biblioteca central Luisf leloir
F C E N - U B A

Tesis Doctoral

Algunos problemas de optimización para el p-Laplaciano

Del Pezzo, Leandro M.

2009

Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente.

This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source.

Citatipo APA:
Del Pezzo, Leandro M.. (2009). Algunos problemas de optimización para el p-Laplaciano.
Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.

Citatipo Chicago:
Del Pezzo, Leandro M.. "Algunos problemas de optimización para el p-Laplaciano". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2009.

EXACTAS

Facultad de Ciencias Exactas y Naturales

UBA

Universidad de Buenos Aires

UNIVERSIDAD DE BUENOS AIRES
Facultad de Ciencias Exactas y Naturales
Departamento de Matemática

Algunos Problemas de Optimización para el p-Laplaciano

Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área Ciencias Matemáticas

Leandro M. Del Pezzo

Director de tesis: Julián Fernández Bonder

Buenos Aires, 2009.

Para Bruna.

Algunos Problemas de Optimización para el p-Laplaciano

(Resumen)

Dentro de la teoría de autovalores para operadores elípticos diferenciales, un problema de especial importancia es el de optimización de estos autovalores con respecto a los diferentes parámetros considerados. En está tesis, nos dedicamos al estudio de algunos de estos problemas, considerando como operador no lineal modelo el p-Laplaciano que se define como

$$
\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) .
$$

Palabras Claves: p-Laplaciano; primer autovalor; problemas de optimización; existencia; reordenamientos; derivada de forma.

Some Optimization Problems for the p-Laplacian

(Abstract)

Within the eigenvalues theory for elliptic differential operators, a relevant problem is the optimization of these eigenvalue with respect to the different parameters under consideration. In this thesis, we study some of this problems, we consider as a model of nonlineal operator we take the p-Laplacian, that is defined as

$$
\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) .
$$

Key words: p-Laplacian; first eigenvalue; optimization problem; existence; rearrangements; shape derivative.

Agradecimientos

A Julián por su amistad, paciencia y por haberme bancado cuando la cosa se me puso dificíl. Espero que sigamos teniendo nuestra charlas sobre el bendito fútbol.

A mi viejo.

A Yami y a Sabri por su cariño y por estar siempre a mi lado.

A Bimbo no tengo mucho más que decir (igual creo que nunca lo va a leer).

A los Mosquera-Palus: Mario, Lucía y Florencia.
A mis tíos, mis primos y a la flia. Pardo por su amistad.

A mis amigos: San, Seba, Caro, Fer, el Colo, Dani, Rela, Guille, Santi, Dano, Damían, Santiago, Manu, Vendra, Vicky, Magui, Marian, Ana, Leandro Z., Pablo S., Fede, Lau B., Nico, Marce, Eze M., Ire, Agustín, el colo Andres, Tato y Yuri. ¿Que hubiera sido de esta tesis sin los almuerzos, las meriendas y los cumples? La verdad no lo se.

A mis compañeros de oficina: Ariel, San y Seba por su amistad, buena onda y por ayudarme con todos mis problemas. Realmente hicieron que los días de trabajo fueron muy agradables.

A la gente del fútbol: de los jueves, todo por ella, los muchachos del toro y spica.
A Julio, Patu, Noemí y Ricardo.
A Nino, Matias G., Johana y Acosta.

A mi tanita por ser el pilar que mantiene toda mi vida en pie.

Por último a vos que leíste todos los agradecimientos y no te encontraste.

Contents

Resumen v
Abstract vii
Agradecimientos ix
Contents xii
Introduction xiii
1 Preliminaries 1
1.1 Notation 1
1.2 Banach spaces 3
1.2.1 Hilbert spaces 4
1.2.2 Dual space 5
1.2.3 Weak and weak* convergence 5
1.3 Measure theory 6
1.3.1 Measure 6
1.3.2 Measurable function and integration 9
$1.4 \quad L^{p}$-spaces 12
1.5 Rearrangements of functions 13
1.6 Sobolev spaces 14
1.7 Spherical Symmetrization 16
$1.8 \quad p$-Laplace equations 17
1.8.1 Solvability of the Dirichlet problem 18
1.8.2 The strong maximum principle 19
1.8.3 The weighted eigenvalue problems 20
1.9 BV functions 23
2 The first eigenvalue of the p-Laplacian plus a potential 26
2.1 The problems 27
2.2 Some properties of eigenvalue 27
2.3 Maximizing potentials 28
2.4 Minimizing potentials 37
3 The first Steklov eigenvalue of a nonlinear problem 39
3.1 Existence of an optimal configuration 40
3.2 Limit as $\alpha \rightarrow \infty$ 44
3.3 Symmetry properties. 47
4 Differential calculus 49
4.1 Differentiation of the norms $\|\cdot\|_{L^{q}(\Omega)}$ and $\|\cdot\|_{W^{1, p}(\Omega)}$ 49
4.2 Results on differential geometry 53
4.3 Differentiation of the $L^{q}(\partial \Omega)-$ norm 54
5 The first weighted eigenvalue problem plus a potential 56
5.1 Minimization and characterization 57
5.2 Differentiation of the eigenvalue 62
6 Some optimization problems for p-Laplacian type equations 72
6.1 Maximizing in the class of rearrangements 73
6.2 Maximizing in the unit ball of L^{q} 78
6.3 Maximizing in L^{∞} 79
6.4 Derivate with respect to the load 81
7 Extremals of the trace inequality in domains with holes 88
7.1 Differentiation of the extremal 90
7.2 Lack of Symmetry in the Ball 96
Bibliography 103
Index 109

Introduction

Eigenvalue problems for second order elliptic differential equations are one of the fundamental problems in mathematical physics and, probably, one of the most studied ones in the past years. See [DS1, DS2, DS3].

When studying eigenvalue problems for nonlinear homogeneous operators, the classical linear theory does not work, but some of its ideas can still be applied and partial results are obtained. See, for instance, [An, C, GAPA1, GAPA2].

For example, the eigenvalue problem for the p-Laplace operator subject to zero Dirichlet boundary condition, i.e., find λ and $u(x)$ such that

$$
\begin{cases}-\Delta_{p} u=\lambda|u|^{p-2} u & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded open set in \mathbb{R}^{N}, and $\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian, have been studied extensively during the past two decades and many interesting results have been obtained. The investigations have principally relied on variational methods and the existence of a principal eigenvalue (i.e., the associated eigenspace has dimension one and the associated nonzero eigenfunction does not change sign) has been proved as a consequence of minimization results of appropriate functionals. Then, this principal eigenvalue λ_{1} is the smallest of all possible eigenvalues λ. Moreover, λ_{1} is isolated. On the other hand, the study of higher eigenvalues introduces complications which depend upon the boundary conditions in a significant way, and thus the existence proofs may differ significantly, as well.

In recent years, models involving the p-Laplace operator have been used in the theory of quasiregular and quasiconformal mappings in Riemannian manifolds with boundary (see $[\mathrm{E}, \mathrm{T}]$), non-Newtonian fluids, reaction diffusion problems, flow through porous media, nonlinear elasticity, glaciology, etc. (see [ADT, AE, AC, Di]).

In the theory for eigenvalues of elliptic operators, a relevant problem is the optimization of these eigenvalues with respect to different parameters under consideration. Problems linking the shape of the domain or the coefficients of an elliptic operator to the sequence of its eigenvalues are among the most fascinating of mathematical analysis. In part, this is because they involve different fields of mathematics.

In this thesis, we focus on extremal problems for principal eigenvalues. For instance,
we look for the optimization of the principal eigenvalue of the p-Laplace operator perturbed by a potential function $V(x)$ where the potential varies in an admissible class. This type of problems are nonlinear versions of Schröedinger operators (that is elliptic linear operators L under perturbations given by a potential V, in bounded regions). These operators appear in different fields of applications such as quantum mechanics, stability of bulk matter, scattering theory, etc. See Chapter 2. We investigate similar questions for other kind of eigenvalues and related elliptic operators, like the Steklov eigenvalue problem and nonlinear elastic membranes (see Chapter 3 and 6).
In [AsHa], for example, the authors consider Schröedinger operators, and the following problem is studied: Let L be a uniformly elliptic linear operator and assume that $\|V\|_{L^{q}(\Omega)}$ is constrained but otherwise the potential V is arbitrary. Can the maximal value of the first (fundamental) eigenvalue for the operator $L+V$ be estimated? And the minimal value? There exist optimal potentials? (i.e. potentials V^{*} and V_{*} such that the first eigenvalue for $L+V^{*}$ is maximal and the first eigenvalue for $L+V_{*}$ is minimal).

In [AsHa] these questions are answered in a positive way and, moreover, a characterization of these optimal potentials is given.

Other interesting example is given in [He]. In that article, the author studies a nonhomogeneous membranes. He considers a membrane Ω in which non-homogeneity is characterized by a non-negative density function $g(x)$. The following eigenvalue problem is then analyzed:

$$
\begin{cases}-\Delta u=\lambda g(x) u & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

The first eigenvalue $\lambda(g)$ is characterized by the usual minimization formula:

$$
\lambda(g)=\inf \left\{\frac{\int_{\Omega}|\nabla u|^{2} \mathrm{~d} x}{\int_{\Omega} g(x) u^{2} \mathrm{~d} x}: u \in H_{0}^{1}(\Omega)\right\}
$$

The author is then interested in the following optimization problem:

$$
\inf \{\lambda(g): g \in \mathcal{G}\}, \quad \sup \{\lambda(g): g \in \mathcal{G}\}
$$

where

$$
\mathcal{G}:=\left\{g \in L^{\infty}(\Omega): \alpha \leq g(x) \leq \beta \text { a.e. in } \Omega, \int_{\Omega} g \mathrm{~d} x=c\right\}
$$

where α, β and c three real numbers such that $0 \leq \alpha<\beta$ and $\alpha|\Omega| \leq c \leq \beta|\Omega|$.
In the case where $\Omega \subset \mathbb{R}^{2}$, this equation models the vibration of a non-homogeneous membrane Ω which is fixed along the boundary $\partial \Omega$. Given several materials (with different densities) of total extension $|\Omega|$, we investigate the location of these materials inside Ω so as to minimize or maximize the vibration of the corresponding membrane.

In the [He], the author proved that there exists a minimizer of $\lambda(g)$ in the class \mathcal{G} and that there exists a unique maximizer of $\lambda(g)$ in the same class.

A very important issue in this type of problems is not only to establish the existence of optimal configurations but also to give some characterization of those optimal configurations or, at least, some necessary conditions that these optimal configurations must satisfy.

In order to deal with these issue, we compute the derivative of the functionals that we are trying to optimize with respect to perturbations of the parameters under consideration in the class of admissible parameters. This is achieve by means of suitable extentions of the Hadamard method of regular variations. See [HP].

This method has been proved to be extremely useful in order to perform actual computations of the optimal parameter configurations in many situations, see [P].

So, the computation of these derivatives will be extremely useful for designing numerical algorithms that compute the optimal configurations of the paremeters.
We perform this computations in most of the problems under consideration in this thesis (see Chapters 5, 6 and 7). We believe that the results in those chapters are the main contribution of this thesis.

Thesis outline

The rest of the thesis is organized as follows.
Chapter 1 contains the notation and some preliminary tools used throughout this thesis. Almost always, the results are not quoted in the most general form, but in a way that is appropriate to our purposes; nevertheless some of them are actually slightly more general than we strictly need. Most of these results are well known, but we include it here for the sake of completeness. We will not go into details, referring the reader to the corresponding literature.

The purpose of Chapter 2 is the extension of the results of [AsHa] to the nonlinear case. We are also interested in extending these results to degenerate/singular operators. As a model of these operators, we take the p-Laplacian.

We want to remark that the proofs are not straightforward extensions of those in [AsHa] since the proof there are not, in general, variational. Moreover, some new technical difficulties arise since solutions to a p-Laplace type equation are not regular and, mostly, since the eigenvalue problem for the p-Laplacian is far from being completely understood.

In Chapter 3, we study the first (nonlinear) Steklov eigenvalue, λ, of the following problem:

$$
-\Delta_{p} u+|u|^{p-2} u+\alpha \phi|u|^{p-2} u=0
$$

in a bounded smooth domain Ω with

$$
|\nabla u|^{p-2} \frac{\partial u}{\partial v}=\lambda|u|^{p-2} u
$$

on the boundary $\partial \Omega$. We analyze the dependence of this first eigenvalue with respect to the weight ϕ and with respect to the parameter α. We prove that for fixed α there exists an optimal ϕ_{α} that minimizes λ in the class of uniformly bounded measurable functions with fixed integral.

Next, we study the limit of these minima as the parameter α goes to infinity and we find that the limit is the first Steklov eigenvalue in Ω with a hole where the eigenfunction vanishes.

In Chapter 4, we compute the derivative of the norms $\|\cdot\|_{L^{q}(\Omega)},\|\cdot\|_{W^{1, p}(\Omega)}$ and $\|\cdot\|_{L^{p}(\partial \Omega)}$ with respect to perturbation in Ω. These computations are fundamental for the rest of this thesis.
Moreover, this chapter collects some general results on differential geometry that are needed in the course of our arguments.

In Chapter 5, we study the problem of minimizing the first eigenvalue of the p-Laplacian plus a potential with weights, when the potential and the weight are allowed to vary in the class of rearrangements of a given fixed potential V_{0} and weight g_{0}.
More recently, in [CEP2], the authors analyze this problem but when the potential function is zero. In that work the authors prove the existence of a minimizing weight g_{*} in the class of rearrangements of a fixed function g_{0} and, in the spirit of [Bu1] they found a sort of Euler-Lagrange formula for g_{*}. However, this formula does not appear to be suitable for use in actual computations of these minimizers.

In this chapter, we extend the results in [CEP2] to our problem. Also, the same type of Euler-Lagrange formula is proved for both the weight and potential. But, we go further and study the dependence of the first eigenvalue with respect to the weight and potential, and prove the continuous dependence in L^{q} norm and, moreover, the differentiability with respect to regular perturbations of the weight and the potential.

In the case when the perturbations are made inside the class of rearrangements, we exhibit a simple formula for the derivative of the eigenvalue with respect to the weight and the potential.
We believe that this formula can be used in actual computations of the optimal eigenvalue, weight and potential, since this type of formulas have been used in similar problems in the recent years with significant success, see $[F B G R, H, O, P]$ and references therein.

In Chapter 6, we study some optimization problems for nonlinear elastic membranes. More precisely, we consider the problem of optimizing the cost functional

$$
\mathcal{J}(u)=\int_{\partial \Omega} f(x) u \mathrm{~d} \mathcal{H}^{N-1}
$$

over some admissible class of loads f where Ω is a bounded smooth domain, \mathcal{H}^{N-1} is the $N-1$-dimensional Hausdorff measure and u is the (unique) solution to the problem

$$
-\Delta_{p} u+|u|^{p-2} u=0
$$

in Ω with

$$
|\nabla u|^{p-2} \frac{\partial u}{\partial v}=f
$$

on $\partial \Omega$.
We have chosen three different classes of admissible functions \mathcal{A} to work with.

- The class of rearrangements of a given function f_{0}.
- The (unit) ball in some L^{q}.
- The class of characteristic functions of sets of given surface measure.

Observe that this latter class is in fact a subclass of the first one. In fact, if we choose f_{0} to be a characteristic function, then the class of rearrangements of f_{0} is the class of characteristic functions of sets of given surface measure. Nevertheless, since we believe that this case is the most interesting one, we have chosen to treated separately from the others.

For each of these classes, we prove existence of a maximizing load (in the respective class) and analyze properties of these maximizers.
Then, in order to do that, we compute the first variation with respect to perturbations on the load.

Lastly, in Chapter 7, We study the Sobolev trace constant for functions defined in a bounded domain Ω that vanish in the subset A, i.e.,

$$
S_{q}(A):=\inf \left\{\frac{\int_{\Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} x}{\left(\int_{\partial \Omega}|u|^{q} \mathrm{~d} \mathcal{H}^{N-1}\right)^{p / q}}: u \in W_{A}^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega)\right\},
$$

with

$$
W_{A}^{1, p}(\Omega)=\overline{C_{0}^{\infty}(\bar{\Omega} \backslash A)}
$$

where where the closure is taken in $W^{1, p}$-norm.
We find a formula for the first variation of the Sobolev trace with respect to the hole. As a consequence of this formula, we prove that when Ω is a centered ball, the symmetric hole is critical when we consider deformations that preserve volume but is not optimal for some cases.

The results in this chapter generalize those in [FBGR] where the same problem was treated in the linear case $p=q=2$. We want to remark that this extension is from being elementary, since the arguments in [FBGR] uses the linearity in a crucial way. We have to develop a new method in order to consider the nonlinear setting that relates to that in [GMSL].

Included publications

The results in Chapters 2, 3, 5, 6 and 7 have appeared published as research articles. These results are readable as individuals contributions linked by a common theme and all of them are either published, accepted for publication or submitted for publication in refereed journals. The chapters contain the following papers:

Chapter 2
L. Del Pezzo and J. Fernández Bonder. An optimization problem for the first eigenvalue of the p-Laplacian plus a potential. Commun. Pure Appl. Anal., vol. 5 (2006), no. 4, pp. 675-690.

Chapter 3
L. Del Pezzo, J. Fernández Bonder and J. D. Rossi. An optimization problem for the first Steklov eigenvalue of a nonlinear problem. Differential Integral Equations, vol. 19 (2006), no. 9, pp. 1035-1046.

Chapter 5

L. Del Pezzo and J. Fernández Bonder. An optimization problem for the first weighted eigenvalue problem plus a potential. Submitted for publication.
arxiv.org/pdf/0906.2985v1.
Chapter 6
L. Del Pezzo and J. Fernández Bonder. Some optimization problems for p-Laplacian type equations. Appl. Math. Optim., vol. 59 (2009), no. 3, pp. 365-381.
L. Del Pezzo and J. Fernández Bonder. Remarks on an optimization problem for the p-Laplacian. Applied Mathematical Letters, vol. 23 (2010), no. 2, pp. 188-192. doi:10.1016/j.aml.2009.09.010.

Chapter 7

L. Del Pezzo. Optimization problem for extremals of the trace inequality in domains with holes. Submitted for publication.
arxiv.org/pdf/0809.0246.

1

Preliminaries

This chapter contains the notation and some preliminary tools used throughout this thesis. Almost always, the results are not quoted in the most general form, but in a way appropriated to our purposes; nevertheless some of them are actually slightly more general than we strictly need.

Section 1.1 fixes some notations. Section $1.2,1.3,1.4,1.5,1.6$ and 1.7 collect some results regarding Banach spaces, measure theory, L^{p}-spaces, Sobolev spaces and spherical symmetrization, respectively. Section 1.8 consists in an overview of some results for the operator $H_{V}(u):=-\Delta_{p} u+V(x)|u|^{p-2} u$ with $V \in L^{q}(\Omega)$. Finally, in Section 1.9, we give some important results about functions of bounded variation.

Most of these results are well known, but we include it here for the sake of completeness. We will not go into details, referring the reader to the corresponding literature.

1.1 Notation

Throughout this thesis the term domain and the symbol Ω shall be reserved for an open set in the N-dimensional, real Euclidean space \mathbb{R}^{N}.

A typical point in \mathbb{R}^{N} is denoted by $x=\left(x_{1}, \ldots, x_{N}\right)$; its norm

$$
|x|=\left(\sum_{i=1}^{N} x_{i}^{2}\right)^{\frac{1}{2}}
$$

The inner product of x and y is $\langle x, y\rangle$ or $x \cdot y$, i.e.,

$$
\langle x, y\rangle=x \cdot y=\sum_{i=1}^{N} x_{i} y_{i}
$$

If $u: \Omega \rightarrow \mathbb{R}$ is a continuous function, the support of u is defined by

$$
\operatorname{supp} u=\Omega \cap \overline{\{x: u(x) \neq 0\}}
$$

where the closure of a set $A \subset \mathbb{R}^{N}$ is denoted by \bar{A}. If $A \subset \Omega, \bar{A}$ compact and also $\bar{A} \subset \Omega$ we shall write $A \subset \subset \Omega$. The boundary of a set A is defined by

$$
\partial A=\bar{A} \cap \overline{\mathbb{R}^{N} \backslash A} .
$$

For $E \subset \mathbb{R}^{N}$ the characteristic function is denoted by χ_{E} and we write 2^{E} for the set of all subset of E.

The symbol

$$
B(x, r)=\left\{y \in \mathbb{R}^{N}:|x-y|<r\right\}
$$

denotes the open ball with center x and radius r, and

$$
\bar{B}(x, r)=\left\{y \in \mathbb{R}^{N}:|x-y| \leq r\right\}
$$

will stand for the closed ball.
We use the standard notation $C^{k}\left(\Omega ; \mathbb{R}^{m}\right)$ for the k-times continuously differentiable functions on some domain Ω, for $m \in \mathbb{N}$ and $k=0$ (continuous functions), $1,2, \ldots, \infty$. We abbreviate $C^{k}(\Omega ; \mathbb{R}) \equiv C^{k}(\Omega)$ and $C^{0}(\Omega) \equiv C(\Omega)$. The subspace $C_{0}(\Omega)$ and $C_{0}^{\infty}(\Omega)$ consist of all those function in $C(\Omega)$ and $C^{\infty}(\Omega)$, respectively, which have compact support in Ω.
If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ is an N-tuple non-negative integers, α is called a multi-index and the length of α is

$$
|\alpha|=\sum_{i=1}^{N} \alpha_{i} .
$$

The higher order derivatives operators are defined by

$$
D^{\alpha}=\frac{\partial^{|a|}}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{N}^{\alpha_{N}}} .
$$

The gradient of $u \in C^{1}(\Omega)$ is

$$
\nabla u=\left(\frac{\partial u}{\partial x_{1}}, \ldots, \frac{\partial u}{\partial x_{N}}\right) .
$$

Let Ω be a open bounded subset of \mathbb{R}^{N} and $0<\gamma \leq 1$. We say that $f: \Omega \rightarrow \mathbb{R}$ is Lipschitz continuous if for all $x, y \in \Omega$,

$$
|f(x)-f(y)| \leq C|x-y|,
$$

for some constant C. It turns out to be useful to consider also functions f satisfying a variation of the above inequality, namely

$$
|f(x)-f(y)| \leq C|x-y|^{\gamma} \quad \forall x, y \in \Omega,
$$

for some constant C. Such a function is said to be Hölder continuous with exponent γ; and locally Hölder continuous with exponent γ if f is Hölder continuous with exponent γ on every compact subset of Ω.

Clearly if f is Lipschitz (Höder) continuous, then f is continuous.

Example 1.1.1. The function $f: B(0,1) \rightarrow \mathbb{R}$ given by $f(x)=|x|^{\beta}, 0<\beta<1$ is Hölder continuous with exponent β, and is Lipschitz continuous when $\beta=1$.

The Hölder spaces $C^{k, \gamma}(\bar{\Omega})\left(C_{l o c}^{k, \gamma}(\Omega)\right)$ are defined as the subspaces of $C^{k}(\Omega)$ consisting of functions whose $k-$ th order partial derivatives are Hölder continuous (locally Hölder continuous) with exponent γ in Ω. For simplicity, we write

$$
C_{l o c}^{0, \gamma}(\Omega) \equiv C_{l o c}^{\gamma}(\Omega) \quad \text { and } \quad C^{0, \gamma}(\bar{\Omega}) \equiv C^{\gamma}(\bar{\Omega}),
$$

for each $0<\gamma<1$.
We will say that Ω is a Lipschitz (smooth) bounded domain when Ω is a bounded domain and its boundary is Lipschitz (smooth).

If Ω is a smooth bounded domain, v and $\frac{\partial}{\partial v}$ denote the unit outer normal vector along $\partial \Omega$ and the outer normal derivative, respectively.

1.2 Banach spaces

Here, we give the functional analysis background that will be needed in this thesis.
Let E be a real linear space. A function $\|\cdot\|: E \rightarrow[0,+\infty]$ is called a norm if
(i) $\|x\| \geq 0$ for all $x \in E,\|x\|=0$ if only if $x=0$,
(ii) $\|\lambda x\|=|\lambda\|\mid\| x \|$ for all $x \in E, \lambda \in \mathbb{R}$,
(iii) $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in E$, (triangle inequality).

A linear space E equipped with a norm is called a normed linear space. A normed linear space E is a metric space under metric ρ defined by

$$
\rho(x, y)=\|x-y\| \quad \forall x, y \in E .
$$

Hereafter, we assume that E is a normed linear space.
We say a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in E converges to $x \in E$, written

$$
x_{n} \rightarrow x,
$$

if

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|=0
$$

A sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in E is called a Cauchy sequence if for each $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that

$$
\left\|x_{n}-x_{m}\right\|<\varepsilon \quad \forall n, m>n_{0} .
$$

E is a complete space if each Cauchy sequence in E converges and E is called a Banach space if E is a complete normed linear space.

We say E is a separable space if E contains a countable dense subset.
Example 1.2.1. Euclidean space \mathbb{R}^{N} is a Banach space under the standard norm.
Example 1.2.2. Let Ω be an open bounded subset of \mathbb{R}^{N}. The space of functions $C^{k, \gamma}(\bar{\Omega})$ is a Banach spaces under the norm:

$$
\|u\|_{C^{k, \gamma}(\bar{\Omega})}=\sum_{j=0}^{k}\left|D^{j} u\right|_{\Omega}+\left[D^{k} u\right]_{\gamma ; \Omega},
$$

where

$$
\left|D^{j} u\right|_{\Omega}=\sup _{|\beta|=j} \sup _{x \in \Omega}\left|D^{\beta} u(x)\right|(0 \leq j \leq k),
$$

and

$$
\left[D^{k} u\right]_{\gamma ; \Omega}=\sup _{|\beta|=k} \sup _{\substack{x \neq y \\ x, y \in \Omega}} \frac{\left|D^{\beta} u(x)-D^{\beta} u(y)\right|}{|x-y|^{\gamma}} .
$$

1.2.1 Hilbert spaces

Let H be a real linear space.
A function $\langle\rangle:, H \times H \rightarrow \mathbb{R}$ is said to be an inner product if
(i) $\langle x, y\rangle=\langle x, y\rangle$ for each $x, y \in E$,
(ii) the function $x \rightarrow\langle x, y\rangle$ is linear for each $y \in E$,
(iii) $\langle x, u\rangle \geq 0$ for each $u \in E$,
(iv) $\langle x, x\rangle=0$ if only if $x=0$.

If \langle,$\rangle is an inner product, the associated norm is$

$$
\|x\|:=\langle x, x\rangle^{1 / 2} \quad \forall x \in H .
$$

The Cauchy-Schwarz inequality states that

$$
\langle x, y\rangle \leq\|x\|\|y\| \quad \forall x, y \in H .
$$

A Hilbert space H is a Banach space endowed with an inner product which generates the norm.

Example 1.2.3. Euclidean space \mathbb{R}^{N} is a Hilbert space under the inner product

$$
x \cdot y=\sum_{i=1}^{N} x_{i} y_{i}, \quad x=\left(x_{1}, \ldots, x_{N}\right), y=\left(y_{1}, \ldots, y_{N}\right) .
$$

1.2.2 Dual space

Let E and F be a Banach spaces.
A function $L: E \rightarrow F$ is a linear operator provided that

$$
L(\lambda x+\gamma y)=\lambda L(x)+\gamma L(y) \quad \forall x, y \in E, \lambda, \gamma \in \mathbb{R} .
$$

We say a linear operator $L: E \rightarrow F$ is bounded if

$$
\|L\|=\sup \left\{\|L(x)\|_{F}: x \in E,\|x\|_{E} \leq 1\right\}<\infty .
$$

A bounded linear operator $L: E \rightarrow \mathbb{R}$ is called a bounded lineal functional. We denote by E^{*} the set of all bounded linear functional on $E . E^{*}$ is the dual space of E.

Observe that E^{*} is a Banach space with the norm

$$
\|L\|_{E^{*}}=\sup \left\{\|L(x)\|_{F}: x \in E,\|x\|_{E} \leq 1\right\} \quad \forall L \in E^{*} .
$$

The dual space of E^{*} is called the second dual of E and is denoted by $E^{* *}$. Clearly, the mapping $\Psi: E \rightarrow E^{* *}$ given by $\Psi(x)(f)=f(x)$ is a norm preserving, linear, one-to-one mapping of E into $E^{* *}$. If $E^{* *}=\Psi(E)$, then we call E reflexive.

1.2.3 Weak and weak* convergence

Let E be a Banach space.
Definition 1.2.4. A sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in E converges weakly to $x \in E$, written

$$
x_{n} \rightharpoonup x,
$$

if

$$
L\left(x_{n}\right) \rightarrow L(x) \quad \forall L \in E^{*} .
$$

Remark 1.2 .5 . It easy to check that
(i) if $x_{n} \rightarrow x$, then $x_{n} \rightharpoonup x$,
(ii) any weakly convergent sequence is bounded,
(iii) if $x_{n} \rightharpoonup x$ weakly in E and $L_{n} \rightarrow L$ strongly in E^{*}, then $L_{n}\left(x_{n}\right) \rightarrow L(x)$,
(iv) if $x_{n} \rightharpoonup x$, then $\|x\| \leq \liminf _{n \rightarrow \infty}\left\|x_{n}\right\|$.

The proofs of the following theorems can be found in [Y].

Theorem 1.2.6. Let E be a reflexive Banach space and let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a bounded sequence in E. Then, there exists a subsequence $\left\{x_{n_{j}}\right\}_{j \in \mathbb{N}}$ of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ and $x \in E$ such that

$$
x_{n_{j}} \rightharpoonup x .
$$

In other words, bounded sequences in a reflexive Banach space are weakly precompact.

Theorem 1.2.7 (Mazur's Theorem). Let E be a reflexive Banach space. Then any convex, closed subset of E is weakly closed.

Definition 1.2.8. A sequence $\left\{L_{n}\right\}_{n \in \mathbb{N}}$ in E^{*} converges weakly* to $L \in E^{*}$, written

$$
L_{n} \stackrel{*}{\rightharpoonup} L
$$

if

$$
L_{n}(x) \rightarrow L(x) \quad \forall x \in E .
$$

Remark 1.2.9. It easy to check that
(i) if $L_{n} \rightarrow L$, then $L_{n} \stackrel{*}{\rightharpoonup} L$,
(ii) if $L_{n} \rightharpoonup L$, then $L_{n} \stackrel{*}{\rightharpoonup} L$,
(iii) if $L_{n} \stackrel{*}{\rightharpoonup} L$, then $\left\{L_{n}\right\}_{n \in \mathbb{N}}$ is bounded and $\|L\|_{E^{*}} \leq \liminf _{n \rightarrow \infty}\left\|L_{n}\right\|_{E^{*}}$,
(iv) if $L_{n} \stackrel{*}{\rightharpoonup} L$ weakly $*$ in E^{*} and if $x_{n} \rightarrow x$ strongly in E, then $L_{n}\left(x_{n}\right) \rightarrow L(x)$.

1.3 Measure theory

This section provides a quick outline of some fundamentals of measure theory.

1.3.1 Measure

Let X be a nonempty subset of \mathbb{R}^{N}.
A measure μ is a function from 2^{X} into $[0,+\infty]$ such that $\mu(\emptyset)=0$ and

$$
\mu(A) \leq \sum_{n=1}^{\infty} \mu\left(A_{n}\right) \text { whenever } A \subset \bigcup_{n=1}^{\infty} A_{n}
$$

Throughout the section, X and μ denote a nonempty of \mathbb{R}^{N} and a measure on X, respectively.

If a set $A \subset X$ satisfies

$$
\mu(E)=\mu(E \cap A)+\mu(E \backslash A) \quad \forall E \subset X,
$$

then we say A is a μ-measurable.
Remark 1.3.1. Observe that
(i) if $\mu(A)=0$ then A is μ-measurable,
(ii) A is measurable if and only if $X \backslash A$ is μ-measurable,
(iii) if A is μ-measurable and $B \subset X$, then $\mu(A \cup B)=\mu(A)+\mu(B)-\mu(A \cap B)$.

Some important examples,
Example 1.3.2 (Lebesgue Measure). We consider the closed N-dimensional cube

$$
Q=\left\{x: a_{j} \leq x_{j} \leq b_{j}, j=1, \ldots, N\right\},
$$

and their volumes

$$
v(Q)=\prod_{j=1}^{N}\left(b_{j}-a_{j}\right) .
$$

For any $A \subset \mathbb{R}^{N}$, we define its Lebesgue measure $|A|$ by

$$
|A|=\inf \left\{\sum_{n=1}^{\infty} v\left(Q_{n}\right): A \subset \bigcup_{n=1}^{\infty} Q_{n}, Q_{n} \text { is a cube } \forall n \in \mathbb{N}\right\} .
$$

If μ is the Lebesgue measure, we say that $A \subset \mathbb{R}^{N}$ is measurable in place of μ-measurable.
Example 1.3.3 (d-dimensional Hausdorff measure). For any $A \subset \mathbb{R}^{N}$, let us denote by $\operatorname{diam}(A)$ the diameter of A, i.e.,

$$
\operatorname{diam} A=\inf \left\{\|x-y\|: x, y \in \mathbb{R}^{N}\right\} .
$$

Now, fix $d>0$ and let E be any subset of \mathbb{R}^{N}. Given $\varepsilon>0$, let

$$
\mathcal{H}_{\varepsilon}^{d}(E)=\inf \left\{\sum_{n=1}^{\infty} \alpha(d)\left(\frac{\operatorname{diam} A_{j}}{2}\right)^{d}: A \subset \bigcup_{n=1}^{\infty} A_{n}, \operatorname{diam} C_{j} \leq \varepsilon\right\}
$$

where

$$
\alpha(d)=\frac{\pi^{d / 2}}{\Gamma\left(\frac{d}{2}+1\right)}
$$

Here $\Gamma(d)=\int_{0}^{\infty} e^{-t} t^{s-1} \mathrm{~d} t,(0<d<\infty)$, is the usual gamma function.
Note that $\mathcal{H}_{\varepsilon}^{d}(E)$ is monotone decreasing in ε since the larger ε is, the more collections of sets are permitted. Thus, the limit $\lim _{\varepsilon \rightarrow 0} \mathcal{H}_{\varepsilon}^{d}(E)$ exists. Let

$$
\mathcal{H}^{d}(E)=\sup \left\{\mathcal{H}_{\varepsilon}^{d}(E): \varepsilon>0\right\}=\lim _{\varepsilon \rightarrow 0} \mathcal{H}_{\varepsilon}^{d}(E)
$$

$\mathcal{H}^{d}(E)$ is called d-dimensional Hausdorff measure.

Proposition 1.3.4. Let $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of μ-measurable sets.

1. The sets

$$
\bigcup_{n \in \mathbb{N}} A_{n} \quad \text { and } \quad \bigcap_{n \in \mathbb{N}} A_{n}
$$

are μ-measurable.
2. If the sets $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ are pairwise disjoint, then

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right) .
$$

3. If $A_{n} \subset A_{n+1}$ for each $n \in \mathbb{N}$, then

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) .
$$

4. If $A_{n+1} \subset A_{n}$ for each $n \in \mathbb{N}$ and $\mu\left(A_{1}\right)<\infty$, then

$$
\mu\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) .
$$

Proof. See [EG].

A collection of subset $\Sigma \subset 2^{X}$ is a σ-algebra provided that
(i) $\emptyset, X \in \Sigma$;
(ii) $A \in \sum$ implies $X \backslash A \in \Sigma$;
(iii) $\left\{A_{n}\right\}_{n \in \mathbb{N}} \subset \Sigma$ implies $\bigcup_{n \in \mathbb{N}} A_{n} \in \Sigma$.

The collection of all μ-measurable subset of X form a σ-algebra. The smallest σ-algebra of \mathbb{R}^{N} that contains the open sets is called the Borel σ-algebra of \mathbb{R}^{N}.

Now we introduce certain classes of measures.
Definition 1.3.5. We say that
(i) μ is regular if for each set $A \subset X$ there exists a μ-measurable set B such that $A \subset B$ and $\mu(A)=\mu(B)$;
(ii) μ is Borel regular if every open set is μ-measurable and if for each $A \subset X$ there exists a Borel set $B \subset X$ such that $A \subset X$ and $\mu(A)=\mu(B)$;
(iii) μ is a Radon measure if μ is Borel regular and $\mu(K)<\infty$ for each compact set $K \subset X$.

Let $\mathcal{P}(x)$ be a statement or formula that contains a free variable $x \in X$. We say that $\mathcal{P}(x)$ holds for μ-a.e. (μ-almost every) $x \in X$ if

$$
\mu(\{x \in X: \mathcal{P}(x) \text { is false }\})=0 .
$$

If X is understood from context, then we simply say that $\mathcal{P}(x)$ holds $\mu-\mathrm{a}$. e. and when μ is the Lebesgue measure, a.e. is used in place of $\mu-$ a.e.

Lastly, we give an important result about the Hausdorff measure, for the proof see [EG].
Theorem 1.3.6. The N - dimensional Hausdorff measure is equal to the Lebesgue measure on \mathbb{R}^{N}.

1.3.2 Measurable function and integration

A function $f: X \rightarrow[-\infty,+\infty]$ is called μ-measurable if for each open $U \subset \mathbb{R}, f^{-1}(U)$ is μ-measurable. If μ is the Lebesgue measure, we say that f is measurable in place of μ-measurable.

Proposition 1.3.7. We have that

1. if $f, g: X \rightarrow \mathbb{R}$ are μ-measurable, then so are $f+g, f g,|f|, \min \{f, g\}$ and $\max \{f, g\}$. the function f / g is also μ-measurable, provided $g \neq 0$ on X;
2. if the functions $f_{n}: X \rightarrow[-\infty,+\infty]$ are μ-measurable $(n \in \mathbb{N})$, then $\inf \left\{f_{n}: n \in \mathbb{N}\right\}$, $\sup \left\{f_{n}: n \in \mathbb{N}\right\}, \lim _{\inf _{n \rightarrow \infty}} f_{n}$ and $\lim \sup _{n \rightarrow \infty} f_{n}$ are also $\mu-$ measurable;
3. if $f: X \rightarrow[0,+\infty]$ is μ-measurable. Then there exist μ-measurable sets $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ in X such that

$$
f=\sum_{n=1}^{\infty} \frac{1}{n} \chi_{A_{n}} .
$$

Proof. See [EG].

Let Ω be a domain in \mathbb{R}^{N} and let μ a measure on Ω. The support of a μ-measurable function $f, \operatorname{supp} f$, is the complement of the largest open set which f vanishes μ-a.e.

Observe that, if μ is the Lebesgue measure and f is continuous on Ω, this definition of support coincides with the definition that we gave in Section 1.1.

Given $f: X \rightarrow[-\infty,+\infty]$, we denote by

$$
f^{+}=\max \{f, 0\} \text { and } f^{-}=\min \{f, 0\} .
$$

Observe that $f=f^{+}-f^{-}$.
A function $g: X \rightarrow[-\infty,+\infty]$ is called a simple function if the image of g is countable.
Our next task is to define the integrals of a μ-measurable function.
We start with a non-negative simple μ-measurable function g defined on X. We define the integral of g over X as

$$
\int_{X} g \mathrm{~d} \mu=\sum_{0 \leq y \leq+\infty} y \mu\left(g^{-1}(y)\right) .
$$

Then, for $f: X \rightarrow[0,+\infty] \mu$-measurable we define the integral of f by

$$
\int_{X} f \mathrm{~d} \mu=\sup \int_{X} g \mathrm{~d} \mu,
$$

the supremum being taken over all simple μ-measurable function g such that $0 \leq g \leq f$ μ - a.e.

Finally, a μ-measurable function f is called μ-integrable if

$$
\int_{X}|f| \mathrm{d} \mu<+\infty
$$

in which case we write

$$
\int_{X} f \mathrm{~d} \mu=\int_{X} f^{+} \mathrm{d} \mu-\int_{X} f^{-} \mathrm{d} \mu
$$

When μ is the Lebesgue measure, $\mathrm{d} x$ is used in place of $\mathrm{d} \mu$.
Given μ a Radon measure. We write

$$
\mu\llcorner f
$$

provided

$$
\mu\left\llcorner f(K)=\int_{K} f \mathrm{~d} \mu\right.
$$

holds for all compact sets K. Note $\mu\left\lfloor A=\mu\left\lfloor\chi_{A}\right.\right.$.
We now give the limit theorems (for the proofs, see [EG]).
Lemma 1.3.8 (Fatou's Lemma). If $f_{n}: X \rightarrow[0,+\infty]$ are μ-measurable $(n \in \mathbb{N}$), then

$$
\int_{X} \liminf _{n \rightarrow \infty} f_{n} \mathrm{~d} \mu \leq \liminf _{n \rightarrow \infty} \int_{X} f_{n} \mathrm{~d} \mu .
$$

Theorem 1.3.9 (Monotone Convergence Theorem). Let $f_{n}: X \rightarrow[0,+\infty]$ be μ-measurable $(n \in \mathbb{N})$, with $f_{n} \leq f_{n+1}$ for all $n \in \mathbb{N}$. Then

$$
\int_{X} \lim _{n \rightarrow \infty} f_{n} \mathrm{~d} \mu \leq \lim _{n \rightarrow \infty} \int_{X} f_{n} \mathrm{~d} \mu
$$

Theorem 1.3.10 (Dominate Convergence Theorem). Suppose $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)
$$

exists μ-a.e. If there is a function $g \mu$-integrable such that $\left|f_{n}\right| \leq g \mu$-a.e. for each $n \in \mathbb{N}$, then f is μ-integrable and

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}-f\right| \mathrm{d} \mu=0
$$

Theorem 1.3.11. Assume f and $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ are μ-measurable and

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}-f\right| \mathrm{d} \mu=0
$$

Then there exists a subsequence $\left\{f_{n_{j}}\right\}_{j \in \mathbb{N}}$ of $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ such that

$$
\lim _{j \rightarrow \infty} f_{n_{j}}(x)=f(x) \quad \mu-a . e .
$$

The following result can be easily deduced from [LL] (Theorem 1.14 p .28).
Theorem 1.3.12 (Bathtub Principle). Let f be a real-valued, measurable function on X such that $\mu(\{x: f(x)>t\})$ is finite for all $t \in \mathbb{R}$. Let the number $G>0$ be given and define the class C of measurable functions on X by

$$
C=\left\{g: 0 \leq g(x) \leq 1 \forall x \text { and } \int_{X} g(x) \mathrm{d} \mu=G\right\} .
$$

Then the maximization problem

$$
I=\sup \left\{\int_{X} f(x) g(x) \mathrm{d} \mu: g \in C\right\}
$$

is solved by

$$
\begin{equation*}
g(x)=\chi_{\{y: f(y)>s\}}(x)+c \chi_{\{y: f(y)=s\}}(x), \tag{1.1}
\end{equation*}
$$

where

$$
s=\inf \{t: \mu(\{x: f(x) \geq t\}) \leq G\}
$$

and

$$
c \mu(\{x: f(x)=s\})=G-\mu(\{x: f(x)>s\}) .
$$

The maximizer given in (1.1) is unique if $G=\mu(\{x: f(x)>s\})$ or if $G=\mu(\{x: f(x) \geq s\})$.

$1.4 \quad L^{p}$-spaces

Throughout this section X is a nonempty subset of \mathbb{R}^{N} and μ is positive measure on X.
Let p be a positive real number. We denote by $L^{p}(X, \mu)$ the class of all μ-measurable functions f, defined on X, for which

$$
\int_{X}|f|^{p} \mathrm{~d} \mu<\infty .
$$

When μ is the Lebesgue measure, $L^{p}(X)$ is used in place of $L^{p}(X, \mu)$.
The functional $\|\cdot\|_{L^{p}(X, \mu)}$ defined by

$$
\|f\|_{L^{p}(X, \mu)}=\left(\int_{X}|f|^{p} \mathrm{~d} \mu\right)^{\frac{1}{p}}
$$

is a norm on $L^{p}(X, \mu)$ provided $1 \leq p<\infty$.
By $L_{\text {loc }}^{p}(X, \mu)$ we denote the set of all μ-measurable function f defined μ-a.e. on X, for which $f \in L^{p}(K, \mu)$ for every compact set $K \subset X$

A function f, μ-measurable on X, is said to be essentially bounded on Ω provided there exists a constant K for which $|f(x)| \leq K \mu$-a.e. on X. The greatest lower bound of such constants K is called the essential supremum of $|f|$ on X and is denoted

$$
\operatorname{ess} \sup \{|f(x)|: x \in X\}
$$

We denote by $L^{\infty}(X, \mu)$ the vector space consisting of all function f that are essentially bounded on X. The functional $\|\cdot\|$ defined by

$$
\|f\|_{\infty}=\operatorname{ess} \sup \{|f(x)|: x \in X\}
$$

is a norm on $L^{\infty}(X, \mu)$.
If μ is the Lebesgue measure, $L^{\infty}(X)$ is used in place of $L^{\infty}(X, \mu)$.
Let $1 \leq p \leq \infty$ we denote by p^{\prime} the number

$$
\left\{\begin{array}{cl}
\infty & \text { if } p=1 \\
\frac{p}{p-1} & \text { if } 1<p<\infty \\
1 & \text { if } p=\infty
\end{array}\right.
$$

so that $1 \leq p^{\prime} \leq \infty$ and $1 / p+1 / p^{\prime}=1$. p^{\prime} is called the exponent conjugate to p.
For the proofs of the followings theorems, see [Ru1].
Theorem 1.4.1 (Höder's inequality). If $1 \leq p \leq \infty$ and $f \in L^{p}(X, \mu), g \in L^{p^{\prime}}(X, \mu)$ then $f g \in L^{1}(X, \mu)$ and

$$
\int_{X}|f g| \mathrm{d} \mu \leq\|f\|_{L^{p}(X, \mu)} \mid\|g\|_{L^{p^{\prime}}(X, \mu)} .
$$

Theorem 1.4.2. Let $1 \leq p \leq \infty$, then $L^{p}(X, \mu)$ is a Banach space. $L^{p}(X, \mu)^{*}=L^{p^{\prime}}(X, \mu)$ for all $1 \leq p<\infty$ and $L^{1}(X, \mu) \subset L^{\infty}(X, \mu)^{*}$.

Corollary 1.4.3. $L^{2}(X, \mu)$ is a Hilbert space with respect to the inner product

$$
\langle f, g\rangle=\int_{\Omega} f g \mathrm{~d} \mu .
$$

Theorem 1.4.4. If $1 \leq p \leq \infty$, a Cauchy sequence in $L^{p}(X, \mu)$ has a subsequence converging pointwise almost everywhere on Ω.

The proofs of the next theorems can be found in [B].
Theorem 1.4.5. Let Ω be a domain in \mathbb{R}^{N}. Then $L^{1}(\Omega)$ is a separable Banach space and $L^{p}(X, \mu)$ is a separable, reflexive and uniformly convex Banch space for each $1<p<\infty$.

Theorem 1.4.6. Let Ω be a domain in \mathbb{R}^{N}. Then $C_{0}^{\infty}(\Omega)$ is dense in $L^{p}(\Omega)$ if $1 \leq p<\infty$.
Proposition 1.4.7. Let Ω be a domain in \mathbb{R}^{N} and let $A>0$. The set

$$
\left\{\phi \in L^{\infty}(\Omega): 0 \leq \phi \leq 1 \text { and } \int_{\Omega} \phi(x) \mathrm{d} x=A\right\}
$$

is the closure in the weak* topology in $L^{\infty}(\Omega)$ of the set of characteristic functions

$$
\left\{\chi_{E}: E \subset \Omega \text { and }|E|=A\right\} .
$$

1.5 Rearrangements of functions

Here, we recall some well-known facts concerning the rearrangements of functions. They can be found, for instance, in [Bu1, Bu2].

Throughout the section, Ω is a domain in $\mathbb{R}^{N}, \alpha \in\{N-1, N\}$ and

$$
X_{\alpha}=\left\{\begin{array}{ll}
\partial \Omega & \text { if } \alpha=N-1 \\
\Omega & \text { if } \alpha=N
\end{array} \quad \text { and } \quad \mathcal{H}^{\alpha}= \begin{cases}\mathcal{H}^{N-1} & \text { if } \alpha=N-1 \\
\mathcal{H}^{N} & \text { if } \alpha=N .\end{cases}\right.
$$

Definition 1.5.1. Given two functions $f, g: X_{\alpha} \rightarrow \mathbb{R} \mathcal{H}^{\alpha}$-measurable, we say that f is a rearrangement of g if

$$
\mathcal{H}^{\alpha}\left(\left\{x \in X_{\alpha}: f(x) \geq t\right\}\right)=\mathcal{H}^{\alpha}\left(\left\{x \in X_{\alpha}: g(x) \geq t\right\}\right) \quad \forall t \in \mathbb{R} .
$$

Lemma 1.5.2. Let $f, g: X_{\alpha} \rightarrow \mathbb{R}$ be \mathcal{H}^{α}-measurable functions, and suppose that f is a rearrangement of g. Then
(i) For any Borel set $A \subset \mathbb{R}$, we have $\mathcal{H}^{\alpha}\left(f^{-1}(A)\right)=\mathcal{H}^{\alpha}\left(g^{-1}(A)\right)$.
(ii) If $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is Borel measurable then $\phi \circ f$ is a rearrangement of $\phi \circ g$.
(iii) If $f \in L^{1}\left(X_{\alpha}, \mathcal{H}^{\alpha}\right)$ then $g \in L^{1}\left(X_{\alpha}, \mathcal{H}^{\alpha}\right)$ and

$$
\int_{X_{\alpha}} f \mathrm{~d} \mathcal{H}^{\alpha}=\int_{X_{\alpha}} g \mathrm{~d} \mathcal{H}^{\alpha} .
$$

(iv) If $1 \leq p<\infty$ and $f \in L^{p}\left(X_{\alpha}, \mathcal{H}^{\alpha}\right)$ then $f \in L^{p}\left(X_{\alpha}, \mathcal{H}^{\alpha}\right)\|f\|_{L^{p}\left(X_{\alpha}, \mathcal{H}^{\alpha}\right)}=\|g\|_{L^{p}\left(X_{\alpha}, \mathcal{H}^{\alpha}\right)}$.

Proof. See [Bu2].
Now, given $f_{0} \in L^{p}\left(X_{\alpha}, \mathcal{H}^{\alpha}\right)$ the set of all rearrangements of f_{0} is denoted by $\mathcal{R}\left(f_{0}\right)$ and $\overline{\mathcal{R}}\left(f_{0}\right)$ denotes the closure of $\mathcal{R}\left(f_{0}\right)$ in $L^{p}\left(X_{\alpha}, \mathcal{H}^{\alpha}\right)$ with respect to the weak topology.

Theorem 1.5.3. Let $1 \leq p<\infty$ and let p^{\prime} be the conjugate exponent of p. Let $f_{0} \in$ $L^{p}\left(X_{\alpha}, \mathcal{H}^{\alpha}\right), f_{0} \not \equiv 0$ and let $g \in L^{p^{\prime}}\left(X_{\alpha}, \mathcal{H}^{\alpha}\right)$. Then, there exists $f_{*}, f^{*} \in \mathcal{R}\left(f_{0}\right)$ such that

$$
\int_{X_{\alpha}} f_{*} g \mathrm{~d} \mathcal{H}^{\alpha} \leq \int_{X_{\alpha}} f g \mathrm{~d} \mathcal{H}^{\alpha} \leq \int_{X_{\alpha}} f^{*} g \mathrm{~d} \mathcal{H}^{\alpha} \quad \forall f \in \overline{\mathcal{R}(f)} .
$$

Proof. The proof follows from Theorem 4 in [Bu1].
Theorem 1.5.4. Let $1 \leq p \leq \infty$ and let p^{\prime} be the conjugate of p. Let $f_{0} \in L^{p}\left(X_{\alpha}, \mathcal{H}^{\alpha}\right)$, $f_{0} \not \equiv 0$ and let $g \in L^{p^{\prime}}\left(X_{\alpha}, \mathcal{H}^{\alpha}\right)$.

If the linear functional $L(f)=\int_{X_{\alpha}} f g \mathrm{~d} \mathcal{H}^{\alpha}$ has a unique maximizer f^{*} relative to $\mathcal{R}\left(f_{0}\right)$ then there exists an increasing function ϕ such that $f^{*}=\phi \circ g \mathcal{H}^{\alpha}$-a.e. in Ω.

Furthermore, if the linear functional $L(f)$ has a unique minimizer f_{*} relative to $\mathcal{R}\left(f_{0}\right)$ then there exists a decreasing function ψ such that $f_{*}=\psi \circ g \mathcal{H}^{\alpha}$-a.e. in Ω.

Proof. The proof follows from Theorem 5 in [Bu1].

1.6 Sobolev spaces

Let Ω be a domain in \mathbb{R}^{N} and $u \in L_{l o c}^{1}(\Omega)$. For α a multi-index, $|\alpha| \geq 1$, the function $v_{\alpha} \in L_{\text {loc }}^{1}\left(\mathbb{R}^{N}\right)$ is called weak (or distributional) derivative of u (of order α) if the identity

$$
\int_{\Omega} v_{\alpha} \phi \mathrm{d} x=(-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} \phi \mathrm{d} x .
$$

holds for every $\phi \in C_{0}^{\infty}(\Omega)$. Then v_{α} is denoted by $D^{\alpha} u$.
We call a function weakly derivative if all its weak derivatives of first order exist. Let us denote the linear space of weakly derivative function by $W^{1}(\Omega)$. Observe that $C^{1}(\Omega)$ is included in $W^{1}(\Omega)$.

For the proof of the following lemmas, see [GT].

Lemma 1.6.1. Let $u \in W^{1}(\Omega)$. Then u^{+}, u^{-}and $|u| \in W^{1}(\Omega)$.
Lemma 1.6.2. Let Ω be a bounded domain in \mathbb{R}^{N} and let $u \in W^{1}(\Omega)$. Then $\nabla u=0$ a.e. on any set where u is constant.

For $k \in \mathbb{N}$ and $1 \leq p \leq \infty$, we define the Sobolev space by

$$
W^{k, p}(\Omega)=\left\{u \in L^{p}(\Omega): D^{\alpha} u \in L^{p}(\Omega),|\alpha| \leq n\right\} .
$$

When $p=2, H^{k}(\Omega)$ is used in place of $W^{k, 2}(\Omega)$.
The space $W^{k, p}(\Omega)$ is a Banch space if equipped with the norm

$$
\|u\|_{W^{k, p}(\Omega)}=\left(\sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{p}(\Omega)}^{p}\right)^{\frac{1}{p}} .
$$

We denote by $W_{l o c}^{k, p}(\Omega)$ the set of all functions u defined on Ω, for which $u \in W^{k, p}(K)$ for every compact $K \subset \Omega$.
Further, the space $W_{0}^{k, p}(\Omega)$ is defined as the closure of $C_{0}^{\infty}(\Omega)$ in the space $W^{k, p}(\Omega)$.
Theorem 1.6.3. $W^{k, p}(\Omega)$ is separable if $1 \leq p<\infty$, and is reflexive and uniformly convex if $1<p<\infty$. In particular, $H^{k}(\Omega)$ is a separable Hilbert space with inner product

$$
\langle u, v\rangle_{k}=\sum_{0 \leq|\alpha| \leq k} \int_{\Omega} D^{\alpha} u D^{\alpha} v \mathrm{~d} x .
$$

Proof. See [A].

Theorem 1.6.4. Assume $u \in W^{k, p}(\Omega)$ for some $1 \leq p<\infty$. Then there exists a sequence $\left\{\phi_{n}\right\}_{n \in \mathbb{N}}$ in $W^{k, p}(\Omega) \cap C^{\infty}(\Omega)$ such that

$$
\phi_{n} \rightarrow u \quad \text { strongly in } W^{k, p}(\Omega) .
$$

Proof. See [EG].

Theorem 1.6.5 (Rellich-Kondrachov Theorem). Let Ω be a Lipschitz bounded domain. Then,

- if $1<p<N, W^{1, p}(\Omega)$ is embedded in $L^{q}(\Omega)$ for all $q \in\left[1, p^{*}\right)$ where $p^{*}={ }^{N p} /(N-p)$,
- if $p=N, W^{1, p}(\Omega)$ is embedded in $L^{q}(\Omega)$ for all $q \in[1,+\infty)$,
- if $p>N, W^{1, p}(\Omega)$ is embedded in $C(\bar{\Omega})$.

Moreover, all the embeddings are compact.

Proof. See [B].

Theorem 1.6.6 (Trace Theorem). Assume Ω is a Lipschitz bounded domain and $1 \leq p<\infty$. There exist a bounded linear operator $T: W^{1, p}(\Omega) \rightarrow L^{p}(\partial U)$ such that $T u=u$ on $\partial \Omega$ for all $u \in W^{1, p}(\Omega) \cap C(\bar{\Omega})$. Furthermore, for all $\phi \in C^{1}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right)$ and $u \in W^{1, p}(\Omega)$,

$$
\int_{\Omega} u \operatorname{div} \phi \mathrm{~d} x=-\int_{\Omega} \nabla u \cdot \phi \mathrm{~d} x+\int_{\partial \Omega}\langle\phi, v\rangle T u \mathrm{~d} \mathcal{H}^{N-1},
$$

where v denoting the unit outer normal to $\partial \Omega$.

Proof. See [EG].

The function $T u$ is called the trace of u on $\partial \Omega$.
Theorem 1.6.7 (Sobolev Trace Embedding Theorem). Let Ω be a Lipschitz bounded domain. Then $W^{1, p}(\Omega)$ is embedded in $L^{q}(\partial \Omega)$ for all $q \in\left[1, p_{*}\right)$ where

$$
\begin{cases}p_{*}=\frac{p(N-1)}{N-p} & \text { if } 1<p<N, \\ p_{*}=+\infty & \text { if } p \geq N .\end{cases}
$$

Moreover, the embedding is compact.

Proof. See [GT].

1.7 Spherical Symmetrization

In this section, we consider the case where Ω is the unit ball, $\Omega=B(0,1)$.
Spherical symmetrization of a measurable set. Given a measurable set $A \subset \mathbb{R}^{N}$, the spherical symmetrization A^{*} of A is constructed as follows: for each r, take $A \cap \partial B(0, r)$ and replace it by the spherical cap of the same area and center $r e_{N}$. This can be done for almost every r. The union of these caps is A^{*}.

Now, we define spherical symmetrization of measurable function. Given a measurable function $u \geq 0$. The spherical symmetrization u^{*} of u is constructed by symmetrizing the super-level sets so that, for all $t,\left\{u^{*} \geq t\right\}=\{u \geq t\}^{*}$. See [K, Sp].

The following theorem is proved in [K] (see also [Sp]).

Theorem 1.7.1. Let $u \in W^{1, p}(B(0,1))$ and let u^{*} be its spherical symmetrization. Then $u^{*} \in W^{1, p}(B(0,1))$ and

$$
\begin{align*}
\int_{B(0,1)}\left|\nabla u^{*}\right|^{p} \mathrm{~d} x & \leq \int_{B(0,1)}|\nabla u|^{p} \mathrm{~d} x, \\
\int_{B(0,1)}\left|u^{*}\right|^{p} \mathrm{~d} x & =\int_{B(0,1)}|u|^{p} \mathrm{~d} x, \\
\int_{\partial B(0,1)}\left|u^{*}\right|^{p} \mathrm{~d} \mathcal{H}^{N-1} & =\int_{\partial B(0,1)}|u|^{p} \mathrm{~d} \mathcal{H}^{N-1}, \tag{1.2}\\
\int_{B(0,1)}\left(\alpha \chi_{D}\right)_{*}\left|u^{*}\right|^{p} \mathrm{~d} x & \leq \int_{B(0,1)} \alpha \chi_{D}|u|^{p} \mathrm{~d} x,
\end{align*}
$$

where $D \subset B(0,1)$ and $\left(\alpha \chi_{D}\right)_{*}=-\left(-\alpha \chi_{D}\right)^{*}$.

$1.8 p$-Laplace equations

In this section we give some results regarding solutions of some p-Laplace type equations.

Given Ω a smooth bounded domain, $1<p<\infty$ and $V \in L^{q}(\Omega)(1 \leq q<\infty)$, consider the operator H_{V}, which has the form

$$
\begin{equation*}
H_{V} u:=-\Delta_{p} u+V(x)|u|^{p-2} u, \tag{1.3}
\end{equation*}
$$

where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the usual p-Laplacian. Suppose that $u \in W^{1, p}(\Omega)$ and V is a measurable function that satisfy the following assumptions:

$$
V \in L^{q}(\Omega) \text { where } \begin{cases}q>\frac{N}{p} & \text { if } 1<p \leq N, \tag{H1}\\ q=1 & \text { if } p>N .\end{cases}
$$

We say u is a weak solution of $H_{V} u=0(\geq 0, \leq 0)$ in Ω if

$$
\begin{equation*}
\mathcal{D}(u, v):=\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla w \mathrm{~d} x+\int_{\Omega} V(x)|u|^{p-2} u w \mathrm{~d} x=0(\leq 0, \geq 0), \tag{1.4}
\end{equation*}
$$

for each $w \in C_{0}^{1}(\Omega)$. Let $f \in L^{p^{\prime}}(\Omega), u \in W^{1, p}(\Omega)$ is a weak solution of the equation

$$
\begin{equation*}
H_{V} u=f \quad \text { in } \Omega, \tag{1.5}
\end{equation*}
$$

if

$$
\begin{equation*}
\mathcal{D}(u, w)=\mathcal{J}(w):=\int_{\Omega} f w \mathrm{~d} x \quad \forall w \in C_{0}^{1}(\Omega) . \tag{1.6}
\end{equation*}
$$

The aim of this section is to study the Dirichlet problem for the equation (1.5).

We say $u \in W^{1, p}(\Omega)$ is a weak solution of the Dirichlet problem

$$
\begin{cases}H_{V}(u)=f & \text { in } \Omega \tag{1.7}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

if u is a weak solution of (1.5) and $u \in W_{0}^{1, p}(\Omega)$.
Note that

$$
\begin{aligned}
|\mathcal{D}(u, w)| & \leq\|\nabla u\|_{L^{p}(\Omega)}^{p-1}\|\nabla w\|_{L^{p}(\Omega)}+\int_{\Omega}\left(|V(x)|^{\frac{1}{p^{\prime}}}|u|^{p-1}\right)\left(|V(x)|^{\frac{1}{p}}|w|\right) \mathrm{d} x \\
& \leq\|\nabla u\|_{L^{p}(\Omega)}^{p-1}\|\nabla w\|_{L^{p}(\Omega)}+\left(\int_{\Omega}|V(x) \| u|^{p} \mathrm{~d} x\right)^{\frac{1}{p^{p}}}\left(\int_{\Omega}|V(x) \| w|^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \\
& \leq\|\nabla u\|_{L^{p}(\Omega)}^{p-1}\|\nabla w\|_{L^{p}(\Omega)}+C\|V\|_{L^{q}(\Omega)}\|u\|_{W^{1, p}(\Omega)}^{p-1}\|w\|_{W^{1, p}(\Omega)}^{p} \\
& \leq\left(1+C\|V\|_{q}\right)\|u\|_{W^{1, p}(\Omega)}^{p-1}\|w\|_{W^{1, p}(\Omega)} .
\end{aligned}
$$

Hence, for fixed $u \in W^{1, p}(\Omega)$, the mapping $w \mapsto \mathcal{D}(u, w)$ is a bounded linear functional on $W_{0}^{1, p}(\Omega)$. Consequently the validity of the relations (1.4) for $w \in C_{0}^{1}(\Omega)$ imply their validity for $w \in W_{0}^{1, p}(\Omega)$. We remark that, for fixed $u \in W^{1, p}(\Omega), H_{V} u$ may be defined as an element of the dual space of $W_{0}^{1, p}(\Omega), W^{-1, p^{\prime}}(\Omega), H_{V} u(w)=\mathcal{D}(u, w), w \in W_{0}^{1, p}(\Omega)$, and hence the Dirichlet problem (1.7) can be studied for $f \in W^{-1, p^{\prime}}(\Omega)$.

1.8.1 Solvability of the Dirichlet problem

We need the following notation:

$$
\begin{equation*}
S_{q}:=\inf \left\{\frac{\int_{\Omega}|\nabla v|^{p} \mathrm{~d} x}{\left(\int_{\Omega}|v|^{q} \mathrm{~d} x\right)^{\frac{p}{q}}}: v \in W_{0}^{1, p}(\Omega)\right\} . \tag{1.8}
\end{equation*}
$$

This constant S_{q} is positive and is the best (largest) constant in the Sobolev-Poincaré inequality

$$
S\|v\|_{L^{q}(\Omega)}^{p} \leq\|\nabla v\|_{L^{p}(\Omega)}^{p} \quad \forall v \in W_{0}^{1, p}(\Omega) .
$$

We have the following,
Theorem 1.8.1. Let V be a measurable function that satisfy the assumptions (H1) and

$$
\begin{equation*}
\left\|V^{-}\right\|_{L^{q}(\Omega)}<S_{p q^{\prime}} \quad \text { or } \quad V \geq-S_{p}+\delta \quad \text { for some } \delta>0 \tag{H2}
\end{equation*}
$$

Then the Dirichlet problem (1.7) has a unique weak solution for any $f \in L^{p^{\prime}}(\Omega)$.

Proof. The proof of this theorem is standard. First observe that the weak solutions of (1.7) are critical points of the functional $\psi: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ given by

$$
\psi(u):=\frac{1}{p} \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\frac{1}{p} \int_{\Omega} V(x)|u|^{p} \mathrm{~d} x-\int_{\Omega} f u \mathrm{~d} x .
$$

Now, it is easy to see that ψ is bounded below, coercive, strictly convex and sequentially weakly lower semi continuous. Therefore it has a unique critical point which is a global minimum.

It is proved in [GV] that solutions to (1.7) are bounded. We state the Theorem for future reference.

Theorem 1.8.2 ([GV], Proposition 1.3). Assume $1<p \leq N, f \in L^{q}(\Omega)$ for some $q>N / p$ and $u \in W_{0}^{1, p}(\Omega)$ is a solution to (1.7). Then $u \in L^{\infty}(\Omega)$ and there exists a constant $C=C(N, p,|\Omega|)$ such that

$$
\|u\|_{L^{\infty}(\Omega)} \leq C\|f\|_{L^{q}(\Omega)}^{1 /(p-1)} .
$$

1.8.2 The strong maximum principle

Here we recall the classical maximum principles for H_{V}.
Theorem 1.8.3 (Weak Maximum Principle). Let V be a measurable function that satisfy the assumptions $(\mathrm{H} 1)$ and $(\mathrm{H} 2), f \in L^{p^{\prime}}(\Omega)$ and $u \in W_{0}^{1, p}(\Omega)$ be the weak solution of (1.7). Then $f \geq 0$ implies $u \geq 0$ in Ω.

Proof. The proof follows using u^{-}as a test function in the weak formulation of (1.7). See [GT] for the case $p=2$. Here is analogous.

For the strong maximum principle, we need the following result
Theorem 1.8.4 (Harnack's Inequality). Let u be a weak solution of problem (1.7) in a cube $K=K(3 \rho) \subset \Omega$, with $0 \leq u<M$ in K. Then

$$
\max \{u(x): x \in K(\rho)\} \leq C \min \{u(x): x \in K(\rho)\},
$$

where $C=C(N, M, \rho)$.
Proof. See [Tr].
Now we can prove the strong maximum principle for weak solutions of (1.7).
Theorem 1.8.5 (Strong Maximum Principle). Let $u \in W_{0}^{1, p}(\Omega)$ be a weak solution of problem (1.7). Then, if $f \geq 0, f \neq 0$,

$$
u>0 \text { in } \Omega \text {. }
$$

Proof. It follows from Theorems 1.8.2, 1.8.3 and 1.8.4.

1.8.3 The weighted eigenvalue problems

In this subsection we analyse the (nonlinear) weighted eigenvalue problems,

$$
\begin{cases}H_{V} u=\lambda g|u|^{p-2} u & \text { in } \Omega \tag{1.9}\\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

with $g \in L^{q}(\Omega)$.
Theorem 1.8.6. Assume that V and g satisfy $(\mathrm{H} 1)$. If V satisfies the assumption (H2) and $g^{+} \not \equiv 0$, then there exists a unique positive principal weighted eigenvalue $\lambda(g, V)$ of (1.9) and it is characterized by

$$
\lambda(V, g):=\inf \left\{\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} V(x)|u|^{p} \mathrm{~d} x: u \in W_{0}^{1, p}(\Omega) \text { and } \int_{\Omega} g u \mathrm{~d} x=1\right\} .
$$

Proof. See [CRQ].
Obviously, if u is a minimizer, so is $|u|$; therefore we may assume $u \geq 0$.
When $g \equiv 1, \lambda(V)$ is used in place of $\lambda(1, V)$ and $\lambda(V)$ is called the first eigenvalue (or simply eigenvalue).

In the case $g \equiv 1$, we can relax the assumption for V.
Theorem 1.8.7. Let V be a measurable functions that satisfy the assumptions (H1). Then there exists $u_{0} \in W_{0}^{1, p}(\Omega)$ such that

$$
\left\{\begin{array}{l}
\lambda(V)=\int_{\Omega}\left|\nabla u_{0}\right|^{p} \mathrm{~d} x+\int_{\Omega} V(x)\left|u_{0}\right|^{p} \mathrm{~d} x \\
\|u\|_{L^{p}(\Omega)}=1
\end{array}\right.
$$

Moreover, u_{0} is a weak solution of (1.9) with $\lambda=\lambda(V)$. Finally, $\lambda(V)$ is the lowest eigenvalue of (1.9) with $g \equiv 1$.

For the proof we need the following Lemma
Lemma 1.8.8. Assume V be a measurable function that satisfy the assumptions (H1). Then, given $\varepsilon>0$, there exists a constant $D_{\varepsilon}>0$ such that

$$
\left.\left.\left|\int_{\Omega} V(x)\right| v\right|^{p} \mathrm{~d} x\left|\leq \varepsilon \int_{\Omega}\right| \nabla v\right|^{p} \mathrm{~d} x+D_{\varepsilon}\|V\|_{L^{q}(\Omega)} \int_{\Omega}|v|^{p} \mathrm{~d} x
$$

for any $v \in W_{0}^{1, p}(\Omega)$.
Proof. First we assume that $1 \leq p \leq N$. Let us observe that $q>N / p$ implies that $p q^{\prime}<p^{*}$. Now the Lemma follows from Hölder's inequality and the Sobolev embedding. In fact, let us see that if $1<r<p^{*}$, there exists a constant M_{ε} such that

$$
\begin{equation*}
\|v\|_{L^{r}(\Omega)} \leq \varepsilon\|\nabla v\|_{L^{p}(\Omega)}+M_{\varepsilon}\|v\|_{L^{p}(\Omega)} \quad \forall v \in W_{0}^{1, p}(\Omega) \tag{1.10}
\end{equation*}
$$

Assume (1.10) does not hold, then there exists $\varepsilon_{0}>0$ and a sequence $\left\{v_{n}\right\}_{n \in \mathbb{N}}$ in $W_{0}^{1, p}(\Omega)$ such that $\left\|v_{n}\right\|_{L^{r}(\Omega)}=1$ and

$$
\varepsilon_{0}\left\|\nabla v_{n}\right\|_{L^{p}(\Omega)}+n\left\|v_{n}\right\|_{L^{p}(\Omega)}<1
$$

for all $n \in \mathbb{N}$. But then $\left\{v_{n}\right\}_{n \in \mathbb{N}}$ is bounded in $W_{0}^{1, p}(\Omega)$ and $\left\|v_{n}\right\|_{L^{p}(\Omega)} \rightarrow 0$. Now, by the Rellich-Kondrachov Theorem, up to a subsequence, $v_{n} \rightarrow v$ strongly in $L^{r}(\Omega)$, and so $\|v\|_{L^{r}(\Omega)}=1$. A contradiction.

Now, it is easy to check that (1.10) implies the lemma since $q>N / p$.
If $p>N$, the proof is similar to above case and is left to the reader.
Proof of Theorem 1.8.7. Let $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset W_{0}^{1, p}(\Omega)$ be a minimizing sequence for $\lambda(V)$, i.e.,

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x+\int_{\Omega} V(x)\left|u_{n}\right|^{p} \mathrm{~d} x \rightarrow \lambda(V) \quad \text { and }\left\|u_{n}\right\|_{L^{p}(\Omega)}=1 \forall n \in \mathbb{N} .
$$

Then there exists $C>0$ such that

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x+\int_{\Omega} V(x)\left|u_{n}\right|^{p} \mathrm{~d} x \leq C \quad \forall n \in \mathbb{N} .
$$

Since V satisfies the assumptions (H1), by Lemma 1.8.8, given $\varepsilon>0$ there exists D_{ε} such that

$$
\left.\left|\int_{\Omega} V(x)\right| u_{n}\right|^{p} \mathrm{~d} x \mid \leq \varepsilon\left\|\nabla u_{n}\right\|_{L^{p}(\Omega)}^{p}+D_{\varepsilon}\|V\|_{L^{q}(\Omega)}\left\|u_{n}\right\|_{L^{p}(\Omega)}^{p}
$$

for any $n \in \mathbb{N}$. Then

$$
(1-\varepsilon) \int_{\Omega}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x-D_{\varepsilon}\|V\|_{q} \leq \int_{\Omega}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x+\int_{\Omega} V(x)\left|u_{n}\right|^{p} \mathrm{~d} x \leq C \quad \forall n \in \mathbb{N} .
$$

Fixing $\varepsilon<1$, we get

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x \leq \frac{C+D_{\varepsilon}\|V\|_{L^{q}(\Omega)}}{1-\varepsilon}, \quad \forall n \in \mathbb{N} .
$$

Therefore $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ is bounded in $W_{0}^{1, p}(\Omega)$.
Now, by Rellich-Kondrachov Theorem, there exists a function $u_{0} \in W_{0}^{1, p}(\Omega)$ such that, for a subsequence that we still call $\left\{u_{n}\right\}_{n \in \mathbb{N}}$,

$$
\begin{array}{ll}
u_{n} \rightarrow u_{0}, & \text { weakly in } W_{0}^{1, p}(\Omega), \\
u_{n} \rightarrow u_{0}, & \text { strongly in } L^{p}(\Omega) \\
u_{n} \rightarrow u_{0}, & \text { strongly in } L^{p q^{\prime}}(\Omega) \tag{1.13}
\end{array}
$$

By (1.12), $\left\|u_{0}\right\|_{L^{p}(\Omega)}=1$ so $u_{0} \neq 0$ and by (1.11) and (1.13)

$$
\lambda(V)=\lim _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x+\int_{\Omega} V(x)\left|u_{n}\right|^{p} \mathrm{~d} x \geq \int_{\Omega}\left|\nabla u_{0}\right|^{p} \mathrm{~d} x+\int_{\Omega} V(x)\left|u_{0}\right|^{p} \mathrm{~d} x .
$$

It is clear that u_{0} is an eigenfunction of H_{V} with eigenvalue $\lambda(V)$.
Finally, let λ be an eigenvalue of problem (1.9) with associated eigenfunction $w \in$ $W_{0}^{1, p}(\Omega)$. Then

$$
\lambda=\frac{\int_{\Omega}|\nabla w|^{p} \mathrm{~d} x+\int_{\Omega} V(x)|w|^{p} \mathrm{~d} x}{\int_{\Omega}|w|^{p} \mathrm{~d} x} \geq \lambda(V)
$$

This finishes the proof.

Now, we prove that u_{0} has constant sign in Ω.
Lemma 1.8.9 ([C], Proposition 3.2). Let g and V be two measurable functions that satisfy the assumption $(\mathrm{H} 1)$. If $u \in W_{0}^{1, p}(\Omega)$ is a non-negative weak solution to (1.9) then either $u \equiv 0$ or $u>0$ for all $x \in \Omega$.

Proof. The proof is a direct consequence of Harnack's inequality. See [S].

We therefore immediately obtain,
Corollary 1.8.10. Under the assumptions of the previous Lemma, every eigenfunction associated to the principal positive eigenvalue has constant sign.

Now, we recall a couple of results regarding the eigenvalue problem (1.9) when $g \equiv 1$. We do not use these results in the rest of the thesis, but we include them here for completeness.

Proposition 1.8.11. If V satisfies the assumption $(\mathrm{H} 1)$ and $g \equiv 1$, then there exists a increasing, unbounded sequence of eigenvalues for the problem (1.9).

Proof. It is similar to [GAPA1, GAPA2].
Proposition 1.8.12. If V satisfies the assumption $(\mathrm{H} 1)$ and $g \equiv 1$, then $\lambda(V)$ is isolated in the spectrum.

Proof. It is similar to [C].

Lastly, following [CRQ], we have that the principal eigenvalue $\lambda(g, V)$ is simple. This is, the only eigenfunction of H_{V} associated to $\lambda(V, g)$ are multiples of a single one, u_{0}.

Lemma 1.8.13. Let g and V be two measurable functions that satisfy the assumption (H1). Let u and v be two eigenfunction associated to $\lambda(g, V)$. Then, there exists a constant $c \in \mathbb{R}$ such that $u=c v$.

1.9 BV functions

Throughout, this section Ω denote an open subset of \mathbb{R}^{N}.
We say that a function $f \in L^{1}(\Omega)$ has bounded variation in Ω if

$$
\sup \left\{\int_{\Omega} f \operatorname{div} \varphi \mathrm{~d} x: \varphi \in C_{c}^{1}\left(\Omega ; \mathbb{R}^{N}\right) \text { and }|\phi| \leq 1\right\}<\infty .
$$

The space of function of bounded is denoted by

$$
B V(\Omega) .
$$

A measurable subset $E \subset \mathbb{R}^{N}$ has finite perimeter in Ω if

$$
\chi_{E} \in B V(\Omega) .
$$

A function $f \in L_{l o c}^{1}(\Omega)$ has locally bounded variation in Ω if for each open set $U \subset \subset \Omega$

$$
\sup \left\{\int_{\Omega} f \operatorname{div} \varphi \mathrm{~d} x: \varphi \in C_{c}^{1}\left(U ; \mathbb{R}^{N}\right) \text { and }|\phi| \leq 1\right\}<\infty .
$$

We write

$$
B V_{l o c}(\Omega) .
$$

A measurable subset $E \subset \mathbb{R}^{N}$ has locally finite perimeter in Ω if

$$
\chi_{E} \in B V_{l o c}(\Omega) .
$$

Now, we give the structure theorem.
Theorem 1.9.1 (Structure theorem for $B V_{l o c}$ functions). Let $f \in B V_{l o c}(\Omega)$. Then there exists a Radon measure μ on Ω and μ-measurable function $\sigma: \Omega \rightarrow \mathbb{R}^{N}$ such that

1. $|\sigma(x)|=1 \mu$-a.e., and
2. $\int_{\Omega} f \operatorname{div} \varphi \mathrm{~d} x=-\int_{\Omega}\langle\varphi, \sigma\rangle \mathrm{d} \mu$
for all $\varphi \in C_{c}^{1}\left(\Omega ; \mathbb{R}^{N}\right)$.
Proof. See [EG].
If $f \in B V_{l o c}(\Omega)$, we will henceforth write

$$
\|D f\|
$$

for the measure μ, and

$$
[D f]=\|D f\| L \sigma
$$

Hence the assertion 2 in above theorem reads

$$
\int_{\Omega} f \operatorname{div} \varphi \mathrm{~d} x=-\int_{\Omega}\langle\varphi, \sigma\rangle \mathrm{d} \mu=-\int_{\Omega} \varphi \mathrm{d}[D f] \quad \forall \varphi \in C_{c}^{1}\left(\Omega ; \mathbb{R}^{N}\right) .
$$

In the case that $f=\chi_{E}$, and E has locally finite perimeter in Ω, we will hereafter write

$$
\|\partial E\|
$$

for the measure μ, and

$$
\nu_{E} \equiv-\sigma
$$

Consequently,

$$
\int_{E} \operatorname{div} \phi \mathrm{~d} x=\int_{\Omega}\left\langle\phi, \nu_{E}\right\rangle \mathrm{d}\|\partial E\| \quad \forall \varphi \in C_{c}^{1}\left(\Omega ; \mathbb{R}^{N}\right) .
$$

We now give a characterization of the measure $\|D f\|$, for the proof see [EG].
Theorem 1.9.2. Given $f \in B V_{l o c}(\Omega)$. For each $V \subset \subset \Omega$, we have

$$
\|D f\|(V)=\sup \left\{\int_{E} \operatorname{div} \varphi \mathrm{~d} x: \varphi \in C_{c}^{1}\left(V ; \mathbb{R}^{N}\right),|\varphi| \leq 1\right\}
$$

Example 1.9.3. Assume E is a smooth, open subset of \mathbb{R}^{N} and $\mathcal{H}^{N-1}(\partial E \cap K)<\infty$ for each compact set $K \subset \Omega$. Then, for each $V \subset \subset \Omega$ and $\varphi \in C_{c}^{1}\left(V, \mathbb{R}^{N}\right)$, with $|\varphi| \leq 1$, we have that

$$
\int_{E} \operatorname{div} \varphi \mathrm{~d} x=-\int_{\partial E}\langle\varphi, v\rangle \mathrm{d} \mathcal{H}^{N-1}
$$

v denoting the outward unit normal along ∂E.
Hence

$$
\int_{E} \operatorname{div} \varphi \mathrm{~d} x=\int_{\partial E \cap V}\langle\varphi, v\rangle \mathrm{d} x \leq \mathcal{H}^{N-1}(\partial E \cap V)<\infty .
$$

Thus $\chi_{E} \in B V_{l o c}(\Omega)$. Moreover,

$$
\|\partial E\|(\Omega)=\mathcal{H}^{N-1}(\partial E \cap \Omega)
$$

and

$$
v_{E}=v \quad \mathcal{H}^{N-1}-\text { a.e. on } \partial E \cap \Omega .
$$

Our next aim is to give a Gauss-Green theorem for sets with locally finite perimeter in \mathbb{R}^{N}.

Let E be a set of locally finite perimeter in \mathbb{R}^{N}. The subset of the topological boundary ∂E defined by

$$
\partial_{*} E:=\left\{x \in \mathbb{R}^{N}: \limsup _{r \rightarrow 0} \frac{|B(x, r) \cap E|}{|B(x, r)|}>0 \text { and } \limsup _{r \rightarrow 0} \frac{|B(x, r) \backslash E|}{|B(x, r)|}>0\right\} .
$$

is called the measure theoretic boundary of E.

Remark 1.9.4. The measure theoretic boundary may differ from the topological boundary of a set of non-null \mathcal{H}^{N-1}-measure. Indeed, for example, if $N=2$ we consider

$$
E=B(0,1) \backslash\{(x, y): x=0,0 \leq y<1\} .
$$

Then, $\partial_{*} E$ is the sphere but ∂E is the union of the sphere and $\{(x, y): x=0,0 \leq y \leq 1\}$.
Lastly, we give the generalized Gauss-Green theorem, for the proof [AGM].
Theorem 1.9.5 (Gauss-Green Theorem). Let $E \subset \mathbb{R}^{N}$ have locally finite perimeter.

1. Then $\mathcal{H}^{N-1}\left(\partial_{*} E \cap K\right)<\infty$ for each compact set $K \subset \mathbb{R}^{N}$.
2. Furthermore, for \mathcal{H}^{N-1}-a.e. $x \in \partial_{*} E$, there exist a unique unit vector $v_{E}(x)$, called the generalized outer normal vector to E at x, such that

$$
\int_{E} \operatorname{div} \phi \mathrm{~d} x=\int_{\partial_{z} E}\left\langle\phi, v_{E}\right\rangle \mathrm{d} \mathcal{H}^{N-1}
$$

for all $\phi \in C_{c}^{1}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right)$.

2

The first eigenvalue of the p-Laplacian plus a potential

Here, we consider Schröedinger operators, that is elliptic operators L under perturbations given by a potential V, in bounded regions. These operators appear in different fields of applications such as quantum mechanics, stability of bulk matter, scattering theory, etc.

In Ashbaugh-Harrell [AsHa] the following problem is studied: Let L be a uniformly elliptic linear operator and assume that $\|V\|_{L^{q}(\Omega)}$ is constrained but otherwise the potential V is arbitrary. Can the maximal value of the first (fundamental) eigenvalue for the operator $L+V$ be estimated? And the minimal value? There exists optimal potentials? (i.e. potentials V^{*} and V_{*} such that the first eigenvalue for $L+V^{*}$ is maximal and the first eigenvalue for $L+V_{*}$ is minimal).
In [AsHa] these questions are answered in a positive way and, moreover, a characterization of these optimal potentials is given.

The purpose of this first chapter is the extension of the results of [AsHa] to the nonlinear case. We are also interested in extending these results to degenerate/singular operators. As a model of these operators, we take the p-Laplacian. This operator has been intensively studied in recent years and is a model for the study of degenerated operators (if $p>2$) and singular operators (if $1<p<2$). In the case $p=2$ it agrees with the usual Laplacian. This operator also serves as a model in the study of non-Newtonian fluids. See [ADT, AE].
Here we prove that, if one consider perturbations of the p-Laplacian by a potential V with $\|V\|_{L^{q}(\Omega)}$ constrained, then there exists optimal potentials in the sense described above and a characterizations of these potentials are given.

We want to remark that the proofs are not straightforward extensions of those in [AsHa] since the proofs there are not, in general, variational. Moreover, some new technical difficulties arise since solutions to a p-Laplace type equation are not regular and, mostly, since the eigenvalue problem for the p-Laplacian is far from being completely understood.

The rest of the chapter is divided into four sections. In Section 2.1, we introduce the exact problem that we will study trough this chapter. Section 2.2 , we prove some
properties of the first eigenvalue of H_{V} respect to V. Finally, in Section 2.3 and 2.4, we analyze the existence and characterization problem for maximal potential and minimal potential, respectively.

2.1 The problems

Let $\Omega \subset \mathbb{R}^{N}$ be a connected smooth bounded domain. We consider the differential operator

$$
H_{V} u:=-\Delta_{p} u+V(x)|u|^{p-2} u
$$

where $V \in L^{q}(\Omega)(1 \leq q \leq+\infty)$ and $1<p<+\infty$. Let $\lambda(V)$ be the lowest eigenvalue of H_{V} in $W_{0}^{1, p}(\Omega)$.

In this chapter we analyze the following problems: If $B \subset L^{q}(\Omega)$ is a convex, bounded and closed set,

1. find $\sup \{\lambda(V): V \in B\}$ and $V \in B$, if any, where this value is attained,
2. find $\inf \{\lambda(V): V \in B\}$ and $V \in B$, if any, where this value is attained.

Here, we answer these questions positively, following the approach of AshbaughHarrell's work for the case $p=2$ and $1 \leq N \leq 3$, see [AsHa, H].

2.2 Some properties of eigenvalue

We begin by proving some important properties of $\lambda(\cdot)$.
Lemma 2.2.1. $\lambda: B \rightarrow \mathbb{R}$ is concave.
Proof. Throughout the proof, \mathcal{A} stand for the set

$$
\left\{u \in W_{0}^{1, p}(\Omega):\|u\|_{L^{p}(\Omega)}=1\right\} .
$$

Let $V_{1}, V_{2} \in B$ and $0 \leq t \leq 1$. Then

$$
\begin{aligned}
\lambda\left(t V_{1}+(1-t) V_{2}\right) & =\inf \left\{\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega}\left(t V_{1}+(1-t) V_{2}\right) u \mathrm{~d} x: u \in \mathcal{A}\right\} \\
& \geq t \inf \left\{\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} V_{1} u \mathrm{~d} x: u \in \mathcal{A}\right\} \\
& +(1-t) \inf \left\{\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} V_{2} u \mathrm{~d} x: u \in \mathcal{A}\right\} \\
& =t \lambda\left(V_{1}\right)+(1-t) \lambda\left(V_{2}\right),
\end{aligned}
$$

as we wanted to prove.

Next we set M for which $\|V\|_{L^{q}(\Omega)} \leq M$ for all $V \in B$.
Proposition 2.2.2. There exists a constant $C>0$, depending only on p, q, M and Ω such that

$$
\lambda(V) \leq C \quad \forall V \in B .
$$

Proof. Let $u_{0} \in C_{0}^{1}(\Omega)$ be such that $\left\|u_{0}\right\|_{L^{p}(\Omega)}=1$.

$$
\begin{aligned}
\lambda(V) & \leq \int_{\Omega}\left|\nabla u_{0}\right|^{p} \mathrm{~d} x+\int_{\Omega} V(x)\left|u_{0}\right|^{p} \mathrm{~d} x \\
& \leq \int_{\Omega}\left|\nabla u_{0}\right|^{p} \mathrm{~d} x+\left\|u_{0}\right\|_{L^{\infty}(\Omega)}^{p} \int_{\Omega} V(x) \mathrm{d} x \\
& \leq \int_{\Omega}\left|\nabla u_{0}\right|^{p} \mathrm{~d} x+\left\|u_{0}\right\|_{L^{\infty}(\Omega)}^{p}|\Omega|^{\frac{1}{q^{\alpha}}}\|V\|_{q} \\
& \leq \int_{\Omega}\left|\nabla u_{0}\right|^{p} \mathrm{~d} x+\left\|u_{0}\right\|_{L^{\infty}(\Omega)}^{p}|\Omega|^{\frac{1}{q^{\prime}}} M \\
& =C(p, q, M, \Omega) .
\end{aligned}
$$

2.3 Maximizing potentials

In this section we prove that there exists an unique $V^{*} \in B$ such that

$$
\lambda\left(V^{*}\right)=\sup \{\lambda(V): V \in B\}
$$

and we characterize it.
Theorem 2.3.1. Let $q>\max \{N / p, 1\}$. Then there exists $V^{*} \in B$ that maximizes $\lambda(V)$. Moreover if $V_{i} \in B, i=1,2$, are two maximizing potentials and $u_{i} \in W_{0}^{1, p}(\Omega), i=1,2$, are the eigenfunction of $H_{V_{i}}$ associated to $\lambda\left(V_{i}\right)$ respectively, then $u_{1}=u_{2}$ a.e. in Ω and $V_{1}=V_{2}$ a.e. in Ω.

Proof. Let $\lambda^{*}=\sup \{\lambda(V): V \in B\}$ and let $\left\{V_{n}\right\}_{n \in \mathbb{N}}$ be a maximizing sequence in B, i.e.,

$$
\lim _{n \rightarrow \infty} \lambda\left(V_{n}\right)=\lambda^{*}
$$

Note that, by Proposition 2.2.2, λ^{*} is finite. As $\left\{V_{n}\right\}_{n \in \mathbb{N}} \subset B$ and B is bounded, there exists $V^{*} \in L^{q}(\Omega)$ and a subsequence of $\left\{V_{n}\right\}_{n \in \mathbb{N}}$, which we denote again by $\left\{V_{n}\right\}_{n \in \mathbb{N}}$, such that

$$
V_{n} \rightharpoonup V^{*} \quad \text { weakly in } L^{q}(\Omega)
$$

By Mazur's Theorem, $V^{*} \in B$.
Let us see that $\lambda^{*}=\lambda\left(V^{*}\right)$. Given $\varepsilon>0$, there exists $u_{0} \in C_{0}^{1}(\Omega)$ such that

$$
\lambda\left(V^{*}\right) \geq \int_{\Omega}\left|\nabla u_{0}\right|^{p} \mathrm{~d} x+\int_{\Omega} V^{*}(x)\left|u_{0}\right|^{p} \mathrm{~d} x-\varepsilon
$$

Since Ω is bounded,

$$
\lim _{n \rightarrow \infty} \int_{\Omega} V_{n}(x)\left|u_{0}\right|^{p} \mathrm{~d} x=\int_{\Omega} V^{*}(x)\left|u_{0}\right|^{p} \mathrm{~d} x
$$

Therefore,

$$
\begin{aligned}
\lambda\left(V^{*}\right)+\varepsilon & \geq \int_{\Omega}\left|\nabla u_{0}\right|^{p} \mathrm{~d} x+\int_{\Omega} V^{*}(x)\left|u_{0}\right|^{p} \mathrm{~d} x \\
& =\int_{\Omega}\left|\nabla u_{0}\right|^{p} \mathrm{~d} x+\lim _{n \rightarrow \infty} \int_{\Omega} V_{n}(x)\left|u_{0}\right|^{p} \mathrm{~d} x \\
& =\lim _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{0}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{n}(x)\left|u_{0}\right|^{p} \mathrm{~d} x \\
& \geq \lim _{n \rightarrow \infty} \lambda\left(V_{n}\right) \\
& =\lambda^{*} .
\end{aligned}
$$

Then, as $V^{*} \in B, \lambda\left(V^{*}\right)=\lambda^{*}$.
We have just proved existence. Let us now show uniqueness.
Suppose that we have V_{1} and V_{2} two maximizing potentials and let $V_{3}=\frac{V_{1}+V_{2}}{2}$. Since B is convex and $\lambda(\cdot)$ is concave, we have $V_{3} \in B$ and

$$
\lambda\left(V_{3}\right) \geq \frac{\lambda\left(V_{1}\right)+\lambda\left(V_{2}\right)}{2}=\lambda^{*}
$$

therefore V_{3} is also a maximizing potential.
We denote the associated normalized, positive eigenfunction by u_{1}, u_{2} and u_{3} respectively. If $u_{3} \neq u_{1}$ or $u_{3} \neq u_{2}$, since, by Theorem 1.8.13, there exists only one normalized nonnegative eigenfunction,

$$
\begin{aligned}
\lambda^{*} & =\lambda\left(V_{3}\right) \\
& =\int_{\Omega}\left|\nabla u_{3}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{3}(x)\left|u_{3}\right|^{p} \mathrm{~d} x \\
& =\frac{1}{2}\left(\int_{\Omega}\left|\nabla u_{3}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{1}(x)\left|u_{3}\right|^{p} \mathrm{~d} x+\int_{\Omega}\left|\nabla u_{3}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{2}(x)\left|u_{3}\right|^{p} \mathrm{~d} x\right) \\
& >\frac{\lambda\left(V_{1}\right)+\lambda\left(V_{2}\right)}{2} \\
& =\lambda^{*},
\end{aligned}
$$

a contradiction. Thus $u_{1}=u_{2}=u_{3}$. Now we have,

$$
\begin{align*}
& \int_{\Omega}\left|\nabla u_{1}\right|^{p-2} \nabla u \nabla v \mathrm{~d} x+\int_{\Omega} V_{1}(x)\left|u_{1}\right|^{p-2} u_{1} v=\int_{\Omega} \lambda^{*}\left|u_{1}\right|^{p-2} u_{1} v \mathrm{~d} x, \tag{2.1}\\
& \int_{\Omega}\left|\nabla u_{1}\right|^{p-2} \nabla u \nabla v \mathrm{~d} x+\int_{\Omega} V_{2}(x)\left|u_{1}\right|^{p-2} u_{1} v=\int_{\Omega} \lambda^{*}\left|u_{1}\right|^{p-2} u_{1} v \mathrm{~d} x, \tag{2.2}
\end{align*}
$$

for all $v \in W_{0}^{1, p}(\Omega)$. Subtracting (2.2) from (2.1), we get

$$
\int_{\Omega}\left(V_{1}(x)-V_{2}(x)\right)\left|u_{1}\right|^{p-2} u_{1} v \mathrm{~d} x=0 \quad \forall v \in W_{0}^{1, p}(\Omega),
$$

then

$$
\left(V_{1}(x)-V_{2}(x)\right)\left|u_{1}\right|^{p-2} u_{1}=0 \quad \text { a.e. in } \Omega,
$$

and therefore $V_{1}=V_{2}$ a.e. in Ω.
Remark 2.3.2. In the proof of Theorem 2.3.1 we only have used $q>\max \{N / p, 1\}$ to show the existence of an eigenfunction for the lowest eigenvalue.

Assume now that the convex set B is the ball in $L^{q}(\Omega)$. Then we can prove that

$$
\lambda^{*}(M):=\max \left\{\lambda(V): V \in L^{q}(\Omega) \text { and }\|V\|_{q} \leq M\right\}
$$

is increasing in M. We will need this in the sequel.
Theorem 2.3.3. Let $\lambda^{*}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$

$$
\lambda^{*}(M):=\max \left\{\lambda(V): V \in L^{q}(\Omega) \text { and }\|V\|_{q} \leq M\right\} .
$$

Then $\lambda^{*}(\cdot)$ increases monotonically.
Proof. Let $0 \leq M_{1}<M_{2}$. Then, by Theorem 2.3.1, there exists $V_{1} \in \overline{B\left(0, M_{1}\right)}$ such that $\lambda^{*}\left(M_{1}\right)=\lambda\left(V_{1}\right)$. Since $\left\|V_{1}\right\|_{L^{q}(\Omega)} \leq M_{1}<M_{2}$, there exists $t \in \mathbb{R}_{>0}$ such that

$$
\left\|V_{1}+t\right\|_{L^{q}(\Omega)} \leq M_{2} .
$$

Now, given $u \in W_{0}^{1, p}(\Omega)$, with $\|u\|_{L^{p}(\Omega)}=1$, we have

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega}\left(V_{1}(x)+t\right)|u|^{p} \mathrm{~d} x & =\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} V_{1}(x)|u|^{p} \mathrm{~d} x+t \\
& \geq \lambda\left(V_{1}\right)+t .
\end{aligned}
$$

Thus

$$
\lambda\left(V_{1}+t\right) \geq \lambda\left(V_{1}\right)+t>\lambda\left(V_{1}\right) .
$$

As $\left(V_{1}+t\right) \in \overline{B\left(0, M_{2}\right)}$,

$$
\lambda^{*}\left(M_{2}\right) \geq \lambda\left(V_{1}+t\right)>\lambda\left(V_{1}\right)=\lambda^{*}\left(M_{1}\right) .
$$

Then $\lambda^{*}(\cdot)$ increases monotonically.
Remark 2.3.4. In the proof that $\lambda^{*}(\cdot)$ increases monotonically, what is actually proved is that $\lambda^{*}(M) \nearrow \infty$ as $M \nearrow \infty$.

Let $q>\max \left\{{ }^{N} / p, 1\right\}$ and consider the case $B=\overline{B(0, M)} \subset L^{q}(\Omega)$, for simplicity we take $M=1$. Observe that B is a convex, closed and bounded set.

Let $V^{*} \in B$ be such that

$$
\lambda\left(V^{*}\right)=\{\lambda(V): V \in B\}
$$

and

$$
V_{0}=\frac{\left|V^{*}\right|}{\left\|V^{*}\right\|_{L^{q}(\Omega)}} \in S:=\partial B
$$

Let $u_{0} \in W_{0}^{1, p}(\Omega)$ be a normalized eigenfunction of $H_{V_{0}}$ associated to $\lambda\left(V_{0}\right)$, i.e., $\left\|u_{0}\right\|_{L^{p}(\Omega)}=1$ and

$$
\lambda\left(V_{0}\right)=\int_{\Omega}\left|\nabla u_{0}\right|^{p} \mathrm{~d} x+\int_{\Omega} \frac{\left|V^{*}(x)\right|}{\left\|V^{*}\right\|_{L^{q}(\Omega)}}\left|u_{0}\right|^{p} \mathrm{~d} x .
$$

Then

$$
\lambda\left(V_{0}\right) \geq \int_{\Omega}\left|\nabla u_{0}\right|^{p} \mathrm{~d} x+\int_{\Omega} V^{*}(x)\left|u_{0}\right|^{p} \mathrm{~d} x \geq \lambda\left(V^{*}\right)=\lambda^{*}
$$

Thus, from uniqueness, $V_{0}=V^{*}$, from where $\left\|V^{*}\right\|_{L^{q}(\Omega)}=1$ and $V^{*} \geq 0$.
Therefore, if we take $S=\partial B(0,1)$, there exists $V_{0} \geq 0$ in S such that

$$
\lambda\left(V_{0}\right)=\max \{\lambda(V): V \in S\}=\max \{\lambda(V): V \in B\} .
$$

We now try to characterize V_{0}. For this, we need the following notation: For any $V \in S$, we denote by $T_{V}(S)$ the tangent space of S at V. It is well known that

$$
T_{V}(S)=\left\{W \in L^{q}(\Omega): \quad \int_{\Omega}|V|^{q-2} V W \mathrm{~d} x=0\right\} .
$$

Now, let $W \in T_{V_{0}}(S)$ and $\alpha:(-1,1) \rightarrow L^{q}(\Omega)$ be a differentiable curve such that

$$
\alpha(t) \in S \quad \forall t \in(-1,1), \quad \alpha(0)=V_{0} \quad \text { and } \quad \dot{\alpha}(0)=W .
$$

We denote by $V_{t}=\alpha(t)$ and $\lambda(t)=\lambda(\alpha(t))$.
Let $u_{t} \in W_{0}^{1, p}(\Omega)$ be the nonnegative normalized eigenfunction of $H_{V_{t}}$ with eigenvalue $\lambda(t)$, i.e., $\left\|u_{t}\right\|_{L^{p}(\Omega)}=1$ and

$$
\lambda(t)=\int_{\Omega}\left|\nabla u_{t}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{t}(x)\left|u_{t}\right|^{p} \mathrm{~d} x .
$$

We have the following,
Lemma 2.3.5. $\lambda(t)$ is continuous at $t=0$, i.e.,

$$
\lim _{t \rightarrow 0} \lambda(t)=\lambda(0)=\lambda\left(V_{0}\right)=\lambda^{*}
$$

Proof. By Proposition 2.2.2, there exists $C=C(\Omega, q, p)>0$ such that

$$
C>\int_{\Omega}\left|\nabla u_{t}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{t}(x)\left|u_{t}\right|^{p} \mathrm{~d} x,
$$

and as $q>N / p$, by Lemma 1.8 .8 , given $\varepsilon>0$ there exists D_{ε} such that

$$
\left.\left|\int_{\Omega} V_{t}(x)\right| u_{t}\right|^{p} \mathrm{~d} x \mid \leq \varepsilon\left\|\nabla u_{t}\right\|_{L^{p}(\Omega)}^{p}+D_{\varepsilon}\left\|u_{t}\right\|_{L^{p}(\Omega)}^{p}
$$

for any t. Thus if $\varepsilon<1$

$$
\left\|\nabla u_{t}\right\|_{p}^{p} \leq \frac{C+D_{\varepsilon}}{1-\varepsilon} .
$$

Then $\left\{u_{t}\right\}_{t \in(-1,1)}$ is bounded in $W_{0}^{1, p}(\Omega)$ and therefore it is bounded in $L^{p q^{\prime}}(\Omega)$. Since

$$
\lim _{t \rightarrow 0} V_{t}=V_{0} \quad \text { in } L^{q}(\Omega),
$$

then

$$
\lim _{t \rightarrow 0} \int_{\Omega}\left(V_{t}(x)-V_{0}(x)\right)\left|u_{t}\right|^{p} \mathrm{~d} x=0
$$

Thus

$$
\begin{aligned}
\lambda(t) & =\int_{\Omega}\left|\nabla u_{t}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{t}(x)\left|u_{t}\right|^{p} \mathrm{~d} x \\
& =\int_{\Omega}\left|\nabla u_{t}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{0}(x)\left|u_{t}\right|^{p} \mathrm{~d} x+\int_{\Omega}\left(V_{t}(x)-V_{0}(x)\right)\left|u_{t}\right|^{p} \mathrm{~d} x \\
& \geq \lambda(0)+\int_{\Omega}\left(V_{t}(x)-V_{0}(x)\right)\left|u_{t}\right|^{p} \mathrm{~d} x
\end{aligned}
$$

and

$$
\begin{aligned}
\lambda(0) & =\int_{\Omega}\left|\nabla u_{0}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{0}(x)\left|u_{0}\right|^{p} \mathrm{~d} x \\
& =\int_{\Omega}\left|\nabla u_{0}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{t}(x)\left|u_{0}\right|^{p} \mathrm{~d} x+\int_{\Omega}\left(V_{0}(x)-V_{t}(x)\right)\left|u_{0}\right|^{p} \mathrm{~d} x \\
& \geq \lambda(t)+\int_{\Omega}\left(V_{0}(x)-V_{t}(x)\right)\left|u_{0}\right|^{p} \mathrm{~d} x .
\end{aligned}
$$

Therefore

$$
\lambda(0)+\int_{\Omega}\left(V_{t}(x)-V_{0}(x)\right)\left|u_{0}\right|^{p} \mathrm{~d} x \geq \lambda(t) \geq \lambda(0)+\int_{\Omega}\left(V_{t}(x)-V_{0}(x)\right)\left|u_{t}\right|^{p} \mathrm{~d} x .
$$

Hence,

$$
\lim _{t \rightarrow 0} \lambda(t)=\lambda(0),
$$

as we wanted to show.

Lemma 2.3.6. $\lambda(t)$ is differentiable at $t=0$ and

$$
\frac{d \lambda}{d t}(0)=\int_{\Omega} W(x)\left|u_{0}\right|^{p} \mathrm{~d} x
$$

Proof. Let $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ be such that $\lim _{n \rightarrow \infty} t_{n}=0$. As $\left\{u_{t_{n}}\right\}_{n \in \mathbb{N}}$ is bounded in $W_{0}^{1, p}(\Omega)$, there exists a subsequence of $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ (still denoted by $\left\{t_{n}\right\}_{n \in \mathbb{N}}$) and $u \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{array}{ll}
u_{t_{n}} \rightarrow u & \text { weakly in } W_{0}^{1, p}(\Omega) \\
u_{t_{n}} \rightarrow u & \text { strongly in } L^{r}(\Omega) \tag{2.4}
\end{array}
$$

for any $1<r<p^{*}$. Let us see that $u=u_{0}$.
In fact, by (2.4), we have $\|u\|_{L^{p}(\Omega)}=1$ and, by (2.3), we have

$$
\liminf _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{t_{n}}\right|^{p} \mathrm{~d} x \geq \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x .
$$

Now, observe that, as in the proof of Lemma 2.3.5, $V_{t_{n}} \rightarrow V_{0}$ strongly in $L^{q}(\Omega)$, then, using again (2.4), we get

$$
\lim _{n \rightarrow \infty} \int_{\Omega} V_{t_{n}}(x)\left|u_{t_{n}}\right|^{p} \mathrm{~d} x=\int_{\Omega} V_{0}(x)|u|^{p} \mathrm{~d} x
$$

Therefore,

$$
\begin{aligned}
\lambda(0) & =\lim _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{t_{n}}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{t_{n}}(x)\left|u_{t_{n}}\right|^{p} \mathrm{~d} x \\
& \geq \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} V_{0}(x)|u|^{p} \mathrm{~d} x \\
& \geq \lambda(0) .
\end{aligned}
$$

Hence u is a nonnegative, normalized eigenfunction associated to $\lambda(0)$. By Theorem 1.8.13, we have that $u=u_{0}$. Since the limit u_{0} is independent of the sequence $\left\{t_{n}\right\}_{n \in \mathbb{N}}$, it follows that (2.3)-(2.4) hold for the limit $t \rightarrow 0$.

By the differentiability of V_{t} and by (2.4) we obtain

$$
\lim _{t \rightarrow 0} \int_{\Omega}\left(\frac{V_{t}(x)-V_{0}(x)}{t}\right)\left|u_{t}\right|^{p} \mathrm{~d} x=\int_{\Omega} W(x)\left|u_{0}\right|^{p} \mathrm{~d} x .
$$

In the proof of Lemma 2.3.5, we have showed that

$$
\lambda(0)+\int_{\Omega}\left(V_{t}(x)-V_{0}(x)\right)\left|u_{0}\right|^{p} \mathrm{~d} x \geq \lambda(t) \geq \lambda(0)+\int_{\Omega}\left(V_{t}(x)-V_{0}(x)\right)(x)\left|u_{t}\right|^{p} \mathrm{~d} x .
$$

Thus, for $t>0$,

$$
\int_{\Omega}\left(\frac{V_{t}(x)-V_{0}(x)}{t}\right)\left|u_{0}\right|^{p} \mathrm{~d} x \geq \frac{\lambda(t)-\lambda(0)}{t} \geq \int_{\Omega}\left(\frac{V_{t}(x)-V_{0}(x)}{t}\right)\left|u_{t}\right|^{p} \mathrm{~d} x
$$

and an analogous inequality for $t<0$. Then $\lambda(t)$ is differentiable at $t=0$ and

$$
\frac{d \lambda}{d t}(0)=\int_{\Omega} W(x)\left|u_{0}\right|^{p} \mathrm{~d} x .
$$

The proof is now complete.
Remark 2.3.7. Since λ has maximum at $t=0$, we have

$$
\begin{equation*}
\int_{\Omega} W(x)\left|u_{0}\right|^{p} \mathrm{~d} x=0 \quad \forall W \in T_{V_{0}} S . \tag{2.5}
\end{equation*}
$$

The following proposition characterize the support of the maximal potential.
Proposition 2.3.8. $\Omega \subseteq \operatorname{supp} V_{0}$.
Proof. Suppose not. Then, let $x \in \Omega$ such that $x \notin \operatorname{supp} V_{0}$. As supp V_{0} is closed there exists $r>0$ such that

$$
B(x, r) \subset \Omega \quad \text { and } \quad B(x, r) \cap \operatorname{supp} V_{0}=\emptyset .
$$

Then $W=\chi_{B(x, r)} \in T_{V_{0}} S$ and, by (2.5),

$$
\int_{B(x, r)}\left|u_{0}\right|^{p} \mathrm{~d} x=0 .
$$

Hence $u_{0}=0$ a.e. in $B(x, r)$, a contradiction.
Finally, we arrive at the following characterization of the maximal potential.
Theorem 2.3.9. Let V_{0} be a maximal potential and let u_{0} be the eigenfunction associated to $\lambda\left(V_{0}\right)$. Then, there exists a constant k such that

$$
\begin{equation*}
\left|u_{0}\right|^{p}=k\left|V_{0}\right|^{q-1} \quad \text { in } \Omega . \tag{2.6}
\end{equation*}
$$

Proof. Let T_{1} and T_{2} be subsets of $\operatorname{supp} V_{0}$. We denote

$$
W(x)=\frac{\chi_{T_{1}}(x)}{\int_{T_{1}}\left|V_{0}\right|^{q-1} \mathrm{~d} x}-\frac{\chi_{T_{2}}(x)}{\int_{T_{2}}\left|V_{0}\right|^{q-1} \mathrm{~d} x} .
$$

Let us see that $W \in T_{V_{0}} S$. In fact, as V_{0} is a maximal potential, $V_{0} \geq 0$. Then

$$
\begin{aligned}
\int_{\Omega}\left|V_{0}\right|^{q-2} V_{0} W \mathrm{~d} x & =\int_{\Omega} V_{0}^{q-1} W \mathrm{~d} x \\
& =\frac{\int_{T_{1}} V_{0}^{q-1} \mathrm{~d} x}{\int_{T_{1}} V_{0}^{q-1} \mathrm{~d} x}-\frac{\int_{T_{2}} V_{0}^{q-1} \mathrm{~d} x}{\int_{T_{2}} V_{0}^{q-1} \mathrm{~d} x} \\
& =0 .
\end{aligned}
$$

Thus $W \in T_{V_{0}} S$, as we wanted to see.
By (2.5), we have

$$
0=\int_{\Omega} W\left|u_{0}\right|^{p} \mathrm{~d} x=\frac{\int_{T_{1}}\left|u_{0}\right|^{p} \mathrm{~d} x}{\int_{T_{1}}\left|V_{0}\right|^{q-1} \mathrm{~d} x}-\frac{\int_{T_{2}}\left|u_{0}\right|^{p} \mathrm{~d} x}{\int_{T_{2}}\left|V_{0}\right|^{q-1} \mathrm{~d} x}
$$

Then

$$
\frac{\int_{T_{1}}\left|u_{0}\right|^{p} \mathrm{~d} x}{\int_{T_{1}}\left|V_{0}\right|^{q-1} \mathrm{~d} x}=\frac{\int_{T_{2}}\left|u_{0}\right|^{p} \mathrm{~d} x}{\int_{T_{2}}\left|V_{0}\right|^{q-1} \mathrm{~d} x} .
$$

Therefore, there exists a constant k such that

$$
\frac{\int_{T}\left|u_{0}\right|^{p} \mathrm{~d} x}{\int_{T}\left|V_{0}\right|^{q-1} \mathrm{~d} x}=k
$$

for each $T \subset \operatorname{supp} V_{0}$. In particular, if we take

$$
T=\left\{x \in \operatorname{supp} V_{0}: k\left|V_{0}(x)\right|^{q-1}>\left|u_{0}(x)\right|^{p}\right\}
$$

we get

$$
\int_{T}\left|u_{0}\right|^{p} \mathrm{~d} x=k \int_{T}\left|V_{0}\right|^{q-1} \mathrm{~d} x
$$

thus

$$
k \int_{T}\left|V_{0}\right|^{q-1} \mathrm{~d} x-\int_{T}\left|u_{0}\right|^{p} \mathrm{~d} x=0 .
$$

Since $k\left|V_{0}(x)\right|^{q-1}>\left|u_{0}(x)\right|^{p}$ for any $x \in T$, the measure of T is zero. In the same way, we obtain that

$$
\left\{x \in \operatorname{supp} V_{0}: k\left|V_{0}(x)\right|^{q-1}<\left|u_{0}(x)\right|^{p}\right\}
$$

has measure zero. Thus

$$
\left|u_{0}\right|^{p}=k\left|V_{0}\right|^{q-1} \quad \text { a.e. in } \operatorname{supp} V_{0} .
$$

By Proposition 2.3.8,

$$
\left|u_{0}\right|^{p}=k\left|V_{0}\right|^{q-1} \text { in } \Omega \text {. }
$$

This ends the proof.

Equation (2.6) gives us purely algebraic relationship between the optimizing potentials and their associated eigenfunction. Since the eigenvalue equation is homogeneous of degree p in the eigenfunction, we can choose the constant in (2.6) to be equal to one, this
can be obtained by taking $\frac{u_{0}}{k^{p}}$ as the eigenfunction instead of u_{0}. Replacing in equation (1.9), we see that the eigenfunction associated to the maximal eigenvalue satisfies

$$
\begin{equation*}
-\Delta_{p} u+u^{\alpha}=\lambda u^{p-1} \tag{2.7}
\end{equation*}
$$

where λ is the maximal potential eigenvalue and the equation can be written in terms of the associated eigenfunction. An interesting consequence of Theorem 2.3.1 is, in this context, a proof of existence and certain properties of a solution of equation (2.7). More precisely, we have

Corollary 2.3.10. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain, $1<p<\infty$ and $\alpha \in \mathbb{R}$. For any $\lambda>\lambda(0)$, where $\lambda(0)$ is the principal eigenvalue of the operator $-\Delta_{p}$ in $W_{0}^{1, p}(\Omega)$, the nonlinear eigenvalue problem

$$
\begin{cases}-\Delta_{p} u+u^{\alpha}=\lambda u^{p-1} & \text { in } \Omega, \tag{2.8}\\ u>0 & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has a solution in the following cases:

1. If $1<p<N$, we take $p-1<\alpha<\frac{N(p-1)+p}{N-p}$.
2. If $p \geq N$, we take $\alpha>p-1$.

Proof. The existence of a potential V_{0} maximizing of $-\Delta_{p}+V$ subject to $\|V\|_{L^{q}(\Omega)}=M$, for any $M>0$ is known from Theorem 2.3.1, with $\alpha=\frac{p q-q+1}{q-1}$. If the maximized eigenvalue is $\lambda^{*}=\lambda\left(V_{0}\right)$, then the necessary condition (2.7) becomes (2.8) with $u=u_{0}$ and $\lambda=\lambda^{*}$.

The corollary will thus be proved if it is shown that λ^{*} increases continuously from $\lambda(0)$ to ∞ as M goes from 0 to ∞. By Remark 2.3.3, $\lambda^{*}(\cdot)$ is increases monotonically from $\lambda(0)$ to ∞ as $M \nearrow \infty$. It remains to prove the continuity.

We denote with V_{0}^{M} the maximal potential associated to $\lambda^{*}(M)$. If $t>0$, then

$$
\lambda\left(V_{0}^{M+t}\right)=\lambda^{*}(M+t) \geq \lambda^{*}(M)
$$

Take $V=\frac{M}{M+t} V_{0}^{M+t}$, note that $\|V\|_{q}=M$, then $\lambda(V) \leq \lambda^{*}(M)$. Given $u \in W_{0}^{1, p}(\Omega),\|u\|_{p}=1$, we have

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} V(x)|u|^{p} \mathrm{~d} x & =\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} \frac{M}{M+t} V_{0}^{M+t}(x)|u|^{p} \mathrm{~d} x \\
& =\frac{M}{M+t}\left(\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} V_{0}^{M+t}(x)|u|^{p} \mathrm{~d} x\right) \\
& +\left(1-\frac{M}{M+t}\right) \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x \\
& \geq \frac{M}{M+t}\left(\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} V_{0}^{M+t}(x)|u|^{p} \mathrm{~d} x\right)
\end{aligned}
$$

Thus

$$
\lambda(V)=\lambda\left(\frac{M}{M+t} V_{0}^{M+t}\right) \geq \frac{M}{M+t} \lambda\left(V_{0}^{M+t}\right)=\frac{M}{M+t} \lambda^{*}(M+t)
$$

then, as $\lambda(V) \leq \lambda^{*}(M)$,

$$
\begin{equation*}
\frac{M}{M+t} \lambda^{*}(M+t) \leq \lambda^{*}(M) \leq \lambda^{*}(M+t) \tag{2.9}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\lambda^{*}(M-t) \leq \lambda^{*}(M) \leq \frac{M-t}{M} \lambda^{*}(M-t) \tag{2.10}
\end{equation*}
$$

Then, taking limits in (2.9) and (2.10),

$$
\lim _{t \rightarrow 0} \lambda^{*}(M+t)=\lambda^{*}(M) .
$$

This completes the proof.

2.4 Minimizing potentials

In this section we present the results for minimizing potentials. Since the results and the proof are completely analogous to those of the previous subsection we only state the main results and point out only the significant differences.
Theorem 2.4.1. If $q>\max \{N / p, 1\}$, there exists $V_{*} \in B$ that minimizes $\lambda(V)$.
Proof. Is analogous to that of Theorem 2.3.1.
As in the previous subsection, we consider the case $B=\overline{B(0, M)} \subset L^{q}(\Omega)$, and to simplify the computations, we take $M=1$.
As a concave function defined over a convex set achieves its minimum at the extreme points of the convex, there exists $V_{0} \in \partial B$ such that

$$
\lambda\left(V_{0}\right)=\min \{\lambda(V): V \in \partial B\}=\min \{\lambda(V): V \in \partial B\} .
$$

Moreover, since $-\left|V_{0}\right| \leq V_{0}$ and $\lambda(\cdot)$ is nondecreasing we may assume that $V_{0} \leq 0$.
Let us now try to characterize V_{0}. As before, let $\alpha:(-1,1) \rightarrow L^{q}(\Omega)$ be a differentiable curve such that

$$
\alpha(t) \in S:=\partial B, \quad \alpha(0)=V_{0} \quad \text { and } \quad \dot{\alpha}(0)=W \in T_{V_{0}} S .
$$

We denote by $V_{t}=\alpha(t)$ and $\lambda(t)=\lambda(\alpha(t))$. Let u_{t} the normalized, nonnegative eigenfunction of $H_{V_{t}}$ associated to $\lambda(t)$. Observe that Lemmas 2.3.5 and 2.3.6 apply. Hence, as λ has a minimum at $t=0$ we have

$$
\begin{equation*}
\int_{\Omega} W(x)\left|u_{0}\right|^{p} \mathrm{~d} x=0 \quad \forall W \in T_{V_{0}} S \tag{2.11}
\end{equation*}
$$

As for maximizing potential, we have,

Proposition 2.4.2. $\Omega \subseteq \operatorname{supp} V_{0}$.
Proof. Analogous to that of Lemma 2.3.8.
Proposition 2.4.3. Let V_{0} be a minimal potential and let u_{0} be the normalized, nonnegative eigenfunction of $H_{V_{0}}$ associated to $\lambda\left(V_{0}\right)$. Then, there exists a constant $k \in \mathbb{R}_{+}$such that

$$
\begin{equation*}
\left|u_{0}\right|^{p}=k\left|V_{0}\right|^{q-1} \quad \text { in } \Omega . \tag{2.12}
\end{equation*}
$$

Proof. Analogous to that of Lemma 2.3.9.
As before, from (2.12) we obtain a purely algebraic relationship between minimal potential and their associated eigenfunction. Using the homogeneity of the equation, we can choose the constant in (2.12) to be 1 . Replacing in (1.9) we obtain that the eigenfunction associated to the minimal potential satisfies

$$
\begin{equation*}
-\Delta_{p} u-u^{\alpha}=\lambda u^{p-1} \tag{2.13}
\end{equation*}
$$

where λ is the minimal eigenvalue and $\alpha=\frac{p q-q+1}{q-1}$.
Therefore, we obtain the following corollary
Corollary 2.4.4. Let $\Omega \subset \mathbb{R}^{N}$ be a smooth open and bounded set, $1<p<\infty$ and $\alpha \in \mathbb{R}$. For every $\lambda<\lambda(0)$, where $\lambda(0)$ is the principal eigenvalue of $-\Delta_{p}$ in $W_{0}^{1, p}(\Omega)$, the nonlinear eigenvalue problem

$$
\begin{cases}-\Delta_{p} u-u^{\alpha}=\lambda u^{p-1} & \text { in } \Omega \tag{2.14}\\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has a solution in the cases

1. If $1<p<N$, we take $p-1<\alpha<\frac{N(p-1)+p}{N-p}$.
2. If $p \geq N$, we take $\alpha>p-1$.

Proof. Analogous to that of Corollary 2.3.10.

3

The first Steklov eigenvalue of a nonlinear problem

Given a domain $\Omega \subset \mathbb{R}^{N}$ (bounded, connected, with smooth boundary), $\alpha>0$ and $E \subset \Omega$ a measurable set, in this chapter, we want to study the eigenvalue problem

$$
\begin{cases}-\Delta_{p} u+|u|^{p-2} u+\alpha \chi_{E}|u|^{p-2} u=0 & \text { in } \Omega, \tag{3.1}\\ |\nabla u|^{p-2} \frac{\partial u}{\partial v}=\lambda|u|^{p-2} u & \text { on } \partial \Omega,\end{cases}
$$

here λ stands for the eigenvalue and α is a positive parameter. We remark that in this problem the eigenvalue appears in the boundary condition. These type of problems are known as Steklov eigenvalue problems, see [St]. Observe that when $p=2$ the problem becomes linear.

We denote the first eigenvalue by $\lambda(\alpha, E)$. The existence of this first eigenvalue and a positive associated eigenfunction follows easily from the variational characterization

$$
\begin{equation*}
\lambda(\alpha, E):=\inf \left\{\int_{\Omega}|\nabla v|^{p}+|v|^{p} \mathrm{~d} x+\alpha \int_{E}|v|^{p} \mathrm{~d} x: v \in \mathcal{W}\right\} \tag{3.2}
\end{equation*}
$$

where

$$
\mathcal{W}=\left\{v \in W^{1, p}(\Omega):\|v\|_{L^{p}(\partial \Omega)}=1\right\}
$$

and the compactness of the embedding $W^{1, p}(\Omega) \hookrightarrow L^{p}(\partial \Omega)$, see [FBR1].
Once the set E is fixed, it is not difficult to check that when $\alpha \rightarrow \infty$ the eigenvalues converge to the first eigenvalue of the problem with E as a hole (the eigenfunction vanishes on E). That is,

$$
\lim _{\alpha \rightarrow \infty} \lambda(\alpha, E)=\lambda(\infty, E),
$$

where

$$
\lambda(\infty, E):=\inf \left\{\int_{\Omega}|\nabla v|^{p}+|v|^{p} \mathrm{~d} x: v \in \mathcal{W} \text { and }\left.v\right|_{E} \equiv 0\right\} .
$$

The aim of this chapter is to study the following optimization problem: for a fixed α we want to optimize $\lambda(\alpha, E)$ with respect to E, that is, we want to look at the infimum,

$$
\begin{equation*}
\inf \{\lambda(\alpha, E): E \subset \Omega \text { and }|E|=A\} \tag{3.3}
\end{equation*}
$$

for a fixed volume $A \in[0,|\Omega|]$. Moreover, we want to study the limit as $\alpha \rightarrow \infty$ in the above infimum. The natural limit problem for these infimum is

$$
\begin{equation*}
\lambda(\infty, A):=\inf \{\lambda(\infty, E): E \subset \Omega \text { and }|E|=A\} . \tag{3.4}
\end{equation*}
$$

These kind of problems appear naturally in optimal design. They are usually formulated as problems of minimization of the energy, stored in the design under a prescribed loading. Solutions of these problems are unstable to perturbations of the loading. The stable optimal design problem is formulated as minimization of the stored energy of the project under the most unfavorable loading. This most dangerous loading is one that maximizes the stored energy over the class of admissible functions. The problem is reduced to minimization of Steklov eigenvalues. See [CC].

Also this limit problem (3.4) can be regarded as the study of the best Sobolev trace constant for functions that vanish in a subset of prescribed measure. The study of optimal constants in Sobolev embeddings is a very classical subject, see [DH]. Related problems for the best Sobolev trace constant can be found in [FBFR, FBR2]. In our case, the limit problem was studied in [FBRW2] where an optimal configuration is shown to exists and some properties of this optimal configuration are obtained. Among them it is proved that $\lambda(\infty, A)$ is strictly increasing with respect to A. In a companion paper [FBRW1] the interior regularity of the optimal hole is analyzed.

The rest of the chapter is organized as follows: in Section 3.1, we prove that there exists an optimal configuration; in Section 3.2, we analyze the limit $\alpha \rightarrow \infty$ and finally in Section 3.3 we study the symmetry properties of the optimal pairs in a ball.

3.1 Existence of an optimal configuration

In this section we prove that there exists an optimal configuration for the relaxed problem and find some properties of it.

To begin the study of our optimization problem (3.2), we prove that there exists an optimal configuration. To this end, it is better to relax the problem and consider $\phi \in L^{\infty}(\Omega)$, such that $0 \leq \phi \leq 1$ and $\int_{\Omega} \phi(x) \mathrm{d} x=A$ instead of χ_{E}. Hence we consider the problem,

$$
\begin{cases}-\Delta_{p} u+|u|^{p-2} u+\alpha \phi|u|^{p-2} u=0 & \text { in } \Omega, \tag{3.5}\\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=\lambda|u|^{p-2} u & \text { on } \partial \Omega .\end{cases}
$$

This relaxation is natural in the use of the direct method in the calculus of variations since

$$
\mathcal{R}=\left\{\phi \in L^{\infty}(\Omega): 0 \leq \phi \leq 1 \text { and } \int_{\Omega} \phi(x) \mathrm{d} x=A\right\}
$$

is closed in the weak* topology in $L^{\infty}(\Omega)$. In fact, by the Theorem 1.4.6, this set is the closure in this topology of the set of characteristic functions

$$
\left\{\chi_{E}:|E|=A\right\} .
$$

We denote by $\lambda(\alpha, \phi)$ the lowest eigenvalue of (3.5). This eigenvalue has the following variational characterization

$$
\begin{equation*}
\lambda(\alpha, \phi):=\inf \left\{\int_{\Omega}|\nabla v|^{p}+|v|^{p} \mathrm{~d} x+\alpha \int_{\Omega} \phi|v|^{p} \mathrm{~d} x: v \in \mathcal{W}\right\} . \tag{3.6}
\end{equation*}
$$

Again, as an immediate consequence of the compact embedding $W^{1, p}(\Omega) \hookrightarrow L^{p}(\partial \Omega)$, the above infimum is in fact a minimum. There exists $u=u_{\alpha, \phi} \in W^{1, p}(\Omega)$ such that $\|u\|_{L^{p}(\partial \Omega)}=1$ and

$$
\lambda(\alpha, \phi)=\int_{\Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} x+\alpha \int_{\Omega} \phi|u|^{p} \mathrm{~d} x .
$$

Moreover, u is a weak solution of (3.5), does not change sign (see [FBR1, FBR3, MR]) and hence, by Harnack's inequality (see Theorem 1.8.4), it can be assumed that u is strictly positive in $\bar{\Omega}$.

Define

$$
\begin{equation*}
\Lambda(\alpha, A)=\inf \{\lambda(\alpha, \phi): \phi \in \mathcal{R}\} . \tag{3.7}
\end{equation*}
$$

Any minimizer ϕ in (3.7) will be called an optimal configuration for the data (α, A). If ϕ is an optimal configuration and u satisfies (3.5) then (u, ϕ) will be called an optimal pair (or solution).

By the direct method of the calculus of variations, it is not difficult to see that there exits an optimal pair. The main point of the following result is to show that we can recover a classical solution of our original problem (3.3). In fact, if (u, ϕ) is an optimal pair, then $\phi=\chi_{D}$ for some measurable set $D \subset \Omega$.

Theorem 3.1.1. For any $\alpha>0$ and $A \in[0,|\Omega|]$ there exists an optimal pair. Moreover, any optimal pair (u, ϕ) has the following properties:

1. $u \in C^{1, \delta}(\bar{\Omega})$ for some $0<\delta<1$.
2. There exists an optimal configuration $\phi=\chi_{D}$, where $\{u<t\} \subset D \subset\{u \leq t\}$ with $t:=\sup \{s:|\{u<s\}| \leq A\}$.

For the proof we use ideas from [CGIK, CGK] where a similar linear problem with homogeneous Dirichlet boundary conditions was studied.

Proof. To prove existence, fix α and A, and write $\Lambda=\Lambda(\alpha, A), \lambda(\phi)=\lambda(\alpha, \phi)$ to simplify the notation. Let $\left\{\phi_{n}\right\}_{n \in \mathbb{N}}$ be a minimizing sequence, i.e., $0 \leq \phi_{n} \leq 1, \int_{\Omega} \phi_{n} \mathrm{~d} x=A$ and $\lambda\left(\phi_{n}\right) \rightarrow \Lambda$ as $n \rightarrow \infty$.
Let $u_{n} \in W^{1, p}(\Omega)$, be a normalized eigenfunction associated to $\lambda\left(\phi_{n}\right)$, that is, u_{n} verifies $\left\|u_{n}\right\|_{L^{p}(\partial \Omega)}=1$ and

$$
\begin{align*}
\lambda\left(\phi_{n}\right) & =\int_{\Omega}\left|\nabla u_{n}\right|^{p}+\left|u_{n}\right|^{p} \mathrm{~d} x+\alpha \int_{\Omega} \phi_{n}\left|u_{n}\right|^{p} \mathrm{~d} x \\
& =\inf \left\{\int_{\Omega}|\nabla v|^{p}+|v|^{p} \mathrm{~d} x+\alpha \int_{\Omega} \phi_{n}|v|^{p} \mathrm{~d} x: v \in \mathcal{W}\right\} . \tag{3.8}
\end{align*}
$$

Then, u_{n} is a positive weak solution of

$$
\begin{cases}-\Delta_{p} u_{j}+\left|u_{n}\right|^{p-2} u_{n}+\alpha \phi\left|u_{n}\right|^{p-2} u_{n}=0 & \text { in } \Omega, \\ \left|\nabla u_{n}\right|^{p-2} \frac{\partial u_{j}}{\partial v}=\lambda\left(\phi_{n}\right)\left|u_{n}\right|^{p-2} u_{n} & \text { on } \partial \Omega, \\ \left\|u_{n}\right\|_{L^{p}(\partial \Omega)}=1 . & \end{cases}
$$

Since $\lambda\left(\phi_{n}\right)$ is bounded, the sequence u_{n} is bounded in $W^{1, p}(\Omega)$. Also $\left\{\phi_{n}\right\}$ is bounded in $L^{\infty}(\Omega)$. Therefore, we may choose a subsequence (again denoted $\left.u_{n}, \phi_{n}\right)$ and $u \in W^{1, p}(\Omega)$, $\phi \in L^{\infty}(\Omega)$ such that

$$
\begin{array}{lll}
u_{n} \rightarrow u & \text { weakly in } W^{1, p}(\Omega), \\
u_{n} \rightarrow u & \text { strongly in } L^{p}(\Omega), \\
u_{n} \rightarrow u & \text { strongly in } L^{p}(\partial \Omega) \\
\phi_{n} \xrightarrow{*} \phi & \text { weakly* in } L^{\infty}(\Omega) . \tag{3.12}
\end{array}
$$

By (3.10),

$$
\|u\|_{L^{p}(\partial \Omega)}=1,
$$

and by (3.12)

$$
0 \leq \phi \leq 1 \text { and } \int_{\Omega} \phi \mathrm{d} x=A .
$$

Now taking limits in (3.8), we get

$$
\begin{align*}
\Lambda & =\lim _{n \rightarrow \infty} \lambda\left(\phi_{n}\right) \\
& \geq \liminf _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}\right|^{p}+\left|u_{n}\right|^{p} \mathrm{~d} x+\alpha \int_{\Omega} \phi_{n}\left|u_{n}\right|^{p} \mathrm{~d} x \tag{3.13}\\
& \geq \int_{\Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} x+\alpha \int_{\Omega} \phi|u|^{p} \mathrm{~d} x .
\end{align*}
$$

Therefore, (u, ϕ) is an optimal pair and so u is a weak solution to

$$
\begin{cases}-\Delta_{p} u+|u|^{p-2} u+\alpha \phi|u|^{p-2} u=0 & \text { in } \Omega, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial v}=\Lambda|u|^{p-2} u & \text { on } \partial \Omega .\end{cases}
$$

That (1) holds is a consequence of the regularity theory for quasilinear elliptic equations with bounded coefficients developed, for instance, in [L].
To prove (2), observe that, by the Theorem 1.3.12, the minimization problem

$$
\inf \left\{\int_{\Omega} \phi|u|^{p} \mathrm{~d} x: \phi \in \mathcal{R}\right\}
$$

has a solution $\phi=\chi_{D}$ where D is any set with $|D|=A$ and

$$
\{x: u(x)<t\} \subset D \subset\{x: u(x) \leq t\}, \quad t:=\sup \{s:|\{u<s\}| \leq A\} .
$$

Therefore, we get from (3.13)

$$
\int_{\Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} x+\alpha \int_{\Omega} \chi_{D}|u|^{p} \mathrm{~d} x \leq \Lambda .
$$

By definition of Λ as a minimum, this must actually be an equality, and we conclude that $\left(u, \chi_{D}\right)$ is an optimal pair.

Now, we find the derivative of $\lambda(\alpha, \phi)$ in an admissible direction $f \in F$, given by

$$
\begin{equation*}
F=\left\{f: f \leq 0 \text { in }\{\phi=1\}, f \geq 0 \text { in }\{\phi=0\}, \int_{\Omega} f \mathrm{~d} x=0\right\} . \tag{3.14}
\end{equation*}
$$

Proposition 3.1.2. Let $f \in F$, then the derivative from the right of $\lambda(\alpha, \phi)$ in the direction of $f \in F$ is given by

$$
\begin{equation*}
\lambda^{\prime}(\alpha, \phi)(f)=\lim _{t \searrow 0} \frac{\lambda(\alpha, \phi+t f)-\lambda(\alpha, \phi)}{t}=\alpha \int_{\Omega} f|u|^{p} d x \tag{3.15}
\end{equation*}
$$

where u is an eigenfunction of $\lambda(\alpha, \phi)$.
Proof. Let us consider the curve

$$
\phi_{t}=\phi+t f .
$$

Note that since $f \in F$ and ϕ is admissible then ϕ_{t} is admissible for every $t \geq 0$ small enough. Therefore, we may compute $\lambda\left(\alpha, \phi_{t}\right)$.

Using an eigenfunction u_{t} of $\lambda\left(\alpha, \phi_{t}\right)$ in the variational formulation of $\lambda(\alpha, \phi)$ we get

$$
\begin{equation*}
\frac{\lambda\left(\alpha, \phi_{t}\right)-\lambda(\alpha, \phi)}{t} \leq \alpha \int_{\Omega} f\left|u_{t}\right|^{p} d x . \tag{3.16}
\end{equation*}
$$

On the other hand, using u in the variational formulation of $\lambda\left(\alpha, \phi_{t}\right)$ we get

$$
\begin{equation*}
\frac{\lambda\left(\alpha, \phi_{t}\right)-\lambda(\alpha, \phi)}{t} \geq \alpha \int_{\Omega} f|u|^{p} d x . \tag{3.17}
\end{equation*}
$$

As before, using $v=1$ as a test function in the definition of $\lambda\left(\alpha, \phi_{t}\right)$, we obtain that the family $\left\{u_{t}\right\}_{0 \leq t \leq t_{0}}$ is bounded in $W^{1, p}(\Omega)$. Then, by our previous arguments we have that

$$
u_{t} \rightarrow u \quad \text { strongly in } L^{p}(\Omega) \text { when } t \rightarrow 0 .
$$

Hence, taking limits in (3.16) and (3.17) we conclude (3.15).
Using this Proposition we can prove that the optimal set must be a sublevel set of u, i.e., there is a number $t \geq 0$ such that $\{x: u(x) \leq t\}$ is the optimal set.

Corollary 3.1.3. There exists a number $t \geq 0$ such that the optimal set D is

$$
D=\{x: u(x) \leq t\} .
$$

Proof. As χ_{D} realizes the minimum of $\lambda(\alpha, \phi)$, we have for all $f \in F$,

$$
\begin{equation*}
\lambda^{\prime}\left(\alpha, \chi_{D}\right)(f)=\alpha \int_{\Omega} f|u|^{p} d x \geq 0 \tag{3.18}
\end{equation*}
$$

Given two points $x_{0} \in D$ of positive density (i.e., for every $\varepsilon>0,\left|B\left(x_{0}, \varepsilon\right) \cap D\right|>0$) and $x_{1} \in(\Omega \backslash D)$ also with positive density we can take a function $f \in F$ of the form

$$
f=M \chi_{T_{0}}-M \chi_{T_{1}},
$$

with $T_{0} \subset B\left(x_{0}, \varepsilon\right) \cap D, T_{1} \subset B\left(x_{1}, \varepsilon\right) \cap(\Omega \backslash D)$ and $M^{-1}=\left|T_{0}\right|=\left|T_{1}\right|$. It is clear that $f \in F$. From our expression for the right derivative (3.15) and using that D is a minimizer, taking the limit as $\varepsilon \rightarrow 0$ and using the continuity of u we get $u\left(x_{0}\right) \leq u\left(x_{1}\right)$. We conclude that $D=\{x: u \leq t\}$.

3.2 Limit as $\alpha \rightarrow \infty$

In this section, we analyze the limit as $\alpha \rightarrow \infty$ of the optimal configurations found in Theorem 3.1.1. We give a rigorous proof of the convergence of these optimal configurations to those of (3.4).

First, we need a result about the monotonicity of $\lambda(\infty, A)$ in A.
Lemma 3.2.1. $\lambda(\infty, A)$ is strictly monotonically increasing in A.
Proof. The prove of this lemma is found in [FBRW2]. We include here only by the sake of completeness.

We proceed in three steps.
Step 1. First, we show that

$$
\begin{aligned}
\lambda(\infty, A) & =\inf \{\lambda(\infty, E): E \subset \Omega \text { and }|E|=A\} \\
& =\inf \{\lambda(\infty, E): E \subset \Omega \text { and }|E| \geq A\} .
\end{aligned}
$$

It is clear that

$$
\inf \{\lambda(\infty, E): E \subset \Omega \text { and }|E|=A\} \geq \inf \{\lambda(\infty, E): E \subset \Omega \text { and }|E| \geq A\}
$$

On the other hand, if v is a test function for a set of measure greater than or equal to A it is also a test function for a set of measure A. Then, the two infima coincide.

Step 2. we show that, if u is an extremal for $\lambda(\infty, A)$ then $|\{x: u(x)=0\}|=A$.
Suppose by contradiction that u vanishes in a set E with $|E|>A$. By taking a subset we may assume that E is closed. Let us take a small ball B so that $|E \backslash B|>A$ with B centered at a point in $\partial E \cap \partial \Omega_{1}$, where Ω_{1} is the connected component of $\Omega \backslash E$ such that $\partial \Omega \subset \partial \Omega_{1}$. We can pick the ball B in such a way that $|E \cap B|>0$. In particular, $|\{x: u(x)=0\} \cap B|>0$.

Since u is an extremal for $\lambda(\infty, A)$ and $|E \backslash B|>A$, it is an extremal for $\lambda(\infty, E \backslash B)$. Thus, there holds that

$$
-\Delta_{p} u+|u|^{p-2} u=0 \quad \text { in } \Omega \backslash(E \backslash B)=(\Omega \backslash E) \cup B .
$$

Now, as $u \geq 0$, there holds that either $u \equiv 0$ or $u>0$ in each connected component of $(\Omega \backslash A) \cup B$. Since $u \neq 0$ on $\partial \Omega$ there holds, in particular, that $u>0$ in B. This is a contradiction to the choice of the ball B. Therefore,

$$
|\{x: u(x)=0\}|=A .
$$

Step 3. Lastly, we show that $\lambda(\infty, A)$ is strictly monotonically increasing in A.
By the Step 1, we deduce that $\lambda(\infty, A)$ is nondecreasing respect to A. On the other hand, let $0<A_{1}<A_{2}<|\Omega|$, such that $\lambda\left(\infty, A_{1}\right)=\lambda\left(\infty, A_{2}\right)$ and let u be an extremal for $\lambda\left(\infty, A_{2}\right)$ then, by step $2, \mid\{u=0\}=A_{2}$. But u is an admissible function for $\lambda\left(\infty, A_{1}\right)$, so that it is an extremal for $\lambda\left(\infty, A_{1}\right)$ with $|\{x: u(x)=0\}|>A_{1}$. This is a contradiction with what has been proved in the step 2 . Thus, $\lambda(\infty, A)$ is strictly monotonically increasing in A.

Theorem 3.2.2. For any sequence $\alpha_{j} \rightarrow \infty$ and optimal pairs $\left(D_{j}, u_{j}\right)$ of (3.3) there exists a subsequence, that we still call α_{j}, and an optimal pair (D, u) of (3.4) such that

$$
\begin{array}{ll}
\lim _{j \rightarrow \infty} \chi_{D_{j}}=\chi_{D}, & \text { weakly* in } L^{\infty}(\Omega), \\
\lim _{j \rightarrow \infty} u_{j}=u, & \text { strongly in } W^{1, p}(\Omega) .
\end{array}
$$

Moreover, $u>0$ in $\Omega \backslash D$.
Proof. Let $\left(u_{\alpha}, \chi_{D_{\alpha}}\right)$ be a solution to our minimization problem

$$
\Lambda(\alpha, A)=\inf \left\{\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega}|u|^{p} \mathrm{~d} x+\alpha \int_{\Omega} \phi|u|^{p} \mathrm{~d} x: u \in \mathcal{W} \text { and } \phi \in \mathcal{R}\right\} .
$$

Recall that u_{α} is a positive weak solution of

$$
\begin{cases}-\Delta_{p} u+|u|^{p-2} u+\alpha \phi|u|^{p-2} u=0 & \text { in } \Omega, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial v}=\Lambda(\alpha, A)|u|^{p-2} u & \text { on } \partial \Omega, \\ \|u\|_{L^{p}(\partial \Omega)}=1 . & \end{cases}
$$

Let $u_{0} \in W^{1, p}(\Omega)$ and $D_{0} \subset \Omega$ be such that $\left|D_{0}\right|=A$ and $u_{0} \chi_{D_{0}}=0$. Then, we have that

$$
\begin{aligned}
\Lambda(\alpha, A) & \leq \frac{\int_{\Omega}\left|\nabla u_{0}\right|^{p} \mathrm{~d} x+\int_{\Omega}\left|u_{0}\right|^{p} \mathrm{~d} x+\alpha \int_{\Omega} \chi_{D_{0}}\left|u_{0}\right|^{p} \mathrm{~d} x}{\int_{\partial \Omega}\left|u_{0}\right|^{p} \mathrm{~d} \mathcal{H}^{N-1}} \\
& =\frac{\int_{\Omega}\left|\nabla u_{0}\right|^{p} \mathrm{~d} x+\int_{\Omega}\left|u_{0}\right|^{p} \mathrm{~d} x}{\int_{\partial \Omega}\left|u_{0}\right|^{p} \mathrm{~d} \mathcal{H}^{N-1}} \\
& =K
\end{aligned}
$$

with K independent of α.
Thus $\{\Lambda(\alpha, A)\}$ is a bounded sequence in \mathbb{R} and it is clearly increasing. As a consequence, $\left\{u_{\alpha}\right\}$ is bounded in $W^{1, p}(\Omega)$. Moreover $\left\{\chi_{D_{\alpha}}\right\}$ is bounded in $L^{\infty}(\Omega)$. Therefore, we may choose a sequence α_{j} and $u_{\infty} \in W^{1, p}(\Omega), \phi_{\infty} \in L^{\infty}(\Omega)$ such that

$$
\begin{array}{rll}
u_{\alpha_{j}} & \rightharpoonup u_{\infty} & \text { weakly in } W^{1, p}(\Omega), \\
u_{\alpha_{j}} & \rightarrow u_{\infty} & \text { strongly in } L^{p}(\Omega), \\
u_{\alpha_{j}} & \rightarrow u_{\infty} & \text { strongly in } L^{p}(\partial \Omega), \\
\chi_{D_{\alpha_{j}}} & \stackrel{*}{*} \phi_{\infty} & \text { weakly* in } L^{\infty}(\Omega), \tag{3.22}
\end{array}
$$

By (3.21) and as $\left\|u_{\alpha_{j}}\right\|_{L^{p}(\partial \Omega)}=1$ for all $j \in \mathbb{N}$, we have that $\left\|u_{\infty}\right\|_{L^{p}(\partial \Omega)}=1$ and, by (3.22), $0 \leq \phi_{\infty} \leq 1$ with $\int_{\Omega} \phi_{\infty} \mathrm{d} x=A$. Also, by (3.20) and (3.22), it holds

$$
\int_{\Omega} \chi_{D_{\alpha_{j}}}\left|u_{\alpha_{j}}\right|^{p} \mathrm{~d} x \rightarrow \int_{\Omega} \phi_{\infty}\left|u_{\infty}\right|^{p} \mathrm{~d} x .
$$

As

$$
0 \leq \alpha_{j} \int_{\Omega} \chi_{D_{\alpha_{j}}}\left|u_{\alpha_{j}}\right|^{p} \mathrm{~d} x \leq \Lambda_{\alpha_{j}} \leq K \quad \forall j \in \mathbb{N},
$$

we have

$$
0 \leq \int_{\Omega} \chi_{D_{\alpha_{j}}}\left|u_{\alpha_{j}}\right|^{p} \mathrm{~d} x \leq \frac{K}{\alpha_{j}} \quad \forall j \in \mathbb{N},
$$

then

$$
\int_{\Omega} \chi_{D_{\alpha_{j}}}\left|u_{\alpha_{j}}\right|^{p} \mathrm{~d} x \rightarrow 0 .
$$

Therefore

$$
\int_{\Omega} \phi_{\infty}\left|u_{\infty}\right|^{p} \mathrm{~d} x=0,
$$

and we conclude that

$$
\phi_{\infty} u_{\infty}=0 \quad \text { a.e. } \Omega .
$$

Since $\left\{\Lambda\left(\alpha_{j}, A\right)\right\}$ is bounded and increasing, there exists the limit

$$
\lim _{j \rightarrow \infty} \Lambda\left(\alpha_{j}, A\right)=\Lambda_{\infty}<+\infty .
$$

Then

$$
\begin{aligned}
\Lambda_{\infty} & =\lim _{j \rightarrow \infty} \int_{\Omega}\left|\nabla u_{\alpha_{j}}\right|^{p} \mathrm{~d} x+\int_{\Omega}\left|u_{\alpha_{j}}\right|^{p} \mathrm{~d} x+\alpha_{j} \int_{\Omega} \chi_{\alpha_{j}}\left|u_{\alpha_{j}}\right|^{p} \mathrm{~d} x \\
& \geq \liminf _{j \rightarrow \infty} \int_{\Omega}\left|\nabla u_{\alpha_{j}}\right|^{p} \mathrm{~d} x+\int_{\Omega}\left|u_{\alpha_{j}}\right|^{p} \mathrm{~d} x \\
& \geq \int_{\Omega}\left|\nabla u_{\infty}\right|^{p} \mathrm{~d} x+\int_{\Omega}\left|u_{\infty}\right|^{p} \mathrm{~d} x .
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
\Lambda_{\infty} & \geq \int_{\Omega}\left|\nabla u_{\infty}\right|^{p} \mathrm{~d} x+\int_{\Omega}\left|u_{\infty}\right|^{p} \mathrm{~d} x \\
& \geq \inf \left\{\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega}|u|^{p} \mathrm{~d} x: u \in \mathcal{W} \text { and } \phi \in \mathcal{R}\right\} . \\
& \geq \Lambda\left(\alpha_{j}, A\right) .
\end{aligned}
$$

foar all $j \in \mathbb{N}$.
Therefore

$$
\begin{aligned}
\Lambda_{\infty} & =\inf \left\{\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega}|u|^{p} \mathrm{~d} x: u \in \mathcal{W}, \phi \in \mathcal{R} \text { and } u \phi=0\right\} \\
& =\int_{\Omega}\left|\nabla u_{\infty}\right|^{p}+\left|u_{\infty}\right|^{p} \mathrm{~d} x,
\end{aligned}
$$

and so the infimum in the above equation is achieved by $\left(u_{\infty}, \phi_{\infty}\right)$.
Now, if we take $D_{\infty}=\left\{\phi_{\infty}>0\right\}$ we get that $\left|D_{\infty}\right|=B \geq A$. Hence

$$
\lambda(\infty, B) \leq \lambda\left(\infty, D_{\infty}\right)=\Lambda_{\infty} \leq \lambda(\infty, A) .
$$

This implies that $\left|D_{\infty}\right|=A$ (otherwise, we have a contradiction with the strict monotonicity of $\lambda(\infty, A)$ in A). So, $\phi_{\infty}=\chi_{D_{\infty}}$.

We observe that $D_{\infty} \subset\left\{x: u_{\infty}(x)=0\right\}$ and again, by the strict monotonicity of $\lambda(\infty, A)$ in $A, D_{\infty}=\left\{x: u_{\infty}(x)=0\right\}$.

3.3 Symmetry properties.

In this section, we consider the case where Ω is the unit ball, i.e., $\Omega=B(0,1)$.
Now, we study symmetry properties of the optimal configuration when Ω is the unit ball.

Theorem 3.3.1. Fix $\alpha>0$ and $0<A<|B(0,1)|$, there exists an optimal pair of (3.5), $\left(u, \chi_{D}\right)$, such that u and D are spherically symmetric. Moreover, when $p=2$, every optimal pair $\left(u, \chi_{D}\right)$ is spherically symmetric.

Proof. Fix $\alpha>0$ and A and assume $\left(u, \chi_{D}\right)$ is and optimal pair. Let u^{*} the spherical
symmetrization of u. Define the set D^{*} by $\chi_{D^{*}}=\left(\chi_{D}\right)_{*}$. By Theorem 1.7.1, we get

$$
\begin{aligned}
\lambda\left(\alpha, D^{*}\right) & \leq \frac{\int_{\Omega}\left|\nabla u^{*}\right|^{p} \mathrm{~d} x+\int_{\Omega}\left|u^{*}\right|^{p} \mathrm{~d} x+\int_{\Omega}\left(\alpha \chi_{D}\right)_{*}\left|u^{*}\right|^{p} \mathrm{~d} x}{\int_{\partial \Omega}\left|u^{*}\right|^{p} \mathrm{~d} \mathcal{H}^{N-1}} \\
& \leq \frac{\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega}|u|^{p} \mathrm{~d} x+\alpha \int_{\Omega} \chi_{D}|u|^{p} \mathrm{~d} x}{\int_{\partial \Omega}|u|^{p} \mathrm{~d} \mathcal{H}^{N-1}} \\
& =\lambda\left(\alpha, D^{*}\right) .
\end{aligned}
$$

Since we have $\left|D^{*}\right|=|D|=A$, optimality of $\left(u, \chi_{D}\right)$ implies that $\left(u^{*}, \chi_{D^{*}}\right)$ is also a minimizer.

Now consider $p=2$. In this case, it is proved in [D] that if equality holds in (1.2) then for each $0<r \leq 1$ there exists a rotation R_{r} such that

$$
\begin{equation*}
\left.u\right|_{\partial B(0, r)}=\left.\left(u^{*} \circ R_{r}\right)\right|_{\partial B(0, r)} . \tag{3.23}
\end{equation*}
$$

We can assume that the axis of symmetry e_{N} was taken so that $R_{1}=I d$. Therefore u and u^{*} coincide on the boundary of $B(0,1)$. Then, the optimal sets D, D^{*} are sublevel sets of u and u^{*} with the same level, t. As u and u^{*} are solutions of a second order elliptic equation with bounded measurable coefficients they are C^{1}. Hence $\{x: u(x)>t\} \cap\left\{x: u^{*}(x)>t\right\}$ is an open neighborhood of $\partial \Omega \cap\{x: u(x)>t\}$. In that neighborhood both functions are solutions of the same equation, $\Delta v=v$ (which has a unique continuation property), and along $\partial \Omega \cap\{x: u(x)>t\}$ both coincide together with their normal derivatives. Thus they coincide in the whole neighborhood.

Now we observe that the set $\{x: u(x)>t\}$ is connected, because every connected component of $\{x: u(x)>t\}$ touches the boundary (since solutions of $\Delta v=v$ cannot have a positive interior maximum) and $\{x: u(x)>t\} \cap \partial \Omega$ is connected.

We conclude that $\{x: u(x)>t\}=\left\{x: u^{*}(x)>t\right\}$ and $u=u^{*}$ in that set. In the complement of this set both u and u^{*} satisfy the same equation with the same Dirichlet data, therefore they coincide.

4

Differential calculus

In optimization problems, one of the aims is to obtain optimality conditions for the minimum. By example, a method for searching a minimum of a function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ consists in solving the equation $\nabla f=0$ in \mathbb{R}^{N} and, then selecting between the solutions one corresponding to the minimum. In the following chapter, we will study the minima of some functionals defined on $W^{1, p}(\Omega)$ and we will give some optimality conditions for them. We will see how the minima depend respect to some perturbation of the domain and, then we will compute the derivatives of the functional respect to this perturbation for obtaining an equation similar to the case in that the functional is defined in \mathbb{R}^{N}. This approach for optimization problems has been used several times in the literature. For example, see [HP, DPFBR, FBRW2, KSS] and references therein.

In this kind of study, will be important calculate the derivative of the norms $\|\cdot\|_{L^{q}(\Omega)}$, $\|\cdot\|_{W^{1, p}(\Omega)}$ and $\|\cdot\|_{L^{p}(\partial \Omega)}$.

The aim of this chapter is given some technical result, that we will use in the rest of this thesis.

Throughout this chapter, Ω will be a bounded domain in \mathbb{R}^{N} with boundary of class C^{2}. ${ }^{T} A$ and A^{-1} denote the transpose and the inverse of the matrix A, respectively. Let Φ be a C^{1} field over $\mathbb{R}^{N}, \Phi^{\prime}$ denotes the differential matrix of Φ and the Jacobian of Φ is denoted by $\operatorname{Jac}(\Phi)$.

The rest of the chapter is divided into three sections. In Section 4.1, we prove that the norms $\|\cdot\|_{L^{q}(\Omega)}$ and $\|\cdot\|_{W^{1, p}(\Omega)}$ are differentiation respect to perturbations in the domain Ω. The Section 4.2 collect some results regarding the differential geometry. Lastly, in Section 4.3, we show that $\|\cdot\|_{L^{p}(\partial \Omega)}$ is differentiable respect to perturbation in Ω.

4.1 Differentiation of the norms $\|\cdot\|_{L^{q}(\Omega)}$ and $\|\cdot\|_{W^{1, p}(\Omega)}$

We begin by describing the kind of variations that we are going to consider. Let W be a regular (smooth) vector field, globally Lipschitz, with support in Ω and let $\varphi_{t}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$
be the flow defined by

$$
\begin{cases}\frac{\mathrm{d}}{\mathrm{~d} t} \varphi_{t}(x)=W\left(\varphi_{t}(x)\right) & t>0, \tag{4.1}\\ \varphi_{0}(x)=x & x \in \mathbb{R}^{N} .\end{cases}
$$

We have

$$
\varphi_{t}(x)=x+t W(x)+o(t) \quad \forall x \in \mathbb{R}^{N} .
$$

In [HP], the following asymptotic formulas were proved

$$
\begin{align*}
{\left[\psi_{t}^{\prime}\right]^{-1}(x) } & =I d-t W^{\prime}(x)+o(t) \tag{4.2}\\
\operatorname{Jac}\left(\psi_{t}\right)(x) & =1+t \operatorname{div} W(x)+o(t) \tag{4.3}
\end{align*}
$$

for all $x \in \mathbb{R}^{N}$.
Our first result of this section shows that $\|\cdot\|_{L^{q}(\Omega)}$ is differentiable with respect to t at $t=0$.

Lemma 4.1.1. Given $f \in L^{q}(\Omega)$ then

$$
f_{t}:=f \circ \varphi_{t}^{-1} \rightarrow f \text { strongly in } L^{q}(\Omega) \text {, as } t \rightarrow 0^{+} .
$$

Moreover

$$
\int_{\Omega}\left|f_{t}\right|^{p} \mathrm{~d} x=\int_{\Omega}|f|^{p} \mathrm{~d} x+t \int_{\Omega}|f|^{q} \operatorname{div} W \mathrm{~d} x+o(t) .
$$

Proof. We proceed in two steps.
Step 1. First we show that

$$
f_{t} \rightarrow f \text { strongly in } L^{q}(\Omega) \text {, as } t \rightarrow 0^{+} .
$$

Let $\varepsilon>0$ and let $g \in C_{c}^{\infty}(\Omega)$ be fixed such that $\|f-g\|_{L^{q}(\Omega)}<\varepsilon$. By the usual change of variables formula, we have that

$$
\left\|f_{t}-g_{t}\right\|_{L^{q}(\Omega)}^{q}=\int_{\Omega}|f-g|^{q} \operatorname{Jac}\left(\varphi_{t}\right) \mathrm{d} x,
$$

where $g_{t}=g \circ \varphi_{t}^{-1}$.
Then

$$
\left\|f_{t}-g_{t}\right\|_{L^{q}(\Omega)}^{q}=\int_{\Omega}|f-g|^{q}(1+t \operatorname{div} W+o(t)) \mathrm{d} x .
$$

Therefore, there exist $t_{1}>0$ such that if $0<t<t_{1}$ then

$$
\left\|f_{t}-g_{t}\right\|_{L^{q}(\Omega)}<C \varepsilon,
$$

where C is a constant independent of t. Moreover, since $\varphi_{t}^{-1} \rightarrow I d$ in the C^{1} topology when $t \rightarrow 0$ then $g_{t}=g \circ \varphi_{t}^{-1} \rightarrow g$ in the C^{1} topology and therefore there exist $t_{2}>0$ such that if $0<t<t_{2}$ then

$$
\left\|g_{t}-g\right\|_{L^{q}(\Omega)}<\varepsilon
$$

Finally, for all $0<t<t_{0}=\min \left\{t_{1}, t_{2}\right\}$ we have that

$$
\begin{aligned}
\left\|f_{t}-f\right\|_{L^{q}(\Omega)} & \leq\left\|f_{t}-g_{t}\right\|_{L^{q}(\Omega)}+\left\|g_{t}-g\right\|_{L^{q}(\Omega)}+\|f-g\|_{L^{q}(\Omega)} \\
& \leq C \varepsilon,
\end{aligned}
$$

where C is a constant independent to t.
Step 2. Now we prove that

$$
\int_{\Omega}\left|f_{t}\right|^{p} \mathrm{~d} x=\int_{\Omega}|f|^{p} \mathrm{~d} x+t \int_{\Omega}|f|^{q} \operatorname{div} W \mathrm{~d} x+o(t) .
$$

Again, by the usual change of variables formula, we have

$$
\begin{aligned}
\int_{\Omega}\left|f_{t}\right|^{q} \mathrm{~d} x & =\int_{\Omega}|f|^{q} \operatorname{Jac}\left(\varphi_{t}\right) \mathrm{d} x \\
& =\int_{\Omega}|f|^{q}(1+t \operatorname{div} W+o(t)) \mathrm{d} x \\
& =\int_{\Omega}|f|^{p} \mathrm{~d} x+t \int_{\Omega}|f|^{q} \operatorname{div} W \mathrm{~d} x+o(t)
\end{aligned}
$$

as we wanted to prove.
Example 4.1.2. Let D be a locally finite perimeter set in Ω. If $D_{t}=\phi_{t}(\Omega)$, by Theorem 1.9.5 and the previous lemma, we have that

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left|D_{t}\right|_{t=0} & =\left.\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega} \chi_{D_{t}} \mathrm{~d} x\right|_{t=0} \\
& =\int_{D} \operatorname{div} V \mathrm{~d} x \\
& =\int_{D}\langle V, v\rangle \mathrm{d} x .
\end{aligned}
$$

where v is the generalized outer normal vector.

Now, we prove that $\|\cdot\|_{W^{1, p}(\Omega)}$ is differentiable with respect to t at $t=0$. Note that, by the previous lemma, it is enough to prove that the L^{p}-norm of the gradient is differentiable.

Theorem 4.1.3. Given $u \in W^{1, p}(\Omega)$

$$
u_{t}:=u \circ \varphi_{t}^{-1} \rightarrow u \text { strongly in } W^{1, p}(\Omega) \text {, as } t \rightarrow 0^{+} .
$$

Moreover

$$
\int_{\Omega}\left|\nabla u_{t}\right|^{p} \mathrm{~d} x=\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+t \int_{\Omega}|\nabla u|^{p} \operatorname{div} W \mathrm{~d} x-p t \int_{\Omega}|\nabla u|^{p-2}\left\langle\nabla u,{ }^{T} W^{\prime} \nabla u^{T}\right\rangle \mathrm{d} x+o(t) .
$$

Proof. We proceed in three steps.
Step 1. First, we observe that, by the above lemma, we have that

$$
u_{t} \rightarrow u \text { strongly in } L^{p}(\Omega) \text { as } t \rightarrow 0^{+} .
$$

Then, it is enough to prove that

$$
\nabla u_{t} \rightarrow \nabla u \text { strongly in }\left(L^{p}(\Omega)\right)^{N} \text { as } t \rightarrow 0^{+} .
$$

Step 2. We show that

$$
\nabla u_{t} \rightarrow \nabla u \text { strongly in }\left(L^{p}(\Omega)\right)^{N} \text { as } t \rightarrow 0^{+},
$$

Let $\varepsilon>0$, by Theorem 1.6.4, there exists $g \in W^{k, p}(\Omega) \cap C^{\infty}(\Omega)$ such that

$$
\|u-g\|_{W^{1, p}(\Omega)}<\varepsilon
$$

Let $g_{t}=g \circ \varphi_{t}^{-1}$, by the usual changes of variable formula, we get

$$
\begin{aligned}
\int_{\Omega}\left|\nabla u_{t}-\nabla g_{t}\right|^{p} \mathrm{~d} x & =\left.\left.\int_{\Omega}\right|^{T}\left[\varphi_{t}^{\prime}\right]^{-1}(\nabla u-\nabla g)^{T}\right|^{p} \operatorname{Jac}\left(\phi_{t}\right) \mathrm{d} x \\
& =\int_{\Omega}\left|\left(I d-t^{T} W^{\prime}+o(t)\right)(\nabla u-\nabla g)^{T}\right|^{p}(1+t \operatorname{div} W+o(t)) \mathrm{d} x \\
& =\int_{\Omega}|\nabla u-\nabla g|^{p} \mathrm{~d} x+t \int_{\Omega}|\nabla u-\nabla g|^{p} \operatorname{div} W \mathrm{~d} x \\
& -t p \int_{\Omega}|\nabla u-\nabla g|^{p-2}\left\langle\nabla u-\nabla g,{ }^{T} W^{\prime}(\nabla u-\nabla g)^{T}\right\rangle \mathrm{d} x+o(t) .
\end{aligned}
$$

Therefore, there exists $t_{1}>0$ such that if $0<t<t_{1}$ then

$$
\left\|\nabla u_{t}-\nabla g_{t}\right\|_{L^{p}(\Omega)} \leq C \varepsilon,
$$

where C is a constant independent of t.
As in the prove of the previous lemma, since $\varphi_{t}^{-1} \rightarrow I d$ in the C^{1} topology when $t \rightarrow 0$ then $g_{t}=g \circ \varphi_{t}^{-1} \rightarrow g$ in the C^{1} topology and therefore there exists $t_{2}>0$ such that if $0<t<t_{2}$ then

$$
\left\|\nabla g_{t}-\nabla g\right\|_{L^{p}(\Omega)}<\varepsilon
$$

Thus, for all $0<t<t_{0}=\min \left\{t_{1}, t_{2}\right\}$, we have

$$
\begin{aligned}
\left\|\nabla u_{t}-\nabla u\right\|_{L^{p}(\Omega)} & \leq\left\|\nabla u_{t}-\nabla g_{t}\right\|_{L^{p}(\Omega)}+\left\|\nabla g_{t}-\nabla g\right\|_{L^{p}(\Omega)}+\|\nabla g-\nabla u\|_{L^{p}(\Omega)} \\
& <C \varepsilon,
\end{aligned}
$$

where C is a constant independent of t.
Step 3. Lastly, we show that

$$
\int_{\Omega}\left|\nabla u_{t}\right|^{p} \mathrm{~d} x=\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+t \int_{\Omega}|\nabla u|^{p} \operatorname{div} W \mathrm{~d} x-t p \int_{\Omega}|\nabla u|^{p-2}\left\langle\nabla u,{ }^{T} W^{\prime} \nabla u^{T}\right\rangle \mathrm{d} x+o(t) .
$$

Again, by the usual changes of variables formula, we have that

$$
\begin{aligned}
\int_{\Omega}\left|\nabla u_{t}\right|^{p} \mathrm{~d} x & =\int_{\Omega}\left|{ }^{T}\left[\varphi_{t}^{\prime}\right]^{-1} \nabla u^{T}\right|^{p} \operatorname{Jac}\left(\phi_{t}\right) \mathrm{d} x \\
& =\int_{\Omega}\left|\left(I d-t^{T} W^{\prime}+o(t)\right) \nabla u^{T}\right|^{p}(1+t \operatorname{div} W+o(t)) \mathrm{d} x \\
& =\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+t \int_{\Omega}|\nabla u|^{p} \operatorname{div} W \mathrm{~d} x-t p \int_{\Omega}|\nabla u|^{p-2}\left\langle\nabla u,{ }^{T} W^{\prime} \nabla u^{T}\right\rangle \mathrm{d} x+o(t) .
\end{aligned}
$$

The prove is now complete. .
Remark 4.1.4. By Lemma 4.1.1 and Theorem 4.1.3, we have that $\left\|u_{t}\right\|_{W^{1, p}(\Omega)}$ is differentiable with respect to t at $t=0$ and

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \|\left.\left. u_{t}\right|_{W^{1, p}(\Omega)} ^{p}\right|_{t=0}=\int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) \operatorname{div} W \mathrm{~d} x-p \int_{\Omega}|\nabla u|^{p-2}\left\langle\nabla u,^{T} W^{\prime} \nabla u^{T}\right\rangle \mathrm{d} x .
$$

4.2 Results on differential geometry

Here, we state some results on differential geometry that will be used in the rest of this thesis. The proof of these results can be found, for instance, in [HP].

Definition 4.2.1 (Definition of the tangential Jacobian). Let Φ be a C^{1} field over \mathbb{R}^{N}. We call the tangential Jacobian of Φ

$$
\operatorname{Jac}_{\tau}(\Phi):=\left.\right|^{T}\left[\Phi^{\prime}\right]^{-1} v \mid \operatorname{Jac}(\Phi) .
$$

The definition of the tangential Jacobian is suited to state the following change of variables formula

Proposition 4.2.2. Let f be a measurable function and let $\Omega_{\Phi}=\Phi(\Omega)$. Then $f \in L^{1}\left(\partial \Omega_{\Phi}\right)$ if only if $f \circ \Phi \in L^{1}(\partial \Omega)$ and

$$
\int_{\partial \Omega_{\Phi}} f \mathrm{~d} \mathcal{H}^{N-1}=\int_{\partial \Omega}(f \circ \Phi) \mathrm{Jac}_{\tau}(\Phi) \mathrm{d} \mathcal{H}^{N-1}
$$

Definition 4.2.3 (Definition of the tangential divergence). Let $V \in C^{1}\left(\partial \Omega, \mathbb{R}^{N}\right)$. The tangential divergence of V over $\partial \Omega$ is defined by

$$
\operatorname{div}_{\tau} V:=\operatorname{div} \widetilde{V}-\left\langle\widetilde{V}^{\prime} v, v\right\rangle
$$

where $\widetilde{V} \in C^{1}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)$ and $\left.\widetilde{V}\right|_{\partial \Omega}=V$.
Observe that, the previous definition does not depend on the choice of \widetilde{V}.

Definition 4.2.4. The mean curvature of $\partial \Omega$ is defined by

$$
H:=\operatorname{div}_{\tau} v .
$$

Definition 4.2.5. Let $g \in C^{1}(\partial \Omega, \mathbb{R})$. The tangential gradient is defined by

$$
\nabla_{\tau} g:=\nabla \widetilde{g}-\frac{\partial \widetilde{g}}{\partial v} v \quad \text { on } \partial \Omega,
$$

where $\widetilde{g} \in C^{1}\left(\mathbb{R}^{N}, \mathbb{R}\right)$ and $\left.\widetilde{g}\right|_{\partial \Omega}=g$.
This definition is also independent of the choice of the extension.
Remark 4.2.6. The Definitions 4.2 .3 and 4.2 .5 can be extended to $\left(W^{1,1}(\partial \Omega)\right)^{N}$ and $W^{1,1}(\partial \Omega)$, respectively.

Proposition 4.2.7. Let $g \in W^{1,1}(\partial \Omega)$ and $V \in C^{1}\left(\partial \Omega, \mathbb{R}^{N}\right)$. Then

$$
\left\langle V, \nabla_{\tau} g\right\rangle+g \operatorname{div}_{\tau} V=\operatorname{div}_{\tau}(g V) .
$$

Now, we give a version of the divergence Theorem.
Theorem 4.2.8 (Divergence Theorem). Let Ω be a bounded smooth open set of $\mathbb{R}^{N}, D \subset$ $\partial \Omega$ be a (relatively) open smooth set. Let V be $a\left[W^{1,1}(\partial \Omega)\right]^{N}$ vector field. Then

$$
\int_{D} \operatorname{div}_{\tau} V \mathrm{~d} \mathcal{H}^{N-1}=\int_{\partial D}\left\langle V, v_{\tau}\right\rangle \mathrm{d} \mathcal{H}^{N-2}+\int_{D} H\langle V, v\rangle \mathrm{d} \mathcal{H}^{N-1}
$$

where v_{τ} is the outer unit normal vector to D along $\partial \Omega$.

4.3 Differentiation of the $L^{q}(\partial \Omega)-$ norm

Now we are in condition to calculate the derivative of the norm $\|\cdot\|_{L^{q}(\partial \Omega)}$ with respect to perturbations in the domain.

Again, we begin by describing the kind of variations that we are considering. Let V be a regular (smooth) vector field, globally Lipschitz, with support in a neighbourhood of $\partial \Omega$ and let $\psi_{t}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be defined as the unique solution to

$$
\begin{cases}\frac{\mathrm{d}}{\mathrm{~d} t} \psi_{t}(x)=V\left(\psi_{t}(x)\right) & t>0, \tag{4.4}\\ \psi_{0}(x)=x & x \in \mathbb{R}^{N} .\end{cases}
$$

We have

$$
\psi_{t}(x)=x+t V(x)+o(t) \quad \forall x \in \mathbb{R}^{N}
$$

Lemma 4.3.1. Given $f \in L^{q}(\partial \Omega)$ then

$$
f_{t}=f \circ \psi_{t}^{-1} \rightarrow f \text { strongly in } L^{q}(\partial \Omega), \text { as } t \rightarrow 0 .
$$

Moreover

$$
\int_{\partial \Omega}\left|f_{t}\right|^{q} \mathrm{~d} \mathcal{H}^{N-1}=\int_{\partial \Omega}|f|^{q} \mathrm{~d} \mathcal{H}^{N-1}+t \int_{\partial \Omega}|f|^{q} \operatorname{div}_{\tau} V \mathrm{~d} \mathcal{H}^{N-1}+o(t) .
$$

Proof. We proceed in two steps.
Steps 1 First, we show that

$$
f_{t} \rightarrow f \text { strongly in } L^{q}(\partial \Omega), \text { as } t \rightarrow 0 .
$$

Let $\varepsilon>0$, and let $g \in C_{c}^{\infty}(\partial \Omega)$ fixed such that $\|f-g\|_{L^{q}(\partial \Omega)}<\varepsilon$. By the Theorem 4.2.2, we have,

$$
\left\|f_{t}-g_{t}\right\|_{L^{q}(\partial \Omega)}^{q}=\int_{\partial \Omega}|f-g|^{q} \operatorname{Jac}_{\tau}\left(\psi_{t}\right) \mathrm{d} \mathcal{H}^{N-1},
$$

where $g_{t}=g \circ \psi_{t}^{-1}$. We also know that

$$
\begin{equation*}
\operatorname{Jac}_{\tau}(\psi):=1+t \operatorname{div}_{\tau} V+o(t) . \tag{4.5}
\end{equation*}
$$

Then

$$
\left\|f_{t}-g_{t}\right\|_{L^{q}(\partial \Omega)}^{q}=\int_{\partial \Omega}|f-g|^{q}\left(1+t \operatorname{div}_{\tau} V+o(t)\right) \mathrm{d} \mathcal{H}^{N-1} .
$$

Therefore, there exists $t_{1}>0$ such that if $0<t<t_{1}$ then

$$
\left\|f_{t}-g_{t}\right\|_{L^{q}(\partial \Omega)} \leq C \varepsilon
$$

where C is a constant independent of t. Moreover, since $\psi_{t}^{-1} \rightarrow I d$ in the C^{1} topology when $t \rightarrow 0$ then $g_{t}=g \circ \psi_{t}^{-1} \rightarrow g$ in the C^{1} topology and therefore there exists $t_{2}>0$ such that if $0<t<t_{2}$ then

$$
\left\|g_{t}-g\right\|_{L^{q}(\partial \Omega)}<\varepsilon .
$$

Finally, we have for all $0<t<t_{0}=\min \left\{t_{1}, t_{2}\right\}$ then

$$
\begin{aligned}
\left\|f_{t}-f\right\|_{L^{q}(\partial \Omega)} & \leq\left\|f_{t}-g_{t}\right\|_{L^{q}(\partial \Omega)}+\left\|g_{t}-g\right\|_{L^{q}(\partial \Omega)}+\|g-f\|_{L^{q}(\partial \Omega)} \\
& \leq C \varepsilon,
\end{aligned}
$$

where C is a constant independent of t.
Step 2 Now, we prove that

$$
\int_{\partial \Omega}\left|f_{t}\right|^{q} \mathrm{~d} \mathcal{H}^{N-1}=\int_{\partial \Omega}|f|^{q} \mathrm{~d} \mathcal{H}^{N-1}+t \int_{\partial \Omega}|f|^{q} \operatorname{div}_{\tau} V \mathrm{~d} \mathcal{H}^{N-1}+o(t) .
$$

Again, by the Theorem 4.2.2 and (4.5), we have

$$
\begin{aligned}
\int_{\partial \Omega}\left|f_{t}\right|^{q} \mathrm{~d} \mathcal{H}^{N-1} & =\int_{\partial \Omega}|f|^{q}\left(1+t \operatorname{div}_{\tau} V+o(t)\right) \mathrm{d} \mathcal{H}^{N-1} \\
& \int_{\partial \Omega}|f|^{q} \mathrm{~d} \mathcal{H}^{N-1}+t \int_{\partial \Omega}|f|^{q} \operatorname{div}_{\tau} V \mathrm{~d} \mathcal{H}^{N-1}+o(t)
\end{aligned}
$$

as we wanted to prove.

5

The first weighted eigenvalue problem plus a potential

In this chapter we consider the following eigenvalue problem with weights

$$
\begin{cases}-\Delta_{p} u+V(x)|u|^{p-2} u=\lambda g(x)|u|^{p-2} u & \text { in } \Omega, \tag{5.1}\\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

where Ω is a smooth bounded open subset of \mathbb{R}^{N}. Here V is a potential function and g is a weight.

Our aim is to study the following optimization problems:

$$
\begin{equation*}
I:=\inf \left\{\lambda(g, V): g \in \mathcal{R}\left(g_{0}\right), V \in \mathcal{R}\left(V_{0}\right)\right\}, \tag{5.2}
\end{equation*}
$$

where V_{0} and g_{0} are fixed potential and weight functions respectively that satisfy the following assumptions

$$
\begin{align*}
& V_{0}, g_{0} \in L^{q}(\Omega) \text { where } \begin{cases}q>\frac{N}{p} & \text { if } 1<p \leq N, \\
q=1 & \text { if } p>N .\end{cases} \tag{H1}\\
& \left\|V_{0}^{-}\right\|_{L^{q}(\Omega)}<S_{p q^{\prime}} \quad \text { or } \quad V_{0} \geq-S_{p}+\delta \quad \text { for some } \delta>0 . \tag{H2}
\end{align*}
$$

(observe that, this assumptions are the same that we use in Section 1.8), and $\mathcal{R}\left(V_{0}\right), \mathcal{R}\left(g_{0}\right)$ are the classes of rearrangements of V_{0} and g_{0} respectively.

A related minimization problem when the minimization parameter was allowed to vary in the class of rearrangements of a fixed function, was first considered by [CEP1].

More recently, in [CEP2], the authors analyze problem (5.2) but when the potential function is zero. In that work the authors prove the existence of a minimizing weight g_{*} in the class of rearrangements of a fixed function g_{0} and, in the spirit of [Bu1] they found a sort of Euler-Lagrange formula for g_{*}. However, this formula does not appear to be suitable for use in actual computations of these minimizers.
In this chapter, we first extend the results in [CEP2] to (5.1) and prove the existence of a minimizing weight and potential for (5.2). Also the same type of Euler-Lagrange formula
is proved for both the weight and potential. But, we go further and study the dependence of the eigenvalue $\lambda(g, V)$ with respect to g and V and prove the continuous dependence in L^{q}-norm and, moreover, the differentiability with respect to regular perturbations of the weight and the potential.
In the case when the perturbations are made inside the class of rearrangements, we exhibit a simple formula for the derivative of the eigenvalue with respect to g and V.
We believe that this formula can be used in actual computations of the optimal eigenvalue, weight and potential, since this type of formulas have been used in similar problems in the past with significant success, see [FBGR, H, O, P] and references therein.

The chapter is organized as follows. In Section 5.1, we prove the existence of a unique minimizer and give a characterization of it, similar to the one found in [CEP2] for the problem without potential. In Section 5.2, we study the dependence of the eigenvalue with respect to the weight and the potential and prove, first the continuous dependence in the L^{q}-topology (Proposition 5.2.1), and finally we show a simple formula for the derivative of the eigenvalue with respect to regular variations of the weight and the potential within the class of rearrangements (Theorem 5.2.11).

5.1 Minimization and characterization

Let Ω be a bounded smooth domain in \mathbb{R}^{N} with $N \geq 2$ and $1<p<\infty$.
Definition 5.1.1. Given g and V measurable functions, we say that g and V satisfy the asumption (H) if

$$
\left\{\begin{array}{l}
g \text { satisfies the assumption }(\mathrm{H} 1) \tag{H}\\
V \text { satisfies the assumption }(\mathrm{H} 1) \text { and }(\mathrm{H} 2)
\end{array}\right.
$$

Given g_{0} and V_{0} measurable functions that satisfy the asumption (H) our aim in this section is to analyze the following problem

$$
I=\inf \left\{\lambda(g, V): g \in \mathcal{R}\left(g_{0}\right), V \in \mathcal{R}\left(V_{0}\right)\right\},
$$

where $\mathcal{R}\left(g_{0}\right)$ (resp. $\mathcal{R}\left(V_{0}\right)$) is the set of all rearrangements of g_{0} (resp. $\left.V_{0}\right)$ and $\lambda(g, V)$ is the first positive principal eigenvalue of problem (5.1) and it is characterized by

$$
\begin{equation*}
\lambda(V, g):=\inf \left\{J_{V}(u): u \in W_{0}^{1, p}(\Omega) \text { and } \int_{\Omega} g u \mathrm{~d} x=1\right\} \tag{5.3}
\end{equation*}
$$

where

$$
J_{V}(u):=\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} V(x)|u|^{p} \mathrm{~d} x
$$

see Theorem 1.8.6.
Remark 5.1.2. Observe that if $g \in \mathcal{R}\left(g_{0}\right)$ and $V \in \mathcal{R}\left(V_{0}\right)$ then g and V satisfy (H).

We first need a lemma to show that, under hypotheses (H1) and (H2), the functionals $J_{V}(\cdot)$ are uniformly coercive for $V \in \mathcal{R}\left(V_{0}\right)$.

Lemma 5.1.3. Let V_{0} satisfies $(\mathrm{H} 1)$ and $(\mathrm{H} 2)$. Then, there exists $\delta_{0}>0$ such that

$$
J_{V}(u) \geq \delta_{0} \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x, \quad \forall V \in \mathcal{R}\left(V_{0}\right) .
$$

Proof. We prove the lemma assuming that $\left\|V_{0}^{-}\right\|_{L^{q}(\Omega)}<S_{p q^{\prime}}$. Also, we assume that $1<p \leq N$. The other cases are easier and are left to the reader.
First, observe that

$$
J_{V}(u) \geq \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} V^{-}(x)|u|^{p} \mathrm{~d} x .
$$

On the other hand, $q>N / p$ implies that $p q^{\prime}<p^{*}$. So

$$
\int_{\Omega}\left|V^{-}(x)\left\|\left.u\right|^{p} \mathrm{~d} x \leq\right\| V^{-}\left\|_{L^{q}(\Omega)}\right\| u\left\|_{L^{p q^{\prime}}(\Omega)}^{p}=\right\| V_{0}^{-}\left\|_{L^{q}(\Omega)}\right\| u \|_{L^{p q^{\prime}}(\Omega)}^{p}\right.
$$

Then, by (H2), there exists δ_{0} such that

$$
\left\|V_{0}^{-}\right\|_{L^{q}(\Omega)} \leq\left(1-\delta_{0}\right) S_{p q^{\prime}} .
$$

Therefore

$$
J_{V}(u) \geq \delta_{0} \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x,
$$

as we wanted to prove.
Remark 5.1.4. We remark that is actually needed the uniform coercitivity of the functionals J_{V} for $V \in \mathcal{R}\left(V_{0}\right)$. Hypotheses (H1) and (H2) are a simple set of hypotheses that guaranty that.

We now prove that the infimum is achieved.
Theorem 5.1.5. Let g_{0} and V_{0} be measurable functions that satisfy the assumption (H), and let $\mathcal{R}\left(g_{0}\right)$ and $\mathcal{R}\left(V_{0}\right)$ be the sets of all rearrangements of g_{0} and V_{0} respectively. Then there exists $g^{*} \in \mathcal{R}\left(g_{0}\right)$ and $V_{*} \in \mathcal{R}\left(V_{0}\right)$ such that

$$
I=\lambda\left(g^{*}, V_{*}\right) .
$$

Proof. Let $\left\{\left(g_{n}, V_{n}\right)\right\}_{n \in \mathbb{N}}$ be a minimizing sequence, i.e.,

$$
g_{n} \in \mathcal{R}\left(g_{0}\right) \text { and } V_{n} \in \mathcal{R}\left(V_{0}\right) \quad \forall n \in \mathbb{N}
$$

and

$$
I=\lim _{n \rightarrow \infty} \lambda\left(g_{n}, V_{n}\right) .
$$

Let u_{n} be the positive eigenfunction corresponding to $\lambda\left(g_{n}, V_{n}\right)$ then

$$
\begin{equation*}
\int_{\Omega} g_{n}(x) u_{n}^{p}=1 \quad \forall n \in \mathbb{N}, \tag{5.4}
\end{equation*}
$$

and

$$
\lambda\left(g_{n}, V_{n}\right)=\int_{\Omega}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{n}(x) u_{n}^{p} \mathrm{~d} x \quad \forall n \in \mathbb{N} .
$$

Hence

$$
\begin{equation*}
I=\lim _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{n}(x) u_{n}^{p} \mathrm{~d} x . \tag{5.5}
\end{equation*}
$$

Thus, by Lemma 5.1.3, $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ is bounded in $W_{0}^{1, p}(\Omega)$ and therefore there exists $u \in W_{0}^{1, p}(\Omega)$ and some subsequence of $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ (still denoted by $\left.\left\{u_{n}\right\}_{n \in \mathbb{N}}\right)$ such that

$$
\begin{array}{lll}
u_{n} & \rightharpoonup u & \text { weakly in } W^{1, p}(\Omega), \\
u_{n} & \rightarrow u & \text { strongly in } L^{p q^{\prime}}(\Omega) . \tag{5.7}
\end{array}
$$

Recall that our assumptions on q imply that $p q^{\prime}<p^{*}$.
On the other hand, $g_{n} \in \mathcal{R}\left(g_{0}\right)$ and $V_{n} \in \mathcal{R}\left(V_{0}\right)$ for all $n \in \mathbb{N}$ then

$$
\left\|g_{n}\right\|_{L^{q}(\Omega)}=\left\|g_{0}\right\|_{L^{q}(\Omega)} \text { and }\left\|V_{n}\right\|_{L^{q}(\Omega)}=\left\|V_{0}\right\|_{L^{q}(\Omega)} \quad \forall n \in \mathbb{N} .
$$

Therefore, there exists $f, W \in L^{q}(\Omega)$ and subsequence of $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{V_{n}\right\}_{n \in \mathbb{N}}$ (still call by $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ and $\left.\left\{V_{n}\right\}_{n \in \mathbb{N}}\right)$ such that

$$
\begin{align*}
& g_{n} \rightarrow f \quad \text { weakly in } L^{q}(\Omega) \tag{5.8}\\
& V_{n} \rightharpoonup W \quad \text { weakly in } L^{q}(\Omega) \tag{5.9}
\end{align*}
$$

Thus, by (5.5), (5.6), (5.7) and (5.9), we have that

$$
I \geq \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} W(x)|u|^{p} \mathrm{~d} x,
$$

and by (5.4), (5.7) and (5.8) we get

$$
\int_{\Omega} f(x)|u|^{p} \mathrm{~d} x=1
$$

Now, since $f \in \overline{\mathcal{R}\left(g_{0}\right)}$ and $W \in \overline{\mathcal{R}\left(V_{0}\right)}$, by Theorem 1.5.3, there exists $g^{*} \in \mathcal{R}\left(g_{0}\right)$ and $V_{*} \in \mathcal{R}\left(V_{0}\right)$ such that

$$
\alpha=\int_{\Omega} g^{*}(x)|u|^{p} \mathrm{~d} x \geq \int_{\Omega} f(x) u^{p} \mathrm{~d} x=1
$$

and

$$
\int_{\Omega} V_{*}(x) u^{p} \mathrm{~d} x \leq \int_{\Omega} W(x)|u|^{p} \mathrm{~d} x .
$$

Let $v=\alpha^{-1 / p}|u|$, then

$$
\int_{\Omega} g^{*}(x) v^{p} \mathrm{~d} x=1,
$$

and

$$
\begin{aligned}
\int_{\Omega}|\nabla v|^{p} \mathrm{~d} x+\int_{\Omega} V_{*}(x) v^{p} \mathrm{~d} x & =\frac{1}{\alpha} \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} V_{*}(x)|u|^{p} \mathrm{~d} x \\
& \leq \frac{1}{\alpha} \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} W(x)|u|^{p} \mathrm{~d} x .
\end{aligned}
$$

Consequently

$$
\lambda\left(g^{*}, V_{*}\right) \leq I,
$$

then

$$
I=\lambda\left(g^{*}, V_{*}\right) .
$$

The proof is now complete.
Now we give a characterization of g^{*} and V_{*}.
Theorem 5.1.6. Let g_{0} and V_{0} be measurable functions that satisfy the assumption (H). Let $g^{*} \in \mathcal{R}\left(g_{0}\right)$ and $V_{*} \in \mathcal{R}\left(V_{0}\right)$ be such that $\lambda\left(g^{*}, V_{*}\right)=I$ are the ones given by Theorem 5.1.5. Then there exist an increasing function ϕ and a decreasing function ψ such that

$$
\begin{array}{ll}
g^{*} & =\phi\left(u_{*}\right) \quad \text { a.e. in } \Omega, \\
V_{*}=\psi\left(u_{*}\right) & \text { a.e. in } \Omega,
\end{array}
$$

where u_{*} is the positive eigenfunction associated to $\lambda\left(g^{*}, V_{*}\right)$.
Proof. We proceed in four steps.
Step 1. First we show that V_{*} is a minimizer of the linear functional

$$
L(V):=\int_{\Omega} V(x) u_{*}^{p} \mathrm{~d} x
$$

relative to $V \in \overline{\mathcal{R}\left(V_{0}\right)}$.
We have that

$$
\int_{\Omega} g^{*}(x) u_{*}^{p} \mathrm{~d} x=1
$$

and

$$
I=\lambda\left(g^{*}, V_{*}\right)=\int_{\Omega}\left|\nabla u_{*}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{*}(x) u_{*}^{p} \mathrm{~d} x,
$$

then, for all $V \in \mathcal{R}\left(V_{0}\right)$,

$$
\int_{\Omega}\left|\nabla u_{*}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{*}(x) u_{*}^{p} \mathrm{~d} x \leq \lambda\left(g^{*}, V\right) \leq \int_{\Omega}\left|\nabla u_{*}\right|^{p} \mathrm{~d} x+\int_{\Omega} V(x) u_{*}^{p} \mathrm{~d} x
$$

and therefore

$$
\int_{\Omega} V_{*}(x) u_{*}^{p} \mathrm{~d} x \leq \int_{\Omega} V(x) u_{*}^{p} \mathrm{~d} x \quad \forall V \in \mathcal{R}\left(V_{0}\right) .
$$

Thus, we can conclude that

$$
\int_{\Omega} V_{*}(x) u_{*}^{p} \mathrm{~d} x=\inf \left\{L(V): V \in \overline{\mathcal{R}\left(V_{0}\right)}\right\} .
$$

Step 2. We show that V_{*} is the unique minimizer of $L(V)$ relative to $\mathcal{R}\left(V_{0}\right)$.
Suppose that W is another minimizer of $L(V)$ relative to $\mathcal{R}\left(V_{0}\right)$, then

$$
\int_{\Omega} V_{*}(x) u_{*}^{p} \mathrm{~d} x=\int_{\Omega} W(x) u_{*}^{p} \mathrm{~d} x .
$$

Thus

$$
\begin{aligned}
I & =\lambda\left(g^{*}, V_{*}\right) \\
& =\int_{\Omega}\left|\nabla u_{*}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{*}(x) u_{*}^{p} \mathrm{~d} x \\
& =\int_{\Omega}\left|\nabla u_{*}\right|^{p} \mathrm{~d} x+\int_{\Omega} W(x) u_{*}^{p} \mathrm{~d} x \\
& \geq \lambda\left(g^{*}, W\right) \\
& \geq I .
\end{aligned}
$$

Hence u_{*} is the positive eigenfunction associated to $\lambda\left(g^{*}, V_{*}\right)=\lambda\left(g^{*}, W\right)$. Then

$$
\begin{align*}
-\Delta_{p} u_{*}+V_{*}(x) u_{*}^{p-1} & =\lambda\left(g^{*}, V_{*}\right) g^{*}(x) u_{*}^{p-1} \quad \text { in } \Omega, \tag{5.10}\\
-\Delta_{p} u_{*}+W(x) u_{*}^{p-1} & =\lambda\left(g^{*}, V_{*}\right) g^{*}(x) u_{*}^{p-1} \tag{5.11}
\end{align*} \quad \text { in } \Omega .
$$

Subtracting (5.11) from (5.10), we get

$$
\left(V_{*}(x)-W(x)\right) u_{*}^{p-1}=0 \quad \text { a.e. in } \Omega,
$$

then $V_{*}=W$ a.e. in Ω.
Thus, by Theorem 1.5.4, there exists decreasing function ψ such that

$$
V_{*}=\psi\left(u_{*}\right) \quad \text { a.e. in } \Omega .
$$

Step 3. Now, we show that g^{*} is a maximizer of the linear functional

$$
H(g):=\int_{\Omega} g(x) u_{*}^{p} \mathrm{~d} x
$$

relative to $g \in \overline{\mathcal{R}\left(g_{0}\right)}$.
We argue by contradiction, so assume that there exists $g \in \mathcal{R}\left(g_{0}\right)$ such that

$$
\alpha=\int_{\Omega} g(x) u_{*}^{p} \mathrm{~d} x>\int_{\Omega} g^{*}(x) u_{*}^{p} \mathrm{~d} x=1
$$

and take $v=\alpha^{-1 / p} u_{*}$. Then

$$
\int_{\Omega} g(x) v^{p} \mathrm{~d} x=1
$$

and

$$
\int_{\Omega}|\nabla v|^{p} \mathrm{~d} x+\int_{\Omega} V_{*}(x) v^{p} \mathrm{~d} x=\frac{1}{\alpha} \int_{\Omega}\left|\nabla u_{*}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{*}(x) u_{*}^{p} \mathrm{~d} x=\frac{1}{\alpha} \lambda\left(g^{*}, V_{*}\right)<\lambda\left(g^{*}, V_{*}\right) .
$$

Therefore

$$
\lambda\left(g, V_{*}\right)<\lambda\left(g^{*}, V_{*}\right),
$$

which contradicts the minimality of $\lambda\left(g^{*}, V_{*}\right)$.
Step 4. Lastly, we show that g^{*} is the unique maximizer of $H(g)$ relative to $\mathcal{R}\left(g_{0}\right)$.
Assume that there exists another maximizer f of $H(g)$ relative to $\mathcal{R}\left(g_{0}\right)$. Then

$$
\int_{\Omega} f(x) u_{*}^{p} \mathrm{~d} x=\int_{\Omega} g^{*}(x) u_{*}^{p} \mathrm{~d} x=1
$$

and therefore

$$
I=\lambda\left(g^{*}, V_{*}\right) \leq \lambda\left(f, V_{*}\right) \leq \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} V_{*}(x) u_{*}^{p} \mathrm{~d} x=I,
$$

then $\lambda\left(g^{*}, V_{*}\right)=\lambda\left(f, V_{*}\right)$ and hence u_{*} is the eigenfunction associated to $\lambda\left(g^{*}, V_{*}\right)=$ $\lambda\left(f, V_{*}\right)$. Thus

$$
\begin{array}{rll}
-\Delta_{p} u_{*}+V_{*}(x) u_{*}^{p-1} & =\lambda\left(g^{*}, V_{*}\right) g^{*}(x) u_{*}^{p-1} & \text { in } \Omega, \\
-\Delta_{p} u_{*}+V_{*}(x) u_{*}^{p-1} & =\lambda\left(g^{*}, V_{*}\right) f(x) u_{*}^{p-1} & \text { in } \Omega . \tag{5.13}
\end{array}
$$

Subtracting (5.13) from (5.12), we get

$$
\lambda\left(g^{*}, V_{*}\right)\left(g^{*}(x)-f(x)\right) u_{*}^{p}=0 \quad \text { a.e. in } \Omega,
$$

thus $g^{*}=f$ a.e. in Ω.
Then, by Theorem 1.5.4, there exist increasing function ϕ such that

$$
g^{*}=\phi\left(u_{*}\right) \quad \text { a.e. in } \Omega .
$$

This finishes the proof.

5.2 Differentiation of the eigenvalue

The first aim of this section is prove the continuity of the first positive eigenvalue $\lambda(g, V)$ with respect to g and V. Then we proceed further and compute the derivative of $\lambda(g, V)$ with respect to perturbations in g and V.

Proposition 5.2.1. The first positive eigenvalue $\lambda(g, V)$ of (5.1) is continuous with respect to $(g, V) \in \mathcal{A}$ where

$$
\mathcal{A}:=\left\{(g, V) \in L^{q}(\Omega) \times L^{q}(\Omega): g \text { and } V \text { satisfy }(\mathrm{H})\right\}
$$

i.e.,

$$
\lambda\left(g_{n}, V_{n}\right) \rightarrow \lambda(g, V),
$$

when $\left(g_{n}, V_{n}\right) \rightarrow(g, V)$ strongly in $L^{q}(\Omega) \times L^{q}(\Omega)$ and $\left(g_{n}, V_{n}\right),(g, V) \in \mathcal{A}$.
Proof. We know that

$$
\lambda\left(g_{n}, V_{n}\right)=\int_{\Omega}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{n}(x) u_{n}^{p} \mathrm{~d} x
$$

and

$$
\lambda(g, V)=\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} V(x) u^{p} \mathrm{~d} x,
$$

with

$$
\int_{\Omega} g_{n}(x) u_{n}^{p} \mathrm{~d} x=\int_{\Omega} g(x) u^{p} \mathrm{~d} x=1
$$

where u_{n} and u are the positive eigenfunction associated to $\lambda\left(g_{n}, V_{n}\right)$ and $\lambda(g, V)$ respectively.
We begin by observing that

$$
H\left(g_{n}\right):=\int_{\Omega} g_{n}(x) u^{p} \mathrm{~d} x=\int_{\Omega}\left(g_{n}(x)-g(x)\right) u^{p} \mathrm{~d} x+1 \rightarrow 1,
$$

as $n \rightarrow \infty$. Then there exists $n_{0} \in \mathbb{N}$ such that

$$
H\left(g_{n}\right)>0 \quad \forall n \geq n_{0} .
$$

Thus we take $v_{n}:=H\left(g_{n}\right)^{-1 / p} u$, and by (5.3) we have

$$
\lambda\left(g_{n}, V_{n}\right) \leq \int_{\Omega}\left|\nabla v_{n}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{n}(x) v_{n}^{p} \mathrm{~d} x=\frac{1}{H\left(g_{n}\right)} \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} V_{n}(x) u^{p} \mathrm{~d} x .
$$

Therefore, taking limits when $g_{n} \rightarrow g$ and $V_{n} \rightarrow V$ in $L^{q}(\Omega)$, we get that

$$
\limsup _{n \rightarrow \infty} \lambda\left(g_{n}, V_{n}\right) \leq \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} V(x) u^{p} \mathrm{~d} x=\lambda(g, V) .
$$

On the other hand, as $V_{n} \rightarrow V$ strongly in $L^{q}(\Omega)$ it is easy to see that there exist $n_{1} \in \mathbb{N}$ and $\delta_{1}>0$ such that

$$
\left\|V_{n}^{-}\right\|_{L^{q}(\Omega)},\left\|V^{-}\right\|_{L^{q}(\Omega)}<S_{p q^{\prime}}\left(1-\delta_{1}\right) \quad \forall n \geq n_{1}
$$

or there exist a subsequence of $\left\{V_{n}\right\}_{n \in \mathbb{N}}$, wich we denote again by $\left\{V_{n}\right\}_{n \in \mathbb{N}}$, and $\delta_{2}>0$ such that

$$
V_{n}, V>-S_{p}+\delta_{2} \quad \forall n \in \mathbb{N} .
$$

Therefore, as $\left\{\lambda\left(g_{n}, V_{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded, arguing as in Lemma 5.1.3, we have that $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ is bounded in $W_{0}^{1, p}(\Omega)$. Therefore there exists $v \in W_{0}^{1, p}(\Omega)$ and a subsequence of $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ (that we still denote by $\left\{u_{n}\right\}_{n \in \mathbb{N}}$) such that

$$
\begin{array}{lll}
u_{n} & \rightharpoonup & \text { weakly in } W_{0}^{1, p}(\Omega) \\
u_{n} \rightarrow & v & \text { strongly in } L^{p q^{\prime}}(\Omega) \tag{5.15}
\end{array}
$$

By (5.15) and as $g_{n} \rightarrow g$ in $L^{q}(\Omega)$, we have that

$$
1=\lim _{n \rightarrow \infty} \int_{\Omega} g_{n}(x)\left|u_{n}\right|^{p} \mathrm{~d} x=\int_{\Omega} g(x)|v|^{p} \mathrm{~d} x .
$$

Finally, by (5.14), (5.15) and, as $V_{n} \rightarrow V$ in $L^{q}(\Omega)$, we arrive at

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \lambda\left(g_{n}, V_{n}\right) & =\liminf _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{n}(x) u_{n}^{p} \mathrm{~d} x \\
& \geq \int_{\Omega}|\nabla v|^{p} \mathrm{~d} x+\int_{\Omega} V(x)|v|^{p} \mathrm{~d} x \\
& \geq \lambda(g, V)
\end{aligned}
$$

and the result follows.
Remark 5.2.2. Observe that if instead of (H2) we required only that $V>-S_{p}+\delta$, the same proof of Proposition 5.2.1 gives the continuity of $\lambda(g, V)$ with respect to weak convergence.

Now we arrive at the main result of this section, namely we compute the derivative of the first positive eigenvalue $\lambda(g, V)$ with respect to perturbations in g and V.

We begin by describing the kind of variations that we are going to consider. Let W be a regular (smooth) vector field, globally Lipschitz, with support in Ω and let $\varphi_{t}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be the flow defined by

$$
\begin{cases}\frac{\mathrm{d}}{\mathrm{~d} t} \varphi_{t}(x)=W\left(\varphi_{t}(x)\right) & t>0, \tag{5.16}\\ \varphi_{0}(x)=x & x \in \mathbb{R}^{N} .\end{cases}
$$

We have

$$
\varphi_{t}(x)=x+t W(x)+o(t) \quad \forall x \in \mathbb{R}^{N} .
$$

Thus, if g and V are measurable functions that satisfy the assumption (H), we define $g_{t}:=g \circ \varphi_{t}^{-1}$ and $V_{t}:=V \circ \varphi_{t}^{-1}$. Now, let

$$
\lambda(t):=\lambda\left(g_{t}, V_{t}\right)=\int_{\Omega}\left|\nabla u_{t}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{t}(x)\left|u_{t}\right|^{p} \mathrm{~d} x,
$$

with

$$
\int_{\Omega} g_{t}(x) u_{t}^{p} \mathrm{~d} x=1,
$$

where u_{t} is the eigenfunction associated to $\lambda(t)$.

Remark 5.2.3. In order for this approach to be useful for the optimization problem of the previous section, we need to guaranty that $g_{t} \in \mathcal{R}\left(g_{0}\right)$ and $V_{t} \in \mathcal{R}\left(V_{0}\right)$ whenever $g \in \mathcal{R}\left(g_{0}\right)$ and $V \in \mathcal{R}\left(V_{0}\right)$.

It is not difficult to check that this is true for incompressible deformation fields, i.e., for those W 's such that

$$
\operatorname{div} W=0 .
$$

By Proposition 5.2.1 and Lemma 4.1.1, we have that
Theorem 5.2.4. Let g and V be measurable functions that satisfy the assumption (H). Then, with the previous notation, $\lambda(t)$ is continuous at $t=0$, i.e.,

$$
\lambda(t) \rightarrow \lambda(0)=\lambda(g, V) \quad \text { as } t \rightarrow 0^{+} .
$$

Lemma 5.2.5. Let g and V be measurable functions that satisfy the assumption (H). Let u_{t} be the normalized positive eigenfunction associated to $\lambda(t)$ with $t>0$. Then

$$
\lim _{t \rightarrow 0^{+}} u_{t}=u_{0} \quad \text { strongly in } W_{0}^{1, p}(\Omega)
$$

where u_{0} is the unique normalized positive eigenfunction associated to $\lambda(g, V)$.
Proof. From the previous theorem, we deduce that $\lambda(t)$ is bounded and, as in the proof of Proposition 5.2.1, we further deduce that $\left\{u_{t}\right\}$ is bounded in $W_{0}^{1, p}(\Omega)$.

So, given $\left\{t_{n}\right\}_{n \in \mathbb{N}}$, we have that $\left\{u_{t_{n}}\right\}_{n \in \mathbb{N}}$ is bounded in $W_{0}^{1, p}(\Omega)$ and therefore there exists $u_{0} \in W_{0}^{1, p}(\Omega)$ and some subsequence (still denoted by $\left\{u_{t_{n}}\right\}_{n \in \mathbb{N}}$) such that

$$
\begin{array}{lll}
u_{t_{n}} & \rightharpoonup u_{0} & \text { weakly in } W_{0}^{1, p}(\Omega) \\
u_{t_{n}} & \rightarrow u_{0} & \text { strongly in } L^{p q^{\prime}}(\Omega) \tag{5.18}
\end{array}
$$

Since $\left(g_{t_{n}}, V_{t_{n}}\right) \rightarrow(g, V)$ strongly in $L^{q}(\Omega) \times L^{q}(\Omega)$ as $n \rightarrow \infty$ and by (5.18) we get

$$
1=\lim _{n \rightarrow \infty} \int_{\Omega} g_{t_{n}}(x)\left|u_{t_{n}}\right|^{p} \mathrm{~d} x=\int_{\Omega} g(x)\left|u_{0}\right|^{p} \mathrm{~d} x
$$

and

$$
\lim _{n \rightarrow \infty} \int_{\Omega} V_{t_{n}}(x)\left|u_{t_{n}}\right|^{p} \mathrm{~d} x=\int_{\Omega} V(x)\left|u_{0}\right|^{p} \mathrm{~d} x .
$$

Thus, using (5.17),

$$
\begin{aligned}
\lambda(0) & =\lim _{n \rightarrow \infty} \lambda\left(t_{n}\right) \\
& =\lim _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{t_{n}}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{t_{n}}(x)\left|u_{t_{n}}\right|^{p} \mathrm{~d} x \\
& \geq \int_{\Omega}\left|\nabla u_{0}\right|^{p} \mathrm{~d} x+\int_{\Omega} V(x)\left|u_{0}\right|^{p} \mathrm{~d} x \\
& \geq \lambda(0),
\end{aligned}
$$

then u_{0} is the a normalized eigenfunction associated to $\lambda(0)$ and, as $\left\{u_{t_{n}}\right\}_{n \in \mathbb{N}}$ are positive, it follows that u_{0} is positive.

Moreover

$$
\left\|\nabla u_{t_{n}}\right\|_{L^{p}(\Omega)} \rightarrow\left\|\nabla u_{0}\right\|_{L^{p}(\Omega)} \quad \text { as } n \rightarrow \infty .
$$

Then, using again (5.17), we have

$$
u_{t_{n}} \rightarrow u_{0} \quad \text { in } W_{0}^{1, p}(\Omega) \text { as } n \rightarrow \infty .
$$

as we wanted to show.
Remark 5.2.6. It is easy to see that, as $\varphi_{t} \rightarrow I d$ in the C^{1} topology, then from Lemma 5.2.5 it follows that

$$
u_{t} \circ \varphi_{t} \rightarrow u_{0} \quad \text { strongly in } W_{0}^{1, p}(\Omega) \text { as } t \rightarrow 0,
$$

when $u_{t} \rightarrow u_{0}$ strongly in $W_{0}^{1, p}(\Omega)$.
Now, we arrive at the main result of the section
Theorem 5.2.7. With the previous notation, if g and V are measurable functions that satisfy the assumption (H), we have that $\lambda(t)$ is differentiable at $t=0$ and

$$
\begin{aligned}
\left.\frac{\mathrm{d} \lambda(t)}{\mathrm{d} t}\right|_{t=0} & =\int_{\Omega}\left(\left|\nabla u_{0}\right|^{p}+V(x)\left|u_{0}\right|^{p}\right) \operatorname{div} W \mathrm{~d} x-p \int_{\Omega}\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0},{ }^{T} W^{\prime} \nabla u_{0}^{T}\right\rangle \mathrm{d} x \\
& -\lambda(0) \int_{\Omega} g(x)\left|u_{0}\right|^{p} \operatorname{div} W \mathrm{~d} x,
\end{aligned}
$$

where u_{0} is the eigenfunction associated to $\lambda(0)=\lambda(g, V)$.
Proof. First we consider $v_{t}:=u_{0} \circ \varphi_{t}^{-1}$. Then, by the Lemma 4.1.1, we get

$$
\begin{aligned}
& \int_{\Omega} g_{t}(x)\left|v_{t}\right|^{p} \mathrm{~d} x=1+t \int_{\Omega} g(x)\left|u_{0}\right|^{p} \operatorname{div} W \mathrm{~d} x+o(t), \\
& \int_{\Omega} V_{t}(x)\left|v_{t}\right|^{p} \mathrm{~d} x=\int_{\Omega} V(x)\left|u_{0}\right|^{p} \mathrm{~d} x+t \int_{\Omega} V(x)\left|u_{0}\right|^{p} \operatorname{div} W \mathrm{~d} x+o(t)
\end{aligned}
$$

and, by Theorem 4.1.3,

$$
\begin{aligned}
\int_{\Omega}\left|\nabla v_{t}\right|^{p} \mathrm{~d} x & =\int_{\Omega}\left|\nabla u_{0}\right|^{p} \mathrm{~d} x+t \int_{\Omega}\left|\nabla u_{0}\right|^{p} \operatorname{div} W \mathrm{~d} x \\
& -t p \int_{\Omega}\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0},{ }^{T} W^{\prime} \nabla u_{0}^{T}\right\rangle \mathrm{d} x+o(t) .
\end{aligned}
$$

Then, for t small enough,

$$
\int_{\Omega} g_{t}(x)\left|v_{t}\right|^{p} \mathrm{~d} x>0
$$

and therefore

$$
\lambda(t) \leq \frac{\int_{\Omega}\left|\nabla v_{t}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{t}(x)\left|v_{t}\right|^{p} \mathrm{~d} x}{\int_{\Omega} g_{t}(x)\left|v_{t}\right|^{p} \mathrm{~d} x}
$$

So

$$
\lambda(t) \int_{\Omega} g_{t}(x)\left|v_{t}\right|^{p} \mathrm{~d} x \leq \int_{\Omega}\left|\nabla v_{t}\right|^{p} \mathrm{~d} x+\int_{\Omega} V_{t}(x)\left|v_{t}\right|^{p} \mathrm{~d} x,
$$

then, we have that

$$
\begin{aligned}
\lambda(t)\left(1+t \int_{\Omega} g(x)\left|u_{0}\right|^{p} \operatorname{div} W \mathrm{~d} x\right) \leq & \int_{\Omega}\left|\nabla u_{0}\right|^{p} \mathrm{~d} x+\int_{\Omega} V(x)\left|u_{0}\right|^{p} \mathrm{~d} x \\
& +t \int_{\Omega}\left(\left|\nabla u_{0}\right|^{p}+V(x)\left|u_{0}\right|^{p}\right) \mathrm{div} W \mathrm{~d} x \\
& -t p \int_{\Omega}\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0},{ }^{T} W^{\prime} \nabla u_{0}^{T}\right\rangle \mathrm{d} x+o(t) \\
= & \lambda(0)+t \int_{\Omega}\left(\left|\nabla u_{0}\right|^{p}+V(x)\left|u_{0}\right|^{p}\right) \operatorname{div} W \mathrm{~d} x \\
& -t p \int_{\Omega}\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0},{ }^{T} W^{\prime} \nabla u_{0}^{T}\right\rangle \mathrm{d} x+o(t),
\end{aligned}
$$

and we get that

$$
\begin{aligned}
\frac{\lambda(t)-\lambda(0)}{t} \leq & \int_{\Omega}\left(\left|\nabla u_{0}\right|^{p}+V(x)\left|u_{0}\right|^{p}\right) \operatorname{div} W \mathrm{~d} x-p \int_{\Omega}\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0},{ }^{T} W^{\prime} \nabla u_{0}^{T}\right\rangle \mathrm{d} x \\
& -\lambda(t) \int_{\Omega} g(x)\left|u_{0}\right|^{p} \operatorname{div} W \mathrm{~d} x+o(1) .
\end{aligned}
$$

In a similar way, if we take $w_{t}=u_{t} \circ \varphi_{t}$ we have that

$$
\begin{aligned}
\frac{\lambda(t)-\lambda(0)}{t} \geq & \int_{\Omega}\left(\left|\nabla w_{t}\right|^{p}+V(x)\left|w_{t}\right|^{p}\right) \operatorname{div} W \mathrm{~d} x-p \int_{\Omega}\left|\nabla w_{t}\right|^{p-2}\left\langle\nabla w_{t}{ }^{T}{ }^{T} W^{\prime} \nabla w_{t}^{T}\right\rangle \mathrm{d} x \\
& -\lambda(0) \int_{\Omega} g(x)\left|w_{t}\right|^{p} \operatorname{div} W \mathrm{~d} x+o(1) .
\end{aligned}
$$

Thus, taking limit in the two last inequalities as $t \rightarrow 0^{+}$, by the Theorem 5.2.4 and Remark 5.2.6, we get that

$$
\begin{aligned}
\lim _{t \rightarrow 0^{+}} \frac{\lambda(t)-\lambda(0)}{t} & =\int_{\Omega}\left(\left|\nabla u_{0}\right|^{p}+V(x)\left|u_{0}\right|^{p}\right) \operatorname{div} W \mathrm{~d} x-p \int_{\Omega}\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0}{ }^{T} W^{\prime} \nabla u_{0}^{T}\right\rangle \mathrm{d} x \\
& -\lambda(0) \int_{\Omega} g(x)\left|u_{0}\right|^{p} \operatorname{div} W \mathrm{~d} x .
\end{aligned}
$$

This finishes the proof.
Remark 5.2.8. When we work in the class of rearrangements of a fixed pair $\left(g_{0}, V_{0}\right)$, as was mentioned in Remark 5.2.3, we need the deformation field W to verified div $W=0$. So, in this case, the formula for $\lambda^{\prime}(0)$ reads,

$$
\left.\frac{\mathrm{d} \lambda(t)}{\mathrm{d} t}\right|_{t=0}=-p \int_{\Omega}\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0},{ }^{T} W^{\prime} \nabla u_{0}^{T}\right\rangle \mathrm{d} x .
$$

In order to improve this expression for $\lambda^{\prime}(0)$, we need a lemma that will allow us to regularize problem (5.1) since solutions to (5.1) are $C^{1, \delta}$ for some $\delta>0$ but are not C^{2} nor $W^{2, q}$ in general (see [L]).

Lemma 5.2.9. Let V, g be measurable functions that satisfy the assumption (H), and let $V_{\varepsilon}, g_{\varepsilon} \in C_{0}^{\infty}(\Omega)$ be such that $V_{\varepsilon} \rightarrow V$ and $g_{\varepsilon} \rightarrow g$ in $L^{q}(\Omega)$. Let

$$
\lambda_{\varepsilon}:=\min \left\{J_{\varepsilon}(v): v \in W_{0}^{1, p}(\Omega), \int_{\Omega} g_{\varepsilon}(x)|v|^{p} \mathrm{~d} x=1\right\}
$$

where

$$
J_{\varepsilon}(v):=\int_{\Omega}\left(|\nabla v|^{2}+\varepsilon^{2}\right)^{(p-2) / 2}|\nabla v|^{2} \mathrm{~d} x+\int_{\Omega} V_{\varepsilon}(x)|v|^{p} \mathrm{~d} x .
$$

Finally, let u_{ε} be the unique normalized positive eigenfunction associated to λ_{ε}.
Then, $\lambda_{\varepsilon} \rightarrow \lambda(g, V)$ and $u_{\varepsilon} \rightarrow u_{0}$ strongly in $W_{0}^{1, p}(\Omega)$, where u_{0} is the unique normalized positive eigenfunction associated to $\lambda(g, V)$.

Proof. First, observe that, as $g_{\varepsilon} \rightarrow g$ in $L^{q}(\Omega)$ if u_{0} is the normalized positive eigenfunction associated to $\lambda(g, V)$, we have that

$$
\int_{\Omega} g_{\varepsilon}(x)\left|u_{0}\right|^{p} \mathrm{~d} x>0
$$

for all $\varepsilon>0$ small enough. Then, for all $\varepsilon>0$ small enough, taking

$$
v_{\varepsilon}=\frac{u_{0}}{\int_{\Omega} g_{\varepsilon}(x)\left|u_{0}\right|^{p} \mathrm{~d} x}
$$

in the characterization of λ_{ε}, we get

$$
\lambda_{\varepsilon} \leq \int_{\Omega}\left(\left|\nabla v_{\varepsilon}\right|^{2}+\varepsilon^{2}\right)^{(p-2) / 2}\left|\nabla v_{\varepsilon}\right|^{2}+V_{\varepsilon}(x)\left|v_{\varepsilon}\right|^{p} \mathrm{~d} x .
$$

Hence, passing to the limit as $\varepsilon \rightarrow 0^{+}$, since $\int_{\Omega} g_{\varepsilon}(x)\left|u_{0}\right|^{p} \mathrm{~d} x \rightarrow \int_{\Omega} g(x)\left|u_{0}\right|^{p} \mathrm{~d} x=1$ as $\varepsilon \rightarrow 0^{+}$, we arrive at

$$
\limsup _{\varepsilon \rightarrow 0^{+}} \lambda_{\varepsilon} \leq \lambda(g, V) .
$$

Now, for any $v \in W_{0}^{1, p}(\Omega)$ normalized such that

$$
\int_{\Omega} g_{\varepsilon}(x)|v|^{p} \mathrm{~d} x=1,
$$

we have that

$$
\begin{aligned}
\int_{\Omega}\left(|\nabla v|^{2}+\varepsilon^{2}\right)^{(p-2) / 2}|\nabla v|^{2} \mathrm{~d} x+\int_{\Omega} V_{\varepsilon}(x)|v|^{p} \mathrm{~d} x & \geq \int_{\Omega}|\nabla v|^{p} \mathrm{~d} x+\int_{\Omega} V_{\varepsilon}(x)|v|^{p} \mathrm{~d} x \\
& \geq \lambda\left(g_{\varepsilon}, V_{\varepsilon}\right),
\end{aligned}
$$

therefore $\lambda_{\varepsilon} \geq \lambda\left(g_{\varepsilon}, V_{\varepsilon}\right)$.
Now, by Proposition 5.2.1, we have that $\lambda\left(g_{\varepsilon}, V_{\varepsilon}\right) \rightarrow \lambda(g, V)$ as $\varepsilon \rightarrow 0^{+}$. So

$$
\liminf _{\varepsilon \rightarrow 0^{+}} \lambda_{\varepsilon} \geq \lambda(g, V)
$$

Finally, from the convergence of the eigenvalues, it is easy to see that the normalized eigenfunction u_{ε} associated to λ_{ε} are bounded in $W_{0}^{1, p}(\Omega)$ uniformly in $\varepsilon>0$. Therefore, there exists a sequence, that we still call $\left\{u_{\varepsilon}\right\}$, and a function $u \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{array}{ll}
u_{\varepsilon} \rightharpoonup u & \text { weakly in } W_{0}^{1, p}(\Omega) \\
u_{\varepsilon} \rightarrow u & \text { strongly in } L^{p q^{\prime}}(\Omega) .
\end{array}
$$

Recall that our assumptions on q imply that $p q^{\prime}<p^{*}$.
Hence,

$$
\int_{\Omega} g(x)|u|^{p} \mathrm{~d} x=\lim _{\varepsilon \rightarrow 0^{+}} \int_{\Omega} g_{\varepsilon}(x)\left|u_{\varepsilon}\right|^{p} \mathrm{~d} x=1
$$

and so

$$
\begin{aligned}
\lambda(g, V) & =\lim _{\varepsilon \rightarrow 0^{+}} \lambda_{\varepsilon} \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \int_{\Omega}\left(\left|\nabla u_{\varepsilon}\right|^{2}+\varepsilon^{2}\right)^{(p-2) / 2}\left|\nabla u_{\varepsilon}\right|^{2} \mathrm{~d} x+\int_{\Omega} V_{\varepsilon}(x)\left|u_{\varepsilon}\right|^{p} \mathrm{~d} x \\
& \geq \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} V(x)|u|^{p} \mathrm{~d} x \\
& \geq \lambda(g, V) .
\end{aligned}
$$

These imply that $u=u_{0}$ the unique normalized positive eigenfunction associated to $\lambda(g, V)$ and that $\left\|u_{\varepsilon}\right\|_{W_{0}^{1, p}(\Omega)} \rightarrow\|u\|_{W_{0}^{1, p}(\Omega)}$ as $\varepsilon \rightarrow 0^{+}$. So

$$
u_{\varepsilon} \rightarrow u_{0} \quad \text { strongly in } W_{0}^{1, p}(\Omega)
$$

This finishes the proof.
Remark 5.2.10. Observe that the eigenfunctions u_{ε} are weak solutions to

$$
\begin{cases}-\operatorname{div}\left(\left(\left|\nabla u_{\varepsilon}\right|^{2}+\varepsilon^{2}\right)^{(p-2) / 2} \nabla u_{\varepsilon}\right)+V_{\varepsilon}(x)\left|u_{\varepsilon}\right|^{p-2} u_{\varepsilon}=\lambda_{\varepsilon} g_{\varepsilon}(x)\left|u_{\varepsilon}\right|^{\mid-2} u_{\varepsilon} & \text { in } \Omega, \tag{5.19}\\ u_{\varepsilon}=0 & \text { on } \partial \Omega .\end{cases}
$$

Therefore, by the classical regularity theory (see [LU]), the functions u_{ε} are $C^{2, \delta}$ for some $\delta>0$.

With these preparatives we can now prove the following Theorem.
Theorem 5.2.11. With the assumptions and notations of Theorem 5.2.7, we have that

$$
\left.\frac{\mathrm{d} \lambda(t)}{\mathrm{d} t}\right|_{t=0}=\lambda^{\prime}(0)=\int_{\Omega}(V(x)-\lambda(0) g(x)) \operatorname{div}\left(\left|u_{0}\right|^{p} W\right) \mathrm{d} x,
$$

for every field W such that $\operatorname{div} W=0$.

Proof. During the proof of the Theorem, we will require that the eigenfunction u_{0} to be C^{2}. As it is well known (see [L]), this is not true.

In order to overcome this difficulty, we regularize the problem and work with the regularized eigenfunction u_{ε} defined in Lemma 5.2.9.

Since in the resulting formula only appears up to the first derivatives of u_{ε} and $u_{\varepsilon} \rightarrow u_{0}$ strongly in $W_{0}^{1, p}(\Omega)$ the result will follows.
Given $W \in C_{0}^{1}\left(\Omega ; \mathbb{R}^{N}\right)$ such that div $W=0$, by the Theorem 5.2.7 and the Lemma 5.2.9, we have that

$$
\begin{aligned}
\left.\frac{\mathrm{d} \lambda(t)}{\mathrm{d} t}\right|_{t=0} & =-p \int_{\Omega}\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0},{ }^{T} W^{\prime} \nabla u_{0}^{T}\right\rangle \mathrm{d} x \\
& =\lim _{\varepsilon \rightarrow 0}-p \int_{\Omega} \|\left.\nabla u_{\varepsilon}\right|^{2}+\left.\varepsilon^{2}\right|^{(p-2) / 2}\left\langle\nabla u_{\varepsilon},{ }^{T} W^{\prime} \nabla u_{\varepsilon}^{T}\right\rangle \mathrm{d} x
\end{aligned}
$$

Since $W \in C_{0}^{1}\left(\Omega ; \mathbb{R}^{N}\right)$,

$$
\int_{\Omega} \operatorname{div}\left(\left(\left|\nabla u_{\varepsilon}\right|^{2}+\varepsilon^{2}\right)^{p / 2} W\right) \mathrm{d} x=0 .
$$

So,

$$
\begin{aligned}
\int_{\Omega} \|\left.\nabla u_{\varepsilon}\right|^{2}+\left.\varepsilon^{2}\right|^{(p-2) / 2}\left\langle\nabla u_{\varepsilon},{ }^{T} W^{\prime} \nabla u_{\varepsilon}^{T}\right\rangle \mathrm{d} x & =\left.\int_{\Omega}| | \nabla u_{\varepsilon}\right|^{2}+\left.\varepsilon^{2}\right|^{(p-2) / 2}\left\langle\nabla u_{\varepsilon},{ }^{T} W^{\prime} \nabla u_{\varepsilon}^{T}\right\rangle \mathrm{d} x \\
& +\frac{1}{p} \int_{\Omega} \operatorname{div}\left(\left(\left|\nabla u_{0}\right|^{2}+\varepsilon^{2}\right)^{p / 2} W\right) \mathrm{d} x \\
& =\int_{\Omega} \|\left.\nabla u_{\varepsilon}\right|^{2}+\left.\varepsilon^{2}\right|^{(p-2) / 2}\left\langle\nabla u_{\varepsilon},{ }^{T} W^{\prime} \nabla u_{\varepsilon}^{T}\right\rangle \mathrm{d} x \\
& +\int_{\Omega} \|\left.\nabla u_{\varepsilon}\right|^{2}+\left.\varepsilon^{2}\right|^{(p-2) / 2}\left\langle\nabla u_{\varepsilon}, D^{2} u_{\varepsilon} W^{T}\right\rangle \mathrm{d} x \\
& =\int_{\Omega} \|\left.\nabla u_{\varepsilon}\right|^{2}+\left.\varepsilon^{2}\right|^{(p-2) / 2}\left\langle\nabla u_{\varepsilon},{ }^{T} W^{\prime} \nabla u_{\varepsilon}^{T}+D^{2} u_{\varepsilon} W^{T}\right\rangle \mathrm{d} x \\
& =\int_{\Omega} \|\left.\nabla u_{\varepsilon}\right|^{2}+\left.\varepsilon^{2}\right|^{(p-2) / 2}\left\langle\nabla u_{\varepsilon}, \nabla\left\langle\nabla u_{\varepsilon}, W\right\rangle\right\rangle \mathrm{d} x .
\end{aligned}
$$

Now, we use the fact that u_{ε} is a weak solution to (5.19) to get

$$
\begin{aligned}
\left.\int_{\Omega}| | \nabla u_{\varepsilon}\right|^{2}+\left.\varepsilon^{2}\right|^{(p-2) / 2}\left\langle\nabla u_{\varepsilon},{ }^{T} W^{\prime} \nabla u_{\varepsilon}^{T}\right\rangle \mathrm{d} x & =\left.\int_{\Omega}| | \nabla u_{\varepsilon}\right|^{2}+\left.\varepsilon^{2}\right|^{(p-2) / 2}\left\langle\nabla u_{\varepsilon}, \nabla\left\langle\nabla u_{\varepsilon}, W\right\rangle\right\rangle \mathrm{d} x \\
& =\int_{\Omega}\left(\lambda_{\varepsilon} g_{\varepsilon}(x)-V_{\varepsilon}\right)\left|u_{\varepsilon}\right|^{p-2} u_{\varepsilon}\left\langle\nabla u_{\varepsilon}, W\right\rangle \mathrm{d} x
\end{aligned}
$$

Now, using again the Lemma 5.2.9, we have

$$
\begin{aligned}
\left.\lim _{\varepsilon \rightarrow 0} \int_{\Omega}| | \nabla u_{\varepsilon}\right|^{2}+\left.\varepsilon^{2}\right|^{(p-2) / 2}\left\langle\nabla u_{\varepsilon},{ }^{T} W^{\prime} \nabla u_{\varepsilon}^{T}\right\rangle \mathrm{d} x & =\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left(\lambda_{\varepsilon} g_{\varepsilon}(x)-V_{\varepsilon}\right)\left|u_{\varepsilon}\right|^{p-2} u_{\varepsilon}\left\langle\nabla u_{\varepsilon}, W\right\rangle \mathrm{d} x \\
& =\int_{\Omega}(\lambda(0) g(x)-V(x)) \operatorname{div}\left(\left|u_{0}\right|^{p} W\right) \mathrm{d} x .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\lambda^{\prime}(0) & =-p \lim _{\varepsilon \rightarrow 0} \int_{\Omega} \|\left.\nabla u_{\varepsilon}\right|^{2}+\left.\varepsilon^{2}\right|^{(p-2) / 2}\left\langle\nabla u_{\varepsilon},{ }^{T} W^{\prime} \nabla u_{\varepsilon}^{T}\right\rangle \mathrm{d} x \\
& =p \int_{\Omega}(V(x)-\lambda(0) g(x))\left|u_{0}\right|^{p-2} u_{0}\left\langle\nabla u_{0}, W\right\rangle \mathrm{d} x \\
& =\int_{\Omega}(V(x)-\lambda(0) g(x)) \operatorname{div}\left(\left|u_{0}\right|^{p} W\right) \mathrm{d} x .
\end{aligned}
$$

The proof is now complete.

6

Some optimization problems for p-Laplacian type equations

In this chapter we analyze the following optimization problem: Consider a smooth bounded domain $\Omega \subset \mathbb{R}^{N}$ and some class of admissible loads \mathcal{A}. Then, we want to maximize the cost functional

$$
\mathcal{J}(f):=\int_{\partial \Omega} f(x) u \mathrm{~d} \mathcal{H}^{N-1},
$$

for $f \in \mathcal{A}$, where u is the (unique) solution to the nonlinear membrane problem with load f

$$
\begin{cases}-\Delta_{p} u+|u|^{p-2} u=0 & \text { in } \Omega, \tag{6.1}\\ |\nabla u|^{p-2} \frac{\partial u}{\partial v}=f & \text { on } \partial \Omega .\end{cases}
$$

These types of optimization problems have been considered in the literature due to many applications in science and engineering, specially in the linear case $p=2$. See for instance [CC].

We have chosen three different classes of admissible functions \mathcal{A} to work with.

- The class of rearrangements of a given function f_{0}.
- The (unit) ball in some L^{q}.
- The class of characteristic functions of sets of given surface measure.

This latter case is what we believe is the most interesting one and where our main results are obtained.

For each of these classes, we prove existence of a maximizing load (in the respective class) and analyze properties of these maximizers.

The approach to the class of rearrangements follows the lines of [CEP1], where a similar problem was analysed, namely, the maximization of the functional

$$
\overline{\mathcal{J}}(g):=\int_{\Omega} g u \mathrm{~d} x,
$$

where u is the solution to $-\Delta_{p} u=g$ in Ω with Dirichlet boundary conditions.
When we work in the unit ball of L^{q} the problem becomes trivial and we explicitly find the (unique) maximizer for \mathcal{J}, namely, the first eigenfunction of a Steklov-like nonlinear eigenvalue problem (see Section 6.2).
Finally, we arrive at the main part of this chapter, namely, the analysis of the problem for the class of characteristic functions of sets of given boundary measure. In order to work within this class, we first relax the problem and work with the weak* closure of the characteristic functions (i.e. bounded functions of given L^{1} norm), prove existence of a maximizer within this relaxed class and then prove that this optimizer is in fact a characteristic function.

Then, in order to analyze properties of this maximizers, we compute the first variation with respect to perturbations on the load.
This approach for optimization problems has been used several times in the literature. Just to cite a few, see [DPFBR, FBRW2, KSS] and references therein. Also, our approach to the computation of the first variation borrows ideas from [GMSL].

The chapter is organized as follows. First, in Section 6.1, we study the problem when the admissible class of loads \mathcal{A} is the class of rearrangements of a given function f_{0}. In Section 6.2, we study the simpler case when \mathcal{A} is the unit ball in L^{q}. In Section 6.3, we analyze the case where \mathcal{A} is the class of characteristic functions of sets with given surface measure. Lastly, in Section 6.4, we compute the first variation with respect to the load.

6.1 Maximizing in the class of rearrangements

Given a domain $\Omega \subset \mathbb{R}^{N}$ (bounded, connected, with smooth boundary), first we want to study the following problem

$$
\begin{cases}-\Delta_{p} u+|u|^{p-2} u=0 & \text { in } \Omega, \tag{6.2}\\ |\nabla u|^{p-2} \frac{\partial u}{\partial v}=f & \text { on } \partial \Omega .\end{cases}
$$

Here $1<p<\infty$ and f is a measurable function that satisfy the assumption

$$
f \in L^{q}(\Omega) \text { where } \begin{cases}q>\frac{N^{\prime}}{p^{\prime}} & \text { if } 1<p<N, \tag{A1}\\ q>1 & \text { if } p \geq N .\end{cases}
$$

We say $u \in W^{1, p}(\Omega)$ is a weak solution of (6.2) if

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla v+|u|^{p-2} u v \mathrm{~d} x=\int_{\partial \Omega} f v \mathrm{~d} \mathcal{H}^{N-1} \quad \forall v \in W^{1, p}(\Omega) .
$$

The assumption (A1) is related to the fact that $p^{\prime} / N^{\prime}=p_{*}^{\prime}$ if $1<p<N$, and $q^{\prime}<\infty$ if $p \geq N$. So, in order for that the right side of last equality to make sense for $f \in L^{q}(\partial \Omega)$, we need v to belong to $L^{q^{\prime}}(\partial \Omega)$. This is achieved by the assumption (A1) and the Sobolev Trace Embedding Theorem.

It is a standard result that (6.2) has a unique weak solution u_{f}, for which the following equations hold

$$
\begin{equation*}
\int_{\partial \Omega} f u_{f} \mathrm{~d} \mathcal{H}^{N-1}=\sup \left\{\mathcal{I}(u): u \in W^{1, p}(\Omega)\right\}, \tag{6.3}
\end{equation*}
$$

where

$$
I(u)=\frac{1}{p-1}\left\{p \int_{\partial \Omega} f u \mathrm{~d} \mathcal{H}^{N-1}-\int_{\Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} x\right\} .
$$

Let f_{0} be a measurable function that satisfy the assumption (A1), we are interested in finding

$$
\begin{equation*}
\sup \left\{\int_{\partial \Omega} f u_{f} \mathrm{~d} \mathcal{H}^{N-1}: f \in \mathcal{R}\left(f_{0}\right)\right\} . \tag{6.4}
\end{equation*}
$$

Theorem 6.1.1. There exists $\hat{f} \in \mathcal{R}\left(f_{0}\right)$ such that

$$
\begin{aligned}
\mathcal{J}(\hat{f}) & =\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1} \\
& =\sup \left\{\mathcal{J}(f): f \in \mathcal{R}\left(f_{0}\right)\right\} \\
& =\sup \left\{\int_{\partial \Omega} f u_{f} \mathrm{~d} \mathcal{H}^{N-1}: f \in \mathcal{R}\left(f_{0}\right)\right\},
\end{aligned}
$$

where $\hat{u}=u_{\hat{f}}$.
Proof. Let

$$
I=\sup \left\{\int_{\partial \Omega} f u_{f} \mathrm{~d} \mathcal{H}^{N-1}: f \in \mathcal{R}\left(f_{0}\right)\right\} .
$$

We first show that I is finite. Let $f \in \mathcal{R}\left(f_{0}\right)$. By Hölder's inequality and the Sobolev Trace Embedding Theorem, we have

$$
\int_{\Omega}\left|\nabla u_{f}\right|^{p}+\left|u_{f}\right|^{p} \mathrm{~d} x \leq C\|f\|_{L q}\left(\Omega_{\Omega}\right)\left\|u_{f}\right\|_{w_{1}, p(\Omega)},
$$

then

$$
\begin{equation*}
\left\|u_{f}\right\|_{W^{1, p}(\Omega)} \leq C \quad \forall f \in \mathcal{R}\left(f_{0}\right) \tag{6.5}
\end{equation*}
$$

since $\|f\|_{L^{q}(\partial \Omega)}=\left\|f_{0}\right\|_{L^{q}(\partial \Omega)}$ for all $f \in \mathcal{R}\left(f_{0}\right)$. Therefore I is finite.
Now, let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be a maximizing sequence and let $u_{n}=u_{f_{n}}$. From (6.5) it is clear that $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ is bounded in $W^{1, p}(\Omega)$, then there exists a function $u \in W^{1, p}(\Omega)$ such that, for a subsequence that we still call $\left\{u_{n}\right\}_{n \in \mathbb{N}}$,

$$
\begin{array}{lll}
u_{n} & \rightharpoonup & \text { weakly in } W^{1, p}(\Omega) \\
u_{n} \rightarrow u & \text { strongly in } L^{p}(\Omega), \\
u_{n} \rightarrow u & \text { strongly in } L^{q^{\prime}}(\partial \Omega) .
\end{array}
$$

On the other hand, since $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is bounded in $L^{p^{\prime}}(\partial \Omega)$, we may choose a subsequence, still denoted by $\left\{f_{n}\right\}_{n \in \mathbb{N}}$, and $f \in L^{q}(\partial \Omega)$ such that

$$
f_{n} \rightharpoonup f \quad \text { weakly in } L^{q}(\partial \Omega) .
$$

Then

$$
\begin{aligned}
I & =\lim _{n \rightarrow \infty} \int_{\partial \Omega} f_{n} u_{n} \mathrm{~d} \mathcal{H}^{N-1} \\
& =\frac{1}{p-1} \lim _{n \rightarrow \infty}\left\{p \int_{\partial \Omega} f_{n} u_{n} \mathrm{~d} \mathcal{H}^{N-1}-\int_{\Omega}\left|\nabla u_{n}\right|^{p}+\left|u_{n}\right|^{p} \mathrm{~d} x\right\} \\
& \leq \frac{1}{p-1}\left\{p \int_{\partial \Omega} f u \mathrm{~d} \mathcal{H}^{N-1}-\int_{\Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} x\right\} .
\end{aligned}
$$

Furthermore, by Lemma 1.5.3, there exists $\hat{f} \in \mathcal{R}\left(f_{0}\right)$ such that

$$
\int_{\partial \Omega} f u \mathrm{~d} \mathcal{H}^{N-1} \leq \int_{\partial \Omega} \hat{f} u \mathrm{~d} \mathcal{H}^{N-1} .
$$

Thus

$$
I \leq \frac{1}{p-1}\left\{p \int_{\partial \Omega} \hat{f} u \mathrm{~d} \mathcal{H}^{N-1}-\int_{\Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} x\right\} .
$$

As a consequence of (6.3), we have that

$$
\begin{aligned}
I & \leq \frac{1}{p-1}\left\{p \int_{\partial \Omega} \hat{f} u \mathrm{~d} \mathcal{H}^{N-1}-\int_{\Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} x\right\} \\
& \leq \frac{1}{p-1}\left\{p \int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1}-\int_{\Omega}|\nabla \hat{u}|^{p}+|\hat{u}|^{p} \mathrm{~d} x\right\} \\
& =\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1} \\
& \leq I .
\end{aligned}
$$

Recall that $\hat{u}=u_{\hat{f}}$. Therefore \hat{f} is a solution to (6.4). This completes the proof.
Remark 6.1.2. With a similar proof we can prove a slighter stronger result. Namely, we can consider the functional

$$
\mathcal{J}_{1}(f, g):=\int_{\Omega} g u \mathrm{~d} x+\int_{\partial \Omega} f u \mathrm{~d} \mathcal{H}^{N-1}
$$

where u is the (unique, weak) solution to

$$
\begin{cases}-\Delta_{p} u+|u|^{p-2} u=g & \text { in } \Omega, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial v}=f & \text { on } \partial \Omega,\end{cases}
$$

and consider the problem of maximizing \mathcal{J}_{1} over the class $\mathcal{R}\left(g_{0}\right) \times \mathcal{R}\left(f_{0}\right)$ for some fixed g_{0} and f_{0}.

We leave the details to the reader.

Now, we give characterization of a maximizer function in the spirit of [CEP1].
Theorem 6.1.3. Let $\hat{f} \in \mathcal{R}\left(f_{0}\right)$ such that

$$
\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1}=\sup \left\{\int_{\partial \Omega} f u_{f} \mathrm{~d} \mathcal{H}^{N-1}: f \in \mathcal{R}\left(f_{0}\right)\right\},
$$

where $\hat{u}=u_{\hat{f}}$. Then \hat{f} is the unique maximizer of linear functional

$$
L(f):=\int_{\partial \Omega} f \hat{u} \mathrm{~d} \mathcal{H}^{N-1},
$$

relative to $f \in \mathcal{R}\left(f_{0}\right)$.
Therefore, there is an increasing function ϕ such that $\hat{f}=\phi \circ \hat{u} \mathcal{H}^{N-1}$-a.e.

Proof. We proceed in three steps.
Step 1. First we show that \hat{f} is a maximizer of $L(f)$ relative to $f \in \mathcal{R}\left(f_{0}\right)$.
In fact, let $h \in \mathcal{R}\left(f_{0}\right)$, since

$$
\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1}=\sup \left\{\int_{\partial \Omega} f u_{f} \mathrm{~d} \mathcal{H}^{N-1}: f \in \mathcal{R}\left(f_{0}\right)\right\},
$$

we have that

$$
\begin{aligned}
\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1} & \geq \int_{\partial \Omega} h u_{h} \mathrm{~d} \mathcal{H}^{N-1} \\
& =\frac{1}{p-1} \sup \left\{p \int_{\partial \Omega} h u \mathrm{~d} \mathcal{H}^{N-1}-\int_{\partial \Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} x: u \in W^{1, p}(\Omega)\right\} \\
& \geq \frac{1}{p-1}\left\{p \int_{\partial \Omega} h \hat{u} \mathrm{~d} \mathcal{H}^{N-1}-\int_{\partial \Omega}|\nabla \hat{u}|^{p}+|\hat{u}|^{p} \mathrm{~d} x\right\}
\end{aligned}
$$

and, since

$$
\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1}=\frac{1}{p-1}\left\{p \int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1}-\int_{\partial \Omega}|\nabla \hat{u}|^{p}+|\hat{u}|^{p} \mathrm{~d} x\right\},
$$

we have

$$
\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1} \geq \int_{\partial \Omega} h \hat{u} \mathrm{~d} \mathcal{H}^{N-1} .
$$

Therefore,

$$
\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1}=\sup \left\{L(f): f \in \mathcal{R}\left(f_{0}\right)\right\} .
$$

Step 2. Now, we show that \hat{f} is the unique maximizer of $L(f)$ relative to $f \in \mathcal{R}\left(f_{0}\right)$.

We suppose that g is another maximizer of $L(f)$ relative to $f \in \mathcal{R}\left(f_{0}\right)$. Then

$$
\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1}=\int_{\partial \Omega} g \hat{u} \mathrm{~d} \mathcal{H}^{N-1} .
$$

Thus

$$
\begin{aligned}
\int_{\partial \Omega} g \hat{u} \mathrm{~d} \mathcal{H}^{N-1} & =\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1} \\
& \geq \int_{\partial \Omega} g u_{g} \mathrm{~d} \mathcal{H}^{N-1} \\
& =\frac{1}{p-1} \sup \left\{p \int_{\partial \Omega} g u \mathrm{~d} \mathcal{H}^{N-1}-\int_{\Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} x: u \in W^{1, p}(\Omega)\right\} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\int_{\partial \Omega} g \hat{u} \mathrm{~d} \mathcal{H}^{N-1} & =\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1} \\
& =\frac{1}{p-1}\left\{p \int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1}-\int_{\Omega}|\nabla \hat{u}|^{p}+|\hat{u}|^{p} \mathrm{~d} x\right\} \\
& =\frac{1}{p-1}\left\{p \int_{\partial \Omega} g \hat{u} \mathrm{~d} \mathcal{H}^{N-1}-\int_{\Omega}|\nabla \hat{u}|^{p}+|\hat{u}|^{p} \mathrm{~d} x\right\} .
\end{aligned}
$$

Then

$$
\int_{\partial \Omega} g \hat{u} \mathrm{~d} \mathcal{H}^{N-1}=\frac{1}{p-1} \sup \left\{p \int_{\partial \Omega} g u \mathrm{~d} \mathcal{H}^{N-1}-\int_{\Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} x: u \in W^{1, p}(\Omega)\right\} .
$$

Therefore $\hat{u}=u_{g}$. Then \hat{u} is the unique weak solution to

$$
\begin{cases}-\Delta_{p} \hat{u}+|\hat{u}|^{p-2} \hat{u}=0 & \text { in } \Omega, \\ |\nabla \hat{u}|^{p-2} \frac{\partial \hat{u}}{\partial v}=g & \text { on } \partial \Omega .\end{cases}
$$

Furthermore, we now that \hat{u} is the unique weak solution to

$$
\begin{cases}-\Delta_{p} \hat{u}+|\hat{u}|^{p-2} \hat{u}=0 & \text { in } \Omega, \\ |\nabla \hat{u}|^{p-2} \frac{\partial \hat{u}}{\partial v}=\hat{f} & \text { on } \partial \Omega .\end{cases}
$$

Therefor $\hat{f}=g \mathcal{H}^{N-1}$-a.e.
Step 3. Lastly, we have that there is an increasing function ϕ such that $\hat{f}=\phi \circ \hat{u}$ \mathcal{H}^{N-1}-a.e.

This is a direct consequence of Steps 1, 2 and Theorem 1.5.4.
This completes the proof of theorem.

6.2 Maximizing in the unit ball of L^{q}

In this section we consider the optimization problem

$$
\max \mathcal{J}(f)
$$

where the maximum is taken over the unit ball in $L^{q}(\partial \Omega)$.
In this case, the answer is simple and we find that the maximizer can be computed explicitly in terms of the extremal of the Sobolev trace embedding.
So, we let f be a measurable function that satisfy the assumptions (A1) and

$$
\|f\|_{L^{q}(\partial \Omega)} \leq 1,
$$

we consider the problem

$$
\begin{equation*}
\sup \left\{\int_{\partial \Omega} f u_{f} \mathrm{~d} \mathcal{H}^{N-1}: f \in L^{q}(\partial \Omega) \text { and }\|f\|_{L^{q}(\partial \Omega)} \leq 1\right\} \tag{6.6}
\end{equation*}
$$

where u_{f} is the weak solution of

$$
\begin{cases}-\Delta_{p} u+|u|^{p-2} u=0 & \text { in } \Omega, \tag{6.7}\\ |\nabla u|^{p-2} \frac{\partial u}{\partial v}=f & \text { on } \partial \Omega .\end{cases}
$$

The assumption (A1) is taken by the same reason that in the previous section.
In this case it is easy to see that the solution becomes

$$
\hat{f}=v_{q^{\prime}}^{q^{\prime}-1}
$$

where $v_{q^{\prime}} \in W^{1, p}(\Omega)$ is a nonnegative extremal for $S_{q^{\prime}}$ normalized such that $\left\|v_{q^{\prime}}\right\|_{L^{\prime}(\partial \Omega)}=1$, and $S_{q^{\prime}}$ is the Sobolev trace constant. Furthermore

$$
\hat{u}=u_{\hat{f}}=\frac{1}{S_{q^{\prime}}^{1 /(p-1)}} v_{q^{\prime}} .
$$

Observe that, as f satisfies the assumption (A1), there exists an extremal for $S_{q^{\prime}}$. See [FBR1] and references therein.

In fact

$$
\begin{aligned}
\mathcal{J}(\hat{f}) & =\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1} \\
& =\int_{\Omega}|\nabla \hat{u}|^{p}+|\hat{u}|^{p} \mathrm{~d} x \\
& =\frac{1}{S_{\left.q^{\prime} / p-1\right)}^{p / p}} \int_{\Omega}\left|\nabla v_{q^{\prime}}\right|^{p}+\left|v_{q^{\prime}}\right|^{p} \mathrm{~d} x \\
& =\frac{1}{S_{q^{\prime}}^{1 / p-1)}} .
\end{aligned}
$$

On the other hand, given $f \in L^{q}(\partial \Omega)$, such that $\|f\|_{L^{q}(\partial \Omega)} \leq 1$, we have

$$
\begin{aligned}
\mathcal{J}(f) & =\int_{\partial \Omega} f u_{f} \mathrm{~d} \mathcal{H}^{N-1} \\
& \leq\|f\|_{L^{q}(\partial \Omega)}\left\|u_{f}\right\|_{L^{q^{\prime}}(\partial \Omega)} \\
& \leq\left(\frac{1}{S_{q^{\prime}}} \int_{\Omega}\left|\nabla u_{f}\right|^{p}+\left|u_{f}\right|^{p} \mathrm{~d} x\right)^{1 / p} \\
& =\frac{1}{S_{q^{\prime}}^{1 / p}}\left(\int_{\partial \Omega} f u_{f} \mathrm{~d} \mathcal{H}^{N-1}\right)^{1 / p},
\end{aligned}
$$

from which it follows that

$$
\mathcal{J}(f) \leq \frac{1}{S_{q^{\prime}}^{1 /(p-1)}} .
$$

This completes the characterization of the optimal load in this case.

6.3 Maximizing in L^{∞}

Now we consider the problem

$$
\begin{equation*}
\sup \left\{\int_{\partial \Omega} \phi u_{\phi} \mathrm{d} \mathcal{H}^{N-1}: \phi \in \mathbf{B}\right\}, \tag{6.8}
\end{equation*}
$$

where

$$
\mathbf{B}:=\left\{\phi: 0 \leq \phi(x) \leq 1 \text { for all } x \in \partial \Omega \text { and } \int_{\partial \Omega} \phi \mathrm{d} \mathcal{H}^{N-1}=A\right\},
$$

for some fixed $0<A<\mathcal{H}^{N-1}(\partial \Omega)$, and u_{ϕ} is the weak solution of

$$
\begin{cases}-\Delta_{p} u+|u|^{p-2} u=0 & \text { in } \Omega, \tag{6.9}\\ |\nabla u|^{p-2} \frac{\partial u}{\partial v}=\phi & \text { on } \partial \Omega .\end{cases}
$$

We believe that this is the most interesting case considered in this chapter.
In this case, we have the following theorem:
Theorem 6.3.1. There exists $D \subset \partial \Omega$ with $\mathcal{H}^{N-1}(D)=A$ such that

$$
\int_{\partial \Omega} \chi_{D} u_{D} \mathrm{~d} \mathcal{H}^{N-1}=\sup \left\{\int_{\partial \Omega} \phi u_{\phi} \mathrm{d} \mathcal{H}^{N-1}: \phi \in \mathbf{B}\right\},
$$

where $u_{D}=u_{\chi D}$.
Proof. Let

$$
I=\sup \left\{\int_{\partial \Omega} \phi u_{\phi} \mathrm{d} \mathcal{H}^{N-1}: \phi \in \mathbf{B}\right\} .
$$

Arguing as in the first part of the proof for Theorem 6.1.1, we have that I is finite.
Next, let $\left\{\phi_{n}\right\}_{n \in \mathbb{N}}$ be a maximizing sequence and let $u_{n}=u_{\phi_{n}}$. It is clear that $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ is bounded in $W^{1, p}(\Omega)$, then there exists a function $u \in W^{1, p}(\Omega)$ such that, for a subsequence that we still call $\left\{u_{i}\right\}_{n \in \mathbb{N}}$,

$$
\begin{array}{lll}
u_{n} & \rightharpoonup u & \text { weakly in } W^{1, p}(\Omega) \\
u_{n} \rightarrow u & \text { strongly in } L^{p}(\Omega), \\
u_{n} \rightarrow u & \text { strongly in } L^{p}(\partial \Omega) .
\end{array}
$$

On the other hand, since $\left\{\phi_{n}\right\}_{n \in \mathbb{N}}$ is bounded in $L^{\infty}(\partial \Omega)$, we may choose a subsequence, again denoted $\left\{\phi_{n}\right\}_{n \in \mathbb{N}}$, and $\phi \in L^{\infty}(\partial \Omega)$ and such that

$$
\phi_{n} \stackrel{*}{\rightharpoonup} \phi \quad \text { weakly* in } L^{\infty}(\partial \Omega) .
$$

Then

$$
\begin{aligned}
I & =\lim _{n \rightarrow \infty} \int_{\partial \Omega} \phi_{n} u_{n} \mathrm{~d} \mathcal{H}^{N-1} \\
& =\frac{1}{p-1} \lim _{n \rightarrow \infty}\left\{p \int_{\partial \Omega} \phi_{n} u_{n} \mathrm{~d} \mathcal{H}^{N-1}-\int_{\Omega}\left|\nabla u_{n}\right|^{p}+\left|u_{n}\right|^{p} \mathrm{~d} x\right\} \\
& \leq \frac{1}{p-1}\left\{p \int_{\partial \Omega} \phi u \mathrm{~d} \mathcal{H}^{N-1}-\int_{\Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} x\right\} .
\end{aligned}
$$

Furthermore, by Theorem 1.3.12, there exists $D \subset \partial \Omega$ with $\mathcal{H}^{N-1}(D)=A$ such that

$$
\int_{\partial \Omega} \phi u \mathrm{~d} \mathcal{H}^{N-1} \leq \int_{\partial \Omega} \chi_{D} u \mathrm{~d} \mathcal{H}^{N-1}
$$

and

$$
\{t<u\} \subset D \subset\{t \leq u\}, \quad t:=\inf \left\{s: \mathcal{H}^{N-1}(\{s<u\})<A\right\} .
$$

Thus

$$
I \leq \frac{1}{p-1}\left\{p \int_{\partial \Omega} \chi_{D} u \mathrm{~d} \mathcal{H}^{N-1}-\int_{\Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} x\right\} .
$$

As a consequence of (6.3), we have that

$$
\begin{aligned}
I & \leq \frac{1}{p-1}\left\{p \int_{\partial \Omega} \chi_{D} u \mathrm{~d} \mathcal{H}^{N-1}-\int_{\Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} x\right\} \\
& \leq \frac{p}{p-1}\left\{p \int_{\partial \Omega} \chi_{D} u_{D} \mathrm{~d} \mathcal{H}^{N-1}-\int_{\Omega}\left|\nabla u_{D}\right|^{p}+\left|u_{D}\right|^{p} \mathrm{~d} x\right\} \\
& =\int_{\partial \Omega} \chi_{D} u_{D} \mathrm{~d} \mathcal{H}^{N-1} \\
& \leq I .
\end{aligned}
$$

Recall that $u_{D}=u_{\chi D}$. Therefore χ_{D} is a solution to (6.8). This completes the proof.

Remark 6.3.2. Note that in arguments in the proof of Theorem 6.3.1, using again the Theorem 1.3.12, we can prove that

$$
\left\{t<u_{D}\right\} \subset D \subset\left\{t \leq u_{D}\right\}
$$

where $t:=\inf \left\{s: \mathcal{H}^{N-1}\left(\left\{s<u_{D}\right\}\right)<A\right\}$. Therefore u_{D} is constant on ∂D.

6.4 Derivate with respect to the load

Now we compute the derivate of the functional $\mathcal{J}(\hat{f})$ with respect to perturbations in \hat{f}. We will consider regular perturbations and assume that the function \hat{f} has bounded variation in $\partial \Omega$.

We begin by describing the kind of variations that we are considering. Let V be a regular (smooth) vector field, globally Lipschitz, with support in a neighborhood of $\partial \Omega$ such that $\langle V, v\rangle=0$ and let $\psi_{t}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be defined as the unique solution to

$$
\begin{cases}\frac{\mathrm{d}}{\mathrm{~d} t} \psi_{t}(x)=V\left(\psi_{t}(x)\right) & t>0, \tag{6.10}\\ \psi_{0}(x)=x & x \in \mathbb{R}^{N} .\end{cases}
$$

We have

$$
\psi_{t}(x)=x+t V(x)+o(t) \quad \forall x \in \mathbb{R}^{N}
$$

Thus, if f satisfies the assumption (A1), we define $f_{t}=f \circ \psi_{t}^{-1}$. Now, let

$$
I(t):=\mathcal{J}\left(f_{t}\right)=\int_{\partial \Omega} u_{t} f_{t} \mathrm{~d} \mathcal{H}^{N-1}
$$

where $u_{t} \in W^{1, p}(\Omega)$ is the unique solution to

$$
\begin{cases}-\Delta_{p} u_{t}+\left|u_{t}\right|^{p-2}=0 & \text { in } \Omega, \tag{6.11}\\ \left|\nabla u_{t}\right|^{p-2} \frac{\partial u_{t}}{\partial \nu}=f_{t} & \text { on } \partial \Omega .\end{cases}
$$

Lemma 6.4.1. Let u_{0} and u_{t} be the solution of (6.11) with $t=0$ and $t>0$, respectively. Then

$$
u_{t} \rightarrow u_{0} \text { in } W^{1, p}(\Omega), \text { as } t \rightarrow 0^{+} .
$$

Proof. The proof follows exactly as the one in Lemma 4.2 in [CEP1]. The only difference being that we use the trace inequality instead of the Poincaré inequality.

In fact, as

$$
\left.\left.C\langle | x\right|^{p-2} x-|y|^{p-2} y, x-y\right\rangle \geq \begin{cases}|x-y|^{p} & \text { if } p \geq 2, \tag{6.12}\\ \frac{\mid x--y y^{2}}{(|x|+|y|)^{2-p}} & \text { if } p \leq 2\end{cases}
$$

for all $x, y \in \mathbb{R}^{N}$, where C is a positive constant (see, for example,[T]). We consider two cases

Case 1. Let $p \geq 2$. Using (6.12) we have

$$
\begin{aligned}
\frac{1}{C}\left\|u_{t}-u_{0}\right\|_{W^{1, p}(\Omega)} & \left.\leq\left.\int_{\Omega}\langle | \nabla u_{t}\right|^{p-2} \nabla u_{t}-\left|\nabla u_{0}\right|^{p-2} \nabla u_{0}, \nabla u_{t}-\nabla u_{0}\right\rangle \mathrm{d} x \\
& +\int_{\Omega}\left(\left|u_{t}\right|^{p-2} u_{t}-\left|u_{0}\right|^{p-2} u_{0}\right)\left(u_{t}-u_{0}\right) \mathrm{d} x .
\end{aligned}
$$

By (6.11), we can rewrite the above inequality as

$$
\left\|u_{t}-u_{0}\right\|_{W^{1}, p(\Omega)}^{p} \leq C \int_{\partial \Omega}\left(f_{t}-f\right)\left(u_{t}-u\right) \mathrm{d} \mathcal{H}^{N-1}
$$

So by applying the Hölder's inequality followed by the trace inequality we obtain

$$
\left\|u_{t}-u_{0}\right\|_{W^{1}, p(\Omega)}^{p-1} \leq \widetilde{C}\left\|f_{t}-f\right\|_{L^{q}(\partial \Omega)} .
$$

From the above inequality and Lemma 4.3.1, the assertion of the lemma follows.
Case 2. Let $p \leq 2$. Let us begin with the following observation

$$
\begin{aligned}
\left\|u_{t}-u_{0}\right\|_{W^{1}, p(\Omega)}^{p} & =\int_{\Omega} \frac{\left|\nabla u_{t}-\nabla u_{0}\right|^{p}}{\left(\left|\nabla u_{t}\right|+\left|\nabla u_{0}\right|\right)^{p(2-p) / 2}}\left(\left|\nabla u_{t}\right|+\left|\nabla u_{0}\right|\right)^{p(2-p) / 2} \mathrm{~d} x \\
& +\int_{\Omega} \frac{\left|u_{t}-u_{0}\right|^{p}}{\left(\left|u_{t}\right|+\left|u_{0}\right|\right)^{p(2-p) / 2}}\left(\left|u_{t}\right|+\left|u_{0}\right|\right)^{p(2-p) / 2} \mathrm{~d} x \\
& \leq\left(\int_{\Omega} \frac{\left|\nabla u_{t}-\nabla u_{0}\right|^{2}}{\left(\left|\nabla u_{t}\right|+\left|\nabla u_{0}\right|\right)^{(2-p)}} \mathrm{d} x\right)^{\frac{p}{2}}\left(\int_{\Omega}\left(\left|\nabla u_{t}\right|+\left|\nabla u_{0}\right|\right)^{p} \mathrm{~d} x\right)^{\frac{2-p}{2}} \\
& +\left(\int_{\Omega} \frac{\left|u_{t}-u_{0}\right|^{2}}{\left(\left|u_{t}\right|+\left|u_{0}\right|\right)^{(2-p)}} \mathrm{d} x\right)^{\frac{p}{2}}\left(\int_{\Omega}\left(\left|u_{t}\right|+\left|u_{0}\right|\right)^{p} \mathrm{~d} x\right)^{\frac{2-p}{2}},
\end{aligned}
$$

which follows from the Hölder inequality, since $2 / p>1$. Note that $\left\{u_{t}\right\}_{\gg o}$ is bounded in $W^{1, p}(\Omega)$. Thus from the above inequality

$$
\frac{1}{C}\left\|u_{t}-u_{0}\right\|_{W^{1, p}(\Omega)}^{p} \leq\left(\int_{\Omega} \frac{\left|\nabla u_{t}-\nabla u_{0}\right|^{2}}{\left(\left|\nabla u_{t}\right|+\left|\nabla u_{0}\right|\right)^{(2-p)}} \mathrm{d} x\right)^{\frac{p}{2}}+\left(\int_{\Omega} \frac{\left|u_{t}-u_{0}\right|^{2}}{\left(\left|u_{t}\right|+\left|u_{0}\right|\right)^{(2-p)}} \mathrm{d} x\right)^{\frac{p}{2}}
$$

Now, applying (6.12) to the right hand side of the last inequality, the assertion of the lemma can be confirmed using similar arguments as in the ending part of Case 1.

Remark 6.4.2. It is easy to see that, as $\psi_{t} \rightarrow I d$ in the C^{1} topology, then from Lemma 6.4.1 it follows that

$$
w_{t}:=u_{t} \circ \psi_{t} \rightarrow u_{0} \quad \text { strongly in } W^{1, p}(\Omega)
$$

Now, we can prove that $I(t)$ is differentiable at $t=0$ and give a formula for the derivative.

Theorem 6.4.3. With the previous notation, we have that $I(t)$ is differentiable at $t=0$ and

$$
\begin{aligned}
\left.\frac{\mathrm{d} I(t)}{\mathrm{d} t}\right|_{t=0} & =\frac{p}{p-1} \int_{\partial \Omega} u_{0} f \operatorname{div}_{\tau} V \mathrm{~d} \mathcal{H}^{N-1} \\
& +\frac{1}{p-1} \int_{\Omega}\left[p\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0},{ }^{T} V^{\prime} \nabla u_{0}^{T}\right\rangle-\left(\left|\nabla u_{0}\right|^{p}+\left|u_{0}\right|^{p}\right) \operatorname{div} V\right] \mathrm{d} x,
\end{aligned}
$$

where u_{0} is the solution of (6.11) with $t=0$.
Proof. By (6.3) we have that

$$
I(t)=\sup \frac{1}{p-1}\left\{p \int_{\partial \Omega} v f_{t} \mathrm{~d} \mathcal{H}^{N-1}-\int_{\Omega}|\nabla v|^{p}+|v|^{p} \mathrm{~d} x: v \in W^{1, p}(\Omega)\right\} .
$$

Given $v \in W^{1, p}(\Omega)$, we consider $u=v \circ \psi_{t} \in W^{1, p}(\Omega)$. Then, by the Lemma 4.1.1, we have

$$
\int_{\Omega}|v|^{p} \mathrm{~d} x=\int_{\Omega}|u|^{p} \mathrm{~d} x+t \int_{\Omega}|u|^{p} \operatorname{div} V \mathrm{~d} x+o(t) .
$$

and, by the Theorem 4.1.3,

$$
\int_{\Omega}|\nabla v|^{p} \mathrm{~d} x=\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+t \int_{\Omega}|\nabla u|^{p} \operatorname{div} V \mathrm{~d} x-t p \int_{\Omega}|\nabla u|^{p-2}\left\langle\nabla u,^{T} V^{\prime} \nabla u^{T}\right\rangle \mathrm{d} x+o(t),
$$

Also, by Lemma 4.3.1, we have

$$
\int_{\partial \Omega} v f_{t} \mathrm{~d} \mathcal{H}^{N-1}=\int_{\partial \Omega} u f \mathrm{~d} \mathcal{H}^{N-1}+t \int_{\partial \Omega} u f \operatorname{div}_{\tau} V \mathrm{~d} \mathcal{H}^{N-1}+o(t),
$$

Then, for all $v \in W^{1, p}(\Omega)$ we have that

$$
p \int_{\partial \Omega} v f_{t} \mathrm{~d} \mathcal{H}^{N-1}-\int_{\Omega}|\nabla v|^{p}+|v|^{p} \mathrm{~d} x=\varphi(u)+t \phi(u)+o(t),
$$

where

$$
\varphi(u)=p \int_{\partial \Omega} u f \mathrm{~d} \mathcal{H}^{N-1}-\int_{\Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} x
$$

and

$$
\phi(u)=p \int_{\partial \Omega} u f \operatorname{div}_{\tau} V \mathrm{~d} \mathcal{H}^{N-1}-\int_{\Omega}\left[p|\nabla u|^{p-2}\left\langle\nabla u,{ }^{T} V^{\prime} \nabla u^{T}\right\rangle-\left(|\nabla u|^{p}+|u|^{p}\right) \operatorname{div} V\right] \mathrm{d} x .
$$

Therefore, we can rewrite $I(t)$ as

$$
I(t)=\sup \left\{\frac{1}{p-1}[\varphi(u)+t \phi(u)]+o(t): u \in W^{1, p}(\Omega)\right\} .
$$

If we define $w_{t}=u_{t} \circ \psi_{t}$ for all $t>0$, we have that $w_{0}=u_{0}$ and

$$
I(t)=\frac{1}{p-1}\left[\varphi\left(w_{t}\right)+t \phi\left(w_{t}\right)\right]+o(t) \quad \forall t .
$$

Thus

$$
I(t)-I(0) \geq \frac{1}{p-1}\left[\varphi\left(u_{0}\right)+t \phi\left(u_{0}\right)\right]+o(t)-\frac{1}{p-1} \varphi\left(u_{0}\right)
$$

then

$$
\begin{equation*}
\liminf _{t \rightarrow 0^{+}} \frac{I(t)-I(0)}{t} \geq \frac{1}{p-1} \phi\left(u_{0}\right) . \tag{6.13}
\end{equation*}
$$

On the other hand

$$
I(t)-I(0) \leq \frac{1}{p-1}\left[\varphi\left(w_{t}\right)+t \phi\left(w_{t}\right)\right]+o(t)-\frac{1}{p-1} \varphi\left(w_{t}\right),
$$

hence,

$$
\frac{I(t)-I(0)}{t} \leq \frac{1}{p-1} \phi\left(w_{t}\right)+\frac{1}{t} o(t) .
$$

By Remark 6.4.2,

$$
\phi\left(w_{t}\right) \rightarrow \phi\left(u_{0}\right) \quad \text { as } t \rightarrow 0^{+},
$$

therefore,

$$
\begin{equation*}
\limsup _{t \rightarrow 0^{+}} \frac{I(t)-I(0)}{t} \leq \frac{1}{p-1} \phi\left(u_{0}\right) . \tag{6.14}
\end{equation*}
$$

From (6.13) and (6.14) we deduced that there exists $I^{\prime}(0)$ and

$$
\begin{aligned}
I^{\prime}(0) & =\frac{1}{p-1} \phi\left(u_{0}\right) \\
& =\frac{p}{p-1} \int_{\partial \Omega} u_{0} f \operatorname{div}_{\tau} V \mathrm{~d} \mathcal{H}^{N-1} \\
& +\frac{1}{p-1} \int_{\Omega}\left[p\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0},{ }^{T} V^{\prime} \nabla u_{0}^{T}\right\rangle-\left(\left|\nabla u_{0}\right|^{p}+\left|u_{0}\right|^{p}\right) \operatorname{div} V\right] \mathrm{d} x .
\end{aligned}
$$

The prove is now complete.

Now we try to find a more explicit formula for $I^{\prime}(0)$. For This, we consider

$$
f \in L^{q}(\partial \Omega) \cap B V(\partial \Omega)
$$

Theorem 6.4.4. If $f \in L^{q}(\partial \Omega) \cap B V(\partial \Omega)$, we have that

$$
\left.\frac{\partial I(t)}{\partial t}\right|_{t=0}=\frac{p}{p-1} \int_{\partial \Omega} u_{0} V \mathrm{~d}[D f]
$$

where u_{0} is the solution of (6.11) with $t=0$.
Proof. In the course of the computations, we require the solution u_{0} to

$$
\begin{cases}-\Delta u_{0}+\left|u_{0}\right|^{p-2} u_{0}=0 & \text { in } \Omega, \\ \left|\nabla u_{0}\right|^{p-2} \frac{\partial u_{0}}{\partial v}=f & \text { on } \partial \Omega\end{cases}
$$

to be C^{2}. However, this is not true. As it is well known (see, for instance, [L]), u_{0} belongs to the class $C^{1, \delta}$ for some $0<\delta<1$.

In order to overcome this difficulty, we proceed as follows. We consider the regularized problems

$$
\begin{cases}-\operatorname{div}\left(\left(\left|\nabla u_{0}^{\varepsilon}\right|^{2}+\varepsilon^{2}\right)^{(p-2) / 2} \nabla u_{0}^{\varepsilon}\right)+\left|u_{0}^{\varepsilon}\right|^{p-2} u_{0}^{\varepsilon}=0 & \text { in } \Omega, \tag{6.15}\\ \left(\left|\nabla u_{0}^{\varepsilon}\right|^{2}+\varepsilon^{2}\right)^{(p-2) / 2} \frac{\partial u_{0}^{\varepsilon}}{\partial v}=f & \text { on } \partial \Omega\end{cases}
$$

It is well known that the solution u_{0}^{ε} to (6.15) is of class $C^{2, \rho}$ for some $0<\rho<1$ (see [LSU]).

Then, we can perform all of our computations with the functions u_{0}^{ε} and pass to the limit as $\varepsilon \rightarrow 0+$ at the end.

We have chosen to work formally with the function u_{0} in order to make our arguments more transparent and leave the details to the reader. For a similar approach, see the proof of the Theorem 5.2.11.

Now, by Theorem 6.4.3 and since

$$
\begin{aligned}
\operatorname{div}\left(\left|u_{0}\right|^{p} V\right) & =p\left|u_{0}\right|^{p-2} u_{0}\left\langle\nabla u_{0}, V\right\rangle+\left|u_{0}\right|^{p} \operatorname{div} V, \\
\operatorname{div}\left(\left|\nabla u_{0}\right|^{p} V\right) & =p\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0} D^{2} u_{0}, V\right\rangle+\left|\nabla u_{0}\right|^{p} \operatorname{div} V,
\end{aligned}
$$

we obtain

$$
\begin{aligned}
I^{\prime}(0) & =\frac{p}{p-1} \int_{\partial \Omega} u_{0} f \operatorname{div}_{\tau} V \mathrm{~d} \mathcal{H}^{N-1} \\
& +\frac{1}{p-1} \int_{\Omega}\left[p\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0},{ }^{T} V^{\prime} \nabla u_{0}^{T}\right\rangle-\left(\left|\nabla u_{0}\right|^{p}+\left|u_{0}\right|^{p}\right) \operatorname{div} V\right] \mathrm{d} x \\
& =\frac{p}{p-1}\left\{p \int_{\partial \Omega} u_{0} f \operatorname{div}_{\tau} V \mathrm{~d} \mathcal{H}^{N-1}+\int_{\Omega}\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0},{ }^{T} V^{\prime} \nabla u_{0}^{T}\right\rangle \mathrm{d} x\right\} \\
& +\frac{1}{p-1} \int_{\Omega}\left\{p\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0} D^{2} u_{0}, V\right\rangle-\operatorname{div}\left(\left[\left|\nabla u_{0}\right|^{p}+\left|u_{0}\right|^{p}\right] V\right)\right\} \mathrm{d} x \\
& +\frac{p}{p-1} \int_{\Omega}\left|u_{0}\right|^{p-2} u_{0}\left\langle\nabla u_{0}, V\right\rangle \mathrm{d} x .
\end{aligned}
$$

Hence, using that $\langle V, v\rangle=0$ in the right hand side of the above equality, we find

$$
\begin{aligned}
I^{\prime}(0) & =\frac{p}{p-1}\left\{\int_{\partial \Omega} u_{0} f \operatorname{div}_{\tau} V \mathrm{~d} \mathcal{H}^{N-1}+\int_{\Omega}\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0},{ }^{T} V^{\prime} \nabla u_{0}^{T}+D^{2} u_{0} V^{T}\right\rangle \mathrm{d} x\right\} \\
& +\frac{p}{p-1} \int_{\Omega}\left|u_{0}\right|^{p-2} u_{0}\left\langle\nabla u_{0}, V\right\rangle \mathrm{d} x \\
& =\frac{p}{p-1}\left\{\int_{\partial \Omega} u_{0} f \operatorname{div}_{\tau} V \mathrm{~d} \mathcal{H}^{N-1}+\int_{\Omega}\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0}, \nabla\left(\left\langle\nabla u_{0}, V\right\rangle\right)\right\rangle \mathrm{d} x\right\} \\
& +\frac{p}{p-1} \int_{\Omega}\left|u_{0}\right|^{p-2} u_{0}\left\langle\nabla u_{0}, V\right\rangle \mathrm{d} x .
\end{aligned}
$$

Since u_{0} is a week solution of (6.11) with $t=0$, we have

$$
\begin{aligned}
I^{\prime}(0) & =\frac{p}{p-1}\left\{\int_{\partial \Omega} u_{0} f \operatorname{div}_{\tau} V \mathrm{~d} \mathcal{H}^{N-1}+\int_{\partial \Omega}\left\langle\nabla u_{0}, V\right\rangle f \mathrm{~d} \mathcal{H}^{N-1}\right\} \\
& =\frac{p}{p-1} \int_{\partial \Omega} \operatorname{div}_{\tau}\left(u_{0} V\right) f \mathrm{~d} \mathcal{H}^{N-1} .
\end{aligned}
$$

Finally, since $f \in B V(\partial \Omega)$ and $V \in C^{1}\left(\partial \Omega ; \mathbb{R}^{N}\right)$,

$$
\begin{aligned}
I^{\prime}(0) & =\frac{p}{p-1} \int_{\partial \Omega} \operatorname{div}_{\tau}\left(u_{0} V\right) f \mathrm{~d} \mathcal{H}^{N-1} \\
& =\frac{p}{p-1} \int_{\partial \Omega} u_{0} V \mathrm{~d}[D f],
\end{aligned}
$$

as we wanted to prove.

Lastly, we consider the case that $f=\chi_{D}$. Observe that, in this case,

$$
\mathcal{R}\left(\chi_{D}\right)=\left\{\chi_{E}:|E|=|D|\right\},
$$

and therefore we find in the case studied in Section 6.3.
Corollary 6.4.5. Let D be a locally finite perimeter set in $\partial \Omega$. If $f=\chi_{D}$, with the previous notation, we have that

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} I(t)\right|_{t=0}=\frac{p}{p-1} \int_{\partial D} u_{0}\left\langle V, v_{\tau}\right\rangle \mathrm{d} \mathcal{H}^{N-2},
$$

where u_{0} is the solution of (6.11) with $t=0$.
Proof. Since D has locally finite perimeter in $\partial \Omega$, it follows that

$$
f=\chi_{D} \in L^{q}(\partial \Omega) \cap B V(\partial \Omega) .
$$

Then, by the previous theorem and Theorem 1.9.5, we have

$$
\begin{aligned}
\left.\frac{\mathrm{d}}{\mathrm{~d} t} I(t)\right|_{t=0} & =\frac{p}{p-1} \int_{\partial \Omega} u_{0} V \mathrm{~d}\left[D \chi_{D}\right] \\
& =\frac{p}{p-1} \int_{\partial D} u_{0}\left\langle V, v_{\tau}\right\rangle \mathrm{d} \mathcal{H}^{N-2},
\end{aligned}
$$

where u_{0} is the solution of (6.11) with $t=0$.
This completes the proof.

The following theorem is a result that we have already observed, actually under weaker assumptions on D, in Remark 6.3.2.

Nevertheless, we have chosen to include this remark as a direct application of the Lemma 4.3.1 and Corollary 6.4.5.

Theorem 6.4.6. Let χ_{D} be a maximizer for \mathcal{J} over the class \mathbf{B} and assume that D has locally finite perimeter in $\partial \Omega$. Let u_{D} be the solution to the associated state equation

$$
\begin{cases}-\Delta_{p} u+|u|^{p-2} u=0 & \text { in } \Omega, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial v}=\chi_{D} & \text { on } \partial \Omega .\end{cases}
$$

Then, u_{D} is constant along ∂D.
Proof. Let D be a critical point of I and, with the previous notation, $D_{t}=\psi_{t}(D)$. Then, by Theorem 1.9.5 and Lemma 4.3.1, we have

$$
\begin{aligned}
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{H}^{N-1}\left(D_{t}\right)\right|_{t=0} & =\left.\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\partial \Omega} \chi_{D_{t}} \mathrm{~d} \mathcal{H}^{N-1}\right|_{t=0} \\
& =\int_{D} \operatorname{div}_{\tau} V \mathrm{~d} \mathcal{H}^{N-1} \\
& =\int_{\partial D}\left\langle V, v_{\tau}\right\rangle \mathrm{d} \mathcal{H}^{N-2} .
\end{aligned}
$$

Thus, the fact that D is a critical point of I and by Corollary 6.4 .5 , we derive

$$
I^{\prime}(0)=\left.c \frac{\mathrm{~d}}{\mathrm{~d} t} \mathcal{H}^{N-1}\left(D_{t}\right)\right|_{t=0} \Longleftrightarrow u=\text { constant }, \text { on } \partial D .
$$

As we wanted to prove.

7

Extremals of the trace inequality in domains with holes

Throughout this chapter, Ω is a bounded smooth domain in \mathbb{R}^{N} with $N \geq 2$ and $1<p<\infty$.
For any $A \subset \bar{\Omega}$, which is a smooth open subset, we define the space

$$
W_{A}^{1, p}(\Omega)=\overline{C_{0}^{\infty}(\bar{\Omega} \backslash A)},
$$

where the closure is taken in $W^{1, p}$-norm. By the Sobolev Trace Embedding Theorem, there is a compact embedding

$$
\begin{equation*}
W_{A}^{1, p}(\Omega) \hookrightarrow L^{q}(\partial \Omega), \tag{7.1}
\end{equation*}
$$

for all $1 \leq q<p_{*}$.
Thus, given $1<q<p_{*}$, there exist a constant $C=C(q, p)$ such that

$$
C\left(\int_{\partial \Omega}|u|^{q} \mathrm{~d} \mathcal{H}^{N-1}\right)^{p / q} \leq \int_{\Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} x
$$

The best (largest) constant in the above inequality is given by

$$
\begin{equation*}
S_{q}(A):=\inf \left\{\frac{\int_{\Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} x}{\left(\int_{\partial \Omega}|u|^{q} \mathrm{~d} \mathcal{H}^{N-1}\right)^{p / q}}: u \in W_{A}^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega)\right\} . \tag{7.2}
\end{equation*}
$$

By (7.1), there exist an extremal for $S_{q}(A)$. Moreover, an extremal for $S_{q}(A)$ is a weak solution to

$$
\begin{cases}-\Delta_{p} u+|u|^{p-2} u=0 & \text { in } \Omega \backslash \bar{A}, \tag{7.3}\\ |\nabla u|^{p-2} \frac{\partial u}{\partial v}=\lambda|u|^{q-2} u & \text { on } \partial \Omega \backslash \partial \bar{A}, \\ u=0 & \text { on } \partial A\end{cases}
$$

where λ depends on the normalization of u. When $\|u\|_{L^{q}(\partial \Omega)}=1$, we have that $\lambda=S_{q}(A)$. Moreover, when $p=q$ the problem (7.3) becomes homogeneous, and therefore it is a
nonlinear eigenvalue problem. In this case, the first eigenvalue of (7.3) coincides with the best Sobolev trace constant $S_{q}(A)=\lambda_{1}(A)$ and it is shown in [MR], that it is simple (see also [FBR3]). Therefore, if $p=q$, the extremal for $S_{p}(A)$ is unique up to constant factor. In the linear setting, i.e., when $p=q=2$, this eigenvalue problem is known as the Steklov eigenvalue problem, see [St].

We say that hole A^{*} is optimal for the parameter $\alpha, 0<\alpha<|\Omega|$, if $\left|A^{*}\right|=\alpha$ and

$$
S_{q}\left(A^{*}\right)=\inf \left\{S_{q}(A): A \subset \bar{\Omega} \text { and }|A|=\alpha\right\}
$$

In [FBRW2], the authors proof the existence of an optimal hole. Moreover, in the case that Ω is a ball, they prove the following result

Theorem 7.0.7. Let $\Omega=B(0,1)$ and $0<\alpha<|B(0,1)|$. Then there exists an optimal hole of measure α which is spherically symmetric.

The aim of this chapter is to analyze the dependence of the Sobolev trace constant $S_{q}(A)$ with respect to variations on the set A. To this end, we compute the so-called shape derivative of $S_{q}(A)$ with respect to regular perturbations of the hole A.

In [FBGR], this problem is analyzed in the linear case $p=q=2$. There, the authors consider the following kind of variation. Let $V: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be a regular (smooth) vector filed, globally Lipschitz, with support in Ω and let $\varphi_{t}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be defined as the unique solution to

$$
\begin{cases}\frac{d}{d t} \varphi_{t}(x)=V\left(\varphi_{t}(x)\right) & t>0 \\ \varphi_{0}(x)=x & x \in \mathbb{R}^{N} .\end{cases}
$$

Then, they define $A_{t}:=\varphi_{t}(A) \subset \Omega$ for all $t>0$ and

$$
S_{2}(t)=\inf \left\{\frac{\int_{\Omega}|\nabla v|^{2}+|v|^{2} \mathrm{~d} x}{\int_{\partial \Omega}|v|^{2} \mathrm{~d} \mathcal{H}^{N-1}}: v \in W_{A_{t}}^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega)\right\} .
$$

Observe that $A_{0}=A$ and therefore $S_{2}(0)=S_{2}(A)$. The authors prove that $S_{2}(t)$ is differentiable with respect to t at $t=0$ and it holds

$$
S_{2}^{\prime}(0)=\left.\frac{d}{d t} S_{2}(t)\right|_{t=0}=-\int_{\partial A}\left(\frac{\partial u}{\partial v}\right)^{2}\langle V, v\rangle \mathrm{d} \mathcal{H}^{N-1}
$$

where u is a normalized eigenfunction for $S_{2}(A)$ and v is the exterior normal vector to $\Omega \backslash \bar{A}$.

Furthermore, in the case that Ω is the ball B_{R} with center 0 and radius $R>0$ the authors show that a centered ball $A=B_{r}, r<R$, is critical in the sense that $S_{2}^{\prime}(A)=0$ when considering deformations that preserves volume but this configuration is not optimal.

Therefore there is a lack of symmetry in the optimal configuration.

Here, we extend these results to the more general case $1<p<\infty$ and $1<q<p_{*}$. Our method differs from the one in [FBGR] in order to deal with the nonlinear character of the problem.

The rest of the chapter is organized as follows: in Section 7.1, we compute the derivative of $S_{q}(\cdot)$ with respect to theregular perturbation of the hole and in Section 7.2, we study the lack of symmetry in the case that Ω is a ball.

7.1 Differentiation of the extremal

In this section, we compute the shape derivative of $S_{q}(\cdot)$ with respect to the regular perturbations of the hole.

As in Section 5.2, we consider the following variation. Let $V: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be a regular (smooth) vector filed, globally Lipschitz, with support in Ω, and let $\varphi_{t}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be defined as the unique solution to

$$
\begin{cases}\frac{d}{d t} \varphi_{t}(x)=V\left(\varphi_{t}(x)\right) & t>0 \\ \varphi_{0}(x)=x & x \in \mathbb{R}^{N} .\end{cases}
$$

Given $A \subset \partial \Omega$, we define $A_{t}:=\varphi_{t}(A) \subset \Omega$ for all $t>0$ and

$$
\begin{equation*}
S_{q}(t)=\inf \left\{\frac{\int_{\Omega}|\nabla v|^{p}+|v|^{p} \mathrm{~d} x}{\left(\int_{\partial \Omega}|v|^{q} \mathrm{~d} \mathcal{H}^{N-1}\right)^{p / q}}: v \in W_{A_{t}}^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega)\right\} . \tag{7.4}
\end{equation*}
$$

The aim of this section is show that $S_{q}(t)$ is differentiable to t at $t=0$. For this we require some previous results. Here, we use some ideas from [GMSL].

We begin by observing that if $v \in W_{A_{t}}^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega)$, then

$$
u=v \circ \varphi_{t} \in W_{A}^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega) .
$$

Thus, by the Lemma 4.1.1, we have that

$$
\int_{\Omega}|u|^{p} \mathrm{~d} x=\int_{\Omega}|u|^{p} \mathrm{~d} x+t \int_{\Omega}|u|^{p} \operatorname{div} V \mathrm{~d} x+o(t),
$$

and by the Theorem 4.1.3,

$$
\int_{\Omega}|\nabla v|^{p} \mathrm{~d} x=\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+t \int_{\Omega}|\nabla u|^{p} \operatorname{div} V \mathrm{~d} x-p t \int_{\Omega}|\nabla u|^{p-2}\left\langle\nabla u,{ }^{T} V^{\prime} \nabla u^{T}\right\rangle \mathrm{d} x+o(t) .
$$

Moreover, since $\operatorname{supp} V \subset \Omega$, we have that

$$
\int_{\partial \Omega}|\nu|^{q} \mathrm{~d} \mathcal{H}^{N-1}=\int_{\partial \Omega}|u|^{q} \mathrm{~d} \mathcal{H}^{N-1} .
$$

Therefore, we can rewrite (7.4) as

$$
\begin{equation*}
S_{q}(t)=\inf \left\{\rho(u)+t \gamma(u): v \in W_{A}^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega)\right\} \tag{7.5}
\end{equation*}
$$

where

$$
\rho(u)=\frac{\int_{\Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} x}{\left\{\int_{\partial \Omega}|u|^{q} \mathrm{~d} \mathcal{H}^{N-1}\right\}^{p / q}},
$$

and

$$
\gamma(u)=\frac{\int_{\Omega}\left\{|\nabla u|^{p}+|u|^{p}\right\} \operatorname{div} V \mathrm{~d} x-p \int_{\Omega}|\nabla u|^{p-2}\left\langle\nabla u,{ }^{T} V^{\prime} \nabla u^{T}\right\rangle \mathrm{d} x}{\left\{\int_{\partial \Omega}|u|^{q} \mathrm{~d} \mathcal{H}^{N-1}\right\}^{p / q}}+o(1) .
$$

Given $t \geq 0$, let $u_{t} \in W_{A}^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega)$ such that $\left\|u_{t}\right\|_{L^{q}(\partial \Omega)}=1$ and

$$
S_{q}(t)=\psi(t)+t \phi(t),
$$

where

$$
\psi(t)=\rho\left(u_{t}\right) \quad \text { and } \quad \phi(t)=\gamma\left(u_{t}\right) \quad \forall t \geq 0 .
$$

We observe that $\psi, \phi: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ and
Lemma 7.1.1. The function ϕ is nonincreasing.

Proof. Let $0 \leq t_{1} \leq t_{2}$. By (7.5), we have that

$$
\begin{align*}
\psi\left(t_{2}\right)+t_{1} \phi\left(t_{2}\right) & \geq S_{q}\left(t_{1}\right)=\psi\left(t_{1}\right)+t_{1} \phi\left(t_{1}\right) \tag{7.6}\\
\psi\left(t_{1}\right)+t_{2} \phi\left(t_{1}\right) & \geq S_{q}\left(t_{2}\right)=\psi\left(t_{2}\right)+t_{2} \phi\left(t_{2}\right) . \tag{7.7}
\end{align*}
$$

Subtracting (7.6) from (7.7), we get

$$
\left(t_{2}-t_{1}\right) \phi\left(t_{1}\right) \geq\left(t_{2}-t_{1}\right) \phi\left(t_{2}\right) .
$$

Since $t_{2}-t_{1} \geq 0$, we obtain

$$
\phi\left(t_{1}\right) \geq \phi\left(t_{2}\right)
$$

This ends the proof.
Remark 7.1.2. Since ϕ is nonincreasing, we have

$$
\phi(t) \leq \phi(0) \quad \forall t \geq 0,
$$

and there exists

$$
\phi\left(0^{+}\right)=\lim _{t \rightarrow 0^{+}} \phi(t) .
$$

Corollary 7.1.3. The function ψ is nondecreasing.

Proof. Let $0 \leq t_{1} \leq t_{2}$. Again, by (7.5), we have that

$$
\begin{equation*}
\psi\left(t_{2}\right)+t_{1} \phi\left(t_{2}\right) \geq S_{q}\left(t_{1}\right)=\psi\left(t_{1}\right)+t_{1} \phi\left(t_{1}\right) \tag{7.8}
\end{equation*}
$$

so

$$
\psi\left(t_{2}\right)-\psi\left(t_{1}\right) \geq t_{1}\left(\phi\left(t_{1}\right)-\phi\left(t_{2}\right)\right) .
$$

Since $0 \leq t_{1} \leq t_{2}$, by Lemma 7.1.1, we have that $\phi\left(t_{1}\right)-\phi\left(t_{2}\right) \geq 0$. Then

$$
\psi\left(t_{2}\right)-\psi\left(t_{1}\right) \geq 0,
$$

that is what we wished to prove.
Now we can prove that $S_{q}(t)$ is continuous at $t=0$.
Theorem 7.1.4. The function $S_{q}(t)$ is continuous at $t=0$, i.e.,

$$
\lim _{t \rightarrow 0^{+}} S_{q}(t)=S_{q}(0)
$$

Proof. Given $t \geq 0$ so, by Corollary 7.1.3,

$$
S_{q}(t)-S_{q}(0)=\psi(t)+t \phi(t)-\psi(0) \geq t \phi(t) .
$$

On the other hand, by (7.5), we have that

$$
S_{q}(t) \leq \psi(0)+t \phi(0)=S_{q}(0)+t \phi(0) .
$$

Then

$$
t \phi(t) \leq S_{q}(t)-S_{q}(0) \leq t \phi(0)
$$

Thus, by Remark 7.1.2,

$$
\lim _{t \rightarrow 0^{+}} S_{q}(t)-S_{q}(0)=0 .
$$

This finishes the proof.
Thus, from Remark 7.1.2 and Theorem 7.1.4, we obtain the following corollary:
Corollary 7.1.5. The function ψ is continuous at $t=0$, i.e.,

$$
\lim _{t \rightarrow 0^{+}} \psi(t)=\psi(0) .
$$

Proof. We observe that

$$
\psi(t)-\psi(0)=S_{q}(t)-S_{q}(0)-t \phi(t)
$$

then, by Remark 7.1.2 and Theorem 7.1.4,

$$
\lim _{t \rightarrow 0^{+}} \psi(t)-\psi(0)=0
$$

That proves the result.

Theorem 7.1.6. The function ψ is differentiable at $t=0$ and

$$
\frac{\mathrm{d} \psi}{\mathrm{~d} t}(0)=0 .
$$

Proof. Let $0<r<t$. By (7.5), we get

$$
S_{q}(r)=\psi(r)+r \phi(r) \leq \psi(t)+r \phi(t),
$$

and

$$
S_{q}(t)=\psi(t)+t \phi(t) \leq \psi(r)+t \phi(r)
$$

So

$$
\underset{t}{r}(\phi(r)-\phi(t)) \leq \frac{\psi(t)-\psi(r)}{t} \leq \phi(r)-\phi(t)
$$

hence, taking limits when $r \rightarrow 0^{+}$, by Remark 7.1.2 and Corollary 7.1.5, we have that

$$
0 \leq \frac{\psi(t)-\psi(0)}{t} \leq \phi\left(0^{+}\right)-\phi(t)
$$

Now, taking limits when $t \rightarrow 0^{+}$, and again, by Remark 7.1.2, we get

$$
\lim _{t \rightarrow 0^{+}} \frac{\psi(t)-\psi(0)}{t}=0
$$

as we wanted to show.

Now, we are in condition to prove the main result of this section.
Theorem 7.1.7. Suppose $A \subset \bar{\Omega}$ is a smooth open subset and let $1<q<p_{*}$. Then, with the previous notation, we have that $S_{q}(t)$ is differentiable at $t=0$ and

$$
\left.\frac{d}{d t} S_{q}(t)\right|_{t=0}=(1-p) \int_{\partial A}\left|\frac{\partial u_{0}}{\partial v}\right|^{p}\langle V, v\rangle \mathrm{d} \mathcal{H}^{N-1}
$$

where u_{0} is a normalized extremal for $S_{q}(A)$ and v is the exterior normal vector to $\Omega \backslash \bar{A}$.
Remark 7.1.8. If u_{0} is an extremal for $S_{q}(A)$ we have that $\left|u_{0}\right|$ is also an extremal associated to $S_{q}(A)$. Then, in the above theorem, we can suppose that $u_{0} \geq 0$ in Ω. Moreover, by [L], we have that $u_{0} \in C^{1, \rho}(\bar{\Omega} \backslash \bar{A})$ if $\Omega \backslash \bar{A}$ is an open smooth open and if $\Omega \backslash \bar{A}$ satisfies the interior ball condition for all $x \in \partial \Omega \backslash \partial \bar{A}$ then $u_{0}>0$ on $\partial \Omega \backslash \partial \bar{A}$, see [V].

Proof of Theorem 7.1.7. We proceed in three steps.
Step 1. We show that $S_{q}(t)$ is differentiable at $t=0$ and

$$
\left.\frac{d}{d t} S_{q}(t)\right|_{t=0}=\phi\left(0^{+}\right)
$$

We have that

$$
\frac{S_{q}(t)-S_{q}(0)}{t}=\frac{\psi(t)-\psi(0)}{t}-\phi(t) .
$$

Then, by Remark 7.1.2 and Theorem 7.1.6,

$$
\left.\frac{d}{d t} S_{q}(t)\right|_{t=0}=S_{q}^{\prime}(0)=\lim _{t \rightarrow 0^{+}} \frac{S_{q}(t)-S_{q}(0)}{t}=\phi\left(0^{+}\right)
$$

Step 2. We show that there exists u extremal for $S_{q}(A)$ such that $\|u\|_{L^{q}(\partial \Omega)}=1$ and

$$
\phi\left(0^{+}\right)=\int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) \operatorname{div} V \mathrm{~d} x-p \int_{\Omega}|\nabla u|^{p-2}\left\langle\nabla u,{ }^{T} V^{\prime} \nabla u\right\rangle \mathrm{d} x .
$$

By Theorem 7.1.5,

$$
\begin{equation*}
\left\|v_{t}\right\|_{W^{1, p}(\Omega)}^{p}=\psi(t) \rightarrow \psi(0)=S_{q}(0) \text { as } t \rightarrow 0^{+} . \tag{7.9}
\end{equation*}
$$

Then, there exists $u \in W^{1, p}(\Omega)$ and $t_{n} \rightarrow 0^{+}$as $n \rightarrow \infty$ such that

$$
\begin{align*}
& v_{t_{n}} \rightarrow u \text { weakly in } W^{1, p}(\Omega), \tag{7.10}\\
& v_{t_{n}} \rightarrow u \text { strongly in } L^{q}(\partial \Omega), \tag{7.11}\\
& v_{t_{n}} \rightarrow u \text { a.e. in } \Omega . \tag{7.12}
\end{align*}
$$

By (7.11) and (7.12), $u \in W_{A}^{1, p}(\Omega)$ and $\|u\|_{L^{q}(\partial \Omega)}=1$ and by (7.10)

$$
S_{q}(0)=\lim _{n \rightarrow \infty}\left\|v_{t_{n}}\right\|_{W^{1, p}(\Omega)}^{p} \geq\|u\|_{W^{1, p}(\Omega)}^{p} \geq S_{q}(0)
$$

then

$$
\begin{equation*}
S_{q}(0)=\|u\|_{W^{1, p}(\Omega)}^{p} . \tag{7.13}
\end{equation*}
$$

Moreover, by (7.9), (7.10) and (7.13), we have that

$$
v_{t_{n}} \rightarrow u \text { strongly in } W^{1, p}(\Omega)
$$

Therefore

$$
\begin{aligned}
\phi\left(0^{+}\right) & =\lim _{n \rightarrow \infty} \phi\left(v_{t_{n}}\right) \\
& =\int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) \operatorname{div} V \mathrm{~d} x-p \int_{\Omega}|\nabla u|^{p-2}\left\langle\nabla u,{ }^{T} V^{\prime} \nabla u^{T}\right\rangle \mathrm{d} x .
\end{aligned}
$$

Step 3. Lastly, we show that

$$
\begin{aligned}
S_{q}^{\prime}(0) & =\int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) \operatorname{div} V \mathrm{~d} x-p \int_{\Omega}|\nabla u|^{p-2}\left\langle\nabla u,{ }^{T} V^{\prime} \nabla u^{T}\right\rangle \mathrm{d} x \\
& =-\int_{\partial A}\left|\frac{\partial u}{\partial v}\right|^{p}\langle V, v\rangle \mathrm{d} \mathcal{H}^{N-1} .
\end{aligned}
$$

To show this we would require that $u \in C^{2}$. However, this is not true. Since u is an esxtremal for $S_{q}(A)$ and $\|u\|_{L^{q}(\Omega)}=1$, we known that u is weak solution to

$$
\begin{cases}-\Delta_{p} u+|u|^{p-2} u=0 & \text { in } \Omega \backslash \bar{A}, \\ |\nabla u u|^{p-2} \frac{\partial u}{\partial v}=S_{q}(A)|u|^{q-2} u & \text { on } \partial \Omega, \\ u=0 & \text { on } \partial A,\end{cases}
$$

and by [L] we get that u belongs to the class $C^{1, \delta}$ for some $0<\delta<1$.
In order to overcome this difficulty, we proceed as follows. We consider the regularized problems

$$
\begin{equation*}
S_{\varepsilon}:=\inf \left\{\frac{\int_{\Omega}\left(|\nabla v|^{2}+\varepsilon^{2}\right)^{\frac{p-2}{2}}|\nabla v|^{2}+|v|^{p} \mathrm{~d} x}{\left\{\int_{\partial \Omega}|v|^{q} \mathrm{~d} S\right\}^{\frac{p}{q}}}: v \in W_{A}^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega)\right\} . \tag{7.14}
\end{equation*}
$$

Let u_{ε} be a normalized positive eigenvalue associated to S_{ε}. Observe that the eigenfunction is weak solution to

$$
\begin{cases}\left.-\operatorname{div}\left(\left|\nabla u_{\varepsilon}\right|^{2}+\varepsilon^{2}\right)^{(p-2) / 2} \nabla u_{\varepsilon}\right)+\left|u_{\varepsilon}\right|^{p-2} u_{\varepsilon}=0 & \text { in } \Omega \backslash \bar{A}, \tag{7.15}\\ \left(\left|\nabla u_{\varepsilon}\right|^{2}+\varepsilon^{2}\right)^{(p-2) / 2} \frac{\partial u_{\varepsilon}}{\partial v}=S_{\varepsilon}\left|u_{\varepsilon}\right|^{q-2} u_{\varepsilon} & \text { on } \partial \Omega, \\ u_{\varepsilon}=0 & \text { on } \partial A .\end{cases}
$$

It is well known that the solution u_{ε} to (7.15) is of class $C^{2, \rho}$ for some $0<\rho<1$ (see [LSU]).

Then, we can perform all of our computations with the functions u_{ε} and pass to the limit as $\varepsilon \rightarrow 0$ at the end.

We have chosen to work formally with the function u in order to make our arguments more transparent and leave the details to the reader. For a similar approach, see Lemma 5.2.9, Remark 5.2.10 and proof of the Theorem 5.2.11.

Since

$$
\begin{aligned}
\operatorname{div}\left(|u|^{p} V\right) & =|u|^{p} \operatorname{div} V+p|u|^{p-2} u\langle\nabla u, V\rangle, \\
\operatorname{div}\left(|\nabla u|^{p} V\right) & =|\nabla u|^{p} \operatorname{div} V+p|\nabla u|^{p-2}\left\langle\nabla u D^{2} u, V\right\rangle,
\end{aligned}
$$

we have that

$$
\begin{aligned}
\int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) \operatorname{div} V \mathrm{~d} x & =\int_{\Omega} \operatorname{div}\left(|u|^{p} V+|\nabla u|^{p} V\right) \mathrm{d} x \\
& -p \int_{\Omega}\left\{|u|^{p-2} u_{0}\langle\nabla u, V\rangle+|\nabla u|^{p-2}\left\langle\nabla u D^{2} u, u V\right\rangle\right\} \mathrm{d} x .
\end{aligned}
$$

Integrating by parts, we obtain

$$
\begin{aligned}
\int_{\Omega} \operatorname{div}\left(|u|^{p} V+|\nabla u|^{p} V\right) \mathrm{d} x & =\int_{\partial \Omega}\left(|u|^{p}+|\nabla u|^{p}\right)\langle V, v\rangle \mathrm{d} \mathcal{H}^{N-1} \\
& -\int_{\partial A}\left(|u|^{p}+|\nabla u|^{p}\right)\langle V, v\rangle \mathrm{d} \mathcal{H}^{N-1} \\
& =-\int_{\partial A}|\nabla u|^{p}\langle V, v\rangle \mathrm{d} \mathcal{H}^{N-1}
\end{aligned}
$$

where the las equality follows from the fact that $\operatorname{supp} V \subset \Omega$ and $u=0$ on ∂A.
Thus

$$
\begin{aligned}
S_{q}^{\prime}(0) & =-\int_{\partial A}|\nabla u|^{p}\langle V, v\rangle \mathrm{d} \mathcal{H}^{N-1}-p \int_{\Omega}|u|^{p-2} u\left\langle\nabla u_{0}, V\right\rangle \mathrm{d} x \\
& -p \int_{\Omega}|\nabla u|^{p-2}\left\langle\nabla u,{ }^{T} V^{\prime} \nabla u+^{T} D^{2} u V^{T}\right\rangle \mathrm{d} x \\
& =-\int_{\partial A}|\nabla u|^{p}\langle V, v\rangle \mathrm{d} \mathcal{H}^{N-1}-p \int_{\Omega}|u|^{p-2} u\langle\nabla u, V\rangle \mathrm{d} x \\
& -p \int_{\Omega}|\nabla u|^{p-2}\langle\nabla u, \nabla(\langle\nabla u, V\rangle)\rangle \mathrm{d} x .
\end{aligned}
$$

Since u is a week solution of (7.3) as $\lambda=S_{q}(0)$ and $\operatorname{supp} V \subset \Omega$ we have

$$
S_{q}^{\prime}(0)=\int_{\partial A}|\nabla u|^{p}\langle V, v\rangle \mathrm{d} \mathcal{H}^{N-1}-p \int_{\partial A}|\nabla u|^{p-2}\langle\nabla u, v\rangle\langle\nabla u, V\rangle \mathrm{d} \mathcal{H}^{N-1} .
$$

Then, noticing that $\nabla u=\frac{\partial u}{\partial v} v$, the proof is complete.

7.2 Lack of Symmetry in the Ball

In this section, we consider the case where $\Omega=B(0, R)$ and $A=B(0, r)$ with $0<r<R$. The proofs of this section are based on the argument of [FBGR] and [LDT] adapted to our problem. In order to simplify notations, we write B_{s} and $S_{q}(r)$ instead $B(0, s)$ and $S_{q}(B(0, r))$, respectively.

First, we prove that the nonnegative solution of (7.3) is unique in this case.
Proposition 7.2.1. Let $1<q<p$. The nonnegative solution of (7.3) is unique.

Proof. Suppose that there exist two nonnegative solutions u and v of (7.3). By Remark 7.1.8, it follows that $u, v>0$ on $\partial \Omega$. Let $v_{n}=v+\frac{1}{n}$ with $n \in \mathbb{N}$, using first Piccone's
identity (see $[\mathrm{AH}]$) and the weak formulation of (7.3), we have

$$
\begin{aligned}
0 & \leq \int_{B_{R}}|\nabla u|^{p} \mathrm{~d} x-\int_{B_{R}}\left|\nabla v_{n}\right|^{p-2} \nabla v_{n} \nabla\left(\frac{u^{p}}{v_{n}^{p-1}}\right) \mathrm{d} x \\
& =\int_{B_{R}}|\nabla u|^{p} \mathrm{~d} x-\int_{B_{R}}|\nabla v|^{p-2} \nabla \nu \nabla\left(\frac{u^{p}}{v_{n}^{p-1}}\right) \mathrm{d} x \\
& =-\int_{B_{R}} u^{p} \mathrm{~d} x+\lambda \int_{\partial B_{R}} u^{q} \mathrm{~d} \mathcal{H}^{N-1}+\int_{B_{R}} v^{p-1} \frac{u^{p}}{v_{n}^{p-1}} \mathrm{~d} x-\lambda \int_{\partial B_{R}} v^{q-1} \frac{u^{p}}{v_{n}^{p-1}} \mathrm{~d} \mathcal{H}^{N-1} \\
& \leq \lambda \int_{\partial B_{R}} u^{q} \mathrm{~d} \mathcal{H}^{N-1}-\lambda \int_{\partial B_{R}} v^{q-1} \frac{u^{p}}{v_{n}^{p-1}} \mathrm{~d} \mathcal{H}^{N-1} .
\end{aligned}
$$

Thus, by the Monotone Convergence Theorem,

$$
0 \leq \int_{\partial B_{R}} u^{q} \mathrm{~d} \mathcal{H}^{N-1}-\int_{\partial B_{R}} v^{q-1} \frac{u^{p}}{v^{p-1}} \mathrm{~d} \mathcal{H}^{N-1}=\int_{\partial B_{R}} u^{p}\left(u^{q-p}-v^{q-p}\right) \mathrm{d} \mathcal{H}^{N-1} .
$$

Note that the role of u and v in the above equation are exchangeable. Therefore, adding we get

$$
0 \leq \int_{\partial B_{R}}\left(u^{p}-v^{p}\right)\left(u^{q-p}-v^{q-p}\right) \mathrm{d} \mathcal{H}^{N-1} .
$$

Since $q<p$, we have that $u \equiv v$ on ∂B_{R}. Then, by uniqueness of solution to the Dirichlet problem, we get $u \equiv v$ in B_{R}.

Remark 7.2.2. As the problem (7.3) is rotationally invariant, by uniqueness we obtain that the nonnegative solution of (7.3) must be radial. Therefore, if $\Omega=B_{R}, A=B_{r}$ and $1<q \leq p$ we can suppose that the extremal for $S_{q}(r)$ found in the Theorem 7.1.7 is nonnegative and radial.

Now, we can prove that this kind of configuration is critical.
Theorem 7.2.3. Let $\Omega=B_{R}$ and let the hole be a centered ball $A=B_{r}$. Then, if $1<q \leq p$, this configuration is critical in the sense that $S_{q}^{\prime}(r)=0$ for all deformations V that preserve the volume of B_{r}.

Proof. We consider $\Omega=B_{R}, A=B_{r}$ and $1<q \leq p$. By Theorem 7.3 and Remark 7.2.2, there exist a nonnegative and radial normalized extremal for $S_{q}(r)$ such that

$$
S_{q}^{\prime}(0)=(1-p) \int_{\partial B_{r}}\left|\frac{\partial u}{\partial v}\right|^{p}\langle V, v\rangle \mathrm{d} \mathcal{H}^{N-1}
$$

Since u is radial,

$$
\frac{\partial u}{\partial v} \equiv c \text { on } \partial B_{r},
$$

where c is a constant.

Thus, using that we are dealing with deformations V that preserves the volume of the B_{r}, we have that

$$
S_{q}^{\prime}(0)=(1-p) c^{p} \int_{\partial B_{r}}\langle V, v\rangle \mathrm{d} \mathcal{H}^{N-1}=(p-1) c^{p} \int_{B_{r}} \operatorname{div}(V) \mathrm{d} x=0
$$

But, if q is sufficiently large, the symmetric hole with a radial extremal is not an optimal configuration. To prove this, we need two previous results.

Proposition 7.2.4. Let $r>0$ fixed. Then, there exists a positive radial function u_{0} such that

$$
\begin{cases}-\Delta_{p} u+|u|^{p-2} u=0 & \text { in } \mathbb{R}^{N} \backslash B_{r}, \tag{7.16}\\ u=0 & \text { on } \partial B_{r} .\end{cases}
$$

This u_{0} is unique up to a constant factor and for any $R>r$ the restriction of u_{0} to B_{R} is the first eigenfunction of (7.3) with $q=p$.

Proof. For $R>r$, let u_{R} be the unique solution of the Dirichlet problem

$$
\left\{\begin{array}{l}
\Delta_{p} u_{R}=\left|u_{R}\right|^{p-2} u_{R} \quad \text { in } B_{R} \backslash \overline{B_{r}}, \\
u(R)=1, \\
u(r)=0 .
\end{array}\right.
$$

Then, by uniqueness, u_{R} is a nonnegative and radial function. Moreover, by the regularity theory and maximum principle we have $\frac{\partial u_{R}}{\partial v}(r) \neq 0$ (see [L, V]). Thus, for any $R>r$, we define the restriction of u_{0} by

$$
u_{0}=\frac{u_{R}}{\frac{\partial u_{R}}{\partial v}(r)}
$$

By uniqueness of the Dirichlet problem, it is easy to check that u_{0} is well defined and is a nonnegative radial solution of (7.16). Furthermore, by the simplicity of $S_{p}(r), u_{0}$ is the eigenfunction associated to $S_{p}(r)$ for every $R>r$.

Proposition 7.2.5. Let v be a radial solution of (7.3). Then v is a multiple of u_{0}. In particular, any radial minimizer of (7.2) is a multiple of u_{0}.

Proof. Let $a>0$ be such that $v=a u_{0}$ on $\partial B(0, R)$. Then v and $a u_{0}$ are two solutions to the Dirichlet problem $\Delta_{p} w=w^{p-1}$ and $w=v$ on $\partial\left(B_{R} \backslash \overline{B_{r}}\right)$. Hence, by uniqueness, we have that $v=a u_{0}$ in B_{R}.

Remark 7.2.6. If $1<q<p$ then the solution of (7.3), by Remark 7.2.2 and Proposition 7.2, is a multiple of u_{0}.

Now, we are in condition to prove that he symmetric hole with a radial extremal is not an optimal configuration if q is sufficiently large.

Theorem 7.2.7. Let $r>0$ and $1<p<\infty$ be fixed. Let $R>r$ and

$$
\begin{equation*}
Q(R)=\frac{1}{S_{p}\left(B_{r}\right)^{\frac{p}{p-1}}}\left(1-\frac{N-1}{R} S_{p}\left(B_{r}\right)\right)+1 . \tag{7.17}
\end{equation*}
$$

If $q>Q(R)$ then the centered hole B_{r} is not optimal.
Proof. Let $R>r$ be fixed and consider u_{0} to be the nonnegative radial function given by Proposition 7.2.4 such that that $u_{0}=1$ on ∂B_{R}. Then, by Proposition 7.2.5, it is enough to prove that u_{0} is not a minimizer for $S_{q}(r)$ when $q>Q(R)$.

First, let us move this symmetric configuration in the x_{1} direction. For any $t \in \mathbb{R}$ and $x \in \mathbb{R}^{N}$, we denote $x_{t}=\left(x_{1}-t, x_{2}, \ldots, x_{N}\right)$ and define

$$
U(t)(x)=u_{0}\left(x_{t}\right)
$$

Observe that U vanishes in $A_{t}:=B\left(t e_{1}, r\right)$ a subset of B_{R} of the same measure of B_{r} for all t small.

Consider the function

$$
h(t)=\frac{f(t)}{g(t)}
$$

where

$$
f(t)=\int_{B_{R}}|\nabla U|^{p}+U^{p} \mathrm{~d} x \quad \text { and } \quad g(t)=\left(\int_{\partial B_{R}} U^{q} \mathrm{~d} \mathcal{H}^{N-1}\right)^{p / q} .
$$

We observe that $h(0)=0$ and since h is an even function, we have $h^{\prime}(0)=0$. Now,

$$
h^{\prime \prime}(0)=\left.\frac{f^{\prime \prime} g^{2}-f g g^{\prime \prime}-2 f^{\prime} g g^{\prime}-2 f g g^{\prime}}{g^{3}}\right|_{t=0} .
$$

Next we compute these terms. First, since u_{0} is the first eigenfunction of (7.3) with $q=p$ and $u_{0}=1$ on ∂B_{R} we get

$$
f(0)=S_{p}(r)\left|\partial B_{R}\right| \quad \text { and } \quad g(0)=\left|\partial B_{R}\right|^{\frac{p}{q}} .
$$

Thus, by Gauss-Green's Theorem and using the fact that u_{0} is radial, we get

$$
f^{\prime}(0)=-\int_{B_{R}} \frac{\partial}{\partial x_{1}}\left(\left|\nabla u_{0}\right|^{p}+u_{0}^{p}\right) \mathrm{d} x=\int_{\partial B_{R}}\left(\left|\nabla u_{0}\right|^{p}+u_{0}^{p}\right) v_{1} \mathrm{~d} \mathcal{H}^{N-1}=0 .
$$

Again, since u_{0} is radial,

$$
g^{\prime}(0)=\frac{p}{q}\left(\int_{\partial B_{R}} u^{q} \mathrm{~d} \mathcal{H}^{N-1}\right)^{\frac{p}{q}-1}\left(\int_{\partial B_{R}} \frac{\partial u^{q}}{\partial x_{1}} \mathrm{~d} \mathcal{H}^{N-1}\right)=0 .
$$

Finally, using that $u_{0}=1$ on ∂B_{R}, we obtain

$$
g^{\prime \prime}(0)=p\left|\partial B_{R}\right|^{\frac{p}{q}-1} \int_{\partial B_{R}}(q-1)\left(\frac{\partial u_{0}}{\partial x_{1}}\right)^{2}+\frac{\partial^{2} u_{0}}{\partial x_{1}^{2}} \mathrm{~d} \mathcal{H}^{N-1},
$$

and by the Gauss-Green's Theorem,

$$
\begin{aligned}
f^{\prime \prime}(0) & =p \int_{B_{R}} \frac{\partial}{\partial x_{1}}\left(\frac{1}{2}\left|\nabla u_{0}\right|^{p-2} \frac{\partial\left|\nabla u_{0}\right|^{2}}{\partial x_{1}}+\frac{1}{p} \frac{\partial u_{0}^{p}}{\partial x_{1}}\right) \mathrm{d} x \\
& =p \int_{\partial B_{R}}\left(\frac{1}{2}\left|\nabla u_{0}\right|^{p-2} \frac{\partial\left|\nabla u_{0}\right|^{2}}{\partial x_{1}}+\frac{1}{p} \frac{\partial u_{0}^{p}}{\partial x_{1}}\right) v_{1} \mathrm{~d} \mathcal{H}^{N-1} .
\end{aligned}
$$

Then

$$
\begin{aligned}
h^{\prime \prime}(0)= & \frac{p}{\left|\partial B_{R}(0)\right|^{p / q}}\left[\int_{\partial B_{R}}\left(\frac{1}{2}\left|\nabla u_{0}\right|^{p-2} \frac{\partial\left|\nabla u_{0}\right|^{2}}{\partial x_{1}}+\frac{1}{p} \frac{\partial u_{0}^{p}}{\partial x_{1}}\right) v_{1} \mathrm{~d} \mathcal{H}^{N-1}\right. \\
& \left.-S_{p}(r) \int_{\partial B_{R}}(q-1)\left(\frac{\partial u_{0}}{\partial x_{1}}\right)^{2}+\frac{\partial^{2} u_{0}}{\partial x_{1}^{2}} \mathrm{~d} \mathcal{H}^{N-1}\right] .
\end{aligned}
$$

Thus, since u_{0} is radial, we get

$$
\begin{aligned}
h^{\prime \prime}(0)= & \frac{p}{N\left|\partial B_{R}(0)\right|^{p / q}}\left[\int_{\partial B_{R}}\left(\frac{1}{2}\left|\nabla u_{0}\right|^{p-2} \frac{\partial\left|\nabla u_{0}\right|^{2}}{\partial v}+\frac{1}{p} \frac{\partial u_{0}^{p}}{\partial v}\right) \mathrm{d} \mathcal{H}^{N-1}\right. \\
& \left.-S_{p}(r) \int_{\partial B_{R}}(q-1)\left|\nabla u_{0}\right|^{2}+\Delta u_{0} \mathrm{~d} \mathcal{H}^{N-1}\right] .
\end{aligned}
$$

Now, by definition, $u_{0}(x)=u_{0}(|x|)$ satisfies

$$
\left(s^{N-1}\left|u_{0}^{\prime}\right|^{p-1} u_{0}^{\prime}\right)^{\prime}=s^{N-1} u_{0}^{p-1} \quad \forall s>r
$$

with $u_{0}(R)=1$ and $u_{0}(r)=0$. Moreover, by Proposition 7.2.4, we have

$$
u_{0}^{\prime}(s)^{p-1}=S_{p}(r) u_{0}(s)^{p-1} \quad \forall s>r .
$$

Then

$$
\frac{1}{2}\left|\nabla u_{0}\right|^{p-2} \frac{\partial\left|\nabla u_{0}\right|^{2}}{\partial v}+\frac{1}{p} \frac{\partial u_{0}^{p}}{\partial v}=\frac{S_{p}(r)^{\frac{1}{p-1}}}{p-1}\left(1-\frac{N-1}{R} S_{p}(r)\right)+S_{p}(r)^{\frac{1}{p-1}},
$$

and

$$
\begin{aligned}
S_{p}(r)\left[(q-1)\left|\nabla u_{0}\right|^{2}+\Delta u_{0}\right] & =(q-1) S_{p}(r)^{\frac{p+1}{p-1}}+\frac{S_{p}(r)^{\frac{1}{p-1}}}{p-1}\left(1-\frac{N-1}{R} S_{p}(r)\right) \\
& +\frac{N-1}{R} S_{p}(r)^{\frac{p}{p-1}} .
\end{aligned}
$$

Therefore

$$
h^{\prime \prime}(0)=\frac{p S_{p}^{\frac{1}{p-1}}}{N \left\lvert\, \partial B_{R^{1}}^{\frac{p}{q}-1}\right.}\left[1-(q-1) S_{p}(r)^{\frac{p}{p-1}}-\frac{N-1}{R} S_{p}(r)\right] .
$$

Thus, if $q>Q(R)$, we get that $h^{\prime \prime}(0)<0$ and so 0 is a strict local maxima of h. So we have proved that

$$
S_{q}(r)=h(0)>h(t) \geq S_{q}\left(B\left(t e_{1}, r\right)\right)
$$

for all t small. Therefore a symmetric configuration is not optimal.

Lastly, to study the asymptotic behavior of $Q(R)$
Proposition 7.2.8. The function $Q(R)$ has the following asymptotic behavior

$$
\lim _{R \rightarrow r} Q(R)=1^{-} \quad \text { and } \quad \lim _{R \rightarrow+\infty} Q(R)=p .
$$

Remark 7.2.9. Observe that $Q(R)<1$ for R close to r, and therefore the symmetric hole with a radial extremal is not an optimal configuration for R close to r.

Proof of Proposition 7.2.8. We proceed in two step.
Step 1. First we show that, for $R>r, S_{p}(R, r)=S_{p}(r)$ verifies the differential equation

$$
\begin{equation*}
\frac{\partial S_{p}}{\partial R}=-\frac{N-1}{R} S_{p}+1-(p-1) S_{p}^{\frac{p}{p-1}} \tag{7.18}
\end{equation*}
$$

with the condition

$$
\left.S_{p}\right|_{R=r}=+\infty .
$$

Again, we consider $u_{0}(x)=u_{0}(|x|)$ the nonnegative radial function given by Proposition 7.2.4. Thus, for all $R>r$, we get

$$
\left\{\begin{array}{l}
(p-1)\left(u_{0}^{\prime}\right)^{p-2} u_{0}^{\prime \prime}+\frac{N-1}{R}\left(u_{0}^{\prime}\right)^{p-1}=u_{0}^{p-1} \\
u_{0}^{\prime}(R)^{p-1}=S_{p} u_{0}(R)^{p-1}, \\
u_{0}(r)=0 .
\end{array}\right.
$$

Then

$$
S_{p}=\left(\frac{u_{0}^{\prime}(R)}{u_{0}(R)}\right)^{p-1} .
$$

Thus

$$
\begin{aligned}
\frac{\partial S_{p}}{\partial R} & =(p-1)\left(\frac{u_{0}^{\prime}(R)}{u_{0}(R)}\right)^{p-2} \frac{u_{0}^{\prime \prime}(R) u_{0}(R)-u_{0}^{\prime}(R)^{2}}{u_{0}(R)^{2}} \\
& =(p-1)\left(\frac{u_{0}^{\prime}(R)}{u_{0}(R)}\right)^{p-2} \frac{u_{0}^{\prime \prime}(R)}{u_{0}(R)}-(p-1) S_{p}^{\frac{p}{p-1}} \\
& =(p-1) \frac{u_{0}^{\prime}(R)^{p-2} u_{0}^{\prime \prime}(R)}{u_{0}(R)^{p-1}}-(p-1) S_{p}^{\frac{p}{p-1}} \\
& =1-\frac{N-1}{R} S_{p}-(p-1) S_{p}^{\frac{p}{p-1}} .
\end{aligned}
$$

On the other hand, since (by definition) $\frac{\partial u_{0}}{\partial \nu} \equiv 1$ on ∂B_{r}, we get that $u^{\prime}(r)=1$. Then

$$
\lim _{R \rightarrow r} S_{p}=\lim _{R \rightarrow r}\left(\frac{u_{0}^{\prime}(R)}{u_{0}(R)}\right)^{p-1}=+\infty .
$$

Now, it is easy to check that $\lim _{R \rightarrow r} Q(R)=1^{-}$.

Step 2. Finally, we prove that

$$
\lim _{R \rightarrow+\infty} Q(R)=p
$$

We begin differentiating (7.18) to obtain

$$
\frac{\partial^{2} S_{p}}{\partial R^{2}}=\frac{N-1}{R^{2}} S_{p}-\frac{N-1}{R} \frac{\partial S_{p}}{\partial R}-p S_{p}^{\frac{1}{p-1}} \frac{\partial S_{p}}{\partial R}
$$

Then, since $S_{p}>0$, at any critical point $\left(S_{p}^{\prime}=0\right)$ we have that $S_{p}^{\prime \prime}>0$. Thus, S_{p} has at most one critical point, which is a minimum. If S_{p} has a minimum, then there exist $R_{0}>r$ such that $S_{p}^{\prime}\left(R_{0}\right)=0$. Moreover, since $S_{p}^{\prime}(R) \neq 0$ for any $R \neq R_{0}$ and $S_{p} \rightarrow+\infty$ as $R \rightarrow r$ and by (7.18), we get that $S_{p}^{\prime}<0$ for all $r<R<R_{0}$ and $S_{p}^{\prime}>0$ for all $R>R_{0}$. Thus, using again (7.18), we have that

$$
S_{p}^{\frac{p}{p-1}}<\frac{1}{p-1} \quad \forall R>R_{0}
$$

Then S_{p} is strictly increasing as a function of R and bonded for all $R>R_{0}$. Consequently $S_{p}^{\prime} \rightarrow 0$ as $R \rightarrow+\infty$. It follows, by (7.18), that

$$
S_{p}^{\frac{p}{p-1}} \rightarrow \frac{1}{p-1} \quad \text { as } R \rightarrow+\infty .
$$

On the other hand using (7.17) and (7.18) we see that

$$
\begin{equation*}
S_{p}=(Q(R)-p) S_{p}^{\frac{p}{p-1}} \tag{7.19}
\end{equation*}
$$

So, if S_{p} has a minimum, we get that $Q(R)>p$ for all $R>R_{0}$ and $Q(R) \rightarrow p^{+}$as $R \rightarrow+\infty$. Now, If S_{p} has not critical points so $S_{p}^{\prime} \neq 0$ for all $R>r$ and using that $S_{p} \rightarrow+\infty$ as $R \rightarrow r$, and (7.18) we get that $S_{p}^{\prime}<0$ for all $R>r$. Consequently, in this case, S_{p} is strictly decreasing, and therefore $S_{p}^{\prime} \rightarrow 0$ as $R \rightarrow+\infty$. By (7.18) we have that

$$
S_{p} \rightarrow \frac{1}{p-1} \quad \text { as } R \rightarrow+\infty
$$

Then, if S_{p} has not critical points, we get $Q(R)<p$ and $Q(R) \rightarrow p^{-}$as $R \rightarrow+\infty$.

Bibliography

[A] R. A. Adams. Sobolev spaces. Pure and Applied Mathematics, vol. 65 (Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975). 15
[AH] W. Allegretto and Y. X. Huang. A Picone's identity for the p-Laplacian and applications. Nonlinear Anal., vol. 32 (1998), no. 7, pp. 819-830. 97
[An] A. Anane. Simplicité et isolation de la première valeur propre du p-laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math., vol. 305 (1987), no. 16, pp. 725-728. xiii
[ADT] D. Arcoya, J. I. Diaz and L. Tello. S-shaped bifurcation branch in a quasilinear multivalued model arising in climatology. J. Differential Equations, vol. 150 (1998), no. 1, pp. 215-225. xiii, 26
[AsHa] M. S. Ashbaugh and E. M. Harrell, II. Maximal and minimal eigenvalues and their associated nonlinear equations. J. Math. Phys., vol. 28 (1987), no. 8, pp. 1770-1786. xiv, xv, 26, 27
[AC] C. Atkinson and C. R. Champion. On some boundary value problems for the equation $\nabla \cdot(F(|\nabla w|) \nabla w)=0$. Proc. Roy. Soc. London Ser. A, vol. 448 (1995), no. 1933, pp. 269-279. xiii
[AE] C. Atkinson and K. Elali. Some boundary value problems for the bingham model. J. Non-Newtonian Fluid Mechanics, vol. 41 (1992), no. 3, pp. 339363. xiii, 26
[AGM] H. Attouch, G. Buttazzo and G. Michaille. Variational analysis in Sobolev and $B V$ spaces. MPS/SIAM Series on Optimization, vol. 6 (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006). Applications to PDEs and optimization. 25
[B] H. Brezis. Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise (Masson, Paris, 1983). Théorie et applications. 13, 16
[Bu1] G. R. Burton. Rearrangements of functions, maximization of convex functionals, and vortex rings. Math. Ann., vol. 276 (1987), no. 2, pp. 225-253. xvi, 13, 14, 56
[Bu2] G. R. Burton. Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann. Inst. H. Poincaré Anal. Non Linéaire, vol. 6 (1989), no. 4, pp. 295-319. 13, 14
[CGIK] S. Chanillo, D. Grieser, M. Imai, K. Kurata and I. Ohnishi. Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes. Comm. Math. Phys., vol. 214 (2000), no. 2, pp. 315-337. 41
[CGK] S. Chanillo, D. Grieser and K. Kurata. The free boundary problem in the optimization of composite membranes. In Differential geometric methods in the control of partial differential equations (Boulder, CO, 1999), Contemp. Math., vol. 268, vol. 268, pp. 61-81 (Amer. Math. Soc., Providence, RI, 2000). 41
[CC] A. Cherkaev and E. Cherkaeva. Optimal design for uncertain loading condition. In Homogenization, Ser. Adv. Math. Appl. Sci., vol. 50, pp. 193-213 (World Sci. Publ., River Edge, NJ, 1999). 40, 72
[CEP1] F. Cuccu, B. Emamizadeh and G. Porru. Nonlinear elastic membranes involving the p-Laplacian operator. Electron. J. Differential Equations, (2006), no. 49, pp. 1-10. (electronic). 56, 73, 76, 81
[CEP2] F. Cuccu, B. Emamizadeh and G. Porru. Optimization of the first eigenvalue in problems involving the p-Laplacian. Proc. Amer. Math. Soc., vol. 137 (2009), no. 5, pp. 1677-1687. xvi, 56, 57
[C] M. Cuesta. Eigenvalue problems for the p-Laplacian with indefinite weights. Electron. J. Differential Equations, (2001), no. 33, pp. 1-9. (electronic). xiii, 22
[CRQ] M. Cuesta and H. Ramos Quoirin. A weighted eingenvalue problem for the p-laplacian plus a potential. NoDEA, vol. 16 (2009), no. 4, pp. 469-491. 20, 22
[DPFBR] L. Del Pezzo, J. Fernández Bonder and J. D. Rossi. An optimization problem for the first Steklov eigenvalue of a nonlinear problem. Differential Integral Equations, vol. 19 (2006), no. 9, pp. 1035-1046. 49, 73
[D] J. Denzler. Windows of given area with minimal heat diffusion. Trans. Amer. Math. Soc., vol. 351 (1999), no. 2, pp. 569-580. 48
[Di] J. I. Díaz. Nonlinear partial differential equations and free boundaries. Vol. I. Research Notes in Mathematics, vol. 106 (Pitman (Advanced Publishing Program), Boston, MA, 1985). Elliptic equations. xiii
[DH] O. Druet and E. Hebey. The AB program in geometric analysis: sharp Sobolev inequalities and related problems. Mem. Amer. Math. Soc., vol. 160 (2002), no. 761, pp. viii+98. 40
[DS1] N. Dunford and J. T. Schwartz. Linear operators. Part I. Wiley Classics Library (John Wiley \& Sons Inc., New York, 1988). General theory, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication. xiii
[DS2] N. Dunford and J. T. Schwartz. Linear operators. Part II. Wiley Classics Library (John Wiley \& Sons Inc., New York, 1988). Spectral theory. Selfadjoint operators in Hilbert space, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1963 original, A Wiley-Interscience Publication. xiii
[DS3] N. Dunford and J. T. Schwartz. Linear operators. Part III. Wiley Classics Library (John Wiley \& Sons Inc., New York, 1988). Spectral operators, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1971 original, A Wiley-Interscience Publication. xiii
[E] J. F. Escobar. Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities, and an eigenvalue estimate. Comm. Pure Appl. Math., vol. 43 (1990), no. 7, pp. 857-883. xiii
[EG] L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Studies in Advanced Mathematics (CRC Press, Boca Raton, FL, 1992). 8, 9, $10,15,16,23,24$
[FBFR] J. Fernández Bonder, R. Ferreira and J. D. Rossi. Uniform bounds for the best Sobolev trace constant. Adv. Nonlinear Stud., vol. 3 (2003), no. 2, pp. 181-192. 40
[FBGR] J. Fernández Bonder, P. Groisman and J. D. Rossi. Optimization of the first Steklov eigenvalue in domains with holes: a shape derivative approach. Ann. Mat. Pura Appl. (4), vol. 186 (2007), no. 2, pp. 341-358. xvi, xvii, 57, 89, 90, 96
[FBR1] J. Fernández Bonder and J. D. Rossi. Existence results for the p-Laplacian with nonlinear boundary conditions. J. Math. Anal. Appl., vol. 263 (2001), no. 1, pp. 195-223. 39, 41, 78
[FBR2] J. Fernández Bonder and J. D. Rossi. Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains. Commun. Pure Appl. Anal., vol. 1 (2002), no. 3, pp. 359-378. 40
[FBR3] J. Fernández Bonder and J. D. Rossi. A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding. Publ. Mat., vol. 46 (2002), no. 1, pp. 221-235. 41, 89
[FBRW1] J. Fernández Bonder, J. D. Rossi and N. Wolanski. Regularity of the free boundary in an optimization problem related to the best Sobolev trace constant. SIAM J. Control Optim., vol. 44 (2005), no. 5, pp. 1614-1635 (electronic). 40
[FBRW2] J. Fernández Bonder, J. D. Rossi and N. Wolanski. On the best Sobolev trace constant and extremals in domains with holes. Bull. Sci. Math., vol. 130 (2006), no. 7, pp. 565-579. 40, 44, 49, 73, 89
[GAPA1] J. P. García Azorero and I. Peral Alonso. Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues. Comm. Partial Differential Equations, vol. 12 (1987), no. 12, pp. 1389-1430. xiii, 22
[GAPA2] J. P. García Azorero and I. Peral Alonso. Comportement asymptotique des valeurs propres du p-laplacien. C. R. Acad. Sci. Paris Sér. I Math., vol. 307 (1988), no. 2, pp. 75-78. xiii, 22
[GMSL] J. García Melián and J. Sabina de Lis. On the perturbation of eigenvalues for the p-Laplacian. C. R. Acad. Sci. Paris Sér. I Math., vol. 332 (2001), no. 10, pp. 893-898. xvii, 73, 90
[GT] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics (Springer-Verlag, Berlin, 2001). Reprint of the 1998 edition. 14, 16, 19
[GV] M. Guedda and L. Véron. Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal., vol. 13 (1989), no. 8, pp. 879-902. 19
[H] E. M. Harrell, II. Hamiltonian operators with maximal eigenvalues. J. Math. Phys., vol. 25 (1984), no. 1, pp. 48-51. xvi, 27, 57
[He] A. Henrot. Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics (Birkhäuser Verlag, Basel, 2006). xiv
[HP] A. Henrot and M. Pierre. Variation et optimisation de formes. Mathématiques \& Applications [Mathematics \& Applications], vol. 48 (Springer, Berlin, 2005). Une analyse géométrique. [A geometric analysis]. xv, 49, 50, 53
[K] B. Kawohl. Rearrangements and convexity of level sets in PDE. Lecture Notes in Mathematics, vol. 1150 (Springer-Verlag, Berlin, 1985). 16
[KSS] K. Kurata, M. Shibata and S. Sakamoto. Symmetry-breaking phenomena in an optimization problem for some nonlinear elliptic equation. Appl. Math. Optim., vol. 50 (2004), no. 3, pp. 259-278. 49, 73
[LSU] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva. Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23 (American Mathematical Society, Providence, R.I., 1967). 85, 95
[LU] O. A. Ladyzhenskaya and N. N. Ural'tseva. Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis (Academic Press, New York, 1968). 69
[LDT] E. J. Lami Dozo and O. Torné. Symmetry and symmetry breaking for minimizers in the trace inequality. Commun. Contemp. Math., vol. 7 (2005), no. 6, pp. 727-746. 96
[LL] E. H. Lieb and M. Loss. Analysis. Graduate Studies in Mathematics, vol. 14 (American Mathematical Society, Providence, RI, 1997). 11
[L] G. M. Lieberman. Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal., vol. 12 (1988), no. 11, pp. 1203-1219. 42, 68, 70, 85, 93, 95, 98
[MR] S. Martínez and J. D. Rossi. Isolation and simplicity for the first eigenvalue of the p-Laplacian with a nonlinear boundary condition. Abstr. Appl. Anal., vol. 7 (2002), no. 5, pp. 287-293. 41, 89
[O] É. Oudet. Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM Control Optim. Calc. Var., vol. 10 (2004), no. 3, pp. 315-330 (electronic). xvi, 57
[P] O. Pironneau. Optimal shape design for elliptic systems. Springer Series in Computational Physics (Springer-Verlag, New York, 1984). xv, xvi, 57
[Ru1] W. Rudin. Real and complex analysis (McGraw-Hill Book Co., New York, 1974), 2nd ed. McGraw-Hill Series in Higher Mathematics. 12
[S] J. Serrin. Local behavior of solutions of quasi-linear equations. Acta Math., vol. 111 (1964), pp. 247-302. 22
[Sp] E. Sperner, Jr. Spherical symmetrization and eigenvalue estimates. Math. Z., vol. 176 (1981), no. 1, pp. 75-86. 16
[St] M. W. Steklov. Sur les problémes fondamentaux en physique mathématique. Ann. Sci. Ecole Norm. Sup., vol. 19 (1902), pp. 445-490. 39, 89
[T] P. Tolksdorf. Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations, vol. 51 (1984), no. 1, pp. 126-150. xiii, 81
[Tr] N. S. Trudinger. On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math., vol. 20 (1967), pp. 721747. 19
[V] J. L. Vázquez. A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim., vol. 12 (1984), no. 3, pp. 191-202. 93, 98
[Y] K. Yosida. Functional analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 123 (Springer-Verlag, Berlin, 1980), sixth ed. 5

Index

H^{k}-space, 15
L^{∞}-space, 12
L^{p}-space, 12
W^{1}-space, 14
$W^{k, p}$-space, 15
$W_{0}^{k, p}$-space, 15
σ-algebra, 8
Borel, 8
p-Laplacian, 17
Banach space, 4
reflexive, 5
Bathtub Principle, 11
bounded lineal functional, 5
BV-function, 23
Cauchy sequence, 3
Cauchy-Schwarz inequality, 4
complete space, 4
convergence, 3
diameter, 7
Divergence Theorem, 54
domain, 1
Dominate Convergence Theorem, 11
dual space, 5
eigenvalue
simple, 22
essential supremum, 12
essentially bounded function, 12
exponent conjugate, 12
Fatou's Lemma, 10
finite perimeter, 23

Gauss-Green Theorem, 25
gradient, 2
Höder's inequality, 12
Hölder continuous, 2
Hölder spaces, 3
Harnack's Inequality, 19
Hausdorff measure, 7
Hilbert space, 4
inner product, 4
integrable function, 10
Lebesgue measure, 7
linear operator, 5
bounded, 5
Lipschitz continuous, 2
Maximum Principle
Strong, 19
Weak, 19
Mazur's Theorem, 6
mean curvature, 53
measurable
function, 9
set, 7
measure, 6
Borel regular, 8
Radon, 9
regular, 8
measure theoretic boundary, 24
Monotone Convergence Theorem, 10
norm, 3
normed linear space, 3
rearrangement function, 13
Rellich-Kondrachov Theorem, 15
separable space, 4
simple function, 10
Soblev space, 15
Sobolev Trace Embedding Theorem, 16
spherical symmetrization
function, 16
set, 16
Structure theorem for $B V_{l o c}$ functions, 23
support
continuous function, 1
measurable function, 9
tangential divergence, 53
tangential gradient, 54
tangential Jacobian, 53
Trace Theorem, 16
weak convergence, 5
weak derivative, 14
weak* convergence, 6
weakly derivative function, 14

