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Problemas de frontera libre
en espacios de Orlicz

Resumen

En esta tesis, se estudia el siguiente problema de frontera libre: Para un dominio
Ω de RN , hallar u ≥ 0 tal que

(B)




Lu := div

(g(|∇u|)
|∇u| ∇u

)
= 0 en {u > 0} ∩ Ω

|∇u| = λ∗ en ∂{u > 0} ∩ Ω

Se denomina Problema de Frontera Libre ya que no se conoce a priori la ubicación
de ∂{u > 0}. La segunda ecuación en (B) se conoce como “condición de frontera
libre”.

Este problema aparece en numerosas aplicaciones. En este trabajo discutiremos
tres de ellas.

Primero, estudiamos el problema de “chorros” (jets). Para un dominio suave y
acotado en RN , consideramos primero el siguiente problema, minimizar el funcional,

J (v) =

∫

Ω

G(|∇v|) dx + λ|{v > 0}|

con v − ϕ0 ∈ W 1,G
0 (Ω) para una ϕ0 ≥ 0, ϕ0 ∈ L∞(Ω) y

∫
Ω

G(|∇ϕ0|) dx < ∞.
W 1,G(Ω) es la clase de funciones débilmente diferenciables con

∫
Ω

G(|v|) dx < ∞ y∫
Ω

G(|∇v|) dx < ∞. Aqúı denominamos G′ = g.

El segundo, es un problema de diseño óptimo. Más precisamente, minimizar

J (v) =

∫

Ω

G(|∇v|) dx

con v − ϕ0 ∈ W 1,G
0 (Ω) y tal que |{v > 0}| = α ∈ (0, |Ω|) fijo, para una función

acotada, nonnegativa y no idénticamente nula ϕ0 tal que
∫

Ω
G(|∇ϕ0|) dx < ∞.

Como tercera aplicación estudiamos un problema de perturbación singular de
interés en combustión. Para ε > 0, tomamos uε una solución débil de Luε = βε(u

ε)
con uε ≥ 0. Aqúı β ∈ Lip(R), es positiva en (0, 1), cero fuera de [0, 1] y tal que∫ 1

0
β(s) ds = M y βε(s) = 1

ε
β

(
s
ε

)
.

En todos estos problemas, imponemos condiciones sobre la función g de forma
tal que se puede comportar distinto en 0 y en infinito. Más precisamente, pedimos
que existan constantes δ, g0 > 0 tales que,

0 < δ ≤ tg′(t)
g(t)

≤ g0 ∀t > 0.

Es fácil ver que, el conjunto de funciones que cumplen nuestras condiciones
incluye funciones no homogéneas. Estas condiciones fueron introducidas por Lieber-
man en [22] y generalizan las llamadas condiciones naturales de Ladyzhenskaya y
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Ural’tseva (ver [18]). En dicho trabajo el autor estudia la regularidad de soluciones
de Lu = f , donde f es una función acotada.

Para el primer problema, probamos las siguientes propiedades de los minimizan-
tes: Primero la existencia, luego la continuidad Hölder y con ésto probamos la
continuidad Lipschitz uniforme (i.e: el |∇u| está acotado en cada compacto de
Ω por una constante independiente del minimizante u). Además tenemos que los
minimizantes satisfacen, en un sentido débil, el problema de frontera libre (B), con
λ∗ una constante tal que g(λ∗)λ∗ −G(λ∗) = λ .

Además probamos una cierta propiedad de nodegeneración de los minimizantes
en cualquier punto de la frontera libre, y finalmente obtenemos que la misma tiene
medida de Hausdorff N − 1 dimensional finita; por lo tanto {u > 0} ∩ Ω tiene
peŕımetro localmente finito en Ω.

También definimos dos nociones distintas de solución débil (en sentido distribu-
cional y en sentido puntual) del problema (B) y probamos, para las primeras, que es-
tas soluciones tienen casi todas las mismas propiedades que tienen los minimizantes.

Probamos la regularidad de la frontera libre de las soluciones débiles de (B), es
decir que ∂red{u > 0}∩Ω es una superficie C1,α y que en el caso de los minimizantes
(y para las soluciones débiles en sentido distribucional) el complemento tiene medida
de Hausdorff N − 1 dimensional nula. Para ello tomamos ideas del trabajo pionero
[4]. También probamos, para un subclase de funciones g, y cuando N = 2, que toda
la frontera libre es regular.

Para trabajar con este problema, debimos lidiar con la degeneración del problema
y con la falta de homogeneidad al mismo tiempo.

En el segundo problema, probamos la regularidad de los minimizantes estudiando
un problema de penalización asociado a éste. Probamos que los minimizantes del
problema penalizado son soluciones débiles de (B) en sentido distribucional (de tipo
I). Los resultados de regularidad para el problema de penalización son consecuencia
de los resultados que tenemos para soluciones débiles de (B). La ventaja del método
es que no es necesario pasar al ĺımite para volver al problema original. Esto es, si
el parámetro en el problema de perturbación es suficientemente chico, tenemos que
los minimizantes son soluciones del problema de optimización. Nuevamente, para
tratar este problema, debimos lidiar con la no linealidad y la no homogeneidad del
operador.

En el tercer problema, probamos que bajo, ciertas hipótesis sobre las soluciones,
una función ĺımite es una solución débil en el sentido puntual del problema (B) (de
tipo II). Por lo tanto, todos los resultados de regularidad de soluciones de tipo II se
aplican a ĺımites de soluciones del problema de perturbación singular.

Palabras clave: Problemas de frontera libre, problemas de minimización, espacios
de Orlicz, regularidad, optimización, perturbación singular.
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Free boundary problems
in Orlicz spaces

In this thesis, we study the following free boundary problem: For a domain Ω in
RN , find u ≥ 0 such that

(B)




Lu := div

(g(|∇u|)
|∇u| ∇u

)
= 0 in {u > 0} ∩ Ω

|∇u| = λ∗ on ∂{u > 0} ∩ Ω

We call it a Free Boundary Problem because we do not know a priori the location of
∂{u > 0}. The second equation in (B) is known as the “free boundary condition”.

This problem appears in many applications. In this thesis, we will discuss three
of them.

First, we study the problem of jets. For a bounded smooth domain in RN , we
consider the following problem: Minimize the functional,

J (v) =

∫

Ω

G(|∇v|) dx + λ|{v > 0}|

with v−ϕ0 ∈ W 1,G
0 (Ω) for a function ϕ0 ≥ 0, ϕ0 ∈ L∞(Ω) with

∫
Ω

G(|∇ϕ0|) dx < ∞.
W 1,G(Ω) is the class of weakly differentiable functions with

∫
Ω

G(|v|) dx < ∞ and∫
Ω

G(|∇v|) dx < ∞. Here we denote G′ = g.

The second one, is a shape optimization problem. More precisely, to minimize

J (v) =

∫

Ω

G(|∇v|) dx

with v − ϕ0 ∈ W 1,G
0 (Ω) and such that |{v > 0}| = α ∈ (0, |Ω|) fixed, for a bounded

nonnegative function ϕ0 and not identically zero such that
∫
Ω

G(|∇ϕ0|) dx < ∞.

As a third application we study a singular perturbation problem, of interest in
combustion. For ε > 0, take uε a weak solution of Luε = βε(u

ε) with uε ≥ 0. Here

β ∈ Lip(R), is positive in (0, 1), zero outside [0, 1] and is such that
∫ 1

0
β(s) ds = M

and βε(s) = 1
ε
β

(
s
ε

)
.

In all these problems we impose conditions on the function g such that allow to
have different behaviors at 0 and at infinity. More precisely, we assume that there
exist constants δ, g0 > 0 such that,

0 < δ ≤ tg′(t)
g(t)

≤ g0 ∀t > 0.

It is easy to see that the set of functions that satisfy these conditions includes
non homogeneous functions. These conditions were introduced by Lieberman in [22]
and generalize the so called natural conditions of Ladyzhenskaya and Ural’tseva (see
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[18]). In that paper the author studies the regularity of solutions of Lu = f , where
f is a bounded function.

For the first problem, we prove the following properties of the minimizers: First
the existence, then the Hölder continuity and finally we prove the uniform Lipschitz
continuity (i.e: the |∇u| is bounded in any compact subset of Ω by a constant
independent of the minimizer u). Moreover, we have that the minimizers satisfy, in
a weak sense, the free boundary problem (B) with λ∗ a constant such that g(λ∗)λ∗−
G(λ∗) = λ .

Moreover, we prove some properties of non-degeneracy of the the minimizers at
every point of the free boundary. Finally, we obtain that the free boundary has finite
N − 1 dimensional Hausdorff measure. Therefore, {u > 0} ∩ Ω has finite perimeter
locally in Ω.

We also define two different notions of weak solutions of the problem (B) (in
a distributional sense and in a pointwise sense). We prove, for the first ones, that
they have almost all the properties that minimizers have.

Then, we prove the regularity of the free boundary of weak solutions of (B).
That is, ∂red{u > 0}∩Ω is a C1,α surface and, in the case of minimizers (and for the
weak solutions in the distributional sense), the remainder has zero N−1 dimensional
Hausdorff measure. To this end, we take ideas from the paper [4]. We also prove, for
a subclass of functions g, and when N = 2, that the whole free boundary is regular.

In order to get our results, we have to deal with the degeneracy of the problem
and with the loss of homogeneity at the same time.

In the second problem, we prove the regularity of minimizers by studying an
associated penalization problem. We prove that the minimizers of the penalized
problem are weak solutions of (B) in the distributional sense (of type I). The reg-
ularity results for the penalized problem, are a consequence of the results that we
have for weak solutions of (B). The advantage of this method is that in order to
return to the original problem, it is not necessary to pass to the limit. That is, if
the penalization parameter is sufficiently small, then we have that the minimizers
are solutions of the optimization problem. Again, to treat this problem, we had to
deal with the degeneracy and the non homogeneity of the operator.

In the third problem we prove that, under some hypothesis on the solutions, a
limiting function is a weak solution in the pontwise sense of the problem (B) (of
type II). Therefore, all the regularity results of solutions of type II can be applied
to the limit of solutions of the singular perturbation problem.

Key words : Free boundary problems, minimization problems, Orlicz spaces, reg-
ularity, optimization, singular perturbation.
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Introducción

En esta tesis, se estudia el siguiente problema de frontera libre: Para un dominio
Ω de RN , hallar u tal que

(0.0.1)




Lu := div

(g(|∇u|)
|∇u| ∇u

)
= 0 en {u > 0} ∩ Ω

|∇u| = λ∗ en ∂{u > 0} ∩ Ω.

Se denomina Problema de Frontera Libre ya que no se conoce a priori la ubicación
de ∂{u > 0}. La segunda ecuación en (0.0.1) se conoce como “condición de frontera
libre”.

Este problema aparece en numerosas aplicaciones. En este trabajo discutiremos
tres de ellas a saber, el problema de “chorros” (jets) que consiste en minimizar,

J (u) =

∫

Ω

G(|∇u|) + λχ{u>0} dx

en la clase de funciones

K =
{

v ∈ W 1,G(Ω) : v = ϕ0 en ∂Ω
}

,

donde ϕ0 es una función no negativa con ϕ0 ∈ L∞(Ω),
∫
Ω

G(|∇ϕ0|) dx < ∞ y G es
tal que g′ = G. W 1,G(Ω) es un espacio de Sobolev-Orlicz (ver Caṕıtulo 1).

El segundo, es un problema de diseño óptimo. A saber, minimizar

J (u) =

∫

Ω

G(|∇u|) dx

en el conjunto

Kα = {v ∈ W 1,G(Ω) : |{v > 0}| = α, v = ϕ0 en ∂Ω},
para una función ϕ0 nonnegativa, acotada con

∫
Ω

G(|∇ϕ0|) dx < ∞ y no idéntica-
mente nula.

Finalmente, el tercer problema tiene origen en la teoŕıa de combustión en el
llamado “ĺımite para enerǵıa de activación tendiendo a infinito” y consiste en lo
siguiente: Para ε > 0, tomamos uε una solución débil de,

(Pε) Luε = βε(u
ε), uε ≥ 0

con βε(s) = 1
ε
β

(
s
ε

)
, β ∈ Lip(R), positiva en (0, 1), y cero fuera de [0, 1]

En este caso, estamos interesados en el estudio de propiedades uniformes de las
soluciones y el estudio del problema ĺımite, cuando ε → 0.

3
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En este caso probamos, bajo condiciones adecuadas, que para cualquier sucesión
εn → 0 existe una subsucesión εnk

y una función ĺımite u, tal que u = ĺım uεnk , y
u es una solución del problema de frontera libre (0.0.1) para alguna constante λ∗

dependiendo de g y M .

En todos los casos vemos que la solución del problema que nos interesa resulta ser
solución de (0.0.1) en un sentido débil. Por lo tanto, resulta de gran interés estudiar
la regularidad de las soluciones débiles de (0.0.1) y la de sus fronteras libres.

En este sentido, el primer paso es dar una buena definición de solución débil
del problema (0.0.1) que englobe todas las aplicaciones que tenemos en mente. El
segundo paso, es ver cual es la regularidad óptima que van a tener estas soluciones
(observar que, si queremos que la función tenga derivada normal constante en la
frontera de {u > 0}, la regularidad óptima no podrá ser más que Lipschitz). Final-
mente, seŕıa deseable obtener la regularidad C1,α de la frontera libre ya que ésta va
a implicar que la solución débil satisface la condición de frontera libre en sentido
clásico.

Todos estos temas se encuentran bien estudiados en el caso en que el operador L
es el laplaciano (ver por ejemplo, [2, 4, 5, 6, 7, 8, 20]). En particular, para este caso
se han desarrollado diversas teoŕıas para el estudio de la regularidad de las soluciones
débiles de (0.0.1). En estos trabajos se ha demostrado que las soluciones débiles son
localmente Lipschitz y que la frontera libre ∂{u > 0} es una superficie C1,α cuando
N = 2, y tiene esta regularidad en un entorno de todo punto donde es “chata” (flat),
en dimensiones mayores. Estos resultados se han obtenido tanto para soluciones
distribucionales como para soluciones viscosas. En el primer caso, la condición de
frontera libre aparece en forma integral, y esta definición es más apropiada para el
problema de “chorros” y el de optimización. El concepto de solución viscosa ha sido
el utilizado en problemas a dos fases y para el problema de combustión.

Estos resultados se han extendido a operadores cuasilineales o fuertemente no
lineales independientes de la variable espacial, y a operadores lineales con coeficientes
variables. En todos estos casos el operador L se supone uniformemente eĺıptico.

Recientemente, algunos de los resultados fueron demostrados también en el caso
en que L es el p–laplaciano. Es decir, Lu = ∆pu = div

(|∇u|p−2∇u
)

que es un
operador eĺıptico degenerado en el caso p > 2 y singular en el caso p < 2 (en
el caso p = 2 coincide con el laplaciano) (ver, por ejemplo, [10, 11]). En [10] se
estudia el problema de jets y se prueban los resultados de regularidad que fueran
mencionados arriba para el caso del laplaciano usual. En [11] se estudia el problema
de combustión (en el ĺımite para enerǵıas de activación tendiendo a infinito) y se
prueba que en el ĺımite se encuentra una solución viscosa del problema (0.0.1). No
se obtienen resultados de regularidad de la frontera libre para soluciones viscosas en
este caso degenerado o singular.

El objetivo de esta tesis es el estudio de este problema –incluyendo la regular-
idad de la frontera libre– para operadores que puedan ser eĺıpticos degenerados o
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singulares, posiblemente no homogéneos (el p–laplaciano es homogéneo y esto simpli-
fica algunas demostraciones). Aqúı se admiten, además, funciones g en el operador
L con un comportamiento diferente en 0 y en infinito. Clásicamente, las suposi-
ciones sobre el comportamiento de g en 0 e infinito han sido siempre similares al
caso del p–laplaciano. Aqúı, en cambio, se adoptan las condiciones introducidas por
G. Lieberman en [22] para el estudio de la regularidad de soluciones débiles de la
ecuación eĺıptica (posiblemente degenerada o singular) Lu = f con f acotada.

Estas condiciones aseguran que la ecuación Lu = 0 es equivalente a una ecuación
uniformemente eĺıptica en forma de no divergencia con constantes de elipticidad in-
dependientes de la solución u en conjuntos donde ∇u 6= 0. Es más, estas condiciones
no implican ningún tipo de homogeneidad en las función g y además permiten dife-
rente comportamiento de la función g cuando |∇u| está cerca de cero o de infinito.
A saber, asumimos que g satisfase

(0.0.2) 0 < δ ≤ tg′(t)
g(t)

≤ g0 ∀t > 0

para ciertas constantes 0 < δ ≤ g0.

Observemos que δ = g0 = p − 1 cuando G(t) = tp, y rećıprocamente, si δ = g0

entonces G es una potencia.

Otro ejemplo de función g que satisface (0.0.2) es la función g(t) = talog (bt + c)
con a, b, c > 0. En este caso se satisface (0.0.2) con δ = a y g0 = a + 1.

Otro caso interesante es el de funciones G ∈ C2([0,∞)) con G′(t) = g(t) = c1t
a1

para t ≤ s, g(t) = c2t
a2 + d para t ≥ s. En este caso g satisface (0.0.2) con δ =

min(a1, a2) y g0 = max(a1, a2).

Más aún, cualquier combinación lineal con coeficientes positivos de funciones
satisfaciendo (0.0.2) también satisface (0.0.2). Por otro lado, si g1 y g2 satisfacen
(0.0.2) con constantes δi y gi

0, i = 1, 2, la función g = g1g2 satisface (0.0.2) con
δ = δ1 +δ2 y g0 = g1

0 +g2
0, y la función g(t) = g1

(
g2(t)

)
satisface (0.0.2) con δ = δ1δ2

y g0 = g1
0g

2
0.

Esta observación muestra que existe un amplio rango de funciones g bajo las
hipótesis de esta tesis.

Con respecto a la noción de solución débil considerada en este trabajo, resaltamos
que si bien la noción que podŕıamos llamar “distribucional” daŕıa lugar, en principio,
a mejores resultados, ésta no es adecuada para el problema de perturbación singular
de interés en combustión que estudiamos en el último caṕıtulo. Por lo tanto, en esta
tesis se introduce una nueva noción de solución débil de (0.0.1) en la que la condición
de frontera libre se pide que se satisfaga en un sentido puntual y no integral como
es el caso de las soluciones distribucionales. A pesar de ésto, para estas soluciones
débiles la demostración de la regularidad de la frontera libre en un entorno de cada
punto donde es “chata” es muy similar a la que se puede encontrar para soluciones
distribucionales en el caso L = ∆ en [4].
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Por otro lado, probamos que las soluciones distribucionales son soluciones débiles
en este sentido puntual. Por lo tanto, los resultados se aplican también al caso
distribucional. En este último caso, los resultados resultan más fuertes ya que, como
en el caso de ecuaciones uniformemente eĺıpticas, se prueba en esta tesis que la
frontera libre de una solución distribucional es “chata” en casi todo punto (respecto
de la medida de Hausdorff N − 1 dimensional).

Como se ha comentado anteriormente, en esta tesis se aplican los resultados de
regularidad a las soluciones de tres problemas de interés en aplicaciones. Para el
problema de jets y el de diseño óptimo se prueba que las soluciones son soluciones
distribucionales del problema (0.0.1). Por lo tanto, en estas dos aplicaciones se ob-
tiene regularidad C1,α salvo medida de Hausdorff N − 1 dimensional nula y, en el
caso de dimensión 2, se prueba que no hay singularidades.

En lo que sigue, vamos a describir con detalle los tres problemas estudiados en
esta tesis.

1. El problema de minimización y soluciones débiles

En la primera parte de la tesis estudiamos el siguiente problema de minimización.
Para Ω un dominio suave en RN y ϕ0 una función no negativa con ϕ0 ∈ L∞(Ω) y∫
Ω

G(|∇ϕ0|) dx < ∞, consideramos el problema de minimizar el funcional,

(0.1.3) J (u) =

∫

Ω

G(|∇u|) + λχ{u>0} dx

en la clase de funciones

K =
{

v ∈ W 1,G(Ω) : v = ϕ0 en ∂Ω
}

.

Esta clase de problemas de minimización fueron estudiados extensivamente para
diferentes funciones G. De hecho, el primer trabajo donde este problema fue estudia-
do es [4]. Los autores consideran el caso G(t) = t2 y prueban que estos minimizantes
son soluciones débiles del problema de frontera libre,

(0.1.4)

{
∆u = 0 en Ω ∩ {u > 0}
u = 0, |∇u| =

√
λ en Ω ∩ ∂{u > 0}

y prueban la regularidad Lipschitz de soluciones y la regularidad C1,α de sus fronteras
libres (Ω∩∂{u > 0}) localmente alrededor deHN−1–casi todo punto en Ω∩∂{u > 0}.

Los resultados principales en el Caṕıtulo 2 son los siguientes:

Teorema 0.1.5. Si g satisface (0.0.2), existe un minimizante de J en K y
cualquier minimizante u es no negativo y pertenece a C0,1

loc (Ω). Además, para cualquier
dominio D ⊂⊂ Ω conteniendo un punto de la frontera libre, la constante de Lipschitz
de u en D está controlada en términos de N, g0, δ, dist(D, ∂Ω) y λ.
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También probamos que Lu = 0 en el conjunto {u > 0} y que {u > 0} tiene
peŕımetro localmente finito en Ω. Como es usual, definimos la frontera reducida por
∂red{u > 0} := {x ∈ Ω ∩ ∂{u > 0} / |νu(x)| = 1}, donde νu(x) es la normal unitaria
exterior en el sentido de la medida (ver Caṕıtulo 1), cuando existe, y νu(x) = 0 en
otro caso. Luego, podemos probar que HN−1(∂{u > 0} \ ∂red{u > 0}) = 0.

También probamos que los minimizantes tiene un desarrollo asintótico cerca de
cualquier punto en la frontera reducida. Es decir,

Teorema 0.1.6. Sea u un minimizante, entonces para cualquier x0 ∈ ∂red{u >
0},
(0.1.7) u(x) = λ∗〈x− x0, ν(x0)〉− + o(|x− x0|) cuando x → x0

donde λ∗ es tal que g(λ∗)λ∗ −G(λ∗) = λ.
(

Aqui 〈·, ·〉 denota el producto escalar en

IRN y v− = −mı́n(v, 0)
)
.

Por lo tanto, en un sentido débil los minimizantes satisfacen,

(0.1.8)

{
Lu = 0 en Ω ∩ {u > 0},
u = 0, |∇u| = λ∗ en Ω ∩ ∂{u > 0}.

Estos resultados sugieren que consideremos soluciones débiles del problema (0.1.8).
Damos dos definiciones de solución débil (Definición 2.6.1 y Definición 2.6.2). Los
minimizantes del funcional J verifican ambas definiciones de solución débil. La difer-
encia principal entre estas dos definiciones es que para las funciones que satisfacen
la Definición 2.6.1 tenemos que HN−1(∂{u > 0} \ ∂red{u > 0}) = 0, mientras que
para funciones satisfaciendo la Definición 2.6.2 podemos tener que ∂red{u > 0} = ∅.
La Definición 2.6.2 es más apropiada para ĺımites de soluciones de problemas de
perturbación singular.

Probamos el siguiente teorema,

Teorema 0.1.9. Supongamos que g satisface (0.0.2). Sea u una solución débil.
Entonces, HN−1 casi todo punto en la frontera libre reducida ∂red{u > 0} tiene un
entorno donde la frontera libre es una superficie C1,α . Más aún, si u es una solución
débil en el sentido de la definición 2.6.1, el resto de la frontera libre tiene medida
HN−1 cero, y si u es un minimizante, entonces toda la frontera libre reducida es
regular.

Recalcamos que lo que probamos es que si u es una solución débil, la frontera
libre es una superficie C1,α en un entorno de cualquier punto donde u tiene el de-
sarrollo asintótico (0.1.7) para algún vector unitario ν. Probamos que ese es el caso
para cualquier punto en la frontera libre reducida cuando u es un minimizante (ver
Teorema 2.5.5). Por lo tanto, si u es un minimizante, la frontera libre reducida es
una superficie C1,α y el resto de la frontera libre tiene medida HN−1 cero.
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También mejoramos el resultado de regularidad para el caso N = 2, para una
subclase de funciones que satisfacen (0.0.2). Probamos que, en este caso, toda la
frontera libre es regular.

Resultados de regularidad de toda la frontera libre en dimensión 2 fueron proba-
dos en [2], [5], y en [12] si 2− δ ≤ p < ∞ para δ > 0 chico.

Probamos el siguiente,

Teorema 0.1.10. Sea N = 2, g satisfaciendo (0.0.2) y (2.7.57) y u ∈ K un
minimizante de (0.1.3). Entonces ∂{u > 0} es una superficie C1,α localmente en Ω.

2. El problema de optimización de dominio

Estudiamos, como segunda aplicación, un problema de optimización de dominio.
Empezaremos primero con algunos observaciones históricas de este problema. En el
trabajo [2], Aguilera, Alt y Caffarelli estudian un problema de diseño óptimo con
restricción en el volumen. Los autores prueban la regularidad de los minimizantes
introduciendo un término de penalización en el funcional de enerǵıa (la integral de
Dirichlet) y minimizando sin la restricción en el volumen. Los pasos que realizan, son
los siguientes. Primero, los autores observan que, para valores fijos del parámetro
de penalización, el funcional es muy similar al considerado en el trabajo [4], por lo
tanto los resultados de regularidad de los minimizantes del problema de penalización
salen casi sin ninguna modificación como en [4]. Finalmente, ellos prueban que para
valores chicos del parámetro de penalización, el volumen prefijado es alcanzado. De
esta manera, los resultados de regularidad se aplican para soluciones del problema
de diseño óptimo.

Este método fue aplicado a otros problemas con similar éxito. En [3, 16, 19,
23], donde la ecuación diferencial que satisfacen los minimizantes es no degenerada,
uniformemente eĺıptica y en [15], donde la ecuación involucrada podŕıa llegar a ser
degenerada o singular, pero todav́ıa tiene la propiedad de ser homogénea.

En el Caṕıtulo 3 probamos que el mismo tipo de resultados se pueden obtener
si estudiamos un problema tal que la ecuación diferencial que satisfacen los mini-
mizantes es no lineal, degenerada o singular, y posiblemente no homogénea. O sea,

cuando el operador tiene la forma Lu = div
(
g(|∇u|) ∇u

|∇u|

)
y g satisface las condi-

ciones (0.0.2).

A continuación damos más precisamente la descripción del problema que estu-
diamos,

Sea Ω un dominio suave y acotado en RN y ϕ0 ∈ W 1,G(Ω), un dato de Dirichlet,
con ϕ0 ≥ c0 > 0 en Ā, donde A es un subconjunto abierto relativo y no vacio de ∂Ω
tal que A ∩ ∂Ω es C2. Acá W 1,G(Ω) es un espacio de Sobolev-Orlicz (ver Caṕıtulo
1). Sea

Kα = {u ∈ W 1,G(Ω) / |{u > 0}| = α, u = ϕ0 en ∂Ω}.
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Nuestro problema es minimizar J (u) =
∫

Ω
G(|∇u|) dx en Kα, con g = G′ satis-

faciendo (0.0.2).

Una de las dificultades de estos problemas es probar la regularidad de los mini-
mizantes, ya que no es fácil hacer perturbaciones que preserven el volumen sin saber
previamente la regularidad de ∂{u > 0}.

Para poder resolver el problema original, de manera que nos permita pertur-
baciones que no preserven el volumen, seguimos las ideas de [2] y consideramos el
siguiente problema de penalización. Sea

K = {u ∈ W 1,G(Ω) / u = ϕ0 en ∂Ω}
y

(0.2.1) Jε(u) =

∫

Ω

G(|∇u|) dx + Fε(|{u > 0}|),

donde

Fε(s) =

{
ε(s− α) sis < α
1
ε
(s− α) si s ≥ α.

Luego el problema de penalización es el siguiente

(Pε) Encontrar uε ∈ K tal que Jε(uε) = ı́nf
v∈K

Jε(v).

Para poder probar la existencia de los minimizantes usamos los teoremas de
inmersión en espacios de Sobolev-Orlicz, y el resultado sale fácilmente por min-
imización directa. La regularidad de los minimizantes y de sus fronteras libres
∂{uε > 0} salen probando que cualquier minimizante uε es una solución del siguiente
problema, 



Luε = 0 en {uε > 0} ∩ Ω,

uε = 0,
∂uε

∂ν
= λε en ∂{uε > 0} ∩ Ω,

en el sentido de la Definición 2.6.1, donde λε es una constante positiva.

Las propiedades de la definición de solución débil no son dif́ıciles de establecer
ya que el problema de minimización estudiado en el Capitulo II es muy similar a
(Pε). La única diferencia es que J es lineal en |{u > 0}| y acá el término Fε es lineal
a trozos y cero en α.

Con este resultado tenemos que para HN−1− casi todo punto, la frontera libre
es una superficie C1,β en un entorno (ver Corolario 2.7.56 del Caṕıtulo 2).

También mejoramos el resultado de regularidad para el caso N = 2, para una
subclase de funciones satisfaciendo (0.0.2). Como en el Caṕıtulo 2, probamos que
en este caso, toda la frontera libre es regular. Acá tenemos que lidiar con la no
homogeneidad y el término de penalización a la vez. El primer término lo tratamos
como en el Caṕıtulo 2, y para tratar el segundo término, tomamos ideas de [19].
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Como en [2], la razón por la cual es tan útil este método es que no es necesario
pasar al limite en el término de penalización ε donde seŕıan necesarias estimaciones
uniformes en ε. De hecho, probamos que para valores chicos de ε el volumen pre-
fijado es alcanzado. Esto es, |{uε > 0}| = α para ε chico. Este es el paso donde
la demostración se aparta de trabajos previos en problemas similares, debido a que
acá podemos no tener la homogeneidad de la función g (ver Lema 3.2.6).

Finalmente, el hecho de que, para ε chico, cualquier minimizante de Jε satisface
|{uε > 0}| = α implica que cualquier minimizante de nuestro problema es un mini-
mizante de Jε, por lo tanto es localmente Lipschitz y la frontera libre es suave.

3. El problema de perturbación singular

Estudiamos, como última aplicación el siguiente problema de perturbación sin-
gular: Para ε > 0, tomamos uε ≥ 0 una solución de,

(Pε) Luε = βε(u
ε).

Una solución de (Pε) es una función uε ∈ W 1,G(Ω) ∩ L∞(Ω) tal que

(0.3.2)

∫

Ω

g(|∇uε|) ∇uε

|∇uε|∇ϕdx = −
∫

Ω

ϕβε(u
ε) dx

para toda ϕ ∈ C∞
0 (Ω).

Aqúı βε(s) = 1
ε
β

(
s
ε

)
, para β ∈ Lip(R), positiva en (0, 1) y cero fuera de [0, 1].

Llamamos M a
∫ 1

0
β(s) ds.

Estamos interesados en estudiar propiedades uniformes de las soluciones, y ver
qué pasa con el problema ĺımite, cuando ε → 0. La idea es probar que para cualquier
sucesión εn → 0 existe una subsucesión εnk

y una función ĺımite u, tal que u =
ĺım uεnk , y que u es una solución débil del problema de frontera libre (0.1.8) para
alguna constante λ∗ dependiendo de g y de M .

Los primeros en plantear el paso al ĺımite en este problema de perturbación
singular en el caso de evolución fueron Zeldovich y Frank-Kamenetski en 1938, [24].
En dicho trabajo, los autores proponen hacer un análisis del ĺımite para energias
de activación altas para el estudio de la propagación de llamas. El estudio riguroso
matemático recién fue realizado en 1990 por Berestycki, Caffarelli y Nirenberg en
el caso de ondas viajeras (ver [6]) y posteriormente en [9] para el caso general de
evolución a una fase.

Más espećıficamente, en [6] los autores consideran una familia uniformemente
acotada de soluciones de

(0.3.3) Luε = βε(u
ε) en Ω

donde Lu =
∑

aijuxixj
+

∑
biuxi

+ cu es un operador lineal uniformemente eĺıptico
con coeficientes regulares y ven qué pasa cuando ε → 0. Prueban que para toda
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sucesión εn → 0 existe una subsucesión εnk
y una función ĺımite u Lipschitz que

resuelve el siguiente problema de frontera libre,

(0.3.4)

{
Lu = 0 en Ω ∩ {u > 0},∑

aijuxi
ηj =

√
2M en Ω ∩ ∂{u > 0}

donde η es la normal interior a ∂{u > 0}.
En dicho trabajo prueban que la condición de frontera libre se satisface en toda

porción suave de la misma.

Por otro lado, en los trabajos [7] y [8] se prueba que las soluciones viscosas de
(0.3.4) con L = ∆ tienen frontera libre C1,α alrededor de puntos donde es “chata”
(flat). Esto permitió obtener resultados de regularidad de la frontera libre en el caso
L = ∆ en [20].

Más recientemente, el caso eĺıptico no lineal para el p–laplaciano fue considerado
en [11]. Los autores estudiaron el problema (Pε) cuando el operador L es el p–
laplaciano (i.e g(t) = tp−1). Como en el caso uniformemente eĺıptico, para una
familia uniformemente acotada de soluciones uε encontraron estimaciones Lipschitz
uniformes en ε y probaron que el ĺımite de uε es una solución viscosa de (0.0.1) para

L = ∆p y λ∗ =
(

p
p−1

M
)1/p

.

En dicho trabajo no se obtienen resultados sobre la regularidad de la frontera
libre ya que no hay ninguna teoŕıa de regularidad para soluciones viscosas en el caso
degenerado o singular.

En este trabajo, para nuestro problema Pε, podemos probar primero la con-
tinuidad Lipschitz uniforme a saber,

Teorema 0.3.5. Supongamos que g satisface (0.0.2). Sea uε una solución de

Luε = βε(u
ε) en Ω,

con ‖uε‖L∞(Ω) ≤ L. Entonces, para Ω′ ⊂⊂ Ω se tiene que

|∇uε(x)| ≤ C en Ω′

con C = C(N, δ, g0, L, ‖β‖∞, g(1), dist(Ω′, ∂Ω)), si ε ≤ ε0(Ω, Ω′).

Con este resultado, tenemos que, via una subsucesión, existe una función ĺımite
u.

El siguiente paso, es probar que la función u es una solución débil en el sentido
de la definición 2.6.2 del Caṕıtulo II del problema de frontera libre (0.0.1) para una
constante λ∗ dependiendo de g y M . Para ello, tenemos que probar que tenemos un
desarrollo asintótico de u en cada punto de la frontera reducida.

Aqúı encontramos diversas dificultades técnicas asociadas con la falta de homo-
geneidad del operador L y con el hecho de estar trabajando en espacios de Orlicz.
Por ejemplo, para probar que Lu = 0 en {u > 0} debemos probar que ∇uε → ∇u
en casi todo punto. Esto lo logramos probando que se tiene convergencia en Lg0+1.
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En otro punto nos encontramos con la necesidad de agregar la siguiente hipótesis
sobre g; existen −1 < α1 ≤ α2 tales que para toda s, t ≥ 0 tenemos que,

(0.3.6) g′(ts) ≥ mı́n{sα1 , sα2}g′(t).
Todos los resultados probados en esta sección valdrán por lo tanto, cuando

además, g′ satisface la condición (0.3.6).

Finalmente probamos,

Teorema 0.3.7. Sea uεj una solución de (Pεj
) en un dominio Ω ⊂ RN tal que

uεj → u uniformemente en compactos de Ω y εj → 0. Sea x0 ∈ Ω∩∂{u > 0} tal que
∂{u > 0} tiene una normal interior η en sentido de la medida en x0, y supongamos
que u es no degenerada en x0. Bajo estas hipótesis, tenemos que

u(x) = Φ−1(M)〈x− x0, η〉+ + o(|x− x0|).

Finalmente, podemos aplicar la teoŕıa del Caṕıtulo 2. Tenemos que u es una
solución débil en el sentido de la definición 2.6.2 del problema de frontera libre.
Tenemos el siguiente,

Teorema 0.3.8. Supongamos que g satisface (0.0.2) y (0.3.6). Sea uεj una solu-
ción de (Pεj

) en un dominio Ω ⊂ RN tal que uεj → u uniformemente en compactos
de Ω cuando εj → 0. Sea x0 ∈ Ω∩ ∂{u > 0}, tal que tiene una normal interior η en
el sentido de la medida en x0. Supongamos que u es uniformemente no degenerada
en la frontera libre en un entorno de x0 (ver Definición 4.3.1). Entonces, existe
r > 0 tal que Br(x0) ∩ ∂{u > 0} es una superficie C1,α.

4. Notación

A lo largo de la tesis N denota la dimensión y,

Br(x) = {x ∈ RN , |x− x0| < r},
B+

r (x) = {x ∈ RN , xN > 0, |x− x0| < r},
B−

r (x) = {x ∈ RN , xN < 0, |x− x0| < r}.

Para v, w ∈ RN , 〈v, w〉 denota el producto escalar standard.

Para una función escalar f , f+ = máx(f, 0) y f− = máx(−f, 0).

Para la función G definida en el Caṕıtulo 1, denotamos,

g(t) = G′(t),

F (t) = g(t)/t,

Φ(t) = g(t)t−G(t),

A(p) = F (|p|)p para p ∈ RN ,

aij =
∂Ai

∂pj

para 1 ≤ i, j ≤ N.
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5. Estructura de la tesis

Estructura del Caṕıtulo 1. El Caṕıtulo 1 está organizado de la siguiente
manera: En la Sección 1 damos algunas propiedades de la función g y definimos los
espacios de Orlicz y los de Sobolev-Orlicz, y probamos algunos teoremas de inclusión.
Estos espacios serán usados para probar la existencia de los minimizantes.

En la Sección 2 damos algunas propiedades anaĺıticas de las funciones con∫
Ω

G(|∇u|) dx finita (generalización de la desigualdad de Poincaré y el Teorema de
Morrey). Luego, enunciamos algunas propiedades de las soluciones, subsoluciones y
supersoluciones de Lv = 0 (desigualdad de Harnack, cotas C1,α, principio de com-
paración, principio fuerte del máximo y una desigualdad importante que usaremos
a lo largo de la tesis (Teorema 1.2.38)). También probamos una desigualdad de
tipo Cacciopoli válida para estas funciones (Lema 1.2.12). Finalmente, mostramos
una familia expĺıcita de subsoluciones de Lu = 0 (Lema 1.2.47) que usamos como
barreras en varios puntos de esta tesis.

En la Sección 3 enunciamos la definición de medida y distancia de Hausdorff.

En la Sección 4 damos un Teorema de Representación que usaremos en esta tesis.
También damos la definición de conjuntos de peŕımetro localmente finito y algunas
de sus propiedades.

En la Sección 5 probamos algunos resultados de L− soluciones con crecimiento
lineal.

En la Sección 6 probamos algunos resultados de los ĺımites de sucesiones de blow
up.

En la Sección 7 damos algunos resultados sobre simetrización de Schwartz.

Estructura del Caṕıtulo 2. En la Sección 1 probamos la existencias de mini-
mizantes y que los mismos son subsoluciones de Lv = 0. También probamos que los
minimizantes son no negativos. La demostración de existencia de minimizantes, que
es standard en su forma, hace uso fuertemente de los espacios de Orlicz y la segunda
desigualdad en la condición (0.0.2).

En la Sección 2 probamos que cualquier minimizante u es Hölder continuo (Teo-
rema 2.2.1), Lu = 0 en {u > 0} (Lema 2.2.12) y finalmente probamos la continuidad
Lipschitz local (Teorema 2.2.25). La demostración de la continuidad Hölder de los
minimizantes es un paso crucial en nuestro análisis y es una de las demostraciones
principales de este caṕıtulo en donde juegan todas las propiedades de la función G
a través de la desigualdad del Teorema 1.2.38.

En la Sección 3 probamos que los minimizantes satisfacen una propiedad de no
degeneración cerca de la frontera libre Ω ∩ ∂{u > 0} (Teorema 2.3.5). También
probamos que los conjuntos {u > 0} y {u = 0} tienen la propiedad de densi-
dad uniforme positiva en la frontera libre. En este teorema usamos fuertemente las
propiedades de la función G y los correspondientes espacios de Orlicz.
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En la Sección 4 probamos que la frontera libre tiene dimensión Hausdorff N − 1
finita y obtenemos un teorema de representación para los minimizantes (Teorema
2.4.5). Esto implica que {u > 0} tiene peŕımetro localmente finito en Ω. Finalmente
probamos que HN−1(∂{u > 0} \ ∂red{u > 0}) = 0.

En la Sección 5 damos algunas propiedades de las sucesiones de blow up de los
minimizantes. Probamos que cualquier ĺımite de una sucesión de blow up es otra
vez un minimizante (Lema 2.5.1) y finalmente probamos el desarrollo asintótico de
los minimizantes en cualquier punto de la frontera libre reducida (Teorema 2.5.5).

En la Sección 6 damos la definición de solución débil (Definición 2.6.1 y Definición
2.6.2). Probamos que casi todas los propiedades que probamos para los minimizantes
también valen para soluciones débiles que corresponden a la Definición 2.6.1, y men-
cionamos las diferencias entre las dos definiciones (Observación 2.6.8 y Observación
2.6.21).

En la Sección 7 probamos la regularidad de la frontera libre de las soluciones
débiles, cerca de puntos “flat” de la frontera (Teorema 2.7.54) y luego deducimos
la regularidad de la frontera libre de soluciones débiles cerca de casi todo punto en
la frontera reducida. En el caso de los minimizantes, se obtiene la regularidad de
toda la frontera reducida (Teorema 2.7.56). También probamos, para cierta clase de
funciones satisfaciendo (0.0.2) que, en el caso N = 2 toda la frontera libre es regular
(Corolario 2.7.66).

Estructura del Caṕıtulo 3. El Caṕıtulo 3 esta organizado de la siguiente
manera: En la Sección 1 empezamos nuestro análisis del problema (Pε) para ε fijo.
Primero probamos la existencia de minimizantes, la regularidad Lipschitz local y la
no degeneración cerca de la frontera libre (Teorema 3.1.2) y probamos que los mini-
mizantes son soluciones débiles del problema de frontera libre, como fue definitdo en
el Caṕıtulo 2 (Observación 3.1.14). Luego tenemos que, para HN−1− casi todo pun-
to, la frontera libre es localmente una superficie C1,β (Corolario 3.1.15). Probamos
que para el caso N = 2, para una subclase de funciones satisfaciendo (0.0.2) toda
la frontera libre es regular (Corolario 3.1.22). En la Sección 2 probamos que para
valores chicos de ε recuperamos nuestro problema original.

Estructura del Caṕıtulo 4. El Caṕıtulo 4 está organizado de la siguiente man-
era: En la Sección 1 probamos la continuidad Lipschitz uniforme de las soluciones
de (Pε) (Corolario 4.1.8).

En la Sección 2, probamos que si u es una función ĺımite, entonces Lu es una
medida de Radon soportada en la frontera libre (Teorema 4.2.1). Luego, probamos
la Proposición 4.2.18, que dice que si u es un semiplano, entonces la pendiente es 0
o Φ−1(M) donde Φ(t) = tg(t) − G(t), y la Proposición 4.2.20 que dice que si u es
una suma de dos semiplanos, entonces las pendientes tienen que ser iguales y a lo
sumo Φ−1(M).

En la sección 3 probamos el desarrollo asintótico de u (Teorema 4.3.3).
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En la sección 4 aplicamos los resultados del Caṕıtulo 2 para probar la regularidad
de la frontera libre (Teorema 4.4.7).





Introduction

In this thesis, we study a free boundary problem: For a domain Ω in RN , find u
such that

(0.0.1)




Lu := div

(g(|∇u|)
|∇u| ∇u

)
= 0 in {u > 0} ∩ Ω

|∇u| = λ∗ on ∂{u > 0} ∩ Ω.

It is called a Free Boundary Problem because the location of ∂{u > 0} is not
known a priori. The second equation in (0.0.1) is known as the “free boundary
condition”.

This problem appears in many applications. In this work we will discuss three
of them. First, the problem of jets which consist on minimizing,

J (u) =

∫

Ω

G(|∇u|) + λχ{u>0} dx

in the class of functions

K =
{

v ∈ W 1,G(Ω) : v = ϕ0 on ∂Ω
}

,

where ϕ0 is a nonnegative function with ϕ0 ∈ L∞(Ω),
∫

Ω
G(|∇ϕ0|) dx < ∞ and G

is such that g = G′. W 1,G(Ω) is a Sobolev-Orlicz space (see Chapter 1).

The second one, is an optimal design problem. To minimize

J (u) =

∫

Ω

G(|∇u|) dx

in the set

Kα = {v ∈ W 1,G(Ω) : |{v > 0}| = α, v = ϕ0 on ∂Ω},
for a bounded nonnegative and not identically zero ϕ0 with

∫
Ω

G(|∇ϕ0|) dx < ∞.

Finally, the third problem is originated in the theory of combustion in the so-
called “limit for activation energy going to infinity” and consist on the following:
For ε > 0, take uε a weak solution of,

(Pε) Luε = βε(u
ε), uε ≥ 0

with βε(s) = 1
ε
β

(
s
ε

)
, β ∈ Lip(R), positive in (0, 1), and zero outside [0, 1]

In this case, we are interested in the study of the uniform properties of the
solutions and the study of the limit problem, when ε → 0.

17
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In this case we prove, under some adequate conditions, that for any sequence
εn → 0 there exists a subsequence εnk

and a limit function u, such that u = lim uεnk ,
and u is a solution of the free boundary problem (0.0.1) for some constant λ∗ de-
pending on g and M .

In all these cases we see that the solutions of the problem we are interested in
turn out to be solutions of (0.0.1) in a weak sense. Therefore, it is of a grate interest
to study the regularity of the weak solutions (0.0.1) and of their free boundaries.

In this sense, the first step is to give a good definition of weak solution of the
problem (0.0.1) that can be applied to all the applications that we have in mind. The
second step, is to see which is the optimal regularity that these solutions are going
to have (observe that, if we want the function to have constant normal derivative on
the boundary of {u > 0}, the optimal regularity can not be more than Lipschitz).
Finally, it would be desirable to obtain the C1,α regularity of the free boundary
since this will imply that the weak solution satisfies the free boundary condition in
a classical sense.

All these topics are well studied when the operator L is the laplacian (see for
example, [2, 4, 5, 6, 7, 8, 20]). In particular in this case several theories were
developed for the study of the regularity of the weak solutions of (0.0.1). In these
works it has been proved that the weak solutions u are locally Lipschitz and that
their free boundaries ∂{u > 0} are C1,α surfaces when N = 2, and that they
have this regularity in a neighborhood of any point where they are flat, in higher
dimensions. These results have been obtained both for distributional solutions and
for viscosity solutions. In the first case, the free boundary condition appears in an
integral form, and the definition is more appropriate for the problem of jets and of
optimization. The concept of viscosity solution was used in two phases problems
and for the combustion problem.

These results have been extended to quasilinear operators or fully nonlinear
operators independent of the spatial variable, and to linear operators with variable
coefficients. In all these cases the operator L is supposed to be uniformly elliptic.

Recently, some of the results were proved also in the case where L is the p–
laplacian. That is, Lu = ∆pu = div

(|∇u|p−2∇u
)

which is a degenerate elliptic
operator when p > 2 and singular when p < 2 (in the case p = 2 it coincides with
the laplacian) (see, for example, [10, 11]). In [10] the authors study the problem of
jets and prove the regularity results that were mentioned above for the case of the
usual laplacian. In [11] the authors study the combustion problem (in the limit for
activation energy going to infinity) and prove that, in the limit, they get a viscosity
solution of the problem (0.0.1). There are no regularity results of the free boundary
for viscosity solutions in the degenerate or singular cases.

The aim of this thesis is the study of this problem –including the regularity of
the free boundary– for operators that can be either degenerate or singular elliptic,
possibly non homogeneous (the p–laplacian is homogeneous and this simplifies some
of the proofs). Here we admit, moreover, functions g in the operator L with a
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different behavior at 0 and at infinity. Classically, the assumptions on the behavior
of g at 0 and at infinity were always similar to the case of the p–laplacian. Here,
instead, we adopt the conditions introduced by G. Lieberman in [22] for the study
of the regularity of weak solutions of the elliptic equation (possibly degenerate or
singular) Lu = f with f bounded.

These conditions ensures that the equation Lu = 0 is equivalent to a uniformly
elliptic equation in nondivergence form with ellipticity constants independent of
the solution u in sets where ∇u 6= 0. Furthermore, these conditions do not imply
any type of homogeneity of the function g, and moreover they allow for a different
behavior of the function g when |∇u| is near zero or infinity. That is, we assume
that g satisfies

(0.0.2) 0 < δ ≤ tg′(t)
g(t)

≤ g0 ∀t > 0

for certain constants 0 < δ ≤ g0.

Let us observe that δ = g0 = p − 1 when G(t) = tp, and reciprocally, if δ = g0

then G is a power.

Another example of a function g which satisfies (0.0.2) is the function g(t) =
talog (bt + c) with a, b, c > 0. In this case (0.0.2) is satisfied with δ = a and
g0 = a + 1.

Another interesting case is the one of a function G ∈ C2([0,∞)) with G′(t) =
g(t) = c1t

a1 for t ≤ s, g(t) = c2t
a2 + d for t ≥ s. In this case g satisfies (0.0.2) with

δ = min(a1, a2) and g0 = max(a1, a2).

Furthermore, any linear combination with positive coefficients of functions satis-
fying (0.0.2) also satisfies (0.0.2). On the other hand, if g1 and g2 satisfy (0.0.2) with
constants δi and gi

0, i = 1, 2, the function g = g1g2 satisfies (0.0.2) with δ = δ1 + δ2

and g0 = g1
0 + g2

0, and the function g(t) = g1

(
g2(t)

)
satisfies (0.0.2) with δ = δ1δ2

and g0 = g1
0g

2
0.

This observation shows that there is a wide range of functions g under the hy-
potheses of this thesis.

With regards to the notion of weak solution considered in this work, we em-
phasize that, although the notion that we can call “distributional” would give, in
principle, a better result, this is not the suitable notion for the singular perturbation
problem that we study in the last chapter. Therefore, in this thesis we introduce
a new notion of weak solution of (0.0.1) where the free boundary condition holds
in a pointwise sense and not in integral one as in the case of weak distributional
solutions. Anyhow, for these weak solutions the proof of the regularity of the free
boundary in a neighborhood of every point where it is flat, is similar to the one that
can be fond for distributional solutions in the case L = ∆ in [4].
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On the other hand, we prove that the distributional solutions are weak solutions
in this pointwise sense. Therefore, the results can also by applied to the distribu-
tional solutions. In this last case, the results turn out to be stronger since, as in the
case of uniformly elliptic equations, it is proved in this thesis that the free bound-
ary of distributional solution is flat at almost every point (respect to the N − 1
dimensional Hausdorff measure).

As was mentioned before, in this thesis we apply the regularity results to solutions
of the three problems of interest in applications. For the problem of jets and of
optimal design we prove that the solutions are distributional solutions of the problem
(0.0.1). Therefore, in these two applications we obtain the C1,α regularity up to zero
N − 1 Hausdorff measure. In the case of dimension 2, we prove that there are no
singularities.

In what follows, we will describe in details the three problems studied in this
thesis.

1. The minimization problem and weak solutions

In the first part of the thesis we study the following minimization problem: For
Ω a smooth bounded domain in RN and ϕ0 a nonnegative function with ϕ0 ∈ L∞(Ω)
and

∫
Ω

G(|∇ϕ0|) dx < ∞, we consider the problem of minimizing the functional,

(0.1.3) J (u) =

∫

Ω

G(|∇u|) + λχ{u>0} dx

in the class of functions

K =
{

v ∈ W 1,G(Ω) : v = ϕ0 on ∂Ω
}

.

This minimization problem has been widely studied for different functions G. In
fact, the first paper in which this problem was studied is [4]. The authors considered
the case G(t) = t2. They proved that minimizers are weak solutions to the free
boundary problem,

(0.1.4)

{
∆u = 0 in Ω ∩ {u > 0}
u = 0, |∇u| =

√
λ on Ω ∩ ∂{u > 0}

and proved the Lipschitz regularity of the solutions and the C1,α regularity of their
free boundaries (Ω ∩ ∂{u > 0}) locally around HN−1 almost every point on
Ω ∩ ∂{u > 0}.

The main results in Chapter 2 are the following:
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Theorem 0.1.5. If g satisfies (0.0.2), there exists a minimizer of J in K and
any minimizer u is nonnegative and belongs to C0,1

loc (Ω). Moreover, for any domain
D ⊂⊂ Ω containing a free boundary point, the Lipschitz constant of u in D is
controlled in terms of N, g0, δ, dist(D, ∂Ω) and λ.

We also prove that Lu = 0 in the set {u > 0} and that {u > 0} has finite
perimeter locally in Ω. As usual, we define the reduced boundary by ∂red{u > 0} :=
{x ∈ Ω ∩ ∂{u > 0} / |νu(x)| = 1}, where νu(x) is the unit outer normal in the
measure theoretic sense (see Chapter 1), when it exists, and νu(x) = 0 otherwise.
Then, we prove that HN−1(∂{u > 0} \ ∂red{u > 0}) = 0.

We also prove that minimizers have an asymptotic development near any point
in their reduced free boundary. Namely,

Theorem 0.1.6. Let u be a minimizer, then for every x0 ∈ ∂red{u > 0},
(0.1.7) u(x) = λ∗〈x− x0, ν(x0)〉− + o(|x− x0|) as x → x0

where λ∗ is such that g(λ∗)λ∗−G(λ∗) = λ.
(
Here 〈·, ·〉 denotes the scalar product in

IRN and v− = −min(v, 0)
)
.

So that, in a weak sense minimizers satisfy,

(0.1.8)

{
Lu = 0 in {u > 0},
u = 0, |∇u| = λ∗ on Ω ∩ ∂{u > 0}.

These results suggest that we consider weak solutions of the problem (0.1.8). We
give two different definitions of weak solution (Definition 2.6.1 and Definition 2.6.2).
Minimizers of the functional J verify both definitions of weak solution. The main
difference between these two definitions is that for functions satisfying Definition
2.6.1 we have that HN−1(∂{u > 0} \ ∂red{u > 0}) = 0, whereas for functions
satisfying Definition 2.6.2 we may have ∂red{u > 0} = ∅. Definition 2.6.2 is more
suitable for limits of singular perturbation problems.

We prove the following theorem,

Theorem 0.1.9. Suppose that g satisfies (0.0.2). Let u be a weak solution. Then,
HN−1 almost every point in the reduced free boundary ∂red{u > 0} has a neighborhood
where the free boundary is a C1,α surface. Moreover, if u is a weak solution according
to Definition 2.6.1, the remainder of the free boundary has HN−1− measure zero,
and if u is a minimizer, then the whole reduced free boundary is regular.

We point out that we prove that if u is a weak solution, the free boundary is a C1,α

surface in a neighborhood of every point where u has the asymptotic development
(0.1.7) for some unit vector ν. We prove that this is the case for every point in the
reduced free boundary when u is a minimizer (see Theorem 2.5.5).

We also improve the regularity result for the case N = 2, for a subclass of
functions satisfying (0.0.2). We prove that, in this case, the whole free boundary is
regular.
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Full regularity of the free boundary in dimension 2 was prove in [4] and [5], and
in [12] if 2− δ ≤ p < ∞ for a small δ > 0.

We prove the following,

Theorem 0.1.10. Let N = 2, g satisfying conditions (0.0.2) and (2.7.57) and
u ∈ K be a minimizer of (2.0.1). Then ∂{u > 0} is a C1,α surface locally in Ω.

2. The shape optimization problem

We study, as a second application, an optimization problem. We begin with a
few historical remarks on this problem. In the paper [2], Aguilera, Alt and Caffarelli
study an optimal design problem with a volume constrain. The authors prove the
regularity of minimizers by introducing a penalization term in the energy functional
(the Dirichlet integral) and minimizing without the volume constrain. The steps
that they follow are the following. First, the authors observe that, for fixed values
of the penalization parameter, the penalized functional is very similar to the one
considered in the paper [4], then the regularity results for minimizers of the penalized
problem follow almost without change as in [4]. Finally, they prove that for small
values of the penalization parameter, the constrained volume is attained. In this
way, all the regularity results apply to the solution of the optimal design problem.

This method has been applied to other problems with similar success. See for
instance, [3, 16, 19, 23], where the differential equation satisfied by the minimizers
is nondegenerate, uniformly elliptic and [15], where the equation involved may be
degenerate or singular elliptic, but it still has the property of being homogeneous.

In Chapter 3 we show that the same kind of results can be obtained if we study
a problem such that the differential equation satisfied by the minimizers is nonlinear
degenerate or singular, and possibly non homogeneous. More precisely, the operator

here has the form Lu = div
(
g(|∇u|) ∇u

|∇u|

)
where g satisfies the conditions (0.0.2).

We give now, more precisely the description of the problem that we study.

Take Ω a smooth bounded domain in RN and ϕ0 ∈ W 1,G(Ω), a Dirichlet datum,
with ϕ0 ≥ c0 > 0 in Ā, where A is a nonempty relatively open subset of ∂Ω such
that A ∩ ∂Ω is C2. Here W 1,G(Ω) is a Sobolev-Orlicz space (see Chapter 1). Let

Kα = {u ∈ W 1,G(Ω) / |{u > 0}| = α, u = ϕ0 on ∂Ω}.
Our problem is to minimize in Kα, the functional J (u) =

∫
Ω

G(|∇u|) dx , with
g = G′ satisfying (0.0.2).

One of the difficulties of these kind of problems is to get regularity results for
the minimizers, since it is hard to make enough volume preserving perturbations
without the previous knowledge of the regularity of ∂{u > 0}.

In order to solve our original problem, in a way that allows us to perform non
volume preserving perturbations, we follow the idea of [2] and consider instead the
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following penalized problem: We let

K = {u ∈ W 1,G(Ω) / u = ϕ0 on ∂Ω}
and

(0.2.11) Jε(u) =

∫

Ω

G(|∇u|) dx + Fε(|{u > 0}|),

where

Fε(s) =

{
ε(s− α) if s < α
1
ε
(s− α) if s ≥ α.

Then, the penalized problem is

(Pε) Find uε ∈ K such that Jε(uε) = inf
v∈K

Jε(v).

In order to prove the existence of minimizers we use some compact immersion
theorems in Sobolev-Orlicz spaces, and the result follows easily by direct minimiza-
tion. The regularity of the minimizers and of their free boundaries ∂{uε > 0} follows
by showing that any minimizer uε is a solution of the following free boundary prob-
lem, 



Luε = 0 in {uε > 0} ∩ Ω,

uε = 0,
∂uε

∂ν
= λε on ∂{uε > 0} ∩ Ω,

in the sense of Definition 2.6.1, where λε is a positive constant.

The properties of the definition of weak solution are not difficult to establish
since the minimization problem studied in Chapter 2 is very similar to (Pε). The
only difference is that J is linear in |{u > 0}| and here the term Fε is piecewise
linear and zero at α.

With these results we have that the free boundary is a C1,β surface in a neigh-
borhood of HN−1− almost every point (see Corollary 2.7.56 in Chapter 2).

We also improve the regularity result in the case N = 2, for a subclass of
functions satisfying (0.0.2). As in Chapter 2, we prove that, in this case, the whole
free boundary is regular. Here we have to deal with the non homogeneity and the
penalization term at the same time. In the first case we proceed as in Chapter 2,
and in order to deal with the penalization term, we take ideas from [19].

As in [2], the reason why this penalization method is so useful is that there is
no need to pass to the limit in the penalization parameter ε for which uniform, in
ε, regularity estimates would be needed. In fact, we show that for small values of
ε the right volume is already attained. This is, |{uε > 0}| = α for ε small. This is
the step where the proof parts from previous work on similar problems, since here
we may not have the homogeneity of the function g (see Lemma 3.2.6).

Finally, the fact that, for small ε, any minimizer of Jε satisfies |{uε > 0}| = α
implies that any minimizer of our original optimization problem is also a minimizer
of Jε, so that it is locally Lipschitz continuous with smooth free boundary.
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3. The singular perturbation problem

We study, as a third application the following singular perturbation problem:

For any ε > 0, take uε a solution of,

(Pε) Luε = βε(u
ε), uε ≥ 0.

A solution to (Pε) is a function uε ∈ W 1,G(Ω) ∩ L∞(Ω) such that

(0.3.12)

∫

Ω

g(|∇uε|) ∇uε

|∇uε|∇ϕdx = −
∫

Ω

ϕβε(u
ε) dx

for every ϕ ∈ C∞
0 (Ω).

Here βε(s) = 1
ε
β

(
s
ε

)
, for β ∈ Lip(R), positive in (0, 1) and zero outside [0, 1].

We call M =
∫ 1

0
β(s) ds.

We are interested in studying the uniform properties of solutions, and limit
problem, as ε → 0. The idea is to prove that, for every sequence εn → 0, there
exists a subsequence εnk

and a limit function u such that u = lim uεnk and u is a
weak solution of the free boundary problem (0.1.8) for some constant λ∗ depending
on g and M .

The idea of passing to the limit in this singular perturbation problems in the
evolution case was first proposed by Zeldovich and Frank-Kamenetski in 1938, [24].
However, a rigorous mathematical analysis of the limiting process was not performed
until 1990, when Berestycki, Caffarelli and Nirenberg studied the case of travelling
waves (see [6]). Next, in [9] the general evolution problem in the one phase case was
analyzed.

More precisely, in [6] the authors consider a uniformly bounded family of solu-
tions of

(0.3.13) Luε = βε(u
ε) in Ω

where Lu =
∑

aijuxixj
+

∑
biuxi

+ cu is a linear uniformly elliptic operator with
smooth coefficients. The authors study the limit as ε → 0. They prove that for
any sequence εn → 0 there exists a subsequence εnk

and a limit function u which is
Lipschitz and a solution to the following free boundary problem,

(0.3.14)

{
Lu = 0 in Ω ∩ {u > 0},∑

aijuxi
ηj =

√
2M on Ω ∩ ∂{u > 0}

where η is the inward normal to ∂{u > 0}.
In that work the authors prove that the free boundary condition it is satisfied

on any portion of the free boundary where it is smooth.

On the other hand, in the papers [7] and [8] Caffarelli proved that the viscosity
solutions of (0.3.14) with L = ∆ have C1,α free boundaries around points where
they are flat. By using this theory, regularity results of the free boundary for the
limit u = lim uε were obtained in the case L = ∆ in [20].
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More recently, the nonlinear elliptic case of the p–laplacian was considered in
[11]. The authors study the problem (Pε) when the operator L is the p–laplacian
(i.e g(t) = tp−1). As in the uniformly elliptic case, they find for a uniformly bounded
family of solutions uε, uniform in ε Lipschitz estimates and proved that the limit of

uε is a viscosity solution of (0.0.1) for L = ∆p and λ∗ =
(

p
p−1

M
)1/p

.

In that work the authors do not obtain any regularity of the free boundary since
there is no regularity theory for viscosity solutions in the degenerate or singular
case.

In this chapter, for our problem Pε, we first prove the uniform Lipschitz conti-
nuity,

Theorem 0.3.15. Suppose that g satisfies condition (0.0.2). Let uε be a solution
of

Luε = βε(u
ε) in Ω,

with ‖uε‖L∞(Ω) ≤ L. Then, for Ω′ ⊂⊂ Ω we have,

|∇uε(x)| ≤ C in Ω′

with C = C(N, δ, g0, L, ‖β‖∞, g(1), dist(Ω′, ∂Ω)), if ε ≤ ε0(Ω, Ω′).

And with this estimate we have, via a subsequence that there exists a limit
function u.

The next step, is to prove that the function u is a weak solution in the sense
of definition 2.6.2 of Chapter 2 of the free boundary problem (0.0.1) for a constant
λ∗ depending on g and M . To this end, we prove that that we have an asymptotic
development of u at any point in the reduced free boundary.

At this point we find several technical difficulties associated to the loss of ho-
mogeneity of the operator L and of the fact that we are working with the Orlicz
spaces. For example, in order to prove that Lu = 0 in {u > 0} we have to prove
that ∇uε → ∇u in almost every point. This is obtained by proving the convergence
in Lg0+1.

At another point, we need to add the following hypothesis over g: There exist
−1 < α1 ≤ α2 such that for all s, t ≥ 0 we have that,

(0.3.16) g′(ts) ≥ min{sα1 , sα2}g′(t).

Thus, all the results proved in in this chapter hold when moreover, g′ satisfies
condition (0.3.16).

Finally we prove,

Theorem 0.3.17. Let uεj be a solution to (Pεj
) in a domain Ω ⊂ RN such that

uεj → u uniformly on compact subsets of Ω and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0}
be such that ∂{u > 0} has an inward unit normal η at x0 in the measure theoretic
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sense, and suppose that u is non-degenerate at x0. Under these assumptions, we
have

u(x) = Φ−1(M)〈x− x0, η)〉+ + o(|x− x0|).

Finally, we can apply the theory developed in Chapter 2. We have that, u is a
weak solution in the sense of Definition 2.6.2 of the free boundary problem.

Thus, we have the following,

Theorem 0.3.18. Suppose that g satisfies (0.0.2) and (0.3.16). Let uεj be a
solution of (Pεj

) in a domain Ω ⊂ RN such that uεj → u uniformly in compact
subsets of Ω as εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0}, such that there is an inward
unit normal η in the measure theoretic sense at x0. Suppose that u is uniformly
non-degenerate at the free boundary in a neighborhood of x0 (see Definition 4.3.1).
Then, there exists r > 0 such that Br(x0) ∩ ∂{u > 0} is a C1,α surface.

4. Notation

Throughout the thesis N will note the dimension and,

Br(x) = {x ∈ RN , |x− x0| < r},
B+

r (x) = {x ∈ RN , xN > 0, |x− x0| < r},
B−

r (x) = {x ∈ RN , xN < 0, |x− x0| < r}.

For v, w ∈ RN , 〈v, w〉 notes the standard scalar product.

For a scalar function f , f+ = max(f, 0) and f− = max(−f, 0).

For the function G defined in Chapter 1, we denote,

g(t) = G′(t),

F (t) = g(t)/t,

Φ(t) = g(t)t−G(t),

A(p) = F (|p|)p for p ∈ RN ,

aij =
∂Ai

∂pj

for 1 ≤ i, j ≤ N.

5. Outline of the thesis

Outline of Chapter 1. Chapter 1 is organized as follows: In Section 1 we give
some properties of the function g and define the Orlicz and Sobolev-Orlicz spaces,
and prove some inclusion Theorems. These spaces will be used to prove existence
of minimizers.
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In Section 2 we state some real analytic properties for functions with finite∫
Ω

G(|∇u|) dx (generalization of Poincaré’s inequality and Morrey’s Theorem). Then,
we state some properties of solutions, subsolution and supersolutions of Lv = 0; Har-
nack inequality, C1,α bounds, comparison principle, strong maximum principle and
an important inequality that will be use throughout the thesis (Theorem 1.2.38).
We also prove a Cacciopoli type inequality valid for these functions (Lemma 1.2.12).
Finally, we show an explicit family of subsolutions of Lu = 0 (Lemma 1.2.47), that
will be used as a barrier at many points of this thesis.

In Section 3 we give the definition of Hausdorff measure and Hausdorff distance.

In Section 4 we state a Representation Theorem that will be used in this thesis.
We also give the definition of sets of locally finite perimeter, and state some of their
properties.

In section 5 we prove a result of L− solutions with linear growth.

In section 6 we prove some results of limits of blow up sequences.

In section 7 we give some results of the Schwartz symmetrized function.

Outline of Chapter 2. In Section 1 we prove the existence of minimizers of
(0.1.3) and that they are subsolutions of Lv = 0. We also prove that the minimizers
are nonnegative. The existence of minimizers, while standard in its form, makes
strong use of the Orlicz spaces and the second inequality in condition (0.0.2).

In Section 2 we prove that any local minimizer u is Hölder continuous (Theorem
2.2.1), Lu = 0 in {u > 0} (Lemma 2.2.12) and finally we prove the local Lipschitz
continuity (Theorem 2.2.25). The proof of the Hölder continuity of the minimizers
is a key step in our analysis and is one of the main proofs in this paper in which all
the properties of the function G come into play through the inequality of Theorem
1.2.38.

In Section 3 we prove that minimizers satisfy a nondegeneracy property near the
free boundary Ω ∩ ∂{u > 0}. We also prove that the sets {u > 0} and {u = 0}
have locally uniform positive density at the free boundary (Theorem 2.3.5). In this
theorem we make strong use of the properties of G and the corresponding Orlicz
space.

In Section 4 we prove that the free boundary has finite N − 1 dimensional Haus-
dorff measure and we obtain a representation theorem for minimizers (Theorem
2.4.5). This implies that {u > 0} has locally finite perimeter in Ω. Finally we prove
that HN−1(∂{u > 0} \ ∂red{u > 0}) = 0.

In Section 5 we give some properties of blow up sequences of minimizers. We
prove that any limit of a blow up sequence of minimizers is again a minimizer
(Lemma 2.5.1) and we finally prove the asymptotic development of minimizers at
every point in their reduced free boundary (Theorem 2.5.5).

In Section 6 we give the definition of weak solution (Definition 2.6.1 and Defini-
tion 2.6.2). We show that most of the properties that we proved for minimizers also
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hold for weak solutions according to Definition 2.6.1, and we mention the differences
between the two definitions (Remark 2.6.8 and Remark 2.6.21).

In Section 7 we prove the regularity of the free boundary of weak solutions near
“flat” free boundary points (Theorem 2.7.54) and then, we deduce the regularity
of the free boundary of weak solutions near almost every point in their reduced
free boundary and, in the case of minimizers, we obtain the regularity of the whole
reduced free boundary (Theorem 2.7.56). We also prove for a certain class of func-
tions satisfying (0.0.2) that, in the case N = 2, the whole free boundary is regular
(Corollary 2.7.66).

Outline of Chapter 3. Chapter 3 is organized as follows: In Section 1 we begin
our analysis of problem (Pε) for fixed ε. First we prove the existence of a minimizer,
the local Lipschitz regularity and nondegeneracy near the free boundary (Theorem
3.1.2) and we prove that minimizers are weak solutions of a free boundary problem as
defined in Chapter 2 (Remark 3.1.14). Then we have that for HN−1− almost every
free boundary point, the free boundary is locally C1,β surface (Corollary 3.1.15). We
prove that, for the case N = 2 and for a subclass of functions satisfying (0.0.2), the
whole free boundary is regular (Corollary 3.1.22).

In Section 2 we prove that for small values of ε we recover our original optimiza-
tion problem.

Outline of Chapter 4. Chapter 4 is organized as follows: In Section 1 we
prove the uniform Lipschitz continuity of solutions of (Pε) (Corollary 4.1.8).

In Section 2 we prove that if u is a limiting function, then Lu is a Radon measure
supported on the free boundary (Theorem 4.2.1). Then we prove Proposition 4.2.18,
that says that if u is a half plane, then the slope is 0 or Φ−1(M), and Proposition
4.2.20 that says that if u is a sum of two half plane, then the slopes must be equal
and at most Φ−1(M).

In Section 3 we prove the asymptotic development of u (Theorem 4.3.3).

In Section 4 we apply the results of Chapter 2 to prove the regularity of the free
boundary (Theorem 4.4.7).



CHAPTER 1

Preliminaries

This Chapter we will state some results that will be used throughout the thesis.
We also prove some new facts that are going to be needed in many proofs. From
now on we will assume that the function g satisfies condition (0.0.2).

1. Properties of the function G

In Section 1 we state and prove some properties of the function G and its deriv-
ative g that are used throughout the thesis. We give the definition of Orlicz space
and Sobolev-Orlicz space, and some properties of these spaces. All these results can
be found in [1].

Lemma 1.1.1. The function g satisfies the following properties,

(g1) min{sδ, sg0}g(t) ≤ g(st) ≤ max{sδ, sg0}g(t)

(g2) G is convex and C2

(g3)
tg(t)

1 + g0

≤ G(t) ≤ tg(t) ∀ t ≥ 0

Proof. For the proofs of (g1)–(g3) see [22]. ¤

Remark 1.1.2. By (g1) and (g3) we have a similar inequality for G,

(G1) min{sδ+1, sg0+1} G(t)

1 + g0

≤ G(st) ≤ (1 + g0) max{sδ+1, sg0+1}G(t)

and, then using the convexity of G and this last inequality we have,

(G2) G(a + b) ≤ 2g0(1 + g0)(G(a) + G(b)) ∀ a, b > 0.

As g is strictly increasing we can define g−1. Now we prove that g−1 satisfies a
condition similar to (0.0.2). That is,

Lemma 1.1.3. The function g−1 satisfies the inequalities

(1.1.4)
1

g0

≤ t(g−1)
′
(t)

g−1(t)
≤ 1

δ
∀t > 0.

Moreover, g−1 satisfies,

(g̃1) min{s1/δ, s1/g0}g−1(t) ≤ g−1(st) ≤ max{s1/δ, s1/g0}g−1(t)

29
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and if G̃ is such that G̃′(t) = g−1(t) then,

(g̃2)
δtg−1(t)

1 + δ
≤ G̃(t) ≤ tg−1(t) ∀ t ≥ 0

(G̃1)
(1 + δ)

δ
min{s1+1/δ, s1+1/g0}G̃(t) ≤ G̃(st) ≤ δ

1 + δ
max{s1+1/δ, s1+1/g0}G̃(t)

(g̃3) ab ≤ εG(a) + C(ε)G̃(b) ∀ a, b > 0 and ε > 0 small

(g̃4) G̃(g(t)) ≤ g0G(t)

Proof. Let s = g−1(t), then

t(g−1)
′
(t)

g−1(t)
=

g(s)

g′(s)s

and using (0.0.2) we have the desired inequalities.

Now (g̃1) follows by property (g1) applied to g−1, and (g̃2) by property (g3).

(G̃1) follows by g̃1 and g̃2.

By Young’s inequality we have that ab ≤ G(a) + G̃(b) and then, for 0 < ε′ < 1 such
that ε = (1 + g0)ε

′(1+δ),

ε′a
b

ε′
≤ G(ε′a) + G̃

( b

ε′

)
≤ εG(a) + C(ε)G̃(b).

In the last inequality we have used (G1) and (G̃1). Thus (g̃3) follows.

As g is strictly increasing we have that G̃(g(t)) + G(t) = tg(t) (see equation (5),
Section 8.2 in [1]) and applying (g3), we get

G̃(g(t)) = tg(t)−G(t) ≤ g0G(t).

Thus, (g̃4) follows. ¤

In order to prove the existence of minimizers we will use some compact embed-
ding results (all these results are included in [1]). To this end, we have to define
some Orlicz and Orlicz-Sobolev spaces. We recall that the functional

‖u‖G = inf
{

k > 0 :

∫

Ω

G
( |u(x)|

k

)
dx ≤ 1

}

is a norm in the Orlicz space LG(Ω) which is the linear hull of the Orlicz class

KG(Ω) =
{

u measurable :

∫

Ω

G(|u|) dx < ∞
}

.

Observe that this set is convex, since G is also convex (property (g2)). The Orlicz-
Sobolev space W 1,G(Ω) consists of those functions in LG(Ω) whose distributional
derivatives ∇u also belong to LG(Ω). We have that ‖u‖W 1,G = max{‖u‖G, ‖∇u‖G}
is a norm for this space.
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Lemma 1.1.5. There exists a constant C = C(g0, δ) such that,

‖u‖G ≤ C max
{( ∫

Ω

G(|u|) dx
)1/(δ+1)

,
( ∫

Ω

G(|u|) dx
)1/(g0+1)}

Proof. ¤

If

∫

Ω

G(|u|) dx = 0 then u = 0 a.e and the result follows. If
∫
Ω

G(|u|) dx 6= 0,

take k = max
{(

2(1 + g0)
∫
Ω

G(|u|) dx
)1/(δ+1)

,
(
2(1 + g0)

∫
Ω

G(|u|) dx
)1/(g0+1)}

. By

(G1) we have,
∫

Ω

G
( |u|

k

)
dx ≤ (1 + g0) max

{ 1

kδ+1
,

1

kg0+1

} ∫

Ω

G(|u|) dx ≤ 1

therefore ‖u‖G ≤ k and the result follows.

Definition 1.1.6. A function G is said to satisfy a global ∆2− condition if there
exists a positive constant k such that for every t ≥ 0,

G(2t) ≤ kG(t).

Similarly G is said to satisfy a ∆2− condition near infinity if there exists t0 > 0
such that

G(2t) ≤ kG(t)

holds for all t ≥ t0.

Definition 1.1.7. We call a pair (G, Ω) ∆− regular if either,

1. G satisfies a global ∆2− condition, or
2. G satisfies a ∆2− condition near infinity and Ω has finite volume.

Theorem 1.1.8. LG̃(Ω) is the dual of LG(Ω). Moreover, LG(Ω) and W 1,G(Ω)
are reflexive.

Proof. As G satisfies property (G1) and G̃ property (G̃1), we have that both

pairs (G, Ω) and (G̃, Ω) are ∆− regular. Therefore we are in the hypothesis of
Theorem 8.19 and Theorem 8.28 in [1], and the result follows. ¤

Theorem 1.1.9. LG(Ω) ↪→ L1+δ(Ω) continuously.

Proof. By theorem 8.12 of [1] we only have to prove that G dominates t1+δ

near infinity. That is, there exits constants k, t0 such that t1+δ ≤ G(kt) ∀t ≥ t0.
But this is true by property (G1). So the result follows. ¤
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2. Properties of L- solutions and subsolutions

In Section 2, we state some real analytic properties for functions with finite∫
Ω

G(|∇u|) dx like a form of Poincaré inequality, a Cacciopoli type inequality, the
Hölder continuity of functions in a kind of Morrey space, properties of weak solutions
to Lu = 0 and a comparison principle for sub and supersolutions. We also prove
that if u is a continuous function which is an L solution in the set {u > 0} then is a
L− subsolution. At the end of this section we give an explicit family of subsolutions
and supersolutions in an annulus. All these properties will be thoroughly used
throughout the thesis. Some of them have been proved in [22]. We only write down
the proof of statements not contained in [22].

The following result is a Poincaré type inequality.

Lemma 1.2.10. If u ∈ W 1,1(Ω) with u = 0 on ∂Ω and
∫

Ω
G(|∇u|) dx is finite,

then ∫

Ω

G
( |u|

R

)
dx ≤

∫

Ω

G(|∇u|) dx for R = diamΩ.

Proof. See Lemma 2.2 of [22]. ¤

Now we state a generalization of Morrey’s Theorem. Let

[u]0,α,Ω = sup
x,y∈Ω

x6=y

|u(x)− u(y)|
|x− y|α .

We have the following result,

Lemma 1.2.11. Let u ∈ L∞(Ω) such that for some 0 < α < 1 and r0 > 0,∫

Br

G(|∇u|) dx ≤ CrN+α−1 ∀ 0 < r ≤ r0

with Br ⊂ Ω. Then, u ∈ Cα(Ω) and there exists a constant C1 = C1(C, α, N, g0, G(1))
such that [u]0,α,Ω ≤ C1.

Proof. The proof of this lemma is included in the proof of Theorem 1.7 (pag.
346) in [22]. ¤

The next lemma is a Cacciopoli type inequality for subsolutions of Lv = 0.

Lemma 1.2.12. Let v be a nonnegative weak subsolution of Lv = 0. That is,

(1.2.13) 0 ≥
∫

Ω

g(|∇v|) ∇v

|∇v|∇φ dx ∀ φ ∈ C∞
0 (Ω) such that φ ≥ 0.

Then, there exists C = C(N, δ, g0) > 0 such that∫

Br

G(|∇v|) dx ≤ C

∫

B 3
2 r

G
( |v|

r

)
dx

for all r > 0, such that B 3
2
r ⊂ Ω.



2. PROPERTIES OF L- SOLUTIONS AND SUBSOLUTIONS 33

Proof. Let φ = vηg0+1, where 0 ≤ η ∈ C1
0(B 3

2
r), with |∇η| ≤ C

r
, η ≤ 1,

η ≡ 1 in Br. Then, ∇φ = ηg0+1∇v + v∇η(g0 + 1)ηg0 and replacing in (1.2.13) we
have,

0 ≥
∫

B 3
2 r

g(|∇v|)|∇v|ηg0+1 dx + (g0 + 1)

∫

B 3
2 r

g(|∇v|) ∇v

|∇v|∇η v ηg0 dx.

Then, ∫

B 3
2 r

g(|∇v|)|∇v|ηg0+1 dx ≤ (g0 + 1)

∫

B 3
2 r

g(|∇v|)|∇η||v|ηg0 dx,

By property (g̃3) we have,

g(|∇v|)|∇η||v|ηg0 ≤ εG̃(g(|∇v|)ηg0) + C(ε)G(|∇η||v|).
Then, by property (G̃1) and as η ≤ 1, we have,

G̃(g(|∇v|)ηg0) ≤ Cη
g0

(
1+ 1

g0

)
G̃(g(|∇v|)) ≤ Cη1+g0G(|∇v|),

where the last inequality holds by (g̃4). Summing up, and using property (g3), we
obtain∫

B 3
2 r

G(|∇v|)ηg0+1 dx ≤ Cε

∫

B 3
2 r

G(|∇v|)ηg0+1 dx + C(ε)

∫

B 3
2 r

G(|∇η||v|) dx,

and if we take ε small and use the bound for |∇η| we have,
∫

B 3
2 r

G(|∇v|)ηg0+1 dx ≤ C

∫

B 3
2 r

G(|∇η||v|) dx ≤ C

∫

B 3
2 r

G
( |v|

r

)
dx.

Finally, if we use that η ≡ 1 in Br the result follows.

¤

The following lemmas are a generalization of the weak Harnack and Harnack
inequality, and the proofs are all include in [22],

Lemma 1.2.14. Let R > 0, u ∈ L∞ ∩W 1,G(BR) and such that Lu ≥ 0 in BR.
Set m = 2N(g0 + 1). Then for s > 0, σ ∈ (0, 1), there is a constant C depending on
g0 and N such that

sup
BσR

u+ ≤ C

(1− σ)m/2s

(
R−N

∫

BR

(u+)s dx
)1/s

.

Lemma 1.2.15. Let R ≤ 1, 0 ≤ u ∈ W 1,G(BR) and such that Lu ≤ 0 in BR.
Then there exist constants p0 and C depending on g0, δ and N such that

inf
BR/2

u ≥ C
(
R−N

∫

BR

(u+)p0 dx
)1/p0

.

If we choose s = p0 we infer the usual Harnack inequality,
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Theorem 1.2.16. Let R ≤ 1, 0 ≤ u ∈ W 1,G(BR) and such that Lu = 0 in BR.
Then there exist a constant C depending on g0, δ and N such that

sup
BR/2

u ≤ C inf
BR/2

u.

A consequence of the weak Harnack inequalities is the following strong maximum
and minimum principles,

Theorem 1.2.17. Let u ∈ W 1,G(Ω),

1. if u satisfy Lu ≥ 0. And if, for some ball B ⊂⊂ Ω we have,

sup
B

u = sup
Ω

u ≥ 0,

or
2. if u satisfy Lu ≤ 0. And if, for some ball B ⊂⊂ Ω we have,

inf
B

u = inf
Ω

u ≥ 0,

then the function u must be constant in Ω. Moreover, if u is continuous this implies
that the strong classical maximum and minimum principle hold.

Proof. First, (1) follows as in Theorem 8.19 of [17] by using Lemma 1.2.15.
Finally (2) follow by replacing u by −u. ¤

Lemma 1.2.18. Let v be a weak solution of Lv = 0, that is
∫

Ω

g(|∇u|) ∇v

|∇v|∇φ dx = 0 ∀ φ ∈ C∞
0 (Ω).

Then v ∈ C1,α(Ω) for some α = α(N, δ, g0). Moreover, there exists positive constant
C = C(N, δ, g0) such that for every ball Br ⊂ Ω,

(1) sup
Br/2

G(|∇v|) ≤ C

rN

∫

B 2
3 r

G(|∇v|) dx

(2) sup
Br/2

|∇v| ≤ C

r
sup
Br

|v|

For every β ∈ (0, N), there exists C = C(N, β, δ, g0, ‖v‖L∞( 2
3
r)) > 0 such that,

(3)

∫

Br/2

G(|∇v|) ≤ Crβ.

If v = u on ∂Br, with u ∈ W 1,G(Br) then ,

(4)

∫

Br

G(|∇v|) ≤ C

∫

Br

(1 + G(|∇u|)).
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Proof. For the proof of (1) and (4) see Lemma 5.1 of [22] and for the proof
of (3) see (5.9) page 346 of [22]. Let us prove (2). By using (1) and then Lemma
1.2.12 we have,

sup
Br/2

G(|∇v|) ≤ C

rN

∫

B 2
3 r

G(|∇v|) dx ≤ C

rN

∫

Br

G
( |v|

r

)
dx ≤ G

(C

r
‖v‖L∞(Br)

)
.

Then

|∇v(y0)| ≤ C

r
‖v‖L∞(Br) ∀y0 ∈ Br/2

and the result follows. ¤

We finally state the regularity result of [22] for weak solutions of Lu = 0.

Theorem 1.2.19. Any u ∈ W 1,G(Ω) solution of Lu = 0 in Ω, is in C1,β(Ω) for
some positive β depending on δ, g0, N and

‖u‖1,β;Ω′ ≤ C(δ, g0, N, dist(Ω′, ∂Ω), ‖u‖L∞(Ω))

for open Ω′ ⊂⊂ Ω.

Theorem 1.2.20. Let Ω a bounded domain with C1,α boundary, φ ∈ C1,α(∂Ω)
with ‖φ‖C1,α ≤ a. Then any u ∈ W 1,G(Ω) solution of Lu = 0 in Ω, u = φ on ∂Ω, is
in C1,β(Ω̄) for some positive β depending on δ, g0, N, α; moreover

‖u‖1,β,Ω̄ ≤ C(δ, g0, N, Ω, a, ‖u‖L∞(Ω)).

Remark 1.2.21. The results that we mentioned before are proved in [22] for
a class of more general operators. We are stating here only the cases that we are
going to use. For example, we also have similar results for the operator Qv(x) =
Lv(x)− f(x) where f ≥ 0. In this case, the inequality in Theorem 1.2.16 holds with
the following version,

sup
BR/2

u ≤ C( inf
BR/2

+‖f‖∞)

with C = C(N, δ, g0), and Theorem 1.2.19 also holds, but with a constant C =
C(N, δ, g0, g(1), ‖f‖∞, dist(Ω′, ∂Ω)).

Now, we will give some properties of subsolutions and solutions of

(1.2.22) Lv = div(A(∇v)) = 0,

where A(p) = g(|p|) p
|p| . First, let us observe that if aij(p) = ∂Ai

∂pj
then,

(1.2.23) aij =
(
g′(|p|)− g(|p|)

|p|
)pipj

|p|2 +
g(|p|)
|p| δij.

Then, for ξ ∈ RN we have,

aijξiξj =
(
g′(|p|)− g(|p|)

|p|
)(p, ξ)2

|p|2 +
g(|p|)
|p| |ξ|

2
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and using (0.0.2), we get

(1.2.24) min{δ, 1}g(|p|)
|p| |ξ|

2 ≤ aijξiξj ≤ max{g0, 1}g(|p|)
|p| |ξ|

2,

which means that the equation Lv = 0 is uniformly elliptic for g(|p|)
|p| bounded and

bounded away from zero.

Remark 1.2.25. Observe that in any ring R = {c ≤ |p| ≤ C}, A(p) satisfies
the natural conditions of Ladyzhenskaya and Ural’tseva and therefore in any open
set contained in {C ≥ |∇u| ≥ c}, u ∈ W 2,1(U) (see Chapter 4 in [18]). Then as aij

is in L∞(R), we can differentiate equation (1.2.22), and we obtain by (1.2.23) that
u satisfies a linear nondivergence uniformly elliptic equation, T u = 0 in U , where

(1.2.26) T v = bij(∇u)Dijv = 0,

(1.2.27) bij(∇u) = δij +
(g′(|∇u|)|∇u|

g(|∇u|) − 1
)DiuDju

|∇u|2 ,

and by (1.2.24) we have that the matrix bij(∇u) is β-elliptic, with
β = max{max{g0, 1}max{1, 1/δ}}.

Lemma 1.2.28. Let u by a solution of (1.2.22) in an open set U , and such that
c ≤ |∇u| ≤ C. Then, for any unit vector e the function w = ∂u

∂e
satisfies the

uniformly elliptic equation Di(aij(∇u)Djw) = 0

Proof. By Remark 1.2.25 and Theorem 1.2.19, u ∈ W 2,1(U) ∩ C1,α(U) and
then the result follows as in Section 13.1 in [17]. ¤

Theorem 1.2.29. Let w be a solution to the following uniformly elliptic operator

cijDijw = 0 in Ω

where the coefficients cij ∈ C0(Ω), |cij| ≤ Λ, and with ellipticity constant β. Then,

1. For any 0 < α < 1 and Ω′ ⊂ Ω there exists a constant
C = C(β, α,N, ‖u‖L∞(Ω), dist(Ω′, ∂Ω)) such that

‖w‖C1,α(Ω′) ≤ C.

2. For any q > 1 there exists a constant C = C(β, N, ‖u‖L∞(Ω)) such that,

‖w‖W 2,q(Ω) ≤ C.

Proof. See [17]. ¤

Remark 1.2.30. Suppose that Lu = 0 and |∇u| > c in an open set U . We
have by Theorem 1.2.19 that u ∈ C1,β(U) and by Remark 1.2.30 we also have that
T u = 0. As g ∈ C1 we have that the coefficients cij = bij(∇u) are continuous. So,
we can apply Theorem 1.2.29 to a solution of T w = 0 in U .
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Lemma 1.2.31. Suppose that conditions (0.0.2) are satisfied and suppose that
there exist a constant c such that

(1.2.32) F (t) ≥ c ∀t > 0.

Let u be a bounded weak solution of Lu = 0 in B(4R), with

(1.2.33)

∫

B(4R)

F (|∇u|)(1 + |∇u|)2 dx < ∞,

where F (t) = g(t)/t. Then v = G(|∇u|) is a weak subsolution of Di(bij(∇u)Djv) = 0
in B3R, where bij is defined in (1.2.27).

Proof. See page 1205 in [21]. ¤

Lemma 1.2.34. With the same hypothesis of Lemma 1.2.31, if f is a bounded
function, and u is a solution of Lu = f we have that u ∈ W 2,2(Ω).

Proof. The proof follows as the proof of Lemma 1 in [21] where the authors
considered the case for f = 0. In our case we proceed in a similar way using, as in
[21] ideas from [18], Section 4.5; 17, (4.4).. ¤

Now we prove the comparison principle,

Lemma 1.2.35. Let U be an open subset, u a weak subsolution and w a weak
supersolution of Lu = 0 in U . If w ≥ u on ∂U then, w ≥ u in U . If w is a solution
to Lw = 0 and w = u on ∂U then, w is uniquely determined.

Proof.

0 ≥
∫

U

(
g(|∇u|) ∇u

|∇u| − g(|∇w|) ∇w

|∇w|
)
.∇(u− w)+ dx

=

∫

U∩{u>w}

(
g(|∇u|) ∇u

|∇u| − g(|∇w|) ∇w

|∇w|
)
.∇(u− w) dx

=

∫

U∩{u>w}

∫ 1

0

aij(∇u + (1− t)(∇w −∇u))(uxi
− wxi

)(uxj
− wxj

) dt dx

And using (1.2.24) we have that the right hand side is grater than or equal to

C

∫

U∩{u>w}

∫ 1

0

F (|∇u + (1− t)(∇w −∇u)|)|∇w −∇u|2 dt dx,

where F (t) = g(t)
t

. Now, we take the following subsets of U

S1 = {x ∈ U : |∇u−∇w| ≤ 2|∇u|}, S2 = {x ∈ U : |∇u−∇w| > 2|∇u|}
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Then S1 ∪ S2 = U and

1

2
|∇u| ≤ |∇u + (1− t)(∇w −∇u)| ≤ 3|∇u| in S1 for t ≥ 3

4

(1.2.36)

1

4
|∇u−∇w| ≤ |∇u + (1− t)(∇w −∇u)| ≤ 3|∇u−∇w| in S2 for t ≤ 1

4
.

(1.2.37)

In S1, and for t ≥ 3/4 we have using (1.2.36), that

F (|∇u + (1− t)(∇w −∇u)|) =
g(|∇u + (1− t)(∇w −∇u)|)
|∇u + (1− t)(∇w −∇u)|

≥ g(1
2
|∇u|)

3|∇u| ≥ 1

2g03
F (|∇u|)

where in the last inequality we have used (g1).

In S2, and for t ≤ 1/4 we have using (g3) and then (1.2.37) that,

F (|∇u + (1− t)(∇w −∇u)|)|∇u−∇w|2

≥ G(|∇u + (1− t)(∇w −∇u)|)
|∇u + (1− t)(∇w −∇u)|2 |∇u−∇w|2

≥ G(1
4
|∇u−∇w|)

9|∇u−∇w|2 |∇u−∇w|2 ≥ G(|∇u−∇w|)
4g0+19(1 + g0)

where in the last inequality we have used (G1).

Therefore, we have that

0 ≥ C
( ∫

S1

F (|∇u|)|∇(u− w)+|2 dx +

∫

S2

G(|∇(u− w)+|) dx
)
.

Hence ∇(u − w)+ = 0 in S2 and ∇(u − w)+ = 0, or F (|∇u|) = 0 in S1 in which
case ∇u = 0 and, by the definition of S1, this implies that ∇(u − w) = 0 in S1.
Therefore, ∇(u− w)+ = 0 in U , then (u− w)+ = 0, which implies u ≤ w. ¤

The following inequality will be a key tool in the proof of the Hölder continuity
of minimizers of the problem in Chapter 2. Also, it will be used to prove that in the
optimization problem, we don’t need to pass to the limit with the penalization pa-
rameter. As an observation, we mention that the following result is a generalization
of well known integral inequalities for the p- Laplacian (see, for example, pag.4 in
[10]). Here the difference is that we obtain a unique inequality for any δ and g0, (for
the p-Laplacian the inequalities were separated in two cases p ≥ 2 and 1 < p < 2).

Theorem 1.2.38. Let u ∈ W 1,G(Ω), Br ⊂⊂ Ω and v be a solution of

Lv = 0 in Br, v − u ∈ W 1,G
0 (Br).

then∫

Br

(G(|∇u|)−G(|∇v|)) dx ≥ C
( ∫

A2

G(|∇u−∇v|) dx+

∫

A1

F (|∇u|)|∇u−∇v|2 dx
)
,
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where F (t) = g(t)/t,

A1 = {x ∈ Br : |∇u−∇v| ≤ 2|∇u|} and A2 = {x ∈ Br : |∇u−∇v| > 2|∇u|}
and C = C(g0, δ).

Proof. Let us = su + (1 − s)v. Using the integral form of the mean value
theorem and the fact that v is an L– solution, we have,

I : =

∫

Br

(G(|∇u|)−G(|∇v|)) dx =

∫ 1

0

∫

Br

g(|∇us|) ∇us

|∇us| .∇(u− v) dx ds

=

∫ 1

0

1

s

∫

Br

(
g(|∇us|) ∇us

|∇us| − g(|∇v|) ∇v

|∇v|
)
.∇(us − v) dx ds

=

∫ 1

0

1

s

∫

Br

∫ 1

0

aij(∇us + (1− t)(∇v −∇us))(us
xi
− vxi

)(us
xj
− vxj

) dt dx ds.

And, by (1.2.24) we have that the right hand side is grater than or equal to

C

∫ 1

0

1

s

∫

Br

∫ 1

0

F (|∇us + (1− t)(∇v −∇us)|)|∇v −∇us|2 dt dx ds.

where F was defined in Lemma 1.2.35 and C = C(δ).

Now, we take the following subsets of Br

S1 = {x ∈ Br : |∇us −∇v| ≤ 2|∇us|}, S2 = {x ∈ Br : |∇us −∇v| > 2|∇us|}
Then S1 ∪ S2 = Br and

1

2
|∇us| ≤ |∇us + (1− t)(∇v −∇us)| ≤ 3|∇us| on S1 for t ≥ 3

4

(1.2.39)

1

4
|∇us −∇v| ≤ |∇us + (1− t)(∇v −∇us)| ≤ 3|∇us −∇v| on S2 for t ≤ 1

4
.

(1.2.40)

Proceeding as in Lemma 1.2.35, we get

F (|∇us + (1− t)(∇v −∇us)|) ≥ 1

2g03
F (|∇us|)

in S1 and

F (|∇us + (1− t)(∇v −∇us)|)|∇us −∇v|2 ≥ G(|∇us −∇v|)
4g0+19(1 + g0)

in S2.

Therefore, we have that

I ≥ C
( ∫ 1

0

1

s

∫

S1

F (|∇us|)|∇v −∇us|2 dx ds +

∫ 1

0

1

s

∫

S2

G(|∇us −∇v|) dx ds
)

Now, let

A1 = {x ∈ Br : |∇u−∇v| ≤ 2|∇u|}, A2 = {x ∈ Br : |∇u−∇v| > 2|∇u|},
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then Br = A1 ∪ A2, and

1

2
|∇u| ≤ |∇us| ≤ 3|∇u| on A1 for s ≥ 3

4
(1.2.41)

1

4
|∇u−∇v| ≤ |∇us| ≤ 3|∇u−∇v| on A2 for s ≤ 1

4
.(1.2.42)

Therefore

I ≥ C
( ∫ 1/4

0

1

s

∫

S1∩A2

F (|∇us|)|∇v −∇us|2 dx ds

+

∫ 1

3/4

1

s

∫

S1∩A1

F (|∇us|)|∇v −∇us|2 dx ds

+

∫ 1/4

0

1

s

∫

S2∩A2

G(|∇us −∇v|) dx ds

+

∫ 1

3/4

1

s

∫

S2∩A1

G(|∇us −∇v|) dx ds
)

= I + II + III + IV.

Let us estimate these four terms,

In S1 ∩ A2, for s ≤ 1/4 we have by (1.2.42) and (g1), that

F (|∇us|) ≥ 1

4g03
F (|∇u−∇v|).

Therefore,

I ≥ C

∫ 1/4

0

1

s

∫

S1∩A2

F (|∇u−∇v|)|∇v −∇us|2 dx ds

= C

∫ 1/4

0

s

∫

S1∩A2

F (|∇u−∇v|)|∇v −∇u|2 dx ds

≥ C

∫ 1/4

0

s

∫

S1∩A2

G(|∇u−∇v|) dx ds

where in the last inequality we are using (g3).

In S1 ∩ A1, for s ≥ 3/4 we have by (1.2.41) and (g1), that

F (|∇us|) ≥ 1

2g03
F (|∇u|).

Therefore,

II ≥ C

∫ 1

3/4

s

∫

S1∩A1

F (|∇u|)|∇v −∇u|2 dx ds

≥ C

∫ 1

3/4

∫

S1∩A1

F (|∇u|)|∇v −∇u|2 dx ds.
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In S2 ∩ A2, for s ≤ 1/4 we have by definition of S2, by (1.2.42) and (G1), that

G(|∇us −∇v|) ≥ 1

2g0+1(g0 + 1)
G(|∇u−∇v|),

therefore

III ≥ C

∫ 1/4

0

1

s

∫

S2∩A2

G(|∇u−∇v|) dx ds

≥ C

∫ 1/4

0

s

∫

S2∩A2

G(|∇u−∇v|) dx ds.

In S2 ∩ A1, for s ≥ 3/4 we have, by definition of S2 and by (1.2.41)

(1.2.43) |∇us −∇v| > 2|∇us| ≥ |∇u|
By (g3), using (1.2.43) and the definition of A1 we have,

G(|∇us −∇v|) ≥ 1

g0 + 1
g(|∇us −∇v|)|∇us −∇v| ≥ 1

g0 + 1
g(|∇u|)|∇us −∇v|

=
1

g0 + 1
F (|∇u|)s|∇u−∇v||∇u| ≥ s

2(g0 + 1)
F (|∇u|)|∇u−∇v|2.

Therefore,

IV ≥ C

∫ 1

3/4

∫

S2∩A1

F (|∇u|)|∇u−∇v|2 dx ds.

If we sum I + III, we obtain

I + III ≥
∫ 1/4

0

Cs
( ∫

S1∩A2

G(|∇u−∇v|) dx +

∫

S2∩A2

G(|∇u−∇v|) dx ds
)

= C

∫ 1/4

0

s

∫

A2

G(|∇u−∇v|) dx ds = C

∫

A2

G(|∇u−∇v|) dx

and if we sum II + IV , we obtain

II + IV ≥ C

∫ 3/4

1

( ∫

S1∩A1

F (|∇u|)|∇u−∇v|2 dx

+

∫

S2∩A1

F (|∇u|)|∇u−∇v|2 dx
)

ds = C

∫

A1

F (|∇u|)|∇u−∇v|2 dx.

Therefore,

(1.2.44) I ≥ C
( ∫

A2

G(|∇u−∇v|) dx +

∫

A1

F (|∇u|)|∇u−∇v|2 dx
)
,

where C = C(g0, δ).

¤
Lemma 1.2.45. Let u be a continuous and nonnegative function in IRN , such

that Lu = 0 in {u > 0}. Then u is in W 1,G
loc (Ω) and Λ := Lu is a nonnegative Radon

measure with support in Ω∩ ∂{u > 0} (in particular, u is an L− subsolution in Ω).
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Proof. Since Lu = 0 in Ω ∩ {u > 0}, then u is in C1,α in Ω ∩ {u > 0}. For
s > 0, take v = (u− s)+. Let η ∈ C∞

0 (Ω) with 0 ≤ η ≤ 1. We have,

0 =

∫

Ω

g(|∇u|)
|∇u| ∇u∇(ηg0+1v) dx

=

∫

Ω∩{u>s}
ηg0+1g(|∇u|)|∇u|+ (g0 + 1)

∫

Ω

ηg0 v
g(|∇u|)
|∇u| ∇u∇η dx.

Therefore,

(1.2.46)

∫

Ω∩{u>s}
ηg0+1g(|∇u|)|∇u| dx ≤ (g0 + 1)

∫

Ω∩{u>s}
g(|∇u|) v |η|g0|∇η| dx.

By (g̃3), (G̃1) and (g̃4) we obtain,

g(|∇u|)|η|g0|v||∇η| ≤ εG̃(g(|∇u|)|η|g0) + C(ε)G(|v||∇η|)
≤ Cεηg0+1G̃(g(|∇u|)) + C(ε)G(|v||∇η|)
≤ CεG(|∇u|)ηg0+1 + C(ε)G(|v||∇η|).

Then, using (g3), (1.2.46) and choosing ε small enough, we have that∫

Ω∩{u>s}
ηg0+1G(|∇u|) dx ≤ C

∫

Ω∩{u>s}
G(|v||∇η|) dx ≤ C

∫

Ω

G(|u||∇η|) dx.

Then, letting s → 0 yields the first assertion.

To prove the second part, take ξ ∈ C∞
0 (Ω) nonnegative, ε > 0 and

v = max
(

min
(
1, 2− u

ε

)
, 0

)
. As Lu = 0 in {u > 0} and using that supp(1− v) ⊂

{u > ε}, we have that,
∫

Ω

g(|∇u|)
|∇u| ∇u∇ξ dx

=

∫

Ω

g(|∇u|)
|∇u| ∇u∇(

ξ(1− v)
)
dx +

∫

Ω

g(|∇u|)
|∇u| ∇u∇(ξv) dx

=

∫

Ω

g(|∇u|)
|∇u| ∇u∇(ξv) dx =

∫

Ω∩{0<u<2ε}

g(|∇u|)
|∇u| ∇u∇(ξv) dx

=

∫

Ω∩{ε<u<2ε}

g(|∇u|)
|∇u| ∇u∇(ξv) dx +

∫

Ω∩{0<u<ε}

g(|∇u|)
|∇u| ∇u∇ξ dx

≤ 2

∫

Ω∩{ε<u<2ε}
g(|∇u|)|∇ξ| dx +

∫

Ω∩{0<u<ε}
g(|∇u|)|∇ξ| dx

≤ 2

∫

Ω∩{0<u<2ε}
g(|∇u|)|∇ξ| dx,

which tends to zero when ε → 0 yielding the desired result. ¤

In several points on this thesis we will need an explicit family of subsolutions
and supersolutions in an annulus. We state here the required lemma.
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Lemma 1.2.47. Let wµ = εe−µ|x|2, for ε > 0 and r1 > r2 > 0 then there exists
µ > 0 such that

Lwµ > 0 in Br1 \Br2

and µ depends only on r2, g0, δ and N .

Proof. First note that

Lw =
g(|∇w|)
|∇w|3

{(g′(|∇w|)
g(|∇w|) |∇w| − 1

) ∑
i,j

wxi
wxj

wxixj
+4w|∇w|2

}
.

Computing, we have

wxi
= −2µεxi, e

−µ|x|2 , wxixj
= ε(4µ2xixj − 2µδij)e

−µ|x|2 , |∇w| = 2εµ|x|e−µ|x|2 ,

(1.2.48)

therefore using (1.2.48) and (0.0.2) we obtain,

e3µ|x|2Lw

= ε3 g(|∇w|)
|∇w|3

{(g′(|∇w|)
g(|∇w|) |∇w| − 1

)
(16µ4|x|4 − 8µ3|x|2)

+ (4µ2|x|2 − 2µN)4µ2|x|2
}

= ε3 g(|∇w|)
|∇w|3 4µ3|x|2

{(g′(|∇w|)
g(|∇w|) |∇w| − 1

)
(4µ|x|2 − 2) + (4µ|x|2 − 2N)

}

= ε3 g(|∇w|)
|∇w|3 4µ3|x|2

{(g′(|∇w|)
g(|∇w|) |∇w|

)
4µ|x|2 −

(g′(|∇w|)
g(|∇w|) |∇w| − 1

)
2− 2N

}

≥ ε3 g(|∇w|)
|∇w|3 4µ3|x|2(4µ|x|2δ −K) ≥ ε3 g(|∇w|)

|∇w|3 4µ3r2
2(4µr2

2δ −K)

where K = 2N if g0 < 1 and K = 2(g0 − 1) + 2N if g0 > 1. Therefore if µ is big
enough, depending only on δ, g0, r2 and N we have Lw > 0. ¤

3. Hausdorff measure and Hausdorff distance

Definition 1.3.49. For A ⊂ RN , k > 0 and α > 0, let

Hk
α(A) = ωk2

−k inf
{ ∞∑

j=1

(diamSj)
k : A ⊂

∞⋃
j=1

Sj, diamSj < α
}

,

where ωk is a positive constant, such that, when k ∈ N is the volume of the unit ball
in Rk.

As Hk
α(A) increases, when α decrease, the following limit exists and then we

define the k dimensional Hausdorff measure, by

Hk(A) = lim
α→0

Hk
α(A) = sup

α>0
Hk

α(A).
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Remark 1.3.50. If k ∈ N, k ≤ n, Hk(E) coincides with the notion of k- dimen-
sional area in RN , under suitable hypotheses on E.

Definition 1.3.51. We define the Hausdorff distance d(A,B) between two sets
A,B ⊂ RN by,

d(A,B) = inf{ε > 0 : A ⊂ Bε and B ⊂ Aε}
where we denote for a set D ⊂ RN and ε > 0,

Dε = {x ∈ RN : d(x,D) < ε}.
Theorem 1.3.52. Let K ⊂ RN be compact. Then the family of all the compact

subsets of K is a complete metric space with the Hausdorff distance.

4. Representation Theorem and sets of locally finite perimeter

4.1. Representation Theorem. The following result is a generalization of
Theorem 4.5 in [4], and will be used throughout the thesis. Its proof follows exactly
as the one in [4].

Let Λ be an application from C∞
0 (Ω) into R, that defines a nonnegative Radon

measure Λ with support on ∂A, where A is an open subset of Ω. Assume that Λ
satisfies that for any domain D ⊂⊂ Ω there exist constants c0, C0, depending on D,
such that, for every Br ⊂ Ω, centered on ∂A

(1.4.53) c0r
N−1 ≤

∫

Br

dΛ ≤ C0r
N−1.

Then we have,

Theorem 1.4.54 (Representation Theorem). For Λ, A satisfying (1.4.53) we
have,

1. HN−1(D ∩ ∂A) < ∞ for every D ⊂⊂ Ω.
2. There exists a Borel function q such that

Λ = qHN−1b∂A.

i.e

Λ(ϕ) =

∫

Ω∩∂A

ϕq dHN−1 ∀ ϕ ∈ C∞
0 (Ω).

3. For D ⊂⊂ Ω there are constants 0 < c ≤ C < ∞ depending on c0, C0, Ω, D
such that for Br(x) ⊂ D and x ∈ ∂A,

c ≤ qu(x) ≤ C, c rN−1 ≤ HN−1(Br(x) ∩ ∂A) ≤ C rN−1.

Proof. It follows as in Theorem 4.5 in [4]. ¤
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4.2. Sets of locally finite perimeter (see [14], [13]). Let Ω ⊂ RN , an
open set, and let f ∈ L1(Ω). We define,∫

Ω

|∇f | = sup
{ ∫

Ω

fdivg dx : g ∈ C1
0(Ω;RN), |g(x)| ≤ 1 ∀x ∈ Ω

}
.

If
∫
Ω
|∇f | < ∞ we say that f has bounded total variation and we denote,

BV (Ω) =
{

f ∈ L1(Ω) :

∫

Ω

|∇f | < ∞
}

.

We can observe that if f ∈ BV (Ω) the derivatives of f in the distributional sense
are Radon measures in Ω.

Definition 1.4.55. Given E ⊂ RN , a borel set. We define the perimeter of E
in the open set Ω as

P (E, Ω) =

∫

Ω

|∇χ(E)|,
and we say that E is a set of finite perimeter in Ω if χ(E) ∈ BV (Ω).

If P (E, Ω) < ∞ for all open set Ω we say that E is a set of locally finite perimeter.
In this case, we have that µ := −∇χE is a Borel measure, and the total variation
|µ| is a Radon measure. We have that, for any ϕ ∈ C1

0(Ω;RN)

(1.4.56)

∫

E

divϕdx =

∫

Ω

ϕdµ.

Theorem 1.4.57. Let E ⊂ RN be a set of locally finite perimeter. Then,∫

A

|∇χ(E)| ≤ HN−1(A ∩ ∂E),

for all A ⊂ RN .

Theorem 1.4.58. Let E ⊂ RN be a borelian set and suppose that HN−1(K ∩
∂E) < +∞ for any compact subset K ⊂ RN . Then E has locally finite perimeter.

Definition 1.4.59. Let E be a Lebesgue measurable set. Given x ∈ ∂E, we say
that the unit vector ν is a normal exterior to E at x in the measure theoretical sense:

(1.4.60)

∫

Br(x)

|χE − χ{y/〈y−x,νu(x)〉<0}| = o(rN).

If such an ν exists, it is unique and we denote it by ν(x, E). Then, we define,

∂redE := {x ∈ Ω ∩ ∂E/ if ν(x,E)exists }.

We have, by the results in [14] Theorem 4.5.6 that,

µ = νHN−1b∂redE.

Therefore, by 1.4.56 we have that, for any ϕ ∈ C1
0(Ω;RN)

(1.4.61)

∫

E

divϕdx =

∫

∂redE

ϕ · ν dHN−1
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Remark 1.4.62. If A, Λ satisfy the conclusions of Theorem 1.4.54, then by
Theorem 1.4.58 the set Ω ∩ A has finite perimeter locally in Ω.

Theorem 1.4.63. Let E ⊂ RN a set of finite local perimeter, and suppose that
for all x0 ∈ ∂E, it holds that

lim sup
r→0

|Br(x0) ∩ E|
|Br(x0)| > 0 and lim sup

r→0

|Br(x0) ∩ RN \ E|
|Br(x0)| > 0.

Then, HN−1(∂E \ ∂redE) = 0.

Theorem 1.4.64. For HN−1 − almost every point x0 ∈ ∂E \ ∂redE

|µ|(Br(x0)) = o(rN−1).

Theorem 1.4.65. Let E ⊂ RN a set of finite local perimeter then,

(1.4.66) lim
r→0

HN−1(Br(x0) ∩ ∂E)

ωN−1rN−1
= 1 for HN−1 − almost every point x0 ∈ ∂redE,

where wN−1 is the HN−1− surface measure of the unit sphere in RN .

Theorem 1.4.67. Let E ⊂ RN a set of finite local perimeter then, and x0 ∈ ∂redE
satisfying 1.4.66. Let ρk → 0 and Ek = E−x0

ρk
, such that

χEk
→ χ{xN<0} in L1

loc(RN)

∂Ek → {xN = 0} locally in Hasdorff distance.

Then, for every D ⊂⊂ {xN < 0} we have

HN−1(∂Ek ∩D) → 0.

And for,

ξ(x) = min
(
2
(
1− |xN |

2
, 1

))
η(x1, ..., xN−1)

where 0 ≤ η ∈ C∞
0 (B′

r), (B′
r is a (N − 1) dimensional ball with radius r) we have,

(1.4.68)

∫

∂Ek

ξdHN−1 →
∫

RN−1

ηdHN−1.

Proof. See the proof of Theorem 4.8 in [4]. ¤

5. A result on L-solutions with linear growth

In this section we state some properties of L-subsolutions. From now on, we
denote B+

r = Br(0)∩{xN > 0}. We take ideas from [19]. The proofs in this section
are more involved than the ones in [19] because of the lack of homogeneity of the
function g.

Theorem 1.5.1. Let u be a Lipschitz function in IRN with Lipschitz constant L
and such that

1. u ≥ 0 in IRN , Lu = 0 in {u > 0}.
2. {xN < 0} ⊂ {u > 0}, u = 0 in {xN = 0}.
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3. There exists 0 < λ0 < 1 such that
|{u = 0} ∩BR(0)|

|BR(0)| > λ0, ∀R > 0.

Then u = 0 in {xN > 0}.

In order to prove this theorem we need a couple of lemmas.

Lemma 1.5.2. Let u be a L− subsolution in B+
r such that, 0 ≤ u ≤ αxN in B+

r ,
u = 0 on B+

r ∩ {xN = 0}, u ≤ δ0αxN on ∂B+
r ∩ Br0(x̄) with x̄ ∈ ∂B+

r , x̄N > 0 and
0 < δ0 < 1.

Then there exists 0 < γ < 1 and 0 < ε ≤ 1, depending only on δ0, r0, x̄ and N ,
such that if 0 < r ≤ 1, u(x) ≤ γαxN in B+

εr.

Proof. By the invariance of L- solutions under the rescaling ū(x) = u(rx)/r
and since r ≤ 1, we can suppose that r = 1.

Let ψα be an Lα-solution in B+
1 , with smooth boundary data, such that




ψα = xN on ∂B+
1 \Br0(x̄)

δ0xN ≤ ψα ≤ xN on ∂B+
1 ∩Br0(x̄)

ψα = δ0xN on ∂B+
1 ∩Br0/2(x̄),

where Lαv = div
(

gα(|∇v|)
|∇v| ∇v

)
and gα(t) = g(αt).

Therefore L(αψα) = 0 and, by the comparison principle (Theorem 1.2.35), u ≤
αψα in B+

1 . If we see that there exist 0 < γ < 1 and ε > 0, independent of α, such
that ψα ≤ γxN in B+

ε , the result follows.

First, observe that,

(1.5.3) δ ≤ g′α(t)t

gα(t)
≤ g0.

Then, by Theorems 1.2.16 and 1.2.20,

(1.5.4)

ψα ∈ C1,β(B+
1 ) for some β > 0 independent of α,

the C1,β norm is bounded by a constant independent of α and

the constant in Harnack inequality is independent of α.

If |∇ψα| ≥ µ > 0 in some open set U , we have by Remark 1.2.30 that ψα ∈ W 2,p(U)
and it is a solution of the linear uniformly elliptic equation,

(1.5.5) Tαψα =
N∑

i,j=1

bα
ijψ

α
xixj

= 0 in U,

where bα
ij was define in (1.2.27), and the constant of ellipticity depends only on g0

and δ.

Now, we divide the proof in several steps,

Step 1
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Let wα = xN − ψα then wα ∈ C1,β(B+
1 ) and is a solution of Tαwα = 0 in any

open set U where |∇ψα| ≥ µ > 0.

On the other hand, as ψα ≤ xN on ∂B+
1 and both functions are Lα-solutions we

have, by comparison, that ψα ≤ xN in B+
1 . Therefore wα ≥ 0 in B+

1 .
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Step 2

Let us prove that there exist ρ and c̃ independent of α, such that |∇ψα| ≥ c̃ in
B+

ρ .

First, let as see that there exists c > 0 independent of α such that

(1.5.6) ψα
(1

2
eN

)
≥ c.

If not, there exists a sequences of αk → 0 such that ψαk(1/2eN) → 0. But, since
the constant in Harnack inequality is independent of α (see (1.5.4)), we have that,
ψαk → 0 uniformly in compact sets of B+

1 . On the other hand, using that ψα are

uniformly bounded in Cβ(B+
1 ), we have that there exists ψ ∈ C(B+

1 ) such that, for

a subsequence ψαk → ψ uniformly in B+
1 . Therefore ψ = 0 in B+

1 , but we have that
ψ = δ0xN on Br0/2(x̄) ∩ ∂B+

1 , which is a contradiction.

Let x1 ∈ {xN = 0} ∩ B1/2, take x0 = x1 + eN

4
. By (1.5.4) we have that there

exists a constant c1 independent of α such that, ψα(x) ≥ c1ψ
α(1/2eN) for any

x ∈ ∂B1/8(x0) , and therefore by (1.5.6) ψα ≥ c̄ in ∂B1/8(x0).

Take v = s(e−λ/16 − e−λ|x−x0|2) with s > 0, and choose λ such that Lv > 0 in
B1/4(x0) \ B1/8(x0) and s such that v = c̄ on ∂B1/8(x0) (observe that, by Lemma
1.2.47 λ and s can be chosen independent of α). Since ψα ≥ 0 and ψα ≥ v on
∂B1/8(x0) we have by comparison that ψα ≥ v in B1/4(x0) \ B1/8(x0). On the

other hand vxN
(x1) = s2λ(x1 − x0)N = sλ

2
, and therefore ψα

xN
(x1) ≥ λs

2
. As ψα

are uniformly Lipschitz, we have that there exists ρ independent of α such that
ψα

xN
(x) ≥ λs

2
in B+

ρ .

Step 3

Since |∇ψα| ≥ λs
2

in B+
ρ , we have that, Tαwα = 0 there. Suppose that

wα(1/2eNρ) ≥ c > 0, with c independent of α. Then by Harnack inequality we
have that there exists σ1 independent of α such that, wα ≥ σ1w

α(1/2eNρ) ≥ σ2

in Bρ/4(1/2eNρ), where σ2 is a constant independent of α. Therefore, wα
xN

(0) ≥
σ3 > 0 with σ3 independent of α. Since wα

xN
are Cβ(B+

1/2) with norm controlled

independently of α there holds that wα
xN

(x) ≥ σ > 0 independent of α in B+
ε , if

ε is small independent of α. So that, wα
xN

(x) ≥ σxN in B+
ε and we have that

ψα
xN

(x) ≤ (1 − σ)xN in B+
ε . Thus, the result would be true with γ = 1 − σ if we

have that wα(1/2eNρ) ≥ c > 0 independent of α.

wα ≥ σ22ρ
−1xN in B+

ρ/2, then taking γ = 1− 2ρ−1σ2 and ε = ρ/2, we obtain the

desired result.

Step 4

Let as see that wα(1/2eNρ) ≥ c > 0 where c is independent of α. Suppose,
by contradiction that for a subsequence, wαk

(1/2eNρ) → 0. We know that in B+
ρ

Tαwα = 0. Then, applying Harnack inequality, we have that for any compact subset
K ⊂⊂ B+

ρ we have that wα → 0 uniformly in K. On the other hand, ψα are

uniformly bounded in Cβ(B+
1 ). Thus, there exists w̄ ∈ C(B+

1 ) such that, for a
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subsequence wαk → w̄ in C(B+
1 ). Let

A = {x ∈ B+
1 / w̄(x) = 0},

and suppose that, there exist a point x1 ∈ ∂A ∩ B+
1 , then as wα ≥ 0 we have that

w̄ has a minimum at x1. Therefore, ∇w̄(x1) = 0. As ∇wαk → ∇w̄ uniformly on
compact subsets of B+

1 , we have that for some τ > 0 independent of αk, |∇ψαk
| ≥ 1/2

in Bτ (x1). Thus, in this ball, wαk satisfy Tαk
wαk = 0. We can apply Harnack

inequality in Bτ (x1) and, passing to the limit we obtain that w̄ = 0 in Bτ/2(x1),

which is a contradiction. Hence w̄ = 0 in B+
1 . But on the other hand, we have

w̄ = xN − δ0xN > 0 on ∂B1 ∩ ∂Br0/2(x̄), which is a contradiction.

¤

Now we are ready to proceed with the proof of the theorem.

Proof of Theorem 1.5.1. The proof will be divided into several steps.

Step 1 Let u0(x) = u(Tx)
T

, with T > 0 to be chosen later.

Then, the function u0 satisfies the same properties as u with the same constants
L and λ0.

Let β = λ0

2N−1 < 1, then by properties (2) and (3) with R = 1 we have that there
exists x0 ∈ B1(0), with x0,N > β such that u0(x0) = 0. Since u0 is Lipschitz, with

constant L, we have that u0(x) ≤ L|x− x0|. Thus, if we take r0 = β
4
, we have that

u0(x) ≤ Lβ
4

for |x−x0| < r0. There holds that xN ≥ 3β
4

in this ball. Hence, we have
that

u0(x) ≤ LxN

3
on ∂B+

R1
∩Br0(x0),

where R1 = |x0| > β.

By property (1), and by Lemma (1.2.45) u0 is an L- subsolution. By property 2
0 ≤ u0(x) ≤ LxN .

Taking in Lemma 1.5.2 δ0 = 1/3, x̄ = x0, α = L and r = R1 we have that there
exist 0 < γ1 < 1 and 0 < ε1 ≤ 1, depending only on r0 and x0 such that

(1.5.7) 0 ≤ u0(x) ≤ γ1LxN in B+
R1ε1

.

Observe that since x0,N > β then γ1 and ε1 depend only on λ0.

Now, take u1(x) = u0(R1ε1x)
R1ε1

. Then, again u1 satisfies the properties of u with
the same constants L and λ0.

Therefore, there exists x1 ∈ B1(0), with x1,N > β such that u1(x1) = 0. By (1),

u1(x) ≤ L|x−x1|. Thus, if we take r1 = γ1β
4

, we have u1(x) ≤ γ1Lβ
4

for |x−x1| < r1.

As γ1 ≤ 1, in that ball there holds that xN ≥ 3β
4

. Thus, we have that

u1(x) ≤ γ1LxN

3
on ∂B+

R2
∩Br1(x1),

where R2 = |x1| > β.
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By property (1), u1 is an L- subsolution. And by (1.5.7), we have 0 ≤ u1(x) ≤
γ1LxN in B+

1 .

Taking in Lemma 1.5.2 δ0 = 1/3, x̄ = x1, α = γ1L and r = R2 we have that there
exist 0 < γ2 < 1 and 0 < ε2 ≤ 1, depending only on λ0 such that u1(x) ≤ γ2γ1LxN

in B+
R2ε2

.

Inductively, we construct a sequence uk such that, uk satisfies the same hypothe-
ses as u with the same constants L and λ0 and such that,

(1.5.8) 0 ≤ uk−1 ≤ αkxN in B+
Rkεk

where αk = L
∏k

i=1 γi, and 0 < γi, εi < 1 depend only on λ0. In the construction we

have uk(x) = uk−1(Rkεkx)

Rkεk
.

Therefore, for any k ≥ 1

(1.5.9) u0 ≤ αkxN in B+
δk

where, δk =
∏k

i=1 Riεi.

Step 2 Let us see that αk → 0 when k →∞. Suppose by contradiction that this
does not hold. Then, since αk is decreasing, there exists α0 > 0 such that αk ≥ α0

for all k ≥ 1. We have that αk+1 = γk+1αk, and rk = β
4
αk ≥ β

4
α0. Thus, in Lemma

(1.5.2) we can take, for the function uk, r0 as β
4
α0 and γ0 the corresponding γ. We

can think that γk+1 was taken as the minimum over the γ’s such that the conclusion
of the lemma is satisfied. Therefore γk+1 ≤ γ0 < 1 for all k. Then, αk ≤ Lγk for all
k ≥ 1. Therefore αk → 0; a contradiction.

Step 3 Now, we can prove that if xN > 0 then u(xN) = 0. Suppose that, there
exists ξ with ξN > 0 such that u(ξ) > 0. Then, since αk → 0, there exists k ≥ 1

such that u(ξ) > αkξN . Now, for this fixed k, take T > |ξ|β−k
∏k

i=1 εi. Then, since

Ri > β we have that |ξ| < Tδk. Thus, if we take ξ̄ = ξ
T

we have that u0(ξ̄) > αkξ̄N .

But, on the other hand, by (1.5.9), since |ξ̄| < δk, we have that u0(ξ̄) ≤ αkξ̄N , which
is a contradiction.

¤

As a remark we mention that with Lemma 1.5.2 we can also prove the asymptotic
development of L− solutions.

Lemma 1.5.10. Let u be Lipschitz continuous in B+
1 , u ≥ 0 in B+

1 , L-solution
in {u > 0} and vanishing on B+

1 ∩ {xN = 0}. Then, in B+
1 , u has the asymptotic

development

u(x) = αxN + o(|x|),
with α ≥ 0.

Proof. Let

αj = inf{l / u ≤ lxn in B+
2−j}.

Let α = limj→∞ αj.
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Given ε0 > 0 there exists j0 such that for j ≥ j0 we have αj ≤ α + ε0. From
here, we have u(x) ≤ (α + ε0)xN in B+

2−j . So that,

u(x) ≤ αxN + o(|x|) in B+
1 .

If α = 0 the result follows. Assume that α > 0 and let us suppose that u(x) 6=
αxN + o(|x|). Then, there exist xk → 0 and δ̄ > 0 such that

u(xk) ≤ αxk,N − δ̄|xk|.
Let rk = |xk| and uk(x) = r−1

k u(rkx). Then, there exists u0 such that, for a subse-

quence that we still call uk, uk → u0 uniformly in B+
1 and

uk(x̄k) ≤ αx̄k,N − δ̄

uk(x) ≤ (α + ε0)xN in B+
1 ,

where x̄k = xk

rk
. Also, we can assume that x̄k → x0.

In fact, u(x) ≤ (α + ε0)xN in B+
2−j0

. Therefore, uk(x) ≤ (α + ε0)xN in B+

r−1
k 2−j0

,

and the estimate follows if k is big enough so that r−1
k 2−j0 ≥ 1.

If we take ᾱ = α + ε0 we have




Luk ≥ 0 in B+
1

uk = 0 on {xN = 0}
0 ≤ uk ≤ ᾱxN on ∂B+

1

uk ≤ δ0ᾱxN on ∂B+
1 ∩Br̄(x̄),

for some 0 < δ0 < 1, x̄ ∈ ∂B+
1 , x̄N > 0 and some small r̄ > 0.

In fact, as uk are continuous with uniform modulus of continuity, we have

uk(x0) ≤ αx0,N − δ̄

2
, if k ≥ k̄.

Moreover, there exists r0 > 0 such that uk(x) ≤ αxN − δ̄
4

in B2r0(x0). If x0,N > 0
we take x̄ = x0, if not, we take x̄ ∈ B2r0(x0) with x̄N > 0 and

uk(x) ≤ αxN − δ̄

4
, in Br0(x̄) ⊂⊂ {xN > 0}.

As Br0(x̄) ⊂⊂ {xN > 0}, there exists δ0 such that αxN − δ̄
4
≤ δ0αxN ≤ δ0ᾱxN in

Br̄(x̄) for some small r̄, and the claim follows.

Now, by Lemma 1.5.2, there exist 0 < γ < 1, ε > 0 independent of ε0 and k,
such that uk(x) ≤ γ(α + ε0)xN in B+

ε . As γ and ε are independent of k and ε0,
taking ε0 → 0, we have

uk(x) ≤ γαxN in B+
ε .

So that,

u(x) ≤ γαxN in B+
rkε.
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Now if j is big enough we have γα < αj and 2−j ≤ rkε. We get a contradiction to
the definition of αj. Therefore,

u(x) = αxN + o(|x|),
as we wanted to prove. ¤

6. Blow up limits

We give here the definition of blow up sequence, and give some properties of the
blow up limits.

Definition 1.6.11. Let D ⊂ RN . We say that u satisfies hypothesis (H1) if,

(H1)





u Lipschitz in D with constant L > 0

u ≥ 0 in D

Lu = 0 in D ∩ {u > 0}




Given 0 < κ < 1, there exist cκ and rκ such that for

Br(x0) with 0 < r < rκ we have
1
r
–
∫
–

Br(x0)
u ≤ cκ =⇒ u ≡ 0 in Bκr(x0)





There exist constants r0 and 0 < λ1 < λ2 < 1 such that

for Br(x0) ⊂ D with x0 ∈ ∂{u > 0} and 0 < r < r0

λ1 ≤ |Br(x0) ∩ {u > 0}|
|Br(x0)| ≤ λ2

Definition 1.6.12. Let Bρk
(xk) ⊂ Ω be a sequence of balls with ρk → 0, xk →

x0 ∈ Ω and u(xk) = 0. Let

uk(x) :=
1

ρk

u(xk + ρkx).

We call uk a blow-up sequence with respect to Bρk
(xk).

Since u is locally Lipschitz continuous, there exists a blow-up limit u0 : RN → R
such that, for a subsequence,

uk → u0 in Cα
loc(RN) for every 0 < α < 1,

∇uk → ∇u0 ∗ −weakly in L∞loc(RN),

and u0 is Lipschitz in IRN with constant L.

Lemma 1.6.13. If u satisfies hypothesis (H1), then

1. ∂{uk > 0} → ∂{u0 > 0} locally in Hausdorff distance,

2. χ{uk>0} → χ{u0>0} in L1
loc(RN),

3. If D ⊂⊂ {u0 > 0} ∪ {u0 = 0}◦, then ∇uk → ∇u0 uniformly in D,
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4. ∇uk → ∇u0 a.e in RN ,

5. If xk ∈ ∂{u > 0}, then 0 ∈ ∂{u0 > 0}
6. Lu0 = 0 in {u0 > 0}.
7. There exist 0 < λ < 1 such that |Br(x0)∩{u0=0}|

|Br(x0)| > λ ∀R > 0, and ∀y0 ∈
∂{u0 > 0}.

Proof. Is clear that u0 ≥ 0. If Br ⊂⊂ {u0 > 0}, we will have that Br ⊂⊂
{uk > 0} for k large and then Luk = 0 in Br. Then there exists a constant
C = C(g0, δ, N, {u0 > 0}, r, ‖uk‖L∞(Br)) such that, ‖uk‖C1,β(Br) ≤ C, but |uk(x)| ≤
Lr, and then the constant C is independent of k. Therefore for a subsequence
∇uk ⇒ ∇u0 in Br therefore Lu0 = 0 in Br. Then (6) is proved.

Let us see (1). Observe that if Br(y) ∩ ∂{u0 > 0} = ∅ and u0 = 0 in Br(y),
then the uk are uniformly small in Br(y) for k large and by the second property
in (H1) uk = 0 in Br/2(y). If u0 > 0 in Br(y) then uk > 0 in Br/2(y), therefore
Br/2(y) ∩ ∂{uk > 0} = ∅ for k large.

On the other hand, if Br(y) ∩ ∂{uk > 0} = ∅ for k large, and for a subsequence
uk = 0 in Br(y), then u0 = 0 in Br(y). If not, we will have uk > 0 in Br(y) for k large
and then Lu0 = 0 in Br(y), then by the strong maximum principle (see Theorem
1.2.17), u0 = 0 in Br(y) or u0 > 0 in Br(y). In both cases Br(y) ∩ ∂{u0 > 0} = ∅.

Let us see (2). By the second property in (H1) we have that, given a compact
set K, |K ∩ ∂{uk > 0}| = 0 for k large, and then by (1) we have that

(1.6.14) |∂{u0 > 0}| = 0.

On the other hand, if we argue as before, for R and r fixed we have, for k large,∫

BR

|χ{uk>0} − χ{u>0}| ≤ |{x ∈ BR/d(x, ∂{u0 > 0}) ≤ r}|

and then by (1.6.14) the result follows.

Using property 2 of (H1) we derive (3). (4) follows by (2) and (1.6.14).

Finally we prove (7). Note that, by (1) given y0 ∈ ∂{u0 > 0}, there exists
yk ∈ ∂{uk > 0} such that yk → y0. Therefore, by property 3 in (H1), if we fix
R > 0, we will have for k large

λ1 ≤ |BR(yk) ∩ {uk > 0}|
|BR(yk)| ≤ λ2

and applying (2) we obtain (7). ¤

7. Schwartz symmetrization

Definition 1.7.15. Let Ω a bounded domain. We define the symmetrized do-
main Ω∗ as the ball {x/|x| < ρ} with the same volume as Ω. Let u be a function
define on the bounded domain D ⊂ RN and

D(µ) := {x ∈ D/u(x) ≥ µ}.
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We define u∗ : D∗ → R by,

u∗(x) := sup{µ/x ∈ D(µ)∗} if x ∈ D∗.
We call the function u∗ the Schwartz symmetrized of u.

Proposition 1.7.16.

1. u∗ is radially symmetric, i.e, u∗(x) = u∗(|x|), and u∗(|x|) is a nondecreasing
function of |x|.

2. |{x ∈ D/u(x) ≥ µ}| = |{x ∈ D∗/u∗(x) ≥ µ}|, for all µ ∈ R.
3. If Ω is smooth, i.e, ∂Ω piecewise analytic, u is non negative, and u : Ω →
R+

0 is in W 1,G
0 (Ω), and G : R+

0 → R is monotone nondecreasing and convex,
then

(1.7.17)

∫

Ω

G(|∇u|) dx ≥
∫

Ω∗
G(|∇u∗|) dx.

4. If in addition G is increasing and strictly convex then equality holds in
(1.7.17) if and only if u = u∗.





CHAPTER 2

A minimization problem and weak solutions

In the first part of this chapter, we will study the following minimization problem.
For Ω a smooth domain in RN and ϕ0 a non negative function with ϕ0 ∈ L∞(Ω)
and

∫
Ω

G(|∇ϕ0|) dx < ∞, we consider the problem, of minimizing the functional

(2.0.1) J (v) =

∫

Ω

G(|∇v|) + λχ{v>0} dx

in the class of functions

K =
{

v ∈ W 1,G(Ω) : v = ϕ0 on ∂Ω
}

.

Here G′ = g and we will assume all the time, that g satisfies condition (0.0.2).

1. Existence of minimizers

In this section we look for minimizers of the functional J . We begin by discussing
the existence of extremals. Next, we prove that any minimizer is a subsolution to
the equation Lu = 0 and finally, we prove that 0 ≤ u ≤ supϕ0.

Theorem 2.1.1. If J (ϕ0) < ∞, then there exists a minimizer of J .

Proof. The proof of existence is standard. We write it here for the reader’s
convenience and in order to show how the Orlicz spaces and the condition (0.0.2)
on the function G come into play.

Take a minimizing sequence (un) ⊂ K, then J (un) is bounded, so
∫

Ω
G(|∇un|)

and |{un > 0}| are bounded. As un = ϕ0 in ∂Ω, we have by Lemma 1.1.5 that
‖∇un−∇ϕ0‖G ≤ C and by Lemma 1.2.10 we also have ‖un−ϕ0‖G ≤ C. Therefore,
by Theorem 1.1.8 there exists a subsequence (that we still call un) and a function
u0 ∈ W 1,G(Ω) such that

un ⇀ u0 weakly in W 1,G(Ω),

and by Theorem 1.1.9

un ⇀ u0 weakly in W 1,δ+1(Ω),

57
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and by the compactness of the immersions W 1,δ+1(Ω) ↪→ Lδ+1(Ω) and W 1,δ+1(Ω) ↪→
Lδ+1(∂Ω) we have that,

un → u0 a.e. Ω.

u0 = ϕ0 on ∂Ω,

Thus,

|{u0 > 0}| ≤ lim inf
n→∞

|{un > 0}| and
∫

Ω

G(|∇u0|) dx ≤ lim inf
n→∞

∫

Ω

G(|∇un|) dx.

In fact,

(2.1.2)

∫

Ω

G(|∇un|) dx ≥
∫

Ω

G(|∇u0|) dx +

∫

Ω

g(|∇u0|) ∇u0

|∇u0| · (∇un −∇u0) dx.

Recall that ∇un converges weakly to ∇u0 in LG. Now, since by property (g̃4)

G̃
(
g(|∇u0|)

) ≤ CG(|∇u0|),

there holds that g(|∇u0|) ∇u0

|∇u0| ∈ LG̃ so that, by Theorem 1.1.8 and passing to the

limit in (2.1.2) we get

lim inf
n→∞

∫

Ω

G(|∇un|) dx ≥
∫

Ω

G(|∇u0|) dx.

Hence u0 ∈ K and

J (u0) ≤ lim inf
n→∞

J (un) = inf
v∈K

J (v).

Therefore, u0 is a minimizer of J in K. ¤
Lemma 2.1.3. Let u be a minimizer of J . Then, u is an L– subsolution.

Proof. Let ε > 0 and 0 ≤ ξ ∈ C∞
0 . Using the minimality of u and the convexity

of G we have

0 ≤ 1

ε
(J (u− εξ)− J (u)) ≤ 1

ε

∫

Ω

G(|∇u− ε∇ξ|)−G(|∇u|) dx

≤
∫

Ω

−g(|∇u− ε∇ξ|) ∇u− ε∇ξ

|∇u− ε∇ξ|∇ξ dx

and if we take ε → 0 we obtain

0 ≤
∫

Ω

−g(|∇u|) ∇u

|∇u|∇ξ dx

¤
Lemma 2.1.4. Let u be a minimizer of J . Then 0 ≤ u ≤ sup

Ω
ϕ0.
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Proof. Let M = sup ϕ0, ε > 0 and v = min(M − u, 0), then

0 ≤ 1

ε

(
J (u + εv)− J (u)

)

=
1

ε

( ∫

Ω

G(|∇u + ε∇v|)−G(|∇u|) + λχ{u+εv>0} − λχ{u>0} dx
)

≤ 1

ε

( ∫

Ω

(
G(|∇u + ε∇v|)−G(|∇u|)

)
dx

)
≤

∫

Ω

g(|∇u + ε∇v|) ∇u + ε∇v

|∇u + ε∇v|∇v dx

where in the last inequality we are using the convexity of G.

Now, takeing ε → 0, using the definition of v and (g3) we have that,

0 ≤
∫

Ω

g(|∇u|) ∇u

|∇u|∇v dx = −
∫

{u>M}
g(|∇u|)|∇u| dx ≤ −

∫

{u>M}
G(|∇u|) dx

= −
∫

{u>M}
G(|∇v|) dx,

therefore ∇v = 0 in Ω and as v = 0 on ∂Ω we have that v = 0 in Ω and then u ≤ M .

To prove that u ≥ 0 we argue in a similar way. Take v = min(u, 0), then we
have that,

0 ≤ 1

ε
J (u− εv)− J (u) ≤ −

∫

Ω

g(|∇u− ε∇v|) ∇u− ε∇v

|∇u− ε∇v|∇v dx.

Therefore taking ε → 0, using the definition of v and (g3) we have that

0 ≥
∫

Ω

G(|∇v|) dx.

As in the first part, we conclude that u ≥ 0. ¤

2. Lipschitz continuity

In this section we study the regularity of the minimizers of J . The main result
is the local Lipschitz continuity of a minimizer. This result, together with the
rescaling invariance of the minimization problem, is a key step in the analysis. Once
this regularity is proven, a blow up process (passage to the limit in linear rescalings)
at points of ∂{u > 0} allows to simplify the analysis by assuming that u is a plane
solution.

As a first step, we prove that minimizers are Hölder continuous. We use ideas
of [10], here all the properties of the function G come into play.

Theorem 2.2.1. For every 0 < α < 1, any minimizer u is in Cα(Ω) and for
Ω′ ⊂⊂ Ω, ‖u‖Cα(Ω′) ≤ C, where C = C(g0, δ, λ, ‖u‖∞, α, dist(Ω′, ∂Ω), G(1)).

Proof. We will see that, for every 0 < α < 1 and Ω′ ⊂⊂ Ω there exists ρ0 such
that if y ∈ Ω′, 0 < ρ < ρ0 we have that

1

ρN

∫

Bρ(y)

G(|∇u|) dx ≤ Cρα−1,
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for a constant C(N, δ, g0, ‖u‖L∞(Ω), ρ0, G(1)).

In fact, let r > 0 such that, Br(y) ⊂ Ω. We can suppose that y = 0. Then if v
is the solution of

Lv = 0 in Br, v − u ∈ W 1,G
0 (Br),

we have, therefore by Theorem 1.2.38 that
(2.2.2)∫

Br

(G(|∇u|)−G(|∇v|)) dx ≥ C
( ∫

A2

G(|∇u−∇v|) dx+

∫

A1

F (|∇u|)|∇u−∇v|2 dx
)
,

where

A1 = {x ∈ Br : |∇u−∇v| ≤ 2|∇u|}, A2 = {x ∈ Br : |∇u−∇v| > 2|∇u|},
and C = C(g0, δ).

On the other hand, by the minimality of u, we have

(2.2.3)

∫

Br

(G(|∇u|)−G(|∇v|)) dx ≤ λ(|{v > 0∩Br}− |{u > 0∩Br}|) ≤ λrNCN .

Combining (2.2.2) and (2.2.3) we obtain
∫

A2

G(|∇u−∇v|) dx ≤ CλrN(2.2.4)

∫

A1

F (|∇u|)|∇u−∇v|2 dx ≤ CλrN(2.2.5)

Let ε > 0 and suppose that rε ≤ 1/2. Then, using (g3), Hölder’s inequality, the
definition of A1 and (2.2.5) we obtain,
(2.2.6)∫

A1∩Br1+ε

G(|∇u−∇v|) dx

≤ C
( ∫

A1

F (|∇u|)|∇u−∇v|2 dx
)1/2( ∫

Br1+ε

G(|∇u|) dx
)1/2

≤ Cλ1/2rN/2
( ∫

Br1+ε

G(|∇u|) dx
)1/2

.

Therefore, by (2.2.4) and (2.2.6), we get,

(2.2.7)

∫

Br1+ε

G(|∇u−∇v|) dx ≤ Cλ1/2
(
λ1/2rN + rN/2

( ∫

Br1+ε

G(|∇u|) dx
)1/2)

.

On the other hand by property (3) of Lemma 1.2.18 we have for every β ∈ (0, N),
that there exists a constant C = C(δ, g0, N, β, ‖v‖L∞(Br)) such that

(2.2.8)

∫

Br/2

G(|∇v|) dx ≤ Crβ.
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By the maximum principle we have,

(2.2.9) ‖v‖L∞(Br) ≤ ‖v‖L∞(∂Br) = ‖u‖L∞(∂Br) ≤ ‖u‖L∞(Br) ≤ ‖v‖L∞(Br)

where in the last inequality we are using Lemma 1.2.35. Then ‖v‖L∞(Br) = ‖u‖L∞(Br).
This means that the constant C depends on δ, g0, N, β and ‖u‖L∞(Br).

By (G2) we have, G(|∇u|) ≤ C(G(|∇u−∇v|) + G(|∇v|)). Therefore by (2.2.7)
and (2.2.8), and for r ≤ 1 we have,

∫

Br1+ε

G(|∇u|) dx ≤ C
(
rβ(1 + λ) + λ1/2rN/2

( ∫

B1+ε
r

G(|∇u|) dx
)1/2)

≤ C
(
rβ(1 + λ) + rβ/2(1 + λ)1/2

( ∫

Br1+ε

G(|∇u|) dx
)1/2)

.

If we call A =
∫

Br1+ε
G(|∇u|) dx, we have

A ≤ C
(
(1 + λ)rβ + (1 + λ)1/2rβ/2A1/2

)
≤ C

(
(1 + λ)rβ + 2(1 + λ)1/2rβ/2A1/2

)

= C
((

rβ/2(1 + λ)1/2 + A1/2
)2 − A

)
,

therefore

(C + 1)A ≤ C
(
rβ/2(1 + λ)1/2 + A1/2

)2

⇒ (C + 1)1/2A1/2 ≤ C1/2
(
rβ/2(1 + λ)1/2 + A1/2

)

⇒ ((C + 1)1/2 − C1/2)A1/2 ≤ C1/2rβ/2(1 + λ)1/2.

Thus, we have the inequality

(2.2.10)

∫

Br1+ε

G(|∇u|) dx ≤ ((C + 1)1/2 + C1/2)2C(1 + λ)rβ

Let now, 0 < α < 1, and take ε > 0 such that β := (1 + ε)
(
N − (1 − α)

)
< N .

Take ρ0 =
(

1
2

)1+1/ε
. Then, if 0 < ρ < ρ0, taking r = ρ1/(1+ε), we have that rε < 1/2.

And therefore replacing in (2.2.10) we have,

(2.2.11)

∫

Bρ

G(|∇u|) ≤ ((C + 1)1/2 + C1/2)C(1 + λ)ρN−(1−α)

and by Lemma 1.2.11 we conclude that for all 0 < α < 1, u ∈ Cα(Bρ) for 0 < ρ ≤ ρ0

and ‖u‖Cα(Bρ) ≤ C where C = C(N, α, g0, δ, λ, ρ0, ‖u‖L∞(Ω)). ¤

We then have that u is continuous. Therefore, {u > 0} is open. We can prove
the following property for minimizers.

Lemma 2.2.12. Let u be a minimizer of J . Then u is an L–solution in {u > 0}.
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Proof. Let B ⊂ {u > 0} and v such that
{
Lv = 0 in B,

v = u in Bc.

By the comparison principle we have that v ≥ u in B. Thus,

0 ≥
∫

Ω

G(|∇u|)−G(|∇v|) dx + λ|{u > 0}| − λ|{v > 0}| =
∫

Ω

G(|∇u|)−G(|∇v|) dx

≥ C
( ∫

A1

F (|∇u|)|∇u−∇v|2 dx +

∫

A2

G(|∇u−∇v|) dx
)

where we are using Theorem 1.2.38 and A1, A2, and F are as define therein.

Therefore ∫

A1

F (|∇u|)|∇u−∇v|2 dx = 0.

Thus, F (|∇u|)|∇u−∇v|2 = 0 in A1 and, by the definition of A1, we conclude that
|∇u−∇v| = 0 in this set.

On the other hand, we also have
∫

A2

G(|∇u−∇v|) dx = 0

so that |∇u−∇v| = 0 everywhere in B.

Hence, as u = v on ∂B we have that u = v. Thus, Lu = 0 in B.

¤

In order to get the Lipschitz continuity we first prove the following estimate for
minimizers.

Lemma 2.2.13. For all x ∈ Ω, with 5d(x) < d(x, ∂Ω) we have u(x) ≤ Cd(x),
where d(x) = dist(x, {u = 0}). The constant C depends only on N , δ, g0 and λ.

To prove Lemma 2.2.13 it is enough to prove the following lemma. In this proof
it is essential that the class of functions G satisfying condition (0.0.2) is closed under
the rescaling

Gs(t) :=
G(st)

sg(s)
.

Lemma 2.2.14. If u is a minimizer in B1 with u(0) = 0, there exists a constant
C such that ‖u‖L∞(B1/4) ≤ C, and C depends only on N , λ, δ and g0.

Proof. Suppose that there exists a sequence uk ∈ K of minimizers in B1(0)
such that

uk(0) = 0 and max
B1/4

uk(x) > k.
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Let dk(x) = dist(x, {uk = 0}) and Ok =
{

x ∈ B1 : dk(x) ≤ 1− |x|
3

}
. Since

uk(0) = 0 there holds that B1/4 ⊂ Ok, therefore

mk := sup
Ok

(1− |x|)uk(x) ≥ max
B1/4

(1− |x|)uk(x) ≥ 3

4
max
B1/4

uk(x) >
3

4
k.

For each fixed k, uk is bounded. Thus (1−|x|)uk(x) → 0 when |x| → 1 which means
that there exists xk ∈ Ok such that (1−|xk|)uk(xk) = supOk

(1−|x|)uk(x), and then

uk(xk) =
mk

1− |xk| ≥ mk >
3

4
k.

Let δk := dk(xk) ≤ 1−|xk|
3

and yk ∈ ∂{uk > 0} ∩B1 such that |yk − xk| = δk. Then,

(1) B2δk
(yk) ⊂ B1,

since if y ∈ B2δk
(yk) ⇒ |y| < 3δk + |xk| ≤ 1,

(2) B δk
2

(yk) ⊂ Ok,

since if y ∈ B δk
2

(yk) ⇒ |y| ≤ 3

2
δk + |xk| ≤ 1− 3

2
δk ⇒ dk(y) ≤ δk

2
≤ 1− |y|

3
and

(3) if z ∈ B δk
2

(yk) ⇒ 1− |z| ≥ 1− |xk| − |xk − z| ≥ 1− |xk| − 3

2
δk ≥ 1− |xk|

2
.

By (2) we have

max
Ok

(1− |x|)uk(x) ≥ max
B δk

2

(yk)
(1− |x|)uk(x) ≥ max

B δk
2

(yk)

(1− |xk|)
2

uk(x),

where in the last inequality we are using (3). Then,

(2.2.15) 2uk(xk) ≥ max
B δk

2

(yk)
uk(x).

As Bδk
(xk) ⊂ {uk > 0} there holds that Luk = 0 in Bδk

(xk), and by Harnack
inequality (Theorem 1.2.16) we have

(2.2.16) min
B 3

4 δk
(xk)

uk(x) ≥ cuk(xk).

As B 3
4
δk

(xk) ∩B δk
4

(yk) 6= ∅ we have by (2.2.16)

(2.2.17) max
B δk

4

(yk)
uk(x) ≥ cuk(xk).

Let wk(x) =
uk(yk + δk

2
x)

uk(xk)
. Then, wk(0) = 0 and, by (2.2.15) and (2.2.17) we have,

max
B1

wk ≤ 2 max
B1/2

wk ≥ c > 0.(2.2.18)
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Let now

Jk(w) =

∫

B1

G(|∇w|ck)

g(ck)ck

dx +
λ

g(ck)ck

∫

B1

χ{w>0}(x) dx

where ck = 2uk(xk)
δk

so that ck →∞.

Let us prove, that wk is a minimizer of Jk. In fact, for any v ∈ W 1,G(B1) with

v = wk on ∂B1, define vk(y) = v
(y − yk

δk/2

)
uk(xk). Thus, vk = uk on ∂Bδk/2(yk).

Then,

Jk(wk) =
2N

δN
k

( ∫

B δk
2

(yk)

G(|∇uk|)
g(ck)ck

dy +
λ

g(ck)ck

∫

B δk
2

χ{uk>0}(y) dy
)

≤ 2N

δN
k

( ∫

B δk
2

(yk)

G(|∇vk|)
g(ck)ck

dy +
λ

g(ck)ck

∫

B δk
2

(yk)

χ{vk>0}(y) dy
)

=

∫

B1

G(|∇v|ck)

g(ck)ck

dx +
λ

g(ck)ck

∫

B1

χ{v>0}(y) dx = Jk(v).

Let gk(t) := g(tck)
g(ck)

, where the primitive of gk is Gk(t) = G(tck)
g(ck)ck

and λk = λ
g(ck)ck

→ 0.

Then,

Jk(w) =

∫

B1

Gk(|∇w|) dx + λk

∫

B1

χ{w>0}(x) dx.

Observe that for all k, gk satisfies the inequality (0.0.2), with the same constants δ
and g0. In fact,

g′k(t)t
gk(t)

=
g′(ckt)ckt

gk(ckt)
,

and then by (0.0.2) applied to tck we have the desired inequality.

Let us take vk ∈ W 1,G(B3/4) such that,

(2.2.19)
Lkvk = 0 in B3/4

vk = wk on ∂B3/4

where Lk is the operator associated to gk. By (2.2.7), (2.2.11) and the fact that
λk → 0, we have that

∫

B3/4

Gk(|∇wk −∇vk|) dx ≤ Cλ
1/2
k ,

where C depends on δ, g0, N and ‖wk‖L∞(B1). We have used that {λk} is bounded
when applying (2.2.7) and (2.2.11). We also have, by (2.2.18) that C depends only
on δ, g0 and N . On the other hand, by (G1) and (g3) we have

Gk(t) =
G(tck)

g(ck)ck

≥ G(ck)

(1 + g0)g(ck)ck

min{tg0+1, tδ+1} ≥ 1

(1 + g0)2
min{tg0+1, tδ+1}.
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Therefore,

Cλ
1/2
k ≥

∫

B3/4

Gk(|∇wk −∇vk|) dx ≥
∫

B3/4∩{|∇wk−∇vk|<1}

|∇wk −∇vk|g0+1

(1 + g0)2
dx

+

∫

B3/4∩{|∇wk−∇vk|≥1}

|∇wk −∇vk|δ+1

(1 + g0)2
dx.

Hence

(2.2.20)

Ak :=

∫

B3/4∩{|∇wk−∇vk|≥1}
|∇wk −∇vk|δ+1 dx → 0 and

Bk :=

∫

B3/4∩{|∇wk−∇vk|<1}
|∇wk −∇vk|g0+1 dx → 0.

By Hölder inequality and (2.2.20) we have,

Ck :=

∫

B3/4∩{|∇wk−∇vk|<1}
|∇wk −∇vk|δ+1 dx ≤ B

δ+1
g0+1

k |B3/4|
g0−δ
g0+δ → 0,

therefore,

(2.2.21)

∫

B3/4

|∇wk −∇vk|δ+1 dx = Ak + Ck → 0.

As wk = vk on ∂B3/4 then pk = wk − vk ∈ W 1,δ+1
0 (B3/4) and by (2.2.21) we have

(2.2.22) pk → 0 in W 1,δ+1
0 (B3/4).

On the other hand by Theorem 2.2.1 we have that,
(2.2.23)

‖wk‖Cα(B′) ≤ C(‖wk‖L∞(B3/4), g0, δ, B
′, Gk(1)) ≤ C(g0, δ, B

′) ∀B′ ⊂⊂ B3/4.

(Here again we may suppose that the constant C dose not depend on λk, since

λk → 0). Also, recall that ‖wk‖L∞(B1) ≤ 2, and that Gk(1) = G(ck)
ckg(ck)

≤ 1 .

As vk are solutions of (2.2.19) by Theorem 1.2.19, we have for B′ ⊂⊂ B3/4

(2.2.24) ‖vk‖C1,α(B′) ≤ C(N, δ, g0, dist(B′, ∂B3/4), ‖vk‖L∞(B3/4)).

By (g3) and ‖vk‖L∞(B3/4) ≤ ‖wk‖L∞(∂B3/4) ≤ 2. Then, this constant only depends
on N, δ, g0 and B′.

Therefore, by (2.2.23) and (2.2.24) we have that there exist subsequences, that
we call for simplicity vk and wk, and functions w0, v0 ∈ Cα(B′) for every B′ ⊂⊂ B3/4,
such that

wk → w0 uniformly in B3/4,

vk → v0 uniformly in B′,

Then,

pk = wk − vk → w0 − v0 uniformly in B′.

But by (2.2.22) we have pk → 0 in W 1,δ+1(B′). Thus, v0 = w0.
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Using Harnack inequality (see Theorem 1.2.16), we have that

sup
B1/2

vk ≤ C inf
B1/2

vk

where the constant C depends only on g0, δ, N . Then, passing to the limit and using
that v0 = w0 we have that

sup
B1/2

w0 ≤ C inf
B1/2

w0.

But by (2.2.18), passing to the limit again, we have that sup
B1/2

w0 > c > 0 and

inf
B1/2

w0 = 0 since wk(0) = 0 for every k, this is a contradiction. ¤

Proof of Lemma 2.2.13. Let x0 ∈ {u > 0} with 5d(x0) < d(x0, ∂Ω). Take

ũ(x) = u(y0+4d0x)
4d0

, where d0 = dist(x0, ∂{u > 0}) = dist(x0, y0) with y0 ∈ ∂{u > 0}.
If we prove that ũ is a minimizer in B1(0), as ũ(0) = 0 and |x0−y0|

4d0
= 1/4, by Lemma

2.2.14 we have

C ≥ ũ
(x0 − y0

4d0

)
=

u(x0)

4d0

and the result follows.
So, let us prove that ũ is a minimizer in B1(0). As 5d(x0) < d(x0, ∂Ω) we have,

B4d0(y0) ⊂ Ω. Let ṽ ∈ W 1,G(B1(0)) and v such that ṽ(x) = v(y0+4d0x)
4d0

. Then,
changing variables we have,

∫

B1

G(|∇ṽ|) dx =

∫

B1

G(|∇v(y0 + 4d0x)|) dx =

∫

B4d0
(y0)

G(|∇v(y)|)
dN

0 4N
dy

and

|{ṽ > 0 ∩B1}| = |{ṽ > 0 ∩B4d0(y0)}|
dN

0 4N
.

As u is a minimizer of J in B4d0(y0) we have, if ṽ = ũ on ∂B1(0),
∫

B1(0)

G(|∇ũ(x)|) dx + λ|{ũ > 0 ∩B1(0)}|

=

∫

B4d0
(y0)

G(|∇u(y)|)
dN

0 4N
dy +

λ|{u > 0 ∩B4d0(y0)}|
dN

0 4N

≤
∫

B4d0
(y0)

G(|∇v(y)|)
dN

0 4N
dy +

λ|{v > 0 ∩B4d0(y0)}|
dN

0 4N

=

∫

B1(0)

G(|∇ṽ(x)|) dx + λ|{ṽ > 0 ∩B1(0)}|.

Therefore, ũ is a minimizer of J in B1(0).

¤

Now we can prove the uniform Lipschitz continuity of minimizers of J .
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Theorem 2.2.25. Let u be a minimizer. Then u is locally Lipschitz continuous
in Ω. Moreover, for any connected open subset D ⊂⊂ Ω containing free boundary
points, the Lipschitz constant of u in D is estimated by a constant C depending only
on N, g0, δ, dist(D, ∂Ω) and λ.

Proof. First, take x such that d(x) < 1
5
dist(x, ∂Ω) and ũ(y) = 1

d(x)
u(x+d(x)y)

for y ∈ B1(0). By Lemma 2.2.14 we have ũ(0) ≤ C in B1, where C depends only on
N, λ, δ and g0. Since u > 0 in Bd(x)(x), Lu = 0 in this ball. Thus Lũ = 0 in B1(0).
By Harnack inequality ũ(y) ≤ C in B1/2(0) where C depends only on N, λ, δ and
g0. Now, by property (2) in Lemma 1.2.18, |∇ũ(0)| ≤ C‖ũ‖L∞(B1/2) ≤ C where C

depends only on N, λ, δ and g0. Since ∇u(x) = ∇ũ(0), the result follows in the case
d(x) < 1

5
dist(x, ∂Ω).

Let r1 such that dist(x, ∂Ω) ≥ r1 > 0 ∀x ∈ D, take D′, satisfying D ⊂⊂ D′ ⊂⊂ Ω
given by

D′ = {x ∈ Ω/dist(x, D) < r1/2}.
If d(x) ≤ 1

5
dist(x, ∂Ω) we proved that |∇u(x)| ≤ C. If d(x) > 1

5
dist(x, ∂Ω), there

holds that u > 0 in B r1
5
(x) and B r1

5
(x) ⊂ D′ so that |∇u(x)| ≤ C

r1
‖u‖L∞(D′).

To prove the second part of the theorem, consider now any domain D that
contains a free boundary point, and D′ as in the previous paragraph. Let us see
that ‖u‖L∞(D′) is bounded by a constant that depends only on N, D, r1, λ, δ, and g0

(we argue as in [4] Theorem 4.3). Let x0 ∈ D and r0 = r1

5
, since D′ is connected

and not contained in {u > 0} ∩ Ω, there exists x0, ..., xk ∈ D′ such that xj ∈
B r0

2
(xj−1) j = 1, ..., k, Br0(xj) ⊂ {u > 0} j = 0, ..., k−1 and Br0(xk) 6⊆ {u > 0}. By

Lemma 2.2.14 u(xk) ≤ Cr0 and by Harnack inequality we have u(xj+1) ≥ cu(xj).
Inductively we obtain. Therefore, the supremum of u over D′ can be estimated by
a constant depending only on N, r1, λ, δ, and g0. ¤

Observe that, if we don’t use Lemma 2.2.13, then we obtain that the Lipschitz
constant depends also on ‖u‖L∞(Ω) (that is, depends also on the Dirichlet datum
ϕ0).

3. Nondegeneracy

In this section we prove the nondegeneracy of a minimizer at the free boundary
and the locally uniform positive density of the sets {u > 0} and {u = 0}.

Lemma 2.3.1. Let γ > 0, D ⊂⊂ Ω and C the constant in Theorem 2.2.25. Then,
if C1 > C, Br ⊂ Ω and u is a minimizer, there holds that

1

r

(
–

∫
–

Br

uγ
)1/γ

≥ C1 implies u > 0 in Br
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Proof. If Br contains a free boundary point, if u vanishes at some point x0 ∈
Br, and since |∇u(x)| ≤ C in Br, then |u(x)− u(x0)| ≤ Cr. That is, u(x) ≤ Cr in

Br and then 1
r

(
–
∫
–

Br
uγ

)1/γ

≤ C which is a contradiction.

¤

Lemma 2.3.2. For any γ > 1 and for any 0 < κ < 1 there exists a constant cκ

such that, for any minimizer u and for every Br ⊂ Ω, we have

1

r

(
–

∫
–

Br

uγ
)1/γ

≤ cκ implies u = 0 in Bκr,

where cκ depends also on N, λ, g0, δ and γ.

Proof. We may suppose that r = 1 and that Br is centered at zero, (if not, we

take the rescaled function ũ = u(x0+rx′)
r

). By Theorem 1.2.14 we have

ε := sup
B√κ

u < C
(

–

∫
–

B1

uγ
)1/γ

where C = C(κ, γ). Now chose v such that

v =

{
C1ε(e

−µ|x|2 − e−µκ2
) in B√

κ \Bκ,

0 in Bκ.

Here the constants µ > 0 and C1 < 0 with C1 = C1(µ, κ), are chosen so that Lv < 0
in B√

κ \ Bκ (see Lemma 1.2.47) and v = ε on ∂B√
κ. Hence, v ≥ u on ∂B√

κ, and
therefore if

w =

{
min(u, v) in B√

κ,

u in Ω \B√
κ,
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w is an admissible function for the minimizing problem. Thus, using the convexity
of G, we find that

∫

Bκ

G(|∇u|) dx + λ|Bκ ∩ {u > 0}|

= J (u)−
∫

Ω\Bκ

G(|∇u|) dx + λ|Bκ ∩ {u > 0}| − λ|Ω ∩ {u > 0}|

≤ J (w)−
∫

Ω\Bκ

G(|∇u|) dx + λ|Bκ ∩ {u > 0}| − λ|Ω ∩ {u > 0}|

≤
∫

B√κ\Bκ

G(|∇w|) dx−
∫

B√κ\Bκ

G(|∇u|) dx

≤
∫

B√κ\Bκ

g(|∇w|) ∇w

|∇w|(∇w −∇u) dx

= −
∫

B√κ\Bκ

g(|∇w|) ∇w

|∇w|∇(u− v)+ dx

= −
∫

(B√κ\Bκ)∩{u>v}
g(|∇v|) ∇v

|∇v|∇(u− v)+ dx

and as v is a supersolution we have,
∫

Bκ

G(|∇u|) dx + λ|Bκ ∩ {u > 0}| ≤ −
∫

∂Bκ

g(|∇v|) ∇v

|∇v|u ν dHN−1.

And, as |∇v| ≤ Cε we have that
∫

Bκ

G(|∇u|) dx + λ|Bκ ∩ {u > 0}| ≤ g(Cε)

∫

∂Bκ

u dHN−1.

By Sobolev’s trace inequality and by (g̃3), for G̃(α) = λ we have,
∫

∂Bκ

u ≤ C(N, κ)

∫

Bκ

|∇u|+ u dx

≤ C(N, κ)
( ∫

Bκ

G
( |∇u|

α

)
+

∫

Bκ∩{u>0}
G̃(α) +

∫

Bκ

u dx
)

≤ C(N, κ, λ)(1 + ε)
( ∫

Bκ

G(|∇u|+ λ|{u > 0} ∩Bκ|
)

where in the last inequality we are using that
∫

Bκ
u dx ≤ ε|{u > 0}∩Bκ|. Therefore,

∫

Bκ

G(|∇u|) dx + λ|Bκ ∩ {u > 0}|

≤ g(Cε)C(1 + ε)
( ∫

Bκ

G(|∇u|) dx + λ|Bκ ∩ {u > 0}|
)
.
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So that, if ε is small enough∫

Bκ

G(|∇u|) dx + λ|Bκ ∩ {u > 0}| = 0.

Then, u = 0 in Bκ and the result follows.

¤

As a corollary we have,

Corollary 2.3.3. Let D ⊂⊂ Ω, x ∈ D ∩ ∂{u > 0}. Then

sup
Br(x)

u ≥ cr,

where c is the constant in Lemma 2.3.2 corresponding to κ = 1/2 and γ fixed.

Corollary 2.3.4. For any domain D ⊂⊂ Ω there exist constants c, C depending
on N, g0, δ,D and λ, such that, for any minimizer u and for every Br(x) ⊂ D∩{u >
0}, touching the free boundary we have

cr ≤ u(x) ≤ Cr

Proof. It follows by Lemma 2.2.13 and Lemma 2.3.2. ¤
Theorem 2.3.5. For any domain D ⊂⊂ Ω there exists a constant c, with 0 <

c < 1 depending on N, g0, δ,D and λ, such that, for any minimizer u and for every
Br ⊂ Ω, centered on the free boundary we have,

c ≤ |Br ∩ {u > 0}|
|Br| ≤ 1− c

Proof. First, by Corollary 2.3.3 we have that there exists y ∈ Br such that
u(y) > cr and as u is a subsolution we have by Lemma 1.2.14 that

(
–

∫
–

Bκr

uγ dx
)1/γ

≥ Cu(y).

Therefore
1

κr

(
–

∫
–

Bκr

uγ dx
)1/γ

≥ C

κ
.

Now, if κ is small enough, we have

1

κr

(
–

∫
–

Bκr

uγ dx
)1/γ

≥ C1,

so that by Lemma 2.3.1, we have that u > 0 in Bκr, where κ = κ(C1, C). Thus,

|Br ∩ {u > 0}|
|Br| ≥ |Bκr|

|Br| = κN ,

and κ = κ(C1, C).

In order to prove the other inequality, we may assume that r = 1. Let us
suppose by contradiction that, there exists a sequence of minimizers uk in B1, such
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that, 0 ∈ ∂{uk > 0}, with |{uk = 0} ∩ B1| = εk → 0. Let us take vk ∈ W 1,G(B1/2)
such that,

(2.3.6)
Lvk = 0 in B1/2

vk = uk in ∂B1/2

Let A1 and A2 as in the proof of Theorem 2.2.1, for r = 1/2. Then we have, by
Theorem 1.2.38 and (2.2.3) that∫

A2

G(|∇uk −∇vk|) dx ≤ Cεk and

∫

A1

F (|∇uk|)|∇uk −∇vk|2 dx ≤ Cεk,

where C = C(g0). By (2.2.6) we have,∫

A1

G(|∇uk −∇vk|) dx ≤ C
( ∫

A1

F (|∇uk|)|∇uk −∇vk|2 dx
)1/2( ∫

A1

G(|∇uk|)
)1/2

.

Therefore, by (2.2.11), there exists C independent of k such that∫

B1/2

G(|∇uk −∇vk|) dx ≤ Cε
1/2
k → 0.

As uk = vk on ∂B1/2, wk = uk − vk ∈ W 1,δ+1
0 (B1/2). Thus,

(2.3.7) wk → 0 in W 1,δ+1
0 (B1/2).

By Theorem 2.2.1 and Theorem 1.2.19, we have

‖uk‖Cα(B1/2) ≤ C(N, δ, g0, ‖uk‖L∞(B1), α) (for εk small),

‖vk‖C1,α(B′) ≤ C(N, δ, g0, ‖uk‖L∞(B1/2), B
′, α) for B′ ⊂⊂ B (see (2.2.9)).

Therefore, there exist subsequences, that we call for simplicity uk and vk, and func-
tions v0 ∈ C1(B′), u0 ∈ C(B′) for all B′ ⊂⊂ B1/2 such that

uk → u0 uniformly in B1/2

vk → v0 uniformly in B′

wk = uk − vk → 0 uniformly in B′.

Thus, v0 = u0. By Lemma 2.3.2 we have that
(

–

∫
–

B1/4

uγ
k

)1/γ

≥ C > 0.

Therefore, passing to the limit, we have
(

–

∫
–

B1/4

uγ
0

)1/γ

≥ C > 0.

On the other hand, by Harnack inequality supB1/4
vk ≤ C infB1/4

vk and again, pass-

ing to the limit we have, supB1/4
u0 ≤ C infB1/4

u0. As u0(0) = 0, then u0 ≡ 0 in

B1/4, which is a contradiction.
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¤
Remark 2.3.8. Theorem 2.3.5 implies that the free boundary has Lebesgue mea-

sure zero. Moreover, it implies that for every D ⊂⊂ Ω, the intersection ∂{u > 0}∩D
has Hausdorff dimension less than N . In fact, to prove these statements, it is enough
to use the left hand side estimate in Theorem 2.3.5. In fact, this estimate says that
the set of Lebesgue points of χ{u>0} in ∂{u > 0}∩D is empty. On the other hand al-
most every point x0 ∈ ∂{u > 0}∩D is a Lebesgue point, therefore |∂{u > 0}∩D| = 0.

4. The measure Λ = Lu

In this section we prove that {u > 0}∩Ω is locally of finite perimeter. Then, we
study the measure Λ = Lu and prove that it is absolutely continuous with respect
to the HN−1 measure on the free boundary. This result gives rice to a representation
theorem for the measure Λ. Finally, we prove that almost every point in the free
boundary belongs to the reduced free boundary.

Theorem 2.4.1. For every ϕ ∈ C∞
0 (Ω) such that supp(ϕ) ⊂ {u > 0},

(2.4.2)

∫

Ω

g(|∇u|) ∇u

|∇u|∇ϕ = 0.

Moreover, the application

Λ(ϕ) := −
∫

Ω

g(|∇u|) ∇u

|∇u|∇ϕdx

from C∞
0 (Ω) into R defines a nonnegative Radon measure Λ = Lu with support on

Ω ∩ ∂{u > 0}.

Proof. We know that u is an L− subsolution. Then by the Riesz Represen-
tation Theorem, there exists a nonnegative Radon measure Λ, such that Lu = Λ .
And as Lu = 0 in {u > 0}, then for any ϕ ∈ C∞

0 (Ω \ ∂{u > 0})

Λ(ϕ) = −
∫

{u>0}
∇ϕ g(|∇u|) ∇u

|∇u| dx = 0,

and the result follows.

¤

Now we want to prove that Ω∩ ∂{u > 0}, has Hausdorff dimension N − 1. First
we need the following lemma,

Lemma 2.4.3. If uk is a sequence of minimizers in compact subsets of B1, such
that uk → u0 uniformly in B1, then

1. ∂{uk > 0} → ∂{u0 > 0} locally in Hausdorff distance,

2. χ{uk>0} → χ{u0>0} in L1
loc(RN),

3. If 0 ∈ ∂{uk > 0}, then 0 ∈ ∂{u0 > 0}.
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Proof. Here we only have to use Lemma 2.3.2 and Theorem 2.3.5 and the fact
that uk → u0 uniformly in compacts subsets of B1. Then the proof follows as in
Lemma 1.6.13. ¤

Now, we prove the following theorem,

Theorem 2.4.4. For any domain D ⊂⊂ Ω there exist constants c, C, depending
on N, g0, δ,D and λ, such that, for any minimizer u and for every Br ⊂ D, centered
on the free boundary we have

crN−1 ≤
∫

Br

dΛ ≤ CrN−1

Proof. Let ξ ∈ C∞
0 (Ω), ξ ≥ 0. Then,

Λ(ξ) = −
∫

{u>0}
g(|∇u|) ∇u

|∇u|∇ξ dx.

Approximating χBr from below by a sequence {ξn} such that ξn = 1 in Br− 1
n

and

|∇ξn| ≤ CNn and using that u is Lipschitz we have that,
∣∣∣
∫

Ω

g(|∇u|) ∇u

|∇u|∇ξn dx
∣∣∣ ≤ Cn

∣∣∣Br \Br− 1
n

∣∣∣ ≤ C(rN−1 + O(1/n)).

Then, as ∫

Ω

ξndΛ →
∫

Br

dΛ,

the bound from above holds.

In order to prove the other inequality, we will suppose that r = 1. Arguing by
contradiction we assume that there exists a sequence of minimizers uk in B1, with
0 ∈ ∂{uk > 0}, and Λk = Luk, such that

∫
B1

dΛk = εk → 0. As the u′ks are uniformly

Lipschitz, we can assume that uk → u0 uniformly in B1/2. Let hk = g(|∇uk|) ∇uk

|∇uk| .
Then, there exists a subsequence and a function h0 such that hk ⇀ h0 ∗− weakly in
L∞(B1/2). We claim that h0 = g(|∇u0|) ∇u0

|∇u0| . In fact, if Bρ ⊂⊂ {u0 > 0} then, by

C1,α estimates, there exists a subsequence such that uk → u0 strongly in C1,α(Bρ).
So that h0 = g(|∇u0|) ∇u0

|∇u0| . If Bρ ⊂ {u0 = 0}, then by Lemma 2.3.2 we have that

uk = 0 in Bρκ for k ≥ k0(κ). Thus h0 = 0 = g(|∇u0|) ∇u0

|∇u0| also in this case. Finally

∂{u0 > 0} ∩B1/2 has zero Lebesgue measure. In fact, by (1) in Lemma 2.4.3, every
point x0 ∈ ∂{u0 > 0} ∩B1/2 is a limit point of xk ∈ ∂{uk > 0} ∩B1/2. Thus,

(
–

∫
–

Br(x0)

uγ
0

)1/γ

≥ cr

for any ball Br(x0) ⊂ B1/2. Using this fact, and the Lipschitz continuity we have that
|Br(x0)∩{u0 > 0}| ≥ c|Br(x0)| with c > 0. This implies that |∂{u0 > 0}∩B1/2| = 0
(see Remark 2.3.8).
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Therefore, for all ξ ∈ C∞
0 (B1/2), ξ ≥ 0 we have∫

B1/2

ξdΛ0 :=

∫

B1/2

g(|∇u0|) ∇u0

|∇u0|∇ξ = lim
k→∞

∫

B1/2

g(|∇uk|) ∇uk

|∇uk|∇ξ.

On the other hand,∫

B1/2

ξ dΛ0 = lim
k→∞

∫

B1/2

ξ dΛk ≤ ‖ξ‖L∞(B1/2) lim
k→∞

εk = 0.

Therefore Λ0 = 0 in B1/2. That is, Lu0 = 0 in B1/2. But u0 ≥ 0 and u0(0) = 0, so
that by Harnack inequality we have u0 = 0 in B1/2.

On the other hand, 0 ∈ ∂{uk > 0}, and by the nondegeneracy, we have
( ∫

B1/4

uγ
k

)1/γ

≥ c > 0.

Thus, ( ∫

B1/4

uγ
0

)1/γ

≥ c > 0

which is a contradiction.

¤

Therefore, we have the following representation theorem

Theorem 2.4.5 (Representation Theorem). Let u be a minimizer. Then,

1. HN−1(D ∩ ∂{u > 0}) < ∞ for every D ⊂⊂ Ω.
2. There exists a Borel function qu such that

Lu = quHN−1b∂{u > 0}.
i.e

−
∫

Ω

g(|∇u|) ∇u

|∇u|∇ϕdx =

∫

Ω∩∂{u>0}
ϕqu dHN−1 ∀ ϕ ∈ C∞

0 (Ω).

3. For D ⊂⊂ Ω there are constants 0 < c ≤ C < ∞ depending on N, g0, δ, Ω, D
and λ such that for Br(x) ⊂ D and x ∈ ∂{u > 0},

c ≤ qu(x) ≤ C, c rN−1 ≤ HN−1(Br(x) ∩ ∂{u > 0}) ≤ C rN−1.

Proof. See Theorem 1.4.54. ¤
Remark 2.4.6. As u satisfies the conclusions of Theorem 1.4.54, the set Ω∩{u >

0} has finite perimeter locally in Ω (see Remark 1.4.62). That is, µu := −∇χ{u>0}
is a Borel measure, and the total variation |µu| is a Radon measure. Moreover we
have,

µu = νuHN−1b∂red{u > 0},
where νu(x) is the normal exterior to {u > 0} ∩ Ω. See Definition 1.4.59 and the
results in that section.

Lemma 2.4.7. HN−1(∂{u > 0} \ ∂red{u > 0}) = 0.
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Proof. This is a consequence of the density property of Theorem 2.3.5 and
Theorem 1.4.63. ¤

5. Asymptotic development and identification of the function qu

In this section we give some properties of blow up sequences of minimizers, we
prove that any limit of a blow up sequence is a minimizer. We prove the asymptotic
development of minimizers near points in their reduced free boundary. We finally
identify the function qu for almost every point in the reduced free boundary.

Lemma 2.5.1. If u(xm) = 0, xm → x0 in Ω. Then, any blow up limit u0 respect
to Bρm(xm) is a minimizer of J in any ball.

Proof. Let um, u0 be as is Lemma 1.6.13, R > 0 and v such that v − u0 ∈
W 1,G

0 (BR(0)). Let η ∈ C∞
0 (BR(0)), 0 ≤ η ≤ 1 and vm = v + (1 − η)(um − u0) then

vm = um in ∂BR(0). Therefore
∫

BR(0)

(G(|∇um|) + λχ{um>0}) dx ≤
∫

BR(0)

(G(|∇vm|) + λχ{vm>0}) dx.

As |∇um| ≤ C and ∇um → ∇u0 a.e, we have
∫

BR(0)

G(|∇um|) dx →
∫

BR(0)

G(|∇u0|) dx,

∫

BR(0)

G(|∇vm|) dx →
∫

BR(0)

G(|∇v|) dx

and

χ{vm>0} ≤ χ{v>0} + χ{η<1}.

Therefore,
∫

BR(0)

(G(|∇u0|)+λχ{u0>0}) dx ≤
∫

BR(0)

(G(|∇v|)+λχ{v>0}) dx+λ|BR(0)∩{η < 1}|.

Taking η such that |{η < 1} ∩ BR(0)| → 0 we have the desired result.

¤

Let λ∗ be such that, g(λ∗)λ∗ −G(λ∗) = λ. Then we have,

Lemma 2.5.2. Let u be a local minimizer in RN such that u = λ0〈x, ν0〉− in Br0,
with r0 > 0, 0 < λ0 < ∞ and ν0 a unit vector. Then, λ0 = λ∗.

Proof. Let τε(x) = x + εη(x) with η ∈ C∞
0 (Br0)), and let uε(τε(x)) = u(x).

Then,

0 ≤ J (uε)− J (u),
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|Br0 ∩ {uε > 0}| =
∫

Br0∩{〈x,ν0〉<0}
|detDτε| dx

=

∫

Br0∩{〈x,ν0〉<0}
(1 + ε div η + o(ε)) dx

and∫

Br0∩{uε>0}
G(|∇uε|) dy

=

∫

Br0∩{〈x,ν0〉<0}

(
G(|∇u|) + ε

(
G(|∇u|)divη − g(|∇u|)

|∇u| ∇uDη∇u
))

dx + o(ε).

Therefore, since uε = u in IRN \Br0 ,

0 ≤ ε

∫

Br0∩{〈x,ν0〉<0}

(
(G(|∇u|) + λ)divη − g(|∇u|)

|∇u| ∇uDη∇u
)

dx + o(ε).

Thus,
∫

Br0∩{〈x,ν0〉<0}

(
(G(|∇u|) + λ)divη − g(|∇u|)

|∇u| ∇uDη∇u
)

dx ≥ 0.

If we change η by −η and recall that ∇u = −λ0 ν0 in {〈x, ν0〉 < 0} we obtain,
∫

Br0∩{〈x,ν0〉<0}

(
(G(λ0) + λ)divη − g(λ0)λ0 ν0 Dη ν0

)
dx = 0

for all η ∈ C∞
0 (Br0).

Take η(x) = φ(|x|)ν0 with suppφ ⊂ (−r0, r0). Then,

div η(x) =
φ′(|x|)
|x| 〈x, ν0〉

ν0 Dη ν0 = ν0i
∂ηj

∂xi

ν0j = 〈x, ν0〉φ
′(|x|)
|x| = div η.

Hence

0 =

∫

{〈x,ν0〉<0}∩Br0

(
G(λ0) + λ− g(λ0)λ0

)
divη dx

=
(
G(λ0) + λ− g(λ0)λ0

) ∫

{〈x,ν0〉=0}∩Br0

η ν0 dHN−1(x)

=
(
G(λ0) + λ− g(λ0)λ0

) ∫

{〈x,ν0〉=0}∩Br0

φ(|x|) dHN−1(x)

for all φ ∈ C∞
0 (−r0, r0).

Therefore, g(λ0)λ0 −G(λ0) = λ.

¤
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Lemma 2.5.3. Let u ∈ K be minimizer. Then, for every x0 ∈ Ω ∩ ∂{u > 0}
lim sup

x→x0
u(x)>0

|∇u(x)| = λ∗.(2.5.4)

Proof. Let x0 ∈ Ω ∩ ∂{u > 0} and let

l := lim sup
x→x0

u(x)>0

|∇u(x)|.

Then there exists a sequence zk → x0 such that

u(zk) > 0, |∇u(zk)| → l.

Let yk be the nearest point to zk on Ω ∩ ∂{u > 0} and let dk = |zk − yk|. Consider
the blow up sequence with respect to Bdk

(yk) with limit u0, such that there exists

ν := lim
k→∞

ek,

where ek = yk−zk

dk
, and suppose that ν = eN . Then, by Lemma 1.6.13(1), 0 ∈ ∂{u0 >

0}. By Lemma 1.6.13(2) and by Lemma 2.5.1 we have that u0 satisfies Theorem
2.3.5. Then, B1(−eN) ⊂ {u0 > 0}. By Lemma 1.6.13(3) we obtain,

|∇u0| ≤ l in {u0 > 0} and |∇u0(−eN)| = l.

Then, 0 < l < ∞ and since, by Lemma 1.6.13 (6), we have that u0 is an L
solution in {u0 > 0} then, we have that u0 is locally C1,α there. Thus, there exists

µ > 0 such that |∇u0| > l/2 in Bµ(−eN). Let e = ∇u0(−eN )
|∇u0(−eN )| and v = ∂u0

∂e
, then by

Lemma (1.2.28) v satisfies the uniformly elliptic equation, Di(aijDjv) = 0.

Then, by the strong maximum principle we have Deu0 = l in Bµ(−eN) so that,
∇u0 = le in Bµ(−eN). By continuation we can prove that this is true in B1(−eN).
Then, u0(x) = l〈x, e〉 + C in B1(−eN). As u0(0) = 0 and u0 > 0 in B1(−eN), we
have u0(x) = l〈x, e〉 and e = −eN . Therefore u0(x) = −lxN in B1(−eN). Using
again a continuation argument we have that u0(x) = −lxN in {xN < 0}.

Now, we want to prove that u0 = 0 in {0 < xN < ε0} for some ε0 > 0.

We argue by contradiction. Let

s := lim sup
xN→0+ x′∈RN−1

u0(x′,xN )>0

DNu0(x
′, xN),

and suppose that s > 0 (s < ∞ since u0 is uniformly Lipschitz). Let (zk, hk) such
that, hk → 0+ and DNu0(zk, hk) → s, and take a blow up sequence with respect to
Bhk

(zk, 0) with limit u00. Arguing as before, we have that u00 = sxN for xN > 0.
On the other hand, we have u00 = −lxN for xN < 0. By Lemma 2.5.1 u00 is a
minimizer, and as all the points of the form (x′, 0) belong to the free boundary, we
get a contradiction to the positive density property of the set {u00 = 0}(Theorem
2.3.5).
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Therefore, s = 0. But this implies that u0(x
′, xN) = o(xN) as xN ↘ 0+. Thus,

for all ε > 0, h0 > 0,

1

r

(
–

∫
–

Br(x0)

uγ
0

)1/γ

< ε if x0 = (y0, h0) and r = h0

for r small enough independent of y0. Then, by the nondegeneracy property, Lemma
2.3.2, we have that u0 = 0 in {0 < xN < ε0}.

Now, by Lemmas 2.5.1 and 2.5.2 we conclude that l = λ∗, and the result follows.
¤

Now we prove the asymptotic development of minimizers.

Theorem 2.5.5. Let u be a minimizer. Then, at every x0 ∈ ∂red{u > 0}, u has
the following asymptotic development

(2.5.6) u(x) = λ∗〈x− x0, ν(x0)〉− + o(|x− x0|).
where ν(x0) is the outer unit normal to ∂{u > 0} at x0.

Proof. Take Bρk
(x0) balls with ρk → 0 and uk be a blow up sequence with

respect to these balls with limit u0. Suppose that νu(x0) = eN , and x0 = 0.

First we prove that {
u0 = 0 in {xN ≥ 0},
u0 > 0 in {xN < 0}.

In fact, by Lemma 1.6.13, χ{uk>0} converges to χ{u0>0} in L1
loc. On the other hand,

χ{uk>0} converges to χ{xN<0} in L1
loc by (1.4.60). It follows that u0 = 0 in {xN ≥ 0}

and u0 > 0 a.e in {xN < 0}.
If u0 were zero somewhere in {xN < 0} there should exist a point x̄ in {xN <

0} ∩ ∂{u0 > 0}. But, as u0 is a minimizer, for 0 < r < |x̄N |,
|Br(x̄) ∩ {u0 = 0} ∩ {xN < 0}|

|Br(x̄)| ≥ c > 0.

Since this is a contradiction we conclude that u0 > 0 in {xN < 0} and therefore
Lu0 = 0 in this set. Since u0 = 0 on {xN = 0}, we conclude that u0 ∈ C1,α({xN ≤
0}) (see Theorem 1.2.20). Thus, there exists 0 ≤ λ0 < ∞ such that

u0(x) = λ0x
−
N + o(|x|).

By the nondegeneracy of u at every free boundary point (Lemma 2.3.2) we deduce
that λ0 > 0.

Now, let u00 be a blow up limit of u0. This is, u00(x) = lim u0(rnx)
rn

with rn → 0.

Then, u00 = λ0x
−
N . Since u00 is again a minimizer, Lemma 2.5.2 gives that λ0 = λ∗.
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Let us see that actually u0 = λ∗x−N . In fact, by applying Lemma 2.5.3 we see
that |∇u0| ≤ λ∗ and thus, u0 ≤ λ∗x−N . Since the function w = λ∗x−N is a solution to

Tw =
∑
i,j

bijwxixj
= 0 in {xN < 0}

with bij as in (1.2.27) and u0 is a classical solution of the same equation in a neigh-
borhood of any point where |∇u0| > 0, and since u0 ≤ w in {xN < 0}, u0 = w in
{xN = 0}, there holds that either u0 ≡ w or u0 < w. In the latter case, there exists
δ0 > 0 such that

(w − u0)(x) ≥ −δ0 xN + o(|x|).
But (w − u0)(x) = o(|x|). Thus, u0 ≡ w = λ∗x−N .

Finally, since the blow up limit u0 is independent of the blow up sequence ρk,
we deduce that

u(x) = λ∗〈x− x0, ν(x0)〉− + o(|x− x0|).
¤

Lemma 2.5.7. For HN−1− almost every point x0 in ∂red{u > 0} there holds that,
∫

Br(x0)∩∂{u>0}
|qu − qu(x0)|dHN−1 = o(rN−1), as r → 0

Proof. It follows by Theorem 2.4.5 (3) that qu is locally integrable in RN−1 and
therefore almost every point is a Lebesgue point. Moreover, Theorem 2.4.5 (3) also
implies that o(HN−1(Br(x0) ∩ ∂{u > 0})) = o(rN−1). ¤

Moreover, we have the following result that holds at points x0 ∈ ∂red{u > 0}
that are Lebesgue points of the function qu and are such that

(2.5.8) lim sup
r→0

HN−1(∂{u > 0} ∩ B(x0, r))

HN−1(B′(x0, r))
≤ 1.

Recall that HN−1 − a.e. point in ∂red{u > 0} satisfies (2.5.8) (see Theorem
1.4.65).

Lemma 2.5.9. Let u be a minimizer, then for HN−1 a.e x0 ∈ ∂red{u > 0},
qu(x0) = g(λ∗).

Proof. Let u0 be as in Theorem 2.5.5. Now let

ξ(x) = min
(
2
(
1− |xN |

2
, 1

))
η(x1, ..., xN−1)

where η ∈ C∞
0 (B′

r), (where B′
r is a N−1- dimensional ball with radius r) and η ≥ 0.

By Lemma 1.4.67 and using Lemmas 1.6.13 and 2.5.7, we get for almost every point
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x0 ∈ ∂red{u > 0} (satisfying (2.5.8)) and u0 = limk→∞
u(x0+ρkx)

ρk
that

−
∫

RN

g(|∇u0|) ∇u0

|∇u0|∇ξ dx ←−
∫

RN

g(|∇uk|) ∇uk

|∇uk|∇ξ dx

=

∫

∂{uk>0}
ξ(x)qu(x0 + ρkx) dHN−1

→ qu(x0)

∫

RN−1

ξ(x′, 0) dHN−1,

where we have assumed that ν(x0) = eN . Therefore, ∀ ξ ∈ C1
0(Br), we have

(2.5.10) −
∫

Br∩{xN<0}
g(|∇u0|) ∇u0

|∇u0|∇ξ dx = qu(x0)

∫

B′r

ξ(x′, 0) dHN−1

By Lemma 2.5.5, u0 = λ∗x−N . Substituting in (2.5.10) we get

g(λ∗)
∫

B′r

ξ(x′, 0) dHN−1 = qu(x0)

∫

B′r

ξ(x′, 0) dHN−1 ∀ ξ ∈ C∞
0 (Br).

Thus, qu(x0) = g(λ∗). ¤

As a corollary we have

Theorem 2.5.11. Let u be a minimizer, then for HN−1 a.e x0 ∈ ∂{u > 0}, the
following properties hold,

qu(x0) = g(λ∗)

and

u(x) = λ∗〈x− x0, νu(x0)〉− + o(|x− x0|)

where λ∗ is such that, g(λ∗)λ∗ −G(λ∗) = λ.

Proof. The result follows by Lemma 2.4.7 and by Theorem 2.5.5. ¤

6. Weak solutions

In this section we introduce the notion of weak solution. The idea, as in [4], is
to identify the essential properties that minimizers satisfy and that may be found
in applications in which minimization does not take place. For instance, in Chapter
3 we study an optimization problem, and prove that minimizers of the penalization
problem are weak solutions in the sense of Definition 2.6.1. On the other hand, in
Chapter 4 we study a singular perturbation problem for the operator L and prove
that limits of this singular perturbation problem are weak solutions in the sense
of Definition 2.6.2. In the next section, we will prove that weak solutions have
smooth free boundaries. In this way, the regularity results may be applied both to
minimizers and to limits of singular perturbation problems.
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With these applications in mind, we introduce two notions of weak solution.
Definition 2.6.1 is similar to the one in [4] for the case L = ∆. On the other
hand, as stated before, Definition 2.6.2 is more suitable for limits of the singular
perturbation problem.

Since we want to ask as little as possible for a function u to be a weak solution,
some properties already proved for minimizers need a new proof. We keep these
proofs as short as possible by sending the reader to the corresponding proofs for
minimizers as soon as possible.

One of the main differences between these two definitions of weak solution is that
for weak solutions according to Definition 2.6.1 almost every free boundary point is
in the reduced free boundary. Instead, weak solutions according to Definition 2.6.2
may have an empty reduced boundary (see, for instance, example 5.8 in [4]).

In the sequel λ∗ will be a fixed positive constant.

Definition 2.6.1 (Weak solution I). We call u a weak solution (I), if

1. u is continuous and non-negative in Ω and Lu = 0 in Ω ∩ {u > 0}.
2. For D ⊂⊂ Ω there are constants 0 < cmin ≤ Cmax, γ ≥ 1, such that for

balls Br(x) ⊂ D with x ∈ ∂{u > 0}

cmin ≤ 1

r

(
–

∫
–

Br(x)

uγdx
)1/γ

≤ Cmax

3.

Lu = g(λ∗)HN−1b∂red{u > 0}.
i.e

−
∫

Ω

g(|∇u|) ∇u

|∇u|∇ϕ dx =

∫

Ω∩∂red{u>0}
ϕg(λ∗) dHN−1 ∀ ϕ ∈ C∞

0 (Ω)

4.

lim sup
x→x0

u(x)>0

|∇u(x)| ≤ λ∗, for every x0 ∈ Ω ∩ ∂{u > 0}

Definition 2.6.2 (Weak solution II). We call u a weak solution (II), if

1. u is continuous and non-negative in Ω and Lu = 0 in Ω ∩ {u > 0}.
2. For D ⊂⊂ Ω there are constants 0 < cmin ≤ Cmax, γ ≥ 1, such that for

balls Br(x) ⊂ D with x ∈ ∂{u > 0}

cmin ≤ 1

r

(
–

∫
–

Br(x)

uγdx
)1/γ

≤ Cmax

3. For HN−1 a.e x0 ∈ ∂red{u > 0}, u has the asymptotic development

u(x) = λ∗〈x− x0, ν(x0)〉− + o(|x− x0|)
where ν(x0) is the unit exterior normal to ∂{u > 0} at x0 in the measure
theoretic sense.
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4.

lim sup
x→x0

u(x)>0

|∇u(x)| ≤ λ∗, for every x0 ∈ Ω ∩ ∂{u > 0}

and for any ball B in {u = 0} touching Ω ∩ ∂{u > 0} at x0,we have,

lim sup
x→x0

u(x)

dist(x,B)
≥ λ∗

Remark 2.6.3. Any minimizer is a weak solution in the sense of Definitions
2.6.1 and 2.6.2. In fact, (1) follows from Lemma 2.2.1, (2) from Lemmas 2.3.2 and
2.3.1, (3) from Theorem 2.5.11 and finally (4) from Lemma 2.5.3.

Remark 2.6.4. Observe that by hypothesis (1) of Definitions (2.6.1) and (2.6.2)

we have by Lemma (1.2.45) that u is in W 1,G
loc (Ω) and Λ := Lu is a nonnegative

Radon measure with support in Ω∩ ∂{u > 0} (in particular, u is an L− subsolution
in Ω)

Now we will prove as in Theorem 2.3.5, the density property of the set {u > 0}
at free boundary points. It is not true in general, for weak solutions satisfying only
properties (1) and (2) of Definitions 2.6.1 or 2.6.2 that the set {u = 0} has positive
density at HN−1− almost every free boundary point (see examples in [4]).

Theorem 2.6.5. For any domain D ⊂⊂ Ω there exists a constant c, with 0 <
c < 1 depending on N, γ, g0, δ,D, cmin and Cmax, such that, for any function u
satisfying (1) and (2) of Definitions 2.6.1 and 2.6.2 and for every Br ⊂ D, centered
at the free boundary we have

|Br ∩ {u > 0}|
|Br| ≥ c

Proof. The proof follows as in Theorem 2.3.5, the only difference here is that,
instead of using Lemma 2.3.1 and 2.3.2, we use property (2) of Definitions 2.6.1 and
2.6.2. ¤

Remark 2.6.6. Now, by Remark 2.3.8 we have that the free boundary has Lebes-
gue measure zero. Moreover, for every D ⊂⊂ Ω, the intersection ∂{u > 0} ∩D has
Hausdorff dimension less than N .

Lemma 2.6.7. If u satisfies hypothesis (1) and (2) of Definitions (2.6.1) and
(2.6.2) then

1. u is Lipschitz and for any domain D ⊂⊂ Ω, the Lipschitz constant de-
pends only on N, γ, g0, δ, dist(D, ∂Ω) and Cmax, provided D contains a free
boundary point.

2. For any domain D ⊂⊂ Ω there exist constants c, C depending on N, γ, g0, δ,
D, cmin and Cmax, such that, for every Br ⊂ D centered at the free boundary
we have

crN−1 ≤
∫

Br

dΛ ≤ CrN−1.
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Proof. The proof of (1) is similar to the one in Theorem 2.2.25. The only
change that we have to make here is the following, instead of using Lemma 2.2.13
we have to use property (2) of Definitions 2.6.1 and 2.6.2. We give the proof for the
readers convenience.

Let d(x) = dist(x, Ω ∩ ∂{u > 0}). First, take x such that d(x) < 1
5
dist(x, ∂Ω).

Let y ∈ ∂{u > 0} ∩ ∂Bd(x)(x). As u > 0 in Bd(x)(x), Lu = 0 in that ball and u
is an L− subsolution in B3d(x)(y). By using the gradient estimates and Harnack
inequality (see Lemmas 1.2.18 and 1.2.14) and property (2) of Definitions 2.6.1 and
2.6.2 we have,

|∇u(x)| ≤ C
1

d(x)
sup

Bd(x)(x)

u ≤ C
1

d(x)
sup

B2d(x)(y)

u

≤ C
1

d(x)

(
–

∫
–

B3d(x)(y)

uγdx
)1/γ

≤ CCmax.

So, the result follows in the case d(x) < 1
5
dist(x, ∂Ω).

Let r1 such that dist(x, ∂Ω) ≥ r1 > 0 ∀x ∈ D, take D′, satisfying D ⊂⊂ D′ ⊂⊂
Ω given by

D′ = {x ∈ Ω/dist(x,D) < r1/2}.
Let x ∈ D. If d(x) ≤ 1

5
dist(x, ∂Ω) we have proved that |∇u(x)| ≤ C.

If d(x) > 1
5
dist(x, ∂Ω), u > 0 in B r1

5
(x) and B r1

5
(x) ⊂ D′ so that |∇u(x)| ≤

C
r1
‖u‖L∞(D′).

To prove the second part of (1), consider now a connected domain D that contains
a free boundary point and let D′ as in the previous paragraph. Let us see that
‖u‖L∞(D′) is bounded by a constant that depends only on N, γ,D, r1, λ, δ, and g0.
Let r0 = r1

4
and x0 ∈ D′. Since D′ is connected and not contained in {u > 0} ∩ Ω,

there exists x1, ..., xk ∈ D′ such that xj ∈ B r0
2
(xj−1) j = 1, ..., k, Br0(xj) ⊂ {u > 0}

j = 0, ..., k− 1 and Br0(xk) 6⊆ {u > 0}. Let y0 ∈ ∂{u > 0}∩Br0(xk). As u is an L−
subsolution, by Lemma 1.2.14 there exists C depending on N, γ, δ, g0 such that,

u(xk) ≤ C
(

–

∫
–

B2r0(y0)

uγdx
)1/γ

≤ CCmaxr0,

where in the last inequality we have used property (2) of Definitions 2.6.1 and 2.6.2.
By Harnack inequality (Theorem 1.2.16) we have u(xj+1) ≥ cu(xj). Inductively
we obtain u(x0) ≤ Cr0 ∀x0 ∈ D′. Therefore, the supremum of u over D′ can be
estimated by a constant depending only on N, γ, r1, λ, δ, and g0.

In order to prove (2) we use that Lemma 2.4.3 holds if uk is a sequence of
functions satisfying properties (1) and (2) of Definitions 2.6.1 and 2.6.2 with the
same constants cmin and Cmax. Then, the rest of the proof follows as in Theorem
2.4.4. ¤

Remark 2.6.8. Now, we are under the conditions used in the proof of Theorem
2.4.5 and therefore this result applies to functions u satisfying properties (1) and (2)
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of Definition 2.6.1 and 2.6.2. This is, Ω ∩ ∂{u > 0} has finite perimeter and there
exists a Borel function qu defined on Ω∩∂{u > 0} such that Lu = quHN−1b∂{u > 0}.

As u satisfies the conclusions of Theorem 2.4.5, then Remark 1.4.62 also holds.
We also have that any blow up sequence satisfies the properties of Lemma 1.6.13.

Moreover, we have the following result that holds at points x0 ∈ ∂red{u > 0}
that are Lebesgue points of the function qu and are such that

(2.6.9) lim sup
r→0

HN−1(∂{u > 0} ∩ B(x0, r))

HN−1(B′(x0, r))
≤ 1.

(Here B′(x0, r) = {x′ ∈ IRN−1 / |x′| < r}).
Recall that HN−1 − a.e. point in ∂red{u > 0} satisfies (2.6.9) (see Theorem

1.4.65).

Lemma 2.6.10. If u is a function satisfying properties (1), (2) and (3) of Defi-
nition 2.6.1 or 2.6.2 we have that qu(x0) = g(λ∗) for HN−1 a.e x0 ∈ ∂red{u > 0}.

Proof. Clearly, we only have to prove the statement for weak solutions (II).

If u satisfies (3) of Definition 2.6.2, take x0 ∈ ∂red{u > 0} such that

u(x) = λ∗〈x− x0, ν(x0)〉− + o(|x− x0|).
Take ρk → 0 and uk(x) = 1

ρk
u(x0 + ρkx). If ξ ∈ C∞

0 (Ω) we have

−
∫

{u>0}
g(|∇u|) ∇u

|∇u|∇ξ dx =

∫

∂{u>0}
qu(x)ξdHN−1,

and if we replace ξ by ξk(x) = ρkξ(
x−x0

ρk
) with ξ ∈ C∞

0 (BR), k ≥ k0 and we change

variables we obtain,

−
∫

{uk>0}
g(|∇uk|) ∇uk

|∇uk|∇ξ dx =

∫

∂{uk>0}
qu(x0 + ρkx)ξdHN−1.

Now, recall that for a subsequence, χ{uk>0} → χ{xN<0} in L1
loc(RN) and

g(|∇uk|) ∇uk

|∇uk| ⇀ g(|∇u0|) ∇u0

|∇u0| ∗− weakly in L∞loc(IR
N). Thus,

∫

{uk>0}
g(|∇uk|) ∇uk

|∇uk|∇ξ dx →
∫

{xN<0}
g(|∇u0|) ∇u0

|∇u0|∇ξ dx

On the other hand, ∂{uk > 0} → {xN = 0} locally in Hausdorff distance. Then,
if x0 is a Lebesgue point of qu satisfying (2.6.9),

(2.6.11)

∫

∂{uk>0}
qu(x0 + ρkx)ξ dHN−1 → qu(x0)

∫

{xN=0}
ξ dHN−1.

As, ∇u0 = −λ∗eNχ{xN<0}, we deduce that for almost every point x0 ∈ ∂red{u >
0}, qu(x0) = g(λ∗). ¤
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Now we prove the asymptotic development for weak solutions satisfying Defini-
tion 2.6.1.

Lemma 2.6.12. If u satisfies (1), (2), (3) and (4) of Definition 2.6.1, then for
x0 ∈ ∂red{u > 0} satisfying (2.6.9), u has the following asymptotic development

(2.6.13) u(x) = λ∗〈x− x0, ν(x0)〉− + o(|x− x0|)
where ν(x0) is the unit outer normal to the free boundary at x0.

Proof. Let x0 ∈ ∂red{u > 0} and let ρk → 0. Let uk(x) = 1
ρk

u(x0 + ρkx) be a

blow up sequence (observe that uk is again a weak solution in the rescaled domain).
Assume that uk → u0 uniformly on compact subsets of IRN . Also assume that
ν(x0) = eN . As in the proof of Theorem 2.5.5 we deduce that

u0 ≥ 0 in {xN < 0}
u0 = 0 in {xN ≥ 0}.

Let us see that u0 > 0 in {xN < 0}. To this end, let D ⊂⊂ {xN < 0} and let
ξ ∈ C∞

0 (D). For k large enough,

(2.6.14) −
∫

{uk>0}
g(|∇uk|) ∇uk

|∇uk|∇ξ dx =

∫

∂red{uk>0}
g(λ∗)ξ(x) dHN−1.

By Lemma 1.4.67, we have that for every x0 ∈ ∂red{u > 0} satisfying (2.6.9),

HN−1(∂{uk > 0} ∩D) → 0 as k →∞.

Thus, the right hand side of (2.6.14) goes to zero as k → ∞. Since the left hand
side goes to

−
∫

g(|∇u0|) ∇u0

|∇u0|∇ξ dx

we deduce that Lu0 = 0 in {xN < 0}. Thus, u0 > 0 in {xN < 0}.
As in Theorem 2.5.5 we have that there exists 0 < λ0 < ∞ such that

u0(x) = λ0x
−
N + o(|x|).

By property (2) of Lemma 1.6.13 we have that

χ{uk>0} → χ{xN<0} in L1
loc(IR

N) as k →∞.

Let now ξ ∈ C∞
0 (IRN) in (2.6.14). Passing to the limit as k → ∞ and using

Lemma 1.6.13 (1) we get,

−
∫

{xN<0}
g(|∇u0|) ∇u0

|∇u0|∇ξ dx =

∫

{xN=0}
g(λ∗)ξ(x) dHN−1.

Replacing ξ by rξ(x/r) with r → 0, using the fact that 1
r
u0(rx) → λ0x

−
N uni-

formly on compact sets of IRN , changing variables and passing to the limit we get

g(λ0)

∫

{xN<0}
ξN dx = g(λ∗)

∫

{xN=0}
ξ(x) dHN−1.
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Thus, λ0 = λ∗.

At this point we proceed as in Theorem 2.5.5 to deduce that actually u0(x) =
λ∗x−N (observe that here we are using property (4) of Definition 2.6.1). As the blow
up limit u0 is independent of the blow up sequence ρk we conclude that u has the
asymptotic development (2.6.13). ¤

Now we prove the property that we mentioned in the introduction to this section.
The following lemma only holds for weak solutions satisfying Definition 2.6.1.

Lemma 2.6.15. If u satisfies (1), (2) and (3) of Definition 2.6.1,

1. HN−1(∂{u > 0} \ ∂red{u > 0}) = 0
2. |D ∩ {u = 0}| > 0 for every open set D ⊂ Ω containing a point of {u = 0}.
3. For any ball B in {u = 0} touching Ω ∩ ∂{u > 0} at x0, there holds that,

(2.6.16) lim sup
x→x0

u(x)

dist(x,B)
≥ λ∗

Proof. By Theorem 1.4.64 we have,

(2.6.17) |µu|(Br(x0)) = o(rN−1) for r → 0

forHN−1 almost all points x0 ∈ ∂{u > 0}\∂red{u > 0} (Recall that µu = −∇χ{u>0}).
Let x0 ∈ ∂{u > 0} \ ∂red{u > 0} satisfying (2.6.17). Then, if u0 is a blow up limit
with respect to balls Bρk

(x0), we obtain for ξ ∈ C∞
0 (B1) that,

−
∫

RN

g(|∇u0|) ∇u0

|∇u0|∇ξ dx ←−
∫

RN

g(|∇uk|) ∇uk

|∇uk|∇ξ dx

= ρ1−N
k g(λ∗)

∫

∂red{u>0}∩Bρk
(x0)

ξ
(y − x0

ρk

)
dHN−1

= ρ1−N
k g(λ∗)

∫

Bρk
(x0)

ξ
(y − x0

ρk

)
d|µu|(x)

≤ Cρ1−N
k |µu|(Bρk

(x0)) → 0,

therefore Lu0 = 0. Since u0(0) = 0, we must have u0 = 0, but this contradicts the
nondegeneracy property (2) of the Definition 2.6.1. Therefore (1) holds.

To prove (2), suppose that χ{u>0} = 1 almost everywhere in D, hence the reduced
boundary must be outside of D. Then, by Definition 2.6.1 (3), Lu = 0 in D, and
therefore u is positive. Hence D ∩ {u = 0} = ∅.

In order to prove (3), Let l be the finite limit on the left of (2.6.16), and yk → x0

with u(yk) > 0 and
u(yk)

dk

→ l, dk = dist(yk, B).

Consider the blow up sequence uk with respect to Bdk
(xk), where xk ∈ ∂B are points

with |xk − yk| = dk, and choose a subsequence with blow up limit u0, such that

e := lim
k→∞

xk − yk

dk
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exists. Then by construction, since l > 0 by nondegenaracy, u0(−e) = l, and
u0(x) ≤ −l〈x, e〉 for x · e ≤ 0, u0(x) = 0 for x · e ≥ 0. Both, u0 and l〈x, e〉− are
L solutions in {u0 > 0}, and coincide in −e. Since l > 0, and |∇u0| > l/2 in
a neighborhood of −e, we have that L is uniformly elliptic there. Then we can
apply the strong maximum principle to conclude that they must coincide in that
neighborhood of −e. By a continuation argument, we have that u0 = l〈x, e〉−.

By the Representation Theorem, ∀ ϕ ∈ C∞
0 (B1), ϕ ≥ 0

(2.6.18)∫

∂{uk>0}
ϕquk

dHN−1 = −
∫

RN

g(|∇uk|) ∇uk

|∇uk|∇ϕdx →−
∫

RN

g(|∇u0|) ∇u0

|∇u0|∇ϕdx

= g(l)

∫

{〈x,e〉=0}
ϕdHN−1

and

(2.6.19)

∫

∂{uk>0}
ϕdHN−1 ≥

∫

∂red{uk>0}
ϕ〈e.νuk

〉 dHN−1

=

∫
ϕe.dµuk

=

∫

{uk>0}
∂eϕdx →

∫

{〈x,e〉<0}
∂eϕdx

=

∫

{〈x,e〉=0}
ϕdHN−1.

Therefore, for weak solutions of type I and II we have,

g(l) ≥ lim inf
x→x0

qu(x).

Now, if u is a weak solution of type I we have, that qu(x) = g(λ∗) for HN−1−
a.e x ∈ Ω ∩ ∂{u > 0}. Thus, g(l) ≥ g(λ∗) and l ≥ λ∗. ¤

We then conclude,

Theorem 2.6.20. If u satisfies (1), (2) (3) and (4) of Definition 2.6.1, then for
HN−1 a.e x0 ∈ ∂{u > 0}, u has the asymptotic development (2.6.13)

Proof. It follows by Lemmas 2.6.12 and 2.6.15. ¤

Remark 2.6.21. Now we have that with the additional hypothesis (4), weak so-
lutions (I) satisfy the same properties that we proved in the previous section for
minimizers (with the only difference that in (4) we have a less than or equal instead
of an equal). Observe that minimizers have the asymptotic development (2.6.13) at
every point in their reduced free boundary, but we only proved that this development
holds at almost every point of ∂red{u > 0} when u is a weak solution.

Remark 2.6.22. We have proved that weak solutions I are also weak solutions
II.
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7. Regularity of the free boundary

In this section we prove the regularity of the free boundary of a weak solution
u in a neighborhood of every “flat” free boundary point. In particular, we prove
the regularity in a neighborhood of every point in ∂red{u > 0} where u has the
asymptotic development (2.6.13). Then, if u is a minimizer, ∂red{u > 0} is smooth
and the remainder of the free boundary has HN−1− measure zero.

The proof of the regularity of the free boundary is based on the works [4] and
[10]. The main differences with [10] come from the fact that we don’t assume the
locally uniform positive density of the set {u ≡ 0} at the free boundary. This is
a property satisfied by minimizers that is not know to hold, in principle, for weak
solutions that appear in a different context. This uniform density property implies,
in particular, that HN−1− almost every point on the free boundary belongs to the
reduced free boundary and this is a very strong assumption that we don’t want to
make.

The proof will be done in a series of steps.

7.1. Flatness and nondegeneracy of the gradient.

Definition 2.7.1 (Flat free boundary points). Let 0 < σ+, σ− ≤ 1 and τ > 0.
We say that u is of class

F (σ+, σ−; τ) in Bρ = Bρ(0)

if

1. 0 ∈ ∂{u > 0} and

u = 0 for xN ≥ σ+ρ,
u(x) ≥ −λ∗(xN + σ−ρ) for xN ≤ −σ−ρ.

2. |∇u| ≤ λ∗(1 + τ) in Bρ.

If the origin is replaced by x0 and the direction eN by the unit vector ν we say that
u is of class F (σ+, σ−; τ) in Bρ(x0) in direction ν.

Remark 2.7.2. First, observe that we may suppose that x0 = 0 and ρ = 1, if not
we replace u by v1(x) = u(x0 + xρ)/ρ. We also may suppose that λ∗ = 1. In fact,
take the function g∗(t) = g(λ∗t). Then, g∗ satisfies condition (0.0.2) with the same
δ and g0. If v2 = v1/λ

∗, then v2 satisfies all the properties of weak solution where
the constants in (2) are replaced by Cmax/λ

∗ and cmin/λ
∗, and in (3) and (4) we

have a one instead of λ∗. Finally, if we take v3(x) = v2(Tx) where T is a rotation
with T (en) = ν then u is a weak solution in Bρ(x0) with u ∈ F (σ+, σ−; τ) in Bρ(x0)
in direction ν, if only if v3 is a weak solution in B1 associated to the function g∗,
λ∗ = 1 and with v3 ∈ F (σ+, σ−; τ) in B1 in direction eN . In this section we will
then suppose that ρ = 1, x0 = 0, λ∗ = 1 and ν = eN but, by this observation, we
will have that all the following results hold also in the general case.

We will prove the following results,
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Theorem 2.7.3. There exists σ0 > 0 and C0 > 0 such that

u ∈ F (σ, 1; σ) in B1 implies u ∈ F (2σ,C0σ; σ) in B1/2

for 0 < σ < σ0.

Theorem 2.7.4. For every δ > 0 there exist σδ > 0 and Cδ > 0 such that

u ∈ F (σ, 1; σ) in B1 implies |∇u| ≥ 1− δ in B1/2 ∩ {xN ≤ −Cδσ}
for 0 < σ < σδ.

We first prove the following weak forms of the theorems.

Lemma 2.7.5. For every ε > 0 there exists σε > 0 such that

u ∈ F (σ, 1; σ) in B1 implies u ∈ F (2σ, ε; σ) in B1/2

for 0 < σ < σε.

Proof. We develop the proof of the Lemma in several steps.
Step I We use the following construction from [4] and [5]. Let

η(y) = exp
( −9|y|2

1− 9|y|2
)

for |y| < 1/3 and η(y) = 0 for |y| > 1/3, and chose s ≥ 0 maximal such that

B1 ∩ {u > 0} ⊂ D := {x ∈ B1 : xN < σ − sη(x′)},
where x = (x′, xN). Hence, there exists a point

z ∈ B1/2 ∩ ∂D ∩ ∂{u > 0}.
Observe also that s ≤ σ since 0 ∈ ∂{u > 0}. Now, let ξ ∈ ∂B3/4 with ξN ≤ −1/2.
We want to prove an estimate for u(ξ) from below. Consider the solution v = vκ,ρ

of, 



Lv = 0 in D \Bρ(ξ),

v = 0, on ∂D ∩B1,

v = (1 + σ)(σ − xN), on ∂D \B1,

v = −(1− κσ)xN , on ∂Bρ(ξ),

where κ > 0 is large and ρ > 0 is a small constant to be chosen later.
Step II The function v = vκ,ρ constructed above satisfies.

∂−νv(z) ≤ 1 + Cσ − cκσ for z ∈ B1/2 ∩ ∂D

for some positive constants C = C(ρ) and c = c(ρ), if 0 < σ < σ(κ, ρ).
The idea of the proof is to construct an explicit L− supersolution w in D \Bρ(ξ) in
order to to estimate v. We construct w of the form w = v1 − κσv2, where v1 and v2

are defined below.

First, let v1 and v2 be defined as follows.

v1 =
γ1

µ1

(1− exp(−µ1d1)) in D,
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where

d1(x) = −xN + σ − sη(x′),

and µ1, γ1 depending on σ are positive constants. Then,

1 ≤ |∇d1| ≤ 1 + Cσ, |D2d1| ≤ Cσ.

Hence, if bij is the matrix defined in Remark 1.2.25 with ellipticity β we have,
(2.7.6)
bijDijv1 = γ1 exp(−µ1d1)bij(Dijd1−µ1Did1Djd1) ≤ γ1 exp (−µ1d1)(Cσ−β−1µ1) < 0,

if we choose µ1 = C1σ for C1 large. Next,

(2.7.7) |∇v1(x)| = γ1 exp(−µ1d1)|∇d1| ≥ γ1 exp(−µ1d1) ≥ γ1(1− 2C1σ) ≥ 1,

if σ < 2, γ1 = 1 + C2σ for C2 = 3C1 and σ ≤ σ0(C1).

Hence by Remark 1.2.25 v1 is an L− supersolution in D.

Moreover, if σ ≤ 1 then,

(2.7.8) v1(x) ≥ γ1d1(x)(1− 2µ1) ≥ (1 +
C1

2
σ)d1(x)

if σ ≤ σ0(C1).

If x ∈ ∂D \ B1 and if |x′| ≥ 1/3 then η(x′) = 0 and we have v(x) = 0. If

x ∈ ∂D \B1 and if |x′| ≤ 1/3 then xN ≥ −
√

2/3 and by (2.7.8) we have,

v1(x) ≥ (1 + C1/2)d1(x) = σ − xN +
C1

2
σ(σ − xN)− (1 +

C1

2
σ)sη

≥ σ − xN + σ(
C1

2
(σ +

√
2/3)− (1 +

C1

2
σ)) = σ − xN + (

C1

2

√
2/3− 1)σ

≥ σ − xN + σ(σ + 1) ≥ σ − xN + σ(σ − xN) = v(x),

if σ ≤ σ0(C1).

If x ∈ ∂Bρ(ξ) and if ρ ≤ −1/4 then xN ≤ −1/4 and by (2.7.8) we have,

v1(x) ≥ (1 + C1/2)d1(x) = −xN − C1

2
σxN + (σ − sη)(1 +

C1

2
σ) ≥ −xN − C1

2
σxN

≥ −xN + κσxN = v(x).

Therefore, for x ∈ ∂(D \Bρ(ξ))

v1(x) ≥ (1 +
C1

2
σ)d1(x) ≥ v(x),

if σ is sufficiently small. By the maximum principle,

v1(x) ≥ v in D \Bρ(ξ).

We also have that at z ∈ B1/2 ∩ ∂D

(2.7.9) |∇v1(z)| = γ1|∇d1| ≤ 1 + Cσ.
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Next, we define v2 depending on Bρ(ξ) by

v2(x) =
γ2

µ2

(exp(µ2d2)− 1) in D̃ \Bρ(ξ),

with constants γ2, µ2, and D̃ ⊂ D a domain with smooth boundary containing
D \B1/10(∂B′

1 × {0}), and d2 is a function in C2(D \Bρ(ξ)) satisfying,

d2 = 0 on ∂D̃,

d2 = 1 on ∂Bρ(ξ),

C ≥ |∇d2| ≥ c > 0 in D̃ \Bρ(ξ).

Thus,
(2.7.10)

bijDijv2 = γ2 exp(µ2d2)bij(Dijd2 + µ2Did2Djd2) ≥ γ2 exp(µ2d2)(−C + cµ2) > 0,

if µ2 is large enough. Then choosing γ2 such that v2 = 1 on ∂Bρ(ξ) we have that in

D̃ \Bρ(ξ) we have

(2.7.11) |∇v2| = γ2 exp(µ2d2)|∇d2| ≤ C,

and at the point z

(2.7.12) |∇v2(z)| = γ2|∇d2(z)| ≥ c > 0.

Thus by (2.7.6) and (2.7.10), the function w = v1 − κσv2 satisfies

(2.7.13) bijDijw ≤ 0 in D̃ \Bρ(ξ)

with
w = v1 ≥ v on ∂D̃.

If x ∈ ∂Bρ(ξ) and ρ ≤ 1/4, then −xN ≤ −1/4 and using (2.7.8) with C3 = C2

2
≥ 3κ

we have that,

w(x) ≥ (1 + C3σ)d1(x)− kσ = −xN − C3σxN + (1 + C3σ)(σ − sη)− κσ

≥ −xN − 3κσxN − κσ ≥ −xN − σκxN = v(x).

Therefore

(2.7.14) w(x) ≥ v(x) on ∂(D̃ \Bρ(ξ))

The functions v1, v2 are C2 and we proved in (2.7.7) and (2.7.11) that |∇v1| > 1
and |∇v2| ≤ C. We obtain that |∇w| ≥ |∇v1|−κσ|∇v2| ≥ 1−Cκσ > 0 if σ < σ(κ).
This fact and (2.7.13) will imply that w is an L- supersolution. On the other hand,

by (2.7.14) w ≥ v on ∂(D̃ \ Bρ(ξ)), then by comparison we have that w ≥ v in

D̃ \Bρ(ξ). Therefore, by (2.7.9) and (2.7.12) we have,

∂−νv(z) ≤ ∂−νw(z) = |∇v1(z)| − κσ|∇v2(z)| ≤ 1 + Cσ − cκσ.

Step III By (4) in Definition 2.6.2 and (3) in Lemma 2.6.15 we have that, if B is
a ball in {u = 0} touching the free boundary at x0 then

lim sup
x→x0

u(x)

dist(x, B)
≥ 1.
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We want to prove that, for large κ = κ(ρ)

(2.7.15) u(xξ) ≥ v(xξ) for some xξ ∈ ∂Bρ(ξ).

Indeed, otherwise u ≤ v on ∂Bρ(ξ); also u ≤ v on ∂D (by 2.7.1 with (2) τ = σ).
Therefore u ≤ v on ∂(D \ Bρ(ξ)) and, by comparison principle, also u ≤ v in

D \Bρ(ξ). By step III applied to z we have that

1 ≤ lim sup
x→z

u(x)

dist(x, ∂D)
≤ ∂−νv(z)

and the contradiction follows by step II choosing κ large enough .

Now, for κ large, we have

u(ξ) ≥ u(xξ)− ρ(1 + σ) ≥ v(xξ)− ρ(1 + σ) = −(1− κσ)(xξ)N − ρ(1 + σ)

≥ −(xξ)N − κσ − 2ρ ≥ −ξN − 4ρ

for σ < σ(ρ) sufficiently small. That is,

(2.7.16) u(ξ) ≥ −ξN − 4ρ on {ξ ∈ ∂B3/4, ξN ≤ −1/2}.
Integrating along vertical lines and using that |∇u| ≤ 1 + σ, we obtain for α > 0,

u(ξ + αeN) ≥ u(ξ)− α(1 + σ) ≥ −ξN − 4ρ− α− ασ ≥ −(ξN + α)− 5ρ

for σ < σ(ρ). Choosing ρ = ε/10, we complete the proof of the Lemma. ¤

Lemma 2.7.17. For every ε > 0 and δ > 0 there exists σε,δ > 0 such that

u ∈ F (σ, 1; σ) in B1 implies |∇u| ≥ 1− δ in B1/2 ∩ {xN ≤ −ε}
for 0 < σ < σε,δ.

Proof. Assume the contrary. Then there exists a sequence uk ∈ F (1/k, 1; 1/k)
such that

|∇uk| ≤ 1− δ for some xk ∈ B1/2 ∩ {xN ≤ −ε}.
From Lemma 2.7.5 we have that uk ∈ F (2/k, 1/k; 1/k) and letting k → ∞ we
obtain,

uk(x) → u0(x) = x−N uniformly on B1/4.

Moreover on the set {u0 > 0} = {xN < 0} the convergence is locally in C1,α. This
implies that if xk → x0 ∈ B1/2∩{xN ≤ −ε}, then |∇u(x0)| ≤ 1−δ which contradicts
the fact that |∇u0| = 1. ¤

Proof of Theorem 2.7.3. We revisit the proof of Lemma 2.7.5. Choose ρ =
1/10 and κ = κ(ρ) such that (2.7.15) holds. We can refine the estimate (2.7.16) as
follows. Set,

w(x) = (1 + σ)(σ − xN)− u(x).

Then u ∈ F (σ, 1; σ) implies w(x) ≥ 0 in B2ρ(ξ) and

w(xξ) ≤ −(xξ)N − v(xξ) + Cσ ≤ Cσ.
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From σ sufficiently small, we know from Lemma 2.7.17 that |∇u| ≥ 1/2, hence u
will satisfy T u = 0, where T was define in (1.2.26). As a consequence, w will also
satisfies Lw = 0. Then, applying the Harnack inequality we obtain that

w(ξ) ≤ Cw(xξ) ≤ Cσ

or

u(ξ) ≥ −ξN − Cσ on {ξ ∈ ∂B3/4, ξN ≤ −1/2}.
Integrating along vertical lines and using that |∇u| ≤ 1 + σ, we conclude that

u(ξ + αeN) ≥ u(ξ) ≥ −(1 + σ)α ≥ −(ξN + α)− Cσ,

which implies that u ∈ F (2σ,Cσ; σ) in B1/2. ¤

Proof of Theorem 2.7.4. Assume the contrary. Then there exists a se-
quence σk → 0 and uk ∈ F (σk, 1; σk) such that

|∇uk(x
k)| < 1− δ for some xk ∈ B1/2 ∩ {xN ≤ −kσk}.

Let dk = dist(xk, ∂{uk > 0}) and yk ∈ ∂{uk > 0} be such that |xk − yk| = dk. From
Theorem 2.7.3 it follows that dk ≥ (k − C0)σk. Define now

ũk(x) =
uk(y

k + 2dk)

2dk

, x̃k =
xk − yk

2dk

.

Then one easily verify that

ũk ∈ F
( (C0 + 1)

2(k − C0)
, 1; σk

)
in B1,

|x̃k| = 1/2, (x̃k)N ≤ −1

2

(
1− C0 + 1

k − C0

)
,

and |∇ũk(x̃k)| < 1− δ. This is a contradiction to Lemma 2.7.17. ¤

7.2. Nonhomogeneous blow-up. We shall denote points in RN by (y, h)
with y ∈ RN−1 and h ∈ R. Balls in RN−1 by B′

ρ(y) and B−
1 = B1 ∩ {h < 0}.

Lemma 2.7.18. Let uk ∈ F (σk, σk; τk) in Bρk
with σk → 0, τkσ

−2
k → 0. For

y ∈ B′
1, set

f+
k (y) = sup{h : (ρky, σkρkh) ∈ ∂{uk > 0}},

f−k (y) = inf{h : (ρky, σkρkh) ∈ ∂{uk > 0}}.
Then, for a subsequence,

1. f(y) = lim sup z→y

k→∞
f+

k (z) = lim inf z→y

k→∞
f−k (z) for all y ∈ B′

1.

Further, f+
k → f , f−k → f uniformly, f(0) = 0, |f | ≤ 1 and f is

continuous.

2. f is subharmonic.
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Proof. Define,

Dk := {(y, h)/(y, σkh) ∈ B1 ∩ {uk > 0}}.
We can choose a subsequence uk such that the set D̄k is convergent in Hausdorff
distance, and for a subsequence we define f as in (1). Therefore, for y0 ∈ B′

1 there
exist points yk for all k such that

yk → y0, and f+
k (yk) → f(y0).

As f is upper semicontinuous, given δ > 0 there exists α > 0 such that for k big,(
B̄′

α(yk)× [f+
k (yk) + δ,∞)

)
∩ D̄k = ∅

and then (
B̄′

α(yk)× [(f+
k (yk) + δ)σk,∞)

)
∩B1 ∩ {uk > 0} = ∅.

As (yk, σkf
+(yk)) ∈ ∂{uk > 0}, then uk ∈ F (σkδ/α, 1; τk) in Bα((yk, σkf

+
k (yk)).

Since σk → 0 τk = O(σk) we can apply Theorem 2.7.3 for k large, and obtain
uk ∈ F (2σkδ/α, Cσkδ/α; τk) in Bα/2((yk, σkf

+
k (yk)), which implies that for large k

the set

{(y, h) ∈ B1/|y − yk| < α/4 and h < σk(f
+
k (yk)− Cδ)}

is contained in {uk > 0}, that is

f−k (y) ≥ f+
k (yk)− Cδ for y ∈ B′

α/4(yk),

then lim inf y→y0
k→∞

f−k (y) ≥ f(y0)− 2Cδ which proves the assertion.

We may assume by replacing uk by ũk = 1
ρk

uk(ρkx), that ρk = 1. Let us assume,

by contradiction that there is a ball B′
ρ(y0) ⊂ B′

1 and a harmonic function g in a
neighborhood of this ball, such that

g > f on ∂B′
ρ(y0) and f(y0) > g(y0).

Let

Z = B′
ρ(y0)× R, Z+ = {(y, h) ∈ Z, h > σkg(y)},

Z− = {(y, h) ∈ Z, h < σkg(y)}, Z0 = {(y, h) ∈ Z, h = σkg(y)}.

Take dδ(A)(x) = min{(1/δ)dist(x,RN \A), 1}, then by the Representation The-
orem 2.4.5 (see Remark 2.6.8) we arrive at,∫

{uk>0}
g(|∇uk|) ∇uk

|∇uk|∇(dδ(Z
+)) dx =

∫

∂{uk>0}
dδ(Z

+)quk
(x) dHN−1,

taking δ → 0 and assuming that HN−1(Z0 ∩ ∂{uk > 0}) = 0 (if this is not true we
replace g by g + c0 for a small constant c0) we have that

(2.7.19)

∫

{uk>0}∩Z0

g(|∇uk|) ∇uk

|∇uk| · ν dHN−1 =

∫

∂{uk>0}∩Z+

quk
(x) dHN−1.
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As uk ∈ F (σk, σk, τk) we have that |∇uk| ≤ λ∗(1 + τk) and, by Lemma 2.6.10, there
holds that quk

(x) = g(λ∗) for HN−1 − a.e point in ∂red{uk > 0}. Then, by (2.7.19)
we have,

(2.7.20) g(λ∗)HN−1(∂red{uk > 0} ∩ Z+) ≤ g(λ∗(1 + τk))HN−1({uk > 0} ∩ Z0).

On the other hand, using the fact that f(y0) > g(y0), we can prove the following
excess area type estimate,

(2.7.21) HN−1(∂redEk ∩ Z) ≥ HN−1(Z0) + cσ2
k,

where Ek = {uk > 0} ∪ Z−. We leave the proof for a moment.

We also have,

HN−1(∂redEk ∩ Z) ≤ HN−1(Z+ ∩ ∂red{uk > 0}) +HN−1(Z0 ∩ {uk = 0}).
Using this inequality, (2.7.21) and the fact that HN−1(Z0 ∩ ∂{uk > 0}) = 0 (if this
is not true we replace g by g + c0 for a small constant c0) we have that,

(2.7.22) HN−1(∂red{uk > 0} ∩ Z+) ≥ HN−1(Z0 ∩ {uk > 0}) + cσ2
k.

Finally by (2.7.20) and (2.7.22) we have that,

g(λ∗)
[HN−1({uk > 0} ∩ Z0) + cσ2

k

] ≤ g(λ∗(1 + τk))HN−1({uk > 0} ∩ Z0).

Therefore, for some positive constant c we have

c ≤ g(λ∗(1 + τk))− g(λ∗)
σ2

k

and this contradicts the fact that τk

σ2
k
→ 0 as k →∞.

So, we only have to prove (2.7.21). Let as take, for κ > 0, the solution of,
{

∆η = −ϕκ in B′
ρ(y0),

η = g on ∂B′
ρ(y0),

Where ϕκ ∈ C∞
0 (B′

ρ(y0)), 0 ≤ ϕκ ≤ 1 and is supported in B′
κ(y0). By the uniform

estimates of η, we have that, when κ → 0, η converges uniformly to g. Then since
f(y0) > g(y0), we can choose κ sufficiently small such that η is less that f in B′

2κ(y0).

Let Z̃+ = {(y, h) ∈ Z, h > σkη(y)}, and define analogously Z̃− and Z̃0. As

before, we can assume that the sets Z̃0 ∩ ∂Ek have HN−1 measure zero.

First observe that, since uk ∈ F (σk, σk; τk), then ∂{uk > 0} lies in the strip
{|x| ≤ σk}. Therefore, we have,

(2.7.23) |Z̃+ ∩ Ek| ≤ |Z̃+ ∩ {uk > 0}|+ |Z̃+ ∩ Z+| ≤ cσk

(2.7.24) |Z̃− \ Ek| ≤ |Z̃− \ {uk > 0}| ≤ cσk

Now, take the vector field,

Vk(x) =
(−σk∇η(x′), 1)√
1 + |σk∇η(x′)|2 .
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We see that,

divVk = − σk∆η√
1 + |σk∇η(x′)|2 +

σ3
k

(1 + |σk∇η(x′)|2)3/2

∑
1≤i,j≤N−1

∂2η

∂xi∂xj

∂η

∂xi

∂η

∂xj

,

then, as D2η is bounded and ∆η ≤ 0 we have that

(2.7.25) divVk ≥ −Cσ3
k.

Moreover, if x ∈ B′
ρ(y0) \ B′

κ(y0) then ∆η = 0 and we have that |divVk| ≤ Cσ3
k.

Now, observe that, by construction of η we have that, if k is large enough

B′
κ(y0)× R ∩ Z̃− ⊂ Ek,

therefore

(2.7.26) |divVk| ≤ Cσ3
k in Z̃− \ Ek.

On the other hand we have,∫

Ek

div(dδ(Z̃
+)Vk) dx ≤

∫

∂redEk

|dδ((Z̃
+)Vk)| dHN−1 ≤ HN−1(Z̃+ ∩ ∂redEk),

and since∫

Ek

div(dδ(Z̃
+)Vk) dx → −

∫

∂Z̃+∩Ek

Vkν dHN−1 +

∫

Z̃+∩Ek

divVk dx

we have using (2.7.23) and (2.7.25) that,

HN−1(Z̃+ ∩ ∂redEk) ≥ HN−1(Z̃0 ∩ Ek)− Cσ4
k.

Analogously, we get,

HN−1(Z̃− ∩ ∂redEk) ≥
∫

∂Z̃−\Ek

Vkν dHN−1 −
∫

Z̃−\Ek

divVk dx,

and using (2.7.24) and (2.7.26) we obtain,

HN−1(Z̃− ∩ ∂redEk) ≥ HN−1(Z̃0 \ Ek)− Cσ4
k.

Thus, we proved

(2.7.27) HN−1(Z ∩ ∂redEk) ≥ HN−1(Z̃0)− Cσ4
k.

Finally, using that g is harmonic in B′
ρ(y0) and η = g on ∂B′

ρ(y0) we get,

HN−1(Z̃0)−HN−1(Z0) =

∫

B′ρ(y0)

(√
1 + |σk∇η|2 −

√
1 + |σk∇g|2

)
dHN−1

≥ cσ2
k

∫

B′ρ(y0)

(
|∇η|2 − |∇g|2

)
dHN−1 − Cσ4

k

= cσ2
k

∫

B′ρ(y0)

|∇η −∇g|2 dHN−1 − Cσ4
k.

Combining this last inequality with inequality (2.7.27), we obtain the desired esti-
mate.
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¤

The following Lemma was proved in [5],

Lemma 2.7.28. Let w be a function satisfying:

cijDijw = 0 in B1 ∩ {h < 0}, where cij is an elliptic constant matrix.

w(y, 0) = g(y) in the sence that w(y, h) converges in L1 to g as h ↑ 0

g is subharmonic and continuous in B′
1, g(0) = 0.

w(0, h) ≤ C|h|,
w ≥ −C.

Then ∫ 1/2

0

1

r2

(
–

∫
–

∂B′r(y)

g(y) dHN−2
)

dr ≤ C0,

where C0 is a constant depending only on C.

Proof. See Lemma 5.5 in [5]. ¤

Lemma 2.7.29. There exists a positive constant C = C(N) such that, for any
y0 ∈ B′

r/2, ∫ 1/4

0

1

r2

(
–

∫
–

∂B′r(y)

f − f(y0) dHN−2
)

dr ≤ C1.

Proof. It follows as in Lemma 8.3 at [10]. Without loss of generality we assume
ρk = 1. Also, it is sufficient to prove it for y0 = 0, since uk ∈ F (8σk, 8σk; τk) in
B1/4(y, σkf

+
k (y0)).

STEP I. Set wk(y, h) =
uk(y, h) + h

σk

. Then for subsequence,

lim
k→∞

wk = w exists everywhere in B−
1 .

The convergence is uniform in compact subsets of B−
1 , and w satisfies

cijDijw =
N−1∑
i=1

Diiw +
g′(1)

g(1)
DNNw = 0 in B−

1 ,(2.7.30)

w(0, h) ≤ 0,(2.7.31)

w(y, 0) = f(y) in the sense that lim
h→0−

w(y, h) = f(y),(2.7.32)

|w| ≤ C,(2.7.33)

w(y, h)− w(y, 0) ≤ 0 for all (y, h) ∈ B−
1 .(2.7.34)
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In fact, since the free boundary of uk lies in the strip |xN | ≤ σk, |∇uk| ≤ 1 + τk,
τk ≤ σk, and we have wk ≤ C in B−

1 . The flatness assumption also implies wk ≥ −C
in B−

1 , and thus

|wk| ≤ C in B−
1 .

By Theorem 2.7.4 we have that

(2.7.35) |∇uk| ≥ 1/2 in B1 ∩ {h ≤ −C0σk}
for σk sufficiently small. Then by Remark 1.2.25, uk satisfies

bij(∇uk)Dijuk = 0

where bij was define in (1.2.27), for h ≤ −C0σk. Therefore, we have

(2.7.36) bij(∇uk)Dijwk = 0 in B1 ∩ {h ≤ −C0σk}.

From the flatness assumption and by Theorem 1.2.19 we have that for D ⊂ B−
1

‖uk‖C1,β(D) is bounded, and therefore, for a subsequence, uk → u in C1(D). Again,
by the flatness assumption, we have that u = −h.

On the other hand, as wk satisfies the uniformly elliptic equation (2.7.36) with
continuous coefficients, and as the wk are bounded we have by Remark 1.2.30 and
Theorem 1.2.29 that for any compact set D ⊂ B−

1 and any q > 1, ‖wk‖C1,β(D) and
‖wk‖W 2,q(D) are bounded, therefore we may assume

(2.7.37)
wk → w in C1 in compact subsets of B−

1

D2wk → D2w in Lq
loc(B

−
1 ) for any pq > 1.

Therefore, passing to the limit in (2.7.36) we obtain (2.7.30). Clearly, (2.7.33) is
valid.

Since,

(2.7.38) −DNwk = − 1

σk

(DNuk + 1) ≤ |∇uk| − 1

σk

≤ τk

σk

and wk(0, 0) = 0 we obtain, for h ≤ 0

wk(0, h) ≤ |h| τk

σk

→ 0,

thus w(0, h) ≤ 0 and (2.7.31) follows.

It only remains to prove (2.7.32). First we show that for small δ and large K

(2.7.39) wk(y, h) → f(y) uniformly in D,

where D := B′
1−δ × [−K,−1]. By Lemma 2.7.18, it is sufficient to prove

(2.7.40) wk(y, h)− f+
k (y) → 0.

From (2.7.38) and by the definition of f+
k we obtain
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(2.7.41)

wk(y, hσk)− f+
k (y) ≤ wk(y, σkf

+
k (y))− f+

k (y) + (f+
k (y)− h)

τk

σk

= (f+
k (y)− h)

τk

σk

≤ (1 + K)
τk

σk

→ 0.

To show (2.7.40) take a sequence yk ∈ B′
1−δ, −K ≤ hk ≤ −1 and consider uk in

BRσk
(xk), where xk is the free boundary point xk = (yk, σkf

+
k (yk)) and R is a large

constant. If we define,

δ̃k =
1

R
sup

y∈B′Rσk
(yk)

(f+
k (y)− f+

k (yk)),

we have that xk ∈ ∂{uk > 0} and

uk(y, h) = 0 if (y, h) ∈ BRσk
(xk), h− σkf

+
k (yk) > δ̃kRσk,

and that means that,

uk ∈ F (δ̃k, 1; τk) in BRσk
(xk).

Observe that, by Lemma 2.7.18, δ̃k → 0, then we can apply Theorem 2.7.3 and
obtain that,

uk ∈ F (2δk, Cδk; τk) in B(R/2)σk
(xk),

for δk = max{δ̃k, τk}. Hence, for −R/2 ≤ h ≤ −C(R/2)δk,

uk(xk + hσkeN) ≥ −(hσk + Cδk(R/2)σk).

In other words,

(2.7.42) wk(xk + hσkeN)− f+
k (yk) =

uk(xk + hσkeN) + hσk

σk

≥ −Cδk(R/2) → 0.

For any −K ≤ hk ≤ −1 we have that 0 ≤ f+
k (yk)− hk ≤ 1 + K ≤ R/2 if we choose

R large (depending only on K). Therefore, by taking h = −f+
k (yk) + hk in (2.7.42)

and by (2.7.41) we obtain

wk(yk, σkhk)− f+
k (yk) → 0

and this holds for any (yk, hk) ∈ D, therefore (2.7.40) holds.

We now use a barrier argument. Let Ωδ be a C∞ domain with regular boundary
that approximates B−

1−δ in such a way that

B−
1−2δ ⊂ Ωδ ⊂ B−

1−δ.

For small ε > 0, let also gε be a C∞ function on ∂Ωδ, which satisfies,

(2.7.43)

f − 2ε ≤ gε ≤ f − ε on ∂Ωδ ∩ ∂B−
1−3δ ∩ {h = 0}

gε ≤ f − ε on ∂Ωδ ∩ {h = 0}
gε ≤ w − ε on ∂Ωδ ∩ {h < 0}.



100 2. A MINIMIZATION PROBLEM AND WEAK SOLUTIONS

Let now, Φε solve the Dirichlet problem,

bij(eN)DijΦε = 1 in Ωδ Φε = gε on ∂Ωδ.

Take (y, h) ∈ Ωδ ∩ {h = −Kσk}. By continuity of Φε, by (2.7.43) and (2.7.39)
we have that,

Φε(y,−σkK) < Φε(y, 0) + ε/2 ≤ f(y)− ε/2 < wk(y,−σkK),

for k < k(K, δ, ε).

On the other hand, if (y, h) ∈ ∂Ωδ ∩ {h < −Kσk} we have by (2.7.43), (2.7.37)
that

Φε ≤ w − ε < wk,

for k > k(δ,K, ε).

Therefore,

(2.7.44) wk > Φε on ∂(Ωδ ∩ {h < −Kσk})
for large k ≥ k(ε, δ,K).

We may assume that K > 2C0 where C0 is the constant in (2.7.35). The func-
tion wk is bounded and satisfies (2.7.36) which is uniformly elliptic, with elipticity
constant β. Then, by interior gradient estimates, we deduce that

|∇wk| ≤ C

(K − C0)σk

in Ωδ ∩ {h ≤ −Kσk},

where C is independent of k, K. In particular

(2.7.45) |∇uk − (−eN)| ≤ 2
C

K
in Ωδ ∩ {h ≤ −Kσk}.

Hence, if x ∈ V = Ωδ ∩ {h ≤ −Kσk} then

(2.7.46)
bij(∇uk)DijΦε = (bij(∇uk)− bij(−eN))DijΦε + 1

≥ 1− ‖Φε‖C1,1(Ωδ)‖bij(∇uk)− bij(−eN)‖L∞(V ).

The function

Hij(p) =
(g′(|p|)|p|

g(|p|) − 1
)pipj

|p|2
is uniformly continuous in any ring {c ≤ |p| ≤ C}. Therefore, as 1/2 ≤ |∇uk| ≤
1+ τk in Ωδ ∩{h ≤ −Kσk}, by (2.7.45) we can choose K = K(ε, δ) sufficiently large
to make the right hand side of (2.7.46) positive. Thus,

bij(∇uk)DijΦε > bij(∇uk)Dijwk in Ωδ ∩ {h < −Kσk}
and combining with (2.7.44) we deduce Φε ≤ wk in Ωδ∩{h < −Kσk}, for sufficiently
large k. Letting k →∞ we obtain w(y, h) ≥ Φε(y, h) in Ωδ and consequently,

lim inf
h→0−

w(y, h) ≥ f(y)− 2ε,
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for y ∈ B′
1−3δ. Similarly, by constructing a barrier from above, we obtain

lim sup
h→0−

w(y, h) ≤ f(y) + 2ε,

for y ∈ B′
1−3δ. Since ε and δ were arbitrary, the proof of (2.7.32) is completed.

Now, take h < h′ < 0 then by (2.7.38) we have that

wk(y, h)− wk(y, h′) ≤ τk

σk

|h− h′|,
and taking limit we have,

w(y, h)− w(y, h′) ≤ 0.

Using (2.7.32) we get, taking h′ → 0 that w(y, h) − w(y, 0) ≤ 0, and the proof of
(2.7.34) is completed.

STEP II. Fix ȳ ∈ B′
1/2(0) and define,

w∗(y, h) = w(
y

2
+ ȳ,

h

2
)− w(ȳ, 0), (y, h) ∈ B−

1 .

Then if
g∗(y) = f(

y

2
+ ȳ)− f(ȳ),

we have by Step I and Lemma 2.7.28 that
∫ 1/2

0

1

r2

(
–

∫
–

∂B′r(y)

g∗(y) dHN−2
)

dr ≤ C0,

and by definition we have,
∫ 1/4

0

1

r2

(
–

∫
–

∂B′r(y)

(f(y)− f(ȳ) dHN−2
)

dr ≤ C1(N),

and the result follows. ¤

The following Lemma was proved in [4],

Lemma 2.7.47. Let g be a function satisfying,

g is subharmonic and continuous in B′
1

g(0) = 0, |g| ≤ 1,
there exists C1 > 0 such that if y ∈ B′

1/2∫ 1/4

0

1

r2

(
–

∫
–

∂B′r(y)

(g − g(y)) dHN−2
)

dr ≤ C1.

Then

1. g is Lipschitz in B̄′
1/4 with Lipschitz constant depending on C1 and N .

2. There exists a constant C = C(N) > 0 and for 0 < θ < 1, there exists
cθ = c(θ,N) > 0, such that we can find a ball B′

r and a vector l ∈ RN−1

with

cθ ≤ r ≤ θ, |l| ≤ C, and g(y) ≤ l.y +
θ

2
r for |y| ≤ r.
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Proof. See Lemma 7.7 and Lemma 7.8 in [4]. ¤

Now by Lemmas 2.7.29 and 2.7.47 we have the following,

Lemma 2.7.48.

1. f is Lipschitz in B̄′
1/4 with Lipschitz constant depending on C1 and N .

2. There exists a constant C = C(N) > 0 and for 0 < θ < 1, there exists
cθ = c(θ,N) > 0, such that we can find a ball B′

r and a vector l ∈ RN−1

with

cθ ≤ r ≤ θ, |l| ≤ C, and f(y) ≤ l.y +
θ

2
r for |y| ≤ r.

Now, we can improve the flatness,

Lemma 2.7.49. Let θ, C, cθ as in Lemma 2.7.48. There exists a positive con-
stants σθ, such that

(2.7.50) u ∈ F (σ, σ; τ) in Bρ in direction ν

with σ ≤ σθ, τ ≤ σθσ
2, implies

u ∈ F (θσ, 1; τ) in Bρ̄ in direction ν̄

for some ρ̄ and ν̄ with cθρ ≤ ρ̄ ≤ θρ and |ν̄ − ν| ≤ Cσ, where σθ = σθ(θ, N).

Proof. Let uk a sequence as in Lemma 2.7.18. That is, uk ∈ F (σk, σk; τk) in
Bρk

(xk) in direction νk with σk ≤ 1/k, τk ≤ σ2
k/k and C∗ρk ≤ σk.

For simplicity, we assume that xk = 0 and νk = eN for all k. Then if we define
f as in Lemma 2.7.18 we have by Lemma 2.7.48 that

f(y) ≤ l · y +
θ

2
r for |y| ≤ r,

with r, l as in that lemma. Therefore, again by Lemma 2.7.18 we have for k large
depending on θ that,

f+
k (y) ≤ l · y + θr for |y| ≤ r.

This means, by the definition of f+
k , that

uk(ρky, ρkh) = 0 if (y, h) ∈ Br with h ≥ σkl · y + θσkr.

But this means that uk is of class F (σ̄k, 1; σ̄k) in Bρ̄k
in direction ν̄k with

ρ̄k := ρkr, σ̄k :=
θσk√

1 + |σkl|2
, ν̄k :=

(−σkl, 1)√
1 + |σkl|2

.

As σ̄k ≤ θσk, cθρk ≤ ρ̄k ≤ θρk, and |ν̄k − eN | ≤ Cσk, the conclusion of the lemma is
fulfilled for uk.

For the case xk and νk arbitrary, we take vk(x) = uk(xk + ρkTkx)/ρk where Tk is
a rotation, with TkeN = νk. ¤
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Lemma 2.7.51. Given 0 < θ < 1, there exist positive constants σθ, cθ and C
such that

(2.7.52) u ∈ F (σ, 1; τ) in Bρ in direction ν

with σ ≤ σθ and τ ≤ σθσ
2, then

u ∈ F (θσ, θσ; θ2τ) in Bρ̄ in direction ν̄

for some ρ̄ and ν̄ with cθρ ≤ ρ̄ ≤ 1
4
ρ and |ν̄ − ν| ≤ Cσ, where cθ = cθ(θ,N),

C = C(N, δ, g0), σθ = σθ(θ, N).

Proof. Assume that ρ = 1. If σθ is small enough, we can apply Theorem 2.7.3
and obtain

u ∈ F (Cσ,Cσ; τ) in B1/2 in direction ν.

Then for 0 < θ1 ≤ 1
2

we can apply Lemma 2.7.49, if again σθ is small, and we obtain

(2.7.53) u ∈ F (Cθ1σ,Cσ; τ) in Br1 in direction ν1

for some r1, ν1 with

cθ1 ≤ 2r1 ≤ θ1, and |ν1 − ν| ≤ Cσ.

We obtain the improvement of the value τ inductively. In order to improve τ , we

consider the functions Uε =
(
G(|∇u|)−G(λ∗)− ε

)+
and U0 =

(
G(|∇u|)−G(λ∗)

)+

in B2r1 . By Lemma 2.5.3, and (4) in Definitions 2.6.1 and 2.6.2 we know that Uε

vanishes in a neighborhood of the free boundary. Since Uε > 0 implies G(|∇u|) >
G(λ∗) + ε, the closure of {Uε > 0} is contained in {G(|∇u|) > G(λ∗) + ε/2}.

Since |∇u| is bounded from above in B2r1 , and from below in the set {G(|∇u|) >
G(λ∗) + ε/2}, we have that F (|∇u|) ≥ c in the set {G(|∇u|) > G(λ∗) + ε/2}∩B2r1 .
Then hypothesis (1.2.32) and (1.2.33) of Lemma 1.2.31 are satisfied, and we have
that v = G(|∇u|) satisfies,

Mv = Di(bij(∇u)Djv) ≥ 0 in {G(|∇u|) > G(λ∗) + ε/2} ∩B2r1 ,

where bij is defined in (1.2.26), and is β-elliptic in {G(|∇u|) > G(λ∗) + ε/2}.
Extending the operator M with the uniformly elliptic divergence-form operator

M̃w = Di(̃bij(x)Djw) in B2r1

with measurable coefficients such that

b̃ij(x) = bij(∇u) in {G(|∇u|) > G(λ∗) + ε/2},
we obtain

M̃Uε ≥ 0 in B2r1 .

Moreover, by (2.7.52) we have that Uε ≤ G(λ∗(1 + τ)) − G(λ∗) and by (2.7.53)
Uε = 0 in B = Br1/4

(
r1

2
ν1

)
, if Cσ ≤ 1/2.
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Take now, V such that,



M̃V = 0 in B2r1 \ B̄,

V = G(λ∗(1 + τ))−G(λ∗) on ∂B2r1 ,

V = 0 on ∂B.

Then, there exists 0 < c(N, β) < 1 such that V ≤ c
(
G(λ∗(1 + τ))− G(λ∗)

)
in Br1 .

Applying the maximum principle we have that, Uε ≤ c(G(λ∗(1 + τ)) − G(λ∗)) in
Br1 . Taking ε → 0 we obtain,

G(|∇u|) ≤ cG(λ∗(1 + τ)) + G(λ∗)(1− c) in Br1 .

Since, G(λ∗(1 + τ)) = G(λ∗) + g(λ∗)λ∗τ + o(τ) we have that

cG(λ∗(1 + τ)) + G(λ∗)(1− c) = G(λ∗) + cg(λ∗)λ∗τ + o(τ),

and since G is strictly increasing, we have,

|∇u| ≤ G−1(G(λ∗) + cg(λ∗)λ∗τ + o(τ))

= λ∗ +
1

g(λ∗)
(g(λ∗)λ∗τc + o(τ)) + o(τ)

= λ∗
(
1 + τ

(
c +

o(τ)

τ

)) ≤ λ∗
(
1 + τ

(c + 1)

2

)
,

if we choose τ small enough. And we see that if we choose θ1 small enough (depend-
ing on N), we have

u ∈ F (θ0σ, 1; θ2
0τ) in Br1 in direction ν1,

where θ0 =
√

c+1
2

.

We can repeat this argument a finite number of times, and we obtain

u ∈ F (θm
0 σ, 1; θ2m

0 τ) in Br1...rm in direction νm,

with

cθj
≤ 2rj ≤ θj, and |νm − ν| ≤ C

1− θ0

σ.

Finally we choose m large enough and use Theorem 2.7.3. ¤

7.3. Smoothness of the free boundary.

Theorem 2.7.54. Suppose that u is a weak solution, and D ⊂⊂ Ω. Then there
exist positive constants σ̄0, C and α such that if

u ∈ F (σ, 1;∞) in Bρ(x0) ⊂ D in direction ν

with σ ≤ σ̄0, ρ ≤ ρ̄0(σ̄0, σ), then

Bρ/4(x0) ∩ ∂{u > 0} is a C1,α surface,

more precisely, a graph in direction ν of a C1,α function, and, for any x1, x2 on this
surface

|ν(x1)− ν(x2)| ≤ Cσ
∣∣∣x1 − x2

ρ

∣∣∣
α
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Proof. By property (4) in Definitions 2.6.1 and 2.6.2 we have that, for every
ρ− neighborhood Dρ of D ∩ ∂{u > 0},

|∇u(x)| ≤ λ∗ + τ(ρ), for every x ∈ Dρ

where τ(ρ) → 0 when ρ → 0.

Therefore,

u ∈ F (σ, 1; τ) in Bρ(x0) in direction ν.

Applying Theorem 2.7.3 we have that

u ∈ F (C0σ,C0σ; τ) in Bρ/2(x0) in direction ν

if σ ≤ σ0 and τ ≤ σ.

Let x1 ∈ Bρ/2(x0) ∩ ∂{u > 0} then

u ∈ F (C0σ, 1; τ) in Bρ/2(x1) in direction ν

and applying again Theorem 2.7.3 we have,

u ∈ F (C2
0σ,C2

0σ; τ) in Bρ/4(x1) in direction ν

if C0σ ≤ σ0 and τ ≤ C0σ.

Let 0 < θ < 1, take ρ0 = ρ/4, ν0 = ν, C = C2
0 , σ ≤ σθ

C
and τ ≤ σθC

2σ2. Now, by
Lemma 2.7.51 and iterating we get that there exist sequences ρm and νm such that,

u ∈ F (θmCσ, θmCσ; θ2mτ) in Bρm(x1) in direction νm

with cθρm ≤ ρm+1 ≤ ρm/4 and |νm+1 − νm| ≤ θmCσ.

Thus, we have that |〈x− x1, νm〉| ≤ θmCσρm for x ∈ Bρm(x1) ∩ ∂{u > 0}.
We also have that there exists ν(x1) = limm→∞ νm and

|ν(x1)− νm| ≤ Cθm

1− θ
σ.

Now let x ∈ Bρ/4(x1)∩ ∂{u > 0} and choose m such that ρm+1 ≤ |x− x1| ≤ ρm.
Then

|〈x− x1, ν(x1)〉| ≤ Cθmσ
( |x− x1|

1− θ
+ ρm

)
≤ Cθmσ

( 1

1− θ
+

1

cθ

)
|x− x1|

and since |x− x1| ≥ cm+1
θ ρ0 we have

θm+1 ≤
( |x− x1|

ρ0

)α

with α =
log(θ)

log(cθ)
,

and we conclude that

|〈x− x1, ν(x1)〉| ≤ Cσ

ρα
|x− x1|1+α.

Finally, observe that the result follows if we take, σ̄0 = min{σ0,
σ0

C0
, σθ

C
} and if we

choose ρ̄0 small enough such that if ρ ≤ ρ̄0, τ(ρ) ≤ min{σ,C0σ, σθC
2σ2}. ¤
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Remark 2.7.55. By Lemma 2.6.12 and Definition 2.6.2 we have that there exists
a set A ⊂ ∂red{u > 0}, with HN−1(∂red{u > 0} \ A) = 0, such that for x0 ∈ A we
have that u ∈ F (σρ, 1;∞) in Bρ(x0) in direction νu(x0), with σρ → 0 for ρ → 0.
Observe that by Theorem 2.5.5 when u is a minimizer A = ∂red{u > 0}. Hence
applying Theorem 2.7.54 we have,

Theorem 2.7.56. Suppose that g satisfies (0.0.2). If u is a weak solution then
there exists a subset A ⊂ ∂red{u > 0} with HN−1(∂red{u > 0} \ A) = 0 such that
for any x0 ∈ A there exists r > 0 so that Br(x0) ∩ ∂{u > 0} is a C1,α surface.
Moreover, if u satisfies Definition 2.6.1 then the remainder of ∂{u > 0} has HN−1–
measure zero. Finally, if u is a minimizer, ∂red{u > 0} is a C1,α surface and
HN−1(∂{u > 0} \ ∂red{u > 0} = 0.

7.4. Full regularity of minimizers in the case N = 2. We will prove,
for minimizers of 2.0.1 that in dimension two, for a subclass of functions satisfying
(0.0.2), their whole free boundary is a C1,α surface.

The class that we consider consists of those functions satisfying condition (0.0.2)
and such that,

(2.7.57) There exist constants t0 and k > 0 so that g(t) ≤ kt for t ≤ t0.

Observe that this condition is satisfied for example, if δ ≥ 1 or when g0 ≥ 1 and

there exists a constant C such that lim
t→0

g(t)

tg0
= C.

In order to prove the full regularity, we first need two lemmas, the first one holds
for any dimension and for any g satisfying (0.0.2).

Lemma 2.7.58. Let u ∈ K be a local minimizer. Given D ⊂⊂ Ω, there exist
constants C = C(N, D, λ∗), r0 = r0(N, D) > 0 and γ = γ(N, D) > 0 such that, if
x0 ∈ D ∩ ∂{u > 0} and r < r0, then

sup
Br(x0)

|∇u| ≤ λ∗ + Crγ.

Proof. The proof is similar to the proof of Theorem 7.1 in [10] but here we
make a little modification by using a result of [21]. This result allows us to avoid
having to add any new hypothesis to the function g.

Let Uε, U0, M and M̃ be as in Lemma 2.7.51. Then M̃Uε ≥ 0 in Ω.

For any r > 0 set

hε(r) = sup
Br(x0)

Uε, h0(r) = sup
Br(x0)

U0,

for any r < r0 = dist (D, ∂Ω) and x0 ∈ D ∩ ∂{u > 0}.
Then, hε(r)− Uε is a M̃ - supersolution in the ball Br(x0) and

hε(r)− Uε ≥ 0 in Br(x0)
= hε(r) in Br(x0) ∩ {u = 0}.
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Applying the weak Harnack inequality (see [17] Theorem 8.18) with 1 ≤ p < N/(N−
2), we get

inf
Br/2(x0)

(
hε(r)− Uε

) ≥ cr−N/p‖hε(r)− Uε‖Lp(Br(x0)) ≥ chε(r),

since, by Theorem 2.1.1, |Br(x0) ∩ {u = 0}| ≥ crN . Taking now ε → 0 we obtain

inf
Br/2(x0)

(
h0(r)− U0

) ≥ ch0(r),

for some 0 < c < 1, which is the same as

sup
Br/2(x0)

U0 ≤ (1− c)h0(r).

Therefore

h0

(r

2

)
≤ (1− c)h0(r),

from which it follows that h0(r) ≤ Crγ for some C > 0, 0 < γ < 1. That is,

G(|∇u|) ≤ G(λ∗) + Crγ

and therefore

|∇u| ≤ λ∗ + Crγ

and now the conclusion of the lemma follows. ¤

In the following Lemma is where we need to impose condition (2.7.57).

Lemma 2.7.59. Let Φ(t) = g(t)t−G(t), and g satisfying condition (2.7.57). Let
x0 be a free boundary point, D ⊂⊂ Ω and Bµ(x0) ⊂ D. Take v = max(u − tη, 0),
where t > 0, η ∈ C∞

0 (Ω), η = 0 in Ω \Bµ(x0), η ≥ 0 and |∇η| ≤ C/t. Then,
∫

Bµ(x0)∩{u>0}
(G(|∇v|)−G(|∇u|)) dx ≤

∫

Bµ(x0)∩{0<u≤tη}
Φ(|∇u|) dx

+ C0t
2

∫

Bµ(x0)∩{u>tη}
|∇η|2 dx,

for C0 = C0(N, δ, g0, dist(D, ∂Ω), C).

Proof. The Lemma follows as in Theorem 4.3 in [5] by making some modifica-
tions.

First, observe that for 0 ≤ s ≤ 1 we have |∇u − ts∇η| ≤ |∇u| + C ≤ C1 + C,
where C1 is the constant in Theorem 2.2.25 . On the other hand, if g satisfies

(2.7.57), and if F (a) = g(a)
a

then for 0 ≤ a ≤ C1 +C, there exists a constant C0 such
that F (a) ≤ C0. Therefore we have that,

(2.7.60) F (|∇u− st∇η|) ≤ C0 for all 0 ≤ s ≤ 1.
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Set f(p) = G(|p|), then
(2.7.61)

f(∇v)− f(∇u) =

∫ 1

0

fp(∇u− t∇(u− v))∇(v − u) dt = fp(∇u)∇(v − u)

+

∫ 1

0

∫ t

0

∇(v − u)fpp(∇u− s∇(u− v))∇(v − u) ds dt.

On the set {u > tη} we have v − u = −tη, hence by (1.2.24) and (2.7.60) we have,

(2.7.62)

∫

{u>tη}∩Bµ(x0)

∫ 1

0

∫ t

0

∇(v − u)fpp(∇u− s∇(u− v))∇(v − u) ds dt dx

≤ C

∫

{u>tη}∩Bµ(x0)

|∇v −∇u|2 dx = Ct2
∫

{u>tη}∩Bµ(x0)

|∇η|2 dx.

On the set {u ≤ tη} we have v = 0 and thus,
∫

{u≤tη}∩Bµ(x0)

∫ 1

0

∫ t

0

∇(v − u)fpp(∇u− s∇(u− v))∇(v − u) ds dt

=

∫

{u≤tη}∩Bµ(x0)

∫ 1

0

∫ t

0

∇ufpp((1− s)∇u)∇u ds dt dx.

Next,

0 = f(0) = f(∇u)−
∫ 1

0

fp((1− t)∇u)∇u dt = f(∇u)− fp(∇u)∇u

+

∫ 1

0

∫ t

0

∇ufpp((1− s)∇u)∇u ds dt

(2.7.63)

∫

{u≤tη}∩Bµ(x0)

∫ 1

0

∫ t

0

∇(v − u)fpp(∇u− s∇(u− v))∇(v − u) ds dt

≤
∫

{u≤tη}∩Bµ(x0)

Φ(|∇u|) dx

Therefore by (2.7.61), (2.7.62) and (2.7.63) we have∫

Bµ(x0)∩{u>0}
(G(|∇v|)−G(|∇u|)) dx

≤
∫

{u≤tη}
Φ(|∇u|) dx + Ct2

∫

{u>tη}
|∇η|2 dx +

∫

Ω

fp(∇u)∇(v − u) dx.

In the last integral the integrand vanishes on the set {u = 0}. Since also v − u = 0
on ∂{u > 0} and Lu = 0 on {u > 0}, this integral vanishes. (For a rigorous proof
approximate v − u by −min(u− δ, tη) for δ > 0). The result follows. ¤

Now, following ideas from [2], using Lemmas 2.7.58 and 2.7.59, we prove, for
N = 2 and g satisfying (2.7.57) the following,
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Theorem 2.7.64. Let N = 2, g satisfying (2.7.57) and u a minimizer. Then,
for any ball Br centered at the free boundary we have,

–

∫
–

Br∩{u>0}
(Φ(λ∗)− Φ(|∇u|))+ → 0 as r → 0,

where Φ(t) = g(t)t−G(t) and Φ(λ∗) = λ.

Proof. Let 1 ≥ µ > r, and take v, as in Lemma 2.7.59, then J (u) ≤ J (v) and

(2.7.65)

∫

Bµ(x0)∩{0<u≤tη}
λ ≤

∫

Bµ(x0)∩{u>0}
(G(|∇v|)−G(|∇u|)) dx.

Let t = Cr, where C is the constant such that u ≤ Cr in Br. Now choose

η(x) =





log(µ/|x−x0|)
log(µ/r)

in Bµ(x0) \Br(x0),

1 in Br(x0)

0 in Ω \Bµ(x0),

observe that the condition |∇η| ≤ C/t is satisfied if we choose µ such that µ > 2r.

Observe that,
∫

Bµ(x0)∩{0<u≤tη}
(Φ(λ∗)− Φ(|∇u|)) dx =

∫

Bµ(x0)∩{0<u≤tη}
(Φ(λ∗)− Φ(|∇u|))+ dx

−
∫

Bµ(x0)∩{0<u≤tη}
(Φ(|∇u|)− Φ(λ∗))+ dx.

On the other hand by our election of t and η, we have that in Br, u ≤ tη and
then by Lemma 2.7.59, (2.7.65) and the definition of λ∗, we have,

∫

Br(x0)∩{u>0}
(Φ(λ∗)− Φ(|∇u|))+ dx ≤

∫

Bµ(x0)

(Φ(|∇u|))− (Φ(λ∗))+ dx

+
Cr2

log(µ/r)
.

By Lemma 2.7.58, we have that Φ(|∇u|)−Φ(λ∗) ≤ Φ(λ∗+Crγ)−Φ(λ∗) = Φ′(ξ)Crγ,
for λ∗ ≤ ξ ≤ λ∗ + Crγ. As Φ′(t) = g′(t)t ≤ g0g(t), and as g is nondecreasing we
have that Φ′(ξ) ≤ g0g(ξ) ≤ g0g(λ∗ + Crγ). Therefore we have,

1

r2

∫

Br(x0)∩{u>0}
(Φ(λ∗)− Φ(|∇u|))+ dx ≤ C

(µγ+2

r2
+

r2

log(µ/r)

)
.

Taking r = µ1+β, with β < min{γ/2, 1/2}, we have the desired result. ¤

Corollary 2.7.66. Let N = 2, suppose that g satisfies (0.0.2) and moreover
satisfies (2.7.57). Let u ∈ K be a solution to (2.0.1). Then ∂{u > 0} is a C1,α

surface locally in Ω.
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Proof. The proof follows now as in [4], we give the proof here for the readers
convenience. Let uk be a blow up sequence converging to u0. Since, ∇uk → ∇u0

a.e in RN , we conclude from Theorem 2.5.3 and Theorem 2.7.64 that |∇u0| = λ∗ in
B1 ∩ {u0 > 0}, and then

0 = Lu0 = div
(g(|∇u0|)
|∇u0| ∇u0

)
=

g(λ∗)
λ∗

4u0 in {u0 > 0}.

Therefore u0 is harmonic in {u0 > 0}, and if we take v = |∇u0|2, we have 0 = 4v =
|D2u0|2 and that means that ∇u0 is constant in each connected component of this
set. Therefore, by Lemma 1.6.13 (5) and (7) we have,

u0 = λ∗ max〈x, ν0, 0〉+ q max〈−x, ν0, s〉,
for some ν0 and q, s ≥ 0. Since {u0 = 0} has positive density at the origin, we
have that s > 0 or q = 0. Therefore, we have proved that any blow up sequence
has a subsequences that converges to a half linear function u0 = λ∗ max〈x, ν0, 0〉 in
some neighborhood of the origin, then applying Theorem 2.7.54 we have the desired
result. ¤



CHAPTER 3

The optimization problem

In this Chapter we study, the following optimization problem. Take Ω a smooth
bounded domain in RN and ϕ0 ∈ W 1,G(Ω), a Dirichlet datum, with ϕ0 ≥ c0 > 0
in Ā, where A is a nonempty relatively open, C2 subset of ∂Ω. Here W 1,G(Ω) is a
Sobolev-Orlicz space (see Chapter 1). Let

Kα = {u ∈ W 1,G(Ω) / |{u > 0}| = α, u = ϕ0 on ∂Ω}.
Our problem is to minimize in Kα, the functional J (u) =

∫
Ω

G(|∇u|) dx , with
g = G′ satisfying (0.0.2).

1. The penalized problem

In order to solve our original problem in a way that allows us to perform non
volume preserving perturbations we follow the idea of [2] and consider instead the
following penalized problem: We let

K = {u ∈ W 1,G(Ω) / u = ϕ0 on ∂Ω}
and

(3.1.1) Jε(u) =

∫

Ω

G(|∇u|) dx + Fε(|{u > 0}|),
where

Fε(s) =

{
ε(s− α) if s < α
1
ε
(s− α) if s ≥ α.

Then, the penalized problem is

(Pε) Find uε ∈ K such that Jε(uε) = inf
v∈K

Jε(v).

In the next section we will study the properties of solutions to (Pε).

1.1. Existence, regularity of minimizers and their free boundaries.
We begin by discussing the existence of extremals and the regularity. We are going
to give some properties of the minimizers, but as the functional Jε is very similar to
the one in Chapter 2, we are only going to state the results and avoid any proof. The
only difference between the two functionals is that in Chapter 2 the functional is
lineal in |{u > 0}| and here it is piecewise linear. Next, we prove that any minimizer
of Jε is a weak solution, as defined in Chapter 2. Therefore we will have, by the
results therein that the free boundary is smooth.

111
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Theorem 3.1.2. Let Ω ⊂ RN be bounded. Then there exists a solution to the
problem (Pε). Moreover, any such solution uε has the following properties:

1. uε is locally Lipschitz continuous in Ω, and for D ⊂⊂ Ω we have that,
‖∇u‖L∞(D) ≤ C with C = C(N, g0, δ, dist(∂Ω, D)).

2. Luε = 0 in {uε > 0}.
3. There are constants 0 < cmin ≤ Cmax, γ ≥ 1, such that for balls Br(x) ⊂ D

with x ∈ ∂{uε > 0}

cmin ≤ 1

r

(
–

∫
–

Br(x)

uγ
εdx

)1/γ

≤ Cmax

4. For every D ⊂⊂ Ω, there exist constants C, c > 0 such that for every
x ∈ D ∩ {uε > 0},

c dist(x, ∂{uε > 0}) ≤ uε(x) ≤ C dist(x, ∂{uε > 0}).
5. For every D ⊂⊂ Ω, there exists a constant c > 0 such that for x ∈ ∂{uε >

0} and Br(x) ⊂ D,

c ≤ |Br(x) ∩ {uε > 0}|
|Br(x)| ≤ 1− c.

The constants may depend on ε.

Proof. Observe that since Fε satisfies,

if A ≤ B, then ε(A−B) ≤ Fε(A)− Fε(B) ≤ 1

ε
(A−B),

then if uε is a minimizer, Br ⊂⊂ Ω and v is a solution of

Lv = 0 in Br, v − uε ∈ W 1,G
0 (Br).

we have the following inequality

ε(|Br ∩ {v > 0}| − |Br ∩ {uε > 0}|) ≤ Fε(|Br ∩ {v > 0}|)− Fε(|Br ∩ {uε > 0}|)
≤ 1

ε
(|Br ∩ {v > 0}| − |Br ∩ {uε > 0}|).

Therefore all the proofs of sections 3, 4 and 5 of Chapter 2 can be modify using this
fact. Observe that here, all the constants may depend on ε.

¤

From now on we drop the subscript ε and denote by u instead of uε a solution
to (Pε).

Theorem 3.1.3 (Representation Theorem). Let u ∈ K be a solution to (Pε).
Then,

1. HN−1(D ∩ ∂{u > 0}) < ∞ for every D ⊂⊂ Ω.
2. There exists a Borel function qu such that

Lu = quHN−1b∂{u > 0}.
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3. For D ⊂⊂ Ω there are constants 0 < c ≤ C < ∞ depending on N, Ω, D
and ε such that for Br(x) ⊂ D and x ∈ ∂{u > 0},

c ≤ qu(x) ≤ C, c rN−1 ≤ HN−1(Br(x) ∩ ∂{u > 0}) ≤ C rN−1.

4. HN−1(∂{u > 0} \ ∂red{u > 0}) = 0.

Proof. See Theorem 1.4.54. Observe that D ∩ ∂{u > 0} has finite perimeter,
thus, the reduce boundary ∂red{u > 0} is defined as well as the measure theoretic
normal ν(x) for x ∈ ∂red{u > 0} (see Chapter 1 Section 4.2). ¤

We are going to prove, that any solution to (Pε), u is a weak solution in the sense
of Definition 2.6.1. First we prove that, if we take two points on the free boundary
such that the blow up sequences with respect to these points have blow up limits
that are half planes, then the slopes must coincide. Finally we will prove that the
function qu is constant and that property (4) of Definition 2.6.1 is satisfied with
λ∗ = g−1(qu). We will divide the proof into several lemmas.

Lemma 3.1.4. Let x0, x1 ∈ ∂{u > 0} and ρk → 0+. For i = 0, 1 let xi,k → xi

with u(xi,k) = 0 such that Bρk
(xi,k) ⊂ Ω and such that the blow-up sequence

ui,k(x) =
1

ρk

u(xi,k + ρkx)

has a limit ui(x) = λi〈x, νi〉−, with 0 < λi < ∞ and νi a unit vector. Then λ0 = λ1.

Proof. Assume that λ1 < λ0 then we will perturb the minimizer u near x0

and x1 and get an admissible function with less energy. To this end, we take a
nonnegative C∞

0 function φ supported in the unit interval. For k large, define

τk(x) =





x + ρ2
kφ

( |x− x0,k|
ρk

)
ν0 for x ∈ Bρk

(x0,k),

x− ρ2
kφ

( |x− x1,k|
ρk

)
ν1 for x ∈ Bρk

(x1,k),

x elsewhere,

which is a diffeomorphism if k is big enough. Now let

vk(x) = u(τ−1
k (x)),

then, vk is an admissible function. Let us also define

(3.1.5) ηi(y) = (−1)iφ(|y|)νi.

We have

(3.1.6) Fε(|{vk > 0}|)− Fε(|{u > 0}|) = o(ρN+1
k ).



114 3. THE OPTIMIZATION PROBLEM

In order to estimate the other term in Jε we make a change of variables and get

ρ−N
k

∫

Bρk
(xi)

(G(|∇vk|)−G(|∇u|)) dx

=

∫

B1(0)∩{ui,k>0}
ρk

[
G(|∇ui,k|) div(ηi)− F (|∇ui,k|)(∇ui,k)

tDηi∇ui,k

]
+ o(ρk) dy.

On the other hand, by Lemma 1.6.13, we have

B1(0) ∩ {ui,k > 0} → B1(0) ∩ {y · νi < 0}, as k → 0, and

∇ui,k → ∇ui = −λiνiχ{〈y,νi〉<0} a.e in B1(0).

Therefore

ρ−N−1
k

∫

Bρk
(xi)

(G(|∇vk|)−G(|∇u|)) dx →
∫

B1(0)∩{〈y,νi〉<0}

(
G(λi)div(ηi)− g(λi)λi ν

t
i Dηi νi

)
dy

Using that

div(ηi)− g(λi)λi

G(λi)
νt

i Dηi νi = (−1)i
(
1− g(λi)λi

G(λi)

)φ′(|y|)
|y| 〈y, νi〉

= (−1)i
(
1− g(λi)λi

G(λi)

)
div(ηi),

we obtain

ρ−N−1
k

∫

Bρk
(xi)

(G(|∇vk|)−G(|∇uε|)) dx →

(−1)i+1Φ(λi)

∫

B1(0)∩{y·νi=0}
φ(|y|) dHN−1(y),

where Φ(t) = g(t)t−G(t). Hence

(3.1.7)

∫

Ω

G(|∇vk|) dx−
∫

Ω

G(|∇u|) dx =

= ρN+1
k (Φ(λ1)− Φ(λ0))

∫

B1(0)∩{y1=0}
φ(|y|) dHN−1(y)

+ o(ρN+1
k ).

If we take k large enough we get

Jε(vk) < Jε(u),

a contradiction.

¤
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Lemma 3.1.8. Let x0 ∈ Ω ∩ ∂{u > 0} and let

λ = λ(x0) := lim sup
x→x0

u(x)>0

|∇u(x)|.

Then, there exist sequences yk, dk and ν such that the blow up sequence with respect
to Bdk

(yk) has limit,
u0(x) = λ〈x, ν〉−.

Proof. Let x0 ∈ Ω ∩ ∂{u > 0} and let

λ = λ(x0) := lim sup
x→x0

u(x)>0

|∇u(x)|.

Then there exists a sequence zk → x0 such that

u(zk) > 0, |∇u(zk)| → λ.

Let yk be the nearest point to zk on Ω ∩ ∂{u > 0} and let dk = |zk − yk|. Consider
the blow up sequence with respect to Bdk

(yk) with limit u0, such that there exists

ν := lim
k→∞

yk − zk

dk

,

and suppose that ν = eN . As in Lemma 2.5.3 we can prove that 0 < λ < ∞ and

u0(x) = −λxN in {xN ≤ 0}.
Finally by Lemma 1.6.13 we have that 0 ∈ ∂{u0 > 0} and then, using Lemma
1.6.13 we see that u0 satisfies the hypotheses of Theorem 1.5.1. Therefore u0 = 0 in
{xN > 0}. Then u0 = λ〈x, ν〉−. ¤

Lemma 3.1.9. For HN−1–a.e. x0 ∈ ∂red{u > 0}, there exist a sequence γn such
that if un is the blow up sequence with respect to Bγn(x0) we have that,

un → λ∗〈x, ν(x0)〉−
with ν(x0) the outward unit normal of ∂{u > 0} at x0 in the measure theoretic sense
and λ∗ = g−1(qu(x0)).

Proof. Take x0 ∈ ∂red{u > 0} and suppose that ν(x0) = eN . We consider
a blow up sequence with respect to balls Bρk

(x0), with blow up limit u0. As in
Theorem 2.5.5 we have, {

u0 = 0 in {xN ≥ 0},
u0 > 0 in {xN < 0}.

And, as in Lemma 2.5.9 we have that for a.e HN−1 x0 ∈ ∂red{u > 0}, qu0(x) =
qu(x0) in the sense that for all ξ ∈ C1

0(Br)

(3.1.10) −
∫

Br∩{xN<0}
g(|∇u0|) ∇u0

|∇u0|∇ξ dx = qu(x0)

∫

B′r

ξ(x′, 0) dHN−1.

From the boundary regularity we have, that this is satisfied in the classical sense,
Therefore , u0(x) = λ∗x−N + o(|x|).
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Take now u0,j, a blow up sequence of u0, with respect to balls Bµj
(0). Then,

u0,j → u00 = λ∗x−N .

Now, we want to construct a blow up sequence of u with limit u00. Observe, that

∣∣∣ 1

ρkµj

u(x0 + ρkµjx)− u00(x)
∣∣∣ ≤ 1

µj

|uk(µjx)− u0(µjx)|+ |u0,j(x)− u00(x)|,

and since uk → u0 uniformly over compacts sets we have that for j ≥ jn, |u0,j(x)−
u00(x)| < 1/n and for k ≥ kn, |uk(µjx) − u0(µjx)| < µj/n if |x| ≤ n. We may
suppose that jn ≥ n and kn ≥ n. Taking γn = ρknµjn , we have that γn → 0 and

|uγn(x)−u00(x)| < 2/n in Bn. Replacing ξ by ξ(x) = ξ
(

x
γn

)
γn in (3.1.10), changing

variables and passing to the limit we get
∫

B1∩{xN<0}
g(λ∗)ξxN

dx =

∫

B′1

ξ(x′, 0)HN−1,

and the result follows. ¤

Theorem 3.1.11. Let u ∈ K be a solution to (Pε) and qu the function in Theorem
3.1.3. Then, there exists a positive constant λu such that

lim sup
x→x0

u(x)>0

|∇u(x)| = λu, for every x0 ∈ Ω ∩ ∂{u > 0}(3.1.12)

qu(x0) = g(λu), HN−1 − a.e x0 ∈ Ω ∩ ∂{u > 0}.(3.1.13)

Proof. Let x1 ∈ ∂red{u > 0} satisfying the properties of Lemma 3.1.9. Set
λu := g−1(qu(x1)). Then, there exists a blow up sequence un → λu〈x, ν(x1)〉−. For
any x0 ∈ ∂{u > 0}, we have by Lemma 3.1.8, that there exists for a certain unit
vector ν(x0) a blow up sequence uk → λ(x0)〈x, ν(x0)〉−. Then, by Lemma 3.1.4,
we have that λ(x0) = λu and then (3.1.12) follows. If we apply Lemmas 3.1.9 and
3.1.4 again, we obtain (3.1.13) for almost every point in ∂red{u > 0}, and the result
follows by Theorem 3.1.3 (4). ¤

Remark 3.1.14. Now we have, by properties (1), (2), (3) in Theorem 2.1.1,
(2), (4) in Theorem 3.1.3 and Theorem 3.1.11 that any minimizer satisfies all the
properties of the definition of weak solution I in Chapter 2. Therefore we have by
Theorem 2.7.56 and Remark 2.7.55 in Chapter 2 the following regularity result for
the free boundary ∂{u > 0}.

Corollary 3.1.15. Let u ∈ K be a solution to (Pε). Then ∂red{u > 0} is a
C1,β surface locally in Ω and the remainder of the free boundary has HN−1−measure
zero.
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1.2. Full regularity for the case N = 2. We will prove, that in dimension
two, for the subclass of functions satisfying (0.0.2) and (2.7.57), their whole free
boundary is a C1,β surface.

As in Section 7.4 of Chapter 2, the following lemma holds for any dimension and
for any δ and g0,

Lemma 3.1.16. Let u ∈ K be a local minimizer. Given D ⊂⊂ Ω, there exist
constants C = C(N, D, λu), r0 = r0(N, D) > 0 and γ = γ(N, D) > 0 such that, if
x0 ∈ D ∩ ∂{u > 0} and r < r0, then

sup
Br(x0)

|∇u| ≤ λu + Crγ.

Proof. The proof follows as in Lemma 2.7.58 by using the density property of
the set {u = 0} (Theorem 3.1.2 (5)).

¤

Now, we have to do some changes on the proof of Theorem 2.7.64, since here
there is no explicit relation between the constant λu and the parameter ε of the
functional Jε (recall that for the minimization problem in Chapter 2, we use that
we have the relation Φ(λ∗) = λ). In order to prove the full regularity of the free
boundary, we need the following lemma, that also holds for any dimension and for
any δ and g0.

Lemma 3.1.17. Let x1 be regular free boundary point.

Take

τρ(x) =





x + ρ2φ

( |x− x1|
ρ

)
νu(x1) for x ∈ Bρ(x1),

x elsewhere,

where φ ∈ C∞
0 (−1, 1) with φ′(0) = 0.

Let

(3.1.18) δ = ρ2

∫

Bρ(x1)∩∂{u>0}
φ

( |x− x1|
ρ

)
dHN−1.

Take vδ(x) = vρ(x) = u(τ−1
ρ (x)), then

∫

Bρ(x1)

(G(|∇vρ|)−G(|∇u|)) dx = −lρN+1Φ(λu) + o(ρN+1),(3.1.19)

where l = limρ→0
δ

ρN+1 and Φ(t) = g(t)t−G(t).

Proof. The proof is included in the proof of Lemma 3.1.4.. ¤

The following lemma is the place where, as in Lemma 2.7.59, we need to impose
condition (2.7.57).
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Lemma 3.1.20. Let Φ(t) = g(t)t−G(t), and g satisfying condition (2.7.57). Let
x0 be a free boundary point , D ⊂⊂ Ω and Bµ(x0) ⊂ D. Take v = max(u − tη, 0),
where t > 0, η ∈ C∞

0 (Ω), η = 0 in Ω \Bµ(x0) and |∇η| ≤ C/t. Then,
∫

Bµ(x0)∩{u>0}
(G(|∇v|)−G(|∇u|)) dx ≤

∫

Bµ(x0)∩{0<u≤tη}
Φ(|∇u|) dx

+C0t
2

∫

Bµ(x0)∩{u>tη}
|∇η|2 dx,

for C0 = C0(N, δ, g0, dist(∂Ω, D), C).

Proof. It follows as in Lemma 2.7.59, by using Theorem 3.1.2 (1). ¤

Now, following ideas of [19], using Lemmas 3.1.16, 3.1.17 and 3.1.20, we prove,
for N = 2 and g satisfying (2.7.57) the following

Theorem 3.1.21. Let N = 2, g satisfying (2.7.57) and u a minimizer. Then,
for any ball Br centered at the free boundary we have,

–

∫
–

Br∩{u>0}
(Φ(λu)− Φ(|∇u|))+ → 0 when r → 0,

where Φ(t) = g(t)t−G(t).

Proof. Let 0 < r < µ, t > 0 and v0 be the function defined in Lemma 3.1.20. By
Theorem 2.1.1 u ≤ Cr in Br(x0). Take t = Cr and let δt = |{0 < u ≤ tη}∩Bµ(x0)|.

Now, let us take x1 far from x0 and such that ∂{u > 0} ∩Br1(x1) is regular, for
r1 small. Let ρ be such that (3.1.18) is satisfied for δ = δt, and consider v1 = vδt

defined in Br1(x1) as in Lemma 3.1.17. Then, the function

v =





v0 in Bµ(x0)

v1 in Br1(x1)

u elsewhere

is admissible for our minimization problem and |{v > 0}| = |{u > 0}|. Therefore,
by Lemmas 3.1.17 and 3.1.20 we have

0 ≤ Jε(v)− Jε(u)

=

∫

Bρ(x0)

(G(|∇v|)−G(|∇u|)) dx +

∫

Br1 (x1)

(G(|∇v|)−G(|∇u|)) dx

≤
∫

Bµ(x0)∩{u≤tη}
Φ(|∇u|) + Ct2

∫

Bµ(x0)∩{u>tη}
|∇η|2 dx− lρ3Φ(λu) + o(ρ3).

By the definition of δt we have,∫

Bµ(x0)∩{0<u≤tη}
(Φ(λu)− Φ(|∇u|)) dx ≤Ct2

∫

Bµ(x0)∩{u>tη}
|∇η|2 dx + o(ρ3)

+ (δt − lρ3)Φ(λu).
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Now choose

η(x) =





log(µ/|x− x0|)
log(µ/r)

in Bµ(x0) \Br(x0),

1 in Br(x0)

0 in Ω \Bµ(x0),

observe that the condition |∇η| ≤ C/t is satisfied if we choose µ such that µ > 2r.

By our election of t and η we have,
∫

Br(x0)∩{u>0}
(Φ(λu)− Φ(|∇u|))+ dx ≤

∫

Bµ(x0)

(Φ(|∇u|))− (Φ(λu))
+ dx

+
Cr2

log(µ/r)
+ o(ρ3) + (δt − lρ3)Φ(λu).

By Lemma 3.1.16, we have that Φ(|∇u|)−Φ(λu) ≤ Φ(λu+Crγ)−Φ(λu) = Φ′(ξ)Crγ,
for λu ≤ ξ ≤ λu + Crγ. As Φ′(t) = g′(t)t ≤ g0g(t), and as g is nondecreasing we
have that Φ′(ξ) ≤ g0g(ξ) ≤ g0g(λu + Crγ).

Therefore by the definition of l we have

–

∫
–

Br(x0)∩{u>0}
(Φ(λu)− Φ(|∇u|))+ dx ≤ (µγ+2 + o(ρ3))

r2
+

C

log(µ/r)
.

As δt ≤ cµ2 we have that o(ρ3) = o(µ2). Taking r = µh(µ)β, where h(µ) =

max
(
µ, o(µ2)

µ2

)
with β < min{γ/2, 1/2}, we have the desired result. ¤

Now we have, as in Corollary 2.7.66 the following,

Corollary 3.1.22. Let N = 2, g satisfying (2.7.57) and u ∈ K be a solution to
(Pε). Then ∂{u > 0} is a C1,β surface locally in Ω.

2. Behavior of the minimizer for small ε .

In this section, since we want to analyze the dependence of the problem with
respect to ε, we will again denote by uε a solution to problem (Pε).

To complete the analysis of the problem, we will now show that if ε is small
enough, then

|{uε > 0}| = α.

To this end, we need to prove that the constant λε := λuε is bounded from above
and below by positive constants independent of ε. We perform this task in a series
of lemmas.

Lemma 3.2.1. Let uε ∈ K be a solution to (Pε). Then, there exists a constant
C > 0 independent of ε such that

λε ≤ C.
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Proof. First we will prove that there exist C, c > 0, independent of ε, such
that

c ≤ |{uε > 0}| ≤ Cε + α.

In fact, by taking u0 such that |{u0 > 0}| ≤ α we have that Jε(u0) ≤ C then we
have that Fε(|{uε > 0}|) ≤ C thus obtaining the bound from above. We also have
that

∫
Ω

G(|∇uε|) is bounded. As uε = ϕ0 on ∂Ω, we have, by Lemma 1.1.5, that
‖∇uε − ∇ϕ0‖G ≤ C and, by Lemma 1.2.10, we also have ‖uε − ϕ0‖G ≤ C. Then,
‖uε‖W 1,G(Ω) ≤ C. Using the Sobolev trace Theorem, the Hölder inequality and the
embedding Theorem 1.1.9 we have, for q < δ + 1∫

∂Ω

ϕq
0 dHN−1 ≤ C|{uε > 0}| δ+1−q

δ+1 ‖uε‖q
W 1,δ+1(Ω)

≤ C|{uε > 0}| δ+1−q
δ+1 ‖uε‖q

W 1,G(Ω)
≤ C|{uε > 0}| δ+1−q

δ+1 ,

and thus we obtain the bound from below.

Take D ⊂⊂ Ω smooth, such that θ = |D| > α and |Ω \D| < c. Then,

|D ∩ {uε > 0}| ≤ α + Cε < θ

for ε small enough. On the other hand,

|D ∩ {uε > 0}| ≥ |{uε > 0}| − |Ω \D| ≥ c− |Ω \D| > 0,

Therefore by the relative isoperimetric inequality (see [13] 5.6.2) we have

HN−1(D ∩ ∂{uε > 0}) ≥ c min
{
|D ∩ {uε > 0}|, |D ∩ {uε = 0}|

}N−1
N

≥ c > 0.

Now let w be the L− solution in Ω with boundary data equal to ϕ0. Using Theorem
3.1.3 and Theorem 2.5.3 we have,

C ≥
∫

Ω

F (|∇uε|)∇uε∇(uε − w) dx =

∫

Ω∩∂{uε>0}
wg(λε) dHN−1

≥
∫

D∩∂{uε>0}
wg(λε) dHN−1 ≥ g(λε)(inf

D
w)HN−1(D ∩ ∂{uε > 0}) ≥ cg(λε).

Now the result follows.

¤
Lemma 3.2.2. Let uε ∈ K be a solution to (Pε), Br ⊂⊂ Ω and v a solution to

Lv = 0 in Br, v = uε on ∂Br.

Then, there exists a positive constant γ = γ(δ, g0, N) such that

∫

Br

|∇(uε − v)|q dx ≥ C|Br ∩ {uε = 0}|
(

1

r

(
–

∫
–

Br

uγ
ε dx

)1/γ
)q

for all q ≥ 1 and where C is a constant independent of ε.
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Proof. First let us assume that Br = B1(0). For |z| ≤ 1
2

we consider the
change of variables from B1 into itself such that z becomes the new origin. We call
uz(x) = u

(
(1− |x|)z + x

)
, vz(x) = v

(
(1− |x|)z + x

)
and define

rξ = inf
{

r /
1

8
≤ r ≤ 1 and uz(rξ) = 0

}
,

if this set is nonempty. Observe that this change of variables leaves the boundary
fixed.

Now, for almost every ξ ∈ ∂B1 we have
(3.2.3)

vz(rξξ) =

∫ 1

rξ

d

dr
(uz − vz)(rξ) dr ≤ (1− rξ)

1/q′
(∫ 1

rξ

|∇(uz − vz)(rξ)|q dr

)1/q

.

Let us assume that the following inequality holds

(3.2.4) vz(rξξ) ≥ C(N, Ω)(1− rξ)

(
–

∫
–

B1

uγ dx

)1/γ

.

Then, using (3.2.3) and (3.2.4), integrating first over ∂B1 and then over |z| ≤ 1/2
we obtain as in [4],

∫

B1

|∇(u− v)|q dx ≥ C|B1 ∩ {u = 0}|
(

–

∫
–

B1

uγ dx

)q/γ

.

If we take ur(x) = 1
r
u(x0 + rx) (where x0 is the center of the ball Br) then

∫

B1

|∇(ur − vr)|q dx = r−N

∫

Br

|∇(u− v)|q dy,

|B1 ∩ {ur = 0}| = r−N |Br ∩ {u = 0}| and
(

–

∫
–

B1

uγ
r dx

)1/γ

=
1

r

(
–

∫
–

Br

uγ dy

)1/γ

,

so we have the desired result.

Therefore we only have to prove (3.2.4). If |(1 − rξ)z + rξξ| ≤ 3
4
, by Harnack

inequality,

vz(rξξ) ≥ CNv(0).

By the weak Harnack inequality 1.2.15 we have

(3.2.5) v(0) ≥ α(N, Ω)

(
–

∫
–

B1

vγ dx

)1/γ

≥ α(N, Ω)

(
–

∫
–

B1

uγ dx

)1/γ

.

If |(1−rξ)z+rξξ| ≥ 3
4

we prove by a comparison argument that inequality (3.2.4)
also holds. In fact, again by Harnack inequality,

v ≥ CNα

(
–

∫
–

B1

uγ dx

)1/γ

in B3/4.
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Let w(x) = (e−λ|x|2 − e−λ)

(
–

∫
–

B1

uγ dx

)1/γ

. There exists λ = λ(N, α) such that





Lw ≥ 0 in B1 \B3/4,

w ≤ CNα

(
–

∫
–

B1

uγ dx

)1/γ

on ∂B3/4,

w = 0 on ∂B1,

(see Lemma 1.2.47) so that,

v ≥ w ≥ C(1− |x|)
(

–

∫
–

B1

uγ dx

)1/γ

in B1 \B3/4.

Therefore

vz(rξξ) ≥ C
(
1− |(1− rξ)z + rξξ|

) (
–

∫
–

B1

uγ dx

)1/γ

≥ C(1− rξ)

(
–

∫
–

B1

uγ dx

)1/γ

since |z| ≤ 1
2
. So that (3.2.4) holds for every rξ ≥ 1

8
.

This completes the proof.

¤

Without loss of generality, from now on we will suppose that g0 ≥ 1.

Lemma 3.2.6. Let uε and v be as in Lemma 3.2.2, and Br a ball centered on the
free boundary, then if r is small enough (depending on ε) we have,

(3.2.7)

∫

Br

(G(|∇u|)−G(|∇v|)) dx ≥ C

∫

Br

|∇uε −∇v|g0+1 dx

for some constant C independent of ε.

Proof. Let,

A1 = {x ∈ Br : |∇uε −∇v| ≤ 2|∇uε|}, A2 = {x ∈ Br : |∇uε −∇v| > 2|∇uε|},
then Br = A1 ∪ A2 and by Theorem 1.2.38 we have that,

(3.2.8)

∫

Br

(G(|∇uε|)−G(|∇v|)) dx ≥ C
( ∫

A2

G(|∇uε −∇v|) dx

+

∫

A1

F (|∇uε|)|∇uε −∇v|2 dx
)
.

Therefore we have, using that g0 ≥ 1 and (g1) in Lemma 1.1.1, that when
|∇uε| ≤ 1 and |∇v −∇uε| ≤ 1,

(3.2.9)
G(|∇uε −∇v|) ≥ C|∇uε −∇v|g0+1

F (|∇uε|) ≥ C|∇uε|g0−1 ≥ C|∇uε −∇v|g0−1 in A1.
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On the other hand, by Lemma 3.2.1 and (3.1.12), we have that for small r (depending
on ε), |∇uε| is bounded by a constant independent of ε. By Lemma 1.2.18 there
exist C0, C1 = C0, C1(N, g0, δ) such that,

sup
Br

G(|∇v|) ≤ C0

rN

∫

B2r

G(|∇v|) dx ≤ C1

rN

∫

B2r

(1 + G(|∇uε|)) dx ≤ C,

if we choose r small (depending on ε) and where C is independent of ε. Therefore,
(3.2.9) holds for all x ∈ Br. Combining (3.2.8) and (3.2.9) we obtain the desired
result.

¤
Lemma 3.2.10. Let uε ∈ K be a solution to (Pε). Then

λε ≥ c > 0,

where c is independent of ε

Proof. We will use the following fact that we prove in Lemma 3.2.16 bellow:
For every ε > 0 there is a neighborhood of A in Ω where uε > 0.

Let y0 ∈ A and let Dt with 0 ≤ t ≤ 1 be a family of open sets with smooth
boundary and uniformly (in ε and t) bounded curvatures such that D0 is an exterior
tangent ball at y0, D1 contains a free boundary point, D0 ⊂⊂ Dt for t > 0 and
Dt ∩ ∂Ω ⊂ A.

Let t ∈ (0, 1] be the first time such that Dt touches the free boundary and let
x0 ∈ ∂Dt ∩ ∂{uε > 0} ∩ Ω. Now, take w such that Lw = 0 in Dt \D0 with w = c0

on ∂D0 and w = 0 on ∂Dt. Thus w ≤ uε in Dt ∩ Ω and ∂−νw(x0) ≥ c with c > 0
independent of ε. Therefore, for r small enough,

(3.2.11)

(
–

∫
–

Br(x0)

uγ
ε dx

)1/γ

≥
(

–

∫
–

Br(x0)

wγ dx

)1/γ

≥ rc̄,

with c̄ is independent of ε.

If v0 is the solution to {
Lv0 = 0 in Br(x0)

v0 = uε on ∂Br(x0),

then, by Lemma 3.2.2, we have
∫

Br

|∇(uε − v0)|q dx ≥ C|Br ∩ {uε = 0}|
(

1

r

(
–

∫
–

Br

uγ
ε dx

)1/γ
)q

,

Then be Lemma 3.2.6 we obtain,
(3.2.12)

∫

Br

(G(|∇uε|)−G(|∇v0|)) dx ≥ C|Br ∩ {uε = 0}|
(

1

r

(
–

∫
–

Br

uγ
ε dx

)1/γ
)g0+1

.
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Then by (3.2.11)

(3.2.13)

∫

Br(x0)

(G(|∇uε|)−G(|∇v0|)) dx ≥ cδr

where δr = |Br(x0) ∩ {uε = 0}| and c is a constant independent of ε.

Consider now a free boundary point x1 away from x0. We can choose x1 to be
regular.

Let us take

τρ(x) =





x− ρ2φ

( |x− x1|
ρ

)
νuε(x1) for x ∈ Bρ(x1),

x elsewhere,

where φ ∈ C∞
0 (−1, 1) with φ′(0) = 0.

Now choose ρ such that

δr = ρ2

∫

Bρ(x1)∩∂{uε>0}
φ

( |x− x1|
ρ

)
dHN−1.

Take vρ(τρ(x)) = uε(x) and

v =





v0 in Br(x0)

vρ in Bρ(x1)

uε elsewhere.

Thus, we have that

(3.2.14) |{v > 0}| = |{uε > 0}|.
On the other hand as in Lemma 3.1.4, we have∫

Bρ(x1)

(G(|∇vρ|)−G(|∇uε|)) dy

=

∫

τρ(Bρ(x1))∩{vρ>0}
G(|∇vρ|) dy −

∫

Bρ(x1)

G(|∇u|) dx

=

∫

Bρ(x1)∩{u>0}
ρ(G(|∇uε|)div η − F (|∇uε|)∇uεDη∇uε) + o(ρ) dx

where η(y) = −φ(|y|)ν(x1). Using the fact that |∇η| is bounded from above by a
constant independent of ρ and ε, and that |∇uε| = λε + O(ρα) in Bρ(x1) we have∫

Bρ(x1)

(G(|∇vρ|)−G(|∇uε|)) dy ≤ kG(λε)ρ
N+1 + o(ρN+1)

but, δr has the same order of ρN+1 then

(3.2.15)

∫

Bρ(x1)

(G(|∇vρ|)−G(|∇uε|)) dy ≤ KG(λε)δr + o(δr).

Therefore by (3.2.13), (3.2.15) and (3.2.14) we have

0 ≤ Jε(v)− Jε(uε) ≤ −cδr + KG(λε)δr + o(δr)
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and then λε ≥ c > 0. ¤
Lemma 3.2.16. For every ε > 0 there exists a neighborhood of A in Ω such that

uε > 0 in this neighborhood.

Proof. Let y0 ∈ A and let Bδ(z0) be an exterior tangent ball to ∂Ω at y0 such
that Ω ∩B = {y0}. Let us take δ small enough so that B2δ(z0) ∩ ∂Ω ⊂⊂ A. Let wε

be a minimizer of

(3.2.17) J̃ε(w) :=

∫

R
G(|∇w|) dx +

1

ε
|{w > 0} ∩ R|

in {w ∈ W 1,G(R) , w = 0 on ∂B2δ(z0), w = c0 on ∂Bδ(z0)}. Here R = B2δ(z0) \
Bδ(z0).

Every minimizer of (3.2.17) is radially symmetric and radially decreasing with
respect to z0. This is seen by using Schwartz symmetrization after extending wε to
Bδ(z0) as the constant function c0 (see Chapter 1, section 7). This symmetrization
preserves the distribution function and strictly decreases the

∫
B

G(|∇u|) dx unless
the function is already radially symmetric and radially decreasing (see Proposition
1.7.16). Moreover, these minimizers are ordered and their supports are nested. Let
us take as wε the smallest minimizer.

By the properties of wε there holds that wε is strictly positive in a ring around
Bδ(z0). Also wε is continuous in R. Recall that uε is continuous in Ω. Let us see
that uε ≥ wε in R∩ Ω. This will prove the statement.

Assume instead that {wε > uε} 6= ∅.
Let us first consider the function v = min{uε, wε} in R∩ Ω. Since uε ≥ c0 ≥ wε

on ∂Ω ∩ R and uε ≥ 0 = wε on Ω ∩ ∂R there holds that v = wε on ∂(R ∩ Ω).
Therefore, the function v = v in R ∩ Ω, v = wε in R \ Ω is an admissible function
for the minimization problem (3.2.17). Since wε is the smallest minimizer and, by

assumption v ≤ wε and v 6= wε, there holds that J̃ε(v) > J̃ε(wε). Since v = wε in
R\Ω and in R∩Ω∩ {wε ≤ uε} and equal to uε outside those sets there holds that
(with D = R∩ Ω ∩ {wε > uε}),
(3.2.18)

∫

D
G(|∇uε|) dx +

1

ε
|{uε > 0} ∩ D| >

∫

D
G(|∇wε|) dx +

1

ε
|{wε > 0} ∩ D|.

Let now v̄ = max{uε, wε} in R∩Ω, v̄ = uε in Ω \R. This function is admissible
for (Pε) so that∫

Ω

G(|∇v̄|) dx + Fε

(|{v̄ > 0}|) ≥
∫

Ω

G(|∇uε|) dx + Fε

(|{uε > 0}|).

Since v̄ = wε in D and v̄ = uε in Ω \ D,

(3.2.19)

∫

D
G(|∇wε|) dx + Fε

(|{uε > 0}|+ |{wε > 0} ∩ D| − |{uε > 0} ∩ D|)

≥
∫

D
G(|∇uε|) dx + Fε

(|{uε > 0}|).
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By (3.2.18) and (3.2.19) (with Cw = |{wε > 0} ∩ D| and Cu = |{uε > 0} ∩ D|)
we have,∫

D
G(|∇uε|) dx >

∫

D
G(|∇wε|) dx +

1

ε
(Cw − Cu)

≥
∫

D
G(|∇uε|) dx + Fε(|{uε > 0}|)− Fε(|{uε > 0}|+ Cw − Cu)

+
1

ε
(Cw − Cu).

Thus,

Fε(|{uε > 0}|+ Cw − Cu)− Fε(|{uε > 0}) >
1

ε
(Cw − Cu)

which is a contradiction since Fε(A) − Fε(B) ≤ 1
ε
(A − B) if A ≥ B and Cw ≥ Cu

by the definition of D.

Therefore, uε ≥ wε in R∩ Ω and the lemma is proved. ¤

With these uniform bounds on λε, we can prove that |{uε > 0} ∩ Ω| = α.

Theorem 3.2.20. Under the same hypotheses of Lemma 3.2.10, there exists
ε0 > 0 such that for ε < ε0, |{uε > 0}| = α. Therefore, uε is a minimizer of J in
Kα.

Proof. Arguing by contradiction, assume first that |{uε > 0}| > α. Let x1 ∈
∂{uε > 0}∩Ω be a regular point. We will proceed as in the proof of Lemma 3.2.10.
Given δ > 0, we perturb the domain {uε > 0} in a neighborhood of x1, decreasing
its measure by δ. We choose δ small so that the measure of the perturbed set is still
larger than α. Take vρ(τρ(x)) = uε(x), and let

v =

{
vρ in Bρ(x1)

uε elsewhere,

where τρ is the function that we have considered in the previous lemma.

We have

0 ≤ Jε(v)− Jε(uε) =

∫

Ω

G(|∇v|) dx−
∫

Ω

G(|∇uε|) dx + Fε(|{v > 0}|)

−
∫

Ω

Fε(|{uε > 0}|)

≤ kG(λε)δ + oε(δ)− 1

ε
δ

≤
(

kG(C)− 1

ε

)
δ + oε(δ) < 0,

if ε < ε0 and then δ < δ0(ε). A contradiction.

Now assume that |{uε > 0}| < α. This case, is a little bit different from the
other. First, we proceed as in the previous case but this time we perturb in a
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neighborhood of x1 the set {uε > 0} increasing its measure. That is, take

τρ(x) =





x + ρ2φ

( |x− x1|
ρ

)
νuε(x1) for x ∈ Bρ(x1),

x elsewhere,

where φ ∈ C∞
0 supported in the unit interval, take vρ(τρ(x)) = uε(x) and

v =

{
vρ in Bρ(x1)

uε elsewhere.

For ρ small enough we have |{v > 0}| < α and

|{v > 0}| − |{uε > 0}| = CρN+1 + o(ρN+1),

therefore

(3.2.21) Fε(|{v > 0}|)− Fε(|{uε > 0}|) ≤ CερN+1 + oε(ρ
N+1).

In order to estimate the other term, we will make use of a blow up argument as
in Lemma 3.1.4. In fact, we take uρ(y) = 1

ρ
u(x1 + ρy) and we change variables to

obtain,

ρ−N

∫

Bρ(x1)

(G(|∇vρ|)−G(|∇uε|)) dx

=

∫

B1(0)∩{uρ>0}
ρ[G(|∇uρ|)div(η)− F (|∇uρ|)(∇uρ)

tDη∇uρ] + o(ρ) dy

where η(y) = φ(|y|)ν(x1). Now, as in Lemma 3.1.4 we get,

ρ−N−1

∫

Bρ(x1)

(G(|∇vρ|)−G(|∇uε|)) dx →

− Φ(λε)

∫

B1(0)∩{y·ν=0}
φ(|y|) dHN−1(y).

Therefore ∫

Bρ(x1)

(G(|∇vρ|)−G(|∇uε|)) dx = −CρN+1Φ(λε) + o(ρN+1).(3.2.22)

Finally, combining (3.2.21) and (3.2.22) we have

0 ≤ Jε(v)− Jε(uε) =

∫

Ω

G(|∇v|) dx−
∫

Ω

G(|∇uε|) dx

+ Fε(|{v > 0}|)− Fε(|{uε > 0}|)
≤ −Φ(λε)ρ

N+1 + oε(ρ
N+1) + CερN+1

≤ (−Φ(c) + Cε)ρN+1 + oε(ρ
N+1) < 0,

if ε < ε1 and then ρ < ρ0(ε). Again a contradiction that ends the proof.

¤

As a corollary, we have the desired result for our problem
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Corollary 3.2.23. Suppose that g satisfies (0.0.2). Then any minimizer u of J
in Kα is a locally Lipschitz continuous function, ∂red{u > 0} is a C1,β surface locally
in Ω and the remainder of the free boundary has HN−1−measure zero. Moreover if
N = 2 and g satisfies (2.7.57) then ∂{u > 0} is a C1,β surface locally in Ω.

Proof. If u is minimizer of J in Kα, by Theorem 3.2.20 we have that for small
ε there exists a solution uε to (Pε) such that |{uε > 0}| = α then u is a solution to
(Pε). Therefore, the result follows. ¤



CHAPTER 4

The singular perturbation problem

In this chapter we study the following problem. For any ε > 0, take uε a solution
of,

(Pε) Luε = βε(u
ε), uε ≥ 0.

A solution to (Pε) is a function uε ∈ W 1,G(Ω) ∩ L∞(Ω) such that

(4.0.1)

∫

Ω

g(|∇uε|) ∇uε

|∇uε|∇ϕdx = −
∫

Ω

ϕβε(u
ε) dx

for all ϕ ∈ C∞
0 (Ω).

Where βε(s) = 1
ε
β

(
s
ε

)
, with β ∈ Lip(R), supported in [0, 1], and such that

satisfies,
∫ 1

0
β(s) ds = M for a constant M .

We are interested in what happens with the limiting problem, when ε → 0.

In this chapter we will assume all the time, that g satisfies condition (0.0.2).

1. Uniform bound of the gradient

We begin by proving that solutions of the perturbation problem are locally uni-
formly Lipschitz. That is, the uε’s are locally Lipschitz, and the Lipschitz constant
is independent of ε. To prove this result, we will first need to prove a couple of
lemmas.

Lemma 4.1.1. Let uε be a solution of

Luε = βε(u
ε) in Br0(x0)

such that uε(x0) ≤ 2ε. Then, there exists C = C(N, r0, δ, g0, ‖β‖∞, g(1)) such that,
if ε ≤ 1,

|∇uε(x0)| ≤ C.

Proof. Let v(x) = 1
ε
uε(x0 +εx). Then if ε ≤ 1, Lv = β(v) in Br0 and v(0) ≤ 2.

By Harnack inequality (see Remark 1.2.21) we have that 0 ≤ v(x) ≤ C1 in Br0/2

with C1 = C1(N, g0, δ, ‖β‖∞) therefore, again by Remark 1.2.21 we have that

|∇v(0)| ≤ C

with C = C(N, δ, g0, ‖β‖∞, r0, g(1)). ¤
129
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Lemma 4.1.2. Let uε be a solution of

Luε = βε(u
ε) in B1,

and 0 ∈ ∂{uε > ε}, then for x ∈ B1/4 ∩ {uε > ε},
uε(x) ≤ ε + Cdist(x, {uε ≤ ε}),

with C = C(N, δ, g0, ‖β‖∞, g(1)).

Proof. For x0 ∈ B1/4 ∩ {uε > ε} take, m0 = uε(x0)− ε and
δ0 = dist(x0, {uε ≤ ε}∩B1). Since 0 ∈ ∂{uε > ε}∩B1, δ0 ≤ 1/4. We want to prove
that, m0 ≤ C(N, δ, g0, ‖β‖∞, g(1))δ0.

Since, Bδ0(x0) ⊂ {uε > ε} ∩ B1 we have that, uε − ε ≥ 0 in Bδ0(x0) and
L(uε − ε) = 0. By Harnack inequality there exists c1 = c1(N, g0, δ) such that

min
Bδ0/2(x0)

(uε − ε) ≥ c1m0.

Let as take ϕ = e−µ|x|2 − e−µδ2
0 with µ = 2K

δδ2
0
, and where K is the constant defined

in Lemma 1.2.47 that depends only on N and g0. Then, we have that Lϕ > 0 in
Bδ0 \Bδ0/2 (see the proof of Lemma 1.2.47).

Let now ψ(x) = c2m0ϕ (x− x0) for x ∈ Bδ0(x0) \ Bδ0/2(x0). Then, again, by
Lemma 1.2.47 we have that, if we choose c2 conveniently depending on N, δ, g0




Lψ(x) > 0 in Bδ0(x0) \Bδ0/2(x0)

ψ = 0 on ∂Bδ0(x0)

ψ = c1m0 on ∂Bδ0/2(x0).

By the comparison principle (see Lemma 1.2.35) we have,

(4.1.3) ψ(x) ≤ uε(x)− ε in Bδ0(x0) \Bδ0/2(x0).

Take y0 ∈ ∂Bδ0(x0) ∩ ∂{uε > ε}. Then, y0 ∈ B1/2 and

(4.1.4) ψ(y0) = uε(y0)− ε = 0.

Let vε = uε(y0+εx)
ε

, then if ε < 1 we have that Lvε = β(vε) in B1/2 and vε(0) = 1.
Therefore, by Harnack inequality (see Remark 1.2.21) we have that maxB1/4

vε ≤ c̃

and

(4.1.5) |∇uε(y0)| = |∇vε(0)| ≤ C max
B1/4

vε ≤ c3.

Finally, by (4.1.3), (4.1.4) and (4.1.5) we have that, |∇ψ(y0)| ≤ |∇uε(y0)| ≤ c3.

Observe that |∇ψ(y0)| = c2m0e
−µδ2

02µδ0 ≤ c3, therefore

m0 ≤ c3e
µδ2

0

c22µδ0

=
c3δe

2K/δ

c24K
δ0

and the result follows.

¤
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Now, we can prove the main result of this section,

Proposition 4.1.6. Let uε be a solution of

Luε = βε(u
ε) in B1,

0 ∈ ∂{uε > ε}, then we have for x ∈ B1/8,

|∇uε(x)| ≤ C

with C = C(N, δ, g0, ‖β‖∞, g(1)).

Proof. By Lemma 4.1.1 we know that if x0 ∈ {uε ≤ 2ε} ∩B3/4 then,

|∇uε(x0)| ≤ C0

with C0 = C0(N, δ, g0, ‖β‖∞, g(1)).

Let x0 ∈ B1/8 ∩ {uε > ε} and δ0 = dist(x0, {uε ≤ ε}).
As 0 ∈ ∂{uε > ε} we have that δ0 ≤ 1/8. Therefore, Bδ0(x0) ⊂ {uε > ε} ∩ B1/4

and then Luε = 0 in Bδ0(x0) and by Lemma 4.1.2

(4.1.7) uε(x) ≤ ε + C1dist(x, {uε ≤ ε}) in Bδ0(x0).

1. Suppose that ε < c̄δ0 with c̄ to be determined. Then, if x ∈ Bδ0(x0)

there holds that dist(x, ∂{uε > ε} < 2δ0. Let v(x) = uε(x0+δ0x)
δ0

then Lv =

βε(u
ε(x0 + δ0x)) = 0 in B1. Therefore, by Lemma 1.2.18

|∇v(0)| ≤ C sup
B1

v,

with C̃ = C̃(N, g0, δ, g(1)). We obtain,

|∇uε(x0)| ≤ C̃

δ0

sup
Bδ0

(x0)

uε ≤ C̃

δ0

(ε + Cδ0) ≤ C̃(c̄ + C).

2. Suppose that ε ≥ c̄δ0. By (4.1.7) we have,

uε(x0) ≤ ε + C1δ0 ≤
(
1 +

C1

c̄

)
ε < 2ε,

if we choose c̄ big enough. By Lemma 4.1.1, we have |∇uε(x0)| ≤ C, with
C = C(N, g0, δ, ‖β‖∞, g(1)).

The result follows. ¤

With this lemmas we obtain the following,

Corollary 4.1.8. Let uε be a solution of

Luε = βε(u
ε) in Ω,

with ‖uε‖L∞(Ω) ≤ L. Then, we have for Ω′ ⊂⊂ Ω, that there exists ε0(Ω, Ω′) such
that if ε ≤ ε0(Ω, Ω′),

|∇uε(x)| ≤ C in Ω′

with C = C(N, δ, g0, L, ‖β‖∞, g(1), dist(Ω′, ∂Ω)).



132 4. THE SINGULAR PERTURBATION PROBLEM

Proof. Let τ > 0 such that ∀x ∈ Ω′, Bτ (x) ⊂ Ω and ε ≤ τ . Let x0 ∈ Ω′.

1. If δ0 = dist(x0, ∂{uε > ε}) ≤ τ/8, let y0 ∈ ∂{uε > ε} such that |x0 − y0| =
δ0. Let v(x) = uε(y0+τx)

τ
, and x̄ = x0−y0

τ
, then |x̄| < 1/8. As 0 ∈ ∂{v > ε/τ}

and Lv = βε/τ (v) in B1, we have by Proposition 4.1.6

|∇uε(x0)| = |∇v(x̄)| ≤ C.

2. If δ0 = dist(x0, ∂{uε > ε}) ≥ τ/8, there holds that
a) Bτ/8(x0) ⊂ {uε > ε}, or
b) Bτ/8(x0) ⊂ {uε ≤ ε},

In the first case, Luε = 0 in Bτ/8(x0). Therefore,

|∇uε(x0)| ≤ C(N, g0, δ, τ, g(1), L).

In the second case, we can apply Lemma 4.1.1 and we have,

|∇uε(x0)| ≤ C(N, g0, δ, τ, g(1), 2‖β‖∞).

The result is proved.

¤

2. Passage to the limit

Since we have that |∇uε| is bounded by a constant independent of ε, we have that
there exists a function u ∈ Lip(Ω) such that, for a subsequence εj → 0, uεj → u. In
this section we will prove some properties of the function u.

Proposition 4.2.1. Let {uε} be a uniformly bounded family of solutions of (Pε).
Then for any sequence εj → 0 there exists a subsequence ε′j → 0 and u ∈ Liploc(Ω)
such that,

1. uε′j → u uniformly in compact subsets of Ω,
2. Lu = 0 in Ω \ ∂{u > 0}
3. There exists a locally finite measure µ such that βε′j(u

ε′j) ⇀ µ as measures

in Ω′, for every Ω′ ⊂⊂ Ω,
4. ∇uε′j → ∇u in Lg0+1

loc (Ω),
5. ∫

Ω

F (|∇u|)∇u∇ϕ = −
∫

Ω

ϕdµ

for all ϕ ∈ C∞
0 (Ω). Moreover µ is supported on Ω ∩ ∂{u > 0}.

Proof. (1) follows by Corollary 4.1.8.

To prove (2), take E ⊂⊂ {u > 0} then u ≥ c > 0 in E. Therefore, uε′j > c/2 in

E for ε′j small. If we take ε′j < c/2 as Luε′j = 0 in {uε′j > ε′j}, we have that Luε′j = 0

in E, then ‖uε′j‖C1,α(E) ≤ C. For a subsequence we have,

∇uε′j → ∇u uniformly in E

therefore, Lu = 0.
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To prove (3), let us take Ω′ ⊂⊂ Ω, and ϕ ∈ C∞
0 (Ω) with ϕ = 1 in Ω′. As in Ω′

‖∇uε′j‖ ≤ C, we have that

C(ϕ) ≥
∫

Ω

βε′j(u
ε′j)ϕdx ≥

∫

Ω′
βε′j(u

ε′j) dx.

Therefore, βε′j(u
ε′j) is bounded in L1

loc(Ω), so that, there exists a locally finite measure

µ such that

βε′j(u
ε′j) ⇀ µ as measures

that is, for every ϕ ∈ C0(Ω),

∫

Ω

βε′j(u
ε′j)ϕdx →

∫

Ω

ϕdµ

We divide the proof of (4) in several steps.

Step 1. Let Ω′ ⊂⊂ Ω, then by Corollary 4.1.8, |∇uεj | ≤ C in Ω′. Therefore for
a subsequence ε′j we have that there exists ξ ∈ (L∞(Ω′))N such that,

(4.2.2)

∇uε′j ⇀ ∇u ∗ − weakly in (L∞(Ω′))N

A(∇uε′j) ⇀ ξ ∗ − weakly in (L∞(Ω′))N

uε′j → u uniformly in Ω′

where A(p) = F (|p|)p. For simplicity we call ε′j = ε.

We want to prove that, for any v ∈ C∞
0 (Ω′)

(4.2.3)

∫

Ω′
A(∇uε)∇v dx →

∫

Ω′
A(∇u)∇v dx.

First, as A is monotone (i.e 〈A(η)−A(ξ), η− ξ〉 ≥ 0 ∀ η, ξ ∈ RN) we have that,
for any w ∈ W 1,G(Ω′),

(4.2.4) I =

∫

Ω′
(A(∇uε)− A(∇w))(∇uε −∇w) dx ≥ 0.

Therefore,
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(4.2.5)

−
∫

Ω′
βε(u

ε)uε dx−
∫

Ω′
A(∇uε)∇w dx−

∫

Ω′
A(∇w)(∇uε −∇w) dx

= −
∫

Ω′
βε(u

ε)uε dx−
∫

Ω′
A(∇uε)∇uε dx + I

= −
∫

Ω′
βε(u

ε)u dx−
∫

Ω′
βε(u

ε)(uε − u)ψ dx−
∫

Ω′
βε(u

ε)(uε − u)(1− ψ) dx

−
∫

Ω′
A(∇uε)∇uε dx + I

≥ −
∫

Ω′
βε(u

ε)u dx +

∫

Ω′
A(∇uε)∇(uε − u)ψ dx +

∫

Ω′
A(∇uε)(uε − u)∇ψ dx

−
∫

Ω′
βε(u

ε)(uε − u)(1− ψ) dx−
∫

Ω′
A(∇uε)∇uε dx,

where in the last inequality we are using (4.2.4) and (0.3.2).

Now, take ψ = ψj → χΩ′ . Then if Ω′ is regular we have
∫

Ω′ |∇ψj| dx → Per Ω′.
We have that,

∣∣∣
∫

Ω′
A(∇uε)(uε − u)∇ψj dx

∣∣∣ ≤ C‖uε − u‖L∞(Ω′)

∫

Ω′
|∇ψj| dx ≤ C‖uε − u‖L∞(Ω′)

taking ψj → χΩ′ in (4.2.5) we obtain,

−
∫

Ω′
βε(u

ε)uε dx−
∫

Ω′
A(∇uε)∇w dx−

∫

Ω′
A(∇w)(∇uε −∇w) dx

≥ −
∫

Ω′
βε(u

ε)u dx +

∫

Ω′
A(∇uε)∇(uε − u) dx− C‖uε − u‖L∞(Ω′)

−
∫

Ω′
A(∇uε)∇uε dx

= −
∫

Ω′
βε(u

ε)u dx−
∫

Ω′
A(∇uε)∇u dx− C‖uε − u‖L∞(Ω′)

therefore, taking ε → 0 we get using (4.2.2) and (3) that,

−
∫

Ω′
u dµ−

∫

Ω′
ξ∇w dx−

∫

Ω′
A(∇w)(∇u−∇w) dx ≥ −

∫

Ω′
u dµ−

∫

Ω′
ξ∇u dx

and then,

(4.2.6)

∫

Ω′
(ξ − A(∇w))(∇u−∇w) dx ≥ 0.

Take now w = u+λv with v ∈ C∞
0 (Ω′). Dividing by λ and taking λ → 0+ in (4.2.6),

we obtain, ∫

Ω′
(ξ − A(∇u))∇v dx ≥ 0,
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chaining v by −v we obtain the desired result.

Step 2 Therefore passing to the limit in the equation

(4.2.7) 0 =

∫

Ω′
A(∇uε)∇φ +

∫

Ω′
βε(u

ε)φ dx,

we have by Step 1, that for every φ ∈ C∞
0 (Ω′),

(4.2.8) 0 =

∫

Ω′
A(∇u)∇φ +

∫

Ω′
φ dµ.

Taking φ = uεψ in (4.2.7) with ψ ∈ C∞
0 (Ω′) we have that

0 =

∫

Ω′
A(∇uε)∇uεψ dx +

∫

Ω′
A(∇uε)uε∇ψ dx +

∫

Ω′
βε(u

ε)uεψ dx.

Using that,
∫

Ω′
A(∇uε)uε∇ψ dx →

∫

Ω′
A(∇u)u∇ψ dx

∫

Ω′
βε(u

ε)uεψ dx →
∫

Ω′
uψdµ

we obtain

0 = lim
ε→0

( ∫

Ω′
A(∇uε)∇uεψ dx

)
+

∫

Ω′
A(∇u)u∇ψ dx +

∫

Ω′
uψdµ.

Taking now, φ = uψ in (4.2.8) we have,

0 =

∫

Ω′
A(∇u)∇uψ dx +

∫

Ω′
A(∇u)u∇ψ dx +

∫

Ω′
uψ dµ.

Therefore,

lim
ε→0

∫

Ω′
A(∇uε)∇uεψ dx =

∫

Ω′
A(∇u)∇uψ dx.

Then,
∣∣∣∣
∫

Ω′
(A(∇uε)∇uε − A(∇u)∇u) dx

∣∣∣∣

≤
∣∣∣∣
∫

Ω′
(A(∇uε)∇uε − A(∇u)∇u)ψ dx

∣∣∣∣ +

∣∣∣∣
∫

Ω′
(A(∇uε)∇uε)(1− ψ) dx

∣∣∣∣

+

∣∣∣∣
∫

Ω′
A(∇u)∇u(1− ψ) dx

∣∣∣∣

≤
∣∣∣∣
∫

Ω′
(A(∇uε)∇uε − A(∇u)∇u)ψ dx

∣∣∣∣ + C

∫

Ω′
|1− ψ| dx.

So that, taking ε → 0 and then ψ → 1 a.e with 0 ≤ ψ ≤ 1 we obtain,

(4.2.9)

∫

Ω′
A(∇uε)∇uεdx →

∫

Ω′
A(∇u)∇u dx.
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As ∫

Ω′
A(∇uε)∇uψ dx →

∫

Ω′
A(∇u)∇uψ dx

we also have, doing the same calculation, that

(4.2.10)

∫

Ω′
A(∇uε)∇u dx →

∫

Ω′
A(∇u)∇u dx.

Step 3. By the monotonicity of A we have,
∫

Ω′
G(|∇uε|) dx−

∫

Ω′
G(|∇u|) dx =

∫

Ω′

∫ 1

0

A(∇u + t(∇uε −∇u))∇(uε − u) dx

≥
∫

Ω′
A(∇u)∇(uε − u) dx.

Therefore, by step 3 we have,

lim inf
ε→0

∫

Ω′
G(|∇uε|) dx−

∫

Ω′
G(|∇u|) dx ≥ 0.

Step 4. By Step 2 we have,
∫

Ω′
G(|∇uε|) dx−

∫

Ω′
G(|∇u|) dx =

∫

Ω′

∫ 1

0

A(∇u + t(∇uε −∇u))∇(uε − u) dx

≤
∫

Ω′
A(∇uε)∇(uε − u) dx → 0.

Then, Step 3 implies,

(4.2.11)

∫

Ω′
G(|∇uε|) dx →

∫

Ω′
G(|∇u|) dx.

Step 5. Let us = su + (1− s)uε. Then,
(4.2.12) ∫

Ω′
G(|∇u|) dx−

∫

Ω′
G(|∇uε|) dx =

∫

Ω′

∫ 1

0

A(∇us)∇(u− uε) ds dx

=

∫

Ω′

∫ 1

0

(A(∇us)− A(∇uε))∇(us − uε) ds dx +
1

2

∫

Ω′
A(∇uε)∇(u− uε) dx.

As in the proof of Theorem 1.2.38, we have that
∫

Ω′

∫ 1

0

(A(∇us)− A(∇uε))∇(us − uε) ds dx

≥ C
( ∫

A2

G(|∇u−∇uε|) dx +

∫

A1

F (|∇u|)|∇u−∇uε|2 dx
)
,

where A1 and A2 were define in Theorem 1.2.38. Therefore, by (4.2.9), (4.2.10),
(4.2.11) and (4.2.12) we have,

( ∫

A2

G(|∇u−∇uε|) dx +

∫

A1

F (|∇u|)|∇u−∇uε|2 dx
)
→ 0.
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Then, if we prove that
( ∫

A2

G(|∇u−∇uε|) dx +

∫

A1

F (|∇u|)|∇u−∇uε|2 dx
)
≥ C

∫

Ω′
|∇u−∇uε|g0+1 dx

the result follows.

In fact, we can suppose that, g0 ≥ 1. If t ≤ C0 then g(t) ≥ C1t
g0 . As |∇u| ≤ C0

and |∇u−∇uε| ≤ C0, for some constant C0 we have

G(|∇uε −∇u|) ≥ C|∇uε −∇u|g0+1

F (|∇uε|) ≥ C1|∇uε|g0−1 ≥ C|∇uε −∇u|g0−1 in A1.

and the claim follows.

Finally (5) holds by (4), (3) and (2). ¤
Lemma 4.2.13. Let {uεj} be a uniformly bounded family of solutions of (Pεj

) in
Ω such that uεj → u uniformly on compact subsets of Ω and εj → 0. Let x0, xn ∈
Ω∩∂{u > 0} be such that xn → x0 as n →∞. Let λn → 0, uλn(x) = 1

λn
u(xn+λnx)

and (uεj)λn(x) = 1
λn

uεj(xn + λnx). Suppose that uλn → U as n → ∞ uniformly on

compact sets of RN . Then, there exists, j(n) → ∞ such that for every jn ≥ j(n)
there holds that εjn/λn → 0 and

1. (uεjn )λn → U uniformly in compact subsets of RN .
2. ∇(uεjn )λn → ∇U in Lg0+1

loc (RN),

3. ∇uλn → ∇U in Lg0+1
loc (RN).

Proof. By simplicity we assume xn = x0. Then

|uεj

λn
(x)− U(x)| ≤ | 1

λn

uεj(x0 + xλn)− 1

λn

u(x0 + xλn)|+ |uλn − U(x)| = I + II.

Fix k > 0 and δ > 0. Then, if n ≥ n(k, δ) there holds that II < δ in Bk(0).

For the other bound, let r > 0 such that Br(x0) ⊂ Ω′ ⊂⊂ Ω. Observe that, for
each n there exists j(n) such that if j ≥ j(n)

|uεj(x)− u(x)| ≤ λn

n
for x ∈ Br(x0).

Therefore, if j ≥ j(n) with n large such that λn ≤ r/k we have I ≤ 1
n

for x ∈ Bk(0).
So, for j ≥ j(n) and n large

|(uεj)λn(x)− U(x)| < δ +
1

n
for x ∈ Bk(0).

Then, if jn ≥ j(n) (uεj)λn → U uniformly in Bk(0). We may assume, without loss
of generality that εj/λn < 1/n for j ≥ j(n). So (1) is proved.

It is easy to see that (uεj)λn are solutions to (Pεj/λn) in B2k(0) for n large.

By Proposition 4.2.1 there exists a subsequence j′n such that ∇(uεj′n )λ′n → ∇U
in Lg0+1(Bk). Then also (2) holds.
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Let now, δ > 0 and consider,

‖∇uλn −∇U‖ ≤ ‖∇uλn −∇(uεjn )λn‖+ ‖∇(uεjn )λn −∇U‖ = I + II,

where all the norms are in Lg0+1(Bk). By (2) we know that II < δ if j ≥ jn and
n large. Moreover, by Proposition 4.2.1 we have,

Ig0+1 =

∫

Bk

|∇u−∇uεj |g0+1(x0 + λnx) dx

=
1

λn
N

∫

Bλnk(x0)

|∇u−∇uεj |g0+1(x) dx < δg0+1

if n is sufficiently large so that λnk ≤ r and then, j large enough. This proves (3).

¤

Now we prove a technical lemma that is the basis of our main results.

Lemma 4.2.14. Let uε be solutions to

Luε = βε(u
ε)

in Ω. Then, for any ψ ∈ C∞
0 (Ω) we have,

(4.2.15) −
∫

Ω

G(|∇uε|)ψx1 dx +

∫

Ω

F (|∇uε|)∇uε∇ψ uε
x1

dx =

∫

Ω

Bε(u
ε)ψx1 ,

where Bε(s) =
∫ s

0
βε(τ) dτ .

Proof. For simplicity, since ε will be fixed throughout the proof, we will denote
uε = u. We know that |∇u| ≤ C0. Take gn(t) = g(t) + t

n
, then

(4.2.16) min{1, δ} ≤ g′n(t)t

gn(t)
≤ max{1, g0}.

Take An(p) = gn(|p|)
|p| p, and Ln(v) = div(An(∇v)). Then, if Ω′ ⊂⊂ Ω and we take un

the solution of

(4.2.17)

{
Lnun = βε(u) in Ω′

un = u on ∂Ω′

we have by (4.2.16) that all the g′ns belong to the same class and then, by Theorem
1.2.19, ‖un‖C1,α(Ω′) ≤ C with C independent of n. Therefore, there exists u0 such
that, for a subsequence

un → u0 uniformly in Ω′

∇un → ∇u0 uniformly in Ω′.

On the other hand, An(p) → A(p) uniformly in compact sets of RN . Then, Lu0 =
βε(u

ε), and, as u0 = u on ∂Ω and Luε = βε(u), there holds that u0 = uε. (Observe
that in the proof of the Comparison Principle, in Lemma 1.2.35 we can change the
equation Lu = 0, by Lu = f(x) with f ∈ L∞(Ω) to prove uniqueness of the Dirichlet
problem).
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Now let us prove that the following equality holds,

−
∫

Ω

Gn(|∇un|)ψx1 dx +

∫

Ω

Fn(|∇un|)∇un∇ψ unx1
dx = −

∫

Ω

βε(u)unx1
ψ.

In fact, for n fixed we have that Fn(t) = gn(t)/t ≥ 1/n and then by Theorem
1.2.34, un ∈ W 2,2(Ω). As un is a weak solution of (4.2.17) and as un ∈ W 2,2(Ω),
taking as test function in the weak formulation ψunx1

we have that
∫

Ω

Fn(|∇un|)∇un∇(ψunx1
) dx = −

∫

Ω

βε(u)unx1
ψ dx.

As (Gn(|∇un|))x1 = gn(|∇un|) ∇un

|∇un|(∇un)x1 = F (|∇un|)∇un(∇un)x1 we have

that

−
∫

Ω

Gn(|∇un|)ψx1 dx +

∫

Ω

Fn(|∇un|)∇un∇ψunx1
dx = −

∫

Ω

βε(u)unx1ψ dx,

Passing to the limit as n → 0 and integrating by parts, we get,

−
∫

Ω

G(|∇u|)ψx1 dx +

∫

Ω

F (|∇u|)∇u∇ψ ux1 dx =

∫

Ω

Bε(u)ψx1 dx.

¤

Proposition 4.2.18. Let x0 ∈ Ω and let uεk be solutions to

Luεk = βεk
(uεk)

in Ω. If uεk converge to α(x− x0)
+
1 uniformly in compact subsets of Ω, with εk → 0

as k →∞ and α ∈ R, then

α = 0 or α = Φ−1(M).

Where Φ(t) = g(t)t−G(t).

Proof. Assume that x0 = 0. Since uεk ≥ 0, we have that α ≥ 0. If α = 0 there
is nothing to prove. So let us assume that α > 0. Let ψ ∈ C∞

0 (Ω). By Lemma
4.2.14 we have,

(4.2.19) −
∫

Ω

G(|∇uεk |)ψx1 dx +

∫

Ω

F (|∇uεk |)∇uεk∇ψ uεk
x1

dx =

∫

Ω

Bεk
(uεk)ψx1 .

Since 0 ≤ Bεk
(s) ≤ M , there exists M(x) ∈ L∞(Ω), 0 ≤ M(x) ≤ M , such that

Bεk
→ M(x) ∗- weakly in L∞(Ω). If y ∈ Ω ∩ {x1 > 0}, then uεk ≥ αy1

2
in a

neighborhood of y for k large. Thus, uεk ≥ εk and we have

Bεk
(uεk)(x) =

∫ uεk/εk

0

β(s) ds = M.

Using Proposition 4.2.1 we have that

∇Bεk
(uεk

) = βεk
(uεk

)∇uεk → 0 in L1
loc(Ω ∩ {x1 < 0}).
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Hence, M(x) = M ∈ [0,M ] in Ω ∩ {x1 < 0}. Passing to the limit in (4.2.19), using
the strong convergence result in Proposition 4.2.1 we have

−
∫

{x1>0}
G(α)ψx1 dx +

∫

{x1>0}
F (α)α2ψx1 dx = M

∫

{x1>0}
ψx1 + M

∫

{x1<0}
ψx1 .

Then,

(−G(α) + g(α)α)

∫

{x1>0}
ψx1 dx = M

∫

{x1>0}
ψx1 dx + M

∫

{x1<0}
ψx1 dx.

And, integrating by parts, we obtain

(−G(α) + g(α)α)

∫

{x1=0}
ψ dx′ = M

∫

{x1=0}
ψ dx′ −M

∫

{x1=0}
ψx1 dx′.

Thus, (−G(α) + g(α)α) = M −M . Let as see that α = Φ−1(M), we want to show
that M = 0.

Let K ⊂⊂ {x1 < 0}. Then for any ε > 0 there exists 0 < δ < 1 such that,

|K ∩ {ε < Bεj
(uεj) < M − ε}| ≤ |K ∩ {δ < uεj/εj < 1− δ}|

≤ |K ∩ {βεj
(uεj) ≥ a/εj}| → 0

as j → 0, where a = inf [δ,1−δ] β > 0, and we are using that β(uεj) → 0 in L1(K) by

Proposition 4.2.1. And as B(uεj) → M in L1(K) we conclude that,

|K ∩ {ε < M < M − ε}| = 0

for every ε > 0, then M = 0 or M = M , since α > 0 we must have M = 0. ¤
Proposition 4.2.20. Let x0 ∈ Ω, and let uεk be a solution to Luεk = βεk

(uεk) in
Ω, where g′ satisfies (4.2.24). If uεk converges to α(x−x0)

+
1 + γ(x−x0)

−
1 uniformly

in compact subsets of Ω, with α, γ > 0 and εk → 0 as k →∞, then

α = γ ≤ Φ−1(M).

Proof. We can assume that x0 = 0. Since uεk satisfies (4.2.15) and α, γ > 0
we have, if y ∈ Ω ∩ {x1 > 0}, then uεk ≥ αy1

2
in a neighborhood of y for k large and

then, uεk ≥ εk. So that

Bεk
(uεk)(x) =

∫ uεk/εk

0

β(s) ds = M.

The same happens if y1 < 0. Then Bεj
(uεj) → M in L1

loc(Ω). Passing to the limit
in (4.2.15) we deduce that, for ant Ψ ∈ C∞

0 (Ω) we have,

−
∫

{x1>0}
Φ(α)ψx1 dx−

∫

{x1<0}
Φ(γ)ψx1 dx =

∫

Ω

Mψx1 ,

Integrating by parts we obtain,∫

{x1=0}
Φ(α)ψ dx′ −

∫

{x1=0}
Φ(γ)ψ dx′ = 0

and then α = γ.
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Now assume that α > Φ−1(M). We will prove that this is a contradiction.

Step 1. Let R2 = {x = (x1, x
′) ∈ RN : |x1| < 2, |x′| < 2}. We can assume that

R2 ⊂ Ω.

We will construct a family {vεj} of solutions of (Pεj
) inR2 satisfying vεj(x1, x

′) =
vεj(−x1, x

′) in R2, and such that vεj → u uniformly on compact subsets of R2,
where u(x) = α|x1|. To this end, we take bεj

= supR2
|uεj − u| and vεj the minimal

solution (the minimum of all supersolutions) to (Pε) in R2 with boundary values
vεj = u − bεj

on ∂R2. By Proposition 4.2.1, there exists v ∈ Liploc(R2) such that,
for a subsequence that we still denote vεj , vεj → v uniformly on compact subsets of
R2. From the minimality of vεj we have that u ≥ v.

To prove the other inequality, let w ∈ C1,β(R), satisfying

(F (|w′|)w′)′ = β(w) in R, w(0) = 1, w′(0) = α.

Observe that, when w′(s) > 0 the equation is locally uniformly elliptic and then
w ∈ C2(R). Suppose that there exists an s ∈ R such that w′(s) = 0, take s1 the first
positive time such that this happens. Then, if we multiply by w′ in the equation
and we integrate, we obtain

−Φ(α) = Φ(w′(s1))− Φ(α) =

∫ w′(s1)

w′(0)

g′(s)s ds = B(w(s1))−M ≥ −M

which means that Φ(α) ≤ M , a contradiction. Analogously if w′(s) = 0 somewhere
in {s < 0}. Then, w′ > 0 everywhere. By the same calculation as before, we obtain
that for any s ∈ R we have,

Φ(w′(s))− Φ(α) = B(w(s))−M ≤ 0,

and

(4.2.21) Φ(w′(s)) = B(w(s)) + Φ(α)−M ≥ Φ(α)−M = Φ(ᾱ),

for some α > ᾱ > 0. Then, ᾱ ≤ w′(s) ≤ α. As w is increasing, we obtain that
w′(s) = α for s ≥ 0, and there exists s̄ < 0 such that w(s̄) = 0, which means by
(4.2.21) that w′(s̄) = ᾱ, and then w′(s) = ᾱ for all s ≤ s̄, therefore

w(s) =

{
1 + αs s > 0

ᾱ(s− s̄) s ≤ s̄.

Let wεj(x1) = εjw
(

x1

εj
− bεj

ᾱεj
+ s̄

)
, then

wεj(0) = εjw
(
− bεj

ᾱεj

+ s̄
)

= εjᾱ
(
s̄− bεj

ᾱεj

− s̄
)

= −bεj

and wεj ′(s) ≤ α. Therefore, wεj ≤ u− bεj
in R, so that, wεj ≤ vεj on ∂R2 and then

by the comparison principle below (Lemma 4.2.25) we have that wεj ≤ vεj in R2.

Take x1 > 0, then for j large x1 − bεj

ᾱ
> x1

2
then 1

εj
(x1 − bεj

ᾱ
) + s̄ > x1

2εj
+ s̄ > 0, and

therefore wεj = εj +αx1− α
ᾱ
bεj

+αεj s̄, then in any compact set of {x1 > 0}, wεj → u
uniformly. Passing to the limit, we get that u ≤ v in R2 ∩ {x1 > 0}. Observe that,
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by the uniqueness of the minimal solution, we have that vεj(x1, x
′) = vεj(−x1, x

′).
Thus, we obtain that u ≤ v in R2.

Step 2. Let R+ = {x : 0 < x1 < 1, |x′| < 1}. Define,

Fj =

∫

∂R+∩{x1=1}
F (|∇vεj |)(vεj

x1
)2 dx′ +

∫

∂R+∩{|x′|=1}
F (|∇vεj |)vεj

n vεj
x1

dS,

where vn
εj is the exterior normal of vεj on ∂R+ ∩{|x′| = 1}. We first want to prove

that,

Fj ≤
∫

∂R+∩{x1=1}

(
G(|∇vεj |) + Bεj

(vεj)
)

dx′.

To prove this, we proceed as in the proof of Lemma 4.2.14. This is, we can
suppose that F (s) ≥ c, by using an approximation argument. Therefore, we can
suppose that vεj ∈ W 2,2(R2). Using the weak formulation of (Pε) in R+ we have,

Ej :=

∫ ∫

R+

∂

∂x1

(
G(|∇vεj |)

)
dx =

∫ ∫

R+

F (|∇vεj |)∇vεj∇vεj
x1

dx

=

∫ ∫

R+

div(F (|∇vεj |)∇vεjvεj
x1

) dx−
∫ ∫

R+

βεj
(vεj)vεj

x1
=: Hj −Gj.

Using the divergence theorem and the fact that v
εj
x1(0, x

′) = 0 (by the symmetry in
the x1 variable) we find that, Hj = Fj.

From the convergence of vεj → u = α|x1| in R2 and Proposition 4.2.1 we have
that

∇vεj
x1
→ αe1 a.e in R+

2 = R2 ∩ {x1 > 0}.
Since |∇vεj | are uniformly bounded, from the dominate convergence theorem we
deduce that,

(4.2.22) lim
j→∞

Fj =

∫

∂R+∩{x1=1}
g(α)α dx′

and

Fj = Ej + Gj =

∫ ∫

R+

∂

∂x1

(
G(|∇vεj |+ Bεj

(vεj))
)

dx

=

∫

∂R+∩{x1=0}
−

(
G(|∇vεj |+ Bεj

(vεj))
)

dx′

+

∫

∂R+∩{x1=1}

(
G(|∇vεj |+ Bεj

(vεj))
)

dx′

≤
∫

∂R+∩{x1=1}

(
G(|∇vεj |+ Bεj

(vεj))
)

dx′.
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Using again that vεj → u = α|x1| uniformly on compact subsets of R2, we have that
|∇vεj | → α uniformly and Bεj

(vεj) = M on ∂R+ ∩ {x1 = 1}, and therefore

(4.2.23) lim sup
j→∞

Fj ≤
∫

∂R+∩{x1=1}
(G(α) + M) dx′.

Therefore, by (4.2.22) and (4.2.23) we obtain Φ(α) ≤ M which is a contradiction.

¤

Now we prove the comparison principle needed in the proof of the lemma above.
This is the step where we need an additional hypothesis: There exist −1 < α1 ≤ α2

such that for any s, t ≥ 0 we have,

(4.2.24) g′(ts) ≥ min{sα1 , sα2}g′(t)
Lemma 4.2.25. Let wε(x1) be a strictly increasing solution of L(wε) = βε(w

ε)
on R such that lims→−∞ wε(s) < 0 and vε(x) ≥ 0 a solution of Lvε = βε(v

ε) in
R = {x = (x1, x

′) : a < x1 < b, |x′| < r}, continuous up to ∂R. Then, if g′ satisfies
condition (4.2.24) the following comparison principle holds: if vε(x) ≥ wε(x1) for
all x ∈ ∂R then vε(x) ≥ wε(x1) for all x ∈ R.

Proof. Since lims→−∞ wε(s) < 0 and vε(x) ≥ 0, we can find τ such that,

wε(x1 − τ) < vε(x) on R̄.

For η > 0 sufficiently small define,

wε,η(x1) := wε(ϕη(x1 − cη)),

where ϕη(s) = s + ηs2 and cη > 0 is the smallest constant such that ϕη(s− cη) ≤ s
on [−2τ, 2τ ] (observe that cη → 0 when η → 0). If cη− 1

η
≤ −2τ then ϕη(s− cη) ≤ 0

for s ≤ cη. Observe that, in [−2τ, 2τ ] wε,η ≤ wε and as η → 0 wε,η → wε uniformly.

If we call ϕ̃η(s) = ϕη(s− cη) computing we have,

L(wε,η) = g′(wε′(ϕ̃η)ϕ̃
′
η)w

ε′′(ϕ̃η)(ϕ̃
′
η)

2 + g′(wε′(ϕ̃η)ϕ̃
′
η)w

ε′(ϕ̃η)ϕ̃
′′
η.

If we define

γ1(s) =

{
α1 if ϕ̃′η(s) > 1

α2 if ϕ̃′η(s) ≤ 1
γ2(s) =

{
α1 if wε′(ϕ̃η)(s) > 1

α2 if wε′(ϕ̃η)(s) ≤ 1.

Using condition (4.2.24), that Lϕη > 0 and wε′ > 0 we have,

L(wε,η) ≥ g′(wε′(ϕ̃η))w
ε′′(ϕ̃η)(ϕ̃

′
η)

γ1+2 + g′(ϕ̃′η)ϕ̃
′′
η(w

ε′(ϕ̃η))
γ2+1

= Lwε(ϕ̃η)(ϕ̃
′
η)

γ1+2 + Lϕ̃η(w
ε′(ϕ̃η))

γ2+1 > Lwε(ϕ̃η)(ϕ̃
′
η)

γ1+2

= βε(w
ε,η)(ϕ̃′η)

γ1+2.

Since, βε(w
ε,η) = 0 when x1 ≤ cη and ϕ̃′η ≥ 1 when x1 ≥ cη, we have that L(wε,η) >

βε(w
ε,η). Summarizing,

Lwε,η > βε(w
ε,η), wε,η → wε as η → 0 and wε,η ≤ wε.
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Let now τ ∗ ≤ 0 the smallest constant such that

wε,η(x1 − τ ∗) ≤ vε(x) on R.

We want to prove that τ ∗ = 0. By the minimality of τ ∗, there exists a point x∗ ∈ R
such that wε,η(x∗1 − τ ∗) = vε(x∗). If τ ∗ > 0, then wε,η(x1 − τ ∗) < wε,η(x1) ≤
wε(x1) ≤ vε(x) on ∂R, and hence, x∗ is an interior point of R. At this point
observe that the gradient of wε,η(x1− τ ∗) is non-degenerate. Since Lwε,η(x∗1− τ ∗) >
βε(w

ε,η(x∗− τ ∗)) = βε(v
ε(x∗)) = Lvε(x∗), we have that this happens in an open set.

We also have wε,η(x1 − τ ∗) ≤ vε(x) in R and wε,η(x∗1 − τ ∗) = vε(x∗).

As wε,η(x∗1−τ ∗) ≤ vε(x∗) inR and wε,η(x∗1−τ ∗) = vε(x∗) we have that∇wε,η(x∗1−
τ ∗) = ∇vε(x∗). Let,

Lv = aij(∇wε,η(x1 − τ ∗))vxixj
,

where aij was define in (1.2.23). Since∇wε,η is nondegenerate, L is uniformly elliptic
near the point x∗, and since∇wε,η(x∗1−τ ∗) = ∇vε(x∗), we have that Lwε,η(x∗1−τ ∗) >
Lvε(x∗) and Lvε(x∗) = βε(v

ε) therefore vε is C2 near that point and, we have, for
some δ > 0 




Lwε,η(x1 − τ ∗) > Lvε(x) in Bδ(x
∗)

wε,η(x∗1 − τ ∗) = vε(x∗)
wε,η(x1 − τ ∗) ≤ vε(x) in R,

but since L is uniformly elliptic near x∗, these three statements contradict the strong
comparison principle. Therefore τ ∗ = 0 and then wε,η ≤ vε on R. Letting η → 0 we
obtain the desired result.

¤

3. Asymptotic behavior of limit solutions

Now we want to prove for g satisfying conditions 2.7.57 and 4.2.24 the asymptotic
development of the limiting function u. We will obtain this result, under suitable
assumptions on the function u. First we give the following,

Definition 4.3.1. Let v be a continuous nonnegative function in a domain Ω ∈
RN . We say that v is non-degenerate at a point x0 ∈ Ω ∩ {v = 0} if there exist c,
r0 > 0 such that

(4.3.2)
1

rN

∫

Br(x0)

v dx ≥ cr for 0 < r ≤ r0.

We say that u is uniformly non-degenerate on a set A ⊂ {u = 0} if (4.3.2) holds
for every x0 ∈ A with the same constants c and r0.

We have the following,

Theorem 4.3.3. Suppose that g′ satisfies condition (4.2.24). Let uεj be a solution
to (Pεj

) in a domain Ω ⊂ RN such that uεj → u uniformly on compact subsets of
Ω and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0} be such that ∂{u > 0} has an inward unit
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normal η in the measure theoretic sense at x0, and suppose that u is non-degenerate
at x0. Under these assumptions, we have

u(x) = Φ−1(M)〈x− x0, η〉+ + o(|x− x0|).

The proof of this theorem is based on the following result,

Theorem 4.3.4. Suppose that g′ satisfies condition (4.2.24). Let uεj be a solution
to (Pεj

) in a domain Ω ⊂ RN such that uεj → u uniformly in compact subsets of Ω
as εj → 0. Then,

lim sup
x→x0

|∇u(x)| ≤ Φ−1(M).

Proof. Let

α := lim sup
x→x0

|∇u(x)|.
Since u ∈ Liploc(Ω) α < ∞. If, α = 0 we are done. So, suppose that α > 0. Then
there exists a sequence zk → x0 such that

u(zk) > 0, |∇u(zk)| → α.

Let yk be the nearest point from zk to Ω ∩ ∂{u > 0} and let dk = |zk − yk|.
Consider the blow up sequence udk

with respect to Bdk
(yk). Since u is Lipschitz,

and udk
(0) = 0 for every k, there exists u0 ∈ Lip(RN), such that udk

→ u0 uniformly
in compact sets of RN . And we also have that u0 is an L− solution in {u0 > 0} (see
proof of (6) in Lemma 1.6.13).

Now, set z̄k = (zk − yk)/dk ∈ ∂B1. We may assume that z̄k → z̄ ∈ ∂B1. Take,

νk :=
∇udk

(z̄k)

|∇udk
(z̄k)| =

∇u(zk)

|∇u(zk)| .

Passing to a subsequence, we can assume, that νk → e1. Observe that B2/3(z̄) ⊂
B1(z̄k) for k large, and therefore u0 is an L− solution there. By interior Cα gradient
estimates, we have ∇udk

→ ∇u0 uniformly in B1/3(z̄), and therefore |∇u(zk)| →
∂x1u0(x̄). Thus, ∂x1u0(x̄) = α.

Next, we claim that |∇u0| ≤ α in RN . In fact, let R > 1 and δ > 0. Then, there
exists, τ0 > 0 such that |∇u(x)| ≤ α+ δ for any x ∈ Bτ0R(x0). For |zk−x0| < τ0R/2
and dk < τ0/2 we have, BdkR(zk) ⊂ Bτ0R(x0) and therefore |∇udk

(x)| ≤ α + δ in BR

for k large. Passing to the limit, we obtain |∇u0| ≤ α + δ in BR, and since δ and R
were arbitrary, the claim holds.

Lemma 1.2.28 says that if w = ∂u0

∂x1
then

∂xj
(aij(∇u0)Djw) = 0 in B1(x̄).

Since this is a uniformly elliptic equation near x̄, w ≤ α in B1(x̄) and w(x̄) = α,
the strong maximum principle implies that w = α in Br(x̄). Thus |∇u0| = α in
Br(x̄) for some r > 0. Now, by a continuation argument, we have w = α in B1(x̄).
As ∂x1u0 = α then, for some y ∈ RN we have u0(x) = α(x1 − y1) in B1(x̄). Since
Lu0 = 0 in {u0 > 0} by continuation we have, u0(x) = α(x1 − y1) in {x1 ≥ y1}.
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As u0 ≥ 0 and Lu0 = 0 in {u0 > 0} and u0 = 0 in x1 = y1 we have by Lemma
1.5.10 that

u0 = γ(y1 − x1) + o(|x− y|) in x1 − y1 < 0

for some γ ≥ 0.

Now, define for λ > 0 (u0)λ(x) = 1
λ
u0(λx + y). There exists a sequence λn → 0

and u00 ∈ Lip(RN) such that (u0)λn → u00 uniformly in compact subsets of RN .
We have u00(x) = αx+

1 +γx−1 . By Lemma 4.2.13 there exists a sequence ε′j → 0 such

that uε′j is a solution to (Pε′j) and uε′j → u0 uniformly on compact subsets of RN .

Applying a second time Lemma 4.2.13 we find a sequence ε′′j → 0 and a solution

uε′′j to (Pε′′j ) converging uniformly in compact subsets of RN to u00. Now we can

apply Proposition 4.2.18 in the case that γ = 0 or Proposition 4.2.20 in the case
that γ > 0, and we conclude that α ≤ Φ−1(M).

¤

proof of Theorem 4.3.3. Assume that x0 = 0, and η = e1. Take uλ(x) =
1
λ
u(λx). Let ρ > 0 such that Bρ ⊂⊂ Ω, since uλ ∈ Lip(Bρ/λ) uniformly in λ,

uλ(0) = 0, there exists λj → 0 and U ∈ Lip(RN) such that uλj
→ U uniformly

on compact subsets of RN . From Proposition 4.2.1 and Lemma 4.2.13, Luλ = 0 in
{uλ > 0}. Using that we are at a point where we have an inward normal in the
measure theoretic sense, we have, for fixed k,

|{uλ > 0} ∩ {x1 < 0} ∩ Bk| → 0 as λ → 0.

Hence, U is non negative in {x1 > 0}, LU = 0 in {U > 0} and U vanishes in
{x1 ≤ 0}. Then, by Lemma 1.5.10 we have that, there exists α ≥ 0 such that,

U(x) = αx+
1 + o(|x|) in {x1 > 0}.

By Lemma 4.2.13 we can find a sequence ε′j → 0 and solutions uε′j to (Pε′j) such that

uε′j → U uniformly on compact subsets of RN as j → ∞. Define Uλ(x) = 1
λ
U(λx),

then Uλ → αx+
1 uniformly on compact subsets of RN . Applying again Lemma 4.2.13

we find a second sequence σj → 0 and uσj solution to (Pσj
) such that uσj → αx+

1

uniformly on compact subsets of RN and,

∇uσj → αχ{x1>0}e1 in Lg0+1
loc (RN).

Now we proceed as in the proof of Proposition 4.2.18. Let ψ ∈ C∞
0 (RN) and choose

u
σj
x1ψ as test function in the weak formulation of Luσj = βσj

(uσj). Then,

Bσj
(uσj) → Mχ{x1>0} + Mχ{x1<0} ∗ weakly in L∞

with M = 0 or M = M . Moreover Φ(α) = M −M .

By the non degeneracy assumption on u we have,

1

rN

∫

Br

uλj
dx ≥ cr
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and then,
1

rN

∫

Br

Uλj
dx ≥ cr.

Therefore α > 0. So that we have that M = 0. Then, α = Φ−1(M).

We have shown that,

U(x) =

{
Φ−1(M)x1 + o(|x|) x1 > 0

0 x1 ≤ 0.

By Theorem 4.3.4, |∇U | ≤ Φ−1(M) in RN . As U = 0 on {x1 = 0} we have,
U ≤ Φ−1(M)x1 in {x1 > 0}.

Since |∇U(0)| = Φ−1(M) > 0, near zero U satisfies a linear uniformly el-
liptic equation (defined in (1.2.26)) and the same equation is satisfied by w =
U − Φ−1(M)x1 in {x1 > 0} ∩ Br(0) for some r > 0. We also have w ≤ 0 so
that by Hopf’s boundary principle we have that w = 0 in {x1 > 0}. And the proof
is completed. ¤

Theorem 4.3.5. Let uεj be a solution to (Pεj
) in a domain Ω ⊂ RN such that

uεj → u uniformly in compact subsets of Ω as εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0}
and suppose that u is non-degenerate at x0. Assume there is a ball B contained in
{u = 0} touching x0 then,

(4.3.6) lim sup
x→x0

u(x)>0

u(x)

dist(x,B)
= Φ−1(M).

Proof. Let l be the finite limit in the left of (4.3.6), and yk → x0 with u(yk) > 0
and

u(yk)

dk

→ l, dk = dist(yk, B).

Consider the blow up sequence uk with respect to Bdk
(xk), where xk ∈ ∂B are points

with |xk − yk| = dk, and choose a subsequence with blow up limit u0, such that

e := lim
k→∞

xk − yk

dk

exists. Then, by construction, u0(−e) = l, u0(x) ≤ −l〈x, e〉 for 〈x, e〉 ≤ 0, u0(x) = 0
for 〈x, e〉 ≥ 0. By the non-degeneracy assumption, we have that l > 0. Both, u0 and
l〈x · e〉+ are L solutions in {u0 > 0}, and from the maximum principle we have that
(since l > 0) they must coincide in a neighborhood of −e, by continuation we have
that u0 = l(x · e)+. Then, we have by, Proposition 4.2.18, that l = Φ−1(M).

¤

4. Regularity of the free boundary

Now, we can prove a regularity result for the free boundary of limits of solution
of problem (Pε),
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Theorem 4.4.7. Suppose that g satisfies (0.0.2) and moreover g′ satisfies condi-
tion (4.2.24). Let uεj be a solution to (Pεj

) in a domain Ω ⊂ RN such that uεj → u
uniformly in compact subsets of Ω as εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0}, be such
that there is an inward unit normal η in the measure theoretic sense at x0. Suppose
that u is uniformly non-degenerate at the free boundary in a neighborhood of x0 (see
Definition 4.3.1). Then, there exists r > 0 so that Br(x0) ∩ ∂{u > 0} is a C1,α

surface.

Proof. By Corollary 4.1.8, Theorem 4.3.3, Theorem 4.3.5 and the non-
degeneracy assumption we have that u is a weak solution in the sense of Definition
2.6.2. Therefore Theorem 2.7.56 applies, and the result follows.

¤
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