N |= ¬ψ ∧ ¬[n]ϕ. Since n is m-invariant in C, we
know M |= [n]ϕ iff N |= [n]ϕ, so we can conclude that M |= ¬[n]ϕ. The
other direction is proved in a similar way.

We can now prove the main result of this section. Observe that both
Proposition 11.2 and the bit of Proposition 11.1 that was left unproven will
follow as a trivial corollary.

Theorem 11.1. For every class C, there exists a translation fC such that
for all ϕ, fC(ϕ) is in C-extracted form and C |= ϕ↔ fC(ϕ).

Proof. From Lemma 11.1, this proof simply amounts to observing that ev-
ery formula can be recursively turned to an equivalent one in CNF✷, which
is a folklore result. For the sake of completeness, we include such a com-
putable transformation. Let −→CNF✷

be the rewrite system that contains
the following rules (modulo commutativity):

¬¬ϕ −→CNF✷
ϕ (11.7)

ϕ ∨ ¬(ψ ∨ χ) −→CNF✷
¬(¬(ϕ ∨ ¬ψ) ∨ ¬(ϕ ∨ ¬χ)) (11.8)

[m]¬(ϕ ∨ ψ) −→CNF✷
¬(¬[m]¬ϕ ∨ ¬[m]¬ψ) (11.9)
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The last rule, of course, must be instantiated for every m ∈ Mod. It is easy
to see that the left and right-hand-sides of each rule are logically equiva-
lent. Rule (11.7) eliminates double negations and rules (11.8) and (11.9) are
simply distribution of disjunction and box, respectively, over conjunctions.
If a formula is not in CNF✷, then it may be rewritten using one of these
rules; and since the system can be shown to be terminating, it constitutes
the desired computable transformation.

Of course, since the proof above uses a translation to CNF✷, the formula
in extracted form may end up being exponentially larger than the original
one. This begs the question if there exists an alternative translation with
only a polynomial overhead. The answer is negative for the general case, as
is witnessed by the following result.

Theorem 11.2 (ten Cate [2005]). There is no polynomial translation from
H(@)-formulas to CH(@)-equivalent formulas in CH(@)-extracted form.

On the other hand, if we restrict ourselves to satisfiability preserving
translations, then it is indeed possible to give polynomial translations for
arbitrary classes.

Theorem 11.3. For every class C, there exists a polynomial translation fC
such that for all ϕ, fC(ϕ) is in C-extracted form, and ϕ is satisfiable iff fC(ϕ)
is satisfiable.

Proof. It is easy to verify that the transformation used in the proof of
Lemma 11.1 runs in polynomial time. Hence, we only need to provide a
polynomial, satisfiability preserving translation to CNF✷. Mints [1989] ex-
hibits a sequent-based polynomial translation for the case of the basic uni-
modal logic. We will use instead a rewriting based translation similar to
the ones above. Observe that in the proof of Theorem 11.1, the source for
the exponential blow-up is in rule (11.8) where ϕ occurs twice on its right-
hand-side. The rewrite system −→p-CNF✷

is obtained by replacing this rule
by one that uses additional proposition symbols:

¬¬ϕ −→p-CNF✷
ϕ (11.10)

ϕ ∨ ¬(ψ ∨ χ) −→p-CNF✷
¬(¬(ϕ ∨ ¬pϕ) ∨ ¬(pϕ ∨ ψ) ∨ ¬(¬pϕ ∨ χ)) (11.11)

[m]¬(ϕ ∨ ψ) −→p-CNF✷
¬(¬[m]¬ϕ ∨ ¬[m]¬ψ) (11.12)

It is routine to see that −→p-CNF✷
is terminating (but not confluent, in

fact different reduction strategies may introduce different proposition sym-
bols). In any case, it is not hard to see that the length of every derivation is
bound by a polynomial. Finally, one needs to show that every rewrite step
leads to an equi-satisfiable formula, but this is also straightforward.
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11.3 Modal depth and formula complexity

The modal depth of a formula is often taken as a measure of its complexity.
Its appeal lies in that it estimates and summarizes in a single value several
aspects of complexity: the expressive power of the formula, the computa-
tional cost of evaluating the formula in a model, the minimum size of a
model for the formula, etc.

Now, suppose C |= ϕ ↔ ϕ′ and md(ϕ) > md(ϕ′). It would often make
sense to prefer md(ϕ′) as a more accurate estimation of the complexity of ϕ,
especially if the cost of computing md(ϕ′) can be disregarded. Theorem 11.1
tells us that C |= ϕ↔ fC(ϕ) and md(ϕ) ≥ md(fC(ϕ)). But, while md(fC(ϕ))
appears to be a more accurate measure of the complexity of ϕ than md(ϕ),
there are two drawbacks. First, fC is not univoquely defined in Theorem 11.1
(since different rewrite strategies lead to different normal forms). Second,
even if we fix a definition for fC (e.g., by fixing a rewrite strategy) we already
saw that fC(ϕ) can be exponentially larger than ϕ and hence, first computing
fC(ϕ) and then obtaining its modal depth would be too expensive.

In this section, by using a generalization of the notion of modal depth (cf.
the definition of “modal paths” below) we will be able to give more accurate
invariance results. These results will cover a wide spectrum of complexity
measures computable in polynomial time.

As a generalization of modal depth we will take all the sequences of
modalities occurring in some branch of the formation tree of a formula. We
will call this set the modal paths of a formula.

Definition 11.9 (Modal paths). We define π(ϕ) ⊂ Mod∗, the set of modal
paths of a formula ϕ, in an inductive way:

π(a) = {ǫ}
π(¬ψ) = π(ψ)

π(ψ ∨ χ) = π(ψ) ∪ π(χ)
π([m]ψ) = {m.p | p ∈ π(ψ)}

Observe that md(ϕ) = max{|t| | t ∈ π(ϕ)}, where |t| is the length of t and
that π(ϕ) can be computed in polynomial time. We will use π to define
complexity measures which are more accurate than md .

Definition 11.10 (Extracted variants and k-bounds). Given two finite sets
M,M ′ ⊂ Mod∗, we say that M ′ is a C-extracted variant of M , and notated
M ′ ∈ τC(M), if M ′ can be obtained from M by repeatedly applying the
following rule until it can no longer be applied (here, s, t ∈ Mod∗ while
m,n ∈ Mod):

A ∪ {s.m.n.t}

A ∪ {s.m, s.n.t}
n is m-invariant in C (11.13)

Finally, we will say that a formula ϕ is k-bounded in C whenever there exists
M ∈ τC(π(ϕ)) such that k ≥ max{|t| | t ∈M}.
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Any function c will be a correct measure of complexity for C as long as
ϕ is c(ϕ)-bounded in C for all ϕ. Trivially, then, md will be correct for all C.
The following theorem links k-bounds with k-bisimulations, justifying this
claim.

Theorem 11.4. Let M,N ∈ C be such that M↔kN . Then, for all ϕ
k-bounded in C, M |= ϕ iff N |= ϕ.

Proof. First, observe that, for all ψ in CNF✷, if M is obtained from π(ψ) by
applying rule (11.13) once, then there exists a derivation ψ −→EC

ψ1 −→EC

· · · −→EC
ψn such that π(ψn) = M ′ (notice that if n > 1 then there exist

more than one path in the syntactic tree of ψ where the rewritten modal
path occurs). Conversely, if M = π(ψ) and rule (11.13) cannot be applied
to M , then ψ must be in extracted form.

Now, since ϕ is k-bounded, there must be a derivation of M from π(ϕ)
such that k ≥ max{|t| | t ∈M}. Let ϕ′ be a CNF✷-formula C-equivalent to
ϕ obtained using the rewrite system −→CNF✷

(cf. Theorem 11.1). It is trivial
to see that π(ϕ) = π(ϕ′), but this means that we can use the observation
above to derive a C-equivalent ϕ′′ from ϕ′ using −→EC

such that π(ϕ′′) = M
and ϕ′′ is in C-extracted form. Therefore we have md(ϕ′′) ≤ k and using
Theorem 10.2, M |= ϕ′′ iff N |= ϕ′′. Finally, since ϕ, ϕ′ and ϕ′′ are all
C-equivalent, we conclude M |= ϕ iff N |= ϕ.

To illustrate this result, we propose next a (polynomially computable)
complexity measure for H(@) and show it is correct and more accurate than
md .

Definition 11.11 (Hybrid depth). We define hd(ϕ), the hybrid depth of a
H(@)-formula ϕ as:

hd(ϕ)
def
= max

{

hd′(ϕ), 1 + max{hd′(ψ) | [@i]ψ is a subformula of ϕ}
}

,

where:
hd′(a) = 0, for a ∈ Atom

hd′(¬ϕ) = hd′(ϕ)
hd′(ϕ ∨ ψ) = max{hd′(ϕ), hd′(ψ)}
hd′([@i]ϕ) = 0
hd′([r]ϕ) = 1 + hd′(ϕ), for r ∈ Rel.

Clearly, hd is computable in polynomial time and hd(ϕ) ≤ md(ϕ), for
all ϕ. Moreover, for every k there exists ϕk such that md(ϕk) = hd(ϕk)+k.
In other words, when considering the set of all hybrid formulas, hd can be
found to be arbitrarily smaller than md . Still, hd is a correct measure of
complexity for H(@).

Proposition 11.5. For every H(@)-formula ϕ, ϕ is hd(ϕ)-bound in CH(@).
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Proof. Observe that rule (11.13) is confluent in the case of CH(@) (it need
not be in the general case) so there is only one M ∈ τC(π(ϕ)). Moreover, if
s ∈ M , then either s ∈ Rel∗ or s = @i.t with t ∈ Rel∗. In the last case it
must be because @iψ with t ∈ π(ψ) occurs in ϕ. In any case, it is clear that
hd(ϕ) = max{|s| | s ∈M}.

As a final application of Theorem 11.4 we exhibit an alternative proof
for a classic result in computational complexity for modal logics.

Theorem 11.5 (Ladner [1977]). The satisfiability problem for S5 is NP-
complete.

Proof. Recall that S5 is obtained by adding axioms T , 4 and 5 (cf. Sec-
tion 1.2.3) to the basic modal logic K. The lower bound is given by the com-
plexity of the satisfiability problem for propositional logic. For the upper
bound, assume a signature S = 〈Atom, {m}〉 and take CS5 to be the class of
all S-models where m is interpreted as a relational, transitive, reflexive and
symmetric modality. Since this class satisfies axiom 5, we know m has to be
euclidean too. Suppose we are looking a model for ϕ. By Proposition 11.3,
m is self C-extractable. It is easy to see that then if M ∈ τC(π(ϕ)) then M
is the singleton set {m}. Therefore, ϕ is 1-bounded in CS5 and, therefore
it suffices to non-deterministically guess a proper model M of depth 1 with
enough successors (e.g. the number of occurrences of [m] in ϕ) and verify if
M |= ϕ, which can be done in polynomial time.
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L. Fariñas del Cerro. A simple deduction method for modal logic. Informa-
tion Processing Letters, 14(2):49–51, 1982. 2.2
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