

UNIVERSIDAD DE BUENOS AIRES
Facultad de Ciencias Exactas y Naturales

Departamento de Matemática

PROBLEMAS DE FRONTERA LIBRE EN ESPACIOS DE ORLICZ

Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área Ciencias Matemáticas

Sandra R. Martínez

Directora de tesis: Noemí I. Wolanski

Buenos Aires, Diciembre de 2006

Problemas de frontera libre en espacios de Orlicz
 Resumen

En esta tesis, se estudia el siguiente problema de frontera libre: Para un dominio Ω de \mathbb{R}^{N}, hallar $u \geq 0$ tal que

$$
\begin{cases}\mathcal{L} u:=\operatorname{div}\left(\frac{g(|\nabla u|)}{|\nabla u|} \nabla u\right)=0 & \text { en }\{u>0\} \cap \Omega \tag{B}\\ |\nabla u|=\lambda^{*} & \text { en } \partial\{u>0\} \cap \Omega\end{cases}
$$

Se denomina Problema de Frontera Libre ya que no se conoce a priori la ubicación de $\partial\{u>0\}$. La segunda ecuación en (B) se conoce como "condición de frontera libre".

Este problema aparece en numerosas aplicaciones. En este trabajo discutiremos tres de ellas.

Primero, estudiamos el problema de "chorros" (jets). Para un dominio suave y acotado en \mathbb{R}^{N}, consideramos primero el siguiente problema, minimizar el funcional,

$$
\mathcal{J}(v)=\int_{\Omega} G(|\nabla v|) d x+\lambda|\{v>0\}|
$$

con $v-\varphi_{0} \in W_{0}^{1, G}(\Omega)$ para una $\varphi_{0} \geq 0, \varphi_{0} \in L^{\infty}(\Omega)$ y $\int_{\Omega} G\left(\left|\nabla \varphi_{0}\right|\right) d x<\infty$. $W^{1, G}(\Omega)$ es la clase de funciones débilmente diferenciables con $\int_{\Omega} G(|v|) d x<\infty$ y $\int_{\Omega} G(|\nabla v|) d x<\infty$. Aquí denominamos $G^{\prime}=g$.

El segundo, es un problema de diseño óptimo. Más precisamente, minimizar

$$
\mathcal{J}(v)=\int_{\Omega} G(|\nabla v|) d x
$$

con $v-\varphi_{0} \in W_{0}^{1, G}(\Omega)$ y tal que $|\{v>0\}|=\alpha \in(0,|\Omega|)$ fijo, para una función acotada, nonnegativa y no idénticamente nula φ_{0} tal que $\int_{\Omega} G\left(\left|\nabla \varphi_{0}\right|\right) d x<\infty$.

Como tercera aplicación estudiamos un problema de perturbación singular de interés en combustión. Para $\varepsilon>0$, tomamos u^{ε} una solución débil de $\mathcal{L} u^{\varepsilon}=\beta_{\varepsilon}\left(u^{\varepsilon}\right)$ con $u^{\varepsilon} \geq 0$. Aquí $\beta \in \operatorname{Lip}(\mathbb{R})$, es positiva en $(0,1)$, cero fuera de $[0,1]$ y tal que $\int_{0}^{1} \beta(s) d s=M$ y $\beta_{\varepsilon}(s)=\frac{1}{\varepsilon} \beta\left(\frac{s}{\varepsilon}\right)$.

En todos estos problemas, imponemos condiciones sobre la función g de forma tal que se puede comportar distinto en 0 y en infinito. Más precisamente, pedimos que existan constantes $\delta, g_{0}>0$ tales que,

$$
0<\delta \leq \frac{t g^{\prime}(t)}{g(t)} \leq g_{0} \quad \forall t>0
$$

Es fácil ver que, el conjunto de funciones que cumplen nuestras condiciones incluye funciones no homogéneas. Estas condiciones fueron introducidas por Lieberman en [22] y generalizan las llamadas condiciones naturales de Ladyzhenskaya y

Ural'tseva (ver [18]). En dicho trabajo el autor estudia la regularidad de soluciones de $\mathcal{L} u=f$, donde f es una función acotada.

Para el primer problema, probamos las siguientes propiedades de los minimizantes: Primero la existencia, luego la continuidad Hölder y con ésto probamos la continuidad Lipschitz uniforme (i.e: el $|\nabla u|$ está acotado en cada compacto de Ω por una constante independiente del minimizante u). Además tenemos que los minimizantes satisfacen, en un sentido débil, el problema de frontera libre (B), con λ^{*} una constante tal que $g\left(\lambda^{*}\right) \lambda^{*}-G\left(\lambda^{*}\right)=\lambda$.

Además probamos una cierta propiedad de nodegeneración de los minimizantes en cualquier punto de la frontera libre, y finalmente obtenemos que la misma tiene medida de Hausdorff $N-1$ dimensional finita; por lo tanto $\{u>0\} \cap \Omega$ tiene perímetro localmente finito en Ω.

También definimos dos nociones distintas de solución débil (en sentido distribucional y en sentido puntual) del problema (B) y probamos, para las primeras, que estas soluciones tienen casi todas las mismas propiedades que tienen los minimizantes.

Probamos la regularidad de la frontera libre de las soluciones débiles de (B), es decir que $\partial_{\text {red }}\{u>0\} \cap \Omega$ es una superficie $C^{1, \alpha}$ y que en el caso de los minimizantes (y para las soluciones débiles en sentido distribucional) el complemento tiene medida de Hausdorff $N-1$ dimensional nula. Para ello tomamos ideas del trabajo pionero [4]. También probamos, para un subclase de funciones g, y cuando $N=2$, que toda la frontera libre es regular.

Para trabajar con este problema, debimos lidiar con la degeneración del problema y con la falta de homogeneidad al mismo tiempo.

En el segundo problema, probamos la regularidad de los minimizantes estudiando un problema de penalización asociado a éste. Probamos que los minimizantes del problema penalizado son soluciones débiles de (B) en sentido distribucional (de tipo I). Los resultados de regularidad para el problema de penalización son consecuencia de los resultados que tenemos para soluciones débiles de (B). La ventaja del método es que no es necesario pasar al límite para volver al problema original. Esto es, si el parámetro en el problema de perturbación es suficientemente chico, tenemos que los minimizantes son soluciones del problema de optimización. Nuevamente, para tratar este problema, debimos lidiar con la no linealidad y la no homogeneidad del operador.

En el tercer problema, probamos que bajo, ciertas hipótesis sobre las soluciones, una función límite es una solución débil en el sentido puntual del problema (B) (de tipo II). Por lo tanto, todos los resultados de regularidad de soluciones de tipo II se aplican a límites de soluciones del problema de perturbación singular.
Palabras clave: Problemas de frontera libre, problemas de minimización, espacios de Orlicz, regularidad, optimización, perturbación singular.

Free boundary problems in Orlicz spaces

In this thesis, we study the following free boundary problem: For a domain Ω in \mathbb{R}^{N}, find $u \geq 0$ such that

$$
\begin{cases}\mathcal{L} u:=\operatorname{div}\left(\frac{g(|\nabla u|)}{|\nabla u|} \nabla u\right)=0 & \text { in }\{u>0\} \cap \Omega \tag{B}\\ |\nabla u|=\lambda^{*} & \text { on } \partial\{u>0\} \cap \Omega\end{cases}
$$

We call it a Free Boundary Problem because we do not know a priori the location of $\partial\{u>0\}$. The second equation in (B) is known as the "free boundary condition".

This problem appears in many applications. In this thesis, we will discuss three of them.

First, we study the problem of jets. For a bounded smooth domain in \mathbb{R}^{N}, we consider the following problem: Minimize the functional,

$$
\mathcal{J}(v)=\int_{\Omega} G(|\nabla v|) d x+\lambda|\{v>0\}|
$$

with $v-\varphi_{0} \in W_{0}^{1, G}(\Omega)$ for a function $\varphi_{0} \geq 0, \varphi_{0} \in L^{\infty}(\Omega)$ with $\int_{\Omega} G\left(\left|\nabla \varphi_{0}\right|\right) d x<\infty$. $W^{1, G}(\Omega)$ is the class of weakly differentiable functions with $\int_{\Omega} G(|v|) d x<\infty$ and $\int_{\Omega} G(|\nabla v|) d x<\infty$. Here we denote $G^{\prime}=g$.

The second one, is a shape optimization problem. More precisely, to minimize

$$
\mathcal{J}(v)=\int_{\Omega} G(|\nabla v|) d x
$$

with $v-\varphi_{0} \in W_{0}^{1, G}(\Omega)$ and such that $|\{v>0\}|=\alpha \in(0,|\Omega|)$ fixed, for a bounded nonnegative function φ_{0} and not identically zero such that $\int_{\Omega} G\left(\left|\nabla \varphi_{0}\right|\right) d x<\infty$.

As a third application we study a singular perturbation problem, of interest in combustion. For $\varepsilon>0$, take u^{ε} a weak solution of $\mathcal{L} u^{\varepsilon}=\beta_{\varepsilon}\left(u^{\varepsilon}\right)$ with $u^{\varepsilon} \geq 0$. Here $\beta \in \operatorname{Lip}(\mathbb{R})$, is positive in $(0,1)$, zero outside $[0,1]$ and is such that $\int_{0}^{1} \beta(s) d s=M$ and $\beta_{\varepsilon}(s)=\frac{1}{\varepsilon} \beta\left(\frac{s}{\varepsilon}\right)$.

In all these problems we impose conditions on the function g such that allow to have different behaviors at 0 and at infinity. More precisely, we assume that there exist constants $\delta, g_{0}>0$ such that,

$$
0<\delta \leq \frac{t g^{\prime}(t)}{g(t)} \leq g_{0} \quad \forall t>0
$$

It is easy to see that the set of functions that satisfy these conditions includes non homogeneous functions. These conditions were introduced by Lieberman in $[\mathbf{2 2}]$ and generalize the so called natural conditions of Ladyzhenskaya and Ural'tseva (see
[18]). In that paper the author studies the regularity of solutions of $\mathcal{L} u=f$, where f is a bounded function.

For the first problem, we prove the following properties of the minimizers: First the existence, then the Hölder continuity and finally we prove the uniform Lipschitz continuity (i.e: the $|\nabla u|$ is bounded in any compact subset of Ω by a constant independent of the minimizer u). Moreover, we have that the minimizers satisfy, in a weak sense, the free boundary problem (B) with λ^{*} a constant such that $g\left(\lambda^{*}\right) \lambda^{*}-$ $G\left(\lambda^{*}\right)=\lambda$.

Moreover, we prove some properties of non-degeneracy of the the minimizers at every point of the free boundary. Finally, we obtain that the free boundary has finite $N-1$ dimensional Hausdorff measure. Therefore, $\{u>0\} \cap \Omega$ has finite perimeter locally in Ω.

We also define two different notions of weak solutions of the problem (B) (in a distributional sense and in a pointwise sense). We prove, for the first ones, that they have almost all the properties that minimizers have.

Then, we prove the regularity of the free boundary of weak solutions of (B). That is, $\partial_{\text {red }}\{u>0\} \cap \Omega$ is a $C^{1, \alpha}$ surface and, in the case of minimizers (and for the weak solutions in the distributional sense), the remainder has zero $N-1$ dimensional Hausdorff measure. To this end, we take ideas from the paper [4]. We also prove, for a subclass of functions g, and when $N=2$, that the whole free boundary is regular.

In order to get our results, we have to deal with the degeneracy of the problem and with the loss of homogeneity at the same time.

In the second problem, we prove the regularity of minimizers by studying an associated penalization problem. We prove that the minimizers of the penalized problem are weak solutions of (B) in the distributional sense (of type I). The regularity results for the penalized problem, are a consequence of the results that we have for weak solutions of (B). The advantage of this method is that in order to return to the original problem, it is not necessary to pass to the limit. That is, if the penalization parameter is sufficiently small, then we have that the minimizers are solutions of the optimization problem. Again, to treat this problem, we had to deal with the degeneracy and the non homogeneity of the operator.

In the third problem we prove that, under some hypothesis on the solutions, a limiting function is a weak solution in the pontwise sense of the problem (B) (of type II). Therefore, all the regularity results of solutions of type II can be applied to the limit of solutions of the singular perturbation problem.

Key words : Free boundary problems, minimization problems, Orlicz spaces, regularity, optimization, singular perturbation.

Contents

Introducción 3

1. El problema de minimización y soluciones débiles 6
2. El problema de optimización de dominio 8
3. El problema de perturbación singular 10
4. Notación 12
5. Estructura de la tesis 13
Introduction 17
6. The minimization problem and weak solutions 20
7. The shape optimization problem 22
8. The singular perturbation problem 24
9. Notation 26
10. Outline of the thesis 26
Chapter 1. Preliminaries 29
11. Properties of the function G 29
12. Properties of \mathcal{L} - solutions and subsolutions 32
13. Hausdorff measure and Hausdorff distance 43
14. Representation Theorem and sets of locally finite perimeter 44
15. A result on \mathcal{L}-solutions with linear growth 46
16. Blow up limits 53
17. Schwartz symmetrization 54
Chapter 2. A minimization problem and weak solutions 57
18. Existence of minimizers 57
19. Lipschitz continuity 59
20. Nondegeneracy 67
21. The measure $\Lambda=\mathcal{L} u$ 72
22. Asymptotic development and identification of the function q_{u} 75
23. Weak solutions 80
24. Regularity of the free boundary 88
Chapter 3. The optimization problem 111
25. The penalized problem 111
26. Behavior of the minimizer for small ε. 119
Chapter 4. The singular perturbation problem 129
27. Uniform bound of the gradient 129
28. Passage to the limit 132
29. Asymptotic behavior of limit solutions 144
30. Regularity of the free boundary 147
Bibliography 149

Introducción

En esta tesis, se estudia el siguiente problema de frontera libre: Para un dominio Ω de \mathbb{R}^{N}, hallar u tal que

$$
\begin{cases}\mathcal{L} u:=\operatorname{div}\left(\frac{g(|\nabla u|)}{|\nabla u|} \nabla u\right)=0 & \text { en }\{u>0\} \cap \Omega \tag{0.0.1}\\ |\nabla u|=\lambda^{*} & \text { en } \partial\{u>0\} \cap \Omega\end{cases}
$$

Se denomina Problema de Frontera Libre ya que no se conoce a priori la ubicación de $\partial\{u>0\}$. La segunda ecuación en (0.0.1) se conoce como "condición de frontera libre".

Este problema aparece en numerosas aplicaciones. En este trabajo discutiremos tres de ellas a saber, el problema de "chorros" (jets) que consiste en minimizar,

$$
\mathcal{J}(u)=\int_{\Omega} G(|\nabla u|)+\lambda \chi_{\{u>0\}} d x
$$

en la clase de funciones

$$
\mathcal{K}=\left\{v \in W^{1, G}(\Omega): \quad v=\varphi_{0} \text { en } \partial \Omega\right\}
$$

donde φ_{0} es una función no negativa con $\varphi_{0} \in L^{\infty}(\Omega), \int_{\Omega} G\left(\left|\nabla \varphi_{0}\right|\right) d x<\infty$ y G es tal que $g^{\prime}=G$. $W^{1, G}(\Omega)$ es un espacio de Sobolev-Orlicz (ver Capítulo 1).

El segundo, es un problema de diseño óptimo. A saber, minimizar

$$
\mathcal{J}(u)=\int_{\Omega} G(|\nabla u|) d x
$$

en el conjunto

$$
\mathcal{K}_{\alpha}=\left\{v \in W^{1, G}(\Omega):|\{v>0\}|=\alpha, v=\varphi_{0} \text { en } \partial \Omega\right\},
$$

para una función φ_{0} nonnegativa, acotada con $\int_{\Omega} G\left(\left|\nabla \varphi_{0}\right|\right) d x<\infty$ y no idénticamente nula.

Finalmente, el tercer problema tiene origen en la teoría de combustión en el llamado "límite para energía de activación tendiendo a infinito" y consiste en lo siguiente: Para $\varepsilon>0$, tomamos u^{ε} una solución débil de,

$$
\mathcal{L} u^{\varepsilon}=\beta_{\varepsilon}\left(u^{\varepsilon}\right), \quad u^{\varepsilon} \geq 0
$$

$\operatorname{con} \beta_{\varepsilon}(s)=\frac{1}{\varepsilon} \beta\left(\frac{s}{\varepsilon}\right), \beta \in \operatorname{Lip}(\mathbb{R})$, positiva en $(0,1)$, y cero fuera de $[0,1]$
En este caso, estamos interesados en el estudio de propiedades uniformes de las soluciones y el estudio del problema límite, cuando $\varepsilon \rightarrow 0$.

En este caso probamos, bajo condiciones adecuadas, que para cualquier sucesión $\varepsilon_{n} \rightarrow 0$ existe una subsucesión $\varepsilon_{n_{k}}$ y una función límite u, tal que $u=\operatorname{lím} u^{\varepsilon_{n_{k}}}, \mathrm{y}$ u es una solución del problema de frontera libre (0.0.1) para alguna constante λ^{*} dependiendo de g y M.

En todos los casos vemos que la solución del problema que nos interesa resulta ser solución de (0.0.1) en un sentido débil. Por lo tanto, resulta de gran interés estudiar la regularidad de las soluciones débiles de (0.0.1) y la de sus fronteras libres.

En este sentido, el primer paso es dar una buena definición de solución débil del problema (0.0.1) que englobe todas las aplicaciones que tenemos en mente. El segundo paso, es ver cual es la regularidad óptima que van a tener estas soluciones (observar que, si queremos que la función tenga derivada normal constante en la frontera de $\{u>0\}$, la regularidad óptima no podrá ser más que Lipschitz). Finalmente, sería deseable obtener la regularidad $C^{1, \alpha}$ de la frontera libre ya que ésta va a implicar que la solución débil satisface la condición de frontera libre en sentido clásico.

Todos estos temas se encuentran bien estudiados en el caso en que el operador \mathcal{L} es el laplaciano (ver por ejemplo, $[\mathbf{2}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{2 0}]$). En particular, para este caso se han desarrollado diversas teorías para el estudio de la regularidad de las soluciones débiles de (0.0.1). En estos trabajos se ha demostrado que las soluciones débiles son localmente Lipschitz y que la frontera libre $\partial\{u>0\}$ es una superficie $C^{1, \alpha}$ cuando $N=2$, y tiene esta regularidad en un entorno de todo punto donde es "chata" (flat), en dimensiones mayores. Estos resultados se han obtenido tanto para soluciones distribucionales como para soluciones viscosas. En el primer caso, la condición de frontera libre aparece en forma integral, y esta definición es más apropiada para el problema de "chorros" y el de optimización. El concepto de solución viscosa ha sido el utilizado en problemas a dos fases y para el problema de combustión.

Estos resultados se han extendido a operadores cuasilineales o fuertemente no lineales independientes de la variable espacial, y a operadores lineales con coeficientes variables. En todos estos casos el operador \mathcal{L} se supone uniformemente elíptico.

Recientemente, algunos de los resultados fueron demostrados también en el caso en que \mathcal{L} es el p-laplaciano. Es decir, $\mathcal{L} u=\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ que es un operador elíptico degenerado en el caso $p>2$ y singular en el caso $p<2$ (en el caso $p=2$ coincide con el laplaciano) (ver, por ejemplo, [10, 11]). En [10] se estudia el problema de jets y se prueban los resultados de regularidad que fueran mencionados arriba para el caso del laplaciano usual. En [11] se estudia el problema de combustión (en el límite para energías de activación tendiendo a infinito) y se prueba que en el límite se encuentra una solución viscosa del problema (0.0.1). No se obtienen resultados de regularidad de la frontera libre para soluciones viscosas en este caso degenerado o singular.

El objetivo de esta tesis es el estudio de este problema -incluyendo la regularidad de la frontera libre- para operadores que puedan ser elípticos degenerados o
singulares, posiblemente no homogéneos (el p-laplaciano es homogéneo y esto simplifica algunas demostraciones). Aquí se admiten, además, funciones g en el operador \mathcal{L} con un comportamiento diferente en 0 y en infinito. Clásicamente, las suposiciones sobre el comportamiento de g en 0 e infinito han sido siempre similares al caso del p-laplaciano. Aquí, en cambio, se adoptan las condiciones introducidas por G. Lieberman en [22] para el estudio de la regularidad de soluciones débiles de la ecuación elíptica (posiblemente degenerada o singular) $\mathcal{L} u=f$ con f acotada.

Estas condiciones aseguran que la ecuación $\mathcal{L} u=0$ es equivalente a una ecuación uniformemente elíptica en forma de no divergencia con constantes de elipticidad independientes de la solución u en conjuntos donde $\nabla u \neq 0$. Es más, estas condiciones no implican ningún tipo de homogeneidad en las función g y además permiten diferente comportamiento de la función g cuando $|\nabla u|$ está cerca de cero o de infinito. A saber, asumimos que g satisfase

$$
\begin{equation*}
0<\delta \leq \frac{t g^{\prime}(t)}{g(t)} \leq g_{0} \quad \forall t>0 \tag{0.0.2}
\end{equation*}
$$

para ciertas constantes $0<\delta \leq g_{0}$.
Observemos que $\delta=g_{0}=p-1$ cuando $G(t)=t^{p}$, y recíprocamente, si $\delta=g_{0}$ entonces G es una potencia.

Otro ejemplo de función g que satisface (0.0.2) es la función $g(t)=t^{a} \log (b t+c)$ con $a, b, c>0$. En este caso se satisface (0.0.2) con $\delta=a$ y $g_{0}=a+1$.

Otro caso interesante es el de funciones $G \in C^{2}([0, \infty))$ con $G^{\prime}(t)=g(t)=c_{1} t^{a_{1}}$ para $t \leq s, g(t)=c_{2} t^{a_{2}}+d$ para $t \geq s$. En este caso g satisface (0.0.2) con $\delta=$ $\min \left(a_{1}, a_{2}\right)$ y $g_{0}=\max \left(a_{1}, a_{2}\right)$.

Más aún, cualquier combinación lineal con coeficientes positivos de funciones satisfaciendo (0.0.2) también satisface (0.0.2). Por otro lado, si g_{1} y g_{2} satisfacen (0.0.2) con constantes δ^{i} y $g_{0}^{i}, i=1,2$, la función $g=g_{1} g_{2}$ satisface (0.0.2) con $\delta=\delta^{1}+\delta^{2}$ y $g_{0}=g_{0}^{1}+g_{0}^{2}$, y la función $g(t)=g_{1}\left(g_{2}(t)\right)$ satisface (0.0.2) con $\delta=\delta^{1} \delta^{2}$ y $g_{0}=g_{0}^{1} g_{0}^{2}$.

Esta observación muestra que existe un amplio rango de funciones g bajo las hipótesis de esta tesis.

Con respecto a la noción de solución débil considerada en este trabajo, resaltamos que si bien la noción que podríamos llamar "distribucional" daría lugar, en principio, a mejores resultados, ésta no es adecuada para el problema de perturbación singular de interés en combustión que estudiamos en el último capítulo. Por lo tanto, en esta tesis se introduce una nueva noción de solución débil de (0.0.1) en la que la condición de frontera libre se pide que se satisfaga en un sentido puntual y no integral como es el caso de las soluciones distribucionales. A pesar de ésto, para estas soluciones débiles la demostración de la regularidad de la frontera libre en un entorno de cada punto donde es "chata" es muy similar a la que se puede encontrar para soluciones distribucionales en el caso $\mathcal{L}=\Delta$ en [4].

Por otro lado, probamos que las soluciones distribucionales son soluciones débiles en este sentido puntual. Por lo tanto, los resultados se aplican también al caso distribucional. En este último caso, los resultados resultan más fuertes ya que, como en el caso de ecuaciones uniformemente elípticas, se prueba en esta tesis que la frontera libre de una solución distribucional es "chata" en casi todo punto (respecto de la medida de Hausdorff $N-1$ dimensional).

Como se ha comentado anteriormente, en esta tesis se aplican los resultados de regularidad a las soluciones de tres problemas de interés en aplicaciones. Para el problema de jets y el de diseño óptimo se prueba que las soluciones son soluciones distribucionales del problema (0.0.1). Por lo tanto, en estas dos aplicaciones se obtiene regularidad $C^{1, \alpha}$ salvo medida de Hausdorff $N-1$ dimensional nula y, en el caso de dimensión 2 , se prueba que no hay singularidades.

En lo que sigue, vamos a describir con detalle los tres problemas estudiados en esta tesis.

1. El problema de minimización y soluciones débiles

En la primera parte de la tesis estudiamos el siguiente problema de minimización. Para Ω un dominio suave en \mathbb{R}^{N} y φ_{0} una función no negativa con $\varphi_{0} \in L^{\infty}(\Omega)$ y $\int_{\Omega} G\left(\left|\nabla \varphi_{0}\right|\right) d x<\infty$, consideramos el problema de minimizar el funcional,

$$
\begin{equation*}
\mathcal{J}(u)=\int_{\Omega} G(|\nabla u|)+\lambda \chi_{\{u>0\}} d x \tag{0.1.3}
\end{equation*}
$$

en la clase de funciones

$$
\mathcal{K}=\left\{v \in W^{1, G}(\Omega): v=\varphi_{0} \text { en } \partial \Omega\right\} .
$$

Esta clase de problemas de minimización fueron estudiados extensivamente para diferentes funciones G. De hecho, el primer trabajo donde este problema fue estudiado es [4]. Los autores consideran el caso $G(t)=t^{2}$ y prueban que estos minimizantes son soluciones débiles del problema de frontera libre,

$$
\begin{cases}\Delta u=0 & \text { en } \Omega \cap\{u>0\} \tag{0.1.4}\\ u=0,|\nabla u|=\sqrt{\lambda} & \text { en } \Omega \cap \partial\{u>0\}\end{cases}
$$

y prueban la regularidad Lipschitz de soluciones y la regularidad $C^{1, \alpha}$ de sus fronteras libres $(\Omega \cap \partial\{u>0\})$ localmente alrededor de \mathcal{H}^{N-1}-casi todo punto en $\Omega \cap \partial\{u>0\}$.

Los resultados principales en el Capítulo 2 son los siguientes:
Teorema 0.1.5. Si g satisface (0.0.2), existe un minimizante de \mathcal{J} en $\mathcal{K} y$ cualquier minimizante u es no negativo y pertenece a $C_{l o c}^{0,1}(\Omega)$. Además, para cualquier dominio $D \subset \subset \Omega$ conteniendo un punto de la frontera libre, la constante de Lipschitz de u en D está controlada en términos de $N, g_{0}, \delta, \operatorname{dist}(D, \partial \Omega)$ y λ.

También probamos que $\mathcal{L} u=0$ en el conjunto $\{u>0\}$ y que $\{u>0\}$ tiene perímetro localmente finito en Ω. Como es usual, definimos la frontera reducida por $\partial_{\text {red }}\{u>0\}:=\left\{x \in \Omega \cap \partial\{u>0\} /\left|\nu_{u}(x)\right|=1\right\}$, donde $\nu_{u}(x)$ es la normal unitaria exterior en el sentido de la medida (ver Capítulo 1), cuando existe, y $\nu_{u}(x)=0$ en otro caso. Luego, podemos probar que $\mathcal{H}^{N-1}\left(\partial\{u>0\} \backslash \partial_{\text {red }}\{u>0\}\right)=0$.

También probamos que los minimizantes tiene un desarrollo asintótico cerca de cualquier punto en la frontera reducida. Es decir,

Teorema 0.1.6. Sea u un minimizante, entonces para cualquier $x_{0} \in \partial_{\text {red }}\{u>$ $0\}$,

$$
\begin{equation*}
u(x)=\lambda^{*}\left\langle x-x_{0}, \nu\left(x_{0}\right)\right\rangle^{-}+o\left(\left|x-x_{0}\right|\right) \quad \text { cuando } x \rightarrow x_{0} \tag{0.1.7}
\end{equation*}
$$

donde λ^{*} es tal que $g\left(\lambda^{*}\right) \lambda^{*}-G\left(\lambda^{*}\right)=\lambda$. (Aqui $\langle\cdot, \cdot\rangle$ denota el producto escalar en \mathbb{R}^{N} y $\left.v^{-}=-\operatorname{mín}(v, 0)\right)$.

Por lo tanto, en un sentido débil los minimizantes satisfacen,

$$
\begin{cases}\mathcal{L} u=0 & \text { en } \quad \Omega \cap\{u>0\} \tag{0.1.8}\\ u=0, \quad|\nabla u|=\lambda^{*} & \text { en } \quad \Omega \cap \partial\{u>0\}\end{cases}
$$

Estos resultados sugieren que consideremos soluciones débiles del problema (0.1.8). Damos dos definiciones de solución débil (Definición 2.6.1 y Definición 2.6.2). Los minimizantes del funcional \mathcal{J} verifican ambas definiciones de solución débil. La diferencia principal entre estas dos definiciones es que para las funciones que satisfacen la Definición 2.6.1 tenemos que $\mathcal{H}^{N-1}\left(\partial\{u>0\} \backslash \partial_{\text {red }}\{u>0\}\right)=0$, mientras que para funciones satisfaciendo la Definición 2.6.2 podemos tener que $\partial_{\text {red }}\{u>0\}=\emptyset$. La Definición 2.6.2 es más apropiada para límites de soluciones de problemas de perturbación singular.

Probamos el siguiente teorema,
Teorema 0.1.9. Supongamos que g satisface (0.0.2). Sea u una solución débil. Entonces, \mathcal{H}^{N-1} casi todo punto en la frontera libre reducida $\partial_{\text {red }}\{u>0\}$ tiene un entorno donde la frontera libre es una superficie $C^{1, \alpha}$. Más aún, si u es una solución débil en el sentido de la definición 2.6.1, el resto de la frontera libre tiene medida \mathcal{H}^{N-1} cero, y si u es un minimizante, entonces toda la frontera libre reducida es regular.

Recalcamos que lo que probamos es que si u es una solución débil, la frontera libre es una superficie $C^{1, \alpha}$ en un entorno de cualquier punto donde u tiene el desarrollo asintótico (0.1.7) para algún vector unitario ν. Probamos que ese es el caso para cualquier punto en la frontera libre reducida cuando u es un minimizante (ver Teorema 2.5.5). Por lo tanto, si u es un minimizante, la frontera libre reducida es una superficie $C^{1, \alpha}$ y el resto de la frontera libre tiene medida \mathcal{H}^{N-1} cero.

También mejoramos el resultado de regularidad para el caso $N=2$, para una subclase de funciones que satisfacen (0.0.2). Probamos que, en este caso, toda la frontera libre es regular.

Resultados de regularidad de toda la frontera libre en dimensión 2 fueron probados en [2], [5], y en [12] si $2-\delta \leq p<\infty$ para $\delta>0$ chico.

Probamos el siguiente,
Teorema 0.1.10. Sea $N=2$, g satisfaciendo (0.0.2) y (2.7.57) y $u \in \mathcal{K}$ un minimizante de (0.1.3). Entonces $\partial\{u>0\}$ es una superficie $C^{1, \alpha}$ localmente en Ω.

2. El problema de optimización de dominio

Estudiamos, como segunda aplicación, un problema de optimización de dominio. Empezaremos primero con algunos observaciones históricas de este problema. En el trabajo [2], Aguilera, Alt y Caffarelli estudian un problema de diseño óptimo con restricción en el volumen. Los autores prueban la regularidad de los minimizantes introduciendo un término de penalización en el funcional de energía (la integral de Dirichlet) y minimizando sin la restricción en el volumen. Los pasos que realizan, son los siguientes. Primero, los autores observan que, para valores fijos del parámetro de penalización, el funcional es muy similar al considerado en el trabajo [4], por lo tanto los resultados de regularidad de los minimizantes del problema de penalización salen casi sin ninguna modificación como en [4]. Finalmente, ellos prueban que para valores chicos del parámetro de penalización, el volumen prefijado es alcanzado. De esta manera, los resultados de regularidad se aplican para soluciones del problema de diseño óptimo.

Este método fue aplicado a otros problemas con similar éxito. En $[\mathbf{3}, \mathbf{1 6}, 19$, 23], donde la ecuación diferencial que satisfacen los minimizantes es no degenerada, uniformemente elíptica y en [15], donde la ecuación involucrada podría llegar a ser degenerada o singular, pero todavía tiene la propiedad de ser homogénea.

En el Capítulo 3 probamos que el mismo tipo de resultados se pueden obtener si estudiamos un problema tal que la ecuación diferencial que satisfacen los minimizantes es no lineal, degenerada o singular, y posiblemente no homogénea. O sea, cuando el operador tiene la forma $\mathcal{L} u=\operatorname{div}\left(g(|\nabla u|) \frac{\nabla u}{|\nabla u|}\right)$ y g satisface las condiciones (0.0.2).

A continuación damos más precisamente la descripción del problema que estudiamos,

Sea Ω un dominio suave y acotado en \mathbb{R}^{N} y $\varphi_{0} \in W^{1, G}(\Omega)$, un dato de Dirichlet, con $\varphi_{0} \geq c_{0}>0$ en \bar{A}, donde A es un subconjunto abierto relativo y no vacio de $\partial \Omega$ tal que $A \cap \partial \Omega$ es C^{2}. Acá $W^{1, G}(\Omega)$ es un espacio de Sobolev-Orlicz (ver Capítulo 1). Sea

$$
\mathcal{K}_{\alpha}=\left\{u \in W^{1, G}(\Omega) /|\{u>0\}|=\alpha, u=\varphi_{0} \text { en } \partial \Omega\right\} .
$$

Nuestro problema es minimizar $\mathcal{J}(u)=\int_{\Omega} G(|\nabla u|) d x$ en \mathcal{K}_{α}, con $g=G^{\prime}$ satisfaciendo (0.0.2).

Una de las dificultades de estos problemas es probar la regularidad de los minimizantes, ya que no es fácil hacer perturbaciones que preserven el volumen sin saber previamente la regularidad de $\partial\{u>0\}$.

Para poder resolver el problema original, de manera que nos permita perturbaciones que no preserven el volumen, seguimos las ideas de [2] y consideramos el siguiente problema de penalización. Sea

$$
\mathcal{K}=\left\{u \in W^{1, G}(\Omega) / u=\varphi_{0} \text { en } \partial \Omega\right\}
$$

y

$$
\begin{equation*}
\mathcal{J}_{\varepsilon}(u)=\int_{\Omega} G(|\nabla u|) d x+F_{\varepsilon}(|\{u>0\}|) \tag{0.2.1}
\end{equation*}
$$

donde

$$
F_{\varepsilon}(s)= \begin{cases}\varepsilon(s-\alpha) & \text { si } s<\alpha \\ \frac{1}{\varepsilon}(s-\alpha) & \text { si } s \geq \alpha\end{cases}
$$

Luego el problema de penalización es el siguiente
$\left(P_{\varepsilon}\right) \quad$ Encontrar $u_{\varepsilon} \in \mathcal{K} \quad$ tal que $\quad \mathcal{J}_{\varepsilon}\left(u_{\varepsilon}\right)=\inf _{v \in \mathcal{K}} \mathcal{J}_{\varepsilon}(v)$.
Para poder probar la existencia de los minimizantes usamos los teoremas de inmersión en espacios de Sobolev-Orlicz, y el resultado sale fácilmente por minimización directa. La regularidad de los minimizantes y de sus fronteras libres $\partial\left\{u_{\varepsilon}>0\right\}$ salen probando que cualquier minimizante u_{ε} es una solución del siguiente problema,

$$
\begin{cases}\mathcal{L} u_{\varepsilon}=0 & \text { en }\left\{u_{\varepsilon}>0\right\} \cap \Omega \\ u_{\varepsilon}=0, & \frac{\partial u_{\varepsilon}}{\partial \nu}=\lambda_{\varepsilon} \\ \text { en } \partial\left\{u_{\varepsilon}>0\right\} \cap \Omega\end{cases}
$$

en el sentido de la Definición 2.6.1, donde λ_{ε} es una constante positiva.
Las propiedades de la definición de solución débil no son difíciles de establecer ya que el problema de minimización estudiado en el Capitulo II es muy similar a $\left(P_{\varepsilon}\right)$. La única diferencia es que \mathcal{J} es lineal en $|\{u>0\}|$ y acá el término F_{ε} es lineal a trozos y cero en α.

Con este resultado tenemos que para \mathcal{H}^{N-1} - casi todo punto, la frontera libre es una superficie $C^{1, \beta}$ en un entorno (ver Corolario 2.7.56 del Capítulo 2).

También mejoramos el resultado de regularidad para el caso $N=2$, para una subclase de funciones satisfaciendo (0.0.2). Como en el Capítulo 2, probamos que en este caso, toda la frontera libre es regular. Acá tenemos que lidiar con la no homogeneidad y el término de penalización a la vez. El primer término lo tratamos como en el Capítulo 2, y para tratar el segundo término, tomamos ideas de [19].

Como en [2], la razón por la cual es tan útil este método es que no es necesario pasar al limite en el término de penalización ε donde serían necesarias estimaciones uniformes en ε. De hecho, probamos que para valores chicos de ε el volumen prefijado es alcanzado. Esto es, $\left|\left\{u_{\varepsilon}>0\right\}\right|=\alpha$ para ε chico. Este es el paso donde la demostración se aparta de trabajos previos en problemas similares, debido a que acá podemos no tener la homogeneidad de la función g (ver Lema 3.2.6).

Finalmente, el hecho de que, para ε chico, cualquier minimizante de $\mathcal{J}_{\varepsilon}$ satisface $\left|\left\{u_{\varepsilon}>0\right\}\right|=\alpha$ implica que cualquier minimizante de nuestro problema es un minimizante de $\mathcal{J}_{\varepsilon}$, por lo tanto es localmente Lipschitz y la frontera libre es suave.

3. El problema de perturbación singular

Estudiamos, como última aplicación el siguiente problema de perturbación singular: Para $\varepsilon>0$, tomamos $u^{\varepsilon} \geq 0$ una solución de,

$$
\mathcal{L} u^{\varepsilon}=\beta_{\varepsilon}\left(u^{\varepsilon}\right) .
$$

Una solución de $\left(P_{\varepsilon}\right)$ es una función $u^{\varepsilon} \in W^{1, G}(\Omega) \cap L^{\infty}(\Omega)$ tal que

$$
\begin{equation*}
\int_{\Omega} g\left(\left|\nabla u^{\varepsilon}\right|\right) \frac{\nabla u^{\varepsilon}}{\left|\nabla u^{\varepsilon}\right|} \nabla \varphi d x=-\int_{\Omega} \varphi \beta_{\varepsilon}\left(u^{\varepsilon}\right) d x \tag{0.3.2}
\end{equation*}
$$

para toda $\varphi \in C_{0}^{\infty}(\Omega)$.
Aquí $\beta_{\varepsilon}(s)=\frac{1}{\varepsilon} \beta\left(\frac{s}{\varepsilon}\right)$, para $\beta \in \operatorname{Lip}(\mathbb{R})$, positiva en $(0,1)$ y cero fuera de $[0,1]$. Llamamos M a $\int_{0}^{1} \beta(s) d s$.

Estamos interesados en estudiar propiedades uniformes de las soluciones, y ver qué pasa con el problema límite, cuando $\varepsilon \rightarrow 0$. La idea es probar que para cualquier sucesión $\varepsilon_{n} \rightarrow 0$ existe una subsucesión $\varepsilon_{n_{k}}$ y una función límite u, tal que $u=$ lím $u^{\varepsilon_{n_{k}}}$, y que u es una solución débil del problema de frontera libre (0.1.8) para alguna constante λ^{*} dependiendo de g y de M.

Los primeros en plantear el paso al límite en este problema de perturbación singular en el caso de evolución fueron Zeldovich y Frank-Kamenetski en 1938, [24]. En dicho trabajo, los autores proponen hacer un análisis del límite para energias de activación altas para el estudio de la propagación de llamas. El estudio riguroso matemático recién fue realizado en 1990 por Berestycki, Caffarelli y Nirenberg en el caso de ondas viajeras (ver [6]) y posteriormente en [9] para el caso general de evolución a una fase.

Más específicamente, en [6] los autores consideran una familia uniformemente acotada de soluciones de

$$
\begin{equation*}
\mathcal{L} u^{\varepsilon}=\beta_{\varepsilon}\left(u^{\varepsilon}\right) \quad \text { en } \Omega \tag{0.3.3}
\end{equation*}
$$

donde $\mathcal{L} u=\sum a_{i j} u_{x_{i} x_{j}}+\sum b_{i} u_{x_{i}}+c u$ es un operador lineal uniformemente elíptico con coeficientes regulares y ven qué pasa cuando $\varepsilon \rightarrow 0$. Prueban que para toda
sucesión $\varepsilon_{n} \rightarrow 0$ existe una subsucesión $\varepsilon_{n_{k}}$ y una función límite u Lipschitz que resuelve el siguiente problema de frontera libre,

$$
\begin{cases}\mathcal{L} u=0 & \text { en } \Omega \cap\{u>0\}, \tag{0.3.4}\\ \sum a_{i j} u_{x_{i}} \eta_{j}=\sqrt{2 M} & \text { en } \Omega \cap \partial\{u>0\}\end{cases}
$$

donde η es la normal interior a $\partial\{u>0\}$.
En dicho trabajo prueban que la condición de frontera libre se satisface en toda porción suave de la misma.

Por otro lado, en los trabajos [7] y [8] se prueba que las soluciones viscosas de (0.3.4) con $\mathcal{L}=\Delta$ tienen frontera libre $C^{1, \alpha}$ alrededor de puntos donde es "chata" (flat). Esto permitió obtener resultados de regularidad de la frontera libre en el caso $\mathcal{L}=\Delta$ en [20].

Más recientemente, el caso elíptico no lineal para el p-laplaciano fue considerado en [11]. Los autores estudiaron el problema $\left(P_{\varepsilon}\right)$ cuando el operador \mathcal{L} es el p laplaciano (i.e $g(t)=t^{p-1}$). Como en el caso uniformemente elíptico, para una familia uniformemente acotada de soluciones u^{ε} encontraron estimaciones Lipschitz uniformes en ε y probaron que el límite de u^{ε} es una solución viscosa de (0.0.1) para $\mathcal{L}=\Delta_{p}$ y $\lambda^{*}=\left(\frac{p}{p-1} M\right)^{1 / p}$.

En dicho trabajo no se obtienen resultados sobre la regularidad de la frontera libre ya que no hay ninguna teoría de regularidad para soluciones viscosas en el caso degenerado o singular.

En este trabajo, para nuestro problema P_{ε}, podemos probar primero la continuidad Lipschitz uniforme a saber,

Teorema 0.3.5. Supongamos que g satisface (0.0.2). Sea u^{ε} una solución de

$$
\mathcal{L} u^{\varepsilon}=\beta_{\varepsilon}\left(u^{\varepsilon}\right) \quad \text { en } \Omega,
$$

con $\left\|u^{\varepsilon}\right\|_{L^{\infty}(\Omega)} \leq L$. Entonces, para $\Omega^{\prime} \subset \subset \Omega$ se tiene que

$$
\left|\nabla u^{\varepsilon}(x)\right| \leq C \quad \text { en } \Omega^{\prime}
$$

con $C=C\left(N, \delta, g_{0}, L,\|\beta\|_{\infty}, g(1), \operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right)\right)$, si $\varepsilon \leq \varepsilon_{0}\left(\Omega, \Omega^{\prime}\right)$.
Con este resultado, tenemos que, via una subsucesión, existe una función límite u.

El siguiente paso, es probar que la función u es una solución débil en el sentido de la definición 2.6.2 del Capítulo II del problema de frontera libre (0.0.1) para una constante λ^{*} dependiendo de g y M. Para ello, tenemos que probar que tenemos un desarrollo asintótico de u en cada punto de la frontera reducida.

Aquí encontramos diversas dificultades técnicas asociadas con la falta de homogeneidad del operador \mathcal{L} y con el hecho de estar trabajando en espacios de Orlicz. Por ejemplo, para probar que $\mathcal{L} u=0$ en $\{u>0\}$ debemos probar que $\nabla u_{\varepsilon} \rightarrow \nabla u$ en casi todo punto. Esto lo logramos probando que se tiene convergencia en $L^{g_{0}+1}$.

En otro punto nos encontramos con la necesidad de agregar la siguiente hipótesis sobre g; existen $-1<\alpha_{1} \leq \alpha_{2}$ tales que para toda $s, t \geq 0$ tenemos que,

$$
\begin{equation*}
g^{\prime}(t s) \geq \operatorname{mín}\left\{s^{\alpha_{1}}, s^{\alpha_{2}}\right\} g^{\prime}(t) . \tag{0.3.6}
\end{equation*}
$$

Todos los resultados probados en esta sección valdrán por lo tanto, cuando además, g^{\prime} satisface la condición (0.3.6).

Finalmente probamos,
Teorema 0.3.7. Sea $u^{\varepsilon_{j}}$ una solución de $\left(P_{\varepsilon_{j}}\right)$ en un dominio $\Omega \subset \mathbb{R}^{N}$ tal que $u^{\varepsilon_{j}} \rightarrow u$ uniformemente en compactos de Ω y $\varepsilon_{j} \rightarrow 0$. Sea $x_{0} \in \Omega \cap \partial\{u>0\}$ tal que $\partial\{u>0\}$ tiene una normal interior η en sentido de la medida en x_{0}, y supongamos que u es no degenerada en x_{0}. Bajo estas hipótesis, tenemos que

$$
u(x)=\Phi^{-1}(M)\left\langle x-x_{0}, \eta\right\rangle^{+}+o\left(\left|x-x_{0}\right|\right) .
$$

Finalmente, podemos aplicar la teoría del Capítulo 2. Tenemos que u es una solución débil en el sentido de la definición 2.6.2 del problema de frontera libre. Tenemos el siguiente,

Teorema 0.3.8. Supongamos que g satisface (0.0.2) y (0.3.6). Sea u $u^{\varepsilon_{j}}$ una solución de $\left(P_{\varepsilon_{j}}\right)$ en un dominio $\Omega \subset \mathbb{R}^{N}$ tal que $u^{\varepsilon_{j}} \rightarrow u$ uniformemente en compactos de Ω cuando $\varepsilon_{j} \rightarrow 0$. Sea $x_{0} \in \Omega \cap \partial\{u>0\}$, tal que tiene una normal interior η en el sentido de la medida en x_{0}. Supongamos que u es uniformemente no degenerada en la frontera libre en un entorno de x_{0} (ver Definición 4.3.1). Entonces, existe $r>0$ tal que $B_{r}\left(x_{0}\right) \cap \partial\{u>0\}$ es una superficie $C^{1, \alpha}$.

4. Notación

A lo largo de la tesis N denota la dimensión y,

$$
\begin{aligned}
B_{r}(x) & =\left\{x \in \mathbb{R}^{N},\left|x-x_{0}\right|<r\right\}, \\
B_{r}^{+}(x) & =\left\{x \in \mathbb{R}^{N}, x_{N}>0,\left|x-x_{0}\right|<r\right\}, \\
B_{r}^{-}(x) & =\left\{x \in \mathbb{R}^{N}, x_{N}<0,\left|x-x_{0}\right|<r\right\} .
\end{aligned}
$$

Para $v, w \in \mathbb{R}^{N},\langle v, w\rangle$ denota el producto escalar standard.
Para una función escalar $f, f^{+}=\operatorname{máx}(f, 0)$ y $f^{-}=\operatorname{máx}(-f, 0)$.
Para la función G definida en el Capítulo 1, denotamos,

$$
\begin{aligned}
g(t) & =G^{\prime}(t), \\
F(t) & =g(t) / t, \\
\Phi(t) & =g(t) t-G(t), \\
A(p) & =F(|p|) p \quad \text { para } p \in \mathbb{R}^{N}, \\
a_{i j} & =\frac{\partial A_{i}}{\partial p_{j}} \quad \text { para } 1 \leq i, j \leq N .
\end{aligned}
$$

5. Estructura de la tesis

Estructura del Capítulo 1. El Capítulo 1 está organizado de la siguiente manera: En la Sección 1 damos algunas propiedades de la función g y definimos los espacios de Orlicz y los de Sobolev-Orlicz, y probamos algunos teoremas de inclusión. Estos espacios serán usados para probar la existencia de los minimizantes.

En la Sección 2 damos algunas propiedades analíticas de las funciones con $\int_{\Omega} G(|\nabla u|) d x$ finita (generalización de la desigualdad de Poincaré y el Teorema de Morrey). Luego, enunciamos algunas propiedades de las soluciones, subsoluciones y supersoluciones de $\mathcal{L} v=0$ (desigualdad de Harnack, cotas $C^{1, \alpha}$, principio de comparación, principio fuerte del máximo y una desigualdad importante que usaremos a lo largo de la tesis (Teorema 1.2.38)). También probamos una desigualdad de tipo Cacciopoli válida para estas funciones (Lema 1.2.12). Finalmente, mostramos una familia explícita de subsoluciones de $\mathcal{L} u=0$ (Lema 1.2.47) que usamos como barreras en varios puntos de esta tesis.

En la Sección 3 enunciamos la definición de medida y distancia de Hausdorff.
En la Sección 4 damos un Teorema de Representación que usaremos en esta tesis. También damos la definición de conjuntos de perímetro localmente finito y algunas de sus propiedades.

En la Sección 5 probamos algunos resultados de \mathcal{L} - soluciones con crecimiento lineal.

En la Sección 6 probamos algunos resultados de los límites de sucesiones de blow up.

En la Sección 7 damos algunos resultados sobre simetrización de Schwartz.

Estructura del Capítulo 2. En la Sección 1 probamos la existencias de minimizantes y que los mismos son subsoluciones de $\mathcal{L} v=0$. También probamos que los minimizantes son no negativos. La demostración de existencia de minimizantes, que es standard en su forma, hace uso fuertemente de los espacios de Orlicz y la segunda desigualdad en la condición (0.0.2).

En la Sección 2 probamos que cualquier minimizante u es Hölder continuo (Teorema 2.2.1), $\mathcal{L} u=0$ en $\{u>0\}$ (Lema 2.2.12) y finalmente probamos la continuidad Lipschitz local (Teorema 2.2.25). La demostración de la continuidad Hölder de los minimizantes es un paso crucial en nuestro análisis y es una de las demostraciones principales de este capítulo en donde juegan todas las propiedades de la función G a través de la desigualdad del Teorema 1.2.38.

En la Sección 3 probamos que los minimizantes satisfacen una propiedad de no degeneración cerca de la frontera libre $\Omega \cap \partial\{u>0\}$ (Teorema 2.3.5). También probamos que los conjuntos $\{u>0\}$ y $\{u=0\}$ tienen la propiedad de densidad uniforme positiva en la frontera libre. En este teorema usamos fuertemente las propiedades de la función G y los correspondientes espacios de Orlicz.

En la Sección 4 probamos que la frontera libre tiene dimensión Hausdorff $N-1$ finita y obtenemos un teorema de representación para los minimizantes (Teorema 2.4.5). Esto implica que $\{u>0\}$ tiene perímetro localmente finito en Ω. Finalmente probamos que $\mathcal{H}^{N-1}\left(\partial\{u>0\} \backslash \partial_{\text {red }}\{u>0\}\right)=0$.

En la Sección 5 damos algunas propiedades de las sucesiones de blow up de los minimizantes. Probamos que cualquier límite de una sucesión de blow up es otra vez un minimizante (Lema 2.5.1) y finalmente probamos el desarrollo asintótico de los minimizantes en cualquier punto de la frontera libre reducida (Teorema 2.5.5).

En la Sección 6 damos la definición de solución débil (Definición 2.6.1 y Definición 2.6.2). Probamos que casi todas los propiedades que probamos para los minimizantes también valen para soluciones débiles que corresponden a la Definición 2.6.1, y mencionamos las diferencias entre las dos definiciones (Observación 2.6.8 y Observación 2.6.21).

En la Sección 7 probamos la regularidad de la frontera libre de las soluciones débiles, cerca de puntos "flat" de la frontera (Teorema 2.7.54) y luego deducimos la regularidad de la frontera libre de soluciones débiles cerca de casi todo punto en la frontera reducida. En el caso de los minimizantes, se obtiene la regularidad de toda la frontera reducida (Teorema 2.7.56). También probamos, para cierta clase de funciones satisfaciendo (0.0.2) que, en el caso $N=2$ toda la frontera libre es regular (Corolario 2.7.66).

Estructura del Capítulo 3. El Capítulo 3 esta organizado de la siguiente manera: En la Sección 1 empezamos nuestro análisis del problema $\left(P_{\varepsilon}\right)$ para ε fijo. Primero probamos la existencia de minimizantes, la regularidad Lipschitz local y la no degeneración cerca de la frontera libre (Teorema 3.1.2) y probamos que los minimizantes son soluciones débiles del problema de frontera libre, como fue definitdo en el Capítulo 2 (Observación 3.1.14). Luego tenemos que, para \mathcal{H}^{N-1} - casi todo punto, la frontera libre es localmente una superficie $C^{1, \beta}$ (Corolario 3.1.15). Probamos que para el caso $N=2$, para una subclase de funciones satisfaciendo (0.0.2) toda la frontera libre es regular (Corolario 3.1.22). En la Sección 2 probamos que para valores chicos de ε recuperamos nuestro problema original.

Estructura del Capítulo 4. El Capítulo 4 está organizado de la siguiente manera: En la Sección 1 probamos la continuidad Lipschitz uniforme de las soluciones de $\left(P_{\varepsilon}\right)$ (Corolario 4.1.8).

En la Sección 2, probamos que si u es una función límite, entonces $\mathcal{L} u$ es una medida de Radon soportada en la frontera libre (Teorema 4.2.1). Luego, probamos la Proposición 4.2.18, que dice que si u es un semiplano, entonces la pendiente es 0 o $\Phi^{-1}(M)$ donde $\Phi(t)=t g(t)-G(t)$, y la Proposición 4.2.20 que dice que si u es una suma de dos semiplanos, entonces las pendientes tienen que ser iguales y a lo sumo $\Phi^{-1}(M)$.

En la sección 3 probamos el desarrollo asintótico de u (Teorema 4.3.3).

En la sección 4 aplicamos los resultados del Capítulo 2 para probar la regularidad de la frontera libre (Teorema 4.4.7).

Introduction

In this thesis, we study a free boundary problem: For a domain Ω in \mathbb{R}^{N}, find u such that

$$
\begin{cases}\mathcal{L} u:=\operatorname{div}\left(\frac{g(|\nabla u|)}{|\nabla u|} \nabla u\right)=0 & \text { in }\{u>0\} \cap \Omega \tag{0.0.1}\\ |\nabla u|=\lambda^{*} & \text { on } \partial\{u>0\} \cap \Omega\end{cases}
$$

It is called a Free Boundary Problem because the location of $\partial\{u>0\}$ is not known a priori. The second equation in (0.0.1) is known as the "free boundary condition".

This problem appears in many applications. In this work we will discuss three of them. First, the problem of jets which consist on minimizing,

$$
\mathcal{J}(u)=\int_{\Omega} G(|\nabla u|)+\lambda \chi_{\{u>0\}} d x
$$

in the class of functions

$$
\mathcal{K}=\left\{v \in W^{1, G}(\Omega): \quad v=\varphi_{0} \text { on } \partial \Omega\right\}
$$

where φ_{0} is a nonnegative function with $\varphi_{0} \in L^{\infty}(\Omega), \int_{\Omega} G\left(\left|\nabla \varphi_{0}\right|\right) d x<\infty$ and G is such that $g=G^{\prime} . W^{1, G}(\Omega)$ is a Sobolev-Orlicz space (see Chapter 1).

The second one, is an optimal design problem. To minimize

$$
\mathcal{J}(u)=\int_{\Omega} G(|\nabla u|) d x
$$

in the set

$$
\mathcal{K}_{\alpha}=\left\{v \in W^{1, G}(\Omega):|\{v>0\}|=\alpha, v=\varphi_{0} \text { on } \partial \Omega\right\}
$$

for a bounded nonnegative and not identically zero φ_{0} with $\int_{\Omega} G\left(\left|\nabla \varphi_{0}\right|\right) d x<\infty$.
Finally, the third problem is originated in the theory of combustion in the socalled "limit for activation energy going to infinity" and consist on the following: For $\varepsilon>0$, take u^{ε} a weak solution of,

$$
\mathcal{L} u^{\varepsilon}=\beta_{\varepsilon}\left(u^{\varepsilon}\right), \quad u^{\varepsilon} \geq 0
$$

with $\beta_{\varepsilon}(s)=\frac{1}{\varepsilon} \beta\left(\frac{s}{\varepsilon}\right), \beta \in \operatorname{Lip}(\mathbb{R})$, positive in $(0,1)$, and zero outside $[0,1]$
In this case, we are interested in the study of the uniform properties of the solutions and the study of the limit problem, when $\varepsilon \rightarrow 0$.

In this case we prove, under some adequate conditions, that for any sequence $\varepsilon_{n} \rightarrow 0$ there exists a subsequence $\varepsilon_{n_{k}}$ and a limit function u, such that $u=\lim u^{\varepsilon_{n_{k}}}$, and u is a solution of the free boundary problem (0.0.1) for some constant λ^{*} depending on g and M.

In all these cases we see that the solutions of the problem we are interested in turn out to be solutions of (0.0.1) in a weak sense. Therefore, it is of a grate interest to study the regularity of the weak solutions (0.0.1) and of their free boundaries.

In this sense, the first step is to give a good definition of weak solution of the problem (0.0.1) that can be applied to all the applications that we have in mind. The second step, is to see which is the optimal regularity that these solutions are going to have (observe that, if we want the function to have constant normal derivative on the boundary of $\{u>0\}$, the optimal regularity can not be more than Lipschitz). Finally, it would be desirable to obtain the $C^{1, \alpha}$ regularity of the free boundary since this will imply that the weak solution satisfies the free boundary condition in a classical sense.

All these topics are well studied when the operator \mathcal{L} is the laplacian (see for example, $[\mathbf{2}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{2 0}]$). In particular in this case several theories were developed for the study of the regularity of the weak solutions of (0.0.1). In these works it has been proved that the weak solutions u are locally Lipschitz and that their free boundaries $\partial\{u>0\}$ are $C^{1, \alpha}$ surfaces when $N=2$, and that they have this regularity in a neighborhood of any point where they are flat, in higher dimensions. These results have been obtained both for distributional solutions and for viscosity solutions. In the first case, the free boundary condition appears in an integral form, and the definition is more appropriate for the problem of jets and of optimization. The concept of viscosity solution was used in two phases problems and for the combustion problem.

These results have been extended to quasilinear operators or fully nonlinear operators independent of the spatial variable, and to linear operators with variable coefficients. In all these cases the operator \mathcal{L} is supposed to be uniformly elliptic.

Recently, some of the results were proved also in the case where \mathcal{L} is the $p-$ laplacian. That is, $\mathcal{L} u=\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ which is a degenerate elliptic operator when $p>2$ and singular when $p<2$ (in the case $p=2$ it coincides with the laplacian) (see, for example, $[\mathbf{1 0}, \mathbf{1 1}]$). In $[\mathbf{1 0}]$ the authors study the problem of jets and prove the regularity results that were mentioned above for the case of the usual laplacian. In [11] the authors study the combustion problem (in the limit for activation energy going to infinity) and prove that, in the limit, they get a viscosity solution of the problem (0.0.1). There are no regularity results of the free boundary for viscosity solutions in the degenerate or singular cases.

The aim of this thesis is the study of this problem -including the regularity of the free boundary- for operators that can be either degenerate or singular elliptic, possibly non homogeneous (the p-laplacian is homogeneous and this simplifies some of the proofs). Here we admit, moreover, functions g in the operator \mathcal{L} with a
different behavior at 0 and at infinity. Classically, the assumptions on the behavior of g at 0 and at infinity were always similar to the case of the p-laplacian. Here, instead, we adopt the conditions introduced by G. Lieberman in [22] for the study of the regularity of weak solutions of the elliptic equation (possibly degenerate or singular) $\mathcal{L} u=f$ with f bounded.

These conditions ensures that the equation $\mathcal{L} u=0$ is equivalent to a uniformly elliptic equation in nondivergence form with ellipticity constants independent of the solution u in sets where $\nabla u \neq 0$. Furthermore, these conditions do not imply any type of homogeneity of the function g, and moreover they allow for a different behavior of the function g when $|\nabla u|$ is near zero or infinity. That is, we assume that g satisfies

$$
\begin{equation*}
0<\delta \leq \frac{t g^{\prime}(t)}{g(t)} \leq g_{0} \quad \forall t>0 \tag{0.0.2}
\end{equation*}
$$

for certain constants $0<\delta \leq g_{0}$.
Let us observe that $\delta=g_{0}=p-1$ when $G(t)=t^{p}$, and reciprocally, if $\delta=g_{0}$ then G is a power.

Another example of a function g which satisfies (0.0.2) is the function $g(t)=$ $t^{a} \log (b t+c)$ with $a, b, c>0$. In this case (0.0.2) is satisfied with $\delta=a$ and $g_{0}=a+1$.

Another interesting case is the one of a function $G \in C^{2}([0, \infty))$ with $G^{\prime}(t)=$ $g(t)=c_{1} t^{a_{1}}$ for $t \leq s, g(t)=c_{2} t^{a_{2}}+d$ for $t \geq s$. In this case g satisfies (0.0.2) with $\delta=\min \left(a_{1}, a_{2}\right)$ and $g_{0}=\max \left(a_{1}, a_{2}\right)$.

Furthermore, any linear combination with positive coefficients of functions satisfying (0.0.2) also satisfies (0.0.2). On the other hand, if g_{1} and g_{2} satisfy (0.0.2) with constants δ^{i} and $g_{0}^{i}, i=1,2$, the function $g=g_{1} g_{2}$ satisfies (0.0.2) with $\delta=\delta^{1}+\delta^{2}$ and $g_{0}=g_{0}^{1}+g_{0}^{2}$, and the function $g(t)=g_{1}\left(g_{2}(t)\right)$ satisfies (0.0.2) with $\delta=\delta^{1} \delta^{2}$ and $g_{0}=g_{0}^{1} g_{0}^{2}$.

This observation shows that there is a wide range of functions g under the hypotheses of this thesis.

With regards to the notion of weak solution considered in this work, we emphasize that, although the notion that we can call "distributional" would give, in principle, a better result, this is not the suitable notion for the singular perturbation problem that we study in the last chapter. Therefore, in this thesis we introduce a new notion of weak solution of (0.0.1) where the free boundary condition holds in a pointwise sense and not in integral one as in the case of weak distributional solutions. Anyhow, for these weak solutions the proof of the regularity of the free boundary in a neighborhood of every point where it is flat, is similar to the one that can be fond for distributional solutions in the case $\mathcal{L}=\Delta$ in [4].

On the other hand, we prove that the distributional solutions are weak solutions in this pointwise sense. Therefore, the results can also by applied to the distributional solutions. In this last case, the results turn out to be stronger since, as in the case of uniformly elliptic equations, it is proved in this thesis that the free boundary of distributional solution is flat at almost every point (respect to the $N-1$ dimensional Hausdorff measure).

As was mentioned before, in this thesis we apply the regularity results to solutions of the three problems of interest in applications. For the problem of jets and of optimal design we prove that the solutions are distributional solutions of the problem (0.0.1). Therefore, in these two applications we obtain the $C^{1, \alpha}$ regularity up to zero $N-1$ Hausdorff measure. In the case of dimension 2, we prove that there are no singularities.

In what follows, we will describe in details the three problems studied in this thesis.

1. The minimization problem and weak solutions

In the first part of the thesis we study the following minimization problem: For Ω a smooth bounded domain in \mathbb{R}^{N} and φ_{0} a nonnegative function with $\varphi_{0} \in L^{\infty}(\Omega)$ and $\int_{\Omega} G\left(\left|\nabla \varphi_{0}\right|\right) d x<\infty$, we consider the problem of minimizing the functional,

$$
\begin{equation*}
\mathcal{J}(u)=\int_{\Omega} G(|\nabla u|)+\lambda \chi_{\{u>0\}} d x \tag{0.1.3}
\end{equation*}
$$

in the class of functions

$$
\mathcal{K}=\left\{v \in W^{1, G}(\Omega): v=\varphi_{0} \text { on } \partial \Omega\right\} .
$$

This minimization problem has been widely studied for different functions G. In fact, the first paper in which this problem was studied is [4]. The authors considered the case $G(t)=t^{2}$. They proved that minimizers are weak solutions to the free boundary problem,

$$
\begin{cases}\Delta u=0 & \text { in } \Omega \cap\{u>0\} \tag{0.1.4}\\ u=0,|\nabla u|=\sqrt{\lambda} & \text { on } \Omega \cap \partial\{u>0\}\end{cases}
$$

and proved the Lipschitz regularity of the solutions and the $C^{1, \alpha}$ regularity of their free boundaries $(\Omega \cap \partial\{u>0\})$ locally around \mathcal{H}^{N-1} almost every point on $\Omega \cap \partial\{u>0\}$.

The main results in Chapter 2 are the following:

Theorem 0.1.5. If g satisfies (0.0.2), there exists a minimizer of \mathcal{J} in \mathcal{K} and any minimizer u is nonnegative and belongs to $C_{l o c}^{0,1}(\Omega)$. Moreover, for any domain $D \subset \subset \Omega$ containing a free boundary point, the Lipschitz constant of u in D is controlled in terms of $N, g_{0}, \delta, \operatorname{dist}(D, \partial \Omega)$ and λ.

We also prove that $\mathcal{L} u=0$ in the set $\{u>0\}$ and that $\{u>0\}$ has finite perimeter locally in Ω. As usual, we define the reduced boundary by $\partial_{\text {red }}\{u>0\}:=$ $\left\{x \in \Omega \cap \partial\{u>0\} /\left|\nu_{u}(x)\right|=1\right\}$, where $\nu_{u}(x)$ is the unit outer normal in the measure theoretic sense (see Chapter 1), when it exists, and $\nu_{u}(x)=0$ otherwise. Then, we prove that $\mathcal{H}^{N-1}\left(\partial\{u>0\} \backslash \partial_{\text {red }}\{u>0\}\right)=0$.

We also prove that minimizers have an asymptotic development near any point in their reduced free boundary. Namely,

Theorem 0.1.6. Let u be a minimizer, then for every $x_{0} \in \partial_{\text {red }}\{u>0\}$,

$$
\begin{equation*}
u(x)=\lambda^{*}\left\langle x-x_{0}, \nu\left(x_{0}\right)\right\rangle^{-}+o\left(\left|x-x_{0}\right|\right) \quad \text { as } x \rightarrow x_{0} \tag{0.1.7}
\end{equation*}
$$

where λ^{*} is such that $g\left(\lambda^{*}\right) \lambda^{*}-G\left(\lambda^{*}\right)=\lambda$. $($ Here $\langle\cdot, \cdot\rangle$ denotes the scalar product in \mathbb{R}^{N} and $\left.v^{-}=-\min (v, 0)\right)$.

So that, in a weak sense minimizers satisfy,

$$
\begin{cases}\mathcal{L} u=0 & \text { in } \quad\{u>0\} \tag{0.1.8}\\ u=0, \quad|\nabla u|=\lambda^{*} & \text { on } \quad \Omega \cap \partial\{u>0\} .\end{cases}
$$

These results suggest that we consider weak solutions of the problem (0.1.8). We give two different definitions of weak solution (Definition 2.6.1 and Definition 2.6.2). Minimizers of the functional \mathcal{J} verify both definitions of weak solution. The main difference between these two definitions is that for functions satisfying Definition 2.6.1 we have that $\mathcal{H}^{N-1}\left(\partial\{u>0\} \backslash \partial_{\text {red }}\{u>0\}\right)=0$, whereas for functions satisfying Definition 2.6.2 we may have $\partial_{\text {red }}\{u>0\}=\emptyset$. Definition 2.6.2 is more suitable for limits of singular perturbation problems.

We prove the following theorem,
Theorem 0.1.9. Suppose that g satisfies (0.0.2). Let u be a weak solution. Then, \mathcal{H}^{N-1} almost every point in the reduced free boundary $\partial_{\text {red }}\{u>0\}$ has a neighborhood where the free boundary is a $C^{1, \alpha}$ surface. Moreover, if u is a weak solution according to Definition 2.6.1, the remainder of the free boundary has \mathcal{H}^{N-1} - measure zero, and if u is a minimizer, then the whole reduced free boundary is regular.

We point out that we prove that if u is a weak solution, the free boundary is a $C^{1, \alpha}$ surface in a neighborhood of every point where u has the asymptotic development (0.1.7) for some unit vector ν. We prove that this is the case for every point in the reduced free boundary when u is a minimizer (see Theorem 2.5.5).

We also improve the regularity result for the case $N=2$, for a subclass of functions satisfying (0.0.2). We prove that, in this case, the whole free boundary is regular.

Full regularity of the free boundary in dimension 2 was prove in [4] and [5], and in [12] if $2-\delta \leq p<\infty$ for a small $\delta>0$.

We prove the following,
Theorem 0.1.10. Let $N=2$, g satisfying conditions (0.0.2) and (2.7.57) and $u \in \mathcal{K}$ be a minimizer of (2.0.1). Then $\partial\{u>0\}$ is a $C^{1, \alpha}$ surface locally in Ω.

2. The shape optimization problem

We study, as a second application, an optimization problem. We begin with a few historical remarks on this problem. In the paper [2], Aguilera, Alt and Caffarelli study an optimal design problem with a volume constrain. The authors prove the regularity of minimizers by introducing a penalization term in the energy functional (the Dirichlet integral) and minimizing without the volume constrain. The steps that they follow are the following. First, the authors observe that, for fixed values of the penalization parameter, the penalized functional is very similar to the one considered in the paper [4], then the regularity results for minimizers of the penalized problem follow almost without change as in [4]. Finally, they prove that for small values of the penalization parameter, the constrained volume is attained. In this way, all the regularity results apply to the solution of the optimal design problem.

This method has been applied to other problems with similar success. See for instance, $[\mathbf{3}, \mathbf{1 6}, \mathbf{1 9}, \mathbf{2 3}]$, where the differential equation satisfied by the minimizers is nondegenerate, uniformly elliptic and [15], where the equation involved may be degenerate or singular elliptic, but it still has the property of being homogeneous.

In Chapter 3 we show that the same kind of results can be obtained if we study a problem such that the differential equation satisfied by the minimizers is nonlinear degenerate or singular, and possibly non homogeneous. More precisely, the operator here has the form $\mathcal{L} u=\operatorname{div}\left(g(|\nabla u|) \frac{\nabla u}{|\nabla u|}\right)$ where g satisfies the conditions (0.0.2).

We give now, more precisely the description of the problem that we study.
Take Ω a smooth bounded domain in \mathbb{R}^{N} and $\varphi_{0} \in W^{1, G}(\Omega)$, a Dirichlet datum, with $\varphi_{0} \geq c_{0}>0$ in \bar{A}, where A is a nonempty relatively open subset of $\partial \Omega$ such that $A \cap \partial \Omega$ is C^{2}. Here $W^{1, G}(\Omega)$ is a Sobolev-Orlicz space (see Chapter 1). Let

$$
\mathcal{K}_{\alpha}=\left\{u \in W^{1, G}(\Omega) /|\{u>0\}|=\alpha, u=\varphi_{0} \text { on } \partial \Omega\right\} .
$$

Our problem is to minimize in \mathcal{K}_{α}, the functional $\mathcal{J}(u)=\int_{\Omega} G(|\nabla u|) d x$, with $g=G^{\prime}$ satisfying (0.0.2).

One of the difficulties of these kind of problems is to get regularity results for the minimizers, since it is hard to make enough volume preserving perturbations without the previous knowledge of the regularity of $\partial\{u>0\}$.

In order to solve our original problem, in a way that allows us to perform non volume preserving perturbations, we follow the idea of [2] and consider instead the
following penalized problem: We let

$$
\mathcal{K}=\left\{u \in W^{1, G}(\Omega) / u=\varphi_{0} \text { on } \partial \Omega\right\}
$$

and

$$
\begin{equation*}
\mathcal{J}_{\varepsilon}(u)=\int_{\Omega} G(|\nabla u|) d x+F_{\varepsilon}(|\{u>0\}|), \tag{0.2.11}
\end{equation*}
$$

where

$$
F_{\varepsilon}(s)= \begin{cases}\varepsilon(s-\alpha) & \text { if } s<\alpha \\ \frac{1}{\varepsilon}(s-\alpha) & \text { if } s \geq \alpha\end{cases}
$$

Then, the penalized problem is

$$
\text { Find } u_{\varepsilon} \in \mathcal{K} \quad \text { such that } \quad \mathcal{J}_{\varepsilon}\left(u_{\varepsilon}\right)=\inf _{v \in \mathcal{K}} \mathcal{J}_{\varepsilon}(v)
$$

In order to prove the existence of minimizers we use some compact immersion theorems in Sobolev-Orlicz spaces, and the result follows easily by direct minimization. The regularity of the minimizers and of their free boundaries $\partial\left\{u_{\varepsilon}>0\right\}$ follows by showing that any minimizer u_{ε} is a solution of the following free boundary problem,

$$
\begin{cases}\mathcal{L} u_{\varepsilon}=0 & \text { in }\left\{u_{\varepsilon}>0\right\} \cap \Omega \\ u_{\varepsilon}=0, & \frac{\partial u_{\varepsilon}}{\partial \nu}=\lambda_{\varepsilon} \\ \text { on } \partial\left\{u_{\varepsilon}>0\right\} \cap \Omega\end{cases}
$$

in the sense of Definition 2.6.1, where λ_{ε} is a positive constant.
The properties of the definition of weak solution are not difficult to establish since the minimization problem studied in Chapter 2 is very similar to $\left(P_{\varepsilon}\right)$. The only difference is that \mathcal{J} is linear in $|\{u>0\}|$ and here the term F_{ε} is piecewise linear and zero at α.

With these results we have that the free boundary is a $C^{1, \beta}$ surface in a neighborhood of \mathcal{H}^{N-1} - almost every point (see Corollary 2.7.56 in Chapter 2).

We also improve the regularity result in the case $N=2$, for a subclass of functions satisfying (0.0.2). As in Chapter 2, we prove that, in this case, the whole free boundary is regular. Here we have to deal with the non homogeneity and the penalization term at the same time. In the first case we proceed as in Chapter 2, and in order to deal with the penalization term, we take ideas from [19].

As in [2], the reason why this penalization method is so useful is that there is no need to pass to the limit in the penalization parameter ε for which uniform, in ε, regularity estimates would be needed. In fact, we show that for small values of ε the right volume is already attained. This is, $\left|\left\{u_{\varepsilon}>0\right\}\right|=\alpha$ for ε small. This is the step where the proof parts from previous work on similar problems, since here we may not have the homogeneity of the function g (see Lemma 3.2.6).

Finally, the fact that, for small ε, any minimizer of $\mathcal{J}_{\varepsilon}$ satisfies $\left|\left\{u_{\varepsilon}>0\right\}\right|=\alpha$ implies that any minimizer of our original optimization problem is also a minimizer of $\mathcal{J}_{\varepsilon}$, so that it is locally Lipschitz continuous with smooth free boundary.

3. The singular perturbation problem

We study, as a third application the following singular perturbation problem:
For any $\varepsilon>0$, take u^{ε} a solution of,
$\left(P_{\varepsilon}\right)$

$$
\mathcal{L} u^{\varepsilon}=\beta_{\varepsilon}\left(u^{\varepsilon}\right), \quad u^{\varepsilon} \geq 0 .
$$

A solution to $\left(P_{\varepsilon}\right)$ is a function $u^{\varepsilon} \in W^{1, G}(\Omega) \cap L^{\infty}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega} g\left(\left|\nabla u^{\varepsilon}\right|\right) \frac{\nabla u^{\varepsilon}}{\left|\nabla u^{\varepsilon}\right|} \nabla \varphi d x=-\int_{\Omega} \varphi \beta_{\varepsilon}\left(u^{\varepsilon}\right) d x \tag{0.3.12}
\end{equation*}
$$

for every $\varphi \in C_{0}^{\infty}(\Omega)$.
Here $\beta_{\varepsilon}(s)=\frac{1}{\varepsilon} \beta\left(\frac{s}{\varepsilon}\right)$, for $\beta \in \operatorname{Lip}(\mathbb{R})$, positive in $(0,1)$ and zero outside $[0,1]$. We call $M=\int_{0}^{1} \beta(s) d s$.

We are interested in studying the uniform properties of solutions, and limit problem, as $\varepsilon \rightarrow 0$. The idea is to prove that, for every sequence $\varepsilon_{n} \rightarrow 0$, there exists a subsequence $\varepsilon_{n_{k}}$ and a limit function u such that $u=\lim u^{\varepsilon_{n_{k}}}$ and u is a weak solution of the free boundary problem (0.1.8) for some constant λ^{*} depending on g and M.

The idea of passing to the limit in this singular perturbation problems in the evolution case was first proposed by Zeldovich and Frank-Kamenetski in 1938, [24]. However, a rigorous mathematical analysis of the limiting process was not performed until 1990, when Berestycki, Caffarelli and Nirenberg studied the case of travelling waves (see [6]). Next, in [9] the general evolution problem in the one phase case was analyzed.

More precisely, in [6] the authors consider a uniformly bounded family of solutions of

$$
\begin{equation*}
\mathcal{L} u^{\varepsilon}=\beta_{\varepsilon}\left(u^{\varepsilon}\right) \quad \text { in } \Omega \tag{0.3.13}
\end{equation*}
$$

where $\mathcal{L} u=\sum a_{i j} u_{x_{i} x_{j}}+\sum b_{i} u_{x_{i}}+c u$ is a linear uniformly elliptic operator with smooth coefficients. The authors study the limit as $\varepsilon \rightarrow 0$. They prove that for any sequence $\varepsilon_{n} \rightarrow 0$ there exists a subsequence $\varepsilon_{n_{k}}$ and a limit function u which is Lipschitz and a solution to the following free boundary problem,

$$
\begin{cases}\mathcal{L} u=0 & \text { in } \Omega \cap\{u>0\}, \tag{0.3.14}\\ \sum a_{i j} u_{x_{i}} \eta_{j}=\sqrt{2 M} & \text { on } \Omega \cap \partial\{u>0\}\end{cases}
$$

where η is the inward normal to $\partial\{u>0\}$.
In that work the authors prove that the free boundary condition it is satisfied on any portion of the free boundary where it is smooth.

On the other hand, in the papers [7] and [8] Caffarelli proved that the viscosity solutions of (0.3.14) with $\mathcal{L}=\Delta$ have $C^{1, \alpha}$ free boundaries around points where they are flat. By using this theory, regularity results of the free boundary for the limit $u=\lim u^{\varepsilon}$ were obtained in the case $\mathcal{L}=\Delta$ in [20].

More recently, the nonlinear elliptic case of the p-laplacian was considered in [11]. The authors study the problem $\left(P_{\varepsilon}\right)$ when the operator \mathcal{L} is the p-laplacian (i.e $g(t)=t^{p-1}$). As in the uniformly elliptic case, they find for a uniformly bounded family of solutions u^{ε}, uniform in ε Lipschitz estimates and proved that the limit of u^{ε} is a viscosity solution of (0.0.1) for $\mathcal{L}=\Delta_{p}$ and $\lambda^{*}=\left(\frac{p}{p-1} M\right)^{1 / p}$.

In that work the authors do not obtain any regularity of the free boundary since there is no regularity theory for viscosity solutions in the degenerate or singular case.

In this chapter, for our problem P_{ε}, we first prove the uniform Lipschitz continuity,

THEOREM 0.3.15. Suppose that g satisfies condition (0.0.2). Let u^{ε} be a solution of

$$
\mathcal{L} u^{\varepsilon}=\beta_{\varepsilon}\left(u^{\varepsilon}\right) \quad \text { in } \Omega,
$$

with $\left\|u^{\varepsilon}\right\|_{L^{\infty}(\Omega)} \leq L$. Then, for $\Omega^{\prime} \subset \subset \Omega$ we have,

$$
\left|\nabla u^{\varepsilon}(x)\right| \leq C \quad \text { in } \Omega^{\prime}
$$

with $C=C\left(N, \delta, g_{0}, L,\|\beta\|_{\infty}, g(1), \operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right)\right)$, if $\varepsilon \leq \varepsilon_{0}\left(\Omega, \Omega^{\prime}\right)$.
And with this estimate we have, via a subsequence that there exists a limit function u.

The next step, is to prove that the function u is a weak solution in the sense of definition 2.6.2 of Chapter 2 of the free boundary problem (0.0.1) for a constant λ^{*} depending on g and M. To this end, we prove that that we have an asymptotic development of u at any point in the reduced free boundary.

At this point we find several technical difficulties associated to the loss of homogeneity of the operator \mathcal{L} and of the fact that we are working with the Orlicz spaces. For example, in order to prove that $\mathcal{L} u=0$ in $\{u>0\}$ we have to prove that $\nabla u_{\varepsilon} \rightarrow \nabla u$ in almost every point. This is obtained by proving the convergence in $L^{g_{0}+1}$.

At another point, we need to add the following hypothesis over g : There exist $-1<\alpha_{1} \leq \alpha_{2}$ such that for all $s, t \geq 0$ we have that,

$$
\begin{equation*}
g^{\prime}(t s) \geq \min \left\{s^{\alpha_{1}}, s^{\alpha_{2}}\right\} g^{\prime}(t) \tag{0.3.16}
\end{equation*}
$$

Thus, all the results proved in in this chapter hold when moreover, g^{\prime} satisfies condition (0.3.16).

Finally we prove,
THEOREM 0.3.17. Let $u^{\varepsilon_{j}}$ be a solution to $\left(P_{\varepsilon_{j}}\right)$ in a domain $\Omega \subset \mathbb{R}^{N}$ such that $u^{\varepsilon_{j}} \rightarrow u$ uniformly on compact subsets of Ω and $\varepsilon_{j} \rightarrow 0$. Let $x_{0} \in \Omega \cap \partial\{u>0\}$ be such that $\partial\{u>0\}$ has an inward unit normal η at x_{0} in the measure theoretic
sense, and suppose that u is non-degenerate at x_{0}. Under these assumptions, we have

$$
\left.u(x)=\Phi^{-1}(M)\left\langle x-x_{0}, \eta\right)\right\rangle^{+}+o\left(\left|x-x_{0}\right|\right) .
$$

Finally, we can apply the theory developed in Chapter 2. We have that, u is a weak solution in the sense of Definition 2.6.2 of the free boundary problem.

Thus, we have the following,
Theorem 0.3.18. Suppose that g satisfies (0.0.2) and (0.3.16). Let $u^{\varepsilon_{j}}$ be a solution of $\left(P_{\varepsilon_{j}}\right)$ in a domain $\Omega \subset \mathbb{R}^{N}$ such that $u^{\varepsilon_{j}} \rightarrow u$ uniformly in compact subsets of Ω as $\varepsilon_{j} \rightarrow 0$. Let $x_{0} \in \Omega \cap \partial\{u>0\}$, such that there is an inward unit normal η in the measure theoretic sense at x_{0}. Suppose that u is uniformly non-degenerate at the free boundary in a neighborhood of x_{0} (see Definition 4.3.1). Then, there exists $r>0$ such that $B_{r}\left(x_{0}\right) \cap \partial\{u>0\}$ is a $C^{1, \alpha}$ surface.

4. Notation

Throughout the thesis N will note the dimension and,

$$
\begin{aligned}
B_{r}(x) & =\left\{x \in \mathbb{R}^{N},\left|x-x_{0}\right|<r\right\}, \\
B_{r}^{+}(x) & =\left\{x \in \mathbb{R}^{N}, x_{N}>0,\left|x-x_{0}\right|<r\right\}, \\
B_{r}^{-}(x) & =\left\{x \in \mathbb{R}^{N}, x_{N}<0,\left|x-x_{0}\right|<r\right\} .
\end{aligned}
$$

For $v, w \in \mathbb{R}^{N},\langle v, w\rangle$ notes the standard scalar product.
For a scalar function $f, f^{+}=\max (f, 0)$ and $f^{-}=\max (-f, 0)$.
For the function G defined in Chapter 1, we denote,

$$
\begin{aligned}
g(t) & =G^{\prime}(t), \\
F(t) & =g(t) / t, \\
\Phi(t) & =g(t) t-G(t), \\
A(p) & =F(|p|) p \quad \text { for } p \in \mathbb{R}^{N}, \\
a_{i j} & =\frac{\partial A_{i}}{\partial p_{j}} \quad \text { for } 1 \leq i, j \leq N .
\end{aligned}
$$

5. Outline of the thesis

Outline of Chapter 1. Chapter 1 is organized as follows: In Section 1 we give some properties of the function g and define the Orlicz and Sobolev-Orlicz spaces, and prove some inclusion Theorems. These spaces will be used to prove existence of minimizers.

In Section 2 we state some real analytic properties for functions with finite $\int_{\Omega} G(|\nabla u|) d x$ (generalization of Poincaré's inequality and Morrey's Theorem). Then, we state some properties of solutions, subsolution and supersolutions of $\mathcal{L} v=0$; Harnack inequality, $C^{1, \alpha}$ bounds, comparison principle, strong maximum principle and an important inequality that will be use throughout the thesis (Theorem 1.2.38). We also prove a Cacciopoli type inequality valid for these functions (Lemma 1.2.12). Finally, we show an explicit family of subsolutions of $\mathcal{L} u=0$ (Lemma 1.2.47), that will be used as a barrier at many points of this thesis.

In Section 3 we give the definition of Hausdorff measure and Hausdorff distance.
In Section 4 we state a Representation Theorem that will be used in this thesis. We also give the definition of sets of locally finite perimeter, and state some of their properties.

In section 5 we prove a result of \mathcal{L} - solutions with linear growth.
In section 6 we prove some results of limits of blow up sequences.
In section 7 we give some results of the Schwartz symmetrized function.

Outline of Chapter 2. In Section 1 we prove the existence of minimizers of (0.1.3) and that they are subsolutions of $\mathcal{L} v=0$. We also prove that the minimizers are nonnegative. The existence of minimizers, while standard in its form, makes strong use of the Orlicz spaces and the second inequality in condition (0.0.2).

In Section 2 we prove that any local minimizer u is Hölder continuous (Theorem 2.2.1), $\mathcal{L} u=0$ in $\{u>0\}$ (Lemma 2.2.12) and finally we prove the local Lipschitz continuity (Theorem 2.2.25). The proof of the Hölder continuity of the minimizers is a key step in our analysis and is one of the main proofs in this paper in which all the properties of the function G come into play through the inequality of Theorem 1.2.38.

In Section 3 we prove that minimizers satisfy a nondegeneracy property near the free boundary $\Omega \cap \partial\{u>0\}$. We also prove that the sets $\{u>0\}$ and $\{u=0\}$ have locally uniform positive density at the free boundary (Theorem 2.3.5). In this theorem we make strong use of the properties of G and the corresponding Orlicz space.

In Section 4 we prove that the free boundary has finite $N-1$ dimensional Hausdorff measure and we obtain a representation theorem for minimizers (Theorem 2.4.5). This implies that $\{u>0\}$ has locally finite perimeter in Ω. Finally we prove that $\mathcal{H}^{N-1}\left(\partial\{u>0\} \backslash \partial_{\text {red }}\{u>0\}\right)=0$.

In Section 5 we give some properties of blow up sequences of minimizers. We prove that any limit of a blow up sequence of minimizers is again a minimizer (Lemma 2.5.1) and we finally prove the asymptotic development of minimizers at every point in their reduced free boundary (Theorem 2.5.5).

In Section 6 we give the definition of weak solution (Definition 2.6.1 and Definition 2.6.2). We show that most of the properties that we proved for minimizers also
hold for weak solutions according to Definition 2.6.1, and we mention the differences between the two definitions (Remark 2.6.8 and Remark 2.6.21).

In Section 7 we prove the regularity of the free boundary of weak solutions near "flat" free boundary points (Theorem 2.7.54) and then, we deduce the regularity of the free boundary of weak solutions near almost every point in their reduced free boundary and, in the case of minimizers, we obtain the regularity of the whole reduced free boundary (Theorem 2.7.56). We also prove for a certain class of functions satisfying (0.0.2) that, in the case $N=2$, the whole free boundary is regular (Corollary 2.7.66).

Outline of Chapter 3. Chapter 3 is organized as follows: In Section 1 we begin our analysis of problem $\left(P_{\varepsilon}\right)$ for fixed ε. First we prove the existence of a minimizer, the local Lipschitz regularity and nondegeneracy near the free boundary (Theorem 3.1.2) and we prove that minimizers are weak solutions of a free boundary problem as defined in Chapter 2 (Remark 3.1.14). Then we have that for \mathcal{H}^{N-1} - almost every free boundary point, the free boundary is locally $C^{1, \beta}$ surface (Corollary 3.1.15). We prove that, for the case $N=2$ and for a subclass of functions satisfying (0.0.2), the whole free boundary is regular (Corollary 3.1.22).

In Section 2 we prove that for small values of ε we recover our original optimization problem.

Outline of Chapter 4. Chapter 4 is organized as follows: In Section 1 we prove the uniform Lipschitz continuity of solutions of $\left(P_{\varepsilon}\right)$ (Corollary 4.1.8).

In Section 2 we prove that if u is a limiting function, then $\mathcal{L} u$ is a Radon measure supported on the free boundary (Theorem 4.2.1). Then we prove Proposition 4.2.18, that says that if u is a half plane, then the slope is 0 or $\Phi^{-1}(M)$, and Proposition 4.2.20 that says that if u is a sum of two half plane, then the slopes must be equal and at most $\Phi^{-1}(M)$.

In Section 3 we prove the asymptotic development of u (Theorem 4.3.3).
In Section 4 we apply the results of Chapter 2 to prove the regularity of the free boundary (Theorem 4.4.7).

CHAPTER 1

Preliminaries

This Chapter we will state some results that will be used throughout the thesis. We also prove some new facts that are going to be needed in many proofs. From now on we will assume that the function g satisfies condition (0.0.2).

1. Properties of the function G

In Section 1 we state and prove some properties of the function G and its derivative g that are used throughout the thesis. We give the definition of Orlicz space and Sobolev-Orlicz space, and some properties of these spaces. All these results can be found in $[\mathbf{1}]$.

Lemma 1.1.1. The function g satisfies the following properties,
(g1) $\min \left\{s^{\delta}, s^{g_{0}}\right\} g(t) \leq g(s t) \leq \max \left\{s^{\delta}, s^{g_{0}}\right\} g(t)$
(g2) G is convex and C^{2}

$$
\text { (g3) } \frac{\operatorname{tg}(t)}{1+g_{0}} \leq G(t) \leq t g(t) \quad \forall t \geq 0
$$

Proof. For the proofs of (g1)-(g3) see [22].
Remark 1.1.2. By (g1) and (g3) we have a similar inequality for G,
(G1) $\min \left\{s^{\delta+1}, s^{g_{0}+1}\right\} \frac{G(t)}{1+g_{0}} \leq G(s t) \leq\left(1+g_{0}\right) \max \left\{s^{\delta+1}, s^{g_{0}+1}\right\} G(t)$
and, then using the convexity of G and this last inequality we have,
(G2) $G(a+b) \leq 2^{g_{0}}\left(1+g_{0}\right)(G(a)+G(b)) \forall a, b>0$.
As g is strictly increasing we can define g^{-1}. Now we prove that g^{-1} satisfies a condition similar to (0.0.2). That is,

Lemma 1.1.3. The function g^{-1} satisfies the inequalities

$$
\begin{equation*}
\frac{1}{g_{0}} \leq \frac{t\left(g^{-1}\right)^{\prime}(t)}{g^{-1}(t)} \leq \frac{1}{\delta} \quad \forall t>0 \tag{1.1.4}
\end{equation*}
$$

Moreover, g^{-1} satisfies,

$$
\begin{equation*}
\min \left\{s^{1 / \delta}, s^{1 / g_{0}}\right\} g^{-1}(t) \leq g^{-1}(s t) \leq \max \left\{s^{1 / \delta}, s^{1 / g_{0}}\right\} g^{-1}(t) \tag{g}
\end{equation*}
$$

and if \widetilde{G} is such that $\widetilde{G}^{\prime}(t)=g^{-1}(t)$ then,

$$
\begin{equation*}
\frac{\delta t g^{-1}(t)}{1+\delta} \leq \widetilde{G}(t) \leq t g^{-1}(t) \quad \forall t \geq 0 \tag{g}
\end{equation*}
$$

($\widetilde{G} 1) \quad \frac{(1+\delta)}{\delta} \min \left\{s^{1+1 / \delta}, s^{1+1 / g_{0}}\right\} \widetilde{G}(t) \leq \widetilde{G}(s t) \leq \frac{\delta}{1+\delta} \max \left\{s^{1+1 / \delta}, s^{1+1 / g_{0}}\right\} \widetilde{G}(t)$

$$
\begin{equation*}
a b \leq \varepsilon G(a)+C(\varepsilon) \widetilde{G}(b) \quad \forall a, b>0 \text { and } \varepsilon>0 \text { small } \tag{g}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{G}(g(t)) \leq g_{0} G(t) \tag{g}
\end{equation*}
$$

Proof. Let $s=g^{-1}(t)$, then

$$
\frac{t\left(g^{-1}\right)^{\prime}(t)}{g^{-1}(t)}=\frac{g(s)}{g^{\prime}(s) s}
$$

and using (0.0.2) we have the desired inequalities.
Now ($\widetilde{g} 1$) follows by property (g1) applied to g^{-1}, and ($\widetilde{g} 2$) by property (g3). ($\widetilde{G} 1$) follows by $\widetilde{g} 1$ and $\widetilde{g} 2$.
By Young's inequality we have that $a b \leq G(a)+\widetilde{G}(b)$ and then, for $0<\varepsilon^{\prime}<1$ such that $\varepsilon=\left(1+g_{0}\right) \varepsilon^{\prime(1+\delta)}$,

$$
\varepsilon^{\prime} a \frac{b}{\varepsilon^{\prime}} \leq G\left(\varepsilon^{\prime} a\right)+\widetilde{G}\left(\frac{b}{\varepsilon^{\prime}}\right) \leq \varepsilon G(a)+C(\varepsilon) \widetilde{G}(b)
$$

In the last inequality we have used $(G 1)$ and $(\widetilde{G} 1)$. Thus $(\widetilde{g} 3)$ follows.
As g is strictly increasing we have that $\widetilde{G}(g(t))+G(t)=\operatorname{tg}(t)$ (see equation (5), Section 8.2 in [$\mathbf{1}]$) and applying (g3), we get

$$
\widetilde{G}(g(t))=\operatorname{tg}(t)-G(t) \leq g_{0} G(t)
$$

Thus, ($\widetilde{g} 4)$ follows.

In order to prove the existence of minimizers we will use some compact embedding results (all these results are included in [1]). To this end, we have to define some Orlicz and Orlicz-Sobolev spaces. We recall that the functional

$$
\|u\|_{G}=\inf \left\{k>0: \int_{\Omega} G\left(\frac{|u(x)|}{k}\right) d x \leq 1\right\}
$$

is a norm in the Orlicz space $L^{G}(\Omega)$ which is the linear hull of the Orlicz class

$$
K_{G}(\Omega)=\left\{u \text { measurable : } \int_{\Omega} G(|u|) d x<\infty\right\} .
$$

Observe that this set is convex, since G is also convex (property (g2)). The OrliczSobolev space $W^{1, G}(\Omega)$ consists of those functions in $L^{G}(\Omega)$ whose distributional derivatives ∇u also belong to $L^{G}(\Omega)$. We have that $\|u\|_{W^{1, G}}=\max \left\{\|u\|_{G},\|\nabla u\|_{G}\right\}$ is a norm for this space.

Lemma 1.1.5. There exists a constant $C=C\left(g_{0}, \delta\right)$ such that,

$$
\|u\|_{G} \leq C \max \left\{\left(\int_{\Omega} G(|u|) d x\right)^{1 /(\delta+1)},\left(\int_{\Omega} G(|u|) d x\right)^{1 /\left(g_{0}+1\right)}\right\}
$$

Proof.
If $\int_{\Omega} G(|u|) d x=0$ then $u=0$ a.e and the result follows. If $\int_{\Omega} G(|u|) d x \neq 0$, take $k=\max \left\{\left(2\left(1+g_{0}\right) \int_{\Omega} G(|u|) d x\right)^{1 /(\delta+1)},\left(2\left(1+g_{0}\right) \int_{\Omega} G(|u|) d x\right)^{1 /\left(g_{0}+1\right)}\right\}$. By (G1) we have,

$$
\int_{\Omega} G\left(\frac{|u|}{k}\right) d x \leq\left(1+g_{0}\right) \max \left\{\frac{1}{k^{\delta+1}}, \frac{1}{k^{g_{0}+1}}\right\} \int_{\Omega} G(|u|) d x \leq 1
$$

therefore $\|u\|_{G} \leq k$ and the result follows.
Definition 1.1.6. A function G is said to satisfy a global Δ_{2} - condition if there exists a positive constant k such that for every $t \geq 0$,

$$
G(2 t) \leq k G(t)
$$

Similarly G is said to satisfy a $\Delta_{2}-$ condition near infinity if there exists $t_{0}>0$ such that

$$
G(2 t) \leq k G(t)
$$

holds for all $t \geq t_{0}$.
Definition 1.1.7. We call a pair $(G, \Omega) \Delta$-regular if either,

1. G satisfies a global $\Delta_{2}-$ condition, or
2. G satisfies a $\Delta_{2}-$ condition near infinity and Ω has finite volume.

TheOrem 1.1.8. $L^{\widetilde{G}}(\Omega)$ is the dual of $L^{G}(\Omega)$. Moreover, $L^{G}(\Omega)$ and $W^{1, G}(\Omega)$ are reflexive.

Proof. As G satisfies property $(G 1)$ and \widetilde{G} property $(\widetilde{G} 1)$, we have that both pairs (G, Ω) and (\widetilde{G}, Ω) are Δ - regular. Therefore we are in the hypothesis of Theorem 8.19 and Theorem 8.28 in [1], and the result follows.

Theorem 1.1.9. $L^{G}(\Omega) \hookrightarrow L^{1+\delta}(\Omega)$ continuously.
Proof. By theorem 8.12 of [$\mathbf{1}]$ we only have to prove that G dominates $t^{1+\delta}$ near infinity. That is, there exits constants k, t_{0} such that $t^{1+\delta} \leq G(k t) \quad \forall t \geq t_{0}$. But this is true by property (G1). So the result follows.

2. Properties of \mathcal{L} - solutions and subsolutions

In Section 2, we state some real analytic properties for functions with finite $\int_{\Omega} G(|\nabla u|) d x$ like a form of Poincaré inequality, a Cacciopoli type inequality, the Hölder continuity of functions in a kind of Morrey space, properties of weak solutions to $\mathcal{L} u=0$ and a comparison principle for sub and supersolutions. We also prove that if u is a continuous function which is an \mathcal{L} solution in the set $\{u>0\}$ then is a $\mathcal{L}-$ subsolution. At the end of this section we give an explicit family of subsolutions and supersolutions in an annulus. All these properties will be thoroughly used throughout the thesis. Some of them have been proved in $[\mathbf{2 2}]$. We only write down the proof of statements not contained in [22].

The following result is a Poincaré type inequality.
Lemma 1.2.10. If $u \in W^{1,1}(\Omega)$ with $u=0$ on $\partial \Omega$ and $\int_{\Omega} G(|\nabla u|) d x$ is finite, then

$$
\int_{\Omega} G\left(\frac{|u|}{R}\right) d x \leq \int_{\Omega} G(|\nabla u|) d x \quad \text { for } R=\operatorname{diam} \Omega .
$$

Proof. See Lemma 2.2 of [22].

Now we state a generalization of Morrey's Theorem. Let

$$
[u]_{0, \alpha, \Omega}=\sup _{\substack{x, y \in \Omega \\ x \neq y}} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}} .
$$

We have the following result,
Lemma 1.2.11. Let $u \in L^{\infty}(\Omega)$ such that for some $0<\alpha<1$ and $r_{0}>0$,

$$
\int_{B_{r}} G(|\nabla u|) d x \leq C r^{N+\alpha-1} \quad \forall 0<r \leq r_{0}
$$

with $B_{r} \subset \Omega$. Then, $u \in C^{\alpha}(\Omega)$ and there exists a constant $C_{1}=C_{1}\left(C, \alpha, N, g_{0}, G(1)\right)$ such that $[u]_{0, \alpha, \Omega} \leq C_{1}$.

Proof. The proof of this lemma is included in the proof of Theorem 1.7 (pag. 346) in [22].

The next lemma is a Cacciopoli type inequality for subsolutions of $\mathcal{L} v=0$.
Lemma 1.2.12. Let v be a nonnegative weak subsolution of $\mathcal{L} v=0$. That is,

$$
\begin{equation*}
0 \geq \int_{\Omega} g(|\nabla v|) \frac{\nabla v}{|\nabla v|} \nabla \phi d x \quad \forall \phi \in C_{0}^{\infty}(\Omega) \text { such that } \phi \geq 0 . \tag{1.2.13}
\end{equation*}
$$

Then, there exists $C=C\left(N, \delta, g_{0}\right)>0$ such that

$$
\int_{B_{r}} G(|\nabla v|) d x \leq C \int_{B_{\frac{3}{2} r} r} G\left(\frac{|v|}{r}\right) d x
$$

for all $r>0$, such that $B_{\frac{3}{2} r} \subset \Omega$.

Proof. Let $\phi=v \eta^{g_{0}+1}$, where $0 \leq \eta \in C_{0}^{1}\left(B_{\frac{3}{2} r}\right)$, with $|\nabla \eta| \leq \frac{C}{r}, \eta \leq 1$, $\eta \equiv 1$ in B_{r}. Then, $\nabla \phi=\eta^{g_{0}+1} \nabla v+v \nabla \eta\left(g_{0}+1\right) \eta^{g_{0}}$ and replacing in (1.2.13) we have,

$$
0 \geq \int_{B_{\frac{3}{2} r}} g(|\nabla v|)|\nabla v| \eta^{g_{0}+1} d x+\left(g_{0}+1\right) \int_{B_{\frac{3}{2} r} r} g(|\nabla v|) \frac{\nabla v}{|\nabla v|} \nabla \eta v \eta^{g_{0}} d x .
$$

Then,

$$
\int_{B_{\frac{3}{2} r}} g(|\nabla v|)|\nabla v| \eta^{g_{0}+1} d x \leq\left(g_{0}+1\right) \int_{B_{\frac{3}{2} r}} g(|\nabla v|)|\nabla \eta||v| \eta^{g_{0}} d x
$$

By property ($\widetilde{g} 3$) we have,

$$
g(|\nabla v|)|\nabla \eta \| v| \eta^{g_{0}} \leq \varepsilon \widetilde{G}\left(g(|\nabla v|) \eta^{g_{0}}\right)+C(\varepsilon) G(|\nabla \eta||v|) .
$$

Then, by property ($\widetilde{G} 1$) and as $\eta \leq 1$, we have,

$$
\widetilde{G}\left(g(|\nabla v|) \eta^{g_{0}}\right) \leq C \eta^{g_{0}\left(1+\frac{1}{g_{0}}\right)} \widetilde{G}(g(|\nabla v|)) \leq C \eta^{1+g_{0}} G(|\nabla v|),
$$

where the last inequality holds by ($\widetilde{g} 4$). Summing up, and using property (g3), we obtain

$$
\int_{B_{\frac{3}{2} r} r} G(|\nabla v|) \eta^{g_{0}+1} d x \leq C \varepsilon \int_{B_{\frac{3}{2} r} r} G(|\nabla v|) \eta^{g_{0}+1} d x+C(\varepsilon) \int_{B_{\frac{3}{2} r} r} G(|\nabla \eta||v|) d x
$$

and if we take ε small and use the bound for $|\nabla \eta|$ we have,

$$
\int_{B_{\frac{3}{2} r} r} G(|\nabla v|) \eta^{g_{0}+1} d x \leq C \int_{B_{\frac{3}{2} r}} G(|\nabla \eta||v|) d x \leq C \int_{B_{\frac{3}{2} r}} G\left(\frac{|v|}{r}\right) d x
$$

Finally, if we use that $\eta \equiv 1$ in B_{r} the result follows.

The following lemmas are a generalization of the weak Harnack and Harnack inequality, and the proofs are all include in [22],

Lemma 1.2.14. Let $R>0, u \in L^{\infty} \cap W^{1, G}\left(B_{R}\right)$ and such that $\mathcal{L} u \geq 0$ in B_{R}. Set $m=2 N\left(g_{0}+1\right)$. Then for $s>0, \sigma \in(0,1)$, there is a constant C depending on g_{0} and N such that

$$
\sup _{B_{\sigma R}} u^{+} \leq \frac{C}{(1-\sigma)^{m / 2 s}}\left(R^{-N} \int_{B_{R}}\left(u^{+}\right)^{s} d x\right)^{1 / s} .
$$

Lemma 1.2.15. Let $R \leq 1,0 \leq u \in W^{1, G}\left(B_{R}\right)$ and such that $\mathcal{L} u \leq 0$ in B_{R}. Then there exist constants p_{0} and \bar{C} depending on g_{0}, δ and N such that

$$
\inf _{B_{R / 2}} u \geq C\left(R^{-N} \int_{B_{R}}\left(u^{+}\right)^{p_{0}} d x\right)^{1 / p_{0}}
$$

If we choose $s=p_{0}$ we infer the usual Harnack inequality,

Theorem 1.2.16. Let $R \leq 1,0 \leq u \in W^{1, G}\left(B_{R}\right)$ and such that $\mathcal{L} u=0$ in B_{R}. Then there exist a constant C depending on g_{0}, δ and N such that

$$
\sup _{B_{R / 2}} u \leq C \inf _{B_{R / 2}} u .
$$

A consequence of the weak Harnack inequalities is the following strong maximum and minimum principles,

Theorem 1.2.17. Let $u \in W^{1, G}(\Omega)$,

1. if u satisfy $\mathcal{L} u \geq 0$. And if, for some ball $B \subset \subset \Omega$ we have,

$$
\sup _{B} u=\sup _{\Omega} u \geq 0,
$$

or
2. if u satisfy $\mathcal{L} u \leq 0$. And if, for some ball $B \subset \subset \Omega$ we have,

$$
\inf _{B} u=\inf _{\Omega} u \geq 0
$$

then the function u must be constant in Ω. Moreover, if u is continuous this implies that the strong classical maximum and minimum principle hold.

Proof. First, (1) follows as in Theorem 8.19 of [17] by using Lemma 1.2.15. Finally (2) follow by replacing u by $-u$.

Lemma 1.2.18. Let v be a weak solution of $\mathcal{L} v=0$, that is

$$
\int_{\Omega} g(|\nabla u|) \frac{\nabla v}{|\nabla v|} \nabla \phi d x=0 \quad \forall \phi \in C_{0}^{\infty}(\Omega) .
$$

Then $v \in C^{1, \alpha}(\Omega)$ for some $\alpha=\alpha\left(N, \delta, g_{0}\right)$. Moreover, there exists positive constant $C=C\left(N, \delta, g_{0}\right)$ such that for every ball $B_{r} \subset \Omega$,

$$
\begin{gather*}
\sup _{B_{r / 2}} G(|\nabla v|) \leq \frac{C}{r^{N}} \int_{B_{\frac{2}{3} r}} G(|\nabla v|) d x \tag{1}\\
\sup _{B_{r / 2}}|\nabla v| \leq \frac{C}{r} \sup _{B_{r}}|v|
\end{gather*}
$$

For every $\beta \in(0, N)$, there exists $C=C\left(N, \beta, \delta, g_{0},\|v\|_{L^{\infty}\left(\frac{2}{3} r\right)}\right)>0$ such that,

$$
\begin{equation*}
\int_{B_{r / 2}} G(|\nabla v|) \leq C r^{\beta} \tag{3}
\end{equation*}
$$

If $v=u$ on ∂B_{r}, with $u \in W^{1, G}\left(B_{r}\right)$ then,

$$
\begin{equation*}
\int_{B_{r}} G(|\nabla v|) \leq C \int_{B_{r}}(1+G(|\nabla u|)) . \tag{4}
\end{equation*}
$$

Proof. For the proof of (1) and (4) see Lemma 5.1 of [22] and for the proof of (3) see (5.9) page 346 of [22]. Let us prove (2). By using (1) and then Lemma 1.2.12 we have,

$$
\sup _{B_{r / 2}} G(|\nabla v|) \leq \frac{C}{r^{N}} \int_{B_{\frac{2}{3} r}} G(|\nabla v|) d x \leq \frac{C}{r^{N}} \int_{B_{r}} G\left(\frac{|v|}{r}\right) d x \leq G\left(\frac{C}{r}\|v\|_{L^{\infty}\left(B_{r}\right)}\right)
$$

Then

$$
\left|\nabla v\left(y_{0}\right)\right| \leq \frac{C}{r}\|v\|_{L^{\infty}\left(B_{r}\right)} \quad \forall y_{0} \in B_{r / 2}
$$

and the result follows.
We finally state the regularity result of [22] for weak solutions of $\mathcal{L} u=0$.
Theorem 1.2.19. Any $u \in W^{1, G}(\Omega)$ solution of $\mathcal{L} u=0$ in Ω, is in $C^{1, \beta}(\Omega)$ for some positive β depending on δ, g_{0}, N and

$$
\|u\|_{1, \beta ; \Omega^{\prime}} \leq C\left(\delta, g_{0}, N, \operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right),\|u\|_{L^{\infty}(\Omega)}\right)
$$

for open $\Omega^{\prime} \subset \subset \Omega$.
Theorem 1.2.20. Let Ω a bounded domain with $C^{1, \alpha}$ boundary, $\phi \in C^{1, \alpha}(\partial \Omega)$ with $\|\phi\|_{C^{1, \alpha}} \leq a$. Then any $u \in W^{1, G}(\Omega)$ solution of $\mathcal{L} u=0$ in $\Omega, u=\phi$ on $\partial \Omega$, is in $C^{1, \beta}(\bar{\Omega})$ for some positive β depending on δ, g_{0}, N, α; moreover

$$
\|u\|_{1, \beta, \bar{\Omega}} \leq C\left(\delta, g_{0}, N, \Omega, a,\|u\|_{L^{\infty}(\Omega)}\right)
$$

Remark 1.2.21. The results that we mentioned before are proved in [22] for a class of more general operators. We are stating here only the cases that we are going to use. For example, we also have similar results for the operator $Q v(x)=$ $\mathcal{L} v(x)-f(x)$ where $f \geq 0$. In this case, the inequality in Theorem 1.2.16 holds with the following version,

$$
\sup _{B_{R / 2}} u \leq C\left(\inf _{B_{R / 2}}+\|f\|_{\infty}\right)
$$

with $C=C\left(N, \delta, g_{0}\right)$, and Theorem 1.2.19 also holds, but with a constant $C=$ $C\left(N, \delta, g_{0}, g(1),\|f\|_{\infty}, \operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right)\right)$.

Now, we will give some properties of subsolutions and solutions of

$$
\begin{equation*}
\mathcal{L} v=\operatorname{div}(A(\nabla v))=0 \tag{1.2.22}
\end{equation*}
$$

where $A(p)=g(|p|) \frac{p}{|p|}$. First, let us observe that if $a_{i j}(p)=\frac{\partial A_{i}}{\partial p_{j}}$ then,

$$
\begin{equation*}
a_{i j}=\left(g^{\prime}(|p|)-\frac{g(|p|)}{|p|}\right) \frac{p_{i} p_{j}}{|p|^{2}}+\frac{g(|p|)}{|p|} \delta_{i j} . \tag{1.2.23}
\end{equation*}
$$

Then, for $\xi \in \mathbb{R}^{N}$ we have,

$$
a_{i j} \xi_{i} \xi_{j}=\left(g^{\prime}(|p|)-\frac{g(|p|)}{|p|}\right) \frac{(p, \xi)^{2}}{|p|^{2}}+\frac{g(|p|)}{|p|}|\xi|^{2}
$$

and using (0.0.2), we get

$$
\begin{equation*}
\min \{\delta, 1\} \frac{g(|p|)}{|p|}|\xi|^{2} \leq a_{i j} \xi_{i} \xi_{j} \leq \max \left\{g_{0}, 1\right\} \frac{g(|p|)}{|p|}|\xi|^{2} \tag{1.2.24}
\end{equation*}
$$

which means that the equation $\mathcal{L} v=0$ is uniformly elliptic for $\frac{g(|p|)}{|p|}$ bounded and bounded away from zero.

Remark 1.2.25. Observe that in any ring $\mathcal{R}=\{c \leq|p| \leq C\}, A(p)$ satisfies the natural conditions of Ladyzhenskaya and Ural'tseva and therefore in any open set contained in $\{C \geq|\nabla u| \geq c\}, u \in W^{2,1}(U)$ (see Chapter 4 in [18]). Then as $a_{i j}$ is in $L^{\infty}(\mathcal{R})$, we can differentiate equation (1.2.22), and we obtain by (1.2.23) that u satisfies a linear nondivergence uniformly elliptic equation, $\mathcal{T} u=0$ in U, where

$$
\begin{gather*}
\mathcal{T} v=b_{i j}(\nabla u) D_{i j} v=0 \tag{1.2.26}\\
b_{i j}(\nabla u)=\delta_{i j}+\left(\frac{g^{\prime}(|\nabla u|)|\nabla u|}{g(|\nabla u|)}-1\right) \frac{D_{i} u D_{j} u}{|\nabla u|^{2}}, \tag{1.2.27}
\end{gather*}
$$

and by (1.2.24) we have that the matrix $b_{i j}(\nabla u)$ is β-elliptic, with $\beta=\max \left\{\max \left\{g_{0}, 1\right\} \max \{1,1 / \delta\}\right\}$.

Lemma 1.2.28. Let u by a solution of (1.2.22) in an open set U, and such that $c \leq|\nabla u| \leq C$. Then, for any unit vector e the function $w=\frac{\partial u}{\partial e}$ satisfies the uniformly elliptic equation $D_{i}\left(a_{i j}(\nabla u) D_{j} w\right)=0$

Proof. By Remark 1.2.25 and Theorem 1.2.19, $u \in W^{2,1}(U) \cap C^{1, \alpha}(U)$ and then the result follows as in Section 13.1 in $[\mathbf{1 7}]$.

Theorem 1.2.29. Let w be a solution to the following uniformly elliptic operator

$$
c_{i j} D_{i j} w=0 \quad \text { in } \Omega
$$

where the coefficients $c_{i j} \in C^{0}(\Omega),\left|c_{i j}\right| \leq \Lambda$, and with ellipticity constant β. Then,

1. For any $0<\alpha<1$ and $\Omega^{\prime} \subset \Omega$ there exists a constant

$$
C=C\left(\beta, \alpha, N,\|u\|_{L^{\infty}(\Omega)}, \operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right)\right) \text { such that }
$$

$$
\|w\|_{C^{1, \alpha}\left(\Omega^{\prime}\right)} \leq C
$$

2. For any $q>1$ there exists a constant $C=C\left(\beta, N,\|u\|_{L^{\infty}(\Omega)}\right)$ such that,

$$
\|w\|_{W^{2, q}(\Omega)} \leq C .
$$

Proof. See [17].
Remark 1.2.30. Suppose that $\mathcal{L} u=0$ and $|\nabla u|>c$ in an open set U. We have by Theorem 1.2.19 that $u \in C^{1, \beta}(U)$ and by Remark 1.2.30 we also have that $\mathcal{T} u=0$. As $g \in C^{1}$ we have that the coefficients $c_{i j}=b_{i j}(\nabla u)$ are continuous. So, we can apply Theorem 1.2.29 to a solution of $\mathcal{T} w=0$ in U.

Lemma 1.2.31. Suppose that conditions (0.0.2) are satisfied and suppose that there exist a constant c such that

$$
\begin{equation*}
F(t) \geq c \quad \forall t>0 \tag{1.2.32}
\end{equation*}
$$

Let u be a bounded weak solution of $\mathcal{L} u=0$ in $B(4 R)$, with

$$
\begin{equation*}
\int_{B(4 R)} F(|\nabla u|)(1+|\nabla u|)^{2} d x<\infty \tag{1.2.33}
\end{equation*}
$$

where $F(t)=g(t) / t$. Then $v=G(|\nabla u|)$ is a weak subsolution of $D_{i}\left(b_{i j}(\nabla u) D_{j} v\right)=0$ in $B_{3 R}$, where $b_{i j}$ is defined in (1.2.27).

Proof. See page 1205 in [21].
Lemma 1.2.34. With the same hypothesis of Lemma 1.2.31, if f is a bounded function, and u is a solution of $\mathcal{L} u=f$ we have that $u \in W^{2,2}(\Omega)$.

Proof. The proof follows as the proof of Lemma 1 in [21] where the authors considered the case for $f=0$. In our case we proceed in a similar way using, as in [21] ideas from [18], Section 4.5; 17, (4.4)..

Now we prove the comparison principle,
Lemma 1.2.35. Let U be an open subset, u a weak subsolution and w a weak supersolution of $\mathcal{L} u=0$ in U. If $w \geq u$ on ∂U then, $w \geq u$ in U. If w is a solution to $\mathcal{L} w=0$ and $w=u$ on ∂U then, w is uniquely determined.

Proof.

$$
\begin{aligned}
0 & \geq \int_{U}\left(g(|\nabla u|) \frac{\nabla u}{|\nabla u|}-g(|\nabla w|) \frac{\nabla w}{|\nabla w|}\right) \cdot \nabla(u-w)^{+} d x \\
& =\int_{U \cap\{u>w\}}\left(g(|\nabla u|) \frac{\nabla u}{|\nabla u|}-g(|\nabla w|) \frac{\nabla w}{|\nabla w|}\right) \cdot \nabla(u-w) d x \\
& =\int_{U \cap\{u>w\}} \int_{0}^{1} a_{i j}(\nabla u+(1-t)(\nabla w-\nabla u))\left(u_{x_{i}}-w_{x_{i}}\right)\left(u_{x_{j}}-w_{x_{j}}\right) d t d x
\end{aligned}
$$

And using (1.2.24) we have that the right hand side is grater than or equal to

$$
C \int_{U \cap\{u>w\}} \int_{0}^{1} F(|\nabla u+(1-t)(\nabla w-\nabla u)|)|\nabla w-\nabla u|^{2} d t d x,
$$

where $F(t)=\frac{g(t)}{t}$. Now, we take the following subsets of U

$$
S_{1}=\{x \in U:|\nabla u-\nabla w| \leq 2|\nabla u|\}, S_{2}=\{x \in U:|\nabla u-\nabla w|>2|\nabla u|\}
$$

Then $S_{1} \cup S_{2}=U$ and

$$
\begin{array}{ll}
\frac{1}{2}|\nabla u| \leq|\nabla u+(1-t)(\nabla w-\nabla u)| \leq 3|\nabla u| & \text { in } S_{1} \text { for } t \geq \frac{3}{4} \\
\frac{1}{4}|\nabla u-\nabla w| \leq|\nabla u+(1-t)(\nabla w-\nabla u)| \leq 3|\nabla u-\nabla w| & \text { in } S_{2} \text { for } t \leq \frac{1}{4} . \tag{1.2.37}
\end{array}
$$

In S_{1}, and for $t \geq 3 / 4$ we have using (1.2.36), that

$$
\begin{aligned}
F(|\nabla u+(1-t)(\nabla w-\nabla u)|) & =\frac{g(|\nabla u+(1-t)(\nabla w-\nabla u)|)}{|\nabla u+(1-t)(\nabla w-\nabla u)|} \\
& \geq \frac{g\left(\frac{1}{2}|\nabla u|\right)}{3|\nabla u|} \geq \frac{1}{2^{g_{0}} 3} F(|\nabla u|)
\end{aligned}
$$

where in the last inequality we have used (g1).
In S_{2}, and for $t \leq 1 / 4$ we have using (g3) and then (1.2.37) that,

$$
\begin{aligned}
& F(|\nabla u+(1-t)(\nabla w-\nabla u)|)|\nabla u-\nabla w|^{2} \\
& \geq \frac{G(|\nabla u+(1-t)(\nabla w-\nabla u)|)}{|\nabla u+(1-t)(\nabla w-\nabla u)|^{2}}|\nabla u-\nabla w|^{2} \\
& \geq \frac{G\left(\frac{1}{4}|\nabla u-\nabla w|\right)}{9|\nabla u-\nabla w|^{2}}|\nabla u-\nabla w|^{2} \geq \frac{G(|\nabla u-\nabla w|)}{4^{g_{0}+1} 9\left(1+g_{0}\right)}
\end{aligned}
$$

where in the last inequality we have used (G1).
Therefore, we have that

$$
0 \geq C\left(\int_{S_{1}} F(|\nabla u|)\left|\nabla(u-w)^{+}\right|^{2} d x+\int_{S_{2}} G\left(\left|\nabla(u-w)^{+}\right|\right) d x\right) .
$$

Hence $\nabla(u-w)^{+}=0$ in S_{2} and $\nabla(u-w)^{+}=0$, or $F(|\nabla u|)=0$ in S_{1} in which case $\nabla u=0$ and, by the definition of S_{1}, this implies that $\nabla(u-w)=0$ in S_{1}. Therefore, $\nabla(u-w)^{+}=0$ in U, then $(u-w)^{+}=0$, which implies $u \leq w$.

The following inequality will be a key tool in the proof of the Hölder continuity of minimizers of the problem in Chapter 2. Also, it will be used to prove that in the optimization problem, we don't need to pass to the limit with the penalization parameter. As an observation, we mention that the following result is a generalization of well known integral inequalities for the p - Laplacian (see, for example, pag. 4 in $[\mathbf{1 0}]$). Here the difference is that we obtain a unique inequality for any δ and g_{0}, (for the p-Laplacian the inequalities were separated in two cases $p \geq 2$ and $1<p<2$).

Theorem 1.2.38. Let $u \in W^{1, G}(\Omega), B_{r} \subset \subset \Omega$ and v be a solution of

$$
\mathcal{L} v=0 \quad \text { in } B_{r}, \quad v-u \in W_{0}^{1, G}\left(B_{r}\right) .
$$

then
$\int_{B_{r}}(G(|\nabla u|)-G(|\nabla v|)) d x \geq C\left(\int_{A_{2}} G(|\nabla u-\nabla v|) d x+\int_{A_{1}} F(|\nabla u|)|\nabla u-\nabla v|^{2} d x\right)$,
where $F(t)=g(t) / t$,
$A_{1}=\left\{x \in B_{r}:|\nabla u-\nabla v| \leq 2|\nabla u|\right\} \quad$ and $\quad A_{2}=\left\{x \in B_{r}:|\nabla u-\nabla v|>2|\nabla u|\right\}$ and $C=C\left(g_{0}, \delta\right)$.

Proof. Let $u^{s}=s u+(1-s) v$. Using the integral form of the mean value theorem and the fact that v is an \mathcal{L} - solution, we have,

$$
\begin{aligned}
\mathcal{I}: & =\int_{B_{r}}(G(|\nabla u|)-G(|\nabla v|)) d x=\int_{0}^{1} \int_{B_{r}} g\left(\left|\nabla u^{s}\right|\right) \frac{\nabla u^{s}}{\left|\nabla u^{s}\right|} \cdot \nabla(u-v) d x d s \\
& =\int_{0}^{1} \frac{1}{s} \int_{B_{r}}\left(g\left(\left|\nabla u^{s}\right|\right) \frac{\nabla u^{s}}{\left|\nabla u^{s}\right|}-g(|\nabla v|) \frac{\nabla v}{|\nabla v|}\right) \cdot \nabla\left(u^{s}-v\right) d x d s \\
& =\int_{0}^{1} \frac{1}{s} \int_{B_{r}} \int_{0}^{1} a_{i j}\left(\nabla u^{s}+(1-t)\left(\nabla v-\nabla u^{s}\right)\right)\left(u_{x_{i}}^{s}-v_{x_{i}}\right)\left(u_{x_{j}}^{s}-v_{x_{j}}\right) d t d x d s .
\end{aligned}
$$

And, by (1.2.24) we have that the right hand side is grater than or equal to

$$
C \int_{0}^{1} \frac{1}{s} \int_{B_{r}} \int_{0}^{1} F\left(\left|\nabla u^{s}+(1-t)\left(\nabla v-\nabla u^{s}\right)\right|\right)\left|\nabla v-\nabla u^{s}\right|^{2} d t d x d s
$$

where F was defined in Lemma 1.2.35 and $C=C(\delta)$.
Now, we take the following subsets of B_{r}

$$
S_{1}=\left\{x \in B_{r}:\left|\nabla u^{s}-\nabla v\right| \leq 2\left|\nabla u^{s}\right|\right\}, \quad S_{2}=\left\{x \in B_{r}:\left|\nabla u^{s}-\nabla v\right|>2\left|\nabla u^{s}\right|\right\}
$$

Then $S_{1} \cup S_{2}=B_{r}$ and

$$
\begin{array}{ll}
\frac{1}{2}\left|\nabla u^{s}\right| \leq\left|\nabla u^{s}+(1-t)\left(\nabla v-\nabla u^{s}\right)\right| \leq 3\left|\nabla u^{s}\right| & \text { on } S_{1} \text { for } t \geq \frac{3}{4} \\
\frac{1}{4}\left|\nabla u^{s}-\nabla v\right| \leq\left|\nabla u^{s}+(1-t)\left(\nabla v-\nabla u^{s}\right)\right| \leq 3\left|\nabla u^{s}-\nabla v\right| & \text { on } S_{2} \text { for } t \leq \frac{1}{4} .
\end{array}
$$

Proceeding as in Lemma 1.2.35, we get

$$
F\left(\left|\nabla u^{s}+(1-t)\left(\nabla v-\nabla u^{s}\right)\right|\right) \geq \frac{1}{2^{g_{0}} 3} F\left(\left|\nabla u^{s}\right|\right)
$$

in S_{1} and

$$
F\left(\left|\nabla u^{s}+(1-t)\left(\nabla v-\nabla u^{s}\right)\right|\right)\left|\nabla u^{s}-\nabla v\right|^{2} \geq \frac{G\left(\left|\nabla u^{s}-\nabla v\right|\right)}{4^{g_{0}+1} 9\left(1+g_{0}\right)}
$$

in S_{2}.
Therefore, we have that

$$
\mathcal{I} \geq C\left(\int_{0}^{1} \frac{1}{s} \int_{S_{1}} F\left(\left|\nabla u^{s}\right|\right)\left|\nabla v-\nabla u^{s}\right|^{2} d x d s+\int_{0}^{1} \frac{1}{s} \int_{S_{2}} G\left(\left|\nabla u^{s}-\nabla v\right|\right) d x d s\right)
$$

Now, let

$$
A_{1}=\left\{x \in B_{r}:|\nabla u-\nabla v| \leq 2|\nabla u|\right\}, \quad A_{2}=\left\{x \in B_{r}:|\nabla u-\nabla v|>2|\nabla u|\right\},
$$

then $B_{r}=A_{1} \cup A_{2}$, and

$$
\begin{array}{ll}
\frac{1}{2}|\nabla u| \leq\left|\nabla u^{s}\right| \leq 3|\nabla u| & \text { on } A_{1} \text { for } s \geq \frac{3}{4} \\
\frac{1}{4}|\nabla u-\nabla v| \leq\left|\nabla u^{s}\right| \leq 3|\nabla u-\nabla v| & \text { on } A_{2} \text { for } s \leq \frac{1}{4}
\end{array}
$$

Therefore

$$
\begin{aligned}
\mathcal{I} \geq & C\left(\int_{0}^{1 / 4} \frac{1}{s} \int_{S_{1} \cap A_{2}} F\left(\left|\nabla u^{s}\right|\right)\left|\nabla v-\nabla u^{s}\right|^{2} d x d s\right. \\
& +\int_{3 / 4}^{1} \frac{1}{s} \int_{S_{1} \cap A_{1}} F\left(\left|\nabla u^{s}\right|\right)\left|\nabla v-\nabla u^{s}\right|^{2} d x d s \\
& +\int_{0}^{1 / 4} \frac{1}{s} \int_{S_{2} \cap A_{2}} G\left(\left|\nabla u^{s}-\nabla v\right|\right) d x d s \\
& \left.+\int_{3 / 4}^{1} \frac{1}{s} \int_{S_{2} \cap A_{1}} G\left(\left|\nabla u^{s}-\nabla v\right|\right) d x d s\right)=I+I I+I I I+I V
\end{aligned}
$$

Let us estimate these four terms,
In $S_{1} \cap A_{2}$, for $s \leq 1 / 4$ we have by (1.2.42) and (g1), that

$$
F\left(\left|\nabla u^{s}\right|\right) \geq \frac{1}{4^{g_{0}} 3} F(|\nabla u-\nabla v|) .
$$

Therefore,

$$
\begin{aligned}
I & \geq C \int_{0}^{1 / 4} \frac{1}{s} \int_{S_{1} \cap A_{2}} F(|\nabla u-\nabla v|)\left|\nabla v-\nabla u^{s}\right|^{2} d x d s \\
& =C \int_{0}^{1 / 4} s \int_{S_{1} \cap A_{2}} F(|\nabla u-\nabla v|)|\nabla v-\nabla u|^{2} d x d s \\
& \geq C \int_{0}^{1 / 4} s \int_{S_{1} \cap A_{2}} G(|\nabla u-\nabla v|) d x d s
\end{aligned}
$$

where in the last inequality we are using (g3).
In $S_{1} \cap A_{1}$, for $s \geq 3 / 4$ we have by (1.2.41) and (g1), that

$$
F\left(\left|\nabla u^{s}\right|\right) \geq \frac{1}{2^{g_{0}} 3} F(|\nabla u|) .
$$

Therefore,

$$
\begin{aligned}
I I & \geq C \int_{3 / 4}^{1} s \int_{S_{1} \cap A_{1}} F(|\nabla u|)|\nabla v-\nabla u|^{2} d x d s \\
& \geq C \int_{3 / 4}^{1} \int_{S_{1} \cap A_{1}} F(|\nabla u|)|\nabla v-\nabla u|^{2} d x d s
\end{aligned}
$$

In $S_{2} \cap A_{2}$, for $s \leq 1 / 4$ we have by definition of S_{2}, by (1.2.42) and (G1), that

$$
G\left(\left|\nabla u^{s}-\nabla v\right|\right) \geq \frac{1}{2^{g_{0}+1}\left(g_{0}+1\right)} G(|\nabla u-\nabla v|)
$$

therefore

$$
\begin{aligned}
I I I & \geq C \int_{0}^{1 / 4} \frac{1}{s} \int_{S_{2} \cap A_{2}} G(|\nabla u-\nabla v|) d x d s \\
& \geq C \int_{0}^{1 / 4} s \int_{S_{2} \cap A_{2}} G(|\nabla u-\nabla v|) d x d s
\end{aligned}
$$

In $S_{2} \cap A_{1}$, for $s \geq 3 / 4$ we have, by definition of S_{2} and by (1.2.41)

$$
\begin{equation*}
\left|\nabla u^{s}-\nabla v\right|>2\left|\nabla u^{s}\right| \geq|\nabla u| \tag{1.2.43}
\end{equation*}
$$

By (g3), using (1.2.43) and the definition of A_{1} we have,

$$
\begin{aligned}
G\left(\left|\nabla u^{s}-\nabla v\right|\right) & \geq \frac{1}{g_{0}+1} g\left(\left|\nabla u^{s}-\nabla v\right|\right)\left|\nabla u^{s}-\nabla v\right| \geq \frac{1}{g_{0}+1} g(|\nabla u|)\left|\nabla u^{s}-\nabla v\right| \\
& =\frac{1}{g_{0}+1} F(|\nabla u|) s|\nabla u-\nabla v||\nabla u| \geq \frac{s}{2\left(g_{0}+1\right)} F(|\nabla u|)|\nabla u-\nabla v|^{2} .
\end{aligned}
$$

Therefore,

$$
I V \geq C \int_{3 / 4}^{1} \int_{S_{2} \cap A_{1}} F(|\nabla u|)|\nabla u-\nabla v|^{2} d x d s
$$

If we sum $I+I I I$, we obtain

$$
\begin{aligned}
I+I I I & \geq \int_{0}^{1 / 4} C s\left(\int_{S_{1} \cap A_{2}} G(|\nabla u-\nabla v|) d x+\int_{S_{2} \cap A_{2}} G(|\nabla u-\nabla v|) d x d s\right) \\
& =C \int_{0}^{1 / 4} s \int_{A_{2}} G(|\nabla u-\nabla v|) d x d s=C \int_{A_{2}} G(|\nabla u-\nabla v|) d x
\end{aligned}
$$

and if we sum $I I+I V$, we obtain

$$
\begin{aligned}
I I+I V \geq & C \int_{1}^{3 / 4}\left(\int_{S_{1} \cap A_{1}} F(|\nabla u|)|\nabla u-\nabla v|^{2} d x\right. \\
& \left.+\int_{S_{2} \cap A_{1}} F(|\nabla u|)|\nabla u-\nabla v|^{2} d x\right) d s=C \int_{A_{1}} F(|\nabla u|)|\nabla u-\nabla v|^{2} d x
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\mathcal{I} \geq C\left(\int_{A_{2}} G(|\nabla u-\nabla v|) d x+\int_{A_{1}} F(|\nabla u|)|\nabla u-\nabla v|^{2} d x\right) \tag{1.2.44}
\end{equation*}
$$

where $C=C\left(g_{0}, \delta\right)$.

Lemma 1.2.45. Let u be a continuous and nonnegative function in \mathbb{R}^{N}, such that $\mathcal{L} u=0$ in $\{u>0\}$. Then u is in $W_{\text {loc }}^{1, G}(\Omega)$ and $\Lambda:=\mathcal{L} u$ is a nonnegative Radon measure with support in $\Omega \cap \partial\{u>0\}$ (in particular, u is an $\mathcal{L}-$ subsolution in Ω).

Proof. Since $\mathcal{L} u=0$ in $\Omega \cap\{u>0\}$, then u is in $C^{1, \alpha}$ in $\Omega \cap\{u>0\}$. For $s>0$, take $v=(u-s)^{+}$. Let $\eta \in C_{0}^{\infty}(\Omega)$ with $0 \leq \eta \leq 1$. We have,

$$
\begin{aligned}
0 & =\int_{\Omega} \frac{g(|\nabla u|)}{|\nabla u|} \nabla u \nabla\left(\eta^{g_{0}+1} v\right) d x \\
& =\int_{\Omega \cap\{u>s\}} \eta^{g_{0}+1} g(|\nabla u|)|\nabla u|+\left(g_{0}+1\right) \int_{\Omega} \eta^{g_{0}} v \frac{g(|\nabla u|)}{|\nabla u|} \nabla u \nabla \eta d x .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\int_{\Omega \cap\{u>s\}} \eta^{g_{0}+1} g(|\nabla u|)|\nabla u| d x \leq\left(g_{0}+1\right) \int_{\Omega \cap\{u>s\}} g(|\nabla u|) v|\eta|^{g_{0}}|\nabla \eta| d x . \tag{1.2.46}
\end{equation*}
$$

By $(\widetilde{g} 3),(\widetilde{G} 1)$ and ($\widetilde{g} 4)$ we obtain,

$$
\begin{aligned}
g(|\nabla u|)|\eta|^{g_{0}}|v||\nabla \eta| & \leq \varepsilon \widetilde{G}\left(g(|\nabla u|)|\eta|^{g_{0}}\right)+C(\varepsilon) G(|v||\nabla \eta|) \\
& \leq C \varepsilon \eta^{g_{0}+1} \widetilde{G}(g(|\nabla u|))+C(\varepsilon) G(|v||\nabla \eta|) \\
& \leq C \varepsilon G(|\nabla u|) \eta^{g_{0}+1}+C(\varepsilon) G(|v||\nabla \eta|) .
\end{aligned}
$$

Then, using ($g 3$), (1.2.46) and choosing ε small enough, we have that

$$
\int_{\Omega \cap\{u>s\}} \eta^{g_{0}+1} G(|\nabla u|) d x \leq C \int_{\Omega \cap\{u>s\}} G(|v||\nabla \eta|) d x \leq C \int_{\Omega} G(|u||\nabla \eta|) d x
$$

Then, letting $s \rightarrow 0$ yields the first assertion.
To prove the second part, take $\xi \in C_{0}^{\infty}(\Omega)$ nonnegative, $\varepsilon>0$ and $v=\max \left(\min \left(1,2-\frac{u}{\varepsilon}\right), 0\right)$. As $\mathcal{L} u=0$ in $\{u>0\}$ and using that $\operatorname{supp}(1-v) \subset$ $\{u>\varepsilon\}$, we have that,
$\int_{\Omega} \frac{g(|\nabla u|)}{|\nabla u|} \nabla u \nabla \xi d x$

$$
\begin{aligned}
& =\int_{\Omega} \frac{g(|\nabla u|)}{|\nabla u|} \nabla u \nabla(\xi(1-v)) d x+\int_{\Omega} \frac{g(|\nabla u|)}{|\nabla u|} \nabla u \nabla(\xi v) d x \\
& =\int_{\Omega} \frac{g(|\nabla u|)}{|\nabla u|} \nabla u \nabla(\xi v) d x=\int_{\Omega \cap\{0<u<2 \varepsilon\}} \frac{g(|\nabla u|)}{|\nabla u|} \nabla u \nabla(\xi v) d x \\
& =\int_{\Omega \cap\{\varepsilon<u<2 \varepsilon\}} \frac{g(|\nabla u|)}{|\nabla u|} \nabla u \nabla(\xi v) d x+\int_{\Omega \cap\{0<u<\varepsilon\}} \frac{g(|\nabla u|)}{|\nabla u|} \nabla u \nabla \xi d x \\
& \leq 2 \int_{\Omega \cap\{\varepsilon<u<2 \varepsilon\}} g(|\nabla u|)|\nabla \xi| d x+\int_{\Omega \cap\{0<u<\varepsilon\}} g(|\nabla u|)|\nabla \xi| d x \\
& \leq 2 \int_{\Omega \cap\{0<u<2 \varepsilon\}} g(|\nabla u|)|\nabla \xi| d x,
\end{aligned}
$$

which tends to zero when $\varepsilon \rightarrow 0$ yielding the desired result.
In several points on this thesis we will need an explicit family of subsolutions and supersolutions in an annulus. We state here the required lemma.

LEMMA 1.2.47. Let $w_{\mu}=\varepsilon e^{-\mu|x|^{2}}$, for $\varepsilon>0$ and $r_{1}>r_{2}>0$ then there exists $\mu>0$ such that

$$
\mathcal{L} w_{\mu}>0 \text { in } B_{r_{1}} \backslash B_{r_{2}}
$$

and μ depends only on r_{2}, g_{0}, δ and N.
Proof. First note that

$$
\mathcal{L} w=\frac{g(|\nabla w|)}{|\nabla w|^{3}}\left\{\left(\frac{g^{\prime}(|\nabla w|)}{g(|\nabla w|)}|\nabla w|-1\right) \sum_{i, j} w_{x_{i}} w_{x_{j}} w_{x_{i} x_{j}}+\triangle w|\nabla w|^{2}\right\} .
$$

Computing, we have

$$
\begin{equation*}
w_{x_{i}}=-2 \mu \varepsilon x_{i}, e^{-\mu|x|^{2}}, w_{x_{i} x_{j}}=\varepsilon\left(4 \mu^{2} x_{i} x_{j}-2 \mu \delta_{i j}\right) e^{-\mu|x|^{2}},|\nabla w|=2 \varepsilon \mu|x| e^{-\mu|x|^{2}} \tag{1.2.48}
\end{equation*}
$$

therefore using (1.2.48) and (0.0.2) we obtain,

$$
\begin{array}{rl}
e^{3 \mu|x|^{2}} & \mathcal{L} w \\
= & \varepsilon^{3} \frac{g(|\nabla w|)}{|\nabla w|^{3}}\left\{\left(\frac{g^{\prime}(|\nabla w|)}{g(|\nabla w|)}|\nabla w|-1\right)\left(16 \mu^{4}|x|^{4}-8 \mu^{3}|x|^{2}\right)\right. \\
& \left.+\left(4 \mu^{2}|x|^{2}-2 \mu N\right) 4 \mu^{2}|x|^{2}\right\} \\
= & \varepsilon^{3} \frac{g(|\nabla w|)}{|\nabla w|^{3}} 4 \mu^{3}|x|^{2}\left\{\left(\frac{g^{\prime}(|\nabla w|)}{g(|\nabla w|)}|\nabla w|-1\right)\left(4 \mu|x|^{2}-2\right)+\left(4 \mu|x|^{2}-2 N\right)\right\} \\
= & \varepsilon^{3} \frac{g(|\nabla w|)}{|\nabla w|^{3}} 4 \mu^{3}|x|^{2}\left\{\left(\frac{g^{\prime}(|\nabla w|)}{g(|\nabla w|)}|\nabla w|\right) 4 \mu|x|^{2}-\left(\frac{g^{\prime}(|\nabla w|)}{g(|\nabla w|)}|\nabla w|-1\right) 2-2 N\right\} \\
\geq & \varepsilon^{3} \frac{g(|\nabla w|)}{|\nabla w|^{3}} 4 \mu^{3}|x|^{2}\left(4 \mu|x|^{2} \delta-K\right) \geq \varepsilon^{3} \frac{g(|\nabla w|)}{|\nabla w|^{3}} 4 \mu^{3} r_{2}^{2}\left(4 \mu r_{2}^{2} \delta-K\right)
\end{array}
$$

where $K=2 N$ if $g_{0}<1$ and $K=2\left(g_{0}-1\right)+2 N$ if $g_{0}>1$. Therefore if μ is big enough, depending only on δ, g_{0}, r_{2} and N we have $\mathcal{L} w>0$.

3. Hausdorff measure and Hausdorff distance

Definition 1.3.49. For $A \subset \mathbb{R}^{N}, k>0$ and $\alpha>0$, let

$$
\mathcal{H}_{\alpha}^{k}(A)=\omega_{k} 2^{-k} \inf \left\{\sum_{j=1}^{\infty}\left(\operatorname{diam} S_{j}\right)^{k}: A \subset \bigcup_{j=1}^{\infty} S_{j}, \operatorname{diam} S_{j}<\alpha\right\},
$$

where ω_{k} is a positive constant, such that, when $k \in \mathbb{N}$ is the volume of the unit ball in \mathbb{R}^{k}.

As $\mathcal{H}_{\alpha}^{k}(A)$ increases, when α decrease, the following limit exists and then we define the k dimensional Hausdorff measure, by

$$
\mathcal{H}^{k}(A)=\lim _{\alpha \rightarrow 0} \mathcal{H}_{\alpha}^{k}(A)=\sup _{\alpha>0} \mathcal{H}_{\alpha}^{k}(A)
$$

Remark 1.3.50. If $k \in \mathbb{N}, k \leq n, \mathcal{H}^{k}(E)$ coincides with the notion of k - dimensional area in \mathbb{R}^{N}, under suitable hypotheses on E.

Definition 1.3.51. We define the Hausdorff distance $d(A, B)$ between two sets $A, B \subset \mathbb{R}^{N}$ by,

$$
d(A, B)=\inf \left\{\varepsilon>0: A \subset B^{\varepsilon} \text { and } B \subset A^{\varepsilon}\right\}
$$

where we denote for a set $D \subset \mathbb{R}^{N}$ and $\varepsilon>0$,

$$
D^{\varepsilon}=\left\{x \in \mathbb{R}^{N}: d(x, D)<\varepsilon\right\} .
$$

Theorem 1.3.52. Let $K \subset \mathbb{R}^{N}$ be compact. Then the family of all the compact subsets of K is a complete metric space with the Hausdorff distance.

4. Representation Theorem and sets of locally finite perimeter

4.1. Representation Theorem. The following result is a generalization of Theorem 4.5 in [4], and will be used throughout the thesis. Its proof follows exactly as the one in [4].

Let Λ be an application from $C_{0}^{\infty}(\Omega)$ into \mathbb{R}, that defines a nonnegative Radon measure Λ with support on ∂A, where A is an open subset of Ω. Assume that Λ satisfies that for any domain $D \subset \subset \Omega$ there exist constants c_{0}, C_{0}, depending on D, such that, for every $B_{r} \subset \Omega$, centered on ∂A

$$
\begin{equation*}
c_{0} r^{N-1} \leq \int_{B_{r}} d \Lambda \leq C_{0} r^{N-1} \tag{1.4.53}
\end{equation*}
$$

Then we have,
Theorem 1.4.54 (Representation Theorem). For Λ, A satisfying (1.4.53) we have,

1. $\mathcal{H}^{N-1}(D \cap \partial A)<\infty$ for every $D \subset \subset \Omega$.
2. There exists a Borel function q such that

$$
\Lambda=q \mathcal{H}^{N-1}\lfloor\partial A
$$

i.e

$$
\Lambda(\varphi)=\int_{\Omega \cap \partial A} \varphi q d \mathcal{H}^{N-1} \quad \forall \varphi \in C_{0}^{\infty}(\Omega)
$$

3. For $D \subset \subset \Omega$ there are constants $0<c \leq C<\infty$ depending on c_{0}, C_{0}, Ω, D such that for $B_{r}(x) \subset D$ and $x \in \partial A$,

$$
c \leq q_{u}(x) \leq C, \quad c r^{N-1} \leq \mathcal{H}^{N-1}\left(B_{r}(x) \cap \partial A\right) \leq C r^{N-1}
$$

Proof. It follows as in Theorem 4.5 in [4].
4.2. Sets of locally finite perimeter (see [14], [13]). Let $\Omega \subset \mathbb{R}^{N}$, an open set, and let $f \in L^{1}(\Omega)$. We define,

$$
\int_{\Omega}|\nabla f|=\sup \left\{\int_{\Omega} f \operatorname{div} g d x: g \in C_{0}^{1}\left(\Omega ; \mathbb{R}^{N}\right),|g(x)| \leq 1 \forall x \in \Omega\right\}
$$

If $\int_{\Omega}|\nabla f|<\infty$ we say that f has bounded total variation and we denote,

$$
B V(\Omega)=\left\{f \in L^{1}(\Omega): \int_{\Omega}|\nabla f|<\infty\right\} .
$$

We can observe that if $f \in B V(\Omega)$ the derivatives of f in the distributional sense are Radon measures in Ω.

Definition 1.4.55. Given $E \subset \mathbb{R}^{N}$, a borel set. We define the perimeter of E in the open set Ω as

$$
P(E, \Omega)=\int_{\Omega}|\nabla \chi(E)|,
$$

and we say that E is a set of finite perimeter in Ω if $\chi(E) \in B V(\Omega)$.
If $P(E, \Omega)<\infty$ for all open set Ω we say that E is a set of locally finite perimeter. In this case, we have that $\mu:=-\nabla \chi_{E}$ is a Borel measure, and the total variation $|\mu|$ is a Radon measure. We have that, for any $\varphi \in C_{0}^{1}\left(\Omega ; \mathbb{R}^{N}\right)$

$$
\begin{equation*}
\int_{E} \operatorname{div} \varphi d x=\int_{\Omega} \varphi d \mu \tag{1.4.56}
\end{equation*}
$$

Theorem 1.4.57. Let $E \subset \mathbb{R}^{N}$ be a set of locally finite perimeter. Then,

$$
\int_{A}|\nabla \chi(E)| \leq \mathcal{H}^{N-1}(A \cap \partial E)
$$

for all $A \subset \mathbb{R}^{N}$.
ThEOREM 1.4.58. Let $E \subset \mathbb{R}^{N}$ be a borelian set and suppose that $\mathcal{H}^{N-1}(K \cap$ $\partial E)<+\infty$ for any compact subset $K \subset \mathbb{R}^{N}$. Then E has locally finite perimeter.

Definition 1.4.59. Let E be a Lebesgue measurable set. Given $x \in \partial E$, we say that the unit vector ν is a normal exterior to E at x in the measure theoretical sense:

$$
\begin{equation*}
\int_{B_{r}(x)}\left|\chi_{E}-\chi_{\left\{y /\left\langle y-x, \nu_{u}(x)\right\rangle<0\right\}}\right|=o\left(r^{N}\right) . \tag{1.4.60}
\end{equation*}
$$

If such an ν exists, it is unique and we denote it by $\nu(x, E)$. Then, we define,

$$
\partial_{\text {red }} E:=\{x \in \Omega \cap \partial E / \text { if } \nu(x, E) \text { exists }\} .
$$

We have, by the results in [14] Theorem 4.5.6 that,

$$
\mu=\nu \mathcal{H}^{N-1}\left\lfloor\partial_{\text {red }} E .\right.
$$

Therefore, by 1.4.56 we have that, for any $\varphi \in C_{0}^{1}\left(\Omega ; \mathbb{R}^{N}\right)$

$$
\begin{equation*}
\int_{E} \operatorname{div} \varphi d x=\int_{\partial_{r e d} E} \varphi \cdot \nu d \mathcal{H}^{N-1} \tag{1.4.61}
\end{equation*}
$$

Remark 1.4.62. If A, Λ satisfy the conclusions of Theorem 1.4.54, then by Theorem 1.4.58 the set $\Omega \cap A$ has finite perimeter locally in Ω.

Theorem 1.4.63. Let $E \subset \mathbb{R}^{N}$ a set of finite local perimeter, and suppose that for all $x_{0} \in \partial E$, it holds that

$$
\limsup _{r \rightarrow 0} \frac{\left|B_{r}\left(x_{0}\right) \cap E\right|}{\left|B_{r}\left(x_{0}\right)\right|}>0 \quad \text { and } \quad \underset{r \rightarrow 0}{\limsup } \frac{\left|B_{r}\left(x_{0}\right) \cap \mathbb{R}^{N} \backslash E\right|}{\left|B_{r}\left(x_{0}\right)\right|}>0
$$

Then, $\mathcal{H}^{N-1}\left(\partial E \backslash \partial_{\text {red }} E\right)=0$.
Theorem 1.4.64. For $\mathcal{H}^{N-1}-$ almost every point $x_{0} \in \partial E \backslash \partial_{\text {red }} E$

$$
|\mu|\left(B_{r}\left(x_{0}\right)\right)=o\left(r^{N-1}\right) .
$$

Theorem 1.4.65. Let $E \subset \mathbb{R}^{N}$ a set of finite local perimeter then, (1.4.66) $\lim _{r \rightarrow 0} \frac{\mathcal{H}^{N-1}\left(B_{r}\left(x_{0}\right) \cap \partial E\right)}{\omega_{N-1} r^{N-1}}=1$ for $\mathcal{H}^{N-1}-$ almost every point $x_{0} \in \partial_{\text {red }} E$, where w_{N-1} is the \mathcal{H}^{N-1} - surface measure of the unit sphere in \mathbb{R}^{N}.

Theorem 1.4.67. Let $E \subset \mathbb{R}^{N}$ a set of finite local perimeter then, and $x_{0} \in \partial_{\text {red }} E$ satisfying 1.4.66. Let $\rho_{k} \rightarrow 0$ and $E_{k}=\frac{E-x_{0}}{\rho_{k}}$, such that

$$
\begin{aligned}
\chi_{E_{k}} \rightarrow \chi_{\left\{x_{N}<0\right\}} & \text { in } L_{l o c}^{1}\left(\mathbb{R}^{N}\right) \\
\partial E_{k} \rightarrow\left\{x_{N}=0\right\} & \text { locally in Hasdorff distance. }
\end{aligned}
$$

Then, for every $D \subset \subset\left\{x_{N}<0\right\}$ we have

$$
\mathcal{H}^{N-1}\left(\partial E_{k} \cap D\right) \rightarrow 0 .
$$

And for,

$$
\xi(x)=\min \left(2\left(1-\frac{\left|x_{N}\right|}{2}, 1\right)\right) \eta\left(x_{1}, \ldots, x_{N-1}\right)
$$

where $0 \leq \eta \in C_{0}^{\infty}\left(B_{r}^{\prime}\right)$, (B_{r}^{\prime} is a $(N-1)$ dimensional ball with radius r) we have,

$$
\begin{equation*}
\int_{\partial E_{k}} \xi d \mathcal{H}^{N-1} \rightarrow \int_{\mathbb{R}^{N-1}} \eta d \mathcal{H}^{N-1} \tag{1.4.68}
\end{equation*}
$$

Proof. See the proof of Theorem 4.8 in [4].

5. A result on \mathcal{L}-solutions with linear growth

In this section we state some properties of \mathcal{L}-subsolutions. From now on, we denote $B_{r}^{+}=B_{r}(0) \cap\left\{x_{N}>0\right\}$. We take ideas from [19]. The proofs in this section are more involved than the ones in [19] because of the lack of homogeneity of the function g.

Theorem 1.5.1. Let u be a Lipschitz function in \mathbb{R}^{N} with Lipschitz constant L and such that

1. $u \geq 0$ in $\mathbb{R}^{N}, \mathcal{L} u=0$ in $\{u>0\}$.
2. $\left\{x_{N}<0\right\} \subset\{u>0\}, u=0$ in $\left\{x_{N}=0\right\}$.
3. There exists $0<\lambda_{0}<1$ such that $\frac{\left|\{u=0\} \cap B_{R}(0)\right|}{\left|B_{R}(0)\right|}>\lambda_{0}, \forall R>0$.

Then $u=0$ in $\left\{x_{N}>0\right\}$.
In order to prove this theorem we need a couple of lemmas.
Lemma 1.5.2. Let u be a $\mathcal{L}-$ subsolution in B_{r}^{+}such that, $0 \leq u \leq \alpha x_{N}$ in B_{r}^{+}, $u=0$ on $\overline{B_{r}^{+}} \cap\left\{x_{N}=0\right\}, u \leq \delta_{0} \alpha x_{N}$ on $\partial B_{r}^{+} \cap B_{r_{0}}(\bar{x})$ with $\bar{x} \in \partial B_{r}^{+}, \bar{x}_{N}>0$ and $0<\delta_{0}<1$.

Then there exists $0<\gamma<1$ and $0<\varepsilon \leq 1$, depending only on $\delta_{0}, r_{0}, \bar{x}$ and N, such that if $0<r \leq 1, u(x) \leq \gamma \alpha x_{N}$ in $B_{\varepsilon r}^{+}$.

Proof. By the invariance of \mathcal{L} - solutions under the rescaling $\bar{u}(x)=u(r x) / r$ and since $r \leq 1$, we can suppose that $r=1$.

Let ψ^{α} be an \mathcal{L}_{α}-solution in B_{1}^{+}, with smooth boundary data, such that

$$
\begin{cases}\psi^{\alpha}=x_{N} & \text { on } \partial B_{1}^{+} \backslash B_{r_{0}}(\bar{x}) \\ \delta_{0} x_{N} \leq \psi^{\alpha} \leq x_{N} & \text { on } \partial B_{1}^{+} \cap B_{r_{0}}(\bar{x}) \\ \psi^{\alpha}=\delta_{0} x_{N} & \text { on } \partial B_{1}^{+} \cap B_{r_{0} / 2}(\bar{x}),\end{cases}
$$

where $\mathcal{L}_{\alpha} v=\operatorname{div}\left(\frac{g_{\alpha}(|\nabla v|)}{|\nabla v|} \nabla v\right)$ and $g_{\alpha}(t)=g(\alpha t)$.
Therefore $\mathcal{L}\left(\alpha \psi^{\alpha}\right)=0$ and, by the comparison principle (Theorem 1.2.35), $u \leq$ $\alpha \psi^{\alpha}$ in B_{1}^{+}. If we see that there exist $0<\gamma<1$ and $\varepsilon>0$, independent of α, such that $\psi^{\alpha} \leq \gamma x_{N}$ in B_{ε}^{+}, the result follows.

First, observe that,

$$
\begin{equation*}
\delta \leq \frac{g_{\alpha}^{\prime}(t) t}{g_{\alpha}(t)} \leq g_{0} \tag{1.5.3}
\end{equation*}
$$

Then, by Theorems 1.2.16 and 1.2.20,

$$
\begin{equation*}
\psi^{\alpha} \in C^{1, \beta}\left(\overline{B_{1}^{+}}\right) \text {for some } \beta>0 \text { independent of } \alpha, \tag{1.5.4}
\end{equation*}
$$

the $C^{1, \beta}$ norm is bounded by a constant independent of α and the constant in Harnack inequality is independent of α.
If $\left|\nabla \psi^{\alpha}\right| \geq \mu>0$ in some open set U, we have by Remark 1.2.30 that $\psi^{\alpha} \in W^{2, p}(U)$ and it is a solution of the linear uniformly elliptic equation,

$$
\begin{equation*}
\mathcal{T}_{\alpha} \psi^{\alpha}=\sum_{i, j=1}^{N} b_{i j}^{\alpha} \psi_{x_{i} x_{j}}^{\alpha}=0 \quad \text { in } U, \tag{1.5.5}
\end{equation*}
$$

where $b_{i j}^{\alpha}$ was define in (1.2.27), and the constant of ellipticity depends only on g_{0} and δ.

Now, we divide the proof in several steps,

Step 1

Let $w^{\alpha}=x_{N}-\psi^{\alpha}$ then $w^{\alpha} \in C^{1, \beta}\left(\overline{B_{1}^{+}}\right)$and is a solution of $\mathcal{T}_{\alpha} w^{\alpha}=0$ in any open set U where $\left|\nabla \psi^{\alpha}\right| \geq \mu>0$.

On the other hand, as $\psi^{\alpha} \leq x_{N}$ on ∂B_{1}^{+}and both functions are \mathcal{L}^{α}-solutions we have, by comparison, that $\psi^{\alpha} \leq x_{N}$ in B_{1}^{+}. Therefore $w^{\alpha} \geq 0$ in B_{1}^{+}.

Step 2

Let us prove that there exist ρ and \tilde{c} independent of α, such that $\left|\nabla \psi^{\alpha}\right| \geq \tilde{c}$ in B_{ρ}^{+}.

First, let as see that there exists $c>0$ independent of α such that

$$
\begin{equation*}
\psi^{\alpha}\left(\frac{1}{2} e_{N}\right) \geq c \tag{1.5.6}
\end{equation*}
$$

If not, there exists a sequences of $\alpha_{k} \rightarrow 0$ such that $\psi^{\alpha_{k}}\left(1 / 2 e_{N}\right) \rightarrow 0$. But, since the constant in Harnack inequality is independent of α (see (1.5.4)), we have that, $\psi^{\alpha_{k}} \rightarrow 0$ uniformly in compact sets of B_{1}^{+}. On the other hand, using that ψ^{α} are uniformly bounded in $C^{\beta}\left(\overline{B_{1}^{+}}\right)$, we have that there exists $\psi \in C\left(\overline{B_{1}^{+}}\right)$such that, for a subsequence $\psi^{\alpha_{k}} \rightarrow \psi$ uniformly in $\overline{B_{1}^{+}}$. Therefore $\psi=0$ in $\overline{B_{1}^{+}}$, but we have that $\psi=\delta_{0} x_{N}$ on $B_{r_{0} / 2}(\bar{x}) \cap \partial B_{1}^{+}$, which is a contradiction.

Let $x_{1} \in\left\{x_{N}=0\right\} \cap B_{1 / 2}$, take $x_{0}=x_{1}+\frac{e_{N}}{4}$. By (1.5.4) we have that there exists a constant c_{1} independent of α such that, $\psi^{\alpha}(x) \geq c_{1} \psi^{\alpha}\left(1 / 2 e_{N}\right)$ for any $x \in \partial B_{1 / 8}\left(x_{0}\right)$, and therefore by (1.5.6) $\psi^{\alpha} \geq \bar{c}$ in $\partial B_{1 / 8}\left(x_{0}\right)$.
Take $v=s\left(e^{-\lambda / 16}-e^{-\lambda\left|x-x_{0}\right|^{2}}\right)$ with $s>0$, and choose λ such that $\mathcal{L} v>0$ in $B_{1 / 4}\left(x_{0}\right) \backslash B_{1 / 8}\left(x_{0}\right)$ and s such that $v=\bar{c}$ on $\partial B_{1 / 8}\left(x_{0}\right)$ (observe that, by Lemma 1.2.47 λ and s can be chosen independent of α). Since $\psi^{\alpha} \geq 0$ and $\psi^{\alpha} \geq v$ on $\partial B_{1 / 8}\left(x_{0}\right)$ we have by comparison that $\psi^{\alpha} \geq v$ in $B_{1 / 4}\left(x_{0}\right) \backslash B_{1 / 8}\left(x_{0}\right)$. On the other hand $v_{x_{N}}\left(x_{1}\right)=s 2 \lambda\left(x_{1}-x_{0}\right)_{N}=s \frac{\lambda}{2}$, and therefore $\psi_{x_{N}}^{\alpha}\left(x_{1}\right) \geq \frac{\lambda s}{2}$. As ψ^{α} are uniformly Lipschitz, we have that there exists ρ independent of α such that $\psi_{x_{N}}^{\alpha}(x) \geq \frac{\lambda s}{2}$ in B_{ρ}^{+}.

Step 3

Since $\left|\nabla \psi^{\alpha}\right| \geq \frac{\lambda s}{2}$ in B_{ρ}^{+}, we have that, $\mathcal{T}_{\alpha} w^{\alpha}=0$ there. Suppose that $w^{\alpha}\left(1 / 2 e_{N} \rho\right) \geq c>0$, with c independent of α. Then by Harnack inequality we have that there exists σ_{1} independent of α such that, $w^{\alpha} \geq \sigma_{1} w^{\alpha}\left(1 / 2 e_{N} \rho\right) \geq \sigma_{2}$ in $B_{\rho / 4}\left(1 / 2 e_{N} \rho\right)$, where σ_{2} is a constant independent of α. Therefore, $w_{x_{N}}^{\alpha}(0) \geq$ $\sigma_{3}>0$ with σ_{3} independent of α. Since $w_{x_{N}}^{\alpha}$ are $C^{\beta}\left(\overline{B_{1 / 2}^{+}}\right)$with norm controlled independently of α there holds that $w_{x_{N}}^{\alpha}(x) \geq \sigma>0$ independent of α in B_{ε}^{+}, if ε is small independent of α. So that, $w_{x_{N}}^{\alpha}(x) \geq \sigma x_{N}$ in B_{ε}^{+}and we have that $\psi_{x_{N}}^{\alpha}(x) \leq(1-\sigma) x_{N}$ in B_{ε}^{+}. Thus, the result would be true with $\gamma=1-\sigma$ if we have that $w^{\alpha}\left(1 / 2 e_{N} \rho\right) \geq c>0$ independent of α.
$w^{\alpha} \geq \sigma_{2} 2 \rho^{-1} x_{N}$ in $B_{\rho / 2}^{+}$, then taking $\gamma=1-2 \rho^{-1} \sigma_{2}$ and $\varepsilon=\rho / 2$, we obtain the desired result.

Step 4

Let as see that $w_{\alpha}\left(1 / 2 e_{N} \rho\right) \geq c>0$ where c is independent of α. Suppose, by contradiction that for a subsequence, $w_{\alpha_{k}}\left(1 / 2 e_{N} \rho\right) \rightarrow 0$. We know that in B_{ρ}^{+} $\mathcal{T}_{\alpha} w_{\alpha}=0$. Then, applying Harnack inequality, we have that for any compact subset $K \subset \subset B_{\rho}^{+}$we have that $w_{\alpha} \rightarrow 0$ uniformly in K. On the other hand, ψ_{α} are uniformly bounded in $C^{\beta}\left(\overline{B_{1}^{+}}\right)$. Thus, there exists $\bar{w} \in C\left(\overline{B_{1}^{+}}\right)$such that, for a
subsequence $w^{\alpha_{k}} \rightarrow \bar{w}$ in $C\left(\overline{B_{1}^{+}}\right)$. Let

$$
\mathcal{A}=\left\{x \in B_{1}^{+} / \bar{w}(x)=0\right\},
$$

and suppose that, there exist a point $x_{1} \in \partial A \cap B_{1}^{+}$, then as $w^{\alpha} \geq 0$ we have that \bar{w} has a minimum at x_{1}. Therefore, $\nabla \bar{w}\left(x_{1}\right)=0$. As $\nabla w^{\alpha_{k}} \rightarrow \nabla \bar{w}$ uniformly on compact subsets of B_{1}^{+}, we have that for some $\tau>0$ independent of $\alpha_{k},\left|\nabla \psi_{\alpha_{k}}\right| \geq 1 / 2$ in $B_{\tau}\left(x_{1}\right)$. Thus, in this ball, $w^{\alpha_{k}}$ satisfy $\mathcal{T}_{\alpha_{k}} w^{\alpha_{k}}=0$. We can apply Harnack inequality in $B_{\tau}\left(x_{1}\right)$ and, passing to the limit we obtain that $\bar{w}=0$ in $B_{\tau / 2}\left(x_{1}\right)$, which is a contradiction. Hence $\bar{w}=0$ in $\overline{B_{1}^{+}}$. But on the other hand, we have $\bar{w}=x_{N}-\delta_{0} x_{N}>0$ on $\partial B_{1} \cap \partial B_{r_{0} / 2}(\bar{x})$, which is a contradiction.

Now we are ready to proceed with the proof of the theorem.
Proof of Theorem 1.5.1. The proof will be divided into several steps.
Step 1 Let $u_{0}(x)=\frac{u(T x)}{T}$, with $T>0$ to be chosen later.
Then, the function u_{0} satisfies the same properties as u with the same constants L and λ_{0}.

Let $\beta=\frac{\lambda_{0}}{2^{N-1}}<1$, then by properties (2) and (3) with $R=1$ we have that there exists $x_{0} \in B_{1}(0)$, with $x_{0, N}>\beta$ such that $u_{0}\left(x_{0}\right)=0$. Since u_{0} is Lipschitz, with constant L, we have that $u_{0}(x) \leq L\left|x-x_{0}\right|$. Thus, if we take $r_{0}=\frac{\beta}{4}$, we have that $u_{0}(x) \leq \frac{L \beta}{4}$ for $\left|x-x_{0}\right|<r_{0}$. There holds that $x_{N} \geq \frac{3 \beta}{4}$ in this ball. Hence, we have that

$$
u_{0}(x) \leq \frac{L x_{N}}{3} \quad \text { on } \partial B_{R_{1}}^{+} \cap B_{r_{0}}\left(x_{0}\right),
$$

where $R_{1}=\left|x_{0}\right|>\beta$.
By property (1), and by Lemma (1.2.45) u_{0} is an \mathcal{L} - subsolution. By property 2 $0 \leq u_{0}(x) \leq L x_{N}$.

Taking in Lemma 1.5.2 $\delta_{0}=1 / 3, \bar{x}=x_{0}, \alpha=L$ and $r=R_{1}$ we have that there exist $0<\gamma_{1}<1$ and $0<\varepsilon_{1} \leq 1$, depending only on r_{0} and x_{0} such that

$$
\begin{equation*}
0 \leq u_{0}(x) \leq \gamma_{1} L x_{N} \quad \text { in } B_{R_{1} \varepsilon_{1}}^{+} \tag{1.5.7}
\end{equation*}
$$

Observe that since $x_{0, N}>\beta$ then γ_{1} and ε_{1} depend only on λ_{0}.
Now, take $u_{1}(x)=\frac{u_{0}\left(R_{1} \varepsilon_{1} x\right)}{R_{1} \varepsilon_{1}}$. Then, again u_{1} satisfies the properties of u with the same constants L and λ_{0}.

Therefore, there exists $x_{1} \in B_{1}(0)$, with $x_{1, N}>\beta$ such that $u_{1}\left(x_{1}\right)=0$. By (1), $u_{1}(x) \leq L\left|x-x_{1}\right|$. Thus, if we take $r_{1}=\frac{\gamma_{1} \beta}{4}$, we have $u_{1}(x) \leq \frac{\gamma_{1} L \beta}{4}$ for $\left|x-x_{1}\right|<r_{1}$. As $\gamma_{1} \leq 1$, in that ball there holds that $x_{N} \geq \frac{3 \beta}{4}$. Thus, we have that

$$
u_{1}(x) \leq \frac{\gamma_{1} L x_{N}}{3} \quad \text { on } \partial B_{R_{2}}^{+} \cap B_{r_{1}}\left(x_{1}\right),
$$

where $R_{2}=\left|x_{1}\right|>\beta$.

By property (1), u_{1} is an \mathcal{L} - subsolution. And by (1.5.7), we have $0 \leq u_{1}(x) \leq$ $\gamma_{1} L x_{N}$ in B_{1}^{+}.

Taking in Lemma 1.5.2 $\delta_{0}=1 / 3, \bar{x}=x_{1}, \alpha=\gamma_{1} L$ and $r=R_{2}$ we have that there exist $0<\gamma_{2}<1$ and $0<\varepsilon_{2} \leq 1$, depending only on λ_{0} such that $u_{1}(x) \leq \gamma_{2} \gamma_{1} L x_{N}$ in $B_{R_{2} \varepsilon_{2}}^{+}$.

Inductively, we construct a sequence u_{k} such that, u_{k} satisfies the same hypotheses as u with the same constants L and λ_{0} and such that,

$$
\begin{equation*}
0 \leq u_{k-1} \leq \alpha_{k} x_{N} \quad \text { in } B_{R_{k} \varepsilon_{k}}^{+} \tag{1.5.8}
\end{equation*}
$$

where $\alpha_{k}=L \prod_{i=1}^{k} \gamma_{i}$, and $0<\gamma_{i}, \varepsilon_{i}<1$ depend only on λ_{0}. In the construction we have $u_{k}(x)=\frac{u_{k-1}\left(R_{k} \varepsilon_{k} x\right)}{R_{k} \varepsilon_{k}}$.

Therefore, for any $k \geq 1$

$$
\begin{equation*}
u_{0} \leq \alpha_{k} x_{N} \quad \text { in } B_{\delta_{k}}^{+} \tag{1.5.9}
\end{equation*}
$$

where, $\delta_{k}=\prod_{i=1}^{k} R_{i} \varepsilon_{i}$.
Step 2 Let us see that $\alpha_{k} \rightarrow 0$ when $k \rightarrow \infty$. Suppose by contradiction that this does not hold. Then, since α_{k} is decreasing, there exists $\alpha_{0}>0$ such that $\alpha_{k} \geq \alpha_{0}$ for all $k \geq 1$. We have that $\alpha_{k+1}=\gamma_{k+1} \alpha_{k}$, and $r_{k}=\frac{\beta}{4} \alpha_{k} \geq \frac{\beta}{4} \alpha_{0}$. Thus, in Lemma (1.5.2) we can take, for the function u_{k}, r_{0} as $\frac{\beta}{4} \alpha_{0}$ and γ_{0} the corresponding γ. We can think that γ_{k+1} was taken as the minimum over the γ 's such that the conclusion of the lemma is satisfied. Therefore $\gamma_{k+1} \leq \gamma_{0}<1$ for all k. Then, $\alpha_{k} \leq L \gamma^{k}$ for all $k \geq 1$. Therefore $\alpha_{k} \rightarrow 0 ;$ a contradiction.

Step 3 Now, we can prove that if $x_{N}>0$ then $u\left(x_{N}\right)=0$. Suppose that, there exists ξ with $\xi_{N}>0$ such that $u(\xi)>0$. Then, since $\alpha_{k} \rightarrow 0$, there exists $k \geq 1$ such that $u(\xi)>\alpha_{k} \xi_{N}$. Now, for this fixed k, take $T>|\xi| \beta^{-k} \prod_{i=1}^{k} \varepsilon_{i}$. Then, since $R_{i}>\beta$ we have that $|\xi|<T \delta_{k}$. Thus, if we take $\bar{\xi}=\frac{\xi}{T}$ we have that $u_{0}(\bar{\xi})>\alpha_{k} \overline{\xi_{N}}$. But, on the other hand, by (1.5.9), since $|\bar{\xi}|<\delta_{k}$, we have that $u_{0}(\bar{\xi}) \leq \alpha_{k} \overline{\xi_{N}}$, which is a contradiction.

As a remark we mention that with Lemma 1.5.2 we can also prove the asymptotic development of $\mathcal{L}-$ solutions.

Lemma 1.5.10. Let u be Lipschitz continuous in $\overline{B_{1}^{+}}, u \geq 0$ in B_{1}^{+}, \mathcal{L}-solution in $\{u>0\}$ and vanishing on $B_{1}^{+} \cap\left\{x_{N}=0\right\}$. Then, in B_{1}^{+}, u has the asymptotic development

$$
u(x)=\alpha x_{N}+o(|x|),
$$

with $\alpha \geq 0$.
Proof. Let

$$
\alpha_{j}=\inf \left\{l / u \leq l x_{n} \text { in } B_{2^{-j}}^{+}\right\} .
$$

Let $\alpha=\lim _{j \rightarrow \infty} \alpha_{j}$.

Given $\varepsilon_{0}>0$ there exists j_{0} such that for $j \geq j_{0}$ we have $\alpha_{j} \leq \alpha+\varepsilon_{0}$. From here, we have $u(x) \leq\left(\alpha+\varepsilon_{0}\right) x_{N}$ in $B_{2^{-j}}^{+}$. So that,

$$
u(x) \leq \alpha x_{N}+o(|x|) \text { in } B_{1}^{+} .
$$

If $\alpha=0$ the result follows. Assume that $\alpha>0$ and let us suppose that $u(x) \neq$ $\alpha x_{N}+o(|x|)$. Then, there exist $x_{k} \rightarrow 0$ and $\bar{\delta}>0$ such that

$$
u\left(x_{k}\right) \leq \alpha x_{k, N}-\bar{\delta}\left|x_{k}\right|
$$

Let $r_{k}=\left|x_{k}\right|$ and $u_{k}(x)=r_{k}^{-1} u\left(r_{k} x\right)$. Then, there exists u_{0} such that, for a subsequence that we still call $u_{k}, u_{k} \rightarrow u_{0}$ uniformly in $\overline{B_{1}^{+}}$and

$$
\begin{aligned}
& u_{k}\left(\bar{x}_{k}\right) \leq \alpha \bar{x}_{k, N}-\bar{\delta} \\
& u_{k}(x) \leq\left(\alpha+\varepsilon_{0}\right) x_{N} \text { in } B_{1}^{+}
\end{aligned}
$$

where $\bar{x}_{k}=\frac{x_{k}}{r_{k}}$. Also, we can assume that $\bar{x}_{k} \rightarrow x_{0}$.
In fact, $u(x) \leq\left(\alpha+\varepsilon_{0}\right) x_{N}$ in $B_{2^{-j_{0}}}^{+}$. Therefore, $u_{k}(x) \leq\left(\alpha+\varepsilon_{0}\right) x_{N}$ in $B_{r_{k}^{-1} 2^{-j_{0}}}^{+}$, and the estimate follows if k is big enough so that $r_{k}^{-1} 2^{-j_{0}} \geq 1$.

If we take $\bar{\alpha}=\alpha+\varepsilon_{0}$ we have

$$
\begin{cases}\mathcal{L} u_{k} \geq 0 & \text { in } B_{1}^{+} \\ u_{k}=0 & \text { on }\left\{x_{N}=0\right\} \\ 0 \leq u_{k} \leq \bar{\alpha} x_{N} & \text { on } \partial B_{1}^{+} \\ u_{k} \leq \delta_{0} \bar{\alpha} x_{N} & \text { on } \partial B_{1}^{+} \cap B_{\bar{r}}(\bar{x})\end{cases}
$$

for some $0<\delta_{0}<1, \bar{x} \in \partial B_{1}^{+}, \bar{x}_{N}>0$ and some small $\bar{r}>0$.
In fact, as u_{k} are continuous with uniform modulus of continuity, we have

$$
u_{k}\left(x_{0}\right) \leq \alpha x_{0, N}-\frac{\bar{\delta}}{2}, \text { if } k \geq \bar{k}
$$

Moreover, there exists $r_{0}>0$ such that $u_{k}(x) \leq \alpha x_{N}-\frac{\bar{\delta}}{4}$ in $B_{2 r_{0}}\left(x_{0}\right)$. If $x_{0, N}>0$ we take $\bar{x}=x_{0}$, if not, we take $\bar{x} \in B_{2 r_{0}}\left(x_{0}\right)$ with $\bar{x}_{N}>0$ and

$$
u_{k}(x) \leq \alpha x_{N}-\frac{\bar{\delta}}{4}, \text { in } B_{r_{0}}(\bar{x}) \subset \subset\left\{x_{N}>0\right\}
$$

As $B_{r_{0}}(\bar{x}) \subset \subset\left\{x_{N}>0\right\}$, there exists δ_{0} such that $\alpha x_{N}-\frac{\bar{\delta}}{4} \leq \delta_{0} \alpha x_{N} \leq \delta_{0} \bar{\alpha} x_{N}$ in $B_{\bar{r}}(\bar{x})$ for some small \bar{r}, and the claim follows.

Now, by Lemma 1.5.2, there exist $0<\gamma<1, \varepsilon>0$ independent of ε_{0} and k, such that $u_{k}(x) \leq \gamma\left(\alpha+\varepsilon_{0}\right) x_{N}$ in B_{ε}^{+}. As γ and ε are independent of k and ε_{0}, taking $\varepsilon_{0} \rightarrow 0$, we have

$$
u_{k}(x) \leq \gamma \alpha x_{N} \text { in } B_{\varepsilon}^{+} .
$$

So that,

$$
u(x) \leq \gamma \alpha x_{N} \text { in } B_{r_{k} \varepsilon}^{+} .
$$

Now if j is big enough we have $\gamma \alpha<\alpha_{j}$ and $2^{-j} \leq r_{k} \varepsilon$. We get a contradiction to the definition of α_{j}. Therefore,

$$
u(x)=\alpha x_{N}+o(|x|),
$$

as we wanted to prove.

6. Blow up limits

We give here the definition of blow up sequence, and give some properties of the blow up limits.

Definition 1.6.11. Let $D \subset \mathbb{R}^{N}$. We say that u satisfies hypothesis (H1) if,

$$
\left\{\begin{array}{l}
u \text { Lipschitz in } D \text { with constant } L>0 \\
u \geq 0 \text { in } D \\
\mathcal{L} u=0 \text { in } D \cap\{u>0\}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\text { Given } 0<\kappa<1, \text { there exist } c_{\kappa} \text { and } r_{\kappa} \text { such that for } \tag{H1}\\
B_{r}\left(x_{0}\right) \text { with } 0<r<r_{\kappa} \text { we have } \\
\frac{1}{r} f_{B_{r}\left(x_{0}\right)} u \leq c_{\kappa} \Longrightarrow u \equiv 0 \text { in } B_{\kappa r}\left(x_{0}\right)
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\text { There exist constants } r_{0} \text { and } 0<\lambda_{1}<\lambda_{2}<1 \text { such that } \\
\text { for } B_{r}\left(x_{0}\right) \subset D \text { with } x_{0} \in \partial\{u>0\} \text { and } 0<r<r_{0} \\
\lambda_{1} \leq \frac{\left|B_{r}\left(x_{0}\right) \cap\{u>0\}\right|}{\left|B_{r}\left(x_{0}\right)\right|} \leq \lambda_{2}
\end{array}\right.
$$

Definition 1.6.12. Let $B_{\rho_{k}}\left(x_{k}\right) \subset \Omega$ be a sequence of balls with $\rho_{k} \rightarrow 0, x_{k} \rightarrow$ $x_{0} \in \Omega$ and $u\left(x_{k}\right)=0$. Let

$$
u_{k}(x):=\frac{1}{\rho_{k}} u\left(x_{k}+\rho_{k} x\right) .
$$

We call u_{k} a blow-up sequence with respect to $B_{\rho_{k}}\left(x_{k}\right)$.
Since u is locally Lipschitz continuous, there exists a blow-up limit $u_{0}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that, for a subsequence,

$$
\begin{array}{ll}
u_{k} \rightarrow u_{0} \quad \text { in } & C_{\text {loc }}^{\alpha}\left(\mathbb{R}^{N}\right) \text { for every } \quad 0<\alpha<1, \\
\nabla u_{k} \rightarrow \nabla u_{0} & * \text {-weakly in } \quad L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N}\right),
\end{array}
$$

and u_{0} is Lipschitz in \mathbb{R}^{N} with constant L.
Lemma 1.6.13. If u satisfies hypothesis (H1), then

1. $\partial\left\{u_{k}>0\right\} \rightarrow \partial\left\{u_{0}>0\right\}$ locally in Hausdorff distance,
2. $\chi_{\left\{u_{k}>0\right\}} \rightarrow \chi_{\left\{u_{0}>0\right\}}$ in $L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right)$,
3. If $D \subset \subset\left\{u_{0}>0\right\} \cup\left\{u_{0}=0\right\}^{\circ}$, then $\nabla u_{k} \rightarrow \nabla u_{0}$ uniformly in D,
4. $\nabla u_{k} \rightarrow \nabla u_{0}$ a.e in \mathbb{R}^{N},
5. If $x_{k} \in \partial\{u>0\}$, then $0 \in \partial\left\{u_{0}>0\right\}$
6. $\mathcal{L} u_{0}=0$ in $\left\{u_{0}>0\right\}$.
7. There exist $0<\lambda<1$ such that $\frac{\left|B_{r}\left(x_{0}\right) \cap\left\{u_{0}=0\right\}\right|}{\left|B_{r}\left(x_{0}\right)\right|}>\lambda \forall R>0$, and $\forall y_{0} \in$ $\partial\left\{u_{0}>0\right\}$.

Proof. Is clear that $u_{0} \geq 0$. If $B_{r} \subset \subset\left\{u_{0}>0\right\}$, we will have that $B_{r} \subset \subset$ $\left\{u_{k}>0\right\}$ for k large and then $\mathcal{L} u_{k}=0$ in B_{r}. Then there exists a constant $C=C\left(g_{0}, \delta, N,\left\{u_{0}>0\right\}, r,\left\|u_{k}\right\|_{L^{\infty}\left(B_{r}\right)}\right)$ such that, $\left\|u_{k}\right\|_{C^{1, \beta}\left(\overline{B_{r}}\right)} \leq C$, but $\left|u_{k}(x)\right| \leq$ $L r$, and then the constant C is independent of k. Therefore for a subsequence $\nabla u_{k} \rightrightarrows \nabla u_{0}$ in B_{r} therefore $\mathcal{L} u_{0}=0$ in B_{r}. Then (6) is proved.

Let us see (1). Observe that if $B_{r}(y) \cap \partial\left\{u_{0}>0\right\}=\emptyset$ and $u_{0}=0$ in $B_{r}(y)$, then the u_{k} are uniformly small in $B_{r}(y)$ for k large and by the second property in (H1) $u_{k}=0$ in $B_{r / 2}(y)$. If $u_{0}>0$ in $B_{r}(y)$ then $u_{k}>0$ in $B_{r / 2}(y)$, therefore $B_{r / 2}(y) \cap \partial\left\{u_{k}>0\right\}=\emptyset$ for k large.

On the other hand, if $B_{r}(y) \cap \partial\left\{u_{k}>0\right\}=\emptyset$ for k large, and for a subsequence $u_{k}=0$ in $B_{r}(y)$, then $u_{0}=0$ in $B_{r}(y)$. If not, we will have $u_{k}>0$ in $B_{r}(y)$ for k large and then $\mathcal{L} u_{0}=0$ in $B_{r}(y)$, then by the strong maximum principle (see Theorem 1.2.17), $u_{0}=0$ in $B_{r}(y)$ or $u_{0}>0$ in $B_{r}(y)$. In both cases $B_{r}(y) \cap \partial\left\{u_{0}>0\right\}=\emptyset$.

Let us see (2). By the second property in (H1) we have that, given a compact set $K,\left|K \cap \partial\left\{u_{k}>0\right\}\right|=0$ for k large, and then by (1) we have that

$$
\begin{equation*}
\left|\partial\left\{u_{0}>0\right\}\right|=0 . \tag{1.6.14}
\end{equation*}
$$

On the other hand, if we argue as before, for R and r fixed we have, for k large,

$$
\int_{B_{R}}\left|\chi_{\left\{u_{k}>0\right\}}-\chi_{\{u>0\}}\right| \leq\left|\left\{x \in B_{R} / d\left(x, \partial\left\{u_{0}>0\right\}\right) \leq r\right\}\right|
$$

and then by (1.6.14) the result follows.
Using property 2 of (H1) we derive (3). (4) follows by (2) and (1.6.14).
Finally we prove (7). Note that, by (1) given $y_{0} \in \partial\left\{u_{0}>0\right\}$, there exists $y_{k} \in \partial\left\{u_{k}>0\right\}$ such that $y_{k} \rightarrow y_{0}$. Therefore, by property 3 in (H1), if we fix $R>0$, we will have for k large

$$
\lambda_{1} \leq \frac{\left|B_{R}\left(y_{k}\right) \cap\left\{u_{k}>0\right\}\right|}{\left|B_{R}\left(y_{k}\right)\right|} \leq \lambda_{2}
$$

and applying (2) we obtain (7).

7. Schwartz symmetrization

Definition 1.7.15. Let Ω a bounded domain. We define the symmetrized domain Ω^{*} as the ball $\{x /|x|<\rho\}$ with the same volume as Ω. Let u be a function define on the bounded domain $D \subset \mathbb{R}^{N}$ and

$$
D(\mu):=\{x \in D / u(x) \geq \mu\} .
$$

We define $u^{*}: D^{*} \rightarrow \mathbb{R}$ by,

$$
u^{*}(x):=\sup \left\{\mu / x \in D(\mu)^{*}\right\} \quad \text { if } x \in D^{*} .
$$

We call the function u^{*} the Schwartz symmetrized of u.
Proposition 1.7.16.

1. u^{*} is radially symmetric, i.e, $u^{*}(x)=u^{*}(|x|)$, and $u^{*}(|x|)$ is a nondecreasing function of $|x|$.
2. $|\{x \in D / u(x) \geq \mu\}|=\left|\left\{x \in D^{*} / u^{*}(x) \geq \mu\right\}\right|$, for all $\mu \in \mathbb{R}$.
3. If Ω is smooth, i.e, $\partial \Omega$ piecewise analytic, u is non negative, and $u: \Omega \rightarrow$ \mathbb{R}_{0}^{+}is in $W_{0}^{1, G}(\Omega)$, and $G: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}$ is monotone nondecreasing and convex, then

$$
\begin{equation*}
\int_{\Omega} G(|\nabla u|) d x \geq \int_{\Omega^{*}} G\left(\left|\nabla u^{*}\right|\right) d x \tag{1.7.17}
\end{equation*}
$$

4. If in addition G is increasing and strictly convex then equality holds in (1.7.17) if and only if $u=u^{*}$.

CHAPTER 2

A minimization problem and weak solutions

In the first part of this chapter, we will study the following minimization problem. For Ω a smooth domain in \mathbb{R}^{N} and φ_{0} a non negative function with $\varphi_{0} \in L^{\infty}(\Omega)$ and $\int_{\Omega} G\left(\left|\nabla \varphi_{0}\right|\right) d x<\infty$, we consider the problem, of minimizing the functional

$$
\begin{equation*}
\mathcal{J}(v)=\int_{\Omega} G(|\nabla v|)+\lambda \chi_{\{v>0\}} d x \tag{2.0.1}
\end{equation*}
$$

in the class of functions

$$
\mathcal{K}=\left\{v \in W^{1, G}(\Omega): v=\varphi_{0} \text { on } \partial \Omega\right\} .
$$

Here $G^{\prime}=g$ and we will assume all the time, that g satisfies condition (0.0.2).

1. Existence of minimizers

In this section we look for minimizers of the functional \mathcal{J}. We begin by discussing the existence of extremals. Next, we prove that any minimizer is a subsolution to the equation $\mathcal{L} u=0$ and finally, we prove that $0 \leq u \leq \sup \varphi_{0}$.

Theorem 2.1.1. If $\mathcal{J}\left(\varphi_{0}\right)<\infty$, then there exists a minimizer of \mathcal{J}.

Proof. The proof of existence is standard. We write it here for the reader's convenience and in order to show how the Orlicz spaces and the condition (0.0.2) on the function G come into play.

Take a minimizing sequence $\left(u_{n}\right) \subset \mathcal{K}$, then $\mathcal{J}\left(u_{n}\right)$ is bounded, so $\int_{\Omega} G\left(\left|\nabla u_{n}\right|\right)$ and $\left|\left\{u_{n}>0\right\}\right|$ are bounded. As $u_{n}=\varphi_{0}$ in $\partial \Omega$, we have by Lemma 1.1.5 that $\left\|\nabla u_{n}-\nabla \varphi_{0}\right\|_{G} \leq C$ and by Lemma 1.2.10 we also have $\left\|u_{n}-\varphi_{0}\right\|_{G} \leq C$. Therefore, by Theorem 1.1.8 there exists a subsequence (that we still call u_{n}) and a function $u_{0} \in W^{1, G}(\Omega)$ such that

$$
u_{n} \rightharpoonup u_{0} \quad \text { weakly in } W^{1, G}(\Omega)
$$

and by Theorem 1.1.9

$$
u_{n} \rightharpoonup u_{0} \quad \text { weakly in } W^{1, \delta+1}(\Omega)
$$

and by the compactness of the immersions $W^{1, \delta+1}(\Omega) \hookrightarrow L^{\delta+1}(\Omega)$ and $W^{1, \delta+1}(\Omega) \hookrightarrow$ $L^{\delta+1}(\partial \Omega)$ we have that,

$$
\begin{array}{ll}
u_{n} \rightarrow u_{0} & \text { a.e. } \Omega . \\
u_{0}=\varphi_{0} & \text { on } \quad \partial \Omega,
\end{array}
$$

Thus,

$$
\begin{aligned}
& \left|\left\{u_{0}>0\right\}\right| \leq \liminf _{n \rightarrow \infty}\left|\left\{u_{n}>0\right\}\right| \quad \text { and } \\
& \int_{\Omega} G\left(\left|\nabla u_{0}\right|\right) d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega} G\left(\left|\nabla u_{n}\right|\right) d x
\end{aligned}
$$

In fact,

$$
\begin{equation*}
\int_{\Omega} G\left(\left|\nabla u_{n}\right|\right) d x \geq \int_{\Omega} G\left(\left|\nabla u_{0}\right|\right) d x+\int_{\Omega} g\left(\left|\nabla u_{0}\right|\right) \frac{\nabla u_{0}}{\left|\nabla u_{0}\right|} \cdot\left(\nabla u_{n}-\nabla u_{0}\right) d x . \tag{2.1.2}
\end{equation*}
$$

Recall that ∇u_{n} converges weakly to ∇u_{0} in L^{G}. Now, since by property ($\widetilde{g} 4$)

$$
\widetilde{G}\left(g\left(\left|\nabla u_{0}\right|\right)\right) \leq C G\left(\left|\nabla u_{0}\right|\right),
$$

there holds that $g\left(\left|\nabla u_{0}\right|\right) \frac{\nabla u_{0}}{\left|\nabla u_{0}\right|} \in L^{\widetilde{G}}$ so that, by Theorem 1.1.8 and passing to the limit in (2.1.2) we get

$$
\liminf _{n \rightarrow \infty} \int_{\Omega} G\left(\left|\nabla u_{n}\right|\right) d x \geq \int_{\Omega} G\left(\left|\nabla u_{0}\right|\right) d x
$$

Hence $u_{0} \in \mathcal{K}$ and

$$
\mathcal{J}\left(u_{0}\right) \leq \liminf _{n \rightarrow \infty} \mathcal{J}\left(u_{n}\right)=\inf _{v \in \mathcal{K}} \mathcal{J}(v) .
$$

Therefore, u_{0} is a minimizer of \mathcal{J} in \mathcal{K}.
Lemma 2.1.3. Let u be a minimizer of \mathcal{J}. Then, u is an \mathcal{L}-subsolution.
Proof. Let $\varepsilon>0$ and $0 \leq \xi \in C_{0}^{\infty}$. Using the minimality of u and the convexity of G we have

$$
\begin{aligned}
0 & \leq \frac{1}{\varepsilon}(\mathcal{J}(u-\varepsilon \xi)-\mathcal{J}(u)) \leq \frac{1}{\varepsilon} \int_{\Omega} G(|\nabla u-\varepsilon \nabla \xi|)-G(|\nabla u|) d x \\
& \leq \int_{\Omega}-g(|\nabla u-\varepsilon \nabla \xi|) \frac{\nabla u-\varepsilon \nabla \xi}{|\nabla u-\varepsilon \nabla \xi|} \nabla \xi d x
\end{aligned}
$$

and if we take $\varepsilon \rightarrow 0$ we obtain

$$
0 \leq \int_{\Omega}-g(|\nabla u|) \frac{\nabla u}{|\nabla u|} \nabla \xi d x
$$

Lemma 2.1.4. Let u be a minimizer of \mathcal{J}. Then $0 \leq u \leq \sup _{\Omega} \varphi_{0}$.

Proof. Let $M=\sup \varphi_{0}, \varepsilon>0$ and $v=\min (M-u, 0)$, then

$$
\begin{aligned}
0 & \leq \frac{1}{\varepsilon}(\mathcal{J}(u+\varepsilon v)-\mathcal{J}(u)) \\
& =\frac{1}{\varepsilon}\left(\int_{\Omega} G(|\nabla u+\varepsilon \nabla v|)-G(|\nabla u|)+\lambda \chi_{\{u+\varepsilon v>0\}}-\lambda \chi_{\{u>0\}} d x\right) \\
& \leq \frac{1}{\varepsilon}\left(\int_{\Omega}(G(|\nabla u+\varepsilon \nabla v|)-G(|\nabla u|)) d x\right) \leq \int_{\Omega} g(|\nabla u+\varepsilon \nabla v|) \frac{\nabla u+\varepsilon \nabla v}{|\nabla u+\varepsilon \nabla v|} \nabla v d x
\end{aligned}
$$

where in the last inequality we are using the convexity of G.
Now, takeing $\varepsilon \rightarrow 0$, using the definition of v and ($g 3$) we have that,

$$
\begin{aligned}
0 & \leq \int_{\Omega} g(|\nabla u|) \frac{\nabla u}{|\nabla u|} \nabla v d x=-\int_{\{u>M\}} g(|\nabla u|)|\nabla u| d x \leq-\int_{\{u>M\}} G(|\nabla u|) d x \\
& =-\int_{\{u>M\}} G(|\nabla v|) d x
\end{aligned}
$$

therefore $\nabla v=0$ in Ω and as $v=0$ on $\partial \Omega$ we have that $v=0$ in Ω and then $u \leq M$.
To prove that $u \geq 0$ we argue in a similar way. Take $v=\min (u, 0)$, then we have that,

$$
0 \leq \frac{1}{\varepsilon} \mathcal{J}(u-\varepsilon v)-\mathcal{J}(u) \leq-\int_{\Omega} g(|\nabla u-\varepsilon \nabla v|) \frac{\nabla u-\varepsilon \nabla v}{|\nabla u-\varepsilon \nabla v|} \nabla v d x
$$

Therefore taking $\varepsilon \rightarrow 0$, using the definition of v and $(g 3)$ we have that

$$
0 \geq \int_{\Omega} G(|\nabla v|) d x
$$

As in the first part, we conclude that $u \geq 0$.

2. Lipschitz continuity

In this section we study the regularity of the minimizers of \mathcal{J}. The main result is the local Lipschitz continuity of a minimizer. This result, together with the rescaling invariance of the minimization problem, is a key step in the analysis. Once this regularity is proven, a blow up process (passage to the limit in linear rescalings) at points of $\partial\{u>0\}$ allows to simplify the analysis by assuming that u is a plane solution.

As a first step, we prove that minimizers are Hölder continuous. We use ideas of [10], here all the properties of the function G come into play.

Theorem 2.2.1. For every $0<\alpha<1$, any minimizer u is in $C^{\alpha}(\Omega)$ and for $\Omega^{\prime} \subset \subset \Omega,\|u\|_{C^{\alpha}\left(\Omega^{\prime}\right)} \leq C$, where $C=C\left(g_{0}, \delta, \lambda,\|u\|_{\infty}, \alpha\right.$, $\left.\operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right), G(1)\right)$.

Proof. We will see that, for every $0<\alpha<1$ and $\Omega^{\prime} \subset \subset \Omega$ there exists ρ_{0} such that if $y \in \Omega^{\prime}, 0<\rho<\rho_{0}$ we have that

$$
\frac{1}{\rho^{N}} \int_{B_{\rho}(y)} G(|\nabla u|) d x \leq C \rho^{\alpha-1}
$$

for a constant $C\left(N, \delta, g_{0},\|u\|_{L^{\infty}(\Omega)}, \rho_{0}, G(1)\right)$.
In fact, let $r>0$ such that, $B_{r}(y) \subset \Omega$. We can suppose that $y=0$. Then if v is the solution of

$$
\mathcal{L} v=0 \quad \text { in } B_{r}, \quad v-u \in W_{0}^{1, G}\left(B_{r}\right)
$$

we have, therefore by Theorem 1.2.38 that
$\int_{B_{r}}(G(|\nabla u|)-G(|\nabla v|)) d x \geq C\left(\int_{A_{2}} G(|\nabla u-\nabla v|) d x+\int_{A_{1}} F(|\nabla u|)|\nabla u-\nabla v|^{2} d x\right)$,
where

$$
A_{1}=\left\{x \in B_{r}:|\nabla u-\nabla v| \leq 2|\nabla u|\right\}, \quad A_{2}=\left\{x \in B_{r}:|\nabla u-\nabla v|>2|\nabla u|\right\},
$$

and $C=C\left(g_{0}, \delta\right)$.
On the other hand, by the minimality of u, we have
(2.2.3) $\int_{B_{r}}(G(|\nabla u|)-G(|\nabla v|)) d x \leq \lambda\left(\left|\left\{v>0 \cap B_{r}\right\}-\left|\left\{u>0 \cap B_{r}\right\}\right|\right) \leq \lambda r^{N} C_{N}\right.$.

Combining (2.2.2) and (2.2.3) we obtain

$$
\begin{align*}
& \int_{A_{2}} G(|\nabla u-\nabla v|) d x \leq C \lambda r^{N} \tag{2.2.4}\\
& \int_{A_{1}} F(|\nabla u|)|\nabla u-\nabla v|^{2} d x \leq C \lambda r^{N} \tag{2.2.5}
\end{align*}
$$

Let $\varepsilon>0$ and suppose that $r^{\varepsilon} \leq 1 / 2$. Then, using (g3), Hölder's inequality, the definition of A_{1} and (2.2.5) we obtain,

$$
\begin{align*}
& \int_{A_{1} \cap B_{r^{1+\varepsilon}}} G(|\nabla u-\nabla v|) d x \tag{2.2.6}\\
& \quad \leq C\left(\int_{A_{1}} F(|\nabla u|)|\nabla u-\nabla v|^{2} d x\right)^{1 / 2}\left(\int_{B_{r^{1}+\varepsilon}} G(|\nabla u|) d x\right)^{1 / 2} \\
&
\end{align*}
$$

Therefore, by (2.2.4) and (2.2.6), we get,

$$
\begin{equation*}
\int_{B_{r^{1+\varepsilon}}} G(|\nabla u-\nabla v|) d x \leq C \lambda^{1 / 2}\left(\lambda^{1 / 2} r^{N}+r^{N / 2}\left(\int_{B_{r^{1+\varepsilon}}} G(|\nabla u|) d x\right)^{1 / 2}\right) \tag{2.2.7}
\end{equation*}
$$

On the other hand by property (3) of Lemma 1.2 .18 we have for every $\beta \in(0, N)$, that there exists a constant $C=C\left(\delta, g_{0}, N, \beta,\|v\|_{L^{\infty}\left(B_{r}\right)}\right)$ such that

$$
\begin{equation*}
\int_{B_{r / 2}} G(|\nabla v|) d x \leq C r^{\beta} \tag{2.2.8}
\end{equation*}
$$

By the maximum principle we have,

$$
\begin{equation*}
\|v\|_{L^{\infty}\left(B_{r}\right)} \leq\|v\|_{L^{\infty}\left(\partial B_{r}\right)}=\|u\|_{L^{\infty}\left(\partial B_{r}\right)} \leq\|u\|_{L^{\infty}\left(B_{r}\right)} \leq\|v\|_{L^{\infty}\left(B_{r}\right)} \tag{2.2.9}
\end{equation*}
$$

where in the last inequality we are using Lemma 1.2.35. Then $\|v\|_{L^{\infty}\left(B_{r}\right)}=\|u\|_{L^{\infty}\left(B_{r}\right)}$. This means that the constant C depends on δ, g_{0}, N, β and $\|u\|_{L^{\infty}\left(B_{r}\right)}$.

By (G2) we have, $G(|\nabla u|) \leq C(G(|\nabla u-\nabla v|)+G(|\nabla v|))$. Therefore by (2.2.7) and (2.2.8), and for $r \leq 1$ we have,

$$
\begin{aligned}
\int_{B_{r^{1+\varepsilon}}} G(|\nabla u|) d x & \leq C\left(r^{\beta}(1+\lambda)+\lambda^{1 / 2} r^{N / 2}\left(\int_{B_{r}^{1+\varepsilon}} G(|\nabla u|) d x\right)^{1 / 2}\right) \\
& \leq C\left(r^{\beta}(1+\lambda)+r^{\beta / 2}(1+\lambda)^{1 / 2}\left(\int_{B_{r^{1+\varepsilon}}} G(|\nabla u|) d x\right)^{1 / 2}\right)
\end{aligned}
$$

If we call $A=\int_{B_{r^{1}+\varepsilon}} G(|\nabla u|) d x$, we have

$$
\begin{aligned}
A & \leq C\left((1+\lambda) r^{\beta}+(1+\lambda)^{1 / 2} r^{\beta / 2} A^{1 / 2}\right) \leq C\left((1+\lambda) r^{\beta}+2(1+\lambda)^{1 / 2} r^{\beta / 2} A^{1 / 2}\right) \\
& =C\left(\left(r^{\beta / 2}(1+\lambda)^{1 / 2}+A^{1 / 2}\right)^{2}-A\right)
\end{aligned}
$$

therefore

$$
\begin{aligned}
&(C+1) A \leq C\left(r^{\beta / 2}(1+\lambda)^{1 / 2}+A^{1 / 2}\right)^{2} \\
& \Rightarrow(C+1)^{1 / 2} A^{1 / 2} \leq C^{1 / 2}\left(r^{\beta / 2}(1+\lambda)^{1 / 2}+A^{1 / 2}\right) \\
& \Rightarrow\left((C+1)^{1 / 2}-C^{1 / 2}\right) A^{1 / 2} \leq C^{1 / 2} r^{\beta / 2}(1+\lambda)^{1 / 2} .
\end{aligned}
$$

Thus, we have the inequality

$$
\begin{equation*}
\int_{B_{r^{1+\varepsilon}}} G(|\nabla u|) d x \leq\left((C+1)^{1 / 2}+C^{1 / 2}\right)^{2} C(1+\lambda) r^{\beta} \tag{2.2.10}
\end{equation*}
$$

Let now, $0<\alpha<1$, and take $\varepsilon>0$ such that $\beta:=(1+\varepsilon)(N-(1-\alpha))<N$. Take $\rho_{0}=\left(\frac{1}{2}\right)^{1+1 / \varepsilon}$. Then, if $0<\rho<\rho_{0}$, taking $r=\rho^{1 /(1+\varepsilon)}$, we have that $r^{\varepsilon}<1 / 2$. And therefore replacing in (2.2.10) we have,

$$
\begin{equation*}
\int_{B_{\rho}} G(|\nabla u|) \leq\left((C+1)^{1 / 2}+C^{1 / 2}\right) C(1+\lambda) \rho^{N-(1-\alpha)} \tag{2.2.11}
\end{equation*}
$$

and by Lemma 1.2.11 we conclude that for all $0<\alpha<1, u \in C^{\alpha}\left(B_{\rho}\right)$ for $0<\rho \leq \rho_{0}$ and $\|u\|_{C^{\alpha}\left(B_{\rho}\right)} \leq \bar{C}$ where $\bar{C}=\bar{C}\left(N, \alpha, g_{0}, \delta, \lambda, \rho_{0},\|u\|_{L^{\infty}(\Omega)}\right)$.

We then have that u is continuous. Therefore, $\{u>0\}$ is open. We can prove the following property for minimizers.

Lemma 2.2.12. Let u be a minimizer of \mathcal{J}. Then u is an \mathcal{L}-solution in $\{u>0\}$.

Proof. Let $B \subset\{u>0\}$ and v such that

$$
\begin{cases}\mathcal{L} v=0 & \text { in } B \\ v=u & \text { in } B^{c}\end{cases}
$$

By the comparison principle we have that $v \geq u$ in B. Thus,

$$
\begin{aligned}
0 & \geq \int_{\Omega} G(|\nabla u|)-G(|\nabla v|) d x+\lambda|\{u>0\}|-\lambda|\{v>0\}|=\int_{\Omega} G(|\nabla u|)-G(|\nabla v|) d x \\
& \geq C\left(\int_{A_{1}} F(|\nabla u|)|\nabla u-\nabla v|^{2} d x+\int_{A_{2}} G(|\nabla u-\nabla v|) d x\right)
\end{aligned}
$$

where we are using Theorem 1.2.38 and A_{1}, A_{2}, and F are as define therein.
Therefore

$$
\int_{A_{1}} F(|\nabla u|)|\nabla u-\nabla v|^{2} d x=0 .
$$

Thus, $F(|\nabla u|)|\nabla u-\nabla v|^{2}=0$ in A_{1} and, by the definition of A_{1}, we conclude that $|\nabla u-\nabla v|=0$ in this set.

On the other hand, we also have

$$
\int_{A_{2}} G(|\nabla u-\nabla v|) d x=0
$$

so that $|\nabla u-\nabla v|=0$ everywhere in B.
Hence, as $u=v$ on ∂B we have that $u=v$. Thus, $\mathcal{L} u=0$ in B.

In order to get the Lipschitz continuity we first prove the following estimate for minimizers.

Lemma 2.2.13. For all $x \in \Omega$, with $5 d(x)<d(x, \partial \Omega)$ we have $u(x) \leq C d(x)$, where $d(x)=\operatorname{dist}(x,\{u=0\})$. The constant C depends only on N, δ, g_{0} and λ.

To prove Lemma 2.2.13 it is enough to prove the following lemma. In this proof it is essential that the class of functions G satisfying condition (0.0.2) is closed under the rescaling

$$
G_{s}(t):=\frac{G(s t)}{s g(s)}
$$

Lemma 2.2.14. If u is a minimizer in B_{1} with $u(0)=0$, there exists a constant C such that $\|u\|_{L^{\infty}\left(B_{1 / 4}\right)} \leq C$, and C depends only on N, λ, δ and g_{0}.

Proof. Suppose that there exists a sequence $u_{k} \in \mathcal{K}$ of minimizers in $B_{1}(0)$ such that

$$
u_{k}(0)=0 \quad \text { and } \quad \max _{\bar{B}_{1 / 4}} u_{k}(x)>k .
$$

Let $d_{k}(x)=\operatorname{dist}\left(x,\left\{u_{k}=0\right\}\right)$ and $\mathcal{O}_{k}=\left\{x \in B_{1}: d_{k}(x) \leq \frac{1-|x|}{3}\right\}$. Since $u_{k}(0)=0$ there holds that $\bar{B}_{1 / 4} \subset \mathcal{O}_{k}$, therefore

$$
m_{k}:=\sup _{\mathcal{O}_{k}}(1-|x|) u_{k}(x) \geq \max _{\bar{B}_{1 / 4}}(1-|x|) u_{k}(x) \geq \frac{3}{4} \max _{\bar{B}_{1 / 4}} u_{k}(x)>\frac{3}{4} k .
$$

For each fixed k, u_{k} is bounded. Thus $(1-|x|) u_{k}(x) \rightarrow 0$ when $|x| \rightarrow 1$ which means that there exists $x_{k} \in \mathcal{O}_{k}$ such that $\left(1-\left|x_{k}\right|\right) u_{k}\left(x_{k}\right)=\sup _{\mathcal{O}_{k}}(1-|x|) u_{k}(x)$, and then

$$
u_{k}\left(x_{k}\right)=\frac{m_{k}}{1-\left|x_{k}\right|} \geq m_{k}>\frac{3}{4} k
$$

Let $\delta_{k}:=d_{k}\left(x_{k}\right) \leq \frac{1-\left|x_{k}\right|}{3}$ and $y_{k} \in \partial\left\{u_{k}>0\right\} \cap B_{1}$ such that $\left|y_{k}-x_{k}\right|=\delta_{k}$. Then,
(1) $B_{2 \delta_{k}}\left(y_{k}\right) \subset B_{1}$,
since if $y \in B_{2 \delta_{k}}\left(y_{k}\right) \Rightarrow|y|<3 \delta_{k}+\left|x_{k}\right| \leq 1$,
(2) $B_{\frac{\delta_{k}}{2}}\left(y_{k}\right) \subset \mathcal{O}_{k}$,
since if $y \in B_{\frac{\delta_{k}}{2}}\left(y_{k}\right) \Rightarrow|y| \leq \frac{3}{2} \delta_{k}+\left|x_{k}\right| \leq 1-\frac{3}{2} \delta_{k} \Rightarrow d_{k}(y) \leq \frac{\delta_{k}}{2} \leq \frac{1-|y|}{3}$ and
(3) if $z \in B_{\frac{\delta_{k}}{2}}\left(y_{k}\right) \Rightarrow 1-|z| \geq 1-\left|x_{k}\right|-\left|x_{k}-z\right| \geq 1-\left|x_{k}\right|-\frac{3}{2} \delta_{k} \geq \frac{1-\left|x_{k}\right|}{2}$.

By (2) we have

$$
\max _{\mathcal{O}_{k}}(1-|x|) u_{k}(x) \geq \max _{\frac{B_{\frac{\delta_{k}}{2}}^{2}}{}\left(y_{k}\right)}(1-|x|) u_{k}(x) \geq \max _{\frac{\delta_{\frac{\delta_{k}}{2}}^{2}}{}\left(y_{k}\right)} \frac{\left(1-\left|x_{k}\right|\right)}{2} u_{k}(x),
$$

where in the last inequality we are using (3). Then,

$$
\begin{equation*}
2 u_{k}\left(x_{k}\right) \geq \max _{\frac{\delta_{k}}{2}\left(y_{k}\right)} u_{k}(x) \tag{2.2.15}
\end{equation*}
$$

As $B_{\delta_{k}}\left(x_{k}\right) \subset\left\{u_{k}>0\right\}$ there holds that $\mathcal{L} u_{k}=0$ in $B_{\delta_{k}}\left(x_{k}\right)$, and by Harnack inequality (Theorem 1.2.16) we have

$$
\begin{equation*}
\min _{B_{\frac{3}{4} \delta_{k}}\left(x_{k}\right)} u_{k}(x) \geq c u_{k}\left(x_{k}\right) . \tag{2.2.16}
\end{equation*}
$$

As $\overline{B_{\frac{3}{4} \delta_{k}}}\left(x_{k}\right) \cap \overline{B_{\frac{\delta_{k}}{4}}}\left(y_{k}\right) \neq \emptyset$ we have by (2.2.16)

$$
\begin{equation*}
\frac{\max }{B_{\frac{\delta_{k}}{4}}^{4}\left(y_{k}\right)} u_{k}(x) \geq c u_{k}\left(x_{k}\right) . \tag{2.2.17}
\end{equation*}
$$

Let $w_{k}(x)=\frac{u_{k}\left(y_{k}+\frac{\delta_{k}}{2} x\right)}{u_{k}\left(x_{k}\right)}$. Then, $w_{k}(0)=0$ and, by (2.2.15) and (2.2.17) we have,

$$
\begin{equation*}
\max _{\overline{B_{1}}} w_{k} \leq 2 \quad \frac{\max }{\overline{B_{1 / 2}}} w_{k} \geq c>0 \tag{2.2.18}
\end{equation*}
$$

Let now

$$
J_{k}(w)=\int_{B_{1}} \frac{G\left(|\nabla w| c_{k}\right)}{g\left(c_{k}\right) c_{k}} d x+\frac{\lambda}{g\left(c_{k}\right) c_{k}} \int_{B_{1}} \chi_{\{w>0\}}(x) d x
$$

where $c_{k}=\frac{2 u_{k}\left(x_{k}\right)}{\delta_{k}}$ so that $c_{k} \rightarrow \infty$.
Let us prove, that w_{k} is a minimizer of J_{k}. In fact, for any $v \in W^{1, G}\left(B_{1}\right)$ with $v=w_{k}$ on ∂B_{1}, define $v_{k}(y)=v\left(\frac{y-y_{k}}{\delta_{k} / 2}\right) u_{k}\left(x_{k}\right)$. Thus, $v_{k}=u_{k}$ on $\partial B_{\delta_{k} / 2}\left(y_{k}\right)$. Then,

$$
\begin{aligned}
J_{k}\left(w_{k}\right) & =\frac{2^{N}}{\delta_{k}^{N}}\left(\int_{B_{\frac{\delta_{k}}{2}}\left(y_{k}\right)} \frac{G\left(\left|\nabla u_{k}\right|\right)}{g\left(c_{k}\right) c_{k}} d y+\frac{\lambda}{g\left(c_{k}\right) c_{k}} \int_{B_{\frac{\delta_{k}}{2}}^{2}} \chi_{\left\{u_{k}>0\right\}}(y) d y\right) \\
& \leq \frac{2^{N}}{\delta_{k}^{N}}\left(\int_{B_{\delta_{k}}^{2}\left(y_{k}\right)} \frac{G\left(\left|\nabla v_{k}\right|\right)}{g\left(c_{k}\right) c_{k}} d y+\frac{\lambda}{g\left(c_{k}\right) c_{k}} \int_{B_{\frac{\delta_{k}}{2}}\left(y_{k}\right)} \chi_{\left\{v_{k}>0\right\}}(y) d y\right) \\
& =\int_{B_{1}} \frac{G\left(|\nabla v| c_{k}\right)}{g\left(c_{k}\right) c_{k}} d x+\frac{\lambda}{g\left(c_{k}\right) c_{k}} \int_{B_{1}} \chi_{\{v>0\}}(y) d x=J_{k}(v) .
\end{aligned}
$$

Let $g_{k}(t):=\frac{g\left(t c_{k}\right)}{g\left(c_{k}\right)}$, where the primitive of g_{k} is $G_{k}(t)=\frac{G\left(t c_{k}\right)}{g\left(c_{k}\right) c_{k}}$ and $\lambda_{k}=\frac{\lambda}{g\left(c_{k}\right) c_{k}} \rightarrow 0$. Then,

$$
J_{k}(w)=\int_{B_{1}} G_{k}(|\nabla w|) d x+\lambda_{k} \int_{B_{1}} \chi_{\{w>0\}}(x) d x
$$

Observe that for all k, g_{k} satisfies the inequality (0.0.2), with the same constants δ and g_{0}. In fact,

$$
\frac{g_{k}^{\prime}(t) t}{g_{k}(t)}=\frac{g^{\prime}\left(c_{k} t\right) c_{k} t}{g_{k}\left(c_{k} t\right)}
$$

and then by (0.0.2) applied to $t c_{k}$ we have the desired inequality.
Let us take $v_{k} \in W^{1, G}\left(B_{3 / 4}\right)$ such that,

$$
\begin{align*}
\mathcal{L}_{k} v_{k} & =0 & \text { in } B_{3 / 4} \\
v_{k} & =w_{k} & \text { on } \partial B_{3 / 4} \tag{2.2.19}
\end{align*}
$$

where \mathcal{L}_{k} is the operator associated to g_{k}. By (2.2.7), (2.2.11) and the fact that $\lambda_{k} \rightarrow 0$, we have that

$$
\int_{B_{3 / 4}} G_{k}\left(\left|\nabla w_{k}-\nabla v_{k}\right|\right) d x \leq C \lambda_{k}^{1 / 2}
$$

where C depends on δ, g_{0}, N and $\left\|w_{k}\right\|_{L^{\infty}\left(B_{1}\right)}$. We have used that $\left\{\lambda_{k}\right\}$ is bounded when applying (2.2.7) and (2.2.11). We also have, by (2.2.18) that C depends only on δ, g_{0} and N. On the other hand, by (G1) and (g3) we have

$$
G_{k}(t)=\frac{G\left(t c_{k}\right)}{g\left(c_{k}\right) c_{k}} \geq \frac{G\left(c_{k}\right)}{\left(1+g_{0}\right) g\left(c_{k}\right) c_{k}} \min \left\{t^{g_{0}+1}, t^{\delta+1}\right\} \geq \frac{1}{\left(1+g_{0}\right)^{2}} \min \left\{t^{g_{0}+1}, t^{\delta+1}\right\}
$$

Therefore,

$$
\begin{aligned}
C \lambda_{k}^{1 / 2} \geq \int_{B_{3 / 4}} G_{k}\left(\left|\nabla w_{k}-\nabla v_{k}\right|\right) d x \geq & \int_{B_{3 / 4} \cap\left\{\left|\nabla w_{k}-\nabla v_{k}\right|<1\right\}} \frac{\left|\nabla w_{k}-\nabla v_{k}\right|^{g_{0}+1}}{\left(1+g_{0}\right)^{2}} d x \\
& +\int_{B_{3 / 4} \cap\left\{\left|\nabla w_{k}-\nabla v_{k}\right| \geq 1\right\}} \frac{\left|\nabla w_{k}-\nabla v_{k}\right|^{\delta+1}}{\left(1+g_{0}\right)^{2}} d x .
\end{aligned}
$$

Hence

$$
\begin{align*}
A_{k} & :=\int_{B_{3 / 4} \cap\left\{\left|\nabla w_{k}-\nabla v_{k}\right| \geq 1\right\}}\left|\nabla w_{k}-\nabla v_{k}\right|^{\delta+1} d x \rightarrow 0 \quad \text { and } \tag{2.2.20}\\
B_{k} & :=\int_{B_{3 / 4} \cap\left\{\left|\nabla w_{k}-\nabla v_{k}\right|<1\right\}}\left|\nabla w_{k}-\nabla v_{k}\right|^{g_{0}+1} d x \rightarrow 0 .
\end{align*}
$$

By Hölder inequality and (2.2.20) we have,

$$
C_{k}:=\int_{B_{3 / 4} \cap\left\{\left|\nabla w_{k}-\nabla v_{k}\right|<1\right\}}\left|\nabla w_{k}-\nabla v_{k}\right|^{\delta+1} d x \leq B_{k}^{\frac{\delta+1}{g_{0}+1}}\left|B_{3 / 4}\right|^{\frac{g_{0}-\delta}{g_{0}+\delta}} \rightarrow 0,
$$

therefore,

$$
\begin{equation*}
\int_{B_{3 / 4}}\left|\nabla w_{k}-\nabla v_{k}\right|^{\delta+1} d x=A_{k}+C_{k} \rightarrow 0 . \tag{2.2.21}
\end{equation*}
$$

As $w_{k}=v_{k}$ on $\partial B_{3 / 4}$ then $p_{k}=w_{k}-v_{k} \in W_{0}^{1, \delta+1}\left(B_{3 / 4}\right)$ and by (2.2.21) we have

$$
\begin{equation*}
p_{k} \rightarrow 0 \quad \text { in } W_{0}^{1, \delta+1}\left(B_{3 / 4}\right) . \tag{2.2.22}
\end{equation*}
$$

On the other hand by Theorem 2.2 .1 we have that,

$$
\begin{equation*}
\left\|w_{k}\right\|_{C^{\alpha}\left(B^{\prime}\right)} \leq C\left(\left\|w_{k}\right\|_{L^{\infty}\left(B_{3 / 4}\right)}, g_{0}, \delta, B^{\prime}, G_{k}(1)\right) \leq C\left(g_{0}, \delta, B^{\prime}\right) \quad \forall B^{\prime} \subset \subset B_{3 / 4} \tag{2.2.23}
\end{equation*}
$$

(Here again we may suppose that the constant C dose not depend on λ_{k}, since $\left.\lambda_{k} \rightarrow 0\right)$. Also, recall that $\left\|w_{k}\right\|_{L^{\infty}\left(B_{1}\right)} \leq 2$, and that $G_{k}(1)=\frac{G\left(c_{k}\right)}{c_{k} g\left(c_{k}\right)} \leq 1$.

As v_{k} are solutions of (2.2.19) by Theorem 1.2.19, we have for $B^{\prime} \subset \subset B_{3 / 4}$

$$
\begin{equation*}
\left\|v_{k}\right\|_{C^{1, \alpha}\left(B^{\prime}\right)} \leq C\left(N, \delta, g_{0}, \operatorname{dist}\left(B^{\prime}, \partial B_{3 / 4}\right),\left\|v_{k}\right\|_{L^{\infty}\left(B_{3 / 4}\right)}\right) \tag{2.2.24}
\end{equation*}
$$

By (g3) and $\left\|v_{k}\right\|_{L^{\infty}\left(B_{3 / 4}\right)} \leq\left\|w_{k}\right\|_{L^{\infty}\left(\partial B_{3 / 4}\right)} \leq 2$. Then, this constant only depends on N, δ, g_{0} and B^{\prime}.

Therefore, by (2.2.23) and (2.2.24) we have that there exist subsequences, that we call for simplicity v_{k} and w_{k}, and functions $w_{0}, v_{0} \in C^{\alpha}\left(B^{\prime}\right)$ for every $B^{\prime} \subset \subset B_{3 / 4}$, such that

$$
\begin{aligned}
& w_{k} \rightarrow w_{0} \quad \text { uniformly in } B_{3 / 4}, \\
& v_{k} \rightarrow v_{0} \text { uniformly in } B^{\prime},
\end{aligned}
$$

Then,

$$
p_{k}=w_{k}-v_{k} \rightarrow w_{0}-v_{0} \quad \text { uniformly in } B^{\prime} .
$$

But by (2.2.22) we have $p_{k} \rightarrow 0$ in $W^{1, \delta+1}\left(B^{\prime}\right)$. Thus, $v_{0}=w_{0}$.

Using Harnack inequality (see Theorem 1.2.16), we have that

$$
\sup _{B_{1 / 2}} v_{k} \leq C \inf _{B_{1 / 2}} v_{k}
$$

where the constant C depends only on g_{0}, δ, N. Then, passing to the limit and using that $v_{0}=w_{0}$ we have that

$$
\sup _{B_{1 / 2}} w_{0} \leq C \inf _{B_{1 / 2}} w_{0} .
$$

But by (2.2.18), passing to the limit again, we have that $\sup _{B_{1 / 2}} w_{0}>c>0$ and $\inf _{B_{1 / 2}} w_{0}=0$ since $w_{k}(0)=0$ for every k, this is a contradiction.

Proof of Lemma 2.2.13. Let $x_{0} \in\{u>0\}$ with $5 d\left(x_{0}\right)<d\left(x_{0}, \partial \Omega\right)$. Take $\widetilde{u}(x)=\frac{u\left(y_{0}+4 d_{0} x\right)}{4 d_{0}}$, where $d_{0}=\operatorname{dist}\left(x_{0}, \partial\{u>0\}\right)=\operatorname{dist}\left(x_{0}, y_{0}\right)$ with $y_{0} \in \partial\{u>0\}$. If we prove that \widetilde{u} is a minimizer in $B_{1}(0)$, as $\widetilde{u}(0)=0$ and $\frac{\left|x_{0}-y_{0}\right|}{4 d_{0}}=1 / 4$, by Lemma 2.2.14 we have

$$
C \geq \widetilde{u}\left(\frac{x_{0}-y_{0}}{4 d_{0}}\right)=\frac{u\left(x_{0}\right)}{4 d_{0}}
$$

and the result follows.
So, let us prove that \tilde{u} is a minimizer in $B_{1}(0)$. As $5 d\left(x_{0}\right)<d\left(x_{0}, \partial \Omega\right)$ we have, $B_{4 d_{0}}\left(y_{0}\right) \subset \Omega$. Let $\widetilde{v} \in W^{1, G}\left(B_{1}(0)\right)$ and v such that $\widetilde{v}(x)=\frac{v\left(y_{0}+4 d_{0} x\right)}{4 d_{0}}$. Then, changing variables we have,

$$
\int_{B_{1}} G(|\nabla \widetilde{v}|) d x=\int_{B_{1}} G\left(\left|\nabla v\left(y_{0}+4 d_{0} x\right)\right|\right) d x=\int_{B_{4 d_{0}}\left(y_{0}\right)} \frac{G(|\nabla v(y)|)}{d_{0}^{N} 4^{N}} d y
$$

and

$$
\left|\left\{\widetilde{v}>0 \cap B_{1}\right\}\right|=\frac{\left|\left\{\widetilde{v}>0 \cap B_{4 d_{0}}\left(y_{0}\right)\right\}\right|}{d_{0}^{N} 4^{N}} .
$$

As u is a minimizer of \mathcal{J} in $B_{4 d_{0}}\left(y_{0}\right)$ we have, if $\widetilde{v}=\widetilde{u}$ on $\partial B_{1}(0)$,

$$
\begin{aligned}
\int_{B_{1}(0)} G(|\nabla \widetilde{u}(x)|) d x & +\lambda\left|\left\{\widetilde{u}>0 \cap B_{1}(0)\right\}\right| \\
& =\int_{B_{4 d_{0}}\left(y_{0}\right)} \frac{G(|\nabla u(y)|)}{d_{0}^{N} 4^{N}} d y+\frac{\lambda\left|\left\{u>0 \cap B_{4 d_{0}}\left(y_{0}\right)\right\}\right|}{d_{0}^{N} 4^{N}} \\
& \leq \int_{B_{4 d_{0}}\left(y_{0}\right)} \frac{G(|\nabla v(y)|)}{d_{0}^{N} 4^{N}} d y+\frac{\lambda\left|\left\{v>0 \cap B_{4 d_{0}}\left(y_{0}\right)\right\}\right|}{d_{0}^{N} 4^{N}} \\
& =\int_{B_{1}(0)} G(|\nabla \widetilde{v}(x)|) d x+\lambda\left|\left\{\widetilde{v}>0 \cap B_{1}(0)\right\}\right| .
\end{aligned}
$$

Therefore, \widetilde{u} is a minimizer of \mathcal{J} in $B_{1}(0)$.

Now we can prove the uniform Lipschitz continuity of minimizers of \mathcal{J}.

Theorem 2.2.25. Let u be a minimizer. Then u is locally Lipschitz continuous in Ω. Moreover, for any connected open subset $D \subset \subset \Omega$ containing free boundary points, the Lipschitz constant of u in D is estimated by a constant C depending only on $N, g_{0}, \delta, \operatorname{dist}(D, \partial \Omega)$ and λ.

Proof. First, take x such that $d(x)<\frac{1}{5} \operatorname{dist}(x, \partial \Omega)$ and $\widetilde{u}(y)=\frac{1}{d(x)} u(x+d(x) y)$ for $y \in B_{1}(0)$. By Lemma 2.2 .14 we have $\widetilde{u}(0) \leq C$ in B_{1}, where C depends only on N, λ, δ and g_{0}. Since $u>0$ in $B_{d(x)}(x), \mathcal{L} u=0$ in this ball. Thus $\mathcal{L} \widetilde{u}=0$ in $B_{1}(0)$. By Harnack inequality $\widetilde{u}(y) \leq C$ in $B_{1 / 2}(0)$ where C depends only on N, λ, δ and g_{0}. Now, by property (2) in Lemma $1.2 .18,|\nabla \widetilde{u}(0)| \leq C\|\widetilde{u}\|_{L^{\infty}\left(B_{1 / 2}\right)} \leq C$ where C depends only on N, λ, δ and g_{0}. Since $\nabla u(x)=\nabla \widetilde{u}(0)$, the result follows in the case $d(x)<\frac{1}{5} \operatorname{dist}(x, \partial \Omega)$.

Let r_{1} such that dist $(\mathrm{x}, \partial \Omega) \geq \mathrm{r}_{1}>0 \forall x \in D$, take D^{\prime}, satisfying $D \subset \subset D^{\prime} \subset \subset \Omega$ given by

$$
D^{\prime}=\left\{x \in \Omega / \operatorname{dist}(\mathrm{x}, \mathrm{D})<\mathrm{r}_{1} / 2\right\} .
$$

If $d(x) \leq \frac{1}{5} \operatorname{dist}(x, \partial \Omega)$ we proved that $|\nabla u(x)| \leq C$. If $d(x)>\frac{1}{5} \operatorname{dist}(x, \partial \Omega)$, there holds that $u>0$ in $B_{\frac{r_{1}}{5}}(x)$ and $B_{\frac{r_{1}}{5}}(x) \subset D^{\prime}$ so that $|\nabla u(x)| \leq \frac{C}{r_{1}}\|u\|_{L^{\infty}\left(D^{\prime}\right)}$.

To prove the second part of the theorem, consider now any domain D that contains a free boundary point, and D^{\prime} as in the previous paragraph. Let us see that $\|u\|_{L^{\infty}\left(D^{\prime}\right)}$ is bounded by a constant that depends only on $N, D, r_{1}, \lambda, \delta$, and g_{0} (we argue as in [4] Theorem 4.3). Let $x_{0} \in D$ and $r_{0}=\frac{r_{1}}{5}$, since D^{\prime} is connected and not contained in $\{u>0\} \cap \Omega$, there exists $x_{0}, \ldots, x_{k} \in D^{\prime}$ such that $x_{j} \in$ $B_{\frac{r_{0}}{2}}\left(x_{j-1}\right) j=1, \ldots, k, B_{r_{0}}\left(x_{j}\right) \subset\{u>0\} j=0, \ldots, k-1$ and $B_{r_{0}}\left(x_{k}\right) \nsubseteq\{u>0\}$. By Lemma 2.2.14 $u\left(x_{k}\right) \leq C r_{0}$ and by Harnack inequality we have $u\left(x_{j+1}\right) \geq c u\left(x_{j}\right)$. Inductively we obtain. Therefore, the supremum of u over D^{\prime} can be estimated by a constant depending only on $N, r_{1}, \lambda, \delta$, and g_{0}.

Observe that, if we don't use Lemma 2.2.13, then we obtain that the Lipschitz constant depends also on $\|u\|_{L^{\infty}(\Omega)}$ (that is, depends also on the Dirichlet datum φ_{0}).

3. Nondegeneracy

In this section we prove the nondegeneracy of a minimizer at the free boundary and the locally uniform positive density of the sets $\{u>0\}$ and $\{u=0\}$.

Lemma 2.3.1. Let $\gamma>0, D \subset \subset \Omega$ and C the constant in Theorem 2.2.25. Then, if $C_{1}>C, B_{r} \subset \Omega$ and u is a minimizer, there holds that

$$
\frac{1}{r}\left(f_{B_{r}} u^{\gamma}\right)^{1 / \gamma} \geq C_{1} \quad \text { implies } \quad u>0 \text { in } B_{r}
$$

Proof. If B_{r} contains a free boundary point, if u vanishes at some point $x_{0} \in$ B_{r}, and since $|\nabla u(x)| \leq C$ in B_{r}, then $\left|u(x)-u\left(x_{0}\right)\right| \leq C r$. That is, $u(x) \leq C r$ in B_{r} and then $\frac{1}{r}\left(f_{B_{r}} u^{\gamma}\right)^{1 / \gamma} \leq C$ which is a contradiction.

Lemma 2.3.2. For any $\gamma>1$ and for any $0<\kappa<1$ there exists a constant c_{κ} such that, for any minimizer u and for every $B_{r} \subset \Omega$, we have

$$
\frac{1}{r}\left(f_{B_{r}} u^{\gamma}\right)^{1 / \gamma} \leq c_{\kappa} \quad \text { implies } \quad u=0 \text { in } B_{\kappa r},
$$

where c_{κ} depends also on $N, \lambda, g_{0}, \delta$ and γ.

Proof. We may suppose that $r=1$ and that B_{r} is centered at zero, (if not, we take the rescaled function $\left.\tilde{u}=\frac{u\left(x_{0}+r x^{\prime}\right)}{r}\right)$. By Theorem 1.2.14 we have

$$
\varepsilon:=\sup _{B_{\sqrt{k}}} u<C\left(f_{B_{1}} u^{\gamma}\right)^{1 / \gamma}
$$

where $C=C(\kappa, \gamma)$. Now chose v such that

$$
v= \begin{cases}C_{1} \varepsilon\left(e^{-\mu|x|^{2}}-e^{-\mu \kappa^{2}}\right) & \text { in } B_{\sqrt{\kappa}} \backslash B_{\kappa}, \\ 0 & \text { in } B_{\kappa}\end{cases}
$$

Here the constants $\mu>0$ and $C_{1}<0$ with $C_{1}=C_{1}(\mu, \kappa)$, are chosen so that $\mathcal{L} v<0$ in $B_{\sqrt{\kappa}} \backslash B_{\kappa}$ (see Lemma 1.2.47) and $v=\varepsilon$ on $\partial B_{\sqrt{\kappa}}$. Hence, $v \geq u$ on $\partial B_{\sqrt{\kappa}}$, and therefore if

$$
w=\left\{\begin{array}{lll}
\min (u, v) & \text { in } \quad B_{\sqrt{\kappa}} \\
u & \text { in } \Omega \backslash B_{\sqrt{\kappa}}
\end{array}\right.
$$

w is an admissible function for the minimizing problem. Thus, using the convexity of G, we find that

$$
\begin{aligned}
\int_{B_{\kappa}} & G(|\nabla u|) d x+\lambda\left|B_{\kappa} \cap\{u>0\}\right| \\
& =\mathcal{J}(u)-\int_{\Omega \backslash B_{\kappa}} G(|\nabla u|) d x+\lambda\left|B_{\kappa} \cap\{u>0\}\right|-\lambda|\Omega \cap\{u>0\}| \\
& \leq \mathcal{J}(w)-\int_{\Omega \backslash B_{\kappa}} G(|\nabla u|) d x+\lambda\left|B_{\kappa} \cap\{u>0\}\right|-\lambda|\Omega \cap\{u>0\}| \\
& \leq \int_{B_{\sqrt{\kappa}} \backslash B_{\kappa}} G(|\nabla w|) d x-\int_{B_{\sqrt{\kappa}} \backslash B_{\kappa}} G(|\nabla u|) d x \\
& \leq \int_{B_{\sqrt{\kappa}} \backslash B_{\kappa}} g(|\nabla w|) \frac{\nabla w}{|\nabla w|}(\nabla w-\nabla u) d x \\
& =-\int_{B_{\sqrt{\kappa}} \backslash B_{\kappa}} g(|\nabla w|) \frac{\nabla w}{|\nabla w|} \nabla(u-v)^{+} d x \\
& =-\int_{\left(B_{\sqrt{\kappa}} \backslash B_{\kappa}\right) \cap\{u>v\}} g(|\nabla v|) \frac{\nabla v}{|\nabla v|} \nabla(u-v)^{+} d x
\end{aligned}
$$

and as v is a supersolution we have,

$$
\int_{B_{\kappa}} G(|\nabla u|) d x+\lambda\left|B_{\kappa} \cap\{u>0\}\right| \leq-\int_{\partial B_{\kappa}} g(|\nabla v|) \frac{\nabla v}{|\nabla v|} u \nu d \mathcal{H}^{N-1} .
$$

And, as $|\nabla v| \leq C \varepsilon$ we have that

$$
\int_{B_{\kappa}} G(|\nabla u|) d x+\lambda\left|B_{\kappa} \cap\{u>0\}\right| \leq g(C \varepsilon) \int_{\partial B_{\kappa}} u d \mathcal{H}^{N-1} .
$$

By Sobolev's trace inequality and by $(\widetilde{g} 3)$, for $\widetilde{G}(\alpha)=\lambda$ we have,

$$
\begin{aligned}
\int_{\partial B_{\kappa}} u & \leq C(N, \kappa) \int_{B_{\kappa}}|\nabla u|+u d x \\
& \leq C(N, \kappa)\left(\int_{B_{\kappa}} G\left(\frac{|\nabla u|}{\alpha}\right)+\int_{B_{\kappa} \cap\{u>0\}} \widetilde{G}(\alpha)+\int_{B_{\kappa}} u d x\right) \\
& \leq C(N, \kappa, \lambda)(1+\varepsilon)\left(\int_{B_{\kappa}} G\left(|\nabla u|+\lambda\left|\{u>0\} \cap B_{\kappa}\right|\right)\right.
\end{aligned}
$$

where in the last inequality we are using that $\int_{B_{\kappa}} u d x \leq \varepsilon\left|\{u>0\} \cap B_{\kappa}\right|$. Therefore,

$$
\begin{aligned}
\int_{B_{\kappa}} G(|\nabla u|) d x & +\lambda\left|B_{\kappa} \cap\{u>0\}\right| \\
& \leq g(C \varepsilon) C(1+\varepsilon)\left(\int_{B_{\kappa}} G(|\nabla u|) d x+\lambda\left|B_{\kappa} \cap\{u>0\}\right|\right) .
\end{aligned}
$$

So that, if ε is small enough

$$
\int_{B_{\kappa}} G(|\nabla u|) d x+\lambda\left|B_{\kappa} \cap\{u>0\}\right|=0 .
$$

Then, $u=0$ in B_{κ} and the result follows.

As a corollary we have,
Corollary 2.3.3. Let $D \subset \subset \Omega, x \in D \cap \partial\{u>0\}$. Then

$$
\sup _{B_{r}(x)} u \geq c r,
$$

where c is the constant in Lemma 2.3.2 corresponding to $\kappa=1 / 2$ and γ fixed.
Corollary 2.3.4. For any domain $D \subset \subset \Omega$ there exist constants c, C depending on N, g_{0}, δ, D and λ, such that, for any minimizer u and for every $B_{r}(x) \subset D \cap\{u>$ $0\}$, touching the free boundary we have

$$
c r \leq u(x) \leq C r
$$

Proof. It follows by Lemma 2.2.13 and Lemma 2.3.2.
Theorem 2.3.5. For any domain $D \subset \subset \Omega$ there exists a constant c, with $0<$ $c<1$ depending on N, g_{0}, δ, D and λ, such that, for any minimizer u and for every $B_{r} \subset \Omega$, centered on the free boundary we have,

$$
c \leq \frac{\left|B_{r} \cap\{u>0\}\right|}{\left|B_{r}\right|} \leq 1-c
$$

Proof. First, by Corollary 2.3 .3 we have that there exists $y \in B_{r}$ such that $u(y)>c r$ and as u is a subsolution we have by Lemma 1.2.14 that

$$
\left(f_{B_{\kappa r}} u^{\gamma} d x\right)^{1 / \gamma} \geq C u(y)
$$

Therefore

$$
\frac{1}{\kappa r}\left(f_{B_{\kappa r}} u^{\gamma} d x\right)^{1 / \gamma} \geq \frac{C}{\kappa}
$$

Now, if κ is small enough, we have

$$
\frac{1}{\kappa r}\left(f_{B_{\kappa r}} u^{\gamma} d x\right)^{1 / \gamma} \geq C_{1},
$$

so that by Lemma 2.3.1, we have that $u>0$ in $B_{\kappa r}$, where $\kappa=\kappa\left(C_{1}, C\right)$. Thus,

$$
\frac{\left|B_{r} \cap\{u>0\}\right|}{\left|B_{r}\right|} \geq \frac{\left|B_{\kappa r}\right|}{\left|B_{r}\right|}=\kappa^{N},
$$

and $\kappa=\kappa\left(C_{1}, C\right)$.
In order to prove the other inequality, we may assume that $r=1$. Let us suppose by contradiction that, there exists a sequence of minimizers u_{k} in B_{1}, such
that, $0 \in \partial\left\{u_{k}>0\right\}$, with $\left|\left\{u_{k}=0\right\} \cap B_{1}\right|=\varepsilon_{k} \rightarrow 0$. Let us take $v_{k} \in W^{1, G}\left(B_{1 / 2}\right)$ such that,

$$
\begin{align*}
\mathcal{L} v_{k} & =0 & & \text { in } B_{1 / 2} \\
v_{k} & =u_{k} & & \text { in } \partial B_{1 / 2} \tag{2.3.6}
\end{align*}
$$

Let A_{1} and A_{2} as in the proof of Theorem 2.2.1, for $r=1 / 2$. Then we have, by Theorem 1.2.38 and (2.2.3) that

$$
\begin{aligned}
& \int_{A_{2}} G\left(\left|\nabla u_{k}-\nabla v_{k}\right|\right) d x \leq C \varepsilon_{k} \quad \text { and } \\
& \int_{A_{1}} F\left(\left|\nabla u_{k}\right|\right)\left|\nabla u_{k}-\nabla v_{k}\right|^{2} d x \leq C \varepsilon_{k}
\end{aligned}
$$

where $C=C\left(g_{0}\right)$. By (2.2.6) we have,

$$
\int_{A_{1}} G\left(\left|\nabla u_{k}-\nabla v_{k}\right|\right) d x \leq C\left(\int_{A_{1}} F\left(\left|\nabla u_{k}\right|\right)\left|\nabla u_{k}-\nabla v_{k}\right|^{2} d x\right)^{1 / 2}\left(\int_{A_{1}} G\left(\left|\nabla u_{k}\right|\right)\right)^{1 / 2}
$$

Therefore, by (2.2.11), there exists C independent of k such that

$$
\int_{B_{1 / 2}} G\left(\left|\nabla u_{k}-\nabla v_{k}\right|\right) d x \leq C \varepsilon_{k}^{1 / 2} \rightarrow 0
$$

As $u_{k}=v_{k}$ on $\partial B_{1 / 2}, w_{k}=u_{k}-v_{k} \in W_{0}^{1, \delta+1}\left(B_{1 / 2}\right)$. Thus,

$$
\begin{equation*}
w_{k} \rightarrow 0 \quad \text { in } W_{0}^{1, \delta+1}\left(B_{1 / 2}\right) . \tag{2.3.7}
\end{equation*}
$$

By Theorem 2.2.1 and Theorem 1.2.19, we have

$$
\begin{aligned}
\left\|u_{k}\right\|_{C^{\alpha}\left(\overline{B_{1 / 2}}\right)} & \leq C\left(N, \delta, g_{0},\left\|u_{k}\right\|_{L^{\infty}\left(B_{1}\right)}, \alpha\right) \quad\left(\text { for } \varepsilon_{k} \text { small) },\right. \\
\left\|v_{k}\right\|_{C^{1, \alpha}\left(B^{\prime}\right)} & \leq C\left(N, \delta, g_{0},\left\|u_{k}\right\|_{L^{\infty}\left(B_{1 / 2}\right)}, B^{\prime}, \alpha\right) \quad \text { for } B^{\prime} \subset \subset B \quad(\text { see }(2.2 .9)) .
\end{aligned}
$$

Therefore, there exist subsequences, that we call for simplicity u_{k} and v_{k}, and functions $v_{0} \in C^{1}\left(B^{\prime}\right), u_{0} \in C\left(B^{\prime}\right)$ for all $B^{\prime} \subset \subset B_{1 / 2}$ such that

$$
\begin{aligned}
& u_{k} \rightarrow u_{0} \quad \text { uniformly in } B_{1 / 2} \\
& v_{k} \rightarrow v_{0} \quad \text { uniformly in } B^{\prime} \\
& w_{k}=u_{k}-v_{k} \rightarrow 0 \quad \text { uniformly in } B^{\prime} .
\end{aligned}
$$

Thus, $v_{0}=u_{0}$. By Lemma 2.3.2 we have that

$$
\left(f_{B_{1 / 4}} u_{k}^{\gamma}\right)^{1 / \gamma} \geq C>0
$$

Therefore, passing to the limit, we have

$$
\left(f_{B_{1 / 4}} u_{0}^{\gamma}\right)^{1 / \gamma} \geq C>0
$$

On the other hand, by Harnack inequality $\sup _{B_{1 / 4}} v_{k} \leq C \inf _{B_{1 / 4}} v_{k}$ and again, passing to the limit we have, $\sup _{B_{1 / 4}} u_{0} \leq C \inf _{B_{1 / 4}} u_{0}$. As $u_{0}(0)=0$, then $u_{0} \equiv 0$ in $B_{1 / 4}$, which is a contradiction.

Remark 2.3.8. Theorem 2.3.5 implies that the free boundary has Lebesgue measure zero. Moreover, it implies that for every $D \subset \subset \Omega$, the intersection $\partial\{u>0\} \cap D$ has Hausdorff dimension less than N. In fact, to prove these statements, it is enough to use the left hand side estimate in Theorem 2.3.5. In fact, this estimate says that the set of Lebesgue points of $\chi_{\{u>0\}}$ in $\partial\{u>0\} \cap D$ is empty. On the other hand almost every point $x_{0} \in \partial\{u>0\} \cap D$ is a Lebesgue point, therefore $|\partial\{u>0\} \cap D|=0$.

4. The measure $\Lambda=\mathcal{L} u$

In this section we prove that $\{u>0\} \cap \Omega$ is locally of finite perimeter. Then, we study the measure $\Lambda=\mathcal{L} u$ and prove that it is absolutely continuous with respect to the \mathcal{H}^{N-1} measure on the free boundary. This result gives rice to a representation theorem for the measure Λ. Finally, we prove that almost every point in the free boundary belongs to the reduced free boundary.

Theorem 2.4.1. For every $\varphi \in C_{0}^{\infty}(\Omega)$ such that $\operatorname{supp}(\varphi) \subset\{u>0\}$,

$$
\begin{equation*}
\int_{\Omega} g(|\nabla u|) \frac{\nabla u}{|\nabla u|} \nabla \varphi=0 . \tag{2.4.2}
\end{equation*}
$$

Moreover, the application

$$
\Lambda(\varphi):=-\int_{\Omega} g(|\nabla u|) \frac{\nabla u}{|\nabla u|} \nabla \varphi d x
$$

from $C_{0}^{\infty}(\Omega)$ into \mathbb{R} defines a nonnegative Radon measure $\Lambda=\mathcal{L} u$ with support on $\Omega \cap \partial\{u>0\}$.

Proof. We know that u is an \mathcal{L} - subsolution. Then by the Riesz Representation Theorem, there exists a nonnegative Radon measure Λ, such that $\mathcal{L} u=\Lambda$. And as $\mathcal{L} u=0$ in $\{u>0\}$, then for any $\varphi \in C_{0}^{\infty}(\Omega \backslash \partial\{u>0\})$

$$
\Lambda(\varphi)=-\int_{\{u>0\}} \nabla \varphi g(|\nabla u|) \frac{\nabla u}{|\nabla u|} d x=0
$$

and the result follows.

Now we want to prove that $\Omega \cap \partial\{u>0\}$, has Hausdorff dimension $N-1$. First we need the following lemma,

Lemma 2.4.3. If u_{k} is a sequence of minimizers in compact subsets of B_{1}, such that $u_{k} \rightarrow u_{0}$ uniformly in B_{1}, then

1. $\partial\left\{u_{k}>0\right\} \rightarrow \partial\left\{u_{0}>0\right\}$ locally in Hausdorff distance,
2. $\chi_{\left\{u_{k}>0\right\}} \rightarrow \chi_{\left\{u_{0}>0\right\}}$ in $L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right)$,
3. If $0 \in \partial\left\{u_{k}>0\right\}$, then $0 \in \partial\left\{u_{0}>0\right\}$.

Proof. Here we only have to use Lemma 2.3.2 and Theorem 2.3.5 and the fact that $u_{k} \rightarrow u_{0}$ uniformly in compacts subsets of B_{1}. Then the proof follows as in Lemma 1.6.13.

Now, we prove the following theorem,
Theorem 2.4.4. For any domain $D \subset \subset \Omega$ there exist constants c, C, depending on N, g_{0}, δ, D and λ, such that, for any minimizer u and for every $B_{r} \subset D$, centered on the free boundary we have

$$
c r^{N-1} \leq \int_{B_{r}} d \Lambda \leq C r^{N-1}
$$

Proof. Let $\xi \in C_{0}^{\infty}(\Omega), \xi \geq 0$. Then,

$$
\Lambda(\xi)=-\int_{\{u>0\}} g(|\nabla u|) \frac{\nabla u}{|\nabla u|} \nabla \xi d x
$$

Approximating $\chi_{B_{r}}$ from below by a sequence $\left\{\xi_{n}\right\}$ such that $\xi_{n}=1$ in $B_{r-\frac{1}{n}}$ and $\left|\nabla \xi_{n}\right| \leq C_{N} n$ and using that u is Lipschitz we have that,

$$
\left|\int_{\Omega} g(|\nabla u|) \frac{\nabla u}{|\nabla u|} \nabla \xi_{n} d x\right| \leq C n\left|B_{r} \backslash B_{r-\frac{1}{n}}\right| \leq C\left(r^{N-1}+O(1 / n)\right) .
$$

Then, as

$$
\int_{\Omega} \xi_{n} d \Lambda \rightarrow \int_{B_{r}} d \Lambda
$$

the bound from above holds.
In order to prove the other inequality, we will suppose that $r=1$. Arguing by contradiction we assume that there exists a sequence of minimizers u_{k} in B_{1}, with $0 \in \partial\left\{u_{k}>0\right\}$, and $\Lambda_{k}=\mathcal{L} u_{k}$, such that $\int_{B_{1}} d \Lambda_{k}=\varepsilon_{k} \rightarrow 0$. As the $u_{k}^{\prime} s$ are uniformly Lipschitz, we can assume that $u_{k} \rightarrow u_{0}$ uniformly in $B_{1 / 2}$. Let $h_{k}=g\left(\left|\nabla u_{k}\right|\right) \frac{\nabla u_{k}}{\left|\nabla u_{k}\right|}$. Then, there exists a subsequence and a function h_{0} such that $h_{k} \rightharpoonup h_{0} *-$ weakly in $L^{\infty}\left(B_{1 / 2}\right)$. We claim that $h_{0}=g\left(\left|\nabla u_{0}\right|\right) \frac{\nabla u_{0}}{\left|\nabla u_{0}\right|}$. In fact, if $B_{\rho} \subset \subset\left\{u_{0}>0\right\}$ then, by $C^{1, \alpha}$ estimates, there exists a subsequence such that $u_{k} \rightarrow u_{0}$ strongly in $C^{1, \alpha}\left(B_{\rho}\right)$. So that $h_{0}=g\left(\left|\nabla u_{0}\right|\right) \frac{\nabla u_{0}}{\left|\nabla u_{0}\right|}$. If $B_{\rho} \subset\left\{u_{0}=0\right\}$, then by Lemma 2.3.2 we have that $u_{k}=0$ in $B_{\rho \kappa}$ for $k \geq k_{0}(\kappa)$. Thus $h_{0}=0=g\left(\left|\nabla u_{0}\right|\right) \frac{\nabla u_{0}}{\left|\nabla u_{0}\right|}$ also in this case. Finally $\partial\left\{u_{0}>0\right\} \cap B_{1 / 2}$ has zero Lebesgue measure. In fact, by (1) in Lemma 2.4.3, every point $x_{0} \in \partial\left\{u_{0}>0\right\} \cap B_{1 / 2}$ is a limit point of $x_{k} \in \partial\left\{u_{k}>0\right\} \cap B_{1 / 2}$. Thus,

$$
\left(f_{B_{r}\left(x_{0}\right)} u_{0}^{\gamma}\right)^{1 / \gamma} \geq c r
$$

for any ball $B_{r}\left(x_{0}\right) \subset B_{1 / 2}$. Using this fact, and the Lipschitz continuity we have that $\left|B_{r}\left(x_{0}\right) \cap\left\{u_{0}>0\right\}\right| \geq c\left|B_{r}\left(x_{0}\right)\right|$ with $c>0$. This implies that $\left|\partial\left\{u_{0}>0\right\} \cap B_{1 / 2}\right|=0$ (see Remark 2.3.8).

Therefore, for all $\xi \in C_{0}^{\infty}\left(B_{1 / 2}\right), \xi \geq 0$ we have

$$
\int_{B_{1 / 2}} \xi d \Lambda_{0}:=\int_{B_{1 / 2}} g\left(\left|\nabla u_{0}\right|\right) \frac{\nabla u_{0}}{\left|\nabla u_{0}\right|} \nabla \xi=\lim _{k \rightarrow \infty} \int_{B_{1 / 2}} g\left(\left|\nabla u_{k}\right|\right) \frac{\nabla u_{k}}{\left|\nabla u_{k}\right|} \nabla \xi
$$

On the other hand,

$$
\int_{B_{1 / 2}} \xi d \Lambda_{0}=\lim _{k \rightarrow \infty} \int_{B_{1 / 2}} \xi d \Lambda_{k} \leq\|\xi\|_{L^{\infty}\left(B_{1 / 2}\right)} \lim _{k \rightarrow \infty} \varepsilon_{k}=0
$$

Therefore $\Lambda_{0}=0$ in $B_{1 / 2}$. That is, $\mathcal{L} u_{0}=0$ in $B_{1 / 2}$. But $u_{0} \geq 0$ and $u_{0}(0)=0$, so that by Harnack inequality we have $u_{0}=0$ in $B_{1 / 2}$.

On the other hand, $0 \in \partial\left\{u_{k}>0\right\}$, and by the nondegeneracy, we have

$$
\left(\int_{B_{1 / 4}} u_{k}^{\gamma}\right)^{1 / \gamma} \geq c>0
$$

Thus,

$$
\left(\int_{B_{1 / 4}} u_{0}^{\gamma}\right)^{1 / \gamma} \geq c>0
$$

which is a contradiction.

Therefore, we have the following representation theorem
Theorem 2.4.5 (Representation Theorem). Let u be a minimizer. Then,

1. $\mathcal{H}^{N-1}(D \cap \partial\{u>0\})<\infty$ for every $D \subset \subset \Omega$.
2. There exists a Borel function q_{u} such that

$$
\mathcal{L} u=q_{u} \mathcal{H}^{N-1}\lfloor\partial\{u>0\} .
$$

i.e

$$
-\int_{\Omega} g(|\nabla u|) \frac{\nabla u}{|\nabla u|} \nabla \varphi d x=\int_{\Omega \cap \partial\{u>0\}} \varphi q_{u} d \mathcal{H}^{N-1} \quad \forall \varphi \in C_{0}^{\infty}(\Omega) .
$$

3. For $D \subset \subset \Omega$ there are constants $0<c \leq C<\infty$ depending on $N, g_{0}, \delta, \Omega, D$ and λ such that for $B_{r}(x) \subset D$ and $x \in \partial\{u>0\}$,

$$
c \leq q_{u}(x) \leq C, \quad c r^{N-1} \leq \mathcal{H}^{N-1}\left(B_{r}(x) \cap \partial\{u>0\}\right) \leq C r^{N-1}
$$

Proof. See Theorem 1.4.54.
Remark 2.4.6. As u satisfies the conclusions of Theorem 1.4.54, the set $\Omega \cap\{u>$ $0\}$ has finite perimeter locally in Ω (see Remark 1.4.62). That is, $\mu_{u}:=-\nabla \chi_{\{u>0\}}$ is a Borel measure, and the total variation $\left|\mu_{u}\right|$ is a Radon measure. Moreover we have,

$$
\mu_{u}=\nu_{u} \mathcal{H}^{N-1}\left\lfloor\partial_{\text {red }}\{u>0\},\right.
$$

where $\nu_{u}(x)$ is the normal exterior to $\{u>0\} \cap \Omega$. See Definition 1.4.59 and the results in that section.

Lemma 2.4.7. $\mathcal{H}^{N-1}\left(\partial\{u>0\} \backslash \partial_{\text {red }}\{u>0\}\right)=0$.

Proof. This is a consequence of the density property of Theorem 2.3.5 and Theorem 1.4.63.

5. Asymptotic development and identification of the function q_{u}

In this section we give some properties of blow up sequences of minimizers, we prove that any limit of a blow up sequence is a minimizer. We prove the asymptotic development of minimizers near points in their reduced free boundary. We finally identify the function q_{u} for almost every point in the reduced free boundary.

Lemma 2.5.1. If $u\left(x_{m}\right)=0, x_{m} \rightarrow x_{0}$ in Ω. Then, any blow up limit u_{0} respect to $B_{\rho_{m}}\left(x_{m}\right)$ is a minimizer of \mathcal{J} in any ball.

Proof. Let u_{m}, u_{0} be as is Lemma 1.6.13, $R>0$ and v such that $v-u_{0} \in$ $W_{0}^{1, G}\left(B_{R}(0)\right)$. Let $\eta \in C_{0}^{\infty}\left(B_{R}(0)\right), 0 \leq \eta \leq 1$ and $v_{m}=v+(1-\eta)\left(u_{m}-u_{0}\right)$ then $v_{m}=u_{m}$ in $\partial B_{R}(0)$. Therefore

$$
\int_{B_{R}(0)}\left(G\left(\left|\nabla u_{m}\right|\right)+\lambda \chi_{\left\{u_{m}>0\right\}}\right) d x \leq \int_{B_{R}(0)}\left(G\left(\left|\nabla v_{m}\right|\right)+\lambda \chi_{\left\{v_{m}>0\right\}}\right) d x .
$$

As $\left|\nabla u_{m}\right| \leq C$ and $\nabla u_{m} \rightarrow \nabla u_{0}$ a.e, we have

$$
\begin{aligned}
\int_{B_{R}(0)} G\left(\left|\nabla u_{m}\right|\right) d x & \rightarrow \int_{B_{R}(0)} G\left(\left|\nabla u_{0}\right|\right) d x, \\
\int_{B_{R}(0)} G\left(\left|\nabla v_{m}\right|\right) d x & \rightarrow \int_{B_{R}(0)} G(|\nabla v|) d x
\end{aligned}
$$

and

$$
\chi_{\left\{v_{m}>0\right\}} \leq \chi_{\{v>0\}}+\chi_{\{\eta<1\}} .
$$

Therefore,

$$
\int_{B_{R}(0)}\left(G\left(\left|\nabla u_{0}\right|\right)+\lambda \chi_{\left\{u_{0}>0\right\}}\right) d x \leq \int_{B_{R}(0)}\left(G(|\nabla v|)+\lambda \chi_{\{v>0\}}\right) d x+\lambda\left|B_{R}(0) \cap\{\eta<1\}\right| .
$$

Taking η such that $\left|\{\eta<1\} \cap B_{R}(0)\right| \rightarrow 0$ we have the desired result.

Let λ^{*} be such that, $g\left(\lambda^{*}\right) \lambda^{*}-G\left(\lambda^{*}\right)=\lambda$. Then we have,
Lemma 2.5.2. Let u be a local minimizer in \mathbb{R}^{N} such that $u=\lambda_{0}\left\langle x, \nu_{0}\right\rangle^{-}$in $B_{r_{0}}$, with $r_{0}>0,0<\lambda_{0}<\infty$ and ν_{0} a unit vector. Then, $\lambda_{0}=\lambda^{*}$.

Proof. Let $\tau_{\varepsilon}(x)=x+\varepsilon \eta(x)$ with $\left.\eta \in C_{0}^{\infty}\left(B_{r_{0}}\right)\right)$, and let $u_{\varepsilon}\left(\tau_{\varepsilon}(x)\right)=u(x)$. Then,

$$
0 \leq \mathcal{J}\left(u_{\varepsilon}\right)-\mathcal{J}(u),
$$

$$
\begin{aligned}
\left|B_{r_{0}} \cap\left\{u_{\varepsilon}>0\right\}\right| & =\int_{B_{r_{0}} \cap\left\{\left\langle x, \nu_{0}\right\rangle<0\right\}}\left|\operatorname{det} D \tau_{\varepsilon}\right| d x \\
& =\int_{\left.B_{r_{0}} \cap\left\{x, \nu_{0}\right\rangle<0\right\}}(1+\varepsilon \operatorname{div} \eta+o(\varepsilon)) d x
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{B_{r_{0}} \cap\left\{u_{\varepsilon}>0\right\}} G\left(\left|\nabla u_{\varepsilon}\right|\right) d y \\
& \quad=\int_{B_{r_{0}} \cap\left\{\left\langle x, \nu_{0}\right\rangle<0\right\}}\left(G(|\nabla u|)+\varepsilon\left(G(|\nabla u|) \operatorname{div} \eta-\frac{g(|\nabla u|)}{|\nabla u|} \nabla u D \eta \nabla u\right)\right) d x+o(\varepsilon) .
\end{aligned}
$$

Therefore, since $u_{\varepsilon}=u$ in $\mathbb{R}^{N} \backslash B_{r_{0}}$,

$$
0 \leq \varepsilon \int_{B_{r_{0} \cap\left\{\left\langle x, \nu_{0}\right\rangle<0\right\}}}\left((G(|\nabla u|)+\lambda) \operatorname{div} \eta-\frac{g(|\nabla u|)}{|\nabla u|} \nabla u D \eta \nabla u\right) d x+o(\varepsilon) .
$$

Thus,

$$
\int_{B_{r_{0}} \cap\left\{\left\langle x, \nu_{0}\right\rangle<0\right\}}\left((G(|\nabla u|)+\lambda) \operatorname{div} \eta-\frac{g(|\nabla u|)}{|\nabla u|} \nabla u D \eta \nabla u\right) d x \geq 0 .
$$

If we change η by $-\eta$ and recall that $\nabla u=-\lambda_{0} \nu_{0}$ in $\left\{\left\langle x, \nu_{0}\right\rangle<0\right\}$ we obtain,

$$
\int_{\left.B_{r_{0}} \cap\left\{x, \nu_{0}\right\rangle<0\right\}}\left(\left(G\left(\lambda_{0}\right)+\lambda\right) \operatorname{div} \eta-g\left(\lambda_{0}\right) \lambda_{0} \nu_{0} D \eta \nu_{0}\right) d x=0
$$

for all $\eta \in C_{0}^{\infty}\left(B_{r_{0}}\right)$.
Take $\eta(x)=\phi(|x|) \nu_{0}$ with $\operatorname{supp} \phi \subset\left(-r_{0}, r_{0}\right)$. Then,

$$
\begin{aligned}
& \operatorname{div} \eta(x)=\frac{\phi^{\prime}(|x|)}{|x|}\left\langle x, \nu_{0}\right\rangle \\
& \nu_{0} D \eta \nu_{0}=\nu_{0 i} \frac{\partial \eta_{j}}{\partial x_{i}} \nu_{0 j}=\left\langle x, \nu_{0}\right\rangle \frac{\phi^{\prime}(|x|)}{|x|}=\operatorname{div} \eta
\end{aligned}
$$

Hence

$$
\begin{aligned}
0 & =\int_{\left\{\left\langle x, \nu_{0}\right\rangle<0\right\} \cap B_{r_{0}}}\left(G\left(\lambda_{0}\right)+\lambda-g\left(\lambda_{0}\right) \lambda_{0}\right) \operatorname{div} \eta d x \\
& =\left(G\left(\lambda_{0}\right)+\lambda-g\left(\lambda_{0}\right) \lambda_{0}\right) \int_{\left\{\left\langle x, \nu_{0}\right\rangle=0\right\} \cap B_{r_{0}}} \eta \nu_{0} d \mathcal{H}^{N-1}(x) \\
& =\left(G\left(\lambda_{0}\right)+\lambda-g\left(\lambda_{0}\right) \lambda_{0}\right) \int_{\left\{\left\langle x, \nu_{0}\right\rangle=0\right\} \cap B_{r_{0}}} \phi(|x|) d \mathcal{H}^{N-1}(x)
\end{aligned}
$$

for all $\phi \in C_{0}^{\infty}\left(-r_{0}, r_{0}\right)$.
Therefore, $g\left(\lambda_{0}\right) \lambda_{0}-G\left(\lambda_{0}\right)=\lambda$.

Lemma 2.5.3. Let $u \in \mathcal{K}$ be minimizer. Then, for every $x_{0} \in \Omega \cap \partial\{u>0\}$

$$
\begin{equation*}
\limsup _{\substack{x \rightarrow x_{0} \\ u(x)>0}}|\nabla u(x)|=\lambda^{*} . \tag{2.5.4}
\end{equation*}
$$

Proof. Let $x_{0} \in \Omega \cap \partial\{u>0\}$ and let

$$
l:=\limsup _{\substack{x \rightarrow x_{0} \\ u(x)>0}}|\nabla u(x)| .
$$

Then there exists a sequence $z_{k} \rightarrow x_{0}$ such that

$$
u\left(z_{k}\right)>0, \quad\left|\nabla u\left(z_{k}\right)\right| \rightarrow l .
$$

Let y_{k} be the nearest point to z_{k} on $\Omega \cap \partial\{u>0\}$ and let $d_{k}=\left|z_{k}-y_{k}\right|$. Consider the blow up sequence with respect to $B_{d_{k}}\left(y_{k}\right)$ with limit u_{0}, such that there exists

$$
\nu:=\lim _{k \rightarrow \infty} e_{k}
$$

where $e_{k}=\frac{y_{k}-z_{k}}{d_{k}}$, and suppose that $\nu=e_{N}$. Then, by Lemma 1.6.13(1), $0 \in \partial\left\{u_{0}>\right.$ $0\}$. By Lemma 1.6.13(2) and by Lemma 2.5.1 we have that u_{0} satisfies Theorem 2.3.5. Then, $B_{1}\left(-e_{N}\right) \subset\left\{u_{0}>0\right\}$. By Lemma 1.6.13(3) we obtain,

$$
\left|\nabla u_{0}\right| \leq l \text { in }\left\{u_{0}>0\right\} \text { and }\left|\nabla u_{0}\left(-e_{N}\right)\right|=l .
$$

Then, $0<l<\infty$ and since, by Lemma 1.6.13 (6), we have that u_{0} is an \mathcal{L} solution in $\left\{u_{0}>0\right\}$ then, we have that u_{0} is locally $C^{1, \alpha}$ there. Thus, there exists $\mu>0$ such that $\left|\nabla u_{0}\right|>l / 2$ in $B_{\mu}\left(-e_{N}\right)$. Let $e=\frac{\nabla u_{0}\left(-e_{N}\right)}{\left|\nabla u_{0}\left(-e_{N}\right)\right|}$ and $v=\frac{\partial u_{0}}{\partial e}$, then by Lemma (1.2.28) v satisfies the uniformly elliptic equation, $D_{i}\left(a_{i j} D_{j} v\right)=0$.

Then, by the strong maximum principle we have $D_{e} u_{0}=l$ in $B_{\mu}\left(-e_{N}\right)$ so that, $\nabla u_{0}=l e$ in $B_{\mu}\left(-e_{N}\right)$. By continuation we can prove that this is true in $B_{1}\left(-e_{N}\right)$. Then, $u_{0}(x)=l\langle x, e\rangle+C$ in $B_{1}\left(-e_{N}\right)$. As $u_{0}(0)=0$ and $u_{0}>0$ in $B_{1}\left(-e_{N}\right)$, we have $u_{0}(x)=l\langle x, e\rangle$ and $e=-e_{N}$. Therefore $u_{0}(x)=-l x_{N}$ in $B_{1}\left(-e_{N}\right)$. Using again a continuation argument we have that $u_{0}(x)=-l x_{N}$ in $\left\{x_{N}<0\right\}$.

Now, we want to prove that $u_{0}=0$ in $\left\{0<x_{N}<\varepsilon_{0}\right\}$ for some $\varepsilon_{0}>0$.
We argue by contradiction. Let

$$
s:=\underset{\substack{x_{N} \rightarrow 0+\\ x_{0}\left(x^{\prime}, x_{N}\right)>0}}{\lim \sup _{\mathbb{R}^{N-1}}} D_{N} u_{0}\left(x^{\prime}, x_{N}\right),
$$

and suppose that $s>0\left(s<\infty\right.$ since u_{0} is uniformly Lipschitz). Let $\left(z_{k}, h_{k}\right)$ such that, $h_{k} \rightarrow 0^{+}$and $D_{N} u_{0}\left(z_{k}, h_{k}\right) \rightarrow s$, and take a blow up sequence with respect to $B_{h_{k}}\left(z_{k}, 0\right)$ with limit u_{00}. Arguing as before, we have that $u_{00}=s x_{N}$ for $x_{N}>0$. On the other hand, we have $u_{00}=-l x_{N}$ for $x_{N}<0$. By Lemma 2.5.1 u_{00} is a minimizer, and as all the points of the form $\left(x^{\prime}, 0\right)$ belong to the free boundary, we get a contradiction to the positive density property of the set $\left\{u_{00}=0\right\}$ (Theorem 2.3.5).

Therefore, $s=0$. But this implies that $u_{0}\left(x^{\prime}, x_{N}\right)=o\left(x_{N}\right)$ as $x_{N} \searrow 0^{+}$. Thus, for all $\varepsilon>0, h_{0}>0$,

$$
\frac{1}{r}\left(f_{B_{r}\left(x_{0}\right)} u_{0}^{\gamma}\right)^{1 / \gamma}<\varepsilon \quad \text { if } x_{0}=\left(y_{0}, h_{0}\right) \text { and } r=h_{0}
$$

for r small enough independent of y_{0}. Then, by the nondegeneracy property, Lemma 2.3.2, we have that $u_{0}=0$ in $\left\{0<x_{N}<\varepsilon_{0}\right\}$.

Now, by Lemmas 2.5.1 and 2.5.2 we conclude that $l=\lambda^{*}$, and the result follows.

Now we prove the asymptotic development of minimizers.
Theorem 2.5.5. Let u be a minimizer. Then, at every $x_{0} \in \partial_{\text {red }}\{u>0\}$, u has the following asymptotic development

$$
\begin{equation*}
u(x)=\lambda^{*}\left\langle x-x_{0}, \nu\left(x_{0}\right)\right\rangle^{-}+o\left(\left|x-x_{0}\right|\right) . \tag{2.5.6}
\end{equation*}
$$

where $\nu\left(x_{0}\right)$ is the outer unit normal to $\partial\{u>0\}$ at x_{0}.
Proof. Take $B_{\rho_{k}}\left(x_{0}\right)$ balls with $\rho_{k} \rightarrow 0$ and u_{k} be a blow up sequence with respect to these balls with limit u_{0}. Suppose that $\nu_{u}\left(x_{0}\right)=e_{N}$, and $x_{0}=0$.

First we prove that

$$
\begin{cases}u_{0}=0 & \text { in }\left\{x_{N} \geq 0\right\} \\ u_{0}>0 & \text { in }\left\{x_{N}<0\right\}\end{cases}
$$

In fact, by Lemma 1.6.13, $\chi_{\left\{u_{k}>0\right\}}$ converges to $\chi_{\left\{u_{0}>0\right\}}$ in $L_{l o c}^{1}$. On the other hand, $\chi_{\left\{u_{k}>0\right\}}$ converges to $\chi_{\left\{x_{N}<0\right\}}$ in $L_{l o c}^{1}$ by (1.4.60). It follows that $u_{0}=0$ in $\left\{x_{N} \geq 0\right\}$ and $u_{0}>0$ a.e in $\left\{x_{N}<0\right\}$.

If u_{0} were zero somewhere in $\left\{x_{N}<0\right\}$ there should exist a point \bar{x} in $\left\{x_{N}<\right.$ $0\} \cap \partial\left\{u_{0}>0\right\}$. But, as u_{0} is a minimizer, for $0<r<\left|\bar{x}_{N}\right|$,

$$
\frac{\left|B_{r}(\bar{x}) \cap\left\{u_{0}=0\right\} \cap\left\{x_{N}<0\right\}\right|}{\left|B_{r}(\bar{x})\right|} \geq c>0 .
$$

Since this is a contradiction we conclude that $u_{0}>0$ in $\left\{x_{N}<0\right\}$ and therefore $\mathcal{L} u_{0}=0$ in this set. Since $u_{0}=0$ on $\left\{x_{N}=0\right\}$, we conclude that $u_{0} \in C^{1, \alpha}\left(\left\{x_{N} \leq\right.\right.$ $0\}$) (see Theorem 1.2.20). Thus, there exists $0 \leq \lambda_{0}<\infty$ such that

$$
u_{0}(x)=\lambda_{0} x_{N}^{-}+o(|x|) .
$$

By the nondegeneracy of u at every free boundary point (Lemma 2.3.2) we deduce that $\lambda_{0}>0$.

Now, let u_{00} be a blow up limit of u_{0}. This is, $u_{00}(x)=\lim \frac{u_{0}\left(r_{n} x\right)}{r_{n}}$ with $r_{n} \rightarrow 0$. Then, $u_{00}=\lambda_{0} x_{N}^{-}$. Since u_{00} is again a minimizer, Lemma 2.5.2 gives that $\lambda_{0}=\lambda^{*}$.

Let us see that actually $u_{0}=\lambda^{*} x_{N}^{-}$. In fact, by applying Lemma 2.5.3 we see that $\left|\nabla u_{0}\right| \leq \lambda^{*}$ and thus, $u_{0} \leq \lambda^{*} x_{N}^{-}$. Since the function $w=\lambda^{*} x_{N}^{-}$is a solution to

$$
T w=\sum_{i, j} b_{i j} w_{x_{i} x_{j}}=0 \quad \text { in }\left\{x_{N}<0\right\}
$$

with $b_{i j}$ as in (1.2.27) and u_{0} is a classical solution of the same equation in a neighborhood of any point where $\left|\nabla u_{0}\right|>0$, and since $u_{0} \leq w$ in $\left\{x_{N}<0\right\}$, $u_{0}=w$ in $\left\{x_{N}=0\right\}$, there holds that either $u_{0} \equiv w$ or $u_{0}<w$. In the latter case, there exists $\delta_{0}>0$ such that

$$
\left(w-u_{0}\right)(x) \geq-\delta_{0} x_{N}+o(|x|)
$$

But $\left(w-u_{0}\right)(x)=o(|x|)$. Thus, $u_{0} \equiv w=\lambda^{*} x_{N}^{-}$.
Finally, since the blow up limit u_{0} is independent of the blow up sequence ρ_{k}, we deduce that

$$
u(x)=\lambda^{*}\left\langle x-x_{0}, \nu\left(x_{0}\right)\right\rangle^{-}+o\left(\left|x-x_{0}\right|\right) .
$$

Lemma 2.5.7. For $\mathcal{H}^{N-1}-$ almost every point x_{0} in $\partial_{\text {red }}\{u>0\}$ there holds that,

$$
\int_{B_{r}\left(x_{0}\right) \cap \partial\{u>0\}}\left|q_{u}-q_{u}\left(x_{0}\right)\right| d \mathcal{H}^{N-1}=o\left(r^{N-1}\right), \quad \text { as } r \rightarrow 0
$$

Proof. It follows by Theorem 2.4.5 (3) that q_{u} is locally integrable in \mathbb{R}^{N-1} and therefore almost every point is a Lebesgue point. Moreover, Theorem 2.4.5 (3) also implies that $o\left(\mathcal{H}^{N-1}\left(B_{r}\left(x_{0}\right) \cap \partial\{u>0\}\right)\right)=o\left(r^{N-1}\right)$.

Moreover, we have the following result that holds at points $x_{0} \in \partial_{\text {red }}\{u>0\}$ that are Lebesgue points of the function q_{u} and are such that

$$
\begin{equation*}
\limsup _{r \rightarrow 0} \frac{\mathcal{H}^{N-1}\left(\partial\{u>0\} \cap B\left(x_{0}, r\right)\right)}{\mathcal{H}^{N-1}\left(B^{\prime}\left(x_{0}, r\right)\right)} \leq 1 . \tag{2.5.8}
\end{equation*}
$$

Recall that $\mathcal{H}^{N-1}-$ a.e. point in $\partial_{\text {red }}\{u>0\}$ satisfies (2.5.8) (see Theorem 1.4.65).

Lemma 2.5.9. Let u be a minimizer, then for \mathcal{H}^{N-1} a.e $x_{0} \in \partial_{\text {red }}\{u>0\}$,

$$
q_{u}\left(x_{0}\right)=g\left(\lambda^{*}\right) .
$$

Proof. Let u_{0} be as in Theorem 2.5.5. Now let

$$
\xi(x)=\min \left(2\left(1-\frac{\left|x_{N}\right|}{2}, 1\right)\right) \eta\left(x_{1}, \ldots, x_{N-1}\right)
$$

where $\eta \in C_{0}^{\infty}\left(B_{r}^{\prime}\right)$, (where B_{r}^{\prime} is a $N-1$ - dimensional ball with radius r) and $\eta \geq 0$. By Lemma 1.4.67 and using Lemmas 1.6.13 and 2.5.7, we get for almost every point
$x_{0} \in \partial_{\text {red }}\{u>0\}$ (satisfying (2.5.8)) and $u_{0}=\lim _{k \rightarrow \infty} \frac{u\left(x_{0}+\rho_{k} x\right)}{\rho_{k}}$ that

$$
\begin{aligned}
-\int_{\mathbb{R}^{N}} g\left(\left|\nabla u_{0}\right|\right) \frac{\nabla u_{0}}{\left|\nabla u_{0}\right|} \nabla \xi d x \leftarrow & -\int_{\mathbb{R}^{N}} g\left(\left|\nabla u_{k}\right|\right) \frac{\nabla u_{k}}{\left|\nabla u_{k}\right|} \nabla \xi d x \\
& =\int_{\partial\left\{u_{k}>0\right\}} \xi(x) q_{u}\left(x_{0}+\rho_{k} x\right) d \mathcal{H}^{N-1} \\
& \rightarrow q_{u}\left(x_{0}\right) \int_{\mathbb{R}^{N-1}} \xi\left(x^{\prime}, 0\right) d \mathcal{H}^{N-1},
\end{aligned}
$$

where we have assumed that $\nu\left(x_{0}\right)=e_{N}$. Therefore, $\forall \xi \in C_{0}^{1}\left(B_{r}\right)$, we have

$$
\begin{equation*}
-\int_{B_{r} \cap\left\{x_{N}<0\right\}} g\left(\left|\nabla u_{0}\right|\right) \frac{\nabla u_{0}}{\left|\nabla u_{0}\right|} \nabla \xi d x=q_{u}\left(x_{0}\right) \int_{B_{r}^{\prime}} \xi\left(x^{\prime}, 0\right) d \mathcal{H}^{N-1} \tag{2.5.10}
\end{equation*}
$$

By Lemma 2.5.5, $u_{0}=\lambda^{*} x_{N}^{-}$. Substituting in (2.5.10) we get

$$
g\left(\lambda^{*}\right) \int_{B_{r}^{\prime}} \xi\left(x^{\prime}, 0\right) d \mathcal{H}^{N-1}=q_{u}\left(x_{0}\right) \int_{B_{r}^{\prime}} \xi\left(x^{\prime}, 0\right) d \mathcal{H}^{N-1} \quad \forall \xi \in C_{0}^{\infty}\left(B_{r}\right)
$$

Thus, $q_{u}\left(x_{0}\right)=g\left(\lambda^{*}\right)$.
As a corollary we have
Theorem 2.5.11. Let u be a minimizer, then for \mathcal{H}^{N-1} a.e $x_{0} \in \partial\{u>0\}$, the following properties hold,

$$
q_{u}\left(x_{0}\right)=g\left(\lambda^{*}\right)
$$

and

$$
u(x)=\lambda^{*}\left\langle x-x_{0}, \nu_{u}\left(x_{0}\right)\right\rangle^{-}+o\left(\left|x-x_{0}\right|\right)
$$

where λ^{*} is such that, $g\left(\lambda^{*}\right) \lambda^{*}-G\left(\lambda^{*}\right)=\lambda$.
Proof. The result follows by Lemma 2.4.7 and by Theorem 2.5.5.

6. Weak solutions

In this section we introduce the notion of weak solution. The idea, as in [4], is to identify the essential properties that minimizers satisfy and that may be found in applications in which minimization does not take place. For instance, in Chapter 3 we study an optimization problem, and prove that minimizers of the penalization problem are weak solutions in the sense of Definition 2.6.1. On the other hand, in Chapter 4 we study a singular perturbation problem for the operator \mathcal{L} and prove that limits of this singular perturbation problem are weak solutions in the sense of Definition 2.6.2. In the next section, we will prove that weak solutions have smooth free boundaries. In this way, the regularity results may be applied both to minimizers and to limits of singular perturbation problems.

With these applications in mind, we introduce two notions of weak solution. Definition 2.6.1 is similar to the one in [4] for the case $\mathcal{L}=\Delta$. On the other hand, as stated before, Definition 2.6.2 is more suitable for limits of the singular perturbation problem.

Since we want to ask as little as possible for a function u to be a weak solution, some properties already proved for minimizers need a new proof. We keep these proofs as short as possible by sending the reader to the corresponding proofs for minimizers as soon as possible.

One of the main differences between these two definitions of weak solution is that for weak solutions according to Definition 2.6.1 almost every free boundary point is in the reduced free boundary. Instead, weak solutions according to Definition 2.6.2 may have an empty reduced boundary (see, for instance, example 5.8 in [4]).

In the sequel λ^{*} will be a fixed positive constant.
Definition 2.6.1 (Weak solution I). We call u a weak solution (I), if

1. u is continuous and non-negative in Ω and $\mathcal{L} u=0$ in $\Omega \cap\{u>0\}$.
2. For $D \subset \subset \Omega$ there are constants $0<c_{\min } \leq C_{\max }, \gamma \geq 1$, such that for balls $B_{r}(x) \subset D$ with $x \in \partial\{u>0\}$

$$
c_{\min } \leq \frac{1}{r}\left(f_{B_{r}(x)} u^{\gamma} d x\right)^{1 / \gamma} \leq C_{\max }
$$

3.

$$
\begin{gathered}
\mathcal{L} u=g\left(\lambda^{*}\right) \mathcal{H}^{N-1}\left\lfloor\partial_{\text {red }}\{u>0\} .\right. \\
\text { i.e } \\
-\int_{\Omega} g(|\nabla u|) \frac{\nabla u}{|\nabla u|} \nabla \varphi d x=\int_{\Omega \cap \partial_{\text {red }}\{u>0\}} \varphi g\left(\lambda^{*}\right) d \mathcal{H}^{N-1} \quad \forall \varphi \in C_{0}^{\infty}(\Omega)
\end{gathered}
$$

4.

$$
\limsup _{\substack{x \rightarrow x_{0} \\ u(x)>0}}|\nabla u(x)| \leq \lambda^{*}, \quad \text { for every } x_{0} \in \Omega \cap \partial\{u>0\}
$$

Definition 2.6.2 (Weak solution II). We call u a weak solution (II), if

1. u is continuous and non-negative in Ω and $\mathcal{L} u=0$ in $\Omega \cap\{u>0\}$.
2. For $D \subset \subset \Omega$ there are constants $0<c_{\text {min }} \leq C_{\text {max }}, \gamma \geq 1$, such that for balls $B_{r}(x) \subset D$ with $x \in \partial\{u>0\}$

$$
c_{\min } \leq \frac{1}{r}\left(f_{B_{r}(x)} u^{\gamma} d x\right)^{1 / \gamma} \leq C_{\max }
$$

3. For \mathcal{H}^{N-1} a.e $x_{0} \in \partial_{\text {red }}\{u>0\}$, u has the asymptotic development

$$
u(x)=\lambda^{*}\left\langle x-x_{0}, \nu\left(x_{0}\right)\right\rangle^{-}+o\left(\left|x-x_{0}\right|\right)
$$

where $\nu\left(x_{0}\right)$ is the unit exterior normal to $\partial\{u>0\}$ at x_{0} in the measure theoretic sense.
4.

$$
\limsup _{\substack{x \rightarrow x_{0} \\ u(x)>0}}|\nabla u(x)| \leq \lambda^{*}, \quad \text { for every } x_{0} \in \Omega \cap \partial\{u>0\}
$$

and for any ball B in $\{u=0\}$ touching $\Omega \cap \partial\{u>0\}$ at x_{0}, we have,

$$
\limsup _{x \rightarrow x_{0}} \frac{u(x)}{\operatorname{dist}(x, B)} \geq \lambda^{*}
$$

Remark 2.6.3. Any minimizer is a weak solution in the sense of Definitions 2.6.1 and 2.6.2. In fact, (1) follows from Lemma 2.2.1, (2) from Lemmas 2.3.2 and 2.3.1, (3) from Theorem 2.5 .11 and finally (4) from Lemma 2.5.3.

Remark 2.6.4. Observe that by hypothesis (1) of Definitions (2.6.1) and (2.6.2) we have by Lemma (1.2.45) that u is in $W_{\text {loc }}^{1, G}(\Omega)$ and $\Lambda:=\mathcal{L} u$ is a nonnegative Radon measure with support in $\Omega \cap \partial\{u>0\}$ (in particular, u is an \mathcal{L} - subsolution in Ω)

Now we will prove as in Theorem 2.3.5, the density property of the set $\{u>0\}$ at free boundary points. It is not true in general, for weak solutions satisfying only properties (1) and (2) of Definitions 2.6.1 or 2.6.2 that the set $\{u=0\}$ has positive density at \mathcal{H}^{N-1} - almost every free boundary point (see examples in [4]).

Theorem 2.6.5. For any domain $D \subset \subset \Omega$ there exists a constant c, with $0<$ $c<1$ depending on $N, \gamma, g_{0}, \delta, D, c_{\min }$ and $C_{m a x}$, such that, for any function u satisfying (1) and (2) of Definitions 2.6.1 and 2.6.2 and for every $B_{r} \subset D$, centered at the free boundary we have

$$
\frac{\left|B_{r} \cap\{u>0\}\right|}{\left|B_{r}\right|} \geq c
$$

Proof. The proof follows as in Theorem 2.3.5, the only difference here is that, instead of using Lemma 2.3.1 and 2.3.2, we use property (2) of Definitions 2.6.1 and 2.6.2.

Remark 2.6.6. Now, by Remark 2.3.8 we have that the free boundary has Lebesgue measure zero. Moreover, for every $D \subset \subset \Omega$, the intersection $\partial\{u>0\} \cap D$ has Hausdorff dimension less than N.

Lemma 2.6.7. If u satisfies hypothesis (1) and (2) of Definitions (2.6.1) and (2.6.2) then

1. u is Lipschitz and for any domain $D \subset \subset \Omega$, the Lipschitz constant depends only on $N, \gamma, g_{0}, \delta, \operatorname{dist}(D, \partial \Omega)$ and $C_{m a x}$, provided D contains a free boundary point.
2. For any domain $D \subset \subset \Omega$ there exist constants c, C depending on N, γ, g_{0}, δ, $D, c_{\text {min }}$ and $C_{\text {max }}$, such that, for every $B_{r} \subset D$ centered at the free boundary we have

$$
c r^{N-1} \leq \int_{B_{r}} d \Lambda \leq C r^{N-1}
$$

Proof. The proof of (1) is similar to the one in Theorem 2.2.25. The only change that we have to make here is the following, instead of using Lemma 2.2.13 we have to use property (2) of Definitions 2.6.1 and 2.6.2. We give the proof for the readers convenience.

Let $d(x)=\operatorname{dist}(x, \Omega \cap \partial\{u>0\})$. First, take x such that $d(x)<\frac{1}{5} \operatorname{dist}(x, \partial \Omega)$. Let $y \in \partial\{u>0\} \cap \partial B_{d(x)}(x)$. As $u>0$ in $B_{d(x)}(x), \mathcal{L} u=0$ in that ball and u is an \mathcal{L} - subsolution in $B_{3 d(x)}(y)$. By using the gradient estimates and Harnack inequality (see Lemmas 1.2 .18 and 1.2.14) and property (2) of Definitions 2.6.1 and 2.6.2 we have,

$$
\begin{aligned}
|\nabla u(x)| & \leq C \frac{1}{d(x)} \sup _{B_{d(x)}(x)} u \leq C \frac{1}{d(x)} \sup _{B_{2 d(x)}(y)} u \\
& \leq C \frac{1}{d(x)}\left(f_{B_{3 d(x)}(y)} u^{\gamma} d x\right)^{1 / \gamma} \leq C C_{\max } .
\end{aligned}
$$

So, the result follows in the case $d(x)<\frac{1}{5} \operatorname{dist}(x, \partial \Omega)$.
Let r_{1} such that $\operatorname{dist}(x, \partial \Omega) \geq r_{1}>0 \forall x \in D$, take D^{\prime}, satisfying $D \subset \subset D^{\prime} \subset \subset$ Ω given by

$$
D^{\prime}=\left\{x \in \Omega / \operatorname{dist}(x, D)<r_{1} / 2\right\} .
$$

Let $x \in D$. If $d(x) \leq \frac{1}{5} \operatorname{dist}(x, \partial \Omega)$ we have proved that $|\nabla u(x)| \leq C$.
If $d(x)>\frac{1}{5} \operatorname{dist}(x, \partial \Omega), u>0$ in $B_{\frac{r_{1}}{5}}(x)$ and $B_{\frac{r_{1}}{5}}(x) \subset D^{\prime}$ so that $|\nabla u(x)| \leq$ $\frac{C}{r_{1}}\|u\|_{L^{\infty}\left(D^{\prime}\right)}$.

To prove the second part of (1), consider now a connected domain D that contains a free boundary point and let D^{\prime} as in the previous paragraph. Let us see that $\|u\|_{L^{\infty}\left(D^{\prime}\right)}$ is bounded by a constant that depends only on $N, \gamma, D, r_{1}, \lambda, \delta$, and g_{0}. Let $r_{0}=\frac{r_{1}}{4}$ and $x_{0} \in D^{\prime}$. Since D^{\prime} is connected and not contained in $\{u>0\} \cap \Omega$, there exists $x_{1}, \ldots, x_{k} \in D^{\prime}$ such that $x_{j} \in B_{\frac{r_{0}}{2}}\left(x_{j-1}\right) j=1, \ldots, k, B_{r_{0}}\left(x_{j}\right) \subset\{u>0\}$ $j=0, \ldots, k-1$ and $B_{r_{0}}\left(x_{k}\right) \nsubseteq\{u>0\}$. Let $y_{0} \in \partial\{u>0\} \cap B_{r_{0}}\left(x_{k}\right)$. As u is an $\mathcal{L}-$ subsolution, by Lemma 1.2 .14 there exists C depending on N, γ, δ, g_{0} such that,

$$
u\left(x_{k}\right) \leq C\left(f_{B_{2 r_{0}}\left(y_{0}\right)} u^{\gamma} d x\right)^{1 / \gamma} \leq C C_{\max } r_{0}
$$

where in the last inequality we have used property (2) of Definitions 2.6.1 and 2.6.2. By Harnack inequality (Theorem 1.2.16) we have $u\left(x_{j+1}\right) \geq c u\left(x_{j}\right)$. Inductively we obtain $u\left(x_{0}\right) \leq C r_{0} \forall x_{0} \in D^{\prime}$. Therefore, the supremum of u over D^{\prime} can be estimated by a constant depending only on $N, \gamma, r_{1}, \lambda, \delta$, and g_{0}.

In order to prove (2) we use that Lemma 2.4.3 holds if u_{k} is a sequence of functions satisfying properties (1) and (2) of Definitions 2.6.1 and 2.6.2 with the same constants $c_{\min }$ and $C_{m a x}$. Then, the rest of the proof follows as in Theorem 2.4.4.

Remark 2.6.8. Now, we are under the conditions used in the proof of Theorem 2.4.5 and therefore this result applies to functions u satisfying properties (1) and (2)
of Definition 2.6.1 and 2.6.2. This is, $\Omega \cap \partial\{u>0\}$ has finite perimeter and there exists a Borel function q_{u} defined on $\Omega \cap \partial\{u>0\}$ such that $\mathcal{L} u=q_{u} \mathcal{H}^{N-1}\lfloor\partial\{u>0\}$.

As u satisfies the conclusions of Theorem 2.4.5, then Remark 1.4.62 also holds. We also have that any blow up sequence satisfies the properties of Lemma 1.6.13.

Moreover, we have the following result that holds at points $x_{0} \in \partial_{\text {red }}\{u>0\}$ that are Lebesgue points of the function q_{u} and are such that

$$
\begin{equation*}
\limsup _{r \rightarrow 0} \frac{\mathcal{H}^{N-1}\left(\partial\{u>0\} \cap B\left(x_{0}, r\right)\right)}{\mathcal{H}^{N-1}\left(B^{\prime}\left(x_{0}, r\right)\right)} \leq 1 \tag{2.6.9}
\end{equation*}
$$

(Here $B^{\prime}\left(x_{0}, r\right)=\left\{x^{\prime} \in \mathbb{R}^{N-1} /\left|x^{\prime}\right|<r\right\}$).
Recall that $\mathcal{H}^{N-1}-$ a.e. point in $\partial_{\text {red }}\{u>0\}$ satisfies (2.6.9) (see Theorem 1.4.65).

Lemma 2.6.10. If u is a function satisfying properties (1), (2) and (3) of Definition 2.6.1 or 2.6.2 we have that $q_{u}\left(x_{0}\right)=g\left(\lambda^{*}\right)$ for \mathcal{H}^{N-1} a.e $x_{0} \in \partial_{\text {red }}\{u>0\}$.

Proof. Clearly, we only have to prove the statement for weak solutions (II).
If u satisfies (3) of Definition 2.6.2, take $x_{0} \in \partial_{\text {red }}\{u>0\}$ such that

$$
u(x)=\lambda^{*}\left\langle x-x_{0}, \nu\left(x_{0}\right)\right\rangle^{-}+o\left(\left|x-x_{0}\right|\right) .
$$

Take $\rho_{k} \rightarrow 0$ and $u_{k}(x)=\frac{1}{\rho_{k}} u\left(x_{0}+\rho_{k} x\right)$. If $\xi \in C_{0}^{\infty}(\Omega)$ we have

$$
-\int_{\{u>0\}} g(|\nabla u|) \frac{\nabla u}{|\nabla u|} \nabla \xi d x=\int_{\partial\{u>0\}} q_{u}(x) \xi d \mathcal{H}^{N-1},
$$

and if we replace ξ by $\xi_{k}(x)=\rho_{k} \xi\left(\frac{x-x_{0}}{\rho_{k}}\right)$ with $\xi \in C_{0}^{\infty}\left(B_{R}\right), k \geq k_{0}$ and we change variables we obtain,

$$
-\int_{\left\{u_{k}>0\right\}} g\left(\left|\nabla u_{k}\right|\right) \frac{\nabla u_{k}}{\left|\nabla u_{k}\right|} \nabla \xi d x=\int_{\partial\left\{u_{k}>0\right\}} q_{u}\left(x_{0}+\rho_{k} x\right) \xi d \mathcal{H}^{N-1} .
$$

Now, recall that for a subsequence, $\chi_{\left\{u_{k}>0\right\}} \rightarrow \chi_{\left\{x_{N}<0\right\}}$ in $L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right)$ and $g\left(\left|\nabla u_{k}\right|\right) \frac{\nabla u_{k}}{\left|\nabla u_{k}\right|} \rightharpoonup g\left(\left|\nabla u_{0}\right|\right) \frac{\nabla u_{0}}{\left|\nabla u_{0}\right|} *-$ weakly in $L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N}\right)$. Thus,

$$
\int_{\left\{u_{k}>0\right\}} g\left(\left|\nabla u_{k}\right|\right) \frac{\nabla u_{k}}{\left|\nabla u_{k}\right|} \nabla \xi d x \rightarrow \int_{\left\{x_{N}<0\right\}} g\left(\left|\nabla u_{0}\right|\right) \frac{\nabla u_{0}}{\left|\nabla u_{0}\right|} \nabla \xi d x
$$

On the other hand, $\partial\left\{u_{k}>0\right\} \rightarrow\left\{x_{N}=0\right\}$ locally in Hausdorff distance. Then, if x_{0} is a Lebesgue point of q_{u} satisfying (2.6.9),

$$
\begin{equation*}
\int_{\partial\left\{u_{k}>0\right\}} q_{u}\left(x_{0}+\rho_{k} x\right) \xi d \mathcal{H}^{N-1} \rightarrow q_{u}\left(x_{0}\right) \int_{\left\{x_{N}=0\right\}} \xi d \mathcal{H}^{N-1} \tag{2.6.11}
\end{equation*}
$$

As, $\nabla u_{0}=-\lambda^{*} e_{N} \chi_{\left\{x_{N}<0\right\}}$, we deduce that for almost every point $x_{0} \in \partial_{\text {red }}\{u>$ $0\}, q_{u}\left(x_{0}\right)=g\left(\lambda^{*}\right)$.

Now we prove the asymptotic development for weak solutions satisfying Definition 2.6.1.

Lemma 2.6.12. If u satisfies (1), (2), (3) and (4) of Definition 2.6.1, then for $x_{0} \in \partial_{\text {red }}\{u>0\}$ satisfying (2.6.9), u has the following asymptotic development

$$
\begin{equation*}
u(x)=\lambda^{*}\left\langle x-x_{0}, \nu\left(x_{0}\right)\right\rangle^{-}+o\left(\left|x-x_{0}\right|\right) \tag{2.6.13}
\end{equation*}
$$

where $\nu\left(x_{0}\right)$ is the unit outer normal to the free boundary at x_{0}.
Proof. Let $x_{0} \in \partial_{\text {red }}\{u>0\}$ and let $\rho_{k} \rightarrow 0$. Let $u_{k}(x)=\frac{1}{\rho_{k}} u\left(x_{0}+\rho_{k} x\right)$ be a blow up sequence (observe that u_{k} is again a weak solution in the rescaled domain). Assume that $u_{k} \rightarrow u_{0}$ uniformly on compact subsets of \mathbb{R}^{N}. Also assume that $\nu\left(x_{0}\right)=e_{N}$. As in the proof of Theorem 2.5.5 we deduce that

$$
\begin{aligned}
& u_{0} \geq 0 \quad \text { in }\left\{x_{N}<0\right\} \\
& u_{0}=0 \quad \text { in }\left\{x_{N} \geq 0\right\} .
\end{aligned}
$$

Let us see that $u_{0}>0$ in $\left\{x_{N}<0\right\}$. To this end, let $D \subset \subset\left\{x_{N}<0\right\}$ and let $\xi \in C_{0}^{\infty}(D)$. For k large enough,

$$
\begin{equation*}
-\int_{\left\{u_{k}>0\right\}} g\left(\left|\nabla u_{k}\right|\right) \frac{\nabla u_{k}}{\left|\nabla u_{k}\right|} \nabla \xi d x=\int_{\partial_{\text {red }}\left\{u_{k}>0\right\}} g\left(\lambda^{*}\right) \xi(x) d \mathcal{H}^{N-1} . \tag{2.6.14}
\end{equation*}
$$

By Lemma 1.4.67, we have that for every $x_{0} \in \partial_{\text {red }}\{u>0\}$ satisfying (2.6.9),

$$
\mathcal{H}^{N-1}\left(\partial\left\{u_{k}>0\right\} \cap D\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty .
$$

Thus, the right hand side of (2.6.14) goes to zero as $k \rightarrow \infty$. Since the left hand side goes to

$$
-\int g\left(\left|\nabla u_{0}\right|\right) \frac{\nabla u_{0}}{\left|\nabla u_{0}\right|} \nabla \xi d x
$$

we deduce that $\mathcal{L} u_{0}=0$ in $\left\{x_{N}<0\right\}$. Thus, $u_{0}>0$ in $\left\{x_{N}<0\right\}$.
As in Theorem 2.5.5 we have that there exists $0<\lambda_{0}<\infty$ such that

$$
u_{0}(x)=\lambda_{0} x_{N}^{-}+o(|x|) .
$$

By property (2) of Lemma 1.6.13 we have that

$$
\chi_{\left\{u_{k}>0\right\}} \rightarrow \chi_{\left\{x_{N}<0\right\}} \quad \text { in } L_{l o c}^{1}\left(\mathbb{R}^{N}\right) \quad \text { as } k \rightarrow \infty .
$$

Let now $\xi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ in (2.6.14). Passing to the limit as $k \rightarrow \infty$ and using Lemma 1.6.13 (1) we get,

$$
-\int_{\left\{x_{N}<0\right\}} g\left(\left|\nabla u_{0}\right|\right) \frac{\nabla u_{0}}{\left|\nabla u_{0}\right|} \nabla \xi d x=\int_{\left\{x_{N}=0\right\}} g\left(\lambda^{*}\right) \xi(x) d \mathcal{H}^{N-1} .
$$

Replacing ξ by $r \xi(x / r)$ with $r \rightarrow 0$, using the fact that $\frac{1}{r} u_{0}(r x) \rightarrow \lambda_{0} x_{N}^{-}$uniformly on compact sets of \mathbb{R}^{N}, changing variables and passing to the limit we get

$$
g\left(\lambda_{0}\right) \int_{\left\{x_{N}<0\right\}} \xi_{N} d x=g\left(\lambda^{*}\right) \int_{\left\{x_{N}=0\right\}} \xi(x) d \mathcal{H}^{N-1} .
$$

Thus, $\lambda_{0}=\lambda^{*}$.
At this point we proceed as in Theorem 2.5.5 to deduce that actually $u_{0}(x)=$ $\lambda^{*} x_{N}^{-}$(observe that here we are using property (4) of Definition 2.6.1). As the blow up limit u_{0} is independent of the blow up sequence ρ_{k} we conclude that u has the asymptotic development (2.6.13).

Now we prove the property that we mentioned in the introduction to this section. The following lemma only holds for weak solutions satisfying Definition 2.6.1.

Lemma 2.6.15. If u satisfies (1), (2) and (3) of Definition 2.6.1,

1. $\mathcal{H}^{N-1}\left(\partial\{u>0\} \backslash \partial_{\text {red }}\{u>0\}\right)=0$
2. $|D \cap\{u=0\}|>0$ for every open set $D \subset \Omega$ containing a point of $\{u=0\}$.
3. For any ball B in $\{u=0\}$ touching $\Omega \cap \partial\{u>0\}$ at x_{0}, there holds that,

$$
\begin{equation*}
\limsup _{x \rightarrow x_{0}} \frac{u(x)}{\operatorname{dist}(x, B)} \geq \lambda^{*} \tag{2.6.16}
\end{equation*}
$$

Proof. By Theorem 1.4.64 we have,

$$
\begin{equation*}
\left|\mu_{u}\right|\left(B_{r}\left(x_{0}\right)\right)=o\left(r^{N-1}\right) \quad \text { for } r \rightarrow 0 \tag{2.6.17}
\end{equation*}
$$

for \mathcal{H}^{N-1} almost all points $x_{0} \in \partial\{u>0\} \backslash \partial_{\text {red }}\{u>0\}$ (Recall that $\mu_{u}=-\nabla \chi_{\{u>0\}}$). Let $x_{0} \in \partial\{u>0\} \backslash \partial_{\text {red }}\{u>0\}$ satisfying (2.6.17). Then, if u_{0} is a blow up limit with respect to balls $B_{\rho_{k}}\left(x_{0}\right)$, we obtain for $\xi \in C_{0}^{\infty}\left(B_{1}\right)$ that,

$$
\begin{aligned}
-\int_{\mathbb{R}^{N}} g\left(\left|\nabla u_{0}\right|\right) \frac{\nabla u_{0}}{\left|\nabla u_{0}\right|} \nabla \xi d x \leftarrow & -\int_{\mathbb{R}^{N}} g\left(\left|\nabla u_{k}\right|\right) \frac{\nabla u_{k}}{\left|\nabla u_{k}\right|} \nabla \xi d x \\
& =\rho_{k}^{1-N} g\left(\lambda^{*}\right) \int_{\partial_{\text {red }}\{u>0\} \cap B_{\rho_{k}}\left(x_{0}\right)} \xi\left(\frac{y-x_{0}}{\rho_{k}}\right) d \mathcal{H}^{N-1} \\
& =\rho_{k}^{1-N} g\left(\lambda^{*}\right) \int_{B_{\rho_{k}}\left(x_{0}\right)} \xi\left(\frac{y-x_{0}}{\rho_{k}}\right) d\left|\mu_{u}\right|(x) \\
& \leq C \rho_{k}^{1-N}\left|\mu_{u}\right|\left(B_{\rho_{k}}\left(x_{0}\right)\right) \rightarrow 0,
\end{aligned}
$$

therefore $\mathcal{L} u_{0}=0$. Since $u_{0}(0)=0$, we must have $u_{0}=0$, but this contradicts the nondegeneracy property (2) of the Definition 2.6.1. Therefore (1) holds.

To prove (2), suppose that $\chi_{\{u>0\}}=1$ almost everywhere in D, hence the reduced boundary must be outside of D. Then, by Definition 2.6.1 (3), $\mathcal{L} u=0$ in D, and therefore u is positive. Hence $D \cap\{u=0\}=\emptyset$.

In order to prove (3), Let l be the finite limit on the left of (2.6.16), and $y_{k} \rightarrow x_{0}$ with $u\left(y_{k}\right)>0$ and

$$
\frac{u\left(y_{k}\right)}{d_{k}} \rightarrow l, \quad d_{k}=\operatorname{dist}\left(y_{k}, B\right)
$$

Consider the blow up sequence u_{k} with respect to $B_{d_{k}}\left(x_{k}\right)$, where $x_{k} \in \partial B$ are points with $\left|x_{k}-y_{k}\right|=d_{k}$, and choose a subsequence with blow up limit u_{0}, such that

$$
e:=\lim _{k \rightarrow \infty} \frac{x_{k}-y_{k}}{d_{k}}
$$

exists. Then by construction, since $l>0$ by nondegenaracy, $u_{0}(-e)=l$, and $u_{0}(x) \leq-l\langle x, e\rangle$ for $x \cdot e \leq 0, u_{0}(x)=0$ for $x \cdot e \geq 0$. Both, u_{0} and $l\langle x, e\rangle^{-}$are \mathcal{L} solutions in $\left\{u_{0}>0\right\}$, and coincide in $-e$. Since $l>0$, and $\left|\nabla u_{0}\right|>l / 2$ in a neighborhood of $-e$, we have that \mathcal{L} is uniformly elliptic there. Then we can apply the strong maximum principle to conclude that they must coincide in that neighborhood of $-e$. By a continuation argument, we have that $u_{0}=l\langle x, e\rangle^{-}$.

By the Representation Theorem, $\forall \varphi \in C_{0}^{\infty}\left(B_{1}\right), \varphi \geq 0$

$$
\begin{align*}
\int_{\partial\left\{u_{k}>0\right\}} \varphi q_{u_{k}} d \mathcal{H}^{N-1}=-\int_{\mathbb{R}^{N}} g\left(\left|\nabla u_{k}\right|\right) \frac{\nabla u_{k}}{\left|\nabla u_{k}\right|} \nabla \varphi d x \rightarrow & -\int_{\mathbb{R}^{N}} g\left(\left|\nabla u_{0}\right|\right) \frac{\nabla u_{0}}{\left|\nabla u_{0}\right|} \nabla \varphi d x \tag{2.6.18}\\
& =g(l) \int_{\{\langle x, e\rangle=0\}} \varphi d \mathcal{H}^{N-1}
\end{align*}
$$

and

$$
\begin{align*}
\int_{\partial\left\{u_{k}>0\right\}} \varphi d \mathcal{H}^{N-1} & \geq \int_{\partial_{\text {red }}\left\{u_{k}>0\right\}} \varphi\left\langle e . \nu_{u_{k}}\right\rangle d \mathcal{H}^{N-1} \\
& =\int \varphi e . d \mu_{u_{k}}=\int_{\left\{u_{k}>0\right\}} \partial_{e} \varphi d x \rightarrow \int_{\{\langle x, e\rangle<0\}} \partial_{e} \varphi d x \tag{2.6.19}\\
& =\int_{\{\langle x, e\rangle=0\}} \varphi d \mathcal{H}^{N-1} .
\end{align*}
$$

Therefore, for weak solutions of type I and II we have,

$$
g(l) \geq \liminf _{x \rightarrow x_{0}} q_{u}(x) .
$$

Now, if u is a weak solution of type I we have, that $q_{u}(x)=g\left(\lambda^{*}\right)$ for $\mathcal{H}^{N-1}-$ a.e $x \in \Omega \cap \partial\{u>0\}$. Thus, $g(l) \geq g\left(\lambda^{*}\right)$ and $l \geq \lambda^{*}$.

We then conclude,
Theorem 2.6.20. If u satisfies (1), (2) (3) and (4) of Definition 2.6.1, then for \mathcal{H}^{N-1} a.e $x_{0} \in \partial\{u>0\}$, u has the asymptotic development (2.6.13)

Proof. It follows by Lemmas 2.6.12 and 2.6.15.
Remark 2.6.21. Now we have that with the additional hypothesis (4), weak solutions (I) satisfy the same properties that we proved in the previous section for minimizers (with the only difference that in (4) we have a less than or equal instead of an equal). Observe that minimizers have the asymptotic development (2.6.13) at every point in their reduced free boundary, but we only proved that this development holds at almost every point of $\partial_{\text {red }}\{u>0\}$ when u is a weak solution.

Remark 2.6.22. We have proved that weak solutions I are also weak solutions II.

7. Regularity of the free boundary

In this section we prove the regularity of the free boundary of a weak solution u in a neighborhood of every "flat" free boundary point. In particular, we prove the regularity in a neighborhood of every point in $\partial_{\text {red }}\{u>0\}$ where u has the asymptotic development (2.6.13). Then, if u is a minimizer, $\partial_{\text {red }}\{u>0\}$ is smooth and the remainder of the free boundary has \mathcal{H}^{N-1} - measure zero.

The proof of the regularity of the free boundary is based on the works [4] and [10]. The main differences with [10] come from the fact that we don't assume the locally uniform positive density of the set $\{u \equiv 0\}$ at the free boundary. This is a property satisfied by minimizers that is not know to hold, in principle, for weak solutions that appear in a different context. This uniform density property implies, in particular, that \mathcal{H}^{N-1} - almost every point on the free boundary belongs to the reduced free boundary and this is a very strong assumption that we don't want to make.

The proof will be done in a series of steps.

7.1. Flatness and nondegeneracy of the gradient.

Definition 2.7.1 (Flat free boundary points). Let $0<\sigma_{+}, \sigma_{-} \leq 1$ and $\tau>0$. We say that u is of class

$$
F\left(\sigma_{+}, \sigma_{-} ; \tau\right) \quad \text { in } \quad B_{\rho}=B_{\rho}(0)
$$

if

1. $0 \in \partial\{u>0\}$ and

$$
\begin{array}{lll}
u=0 & \text { for } & x_{N} \geq \sigma_{+} \rho \\
u(x) \geq-\lambda^{*}\left(x_{N}+\sigma_{-} \rho\right) & \text { for } & x_{N} \leq-\sigma_{-} \rho
\end{array}
$$

2. $|\nabla u| \leq \lambda^{*}(1+\tau)$ in B_{ρ}.

If the origin is replaced by x_{0} and the direction e_{N} by the unit vector ν we say that u is of class $F\left(\sigma_{+}, \sigma_{-} ; \tau\right)$ in $B_{\rho}\left(x_{0}\right)$ in direction ν.

Remark 2.7.2. First, observe that we may suppose that $x_{0}=0$ and $\rho=1$, if not we replace u by $v_{1}(x)=u\left(x_{0}+x \rho\right) / \rho$. We also may suppose that $\lambda^{*}=1$. In fact, take the function $g^{*}(t)=g\left(\lambda^{*} t\right)$. Then, g^{*} satisfies condition (0.0.2) with the same δ and g_{0}. If $v_{2}=v_{1} / \lambda^{*}$, then v_{2} satisfies all the properties of weak solution where the constants in (2) are replaced by $C_{\max } / \lambda^{*}$ and $c_{\min } / \lambda^{*}$, and in (3) and (4) we have a one instead of λ^{*}. Finally, if we take $v_{3}(x)=v_{2}(T x)$ where T is a rotation with $T\left(e_{n}\right)=\nu$ then u is a weak solution in $B_{\rho}\left(x_{0}\right)$ with $u \in F\left(\sigma_{+}, \sigma_{-} ; \tau\right)$ in $B_{\rho}\left(x_{0}\right)$ in direction ν, if only if v_{3} is a weak solution in B_{1} associated to the function g^{*}, $\lambda^{*}=1$ and with $v_{3} \in F\left(\sigma_{+}, \sigma_{-} ; \tau\right)$ in B_{1} in direction e_{N}. In this section we will then suppose that $\rho=1, x_{0}=0, \lambda^{*}=1$ and $\nu=e_{N}$ but, by this observation, we will have that all the following results hold also in the general case.

We will prove the following results,

Theorem 2.7.3. There exists $\sigma_{0}>0$ and $C_{0}>0$ such that

$$
u \in F(\sigma, 1 ; \sigma) \text { in } B_{1} \text { implies } u \in F\left(2 \sigma, C_{0} \sigma ; \sigma\right) \text { in } B_{1 / 2}
$$

for $0<\sigma<\sigma_{0}$.
Theorem 2.7.4. For every $\delta>0$ there exist $\sigma_{\delta}>0$ and $C_{\delta}>0$ such that

$$
u \in F(\sigma, 1 ; \sigma) \text { in } B_{1} \text { implies }|\nabla u| \geq 1-\delta \text { in } B_{1 / 2} \cap\left\{x_{N} \leq-C_{\delta} \sigma\right\}
$$

for $0<\sigma<\sigma_{\delta}$.
We first prove the following weak forms of the theorems.
Lemma 2.7.5. For every $\varepsilon>0$ there exists $\sigma_{\varepsilon}>0$ such that

$$
u \in F(\sigma, 1 ; \sigma) \text { in } B_{1} \text { implies } u \in F(2 \sigma, \varepsilon ; \sigma) \text { in } B_{1 / 2}
$$

for $0<\sigma<\sigma_{\varepsilon}$.
Proof. We develop the proof of the Lemma in several steps.
Step I We use the following construction from [4] and [5]. Let

$$
\eta(y)=\exp \left(\frac{-9|y|^{2}}{1-9|y|^{2}}\right)
$$

for $|y|<1 / 3$ and $\eta(y)=0$ for $|y|>1 / 3$, and chose $s \geq 0$ maximal such that

$$
B_{1} \cap\{u>0\} \subset D:=\left\{x \in B_{1}: x_{N}<\sigma-s \eta\left(x^{\prime}\right)\right\},
$$

where $x=\left(x^{\prime}, x_{N}\right)$. Hence, there exists a point

$$
z \in B_{1 / 2} \cap \partial D \cap \partial\{u>0\}
$$

Observe also that $s \leq \sigma$ since $0 \in \partial\{u>0\}$. Now, let $\xi \in \partial B_{3 / 4}$ with $\xi_{N} \leq-1 / 2$. We want to prove an estimate for $u(\xi)$ from below. Consider the solution $v=v_{\kappa, \rho}$ of,

$$
\begin{cases}\mathcal{L} v=0 & \text { in } \quad D \backslash \overline{B_{\rho}(\xi)}, \\ v=0, & \text { on } \quad \partial D \cap B_{1}, \\ v=(1+\sigma)\left(\sigma-x_{N}\right), & \text { on } \quad \partial D \backslash B_{1}, \\ v=-(1-\kappa \sigma) x_{N}, & \text { on } \quad \partial B_{\rho}(\xi),\end{cases}
$$

where $\kappa>0$ is large and $\rho>0$ is a small constant to be chosen later.
Step II The function $v=v_{\kappa, \rho}$ constructed above satisfies.

$$
\partial_{-\nu} v(z) \leq 1+C \sigma-c \kappa \sigma \quad \text { for } z \in B_{1 / 2} \cap \partial D
$$

for some positive constants $C=C(\rho)$ and $c=c(\rho)$, if $0<\sigma<\sigma(\kappa, \rho)$.
The idea of the proof is to construct an explicit \mathcal{L} - supersolution w in $D \backslash B_{\rho}(\xi)$ in order to to estimate v. We construct w of the form $w=v_{1}-\kappa \sigma v_{2}$, where v_{1} and v_{2} are defined below.

First, let v_{1} and v_{2} be defined as follows.

$$
v_{1}=\frac{\gamma_{1}}{\mu_{1}}\left(1-\exp \left(-\mu_{1} d_{1}\right)\right) \quad \text { in } D
$$

where

$$
d_{1}(x)=-x_{N}+\sigma-s \eta\left(x^{\prime}\right),
$$

and μ_{1}, γ_{1} depending on σ are positive constants. Then,

$$
1 \leq\left|\nabla d_{1}\right| \leq 1+C \sigma, \quad\left|D^{2} d_{1}\right| \leq C \sigma
$$

Hence, if $b_{i j}$ is the matrix defined in Remark 1.2 .25 with ellipticity β we have, (2.7.6)
$b_{i j} D_{i j} v_{1}=\gamma_{1} \exp \left(-\mu_{1} d_{1}\right) b_{i j}\left(D_{i j} d_{1}-\mu_{1} D_{i} d_{1} D_{j} d_{1}\right) \leq \gamma_{1} \exp \left(-\mu_{1} d_{1}\right)\left(C \sigma-\beta^{-1} \mu_{1}\right)<0$, if we choose $\mu_{1}=C_{1} \sigma$ for C_{1} large. Next,

$$
\begin{equation*}
\left|\nabla v_{1}(x)\right|=\gamma_{1} \exp \left(-\mu_{1} d_{1}\right)\left|\nabla d_{1}\right| \geq \gamma_{1} \exp \left(-\mu_{1} d_{1}\right) \geq \gamma_{1}\left(1-2 C_{1} \sigma\right) \geq 1 \tag{2.7.7}
\end{equation*}
$$

if $\sigma<2, \gamma_{1}=1+C_{2} \sigma$ for $C_{2}=3 C_{1}$ and $\sigma \leq \sigma_{0}\left(C_{1}\right)$.
Hence by Remark 1.2.25 v_{1} is an \mathcal{L} - supersolution in D.
Moreover, if $\sigma \leq 1$ then,

$$
\begin{equation*}
v_{1}(x) \geq \gamma_{1} d_{1}(x)\left(1-2 \mu_{1}\right) \geq\left(1+\frac{C_{1}}{2} \sigma\right) d_{1}(x) \tag{2.7.8}
\end{equation*}
$$

if $\sigma \leq \sigma_{0}\left(C_{1}\right)$.
If $x \in \partial D \backslash B_{1}$ and if $\left|x^{\prime}\right| \geq 1 / 3$ then $\eta\left(x^{\prime}\right)=0$ and we have $v(x)=0$. If $x \in \partial D \backslash B_{1}$ and if $\left|x^{\prime}\right| \leq 1 / 3$ then $x_{N} \geq-\sqrt{2 / 3}$ and by (2.7.8) we have,

$$
\begin{aligned}
v_{1}(x) & \geq\left(1+C_{1} / 2\right) d_{1}(x)=\sigma-x_{N}+\frac{C_{1}}{2} \sigma\left(\sigma-x_{N}\right)-\left(1+\frac{C_{1}}{2} \sigma\right) s \eta \\
& \geq \sigma-x_{N}+\sigma\left(\frac{C_{1}}{2}(\sigma+\sqrt{2 / 3})-\left(1+\frac{C_{1}}{2} \sigma\right)\right)=\sigma-x_{N}+\left(\frac{C_{1}}{2} \sqrt{2 / 3}-1\right) \sigma \\
& \geq \sigma-x_{N}+\sigma(\sigma+1) \geq \sigma-x_{N}+\sigma\left(\sigma-x_{N}\right)=v(x)
\end{aligned}
$$

if $\sigma \leq \sigma_{0}\left(C_{1}\right)$.
If $x \in \partial B_{\rho}(\xi)$ and if $\rho \leq-1 / 4$ then $x_{N} \leq-1 / 4$ and by (2.7.8) we have,

$$
\begin{aligned}
v_{1}(x) & \geq\left(1+C_{1} / 2\right) d_{1}(x)=-x_{N}-\frac{C_{1}}{2} \sigma x_{N}+(\sigma-s \eta)\left(1+\frac{C_{1}}{2} \sigma\right) \geq-x_{N}-\frac{C_{1}}{2} \sigma x_{N} \\
& \geq-x_{N}+\kappa \sigma x_{N}=v(x)
\end{aligned}
$$

Therefore, for $x \in \partial\left(D \backslash B_{\rho}(\xi)\right)$

$$
v_{1}(x) \geq\left(1+\frac{C_{1}}{2} \sigma\right) d_{1}(x) \geq v(x)
$$

if σ is sufficiently small. By the maximum principle,

$$
v_{1}(x) \geq v \quad \text { in } D \backslash B_{\rho}(\xi)
$$

We also have that at $z \in B_{1 / 2} \cap \partial D$

$$
\begin{equation*}
\left|\nabla v_{1}(z)\right|=\gamma_{1}\left|\nabla d_{1}\right| \leq 1+C \sigma . \tag{2.7.9}
\end{equation*}
$$

Next, we define v_{2} depending on $B_{\rho}(\xi)$ by

$$
v_{2}(x)=\frac{\gamma_{2}}{\mu_{2}}\left(\exp \left(\mu_{2} d_{2}\right)-1\right) \quad \text { in } \widetilde{D} \backslash B_{\rho}(\xi)
$$

with constants γ_{2}, μ_{2}, and $\widetilde{D} \subset D$ a domain with smooth boundary containing $D \backslash B_{1 / 10}\left(\partial B_{1}^{\prime} \times\{0\}\right)$, and d_{2} is a function in $C^{2}\left(D \backslash B_{\rho}(\xi)\right)$ satisfying,

$$
\begin{aligned}
d_{2}=0 & \text { on } \partial \tilde{D} \\
d_{2}=1 & \text { on } \partial B_{\rho}(\xi) \\
C \geq\left|\nabla d_{2}\right| \geq c>0 & \text { in } \widetilde{D} \backslash \overline{B_{\rho}(\xi)}
\end{aligned}
$$

Thus,
(2.7.10)

$$
b_{i j} D_{i j} v_{2}=\gamma_{2} \exp \left(\mu_{2} d_{2}\right) b_{i j}\left(D_{i j} d_{2}+\mu_{2} D_{i} d_{2} D_{j} d_{2}\right) \geq \gamma_{2} \exp \left(\mu_{2} d_{2}\right)\left(-C+c \mu_{2}\right)>0,
$$

if μ_{2} is large enough. Then choosing γ_{2} such that $v_{2}=1$ on $\partial B_{\rho}(\xi)$ we have that in $\widetilde{D} \backslash \overline{B_{\rho}(\xi)}$ we have

$$
\begin{equation*}
\left|\nabla v_{2}\right|=\gamma_{2} \exp \left(\mu_{2} d_{2}\right)\left|\nabla d_{2}\right| \leq C \tag{2.7.11}
\end{equation*}
$$

and at the point z

$$
\begin{equation*}
\left|\nabla v_{2}(z)\right|=\gamma_{2}\left|\nabla d_{2}(z)\right| \geq c>0 \tag{2.7.12}
\end{equation*}
$$

Thus by (2.7.6) and (2.7.10), the function $w=v_{1}-\kappa \sigma v_{2}$ satisfies

$$
\begin{equation*}
b_{i j} D_{i j} w \leq 0 \text { in } \widetilde{D} \backslash \overline{B_{\rho}(\xi)} \tag{2.7.13}
\end{equation*}
$$

with

$$
w=v_{1} \geq v \quad \text { on } \partial \widetilde{D} .
$$

If $x \in \partial B_{\rho}(\xi)$ and $\rho \leq 1 / 4$, then $-x_{N} \leq-1 / 4$ and using (2.7.8) with $C_{3}=\frac{C_{2}}{2} \geq 3 \kappa$ we have that,

$$
\begin{aligned}
w(x) & \geq\left(1+C_{3} \sigma\right) d_{1}(x)-k \sigma=-x_{N}-C_{3} \sigma x_{N}+\left(1+C_{3} \sigma\right)(\sigma-s \eta)-\kappa \sigma \\
& \geq-x_{N}-3 \kappa \sigma x_{N}-\kappa \sigma \geq-x_{N}-\sigma \kappa x_{N}=v(x) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
w(x) \geq v(x) \quad \text { on } \partial\left(\widetilde{D} \backslash B_{\rho}(\xi)\right) \tag{2.7.14}
\end{equation*}
$$

The functions v_{1}, v_{2} are C^{2} and we proved in (2.7.7) and (2.7.11) that $\left|\nabla v_{1}\right|>1$ and $\left|\nabla v_{2}\right| \leq C$. We obtain that $|\nabla w| \geq\left|\nabla v_{1}\right|-\kappa \sigma\left|\nabla v_{2}\right| \geq 1-C \kappa \sigma>0$ if $\sigma<\sigma(\kappa)$. This fact and (2.7.13) will imply that w is an \mathcal{L} - supersolution. On the other hand, by $\left(\underline{2.7 .14)} w \geq v\right.$ on $\partial\left(\widetilde{D} \backslash \overline{B_{\rho}(\xi)}\right)$, then by comparison we have that $w \geq v$ in $\widetilde{D} \backslash \overline{B_{\rho}(\xi)}$. Therefore, by (2.7.9) and (2.7.12) we have,

$$
\partial_{-\nu} v(z) \leq \partial_{-\nu} w(z)=\left|\nabla v_{1}(z)\right|-\kappa \sigma\left|\nabla v_{2}(z)\right| \leq 1+C \sigma-c \kappa \sigma .
$$

Step III By (4) in Definition 2.6.2 and (3) in Lemma 2.6.15 we have that, if B is a ball in $\{u=0\}$ touching the free boundary at x_{0} then

$$
\limsup _{x \rightarrow x_{0}} \frac{u(x)}{\operatorname{dist}(x, B)} \geq 1
$$

We want to prove that, for large $\kappa=\kappa(\rho)$

$$
\begin{equation*}
u\left(x_{\xi}\right) \geq v\left(x_{\xi}\right) \quad \text { for some } x_{\xi} \in \partial B_{\rho}(\xi) . \tag{2.7.15}
\end{equation*}
$$

Indeed, otherwise $u \leq v$ on $\partial B_{\rho}(\xi)$; also $u \leq v$ on ∂D (by 2.7.1 with (2) $\tau=\sigma$). Therefore $u \leq v$ on $\partial\left(D \backslash B_{\rho}(\xi)\right)$ and, by comparison principle, also $u \leq v$ in $\bar{D} \backslash \overline{B_{\rho}(\xi)}$. By step III applied to z we have that

$$
1 \leq \limsup _{x \rightarrow z} \frac{u(x)}{\operatorname{dist}(x, \partial D)} \leq \partial_{-\nu} v(z)
$$

and the contradiction follows by step II choosing κ large enough .
Now, for κ large, we have

$$
\begin{aligned}
u(\xi) & \geq u\left(x_{\xi}\right)-\rho(1+\sigma) \geq v\left(x_{\xi}\right)-\rho(1+\sigma)=-(1-\kappa \sigma)\left(x_{\xi}\right)_{N}-\rho(1+\sigma) \\
& \geq-\left(x_{\xi}\right)_{N}-\kappa \sigma-2 \rho \geq-\xi_{N}-4 \rho
\end{aligned}
$$

for $\sigma<\sigma(\rho)$ sufficiently small. That is,

$$
\begin{equation*}
u(\xi) \geq-\xi_{N}-4 \rho \quad \text { on }\left\{\xi \in \partial B_{3 / 4}, \xi_{N} \leq-1 / 2\right\} \tag{2.7.16}
\end{equation*}
$$

Integrating along vertical lines and using that $|\nabla u| \leq 1+\sigma$, we obtain for $\alpha>0$,

$$
u\left(\xi+\alpha e_{N}\right) \geq u(\xi)-\alpha(1+\sigma) \geq-\xi_{N}-4 \rho-\alpha-\alpha \sigma \geq-\left(\xi_{N}+\alpha\right)-5 \rho
$$

for $\sigma<\sigma(\rho)$. Choosing $\rho=\varepsilon / 10$, we complete the proof of the Lemma.
Lemma 2.7.17. For every $\varepsilon>0$ and $\delta>0$ there exists $\sigma_{\varepsilon, \delta}>0$ such that

$$
u \in F(\sigma, 1 ; \sigma) \text { in } B_{1} \text { implies }|\nabla u| \geq 1-\delta \text { in } B_{1 / 2} \cap\left\{x_{N} \leq-\varepsilon\right\}
$$

for $0<\sigma<\sigma_{\varepsilon, \delta}$.
Proof. Assume the contrary. Then there exists a sequence $u_{k} \in F(1 / k, 1 ; 1 / k)$ such that

$$
\left|\nabla u_{k}\right| \leq 1-\delta \text { for some } x_{k} \in B_{1 / 2} \cap\left\{x_{N} \leq-\varepsilon\right\} .
$$

From Lemma 2.7.5 we have that $u_{k} \in F(2 / k, 1 / k ; 1 / k)$ and letting $k \rightarrow \infty$ we obtain,

$$
u_{k}(x) \rightarrow u_{0}(x)=x_{N}^{-} \quad \text { uniformly on } \overline{B_{1 / 4}} .
$$

Moreover on the set $\left\{u_{0}>0\right\}=\left\{x_{N}<0\right\}$ the convergence is locally in $C^{1, \alpha}$. This implies that if $x_{k} \rightarrow x_{0} \in B_{1 / 2} \cap\left\{x_{N} \leq-\varepsilon\right\}$, then $\left|\nabla u\left(x_{0}\right)\right| \leq 1-\delta$ which contradicts the fact that $\left|\nabla u_{0}\right|=1$.

Proof of Theorem 2.7.3. We revisit the proof of Lemma 2.7.5. Choose $\rho=$ $1 / 10$ and $\kappa=\kappa(\rho)$ such that (2.7.15) holds. We can refine the estimate (2.7.16) as follows. Set,

$$
w(x)=(1+\sigma)\left(\sigma-x_{N}\right)-u(x) .
$$

Then $u \in F(\sigma, 1 ; \sigma)$ implies $w(x) \geq 0$ in $B_{2 \rho}(\xi)$ and

$$
w\left(x_{\xi}\right) \leq-\left(x_{\xi}\right)_{N}-v\left(x_{\xi}\right)+C \sigma \leq C \sigma .
$$

From σ sufficiently small, we know from Lemma 2.7.17 that $|\nabla u| \geq 1 / 2$, hence u will satisfy $\mathcal{T} u=0$, where \mathcal{T} was define in (1.2.26). As a consequence, w will also satisfies $\mathcal{L} w=0$. Then, applying the Harnack inequality we obtain that

$$
w(\xi) \leq C w\left(x_{\xi}\right) \leq C \sigma
$$

or

$$
u(\xi) \geq-\xi_{N}-C \sigma \quad \text { on }\left\{\xi \in \partial B_{3 / 4}, \xi_{N} \leq-1 / 2\right\}
$$

Integrating along vertical lines and using that $|\nabla u| \leq 1+\sigma$, we conclude that

$$
u\left(\xi+\alpha e_{N}\right) \geq u(\xi) \geq-(1+\sigma) \alpha \geq-\left(\xi_{N}+\alpha\right)-C \sigma,
$$

which implies that $u \in F(2 \sigma, C \sigma ; \sigma)$ in $B_{1 / 2}$.
Proof of Theorem 2.7.4. Assume the contrary. Then there exists a sequence $\sigma_{k} \rightarrow 0$ and $u_{k} \in F\left(\sigma_{k}, 1 ; \sigma_{k}\right)$ such that

$$
\left|\nabla u_{k}\left(x^{k}\right)\right|<1-\delta \text { for some } x^{k} \in B_{1 / 2} \cap\left\{x_{N} \leq-k \sigma_{k}\right\} .
$$

Let $d_{k}=\operatorname{dist}\left(x^{k}, \partial\left\{u_{k}>0\right\}\right)$ and $y^{k} \in \partial\left\{u_{k}>0\right\}$ be such that $\left|x^{k}-y^{k}\right|=d_{k}$. From Theorem 2.7.3 it follows that $d_{k} \geq\left(k-C_{0}\right) \sigma_{k}$. Define now

$$
\widetilde{u}_{k}(x)=\frac{u_{k}\left(y^{k}+2 d_{k}\right)}{2 d_{k}}, \quad \tilde{x}_{k}=\frac{x^{k}-y^{k}}{2 d_{k}} .
$$

Then one easily verify that

$$
\begin{gathered}
\widetilde{u}_{k} \in F\left(\frac{\left(C_{0}+1\right)}{2\left(k-C_{0}\right)}, 1 ; \sigma_{k}\right) \quad \text { in } B_{1} \\
\left|\tilde{x}_{k}\right|=1 / 2,\left(\tilde{x}_{k}\right)_{N} \leq-\frac{1}{2}\left(1-\frac{C_{0}+1}{k-C_{0}}\right),
\end{gathered}
$$

and $\left|\nabla \widetilde{u}_{k}\left(\tilde{x}_{k}\right)\right|<1-\delta$. This is a contradiction to Lemma 2.7.17.
7.2. Nonhomogeneous blow-up. We shall denote points in \mathbb{R}^{N} by (y, h) with $y \in \mathbb{R}^{N-1}$ and $h \in \mathbb{R}$. Balls in \mathbb{R}^{N-1} by $B_{\rho}^{\prime}(y)$ and $B_{1}^{-}=B_{1} \cap\{h<0\}$.

Lemma 2.7.18. Let $u_{k} \in F\left(\sigma_{k}, \sigma_{k} ; \tau_{k}\right)$ in $B_{\rho_{k}}$ with $\sigma_{k} \rightarrow 0, \tau_{k} \sigma_{k}^{-2} \rightarrow 0$. For $y \in B_{1}^{\prime}$, set

$$
\begin{aligned}
& f_{k}^{+}(y)=\sup \left\{h:\left(\rho_{k} y, \sigma_{k} \rho_{k} h\right) \in \partial\left\{u_{k}>0\right\}\right\}, \\
& f_{k}^{-}(y)=\inf \left\{h:\left(\rho_{k} y, \sigma_{k} \rho_{k} h\right) \in \partial\left\{u_{k}>0\right\}\right\} .
\end{aligned}
$$

Then, for a subsequence,

1. $f(y)=\limsup _{\substack{z \rightarrow y \\ k \rightarrow \infty}} f_{k}^{+}(z)=\lim \inf _{\substack{z \rightarrow y \\ k \rightarrow \infty}} f_{k}^{-}(z)$ for all $y \in B_{1}^{\prime}$.

Further, $f_{k}^{+} \rightarrow f, f_{k}^{-} \rightarrow f$ uniformly, $f(0)=0,|f| \leq 1$ and f is continuous.
2. f is subharmonic.

Proof. Define,

$$
D_{k}:=\left\{(y, h) /\left(y, \sigma_{k} h\right) \in B_{1} \cap\left\{u_{k}>0\right\}\right\} .
$$

We can choose a subsequence u_{k} such that the set \bar{D}_{k} is convergent in Hausdorff distance, and for a subsequence we define f as in (1). Therefore, for $y_{0} \in B_{1}^{\prime}$ there exist points y_{k} for all k such that

$$
y_{k} \rightarrow y_{0}, \quad \text { and } f_{k}^{+}\left(y_{k}\right) \rightarrow f\left(y_{0}\right) .
$$

As f is upper semicontinuous, given $\delta>0$ there exists $\alpha>0$ such that for k big,

$$
\left(\bar{B}_{\alpha}^{\prime}\left(y_{k}\right) \times\left[f_{k}^{+}\left(y_{k}\right)+\delta, \infty\right)\right) \cap \bar{D}_{k}=\emptyset
$$

and then

$$
\left(\bar{B}_{\alpha}^{\prime}\left(y_{k}\right) \times\left[\left(f_{k}^{+}\left(y_{k}\right)+\delta\right) \sigma_{k}, \infty\right)\right) \cap B_{1} \cap\left\{u_{k}>0\right\}=\emptyset .
$$

As $\left(y_{k}, \sigma_{k} f^{+}\left(y_{k}\right)\right) \in \partial\left\{u_{k}>0\right\}$, then $u_{k} \in F\left(\sigma_{k} \delta / \alpha, 1 ; \tau_{k}\right)$ in $B_{\alpha}\left(\left(y_{k}, \sigma_{k} f_{k}^{+}\left(y_{k}\right)\right)\right.$.
Since $\sigma_{k} \rightarrow 0 \tau_{k}=O\left(\sigma_{k}\right)$ we can apply Theorem 2.7.3 for k large, and obtain $u_{k} \in F\left(2 \sigma_{k} \delta / \alpha, C \sigma_{k} \delta / \alpha ; \tau_{k}\right)$ in $B_{\alpha / 2}\left(\left(y_{k}, \sigma_{k} f_{k}^{+}\left(y_{k}\right)\right)\right.$, which implies that for large k the set

$$
\left\{(y, h) \in B_{1} /\left|y-y_{k}\right|<\alpha / 4 \quad \text { and } \quad h<\sigma_{k}\left(f_{k}^{+}\left(y_{k}\right)-C \delta\right)\right\}
$$

is contained in $\left\{u_{k}>0\right\}$, that is

$$
f_{k}^{-}(y) \geq f_{k}^{+}\left(y_{k}\right)-C \delta \quad \text { for } y \in B_{\alpha / 4}^{\prime}\left(y_{k}\right),
$$

then $\liminf _{\substack{y \rightarrow y_{0} \\ k \rightarrow \infty}} f_{k}^{-}(y) \geq f\left(y_{0}\right)-2 C \delta$ which proves the assertion.
We may assume by replacing u_{k} by $\widetilde{u}_{k}=\frac{1}{\rho_{k}} u_{k}\left(\rho_{k} x\right)$, that $\rho_{k}=1$. Let us assume, by contradiction that there is a ball $B_{\rho}^{\prime}\left(y_{0}\right) \subset B_{1}^{\prime}$ and a harmonic function g in a neighborhood of this ball, such that

$$
g>f \text { on } \partial B_{\rho}^{\prime}\left(y_{0}\right) \quad \text { and } \quad f\left(y_{0}\right)>g\left(y_{0}\right) .
$$

Let

$$
\begin{array}{ll}
Z=B_{\rho}^{\prime}\left(y_{0}\right) \times \mathbb{R}, & Z^{+}=\left\{(y, h) \in Z, h>\sigma_{k} g(y)\right\}, \\
Z^{-}=\left\{(y, h) \in Z, h<\sigma_{k} g(y)\right\}, & Z^{0}=\left\{(y, h) \in Z, h=\sigma_{k} g(y)\right\} .
\end{array}
$$

Take $d_{\delta}(A)(x)=\min \left\{(1 / \delta) \operatorname{dist}\left(x, \mathbb{R}^{N} \backslash A\right), 1\right\}$, then by the Representation Theorem 2.4.5 (see Remark 2.6.8) we arrive at,

$$
\int_{\left\{u_{k}>0\right\}} g\left(\left|\nabla u_{k}\right|\right) \frac{\nabla u_{k}}{\left|\nabla u_{k}\right|} \nabla\left(d_{\delta}\left(Z^{+}\right)\right) d x=\int_{\partial\left\{u_{k}>0\right\}} d_{\delta}\left(Z^{+}\right) q_{u_{k}}(x) d \mathcal{H}^{N-1},
$$

taking $\delta \rightarrow 0$ and assuming that $\mathcal{H}^{N-1}\left(Z^{0} \cap \partial\left\{u_{k}>0\right\}\right)=0$ (if this is not true we replace g by $g+c_{0}$ for a small constant c_{0}) we have that

$$
\begin{equation*}
\int_{\left\{u_{k}>0\right\} \cap Z_{0}} g\left(\left|\nabla u_{k}\right|\right) \frac{\nabla u_{k}}{\left|\nabla u_{k}\right|} \cdot \nu d \mathcal{H}^{N-1}=\int_{\partial\left\{u_{k}>0\right\} \cap Z^{+}} q_{u_{k}}(x) d \mathcal{H}^{N-1} . \tag{2.7.19}
\end{equation*}
$$

As $u_{k} \in F\left(\sigma_{k}, \sigma_{k}, \tau_{k}\right)$ we have that $\left|\nabla u_{k}\right| \leq \lambda^{*}\left(1+\tau_{k}\right)$ and, by Lemma 2.6.10, there holds that $q_{u_{k}}(x)=g\left(\lambda^{*}\right)$ for \mathcal{H}^{N-1} - a.e point in $\partial_{\text {red }}\left\{u_{k}>0\right\}$. Then, by (2.7.19) we have,

$$
\begin{equation*}
g\left(\lambda^{*}\right) \mathcal{H}^{N-1}\left(\partial_{\text {red }}\left\{u_{k}>0\right\} \cap Z^{+}\right) \leq g\left(\lambda^{*}\left(1+\tau_{k}\right)\right) \mathcal{H}^{N-1}\left(\left\{u_{k}>0\right\} \cap Z_{0}\right) \tag{2.7.20}
\end{equation*}
$$

On the other hand, using the fact that $f\left(y_{0}\right)>g\left(y_{0}\right)$, we can prove the following excess area type estimate,

$$
\begin{equation*}
\mathcal{H}^{N-1}\left(\partial_{\text {red }} E_{k} \cap Z\right) \geq \mathcal{H}^{N-1}\left(Z_{0}\right)+c \sigma_{k}^{2} \tag{2.7.21}
\end{equation*}
$$

where $E_{k}=\left\{u_{k}>0\right\} \cup Z^{-}$. We leave the proof for a moment.
We also have,

$$
\mathcal{H}^{N-1}\left(\partial_{\text {red }} E_{k} \cap Z\right) \leq \mathcal{H}^{N-1}\left(Z^{+} \cap \partial_{\text {red }}\left\{u_{k}>0\right\}\right)+\mathcal{H}^{N-1}\left(Z_{0} \cap\left\{u_{k}=0\right\}\right)
$$

Using this inequality, (2.7.21) and the fact that $\mathcal{H}^{N-1}\left(Z_{0} \cap \partial\left\{u_{k}>0\right\}\right)=0$ (if this is not true we replace g by $g+c_{0}$ for a small constant c_{0}) we have that,

$$
\begin{equation*}
\mathcal{H}^{N-1}\left(\partial_{\text {red }}\left\{u_{k}>0\right\} \cap Z^{+}\right) \geq \mathcal{H}^{N-1}\left(Z_{0} \cap\left\{u_{k}>0\right\}\right)+c \sigma_{k}^{2} . \tag{2.7.22}
\end{equation*}
$$

Finally by (2.7.20) and (2.7.22) we have that,

$$
g\left(\lambda^{*}\right)\left[\mathcal{H}^{N-1}\left(\left\{u_{k}>0\right\} \cap Z_{0}\right)+c \sigma_{k}^{2}\right] \leq g\left(\lambda^{*}\left(1+\tau_{k}\right)\right) \mathcal{H}^{N-1}\left(\left\{u_{k}>0\right\} \cap Z_{0}\right) .
$$

Therefore, for some positive constant c we have

$$
c \leq \frac{g\left(\lambda^{*}\left(1+\tau_{k}\right)\right)-g\left(\lambda^{*}\right)}{\sigma_{k}^{2}}
$$

and this contradicts the fact that $\frac{\tau_{k}}{\sigma_{k}^{2}} \rightarrow 0$ as $k \rightarrow \infty$.
So, we only have to prove (2.7.21). Let as take, for $\kappa>0$, the solution of,

$$
\begin{cases}\Delta \eta=-\varphi_{\kappa} & \text { in } B_{\rho}^{\prime}\left(y_{0}\right) \\ \eta=g & \text { on } \partial B_{\rho}^{\prime}\left(y_{0}\right)\end{cases}
$$

Where $\varphi_{\kappa} \in C_{0}^{\infty}\left(B_{\rho}^{\prime}\left(y_{0}\right)\right), 0 \leq \varphi_{\kappa} \leq 1$ and is supported in $B_{\kappa}^{\prime}\left(y_{0}\right)$. By the uniform estimates of η, we have that, when $\kappa \rightarrow 0, \eta$ converges uniformly to g. Then since $f\left(y_{0}\right)>g\left(y_{0}\right)$, we can choose κ sufficiently small such that η is less that f in $B_{2 \kappa}^{\prime}\left(y_{0}\right)$.

Let $\widetilde{Z}^{+}=\left\{(y, h) \in Z, h>\sigma_{k} \eta(y)\right\}$, and define analogously \widetilde{Z}^{-}and \widetilde{Z}_{0}. As before, we can assume that the sets $\widetilde{Z}_{0} \cap \partial E_{k}$ have \mathcal{H}^{N-1} measure zero.

First observe that, since $u_{k} \in F\left(\sigma_{k}, \sigma_{k} ; \tau_{k}\right)$, then $\partial\left\{u_{k}>0\right\}$ lies in the strip $\left\{|x| \leq \sigma_{k}\right\}$. Therefore, we have,

$$
\begin{align*}
& \left|\widetilde{Z}^{+} \cap E_{k}\right| \leq\left|\widetilde{Z}^{+} \cap\left\{u_{k}>0\right\}\right|+\left|\widetilde{Z}^{+} \cap Z^{+}\right| \leq c \sigma_{k} \tag{2.7.23}\\
& \left|\widetilde{Z}^{-} \backslash E_{k}\right| \leq\left|\widetilde{Z}^{-} \backslash\left\{u_{k}>0\right\}\right| \leq c \sigma_{k} \tag{2.7.24}
\end{align*}
$$

Now, take the vector field,

$$
V_{k}(x)=\frac{\left(-\sigma_{k} \nabla \eta\left(x^{\prime}\right), 1\right)}{\sqrt{1+\left|\sigma_{k} \nabla \eta\left(x^{\prime}\right)\right|^{2}}}
$$

We see that,

$$
\operatorname{div} V_{k}=-\frac{\sigma_{k} \Delta \eta}{\sqrt{1+\left|\sigma_{k} \nabla \eta\left(x^{\prime}\right)\right|^{2}}}+\frac{\sigma_{k}^{3}}{\left(1+\left|\sigma_{k} \nabla \eta\left(x^{\prime}\right)\right|^{2}\right)^{3 / 2}} \sum_{1 \leq i, j \leq N-1} \frac{\partial^{2} \eta}{\partial x_{i} \partial x_{j}} \frac{\partial \eta}{\partial x_{i}} \frac{\partial \eta}{\partial x_{j}},
$$

then, as $D^{2} \eta$ is bounded and $\Delta \eta \leq 0$ we have that

$$
\begin{equation*}
\operatorname{div} V_{k} \geq-C \sigma_{k}^{3} \tag{2.7.25}
\end{equation*}
$$

Moreover, if $x \in B_{\rho}^{\prime}\left(y_{0}\right) \backslash B_{k}^{\prime}\left(y_{0}\right)$ then $\Delta \eta=0$ and we have that $\left|\operatorname{div} V_{k}\right| \leq C \sigma_{k}^{3}$. Now, observe that, by construction of η we have that, if k is large enough

$$
B_{\kappa}^{\prime}\left(y_{0}\right) \times \mathbb{R} \cap \widetilde{Z}^{-} \subset E_{k},
$$

therefore

$$
\begin{equation*}
\left|\operatorname{div} V_{k}\right| \leq C \sigma_{k}^{3} \quad \text { in } \widetilde{Z}^{-} \backslash E_{k} . \tag{2.7.26}
\end{equation*}
$$

On the other hand we have,

$$
\int_{E_{k}} \operatorname{div}\left(d_{\delta}\left(\widetilde{Z}^{+}\right) V_{k}\right) d x \leq \int_{\partial_{r e d} E_{k}}\left|d_{\delta}\left(\left(\widetilde{Z}^{+}\right) V_{k}\right)\right| d \mathcal{H}^{N-1} \leq \mathcal{H}^{N-1}\left(\widetilde{Z}^{+} \cap \partial_{r e d} E_{k}\right),
$$

and since

$$
\int_{E_{k}} \operatorname{div}\left(d_{\delta}\left(\widetilde{Z}^{+}\right) V_{k}\right) d x \rightarrow-\int_{\partial \tilde{Z}^{+} \cap E_{k}} V_{k} \nu d \mathcal{H}^{N-1}+\int_{\tilde{Z}^{+} \cap E_{k}} \operatorname{div} V_{k} d x
$$

we have using (2.7.23) and (2.7.25) that,

$$
\mathcal{H}^{N-1}\left(\widetilde{Z}^{+} \cap \partial_{r e d} E_{k}\right) \geq \mathcal{H}^{N-1}\left(\widetilde{Z}^{0} \cap E_{k}\right)-C \sigma_{k}^{4} .
$$

Analogously, we get,

$$
\mathcal{H}^{N-1}\left(\widetilde{Z}^{-} \cap \partial_{r e d} E_{k}\right) \geq \int_{\partial \tilde{Z}^{-} \backslash E_{k}} V_{k} \nu d \mathcal{H}^{N-1}-\int_{\tilde{Z}^{-} \backslash E_{k}} \operatorname{div} V_{k} d x,
$$

and using (2.7.24) and (2.7.26) we obtain,

$$
\mathcal{H}^{N-1}\left(\widetilde{Z}^{-} \cap \partial_{r e d} E_{k}\right) \geq \mathcal{H}^{N-1}\left(\widetilde{Z}^{0} \backslash E_{k}\right)-C \sigma_{k}^{4}
$$

Thus, we proved

$$
\begin{equation*}
\mathcal{H}^{N-1}\left(Z \cap \partial_{r e d} E_{k}\right) \geq \mathcal{H}^{N-1}\left(\widetilde{Z}^{0}\right)-C \sigma_{k}^{4} . \tag{2.7.27}
\end{equation*}
$$

Finally, using that g is harmonic in $B_{\rho}^{\prime}\left(y_{0}\right)$ and $\eta=g$ on $\partial B_{\rho}^{\prime}\left(y_{0}\right)$ we get,

$$
\begin{aligned}
\mathcal{H}^{N-1}\left(\widetilde{Z}^{0}\right)-\mathcal{H}^{N-1}\left(Z^{0}\right) & =\int_{B_{\rho}^{\prime}\left(y_{0}\right)}\left(\sqrt{1+\left|\sigma_{k} \nabla \eta\right|^{2}}-\sqrt{1+\left|\sigma_{k} \nabla g\right|^{2}}\right) d \mathcal{H}^{N-1} \\
& \geq c \sigma_{k}^{2} \int_{B_{\rho}^{\prime}\left(y_{0}\right)}\left(|\nabla \eta|^{2}-|\nabla g|^{2}\right) d \mathcal{H}^{N-1}-C \sigma_{k}^{4} \\
& =c \sigma_{k}^{2} \int_{B_{\rho}^{\prime}\left(y_{0}\right)}|\nabla \eta-\nabla g|^{2} d \mathcal{H}^{N-1}-C \sigma_{k}^{4} .
\end{aligned}
$$

Combining this last inequality with inequality (2.7.27), we obtain the desired estimate.

The following Lemma was proved in [5],
Lemma 2.7.28. Let w be a function satisfying:
$c_{i j} D_{i j} w=0$ in $B_{1} \cap\{h<0\}$, where $c_{i j}$ is an elliptic constant matrix.
$w(y, 0)=g(y)$ in the sence that $w(y, h)$ converges in L^{1} to g as $h \uparrow 0$
g is subharmonic and continuous in $B_{1}^{\prime}, g(0)=0$.
$w(0, h) \leq C|h|$,
$w \geq-C$.
Then

$$
\int_{0}^{1 / 2} \frac{1}{r^{2}}\left(f_{\partial B_{r}^{\prime}(y)} g(y) d \mathcal{H}^{N-2}\right) d r \leq C_{0}
$$

where C_{0} is a constant depending only on C.
Proof. See Lemma 5.5 in [5].

Lemma 2.7.29. There exists a positive constant $C=C(N)$ such that, for any $y_{0} \in B_{r / 2}^{\prime}$,

$$
\int_{0}^{1 / 4} \frac{1}{r^{2}}\left(f_{\partial B_{r}^{\prime}(y)} f-f\left(y_{0}\right) d \mathcal{H}^{N-2}\right) d r \leq C_{1}
$$

Proof. It follows as in Lemma 8.3 at [10]. Without loss of generality we assume $\rho_{k}=1$. Also, it is sufficient to prove it for $y_{0}=0$, since $u_{k} \in F\left(8 \sigma_{k}, 8 \sigma_{k} ; \tau_{k}\right)$ in $B_{1 / 4}\left(y, \sigma_{k} f_{k}^{+}\left(y_{0}\right)\right)$.

STEP I. Set $w_{k}(y, h)=\frac{u_{k}(y, h)+h}{\sigma_{k}}$. Then for subsequence,

$$
\lim _{k \rightarrow \infty} w_{k}=w \text { exists everywhere in } B_{1}^{-} .
$$

The convergence is uniform in compact subsets of B_{1}^{-}, and w satisfies

$$
\begin{align*}
& c_{i j} D_{i j} w=\sum_{i=1}^{N-1} D_{i i} w+\frac{g^{\prime}(1)}{g(1)} D_{N N} w=0 \quad \text { in } B_{1}^{-} \tag{2.7.30}\\
& w(0, h) \leq 0, \tag{2.7.31}\\
& w(y, 0)=f(y) \text { in the sense that } \lim _{h \rightarrow 0^{-}} w(y, h)=f(y), \tag{2.7.32}\\
& |w| \leq C, \tag{2.7.33}\\
& w(y, h)-w(y, 0) \leq 0 \text { for all }(y, h) \in B_{1}^{-} . \tag{2.7.34}
\end{align*}
$$

In fact, since the free boundary of u_{k} lies in the strip $\left|x_{N}\right| \leq \sigma_{k},\left|\nabla u_{k}\right| \leq 1+\tau_{k}$, $\tau_{k} \leq \sigma_{k}$, and we have $w_{k} \leq C$ in B_{1}^{-}. The flatness assumption also implies $w_{k} \geq-C$ in B_{1}^{-}, and thus

$$
\left|w_{k}\right| \leq C \text { in } B_{1}^{-} .
$$

By Theorem 2.7.4 we have that

$$
\begin{equation*}
\left|\nabla u_{k}\right| \geq 1 / 2 \quad \text { in } B_{1} \cap\left\{h \leq-C_{0} \sigma_{k}\right\} \tag{2.7.35}
\end{equation*}
$$

for σ_{k} sufficiently small. Then by Remark $1.2 .25, u_{k}$ satisfies

$$
b_{i j}\left(\nabla u_{k}\right) D_{i j} u_{k}=0
$$

where $b_{i j}$ was define in (1.2.27), for $h \leq-C_{0} \sigma_{k}$. Therefore, we have

$$
\begin{equation*}
b_{i j}\left(\nabla u_{k}\right) D_{i j} w_{k}=0 \quad \text { in } B_{1} \cap\left\{h \leq-C_{0} \sigma_{k}\right\} . \tag{2.7.36}
\end{equation*}
$$

From the flatness assumption and by Theorem 1.2 .19 we have that for $D \subset B_{1}^{-}$ $\left\|u_{k}\right\|_{C^{1, \beta}(D)}$ is bounded, and therefore, for a subsequence, $u_{k} \rightarrow u$ in $C^{1}(D)$. Again, by the flatness assumption, we have that $u=-h$.

On the other hand, as w_{k} satisfies the uniformly elliptic equation (2.7.36) with continuous coefficients, and as the w_{k} are bounded we have by Remark 1.2.30 and Theorem 1.2.29 that for any compact set $D \subset B_{1}^{-}$and any $q>1,\left\|w_{k}\right\|_{C^{1, \beta}(D)}$ and $\left\|w_{k}\right\|_{W^{2, q}(D)}$ are bounded, therefore we may assume

$$
\begin{array}{cl}
w_{k} \rightarrow w & \text { in } C^{1} \text { in compact subsets of } B_{1}^{-} \\
D^{2} w_{k} \rightarrow D^{2} w & \text { in } L_{l o c}^{q}\left(B_{1}^{-}\right) \text {for any } p q>1 \tag{2.7.37}
\end{array}
$$

Therefore, passing to the limit in (2.7.36) we obtain (2.7.30). Clearly, (2.7.33) is valid.

Since,

$$
\begin{equation*}
-D_{N} w_{k}=-\frac{1}{\sigma_{k}}\left(D_{N} u_{k}+1\right) \leq \frac{\left|\nabla u_{k}\right|-1}{\sigma_{k}} \leq \frac{\tau_{k}}{\sigma_{k}} \tag{2.7.38}
\end{equation*}
$$

and $w_{k}(0,0)=0$ we obtain, for $h \leq 0$

$$
w_{k}(0, h) \leq|h| \frac{\tau_{k}}{\sigma_{k}} \rightarrow 0
$$

thus $w(0, h) \leq 0$ and (2.7.31) follows.
It only remains to prove (2.7.32). First we show that for small δ and large K

$$
\begin{equation*}
w_{k}(y, h) \rightarrow f(y) \text { uniformly in } D, \tag{2.7.39}
\end{equation*}
$$

where $D:=B_{1-\delta}^{\prime} \times[-K,-1]$. By Lemma 2.7.18, it is sufficient to prove

$$
\begin{equation*}
w_{k}(y, h)-f_{k}^{+}(y) \rightarrow 0 . \tag{2.7.40}
\end{equation*}
$$

From (2.7.38) and by the definition of f_{k}^{+}we obtain

$$
\begin{align*}
w_{k}\left(y, h \sigma_{k}\right)-f_{k}^{+}(y) & \leq w_{k}\left(y, \sigma_{k} f_{k}^{+}(y)\right)-f_{k}^{+}(y)+\left(f_{k}^{+}(y)-h\right) \frac{\tau_{k}}{\sigma_{k}} \\
& =\left(f_{k}^{+}(y)-h\right) \frac{\tau_{k}}{\sigma_{k}} \leq(1+K) \frac{\tau_{k}}{\sigma_{k}} \rightarrow 0 . \tag{2.7.41}
\end{align*}
$$

To show (2.7.40) take a sequence $y_{k} \in B_{1-\delta}^{\prime},-K \leq h_{k} \leq-1$ and consider u_{k} in $B_{R \sigma_{k}}\left(x_{k}\right)$, where x_{k} is the free boundary point $x_{k}=\left(y_{k}, \sigma_{k} f_{k}^{+}\left(y_{k}\right)\right)$ and R is a large constant. If we define,

$$
\widetilde{\delta}_{k}=\frac{1}{R} \sup _{y \in B_{R \sigma_{k}}^{\prime}\left(y_{k}\right)}\left(f_{k}^{+}(y)-f_{k}^{+}\left(y_{k}\right)\right),
$$

we have that $x_{k} \in \partial\left\{u_{k}>0\right\}$ and

$$
u_{k}(y, h)=0 \quad \text { if }(y, h) \in B_{R \sigma_{k}}\left(x_{k}\right), \quad h-\sigma_{k} f_{k}^{+}\left(y_{k}\right)>\widetilde{\delta}_{k} R \sigma_{k},
$$

and that means that,

$$
u_{k} \in F\left(\widetilde{\delta}_{k}, 1 ; \tau_{k}\right) \quad \text { in } B_{R \sigma_{k}}\left(x_{k}\right) .
$$

Observe that, by Lemma 2.7.18, $\widetilde{\delta}_{k} \rightarrow 0$, then we can apply Theorem 2.7.3 and obtain that,

$$
u_{k} \in F\left(2 \delta_{k}, C \delta_{k} ; \tau_{k}\right) \quad \text { in } B_{(R / 2) \sigma_{k}}\left(x_{k}\right),
$$

for $\delta_{k}=\max \left\{\widetilde{\delta}_{k}, \tau_{k}\right\}$. Hence, for $-R / 2 \leq h \leq-C(R / 2) \delta_{k}$,

$$
u_{k}\left(x_{k}+h \sigma_{k} e_{N}\right) \geq-\left(h \sigma_{k}+C \delta_{k}(R / 2) \sigma_{k}\right)
$$

In other words,

$$
\begin{equation*}
w_{k}\left(x_{k}+h \sigma_{k} e_{N}\right)-f_{k}^{+}\left(y_{k}\right)=\frac{u_{k}\left(x_{k}+h \sigma_{k} e_{N}\right)+h \sigma_{k}}{\sigma_{k}} \geq-C \delta_{k}(R / 2) \rightarrow 0 . \tag{2.7.42}
\end{equation*}
$$

For any $-K \leq h_{k} \leq-1$ we have that $0 \leq f_{k}^{+}\left(y_{k}\right)-h_{k} \leq 1+K \leq R / 2$ if we choose R large (depending only on K). Therefore, by taking $h=-f_{k}^{+}\left(y_{k}\right)+h_{k}$ in (2.7.42) and by (2.7.41) we obtain

$$
w_{k}\left(y_{k}, \sigma_{k} h_{k}\right)-f_{k}^{+}\left(y_{k}\right) \rightarrow 0
$$

and this holds for any $\left(y_{k}, h_{k}\right) \in D$, therefore (2.7.40) holds.
We now use a barrier argument. Let Ω_{δ} be a C^{∞} domain with regular boundary that approximates $B_{1-\delta}^{-}$in such a way that

$$
B_{1-2 \delta}^{-} \subset \Omega_{\delta} \subset B_{1-\delta}^{-}
$$

For small $\varepsilon>0$, let also g_{ε} be a C^{∞} function on $\partial \Omega_{\delta}$, which satisfies,

$$
\begin{align*}
& f-2 \varepsilon \leq g_{\varepsilon} \leq f-\varepsilon \\
& \text { on } \partial \Omega_{\delta} \cap \partial B_{1-3 \delta}^{-} \cap\{h=0\} \tag{2.7.43}\\
& g_{\varepsilon} \leq f-\varepsilon \\
& g_{\varepsilon} \leq w-\varepsilon \text { on } \partial \Omega_{\delta} \cap\{h=0\} \\
& g_{\delta} \cap\{h<0\} .
\end{align*}
$$

Let now, Φ_{ε} solve the Dirichlet problem,

$$
b_{i j}\left(e_{N}\right) D_{i j} \Phi_{\varepsilon}=1 \quad \text { in } \Omega_{\delta} \quad \Phi_{\varepsilon}=g_{\varepsilon} \quad \text { on } \partial \Omega_{\delta}
$$

Take $(y, h) \in \Omega_{\delta} \cap\left\{h=-K \sigma_{k}\right\}$. By continuity of Φ_{ε}, by (2.7.43) and (2.7.39) we have that,

$$
\Phi_{\varepsilon}\left(y,-\sigma_{k} K\right)<\Phi_{\varepsilon}(y, 0)+\varepsilon / 2 \leq f(y)-\varepsilon / 2<w_{k}\left(y,-\sigma_{k} K\right)
$$

for $k<k(K, \delta, \varepsilon)$.
On the other hand, if $(y, h) \in \partial \Omega_{\delta} \cap\left\{h<-K \sigma_{k}\right\}$ we have by (2.7.43), (2.7.37) that

$$
\Phi_{\varepsilon} \leq w-\varepsilon<w_{k}
$$

for $k>k(\delta, K, \varepsilon)$.
Therefore,

$$
\begin{equation*}
w_{k}>\Phi_{\varepsilon} \quad \text { on } \partial\left(\Omega_{\delta} \cap\left\{h<-K \sigma_{k}\right\}\right) \tag{2.7.44}
\end{equation*}
$$

for large $k \geq k(\varepsilon, \delta, K)$.
We may assume that $K>2 C_{0}$ where C_{0} is the constant in (2.7.35). The function w_{k} is bounded and satisfies (2.7.36) which is uniformly elliptic, with elipticity constant β. Then, by interior gradient estimates, we deduce that

$$
\left|\nabla w_{k}\right| \leq \frac{C}{\left(K-C_{0}\right) \sigma_{k}} \quad \text { in } \Omega_{\delta} \cap\left\{h \leq-K \sigma_{k}\right\}
$$

where C is independent of k, K. In particular

$$
\begin{equation*}
\left|\nabla u_{k}-\left(-e_{N}\right)\right| \leq 2 \frac{C}{K} \quad \text { in } \Omega_{\delta} \cap\left\{h \leq-K \sigma_{k}\right\} \tag{2.7.45}
\end{equation*}
$$

Hence, if $x \in V=\Omega_{\delta} \cap\left\{h \leq-K \sigma_{k}\right\}$ then

$$
\begin{align*}
b_{i j}\left(\nabla u_{k}\right) D_{i j} \Phi_{\varepsilon} & =\left(b_{i j}\left(\nabla u_{k}\right)-b_{i j}\left(-e_{N}\right)\right) D_{i j} \Phi_{\varepsilon}+1 \\
& \geq 1-\left\|\Phi_{\varepsilon}\right\|_{C^{1,1}\left(\Omega_{\delta}\right)}\left\|b_{i j}\left(\nabla u_{k}\right)-b_{i j}\left(-e_{N}\right)\right\|_{L^{\infty}(V)} . \tag{2.7.46}
\end{align*}
$$

The function

$$
H_{i j}(p)=\left(\frac{g^{\prime}(|p|)|p|}{g(|p|)}-1\right) \frac{p_{i} p_{j}}{|p|^{2}}
$$

is uniformly continuous in any ring $\{c \leq|p| \leq C\}$. Therefore, as $1 / 2 \leq\left|\nabla u_{k}\right| \leq$ $1+\tau_{k}$ in $\Omega_{\delta} \cap\left\{h \leq-K \sigma_{k}\right\}$, by (2.7.45) we can choose $K=K(\varepsilon, \delta)$ sufficiently large to make the right hand side of (2.7.46) positive. Thus,

$$
b_{i j}\left(\nabla u_{k}\right) D_{i j} \Phi_{\varepsilon}>b_{i j}\left(\nabla u_{k}\right) D_{i j} w_{k} \quad \text { in } \Omega_{\delta} \cap\left\{h<-K \sigma_{k}\right\}
$$

and combining with (2.7.44) we deduce $\Phi_{\varepsilon} \leq w_{k}$ in $\Omega_{\delta} \cap\left\{h<-K \sigma_{k}\right\}$, for sufficiently large k. Letting $k \rightarrow \infty$ we obtain $w(y, h) \geq \Phi_{\varepsilon}(y, h)$ in Ω_{δ} and consequently,

$$
\liminf _{h \rightarrow 0^{-}} w(y, h) \geq f(y)-2 \varepsilon
$$

for $y \in B_{1-3 \delta}^{\prime}$. Similarly, by constructing a barrier from above, we obtain

$$
\limsup _{h \rightarrow 0^{-}} w(y, h) \leq f(y)+2 \varepsilon
$$

for $y \in B_{1-3 \delta}^{\prime}$. Since ε and δ were arbitrary, the proof of (2.7.32) is completed.
Now, take $h<h^{\prime}<0$ then by (2.7.38) we have that

$$
w_{k}(y, h)-w_{k}\left(y, h^{\prime}\right) \leq \frac{\tau_{k}}{\sigma_{k}}\left|h-h^{\prime}\right|
$$

and taking limit we have,

$$
w(y, h)-w\left(y, h^{\prime}\right) \leq 0
$$

Using (2.7.32) we get, taking $h^{\prime} \rightarrow 0$ that $w(y, h)-w(y, 0) \leq 0$, and the proof of (2.7.34) is completed.

STEP II. Fix $\bar{y} \in B_{1 / 2}^{\prime}(0)$ and define,

$$
w^{*}(y, h)=w\left(\frac{y}{2}+\bar{y}, \frac{h}{2}\right)-w(\bar{y}, 0), \quad(y, h) \in B_{1}^{-}
$$

Then if

$$
g^{*}(y)=f\left(\frac{y}{2}+\bar{y}\right)-f(\bar{y})
$$

we have by Step I and Lemma 2.7.28 that

$$
\int_{0}^{1 / 2} \frac{1}{r^{2}}\left(f_{\partial B_{r}^{\prime}(y)} g^{*}(y) d \mathcal{H}^{N-2}\right) d r \leq C_{0}
$$

and by definition we have,

$$
\int_{0}^{1 / 4} \frac{1}{r^{2}}\left(f_{\partial B_{r}^{\prime}(y)}\left(f(y)-f(\bar{y}) d \mathcal{H}^{N-2}\right) d r \leq C_{1}(N)\right.
$$

and the result follows.
The following Lemma was proved in [4],
Lemma 2.7.47. Let g be a function satisfying,
g is subharmonic and continuous in B_{1}^{\prime}
$g(0)=0, \quad|g| \leq 1$,
there exists $C_{1}>0$ such that if $y \in B_{1 / 2}^{\prime}$

$$
\int_{0}^{1 / 4} \frac{1}{r^{2}}\left(f_{\partial B_{r}^{\prime}(y)}(g-g(y)) d \mathcal{H}^{N-2}\right) d r \leq C_{1}
$$

Then

1. g is Lipschitz in $\bar{B}_{1 / 4}^{\prime}$ with Lipschitz constant depending on C_{1} and N.
2. There exists a constant $C=C(N)>0$ and for $0<\theta<1$, there exists $c_{\theta}=c(\theta, N)>0$, such that we can find a ball B_{r}^{\prime} and a vector $l \in \mathbb{R}^{N-1}$ with

$$
c_{\theta} \leq r \leq \theta, \quad|l| \leq C, \quad \text { and } \quad g(y) \leq l . y+\frac{\theta}{2} r \quad \text { for }|y| \leq r .
$$

Proof. See Lemma 7.7 and Lemma 7.8 in [4].
Now by Lemmas 2.7.29 and 2.7.47 we have the following,
Lemma 2.7.48.

1. f is Lipschitz in $\bar{B}_{1 / 4}^{\prime}$ with Lipschitz constant depending on C_{1} and N.
2. There exists a constant $C=C(N)>0$ and for $0<\theta<1$, there exists $c_{\theta}=c(\theta, N)>0$, such that we can find a ball B_{r}^{\prime} and a vector $l \in \mathbb{R}^{N-1}$ with

$$
c_{\theta} \leq r \leq \theta, \quad|l| \leq C, \quad \text { and } \quad f(y) \leq l \cdot y+\frac{\theta}{2} r \quad \text { for } \quad|y| \leq r
$$

Now, we can improve the flatness,
Lemma 2.7.49. Let θ, C, c_{θ} as in Lemma 2.7.48. There exists a positive constants σ_{θ}, such that

$$
\begin{equation*}
u \in F(\sigma, \sigma ; \tau) \text { in } B_{\rho} \text { in direction } \nu \tag{2.7.50}
\end{equation*}
$$

with $\sigma \leq \sigma_{\theta}, \tau \leq \sigma_{\theta} \sigma^{2}$, implies

$$
u \in F(\theta \sigma, 1 ; \tau) \text { in } B_{\bar{\rho}} \text { in direction } \bar{\nu}
$$

for some $\bar{\rho}$ and $\bar{\nu}$ with $c_{\theta} \rho \leq \bar{\rho} \leq \theta \rho$ and $|\bar{\nu}-\nu| \leq C \sigma$, where $\sigma_{\theta}=\sigma_{\theta}(\theta, N)$.
Proof. Let u_{k} a sequence as in Lemma 2.7.18. That is, $u_{k} \in F\left(\sigma_{k}, \sigma_{k} ; \tau_{k}\right)$ in $B_{\rho_{k}}\left(x_{k}\right)$ in direction ν_{k} with $\sigma_{k} \leq 1 / k, \tau_{k} \leq \sigma_{k}^{2} / k$ and $C^{*} \rho_{k} \leq \sigma_{k}$.

For simplicity, we assume that $x_{k}=0$ and $\nu_{k}=e_{N}$ for all k. Then if we define f as in Lemma 2.7.18 we have by Lemma 2.7.48 that

$$
f(y) \leq l \cdot y+\frac{\theta}{2} r \quad \text { for }|y| \leq r
$$

with r, l as in that lemma. Therefore, again by Lemma 2.7.18 we have for k large depending on θ that,

$$
f_{k}^{+}(y) \leq l \cdot y+\theta r \quad \text { for }|y| \leq r
$$

This means, by the definition of f_{k}^{+}, that

$$
u_{k}\left(\rho_{k} y, \rho_{k} h\right)=0 \quad \text { if }(y, h) \in B_{r} \quad \text { with } h \geq \sigma_{k} l \cdot y+\theta \sigma_{k} r .
$$

But this means that u_{k} is of class $F\left(\bar{\sigma}_{k}, 1 ; \bar{\sigma}_{k}\right)$ in $B_{\bar{\rho}_{k}}$ in direction $\bar{\nu}_{k}$ with

$$
\bar{\rho}_{k}:=\rho_{k} r, \quad \bar{\sigma}_{k}:=\frac{\theta \sigma_{k}}{\sqrt{1+\left|\sigma_{k} l\right|^{2}}}, \quad \bar{\nu}_{k}:=\frac{\left(-\sigma_{k} l, 1\right)}{\sqrt{1+\left|\sigma_{k} l\right|^{2}}} .
$$

As $\bar{\sigma}_{k} \leq \theta \sigma_{k}, c_{\theta} \rho_{k} \leq \bar{\rho}_{k} \leq \theta \rho_{k}$, and $\left|\bar{\nu}_{k}-e_{N}\right| \leq C \sigma_{k}$, the conclusion of the lemma is fulfilled for u_{k}.

For the case x_{k} and ν_{k} arbitrary, we take $v_{k}(x)=u_{k}\left(x_{k}+\rho_{k} T_{k} x\right) / \rho_{k}$ where T_{k} is a rotation, with $T_{k} e_{N}=\nu_{k}$.

Lemma 2.7.51. Given $0<\theta<1$, there exist positive constants σ_{θ}, c_{θ} and C such that

$$
\begin{equation*}
u \in F(\sigma, 1 ; \tau) \text { in } B_{\rho} \text { in direction } \nu \tag{2.7.52}
\end{equation*}
$$

with $\sigma \leq \sigma_{\theta}$ and $\tau \leq \sigma_{\theta} \sigma^{2}$, then

$$
u \in F\left(\theta \sigma, \theta \sigma ; \theta^{2} \tau\right) \text { in } B_{\bar{\rho}} \text { in direction } \bar{\nu}
$$

for some $\bar{\rho}$ and $\bar{\nu}$ with $c_{\theta} \rho \leq \bar{\rho} \leq \frac{1}{4} \rho$ and $|\bar{\nu}-\nu| \leq C \sigma$, where $c_{\theta}=c_{\theta}(\theta, N)$, $C=C\left(N, \delta, g_{0}\right), \sigma_{\theta}=\sigma_{\theta}(\theta, N)$.

Proof. Assume that $\rho=1$. If σ_{θ} is small enough, we can apply Theorem 2.7.3 and obtain

$$
u \in F(C \sigma, C \sigma ; \tau) \text { in } B_{1 / 2} \text { in direction } \nu
$$

Then for $0<\theta_{1} \leq \frac{1}{2}$ we can apply Lemma 2.7.49, if again σ_{θ} is small, and we obtain

$$
\begin{equation*}
u \in F\left(C \theta_{1} \sigma, C \sigma ; \tau\right) \text { in } B_{r_{1}} \text { in direction } \nu_{1} \tag{2.7.53}
\end{equation*}
$$

for some r_{1}, ν_{1} with

$$
c_{\theta_{1}} \leq 2 r_{1} \leq \theta_{1}, \text { and }\left|\nu_{1}-\nu\right| \leq C \sigma
$$

We obtain the improvement of the value τ inductively. In order to improve τ, we consider the functions $U_{\varepsilon}=\left(G(|\nabla u|)-G\left(\lambda^{*}\right)-\varepsilon\right)^{+}$and $U_{0}=\left(G(|\nabla u|)-G\left(\lambda^{*}\right)\right)^{+}$ in $B_{2 r_{1}}$. By Lemma 2.5.3, and (4) in Definitions 2.6 .1 and 2.6.2 we know that U_{ε} vanishes in a neighborhood of the free boundary. Since $U_{\varepsilon}>0$ implies $G(|\nabla u|)>$ $G\left(\lambda^{*}\right)+\varepsilon$, the closure of $\left\{U_{\varepsilon}>0\right\}$ is contained in $\left\{G(|\nabla u|)>G\left(\lambda^{*}\right)+\varepsilon / 2\right\}$.

Since $|\nabla u|$ is bounded from above in $B_{2 r_{1}}$, and from below in the set $\{G(|\nabla u|)>$ $\left.G\left(\lambda^{*}\right)+\varepsilon / 2\right\}$, we have that $F(|\nabla u|) \geq c$ in the set $\left\{G(|\nabla u|)>G\left(\lambda^{*}\right)+\varepsilon / 2\right\} \cap B_{2 r_{1}}$. Then hypothesis (1.2.32) and (1.2.33) of Lemma 1.2.31 are satisfied, and we have that $v=G(|\nabla u|)$ satisfies,

$$
M v=D_{i}\left(b_{i j}(\nabla u) D_{j} v\right) \geq 0 \quad \text { in }\left\{G(|\nabla u|)>G\left(\lambda^{*}\right)+\varepsilon / 2\right\} \cap B_{2 r_{1}},
$$

where $b_{i j}$ is defined in (1.2.26), and is β-elliptic in $\left\{G(|\nabla u|)>G\left(\lambda^{*}\right)+\varepsilon / 2\right\}$.
Extending the operator M with the uniformly elliptic divergence-form operator

$$
\widetilde{M} w=D_{i}\left(\widetilde{b}_{i j}(x) D_{j} w\right) \quad \text { in } B_{2 r_{1}}
$$

with measurable coefficients such that

$$
\widetilde{b}_{i j}(x)=b_{i j}(\nabla u) \quad \text { in }\left\{G(|\nabla u|)>G\left(\lambda^{*}\right)+\varepsilon / 2\right\},
$$

we obtain

$$
\widetilde{M} U_{\varepsilon} \geq 0 \quad \text { in } B_{2 r_{1}} .
$$

Moreover, by (2.7.52) we have that $U_{\varepsilon} \leq G\left(\lambda^{*}(1+\tau)\right)-G\left(\lambda^{*}\right)$ and by (2.7.53) $U_{\varepsilon}=0$ in $B=B_{r_{1} / 4}\left(\frac{r_{1}}{2} \nu_{1}\right)$, if $C \sigma \leq 1 / 2$.

Take now, V such that,

$$
\begin{cases}\widetilde{M} V=0 & \text { in } B_{2 r_{1}} \backslash \bar{B} \\ V=G\left(\lambda^{*}(1+\tau)\right)-G\left(\lambda^{*}\right) & \text { on } \partial B_{2 r_{1}} \\ V=0 & \text { on } \partial B\end{cases}
$$

Then, there exists $0<c(N, \beta)<1$ such that $V \leq c\left(G\left(\lambda^{*}(1+\tau)\right)-G\left(\lambda^{*}\right)\right)$ in $B_{r_{1}}$. Applying the maximum principle we have that, $U_{\varepsilon} \leq c\left(G\left(\lambda^{*}(1+\tau)\right)-G\left(\lambda^{*}\right)\right)$ in $B_{r_{1}}$. Taking $\varepsilon \rightarrow 0$ we obtain,

$$
G(|\nabla u|) \leq c G\left(\lambda^{*}(1+\tau)\right)+G\left(\lambda^{*}\right)(1-c) \quad \text { in } B_{r_{1}}
$$

Since, $G\left(\lambda^{*}(1+\tau)\right)=G\left(\lambda^{*}\right)+g\left(\lambda^{*}\right) \lambda^{*} \tau+o(\tau)$ we have that

$$
c G\left(\lambda^{*}(1+\tau)\right)+G\left(\lambda^{*}\right)(1-c)=G\left(\lambda^{*}\right)+c g\left(\lambda^{*}\right) \lambda^{*} \tau+o(\tau)
$$

and since G is strictly increasing, we have,

$$
\begin{aligned}
|\nabla u| & \leq G^{-1}\left(G\left(\lambda^{*}\right)+c g\left(\lambda^{*}\right) \lambda^{*} \tau+o(\tau)\right) \\
& =\lambda^{*}+\frac{1}{g\left(\lambda^{*}\right)}\left(g\left(\lambda^{*}\right) \lambda^{*} \tau c+o(\tau)\right)+o(\tau) \\
& =\lambda^{*}\left(1+\tau\left(c+\frac{o(\tau)}{\tau}\right)\right) \leq \lambda^{*}\left(1+\tau \frac{(c+1)}{2}\right)
\end{aligned}
$$

if we choose τ small enough. And we see that if we choose θ_{1} small enough (depending on N), we have

$$
u \in F\left(\theta_{0} \sigma, 1 ; \theta_{0}^{2} \tau\right) \text { in } B_{r_{1}} \text { in direction } \nu_{1},
$$

where $\theta_{0}=\sqrt{\frac{c+1}{2}}$.
We can repeat this argument a finite number of times, and we obtain

$$
u \in F\left(\theta_{0}^{m} \sigma, 1 ; \theta_{0}^{2 m} \tau\right) \text { in } B_{r_{1} \ldots r_{m}} \text { in direction } \nu_{m}
$$

with

$$
c_{\theta_{j}} \leq 2 r_{j} \leq \theta_{j}, \text { and }\left|\nu_{m}-\nu\right| \leq \frac{C}{1-\theta_{0}} \sigma .
$$

Finally we choose m large enough and use Theorem 2.7.3.

7.3. Smoothness of the free boundary.

Theorem 2.7.54. Suppose that u is a weak solution, and $D \subset \subset \Omega$. Then there exist positive constants $\bar{\sigma}_{0}, C$ and α such that if

$$
u \in F(\sigma, 1 ; \infty) \quad \text { in } B_{\rho}\left(x_{0}\right) \subset D \text { in direction } \nu
$$

with $\sigma \leq \bar{\sigma}_{0}, \rho \leq \bar{\rho}_{0}\left(\bar{\sigma}_{0}, \sigma\right)$, then

$$
B_{\rho / 4}\left(x_{0}\right) \cap \partial\{u>0\} \text { is a } C^{1, \alpha} \text { surface, }
$$

more precisely, a graph in direction ν of a $C^{1, \alpha}$ function, and, for any x_{1}, x_{2} on this surface

$$
\left|\nu\left(x_{1}\right)-\nu\left(x_{2}\right)\right| \leq C \sigma\left|\frac{x_{1}-x_{2}}{\rho}\right|^{\alpha}
$$

Proof. By property (4) in Definitions 2.6.1 and 2.6.2 we have that, for every $\rho-$ neighborhood D_{ρ} of $D \cap \partial\{u>0\}$,

$$
|\nabla u(x)| \leq \lambda^{*}+\tau(\rho), \quad \text { for every } x \in D_{\rho}
$$

where $\tau(\rho) \rightarrow 0$ when $\rho \rightarrow 0$.
Therefore,

$$
u \in F(\sigma, 1 ; \tau) \quad \text { in } B_{\rho}\left(x_{0}\right) \text { in direction } \nu
$$

Applying Theorem 2.7.3 we have that

$$
u \in F\left(C_{0} \sigma, C_{0} \sigma ; \tau\right) \quad \text { in } B_{\rho / 2}\left(x_{0}\right) \text { in direction } \nu
$$

if $\sigma \leq \sigma_{0}$ and $\tau \leq \sigma$.
Let $x_{1} \in B_{\rho / 2}\left(x_{0}\right) \cap \partial\{u>0\}$ then

$$
u \in F\left(C_{0} \sigma, 1 ; \tau\right) \quad \text { in } B_{\rho / 2}\left(x_{1}\right) \text { in direction } \nu
$$

and applying again Theorem 2.7.3 we have,

$$
u \in F\left(C_{0}^{2} \sigma, C_{0}^{2} \sigma ; \tau\right) \quad \text { in } B_{\rho / 4}\left(x_{1}\right) \text { in direction } \nu
$$

if $C_{0} \sigma \leq \sigma_{0}$ and $\tau \leq C_{0} \sigma$.
Let $0<\theta<1$, take $\rho_{0}=\rho / 4, \nu_{0}=\nu, C=C_{0}^{2}, \sigma \leq \frac{\sigma_{\theta}}{C}$ and $\tau \leq \sigma_{\theta} C^{2} \sigma^{2}$. Now, by Lemma 2.7.51 and iterating we get that there exist sequences ρ_{m} and ν_{m} such that,

$$
u \in F\left(\theta^{m} C \sigma, \theta^{m} C \sigma ; \theta^{2 m} \tau\right) \quad \text { in } B_{\rho_{m}}\left(x_{1}\right) \text { in direction } \nu_{m}
$$

with $c_{\theta} \rho_{m} \leq \rho_{m+1} \leq \rho_{m} / 4$ and $\left|\nu_{m+1}-\nu_{m}\right| \leq \theta^{m} C \sigma$.
Thus, we have that $\left|\left\langle x-x_{1}, \nu_{m}\right\rangle\right| \leq \theta^{m} C \sigma \rho_{m}$ for $x \in B_{\rho_{m}}\left(x_{1}\right) \cap \partial\{u>0\}$.
We also have that there exists $\nu\left(x_{1}\right)=\lim _{m \rightarrow \infty} \nu_{m}$ and

$$
\left|\nu\left(x_{1}\right)-\nu_{m}\right| \leq \frac{C \theta^{m}}{1-\theta} \sigma .
$$

Now let $x \in B_{\rho / 4}\left(x_{1}\right) \cap \partial\{u>0\}$ and choose m such that $\rho_{m+1} \leq\left|x-x_{1}\right| \leq \rho_{m}$. Then

$$
\left|\left\langle x-x_{1}, \nu\left(x_{1}\right)\right\rangle\right| \leq C \theta^{m} \sigma\left(\frac{\left|x-x_{1}\right|}{1-\theta}+\rho_{m}\right) \leq C \theta^{m} \sigma\left(\frac{1}{1-\theta}+\frac{1}{c_{\theta}}\right)\left|x-x_{1}\right|
$$

and since $\left|x-x_{1}\right| \geq c_{\theta}^{m+1} \rho_{0}$ we have

$$
\theta^{m+1} \leq\left(\frac{\left|x-x_{1}\right|}{\rho_{0}}\right)^{\alpha} \quad \text { with } \alpha=\frac{\log (\theta)}{\log \left(c_{\theta}\right)}
$$

and we conclude that

$$
\left|\left\langle x-x_{1}, \nu\left(x_{1}\right)\right\rangle\right| \leq \frac{C \sigma}{\rho^{\alpha}}\left|x-x_{1}\right|^{1+\alpha}
$$

Finally, observe that the result follows if we take, $\bar{\sigma}_{0}=\min \left\{\sigma_{0}, \frac{\sigma_{0}}{C_{0}}, \frac{\sigma_{\theta}}{C}\right\}$ and if we choose $\bar{\rho}_{0}$ small enough such that if $\rho \leq \bar{\rho}_{0}, \tau(\rho) \leq \min \left\{\sigma, C_{0} \sigma, \sigma_{\theta} C^{2} \sigma^{2}\right\}$.

Remark 2.7.55. By Lemma 2.6.12 and Definition 2.6.2 we have that there exists a set $A \subset \partial_{\text {red }}\{u>0\}$, with $\mathcal{H}^{N-1}\left(\partial_{\text {red }}\{u>0\} \backslash A\right)=0$, such that for $x_{0} \in A$ we have that $u \in F\left(\sigma_{\rho}, 1 ; \infty\right)$ in $B_{\rho}\left(x_{0}\right)$ in direction $\nu_{u}\left(x_{0}\right)$, with $\sigma_{\rho} \rightarrow 0$ for $\rho \rightarrow 0$. Observe that by Theorem 2.5.5 when u is a minimizer $A=\partial_{\text {red }}\{u>0\}$. Hence applying Theorem 2.7.54 we have,

Theorem 2.7.56. Suppose that g satisfies (0.0.2). If u is a weak solution then there exists a subset $A \subset \partial_{\text {red }}\{u>0\}$ with $\mathcal{H}^{N-1}\left(\partial_{\text {red }}\{u>0\} \backslash A\right)=0$ such that for any $x_{0} \in A$ there exists $r>0$ so that $B_{r}\left(x_{0}\right) \cap \partial\{u>0\}$ is a $C^{1, \alpha}$ surface. Moreover, if u satisfies Definition 2.6.1 then the remainder of $\partial\{u>0\}$ has $\mathcal{H}^{N-1}-$ measure zero. Finally, if u is a minimizer, $\partial_{\text {red }}\{u>0\}$ is a $C^{1, \alpha}$ surface and $\mathcal{H}^{N-1}\left(\partial\{u>0\} \backslash \partial_{\text {red }}\{u>0\}=0\right.$.
7.4. Full regularity of minimizers in the case $N=2$. We will prove, for minimizers of 2.0.1 that in dimension two, for a subclass of functions satisfying (0.0.2), their whole free boundary is a $C^{1, \alpha}$ surface.

The class that we consider consists of those functions satisfying condition (0.0.2) and such that,

There exist constants t_{0} and $k>0$ so that $g(t) \leq k t$ for $t \leq t_{0}$.
Observe that this condition is satisfied for example, if $\delta \geq 1$ or when $g_{0} \geq 1$ and there exists a constant C such that $\lim _{t \rightarrow 0} \frac{g(t)}{t^{g_{0}}}=C$.

In order to prove the full regularity, we first need two lemmas, the first one holds for any dimension and for any g satisfying (0.0.2).

Lemma 2.7.58. Let $u \in \mathcal{K}$ be a local minimizer. Given $D \subset \subset \Omega$, there exist constants $C=C\left(N, D, \lambda^{*}\right), r_{0}=r_{0}(N, D)>0$ and $\gamma=\gamma(N, D)>0$ such that, if $x_{0} \in D \cap \partial\{u>0\}$ and $r<r_{0}$, then

$$
\sup _{B_{r}\left(x_{0}\right)}|\nabla u| \leq \lambda^{*}+C r^{\gamma}
$$

Proof. The proof is similar to the proof of Theorem 7.1 in [10] but here we make a little modification by using a result of $[\mathbf{2 1}]$. This result allows us to avoid having to add any new hypothesis to the function g.

Let $U_{\varepsilon}, U_{0}, M$ and \widetilde{M} be as in Lemma 2.7.51. Then $\widetilde{M} U_{\varepsilon} \geq 0$ in Ω.
For any $r>0$ set

$$
h_{\varepsilon}(r)=\sup _{B_{r}\left(x_{0}\right)} U_{\varepsilon}, \quad h_{0}(r)=\sup _{B_{r}\left(x_{0}\right)} U_{0},
$$

for any $r<r_{0}=\operatorname{dist}(D, \partial \Omega)$ and $x_{0} \in D \cap \partial\{u>0\}$.
Then, $h_{\varepsilon}(r)-U_{\varepsilon}$ is a \widetilde{M} - supersolution in the ball $B_{r}\left(x_{0}\right)$ and

$$
\begin{aligned}
h_{\varepsilon}(r)-U_{\varepsilon} & \geq 0 \quad \text { in } B_{r}\left(x_{0}\right) \\
& =h_{\varepsilon}(r) \quad \text { in } B_{r}\left(x_{0}\right) \cap\{u=0\} .
\end{aligned}
$$

Applying the weak Harnack inequality (see [17] Theorem 8.18) with $1 \leq p<N /(N-$ 2), we get

$$
\inf _{B_{r / 2}\left(x_{0}\right)}\left(h_{\varepsilon}(r)-U_{\varepsilon}\right) \geq c r^{-N / p}\left\|h_{\varepsilon}(r)-U_{\varepsilon}\right\|_{L^{p}\left(B_{r}\left(x_{0}\right)\right)} \geq c h_{\varepsilon}(r)
$$

since, by Theorem 2.1.1, $\left|B_{r}\left(x_{0}\right) \cap\{u=0\}\right| \geq c r^{N}$. Taking now $\varepsilon \rightarrow 0$ we obtain

$$
\inf _{B_{r / 2}\left(x_{0}\right)}\left(h_{0}(r)-U_{0}\right) \geq c h_{0}(r)
$$

for some $0<c<1$, which is the same as

$$
\sup _{B_{r / 2}\left(x_{0}\right)} U_{0} \leq(1-c) h_{0}(r) .
$$

Therefore

$$
h_{0}\left(\frac{r}{2}\right) \leq(1-c) h_{0}(r)
$$

from which it follows that $h_{0}(r) \leq C r^{\gamma}$ for some $C>0,0<\gamma<1$. That is,

$$
G(|\nabla u|) \leq G\left(\lambda^{*}\right)+C r^{\gamma}
$$

and therefore

$$
|\nabla u| \leq \lambda^{*}+C r^{\gamma}
$$

and now the conclusion of the lemma follows.
In the following Lemma is where we need to impose condition (2.7.57).
Lemma 2.7.59. Let $\Phi(t)=g(t) t-G(t)$, and g satisfying condition (2.7.57). Let x_{0} be a free boundary point, $D \subset \subset \Omega$ and $B_{\mu}\left(x_{0}\right) \subset D$. Take $v=\max (u-t \eta, 0)$, where $t>0, \eta \in C_{0}^{\infty}(\Omega), \eta=0$ in $\Omega \backslash B_{\mu\left(x_{0}\right)}, \eta \geq 0$ and $|\nabla \eta| \leq C / t$. Then,

$$
\begin{aligned}
\int_{B_{\mu}\left(x_{0}\right) \cap\{u>0\}}(G(|\nabla v|)-G(|\nabla u|)) d x \leq & \int_{B_{\mu}\left(x_{0}\right) \cap\{0<u \leq t \eta\}} \Phi(|\nabla u|) d x \\
& +C_{0} t^{2} \int_{B_{\mu}\left(x_{0}\right) \cap\{u>t \eta\}}|\nabla \eta|^{2} d x
\end{aligned}
$$

for $C_{0}=C_{0}\left(N, \delta, g_{0}, \operatorname{dist}(D, \partial \Omega), C\right)$.
Proof. The Lemma follows as in Theorem 4.3 in [5] by making some modifications.

First, observe that for $0 \leq s \leq 1$ we have $|\nabla u-t s \nabla \eta| \leq|\nabla u|+C \leq C_{1}+C$, where C_{1} is the constant in Theorem 2.2.25. On the other hand, if g satisfies (2.7.57), and if $F(a)=\frac{g(a)}{a}$ then for $0 \leq a \leq C_{1}+C$, there exists a constant C_{0} such that $F(a) \leq C_{0}$. Therefore we have that,

$$
\begin{equation*}
F(|\nabla u-s t \nabla \eta|) \leq C_{0} \quad \text { for all } 0 \leq s \leq 1 \tag{2.7.60}
\end{equation*}
$$

Set $f(p)=G(|p|)$, then

$$
\begin{align*}
f(\nabla v)-f(\nabla u) & =\int_{0}^{1} f_{p}(\nabla u-t \nabla(u-v)) \nabla(v-u) d t=f_{p}(\nabla u) \nabla(v-u) \tag{2.7.61}\\
& +\int_{0}^{1} \int_{0}^{t} \nabla(v-u) f_{p p}(\nabla u-s \nabla(u-v)) \nabla(v-u) d s d t .
\end{align*}
$$

On the set $\{u>t \eta\}$ we have $v-u=-t \eta$, hence by (1.2.24) and (2.7.60) we have,

$$
\begin{align*}
& \int_{\{u>t \eta\} \cap B_{\mu}\left(x_{0}\right)} \int_{0}^{1} \int_{0}^{t} \nabla(v-u) f_{p p}(\nabla u-s \nabla(u-v)) \nabla(v-u) d s d t d x \tag{2.7.62}\\
& \leq C \int_{\{u>t \eta\} \cap B_{\mu}\left(x_{0}\right)}|\nabla v-\nabla u|^{2} d x=C t^{2} \int_{\{u>t \eta\} \cap B_{\mu}\left(x_{0}\right)}|\nabla \eta|^{2} d x .
\end{align*}
$$

On the set $\{u \leq t \eta\}$ we have $v=0$ and thus,

$$
\begin{aligned}
\int_{\{u \leq t \eta\} \cap B_{\mu}\left(x_{0}\right)} & \int_{0}^{1} \int_{0}^{t} \nabla(v-u) f_{p p}(\nabla u-s \nabla(u-v)) \nabla(v-u) d s d t \\
= & \int_{\{u \leq t \eta\} \cap B_{\mu}\left(x_{0}\right)} \int_{0}^{1} \int_{0}^{t} \nabla u f_{p p}((1-s) \nabla u) \nabla u d s d t d x .
\end{aligned}
$$

Next,

$$
\begin{gather*}
0=f(0)=f(\nabla u)-\int_{0}^{1} f_{p}((1-t) \nabla u) \nabla u d t=f(\nabla u)-f_{p}(\nabla u) \nabla u \\
\quad+\int_{0}^{1} \int_{0}^{t} \nabla u f_{p p}((1-s) \nabla u) \nabla u d s d t \\
\int_{\{u \leq t \eta\} \cap B_{\mu}\left(x_{0}\right)} \int_{0}^{1} \int_{0}^{t} \nabla(v-u) f_{p p}(\nabla u-s \nabla(u-v)) \nabla(v-u) d s d t \tag{2.7.63}\\
\leq \int_{\{u \leq t \eta\} \cap B_{\mu}\left(x_{0}\right)} \Phi(|\nabla u|) d x
\end{gather*}
$$

Therefore by (2.7.61), (2.7.62) and (2.7.63) we have

$$
\begin{aligned}
& \int_{B_{\mu}\left(x_{0}\right) \cap\{u>0\}}(G(|\nabla v|)-G(|\nabla u|)) d x \\
& \leq \int_{\{u \leq t \eta\}} \Phi(|\nabla u|) d x+C t^{2} \int_{\{u>t \eta\}}|\nabla \eta|^{2} d x+\int_{\Omega} f_{p}(\nabla u) \nabla(v-u) d x .
\end{aligned}
$$

In the last integral the integrand vanishes on the set $\{u=0\}$. Since also $v-u=0$ on $\partial\{u>0\}$ and $\mathcal{L} u=0$ on $\{u>0\}$, this integral vanishes. (For a rigorous proof approximate $v-u$ by $-\min (u-\delta, t \eta)$ for $\delta>0)$. The result follows.

Now, following ideas from [2], using Lemmas 2.7.58 and 2.7.59, we prove, for $N=2$ and g satisfying (2.7.57) the following,

Theorem 2.7.64. Let $N=2, g$ satisfying (2.7.57) and u a minimizer. Then, for any ball B_{r} centered at the free boundary we have,

$$
f_{B_{r} \cap\{u>0\}}\left(\Phi\left(\lambda^{*}\right)-\Phi(|\nabla u|)\right)^{+} \rightarrow 0 \text { as } r \rightarrow 0,
$$

where $\Phi(t)=g(t) t-G(t)$ and $\Phi\left(\lambda^{*}\right)=\lambda$.
Proof. Let $1 \geq \mu>r$, and take v, as in Lemma 2.7.59, then $\mathcal{J}(u) \leq \mathcal{J}(v)$ and

$$
\begin{equation*}
\int_{B_{\mu}\left(x_{0}\right) \cap\{0<u \leq t \eta\}} \lambda \leq \int_{B_{\mu}\left(x_{0}\right) \cap\{u>0\}}(G(|\nabla v|)-G(|\nabla u|)) d x . \tag{2.7.65}
\end{equation*}
$$

Let $t=C r$, where C is the constant such that $u \leq C r$ in B_{r}. Now choose

$$
\eta(x)= \begin{cases}\frac{\log \left(\mu /\left|x-x_{0}\right|\right)}{\log (\mu / r)} & \text { in } B_{\mu}\left(x_{0}\right) \backslash B_{r}\left(x_{0}\right), \\ 1 & \text { in } B_{r}\left(x_{0}\right) \\ 0 & \text { in } \Omega \backslash B_{\mu}\left(x_{0}\right)\end{cases}
$$

observe that the condition $|\nabla \eta| \leq C / t$ is satisfied if we choose μ such that $\mu>2 r$.
Observe that,

$$
\begin{aligned}
\int_{B_{\mu}\left(x_{0}\right) \cap\{0<u \leq t \eta\}}\left(\Phi\left(\lambda^{*}\right)-\Phi(|\nabla u|)\right) d x & =\int_{B_{\mu}\left(x_{0}\right) \cap\{0<u \leq t \eta\}}\left(\Phi\left(\lambda^{*}\right)-\Phi(|\nabla u|)\right)^{+} d x \\
& -\int_{B_{\mu}\left(x_{0}\right) \cap\{0<u \leq t \eta\}}\left(\Phi(|\nabla u|)-\Phi\left(\lambda^{*}\right)\right)^{+} d x .
\end{aligned}
$$

On the other hand by our election of t and η, we have that in $B_{r}, u \leq t \eta$ and then by Lemma 2.7.59, (2.7.65) and the definition of λ^{*}, we have,

$$
\begin{aligned}
\int_{B_{r}\left(x_{0}\right) \cap\{u>0\}}\left(\Phi\left(\lambda^{*}\right)-\Phi(|\nabla u|)\right)^{+} d x \leq & \int_{B_{\mu}\left(x_{0}\right)}(\Phi(|\nabla u|))-\left(\Phi\left(\lambda^{*}\right)\right)^{+} d x \\
& +\frac{C r^{2}}{\log (\mu / r)}
\end{aligned}
$$

By Lemma 2.7.58, we have that $\Phi(|\nabla u|)-\Phi\left(\lambda^{*}\right) \leq \Phi\left(\lambda^{*}+C r^{\gamma}\right)-\Phi\left(\lambda^{*}\right)=\Phi^{\prime}(\xi) C r^{\gamma}$, for $\lambda^{*} \leq \xi \leq \lambda^{*}+C r^{\gamma}$. As $\Phi^{\prime}(t)=g^{\prime}(t) t \leq g_{0} g(t)$, and as g is nondecreasing we have that $\Phi^{\prime}(\xi) \leq g_{0} g(\xi) \leq g_{0} g\left(\lambda^{*}+C r^{\gamma}\right)$. Therefore we have,

$$
\frac{1}{r^{2}} \int_{B_{r}\left(x_{0}\right) \cap\{u>0\}}\left(\Phi\left(\lambda^{*}\right)-\Phi(|\nabla u|)\right)^{+} d x \leq C\left(\frac{\mu^{\gamma+2}}{r^{2}}+\frac{r^{2}}{\log (\mu / r)}\right)
$$

Taking $r=\mu^{1+\beta}$, with $\beta<\min \{\gamma / 2,1 / 2\}$, we have the desired result.
Corollary 2.7.66. Let $N=2$, suppose that g satisfies (0.0.2) and moreover satisfies (2.7.57). Let $u \in \mathcal{K}$ be a solution to (2.0.1). Then $\partial\{u>0\}$ is a $C^{1, \alpha}$ surface locally in Ω.

Proof. The proof follows now as in [4], we give the proof here for the readers convenience. Let u_{k} be a blow up sequence converging to u_{0}. Since, $\nabla u_{k} \rightarrow \nabla u_{0}$ a.e in \mathbb{R}^{N}, we conclude from Theorem 2.5.3 and Theorem 2.7.64 that $\left|\nabla u_{0}\right|=\lambda^{*}$ in $B_{1} \cap\left\{u_{0}>0\right\}$, and then

$$
0=\mathcal{L} u_{0}=\operatorname{div}\left(\frac{g\left(\left|\nabla u_{0}\right|\right)}{\left|\nabla u_{0}\right|} \nabla u_{0}\right)=\frac{g\left(\lambda^{*}\right)}{\lambda^{*}} \triangle u_{0} \quad \text { in }\left\{u_{0}>0\right\} .
$$

Therefore u_{0} is harmonic in $\left\{u_{0}>0\right\}$, and if we take $v=\left|\nabla u_{0}\right|^{2}$, we have $0=\Delta v=$ $\left|D^{2} u_{0}\right|^{2}$ and that means that ∇u_{0} is constant in each connected component of this set. Therefore, by Lemma 1.6.13 (5) and (7) we have,

$$
u_{0}=\lambda^{*} \max \left\langle x, \nu_{0}, 0\right\rangle+q \max \left\langle-x, \nu_{0}, s\right\rangle,
$$

for some ν_{0} and $q, s \geq 0$. Since $\left\{u_{0}=0\right\}$ has positive density at the origin, we have that $s>0$ or $q=0$. Therefore, we have proved that any blow up sequence has a subsequences that converges to a half linear function $u_{0}=\lambda^{*} \max \left\langle x, \nu_{0}, 0\right\rangle$ in some neighborhood of the origin, then applying Theorem 2.7.54 we have the desired result.

CHAPTER 3

The optimization problem

In this Chapter we study, the following optimization problem. Take Ω a smooth bounded domain in \mathbb{R}^{N} and $\varphi_{0} \in W^{1, G}(\Omega)$, a Dirichlet datum, with $\varphi_{0} \geq c_{0}>0$ in \bar{A}, where A is a nonempty relatively open, C^{2} subset of $\partial \Omega$. Here $W^{1, G}(\Omega)$ is a Sobolev-Orlicz space (see Chapter 1). Let

$$
\mathcal{K}_{\alpha}=\left\{u \in W^{1, G}(\Omega) /|\{u>0\}|=\alpha, u=\varphi_{0} \quad \text { on } \partial \Omega\right\} .
$$

Our problem is to minimize in \mathcal{K}_{α}, the functional $\mathcal{J}(u)=\int_{\Omega} G(|\nabla u|) d x$, with $g=G^{\prime}$ satisfying (0.0.2).

1. The penalized problem

In order to solve our original problem in a way that allows us to perform non volume preserving perturbations we follow the idea of [2] and consider instead the following penalized problem: We let

$$
\mathcal{K}=\left\{u \in W^{1, G}(\Omega) / u=\varphi_{0} \quad \text { on } \partial \Omega\right\}
$$

and

$$
\begin{equation*}
\mathcal{J}_{\varepsilon}(u)=\int_{\Omega} G(|\nabla u|) d x+F_{\varepsilon}(|\{u>0\}|), \tag{3.1.1}
\end{equation*}
$$

where

$$
F_{\varepsilon}(s)= \begin{cases}\varepsilon(s-\alpha) & \text { if } s<\alpha \\ \frac{1}{\varepsilon}(s-\alpha) & \text { if } s \geq \alpha\end{cases}
$$

Then, the penalized problem is

$$
\text { Find } u_{\varepsilon} \in \mathcal{K} \quad \text { such that } \quad \mathcal{J}_{\varepsilon}\left(u_{\varepsilon}\right)=\inf _{v \in \mathcal{K}} \mathcal{J}_{\varepsilon}(v) .
$$

In the next section we will study the properties of solutions to $\left(P_{\varepsilon}\right)$.
1.1. Existence, regularity of minimizers and their free boundaries. We begin by discussing the existence of extremals and the regularity. We are going to give some properties of the minimizers, but as the functional $\mathcal{J}_{\varepsilon}$ is very similar to the one in Chapter 2, we are only going to state the results and avoid any proof. The only difference between the two functionals is that in Chapter 2 the functional is lineal in $|\{u>0\}|$ and here it is piecewise linear. Next, we prove that any minimizer of $\mathcal{J}_{\varepsilon}$ is a weak solution, as defined in Chapter 2. Therefore we will have, by the results therein that the free boundary is smooth.

Theorem 3.1.2. Let $\Omega \subset \mathbb{R}^{N}$ be bounded. Then there exists a solution to the problem $\left(P_{\varepsilon}\right)$. Moreover, any such solution u_{ε} has the following properties:

1. u_{ε} is locally Lipschitz continuous in Ω, and for $D \subset \subset \Omega$ we have that, $\|\nabla u\|_{L^{\infty}}(D) \leq C$ with $C=C\left(N, g_{0}, \delta, \operatorname{dist}(\partial \Omega, D)\right)$.
2. $\mathcal{L} u_{\varepsilon}=0$ in $\left\{u_{\varepsilon}>0\right\}$.
3. There are constants $0<c_{\text {min }} \leq C_{\max }, \gamma \geq 1$, such that for balls $B_{r}(x) \subset D$ with $x \in \partial\left\{u_{\varepsilon}>0\right\}$

$$
c_{\min } \leq \frac{1}{r}\left(f_{B_{r}(x)} u_{\varepsilon}^{\gamma} d x\right)^{1 / \gamma} \leq C_{\max }
$$

4. For every $D \subset \subset \Omega$, there exist constants $C, c>0$ such that for every $x \in D \cap\left\{u_{\varepsilon}>0\right\}$,

$$
c \operatorname{dist}\left(x, \partial\left\{u_{\varepsilon}>0\right\}\right) \leq u_{\varepsilon}(x) \leq C \operatorname{dist}\left(x, \partial\left\{u_{\varepsilon}>0\right\}\right)
$$

5. For every $D \subset \subset \Omega$, there exists a constant $c>0$ such that for $x \in \partial\left\{u_{\varepsilon}>\right.$ $0\}$ and $B_{r}(x) \subset D$,

$$
c \leq \frac{\left|B_{r}(x) \cap\left\{u_{\varepsilon}>0\right\}\right|}{\left|B_{r}(x)\right|} \leq 1-c .
$$

The constants may depend on ε.
Proof. Observe that since F_{ε} satisfies,

$$
\text { if } A \leq B \text {, then } \varepsilon(A-B) \leq F_{\varepsilon}(A)-F_{\varepsilon}(B) \leq \frac{1}{\varepsilon}(A-B) \text {, }
$$

then if u_{ε} is a minimizer, $B_{r} \subset \subset \Omega$ and v is a solution of

$$
\mathcal{L} v=0 \quad \text { in } B_{r}, \quad v-u_{\varepsilon} \in W_{0}^{1, G}\left(B_{r}\right) .
$$

we have the following inequality

$$
\begin{aligned}
\varepsilon\left(\left|B_{r} \cap\{v>0\}\right|-\left|B_{r} \cap\left\{u_{\varepsilon}>0\right\}\right|\right) & \leq F_{\varepsilon}\left(\left|B_{r} \cap\{v>0\}\right|\right)-F_{\varepsilon}\left(\left|B_{r} \cap\left\{u_{\varepsilon}>0\right\}\right|\right) \\
& \leq \frac{1}{\varepsilon}\left(\left|B_{r} \cap\{v>0\}\right|-\left|B_{r} \cap\left\{u_{\varepsilon}>0\right\}\right|\right) .
\end{aligned}
$$

Therefore all the proofs of sections 3,4 and 5 of Chapter 2 can be modify using this fact. Observe that here, all the constants may depend on ε.

From now on we drop the subscript ε and denote by u instead of u_{ε} a solution to $\left(P_{\varepsilon}\right)$.

Theorem 3.1.3 (Representation Theorem). Let $u \in \mathcal{K}$ be a solution to $\left(P_{\varepsilon}\right)$. Then,

1. $\mathcal{H}^{N-1}(D \cap \partial\{u>0\})<\infty$ for every $D \subset \subset \Omega$.
2. There exists a Borel function q_{u} such that

$$
\mathcal{L} u=q_{u} \mathcal{H}^{N-1}\lfloor\partial\{u>0\} .
$$

3. For $D \subset \subset \Omega$ there are constants $0<c \leq C<\infty$ depending on N, Ω, D and ε such that for $B_{r}(x) \subset D$ and $x \in \partial\{u>0\}$,

$$
c \leq q_{u}(x) \leq C, \quad c r^{N-1} \leq \mathcal{H}^{N-1}\left(B_{r}(x) \cap \partial\{u>0\}\right) \leq C r^{N-1}
$$

4. $\mathcal{H}^{N-1}\left(\partial\{u>0\} \backslash \partial_{\text {red }}\{u>0\}\right)=0$.

Proof. See Theorem 1.4.54. Observe that $D \cap \partial\{u>0\}$ has finite perimeter, thus, the reduce boundary $\partial_{\text {red }}\{u>0\}$ is defined as well as the measure theoretic normal $\nu(x)$ for $x \in \partial_{\text {red }}\{u>0\}$ (see Chapter 1 Section 4.2).

We are going to prove, that any solution to $\left(P_{\varepsilon}\right), u$ is a weak solution in the sense of Definition 2.6.1. First we prove that, if we take two points on the free boundary such that the blow up sequences with respect to these points have blow up limits that are half planes, then the slopes must coincide. Finally we will prove that the function q_{u} is constant and that property (4) of Definition 2.6.1 is satisfied with $\lambda^{*}=g^{-1}\left(q_{u}\right)$. We will divide the proof into several lemmas.

Lemma 3.1.4. Let $x_{0}, x_{1} \in \partial\{u>0\}$ and $\rho_{k} \rightarrow 0^{+}$. For $i=0,1$ let $x_{i, k} \rightarrow x_{i}$ with $u\left(x_{i, k}\right)=0$ such that $B_{\rho_{k}}\left(x_{i, k}\right) \subset \Omega$ and such that the blow-up sequence

$$
u_{i, k}(x)=\frac{1}{\rho_{k}} u\left(x_{i, k}+\rho_{k} x\right)
$$

has a limit $u_{i}(x)=\lambda_{i}\left\langle x, \nu_{i}\right\rangle^{-}$, with $0<\lambda_{i}<\infty$ and ν_{i} a unit vector. Then $\lambda_{0}=\lambda_{1}$.
Proof. Assume that $\lambda_{1}<\lambda_{0}$ then we will perturb the minimizer u near x_{0} and x_{1} and get an admissible function with less energy. To this end, we take a nonnegative C_{0}^{∞} function ϕ supported in the unit interval. For k large, define

$$
\tau_{k}(x)= \begin{cases}x+\rho_{k}^{2} \phi\left(\frac{\left|x-x_{0, k}\right|}{\rho_{k}}\right) \nu_{0} & \text { for } x \in B_{\rho_{k}}\left(x_{0, k}\right) \\ x-\rho_{k}^{2} \phi\left(\frac{\left|x-x_{1, k}\right|}{\rho_{k}}\right) \nu_{1} & \text { for } x \in B_{\rho_{k}}\left(x_{1, k}\right) \\ x & \text { elsewhere }\end{cases}
$$

which is a diffeomorphism if k is big enough. Now let

$$
v_{k}(x)=u\left(\tau_{k}^{-1}(x)\right),
$$

then, v_{k} is an admissible function. Let us also define

$$
\begin{equation*}
\eta_{i}(y)=(-1)^{i} \phi(|y|) \nu_{i} . \tag{3.1.5}
\end{equation*}
$$

We have

$$
\begin{equation*}
F_{\varepsilon}\left(\left|\left\{v_{k}>0\right\}\right|\right)-F_{\varepsilon}(|\{u>0\}|)=o\left(\rho_{k}^{N+1}\right) . \tag{3.1.6}
\end{equation*}
$$

In order to estimate the other term in $\mathcal{J}_{\varepsilon}$ we make a change of variables and get

$$
\begin{aligned}
& \rho_{k}^{-N} \int_{B_{\rho_{k}\left(x_{i}\right)}}\left(G\left(\left|\nabla v_{k}\right|\right)-G(|\nabla u|)\right) d x \\
& =\int_{B_{1}(0) \cap\left\{u_{i, k}>0\right\}} \rho_{k}\left[G\left(\left|\nabla u_{i, k}\right|\right) \operatorname{div}\left(\eta_{i}\right)-F\left(\left|\nabla u_{i, k}\right|\right)\left(\nabla u_{i, k}\right)^{t} D \eta_{i} \nabla u_{i, k}\right]+o\left(\rho_{k}\right) d y .
\end{aligned}
$$

On the other hand, by Lemma 1.6.13, we have

$$
\begin{aligned}
& B_{1}(0) \cap\left\{u_{i, k}>0\right\} \rightarrow B_{1}(0) \cap\left\{y \cdot \nu_{i}<0\right\}, \text { as } k \rightarrow 0, \text { and } \\
& \nabla u_{i, k} \rightarrow \nabla u_{i}=-\lambda_{i} \nu_{i} \chi_{\left\{\left\{y, \nu_{i}\right\rangle<0\right\}} \text { a.e in } B_{1}(0) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\rho_{k}^{-N-1} \int_{B_{\rho_{k}\left(x_{i}\right)}} & \left(G\left(\left|\nabla v_{k}\right|\right)-G(|\nabla u|)\right) d x \rightarrow \\
& \int_{B_{1}(0) \cap\left\{\left\{y, \nu_{i}\right\rangle<0\right\}}\left(G\left(\lambda_{i}\right) \operatorname{div}\left(\eta_{i}\right)-g\left(\lambda_{i}\right) \lambda_{i} \nu_{i}^{t} D \eta_{i} \nu_{i}\right) d y
\end{aligned}
$$

Using that

$$
\begin{aligned}
\operatorname{div}\left(\eta_{i}\right)-\frac{g\left(\lambda_{i}\right) \lambda_{i}}{G\left(\lambda_{i}\right)} \nu_{i}^{t} D \eta_{i} \nu_{i} & =(-1)^{i}\left(1-\frac{g\left(\lambda_{i}\right) \lambda_{i}}{G\left(\lambda_{i}\right)}\right) \frac{\phi^{\prime}(|y|)}{|y|}\left\langle y, \nu_{i}\right\rangle \\
& =(-1)^{i}\left(1-\frac{g\left(\lambda_{i}\right) \lambda_{i}}{G\left(\lambda_{i}\right)}\right) \operatorname{div}\left(\eta_{i}\right),
\end{aligned}
$$

we obtain

$$
\begin{aligned}
\rho_{k}^{-N-1} \int_{B_{\rho_{k}}\left(x_{i}\right)}\left(G\left(\left|\nabla v_{k}\right|\right)-G\left(\left|\nabla u_{\varepsilon}\right|\right)\right) d x & \rightarrow \\
& (-1)^{i+1} \Phi\left(\lambda_{i}\right) \int_{B_{1}(0) \cap\left\{y \cdot \nu_{i}=0\right\}} \phi(|y|) d \mathcal{H}^{N-1}(y),
\end{aligned}
$$

where $\Phi(t)=g(t) t-G(t)$. Hence

$$
\begin{align*}
& \int_{\Omega} G\left(\left|\nabla v_{k}\right|\right) d x-\int_{\Omega} G(|\nabla u|) d x= \\
&=\rho_{k}^{N+1}\left(\Phi\left(\lambda_{1}\right)-\Phi\left(\lambda_{0}\right)\right) \int_{B_{1}(0) \cap\left\{y_{1}=0\right\}} \phi(|y|) d \mathcal{H}^{N-1}(y) \tag{3.1.7}\\
&+o\left(\rho_{k}^{N+1}\right) .
\end{align*}
$$

If we take k large enough we get

$$
\mathcal{J}_{\varepsilon}\left(v_{k}\right)<\mathcal{J}_{\varepsilon}(u)
$$

a contradiction.

Lemma 3.1.8. Let $x_{0} \in \Omega \cap \partial\{u>0\}$ and let

$$
\lambda=\lambda\left(x_{0}\right):=\underset{\substack{x \rightarrow x_{0} \\ u(x)>0}}{\limsup ^{2}}|\nabla u(x)| .
$$

Then, there exist sequences y_{k}, d_{k} and ν such that the blow up sequence with respect to $B_{d_{k}}\left(y_{k}\right)$ has limit,

$$
u_{0}(x)=\lambda\langle x, \nu\rangle^{-} .
$$

Proof. Let $x_{0} \in \Omega \cap \partial\{u>0\}$ and let

$$
\lambda=\lambda\left(x_{0}\right):=\limsup _{\substack{x \rightarrow x_{0} \\ u(x)>0}}|\nabla u(x)| .
$$

Then there exists a sequence $z_{k} \rightarrow x_{0}$ such that

$$
u\left(z_{k}\right)>0, \quad\left|\nabla u\left(z_{k}\right)\right| \rightarrow \lambda .
$$

Let y_{k} be the nearest point to z_{k} on $\Omega \cap \partial\{u>0\}$ and let $d_{k}=\left|z_{k}-y_{k}\right|$. Consider the blow up sequence with respect to $B_{d_{k}}\left(y_{k}\right)$ with limit u_{0}, such that there exists

$$
\nu:=\lim _{k \rightarrow \infty} \frac{y_{k}-z_{k}}{d_{k}}
$$

and suppose that $\nu=e_{N}$. As in Lemma 2.5.3 we can prove that $0<\lambda<\infty$ and

$$
u_{0}(x)=-\lambda x_{N} \text { in }\left\{x_{N} \leq 0\right\} .
$$

Finally by Lemma 1.6 .13 we have that $0 \in \partial\left\{u_{0}>0\right\}$ and then, using Lemma 1.6.13 we see that u_{0} satisfies the hypotheses of Theorem 1.5.1. Therefore $u_{0}=0$ in $\left\{x_{N}>0\right\}$. Then $u_{0}=\lambda\langle x, \nu\rangle^{-}$.

Lemma 3.1.9. For \mathcal{H}^{N-1}-a.e. $x_{0} \in \partial_{\text {red }}\{u>0\}$, there exist a sequence γ_{n} such that if u_{n} is the blow up sequence with respect to $B_{\gamma_{n}}\left(x_{0}\right)$ we have that,

$$
u_{n} \rightarrow \lambda^{*}\left\langle x, \nu\left(x_{0}\right)\right\rangle^{-}
$$

with $\nu\left(x_{0}\right)$ the outward unit normal of $\partial\{u>0\}$ at x_{0} in the measure theoretic sense and $\lambda^{*}=g^{-1}\left(q_{u}\left(x_{0}\right)\right)$.

Proof. Take $x_{0} \in \partial_{\text {red }}\{u>0\}$ and suppose that $\nu\left(x_{0}\right)=e_{N}$. We consider a blow up sequence with respect to balls $B_{\rho_{k}}\left(x_{0}\right)$, with blow up limit u_{0}. As in Theorem 2.5.5 we have,

$$
\begin{cases}u_{0}=0 & \text { in }\left\{x_{N} \geq 0\right\}, \\ u_{0}>0 & \text { in }\left\{x_{N}<0\right\} .\end{cases}
$$

And, as in Lemma 2.5.9 we have that for a.e $\mathcal{H}^{N-1} x_{0} \in \partial_{\text {red }}\{u>0\}, q_{u_{0}}(x)=$ $q_{u}\left(x_{0}\right)$ in the sense that for all $\xi \in C_{0}^{1}\left(B_{r}\right)$

$$
\begin{equation*}
-\int_{B_{r} \cap\left\{x_{N}<0\right\}} g\left(\left|\nabla u_{0}\right|\right) \frac{\nabla u_{0}}{\left|\nabla u_{0}\right|} \nabla \xi d x=q_{u}\left(x_{0}\right) \int_{B_{r}^{\prime}} \xi\left(x^{\prime}, 0\right) d \mathcal{H}^{N-1} . \tag{3.1.10}
\end{equation*}
$$

From the boundary regularity we have, that this is satisfied in the classical sense, Therefore , $u_{0}(x)=\lambda^{*} x_{N}^{-}+o(|x|)$.

Take now $u_{0, j}$, a blow up sequence of u_{0}, with respect to balls $B_{\mu_{j}}(0)$. Then,

$$
u_{0, j} \rightarrow u_{00}=\lambda^{*} x_{N}^{-} .
$$

Now, we want to construct a blow up sequence of u with limit u_{00}. Observe, that

$$
\left|\frac{1}{\rho_{k} \mu_{j}} u\left(x_{0}+\rho_{k} \mu_{j} x\right)-u_{00}(x)\right| \leq \frac{1}{\mu_{j}}\left|u_{k}\left(\mu_{j} x\right)-u_{0}\left(\mu_{j} x\right)\right|+\left|u_{0, j}(x)-u_{00}(x)\right|,
$$

and since $u_{k} \rightarrow u_{0}$ uniformly over compacts sets we have that for $j \geq j_{n}, \mid u_{0, j}(x)-$ $u_{00}(x) \mid<1 / n$ and for $k \geq k_{n},\left|u_{k}\left(\mu_{j} x\right)-u_{0}\left(\mu_{j} x\right)\right|<\mu_{j} / n$ if $|x| \leq n$. We may suppose that $j_{n} \geq n$ and $k_{n} \geq n$. Taking $\gamma_{n}=\rho_{k_{n}} \mu_{j_{n}}$, we have that $\gamma_{n} \rightarrow 0$ and $\left|u_{\gamma_{n}}(x)-u_{00}(x)\right|<2 / n$ in B_{n}. Replacing ξ by $\xi(x)=\xi\left(\frac{x}{\gamma_{n}}\right) \gamma_{n}$ in (3.1.10), changing variables and passing to the limit we get

$$
\int_{B_{1} \cap\left\{x_{N}<0\right\}} g\left(\lambda^{*}\right) \xi_{x_{N}} d x=\int_{B_{1}^{\prime}} \xi\left(x^{\prime}, 0\right) \mathcal{H}^{N-1}
$$

and the result follows.
Theorem 3.1.11. Let $u \in \mathcal{K}$ be a solution to $\left(P_{\varepsilon}\right)$ and q_{u} the function in Theorem 3.1.3. Then, there exists a positive constant λ_{u} such that

$$
\begin{align*}
& \limsup _{\substack{x \rightarrow x_{0} \\
u(x)>0}}|\nabla u(x)|=\lambda_{u}, \quad \text { for every } x_{0} \in \Omega \cap \partial\{u>0\} \tag{3.1.12}\\
& q_{u}\left(x_{0}\right)=g\left(\lambda_{u}\right), \quad \mathcal{H}^{N-1}-\text { a.e } x_{0} \in \Omega \cap \partial\{u>0\} . \tag{3.1.13}
\end{align*}
$$

Proof. Let $x_{1} \in \partial_{\text {red }}\{u>0\}$ satisfying the properties of Lemma 3.1.9. Set $\lambda_{u}:=g^{-1}\left(q_{u}\left(x_{1}\right)\right)$. Then, there exists a blow up sequence $u_{n} \rightarrow \lambda_{u}\left\langle x, \nu\left(x_{1}\right)\right\rangle^{-}$. For any $x_{0} \in \partial\{u>0\}$, we have by Lemma 3.1.8, that there exists for a certain unit vector $\nu\left(x_{0}\right)$ a blow up sequence $u_{k} \rightarrow \lambda\left(x_{0}\right)\left\langle x, \nu\left(x_{0}\right)\right\rangle^{-}$. Then, by Lemma 3.1.4, we have that $\lambda\left(x_{0}\right)=\lambda_{u}$ and then (3.1.12) follows. If we apply Lemmas 3.1.9 and 3.1.4 again, we obtain (3.1.13) for almost every point in $\partial_{\text {red }}\{u>0\}$, and the result follows by Theorem 3.1.3 (4).

Remark 3.1.14. Now we have, by properties (1), (2), (3) in Theorem 2.1.1, (2), (4) in Theorem 3.1.3 and Theorem 3.1.11 that any minimizer satisfies all the properties of the definition of weak solution I in Chapter 2. Therefore we have by Theorem 2.7.56 and Remark 2.7.55 in Chapter 2 the following regularity result for the free boundary $\partial\{u>0\}$.

Corollary 3.1.15. Let $u \in \mathcal{K}$ be a solution to $\left(P_{\varepsilon}\right)$. Then $\partial_{\text {red }}\{u>0\}$ is a $C^{1, \beta}$ surface locally in Ω and the remainder of the free boundary has \mathcal{H}^{N-1}-measure zero.
1.2. Full regularity for the case $N=2$. We will prove, that in dimension two, for the subclass of functions satisfying (0.0.2) and (2.7.57), their whole free boundary is a $C^{1, \beta}$ surface.

As in Section 7.4 of Chapter 2, the following lemma holds for any dimension and for any δ and g_{0},

Lemma 3.1.16. Let $u \in \mathcal{K}$ be a local minimizer. Given $D \subset \subset \Omega$, there exist constants $C=C\left(N, D, \lambda_{u}\right), r_{0}=r_{0}(N, D)>0$ and $\gamma=\gamma(N, D)>0$ such that, if $x_{0} \in D \cap \partial\{u>0\}$ and $r<r_{0}$, then

$$
\sup _{B_{r}\left(x_{0}\right)}|\nabla u| \leq \lambda_{u}+C r^{\gamma}
$$

Proof. The proof follows as in Lemma 2.7 .58 by using the density property of the set $\{u=0\}$ (Theorem 3.1.2 (5)).

Now, we have to do some changes on the proof of Theorem 2.7.64, since here there is no explicit relation between the constant λ_{u} and the parameter ε of the functional $\mathcal{J}_{\varepsilon}$ (recall that for the minimization problem in Chapter 2, we use that we have the relation $\Phi\left(\lambda^{*}\right)=\lambda$). In order to prove the full regularity of the free boundary, we need the following lemma, that also holds for any dimension and for any δ and g_{0}.

Lemma 3.1.17. Let x_{1} be regular free boundary point.
Take

$$
\tau_{\rho}(x)= \begin{cases}x+\rho^{2} \phi\left(\frac{\left|x-x_{1}\right|}{\rho}\right) \nu_{u}\left(x_{1}\right) & \text { for } x \in B_{\rho}\left(x_{1}\right) \\ x & \text { elsewhere }\end{cases}
$$

where $\phi \in C_{0}^{\infty}(-1,1)$ with $\phi^{\prime}(0)=0$.
Let

$$
\begin{equation*}
\delta=\rho^{2} \int_{B_{\rho}\left(x_{1}\right) \cap \partial\{u>0\}} \phi\left(\frac{\left|x-x_{1}\right|}{\rho}\right) d \mathcal{H}^{N-1} . \tag{3.1.18}
\end{equation*}
$$

Take $v_{\delta}(x)=v_{\rho}(x)=u\left(\tau_{\rho}^{-1}(x)\right)$, then

$$
\begin{equation*}
\int_{B_{\rho}\left(x_{1}\right)}\left(G\left(\left|\nabla v_{\rho}\right|\right)-G(|\nabla u|)\right) d x=-l \rho^{N+1} \Phi\left(\lambda_{u}\right)+o\left(\rho^{N+1}\right), \tag{3.1.19}
\end{equation*}
$$

where $l=\lim _{\rho \rightarrow 0} \frac{\delta}{\rho^{N+1}}$ and $\Phi(t)=g(t) t-G(t)$.
Proof. The proof is included in the proof of Lemma 3.1.4..
The following lemma is the place where, as in Lemma 2.7.59, we need to impose condition (2.7.57).

Lemma 3.1.20. Let $\Phi(t)=g(t) t-G(t)$, and g satisfying condition (2.7.57). Let x_{0} be a free boundary point,$D \subset \subset \Omega$ and $B_{\mu}\left(x_{0}\right) \subset D$. Take $v=\max (u-t \eta, 0)$, where $t>0, \eta \in C_{0}^{\infty}(\Omega), \eta=0$ in $\Omega \backslash B_{\mu\left(x_{0}\right)}$ and $|\nabla \eta| \leq C / t$. Then,

$$
\begin{aligned}
& \int_{B_{\mu}\left(x_{0}\right) \cap\{u>0\}}(G(|\nabla v|)-G(|\nabla u|)) d x \leq \int_{B_{\mu}\left(x_{0}\right) \cap\{0<u \leq t \eta\}} \Phi(|\nabla u|) d x \\
& +C_{0} t^{2} \int_{B_{\mu}\left(x_{0}\right) \cap\{u>t \eta\}}|\nabla \eta|^{2} d x,
\end{aligned}
$$

for $C_{0}=C_{0}\left(N, \delta, g_{0}, \operatorname{dist}(\partial \Omega, D), C\right)$.
Proof. It follows as in Lemma 2.7.59, by using Theorem 3.1.2 (1).
Now, following ideas of [19], using Lemmas 3.1.16, 3.1.17 and 3.1.20, we prove, for $N=2$ and g satisfying (2.7.57) the following

Theorem 3.1.21. Let $N=2, g$ satisfying (2.7.57) and u a minimizer. Then, for any ball B_{r} centered at the free boundary we have,

$$
f_{B_{r} \cap\{u>0\}}\left(\Phi\left(\lambda_{u}\right)-\Phi(|\nabla u|)\right)^{+} \rightarrow 0 \text { when } r \rightarrow 0,
$$

where $\Phi(t)=g(t) t-G(t)$.
Proof. Let $0<r<\mu, t>0$ and v_{0} be the function defined in Lemma 3.1.20. By Theorem 2.1.1 $u \leq C r$ in $B_{r}\left(x_{0}\right)$. Take $t=C r$ and let $\delta_{t}=\left|\{0<u \leq t \eta\} \cap B_{\mu}\left(x_{0}\right)\right|$.

Now, let us take x_{1} far from x_{0} and such that $\partial\{u>0\} \cap B_{r_{1}}\left(x_{1}\right)$ is regular, for r_{1} small. Let ρ be such that (3.1.18) is satisfied for $\delta=\delta_{t}$, and consider $v_{1}=v_{\delta_{t}}$ defined in $B_{r_{1}}\left(x_{1}\right)$ as in Lemma 3.1.17. Then, the function

$$
v= \begin{cases}v_{0} & \text { in } B_{\mu}\left(x_{0}\right) \\ v_{1} & \text { in } B_{r_{1}}\left(x_{1}\right) \\ u & \text { elsewhere }\end{cases}
$$

is admissible for our minimization problem and $|\{v>0\}|=|\{u>0\}|$. Therefore, by Lemmas 3.1.17 and 3.1.20 we have

$$
\begin{aligned}
0 & \leq \mathcal{J}_{\varepsilon}(v)-\mathcal{J}_{\varepsilon}(u) \\
& =\int_{B_{\rho}\left(x_{0}\right)}(G(|\nabla v|)-G(|\nabla u|)) d x+\int_{B_{r_{1}}\left(x_{1}\right)}(G(|\nabla v|)-G(|\nabla u|)) d x \\
& \leq \int_{B_{\mu}\left(x_{0}\right) \cap\{u \leq t \eta\}} \Phi(|\nabla u|)+C t^{2} \int_{B_{\mu}\left(x_{0}\right) \cap\{u>t \eta\}}|\nabla \eta|^{2} d x-l \rho^{3} \Phi\left(\lambda_{u}\right)+o\left(\rho^{3}\right) .
\end{aligned}
$$

By the definition of δ_{t} we have,

$$
\begin{aligned}
\int_{B_{\mu}\left(x_{0}\right) \cap\{0<u \leq t \eta\}}\left(\Phi\left(\lambda_{u}\right)-\Phi(|\nabla u|)\right) d x \leq & C t^{2} \int_{B_{\mu}\left(x_{0}\right) \cap\{u>t \eta\}}|\nabla \eta|^{2} d x+o\left(\rho^{3}\right) \\
& +\left(\delta_{t}-l \rho^{3}\right) \Phi\left(\lambda_{u}\right) .
\end{aligned}
$$

Now choose

$$
\eta(x)= \begin{cases}\frac{\log \left(\mu /\left|x-x_{0}\right|\right)}{\log (\mu / r)} & \text { in } B_{\mu}\left(x_{0}\right) \backslash B_{r}\left(x_{0}\right) \\ 1 & \text { in } B_{r}\left(x_{0}\right) \\ 0 & \text { in } \Omega \backslash B_{\mu}\left(x_{0}\right)\end{cases}
$$

observe that the condition $|\nabla \eta| \leq C / t$ is satisfied if we choose μ such that $\mu>2 r$.
By our election of t and η we have,

$$
\begin{aligned}
\int_{B_{r}\left(x_{0}\right) \cap\{u>0\}}\left(\Phi\left(\lambda_{u}\right)-\Phi(|\nabla u|)\right)^{+} d x \leq & \int_{B_{\mu}\left(x_{0}\right)}(\Phi(|\nabla u|))-\left(\Phi\left(\lambda_{u}\right)\right)^{+} d x \\
& +\frac{C r^{2}}{\log (\mu / r)}+o\left(\rho^{3}\right)+\left(\delta_{t}-l \rho^{3}\right) \Phi\left(\lambda_{u}\right) .
\end{aligned}
$$

By Lemma 3.1.16, we have that $\Phi(|\nabla u|)-\Phi\left(\lambda_{u}\right) \leq \Phi\left(\lambda_{u}+C r^{\gamma}\right)-\Phi\left(\lambda_{u}\right)=\Phi^{\prime}(\xi) C r^{\gamma}$, for $\lambda_{u} \leq \xi \leq \lambda_{u}+C r^{\gamma}$. As $\Phi^{\prime}(t)=g^{\prime}(t) t \leq g_{0} g(t)$, and as g is nondecreasing we have that $\Phi^{\prime}(\xi) \leq g_{0} g(\xi) \leq g_{0} g\left(\lambda_{u}+C r^{\gamma}\right)$.

Therefore by the definition of l we have

$$
f_{B_{r}\left(x_{0}\right) \cap\{u>0\}}\left(\Phi\left(\lambda_{u}\right)-\Phi(|\nabla u|)\right)^{+} d x \leq \frac{\left(\mu^{\gamma+2}+o\left(\rho^{3}\right)\right)}{r^{2}}+\frac{C}{\log (\mu / r)}
$$

As $\delta_{t} \leq c \mu^{2}$ we have that $o\left(\rho^{3}\right)=o\left(\mu^{2}\right)$. Taking $r=\mu h(\mu)^{\beta}$, where $h(\mu)=$ $\max \left(\mu, \frac{o\left(\mu^{2}\right)}{\mu^{2}}\right)$ with $\beta<\min \{\gamma / 2,1 / 2\}$, we have the desired result.

Now we have, as in Corollary 2.7.66 the following,
Corollary 3.1.22. Let $N=2$, g satisfying (2.7.57) and $u \in \mathcal{K}$ be a solution to $\left(P_{\varepsilon}\right)$. Then $\partial\{u>0\}$ is a $C^{1, \beta}$ surface locally in Ω.

2. Behavior of the minimizer for small ε.

In this section, since we want to analyze the dependence of the problem with respect to ε, we will again denote by u_{ε} a solution to problem $\left(P_{\varepsilon}\right)$.

To complete the analysis of the problem, we will now show that if ε is small enough, then

$$
\left|\left\{u_{\varepsilon}>0\right\}\right|=\alpha .
$$

To this end, we need to prove that the constant $\lambda_{\varepsilon}:=\lambda_{u_{\varepsilon}}$ is bounded from above and below by positive constants independent of ε. We perform this task in a series of lemmas.

Lemma 3.2.1. Let $u_{\varepsilon} \in \mathcal{K}$ be a solution to $\left(P_{\varepsilon}\right)$. Then, there exists a constant $C>0$ independent of ε such that

$$
\lambda_{\varepsilon} \leq C
$$

Proof. First we will prove that there exist $C, c>0$, independent of ε, such that

$$
c \leq\left|\left\{u_{\varepsilon}>0\right\}\right| \leq C \varepsilon+\alpha
$$

In fact, by taking u_{0} such that $\left|\left\{u_{0}>0\right\}\right| \leq \alpha$ we have that $\mathcal{J}_{\varepsilon}\left(u_{0}\right) \leq C$ then we have that $F_{\varepsilon}\left(\left|\left\{u_{\varepsilon}>0\right\}\right|\right) \leq C$ thus obtaining the bound from above. We also have that $\int_{\Omega} G\left(\left|\nabla u_{\varepsilon}\right|\right)$ is bounded. As $u_{\varepsilon}=\varphi_{0}$ on $\partial \Omega$, we have, by Lemma 1.1.5, that $\left\|\nabla u_{\varepsilon}-\nabla \varphi_{0}\right\|_{G} \leq C$ and, by Lemma 1.2.10, we also have $\left\|u_{\varepsilon}-\varphi_{0}\right\|_{G} \leq C$. Then, $\left\|u_{\varepsilon}\right\|_{W^{1, G}(\Omega)} \leq C$. Using the Sobolev trace Theorem, the Hölder inequality and the embedding Theorem 1.1.9 we have, for $q<\delta+1$

$$
\begin{aligned}
\int_{\partial \Omega} \varphi_{0}^{q} d \mathcal{H}^{N-1} & \leq C\left|\left\{u_{\varepsilon}>0\right\}\right|^{\frac{\delta+1-q}{\delta+1}}\left\|u_{\varepsilon}\right\|_{W^{1, \delta+1}(\Omega)}^{q} \\
& \leq C\left|\left\{u_{\varepsilon}>0\right\}\right|^{\frac{\delta+1-q}{\delta+1}}\left\|u_{\varepsilon}\right\|_{W^{1, G}(\Omega)}^{q} \leq C\left|\left\{u_{\varepsilon}>0\right\}\right|^{\frac{\delta+1-q}{\delta+1}}
\end{aligned}
$$

and thus we obtain the bound from below.
Take $D \subset \subset \Omega$ smooth, such that $\theta=|D|>\alpha$ and $|\Omega \backslash D|<c$. Then,

$$
\left|D \cap\left\{u_{\varepsilon}>0\right\}\right| \leq \alpha+C \varepsilon<\theta
$$

for ε small enough. On the other hand,

$$
\left|D \cap\left\{u_{\varepsilon}>0\right\}\right| \geq\left|\left\{u_{\varepsilon}>0\right\}\right|-|\Omega \backslash D| \geq c-|\Omega \backslash D|>0,
$$

Therefore by the relative isoperimetric inequality (see [13] 5.6.2) we have

$$
\begin{aligned}
\mathcal{H}^{N-1}\left(D \cap \partial\left\{u_{\varepsilon}>0\right\}\right) & \geq c \min \left\{\left|D \cap\left\{u_{\varepsilon}>0\right\}\right|,\left|D \cap\left\{u_{\varepsilon}=0\right\}\right|\right\}^{\frac{N-1}{N}} \\
& \geq c>0 .
\end{aligned}
$$

Now let w be the $\mathcal{L}-$ solution in Ω with boundary data equal to φ_{0}. Using Theorem 3.1.3 and Theorem 2.5.3 we have,

$$
\begin{aligned}
C & \geq \int_{\Omega} F\left(\left|\nabla u_{\varepsilon}\right|\right) \nabla u_{\varepsilon} \nabla\left(u_{\varepsilon}-w\right) d x=\int_{\Omega \cap \partial\left\{u_{\varepsilon}>0\right\}} w g\left(\lambda_{\varepsilon}\right) d \mathcal{H}^{N-1} \\
& \geq \int_{D \cap \partial\left\{u_{\varepsilon}>0\right\}} w g\left(\lambda_{\varepsilon}\right) d \mathcal{H}^{N-1} \geq g\left(\lambda_{\varepsilon}\right)\left(\inf _{D} w\right) \mathcal{H}^{N-1}\left(D \cap \partial\left\{u_{\varepsilon}>0\right\}\right) \geq c g\left(\lambda_{\varepsilon}\right) .
\end{aligned}
$$

Now the result follows.

LEmma 3.2.2. Let $u_{\varepsilon} \in \mathcal{K}$ be a solution to $\left(P_{\varepsilon}\right), B_{r} \subset \subset \Omega$ and v a solution to

$$
\mathcal{L} v=0 \quad \text { in } B_{r}, \quad v=u_{\varepsilon} \quad \text { on } \partial B_{r} .
$$

Then, there exists a positive constant $\gamma=\gamma\left(\delta, g_{0}, N\right)$ such that

$$
\int_{B_{r}}\left|\nabla\left(u_{\varepsilon}-v\right)\right|^{q} d x \geq C\left|B_{r} \cap\left\{u_{\varepsilon}=0\right\}\right|\left(\frac{1}{r}\left(f_{B_{r}} u_{\varepsilon}^{\gamma} d x\right)^{1 / \gamma}\right)^{q}
$$

for all $q \geq 1$ and where C is a constant independent of ε.

Proof. First let us assume that $B_{r}=B_{1}(0)$. For $|z| \leq \frac{1}{2}$ we consider the change of variables from B_{1} into itself such that z becomes the new origin. We call $u_{z}(x)=u((1-|x|) z+x), v_{z}(x)=v((1-|x|) z+x)$ and define

$$
r_{\xi}=\inf \left\{r / \frac{1}{8} \leq r \leq 1 \quad \text { and } \quad u_{z}(r \xi)=0\right\}
$$

if this set is nonempty. Observe that this change of variables leaves the boundary fixed.

Now, for almost every $\xi \in \partial B_{1}$ we have

$$
\begin{equation*}
v_{z}\left(r_{\xi} \xi\right)=\int_{r_{\xi}}^{1} \frac{d}{d r}\left(u_{z}-v_{z}\right)(r \xi) d r \leq\left(1-r_{\xi}\right)^{1 / q^{\prime}}\left(\int_{r_{\xi}}^{1}\left|\nabla\left(u_{z}-v_{z}\right)(r \xi)\right|^{q} d r\right)^{1 / q} \tag{3.2.3}
\end{equation*}
$$

Let us assume that the following inequality holds

$$
\begin{equation*}
v_{z}\left(r_{\xi} \xi\right) \geq C(N, \Omega)\left(1-r_{\xi}\right)\left(f_{B_{1}} u^{\gamma} d x\right)^{1 / \gamma} \tag{3.2.4}
\end{equation*}
$$

Then, using (3.2.3) and (3.2.4), integrating first over ∂B_{1} and then over $|z| \leq 1 / 2$ we obtain as in [4],

$$
\int_{B_{1}}|\nabla(u-v)|^{q} d x \geq C\left|B_{1} \cap\{u=0\}\right|\left(f_{B_{1}} u^{\gamma} d x\right)^{q / \gamma}
$$

If we take $u_{r}(x)=\frac{1}{r} u\left(x_{0}+r x\right)$ (where x_{0} is the center of the ball B_{r}) then

$$
\begin{aligned}
& \int_{B_{1}}\left|\nabla\left(u_{r}-v_{r}\right)\right|^{q} d x=r^{-N} \int_{B_{r}}|\nabla(u-v)|^{q} d y \\
& \left|B_{1} \cap\left\{u_{r}=0\right\}\right|=r^{-N}\left|B_{r} \cap\{u=0\}\right| \quad \text { and } \\
& \left(f_{B_{1}} u_{r}^{\gamma} d x\right)^{1 / \gamma}=\frac{1}{r}\left(f_{B_{r}} u^{\gamma} d y\right)^{1 / \gamma}
\end{aligned}
$$

so we have the desired result.
Therefore we only have to prove (3.2.4). If $\left|\left(1-r_{\xi}\right) z+r_{\xi} \xi\right| \leq \frac{3}{4}$, by Harnack inequality,

$$
v_{z}\left(r_{\xi} \xi\right) \geq C_{N} v(0)
$$

By the weak Harnack inequality 1.2 .15 we have

$$
\begin{equation*}
v(0) \geq \alpha(N, \Omega)\left(f_{B_{1}} v^{\gamma} d x\right)^{1 / \gamma} \geq \alpha(N, \Omega)\left(f_{B_{1}} u^{\gamma} d x\right)^{1 / \gamma} \tag{3.2.5}
\end{equation*}
$$

If $\left|\left(1-r_{\xi}\right) z+r_{\xi} \xi\right| \geq \frac{3}{4}$ we prove by a comparison argument that inequality (3.2.4) also holds. In fact, again by Harnack inequality,

$$
v \geq C_{N} \alpha\left(f_{B_{1}} u^{\gamma} d x\right)^{1 / \gamma} \text { in } B_{3 / 4}
$$

Let $w(x)=\left(e^{-\lambda|x|^{2}}-e^{-\lambda}\right)\left(f_{B_{1}} u^{\gamma} d x\right)^{1 / \gamma}$. There exists $\lambda=\lambda(N, \alpha)$ such that

$$
\begin{cases}\mathcal{L} w \geq 0 & \text { in } B_{1} \backslash B_{3 / 4} \\ w \leq C_{N} \alpha\left(f_{B_{1}} u^{\gamma} d x\right)^{1 / \gamma} & \text { on } \partial B_{3 / 4} \\ w=0 & \text { on } \partial B_{1}\end{cases}
$$

(see Lemma 1.2.47) so that,

$$
v \geq w \geq C(1-|x|)\left(f_{B_{1}} u^{\gamma} d x\right)^{1 / \gamma} \quad \text { in } \quad B_{1} \backslash B_{3 / 4}
$$

Therefore

$$
v_{z}\left(r_{\xi} \xi\right) \geq C\left(1-\left|\left(1-r_{\xi}\right) z+r_{\xi} \xi\right|\right)\left(f_{B_{1}} u^{\gamma} d x\right)^{1 / \gamma} \geq C\left(1-r_{\xi}\right)\left(f_{B_{1}} u^{\gamma} d x\right)^{1 / \gamma}
$$

since $|z| \leq \frac{1}{2}$. So that (3.2.4) holds for every $r_{\xi} \geq \frac{1}{8}$.
This completes the proof.

Without loss of generality, from now on we will suppose that $g_{0} \geq 1$.
Lemma 3.2.6. Let u_{ε} and v be as in Lemma 3.2.2, and B_{r} a ball centered on the free boundary, then if r is small enough (depending on ε) we have,

$$
\begin{equation*}
\int_{B_{r}}(G(|\nabla u|)-G(|\nabla v|)) d x \geq C \int_{B_{r}}\left|\nabla u_{\varepsilon}-\nabla v\right|^{g_{0}+1} d x \tag{3.2.7}
\end{equation*}
$$

for some constant C independent of ε.
Proof. Let,

$$
A_{1}=\left\{x \in B_{r}:\left|\nabla u_{\varepsilon}-\nabla v\right| \leq 2\left|\nabla u_{\varepsilon}\right|\right\}, \quad A_{2}=\left\{x \in B_{r}:\left|\nabla u_{\varepsilon}-\nabla v\right|>2\left|\nabla u_{\varepsilon}\right|\right\}
$$

then $B_{r}=A_{1} \cup A_{2}$ and by Theorem 1.2.38 we have that,

$$
\begin{align*}
\int_{B_{r}}\left(G\left(\left|\nabla u_{\varepsilon}\right|\right)-G(|\nabla v|)\right) d x \geq & C\left(\int_{A_{2}} G\left(\left|\nabla u_{\varepsilon}-\nabla v\right|\right) d x\right. \tag{3.2.8}\\
& \left.+\int_{A_{1}} F\left(\left|\nabla u_{\varepsilon}\right|\right)\left|\nabla u_{\varepsilon}-\nabla v\right|^{2} d x\right) .
\end{align*}
$$

Therefore we have, using that $g_{0} \geq 1$ and (g1) in Lemma 1.1.1, that when $\left|\nabla u_{\varepsilon}\right| \leq 1$ and $\left|\nabla v-\nabla u_{\varepsilon}\right| \leq 1$,

$$
\begin{align*}
G\left(\left|\nabla u_{\varepsilon}-\nabla v\right|\right) & \geq C\left|\nabla u_{\varepsilon}-\nabla v\right|^{g_{0}+1} \\
F\left(\left|\nabla u_{\varepsilon}\right|\right) & \geq C\left|\nabla u_{\varepsilon}\right|^{g_{0}-1} \geq C\left|\nabla u_{\varepsilon}-\nabla v\right|^{g_{0}-1} \quad \text { in } A_{1} . \tag{3.2.9}
\end{align*}
$$

On the other hand, by Lemma 3.2.1 and (3.1.12), we have that for small r (depending on $\varepsilon),\left|\nabla u_{\varepsilon}\right|$ is bounded by a constant independent of ε. By Lemma 1.2 .18 there exist $C_{0}, C_{1}=C_{0}, C_{1}\left(N, g_{0}, \delta\right)$ such that,

$$
\sup _{B_{r}} G(|\nabla v|) \leq \frac{C_{0}}{r^{N}} \int_{B_{2 r}} G(|\nabla v|) d x \leq \frac{C_{1}}{r^{N}} \int_{B_{2 r}}\left(1+G\left(\left|\nabla u_{\varepsilon}\right|\right)\right) d x \leq C,
$$

if we choose r small (depending on ε) and where C is independent of ε. Therefore, (3.2.9) holds for all $x \in B_{r}$. Combining (3.2.8) and (3.2.9) we obtain the desired result.

Lemma 3.2.10. Let $u_{\varepsilon} \in \mathcal{K}$ be a solution to $\left(P_{\varepsilon}\right)$. Then

$$
\lambda_{\varepsilon} \geq c>0
$$

where c is independent of ε
Proof. We will use the following fact that we prove in Lemma 3.2.16 bellow: For every $\varepsilon>0$ there is a neighborhood of A in Ω where $u_{\varepsilon}>0$.

Let $y_{0} \in A$ and let D_{t} with $0 \leq t \leq 1$ be a family of open sets with smooth boundary and uniformly (in ε and t) bounded curvatures such that D_{0} is an exterior tangent ball at y_{0}, D_{1} contains a free boundary point, $D_{0} \subset \subset D_{t}$ for $t>0$ and $D_{t} \cap \partial \Omega \subset A$.

Let $t \in(0,1]$ be the first time such that D_{t} touches the free boundary and let $x_{0} \in \partial D_{t} \cap \partial\left\{u_{\varepsilon}>0\right\} \cap \Omega$. Now, take w such that $\mathcal{L} w=0$ in $D_{t} \backslash \bar{D}_{0}$ with $w=c_{0}$ on ∂D_{0} and $w=0$ on ∂D_{t}. Thus $w \leq u_{\varepsilon}$ in $D_{t} \cap \Omega$ and $\partial_{-\nu} w\left(x_{0}\right) \geq c$ with $c>0$ independent of ε. Therefore, for r small enough,

$$
\begin{equation*}
\left(f_{B_{r}\left(x_{0}\right)} u_{\varepsilon}^{\gamma} d x\right)^{1 / \gamma} \geq\left(f_{B_{r}\left(x_{0}\right)} w^{\gamma} d x\right)^{1 / \gamma} \geq r \bar{c} \tag{3.2.11}
\end{equation*}
$$

with \bar{c} is independent of ε.
If v_{0} is the solution to

$$
\begin{cases}\mathcal{L} v_{0}=0 & \text { in } B_{r}\left(x_{0}\right) \\ v_{0}=u_{\varepsilon} & \text { on } \partial B_{r}\left(x_{0}\right)\end{cases}
$$

then, by Lemma 3.2.2, we have

$$
\int_{B_{r}}\left|\nabla\left(u_{\varepsilon}-v_{0}\right)\right|^{q} d x \geq C\left|B_{r} \cap\left\{u_{\varepsilon}=0\right\}\right|\left(\frac{1}{r}\left(f_{B_{r}} u_{\varepsilon}^{\gamma} d x\right)^{1 / \gamma}\right)^{q}
$$

Then be Lemma 3.2.6 we obtain,

$$
\begin{equation*}
\int_{B_{r}}\left(G\left(\left|\nabla u_{\varepsilon}\right|\right)-G\left(\left|\nabla v_{0}\right|\right)\right) d x \geq C\left|B_{r} \cap\left\{u_{\varepsilon}=0\right\}\right|\left(\frac{1}{r}\left(f_{B_{r}} u_{\varepsilon}^{\gamma} d x\right)^{1 / \gamma}\right)^{g_{0}+1} \tag{3.2.12}
\end{equation*}
$$

Then by (3.2.11)

$$
\begin{equation*}
\int_{B_{r}\left(x_{0}\right)}\left(G\left(\left|\nabla u_{\varepsilon}\right|\right)-G\left(\left|\nabla v_{0}\right|\right)\right) d x \geq c \delta_{r} \tag{3.2.13}
\end{equation*}
$$

where $\delta_{r}=\left|B_{r}\left(x_{0}\right) \cap\left\{u_{\varepsilon}=0\right\}\right|$ and c is a constant independent of ε.
Consider now a free boundary point x_{1} away from x_{0}. We can choose x_{1} to be regular.

Let us take

$$
\tau_{\rho}(x)= \begin{cases}x-\rho^{2} \phi\left(\frac{\left|x-x_{1}\right|}{\rho}\right) \nu_{u_{\varepsilon}}\left(x_{1}\right) & \text { for } x \in B_{\rho}\left(x_{1}\right) \\ x & \text { elsewhere }\end{cases}
$$

where $\phi \in C_{0}^{\infty}(-1,1)$ with $\phi^{\prime}(0)=0$.
Now choose ρ such that

$$
\delta_{r}=\rho^{2} \int_{B_{\rho}\left(x_{1}\right) \cap \partial\left\{u_{\varepsilon}>0\right\}} \phi\left(\frac{\left|x-x_{1}\right|}{\rho}\right) d \mathcal{H}^{N-1} .
$$

Take $v_{\rho}\left(\tau_{\rho}(x)\right)=u_{\varepsilon}(x)$ and

$$
v= \begin{cases}v_{0} & \text { in } B_{r}\left(x_{0}\right) \\ v_{\rho} & \text { in } B_{\rho}\left(x_{1}\right) \\ u_{\varepsilon} & \text { elsewhere. }\end{cases}
$$

Thus, we have that

$$
\begin{equation*}
|\{v>0\}|=\left|\left\{u_{\varepsilon}>0\right\}\right| . \tag{3.2.14}
\end{equation*}
$$

On the other hand as in Lemma 3.1.4, we have

$$
\begin{aligned}
\int_{B_{\rho}\left(x_{1}\right)} & \left(G\left(\left|\nabla v_{\rho}\right|\right)-G\left(\left|\nabla u_{\varepsilon}\right|\right)\right) d y \\
& =\int_{\tau_{\rho}\left(B_{\rho}\left(x_{1}\right)\right) \cap\left\{v_{\rho}>0\right\}} G\left(\left|\nabla v_{\rho}\right|\right) d y-\int_{B_{\rho}\left(x_{1}\right)} G(|\nabla u|) d x \\
& =\int_{B_{\rho}\left(x_{1}\right) \cap\{u>0\}} \rho\left(G\left(\left|\nabla u_{\varepsilon}\right|\right) \operatorname{div} \eta-F\left(\left|\nabla u_{\varepsilon}\right|\right) \nabla u_{\varepsilon} D \eta \nabla u_{\varepsilon}\right)+o(\rho) d x
\end{aligned}
$$

where $\eta(y)=-\phi(|y|) \nu\left(x_{1}\right)$. Using the fact that $|\nabla \eta|$ is bounded from above by a constant independent of ρ and ε, and that $\left|\nabla u_{\varepsilon}\right|=\lambda_{\varepsilon}+O\left(\rho^{\alpha}\right)$ in $B_{\rho}\left(x_{1}\right)$ we have

$$
\int_{B_{\rho}\left(x_{1}\right)}\left(G\left(\left|\nabla v_{\rho}\right|\right)-G\left(\left|\nabla u_{\varepsilon}\right|\right)\right) d y \leq k G\left(\lambda_{\varepsilon}\right) \rho^{N+1}+o\left(\rho^{N+1}\right)
$$

but, δ_{r} has the same order of ρ^{N+1} then

$$
\begin{equation*}
\int_{B_{\rho}\left(x_{1}\right)}\left(G\left(\left|\nabla v_{\rho}\right|\right)-G\left(\left|\nabla u_{\varepsilon}\right|\right)\right) d y \leq K G\left(\lambda_{\varepsilon}\right) \delta_{r}+o\left(\delta_{r}\right) . \tag{3.2.15}
\end{equation*}
$$

Therefore by (3.2.13), (3.2.15) and (3.2.14) we have

$$
0 \leq \mathcal{J}_{\varepsilon}(v)-\mathcal{J}_{\varepsilon}\left(u_{\varepsilon}\right) \leq-c \delta_{r}+K G\left(\lambda_{\varepsilon}\right) \delta_{r}+o\left(\delta_{r}\right)
$$

and then $\lambda_{\varepsilon} \geq c>0$.
Lemma 3.2.16. For every $\varepsilon>0$ there exists a neighborhood of A in Ω such that $u_{\varepsilon}>0$ in this neighborhood.

Proof. Let $y_{0} \in A$ and let $B_{\delta}\left(z_{0}\right)$ be an exterior tangent ball to $\partial \Omega$ at y_{0} such that $\bar{\Omega} \cap \bar{B}=\left\{y_{0}\right\}$. Let us take δ small enough so that $B_{2 \delta}\left(z_{0}\right) \cap \partial \Omega \subset \subset A$. Let w_{ε} be a minimizer of

$$
\begin{equation*}
\widetilde{J}_{\varepsilon}(w):=\int_{\mathcal{R}} G(|\nabla w|) d x+\frac{1}{\varepsilon}|\{w>0\} \cap \mathcal{R}| \tag{3.2.17}
\end{equation*}
$$

in $\left\{w \in W^{1, G}(\mathcal{R}), w=0\right.$ on $\partial B_{2 \delta}\left(z_{0}\right), w=c_{0}$ on $\left.\partial B_{\delta}\left(z_{0}\right)\right\}$. Here $\mathcal{R}=B_{2 \delta}\left(z_{0}\right) \backslash$ $\bar{B}_{\delta}\left(z_{0}\right)$.

Every minimizer of (3.2.17) is radially symmetric and radially decreasing with respect to z_{0}. This is seen by using Schwartz symmetrization after extending w_{ε} to $B_{\delta}\left(z_{0}\right)$ as the constant function c_{0} (see Chapter 1 , section 7). This symmetrization preserves the distribution function and strictly decreases the $\int_{B} G(|\nabla u|) d x$ unless the function is already radially symmetric and radially decreasing (see Proposition 1.7.16). Moreover, these minimizers are ordered and their supports are nested. Let us take as w_{ε} the smallest minimizer.

By the properties of w_{ε} there holds that w_{ε} is strictly positive in a ring around $B_{\delta}\left(z_{0}\right)$. Also w_{ε} is continuous in \mathcal{R}. Recall that u_{ε} is continuous in Ω. Let us see that $u_{\varepsilon} \geq w_{\varepsilon}$ in $\mathcal{R} \cap \Omega$. This will prove the statement.

Assume instead that $\left\{w_{\varepsilon}>u_{\varepsilon}\right\} \neq \emptyset$.
Let us first consider the function $v=\min \left\{u_{\varepsilon}, w_{\varepsilon}\right\}$ in $\mathcal{R} \cap \Omega$. Since $u_{\varepsilon} \geq c_{0} \geq w_{\varepsilon}$ on $\partial \Omega \cap \mathcal{R}$ and $u_{\varepsilon} \geq 0=w_{\varepsilon}$ on $\Omega \cap \partial \mathcal{R}$ there holds that $v=w_{\varepsilon}$ on $\partial(\mathcal{R} \cap \Omega)$. Therefore, the function $\underline{v}=v$ in $\mathcal{R} \cap \Omega, \underline{v}=w_{\varepsilon}$ in $\mathcal{R} \backslash \Omega$ is an admissible function for the minimization problem (3.2.17). Since w_{ε} is the smallest minimizer and, by assumption $\underline{v} \leq w_{\varepsilon}$ and $\underline{v} \neq w_{\varepsilon}$, there holds that $\widetilde{J}_{\varepsilon}(\underline{v})>\widetilde{J}_{\varepsilon}\left(w_{\varepsilon}\right)$. Since $\underline{v}=w_{\varepsilon}$ in $\mathcal{R} \backslash \Omega$ and in $\mathcal{R} \cap \Omega \cap\left\{w_{\varepsilon} \leq u_{\varepsilon}\right\}$ and equal to u_{ε} outside those sets there holds that (with $\mathcal{D}=\mathcal{R} \cap \Omega \cap\left\{w_{\varepsilon}>u_{\varepsilon}\right\}$),

$$
\begin{equation*}
\int_{\mathcal{D}} G\left(\left|\nabla u_{\varepsilon}\right|\right) d x+\frac{1}{\varepsilon}\left|\left\{u_{\varepsilon}>0\right\} \cap \mathcal{D}\right|>\int_{\mathcal{D}} G\left(\left|\nabla w_{\varepsilon}\right|\right) d x+\frac{1}{\varepsilon}\left|\left\{w_{\varepsilon}>0\right\} \cap \mathcal{D}\right| . \tag{3.2.18}
\end{equation*}
$$

Let now $\bar{v}=\max \left\{u_{\varepsilon}, w_{\varepsilon}\right\}$ in $\mathcal{R} \cap \Omega, \bar{v}=u_{\varepsilon}$ in $\Omega \backslash \mathcal{R}$. This function is admissible for $\left(P_{\varepsilon}\right)$ so that

$$
\int_{\Omega} G(|\nabla \bar{v}|) d x+F_{\varepsilon}(|\{\bar{v}>0\}|) \geq \int_{\Omega} G\left(\left|\nabla u_{\varepsilon}\right|\right) d x+F_{\varepsilon}\left(\left|\left\{u_{\varepsilon}>0\right\}\right|\right) .
$$

Since $\bar{v}=w_{\varepsilon}$ in \mathcal{D} and $\bar{v}=u_{\varepsilon}$ in $\Omega \backslash \mathcal{D}$,

$$
\begin{align*}
& \int_{\mathcal{D}} G\left(\left|\nabla w_{\varepsilon}\right|\right) d x+F_{\varepsilon}\left(\left|\left\{u_{\varepsilon}>0\right\}\right|+\left|\left\{w_{\varepsilon}>0\right\} \cap \mathcal{D}\right|-\left|\left\{u_{\varepsilon}>0\right\} \cap \mathcal{D}\right|\right) \tag{3.2.19}\\
& \quad \geq \int_{\mathcal{D}} G\left(\left|\nabla u_{\varepsilon}\right|\right) d x+F_{\varepsilon}\left(\left|\left\{u_{\varepsilon}>0\right\}\right|\right)
\end{align*}
$$

By (3.2.18) and (3.2.19) (with $C_{w}=\left|\left\{w_{\varepsilon}>0\right\} \cap \mathcal{D}\right|$ and $C_{u}=\left|\left\{u_{\varepsilon}>0\right\} \cap \mathcal{D}\right|$) we have,

$$
\begin{aligned}
\int_{\mathcal{D}} G\left(\left|\nabla u_{\varepsilon}\right|\right) d x> & \int_{\mathcal{D}} G\left(\left|\nabla w_{\varepsilon}\right|\right) d x+\frac{1}{\varepsilon}\left(C_{w}-C_{u}\right) \\
\geq & \int_{\mathcal{D}} G\left(\left|\nabla u_{\varepsilon}\right|\right) d x+F_{\varepsilon}\left(\left|\left\{u_{\varepsilon}>0\right\}\right|\right)-F_{\varepsilon}\left(\left|\left\{u_{\varepsilon}>0\right\}\right|+C_{w}-C_{u}\right) \\
& +\frac{1}{\varepsilon}\left(C_{w}-C_{u}\right)
\end{aligned}
$$

Thus,

$$
F_{\varepsilon}\left(\left|\left\{u_{\varepsilon}>0\right\}\right|+C_{w}-C_{u}\right)-F_{\varepsilon}\left(\mid\left\{u_{\varepsilon}>0\right\}\right)>\frac{1}{\varepsilon}\left(C_{w}-C_{u}\right)
$$

which is a contradiction since $F_{\varepsilon}(A)-F_{\varepsilon}(B) \leq \frac{1}{\varepsilon}(A-B)$ if $A \geq B$ and $C_{w} \geq C_{u}$ by the definition of D.

Therefore, $u_{\varepsilon} \geq w_{\varepsilon}$ in $\mathcal{R} \cap \Omega$ and the lemma is proved.
With these uniform bounds on λ_{ε}, we can prove that $\left|\left\{u_{\varepsilon}>0\right\} \cap \Omega\right|=\alpha$.
THEOREM 3.2.20. Under the same hypotheses of Lemma 3.2.10, there exists $\varepsilon_{0}>0$ such that for $\varepsilon<\varepsilon_{0},\left|\left\{u_{\varepsilon}>0\right\}\right|=\alpha$. Therefore, u_{ε} is a minimizer of \mathcal{J} in \mathcal{K}_{α}.

Proof. Arguing by contradiction, assume first that $\left|\left\{u_{\varepsilon}>0\right\}\right|>\alpha$. Let $x_{1} \in$ $\partial\left\{u_{\varepsilon}>0\right\} \cap \Omega$ be a regular point. We will proceed as in the proof of Lemma 3.2.10. Given $\delta>0$, we perturb the domain $\left\{u_{\varepsilon}>0\right\}$ in a neighborhood of x_{1}, decreasing its measure by δ. We choose δ small so that the measure of the perturbed set is still larger than α. Take $v_{\rho}\left(\tau_{\rho}(x)\right)=u_{\varepsilon}(x)$, and let

$$
v= \begin{cases}v_{\rho} & \text { in } B_{\rho}\left(x_{1}\right) \\ u_{\varepsilon} & \text { elsewhere }\end{cases}
$$

where τ_{ρ} is the function that we have considered in the previous lemma.
We have

$$
\begin{aligned}
0 \leq \mathcal{J}_{\varepsilon}(v)-\mathcal{J}_{\varepsilon}\left(u_{\varepsilon}\right)= & \int_{\Omega} G(|\nabla v|) d x-\int_{\Omega} G\left(\left|\nabla u_{\varepsilon}\right|\right) d x+F_{\varepsilon}(|\{v>0\}|) \\
& -\int_{\Omega} F_{\varepsilon}\left(\left|\left\{u_{\varepsilon}>0\right\}\right|\right) \\
\leq & k G\left(\lambda_{\varepsilon}\right) \delta+o_{\varepsilon}(\delta)-\frac{1}{\varepsilon} \delta \\
\leq & \left(k G(C)-\frac{1}{\varepsilon}\right) \delta+o_{\varepsilon}(\delta)<0
\end{aligned}
$$

if $\varepsilon<\varepsilon_{0}$ and then $\delta<\delta_{0}(\varepsilon)$. A contradiction.
Now assume that $\left|\left\{u_{\varepsilon}>0\right\}\right|<\alpha$. This case, is a little bit different from the other. First, we proceed as in the previous case but this time we perturb in a
neighborhood of x_{1} the set $\left\{u_{\varepsilon}>0\right\}$ increasing its measure. That is, take

$$
\tau_{\rho}(x)= \begin{cases}x+\rho^{2} \phi\left(\frac{\left|x-x_{1}\right|}{\rho}\right) \nu_{u_{\varepsilon}}\left(x_{1}\right) & \text { for } x \in B_{\rho}\left(x_{1}\right) \\ x & \text { elsewhere }\end{cases}
$$

where $\phi \in C_{0}^{\infty}$ supported in the unit interval, take $v_{\rho}\left(\tau_{\rho}(x)\right)=u_{\varepsilon}(x)$ and

$$
v= \begin{cases}v_{\rho} & \text { in } B_{\rho}\left(x_{1}\right) \\ u_{\varepsilon} & \text { elsewhere }\end{cases}
$$

For ρ small enough we have $|\{v>0\}|<\alpha$ and

$$
|\{v>0\}|-\left|\left\{u_{\varepsilon}>0\right\}\right|=C \rho^{N+1}+o\left(\rho^{N+1}\right),
$$

therefore

$$
\begin{equation*}
F_{\varepsilon}(|\{v>0\}|)-F_{\varepsilon}\left(\left|\left\{u_{\varepsilon}>0\right\}\right|\right) \leq C \varepsilon \rho^{N+1}+o_{\varepsilon}\left(\rho^{N+1}\right) . \tag{3.2.21}
\end{equation*}
$$

In order to estimate the other term, we will make use of a blow up argument as in Lemma 3.1.4. In fact, we take $u_{\rho}(y)=\frac{1}{\rho} u\left(x_{1}+\rho y\right)$ and we change variables to obtain,

$$
\begin{aligned}
\rho^{-N} \int_{B_{\rho}\left(x_{1}\right)} & \left(G\left(\left|\nabla v_{\rho}\right|\right)-G\left(\left|\nabla u_{\varepsilon}\right|\right)\right) d x \\
& =\int_{B_{1}(0) \cap\left\{u_{\rho}>0\right\}} \rho\left[G\left(\left|\nabla u_{\rho}\right|\right) \operatorname{div}(\eta)-F\left(\left|\nabla u_{\rho}\right|\right)\left(\nabla u_{\rho}\right)^{t} D \eta \nabla u_{\rho}\right]+o(\rho) d y
\end{aligned}
$$

where $\eta(y)=\phi(|y|) \nu\left(x_{1}\right)$. Now, as in Lemma 3.1.4 we get,

$$
\begin{aligned}
\rho^{-N-1} \int_{B_{\rho}\left(x_{1}\right)} & \left(G\left(\left|\nabla v_{\rho}\right|\right)-G\left(\left|\nabla u_{\varepsilon}\right|\right)\right) d x \rightarrow \\
& -\Phi\left(\lambda_{\varepsilon}\right) \int_{B_{1}(0) \cap\{y \cdot \nu=0\}} \phi(|y|) d \mathcal{H}^{N-1}(y) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\int_{B_{\rho}\left(x_{1}\right)}\left(G\left(\left|\nabla v_{\rho}\right|\right)-G\left(\left|\nabla u_{\varepsilon}\right|\right)\right) d x=-C \rho^{N+1} \Phi\left(\lambda_{\varepsilon}\right)+o\left(\rho^{N+1}\right) . \tag{3.2.22}
\end{equation*}
$$

Finally, combining (3.2.21) and (3.2.22) we have

$$
\begin{aligned}
0 \leq \mathcal{J}_{\varepsilon}(v)-\mathcal{J}_{\varepsilon}\left(u_{\varepsilon}\right)= & \int_{\Omega} G(|\nabla v|) d x-\int_{\Omega} G\left(\left|\nabla u_{\varepsilon}\right|\right) d x \\
& +F_{\varepsilon}(|\{v>0\}|)-F_{\varepsilon}\left(\left|\left\{u_{\varepsilon}>0\right\}\right|\right) \\
\leq & -\Phi\left(\lambda_{\varepsilon}\right) \rho^{N+1}+o_{\varepsilon}\left(\rho^{N+1}\right)+C \varepsilon \rho^{N+1} \\
\leq & (-\Phi(c)+C \varepsilon) \rho^{N+1}+o_{\varepsilon}\left(\rho^{N+1}\right)<0
\end{aligned}
$$

if $\varepsilon<\varepsilon_{1}$ and then $\rho<\rho_{0}(\varepsilon)$. Again a contradiction that ends the proof.

As a corollary, we have the desired result for our problem

Corollary 3.2.23. Suppose that g satisfies (0.0.2). Then any minimizer u of \mathcal{J} in \mathcal{K}_{α} is a locally Lipschitz continuous function, $\partial_{\text {red }}\{u>0\}$ is a $C^{1, \beta}$ surface locally in Ω and the remainder of the free boundary has \mathcal{H}^{N-1}-measure zero. Moreover if $N=2$ and g satisfies (2.7.57) then $\partial\{u>0\}$ is a $C^{1, \beta}$ surface locally in Ω.

Proof. If u is minimizer of \mathcal{J} in \mathcal{K}_{α}, by Theorem 3.2.20 we have that for small ε there exists a solution u_{ε} to $\left(P_{\varepsilon}\right)$ such that $\left|\left\{u_{\varepsilon}>0\right\}\right|=\alpha$ then u is a solution to $\left(P_{\varepsilon}\right)$. Therefore, the result follows.

CHAPTER 4

The singular perturbation problem

In this chapter we study the following problem. For any $\varepsilon>0$, take u^{ε} a solution of,

$$
\mathcal{L} u^{\varepsilon}=\beta_{\varepsilon}\left(u^{\varepsilon}\right), \quad u^{\varepsilon} \geq 0 .
$$

A solution to $\left(P_{\varepsilon}\right)$ is a function $u^{\varepsilon} \in W^{1, G}(\Omega) \cap L^{\infty}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega} g\left(\left|\nabla u^{\varepsilon}\right|\right) \frac{\nabla u^{\varepsilon}}{\left|\nabla u^{\varepsilon}\right|} \nabla \varphi d x=-\int_{\Omega} \varphi \beta_{\varepsilon}\left(u^{\varepsilon}\right) d x \tag{4.0.1}
\end{equation*}
$$

for all $\varphi \in C_{0}^{\infty}(\Omega)$.
Where $\beta_{\varepsilon}(s)=\frac{1}{\varepsilon} \beta\left(\frac{s}{\varepsilon}\right)$, with $\beta \in \operatorname{Lip}(\mathbb{R})$, supported in $[0,1]$, and such that satisfies, $\int_{0}^{1} \beta(s) d s=M$ for a constant M.

We are interested in what happens with the limiting problem, when $\varepsilon \rightarrow 0$.
In this chapter we will assume all the time, that g satisfies condition (0.0.2).

1. Uniform bound of the gradient

We begin by proving that solutions of the perturbation problem are locally uniformly Lipschitz. That is, the u^{ε} 's are locally Lipschitz, and the Lipschitz constant is independent of ε. To prove this result, we will first need to prove a couple of lemmas.

Lemma 4.1.1. Let u^{ε} be a solution of

$$
\mathcal{L} u^{\varepsilon}=\beta_{\varepsilon}\left(u^{\varepsilon}\right) \quad \text { in } B_{r_{0}}\left(x_{0}\right)
$$

such that $u^{\varepsilon}\left(x_{0}\right) \leq 2 \varepsilon$. Then, there exists $C=C\left(N, r_{0}, \delta, g_{0},\|\beta\|_{\infty}, g(1)\right)$ such that, if $\varepsilon \leq 1$,

$$
\left|\nabla u^{\varepsilon}\left(x_{0}\right)\right| \leq C \text {. }
$$

Proof. Let $v(x)=\frac{1}{\varepsilon} u^{\varepsilon}\left(x_{0}+\varepsilon x\right)$. Then if $\varepsilon \leq 1, \mathcal{L} v=\beta(v)$ in $B_{r_{0}}$ and $v(0) \leq 2$. By Harnack inequality (see Remark 1.2.21) we have that $0 \leq v(x) \leq C_{1}$ in $B_{r_{0} / 2}$ with $C_{1}=C_{1}\left(N, g_{0}, \delta,\|\beta\|_{\infty}\right)$ therefore, again by Remark 1.2.21 we have that

$$
|\nabla v(0)| \leq C
$$

with $C=C\left(N, \delta, g_{0},\|\beta\|_{\infty}, r_{0}, g(1)\right)$.

Lemma 4.1.2. Let u^{ε} be a solution of

$$
\mathcal{L} u^{\varepsilon}=\beta_{\varepsilon}\left(u^{\varepsilon}\right) \quad \text { in } B_{1},
$$

and $0 \in \partial\left\{u^{\varepsilon}>\varepsilon\right\}$, then for $x \in B_{1 / 4} \cap\left\{u^{\varepsilon}>\varepsilon\right\}$,

$$
u^{\varepsilon}(x) \leq \varepsilon+C \operatorname{dist}\left(x,\left\{u^{\varepsilon} \leq \varepsilon\right\}\right)
$$

with $C=C\left(N, \delta, g_{0},\|\beta\|_{\infty}, g(1)\right)$.
Proof. For $x_{0} \in B_{1 / 4} \cap\left\{u^{\varepsilon}>\varepsilon\right\}$ take, $m_{0}=u^{\varepsilon}\left(x_{0}\right)-\varepsilon$ and $\delta_{0}=\operatorname{dist}\left(x_{0},\left\{u^{\varepsilon} \leq \varepsilon\right\} \cap B_{1}\right)$. Since $0 \in \partial\left\{u^{\varepsilon}>\varepsilon\right\} \cap B_{1}, \delta_{0} \leq 1 / 4$. We want to prove that, $m_{0} \leq C\left(N, \delta, g_{0},\|\beta\|_{\infty}, g(1)\right) \delta_{0}$.

Since, $B_{\delta_{0}}\left(x_{0}\right) \subset\left\{u^{\varepsilon}>\varepsilon\right\} \cap B_{1}$ we have that, $u^{\varepsilon}-\varepsilon \geq 0$ in $B_{\delta_{0}}\left(x_{0}\right)$ and $\mathcal{L}\left(u^{\varepsilon}-\varepsilon\right)=0$. By Harnack inequality there exists $c_{1}=c_{1}\left(N, g_{0}, \delta\right)$ such that

$$
\min _{B_{\delta_{0} / 2}\left(x_{0}\right)}\left(u^{\varepsilon}-\varepsilon\right) \geq c_{1} m_{0} .
$$

Let as take $\varphi=e^{-\mu|x|^{2}}-e^{-\mu \delta_{0}^{2}}$ with $\mu=\frac{2 K}{\delta \delta_{0}^{2}}$, and where K is the constant defined in Lemma 1.2.47 that depends only on N and g_{0}. Then, we have that $\mathcal{L} \varphi>0$ in $B_{\delta_{0}} \backslash B_{\delta_{0} / 2}$ (see the proof of Lemma 1.2.47).

Let now $\psi(x)=c_{2} m_{0} \varphi\left(x-x_{0}\right)$ for $x \in \bar{B}_{\delta_{0}}\left(x_{0}\right) \backslash \bar{B}_{\delta_{0} / 2}\left(x_{0}\right)$. Then, again, by Lemma 1.2.47 we have that, if we choose c_{2} conveniently depending on N, δ, g_{0}

$$
\begin{cases}\mathcal{L} \psi(x)>0 & \text { in } B_{\delta_{0}}\left(x_{0}\right) \backslash \bar{B}_{\delta_{0} / 2}\left(x_{0}\right) \\ \psi=0 & \text { on } \partial B_{\delta_{0}}\left(x_{0}\right) \\ \psi=c_{1} m_{0} & \text { on } \partial B_{\delta_{0} / 2}\left(x_{0}\right)\end{cases}
$$

By the comparison principle (see Lemma 1.2.35) we have,

$$
\begin{equation*}
\psi(x) \leq u^{\varepsilon}(x)-\varepsilon \quad \text { in } \bar{B}_{\delta_{0}}\left(x_{0}\right) \backslash \bar{B}_{\delta_{0} / 2}\left(x_{0}\right) . \tag{4.1.3}
\end{equation*}
$$

Take $y_{0} \in \partial B_{\delta_{0}}\left(x_{0}\right) \cap \partial\left\{u^{\varepsilon}>\varepsilon\right\}$. Then, $y_{0} \in \bar{B}_{1 / 2}$ and

$$
\begin{equation*}
\psi\left(y_{0}\right)=u^{\varepsilon}\left(y_{0}\right)-\varepsilon=0 \tag{4.1.4}
\end{equation*}
$$

Let $v^{\varepsilon}=\frac{u^{\varepsilon}\left(y_{0}+\varepsilon x\right)}{\varepsilon}$, then if $\varepsilon<1$ we have that $\mathcal{L} v^{\varepsilon}=\beta\left(v^{\varepsilon}\right)$ in $B_{1 / 2}$ and $v^{\varepsilon}(0)=1$. Therefore, by Harnack inequality (see Remark 1.2.21) we have that $\max _{\bar{B}_{1 / 4}} v^{\varepsilon} \leq \widetilde{c}$ and

$$
\begin{equation*}
\left|\nabla u^{\varepsilon}\left(y_{0}\right)\right|=\left|\nabla v^{\varepsilon}(0)\right| \leq C \max _{\bar{B}_{1 / 4}} v^{\varepsilon} \leq c_{3} \tag{4.1.5}
\end{equation*}
$$

Finally, by (4.1.3), (4.1.4) and (4.1.5) we have that, $\left|\nabla \psi\left(y_{0}\right)\right| \leq\left|\nabla u^{\varepsilon}\left(y_{0}\right)\right| \leq c_{3}$. Observe that $\left|\nabla \psi\left(y_{0}\right)\right|=c_{2} m_{0} e^{-\mu \delta_{0}^{2}} 2 \mu \delta_{0} \leq c_{3}$, therefore

$$
m_{0} \leq \frac{c_{3} e^{\mu \delta_{0}^{2}}}{c_{2} 2 \mu \delta_{0}}=\frac{c_{3} \delta e^{2 K / \delta}}{c_{2} 4 K} \delta_{0}
$$

and the result follows.

Now, we can prove the main result of this section,
Proposition 4.1.6. Let u^{ε} be a solution of

$$
\mathcal{L} u^{\varepsilon}=\beta_{\varepsilon}\left(u^{\varepsilon}\right) \quad \text { in } B_{1},
$$

$0 \in \partial\left\{u^{\varepsilon}>\varepsilon\right\}$, then we have for $x \in B_{1 / 8}$,

$$
\left|\nabla u^{\varepsilon}(x)\right| \leq C
$$

with $C=C\left(N, \delta, g_{0},\|\beta\|_{\infty}, g(1)\right)$.
Proof. By Lemma 4.1.1 we know that if $x_{0} \in\left\{u^{\varepsilon} \leq 2 \varepsilon\right\} \cap B_{3 / 4}$ then,

$$
\left|\nabla u^{\varepsilon}\left(x_{0}\right)\right| \leq C_{0}
$$

with $C_{0}=C_{0}\left(N, \delta, g_{0},\|\beta\|_{\infty}, g(1)\right)$.
Let $x_{0} \in B_{1 / 8} \cap\left\{u^{\varepsilon}>\varepsilon\right\}$ and $\delta_{0}=\operatorname{dist}\left(x_{0},\left\{u^{\varepsilon} \leq \varepsilon\right\}\right)$.
As $0 \in \partial\left\{u^{\varepsilon}>\varepsilon\right\}$ we have that $\delta_{0} \leq 1 / 8$. Therefore, $B_{\delta_{0}}\left(x_{0}\right) \subset\left\{u^{\varepsilon}>\varepsilon\right\} \cap B_{1 / 4}$ and then $\mathcal{L} u^{\varepsilon}=0$ in $B_{\delta_{0}}\left(x_{0}\right)$ and by Lemma 4.1.2

$$
\begin{equation*}
u^{\varepsilon}(x) \leq \varepsilon+C_{1} \operatorname{dist}\left(x,\left\{u^{\varepsilon} \leq \varepsilon\right\}\right) \quad \text { in } B_{\delta_{0}}\left(x_{0}\right) . \tag{4.1.7}
\end{equation*}
$$

1. Suppose that $\varepsilon<\bar{c} \delta_{0}$ with \bar{c} to be determined. Then, if $x \in B_{\delta_{0}}\left(x_{0}\right)$ there holds that $\operatorname{dist}\left(x, \partial\left\{u^{\varepsilon}>\varepsilon\right\}<2 \delta_{0}\right.$. Let $v(x)=\frac{u^{\varepsilon}\left(x_{0}+\delta_{0} x\right)}{\delta_{0}}$ then $\mathcal{L} v=$ $\beta_{\varepsilon}\left(u^{\varepsilon}\left(x_{0}+\delta_{0} x\right)\right)=0$ in B_{1}. Therefore, by Lemma 1.2.18

$$
|\nabla v(0)| \leq C \sup _{B_{1}} v
$$

with $\widetilde{C}=\widetilde{C}\left(N, g_{0}, \delta, g(1)\right)$. We obtain,

$$
\left|\nabla u^{\varepsilon}\left(x_{0}\right)\right| \leq \frac{\widetilde{C}}{\delta_{0}} \sup _{B_{\delta_{0}}\left(x_{0}\right)} u^{\varepsilon} \leq \frac{\widetilde{C}}{\delta_{0}}\left(\varepsilon+C \delta_{0}\right) \leq \widetilde{C}(\bar{c}+C)
$$

2. Suppose that $\varepsilon \geq \bar{c} \delta_{0}$. By (4.1.7) we have,

$$
u^{\varepsilon}\left(x_{0}\right) \leq \varepsilon+C_{1} \delta_{0} \leq\left(1+\frac{C_{1}}{\bar{c}}\right) \varepsilon<2 \varepsilon
$$

if we choose \bar{c} big enough. By Lemma 4.1.1, we have $\left|\nabla u^{\varepsilon}\left(x_{0}\right)\right| \leq C$, with $C=C\left(N, g_{0}, \delta,\|\beta\|_{\infty}, g(1)\right)$.
The result follows.
With this lemmas we obtain the following,
Corollary 4.1.8. Let u^{ε} be a solution of

$$
\mathcal{L} u^{\varepsilon}=\beta_{\varepsilon}\left(u^{\varepsilon}\right) \quad \text { in } \Omega,
$$

with $\left\|u^{\varepsilon}\right\|_{L^{\infty}(\Omega)} \leq L$. Then, we have for $\Omega^{\prime} \subset \subset \Omega$, that there exists $\varepsilon_{0}\left(\Omega, \Omega^{\prime}\right)$ such that if $\varepsilon \leq \varepsilon_{0}\left(\Omega, \Omega^{\prime}\right)$,

$$
\left|\nabla u^{\varepsilon}(x)\right| \leq C \quad \text { in } \Omega^{\prime}
$$

with $C=C\left(N, \delta, g_{0}, L,\|\beta\|_{\infty}, g(1), \operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right)\right)$.

Proof. Let $\tau>0$ such that $\forall x \in \Omega^{\prime}, \overline{B_{\tau}(x)} \subset \Omega$ and $\varepsilon \leq \tau$. Let $x_{0} \in \Omega^{\prime}$.

1. If $\delta_{0}=\operatorname{dist}\left(x_{0}, \partial\left\{u^{\varepsilon}>\varepsilon\right\}\right) \leq \tau / 8$, let $y_{0} \in \partial\left\{u^{\varepsilon}>\varepsilon\right\}$ such that $\left|x_{0}-y_{0}\right|=$ δ_{0}. Let $v(x)=\frac{u^{\varepsilon}\left(y_{0}+\tau x\right)}{\tau}$, and $\bar{x}=\frac{x_{0}-y_{0}}{\tau}$, then $|\bar{x}|<1 / 8$. As $0 \in \partial\{v>\varepsilon / \tau\}$ and $\mathcal{L} v=\beta_{\varepsilon / \tau}(v)$ in B_{1}, we have by Proposition 4.1.6

$$
\left|\nabla u^{\varepsilon}\left(x_{0}\right)\right|=|\nabla v(\bar{x})| \leq C .
$$

2. If $\delta_{0}=\operatorname{dist}\left(x_{0}, \partial\left\{u^{\varepsilon}>\varepsilon\right\}\right) \geq \tau / 8$, there holds that
a) $B_{\tau / 8}\left(x_{0}\right) \subset\left\{u^{\varepsilon}>\varepsilon\right\}$, or
b) $B_{\tau / 8}\left(x_{0}\right) \subset\left\{u^{\varepsilon} \leq \varepsilon\right\}$,

In the first case, $\mathcal{L} u^{\varepsilon}=0$ in $B_{\tau / 8}\left(x_{0}\right)$. Therefore,

$$
\left|\nabla u^{\varepsilon}\left(x_{0}\right)\right| \leq C\left(N, g_{0}, \delta, \tau, g(1), L\right)
$$

In the second case, we can apply Lemma 4.1.1 and we have,

$$
\left|\nabla u^{\varepsilon}\left(x_{0}\right)\right| \leq C\left(N, g_{0}, \delta, \tau, g(1), 2\|\beta\|_{\infty}\right)
$$

The result is proved.

2. Passage to the limit

Since we have that $\left|\nabla u^{\varepsilon}\right|$ is bounded by a constant independent of ε, we have that there exists a function $u \in \operatorname{Lip}(\Omega)$ such that, for a subsequence $\varepsilon_{j} \rightarrow 0, u^{\varepsilon_{j}} \rightarrow u$. In this section we will prove some properties of the function u.

Proposition 4.2.1. Let $\left\{u^{\varepsilon}\right\}$ be a uniformly bounded family of solutions of $\left(P_{\varepsilon}\right)$. Then for any sequence $\varepsilon_{j} \rightarrow 0$ there exists a subsequence $\varepsilon_{j}^{\prime} \rightarrow 0$ and $u \in \operatorname{Lip}_{\text {loc }}(\Omega)$ such that,

1. $u^{\varepsilon_{j}^{\prime}} \rightarrow u$ uniformly in compact subsets of Ω,
2. $\mathcal{L} u=0$ in $\Omega \backslash \partial\{u>0\}$
3. There exists a locally finite measure μ such that $\beta_{\varepsilon_{j}^{\prime}}\left(u^{\varepsilon_{j}^{\prime}}\right) \rightharpoonup \mu$ as measures in Ω^{\prime}, for every $\Omega^{\prime} \subset \subset \Omega$,
4. $\nabla u^{\varepsilon_{j}^{\prime}} \rightarrow \nabla u$ in $L_{l o c}^{g_{0}+1}(\Omega)$,
5.

$$
\int_{\Omega} F(|\nabla u|) \nabla u \nabla \varphi=-\int_{\Omega} \varphi d \mu
$$

for all $\varphi \in C_{0}^{\infty}(\Omega)$. Moreover μ is supported on $\Omega \cap \partial\{u>0\}$.
Proof. (1) follows by Corollary 4.1.8.
To prove (2), take $E \subset \subset\{u>0\}$ then $u \geq c>0$ in E. Therefore, $u^{\varepsilon_{j}^{\prime}}>c / 2$ in E for ε_{j}^{\prime} small. If we take $\varepsilon_{j}^{\prime}<c / 2$ as $\mathcal{L} u^{\varepsilon_{j}^{\prime}}=0$ in $\left\{u^{\varepsilon_{j}^{\prime}}>\varepsilon_{j}^{\prime}\right\}$, we have that $\mathcal{L} u^{\varepsilon_{j}^{\prime}}=0$ in E, then $\left\|u^{\varepsilon_{j}^{\prime}}\right\|_{C^{1, \alpha}(E)} \leq C$. For a subsequence we have,

$$
\nabla u^{\varepsilon_{j}^{\prime}} \rightarrow \nabla u \quad \text { uniformly in } E
$$

therefore, $\mathcal{L} u=0$.

To prove (3), let us take $\Omega^{\prime} \subset \subset \Omega$, and $\varphi \in C_{0}^{\infty}(\Omega)$ with $\varphi=1$ in Ω^{\prime}. As in Ω^{\prime} $\left\|\nabla u^{\varepsilon_{j}^{\prime}}\right\| \leq C$, we have that

$$
C(\varphi) \geq \int_{\Omega} \beta_{\varepsilon_{j}^{\prime}}\left(u^{\varepsilon_{j}^{\prime}}\right) \varphi d x \geq \int_{\Omega^{\prime}} \beta_{\varepsilon_{j}^{\prime}}\left(u^{\varepsilon_{j}^{\prime}}\right) d x
$$

Therefore, $\beta_{\varepsilon_{j}^{\prime}}\left(u^{\varepsilon_{j}^{\prime}}\right)$ is bounded in $L_{l o c}^{1}(\Omega)$, so that, there exists a locally finite measure μ such that

$$
\beta_{\varepsilon_{j}^{\prime}}\left(u^{\varepsilon_{j}^{\prime}}\right) \rightharpoonup \mu \quad \text { as measures }
$$

that is, for every $\varphi \in C_{0}(\Omega)$,

$$
\int_{\Omega} \beta_{\varepsilon_{j}^{\prime}}\left(u^{\varepsilon_{j}^{\prime}}\right) \varphi d x \rightarrow \int_{\Omega} \varphi d \mu
$$

We divide the proof of (4) in several steps.
Step 1 . Let $\Omega^{\prime} \subset \subset \Omega$, then by Corollary 4.1.8, $\left|\nabla u^{\varepsilon_{j}}\right| \leq C$ in Ω^{\prime}. Therefore for a subsequence ε_{j}^{\prime} we have that there exists $\xi \in\left(L^{\infty}\left(\Omega^{\prime}\right)\right)^{N}$ such that,

$$
\begin{array}{ll}
\nabla u^{\varepsilon_{j}^{\prime}} \rightharpoonup \nabla u & *-\text { weakly in }\left(L^{\infty}\left(\Omega^{\prime}\right)\right)^{N} \\
A\left(\nabla u^{\varepsilon_{j}^{\prime}}\right) \rightharpoonup \xi & *-\text { weakly in }\left(L^{\infty}\left(\Omega^{\prime}\right)\right)^{N} \tag{4.2.2}\\
u^{\varepsilon_{j}^{\prime}} \rightarrow u & \text { uniformly in } \Omega^{\prime}
\end{array}
$$

where $A(p)=F(|p|) p$. For simplicity we call $\varepsilon_{j}^{\prime}=\varepsilon$.
We want to prove that, for any $v \in C_{0}^{\infty}\left(\Omega^{\prime}\right)$

$$
\begin{equation*}
\int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) \nabla v d x \rightarrow \int_{\Omega^{\prime}} A(\nabla u) \nabla v d x . \tag{4.2.3}
\end{equation*}
$$

First, as A is monotone (i.e $\langle A(\eta)-A(\xi), \eta-\xi\rangle \geq 0 \forall \eta, \xi \in \mathbb{R}^{N}$) we have that, for any $w \in W^{1, G}\left(\Omega^{\prime}\right)$,

$$
\begin{equation*}
I=\int_{\Omega^{\prime}}\left(A\left(\nabla u^{\varepsilon}\right)-A(\nabla w)\right)\left(\nabla u^{\varepsilon}-\nabla w\right) d x \geq 0 \tag{4.2.4}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
& \int_{\Omega^{\prime}} \beta_{\varepsilon}\left(u^{\varepsilon}\right) u^{\varepsilon} d x-\int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) \nabla w d x-\int_{\Omega^{\prime}} A(\nabla w)\left(\nabla u^{\varepsilon}-\nabla w\right) d x \tag{4.2.5}\\
= & -\int_{\Omega^{\prime}} \beta_{\varepsilon}\left(u^{\varepsilon}\right) u^{\varepsilon} d x-\int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) \nabla u^{\varepsilon} d x+I \\
= & -\int_{\Omega^{\prime}} \beta_{\varepsilon}\left(u^{\varepsilon}\right) u d x-\int_{\Omega^{\prime}} \beta_{\varepsilon}\left(u^{\varepsilon}\right)\left(u^{\varepsilon}-u\right) \psi d x-\int_{\Omega^{\prime}} \beta_{\varepsilon}\left(u^{\varepsilon}\right)\left(u^{\varepsilon}-u\right)(1-\psi) d x \\
& -\int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) \nabla u^{\varepsilon} d x+I \\
\geq & -\int_{\Omega^{\prime}} \beta_{\varepsilon}\left(u^{\varepsilon}\right) u d x+\int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) \nabla\left(u^{\varepsilon}-u\right) \psi d x+\int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right)\left(u^{\varepsilon}-u\right) \nabla \psi d x \\
& -\int_{\Omega^{\prime}} \beta_{\varepsilon}\left(u^{\varepsilon}\right)\left(u^{\varepsilon}-u\right)(1-\psi) d x-\int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) \nabla u^{\varepsilon} d x,
\end{align*}
$$

where in the last inequality we are using (4.2.4) and (0.3.2).
Now, take $\psi=\psi_{j} \rightarrow \chi_{\Omega^{\prime}}$. Then if Ω^{\prime} is regular we have $\int_{\Omega^{\prime}}\left|\nabla \psi_{j}\right| d x \rightarrow \operatorname{Per} \Omega^{\prime}$. We have that,

$$
\left|\int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right)\left(u^{\varepsilon}-u\right) \nabla \psi_{j} d x\right| \leq C\left\|u^{\varepsilon}-u\right\|_{L^{\infty}\left(\Omega^{\prime}\right)} \int_{\Omega^{\prime}}\left|\nabla \psi_{j}\right| d x \leq C\left\|u^{\varepsilon}-u\right\|_{L^{\infty}\left(\Omega^{\prime}\right)}
$$

taking $\psi_{j} \rightarrow \chi_{\Omega^{\prime}}$ in (4.2.5) we obtain,

$$
\begin{aligned}
- & \int_{\Omega^{\prime}} \beta_{\varepsilon}\left(u^{\varepsilon}\right) u^{\varepsilon} d x-\int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) \nabla w d x-\int_{\Omega^{\prime}} A(\nabla w)\left(\nabla u^{\varepsilon}-\nabla w\right) d x \\
\geq & -\int_{\Omega^{\prime}} \beta_{\varepsilon}\left(u^{\varepsilon}\right) u d x+\int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) \nabla\left(u^{\varepsilon}-u\right) d x-C\left\|u^{\varepsilon}-u\right\|_{L^{\infty}\left(\Omega^{\prime}\right)} \\
& -\int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) \nabla u^{\varepsilon} d x \\
= & -\int_{\Omega^{\prime}} \beta_{\varepsilon}\left(u^{\varepsilon}\right) u d x-\int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) \nabla u d x-C\left\|u^{\varepsilon}-u\right\|_{L^{\infty}\left(\Omega^{\prime}\right)}
\end{aligned}
$$

therefore, taking $\varepsilon \rightarrow 0$ we get using (4.2.2) and (3) that,

$$
-\int_{\Omega^{\prime}} u d \mu-\int_{\Omega^{\prime}} \xi \nabla w d x-\int_{\Omega^{\prime}} A(\nabla w)(\nabla u-\nabla w) d x \geq-\int_{\Omega^{\prime}} u d \mu-\int_{\Omega^{\prime}} \xi \nabla u d x
$$ and then,

$$
\begin{equation*}
\int_{\Omega^{\prime}}(\xi-A(\nabla w))(\nabla u-\nabla w) d x \geq 0 \tag{4.2.6}
\end{equation*}
$$

Take now $w=u+\lambda v$ with $v \in C_{0}^{\infty}\left(\Omega^{\prime}\right)$. Dividing by λ and taking $\lambda \rightarrow 0^{+}$in (4.2.6), we obtain,

$$
\int_{\Omega^{\prime}}(\xi-A(\nabla u)) \nabla v d x \geq 0
$$

chaining v by $-v$ we obtain the desired result.
Step 2 Therefore passing to the limit in the equation

$$
\begin{equation*}
0=\int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) \nabla \phi+\int_{\Omega^{\prime}} \beta_{\varepsilon}\left(u^{\varepsilon}\right) \phi d x \tag{4.2.7}
\end{equation*}
$$

we have by Step 1 , that for every $\phi \in C_{0}^{\infty}\left(\Omega^{\prime}\right)$,

$$
\begin{equation*}
0=\int_{\Omega^{\prime}} A(\nabla u) \nabla \phi+\int_{\Omega^{\prime}} \phi d \mu . \tag{4.2.8}
\end{equation*}
$$

Taking $\phi=u^{\varepsilon} \psi$ in (4.2.7) with $\psi \in C_{0}^{\infty}\left(\Omega^{\prime}\right)$ we have that

$$
0=\int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) \nabla u^{\varepsilon} \psi d x+\int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) u^{\varepsilon} \nabla \psi d x+\int_{\Omega^{\prime}} \beta_{\varepsilon}\left(u^{\varepsilon}\right) u^{\varepsilon} \psi d x .
$$

Using that,

$$
\begin{aligned}
\int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) u^{\varepsilon} \nabla \psi d x & \rightarrow \int_{\Omega^{\prime}} A(\nabla u) u \nabla \psi d x \\
\int_{\Omega^{\prime}} \beta_{\varepsilon}\left(u^{\varepsilon}\right) u^{\varepsilon} \psi d x & \rightarrow \int_{\Omega^{\prime}} u \psi d \mu
\end{aligned}
$$

we obtain

$$
0=\lim _{\varepsilon \rightarrow 0}\left(\int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) \nabla u^{\varepsilon} \psi d x\right)+\int_{\Omega^{\prime}} A(\nabla u) u \nabla \psi d x+\int_{\Omega^{\prime}} u \psi d \mu .
$$

Taking now, $\phi=u \psi$ in (4.2.8) we have,

$$
0=\int_{\Omega^{\prime}} A(\nabla u) \nabla u \psi d x+\int_{\Omega^{\prime}} A(\nabla u) u \nabla \psi d x+\int_{\Omega^{\prime}} u \psi d \mu .
$$

Therefore,

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) \nabla u^{\varepsilon} \psi d x=\int_{\Omega^{\prime}} A(\nabla u) \nabla u \psi d x .
$$

Then,

$$
\begin{aligned}
& \left|\int_{\Omega^{\prime}}\left(A\left(\nabla u^{\varepsilon}\right) \nabla u^{\varepsilon}-A(\nabla u) \nabla u\right) d x\right| \\
& \leq\left|\int_{\Omega^{\prime}}\left(A\left(\nabla u^{\varepsilon}\right) \nabla u^{\varepsilon}-A(\nabla u) \nabla u\right) \psi d x\right|+\left|\int_{\Omega^{\prime}}\left(A\left(\nabla u^{\varepsilon}\right) \nabla u^{\varepsilon}\right)(1-\psi) d x\right| \\
& \quad+\left|\int_{\Omega^{\prime}} A(\nabla u) \nabla u(1-\psi) d x\right| \\
& \leq\left|\int_{\Omega^{\prime}}\left(A\left(\nabla u^{\varepsilon}\right) \nabla u^{\varepsilon}-A(\nabla u) \nabla u\right) \psi d x\right|+C \int_{\Omega^{\prime}}|1-\psi| d x .
\end{aligned}
$$

So that, taking $\varepsilon \rightarrow 0$ and then $\psi \rightarrow 1$ a.e with $0 \leq \psi \leq 1$ we obtain,

$$
\begin{equation*}
\int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) \nabla u^{\varepsilon} d x \rightarrow \int_{\Omega^{\prime}} A(\nabla u) \nabla u d x . \tag{4.2.9}
\end{equation*}
$$

As

$$
\int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) \nabla u \psi d x \rightarrow \int_{\Omega^{\prime}} A(\nabla u) \nabla u \psi d x
$$

we also have, doing the same calculation, that

$$
\begin{equation*}
\int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) \nabla u d x \rightarrow \int_{\Omega^{\prime}} A(\nabla u) \nabla u d x \tag{4.2.10}
\end{equation*}
$$

Step 3. By the monotonicity of A we have,

$$
\begin{aligned}
\int_{\Omega^{\prime}} G\left(\left|\nabla u^{\varepsilon}\right|\right) d x-\int_{\Omega^{\prime}} G(|\nabla u|) d x & =\int_{\Omega^{\prime}} \int_{0}^{1} A\left(\nabla u+t\left(\nabla u^{\varepsilon}-\nabla u\right)\right) \nabla\left(u^{\varepsilon}-u\right) d x \\
& \geq \int_{\Omega^{\prime}} A(\nabla u) \nabla\left(u^{\varepsilon}-u\right) d x
\end{aligned}
$$

Therefore, by step 3 we have,

$$
\liminf _{\varepsilon \rightarrow 0} \int_{\Omega^{\prime}} G\left(\left|\nabla u^{\varepsilon}\right|\right) d x-\int_{\Omega^{\prime}} G(|\nabla u|) d x \geq 0
$$

Step 4. By Step 2 we have,

$$
\begin{aligned}
\int_{\Omega^{\prime}} G\left(\left|\nabla u^{\varepsilon}\right|\right) d x-\int_{\Omega^{\prime}} G(|\nabla u|) d x & =\int_{\Omega^{\prime}} \int_{0}^{1} A\left(\nabla u+t\left(\nabla u^{\varepsilon}-\nabla u\right)\right) \nabla\left(u^{\varepsilon}-u\right) d x \\
& \leq \int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) \nabla\left(u^{\varepsilon}-u\right) d x \rightarrow 0 .
\end{aligned}
$$

Then, Step 3 implies,

$$
\begin{equation*}
\int_{\Omega^{\prime}} G\left(\left|\nabla u^{\varepsilon}\right|\right) d x \rightarrow \int_{\Omega^{\prime}} G(|\nabla u|) d x \tag{4.2.11}
\end{equation*}
$$

Step 5. Let $u^{s}=s u+(1-s) u^{\varepsilon}$. Then,

$$
\begin{align*}
& \int_{\Omega^{\prime}} G(|\nabla u|) d x-\int_{\Omega^{\prime}} G\left(\left|\nabla u^{\varepsilon}\right|\right) d x=\int_{\Omega^{\prime}} \int_{0}^{1} A\left(\nabla u^{s}\right) \nabla\left(u-u^{\varepsilon}\right) d s d x \tag{4.2.12}\\
= & \int_{\Omega^{\prime}} \int_{0}^{1}\left(A\left(\nabla u^{s}\right)-A\left(\nabla u^{\varepsilon}\right)\right) \nabla\left(u^{s}-u^{\varepsilon}\right) d s d x+\frac{1}{2} \int_{\Omega^{\prime}} A\left(\nabla u^{\varepsilon}\right) \nabla\left(u-u^{\varepsilon}\right) d x .
\end{align*}
$$

As in the proof of Theorem 1.2.38, we have that

$$
\begin{aligned}
& \int_{\Omega^{\prime}} \int_{0}^{1}\left(A\left(\nabla u^{s}\right)-A\left(\nabla u^{\varepsilon}\right)\right) \nabla\left(u^{s}-u^{\varepsilon}\right) d s d x \\
& \quad \geq C\left(\int_{A_{2}} G\left(\left|\nabla u-\nabla u^{\varepsilon}\right|\right) d x+\int_{A_{1}} F(|\nabla u|)\left|\nabla u-\nabla u^{\varepsilon}\right|^{2} d x\right),
\end{aligned}
$$

where A_{1} and A_{2} were define in Theorem 1.2.38. Therefore, by (4.2.9), (4.2.10), (4.2.11) and (4.2.12) we have,

$$
\left(\int_{A_{2}} G\left(\left|\nabla u-\nabla u^{\varepsilon}\right|\right) d x+\int_{A_{1}} F(|\nabla u|)\left|\nabla u-\nabla u^{\varepsilon}\right|^{2} d x\right) \rightarrow 0
$$

Then, if we prove that

$$
\left(\int_{A_{2}} G\left(\left|\nabla u-\nabla u^{\varepsilon}\right|\right) d x+\int_{A_{1}} F(|\nabla u|)\left|\nabla u-\nabla u^{\varepsilon}\right|^{2} d x\right) \geq C \int_{\Omega^{\prime}}\left|\nabla u-\nabla u^{\varepsilon}\right|^{g_{0}+1} d x
$$

the result follows.
In fact, we can suppose that, $g_{0} \geq 1$. If $t \leq C_{0}$ then $g(t) \geq C_{1} t^{g_{0}}$. As $|\nabla u| \leq C_{0}$ and $\left|\nabla u-\nabla u^{\varepsilon}\right| \leq C_{0}$, for some constant C_{0} we have

$$
\begin{aligned}
& G\left(\left|\nabla u_{\varepsilon}-\nabla u\right|\right) \geq C\left|\nabla u_{\varepsilon}-\nabla u\right|^{g_{0}+1} \\
& F\left(\left|\nabla u_{\varepsilon}\right|\right) \geq C_{1}\left|\nabla u_{\varepsilon}\right|^{g_{0}-1} \geq C\left|\nabla u_{\varepsilon}-\nabla u\right|^{g_{0}-1} \quad \text { in } A_{1} .
\end{aligned}
$$

and the claim follows.
Finally (5) holds by (4), (3) and (2).
Lemma 4.2.13. Let $\left\{u^{\varepsilon_{j}}\right\}$ be a uniformly bounded family of solutions of $\left(P_{\varepsilon_{j}}\right)$ in Ω such that $u^{\varepsilon_{j}} \rightarrow u$ uniformly on compact subsets of Ω and $\varepsilon_{j} \rightarrow 0$. Let $x_{0}, x_{n} \in$ $\Omega \cap \partial\{u>0\}$ be such that $x_{n} \rightarrow x_{0}$ as $n \rightarrow \infty$. Let $\lambda_{n} \rightarrow 0, u_{\lambda_{n}}(x)=\frac{1}{\lambda_{n}} u\left(x_{n}+\lambda_{n} x\right)$ and $\left(u^{\varepsilon_{j}}\right)_{\lambda_{n}}(x)=\frac{1}{\lambda_{n}} u^{\varepsilon_{j}}\left(x_{n}+\lambda_{n} x\right)$. Suppose that $u_{\lambda_{n}} \rightarrow U$ as $n \rightarrow \infty$ uniformly on compact sets of \mathbb{R}^{N}. Then, there exists, $j(n) \rightarrow \infty$ such that for every $j_{n} \geq j(n)$ there holds that $\varepsilon_{j_{n}} / \lambda_{n} \rightarrow 0$ and

1. $\left(u^{\varepsilon_{j n}}\right)_{\lambda_{n}} \rightarrow U$ uniformly in compact subsets of \mathbb{R}^{N}.
2. $\nabla\left(u^{\varepsilon_{j_{n}}}\right)_{\lambda_{n}} \rightarrow \nabla U$ in $L_{\text {loc }}^{g_{0}+1}\left(\mathbb{R}^{N}\right)$,
3. $\nabla u_{\lambda_{n}} \rightarrow \nabla U$ in $L_{\text {loc }}^{g_{0}+1}\left(\mathbb{R}^{N}\right)$.

Proof. By simplicity we assume $x_{n}=x_{0}$. Then

$$
\left|u_{\lambda_{n}}^{\varepsilon_{j}}(x)-U(x)\right| \leq\left|\frac{1}{\lambda_{n}} u^{\varepsilon_{j}}\left(x_{0}+x \lambda_{n}\right)-\frac{1}{\lambda_{n}} u\left(x_{0}+x \lambda_{n}\right)\right|+\left|u_{\lambda_{n}}-U(x)\right|=I+I I .
$$

Fix $k>0$ and $\delta>0$. Then, if $n \geq n(k, \delta)$ there holds that $I I<\delta$ in $B_{k}(0)$.
For the other bound, let $r>0$ such that $B_{r}\left(x_{0}\right) \subset \Omega^{\prime} \subset \subset \Omega$. Observe that, for each n there exists $j(n)$ such that if $j \geq j(n)$

$$
\left|u^{\varepsilon_{j}}(x)-u(x)\right| \leq \frac{\lambda_{n}}{n} \quad \text { for } x \in B_{r}\left(x_{0}\right)
$$

Therefore, if $j \geq j(n)$ with n large such that $\lambda_{n} \leq r / k$ we have $I \leq \frac{1}{n}$ for $x \in B_{k}(0)$. So, for $j \geq j(n)$ and n large

$$
\left|\left(u^{\varepsilon_{j}}\right)_{\lambda_{n}}(x)-U(x)\right|<\delta+\frac{1}{n} \quad \text { for } x \in B_{k}(0)
$$

Then, if $j_{n} \geq j(n)\left(u^{\varepsilon_{j}}\right)_{\lambda_{n}} \rightarrow U$ uniformly in $B_{k}(0)$. We may assume, without loss of generality that $\varepsilon_{j} / \lambda_{n}<1 / n$ for $j \geq j(n)$. So (1) is proved.

It is easy to see that $\left(u^{\varepsilon_{j}}\right)_{\lambda_{n}}$ are solutions to $\left(P_{\varepsilon_{j} / \lambda_{n}}\right)$ in $B_{2 k}(0)$ for n large.
By Proposition 4.2.1 there exists a subsequence j_{n}^{\prime} such that $\nabla\left(u^{\varepsilon_{j_{n}^{\prime}}}\right)_{\lambda_{n}^{\prime}} \rightarrow \nabla U$ in $L^{g_{0}+1}\left(B_{k}\right)$. Then also (2) holds.

Let now, $\delta>0$ and consider,

$$
\left\|\nabla u_{\lambda_{n}}-\nabla U\right\| \leq\left\|\nabla u_{\lambda_{n}}-\nabla\left(u^{\varepsilon_{j_{n}}}\right)_{\lambda_{n}}\right\|+\left\|\nabla\left(u^{\varepsilon_{j_{n}}}\right)_{\lambda_{n}}-\nabla U\right\|=I+I I
$$

where all the norms are in $L^{g_{0}+1}\left(B_{k}\right)$. By (2) we know that $I I<\delta$ if $j \geq j_{n}$ and n large. Moreover, by Proposition 4.2 .1 we have,

$$
\begin{aligned}
I^{g_{0}+1} & =\int_{B_{k}}\left|\nabla u-\nabla u^{\varepsilon_{j}}\right|^{g_{0}+1}\left(x_{0}+\lambda_{n} x\right) d x \\
& =\frac{1}{\lambda_{n}^{N}} \int_{B_{\lambda_{n} k}\left(x_{0}\right)}\left|\nabla u-\nabla u^{\varepsilon_{j}}\right|^{g_{0}+1}(x) d x<\delta^{g_{0}+1}
\end{aligned}
$$

if n is sufficiently large so that $\lambda_{n} k \leq r$ and then, j large enough. This proves (3).

Now we prove a technical lemma that is the basis of our main results.
Lemma 4.2.14. Let u^{ε} be solutions to

$$
\mathcal{L} u^{\varepsilon}=\beta_{\varepsilon}\left(u^{\varepsilon}\right)
$$

in Ω. Then, for any $\psi \in C_{0}^{\infty}(\Omega)$ we have,

$$
\begin{equation*}
-\int_{\Omega} G\left(\left|\nabla u^{\varepsilon}\right|\right) \psi_{x_{1}} d x+\int_{\Omega} F\left(\left|\nabla u^{\varepsilon}\right|\right) \nabla u^{\varepsilon} \nabla \psi u_{x_{1}}^{\varepsilon} d x=\int_{\Omega} B_{\varepsilon}\left(u^{\varepsilon}\right) \psi_{x_{1}} \tag{4.2.15}
\end{equation*}
$$

where $B_{\varepsilon}(s)=\int_{0}^{s} \beta_{\varepsilon}(\tau) d \tau$.
Proof. For simplicity, since ε will be fixed throughout the proof, we will denote $u^{\varepsilon}=u$. We know that $|\nabla u| \leq C_{0}$. Take $g_{n}(t)=g(t)+\frac{t}{n}$, then

$$
\begin{equation*}
\min \{1, \delta\} \leq \frac{g_{n}^{\prime}(t) t}{g_{n}(t)} \leq \max \left\{1, g_{0}\right\} \tag{4.2.16}
\end{equation*}
$$

Take $A_{n}(p)=\frac{g_{n}(|p|)}{|p|} p$, and $\mathcal{L}_{n}(v)=\operatorname{div}\left(A_{n}(\nabla v)\right)$. Then, if $\Omega^{\prime} \subset \subset \Omega$ and we take u_{n} the solution of

$$
\begin{cases}\mathcal{L}_{n} u_{n}=\beta_{\varepsilon}(u) & \text { in } \Omega^{\prime} \tag{4.2.17}\\ u_{n}=u & \text { on } \partial \Omega^{\prime}\end{cases}
$$

we have by (4.2.16) that all the $g_{n}^{\prime} s$ belong to the same class and then, by Theorem 1.2.19, $\left\|u_{n}\right\|_{C^{1, \alpha}\left(\Omega^{\prime}\right)} \leq C$ with C independent of n. Therefore, there exists u_{0} such that, for a subsequence

$$
\begin{aligned}
& u_{n} \rightarrow u_{0} \quad \text { uniformly in } \Omega^{\prime} \\
& \nabla u_{n} \rightarrow \nabla u_{0} \quad \text { uniformly in } \Omega^{\prime} .
\end{aligned}
$$

On the other hand, $A_{n}(p) \rightarrow A(p)$ uniformly in compact sets of \mathbb{R}^{N}. Then, $\mathcal{L} u_{0}=$ $\beta_{\varepsilon}\left(u^{\varepsilon}\right)$, and, as $u_{0}=u$ on $\partial \Omega$ and $\mathcal{L} u^{\varepsilon}=\beta_{\varepsilon}(u)$, there holds that $u_{0}=u^{\varepsilon}$. (Observe that in the proof of the Comparison Principle, in Lemma 1.2.35 we can change the equation $\mathcal{L} u=0$, by $\mathcal{L} u=f(x)$ with $f \in L^{\infty}(\Omega)$ to prove uniqueness of the Dirichlet problem).

Now let us prove that the following equality holds,

$$
-\int_{\Omega} G_{n}\left(\left|\nabla u_{n}\right|\right) \psi_{x_{1}} d x+\int_{\Omega} F_{n}\left(\left|\nabla u_{n}\right|\right) \nabla u_{n} \nabla \psi u_{n x_{1}} d x=-\int_{\Omega} \beta_{\varepsilon}(u) u_{n x_{1}} \psi .
$$

In fact, for n fixed we have that $F_{n}(t)=g_{n}(t) / t \geq 1 / n$ and then by Theorem 1.2.34, $u_{n} \in W^{2,2}(\Omega)$. As u_{n} is a weak solution of (4.2.17) and as $u_{n} \in W^{2,2}(\Omega)$, taking as test function in the weak formulation $\psi u_{n x_{1}}$ we have that

$$
\int_{\Omega} F_{n}\left(\left|\nabla u_{n}\right|\right) \nabla u_{n} \nabla\left(\psi u_{n x_{1}}\right) d x=-\int_{\Omega} \beta_{\varepsilon}(u) u_{n x_{1}} \psi d x .
$$

As $\left(G_{n}\left(\left|\nabla u_{n}\right|\right)\right)_{x_{1}}=g_{n}\left(\left|\nabla u_{n}\right|\right) \frac{\nabla u_{n}}{\left|\nabla u_{n}\right|}\left(\nabla u_{n}\right)_{x_{1}}=F\left(\left|\nabla u_{n}\right|\right) \nabla u_{n}\left(\nabla u_{n}\right)_{x_{1}}$ we have that

$$
-\int_{\Omega} G_{n}\left(\left|\nabla u_{n}\right|\right) \psi_{x_{1}} d x+\int_{\Omega} F_{n}\left(\left|\nabla u_{n}\right|\right) \nabla u_{n} \nabla \psi u_{n x_{1}} d x=-\int_{\Omega} \beta_{\varepsilon}(u) u_{n x_{1}} \psi d x
$$

Passing to the limit as $n \rightarrow 0$ and integrating by parts, we get,

$$
-\int_{\Omega} G(|\nabla u|) \psi_{x_{1}} d x+\int_{\Omega} F(|\nabla u|) \nabla u \nabla \psi u_{x_{1}} d x=\int_{\Omega} B_{\varepsilon}(u) \psi_{x_{1}} d x .
$$

Proposition 4.2.18. Let $x_{0} \in \Omega$ and let $u^{\varepsilon_{k}}$ be solutions to

$$
\mathcal{L} u^{\varepsilon_{k}}=\beta_{\varepsilon_{k}}\left(u^{\varepsilon_{k}}\right)
$$

in Ω. If $u^{\varepsilon_{k}}$ converge to $\alpha\left(x-x_{0}\right)_{1}^{+}$uniformly in compact subsets of Ω, with $\varepsilon_{k} \rightarrow 0$ as $k \rightarrow \infty$ and $\alpha \in \mathbb{R}$, then

$$
\alpha=0 \quad \text { or } \quad \alpha=\Phi^{-1}(M) .
$$

Where $\Phi(t)=g(t) t-G(t)$.
Proof. Assume that $x_{0}=0$. Since $u^{\varepsilon_{k}} \geq 0$, we have that $\alpha \geq 0$. If $\alpha=0$ there is nothing to prove. So let us assume that $\alpha>0$. Let $\psi \in C_{0}^{\infty}(\Omega)$. By Lemma 4.2.14 we have,

$$
\begin{equation*}
-\int_{\Omega} G\left(\left|\nabla u^{\varepsilon_{k}}\right|\right) \psi_{x_{1}} d x+\int_{\Omega} F\left(\left|\nabla u^{\varepsilon_{k}}\right|\right) \nabla u^{\varepsilon_{k}} \nabla \psi u_{x_{1}}^{\varepsilon_{k}} d x=\int_{\Omega} B_{\varepsilon_{k}}\left(u^{\varepsilon_{k}}\right) \psi_{x_{1}} \tag{4.2.19}
\end{equation*}
$$

Since $0 \leq B_{\varepsilon_{k}}(s) \leq M$, there exists $M(x) \in L^{\infty}(\Omega), 0 \leq M(x) \leq M$, such that $B_{\varepsilon_{k}} \rightarrow M(x)$ *- weakly in $L^{\infty}(\Omega)$. If $y \in \Omega \cap\left\{x_{1}>0\right\}$, then $u^{\varepsilon_{k}} \geq \frac{\alpha y_{1}}{2}$ in a neighborhood of y for k large. Thus, $u^{\varepsilon_{k}} \geq \varepsilon_{k}$ and we have

$$
B_{\varepsilon_{k}}\left(u^{\varepsilon_{k}}\right)(x)=\int_{0}^{u^{\varepsilon_{k} / \varepsilon_{k}}} \beta(s) d s=M .
$$

Using Proposition 4.2.1 we have that

$$
\nabla B_{\varepsilon_{k}}\left(u_{\varepsilon_{k}}\right)=\beta_{\varepsilon_{k}}\left(u_{\varepsilon_{k}}\right) \nabla u^{\varepsilon_{k}} \rightarrow 0 \text { in } L_{l o c}^{1}\left(\Omega \cap\left\{x_{1}<0\right\}\right) .
$$

Hence, $M(x)=\bar{M} \in[0, M]$ in $\Omega \cap\left\{x_{1}<0\right\}$. Passing to the limit in (4.2.19), using the strong convergence result in Proposition 4.2 .1 we have

$$
-\int_{\left\{x_{1}>0\right\}} G(\alpha) \psi_{x_{1}} d x+\int_{\left\{x_{1}>0\right\}} F(\alpha) \alpha^{2} \psi_{x_{1}} d x=M \int_{\left\{x_{1}>0\right\}} \psi_{x_{1}}+\bar{M} \int_{\left\{x_{1}<0\right\}} \psi_{x_{1}}
$$

Then,

$$
(-G(\alpha)+g(\alpha) \alpha) \int_{\left\{x_{1}>0\right\}} \psi_{x_{1}} d x=M \int_{\left\{x_{1}>0\right\}} \psi_{x_{1}} d x+\bar{M} \int_{\left\{x_{1}<0\right\}} \psi_{x_{1}} d x
$$

And, integrating by parts, we obtain

$$
(-G(\alpha)+g(\alpha) \alpha) \int_{\left\{x_{1}=0\right\}} \psi d x^{\prime}=M \int_{\left\{x_{1}=0\right\}} \psi d x^{\prime}-\bar{M} \int_{\left\{x_{1}=0\right\}} \psi_{x_{1}} d x^{\prime}
$$

Thus, $(-G(\alpha)+g(\alpha) \alpha)=M-\bar{M}$. Let as see that $\alpha=\Phi^{-1}(M)$, we want to show that $\bar{M}=0$.

Let $K \subset \subset\left\{x_{1}<0\right\}$. Then for any $\varepsilon>0$ there exists $0<\delta<1$ such that,

$$
\begin{aligned}
\left|K \cap\left\{\varepsilon<B_{\varepsilon_{j}}\left(u^{\varepsilon_{j}}\right)<M-\varepsilon\right\}\right| & \leq\left|K \cap\left\{\delta<u^{\varepsilon_{j}} / \varepsilon_{j}<1-\delta\right\}\right| \\
& \leq\left|K \cap\left\{\beta_{\varepsilon_{j}}\left(u^{\varepsilon_{j}}\right) \geq a / \varepsilon_{j}\right\}\right| \rightarrow 0
\end{aligned}
$$

as $j \rightarrow 0$, where $a=\inf _{[\delta, 1-\delta]} \beta>0$, and we are using that $\beta\left(u^{\varepsilon_{j}}\right) \rightarrow 0$ in $L^{1}(K)$ by Proposition 4.2.1. And as $B\left(u^{\varepsilon_{j}}\right) \rightarrow \bar{M}$ in $L^{1}(K)$ we conclude that,

$$
|K \cap\{\varepsilon<\bar{M}<M-\varepsilon\}|=0
$$

for every $\varepsilon>0$, then $\bar{M}=0$ or $\bar{M}=M$, since $\alpha>0$ we must have $\bar{M}=0$.
Proposition 4.2.20. Let $x_{0} \in \Omega$, and let $u^{\varepsilon_{k}}$ be a solution to $\mathcal{L} u^{\varepsilon_{k}}=\beta_{\varepsilon_{k}}\left(u^{\varepsilon_{k}}\right)$ in Ω, where g^{\prime} satisfies (4.2.24). If $u^{\varepsilon_{k}}$ converges to $\alpha\left(x-x_{0}\right)_{1}^{+}+\gamma\left(x-x_{0}\right)_{1}^{-}$uniformly in compact subsets of Ω, with $\alpha, \gamma>0$ and $\varepsilon_{k} \rightarrow 0$ as $k \rightarrow \infty$, then

$$
\alpha=\gamma \leq \Phi^{-1}(M)
$$

Proof. We can assume that $x_{0}=0$. Since $u^{\varepsilon_{k}}$ satisfies (4.2.15) and $\alpha, \gamma>0$ we have, if $y \in \Omega \cap\left\{x_{1}>0\right\}$, then $u^{\varepsilon_{k}} \geq \frac{\alpha y_{1}}{2}$ in a neighborhood of y for k large and then, $u^{\varepsilon_{k}} \geq \varepsilon_{k}$. So that

$$
B_{\varepsilon_{k}}\left(u^{\varepsilon_{k}}\right)(x)=\int_{0}^{u^{\varepsilon_{k} / \varepsilon_{k}}} \beta(s) d s=M
$$

The same happens if $y_{1}<0$. Then $B_{\varepsilon_{j}}\left(u^{\varepsilon_{j}}\right) \rightarrow M$ in $L_{l o c}^{1}(\Omega)$. Passing to the limit in (4.2.15) we deduce that, for ant $\Psi \in C_{0}^{\infty}(\Omega)$ we have,

$$
-\int_{\left\{x_{1}>0\right\}} \Phi(\alpha) \psi_{x_{1}} d x-\int_{\left\{x_{1}<0\right\}} \Phi(\gamma) \psi_{x_{1}} d x=\int_{\Omega} M \psi_{x_{1}},
$$

Integrating by parts we obtain,

$$
\int_{\left\{x_{1}=0\right\}} \Phi(\alpha) \psi d x^{\prime}-\int_{\left\{x_{1}=0\right\}} \Phi(\gamma) \psi d x^{\prime}=0
$$

and then $\alpha=\gamma$.

Now assume that $\alpha>\Phi^{-1}(M)$. We will prove that this is a contradiction.
Step 1. Let $\mathcal{R}_{2}=\left\{x=\left(x_{1}, x^{\prime}\right) \in \mathbb{R}^{N}:\left|x_{1}\right|<2,\left|x^{\prime}\right|<2\right\}$. We can assume that $\mathcal{R}_{2} \subset \Omega$.

We will construct a family $\left\{v^{\varepsilon_{j}}\right\}$ of solutions of $\left(P_{\varepsilon_{j}}\right)$ in \mathcal{R}_{2} satisfying $v^{\varepsilon_{j}}\left(x_{1}, x^{\prime}\right)=$ $v^{\varepsilon_{j}}\left(-x_{1}, x^{\prime}\right)$ in \mathcal{R}_{2}, and such that $v^{\varepsilon_{j}} \rightarrow u$ uniformly on compact subsets of \mathcal{R}_{2}, where $u(x)=\alpha\left|x_{1}\right|$. To this end, we take $b_{\varepsilon_{j}}=\sup _{\mathcal{R}_{2}}\left|u^{\varepsilon_{j}}-u\right|$ and $v^{\varepsilon_{j}}$ the minimal solution (the minimum of all supersolutions) to $\left(P_{\varepsilon}\right)$ in \mathcal{R}_{2} with boundary values $v^{\varepsilon_{j}}=u-b_{\varepsilon_{j}}$ on $\partial \mathcal{R}_{2}$. By Proposition 4.2.1, there exists $v \in \operatorname{Lip} p_{l o c}\left(\mathcal{R}_{2}\right)$ such that, for a subsequence that we still denote $v^{\varepsilon_{j}}, v^{\varepsilon_{j}} \rightarrow v$ uniformly on compact subsets of \mathcal{R}_{2}. From the minimality of $v^{\varepsilon_{j}}$ we have that $u \geq v$.

To prove the other inequality, let $w \in C^{1, \beta}(\mathbb{R})$, satisfying

$$
\left(F\left(\left|w^{\prime}\right|\right) w^{\prime}\right)^{\prime}=\beta(w) \quad \text { in } \mathbb{R}, \quad w(0)=1, \quad w^{\prime}(0)=\alpha
$$

Observe that, when $w^{\prime}(s)>0$ the equation is locally uniformly elliptic and then $w \in C^{2}(\mathbb{R})$. Suppose that there exists an $s \in \mathbb{R}$ such that $w^{\prime}(s)=0$, take s_{1} the first positive time such that this happens. Then, if we multiply by w^{\prime} in the equation and we integrate, we obtain

$$
-\Phi(\alpha)=\Phi\left(w^{\prime}\left(s_{1}\right)\right)-\Phi(\alpha)=\int_{w^{\prime}(0)}^{w^{\prime}\left(s_{1}\right)} g^{\prime}(s) s d s=B\left(w\left(s_{1}\right)\right)-M \geq-M
$$

which means that $\Phi(\alpha) \leq M$, a contradiction. Analogously if $w^{\prime}(s)=0$ somewhere in $\{s<0\}$. Then, $w^{\prime}>0$ everywhere. By the same calculation as before, we obtain that for any $s \in \mathbb{R}$ we have,

$$
\Phi\left(w^{\prime}(s)\right)-\Phi(\alpha)=B(w(s))-M \leq 0
$$

and

$$
\begin{equation*}
\Phi\left(w^{\prime}(s)\right)=B(w(s))+\Phi(\alpha)-M \geq \Phi(\alpha)-M=\Phi(\bar{\alpha}) \tag{4.2.21}
\end{equation*}
$$

for some $\alpha>\bar{\alpha}>0$. Then, $\bar{\alpha} \leq w^{\prime}(s) \leq \alpha$. As w is increasing, we obtain that $w^{\prime}(s)=\alpha$ for $s \geq 0$, and there exists $\bar{s}<0$ such that $w(\bar{s})=0$, which means by (4.2.21) that $w^{\prime}(\bar{s})=\bar{\alpha}$, and then $w^{\prime}(s)=\bar{\alpha}$ for all $s \leq \bar{s}$, therefore

$$
w(s)= \begin{cases}1+\alpha s & s>0 \\ \bar{\alpha}(s-\bar{s}) & s \leq \bar{s}\end{cases}
$$

Let $w^{\varepsilon_{j}}\left(x_{1}\right)=\varepsilon_{j} w\left(\frac{x_{1}}{\varepsilon_{j}}-\frac{b_{\varepsilon_{j}}}{\bar{\alpha} \varepsilon_{j}}+\bar{s}\right)$, then

$$
w^{\varepsilon_{j}}(0)=\varepsilon_{j} w\left(-\frac{b_{\varepsilon_{j}}}{\bar{\alpha} \varepsilon_{j}}+\bar{s}\right)=\varepsilon_{j} \bar{\alpha}\left(\bar{s}-\frac{b_{\varepsilon_{j}}}{\bar{\alpha} \varepsilon_{j}}-\bar{s}\right)=-b_{\varepsilon_{j}}
$$

and $w^{\varepsilon_{j}}(s) \leq \alpha$. Therefore, $w^{\varepsilon_{j}} \leq u-b_{\varepsilon_{j}}$ in \mathbb{R}, so that, $w^{\varepsilon_{j}} \leq v^{\varepsilon_{j}}$ on $\partial \mathcal{R}_{2}$ and then by the comparison principle below (Lemma 4.2.25) we have that $w^{\varepsilon_{j}} \leq v^{\varepsilon_{j}}$ in \mathcal{R}_{2}. Take $x_{1}>0$, then for j large $x_{1}-\frac{b_{\varepsilon_{j}}}{\bar{\alpha}}>\frac{x_{1}}{2}$ then $\frac{1}{\varepsilon_{j}}\left(x_{1}-\frac{b_{\varepsilon_{j}}}{\bar{\alpha}}\right)+\bar{s}>\frac{x_{1}}{2 \varepsilon_{j}}+\bar{s}>0$, and therefore $w^{\varepsilon_{j}}=\varepsilon_{j}+\alpha x_{1}-\frac{\alpha}{\bar{\alpha}} b_{\varepsilon_{j}}+\alpha \varepsilon_{j} \bar{s}$, then in any compact set of $\left\{x_{1}>0\right\}, w^{\varepsilon_{j}} \rightarrow u$ uniformly. Passing to the limit, we get that $u \leq v$ in $\mathcal{R}_{2} \cap\left\{x_{1}>0\right\}$. Observe that,
by the uniqueness of the minimal solution, we have that $v^{\varepsilon_{j}}\left(x_{1}, x^{\prime}\right)=v^{\varepsilon_{j}}\left(-x_{1}, x^{\prime}\right)$. Thus, we obtain that $u \leq v$ in \mathcal{R}_{2}.

Step 2. Let $\mathcal{R}^{+}=\left\{x: 0<x_{1}<1,\left|x^{\prime}\right|<1\right\}$. Define,

$$
F_{j}=\int_{\partial \mathcal{R}^{+} \cap\left\{x_{1}=1\right\}} F\left(\left|\nabla v^{\varepsilon_{j}}\right|\right)\left(v_{x_{1}}^{\varepsilon_{j}}\right)^{2} d x^{\prime}+\int_{\partial \mathcal{R}^{+} \cap\left\{\left|x^{\prime}\right|=1\right\}} F\left(\left|\nabla v^{\varepsilon_{j}}\right|\right) v_{n}^{\varepsilon_{j}} v_{x_{1}}^{\varepsilon_{j}} d S
$$

where $v_{n}{ }^{\varepsilon_{j}}$ is the exterior normal of $v^{\varepsilon_{j}}$ on $\partial \mathcal{R}^{+} \cap\left\{\left|x^{\prime}\right|=1\right\}$. We first want to prove that,

$$
F_{j} \leq \int_{\partial \mathcal{R}^{+} \cap\left\{x_{1}=1\right\}}\left(G\left(\left|\nabla v^{\varepsilon_{j}}\right|\right)+B_{\varepsilon_{j}}\left(v^{\varepsilon_{j}}\right)\right) d x^{\prime}
$$

To prove this, we proceed as in the proof of Lemma 4.2.14. This is, we can suppose that $F(s) \geq c$, by using an approximation argument. Therefore, we can suppose that $v^{\varepsilon_{j}} \in W^{2,2}\left(\mathcal{R}_{2}\right)$. Using the weak formulation of $\left(P_{\varepsilon}\right)$ in \mathcal{R}^{+}we have,

$$
\begin{aligned}
E_{j} & :=\iint_{\mathcal{R}^{+}} \frac{\partial}{\partial x_{1}}\left(G\left(\left|\nabla v^{\varepsilon_{j}}\right|\right)\right) d x=\iint_{\mathcal{R}^{+}} F\left(\left|\nabla v^{\varepsilon_{j}}\right|\right) \nabla v^{\varepsilon_{j}} \nabla v_{x_{1}}^{\varepsilon_{j}} d x \\
& =\iint_{\mathcal{R}^{+}} \operatorname{div}\left(F\left(\left|\nabla v^{\varepsilon_{j}}\right|\right) \nabla v^{\varepsilon_{j}} v_{x_{1}}^{\varepsilon_{j}}\right) d x-\iint_{\mathcal{R}^{+}} \beta_{\varepsilon_{j}}\left(v^{\varepsilon_{j}}\right) v_{x_{1}}^{\varepsilon_{j}}=: H_{j}-G_{j}
\end{aligned}
$$

Using the divergence theorem and the fact that $v_{x_{1}}^{\varepsilon_{j}}\left(0, x^{\prime}\right)=0$ (by the symmetry in the x_{1} variable) we find that, $H_{j}=F_{j}$.

From the convergence of $v^{\varepsilon_{j}} \rightarrow u=\alpha\left|x_{1}\right|$ in \mathcal{R}_{2} and Proposition 4.2.1 we have that

$$
\nabla v_{x_{1}}^{\varepsilon_{j}} \rightarrow \alpha e_{1} \quad \text { a.e in } \mathcal{R}_{2}^{+}=\mathcal{R}_{2} \cap\left\{x_{1}>0\right\} .
$$

Since $\left|\nabla v^{\varepsilon_{j}}\right|$ are uniformly bounded, from the dominate convergence theorem we deduce that,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} F_{j}=\int_{\partial \mathcal{R}^{+} \cap\left\{x_{1}=1\right\}} g(\alpha) \alpha d x^{\prime} \tag{4.2.22}
\end{equation*}
$$

and

$$
\begin{aligned}
F_{j}=E_{j}+G_{j}= & \iint_{\mathcal{R}^{+}} \frac{\partial}{\partial x_{1}}\left(G\left(\left|\nabla v^{\varepsilon_{j}}\right|+B_{\varepsilon_{j}}\left(v^{\varepsilon_{j}}\right)\right)\right) d x \\
= & \int_{\partial \mathcal{R}^{+} \cap\left\{x_{1}=0\right\}}-\left(G\left(\left|\nabla v^{\varepsilon_{j}}\right|+B_{\varepsilon_{j}}\left(v^{\varepsilon_{j}}\right)\right)\right) d x^{\prime} \\
& +\int_{\partial \mathcal{R}^{+} \cap\left\{x_{1}=1\right\}}\left(G\left(\left|\nabla v^{\varepsilon_{j}}\right|+B_{\varepsilon_{j}}\left(v^{\varepsilon_{j}}\right)\right)\right) d x^{\prime} \\
\leq & \int_{\partial \mathcal{R}^{+} \cap\left\{x_{1}=1\right\}}\left(G\left(\left|\nabla v^{\varepsilon_{j}}\right|+B_{\varepsilon_{j}}\left(v^{\varepsilon_{j}}\right)\right)\right) d x^{\prime} .
\end{aligned}
$$

Using again that $v^{\varepsilon_{j}} \rightarrow u=\alpha\left|x_{1}\right|$ uniformly on compact subsets of \mathcal{R}_{2}, we have that $\left|\nabla v^{\varepsilon_{j}}\right| \rightarrow \alpha$ uniformly and $B_{\varepsilon_{j}}\left(v^{\varepsilon_{j}}\right)=M$ on $\partial \mathcal{R}^{+} \cap\left\{x_{1}=1\right\}$, and therefore

$$
\begin{equation*}
\limsup _{j \rightarrow \infty} F_{j} \leq \int_{\partial \mathcal{R}^{+} \cap\left\{x_{1}=1\right\}}(G(\alpha)+M) d x^{\prime} \tag{4.2.23}
\end{equation*}
$$

Therefore, by (4.2.22) and (4.2.23) we obtain $\Phi(\alpha) \leq M$ which is a contradiction.

Now we prove the comparison principle needed in the proof of the lemma above. This is the step where we need an additional hypothesis: There exist $-1<\alpha_{1} \leq \alpha_{2}$ such that for any $s, t \geq 0$ we have,

$$
\begin{equation*}
g^{\prime}(t s) \geq \min \left\{s^{\alpha_{1}}, s^{\alpha_{2}}\right\} g^{\prime}(t) \tag{4.2.24}
\end{equation*}
$$

Lemma 4.2.25. Let $w^{\varepsilon}\left(x_{1}\right)$ be a strictly increasing solution of $\mathcal{L}\left(w^{\varepsilon}\right)=\beta_{\varepsilon}\left(w^{\varepsilon}\right)$ on \mathbb{R} such that $\lim _{s \rightarrow-\infty} w^{\varepsilon}(s)<0$ and $v^{\varepsilon}(x) \geq 0$ a solution of $\mathcal{L} v^{\varepsilon}=\beta_{\varepsilon}\left(v^{\varepsilon}\right)$ in $\mathcal{R}=\left\{x=\left(x_{1}, x^{\prime}\right): a<x_{1}<b,\left|x^{\prime}\right|<r\right\}$, continuous up to $\partial \mathcal{R}$. Then, if g^{\prime} satisfies condition (4.2.24) the following comparison principle holds: if $v^{\varepsilon}(x) \geq w^{\varepsilon}\left(x_{1}\right)$ for all $x \in \partial \mathcal{R}$ then $v^{\varepsilon}(x) \geq w^{\varepsilon}\left(x_{1}\right)$ for all $x \in \mathcal{R}$.

Proof. Since $\lim _{s \rightarrow-\infty} w^{\varepsilon}(s)<0$ and $v^{\varepsilon}(x) \geq 0$, we can find τ such that,

$$
w^{\varepsilon}\left(x_{1}-\tau\right)<v^{\varepsilon}(x) \quad \text { on } \overline{\mathcal{R}} .
$$

For $\eta>0$ sufficiently small define,

$$
w^{\varepsilon, \eta}\left(x_{1}\right):=w^{\varepsilon}\left(\varphi_{\eta}\left(x_{1}-c_{\eta}\right)\right),
$$

where $\varphi_{\eta}(s)=s+\eta s^{2}$ and $c_{\eta}>0$ is the smallest constant such that $\varphi_{\eta}\left(s-c_{\eta}\right) \leq s$ on $[-2 \tau, 2 \tau]$ (observe that $c_{\eta} \rightarrow 0$ when $\eta \rightarrow 0$). If $c_{\eta}-\frac{1}{\eta} \leq-2 \tau$ then $\varphi_{\eta}\left(s-c_{\eta}\right) \leq 0$ for $s \leq c_{\eta}$. Observe that, in $[-2 \tau, 2 \tau] w^{\varepsilon, \eta} \leq w^{\varepsilon}$ and as $\eta \rightarrow 0 w^{\varepsilon, \eta} \rightarrow w^{\varepsilon}$ uniformly.

If we call $\widetilde{\varphi}_{\eta}(s)=\varphi_{\eta}\left(s-c_{\eta}\right)$ computing we have,

$$
\mathcal{L}\left(w^{\varepsilon, \eta}\right)=g^{\prime}\left(w^{\varepsilon^{\prime}}\left(\widetilde{\varphi}_{\eta}\right) \widetilde{\varphi}_{\eta}^{\prime}\right) w^{\varepsilon^{\prime \prime}}\left(\widetilde{\varphi}_{\eta}\right)\left(\widetilde{\varphi}_{\eta}^{\prime}\right)^{2}+g^{\prime}\left(w^{\varepsilon \prime}\left(\widetilde{\varphi}_{\eta}\right) \widetilde{\varphi}_{\eta}^{\prime}\right) w^{\varepsilon^{\prime}}\left(\widetilde{\varphi}_{\eta}\right) \widetilde{\varphi}_{\eta}^{\prime \prime} .
$$

If we define

$$
\gamma_{1}(s)=\left\{\begin{array}{ll}
\alpha_{1} & \text { if } \widetilde{\varphi}_{\eta}^{\prime}(s)>1 \\
\alpha_{2} & \text { if } \widetilde{\varphi}_{\eta}^{\prime}(s) \leq 1
\end{array} \quad \gamma_{2}(s)= \begin{cases}\alpha_{1} & \text { if } w^{\varepsilon \prime}\left(\widetilde{\varphi}_{\eta}\right)(s)>1 \\
\alpha_{2} & \text { if } w^{\varepsilon \prime}\left(\widetilde{\varphi}_{\eta}\right)(s) \leq 1\end{cases}\right.
$$

Using condition (4.2.24), that $\mathcal{L} \varphi_{\eta}>0$ and $w^{\varepsilon \prime}>0$ we have,

$$
\begin{aligned}
\mathcal{L}\left(w^{\varepsilon, \eta}\right) & \geq g^{\prime}\left(w^{\varepsilon \prime}\left(\widetilde{\varphi}_{\eta}\right)\right) w^{\varepsilon \prime \prime}\left(\widetilde{\varphi}_{\eta}\right)\left(\widetilde{\varphi}_{\eta}^{\prime}\right)^{\gamma_{1}+2}+g^{\prime}\left(\widetilde{\varphi}_{\eta}^{\prime}\right) \widetilde{\varphi}_{\eta}^{\prime \prime}\left(w^{\varepsilon \prime}\left(\widetilde{\varphi}_{\eta}\right)\right)^{\gamma_{2}+1} \\
& =\mathcal{L} w^{\varepsilon}\left(\widetilde{\varphi}_{\eta}\right)\left(\widetilde{\varphi}_{\eta}^{\prime}\right)^{\gamma_{1}+2}+\mathcal{L} \widetilde{\varphi}_{\eta}\left(w^{\varepsilon \prime}\left(\widetilde{\varphi}_{\eta}\right)\right)^{\gamma_{2}+1}>\mathcal{L} w^{\varepsilon}\left(\widetilde{\varphi}_{\eta}\right)\left(\widetilde{\varphi}_{\eta}^{\prime}\right)^{\gamma_{1}+2} \\
& =\beta_{\varepsilon}\left(w^{\varepsilon, \eta}\right)\left(\widetilde{\varphi}_{\eta}^{\prime}\right)^{\gamma_{1}+2} .
\end{aligned}
$$

Since, $\beta_{\varepsilon}\left(w^{\varepsilon, \eta}\right)=0$ when $x_{1} \leq c_{\eta}$ and $\widetilde{\varphi}_{\eta}^{\prime} \geq 1$ when $x_{1} \geq c_{\eta}$, we have that $\mathcal{L}\left(w^{\varepsilon, \eta}\right)>$ $\beta_{\varepsilon}\left(w^{\varepsilon, \eta}\right)$. Summarizing,

$$
\mathcal{L} w^{\varepsilon, \eta}>\beta_{\varepsilon}\left(w^{\varepsilon, \eta}\right), \quad w^{\varepsilon, \eta} \rightarrow w^{\varepsilon} \text { as } \eta \rightarrow 0 \quad \text { and } w^{\varepsilon, \eta} \leq w^{\varepsilon} .
$$

Let now $\tau^{*} \leq 0$ the smallest constant such that

$$
w^{\varepsilon, \eta}\left(x_{1}-\tau^{*}\right) \leq v^{\varepsilon}(x) \quad \text { on } \overline{\mathcal{R}} .
$$

We want to prove that $\tau^{*}=0$. By the minimality of τ^{*}, there exists a point $x^{*} \in \overline{\mathcal{R}}$ such that $w^{\varepsilon, \eta}\left(x_{1}^{*}-\tau^{*}\right)=v^{\varepsilon}\left(x^{*}\right)$. If $\tau^{*}>0$, then $w^{\varepsilon, \eta}\left(x_{1}-\tau^{*}\right)<w^{\varepsilon, \eta}\left(x_{1}\right) \leq$ $w^{\varepsilon}\left(x_{1}\right) \leq v^{\varepsilon}(x)$ on $\partial \mathcal{R}$, and hence, x^{*} is an interior point of \mathcal{R}. At this point observe that the gradient of $w^{\varepsilon, \eta}\left(x_{1}-\tau^{*}\right)$ is non-degenerate. Since $\mathcal{L} w^{\varepsilon, \eta}\left(x_{1}^{*}-\tau^{*}\right)>$ $\beta_{\varepsilon}\left(w^{\varepsilon, \eta}\left(x^{*}-\tau^{*}\right)\right)=\beta_{\varepsilon}\left(v^{\varepsilon}\left(x^{*}\right)\right)=\mathcal{L} v^{\varepsilon}\left(x^{*}\right)$, we have that this happens in an open set. We also have $w^{\varepsilon, \eta}\left(x_{1}-\tau^{*}\right) \leq v^{\varepsilon}(x)$ in \mathcal{R} and $w^{\varepsilon, \eta}\left(x_{1}^{*}-\tau^{*}\right)=v^{\varepsilon}\left(x^{*}\right)$.

As $w^{\varepsilon, \eta}\left(x_{1}^{*}-\tau^{*}\right) \leq v^{\varepsilon}\left(x^{*}\right)$ in \mathcal{R} and $w^{\varepsilon, \eta}\left(x_{1}^{*}-\tau^{*}\right)=v^{\varepsilon}\left(x^{*}\right)$ we have that $\nabla w^{\varepsilon, \eta}\left(x_{1}^{*}-\right.$ $\left.\tau^{*}\right)=\nabla v^{\varepsilon}\left(x^{*}\right)$. Let,

$$
L v=a_{i j}\left(\nabla w^{\varepsilon, \eta}\left(x_{1}-\tau^{*}\right)\right) v_{x_{i} x_{j}}
$$

where $a_{i j}$ was define in (1.2.23). Since $\nabla w^{\varepsilon, \eta}$ is nondegenerate, L is uniformly elliptic near the point x^{*}, and since $\nabla w^{\varepsilon, \eta}\left(x_{1}^{*}-\tau^{*}\right)=\nabla v^{\varepsilon}\left(x^{*}\right)$, we have that $L w^{\varepsilon, \eta}\left(x_{1}^{*}-\tau^{*}\right)>$ $L v^{\varepsilon}\left(x^{*}\right)$ and $L v^{\varepsilon}\left(x^{*}\right)=\beta_{\varepsilon}\left(v^{\varepsilon}\right)$ therefore v^{ε} is C^{2} near that point and, we have, for some $\delta>0$

$$
\begin{cases}L w^{\varepsilon, \eta}\left(x_{1}-\tau^{*}\right)>L v^{\varepsilon}(x) & \text { in } B_{\delta}\left(x^{*}\right) \\ w^{\varepsilon, \eta}\left(x_{1}^{*}-\tau^{*}\right)=v^{\varepsilon}\left(x^{*}\right) & \\ w^{\varepsilon, \eta}\left(x_{1}-\tau^{*}\right) \leq v^{\varepsilon}(x) & \text { in } \overline{\mathcal{R}},\end{cases}
$$

but since L is uniformly elliptic near x^{*}, these three statements contradict the strong comparison principle. Therefore $\tau^{*}=0$ and then $w^{\varepsilon, \eta} \leq v^{\varepsilon}$ on $\overline{\mathcal{R}}$. Letting $\eta \rightarrow 0$ we obtain the desired result.

3. Asymptotic behavior of limit solutions

Now we want to prove for g satisfying conditions 2.7 .57 and 4.2.24 the asymptotic development of the limiting function u. We will obtain this result, under suitable assumptions on the function u. First we give the following,

Definition 4.3.1. Let v be a continuous nonnegative function in a domain $\Omega \in$ \mathcal{R}^{N}. We say that v is non-degenerate at a point $x_{0} \in \Omega \cap\{v=0\}$ if there exist c, $r_{0}>0$ such that

$$
\begin{equation*}
\frac{1}{r^{N}} \int_{B_{r}\left(x_{0}\right)} v d x \geq c r \quad \text { for } 0<r \leq r_{0} \tag{4.3.2}
\end{equation*}
$$

We say that u is uniformly non-degenerate on a set $A \subset\{u=0\}$ if (4.3.2) holds for every $x_{0} \in A$ with the same constants c and r_{0}.

We have the following,
THEOREM 4.3.3. Suppose that g^{\prime} satisfies condition (4.2.24). Let $u^{\varepsilon_{j}}$ be a solution to $\left(P_{\varepsilon_{j}}\right)$ in a domain $\Omega \subset \mathbb{R}^{N}$ such that $u^{\varepsilon_{j}} \rightarrow u$ uniformly on compact subsets of Ω and $\varepsilon_{j} \rightarrow 0$. Let $x_{0} \in \Omega \cap \partial\{u>0\}$ be such that $\partial\{u>0\}$ has an inward unit
normal η in the measure theoretic sense at x_{0}, and suppose that u is non-degenerate at x_{0}. Under these assumptions, we have

$$
u(x)=\Phi^{-1}(M)\left\langle x-x_{0}, \eta\right\rangle^{+}+o\left(\left|x-x_{0}\right|\right) .
$$

The proof of this theorem is based on the following result,
Theorem 4.3.4. Suppose that g^{\prime} satisfies condition (4.2.24). Let $u^{\varepsilon_{j}}$ be a solution to $\left(P_{\varepsilon_{j}}\right)$ in a domain $\Omega \subset \mathbb{R}^{N}$ such that $u^{\varepsilon_{j}} \rightarrow u$ uniformly in compact subsets of Ω as $\varepsilon_{j} \rightarrow 0$. Then,

$$
\limsup _{x \rightarrow x_{0}}|\nabla u(x)| \leq \Phi^{-1}(M)
$$

Proof. Let

$$
\alpha:=\underset{x \rightarrow x_{0}}{\limsup }|\nabla u(x)| \text {. }
$$

Since $u \in \operatorname{Lip}_{\text {loc }}(\Omega) \alpha<\infty$. If, $\alpha=0$ we are done. So, suppose that $\alpha>0$. Then there exists a sequence $z_{k} \rightarrow x_{0}$ such that

$$
u\left(z_{k}\right)>0, \quad\left|\nabla u\left(z_{k}\right)\right| \rightarrow \alpha
$$

Let y_{k} be the nearest point from z_{k} to $\Omega \cap \partial\{u>0\}$ and let $d_{k}=\left|z_{k}-y_{k}\right|$. Consider the blow up sequence $u_{d_{k}}$ with respect to $B_{d_{k}}\left(y_{k}\right)$. Since u is Lipschitz, and $u_{d_{k}}(0)=0$ for every k, there exists $u_{0} \in \operatorname{Lip}\left(\mathbb{R}^{N}\right)$, such that $u_{d_{k}} \rightarrow u_{0}$ uniformly in compact sets of \mathbb{R}^{N}. And we also have that u_{0} is an \mathcal{L} - solution in $\left\{u_{0}>0\right\}$ (see proof of (6) in Lemma 1.6.13).

Now, set $\bar{z}_{k}=\left(z_{k}-y_{k}\right) / d_{k} \in \partial B_{1}$. We may assume that $\bar{z}_{k} \rightarrow \bar{z} \in \partial B_{1}$. Take,

$$
\nu_{k}:=\frac{\nabla u_{d_{k}}\left(\bar{z}_{k}\right)}{\left|\nabla u_{d_{k}}\left(\bar{z}_{k}\right)\right|}=\frac{\nabla u\left(z_{k}\right)}{\left|\nabla u\left(z_{k}\right)\right|} .
$$

Passing to a subsequence, we can assume, that $\nu_{k} \rightarrow e_{1}$. Observe that $B_{2 / 3}(\bar{z}) \subset$ $B_{1}\left(\bar{z}_{k}\right)$ for k large, and therefore u_{0} is an \mathcal{L} - solution there. By interior C^{α} gradient estimates, we have $\nabla u_{d_{k}} \rightarrow \nabla u_{0}$ uniformly in $B_{1 / 3}(\bar{z})$, and therefore $\left|\nabla u\left(z_{k}\right)\right| \rightarrow$ $\partial_{x_{1}} u_{0}(\bar{x})$. Thus, $\partial_{x_{1}} u_{0}(\bar{x})=\alpha$.

Next, we claim that $\left|\nabla u_{0}\right| \leq \alpha$ in \mathbb{R}^{N}. In fact, let $R>1$ and $\delta>0$. Then, there exists, $\tau_{0}>0$ such that $|\nabla u(x)| \leq \alpha+\delta$ for any $x \in B_{\tau_{0} R}\left(x_{0}\right)$. For $\left|z_{k}-x_{0}\right|<\tau_{0} R / 2$ and $d_{k}<\tau_{0} / 2$ we have, $B_{d_{k} R}\left(z_{k}\right) \subset B_{\tau_{0} R}\left(x_{0}\right)$ and therefore $\left|\nabla u_{d_{k}}(x)\right| \leq \alpha+\delta$ in B_{R} for k large. Passing to the limit, we obtain $\left|\nabla u_{0}\right| \leq \alpha+\delta$ in B_{R}, and since δ and R were arbitrary, the claim holds.

Lemma 1.2.28 says that if $w=\frac{\partial u_{0}}{\partial x_{1}}$ then

$$
\partial_{x_{j}}\left(a_{i j}\left(\nabla u_{0}\right) D_{j} w\right)=0 \quad \text { in } B_{1}(\bar{x}) .
$$

Since this is a uniformly elliptic equation near $\bar{x}, w \leq \alpha$ in $B_{1}(\bar{x})$ and $w(\bar{x})=\alpha$, the strong maximum principle implies that $w=\alpha$ in $B_{r}(\bar{x})$. Thus $\left|\nabla u_{0}\right|=\alpha$ in $B_{r}(\bar{x})$ for some $r>0$. Now, by a continuation argument, we have $w=\alpha$ in $B_{1}(\bar{x})$. As $\partial_{x_{1}} u_{0}=\alpha$ then, for some $y \in \mathbb{R}^{N}$ we have $u_{0}(x)=\alpha\left(x_{1}-y_{1}\right)$ in $B_{1}(\bar{x})$. Since $\mathcal{L} u_{0}=0$ in $\left\{u_{0}>0\right\}$ by continuation we have, $u_{0}(x)=\alpha\left(x_{1}-y_{1}\right)$ in $\left\{x_{1} \geq y_{1}\right\}$.

As $u_{0} \geq 0$ and $\mathcal{L} u_{0}=0$ in $\left\{u_{0}>0\right\}$ and $u_{0}=0$ in $x_{1}=y_{1}$ we have by Lemma 1.5.10 that

$$
u_{0}=\gamma\left(y_{1}-x_{1}\right)+o(|x-y|) \quad \text { in } x_{1}-y_{1}<0
$$

for some $\gamma \geq 0$.
Now, define for $\lambda>0\left(u_{0}\right)_{\lambda}(x)=\frac{1}{\lambda} u_{0}(\lambda x+y)$. There exists a sequence $\lambda_{n} \rightarrow 0$ and $u_{00} \in \operatorname{Lip}\left(\mathbb{R}^{N}\right)$ such that $\left(u_{0}\right) \lambda_{n} \rightarrow u_{00}$ uniformly in compact subsets of \mathbb{R}^{N}. We have $u_{00}(x)=\alpha x_{1}^{+}+\gamma x_{1}^{-}$. By Lemma 4.2.13 there exists a sequence $\varepsilon_{j}^{\prime} \rightarrow 0$ such that $u^{\varepsilon_{j}^{\prime}}$ is a solution to $\left(P_{\varepsilon_{j}^{\prime}}\right)$ and $u^{\varepsilon_{j}^{\prime}} \rightarrow u_{0}$ uniformly on compact subsets of \mathbb{R}^{N}. Applying a second time Lemma 4.2.13 we find a sequence $\varepsilon_{j}^{\prime \prime} \rightarrow 0$ and a solution $u^{\varepsilon_{j}^{\prime \prime}}$ to $\left(P_{\varepsilon_{j}^{\prime \prime}}\right)$ converging uniformly in compact subsets of \mathbb{R}^{N} to u_{00}. Now we can apply Proposition 4.2.18 in the case that $\gamma=0$ or Proposition 4.2.20 in the case that $\gamma>0$, and we conclude that $\alpha \leq \Phi^{-1}(M)$.
proof of Theorem 4.3.3. Assume that $x_{0}=0$, and $\eta=e_{1}$. Take $u_{\lambda}(x)=$ $\frac{1}{\lambda} u(\lambda x)$. Let $\rho>0$ such that $B_{\rho} \subset \subset \Omega$, since $u_{\lambda} \in \operatorname{Lip}\left(B_{\rho / \lambda}\right)$ uniformly in λ, $u_{\lambda}(0)=0$, there exists $\lambda_{j} \rightarrow 0$ and $U \in \operatorname{Lip}\left(\mathbb{R}^{N}\right)$ such that $u_{\lambda_{j}} \rightarrow U$ uniformly on compact subsets of \mathbb{R}^{N}. From Proposition 4.2.1 and Lemma 4.2.13, $\mathcal{L} u_{\lambda}=0$ in $\left\{u_{\lambda}>0\right\}$. Using that we are at a point where we have an inward normal in the measure theoretic sense, we have, for fixed k,

$$
\left|\left\{u_{\lambda}>0\right\} \cap\left\{x_{1}<0\right\} \cap B_{k}\right| \rightarrow 0 \quad \text { as } \lambda \rightarrow 0 .
$$

Hence, U is non negative in $\left\{x_{1}>0\right\}, \mathcal{L} U=0$ in $\{U>0\}$ and U vanishes in $\left\{x_{1} \leq 0\right\}$. Then, by Lemma 1.5.10 we have that, there exists $\alpha \geq 0$ such that,

$$
U(x)=\alpha x_{1}^{+}+o(|x|) \quad \text { in }\left\{x_{1}>0\right\} .
$$

By Lemma 4.2 .13 we can find a sequence $\varepsilon_{j}^{\prime} \rightarrow 0$ and solutions $u^{\varepsilon_{j}^{\prime}}$ to $\left(P_{\varepsilon_{j}^{\prime}}\right)$ such that $u_{\varepsilon_{j}^{\prime}} \rightarrow U$ uniformly on compact subsets of \mathbb{R}^{N} as $j \rightarrow \infty$. Define $U_{\lambda}(x)=\frac{1}{\lambda} U(\lambda x)$, then $U_{\lambda} \rightarrow \alpha x_{1}^{+}$uniformly on compact subsets of \mathbb{R}^{N}. Applying again Lemma 4.2.13 we find a second sequence $\sigma_{j} \rightarrow 0$ and $u^{\sigma_{j}}$ solution to $\left(P_{\sigma_{j}}\right)$ such that $u^{\sigma_{j}} \rightarrow \alpha x_{1}^{+}$ uniformly on compact subsets of \mathbb{R}^{N} and,

$$
\nabla u^{\sigma_{j}} \rightarrow \alpha \chi_{\left\{x_{1}>0\right\}} e_{1} \quad \text { in } L_{l o c}^{g_{0}+1}\left(\mathbb{R}^{N}\right) .
$$

Now we proceed as in the proof of Proposition 4.2.18. Let $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ and choose $u_{x_{1}}^{\sigma_{j}} \psi$ as test function in the weak formulation of $\mathcal{L} u^{\sigma_{j}}=\beta_{\sigma_{j}}\left(u^{\sigma_{j}}\right)$. Then,

$$
B_{\sigma_{j}}\left(u^{\sigma_{j}}\right) \rightarrow M \chi_{\left\{x_{1}>0\right\}}+\bar{M} \chi_{\left\{x_{1}<0\right\}} \quad * \text { weakly in } L^{\infty}
$$

with $\bar{M}=0$ or $\bar{M}=M$. Moreover $\Phi(\alpha)=M-\bar{M}$.
By the non degeneracy assumption on u we have,

$$
\frac{1}{r^{N}} \int_{B_{r}} u_{\lambda_{j}} d x \geq c r
$$

and then,

$$
\frac{1}{r^{N}} \int_{B_{r}} U_{\lambda_{j}} d x \geq c r
$$

Therefore $\alpha>0$. So that we have that $\bar{M}=0$. Then, $\alpha=\Phi^{-1}(M)$.
We have shown that,

$$
U(x)= \begin{cases}\Phi^{-1}(M) x_{1}+o(|x|) & x_{1}>0 \\ 0 & x_{1} \leq 0\end{cases}
$$

By Theorem 4.3.4, $|\nabla U| \leq \Phi^{-1}(M)$ in \mathbb{R}^{N}. As $U=0$ on $\left\{x_{1}=0\right\}$ we have, $U \leq \Phi^{-1}(M) x_{1}$ in $\left\{x_{1}>0\right\}$.

Since $|\nabla U(0)|=\Phi^{-1}(M)>0$, near zero U satisfies a linear uniformly elliptic equation (defined in (1.2.26)) and the same equation is satisfied by $w=$ $U-\Phi^{-1}(M) x_{1}$ in $\left\{x_{1}>0\right\} \cap B_{r}(0)$ for some $r>0$. We also have $w \leq 0$ so that by Hopf's boundary principle we have that $w=0$ in $\left\{x_{1}>0\right\}$. And the proof is completed.

Theorem 4.3.5. Let $u^{\varepsilon_{j}}$ be a solution to $\left(P_{\varepsilon_{j}}\right)$ in a domain $\Omega \subset \mathbb{R}^{N}$ such that $u^{\varepsilon_{j}} \rightarrow u$ uniformly in compact subsets of Ω as $\varepsilon_{j} \rightarrow 0$. Let $x_{0} \in \Omega \cap \partial\{u>0\}$ and suppose that u is non-degenerate at x_{0}. Assume there is a ball B contained in $\{u=0\}$ touching x_{0} then,

$$
\begin{equation*}
\limsup _{\substack{x \rightarrow x_{0} \\ u(x)>0}} \frac{u(x)}{\operatorname{dist}(x, B)}=\Phi^{-1}(M) . \tag{4.3.6}
\end{equation*}
$$

Proof. Let l be the finite limit in the left of (4.3.6), and $y_{k} \rightarrow x_{0}$ with $u\left(y_{k}\right)>0$ and

$$
\frac{u\left(y_{k}\right)}{d_{k}} \rightarrow l, \quad d_{k}=\operatorname{dist}\left(y_{k}, B\right)
$$

Consider the blow up sequence u_{k} with respect to $B_{d_{k}}\left(x_{k}\right)$, where $x_{k} \in \partial B$ are points with $\left|x_{k}-y_{k}\right|=d_{k}$, and choose a subsequence with blow up limit u_{0}, such that

$$
e:=\lim _{k \rightarrow \infty} \frac{x_{k}-y_{k}}{d_{k}}
$$

exists. Then, by construction, $u_{0}(-e)=l, u_{0}(x) \leq-l\langle x, e\rangle$ for $\langle x, e\rangle \leq 0, u_{0}(x)=0$ for $\langle x, e\rangle \geq 0$. By the non-degeneracy assumption, we have that $l>0$. Both, u_{0} and $l\langle x \cdot e\rangle^{+}$are \mathcal{L} solutions in $\left\{u_{0}>0\right\}$, and from the maximum principle we have that (since $l>0$) they must coincide in a neighborhood of $-e$, by continuation we have that $u_{0}=l(x \cdot e)^{+}$. Then, we have by, Proposition 4.2.18, that $l=\Phi^{-1}(M)$.

4. Regularity of the free boundary

Now, we can prove a regularity result for the free boundary of limits of solution of problem $\left(P_{\varepsilon}\right)$,

Theorem 4.4.7. Suppose that g satisfies (0.0.2) and moreover g^{\prime} satisfies condition (4.2.24). Let $u^{\varepsilon_{j}}$ be a solution to $\left(P_{\varepsilon_{j}}\right)$ in a domain $\Omega \subset \mathbb{R}^{N}$ such that $u^{\varepsilon_{j}} \rightarrow u$ uniformly in compact subsets of Ω as $\varepsilon_{j} \rightarrow 0$. Let $x_{0} \in \Omega \cap \partial\{u>0\}$, be such that there is an inward unit normal η in the measure theoretic sense at x_{0}. Suppose that u is uniformly non-degenerate at the free boundary in a neighborhood of x_{0} (see Definition 4.3.1). Then, there exists $r>0$ so that $B_{r}\left(x_{0}\right) \cap \partial\{u>0\}$ is a $C^{1, \alpha}$ surface.

Proof. By Corollary 4.1.8, Theorem 4.3.3, Theorem 4.3.5 and the nondegeneracy assumption we have that u is a weak solution in the sense of Definition 2.6.2. Therefore Theorem 2.7.56 applies, and the result follows.

Bibliography

[1] Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.
[2] N. Aguilera, H. W. Alt, and L. A. Caffarelli, An optimization problem with volume constraint, SIAM J. Control Optim. 24 (1986), no. 2, 191-198.
[3] N. E. Aguilera, L. A. Caffarelli, and J. Spruck, An optimization problem in heat conduction, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 3, 355-387 (1988).
[4] H. W. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981), 105-144.
[5] H. W. Alt, L. A. Caffarelli, and A. Friedman, A free boundary problem for quasilinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 1, 1-44.
[6] H. Berestycki, L. A. Caffarelli, and L. Nirenberg, Uniform estimates for regularization of free boundary problems, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., vol. 122, Dekker, New York, 1990, pp. 567-619.
[7] L. A. Caffarelli, A harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are $C^{1, \alpha}$, Rev. Matem. Iberoamericana 3 (1987), no. 2, 139-162.
[8] _, A harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz, Comm. Pure and Appl. Math. (1989), no. 42, 55-78.
[9] Luis A. Caffarelli and Juan L. Vázquez, A free-boundary problem for the heat equation arising in flame propagation, Trans. Amer. Math. Soc. 347 (1995), no. 2, 411-441.
[10] D. Danielli and A. Petrosyan, A minimum problem with free boundary for a degenerate quasilinear operator, Calc. Var. Partial Differential Equations 23 (2005), no. 1, 97-124.
[11] D. Danielli, A. Petrosyan, and H. Shahgholian, A singular perturbation problem for the p Laplace operator, Indiana Univ. Math. J. 52 (2003), no. 2, 457-476.
[12] Donatella Danielli and Arshak Petrosyan, Full regularity of the free boundary in a Bernoullitype problem in two dimensions, Math. Res. Lett. 13 (2006), no. 4, 667-681.
[13] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.
[14] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969.
[15] J. Fernández Bonder, S. Martínez, and N Wolanski, An optimization problem with volume constrain for a degenerate quasilinear operator, J. Differential Equations. 227 (2006), no. 1, 80-101.
[16] J. Fernández Bonder, J.D. Rossi, and N. Wolanski, Regularity of the free boundary in an optimization problem related to the best sobolev trace constant, SIAM Jour. Control Opt. 44 (2005), no. 5, 1612-1635.
[17] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983.
[18] O.A. Ladyzhenskaya and N.N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York, 1968.
[19] C. Lederman, A free boundary problem with a volume penalization, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), no. 2, 249-300.
[20] Claudia Lederman and Noemi Wolanski, Viscosity solutions and regularity of the free boundary for the limit of an elliptic two phase singular perturbation problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27 (1998), no. 2, 253-288 (1999).
[21] Gary M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), no. 11, 1203-1219.
[22] , The natural generalization of the natural conditions of Ladyzhenskaya and Ural' tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), no. 2-3, 311-361.
[23] Eduardo V. Teixeira, The nonlinear optimization problem in heat conduction, Calc. Var. Partial Differential Equations 24 (2005), no. 1, 21-46.
[24] Ya. B. Zeldovich and D. A Frank-Kamenetskii, The theory of thermal propagation of flames, Zh. Fiz. Khim 12 (1938), 100-105, (in Russian; english translation in "Collected Works of Ya. B. Zeldovich", vol 1, Princeton Univ. Press, 1992).

