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Resumen

Verificación de autómatas temporizados en arquitecturas monoprocesador y mul-

tiprocesador

Los sistemas de tiempo real están presentes en dispositivos embebidos, teléfonos celulares, contro-
ladores de vuelo, etc. Su complejidad es cada vez mayor, y cada vez cumplen funciones más cŕıticas,
donde las consecuencias de sus fallas son cada vez más graves. Por estos motivos tiene sentido realizar
un análisis riguroso sobre ellos, que permita asegurar que sus diseños cumplen ciertas propiedades
deseables. A este tipo de análisis se le suele llamar verificación automática o model checking.

Un formalismo muy difundido para realizar esta tarea es el de los autómatas temporizados, una
extensión de la teoŕıa clásica de autómatas que permite trabajar con tiempo denso. Si bien las técnicas
basadas en este tipo de autómatas se conocen desde hace un par de décadas, sufren aún de problemas
de escalabilidad, lo que dificulta una utilización mayor en casos reales.

Esta tesis analiza diversos mecanismos para acelerar la verificación de autómatas temporizados,
tanto en el (clásico) ambiente monoprocesador, como aśı también en arquitecturas distribuidas. Duran-
te el transcurso de la misma se construyó el model checker Zeus, que se utiliza para la experimentación.

Luego de presentar la motivación e introducción al tema, se presentan los conceptos básicos del
formalismo y las estructuras de datos más utilizadas en este tipo de herramientas. Se destacan los dos
algoritmos tradicionales de verificación, forward y backwards.

A continuación, se explora la paralelización del algoritmo backwards: se presenta una prueba de
corrección de una versión distribuida y asincrónica del mismo, se la implementa, y se experimenta
también con una versión sincrónica y con otra que reparte la carga de trabajo sobre los procesadores
de manera dinámica. Se analizan los resultados obtenidos y se argumenta que son cercanos a ópti-
mos utilizando la unidad de distribución de trabajo actual: la asignación de nodos del autómata a
procesadores.

Luego se aborda la paralelización del algoritmo forward junto con una estrategia para la redistri-
bución dinámica de trabajo entre los procesadores. Después de demostrar su corrección, se analizan
varios casos de estudio sobre distintas configuraciones, obteniéndose resultados positivos pero no óp-
timos, y comprobándose que aún queda mucho por investigar con respecto a la distribución de este
algoritmo, y planteándose varias posibles ĺıneas de investigación.

En el caṕıtulo siguiente se compara el presente trabajo con otros del área, y se argumenta que ciertos
resultados positivos obtenidos por otros investigadores tienen como causa no la paralelización en śı,
sino ciertos efectos colaterales de la misma, que tal vez podŕıan reproducirse en un monoprocesador.

A continuación se presenta trabajo realizado en pos de obtener una nueva estructura de datos. En
ese marco, se introducen los rCDDs (restricted Clock Difference Diagrams) junto con casos de estudio
en los que estos mejoran los tiempos de ejecución hasta en un treinta por ciento.

El siguiente caṕıtulo explora dos optimizaciones también válidas para el caso monoprocesador. La
primera consiste en computar rangos posibles para los valores de las estructuras de datos y de esa
manera reacomodarlas para detectar antes ciertas condiciones de corte de operaciones utilizadas con
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Resumen

mucha frecuencia. Los resultados muestran mejoras de hasta un diecisiete por ciento en los tiempos
de ejecución. La segunda consiste en computar una aproximación al hipervolumen de los poliedros
representados por las estructuras de datos, de manera tal de evitar O(n2) comparaciones al costo de
O(1). Esta técnica logra una reducción de tiempo de hasta casi un veinte por ciento.

El anteúltimo caṕıtulo presenta VInTiMe, una herramienta gráfica que permite describir diseños
de tiempo real, especificar sus propiedades de manera amigable, y verificarlas utilizando el model
checker distribuido Zeus, de manera sencilla. Constituye un esfuerzo por acercar los métodos formales
al usuario no tan experimentado.

Finalmente, se exponen las conclusiones del trabajo, donde se argumenta la dificultad de decidir de
antemano qué optimizaciones y/o parámetros serán más convenientes para un caso de estudio dado,
y se proponen ideas alternativas para atacar el problema.

Palabras clave: Autómatas temporizados, verificación automática, sistemas de tiempo real, compu-
tación distribuida, computación paralela, multiprocesador, Zeus.
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Timed Automata Model Checking in Monoprocessor and Multiprocessor Architec-

tures

Real-time systems are present today in embedded devices, cellphones, flight controllers, etc. Their
complexity is ever increasing, as well as the criticality of their functions. Consequences of failure are
each day more dangerous. This is why performing a rigorous analysis over them makes sense, allowing
to assert that their design complies with some desirable properties. This type of analysis is usually
called automated verification or model checking.

A well-known formalism for model checking is timed automata, an extension of the classical au-
tomata theory allowing to model dense time. Although timed automata-based techniques are known
since a couple of decades ago, they still suffer from scalability issues, jeopardizing a broader adoption
in real cases.

This thesis analyzes diverse mechanisms to speedup timed automata verification, both in the
(classical) monoprocessor environment, as well as in distributed architectures. While working on it,
the model checker Zeus was built as a base for experimentation.

After motivating and introducing the subject matter, foundational concepts of the formalism are
presented, as well as the data structures more used by the tools. Special attention is payed to the two
traditional verification algorithms, forward and backwards.

Next, the parallelization of the backwards algorithm is explored: a correctness proof of a distributed
and asynchronous version is presented. It is implemented, and experimentation is also done with a
synchronous version and another one that dynamically balances workload among processors. Obtained
results are analyzed and it is argued that they are close to optimal, as long as the same unit of
distribution is used: assigning each automata node to only one processor.

After that, a distributed version of the forward algorithm is analyzed, along with a dynamic work-
load migration strategy. Its correctness is proved, and various case studies over different configuration
settings are tried. Positive results are achieved, yet not optimal, corroborating that there is still
much research to perform regarding this algorithm. Also, various possible future continuation lines
are presented.

Next chapter compares against other work in the literature, and argues than certain positive
results achieved by other researchers might be caused not by the distribution per se, but actually as
a byproduct of it, and that the same effects might be reproducible in a monoprocessor setting.

Work towards a new data structure is next, introducing rCDDs (short for restricted Clock Difference
Diagrams). Along with their details and algorithms, case studies showing up to a thirty percent of
improvement in running times are presented.

After that, two optimizations also valid for the monoprocessor setting are introduced. The first
one computes ranges of possible values for the data structures, trying to accommodate them in such
a way that certain finishing conditions for the most used operation are met earlier. Results show
improvements of up to a seventeen percent in running times. The second one is about computing an
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approximation to the hypervolume of the polyhedra represented by the data structures, thus avoiding
O(n2) comparisons at the price of O(1). This technique allows to reduce running times by up to
almost twenty percent.

The penultimate chapter presents VInTiMe, a graphical tool that allows to describe real-time
system designs, specify their properties in a friendly way, and verify them using the distributed model
checker Zeus, in a simple manner. This is an efford to put formal methods closer to the practitioner.

Lastly, conclusions are presented, arguing the difficulty of deciding beforehand which optimizations
and parameters would be better for a particular case study, and proposing alternative ideas to palliate
such an issue.

Keywords: Timed Automata, Model Checking, Automated Verification, Real-Time Systems, Dis-
tributed Computing, Parallel Computing, Multiprocessor, Zeus.
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Chapter 1

Introduction

1.1. Foreword

A PhD thesis is a complex document, and this one is no exception: it deals with complex concepts,
proposes non-trivial ideas, presents copious data as evidence, and deals with work that took many
years. Also, it is expected to be read by different audiences, with varying background.

This chapter aims to ease the burden of understanding the structure of the document, give a
sense of “what’s where” and, fundamentally, set the topic. Specifically, it is based on intuitions and
assertions, and is by far the most readable by a casual bystander or the curious beginner. As such,
it should cause no surprise that it does not abound on proofs, detailed explanations or citations,
that would probably conspire against the uncomplicated experience it tries to provide. The more
experienced reader shouldn’t be afraid. Whatever is said here will be approached again in a rigorous
manner in other parts of this same document.

Let’s start by outlining why distributed verification of timed systems is an interesting topic and
one worth exploring.

1.2. Motivation

In current days timed systems are both pervasive and critical, ranging from embedded and PDAs
to plant and flight controllers. Their complexity is ever increasing so automated ways of verifying them
make sense. Automated methods, however, are known to suffer from scalability problems: their time
and memory requirements grow exponentially as systems increase in size. This is why any technique
that can palliate such problems is useful.

Before dealing with what we do with such systems, let’s start with which systems we consider. We
mentioned timed systems, and that is a good starting point: we deal with systems where the elapsed
time between events is important, where questions like “Does the engine stop no longer that 5 ms after
the stop button is pressed?” or “Does the OS awaken the thread no after 3 ms of the interruption
arrival?” are relevant. In the next section we dig a little more into the semantics of our definition of
time.

When we say that we deal with this kind of systems, it should be understood that we actually deal
with a description of them, schematic enough to represent the interesting parts, while leaving out the
details. This schematic description is actually a kind of automata, known as timed automata. They
will be presented in detail in Section 2.1.

To summarize, we will focus on verification of real-time systems modeled as timed automata, which
are, roughly speaking, traditional automata with clock annotations to handle dense real-time.
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1.3. Time Models 1. Introduction

By verification we actually mean a procedure known as model checking. Given a timed automaton
A representing a system, and some (for instance, safety) property ϕ over it, does A comply with ϕ?
Model checking stands for an effective procedure to answer these kind of questions. Its name comes
from a modal logic view of the same problem: does A |= ϕ?

The past few decades have seen a fair amount of effort gone into, on one hand, constructing
automated tools to answer such queries, and on the other, to increasing their power so bigger and
more complex systems can go through the verification process.

Still, scalability is a major obstacle for a wider adoption of model checking technology. Verifying
even medium-sized designs can quickly exhaust memory or processing capacity of rather powerful
computers. This is partly due to the state explosion problem: small increases in system complexities
generate a huge number of new possible system states, all of which must be explored. Same thing
said from a complexity-theoretical stand: model checking the kind of systems we are interested in is
a PSPACE-complete problem.

In recent years, there has been an increasing interest in the use of Distributed Computing as a way
to augment the size of the models tools can deal with.

This thesis presents research around distributed model checking of timed automata. Its main
question is whether practical improvements could be made to the verification of timed automata by
working with more than one processor. While building a distributed tool was the objective, some
improvements, data structures and conclusions valid also for the monoprocessor case have been found.

All the effort has gone into diminishing wall-clock time. The measure of success is time saved per
extra computational resource invested.

Before going on is better to address an important question: when we refer to timed systems, what
do we actually mean?

1.3. Time Models

What does dense real-time mean? Time can be modelled by very different theoretical formulations1,
each one having advantages and disadvantages over the other. What’s most important, is that there is
no model that is clearly superior or fit for any circumstance. We will first describe the most common
approaches and then discuss which one are better suited for our scenarios of interest.

The discrete-time model requires the time sequence to be a monotonically increasing sequence of
integers. Certain types of application domains can make such assumptions, notably synchronous
digital circuits, where signal changes are considered to happen exactly when a tick signal arrives.
Although many types of behaviours can not be captured in this model, its principal advantage
is that simple variations of traditional finite automata theory can be used to deal with them.
A variation of the former, the fictitious-clock model, requires only the sequence of integer times
to be non-decreasing. The interpretation is that events occur at real-times instants, but only
the integer part of the clock reading is considered. Its approximate nature being obvious, it also
can be manipulated via simple variations of traditional finite automata theory.
In the dense-time model, time is thought of as a dense set. In this model the times of events
are real numbers which increase monotonically without bound. Physical events comfortably fit
in this model.

If the only important aspect of a system is whether event A happens before or after event B, any
of two first models is an appropriate choice for expressing it. This type of systems, and the logics
that can express properties over them2 are called temporal . Temporal analysis is very useful for some

1We follow [AD94] for this presentation.
2Such as LTL, the Linear Temporal Logic.
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scenarios. For instance, checking whether before each granting of access to a secured object there
is always a password check. There are many successful tools in this area, such as SPIN [Hol03] or
SMV [BCM+92], among others.

Consider, for example, the following requirement: the emergency brake should be functional after
no more than five seconds after pressing the stop button. Temporal analysis is not enough to express
this: it can only determine if the brake would engage after pressing the button, but not how far apart.
If precise time bounds are required we talk about timed systems (as opposed to temporal).

It should be noted that in timed systems, the discrete-time or fictitious-clock models are usually
insufficient, as they cannot be used to express that, no matter how near event B happens after event
A, event C can occur in between them, a frequent necessity when dealing with physical systems.

Also, there are systems with no explicit notion of time. By extension, we will call untimed both to
them and the temporal ones. This thesis focuses on the verification of dense real-time timed systems.
More specifically, the ones that are modeled as timed automata.

1.4. Model Checking

We have already mentioned that our interest lays in model checking of timed automata, and that
by that we mean effective procedures to decide if timed systems comply or not with certain properties.

But why is this hard? Although next chapter answers with precision, some intuition could actually
help.

Timed automata can be thought of as regular finite automata with the addition of clocks. Let’s
forget about the clocks for a moment. Also, let’s consider only the problem of checking if it has some
forbidden behaviour. I.e., the problem of checking whether some word is or not in the automata
language. In turn, it means traversing the complete graph underlying the automata. To simplify
things, let’s assume the language is prefix-free. On the worst case it takes O(n.m) for a graph with n
nodes and m edges.

If our system has k components, each with ni and mi nodes and edges, then it parallel composition
can be, on the worst case, of a size similar to the product automaton: O(Πni) nodes and O(Πmi)
edges, leading to a traversal complexity that grows geometrically with each new components. Adding
the clocks means, in principle, extra work: checking clock restrictions in each vertex.

The aim of the preceding paragraphs is giving an idea of why model checking is such a hard
problem. Although many optimizations have been devised for it, it still makes sense to put more than
one computer to work on it at the same time. This approach is called distributed computing and next
section deals with it.

1.5. Challenges of Distributed Computing

Although the idea of putting many processors to work in the same problem seems simple at first,
a more detailed analysis is required. Some of the perspectives to consider include:

Architecture: multiple processors on shared memory are generally easy to communicate but
require locking of data structures and appropriate, ad-hoc hardware. On distributed algorithms,
on the other hand, communication methods (such as message passing) must be carefully chosen.
Also synchronization is usually a hard problem. On the plus side, powerful clusters can be
built from commodity hardware. This dichotomy is generally referred as parallel vs. distributed
computing.
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Overhead: clearly, distributing the problem and then combining the results involves, by itself,
a number of computational resources. Not investing enough of them can cause load balancing
problems, but an excess is also not wanted. A careful equilibrium has to be achieved, trying to
avoid an important overhead.
Orchestration: having multiple actors (processors in this case) working together very often re-
quires some kind of coordination among them. How should this coordination be shaped? In this
aspect the tension is between centralized vs. distributed control.
Distributability of the problem: some problems are naturally more easy to distribute than others
(think, for instance, in integer matrix multiplication). The worst case presents when there are
important interdepencies between the results computed by one processor and the others. Typical
cases of bad conditioned problems include fixed points and some kind of graph problems where
edges has to be followed to obtain data about neighbour nodes. Unluckily, the problem dealt
here combines both.

The usefulness of a distributed strategy is often measured by the speedup gained. Speedup with n
processors is computed as t1

tn
where ti is the time it takes to finish the verification with i processors.

The goal is usually to get (close to) linear speedups, although verifying cases where the monoprocessor
version exhausted its memory is also considered a success.

Some mention is deserved to the notorious Amdahl’s [Amd67] and Gustafson’s [Gus88] Laws, which
were believed to be different until Shi [Shi96] cleared the confusion. This law separates the serial and
the parallel part of a program, and states speedup in terms of only the last one. However, as also
mentioned by Shi, its usage is mostly theoretical as it contains many factors that can only be obtained
through experimentation, if they can be calculated at all.

The rest of the thesis, specifically the Chapters 4 and 5 can be considered efforts towards better
speedups.

1.6. Zeus, the tool

Given that our measure of success is speedup, an empirical measure, we actually needed a tool to
program all our strategies and see how they performed. In our case, this tool was the model checker
Zeus.

Building its approximately 30000 lines of C code was a journey into knowledge. There’s no better
way to understand an algorithm than having to code it, even your own’s!

Zeus was conceived as a testbed for experimenting ideas, and thus was developed following a
software architecture centric approach, where separation of concerns as a way to achieve modularity
was a key design decision.

It’s first version not only conceptually descended from the Kronos tool [BDM+98]3, but also
used its engine for the main data structures and was used for the work in Chapter 4, being the first
distributed one of its kind. The current one was remade from scratch and served for the rest of the
research. We believe it to be the only distributed model checker for timed automata that is freely
available (see Chapter 9).

It was integrated in the VInTiMe verification framework –described in Chapter 9– which can be

3According to Greek mythology Zeus was the son of Rhea and Kronos, the supreme god. After its birth Rhea hid
Zeus from his father, fearing that he would destroy his own descendants, as his fate was to be replaced by one of them.
To deceive him, she handed Kronos a clothed rock, that he immediately devoured. Latter, Zeus plotted a rebellion with
his brothers and the Olympics defeated the Titans in battle. The myth also tells that years after Zeus seduced Metis,
titaness that reigned over knowledge and wisdom, only to discover that the lineage that she would gave birth to where
destined to replace him, so he eat her alive. Interestingly enough, early version of our Zeus tools where linked to the
METIS library.
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freely downloaded on-line.

Next section walks the reader through the structure of the rest of thesis, as an aid for its reading.

1.7. Road map

Next chapter gives an introduction to the terminology used through the rest of the thesis, and
some background on timed automata verification. It does not aim to be a complete presentation of
the topic. Instead it showcases the most significant notions using formal definitions when required for
a better understanding, but resorting to informal explanations (and corresponding citations for a full
presentation) if possible.

As data structures constitute an important part of the work presented here, Chapter 3 is devoted
to them. It presents in some detail the most commonly used ones in the literature and the tools.
Although matrices4 dominate the scene, some work has been done on decision tree-like structures.

Our approach to timed automata model checking is based on reachability: is there any path from
the initial state to some distinguished (target) states?

Two main algorithms exist to verify reachability: one starts its traversal by the target states and
moves by predecessors trying to reach the initial ones, and is called backwards. Forward, on the other
hand, tries to find a way through successors from the initial to the target states. Some more details
about them is presented in Section 2.7.

Our attempt to distribute backwards is described in Chapter 4. We believe we have found some
“end of the road” signs for this effort, yet have beaten some important obstacles and made interesting
contributions in the area.

Forward is dealt with in Chapter 5. It features an in-depth analysis of different workload balancing
settings, showing interesting results and future ways of improving them. Contrasting the previous
chapter, it shows how much work there is still to do in the area.

Much successful work has been done to distribute untimed model checkers, but little in the timed
distributed realm. Chapter 6 surveys the state of the art and compares our work with the few other
similar ones.

After that, Chapter 7 revisits data structures to propose an improvement over tree-like represen-
tations.

While working on a distributed model checking tool some interesting improvements have been
found for the monoprocessor case also, which are described in Chapter 8.

Chapter 9 describes VInTiMe, the verification framework into which our model checker has been
integrated.

Lastly, Chapter 10 deals with conclusions and perspective, and Appendix A describes the case
studies used.

1.8. Summary of Contributions

The original contributions of this thesis are:

A thorough exploration of distribution strategies for timed automata reachability algorithms
(Chapters 4 and 5). Not only non-näıve distributed algorithms are proposed and implemented,
but also correctness proofs are provided for them.

4Not numerical ones.
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Exposing the limits of the backwards algorithm in regards to its distributability, as well as
proposing palliating strategies to overcome those (see Section 4.6). Parallelizing the backwards
algorithm is an area we pioneered (cf. [SBO02, BOS02]).
Presenting complex load balancing strategies for both the backwards (Section 4.5) and the for-
ward (Section 5.3) algorithm, along with proofs of their correctness.
Analysing in detail different workload balancing settings for the forward algorithm (Section 5.4),
showing interesting results and future ways of improving them (Section 5.5).
Presenting a detailed analysis of the results of other researchers of the field.
Building, Zeus, a working timed automata distributed model checker, made of approx. 30000
lines of C code.
Implementing in it the above mentioned load balancing strategies, which are far from trivial to
code.
Integrating it into the VInTiMe verification framework (see Chapter 9), which can be down-
loaded on-line.
Implementing a version of the data structures that combines many of the well known abstraction
techniques and a very compact representation (see Section 3.3).
Providing empirical validation of the performance of each proposed alternative.
Exploring alternative data structures, also valid for monoprocessor use (Chapter 7).
Introducing hypervolume and clock reordering optimizations, useful in both the monoprocessor
and distributed versions (Chapter 8).

1.9. Credits

All the work presented here (except for Chapter 7, see below) is joint work with Vı́ctor Braberman
and Alfredo Olivero, my advisors.

I’m the main author of Zeus (the tool) and all of its bugs. The backwards version of Chapter 4
used the Kronos DBM libraries, which were rewritten from scratch for the forward version.

Jorge Lucángeli Obes and Pablo Rodŕıguez Źıvic coded some parts of the forward distributed
model checker. Jorge also coded for the work in Section 8.2.

The work of Chapter 7, including all the coding, was mainly done by Esteban Pavese as his grade
thesis. I was his advisor and Alfredo Olivero co-advisored.

The VInTiMe tool, presented in Chapter 9, is joint work with Lućıa Cavatorta, Guido de Caso,
Andrés Ferrari, Vı́ctor Braberman, Diego Garbervetsky, Nicolás Kicillof, Alfredo Olivero and Alejandra
Alfonso.

I sincerely thank all of them.
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Chapter 2

Preliminaries

This chapter defines and sets notation for the concepts that will be needed to understand the rest
of thesis. It does not aim to be a complete presentation of the topic. Instead it showcases the most
significant notions using formal definitions when required for a better understanding, but resorting to
informal explanations (and corresponding citations for a full presentation) if possible.

2.1. Timed Automata

We will focus on a given formalism to represent timed systems: timed automata. Having been
introduced in [AD94]1, they have become a widely used formalism to model and analyze timed sys-
tems, and several tools support them (see Kronos [DOTY96] or UPPAAL [BLL+95], for notorious
examples).

They are traditional finite automata with the addition of clocks to model (dense) time. Their
semantics is based on labeled state-transition systems and time-divergent runs over them. Here we
present their basic notions and refer the reader to [AD94, DOTY96, Yov97, HNSY94] –whose style we
follow– for a complete formal presentation (the background provided here should be, however, enough
to comprehend the rest of the thesis).

Definition 2.1 (Timed Automaton)
A timed automaton –TA for short– is a tuple A = 〈L, X,Σ, E, I, l0〉, where

L is a finite set of locations,
X is a finite set of clocks (non-negative real variables),
Σ is a set of labels,
E is a finite set of edges, and

I : L
tot
→ ΨX is a total function associating to each location a clock constraint called the location’s

invariant, and
l0 ∈ L is the initial location.

Each edge in E is a tuple 〈l, a, ψ, α, l′〉, where

l ∈ L is the edge’s source location,
l′ ∈ L is the edge’s target location,
a ∈ Σ is the label,

1Actually, the timed automata introduced in [AD94] had Büchi acceptance conditions. Henzinger et al. [HNSY94]
introduced timed safety automata replacing the acceptance conditions by locations invariants. The literature usually
calls timed automata to the timed safety automata, and so will we.
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2.1. Timed Automata 2. Preliminaries

ψ ∈ ΨX is the guard, and
α ⊆ X is the set of clocks that reset at the edge.

The set of clock constraints ΨX for a set of clocks X is defined according to the following grammar:
ΨX ∋ ψ ::= x ≺ c|ψ ∧ ψ|¬ψ, where x ∈ X,≺∈ {<,≤} and c ∈ IN. Ψ′

X extends ΨX allowing also
constraints of the form x−y ≺ c, where x, y ∈ X and c ∈ Z. We will assume invariants are backwards
closed (see Definition 2.4).

Usually, a TA A has an associated mapping Pr : L 7→ 2Props which assigns to each location a subset
of propositional variables from the set Props.

At any time, the state of the system is determined by the location and the values of clocks, which
must satisfy the location invariant. The precise definition of invariant satisfaction is given in the
following two definitions:

Definition 2.2 (Clock Valuation)
Given a clock set X, a valuation is a total function that maps clocks to non-negative real numbers.

I.e., v : X
tot
→ IR+

0 .

A few important points about valuations:

Intuitively, a valuation gives the reading of each clock in a particular moment.
To express the increasing of a valuation v, we write v + δ where δ ∈ IR, meaning that v + δ is a
new valuation such that (v + δ)(x) = v(x) + δ for every x ∈ X.
Sometimes it is useful to talk about all the possible valuations of a given clock set X. We do this
by writing VX , the set of all the valuation functions over X.
To properly define clock resets (Definition 2.6) the following notational convention will be made:
whenever VX is used, it should be understood as the set VX∪{0} where 0 is a special clock (0 6∈ X)
such that ∀v ∈ VX∪{0}, v(0) = 0 (i.e., it is a clock which always reads zero).

Definition 2.3 (Satisfaction of a Clock Constraint)
We say that a valuation v satisfies a clock constraint ψ if the point in the multidimensional space
specified by v is included in ψ. Formally, v ∈ VX |= ψ ∈ Ψ′

X is defined inductively as follows:

∀x, x′ ∈ X, c ∈ IN, d ∈ Z :
v |= x < c ⇔ v(x) < c
v |= x = c ⇔ v(x) = c
v |= c < x ⇔ c < v(x)
v |= c = x ⇔ c = v(x)
v |= x− x′ < d ⇔ v(x)− v(x′) < d
v |= x− x′ = d ⇔ v(x)− v(x′) = d
v |= ψ ∧ ψ′ ⇔ v |= ψ′ ∧ v |= ψ′′

v |= ¬ψ′ ⇔ v 6|= ψ′

Definition 2.4 (Bacwards Closed Constraint)
A clock constraint ψ is backwards closed (or past-closed) if for every valuation v ∈ VX it holds that
v |= ψ =⇒ (∀δ ∈ IR+) (v − δ |= ψ).

Informally, backwards closed constraints enforce upper limits in the value of clocks.

We have now the proper background to formally define the state space of A, by means of Defini-
tion 2.5, the definition of a state.
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Definition 2.5 (State of a TA)
Given a TA A, its state set Q is the set of tuples (l, v) where l is a location of A and v is a valuation
satisfying the invariant of l (i.e., v ∈ VX ∧ v |= I(l)).

A system modeled via a TA can evolve in two different ways:

either an enabled transition is taken, changing the location and (maybe) resetting some clocks
while the others keep their values unaltered (a discrete step), or
it may let some amount of time pass (a timed step).

In the last case the system remains in the same location and all clocks increase according to the elapsed
time, while still satisfying the location invariant. Both possible evolutions will be formally defined in
Definition 2.7, but we need to state first what clock reset precisely mean:

Definition 2.6 (Clock Reset)
A clock reset function α is a total function from X to X ∪ {0}, which keeps some clocks unchanged
while setting others to zero (i.e., such that (∀x ∈ X) α(x) ∈ {x, 0}).

To understand its use, let’s remember that v(0) is always 0. As a notational convenience, if v ∈ VX

and α is a clock reset function, we will write v[α] to mean the valuation such that v[α](x) = v(α(x))
for all x ∈ X.

Having said that, let’s look at the state transitions:

Definition 2.7 (Transition Relation)
The transition relation among states of Q, →⊆ Q× (E ∪ IR+)×Q is given by the following rules:

Discrete transitions:
〈li, e, ψ, α, lj〉 ∈ A v |= ψ v[α] |= I(lj)

(li, v)
e
→ (lj, v[α])

The state (lj, v[α]) is called the discrete successor of (li, v) and the last one the discrete predecessor
of the former.
Timed transitions:

δ ∈ IR+ (∀δ′)(δ′ ∈ IR+ ∧ δ′ ≤ δ =⇒ v + δ′ |= I(l))

(l, v)
δ
→ (l, v + δ)

The state (l, v + δ) is called the timed successor of (l, v) and the last one the timed predecessor
of the former.

Intuitively:

Discrete transitions make the automaton evolve to another state where valuations are equal (i.e.,
no time has passed) except for resetted clocks. For those type of transitions to be enabled, the val-
uation of the original state must satisfy the transition guard (v |= ψ) and the resulting valuation
the target state’s invariant (v[α] |= I(lj)).
In timed transitions there is no location change; only time passing. Their only enabling condition
is that the locations invariant should still be satisfiable.

It should be noted that
〈
Q,→, E ∪ IR+

〉
constitutes a labeled transition system (or LTS for short).
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2.2. Runs

Definition 2.8 (Runs)

If
〈
Q,→, E ∪ IR+

〉
is the LTS of A, a run r over A is an infinite sequence of steps through → such

that:

(∀i)(i ∈ IN =⇒ qi ∈ Q ∧ li ∈ E ∪ IR+)

r = q0
l0→ q1

l1→ q2
l2→ . . .

li−1

→ qi
li→ . . .

2.3. Model Checking

Model checking historically stood for a procedure for checking if some Kripke-structure is a model
of a given modal formula. The Kripke-structure would capture the behaviour of a system or program,
and the formula will be an assertion about it. By extension, model checking stands for an effective
procedure to determine if a system or program (expressed in some formalism) complies to a certain
behavior (given in some other formalism).

If timed automata are used as system models, it is common to use as special timed logic, called
TCTL [ACD93], to express –fairly complex– properties over them. TCTL stands for Timed Compu-
tational Tree Logic, and, as implied by its name, it’s a extension of the branching CTL logic to allow
quantitative temporal operators such as ∃✸≤8 to mean “possibly within 8 time units”. I.e., if A is a
TA and ϕ is a TCTL formula, model checking means answering whether or not A |= ϕ.

2.4. Symbolic States

It should be noted that the labeled transition system
〈
Q,→, E ∪ IR+

〉
is infinite because for any

given state an infinite number of timed transitions can be taken. Fortunately Alur, Courcoubetis
and Dill solved the problem of model checking timed automata in [ACD93] by constructing a finite
quotient graph of

〈
Q,→, E ∪ IR+

〉
, called region graph. This graph is finite but exponential in the

number of clocks. Their result can be summarized in the following theorem.

Theorem 2.1 (TCTL Model Checking is PSPACE-Complete)
TCTL model checking over TA is PSPACE-complete.

Furthermore, its time complexity is O(mn!2nCn) where m is the number of locations, n is the number of
clocks and C is the smallest natural number bigger or equal to the maximum module number appearing
in any constraint of the TA.

Proof

See [ACD93].
✷

A key idea of Theorem 2.1 is the discretization of the continuous time space of clock valuations
into equivalence classes. Such partitioning is based on the notion that clock valuations that either
match in their integer part or are bigger than the maximum constant are essentially equivalent. That
is:
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Definition 2.9 (Valuations’ Equivalence Relation)
Let Ψ̂ ⊆ Ψ′

X be a non-empty finite set of clock constraints over X. Let C ∈ IN be the smallest constant

that is bigger or equal |c|, for all c ∈ Z appearing in a clock constraint in Ψ̂.

We define ≃bΨ
⊆ VX × VX as the biggest reflexive, symmetric relation such that for all v, v′ ∈ VX ,

v ≃bΨ
v′ iff for all x, x′ ∈ X:

If v(x) > C then v′(x) > C.
If v(x) ≤ C then:

• ⌊v(x)⌋ = ⌊v′(x)⌋
• v(x)− ⌊v(x)⌋ = 0 =⇒ v′(x)− ⌊v(x)′⌋ = 0

For all constraint r ∈ Ψ̂, if v |= r, then v′ |= r.

We will write [v] to refer to the equivalence class of v.

≃bΨ
has the nice property of being congruent with regards to both clock reset and time passage,

the time operators needed for model checking, which will be introduced below. Also if v ≃bΨ
v′ and

ψ ∈ Ψ̂, then v |= ψ iff v′ |= ψ.

It is not usually necessary to construct the complete region graph: maybe only a portion of it
is needed for the problem at hand. More importantly, state sets can be represented symbolically,
providing a coarser partition, and thus, less states. The specifics can be found in [HNSY94, Yov97].
In practice, to deal with infinite state manipulation, convex sets of clock valuations are symbolically
represented as conjunctions of inequalities in Ψ′

X (e.g., 1 ≤ x ≤ 5 ∧ x− y > 8):

Definition 2.10 (Zone)
A convex set of clock valuations represented as a conjunction of clock constraints is called a zone.
Non-convex sets of valuations are represented as the union of zones, and called regions 2.

Observation 2.1 Sometimes we will use the term zone to refer not only to the constraint conjunction
but also to the valuation space described by them.

Definition 2.11 (Symbolic state)
A symbolic state is a tuple (l, z) where l is a location and z is a zone.

Symbolic states are the base of implementable model checking algorithms (such as the ones de-
scribed in Section 2.7). The idea is that a symbolic state graph is traversed instead of the (infinite)
LTS. The symbolic state graph is one of many possible abstractions that have been identified in timed
systems, albeit, the most important one.

2.5. Parallel Composition

The parallel composition A1 ‖ A2 of TAs A1 and A2 is defined using a label-synchronized product
of automata [AD94, DOTY96].

To model a complex system, an automaton can be expressed as the parallel composition of the
automata representing each component. A location of the obtained automaton, called global location
or composed automata node, is a tuple consisting of a location of each component. Similarly, a state
of the automaton (global state) is a global location plus the values of all clocks.

2Although having common roots, regions (in the sense of union of zones) and the region graph are independent
concepts. The use of regions (in the union sense) does not imply the construction of the region graph.
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2.6. System Under Analysis

We will generally want to refer to an implied system. In such cases we will write SUA, short for
System Under Analysis to mean either the system itself or its TA model.

2.7. Reachability

Whenever TAs are used to model a system, some formalism is needed to express properties over
them. As was said in Section 2.3, TCTL formulae can be used for that purpose. However, if getting
the formula right is very difficult in LTL, a temporal but untimed one3, (see, for instance, [Hol02]) the
situation gets worst on TCTL. Some tools only allow for fragments of it, others resort to a combination
of graphical notations, observers and reachability.

Definition 2.12 (Observer automaton)
An observer is another TA which can be composed to the SUA and evolves to a trap location (also
known as error location) whenever the behavior it monitors for takes place.

The idea of observers for TAs was introduced in [ABL98], although its roots can be traced further
away: some early articles proposed methods to generate an automaton that would have only words
satisfying a certain logic formula as its language, and the use emptiness checking to decide language
inclusion against the generated automaton and the one representing the SUA (e.g., [AFH91, AFH96]
and others).

These trap locations on observers are labeled with a boolean property, so deciding whether the
SUA has the specified behavior can be reduced to reachability, i.e., deciding whether there is a run in
the composed automaton that reaches a state labeled with the error property.

From a tool perspective, the procedure is like this: the user specifies (typically undesired) properties
in a graphical notation, which is generally easy to use. A tool automatically translates the graphical
representation of the property to an observer automaton4. Both the observer and the SUA are fed to
another tool that performs a reachability analysis.

It should be noted that the abstraction described in Section 2.4, based on symbolic states, preserves
runs, so reachability algorithms can work with them.

Observation 2.2 This thesis focuses on reachability as a behaviour validation method.

Let’s focus on reachability. We will write

initial state to refer to the (symbolic) state (l0, 0), where l0 is the initial location of the SUA and
0 the zone where every clock equals zero, and
target state to refer to any (symbolic) state of the SUA labeled with the error boolean property.

There are two known (and successful) algorithms to perform TA reachability [Yov97]:

the forward algorithm (discussed in Chapter 5), which starts by the initial state and explores its
successors, checking to see whether or not the target states have been reached, and
the backwards algorithm (discussed in Chapter 4), which starts by the target states and explores
its predecessors, aiming to reach the initial state.

3Temporal logics allow to specify precedence between events, but not specific delays, as the timed ones do.
4For instance, VTS [BKO05] is a graphical language (and a corresponding tool) that allows for the description of

scenarios and turns them into observer automata. Chapter 9 describes it a little more.
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Both can be described somehow generically in timed µ-calculus terms (see [HNSY94]). If Init is
the set of initial states, forward is defined as

Reach fwd (Init) = µS.Init ∪
⋃

(l,z)∈S suc⊲(l, z) where

suc⊲(l, z) = {(l′, z′)| 〈l, a, ψ, α, l′〉 ∈ E ∧ z′ = sucτ (resetα(z ∩ ψ)) ∩ I(l′)}

The intersection between zones lifts the intersection among bounds, which can be seen as (xi <
c1) ∩ (xi < c2) = xi < min(c1, c2), resetα means putting the clocks in α to zero and sucτ (ψ) means
replacing the constraints of the form x < c or x ≤ c by x < ∞ while leaving the rest untouched.
Section 3.1 treats the topic with more precision.

The respective definition of backwards, if Target is the set of target states, would be

Reachbck (Target) = µS.Target ∪ pred⊲(S) where
pred⊲(S) = predτ (S ∪ prede(S)),

prede(S) = {(l, z)| 〈l, a, ψ, α, l′〉 ∈ E ∧ (l′, z′) ∈ S ∧ z′ = resetα(z ∩ ψ)} and
predτ (S) = {(l, z)|(∃δ) ((l, z′) ∈ S ∧ z′ = z + δ)}.

Intuitively, predτ takes every state in the input set and replaces the constraints of the form x < c
or x ≤ c by x ≤ 0 while leaving the rest untouched. prede, on the other hand, finds which states would
have led to any state in the input set, after having traversed an edge and resetting the appropriate
clocks. Again, the details are presented in Section 3.1.

Each one of the above mentioned reachability algorithms has its advantages and weakness. For
instance, forward does not require the parallel composition to be built beforehand, as it can compose
while exploring (this is known as on-the-fly composition). Backwards does not have this possibility,
but it provides the basis for verification of the complete TCTL logic [HNSY94] and for controller
synthesis algorithms [AT02, Pnu05].

Next chapter presents the data structures used by these algorithms.
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Chapter 3

Data structures

3.1. DBMs

To represent symbolic states, a data structure called Difference Bound Matrices [Dil90], or DBM
for short, is typically used. This section introduces them and is based on the presentation of [Yov97].

DBMs are (n+ 1)2 matrices, where n is the number of clocks in the SUA. Diagonal cells are void,
but all the others contain a tuple 〈≺, c〉 called bound , where ≺∈ {<,≤} and c ∈ Z∪ {∞}. If cell (i, j)
contains 〈≺, c〉 it means that xi − xj ≺ c, where xi and xj are the i-th and j-th clocks in the systems
(counting 0 as a special clock, used to express xi ≺ c as xi − 0 ≺ c). The only valid use of ∞ in a cell
is to mean that the difference between two clocks is unbounded. I.e., xi − xj <∞.

The first column encodes upper bounds on clocks, while the first row encodes lower bounds. For
example, if 3 ≤ xi < 7 is encoded in a DBM z, then z[i, 0] is 〈<, 7〉 and z[0, i] is 〈≤,−3〉 (i.e., using
that a− b > c⇔ b− a < −c).

There are many ways to express the same constraint system. E.g., in the following system

x− y < 10 (3.1)

0 < x ≤ 7 (3.2)

0 ≤ y ≤ 3 (3.3)

the first equation is not a tight as it can be:

x− y ≤ 7 (3.4)

0 < x ≤ 7 (3.5)

0 ≤ y ≤ 3 (3.6)

This lack of unique representation is problematic from an algorithmic perspective because it makes
it hard to decide whether two DBMs, z1 and z2, represent the same constraint system (i.e., deciding
the thruth value of DBM equivalence: z1 ≡ z2). Luckily an order between DBMs can be established
and a canonical form can be defined as the minimum of the DBMs that represent the same system.

Definition 3.1 (DBM Canonical Form)
The canonical form of DBM z (noted cf (z )) is the minimum DBM that encodes the same constraints
as z, according to the following order.

z1 ≤ z2 iff for all 0 ≤ i, j ≤ n, z1[i, j] ≤ z2[i, j]

The order on bounds is defined as follows: < is strictly less than ≤ and 〈≺, c〉 ≤ 〈≺′, c′〉 iff c < c′∨(c =
c′∧ ≺<≺′).

15
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This solves the problem: checking whether z1 ≡ z2 becomes checking cf (z1 ) = cf (z2 ). Obtaining
the canonical representative, however, is quite expensive. A variation of the Floyd-Warshall All Pairs
Shortest Path Algorithm [AHU89] is used, whose complexity is O(n3).

Operations on zones can be easily computed over DBMs. A detailed description on those operations
can be found, for example, in [Oli94]. Here, however, we will briefly summarize the more important
ones (depicted in Fig. 3.1). In what follows it is assumed that all input parameters are in canonical
form.

1. Intersection: z ∩ z′ is the zone where each cell has the stricter bound among z and z′.

(z ∩ z′)[i, j] = min(z[i, j], z′[i, j])

2. Time successors: time elapsing preserves differences between clocks, because all of them advance
at the same pace. Lower bounds stay the same, but upper bounds have to be pushed to infinity:

sucτ (z[i, j]) =

{
〈<,∞〉 if j = 0
z[i, j] otherwise

3. Time predecessors: lower bounds get to zero:

predτ (z[i, j]) =

{
〈≤, 0〉 if i = 0
z[i, j] otherwise

4. Reset successors: resetting a clock is putting it to zero, but if clock xi is being resetted, xj − xi

should be equal to xj − 0. So

resetα(z)[i, j] =






〈≤, 0〉 if (xi ∈ α ∧ j = 0) ∨ (xj ∈ α ∧ i = 0)
z[0, j] if xi ∈ α ∧ xj /∈ α ∧ j > 0
z[i, 0] if xj ∈ α ∧ xi /∈ α ∧ i > 0
z[i, j] otherwise

5. Reset predecessors: The idea is to get a zone, that, once resetted could shield z, so:

reset−1
α (z)[i, j] = min z[k, l]|






xk = 0 ∧ xl = 0 if xi ∈ α ∧ xj ∈ α
xk = 0 ∧ xl = xj if xi ∈ α ∧ xj 6∈ α
xk = xi ∧ xl = 0 if xi 6∈ α ∧ xj ∈ α
xk = xi ∧ xl = xj if xi 6∈ α ∧ xj 6∈ α

6. Union: DMBs are not closed under union, so z ∪ z′ is {z, z’}, which is called a region1.

Observation 3.1 Complementing Observation 2.1, in the rest of the thesis the term zone will be
used to refer to both the set of points specified by a constraint system as well as the data structure
representing the last one.

3.2. RDBMs

Not every constraint needs to be present for all the operations. Actually, reduced versions of the
constraint system can be used most of the time, thus saving memory [LLPY03]. In practice, most tools
use a variation of DBMs, called Minimal Constraint Representation DBMs2 which employs that idea.

1Of course this is not strictly neccessary if z ⊂ z′ or z′
⊂ z.

2Usually called RDBM s, the “R” standing for “Reduced”.
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(a) Zone. (b) Resetting x.

(c) Time successors. (d) Time predecessors.

Figure 3.1: Different operations on the 1 ≤ x ≤ 4 ∧ 1 ≤ y ≤ 3 zone.

As these DBMs are sparse, they are not stored like proper matrices, but as a linked list of bounds, in
order to save space.

To obtain the the minimal constraint representation of a DBM, a variation of the path-recovery
version of Floyd-Warshall is again used [LLPY03].

RDBMs are not new. Kronos attached a map of the minimal constraint system to each DBM
and UPPAAL can be made to run using them.

3.3. Packed RDBMs

There are, however, some other ideas that can be combined. Behrmann et al. presented an abstract-
ing technique that can be used to widen zones [BBLP04], speeding up the reachability exploration.
Their technique is based on the observation that for every clock xi there is a maximum constant
against which it is compared (called ci). So, each time a constraint of the form xi ≺ c, with c > ci
appears on a DBM, it can be replaced by xi <∞.

This widening technique has implications for the data structure as well. If we know the maximum
constant for each clock, then we know how many bits we need for each cell, and hence for each DBM.

Another widening technique comes to play. Daws and Yovine [DY96] discovered that not all the
clocks are active in each location of the SUA, meaning that some of them can be ignored to perform
operations on DBMs. Inactive clock elimination saves time, but combined with sparse storage of
RDBMs, gives more sense to the idea of using a linked list representation.

Zeus combined for the first time the three ideas, thus using linked lists of cells, each one of a fixed
size in bits, containing only active clocks. But having each node of the list to take a full integer would
waste space. Because of that, as many of these shrunken bounds as possible are packed in each (long)
integer, which is then packed in a block of continuous memory, and only then linked to another similar
block.

Empirical observations show that this approach reduces time by 50% compared to a näıve linked
list. This happens because less bytes are manipulated, many operations take place completely on
registers and fewer pointer are dereferenced.
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Figure 3.2: A BDD with variables x1, x2 and x3.

A lot of work has been done on widening zones. The interested reader can refer to [ZLZZ03,
YPD94, Bal96, BBFL03], to name a few.

3.4. CDDs

The absence of a canonical form for regions, and the inability of DBMs to express non-convex sets
makes it very hard to detect superpositions, leading to repetitions of calculus and other inefficiencies.
This problem was the motivation for research into new data structures. In particular, ideas like
Binary Decision Diagrams, or BDDs [Bry86], seem tempting. They are successful in the untimed
model checking domain (see for example, [HGGS02]).

A BDD is a directed graph 〈V,E〉 where every v ∈ V is reachable from the root and can be a
terminal node or not. Each non-terminal node has a index in {1 . . . n} and two children, called zero
and one. There are only two terminals, called true (or 1) and false (or 0). Non-terminals represents
variables in a binary function, and their children stand for the function that is obtained once this
variable is set to the corresponding value.

For instance, a BDD representing the binary function (x1 ∧ x2) ∨ x3 can be seen in Fig. 3.2.

There have been many attempts to transfer BDDs to the timed setting. See, for example, Asarin
et al. [EMA+97], Strehl et al. [KL98], Møller et al. [MLAH99] among others, or Pavese [Pav06] for
a thorough survey. The most successful, however, was an article by Behrmann et al. In [BLP+99]
they presented Clock Difference Diagrams (CDDs for short). Their work used DBMs for most of the
operations and CDDs for some of them, obtaining memory savings at the cost of extra time.

It is easy to see how CDDs leverage on BDDs: each node represents a clock, an instead of only
two outgoing edges, there can be many, each of them labeled with a (pairwise disjoint) interval. In
Fig. 3.3 a CDD representing a (non-convex) region can be seen.

For completeness, we mention here the work of Wang in a very similar data structure called Clock
Restriction Diagrams, which uses open intervals (see [Wan00, Wan03a]).

In Chapter 7 we present a CDD-like data structure that was fully implemented achieving the
reduction of verification times at the expense of storing some extra constraints (compared to the
traditional encoding of DBMs).
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Figure 3.3: A non-convex CDD.
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Chapter 4

Backwards

This chapter presents the work done on a distributed version of the backwards algorithm. Although
this algorithm cannot perform on-the-fly composition as the forward one does, it provides the basis for
verification of the complete TCTL logic [ACD93] and for controller synthesis algorithms [AT02, Pnu05].

Along a number of years this was our main line of work, in what regards to timed model checking.
The research materialized in the first versions of Zeus, and our results were published in [SBO02,
Sch02, BOS02, BOS04a, BOS05, BOS06b].

Zeus was developed following a software architecture centric approach. Its conceptual architecture
was conceived to be sufficiently modular to house several features such as a priori graph partitioning,
synchronous and asynchronous computation, communication piggybacking, delayed messaging and
dead-time utilization.

Surprisingly enough, early experiments pinpointed the difficulties of getting speedups using asyn-
chronous versions (Section 4.3) and showed interesting results on the synchronous counterpart (Sec-
tion 4.4), although being intuitively less attractive.

Before getting into the distributed version, next section summarizes how the monoprocessor version
of the backwards algorithm looks like.

4.1. Monoprocessor Version

The sequential backwards reachability algorithm, implemented in the model checker Kro-

nos [DOTY96], is shown in Algorithm 4.1.1. To shorten notation s
e
→ t stands for an edge with

ψ(e) as its guard and α(e) as its reset clocks. The algorithm works as follows: initially the set of
target states is assigned to the R set. Then, an iterative computation is performed over the graph of
(global) locations. During the computation, sets of states are symbolically represented by locations
and their associated sets of DBMs. In each iteration, R is augmented by every other state that can
reach it in a single step, i.e., its predecessors. They are computed using prede and predτ , the discrete
and timed predecessor operators, already presented in page 13.

The process is repeated up to fixed point [HNSY94]. The computation is performed on every
location and takes into account DBMs from adjacent automata nodes. The final answer is obtained
checking whether an initial state belongs to R.

It should be noted that the hardest part of Algorithm 4.1.1 is the region subtraction (line 9, shown
in detail in Algorithm 4.1.2). It is a highly coupled operation that requires all the zones of the minuend
region to be operated against the complement of all zones of the subtrahend region. The complement
of a zone is usually a non-convex set.

From a conceptual standpoint, Kronos architecture can be viewed as a fixed point engine that
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1: for l ∈ L | ERROR ∈ Pr(s) do
2: Rl = I(l)
3: ∆Rl = Rl

4: end for
5: while ∃ l′ ∈ L | ∆Rl′ 6= ∅ (i.e., fixed point not reached yet.) do
6: for l ∈ L do
7: PredE=

⋃
l

e
→t

prede(∆Rt, ψ(e), α(e))
8: PredT = predτ (PredE)
9: ∆Rl = PredT −Rl

10: Rl = Rl ∪ PredT
11: end for
12: end while

Algorithm 4.1.1: Backwards reachability algorithm.

1: R = ∅
2: for z1 ∈ R1 do
3: Raux = copy(z1)
4: for z2 ∈ R2 do
5: Raux = Raux ∩ z2
6: end for
7: R = R ∪Raux

8: end for

Algorithm 4.1.2: Region subtraction (R = R1 −R2).

reads and writes its non-convex sets into a regions’ storage component, as depicted in Fig. 4.1.

4.2. Distributed Version

When this line of work started, a few decisions were made:

1. The tool would use Kronos libraries to perform operations on zones and regions.
2. It should run on a cluster of workstations, using message passing as communication method.
3. Automata locations would be distributed among processors (i.e., every processor knows which

one handles each location).
4. As there were many unknowns regarding different options to get maximum performance, the

keys ideas for the design were: software architecture based and design for change.

Item 4 was critical. To obtain a distributed timed model checker a number of issues must be dealt
with. On the performance side, a delicate balance should be established: on one hand maximum
distribution and parallelism is desired; on the other, minimum communication between processors
should be pursued. This seems to be a very important issue, because processor cycles should be
devoted to the profitable fixed point calculation, instead of house-keeping activities such as handling
interruptions (context switching) to take care of message exchange. The following sections introduce
some design issues and related choices. To facilitate their reading, let’s start by an intuition of the
workings of the distributed algorithm.

Locations are distributed among processors, which communicate by message passing. There’s a
distinguished one, called coordinator , which takes centralized decisions and is periodically informed
by the others of their progress. Each processor runs a replica of the (modified) fixed point algorithm,
resorting to network exchange when they need updated information that lies into the realm of some
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Regions’ Storage 

Fix Point Engine

Kronos

Figure 4.1: Kronos architecture.

other processor. The above mentioned coordinator is in charge of detecting the fixed point, based on
the periodical reports it receives.

4.2.1. Control Graph Representation

Following Kronos approach, Zeus also used a symbolic representation of clock values and an
explicit one of the whole control graph, as opposed to the other well-known alternative: on-the-fly
construction during the verification phase. This is not possible in the backwards algorithm, but also the
explicit representation was an interesting starting point for experimenting different graph-partitioning
strategies. It would also simplify the future implementation of dynamic location redistribution (for
load balancing purposes).

4.2.2. Control Graph Partitioning

Having the right partitioning, that is, the right association between locations and processors, is vital
in distributed model checking, as it determines the workload of each processing node. Proportioned
workload distribution is one of the keys to speedups.

Most work in the area uses an on-the-fly control graph construction and a hashing function that
tries to balance the load between processing nodes while keeping locality of calculus1. Having an
explicit representation of the control graph opens a wide range of partitioning strategies, some of
which are reported in this chapter, as listed below.

Observation 4.1 It should be noted that although the control graph must be loaded in one machine’s
memory to be partitioned (i.e., the partitioning procedure is not distributed) this is generally not a
problem since in the “timed world” complexity arises mainly from number of clocks and their inequali-
ties2, so in general, the number of locations and edges make the whole graph perfectly fit in a relatively
reduced amount of memory3.

1A more in-depth comparison is presented on Chapter 6.
2Recall from Theorem 2.1 that the number of timed states is O(n!2nCn), where n is number of clocks and C is the

largest constant appearing in the inequalities.
3To have an idea of the numbers we are dealing with, current clusters have between an few an a dozen processors,

with some hundred megabytes each, and the control graph is between four and twenty-something thousand locations.
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We implemented the following partitioning strategies:

Minimum Cut: We used the tool METIS [KK98] to calculate the locations’ graph minimum cut.
More precisely, if m is the number of edges, METIS uses an O(m) heuristic approach to deal with
the NP-complete problem of finding the minimum cut. The rationale was that the reduction in
the number of edges that cross processor boundaries would minimize communication cost. Note
that this partitioning does not necessarily lead to a load balance during the verification phase.
In fact, this is a topological method that does not take into account the size of data structures
(DBM sets) that would be associated to each location. Experiments have shown that the sizes
of these sets may differ in several orders of magnitude.
Location-cost Weighted Distribution: We weighted control locations with a metric of final work-
load which is directly related to the number of operations per location during an exploratory ver-
ification phase on a monoprocessor. More precisely the computational cost of a time-demanding
operation, the set-theoretic difference between regions (Algorithm 4.1.2), is accumulated for
each location4. Then, a heuristic procedure is used to evenly distribute the locations among
processing nodes according to that weight. The idea is to see how a prediction on the final
number region-operations performed at each location influences verification times5. Note that
this distribution may increase communication needs since it is unaware of graph topology.
Random Distribution: This is a uniform distribution of control locations among processing nodes.
Intuitively, this kind of distribution may exacerbate communication, and looks like a bad choice.
Nevertheless, it serves as the default distribution, considering that appropriate weight for a more
thoroughly crafted strategy cannot be established without a preprocessing analysis as previously
explained.

4.2.3. Level of Synchronicity

There are two major choices regarding the level of synchronicity of the computation. On the
one hand, in the asynchronous version each processing node would perform fixed point calculations
using the information locally available to it until reaching a (partial) local fixed point. Each time
new information from other processing node arrived, the calculation would be resumed pursuing a
new convergence. Fortunately, the soundness of this kind of asynchronous calculus can be proved
rigorously (see Section 4.3.1). On the other hand, a synchronous version would sacrifice parallelism
to mimic the calculations that would be performed by a monoprocessor version. This can be achieved
by a coordinator that orchestrates global communication phases each time all processing nodes finish
a fixed point iteration (that is, an iteration of fixed point calculus). It would repeat this pattern until
the global fixed point was reached.

4.2.4. Communication Schema

An important decision that might affect the performance of an asynchronous version is the use of
either a push schema, where nodes send each other regions that they will need, or a polling schema,
where processing nodes explicitly request regions as they need them.

We implemented both strategies, with subtle variations: in the polling case, processing nodes
basically behave as explained, but when a processor A needs a region located in another processor
B, it will request all B’s regions that are of interest to A –not just the one needed right now– and it
will send all its regions that B needs. In principle, these mechanisms should reduce communication
overhead, because fewer messages are exchanged.

4Please note that since regions are composed by DBMs, this cost is measured in terms of number of DBM-operations.
5It can be thought as an oracle-provided partition.
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Figure 4.2: Zeus General Conceptual Architectural View (∗ means repetition).

4.2.5. Conceptual Architectural-View

To handle all this design considerations, an architecture as shown in Fig. 4.2 was built. Its apparent
complexity obeys to a key design decision: separation of concerns. It was built as a testbed for
experimenting with a family of design decisions concerning synchronization, region exchange and load
balance. Thus, we aimed at a loosely coupled solution where issues like fixed point calculation and
the use of polling or push schema remained as independent as possible. This strategy led us to the
identification of some aspects that were mapped into different components.

Each processor working in a distributed Zeus computation is called a capsule. We also call capsule
to the processes running inside the processors and their associated data structures and components.

Zeus architecture can be more easily understood centering at the Fixed Point Engine. This is the
component that runs the fixed point calculation, much as it does in Kronos6. It reads and writes
regions to the storage component. Each region belongs to a control location that might be assigned
either to the current capsule or to some other. Because the Fixed Point Engine is unaware of such
distribution, it makes no distinction between local and remote locations, except for the fact that it
writes only over the local ones. Upon reception of a read request from the Fixed Point Engine, the
router delivers regions from the local regions’ storage, if their location is local, or from the remote
regions’ storage, if it is remote. In case of receiving a write request –which only happen for local
regions– it stores them in the local region’s storage and in a delta accumulator . There is a delta
accumulator for each local control location that should be eventually visible from a remote capsule.

Again, the Fixed Point Engine is not aware of the existence of the delta accumulators; it is the
router ’s job to guarantee that written local regions also get to the accumulators whenever that infor-
mation is known to be of interest of a neighbor capsule.

6Interested readers can find the algorithm in [BOS02].
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The rationale for the existence of delta accumulators has to do with technical concerns regarding
regions’ difference. Basically, they serve the purpose of storing information instead of having to
recalculate it when needed. Delta accumulators are emptied when regions are sent to other capsules.

Within each capsule there is an embassy for each neighbor capsule. When requested for a region,
they immediately answer back if they have some yet unseen regions to provide7.

As well as there are delta accumulator to benefit the sending phase of a regions’ exchange, there
are embassies to benefit the receiving phase. They are contained inside the remote regions’ storage.
One can think that there is an embassy at the opposite end of every delta accumulator . It is also
responsible of showing the same content to every request during an iteration.

The memory overhead of both delta accumulators and embassies is rather small due to imple-
mentation decisions, so they scale pretty well. There is, though, some repetition of content, specially
in embassies, that increases with the amount of connected capsules. The minimum cut partitioning
approach keeps this number low, so this is not a problem in that case, although, potentially, it could
arise in the others. It should also be noted that experimental observations placed the per-processor
memory overhead in an acceptable range (see Fig. 4.7).

A capsule A has a connectorA,B iff there is at least one edge between a location in A and a location
in B. Connectors handle network communication. That is, given two capsules, A and B, there might
be many edges in the control graph going from locations assigned to A to locations assigned to B,
call it k. Although A can have up to k delta accumulators and k embassies, it has only one connector
handling bi-directional communication to B. The same happens at B.

The helper performs data representation compression (i.e., representing regions with lesser DBMs
if possible). Compression is applied in the local repository and the delta accumulator . This leads to
a “semantically innocuous” dead time utilization that hopefully will make future computations and
messaging lighter.

The coordinator starts the process, partitions the graph, distributes the workload and establishes
whether global fixed point has been reached or not. It also collects statistics. It receives information
from the iterators on the capsules to make decisions.

A formal description of the architecture including state machines and transducers can be found in
[Sch02].

4.3. Asynchronous Version

The push schema was easily implemented by sending information stored at the delta accumulators
as soon as possible.

A key point for our polling schema was the determination of the regions-demand mode for each
capsule. More precisely, the load assessor component was in charge of determining whether the capsule
was idle or not and whether its regions-demand was high or low. It decided in which of the following
three possible modes the computation was currently in:

Low regions-demand, busy processing node In this state the processor is busy with the fixed
point calculation and can go along without requesting newer regions from another processing
node, thus leaving the chance that a future request will bring a larger region, due to the mono-
tonicity of the calculus.

High regions-demand, idle processing node In this state the processing node has reached a tem-
porary fixed point, so it is idle and its requests are immediately delivered.

7For technical reasons special care is taken to exhibit the same information to every request belonging to the same
Fixed Point Engine iteration.
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High regions-demand, busy processing node This state serves the purpose of predicting the pre-
vious one. The processing node is not yet idle, but an heuristic8 predicts that it will be soon, so
its requests are sent without delay.

When an embassy needs new regions from a remote capsule, it contacts the appropriate connector .
In a näıve polling approach, a connector merely proxies requests from one capsule to another. However,
a few twists were made for performance, i.e., for minimizing interruptions to the fixed point calculation
at the other end. First, when requested to send a petition, the connectors check with the load assessor
to see if there is a “high regions-demand”, in which case they proceed requesting regions to the target
capsule. However, if there is a “low regions-demand”, they will silently drop the request. Secondly,
connectors do piggybacking : instead of asking for a particular locations’ region, they ask for the regions
of the full set of locations they represent; also, to “compensate” the other capsule for the interruption,
they send the regions of the full set of locations that are of interest to the capsule receiving the request.
These regions come from the corresponding delta accumulators. The receiving connectors immediately
answer requests, regardless of their own capsule regions-demand mode. When the new regions arrive
to the demanding capsule they become visible to the Fixed Point Engine at the next iteration.

As was noted before, a capsule can be idle, meaning that global fixed point is not yet reached
because there is still work going on at other capsules, but a local fixed point was established anyway.
To take advantage of the idle time, a new component, the helper , is introduced. It performs auxiliary
tasks, such as representation compaction of the regions at the delta accumulators and at the local
regions’ storage.

Finally, an iterator is responsible for deciding to run either the Fixed Point Engine or the helper
based on the readings of the load assessor and the arrival of new information. It is also responsible
for sending statistics to the coordinator .

Hence, the coordinator is the component that detects that fixed point or that initial states have
been reached.

4.3.1. Correctness Proof

To prove correctness we follow a common strategy for reasoning about distributed algorithms by
splitting the proof in two parts: (a) the semi algorithm described converges to the minimum fixed
point, and (b) the coordinator will eventually detect fixed point when it actually happens.

To address the first issue we resort to the concept of Asynchronous Iterations, due to
Cousot [Cou78].

Definition 4.1 (Asynchronous Iterations)

Let (P,⊑) be a complete lattice, n a positive integer and F : Pn → Pn a monotonic operator.

Let Ord be the set of ordinal numbers and 〈cδ : δ ∈ Ord〉 be a sequence of elements of INn = {1, . . . , n}
such that:

a) (∀δ ∈ Ord)(∀i ∈ INn)((∃α ≥ δ)(i = cα))

Let 〈τ δ : δ ∈ Ord〉 be a sequence of elements of Ordn such that:

b) (∀i ∈ INn)(∀δ ∈ Ord)(τ δ
i < δ)

8The heuristic is the determination that the number of regions changed per iteration is decreasing below certain
threshold.
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c) (∀δ ∈ Ord)(∀i ∈ INn)(∃β ≥ δ)((∀α ≥ β)(δ ≤ τα
i )))

d) (∀β, δ ∈ Ord)((β is a limit ordinal ∧ β < δ) =⇒ ((∀i ∈ INn)(β ≤ τ δ
i )))

An Asynchronous Iteration of the operator F and the sequences 〈cδ : δ ∈ Ord〉 and 〈τ δ : δ ∈ Ord〉,
starting from D ∈ Pn, is defined as follows:

x0 = D

xδ
i = xδ−1

i ∀ successor ordinal δ ∧ ∀i 6= cδ

xδ
i = Fi(x

τδ
1

1 , . . . , x
τδ
n

n ) ∀ successor ordinal δ ∧ ∀i = cδ

xδ
i =

⊔
δ′≤δ x

δ′

i ∀ limit ordinal δ

In [Cou78] it is proven that Asynchronous Iterations are stationary sequences and their limit is
indeed the least fixed point of operator F starting from D.

That is, Asynchronous Iterations provide a model of iterative computing that guarantees that if
hypotheses (4.1.a)-(4.1.d) are met, then the minimum fixed point will be reached even if the com-
putation does not follow the standard order of fixed point iterative calculus. In particular, during
the computation described by this model, data from different past instants might be used. This is
the kind of phenomenon that arises in distributed environment, where remote data used in a given
calculus may have changed at the original site. More precisely, x can be understood as a shared
memory (distributed or not) of n positions featuring minimal mutual exclusion mechanisms. Then,
being 〈δ〉 a growing sequence on logical instant, 〈cδ〉 will be a sequence stating that the cell xi (where
i = cδ) is being written by some processor. The value to be written by the processor is calculated as

the application of the functional F to x
τδ
1

1 , . . . , x
τδ
n

n where each τ δ
k stands for the last time when the

processor read xk.

Let’s go back to the hypotheses needed to prove convergence. Firstly, (4.1.a) requires fairness of
computation (i.e., each cell is visited infinitely often). Condition (4.1.b) simply requires calculations to
be based on past instants. Roughly speaking, (4.1.c) and (4.1.d) require that the information should
eventually (in a finite number of steps) be ready for utilization in future calculations.

Now let’s see how runs of our algorithm can be characterized as Asynchronous Iterations and match
these hypotheses.

Let ζ be an arbitrary run of our algorithm where at each logical step at most a cell (a control
graph location in our case) is written9. Then, we define 〈cδζ : δ ∈ Ord〉 as the sequence containing the

cells written at each logical instant for the run ζ. On the other hand, 〈τ δ
ζ : δ ∈ Ord〉 is defined as

follows:

(τζ)
δ
i =






the last instant when the i-th cell if δ ∈ ω
was read previous to δ step in ζ
δ − 1 if δ 6∈ ω

The definition for values beyond ω is arbitrary in order to make the proofs easier. Indeed, fixed
point point calculus is done over a finite lattice and it is not necessary to iterate beyond omega. Thus,
being pred⊲ the basic monotonic operator over the lattice used for backwards calculus, what follows
is a characterization of runs of the algorithm:

(xζ)
0 = ⊥

(xζ)
δ
i = (xζ)

δ−1
i ∀ successor ordinal δ ∧ ∀i 6= cδζ

(xζ)
δ
i = pred⊲i((xζ)

(τζ)δ
1

1 , . . . , (xζ)
(τζ)δ

n
n ) ∀ successor ordinal δ ∧ ∀i = cδζ

(xζ)
δ
i =

⊔
δ′≤δ(xζ)

δ′

i ∀ limit ordinal δ

9This linearization is possible with no loose of generality.
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Actually, the real run of our algorithm is a proper subsequence of xζ since the number of steps
does not go beyond ω. Now let’s show that xζ is indeed an Asynchronous Iteration (and thus it will
converge to fixedpoint(pred⊲)(⊥) as expected). Let’s analyze each condition of Definition 4.1.

a) Trivially holds. Each location is assigned to a capsule and capsules are executed continually in
a fair way wrt. its locations.

b) Trivially holds. When δ ∈ ω, in order to calculate a new application of the functional, each
capsule resorts to data stored in its repository (local or remote is irrelevant) and the information
contained there was generated in a past instant. When δ 6∈ ω, by definition, (τζ)

δ
i is δ − 1.

c) Let xi (without loss of generality) be a location assigned to capsule c. We would like to show that
given a δ there exists a future instant β after which every capsule that will require xi will use a
value written at or after instant δ. Therefore we need to show that sooner or later (the instant β)
capsules are able to “see” changes that have happened after δ. Using simple fairness hypothesis,
and assuming that the net is not lossy, in the push schema this is clearly bound to happen. For
the polling schema, the argument is subtler. There are two simple cases: (a) the information
produced at logical-time δ arrives in a piggybacked message, or (b) the reading capsule enters
a high regions-demand mode, the request will eventually be made, and thus updated info will
return as answer. The only remaining point to analyze is the fact that sooner or later either
the information arrives piggybacked or it is claimed by capsules that need to read regions of the
given location. More precisely, the only scenario that can jeopardize the property is an infinite
arrival of new information from neighbor capsules that disable a given capsule from entering
a high regions-demand mode (and thus keeps it from claiming the information produced after
instant δ). However, this is not feasible due to the fact that each arrival implies a new piece of
information of the lattice which is indeed finite (due to Theorem 2.1).

d) Trivially holds. If β is a limit ordinal then (∀i ∈ IN)((τζ)
δ
i = δ − 1) (by definition of τζ). On the

other hand, if β < δ then β ≤ δ − 1.

Now we have proved that xζ converges and it is not difficult to see that it converges in less than
ω steps like the original algorithm since there is a finite number of values that xδ

ζ can hold and pred⊲

is a monotonous operator.

The last question to solve is: “Does the coordinator correctly detects the fixed point?”. On one
hand, premature abortion is not really possible since not only local fixed point is required to stop
the calculus, but also the delta accumulators must be empty and the number of sent messages must
be the same that the received ones, network-wise. On the other hand, since the previous predicate
is periodically checked, after convergence the global fixed point will eventually be detected by the
coordinator .

4.3.2. Experimental Results

The experiments of this section were run on a cluster consisting of 9 Linux 2.4 workstations
connected through a 100 Mbps Ethernet network, each one running on a 1.6 GHz Pentium IV processor,
with 128 MB of RAM. Case studies are described in Appendix A.

For RCS5 , the monoprocessor version took 110 and 230 s to verify the reachable and unreachable
cases, respectively. The asynchronous version behaved erratically in the case studies, even showing
important slowdowns with respect to the monoprocessor version. For instance, a 2-processor run of an
unreachable case, using a subscription policy and METIS as partitioning strategy took 554 seconds to
complete (more than twice as much the monoprocessor times). In the rest of the examples the same
behavior was observed. E.g., the CB7,2 example only finished with 4 processors being 10 times slower
than the monoprocessor version.

In principle, these results seemed counterintuitive since asynchronous strategies were meant to
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make good use of parallel processing resources. However, there was an explanation for this unsatisfac-
tory behavior that is deeply rooted in the nature of the verification problem. First, in the asynchronous
versions, the sequence of sets of regions computed to reach the fixed point point may differ to the se-
quences built by the monoprocessor version. Secondly, region representation as sets of zones is not
canonical10. Then, the order in which operations are applied can affect the cardinality of the set that
represents the resulting region – that is, the number of DBMs involved. The experiments exhibited
an important boost in the number of DBMs required to represent intermediate regions during the
asynchronous fixed point calculus and consequently an increase in the cost of operations between re-
gions. This phenomenon is called fragmentation and some authors reported a similar problem when
breadth-first traversal is not honored to calculate fixed points [Beh05, BLO02].

Going back to the RCS5 case-study, in a monoprocessor version the number of operations obtained
is approximatedly 697 millions while the calculus of the 2-processor asynchronous version produces
approx. 1.3 billions. It is also worth mentioning that I/O had little impact in total verification times,
and partition and distribution strategies affect fragmentation in an unpredictable way.

These observations motivated the implementation of the synchronous policy, described in next
section. Due to Zeus’ modular architecture, the effort was very limited, restricted to the iterator and
coordinator components.

4.4. Synchronous Version

Experiments reported in the previous section (and in more detail in [BOS02]) revealed some coun-
terintuitive bad behavior of the asynchronous version with respect to the number of operations and
total time required by Kronos. The problem being data-structure fragmentation caused by a non-
standard evaluation order, we decided to emulate the way Kronos calculates the fixed point. This
motivated the design and implementation of a synchronous policy.

Although it lost potential parallelism, it mimicked the operations that Kronos performs on a
monoprocessor. Therefore, if load balance was achieved, this strategy may have provided important
speedups wrt. the monoprocessor version. The basic idea behind the synchronous version was quite
simple: the coordinator gave the pace at which all the other capsules work. Verification methods like
the one presented in [GM02] use a similar approach.

The coordinator waited for all the capsules to have finished one iteration of their fixed point
calculation and then authorized them to go into a region-exchange phase. Once they were done, they
resumed the computation again.

The iterator component in each capsule implemented the other half of the protocol (see Algo-
rithm 4.4.1). The tricky part was knowing that it was done exchanging regions. This was accomplished
by evaluating the following predicate: “All my sending buffers are empty and I have received at least
one message from each adjacent connector”. Please note that each capsule went into the iteration
phase once it was done with the region exchange, which was a local decision (the coordinator does
not needed to authorize this). This allowed for the fixed point calculation to start as soon as possible,
taking advantage that not every capsule had dependencies on every other capsule.

4.4.1. Correctness Proof

The correctness of the synchronous version leverages on the asynchronous one (Section 4.3.1), but
the proof is easier since every fixed point iteration is followed by an exchange phase. Moreover, in a
synchronous version a stronger property holds: at the end of each iteration the resulting set of regions
is the same one that would be obtained by the monoprocessor version.

10Recall from Definition 3.1 that there may not be a unique way to represent the same set of clock values.
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1: while ¬GlobalEnd do
2: change = fixedpoint engine.iterate()
3: notify phase end(Iteration, change)
4: wait for coord clearance(Exchange)
5: exchange regions()
6: notify phase end(Exchange)
7: end while

Algorithm 4.4.1: Zeus synchronous iteration.
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Figure 4.3: Speedup of the Synchronous Version for the unreachable case of RCS5.

4.4.2. Experimental Results

Results obtained were much more satisfactory, evidencing predictable speedups (see Fig. 4.3 and
Fig. 4.4).

To explain why a linear speedup is hard to achieve, we defined a metric of the processing time
wasted in each experiment as follows. Being #cap the number of capsules and #it the number of
iterations, we get:

WastedTime =

#it∑

i=1

#cap∑

c=1

Waiting i,c

%waste =
WastedTime

(TotalTime − I /O time)×#cap
× 100

This measured the time potentially wasted due to unbalanced workload. In Tables 4.1 and 4.2 we
can see the verification times and corresponding %waste metric for the different partition strategies.

For instance, the poor performance of the Minimum Cut version can be explained by the unbalanced
workload produced by not taking into account that there are huge differences in the number of DBMs
associated to each location. Indeed, in this example less than 2 percent of locations are responsible for
more than 90 percent of effort in the fixed point calculation. Random distribution does not perform
significantly worse –sometimes even performing better– than location-cost weighted distribution. This
fact seems awkward at first sight, but can be accounted for by carefully analyzing the iteration-level
statistics.
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Table 4.1: %waste for example RCS5 (unreachable “Error” state).
# capsules Random Location-cost Weighted Min Cut

total time %waste total time %waste total time %waste

1 230.68 0.00 230.68 0.00 230.68 0.00
2 141.56 17.37 143.88 19.08 228.27 49.93
3 99.68 20.79 99.44 20.45 224.41 66.88
4 74.43 19.50 85.09 31.45 219.46 74.86
5 82.73 44.35 60.48 21.03 224.73 80.90
6 57.64 32.05 61.31 37.84 229.71 84.65
7 60.06 46.53 50.05 36.14 219.28 86.83
8 57.75 53.22 48.77 43.28 219.61 89.04
9 54.92 61.17 48.59 52.94 119.94 82.84
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Figure 4.4: Speedup of the Synchronous Version for the reachable case of example RCS5.

Table 4.2: %waste for example RCS5 (reachable “Error” state).
# capsules Random Location-cost Weighted Min Cut

total time %waste total time %waste total time %waste

1 110.40 0.00 110.40 0.00 110.40 0.00
2 60.22 0.97 74.12 33.95 109.98 49.90
3 43.44 3.00 59.16 39.07 107.34 66.53
4 36.52 8.24 48.44 33.80 91.93 69.99
5 32.52 14.59 42.30 36.14 107.44 79.84
6 29.23 16.43 37.85 33.20 111.44 83.09
7 24.72 8.76 30.56 22.66 91.56 82.49
8 27.01 31.74 33.66 44.47 91.26 84.90
9 26.40 39.86 31.61 51.64 63.37 79.42
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Figure 4.5: Speedup of the Synchronous Version for the unreachable case of example CB7,2.

Table 4.3: %waste for example CB7,2 with an unreachable “Error” state.
# capsules Random Location-cost Weighted Min Cut

total time %waste total time %waste total time %waste

1 Ran Out of Memory 0.00 ROM 0.00 ROM 0.00
2 ROM N/A11 ROM N/A ROM N/A
3 ROM N/A ROM N/A ROM N/A
4 71.97 17.10 88.14 40.88 ROM N/A
5 61.71 16.29 76.20 43.60 ROM N/A
6 60.76 23.27 76.38 50.06 ROM N/A
7 52.59 19.79 65.46 47.50 111.14 74.93
8 51.71 29.22 63.38 48.30 ROM N/A
9 52.02 35.76 63.57 54.89 115.52 81.74

Partitioning based on the location-cost metric was founded on the conjecture that the cost reported
by the metric has the same distribution among the iterations for every location. We empirically
observed that equally distributing the final cost among the capsules does not imply equally distributing
it at every iteration. In a worst-case scenario, this could lead to a “sequentialization”, meaning that
at each iteration only one capsule works, but the work-load still seems balanced in the long run.

A promising path seemed to be the construction of a dynamic partition strategy that could deal
with this kind of phenomenon.

Similar results were obtained with CB7,2 : while one machines’ memory was insufficient, multi-
processor runs showed some speedup, and behaved as expected with regards to the different distribu-
tions, as can be seen in Tables 4.3 and 4.4, and Figures 4.5 and 4.6. We performed a run in another
machine apart from the cluster with 512 MB. In this one it took 203.27 and 204.59 s to finish in the
reachable and unreachable cases respectively, and was used as the exploratory run of Location-cost
Weighted distribution.

Example CB7,2 was selected to illustrate the memory usage pattern. Fig. 4.7 shows its memory
footprint during the last iteration for the minimum number of processors required to verify the model
(four) and the maximum number of available processors (nine). As can be seen, the whole system

11For technical reasons we are not able to get data from partial runs, i.e., runs that abort due to lack of memory.
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Figure 4.6: Speedup of the Synchronous Version for the reachable case of example CB7,2.

Table 4.4: %waste for example CB7,2 with a reachable “Error” state.
# capsules Random Location-cost Weighted Min Cut

total time %waste total time %waste total time %waste

1 ROM 0.00 ROM 0.00 ROM 0.00
2 ROM N/A ROM N/A ROM N/A
3 ROM N/A 10.22 39.93 ROM N/A
4 60.07 10.22 16.12 42.18 ROM N/A
5 53.43 16.12 43.34 46.79 108.74 72.17
6 58.56 43.34 61.27 47.94 ROM N/A
7 59.86 53.36 56.09 51.66 101.43 77.92
8 42.58 29.27 50.93 54.95 ROM N/A
9 43.39 38.03 49.92 50.78 106.08 84.23
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Figure 4.7: Memory footprint of the CB7,2 example.

Table 4.5: %waste for example FDDI7 with an unreachable “Error” state.
# capsules Random Location-cost Weighted Min Cut

total time %waste total time %waste total time %waste

1 ROM 0.00 ROM 0.00 ROM 0.00
2 ROM N/A ROM N/A ROM N/A
3 71.11 1.93 97.91 39.52 81.68 32.59
4 58.15 5.49 73.14 36.69 ROM N/A
5 63.56 12.00 76.41 51.62 86.47 59.22
6 46.41 4.47 56.71 42.33 82.47 65.24
7 38.86 3.23 51.03 43.96 65.46 69.83
8 37.97 4.83 49.37 47.16 80.12 73.32
9 34.16 4.91 45.02 49.95 63.57 74.55

uses more memory than available on each single machine. The memory usage is uneven, but this is
not completely unexpected, since the %waste metric already shows uneven workload distribution.

The four-processor run required 331 MB while the nine-processor required 423 MB, leading to a
per-processor overhead of only 18 MB, that is, roughly a 5.5%. As stated in Section 4.2.5, this is a
reasonable price payed for having local copies of some data required for the calculus.

A similar course of action was taken for the FDDI7 example. We also performed an exploratory
run outside the cluster, obtaining 182.36 s for the unreachable case and 93.43 s for the reachable one.
The results are presented in Fig. 4.8 and Fig. 4.9, and Tables 4.5 and 4.6.

This case shows sharper speedups because of its symmetric nature. It’s interesting to see how some
runs exhibit low or no waste of time at all (meaning that the workload distribution was quite fair) and
even though the speedup factor is not linear (see for example 9 processor, random distribution in both
Fig. 4.8 and Fig. 4.9). These examples showed what the actual overhead of distribution (in terms of
I/O, region interchange, etc.) could be in some cases, particularly when iterations were relatively fast.

Nevertheless, no definitive conclusions could be drawn about it until a strategy such as dynamic
distribution was implemented to deal with the most pressing obstacle: balancing the load among the
processors in the general case. Next section shows the work done on a dynamic backwards algorithm.
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Figure 4.8: Speedup of the Synchronous Version for the unreachable case of example FDDI7.
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Figure 4.9: Speedup of the Synchronous Version for the reachable case of example FDDI7.

Table 4.6: %waste for example FDDI7 with a reachable “Error” state.
# capsules Random Location-cost Weighted Min Cut

total time %waste total time %waste total time %waste

1 ROM 0.00 ROM 0.00 ROM 0.00
2 ROM N/A 46.99 0.00 46.05 1.41
3 40.21 5.19 34.51 48.68 43.79 31.88
4 34.81 2.12 38.97 37.29 45.99 48.59
5 29.43 2.90 29.73 57.39 32.01 57.39
6 26.44 0.00 31.64 45.74 46.09 63.01
7 25.08 1.12 35.80 54.56 43.87 68.32
8 23.36 0.00 29.97 66.46 34.06 71.73
9 20.90 0.00 29.36 51.85 34.11 69.24
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Table 4.7: Number of locations taking at least 1% of the workload.
Example # HL / total Σl∈HL workload(l)

MinePump 5/4452 56% + 16% + 8% + . . . = 92%
RCS6 32/5288 2% + 2% . . .+ 1% = 62%
Conveyor4AB 8/11240 21% + 20% + 20% + 20% + . . . = 89%
Conveyor6A 2/1344 60% + 28% = 88%
RS-BR 13/22710 12% + 9% + 3% + . . . = 44%
RS-C 4/25975 63% + 2% + 1% + 1% = 67%

4.5. Dynamic Version

4.5.1. Intrinsic Problems

Very unbalanced iterations, specially the latter ones where the number of involved zones is larger,
could mean that in practice only a few processors are doing most of the work while the rest are idle,
undermining the time previously gained and producing a worse result in the overall process. To dig
into the reason for this behavior, we focused on the nature and evolution of the workload pattern.

Table 4.7 presents this information for the “heaviest” iteration in each example, where HL stands
for the set of heavy locations. We considered a location heavy for an iteration when it required at
least 1% of the workload of that iteration. The value 1% was arbitrary but seemed a good threshold
to explain a Pareto-like behavior (the sum of heavy locations workload was, in most of our examples,
greater than 60% of the total workload as shown in the tables).

Table 4.8 shows some more details about the workload patterns of Table 4.7. For each case study,
we picked the three most consuming iterations as representatives of the behavior. Iteration number
(k) is on the second column and the contribution of the iteration, measured as the percentage of the
iteration workload over the total, on the third. The fourth column represents the percentage of the
workload for iteration k that corresponds to locations in HLk, the set of heavy locations for iteration
k. Next column contains the workload in iteration k attributable to locations that were defined as
heavy in the previous iteration. The last column shows how many locations varied at least 50% in
their percentual contribution to the workload over the ones that belong to both HLk and HLk−1,
that is, these are the ones that were significant in two consecutive iterations but nevertheless varied
substantially from one iteration to the other.

Observation 4.2 Some challenging observations could be drawn from Tables 4.7 and 4.8:

1. Firstly, during each iteration the processing effort was monopolized by the manipulation of a
relatively small set of heavy locations, which turned out to be the ones with larger data structures
in terms of number of zones. This conditioning seems intrinsic to the models, and, as discussed
later, establishes a practical limit on scalability for these sort of approaches that do not split and
distribute data structures of locations.

2. Secondly, the set of heavy locations changes from one iteration to the other. Sometimes that
change was relatively smooth (e.g., MinePump, Conveyor4AB, Conveyor6A) but there were cases
where the workload distribution radically varied from one iteration to the other (e.g., RS-C,
RS-BR). Even when the constitution of the heavy set from one iteration to the next had little
or no change, the individual workload contribution of locations may vary substantially (e.g.,
MinePump, Conveyor6A).

3. Finally, heavy locations tend to be associated to some observer locations (i.e., distribution of
heavy locations by observer projection is not uniform). In general, the highest numbered location
correspond to the target states and the ones with the lowest number are further from it. Usually

37



4.5. Dynamic Version 4. Backwards

Table 4.8: Details of heavier iterations.
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MinePump 25 25.35% 96.59% (08) 87.28% (11) 4/4
22 17.66% 97.31% (03) 94.23% (13) 1/2
24 15.48% 94.53% (11) 76.24% (12) 5/6

RCS6 7 41.05% 78.16% (32) 78.16% (32) 0/32
6 39.22% 61.40% (32) 61.40% (32) 0/32
5 10.63% 41.63% (32) 0% (00) 0/0

Conveyor4AB 9 20.21% 88.24% (04) 92.01% (12) 0/4
11 16.01% 88.46% (08) 88.46% (08) 4/8
12 15.91% 91.22% (11) 86.38% (08) 0/7

Conveyor6A 17 39.66% 96.50% (07) 93.33% (08) 1/5
16 19.23% 92.42% (08) 85.86% (06) 2/4
18 15.23% 98.43% (05) 98.43% (07) 1/5

RS-BR 9 67.57% 45.41% (13) 18.24% (21) 1/3
8 15.03% 35.22% (21) 17.28% (16) 1/5
7 11.07% 49.28% (16) 35.74% (17) 3/7

RS-C 17 62.99% 79.97% (04) 0.26% (03) 0/0
16 26.04% 72.76% (03) 2.13% (11) 0/0
15 5.09% 25.49% (11) 12.31% (10) 1/2
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the lowest numbered locations of the observer take the most work. Fig. 4.10 shows workload
associated to each of the observer locations in the MinePump example. Despite the number of
reachable SUA locations per observer node, the workload is quite uneven and monopolized by
some observer locations. The other examples exhibited a similar pattern. This phenomenon will
be revisited in Section 4.5.4.

�

0

2

4

6

8

0 5 10 15 20 25 30

W
o
rk

lo
a
d

M
e
tr

ic
(l

o
g
)

Iterations

Location 0
Location 1
Location 2

Location 3
Location 4
Location 5

Location 6
Location 7
Location 8

Figure 4.10: Workload per observer location on MinePump.

The second observation meant that the concept of fair distribution needed to be established relative
to each iteration. Thus, this justified the use of mechanisms for migrating locations (and their future
computational work) from one processor to another in each iteration, trying to evenly distribute the
workload during the whole verification.

Unfortunately, efficiently distribute and manipulate zones associated to locations into several pro-
cessing nodes (as the first observation suggests) seems hard to achieve in the backwards verification set-
tings. Indeed, region differentiation used in line 9 of Algorithm 4.1.1 (and detailed in Algorithm 4.1.2)
requires, in principle, performing a DBM operation between each pair of zones in the Cartesian product
between Rs and the complement of PredT .

We thought that it was therefore worth trying to push forward the limit of the presented approach,
at least in some common verification scenarios. That is, we aimed at improving workload distribution
and processor utilization as much as possible without splitting regions. Next section relies on the third
item of Observation 4.2 and a migration strategy based on profiling previous verification sessions on
similar models. Together, they improved the performance of the approach reaching reasonable results
in the light of the findings presented here.

4.5.2. Redistribution, Workload-Profile Reuse and Observer-Induced Partitioning

In order to make the most out of the current approach, we based our analysis on two important
observations about how model checking is usually applied:

To reflect improved (faster) components, longer delays or stricter timing requirements it is usual
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to make small changes to some clock comparisons in the model.
In several verification scenarios, models are actually built from the composition of a SUA with
an observer, as already mentioned in Section 2.7.

The importance of these two assumption will become apparent in Section 4.5.4, after some specific
background is presented.

4.5.3. Dynamic Zeus

This section summarizes the results obtaining while trying to use a prediction strategy.

As already shown in Table 4.8, there were important variations of the workload between iterations,
even in the subset of the most heavy locations. These variations jeopardized the balance, thus incre-
menting %waste and consequently the verification times, in the general case. This is why the ability
to migrate locations among processors was built into Zeus, in what we called the dynamic version.

Dynamic Location Redistribution

Moving locations on-the-fly poses several challenges. This subsection focuses on the technical
aspects of the process, postponing the consideration of what, when and where to migrate.

Migration decisions were made by the coordinator at the end of each iteration and broadcasted to
the capsules along with the clearance to exchange regions (line 6 of Algorithm 4.4.1).

Capsules received a mapping of locations to their new capsule (at line 4 of Algorithm 4.4.1) and
reconfigured their interconnections accordingly. For each location migrated, the originating capsule
needed to examine its successors, in order to detect which connectors should be kept active (even
adding new ones). This was important because having received updates from every active connector
was the trigger to declare the end of the exchange phase (line 6 of Algorithm 4.4.1). To make things
harder, some connectors had to be flagged temporary active, meaning that they had to be kept alive
just to migrate locations, but needed to be shutdown immediately afterwards.

The connectors neededed to be reconfigured, so they knew which locations they were actually
serving. Because the topology and boundaries changed, there could be connectors to some other
capsules no longer needed, and new ones might had to be created. In the last two cases, besides
reconfiguring connectors, new embassies might have needed to be instantiated, or old ones destroyed.

More importantly, in many cases region’s data for the affected location needed to be exported by
a capsule and imported by another. The corresponding locations were marked, and said regions were
exchanged during the region exchange phase (line 5 of Algorithm 4.4.1). Once finished, the migrations
list was processed again, so clean up activities could take place, including the removal of former local
regions.

The result of the process had to be that each capsule was reconfigured as if the current partition
had never changed since the beginning. Although conceptually simple, implementation details made
it quite involved. All this reconfiguration time had to be added to the transmission delay, implying
that migrations were not free, and should be minimized whenever possible.

Coordinator’s Decision

Two problems had to be solved to make good migration policies: the workload for the next iteration
had to be predicted, and based on that prediction a fair repartitioning had to be found. An important
concern is minimizing migration time, because a “perfect” balance made no sense if it required a
significant delay due to network transmission and, predominantly, the operations described in the
previous paragraphs.
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This version used the ParMETIS library [SKK00] which is based on heuristic methods to handle
efficiently graph repartitioning problems. ParMETIS tries not only to balance weight while minimizing
number of movements, but also to reach minimum cut. Although this would seem like a good idea
because it minimizes communication, it is not such a pressing issue in a synchronous environment
over a fast local area network. It should be pointed out that a number of good methods exist for
rebalancing in the untimed scenario (see [HGGS02, NC97] among others). Unfortunately they are not
directly applicable as they usually don’t have to deal with locations having different (unsplittable)
weights.

However, prediction for the next iteration was still unaccounted for.

Workload Prediction

In [BOS04b] we described an approach based on on-the-fly prediction of the cost of the heaviest
operation performed by the Fixed Point Engine: region subtraction (line 9 of Algorithm 4.1.1). The
reader is referred to the aforementioned article for details as only an outline of the method will be
given here. The subtraction operation has two parameters (PredT and Rs), and its computational
complexity depends on its sizes. Although the second is known for the next iteration, the size of PredT
is not. In order to obtain reasonable values for it, the following mechanism was developed, based on
the intuition that many calculi are usually repeated and some that are not have only slightly different
inputs: each time the real operation was performed, the size of its parameters was rounded to its most
significant digit, and was stored along with the size of the result. For example, if two regions of size
23456 and 337 were subtracted, obtaining a region of size 128, the tuple 〈20000, 300, 128〉 would have
been stored. If a new operation has the same rounded parameters size, the old values are overwritten,
on the assumption that recent values would predict better future results.

When the real value needed to be estimated, its rounded estimated parameters sizes were looked
up in the collected information. If no match was found, a default value was used. It should be noted
that this is kind of a simplistic approach to best-fit matching, and more sophisticated algorithms could
have been used, but it had the advantage of having a small overhead in terms of both space and time,
and featured good results on its own.

Some case studies showed interesting speedups when using the prediction method. These included
RCS6 and MinePump. There were others, however, where accurate predictions could not be made. In
the cases where the number of heavy locations was very small and responsible for an important share
of the total workload, a failure to predict those locations’ associated work immediately translates into
a completely wrong migration set (cft. Section 4.5.1).

In Section 4.5.4 a different approach is presented.

4.5.4. Working Around the Limitations

Section 4.5.1 presents the problems we believe to be central to the distribution of the backwards
model checking algorithm for timed automata, provided that regions are not splitted between proces-
sors. The next two sections present some observations that complemented the technology presented
in Section 4.5.3 to work around them, in the sense that improved results could be achieved in specific
settings.

Observer-Based Partitioning

An interesting observation could be made over models where the property to verify is expressed
via an observer: their topology shares certain characteristics which we detail below.

As was said, in several verification scenarios, models are actually built from the composition of
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a SUA with an observer (recall Section 2.7). Observers can be built in a number of ways: by hand,
automatically from formulae [ABL98] or automatically from graphical patterns using tools like VTS

(presented in [ABKO04], but see also Chapter 9). In particular VTS-generated observers are almost a
DAG (except for self loops). Roughly speaking, the shape of the observer is like this: an initial location
where most of the SUA actions take place, then a few locations meant to synchronize with the negative
scenario to be matched, and then the error location. This shape is imposed on the composed system.

As this version of Zeus reachability calculus was backwards, the first global locations with some
non-empty regions would be the ones corresponding to the last observer locations (typically ERROR
labeled). Some iterations later, previous observer locations (i.e., those “closer” to the initial one)
would start to accumulate non-empty regions; but because of the many different transitions guards
and invariants that had “filtered” those target regions, they would be more fragmented. That in
turn meant that the first locations would be heavier to compute in each successive iteration. As was
advanced in Section 4.5.1, experiments seemed to confirm the supposition (recall Fig. 4.10).

Taking this phenomenon into account, as well as the previously mentioned non-trivial cost of
migrations, evenly distributing the most heavy observer locations among the capsules seems to make
sense. Fig. 4.11 shows the speedup of various case studies, for both the traditional round-robin
partitioning as well as the new observer-induced distribution. The experiments were run on 9 machines
with a 300 MHz R12000 processor, running Irix with 1 GB RAM each.

As can be seen in Fig. 4.11, some examples (e.g., RCS6 and RS-BR) showed an erratic behavior
on the round-robin distribution, but performed very well on the observer-induced. Others, while not
close to the desired lineal speedup, were still better than their round-robin counterpart in the overall
performance.

Taking Advantage of Common Usage Patterns

This subsections aims to answer the question of whether a previous run can be used as oracle for
load-balancing decisions if only some parameters of the model are changed. It experiments with the
idea of migratig workload according to the aforementioned previous-run oracle.

In order to reflect improved (faster) components, longer delays, stricter timing requirements or some
similar variations, it is common to make small changes to some clock comparisons in the model, as
was advanced at the beginning of Section 4.5.2. Although these modifications can drastically change
the output of the verification, in usual cases found in practice, they have little impact. In those
verification scenarios, information from previous runs can be used to create an initial fair partitioning,
and to migrate locations based on (believed) trustable workload data.

The procedure was as follows: migrations were produced offline based on the workload data of the
unmodified system –called original from now on– and using ParMETIS to calculate them. It was in-
structed to avoid migrations if the workload was below a configurable threshold. That typically meant
that the first iterations were migration free. To improve things a little bit, the initial partition was
created as the previously mentioned observer-induced one, modified by the first non-empty migration.

An interesting point to note is that this fast offline preparation could also compute a theoretical
%waste metric and compare it to the %waste metric of the original run, on an iteration basis. Two
purposes were served by this comparison: first, if the theoretical waste was more that the actual
run, the migrations could be discarded for that iteration. More importantly, if during the run an
important divergence between the theoretical and the real per-capsule metric was detected, the tool
could conclude that the change in the model was indeed important, making the model (very) different
from the original, and thus disregarded the remaining migrations.

In order to exercise these ideas all the models were modified as follows:

RCS6 : the controller was made two time units slower.
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Conveyor4AB and Conveyor6A: the task that starts when an object is detected and ends when
it is lifted from the conveyor belt was given a stricter deadline by ten time units.
RS-BR and RS-C : the WCCTs of the readers were relaxed and unequaled.
MinePump: the WCCT of the watchdog was strengthened.

Analyzing preliminary performance of the modified models with observer-induced partitions vs.
observer-induced partitions plus migrations based on the workload data of the original example, we
noticed that näıve migrations did not seem to add value, even decreasing performance on some cases.
For instance, Conveyor4AB required 3216 seconds on a monoprocessor and 1627 in two processors
without migrations. If näıve migrations were used, the two-processor verification required 3859 sec-
onds, i.e., more than the original. We found the explanation for that phenomenon again in Table 4.7.
Case studies where the number of heavy locations was small would suffer an important migration over-
head. This was because ParMETIS needed to move many of locations to compensate for one of these,
and as was said earlier, each migrated location required non-trivial amounts of work, independently
of its region’s size, thus increasing the total verification time.

To counter this downside, we refined the migration strategy: let ParMETIS do its job, but then
only migrate (as instructed by ParMETIS) the most heavy locations. This would of course produce
a more unbalanced workload pattern, but the expected gain was to compensate that with a smaller
migration overhead. Another heuristic idea was used: as Zeus checks for the presence of the initial
(timed) state in the reached set in each iteration (that is, not only when the fixed point is reached),
if the expected outcome was “true”, then it does not make sense to move locations on the (expected)
last iteration, because that would only delay the moment when the initial location was processed.

Table 4.9 shows the times for the case studies with migrations, versus only an observer-induced
partition. For each case study the original and modified versions are shown. Round-robin (RR)
and observer-induced (OI) partitioning are included for both versions, and also observer-induced plus
migrations (OI+migr) for the modified one.

In some cases –notably RS-BR and RS-C– a decrease in time is not followed by a decrease in
%waste. This is caused by the difference in I/O times involved, consequence of different communication
requirements due to changed partition boundaries (cft. %waste formula in Section 4.5.1). Fig. 4.11
shows the speedup gained: the migration method improved performance on most of the cases.

Example Distrib. Processors
1 2 3 4 5 6 7 8 9

MinePump RR 13.17 10.63
(41)

10.43
(60)

10.54
(70)

10.56
(77)

10.59
(80)

10.46
(83)

9.45
(84)

9.50
(85)

Original OI 11.29
(44)

7.83
(47)

7.16
(57)

9.78
(74)

6.87
(70)

6.53
(73)

6.66
(77)

6.73
(80)

MinePump RR 13.25 11.54
(45)

7.88
(47)

7.45
(59)

10.12
(80)

7.23
(75)

7.12
(75)

7.08
(78)

6.91
(82)

Modified OI 11.44
(44)

7.87
(46)

7.23
(57)

9.92
(74)

6.94
(70)

6.60
(73)

6.72
(77)

6.82
(80)

OI+migr 6.98
(30)

6.85
(42)

6.61
(55)

6.82
(65)

7.08
(70)

6.31
(74)

6.56
(78)

6.42
(79)

RCS6 RR 6.91 3.64
(07)

2.43
(08)

2.41
(31)

3.70
(64)

3.13
(65)

2.44
(61)

1.75
(53)

1.29
(43)

Original OI 3.67
(08)

2.51
(11)

1.87
(10)

1.66
(19)

1.30
(13)

1.44
(33)

1.12
(25)

1.13
(34)

RCS6 RR 5.41 2.85
(07)

1.89
(08)

1.90
(31)

2.86
(64)

2.45
(65)

1.90
(61)

1.38
(53)

1.01
(43)

Modified OI 2.85
(08)

1.95
(11)

1.45
(10)

1.27
(18)

1.00
(13)

1.09
(31)

0.86
(24)

0.86
(32)

OI+migr 2.75
(04)

1.81
(04)

1.37
(05)

1.21
(12)

1.02
(15)

0.90
(13)

0.76
(11)

0.75
(21)
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Example Distrib. Processors
1 2 3 4 5 6 7 8 9

Conveyor4AB RR 3.23 2.31
(31)

1.55
(31)

1.54
(48)

2.32
(73)

2.28
(77)

1.55
(71)

1.51
(74)

0.81
(56)

Original OI 1.63
(02)

1.56
(31)

1.49
(45)

1.45
(54)

1.42
(61)

0.82
(43)

0.78
(48)

0.84
(56)

Conveyor4AB RR 3.21 2.35
(31)

1.56
(31)

1.55
(48)

2.33
(73)

2.30
(77)

1.56
(70)

1.53
(74)

0.82
(56)

Modified OI 1.63
(02)

1.56
(31)

1.48
(44)

1.44
(55)

1.42
(61)

0.82
(43)

0.77
(47)

0.84
(57)

OI+migr 1.52
(02)

1.28
(28)

0.92
(10)

0.76
(14)

0.72
(24)

0.73
(36)

0.71
(43)

0.71
(49)

Conveyor6A RR 5.30 3.43
(26)

3.37
(49)

3.34
(62)

3.37
(70)

3.38
(75)

3.28
(78)

3.28
(81)

3.26
(83)

Original OI 3.61
(29)

3.38
(50)

3.50
(64)

3.34
(70)

3.26
(74)

3.32
(79)

3.26
(81)

3.11
(82)

Conveyor6A RR 5.36 3.45
(26)

3.34
(49)

3.36
(62)

3.44
(70)

3.42
(75)

3.32
(79)

3.31
(81)

3.30
(83)

Modified OI 3.62
(29)

3.38
(50)

3.52
(64)

3.34
(70)

3.26
(74)

3.32
(79)

3.26
(81)

3.11
(82)

OI+migr 2.36
(28)

3.24
(49)

3.16
(61)

3.18
(68)

3.27
(74)

3.05
(78)

2.96
(79)

3.05
(82)

RS-BR RR 9.71 4.16
(19)

3.10
(14)

2.55
(34)

2.65
(68)

2.58
(66)

2.04
(63)

1.95
(60)

1.58
(53)

Original OI 4.68
(10)

2.91
(17)

2.49
(27)

1.89
(40)

1.55
(32)

1.43
(36)

1.24
(37)

1.20
(44)

RS-BR RR 9.59 4.13
(20)

3.09
(16)

2.54
(35)

2.63
(68)

2.55
(66)

2.02
(63)

1.92
(61)

1.55
(54)

Modified OI 4.63
(10)

2.87
(17)

2.46
(27)

1.85
(40)

1.52
(32)

1.40
(37)

1.24
(38)

1.20
(44)

OI+migr 4.61
(10)

2.95
(11)

3.49
(29)

2.42
(27)

2.10
(20)

1.73
(29)

1.10
(39)

1.02
(36)

RS-C RR 4.76 1.62
(40)

1.38
(53)

1.32
(64)

1.33
(75)

1.27
(75)

1.19
(78)

1.13
(80)

1.06
(82)

Original OI 3.91
(39)

1.44
(54)

1.39
(64)

1.32
(71)

1.17
(75)

1.16
(78)

1.10
(80)

1.07
(82)

RS-C RR 4.77 1.64
(40)

1.40
(53)

1.31
(63)

1.35
(75)

1.30
(75)

1.25
(78)

1.20
(80)

1.07
(82)

Modified OI 3.93
(40)

1.46
(54)

1.38
(65)

1.33
(70)

1.19
(75)

1.17
(78)

1.09
(80)

1.08
(82)

OI+migr 3.91
(39)

1.68
(51)

1.49
(63)

1.15
(71)

1.11
(75)

1.06
(77)

1.03
(80)

1.02
(82)

Table 4.9: Total time in kilo seconds and (%waste) obtained for
different distributions.

Observation 4.3 Based on the information summarized in Table 4.7, we postulate that these speedups
are almost as good as they can get without splitting the workload per location. This has to do with the
fact that it is not reasonable to expect good performance on n processors if there are only m locations
monopolizing most of the workload (with m < n).

More precisely, Table 4.7 justifies why the quasi-linear speedup cannot go beyond a certain thresh-
old. For example, Conveyor4AB has four locations taking approximately 20% of the work each one

44



4. Backwards 4.5. Dynamic Version

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9 10

S
p
ee

d
u
p

Processors

RR partitioning
OI partitioning

OI partitioning+restr. migrations

(a) MinePump.

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9 10

S
p
ee

d
u
p

Processors

RR partitioning
OI partitioning

OI partitioning+restr. migrations

(b) RCS6 .
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(c) Conveyor4AB .
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(d) Conveyor6A.
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(e) RS-BR.
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Figure 4.11: Speedups for observer-induced (OI) partitions with and without migrations for the
constraint-modified case studies.
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on its heaviest iteration. Considering that in many cases (such as this one) the heaviest iteration
conditions the total time, this means that there is no current way to achieve a speedup substantially
greater than five, in this example.

However, if in the future Zeus were run on a mixed network of workstations, some of them single
processor, some of them multi-, it would make sense to use migrations to take heavy –nowadays
unsplittable– locations to a multiprocessor where various kernel threads can work on it at the same
time.

It should be pointed out that the combined method is far superior than the näıve round-robin
distribution reported in [BOS05].

There is another interesting advantage to be gained in these kind of scenarios where a verification
is run over a model slightly different from a previous one: from the data of Table 4.7 an estimation
can be made on the number of processors to use. That is, intuition might suggest to use as many
processors as available, but if the model is really similar to the previous one, it might make sense to
use only a subset of them, freeing the remaining ones for some other use.

The aforementioned idea will become specially important once the next generation of multi-core
processors becomes popular. It is common for engineers to make incremental changes to the model
and leave the model checker in background while they continue working on other tasks. With this
information at hand, the model checker can be prevented from consuming all the processing power of
the workstation without degrading its own performance.

4.6. Conclusions

Though asynchronous computation of fixed point is theoretically sound, DBM-based data struc-
tures may be inefficient when the exploration order differs from that of the monoprocessor version.
This justifies synchronizing iterations in each processing node, thus mimicking the sequential algo-
rithm. Unfortunately, this also leads to wasted times because of processing nodes waiting for the
signal that authorizes the next iteration, which is sent just after all processing nodes have finished
the current fixed point iteration. Thus, load balance becomes the key factor to achieve speedups in
practice.

However, as Section 4.5.1 shows, some locations monopolize the total workload, meaning that
close-to-linear speedups are not feasible without splitting locations among processors, which in turn
seems impractical for the backwards calculus in a distributed environment (i.e., no shared-memory).

This point signal a quasi-end of the road for the distribution of the backwards algorithm.

Nevertheless, the backwards version of Zeus seems to get the most out of the availability of
processors given this essential limitation of the location-based approach. Preliminary observations lead
us to the supposition that this parameter seems to be related to the number of feasible simple paths
in the analyzed design. For instance, the more parallel activity (represented by interleaving actions)
the better suited for distribution using Zeus-like techniques and the more scalable its verification.
This seems an interesting property since it suggests that the location-based approach may be useful
for highly asynchronous designs. This is an idea that might be worth exploring in the future.

Two workarounds are presented. Firstly, we leverage on the fact that observer-based analysis
of a design is a common practice in verification, and accordingly distribute locations evenly wrt. the
accompanying observer location. Secondly, when the verification engineer analyzes a new version of the
system where only deadlines and delays are modified, we explore how to reuse effort metrics collected
for the original model. This technique achieves reuse by migrating locations among processing nodes
trying to balance the likely effort in each iteration, without incurring in a high redistribution overhead.

On one hand, experiments show that these heuristics have some positive impact on load balance
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and some interesting speedups are achieved using small sized clusters. On the other hand, as previously
mentioned, the number of locations associated to most of the computation effort during each iteration
(m) still sets a practical limit on the expectation to get linear speedups for a given quantity of
processors (i.e., n processors would be of no help if m is less than n), without splitting regions. When
the reuse technique is applied, that number may be useful to suggest to the verification engineer the
number of processors that should be involved for an efficient model checking of a system variant. We
consider this finding, and specially the possibility of estimating it a priori on the reuse scenario, a key
one.

This version of Zeus was distributed, but with the next generation of multi-core processors be-
coming popular and our finding that only a limited number of locations are responsible for most of
the workload (recall Table 4.7), it might make sense to develop a parallel-distributed hybrid version.
It would work in a distributed cluster, but multi-processor nodes would be multi-threaded, paralleliz-
ing the work also on the location level. In that settings, migrations might play a key role, because
heavy locations could be moved to dense-processor nodes in each iteration. Work is underway on such
direction, and preliminary results are promising.

Future work agenda also includes, on one hand, revisiting the asynchronous fixed point computation
strategy while changing the underlying data structure to avoid the before-mentioned fragmentation
phenomena (some initial work in this sense is reported in Chapter 7).

Looking back, a lot was learned. Chapter 5, featuring the forward algorithm leverages much of the
insight gained here.
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Chapter 5

Forward Model Checking

This chapter discusses the approach known as forward reachability, where verification starts from
the initial states and tries to reach the target ones. The first section introduces the basic algorithm.
After that, Section 5.2 presents the basic distributed version of the algorithm. In this kind of ver-
ification workload balance is also extremely important, so in Section 5.3 an approach for migrating
workload on-the-fly is introduced, and its correctness is shown.

Data from the implementation of the above mentioned strategy is shown in Section 5.4, just before
our conclusions and future research plans on the topic.

5.1. Forward Reachability

The basic (conceptual) procedure for checking reachability of property φ is straight forward. It
requires a queue of states to be explored, commonly known as Pending , and a set of already visited
states, known as Visited . The algorithm works like this: insert the initial state in the Pending queue
and initialize an empty Visited set. Then, while Pending is not empty, take a state from it and check
whether the property φ holds for it. If it does, finish with a “YES” result, otherwise, put it in Visited ,
compute its (timed) successors (one for each outgoing transition). The total number of states is finite,
as guaranteed by Theorem 2.1, but there can be repetitions. To ensure termination, before putting
them in Pending , it should be checked that they are not included in any other state from Visited .
In an untimed exploration the check would be simpler: is the same (explicit) state already present
in Visited? In the timed framework, clocks values conform multi-dimensional polyhedra. As such, if
a new state is included in an already explored one there is no point in revisiting it, even if it is not
exactly equal. The pseudocode is shown in Algorithm 5.1.1, where the Pending set is revisited while
not empty on line 6, and the successors of the current state are queue in the for-loop of line 8.

We will usually refer to the contents of Pending as to-be-explored states.

In the innermost cycle resides the IsStateAlreadyVisited?((l, z)) function, which checks to see if
there is a state (l, z′) in Visited such that z ⊆ z′. Actually, a performance conscious implementation
requires some more work: if z′ ⊂ z then (l, z′), although already visited, can be taken out the Pending .
This is why, following [BDLY03] the two queues contain pointers to the same set of elements. The
details of this algorithm are shown in Algorithm 5.1.2. The check to see if some state can be taken
out of Pending is featured in line 7.

An important characteristic of the forward algorithm is that it composes on-the-fly. That is, its
input are the TA components, and the composition takes place in line 8 of Algorithm 5.1.1.

As already mentioned, during the reachability algorithm (see Algorithm 5.1.1), states are repre-
sented by a pair (l, z) where l is a location and z a timed zone. Given a state, the successor set is
computed by the suc⊲ operator, which is defined as follows:
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1: function ForwardReach(Property φ)
2: if (l0, z0) |= φ then return YES
3: end if
4: Visited ← {(l0, z0)}
5: Pending ← {(l0, z0)}
6: while Pending 6= ∅ do
7: (l, z)← next(Pending)
8: for (l′, z′) ∈ suc⊲(l, z) do
9: if ¬IsStateAlreadyVisited?((l′, z′)) then

10: Add((l′, z′), Pending)
11: Add((l′, z′), Visited)
12: if (l′, z′) |= φ then return YES
13: end if
14: end if
15: end for
16: end while
17: return NO
18: end function

Algorithm 5.1.1: Forward reachability algorithm.

1: function IsStateAlreadyVisited?((l, z))
2: Zl ←

⋃
(l,z′)∈(Visited∪Pending) z

′

3: answer ← YES
4: if ¬IsIncludedInSet(z, Zl) then
5: answer ← NO
6: end if
7: if ∃ (l, z′) ∈ Pendingl | IsIncluded?(z′, z) then
8: Delete((l, z′),Pending)
9: end if

10: return answer
11: end function

Algorithm 5.1.2: State already visited algorithm.

suc⊲(l, z) = {(l′, z′)/ 〈l, a, ψ, α, l′〉 ∈ E ∧ z′ = sucτ (resetα(z ∩ ψ)) ∩ I(l′)}

Where resetα means putting the clocks in α to zero and sucτ (ψ) means replacing the constraints of
the form x ≺ c by x <∞ while leaving the rest intact, as was presented in more detail in Section 3.1.

Section 3.2 already introduced RDBMs, a compact storage version of DBMs which store only
the Minimal Constraint Representation of the equation system. It should be noted, however, that
the having an RDBM does not automatically mean that it contains only the minimal constraints, as
minimality is not preserved by all operations. This is why sometimes an explicit call to a minimize()
operation is necessary. Algorithm 5.1.3 shows the classical pseudocode for inclusion checking in such
data structure.

Algorithm 5.1.3 is trivially generalized to check if a zone is included in a set of zones (IsIncludedIn-
Set?()).
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1: function IsIncluded?(RDBM z1, z2)
2: // z1 should be in canonical form, z2 can be minimized.
3: for i = 0 to #clocks do
4: for j = 0 to #clocks do
5: if i == j then
6: next
7: end if
8: if ¬(z1[i, j] ≤ z2[i, j]) then
9: return NO

10: end if
11: end for
12: end for
13: return YES
14: end function

Algorithm 5.1.3: Inclusion checking algorithm.

5.2. Distributed Forward Reachability

In this section a distributed forward reachability algorithm is presented. As is common when
dealing with distributed algorithms, asynchronous versions tend to minimize global waiting time, at
least in principle. Usually the explanation is that processors which still have work to do can keep
processing without the need to synchronize with others. This is why a distributed asynchronous
architecture will be used.

The main components are:

A coordinator , which is the component that starts verification, distributes workload and detects
termination.
A set of capsules, with the same definition as in Chapter 4. Inside them, there are:

• An iterator , which makes the computation.
• A repository , which stores states.
• Connectors, which connects capsules.

The main algorithm is straightforward. It starts by the coordinator creating a part of the parallel
composition of the intervening timed automata components. Because composing the whole control
graph will be prohibitive in terms of time, it uses time and number-of-locations thresholds to decide
how far the initial composition should proceed, leaving the rest of the task to be done on-the-fly by
the capsules 1. This precomposition follows no particular approach besides the mentioned thresholds
and generating a subgraph of locations that are reachable (in the graph theoretic sense, not in the
time-reachability sense) from the initial one.

The precomposed locations are distributed among capsules in a round-robin or random way but
recording the assigned capsule.

Each capsule runs Algorithm 5.2.1, which is the basic forward reachability algorithm with provisions
to

forward non-local discovered states to their owning capsule (line 17),
notify the coordinator of locations with unknown owner (line 14, the specifics are described
below),
and periodically let it known of statistics (line 23 and line 27).

1As mentioned in Observation 4.1, the size of the control graph is usually negligible compared to the state space.
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All the capsules receive an initial state set that contains the initial state for one for one of them
but it’s empty for the rest, as dictated by the mapping kept by the coordinator , known as partitioning .

When we talk about the distributed algorithm from the perspective of a capsule c, a location will
be local if it is assigned to c by the partitioning known to c at the moment and remote if it is not
(that is, if Pc is the partitioning known by c, then l is local for c if Pc[l] = c). Consequently, in a point
in time, states are either local or remote depending on their location.

Visited c will be used to denote the Visited set at capsule c at a given instant. Also, Visitedl denotes
the part of Visited (also at a given instant) that has l as location. If L is a location set, then VisitedL

stands for
⋃

l∈L Visitedl.

1: function ForwardReachCapsule(Partition P , CapsuleNumber c, Property φ, StateSet initial)
2: Visited ← ∅
3: Pending ← initial
4: found ← false
5: while ¬GlobalEnd do
6: while Pending 6= ∅ ∧ ¬found do
7: (l, z)← next(Pending)
8: for (l′, z′) ∈ suc⊲(l, z) do
9: c′ ← GetOwnerCapsule(P , l′)

10: if (l′, z′) |= φ then
11: found ← true
12: NotifyCoordinator(found)
13: else if c′ =unknown then
14: SendUnknownLocation(l′, COORDINATOR)
15: QueueUnknownState((l′, z′))
16: else if c 6= c′ then
17: SendState((l′, z′), c′)
18: else if ¬IsStateAlreadyVisited?((l′, z′)) then
19: Add((l′, z′), Pending)
20: Add((l′, z′), Visited)
21: end if
22: end for
23: if ¬GlobalEnd ∧ EnoughTimePassed() then
24: ReportToCoordinator()
25: end if
26: end while
27: if ¬GlobalEnd ∧ EnoughTimePassed() then
28: ReportToCoordinator()
29: end if
30: end while
31: end function

Algorithm 5.2.1: Distributed forward reachability algorithm.

When we talk about the owner of a state (l, z), we are referring to the capsule where l is assigned
to by the current mapping (Pc[l]). Algorithm 5.2.1 also composes on-the-fly (at line 8), so previously
unknown locations can be generated. When a new state (l, z) is computed, it can be the case that it
has an unknown owner . I.e., that its location is not assigned to any capsule in the current partitioning
(Pc[l] = ⊥).

States with unknown owner are queued and reported to the coordinator (line 14), which in turn
assigns them to some capsule and broadcast a batch of assignments. When capsules receive the new
partitioning they just traverse the queued states and either explore them locally or send them to their
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owner capsule, who receive them by running Algorithm 5.2.2.

1: function ReceiveState(State (l, z))
2: if ¬IsStateAlreadyVisited?((l, z)) then
3: Add((l, z), Pending)
4: Add((l, z), Visited)
5: end if
6: end function

Algorithm 5.2.2: State reception algorithm.

We have to deal with correctness. This means proving partial correctness (either the target property
is found or the state space is exhausted), non-abortion, and termination detection. The first two are
dealt with in the next section, the last one in Section 5.2.2.

5.2.1. Partial Correctness & Non-Abortion

In order to prove partial correctness we will first clearly define our notion of state space in Defini-
tion 5.1. Then, by means of Observation 5.1, we will argue that if we prove partial correctness for the
unreachable case, the reachable one will also be covered. We resort to that only to simplify reasoning.

Next, in Lemma 5.1 we show that the coordinator will not declare the end too soon. Finally,
Theorem 5.1 will be proved to guarantee that, if there’s no abortion (Lemma 5.1) and we are dealing
with an unreachable case (Observation 5.1), then the full state space is indeed explored.

Definition 5.1 (State Space)
Given a TA A, we call state space to the lattice of states generated by Reach fwd ({(l0, 0)}) (see page
13), being l0 the initial location of A.

As was said, it will be helpful to consider the following observation:

Observation 5.1 We call premature cut to the test performed in line 10 of Algorithm 5.2.1, which
checks if the target property has been reached at each step (thus “premature”, because the reachable
state space has not yet been completely explored).

We are dealing with a reachability algorithm that is only interested in knowing whether or not the
target property is reached, and are not concerned with finding all the reachable states labeled by it.

In this case, as the test of line 10 is performed on every state found, then correctness of the
algorithm is not affected by the premature cut.

�

Now let’s focus on abortion. By abortion we mean the ending of the verification prior to state space
exhaustion. In particular, we will deal with the threat that the coordinator claims global termination
while there is still work to do.

Lemma 5.1 The coordinator does not abort.

Proof

The coordinator will not declare termination until it has received at least one report from every
capsule. Now let’s inductively suppose that at some point in time the end is not yet declared and
that capsule c1 is the only one active. At that time pairwise message count is zero at the coordinator
but c1 must have at least one pending state (otherwise the end would have been declared). To trigger
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abortion c1 should have sent a new state to some other capsule c2 while reporting that it does not
have any pending state to process. But this same report will unbalance coordinator ’s message count.
Even c2’s new report, which would balance it back, will be insufficient for abortion, as it will report at
least one pending state (reporting an accurate count of zero pending does not configure an abortion
scenario).

✷

A handy lemma will be posed before dealing with complete exploration of the state space:

Lemma 5.2 States in the Pending queue are eventually explored unless global termination is detected
or the algorithm aborts.

Proof

Trivial from Algorithm 5.2.1: only the exploration cycle of line 6 removes states from Pending ,
which has a finite number of them. This happens because of Theorem 2.1 and the fact that both
Algorithm 5.2.1 and Algorithm 5.2.2 only add new states.

✷

Lemma 5.2 will be used implicitly from now on. That is, is we guarantee that a state gets to the
Pending queue, that will be as good as showing that it will be explored. This shortcut will become
handy in many proofs to come.

Now, let’s focus on proving that every reachable state is explored. One of the differences with the
traditional algorithm (5.1.1) is that the state space exploration order changes, but it is known from
[Cou78] that this is immaterial. But, how do we know that the distributed algorithm does not “skip”
states? This question is formally addressed in Theorem 5.1.

Theorem 5.1 (The Distributed Algorithm Explores the Full State Space)
If there is no abortion, in an unreachable case, the full state space is explored by the distributed
algorithm. I.e., every found state is explored by Algorithm 5.2.1.

Proof

We will show it by proving that every state reachable from the initial is explored by Algorithm 5.2.1.

Base case: the initial state is assigned to some capsule which runs Algorithm 5.2.1 on it (cf. page
51).

Inductive step: inductively suppose that (l′, z′) is a successor of an explored state (l, z). (l′, z′) can
be either

1. local, in which case it will eventually be explored after being put in Pending (if it was not already
visited),

2. remote, in which case it will be sent to another capsule by line 17 and then received by Algo-
rithm 5.2.2 which will queue it into Pending (again, if it was not already visited), in turn leading
to it being eventually explored, or

3. with unknown owner, in which case it will be queued and the coordinator notified. As the
coordinator eventually replies, the state will either be queued locally or sent to its rightful
owner, as was stated previously.

✷

5.2.2. Termination Detection

Let’s consider termination detection. To avoid confusion, it is convenient to clarify what detection
means: we are not dealing here with the question of whether the state space is exhausted or not. Our
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concern here is, provided that it is exhausted, the detection of this situation.

There are two means to detect termination.

1. When a capsule discovers a location with the desired property, it sends a special message to the
coordinator (line 12 of Algorithm 5.2.1), who broadcasts the piece of news to the rest of the
capsules and starts the distributed trace reconstruction protocol (see Section 5.2.3).

2. If at some point in time the coordinator infers from the capsules’ reports (sent by lines 23 and 27
of Algorithm 5.2.1) that there are zero new states, zero pending states and there are no messages
traversing the network (i.e., for every pair of capsules the number of messages sent and received
to each other matches), then the verification has finished and the target property is unreachable.

This is a classical protocol for termination detection. Its correctness is based on pairwise message
counting, and it works because no messages (of the type we are looking at) are exchanged unless there
are still states being explored (line 17 of Algorithm 5.2.1).

5.2.3. Trace Reconstruction

When the target property is found it becomes necessary to generate a counter-example trace
showing the sequence of discrete and timed steps that led to it from the initial state. This is easy in
the monoprocessor case: each state contains a pointer to its “father” (i.e., the state that was explored
to generate it) and a reference to the appropriate label. That is, if (l, z)

e
→ (l′, z′), then (l′, z′) has a

reference to e and a pointer to (l, z).

In the distributed setting things are harder: the father state can be either local or remote. If
remote, because of migrations (see Section 5.3), it can be in any capsule by the end of the verification.
Recording the complete father state is impractical in terms of memory.

Instead of a pointer, the location vector of the father is recorded. The location vector is the tuple
of location numbers of all the TA components (i.e., what distinguishes it from a global location, from
a data structure perspective, is that it lacks the invariant and transitions).

When the target state is found, the following algorithm is run by the coordinator . It starts by
setting a current variable to the target state and continues up to the obtention of the initial state.

1. Get father’s location vector from current (call it vf ).
2. Find out who the owner capsule is, call it c.
3. Send current, the generating label (call it l) and vf to c, requesting a state (l, z) such that it has vf

as location vector and can generate current through the l. I.e., such that location vector(l) = vf

and (l, z)
l
→current.

4. Wait for answer.
5. Set current to the received state.

The actual version has some more details to handle border cases, but keeps the same general
outline.

5.3. Even Workload Distribution

An even workload distribution is critical to the success of any distributed model checking tool.
As our unit of distribution is the location, we need to understand what factors are involved in its
workload.

Looking at Algorithm 5.2.1 we can see that the innermost operation of the cycle, and thus the most
called, is IsStateAlreadyVisited?(), which in turn contains several (expensive) calls to the IsIncluded?()
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zone inclusion check. So the interesting question is how many time will IsIncluded?() be called for a
particular location. This is what needs to be balanced, so when we talk about work we are actually
referring to inclusion checks.

There are none known accurate and efficient ways of responding to that question in general, but a
number of approximate shortcuts can be taken, as will be explained in Section 5.3.1.

It is very likely that the workload pattern varies over time (from Chapter 4 and [Beh05]), so a
rebalancing strategy is needed. Such a strategy needs to be reactive and take decisions that will have
a short life span. At a given instant, each capsule has a number of states in its Pending queue. Only
some of them will get to be explored before rebalancing actions need to be taken again. We don’t
know exactly how many, so we will resort to the concept of immediate future as a way to refer to the
“next few states to be explored” and postpone a more precise definition until Section 5.3.1, when the
details are presented.

We will start by the intuition behind our rebalancing approach and progressively introduce more
detail:

1. First, figure out which are the locations that are going to be explored in the immediate future.
2. Then, obtain a numerical estimate of how much work will it take for each of them.
3. With those numbers, run a redistribution algorithm, trying to balance the quantity of work

assigned to each capsule while at the same time shift as few locations as possible.
4. Broadcast the new mapping.
5. On reception of it, each capsule would start sending its Visitedl for each location l that now has

a different owner.

There are many important details to consider in order to get a successful implementation of such
a migration strategy. Let’s start by items 1 and 2. If the redistribution algorithm is run periodically,
then it can be estimated how many states will be explored before its next run, but this estimation will
be time-consuming by itself. Our approach for item 1 is to look at the top n states from Pendingc for
each capsule c, where n is a parameter that needs to be tuned.

Looking at the previously mentioned n states extracted from Pendingc we can compute how many
times each location is going to be analyzed in the immediate future (understanding “immediate” as
“top n”). How much work will it take each time? We don’t know for sure, but for big enough Visited
queues, the worst case will probably be close to what it is now (because some states more or less will
represent only a negligible percentage of it).

So, as an estimate, multiply each location l’s cardinality in the set of the top n pending states by
the number of states in Visitedl. This is the number we use for item 2.

The specific mechanics of our migrations algorithms are laid down in the following subsections.
Being highly sophisticated, each decision is difficult to understand without its rationale, so they will
be presented together with some discussion of their characteristics. Section 5.3.2 accounts for how
the balancing decisions are taken, Section 5.3.3 discusses when. Finally Section 5.3.4 takes care about
implementing the decided topology changes.

5.3.1. Computing Migrations

In its periodical report to the coordinator , each capsule c includes the following information (where
n and m are independent run-time tunables):

A last repartitioning report seen numerical stamp (see Section 5.3.4).
Top Pending Locations (TPL): Look at the top n states from Pendingc and report tuples 〈l, k〉
where l is a location and k is the number of the n top states that belong to l (i.e., k is the
frequency of l in the n top states).
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Top Visited Locs (TVL): Look at Visited c and report the m locations with the greater number
of states.

The coordinator receives these reports and checks whether enough time has passed (i.e., if a pseudo-
iteration has finished), just storing them if not2. If it indeed has, reports are combined into a General
Top Pending Locations (GTPL) and General Top Visited Locs (GTVL) bags. A schema is shown in
Algorithm 5.3.1.

1: function ReceiveReport(CapsuleNumber c, Bag TPL, Bag TVL, Statistics S, Nat k)
2: UpdateStatistics(k, c, S)
3: TPL[c] ← TPL
4: TVL[c] ← TVL
5: if PseudoIterationFinished?() (Section 5.3.3) then
6: GTPL ← ∅
7: GTVL ← ∅
8: for every capsule c′ do
9: GTPL ← GTPL ∪ TPL[c′]

10: GTVL ← GTVL ∪ TVL[c′]
11: end for
12: ∆ ← CallParMETIS (GTPL, GTVL) (Section 5.3.2)
13: BroadcastDeltas(∆) (Section 5.3.4)
14: end if
15: end function

Algorithm 5.3.1: Schema of the Rebalancing Algorithm.

Two comments are in order. A capsule might have failed to report within the last pseudo-iteration
(although runtime tunables are in place to try to avoid this), so both general bags might contain “old”
information. More importantly, what is the meaning of each bag? GTPL stands for the locations
that are going to be explored during the “immediate future”. In order to optimize the workload for
the upcoming pseudo-iteration, these are the ones that might need balancing in the “short-term” (i.e.,
before the next rebalancing attempt).

On the other hand, GTVL tells (somehow) how hard it is to check inclusion for a given location l.
I.e., how many states are in its Visitedl queue. It is an approximation, because only m locations are
reported in each capsules’ TVL.

Then, for each of the locations in GTPL its cardinality in GTPL is multiplied by its cardinality
in GTVL (number of appearances times how many inclusion checks per each). This is the estimated
workload metric, and is taken as the base to perform redistribution (see Section 5.3.2 for details).

It should be noticed that in this work we are migrating visited location queues and not pending
locations. The rationale is that migrating the Visitedl for some location l requires sending a complete
queue, which is easily extractable from its container, whereas sending Pendingl involves looping through
Pending , eliminating states, accumulating them elsewhere, etc., which is costly. Anyway, when those
states are explored they will be sent to their new owner capsule. Moreover, this method avoids sending
a bunch of to-be-explored states to some capsule c, big enough so only some of them can actually be
explored before a new repartitioning forces c to send them elsewhere.

5.3.2. Aiming for Even Workload

As was mentioned before, the workload metric is computed for every location l as l’s cardinality in
GTPL times the number of states (l, z) in GTVL.

2See Section 5.3.3 for a discussion on the mechanics of the coordinator .
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(∀l ∈ GTPL) M [l] = #(l,GTPL)×
∑

(l,z)∈GTVL

1

Once the estimated workload metric is computed for each location the ParMETIS library is used
to do the actual repartitioning.

ParMETIS [SKK00] is based on heuristic methods to handle efficiently graph repartitioning problems
trying not only to balance weight while minimizing number of movements, but also to reach minimum
cut. Although this would seem like a good idea because it minimizes communication, it is not such a
pressing issue in a synchronous environment over a fast local area network. Also, we hope to get more
weight balanced, less costly partitionings if minimum cut was not used.

We provide ParMETIS with a graph comprised of the locations that are present in GTPL, and the
M array as their weight. To counter minimum cut we feed ParMETIS with a graph were every node is
(only) connected through a zero-cost edge with a (unique) phantom, zero weight node.

After ParMETIS is done its output is compared against the current mapping of locations to capsules,
deltas are computed, and they are broadcasted as will be explained in Section 5.3.4.

The library is capable of dealing with different weights for workload and rebalancing cost, but we
consider both to be the same in our setting.

It should be pointed out that a number of good methods exist for rebalancing in the untimed
scenario (see [HGGS02, NC97] among others). Unfortunately they are not directly applicable as they
usually don’t have to deal with locations having different (unsplittable) weights.

Next section discusses when to perform a repartitioning.

5.3.3. Opportunity

The coordinator is not actually an active component. It reacts on received messages. The rationale
is that if nothing has changed, there’s no need to act, and if something has indeed changed, some
capsule would let it know, triggering its action.

A subtle point that some times can slip through this way of working is elapsed time. If pseudo-
iteration take t time units, there can be a chance for a scenario where at kt + (t − 1) time units the
coordinator has enough data to redistribute workload but yet it does not, because of lack of elapsed
time. Being only reactive, it may be awakened again only after a significant number of time units
later. Had it had a time trigger, the repartitioning would have happened earlier.

Although the above mentioned bad scenario can indeed take place, having a time trigger opens
the chance to have the processor running the coordinator (probably) being interrupted a number of
times for no good reason.

5.3.4. Redistribution Protocol

This section deals with implementing the topology changes that are decided accordingly with Sec-
tion 5.3.1 and Section 5.3.2. It deals with a two-sided process that is easy at one end (the coordinator)
but quite involved at the other (the capsules).

Let’s start by the easy part. The coordinator should send a repartitioning report (∆, i) to every
capsule, containing not only the deltas in the partitioning (that is, changes in the mapping from
locations to capsules, computed as explained in the previous sections), but also a report index. This
index i is a monotonically increasing positive integer.

How do capsules act upon reception of this report? As the process is fairly involved we will present
it gradually, starting by general ideas and motivations and postponing the details for page 60.
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They should update they“vision of the world” (that is, their partitioning Pc) and adapt to it. That
means:

Sending Visitedl for every location l | Pc[l] = c ∧ (Pc + ∆)[l] 6= c, That is, for every location that
used to be local but is not anymore.
Receiving Visitedl from other capsules, for now-local locations (i.e, for every location l | Pc[l] 6=
c ∧ (Pc + ∆)[l] = c).
Updating Pc. I.e., Pc ← Pc + ∆.

It should be noted that because of the asynchronicity of the setting, there could also be a capsule c′

that sent to-be-explored states to c that might need to be redirected to some other capsule c′′ because
by the time they reach c, c does not consider they local anymore.

Summing up the previous paragraphs, there are three kind of events that can happen in any order:

Reception of a repartitioning report and sending of Visitedl for departing locations.
Reception of Visitedl for arriving locations.
Reception of to-be-explored states and re-routing to their new destination if they are not local
anymore.

The last event is problematic because a careless handling could lead to messages infinitely being
bounced between capsules. It should be noted, however, that although there are no guarantees of
orderly reception of messages in general, the network does guarantee orderly delivery between pairs of
nodes. Because of the above mentioned risk the following protocol is employed.

It can be conceived as a protocol to deal with the following incoming events:

Reception of a repartitioning report (∆, i).
Reception of Visitedl for some locations l.
Reception of to-be-explored states.
Discovery (i.e., production in line 8 of Algorithm 5.2.1) of a state that can be local, remote or
with unknown owner.

and then acting according to them to produce the following outputs:

Sending Visitedl for some locations l.
Temporary storing appart to-be-explored states until it is clear if they are local or remote.
Adding local to-be-explored states to Pendingc.
Re-routing remote to-be-explored states to their new destination capsule.
Informing the coordinator of states with unkown owner.

Each capsule keeps two indexes and a “scratch book”. The indexes are

k, the last repartitioning report seen index (LRRS index ), and
r, the last repartitioning completed index (LRC index ).

Both start at 0 and r is always less than or equal to k. Also for each i, r < i ≤ k there is a “page”
in the scratch book that lists the capsules for which a Visitedl set should have been received, and
whether it should be kept local or sent to another capsule (i.e., it contains triplets 〈l, c, c′〉). This is
the invariant of the algorithm.

When a capsule receives information (of any kind) from another, it needs to know if the sending
one is ahead or behind it, regarding the last report it received from the coordinator . Why is this
important? Suppose capsule c receives a to-be-explored state (l, z) from c′, but Pc[l] = c′′. What does
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it mean? It can be the case that there is a new repartitioning known by c′ but not by c, in which case
c′ is right and (l, z) should go to Pendingc, or that c′ is the one that was not up to date when it sent
(l, z), and that state should actually be re-routed to c′′.

That is why most of the incoming and outgoing events are tagged with k, the previosly mentioned
last repartitioning report seen index. So the events, from the point of view of capsule c, become:

Reception of a repartitioning report (∆, i).
Reception of 〈Visitedl, j〉 from capsule c′ which had j as LRRS index, when it sent it.
Reception of to-be-explored states 〈S, j〉 where S is a state set and j was the LRRS index at the
time of sending.
Discovery (i.e., production in line 8 of Algorithm 5.2.1) of a state that can be local, remote or
with unknown owner.

The outgoing events are also tagged with the LRRS index.

The full protocol will be introduced in a few paragraphs, but let’s first see an sketch of it: when
a capsule receives a repartitioning report with index i from the coordinator , not only Pc needs to be
updated, but also it has to dispach Visitedl for locations l that are not local anymore (we call them
outgoing locations). The problem is that, because of asynchronicity, there might be locations whose
Visitedl was not yet received. How can it be sent?

The answer is to note in page i of the scratch book that such locations are due. Actually all of the
locations that are now local but used to be away (we call them incoming locations) are written down.
The only difference is whether their Visitedl should remain local or be sent away.

Up to this point, due locations are written in the scratch book. When a message containing
〈Visitedl, j〉 arrives, page j of the scratch book is revisited, and either Visitedl is installed locally or
sent away.

What happens with to-be-explored states? If a state (l, z) from Pendingc is not local –that’s the
easy part–, it should be sent away to Pc[l]. If it is local we face the same scenario that if the state was
discovered in some other capsule and sent to c. In both cases, if Visitedl is present, then it is checked
for inclusion; if it is not, then (l, z) is put “on-hold”, in a special-purpose queue. This queue will be
revisited when Visitedl arrives.

Observation 5.2 Please note that in the remainder of this section, the phrase “queue in Pending”
should actually be understood as an abbreviation for “queue in Pending and in Visited if it is not
already visited (i.e., pass it through Algorithm 5.1.2)”.

�

The full protocol is like this. Suppose capsule c has a last repartitioning report seen index k and
a last repartitioning completed index r.

1. If it receives a new repartitioning report, it

a) updates k (safety check: the new report should have an index of k + 1),
b) adds a page entitled k to the scratch book (if it wasn’t already there) where it takes note

of the pending incoming locations (actually, the “note” is not taken if it was “scratched”
before –see item 2a– and steps 2d and 2c are performed),

c) dispatches 〈Visitedl, k〉 for its outgoing locations l, such that Visitedl is present,
d) notes in the scratch book the outgoing locations l (and their destination capsule) for which

Visitedl is not yet present (those are locations which are supposed to be local but were not
yet received), and

e) updates its “vision of the world” (i.e., its partitioning Pc).
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As in the same report the coordinator informs ownership for newly discovered locations, c iterates
over its special purpose queue (see item 3) and treats the states there as in item 4 or item 5
(newly discovered), depending on whether they were assigned to c or to some other capsule.

2. If it receives 〈Visitedl, j〉 from capsule c′, it

a) accepts them and “scratches” c′ from page j of its pending scratch book,
b) checks if a delivery is pending (from 1d) and sends the corresponding Visitedl as in 1c,
c) queues in Pending all the states (l, z) that were on-hold for j (see item 6), and
d) checks if page j can be disposed and r incremented.

3. If it discovers a state (l, z) with unknown owner (i.e., l is an unknown location), it is placed in a
special queue, and informed to the coordinator at report time.

4. If it discovers a local state (l, z), and Visitedl is present, it proceeds as usual, but if Visitedl is
absent (because it was not yet received), (l, z) is put on-hold for i, being i the minimum value
r < i ≤ k having l as pending in the scratch book.

5. If it discovers a non-local state s, it sends 〈s, k〉 to its owner capsule (actually, these are batched,
so some 〈S, k〉 are sent).

6. If it receives to-be-explored states 〈S, j〉 from c′, and

a) if j ≤ r, it

1) queues in Pending the local ones (i.e., they are local and c has Visitedl for them), and
2) re-routes the non-local ones (with k as index3), but

b) if r < j ≤ k,

1) re-routes the non-local ones4 (again, with k as index), and
2) a ′ if j is still present in the scratch book, puts the rest of S (call it S′) on-hold for

j (i.e., c will only be able to explore them when 〈Visitedl, j〉 arrives for all l ∈
locations(S′), see 2c),

b′ if j is not present in the scratch book but l is pending with an index less than j,
it means that some other capsule owes Visitedl, but with a previous index, so put
them on-hold for i, being i the maximum value r < i < j having l as pending in
the scratch book,

c′ else, queue them in Pending as in item 6a1, but

c) if j > k, as c′ sent S knowing that all those states correspond to c at “iteration” k, they
should all be put on-hold for j, as in the previous step.

Correctness needs to be proven for the improved version of the distributed protocol. Termination
is postponed for Observation 5.3 and partial correctness is posed in the following theorem:

Theorem 5.2 (Migrations preserve partial correctness)
The full state space is explored by the distributed algorithm with migrations.

To prove Theorem 5.2 we need to be sure that

1. Safety: no state (l, z) is checked for inclusion without Visitedl present.
2. Progress: every non-local state (l, z) eventually goes into the Pending queue of some capsule.

The first one is easy: suppose capsule c (with indexes kc and rc respectively) discovers a state
(l, z):

3This is because it is being re-routed based on “how the world looks at k”. Otherwise, the receiving capsule will
bounce it back.

4Actually, if j = k there should be zero non-local states (i.e., both c and c′ had the same “vision of world” at delivery
time, and to-be-explored states are only sent to their intended destination).

61



5.3. Even Workload Distribution 5. Forward Model Checking

If it is not-local (step 5) it sends 〈{(l, z)}, kc〉 to capsule c′. The various relationships between
kc and kc′ and rc′ are covered in step 6, which handles the reception event guaranteing that it
will be not be explored ahead of time (remember Observation 5.2: queuing in Pending covers
the check for inclusion).
If (l, z) is local, the same step 4 already checks for the presence of Visitedl.
If its owner is unkown (step 3) the coordinator is informed, it eventually assigns it to some
capsule and the state is treated as a local or remote one (see last paragraph of step 1).

For the progress property, let’s assume that (l, z) does not eventually get in some Pending queue.
Then it can be the case that it is either on-hold or it is always bounced. Let’s consider the on-hold
case first (Lemma 5.4), with the help of the auxiliary Lemma 5.3.

Lemma 5.3 The reception of a repartitioning report will eventually lead to Visitedl being sent for
every outgoing location l.

Base case: all the capsules start with the same partitioning, so when the first repartitioning report
arrives all the outgoing locations have their Visited set locally.

Inductive step: let’s assume that at capsule c all outgoing locations for the repartitioning report
k have been sent and a new k + 1 report arrives. Per inductive hypothesis all the other capsules will
eventually send their outgoing locations for report k. As messages do not get lost all those Visited
sets will be received. Step 2b guarantees that when a Visited set is received, pending deliveries are
honored. ✷

Lemma 5.4 Every state (l, z) that gets into a on-hold queue will eventually be taken out of it.

In the on-hold case, (l, z) was sent to capsule c with and index j that was greater than rc. If such a
thing happened it was because rc was left behind, but as the network does not loose messages, we can
be sure that every capsule will eventually receive the repartitioning report with index j and because
of Lemma 5.3, they will send their Visited sets. Again, as messages are not lost, they will be received
by c, which will trigger steps 2d and 2c, thus taking (l, z) out of the on-hold set. ✷

So if there is no progress, it must be because (l, z) is being continually bounced. This means that
it is always treated by the non-local part of step 6 in the receiving capsule c′, because j < kc′ . But
if it is always bouncing and never lands into a Pending queue, eventually all the rest of the state
space will be explored except maybe for the part that starts at (l, z). This means that all Pending
queues will become empty and therefore all the capsules idle. So there will be no repartitioning needs,
but global termination will no be possible because there is at least one uncounted message (the one
carrying (l, z)). So the topology will stabilize and (l, z) will eventually reach its final destination. ✷

Observation 5.3 The termination detection (Lemma 5.1) is preserved by migrations, because these
messages are also counted.

Observation 5.4 It is interesting to note how the redistribution protocol is actually generic, allowing
to move information asynchronously and consistently among nodes in a distributed computation, while
preserving required preconditions (i.e., although a piece of information might arrive requesting to be
processed, that will not take place until the required background data –Visitedl in our case– has also
arrived).

�
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Table 5.1: Experimental settings
Setting ∆tm #s d sTPL #TVL

M0 10 5 20 100 100
M1 30 1000 20 100 100
M2 60 1000 20 100 100
M3 60 1000 40 100 100
M4 600 1000 20 100 100
M5 600 1000 20 500 500

5.4. Case Studies

The technique was implemented into Zeus, a number of case studies were selected, and a series of
experiments were run in a 4 way Intel Xeon 2.66 GHz, with 2 GB of RAM, running Linux 2.6. The
aim of the experiments was to answer the following questions:

Is the migrations technique needed? Or is a static distribution settled at the beginning enough,
and no rebalancing is required?
Even if it is needed, is the migrations technique better than no migrations at all?
Does it have an important overhead?
Does the fragmentation phenomenon show up in the forward setting?
Are there few locations responsible of most the work, as in backwards?
Our technique is based on analyzing some states from Pending and Visited , taking decisions
based on them, and repartition every so often. How many states should be analyzed? Should
we use a frequent repartitioning or wait for longer periods?
More specifically, as the tool has some tunable variables, is there some combination of values for
them that is best suited, in general or for particular case studies?

Besides the control case with no migrations at all, six experimental settings were prepared (see
Table 5.1). We varied the following options:

∆tm: minimum number of seconds that have to pass for the coordinator to compute a new
migration.
#s: number of states each capsule has to explore before sending a new report to the coordinator
(line 23 and line 27 of Algorithm 5.2.1).
d: minimum accepted percentual difference between the imbalance, prior and after redistribution,
for a migration set to be considered valid. I.e., before calling ParMETIS the coordinator computes
the imbalance factor as the difference in weight between the most and less loaded capsules. After
ParMETIS, the imbalance factor is computed again. The new one has to be at least d% better
than the previous one in order to consider the migration valid. Otherwise, it is disregarded.
sTPL: the number of Pendingc’s states to visit in order to construct the TPL (see Section 5.3.1).
#TVL: the number of top visited locations to include in the TVL.

In all of the runs the initial distribution was random with a fixed seed and the number of precomposed
locations was set to 1000.

It should be noted that five tunable integer variables, even if they had a closed range of possible
values, account for a combinatorial number of experiments, making it very hard to handle. This is why
we decided to create the settings from Table 5.1. Although they do not sweep the complete spectrum
of possibilities, they do give rise to some interesting issues and observations, allow to answer most of
our research questions, and serve as an aim to narrow the range of each variable in the future.

The rationale for each setting is as follows:
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M0 tries to give the coordinator a chance to react as fast as possible, and thus has a low #s and
∆tm.
M1 increases both values, trying to counter the overhead of frequent transmissions and reparti-
tionings attempts.
M2 tries to diminish the number of repartitionings to counter the possible overhead of moving
state queues around.
Doubling d, M3 takes more conservative decisions about which migrations are worth doing.
M4 is aimed at long case studies, trying to see the effect of a long delay between reports.
Lastly, M5, which increases sTPL and #TVL aims at the same long cases, this time trying to
feed more information into the heavy location detection mechanism.

The results for the control setting are presented in Table 5.2. Along with the time and speedup
for each number of processors a primed version is presented. It represents time and speedup without
counting TA copying and trace generation. Copying involves resorting to external tools5 that might
have an important time variability. We choose to leave this out in order to consider only the efficiency
of the algorithms we developed.

Table 5.2: Control setting (no migrations) – total time (seconds)
Example t1 (t′1) t2 (t′2) t3 (t′3) t4 (t′4)

speedups speedups speedups

RCS5 31 (21) 42 (22) 34 (6) 41 (12)
true 0.74 (0.95) 0.91 (3.50) 0.76 (1.75)

RCS5 832 (832) 407 (405) 424 (423) 309 (306)
false 2.04 (2.05) 1.96 (1.97) 2.69 (2.72)

FDDI4 15 (1) 26 (5) 28 (2) 43 (5)
true 0.58 (0.20) 0.54 (0.50) 0.35 (0.20)

FDDI4 20 (20) 20 (13) 22 (7) 34 (9)
false 1.00 (1.54) 0.91 (2.86) 0.59 (2.22)

FDDI8 397 (372) 308 (246) 233 (160) 236 (128)
true 1.29 (1.51) 1.70 (2.33) 1.68 (2.91)

FDDI8 6 254 (6254) 3 674 (3 672) 2 879 (2 876) 3 110 (3 102)
false 1.70 (1.70) 2.17 (2.17) 2.01 (2.02)

Conv6ABC 42 (28) 45 (20) 39 (8) 113 (41)
true 0.93 (1.40) 1.08 (3.50) 0.37 (0.68)

Conv6ABC 3 241 (3241) 1 851 (1 848) 1 570 (1 565) 1 234 (1 224)
false 1.75 (1.75) 2.06 (2.07) 2.63 (2.65)

Pipe6 ’ 114 (82) 124 (35) 147 (7) 106 (22)
true 0.92 (2.34) 0.78 (11.71) 1.08 (3.73)

Pipe6 ’ 42 (42) 41 (39) 49 (46) 43 (39)
false 1.02 (1.08) 0.86 (0.91) 0.98 (1.08)

MinePump 2 328 (2238) 1 035 (941) 1 483 (331) 1 721 (364)
true 2.25 (2.38) 1.57 (6.76) 1.35 (6.15)

MinePump 17 013 (17013) 31 653 (31 652) 11 097 (11 095) 15 650 (15 647)
false 0.54 (0.54) 1.53 (1.53) 1.09 (1.09)

MinePump’ 83 (37) 125 (32) 80 (29) 100 (13)
true 0.66 (1.16) 1.04 (1.28) 0.83 (2.85)

MinePump’ 446 (446) 841 (840) 694 (692) 489 (486)
false 0.53 (0.53) 0.64 (0.64) 0.91 (0.92)

5Currently, scp, the secure remote copy program, is used.
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Trace generation only affects reachable cases, uses the algorithm presented in Section 5.2.3 and
can be thought of as a “constant” delay at the end of the verification. It is not actually constant, but
the variation comes from the length of the particular trace being found and the states explored so far,
and not directly from the distribution itself.

When reporting speedup and relative performance of different settings, the time without copying
and trace generation will be used. When dealing with the percentage of time dedicated to I/O, etc.
(for example, Table 5.3), only the copying will be disregarded, because all the other counters are still
active during trace reconstruction.

Table 5.2 has good and bad news. On one hand some case studies (e.g., FDDI8 false) do benefit
from the distribution, cutting their running time in half with two processors. On the other, the results
are irregular, with a speedup far from linear and some cases (like MinePump false with two processors)
suffer an intolerable overhead.

On what follows, we will analyze case studies that have a monoprocessor runtime of more than two
minutes. In the ones that take less, it is very easy for the overhead to surpass any efficiencies from
distribution.

Table 5.3 breaks the time into interesting classes for analysis. All the columns show percentages
of total time. The second column shows the sum of idle times (which happen when a capsule has an
empty Pending queue), along with the idle time of each capsule in descending order. Ideally, both
the total idle time and the different between each capsules’s idle time should be low. An important
difference between capsule idle times shows unbalanced load. Then there is I/O time, which is partly
included in the idle column (because capsules might be doing pending I/O while idle) and partly
included into the next column, which represents serialization time. This last timer computes the time
spent serializing (preparing states to be sent over the network) and deserializing (turning byte streams
back into states). Because some parts of the process are really tied to networking, the I/O timer is
partly included into the serialization one.

Although omitted in the table, the first interesting results is that reaching the 1000 precomposed
locations took at most 1 second in all the runs, validating the claim that precomposing would have a
negligible overhead.

Table 5.3 does indeed show large fragments of idle time, which are coherent with the poor speedups
seen in Table 5.2. There is also imbalance among capsules (e.g., MinePump false, RCS5 false),
justifying the need for a rebalancing mechanism.
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Table 5.3: Metrics for the control setting (I/O is mostly included in the serialization column and part
in idle).

Example/#proc % idle % I/O % serialization
(each capsule)

RCS5 false / 1 0.00 (0) 0.48 0.00
RCS5 false / 2 6.79 (11, 2) 3.70 43.46
RCS5 false / 3 12.29 (22, 10, 4) 6.07 51.62
RCS5 false / 4 21.65 (31, 30, 21, 4) 8.66 54.33

FDDI8 true / 1 0.00 (0) 6.05 0.00
FDDI8 true / 2 0.67 (1, 0) 14.72 2.68
FDDI8 true / 3 0.16 (0, 0, 0) 20.40 2.49
FDDI8 true / 4 1.59 (2, 0, 0, 0) 31.75 3.57

FDDI8 false / 1 0.00 (0) 0.00 0.00
FDDI8 false / 2 0.05 (0, 0) 0.25 5.58
FDDI8 false / 3 0.56 (2, 0, 0) 0.65 8.91
FDDI8 false / 4 0.10 (0, 0, 0, 0) 0.45 10.92

Conv6ABC false / 1 0.00 (0) 0.19 0.00
Conv6ABC false / 2 1.06 (2, 0) 1.16 30.57
Conv6ABC false / 3 4.13 (9, 2, 2) 1.02 41.64
Conv6ABC false / 4 7.37 (10, 10, 8, 1) 1.98 45.96

Pipe6 ’ true / 1 0.00 (0) 28.07 0.00
Pipe6 ’ true / 2 4.02 (4, 4) 44.20 7.14
Pipe6 ’ true / 3 0.53 (1, 0, 0) 41.01 10.58
Pipe6 ’ true / 4 5.94 (8, 6, 5, 0) 59.69 10.00

MinePump true / 1 0.00 (0) 3.14 0.00
MinePump true / 2 20.59 (41, 0) 19.66 23.46
MinePump true / 3 20.54 (61, 0, 0) 32.10 31.38
MinePump true / 4 13.82 (35, 11, 8, 2) 41.95 29.15

MinePump false / 1 0.00 (0) 0.06 0.00
MinePump false / 2 19.17 (38, 0) 9.38 36.59
MinePump false / 3 41.96 (85, 41, 0) 21.77 37.25
MinePump false / 4 54.25 (84, 75, 58, 0) 22.87 41.04

MinePump’ true / 1 0.00 (0) 54.22 0.00
MinePump’ true / 2 5.04 (7, 3) 48.74 9.24
MinePump’ true / 3 8.44 (15, 9, 1) 44.44 14.67
MinePump’ true / 4 16.33 (32, 24, 5, 4) 43.11 20.41

MinePump’ false / 1 0.00 (0) 0.00 0.00
MinePump’ false / 2 40.30 (80, 1) 25.83 26.55
MinePump’ false / 3 44.89 (71, 64, 0) 23.99 31.02
MinePump’ false / 4 49.59 (83, 58, 56, 1) 22.07 27.67
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Table 5.4: Metrics for the M0 setting.
Example/#proc % idle % migration % I/O % serialization

(each capsule)

RCS5 false / 2 37.22 (74, 0) 0.26 22.43 17.28
RCS5 false / 3 39.91 (59, 2, 0) 0.35 23.16 23.95
RCS5 false / 4 49.05 (72, 67, 53, 4) 0.22 21.70 37.76

FDDI8 true / 2 1.38 (3, 0) 0.20 16.80 1.38
FDDI8 true / 3 3.00 (5, 4, 0) 0.00 36.64 2.25
FDDI8 true / 4 4.19 (7, 5, 4, 2) 0.00 42.26 2.28

FDDI8 false / 2 4.16 (8, 0) 0.07 2.81 6.35
FDDI8 false / 3 0.65 (1, 1, 0) 0.10 2.29 8.07
FDDI8 false / 4 4.87 (17, 1, 1, 0) 0.13 3.33 10.35

Conv6ABC false / 2 9.10 (18, 0) 0.45 1.95 16.59
Conv6ABC false / 3 19.57 (29, 28, 2) 0.31 4.15 26.04
Conv6ABC false / 4 14.82 (26, 20, 13, 1) 0.36 3.42 37.46

Pipe6 ’ true / 2 7.84 (12, 4) 0.00 50.00 5.88
Pipe6 ’ true / 3 10.69 (32, 0, 0) 0.23 40.36 5.17
Pipe6 ’ true / 4 6.54 (8, 6, 0, 0) 0.38 49.23 6.54

MinePump true / 2 0.32 (0, 0) 0.27 6.16 29.26
MinePump true / 3 1.89 (5, 0, 0) 0.23 51.66 10.60
MinePump true / 4 2.81 (9, 1, 1, 0) 0.09 59.51 11.28

MinePump false / 2 13.18 (27, 1) 0.09 7.72 35.21
MinePump false / 3 14.89 (34, 9, 2) 0.07 6.82 42.26
MinePump false / 4 38.13 (73, 69, 11, 0) 0.03 16.05 41.08

MinePump’ true / 2 9.21 (13, 5) 0.00 59.21 5.26
MinePump’ true / 3 5.02 (14, 1, 0) 0.72 53.05 15.77
MinePump’ true / 4 7.87 (15, 7, 6, 4) 0.00 47.19 17.13

MinePump’ false / 2 6.24 (10, 3) 0.30 3.72 36.02
MinePump’ false / 3 25.58 (56, 20, 0) 0.00 13.91 36.37
MinePump’ false / 4 44.31 (67, 56, 53, 1) 0.17 19.47 39.11
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Table 5.5: Metrics for the M1 setting.
Example/#proc % idle % migration % I/O % serialization

(each capsule)

RCS5 false / 2 20.62 (38, 4) 0.60 15.23 26.26
RCS5 false / 3 27.00 (45, 33, 3) 0.32 12.98 44.97
RCS5 false / 4 32.69 (57, 48, 17, 9) 0.16 12.42 47.13

FDDI8 true / 2 4.05 (6, 2) 1.22 14.19 4.05
FDDI8 true / 3 10.72 (18, 12, 3) 1.28 22.26 4.43
FDDI8 true / 4 1.65 (2, 2, 1, 0) 0.55 34.25 3.08

FDDI8 false / 2 0.51 (1, 0) 0.61 0.54 6.44
FDDI8 false / 3 3.55 (10, 0, 0) 0.31 3.49 8.41
FDDI8 false / 4 3.00 (5, 3, 3, 2) 0.25 3.00 11.72

Conv6ABC false / 2 7.26 (14, 1) 0.15 1.45 32.66
Conv6ABC false / 3 2.75 (4, 3, 0) 0.07 1.39 40.89
Conv6ABC false / 4 17.97 (41, 20, 7, 4) 0.11 3.57 46.75

Pipe6 ’ true / 2 7.11 (10, 4) 0.00 36.93 5.28
Pipe6 ’ true / 3 16.57 (47, 3, 0) 0.19 43.13 5.99
Pipe6 ’ true / 4 7.87 (9, 7, 0, 0) 0.00 57.41 7.87

MinePump true / 2 7.54 (15, 0) 0.06 14.40 28.62
MinePump true / 3 12.13 (36, 0, 0) 0.00 23.42 34.93
MinePump true / 4 8.20 (16, 13, 2, 1) 0.11 21.29 37.42

MinePump false / 2 14.35 (28, 1) 0.08 7.52 37.26
MinePump false / 3 17.36 (28, 23, 2) 0.14 8.58 42.97
MinePump false / 4 34.82 (73, 58, 7, 0) 0.04 15.60 37.30

MinePump’ true / 2 7.58 (9, 6) 0.00 71.97 5.30
MinePump’ true / 3 1.72 (3, 2, 0) 0.00 64.94 9.77
MinePump’ true / 4 29.98 (63, 52, 3, 2) 0.00 40.38 23.08

MinePump’ false / 2 28.38 (56, 1) 0.33 17.74 19.88
MinePump’ false / 3 29.71 (56, 28, 5) 0.10 15.39 37.35
MinePump’ false / 4 40.69 (66, 63, 30, 5) 0.07 18.11 39.08
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Table 5.6: Metrics for the M2 setting.
Example/#proc % idle % migration % I/O % serialization

(each capsule)

RCS5 false / 2 27.28 (54, 1) 0.12 18.03 19.11
RCS5 false / 3 16.82 (46, 4, 0) 0.00 8.15 49.13
RCS5 false / 4 53.79 (89, 75, 50, 1) 0.12 23.74 36.72

FDDI8 true / 2 14.94 (27, 3) 1.57 18.80 3.86
FDDI8 true / 3 10.80 (16, 15, 1) 1.29 22.18 4.81
FDDI8 true / 4 1.29 (2, 0, 0, 0) 0.00 32.33 4.20

FDDI8 false / 2 3.30 (5, 1) 0.35 2.07 7.50
FDDI8 false / 3 0.58 (2, 0, 0) 0.36 0.56 9.77
FDDI8 false / 4 3.34 (5, 4, 4, 0) 0.37 2.57 10.33

Conv6ABC false / 2 5.89 (10, 2) 0.11 1.15 29.30
Conv6ABC false / 3 10.60 (21, 10, 0) 0.11 2.06 42.82
Conv6ABC false / 4 8.58 (16, 12, 5, 1) 0.09 1.83 44.17

Pipe6 ’ true / 2 4.25 (5, 4) 0.00 36.79 6.60
Pipe6 ’ true / 3 1.45 (2, 0, 0) 0.00 58.70 8.70
Pipe6 ’ true / 4 15.23 (55, 4, 1, 1) 0.04 53.71 7.10

MinePump true / 2 1.09 (1, 1) 0.00 20.27 28.40
MinePump true / 3 22.03 (66, 0, 0) 0.02 24.78 29.57
MinePump true / 4 11.67 (28, 16, 2, 1) 0.08 26.08 38.08

MinePump false / 2 1.48 (3, 0) 0.01 0.94 28.46
MinePump false / 3 13.22 (25, 14, 0) 0.01 6.76 35.20
MinePump false / 4 37.54 (67, 54, 28, 1) 0.02 15.16 50.46

MinePump’ true / 2 6.34 (7, 6) 0.00 65.49 8.45
MinePump’ true / 3 3.09 (7, 2, 0) 0.00 64.81 11.73
MinePump’ true / 4 12.42 (25, 17, 5, 3) 0.00 52.15 19.21

MinePump’ false / 2 10.48 (20, 1) 0.00 5.29 31.54
MinePump’ false / 3 33.66 (67, 32, 2) 0.08 15.43 39.19
MinePump’ false / 4 43.67 (77, 68, 28, 2) 0.16 18.98 38.98
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Table 5.7: Metrics for the M3 setting.
Example/#proc % idle % migration % I/O % serialization

(each capsule)

RCS5 false / 2 14.86 (25, 5) 1.86 7.43 33.86
RCS5 false / 3 22.06 (36, 24, 6) 0.00 11.84 40.69
RCS5 false / 4 41.39 (63, 51, 49, 2) 0.41 17.38 46.36

FDDI8 true / 2 13.26 (25, 2) 1.26 18.18 4.17
FDDI8 true / 3 0.64 (1, 0, 0) 1.41 21.79 3.46
FDDI8 true / 4 14.27 (28, 26, 2, 0) 0.61 33.40 5.16

FDDI8 false / 2 1.22 (2, 0) 0.60 0.68 6.66
FDDI8 false / 3 0.63 (2, 0, 0) 0.32 0.59 9.06
FDDI8 false / 4 4.26 (7, 4, 4, 3) 0.23 4.60 10.56

Conv6ABC false / 2 10.33 (20, 1) 0.10 2.68 26.56
Conv6ABC false / 3 6.23 (11, 4, 4) 0.02 1.57 41.58
Conv6ABC false / 4 21.70 (51, 13, 13, 10) 0.07 4.15 43.46

Pipe6 ’ true / 2 11.33 (20, 3) 0.39 46.09 3.52
Pipe6 ’ true / 3 0.81 (2, 1, 0) 0.27 39.25 9.95
Pipe6 ’ true / 4 6.54 (8, 6, 0, 0) 0.00 53.08 9.62

MinePump true / 2 1.09 (1, 1) 0.00 20.27 28.40
MinePump true / 3 22.03 (66, 0, 0) 0.02 24.78 29.57
MinePump true / 4 11.67 (28, 16, 2, 1) 0.08 26.08 38.08

MinePump false / 2 1.48 (3, 0) 0.01 0.94 28.46
MinePump false / 3 13.22 (25, 14, 0) 0.01 6.76 35.20
MinePump false / 4 37.54 (67, 54, 28, 1) 0.02 15.16 50.46

MinePump’ true / 2 6.58 (8, 5) 2.63 57.24 5.92
MinePump’ true / 3 2.38 (5, 2, 0) 0.60 59.52 12.50
MinePump’ true / 4 17.39 (33, 24, 9, 4) 0.27 48.10 18.48

MinePump’ false / 2 2.82 (5, 1) 0.00 2.07 30.60
MinePump’ false / 3 35.13 (57, 48, 0) 0.00 17.92 32.80
MinePump’ false / 4 45.19 (68, 56, 54, 2) 0.00 17.89 38.14
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Table 5.8: Metrics for the M4 setting.
Example/#proc % idle % migration % I/O % serialization

(each capsule)

RCS5 false / 2 9.20 (16, 3) 0.11 5.63 35.40
RCS5 false / 3 60.05 (90, 90, 0) 0.00 39.75 15.92
RCS5 false / 4 24.61 (41, 33, 16, 9) 0.15 10.96 56.94

FDDI8 true / 2 1.63 (2, 1) 1.63 14.50 3.25
FDDI8 true / 3 0.62 (1, 0, 0) 0.62 18.70 4.92
FDDI8 true / 4 1.47 (2, 2, 0, 0) 1.13 28.51 4.86

FDDI8 false / 2 17.37 (35, 0) 0.34 11.78 5.69
FDDI8 false / 3 13.74 (41, 0, 0) 0.39 9.75 8.67
FDDI8 false / 4 0.14 (0, 0, 0, 0) 0.16 0.69 11.95

Conv6ABC false / 2 6.24 (7, 5) 0.17 1.87 34.16
Conv6ABC false / 3 6.28 (10, 8, 1) 0.02 2.32 42.48
Conv6ABC false / 4 15.37 (34, 16, 11, 0) 0.18 2.37 41.87

Pipe6 ’ true / 2 1.63 (2, 1) 0.18 42.21 3.62
Pipe6 ’ true / 3 0.65 (1, 0, 0) 0.00 41.42 5.83
Pipe6 ’ true / 4 7.29 (11, 7, 6, 0) 0.00 50.00 9.38

MinePump true / 2 1.58 (2, 0) 0.00 20.02 25.90
MinePump true / 3 19.59 (46, 13, 0) 0.00 35.01 25.93
MinePump true / 4 24.14 (55, 35, 6, 0) 0.02 18.67 45.48

MinePump false / 2 10.20 (20, 1) 0.01 5.39 38.13
MinePump false / 3 16.57 (30, 14, 5) 0.01 6.43 50.35
MinePump false / 4 36.96 (69, 63, 14, 2) 0.01 16.61 40.91

MinePump’ true / 2 7.33 (9, 5) 0.00 59.33 6.67
MinePump’ true / 3 1.92 (2, 0, 0) 0.00 63.46 14.10
MinePump’ true / 4 13.54 (22, 19, 7, 6) 0.35 54.51 13.89

MinePump’ false / 2 27.89 (55, 1) 0.00 14.82 27.97
MinePump’ false / 3 35.86 (65, 41, 1) 0.00 19.23 36.05
MinePump’ false / 4 55.83 (90, 76, 57, 1) 0.08 26.74 30.58
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Table 5.9: Metrics for the M5 setting.
Example/#proc % idle % migration % I/O % serialization

(each capsule)

RCS5 false / 2 9.95 (20, 0) 0.13 5.57 32.10
RCS5 false / 3 13.57 (20, 20, 0) 0.00 5.57 53.01
RCS5 false / 4 24.73 (42, 28, 26, 3) 0.45 10.18 52.95

FDDI8 true / 2 1.23 (1, 1) 0.68 15.53 3.95
FDDI8 true / 3 1.07 (3, 0, 0) 1.22 35.62 8.60
FDDI8 true / 4 2.36 (5, 2, 1, 0) 0.32 22.96 6.65

FDDI8 false / 2 1.07 (2, 0) 0.69 0.61 6.60
FDDI8 false / 3 0.15 (0, 0, 0) 0.50 0.89 8.12
FDDI8 false / 4 0.21 (0, 0, 0, 0) 0.28 1.32 10.32

Conv6ABC false / 2 3.75 (7, 0) 0.02 0.81 29.17
Conv6ABC false / 3 49.01 (74, 73, 0) 0.11 25.30 24.39
Conv6ABC false / 4 36.85 (56, 46, 45, 0) 0.15 9.44 34.19

Pipe6 ’ true / 2 3.19 (4, 3) 1.06 35.82 4.96
Pipe6 ’ true / 3 0.44 (1, 0, 0) 0.89 48.44 6.67
Pipe6 ’ true / 4 7.81 (9, 8, 6, 0) 1.56 58.59 7.03

MinePump true / 2 11.08 (22, 0) 0.02 8.12 36.54
MinePump true / 3 14.52 (23, 21, 0) 0.11 15.98 43.71
MinePump true / 4 16.45 (53, 7, 3, 3) 0.00 59.38 18.26

MinePump false / 2 8.73 (15, 2) 0.00 4.01 36.66
MinePump false / 3 33.30 (52, 48, 0) 0.01 14.68 46.40
MinePump false / 4 34.96 (86, 32, 19, 3) 0.01 15.08 45.91

MinePump’ true / 2 6.00 (7, 5) 0.00 62.67 9.33
MinePump’ true / 3 5.56 (13, 3, 0) 0.00 62.78 8.33
MinePump’ true / 4 7.50 (9, 7, 6, 0) 0.28 43.06 23.61

MinePump’ false / 2 7.64 (12, 3) 0.00 4.03 30.57
MinePump’ false / 3 26.02 (72, 5, 2) 0.00 13.20 37.44
MinePump’ false / 4 38.97 (69, 53, 33, 2) 0.00 17.22 40.18

Table 5.10: Heavy locations.
Example #locs #states #incl checks/loc #locs over avg % checks

avg ± stddev #locs (%) heavy

RCS5 false 1 617 277 009 1 583 864 ± 15 548 417 142 (8.00) 95.88

FDDI8 true 4 113 8 596 113 ± 151 1 332 (32.00) 85.09

FDDI8 false 15 104 136 775 50 489 ± 179 967 1 977 (13.00) 94.10

Conv6ABC false 31 443 1 369 123 1 467 277 ± 27 662 678 958 (3.00) 98.60

Pipe6 ’ true 1 614 52 999 7 020 ± 23 358 265 (16.00) 88.54

MinePump true 1 425 387 150 58 410 980 ± 704 846 470 74 (5.00) 97.79

MinePump false 1 428 1 172 435 2 371 · 106 ± 25 250 · 106 76 (5.00) 97.42

MinePump’ true 677 31 652 39 907 ± 268 415 43 (6.00) 96.34

MinePump’ false 677 131 384 5 771 325 ± 43 773 525 38 (5.00) 96.97

72



5. Forward Model Checking 5.4. Case Studies

Table 5.10 analyzes the concept of heavy locations, previously analyzed for the backwards algorithm
in Section 4.5.1, this time in the forward setting. For each case study, it shows the number or reachable
locations, states, and the average and standard deviation of the number of inclusion checks required
per location. Next column shows the number of locations that are above average. These are the ones
we call heavy. Last column shows how much work (inclusion checks) they are responsible for. The
immense standard deviations should be noted, showing that the work required varies greatly among
locations. Also interesting, the small percentage of heavy ones, and the big amount of the total work
they contribute.

Although the number of heavy locations is small, it is still superior to the number of capsules.
Would a fair, static partitioning, balance the load? Exploring this question Table 5.11 shows how,
at different sample points during the runs, the locations responsible for most of the work are not the
same. We used a period of 60 seconds for the samples.

For each case study, Table 5.11 has as first column the period (sequential) number and in paren-
thesis the percentage of work (inclusion checks) that happened during that period. The top most
significant periods are shown. Second column features average and standard deviation of the number
of checks per location during the period. The third has the number of location requiring more work
than the average of the period, over the number of locations checked during the period and, in paren-
thesis, this fraction as a percentage. These are the locations we call heavy for the period . Last column
represents the number of locations that were heavy both in the current and (sequentially) previous
period, and how much (in percentage) they represent from the total number of current heavy.

We can see that in each period the number of heavy locations is small (consistently with what
happens globally). It is interesting to note how the case studies differentiate in two groups:

1. either the top periods show a small contribution, suggesting an even distribution of workload
among periods, and the heavy locations are –although not matching in full– mostly the same
ones that in the previous periods, suggesting some degree of stability, (most case studies) or

2. the top periods contribute the most of the work, but the variability is important (FDDI8 true).

What can be concluded from Table 5.11 is that there is justification for rebalancing on-the-fly,
although how often to do it is not that clear and seems to depend on each case study.

Fig. 5.1 and Fig. 5.2 show the speedups obtained using the different migration settings plus the
scenario with no migrations at all. A few things can be concluded from the charts.

1. There’s no clear winner: there is no scenario that performs substantially better than the rest.
2. Reachable case studies show superlinear speedups. This happens because reachable cases end as

soon as a target location is reached. If some distribution assigns them to a less loaded capsule,
their chances of being discovered sooner increase.

3. Apart from that, performance is far from linear in general.
4. Nevertheless, some some cases do exhibit good speedups: FDDI8 false, Conveyor6A false with
M2 or M4, RCS5 false with M5.

5. Promisingly, in all case studies but MinePump false with 3 capsules, there is always a migration
setting that outperforms the no-migrations scenario. In many cases the difference is notable (for
instance, MinePump’ false or FDDI8 false).

6. In only few cases M3 is better than M2 (they only varied in d), showing that there is no need to
be highly conservative in the value of that threshold.

7. M5, the setting that examines much more locations from the Visited and Pending queues in
order to compute migrations, tends to be among the top performers with an increased number
of capsules (of course, this should be confirmed with a larger number of processors).

8. M0, which reports and takes decisions frequently, seems to be a good performer on reachable
cases, with notable exceptions like MinePump’.
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9. M1 is usually outperformed by M2, probably because of the lower reporting overhead that
differentiates them.

In Section 5.5 we will analyze ways to improve our results. Let’s turn our attention to Tables 5.4
through 5.9, which report the same metrics that Table 5.3 did for the control case, but for the M0 to
M5 settings.

The new column in the tables accounts for time devoted to migrations. It should be pointed out
that the timer includes serialization time but not I/O. However, the increased I/O could be seen in
the corresponding column.

Looking at both column over all the tables it can be concluded that migrations do not impose a
great overhead per se, but rather can change the load pattern of the capsules.

Usually, better speedups correlate with less idle time. Unluckily there is still more important
information to collect about them. Not only the total and per capsule idle time matter, but also when
they occur. For a given number of idle seconds, it is better that two capsules idle more or less at the
same time than that they “take turns”, effectively doubling total time.

This “turning” phenomenon, which is more likely to happen if only a few locations generate most
of the work, could be the explanation for pathological case studies like MinePump false. For instance,
its metrics for M1 and 2 capsules (in Table 5.5) are much better than in the control setting (Table 5.3)
and yet its timing is worst. According to Table 5.10, it indeed has only 5% of heavy locations. In an
asynchronous environment like ours the type of timing information that would confirm the “turning”
is very difficult to obtain and thus we cannot assert certainly that this is the explanation.

Another possible cause is fragmentation. The difference in the order of explored states leads to more
states being found. This seems to be happening, at least in MinePump false, as shown in Table 5.12.
This table selects one migration setting (M1) which performs worse than not using migrations, and
compares the number of inclusion checks required.

As can be seen in Table 5.12 and Fig. 5.2(b), there is some correlation between speedups and the
number of inclusion checks. It also seems that some increase in the number of checks is compensated
by the extra processors to handle it.

The same phenomenon was also reported in [Beh05], for a distributed version of the forward
algorithm. They used the following heuristic to diminish the effects of the problem: order the states
in Pending according to their distance from the initial state, trying to obtain an approximation of
breadth first search. We should explore this technique in the future. In particular, to understand
which kind of distance works well: hamming distance, control-graph shortest path, timed distance,
etc.

It should be clear that not all the case studies suffer from fragmentation in the same manner, or at
all. Take for instance, RCS5 false, which performs reasonably well on M5 and with dips on M4. As can
be seen in Table 5.13, there is no linear correlation between inclusion checks and speedup, featuring
even a decrease in the number of inclusion checks in M4 and M5 with 3 capsules. This suggests that
the other factors were more influential than fragmentation for RCS5 .

To fully understand how fragmentation affects the distributed forward algorithm more metrics
should be collected during the distributed run (such as number of different states generated by each
capsule, number of repetitions, etc.). This involves extra technical difficulties (for instance, avoiding
that the delay imposed by the collection mechanisms alter the workload pattern, etc.) and properly
implementing migrations was challenging enough. Thus, we plan to explore this specific issue in future
research work.
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(b) Pipe6 ’ true.
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(c) Conv6ABC false.
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(d) FDDI8 true.
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(e) FDDI8 false.

Figure 5.1: Speedups for different migration settings.
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(a) MinePump true.
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(c) MinePump’ true.
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Figure 5.2: Speedups for different migration settings (cont.).
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5. Forward Model Checking 5.4. Case Studies

Table 5.11: Heavy locations per period.
Example / #incl checks/loc #locs over avg #locs over avg
period nbr. avg ± stddev #locs/total (%) in previous
(contribution %) #locs (%)

RCS5 false
8 (11.01) 93 568.21 ± 828 607.32 33 / 372 (8.00) 20 (60.61)
7 (10.28) 76 613.09 ± 323 643.76 45 / 424 (10.00) 19 (42.22)
2 (9.42) 48 562.89 ± 204 803.66 60 / 613 (9.00) 23 (38.33)
6 (9.29) 58 396.39 ± 436 362.19 62 / 503 (12.00) 30 (48.39)

FDDI8 true
7 (39.49) 66.05 ± 52.89 541 / 1 311 (41.00) 35 (6.47)
5 (16.29) 41.99 ± 30.41 371 / 851 (43.00) 36 (9.70)
6 (14.11) 51.32 ± 37.17 319 / 603 (52.00) 140 (43.89)
4 (12.48) 32.21 ± 21.65 446 / 850 (52.00) 106 (23.77)

FDDI8 false
85 (5.11) 870.12 ± 1 213.50 263 / 1 021 (25.00) 191 (72.62)
83 (3.51) 759.76 ± 946.47 266 / 803 (33.00) 117 (43.98)
84 (3.45) 817.49 ± 1 115.46 248 / 733 (33.00) 145 (58.47)
82 (3.23) 821.39 ± 1 000.51 226 / 684 (33.00) 0 (0.00)

Conv6ABC false
43 (7.02) 46 541.72 ± 216 863.71 140 / 1 201 (11.00) 60 (42.86)
39 (3.64) 45 161.79 ± 251 782.75 57 / 642 (8.00) 53 (92.98)
37 (3.62) 40 122.50 ± 241 702.02 76 / 718 (10.00) 64 (84.21)
38 (3.59) 32 941.35 ± 220 469.17 63 / 867 (7.00) 55 (87.30)

Pipe6 ’ true
1 (100.00) 4 153.23 ± 13 579.42 385 / 2 190 (17.00) 0 (0.00)

MinePump true
22 (3.42) 214 956.13 ± 951 317.81 23 / 179 (12.00) 12 (52.17)
25 (3.40) 200 430.12 ± 862 196.86 24 / 191 (12.00) 11 (45.83)
23 (3.38) 177 898.95 ± 733 189.22 31 / 214 (14.00) 14 (45.16)
20 (3.30) 144 911.24 ± 708 030.75 37 / 256 (14.00) 18 (48.65)

MinePump false
263 (0.68) 404 472.17 ± 1 323 133.93 26 / 164 (15.00) 15 (57.69)
181 (0.46) 739 479.53 ± 2 817 666.03 6 / 60 (10.00) 6 (100.00)
145 (0.44) 97 518.08 ± 712 090.75 38 / 442 (8.00) 29 (76.32)
204 (0.44) 575 978.15 ± 1 588 027.85 11 / 74 (14.00) 7 (63.64)

MinePump’ true
1 (100.00) 20 343.31 ± 132 483.25 43 / 621 (6.00) 0 (0.00)

MinePump’ false
6 (23.53) 110 126.20 ± 577 041.63 32 / 414 (7.00) 31 (96.88)
4 (19.61) 164 462.58 ± 746 501.09 26 / 231 (11.00) 26 (100.00)
5 (16.90) 73 572.82 ± 444 227.02 34 / 445 (7.00) 25 (73.53)
3 (16.79) 73 444.51 ± 449 363.44 33 / 443 (7.00) 31 (93.94)
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Table 5.12: Number of inclusion checks vs. speedup for MinePump false.
Setting #capsules # incl checks speedup

Any 1 8 624 · 106 1

No migr. 2 24 460 · 106 0.54
M1 2 14 918 · 106 1.04

No migr. 3 9 745 · 106 1.53
M1 3 19 115 · 106 1.08

No migr. 4 16 056 · 106 1.09
M1 4 27 861 · 106 0.82

Table 5.13: Number of inclusion checks vs. speedup for RCS5 false.
Setting #capsules # incl checks speedup

Any 1 263 · 106 1

No migr. 2 223 · 106 2.05
M4 2 239 · 106 1.91
M5 2 197 · 106 2.21

No migr. 3 337 · 106 1.97
M4 3 295 · 106 0.96
M5 3 296 · 106 2.24

No migr. 4 280 · 106 2.72
M4 4 294 · 106 2.57
M5 4 252 · 106 2.97
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5.4.1. Threads to Validity

The results presented here have been collected using only 4 processors, and do not involve any
network at all. We don’t believe that the test platform jeopardizes the validity of the results because:

There is no claim of definitive positive outcome. If we would have claimed, for instance, that
a particular method achieved linear speedups, then no conclusion could have been drawn until
more tests were done on a different hardware platform, involving more processors.
Interesting enough data could be collected an analyzed in the used platform. Although there is a
(hypothetical) chance that with more processors some of the problems would not have presented
themselves, they still need to be solved for the setting we used.
The lack of a proper network does not seem to be such a pressing issue: TCP/IP is used anyway,
so all the network stack overhead is payed. Also, if the packets were directed to another machine,
at some point they would have been offloaded to the network card, freeing the main processor.
In our setting they are always handled by the OS, and thus by a processor, which cannot return
control to the application.

5.5. Conclusions and Future Work

Summing up, we can conclude that although migrations do not achieve linear speedups, and they
are far from perfect, some kind of dynamic reconfiguration is indeed needed: Table 5.3 shows imbalance
in the workload pattern of each capsule, Table 5.10 points out that some (few) locations are responsible
for most of the work load and Table 5.11 indicates that they might not be the same along all the run.

Also interesting, the fragmentation phenomenon shows up again, although in a not so clear manner.
As was already mentioned, more specific studies that collect particular metrics are needed to fully
understand it. Nevertheless, for the forward algorithm, there are heuristics in the literature that seem
to be able to counter it and we plan to explore them in the future.

We concluded Chapter 4 almost signaling the end of road for the distribution of the backwards
algorithm. In this one, however, the landscape is completely different. It seems that we are only
starting to understand the problems involved.

Previous section showed the wealth of variables that can be tuned to affect the verification speed.
It also made it clear that there is no “winner setting”, in the sense that different options benefit
different case studies. We should be quick to point out that this is in no way privative of distributed
approaches, and refer to Chapter 10 for a discussion on the subject.

Let’s just advance here that a self-reconfiguring approach seems to make sense, specially considering
that there are still not-so-big case studies that take many hours to complete.

One way to tune the #TVL variable would be to make it dynamic: keep analyzing visited states
and add locations up to the point where the difference between the number of states per location (in
successive locations) goes above certain threshold. For sTPL, a binary search approach might make
sense: if the prediction is not good, double it. If it is too time consuming, reduce it. ∆tm could be
turned into a timer, making the coordinator an active component, instead of a passive one as it is
today. Consequently, #s could be set to a high value and complemented by the coordinator requesting
information when it needs it.

As witnessed by Table 5.10, heavy locations, accounting for most of the work, are in forward model
checking as much of an issue as they were in backwards.

An appealing idea is the use of a hybrid approach, where a cluster of multicore processors (a
very common architecture nowadays) runs a distributed verification, each node being multithreaded6.

6A similar approach for the backwards setting is showing promising preliminary results.
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Those multiple threads could explore states from Pending in parallel, or be used to parallelize the
inclusion check in the Visited queue. This can be done by having each thread check against a different
state from the queue, or by parallelizing the inclusion check itself. This last approach should not be
discarded a priori, but the others seem to require less locking and easier contention avoidance.

Neither these approaches, nor the one that is presented next are as decoupled as some successful
research lines in the untimed setting, where the data structure is completely partitioned among pro-
cessing nodes in such a way that there is no need for them to coordinate results again (see, for instance,
[HGGS02]). That does not seem possible with DBMs: even if each thread checks the inclusion of the
new state against a different one from the Visited queue, they have to tell the others to stop checking
as soon as the first check succeeds.

The purely distributed setting is nevertheless not exhausted. The work on Clock Reordering (see
Section 8.1) seems to show that not all active clocks are created equal, and some of them have, for a
given location, a broader range of possible values. This distinction could be the base for a technique
that would allow to split a location among multiple processors. It would work on the following lines:

1. Predict clock ranges using the techniques of Section 8.1. This is a lightweight static analysis
with very low resource impact.

2. Use GTPL and GTVL as suggested by Section 5.3.1 (or any other workload prediction mechanism
that might be devised in the future) to find out the heaviest locations and the less loaded capsules.

3. Let l be a heavy location. Split it among the c1 . . . ck capsules according to its clock range. For
that purpose, consider the clock with the wider range for location l. Having a wider range, it
is expected that its values be somewhat (hopefully, uniformly) distributed along the range. In
other words, let’s xi be such a clock. If its predicted range is [1, 200), it seems reasonable to
expect that there will be more or less the same numbers of zones for location l with xi ∈ [1, 100)
than with xi ∈ (100, 200). Caveat: the example should not be taken for a fact, as clock range
prediction is more complicated. See Section 8.1 for an outlook.

4. When a new state (l, z) is discovered, send it to the appropriate capsule according to the value
of the selected clock in z. Cases could arise when it should be sent to more than one capsule.
Then that should be done, and some protocol should be put in place to deal with the situation.

5. Such protocol could be as simple as the following: although capsules c1 . . . ck are in charge or
checking whether (l, z) is new or not, only ck is responsible for exploring it (this responsibility
might be assigned in a round-robin fashion for each new state). So, if ck finds that (l, z) is not
new, it discards its. If it is new, it queues (l, z) for latter exploration: it still have to receive the
agreement from c1 . . . ck−1. Those agreements could be batched, to reduce network usage.

The above mentioned ideas are purely speculative, mainly based on others that work separately.
They show, however, that there is still work to do regarding the distribution of the forward algorithm.

In Section 6.1 we mention work by others that reached good speedups for the distribution of the
same algorithm, and explain why we believe that they were not based on the multiprocessing itself,
but on omitting inclusion checks. We also express our concern for a lack of a clear argument showing
that termination is not affected by the approach, and wonder if similar speedups could be reproducible
in a monoprocessor, just tuning the amount of omitted inclusion checks. Once these questions are
settled, it will be worth exploring a distributed forward algorithm that combines both approaches.
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Chapter 6

State of the art

This brief chapter surveys the state of the art in distributed model checking and compares our
research with others’.

Although much successful work has been done to distribute untimed model checkers (see, for in-
stance, [SD97, LS99, BBS01, GMS01, RSBSV96, BDHGS00, GHS01, HGGS02, BLW01, HKK02,
Krc03], etc.), except for some work on a distributed version of UPPAAL [BHV00, Beh05] and our
own [SBO02, BOS02, BOS05, BOS04a, BOS06b], not much has been previously done about paralleliz-
ing or distributing timed model checkers. A probable cause is that because of the inherently different
data structures involved, the timed and untimed cases lead to distinct parallelization strategies and
challenges.1

The idea of mixing distributed computing and model checking goes back to 1997 when Stern and
Dill presented in [SD97] a distributed version of their (explicit state) Murϕ model checker, achieving
positive results. They used a hash function (the same universal hashing function that Murϕ used to
store states, actually) to map states to processors. The schema was straightforward: processors had
a queue of states to be explored, took one from there, and sent the newly discovered ones according
to the hashing function. Some buffering was included, and they managed to get very close to linear
speedups2. Their work was so important that most distributed model checking algorithms can be
thought of as a variation of it.

Since then, a lot of work has been done and the area is quite fertile, as can be witnessed by
the continuity of the specialized “Parallel and Distributed Methods in verifiCation” series (see http:

//pdmc.informatik.tu-muenchen.de/), a yearly workshop that goes on since 2002.

It is worth mentioning a distributed version of the SPIN model checker [Hol03] that was presented
in 1999 in [LS99] to deal with reachability and another in [BBS01] that handled LTL formulae. Their
working was very similar to the distributed version of Murϕ, with two notorious differences. They
included a manager process, similar to our coordinator , to handle centralized decisions, and used a
different hashing strategy: the hashing function was not the same as the one used for storage, it was
only based on one of the component of the state vector.

Both articles presented scalability problems, but managed to verify previously untreatable case
studies, because of the increased memory available. That early work showed that load balance was a
key issue.

As was mentioned, the first attempts used hash functions on locations as a load balancing strategy.
The problem we see with hash functions is that they don’t provide enough control on the distribution,

1Although there is still work in monoprocessor timed automata model checking, and in distributed untimed model
checking, we seem to be the only group who is actively working in the topic of distributed verification of timed systems
nowadays.

2Remember that linear speedups means that if t1 is time of a monoprocessor run, n processors take t1/n.
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being based only on statistical properties. This is exacerbated on symbolic-state model checkers
because, contrary to explicit state ones, each symbolic-state can potentially have a different size or
impose different workload (cft. [Beh05, BOS05], and Section 4.5.1).

In the untimed world, symbolic model checkers generally resort to BDDs as data structure. A
distributed version of the SMV [BCM+92] model checker was presented in [BDHGS00, HGGS02]
where a dynamic load balancing strategy –based on splitting BDDs– was used: when a node detects
that it is very highly loaded, it finds an idle or almost idle one and “shares” his workload with it. Key
to the success of this approach is the ability to split BDDs.

Unluckily, in the timed scenario the outlook is harder. Each symbolic state is composed by a
location vector and a DBM. As was seen in Chapter 4, some algorithms (Algorithm 4.1.2 – region
subtraction, for instance) are highly coupled thus making the “splitting” of a DBM or region a very
complex task. Further, even the possible splitting is not as clean as in the untimed case, where once
the BDD is partitioned, operations over it can be computed on only one node. With DBMs, most
schemas would probably require processing to be done in many nodes and then have some sort of
exchange to collect the results.

In spite of that, some research has been done about distributing timed model checkers. Year 2000
saw an article from Behrmann et al. [BHV00] in which a distributed version of UPPAAL [BLL+95] was
presented. The paper dealt with forward reachability and used a hash function to balance load and
the MPI library [For03] as a message passing mechanism to communicate between processing nodes.
The article reported supralineal speedups (which were latter corrected, see below) but noted that the
search order could impose an important difference on verification time.

Our own work pioneered the distribution of the backwards algorithm (see [Sch02, BOS02]). We
managed to verify cases previously untreatable but found important obstacles to scalability, broadening
the description of the search order issue previously described and introducing the phenomenon of frag-
mentation of the data structure (described in Section 4.3.2). An important difference is that we used
an explicit distribution, which allowed us to try different load balancing strategies (see Section 4.2).

A latter article by Behrmann, [Beh02] (expanded latter in [Beh05]), attributed the supralineal
speedups to the experiments on the distributed platform being “preliminar and inconclusive” (sic),
described poor scalability in their initial implementation, confirming our discovery of the fragmentation
phenomenon, and proposed a series of optimizations (including an explicit, probabilistic load balancer)
leading to speedups between 50% to 90% of linear.

Although his results were promising, he only used four case studies with 1, 3 and 6 clocks (recall
from Theorem 2.1 that the complexity is driven by the number of clocks). In the next section we
present a more detailed comparison between this work and ours, and will discuss what we believe is
the key aspect of their approach and how it relates to distribution.

6.1. Comparison with Other Tools

As was said previously there are not many other research works studying distributed timed model
checking. Detailed comparisons against untimed tools do not make much sense: the data structures
are so different that their handling should –most presumably– differ.

It is worth comparing our design decisions with the ones of the distributed version of UPPAAL
([Beh05]) by Behrmann, as both tools deal with distributed forward reachability over timed automata.

Behrmann’s work also uses DBMs as data structures, works with a Pending and a Visited queue
per processor, also unified, but stored as a hash table. He distributes locations to processors according
to a hashing function (considering only the location vector). When a new state is discovered, it is sent
to its owning processor, possible mediating some buffering. All the decisions are taken distributedly,
as they lack a centralized monitor.
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To get better balancing, they resort to a proportional redirector which, with some probability
(involving load of the processors), sends a newly discovered state to some node other than its owner.
The mentioned processor’s load is actually the number of states in its Pending queue. The probability
of a state being redirected to some processor other that its owner (call it p1) increases with the
difference between load(p1) and loadavg . A similar probabilistic analysis determines where the state
is actually sent to. States received are not bounced back.

It is worth noting that when a state arrives to a processor that does not own it, it is not checked
for inclusion in the Visited set. This is because such a set is only stored in the owning processor.
These cases might lead to repeated exploration.

As there’s no centralized decision maker, when processors exchange states they piggyback load
information. This last decision raises the question of what happens if there’s a highly loaded node,
and one almost idle, but with no state exchange among them.

Our choice regarding distribution has been the use of an explicit mapping between locations and
processing nodes. Although storing that mapping does indeed require memory proportional to the
number of locations, it should be remembered that in timed model checking the control graph is many
orders of magnitude smaller than the state space, so penalizing the coordinator with the centralized
storage of that mapping imports an almost negligible strain on its resources.

Hashing states does have an advantage: it does not matter if a location is seen for the first time,
it always has an owner. We, on the other hand, must collect it and then assign it (we explained that
in detail in the proof of Theorem 5.1).

The choice made by Behrmann, although working fine in many cases, still has cases where it
cannot achieve balance. Nevertheless, we believe the experiments conducted are not conclusive enough,
because of the low number of clocks used. It might be the case that, had case studies with more clocks
been used, thus increasing the number of zones per location, the results would have been worse. The
rationale for that is not only that complexity is driven by the number of clocks, but also that more
clocks increment DBM dimensions, and, potentially, the number of possible zone variation that can
be discovered for a given location. In turn, it means more states redirected to processors that do not
have the corresponding Visited set to check against, thus leading to more repeated exploration, which
can jeopardize termination (see below).

The explicit mapping, on the other hand, allows us to apply direct load balancing measures, like
the migrations mentioned in Section 5.3. We do pay an overhead by migrating the Visitedl queue, but
this same cost is considered by ParMETIS while deciding if the migration is worth doing. Anyway,
from the evidence we collected in Section 5.4, the overhead seems very low. Also, we guarantee that
no repeated explorations are performed.

Termination, if proper care is not payed to it, can be compromised if there is a load balancing
algorithm that moves states. This, and not increased times, is the main risk of repeated exploration.
Our load balancing algorithm does not have such a problem, and we proved in Theorem 5.2 that it does
not jeopardize the correctness of the distributed exploration. A similar proof is lacking in Behrmann’s
article.

They seem to do a pretty good job on preserving locality – that is, that a state’s successors be
owned by the same processor, to reduce network transmissions. Being more concerned with load
balancing, we haven’t explored locality as a goal, what we speculate that we could deal with it, as
suggested by the explicit mapping (for example, by informing ParMETIS of the real topology).

The UPPAAL team devotes a lot of work to prevent imbalances in its hash table implementation
of the Visited queue. We, on the other hand, use an AVL tree [AVL62] sorted by location, for that
purpose. Their worst case is proportional to the number of states, which –as was said before– is much
greater than the number of locations. Ours, grows with the logarithm of the locations.

We mentioned in Section 5.2.3 how trace reconstruction is far from trivial in the distributed
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Table 6.1: Percentage of successful inclusion checks
Example % successful incl checks

RCS5 true 0.07

RCS5 false 0.04

FDDI4 true 46.75

FDDI4 false 0.77

FDDI8 true 30.95

FDDI8 false 2.94

Conv6ABC true 0.48

Conv6ABC false 0.05

Pipe6 ’ true 0.40

Pipe6 ’ false 2.05

MinePump true 0.01

MinePump false 0.01

MinePump’ true 0.02

MinePump’ false 0.01

environment. There is no mention of that aspect in Behrmann’s work –maybe because all the case
studies used were unreachable–, but finding where some father state lies at the end of the verification
seems really hard using his proportional redirector, as there does not seem to be an easy way to tell
where it is now, except asking to all of the processors.

The fact that some locations require significant more work than others was stressed repeatedly
through this thesis. Behrmann’s strategy does seem fit to deal with that, except for the cases where
some few states are harder than the rest. According to Table 5.11 on Chapter 5 this is exactly the case,
at least in all of our case studies. The effect in their architecture is that those states, when redirected,
will not be checked against Visited (which reduces load), but will instead be explored again, generating
more load. One scenario when this could have positive impact is where most of those inclusion checks
were going to fail anyway. If that is the case, not doing them might actually be a good thing. Our
evidence suggest that this is indeed the case (cf. Table 6.1).

The natural question to be asked is: is their speedup a result of distributed processing, or it comes
from the fact that their proportional redirector is having the effect of avoiding inclusion checks that,
statistically where going to fail anyway? The latter option seems really plausible. The more processors,
more chance a state gets redirected, and thus avoids to be checked, going directly to be explored.

An interesting sequel: what happens if, in a monoprocessor setting, some inclusion checks are
randomly ignored, assuming they fail? Will the same phenomenon manifest? We consider this a very
interesting research question.
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Chapter 7

rCDDs

In this chapter we introduce rCDDs, a variation of the Clock Difference Diagrams presented in
Section 3.4, as a data structure for model checking timed automata. We present and prove correct the
complete set of operations required to do forward reachability analysis without the need for DBMs,
which are traditionally required. By employing a fully rCDD-based algorithm our experiments show a
reduction of around 40% in time requirements (with only a moderate increase in memory consumption)
in current case studies from the literature.

Although representing non-convex sets being the original motivation for rCDDs, they present some
difficulties, which we explore, also proposing alternative solutions.

The work on this chapter was Esteban Pavese’s degree thesis [Pav06] (see Section 1.9). The actual
chapter is based on an article still being prepared.

7.1. Introduction and Previous Work

As was said before, for both warranting termination and avoiding duplicated exploration, timed
automata reachability requires knowing if a newly discovered symbolic state is already covered by the
existing ones. This is challenging for DBMs, because they can only represent convex clock valuations.
The traditional solution is to employ sets of DBMs, but it is usually very hard to detect superpositions
there, leading to repetitions of calculus and other inefficiencies.

There have been many attempts to overcome this problem by using BDD-like data structure, which
we summarized in Section 3.4. The most successful, was a 1999 article by Behrmann et al. In [BLP+99]
they presented Clock Difference Diagrams (CDDs for short). Their work used DBMs for most of the
operations and CDDs for the Visited set, obtaining memory savings at the cost of extra time.

We consider that CDDs needed to be revisited because:

An algorithm that did not rely on DBMs was yet to be provided.
Correctness proofs were lacking for the new data structure.
The original case studies used only systems with a maximum of 5 clocks. Complexity is
O(n!2nCn), where n is number of clocks and C is the largest constant appearing in the in-
equalities (cf. Theorem 2.1).
Being a tree-like data structure, they could have repetead subtrees. CDDs require that repeated
subtrees were replaced by aliasing in a maximal way (refered to as “maximal sharing” in the
original article). However, detecting repeated subtrees can be expensive, and we believe that the
claim of being able to do so by a simple constant time lookup in a hash table is insuficient and
needs further clarification.

In this work, we present a data structure called Relaxed CDD (rCDD for short) in which we
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implement all the operations required for the above mentioned reachability algorithm. rCDDs are
similar to CDDs, but do not require maximum sharing of subtrees. They achieve the reduction
of verification times at the expense of storing some extra constraints (compared to the traditional
encoding of DBMs). Their usage is explored in two ways: as a representation for both convex and
non-convex sets of clock valuations. We present correctness proofs and run case studies from the
current literature obtaining speedups of up to 40% with moderate increase of memory overhead.

CRDs, short for Clock Restriction Diagrams, should also be mentioned. They were introduced by
Wang in [Wan03b] and are similar to CDDs, but use open intervals. As will be shown in Section 7.2.5,
CDDs allow to avoid many calls to a cubic function, which is key to the time savings.

7.2. rCDDs

In this section, after presenting the basic definitions of our data structure, some methods to reduce
the traditional memory overhead of tree-like structures are shown in Section 7.2.2. They are specialized
for zones in Section 7.2.3. Section 7.2.4 covers the algorithms and their correctness. Special focus
is done in Section 7.2.5 on how to avoid some costly operations in rCDDs, which is key to their
performance. Finally, Section 7.2.6 contains a discussion on non-convex set representation.

7.2.1. Data Structure Definition

Definition 7.1 (rCDD)
Given a set X of clock variables, X ′ = X ∪ {0}, an rCDD is defined by a tuple k =
[diff (k), Ints(k), S(k)], where:

1. diff (k) ∈ (X × X ′) ∪ {TRUE ,FALSE} is the clock difference represented by this node. These
clock differences are extended with values TRUE and FALSE. We call nodes that hold the latter
terminal.

2. Ints(k) is a list of outgoing edges. Each edge is labeled with an integral interval. Ints(k)n denotes
the nth list’s interval, and #Ints(k) denotes the list’s size.

3. S(k) is a list of successor nodes. S(k)n and #S(k) are defined in a similar way as previously.
For each 1 ≤ n ≤ #S(k), S(k)n yields the node reached by traversing the edge Ints(k)n.

An rCDD k such that diff (k) is TRUE (or FALSE ) will usually be referred as just TRUE (or
FALSE ) for short. Similarly, given an interval I we will write S(k, I) to denote the node obtained
by traversing the edge labeled I from k. Formally, S(k, I) = k′ ⇔ ∃i, 1 ≤ i ≤ #Ints(k) such that
Ints(k)i = I ∧ S(k)i = k′.

Since rCDDs are hierarchical in nature, an order on clock differences is needed, which can be
defined as an extension of an order on clock variables.

Definition 7.2 (Total Order on Clock Differences)
Given a total order < on clock variables, the total order on clock differences, also noted <, is defined
as its pairwise extension.

This total order allows us to state the structure’s invariant, as follows:

Definition 7.3 (Structure Invariant)
The following constraints are imposed on every node k of an rCDD:

Whenever diff (k) is TRUE or FALSE, the lists Ints(k) and S(k) must be empty.
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Figure 7.1: A (non-convex) rCDD for the region (0 ≤ x1 < 7 ∧ 2 ≤ x2 < 9 ∧ 3 ≤ x4 − x5 ≤ 9) ∨ (7 ≤
x1 < 12 ∧ 8 ≤ x3 < 20) ∨ (15 < x1 <∞∧ 5 < x5 ≤ 8 ∧ 3 ≤ x4 − x5 ≤ 9).

In the other case, no element of S(k) may be FALSE.
Given a total order on clock differences <, it holds that for any k′ in S(k), either diff (k) <
diff (k′) or k′ is TRUE.
Since edges are labeled by intervals, the existence of both differences xi − xj and xj − xi for any
pair of clocks xi, xj is redundant (because each one can be inferred from the other). Therefore,
if diff (k) is of the form xj − xi it must hold that xi < xj, to guarantee uniquness.
Every pair of intervals in diff (k) must be disjoint. Moreover, diff (k) must be sorted; we say that
for any two intervals I and J , I < J ⇔ ∀i, j such that i ∈ I and j ∈ J , it holds that i < j.

It is worth noting that, unlike CDDs, rCDDs do not require sharing of repeated subtrees. Fig. 7.1
shows an example rCDD. On the following, we will elaborate on the structure’s semantics. For this
purpose, we’ll need to define a mapping between temporal constraints in Ψ′

X and rCDDs.

Definition 7.4 (Mapping of Temporal Constraints to rCDDs)
∀ψ1, ψ2 ∈ Ψ′

X , x, y ∈ X,x < y, c ∈ IN, we define the mapping r❀rCDD as follows:

r❀rCDD(True) = [TRUE , λ, λ] (7.1)

r❀rCDD(False) = [FALSE , λ, λ] (7.2)

r❀rCDD(c < x) = [x− 0, 〈〈(c,∞)〉〉, 〈〈r❀rCDD(True)〉〉] (7.3)

r❀rCDD(x < c) = [x− 0, 〈〈[ 0, c)〉〉, 〈〈r❀rCDD(True)〉〉] (7.4)

r❀rCDD(x− y < c) = [x− y, 〈〈(−∞, c)〉〉, 〈〈r❀rCDD(True)〉〉] (7.5)

r❀rCDD(ψ1 ∧ ψ2) = Intersection(r❀rCDD(ψ1), r❀rCDD(ψ2)) (7.6)

Definitions 7.3, 7.4 and 7.6 have also a corresponding one for ≤ with the interval closed to the right.

We will now define the semantics of the structure. This task will be rendered easier by providing
some notions on rCDD traversal.

Definition 7.5 (rCDD Path)
A path on an rCDD k is a sequence P [1] . . . P [n], where each element is a tuple 〈clocks, interval〉,
such that:

clocks(P [1]) is either a clock difference, TRUE, or FALSE.
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interval(P [1]) is an interval ⊆ IR.
Either diff (k) = clocks(P [1]) ∈ {TRUE ,FALSE} and length(P ) = 1; or all the following hold:

1. diff (k) = clocks(P [1]) = xj − xi for some xi, xj; and
2. interval(P [1]) ∈ Ints(k); and
3. P [2] . . . P [n] is a path in S(k, interval(P [1])).

Definition 7.6 (rCDD Path Satisfiability)
Given an rCDD k, a path P in k and a clock valuation v ∈ VX , v satisfies P (noted v |= P ) if and only
if for each i, 1 ≤ i ≤ length(P ) either clocks(P [i]) = TRUE, or else clocks(P [i]) /∈ {TRUE ,FALSE}
and v(clocks(P [i])) ∈ interval(P [i]).

Definition 7.7 (rCDD Satisfiability)
The satisfiability of an rCDD k by a clock valuation v ∈ VX (noted v |= k) is defined inductively as
follows, ∀x, y ∈ X, c ∈ IN, d ∈ Z :

v |= [TRUE , λ, λ] ∧ v |6= [FALSE , λ, λ] (7.7)

v |= [x− y, Is, Ss] ≡

#(Is)∨

i=1

{ ( v(x)− v(y) ∈ Isi ) ∧ v |= Ssi } (7.8)

Observation 7.1 It is worth emphasizing that given the intervals’ disjunction, the satisfied path (if
any) is unique.

Theorem 7.1 (Correctness)
The mapping r❀rCDD previously defined is correct with respect to satisfiability, that is, ∀ψ ∈ ΨX , v ∈
VX , v |= ψ ⇔ v |= r❀rCDD(ψ).

Proof

The proofs can be found in [Pav06].
✷

7.2.2. Reducing Memory Consumption

rCDDs are basically trees. Tree-like structures can have a large representation overhead if they
are not treated carefully.

Observation 7.2 Each rCDD node (k) can be represented in a fixed number of bits. As the number
of clocks is fixed it is easy to compute how many bits are needed to represent two clocks.

�

Observation 7.3 Each rCDD edge (Ints(k)i) can also be represented by a fixed number of bits. Each
comparison requires an additional bit to indicate whether the constraint is < or ≤. To calculate how
many bits will be needed for the constants, use the upper bound as defined in [BBLP04]. After that, a
pointer to the S(k)i node is needed. Pointers have a fixed length (given an architecture).

�

Because of Observation 7.2 and Observation 7.3, we are able to code each node and its lists of
successors in a compact way, very similar to what we did for RDBMs in Section 3.3. We will see in
Section 7.2.3 how the memory requirements can be further reduced for zones.
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1: function Union (rA, rB : rCDD)→ r′ : rCDD
2: if rA = FALSE then return rCDDB

3: else if rA = TRUE then return TRUE
4: else if diff (rA) < diff (rB) then
5: for all I ∈ Ints(rA) do
6: Add rCDD(r′, I,Union(S(rA, I), rB))
7: end for
8: else if diff (rA) > diff (rB) then
9: . . . follows as previous case.

10: else
11: for all I ∈ Ints(rA), J ∈ Ints(rB) do
12: if ¬Empty(I ∩ J) then
13: Add rCDD(r′, I ∩ J,Union(S(rA, I), S(rB, J)))
14: end if
15: end for
16: end if
17: return r′

18: end function

Algorithm 7.2.1: rCDD union recursive algorithm.

7.2.3. Representing Zones

Zones have a very particular shape in rCDDs: each node has only one edge. We can take advantage
of that to produce a more compact representation. As we only need to code for a list of nodes (pair
of clocks) and intervals, there is no need to specify pointers: each interval refers to the next node on
the list.

From Observation 7.2 and Observation 7.3 we know that each pair (node, interval) can be coded
in a fixed number of bits. So, we can calculate a priori how many intervals can be packed in a machine
word. If we also consider that the minimized version of the constraint system usually requires O(n)
clock constraints, we can allocate continuous blocks of words so that most rCDDs will fit in just one
of them. If more than one block is needed, only then a pointer is required.

In this way, not only memory is saved (in modern machines a pointer takes a considerable number
of bits –e.g. 32 or 64– which can instead probably code many intervals), but also less pointers are
dereferenced, making the algorithm, at the assembler level, operate more time on registers and less on
memory, thus also saving time.

In the remainder of this chapter an rCDD representing a zone will be noted as rCDDz.

7.2.4. Algorithms

In this section, we present in Algorithms 7.2.1 to 7.2.4 the conceptual, recursive algorithms for all
operations needed for reachability verification with rCDDs (except for inclusion, which is presented in
its iterative version in Algorithm 7.2.5). In these algorithms, the restriction forbidding the existence
of FALSE nodes has been relaxed, in order to keep the presentation simple. We also elaborate on
the strategies used to develop efficient, iterative algorithms, where the restrictions are enforced in full.
Finally we present the iterative algorithm for zone inclusion checking, being a critical operation in the
verification, along with a proof of its correctness.

Algorithm 7.2.1 (union) decides which clock difference is first according to order given by <.
Suppose its the one on rA (line 4). Then, in the resulting rCDD, each interval in rA has to lead to the
union of rB and the corresponding sub-rCDD in rA. The treatment is similar if rB is the first (line 8).
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1: function Reset (C : Set(clock), z : rCDDz)→ z′ : rCDDz

2: if z = FALSE ∨ z = TRUE then return z
3: end if
4: I ← Ints(z)1
5: rCDDz z

′′ ← Reset(C, S(z, I))
6: if diff (z) = x− 0 for some x ∈ C then
7: diff (z′) ← diff (z)
8: AddInterval (z’, [ 0, 0 ], z′′)
9: else if diff (z) = x− y and (x ∈ C ∨ y ∈ C) then

10: if y ∈ C then
11: diff (z′) ← diff (z)
12: AddInterval (z’, ClockInterval (x, z), z′′)
13: else
14: diff (z′) ← (−1)×diff (z)
15: AddInterval (z’, ClockInterval (y, z), z′′)
16: end if
17: else
18: AddInterval (z’, I, z′′)
19: end if
20: return z’
21: end function

Algorithm 7.2.2: rCDD clock reset recursive algorithm.

If they are the same (line 10), an interval needs to be added to the result for each intersecting pair of
intervals in rA and rB. The intersection (shown in Algorithm 7.2.3) follows the same pattern.

Algorithm 7.2.2 (reset) is a straightforward recursive implementation of the reset successors trans-
formation explained in Section 3.1. As it traverses the path (it operates on zones, which have only
one), it looks for intervals involving the clocks being resetted. The ones where the other clock is 0
(line 6) have their interval replaced by [0, 0] in the resulting rCDD (line 8). If the other clock is not
clock 0, the interval is replaced in the result by the one corresponding to the other clock (the one that
is not resetted – see line 12 and line 15).

As Algorithm 7.2.4 (time successors) operates on zones, it traverses the only path in the rCDD
looking for clock differences involving the clock 0 (line 3). Each of them has only one interval, which
is copied to the resulting rCDD with its upper bound turned into ∞ (lines 5 to 8).

An explanation of Algorithm 7.2.5 (inclusion checking) is delayed until Theorem 7.3, where it is
presented along with its correctness proof.

Theorem 7.2 (Algorithms’ Correctness)
The algorithms presented in Algorithms 7.2.1 to 7.2.4 are correct. That is, the only valuations that
satisfy the resulting rCDDs are the ones that are compatible to the application of the respective operation
in the input constraint system.

Proof

The proofs can be found in [Pav06].
✷

Iterative versions of the algorithms are stack-based. The stack’s size is fixed during the verification
process, thus reducing memory operations on it (the maximum stack size is roughly n2/2 + n where
n is the number of clocks in the system, though it will rarely reach that size). Also, only intervals
taking part on non-FALSE paths are stored and evaluated, effectively reducing memory and time
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1: function Intersection (rA, rB : rCDD)→ r′ : rCDD
2: if rA = FALSE then return FALSE
3: else if rA = TRUE then return rB
4: else if diff (rA) < diff (rB) then
5: for all I ∈ Ints(rA) do
6: Add rCDD(r′, I, Intersection(S(rA, I), rB))
7: end for
8: else if diff (rA) > diff (rB) then
9: . . . follows as previous case.

10: else
11: for all I ∈ Ints(rA), J ∈ Ints(rB) do
12: if ¬Empty(I ∩ J) then
13: Add rCDD(r′, I ∩ J, Intersection(S(rA, I), S(rB, J)))
14: end if
15: end for
16: end if
17: return r′

18: end function

Algorithm 7.2.3: rCDD intersection recursive algorithm.

1: function TimeSucc (z: rCDDz)→ z′ : rCDDz

2: if z = FALSE ∨ z = TRUE then return z
3: else if diff (z) = x− 0 for some x then
4: I ← Ints(z)1
5: J ← 〈I.min,+∞〉
6: diff (z′) ← diff (z)
7: AddInterval (z’, J)
8: S(z’, J) ← TimeSucc(S(z, I))
9: else return z

10: end if
11: return z’
12: end function

Algorithm 7.2.4: rCDD time successors recursive algorithm.

consumption. Algorithm 7.2.5 is used to decide whether a zone is included in a given region or
not. The stack used in this case holds information about both rCDDs, marking intervals as they are
traversed. The algorithm requires the rCDD representing the zone to be in canonical form, which is
much like the canonical form for DBMs; this is not needed for the rCDD representing the region.

Theorem 7.3 (Zone Inclusion Checking Correctness)
The zone inclusion checking algorithm (7.2.5) is correct.

Proof

First of all, the algorithm termination is guaranteed since on each step smaller rCDDs are
pushed onto the stack (or else they’re pushed with more marks on its intervals). This ensures
that eventually the stack will empty. We need to prove then that the result is correct, that is,
∀ψ1, ψ2 ∈ Ψ′

X , Included?(Canonical(r ❀ rCDD(ψ1)), r ❀ rCDD(ψ2)) ⇔ ψ1 ⊆ ψ2. The canonical
form for an rCDD representing a zone is similar to that of a DBM, and the algorithm is essentially
the same than that of cf (). We’ll prove each implication.
=⇒ ) Assuming the algorithm returns True, we prove that the rCDD representing a zone has its only
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1: function Included? (z: rCDDz, r: rCDD)→ ret: boolean
2: ret← True
3: Stack(rCDD, rCDD) stack
4: Push (stack, [z, r])
5: while ¬ Empty(stack) ∧ ret do
6: top← Pop (stack)
7: if top.r = FALSE then ret← (top.z = FALSE )
8: else if top.r = TRUE then ret← True
9: else

10: if diff (top.r) < diff (top.z) then ret← False
11: else if diff (top.z) < diff (top.r) then
12: I ← Ints(top.z)1
13: Push (stack, [S(top.z, I), top.r])
14: else
15: I ← Ints(top.z)1
16: if ¬ IsSpanned? (I, top.r) then ret← False
17: else
18: J ← first unmarked interval in top.r
19: if there is no such J then continue
20: else
21: Mark (top.r, J)
22: end if
23: if I ∩ J 6= ∅ then
24: Push (stack, [top.z, top.r])
25: Push (stack, [S(top.z, I), S(top.r, J)])
26: else
27: Push (stack, [top.z, top.r])
28: end if
29: end if
30: end if
31: end if
32: end while
33: return ret
34: end function

Algorithm 7.2.5: rCDD inclusion checking iterative algorithm.

path included (possibly split up) in those in the rCDD passed as a region. We’ll analyze each case as
we pop from the stack, beginning with the initial state of the stack, which has only [z, r].

if r is either TRUE or FALSE , the inclusion verification is trivial.
if diff (top.r) < diff (top.z), since top.z is in canonical form this means the difference in r is
restricted to some values, whereas z does not restrict it at all. This would make the algorithm
return False, which goes against our assumption.
if diff (r) > diff (z), then the difference in z is not directly restricted in r (it may be, as deduced
from other restrictions; however, we may ignore this condition until we find the conflicting
differences). In this case we push the successor node for z.
finally, if diff (r) = diff (z) we only need to check that the interval leading out of z is spanned
by those leading out of r. If that is not the case, then valuations exist that satisfy z but not r,
which would have resulted in a False output. In order to check this, we push into the stack each
successor of r that comes from an interval which spans over the one of z.
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Since all options which would allow valuations satisfying z and not r are filtered out by the
assumption of a True output, we only need to prove the other implication.

⇐=) We prove this implication by means of its counterpart. Therefore, we’ll prove ∀ψ1, ψ2 ∈
Ψ′

X ,¬Included?(Canonical(r❀ rCDD(ψ1)), r❀ rCDD(ψ2)) =⇒ ψ1 * ψ2, that is, there exists a
valuation v that satisfies ψ1 but not ψ2. Since the ret variable is set to True at the beginning, it will
suffice to analyze the situations where it is set to False:

it may be that top.r = FALSE and top.z 6= FALSE . In that case any valuation v is such that it
does not satisfy FALSE .
it may also be that diff (top.r) < diff (top.z). In that case, any valuation will satisfy diff (top.r)
in top.z: its absence means the lack of restriction. We may choose any valuation v such that
v(diff (top.r)) is not in any of top.r’s intervals (there exist infinitely many of such valuations).
lastly, it may be that diff (top.r) = diff (top.z) and that the interval leading out of top.z is not
spanned by those in top.r. In this case, we just need to take a valuation v such that v(diff (top.r))
is indeed within the subinterval not spanned.

Since we find a valuation v for every case where the result is set to False, the theorem is proven.
✷

7.2.5. Early Cut

The inclusion algorithm features early cuts in cases where it can be easily deduced that there is
no inclusion. This is not news, as its DBM counterpart does the same. What’s novel, is the use of an
early cut in the intersection algorithm.

At the end of the intersection it is necessary to determine if the result is empty or not, and this
requires obtaining the structure’s canonical form. As was said in Section 3.1, cf () is very expensive:
its runtime is O(n3), n being the number of clocks in the system.

Because both upper and lower explicit bounds are present for each clock in rCDDs, it can be
determined early in the process whether the resulting intersection will be empty or not. For instance,
if 2 < x∧ x < 3∧ y < 7 is to be intersected with 0 < x∧ x < 2∧ y < 3, in rCDDs the upper and lower
bound on x are close to each other in the representation, and thus operated at the same time, so only
by performing the simple intersection operation, which means taking the stricter constraint for each
bound, it can be deduced 2 < x ∧ x < 2. Knowing that, the costly canonical form function has no
need to be called.

The actual implementation of this early cut would be, in the iterative version of Algorithm 7.2.3,
to return FALSE as an else to the if in line 12.

These savings in the number of times that the canonical form operation is called are key in reducing
the verification time.

It should be noted that the same optimizations could in principle be applied to raw DBMs. How-
ever, they are incompatible with the minimal constraint representation. Having the intervals, rCDDs
achieve not to store the complete matrix, but at the same time allowing for this important saving in
computation.

7.2.6. Representing Regions

Although the main motivation of CDDs was to obtain an appropriate data structure for non-convex
sets, some problems require special attention. We find the requirement for maximum sharing –present
in CDDs and omitted in rCDDs– problematic.
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Example Components Clocks Reachable states

MinePump 10 10 1172911
MinePump’ 10 10 131261
RCS5 8 8 271771
Pipe6 14 14 80280
Pipe6 ’ 14 14 24375

Table 7.1: Examples sizes.

Example RDBM based With rCDDs
Time Mem #cf () Time Mem ∆ #cf ()
(secs) (MB) (×103) (secs) (MB) (%)

RCS5 true 52.40 7320 273 56.49 (+7%) 9548 (+30%) -38
RCS5 false 1859.40 34348 3784 1575.20 (-15%) 38144 (+11%) -33
MinePump’ true 71.71 6924 405 40.76 (-43%) 8112 (+17%) -35
MinePump’ false 856.84 19488 1728 554.91 (-35%) 23856 (+22%) -33
MinePump true 5145.56 56644 5031 2977.80 (-42%) 72760 (+28%) -33
MinePump false 37768.39 152840 15583 22440.00 (-40%) 194104 (+27%) -32
Pipe6 ’ true 128.66 16988 673 120.34 (-6%) 24560 (+44%) -34
Pipe6 ’ false 58.87 13228 349 40.81 (-30%) 11772 (-11%) -39
Pipe6 true 4215.56 152416 10532 3366.45 (-20%) 200256 (+31%) -40
Pipe6 false 253.29 35268 1168 160.91 (-36%) 30368 (-13%) -42

Table 7.2: Results obtained with RDBMs vs. rCDDs.

Case studies have grown since the CDD article by Behrmann et al.. Nowadays tools need to
routinely deal with models that have at least an order of magnitude more states, and many times the
number of clocks (remember from Theorem 2.1 that timed automata reachability is exponential in the
number of clocks).

Also, more operations output rCDDs –as opposed to only union in the CDD article–, meaning that
repeated subtrees need to be detected on a number of different algorithms. Combined with the size of
current models, we find that repetition detection consumes considerable time (it should be noted that
[BLP+99] does not present any details on an efficient technique for finding them).

However, we still believe that sharing is the crucial point for the use of CDD-like data structures
as a representation for regions. Our tests confirm that the number of inclusions and states is reduced
using rCDDs as a representation for regions. However, memory requirements increase unacceptably.
We implemented prototypical (i.e., proof-of-concept) repetition detection techniques, but they took
too much time. We find that more research should be done in this area before reaching to a sustainable
conclusion.

7.3. Case Studies

To validate the data structure, we incorporated rCDDs into a monoprocessor version of our model
checker Zeus and ran a series of experiments against well known case studies from the literature,
detailed in Appendix A.

Table 7.1 summarizes the sizes of the examples used in this chapter. All the experiments were run
on an Intel Pentium IV 3.0 MHz machine with 2 GB of RAM, running Linux 2.6.

Table 7.2 presents a comparison against the standard version (RDBM-based) and one that uses
rCDDs. The columns show total time, memory, and number of calls to cf () in the RDBMs-based
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version, and total time, memory and percentage of difference in the number of calls to cf (), for the
rCDD-based version.

As can be seen in the table, in most of the case studies a time saving of around 40% is achieved,
with the exception of a few cases that take little time and where overhead probably dominates. The
same table also shows that the time saved is proportional to the number of avoided calls to cf () (recall
Section 7.2.5). There is, however, a memory penalty of more or less the same order of magnitude than
the time saved. It is nevertheless interesting to note that in cases like MinePump false, the time saved
is more than 4 hours of almost 11 hours, at the price of less than 40 extra MB of RAM, a tradeoff
that seems more than acceptable.

For a number of technical and availability reasons we didn’t have a chance to compare against
other tools. However, as each tool contains heuristics and improvements that might not be present
in the others, cross tool comparisons does not permit to assess the performance of the data structure
by itself, which is the objective of this study. It should be noted, however, that the use of rCDDs is
orthogonal to most available techniques for the reduction of time and space such as zone widening,
abstractions, etc.

7.4. Conclusions and Future Work

In this chapter we revisited Clock Difference Diagrams, a data structure that was born to represent
non-convex sets of clock valuations for model checking of timed automata. The original presentation
left some questions open, namely the provision of an algorithm that did not rely on DBMs, experi-
mentation with bigger case studies, and clarification of the repeated subtree detection algorithm.

While analyzing these questions we developed rCDDs, a variation of the above mentioned CDDs.
rCDDs differ from standard CDDs, mainly, in that they do not require maximum sharing. Although
that is a desirable property, repeated subtrees detection can be very costly. As all the algorithms
needed for reachability analysis of timed automata have been presented and proven correct, rCDDs
can completely replace the traditional DBMs as a data structure for timed model checking.

The original 1999 article that introduced CDDs, by Behrmann et al., showed memory savings at
the price of augmented times. Their case studies, although representative at the time, are orders of
magnitude smaller that the ones that tools deal with today. With hundreds of thousands of states,
and many operations manipulating rCDDs, detecting repetitions becomes prohibitive. In fact, early
tests confirm that the number of inclusions and states is reduced using rCDDs as a representation for
non-convex sets, but, without sharing repeated subtrees, memory requirements increase unacceptably.
However, we were not able to come up with a repetition detection technique that did not took also
unacceptable extra time. It is worth noting that the original presentation of CDDs did not give details
on how to achieve that. We still consider this an open question where more research should be put.

Special care has been put in the representation of zones, so that early detection of empty zones while
computing the intersection is possible, avoiding costly canonicalizations, and thus saving time. Also,
as zones have no ramifications, a very compact representation is used, which not only compensates for
the extra constraints stored, but produces time saving on its own.

Case studies for rCDDs have shown a positive impact: times are reduced with a mild memory
overhead. The savings go up to 40%. For instance, in cases like MinePump false, the time saved is
more than 4 hours of almost 11 hours, at the price of less than 40 extra MB of RAM, a tradeoff that
seems more than acceptable.

Future research agenda includes looking more closely into sharing for very large data structures.
Partial hashing of subtrees might be used to detect duplication. Another idea is to store not the
subtree, but the symbolic calculation from where it can be reconstructed. Also, as Zeus was born
with the aim of being a distributed tool, we would like to look into the possibility of having multiple
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threads working with different branches of the tree in parallel.
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Chapter 8

Other Optimizations

This chapter browses through some model checking optimizations that were researched while work-
ing on the distributed forward algorithm described in Chapter 5. The good news is, they are also valid
for the monoprocessor case.

An essential operation in timed automata model checking is inclusion checking which decides
whether a set of states, represented as a convex polyhedron, is included in another set. As was already
mentioned, several verification tools implement convex polyhedra as DBMs.

Inclusion checking can be called hundreds of millions of times during the verification of a medium-
size model. The näıve implementation scans each matrix cell by cell and compares it against the
corresponding one in the other matrix. If all the checks are successful the first matrix is included into
the second. If one of them fails, it is not. In the last case, the order in which matrices are traversed
is decisive for the inclusion checking’s efficiency.

Next section deals with clock reordering, a technique published in [BOS06c] that reduces the
number of comparisons needed to find a failure. Experiments show negligible memory overhead and
time savings of up to 17%.

The technique was depicted while trying to deal with fair workload distribution in the distributed
setting. As mentioned in Observation 4.2 and Table 5.10, there are locations which require many
orders of magnitude more work than others (we called them heavy), so it seems that there is no
hope in achieving balance if this work cannot be divided. How can a location be dealt with by many
capsules? The idea was like this: suppose location l is one of those heavy ones, and we want to split
it among capsules c and c′. To achieve balance, let’s pick a clock x, whose range is, say, [0, 200) and
assign the zones that have x ∈ [0, 100) to c and the ones with x ∈ (100, 200) to c′.

Many challenges arise, but an interesting one is to find a clock x whose values are spreaded enough
into the interval so all the work does not land in one capsule anyway. A good candidate clock should
not only be active (in the sense of [DY96]), but should ideally be the most active. Looking at this idea
turned into the work of next section. As the reader might have deduced, this work is a consequence
of pursuing some of the ideas mentioned as future work in Section 5.5.

After that, Section 8.2 presents hypervolume approximation –published in [BLOS07]– which actu-
ally leads into two techniques: One of them is very simple to implement. The other, an improvement
over the first, requires more involved programming. Each of them saves verification time (up to 19%
in our case studies), with a modest increase in memory requirements. Their impact differs among the
different case studies but, as they can be combined, there is no need to choose a priori.
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8.1. Clock Reordering

8.1.1. Introduction

For both warranting termination and avoiding duplicated exploration, timed automata reachability
(for instance, Algorithm 5.1.1) requires knowing if a newly discovered symbolic state is already covered
by the existing ones. To determine this, an inclusion check is performed when a matrix is added to
the set. The original algorithm for inclusion checking of DBMs scans each cell of the newly discovered
matrix and compares it against the corresponding one in each existing DBM, (one at a time, see
Algorithm 5.1.2), determining that the inclusion holds if every check succeeds, or does not hold when
the first check fails. In the last case, the order in which the comparisons are done is very important,
and that is why we would like to increase the chances of finding the failure as soon as possible by
giving an appropriate ordering for cells. The inclusion operation’s speed is critical for reachability, as
it can be called hundreds of millions of times for medium-size models. As Zeus represents zones as
linked lists of bounds (recall Section 3.2), the actual reorder is easy to implement, and the inclusion
checking algorithm does not need to be modified.

8.1.2. Clocks Ranges as Predictors

By a simple probabilistic reasoning it can be seen that if every value in the clock’s range had the
same probability, the higher the range, the bigger the chance a bound involving this clock would fail
in the inclusion check.

However, two problems arise: computing the actual range of clock values can be as hard as solving
the reachability problem1 and in many cases probability is not uniformly distributed in the range (for
instance, it is very easy to construct an automata where a clock takes only even values).

Nevertheless, our technique tries to compute the range as tight as possible resorting only to local
information (i.e., without considering the interaction with the other automata that comprise the
system). Although the risk of a non-uniformity is still present, it seems that in practice it is not such
a pressing issue. This is one of the key points that needs to be investigated further.

The aim is to weight clocks in a way such that higher weights means more probability of being a
clock that makes the inclusion check fail.

8.1.3. Weighting Clocks

It is necessary to establish the weight of each clock, for each location and each transition. Because
each timed automata in the system under analysis has a separate set of clocks, the weight can be
computed independently, and then combined when the on-the-fly composition takes place (see bellow
in this section).

It should be noted that in timed model checking, even when the composed system has millions of
symbolic states, each component generally has a small control graph with rarely more than a hundred
locations and a comparable number of transitions. Because of that, both the storage requirements
and the running time for the algorithm outlined bellow are negligible.

The weighting procedure for location l is as follows (see below for its rationale):

1. Inactive clocks (in the sense of [DY96], which, roughly speaking, eliminates clocks that are not
mentioned in invariants or guards) have 0 weight.

1It is not enough to use the location’s invariant because the actual range can be restricted by the arriving guards,
synchronizations with other components, etc.
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2. For the rest of the clocks, an upper and lower bound need to be computed for every location
(notation: lower [l, xi] and upper [l, xi]) and every transition (notation: lower [l → l′, xi] and
upper [l→ l′, xi]): initialize those to the values of the respective restrictions. Clocks that are not
mentioned have a range of [0,∞).

3. Then, compute the following fixed point:

a) For each clock xi and each location l, let min be the minimum of lower [l′ → l, xi], that
is, the minimum of the lower bounds of the incoming transitions. Then, lower [l, xi] :=
max(lower [l, xi],min).

b) For each clock xi and each transition l′ → l, let lower [l′ → l, xi] := max(lower [l′ →
l, xi], lower [l′, xi]).

4. For each location and each clock compute its weight as the difference between upper and lower
bounds.

5. For each transition l → l′ and each clock xi, if xi is explicitly mentioned in the transition, use
the transition range (upper [l → l′, xi] − lower [l → l′, xi]) to compute its weight. Otherwise, use
the one from the destination location.

Note that weights in transition include the weight from the destination location, overridden by
weight from guards (step 5).

The idea behind steps 2 and 3 is that the constants against which a clock is compared give its
spectrum of values. I.e., because of the intersection involved in sucτ , it will never reach a higher values
that its invariant’s upper bound. Suppose that only two transitions arrive to l with guards 3 < xi and
5 < xi respectively. If l’s invariant states 10 < xi, then 10 is the lower bound. But if it were 2 < xi,
then the lower bound would be 3.

In the algorithm stated above, if a clock is not directly mentioned then its spectrum is given by
its values in preceding locations.

During the reachability exploration, composed states are computed on-the-fly. As a by-
product, for each discovered state, global transitions Ta are synthesized as follows from transitions2

〈l1, a, ψ1, α1, l
′
1〉 , . . . , 〈lk, a, ψk, αk, l

′
k〉 of the k components that took place in the synchronization:

Ta = 〈〈l1 . . . lk〉 , a, ψ1 ∧ . . . ∧ ψk, α1 ∪ . . . ∪ αk, 〈l
′
1 . . . l

′
k〉〉.

A composed clock weight needs also to be computed as follows:

1. For clocks belonging to automata that took place in the synchronization, take the weights from
the transition.

2. For the other clocks, take the weights from the target location.
3. Once each clock has a weight, sort them in descending order.

Each zone that needs to be checked for inclusion comes from the function sucτ (see line 8 of
Algorithm 5.1.1). This function, as its last step, canonizes the DBM to check for emptiness. The
canonization process is a variation of Floyd-Warshall minimum path algorithm that takes a DBM
in minimal constraint representation form and expands it to its full representation, tightening every
bound as much as possible. In order to do so, the linked list is loaded into a square matrix. After the
algorithm is finished, the matrix is dumped into a linked list again.

The implementation takes advantage of that: when the square matrix is dumped into a list, bounds
are put in the order mandated by the composed weight.

In this way, when IsIncluded?() is called, the bounds have already the proper order.

2Assume without loss of generality that only automata 1 to k synchronize with label a.
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8.1.4. Threads to Validity

The technique is correct by construction: as clocks are only reordered all of them are still checked,
so, in the worst case it can make the checking slower, but not inaccurate.

Regarding the procedure per se, although the rationale for disregarding inactive clocks is quite
obvious, the rest of them might need supporting evidence.

To that end, we ran the case studies shown below but only applying the logic that forces inactive
clocks to be considered last. The results, omitted to avoid clutter, show that times are worst than the
full version of the algorithm, showing that the other considerations indeed speed up the verification.
Similar experiments were done, enabling one aspect of the algorithm at the time. The results were
still better in the full version.

As was said in Section 8.1.2, there are other threads, which do not seem to occur in the analyzed
case studies. Further research is needed to clarify this point.

8.1.5. Case Studies

To validate the technique, we incorporated it into a monoprocessor version of the model checker
Zeus and ran a series of experiments. For some of them, a reduced version (created with Obs-

Slice [BGO04], a safe model reducer) was also used and is primed in the tables.

The following table summarizes the sizes of the examples used in this article. The experiments
were done on a AMD Athlon 64 Processor 3000+ processor with 2 GB of RAM, running Linux 2.6.

Example #Comps #Clocks Reachable
states (false)

MinePump 10 10 1 172 911
MinePump’ 10 10 131 261
RCS5 8 8 271 771
RCS6 9 9 6 140 255
Conveyor6A 11 12 1 357 200
Pipe6 14 14 80 280
Pipe6 ’ 14 14 24 375
RS-BR 13 14 >1 266 733

Results obtained are summarized in the Table 8.1 (memory usage, being no more than a 2% bigger
is not shown in the reordered version).

8.1.6. Conclusions and Open Research Issues

In this section we presented a clock reorder technique that saves time on timed automata model
checking, with negligible memory overhead. It should also be mentioned that this optimization is
orthogonal to others known, such as zone widening [ZLZZ03], inactive clocks removal [DY96, BBFL03],
upper bound abstraction [BBLP04], irrelevant component detection [BGO04], the inclusion check
avoidance by hypervolume comparison (introduced below), etc.

Experiments with case studies from the literature show that time saving can go up to a 17%.

Another interesting point to explore is the use of the reorder technique in tandem with CDD-
like [BLP+99] data structures, such as the ones presented in Chapter 7. The clock ordering can not
only affect the inclusion checks, but might also be used to influence the shape of the diagram, making
it less prone to ramifications.
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Example Without Reordering Savings with Reordering
#Checks (×106) Time (secs) Mem (MB) #Checks (%) Time (secs %)

RCS5 true 14 16 12.52 17.18 4.41
RCS5 false 663 657 58.99 10.30 3.58
RCS6 true 570 476 75.58 10.96 5.46
MinePump’ true 28 30 11.90 26.88 8.70
MinePump’ false 411 329 32.89 20.72 17.47
MinePump true 2110 1667 93.45 14.01 10.09
MinePump false 14488 11947 254.46 13.51 10.15
Pipe6 ’ true 15 65 26.58 11.06 1.29
Pipe6 ’ false 3 32 20.79 13.11 1.32
Pipe6 false 19 125 54.12 22.97 1.36
Conveyor6A true 268 891 281.04 2.76 2.63
Conveyor6A false 1206 2403 414.69 2.03 4.44
RS-BR true 6984 9385 408.93 13.37 4.95

Table 8.1: Results obtained.

The most important issue however, is to characterize the types of interactions between components
that are actually taking place, in order to understand why the threads mentioned in Section 8.1.4 do
not materialize and results are still good.

8.2. Hypervolume

8.2.1. Introduction

The basic (conceptual) procedure for forward reachability, shown in Algorithm 5.1.1, is straight
forward: insert the initial state in the Pending queue and initialize an empty Visited set. Then, while
Pending is not empty, take its next state and check whether the property holds for it. If it does,
finish with a “YES” result, otherwise, put it in Visited , compute its (timed) successors (one for each
outgoing transition). To ensure termination, before putting them in Pending , it should be checked
that they are not included in any other state from Visited . In an untimed exploration the check would
be simpler: is the same state already present in Visited? In the timed (symbolic) framework, clock
values conform multi-dimensional polyhedra. As such, if a new state is included in an already explored
one there is no point in revisiting it, even if it is not exactly equal.

Algorithm 8.2.1 presents a version of Algorithm 5.1.1 where the function IsStateAlreadyVisited?()
has been expanded for clarity.

From the outline of the reachability algorithm it should be clear that the inclusion operation
between polyhedra is a critical one, being responsible for an important fraction of the total running
time. As such, finding ways to speed it up is always a good idea.

Although many optimizations have been developed (see, for example, [BBLP04, BDLY03, Ben01,
DY96, Wan03b, BGO04, BOS06a]), the inclusion checking operation, although linear in many cases,
has a worst case of O(n2) where n is the number of clocks in the system. In this section we focus on
the hypervolume of the above mentioned polyhedra. If it could be easily computed, an O(1) check
could be performed prior to the expensive inclusion algorithm: if hypervolume(A) > hypervolume(B)
it is impossible for A to be included in B. Of course, if the hypervolume of A is less or equal to B’s,
then A can be included or not, and the full check needs to be performed.

Computing exact hypervolume for n-dimensional polyhedra is a hard problem, but luckily with
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1: function ForwardReach(Property φ)
2: Visited ← ∅
3: Pending ← {(l0, z0)}
4: while Pending 6= ∅ do
5: (l, z)← next(Pending)
6: Add((l, z),Visited)
7: if (l, z) |= φ then return YES
8: end if
9: Zl ←

⋃
(l,z′)∈(Visited∪Pending) z

′

10: for (l′, z′) ∈ suc⊲(l, z) do
11: if ¬ IsIncludedInSet(z′, Zl) then
12: Add((l′, z′),Pending)
13: end if
14: if ∃z′′ ∈ Pending l | IsIncluded?(z′′, z′) then
15: Delete((l′, z′′),Pending)
16: end if
17: end for
18: end while
19: return NO
20: end function

Algorithm 8.2.1: Refined forward reachability algorithm.

the traditional data structures used for timed model checking (Difference Bound Matrices) an approx-
imation can be computed very cheaply. This approximation is safe, in the sense that the observations
from the previous paragraph still hold (Theorem 8.1 expresses the property formally). A related idea
might be comparing the bounding box in each dimension. It has the advantage of being less suceptible
to overflow (see Section 8.2.2), but that would require O(n) extra storage and comparisons, instead of
O(1).

We take advantage of the hypervolume approximation in two ways: firstly, inclusion checks are
avoided in the sense of the preceding paragraphs. Secondly, the Visited set is ordered by (approximate)
hypervolume. In this way, it is not necessary to check a new state against the complete set, but only
against the states that have a bigger (approximate) hypervolume, saving an important number of
inclusion checks (see Section 8.2.5).

Neither technique increments the number of visited states. They can be used independently and
obtain interesting speedups. Some models benefit more with one of them, and some with the other,
with acceleration of up to 19% in our experiments. They can also be combined, although the speedups
are not additive, because there is some mutual cancelation. The good news is that there is no need to
speculate on which one to use, because using both is generally as good as using the best of them.

Although the idea of approximations is not new (see, for instance the convex-hull abstraction
at [Bal96]), they generally lead to approximated answers also (i.e., they might state with certainty
that the property is not reached, or that it might –or not– be reached). Ours, however, gives exact
answers.

Further, we explain why it does not make sense to order also Pending by its hypervolume.

8.2.2. Avoiding Checks by Comparing Hypervolume Approximations

Let’s start by defining which approximation to the hypervolume we use. The idea is to compute
the hypervolume of the smallest hypercube containing the polyhedron defined by the clocks’ values.
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Definition 8.1 (Hypervolume Approximation)
Let z be a DBM of a SUA with n clocks. hvol(z) is defined as Π1≤i≤n(const(z[i, 0])− |const(z[0, i])|),
where const(x ≺ c) = c.

Note that for the purpose of the hypervolume approximation there is no need to differentiate among
≺, and that const(z[0, i]), the lower bound, is negative and thus the need for modulus. I.e., x1 > 7 is
expressed in DBMs as z[0, 1] = (<,−7).

If z[i, 0] is < ∞, use the maximum constant against which the clock is compared in the SUA
(cf. [BBLP04]), plus one.

As can be seen from its definition, the computation of hvol(z) is linear in the number of clocks.
However, there is no need to recompute it after every operation that manipulates the zone. It only
needs to be calculated as the last step of sucτ , previous to the inclusion check. The overhead is mild,
as the immediate previous operation is usually the transformation of the zone to its canonical form,
which is O(n3).

The approximation is safe, as stated by Theorem 8.1.

Theorem 8.1 (hvol is a Safe Approximation)
If hvol(z1) > hvol(z2) then z1 6⊆ z2.

Proof

Let’s assume hvol(z1) > hvol(z2) ∧ z1 ⊆ z2. As the operation IsIncluded?() is sound and complete
w.r.t. ⊆, it means that (∀i, j) 0 ≤ i, j ≤ n, i 6= j =⇒ const(z1[i, j]) ≤ const(z2[i, j]). Then, as
hvol(z1) and hvol(z2) are both products of the same quantity of positive terms, hvol(z1) is the product
of positive numbers which are all less or equal to the corresponding ones in hvol(z2), contradicting the
possibility of hvol(z1) being greater than hvol(z2).

✷

Care must be taken when computing hvol(z) as to not overflow the capacity of the container
integer variable. Which type of integer variable to use for storing the hvol of a zone has consequences
in both memory overhead and precision. The lower the number of octets reserved for the hvol , the
sooner it will saturate, not allowing to avoid some inclusion checks. On the other hand, if too many
octets are used, the memory overhead can be considerable. The exact hypervolume would require
O(log Π1≤i≤n|Ci|), where Ci is the biggest constant compared against the xi clock in the system. As
with many others time-vs-memory trade offs, experimentation should be used to find a convenient
balance.

Note that the overhead depends on the implementation of DBMs. If a proper matrix is used, a
long int, which is 8 octets on 32 bits machines, usually provides a good amount of check saving
and requires little space compared to the DBM itself. On more sophisticated representations which
leverage on Minimal Constraint Representation [LLPY03] to use a variant of linked lists of bounds
–like our packed RDBMS (see Section 3.3)– the overhead can be variable. Our experimentation shows
an average of 2% extra memory. Although Section 8.2.5 shows the experimental results, let’s suppose
we are dealing with a system with ten clocks (a conservative assumption). A proper DBM will have
a hundred bounds. Being conservative, assume that the minimal representation has approx. 30%
of the bounds. For 30 bounds and 12 bits per bound (usually enough to represent constants on the
hundreds), the 360 bits can be packed in 12 long int. For these figures, an extra long int represents
less than 9% of extra memory.

Although hypervolume approximation resembles the convex-hull abstraction [Bal96], there is a
very important difference. Ours is an exact technique, meaning that the answer to the reachability
question is responded yes or no with certainty. In convex-hull, on the other hand, zones corresponding
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to the same location are joined to their convex-hull over approximation. If the property is not reached,
then the answer is precise, but if it is, then the answer is maybe.

8.2.3. Sorting Visited

As can be seen in Algorithm 8.2.1, when a new state (l, z) is found, the Visitedl set (i.e., the
restriction of Visited3 to states that have l as location) has to be fully explored, comparing the new
zone against all the ones contained in that set.

If each zone in Visited has an hvol , then it can be turned into a priority queue, where the zones
with greater hvol are checked first. Let zn be the zone of the new state and zq be the zone of
next(Visitedl). hvol(zq) is bigger or equal than hvol(z) for every z ∈ Visitedl. So, if hvol(zn) is greater
than hvol(zq), then, because of Theorem 8.1, zn is not included neither in zq, nor in the rest of Visitedl.
In consequence, there is no need to continue checking, thus reducing the number of inclusion checks
performed, as can be seen in the experimentation.

A problem of implementing the above mentioned technique with a traditional priority queue is
that iteration is done by the successive elimination of next elements, thus requiring to re-insert them
afterwards. For a queue with k elements, the total cost with, e.g., a heap, is O(k log k). The memory
management involved in removing and adding elements can make the constants considerable, importing
a noticeable overhead that can easily counter the gain from the inclusion checks avoided.

To overcome this problem, we chose a van Emde Boas tree [vEBKZ77], which permits nondestruc-
tive iteration. It is also convenient from a theoretical point of view: visiting the first k′ elements costs
O(k′ log log k). Actually van Emde Boas trees provide all of their operations in O(log log k), at the
penalty of only supporting integer numbers from a fixed interval as keys. Our experience with it was
that although it can be quite difficult to implement, it provides very good performance.

The resulting procedure is shown in Algorithm 8.2.2.

1: function IsIncludedInOrdederSet?(DBM z, DBM ordered set Z)
2: for all z′ ∈ Z do
3: if hvol(z) >hvol(z′) then
4: return NO
5: else if IsIncluded?(z, z′) then
6: return YES
7: end if
8: end for
9: return NO

10: end function

Algorithm 8.2.2: Inclusion checking algorithm (zone in ordered set of zones).

Having Visitedl sorted by hvol is not only useful when the new zone is not included. If it is, as the
bigger zones are checked first, there is a good chance that the detection occurs earlier (for instance,
universal zones are always the first to be checked, whereas in a traditional implementation of Visitedl

they could be “buried” deep into the set).

It should be noted that it makes no sense to check if a new state (l′, z′) includes one (l′, z′′) in
Visitedl (contrary to Pendingl which is checked in line 14 of Algorithm 8.2.1), because in case it is,
(l′, z′′) still cannot be removed, as it might be part of a trace to the target state.

Section 8.2.5 shows the time and memory results for the implementation of the above mentioned
techniques in the model checker Zeus. Before that, in Section 8.2.4, we explore the question of whether

3Although we use a unified storage of Visited ∪ Pending as proposed in [BDLY03], separate indexes allows us to
traverse them independently.

104



8. Other Optimizations 8.2. Hypervolume

Example Components Clocks Reachable locations

MinePump 10 10 1428
RCS5 8 8 1617
Conveyor6A 11 12 31443
FDDI8 15 23 4608

Table 8.2: Examples sizes.

it is also worth sorting Pending .

8.2.4. Sorting Pending. Worth it?

At first sight the idea of sorting Pending by decreasing hvol sounds appealing: suppose that both
z and z′ are in Pending , and that hypervolume(z) > hypervolume(z′). As sucτ is monotonic, it makes
sense to compute ẑ = sucτ (z) before ẑ′ = sucτ (z

′) because ẑ is bigger that ẑ′. Chances are that ẑ′

might be included in ẑ, avoiding the exploration of a new zone.

An interesting aspect of sorting Pending that way is that it seems conservative. It seems that in
case it didn’t improve things, they will not get worse, i.e., no more zones will be generated.

To test these ideas, we changed the Pending FIFO queue into a priority queue sorted by hvol ,
and implemented it also as a van Emde Boas tree. Unfortunately, results were not positive, leading
to more zones found (and thus more total time and memory) for many case studies, even ones that
generated the complete state space.

The problem is that when locations are considered into the equation, things get more complicated
than the intuition presented in previous paragraphs. Suppose there are (l1, z1) and (l2, z2) in Pending
(in that order), with z1 being x < 10 and z2 being x < 12. Also, assume that both l1 and l2 have
a transition to l3 (which has a true invariant), but the second with an x > 5 guard while the first
imposes no restriction.

In a FIFO exploration (l1, z1) will be explored first, leading to the discovery of (l3, z3), with z3
being x < ∞. When (l2, z2) is expanded, the new state, with zone z′3 = 5 < x < ∞, will already be
included. On the other hand, if Pending was ordered by hypervolume, (l2, z2) would be explored first,
leading to the discovery of (l3, z

′
3), which in turn will be put into Pending and explored before (l1, z1).

When this state gets its turn, (l3, z3) will be generated, but the inclusion check will fail, thus creating
a new zone to be explored.

Next section shows the experimental evidence that backs the claims made in Sections 8.2.2 and
8.2.3.

8.2.5. Case Studies

To validate the proposed techniques, we incorporated them into a monoprocessor version of our
Zeus model checker and ran a series of experiments against well known case studies from the literature
(detailed in Appendix A). For some of them, a reduced version (created with ObsSlice [BGO04], a
safe model reducer) was also used and is primed in the tables. Each of them comprises two versions:
the one where the property is reached (true) and the unreachable one (false).

Table 8.2 summarizes the sizes of the examples used in this section. The experiments were run on
a Intel Pentium IV 3.0 GHz processor with 2 GB of RAM, running the Linux 2.6 operating system.

Table 8.3 shows the results obtained with each method independently and Table 8.4 the combi-
nation of both. The first columns report the time, memory and number of inclusion checks for the
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Example Standard With hvol Visited priority queue
Time Mem #checks Time #checks Time Mem #checks
(secs) (MB) (×106) (secs) (×106) (secs) (MB) (×106)

MinePump’ 46 7 10.5 43 8.9 43 7.8 9.2
true ( -7%) (-15%) ( -7%) (+11%) (-12%)
MinePump’ 527 19 206.0 475 173.8 465 21.2 180.6
false (-10%) (-16%) (-12%) (+12%) (-12%)
MinePump 2807 56 1124.3 2542 969.7 2444 62.1 959.3
true ( -9%) (-14%) (-13%) (+11%) (-15%)
MinePump 20580 152 4348.9 18353 3051.1 17425 163.2 3030.2
false (-11%) (-30%) (-15%) ( +7%) (-30%)
RCS5 31 7 10.2 23 5.5 28 7.7 9.1
true (-26%) (-46%) (-10%) (+10%) (-11%)
RCS5 1039 34 341.3 952 286.4 955 34.6 311.7
false ( -8%) (-16%) ( -8%) ( +2%) ( -9%)
Conveyor6A 1385 183 163.6 1280 104.8 1338 198.0 138.5
true ( -8%) (-36%) ( -4%) ( +8%) (-15%)
Conveyor6A 4142 280 998.8 3368 567.1 3600 306.4 762.7
false (-19%) (-43%) (-13%) ( +9%) (-23%)
FDDI8 488 20 0.1 488 0.1 486 21.0 0.1
true ( 0%) ( 0%) (-<1%)4 ( +5%) (-<1%)
FDDI8 7642 120 18.2 7645 18.2 7629 122.0 18.2
false (+<1%) ( 0%) (-<1%) ( +2%) (-<1%)

Table 8.3: Results obtained for each method.

standard version, and then the time and number of inclusion checks for each optimization, with the
percentage in parenthesis (negative values for saving, positive for increase). Memory is not reported
for the first optimization because the overhead was always less than 2% (consistently with the reason-
ing already mentioned in Section 8.2.2). The overhead of the second comes from the van Emde Boas
tree, which requires many pointers.

It should be noted that in the combined method, although not direct check is saved by hvol , many
inverse ones (see line 14 of Algorithm 8.2.1) can still be avoided.

As can be seen in Table 8.3, hvol features time savings of up to 19% (not counting RCS5 true,
because it already takes a very short time and is only presented for completeness), and sorting Visited
of up to 15%. The first one has negligible memory overhead, while the second uses an extra of around
10-12%. There is no direct relationship between the number of checks saved and the speedup. This
is because each case studies has different sized matrices and for each check saved, the number of cell
matrices to be compared differs.

FDDI8 is an interesting case study because, as no inclusion check could be avoided with hvol , the
difference in times measures pure overhead, showing that the method is very light.

Table 8.3 also shows that different case studies benefit the most from different techniques. If
memory is a premium, clearly hvol is convenient, but if some memory can be spent in order to obtain
earlier results, then a decision should be made among the two. Also, they can be combined. As shown
in Table 8.4, with the exception of FDDI8 , the combined method is never worse than the worse of the
optimizations (see for instance Conveyor6A). Sometimes it is as good as the best of them (MinePump’,
MinePump true, RCS5 true) and sometimes better (MinePump false, RCS5 false).

Both the second and the combined method have indeed a memory overhead that seems, in terms
of percentages, on the same order of magnitude as the time saved. However, in cases like MinePump
false in Table 8.4, it can be seen that the 16% saving of time translates to almost one hour of almost

4Marginal improvements, not seen in figures because of rounding.
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Example Both methods
Time Mem #checks
(secs) (MB) (×106)

MinePump’ true 43 ( -7%) 7.8 (+11%) 8.3 (-21%)
MinePump’ false 465 (-12%) 21.2 (+12%) 181.3 (-12%)
MinePump true 2436 (-13%) 62.1 (+11%) 955.7 (-15%)
MinePump false 17388 (-16%) 163.2 ( +7%) 2348.4 (-46%)
RCS5 true 23 (-26%) 7.5 (+10%) 8.0 (-22%)
RCS5 false 926 (-11%) 34.6 ( +2%) 286.7 (-16%)
Conveyor6A true 1295 ( -6%) 198.0 ( +8%) 115.9 (-29%)
Conveyor6A false 3470 (-16%) 306.4 ( +9%) 569.3 (-43%)
FDDI8 true 487 (-<1%) 21.0 ( +5%) 0.1 (-<1%)
FDDI8 false 7652 (+<1%) 122.0 ( +2%) 18.2 (-<1%)

Table 8.4: Results obtained with both methods combined.

six, at the cost of 7% more memory, which only amounts to less than 12 extra MB of RAM.

8.2.6. Conclusions and Future Work

In this section we presented two techniques based on approximating the hypervolume of the poly-
hedra that represents the valuations of clocks in timed automata model checking. Although the
hypervolume is approximated, both techniques give exact answers.

The first is based on avoiding inclusion checks when the approximate hypervolumes makes the
inclusion impossible. The other, in sorting the Visited set according to the approximate hypervolumes,
avoiding to traverse some parts of it while checking for included zones. The second is only possible
thanks to a very optimized implementation of a van Emde Boas tree [vEBKZ77], but the first is quite
simple.

These techniques can be used independently and obtain interesting speedups. According to our
experiments, some models benefit more with one of them, and some with the others, with acceleration
of up to 19 and 15% respectively. The first one has negligible memory overhead, the second, a moderate
one (10-12%).

They can also be combined, although the speedups are not additive, because there is some mutual
cancellation. The good news is that there is no need to speculate on which one to use, because using
both is generally as good as using the best of them.

It should be noted that the techniques are very unobtrusive, in the sense that they are orthogonal
to many other optimizations such as [BBLP04, BDLY03, Ben01, DY96, BGO04, BOS06c], allowing
to use all of them together.

Also, we showed that applying the same ideas to the Pending queue can have negative impact. In
order to reverse that, Pending should be separated by location, and then sorted, but that will increase
the cost of adding newly discovered zones to it. Experimentation with different data structures towards
that end is a yet-to-be-explored area.

Although we chose a van Emde Boas tree to sort the Visited queue, some less modular yet simpler
implementations –based on linked lists of states, with pointers marking insertion places– are possible.
This trade-off should be revisited to see if some of the overhead can be avoided.

To pursue further in this line of research, it would be interesting to analyze which topological
characteristics of the model influence in each method’s performance. A consequence of this could be
an on-the-fly detection method, that switches between them.
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Chapter 9

VInTiMe

This chapter is based on [CdCF+06], where the VInTiMe tool is presented in more detail (while
[AGB+04] gives the theoretical background). VInTiMe can be download from http://lafhis.dc.

uba.ar/vintime as an Eclipse1 plugin.

The tool represents the hard work of the following bright individuals:

Lućıa Cavatorta
Guido de Caso
Andrés Ferrari
Vı́ctor Braberman
Diego Garbervetsky
Nicolás Kicillof
Alfredo Olivero
Alejandra Alfonso

We would like to thank the IBM Eclipse Innovation Grants Program, who were kind enough to
fund the plugin development.

9.1. Introduction

In order to verify real world applications, usually the following steps should be followed:

The SUA should be precisely described.
System requirements must be specified.
A (usually time consuming) verification should be executed.
If requirements do not hold, appropriate counterexamples must be obtained in order to fix the
system.

VInTiMe (Verifier of INtegrated TImed ModEls) [AGB+04, CdCF+06] is a suite of tools that
combine high-level expressive power, unassisted property-preserving model-reduction and low-level
distributed model checking power to describe and verify complex real-time system designs and their
properties. VInTiMe comprises the integration of the tools Lapsus, VTS, ObsSlice and Zeus. As a
toolset, it covers the full specification and verification cycle. This is actually the result of a decoupled
approach in which autonomous tools with clear interfaces were developed independently. They were

1According to http://www.eclipse.org, Eclipse is an“open source community whose projects are focused on building
an open development platform comprised of extensible frameworks, tools and runtimes for building, deploying and
managing software across the life cycle”. When the term is used in this chapter, we are actually referring to the IDE.
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unified under a single framework once they became mature enough, using timed automata as a lingua
franca between them.

Lapsus [BF99, Bra00] translates real-time system designs based on fixed-priority scheduling into
timed automata. Succinctly, it uses Worst-Case Completion Times (WCCT) and Best-Case Comple-
tion times (BCCT) –which can be calculated using analytical techniques provided by these theories–
to build an abstract and analyzable model of the system as a collection of timed automata. We use
those timed automata to analyze complex properties involving coordination of a set of tasks.

Once Lapsus’ job is done, VTS [ABKO04] comes into play. Using simple graphical patterns,
the designer can define interesting properties over the SUA. More precisely, VTS is a notation for
expressing real-time requirements in a visual and friendly –yet powerful– language, by means of neg-
ative scenarios. A VTS scenario is basically an annotated partial order of relevant events, denoting a
(possibly infinite) set of matching time-stamped executions.

VTS is meant to existentially predicate on system executions. That is, it is used to state a simple
though relevant family of questions of the form “Is there a potential run that matches this generic
scenario?”. When interpreted as negative scenarios, these questions can express infringements of safety
or progress requirements, which turn out to be decidable. The tool translates a scenario into a timed
automaton (observer) that recognizes matching runs. This automaton is composed with the SUA in
order to check whether a violating execution is reachable in that behavioral model.

It should be noted that the tools presented so far tackle the usability issue by simplifying the
construction of formal models of both timed systems and properties over them. There is still a
scalability problem to deal with, and that is the goal of the two remaining components of VInTiMe:
they deal with the state explosion problem in orthogonal ways.

ObsSlice [BGO04] is an optimization tool for the verification of networks of timed automata using
virtual observers (see Section 2.7), the same kind of observers that VTS produces. It automatically
discovers the set of modeling elements that can be safely ignored at each location of the observer by
synthesizing behavioral dependence information among components. ObsSlice is fed with a network
of timed automata and generates a transformed network which is equivalent to the one provided, as
far as the properties are concerned.

ObsSlice automatically derives a subset of components which is enough to perform the verification
process. That is, one of the most appealing aspect of this approach is that generally only a small subset
of a system’s components is really needed to perform model checking, dramatically reducing the cost
of this step. Hence, the complexity of our approach mainly depends on the number of components
involved in the requirement instead of the size of the complete model, which is the case in previous
works on automatic verification of real time applications.

Contrary to other approaches that use schedulers, Lapsus modeling of real-time tasks helps Obs-

Slice reduce the amount of components that are relevant to verify a given property. If schedulers
were used, the resulting system would be highly coupled, making optimization harder [Bra00].

Finally, Zeus is the model checker dealt with in this very thesis.

9.2. Features

The development of real-time systems requires specification and implementation frameworks, usu-
ally realized as separate software tools, which forces designers to constantly switch between them. The
integration of VInTiMe as an Eclipse plug-in greatly simplifies this process. Designers can have their
systems both specified and implemented entirely within the Eclipse platform.

Eclipse also provides VInTiMe users with additional features such as the ability to have their
verification projects saved in CVS repositories or exported to ZIP files.
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In order to support the integration of the tools described in the previous section, the VInTiMe

Eclipse plug-in offers a set of editors for each of the formalisms involved.

The verification process begins with the creation of a new VInTiMe project to contain the different
elements necessary to model the SUA and to guide its verification.

Figure 9.1: A Lapsus component

Figure 9.2: A TA component

Since real-time systems are usually made up of several interacting components, the designer starts
by constructing each of them independently. Main system components are modeled using Lapsus

tasks (Fig. 9.1), while environment and user defined connectors can be directly modeled with TA
(Fig. 9.2).

Once the components are defined, the user can create a SUA by dragging together instances of
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them. Making component construction and composition separate steps of the process maximizes
reusability of system parts.

Figure 9.3: A VTS scenario

After the SUA has been defined, users can express requirements over it in the form of VTS

patterns, as shown in Fig. 9.3. Since these scenarios can contain variables, an instantiation phase is
required: users drag goals and SUAs together while a wizard helps them bind variables.

This binding of goals to SUAs is called an Analysis. Fig. 9.4 shows the Analysis Editor.

Figure 9.4: Analysis Editor

This is the final step in the design stage, now the verification phase can begin. From the Analysis
Editor users can call Zeus to perform a distributed model check of a goal on a cluster. A cluster is a
network of workstations that can be graphically defined in the bundled Cluster Editor (see Fig. 9.5)
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and selected later when the verification is launched (see Fig. 9.6).

Figure 9.5: Cluster Editor

Figure 9.6: Launching Zeus

If the SUA can produce a behavior expressed by the (negative) goal, a trace showing how it can
be reproduced is presented in a Trace View (Fig. 9.7). Otherwise, the goal is valid and no trace is
found. As a visual aid, a color cue is used to mark goal states.

Figure 9.7: Trace View

The SUA can be traversed by following a trace. While doing so, current states and transitions
are highlighted appropriately. As a result of applying ObsSlice during verification, SUA components
are dynamically enabled or disabled in a trace. Our tool automatically minimizes disabled SUA
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Figure 9.8: Users select how they want the trace to continue

components during trace traversal and restored when they are enabled again. This greatly simplifies
the task of understanding error traces, as only relevant components need to be analyzed. Traces can
also be manually modified, or generated from scratch in order to allow the user to simulate additional
interesting behaviors, as shown in Fig. 9.8.
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Chapter 10

Conclusions and Perspective

We finish this thesis by browsing through each chapter to find the most relevant conclusions and
open research questions.

Chapter 4 analyzes the distribution of the backwards algorithm. It can be summarized as a
succession of obstacles, workarounds and modest practical achievements. However, it presents hard
efforts based on sound ideas, leaving testimony of how hard the problem at hand is. Although far from
the expected linear speedups, the results allow to conclude that, in order to achieve something close
to it, a unit of distribution finer that the location is needed. Although still preliminar, some work we
are currently undertaking in that area seems promising: parallelize expensive matrix operations on
multicore processors, instead of using each core to run an independent capsule.

Chapter 5 opposes Chapter 4 not only in that it is based on a different algorithm (forward, in this
case), but also in that it opens rather than closes, an area of research. Although the machinery put in
place to migrate workload (cf. Section 5.3) is highly sophisticated and its results are promising, there
is still a lot of work to do, and ideas yet to be explored. We surveyed those on Section 5.5: hybrid
approaches, partitioning based on clock ranges and auto-adjusting of tunables.

In Section 5.5 we pointed out that a number of variables could be tuned to affect the speed of the
verification, and that there does not seem to be a clear winning set of options. Even without leaving
the boundaries of this same thesis, we found again examples of that in the monoprocessor settings of
Chapters 7 and 8.

This landscape triggers a fundamental question that arises repeatedly when working on timed
automata model checking: is there any distinguishable characteristic of the model that correlates
directly with some techniques performing better than other? Even more, if such a characteristic
exists, is it distinguishable by humans?

If that were the case, and we could indeed assert which are the specific properties of the models that
make them react better to some optimizations, then, maybe the model checker could be programmed
to determine that automatically. We don’t seem to be close to that point. Yet, we might be able to
make progress, by changing the question. Why don’t we ask if there is a specific characteristic that
can be spotted by computers?

Perhaps it’s time to use machine learning to try to correlate speedups with topology. Is it too
early to give up on humans trying to find out a correlation? Maybe yes, but it is for sure a very
difficult task: all known optimizations are based on complex ideas. While some of them are oblivious
(e.g., [YPD94, DY96, BGO04]), others are useful in only particular scenarios ([Bal96, BOS06b]).
Some others (e.g., [BBFL03, ZLZZ03]) are so complex that the reason they work cannot be explained
intuitively. And there is still a class of optimizations that make sense only if some supporting data
structure is used (e.g., [Ben01, BDLY03]).

Further, partial order reduction techniques (e.g. [LNZ05]) can be hindered by a distributed algo-
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rithm. So orthogonality is not that easy to achieve.

But not all of the complexity comes from optimizations. Models bring their share also. On one
hand, they shape can no longer be easily seen. They are built from the synchronization of many
components, quickly reaching an important number of states and transitions. On the other, many of
those models are not built by hand anymore. While in some cases that imposes regularities to the
automata, in others it just means huge components, with difficult semantics.

In the same pool can be considered the different tunables that Zeus uses. For instance, if the load
pattern changes very frequently, a low ∆tm and #s are in order (recall Section 5.4). But overhead
might be increased if that is not the case.

How to know all that, a priori? Even more, how to expect for an average verification engineer to
take all of those decisions correctly before-hand?

Given all the above mentioned difficulties is that it becomes appealing to automate the optimization
decision-making process. A näıf approach might try to cluster control graphs using known techniques
(e.g., [vD98]) and try to pair classes of graph with verification settings, based on a knowledge-base of
experience. It is to be expected that good results might only appear once the “graph decorations” (i.e.,
time restrictions) start to be considered. If the approach is clustering, maybe the work in timed regular
expressions [ACM02] comes out handy, as a way to succinctly describe particular timing behaviours.

While comparing our work with others, in Section 6.1, we discovered that interesting speedups
might be obtained –in certain cases–, not because of distribution, but actually as a byproduct of it.
As most inclusion checks seem statistically destined to fail, skipping some of them might save time
with little probabilities of repeated work. We believe this phenomenon explains part of the good
results obtained by some other researchers, and poses an interesting question: could similar results be
replicated on a monoprocessor setting?

In Chapter 7 we researched alternative data structures. In particular, rCDDs, a BDD-like rep-
resentation. We managed to reduce time at the expense of some memory, and found that detecting
repeated subtrees was a key issue: if memory consumption could be reduced, regions could start to be
used, thus leading to less explored states. Much work is pending in that area.

Chapter 8 proposes two techniques that can be used in the monoprocessor version. One is based
on predicting clock ranges, the other on using single integer comparisons (based on zone hypervol-
ume) to avoid O(n2) inclusion checks. The last one, given its simplicity, has all the characteristics
needed to become a de facto standard mechanism in the TA model checking tools, like active clock
reduction [DY96].

Clock ranges, however, present a lot of open ends. Not only improving the prediction has to be
addressed, but also understanding the details of why such an incomplete prediction works so well.

We always aimed at usable techniques. So we tried not only to implement ideas into tools, but
also to integrate tools into frameworks. This is what VInTiMe is about. In Chapter 9 we described a
verification toolset that “combines high-level expressive power, unassisted property-preserving model-
reduction and low-level distributed model checking power to describe and verify complex real-time
system designs and their properties.”

To conclude, a note on set inclusion. Not that many people have built a model checker. Fewer
have done it twice. This is the subset of humans we are included in, having built both the backwards
(surveyed in Chapter 4) and forward (Chapter 5) versions of Zeus.
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Appendix A

Case Studies

A.1. Railroad Crossing System

Fig. A.1 shows the three components of the Railroad Crossing System (RCS for short) inspired in
the example presented in [ACD+92]. The controller registers the status of trains and actuates over
the gate accordingly. In the case shown the controller can deal with up to two trains. They are
synchronized by the labels: app1, app2, exit1, exit2, lower and down. When Traini approaches the
crossing, it sends a signal appi to Controller and enters the crossing at least 6, at most 10 time
units later. When Traini leaves the crossing it sends a signal exiti to Controller within 15 time
units after the signal appi was sent. Controller sends a signal lower to the gate at most 1 time
unit after the arrival of signal appi (if the crossing is empty), and sends raise signal within 1 time unit
receiving the signal exiti (if there is no other train detected). It takes 3 time units to raise and lower
the Gate.

We will write RCSn to mean a n-train version of the case study.

A.2. MinePump

In the MinePump example, a watchdog task periodically checks the availability of a water level
sensor device by sending a request and extracting ACKs that were received and queued during the
previous cycle by another sporadic task. When the watchdog finds the queue empty, it registers a
fault condition in a shared memory which is periodically read, and forwarded to a remote console, by
a proxy task. One property of interest is that the failure of high-low water sensor is always informed
to the remote operator before a given deadline. Another property is that the values of CO and CH4

logged were sampled no more than 100 ms away.

A.3. Conveyor Belt

By CBn,m we mean a Conveyor Belt modeled as a pipeline of stages where objects are fed at
one extreme and consumed on the other (based on an example from [DY95]). Each stage and each
flowing object is modeled by a timed automaton. The consumer has a latch that accumulates the
signals produced by objects when they sojourn the last stage. We want to detect if there exists a case
where an object flows in the pipeline for more than a given deadline. Being a scalable example, its
size depends on two parameters: n the number of stages and m (≤ n) the number of objects.
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Figure A.1: The Railroad Crossing System, with two trains

A.4. FDDI

We write FDDIn to refer to a version of the well known FDDI token ring protocol [Tri98] as used
in [BGO02], with n workstations.

For the backwards version, the case study was treated with Optikron [DY96] for inactive clock
suppression.

A.5. RemoteSensing

The RemoteSensing case study presented in [ABKO04] can be instantiated in two versions, one
testing for bounded response, RS-BR, and another for correlation, RS-C .

A.6. Pipe

Pipen is an end-to-end signal propagation in a pipe-line of sporadic processes that forward a signal
emitted by a quasi periodic source, with n stages. There is a latch in the middle of each pair of
processes.
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VTS, 12

wasted time, 31

Zeus, 21
Zone, 11
zone, 11, see Symbolic state
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