
Di r ecci ó n:Di r ecci ó n: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.
Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293

Co nta cto :Co nta cto : digital@bl.fcen.uba.ar

Tesis Doctoral

Fork algebras como herramienta deFork algebras como herramienta de
razonamiento entre especificacionesrazonamiento entre especificaciones

heterogéneasheterogéneas

López Pombo, Carlos Gustavo

2007

Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca
Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser
acompañada por la cita bibliográfica con reconocimiento de la fuente.

This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico
Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding
citation acknowledging the source.

Cita tipo APA:

López Pombo, Carlos Gustavo. (2007). Fork algebras como herramienta de razonamiento entre
especificaciones heterogéneas. Facultad de Ciencias Exactas y Naturales. Universidad de
Buenos Aires.

Cita tipo Chicago:

López Pombo, Carlos Gustavo. "Fork algebras como herramienta de razonamiento entre
especificaciones heterogéneas". Facultad de Ciencias Exactas y Naturales. Universidad de
Buenos Aires. 2007.

http://digital.bl.fcen.uba.ar
http://digital.bl.fcen.uba.ar
mailto:digital@bl.fcen.uba.ar

Universidad de Buenos Aires
Facultad de Ciencias Exactas y Naturales

Departamento de computación

Fork algebras como herramienta de
razonamiento entre

especificaciones heterogéneas

Tesis presentada para optar al t́ıtulo de Doctor de la

Universidad de Buenos Aires en el área ciencias de la

computación

Carlos Gustavo Lopez Pombo

Director: Marcelo Fabián Frias

Lugar de trabajo: Departamento de computación, Facultad de Ciencias
Exactas y Naturales, Universidad de Buenos Aires.

Buenos Aires, 2007

Fork algebras como herramienta de razonamiento
entre especificaciones heterogéneas

Resumen: Las lógicas han sido usadas como sistemas formales para es-
pecificar sistemas de software. Más aun, las especificaciones lógicas, por ser
formales, contribuyen en la aplicación de métodos técnicas correctas de ver-
ificación. Diversos formalismos han sido desarrollados para lidiar con estos
aspectos y muchos de ellos son eficientes en describir ciertas caracteŕısticas
de los sistemas de software. Por ejemplo, la lógica temporal, proposicional y
de primer order, consigue describir la forma en la que los sistemas de software
evolucionan en el tiempo. La lógica dinámica también permite la especifi-
cación de sistemas pero lo hace describiendo cómo los programas transfor-
man el estado del sistema. Estos son sólo algunos ejemplos de cómo una
lógica particular permite la especificación de determinados comportamien-
tos de un sistema. La pregunta interesante acerca de este hecho es: Existe
un lenguaje ideal para especificar el comportamiento de un sistema?

A pesar de que no vamos a concentrarnos en responder esta pregunta,
creemos que ese lenguaje debe tener una sintaxis clara y una semántica fácil
de entender, con el propósito de facilitar la comprensión de especificaciones
y la aplicación de métodos formales. Entre las propuestas que recopilamos,
las instituciones se imponen como un formalismo para razonar entre lógicas,
y una institución “universal”, que permita razonar entre las lógicas “intere-
santes” seŕıa la respuesta a nuestra pregunta.

En esta tesis mostraremos que una definición adecuada de la institución
de las fork algebras es util para razonar entre diversas lógicas proposicionales
y de primer orden que aparecen frecuentemente en la especificación de soft-
ware.

Palabras clave: Instituciones, especificaciones heterogéneas, algebras
de fork, métodos relacionales en ciencias de la computación

Fork algebras as a tool for reasoning across
heterogeneous specifications

Abstract: Logics have often been used as formal systems suitable for
the specification of software artifacts. Moreover, logical specifications, being
formal, might contribute towards the application of sound verification tech-
niques. Several formalisms have been developed to cope with these aspects
and most of them are effective in describing some particular characteristics
of software systems. For example, propositional and first-order temporal
logics succeed in describing the way software systems evolve along time.
Dynamic logic also allows system specification but it does so by describing
how programs transform the system state. These are only some examples
of how a particular logic allows to specify a certain system behavior. The
interesting question about this fact is: Is there an ideal language to specify
the behavior of a system?

Although we will not concentrate on answering this question, we believe
such language must have a clear syntax and an easy to understand semantics
with the purpose of facilitating the comprehension of specifications and the
application of formal methods. Among the proposals we surveyed, institu-
tions prevail as a formalism to reason across logics, and a sort of “universal”
institution, allowing us to reason across all “interesting” logics would be the
answer to our question.

We will show in this thesis that an adequately defined institution of fork
algebras is useful for reasoning across many propositional and first-order
logics ubiquitous in software specification.

keywords: Institutions, heterogeneous specifications, fork algebra, re-
lational methods in computer science

Contents

List of Figures ix

List of Tables xi

Chapter 1. Introduction and motivations 3
1. Algebraization of logic: historical remarks 5
2. Related work 7

Chapter 2. Relation algebras, fork algebras and ω-closure fork algebras 11
1. Universal Algebra 11
2. Boolean algebras and relation algebras 15
3. Fork algebras and ω-closure fork algebras 22

Chapter 3. Category theory and general logic 33
1. Category theory 33
2. Institutions and general logics 39
3. Institution morphisms and representation maps 43

Chapter 4. The logical system behind full proper closure fork algebra
with urelements 47

1. The institution behind full proper closure fork algebras with
urelements 48

2. The entailment system behind full proper closure fork algebras
with urelements 53

3. The proof calculus behind full proper closure fork algebras with
urelements 54

Chapter 5. Interpretability as a representation map between
institutions 63

1. First-order linear temporal logic 64
2. Interpretability of FOLTL in ω-CCFAU 66
3. Interpretability as a representation map between institutions 73

Chapter 6. Reasoning across logics in fork algebras 85
1. Relating partial specifications 85
2. Introducing design decisions 88

vii

viii CONTENTS

3. Concluding remarks 100

Chapter 7. Case-study: An interactive museum guide 103
1. Conceptual description 103
2. Logical description 105
3. Algebraic description 110
4. Putting the pieces together 112

Chapter 8. Tool support 121
1. Theorem-proving fork algebraic specifications in PVS 121
2. ReMo: a model-checker for fork algebraic specifications 129
3. Monotonicity Analysis for Verification of Relational Specifications130
4. ReMo: RElational verification through MOnotonicity analysis 135
5. Concluding remarks 136

Chapter 9. Concluding remarks and further work 139
1. Concluding remarks 139
2. Further work 141

Chapter A. Raimondo Lullos schematic logical proof of the existence
of God 155

List of Figures

1.1 Graphical description of the Argentum project. 4

2.1 Graphical representation of “fork”. 23

2.2 Graphical representation of “π”. 25

2.3 Graphical representation of “ρ”. 25

2.4 Graphical representation of “⊗”. 26

5.1 Infinite right degenerate trees pattern. 68

6.1 Relation between T and {Ak}k∈K. 90

6.2 Relation between T and {Ak}k∈K, and {Pl}l∈L and {Ql}l∈L. 91

6.3 Relation between {PProp
l}l∈L and {PFOL

l}l∈L. 94

6.4 Relation between {PPDL
l}l∈L and {PFODL

l}l∈L, and {APDL
m}m∈M

and {AFODL
m}m∈M. 98

7.1 Class diagram for the Interactive Museum System. 104

7.2 Object diagram for the Interactive Museum System. 106

7.3 The subscription process. 106

7.4 The unsubscription process. 107

7.5 When the visitor moves to a new position, he may receive
information about the painting being watched. 107

7.6 When changing position, the visitor receives data about the painting
in the the new position. 107

7.7 First-order logic view of the system. 108

7.8 Propositional dynamic logic view of the system. 109

7.9 First-order dynamic logic view of the system. 109

7.10First-order linear temporal logic view of the system. 110

7.11Algebraic translation of the FOL view of the system presented in
Figure 7.7. 111

ix

x LIST OF FIGURES

7.12Algebraic translation of the PDL view of the system presented in
Figure 7.8. 112

7.13Algebraic translation of the FODL view of the system presented in
Figure 7.9. 113

7.14Algebraic translation of the FOLTL view of the system presented in
Figure 7.10. 114

7.15General diagram scheme used to introduce design decision. 115

7.16Simple diagram scheme used to introduce design decision. 115

7.17Theories containing design decisions synchronizing TFOL, TFODL,
and TFOLTL. 115

7.18Diagram involving TFOL, TFODL, TFOLTL, TFOL↔FODL and TFOL↔FOLTL.115

7.19Theory containing design decisions synchronizing TPDL, and TFOLTL.116

7.20Channels used to synchronize TPDL, and TFOLTL. 116

7.21Diagram involving TPDL, TFOLTL and TPDL↔FOLTL. 117

7.22Theory containing design decisions synchronizing TPDL, TFODL, and
TFOLTL. 118

7.23Channels used to synchronize TPDL, TFODL, and TFOLTL. 118

7.24Diagram involving the theories TPDL, TFOLTL, TFODL and
TPDL↔FOLTL↔FODL. 119

7.25Diagram combining TFOL, TPDL, TFODL and TFOLTL with design
decisions. 120

8.1 Definition of ω-closure fork algebra signatures within PVS. 124

8.2 Definition of ω-closure fork algebra signatures within PVS. 125

8.3 Theory encoding the meaning function for ω-closure fork algebras
with urelements. 125

8.4 Meaning function for terms. 126

8.5 Definition of the structured universe within PVS. 126

8.6 Theory resulting of the PVS abstract datatype mechanism on the
definition of the structured universes. 127

8.7 Construction of the carrier of the full proper closure fork algebra
with urelements. 127

8.8 Usage of the structured universe to give semantics to the ω-closure
fork algebra with urelements constants, predicates and functions. 128

8.9 Grammar and semantics of Rel. 129

8.10An ascending traversal. 132

8.11A descending traversal. 132

8.12Using monotonicity information for negative variables. 133

8.13Using monotonicity information for positive variables. 134

8.14Structure of a ReMo Specification. 135

A.1Raimondo Lullos schematic logical proof of the existence of God. 155

List of Tables

6.1 Combinations of propositional logics. 89

6.2 Combinations of propositional and first-order logics. 89

6.3 Combinations of first-order logics. 90

7.1 List of methods of the classes of Fig. 7.1. 105

7.2 OCL formalization of the methods the classes of Figure 7.1. 105

7.3 OCL formalization of the objects diagram of Figure 7.1. 106

xi

Prologue

Angesichts von Hindernissen mag die

kürzeste Linie zwischen zwei Punkten

die krumme sein.

Eugen Berthold Friedrich Brecht

“Das Leben des Galilei”, 1938-1939.

If there are obstacles, the shortest line

between two points may be a crooked

line.

Eugen Berthold Friedrich Brecht

“The life of Galileo”, 1938-1939.

It is probably a paradox to start this work speaking about its end, but
in some sense, writing this thesis is not a starting point but the end of the
path that lead to it. I refuse to understand this path as a step in the stair
of the social structure of science. Instead, I prefer to think about this path
as a part of a learning process which will never stop, and this thesis as the
systematized result of traversing that path.

For me, it is not possible to conceive what I do as a single and isolated
product developed by me (and a few colleagues), in a well-delimited space
and time. I understand that what I do, and what I am, are almost the same;
not because of my life being only computer science, but rather because my
work is influenced by all other aspects of my life. Thus, this work is a joint
work with all those persons that, in a way or another, made it possible.

The author wants to thank: Marcelo F. Frias, not only for being
my technical advisor, but for his generosity and friendship. My colleagues,
students and administrative personnel of the Department of Computer Sci-
ence of the Facultad de Ciencias Exactas y Naturales of the Universidad de

1

Buenos Aires. To Sam Owre, Dexter Kozen, Peter Jipsen, Michael Win-
ter, Paulo A. S. Veloso, Jorge Petrucio Viana, and the RelMiCS (Relational
Methods in Computer Science) community for their technical support and
kindness. And finally, to Isabel Méndez-Dı́az and Alejandro Ŕıos for being
so helpful at the end of this path.

The author wants to dedicate this work to: Angela and Juán
Carlos (my loving parents), and Ana (my beautiful and comprehensive com-
panion), for their permanent support. To Yair (my ten years old godson), for
materializing the word love. To my big family, specially to Josefina, Dorohe,
Ruben, Silvana, Marisa and Claudio, for their responsibility in what I am.
To Caco, Daniela, Luana, Temis, Juán, Cristina, Mirta, Julia, Esteban,
Gabriel and Gustavo, my family by choice, my partners, the activists of the
Frente José Mart́ı and the Corriente universitaria Julio Antonio Mella, for
building the future with their own hands, and, in a very special way, my
enormous list of beloved friends.

2

CHAPTER 1

Introduction and motivations

It is not a novel idea to use logic to specify software systems, with
the aim of serving as a formal language which allows the application of
software verification techniques. Several languages have been developed to
cope with these aspects and most of them are effective (at least) in describing
some particular aspects of software systems. For example the propositional
temporal logics LTL [Eme90] and TL (and their first-order versions, FOLTL

and FOTL, respectively) [MP95] succeed in describing the way a software
system evolves in time along its executions. The propositional dynamic logic
PDL (and its first-order version FODL) [HKT00] allow to specify systems
by characterizing the way actions (and complex programs built from them)
transform the system state. These are only two examples of how a particular
logic allows to specify a certain system behavior.

Consider the situation where we are interested in specifying a software
system and to this end we build separate theories, written in different logics,
reflecting its characteristics. We believe this approach has the advantage of
supporting modular specifications based on the aspects under consideration.
At first sight this approach seems to have a nontrivial disadvantage. Using
different languages to describe software systems implies that the possibility
of applying formal methods to verify system properties is restricted to each of
the separate aspects of the system, not regarding on the interaction among
these aspects. Moreover, properties emerging from the interconnection of
logics can fall in two situations. On one hand there could be properties
which model desired behaviors of the system that can not be proved from
the analysis of the separate parts of the specification. On the other hand,
these emerging properties might reveal undesired behaviors, or even incon-
sistencies, of the specification as a whole which would not be detected by
observing the separate parts.

Several approaches have been developed to deal with this inter-logic
gap produced by the utilization of different formalisms in the specification
of software. Henriksen and Thiagarajan proposed in [HT99] a formalism
to deal with dynamic and temporal properties. To this end they defined

3

4 1. INTRODUCTION AND MOTIVATIONS

the dynamic linear temporal logic (DLTL for short) in which formulas are
traditional LTL-formulas with the exception of the until operator (U) which
is strengthened with a test free PDL-program. The result is a logic that is
able to express all LTL-formulas and most PDL-formulas.

From other point of view, there is a vast amount of research on reasoning
across different logics within the framework of institutions. Institutions were
introduced by Goguen and Burstall in [GB84] and continued in [GB92].
Institutions have very rich metalogical foundations and provide a general
framework for analyzing the interconnection among logics.

In §2.1 and §2.2 we will return to these two approaches.
Our approach, which falls in the field of institutions, can be described in

terms of the Argentum project (see Figure 1.1 for a graphical description of
Argentum). Argentum is a CASE tool with relational foundations. Rather
than using a single monolithic language for software specification, it uses
different logics for modeling different views of systems. Thus, a system
specification is a collection of theories coming from different logics. Using
the interpretability results for these logics, the theories are translated to a
uniform (regarding the language) relational specification. Once a relational
specification is obtained, different tools such as bounded model checkers, sat-
solvers or theorem provers can be applied in order to verify the relational
specification.

Relational Calculus

Propositional
Modal Logic

Classical First
Order Logic

Propositional
Dynamic Logic First Order

Dynamic Logic

Relational
Calculus

G
ra

p
h

 M
a

n
ip

u
la

ti
o

n
T
o

o
ls

S
a

t
S

o
v
e

rs

A
u

to
m

a
ti
c

T
h

e
o

re
m

P
ro

v
e

rs

Tpml

TCFOL TPDL TFODL

TRC

Figure 1.1. Graphical description of the Argentum project.

The spheres located at the top of the figure stand for specifications of
different aspects of a system using different logics. The arrows originating at
the spheres map logical specifications to a relational specification (located
in the box targeted by the arrows). The homogeneous specification can
then be analyzed using tools (the lower boxes) which can be plugged into
Argentum.

1. ALGEBRAIZATION OF LOGIC: HISTORICAL REMARKS 5

The relational language we propose to be used as target language is the
fork algebras, presented by Haeberer and Veloso in [HV91]. From our point
of view, the language of fork algebra has three basic advantages:

(1) a clear syntax,
(2) an easy to understand semantics and
(3) the possibility to apply automatic and semiautomatic tools to verify

fork-algebraic specifications.

Our proposal is based on existing work on algebraization of logics. Before
going into the concrete results used to interpret logics into fork algebras we
present some historical remarks on the development of this vast field of
research.

1. Algebraization of logic: historical remarks

Algebraization of logic has been studied for a long time. We point the
interested reader to [Mad91] for a detailed historical dissertation on the
topic. We will only point out some interesting milestones on the field. The
oldest most known attempt to assimilate logic reasoning to a calculus asso-
ciated to an algebraic structure1 is the one due to George Boole [Boo47]
in which an algebraization of propositional logic is done by resorting to an
equational calculus. Later work due to Charles Sanders Peirce [Pei70] is
an outstanding effort to create an algebra in which logic reasoning can be
carried out. Peirce’s work was deeply influenced by De Morgan’s “fourth
memoir” [dM64], where he sketched the theory of dyadic relations under the
name “the logic of relations”. This effort gave birth to the algebra of binary
relations, originally, as an attempt to obtain an algebraization of first-order
predicate logic. It was in [Pei83a] where Peirce gave to the algebras of bi-
nary relations, at that time, under the name “the logic of relatives” its final
shape. After that, Peirce’s system for the algebras of binary relations was
extensively developed by Schröder in [Sch95].

In [Tar41], Tarski calls our attention to the fact that there was almost no
research being carried out in the field until Russell and Whitehead [RW13]
included the algebras of binary relations in the whole of logic. They did it
by putting it in the center of their logical system and going further in some
new concepts connected with the notion of relation. It was in [Tar41] where
Tarski committed himself to the development of the calculus of relations. In
the first place Tarski presents the elementary theory of binary relations, as
a logical formalization of the algebra of binary relations; thus the calculus of
relations is obtained from the elementary theory of binary relations by re-
stricting the language to sentences obeying a particular criteria. To the end
of this work Tarski stated five questions related to the calculus of relations;
from our point of view, three of them are of particular interest:

• Is every model of the calculus of relations isomorphic to an algebra
of binary relations?

1Massimo Mugnai, in his Italian translation of [Boo47] drives our attention to a
Spanish philosopher called Raimondo Lullo (1235–1315) who, according to him, seems to
be the first to attempt to construct a calculus for logical deduction. It is also claimed that
Raimondo Lullo gave a schematic logical proof of the existence of God. See Figure A.1.

6 1. INTRODUCTION AND MOTIVATIONS

• Is it true that every formula that is valid in every algebra of binary
relations is provable in the calculus of relations?
• Is it true that every formula of the elementary theory of binary rela-

tions can be transformed into an equivalent formula of the calculus
of relations?

It was Lyndon in [Lyn50] who gave a negative answer to the first two
questions by showing a single construction, a finite, non-simple and non-
trivial algebra of relations that is not representable as an algebra of binary
relations. After that, it was Monk in [Mon64] who proved that the class
of the algebras of binary relations can not be finitely axiomatized. The
third question was answered by Korselt (the proof appears in [Löw15]),
by proving the equipolence of the relational calculus and the three variable
fragment of the dyadic first-order predicate logic.

In [Tho52]2 Thompson presented the cylindric algebras. In the case of
cylindric algebras, the mission of algebrizing first-order predicate logic was
finally accomplished resulting in a complete but non-finitely axiomatizable
calculus.

The fork algebras, presented by Armando Haeberer and Paulo A. S.
Veloso in [HV91], are an extension of the relation algebras, obtained from
them by adding a new operator called fork (typically represented as “∇”).
They arose in the search for a formalism suitable for software specification
and verification. In [Fri02, Chapter 3, pp. 20] Frias gave a detailed dis-
cussion on the evolution of fork algebras and called our attention to the
concepts which were responsible of such evolution.

Extensions of fork algebras have been used for program representation
and derivation [FBH98]. This class of algebras have some particularly
attractive features:

• they are isomorphic to algebras whose domain is a set of binary
relations (Frias et al. in [FBH97] and Gyuris in [Gyu97]),
• finite equational calculus (Frias et al. in [FHV97]),
• expressive power capable of providing an interpretation language

for many logics. Given a logic L, an interpretation is a relational
algebraization of L. This is done by resorting to a semantics-
preserving mapping TL : FormulasL → RelDes(X) for some set of
relational variables X, translating L-formulas to relational terms.
Let Γ ∪ {α} ⊆ FormulasL, then the property of being semantic-
preserving is characterized by the following condition:

Γ |=L α ⇐⇒ { TL(γ) = 1 | γ ∈ Γ } ⊢CFAU TL(α) = 1:
– interpretability of first-order predicate logic (FOL) in fork al-

gebra [Fri02],
– interpretability of PDL in fork algebra [FO98],
– interpretability of first-order dynamic logic (FODL) in fork al-

gebra [FBM02],
– interpretability of LTL, TL [FL03] and their first-order ver-

sions in fork algebra [FL06],
– interpretability of propositional dynamic linear temporal logic

(DLTL) in fork algebra [FGLR05].

2See also [TT52].

2. RELATED WORK 7

2. Related work

2.1. On the development of an ad-hoc language for reasoning
across logics. As we mentioned before (see [HT99]), Henriksen and Thi-
agarajan proposed the use of propositional dynamic linear temporal logic
DLTL as a logic in which it is possible to reason across dynamic and tem-
poral properties. They do so by strengthening the LTL until operator, U,
indexing it with PDL-programs. In DLTL, the formula αUπβ is satisfied in a
model M and a trace σ, by τ , a finite prefix of σ, if there exists an extension
of τ with τ ′ such that ττ ′ is a finite prefix of σ, τ ′ is a valid execution of the
PDL-program π and α is satisfied by every state of τ ′ until a point in which
β is satisfied.

In this work they not only present this logic, but also give a complete ax-
iomatization for the logic obtained by extending the axiomatization of PDL

presented by Segerberg in [Seg77]. The completeness proof is developed on
the basis of the arguments presented by Kozen and Parikh in [KP81] to
prove the completeness of this PDL axiomatization.

In some sense, if we generalize this approach for inter-logic reasoning, the
result is a logic involving syntax, and consequently axioms, to deal with all
the relevant aspects we want to include in the specification of the system.
From our point of view it leads to a complex language with an obscure
semantics and an axiomatization that soon turns to be very difficult to use
in order to prove properties of specifications.

2.2. On the institution based approach for reasoning across
logics. Institutions were introduced by Goguen and Burstall in [GB84].
They present institutions as a framework where it is possible to abstract the
model theory of a logical system by “gluing together” all possible signatures,
sentences and models. They also prove that under some precise conditions
it is possible to use a theorem prover for one institution to prove properties
of another by using the notion of institution morphism, also presented in
[GB84], but extensively developed in [GB92]. An institution morphism
Φ : I→ I′ not only allows us to “borrow” a theorem prover for I′ to be used
to prove properties of I, but also provides a formal framework to constrain a
theory in I′ with constrains from I. In order to be precise, constraining a the-
ory of one institution with constrains from another requires a less restrictive
construction called semi-morphism [Tar96].

In [Mes92a, MOM01], Meseguer and Mart́ı-Orliet presented rewriting
logic as a unified language to model certain system behavior. Rewriting
logic is proposed as a universal logical and semantic framework for compu-
tation, showing that different models of computation can be interpreted in
a semantics preserving way in rewriting logic. On the theoretical side, our
approach shares with rewriting logic the intention of providing a universal
specification formalism.

The main, and significant, difference is that while rewriting logic is close
to models of computation (and thus more appropriate for dealing with oper-
ational formalisms) fork algebras are better suited for handling declarative
specification languages.

8 1. INTRODUCTION AND MOTIVATIONS

One of the main advantages of integrating partial specifications is the
emergence of properties that occurs as a consequence of the synchronization
of system behaviors which are only visible in a global setting. The prob-
lem of emergence of properties was widely discussed by Fiadeiro in [Fia96].
There he used the concept of channel, presented by Fiadeiro and Maibaum
in [FM92], to compose LTL partial specifications producing a synchroniza-
tion of the shared symbols. In this sense, channels allow the emergence of
properties which are not consequence of the partial descriptions but are yet
revealed by their interaction through them. Fiadeiro’s treatment of emerg-
ing properties is extremely important in our work but we go one step further,
we use it in a more complex setting allowing the synchronization of symbols
shared by partial specifications written in different logics.

In [GB84, GB92] the authors introduce two particular kinds of insti-
tutions, duplex and multiplex institutions. These concepts are used to allow
the homogenization of specifications with constraints written in different
languages. Although this approach is correct and very useful, it requires
the institutions used to express constraints to be related by morphisms to
the institutions used to specify the system. This condition establishes limits
on the possibilities of using these constructions for a more general interlogic
reasoning because we want to consider the scenario where logics are not re-
lated by morphisms. An example of this situation is the case of two partial
specification of a system, one of them written in PDL and the other in LTL.
None of them can act as a constraining theory of the other because there is
no possible translation between them.

Sernadas et al. developed in [SSC97a, SSC97b] a method for compos-
ing partial specifications by forcing some synchronization on the behavior
of the system. In [SSC97a] they explore two kinds of synchronizations, at
the level of consequence systems (synchronization on formulas) and at the
level of satisfaction systems (synchronization on models). On the side of
synchronization of consequence systems they consider the addition of new
mixed rules (with premises from one logic and conclusions from the other)
to the proof rules of each constituent logic. These mixed rules allow one to
switch from one proof system to another. As we will show in Chapter 6, our
approach is similar to the latter kind of synchronization except that we ob-
tain the synchronization on models for free as a direct consequence of using
a common language to carry on the homogenization of partial specifications.

In [Mes89], Meseguer developed the categorical formalization of logical
system by complementing the model theoretic view of a logic (institutions)
with its deductive view (entailment system and proof calculus). In this work
Meseguer also introduced the notion of institution representation maps. In-
stitution morphisms and representation maps (co-morphisms) were exten-
sively studied by Tarlecki in [Tar96], who, at the end of this work, writes:

“... this suggests that we should strive at a development of
a convenient to use proof theory (with support tools!) for a
sufficiently rich “universal” institution, and then reuse it for
other institutions linked to it by institution representations.”

thus exposing what, from his point of view, is an important problem to
solve.

2. RELATED WORK 9

We believe that extensions of fork algebras provide a sufficiently rich
“universal” institution because of its expressive power capable of interpret-
ing a large menu of different logics. Of course this observation heavily de-
pends on the software designer needs. Following this guideline we believe
the most influential works are [Mes92a, MOM01], due to Meseguer and
Mart́ı-Orliet, and [Dia02, DF02], due to Diaconescu and Futatsugi. Those
mentioned in second term are specially appealing to us because of their
theoretical beauty and at the same time its practical anchor to software
development. In this case the Grothendiek institution [Dia02] plays the
rôle of Tarlecki’s “universal” institution, which is obtained by performing a
Grothendiek construction [BW90, Cro93] (or “flattening” [TBG91]) on
the CafeOBJ cube [DF02]. The CafeOBJ cube is formed by eight different
logics and twelve projections between them. These logics can be classified
into two well-defined classes of specification languages, a class formed by
four variants of algebraic languages and a class formed by four variants of
rewriting logic languages. Although we agree on the approach of using het-
erogeneous languages, we believe other logics like LTL (propositional and
first order), PDL, FODL and many others provide a more natural language
for software specification.

The key point of our work is the formalization of the foundations of
Argentum. This is carried out by formalizing the logical system (institution)
of fork algebras, on top of which we build an heterogeneous specification
language, much like CafeOBJ, whose constituent specific logical languages,
also presented as institutions, have a particular and well defined rôle in
software design. Then, the existing interpretability results for these logics,
to extensions of fork algebras, are formalized by means of representation
maps between institutions thus, giving the possibility of using fork algebras
for interpreting the whole description of the system.

The use of fork algebras as a common algebraic framework for inter-
preting several logical systems also provides the possibility of introducing
cross-logic constrains, to which we call design decisions, in the form of alge-
braic theories, in order to obtain a good integration of partial specifications.
In this thesis we discuss several methodological approaches for gluing partial
specifications depending on the logics on which they are written.

The thesis is organized as follows. Chapter 2 presents fork algebras
within the framework of universal algebra. This is done by reviewing its
historical development. Chapter 3 presents the basic definitions of category
theory and general logics we will need to formalize the Argentum foun-
dations. Chapter 4 presents the logical system of fork algebras within the
framework of general logics. In Chapter 5 we review an interpretability re-
sult and show how it is formalized in the framework of general logics. This
formalization provides a witness on how existing interpretability results can
be reformulated in this different framework. Chapter 6 presents how the
use of fork algebras as a common algebraic language can be used to produce
different kinds of synchronization between partial specifications written in

10 1. INTRODUCTION AND MOTIVATIONS

different logics. To do this we show, in a general way, how separate specifi-
cations can be glued together by means of the addition of algebraic theories
expressing design decisions. In Chapter 7 we present a small case-study, de-
veloped from its conceptual description, and going throw all the steps, to a
complete algebraic description of the system. Chapter 8 discuss the existing
validation and verification tools for fork algebras; and finally, in Chapter 9
we draw some conclusions and identify future lines of research.

CHAPTER 2

Relation algebras, fork algebras and ω-closure fork algebras

In this chapter we will present some preliminary definitions and results
on the field of algebra. We assume that the reader is familiar with elementary
concepts on set theory and first-order predicate logic; for a reference on
these fields the interested reader is pointed to [Bar77] and [End72]. We
also assume that the reader is familiar with some basic concepts in the field
of universal algebra and point the interested reader to [BS81].

The chapter is organized as follows. The first part (§1) is dedicated
to provide all the basic definitions from the field of universal algebra that
will be needed throughout the rest of the thesis. In §2 we present relation
algebra by summarizing the historical development of the field. Finally, in
§3, we present fork algebra and its extension to ω-closure fork algebra with
urelements.

1. Universal Algebra

In this section we will briefly summarize some fundamental definitions
from the field of universal algebra that will be useful in the development of
this chapter. We begin by introducing the notion of algebra.

Definition 2.1. Let {Ak}k∈K be non-empty family of non-empty sets
and n ∈ ◆. Then, for {k1, . . . , kn} ⊆ K we define:

Ak1 × . . .×Akn = { 〈a1, . . . , an〉 | a1 ∈ Ai1 ∧ . . . an ∈ Ain } .

An n-ary operation (or function) on Ak1 × . . . × Akn is any function f

from Ak1× . . .×Akn to Ak, with k ∈ K, (denoted f : Ak1× . . .×Akn → Ak);
the sequence [Ak1 , . . . , Akn , Ak] is said to be the arity of f .

Definition 2.2. A language (or similarity type) is an ordered pair
〈A,F〉, where A in an indexed set of sort names and F an indexed set
of function symbols F such that each f ∈ F is assigned a sequence of ele-
ments of A. This sequence will be called the arity of f , and f will be said
to be an n-ary function symbol whenever then length of its arity is n+ 1.

11

12 2. ω-CLOSURE FORK ALGEBRAS

Let 〈A,F〉 be a similarity type, then, the function arity retrieves the
arity of the function symbols of F .

The previous definitions can be substantially simplified when A is a
singleton set. Notice that the definition of similarity type is given only in
terms of an indexed set of function symbols, and the arity of a function
is just a natural number because there exists a unique set on which the
functions are defined.

Definition 2.3. Let T = 〈A,F〉 be a language. Then an algebra A of

similarity type T is a structure 〈A, {f
Ai1

,...,Ain ,Ai

i }i∈I∧{Ai1
,...,Ain ,Ai}⊆A〉 such

that:

fi : Ai1 × . . .×Ain → Ai for all i ∈ I.

Algebras of similarity type 〈A,F〉 are also known as many-sorted or
mono-sorted when A contains more than one sort, or A is a singleton set,
respectively. From now one, we will restrict ourselves to the case of mono-
sorted algebras, unless it is clearly stated.

Given a mono-sorted algebra A = 〈A, {fi}i∈I〉, A will be called the
universe of A and {fi}i∈I will be called the operations (or fundamental
operations) of A. If arity(fi) = 0, fi will be called a constant.

Definition 2.4. An algebra A with universe A is non-trivial if |A| ≥ 2.

Definition 2.5. Let A = 〈A, {fi}i∈I〉 and B = 〈B, {gi}i∈I〉 be two
algebras of the same similarity type, B is a subalgebra of A if

- B ⊆ A,
- arity(fi) = arity(gi) for all i ∈ I,
- gi(b1, . . . , barity(gi)) = fi(b1, . . . , barity(fi)) for all b1, . . . , barity(gi) ∈
B.

Definition 2.6. Let A = 〈A, {fi}i∈I〉 and B = 〈B, {gi}i∈I〉 two alge-
bras of the same similarity type, a function h : A → B is a homomorphism
from A to B if

h(fi(a1, . . . , aarity(fi))) = gi(h(a1), . . . , h(aarity(gi))) for all i ∈ I.

B is a homomorphic image of A if there exists a surjective homomor-
phism from A to B. A bijective homomorphism is called isomorphism.

Definition 2.7. Let A1 = 〈A1, {f
A1
i }i∈I〉 and A2 = 〈A2, {f

A2
i }i∈I be

two algebras of the same similarity type. Then the direct product of A1 and
A2, denoted by A1×A2 is set to be the algebra 〈A1×A2, {f

A1×A2
i }i∈I〉 such

that for all i ∈ I, {a1
j}1≤j≤arity(f

A1
i)
⊆ A1 and {a2

j}1≤j≤arity(f
A2
i)
⊆ A2:

fA1×A2
i (〈a1

1, a
2
1〉, . . . , 〈a

1

arity(f
A1
i)

, a2

arity(f
A2
i)
〉) =

〈fA1(a1
1, . . . , a

1
arity(fA1)

), fA2
i (a2

1, . . . , a
2

arity(f
A2
i)

)〉 .

When dealing with many-sorted algebras, the function RdT takes reducts
to the similarity type T ; to take reduct of a class of algebras of similarity
type 〈A,F〉, to a similarity type 〈A′,F ′〉 means to forget all the domains of

1. UNIVERSAL ALGEBRA 13

A not mentioned in A′ and the functions of F not mentioned in F ′. Notice
that this definition requires A′ to be included in A, and F ′ to be included
in F . Once again, the definition is simpler when dealing with mono-sorted
algebras. The operator S closes a class of algebras of the same similarity
type under subalgebras, P under direct product, I under isomorphisms and
H under homomorphisms.

A class of algebras closed under subalgebras, direct products and ho-
momorphisms is a variety. In [Bir35], Birkhoff proved that varieties can
always be axiomatized by a (possibly infinite) set of equations.

Theorem 2.1. ([Bir35])
Let K be a class of algebras of the same similarity type. Then K is an
equational class if and only if K is a variety.

Definition 2.8. Given an algebra A and a class of algebras K, A is
representable in K if there exists B ∈ K such that A is isomorphic to B.
This notion generalizes as follows: a class of algebras K1 is representable in
a class of algebras K2 if every member of K1 is representable in K2.

Before continuing with this presentation we will present the concept
of lattice and some definitions and results that will be useful in order to
characterize some properties of algebraic structures.

Lattices can be defined from two different points of view. On one hand
lattices can be viewed as algebras, and on the other hand they can be defined
from the observation of their geometric properties. We will first give the
geometric definition.

Definition 2.9. Let A be a set, a binary relation ≤ ⊆ A×A is a partial
order on A if for all a, b, c ∈ A it satisfies:

• a ≤ a (reflexivity),
• if a ≤ b and b ≤ a, then a = b (antisymmetry),
• if a ≤ b and b ≤ c, then a ≤ c (transitivity).

Definition 2.10. Let P be a set and ≤ ⊆ P × P , 〈P,≤〉 is said to be a
partially ordered set (poset for short).

Definition 2.11. Let 〈P,≤〉 be a poset and A ⊆ P . An element p ∈ P
is an upper bound for A if for all a ∈ A, a ≤ p. An element p ∈ P is the least
upper bound (or supremum) of A (denoted as sup A) if p is an upper bound
of A, and if for every a ∈ A, a ≤ b, then p ≤ b. Dually, we can define lower
bound and greatest lower bound (or infimum) of A (denoted as inf A).

Definition 2.12. A poset 〈P,≤〉 is complete if for every A ⊆ P both
sup A and inf A exist (in P).

Definition 2.13. A poset 〈L,≤〉 is a lattice if for every elements a, b ∈
L, sup {a, b}, inf {a, b} ∈ L.

Theorem 2.2. ([BS81, Chapter I, §4, Theorem 4.2])
If 〈P,≤〉 is a complete poset, then 〈P,≤〉 is a complete lattice.

Definition 2.14. A binary relation R ⊆ A×A is an equivalence relation
if for all a, b, c ∈ A the following three properties are satisfied:

• a R a (reflexivity),

14 2. ω-CLOSURE FORK ALGEBRAS

• If a R b, then b R a (symmetry),
• If a R b and b R c, then a R c (transitivity).

The set of all equivalence relations on a set A will be denoted as Eq(A).

Theorem 2.3. ([BS81, Chapter I, §4, Theorem 4.5])
〈Eq(A),⊆〉 is a complete lattice.

Definition 2.15. Let A = 〈A, {fi}i∈I〉 be an algebra and E ∈ Eq(A).
Then E is a congruence on A if E satisfies the following compatibility prop-
erty :

For each i ∈ I, if aj E bj for all 1 ≤ j ≤ arity(fi), then
fi(a1, . . . , aarity(fi)) E fi(b1, . . . , barity(fi)).

The set of all congruences on A is denoted as Con A.

Theorem 2.4. ([BS81, Chapter II, §5, Theorem 5.3])
Let A be an algebra, then 〈Con A,⊆〉 is a complete sub-lattice of 〈Eq(A),⊆〉,
the lattice of equivalence relations on A.

Definition 2.16. Let A = 〈A, {fi}i∈I〉, then the congruence lattice of
A, denoted as Con A is the lattice whose universe is Con A, and meets and
joins are calculated as in 〈Eq(A),∧,∨〉.

Definition 2.17. An algebra A is simple if Con A = {U, I}.

Intuitively, these two congruences are the universal relation and the
identity respectively.

From the algebraic point of view a lattice is defined as follows.

Definition 2.18. An algebraic structure 〈L, ·, +〉 is a lattice if for all
x, y, z ∈ L, the following identities are satisfied:

• Commutative laws:
– x·y = y ·x,
– x+y = y+x,

• Associative laws:
– x·(y ·z) = (x·y)·z,
– x+(y+z) = (x+y)+z,

• Idempotent laws:
– x·x = x,
– x+x = x,

• Absorption laws:
– x = x·(x+y),
– x = x+(x·y).

The following theorem, which is a well-known result in the field of uni-
versal algebra, shows the equivalence between the geometric and algebraic
definitions of lattice.

Theorem 2.5. The following two properties hold:

• If 〈L,≤〉 is a lattice, then 〈L, sup, inf〉 is a lattice, and
• If 〈L, ·, +〉 is a lattice, then 〈L,⊑〉 (where for all a, b ∈ L, a ⊑ b if

and only if a+b = b), is lattice.

2. RELATION ALGEBRAS 15

2. Boolean algebras and relation algebras

In 1847 George Boole [Boo47] presented his algebraization of the propo-
sitional logic, referred by Boole at that time as the algebra of logic. We will
not get attached to Boole’s presentation of the calculus, in order to give a
more modern definition of Boolean algebra. For a general reference in the
field of Boolean algebra, the interested reader is pointed to [Hal63, Sik64].

Definition 2.19. ([HMT71, §1.1, pp. 159])
A Boolean algebra is an algebraic structure 〈A, +, ·, –, 0, 1〉 in which + and
· are binary operations, – is a unary operation and 0 and 1 are distinguished
elements, satisfying the following identities for all x, y, z ∈ A:

x+y = y+x (Ax. 1)

x·y = y ·x (Ax. 2)

x+(y ·z) = (x+y)·(x+z) (Ax. 3)

x·(y+z) = (x·y)+(x·z) (Ax. 4)

x+0 = x (Ax. 5)

x·1 = x (Ax. 6)

x+x = 1 (Ax. 7)

x·x = 0 (Ax. 8)

The class of all Boolean algebras will be denoted as BA.
Given A ∈ BA, x ≤A y is the partial ordering on the elements of |A| (see

Theorem 2.5).

Definition 2.20. An algebraic structure 〈A,∪,∩, –, ∅, E〉 where A ⊆ 2U

for some set U ; ∪, ∩, –, ∅ have their standard set theoretical meaning, E ∈ A
and

⋃
r∈A r ⊆ E, such that A is closed under the operations, is called a set

Boolean algebra.1

Definition 2.21. Let A ∈ BA, a non-zero a in |A| is said to be an atomic
element if it satisfies either of the following properties:

• b ≤ a implies b = a or b = 0,
• for all b, a·b = 0 or a·b = a.

Definition 2.22. Let A ∈ BA, a class π of atomic elements of |A| is said
to be an atomic basis if every non-zero element b of |A| satisfy that there
exists π′ ⊆ π such that:

b = Σa∈π′a .

Definition 2.23. A class π of atomic elements is said to be a complete
atomic system if b = 0 is the only element such that for all a ∈ π, b ·a = 0.

1Let U be a set, 2U denotes the set of subsets of U .

16 2. ω-CLOSURE FORK ALGEBRAS

Theorem 2.6. ([Sto36, §4, Theorem 6])
Let A ∈ BA. Then if a and b are atomic elements of |A|, then a = b or
a·b = 0.

Theorem 2.7. ([Sto36, §4, Theorem 7])
Let A ∈ BA. Then a complete atomic system in a Boolean algebra contains
every atomic element in |A|.

Definition 2.24. Let A be an algebra. Then A is atomistic if there
exists a complete atomic system for |A|.

If A ∈ BA, by At(A) we denote the set of atoms of A.
Peirce’s logic of relatives can be defined in terms of a class of algebras.

To this purpose we introduce the notion of algebras of binary relations.

Definition 2.25. An algebra of binary relations is an algebraic structure
〈A,∪,∩, –, ∅, E, ◦,⌣ , Id〉 in which A is a set of binary relations on a set U ,
∪, ∩ and ◦ are binary operations, – and ⌣ are unary operations and ∅, E
and Id are distinguished elements of A satisfying:

• A is closed under ∪ (i.e. set union),
• A is closed under ∩ (i.e. set intersection),
• A is closed under – (i.e. set complement with respect to E),
• ∅ ∈ A is the empty relation on the set U ,
• E ∈ A and

⋃
r∈A r ⊆ E,

• A is closed under ◦, defined as follows

x◦y = { 〈a, b〉 ∈ U × U | (∃c)(〈a, c〉 ∈ x ∧ 〈c, b〉 ∈ y) } ,

• A is closed under ⌣, defined as follows

⌣
x= { 〈a, b〉 ∈ U × U | 〈b, a〉 ∈ x } ,

• Id ∈ A is the identity relation on the set U .

From now on, and for the sake of clarifying concepts, we will refer to
the algebras of binary relations as proper relation algebras (PRA for short)
following the name used by Jonsson and Tarski in [JT51, JT52].

Definition 2.26. A proper relation algebra 〈A,∪,∩, –, ∅, E, ◦,⌣ , Id〉 on
a set U is said to be full if A = 2U×U .

Notice that if a proper relation algebra is full, then it is simple. The
proof of this property can be found in [JT52, Theorem 4.10].

The following three lemmas about full proper relation algebras will be
useful in Chapter 5.

Lemma 2.1. Let A,B ∈ PRA such that both A and B are full, B is
non-trivial, and δ be a homomorphism of the form δ : |A| → |B|.

Then if a ∈ At(A), δ(a) 6= ∅.

2. RELATION ALGEBRAS 17

Proof. Suppose a ∈ At(A) such that δ(a) = ∅.

UB× UB

= δ(UA× UA)
[because δ is a homomorphism]

= δ((UA× UA)◦a◦(UA× UA))
[because A is simple and [JT52, Theorem 4.10]]

= δ(UA× UA)◦δ(a)◦δ(UA× UA)
[because δ is a homomorphism]

= UB× UB◦δ(a)◦UB× UB

[because δ is a homomorphism]
= UB× UB◦∅◦UB× UB

[by hypothesis]
= ∅

Which is a contradiction because B is non-trivial.

Lemma 2.2. Let A,B ∈ PRA such that both A and B are full, B is
non-trivial, and δ be a homomorphism of the form δ : |A| → |B|.

Then if a ∈ At(A), then δ(a) ∈ At(B).

Proof. As δ is a homomorphism, for all r ∈ |A|, δ(r⋄) = δ(r)⋄. If we
consider the case a ∈ At(A) we obtain that δ(a) = δ(a⋄) = δ(a)⋄. Thus, by
Lemma 2.1, δ(a) must be an atom.

Lemma 2.3. Let A,B ∈ PRA such that both A and B are full, B is
non-trivial, and δ be a homomorphism of the form δ : |A| → |B|.

Then δ is a bijection.

Proof. We first prove that δ is injective. Let r, s ∈ |A| such that δ(r) =
δ(s). As A is atomistic, then δ(r) = δ(∪a∈At(A)∧a≤ra) = ∪a∈At(A)∧a≤rδ(a).
By applying the same reasoning to s, we obtain that ∪a∈At(A)∧a≤rδ(a) =
∪a∈At(A)∧a≤sδ(a). Now, as δ is a homomorphism, if a, b ∈ At(A), then
δ(a) = δ(b) implies a = b. Thus, we obtain that r = s.

The proof of the surjectivity of δ follows from the fact that δ(UA×UA) =
UB × UB. Then, δ(∪a∈At(A)∧a≤UA×UA

a) = ∪a∈At(B)∧a≤UB×UB
a. Now, as

δ is a homomorphism, ∪a∈At(A)∧a≤UA×UA
δ(a) = ∪a∈At(B)∧a≤UB×UB

a. By
Lemma 2.2, At(B) = { δ(a) | a ∈ At(A) }. Thus, recalling on the fact that
any r ∈ |B| satisfies that r = ∪a∈At(B)∧a≤ra, there exists s ∈ |A| such that
s = ∪a∈At(A)∧δ(a)≤ra and δ(s) = r.

In [Tar41], Tarski presented the elementary theory of binary relations
(ETBR for short) as a calculus whose intended models are the proper relation
algebras.

Definition 2.27. Let R be a set of relation variables, then the set of
relation designations is the smallest set RelDes(R) such that:

• R ∪ { 1, 0, 1′ } ⊆ RelDes(R),
• If r, s ∈ RelDes(R), then { r+s, r ·s, r, r ;s, r̆ } ⊆ RelDes(R).

Let I be a set of individual variables and R be a set of relation variables,
then the set of atomic formulas is the smallest sets AtForm(I,R) such that:

• If x, y ∈ I and r ∈ RelDes(R), then x r y ∈ AtForm(I,R),

18 2. ω-CLOSURE FORK ALGEBRAS

• If r, s ∈ RelDes(R), then r = s ∈ AtForm(I,R).

Then, the set of formulas of ETBR is the smallest set ETBRForm(I,R)

• AtForm(I,R) ⊆ ETBRForm(I,R),
• If f, g ∈ ETBRForm(I,R) and x ∈ I, then {¬f, f ∨ g,∃x(f) } ⊆

ETBRForm(I,R).

The rest of the propositional operators such as conjunction (∧), and
implication (=⇒), are defined as always in terms of the negation (¬) and
disjunction (∨) operators as α ∧ β ≡ ¬(¬α ∨ ¬β) and α =⇒ β ≡ ¬α ∨ β
respectively. The universal quantifier (∀) is defined in terms of the existential
quantifier as ∀x(α) ≡ ¬∃x(¬α).

Definition 2.28. ([Tar41, pp. 75–76])
Let I be a set of individual variables and R be a set of relation variables,

then ETBR is defined as follows:

• Formulas: ETBRForm(I,R),
• Axioms2:

– Axioms for the propositional operators,
– Axioms for the relational operators:

∀x, y(x 1 y) ,
∀x, y(x r ·s y =⇒ x r y ∧ x s y) ,
∀x, y(¬x 0 y) ,
∀x, y(x r+s y =⇒ x r y ∨ x s y) ,
∀x, y(x r y =⇒ ¬x r y) ,
∀x(x 1′ x) ,
∀x, y, z(x r y ∧ y 1′ z =⇒ x r z) ,
∀x, y(x r̆ y ⇐⇒ y r x) ,
∀x, y(x r ;s y =⇒ ∃z(x r z ∧ z s y)) ,
r = s⇐⇒ ∀x, y(x r y ⇐⇒ x s y) .

• Inference rules:
– Inference rules for the propositional operators (if required),
– Modus ponens:

α =⇒ β α

β
– Generalization rule:

α
∀x(α)

As we mentioned in a previous paragraph, Tarski presented ETBR with
the aim of giving a calculus for the class PRA. Later on, in [JT52, Theo-
rem 4.10], Jonsson and Tarski proved that it was not true, because ETBR

2In Tarski’s presentation of ETBR [Tar41], two other concepts are included, a binary
operator called relative addition (+̧) and a constant symbol for the diversity (0′). This two
new concepts acts as relative, or Peircean, counterpart of the Boolean concept of addition
(+) and empty relation (0).

Relative addition and the diversity are characterized by the following two axioms:

∀x, y(x r +̧ s y =⇒ ∀z(x r z ∧ z s y))
∀x, y(x 0′ y ⇐⇒ ¬(x 1′ y))

2. RELATION ALGEBRAS 19

forces models to be simple. As we will see later on in this work, there are
more important reasons why this relationship does not hold.

Even when there is no doubt that this calculus is appropriate to reason
about properties where the only variables occurring in the formula are re-
lation variables, it is easy to see that the only way to build a proof is by
using the last axiom of ETBR (i.e. definition of = in terms of a formula on
individual variables) and then by reasoning as in FOL. This was Tarski’s mo-
tivation to present, also in [Tar41], the calculus of relations (CR for short)
as a calculus in which it should be possible to prove properties of relations
but without the need of using elements from outside the language. To this
purpose he confined himself to formulas in which no individuals variables
appear. Thus formulas are either atomic formulas of the form r = s or a
formula built from atomic formulas using propositional connectives.

The following definitions present CR.

Definition 2.29. Let R be a set of relation variables, then the set of
formulas of CR is the smallest set CRForm(R) such that:

• If r, s ∈ RelDes(R), then r = s ∈ CRForm(R),
• If f, g ∈ CRForm(R), then {¬f, f ∨ g } ⊆ CRForm(R).

As we mentioned before, the remaining propositional connectives are
defined in terms of the negation (¬) and disjunction (∨) connectives.

Definition 2.30. ([Tar41, pp. 76–77])
Let R be a set of relation variables, then CR is defined as follows:

• Formulas: CRForm(R),
• Axioms3:

– Axioms for the propositional operators,
– Axioms for the relational operators:

(r = s ∧ r = t) =⇒ s = t ,

r = s =⇒ (r+t = s+t ∧ r ·t = s·t) ,
r+s = s+r ∧ r ·s = s·r ,
r+(s·t) = (r+s)·(r+t) ∧ r ·(s+t) = (r ·s)+(r ·t) ,
r + 0 = r ∧ r ·1 = r ,

r+r = 1 ∧ r ·r = 0 ,
1 = 0 ,
˘̆r = r ,

(r ;s)̆ = s̆; r̆ ,
r ;(s;t) = (r ;s);t ,
r ;1′ = r ,

r ;1 = 1 ∨ 1;r = 1 ,
(r ;s)· t̆ = 0 =⇒ (s;t)· r̆ = 0 .

• Inference rules:

3As we mentioned before Tarski presented CR incorporating axioms in order to char-
acterize the relative addition (+̧) and the diversity (0′). Tarski’s axioms for these two
operators are:

r +̧ s = r ;s
0′ = 1′

20 2. ω-CLOSURE FORK ALGEBRAS

– Inference rules for the propositional operators (if required),
– Modus ponens:

α =⇒ β α

β
– Inference rules for =:

r = r

s = r
r = s

s = t r = s
r = t

r1 = s1 · · · rk = sk

E(r1, . . . , rk) = E(s1, . . . , sk)

In [Tar41, pp. 87], Tarski argued, as a conclusion of the development
of some proofs in CR, that it could be presented as a purely equational
calculus in order to avoid the inclusion of axioms and inference rules for the
sentential calculus. And it was in [JT52], where Jonsson and Tarski proved
that axiom r ;1 = 1 ∨ 1;r = 1 forces the models to be simple, property that
is not necessarily satisfied by the proper relation algebras, so that is why
they moved to a definition of CR in which this axiom is not present.

Now we present CR but as a purely equational calculus. This is the
presentation of CR we will used from now on.

Definition 2.31. Let R be a set of relation variables, then the set of
formulas of CR is the smallest set CRForm(R) such that:

• If r, s ∈ RelDes(R), then r = s ∈ CRForm(R),

Definition 2.32. ([JT52, Definition 4.1])
Let R be a set of relation variables, then CR is defined as follows:

• Formulas: CRForm(R),
• Axioms:

– Axioms (1) – (8) of Definition 2.19 for the Boolean operators
– The following axioms for the relational operators4: for all
r, s, t ∈ A

r ;(s;t) = (r ;s);t (Ax. 9)

(r+s);t = (r ;t)+(s;t) (Ax. 10)

(r+s)̆ = r̆+ s̆ (Ax. 11)

˘̆r = r (Ax. 12)

r ;1′ = r (Ax. 13)

4Axiom (15), or Dedekind formula, is equivalent to

r ;s·t = 0 iff t ; s̆·r = 0 iff r̆ ;t ·s = 0

known as cycle rule.

2. RELATION ALGEBRAS 21

(r ;s)̆ = s̆; r̆ (Ax. 14)

(r ;s)·t ≤ (r ·(t ; s̆));(s·(r̆ ;t)) (Ax. 15)

• Inference rules: the inference rules presented in Definition 2.30 for
=.

Definition 2.33. The class of relation algebras (RA for short) is the
class of the models of the identities provable in CR.

It was in [CT51] where Chin and Tarski proved that Axioms (9) – (15)
can be proved from the first version of CR (excluding the axiom that forces
models to be simple) and viceversa.

As we mentioned in Chapter 1, at the end of [Tar41], Tarski formulated
some questions about the relation between ETBR and CR.

It is easy to see that the class PRA is contained in RA by verifying
that the operations on binary relations presented in Definition 2.25 satisfy
the axioms presented in Definition 2.32. The converse property (i.e. the
representability of RA in PRA) is the first of Tarski’s question.

It was Roger Lyndon who gave an answer to this question by constructing
a finite, simple and non-trivial relation algebra with 56 atoms which was not
representable5.

Theorem 2.8. ([Lyn50, §8, Theorem III])
There exists a finite relation algebra which is not isomorphic to any proper
relation algebra.

The proof of Theorem 2.8 is obtained by providing a family of conditions
C which are satisfied by every complete relation algebra which is isomor-
phic to a proper relation algebra ([Lyn50, §6, Theorem I]). Then, as finite
relation algebras are complete, the converse of [Lyn50, §6, Theorem I] also
holds ([Lyn50, §7, Theorem II]). Finally, the proof follows by constructing
a finite relation algebra in which one of the conditions in C fails.

Corollary 2.1. RA is not representable in PRA.

Let R is a set of relational variables, then algebraic formulas are ob-
tained by composing equations from CRForm(R) by using propositional
connectives. An algebraic axiom for RA is any algebraic formula which is
true in every proper relation algebra.

Lyndon showed in [Lyn50, §14, Theorem IV] that the class PRA can
not be axiomatized by a set of algebraic axioms by showing that one of the
conditions in C is not a consequence of any set of algebraic axioms for RA.
Thus answering Tarski’s second question negatively.

This theorem proves that CR is not complete for the class PRA. An
immediate consequence of this result is that there exist formulas which are
valid in every proper relation algebra but fail to be valid in a relation algebra.
Lyndon’s example of such a formula is the equation:

5Lyndon’s construction was later improved by Ralph McKenzie in [McK70] by con-
structing another non-representable relation algebra but with only four atoms.

22 2. ω-CLOSURE FORK ALGEBRAS

r ;s·t ;u ·v ;w ≤ r ; (r̆ ;t ·s;ŭ · (r̆ ;v ·s;w̆) ; (v̆ ;t ·w ;ŭ)) ;u .

A relation algebra is representable if it is isomorphic to a proper relation
algebra. In [Tar55a], Tarski proved that the class of representable relation
algebras can be axiomatized by a set of equational axioms by proving that
it is a variety. This result is synthesized in the following two theorems.

Theorem 2.9. ([Tar55a])
The class of representable relation algebras is a variety.

It was Donald Monk who proved in [Mon64] that a set of equations
axiomatizing PRA could never be finite.

Theorem 2.10. ([Mon64])
PRA is not finitely axiomatizable.

Once again, this necessarily means that there must be a property that
holds in every proper relation algebra but fails in some relation algebra, and
in [TG87, pp. 55] Tarski and Givant gave an example of such property,
which fails in the non-representable relation algebra presented by Ralph
McKenzie in [McK70]. This also results in a negative answer to Tarski’s
second question about CR.

With regard to Tarski’s third question, the answer was given by Korselt,
(the proof appeared in [Löw15]), by proving the equipolence of CR and the
three variable fragment of the dyadic first-order predicate logic. In [TG87,
§3.4 (iv)], Tarski and Givant presented the following formula of ETBR which
is not equivalent to any formula of the CR:

∀x∀y∀z∃u(u 0′ x ∧ u 0′ y ∧ u 0′ z) .

3. Fork algebras and ω-closure fork algebras

As we mentioned in Chapter 1, the fork algebras were introduced by
Armando Haeberer and Paulo A. S. Veloso in [HV91] in the search for a
formalism that could be suitable for software specification and verification.
A proper fork algebra is the extension of a proper relation algebra, obtained
by adding a new operator called fork (denoted by “∇”). Now, let U be a
set and ⋆ : U × U → U , then we can define fork of binary relations in the
following way:

(1) r∇s = { 〈a, b〉 ∈ U × U | ∃x, y ∈ U | b = x ⋆ y ∧ a r x ∧ a s y }

Fork algebras evolved around the definition of the function ⋆. In [HV91]
proper fork algebras were presented on a domain of binary relations on the
set of finite trees built out from applications of ⋆; in that sense ⋆ acts as a
set theoretical pairing function. In [VH91] Veloso and Haeberer moved to a
definition where the domain is built from binary relations on finite strings; an
immediate consequence of this decision is that ⋆ acts as string concatenation.
Later on, in [VHB92] the base set is once again made from finite trees. In
all the previously mentioned articles, no axiomatization is given. Mikulás,
Sain and Simon proved, in [MSS92], that an extension of a proper relation

3. ω-CLOSURE FORK ALGEBRAS 23

algebra with ∇ (defined as in Equation 1), with ⋆ being either binary tree
constructor or string concatenation is not finitely axiomatizable.

It is easy to observe that the operation ∇ induces a structure on the
domain of the algebra. As it must be closed under ∇ , U must be closed
under applications of ⋆ thus U must be a set of the form 〈S, ⋆〉 for some set
S.

If U is the base set of a fork algebra and x ∈ U , x is said to be a urelement
if there are no y, z ∈ U such that x = y ⋆ z. Intuitively a urelement is a
non-splitting element of U . It is easy to prove that having urelements is
equivalent to having a non-surjective function ⋆.

Definition 2.34. A star proper fork algebra with urelements is a two-
sorted algebraic structure 〈A,U,∪,∩, –, ∅, E, ◦,⌣ , Id,∇ , ⋆〉 in which A is a
set of binary relations on a set U ; ∪, ∩, ◦ and ∇ are binary operations
on A; – and ⌣ are unary operations on A; ∅, E and Id are distinguished
elements of A; and ⋆ is a binary operation on U satisfying:

• 〈A,∪,∩, –, ∅, E, ◦,⌣ , Id〉 is a proper relation algebra on U ,
• ⋆ is a binary function on U that is injective but not surjective on

the restriction of its domain to E and
• A is closed under ∇ of binary relations, defined as follows:

r∇s = { 〈a, x ⋆ y〉 ∈ U × U | a r x ∧ a s y } .

If in addition, ⋆ is not restricted to be non-surjective, the algebra is referred
to as a star proper fork algebra.

The class of all star proper fork algebras with urelements (star proper
fork algebras) will be denoted as ⋆PFAU (⋆PFA).

A graphical interpretation of the fork of binary relations is presented in
Figure 2.1. Being ⋆ injective, intuitively means that x⋆y acts as an encoding
of the pair 〈x, y〉 that not necessarily means its set theoretical (canonical)
representation as {x, {x, y}}.

a
��

��✒

❅❅

❅❅❘

x

y

∇ ⋆

R

S

Figure 2.1. Graphical representation of “fork”.

Definition 2.35. The class of proper fork algebras with urelements is ob-
tained from ⋆PFAU as RdT ⋆PFAU, where T = 〈A,∪,∩, –, ∅, E, ◦,⌣ , Id,∇〉.

The class of proper fork algebras is obtained in the same way but apply-
ing the operator RdT on the class ⋆PFA.

Definition 2.36. A proper fork algebra with urelements (proper fork
algebra) 〈A,∪,∩, –, ∅, E, ◦,⌣ , Id,∇〉 is said to be full if its relational reduct
(which is a proper relation algebra) 〈A,∪,∩, –, ∅, E, ◦,⌣ , Id〉 is full.

24 2. ω-CLOSURE FORK ALGEBRAS

The class of full proper fork algebras with urelements (full proper fork
algebras) will be denoted as fPFAU (fPFA).

The following two lemmas about full proper fork algebras will be useful
in Chapter 5.

Lemma 2.4. Let A,B ∈ fPFA, such that both A and B are full, B is
non-trivial and δ : A→ B be a homomorphism.

Then, for all 〈sa, s
′
a〉 ∈ U

A× UA, there exists 〈sb, s
′
b〉 ∈ U

B× UB such
that δ({ 〈sa, s

′
a〉 }) = { 〈sb, s

′
b〉 }.

Proof. By definition of ⋄, δ({ 〈sa, s
′
a〉 }) = δ({ 〈sa, s

′
a〉 }
⋄). Now as δ is

a homomorphism, δ({ 〈sa, s
′
a〉 }
⋄) = δ({ 〈sa, s

′
a〉 })

⋄. Then, by Lemma 2.1,
δ({ 〈sa, s

′
a〉 }) 6= ∅, and consequently δ({ 〈sa, s

′
a〉 }) has exactly one pair, and

as δ is defined for any relation in UA × UA then, there must be a pair
〈sb, s

′
b〉 ∈ U

B× UB for which δ({ 〈sa, s
′
a〉 }) = { 〈sb, s

′
b〉 }.

Lemma 2.5. Let A,B ∈ fPFA, such that both A and B are full, B is
non-trivial and δ : A→ B be a homomorphism.

Then, for all 〈s, s′〉 ∈ UA × UA, δ({ 〈s, s′〉 }) ⊆ δ(R) if and only if
{ 〈s, s′〉 } ⊆ R.

Proof. The fact that if { 〈s, s′〉 } ⊆ R, then δ({ 〈s, s′〉 }) ⊆ δ(R) fol-
lows by observing that δ is a Boolean homomorphism, and therefore order-
preserving.

Now we prove the converse property. δ(R) = δ(
⋃
〈a,b〉∈R { 〈a, b〉 }) =⋃

〈a,b〉∈R δ({ 〈a, b〉 }). Now, if δ({ 〈s, s′〉 }) ⊆ δ(R), by Lemma 2.4, there exists

〈a, b〉 ∈ R such that δ({ 〈a, b〉 }) = δ({ 〈s, s′〉 }). Then, as δ is an injection
(by Lemma 2.3),〈a, b〉 = 〈s, s′〉 and consequently { 〈s, s′〉 } ⊆ R.

In the same way CR is the abstract counterpart of PRA (even considering
its limitations), it is possible to define a calculus for proper fork algebras
with urelements (CFAU for short).

Definition 2.37. Let R be a set of relation variables, then the set of
relation designations is the smallest set RelDes(R) such that:

• R ∪ { 1, 0, 1′ } ⊆ RelDes(R),
• If r, s ∈ RelDes(R), then { r+s, r ·s, r, r ;s, r̆, r∇s } ⊆ RelDes(R).

Then, the set of formulas of CFAU is the smallest set CFAUForm(R)

• If r, s ∈ RelDes(R), then r = s ∈ CFAUForm(R),

Definition 2.38. Let R be a set of relation variables, then CFAU is
defined as follows:

• Formulas: CFAUForm(R),
• Axioms:

– Axioms (1) – (15) of Definition 2.32 for the relational operators
– The following axioms for the fork operator: for all r, s, t, u ∈ A

r∇s = (r ;(1′∇1))·(s;(1∇1′)) (Ax. 16)

(r∇s);(t∇u)̆ = (r ; t̆)·(s;ŭ) (Ax. 17)

(
1′∇1

)
˘∇
(
1∇1′

)
˘≤ 1′ (Ax. 18)

3. ω-CLOSURE FORK ALGEBRAS 25

1;(1∇1·1′);1 = 1 (Ax. 19)

• Inference rules: the inference rules presented in Definition 2.30 for
=.

The term 1∇1·1′, appearing in Axiom (19), characterizes the partial
identity on urelements. This term will be denoted by 1′U. Then, it is easy
to see that Axiom (19) enforces the existence of urelements.

If we remove the Axiom (19) we obtain what is called the calculus for
fork algebras (CFA for short).

Definition 2.39. The class of fork algebras with urelements (FAU for
short), is the class of the models of the identities provable in CFAU.

The class of fork algebras (FA for short), is the class of the models of the
identities provable in CFA.

Terms (1′∇1)̆ and (1∇1′)̆ , when interpreted in a proper fork algebra,
act as projections of the first and second element involved in an application
of ⋆. These two terms will be denoted by π and ρ, respectively. Figures 2.2
and 2.3 show a graphical representation of projections π and ρ.

❅❅

❅❅❘

��

��✒

x

⋆

y

∇ x

Id

E

Figure 2.2. Graphical representation of “π”.

❅❅

❅❅❘

��

��✒

x

⋆

y

∇ y

E

Id

Figure 2.3. Graphical representation of “ρ”.

These definitions allow us to rewrite Axioms (16), (18) and (19) as fol-
lows:

r∇s = (r ;π̆)·(s; ρ̆)

π∇ρ ≤ 1′

1;1′U ;1 = 1

26 2. ω-CLOSURE FORK ALGEBRAS

By resorting to the identity between non-splitting elements we define

U1U = 1′U ;1;1′U. Relation U1U relates every pair of non-splitting objects.
Now, from the fork operator we define the binary operator ⊗ (cross) by the
condition:

(2) R⊗ S = (π ;R) ∇ (ρ;S) .

When interpreted in an algebra A ∈ fPFAU, ⊗ behaves as a parallel
product (see Figure 2.4 for a graphical representation):

R⊗ S = { 〈a ⋆ b, c ⋆ d〉 | 〈a, c〉 ∈ R ∧ 〈b, d〉 ∈ S } .

✲

✲

x

⋆

y

w ∈ R(x)

z ∈ S(y)

⊗ ⋆

R

S

Figure 2.4. Graphical representation of “⊗”.

As Frias points out in [Fri02], it is in [HBS93b]6 where Haeberer et al.
presented the actual axiomatization for the fork algebras.

If specifications are to be written in the language of fork algebras, it is
valuable to have an understandable semantics for these specifications allow-
ing us to use our intuition on the operators, terms and equations.

Proper fork algebras with urelements are a good candidate to cope with
this because its universe is made of binary relations and the operators have
a simple set theoretical meaning. Then, it is important to determine the
relationship between the class FAU and PFAU.

In [FBHV95], Frias et al. prove that FA is representable in PFA, but
resorting to a non-equational axiom. Later on, in [FHV95], the same repre-
sentability result was proved but only resorting to those equational axioms
appearing in [HBS93b].

Theorem 2.11. ([FHV95, Theorem 3.7])
FA = I PFA

The same representability result was obtained independently by Gyuris
and presented in [Gyu97].

The proof of Theorem 2.11, published also in [Fri02, §4.1], can be easily
adapted to a proof of the representability of FAU in PFAU.

Corollary 2.2. FAU = I PFAU.

Even though PFAU is a good candidate as a semantics for CFAU (see
Corollary 2.2), we will use the class fPFAU. To prove several theorem to
come in this chapter we will need to explicitly construct proper fork algebras
and some of these proofs relay on the fact that the algebras constructed are
simple (see Definition 2.17). This decision is supported by the fact that the

6See also [HBS93a].

3. ω-CLOSURE FORK ALGEBRAS 27

variety generated by fPFAU is the same as the variety generated by FAU, to
be proved next.

Definition 2.40. Let Γ ⊆ CFAUForm, φ ∈ CFAUForm, then

• ΦΓ = {φ ∈ CFAUForm |Γ ⊢CFAU φ },
• FAUΓ is the class of fork algebras with urelements that are models

of ΦΓ. These algebras have the same operations as the structures
in fPFAU, but their domain does not need to be made of binary
relations. We only know that they satisfy the equations in ΦΓ,
• V(fPFAU,Γ) is the variety generated by those algebras A ∈ fPFAU

such that A |=fPFAU γ, for all γ ∈ Γ. We will denote it by VΓ,
• We denote by |=VΓ

the satisfiability relation on algebras from VΓ.
As it is standard, Θ |=VΓ

φ if and only if for all A ∈ VΓ, if A |=VΓ

θ (for all θ ∈ Θ), then A |=VΓ
φ,

• We denote by ⊢= the entailment relation of equational logic.

Lemma 2.6. ([Fri02, Theorem 6.2])
FAUΓ = VΓ.

Proof. Let A ∈ FAUΓ. Then, A ∈ FAU∅. By Corollary 2.2, there is B ∈
V∅ such that A is isomorphic to B. Since V∅ is closed under isomorphisms,
also A ∈ V∅. Since A |= Γ, A ∈ VΓ.

The other inclusion follows easily once we notice that the axioms of
CFAU all hold in fPFAU.

Corollary 2.3. The equational theories of VΓ and FAUΓ (denoted by
EqTh(VΓ) and EqTh(FAUΓ), respectively), coincide.

Then, it is possible to state the following theorem.

Theorem 2.12. ([Fri02, Theorem 5.5])
Let α be a FAU equation. Then

|=fPFAU α ⇐⇒ ⊢CFAU α .

Proof. The inclusion ⊢CFAU ⊆ |=fPFAU follows from the soundness of the
calculus CFAU, and can be proved by induction on the structure of proofs.

28 2. ω-CLOSURE FORK ALGEBRAS

In order to prove the inclusion |=fPFAU ⊆ ⊢CFAU, we reason as follows.

Γ |=fPFAU α

=⇒ ∀A ∈ fPFAU (A |=fPFAU Γ⇒ A |=fPFAU α)
[by Definition |=fPFAU]

=⇒ α ∈ EqTh(V(fPFAU,Γ))
[by Definition V]

=⇒ α ∈ EqTh(FAUΓ)
[by Corollary 2.3]

=⇒ ∀A ∈ FAUΓ,A |=VΓ
α

[by Definition EqTh]
=⇒ ∀A ∈Models(ΦΓ),A |=VΓ

α

[by Definition FAUΓ]
=⇒ ΦΓ |=VΓ

α

[by Definition |=VΓ
]

=⇒ ΦΓ ⊢= α

[by equational logic completeness]
=⇒ α ∈ ΦΓ

[because ΦΓ is a closed theory]
=⇒ Γ ⊢CFAU α

[by Definition ΦΓ]

Fork algebras were used to interpret several logics. The approach con-
sists on building a relational algebraization of a logic L. This is done by
resorting to a semantics preserving mapping TL : FormulasL → RelDes(X)
for some set of relational variables X, translating L-formulas to relational
terms.

Let Γ∪{α} ⊆ FormulasL, then the property of being semantics preserv-
ing is characterized by the following condition:

Γ |=L α ⇐⇒ { TL(γ) = 1 | γ ∈ Γ } ⊢CFAU TL(α) = 1,

In [Fri02] Frias presented the interpretability result of FOL in an exten-
sion of FAU with relational constants representing logic constants, functions
and predicates. In [FO98], it was proved an interpretability result of PDL

in FAU, but this time extending the language of FAU with a set of constants
representing the atomic programs. Then, in [FBM02], it was presented an
interpretability result for FODL by resorting to a mixing of the techniques
used in [FO98] for FOL and PDL. In [FL03, FL06], temporal logics LTL

and TL and their first-order versions were respectively interpreted in FAU.
More precisely, most of these interpretability results were proved by re-

sorting to a more complex algebraic framework called ω-closure fork algebras
with urelements (ω-CFAU for short).

Definition 2.41. A star proper closure fork algebra with urelements
is a two-sorted algebraic structure 〈A,U,∪,∩, –, ∅, E, ◦,⌣ , Id,∇ , ⋆, ⋄, ∗〉 in
whichA is a set of binary relations on U ; ∪, ∩, ◦ and ∇ are binary operations
on A; –, ⌣, ⋄ and ∗ are unary operations on A; ∅, E and Id are distinguished
elements of A; and ⋆ is a binary operation on U , satisfying:

3. ω-CLOSURE FORK ALGEBRAS 29

• 〈A,U,∪,∩, ◦, ∅, E, ◦,⌣ , Id,∇ , ⋆〉 is a star proper fork algebra with
urelements,
• A is closed under ⋄ and ∗ of binary relations, defined as follows7:

r⋄ ⊆ r ∧ (|r⋄| = 1 ⇐⇒ r 6= ∅) ,(3)

r∗ =
⋃

0≤i

r;i.(4)

The operators ⋄ and ∗ are interpreted in a star proper closure fork algebra
as non-deterministic choice of a single pair, and reflexive-transitive closure
of the binary relation to which they are applied, respectively. Formulas (3)
and (4) formalize their meaning.

The class of all star proper closure fork algebra with urelements will be
denoted ⋆PCFAU.

It is now possible to define the class of proper closure fork algebra with
urelements (PCFAU for short) as follows.

Definition 2.42. The class of the proper closure fork algebras with ure-
lements (denoted as PCFAU) is obtained from ⋆PCFAU as RdT ⋆PCFAU,
where T = 〈A,∪,∩, –, ∅, E, ◦,⌣ , Id,∇ , ⋄, ∗〉.

Definition 2.43. Let 〈A,∪,∩, –, ∅, E, ◦,⌣ , Id,∇ , ⋄, ∗〉 be a proper clo-
sure fork algebra with urelements; it is said to be full if its relational reduct
(which is a proper relation algebra) 〈A,∪,∩, –, ∅, E, ◦,⌣ , Id〉 is full.

The class of full proper closure fork algebras with urelements will be
denoted as fPCFAU.

Lemma 2.7. Let A ∈ fPCFAU, then A is atomistic.

Proof. The proof follows by observing that the set of all singleton
relations is a complete atomic basis.

Once again, it is possible to define the abstract counterpart for PCFAU

in order to obtain a calculus for this class of algebras. This calculus is called
calculus for closure fork algebras (CCFAU for short).

Definition 2.44. Let R be a set of relation variables, then the set of
relation designations is the smallest set RelDes(R) such that:

• R ∪ { 1, 0, 1′ } ⊆ RelDes(R),
• If r, s ∈ RelDes(R), then { r+s, r ·s, r, r ;s, r̆, r∇s, r⋄, r∗ } ⊆

RelDes(R).

Then, the set of formulas of CCFAU is the smallest set CCFAUForm(R)

• If r, s ∈ RelDes(R), then r = s ∈ CCFAUForm(R),

Definition 2.45. Let R be a set of relation variables, then CCFAU is
defined as follows:

7The ith. folded iteration of a relation r, denoted r;i, is defined by the following two
conditions:

r
;0 = 1′

,

r
;n+1 = r ;r;n

.

30 2. ω-CLOSURE FORK ALGEBRAS

• Formulas: CCFAUForm(R),
• Axioms:

– Axioms (1) – (19) of Definition 2.38 for the fork algebra oper-
ators

– The following axioms for the closure and choice operators: for
all r, s ∈ A

r⋄ ;1; r̆⋄ ≤ 1′ (Ax. 20)

r̆⋄ ;1;r⋄ ≤ 1′ (Ax. 21)

1;(r ·r⋄);1 = 1;r ;1 (Ax. 22)

r∗ = 1′+r ;r∗ (Ax. 23)

r∗ ;s ≤ s+r∗ ;(s·r ;s) (Ax. 24)

• Inference rules: the inference rules presented in Definition 2.30 for
=.

The Axioms (20) – (22) characterizing the choice operators ⋄ where
presented by Maddux in [Mad89], and the Axioms (23) – (24) characterizing
the operator ∗ where introduced by Baum et al. in [BFM98].

Definition 2.46. The class of all closure fork algebras with urelements,
(CFAU for short) is the class of the models of the identities provable in
CCFAU.

In order to completely characterize ∗, it is possible to define the ω-
calculus of closure fork algebras with urelements (ω-CCFAU for short) as an
extension of CCFAU by the addition of a new inference rule.

Definition 2.47. Let R be a set of relation variables, then ω-CCFAU is
defined as follows:

• Formulas: CCFAUForm(R),
• Axioms: the Axioms (1) – (24) of Definition 2.45 for the closure

fork algebra operators,
• Inference rules:

– The inference rules presented for = in Definition 2.30,
– ω-rule:

⊢ 1′ ≤ s r ;i ≤ s ⊢ r ;i+1 ≤ s (∀i ∈ ◆)

⊢ r∗ ≤ s

Definition 2.48. The class of all ω-closure fork algebras with urelements
(ω-CFAU for short) is the class of the models of the identities provable in
ω-CCFAU.

ω-CFAU are the only models of ω-CCFAU but in [FBM02] was proved
that PCFAU can play this rôle as a consequence of the following two theorems
which state the relationship between the classes PCFAU and ω-CFAU.

Theorem 2.13. PCFAU ⊆ ω-CFAU.

3. ω-CLOSURE FORK ALGEBRAS 31

Proof. The proof of this theorem follows trivially by observing that
every proper closure fork algebra with urelements is a model of ω-CCFAU.

Theorem 2.14. ([FBM02, Theorem 1])
ω-CFAU is representable in PCFAU.

Once again, even when the natural candidate to play the rôle of models of
ω-CCFAU is the class of algebras PCFAU, we prove that ω-CCFAU is complete
for the class fPCFAU. This result allows us to consider the class fPCFAU

when assigning semantics to ω-CCFAU.

Theorem 2.15. ([LF06, Theorem 4])
Let α be a ω-CFAU-equation. Then

|=fPCFAU α ⇐⇒ ⊢ω-CCFAU α .

We now have precisely defined the language of full proper closure fork
algebras with urelements, which is intended to be the formalism we will use
in order to write (and understand) software specifications; and ω-CCFAU

which will be the tool used to prove the properties of specifications. Software
specifications will be theories in which the set of axioms will be formed by
all the axioms presented in Definition 2.47 and a set of formulas exhibiting
software’s known behavior.

Notice that only extralogical symbols belong to an equational or first-
order signature. Symbols such as = in equational logic, or ∨ in first-order
logic, have a meaning that is univocally determined by the carriers and the
interpretation of the extralogical symbols. Similarly, once the field has been
fixed, all the operators can be assigned a standard meaning. This gives rise
to the following definition of fPCFAU-signatures8.

From now on we will assume a fixed but arbitrary denumerable set of
relation variables R over which formulas are written. We will also assume
the existence of a total order < ⊆ R×R, then if i ∈ ◆, Ri will denote the
ith. element of R under the ordering <, and if r is an element of R, Rr will
be the position of r in the ordering < of R.

Definition 2.49. An fPCFAU-signature is a structure 〈{fi}i∈I〉. Each
function symbol fi, for all i ∈ I, comes equipped with its arity. Notice that
since full proper closure fork algebras with urelements have only one sort,
the arity is just a natural number.

The set of fPCFAU-signatures will be denoted as SignfPCFAU.
In order to interpret the logics mentioned in previous sections, constant

relational symbols (rather than functions in general) suffice. Since new op-
erators may be necessary in order to interpret new logics in the future,
signatures will be allowed to contain functions of arbitrary rank.

8To be precise, CCFAU-signatures or ω-CCFAU-signatures should be used because
signatures are more related to the calculus than to its semantics. But, considering the
way they will be used throughout the rest of the thesis and Theorem 2.15, we prefer the
use of fPCFAU-signatures instead.

32 2. ω-CLOSURE FORK ALGEBRAS

In order to extend the definitions of terms and formulas of the closure
fork algebras (Definition 2.44) to fPCFAU-signatures, we only need to add
the following rule.

• If t1, . . . , tarity(fi) ∈ RelDes(R), then

fi(t1, . . . , tarity(fi)) ∈ RelDes(R) (for all i ∈ I).

If Σ ∈ Sign fPCFAU, the set of Σ-terms will be denoted as TermΣ. In the
same way, SenΣ will denote the set of equalities between Σ-terms (i.e. the
set of Σ-formulas).

Definition 2.50. Let Σ = 〈{fi}i∈I〉 ∈ Sign fPCFAU, then 〈P, {fi}i∈I〉 ∈
ModΣ if and only if:

• P ∈ fPCFAU,
• fi : |P|arity(fi) → |P|, for all i ∈ I.

Definition 2.51. Let Σ = 〈{fi}i∈I〉 ∈ SignfPCFAU, M = 〈P, {fi}i∈I〉 ∈

ModΣ and val : R → |P|, then mval
M : TermΣ → |P| is defined as follows:

• mval
M (⋆) = ⋆P , for all ⋆ ∈ {1, 0, 1′},

• mval
M (r) = val(r), for all r ∈ R.

• if {t, t1, t2} ⊆ TermΣ, then

– mval
M (t⋆) = mval

M (t)
⋆P

, for all ⋆ ∈ {–, ,̆ ⋄, ∗},
– mval

M (t1 ⋆ t2) = mval
M (t1) ⋆

P mval
M (t1), for all ⋆ ∈ {+, ·, ;,∇},

• if {t1, . . . , tn} ⊆ TermΣ, then
mval
M (fi(t1, . . . , tarity(fi))) = fi(m

val
M (t1), . . . ,m

val
M (tarity(fi))), for

all i ∈ I.

Definition 2.52. Let 〈{fi}i∈I〉 ∈ SignfPCFAU and 〈P, {fi}i∈I〉 ∈ModΣ

be denoted by Σ andM respectively, then |=Σ
fPCFAU⊆ModΣ×SenΣ is defined

as follows:

M |=Σ
fPCFAU t1 = t2 iff for all val : R → |P|, mval

M (t1) = mval
M (t2) .

CHAPTER 3

Category theory and general logic

In this chapter we introduce those concepts coming from category theory,
and particularly from general logics, that will be used throughout the rest of
this work. This chapter does not pretend to be an exhaustive presentation
of category theory or general logics so we point the interested reader to
[Fia05] for a gentle introduction to category theory for computer scientists,
to [McL71] for an introduction to category theory for mathematicians, and
to [Mes89, Tar96] for a complete presentation of general logics.

The chapter is organized as follows. In §1 we provide the basic definitions
and results from the field of category theory we will use throughout the rest
of the thesis. In §2 we do the same with the basic definitions and results from
the field of general logics, introducing the notions of institution, entailment
system, logic, etc. And in §3 we present the more complex constructions
used in the field of general logics in order to relate different institutions.

1. Category theory

From here on, we assume the reader has a nodding acquaintance with
basic concepts from category theory such as the notions of category, functor,
natural transformation and co-limit. This section only summarizes these
definitions in order to fix the notation.

Definition 3.1. (Graph)
A graph is a structure 〈G0, G1〉 where

• G0 is a collection (of nodes),
• G1 is a collection (of arrows),
• src : G1 → G0 maps every arrow to a node (the source of the

arrow),
• trg : G1 → G0 maps every arrow to a node (the target of the arrow).

If f ∈ G1 is an arrow from x to y, it will be denoted as f : x→ y or x
f
→ y.

Definition 3.2. (Graph homomorphism)
Let G, and H be graphs. A homomorphism of graphs φ : G → H is a

33

34 3. CATEGORY THEORY AND GENERAL LOGIC

pair of maps φ0 : G0 → H0 and φ1 : G1 → H1 such that for each arrow
f : x→ y ∈ G1, we have φ1(f) : φ0(x)→ φ0(y) ∈ H1.

Definition 3.3. (Path in a graph)
Let G = 〈G0, G1〉 be a graph, and x, y ∈ G0. A path from x to y of length
k > 0 is a sequence f1, . . . , fk such that:

• fi ∈ G1 (1 ≤ i ≤ k),
• src(f1) = x,
• trg(fi) = src(fi+1) (1 < i < k),
• trg(fk) = y.

We will denote by Gi the collection of paths of length i.

Definition 3.4. (Category)
A category is a structure 〈G, ◦, id〉 where:

• G = 〈G0, G1〉 is a graph,
• ◦ : G2 → G1 is a map from G2 into G1 (called composition). If
f, g ∈ G1, then the composition of f and g is denoted1 as f ◦ g :
x→ z, and
• id : G0 → G1 is a map from G0 into G1 (called identity). If x ∈ G0,
idx : x→ x is the identity arrow for x,

such that for all x, y ∈ G0 and f, g, h ∈ G1:

• if f : x→ y ∈ G0, then f = idx ◦ f = f ◦ idy,
• if src(g) = trg(f) and src(h) = trg(g), then (f ◦ g) ◦ h = f ◦ (g ◦ h).

If C is a category, by graph(C) we denote the graph of C.
Elements in a category are called objects and arrows are referred to as

morphisms.

Definition 3.5. (The category Set)
Set = 〈G, ◦, id〉 such that:

• G = 〈G0, G1〉, where G0 is the collection of all sets and G1 is the
collection of all total functions between sets,
• if S, S′, S′′ ∈ G0 and f : S → S′, f ′ : S′ → S′′ ∈ G1, then the

composition of f and f ′, f ◦ f ′ : S → S′′ is defined as f ◦ f ′(s) =
f ′(f(s)) for all s ∈ S,
• if S ∈ G0, then idS : S → S is the identity on S.

Instead of following the formal definition of a category, we will usually
define them just by declaring what are their objects and morphisms, and
by defining their composition and identities, omitting any mention to its
graph. Thus, we will present a category as a structure 〈O,A〉 where O is the
collection of objects and A is the collection of morphisms together with an
appropriate definition of idx ∈ A for each object x ∈ O and ◦ : A×A → A.
Given a category C, the collection of objects of C, will be denoted |C|.

Sometimes categories have distinguished objects with particular behav-
iors which can be identified by the way they are related to other objects in
the category. Among these we single out the initial and terminal objects.

1We use the notation f ◦ g meaning the sequential (or diagrammatic) composition
of f and g. This operator is often noted in the literature as “;”, but since “;” has been
widely used in the context of relation algebra, we will adopt “◦” instead.

1. CATEGORY THEORY 35

Definition 3.6. (Initial object)
Let C be a category and x ∈ |C|. Then, x is initial if and only if for all
y ∈ |C|, there exists a unique morphism f : x→ y.

Analogously, x is terminal if and only if for all y ∈ |C|, there exists a
unique morphism f : y → x.

These distinguished elements have some interesting properties. The next
proposition shows a very useful property of initial objects.

Lemma 3.1. ([Fia05, §4.1.2])
The following two properties hold:

• Any two initial objects are isomorphic.
• Any objects isomorphic to an initial object are also initial.

Most of the reasoning in category theory can be carried out by observing
properties in diagrams.

Definition 3.7. (Diagram)
Let C be a category and I a graph. A diagram with shape I in C is a graph
homomorphism δ = 〈δ0, δ1〉 : I → graph(C).

Definition 3.8. (Commutative diagrams)
Let C be a category and I = 〈G0, G1〉 a graph. Then, a diagram δ = 〈δ0, δ1〉 :
I → graph(C) commutes if and only if for f1, . . . , fi ∈ Gi, g1, . . . , gj ∈ Gj

such that src(f1) = src(g1) and trg(fi) = trg(gj), then

δ1(f1) ◦ · · · ◦ δ1(fi) = δ1(g1) ◦ · · · ◦ δ1(gj)

holds in C.

Diagrams will be usually presented by their graphical representation
resorting to their image on the category instead of using the previous def-
initions. Commutative diagrams will be distinguished by decorating them
with the symbol

⊙
inside.

Given a diagram, it is possible to identify the collective behavior of the
objects it involves. To capture this collective behavior we introduce the
notion of (co)cones and (co)limits.

Definition 3.9. (Co-cone)
Let C be a category, I = 〈G0, G1〉 be a graph, and δ = 〈δ0, δ1〉 be a diagram
δ : I → graph(C). A co-cone with base δ is an object z ∈ |C| (the vertex
of the co-cone), and a family of morphisms {γδ0(a) : δ0(a)→ z}a∈δ0(G0) (the
edges of the co-cone), usually denoted γ : δ → z.

A co-cone is commutative if and only if for any pair of vertexes a, b ∈ G0

such that 〈a, b〉 ∈ G1, δ1(〈a, b〉) ◦ γb = γa.
The concept of cone is the dual notion of co-cone (i.e. the equivalent

definition but reversing the arrows).

36 3. CATEGORY THEORY AND GENERAL LOGIC

z

✬
✫

✩
✪

δ

δ0(a) δ0(b)
δ1(〈a, b〉)✲

✒

γa

■

γb

⊙
✒ ■

γ

Definition 3.10. (Co-limit)
Let C be a category, I = 〈G0, G1〉 be a graph, and δ = 〈δ0, δ1〉 be a diagram
δ : I → graph(C). A co-limit is a commutative co-cone γ : δ → z such
that for every commutative co-cone γ′ : δ → z′, there is a unique morphism
σ : z → z′ satisfying γ ◦ σ = γ′ (i.e. for all a ∈ G0, γa ◦ σ = γ′a).

The concept of limit is the dual notion of co-limit (i.e. the equivalent
definition but reversing the arrows).

As in the case of diagrams, (co)cones and (co)limits can be presented by
its graphical representation by resorting to its image on the category and
decorating co-limits and limits with

⊙
✄ and

⊙
✁ respectively.

z z′✲σ

✬
✫

✩
✪

δ

δ0(a)

✻

γa

✒

γ′a

⊙
✄

✒ ■

γ

✒ ✻

γ′

Definition 3.11. (Co-completeness)
A category is (finitely) co-complete if and only if all (finite) diagrams have
co-limits.

A category is (finitely) complete if and only if all (finite) diagrams have
limits.

Definition 3.12. (Pushouts)
Let C be a category and f : x → y, g : x → z morphisms in C, then a
pushout of f and g consists of f ′ : y → w, g′ : z → w morphisms in C such
that:

• f ◦ f ′ = g ◦ g′, and

1. CATEGORY THEORY 37

• for any other f ′′ : y → w′, g′′ : z → w′ morphisms in C such that
f ◦ f ′′ = g ◦ g′′, there exists a unique h : w → w′ morphism in C

such that f ′ ◦ h = f ′′ and g′ ◦ h = g′′.

Pullback are defined analogously to pushouts but considering the arrows
in the opposite direction.

When pushouts and pullbacks are presented in a diagrammatic way they
are decorated with

⊙
✄ and

⊙
✁ respectively.

x

y

✒
f

z
❘

g

w❘

f ′

✒

g′

w′✲h ❘

f ′′

✒

g′′

⊙

⊙
⊙

✄

There are several results on (co)completeness of categories, one of them
is the following proposition.

Lemma 3.2. ([Fia05, §4.4.7])
A category is finitely co-complete if and only if it has initial objects and

pushouts of all pairs of morphisms with common source.
A category is finitely complete if and only if it has final objects and

pullbacks of all pairs of morphisms with common source.

Categories can not only be constructed by giving its graph, composition
operation and identity map, new categories can be built from existing ones
by using some elementary operations. The advantage of constructing new
categories from existing ones is that the former “inherit” properties from
the latter.

We will now present some of these elementary constructions.

Definition 3.13. (Opposite, or dual, category)
Let C = 〈O,A〉 be a category. Then Cop (the opposite category of C) is

defined as 〈O,Aop〉 where the morphisms in Aop are the morphisms of A
reverted (i.e. fop : y → x ∈ Aop if and only if f : x→ y ∈ A) and such that
for all f, g ∈ G1 and f ◦ g ∈ G2, (f ◦ g)op = gop ◦ fop.

The previous definitions reflects that the direction of morphisms in a
category has no essential significance because structural properties of the
category are, in some sense, preserved in its opposite category; but the
interpretation of the morphisms has a “natural” direction which helps the
understanding of the category. Of course the interpretation of morphisms
differ from one category to its opposite. If we recall the definition of Set,
morphisms in Setop can not be interpreted as total functions.

An example of a property which can be proved by using this universal
construction is the following proposition.

Lemma 3.3. Let C be a category and x ∈ |C|, then x is terminal if and
only if x is initial in Cop.

38 3. CATEGORY THEORY AND GENERAL LOGIC

Proof. The proof follows trivially by Definitions 3.4, 3.13 and 3.6.

Definition 3.14. (Product category)
Let C = 〈OC,AC〉 and D = 〈OD,AD〉 be categories. Then C×D (the product
category of C and D) is defined as 〈OC × OD,A〉 where the morphisms in
A ⊆ AC × AD are such that fC : xC → yC ∈ AC and fD : xD → yD ∈ AD if
and only if 〈fC, fD〉 : 〈xC, xD〉 → 〈yC, yD〉 ∈ A.

There are many of these elementary operations which permit the con-
struction of new categories from existing ones but will not be used in this
work. The interested reader is pointed to [McL71] for a complete presenta-
tion of these operations. Those that are most commonly used in computer
science can be found in [Fia05].

Another way to create a new category is to consider it as a subcategory
of another one. This means that, given a category C, it is possible to build
a new one by removing some objects and morphisms from C.

Definition 3.15. (Subcategory)
Let C = 〈OC,AC〉 and D = 〈OD,AD〉 be categories. Then D is a subcategory
of C if and only if:

• OD ⊆ OC,
• AD ⊆ AC such that:

– if x ∈ OD, then idDx = idCx,
– if f : x→ y, g : y → z ∈ AD, then f ◦D g = f ◦C g.

Whenever D is a subcategory of C, it is denoted by D →֒ C.

There are many ways in which categories relate to each other. The most
common way categories relate is through functors.

Definition 3.16. (Functor)
Let C = 〈OC,AC〉 and D = 〈OD,AD〉 be categories. Then δ : C → D is a

functor if and only if:

• if x ∈ OC, then δ(x) ∈ OD,
• if f : x→ y ∈ AC, then δ(f) ∈ AD, such that:

– if x ∈ OC, δ(idC
x) = idD

δ(x),
– if f : x→ y, g : y → z ∈ AC, then δ(f ◦C g) = δ(f) ◦D δ(g).

It is now possible to define the category Cat, whose objects and mor-
phisms are categories and functors respectively. This requires to prove that
the identity law and composition law are preserved by functors which triv-
ially follows from Definition 3.16.

There are certain behaviors of functors in which we will be interested.
In some situations we will be interested in functors that, in some sense,
relate two categories in the same way. This behavior is usually referred as
“natural”. This property of functors is formalized in the following definition.

Definition 3.17. (Natural transformation)
Let C,D ∈ Cat, ψ : C → D and φ : C → D be functors, then τ : ψ → φ

is a natural transformation if it is a function that assigns to each object
c ∈ |C| a morphism τc : ψ(c)→ φ(c) such that for each c, c′ ∈ |C|, f : c→ c′

morphism in C, the following diagram commutes:

2. INSTITUTIONS AND GENERAL LOGICS 39

ψ(c)

❄

ψ(f)

ψ(c′)

✲τc φ(c)

❄

φ(f)

φ(c′)✲τc′

A particular class of categories are the monoidal categories. A category
is monoidal if it comes equipped with a product ⊗, which is associative,
and a two-sided identity object e. We now define strict monoidal categories.
There is a notion of (relaxed) monoidal category but it will not be used in
this work so we point the interested reader to [McL71, Chapter VII] for an
exhaustive presentation of monoidal categories.

Definition 3.18. (Strict monoidal categories)
A strict monoidal category is a structure 〈C,⊗, e〉 where C is a category, and
the following properties hold:

• ⊗ is a bifunctor, thus for all x, y, z, x′, y′, z′ ∈ |C|, f : x → y,
f ′ : x′ → y′, g : y → z, g′ : y′ → z′ morphisms in C:

idx ⊗ idy = idx⊗y ,

(f ⊗ f ′) ◦ (g ⊗ g′) = (f ◦ g)⊗ (f ′ ◦ g′) .

• ⊗ is associative, thus for all w, x, y, z ∈ |C|, and f : w → x, g : x→
y, h : y → z morphisms in C:

x⊗ (y ⊗ z) = (x⊗ y)⊗ z ,

f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h .

• e is left and right identity for ⊗, thus for all x, y ∈ |C|, f : x → y

morphism in C:

e⊗ x = x⊗ e = x ,

ide ⊗ f = f ⊗ ide = f .

Once again, we can define the category of strict monoidal categories
SMCat whose objects and morphisms are strict monoidal categories and
functors between them respectively.

2. Institutions and general logics

In [GB84], Goguen and Burstall introduced the notion of institution
as a general and abstract description of the model theory of a logic. This
semantic approach to the description of a logic was then followed by a proof-
theoretic approach due to Meseguer [Mes89], and Fiadeiro and A. Sernadas
[FS87]. In this section we present the definition of institution, and use the
notion of entailment system (or π-institution) in order to capture certain
proof theoretical aspects of a logic. These concepts are then related by the
notion of logic, proof calculus and logical system [Mes89].

In the same way categories define mathematical objects by means of
their “social life”, reflected by morphisms, institutions formalize the model
theory of a logic by observing the relation existing between signatures, the
relation between the sets of formulas of two related signatures, the relation

40 3. CATEGORY THEORY AND GENERAL LOGIC

between, (a) two models of the same signature and (b) the classes of models
of two related signatures, and the relation between the semantic consequence
relations of two related signatures. Each of these aspects is reflected by
introducing the category of signatures and functors going from this category
to the category Set (for the case of sets of sentences) and Cat (for the case
of categories of models of a given signature).

Definition 3.19. An institution is a structure of the form

〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉

satisfying the following conditions:

• Sign is a category of signatures,
• Sen : Sign→ Set is a functor (let Σ ∈ |Sign|, then Sen(Σ) returns

the set of Σ-sentences),
• Mod : Signop → Cat is a functor (let Σ ∈ |Sign|, then Mod(Σ)

returns the category of Σ-models),
• {|=Σ}Σ∈|Sign|, where |=Σ⊆ |Mod(Σ)|×Sen(Σ), is a family of binary

relations,

and for any signature morphism σ : Σ → Σ′, Σ-sentence φ ∈ Sen(Σ) and
Σ′-model M′ ∈ |Mod(Σ)| the following |=-invariance condition holds:

M′ |=Σ′
Sen(σ)(φ) iff Mod(σop)(M′) |=Σ φ .

Let Σ ∈ |Sign| and Γ ⊆ Sen(Σ), then we define the functor Mod(Σ,Γ) as
the full subcategory of Mod(Σ) determined by those modelsM∈ |Mod(Σ)|
such that for all γ ∈ Γ, M |=Σ γ. In addition, it is possible to define a
relation |=Σ between sets of formulas and formulas in the following way: let
α ∈ Sen(Σ), then

Γ |=Σ α if and only if M |=Σ α for allM∈ |Mod(Σ,Γ)|.

An entailment system is conceived, in the same way we did in the pre-
vious definition, by identifying a family of deductive relations, instead of
a family of semantic consequence relations, where each of the elements is
associated to a signature. Thus it only rests to require these relations to
satisfy the properties of reflexivity, monotonicity, transitivity, a notion of
translation between two related signatures, and to reflect the properties of
soundness and completeness of the deductive relation.

Definition 3.20. An entailment system is a structure of the form

〈Sign,Sen, {⊢Σ}Σ∈|Sign|〉

satisfying the following conditions:

• Sign is a category of signatures,
• Sen : Sign→ Set is a functor (let Σ ∈ |Sign|, then Sen(Σ) returns

the set of Σ-sentences),

• {⊢Σ}Σ∈|Sign|, where ⊢Σ⊆ 2Sen(Σ) × Sen(Σ), is a family of binary
relations such that for any Σ,Σ′ ∈ |Sign|, {φ} ∪ {φi}i∈I ⊆ Sen(Σ),
Γ,Γ′ ⊆ Sen(Σ) the following conditions are satisfied:
(1) reflexivity: {φ} ⊢Σ φ,

2. INSTITUTIONS AND GENERAL LOGICS 41

(2) monotonicity: if Γ ⊢Σ φ and Γ ⊆ Γ′, then Γ′ ⊢Σ φ,
(3) transitivity: if Γ ⊢Σ φi for all i ∈ I and {φi}i∈I ⊢

Σ φ, then
Γ ⊢Σ φ, and

(4) ⊢-translation: if Γ ⊢Σ φ, then for any morphism σ : Σ→ Σ′ in

Sign, Sen(σ)(Γ) ⊢Σ′
Sen(σ)(φ).

Now, from the definition of entailment system, it is possible to give a
definition of the category of theories. The relations between theories must be
considered as an extension of the relation between the underlying signatures
but taking into account the sets of formulas playing the rôle of axioms of
the theories.

Definition 3.21. Let 〈Sign,Sen, {⊢Σ}Σ∈|Sign|〉 be an entailment system,
then Th, its category of theories, is a pair 〈O,A〉 such that:

• O = { 〈Σ,Γ〉 |Σ ∈ |Sign| and Γ ⊆ Sen(Σ) }, and

• A =

{
σ : (Σ,Γ)→ (Σ′,Γ′)

∣∣∣∣∣
〈Σ, Γ〉, 〈Σ′, Γ′〉 ∈ O,
σ : Σ→ Σ′ is a morphism in Sign and

for all γ ∈ Γ, Γ′ ⊢Σ
′

Sen(σ)(γ)

}
.

In addition, if a morphism σ : (Σ,Γ)→ (Σ′,Γ′) satisfies Sen(σ)(Γ) ⊆ Γ′

it is called axiom preserving. This defines the category Th0 by keeping
only those morphisms of Th that are axiom preserving. It is easy to notice
that Th0 →֒ Th. Now, if we consider the definition of Mod, extended to
signatures and set of sentences, we get a functor Mod : Thop → Cat defined
as follows: let T = 〈Σ,Γ〉 ∈ |Th|, then

Mod(T) = Mod(Σ,Γ) .

The following definitions will be used in §3 to define one of the ways
institutions can relate to each other.

Definition 3.22. Let 〈Sign,Sen, {⊢Σ}Σ∈|Sign|〉 be an entailment system
and 〈Σ,Γ〉 ∈ |Th0|, then we define • : Sen(Σ) → Sen(Σ) such that if
Γ• =

{
γ
∣∣Γ ⊢Σ γ

}
, and • : Th0 → Th0 such that if 〈Σ,Γ〉• = 〈Σ,Γ•〉.

Definition 3.23.
Let 〈Sign,Sen, {⊢Σ}Σ∈|Sign|〉 and 〈Sign′,Sen′, {⊢′Σ}Σ∈|Sign′|〉 be entailment

systems, Φ : Th0 → Th′0 be a functor and α : Sen → Sen′ ◦ Φ a natu-
ral transformation; Φ is said to be α-sensible if and only if the following
conditions are satisfied:

(1) there is a functor Φ⋄ : Sign → Sign′ such that sign′ ◦ Φ = Φ⋄ ◦
sign, where sign and sign are the functors from the corresponding
category of theories to the corresponding category of signatures,
that when applied to a given theory projects its signature, and

(2) if 〈Σ,Γ〉 ∈ |Th0| and 〈Σ′,Γ′〉 ∈ Th′0 such that Φ(〈Σ,Γ〉) = 〈Σ′,Γ′〉,
then (Γ′)• = (∅′ ∪ αΣ(Γ))•.

Φ is said to be α-simple if and only if Γ′ = ∅′ ∪ αΣ(Γ) is satisfied in Condi-
tion 2, instead of (Γ′)• = (∅′ ∪ αΣ(Γ))•.

It is trivial to see, based on the monotonicity of •, that α-simplicity
implies α-sensibility.

α-sensible functors have the property that its natural transformation α
only depends on signatures, which is a consequence of the following lemma.

42 3. CATEGORY THEORY AND GENERAL LOGIC

Lemma 3.4. ([Mes89, Lemma 22])

Let 〈Sign,Sen, {⊢Σ}Σ∈|Sign|〉 and 〈Sign′,Sen′, {⊢′Σ}Σ∈|Sign′|〉 be entailment

systems, Φ : Th0 → Th′0 be a functor satisfying Condition 1, then any
natural transformation α : Sen → Sen′ ◦ Φ can be obtained from a natural
transformation α⋄ : Sen→ Sen′ ◦Φ⋄ by the horizontal composition with the
functor sign : Th0 → Sign.

Now, from Definitions 3.19 and 3.20, it is possible to give a definition
of logic by relating both of its aspects, its model-theoretical side and proof-
theoretical side.

Definition 3.24. A logic is a structure of the form

〈Sign,Sen,Mod, {⊢Σ}Σ∈|Sign|, {|=
Σ}Σ∈|Sign|〉

satisfying the following conditions:

• 〈Sign,Sen, {⊢Σ}Σ∈|Sign|〉 is an entailment system,

• 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 is an institution, and
• the following soundness condition is satisfied: for any Σ ∈ |Sign|,
φ ∈ Sen(Σ), Γ ⊆ Sen(Σ)

Γ ⊢Σ φ =⇒ Γ |=Σ φ .

A logic is complete if in addition the following condition is also satisfied: for
any Σ ∈ |Sign|, φ ∈ Sen(Σ), Γ ⊆ Sen(Σ)

Γ ⊢Σ φ⇐= Γ |=Σ φ .

In Definition 3.20 we associated deductive relations to signatures, but we
did not say a word on how these relations are obtained. Now, we introduce
the notion of proof calculus in order to associate a proof-theoretic structure
to the deductive relations introduced by the definitions of entailment system.
To do that we will provide a functor P such that for T = 〈Σ,Γ〉 ∈ |Th0|,
P(T) is the set of all the proofs whose axioms are in Γ. To this purpose
we will give a definition of proof calculus relaying on a category StructPC

whose objects should be those proofs. In [Mes89, Example 11, pp. 15],
Meseguer presents natural deduction as a proof calculus for first-order logic
by resorting to multicategories (see [Mes89, Definition 10]). From this
example it is easy to see why we would like to present the proof theory and
the proof-theoretic structure of a logic separately. It is because, following
[Mes89], any proof-theoretic structure provides an “implementation” of a
single proof theory of a logic.

Definition 3.25. A proof calculus is a structure of the form

〈Sign,Sen, {⊢Σ}Σ∈|Sign|,P,Pr, π〉

satisfying the following conditions:

• 〈Sign,Sen, {⊢Σ}Σ∈|Sign|〉 is an entailment system,
• P : Th0 → StructPC is a functor (let T ∈ |Th0|, then P(T) ∈
|StructPC | is the proof-theoretical structure of T),
• Pr : StructPC → Set is a functor (let T ∈ |Th0|, then Pr(P(T)) is

the set of proofs of T ; the composite functor Pr ◦ P : Th0 → Set

will be denoted by proofs), and

3. INSTITUTION MORPHISMS AND REPRESENTATION MAPS 43

• π : proofs→ Sen is a natural transformation (let T ∈ |Th0|, then
πT : proofs(T) → Sen(T) is the projection of the set of theorem
of T).

Finally, a logical system will be a logic plus a proof calculus for its proof
theory.

Definition 3.26. A logical system is a structure of the form

〈Sign,Sen,Mod, {⊢Σ}Σ∈|Sign|, {|=
Σ}Σ∈|Sign|,P,Pr, π〉

satisfying the following conditions:

• 〈Sign,Sen,Mod, {⊢Σ}Σ∈|Sign|, {|=
Σ}Σ∈|Sign|〉 is a logic, and

• 〈Sign,Sen, {⊢Σ}Σ∈|Sign|,P,Pr, π〉 is an proof calculus.

3. Institution morphisms and representation maps

As we mentioned before, institutions capture, in an abstract way, the
model theory of a logic. They can be related by means of different kinds
of mappings such as institution morphisms [GB84] and institution repre-
sentations [Mes89]. These mappings between institutions are extensively
discussed by Tarlecki in [Tar96]. The main difference between them be-
ing that institution morphisms allow one to build a richer institution from
poorer ones, while representations allow us to encode poorer institutions
into a richer one.

Definition 3.27. (Institution morphism)
Let 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 and 〈Sign′,Sen′,Mod′, {|=′Σ}Σ∈|Sign′|〉

be the institutions I and I ′ respectively, then 〈γSign, γSen, γMod〉 : I → I ′ is
an institution morphism if and only if:

• γSign : Sign′ → Sign is a functor,
• γSen : γSign ◦ Sen → Sen′, is a natural transformation (i.e. a

natural family of functions γSen
Σ′ : Sen(γSign(Σ′)) → Sen′(Σ′)),

such that for each Σ′1,Σ
′
2 ∈ |Sign′| and σ′ : Σ′1 → Σ′2 morphism in

Sign′,

Sen(γSign(Σ′2))

✻
Sen(γSign(σ′))

Sen(γSign(Σ′1))

✲
γSen

Σ′
2 Sen′(Σ′2)

✻
Sen′(σ′)

Sen′(Σ′1)
✲

γSen
Σ′

1

Σ′2
✻
σ′

Σ′1

• γMod : Mod′ → (γSign)op ◦Mod,2 is a natural transformation (i.e.
the family of functors γMod

Σ′ : Mod′(Σ′) → Mod((γSign)op(Σ′)) is
natural), such that for each Σ′1,Σ

′
2 ∈ |Sign′| and σ′ : Σ′1 → Σ′2

morphism in Sign′,

2The functor (γSign)op : Sign′op → Signop is the same as γSign : Sign′ → Sign but
considered between the opposite categories.

44 3. CATEGORY THEORY AND GENERAL LOGIC

Mod′(Σ′2)

❄

Mod′(σ′op)

Mod′(Σ′1)

✲
γMod

Σ′
2 Mod((γSign)op(Σ′2))

❄

Mod((γSign)op(σ′op))

Mod((γSign)op(Σ′1))
✲

γMod
Σ′

1

Σ′2
✻
σ′

Σ′1

such that for any Σ′ ∈ |Sign′|, the function γSen
Σ′ : Sen(γSign(Σ′))→ Sen′(Σ′)

and the functor γMod
Σ′ : Mod′(Σ′) → Mod((γSign)op(Σ′)) preserves the

following satisfaction condition: for any α ∈ Sen(γSign(Σ′)) and M ∈
|Mod(Σ′)|,

M |=Σ′ γSen
Σ′ (α) iff γMod

Σ′ (M) |=γSign(Σ′) α .

In [Tar96], Tarlecki calls our attention to the fact that institution mor-
phism capture how a “richer” institution (richer in terms of its model theory)
is built on top of “poorer” ones and also shows in [Tar96, Definition 4.2]
that institutions together with institution morphisms form a category, de-
noted as Ins. In this sense, Ins provides the formal framework in which it is
possible to build specifications incrementally in a modular way by construct-
ing limits. To support this observation Tarlecki proves that Ins is complete
in [Tar96, Theorem 4.3].

Definition 3.28. (Representation map of institution)
Let 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 and 〈Sign′,Sen′,Mod′, {|=′Σ}Σ∈|Sign′|〉

be the institutions I and I ′ respectively, then 〈γSign, γSen, γMod〉 : I → I ′ is
a representation map of institutions if and only if:

• γSign : Sign→ Sign′ is a functor,
• γSen : Sen → γSign ◦ Sen′, is a natural transformation (i.e. a

natural family of functions γSen
Σ : Sen(Σ)→ Sen′(γSign(Σ))), such

that for each Σ1,Σ2 ∈ |Sign| and σ : Σ1 → Σ2 morphism is Sign,

Sen(Σ2)

✻
Sen(σ)

Sen(Σ1)

✲
γSen

Σ2
Sen′(γSign(Σ2))

✻
Sen′(γSign(σ))

Sen′(γSign(Σ1))✲
γSen

Σ1

Σ2

✻
σ

Σ1

• γMod : (γSign)op ◦Mod′ →Mod, is a natural transformation (i.e.
the family of functors γMod

Σ : Mod′((γSign)op(Σ)) → Mod(Σ) is
natural), such that for each Σ1,Σ2 ∈ |Sign| and σ : Σ1 → Σ2

morphism in Sign,

Mod′((γSign)op(Σ2))

❄

Mod′((γSign)op(σop))

Mod′((γSign)op(Σ1))

✲
γMod

Σ2
Mod(Σ2)

❄

Mod(σop)

Mod(Σ1)✲
γMod

Σ1

Σ2

✻
σ

Σ1

3. INSTITUTION MORPHISMS AND REPRESENTATION MAPS 45

such that for any Σ ∈ |Sign|, the function γSen
Σ : Sen(Σ)→ Sen′(γSign(Σ))

and the functor γMod
Σ : Mod′(γSign(Σ))→Mod(Σ) preserves the following

satisfaction condition: for any α ∈ Sen(Σ) andM′ ∈ |Mod(γSign(Σ))|,

M′ |=γSign(Σ) γ
Sen
Σ (α) iff γMod

Σ (M′) |=Σ α .

Even though representation maps between institutions differ from in-
stitution morphisms only in the direction in which the arrow relates two
institutions, this technical detail induces a totally different interpretation
on the constructions they perform. An institution morphism γ : I ′ → I

expresses how the institution I ′ is built over the institution I; this fact can
be observed in the way γSen and γMod are defined in Definition 3.27. Both
natural transformations characterize how the “richer” set of sentences (re-
spectively, category of models) is built from the “poorer” one. This is done
by:

• projecting, from a given I ′-signature Σ′, the I-signature interpreted
by Σ′,
• projecting, for a given I ′-signature Σ′, the set of I-sentences inter-

preted by the Σ′-sentences,
• projecting, for a given I ′-signature Σ′, the category of I-models,

interpreted by the category of Σ′-models.

The direction of the arrows shows that only some parts of I ′ are used (those
parts reflected by the target theories of γSign) to interpret I.

On the other hand, a representation map γ : I → I ′ expresses how the
“poorer” set of sentences (respectively, category of models) associated to I
is encoded in the “richer” one associated to I ′, and this is done by:

• constructing, for a given I-signature Σ, an I ′-signature into which
Σ can be interpreted,
• translating, for a given I-signature Σ, the set of Σ-sentences to the

corresponding I ′-sentences,
• obtaining, for a given I-signature Σ, the category of Σ-models from

the corresponding category of Σ′-models.

In this case, the direction of the arrows shows that the whole of I is repre-
sented by some parts of I ′.

The main difference between institution morphisms and representation
maps can be found in the behavior of the natural transformation γMod. In
both cases γMod performs an operation that can be thought-of as “taking
reduct” to a simpler class of models. As we mentioned before, the only
difference is that in the case of institution morphisms, it exposes that some
parts of I ′-models reflect I-models, while in the case of representation maps,
it shows that I-models are completely represented by I ′-models.

Whether representation maps are a good choice for relating institutions,
we are interested in an extension of Definition 3.28 in which, instead of
having a functor γSign between the categories of signatures, we will have

a functor γTh0 : SignI → ThI′
0 between the category of signatures of the

institution I, and the category of theories with axiom preserving morphisms
of the institution I ′.

46 3. CATEGORY THEORY AND GENERAL LOGIC

As we are only interested in this new version of representation maps we
will refer to it with the same name.

Definition 3.29.
Let 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 and 〈Sign′,Sen′,Mod′, {|=′Σ}Σ∈|Sign′|〉

be the institutions I and I ′ respectively, then 〈γTh0 , γSen, γMod〉 : I → I ′ is
a representation map of institutions if and only if:

• γTh0 : Sign→ Th0 is a functor,
• γSen : Sen → γTh0 ◦ Sen′, is a natural transformation (i.e. a

natural family of functions γSen
Σ : Sen(Σ)→ Sen′(γTh0(Σ))), such

that for each Σ1,Σ2 ∈ |Sign| and σ : Σ1 → Σ2 morphism is Sign,

Sen(Σ2)

✻
Sen(σ)

Sen(Σ1)

✲
γSen

Σ2
Sen′(γSign(Σ2))

✻
Sen′(γSign(σ))

Sen′(γSign(Σ1))✲
γSen

Σ1

Σ2

✻
σ

Σ1

• γMod : (γTh0)op ◦Mod′ → Mod, is a natural transformation (i.e.
the family of functors γMod

Σ : Mod′((γTh0)op(Σ)) → Mod(Σ) is
natural), such that for each Σ1,Σ2 ∈ |Sign| and σ : Σ1 → Σ2

morphism in Sign,

Mod′((γSign)op(Σ2))

❄

Mod′((γSign)op(σop))

Mod′((γSign)op(Σ1))

✲
γMod

Σ2
Mod(Σ2)

❄

Mod(σop)

Mod(Σ1)✲
γMod

Σ1

Σ2

✻
σ

Σ1

such that for any Σ ∈ |Sign|, the function γSen
Σ : Sen(Σ) → Sen′(γTh0(Σ))

and the functor γMod
Σ : Mod′(γTh0(Σ)) →Mod(Σ) preserves the following

satisfaction condition: for any α ∈ Sen(Σ) andM′ ∈ |Mod(γTh0(Σ))|,

M′ |=γTh0 (Σ) γ
Sen
Σ (α) iff γMod

Σ (M′) |=Σ α .

This alternative definition of representation map between institutions
(which, in fact, is very similar to the original definition of representation
map given by Meseguer in [Mes89, Definition 27] under the name map of
institutions) was presented in order to be able to add restrictions on the
richer class of models. The need for this alternative definition will be clear
in Chapter 5, §3.

CHAPTER 4

The logical system behind full proper closure fork algebra

with urelements

This chapter addresses the problem of building a logic (in the sense
of Definition 3.26) on top of full proper closure fork algebras with urele-
ments. Since the variety generated by fPCFAU is completely characterized
by ω-CCFAU, we might consider to relativize the institution (entailment
system) of equational logic rather than introducing a new one from scratch.
This might work for a while, but there are technical and methodological
reasons for presenting the explicit construction.

On the technical side, notice that the actual proof systems for equational
logic and ω-CCFAU differ in their proof rules (ω-CCFAU has an extra rule
– see Definition 2.47). This prevents us from modeling the proof calculus
[Mes89, Definition 12] ω-CCFAU as a proof subcalculus [Mes89, Defini-
tion 14] of equational logic. From the methodological point of view, the
categorical construction provides important information to the reader on
what operations are part of the logic, how morphisms are defined, etc.

The chapter is organized in three main section. The first one (§1) is
dedicated to construct the institution behind full proper closure fork algebras
with urelements. To do so, we first prove that the signatures of full proper
closure fork algebras with urelements together with total mappings between
extralogical function symbols form a category (see Lemma 4.1). Second,
(from Definition 4.1, to Lemma 4.8) we provide the definition of the functor
Sen. Then (from Definition 4.4 to Lemma 4.14), we provide the definition
of the functor Mod. And finally (from Lemma 4.15 to Lemma 4.17) we
prove the invariance of the satisfiability relation under change of notation.

The second section (§2) defines an entailment system in a standard way,
and constructs, by means of the institution presented in §1 and this entail-
ment system, a sound and complete logic.

The third section (§3) provides the necessary definitions and results in
order to fit ω-CCFAU in the definition of proof calculus, thus obtaining a
logical system.

47

48 4. THE LOGICAL SYSTEM BEHIND fPCFAU

From now on, we will omit the subscript fPCFAU except in those cases
where its absence could introduce ambiguities.

1. The institution behind full proper closure fork algebras with
urelements

In this section we will define an institution on top of fPCFAU. The section
is structured following the order of requirements stated in Definition 3.19.

From now on we will assume fixed but arbitrary fPCFAU-signatures with
the shape Σ = 〈{fi}i∈I〉, and resorting to superindexing with ′ if more than
one is needed (for example, Σ′ = 〈{f ′i′}i′∈I′〉). In the same way, if Σ is a
fPCFAU-signature, we will assume fixed but arbitrary Σ-models with the
shape M = 〈P, {fi}i∈I〉 subindexing them if more than one is needed (for

example,Mk = 〈Pk, {fki}i∈I〉), and superindexing with ′ when referring to

Σ′-models.

Lemma 4.1. We define Sign = 〈SignfPCFAU,A〉, where

A =

(
σ : 〈{fi}i∈I〉 → 〈{f

′
i}i∈I′ 〉

˛̨
˛̨
˛

σ : I → I′ is a total function, such that

(∀i ∈ I)(arity(fi) = arity(f ′
σ(i)

)) .

)

Then, Sign is a category.

Proof. It is trivial to see that idI is an arity preserving total function so
idΣ ∈ A. Now, as the composition of arity preserving total functions is itself
an arity preserving total function, then if σ : Σ→ Σ′, σ′ : Σ′ → Σ′′ ∈ A, we
get that σ ◦ σ′ : Σ→ Σ′′ ∈ A.

It is also trivial to see that (1) for any Σ,Σ′ ∈ |Sign| and σ : Σ → Σ′

morphism in |Sign|, idΣ◦σ = σ = σ◦idΣ′ , and (2) composition of morphisms,
being the composition of arity preserving total functions, is associative.

Consequently Sign is a category.

The intuitive meaning of Sign is that an object is an fPCFAU-signature
and an arrow σ : Σ→ Σ′ express a translation of Σ-symbols to Σ′-symbols.
Since the fork algebra operators are not part of the signatures, they are not
translated.

Definition 4.1. Let Σ,Σ′ ∈ |Sign|, and σ : Σ → Σ′ be a morphism in
Sign. Then σterm : TermΣ → TermΣ′ is defined inductively on the structure
of terms as follows:

• σterm(⋆) ≡ ⋆, for all ⋆ ∈ {1, 0, 1′},
• σterm(r) ≡ r, for all r ∈ R,
• if {t, t1, t2} ⊆ TermΣ, then

– σterm(t⋆) ≡ σterm(t)⋆, for all ⋆ ∈ {–, ,̆ ⋄, ∗},
– σterm(t1 ⋆ t2) ≡ σterm(t1) ⋆ σterm(t2), for all ⋆ ∈ {+, ·, ;,∇},

• if {t1, . . . , tn} ⊆ TermΣ, then
σterm(fi(t1, . . . , tarity(fi))) ≡ f ′σ(i)(σterm(t1), . . . , σterm(tn)), for

all i ∈ I.

Lemma 4.2. Let Σ ∈ |Sign| and t ∈ TermΣ, then (idΣ)term(t) ≡ t.

Proof. The proof follows by induction on the structure of t and using
Definition 4.1.

1. THE INSTITUTION BEHIND fPCFAU 49

Lemma 4.3. Let Σ,Σ′ ∈ |Sign| and σ : Σ → Σ′ and σ′ : Σ′ → Σ′′ be
morphisms in Sign then for all t ∈ TermΣ, (σ ◦ σ′)term(t) ≡ σterm◦σ

′
term(t).

Proof. The proof follows by induction on the structure of t.

Lemma 4.4. Let Σ,Σ′ ∈ |Sign| and σ : Σ → Σ′ be a morphism in Sign,
then σterm is a total function.

Proof. The proof follows trivially from Definition 4.1.

Definition 4.2. Let Σ,Σ′ ∈ |Sign| and σ : Σ → Σ′ be a morphism in
Sign. Then, σeq : SenΣ → SenΣ′ is defined as σeq(t1 = t2) ≡ σterm(t1) =
σterm(t2).

Lemma 4.5. Let Σ ∈ |Sign| and s ∈ SenΣ, then

(idΣ)eq(s) ≡ s .

Proof. The proof follows from Lemma 4.2.

Lemma 4.6. Let Σ,Σ′,Σ′′ ∈ |Sign| and σ : Σ → Σ′, σ′ : Σ′ → Σ′′ be
morphisms in Sign. Then for all t1 = t2 ∈ SenΣ, (σ ◦ σ′)eq(t1 = t2) ≡

σeq ◦ σ
′
eq(t1 = t2).

Proof.

(σ ◦ σ′)eq(t1 = t2)

≡ (σ ◦ σ′)term(t1) = (σ ◦ σ′)term(t2)
[by Definition 4.2]

≡ σterm ◦ σ
′
term(t1) = σterm ◦ σ

′
term(t2)

[by Lemma 4.3]
≡ σ′term(σterm(t1)) = σ′term(σterm(t2))
≡ σ′eq(σterm(t1) = σterm(t2))

[by Definition 4.2]
≡ σ′eq(σeq(t1 = t2))

[by Definition 4.2]
≡ σeq ◦ σ

′
eq(t1 = t2)

Lemma 4.7. Let Σ,Σ′ ∈ |Sign| and σ : Σ → Σ′ be a morphism in Sign

then σeq is a total function.

Proof. This lemma follows from Lemma 4.4, which states that σterm

is a total function.

Definition 4.3. Let Σ,Σ′ ∈ |Sign| and σ : Σ → Σ′ be a morphism in
Sign. We define Sen : Sign→ Set as:

• Sen(Σ) = SenΣ (see the paragraph before Definition 2.50), and
• Sen(σ) = σeq.

Lemma 4.8. Sen is a functor.

Proof. From Definition 4.3 we know that if Σ ∈ |Sign|, then Sen(Σ)
yields an object in the category Set and that if σ : Σ→ Σ′ is a morphism in
Sign, then Sen(σ) yields a morphism in the category Set.

50 4. THE LOGICAL SYSTEM BEHIND fPCFAU

We will first prove that Sen(idΣ) = idSen(Σ). Let s ∈ Sen(Σ), then

Sen(idΣ)(s)
= (idΣ)eq(s)

[by Definition 4.3]
= s

[by Lemma 4.5]
= idSen(Σ)(s)

[by Definition 4.3]

Next we prove that if σ : Σ → Σ′ and σ′ : Σ′ → Σ′′ are morphisms in Sign,
then Sen(σ ◦ σ′) = Sen(σ) ◦ Sen(σ′) as a consequence of Lemma 4.6. Let
s ∈ Sen(Σ), then

Sen(σ ◦ σ′)(s)
= (σ ◦ σ′)eq(s)

[by Definition 4.3]
= σeq ◦ σ

′
eq(s)

[by Lemma 4.6]
= σ′eq(σeq(s))
= Sen(σ′)(σeq(s))

[by Definition 4.3]
= Sen(σ′)(Sen(σ)(s))

[by Definition 4.3]
= (Sen(σ) ◦ Sen(σ′))(s)

[by Definition of ◦]

Definition 4.4. Let Σ ∈ |Sign|, then Mod(Σ) = 〈O,A〉 is defined as
follows:

• O = ModΣ (see Definition 2.50),
• A = { γ :M→M′ |M,M′ ∈ O and γ is an homomorphism }.

Lemma 4.9. Let Σ ∈ |Sign|, then Mod(Σ) is a category.

Proof. The proof of this lemma follows by observing that for allM∈
|Mod(Σ)| the identity function idM : |M| → |M| is a homomorphism
and that, by [BS81, Theorem 6.5], composition of homomorphisms yields
homomorphisms.

Finally, it is easy to prove that ifM,M′ ∈ |Mod(Σ)| and σ :M→M′

is a morphism in Mod(Σ), then idM ◦ σ = σ = σ ◦ idM′ , and that ◦ is
associative.

Definition 4.5. Let Σ,Σ′ ∈ |Sign| and σ : Σ → Σ′ be a morphism in
Sign. Let M′ ∈ |Mod(Σ′)|, then

M′ ↾σop= 〈P ′, {f ′σ(i)}i∈I〉 .

Lemma 4.10. Let Σ,Σ′,Σ′′ ∈ |Sign| and σ : Σ → Σ′, σ′ : Σ′ → Σ′′ be
morphisms in Sign. Let M′′ ∈ |Mod(Σ′′)|.

Then M′′ ↾σ′op◦σop= (M′′ ↾σ′op) ↾σop.

1. THE INSTITUTION BEHIND fPCFAU 51

Proof.

〈P ′′, {f ′′i′′}i′′∈I′′〉 ↾σ′op◦σop

= 〈P ′′, {f ′′(σ◦σ′)(i)}i∈I〉

[by Definition 4.5 and (σ ◦ σ′)op = σ′
op ◦ σop]

= 〈P ′′, {f ′′σ′(σ(i))}i∈I〉

= 〈P ′′, {f ′′σ′(i′)}σ(i)=i′∧i∈I〉

= 〈P ′′, {f ′′σ′(i′)}i′∈I′〉 ↾σop

[by Definition 4.5]
= 〈P ′′, {f ′′i′′}σ′(i′)=i′′∧i′∈I′〉 ↾σop

= 〈P ′′, {f ′′i′′}i′′∈I′′〉 ↾σ′op↾σop

[by Definition 4.5]

The next definition characterizes the behavior of Mod when it is applied
to morphisms in Sign. As morphisms σ : Σ→ Σ′ in Sign can be interpreted as
translations from Σ-symbols to Σ′-symbols and Mod must be contravariant,
Mod(σ) is, intuitively, the operation that takes reduct of Σ′-algebras to the
similarity type of Σ-algebras.

Definition 4.6. Let Σ,Σ′ ∈ |Sign| and σ : Σ → Σ′ be a morphism in
Sign. Let M′ ∈ |Mod(Σ′)| and γ′ be a morphism in Mod(Σ′), then

• Mod(σop)(M′) =M′ ↾σop ,
• Mod(σop)(γ′) = γ′.

As we mentioned before, if σ : Σ→ Σ′ is a morphism in Sign, Mod(σop)
acts on Σ′-models taking Σ-reducts so we expect Mod(σop) to act on mor-
phisms between Σ′-models by yielding morphisms between the Σ-reducts of
the Σ′-models.

Lemma 4.11. Let Σ,Σ′ ∈ |Sign| and σ : Σ → Σ′ be a morphism in Sign

and M′ ∈ |Mod(Σ′)|, then Mod(σop)(M′) ∈ |Mod(Σ)|.

Proof. The proof of this lemma follows from Definition 4.5.

Lemma 4.12. Let Σ,Σ′ ∈ |Sign| and σ : Σ→ Σ′ be a morphism in Sign,
and γ′ be a morphism in Mod(Σ′). Then, Mod(σop)(γ′) is a morphism in
Mod(Σ).

Proof. The proof follows by observing that, given M1 and M2 two
algebras of type Σ′, a homomorphism h : M1 → M2 is a homomorphism
between the Σ-reducts of M1 andM2.

Lemma 4.13. Let Σ,Σ′ ∈ |Sign| and σ : Σ→ Σ′ be a morphism in Sign.
Then Mod(σop) : Mod(Σ′)→Mod(Σ) is a functor.

Proof. By Lemma 4.9 we know that if Σ ∈ |Sign|, then Mod(Σ) is
a category. By Lemma 4.11 we know that Mod(σop) sends Σ′-models to
Σ-models, and by Lemma 4.12 we know that Mod(σop) maps Σ′-model
morphisms to Σ-model morphisms. From Definition 4.6, it follows that if
M′ ∈ |Mod(Σ′)|, then Mod(σop) maps the morphism idM′ :M′ →M′ to
the morphism idMod(σop)(M′) : Mod(σop)(M′)→Mod(σop)(M′); and that
Mod(σop)(γ ◦ γ′) = Mod(σop)(γ) ◦Mod(σop)(γ′).

52 4. THE LOGICAL SYSTEM BEHIND fPCFAU

Lemma 4.14. Mod : Signop → Cat is a functor.

Proof. If σ : Σ → Σ′ is a morphism in Sign, then by Lemma 4.9
Mod(Σ) is a category, and by Lemma 4.13 Mod(σop) is a functor.

By Definitions 4.4 and 4.6, Mod(idΣ) = idMod(Σ).
Finally, by Definition 4.6 and Lemma 4.10, if σ : Σ→ Σ′ and σ′ : Σ′ →

Σ′′ are morphisms in Sign, then Mod(σ′op ◦σop) = Mod(σ′op) ◦Mod(σop).

Next we will provide some definitions and prove some lemmas required
by the proof of the preservation of the |=-invariance condition from Defini-
tion 3.19.

Lemma 4.15. Let Σ,Σ′ ∈ |Sign|, and σ : Σ→ Σ′ be a morphism in Sign.
Then, for all val : R → |P ′|, and t ∈ TermΣ

mval
Mod(σ)(M′)(t) = mval

M′(σterm(t)) .

Proof. The proof of this lemma follows by induction on the structure
of the term. We will only provide a proof for the base case where t = r

with r ∈ R, the rest of the cases follows trivially by using the induction
hypothesis.

mval
Mod(σ)(M′)(r)

= val(r)
[by Definition 2.51]

= val(σterm(r))
[by Definition 4.1]

= mval
M′(σterm(r))

[by Definition 2.51]

Lemma 4.16. Let Σ,Σ′ ∈ |Sign|, σ : Σ → Σ′ be a morphism in Sign,
t1, t2 ∈ TermΣ and M′ ∈ |Mod(Σ′)|. Then, for all val : R → |P ′| the
following conditions are equivalent:

(1) mval
Mod(σ)(M′)(t1) = mval

Mod(σ)(M′)(t2).

(2) mval
M′(σterm(t1)) = mval

M′(σterm(t2)).

Proof. We first prove that Condition 1 implies Condition 2.

mval
M′(σterm(t1))

= mval
Mod(σ)(M′)(t1)

[by Lemma 4.15]
= mval

Mod(σ)(M′)(t2)

[by hypothesis]
= mval

M′(σterm(t2))
[by Lemmas 4.15]

The proof of the other implication is analogous to this one.

Lemma 4.17. (|=-invariance condition)
Let Σ,Σ′ ∈ |Sign| and σ : Σ→ Σ′ be a morphism in Sign, t1 = t2 ∈ Sen(Σ)
and M′ ∈ |Mod(Σ′)|. Then,

Mod(σ)(M′) |=Σ t1 = t2 iff M′ |=Σ′
Sen(σ)(t1 = t2) .

2. THE ENTAILMENT SYSTEM BEHIND fPCFAU 53

Proof.

Mod(σ)(M′) |=Σ t1 = t2
iff for all val : R → |P ′|, mval

Mod(σ)(M′)(t1) = mval
Mod(σ)(M′)(t2)

[by Definition 2.52]
iff for all val : R → |P ′|, mval

M′(σterm(t1)) = mval
M′(σterm(t2))

[by Lemma 4.16]

iff M′ |=Σ′
σterm(t1) = σterm(t2)

[by Definition 2.52]

iff M′ |=Σ′
σeq(t1 = t2)

[by Definition 4.2]

iff M′ |=Σ′
Sen(σ)(t1 = t2)

[by Definition 4.3]

Theorem 4.1. (fPCFAU-signatures, sentences and models form an in-
stitution)
〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 is an institution.

Proof. The proof follows from Lemmas 4.1, 4.8, 4.14 and 4.17.

The institution behind full proper closure fork algebras with urelements
is denoted as I .

2. The entailment system behind full proper closure fork
algebras with urelements

In this section we use a standard model theoretic construction [Mes89,
Proposition 4] in order to build a candidate entailment system. This entail-
ment system, though it defines an entailment relation, does not guarantee
the existence of axioms and proof rules implementing the deduction rela-
tion. We will address this issue later on in §3 when we will provide a proof
calculus for this deduction relation.

Definition 4.7. Let Σ ∈ |Sign|. Let Γ ⊆ Sen(Σ). We define the
category Mod(Σ,Γ) as the full subcategory of Mod(Σ) determined by those
modelsM∈ |Mod(Σ)| that satisfy all the sentences in Γ, i.e.,M |=Σ φ for
each φ ∈ Γ.

We also define a relation between sets of sentences and sentences Σ, as
follows:

Γ Σ φ iff M |=Σ φ for eachM∈ |Mod(Σ,Γ)| .

Then, we can prove the following theorem.

Theorem 4.2. (fPCFAU-signatures and sentences form an entailment
system)
〈Sign,Sen, {Σ}Σ∈|Sign|〉 is an entailment system.

Proof. By Lemma 4.1, Sign is a category and by Lemma 4.8 Sen is a
functor. Finally, by [Mes89, Proposition 4], given Σ ∈ |Sign|, Σ satisfies
the conditions presented in Definition 3.20.

54 4. THE LOGICAL SYSTEM BEHIND fPCFAU

The entailment system behind full proper closure fork algebras with
urelements is denoted as I +.

At this point, it is possible to prove that I and I + form a logic in the
sense of Definition 3.24.

Theorem 4.3. (I and I + form a logic)
〈Sign,Sen,Mod, {Σ}Σ∈|Sign|, {|=

Σ}Σ∈|Sign|〉 is a logic.

Proof. The proof follows as a consequence of Theorems 4.1 and 4.2;
and observing that, by Definition 4.7, Σ is a sound and complete entailment
relation.

The logic behind full proper closure fork algebras with urelements will
be denoted as L .

3. The proof calculus behind full proper closure fork algebras
with urelements

Having proved the existence of a sound and complete entailment relation
Σ in the way we did, is of little interest. The entailment relation does not
give any hints as to how to deduce properties, what would be the axioms, or
what are the proof rules employed in order to generate the relation. Actually,
it might be the case that no deduction mechanism is available. Fortunately,
as was shown in Theorem 2.15, this is not the case when working with closure
fork algebras because ω-CCFAU is a complete calculus for fPCFAU.

Now we will develop, in the sense of Definition 3.25, the proof calculus
presented in Definition 2.47.

We first define StructPC , the subcategory of SMCat whose objects are
those strict monoidal categories whose monoid of objects is the subsets of
ω-CCFAU-equations on a given signature Σ ∈ |Sign|. We consider ∪ as the
binary operations and ∅ as the neuter element.

Lemma 4.18. Let Σ ∈ |Sign| and Γ ⊆ Sen(Σ), we define StrΣ,Γ as the

structure 〈2Sen(Σ),AΣ,Γ〉 where:

AΣ,Γ =

8
<
: α : {Ai}i∈I → {Bj}j∈J

˛̨
˛̨
˛̨

α = {αj}j∈J such that

αj is a proof tree of {Ai}i∈I ∪ Γ ⊢ω-CCFAU Bj

, for j ∈ J

9
=
; ,

• id{Ai}i∈I
: {Ai}i∈I → {Ai}i∈I ∈ A

Σ,Γ denotes the set of formulas {Ai}i∈I seen as

proof trees.

• If α : {Ai}i∈I → {Bj}j∈J , β : {Bj}j∈J → {Ck}k∈K ∈ A
Σ, α = {αj}j∈J and

β = {βk}k∈K, then α ◦ β = {γk}k∈K such that γk is the proof tree obtained from βk

by gluing αj at each occurrence of Bj as a leaf in βk for each k ∈ K and j ∈ J .

Then StrΣ,Γ is a category.

Proof. The proof of this lemma follows by observing that if {Ai}i∈I ⊆
Sen(Σ) then, id{Ai}i∈I

∈ AΣ,Γ, and that if α : {Ai}i∈I → {Bj}j∈J ∈ A
Σ,Γ

and β : {Bj}j∈J → {Ck}k∈K ∈ A
Σ,Γ, then α ◦ β : {Ai}i∈I → {Ck}k∈K ∈

AΣ,Γ.
It is easy to see that, from definition of ◦, given {Ai}i∈I , {Bj}j∈J ∈

|StrΣ,Γ| and α : {Ai}i∈I → {Bj}j∈J a morphism in StrΣ,Γ, id{Ai}i∈I
◦ α =

α = α ◦ id{Bj}j∈J
, and that ◦ is associative.

3. THE PROOF CALCULUS BEHIND fPCFAU 55

Notice that if Σ ∈ |Sign| and Γ ⊆ Sen(Σ), a morphism of the form
α : {Ai}i∈I → {Bj}j∈J in StrΣ,Γ denotes a set of proof trees. Each tree is a
proof of one of the sentences {Bj}j∈J from the set of hypothesis {Ai}i∈I∪Γ.

Lemma 4.19. Let Σ ∈ |Sign| and Γ ⊆ Sen(Σ). We define the operator
∪ : StrΣ,Γ × StrΣ,Γ → StrΣ,Γ as follows:

• ∪ is set union when applied to subsets of Sen(Σ), and
• let α : {Ai}i∈I → {Bj}j∈J and α′ : {A′i}i∈I′ → {B

′
j}j∈J ′ be mor-

phisms in StrΣ,Γ, then α ∪ α′ : {Ai}i∈I ∪ {A
′
i}i∈I′ → {Bj}j∈J ∪

{B′j}j∈J ′ denotes the morphism consisting of the union of the proof

trees denoted by α and α′.

Then ∪ : StrΣ,Γ × StrΣ,Γ → StrΣ,Γ is a bifunctor.

Proof. To prove that ∪ is a bifunctor we first prove that ∪ preserves
identities.

id{Ai}i∈I
∪ id{A′

i}i∈I′

= {Ai}i∈I ∪ {A
′
i}i∈I′

[by Lemma 4.18]
= id{Ai}i∈I∪{A

′
i}i∈I′

[by Lemma 4.18]

Then, it only rests to prove that • ∪ • preserves composition of morphisms.
Let f : {Ai}i∈I → {Bj}j∈J ∈ A

Σ,Γ, g : {Bj}j∈J → {Ck}k∈K ∈ A
Σ,Γ,

f ′ : {A′i}i∈I′ → {B
′
j}j∈J ′ ∈ AΣ,Γ, g′ : {B′j}j∈J ′ → {C ′k}k∈K′ ∈ AΣ,Γ.

f ◦ g ∪ f ′ ◦ g′

=

0

B

B

B

@

8

>

>

>

<

>

>

>

:

{Ai}i∈I

.

.

.

Bj

9

>

>

>

=

>

>

>

;

j∈J

◦

8

>

>

>

<

>

>

>

:

{Bj}j∈J

.

.

.

Ck

9

>

>

>

=

>

>

>

;

k∈K

1

C

C

C

A

∪

0

B

B

B

B

@

8

>

>

>

<

>

>

>

:

{A′
i}i∈I′

.

.

.

B′
j

9

>

>

>

=

>

>

>

;

j∈J′

◦

8

>

>

>

<

>

>

>

:

{B′
j}j∈J′

.

.

.

C′
k

9

>

>

>

=

>

>

>

;

k∈K′

1

C

C

C

C

A

=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

8

>

>

<

>

>

:

{Ai}i∈I

.

.

.

Bj

9

>

>

=

>

>

;

j∈J

.

.

.

Ck

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

k∈K

∪

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

8

>

>

<

>

>

:

{A′
i}i∈I′

.

.

.

B′
j

9

>

>

=

>

>

;

j∈J′

.

.

.

C′
k

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

k∈K′

[by Lemma 4.18]

=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

8

>

>

<

>

>

:

{Ai}i∈I ∪ {A′
i}i∈I′

.

.

.

Bj

9

>

>

=

>

>

;

j∈J

∪

8

>

>

<

>

>

:

{Ai}i∈I ∪ {A′
i}i∈I′

.

.

.

B′
j

9

>

>

=

>

>

;

j∈J′

.

.

.

Ck

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

k∈K

∪

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

8

>

>

<

>

>

:

{Ai}i∈I ∪ {A′
i}i∈I′

.

.

.

Bj

9

>

>

=

>

>

;

j∈J

∪

8

>

>

<

>

>

:

{Ai}i∈I ∪ {A′
i}i∈I′

.

.

.

B′
j

9

>

>

=

>

>

;

j∈J′

.

.

.

C′
k

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

k∈K′

[by monotonicity of ω-CCFAU]

56 4. THE LOGICAL SYSTEM BEHIND fPCFAU

On the other hand,

(f ∪ f ′) ◦ (g ∪ g′)

=

0

B

B

B

B

@

8

>

>

>

<

>

>

>

:

{Ai}i∈I

.

.

.

Bj

9

>

>

>

=

>

>

>

;

j∈J

∪

8

>

>

>

<

>

>

>

:

{A′
i}i∈I′

.

.

.

B′
j

9

>

>

>

=

>

>

>

;

j∈J′

1

C

C

C

C

A

◦

0

B

B

B

@

8

>

>

>

<

>

>

>

:

{Bj}j∈J

.

.

.

Ck

9

>

>

>

=

>

>

>

;

k∈K

∪

8

>

>

>

<

>

>

>

:

{B′
j}j∈J′

.

.

.

C′
k

9

>

>

>

=

>

>

>

;

k∈K′

1

C

C

C

A

=

0

B

B

B

B

@

8

>

>

>

<

>

>

>

:

{Ai}i∈I ∪ {A′
i}i∈I′

.

.

.

Bj

9

>

>

>

=

>

>

>

;

j∈J

∪

8

>

>

>

<

>

>

>

:

{Ai}i∈I ∪ {A′
i}i∈I′

.

.

.

B′
j

9

>

>

>

=

>

>

>

;

j∈J′

1

C

C

C

C

A

◦

0

B

B

B

@

8

>

>

>

<

>

>

>

:

{Bj}j∈J ∪ {B′
j}j∈J′

.

.

.

Ck

9

>

>

>

=

>

>

>

;

k∈K

∪

8

>

>

>

<

>

>

>

:

{Bj}j∈J ∪ {B′
j}j∈J′

.

.

.

C′
k

9

>

>

>

=

>

>

>

;

k∈K′

1

C

C

C

A

[by monotonicity of ω-CCFAU]

=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

8

>

>

<

>

>

:

{Ai}i∈I ∪ {A′
i}i∈I′

.

.

.

Bj

9

>

>

=

>

>

;

j∈J

∪

8

>

>

<

>

>

:

{Ai}i∈I ∪ {A′
i}i∈I′

.

.

.

B′
j

9

>

>

=

>

>

;

j∈J′

.

.

.

Ck

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

k∈K

∪

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

8

>

>

<

>

>

:

{Ai}i∈I ∪ {A′
i}i∈I′

.

.

.

Bj

9

>

>

=

>

>

;

j∈J

∪

8

>

>

<

>

>

:

{Ai}i∈I ∪ {A′
i}i∈I′

.

.

.

B′
j

9

>

>

=

>

>

;

j∈J′

.

.

.

C′
k

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

k∈K′

[by Lemma 4.18]

Lemma 4.20. Let Σ ∈ |Sign| and Γ ⊆ Sen(Σ) then:

• ∪ : 〈StrΣ,Γ,∪, ∅〉 × 〈StrΣ,Γ,∪, ∅〉 → 〈StrΣ,Γ,∪, ∅〉 is associative,
• ∅ ∈ |StrΣ,Γ| is left and right identity for ∪.

Proof. This proof follows by showing that 〈|StrΣ,Γ|,∪, ∅〉 is a monoid
(which is trivial by set theory); and that 〈{α : StrΣ,Γ → StrΣ,Γ},∪, ∅ → ∅〉
is also a monoid.

Let us first prove that ∪ is associative.

({Ai}i∈I → {Bj}j∈J ∪ {A
′
i}i∈I′ → {B′

j}j∈J ′) ∪ {A′′
i }i∈I′′ → {B′′

j }j∈J ′′

= (({Ai}i∈I ∪ {A
′
i}i∈I′)→ ({Bj}j∈J ∪ {B

′
j}j∈J ′)) ∪ {A′′

i }i∈I′′ → {B′′
j }j∈J ′′

[by Lemma 4.18]
= (({Ai}i∈I ∪ {A

′
i}i∈I′) ∪ {A′′

i }i∈I′′)→ (({Bj}j∈J ∪ {B
′
j}j∈J ′) ∪ {B′′

j }j∈J ′′)

[by Lemma 4.18]
= ({Ai}i∈I ∪ ({A′

i}i∈I′ ∪ {A′′
i }i∈I′′))→ ({Bj}j∈J ∪ ({B′

j}j∈J ′ ∪ {B′′
j }j∈J ′′))

[because 〈|StrΣ,Γ|,∪, ∅〉 is a monoid]
= {Ai}i∈I → {Bj}j∈J ∪ (({A′

i}i∈I′ ∪ {A′′
i }i∈I′′)→ ({B′

j}j∈J ′ ∪ {B′′
j }j∈J ′′))

[by Lemma 4.18]
= {Ai}i∈I → {Bj}j∈J ∪ ({A′

i}i∈I′ → {B′
j}j∈J ′ ∪ {A′′

i }i∈I′′ → {B′′
j }j∈J ′′)

[by Lemma 4.18]

3. THE PROOF CALCULUS BEHIND fPCFAU 57

Now we prove that ∅ → ∅ is a left and right identity for ∪.

(∅ → ∅) ∪ ({Ai}i∈I → {Bj}j∈J)
= (∅ ∪ {Ai}i∈I)→ (∅ ∪ {Bj}j∈J)

[by Lemma 4.18]
= {Ai}i∈I → {Bj}j∈J

[because 〈|StrΣ,Γ|,∪, ∅〉 is a monoid]

The proof that ∅ → ∅ is a right identity for ∪ is analogous to the previous
one.

Lemma 4.21. Let Σ ∈ |Sign| and Γ ⊆ Sen(Σ) then 〈StrΣ,Γ,∪, ∅〉 is a
strict monoidal category.

Proof. The proof follows from Lemmas 4.19 and 4.20.

To define the functor P : Th0 → StructPC we will first provide some
preliminary definitions and lemmas.

Definition 4.8. Let σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 be a morphism in |Th0|, we

define σ̂ : StrΣ,Γ → StrΣ
′,Γ′

as:

• σ̂({Ai}i∈I) = {σeq(Ai)}i∈I ,
• σ̂(Γ→ {Bj}j∈J) = {σ̂(Γ→ Bj)}j∈J ,

where:

σ̂

{
Γi
...πi

}

i∈I (r)
α

 =

{
σ̂

(
Γi
...πi

)}

i∈I (r)
σeq(α)

, for I ⊆ ◆ .

In the introduction of this chapter we argued in favor of building the
logical system of the full proper closure fork algebras with urelements on the
base that we needed to include a new proof rule, the ω-rule. The previous
definition hides that need. Even when it does not depend on the particular
rules, the potential existence of an infinite number of proof sub-trees to
which the ω-rule is applied, is expressed in the last clause when we define
the result of applying σ̂ to single proof tree.

Lemma 4.22. Let 〈Σ,Γ〉 ∈ |Th0| and {Ai}i∈I ∪ {Bj}j∈J ⊆ Sen(Σ).

Then, for all α : {Ai}i∈I → {Bj}j∈J , îd〈Σ,Γ〉(α) = α.

Proof. The proof of this lemma follows by induction on the height of
the proof tree by using Lemma 4.5.

Lemma 4.23. Let σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉, σ′ : 〈Σ′,Γ′〉 → 〈Σ′′,Γ′′〉 be
morphisms in |Th0|, and let {Ai}i∈I ∪ {Bj}j∈J ⊆ Sen(Σ). Then, for all

α : {Ai}i∈I → {Bj}j∈J , σ̂ ◦ σ′(α) = (σ̂ ◦ σ̂′)(α).

Proof. The proof of this lemma follows by induction on the height of
the proof tree by using Lemma 4.6.

Lemma 4.24. Let σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 be a morphism in |Th0|, and let
f : {Ai}i∈I → {Bj}j∈J and g : {Bj}j∈J → C be morphisms in StrΣ,Γ.

58 4. THE LOGICAL SYSTEM BEHIND fPCFAU

Then

σ̂

{Ai}i∈I
...
Bj

j∈J
(r)

...
C

=

σ̂

{Ai}i∈I
...
Bj

j∈J

(r)

σ̂

(
...
C

)
.

Proof. The proof of this lemma follows by induction on the height of
the proof of C from the conclusions of applying rule r. Let π be such proof.
If π has height 1, i.e. C is the conclusion of applying rule r, then the proof
follows trivially by applying Definition 4.8.

If π has height greater than 1, then the following reasoning can be applied
to prove the lemma.

σ̂

{Ai}i∈I
...
Bj

j∈J
(r)

...
C

=
σ̂

{Ai}i∈I
...
Bj

j∈J
(r)

...

σeq(C)
[by Definition 4.8]

=

σ̂

{Ai}i∈I
...
Bj

j∈J

(r)

σ̂

(
...

)

σeq(C)
[by inductive hypothesis]

=

σ̂

{Ai}i∈I
...
Bj

j∈J

(r)

σ̂

(
...
C

)

[by Definition 4.8]

3. THE PROOF CALCULUS BEHIND fPCFAU 59

Lemma 4.25. Let σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 be a morphism in |Th0| and let
f : {Ai}i∈I → {Bj}j∈J and g : {Bj}j∈J → {Ck}k∈K be morphisms in

StrΣ,Γ. Then

σ̂

{Ai}i∈I
...
Bj

j∈J

σ̂

(
...
Ck

)

k∈K

=

σ̂

{Ai}i∈I
...
Bj

j∈J

 ◦ σ̂

{Bj}j∈J
...
Ck

k∈K

 .

Proof. The proof of this lemma is analogous to the proof of Lemma 4.24
using the definition of ◦ presented in Lemma 4.18.

Lemma 4.26. Let σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 be a morphism in |Th0|, then σ̂

is a functor.

Proof. By Definition 4.8 we know that σ̂ yields StrΣ
′,Γ′

-objects when-
ever it is applied to StrΣ,Γ-objects and StrΣ

′,Γ′
-morphisms whenever it is

applied to StrΣ,Γ-morphisms.
We will first prove that σ̂(id{Ai}i∈I

) = idbσ({Ai}i∈I).

σ̂(id{Ai}i∈I
)

= σ̂ ({Ai}i∈I)
[by Lemma 4.18]

= {σeq(Ai)}i∈I
[by Definition 4.8]

= id{σeq(Ai)}i∈I

[by Lemma 4.18]
= idbσ({Ai}i∈I)

[by Definition 4.8]

Next, we prove that if f : {Ai}i∈I → {Bj}j∈J and g : {Bj}j∈J → {Ck}k∈K
are morphisms in 〈StrΣ,Γ,∪, ∅〉, then σ̂(f ◦ g) = σ̂(f) ◦ σ̂(g).

60 4. THE LOGICAL SYSTEM BEHIND fPCFAU

Let f : {Ai}i∈I → {Bj}j∈J and g : {Bj}j∈J → {Ck}k∈K.

σ̂(f ◦ g)

= σ̂

{Ai}i∈I
...
Bj

j∈J

◦

{Bj}j∈J
...
Ck

k∈K

= σ̂

{Ai}i∈I
...
Bj

j∈J

...
Ck

k∈K

[by Lemma 4.18]

=

σ̂

{Ai}i∈I
...
Bj

j∈J

...
Ck

k∈K
[by Definition 4.8]

=

σ̂

{Ai}i∈I
...
Bj

j∈J

σ̂

(
...
Ck

)

k∈K
[by Lemma 4.24]

= σ̂

{Ai}i∈I
...
Bj

j∈J

 ◦ σ̂

{Bj}j∈J
...
Ck

k∈K

= σ̂(f) ◦ σ̂(g)
[by Lemma 4.25]

Lemma 4.27. Let StructPC = 〈O,A〉 where:

• O =
{
〈StrΣ,Γ,∪, ∅〉 ∈ |SMCat|

∣∣ Σ ∈ |Sign| and Γ ⊆ Sen(Σ)
}
,

• A =
{
σ̂ : 〈StrΣ,Γ,∪, ∅〉 → 〈StrΣ

′,Γ′
,∪, ∅〉 |

σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 is a morphism in |Th0|}.

Then StructPC is a category.

Proof. The proof easily follows from Lemma 4.26.

Definition 4.9. Let 〈Σ,Γ〉, 〈Σ′,Γ′〉 ∈ |Th0| and σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 be
a morphism in Th0, we define P : Th0 → StructPC as:

• P(〈Σ,Γ〉) = 〈StrΣ,Γ,∪, ∅〉,

3. THE PROOF CALCULUS BEHIND fPCFAU 61

• P(σ) = σ̂.

Lemma 4.28. P is a functor.

Proof. By Definition 4.9 we know that if T ∈ |Th0|, then P(T) ∈
StructPC . By Lemma 4.26 we also know that if σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 is a

morphism in Th0, then P(σ) : 〈StrΣ,Γ,∪, ∅〉 → 〈StrΣ
′,Γ′
,∪, ∅〉 is a functor

(i.e. a morphism in StructPC).
Lemma 4.22 proves that P(id〈Σ,Γ〉) = id〈StrΣ,Γ,∪,∅〉. Then, by Lemma 4.23,

if σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 and σ′ : 〈Σ′,Γ′〉 → 〈Σ′′,Γ′′〉 are morphisms in Th0

then P(σ ◦ σ′) = P(σ) ◦P(σ′).

Definition 4.10. Let 〈Σ,Γ〉, 〈Σ′,Γ′〉 ∈ |Th0| and σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉
be a morphism in Th0. We define Pr : StructPC → Set as follows:

• Pr(〈StrΣ,Γ,∪, ∅〉) =
{
α : ∅ → A

∣∣α is a morphism in StrΣ,Γ
}
,

• Pr(σ̂) = σ̂.

Lemma 4.29. Pr is a functor.

Proof. Recalling on Definition 4.10, we know that if 〈Σ,Γ〉 ∈ |Th0|,
then Pr(〈StrΣ,Γ,∪, ∅〉) yields a set and that if σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 is a
morphism in Th0, then Pr(σ̂) yields a total function between sets. Finally,

the proof that Pr preserves identities (Pr(îd〈Σ,Γ〉) = idPr(〈StrΣ,Γ,∪,∅〉)), and

compositions (if σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 and σ′ : 〈Σ′,Γ′〉 → 〈Σ′′,Γ′′〉 are mor-

phisms in Th0, then Pr(σ̂ ◦ σ′) = Pr(σ̂) ◦ Pr(σ̂′)) follows by Lemmas 4.22
and 4.23, and observing that Pr(σ̂) = σ̂.

Definition 4.11. Let T, T ′ ∈ |Th0|, we define πT : P◦Pr(T)→ Sen(T)
as πT (α) = A, for each α : ∅ → A ∈ P ◦Pr(T).

Lemma 4.30. π is a natural transformation.

Proof. Let σ : T → T ′ be a morphism in Th0, then the commutativity
of the following diagram

P ◦Pr(T)

❄

P ◦Pr(σ)

P ◦Pr(T ′)

✲πT
Sen(T)

❄

Sen(σ)

Sen(T ′)✲πT ′

follows by observing that for any A ∈ Sen(T) such that ∅ → A ∈ P◦Pr(T),
then (πT ◦ Sen(σ))(∅ → A) = ((P ◦Pr(σ)) ◦ πT ′)(∅ → A).

(πT ◦ Sen(σ))(∅ → A)
= Sen(σ)(πT (∅ → A))

[by definition of ◦]
= Sen(σ)(A)

[by Definition 4.11]
= σeq(A)

[by Lemma 4.8]

62 4. THE LOGICAL SYSTEM BEHIND fPCFAU

Now we prove that ((P ◦Pr(σ)) ◦ πT ′)(∅ → A) = σeq(A).

((P ◦Pr(σ)) ◦ πT ′)(∅ → A)
= πT ′((P ◦Pr(σ))(∅ → A))

[by definition of ◦]
= πT ′(Pr(P(σ))(∅ → A))

[by definition of ◦]
= πT ′(Pr(σ̂)(∅ → A))

[by Lemma 4.28]
= πT ′(σ̂(∅ → A))

[by Lemma 4.29]

= πT ′

σ̂

Γ
...
A

= πT ′

σ̂

(
Γ
...

)

σeq(A)

[by Definition 4.8]
= σeq(A)

[by Definition 4.11]

Theorem 4.4. (I+, P, Pr and π form a proof calculus)
〈Sign,Sen, {Σ}Σ∈|Sign|,P,Pr, π〉 is a proof calculus.

Proof. The proof follows from Theorem 4.2 and Lemmas 4.28, 4.29
and 4.30.

Finally, we define the logical system behind full proper closure fork al-
gebras with urelements by putting together the constructions carried out in
§1 and §3 in the following theorem.

Theorem 4.5. (L and ω-CCFAU form a logical system)
〈Sign,Sen,Mod, {Σ}Σ∈|Sign|, {|=

Σ}Σ∈|Sign|,P,Pr, π〉 is a logical system.

Proof. The proof follows from Theorems 4.3 and 4.4.

In this chapter we presented the logical system behind full proper clo-
sure fork algebras with urelements. This class of algebras and its calculus,
ω-CCFAU, were proved to be useful in interpreting several logics. Neverthe-
less, there are some other logics that require more complex algebraic struc-
tures to be interpreted, and in some cases the calculus must be extended in
order to completely characterize the class of algebras. To avoid obscuring
the concepts and results on ω–closure fork algebras with urelements we pre-
ferred to adhere to its purer version, leaving any further extension of this
logical system to the reader, who can use this chapter as a guideline in the
process.

CHAPTER 5

Interpretability as a representation map between institutions

In this chapter we will address the formalization of the interpretability
result of first order linear temporal logic in an extension of fork algebras
presented in [FL06], but this time resorting to institutions. As we men-
tioned before, institutions can be related by means of institution morphisms
or institution representations. Both kinds of mappings were extensively dis-
cussed by Tarlecki in [Tar96]. In this work, the author goes even further
when he writes:

“... this suggests that we should strive at a development of
a convenient to use proof theory (with support tools!) for a
sufficiently rich “universal” institution, and then reuse it for
other institutions linked to it by institution representations.”

An interpretability result of a logic into ω-CCFAU exposes the possibility
to translate formulas from that logic to ω-CFAU equations in a semantics
preserving way, allowing us to use the calculus to reason about properties
coming from a theory written in this logic.

Our claim is that, considering the existing representability results of
logics into ω-CCFAU, the latter could be considered as a good candidate to
play the rôle of Tarlecki’s “universal” institution.

In general, if L is a logic and ΣL an L-signature, an interpretability
result of L in ω-CCFAU is presented by resorting to:

• A mapping S from ΣL to Σ ∈ |Sign|.
• A translation TL→ω-CFAU of ΣL-formulas to Σ-equations.
• A mapping ML→fPCFAU of ΣL-models to Σ-models (full proper clo-

sure fork algebras with urelements), satisfying:

∀A ∈ |ModL(ΣL)|
(
A |=ΣL

L α iff ML→fPCFAU(A) |=Σ TL→ω-CFAU(α)
)
.

• A mapping MfPCFAU→L of Σ-models (full proper closure fork alge-
bras with urelements) to ΣL-models, satisfying:

∀B ∈ fPCFAU
(
MfPCFAU→L(B) |=ΣL

L α iff B |=Σ TL→ω-CFAU(α)
)
.

63

64 5. INTERPRETABILITY AS REPRESENTATION MAP

As we mentioned at the end of Chapter 4, there are some interpretability
results for which it is not sufficient to consider the logical system presented
in Theorem 4.5. One of this cases is the interpretability of first-order linear
temporal logic. In order to show how interpretability results can be seen
as representation maps between institutions we could choose a logic for
which ω–closure fork algebras with urelements is sufficient, like LTL, PDL or
FOL but we considered that the most interesting interpretability result we
developed is the one for first-order linear temporal logic.

This chapter is organized as follows. The first section (§1) is dedicated
to present first-order linear temporal logic (FOLTL for short) and review
some definitions and results from the field of modal logics. Then, in §2, we
review the interpretability result of FOLTL into ω-CCFAU we presented in
[FL06]. And finally, in §3 we rephrase it as an institution representation
map. This last section is structured following the order of requirements
stated in Definition 3.29.

1. First-order linear temporal logic

In this section we present the interpretability result for a first-order
extension of the propositional temporal logic LTL [Eme90]. The first-order
extension of LTL we choose adopts the quantification provided in [MP95].
In order to interpret FOLTL, we will define a translation of FOLTL-formulas
to relational expressions. We will then prove that this translation preserves
(in a way to be defined) the semantics of the logic.

Definition 5.1. Let V be a totally ordered denumerable set of variable
symbols, and let Σ = 〈{fi}I∈I , {pj}j∈J 〉 be a FOLTL-signature then we
define the set TermFOLTL(Σ) of the FOLTL-terms on the signature Σ as the
smallest set T (Σ) satisfying:

• v ∈ T (Σ) for all v ∈ V,
• if t1, . . . , tn ∈ T (Σ), then fi(t1, . . . , tarity(fi)) ∈ T (Σ), for all i ∈ I.

We define the set FormFOLTL(Σ) of the FOLTL formulas on the signature Σ
as the smallest set F (Σ) satisfying:

• If t1, . . . , tn ∈ T (Σ), then pj(t1, . . . , tarity(pj)) ∈ F (Σ), for all j ∈ J ,

• if α, β ∈ F (Σ) and v ∈ V, then {¬α, α ∨ β,Xα, αUβ, (∃v)α } ⊆
F (Σ).

The set of FOLTL-signatures will be denoted as SignFOLTL.

Definition 5.2. Let Σ = 〈{fi}i∈I , {pj}j∈J 〉 ∈ SignFOLTL, then a Σ-

structure is a structure A = 〈A, {fAi }i∈I , {p
A
j }j∈J 〉 such that:

• A is a nonempty set.
• fAi : Aarity(fi) → A, for all i ∈ I.

• pAj ⊆ A
arity(pj), for all j ∈ J .

Definition 5.3. Let Σ ∈ SignFOLTL, and a Σ-structureA, then a Kripke
structure 〈A, St, St0, T 〉 ∈ModΣ if and only if:

• St is the set of states (valuations of the variables on A),
• St0 ⊆ St is the set of initial states, and

1. FIRST-ORDER LINEAR TEMPORAL LOGIC 65

• T ⊆ St × St is the transition relation. The transition relation T

is assumed to be complete; that is, every state has at least one
successor.

Given a Kripke structure K, the set of paths (or traces) of K is denoted
by ∆K. A trace tr ∈ ∆K is an infinite sequence st0, st1, . . . such that sti ∈ St
and (sti, sti+1) ∈ T for all i ≥ 0. We denote by tri the suffix of tr starting
at position i. Similarly, we denote by tri the ith. state in the trace tr.
A v-variant of a state st (v ∈ V) is a state ŝt that agrees with st in the
value of the state variables w (w ∈ V, w 6= v). This concept generalizes to

traces as follows. A trace t̂r = ŝt0, ŝt1, . . . , ŝtn, . . . is a v-variant of a trace
tr = st0, st1, . . . , stn, . . . if ŝtj is a v-variant of stj for all j ≥ 0.

In the following two definitions we provide the semantics of terms (which
agrees with the semantics of terms in classical first-order logic), as well as
the satisfiability relation for FOLTL-formulas. States are given by the values
of the variables, i.e., a state is a valuation of the variables.

Definition 5.4. Let Σ = 〈{fi}i∈I , {pj}j∈J 〉 ∈ SignFOLTL and a Kripke
structure 〈A, St, St0, T 〉. Then, V : TermFOLTL(Σ) → (St → A) is defined
as follows:

• V (v)(val) = val(v), for all v ∈ V.
• V (fi(t1, . . . , tn))(val) = fAi (V (t1)(val), . . . , V (tn)(val)), for all i ∈
I.

Definition 5.5. Let Σ = 〈{fi}i∈I , {pj}j∈J 〉 ∈ SignFOLTL, and let α, β ∈
FormFOLTL(Σ). Let K = 〈A, St, St0, T 〉 ∈ ModΣ, where A is the structure
〈{fAi }i∈I , {p

A
j }j∈J 〉, and tr ∈ ∆K, the semantics of a FOLTL-formula is

defined recursively as follows:

• K, tr |=FOLTL pj(t1, . . . , tn) iff pAj (V (t1)(tr0), . . . , V (tn)(tr0)),

• K, tr |=FOLTL ¬α iff K, tr 6|= α,
• K, tr |=FOLTL α ∨ β iff K, tr |= α or K, tr |= β,
• K, tr |=FOLTL Xα iff K, tr1 |= α,
• K, tr |=FOLTL αUβ iff there exists i ∈ ◆ such that i ≥ 0, K, tri |= β,

and for all j ∈ ◆ such that 0 ≤ j < i, K, trj |= α, and
• K, tr |=FOLTL (∃v)α iff K, t̂r |= α, for some t̂r, v-variant of tr,

where v ∈ V.

A formula is satisfied in a Kripke structure K if it is satisfied along a
trace tr0, tr1, . . . ∈ ∆K such that tr0 ∈ St0. A formula is valid in a Kripke
structure K if it is satisfied along all traces tr0, tr1, . . . ∈ ∆K such that
tr0 ∈ St0.

When trying to relate two Kripke structures in a way that satisfiability
is preserved, the equivalent notion to the algebraic homomorphism is called
bounded morphism (or p-morphism). Besides bounded morphisms there
exists other possibilities, such as homomorphism or strong homomorphism,
but these relations are stronger than bounded morphisms because they not
only enforce modal equivalence, but also establish structural restrictions
on the accessibility relation which are not required to preserve semantic
equivalence of terms and formulas. For a complete explanation on why, in
this case, the best choice are bounded morphisms we point the reader to
[BdV01, §2].

66 5. INTERPRETABILITY AS REPRESENTATION MAP

The next definition extends the definition of bounded morphism given
in [BdV01, Definition 2.10] to the class of Kripke structures used to give
semantics to FOLTL.

Definition 5.6. Let Σ ∈ SignFOLTL, and K1 = 〈A1, St1, St01, T1〉, K2 =
〈A2, St2, St02, T2〉 ∈ModΣ.

Then γ : St1 → St2 is a bounded morphism if and only if:

(1) for all st1 ∈ St01, γ(st1) ∈ St02,
(2) for all st2 ∈ St02, there exists st1 ∈ St01 such that γ(st1) = st2,
(3) for all tr ∈ ∆K1 and j ∈ J , K1, tr |= pj(t1, . . . , tarity(pj)) if and only

if K2, γ(tr) |= pj(t1, . . . , tarity(pj)),
1

(4) for all st1, st
′
1 ∈ St1, if st1 T1 st

′
1, then γ(st1) T2 γ(st

′
1) (the “forth”

condition),
(5) for all st1 ∈ St1 and st′2 ∈ St2, if γ(st1) T2 st′2, then there ex-

ists st′1 ∈ St1 such that γ(st′1) = st′2 and st1 T1 st
′
1 (the “back”

condition).

If there is a surjective bounded morphism from K1 = 〈A1, St1, St01, T1〉
to K2 = 〈A2, St2, St02, T2〉, then we say that K2 is a bounded morphic image
of K1, and is denoted K1 ։ K2.

Theorem 5.1. Let Σ ∈ SignFOLTL, and K1,K2 ∈ ModΣ, tr ∈ ∆K1 and
γ : St1 → St2 a bounded morphism. Then for all φ ∈ FormFOLTL(Σ)

K1, tr |=FOLTL φ iff K2, γ(tr) |=FOLTL φ .

Proof. The proof is simple extension of the proof of [BdV01, §2,
Proposition 2.14].

2. Interpretability of FOLTL in ω-CCFAU

Defining the translation for a first-order temporal language with func-
tion symbols {fi}i∈I , predicate symbols {pj}j∈J and variables V, requires
extending the language of full proper closure fork algebras with urelements
with new constants St, T, St0, tr, and families of constants {Fi}i∈I ,
{Pj}j∈J and {Vk}k∈◆.

There are two usual ways to represent sets as binary relations: using
partial identities (i.e., relations contained in the identity relation), or us-
ing right-ideal relations. Right-ideal relations relate each element in their
domain to every element in the universe. Thus, the range provides no infor-
mation. A right-ideal relation can be used to model the set provided by its
domain.

In the following paragraphs we will present axioms characterizing the
meaning of the added constants. The partial identity St will model the
set St. Similarly, relation St0 is a partial identity modeling the set St0.
Relation T models the accessibility relation T . Relation tr models the set
of traces. The constants {Fi}i∈I model the meaning of the function symbols.
Similarly, relations {Pj}j∈J will model the meaning of predicate symbols.

1γ : ∆K1 → ∆K2 is defined as the homomorphic extension of γ : St1 → St2 to traces.

2. INTERPRETABILITY OF FOLTL IN ω-CCFAU 67

St ≤ 1′,(5)

π̆ ;St;π = 1′U,(6)

St = 1′U ⊗ St,(7)

St0 ≤ St,(8)

Dom(T) = St,(9)

Equation (5) establishes that St is a partial identity (a set), Equation (6)
and (7) establishes that states are infinite sequences of urelements. Equa-
tion (8) establishes that S0 is a subset of the set of states. Equation (9)
establishes that T is a total (and therefore complete) relation on the set of
states.

For each function symbol f , with arity n, we add the equations:

F̆;F ≤ 1′U,(10)

(1′U ⊗ · · · ⊗ 1′U︸ ︷︷ ︸
n times

);F = F.(11)

Equation (10) establishes that F is a functional relation, and (11) es-
tablishes that F expects an n-tuple as input and produces an urelement as
output.

For each predicate symbol p, with arity n, we add the equation:

(1′U ⊗ · · · ⊗ 1′U︸ ︷︷ ︸
n times

);P ;1 = P.(12)

Equation (12) establishes that P a right-ideal relation, therefore repre-
senting a set. P represents the set of n-tuples that satisfy predicate p.

Since the semantics of temporal formulas is defined in terms of traces of
states, we will model these notions in a fork algebra. Given a fork algebra A,
we model states and traces in A with elements from UA as the ones described
by Figure 5.1.

First-order states are valuations from the denumerable set of variable
symbols V to a set S. As we already mentioned, we require V to be totally
ordered, thus allowing to interpret these valuations as functions from ◆ to
S. Now, as infinite right degenerated trees can be interpreted as infinite
sequences, it is enough to label the leaves with elements from S to get a
correct interpretation of valuations by means of elements from UA.

In the case of traces, being infinite sequences of states, we will simply
model them as infinite right degenerated trees whose leaves are labeled with
the interpretation presented before for states.

The next definition provides a relational characterization of traces. The
relation tr, characterizing the traces in a closure fork algebra is defined by
the following equations:

68 5. INTERPRETABILITY AS REPRESENTATION MAP

⋆
�� ❅❅

lv0
⋆

�� ❅❅
lv1

⋆
��

...

lv2
⋆

��
...

lvi

Figure 5.1. Infinite right degenerate trees pattern.

tr ≤ 1′,(13)

π̆ ;tr ;π = St,(14)

tr ≤ St⊗ tr,(15)

tr ;ρ = Ran(π∇ (T⊗ ρ));ρ;tr.(16)

Equation (13) states that tr is a partial identity (a set). Equation (14)
establishes that traces are built from states. Finally, Formulas (15) and (16)
establish that traces are infinite, T -related, sequences of states.

The relations Vk allow us to build the Vk-variants of a trace. They are
defined as follows:

(17) Vk = νX

Repk

⊗
X

;tr

 ,

where ν is the largest fixed point operator, and Repi is defined as the term
1′ ⊗ · · · ⊗ 1′︸ ︷︷ ︸

i−1

⊗ U1U ⊗ 1′, (i.e. the binary relation that, when provided

with a state a1 ⋆ · · · ⋆ ai ⋆ · · · , returns all the states obtained by substituting
the value of ai).

Notice that the term Tk(X)=̂(Repk⊗X);tr, which defines Vk, is mono-
tonic (as a function of X). Moreover, Tk(X) is co-continuous, i.e., it is
meet-distributive. In order to prove this, let (Rj)j∈J be a chain. Then,

2. INTERPRETABILITY OF FOLTL IN ω-CCFAU 69

Tk(
∏

j∈J Rj)

= (Repk ⊗
∏

j∈J Rj);tr

[by Definition Tk]
= ((π ;Repk)∇(ρ;

∏
j∈J Rj));tr

[by Equation (2)]
= ((π ;Repk ;π̆)·(ρ;

∏
j∈J Rj ; ρ̆));tr

[by Axiom (16)]
= ((π ;Repk ;π̆)·(

∏
j∈J(ρ;Rj ; ρ̆)));tr

[by [CT51, Theorem 4.2]]
= (

∏
j∈J(π ;Repk ;π̆)·(ρ;Rj ; ρ̆));tr

[by Boolean algebra]
= (

∏
j∈J(Repk ⊗Rj));tr

[by Axiom (16) and Equation (2)]
=

∏
j∈J((Repk ⊗Rj);tr)

[by [CT51, Theorem 4.2]]
=

∏
j∈J Tk(Rj)

[by Definition Tk]

By Knaster–Tarski’s fixed point theorem [Tar55c], if the infimum of the

chain 1, Tk(1), . . . , T j
k (1), . . . exists, then νX (Tk(X)) = Πj<ωT

j
k (1). Since we

are not assuming our models to be complete, so far we cannot guarantee

the existence of Πj<ωT
j
k (1). We could solve this by requiring models to

be complete. From a proof–theoretical point of view, this would demand
axioms and proof rules guaranteeing the existence of all infima, while we are
in fact concerned about the existence of a single infimum.

A simple proof by induction on n (that essentially uses the monotonicity
of Tk(X)) shows that Vk is a lower bound of the chain 1, Tk(1), . . . , Tn

k (1),
If we add the rule

y ≤ T j
k (1) ⊢ y ≤ T j+1

k (1)
VarRulek

⊢ y ≤ Vk

then Vk is indeed the largest lower bound (the infimum) of the chain.
In order to see how the rule is used, let us prove that

(18) Dom(Vk) ≥ tr .

Notice that this equation cannot follow directly from the rule because
it does not have the right shape. Therefore, we must find another property
implying (18) with the right shape. This is usually the hardest part. If
Vk ≥ tr then Dom(Vk) ≥ Dom(tr) = tr. Therefore, we will concentrate
on proving that tr ≤ Vk. According to the rule, we must prove that

tr ≤ T j
k (1) ⊢ tr ≤ T j+1

k (1) .

70 5. INTERPRETABILITY AS REPRESENTATION MAP

T
j+1
k (1)

= (Repk ⊗ T
j
k (1));tr

[by Definition Tk]
≥ (Repk ⊗ tr);tr

[by Hypothesis]
≥ (St⊗ tr);tr

[by Definition Repk]

Notice that St ⊗ tr ≤ 1′. Since the composition of partial identities
equals their intersection, we can continue as follows:

(St⊗ tr);tr
= (St⊗ tr)·tr

[by previous discussion]
≥ tr ·tr

[by Equation (15)]
= tr

[by Boolean algebra]

Definition 5.7. We define the calculus ω-CCFAU′ as the extension of
ω-CCFAU obtained by adding equations Equations (5) – (16) as axioms, and
the rules {VarRulek}k∈◆. Then the class ω-CFAU′ is defined as the models
of the equations derivable in ω-CCFAU′.

In Definitions 5.8 and 5.9 we present a translation of FOLTL terms and
formulas to fork terms.

Definition 5.8. Let Σ ∈ SignFOLTL, V be a denumerable set of variable
symbols, and R be a set of relation variables, then we define the function
tFOLTL : TermFOLTL(Σ) → RelDes(R), mapping FOLTL-terms to terms in
full proper closure fork algebras with urelements, as follows:

tFOLTL(v) = ρ ;(Vv−1) ;π
tFOLTL(fi(t1, . . . , tn)) = (tFOLTL(t1)∇ · · · ∇tFOLTL(tn));Fi

Definition 5.9. Let Σ ∈ SignFOLTL, V be a denumerable set of variable
symbols, and R be a set of relation variables, then we define the function
TFOLTL : FormFOLTL(Σ) → RelDes(R), mapping formulas from FOLTL to
terms in full proper closure fork algebras with urelements, as follows:

TFOLTL(pi(t1, . . . , tn)) = π ;(tFOLTL(t1)∇ · · · ∇tFOLTL(tn));Pi ,

TFOLTL(¬α) = tr ;TFOLTL(α) ,
TFOLTL(α ∨ β) = TFOLTL(α)+TFOLTL(β) ,
TFOLTL(Xα) = ρ;TFOLTL(α) ,
TFOLTL(αUβ) = (Dom(TFOLTL(α));ρ)∗ ;TFOLTL(β) ,
TFOLTL((∃v)α) = VVv ;TFOLTL(α) .

It is clear that, in the translation of atomic formulas, the terms are
evaluated in the current (first) state in the trace.

In the remaining part of this section we present all the necessary defini-
tions in order to arrive to the main result on the interpretability of FOLTL.

2. INTERPRETABILITY OF FOLTL IN ω-CCFAU 71

Definition 5.10. Let S be a nonempty set, and T a binary relation on
S. Let T (S, T) be the set of binary trees t satisfying:

• t is a binary tree with information in the leaves,
• t has infinite height,
• leaves are labeled with elements from S,
• t is right degenerate, i.e., t’s shape follows the pattern exhibited in

Figure 5.1, and
• given any two consecutive leaves of t holding information lv and
lv′, 〈lv, lv′〉 ∈ T .

Definition 5.11. Given A ∈ fPCFAU, we define:

• dom(R) = {x | (∃y)(〈x, y〉 ∈ R) } for all R ∈ A,
• π(x ⋆ y) = x for all x, y ∈ UA, and ρ(x ⋆ y) = y for all x, y ∈ UA.

No confusion should arise between the relation constants π and ρ and
the functions π and ρ from Definition 5.11; while the former are relational
constants, the latter are functions and always appear being applied to argu-
ments using functional notation.

In order to interpret FOLTL, it will be necessary to build full proper
closure fork algebras from FOLTL-models. The domain on which relations
are built must include the values for variables, states, and traces of states.
Let S be the domain for variables. Thus, given an injective function ⋆, we
define

S⋆n = { a1 ⋆ · · · ⋆ an | ai ∈ S(1 ≤ i ≤ n) } ,(19)

S⋆ = { a1 ⋆ · · · ⋆ an ⋆ · · · | ai ∈ S(i ∈ ◆) } .(20)

Rather than using functions to represent states, we will use elements
from S⋆, which come for free in any fork algebra.

Definition 5.12. Let S be a nonempty set, and T a binary relation on
S⋆. Then, T (S, T)⋆ is the smallest set of binary trees built as follows:

• S ∪ S⋆ ∪ T (S⋆, T) ⊆ T (S, T)⋆, and
• if t1, t2 ∈ T (S, T)⋆, then t1 ⋆ t2 ∈ T (S, T)⋆.

Now, by considering our representation of states (see Formula 20), and
Definition 5.10, S⋆ will be used as states, or valuations, and T (S⋆, T) will
be used to represent traces. Then the set T (S, T)⋆ is the smallest set, closed
by ⋆, also containing states and traces. Now, T (S, T)⋆, will be used as the
base set of a full proper closure fork algebra with urelements. This closure
fork algebra will be used in further definitions and lemmas as the target to
which FOLTL-models will be translated.

Definition 5.13. Let S be a nonempty set, and T a binary relation
on S⋆. A full proper closure fork algebra with urelements on S, T is a full
proper closure fork algebra with base set T (S, T)⋆.

Definition 5.14. Let ⋆ be an injective function and S a non-empty set.
Then, given a function st : V → S, we denote by st⋆ (the ⋆-representation
of st) the object st(V1) ⋆ · · · ⋆ st(Vn) ⋆ · · · . Similarly, given an object s =

a1 ⋆ · · · ⋆ an ⋆ · · · , by s〈,〉 (the 〈, 〉-representation of s) we denote the function
{ 〈Vi, ai〉 | i ∈ ◆ }.

72 5. INTERPRETABILITY AS REPRESENTATION MAP

Lemma 5.1. Let S be a non-empty set, and st ∈ [V → S]. Then,

(∀i ∈ ◆)(π(ρi(st⋆)) = st(Vi)) .

The following two definitions allow us to transform states to elements in
a fork algebra, and viceversa. This will be useful in order to build algebras
from linear models, as well as linear models from algebras.

Definition 5.15. Let S be a non-empty set, T a binary relation on
[V → S] and tr a sequence of T -connected elements of [V → S]. We define
ttr ∈ T (S, T)⋆ as the infinite tree satisfying:

(∀i ∈ ◆)(π(ρi(ttr)) = (tri)
⋆) .

Lemma 5.2. Given a nonempty set S, a binary relation T on [V → S],
and a sequence of T -connected elements of [V → S], namely, tr,

(∀i ∈ ◆)(ttri = ρi(ttr)) .

Definition 5.16. Let S be a nonempty set. Let T be a binary relation
on S⋆. Let t ∈ T (S, T)⋆. We define trt as the sequence of states satisfying:

(∀i ∈ ◆)
(
(trt)i =

(
π(ρi(t))

)〈,〉)
.

Lemma 5.3. Given a nonempty set S, a binary relation T on S⋆, and
t ∈ T (S, T)⋆,

(∀i ∈ ◆)(trρi(t) = (trt)
i) .

Definition 5.17.
Let 〈St,St0,T, tr, {Fi}i∈I , {Pj}j∈J , {Vk}k∈◆〉 ∈ SignfPCFAU, a full proper
closure fork algebra with urelements on S, T extended with constants is a
full proper closure fork algebra with urelements on S, T in which:

• St = { 〈s, s〉 | s ∈ S⋆ },
• St0 ⊆ St,
• T = T ,
• tr = { 〈t, t〉 | t ∈ T (S⋆, T) },
• Fi is a functional relation, and there exists k ∈ ◆ such that Fi ⊆
S⋆k × S for all i ∈ I,
• there exists k ∈ ◆ such that dom(Pj) ⊆ S⋆k and Pj is right-ideal

for all j ∈ J , and
• Vk is the relation that, given a ⋆-representation of a trace, builds

the ⋆-representation corresponding to the v-variants, provided that
v is the kth. variable in the totally ordered finite set of variable
symbols, for all k ∈ ◆.

In order to fully define a full proper closure fork algebra on S, T ex-
tended with constants, it suffices to provide the meaning for St0, {Fi}i∈I
and {Pj}j∈J . The remaining constants have their values determined from
these.

3. INTERPRETABILITY AS REPRESENTATION MAP 73

The class of full proper closure fork algebra with urelements on S, T
extended with constants will be denoted as fPCFAU′

The following lemmas, whose proofs appear in [FL06, Lemma 3.16–
3.18], are required in order to prove Theorem 5.2. The first one proves the
completeness of ω-CCFAU′ for the class of full proper closure fork algebra
on S, T extended with constants.

Lemma 5.4.
Let Σ = 〈St,St0,T, {Fi}i∈I , {Pj}j∈J , tr, {Vk}k∈◆〉 ∈ SignfPCFAU, and let
α ∈ SenΣ. Then,

|=fPCFAU′ α ⇐⇒ ⊢ω-CCFAU′ α .

The following two lemmas synthesize the relation between Kripke struc-
tures and full closure fork algebras with urelements.

Lemma 5.5. Let α ∈ FormFOLTL and K = 〈A, St, St0, T 〉 a Kripke struc-
ture, then there exist a nonempty set S, a binary relation T ′ on S⋆ and a
full proper closure fork algebra A on S, T ′, extended with constants such
that for all tr ∈ ∆K,

K, tr |=FOLTL α ⇐⇒ ttr ∈ dom(TFOLTL(α)) .

Lemma 5.6. Let α ∈ FormFOLTL.Given A, a full proper closure fork
algebra on S, T extended with constants, there exists a Kripke structure K

such that for all t ∈ dom(tr),

t ∈ dom(TFOLTL(α)) ⇐⇒ K, trt |=FOLTL α .

The next theorem presents the interpretability result for the logic FOLTL.
It shows that it is possible to replace semantic reasoning in FOLTL by equa-
tional reasoning in ω-CCFAU′. The proof can be found in [FL06, Theo-
rem 3.19].

Theorem 5.2. Let α ∈ FormFOLTL(Σ). Then,

|=FOLTL α ⇐⇒
⊢ω-CCFAU′ Dom(π ;St0);tr ;TFOLTL(α) = Dom(π ;St0);tr ;1 .

3. Interpretability as a representation map between institutions

In this section we will show how this interpretability result can be
rephrased as a representation map between the institution of FOLTL and
that of fPCFAU′. In order to avoid the introduction of ambiguities, sets,
categories, functors and families of relations will be identified by using the
logic as a subscript.

As we mentioned at the beginning of this chapter, this section is struc-
tured following the order of requirements stated in Definition 3.29. Lemma 5.7
provides the definition of a functor mapping FOLTL-signatures to fPCFAU-
signatures, then from Lemma 5.8 to Lemma 5.11 we present a natural

74 5. INTERPRETABILITY AS REPRESENTATION MAP

transformation as a formalization of the translation between logical sys-
tems. In Equation (21) we extend the functor mapping FOLTL-signatures
to fPCFAU-signatures to a functor mapping FOLTL-signatures to fPCFAU-
theories. From Lemma 2.4 to Lemma 5.18 we present a natural transforma-
tion formalizing translation of full proper closure fork algebras with urele-
ments to Kripke models (which are the standard models for first-order lin-
ear temporal logic). And finally in Lemma 5.21 and Theorem 5.3 we show
that semantic consequence at the logical level can be replaced by semantic
consequence in the algebraic setting, thus providing a complete calculus,
ω-CCFAU, for the logic.

LTL has been widely studied from an institutional point of view. The
reader interested in the details of the definitions and lemmas is pointed to
[Fia96]. Its first-order version can be obtained by resorting to the construc-
tions presented by Goguen and Burstall in [GB84] for classical first-order
logic and those presented by Fiadeiro in [Fia96]. In order to make the
following pages easier to read, we will use the same notation presented for
IfPCFAU (defined in Chapter 4, §1).

The section is structured following the order of requirements stated in
Definition 3.29.

From now on we will assume a fixed but arbitrary FOLTL-signature with
shape Σ = 〈{fi}i∈I , {pj}j∈J 〉, and will resort to superindexing with ′ when
more than one signature is needed. In the same way, if Σ is a FOLTL-
signature, we will assume a fixed but arbitrary Kripke structure for Σ with
shape K = 〈A, St, St0, T 〉, where A = 〈{fAi }i∈I , {p

A
j }j∈J 〉. When more than

one Kripke structure is needed, we will resort to subindexing using natural
numbers, and superindexing with ′. Morphisms between FOLTL-signatures
will be pairs of the form 〈σfunc, σpred〉, where σfunc is an arity preserving
total function mapping function symbols, σpred is an arity preserving total
function mapping predicate symbols.

In §2 we presented the semantics preserving translation by assuming
a local view, this means we only cared about a single FOLTL-signature.
The translation we presented in Definition 5.9 highly depends on a FOLTL-
signature to correctly interpret the extra-logical symbols as their correspond-
ing algebraic objects. This means that we do not have a single translation,
we have a family of translations of the form {TΣ

FOLTL}Σ∈|SignFOLTL|
.

Lemma 5.7. Let Σ,Σ′ ∈ |SignFOLTL| and σFOLTL : Σ → Σ′. Then, we
define γSign : SignFOLTL → SignfPCFAU′ as follows:

• γSign(〈{fi}i∈I , {pj}j∈J 〉) =
〈{St,St0,T, tr} ∪ {Fi}i∈I ∪ {Pj}j∈J ∪ {Vk}k∈◆〉,

• γSign(σFOLTL) = σfPCFAU′
if and only if:

– σfPCFAU′
(St) = St′,

– σfPCFAU′
(St0) = St′0,

– σfPCFAU′
(T) = T′,

– σfPCFAU′
(tr) = tr′,

– for all i ∈ I,
σfPCFAU′

(Fi) = F′
σfPCFAU′

(i)
iff σFOLTL(fi) = f ′

σFOLTLfunc(i)
,

3. INTERPRETABILITY AS REPRESENTATION MAP 75

– for all j ∈ J ,
σfPCFAU′

(Pj) = P′
σfPCFAU′

(j)
iff σFOLTL(pj) = p′

σFOLTLpred(j)
,

– for all k ∈ ◆,
σfPCFAU′

(Vk) = V′k.

Then, γSign is a functor.

Proof. The proof that γSign is a functor follows trivially from definition
of γSign. Given δ : Σ → Σ′ a morphism in SignFOLTL, γ

Sign(δ) is a total
function between the symbols of γSign(Σ) and the symbols of γSign(Σ′).
Now, by definition of γSign(δ) it is easy to check that γSign(idFOLTL

Σ) =

idfPCFAU′

γSign(Σ)
and that γSign(σFOLTL ◦σ′FOLTL) = γSign(σFOLTL)◦γSign(σ′FOLTL).

Lemma 5.8. Let Σ ∈ SignFOLTL and α ∈ SenFOLTL(Σ). Then, we define
γSen

Σ : SenFOLTL(Σ)→ γSign ◦ SenfPCFAU′(Σ) as γSen
Σ = TFOLTL.

Then, γSen
Σ is a total function.

Proof. The proof of this lemma follows by observing that, once we fix
a signature, TFOLTL, as presented in Definition 5.9, is a total function.

Consider f : Σ → Σ′ a morphism in SignFOLTL. Then, the definition of
SenFOLTL(f) requires f to be extended homorphically to FOLTL-formulas,
which requires the homomorphic extension of f to FOLTL-terms. From now
on, the former will be denoted by fform and the latter by fterm.

Lemma 5.9. Let Σ,Σ′ ∈ |SignFOLTL| and σ : Σ → Σ′. Let t ∈ TermΣ.
Then, tFOLTL(σterm(t)) = (γSign(σ))term(tFOLTL(t)).

Proof. The proof follows by induction on the structure of t. Let t = v,
v ∈ V, then:

tFOLTL(σterm(v))
= tFOLTL(v)

[by Definition of σterm]

= ρ ;(Vv−1) ;π
[by Definition 5.8]

= (γSign(σ))term(ρ ;(Vv−1) ;π)
[by Definition 4.1]

= (γSign(σ))term(tFOLTL(v))
[by Definition 5.8]

Now, let t = fi(t1, . . . , tarity(fi)), i ∈ I, then:

tFOLTL(σterm(fi(t1, . . . , tarity(fi)
)))

= tFOLTL(f
′
σfunc(i)

(σterm(t1), . . . , σterm(tarity(fi)
)))

[by Definition of σterm]
= (tFOLTL(σterm(t1))∇ . . . ∇tFOLTL(σterm(tarity(fi)

)));F′
γSign(σ)(i)

[by Definition 5.9]
= ((γSign(σ))term(tFOLTL(t1))∇ . . . ∇(γSign(σ))term(tFOLTL(tarity(fi)

)));F′
γSign(σ)(i)

[by Inductive Hypothesis]
= ((γSign(σ))term(tFOLTL(t1))∇ . . . ∇(γSign(σ))term(tFOLTL(tarity(fi)

)));(γSign(σ))term(Fi)

[by Lemma 5.7]
= (γSign(σ))term((tFOLTL(t1)∇ . . . ∇tFOLTL(tarity(fi)

));Fi)

[by Definition 4.1]
= (γSign(σ))term(tFOLTL(fi(t1, . . . , tarity(fi)

))) .

[by Definition 5.9]

76 5. INTERPRETABILITY AS REPRESENTATION MAP

Lemma 5.10. Let Σ,Σ′ ∈ |SignFOLTL| and σ : Σ→ Σ′. Let α ∈ |Sen(Σ)|.
Then TFOLTL(σform(α)) = (γSign(σ))term(TFOLTL(α)).

Proof. The proof follows by induction on the structure of α.
Let α = pj(t1, . . . , tarity(pj)), j ∈ J :

TFOLTL(σform(pj(t1, . . . , tarity(pj))))

= TFOLTL(p
′
σpred(j)

(σterm(t1), . . . , σterm(tarity(pj)))

[by Definition of σform]
= π ;(tFOLTL(σterm(t1))∇ · · · ∇tFOLTL(σterm(tarity(pj))));P

′
γSign(σ)(j)

[by Definition 5.9]
= π ;((γSign(σ))term(tFOLTL(t1))∇ · · · ∇(γSign(σ))term(tFOLTL(tarity(pj))));

P′
γSign(σ)(j)

[by Lemma 5.9]
= π ;((γSign(σ))term(tFOLTL(t1))∇ · · · ∇(γSign(σ))term(tFOLTL(tarity(pj))));

(γSign(σ))term(Pj)
[by Lemma 5.7]

= (γSign(σ))term(π ;(tFOLTL(t1)∇ · · · ∇tFOLTL(tarity(pj)));Pj

[by Definition 4.1]
= (γSign(σ))term(TFOLTL(pj(t1, . . . , tarity(pj)))

[by Definition 5.9]

The proof for the inductive cases follows trivially by performing an analo-
gous reasoning but using the inductive hypothesis.

Lemma 5.11. {γSen
Σ }Σ∈|SignFOLTL|

is a natural family of functions.

Proof. The naturality condition on {γSen
Σ }Σ∈|SignFOLTL|

, i.e, the commu-
tativity of the diagram

SenFOLTL(Σ)

❄

SenFOLTL(f)

SenFOLTL(Σ
′)

✲γSen
Σ

γSign ◦ SenfPCFAU′(Σ)

❄

γSign ◦ SenfPCFAU′(f)

γSign ◦ SenfPCFAU′(Σ′)✲γSen
Σ′

follows by observing that γSen
Σ ◦(γSign◦SenfPCFAU′(f)) = SenFOLTL(f)◦γSen

Σ′ ,
which is a direct consequence of Lemma 5.10.

Having proved that γSen is a natural transformation, allows the ex-
tension of the functor γSign : SignFOLTL → SignfPCFAU′ to another functor
γTh0 : SignFOLTL → ThfPCFAU′0, such that for all Σ ∈ |SignFOLTL|:

γTh0 (Σ) = 〈γSign(Σ), Γ〉(21)

, where Γ = {Eqs. (1) – (24) of Chapter 2 } ∪ {Eqs. (5) – (16) of Chapter 5 }

Notice that the Equations (5) – (16) of Chapter 5 only depend on Σ,
thus their appearance can be put in terms of the application of a func-
tor Ax : SignFOLTL → Set which, provided a signature Σ ∈ |SignFOLTL|,
constructs a set containing Equations (5) – (16) of Chapter 5 by resort-
ing to the symbols in γSign(Σ); and provided σ a morphism in SignFOLTL,
Ax(σ) = γSen

Σ .

3. INTERPRETABILITY AS REPRESENTATION MAP 77

Formula 21 and Definition 5.7 implies that if ΣFOLTL ∈ |SignFOLTL|, then
a model M ∈ |(γTh0)op ◦ModfPCFAU′(ΣFOLTL)| is a full proper closure fork
algebra with urelements on S, T extended with constants, for some S and T .
From now on, models will be sub-indexed by natural numbers and, unless we
make an explicit mention, their parameters S and T will be distinguished by
resorting to the same sub-index (i.e. we will assume thatMi is a full proper
closure fork algebra with urelements on Si, Ti extended with constants).

Definition 5.18. Let ΣFOLTL ∈ |SignFOLTL| and V be a denumearable
set of variable symbols. Then, we define

γMod
ΣFOLTL : (γTh0)op ◦ModfPCFAU′(ΣFOLTL)→ModFOLTL(Σ

FOLTL)

as follows:

• Let M = 〈P, {StM,StM0 ,TM, trM} ∪ {FMi }i∈I ∪ {P
M
j }j∈J ∪

{VMk }k∈◆〉, then

γMod
ΣFOLTL(M) = 〈A, St, St0, T

′〉, where:

– A = 〈A, {fAi }i∈I , {p
A
j }j∈J 〉 such that:

∗ A = S,
∗ fAi (a1, . . . , aarity(fi)) = a iff

〈
a1 ⋆ · · · ⋆ aarity(fi), a

〉
∈

FMi , for all i ∈ I,
∗ pAj (a1, . . . , aarity(pj)) iff a1 ⋆ · · · ⋆ aarity(pj) ∈ dom(PMj),

for all j ∈ J .
– St =

{
t〈,〉
∣∣ t ∈ dom(StM)

}
,

– St0 =
{
t〈,〉
∣∣ t ∈ dom(StM0)

}
,

– T ′ =
{ 〈

t〈,〉, t′
〈,〉
〉 ∣∣∣ 〈t, t′〉 ∈ TM

}
.

• LetM1,M2 ∈ |(γ
Th0)op ◦ModfPCFAU′(ΣFOLTL)| and δ :M1 →M2

be a morphism in (γTh0)op ◦ModfPCFAU′(ΣFOLTL), then

γMod
ΣFOLTL(δ) = δ̂FOLTL : St1 → St2, satisfying that for all st ∈ St1,

v ∈ V, δ̂FOLTL(st)(v) = δFOLTL(st(v)), where δFOLTL : A1 → A2 is
defined as follows:

δFOLTL(a) = b iff δ({ 〈a, a〉 }) = { 〈b, b〉 } .

Lemma 5.12.
Let ΣFOLTL ∈ |SignFOLTL| and M∈ |(γTh0)op ◦ModfPCFAU′(ΣFOLTL)|.

Then, γMod
ΣFOLTL(M) ∈ |ModFOLTL(Σ

FOLTL)|.

Proof. Let ΣFOLTL = 〈{fi}I∈I , {pj}j∈J 〉 be a FOLTL-signature. By

Formula 21, the signature of γTh0(ΣFOLTL) is 〈{St,St0,T, tr} ∪ {Fi}i∈I ∪
{Pj}j∈J ∪ {Vk}k∈◆〉 .

AsM∈ |(γTh0)op ◦ModfPCFAU′(ΣFOLTL)|, it satisfies the axioms of Def-
inition 5.7, thus, for every ΣFOLTL function symbol fi, the constant FMi is a
functional binary relation whose pairs are formed by the ⋆-representation of
a tuple with arity(fi) elements of S in the first position of the pair and an
element of S in the second one. Then, as A = S, by Definition 5.18, fAi is in-
deed a function on the set A with arity arity(fi). The same argument applies

78 5. INTERPRETABILITY AS REPRESENTATION MAP

to ΣFOLTL predicate symbols. Thus proving that A = 〈A, {fAi }i∈I , {p
A
j }j∈J 〉

is a ΣFOLTL-structure.
Finally, from Definition 5.18, it is easy to observe that St is the set

[V → A], St0 ⊆ St and T ′ ⊆ St× St is a total binary relation.
Consequently 〈A, St, St0, T

′〉 ∈ |ModFOLTL(Σ
FOLTL)|.

To prove that γMod
ΣFOLTL(δ) is a morphism in ModFOLTL(Σ

FOLTL), we will
need the following lemmas.

Lemma 5.13.
Let ΣFOLTL ∈ |SignFOLTL| and M1,M2 ∈ |(γ

Th0)op ◦ModfPCFAU′(ΣFOLTL)|,
such that M2 is non-trivial. Finally, let δ : M1 → M2 be a morphism in
(γTh0)op ◦ModfPCFAU′(ΣFOLTL).

Then, for all st ∈ St1,

δ({ 〈st⋆, st⋆〉 }) =
{〈

δ̂FOLTL(st)
⋆
, δ̂FOLTL(st)

⋆〉}
.

Proof. Assume that δ({ 〈st⋆, st⋆〉 }) 6=
{〈

δ̂FOLTL(st)
⋆
, δ̂FOLTL(st)

⋆〉}

then, as st⋆ and δ̂FOLTL(st)
⋆

are right degenerated trees, there exists i ∈ ◆
such that:

Dom(ρi ;π ;δ({ 〈st⋆, st⋆〉 })) 6= Dom(ρi ;π ;
{〈

δ̂FOLTL(st)
⋆
, δ̂FOLTL(st)

⋆〉}
) .

Then, as δ is a homomorphism, we obtain that:

δ(Dom(ρi ;π ; { 〈st⋆, st⋆〉 })) 6= Dom(ρi ;π ;
{〈

δ̂FOLTL(st)
⋆
, δ̂FOLTL(st)

⋆〉}
) .

Finally, by Lemma 5.1, we obtain that

δ({ 〈sti, sti〉 }) 6=
{〈

δFOLTL(sti), δ
FOLTL(sti)

〉}
,

which, by Definition 5.18 is a contradiction.

Corollary 5.1.
Let ΣFOLTL ∈ |SignFOLTL| and M1,M2 ∈ |(γ

Th0)op ◦ModfPCFAU′(ΣFOLTL)|,
such that M2 is non-trivial. Finally, let δ : M1 → M2 be a morphism in
(γTh0)op ◦ModfPCFAU′(ΣFOLTL).

Then, for all st, st′ ∈ St1,

δ(
{ 〈
st⋆, st′

⋆〉 }
) =

{〈
δ̂FOLTL(st)

⋆
, δ̂FOLTL(st′)

⋆〉}
.

Lemma 5.14.
Let ΣFOLTL ∈ |SignFOLTL| and M1,M2 ∈ |(γ

Th0)op ◦ModfPCFAU′(ΣFOLTL)|,
such that M2 is non-trivial. Finally, let δ : M1 → M2 be a morphism in
(γTh0)op ◦ModfPCFAU′(ΣFOLTL).

Then, for all tr ∈ ∆γMod

ΣFOLTL
(M1),

δ({ 〈ttr, ttr〉 }) =
{〈

t
δ̂FOLTL(tr)

, t
δ̂FOLTL(tr)

〉}
.

3. INTERPRETABILITY AS REPRESENTATION MAP 79

Proof. Assume δ({ 〈ttr, ttr〉 }) 6=
{〈

t
δ̂FOLTL(tr)

, t
δ̂FOLTL(tr)

〉}
then, as ttr

and t
δ̂FOLTL(tr)

are infinite right degenerated trees, there exists i ∈ ◆ such

that:

Dom(ρi ;π ;δ({ 〈ttr, ttr〉 })) 6= Dom
(
ρi ;π ;

{〈
t
δ̂FOLTL(tr)

, t
δ̂FOLTL(tr)

〉})
.

Notice that, as δ is a homomorphism, we get that

δ(Dom(ρi ;π ; { 〈ttr, ttr〉 })) 6= Dom
(
ρi ;π ;

{〈
t
δ̂FOLTL(tr)

, t
δ̂FOLTL(tr)

〉})
.

It is easy to see that the relation Dom(ρi ;π ;δ({ 〈ttr, ttr〉 })) is the pro-
jection of the ⋆-representation of the ith. state in tr and the same reasoning
applies to the right-hand side of the equality. Thus, we obtain that:

δ({ 〈tri
⋆, tri

⋆〉 }) 6=
{〈

δ̂FOLTL(tri)
⋆
, δ̂FOLTL(tri)

⋆〉}
,

which, by Lemma 5.13, is a contradiction.

Lemma 5.15.
Let ΣFOLTL ∈ |SignFOLTL| and M1,M2 ∈ |(γ

Th0)op ◦ModfPCFAU′(ΣFOLTL)|,
such that M2 is non-trivial. Finally, let δ : M1 → M2 be a morphism in
(γTh0)op ◦ModfPCFAU′(ΣFOLTL).

Then, for all l ∈ TermΣFOLTL, α ∈ FormΣFOLTL:

(1) δ(t
γMod

ΣFOLTL
(M1)

FOLTL (l)) = t
γMod

ΣFOLTL
(M2)

FOLTL (l),

(2) δ(T
γMod

ΣFOLTL
(M1)

FOLTL (α)) = T
γMod

ΣFOLTL
(M2)

FOLTL (α).

Proof. Both proofs follows trivially by induction on the structure of the
terms (in the case of (1)) and formulas (in the case of (2)), and considering
that δ is a homomorphism fromM1 toM2.

Finally, we prove that γMod
ΣFOLTL(δ) is a morphism in ModFOLTL(Σ

FOLTL).

Lemma 5.16.
Let ΣFOLTL ∈ |SignFOLTL| and M1,M2 ∈ |(γ

Th0)op ◦ModfPCFAU′(ΣFOLTL)|,
such that M2 is non-trivial. Finally, let δ : M1 → M2 be a morphism in
(γTh0)op ◦ModfPCFAU′(ΣFOLTL).

Then, γMod
ΣFOLTL(δ) is a morphism in ModFOLTL(Σ

FOLTL) (i.e. a bounded

morphism between γMod
ΣFOLTL(M1) and γMod

ΣFOLTL(M2)).

Proof. Let γMod
ΣFOLTL(M1) = K1 and γMod

ΣFOLTL(M2) = K2, where K1 =
〈A1, St1, St01, T1〉 and K2 = 〈A2, St2, St02, T2〉.

Now we prove that δ̂FOLTL is a bounded morphism by first proving that

δ̂FOLTL satisfies Condition 3 of Definition 5.6. Let tr ∈ ∆K1 , p a predicate
symbol of ΣFOLTL such that n = arity(p) and l1, . . . , ln ∈ TermsFOLTL.

80 5. INTERPRETABILITY AS REPRESENTATION MAP

K1, tr |= p(l1, . . . , ln)

iff ttr ∈ dom(T K1
FOLTL

(p(l1, . . . , ln)))
[by Lemma 5.5]

iff 〈ttr, ttr〉 ∈ Dom(T K1
FOLTL

(p(l1, . . . , ln)))

iff { 〈ttr, ttr〉 } ⊆ Dom(T K1
FOLTL

(p(l1, . . . , ln)))

iff δ({ 〈ttr, ttr〉 }) ⊆ δ(Dom(T K1
FOLTL

(p(l1, . . . , ln))))
[by Lemma 2.5]

iff δ({ 〈ttr, ttr〉 }) ⊆ Dom(δ(T K1
FOLTL

(p(l1, . . . , ln))))
[because δ is a homomorphism]

iff δ({ 〈ttr, ttr〉 }) ⊆ Dom(T K2
FOLTL

(p(l1, . . . , ln)))
[by Lemma 5.15]

iff

 fi
t ̂δFOLTL(tr)

, t ̂δFOLTL(tr)

fl ff
⊆ Dom(T K2

FOLTL
(p(l1, . . . , ln)))

[by Lemma 5.14]

iff

fi
t ̂δFOLTL(tr)

, t ̂δFOLTL(tr)

fl
∈ Dom(T K2

FOLTL
(p(l1, . . . , ln)))

iff t ̂δFOLTL(tr)
∈ dom(T K2

FOLTL
(p(l1, . . . , ln)))

iff K2, δ̂FOLTL(tr) |= p(l1, . . . , ln)
[by Lemma 5.5]

Next we prove that δ̂FOLTL satisfies the forth condition (i.e. Condition 4).
Let st, st ∈ St1.

st T1 st′

iff
˙
st⋆, st′⋆

¸
inT1

[by Definition 5.18]
iff

˘ ˙
st⋆, st′⋆

¸ ¯
⊆ T1

iff δ(
˘ ˙

st⋆, st′⋆
¸ ¯

) ⊆ δ(T1)
[by Lemma 2.5]

iff δ(
˘ ˙

st⋆, st′⋆
¸ ¯

) ⊆ T2

[because δ is a homomorphism]

iff
n D

δ̂FOLTL(st)
⋆
, δ̂FOLTL(st′)

⋆E o
⊆ T2

[by Corollary 5.1]

iff
D
δ̂FOLTL(st)

⋆
, δ̂FOLTL(st′)

⋆E
∈ T2

iff δ̂FOLTL(st) T2 δ̂FOLTL(st′)
[by Definition 5.18]

Finally, we prove that δ̂FOLTL satisfies the back condition (i.e. Condi-
tion 5). Let st1 ∈ St1, st

′
2 ∈ St2.

δFOLTL(st1) T2 st′2
iff

˙
δFOLTL(st1)

⋆
, st′2

⋆¸
∈ T2

[by Definition 5.18]

iff
˘ ˙

δFOLTL(st1)
⋆
, st′2

⋆¸ ¯
⊆ T2

iff (∃s1, s′1 ∈ S1
⋆)(δ(

˘ ˙
s1, s′1

¸ ¯
) =

˘ ˙
δFOLTL(st1)

⋆
, st′2

⋆¸ ¯
∧

˘ ˙
δFOLTL(st1)

⋆
, st′2

⋆¸ ¯
⊆ T2)

[by Lemma 2.4]

iff (∃s1, s′1 ∈ S1
⋆)(δ(

˘ ˙
s1, s′1

¸ ¯
) =

˘ ˙
δFOLTL(st1)

⋆
, st′2

⋆¸ ¯
∧ δ(

˘ ˙
s1, s′1

¸ ¯
) ⊆ T2)

iff (∃s1, s′1 ∈ S1
⋆)(δ(

˘ ˙
s1, s′1

¸ ¯
) =

˘ ˙
δFOLTL(st1)

⋆
, st′2

⋆¸ ¯
∧

˘ ˙
s1, s′1

¸ ¯
⊆ T1)

[by Lemma 2.5]

iff (∃fst1, st′1 ∈ St1)(δ(
n D

fst1
⋆
, st′1

⋆
E o

) =
˘ ˙

δFOLTL(st1)
⋆
, st′2

⋆¸ ¯
∧

n D
fst1

⋆
, st′1

⋆
E o
⊆ T1)

[by Definition 5.14, fst1 = s1
〈,〉 and st′1 = s′1

〈,〉]

iff (∃fst1, st′1 ∈ St1)(
n D

δFOLTL(fst1)
⋆
, δFOLTL(st′1)

⋆
E o

=
˘ ˙

δFOLTL(st1)
⋆
, st′2

⋆¸ ¯
∧n D

fst1
⋆
, st′1

⋆
E o
⊆ T1)

[by Corollary 5.1]

3. INTERPRETABILITY AS REPRESENTATION MAP 81

Now,
{〈

δFOLTL(s̃t1)
⋆
, δFOLTL(st′1)

⋆
〉}

=
{〈

δFOLTL(st1)
⋆
, st′2

⋆
〉}

holds

if and only if δFOLTL(s̃t1)
⋆

= δFOLTL(st1)
⋆
∧ δFOLTL(st′1)

⋆
= st′2

⋆ holds. Then,

(∃fst1, st′1 ∈ St1)(
n D

δFOLTL(fst1)
⋆
, δFOLTL(st′1)

⋆
E o

=
˘ ˙

δFOLTL(st1)
⋆
, st′2

⋆¸ ¯
∧n D

fst1
⋆
, st′1

⋆
E o
⊆ T1)

iff (∃st′1 ∈ St1)(δFOLTL(st′1)
⋆

= st′2
⋆ ∧

˘ ˙
st1⋆, st′1

⋆¸ ¯
⊆ T1)

iff (∃st′1 ∈ St1)(δFOLTL(st′1) = st′2 ∧
˘ ˙

st1⋆, st′1
⋆¸ ¯

⊆ T1)
[by Definition 5.14]

iff (∃st′1 ∈ St1)(δFOLTL(st′1) = st′2 ∧
˙
st1⋆, st′1

⋆¸
∈ T1)

[because δ is a homomorphism]
iff (∃st′1 ∈ St1)(δFOLTL(st′1) = st′2 ∧ st1 T1 st′1)

[by Definition 5.18]

The proof of Conditions 1 and 2 are analogous to the previous ones.

Corollary 5.2.
Let ΣFOLTL ∈ |SignFOLTL| and M1,M2 ∈ |(γ

Th0)op ◦ModfPCFAU′(ΣFOLTL)|,
such that M2 is non-trivial. Finally, let δ : M1 → M2 be a morphism in
(γTh0)op ◦ModfPCFAU′(ΣFOLTL).

Then, γMod
ΣFOLTL(M1) and γMod

ΣFOLTL(M2) are modally equivalent.

Proof. The proof is obtained by observing that γMod
ΣFOLTL(δ) is a bounded

morphism and applying Theorem 5.1.

On the other hand, if we consider Lemma 2.3, it is easy to prove a
stronger result, which is that the Kripke models obtained by applying γMod

ΣFOLTL

to two related objects in (γTh0)op ◦ModfPCFAU′(ΣFOLTL) are isomorphic2

instead of just bounded morphic.

Lemma 5.17. Let Σ ∈ |SignFOLTL|, then γMod
Σ is a functor.

Proof. Let M ∈ |(γTh0)op ◦ModfPCFAU′(Σ)|. Then, we prove that
γMod

Σ (idM) = idγMod
Σ (M).

Let f̂ = γMod
Σ (idM), then f̂(st)(v) = f(st(v)) for all st ∈ St, v ∈ V.

As idM({ 〈st(v), st(v)〉 }) = { 〈st(v), st(v)〉 } for all st ∈ St, v ∈ V, because

idM({ 〈a, a〉 }) = { 〈a, a〉 } for all a ∈ S, then f̂(st)(v) = st(v) for all st ∈ St,

v ∈ V and consequently f̂(st) = st for all st ∈ St. Then f̂ = idγMod
Σ (M).

Let M1,M2,M3 ∈ |(γ
Th0)op ◦ModfPCFAU′(Σ)| and δ :M1 →M2 and

δ′ :M2 →M3 be morphisms in (γTh0)op ◦ModfPCFAU′(Σ). Now we prove
that γMod

Σ (δ ◦ δ′) = γMod
Σ (δ) ◦ γMod

Σ (δ′).

Let ĝ = γMod
Σ (δ ◦ δ′), then ĝ(st)(v) = g(st(v)) for all st ∈ St, v ∈ V. Let

st(v) = a, then if b ∈ S3, we get that

g(a) = b

iff δ ◦ δ′({ 〈a, a〉 }) = { 〈b, b〉 }
[by Definition 5.18]

iff δ′(δ({ 〈a, a〉 })) = { 〈b, b〉 }
iff (∃c ∈ S2)(δ({ 〈a, a〉 }) = { 〈c, c〉 } ∧ δ′({ 〈c, c〉 }) = { 〈b, b〉 })

2An isomorphism is a bounded morphism in which Conditions 1, 2 and 3 hold, in
Condition 4 the implication is replaced by an equivalence and Condition 5 does not nec-
essarily hold. See [BdV01, Definition 2.8] for a formal definition of isomorphism for the
case of modal logic.

82 5. INTERPRETABILITY AS REPRESENTATION MAP

Then, there exist f̂ : St1 → St2 and f̂ ′ : St2 → St3 such that γMod
Σ (δ) = f̂

and γMod
Σ (δ′) = f̂ ′. Thus, we get

(∃c ∈ S2)(f(a) = c ∧ f ′(c) = b)
iff f ◦ f ′(a) = b

Then, by Definition 5.18, f̂ ◦ f ′(st)(v) = f ◦ f ′(st(v)) and observing that

f̂ ◦ f ′ = f̂ ◦ f̂ ′ we obtain f̂ ◦ f̂ ′(st)(v) = f ◦ f ′(st(v)). Thus γMod
Σ (δ) ◦

γMod
Σ (δ′)(st)(v) = f ◦ f ′(st(v)). Finally, we get γMod

Σ (δ) ◦ γMod
Σ (δ′)(st)(v) =

g(st(v)) and, consequently γMod
Σ (δ) ◦ γMod

Σ (δ′)(st)(v) = γMod
Σ (δ ◦ δ′)(st)(v).

Lemma 5.18. {γMod
Σ }Σ∈|SignFOLTL|

is a natural family of functors.

Proof. The naturality condition on {γMod
Σ }Σ∈|SignFOLTL|

, i.e. the com-
mutativity of the diagram

(γTh0)op ◦ModfPCFAU′(Σ′)

❄

(γTh0)op ◦ModfPCFAU′(f)

(γTh0)op ◦ModfPCFAU′(Σ)

✲γMod
Σ′

ModFOLTL(Σ
′)

❄

ModFOLTL(f)

ModFOLTL(Σ)✲γMod
Σ

follows by observing that ((γTh0)op ◦ ModfPCFAU′(f)) ◦ γMod
Σ = γMod

Σ′ ◦
ModFOLTL(f) holds.

Let f : Σ → Σ′ and M′ = 〈P, {St,St0,T, tr} ∪ {Fi}i∈I′ ∪ {Pj}j∈J ′ ∪
{Vk}k∈◆〉 ∈ |(γ

Th0)op ◦ModfPCFAU′(Σ′)|, then

((γTh0)op ◦ModfPCFAU′(f)) ◦ γMod
Σ (M′)

= γMod
Σ (((γTh0)op ◦ModfPCFAU′(f))(M′))

= γMod
Σ (ModfPCFAU′((γTh0)op(f))(M′))

= γMod
Σ (M′ ↾(γTh0)op(f))

[by Definition 4.6]
= γMod

Σ (〈〈P, {St,St0,T, tr} ∪ {Fi}i∈I ∪ {Pj}j∈J ∪ {Vk}k∈◆〉,Γ〉)
[by Definition 4.5 and Formula 21]

= 〈〈S, {fi}i∈I , {pj}j∈J 〉, St, St0, T
′〉

such that:

• fi(a1, . . . , aarity(fi)) = a iff
〈
a1 ⋆ · · · ⋆ aarity(fi), a

〉
∈ Fi, for all i ∈ I,

• pj(a1, . . . , aarity(pj)) iff a1 ⋆ · · · ⋆ aarity(pj) ∈ dom(Pj), for all j ∈ J .

• St =
{
s〈,〉
∣∣ s ∈ dom(St)

}
,

• St0 =
{
s〈,〉
∣∣ s ∈ dom(St0)

}
,

• T ′ =
{ 〈

s〈,〉, s′
〈,〉
〉 ∣∣∣ 〈s, s′〉 ∈ T

}
.

On the other hand,

γMod
Σ′ ◦ModFOLTL(f)(M′)

= ModFOLTL(f)(γMod
Σ′ (M′))

= ModFOLTL(f)(〈〈S, {fi}i∈I′ , {pj}j∈J ′〉, St, St0, T
′〉)

such that:

3. INTERPRETABILITY AS REPRESENTATION MAP 83

• fi(a1, . . . , aarity(fi)) = a iff
〈
a1 ⋆ · · · ⋆ aarity(fi), a

〉
∈ Fi, for all i ∈

I ′,
• pj(a1, . . . , aarity(pj)) iff a1 ⋆ · · · ⋆aarity(pj) ∈ dom(Pj), for all j ∈ J ′.

• St =
{
s〈,〉
∣∣ s ∈ dom(St)

}
,

• St0 =
{
s〈,〉
∣∣ s ∈ dom(St0)

}
,

• T ′ =
{ 〈

s〈,〉, s′
〈,〉
〉 ∣∣∣ 〈s, s′〉 ∈ T

}
.

= 〈〈S, {fi}i∈I , {pj}j∈J 〉, St, St0, T
′〉

Thus completing the proof.

Now we are able to prove that the satisfaction condition of Definition 3.28
is preserved by the representation map γ formed by the functor γTh0 defined
in Lemma 5.7, the natural family of functions {γSen

Σ }Σ∈|SignFOLTL|
defined in

Lemma 5.8, and the natural transformation {γMod
Σ }Σ∈|SignFOLTL|

defined in
Definition 5.18.

Lemma 5.19. Let Σ ∈ |SignFOLTL| andM′ ∈ |(γTh0)op◦ModfPCFAU′(Σ)|,
then

M′ |=γTh0 (Σ) γ
Sen
Σ (α) iff γMod

Σ (M′) |=Σ α .

Proof. Once Σ is fixed, the proof of this lemma follows by Lemma 5.6.

Once we proved the representability condition, by [Tar96, Proposi-
tion 5.2], we obtain that semantic consequence is preserved by institution
representation. This result can be stated as follows.

Lemma 5.20. Let Σ ∈ SignFOLTL, Γ ∪ {α} ⊆ SenFOLTL(Σ).

Then, if Γ |=FOLTL
Σ α, then γSen

Σ (Γ) |=fPCFAU′

γTh0 (Σ)
γSen

Σ (α).

By Lemma 5.4 we know that ω-CCFAU′ is a complete calculus for full
proper closure fork algebras with urelements on S, T extended with con-
stants (i.e. for the algebras we used to interpret Kripke models), then we
would like to know if this is a complete calculus for FOLTL.

Lemma 5.21. Let Σ ∈ SignFOLTL, Γ ∪ {α} ⊆ SenFOLTL(Σ).
Then, for all K ∈ModFOLTL(Σ) there exists a (γTh0)op(Σ)-modelsM∈

(γTh0)op ◦ModfPCFAU′(Σ) such that γMod
Σ (M) = K

Proof. The proof follows by Lemma 5.5.

The following theorem, which is a particular case of [Tar96, Corol-
lary 5.4], proves that, as the translation of models is surjective, the proof
calculus formalized in Chapter 4, §3, enriched with Axioms (5) – (16), and
extended with rules {VarRulek}k∈◆, is a complete calculus for FOLTL.

Theorem 5.3. Let Σ ∈ SignFOLTL, Γ ∪ {α} ⊆ SenFOLTL(Σ).
Then, if for all K ∈ ModFOLTL(Σ) there exists a (γTh0)op(Σ)-models

M∈ModfPCFAU′((γTh0)op(Σ)) such that γMod
Σ (M) = K, then

Γ |=FOLTL
Σ α iff γSen

Σ (Γ) |=fPCFAU′

γTh0 (Σ)
γSen

Σ (α) .

84 5. INTERPRETABILITY AS REPRESENTATION MAP

Until now, we have been able to relate two institutions by means of a
representation map which, in a few words, maps signatures of the institution
of the logical language to theories of the algebraic one. Notice that, as we
are interested in using the logical languages to write specifications, what we
really want is to translate theories of the institution of the logical language
to theories of the algebraic one. This can be easily achieved by extending the

functor γTh0 : SignI → ThI′
0 to a new functor γ̂Th0 : ThI

0 → ThI′
0 which

have to be γSen-sensible with respect to the entailment systems induced by

the institutions I and I ′. Now, if 〈Σ,Γ〉 ∈ |SignI |, then γ̂Th0 is defined as
follows:

γ̂Th0(〈Σ,Γ〉) = 〈sign ◦ γTh0(Σ),ax ◦ γTh0(Σ) ∪ γSen
Σ (Γ)〉 ,

where sign : ThI
0 → SignI is the functor that, provided a theory, projects

its signature, and ax : ThI
0 → Set is the functor that, provided a theory,

projects its axioms. Then, it is easy to prove that γ̂Th0 is γSen-simple
because it is the γSen-extension of γTh0 to theories, thus being γSen-sensible.

CHAPTER 6

Reasoning across logics in fork algebras

In Chapter 5 we showed, by resorting to an example, how an inter-
pretability result can be reformulated as a representation map from the
institution of the logic being interpreted into extensions of fork algebras.
In the same way, it is possible to review the other existing representability
results [Fri02, FO98, FBM02, FL03, FGLR05] but considering these
categorical constructions instead of set theory. In this chapter we will show
what is the advantage of this approach over the use of the original set the-
oretical.

This chapter is divided into three main section. In §1 we provide defini-
tions and results presenting the machinery used to glue partial specifications.
§2 address the problem of adding design decisions in order to bring into the
description of the system the interactions of the partial specifications. Fi-
nally, in §3 we draw some conclusions related with the problem of expressing
and adding this kind of additional information.

1. Relating partial specifications

As we mentioned at the beginning of this work, our claim is that fork
algebras can be used as a framework in which it is possible to translate
separate specifications written in different logics in a way that allows us to
obtain a single algebraic specification of the whole system. To accomplish
this task we need more than representation maps from the institutions of
each logic to fork algebras; this result by itself only allows us to reuse rea-
soning tools developed for fork algebras in the task of verifying or validating
logical specifications. This is because separate logical specifications give rise
to separate algebraic specifications that offer no help in the solution of the
problem of relating the concepts introduced in them.

Lemma 6.1. The category SignfPCFAU is finitely co-complete.

This proof of this lemma can be obtained by proving that the category of
signatures has initial objects (〈∅〉) and pushouts for every pair of morphisms
with common source object and then using Lemma 3.2.

85

86 6. REASONING ACROSS LOGICS IN FORK ALGEBRAS

Whether the use of pushouts is a good choice to prove the existence of
co-limits for every finite diagram, it does not provide any hint of how to
obtain them.

Now we show how co-limits in SignfPCFAU are obtained in order to get a
complete signature for partial ones. Then, we will extend the construction
to the category of theories ThfPCFAU0.

Definition 6.1. Let G = 〈V,E 〉 be a graph and δ : G → SignfPCFAU

be a finite diagram of SignfPCFAU. Let Σv = 〈 {fi}i∈Iv 〉 ∈ |SignfPCFAU| for

all v ∈ V . Then, we define the relations −→δ, ←→δ,
n
←→

δ
, and

∗
←→

δ
as

follows:

(1) fi −→
δ fj if and only if there exist v, w ∈ V , (v, w) ∈ E, δ(v) = Σv,

δ(w) = Σw, i ∈ Jv, j ∈ Jw and j = δ((v, w))(i),
(2) fi ←→

δ fj if and only if fi −→
δ fj or fj −→

δ fi,

(3) fi
n
←→

δ
fj if and only if:

• n = 1 and fi ←→
δ fj , or

• n > 1 and there exists fk such that fi ←→
δ fk and fk

n−1
←→

δ
fj ,

(4) fi
∗
←→

δ
fj if and only if fi

(⋃
n∈◆

n
←→

δ
)
fj .

Notice that if G = 〈V,E 〉 is a graph and δ : G → SignfPCFAU is a finite

diagram of SignfPCFAU, then
∗
←→

δ
is reflexive, symmetric and transitive thus

inducing a partition on the union of the sets of symbols of all the signatures
involved in the diagram. The next definition will help us clarifying the
notation we will use further.

Definition 6.2. Let S a set, R ⊆ S × S be a reflexive, symmetric and
transitive relation and s ⊆ S, then s|R ⊆ S satisfies the following properties:

• for all f ∈ s there exists a unique f ′ ∈ s|R such that R(f, f ′),
• for all f ′ ∈ s|R there exists f ∈ s such that R(f, f ′).

If f ∈ s, then [[f]]R denotes the unique element f ′ ∈ s|R such that R(f, f ′).

Lemma 6.2. Let G = 〈V,E 〉 a graph and δ : G → SignfPCFAU a finite
diagram in SignfPCFAU. Let Σv = 〈{fi}i∈Iv〉 ∈ |SignfPCFAU| for all v ∈ V .
Then, the co-cone 〈〈S〉, {γv : Σv → 〈S〉}v∈V 〉 where:

• S =
(⋃

v∈V {fi}i∈Iv

)
|
∗
←→

δ
, and

• γv(fi) = [[fi]] ∗
←→

δ for all i ∈ Iv,

is a co-limit of δ.

Proof. Let v, v′ ∈ V , (v, v′) ∈ E, and let Σv = 〈{fi}i∈I〉,Σv′ =
〈{f ′i}i∈I′〉 ∈ |SignfPCFAU| and σ : Σv → Σv′ be a morphism in SignfPCFAU

such that δ(v) = Σv, δ(v
′) = Σv′ and δ((v, v′)) = σ. Let i0 ∈ I and i′0 ∈ I

′

such that i′0 = σ(i0). Then γv(fi0) = [[fi0]] ∗
←→

δ = γv′(f ′i′0
), and consequently

〈〈S〉, {γv : Σv → 〈S〉}v∈V 〉 is a commutative co-cone producing the following
diagram

1. RELATING PARTIAL SPECIFICATIONS 87

〈S〉

�
�

�
�

�
�✒

γv

〈{fi}i∈I〉
❅

❅
❅

❅
❅

❅■
γv′

〈{f ′i}i∈I′〉
✲σ

⊙

Let 〈〈S′〉, {γ′v : Σv → 〈S
′〉}v∈V 〉 be another commutative co-cone for δ.

Let Σv = 〈{fi}i∈I〉 ∈ |SignfPCFAU| then, it is trivial to see that there exists
a morphism τ : 〈S〉 → 〈S′〉 satisfying τ(γ(fi)) = γ′(fi) for all i ∈ I. Now it
only rests to prove that τ is unique.

Assume there exists τ ′ : 〈S〉 → 〈S′〉 such that γ ◦ τ ′ = γ′ and τ 6= τ ′

then let fi be a function symbol in Σ such that τ(γ(fi)) 6= τ ′(γ(fi)). Then,
τ ′(γ(fi)) 6= τ(γ(fi)) = γ′(fi) and consequently γ ◦ τ ′ 6= γ′.

Then, 〈〈S〉, {γv : Σv → 〈S〉}v∈V 〉 is a co-limit for δ.

Lemma 6.3. The category ThfPCFAU0 is finitely co-complete.

Proof. If we consider the functor Sign : ThfPCFAU0 → SignfPCFAU which
for any 〈Σ,Γ〉 ∈ |ThfPCFAU0|, Sign(〈Σ,Γ〉) = Σ, then the proof of this lemma
follows by Lemma 6.1 and [GB92, Theorem 11].

Now, the construction performed in Lemma 6.2 for the category of sig-
nature SignfPCFAU can be extended to the category ThfPCFAU0 in the same
way is done in the proof of [GB92, Theorem 11].

Definition 6.3. Let G = 〈V,E 〉 a graph and δ : G→ ThfPCFAU0 a finite
diagram in ThfPCFAU0. Let Tv = 〈〈{fi}i∈Iv〉,Γv〉 ∈ |ThfPCFAU0| for all v ∈ V .

Then, 〈〈Σ,Γ〉, {γv : Tv → 〈Σ,Γ〉}v∈V 〉 where Σ = 〈
(⋃

v∈V {fi}i∈Iv

)
|
∗
←→

δ
〉,

Γ =
⋃

v∈V γveq(Γv), and γv(fi) = [[fi]] ∗
←→

δ for all i ∈ Iv, is a co-limit of δ.

Definition 6.3 allows us to compute a fork algebra theory specifying the
whole system. Even having the possibility of building a single specification
of the system, we did not gain too much because there is no information
about how specifications interact; for example, assume we have a system S

whose main properties are temporal (formalized in a linear temporal logic
theory 〈ΣLTL

S ,ΓLTL
S 〉) and dynamic (formalized in a propositional dynamic

logic theory 〈ΣPDL
S ,ΓPDL

S 〉), provided that the intention is that some of the
propositional symbols appearing in the signatures should be shared. Let
ρLTL : ILTL → IfPCFAU and ρPDL : IPDL → IfPCFAU be institution represen-
tations1. We would like shared propositional variables appearing in ThLTL

S

to end up being the same as those appearing in ThPDL
S . This interaction

could be carried out by resorting to a morphism between ρLTL(Th
LTL
S) and

ρPDL(Th
PDL
S), mapping the relational constants corresponding to proposi-

tional variables in ThLTL
S to the relational constants corresponding to propo-

sitional variables in ThPDL
S as desired. Unfortunately, most of the time,

1The definition of the representation map ρPDL : IPDL → IfPCFAU can be given in
the same way we did in Chapter 5 for FOLTL, but resorting to the set-theoretical result
presented in [FO98] by Frias and Orlowska.

88 6. REASONING ACROSS LOGICS IN FORK ALGEBRAS

these morphisms do not exist because theories resulting from the transla-
tions may not share some symbols (for example, the relational constant tr
in ρLTL(Th

LTL
S), see [FL06], has no dynamic counterpart and the family of

relational constants {Ai}i∈I in ρPDL(Th
PDL
S), see [FO98], has no temporal

counterpart), thus avoiding the possibility to get a total mapping from one
of the signatures to the other.

To solve this mismatch in the synchronization of symbols, Fiadeiro in-
troduced the notion of “channel” [Fia96]. Channels are theories that only
contain symbols with no particular behavior (do not contain any axioms).
Notice that these axiomless theories can be trivially related to theories that
come from system description by means of morphisms in ThfPCFAU0. This
is because any theory morphism having a channel in its domain is axiom
preserving. Continuing with the example of a system specified in LTL

and PDL, consider TLTL = 〈〈{St,St0,T, tr} ∪ {Pi}i∈I〉,ΓLTL〉 and TPDL =
〈〈{Ak}k∈K ∪ {Qj}j∈J 〉,ΓPDL〉 as the partial specifications. Now assume
that for all l ∈ L, Pl and Ql must agree because they reflect the same
propositional variable. Then, it is possible to synchronize these symbols by
resorting to the concept of channel; in this case the channel is a fork algebra
theory TC = 〈〈{Rl}l∈L〉, ∅〉, together with morphisms σLTL : TC → TLTL and
σPDL : TC → TPDL such that:

• σLTL(Rl) = Pl, for all l ∈ L, and
• σPDL(Rl) = Ql, for all l ∈ L.

Now, if we recall Lemma 6.2, the theory being the vertex of the co-limit
of the diagram whose image contains the theories TLTL, TPDL, TC , and the
morphisms σLTL and σPDL will have the following shape:

〈〈{St,St0,T, tr} ∪ {Pi}i∈I/L ∪ {Rl}l∈L ∪ {Qj}j∈J /L〉,
σTLTLeq(ΓLTL) ∪ σTPDLeq(ΓPDL)〉 ,

where σTLTL
and σTPDL

are the edges of the co-cone.

Notice that this construction forces Rl to be the unique symbol char-
acterized by the translations of those LTL axioms mentioning Pl and those
PDL axioms mentioning Ql, for all l ∈ L.

Once channels have been depicted for every pair of fork algebra theories
in the image of the diagram, then the computation of the vertex of its co-
limit (including the channels), yields a single theory specifying the whole
system in which the symbols representing the same logical objects have
been glued together by the explicit introduction of a channel describing the
synchronization.

2. Introducing design decisions

In §1 we described how partial specifications can be put together to get a
specification of the whole system. At this point the specification we obtained
reflects the behavior we originally specified in the partial descriptions of the
system, plus some extra information allowing the synchronization of some
symbols.

2. INTRODUCING DESIGN DECISIONS 89

At the moment of specifying a system, it is highly recommended to split
the specification into modules according to the different aspects being mod-
eled. It has been proved in practice, since Parnas proposal of the concept of
“separation of concerns” [Par72], that this methodology produces clearer
descriptions of software systems with a vast amount of advantages. When
dealing with homogeneous specifications the composition method guaranties
that all the information in the design is preserved in the composition of the
fragments. In our approach we not only divide the system into modules
but also produce a separation between different aspects of the same mod-
ule. At this point we face a difficult problem, i.e., how do we reflect the
relationship between these aspects? Going back again to our example, we
want to express that the LTL transition relation T is somehow related to
the PDL atomic actions {Ak}k∈K. This information does not appear at
the top level specification. In fact, it cannot be expressed because the in-
formation provided by the temporal accessibility relation has no dynamic
counterpart and viceversa. Having interpreted both pieces of specification
into a common language allows us to bridge this gap permitting the addition
of design decisions by resorting to an extra fork algebra theory expressing
these constrains.

In the following sections we will address solutions for putting together
logics that are commonly used in system design. In Tables 6.1, 6.2 and
6.3 we show which combinations we have considered as guiding examples.
Locations marked with © represent combinations of logics that are solved
by combining the solution proposed by Fiadeiro in [Fia96] and, either the
solution developed for some other location or some trivial considerations.

Propositional
Temporal Dynamic Static

Temporal [Fia96] §2.1
Propositional Dynamic §2.1 ©

Static ©
Table 6.1. Combinations of propositional logics.

Propositional
Temporal Dynamic Static

Temporal
First-order Dynamic §2.3

Static §2.2
Table 6.2. Combinations of propositional and first-order logics.

2.1. Synchronizing propositional temporal and propositional
dynamic information. In a previous paragraph we showed how to solve
the problem of gluing propositional symbols together by just adding a chan-
nel declaring which symbols should be interpreted as the same entity. In this
section we will address two other problems; the first one is how to relate the
temporal accessibility relation with the dynamic atomic actions, and the

90 6. REASONING ACROSS LOGICS IN FORK ALGEBRAS

First-order
Temporal Dynamic Static

Temporal © §2.4
First-order Dynamic ©

Static §2.4 ©
Table 6.3. Combinations of first-order logics.

second one is what to do when the relation between propositional symbols
is not the equality.

Consider the theories TLTL = 〈〈{St,St0,T, tr} ∪ {Pi}i∈I〉,ΓLTL〉 and
TPDL = 〈〈{Ak}k∈K∪{Qj}j∈J 〉,ΓPDL〉 as the translations from LTL and PDL

partial specifications to ω-closure fork algebras with urelements.
The temporal accessibility relation (its algebraic counterpart in this case)

T can be thought of as the only one step transformation that can be carried
out on the system state. This is why traces (tr) are T-connected infinite
sequences of states St, meaning that any possible evolution of the system
can be followed by using T to go from the current system state to the next
one.

On the other hand, the atomic actions {Ak}k∈K are a dynamic descrip-
tion of some of the system functions (operations that carry out a certain
state transformation). Thus, assuming we have a dynamic description for
all of the system functions, the following axiom can be added as a design
decision:

(22) T = Σk∈KAk

Figure 6.1 shows the image of the diagram we should consider to express
this design decision.

〈〈{T} ∪ {Ak}k∈K〉, {T = Σk∈KAk}〉

✒σ3
■ σ4

〈〈{T}〉, ∅〉

✠

σ1

TLTL

〈〈{Ak}k∈K〉, ∅〉

❘

σ2

TPDL

σ1(T) = T

σ2(Ak) = Ak ; for all k ∈ K
σ3(T) = T

σ4(Ak) = Ak ; for all k ∈ K

Figure 6.1. Relation between T and {Ak}k∈K.

Depending on the information we have in our partial specifications, we
can consider several variations on this diagram. In Figure 6.1 we showed
how to relate T and {Ak}k∈K considering that the dynamic description was

2. INTRODUCING DESIGN DECISIONS 91

complete (this means that for every admissible functions we have a dynamic
description) but we could probably have dynamic descriptions only for a
proper subset of the system functions. In this case the relation between
T and {Ak}k∈K is no longer T = Σk∈KAk but a proper inclusion stating
that the addition of the dynamic descriptions are a part of the temporal
accessibility relation, then the axiom to get this relationship is2:

Σk∈KAk < T .

Notice that it is not possible to have a partial temporal description
because tr is an abstract description of all the admissible executions of the
system without taking care of how the single step transitions are carried
out, then T is a complete description of these single step transformations of
the system state.

Now consider, as we did in previous sections, L ⊆ I, L ⊆ J and the
channels 〈〈{T}∪{Pl}l∈L〉, ∅〉 and 〈〈{Ak}k∈K∪{Ql}l∈L〉, ∅〉 relating not only
T and {Ak}k∈K but also the propositional symbols {Pl}l∈L and {Ql}l∈L.
Then we can complete the diagram of Figure 6.1 with the relations between
propositional symbols obtaining the diagram in Figure 6.2.

〈〈{T} ∪ {Ak}k∈K ∪ {Rl}l∈L〉, {T = Σk∈KAk}〉

✒σ3
■ σ4

〈〈{T} ∪ {Pl}l∈L〉, ∅〉

✠

σ1

TLTL

〈〈{Ak}k∈K ∪ {Ql}l∈L〉, ∅〉

❘

σ2

TPDL

σ1(T) = T

σ1(Pl) = Pl ; for all l ∈ L
σ2(Ak) = Ak ; for all k ∈ K
σ2(Ql) = Ql ; for all l ∈ L
σ3(T) = T

σ3(Pl) = Rl ; for all l ∈ L
σ4(Ak) = Ak ; for all k ∈ K
σ4(Ql) = Rl ; for all l ∈ L

Figure 6.2. Relation between T and {Ak}k∈K, and {Pl}l∈L
and {Ql}l∈L.

The diagram in Figure 6.2 is an appropriate solution for relating proposi-
tional symbols through equivalence. This means that we identified symbols
which are the same logical entity but came from different partial specifi-
cations. The use of a common algebraic language allows us to introduce

2In the same way x ≤ y is essentially the equation x+y = y, x < y can be rewritten
as the following two axioms:

x+y = y ,(23)

1; (y ·x) ;1 = 1 .(24)

Axiom (23) states that x is a subset of y and Axiom (24) implies that x and y are not
equal.

92 6. REASONING ACROSS LOGICS IN FORK ALGEBRAS

more complex relations by the introduction of axioms in the theory appear-
ing at the top of the diagram. The following definitions and propositions
show that any Boolean combination of propositional symbols can be repre-
sented by means of algebraic operators. Operators inl : P → P ⊎ Q and
inr : Q→ P ⊎Q are the injections of the elements of P and Q in the disjoint
union of P and Q.

The following definition presents a language similar to a typical propo-
sitional language but built over two sets of variables. This definition gives
the possibility of identifying the variables by recognizing where they were
originated. In other words, we will use this propositional language to relate
propositions coming from two different propositional partial specifications.

Definition 6.4. Let P and Q be two sets of propositional variables.
Then, the set of Boolean constrains is the smallest set BoolConst(P,Q)
such that:

• inl(p) ∈ BoolConst(P,Q), for all p ∈ P ,
• inr(q) ∈ BoolConst(P,Q), for all q ∈ Q,
• if α, β ∈ BoolConst(P,Q), then {¬α, α ∨ β} ⊆ BoolConst(P,Q).

The rest of the propositional operators such as conjunction (∧), and
implication (=⇒), are defined as always in terms of the negation (¬) and
disjunction (∨) operators as α ∧ β ≡ ¬(¬α ∨ ¬β) and α =⇒ β ≡ ¬α ∨ β.

Definition 6.5. Let P and Q be two sets of propositional symbols, and
α ∈ BoolConst(P,Q) be a Boolean constrain. Then, we define the function
TrBC : BoolConst(P,Q)→ CCFAUForm(V) in the following way3:

TrBC(inl(p)) ≡ P
; for p ∈ P and TrPDL→fPCFAU(p) ≡ P,

TrBC(inr(q)) ≡ Q
; for q ∈ Q and TrLTL→fPCFAU(q) ≡ Q,

TrBC(¬α) ≡ St·TrBC(α) ,
T rBC(α ∨ β) ≡ TrBC(α)+TrBC(β) .

The use of St in the third clause is due to the need of filtering the
domain of the complement of the translation of a formula to keep only those
elements representing system states.

Notice that the translation of logical formulas yields relation designa-
tions, then it is not possible to add the translation of a formula (as is) as a
design decision in an algebraic theory. Also notice that as formulas are trans-
lated to right ideals, and we want a certain formula α ∈ BoolConst(P,Q)
to be valid on every possible state of the system, we can instead add the
following formula as axiom:

St;TrBC(α) = St;1 .

3Notice that not only V must be chosen appropriately for this translation to be
possible, but also the particular algebraic signature to which the translation is carried
out. Also notice that the one corresponding to the theory that incorporates the design
decisions (see Figure 6.2) can play this rôle because it contains all the symbols needed to
apply TrBC .

2. INTRODUCING DESIGN DECISIONS 93

To prove the semantic preservation of this translation of Boolean con-
strains we first need to characterize a class of models and a notion of validity
between this class of models and Boolean constrains and then proceed with
the proof by interpreting these models as full proper closure fork algebras
with urelements, which are models of the co-limit theory of the diagram of
Figure 6.2.

As the main topic of this thesis is not the presentation of a top level
language to describe cross-logic constrains we will not go into further for-
malization in the framework of general logics but we believe this is one of the
most important directions of further research this work leaves open. The
reader is invited to either carry out this formalization, or simply use our
proposal as a motivation to propose better solutions to this problem.

2.2. Synchronizing propositional and first-order static informa-
tion. If our aim is to obtain some kind of interaction between a proposi-
tional and a first-order partial specification, then the notion of propositional
and first-order system state must be related in an appropriate way. In this
section we show how to obtain such a relationship.

Once we translated both logical theories and obtained two algebraic
partial specifications (one containing the propositional information and the
other containing the first-order information), we can introduce a translation
relation representing the relationship between StProp (the set of proposi-
tional system states) and StFOL (the set of first-order system states). Many
different interactions can be established between StProp and StFOL, and all
of them are obtained by the introduction of appropriate design decisions in
the form of axioms (see for example Axiom (22)).

Assume that we know that both descriptions of system states are com-
plete, this means that both StProp and StFOL are “equal” modulo some trans-
lation from the propositional world to the first-order world. Let PropStFOL

be this translation relation, then we can add the following axioms:

PropStFOL ≤ StProp ;1;StFOL ,(25)

Dom
(

PropStFOL
)

= StProp ,(26)

Ran
(

PropStFOL
)

= StFOL ,(27)

PropStFOL = PropStFOL ;
(

PropStFOL
)
˘;PropStFOL .(28)

Equation (25) states that PropStFOL is indeed a relation whose domain is
a subset of the set of propositional states and whose range is a subset of the
set of first-order states. Equation (26) forces PropStFOL to be total, which
means that any propositional state is related to a subset of the first-order
states; and Equation (27) forces the converse relation, that any first-order
state is the image of at least one propositional state. When dealing with an
incomplete propositional description, we will surely have first-order states
which are not the image of any propositional state, thus Equation (27) must
be removed. The same happens when dealing with an incomplete first-order
description but in this case we will have propositional states which are not

94 6. REASONING ACROSS LOGICS IN FORK ALGEBRAS

mapped to any first-order state, thus Equation (26) must be removed. Equa-
tion (28) states that the translation is stable, which means that translating
propositional states forth to first-order states and then back to proposi-
tional states, and then forth again, is exactly the same as translating the
propositional states only once.

Now we can use PropStFOL to establish further relationships between
the behavior specified in the partial specifications. Let {PProp

i}i∈IProp be
the set of propositions appearing in the propositional specifications and
{PFOL

i}i∈IFOL be the set of predicates appearing in the first-order spec-

ification. Once again consider L ⊆ IProp, L ⊆ IFOL and the channels
〈〈StProp ∪ {PProp

i}i∈L〉, ∅〉 and 〈〈StFOL ∪ {PFOL
i}i∈L〉, ∅〉. In this case the

symbols {PProp
i}i∈L and {PFOL

i}i∈L will not be glued by using morphisms
because we want this symbols to preserve different interpretations, those
associated by the corresponding translation. They will be related by means
of axioms characterizing the the way they interact. Then, if we want to
identify the behavior of PProp

i with the behavior of PFOL
i for all i ∈ L, we

need to add the axioms:

PropStFOL ;PFOL
i = PProp

i , for all i ∈ L,(29) (
PropStFOL

)
˘;PProp

i = PFOL
i , for all i ∈ L.(30)

Let i ∈ L, then Axiom (29) indicates that the set of propositional state
in the domain of PProp

i is translated to the set of first-order state in the
domain of PFOL

i, and Axiom (30) indicates the converse relation.
The diagram involving all this information is obtained analogously to

that of Figure 6.2, but considering the channels and axioms presented in
this section, and appropriate morphisms mapping the symbols defined in the
channels to the symbols appearing in the original theories and the theory
containing the design decisions. Figure 6.3 shows the image of this diagram.

〈〈{StProp,StFOL, PropStFOL} ∪ {PProp
l}l∈L ∪ {P

FOL
l}l∈L〉,

{Eq. 25, Eq. 26, Eq. 27, Eq. 28} ∪ {Eq. 29i}i∈L ∪ {Eq. 30i}i∈L〉

✒σ3
■ σ4

〈〈{StProp} ∪ {PProp
i}i∈L〉, ∅〉

✠

σ1

TProp

〈〈{StFOL} ∪ {PFOL
i}i∈L〉, ∅〉

❘

σ2

TFOL

σ1(StProp) = StProp

σ1(PProp
l) = PProp

l ; for all l ∈ L
σ2(StFOL) = StFOL

σ2(PFOL
l) = PFOL

l ; for all l ∈ L
σ3(StProp) = StProp

σ3(PProp
l) = PProp

l ; for all l ∈ L
σ4(StFOL) = StFOL

σ4(PFOL
l) = PFOL

l ; for all l ∈ L

Figure 6.3. Relation between {PProp
l}l∈L and {PFOL

l}l∈L.

2. INTRODUCING DESIGN DECISIONS 95

Once again, as we proposed at the end of §2.1, and thanks to the trans-
lation relation (PropStFOL), it is possible to represent any Boolean constrain
involving {PProp

i}i∈IProp and {PFOL
i}i∈IFOL by providing definitions analo-

gous to Definitions 6.4 and 6.5. More complex constrains can be described
by extending the language and translation to first-order constrains.

In the same way we did in Definition 6.4, the following definitions show
how propositional variables and first-order predicates can be put together in
a first-order language. Once again, Definition 6.7 uses a disjoint union of two
sets of symbols to identify the partial specification where they were intro-
duced to apply the corresponding translation to the ω-closure fork algebra
signature.

Definition 6.6. Let F be a set of first-order function symbols, and V
be a denumerable set of variable symbols. Then, the set of first-order terms
is the smallest set FOLTerms(F,V) such that:

• V ⊆ FOLTerms(F,V),
• if {t1, . . . , tn} ⊆ FOLTerms(F,V) and f ∈ F is an n-ary function

symbol, then f(t1, . . . , tn) ∈ FOLTerms(P,V).

Definition 6.7. Let P be a set of propositional variables, Q be a set
of first-order predicate symbols, and V be a denumerable set of variable
symbols. Then, the set of first-order constrains is the smallest set X =
FOLConst(P,Q,V) such that:

• inl(p) ∈ X, for all p ∈ P ,
• if {t1, . . . , tn} ⊆ FOLTerms(F,V) and q ∈ Q is an n-ary predicate

symbol, then inr(q(t1, . . . , tn)) ∈ X,
• if α, β ∈ X, then {¬α, α ∨ β} ⊆ X.
• if α ∈ X and v ∈ V, then (∃v)α ∈ X.

The rest of the propositional operators such as conjunction (∧), and
implication (=⇒), are defined as always in terms of the negation (¬) and
disjunction (∨) operators as α ∧ β ≡ ¬(¬α ∨ ¬β), α =⇒ β ≡ ¬α ∨ β and
(∀x)α ≡ ¬(∃x)¬α.

The translation from first-order constrains to algebraic axioms we will
present in the following definition uses a formulation similar to the one we
presented in Chapter 5 for FOLTL. Next definition presents this translation4.

Definition 6.8. Let F be a set of first-order function symbols, V be a
denumerable set of variable symbols, s be sequence of natural numbers, and
R be a denumerable set of relation variables. Then, we define the translation
trFC , as a function trFC : FOLTerms(F,V)→ RelDes(R) as follows:

trFCs(v) ≡

{
ρ ;(Ord(Vv ,s)−1) ;π if Vv < length(s).

ρ ;(length(s)−1) if Vv = length(s).
trFCs(f(t1, . . . , tn)) ≡ (trFCs(t1)∇ · · · ∇trFCs(tn));F

; for all f ∈ F and TrFOL→fPCFAU(f) ≡ F.

4As in Definition 6.5, the signature corresponding to the theory that incorporates the
design decisions allows the application of both trFC and TrFC because it contains all the
required symbols.

96 6. REASONING ACROSS LOGICS IN FORK ALGEBRAS

Definition 6.9. Let P be a set of propositional variables, Q be a set
of first-order predicate symbols, V be a denumerable set of variable sym-
bols, s a sequence of natural numbers, and R be a denumerable set of
relation variables. Then, we define the translation TrFC as a function
TrFC : FOLConst(P,Q,V)→ RelDes(R) as follows:

TrFCs(inr(p)) ≡
(
PropStFOL

)
˘;P

; for all p ∈ P and TrProp→fPCFAU(p) ≡ P,
TrFCs(inr(q(t1, . . . , tn))) ≡ π ;(trFCs(t1)∇ · · · ∇trFCs(tn));Q

; for all q ∈ Q and TrFOL→fPCFAU(q) ≡ Q,

TrFCs(¬α) ≡ StFOL ·TrFCs(α) ,
T rFCs(α ∨ β) ≡ TrFCs(α)+TrFCs(β) ,
T rFCs((∃v)α) ≡ ∆s,Vv ;TrFC [s⊕Vv](α) .

where, if l = length(s), ∆s,i is defined by the following condition:

∆s,i =

8

>

<

>

:

trF C s(Vs[1])∇ · · · ∇trF C s(Vs[k − 1])∇1U∇trF C s(Vs[k])∇ · · · ∇trF C s(Vs[l])
, if k = Ord([s ⊕ i], i) ≤ l

trF C s(Vs[1])∇ · · · ∇trF C s(Vs[l])∇1U

, if Ord([s ⊕ i], i) = l + 1

and can be understood as a cylindrification [HMT71, HMT85] on the kth.

coordinate of a length(s)-dimensional space. To read about the details of
the translation of first-order logic to fork algebras, the interested reader is
pointed to [Fri02].

Let α ∈ FOLConst(P,Q,V). As we did in §2.1, the following formula
can be added as axiom:

StFOL ;TrFC [](α) = StFOL ;1 .

Once again, the use of StFOL as a filter at both sides of the equation
states that the translation of α contains in its domain every first-order state,
and therefore, holds in all of them.

2.3. Synchronizing propositional dynamic and first-order dy-
namic information. In §2.2 we showed how to relate propositional and
first-order information by introducing a new relation symbol that acts as
a translation between the propositional and the first-order versions of the
system state. In this section we propose a methodology extending this ap-
proach to programs, to build up relationships between partial specifications
written in propositional and first-order dynamic logic.

It is quite easy to see that what we presented in §2.2 can be used to relate
propositional and first-order dynamic logic formulas in which no dynamic
operator occurs. This is true but of no help in establishing relationships
between the specification of programs.

Assume PDL-states and FODL-states are characterized by the relational
constants StPDL and StFODL, respectively, and consider the relational con-
stant PDLStFODL, which will play the same rôle PropStFOL played in §2.2.

Now, to keep the example as simple as possible, we maintain the assump-
tions, made explicit in the previous section, that we want to relate a subset
of each of the predicate symbols by means of an “equivalence” and that we

2. INTRODUCING DESIGN DECISIONS 97

have two different but complete characterizations of the set of system states.
Thus, the following axioms should be added:

PDLStFODL ≤ StPDL ;1;StFODL ,(31)

Dom
(

PDLStFODL
)

= StPDL ,(32)

Ran
(

PDLStFODL
)

= StFODL ,(33)

PDLStFODL = PDLStFODL ;
(

PDLStFODL
)
˘;PDLStFODL ,(34)

PDLStFODL ;PFODL
i = PPDL

i , for all i ∈ L,(35) (
PDLStFODL

)
˘;PPDL

i = PFODL
i , for all i ∈ L.(36)

Equations (31)–(36) must be interpreted in the same way as Equa-
tions (25)–(30) of §2.2.

As we did for predicate symbols, let {APDL
j}j∈J PDL and {AFODL

j}j∈J FODL

be the set of propositional and first-order atomic actions, and letM⊆ J PDL

andM⊆ J FODL. Now assume that for all m ∈M we believe that the pro-
gram AFODL

m is a first-order refinement of the program APDL
m, which in

this case means that AFODL
m allows us to observe the state change with a

higher level of granularity than APDL
m (i.e., we are able to observe the val-

ues of the state variables before and after the application of the program).
Then, if we consider that atomic actions are nothing but operations that
transform the system state, we can use the relational constant PDLStFODL

to establish this relationship by adding the following axioms:

PDLStFODL ;AFODL
m ;
(

PDLStFODL
)
˘ = APDL

m , for all m ∈M,(37)
(

PDLStFODL
)
˘;APDL

m ;PDLStFODL = AFODL
m , for all m ∈M.(38)

Equations (37)–(38) state that the propositional and first-order pro-
grams take the system from the same set of source states to the same set of
target states. Figure 6.4 shows the theories involving all this information as
the image of a diagram.

Now, recalling §2.3 and §2.2, we can consider a language capable of
expressing design decisions involving a PDL and a FODL partial specification.
The following definitions formalize this language by considering, as in the
case of §2.3, the disjoint union of the set of the PDL propositions and the
set of the FODL predicate symbols; and the disjoint union of the set of the
PDL atomic programs and the set of the FODL atomic programs. The link
between propositional and first-order states is established in the same way
we did in §2.2 by introducing a relation mapping the two notions of state.

Definition 6.10. Let P be a set of propositional variables, Q be a set of
first-order predicate symbols, A be a set of propositional atomic actions, B
be a set of first-order atomic actions, and V be a denumerable set of variable
symbols. Then, the set of first-order dynamic constrains is the smallest set
X = FODLConst(P,A,Q,B,V) such that:

98 6. REASONING ACROSS LOGICS IN FORK ALGEBRAS

〈〈{StPDL,StFODL, PDLStFODL} ∪ {PPDL
l}l∈L ∪ {P

FODL
l}l∈L∪

{APDL
m}m∈M ∪ {A

FODL
m}m∈M〉,

{Eq. 31, Eq. 32, Eq. 33, Eq. 34} ∪ {Eq. 35i}i∈L ∪ {Eq. 36i}i∈L∪
{Eq. 37m}m∈M ∪ {Eq. 38m}m∈M〉

✒σ3
■

σ4

〈〈{StPDL} ∪ {PPDL
i}i∈L ∪ {A

PDL
m}m∈M〉, ∅〉

✠

σ1

TrPDL

〈〈{StFODL} ∪ {PFODL
i}i∈L ∪ {A

FODL
m}m∈M〉, ∅〉

❘

σ2

TrFODLσ1(StPDL) = StPDL

σ1(PPDL
l) = PPDL

l ; for all l ∈ L
σ1(APDL

m) = PPDL
m ; for all m ∈M

σ2(StFODL) = StFODL

σ2(PFODL
l) = PFODL

l ; for all l ∈ L
σ2(AFODL

m) = AFODL
m ; for all m ∈M

σ3(StPDL) = StPDL

σ3(PPDL
l) = PPDL

l ; for all l ∈ L
σ3(APDL

m) = APDL
m ; for all m ∈M

σ4(StFODL) = StFODL

σ4(PFODL
l) = PFODL

l ; for all l ∈ L
σ4(AFODL

m) = AFODL
m ; for all m ∈M

Figure 6.4. Relation between {PPDL
l}l∈L and {PFODL

l}l∈L,
and {APDL

m}m∈M and {AFODL
m}m∈M.

• inl(p) ∈ X, for all p ∈ P ,
• if {t1, . . . , tn} ⊆ FOLTerms(F, s) and q ∈ Q is an n-ary predicate

symbol, then inr(q(t1, . . . , tn)) ∈ X,
• if α, β ∈ X, then {¬α, α ∨ β} ⊆ X.
• if α ∈ X and v ∈ V, then (∃v)α ∈ X.
• if a ∈ A and α ∈ X, then 〈inl(a)〉α ∈ X,
• if b ∈ B and α ∈ X, then 〈inr(b)〉α ∈ X,

Next definition presents the translation of first-order dynamic constrains
to algebraic axioms.

Definition 6.11. Let P be a set of propositional variables, Q be a
set of first-order predicate symbols, A be a set of propositional atomic ac-
tions, B be a set of first-order atomic actions, V be a denumerable set
of variable symbols, s a sequence on natural numbers, and R be a set
of relation variables. Then, we define the translation TrFC as a function
TrFDC : FODLConst(P,A,Q,B,V)→ RelDes(R) as follows:

TrFDCs(inl(p)) ≡
`
PDLStFODL

´
˘;P

; for all p ∈ P and TrPDL→fPCFAU(p) ≡ P,
TrFDCs(inr(q(t1, . . . , tn))) ≡ π ;(trFC(t1)∇ · · · ∇trFC(tn));Q

; for all q ∈ Q and TrFODL→fPCFAU(q) ≡ Q,

TrFDCs(¬α) ≡ StFODL ·TrFDC(α) ,
T rFDCs(α ∨ β) ≡ TrFDC(α)+TrFDC(β) ,
T rFDCs((∃v)α) ≡ ∆s,Vv

;TrFDC(α) ,
T rFDCs(〈inl(a)〉α) ≡

`
PDLStFODL

´
˘;A ;PDLStFODL ;TrFDC(α)

; for all a ∈ A and TrPDL→fPCFAU(a) ≡ A,
TrFDCs(〈inr(b)〉α) ≡ B ;TrFDC(α)

; for all b ∈ B and TrFODL→fPCFAU(b) ≡ B.

As in §2.2, the translation of logical formulas yields relation designations.
Therefore if we want the formula α ∈ FODLConst(P,A,Q,B,V) to be valid

2. INTRODUCING DESIGN DECISIONS 99

on every possible state of the system, we need to add the following formula
as an axiom:

StFODL ;TrFDC [](α) = StFODL ;1

which, again, is an equation and states that the translation of α contains in
its domain every first-order dynamic state.

Once again, as in previous sections, the proof of the semantics preserva-
tion of this translation is not provided.

2.4. Synchronizing first-order static and temporal information.
The case of having two partial specifications written in first-order logics is
not important from the technical point of view because of the simplicity of
the solution, but we considered its inclusion because it gives this chapter a
sense of completeness.

Structural properties can be naturally specified by properties written
in first-order logic. If we consider two partial specifications, the first one
containing the structural properties of the system (written in first-order
logic), and the other containing a first-order temporal description of the
behavior of the system, we might like the first set of properties to hold
in every state of every system execution trace. Now, if we modeled the
execution traces as sequences of states taken from StFOLTL as we did in
Chapter 5, and assuming we have complete characterizations of first-order
states and first-order temporal states, the only equation we have to add as
a design decision is:

(39) StFOL = StFOLTL

As first-order logic properties are satisfied by every possible first-order
state, by Equation (39) we can conclude that every temporal state also
satisfies the first-order properties and, consequently, every state of any exe-
cution trace (which are infinite right degenerated trees of states (see Equa-
tion (15))), satisfies these properties.

The assumption of having two different but equivalent characterizations
of the set of states is not the most common situation thus, turning to a
more realistic example, we need to consider having partial specifications of
the system state, which means that system variables will be the union of both
sets of variables, even considering a non-empty set of shared variables. Let
VFOL and VFOLTL be denumerable sets of variable symbols, T FOL, T FOLTL ⊆
◆ be finite sets and τ : T FOL → T FOLTL a bijective function.
T FOL and T FOLTL can be interpreted as the positions of the shared vari-

ables in the total order of the corresponding set, Then, τ represents the
correspondence between static and temporal variables.

Then, if we consider FOLStFOLTL a relational constant that allows the
translation from first-order system states to temporal system states, and
viceversa, we would like FOLStFOLTL (when interpreted on a full proper clo-
sure fork algebra with urelements), to behave in the following way, for all
〈s, s〉 ∈ StFOL:

(40) Ran
“
{〈s, s〉} ;FOLStFOLTL

”
=

n
〈s′, s′〉 ∈ StFOLTL

˛̨
˛ (∀i)(i ∈ T FOL =⇒ si = s′τ(i))

o
.

100 6. REASONING ACROSS LOGICS IN FORK ALGEBRAS

Formula (40) states that the relational constant FOLStFOLTL must pre-
serve the values of the variables shared by the FOL-specification and the
FOLTL-specification. Now it only rests to provide axioms characterizing the
relational constant FOLStFOLTL.

FOLStFOLTL ≤ StFOL ;1;StFOLTL ,(41)

Dom
“

FOLStFOLTL
”

= StFOL ,(42)

Ran
“

FOLStFOLTL
”

= StFOLTL ,(43)

FOLStFOLTL = FOLStFOLTL ;
“

FOLStFOLTL
”
˘;FOLStFOLTL ,(44)

FOLStFOLTL ≤ StFOL ;

„
δT FOL

1
∇ · · · ∇δT FOL

#(T FOL)

«
;(45)

„
StFOLTL ;

„
δT FOLTL

τ(1)
∇ · · · ∇δT FOL

τ(#(T FOL))

««
˘(46)

; where δt = ρ ;t

Once again, Equations (41)–(44) must be interpreted in the same way
as Equations (25)–(28) of §2.2. Finally, Equation (45) force FOLStFOLTL to
preserve the values of the shared variables when translating system states
in any direction.

Then, Equation (39) can be rephrased using FOLStFOLTL by the following
two equations:

StFOLTL = Ran
(
StFOL ;FOLStFOLTL

)
,(47)

StFOL = Ran
(
StFOLTL ;

(
FOLStFOLTL

)
˘
)
.(48)

Notice that the relationship expressed by Equations (47) and (48) explic-
itly states that every first-order state can be translated to a set of temporal
states and viceversa, and this condition does not necessarily hold for any
two partial specifications.

3. Concluding remarks

The reader may have noticed that developing solutions for combinations
of logics, as we did in §2.1, §2.2, §2.3 and §2.4, is somehow ad-hoc, specially
considering that the solutions we presented are useful in combining logics un-
der particular requirements. We believe this is a key point of this approach
for dealing with heterogeneous specifications. Introducing design decisions
requires creativity to recover global behavior lost during specification, and
the use of a common language to interpret systems properties allows us to
introduce any interaction between behaviors that were described in separate
theories (possibly written in different logics). On the other hand, any solu-
tion we could present is not more than an example of what this framework
can do for us, being more a methodological suggestion than a rule to solve
any combination of descriptions written with a certain pair of logics.

As we mentioned in §2.1, it is not our aim to provide a logical language to
express design decisions, thus we simply proposed a language, a translation,

3. CONCLUDING REMARKS 101

which most of the times is inspired on existing ones, and did not concentrate
on providing correctness proofs for our proposals.

Most of this chapter requires further formalization. We believe the field
of general logics must be extended with some kind of formal support to
handle this inter-logic reasoning. In this field we found very motivating the
vast amount of work on Grothendieck institutions [Dia02] and the informal
talks we had with Till Mossakowski on this topic during AMAST 2006.

CHAPTER 7

Case-study: An interactive museum guide

In this chapter we will present a small example showing the usage of
our approach in the homogenization of heterogeneous partial specifications
in ω-closure fork algebras with urelements. The example we present in §1
was partially introduced in [FGLR05] but it was never fully developed.

1. Conceptual description

At a museum of arts it is possible to use wireless enabled PDAs1 to vi-
sualize the information of the paintings being exhibited. Sensors are located
next to paintings, and whenever a visitor stands in front of a painting, infor-
mation about it is transferred to the visitor’s PDA. While some operations
in the system are simple, and can therefore be performed almost instan-
taneously, retrieving information about a specific painting may take longer
time because audio and video might need to be transferred.

Whenever the visitor subscribes to this service, the visitor’s position
begins being monitored. If information about a painting has been requested
and the visitor has moved to a different location, then information should
not be delivered, and information about the current painting is requested
instead.

In order to help the reader in understanding the running example, we
will exhibit some UML-like diagram[OMG04b], together with some OCL
constrains[OMG04a]. The way this diagrams and constrains are used is
rudimentary and their only purpose is to enhance the reader comprehension
of the example. Typically OCL constrains are placed in text boxes within
the diagram linked to objects by dashed lines but we will present them in
separate tables in order to make, both the diagrams and the OCL constrains,
easier to read.

In Figure 7.1, we present a class diagram describing the structure of the
system. A monitor is in charge of keeping track of the visitors positions,

1Personal Digital Assistant, a handheld device that combines computing, Internet
and networking features.

103

104 7. CASE-STUDY: AN INTERACTIVE MUSEUM GUIDE

based on information acquired by sensors located next to paintings. The
museum guide is in charge of sending the right information to visitors. This
is done by correctly mapping a visitors position, notified by the monitor
whenever it changes, to the painting located in there.

Figure 7.1. Class diagram for the Interactive Museum System.

As not every instance of the class diagram presented in Figure 7.1 is
valid, in Table 7.1, we provide the structural restrictions formalized as OCL
invariants.

Table 7.2 shows the formalization of the pre and post-condition of the
methods declared in the classes appearing in Figure 7.1. Notice that the
post-condition of the operation notifyNewPosition was declared to be
true. This is because its application does not change neither the associ-
ations, nor the attributes accessible from the entity MuseumGuide.

The initial state of the system in the class diagram of Figure 7.1 is
presented by resorting to the object diagram of Figure 7.2. Table 7.3 shows
its formalization in OCL.

Figures 7.3–7.6 present sequence diagrams providing behavioral infor-
mation about the system described before. The text box appearing within
the sequence diagram denotes OCL restrictions on the message passing.

When considering the implementation of the system in a real museum,
the maximum number of visitors we are able to subscribe to our guiding
service is fixed and depends on the actual capacity of the museum. On the
other hand, pictures and positions usually change because they depend on
the art pieces being exhibited in the museum. Based on this fact, we will
use propositional logics when extracting information only involving visitors,

2. LOGICAL DESCRIPTION 105

For the class MuseumGuide we have:

context MuseumGuide

inv: paintings in museum→forall (t, t′ | position (t) = position(t′) implies

painting(t) = painting(t′))

context MuseumGuide

inv: paintings in museum→forall (t, t′ | painting (t) = painting(t′) implies

position(t) = position(t′))

context MuseumGuide

inv: subscribed visitors→includes(tracker→tracked visitors)

context MuseumGuide

inv: (paintings in museum→collect(t | position(t)))→
includes((tracker→positioned visitors)→collect(t | position(t)))

context MuseumGuide

inv: (paintings in museum→collect(t | painting(t)))→
includes(subscribed visitors→collect(v | v.current painting))

For the class Monitor we have:
context Monitor

inv: tracked visitors→includesAll(positioned visitors→
collect(t | visitor(t)))

context Monitor

inv: positioned visitors→forall (t, t′ | visitor (t) = visitor(t′) implies

position(t) = position(t′))

context Monitor

inv: positioned visitors→forall (t, t′ | position (t) = position(t′) implies

visitor(t) = visitor(t′))

Table 7.1. List of methods of the classes of Fig. 7.1.

For the class MuseumGuide we have:
context MuseumGuide :: subscribe(aVisitor: Visitor)

pre: self.subscribed visitors→excludes(aVisitor)

post: self.subscribed visitors→includes(aVisitor)

context MuseumGuide :: unsubscribe(aVisitor: Visitor)

pre: self.subscribed visitors→includes(aVisitor)

post: self.subscribed visitors→excludes(aVisitor)

context MuseumGuide :: notifyNewPosition(aVisitor: Visitor, aPosition: Position)
pre: self.subscribed visitors→includes(aVisitor)

post: true

For the class Monitor, we have:
context Monitor :: beginTracking(aVisitor: Visitor)

pre: self.tracked visitors→excludes(aVisitor)

post: self.tracked visitors→includes(aVisitor)

context Monitor :: endTracking(aVisitor: Visitor)

pre: self.tracked visitors→includes(aVisitor)

post: self.tracked visitors→excludes(aVisitor)

For the class Visitor, we have:

context Visitor :: updatePainting(aPainting: Painting)

pre: true

post: self.current painting = aPainting

Table 7.2. OCL formalization of the methods the classes of Figure 7.1.

and first-order logics when extracting information involving pictures and
positions.

2. Logical description

In this section we will derive logical properties from the conceptual de-
scription presented in §1. To choose the logics we will use in this process we

106 7. CASE-STUDY: AN INTERACTIVE MUSEUM GUIDE

Figure 7.2. Object diagram for the Interactive Museum System.

For the class MuseumGuide we have:
context MuseumGuide :: subscribed visitors: Set (Visitor)

init: Set { }

For the class Monitor, we have:
context Monitor :: tracked visitors:

Set (Visitor)

init: Set { }
context Monitor :: positioned visitors:

Set (Tuple (visitor: Visitor, position: Position))

init: Set { }

For the class Visitor, we have:

context Visitor :: current painting: Painting

init: <undefined>

Table 7.3. OCL formalization of the objects diagram of Figure 7.1.

subscribe(vi)

vi: Visitor g: MuseumGuide m: Monitor

beginTracking(vi)

Figure 7.3. The subscription process.

will use both the functional and non-functional requirements. In that sense,
and recalling the limit on the number of visitors to consider, operations and
interactions only involving visitors will be formalized by means of proposi-
tional logics because we can represent the values for attributes and possible
associations by introducing a limited number of propositions. On the other
hand, values for the attributes and possible associations involving entities

2. LOGICAL DESCRIPTION 107

unsubscribe(vi)

vi: Visitor m: MuseumGuide m: Monitor

endTracking(vi)

Figure 7.4. The unsubscription process.

Figure 7.5. When the visitor moves to a new position, he
may receive information about the painting being watched.

Figure 7.6. When changing position, the visitor receives
data about the painting in the the new position.

that are not limited can be formalized in a more natural way by resorting
to first-order logics

2.1. A FOL view of the system. The class diagram of Figure 7.1 gives
us the attributes and possible associations between objects. Describing the
state of the system amounts to describing specific object diagrams. FOL will
be used to describe the structural properties of the system. These structural
properties of the design tell us which instances (object diagrams) are valid
and which are not.

108 7. CASE-STUDY: AN INTERACTIVE MUSEUM GUIDE

In order to obtain a FOL specification we need to interpret the ele-
ments occurring in the class diagram as logical objects. To do this we will
interpret classes as sorts (of course this implies we will use many-sorted sig-
natures), thus values will be elements of these sorts, and an n-association
will be interpreted as an n-ary predicate symbol. For instance, the binary
association subscribed visitors gives rise to a binary predicate symbol
subscribed visitors ⊆ Guide×Visitor.

Following these guidelines, we obtain the FOL specification of Figure 7.7.

〈 〈 { Guide, Visitor, Position, Painting },
{ },
{ subscribed visitors, current painting, paintings in museum, tracker,

tracked visitors, positioned visitors, Init Guide, Init Monitor,
Init Visitor } 〉,

{ (∀g : Guide, p, p′ : Position, q, q′ : Painting)(paintings in museum(g, p, q)∧
paintings in museum(g, p′, q′) =⇒ (p = p′ =⇒ q = q′)) ,

(∀g : Guide, p, p′ : Position, q, q′ : Painting)(paintings in museum(g, p, q)∧
paintings in museum(g, p′, q′) =⇒ (q = q′ =⇒ p = p′)) ,

(∀g : Guide, m : Monitor)(tracker(g, m) =⇒
(∀v : Visitor, p : Position)(positioned visitors(m, v, p) =⇒

(∃q : Painting)(paintings in museum(g, p, q)))) ,
(∀g : Guide, v : Visitor)(subscribed visitors(g, v) =⇒

(∀q : Painting)(current painting(v, q) =⇒
(∃p : Position)(paintings in museum(g, p, q)))) ,

(∀m : Monitor, v : Visitor)((∃p : Position)(positioned visitors(m, v, p)) =⇒
tracked visitors(m, v))) ,

(∀m : Monitor, v, v′ : Visitor, p, p′ : Position)(positioned visitors(m, v, p)∧
positioned visitors(m, v′, p′) =⇒ (v = v′ =⇒ p = p′)) ,

(∀m : Monitor, v, v′ : Visitor, p, p′ : Position)(positioned visitors(m, v, p)∧
positioned visitors(m, v′, p′) =⇒ (p = p′ =⇒ v = v′)) ,

(∀v : Visitor, q, q′ : Painting)((current painting(v, q)∧
current painting(v, q′)) =⇒ (q = q′)) ,

(∀g : Guide)(Init Guide(g)⇔ (∀v : Visitor)(¬subscribed visitors(g, v))) ,
(∀m : Monitor)(Init Monitor(m)⇔

(∀v : Visitor, p : Position)(¬tracked visitors(m, v, p))) ,
(∀v : Visitor)(Init Visitor(v)⇔ (∀q : Painting)(¬current painting(v, q))) } 〉

Figure 7.7. First-order logic view of the system.

2.2. A PDL view of the system. PDL will be used to formalize the
dynamic behavior of those operations which only mention attributes and
possible associations involving visitors. To do that we will introduce atomic
propositions corresponding to the different values an attribute may have, as
well as representing particular associations among objects. In this case, the
interpretation of the rôle subscribed visitors produces, for each visitor
v, a proposition subscribedv.

The general procedure we will follow in order to obtain the PDL speci-
fication is to include an action for each message (with the same name, but
spelled in italics), and use the atomic propositions to map OCL pre and
post-conditions to appropriate PDL formulas. Partial correctness assertions
using pre and post-conditions leave the behavior of a method in those states
that do not satisfy the pre-condition, unspecified. We will refine these spec-
ifications by stating that in those states, methods must halt. This is done
by including a PDL formula of the form ¬pre =⇒ [method]false. In order

2. LOGICAL DESCRIPTION 109

to economize notation, we will assume as a frame condition that actions can
only alter the value of propositions explicitly modified.

Following these guidelines, we obtain the PDL specification of Figure 7.8.

〈 〈 { subscribed visitorsv , tracked visitorsv }v∈Visitor,
{ subscribev , unsubscribev , beginTrackingv , endTrackingv }v∈Visitor 〉,
{ ¬subscribed visitorsv =⇒ [subscribev]subscribed visitorsv ,
subscribed visitorsv =⇒ [subscribev]false ,
subscribed visitorsv =⇒ [unsubscribev]¬subscribed visitorsv ,
¬subscribed visitorsv =⇒ [unsubscribev]false ,
¬tracked visitorsv =⇒ [beginTrackingv]tracked visitorsv ,
tracked visitorsv =⇒ [beginTrackingv]false ,
tracked visitorsv =⇒ [endTrackingv]¬tracked visitorsv ,
¬tracked visitorsv =⇒ [endTrackingv]false }v∈Visitor 〉

Figure 7.8. Propositional dynamic logic view of the system.

2.3. A FODL view of the system. FODL will be used to complete
the dynamic description of the system. If we observe the rest of the func-
tions described in Table 7.2, the operations we did not formalize are those
involving positions and paintings.

As we did in §2.1, classes will be interpreted as sorts and a n-association
will be interpreted as a n-ary predicate symbol.

In the same way we did for the construction of a PDL specification, we
will map OCL pre and post-conditions to appropriate FODL formulas, which
in this case will be first-order predicate logic formulas; and atomic actions
will receive the same name as in the OCL description but spelled in italics.
Partial correctness assertions will be treated in the same way we did in §2.2.

Following these guidelines, we obtain the FODL specification of Fig-
ure 7.9.

〈 〈 { Guide, Visitor, Position },
{ },
{ subscribed visitors, current painting },
{ notifyNewPosition } 〉,

{ (∀g : Guide, v : Visitor, p : Position)(subscribed visitors(g, v) =⇒
[notifyNewPosition(g, v , p)]true) ,

(∀g : Guide, v : Visitor, p : Position)
(¬subscribed visitors(g, v) =⇒ [notifyNewPosition(g, v , p)]false) ,

(∀m : Monitor, v : Visitor, q : Painting)
(true =⇒ [updatePainting(v , q)]current painting(v, q)) } 〉

Figure 7.9. First-order dynamic logic view of the system.

2.4. A FOLTL view of the system. Since sequence diagrams only de-
scribe specific valid interactions between objects, it is not possible to extract
general behaviors from them. Nevertheless, we extract a (partial) FOLTL

specification from the description of the behavior of the system that will be
consistent with the sequence diagrams of Figures 7.3–7.6. Associations will
be treated in the same way we did in §2.1 and §2.3.

Figure 7.10 contains the FOLTL specification.

110 7. CASE-STUDY: AN INTERACTIVE MUSEUM GUIDE

〈 〈 { Guide, Visitor, Position, Painting },
{ },
{ subscribed visitors, current painting, paintings in museum, tracked visitors,

tracker } 〉,
{ (∀g : Guide, m : Monitor)(tracker(g, m) =⇒

(∀v : Visitor)(✷(subscribed visitors(g, v)⇐⇒ X(tracked visitors(m, v))))) ,
(∀g : Guide, m : Monitor, p : Position, q : Painting)

((tracker(g, m) ∧ paintings in museum(g, p, q)) =⇒ (∀v : Visitor)
(✷((¬positioned visitors(m, v, p) ∧ X(positioned visitors(m, v, p))) =⇒

✸(¬positioned visitors(m, v, p) ∨ current painting(v, q))))) ,
(∀g : Guide, m : Monitor, p : Position, q : Painting)

((tracker(g, m) ∧ paintings in museum(g, p, q)) =⇒ (∀v : Visitor)
(✷((X(current painting(v, q)) ∧ ¬current painting(v, q)) =⇒

positioned visitors(m, v, p)))) ,
(∀m : Monitor, v : Visitor)(✷(tracked visitors(m, v) =⇒

✸(¬tracked visitors(m, v) ∨ (∃p : Position)(positioned visitors(m, v, p))))) ,
(∀m : Monitor, v : Visitor)(✷(tracked visitors(m, v)⇐⇒

X((∃p : Position)(positioned visitors(m, v, p))))) } 〉

Figure 7.10. First-order linear temporal logic view of the system.

The first axiom reflects the sequence diagrams of Figures 7.3 and 7.4.
The second axiom is consistent with the sequence diagrams of Figures 7.5
and 7.6. The rest of the axioms can not be derived from the sequence
diagrams presented in §1 but describe some desired behaviors. The third
axiom states that a visitor only receives the information of his current po-
sition. The fourth axiom is a progress condition, forcing visitors’ behavior
to evolve. And the last axiom states that once a visitor starts being tracked
by the monitor, his position is immediately registered by the system.

3. Algebraic description

The algebraic description of the interactive museum guide is obtained
from the logical description presented in §2 by applying the correspond-
ing representation maps to the signatures and axioms involved in it. The
translations we will use in this section were presented considering the case
of mono-sorted logics, thus yielding mono-sorted algebras. Adapting them
for the many-sorted case only requires to consider the existence of separate
sets of urelements reflecting the sorts declared in the logical theory, and
preserving the types declared for constants, functions and predicates.

3.1. Algebraic translation of the FOL view of the system. The
original translation of FOL-formulas to fork algebraic equations can be found
in [Fri02, Chapter 5]. This translation requires the FOL theory to be trans-
lated to an extension of ETBR first, and then to fork algebra. Frias and Or-
lowska presented in [FO98, Definition 3.13] a slightly different translation
which does not requires this intermediate step. This approach is consider-
ably closer to the rest the one followed in the developing of the rest of the
translation we will use in this chapter. Figure 7.11 shows the translation of
the FOL theory of Figure 7.7 to an ω-closure fork algebra with urelements
theory.

3. ALGEBRAIC DESCRIPTION 111

〈 〈 { 1′
U, 1Guide, 1′

Guide, 1Monitor, 1
′
Monitor, 1Visitor, 1

′
Visitor, 1Position, 1′

Position,

1Painting, 1′
Painting, Paintings in museum, . . . } 〉,

{ 1′
U = (1∇1)·1′ ,

1′
Guide ≤ 1′

U , 1′
Monitor ≤ 1′

U , 1′
Visitor ≤ 1′

U , 1′
Position ≤ 1′

U , 1′
Painting ≤ 1′

U ,

1′
Guide ·1

′
Monitor = 0 , 1′

Guide ·1
′
Visitor = 0 , 1′

Guide ·1
′
Position = 0 , 1′

Guide ·1
′
Painting = 0 ,

1′
Monitor ·1

′
Visitor = 0 , 1′

Monitor ·1
′
Position = 0 , 1′

Monitor ·1
′
Painting = 0 ,

1′
Visitor ·1

′
Position = 0 , 1′

Visitor ·1
′
Painting = 0 ,

1′
Position ·1

′
Painting = 0 ,

1Guide = 1′
Guide ;1;1′

Guide , 1Monitor = 1′
Monitor ;1;1′

Monitor , 1Visitor = 1′
Visitor ;1;1′

Visitor ,

1Position = 1′
Position ;1;1′

Position, 1Painting = 1′
Painting ;1;1′

Painting ,
“

1′
Guide ⊗ 1′

Position ⊗ 1′
Painting

”

;Paintings in museum;1 = Paintings in museum ,

.

.

.
∆1 = 1Guide ,
∆2 = π∇1Position ,
∆3 = π∇ (ρ ;π) ∇1Position ,
∆4 = π∇ (ρ ;π) ∇ (ρ ;ρ ;π) ∇1Painting ,
∆5 = π∇ (ρ ;π) ∇ (ρ ;ρ ;π) ∇ (ρ ;ρ ;ρ ;π) ∇1Painting ,

1′
U
0 = 1′

U ,

1′
U
1 = 1′

Guide ,

1′
U
2 = 1′

Guide ⊗ 1′
Position ,

1′
U
3 = 1′

Guide ⊗ 1′
Position ⊗ 1′

Position ,

1′
U
4 = 1′

Guide ⊗ 1′
Position ⊗ 1′

Position ⊗ 1′
Painting ,

1′
U
5 = 1′

Guide ⊗ 1′
Position ⊗ 1′

Position ⊗ 1′
Painting ⊗ 1′

Painting ,

1′
U
0 ;∆1 ;

`

1′
U
1 ;∆2 ;

`

1′
U
2 ;∆3 ;

`

1′
U
3 ;∆4 ;

`

1′
U
4 ;∆5 ;

0

B

B

B

B

B

@

1′
U
5 ;1′

U
5 ;1′

U
5 ;

π
∇

ρ ;π
∇

ρ ;ρ ;ρ ;π

;Paintings in museum+

1′
U
5 ;1′

U
5 ;

π
∇

ρ ;ρ ;π
∇

ρ ;ρ ;ρ ;ρ

;Paintings in museum+1′
U
5 ;1′

U
5 ;

ρ ;π
∇

ρ ;ρ ;π
;1′

Position+

1′
U
5 ;

ρ ;ρ ;ρ ;π
∇

ρ ;ρ ;ρ ;ρ
;1′

Painting

1

A

1

A

1

A

1

A

1

A = 1′
U
0 ;1 ,

1′
U
0 ;∆1 ;

`

1′
U
1 ;∆2 ;

`

1′
U
2 ;∆3 ;

`

1′
U
3 ;∆4 ;

`

1′
U
4 ;∆5 ;

0

B

B

B

B

B

@

1′
U
5 ;1′

U
5 ;1′

U
5 ;

π
∇

ρ ;π
∇

ρ ;ρ ;ρ ;π

;Paintings in museum+

1′
U
5 ;1′

U
5 ;

π
∇

ρ ;ρ ;π
∇

ρ ;ρ ;ρ ;ρ

;Paintings in museum+1′
U
5 ;1′

U
5 ;

ρ ;π
∇

ρ ;ρ ;π
;1′

Painting+

1′
U
5 ;

ρ ;ρ ;ρ ;π
∇

ρ ;ρ ;ρ ;ρ
;1′

Position

1

A

1

A

1

A

1

A

1

A = 1′
U
0 ;1 ,

.

.

.
} 〉

Figure 7.11. Algebraic translation of the FOL view of the
system presented in Figure 7.7.

3.2. Algebraic translation of the PDL view of the system. The
translation of PDL-formulas to fork algebraic equations was presented in
[FO98, Definition 7.13]. Figure 7.12 shows the translation of the PDL theory
of Figure 7.8 to an ω-closure fork algebra with urelements theory.

112 7. CASE-STUDY: AN INTERACTIVE MUSEUM GUIDE

〈 〈 { U1, 1U, 1′
U } ∪ { Subscribed visitorsv, Tracked visitorsv, Subscribev, Unsubscribev,

BeginTrackingv, EndTrackingv }v∈Visitor 〉,

{ U1 = (1∇1)̆ , 1U = 1∇1 , 1′
U = (U1;1U) ·1′ }∪

{ 1′
U ;Subscribed visitorsv ;1 = Subscribed visitorsv ,

1′
U ;Tracked visitorsv ;1 = Tracked visitorsv ,

1′
U ;Subscribev ;1′

U = Subscribev ,

1′
U ;Unsubscribev ;1′

U = Unsubscribev ,

1′
U ;BeginTrackingv ;1′

U = BeginTrackingv ,

1′
U ;EndTrackingv ;1′

U = EndTrackingv ,

Subscribed visitorsv +1′
U ;Subscribev ;

“

1′
U
;Subscribed visitorsv

”

+U1 = 1 ,
“

1′
U ;Subscribed visitorsv

”

+1′
U ;Subscribev ;

`

1′
U
;1

´

+U1 = 1 ,
“

1′
U ;Subscribed visitorsv

”

+1′
U ;Unsubscribev ;Subscribed visitorsv +U1 = 1 ,

Subscribed visitorsv +1′
U ;Unsubscribev ;

`

1′
U
;1

´

+U1 = 1 ,

Tracked visitorsv +1′
U ;BeginTrackingv ;

“

1′
U
;Tracked visitorsv

”

+U1 = 1 ,
“

1′
U ;Tracked visitorsv

”

+1′
U ;BeginTrackingv ;

`

1′
U
;1

´

+U1 = 1 ,
“

1′
U ;Tracked visitorsv

”

+1′
U ;EndTrackingv ;Tracked visitorsv +U1 = 1 ,

Tracked visitorsv +1′
U ;EndTrackingv ;

`

1′
U
;1

´

+U1 = 1 }v∈Visitor 〉

Figure 7.12. Algebraic translation of the PDL view of the
system presented in Figure 7.8.

3.3. Algebraic translation of the FODL view of the system. The
translation of FODL-formulas to fork algebraic equations was presented in
[FBM02, Definition 15]2. Figure 7.13 shows the translation of the FODL

theory of Figure 7.9 to an ω-closure fork algebra with urelements theory.

3.4. Algebraic translation of the FOLTL view of the system. The
translation of FOLTL-formulas to fork algebraic equations was presented in
Definitions 5.8 and 5.9] (see also [FL06, Definitions 3.6 and 3.7]). Fig-
ure 7.14 shows the translation of the FOLTL theory of Figure 7.10 to an
ω-closure fork algebra with urelements theory.

4. Putting the pieces together

4.1. Design decisions. In this section we will present the channels and
theories introducing design decisions required to glue the partial algebraic
specifications. As we showed in Chapter 6, Figure 7.15 shows the diagram
scheme we use to introduce design decisions. Let T = 〈Σ,Γ〉, T ′ = 〈Σ′,Γ′〉 ∈
ThfPCFAU

0 , then, as not all the symbols of Σ and Σ′ participate in the channel

2If we recall [FBM02, Definition 15, Rule 1], the translation of an atomic action a

is expressed as Mσ(a) = (Πσ,σa ;a∇Πσ,σ−σa) ;Mergeσa,σ−σa
. The intuition behind this

translation rule is that the term Πσ,σa extracts from σ those values for the free variables
occurring in a, to which a will be applied; term Πσ,σ−σa retains the values of σ which will
not change by the application of the action a. Finally, term Mergeσa,σ−σa

put the values
which were altered by a, and the values which did not change by the application of a, in
the appropriate order. This rule overlooks the case σ = σa because there are no values to
extract by performing the ∇ with the term Πσ,σ−σa thus, no composition with the term
Mergeσa,σ−σa

is needed. The error can be corrected by the following expression:

Mσ(a) =

8

>

>

<

>

>

:

0

@

Πσ,σa ;a
∇

Πσ,σ−σa

1

A ;Mergeσa,σ−σa
, if σ 6= σa

Πσ,σa ;a , if σ = σa

.

4. PUTTING THE PIECES TOGETHER 113

〈 〈 { 1Guide, 1′
Guide, 1Visitor, 1

′
Visitor, 1Position, 1′

Position, 1Painting, 1′
Painting, 1′

U,

Subscribed visitors, Current painting, UpdatePainting, NotifyNewPosition } 〉,

{ 1′
U = (1∇1)·1′ , 1′

Guide ≤ 1′
U, 1′

Visitor ≤ 1′
U, 1′

Position ≤ 1′
U, 1′

Painting ≤ 1′
U ,

1′
Guide ·1

′
Visitor = 0 , 1′

Guide ·1
′
Position = 0 , 1′

Guide ·1
′
Painting = 0 ,

1′
Visitor ·1

′
Position = 0 , 1′

Visitor ·1
′
Painting = 0 , 1′

Position ·1
′
Painting = 0 ,

1Guide = 1′
Guide ;1;1′

Guide , 1Visitor = 1′
Visitor ;1;1′

Visitor , 1Position = 1′
Position ;1;1′

Position ,

1Painting = 1′
Painting ;1;1′

Painting ,
`

1′
Guide ⊗ 1′

Visitors

´

;Subscribed visitors;1 = Subscribed visitors ,
“

1′
Visitor ⊗ 1′

Painting

”

;Current painting;1 = Current painting ,
“

1′
Visitors ⊗ 1′

Painting

”

;UpdatePainting;
“

1′
Visitors ⊗ 1′

Painting

”

= UptadePainting ,
`

1′
Guide ⊗ 1′

Visitors ⊗ 1′
Position

´

;NotifyNewPosition;
`

1′
Guide ⊗ 1′

Visitors ⊗ 1′
Position

´

=
NotifyNewPosition ,

1Guide ;
1′
Guide
∇

1Visitor

;

π
∇
ρ
∇

1Position

;
π
∇

ρ ;π
;Subscribed visitors+

π
∇

ρ ;π
∇

ρ ;ρ

;NotifyNewPosition;0 = 1 ,

1Guide ;
1′
Guide
∇

1Visitor

;

π
∇
ρ
∇

1Position

;
π
∇

ρ ;π
;Subscribed visitors+

π
∇

ρ ;π
∇

ρ ;ρ

;NotifyNewPosition;1 = 1 ,

1Visitor ;
1′
Visitor
∇

1Painting

;0+
π
∇
ρ

;UpdatePainting;
π
∇
ρ

;Current painting = 1 } 〉

Figure 7.13. Algebraic translation of the FODL view of the
system presented in Figure 7.9.

TDD, and TDD must include symbols to represent the elements of both T and
T ′, we add the theories TChannel and T ′Channel grouping those symbols of T
and T ′, respectively, that will be related by axioms appearing in TDD.

Whenever TDD does not include any axiom, or the axioms are of the
form ST = ST ′

, which means that they simply identify symbols from T and
T ′ as the same elements, we will also use a simpler kind of channel avoiding
the inclusion of superfluous theories in the diagram. Figure 7.16 shows the
diagram scheme we will use for this case.

Notice that the diagram schemes presented in Figures 7.15 and 7.16 can
be easily generalized to the case in which more than two theories are related
throw the same channel.

From now on, the theories presented in Figure 7.11 – 7.14 will be denoted
by TFOL = 〈ΣFOL,ΓFOL〉, TPDL = 〈ΣPDL,ΓPDL〉, TFODL = 〈ΣFODL,ΓFODL〉,
and TFOLTL = 〈ΣFOLTL,ΓFOLTL〉, respectively. Unless we make it explicit,
morphisms between signatures (theories) will be the identity function.

4.1.1. Algebraic counterpart of domains and predicates. If we observe the
algebraic versions of the first-order partial specifications it is easy to notice
that some constants of the form 1′domain were added to represents domains
(sets of values) as partial identities ranging over urelements. Most of these
constants are shared by all the specifications and should be interpreted as the
same relation in every model of the specification of the whole system. Thus
we will first introduce this relationship by resorting to two constructions like
the one we showed in the diagram scheme of Figure 7.16.

Consider the two theories presented in Figure 7.17.
Then, in Figure 7.18 we show a diagram involving TFOL, TFODL, TFOLTL,

TFOL↔FODL and TFOL↔FOLTL.

114 7. CASE-STUDY: AN INTERACTIVE MUSEUM GUIDE

〈 〈 { St, St0, T, tr, {Vk}k◆,
Tracker, Subscribed visitors, Tracked visitors, Paintings in museum,
Positioned visitors, Current painting,

1′
Guide, 1′

Monitor, 1
′
Visitor, 1

′
Position, 1′

Painting, 1′
U } 〉,

{ 1′
U = (1∇1)·1′ , 1′

Guide ≤ 1′
U, 1′

Visitor ≤ 1′
U, 1′

Position ≤ 1′
U, 1′

Painting ≤ 1′
U ,

1′
Guide ·1

′
Visitor = 0 , 1′

Guide ·1
′
Position = 0 , 1′

Guide ·1
′
Painting = 0 ,

1′
Visitor ·1

′
Position = 0 , 1′

Visitor ·1
′
Painting = 0 , 1′

Position ·1
′
Painting = 0 ,

St = 1′
Guide ⊗ 1′

Monitor ⊗ 1′
Visitor ⊗ 1′

Position ⊗ 1′
Painting ,

St0 ≤ St ,
“

T ;1;T̆
”

·1′ = St ,

tr ≤ 1′ ,
π̆ ;tr ;π = St ,
tr ≤ St ⊗ tr ,
tr ;ρ = Ran(π∇ (T ⊗ ρ));ρ ;tr ,
`

1′
Guide ⊗ 1′

Monitor

´

;Tracker;1 = Tracker ,
`

1′
Guide ⊗ 1′

Visitors

´

;Subscribed visitors;1 = Subscribed visitors ,
`

1′
Monitor ⊗ 1′

Visitor

´

;Tracked visitors;1 = Tracked visitors ,
“

1′
Guide ⊗ 1′

Position ⊗ 1′
Painting

”

;Paintings in museum;1 = Paintings in museum ,
`

1′
Monitor ⊗ 1′

Visitor ⊗ 1′
Position

´

;Positioned visitors;1 = Positioned visitors ,
“

1′
Visitor ⊗ 1′

Painting

”

;Current painting;1 = Current painting ,

tr ;V1 ;V2 ;tr ;tr ;π ;
π
∇

ρ ;π
;Tracker+tr ;V3 ;tr ;(tr ;ρ)∗ ;

0

B

B

@

tr ;tr ;tr ;
π
∇

ρ ;ρ ;π
;Subscribed visitors+ρ ;

ρ ;π
∇

ρ ;ρ ;π
;Tracked visitors+

tr ;tr ;ρ ;
ρ ;π
∇

ρ ;ρ ;π
;Tracked visitors+

π
∇

ρ ;ρ ;π
;Subscribed visitors

1

C

C

A

tr ;V1 ;V2 ;V4 ;V5 ;tr ;

0

@tr ;
π
∇

ρ ;π
;Tracker

1

A +

0

B

B

B

B

@

tr ;

π
∇

ρ ;ρ ;ρ ;π
∇

ρ ;ρ ;ρ ;ρ

;Paintings in museum

1

C

C

C

C

A

+

tr ;V3 ;tr ;(tr ;ρ)∗ ;

0

B

B

B

B

@

ρ ;π
∇

ρ ;ρ ;π
∇

ρ ;ρ ;ρ ;π

;Positioned visitors+tr ;ρ ;

ρ ;π
∇

ρ ;ρ ;π
∇

ρ ;ρ ;ρ ;π

;Positioned visitors+

tr ;(tr ;ρ)∗ ;

0

B

B

B

B

B

@

tr ;tr ;

ρ ;π
∇

ρ ;ρ ;π
∇

ρ ;ρ ;ρ ;π

;Positioned visitors+
ρ ;ρ ;π
∇

ρ ;ρ ;ρ ;ρ
;Current painting

1

C

C

C

C

C

A

1

C

C

C

C

C

A

1

C

C

C

C

C

C

C

A

,

.

.

.
} 〉

Figure 7.14. Algebraic translation of the FOLTL view of
the system presented in Figure 7.10.

4.1.2. Algebraic counterpart of the state of the system. Recalling the
theories of Figures 7.12 and 7.14 we observe that there exist two different
descriptions of the system state: the one in Figure 7.12 which is the algebraic
interpretation of a propositional description of the state of the system, and
the one in Figure 7.14 which corresponds to a first-order description of the
state of the system.

4. PUTTING THE PIECES TOGETHER 115

TDD

�
�

��✒

TChannel

❅
❅

❅❅■

T ′Channel

❄
T

❄
T ′

Figure 7.15. General diagram scheme used to introduce de-
sign decision.

TDD

�
�

��✒

T
❅

❅
❅❅■

T ′

Figure 7.16. Simple diagram scheme used to introduce de-
sign decision.

TFOL↔FODL = 〈 〈 { 1Guide, 1
′
Guide, 1Visitor, 1

′
Visitor, 1Position, 1′Position,

1Painting, 1′Painting, 1′
U
,

Subscribed visitors, Current painting } 〉 ,
∅ 〉

TFOL↔FOLTL = 〈 〈 { 1′Guide, 1
′
Visitor, 1

′
Position, 1′Painting, 1′

U
,

Tracker, Subscribed visitors, Tracked visitors,
Paintings in museum, Positioned visitors,
Current painting } 〉 ,

∅ 〉

Figure 7.17. Theories containing design decisions synchro-
nizing TFOL, TFODL, and TFOLTL.

TFOL↔FODL

�
�

��✠
TFODL

❅
❅

❅❅❘
TFOL

TFOL↔FOLTL

�
�

��✠
TFOLTL

❅
❅

❅❅❘

Figure 7.18. Diagram involving TFOL, TFODL, TFOLTL,
TFOL↔FODL and TFOL↔FOLTL.

In §2.2 we showed how to synchronize propositional logic and first-order
logic. In this case-study there is no classical propositional logic description
of the system state, and the translation we used to produce the algebraic
interpretation of the first-order logic partial description of the system does
not produce an explicit representation of the system state. Thus, we will

116 7. CASE-STUDY: AN INTERACTIVE MUSEUM GUIDE

apply those ideas to relate the different descriptions of the system state
introduced in the theories of Figures 7.12 and 7.14.

To relate these two descriptions of the system state, we shall consider
the theory of Figure 7.19.

TPDL↔FOLTL = 〈 〈 { StProp,StFO, 1′Guide, 1
′
Visitor, 1

′
Position, 1′Painting, 1′

U
, PropStFO,

Subscribed visitors, Tracked visitors }∪
{ Subscribed visitorsv , Tracked visitorsv }v∈Visitor 〉 ,

{ StProp ≤ 1′
U

,
1′

UGuide
·StProp = 0 ,

1′
UMonitor

·StProp = 0 ,

1′
UVisitor

·StProp = 0 ,

1′
UPosition

·StProp = 0 ,

1′
UPainting

·StProp = 0 ,

1′
U

= StProp+1′
UGuide

+1′
UMonitor

+1′
UVisitor

+1′
UPosition

+1′
UPainting

,
PropStFO ≤ StProp ;1;StFO ,
Dom

`
PropStFO

´
= StProp ,

Ran
`
PropStFO

´
= StFO ,

PropStFO = PropStFO ;
`
PropStFO

´
˘;PropStFO ,

PropStFO ;Subscribed visitors = Σv∈VisitorSubscribed visitorv ,
PropStFO ;Tracked visitors = Σv∈VisitorTracked visitorv } 〉

Figure 7.19. Theory containing design decisions synchro-
nizing TPDL, and TFOLTL.

Constant symbols StProp and StFO were introduced to identify the two
different sets of states. Being StProp a partial identity over the set of urele-
ments, we force a separation between those urelements representing propo-
sitional states from the ones we shall use to interpret first-order domains
(also organized in disjoint subsets of 1′U, see the theories of Figures 7.11, 7.13
and 7.14). Notice that the constant symbol 1′U introduced in TPDL↔FOLTL

can not longer be related to the symbol 1′U appearing in the theories of
Figures 7.11, 7.13 and 7.14.

The two theories presented in Figure 7.20 will be the channels which
will allow the synchronization between the theories of Figures 7.12 and 7.14
with the design decisions introduced in TPDL↔FOLTL.

TPDL
Channel = 〈 〈 { 1′

U
} ∪ { Subscribed visitorsv , Tracked visitorsv }v∈Visitor 〉 ,

∅ 〉
T FOLTL
Channel = 〈 〈 { 1′Guide, 1

′
Monitor, 1

′
Visitor, 1

′
Position, 1′Painting,St,

Subscribed visitors, Tracked visitors } 〉 ,
∅ 〉

Figure 7.20. Channels used to synchronize TPDL, and TFOLTL.

Figure 7.21 shows a diagram involving TPDL, TFOLTL and TPDL↔FOLTL.
4.1.3. Algebraic counterpart of the dynamic and temporal information.

If we consider the temporal description presented in Figure 7.10 as a com-
plete description of the linear temporal behavior of the system, then T is an
algebraic interpretation of the accessibility relation between all the states
of the system. And, considering that all the operations were formalized as

4. PUTTING THE PIECES TOGETHER 117

TPDL↔FOLTL

�
�

��✒
σPDL

TPDL
Channel

❅
❅

❅❅■
σFOLTL

T FOLTL
Channel

❄
TPDL

❄
TFOLTL

where:

σPDL = { 1′
U
7→ StProp } ∪ { Subscribed visitorsv 7→ Subscribed visitorsv }v∈Visitor

σFOLTL = { 1′Guide 7→ 1′Guide, 1
′
Monitor 7→ 1′Monitor, 1

′
Visitor 7→ 1′Visitor, 1

′
Position 7→ 1′Position,

1′Painting 7→ 1′Painting,St 7→ StFOLTL,

Subscribed visitors 7→ Subscribed visitors,
Tracked visitors 7→ Tracked visitors }

Figure 7.21. Diagram involving TPDL, TFOLTL and TPDL↔FOLTL.

dynamic formulas in the theories of Figures 7.8 and 7.9, we can use the
approach presented in §2.1 to relate these two aspects of the system.

When trying to apply the approach presented in §2.1 two difficulties
arise. The first one is that the existence of two different interpretations of
the operations implies the existence of different interpretations of the sys-
tem state; on one hand there is an algebraic version of the propositional
interpretation of the state, and on the other hand there is an algebraic
version of the first-order interpretation of the state. The relationship be-
tween these different representations of the system state will be established
as in §4.1.2. The second one is that the translation used to map FODL-
formulas to algebraic equations, (as the one we used to map FOL-formulas
to algebraic equations), does not produce an explicit representation of the
first-order state of the system. Thus, the information we have to relate is an
accessibility relation between explicit first-order states (T), atomic actions
on explicit propositional states (Subscribev, Unsubscribev, BeginTrackingv,
and EndTrackingv, for all v ∈ Visitor), and atomic actions on implicit first-
order states (NotifyNewPosition and UpdatePainting).

The relationship between this symbols will be established with respect
to the explicit representation of the first-order states. In order to relate
the representation of the accessibility relation and the representation of the
operations we will use the idea presented in §2.1, but between first-order
states. The representation of the operations between propositional states
will be introduced in this construction by resorting to the same idea we
presented in §4.1.2. For the case of the representation of the operations
between first-order states, we will use the approach behind the translation
from FODL-formulas to algebraic terms [FBM02, Definition 15]. The idea
is to explicitly introduce the projections needed to apply the algebraic con-
stants representing the FODL-atomic actions to the appropriate values of

118 7. CASE-STUDY: AN INTERACTIVE MUSEUM GUIDE

the system state, and then perform a merge between the values resulting of
the application with those values that did not change.

The theory appearing in Figure 7.22 introduces these design decisions.

TPDL↔FOLTL↔FODL = 〈 〈 { St
Prop, St

FO, 1′
Guide, 1′

Visitor, 1
′
Position, 1′

Painting, 1′
U, Prop

St
FO, T }∪

{ Subscribev, Unsubscribev, BeginTrackingv, EndTrackingv }v∈Visitor∪
{ NotifyNewPosition, UpdatePainting } 〉 ,

{ St
Prop ≤ 1′

U ,

1′
UGuide ·St

Prop = 0 ,

1′
UMonitor ·St

Prop = 0 ,

1′
UVisitor ·St

Prop = 0 ,

1′
UPosition ·St

Prop = 0 ,

1′
UPainting ·St

Prop = 0 ,

1′
U = St

Prop +1′
UGuide+1′

UMonitor+1′
UVisitor+1′

UPosition+1′
UPainting ,

Prop
St

FO ≤ St
Prop ;1;St

FO ,

Dom
“

Prop
St

FO
”

= St
Prop ,

Ran
“

Prop
St

FO
”

= St
FO ,

Prop
St

FO = Prop
St

FO ;
“

Prop
St

FO
”

˘;Prop
St

FO ,

T =
“

Σv∈Visitor

“““

Prop
St

FO
”

˘;Subscribev ;Prop
St

FO
”

+
““

Prop
St

FO
”

˘;Unsubscribev ;Prop
St

FO
”

+
““

Prop
St

FO
”

˘;BeginTrackingv ;Prop
St

FO
”

+
““

Prop
St

FO
”

˘;EndTrackingv ;Prop
St

FO
”””

+
0

B

B

B

B

B

B

B

B

B

B

B

@

0

B

B

B

@

π
∇

ρ ;ρ ;π
∇

ρ ;ρ ;ρ ;π

1

C

C

C

A

;NotifyNewPosition

∇
0

@

ρ ;π
∇

ρ ;ρ ;ρ ;ρ

1

A

1

C

C

C

C

C

C

C

C

C

C

C

A

;

0

B

B

B

B

B

B

B

B

B

B

@

π ;π
∇

ρ ;π
∇

π ;ρ ;π
∇

π ;ρ ;ρ
∇

ρ ;ρ

1

C

C

C

C

C

C

C

C

C

C

A

+

0

B

B

B

B

B

B

B

B

B

B

B

@

0

@

ρ ;ρ ;π
∇

ρ ;ρ ;ρ ;ρ

1

A ;UpdatePainting

∇
0

B

B

B

@

π
∇

ρ ;π
∇

ρ ;ρ ;ρ ;π

1

C

C

C

A

1

C

C

C

C

C

C

C

C

C

C

C

A

;

0

B

B

B

B

B

B

B

B

B

B

@

ρ ;π
∇

ρ ;ρ ;π
∇

π ;π
∇

ρ ;ρ ;ρ
∇

π ;ρ

1

C

C

C

C

C

C

C

C

C

C

A

} 〉

Figure 7.22. Theory containing design decisions synchro-
nizing TPDL, TFODL, and TFOLTL.

The theories presented in Figure 7.23 will be the channels allowing the
synchronization between the theories of Figures 7.12, 7.13 and 7.14 with the
design decisions introduced in TPDL↔FOLTL↔FODL.

TPDL
Channel

′
= 〈 〈 { Subscribev , Usubscribev , BeginTrackingv , EndTrackingv }v∈Visitor ∪

{ 1′
U
} 〉 ,

∅ 〉

T FOLTL
Channel

′
= 〈 〈 { 1′Guide, 1

′
Monitor, 1

′
Visitor, 1

′
Position, 1′Painting,St,T } 〉 ,

∅ 〉

T FODL
Channel

′
= 〈 〈 { NotifyNewPosition, UpdatePainting } 〉 ,

∅ 〉

Figure 7.23. Channels used to synchronize TPDL, TFODL,
and TFOLTL.

4. PUTTING THE PIECES TOGETHER 119

Figure 7.24 shows a diagram involving the theories TPDL, TFOLTL, TFODL

and TPDL↔FOLTL↔FODL.

TPDL↔FOLTL↔FODL

�
�

��✒
σPDL′

TPDL
Channel

′

✻

σFOLTL′

T FOLTL
Channel

′
❅

❅
❅❅■

σFODL′

T FODL
Channel

′

❄
TPDL

❄
TFOLTL

❄
TFODL

where:

σPDL′ = { 1′
U
7→ StProp } ∪ { Subscribev 7→ Subscribev }v∈Visitor∪
{ Unsubscribev 7→ Unsubscribev }v∈Visitor∪
{ BeginTrackingv 7→ BeginTrackingv }v∈Visitor∪
{ EndTrackingv 7→ EndTrackingv }v∈Visitor

σFODL′ = { NotifyNewPosition 7→ NotifyNewPosition,
UpdatePainting 7→ UpdatePainting }

σFOLTL′ = { 1′Guide 7→ 1′Guide, 1
′
Monitor 7→ 1′Monitor, 1

′
Visitor 7→ 1′Visitor,

1′Position 7→ 1′Position, 1′Painting 7→ 1′Painting,St 7→ StFOLTL,

T 7→ T }

Figure 7.24. Diagram involving the theories TPDL, TFOLTL,
TFODL and TPDL↔FOLTL↔FODL.

Notice that the information we are adding as a design decision by intro-
ducing the theory TPDL↔FOLTL↔FODL, presented in Figure 7.22, is of great im-
portance in the complete characterization of the system. This importance is
evidenced by the partial descriptions of the operation notifyNewPosition.
As we mentioned before, we declared its post-condition as true so its dy-
namic behavior seems to be of little interest when, in fact, is the only way
the monitor is able to notify to the museum guide that a visitor has moved
to a different position to observe a different art piece. Being MuseumGuide

the only entity that can map the position on which the visitor was po-
sitioned by the monitor to the painting being exhibited at that position,
it is also the only entity capable of sending the message updatePainting

to the corresponding visitor, with the appropriate information. Now, the
real characterization of the behavior of the operation notifyNewPosition

is only obtained by the combination of its dynamic behavior (see Figure 7.9)
and its interaction with the rest of the operations, provided by its temporal
behavior (see Figure 7.10).

4.2. The complete description of the system. Figures 7.18, 7.21
and 7.24 show different diagrams relating different aspects of the system. In
Figure 7.25 we show a complete diagram, including the theories expressing
partial views of the system and the theories expressing the design decisions
we discussed in §4.1.1–§4.1.3.

Then, a complete specification of the system is a co-limit of the finite
diagram presented in Figure 7.25.

120 7. CASE-STUDY: AN INTERACTIVE MUSEUM GUIDE

TPDL↔FOLTL↔FODL

�
�

��✒
σPDL′

TPDL
Channel

′

✻

σFOLTL′

T FOLTL
Channel

′
❅

❅
❅❅■

σFODL′

T FODL
Channel

′

❄
TPDL

❄
TFOLTL

❄
TFODL

TPDL↔FOLTL

�
��✠

σPDL

TPDL
Channel

✲

❅
❅❅■

σFOLTL

T FOLTL
Channel

✲

TFOL

■

✠
TFOL↔FODL

■

✠
TFOL↔FOLTL

Figure 7.25. Diagram combining TFOL, TPDL, TFODL and
TFOLTL with design decisions.

CHAPTER 8

Tool support

Nowadays, the success of a specification language in industrial projects
does not only relay in its clarity, compactness and expressiveness but also on
the existence of tool support both for the design and validation/verification
process. In this chapter we present a verification tool for fork algebras based
on the semi-automatic theorem-prover PVS. This is work carried on by the
author when he visited SRI International in 2002. This joint research with
Owre and Shankar was published in [LOS02].

We also present ReMo, a validation tool for fork algebraic specifications.
While the results reported were not obtained by the author, it is worth
including this description for two reasons: (a) completeness of the report on
tool support, and (b) ReMo is one of the research lines to be pursued by the
author as part of his post-doctoral research.

1. Theorem-proving fork algebraic specifications in PVS

1.1. PVS (Prototype Verification System). Let us first review
some of the main capabilities of this theorem prover built at the Computer
Science Laboratory of SRI International.

PVS (Prototype Verification System) is intended as an environment for
constructing clear and precise specifications, and for developing readable
proofs that have been mechanically verified [ORS92, ORSv95, Sha01]. A
variety of examples have been verified using PVS [CLM+95, ORSSC98].
The most substantial use of PVS has been in the verification of the mi-
crocode for selected instructions of a commercial-scale microprocessor called
AAMP5 designed by Rockwell-Collins [MS95] and in the loop project
[vJ01]. The key elements of the PVS design are captured by the com-
bination of features listed below.

1.1.1. An expressive language with powerful deductive capabilities. The
PVS specification language is based on classical, simply typed, higher-order
logic with base types such as the Booleans bool and the natural numbers
nat, and type constructors for functions [A -> B], records [# a : A, b :

B #], and tuples [A, B, C]. The PVS type system also admits predicate

121

122 8. TOOL SUPPORT

subtypes, e.g., {i : nat | i > 0} is the subtype of positive numbers. The
PVS type system includes dependent function, record, and tuple types, e.g.,
[# size: nat, elems: [below[size] -> nat] #] is a dependent record
where the type of the elems component depends on the value of the size

component. It is also possible to define recursive abstract datatypes such
as lists and trees. The definition of a recursive datatype can be illustrated
with the list type of the PVS prelude built from the constructors cons

and null. Theories containing the relevant axioms, induction schemes, and
useful datatype operations are generated from the datatype declaration.

list [T: TYPE]: DATATYPE

BEGIN

null: null?

cons (car: T, cdr:list):cons?

END list

PVS also has parametric theories, so that it is possible to capture, say,
the notion of sorting with respect to arbitrary array sizes, types, and or-
dering relations. Constraints on the theory parameters can be stated by
means of assumptions within the theory. When an instance of a theory is
imported with concrete parameters, there are proof obligations for the cor-
responding instances of the parameter assumptions. A theory is a list of
declarations of constants (with or without definitions) and theorems. The
PVS typechecker checks a theory for simple type correctness and generates
proof obligations (called TCCs for type correctness conditions) correspond-
ing to predicate subtypes. Typechecking is undecidable for PVS. Therefore
it requires discharging such proof obligations.

1.1.2. Powerful decision procedures with user interaction. PVS proofs
are constructed interactively. The primitive inference steps for constructing
proofs are quite powerful. They make extensive use of efficient decision pro-
cedures for equality and linear arithmetic [Sho84, RS01, SR02]. They also
exploit the tight integration between rewriting, the decision procedures, and
the use of type information [CRSS94]. PVS also uses BDD-based propo-
sitional simplification so that it can combine the capability of simplifying
very large propositional expressions with equality, arithmetic, induction, and
rewriting.

Higher-level inference steps can be defined by means of strategies (akin
to LCF tactics [GMW79]) written in a simple strategy language. Typ-
ical strategies include heuristic instantiation of quantifiers, propositional
and arithmetic simplification, and induction and rewriting. The PVS proof
checker tries to strike a careful balance between an automatic theorem prover
and a low-level proof checker.

1.1.3. Model checking with theorem-proving. Many forms of finite-state
verification, such as linear temporal logic model checking, language con-
tainment, and bisimulation checking, can be expressed in the µ-calculus
[BC+90, EL86]. The higher-order logic of PVS is used to define the least
and greatest fixpoint operators of the µ-calculus. When the state type is
finite, the µ-calculus expressions are translated into the propositional µ-
calculus and a propositional µ-calculus model checker can be used as a de-
cision procedure. The finite types are those built from booleans and scalars

1. THEOREM-PROVING FORK ALGEBRAIC SPECIFICATIONS IN PVS 123

using records, tuples, or arrays over sub-ranges. Fairness cannot be ex-
pressed in CTL, but it can be defined using the µ-calculus. BDD-based
symbolic model checking is integrated into PVS as a decision procedure for
the Boolean fragment of the µ-calculus [RSS95]. The model checker can be
invoked as an interactive proof step together with rewriting, induction, and
simplification using the ground decision procedures. Automatic predicate
abstraction has been implemented as an interactive step for constructing
finite-state property-preserving abstractions of infinite-state systems [SS99].
Though this exercise does not use the model checker and abstractor, these
will play an important rôle in future work.

1.1.4. Deduction and Execution. A functional fragment of PVS has been
given an execution semantics that is supported by a code generator which
produces Common Lisp code. The code generator includes a destructive
update optimization that translates PVS array updates into destructive
updates in Common Lisp, when it is safe to do so [Sha02]. The generated
code is also safe with respect to runtime errors if it is generated from a
typechecked PVS expression where all the generated proof obligations have
been discharged.

1.2. A semantic embedding of proper fork algebras in PVS . In
[LOS02], a joint work with SRI International, we presented a proof checker
for Ag [FBL01, FLB02] using PVS as a semantic framework. Ag is a
superset of the language of fork algebras with urelements including first-
order dynamic logic formulas over a domain which is a pair-dense proper
fork algebra with urelements. From that we derived a semantic framework
for ω-closure fork algebras with urelements. In this section we present the
highlights of this theorem-proving environment.

The construction of a theorem-proving environment for fork algebras
requires the encoding of the semantics of its language within the higher-
order logic of PVS. To accomplish this task we made use of some useful and
powerful features such as the abstract data-type mechanism [OS93].

The first step is the construction of the ω-closure fork algebras with
urelements language objects in a way that allows us to define their semantics
as we did in Definitions 2.50 and 2.51. Next it requires the encoding of the
full proper closure fork algebra with urelements which, as we proved in
Theorem 2.15, are the models of ω-CCFAU.

The syntax of ω-closure fork algebras with urelements was constructed
by providing an abstract datatype whose elements are fork algebraic terms
and formulas. Figures 8.1 and 8.2 show the interesting parts of the PVS
files defining the language of ω-closure fork algebras with urelements. In
Figure 8.1 we observe the basic definitions implementing fork algebraic sig-
natures (see Definition 2.49). Notice that we extended the notion of sig-
nature allowing the introduction of new predicate symbols. In Figure 8.2
we show the definition of the language syntactical objects by means of an
abstract datatype.

When the specification is typechecked the abstract datatype mechanism
generates a new specification file. This new specification contains the theory
of the objects defined by the datatype, including the subtypes, map function,
and the recursion combinator reduce nat. The recursion combinator will

124 8. TOOL SUPPORT

CFAU_Signature: THEORY

BEGIN

Constant: TYPE = {zero, one, one_prime, pi, rho, ...}
.
.
.

Predicate: TYPE = {Leq, Functional, OneToOne, Pair, ...}

arityPredicate: [Predicate -> nat] =

LAMBDA (P: Predicate): CASES P

OF Leq: 2,

Functional: 1,

OneToOne: 1,

Pair: 1

ENDCASES

Function : TYPE = {join, meet, complement, composition,

converse, fork, closure, choice, ...}

arityFunction : [Function -> nat] =

LAMBDA (F: Function): CASES F

OF join: 2,

meet: 2,

complement: 1,

composition: 2,

converse: 1,

fork: 2,

closure: 1,

choice: 1,
.
.
.

ENDCASES

END CFAU_Signature

Figure 8.1. Definition of ω-closure fork algebra signatures
within PVS.

be particularly useful in the encoding of the semantics because it will be
the basis for the complexity measure that we need to define the meaning
function recursively.

The definition of the language is parametric in the constant, variable,
predicate and function symbols, and also in the functions that define the
arity of the predicate and function symbols. This allows us to work with
only one formal language, but using different instances of it depending on
the sets of symbols used in particular problems.

In Figure 8.3 we show the important parts of the theory that define the
meaning function for ω-closure fork algebras with urelements.

The parameters mConstant, mPredicate, and mFunction are functions
that map every constant, predicate and function symbol to an object, pred-
icate and function over the carrier of the algebra.

In Figure 8.4 we show the meaning function for terms. The most inter-
esting part of this function is the use of the map function of lists to compute
the meaning of a function symbol application to a list of terms.

1. THEOREM-PROVING FORK ALGEBRAIC SPECIFICATIONS IN PVS 125

CFAU_Language[Constant: TYPE ,

Variable: TYPE ,

Predicate: TYPE , arityPredicate: [Predicate -> nat],

Function_: TYPE , arityFunction_: [Function_ -> nat]]:

DATATYPE WITH SUBTYPES Term_, Formula_

BEGIN

c(c: Constant): c?: Term_

v(v: Variable): v?: Term_

F(f: Function_, lF:

lPrime: list[Term_] | arityFunction_(f) = length(lPrime)):

F?: Term_

=(t1, t2: Term_): Eq?: Formula_

P(p: Predicate, lP:

lPrime: list[Term_] | arityPredicate(p) = length(lPrime)):

P?: Formula_

END CFAU_Language

Figure 8.2. Definition of ω-closure fork algebra signatures
within PVS.

CFAU_semantic[Constant: TYPE ,

Variable: TYPE ,

Predicate: TYPE , arityPredicate: [Predicate -> nat],

Function_: TYPE , arityFunction_: [Function_ -> nat],

Carrier: TYPE+ ,

mConstant: [Constant -> Carrier],

mPredicate: [P: Predicate ->

[{l: list[Carrier] | arityPredicate(P) = length(l)} ->

bool]],

mFunction_: [F: Function_ ->

[{l: list[Carrier] | arityFunction_(F) = length(l)} ->

Carrier]]]: THEORY

BEGIN

IMPORTING CFAU_Language[Constant,

Variable,

Predicate, arityPredicate,

Function_, arityFunction_],

list_max

Valuation: TYPE = [v: Variable -> Carrier]
.
.
.

mTerm(val: Valuation)(t: Term_):

RECURSIVE Carrier = ...

m(f: Formula_): RECURSIVE PRED [Valuation] = ...

END CFAU_semantic

Figure 8.3. Theory encoding the meaning function for ω-
closure fork algebras with urelements.

126 8. TOOL SUPPORT

mTerm(val: Valuation)(t: Term_):

RECURSIVE Carrier =

CASES t

OF c(c_var): mConstant(c_var),

v(v_var): w(v_var),

F(f_var, list_var):

mFunction_(f_var)(map(mTerm(val))(list_var))

ENDCASES

MEASURE complexity(t)

Figure 8.4. Meaning function for terms.

Notice that until now we only provided the mechanism assigning seman-
tics to a formula which is of no help without the algebra on which terms
must be interpreted.

In order to construct the algebra on which we will interpret the formulas,
we must first construct the structured universe on which binary relations will
range. The definition of this structured universe, appearing in Figure 8.5,
is given by resorting to an abstract datatype

CFAU_Element[T: TYPE]: DATATYPE

BEGIN

urelement(t: T): urelement?

star(el0, el1: CFAU_Element): star?

END CFAU_Element

Figure 8.5. Definition of the structured universe within PVS.

Recall that the abstract datatype mechanism generates inductive types,
so the universe is finitely generated. This restriction means that this con-
struction only enables to represent a subclass of the full proper closure fork
algebras. Fixing this requires removing all inductive declarations from the
generated theories, which would lead to the theory presented in Figure 8.6.1

In Figures 8.7 and 8.8 we show how full proper closure fork algebra terms
are defined using functions (mConstant, mPredicate and mFunction) that
map constant, predicate and function symbols to objects, predicates and
functions defined over binary relations. In Figure 8.7 we show how the theory
that represents the structured universe is imported to build the carrier of
the algebra.

Finally in Figure 8.8 we show how this carrier is used to give semantics
to the symbols declared in Figure 8.1. The most interesting part of this file
is the use of the µ-calculus, defined in PVS’s prelude file, to construct the
least fix point of a binary relation with respect to the composition operation
in order to give the semantics of a closure.

1The generated file has advantages aside from providing induction; in particular, the
inclusive and disjoint axioms are automatically discharged by the prover. For expediency
the actual specifications include the generated files, and we were careful not to make use
of induction. We plan to correct this for the next application of this semantics.

1. THEOREM-PROVING FORK ALGEBRAIC SPECIFICATIONS IN PVS 127

CFAU_Element_adt[T: TYPE]: THEORY

BEGIN

CFAU_Element: TYPE

urelement?, star?: [CFAU_Element -> boolean]

urelement: [T -> (urelement?)]

star: [[CFAU_Element, CFAU_Element] -> (star?)]

t: [(urelement?) -> T]

el0: [(star?) -> CFAU_Element]

el1: [(star?) -> CFAU_Element]

ord(x: CFAU_Element): upto(1) = ...

CFAU_Element_urelement_extensionality: AXIOM ...

CFAU_Element_urelement_eta: AXIOM ...

CFAU_Element_star_extensionality: AXIOM ...

CFAU_Element_star_eta: AXIOM ...

CFAU_Element_t_urelement: AXIOM ...

CFAU_Element_el0_star: AXIOM ...

CFAU_Element_el1_star: AXIOM ...

CFAU_Element_inclusive: AXIOM ...

CFAU_Element_disjoint: AXIOM ...

END CFAU_Element_adt

Figure 8.6. Theory resulting of the PVS abstract datatype
mechanism on the definition of the structured universes.

CFAU_semantic: THEORY

BEGIN

IMPORTING CFAU_Language

Element: TYPE+

IMPORTING CFAU_Element_adt[Element]

Carrier: TYPE FROM PRED [[CFAU_Element, CFAU_Element]]

carrier_full: AXIOM

FORALL (r: PRED [CFAU_Element, CFAU_Element]):

Carrier_pred(r)

END CFAU_semantic

Figure 8.7. Construction of the carrier of the full proper
closure fork algebra with urelements.

The definitions presented in previous sections suffice to build a frame-
work in which it is possible to prove properties written in ω-closure fork
algebras with urelements. Notice that the semantics presented so far just

128 8. TOOL SUPPORT

CFAU_semantic: THEORY

BEGIN

.

.

.
zero: Carrier = LAMBDA (wp: [CFAU_Element, CFAU_Element]): FALSE

one: Carrier = LAMBDA (wp: [CFAU_Element, CFAU_Element]): TRUE

.

.

.
join(c0, c1: Carrier): Carrier = LAMBDA (wp: [CFAU_Element, CFAU_Element]): c0(wp) OR c1(wp)

.

.

.
fork(c0, c1: Carrier): Carrier = LAMBDA (wp: [CFAU_Element, (star?)]):

c0((wp‘1, el0(wp‘2))) AND c1((wp‘1, el1(wp‘2)))
closure(c0: Carrier): Carrier =

LAMBDA (wp: [CFAU_Element, CFAU_Element]):
mu[[CFAU_Element, CFAU_Element]] (LAMBDA (r: PRED [[CFAU_Element, CFAU_Element]]):

{p: [CFAU_Element, CFAU_Element] | one_prime(p) OR composition(c0, r)(p)})

.

.

.
Leq(c0, c1: Carrier): bool = sum(c0, c1) = c1
Functional(c: Carrier): bool = Leq(composition(converse(c), c), one_prime)

.

.

.
mConstant: [Constant -> Carrier] =

LAMBDA (c: Constant): CASES c
OF zero: zero,

one: one,

.

.

.
ENDCASES

mPredicate: [P: Predicate -> [{l: list[Carrier] | arityPredicate(P) = length(l)} -> bool]] =
LAMBDA (P: Predicate): CASES P

OF Leq:
LAMBDA (l: {lPrime: list[Carrier] | length(lPrime) = 2}):

Leq(nth(l, 0), nth(l, 1)),
Functional:

LAMBDA (l: {lPrime: list[Carrier] | length(lPrime) = 1}):
Functional(nth(l, 0)),

.

.

.
ENDCASES

mFunction_: [F: Function_ -> [{l: list[Carrier] | arityFunction_(F) = length(l)} ->
Carrier]] =

LAMBDA (F: Function_): CASES F
OF join:

LAMBDA (l: {lPrime: list[Carrier] | length(lPrime) = 2}):
join(nth(l, 0), nth(l, 1)),

.

.

.
fork:

LAMBDA (l: {lPrime: list[Carrier] | length(lPrime) = 2}):
fork(nth(l, 0), nth(l, 1)),

closure:
LAMBDA (l: {lPrime: list[Carrier] | length(lPrime) = 1}):

closure(nth(l, 0))

.

.

.
ENDCASES

END CFAU_semantic

Figure 8.8. Usage of the structured universe to give seman-
tics to the ω-closure fork algebra with urelements constants,
predicates and functions.

uses standard PVS features and provides the means to prove every property
written in this language.

2. ReMo: A MODEL-CHECKER FOR FORK ALGEBRAIC SPECIFICATIONS 129

2. ReMo: a model-checker for fork algebraic specifications

ReMo was presented in [GS05, FGSB05]. It is a tool that aims at
providing automatic analysis of ω-closure fork algebra specifications through
the use of model-checking techniques. It is easy to see that the language
of ω-closure fork algebra with urelements is not decidable, thus imposing
limitations on the conclusions we can draw from the analysis process. In the
following section we present Rel, the language implemented in ReMo, which
is an extension of the language of ω-closure fork algebra with urelements;
and ReMo.

2.1. The Rel modeling language. In this section we introduce Rel,
a purely relational specification language. Rel’s syntax and semantics are
introduced in Figure 8.9.

problem ::= decl∗form M : form→ env → Boolean
decl ::= var : typexpr X : expr→ env → value
typexpr ::= | env = (var + type)→ value
| type× type | value = atom +
| typexpr × type | atom× value +
| type× typexpr | value× atom

form ::=
expr <= expr (subset) M [a <= b]e = X[a]e ⊆ X[b]e
| !form (neg) M [!F]e = ¬M [F]e
| form && form (conj) M [F&&G]e = M [F]e ∧M [G]e
| form || form (disj) M [F || G]e = M [F]e ∨M [G]e

expr ::=
0t (empty with type t) X[0t] = ∅
| 1t (universal with type t) X[1t] = largest relation of type t
| idt (identity with type t) X[idt] = the identity relation of type t
| expr + expr (union) X[a + b]e = X[a]e ∪X[b]e
| expr & expr (intersection) X[a&b]e = X[a]e ∩X[b]e
| [expr, expr] (fork) X[[a, b]]e = { 〈x, 〈y, z〉〉 | 〈x, y〉 ∈ X[a]e ∧ 〈x, z〉 ∈ X[b]e }
| −expr (complement) X[−a] = X[1t]e \X[a]e
|∼ expr(transpose) X[∼ a]e = { 〈x, y〉 | 〈y, x〉 ∈ X[a]e }
| expr · expr (navigation) X[a · b]e = X[a]e;X[b]e
| +expr (transitive closure) X[+a]e = the smallest r such that r ;r ⊆ r and X[a]e ⊆ r
| V ar (variable) X[v]e = e(v)

Figure 8.9. Grammar and semantics of Rel.

Notice that Rel formulas are Boolean combinations of equations. In the
forthcoming sections, we will need the following result proved in [TG87,
p. 26].

Theorem 8.1. ([FGSB05, Theorem 2.1])
Every Rel formula is equivalent to a Rel formula of the form T = 1, for an
appropriate term T .

The proof of Theorem 8.1 uses the following procedure in order to reduce
Boolean combinations of equations to a single equation:

130 8. TOOL SUPPORT

T1 <= T2 ❀ (−T1) + T2 = 1
T1 = T2 ❀ T1&T2 + (−T1) & (−T2) = 1
!(T = 1) ❀ 1 · (−T) · 1 = 1
T1 = 1 ∧ T2 = 1 ❀ T1&T2 = 1 .

3. Monotonicity Analysis for Verification of Relational
Specifications

Let us consider a relational specification Spec in a suitable relational lan-
guage (as for instance Rel). In order to validate this specification, we want
to automatically analyze whether a given property α follows from Spec. Ex-
pressive enough relational languages are undecidable. Thus, in order to make
automatic analysis feasible we will impose bounds on the size of domains.
The analysis procedure reduces then to finding instances (concrete relations
among elements from the bounded domains) for the relational variables that
satisfy Spec, yet falsify α.

Notice that given a family of domainsD1, . . . , Dk with bounds b1, . . . , bk,
respectively, and a relational variable R, there are 2b1×···×bk possible values
(relations) for R on D1 × · · · × Dk. Even for small values of b1, . . . , bk,
exhaustive search of appropriate instances is in general unfeasible (even more
if we consider that the previous number scales up exponentially when more
relational variables R1, . . . , Rk are considered). Therefore, strategies that
allow us to prune the state space are mandatory in order to make automatic
analysis feasible. Some strategies are general, in the sense that are either
specification independent, or in general improve analysis performance. An
example of such technique is isomorphisms elimination [JJD98]. Other
strategies, as the one presented in [FGSB05], are specification dependent.

Definition 8.1. Given a relational variable R and a term t(R), we say
that R is positive (in t) if all the occurrences of R lay under an even number
of complements. It is negative (in t) if all the occurrences of R lay under an
odd number of complements. If R is neither positive nor negative in t, it is
then said to be undefined in t.

As an example, let us consider the terms

− ((−R) · S) ,(49)

− ((∼ R) · R) ,(50)

(R ·R) & (−R) .(51)

In term (49), variable R is positive, while variable S is negative. In (50),
R is negative. Finally, in (51), R is undefined.

Definition 8.2. Given a relational variable R and a term t(R), t is
isotonic with respect to R if for all concrete relations r, s, r ⊆ s ⇒ t(r) ⊆
t(s). Similarly, t is antitonic with respect to R if for all concrete relations
r, s, r ⊆ s ⇒ t(r) ⊇ t(s).

Lemma 8.1. ([FGSB05, Proposition 3.3])
Let t(R) be a relational term on the variable R. If R is positive in t, then
t is isotonic with respect to R. Similarly, if R is negative in t, then t is
antitonic with respect to R.

3. MONOTONICITY ANALYSIS FOR VERIFICATION OF RELATIONAL SPECS. 131

In order to introduce our strategy, we will assume that the specification
Spec consists of a sequence of formulas on a single variable R. We will later
drop this assumption and generalize to variables R1, . . . , Rn. Moreover, we
will assume that formulas are equations of the form T = 1. Notice that from
Theorem 8.1, there is no loss of generality in adopting this assumption. We
will also assume that R is a binary relation. Since fork allows us to simulate
relations of arity greater than 2 [FLB+05], there is no loss of generality in
this assumption either.

The set of all relations on the domain A × B, ordered by inclusion, is
a lattice. Since in the worst case it will be necessary (according to our
strategy) to explore the whole lattice, it is essential to explore it in a way
such that each relation is visited (at most) once.

We will traverse the lattice in a depth-first search (DFS) manner. Ac-
tually, we will present two DFS traversals of the lattice. One from the
bottom, and one from the top. If A contains elements a1, . . . , an and B

contains elements b1, . . . , bm, we can impose on A and B the total orderings
a1 < · · · < an and b1 < · · · < bm. Then, the relation on A×B defined by

〈a1, b1〉 < 〈a2, b2〉 ⇐⇒ a1 < a2 ∨ (a1 = a2 ∧ b1 < b2)

is a total ordering, called the lexicographic ordering. For the traversal
from the bottom, notice that any given relation R has, as immediate suc-
cessors, relations of the form R ∪ { 〈a, b〉 } (a ∈ A, b ∈ B), where for every
〈a′, b′〉 ∈ R, 〈a, b〉 > 〈a′, b′〉. If we soften the last requirement and just
require immediate successors to add a new pair, the following situation is
possible:

{ 〈a, b〉 } ⊆ { 〈a, b〉 , 〈c, d〉 } ⊇ { 〈c, d〉 } ,

i.e., there are two different relations ({ 〈a, b〉 } and { 〈c, d〉 }) that have a
common successor, which might be visited twice.

Once the successors of a given a relation are defined, if we are given two
different successors of R, namely R∪{ 〈a, b〉 } and R∪{ 〈c, d〉 }, an ordering
between them is induced by the ordering between 〈a, b〉 and 〈c, d〉. Therefore,
in order to traverse the lattice, the successors of R will be visited according
to this ordering. Figure 8.10 shows an example. Each matrix represents
a relation contained in the set { 0, 1 } × { 0, 1 }. A dark square in position
〈i, j〉 means pair 〈i, j〉 belongs to the relation modeled by the matrix. The
number attached to each matrix gives the traversal ordering.

In order to traverse the lattice in a descending order, we define the
predecessors of a relation R as the set

{−P |P is a successor of −R } .

Notice that since P is a successor of −R, −R ⊆ P , and therefore, −P ⊆
R. Also, predecessors differ from the parent relation in that the latter has
one extra pair. The ordering in which relations are visited in the descending
traversal follows from the ordering in the ascending traversal. Figure 8.11
shows an example of a descending traversal.

132 8. TOOL SUPPORT

1410

1

2

3

 4

5

6 8

7 9 11

12

13 15

16

Figure 8.10. An ascending traversal.

1410

5

2

3

1

6 8

7 9 11

12

13 15

16

4

Figure 8.11. A descending traversal.

Let us consider now an equation of the form t(R) = 1 in which variable
R is negative in t. As a running example, consider the following equations
stating that R is a total (cf. (53)) functional (cf. (52)) relation. Notice that
R is negative in (52).

− ((∼ R) ·R) + Id = 1(52)

R · 1 = 1(53)

Since we want to satisfy an equation of the form t(R) = 1, we want to
maximize the value of t(R) (notice that we are strongly using the assumption
on the shape of the equation). Since R is negative in t, t(R) reaches a
maximum when R = 0. Notice that in the example, while (52) is satisfied,
(53) is not. Therefore, it is necessary to search for another model. It is clear
at this point that values of R near the bottom of the lattice are more likely
to satisfy (52).

3. MONOTONICITY ANALYSIS FOR VERIFICATION OF RELATIONAL SPECS. 133

Lemma 8.2. ([FGSB05, Proposition 3.4])
Let t(R) = 1 be an equation on the variable R. Assume R is negative in t.

Let r be a concrete relation such that:

(1) t(r) = 1,
(2) for a successor r′ of r, t(r′) 6= 1.

Then, for every relation x ⊇ r′, t(x) 6= 1.

Lemma 8.2 provides us with a sufficient criterion for pruning part of the
lattice. If in an ascending traversal of the lattice we reach a relation r′ for
which t(r′) 6= 1, the branch with origin in r′ does not need to be traversed
because it cannot produce a model.

Thus, we can conclude that:

(1) if we are given an equation of the form t(R) = 1,
(2) variable R is negative in t,
(3) we are performing an ascending traversal of the lattice,
(4) we have reached a relation r′ in the lattice for which t(r′) 6= 1,

then the branch of the lattice with origin in r′ can be pruned. See
Figure 8.12 for a graphical description.

Figure 8.12. Using monotonicity information for negative variables.

A proof similar to that of Lemma 8.2 allows us to prove the following
proposition.

Lemma 8.3. ([FGSB05, Proposition 3.5])
Let t(R) = 1 be an equation on the variable R. Assume R is positive in t.

Let r be a concrete relation such that:

(1) t(r) = 1,
(2) for a predecessor r′ of r, t(r′) 6= 1.

Then, for every relation x ⊆ r′, t(x) 6= 1.

At this point we can also conclude that:

(1) if we are given an equation of the form t(R) = 1,
(2) variable R is positive in t,

134 8. TOOL SUPPORT

(3) we are performing a descending traversal of the lattice,
(4) we have reached a relation r′ in the lattice for which t(r′) 6= 1,

then the branch of the lattice with origin in r′ can be pruned. See
Figure 8.13 for a graphical description.

Figure 8.13. Using monotonicity information for positive variables.

Let us analyze now how general or restrictive are the hypothesis we are
assuming. Notice that so far we have only discussed the situation where a
single equation is being analyzed. If we are given equations E1, . . . , Ek, from
Theorem 8.1 we can assume they are all of the form Ti(R) = 1 (1 ≤ i ≤ k).
At this point we are still considering the case in which there is a single
relational variable R. In each equation, R may be positive, negative or
undefined. Let us assume, without loss of generality, that there are more
equations in which R is negative. Then, an ascending traversal of the lattice
will allow us to prune a branch when one of the negative equations fails.
Notice that the traversal ordering is chosen upon establishing what is the
prevailing monotonicity. Therefore, the only real assumption we are making,
is that variable R has a defined monotonicity in some of the equations. Thus,
this is the context in which our pruning strategy can be applied.

Let us remove now the remaining assumption, namely, the restriction
to a single variable R. Let us consider now relational variables R1, . . . , Rn;
and equations E1, . . . , Ek, which, from Theorem 8.1, we can assume are
all of the form Ti(R1, . . . , Rn) = 1 (1 ≤ i ≤ k). We compute for each
variable Ri (1 ≤ i ≤ n) the amount of equations in which it is positive or
negative, and call Ri positive (negative) if it appears positive (negative) in
more equations. We now define for each variable a traversal ordering of the
lattice as follows: if Ri is positive then the lattice is traversed from the top,
and if it is negative the lattice is traversed from the bottom. Under these
conditions we can prove the following theorem.

Theorem 8.2. ([FGSB05, Theorem 3.6])
Let Ti(R1, . . . , Rn) = 1 (1 ≤ i ≤ k) be an equation from Spec. Let the sign

of each variable in T agree with the sign in the specification (that is, if Ri

4. REMO: RELATIONAL VERIFICATION THROUGH MONOTONICITY ANALYSIS135

is positive (negative) in more equations, then it is also positive (negative) in
T). If

(1) r1, . . . , rn are concrete relations such that

Ti(r1, . . . , rn) 6= 1,

and
(2) r′1, . . . , r

′
n are concrete relations such that r′j ⊇ rj (r′j ⊆ rj) if Rj is

negative (positive), then

Ti(r
′
1, . . . r

′
n) 6= 1.

Theorem 8.2 allows us to prune the lattice as soon as a configuration as
the one described in the hypotheses is reached. In §4 we present ReMo, a
tool implementing this strategy, and evaluate its performance.

4. ReMo: RElational verification through MOnotonicity analysis

ReMo is an application that implements the analysis strategy described
in §3. The structure of the relational specifications that ReMo analyzes is
shown in Figure 8.14.

\domains

D1 [m1:n1]

:

Dk [mk:nk]

\constants

C1 < D1*D2

:

Cr < Dk*D1

\identities

Id1 D1

:

Ids Dk

\empties

Zero1 D1*D2

:

Zerot Dk*Dk

\universals

Unit1 D1*D1

:

Unitu Dk*D3

\axioms

Formula1

:

Formulai

\properties

Formula1

:

Formulaj

Figure 8.14. Structure of a ReMo Specification.

136 8. TOOL SUPPORT

After the \domains keyword, we list the domains in the specification, as
well as a range (lower and upper bound) for their size. After the \constants
keyword, we list the relational variables in the specification, as well as their
type (in Figure 8.14 all the relational variables are to be interpreted as
binary relations on the corresponding domains). Under the \identities

keyword, we list those identity relations that will be required in the specifi-
cation, together with their type. Similarly, we declare empty and universal
relations under the appropriate keywords. Finally, the specification contains
the axioms and the assertions to be verified.

ReMo receives a specification as input and transforms, using the transla-
tion defined by Theorem 8.1, each axiom and assertion to an equation of the
form T = 1. It then computes the monotonicity of each relational variable,
and determines a traversal order for each one. Values for the variables are
then generated for the variables according to the traversal order, and the
pruning strategy is applied whenever possible. ReMo returns counterexam-
ples in different modalities:

• the first counterexample,
• the first k counterexamples, or
• the next counterexample.

Since ReMo deals with binary relations, these were implemented using
Reduced Ordered Binary Decision Diagrams (ROBDDs) [SW93].

5. Concluding remarks

ReMo[GS05, FGSB05] is a tool which allows one to analyze ω-closure
fork algebra specifications in a fully automatic way. Considering the un-
decidability of the language of ω-closure fork algebras with urelements, ac-
complishing this level of automatization requires bounding the size of the
domains on which binary relations range. Bounding the size of domains has
a direct impact on the conclusions we can draw from the analysis process.
If a counterexample for a given assertion is found, then the model is for
sure flawed. On the other hand, if no counterexample is found, we can only
conclude that no counterexamples exist when domain sizes are constrained
to the given bounds. Choosing larger bounds may show the existence of
previously unforeseen errors. This limited analyzability offered by ReMo is
essential in order to analyze ω-closure fork algebra specifications and get
rid of most errors introduced in the modeling process. At the same time,
models for critical applications can also benefit from usage of ReMo, but one
cannot entirely rely on that.

An alternative is the use of semi-automatic theorem provers, and among
these, PVS [ORS92]. Theorem provers have limitations too. First, they re-
quire an expertise from the user that many times discourages their use. And
second, minor errors in a model may require to redo proofs that were us-
ing wrong hypotheses. Much the same as errors overlooked during software
requirement elicitation have a greater impact the more advanced the devel-
opment stage, model errors have greater impact the more auxiliary lemmas
have been proved. Therefore, getting rid of as many errors as possible from
the model before starting the theorem-proving process is a must.

5. CONCLUDING REMARKS 137

The limits of analysis using ReMo is shared by all the tools in the field
of lightweight formal methods. In [FLM07] we discussed how the use of
the Alloy Analyzer [Jac02], one of the most prominent tools in this field,
can be complemented by the use of the theorem prover PVS in order to
conclude the absence of errors in a model. This marriage is carried out by
allowing the user of PVS to validate the hypothesis by calling the execution
of the Alloy Analyzer to search for finite models violating them. Also in
[FLM06, FLM07], we presented the tool Dynamite which implements this
interaction between Alloy and PVS.

The same improvement of the proving process can be implemented be-
tween the automatic validation technique implemented in ReMo and the
semi-automatic verification capability provided by the semantic embedding
of ω-closure fork algebra with urelements in PVS. This interaction between
ReMo and the semantic embedding of ω-closure fork algebra with urelements
in PVS has not been implemented yet, but in the presence of the experience
we gained during the development of Dynamite, we believe it can easily be
done.

CHAPTER 9

Concluding remarks and further work

1. Concluding remarks

The existing experience on building algebraizations of logics in fork alge-
bras shows that reasonable extensions of fork algebras inherit the property of
being representable on a more “concrete” class of algebras (i.e. extensions of
the full proper fork algebras); even in the presence of complex interpretabil-
ity results, like the one we showed in Chapter 5 of this thesis. This fact let
us think that extensions of fork algebras can provide a complete calculus for
most of the logics used in system specification, thus giving the possibility of
using tools built for fork algebras to verify or validate specifications written
in a logical language.

In Chapter 4 we presented ω-closure fork algebras with urelements within
the framework of institutions and complemented this model-theoretical point
of view by formalizing its entailment system and proof calculus by resorting
to the concepts of general logics. This formalization exposed the relationship
existing between the classes of models of two extensions of the signature of
the ω-closure fork algebras with urelements. A direct consequence of this
formalization of ω-closure fork algebras with urelements is the reformula-
tion of the set theoretical interpretability results as a representation maps
between the corresponding institutions. An interesting example of this re-
formulation was presented in Chapter 5 for the interpretability of FOLTL in
an extension of ω-closure fork algebras with urelements.

If we consider the existing representability results from different log-
ics in extensions of fork algebras ([Fri02, FO98, FBM02, FL03, FL06,
FGLR05]), presented as representation maps between institutions, Chap-
ter 6 shows how partial specifications written in different logics can be put
together in a single algebraic description of the system. The process of gluing
partial specifications is enabled by the addition of channels, to synchronize
symbols and new theories declaring the way these symbols are related.

139

140 9. CONCLUDING REMARKS AND FURTHER WORK

The complete picture defines the formal foundations of the Argentum
project. It enables the possibility of building, validating and verifying spec-
ifications from partial descriptions of a system. These partial descriptions
can be written in the best suited language. This is a clear advantage with
respect to monolithic languages which require all the aspects of a system
to be formalized in a possibly unnatural way, reducing the clarity and com-
pactness of the specifications.

Some disadvantages must be singled out. During the specification pro-
cess, for the methodology presented in Chapter 6 to be effective, design
decisions must be added by means of fork-algebraic axioms. We consider
that the possibility of adding these design decisions is a contribution of this
thesis, but we believe fork-algebraic axioms will probably not look “natural”
for those involved in the process of building logical descriptions of the sys-
tem. This is why we made an effort to present, also in Chapter 6, some small
examples of languages which are closer to those we present as better suited
for building specifications, and allow to bridge the gap existing between two
different logics without the need of using the language of fork algebras.

In Chapter 8 we described existing tool support for automatic validation
and semi-automatic theorem-proving of fork algebraic specifications. Even
considering the great advantage of having tools providing certain level of
automation of the validation/verification process, we do not escape from
the problems affecting the fields of (bounded) model-checking and theorem
proving. In the case of bounded model-checking fork algebraic specifica-
tions, which of course is an NP-hard problem, we made several advances
on optimizing the algorithms and structures used to generate models but
the size of the specifications we are able to verify is still far from being
close to an industrial size problem. In the case of theorem-proving there is
no problem with the complexity of the algorithms but building proofs for
interesting properties still requires a deep insight of the problem domain,
and of the language of fork algebras. Additionally, if we observe the shape
of the formulas obtained by the translations of logical partial specifications
(see Chapter 7, §3), the complexity of the algebraic specification grows very
rapidly. This certainly is a disadvantage because using Argentum in in-
dustrial size problems highly depend on the real possibility of carrying on
proofs in this setting.

Partial solutions to this problem were addressed. In [Fri03] Frias pro-
posed a relational notation which, being more close to the original struc-
ture of the formulas, help in overcoming the problem of the introduction
of complex relational terms interpreting certain logical structures like quan-
tification. Also in [Fri03] a proof system was proved sound and complete
for this relational notation. Following this approach it could be possible to
obtain relational notation and a set of proof rules associated to each logic,
thus producing simpler specifications, and allowing the implementation of
these proof rules as strategies which could simplify some parts of the proving
process.

In [FLM06, FLM07] Frias et al. presented a complete calculus for
Alloy [Jac02] based on a fork algebraic interpretation of Alloy specifications.
In this work a similar approach was followed in order to obtain a proof

2. FURTHER WORK 141

calculus as closer to the Alloy formulas as possible, in order to enhance
its usability by Alloy users. This calculus was successfully implemented
within PVS [ORS92, ORSv95, Sha01] and used to verify a medium size
case-study presented by Pamela Zave in [Zav05].

Finally, if we compare our approach with those relaying on Grothendiek
constructions, like CafeOBJ, then it is easy to observe certain lack of general-
ity in using fork algebras as a common language in which partial descriptions
are interpreted. Of course we understand this as a disadvantage, but we be-
lieve it is relativized by the fact that our approach pretends, not only to
provide a framework for dealing with heterogeneous specifications, but also
to preserve the existence of a complete calculus in which to prove properties
across the partial specifications.

2. Further work

We identify three areas on which our approach to deal with heteroge-
neous specifications presents further directions of research. These areas are:

• the study of the class of full proper closure fork algebras with ure-
lements from the point of view of general logics,
• the need for a high-level language in which to describe heteroge-

neous properties, and
• the tool Argentum.

In this section we present some topics in these areas that yet need to be
developed.

2.1. The study of the full proper closure fork algebras with
urelements from the point of view of general logics. In the field of
general logics there have been defined several properties which may or may
not be satisfied by a given institution, entailment system, logic, etc. Some of
these properties are natural extensions of properties that come from the field
of category theory, and others appear in order to gain better comprehension
of the behavior of these new structures. Among them we find compactness
of an entailment system, liberality, admittance of initial models and exact-
ness of an institution; as well as amalgamation, strong amalgamation or
interpolation. All these properties need to be studied because they provide
important information about the limits of applicability of our approach to
deal with heterogeneous specifications.

We already mentioned that our approach is very close to those using
Grothendiek constructions. Being so close, it emerges the question on the
relation between them. If we consider the diagram formed by the institu-
tions of those logics used as specification languages and the institution of full
proper closure fork algebras with urelements (i.e. the institution on which
we write design decisions), it is possible to consider the Grothendiek insti-
tution to which this diagram is mapped. The class of models to which this
construction leads is different from the full proper closure fork algebras with
urelements, which, given an heterogeneous specification, are the models of
the vertex of the co-limit co-cone constructed from the translation to fork
algebra of the partial specifications. Thus, the later question could have

142 9. CONCLUDING REMARKS AND FURTHER WORK

an answer in the relationship between these two classes of models when in
presence of the representation maps appearing in the diagram.

2.2. The need for a high-level language in which to describe
heterogeneous properties. We already mentioned in §3 the importance
of having a high-level language in which to provide design decisions that
must be part of the global specification. Also in Chapter 6 we gave some
ideas of what can be done in this direction. This field presents several
problems that must be solved. A desirable property is that the “language”
should admit the inclusion of a new logic without requiring its complete re-
engineering. A direct consequence of this property is that the semantics of
the language must be put in terms of a translation to full proper closure fork
algebras with urelements. Any attempt to characterize the class of models
of a monolithic language combining all the high-level logical languages will
lead to an ad-hoc class of models like the one introduced by Henriksen and
Thiagarajan for DLTL in [HT99].

Recalling the proposal we made in Chapter 6 for managing heterogeneous
properties, there exist several works on synchronizing partial specifications
through formulas. Some of them are due to Sernadas et al. [SSC97a,
SSC97b]. It may be important to make a study characterizing the rela-
tionship between this approach, and the use of a language like those we
presented in Chapter 6.

A totally different approach is the extraction of logical specifications and
properties from UML diagrams. This can be done by assigning, to each class
of diagrams, a precise semantics in terms of a collection of logical formulas,
probably coming from different logics, like we did in a very informal way in
Chapter 7.

2.3. The tool Argentum. Finally, a lot of work must be done in the
field of tool support for designing, validating and verifying systems specified
through partial logical descriptions. As we mentioned before, we have done
some work but Argentum is far from being ready to be used.

First of all, a design tool is required. Designing in our proposal requires
identifying symbols that must be glued together in design decisions which
were not included in the partial specifications. If we consider a medium
scale system, this job is almost impossible without a graphical tool enabling
user-friendly options like showing/defining the relationships between sym-
bols coming from different specifications, addition of channels and design
decisions, etc.

Almost all of the translations are not implemented yet, thus requiring a
lot of tedious work on programming them for the integration with the design
tool.

In its origin, ReMo was a prototype produced in a master thesis. Thus, in
comparison with its correctness, its extensiveness, or compactness were less
important. Nowadays, releasing it as a tool for validating software requires
a complete re-engineering. This job has been already started by Lorena
Bourg, under the supervision of Marcelo Frias.

We have been working for a while on some optimizations for ReMo. The
most important one is a generalization of the elimination of isomorphisms

2. FURTHER WORK 143

presented by Jackson et al. in [JJD98] for Nitpick [Jac96, Dam97]. This
work is being carried on by Fernando Miranda and is in its final stage, but
must be included in the new version of ReMo we are planning to develop.

Alloy [Jac02] is a sat-solver based bounded model-checker for a first-
order relational language. The validation process is the following:

• A specification is written in relational logic (a first-order relational
language),
• a property about the specification is stated to be validated,
• a command requiring the validation of the property and providing

bounds for the domains is added,
• the specification and the negation of the property are translated

to a single formula in propositional logic by assuming that all the
domains are finite [Jac00],
• an off-the-shelf sat-solver searches for counterexamples of the for-

mula.

The translation presented in [Jac00] for relational logic can easily be
extended by providing a translation of the fork and choice operators in order
to validate fork algebraic specifications. Thus, we are planning to implement
a sat-solver based bounded model-checker for ω-closure fork algebras with
urelements in order to get a fair comparison of the performance of ReMo.

Recalling our current theorem proving capabilities, even when we have
successfully built a semantic embedding of ω-closure fork algebras with ure-
lements in PVS, as we mentioned in §1, the verification of an industrial
size problem is still out of reach because of the complexity of the algebraic
specifications and the skills required to build proofs. To overcome this there
are several things to be done such as the development of a library of al-
ready proved lemmas, the development of strategies to solve well known
proof schemes, refinement of the translations by the addition of relational
notation, etc.

Finally, some minor work must be done on integrating the semantic
embedding of full proper closure fork algebras with urelements in PVS with
ReMo. This will allow a nice interaction between model-checking validation
and theorem-proving verification of models, providing the advantages we
mentioned at the end of Chapter 8.

Epilogue

Science is capable of conferring enormous boons: it can lighten labour, abolish

poverty, and enormously diminish disease. But if science is to bring benefits

instead of death, we must bring to bear upon social, and especially interna-

tional, organization, intelligence of the same high order that has enabled us

to discover the structure of the atom. To do this effectively we must free our-

selves from the domination of ancient shibboleths, and think freely, fearlessly

and rationally about the new and appalling problems with which the human

race is confronted by its conquest of scientific power.

Bertrand Arthur William Russell

“The Bomb and Civilization”, 1945.

I believe science (from the latin scientia, “knowledge”) is the art of ex-
plaining the world in its many different manifestations. Thus, we scientists
are responsible for the knowledge we produce, because our creations may
have a strong impact on the world by producing tools to transform it. Con-
sequently, the social value of this knowledge can not be measured in terms
of money or goods, metrics typically used for private property. Doing so
implies the tacit acceptance that the power resulting from the knowledge
we produce will remain in the hands of those who have the money to buy
it, and use it for their own privilege, without caring about those who may
suffer the consequences of its use.

Science should be a social and democratic construction in which the
society is responsible, as much as ourselves, for keeping a close control of
what we do, because it is the whole society that pays for the consequences
of what we do.

Alexander Grothendieck refused to accept the 1988 Crafoord price, and
in his letter announcing his decision he wrote:

I do not doubt that before the end of the century, to-
tally unforeseen events will completely change our notions
about “science” and its goals and the spirit in which sci-
entific work is done.

He was right in predicting that the new century would bring dramatic
changes in the way we do our work, but he was wrong in being optimistic

145

about these changes. The new century is deepening the scientific policies
that, during the second half of the 20th. century, established the idea that
the knowledge is a merchandise and the scientists only have to care for
expanding the horizons of “science”. States retreated and left the place to
“the market” and to big companies that are wiling to pay, in prestige or
money, for the knowledge we produce to turn it into power. Their power.

It is our responsibility as scientists to stop these changes by assuming
clear political positions and making ethical decisions in order to socialize
the knowledge, and put it to the service of each and every human being.

146

Bibliography

[Bar77] Jon Barwise (ed.), Handbook of mathematical logic, North Holland, 1977.
[BC+90] J. R. Burch, Edmund M. Clarke, , Kenneth L. McMillan, D. L. Dill, and

L. J. Hwang, Symbolic model checking: 1020 states and beyond, Proceedings
of Symposium on Logic in Computer Science ’90 (Philadelphia, PA), IEEE
Computer Society, June 1990, pp. 428–439.

[BdV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema, Modal logic, Cam-
bridge Tracts in Theoretical Computer Science, no. 53, Cambridge University
Press, 2001.

[BFM98] Gabriel A. Baum, Marcelo F. Frias, and Tomas S. E. Maibaum, A logic for
real-time systems specification, its algebraic semantics, and equational calcu-
lus, Proceedings of Algebraic Methodology And Software Technology (Amazo-
nia, Brasil) (Armando M. Haeberer, ed.), Lecture Notes in Computer Science,
vol. 1548, Springer-Verlag, January 1998, pp. 91–105.

[Bir35] Garret Birkhoff, On the structure of abstract algebra, Mathematical proceed-
ings of the Cambridge philosophical society 31 (1935), 433–454.

[BM03] Rudolf Berghammer and Bernhard Möller (eds.), 7th. conference on relational
methods in computer science (RelMiCS) - 2nd. international workshop on
applications of kleene algebra, Malente, Germany, May 2003.

[Boo47] George Boole, The mathematical analysis of logic. being an essay towards a
calculus of deductive reasoning, Barclay & Macmillan and George Bell, Cam-
bridge, UK and London, UK, 1847.

[BS81] Stanley Burris and H. P. Sankappanavar, A course in universal algebra, Grad-
uate Texts in Mathematics, Springer-Verlag, Berlin, Germany, 1981.

[BW90] M. Barr and C. Wells, Category theory for computer science, Prentice Hall,
London, 1990.

[CLM+95] D. Cyrluk, Patrick Lincoln, Steven P. Miller, Paliath Narendran, Sam Owre,
Sreeranga Rajan, John M. Rushby, Natarajan Shankar, Jens Ulrik, Jens U.
Skakkebæk, Mandayam Srivas, and Friedrich von Henke, Seven papers on
mechanized formal verification, Tech. Report SRI-CSL-95-3, Computer Sci-
ence Laboratory, SRI International, January 1995.

[Cro93] R. Crole, Categories for types, Cambridge University Press, Cambridge, 1993.
[CRSS94] D. Cyrluk, Sreeranga Rajan, Natarajan Shankar, and Mandayam Srivas, Ef-

fective theorem proving for hardware verification, Proceedings of Theorem
Provers in Circuit Design (TPCD) ’94) (Bad Herrenalb, Germany) (Ramayya
Kumar and Thomas Kropf, eds.), Lecture Notes in Computer Science, vol.
901, Springer-Verlag, 1994, pp. 203–222.

[CT51] Louise H. Chin and Alfred Tarski, Distributive and modular laws in the arith-
metic of relation algebras, University of California Publications in Mathemat-
ics New Series (1951), no. 1, 341–384.

147

[Dam97] Craig A. Damon, Nitpick: a tool for interactive design analysis, Proceedings
of the 19th. International Conference on Software Engineering (Boston, Mas-
sachusetts, USA) (W. Richards Adrion, ed.), Association for the Computer
Machinery and IEEE Computer Society, ACM Press, May 1997, pp. 596–597.

[DF02] Răzvan Diaconescu and Kokichi Futatsugi, Logical foundations of CafeOBJ,
Theoretical Computer Science 285 (2002), no. 2, 289–318.

[Dia02] Răzvan Diaconescu, Grothendieck institutions, Applied Categorical Structures
10 (2002), no. 4, 383–402.

[dM64] Augustus de Morgan, On the syllogism: IV, and on logic of relations, Trans-
actions of the Cambridge Philosophical Society 10 (1864), 331–358, Reprinted
in [dM66].

[dM66] , On the syllogism, and other logical writings, Yale University Press,
1966.

[EL86] E. Allen Emerson and Chin-Laung Lei, Efficient model checking in fragments
of the propositional µ-calculus (extended abstract), Proceedings of Symposium
on Logic in Computer Science ’86 (Cambridge, MA, USA) (Albert Meyer,
ed.), IEEE Computer Society, June 1986, pp. 267–278.

[Eme90] E. Allen Emerson, Temporal and modal logic, Handbook of Theoretical Com-
puter Science (Jan van Leeuwen, ed.), vol. B, Elsevier, Amsterdam, 1990.

[End72] Herbert B. Enderton, A mathematical introduction to logic, Academic Press,
1972.

[FBH97] Marcelo F. Frias, Gabriel A. Baum, and Armando M. Haeberer, Fork algebras
in algebra, logic and computer science, Fundamenta Informaticae 32 (1997),
1–25.

[FBH98] , Representability and program construction within fork algebras, Logic
Journal of the IGPL 6 (1998), no. 2, 227–257.

[FBHV95] Marcelo F. Frias, Gabriel A. Baum, Armando M. Haeberer, and Paulo A.S.
Veloso, Fork algebras are representable, Bulletin of the Section of Logic 24

(1995), no. 2, 64–75.
[FBL01] Marcelo F. Frias, Gabriel A. Baum, and Carlos G. Lopez Pombo, A com-

parisson of Ag with Alloy, Proceedings of the 6th. Conference on Relational
Methods in Computer Science (RelMiCS) - TARSKI (Oisterwijk, The Nether-
lands) (Harrie de Swart, ed.), October 2001, pp. 365–377.

[FBM02] Marcelo F. Frias, Gabriel A. Baum, and Tomas S. E. Maibaum, Interpretabil-
ity of first-order dynamic logic in a relational calculus, Proceedings of the 6th.
Conference on Relational Methods in Computer Science (RelMiCS) - TARSKI
(Oisterwijk, The Netherlands) (Harrie de Swart, ed.), Lecture Notes in Com-
puter Science, vol. 2561, Springer-Verlag, October 2002, pp. 66–80.

[FGLR05] Marcelo F. Frias, Juan P. Galeotti, Carlos G. Lopez Pombo, and Mario Ro-
man, Fork algebra as a formalism to reason across behavioral specifications
(extended abstract), Proceedings of the 8th. Conference on Relational Meth-
ods in Computer Science (RelMiCS) - 3nd. International Workshop on Ap-
plications of Kleene Algebra (St. Catharines, Ontario, Canada) (Ivo Düntsch
and Michael Winter, eds.), February 2005, pp. 61–68.

[FGSB05] Marcelo F. Frias, Rodolfo Gamarra, Gabriela Steren, and Lorena Bourg, A
strategy for efficient verification of relational specification, based in mono-
tonicity analysis, Proceedings of the 20th. IEEE/ACM International Con-
ference on Automated Software Engineering (Long Beach, California, USA)
(David F. Redmiles, Tom Ellman, and Andrea Zisman, eds.), Association for
the Computer Machinery and IEEE Computer Society, ACM Press, Novem-
ber 2005, pp. 305–308.

[FHV95] Marcelo F. Frias, Armando M. Haeberer, and Paulo A.S. Veloso, A finite
axiomatization for fork algebras, Bulletin of the Section of Logic 24 (1995),
no. 4, 193–200.

[FHV97] , A finite axiomatization for fork algebras, Logic Journal of the IGPL
5 (1997), no. 3, 311–319.

148

[Fia96] José Luis Fiadeiro, On the emergence of properties in component-based sys-
tems, Proceedings of the 1996 Algebraic Methodology and Software Technol-
ogy – AMAST 96 (Munich, Germany) (Martin Wirsing and Maurice Nivat,
eds.), Lecture Notes in Computer Science, vol. 1101, Springer-Verlag, July
1996.

[Fia05] , Categories for software engineering, Springer-Verlag, 2005.
[FL03] Marcelo F. Frias and Carlos G. Lopez Pombo, Time is on my side, in

Berghammer and Möller [BM03], pp. 105–111.
[FL06] , Interpretability of first-order linear temporal logics in fork algebras,

Journal of Logic and Algebraic Programming 66 (2006), no. 2, 161–184.
[FLB02] Marcelo F. Frias, Carlos G. Lopez Pombo, and Gabriel A. Baum, The

specification language Ag, Available at http://www.dc.uba.ar/people/

profesores/mfrias/Files/Downloads/Ag.ps, February 2002.
[FLB+05] Marcelo F. Frias, Carlos G. Lopez Pombo, Gabriel A. Baum, Nazareno M.

Aguirre, and Tomas S. E. Maibaum, Reasoning about static and dynamic prop-
erties in Alloy: A purely relational approach, ACM Transactions on Software
Engineering and Methodology 14 (2005), no. 4, 478–526.

[FLM06] Marcelo F. Frias, Carlos G. Lopez Pombo, and Mariano Miguel Moscato, Dy-
namite: Alloy Analyzer+PVS in the analysis and verification of Alloy speci-
fications, Proceedings of the 1st ACM SIGSOFT Alloy Workshop (Portland,
Oregon, USA) (Daniel Jackson and Pamela Zave, eds.), Association for the
Computer Machinery, November 2006.

[FLM07] , Alloy Analyzer+PVS in the analysis and verification of Alloy specifi-
cations, Proceedings of the 13th. International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS 2007) (Braga,
Portugal) (Orma Grumberg and Michael Huth, eds.), Lecture Notes in Com-
puter Science, vol. 4424, Springer-Verlag, April 2007, pp. 587–601.

[FM92] José Luis Fiadeiro and Tomas S. E. Maibaum, Temporal theories as modulari-
sation units for concurrent system specification, Formal Aspects of Computing
4 (1992), no. 3, 239–272.

[FO98] Marcelo F. Frias and Ewa Orlowska, Equational reasoning in non-classical
logics, Journal of Applied Non-classical Logics 8 (1998), no. 1–2, 27–66.

[Fri02] Marcelo F. Frias, Fork algebras in algebra, logic and computer science, Ad-
vances in logic, vol. 2, World Scientific Publishing Co., Singapore, 2002.

[Fri03] , Translating with sense, in Berghammer and Möller [BM03], pp. 257–
269.

[FS87] José Luis Fiadeiro and Amı́lcar Sernadas, Structuring theories on consequence,
Selected papers from the 5th Workshop on Specification of Abstract Data
Types (Gullane, Scotland) (Andrzej Tarlecki and Donald Sannella, eds.), Lec-
ture Notes in Computer Science, Springer-Verlag, September 1987, pp. 44–72.

[GB84] Joseph A. Goguen and Rod M. Burstall, Introducing institutions, Proceed-
ings of the Carnegie Mellon Workshop on Logic of Programs (Edmund M.
Clarke and Dexter Kozen, eds.), Lecture Notes in Computer Science, vol.
184, Springer-Verlag, 1984, pp. 221–256.

[GB92] , Institutions: abstract model theory for specification and programming,
Journal of the ACM 39 (1992), no. 1, 95–146.

[GMW79] Michael J.C. Gordon, Robin Milner, and C. Wadsworth (eds.), Edinburgh
LCF: A mechanized logic of computation, Lecture Notes in Computer Science,
vol. 78, Springer-Verlag, 1979.

[GS05] Rodolfo Gamarra and Gabriela Steren, Implementación de una herramienta
de model-checking basada en álgebra relacional, Master’s thesis, Departamento
de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de
Buenos Aires, April 2005, Advisor: Marcelo F. Frias.

[Gyu97] Viktor Gyuris, A short proof of representability of fork algebra, Theoretical
Computer Science 188 (1997), no. 1–2, 211–220.

[Hal63] Paul R. Halmos, Lectures on boolean algebra, D. Van Nostrand, Co., Inc.,
Princeton, 1963.

149

[HBS93a] Armando M. Haeberer, Gabriel A. Baum, and Gunther Schmidt, Dealing with
non-constructive specifications involving quantifiers, Monografias en Ciências
da Computação 4/93, Departamento de Informatica, Pontif́ıcia Universidade
Católica do Rio de Janeiro, May 1993.

[HBS93b] , On the smooth calculation of relational recursive expressions out
of first-order non-constructive specificationes involving quantifiers, Interna-
tional Conference on Formal Methods in Programming and Their Applica-
tions (Academgorodok, Novosibirsk, Russia) (Dines Bjørner, Manfred Broy,
and Igor V. Pottosin, eds.), Lecture Notes in Computer Science, vol. 735,
Springer-Verlag, June 1993, pp. 281–298.

[HKT00] David Harel, Dexter Kozen, and J. Tiuryn, Dynamic logic, Foundations of
Computing, Massachusetts Institute of Technology, Cambridge, MA, USA,
2000.

[HMT71] Leon A. Henkin, J. Donald Monk, and Alfred Tarski, Cylindric algebras, part
I, vol. 64, North Holland, 1971.

[HMT85] , Cylindric algebras, part II, vol. 115, North Holland, 1985.
[HT99] Jesper G. Henriksen and P.S. Thiagarajan, Dynamic linear time temporal

logic, Annals of Pure and Applied Logic 96 (1999), no. 1–3, 187–207.
[HV91] Armando M. Haeberer and Paulo A.S. Veloso, Partial relations for pro-

gram derivation: adequacy, inevitability and expressiveness, Proceedings of
the Working Conference on Constructing Programs from Specifications ’91,
IFIP TC2, Constructing Programs from Specifications, North Holland, 1991,
pp. 310–352.

[Jac96] Daniel Jackson, Nitpick: a checkable specification language, Proceedings of
the 1st. ACM SIGSOFT Workshop on Formal Methods in Software Practice
(Mark Ardis, ed.), Association for the Computer Machinery, ACM Press,
January 1996, pp. 60–69.

[Jac00] , Automating first-order relational logic, Proceedings of the 8th ACM
SIGSOFT international symposium on Foundations of software engineering
(San Diego, California, United States), Association for the Computer Ma-
chinery, ACM Press, 2000, pp. 130–139.

[Jac02] , Alloy: a lightweight object modelling notation, ACM Transactions on
Software Engineering and Methodology 11 (2002), no. 2, 256–290.

[JJD98] Daniel Jackson, Somesh Jha, and Craig A. Damon, Isomorph-free model enu-
meration: a new method for checking relational specifications, ACM Transac-
tions on Programming Languages and Systems 20 (1998), no. 2, 302–343.

[JT51] Bjarni Jónnson and Alfred Tarski, Boolean algebra with operators, part I,
American Journal of Mathematics 73 (1951), 891–939.

[JT52] , Boolean algebra with operators, part II, American Journal of Mathe-
matics 74 (1952), 127–162.

[KP81] Dexter Kozen and Rohit Parikh, An elementary proof of the completeness of
PDL, Theoretical Computer Science 14 (1981), no. 1, 113–118.

[LF06] Carlos G. Lopez Pombo and Marcelo F. Frias, Fork algebras as a sufficiently
rich universal institution, Proceedings of 11th International Conference on
Algebraic Methodology and Software Technology, AMAST 2006 (Kuressaare,
Estonia) (Michael Johnson and Varmo Vene, eds.), Lecture Notes in Com-
puter Science, vol. 4019, Springer-Verlag, July, 5–8 2006, pp. 235–247.

[LOS02] Carlos G. Lopez Pombo, Sam Owre, and Natarajan Shankar, A semantic
embedding of the Ag dynamic logic in PVS, Technical Report SRI-CSL-02-
04, Computer Science Laboratory, SRI International, July 2002.

[Löw15] Leopold Löwenheim, Uber Möglichkeiten im Relativkalkul, Mathematische
Annalen 76 (1915), 447–470.

[Lyn50] Roger C. Lyndon, The representation of relation algebras, part I, Annals of
Mathematics (series 2) 51 (1950), no. 2, 707–729.

[Mad89] Roger D. Maddux, Finitary algebraic logic, Zeitschrift fur Mathematisch Logik
und Grundlagen der Mathematik 35 (1989), 321–332.

150

[Mad91] , The origin of relation algebras in the development of the calculus of
relations, Studia Logica 50 (1991), no. 3/4, 421–455.

[McK70] Ralph McKenzie, Representation of ointegral relation algebras, Michigan
Mathematical Journal 17 (1970), 279–287.

[McL71] Saunder McLane, Categories for working mathematicians, Graduate Texts in
Mathematics, Springer-Verlag, Berlin, Germany, 1971.

[Mes89] José Meseguer, General logics, Proceedings of the Logic Colloquium ’87
(Granada, Spain) (Heinz-Dieter Ebbinghaus, José Fernandez-Prida, Manuel
Garrido, Daniel Lascar, and Mario Rodŕıguez Artalejo, eds.), vol. 129, North
Holland, 1989, pp. 275–329.

[Mes92a] , Conditional rewriting logic as a unified model of concurrency, Theo-
retical Computer Science 96 (1992), no. 1, 73–155, Also in [Mes92b].

[Mes92b] , Conditional rewriting logic as a unified model of concurrency, Pro-
ceedings of the Second Workshop on Concurrency and compositionality
(WCC’92) (San Miniato, Italy) (Rocco DeNicola and Ugo Montanari, eds.),
March 1992, Also in [Mes92a], pp. 73–155.

[MOM93] Narciso Mart́ı-Oliet and José Meseguer, Rewriting logic as a logical and se-
mantic framework, Technical Report SRI-CSL-93-05, Computer Science Lab-
oratory, SRI International, August 1993, Also in [MOM96] and [MOM01].

[MOM96] , Rewriting logic as a logical and semantic framework, Proceedings
of First International Workshop on Rewriting Logic and its Applications
(WRLA’96) (José Meseguer, ed.), Electronic Notes in Theoretical Computer
Science, vol. 4, Elsevier, 1996, Also in [MOM93] and [MOM01], pp. 190–
225.

[MOM01] , Rewriting logic as a logical and semantic framework, Handbook of
Philosophical Logic (Dov Gabbay and Franz Guenthner, eds.), vol. 9, Kluwer
Academic Publishers, second ed., 2001, Also in [MOM93] and [MOM96].

[Mon64] J. Donald Monk, On representable relation algebras, Michigan Mathematical
Journal 11 (1964), 207–210.

[MP95] Zohar Manna and Amir Pnueli, Temporal verification of reactive systems,
Springer-Verlag, New York, 1995.

[MS95] Steven P. Miller and Mandayam Srivas, Formal verification of the AAMP5
microprocessor: a case study in the industrial use of formal methods, Pro-
ceedings of Workshop on Industrial-Strength Formal Specification Techniques
(WIFT) ’95 (Boca Raton, FL), IEEE Computer Society, April 1995, pp. 2–16.

[MSS92] Szabolcs Mikulás, Ildikó Sain, and Andras Simon, Complexity of equational
theory of relational algebras with projection elements, Bulletin of the Section
of Logic 21 (1992), no. 3, 103–111.

[OMG04a] Object Management Group, Object constraint language specification, Object
Management Group, 2004, version 1.5.

[OMG04b] , OMG SysML specification coversheet, Object Management Group,
2004, version 1.0.

[ORS92] Sam Owre, John M. Rushby, and Natarajan Shankar, PVS: A prototype ver-
ification system, Proceedings of the 11th International Conference on Au-
tomated Deduction (CADE) (Saratoga, NY) (Deepak Kapur, ed.), Lecture
Notes in Artificial Intelligence, vol. 607, Springer-Verlag, June 1992, pp. 148–
752.

[ORSSC98] Sam Owre, John M. Rushby, Natarajan Shankar, and David Stringer-Calvert,
PVS: an experience report, Proceedings of Applied Formal Methods – (FM-
Trends) ’98 (Boppard, Germany) (Dieter Hutter, Werner Stephan, Paolo
Traverso, and Markus Ullman, eds.), Lecture Notes in Computer Science,
vol. 1641, Springer-Verlag, October 1998, pp. 338–345.

[ORSv95] Sam Owre, John M. Rushby, Natarajan Shankar, and Friedrich von Henke,
Formal verification for fault-tolerant architectures: prolegomena to the design
of PVS, IEEE Transactions on Software Engineering 21 (1995), no. 2, 107–
125.

151

[OS93] Sam Owre and Natarajan Shankar, Abstract datatypes in PVS, Technical Re-
port SRI-CSL-93-9R, Computer Science Laboratory, SRI International, De-
cember 1993, Subtantially revised in June 1997.

[Par72] David Lorge Parnas, On the criteria to be used in decomposing systems into
modules, Communications of the ACM 15 (1972), no. 12, 1053–1058, See also
[Par02].

[Par02] , On the criteria to be used in decomposing systems into modules, Soft-
ware pioneers: contributions to software engineering (Manfred Broy and Ernst
Denert, eds.), Springer-Verlag, New York, 2002, See also [Par72]., pp. 411–
427.

[Pei70] Charles Sanders Peirce, Description of a notation for the logic of relatives,
resulting from an amplification of the conceptions of Boole’s calculus of logic,
Memoirs of the American Academy of Science 9 (1870), 317–378.

[Pei83a] , Note B: the logic of relatives, in Studies in logic by members of the
John Hopkins University [Pei83b], Reprinted in [Pei83]., pp. 187–203.

[Pei83b] Charles Sanders Peirce (ed.), Studies in logic by members of the John Hopkins
University, Little, Brown and Co., Boston, 1883, Reprinted in [Pei83].

[Pei83] Charles Sanders Peirce (ed.), Studies in logic by members of the John Hopkins
University, John Benjamins Publishing Co., Amsterdam, The Netherlands
and Philadelphia, USA, 1983, Reprint of [Pei83b].

[RS01] Harald Rueß and Natarajan Shankar, Deconstructing Shostak, Proceedings of
Symposium on Logic in Computer Science ’01 (Boston, MA, USA) (Joseph Y.
Halpern, ed.), IEEE Computer Society, June 2001, pp. 19–28.

[RSS95] Sreeranga Rajan, Natarajan Shankar, and Mandayam Srivas, An integra-
tion of model-checking with automated proof checking, Proceedings of the 8th.
Computer Aided Verification (CAV) (Liege, Belgium) (Pierre Wolper, ed.),
Lecture Notes in Computer Science, vol. 939, Springer-Verlag, June 1995,
pp. 84–97.

[RW13] Bertrand Russell and Alfred North Whitehead, Principia mathematica, vol.
1–3, Cambridge University Press, 1910–1913.

[Sch95] F. W. K. Ernst Schöder, Vorlesungen über die algebra der logik (exact logik),
Algebra und Logik der Relative, vol. 3, Thoemmes Press, 1895.

[Seg77] Krister Segerberg, A completeness theorem in the modal logic of programs,
Notices of the American Mathematical Society 24 (1977), no. 6, A–552, Also
in [Seg82].

[Seg82] , A completeness theorem in the modal logic of programs, Proceedings
of Seminar held at the Stefan Banach International Mathematical Center 1978
(Warsaw, Poland) (Tadeusz Traczyck, ed.), Universal Algebra and Applica-
tions, vol. 9, Banach Center Publications, 1982, Also in [Seg77]., pp. 31–46.

[Sha01] Natarajan Shankar, Using decision procedures with a higher-order logic, Pro-
ceedings of the 14th International Conference on Theorem Proving in Higher
Order Logics (TPHOLs) (Edinburgh, Scotland) (R.J. Boulton and P.B. Jack-
son, eds.), Lecture Notes in Computer Science, vol. 2152, Springer-Verlag,
September 2001, pp. 5–26.

[Sha02] , Static analysis for safe destructive updates in a functional language,
Proceedings of the 11th International Workshop on Logic-based Program Syn-
thesis and Transformation (LOPSTR) (Paphos, Cyprus) (A. Pettorossi, ed.),
Lecture Notes in Computer Science, vol. 2372, Springer-Verlag, November
2002, pp. 1–24.

[Sho84] Robert E. Shostak, Deciding combinations of theories, Journal of the ACM
31 (1984), no. 1, 1–12.

[Sik64] Roman Sikorsky, Boolean algebras, Springer-Verlag, Berlin, Germany, 1964.
[SR02] Natarajan Shankar and Harald Rueß, Combining Shostak theories, Proceed-

ings of International Conference on Rewriting Techniques and Applications
(RTA) ’02 (Copenhagen, Denmark) (Sophie Tison, ed.), Lecture Notes in
Computer Science, vol. 2378, Springer-Verlag, July 2002, pp. 1–18.

152

[SS99] Hassen Säıdi and Natarajan Shankar, Abstract and model check while you
prove, Proceedings of the 12th. Computer Aided Verification (CAV) (Trento,
Italy) (Nicolas Halbwachs and Doron Peled, eds.), Lecture Notes in Computer
Science, vol. 1633, Springer-Verlag, July 1999, pp. 443–454.

[SSC97a] Amı́lcar Sernadas, Cristina Sernadas, and Carlos Caleiro, Synchronization of
logics, Studia Logica 59 (1997), no. 1, 217–247.

[SSC97b] , Synchronization of logics with mixed rules: Completeness preserva-
tion, Proceedings of the 1997 Algebraic Methodology and Software Technol-
ogy – AMAST 97 (Macquarie University, Sydney, Australia) (Michael John-
son, ed.), Lecture Notes in Computer Science, vol. 1349, Springer-Verlag,
December 1997, pp. 465–478.

[Sto36] Marshall Harvey Stone, The theory of representations for boolean algebras,
Transactions of the American Mathematical Society 40 (1936), 37–111.

[SW93] Detlef Sieling and Ingo Wegener, Reduction of OBDDs in linear time, Infor-
mation Processing Letter 48 (1993), no. 3, 139–144.

[Tar41] Alfred Tarski, On the calculus of relations, Journal of Symbolic Logic 6 (1941),
no. 3, 73–89.

[Tar55a] , Contributions to the theory of models III, Indagationes Mathematicae
17 (1955), 56–64, Also in [Tar55b].

[Tar55b] , Contributions to the theory of models III, Proceedings of Koninklijkle
Nederlandsle Akademie van Wetenschappen, Series A, no. 58, 1955, Also in
[Tar55a].

[Tar55c] , Lattice-theoretic fixpoint theorem and its applications, Pacific Journal
of Mathematics 5 (1955), 285–309.

[Tar96] Andrzej Tarlecki, Moving between logical systems, Selected papers from the
11th Workshop on Specification of Abstract Data Types Joint with the 8th
COMPASS Workshop on Recent Trends in Data Type Specification (Magne
Haveraaen, Olaf Owe, and Ole-Johan Dahl, eds.), Lecture Notes in Computer
Science, vol. 1130, Springer-Verlag, 1996, pp. 478–502.

[TBG91] Andrzej Tarlecki, Rod M. Burstall, and Joseph A. Goguen, Some fundamental
algebraic tools for the semantics of computation: Part 3: Indexed categories,
Theoretical Computer Science 91 (1991), no. 2, 239–264.

[TG87] Alfred Tarski and Steven Givant, A formalization of set theory without vari-
ables, American Mathematical Society Colloqium Publications, Providence,
RI, USA, 1987.

[Tho52] Frederick Burtis Thompson, Some contributions to abstract algebra and meta-
mathematics, Ph.D. thesis, University of California, Berkeley, 1952, Advisor:
Alfred Tarski.

[TT52] Alfred Tarski and Frederick Burtis Thompson, Some general properties of
cylindric algebras. preliminary report, Bulletin of the American Mathematical
Society (Abstracts) 58 (1952), 65.

[VH91] Paulo A.S. Veloso and Armando M. Haeberer, A finitary relational algebra
for classical first-order logic, Bulletin of the Section of Logic 20 (1991), no. 2,
52–62.

[VHB92] Paulo A.S. Veloso, Armando M. Haeberer, and Gabriel A. Baum, On for-
mal program construction within an extended calculus for binary relations,
Monografias en Ciências da Computação 19/92, Departamento de Informat-
ica, Pontif́ıcia Universidade Católica do Rio de Janeiro, May 1992.

[vJ01] Joachim van den Berg and Bart Jacobs, The loop compiler for Java and JML,
Proceedings of the 7th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS) (Genova, Italy) (T.
Margaria and W. Yi, eds.), Lecture Notes in Computer Science, vol. 2031,
Springer-Verlag, April 2001, pp. 299–312.

[Zav05] Pamela Zave, A formal model of addressing for interoperating networks, Pro-
ceedings of Formal Methods 2005: the 13th. International FME Symposium
(Newcastle, UK) (John Fitzgerald, Ian J. Hayes, and Andrzej Tarlecki, eds.),

153

Lecture Notes in Computer Science, vol. 3582, Springer-Verlag, July 2005,
pp. 318–333.

154

APPENDIX A

Raimondo Lullos schematic logical proof of the existence of

God

It is important to notice that we do not necessarily support Lullos
schematic proof because we did not check its correctness; we only present it
as a historical remark.

Figure A.1. Raimondo Lullos schematic logical proof of the
existence of God.

155

	Portada
	Resumen
	Abstract
	Contents
	List of Figures
	List of Tables
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Bibliography
	Appendix A

