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Problemas de frontera libre
en espacios de Orlicz

Resumen

En esta tesis, se estudia el siguiente problema de frontera libre: Para un dominio
Q de R¥, hallar u > 0 tal que

Lu := div (g(||vv;||)Vu> =0 en{u>0}NQ

Vu| = A* en O{u>0}NQ

Se denomina Problema de Frontera Libre ya que no se conoce a priori la ubicacion
de 9{u > 0}. La segunda ecuacién en (B) se conoce como “condicién de frontera

libre”.

Este problema aparece en numerosas aplicaciones. En este trabajo discutiremos
tres de ellas.

(B)

Primero, estudiamos el problema de “chorros” (jets). Para un dominio suave y
acotado en RY, consideramos primero el siguiente problema, minimizar el funcional,

_ /QG(|VU|)d:c—|—)\|{U > 0}

con v — g € Wy€(Q) para una ¢, > 0, ¢o € L®(Q) y Jo G(IVgo]) dz < oo.
WhE(Q) es la clase de funciones débilmente d1ferenc1ables con [, G(|v|)dz < o0y
Jo, G(|Vv]) dz < co. Aqui denominamos G = g.

El segundo, es un problema de diseno éptimo. Ma&s precisamente, minimizar
7w = [ G(vel)ds
Q

con v — @y € Wy (Q) y tal que [{v > 0} = a € (0,]Q) fijo, para una funcién
acotada, nonnegativa y no idénticamente nula ¢, tal que [, G(|Vyl) dx < oo.

Como tercera aplicacién estudiamos un problema de perturbacién singular de
interés en combustién. Para ¢ > 0, tomamos u° una solucién débil de Lu® = (. (u°)
con u‘E > 0. Aqui 8 € Lip(R), es positiva en (0,1), cero fuera de [0,1] y tal que
Jo B(s)ds = My B.(s) = 18 (%).

En todos estos problemas, imponemos condiciones sobre la funcién g de forma

tal que se puede comportar distinto en 0 y en infinito. Mas precisamente, pedimos
que existan constantes 4, gy > 0 tales que,

tg'(t)
g(t)
Es facil ver que, el conjunto de funciones que cumplen nuestras condiciones

incluye funciones no homogéneas. Estas condiciones fueron introducidas por Lieber-
man en [22] y generalizan las llamadas condiciones naturales de Ladyzhenskaya y

0<o<

<go Vt>DO0.
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Ural'tseva (ver [18]). En dicho trabajo el autor estudia la regularidad de soluciones
de Lu = f, donde f es una funcién acotada.

Para el primer problema, probamos las siguientes propiedades de los minimizan-
tes: Primero la existencia, luego la continuidad Hoélder y con ésto probamos la
continuidad Lipschitz uniforme (i.e: el |Vu| estd acotado en cada compacto de
Q2 por una constante independiente del minimizante u). Ademds tenemos que los
minimizantes satisfacen, en un sentido débil, el problema de frontera libre (B), con
A* una constante tal que g(A*)A* — G(\*) = X .

Ademas probamos una cierta propiedad de nodegeneracién de los minimizantes
en cualquier punto de la frontera libre, y finalmente obtenemos que la misma tiene
medida de Hausdorff N — 1 dimensional finita; por lo tanto {u > 0} N Q tiene
perimetro localmente finito en (2.

También definimos dos nociones distintas de solucién débil (en sentido distribu-
cional y en sentido puntual) del problema (B) y probamos, para las primeras, que es-
tas soluciones tienen casi todas las mismas propiedades que tienen los minimizantes.

Probamos la regularidad de la frontera libre de las soluciones débiles de (B), es
decir que d,eg{u > 0} N es una superficie C* y que en el caso de los minimizantes
(y para las soluciones débiles en sentido distribucional) el complemento tiene medida
de Hausdorff N — 1 dimensional nula. Para ello tomamos ideas del trabajo pionero
[4]. También probamos, para un subclase de funciones g, y cuando N = 2, que toda
la frontera libre es regular.

Para trabajar con este problema, debimos lidiar con la degeneracién del problema
y con la falta de homogeneidad al mismo tiempo.

En el segundo problema, probamos la regularidad de los minimizantes estudiando
un problema de penalizacién asociado a éste. Probamos que los minimizantes del
problema penalizado son soluciones débiles de (B) en sentido distribucional (de tipo
I). Los resultados de regularidad para el problema de penalizacién son consecuencia
de los resultados que tenemos para soluciones débiles de (B). La ventaja del método
es que no es necesario pasar al limite para volver al problema original. Esto es, si
el pardmetro en el problema de perturbacién es suficientemente chico, tenemos que
los minimizantes son soluciones del problema de optimizacién. Nuevamente, para
tratar este problema, debimos lidiar con la no linealidad y la no homogeneidad del
operador.

En el tercer problema, probamos que bajo, ciertas hipdtesis sobre las soluciones,
una funcién limite es una solucién débil en el sentido puntual del problema (B) (de
tipo II). Por lo tanto, todos los resultados de regularidad de soluciones de tipo II se
aplican a limites de soluciones del problema de perturbacién singular.

Palabras clave: Problemas de frontera libre, problemas de minimizacion, espacios
de Orlicz, regularidad, optimizacion, perturbacion singular.



Free boundary problems
in Orlicz spaces

In this thesis, we study the following free boundary problem: For a domain {2 in
R, find v > 0 such that

Lu = div (%VU) =0 in{u>0}NQN
u

|Vu| = \* on H{u >0} NQ

(B)

We call it a Free Boundary Problem because we do not know a priori the location of
0{u > 0}. The second equation in (B) is known as the “free boundary condition”.

This problem appears in many applications. In this thesis, we will discuss three
of them.

First, we study the problem of jets. For a bounded smooth domain in RY, we
consider the following problem: Minimize the functional,

:lkmvmmx+M@>OH

with v— o € Wy¢(Q) for a function @y > 0, po € L®(Q) with Jo G(IVo) dz < 0.
WhE(Q) is the class of weakly differentiable functions with [, G(|v|)dz < co and
Jo G(|Vv]) dz < co. Here we denote G’ = g.

The second one, is a shape optimization problem. More precisely, to minimize

:Amwmm

with v — ¢y € Wy'“(Q) and such that [{v > 0}| = a € (0, |Q]) fixed, for a bounded
nonnegative function ¢, and not identically zero such that [, G ]Vgpol) dr < 0.

As a third application we study a singular perturbation problem, of interest in
combustion. For ¢ > 0, take u® a weak solution of Lu® = f.(u®) with uE > 0. Here
B € Lip(R), is positive in (0, 1), zero outside [0, 1] and is such that fo s)ds = M
and f.(s) = 13 (2).

In all these problems we impose conditions on the function g such that allow to
have different behaviors at 0 and at infinity. More precisely, we assume that there
exist constants 4, go > 0 such that,

0<d<

Sgo vt > 0.

It is easy to see that the set of functions that satisfy these conditions includes
non homogeneous functions. These conditions were introduced by Lieberman in [22]
and generalize the so called natural conditions of Ladyzhenskaya and Ural’tseva (see



VI

[18]). In that paper the author studies the regularity of solutions of Lu = f, where
f is a bounded function.

For the first problem, we prove the following properties of the minimizers: First
the existence, then the Holder continuity and finally we prove the uniform Lipschitz
continuity (i.e: the |Vu| is bounded in any compact subset of ) by a constant
independent of the minimizer u). Moreover, we have that the minimizers satisfy, in
a weak sense, the free boundary problem (B) with A\* a constant such that g(A\*)\* —
G(\")=\.

Moreover, we prove some properties of non-degeneracy of the the minimizers at
every point of the free boundary. Finally, we obtain that the free boundary has finite
N — 1 dimensional Hausdorff measure. Therefore, {u > 0} N ) has finite perimeter
locally in €.

We also define two different notions of weak solutions of the problem (B) (in
a distributional sense and in a pointwise sense). We prove, for the first ones, that
they have almost all the properties that minimizers have.

Then, we prove the regularity of the free boundary of weak solutions of (B).
That is, Opeq{u > 0} NQ is a C1* surface and, in the case of minimizers (and for the
weak solutions in the distributional sense), the remainder has zero N —1 dimensional
Hausdorff measure. To this end, we take ideas from the paper [4]. We also prove, for
a subclass of functions g, and when N = 2, that the whole free boundary is regular.

In order to get our results, we have to deal with the degeneracy of the problem
and with the loss of homogeneity at the same time.

In the second problem, we prove the regularity of minimizers by studying an
associated penalization problem. We prove that the minimizers of the penalized
problem are weak solutions of (B) in the distributional sense (of type I). The reg-
ularity results for the penalized problem, are a consequence of the results that we
have for weak solutions of (B). The advantage of this method is that in order to
return to the original problem, it is not necessary to pass to the limit. That is, if
the penalization parameter is sufficiently small, then we have that the minimizers
are solutions of the optimization problem. Again, to treat this problem, we had to
deal with the degeneracy and the non homogeneity of the operator.

In the third problem we prove that, under some hypothesis on the solutions, a
limiting function is a weak solution in the pontwise sense of the problem (B) (of
type II). Therefore, all the regularity results of solutions of type II can be applied
to the limit of solutions of the singular perturbation problem.

Key words : Free boundary problems, minimization problems, Orlicz spaces, reg-
ularity, optimization, singular perturbation.
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Introduccién

En esta tesis, se estudia el siguiente problema de frontera libre: Para un dominio
Q de RY, hallar u tal que

Lu = div (%VU) =0 en{u>0}NQ

|Vu| = X* en O{u >0} NAQ.

Se denomina Problema de Frontera Libre ya que no se conoce a priori la ubicacion
de 0{u > 0}. La segunda ecuacién en (0.0.1) se conoce como “condicién de frontera

libre”.

Este problema aparece en numerosas aplicaciones. En este trabajo discutiremos
tres de ellas a saber, el problema de “chorros” (jets) que consiste en minimizar,

:/G(]Vu|)—|—>\x{u>o} dr
(9]

(0.0.1)

en la clase de funciones

K= {v eWH(Q): v=yen 89},
donde ¢y es una funcién no negativa con ¢y € L=(2), [, G(|[Veo|)dz < 0oy G es
tal que ¢’ = G. WhY(Q) es un espacio de Sobolev- Orhcz (ver Capitulo 1).

El segundo, es un problema de diseno 6ptimo. A saber, minimizar

) = [ G(vu)da
Q
en el conjunto
Ko={veW(Q): {v>0}=a,v=yp en 00},

para una funcién ¢ nonnegativa, acotada con [, G(|Vo|) dz < oo y no idéntica-
mente nula.

Finalmente, el tercer problema tiene origen en la teoria de combustion en el
llamado “limite para energia de activacion tendiendo a infinito” y consiste en lo
siguiente: Para ¢ > 0, tomamos u° una solucion débil de,

(P:) Luf = [ (uf), u° >0
con (3.(s) = %ﬁ (f) , 8 € Lip(R), positiva en (0,1), y cero fuera de [0, 1]

En este caso, estamos interesados en el estudio de propiedades uniformes de las
soluciones y el estudio del problema limite, cuando € — 0.

3



4 INTRODUCCION

En este caso probamos, bajo condiciones adecuadas, que para cualquier sucesion
en, — 0 existe una subsucesion €,, y una funcién limite u, tal que v = limu®, y
u es una solucién del problema de frontera libre (0.0.1) para alguna constante \*
dependiendo de g y M.

En todos los casos vemos que la solucion del problema que nos interesa resulta ser
solucién de (0.0.1) en un sentido débil. Por lo tanto, resulta de gran interés estudiar
la regularidad de las soluciones débiles de (0.0.1) y la de sus fronteras libres.

En este sentido, el primer paso es dar una buena definicién de solucion débil
del problema (0.0.1) que englobe todas las aplicaciones que tenemos en mente. El
segundo paso, es ver cual es la regularidad 6ptima que van a tener estas soluciones
(observar que, si queremos que la funcién tenga derivada normal constante en la
frontera de {u > 0}, la regularidad 6ptima no podré ser mas que Lipschitz). Final-
mente, seria deseable obtener la regularidad C'%* de la frontera libre ya que ésta va
a implicar que la solucion débil satisface la condicion de frontera libre en sentido
clasico.

Todos estos temas se encuentran bien estudiados en el caso en que el operador £
es el laplaciano (ver por ejemplo, [2, 4, 5, 6, 7, 8, 20]). En particular, para este caso
se han desarrollado diversas teorias para el estudio de la regularidad de las soluciones
débiles de (0.0.1). En estos trabajos se ha demostrado que las soluciones débiles son
localmente Lipschitz y que la frontera libre d{u > 0} es una superficie C** cuando
N = 2,y tiene esta regularidad en un entorno de todo punto donde es “chata” (flat),
en dimensiones mayores. Estos resultados se han obtenido tanto para soluciones
distribucionales como para soluciones viscosas. En el primer caso, la condicion de
frontera libre aparece en forma integral, y esta definicion es més apropiada para el
problema de “chorros” y el de optimizacion. El concepto de solucion viscosa ha sido
el utilizado en problemas a dos fases y para el problema de combustion.

Estos resultados se han extendido a operadores cuasilineales o fuertemente no
lineales independientes de la variable espacial, y a operadores lineales con coeficientes
variables. En todos estos casos el operador £ se supone uniformemente eliptico.

Recientemente, algunos de los resultados fueron demostrados también en el caso
en que L es el p-laplaciano. Es decir, Lu = Ajyu = div (|Vu|p’2Vu) que es un
operador eliptico degenerado en el caso p > 2 y singular en el caso p < 2 (en
el caso p = 2 coincide con el laplaciano) (ver, por ejemplo, [10, 11]). En [10] se
estudia el problema de jets y se prueban los resultados de regularidad que fueran
mencionados arriba para el caso del laplaciano usual. En [11] se estudia el problema
de combustién (en el limite para energias de activacién tendiendo a infinito) y se
prueba que en el limite se encuentra una solucién viscosa del problema (0.0.1). No
se obtienen resultados de regularidad de la frontera libre para soluciones viscosas en
este caso degenerado o singular.

El objetivo de esta tesis es el estudio de este problema —incluyendo la regular-
idad de la frontera libre— para operadores que puedan ser elipticos degenerados o
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singulares, posiblemente no homogéneos (el p-laplaciano es homogéneo y esto simpli-
fica algunas demostraciones). Aqui se admiten, ademads, funciones g en el operador
L con un comportamiento diferente en 0 y en infinito. Clasicamente, las suposi-
ciones sobre el comportamiento de g en 0 e infinito han sido siempre similares al
caso del p-laplaciano. Aqui, en cambio, se adoptan las condiciones introducidas por
G. Lieberman en [22] para el estudio de la regularidad de soluciones débiles de la
ecuacién eliptica (posiblemente degenerada o singular) Lu = f con f acotada.

Estas condiciones aseguran que la ecuacion Lu = 0 es equivalente a una ecuacién
uniformemente eliptica en forma de no divergencia con constantes de elipticidad in-
dependientes de la solucién u en conjuntos donde Vu # 0. Es mas, estas condiciones
no implican ningun tipo de homogeneidad en las funcién g y ademas permiten dife-
rente comportamiento de la funcién g cuando |Vu| esta cerca de cero o de infinito.
A saber, asumimos que g satisfase

(0.0.2) 0<d< <go Vt>0

para ciertas constantes 0 < § < gg.

Observemos que § = go = p — 1 cuando G(t) = tP, y reciprocamente, si § = go
entonces G es una potencia.

Otro ejemplo de funcién g que satisface (0.0.2) es la funcion ¢(t) = t*log (bt + ¢)
con a,b,c > 0. En este caso se satisface (0.0.2) con d =ay go =a+ 1.

Otro caso interesante es el de funciones G € C?([0,00)) con G'(t) = g(t) = c1t™
para t < s, g(t) = cot® + d para t > s. En este caso g satisface (0.0.2) con § =
min(a, az) y go = max(a, as).

Mas atn, cualquier combinacién lineal con coeficientes positivos de funciones
satisfaciendo (0.0.2) también satisface (0.0.2). Por otro lado, si g1 y g» satisfacen
(0.0.2) con constantes 0" y g¢, ¢ = 1,2, la funcién g = g1 satisface (0.0.2) con
6 =06"+6%y go = g} +93, y lafuncién g(t) = g1(g2(t)) satisface (0.0.2) con § = 542

_ 1.2
Y 90 = 9090-

Esta observacion muestra que existe un amplio rango de funciones ¢ bajo las

hipétesis de esta tesis.

Con respecto a la nocion de solucion débil considerada en este trabajo, resaltamos
que si bien la nocién que podriamos llamar “distribucional” daria lugar, en principio,
a mejores resultados, ésta no es adecuada para el problema de perturbacion singular
de interés en combustién que estudiamos en el 1iltimo capitulo. Por lo tanto, en esta
tesis se introduce una nueva nocién de solucién débil de (0.0.1) en la que la condicién
de frontera libre se pide que se satisfaga en un sentido puntual y no integral como
es el caso de las soluciones distribucionales. A pesar de ésto, para estas soluciones
débiles la demostraciéon de la regularidad de la frontera libre en un entorno de cada
punto donde es “chata” es muy similar a la que se puede encontrar para soluciones
distribucionales en el caso £ = A en [4].
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Por otro lado, probamos que las soluciones distribucionales son soluciones débiles
en este sentido puntual. Por lo tanto, los resultados se aplican también al caso
distribucional. En este tltimo caso, los resultados resultan mas fuertes ya que, como
en el caso de ecuaciones uniformemente elipticas, se prueba en esta tesis que la
frontera libre de una solucién distribucional es “chata” en casi todo punto (respecto
de la medida de Hausdorff N — 1 dimensional).

Como se ha comentado anteriormente, en esta tesis se aplican los resultados de
regularidad a las soluciones de tres problemas de interés en aplicaciones. Para el
problema de jets y el de diseno éptimo se prueba que las soluciones son soluciones
distribucionales del problema (0.0.1). Por lo tanto, en estas dos aplicaciones se ob-
tiene regularidad C1® salvo medida de Hausdorff N — 1 dimensional nula y, en el
caso de dimension 2, se prueba que no hay singularidades.

En lo que sigue, vamos a describir con detalle los tres problemas estudiados en
esta tesis.

1. El problema de minimizacion y soluciones débiles

En la primera parte de la tesis estudiamos el siguiente problema de minimizacion.
Para 2 un dominio suave en RY y ¢y una funcién no negativa con @y € L>(Q) y
Jo G(IV¢o|) dz < 00, consideramos el problema de minimizar el funcional,

(0.1.3) (@ = [ G1Tu) + Mooy do

en la clase de funciones

K= {U eWH4(Q): v =y en 89}.

Esta clase de problemas de minimizacion fueron estudiados extensivamente para
diferentes funciones GG. De hecho, el primer trabajo donde este problema fue estudia-
do es [4]. Los autores consideran el caso G(t) = t* y prueban que estos minimizantes
son soluciones débiles del problema de frontera libre,

Au=0 en QN {u >0}
(0.1.4)
u=0, [Vu|=vX enQnNo{u>0}
y prueban la regularidad Lipschitz de soluciones y la regularidad C'1 de sus fronteras
libres (2Nd{u > 0}) localmente alrededor de H¥~!—casi todo punto en QNd{u > 0}.

Los resultados principales en el Capitulo 2 son los siguientes:

TEOREMA 0.1.5. Si g satisface (0.0.2), existe un minimizante de J en K y

. o : 0,1 . :
cualquier minimizante u es no negativo y pertenece a C, .. (2). Ademds, para cualquier

dominio D CC €2 conteniendo un punto de la frontera libre, la constante de Lipschitz
de u en D estd controlada en términos de N, go, 9, dist(D,00Q) y A.
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También probamos que Lu = 0 en el conjunto {u > 0} y que {u > 0} tiene
perimetro localmente finito en €2. Como es usual, definimos la frontera reducida por
Oreaf{u > 0} :={z € QN {u > 0}/ |v,(z)| = 1}, donde v,(x) es la normal unitaria
exterior en el sentido de la medida (ver Capitulo 1), cuando existe, y v,(z) = 0 en
otro caso. Luego, podemos probar que HY~1(0{u > 0} \ Oreqf{u > 0}) = 0.

También probamos que los minimizantes tiene un desarrollo asintético cerca de
cualquier punto en la frontera reducida. Es decir,

TEOREMA 0.1.6. Sea u un minimizante, entonces para cualquier xo € Opeq{u >
0},
(0.1.7) u(z) = Nz — xo,v(0))” +o(|Jz —x9|)  cuando x — xg

donde \* es tal que g(N )N — G(N*) = A. ( Aqui (-,-) denota el producto escalar en
RN y v~ = —min(v,0)).

Por lo tanto, en un sentido débil los minimizantes satisfacen,

{Eu:O en QN{u>0},

0.1.8
( ) u=0, [Vul=X" en QN u>0}.

Estos resultados sugieren que consideremos soluciones débiles del problema (0.1.8).
Damos dos definiciones de solucién débil (Definicién 2.6.1 y Definicién 2.6.2). Los
minimizantes del funcional 7 verifican ambas definiciones de solucion débil. La difer-
encia principal entre estas dos definiciones es que para las funciones que satisfacen
la Definicién 2.6.1 tenemos que HY~1(0{u > 0} \ Orea{u > 0}) = 0, mientras que
para funciones satisfaciendo la Definicién 2.6.2 podemos tener que Oyeq{u > 0} = 0.
La Definicién 2.6.2 es mas apropiada para limites de soluciones de problemas de
perturbacion singular.

Probamos el siguiente teorema,

TEOREMA 0.1.9. Supongamos que g satisface (0.0.2). Sea u una solucién débil.
Entonces, HN=! casi todo punto en la frontera libre reducida Opeq{u > 0} tiene un
entorno donde la frontera libre es una superficie C1* . Mds atn, siu es una solucién
débil en el sentido de la definicion 2.6.1, el resto de la frontera libre tiene medida
HN=L cero, y si u es un minimizante, entonces toda la frontera libre reducida es
reqular.

Recalcamos que lo que probamos es que si u es una solucién débil, la frontera
libre es una superficie C** en un entorno de cualquier punto donde u tiene el de-
sarrollo asintético (0.1.7) para algin vector unitario v. Probamos que ese es el caso
para cualquier punto en la frontera libre reducida cuando u es un minimizante (ver
Teorema 2.5.5). Por lo tanto, si 4 es un minimizante, la frontera libre reducida es
una superficie O y el resto de la frontera libre tiene medida HY = cero.
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También mejoramos el resultado de regularidad para el caso N = 2, para una
subclase de funciones que satisfacen (0.0.2). Probamos que, en este caso, toda la
frontera libre es regular.

Resultados de regularidad de toda la frontera libre en dimension 2 fueron proba-
dos en [2], [5], y en [12] si 2 — 0 < p < oo para d > 0 chico.

Probamos el siguiente,

TEOREMA 0.1.10. Sea N = 2, g satisfaciendo (0.0.2) y (2.7.57) y u € K un
minimizante de (0.1.3). Entonces d{u > 0} es una superficie CY* localmente en .

2. El problema de optimizacion de dominio

Estudiamos, como segunda aplicacion, un problema de optimizacion de dominio.
Empezaremos primero con algunos observaciones histéricas de este problema. En el
trabajo [2], Aguilera, Alt y Caffarelli estudian un problema de diseno éptimo con
restriccion en el volumen. Los autores prueban la regularidad de los minimizantes
introduciendo un término de penalizacién en el funcional de energia (la integral de
Dirichlet) y minimizando sin la restriccién en el volumen. Los pasos que realizan, son
los siguientes. Primero, los autores observan que, para valores fijos del pardametro
de penalizacién, el funcional es muy similar al considerado en el trabajo [4], por lo
tanto los resultados de regularidad de los minimizantes del problema de penalizacion
salen casi sin ninguna modificacién como en [4]. Finalmente, ellos prueban que para
valores chicos del parametro de penalizacion, el volumen prefijado es alcanzado. De
esta manera, los resultados de regularidad se aplican para soluciones del problema
de diseno 6ptimo.

Este método fue aplicado a otros problemas con similar éxito. En [3, 16, 19,
23], donde la ecuacién diferencial que satisfacen los minimizantes es no degenerada,
uniformemente eliptica y en [15], donde la ecuacién involucrada podria llegar a ser
degenerada o singular, pero todavia tiene la propiedad de ser homogénea.

En el Capitulo 3 probamos que el mismo tipo de resultados se pueden obtener
si estudiamos un problema tal que la ecuacién diferencial que satisfacen los mini-
mizantes es no lineal, degenerada o singular, y posiblemente no homogénea. O sea,

cuando el operador tiene la forma Lu = div (g(]Vu])‘g—ZO y g satisface las condi-
ciones (0.0.2).

A continuacién damos més precisamente la descripcion del problema que estu-
diamos,

Sea Q) un dominio suave y acotado en RY y ¢, € W(2), un dato de Dirichlet,
con g > ¢ > 0 en A, donde A es un subconjunto abierto relativo y no vacio de 9
tal que AN ON es C% Aca WHE(Q) es un espacio de Sobolev-Orlicz (ver Capitulo
1). Sea

Ko={ucW(Q)/|{u >0} =a,u=¢, en 0Q}.
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Nuestro problema es minimizar 7 (u) = [, G(|Vu|) dz en K, con g = G’ satis-

faciendo (0.0.2).

Una de las dificultades de estos problemas es probar la regularidad de los mini-
mizantes, ya que no es facil hacer perturbaciones que preserven el volumen sin saber
previamente la regularidad de d{u > 0}.

Para poder resolver el problema original, de manera que nos permita pertur-
baciones que no preserven el volumen, seguimos las ideas de [2] y consideramos el
siguiente problema de penalizacion. Sea

K={ueW"Q)/u=y¢, en 0Q}

y
02,1 T = [ GTulde + P > 0},
donde
O
Luego el problema de penalizacion es el siguiente
(P:) Encontrar u. € £ tal que  J.(u.) = 7ilellfcjg(v)

Para poder probar la existencia de los minimizantes usamos los teoremas de
inmersion en espacios de Sobolev-Orlicz, y el resultado sale facilmente por min-
imizacion directa. La regularidad de los minimizantes y de sus fronteras libres
O{u. > 0} salen probando que cualquier minimizante u. es una solucién del siguiente
problema,

Lu. =0 en {u. >0} NQ,
u. =0, %:)\E en 0{u. >0} NQ,

en el sentido de la Definicion 2.6.1, donde \. es una constante positiva.

Las propiedades de la definicién de solucién débil no son dificiles de establecer
ya que el problema de minimizacion estudiado en el Capitulo II es muy similar a
(P.). La tnica diferencia es que J es lineal en [{u > 0}| y acé el término F_ es lineal
a trozos y cero en «.

Con este resultado tenemos que para HY~'— casi todo punto, la frontera libre
es una superficie C*# en un entorno (ver Corolario 2.7.56 del Capitulo 2).

También mejoramos el resultado de regularidad para el caso N = 2, para una
subclase de funciones satisfaciendo (0.0.2). Como en el Capitulo 2, probamos que
en este caso, toda la frontera libre es regular. Aca tenemos que lidiar con la no
homogeneidad y el término de penalizaciéon a la vez. El primer término lo tratamos
como en el Capitulo 2, y para tratar el segundo término, tomamos ideas de [19].
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Como en [2], la razén por la cual es tan 1til este método es que no es necesario
pasar al limite en el término de penalizacién € donde serian necesarias estimaciones
uniformes en €. De hecho, probamos que para valores chicos de ¢ el volumen pre-
fijado es alcanzado. Esto es, |[{u. > 0}| = «a para e chico. Este es el paso donde
la demostracién se aparta de trabajos previos en problemas similares, debido a que
acd podemos no tener la homogeneidad de la funcién g (ver Lema 3.2.6).

Finalmente, el hecho de que, para ¢ chico, cualquier minimizante de J. satisface
[{ue > 0}| = a implica que cualquier minimizante de nuestro problema es un mini-
mizante de 7., por lo tanto es localmente Lipschitz y la frontera libre es suave.

3. El problema de perturbacién singular

Estudiamos, como tltima aplicacién el siguiente problema de perturbacion sin-
gular: Para ¢ > 0, tomamos u® > 0 una solucién de,

(P:) Luf = [ (u).

Una solucién de (P.) es una funcién v® € WH4(Q) N L>(Q) tal que

(0.3.2) /Qg |Vus) = —/gpﬁE(uE) dx

para toda ¢ € C5°(Q).

Aqui 5.(s) = (g) para ( € Lip(R), positiva en (0,1) y cero fuera de [0, 1].
Llamamos M a fo s)ds.

Estamos interesados en estudiar propiedades uniformes de las soluciones, y ver
qué pasa con el problema limite, cuando ¢ — 0. La idea es probar que para cualquier
sucesion €, — 0 existe una subsucesién €,, y una funcién limite u, tal que u =
lim u®, y que u es una solucién débil del problema de frontera libre (0.1.8) para
alguna constante \* dependiendo de g y de M.

Los primeros en plantear el paso al limite en este problema de perturbacion
singular en el caso de evolucién fueron Zeldovich y Frank-Kamenetski en 1938, [24].
En dicho trabajo, los autores proponen hacer un andlisis del limite para energias
de activacion altas para el estudio de la propagacion de llamas. El estudio riguroso
matematico recién fue realizado en 1990 por Berestycki, Caffarelli y Nirenberg en
el caso de ondas viajeras (ver [6]) y posteriormente en [9] para el caso general de
evolucién a una fase.

Maés especificamente, en [6] los autores consideran una familia uniformemente
acotada de soluciones de

(0.3.3) Lu® = Be(u’) en ()

donde Lu = ) aijUsz,e; + Y bitty, + cu es un operador lineal uniformemente eliptico
con coeficientes regulares y ven qué pasa cuando ¢ — 0. Prueban que para toda
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sucesion €, — 0 existe una subsucesion €,, y una funcién limite v Lipschitz que
resuelve el siguiente problema de frontera libre,

Lu=0 en QN {u >0},
Y aijugm; = V2M en QN o{u >0}

donde 7 es la normal interior a O{u > 0}.

(0.3.4)

En dicho trabajo prueban que la condicién de frontera libre se satisface en toda
porciéon suave de la misma.

Por otro lado, en los trabajos [7] y [8] se prueba que las soluciones viscosas de
(0.3.4) con £ = A tienen frontera libre C*® alrededor de puntos donde es “chata”

(flat). Esto permiti6 obtener resultados de regularidad de la frontera libre en el caso
L = A en [20].

Mas recientemente, el caso eliptico no lineal para el p—laplaciano fue considerado
en [11]. Los autores estudiaron el problema (P.) cuando el operador L es el p-
laplaciano (i.e g(t) = t*~'). Como en el caso uniformemente eliptico, para una
familia uniformemente acotada de soluciones u° encontraron estimaciones Lipschitz
uniformes en € y probaron que el limite de u® es una solucién viscosa de (0.0.1) para
1/p
L=,y X = (M) "
En dicho trabajo no se obtienen resultados sobre la regularidad de la frontera
libre ya que no hay ninguna teoria de regularidad para soluciones viscosas en el caso
degenerado o singular.

En este trabajo, para nuestro problema P., podemos probar primero la con-
tinuidad Lipschitz uniforme a saber,

TEOREMA 0.3.5. Supongamos que g satisface (0.0.2). Sea u® una solucion de
Lu = [.(u)  en €,
con ||u®|| o) < L. Entonces, para Q' CC ) se tiene que
Vu(x)| <C en
con C' = C(N, 06, go, L, || B0, g(1), dist(Q2',00)), sie < eo(2,§).

Con este resultado, tenemos que, via una subsucesion, existe una funcién limite

El siguiente paso, es probar que la funciéon u es una solucién débil en el sentido
de la definicién 2.6.2 del Capitulo II del problema de frontera libre (0.0.1) para una
constante \* dependiendo de g y M. Para ello, tenemos que probar que tenemos un
desarrollo asintdtico de u en cada punto de la frontera reducida.

Aqui encontramos diversas dificultades técnicas asociadas con la falta de homo-
geneidad del operador £ y con el hecho de estar trabajando en espacios de Orlicz.
Por ejemplo, para probar que Lu = 0 en {u > 0} debemos probar que Vu. — Vu
en casi todo punto. Esto lo logramos probando que se tiene convergencia en L%,
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En otro punto nos encontramos con la necesidad de agregar la siguiente hipotesis
sobre g; existen —1 < ay < ay tales que para toda s,t > 0 tenemos que,

(0.3.6) g'(ts) > min{s™', s**}4'(1).
Todos los resultados probados en esta seccién valdran por lo tanto, cuando
ademds, ¢’ satisface la condicién (0.3.6).

Finalmente probamos,

TEOREMA 0.3.7. Sea u una solucion de (P.;) en un dominio Q@ C RN tal que
u® — u uniformemente en compactos de Q2 ye; — 0. Sea xy € QNI{u > 0} tal que
O{u > 0} tiene una normal interior n en sentido de la medida en xy, y supongamos
que u es no degenerada en xy. Bajo estas hipotesis, tenemos que

u(w) = @~ H(M)(x — 20, 1)" + of|x — mo]).

Finalmente, podemos aplicar la teoria del Capitulo 2. Tenemos que u es una
soluciéon débil en el sentido de la definicion 2.6.2 del problema de frontera libre.
Tenemos el siguiente,

TEOREMA 0.3.8. Supongamos que g satisface (0.0.2) y (0.3.6). Sea u% una solu-
cion de (P.;) en un dominio 2 C RN tal que u® — u uniformemente en compactos
de 2 cuando €; — 0. Sea xy € QN I{u > 0}, tal que tiene una normal interior n en
el sentido de la medida en xy. Supongamos que u es uniformemente no degenerada
en la frontera libre en un entorno de xo (ver Definicion 4.3.1). Entonces, existe
r >0 tal que B,(xo) N 0{u > 0} es una superficie C1*.

4. Notacion

A lo largo de la tesis N denota la dimensién vy,
B.(z) ={x e RY |z — 20| < 7},
Bf (z) ={z ¢ RN on >0, |z — x| <1},
B (z)={z ¢ RY any <0, |z — 20| <7}
Para v,w € RY, (v, w) denota el producto escalar standard.

Para una funcién escalar f, fT = méax(f,0) y f~ = max(—f,0).

Para la funciéon G definida en el Capitulo 1, denotamos,

g(t) = G'(1),

F(t) = g(t)/t,
D(t) = g(t)t — G(t),
A(p) = F(lp))p parapeR",

0A,;
8]?]‘

a;j = para 1l <i,57 < N.
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5. Estructura de la tesis

Estructura del Capitulo 1. El Capitulo 1 estd organizado de la siguiente
manera: En la Seccién 1 damos algunas propiedades de la funciéon g y definimos los
espacios de Orlicz y los de Sobolev-Orlicz, y probamos algunos teoremas de inclusion.
Estos espacios seran usados para probar la existencia de los minimizantes.

En la Secciéon 2 damos algunas propiedades analiticas de las funciones con

Jo G(|Vu]) dz finita (generalizacién de la desigualdad de Poincaré y el Teorema de
Morrey). Luego, enunciamos algunas propiedades de las soluciones, subsoluciones y
supersoluciones de Lv = 0 (desigualdad de Harnack, cotas C, principio de com-
paracién, principio fuerte del maximo y una desigualdad importante que usaremos
a lo largo de la tesis (Teorema 1.2.38)). También probamos una desigualdad de
tipo Cacciopoli vélida para estas funciones (Lema 1.2.12). Finalmente, mostramos
una familia explicita de subsoluciones de Lu = 0 (Lema 1.2.47) que usamos como
barreras en varios puntos de esta tesis.

En la Secciéon 3 enunciamos la definicion de medida y distancia de Hausdorft.

En la Seccién 4 damos un Teorema de Representacién que usaremos en esta tesis.
También damos la definicién de conjuntos de perimetro localmente finito y algunas
de sus propiedades.

En la Seccién 5 probamos algunos resultados de £— soluciones con crecimiento
lineal.

En la Seccion 6 probamos algunos resultados de los limites de sucesiones de blow
up.
En la Seccion 7 damos algunos resultados sobre simetrizacién de Schwartz.

Estructura del Capitulo 2. En la Seccién 1 probamos la existencias de mini-
mizantes y que los mismos son subsoluciones de Lv = 0. También probamos que los
minimizantes son no negativos. La demostracion de existencia de minimizantes, que
es standard en su forma, hace uso fuertemente de los espacios de Orlicz y la segunda
desigualdad en la condicién (0.0.2).

En la Seccién 2 probamos que cualquier minimizante u es Holder continuo (Teo-
rema 2.2.1), Lu = 0 en {u > 0} (Lema 2.2.12) y finalmente probamos la continuidad
Lipschitz local (Teorema 2.2.25). La demostracién de la continuidad Hélder de los
minimizantes es un paso crucial en nuestro anélisis y es una de las demostraciones
principales de este capitulo en donde juegan todas las propiedades de la funcion G
a través de la desigualdad del Teorema 1.2.38.

En la Seccién 3 probamos que los minimizantes satisfacen una propiedad de no
degeneracién cerca de la frontera libre Q@ N d{u > 0} (Teorema 2.3.5). También
probamos que los conjuntos {u > 0} y {u = 0} tienen la propiedad de densi-
dad uniforme positiva en la frontera libre. En este teorema usamos fuertemente las
propiedades de la funcién G y los correspondientes espacios de Orlicz.
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En la Seccion 4 probamos que la frontera libre tiene dimensién Hausdorff N — 1
finita y obtenemos un teorema de representacién para los minimizantes (Teorema
2.4.5). Esto implica que {u > 0} tiene perimetro localmente finito en 2. Finalmente
probamos que HY1(0{u > 0} \ Orea{u > 0}) = 0.

En la Seccién 5 damos algunas propiedades de las sucesiones de blow up de los
minimizantes. Probamos que cualquier limite de una sucesién de blow up es otra
vez un minimizante (Lema 2.5.1) y finalmente probamos el desarrollo asintético de
los minimizantes en cualquier punto de la frontera libre reducida (Teorema 2.5.5).

En la Seccién 6 damos la definicién de solucién débil (Definicién 2.6.1 y Definicién
2.6.2). Probamos que casi todas los propiedades que probamos para los minimizantes
también valen para soluciones débiles que corresponden a la Definicién 2.6.1, y men-
cionamos las diferencias entre las dos definiciones (Observacién 2.6.8 y Observacién
2.6.21).

En la Seccion 7 probamos la regularidad de la frontera libre de las soluciones
débiles, cerca de puntos “flat” de la frontera (Teorema 2.7.54) y luego deducimos
la regularidad de la frontera libre de soluciones débiles cerca de casi todo punto en
la frontera reducida. En el caso de los minimizantes, se obtiene la regularidad de
toda la frontera reducida (Teorema 2.7.56). También probamos, para cierta clase de
funciones satisfaciendo (0.0.2) que, en el caso N = 2 toda la frontera libre es regular
(Corolario 2.7.66).

Estructura del Capitulo 3. El Capitulo 3 esta organizado de la siguiente
manera: En la Seccién 1 empezamos nuestro andlisis del problema (P.) para ¢ fijo.
Primero probamos la existencia de minimizantes, la regularidad Lipschitz local y la
no degeneracion cerca de la frontera libre (Teorema 3.1.2) y probamos que los mini-
mizantes son soluciones débiles del problema de frontera libre, como fue definitdo en
el Capitulo 2 (Observacién 3.1.14). Luego tenemos que, para H™ ~1— casi todo pun-
to, la frontera libre es localmente una superficie C*# (Corolario 3.1.15). Probamos
que para el caso N = 2, para una subclase de funciones satisfaciendo (0.0.2) toda
la frontera libre es regular (Corolario 3.1.22). En la Seccién 2 probamos que para
valores chicos de € recuperamos nuestro problema original.

Estructura del Capitulo 4. El Capitulo 4 esta organizado de la siguiente man-
era: En la Secciéon 1 probamos la continuidad Lipschitz uniforme de las soluciones
de (P.) (Corolario 4.1.8).

En la Seccién 2, probamos que si v es una funcién limite, entonces Lu es una
medida de Radon soportada en la frontera libre (Teorema 4.2.1). Luego, probamos
la Proposicion 4.2.18, que dice que si v es un semiplano, entonces la pendiente es 0
o ®1(M) donde ®(t) = tg(t) — G(t), y la Proposicién 4.2.20 que dice que si u es
una suma de dos semiplanos, entonces las pendientes tienen que ser iguales y a lo
sumo ®~H(M).

En la seccién 3 probamos el desarrollo asintético de u (Teorema 4.3.3).
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En la seccién 4 aplicamos los resultados del Capitulo 2 para probar la regularidad
de la frontera libre (Teorema 4.4.7).






Introduction

In this thesis, we study a free boundary problem: For a domain  in RY, find u
such that

Lu := div (‘(](||VL5||)VU> =0 in{u>0}NQ

|[Vu| = \* on 0{u >0} N Q.

(0.0.1)

It is called a Free Boundary Problem because the location of d{u > 0} is not
known a priori. The second equation in (0.0.1) is known as the “free boundary
condition”.

This problem appears in many applications. In this work we will discuss three
of them. First, the problem of jets which consist on minimizing,

J(u) = /QG(|VU|) + AX{u>0} dx
in the class of functions
K= {v cWH(Q): v=yon 89},
where ¢y is a nonnegative function with gy € L*(Q), [, G(|Vyo|) dr < co and G

is such that g = G'. W19(Q) is a Sobolev-Orlicz space (see Chapter 1).

The second one, is an optimal design problem. To minimize

J(u) :/G(|Vu|)d:1:
Q
in the set
Ko={veW"Q): {v>0}=a,v=y, on dN},
for a bounded nonnegative and not identically zero ¢y with [, G(|V¢o|) dz < oo.

Finally, the third problem is originated in the theory of combustion in the so-
called “limit for activation energy going to infinity” and consist on the following:
For € > 0, take u® a weak solution of,

(P.) Luf = Be(u®), u®>0
with (.(s) = %5 (f) , 8 € Lip(R), positive in (0,1), and zero outside [0, 1]

In this case, we are interested in the study of the uniform properties of the
solutions and the study of the limit problem, when ¢ — 0.

17
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In this case we prove, under some adequate conditions, that for any sequence
e, — 0 there exists a subsequence ¢, and a limit function w«, such that v = lim v,
and wu is a solution of the free boundary problem (0.0.1) for some constant A* de-
pending on g and M.

In all these cases we see that the solutions of the problem we are interested in
turn out to be solutions of (0.0.1) in a weak sense. Therefore, it is of a grate interest
to study the regularity of the weak solutions (0.0.1) and of their free boundaries.

In this sense, the first step is to give a good definition of weak solution of the
problem (0.0.1) that can be applied to all the applications that we have in mind. The
second step, is to see which is the optimal regularity that these solutions are going
to have (observe that, if we want the function to have constant normal derivative on
the boundary of {u > 0}, the optimal regularity can not be more than Lipschitz).
Finally, it would be desirable to obtain the C1® regularity of the free boundary
since this will imply that the weak solution satisfies the free boundary condition in
a classical sense.

All these topics are well studied when the operator £ is the laplacian (see for
example, [2, 4, 5, 6, 7, 8 20]). In particular in this case several theories were
developed for the study of the regularity of the weak solutions of (0.0.1). In these
works it has been proved that the weak solutions u are locally Lipschitz and that
their free boundaries d{u > 0} are C' surfaces when N = 2, and that they
have this regularity in a neighborhood of any point where they are flat, in higher
dimensions. These results have been obtained both for distributional solutions and
for viscosity solutions. In the first case, the free boundary condition appears in an
integral form, and the definition is more appropriate for the problem of jets and of
optimization. The concept of viscosity solution was used in two phases problems
and for the combustion problem.

These results have been extended to quasilinear operators or fully nonlinear
operators independent of the spatial variable, and to linear operators with variable
coefficients. In all these cases the operator L is supposed to be uniformly elliptic.

Recently, some of the results were proved also in the case where L is the p—
laplacian. That is, Lu = A,u = div (|Vu|p’2Vu) which is a degenerate elliptic
operator when p > 2 and singular when p < 2 (in the case p = 2 it coincides with
the laplacian) (see, for example, [10, 11]). In [10] the authors study the problem of
jets and prove the regularity results that were mentioned above for the case of the
usual laplacian. In [11] the authors study the combustion problem (in the limit for
activation energy going to infinity) and prove that, in the limit, they get a viscosity
solution of the problem (0.0.1). There are no regularity results of the free boundary
for viscosity solutions in the degenerate or singular cases.

The aim of this thesis is the study of this problem —including the regularity of
the free boundary— for operators that can be either degenerate or singular elliptic,
possibly non homogeneous (the p-laplacian is homogeneous and this simplifies some
of the proofs). Here we admit, moreover, functions g in the operator £ with a
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different behavior at 0 and at infinity. Classically, the assumptions on the behavior
of g at 0 and at infinity were always similar to the case of the p-laplacian. Here,
instead, we adopt the conditions introduced by G. Lieberman in [22] for the study
of the regularity of weak solutions of the elliptic equation (possibly degenerate or
singular) Lu = f with f bounded.

These conditions ensures that the equation Lu = 0 is equivalent to a uniformly
elliptic equation in nondivergence form with ellipticity constants independent of
the solution v in sets where Vu # 0. Furthermore, these conditions do not imply
any type of homogeneity of the function g, and moreover they allow for a different
behavior of the function ¢ when |Vu| is near zero or infinity. That is, we assume
that ¢ satisfies

(0.0.2) 0<d<

for certain constants 0 < § < gp.

Let us observe that 6 = go = p — 1 when G(t) = *, and reciprocally, if 6 = go
then G is a power.

Another example of a function g which satisfies (0.0.2) is the function g(t) =
t*log (bt + ¢) with a,b,c > 0. In this case (0.0.2) is satisfied with 6 = a and
go=oa-+ 1.

Another interesting case is the one of a function G € C?([0,00)) with G'(t) =
g(t) = c1t™ for t < s, g(t) = cot™ + d for t > s. In this case g satisfies (0.0.2) with
0 = min(aq, as) and gy = max(ay, as).

Furthermore, any linear combination with positive coefficients of functions satis-
fying (0.0.2) also satisfies (0.0.2). On the other hand, if g; and go satisfy (0.0.2) with
constants ¢* and g, i = 1,2, the function g = g,g, satisfies (0.0.2) with § = §* + §2
and go = g§ + g3, and the function g(t) = g1(g2(t)) satisfies (0.0.2) with § = §'4?
and go = g3 gz

This observation shows that there is a wide range of functions ¢ under the hy-
potheses of this thesis.

With regards to the notion of weak solution considered in this work, we em-
phasize that, although the notion that we can call “distributional” would give, in
principle, a better result, this is not the suitable notion for the singular perturbation
problem that we study in the last chapter. Therefore, in this thesis we introduce
a new notion of weak solution of (0.0.1) where the free boundary condition holds
in a pointwise sense and not in integral one as in the case of weak distributional
solutions. Anyhow, for these weak solutions the proof of the regularity of the free
boundary in a neighborhood of every point where it is flat, is similar to the one that
can be fond for distributional solutions in the case £ = A in [4].
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On the other hand, we prove that the distributional solutions are weak solutions
in this pointwise sense. Therefore, the results can also by applied to the distribu-
tional solutions. In this last case, the results turn out to be stronger since, as in the
case of uniformly elliptic equations, it is proved in this thesis that the free bound-
ary of distributional solution is flat at almost every point (respect to the N — 1
dimensional Hausdorff measure).

As was mentioned before, in this thesis we apply the regularity results to solutions
of the three problems of interest in applications. For the problem of jets and of
optimal design we prove that the solutions are distributional solutions of the problem
(0.0.1). Therefore, in these two applications we obtain the C** regularity up to zero
N — 1 Hausdorff measure. In the case of dimension 2, we prove that there are no
singularities.

In what follows, we will describe in details the three problems studied in this
thesis.

1. The minimization problem and weak solutions

In the first part of the thesis we study the following minimization problem: For
Q a smooth bounded domain in R and ¢y a nonnegative function with ¢y € L>(Q)
and [, G(|Vyl) dz < 0o, we consider the problem of minimizing the functional,

(0.1.3 w0 = [ GITu) + Mooy do

in the class of functions
K= {v c Wh(Q): v=yon OQ}.

This minimization problem has been widely studied for different functions G. In
fact, the first paper in which this problem was studied is [4]. The authors considered
the case G(t) = t*. They proved that minimizers are weak solutions to the free
boundary problem,

(0.1.4)

Au=0 in QN {u> 0}
u=0, [Vul=vX onQndf{u>0}

and proved the Lipschitz regularity of the solutions and the C*% regularity of their
free boundaries (2 N d{u > 0}) locally around HY~! almost every point on
QN of{u > 0}.

The main results in Chapter 2 are the following:
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THEOREM 0.1.5. If g satisfies (0.0.2), there exists a minimizer of J in K and
any minimizer u 18 nonnegative and belongs to Cloocl(Q) Moreover, for any domain

D ccC Q containing a free boundary point, the Lipschitz constant of u in D is
controlled in terms of N, go, d, dist(D, ) and \.

We also prove that Lu = 0 in the set {u > 0} and that {u > 0} has finite
perimeter locally in Q. As usual, we define the reduced boundary by 0,eq{u > 0} :=
{r € QNno{u > 0} /|vu(x)| = 1}, where v,(z) is the unit outer normal in the
measure theoretic sense (see Chapter 1), when it exists, and v,(x) = 0 otherwise.
Then, we prove that HY~1(0{u > 0} \ Opea{u > 0}) = 0.

We also prove that minimizers have an asymptotic development near any point
in their reduced free boundary. Namely,

THEOREM 0.1.6. Let u be a minimizer, then for every xo € Opeq{u > 0},
(0.1.7) u(x) = XN (x — xo, v(x0))” +o(|Jx —x0]) asx — g

where \* is such that g(AX*)A\* — G(X*) = . (Here (-,-) denotes the scalar product in
R" and v~ = —min(v,0)).

So that, in a weak sense minimizers satisfy,

(0.1.8) Lu=0 in  {u> 0},
u=0, |[Vul=X on Qno{u>0}

These results suggest that we consider weak solutions of the problem (0.1.8). We
give two different definitions of weak solution (Definition 2.6.1 and Definition 2.6.2).
Minimizers of the functional J verify both definitions of weak solution. The main
difference between these two definitions is that for functions satisfying Definition
2.6.1 we have that HY1(0{u > 0} \ O,ea{u > 0}) = 0, whereas for functions
satisfying Definition 2.6.2 we may have 0,.q{u > 0} = (). Definition 2.6.2 is more
suitable for limits of singular perturbation problems.

We prove the following theorem,

THEOREM 0.1.9. Suppose that g satisfies (0.0.2). Let u be a weak solution. Then,
HN=L almost every point in the reduced free boundary Oreq{u > 0} has a neighborhood
where the free boundary is a CH* surface. Moreover, if u is a weak solution according
to Definition 2.6.1, the remainder of the free boundary has HN~1— measure zero,
and if u is a minimizer, then the whole reduced free boundary is reqular.

We point out that we prove that if u is a weak solution, the free boundary is a C1®
surface in a neighborhood of every point where u has the asymptotic development
(0.1.7) for some unit vector v. We prove that this is the case for every point in the
reduced free boundary when w is a minimizer (see Theorem 2.5.5).

We also improve the regularity result for the case N = 2, for a subclass of
functions satisfying (0.0.2). We prove that, in this case, the whole free boundary is
regular.
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Full regularity of the free boundary in dimension 2 was prove in [4] and [5], and
n[12]if 2 — ¢ < p < oo for a small § > 0.

We prove the following,

THEOREM 0.1.10. Let N = 2, g satisfying conditions (0.0.2) and (2.7.57) and
u € K be a minimizer of (2.0.1). Then 0{u > 0} is a CY* surface locally in €.

2. The shape optimization problem

We study, as a second application, an optimization problem. We begin with a
few historical remarks on this problem. In the paper [2], Aguilera, Alt and Caffarelli
study an optimal design problem with a volume constrain. The authors prove the
regularity of minimizers by introducing a penalization term in the energy functional
(the Dirichlet integral) and minimizing without the volume constrain. The steps
that they follow are the following. First, the authors observe that, for fixed values
of the penalization parameter, the penalized functional is very similar to the one
considered in the paper [4], then the regularity results for minimizers of the penalized
problem follow almost without change as in [4]. Finally, they prove that for small
values of the penalization parameter, the constrained volume is attained. In this
way, all the regularity results apply to the solution of the optimal design problem.

This method has been applied to other problems with similar success. See for
instance, [3, 16, 19, 23], where the differential equation satisfied by the minimizers
is nondegenerate, uniformly elliptic and [15], where the equation involved may be
degenerate or singular elliptic, but it still has the property of being homogeneous.

In Chapter 3 we show that the same kind of results can be obtained if we study
a problem such that the differential equation satisfied by the minimizers is nonlinear
degenerate or singular, and possibly non homogeneous. More precisely, the operator

here has the form Lu = div (g(|Vu|) g ‘> where g satisfies the conditions (0.0.2).

We give now, more precisely the description of the problem that we study.
Take © a smooth bounded domain in RY and ¢, € WH%(Q), a Dirichlet datum,

with @9 > ¢o > 0 in A, where A is a nonempty relatively open subset of 9§ such
that A NN is C2. Here WHE(Q) is a Sobolev-Orlicz space (see Chapter 1). Let

= {ue W Q) /{u >0} =, u=p, on dQ}.
Our problem is to minimize in K, the functional J(u) = [, G(|Vu|)dz , with
g = G’ satisfying (0.0.2).

One of the difficulties of these kind of problems is to get regularity results for
the minimizers, since it is hard to make enough volume preserving perturbations
without the previous knowledge of the regularity of 0{u > 0}.

In order to solve our original problem, in a way that allows us to perform non
volume preserving perturbations, we follow the idea of [2] and consider instead the
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following penalized problem: We let
K={uecW"Q)/u=¢, ondQ}

and
(0.2.11) J-(u) = /QG(WUD dx + F.([{u > 0})),

where

—

Je(s—a) ifs<a
Fes) = {E(s—a) if s > a.

Then, the penalized problem is
(P.) Find u. € £ such that J.(u.) = inlgja(v).
ve

In order to prove the existence of minimizers we use some compact immersion
theorems in Sobolev-Orlicz spaces, and the result follows easily by direct minimiza-
tion. The regularity of the minimizers and of their free boundaries 9{u. > 0} follows
by showing that any minimizer u, is a solution of the following free boundary prob-
lem,

Lu. =0 in {u. >0} NQ,
ou
u. =0, 8_62/\6 on M{u. >0} NQ,
v

in the sense of Definition 2.6.1, where A, is a positive constant.

The properties of the definition of weak solution are not difficult to establish
since the minimization problem studied in Chapter 2 is very similar to (P.). The
only difference is that J is linear in [{u > 0}| and here the term F. is piecewise
linear and zero at a.

With these results we have that the free boundary is a C'# surface in a neigh-
borhood of HY¥~1— almost every point (see Corollary 2.7.56 in Chapter 2).

We also improve the regularity result in the case N = 2, for a subclass of
functions satisfying (0.0.2). As in Chapter 2, we prove that, in this case, the whole
free boundary is regular. Here we have to deal with the non homogeneity and the
penalization term at the same time. In the first case we proceed as in Chapter 2,
and in order to deal with the penalization term, we take ideas from [19].

As in [2], the reason why this penalization method is so useful is that there is
no need to pass to the limit in the penalization parameter € for which uniform, in
e, regularity estimates would be needed. In fact, we show that for small values of
¢ the right volume is already attained. This is, [{u. > 0}| = « for ¢ small. This is
the step where the proof parts from previous work on similar problems, since here
we may not have the homogeneity of the function g (see Lemma 3.2.6).

Finally, the fact that, for small e, any minimizer of J. satisfies |[{u. > 0}| = «
implies that any minimizer of our original optimization problem is also a minimizer
of J., so that it is locally Lipschitz continuous with smooth free boundary.
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3. The singular perturbation problem

We study, as a third application the following singular perturbation problem:

For any € > 0, take u® a solution of,

(P.) Luf = [.(u®), u®>0.

A solution to (P.) is a function u® € WH%(Q) N L*°(Q) such that

(0.3.12) /g(|Vu5|) vu Vodr = —/gpﬁg(ue) dx
Q |Vue] Q

for every ¢ € C3°(€2).
Here 3.(s) = 13 (f) , for 8 € Lip(R), positive in (0,1) and zero outside [0, 1].

g
We call M = [ B(s) ds.

We are interested in studying the uniform properties of solutions, and limit
problem, as ¢ — 0. The idea is to prove that, for every sequence &, — 0, there
exists a subsequence ¢,, and a limit function u such that v = limu** and u is a
weak solution of the free boundary problem (0.1.8) for some constant A* depending
on g and M.

The idea of passing to the limit in this singular perturbation problems in the
evolution case was first proposed by Zeldovich and Frank-Kamenetski in 1938, [24].
However, a rigorous mathematical analysis of the limiting process was not performed
until 1990, when Berestycki, Caffarelli and Nirenberg studied the case of travelling
waves (see [6]). Next, in [9] the general evolution problem in the one phase case was
analyzed.

More precisely, in [6] the authors consider a uniformly bounded family of solu-
tions of

(0.3.13) Luf = [ (u’) in

where Lu = ) GijUg,z, + ) bitly, + cu is a linear uniformly elliptic operator with
smooth coefficients. The authors study the limit as ¢ — 0. They prove that for
any sequence €, — 0 there exists a subsequence ¢,, and a limit function u which is
Lipschitz and a solution to the following free boundary problem,

Lu=0 in QN {u> 0},
- aijugmnj = V2M on QN ofu>0}

where 7 is the inward normal to d{u > 0}.

(0.3.14)

In that work the authors prove that the free boundary condition it is satisfied
on any portion of the free boundary where it is smooth.

On the other hand, in the papers [7] and [8] Caffarelli proved that the viscosity
solutions of (0.3.14) with £ = A have C'* free boundaries around points where
they are flat. By using this theory, regularity results of the free boundary for the
limit u = limu® were obtained in the case £ = A in [20].
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More recently, the nonlinear elliptic case of the p—laplacian was considered in
[11]. The authors study the problem (P.) when the operator £ is the p-laplacian
(i.e g(t) = t*71). As in the uniformly elliptic case, they find for a uniformly bounded
family of solutions u®, uniform in e Lipschitz estimates and proved that the limit of

1/p
u® is a viscosity solution of (0.0.1) for £ = A, and \* = <1%M> :

In that work the authors do not obtain any regularity of the free boundary since
there is no regularity theory for viscosity solutions in the degenerate or singular
case.

In this chapter, for our problem P., we first prove the uniform Lipschitz conti-
nuity,

THEOREM 0.3.15. Suppose that g satisfies condition (0.0.2). Let u® be a solution
of
Luf = B(u®) inQ,
with ||uf|| Ly < L. Then, for ' CC Q we have,
Vu(z)| < C in QY
with C'= C(N, 6, go, L, || Bl e, g(1), dist(Y,090)), if € < eo(2, §Y).

And with this estimate we have, via a subsequence that there exists a limit
function w.

The next step, is to prove that the function u is a weak solution in the sense
of definition 2.6.2 of Chapter 2 of the free boundary problem (0.0.1) for a constant
A" depending on g and M. To this end, we prove that that we have an asymptotic
development of u at any point in the reduced free boundary.

At this point we find several technical difficulties associated to the loss of ho-
mogeneity of the operator £ and of the fact that we are working with the Orlicz
spaces. For example, in order to prove that Lu = 0 in {u > 0} we have to prove
that Vu. — Vu in almost every point. This is obtained by proving the convergence
in L9+,

At another point, we need to add the following hypothesis over g: There exist
—1 < a3 < ay such that for all s,t > 0 we have that,

(0.3.16) g (ts) > min{s™, s*?}¢'(t).

Thus, all the results proved in in this chapter hold when moreover, ¢’ satisfies
condition (0.3.16).

Finally we prove,
THEOREM 0.3.17. Let u¥ be a solution to (P.;) in a domain Q C RN such that

u® — w uniformly on compact subsets of Q@ and €; — 0. Let xy € QN d{u > 0}
be such that 0{u > 0} has an inward unit normal n at xo in the measure theoretic
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sense, and suppose that u is non-degenerate at xy. Under these assumptions, we
have

u(z) = (M) {x — 0, 1)) ™ + o]z — ol).
Finally, we can apply the theory developed in Chapter 2. We have that, u is a
weak solution in the sense of Definition 2.6.2 of the free boundary problem.

Thus, we have the following,

THEOREM 0.3.18. Suppose that g satisfies (0.0.2) and (0.3.16). Let u® be a
solution of (F.;) in a domain ) C RN such that u — wu uniformly in compact
subsets of ) as ¢; — 0. Let xp € QN J{u > 0}, such that there is an inward
unit normal 1 in the measure theoretic sense at xg. Suppose that u is uniformly
non-degenerate at the free boundary in a neighborhood of xy (see Definition 4.3.1).
Then, there exists r > 0 such that B,(zq) N 0{u > 0} is a CY* surface.

4. Notation

Throughout the thesis N will note the dimension and,

BT<x) = {LU S RNJ |I - $0| < T}?

Bf (z) ={r e RN on >0, |z — x| <7},

B (z) ={r ¢ RN, 2y <0, |z — 20| <7r}.
For v,w € RY, (v, w) notes the standard scalar product.

For a scalar function f, f* = max(f,0) and f~ = max(—f,0).
For the function G defined in Chapter 1, we denote,

g(t) = G'(1),

F(t) =g(t)/t,
O(t) = g(t)t — G(1),
A(p) = F(lpl)p ~ for p e RY,
aij:aAi for 1 <i,5 < N.
8pj

5. QOutline of the thesis

Outline of Chapter 1. Chapter 1 is organized as follows: In Section 1 we give
some properties of the function g and define the Orlicz and Sobolev-Orlicz spaces,
and prove some inclusion Theorems. These spaces will be used to prove existence
of minimizers.



5. OUTLINE OF THE THESIS 27

In Section 2 we state some real analytic properties for functions with finite
Jo G(|Vu]) dz (generalization of Poincaré’s inequality and Morrey’s Theorem). Then,
we state some properties of solutions, subsolution and supersolutions of Lv = 0; Har-
nack inequality, C** bounds, comparison principle, strong maximum principle and
an important inequality that will be use throughout the thesis (Theorem 1.2.38).
We also prove a Cacciopoli type inequality valid for these functions (Lemma 1.2.12).
Finally, we show an explicit family of subsolutions of Lu = 0 (Lemma 1.2.47), that
will be used as a barrier at many points of this thesis.

In Section 3 we give the definition of Hausdorff measure and Hausdorff distance.

In Section 4 we state a Representation Theorem that will be used in this thesis.
We also give the definition of sets of locally finite perimeter, and state some of their
properties.

In section 5 we prove a result of £— solutions with linear growth.
In section 6 we prove some results of limits of blow up sequences.

In section 7 we give some results of the Schwartz symmetrized function.

Outline of Chapter 2. In Section 1 we prove the existence of minimizers of
(0.1.3) and that they are subsolutions of Lv = 0. We also prove that the minimizers
are nonnegative. The existence of minimizers, while standard in its form, makes
strong use of the Orlicz spaces and the second inequality in condition (0.0.2).

In Section 2 we prove that any local minimizer u is Hélder continuous (Theorem
2.2.1), Lu=01in {u > 0} (Lemma 2.2.12) and finally we prove the local Lipschitz
continuity (Theorem 2.2.25). The proof of the Holder continuity of the minimizers
is a key step in our analysis and is one of the main proofs in this paper in which all
the properties of the function G come into play through the inequality of Theorem
1.2.38.

In Section 3 we prove that minimizers satisfy a nondegeneracy property near the
free boundary Q N d{u > 0}. We also prove that the sets {u > 0} and {u = 0}
have locally uniform positive density at the free boundary (Theorem 2.3.5). In this
theorem we make strong use of the properties of G and the corresponding Orlicz
space.

In Section 4 we prove that the free boundary has finite N — 1 dimensional Haus-
dorff measure and we obtain a representation theorem for minimizers (Theorem
2.4.5). This implies that {u > 0} has locally finite perimeter in 2. Finally we prove
that HY~1(0{u > 0} \ Orea{u > 0}) = 0.

In Section 5 we give some properties of blow up sequences of minimizers. We
prove that any limit of a blow up sequence of minimizers is again a minimizer
(Lemma 2.5.1) and we finally prove the asymptotic development of minimizers at
every point in their reduced free boundary (Theorem 2.5.5).

In Section 6 we give the definition of weak solution (Definition 2.6.1 and Defini-
tion 2.6.2). We show that most of the properties that we proved for minimizers also
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hold for weak solutions according to Definition 2.6.1, and we mention the differences
between the two definitions (Remark 2.6.8 and Remark 2.6.21).

In Section 7 we prove the regularity of the free boundary of weak solutions near
“flat” free boundary points (Theorem 2.7.54) and then, we deduce the regularity
of the free boundary of weak solutions near almost every point in their reduced
free boundary and, in the case of minimizers, we obtain the regularity of the whole
reduced free boundary (Theorem 2.7.56). We also prove for a certain class of func-
tions satisfying (0.0.2) that, in the case N = 2, the whole free boundary is regular
(Corollary 2.7.66).

Outline of Chapter 3. Chapter 3 is organized as follows: In Section 1 we begin
our analysis of problem (FP.) for fixed €. First we prove the existence of a minimizer,
the local Lipschitz regularity and nondegeneracy near the free boundary (Theorem
3.1.2) and we prove that minimizers are weak solutions of a free boundary problem as
defined in Chapter 2 (Remark 3.1.14). Then we have that for H¥~1— almost every
free boundary point, the free boundary is locally C*# surface (Corollary 3.1.15). We
prove that, for the case N = 2 and for a subclass of functions satisfying (0.0.2), the
whole free boundary is regular (Corollary 3.1.22).

In Section 2 we prove that for small values of € we recover our original optimiza-
tion problem.

Outline of Chapter 4. Chapter 4 is organized as follows: In Section 1 we
prove the uniform Lipschitz continuity of solutions of (P.) (Corollary 4.1.8).

In Section 2 we prove that if u is a limiting function, then Lu is a Radon measure
supported on the free boundary (Theorem 4.2.1). Then we prove Proposition 4.2.18,
that says that if u is a half plane, then the slope is 0 or ®~*(M), and Proposition
4.2.20 that says that if v is a sum of two half plane, then the slopes must be equal
and at most ®~(M).

In Section 3 we prove the asymptotic development of u (Theorem 4.3.3).

In Section 4 we apply the results of Chapter 2 to prove the regularity of the free
boundary (Theorem 4.4.7).



CHAPTER 1

Preliminaries

This Chapter we will state some results that will be used throughout the thesis.
We also prove some new facts that are going to be needed in many proofs. From
now on we will assume that the function g¢ satisfies condition (0.0.2).

1. Properties of the function G

In Section 1 we state and prove some properties of the function G and its deriv-
ative g that are used throughout the thesis. We give the definition of Orlicz space
and Sobolev-Orlicz space, and some properties of these spaces. All these results can
be found in [1].

LEMMA 1.1.1. The function g satisfies the following properties,

(g1) min{s’, s%}g(t) < g(st) < max{s’, s%}g(t)
(g2) G is convex and C*

tg(t)
3 <Gt)<tg(t) Vt>0
@) 2 <am <t viz
PROOF. For the proofs of (g1)—(g3) see [22]. O

REMARK 1.1.2. By (g1) and (93) we have a similar inequality for G,

(G1) min{s"™, 35’0*1}% < G(st) < (1 + go) max{s®™! s9F11G(t)
0

and, then using the convezity of G' and this last inequality we have,

(G2) G(a+0b) <2%(1 + go)(G(a) + G(b)) V a,b > 0.

As g is strictly increasing we can define g~!. Now we prove that ¢! satisfies a
condition similar to (0.0.2). That is,

LEMMA 1.1.3. The function g~! satisfies the inequalities

—1\/
Lot )0 1y

1.14 —_ <

(1.14) g~ g Mt) T 0

Moreover, g~ satisfies,

(g1) min{sl/a, sl/go}g_l(t) < g_l(st) < max{sl/‘;,sl/go}g_l(t)

29
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and if G is such that G'(t) = g~(t) then,
otg~'(t) _ ~

<G@t)<tg'(t) Vt=>0

@) gL <

~ 1 . _ _
(Gl) (f—gé)min{sl—&-l/ﬁ’sl-‘rl/go}c;(t) < G(St) S 1;—T_5Hlax{sl-ﬁ-l/&’Sl—i—l/go}GQ)

(93) ab <eG(a)+ C(e)G(b) Y a,b>0 ande >0 small

(g4) G(g(t) < 9G(t)
PROOF. Let s = ¢g7'(t), then

Ho V() _ g(s)
gt  g(s)s
and using (0.0.2) we have the desired inequalities.

Now (g1) follows by property (g1) applied to ¢g~!, and (g2) by property (g3).
(él) follows by g1 and ¢2.
By Young’s inequality we have that ab < G(a) + G(b) and then, for 0 < ¢’ < 1 such
that & = (1 + go)e’**9),

g'ag < G(Ea) + é(f) < = G(a) + C()EW).

In the last inequality we have used (G1) and (G1). Thus (§3) follows.
As g is strictly increasing we have that G(g(t)) + G(t) = tg(t) (see equation (5),
Section 8.2 in [1]) and applying (g3), we get

Glg(t) = tg(t) — G(t) < goG(t).
Thus, (g4) follows. O

In order to prove the existence of minimizers we will use some compact embed-
ding results (all these results are included in [1]). To this end, we have to define
some Orlicz and Orlicz-Sobolev spaces. We recall that the functional

Huugsz{mo;/gc:(@) dr < 1}

is a norm in the Orlicz space LY(£2) which is the linear hull of the Orlicz class

Kg(Q) = {u measurable : /Q

G(|u|) dz < oo}.

Observe that this set is convex, since G is also convex (property (g2)). The Orlicz-
Sobolev space W1HE(Q) consists of those functions in LE() whose distributional
derivatives Vu also belong to LY(£2). We have that ||ul|y1.c = max{||ullq, ||Vullc}

is a norm for this space.
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LEMMA 1.1.5. There exists a constant C' = C(go,d) such that,

Julle < C’max{(/QG(’u‘)d%)l/(wl)7 </QG(]u|)dx>l/(gO+l)}

PROOF. O

If/ G(|u)dz = 0 then v = 0 a.e and the result follows. If [, G(|Jul)dz # 0,
Q

1/(6+1) 1/(go+1)
take k = max{(2(1 + 90) Jo G(|u]) d > (2 14 g0) [, G(lu])d > }

(G1) we have,

|[ul 1 1
< - <
/S; ( k‘ )dl' (1+go)max{k5 17k‘90 1}/{;G(|U|)d$ 1

therefore |jul|¢ < k and the result follows.

By

DEFINITION 1.1.6. A function G is said to satisfy a global Ao— condition if there
exists a positive constant k such that for everyt > 0,

G(2t) < kG(2).

Stmilarly G is said to satisfy a Ay— condition near infinity if there exists tg > 0
such that
G(2t) < EG(t)
holds for all t > t,.
DEFINITION 1.1.7. We call a pair (G,Q) A— regular if either,

1. G satisfies a global As— condition, or
2. G satisfies a As— condition near infinity and €2 has finite volume.

THEOREM 1.1.8. Lé(Q) is the dual of L%(Q)). Moreover, L%(Q)) and Wh%(Q)
are reflexive.

PROOF. As ( satisfies property (G1) and G property (G1), we have that both

pairs (G, ) and (G,Q) are A— regular. Therefore we are in the hypothesis of
Theorem 8.19 and Theorem 8.28 in [1], and the result follows. O

THEOREM 1.1.9. LY(Q) — L(Q) continuously.
PROOF. By theorem 8.12 of [1] we only have to prove that G dominates ¢t'*°

near infinity. That is, there exits constants k, to such that t'¥° < G(kt) Vt > t,.
But this is true by property (G1). So the result follows. O
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2. Properties of L- solutions and subsolutions

In Section 2, we state some real analytic properties for functions with finite
fQ (|IVul) dz hke a form of Poincaré inequality, a Cacciopoli type inequality, the
Holder continuity of functions in a kind of Morrey space, properties of weak solutions
to Lu = 0 and a comparison principle for sub and supersolutions. We also prove
that if u is a continuous function which is an £ solution in the set {u > 0} then is a
L— subsolution. At the end of this section we give an explicit family of subsolutions
and supersolutions in an annulus. All these properties will be thoroughly used
throughout the thesis. Some of them have been proved in [22]. We only write down
the proof of statements not contained in [22].

The following result is a Poincaré type inequality.

LEMMA 1.2.10. If u € WHY(Q) with uw = 0 on 9Q and [, G(|Vu|) dx is finite,

then
/ (| |> dr < / G(|Vul|)dz  for R = diamf).
Q Q
PROOF. See Lemma 2.2 of [22]. O

Now we state a generalization of Morrey’s Theorem. Let

o — sup 1) = )]
o z,y€Q ’:C - y’a
TFY
We have the following result,

LEMMA 1.2.11. Let u € L*®(2) such that for some 0 < a < 1 and o > 0,
/ G(|Vu|)dz < Cr¥Tot V0o <r <

with B, C Q). Then, u € C*(Q) and there exists a constant C; = C1(C, a, N, go, G(1))
such that [u]pa0 < Ci.

PROOF. The proof of this lemma is included in the proof of Theorem 1.7 (pag.
346) in [22]. O

The next lemma is a Cacciopoli type inequality for subsolutions of Lv = 0.

LEMMA 1.2.12. Let v be a nonnegative weak subsolution of Lv = 0. That is,

(1.2.13) 0> / (|Vv]) N ‘V¢d V ¢ € C3°(2) such that ¢ > 0.

Then, there exists C = C'(N, 0, go) > 0 such that

/ G(|V]) dz < C/B G('Z—‘) dz

3r

for all >0, such that Bs, C .
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PROOF. Let ¢ = vp%*!l where 0 < n € C&(B%T), with [V < £, 9 < 1,
n = 1in B,. Then, V¢ = n® Vv + vVn(gy + 1)n% and replacing in (1.2.13) we
have,

Vv

0> / oIV [Voln® d + (go + 1) / (Vo)LL v da.
B B |VU|

3, 3,

Then,
/ g(|Vu)[Voln® ™ dz < (go + 1)/ g(IVo))[Vllv|n® dz,

By, By,
By property (¢3) we have,

(Vo)) [Valloly® < eG(g(IVol)n®) + C(e)G(| Vo).
Then, by property (él) and as 7 < 1, we have,

Glg(Velr) < Cr %) G(g(1Vo)) < Cp o0 (| Vo),

where the last inequality holds by (g4). Summing up, and using property (g3), we
obtain

G(|Vo|)nttdr < Ce G(|Vv|)nettdr 4+ C(e) G(|Vn||v]) dz,
B

B%T B%T %r

and if we take ¢ small and use the bound for |Vn| we have,
/ G(|Vo| )yt dr < c/ G(|IVallv]) dz < c/ G(M) dz.
B B B r

Finally, if we use that 7 = 1 in B, the result follows.

O

The following lemmas are a generalization of the weak Harnack and Harnack
inequality, and the proofs are all include in [22],

LEMMA 1.2.14. Let R > 0, u € L N WYY(Bg) and such that Lu > 0 in Bg.
Set m =2N(go+1). Then for s >0, o € (0,1), there is a constant C' depending on
go and N such that

C 1/s
+ < - R—N/ + 5 )
s S g (1, (00 )

LEMMA 1.2.15. Let R < 1, 0 < u € WYY(Bg) and such that Lu < 0 in Bg.
Then there exist constants py and C' depending on go,0 and N such that

1/
inf u > C’(R_N/ (u™)Po dm) ",
Br

Br2

If we choose s = py we infer the usual Harnack inequality,
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THEOREM 1.2.16. Let R <1, 0 < u € WhY(Bg) and such that Lu = 0 in Bg.
Then there exist a constant C depending on go,0 and N such that

sup u < C' inf w.
Br/2 Bry2

A consequence of the weak Harnack inequalities is the following strong maximum
and minimum principles,

THEOREM 1.2.17. Let u € WH¢(Q),
1. if u satisfy Lu > 0. And if, for some ball B CC Q) we have,
supu = supu > 0,
B Q

or
2. if u satisfy Lu < 0. And if, for some ball B CC §2 we have,

infu =infu > 0,
B 0

then the function u must be constant in ). Moreover, if u is continuous this implies
that the strong classical mazimum and minimum principle hold.

PrOOF. First, (1) follows as in Theorem 8.19 of [17] by using Lemma 1.2.15.
Finally (2) follow by replacing u by —u. O

LEMMA 1.2.18. Let v be a weak solution of Lv =0, that is
/ o([Vu)~ o ’V<;5dx —0 VeelEQ).

Then v € CY¥(Q) for some a = (N, 8, go). Moreover, there exists positive constant
C' = C(N,0,q0) such that for every ball B, C €,

1) supG(IVe)) < [ GVl do
Br/2 r Bzr
C
(2) sup |Vo| < — sup |v|
B'r/? r B

For every § € (0, N), there exists C = C(N, 8,6, go, |[v|| oo (2,) > O such that,

(3) / G(IVo]) < O,
r/2
If v=u on OB,, withu € W-%(B,) then ,

(4) [ (v gC/B (1+ G(Vu)).
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PRrROOF. For the proof of (1) and (4) see Lemma 5.1 of [22] and for the proof
of (3) see (5.9) page 346 of [22]. Let us prove (2). By using (1) and then Lemma
1.2.12 we have,

c c v c
supG(|ve) < 5 [ GV < 5 (M ar <6(Gollims).

Bry2 By, v
3
Then
C
|vv(y0>| < ?HUHLOO(BT) Yo € BT/Q
and the result follows. O

We finally state the regularity result of [22] for weak solutions of Lu = 0.

THEOREM 1.2.19. Any u € WHC(Q) solution of Lu = 0 in Q, is in C1P(Q) for
some positive 3 depending on 9, gy, N and

||U‘||1,,3;Q’ S 0(57 90, N7 diSt(Q/7 aQ); ”uHLOO(Q))
for open € CC Q.

THEOREM 1.2.20. Let Q a bounded domain with C** boundary, ¢ € C1(9Q)
with ||¢[|cre < a. Then any u € WEE(Q) solution of Lu =0 in Q, u= ¢ on 0L, is
in C19(Q) for some positive 3 depending on 6, go, N, o; moreover

||u||1,,5,ﬂ S 0(57 gO7Nana7 ||u||L°°(Q))

REMARK 1.2.21. The results that we mentioned before are proved in [22] for

a class of more general operators. We are stating here only the cases that we are
going to use. For example, we also have similar results for the operator Qu(z) =
Lv(x) — f(x) where f > 0. In this case, the inequality in Theorem 1.2.16 holds with
the following version,

sup u < C(inf +|| f]|e0)

Brs Bry2
with C'" = C(N,0,q0), and Theorem 1.2.19 also holds, but with a constant C' =
C(N, 6, 90, 9(1), | flloc, dist(€Y', 0€2)).

Now, we will give some properties of subsolutions and solutions of

(1.2.22) Lv = div(A(Vv)) =0,

where A(p) = g(]p|)‘%|. First, let us observe that if a;;(p) = aﬁj then,
/ g(pD)\ pip; . g(lpl)

(1:2:29) 1= (0 =5 ) e +

Then, for ¢ € RY we have,

e (o 9UpDN @67 g(lpD) 0
ity = (o pl) ~ 50 o + 5l
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and using (0.0.2), we get

(1.2.24) min{d, 1}M\£!2 < a;5§:&; < max{go, HMW,

p| Pl
which means that the equation Lv = 0 is uniformly elliptic for % bounded and
bounded away from zero.

REMARK 1.2.25. Observe that in any ring R = {c < |p| < C}, A(p) satisfies
the natural conditions of Ladyzhenskaya and Ural’tseva and therefore in any open
set contained in {C' > |Vu| > ¢}, u € W*YU) (see Chapter 4 in [18]). Then as a;
is in L>*(R), we can differentiate equation (1.2.22), and we obtain by (1.2.23) that
u satisfies a linear nondivergence uniformly elliptic equation, Tu = 0 in U, where

(1226) Tv= bl]<VU)DwU = O,

g (|Vul])|Vul D;uDju
1.2.27 by (V) = 6, + (L ZVED 4 ,
(1:2:27) (v =+ (S ) e

and by (1.2.24) we have that the matriz b;j(Vu) is (-elliptic, with
8 = max{max{go, 1} max{1,1/d}}.

LEMMA 1.2.28. Let u by a solution of (1.2.22) in an open set U, and such that
¢ < |Vu| < C. Then, for any unit vector e the function w = % satisfies the
uniformly elliptic equation D;(a;;(Vu)D;w) =0

PROOF. By Remark 1.2.25 and Theorem 1.2.19, u € W*Y(U) N C*(U) and
then the result follows as in Section 13.1 in [17]. O

THEOREM 1.2.29. Let w be a solution to the following uniformly elliptic operator
CijDijw =0 in
where the coefficients c;; € C°(Q), |cij| < A, and with ellipticity constant 3. Then,

1. For any 0 < a < 1 and 2 C Q there exists a constant
C = C(B,a, N, ||ul|L=(), dist(Y,09Q)) such that

HwHCl,a(Q/) S C
2. For any q > 1 there exists a constant C' = C(8, N, ||u||~(q)) such that,

|wl[w2a@) < C.

PROOF. See [17]. O

REMARK 1.2.30. Suppose that Lu = 0 and |Vu| > ¢ in an open set U. We
have by Theorem 1.2.19 that u € CYP(U) and by Remark 1.2.50 we also have that
Tu=0. As g € C' we have that the coefficients ¢;; = b;;(Vu) are continuous. So,
we can apply Theorem 1.2.29 to a solution of Tw =0 in U.
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LEMMA 1.2.31. Suppose that conditions (0.0.2) are satisfied and suppose that
there exist a constant ¢ such that

(1.2.32) F(t)>c Vt>0.

Let u be a bounded weak solution of Lu =0 in B(4R), with
(1.2.33) / F(Vau))(1 + [Vu|)? dz < oo,
B(4R)

where F'(t) = g(t)/t. Thenv = G(|Vu|) is a weak subsolution of D;(b;;(Vu)D;v) =0
in Bsg, where b;; is defined in (1.2.27).
PROOF. See page 1205 in [21]. O

LEMMA 1.2.34. With the same hypothesis of Lemma 1.2.531, if f is a bounded
function, and u is a solution of Lu = f we have that u € W*2(Q).

PROOF. The proof follows as the proof of Lemma 1 in [21] where the authors

considered the case for f = 0. In our case we proceed in a similar way using, as in
[21] ideas from [18], Section 4.5; 17, (4.4).. O

Now we prove the comparison principle,

LEMMA 1.2.35. Let U be an open subset, u a weak subsolution and w a weak
supersolution of Lu =0 in U. Ifw > u on OU then, w > w in U. If w is a solution
to Lw =0 and w = u on AU then, w is uniquely determined.

PROOF.

0> / (o019l o~ g Vwl) o) 9 — ) di

V]
Vu Yw
= Vul)— — g(|Vw|) —— ).V(u — w) dz
/U - (919D 7 ~ o |>|W,) (1 — w)

1

— / / aij(Vu + (1 = t)(Vw — Vu)) (g, — W, ) (Ue; — Wy;) dt dx
Un{u>w} J0

And using (1.2.24) we have that the right hand side is grater than or equal to

1
C’/ / F(|Vu+ (1 —t)(Vw — Vu)|)|Vw — Vul|* dt dx,
Un{u>w} JO

where F(t) = @. Now, we take the following subsets of U

Si={xeU:|Vu—VYVuw| <2|Vul}, So={zeU:|Vu—-Vuw|>2|Vu|}
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Then S; U Sy = U and

(1.2.36)

%|Vu\ < |Vu+ (1 —-1t)(Vw — Vu)| < 3|Vu| in S; for t > %
(1.2.37)

i|Vu —Vuw| <|Vu+ (1 -t)(Vw - Vu)| <3|Vu—-Vw| in S, fort < 411

In Sy, and for ¢ > 3/4 we have using (1.2.36), that
g(|[Vu+ (1 —t)(Vw — Vu)|)
IVu+ (1 —t)(Vw — Vu)|
o(Ivu) _ 1
3|Vu|  — 293
where in the last inequality we have used (gl).
In Sy, and for ¢ < 1/4 we have using (g3) and then (1.2.37) that,
F(IVu + (1 —t)(Vw — Vu)|)|Vu — Vuw|?
G(|[Vu+ (1 —t)(Vw — Vu)|)

F(|Vu+ (1 —8)(Vw — Va)|) =

F([Vul)

o 2
Vutr (Ve —vap eVl
G(3|Vu — Vwl) s _ G(|Vu— Vuw|)
— >
Z v —vup V4V 2 i )

where in the last inequality we have used (G1).

Therefore, we have that

0> C(/sl F(IVu|)|V(u —w)"|* dz + /S2 G(|V(u— w)+|)dx>.

Hence V(u — w)™ = 0 in Sy and V(u — w)t = 0, or F(|]Vu|) = 0 in S; in which
case Vu = 0 and, by the definition of S, this implies that V(u — w) = 0 in S;.
Therefore, V(u —w)™ = 0in U, then (u — w)* = 0, which implies u < w. O

The following inequality will be a key tool in the proof of the Hélder continuity
of minimizers of the problem in Chapter 2. Also, it will be used to prove that in the
optimization problem, we don’t need to pass to the limit with the penalization pa-
rameter. As an observation, we mention that the following result is a generalization
of well known integral inequalities for the p- Laplacian (see, for example, pag.4 in
[10]). Here the difference is that we obtain a unique inequality for any ¢ and g, (for
the p-Laplacian the inequalities were separated in two cases p > 2 and 1 < p < 2).

THEOREM 1.2.38. Let u € WH4(Q), B, CC Q and v be a solution of
Lv=0 B, v—ueWy%HB,).
then

| (@vuh-cvepyds= o

T A2

G(|Vu—Vu|) dx+/

F(|Vu|)|Vu—Vu|? d:zc),
Aq
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where F(t) = g(t)/t,
Ay ={z € B, :|Vu—Vu| <2|Vul} and Ay ={ze€ B,:|Vu—Vu|>2|Vu|}
and C' = C(go,9).

PROOF. Let u® = su + (1 — s)v. Using the integral form of the mean value
theorem and the fact that v is an £— solution, we have,

7: —/ (G(|Vu|) = G(|Vv|)) dx —/ / |
g(|Vu® | g(|Vv|) V(u® —v)dzds
= 3], (v s |>
/ / / a3 (Vat* + (1 — £)(Vo — Vo)), — va) (s, — v,,) dt da ds.
o SJa, o
And, by (1.2.24) we have that the right hand side is grater than or equal to

1 1 1
C/ ;/ / F(|Vu® + (1 —t)(Vo — Vuo)|) | Vo — V[ dt dz ds.
0 rJO

where F' was defined in Lemma 1.2.35 and C' = C(9).
Now, we take the following subsets of B,
S ={z € B, : |Vu’ —Vu| <2|Vu’|}, Sy={xe€ B, :|Vu’ — V| >2|Vu’l}
Then S; U S = B, and

V(u—v)drds

(1.2.39)

%|Vus| < |Vu' + (1 —t)(Vv — Vu')| < 3|V’ on S for t > Z
(1.2.40)

%\ws _ V| < |Vt + (1= #)(Vo — V)| < 3|V — Vo|  on S, for £ < %

Proceeding as in Lemma 1.2.35, we get

F(|lVu® 4+ (1 —t)(Vv — Vu?)|) > F(|Vu®|)

2903
in S; and

G(|Vu® — Vu|)
= 4g0+19(1 + 90)

F(|Vu® + (1 —t)(Vv — Vud)|)|Vu' — Vof* >

in SQ.

Therefore, we have that

| |
zzo(/ -/ F<|vu8|)|w—vu8|2da:ds+/ —/ G(|Vu5—Vv|)dxds>
0 &) S1 0 S So

Now, let
Ay ={z € B, :|Vu—Vu| <2|Vul}, Ay={z€B,:|Vu—Vu|>2|Vu|},
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then B, = A; U Ay, and

v

1
(1.2.41) §|Vu| < |Vu'| < 3|Vu| on A for s

1
(1.2.42) Z\Vu — V| < |Vu®| < 3|Vu — V| on A, for s

A
e o

Therefore

1/4 1
zzc(/ -/ F(|Va*|)|Vo — V| da ds
0 S S1NAsg
t1
+/ —/ F(|Vu®])|Vv — Vu®|* dx ds
3/4 S S1NA1
1/4 4
—|—/ —/ G(|Vu® — Vu|) dz ds
0 S SoNAs

1
+/ —/ G(\Vus—vm)dxds) — [+ 1T+ 11T +1V.
3/45 SoNAq

Let us estimate these four terms,

In S; N Ay, for s <1/4 we have by (1.2.42) and (gl), that

F(Va)) > —— F(|Vu — Vo).

4903
Therefore,
1/4
[20/ —/ F(|[Vu — Vv|)|Vv — Vu®|* dz ds
0 S S1NAs
1/4
:C’/ S/ F(|Vu — Vv|)|Vv — Vul? dx ds
0 S1NAsg
>

1/4
C’/ s/ G(|Vu — Vu|)dx ds
0 S1ﬂA2

where in the last inequality we are using (g3).

In Sy N Ay, for s > 3/4 we have by (1.2.41) and (gl), that

1
> — .
F(Vw)) = 5= F(Vu)

Therefore,

1
1> C/ s/ F(|Vu])|Vv — Vul? dx ds
3/4 S1NA4

1
> c/ / F(|Vul)|Vo — Vul? dz ds.
3/4 JsinA
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In Sy N A, for s < 1/4 we have by definition of Sy, by (1.2.42) and (G1), that

G(|Vu® — Vo)) |IVu — Vol),

P —
— 2901 (go 4 1) (
therefore

1/4 1
117 > C/ —/ G(|Vu — Vu|)dzds
0 S SoNAs

1/4
> C/ s/ G(|Vu — Vu|) dz ds.
0 SaoNAs

In Sy N Ay, for s > 3/4 we have, by definition of Sy and by (1.2.41)
(1.2.43) |Vu® — Vo| > 2|Vu’| > |Vul

By (g3), using (1.2.43) and the definition of A; we have,

1
G(|Vu® — Vol|) >
(V= Vo)) 2 —
1 S
= —F(|Vu|)s|Vu — Vul||Vu| > ———

(V| Vu' = ol

1
g(|Vu® — Vo|)|Vu® — Vo| >
9o
F(|Vu|)|Vu — V|2,
Therefore,

1
[VZC’/ / F(|Vu|)|Vu — Vv|? dx ds.
3/4 SoNAq

If we sum I + 111, we obtain

1/4
I+111> / Cs(/ G(|Vu — Vv|)d:c—|—/ G(|Vu — Vv|)dxd$>
0 S1NAs SoNAsz

1/4
:C/ s/ G(\Vu—Vv\)da:ds:C/ G(|Vu — Vu|) dz
0 As As

and if we sum 1 + IV, we obtain

3/4
n+1vz0/ (/ F(|Vu]) |V — Vol? da
1 S1NA

+/ F(|Vul) [V — Vol? de ) ds:O/ F(Vu))| Ve — Vol de.
SoNAq A1
Therefore,
(1.2.44) Izc</ G(|Vu—Vv])dx—|—/ F(\Vu\)|Vu—Vv|2d:r;),
Ag Al

where C' = C(go,9).
O

LEMMA 1.2.45. Let u be a continuous and nonnegative function in IRYN, such
that Lu = 0 in {u > 0}. Then u is in W2 (Q) and A := Lu is a nonnegative Radon
measure with support in QN O{u > 0} (in particular, u is an L— subsolution in ).
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PROOF. Since Lu = 0 in QN {u > 0}, then u is in C** in QN {u > 0}. For
s >0, take v = (u — s)T. Let n € C§°(2) with 0 < n < 1. We have,

g(|Vul) 1,
O:/ VuV(n® ) da

[ wetawuival + o+ 1) [0 D guwy ar
Qﬂ{u>s} Q |v |

Therefore,

26) [ vVl < g0+ 1) [ gvu Il
Qﬂ{u>s}

ON{u>s}
By (33), (G1) and (g4) we obtain,
g(|Vul) nl*° ol [Vn| < eGg(|Vul)|n[*) + C(e)G(Jv||Vn])
< Cen™ G (g(|Vul)) + C(e)G(|v]| V)
< CeG([Vul )™ + Ce)G(|v] V).
Then, using (¢3), (1.2.46) and choosing ¢ small enough, we have that

[ wreqvayase [ aeliwahdr < [ GQul il da
Qn{u>s} Qn{u>s} Q

Then, letting s — 0 yields the first assertion.

To prove the second part, take £ € C§°(€2) nonnegative, € > 0 and
v = max (min (1,2 - g),0>. As Lu =0 in {u > 0} and using that supp(1 —v) C
{u > e}, we have that,

/ IV G e i

Val
- [ 2w (e - o) ar+ [ LEDvuvien i
Q Q

Val Nz

o(1 V) o(| V)
— LAYIMTA VTV dr = — ~VuV
/Q T YUV ey dr= /{} T YUV e

:/ IV G (ev) d:r:—l—/ 9V G ¢ da

Qn{e<u<2e} ’vu| QN{0<u<e} ’VU’

<2 f o(Vul) (e do + [ o(|Vu])| VE| da
QN{e<u<2e} QN{0<u<e}

<2 / 9(|Vul)|Ve] d.
QN{0<u<2e}

which tends to zero when ¢ — 0 yielding the desired result. U

In several points on this thesis we will need an explicit family of subsolutions
and supersolutions in an annulus. We state here the required lemma.
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LEMMA 1.2.47. Let w, = 56‘“'9”'2, fore > 0 and ry > roy > 0 then there exists
w >0 such that

Lw, >0 in B, \ B,
and (v depends only on ry, go, 0 and N.

PRrRoOF. First note that

Lw = g|(|val|03|) {( <(|| |’)) [Vw| — 1) wa Wy, Wy, + Aw|Vw|? }

12

Computing, we have

(1.2.48)
Wy, = —2pex;, e M Wy, = e(ApPaim; — 2/1617)6’“'1'2, IVw| = 2ep|z|e 7,
therefore using (1.2.48) and (0.0.2) we obtain,
3kl Loy
39(|Vw|){<9'(|Vw!) ) 44 g Bl 2
=c Vw| —1)(16p"|x|" — 8u’|x
oot { (Sigap IVl = 1) (16 al* = 8ol
+ (4] — 2MN)4u2lwl2}
39 |Vw| 13 "([Vwl) 2 2
—1)(4 -2 4 — 2N
—e o (S gean V! = 1) Gulel? = 2) + (dplof? — 2) }
39 Ile 3 g ([Vwl) 2 (9(IVuw])
—c 1) z? {( |Vw|>4u|a:\ - (—yw| - 1)2 - zN}
g9(|Vwl) 9(|[Vwl)
Vuw)) 9([Vwl)
>3L4324 25— k) > Iy 52 (4?5 — K
=S gap [ (4p| ] ) NE 1Ora® (dpary )
where K = 2N if g < 1 and K = 2(g9 — 1) + 2N if gy > 1. Therefore if p is big
enough, depending only on 9, gg, 72 and N we have Lw > 0. U

3. Hausdorff measure and Hausdorff distance
DEFINITION 1.3.49. For ACRY, k>0 and o > 0, let
HE(A) = wp27F inf { Z (diam S;)" + A C U Sj, diam S; < a},
: j:l
where wy, s a positive constant, such that, when k € N is the volume of the unit ball
in R¥.

As HE(A) increases, when « decrease, the following limit exists and then we
define the k& dimensional Hausdorff measure, by

HM(A) = lir% HE(A) = sup HE(A).

a>0
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REMARK 1.3.50. If k € N, k < n, H¥(E) coincides with the notion of k- dimen-
sional area in RN, under suitable hypotheses on E.

DEFINITION 1.3.51. We define the Hausdorff distance d(A, B) between two sets
A, B C RV by,

d(A,B) =inf{e >0: A C B° and B C A}
where we denote for a set D C RN and e > 0,
Df ={z cRY : d(x, D) < &}.

THEOREM 1.3.52. Let K C RN be compact. Then the family of all the compact
subsets of K is a complete metric space with the Hausdorff distance.

4. Representation Theorem and sets of locally finite perimeter

4.1. Representation Theorem. The following result is a generalization of
Theorem 4.5 in [4], and will be used throughout the thesis. Its proof follows exactly
as the one in [4].

Let A be an application from C§°(€2) into R, that defines a nonnegative Radon
measure A with support on 0A, where A is an open subset of €). Assume that A
satisfies that for any domain D CC ) there exist constants ¢y, Cy, depending on D,
such that, for every B, C €1, centered on 0A

(1.4.53) corV Tt < / dA < Cor™ 1.

Then we have,

THEOREM 1.4.54 (Representation Theorem). For A, A satisfying (1.4.53) we
have,

1. HN"Y(DNOA) < oo for every D CC Q.
2. There exists a Borel function q such that

A=qgHNOA.
i.e
A(SO)Z/ pqdHY" YV o e C5(Q).
QNoA

3. For D CC Q) there are constants 0 < ¢ < C' < oo depending on cy, Cy, 2, D
such that for B.(x) C D and x € JA,

c<quz)<C, erVP<HNTYB,(#)NAA) < OrNTL

PRroOF. It follows as in Theorem 4.5 in [4]. O
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4.2. Sets of locally finite perimeter (see [14], [13]). Let Q C RY an
open set, and let f € L'(Q2). We define,

/\Vf\:sup{/fdivgd:z::geC&(Q;RN),|g(x)]glVa:EQ}.
Q Q

If [, |V f| < oo we say that f has bounded total variation and we denote,

BV(Q) = {f e 1(© /\Vf|<oo

We can observe that if f € BV(Q) the derivatives of f in the distributional sense
are Radon measures in €.

DEFINITION 1.4.55. Given E C RY, a borel set. We define the perimeter of E
in the open set €2 as

P(E.9) = [ [Vx(B)
Q
and we say that E is a set of finite perimeter in Q2 if x(E) € BV (Q).

If P(E,Q) < oo for all open set 2 we say that E is a set of locally finite perimeter.

In this case, we have that y := —Vxg is a Borel measure, and the total variation
|| is a Radon measure. We have that, for any ¢ € C3(Q; RY)
(1.4.56) /divap dx = / o dp.

E Q

THEOREM 1.4.57. Let E C RY be a set of locally finite perimeter. Then,
[ 1w <1 ianom)
A

for all A C RV,

THEOREM 1.4.58. Let E C RY be a borelian set and suppose that HN~1(K N
OF) < +oo for any compact subset K C RY. Then E has locally finite perimeter.

DEFINITION 1.4.59. Let FE be a Lebesque measurable set. Given x € OF, we say
that the unit vector v is a normal exterior to E£ at x in the measure theoretical sense:

(1.4.60) / o IXE = X{y/ty-zau@<0}] = o(r™).
If such an v ezists, it is unique and we denote it by v(x, E). Then, we define,
Oreal == {x € QNIE/ if v(x, E)exists }.
We have, by the results in [14] Theorem 4.5.6 that,
p=vHN "0,
Therefore, by 1.4.56 we have that, for any ¢ € C3(Q; RY)
(1.4.61) / divpdr = / - -vdHN !
E Orea B

T
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REMARK 1.4.62. If A, A satisfy the conclusions of Theorem 1.4.54, then by
Theorem 1.4.58 the set 2N A has finite perimeter locally in §2.

THEOREM 1.4.63. Let E C RY a set of finite local perimeter, and suppose that
for all xy € OF, it holds that

B E B RN\ E
e N e 1
Then, HN L (OF \ 0,.4F) = 0.
THEOREM 1.4.64. For HN=1 — almost every point xg € OF \ OreqE
|1l (Br(20)) = o(r™ 7).
THEOREM 1.4.65. Let E C RN a set of finite local perimeter then,
(1.4.66) Tim - (Br(@0) N 9E)

r—0 (UN_lT'N_l

> 0.

=1 for HN=Y — almost every point xo € OreqF,

where wy_y is the HN='— surface measure of the unit sphere in RY.

THEOREM 1.4.67. Let E C RY a set of finite local perimeter then, and xo € Oyeq
satisfying 1.4.66. Let prp — 0 and Ey = E;:", such that

XE, — X{zy<0} 1 Lzloc(RN)
0Ey — {xx =0}  locally in Hasdorff distance.
Then, for every D CC {xy < 0} we have
HN"YOE,N D) — 0.

And for,
|zn|

£(x) = min <2( - 1)>n(x1, iy TN-1)
where 0 < n € C(BL), (Bl is a (N — 1) dimensional ball with radius r) we have,

(1.4.68) EdHN T — ndH~1.

8Ek RN-1

PROOF. See the proof of Theorem 4.8 in [4]. O

5. A result on L-solutions with linear growth

In this section we state some properties of L-subsolutions. From now on, we
denote B = B,.(0)N{xxy > 0}. We take ideas from [19]. The proofs in this section
are more involved than the ones in [19] because of the lack of homogeneity of the
function g.

THEOREM 1.5.1. Let u be a Lipschitz function in IRN with Lipschitz constant L
and such that

Lu>0in RY, Lu=0 in {u>0}.
2. {ay <0} C {u>0}, u=0 in {xy =0}.
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{u =0} N Br(0)]

3. There exists 0 < A\g < 1 such that
|Br(0)|

> Ao, VR > 0.
Then w =0 in {xy > 0}.

In order to prove this theorem we need a couple of lemmas.

LEMMA 1.5.2. Let u be a L— subsolution in B} such that, 0 <u < axy in B,
u=0 on Bf N{zxy =0}, u < dpaxy on OB N B,, () with T € O0B,", T > 0 and
0< 50 < 1.

Then there exists 0 < v < 1 and 0 < € < 1, depending only on oy, 79, and N,
such that if 0 <r <1, u(z) < yaxy in BI.

PROOF. By the invariance of £- solutions under the rescaling u(x) = u(rx)/r
and since r < 1, we can suppose that r = 1.

Let ¢ be an L,-solution in B;, with smooth boundary data, such that

YV =N on OB\ B,,(Z)
Sory < ¢* <zxy on By N B, (T)
P = Sox N on OB N B, 2(),

where L,v = div(%V@) and g, (t) = g(at).

Therefore £(a1®) = 0 and, by the comparison principle (Theorem 1.2.35), u <
ay® in B, If we see that there exist 0 < v < 1 and € > 0, independent of «, such
that ¢ < yzy in B, the result follows.

First, observe that,
AL

(1.5.3) § < ™0

Then, by Theorems 1.2.16 and 1.2.20,

Y* e CHP (B_f“) for some (8 > 0 independent of «,
(1.5.4) the C*¥ norm is bounded by a constant independent of o and

the constant in Harnack inequality is independent of «.

If [V4)%| > p > 0 in some open set U, we have by Remark 1.2.30 that ¢* € W?2?(U)
and it is a solution of the linear uniformly elliptic equation,

N
(1.5.5) T = W, =0 inU,

ij=1
wh(;er; b; was define in (1.2.27), and the constant of ellipticity depends only on go
and 9.

Now, we divide the proof in several steps,

Step 1
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Let w* = xn — ¥ then w* € C’l’ﬁ(B_fL) and is a solution of 7,w® = 0 in any
open set U where |V > p > 0.

On the other hand, as ¥ < xy on 8Bfr and both functions are £*-solutions we
have, by comparison, that ¥* < zy in B;. Therefore w® > 0 in B .
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Step 2

Let us prove that there exist p and ¢ independent of «, such that |V¢®| > ¢ in
BT,
P

First, let as see that there exists ¢ > 0 independent of « such that
1
(1.5.6) w(ﬁe]v) > c.

If not, there exists a sequences of ag, — 0 such that ¥ (1/2ey) — 0. But, since
the constant in Harnack inequality is independent of « (see (1.5.4)), we have that,
¥ — 0 uniformly in compact sets of Bf". On the other hand, using that ¢ are

uniformly bounded in C#(BY), we have that there exists ¢ € Q(Bf ) such that, for

a subsequence ¢* — 1) uniformly in B;". Therefore ) = 0 in B, but we have that
Y = doxn on By, 2(Z) NIB;, which is a contradiction.

Let 2y € {xny = 0} N By)s, take zg = 21 + <. By (1.5.4) we have that there
exists a constant ¢; independent of « such that, ¥*(x) > c19*(1/2ey) for any
x € 0By s() , and therefore by (1.5.6) ¥ > ¢ in 0B 5(0).

Take v = s(e 16 — e =20} with s > 0, and choose A such that Lv > 0 in
Bi4(z0) \ Bis(zo) and s such that v = ¢ on 9By s(xo) (observe that, by Lemma
1.2.47 X\ and s can be chosen independent of «). Since ¥* > 0 and ¥ > v on
0B1/s(x9) we have by comparison that * > v in Bya(xo) \ Bis(@g). On the
other hand v, (z;) = s2\(2; — zo)y = s2, and therefore vy (1) > % As y*

29
are uniformly Lipschitz, we have that there exists p independent of « such that
o (x) >3 in Bf .

Step 3

Since [Vy®| > 2% in B, we have that, T,w* = 0 there. Suppose that
w*(1/2enp) > ¢ > 0, with ¢ independent of a. Then by Harnack inequality we
have that there exists o7 independent of « such that, w® > oyw*(1/2enp) > o3
in B,/4(1/2enp), where oy is a constant independent of a. Therefore, wg (0) >

o3 > 0 with o3 independent of . Since wg  are C? (Bfr/z) with norm controlled

independently of « there holds that wg (z) > ¢ > 0 independent of « in BT, if
¢ is small independent of a. So that, w$ () > ory in Bf and we have that
o (@) < (I —o)ry in Bf. Thus, the result would be true with v = 1 — o if we
have that w*(1/2eyp) > ¢ > 0 independent of a.
w® > 092p lay in Bj/z, then taking v = 1 — 2p~'oy and € = p/2, we obtain the

desired result.
Step 4

Let as see that w,(1/2eyp) > ¢ > 0 where ¢ is independent of a. Suppose,
by contradiction that for a subsequence, wq, (1/2exp) — 0. We know that in B
Tows = 0. Then, applying Harnack inequality, we have that for any compact subset
K CcC B;“ we have that w, — 0 uniformly in K. On the other hand, v, are

uniformly bounded in C#(B;). Thus, there exists @ € C(B;) such that, for a
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subsequence w™ — w in C(B;). Let
A={zeBf | a(x) =0},

and suppose that, there exist a point x; € A N By, then as w® > 0 we have that
w has a minimum at x;. Therefore, Vw(z,) = 0. As Vw* — Vw uniformly on
compact subsets of By, we have that for some 7 > 0 independent of v, | Vi), | > 1/2
in B;(z1). Thus, in this ball, w* satisty 7, w* = 0. We can apply Harnack
inequality in B-(x1) and, passing to the limit we obtain that w = 0 in B, s(z1),
which is a contradiction. Hence @ = 0 in B;. But on the other hand, we have
W =xN — dpxn > 0 on OBy N OB, /2(), which is a contradiction.

O
Now we are ready to proceed with the proof of the theorem.

Proof of Theorem 1.5.1. The proof will be divided into several steps.

Step 1 Let ug(x) = “(?), with 7' > 0 to be chosen later.

Then, the function ug satisfies the same properties as u with the same constants
L and Ag.

Let 3 = 52% < 1, then by properties (2) and (3) with R = 1 we have that there
exists zg € B1(0), with zox > [ such that uy(zg) = 0. Since ug is Lipschitz, with
constant L, we have that ug(z) < L|x — x0|. Thus, if we take ro = 7, we have that
up(z) < % for |x — xg| < rg. There holds that zy > % in this ball. Hence, we have
that

L
wolz) < % on OB} N Byy (o),

where Ry = |zo| > .

By property (1), and by Lemma (1.2.45) ug is an £- subsolution. By property 2
0 <wp(x) < Lry.

Taking in Lemma 1.5.2 6 = 1/3, T = 2y, « = L and r = R; we have that there
exist 0 <y < 1 and 0 < g7 <1, depending only on ry and z( such that

(1.5.7) 0 <wup(z) <mLey in Bf .
Observe that since zo 5y > 3 then ; and ; depend only on A.
Now, take u;(z) = %. Then, again u; satisfies the properties of u with

the same constants L and ).

Therefore, there exists z; € By(0), with z; y > [ such that u;(z1) = 0. By (1),
ui(x) < L|z — xq|. Thus, if we take r; = %, we have u;(z) < % for |z — x| <.
As v <1, in that ball there holds that zy > %. Thus, we have that

uy(z) <

L
n 3$N on OB}, N By, (1),

where Ry = |z1| > .
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By property (1), uy is an £- subsolution. And by (1.5.7), we have 0 < u;(x) <
Y1 Lzy in Bf'.

Taking in Lemma 1.5.2 6 = 1/3, T = 21, « = 71 L and 7 = Ry we have that there
exist 0 < 72 < 1 and 0 < g9 < 1, depending only on Ay such that u;(z) < 71 Lzy

Inductively, we construct a sequence uy such that, uy satisfies the same hypothe-
ses as u with the same constants L and )y and such that,

(1.5.8) 0<wup_1 <apry in B}

where o, = L Hle i, and 0 < 7;, €; < 1 depend only on A\g. In the construction we
ug—1(Rer)

have uy(z) = ==5=F

Therefore, for any k£ > 1
(1.5.9) up < agry  in B

k
Where, 6k = Hi:l RzEz

Step 2 Let us see that ap — 0 when k — oo. Suppose by contradiction that this
does not hold. Then, since a4, is decreasing, there exists ay > 0 such that ap > ayg
for all £ > 1. We have that ap,1 = Ygr10p, and 1, = gak > gao. Thus, in Lemma
(1.5.2) we can take, for the function wuy, ro as gozo and vy the corresponding v. We
can think that 4,1 was taken as the minimum over the +’s such that the conclusion
of the lemma is satisfied. Therefore ;.1 < 7o < 1 for all k. Then, oy, < L~* for all

k > 1. Therefore oy, — 0; a contradiction.

Step 3 Now, we can prove that if xy > 0 then u(xy) = 0. Suppose that, there
exists & with {y > 0 such that w(§) > 0. Then, since a — 0, there exists k > 1
such that u(£) > apéy. Now, for this fixed k, take T > |£|37* Hle g;. Then, since
R; > 3 we have that |¢| < 7. Thus, if we take £ = & we have that ug(£) > aéy.
But, on the other hand, by (1.5.9), since |£| < dx, we have that ug(§) < axly, which
is a contradiction.

O

As a remark we mention that with Lemma 1.5.2 we can also prove the asymptotic
development of £— solutions.

LEMMA 1.5.10. Let u be Lipschitz continuous in B_fr, u > 0 in B, L-solution
in {u > 0} and vanishing on By N{xy = 0}. Then, in B, u has the asymptotic
development

u(x) = axy + o(|z|),
with a > 0.

PROOF. Let
o =inf{l / u < lx, in B} ;}.

Let o = lim;_. ;.
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Given gy > 0 there exists jo such that for j > j, we have a; < o + 9. From
here, we have u(z) < (a+ €¢)zy in Bf ;. So that,

u(r) < azy + o(|z]) in By

If o = 0 the result follows. Assume that a > 0 and let us suppose that u(z) #
axy + o(|x]). Then, there exist 2, — 0 and § > 0 such that

u(zy) < azpy — Ol
Let ry = |z1] and ug(z) = r; 'u(rgz). Then, there exists uo such that, for a subse-
quence that we still call ug, up — uo uniformly in B;” and
uk(zy) < aZpy — 5
up(z) < (a+gp)zy in B,
where 7, = f—: Also, we can assume that 7, — .

In fact, u(z) < (o + eo)ay in B, . Therefore, u(x) < (4 o)y in B:;,lrjo,
and the estimate follows if k is big enough so that r,:12*j0 > 1.
If we take @ = a + g5 we have
u, =0 on {xy =0}
0<u,<ary on 8Bfr
up < Soaxry  on IB) N Bx(Z),
for some 0 < dyg < 1, Z € OB, Ty > 0 and some small 7 > 0.

In fact, as u; are continuous with uniform modulus of continuity, we have

5 _
uk(xo) < axon — 2 if k> k.
Moreover, there exists 1o > 0 such that u(z) < azxy — g in By, (xg). If xon >0
we take T = x, if not, we take T € Ba,,(z) with Zy > 0 and

ug(x) < axy — -, in B, (Z) CC {zx > 0}.

=~ o

As B,,(z) cC {xy > 0}, there exists dy such that axy — g < dpaxy < dpazxy in
By(z) for some small 7, and the claim follows.

Now, by Lemma 1.5.2, there exist 0 < v < 1, ¢ > 0 independent of ¢y and k,
such that ug(x) < y(a+ go)xy in BF. As v and ¢ are independent of k and &,
taking g — 0, we have

up(z) < yaxy in B
So that,

+
TEE"

u(zr) < ~vyaxy in B
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Now if j is big enough we have ya < a; and 277 < rpe. We get a contradiction to
the definition of a;. Therefore,
u(z) = ary + of|z),

as we wanted to prove. O

6. Blow up limits

We give here the definition of blow up sequence, and give some properties of the
blow up limits.

DEFINITION 1.6.11. Let D C RN. We say that u satisfies hypothesis (H1) if,

(1w Lipschitz in D with constant L > 0
u>01inD
| Lu=01in DN{u>0}

( Given 0 < k < 1, there exist ¢, and r. such that for
(H1) B.(zg) with 0 < r < r, we have
\%jcBr(a:O) u< ¢, = u=0 in By (x0)

( There exist constants ro and 0 < \; < Ay < 1 such that
for B.(xo) C D with xy € 0{u >0} and 0 <r <1
B, N{u>0
Brlan) " {u> 0} _
| Br(20)
DEFINITION 1.6.12. Let B,, (z;) C Q be a sequence of balls with p, — 0, z), —
xo € Q and u(zy) = 0. Let

A1 <
\

1
uk () = Eu(w’k + pr).

We call uy, a blow-up sequence with respect to B, (xy).

Since u is locally Lipschitz continuous, there exists a blow-up limit ug : RY — R
such that, for a subsequence,
up —ug in - C2(RY) forevery 0<a <1,
Vu, — Vug  * —weakly in L2 (RY),

loc

and wg is Lipschitz in IR with constant L.
LEMMA 1.6.13. If u satisfies hypothesis (H1), then
1. {ug > 0} — 0{ug > 0} locally in Hausdorff distance,

2. X{up>0} 7 X{uo>0} i Llloc(RN)7
3. If D cC {ug > 0} U{ug = 0}°, then Vur, — Vug uniformly in D,
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Vu, — Vg a.e in RY,

If x, € 0{u > 0}, then 0 € O{uy > 0}

Lug =0 in {ug > 0}.

There exist 0 < A < 1 such that W > AVR > 0, and Yy, €
O{ug > 0}.

N Ot

PROOF. Is clear that uy > 0. If B, CC {uy > 0}, we will have that B, CC
{ur > 0} for k large and then Luy = 0 in B,. Then there exists a constant
C = C(g0,0,N,{uo > 0}, 7, |lup||=(5,)) such that, [|uil|c1s3 < O, but |ug(x)] <
Lr, and then the constant C is independent of k. Therefore for a subsequence
Vur = Vg in B, therefore Lug = 0 in B,. Then (6) is proved.

Let us see (1). Observe that if B.(y) N d{ug > 0} = 0 and up = 0 in B,(y),
then the wy are uniformly small in B,.(y) for k large and by the second property
in (H1) u, = 0 in B,o(y). If ug > 0 in B,(y) then uy > 0 in B, /2(y), therefore
B, /s(y) No{uy > 0} = 0 for k large.

On the other hand, if B,(y) N d{u, > 0} = 0 for k large, and for a subsequence
ur, = 01in B,(y), then uy = 0in B,(y). If not, we will have u; > 0 in B,(y) for k large
and then Lup = 0 in B,(y), then by the strong maximum principle (see Theorem
1.2.17), up = 0 in B,(y) or up > 0 in B,(y). In both cases B,(y) N d{ug > 0} = 0.

Let us see (2). By the second property in (H1) we have that, given a compact
set K, |[K NO{ux > 0} =0 for k large, and then by (1) we have that

(1.6.14) |0{uo > 0} = 0.
On the other hand, if we argue as before, for R and r fixed we have, for k large,

/ X {ur >0y — X(us0y| < {x € Br/d(z,0{uo > 0}) <1}

Br

and then by (1.6.14) the result follows.
Using property 2 of (H1) we derive (3). (4) follows by (2) and (1.6.14).

Finally we prove (7). Note that, by (1) given yo € 9{ug > 0}, there exists
yp € O{ur > 0} such that y, — yo. Therefore, by property 3 in (H1), if we fix
R > 0, we will have for k large

A\ < |Br(yr) N {u, > 0}

B | Br(yx)]
and applying (2) we obtain (7). O

<X

7. Schwartz symmetrization

DEFINITION 1.7.15. Let € a bounded domain. We define the symmetrized do-

main Q0 as the ball {z/|x| < p} with the same volume as Q2. Let u be a function
define on the bounded domain D C RN and

D(p) = {x € D/u(x) > p}.
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We define u* : D* — R by,

u*(z) :=sup{u/x € D(n)*} ifx e D"
We call the function u* the Schwartz symmetrized of u.

ProprPoOSITION 1.7.16.

1. u* is radially symmetric, i.e, u*(x) = u*(|x|), and u*(|x|) is a nondecreasing
function of |x|.

2. [{z € DJu(x) = p}| = {z € D*/u*(x) = p}], for all p € R.

3. If Q) is smooth, i.e, ON) piecewise analytic, u is non negative, and u : 2 —

Lo 1 . .
R is in Wy ®(Q), and G : R — R is monotone nondecreasing and conve,
then

(1.7.17) /QG(]Vu])dx > /*G(\Vu*\)dx.

4. If in addition G 1is increasing and strictly convex then equality holds in
(1.7.17) if and only if u = u*.






CHAPTER 2

A minimization problem and weak solutions

In the first part of this chapter, we will study the following minimization problem.
For © a smooth domain in RY and ¢y a non negative function with ¢, € L>(Q)
and [, G(|Vyl) dz < oo, we consider the problem, of minimizing the functional

(20.1 @) = [ GT) + Ve da

in the class of functions

K= {U e WHE(Q) : v = ¢ on 89}.

Here G' = g and we will assume all the time, that g satisfies condition (0.0.2).

1. Existence of minimizers

In this section we look for minimizers of the functional 7. We begin by discussing
the existence of extremals. Next, we prove that any minimizer is a subsolution to
the equation Lu = 0 and finally, we prove that 0 < u < sup ¢y.

THEOREM 2.1.1. If J(po) < 0o, then there exists a minimizer of J.

PrOOF. The proof of existence is standard. We write it here for the reader’s
convenience and in order to show how the Orlicz spaces and the condition (0.0.2)
on the function G come into play.

Take a minimizing sequence (u,) C K, then 7 (u,) is bounded, so [, G(|Vuy|)
and |[{u, > 0}| are bounded. As w, = ¢ in 0N, we have by Lemma 1.1.5 that
|Vu, — Vo|lg < C and by Lemma 1.2.10 we also have ||u, —¢o||g < C. Therefore,
by Theorem 1.1.8 there exists a subsequence (that we still call w,) and a function
ug € WH9(Q) such that

u, — ug  weakly in WhC(Q),
and by Theorem 1.1.9
U, — ug  weakly in WHH(Q),

57
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and by the compactness of the immersions W19+1(Q) — L°*1(Q) and W19+L(Q) —
L°*T1(09Q) we have that,

U, — Ug a.e. §.

ug =y on Of),

Thus,
{up > 0} < liminf |{u, >0} and
/G(|Vu0|)dx§1iminf/G(|Vun|)d$
Q n—oo Q
In fact,

(2.1.2) /QG(|Vun])dx2/QG(|Vu0|)da:+/ (Vo) 210 (T, — Vug) da

!V \
Recall that Vu, converges weakly to Vug in LY. Now, since by property (g4)
G(9(|Vuo|)) < CG(|Vuo)),

there holds that g(|Vu0|)|§Zg| € LY so that, by Theorem 1.1.8 and passing to the
limit in (2.1.2) we get

liminf | G(|Vuy|) dq:>/G |Vuel) d

n—oo Q

Hence ug € K and
J (up) < liminf J (u,) = in}fC J(v).
ve

n—oo

Therefore, ug is a minimizer of 7 in /. O

LEMMA 2.1.3. Let u be a minimizer of J. Then, u is an L— subsolution.

PROOF. Let ¢ > 0and 0 < ¢ € C§°. Using the minimality of v and the convexity
of G we have

0< é(j(u—sf) _Jw) < é/QG(|Vu—5V§|) _ G(|Vul) da

Vu —eVE
< /Q—Q(WU — EVfDm

and if we take € — 0 we obtain

og/Q (’VUD,V Ve do

VEédx

LEMMA 2.1.4. Let u be a minimizer of J. Then 0 < u < sup ¢g.
Q
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PROOF. Let M = sup ¢y, € > 0 and v = min(M — u,0), then
1
0< E(J(u—i—sv) —j(u))

1
- / G(IVu+ Vo)) = G(ITul) + Mtguseesor — Moy d)
Q

1 Vu+ eV
< — — < R,
< €</Q<G(|Vu+5Vv|) G(|Vu|)> d:zc) _/Qg(|Vu—|—5Vv|)|vu+gvv|Vvdx

where in the last inequality we are using the convexity of G.

Now, takeing ¢ — 0, using the definition of v and (¢3) we have that,

og/ (|vu\)—vvdx——/ o([Vul)|Vu| dz < —/ G(|Vul) dz
Q |V | {u>M} {u>M}

:—/ G(|Vo)) dx
{u>M}

therefore Vo = 0in 2 and as v = 0 on 02 we have that v = 0 in 2 and then v < M.
To prove that u > 0 we argue in a similar way. Take v = min(u,0), then we
have that,
eV

1
0< gj(u—av) —J(u) < _/Qg(qu 5Vv\)mv vd.

Therefore taking ¢ — 0, using the definition of v and (¢3) we have that

OZ/QG(|VU|)dx.

As in the first part, we conclude that u > 0. O

2. Lipschitz continuity

In this section we study the regularity of the minimizers of J. The main result
is the local Lipschitz continuity of a minimizer. This result, together with the
rescaling invariance of the minimization problem, is a key step in the analysis. Once
this regularity is proven, a blow up process (passage to the limit in linear rescalings)
at points of {u > 0} allows to simplify the analysis by assuming that u is a plane
solution.

As a first step, we prove that minimizers are Hoélder continuous. We use ideas
of [10], here all the properties of the function G come into play.

THEOREM 2.2.1. For every 0 < a < 1, any minimizer u is in C*(Q2) and for
' ccQ, ||lullcary < C, where C = 0(90,5,)\, ||t| oo, v, dist($Y,00), G(1)).

PrOOF. We will see that, for every 0 < a < 1 and ' CC €2 there exists py such
that if y € ', 0 < p < pp we have that

= | Gvayar<cpt
P JB



60 2. A MINIMIZATION PROBLEM AND WEAK SOLUTIONS

for a constant C(N, 6, go, ||u||L=(q), po, G(1)).

In fact, let r > 0 such that, B,.(y) C Q. We can suppose that y = 0. Then if v
is the solution of

Lyv=0 1in B,, v—ueWy%(B,),
we have, therefore by Theorem 1.2.38 that

(2.2.2)
/T(G(|Vu\)—G(]Vv])) dx > C</,42 G(]Vu—V’u\)dw—i-/Al F(|Vu\)|Vu—Vv\2dx>,
where

Ay ={x € B, : |[Vu—Vu| <2|Vu|}, Ay={x € B, :|Vu—Vuv|>2|Vul|},
and C' = C(go,0).
On the other hand, by the minimality of u, we have

(2.2.3) / (G(|Vul) = G(|Vv))) dz < A(|{v > 0N B} — |{u > 0N B, }|) < \r"Cy.
B
Combining (2.2.2) and (2.2.3) we obtain

(2.2.4) / G(|Vu — Vv|)dx < CAY
Az

(2.2.5) / F(|Vu))|Vu — Vo*dr < O
Ay

Let € > 0 and suppose that r* < 1/2. Then, using (g3), Holder’s inequality, the
definition of A; and (2.2.5) we obtain,
(2.2.6)

G(|Vu — Vv|) dz

A1NB, 1+

1/2 1/2
< c(/A F(yvuy)yvu—vu|2da:) (/B G(]Vu|)dx>
1 rlte

1/2
< onpNe / G(Vulydr)
B

rlte

Therefore, by (2.2.4) and (2.2.6), we get,

1/2
(2.2.7) / G(|Vu — Vo|) de < CAV/? (Al/%N +rN/2</ G(\Vu|)dx) )
BT1+£

BT1+5

On the other hand by property (3) of Lemma 1.2.18 we have for every g € (0, N),
that there exists a constant C' = C(6, go, N, B, ||v||L=(B,)) such that

(2.2.8) / G(|Vv|)dz < CrP.
B'r/2
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By the maximum principle we have,
(2.2.9) [0l oo s,y < Nlvllz=@m,) = lulle@n,) < llull=s,) < [vllLes.)

where in the last inequality we are using Lemma 1.2.35. Then ||v||ze(5,) = ||©||z(B,)-
This means that the constant C' depends on 6, go, N, § and |[ul|=(s,)

By (G2) we have, G(|Vu|) < C(G(|Vu — Vv|) + G(|Vv])). Therefore by (2.2.7)
and (2.2.8), and for » < 1 we have,

1/2
/ G(|Vu|) dz <c( (1+)\)+)\1/2rN/2</ G(yvuy)dx) )
B rlte B;+E

SC(Tﬂ(1+)\)+rﬁ/2(1+/\)1/2</ G(|Vu|)dx)1/2).

Bq,.l-‘rE

If we call A= f 5., G(|Vu|) dz, we have

A< O+ N+ L+ NP2 A2) < O((1+ X +2(1+ 0)M272412)
= C((FP2+ N2+ A2 - 4),
therefore
(C+1)A< C(rﬂ/Q(l + M)V 4 A1/2)2
= (C +1)242 < CV? (rﬁ/Z(l + Y24 A1/2>
= (O + 1)YV2 = OV2)AV? < GY20/2(1 4 \)V/2,

Thus, we have the inequality

(2.2.10) / G(|Vul|)dz < ((C + 1)Y2 + CV2)2C(1 + \)r?

Let now, 0 < o < 1, and take € > 0 such that 3:= (1+¢)(N — (1 —a)) < N.

Take py = (%)Hl/a. Then, if 0 < p < po, taking r = p'/(1+9) we have that r° < 1/2.
And therefore replacing in (2.2.10) we have,

@211) [ GVU) (€ + 1)+ O+ )N

and by Lemma 1.2.11 we conclude that for all 0 < o < 1, u € C*(B,) for 0 < p < py
and |lul|ce(p,) < C where C' = C(N, o, go, 0, A, po, ||u]| Lo (0))- O

We then have that w is continuous. Therefore, {u > 0} is open. We can prove
the following property for minimizers.

LEMMA 2.2.12. Let u be a minimizer of J. Then u is an L—solution in {u > 0}.
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PRrROOF. Let B C {u > 0} and v such that

V=1 in B¢.

{Ev:O in B,

By the comparison principle we have that v > u in B. Thus,

0> /Qaqw) — G(|IVu|) dz + A{u > 0} — A[{v > 0}| = /Qaqw) — G(|Vo]) dx

zc(/Al F(|Vu|)|Vu—Vv|2dx+/ G(|Vu—Vv|)dx>

Az
where we are using Theorem 1.2.38 and Ay, As, and F are as define therein.

Therefore
/ F(Vu))| Ve — Vo2 dz = 0.
Aq

Thus, F(|Vu|)|[Vu — Vu|? =0 in A; and, by the definition of A;, we conclude that
|Vu — Vo| =0 in this set.

On the other hand, we also have
G(|Vu —Vu|)dz =0
Az
so that |Vu — Vv| = 0 everywhere in B.
Hence, as u = v on 0B we have that u = v. Thus, Lu =0 in B.

O

In order to get the Lipschitz continuity we first prove the following estimate for
minimizers.

LEMMA 2.2.13. For all x € Q, with 5d(x) < d(z,09) we have u(z) < Cd(x),
where d(z) = dist(xz,{u = 0}). The constant C" depends only on N, 0, gy and .

To prove Lemma 2.2.13 it is enough to prove the following lemma. In this proof
it is essential that the class of functions G satisfying condition (0.0.2) is closed under
the rescaling
G(st)
sg(s)

LEMMA 2.2.14. If u is a minimizer in By with w(0) = 0, there ezists a constant
C such that ||ul (B, ,,) < C, and C' depends only on N, A, 6 and go.

Gs(t) ==

PROOF. Suppose that there exists a sequence u; € K of minimizers in B;(0)
such that

uk(0) =0 and max ug(z) > k.
1/4
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Let di(x) = dist(z,{ux = 0}) and Oy = {x € By @ diy(r) < ——
u(0) = 0 there holds that B, /4 C Oy, therefore
my :=sup(1l — |z|)uk(z) > max(1l — |z|)ug(x) > §Igaxuk(x) > —k.
Oy Bia Bia 4
For each fixed k, uy, is bounded. Thus (1 —|z|)ug(x) — 0 when |z| — 1 which means

that there exists 3, € Oy such that (1 — |xg|)u(2s) = supe, (1 — |7|)ux(r), and then

m 3
i > my > —k.

wlen) = T 2 1

Let 0y, := di(zx) < % and yi € 0{ug > 0} N By such that |yx — x| = dx. Then,
(1) Bas, (yr) C Bu,

since if y € Bog, (yx) = |y| < 30k + |xx| < 1,

(2) By (yr:) < O,

3 3 0o 1-
since if y € By (yn) = [y| < 50k + o] <1 =50 = di(y) < o < 3|y| and
2
3 1—
(3)if 2 € Bag (y) = 1= |2 = 1 = fan| = [ — 2| 2 1 = [an| = 50 = 2|x"/’|,
By (2) we have
1—
max(1 — |z|)ug(z) > max (1 — |z|)ug(z) > max (Sl 7)) |xk|)uk(ac),
Ok Bs, (ux) ) 2

where in the last inequality we are using (3). Then,

(2.2.15) 2uy () > max ug(x).

Bs, (k)
3

As Bs, (zr) C {ux > 0} there holds that Luy = 0 in Bs, (zx), and by Harnack
inequality (Theorem 1.2.16) we have

(2.2.16) min  ug(x) > cug(xy).
B%gk(xk)
As Bag, (xr) N By, (yr) # 0 we have by (2.2.16)
4
(2.2.17) “max ug(zr) > cug(g).
Bs, (yr)
L
L
Let wy(z) = w Then, w;,(0) = 0 and, by (2.2.15) and (2.2.17) we have,
Up\ Tk
(2.2.18) max wy < 2 max wy > ¢ > 0.

B Bi/a
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Let now
G(|Vw|cx) A /
Jip(w) = / ——dr + w0y () dx
k( ) B Q(Ck)ck Q(Ck)ck B X >0}( )
where ¢, = %’g—ff’“) so that ¢, — oo.

Let us prove, that wy is a minimizer of Ji. In fact, for any v € Wh%(B;) with
Y — Yk
O /2

v = wy on OBy, define vi(y) = v( )uk(xk) Thus, vy, = up on 0Bs, /2(yk)-

Then,

2" G(| V) A
eton) =55 / e, Wt / X {u y) dy
k(W) 5,?[( B, (yk) g(cr)cr g(cr)ck Bs, w0} (y) )

2 2

2 G A
=5 ol U / X{v y) dy
(5;iv< By, (yr) g(cw)ck g(ck)cr I, o) {or>03 (Y) )

°k
2

B G(|Vvlek) . A v T
B /31 g(ce)ck e g(cx)cr /31 X (y) & = ()

%(zc gr(t) := Z((t;f)), where the primitive of gy is G (t) = % and A\, = g(c:)ck — 0.
en,

Jk(w):/B Gk(|Vw|)dI+)\k/ X{w>0}(.r)d:)3.

By

Observe that for all k, g satisfies the inequality (0.0.2), with the same constants §
and gg. In fact,

gt _ g (cxt)ext
gr(t) gr(cxt)
and then by (0.0.2) applied to tc, we have the desired inequality.

Let us take vy € W¢(Bs)4) such that,

L, =0 in B
(2.2.19) e i
vp = wy on dBy),

where Ly is the operator associated to gr. By (2.2.7), (2.2.11) and the fact that
At — 0, we have that

Gr(|Vwe — Vug|) do < CA/?,

B3y

where C' depends on §, go, N and [|wg||r~(p,). We have used that {\;} is bounded
when applying (2.2.7) and (2.2.11). We also have, by (2.2.18) that C' depends only
on J, go and N. On the other hand, by (G1) and (g3) we have

G(tck) > G(Ck)
gler)er — (1 + go)glcr)ck

Gr(t) = min{#+! 1 > min{#+! 1

1
(1+ g0)?
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Therefore,
\V4 -V go+1
ON2 > / Col[Vawy, — Vog|) da > / Ve ”’“2‘
Bsa By an{|Vun— Vi <1} (1+ g0)
vak — V?)k’(s—i_l

“
By sn{Vu-vez1p (L4 90)?

dz

dzx.

Hence

Ag :——/ IV Vvk‘é—i-l do 0 and

(2220) Bs 4N{|Vwg,—Voug|>1}

By = / |Vwy, — Vvk|90+1 de 0
By /40{|Vwg— Vg |<1}

By Hélder inequality and (2.2.20) we have,

6+1

5+1 90+1 %08
Ch = \Vwk — VU]C‘ de < Bk |Bg/4‘90+5 — 0,
B3 /4N{|Vwr—Vug|<1}

therefore,
(2.2.21) / |Vwy, — Vvk|5+1 der = A+ Cy — 0.
B3y
As wy, = vy, on 0Bs, then p = wy, — v, € W(]176+1(Bg/4) and by (2.2.21) we have
(2.2.22) pe— 0 in Wyt (Bsyy).
On the other hand by Theorem 2.2.1 we have that,
(2.2.23)

lwillcasny < CllwkllLos(sy,4)5 90,6, B, Gi(1)) < C(go, 0, B") VB' CC Bya.

(Here again we may suppose that the constant C' dose not depend on A, since
A — O) Also, recall that ||wk||Loo(Bl) < 2, and that Gk(l) _ Glew) <1

cpgler) — =
As vy, are solutions of (2.2.19) by Theorem 1.2.19, we have for B' CC Bsy
(2224) HUICHC’L“(B’) S C(N, 5, 9o, diSt(B/, 883/4), H'UkHL”(B3/4))-

By (g3) and ||vgl|Le(B,,.) < llwkllL=@B,,,) < 2. Then, this constant only depends
on N, ¢, gy and B'.

Therefore, by (2.2.23) and (2.2.24) we have that there exist subsequences, that
we call for simplicity vs, and wy,, and functions wy, vy € C*(B’) for every B’ CC By,
such that

wy — wo uniformly in By,
vp — vy uniformly in B,
Then,
Pr = Wy — U — Wy — vy uniformly in B’.

But by (2.2.22) we have p, — 0 in W9+Y(B’). Thus, vy = wy.
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Using Harnack inequality (see Theorem 1.2.16), we have that

sup v < C inf vy,
Bi)a Byja

where the constant C' depends only on gg, d, N. Then, passing to the limit and using
that vg = wy we have that

sup wy < C'inf wy.

B2 By 2
But by (2.2.18), passing to the limit again, we have that supwy > ¢ > 0 and
By /2
inf wy = 0 since w(0) = 0 for every k, this is a contradiction. O

By /2

PROOF OF LEMMA 2.2.13. Let zyp € {u > 0} with 5d(z) < d(zo,09). Take

u(z) = ”(y%idm? where dy = dist(xg, 0{u > 0}) = dist(zo,yo) with yo € 0{u > 0}.

If we prove that w is a minimizer in B;(0), as u(0) = 0 and mif;(;%l = 1/4, by Lemma

2.2.14 we have
> ﬁ<$o - yo) _ U(xo)
4dy 4dy

and the result follows.
So, let us prove that @ is a minimizer in B;(0). As 5d(zo) < d(xg,092) we have,

Bua,(y0) € Q. Let & € WHC(B(0)) and v such that ¥(x) = 2wetidos) — They

4d
changing variables we have, 0
> G(|Vov
G(IVol)de = | G([Vo(yo + 4doz)|) dz = / (|dN4g\ng—)|) dy
B B Byaq (yo0) 0
and
~ v>0NB
{5 > 00 By = L= 00 B (o)

N AN

As u is a minimizer of J in Byg,(yo) we have, if v = u on 0B;(0),
/ G(|Vu(x)|) dx + A{u > 0N B;1(0)}
B1(0)

_ / G(Vul) ;. Au> 00 Bigy (4o) }|
Buay (yo)

VAN VAN
< / GV o ALY > 00 Buag (o)
B Buady (yo) déV4N dJOV4N

:/B(O)G(|V'6(x)|)dx+)\|{i7>OﬂBl(O)}I.

Therefore, u is a minimizer of J in By (0).

Now we can prove the uniform Lipschitz continuity of minimizers of 7.
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THEOREM 2.2.25. Let u be a minimizer. Then u is locally Lipschitz continuous
in 2. Moreover, for any connected open subset D CC ) containing free boundary
points, the Lipschitz constant of u in D is estimated by a constant C' depending only
on N, go, 0, dist(D,0Q) and X.

PROOF. First, take x such that d(z) < idist(x, Q) and u(y) = Wlx)u(x—i-d(:c)y)
for y € B1(0). By Lemma 2.2.14 we have u(0) < C' in By, where C' depends only on
N, X, 0 and go. Since u > 0 in Byy)(z), Lu = 0 in this ball. Thus L& = 0 in B4(0).
By Harnack inequality u(y) < C'in Bj/3(0) where C' depends only on N, \, 0 and
go- Now, by property (2) in Lemma 1.2.18, [Vu(0)| < Cl[ul|p=(s,,) < C where C
depends only on N, A, 0 and go. Since Vu(z) = Vu(0), the result follows in the case
d(z) < tdist(x, 092).

Let r; such that dist(x, 9) > r; > 0Vz € D, take D', satisfying D CC D' CC )
given by

D' ={z € Q/dist(x,D) < 11/2}.

If d(z) < 1dist(x,09) we proved that [Vu(z)] < C. If d(z) > dist(x,09), there
holds that u > 0 in Br (x) and Br (z) C D' so that [Vu(z)| < %HuHLm(D/).

To prove the second part of the theorem, consider now any domain D that
contains a free boundary point, and D’ as in the previous paragraph. Let us see
that |||z~ (pr) is bounded by a constant that depends only on N, D,ry, A, d, and go
(we argue as in [4] Theorem 4.3). Let z9 € D and o = %, since D’ is connected
and not contained in {u > 0} N, there exists xg,...,2x € D’ such that z; €
Bro(zj-1) j=1,...k, Byy(x;) C{u>0}j=0,...,k—1and By (zy) £ {u> 0}. By
Lemma 2.2.14 u(z;) < Cry and by Harnack inequality we have u(z;41) > cu(x;).
Inductively we obtain. Therefore, the supremum of u over D’ can be estimated by
a constant depending only on N, 71, A, d, and go. 0]

Observe that, if we don’t use Lemma 2.2.13, then we obtain that the Lipschitz
constant depends also on ||ul[z(q) (that is, depends also on the Dirichlet datum

©o).

3. Nondegeneracy

In this section we prove the nondegeneracy of a minimizer at the free boundary
and the locally uniform positive density of the sets {u > 0} and {u = 0}.

LEMMA 2.3.1. Lety > 0, D CC Q and C the constant in Theorem 2.2.25. Then,
iof Cy > C, B, C Q) and u is a minimizer, there holds that

1 1/ , ) .
- (][ u”) > Cy  implies wu >0 in B,
B

r
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Proor. If B, contains a free boundary point, if u vanishes at some point zy €
B,, and since |Vu(x)| < C in B,, then |u(z) — u(zo)| < Cr. That is, u(z) < Cr in

1/~
B, and then %(fBT u7> < C which is a contradiction.
O

LEMMA 2.3.2. For any v > 1 and for any 0 < k < 1 there exists a constant c,
such that, for any minimizer u and for every B, C ), we have

1 1/~ ) . .
_(][ u”) <c, wmplies u=01in B,

r

T

where ¢, depends also on N, \, g, 0 and 7.

PROOF. We may suppose that » = 1 and that B, is centered at zero, (if not, we
take the rescaled function u = M) By Theorem 1.2.14 we have

1/
g:=supu < C'<][ u”)
B

B e

where C' = C(k, ). Now chose v such that

01€(€_M|x|2 — 6_“H2) in B\/g \ B,,
v =
0 in B,.

Here the constants ;> 0 and C < 0 with C; = C4(u, k), are chosen so that Lv < 0
in B /; \ B. (see Lemma 1.2.47) and v = € on 0B ;. Hence, v > u on 0B /;, and
therefore if

" min(u, v) ?n B/,
u in Q\ B,
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w is an admissible function for the minimizing problem. Thus, using the convexity

of G, we find that
/ G(|Vul|)dz + A B, N {u > 0}|

=J(u) - G(|Vu|)dz + A\|B, N {u > 0} — A\|Q N {u > 0}
Q\B,

I (w) — /Q\B G(IVu|) dz + B, N {u > 0} — A2 N {u > 0}

S/ G(|Vw|)dx—/ G(|Vul|) dz
B /7 \Bx B2\

via\Br

< / - er),v (V= Vi dr

IN

\Y
_ —/ oIV~ (0 — v)* da
B \B V|
Vv n
= - g(IVo]) o V(u—v)" do
(B z\Bx)N{u>v} [Vl

and as v is a supersolution we have,
/ G(|Vu]) dz + A|B. 1 {u > 0}] < —/ (Vo) dHN .
B, 9B, Vvl
And, as |Vv| < Ce we have that

/ G(|Vu|)dz + M\ B, N {u >0} < g(C’E)/ wdHN

K 0By

By Sobolev’s trace inequality and by (g3), for G (o) = A we have,

/ u<C(N,k) |Vu| +udx
0By B
|Vul / ~ /
< C(N,k /G—+ G(a)+ | udw
( )< B ( «a ) BxN{u>0} () By )
<CN, w1 +2)( | G(IVul+Al{w > 0} N B,])
By
where in the last inequality we are using that [, wdz < ¢[{u > 0} N B,|. Therefore,
/ G(|Vul)dx + X\ B, N {u > 0}|
By

g(C)C( + g)(/BH G(|Vul) dz + N B, {u > 0}]).
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So that, if € is small enough

/ G(|Vaul) dz + N B, N {u > 0}] = 0.

K

Then, u = 0 in B, and the result follows.

As a corollary we have,

COROLLARY 2.3.3. Let D CC Q, x € DN O{u > 0}. Then

sup u > cr,
Br(x)

where ¢ is the constant in Lemma 2.5.2 corresponding to k = 1/2 and =y fized.
COROLLARY 2.3.4. For any domain D CC 2 there exist constants ¢, C' depending

on N, go, 8, D and A, such that, for any minimizer u and for every B,(x) C DN{u >
0}, touching the free boundary we have

cr <u(z) < Cr

ProOOF. It follows by Lemma 2.2.13 and Lemma 2.3.2. O

THEOREM 2.3.5. For any domain D CC ) there exists a constant c, with 0 <
¢ < 1 depending on N, go,0, D and X\, such that, for any minimizer u and for every
B, C Q, centered on the free boundary we have,

B
o < [Br0{u> 0}
| B, |

<l-c¢

ProoOF. First, by Corollary 2.3.3 we have that there exists y € B, such that
u(y) > cr and as u is a subsolution we have by Lemma 1.2.14 that

<][ u dx)l/’y > Cu(y).

KT

L(f, wa)"2

KT

Therefore

Now, if x is small enough, we have

1 1/v
— ( ][ u? d:c) > (Y,
kr\J) B,

so that by Lemma 2.3.1, we have that u > 0 in B,,, where k = (C1, C'). Thus,
| B, N {u > 0} > | Ber| — &N
| B | | B; |

and k = k(Cy, C).

In order to prove the other inequality, we may assume that » = 1. Let us
suppose by contradiction that, there exists a sequence of minimizers uy in By, such
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that, 0 € o{uy, > 0}, with [{uy = 0} N By| = g, — 0. Let us take v, € WG (By2)
such that,

E’Uk =0 in Bl/2
V. — Uk in 831/2

Let A; and Aj as in the proof of Theorem 2.2.1, for » = 1/2. Then we have, by
Theorem 1.2.38 and (2.2.3) that

(2.3.6)

/G(|Vuk—Vvk|)dx§C’5k and
Aa

/ F(Vu))[Vig — Vool de < Cey,
Ay
where C' = C(go). By (2.2.6) we have,

, 1/2 1/2
/ G(|Vuy — Vo) do < O(/ F(IVug)) | Vg — Vo dx) (/ G(|Vuk|)) .
Ay Ay Ay
Therefore, by (2.2.11), there exists C' independent of & such that
G(|Vug — Vi) dz < C'es,li/2 — 0.
B2
As uy = v on OBy 9, wy = up — v € WOI’JH(BUQ). Thus,

(2.3.7) wy, — 0 in Wy (By ).

By Theorem 2.2.1 and Theorem 1.2.19, we have
HukHCa(m) < C(N. 4, go, HukHLOO(Bl)’ @)  (for ex small),
[vellcrapry < C(N, 6, go, [JurllLe(s, ), B'sa)  for B'CC B (see (2.2.9)).

Therefore, there exist subsequences, that we call for simplicity u; and vy, and func-
tions vy € C*(B'), ug € C(B’) for all B' CC By, such that

ur — ug  uniformly in B/,
vy — vo  uniformly in B’
wp = up, — v — 0 uniformly in B’

Thus, vg = ug. By Lemma 2.3.2 we have that

<][Bl/4 UZ>1M 2C¢>0.

Therefore, passing to the limit, we have

. 1/~
< u0> >C > 0.
By

On the other hand, by Harnack inequality sup B4 Uk < Cinfp, , vy and again, pass-
ing to the limit we have, supg, ,, Uo < Cinfp, , uo. As up(0) = 0, then ug = 0 in
B4, which is a contradiction.
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O

REMARK 2.3.8. Theorem 2.3.5 implies that the free boundary has Lebesgue mea-
sure zero. Moreover, it implies that for every D CC , the intersection d{u > 0}ND
has Hausdorff dimension less than N. In fact, to prove these statements, it is enough
to use the left hand side estimate in Theorem 2.3.5. In fact, this estimate says that
the set of Lebesgue points of X{usoy in 0{u > 0} N D is empty. On the other hand al-
most every point xg € 0{u > 0}ND is a Lebesque point, therefore |0{u > 0}ND| = 0.

4. The measure A = Lu

In this section we prove that {u > 0} N2 is locally of finite perimeter. Then, we
study the measure A = Lu and prove that it is absolutely continuous with respect
to the HV~! measure on the free boundary. This result gives rice to a representation
theorem for the measure A. Finally, we prove that almost every point in the free
boundary belongs to the reduced free boundary.

THEOREM 2.4.1. For every ¢ € C§°(S2) such that supp(¢) C {u > 0},

(2.4.2) / (yw)’v Vo =0,

Moreover, the application

Me) o= = [ o) v de

from C§°(Q) into R defines a nonnegative Radon measure A = Lu with support on
QN o{u > 0}.

Proor. We know that w is an £— subsolution. Then by the Riesz Represen-
tation Theorem, there exists a nonnegative Radon measure A, such that Lu = A .

And as Lu =0 in {u > 0}, then for any ¢ € COO(Q \ 0{u > 0})

Alp) = — / Ve g(IVul) 2 de = 0,
{u>0} |v |

and the result follows.
O

Now we want to prove that QN o{u > 0}, has Hausdorff dimension N — 1. First
we need the following lemma,

LEMMA 2.4.3. If uy 1s a sequence of minimizers in compact subsets of By, such
that ur, — ug uniformly in By, then

1. H{ug > 0} — 9{ug > 0} locally in Hausdorff distance,

2. Xfwe>0) = Xfuo>0} 1 Lige(RY),
3. If 0 € O{uy > 0}, then 0 € 0{uo > 0}.
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PRrROOF. Here we only have to use Lemma 2.3.2 and Theorem 2.3.5 and the fact

that u; — wug uniformly in compacts subsets of B;. Then the proof follows as in
Lemma 1.6.13. 0

Now, we prove the following theorem,

THEOREM 2.4.4. For any domain D CC ) there exist constants ¢, C, depending
on N, go,0, D and X\, such that, for any minimizer u and for every B, C D, centered
on the free boundary we have

crN_lg/ dA < CrNTt

PROOF. Let £ € C5°(2), £ > 0. Then,
A = — \V4 Véd
(©) /{} ( u|>,V Vedr

Approximating xp, from below by a sequence {,} such that &, = 1in B, 1 and
V& < Cyn and using that u is Lipschitz we have that,
<OVt +0(1/n)).

'I

]/ (V) Vgndx’ <Cn‘B \ B,_

Then, as
/ EndN — dA,
Q B

the bound from above holds.

In order to prove the other inequality, we will suppose that » = 1. Arguing by
contradiction we assume that there exists a sequence of minimizers u; in By, with

0 € O{ug > 0}, and Ay = Luy, such that fBl dAy = e — 0. As the u} s are uniformly

Vuyg
[Vug|*
Then, there exists a subsequence and a function hg such that hp — hg *— weakly in

L>(B1/2). We claim that hg = g(]Vuol)‘gzgl. In fact, if B, CC {uy > 0} then, by
C* estimates, there exists a subsequence such that uj, — ug strongly in C**(B,).

So that hg = g(\Vuo\)WuOI If B, C {up = 0}, then by Lemma 2.3.2 we have that
ur, = 0 in B,, for k > ko(k). Thus hg =0 = g(|Vu0|) VUO also in this case. Finally

0{up > 0} N By has zero Lebesgue measure. In fact, by (1) in Lemma 2.4.3, every
point zg € d{ug > 0} N By, is a limit point of x;, € 3{uk > 0} N By/,. Thus,

1y
<][ u%) > cr
By (zo)

for any ball B, (x9) C By /2. Using this fact, and the Lipschitz continuity we have that
| By (o) N{ug > 0}| > ¢|B,(x0)| with ¢ > 0. This implies that [0{ug > 0} N By /9| =0
(see Remark 2.3.8).

Lipschitz, we can assume that u, — uo uniformly in By/s. Let hy = g(|Vug])
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Therefore, for all { € C§°(By/2), £ > 0 we have

Vu .
EdMy = / o1 Tl o ve = lim [ o)
By By | V| k—oo0

B2

Vuk

VE.
On the other hand,

/ fdAO :khm fdAk S ”fHLoo(Bl/Q) khm €k =0.
By s —00 —00

By 2
Therefore Ag = 0 in By /5. That is, Lug = 0 in Byjs. But ug > 0 and ue(0) = 0, so
that by Harnack inequality we have uy = 0 in By .

On the other hand, 0 € d{uy > 0}, and by the nondegeneracy, we have

1/~
(/ uZ) >c> 0.
By

1/
</ ua’) >c>0
B4

Thus,

which is a contradiction.

Therefore, we have the following representation theorem
THEOREM 2.4.5 (Representation Theorem). Let u be a minimizer. Then,

L. HN YD N o{u > 0}) < oo for every D CC Q.
2. There exists a Borel function q, such that
Lu=q, HY " 0{u > 0}.
1.€
Vu N-1 o)
— [ 9(|Vul) o Vedr = pq, dH Ve C(Q).
Q [Vul QNOu>0}

3. For D CC Q there are constants 0 < ¢ < C' < oo depending on N, gg,9,€), D

and \ such that for B.(x) C D and z € 0{u > 0},

c< qu(z) < C, eV <HNTY (B (z)nofu > 0}) < CrN L
PROOF. See Theorem 1.4.54. O

REMARK 2.4.6. Asu satisfies the conclusions of Theorem 1.4.54, the set QN {u >
0} has finite perimeter locally in Q0 (see Remark 1.4.62). That is, p, == —V X {u>0}
is a Borel measure, and the total variation |u,| is a Radon measure. Moreover we
have,

_ N-1
My = VuH Lared{u > 0}7

where v, (x) is the normal exterior to {u > 0} N Q. See Definition 1.4.59 and the
results in that section.

LEMMA 2.4.7. HY71(0{u > 0} \ Orea{u > 0}) = 0.
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Proor. This is a consequence of the density property of Theorem 2.3.5 and
Theorem 1.4.63. U

5. Asymptotic development and identification of the function ¢,

In this section we give some properties of blow up sequences of minimizers, we
prove that any limit of a blow up sequence is a minimizer. We prove the asymptotic
development of minimizers near points in their reduced free boundary. We finally
identify the function ¢, for almost every point in the reduced free boundary.

LEMMA 2.5.1. If u(x,,) =0, x, — xo in Q. Then, any blow up limit ug respect
to B, (Tm) is a minimizer of J in any ball.

Proor. Let u,,, ug be as is Lemma 1.6.13, R > 0 and v such that v — uy €
Wy %(Br(0)). Let n € C°(Bg(0)), 0 <1 <1 and v, = v + (1 — 1) (tn — ug) then
U = U, in OBR(0). Therefore

| @Vl + M) do < [ (GO0 + M)
Br(0) Br(0)

As |Vu,| < C and Vu, — Vug a.e, we have

/ G(|Vuy|) de — G(|Vugl) dz,
Br(0) Br(0)
/ G(|Von|) de — G(|Vv|)dx
Br(0) Br(0)
and
X{vm>0} < X{v>0} + X{n<1}-
Therefore,

/ (G(|Vuo|>+AX{UO>o})dx§/ (G(IV]) +Axqos0p) dz+A|Br(0)N{n < 1}.
Br(0) Br(0)

Taking 7 such that [{n < 1} N Br(0)| — 0 we have the desired result.

Let A* be such that, g(A*)A\* — G(A\*) = A. Then we have,

LEMMA 2.5.2. Let u be a local minimizer in RY such that u = X\o(x, 1)~ in By,
with rg > 0, 0 < A\g < o0 and vy a unit vector. Then, A\g = \*.

PROOF. Let 7.(x) = z + en(x) with n € C§°(B,,)), and let u.(7:(z)) = u(x).
Then,

0 < J(ue) — I (u),
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| By N {u. >0} = / |det D7.| dz

Byoyn{(z,10)<0}
:/ (14+edivn+o(e)) dx
ByoyN{(z,10)<0}

and

[ cvuh
Broﬂ{u5>0}

E”‘O {(I,l/0><0} VvV

[Vl

VanVu)) dx + o(e).

Therefore, since u. = u in RY \ B,,,

0< s/ <(G(|Vu|) + N\)divy — 9<’V“’)qunvu) dz + o(e).
By M{{z.0)<0} V|
Thus,
/ ((G(|Vu|) + \)divy — Mvwnvu) dz > 0.
By N{(z,10) <0} |Vl

If we change n by —n and recall that Vu = —\g g in {(z, 1) < 0} we obtain,

/ ((G(/\g) + A)divy — g(Ao) Ao o D 1/0> dr =0
ByryN{(z,v0)<0}

for all n € C§°(B,,).
Take n(x) = ¢(|z|)vo with supp ¢ C (—rg, 7). Then,

. ¢ (|x
divnfe) = £ (o)
. / l‘ .
Yo DnVO = VOig_?VOj = <£L’, V0>¢ |(C|L’| |) = leT]‘

Hence

{{z,10)<0}N By,

= (G(M) + A= g(Ao)Ao) / nvodH" " (x)

{{z,10)=0}NBy,

= (G0) + A= gOo)ha) [ o(l]) dHV (2)
{{z,v0)=0}NBx
for all ¢ € C§°(—ro,70).

Therefore, g(Ag) Ao — G(No) = A
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LEMMA 2.5.3. Let u € K be minimizer. Then, for every xy € QN o{u > 0}
(2.5.4) limsup |[Vu(z)| = A"

T—z()

u(x)>0

PROOF. Let g € QN O{u > 0} and let
[ = limsup |Vu(z)].

T—x(Q

u(z)>0
Then there exists a sequence z, — x such that
u(z) >0, \Vu(zg)| — L.

Let yx be the nearest point to z; on QN O{u > 0} and let dy = |z — yx|. Consider
the blow up sequence with respect to By, (y) with limit ug, such that there exists
v:= lim ey,

k—oo
where e;, = %, and suppose that v = ey. Then, by Lemma 1.6.13(1), 0 € 0{ug >
0}. By Lemma 1.6.13(2) and by Lemma 2.5.1 we have that uy satisfies Theorem
2.3.5. Then, Bi(—en) C {up > 0}. By Lemma 1.6.13(3) we obtain,

|Vuo| <1in {ug > 0} and |Vug(—en)| =1.

Then, 0 < | < oo and since, by Lemma 1.6.13 (6), we have that ug is an £
solution in {ug > 0} then, we have that ug is locally C** there. Thus, there exists

g > 0 such that |Vug| > /2 in B,(—en). Let e = % and v = %, then by

Lemma (1.2.28) v satisfies the uniformly elliptic equation, D;(a;;D;v) = 0.

Then, by the strong maximum principle we have D.ug = [ in B,,(—ey) so that,
Vuy = le in B,(—ey). By continuation we can prove that this is true in B;(—ey).
Then, uy(z) = l{z,e) + C in Bi(—en). As up(0) = 0 and uy > 0 in By(—ey), we
have uy(z) = l{x,e) and e = —en. Therefore ug(zr) = —lzy in Bi(—ey). Using
again a continuation argument we have that uy(z) = —lzy in {xy < 0}.

Now, we want to prove that ug = 0 in {0 < xy < g9} for some gy > 0.

We argue by contradiction. Let

s:= limsup Dyuo(z', zn),
zny—0t z/eRN—1
up(z',xn)>0

and suppose that s > 0 (s < oo since wg is uniformly Lipschitz). Let (zx, hx) such
that, hy, — 07 and Dyug(zx, hx) — s, and take a blow up sequence with respect to
By, (2, 0) with limit wgg. Arguing as before, we have that ugp = sxy for zy > 0.
On the other hand, we have ug = —lzy for zxy < 0. By Lemma 2.5.1 ug is a
minimizer, and as all the points of the form (z’,0) belong to the free boundary, we
get a contradiction to the positive density property of the set {ugo = 0}(Theorem
2.3.5).
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Therefore, s = 0. But this implies that ug(z’, zx) = o(xy) as zy N\, 07. Thus,
for all e > 0, hg > 0,
1 Ly
—(][ u&) <e if zg = (yo, ho) and r = hy
By (z0)

r

for r small enough independent of yy. Then, by the nondegeneracy property, Lemma
2.3.2, we have that uop =0 in {0 < zy < 0}.

Now, by Lemmas 2.5.1 and 2.5.2 we conclude that [ = A\*, and the result follows.
O

Now we prove the asymptotic development of minimizers.

THEOREM 2.5.5. Let u be a minimizer. Then, at every o € Opeq{u > 0}, u has
the following asymptotic development

(2.5.6) u(z) = Xx — xo,v(x0))” + o]z — 0]).

where v(xg) is the outer unit normal to 0{u > 0} at xy.

ProOF. Take B,, (z¢) balls with p, — 0 and w; be a blow up sequence with
respect to these balls with limit uy. Suppose that v, (z¢) = en, and z¢o = 0.

First we prove that

uy =0 in{zy >0},
up >0 in {zy < 0}.

In fact, by Lemma 1.6.13, x{u, >0} converges to X{u>o0} in Lj,.. On the other hand,

X{up>0} CONVETEes t0 X{zy<o} i L, by (1.4.60). It follows that uy =0 in {zy > 0}
and uy > 0 a.e in {zy < 0}.

If uy were zero somewhere in {xy < 0} there should exist a point Z in {xy <
0} N d{ug > 0}. But, as ug is a minimizer, for 0 < r < |Zy/,
|B,(Z) N {up =0} N {zxy < 0}
| B (7)]
Since this is a contradiction we conclude that ug > 0 in {zy < 0} and therefore

Lug = 0 in this set. Since ug = 0 on {zy = 0}, we conclude that uy € CH*({zy <
0}) (see Theorem 1.2.20). Thus, there exists 0 < A\g < oo such that

>c>0.

up(x) = Aoxy + of|x]).

By the nondegeneracy of u at every free boundary point (Lemma 2.3.2) we deduce
that A\ > 0.

ug (rnx)

Now, let ugy be a blow up limit of ug. This is, ug(z) = lim “e= with r, — 0.

Then, ugy = Aoz . Since ugo is again a minimizer, Lemma 2.5.2 gives that A\g = A*.
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Let us see that actually ug = A*z)y. In fact, by applying Lemma 2.5.3 we see
that |Vug| < A* and thus, ug < M*zy. Since the function w = Az} is a solution to

Tw = Zbiijixj =0 in{zy <0}
]
with b;; as in (1.2.27) and vy is a classical solution of the same equation in a neigh-
borhood of any point where |Vug| > 0, and since vy < w in {zx < 0}, yyp = w in

{zn = 0}, there holds that either uy = w or uy < w. In the latter case, there exists
0o > 0 such that

(w —wup)(x) > —dgxn + o(|z|).
But (w — ug)(z) = o(|z]). Thus, uy = w = Nxy.

Finally, since the blow up limit ug is independent of the blow up sequence py,
we deduce that

u(z) = XN(x — xo,v(x0))” + o]z — 20]).
0

LEMMA 2.5.7. For HN~1— almost every point xq in Opeq{u > 0} there holds that,

/ |qu — qu(x0)|dHN*1 = O(T‘Nfl), asr — 0
Br(ﬂco)ﬂa{u>0}

PROOF. It follows by Theorem 2.4.5 (3) that g, is locally integrable in R¥~1 and
therefore almost every point is a Lebesgue point. Moreover, Theorem 2.4.5 (3) also

implies that o(H™ (B, (x¢) N d{u > 0})) = o(r¥71). O

Moreover, we have the following result that holds at points xg € Opeq{u > 0}
that are Lebesgue points of the function ¢, and are such that

(2.5.8) limsup T (Ou > 0} 0 By, 1)

<1.
r—0 HN=Y(B!(o,7)) -

Recall that HY=! — a.e. point in O,eq{u > 0} satisfies (2.5.8) (see Theorem
1.4.65).

LEMMA 2.5.9. Let u be a minimizer, then for HYN ! a.e g € Oyeq{u > 0},
qu(0) = g(A").

PROOF. Let ug be as in Theorem 2.5.5. Now let

|z |

£(z) = min (2( — 5 1))77(3:1, ey TN_1)

where n € C5°(B).), (where B/ is a N — 1- dimensional ball with radius r) and n > 0.
By Lemma 1.4.67 and using Lemmas 1.6.13 and 2.5.7, we get for almost every point
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To € Oreq{u > 0} (satisfying (2.5.8)) and ug = limy_ W that
Vu Védr / Vu Védx
- [ v [ a1vuh T
= / (@) qul(xo + prx) dHN
8{uk>0}

— qu(o) /R & 0)dH,

where we have assumed that v(xg) = ey. Therefore, V £ € C}(B,), we have
(2.5.10) - / (Vo)L Ve d = gu(ao) [ (o, 0) dHY?
ByN{zn<0} |v | B!

By Lemma 2.5.5, uy = A*x},. Substituting in (2.5.10) we get

g(\) | &(@,0)dHY T = qulwo) | &(«,0)dHNTT V&€ CF(By).

B! B,

Thus, qu(xe) = g(X*). B

As a corollary we have

THEOREM 2.5.11. Let u be a minimizer, then for HN=1 a.e xq € 0{u > 0}, the
following properties hold,

QU(:EO) = g(/\*)

and
u(z) = N (x — @0, vu(0))~ + oz — o)

where \* is such that, g(A* )A\* — G(X*) = A.

PrOOF. The result follows by Lemma 2.4.7 and by Theorem 2.5.5. OJ

6. Weak solutions

In this section we introduce the notion of weak solution. The idea, as in [4], is
to identify the essential properties that minimizers satisfy and that may be found
in applications in which minimization does not take place. For instance, in Chapter
3 we study an optimization problem, and prove that minimizers of the penalization
problem are weak solutions in the sense of Definition 2.6.1. On the other hand, in
Chapter 4 we study a singular perturbation problem for the operator £ and prove
that limits of this singular perturbation problem are weak solutions in the sense
of Definition 2.6.2. In the next section, we will prove that weak solutions have
smooth free boundaries. In this way, the regularity results may be applied both to
minimizers and to limits of singular perturbation problems.
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With these applications in mind, we introduce two notions of weak solution.
Definition 2.6.1 is similar to the one in [4] for the case £L = A. On the other
hand, as stated before, Definition 2.6.2 is more suitable for limits of the singular
perturbation problem.

Since we want to ask as little as possible for a function u to be a weak solution,
some properties already proved for minimizers need a new proof. We keep these
proofs as short as possible by sending the reader to the corresponding proofs for
minimizers as soon as possible.

One of the main differences between these two definitions of weak solution is that
for weak solutions according to Definition 2.6.1 almost every free boundary point is
in the reduced free boundary. Instead, weak solutions according to Definition 2.6.2
may have an empty reduced boundary (see, for instance, example 5.8 in [4]).

In the sequel \* will be a fixed positive constant.
DEFINITION 2.6.1 (Weak solution I). We call u a weak solution (1), if

1. w is continuous and non-negative in € and Lu =0 in QN {u > 0}.
2. For D CC ) there are constants 0 < cpin < Chaz, 7 = 1, such that for
balls B.(z) C D with x € 0{u > 0}

1 /vy
Cmin S - <][ u’yd*f) S Cmam
r By ()

Lu = g\ )H " Orea{u > 0}.

i€

- [ alva) g Vede= [ pg)antt Voe Gr@
Q [Vul QNOrea{u>0}

4.
limsup |Vu(z)| < A, for every o € QN O{u > 0}

T—x()

u(x)>0
DEFINITION 2.6.2 (Weak solution II). We call u a weak solution (II), if

1. u is continuous and non-negative in Q0 and Lu =0 in QN {u > 0}.
2. For D CC Q there are constants 0 < cpin < Chaz, 7 = 1, such that for
balls B,.(z) C D with x € 0{u > 0}

1 1/~
Cmin S - <][ Uﬂdx) S Cmax
r Br(z)

3. For HN=1 a.e 29 € Opeq{u > 0}, u has the asymptotic development
u(z) = Nz — xo,v(20))” + 0|z — x0|)

where v(xg) is the unit exterior normal to 0{u > 0} at xy in the measure
theoretic sense.
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4.
limsup [Vu(z)| < A%, for every xg € QN O{u > 0}
u?;)g;oo
and for any ball B in {u = 0} touching QN o{u > 0} at x¢,we have,

: u(z)
lim sup ———— > \*
! dist(x, B) ©

REMARK 2.6.3. Any minimizer is a weak solution in the sense of Definitions

2.0.1 and 2.6.2. In fact, (1) follows from Lemma 2.2.1, (2) from Lemmas 2.3.2 and
2.8.1, (3) from Theorem 2.5.11 and finally (4) from Lemma 2.5.3.

REMARK 2.6.4. Observe that by hypothesis (1) of Definitions (2.6.1) and (2.6.2)
we have by Lemma (1.2.45) that u is in WS (Q) and A := Lu is a nonnegative
Radon measure with support in QN 0{u > 0} (in particular, u is an L— subsolution

Now we will prove as in Theorem 2.3.5, the density property of the set {u > 0}
at free boundary points. It is not true in general, for weak solutions satisfying only
properties (1) and (2) of Definitions 2.6.1 or 2.6.2 that the set {u = 0} has positive
density at HV~'— almost every free boundary point (see examples in [4]).

THEOREM 2.6.5. For any domain D CC ) there exists a constant c, with 0 <
¢ < 1 depending on N,~,go,0,D, Cmin and Ciaz, such that, for any function u
satisfying (1) and (2) of Definitions 2.6.1 and 2.6.2 and for every B, C D, centered
at the free boundary we have
| B, N {u > 0} S
| B, | -

PRrOOF. The proof follows as in Theorem 2.3.5, the only difference here is that,
instead of using Lemma 2.3.1 and 2.3.2, we use property (2) of Definitions 2.6.1 and
2.6.2. O

REMARK 2.6.6. Now, by Remark 2.3.8 we have that the free boundary has Lebes-
gue measure zero. Moreover, for every D CC S, the intersection d{u > 0} N D has
Hausdorff dimension less than N.

LEMMA 2.6.7. If u satisfies hypothesis (1) and (2) of Definitions (2.6.1) and
(2.6.2) then

1. w is Lipschitz and for any domain D CC ), the Lipschitz constant de-
pends only on N, 7, go, 9, dist(D,08) and Cypas, provided D contains a free
boundary point.

2. For any domain D CC S there exist constants ¢, C' depending on N, 7, go, 0,
D, cpin and Chyqz, such that, for every B, C D centered at the free boundary
we have

erVN Tl < / d\ < CrNT1
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PrROOF. The proof of (1) is similar to the one in Theorem 2.2.25. The only
change that we have to make here is the following, instead of using Lemma 2.2.13
we have to use property (2) of Definitions 2.6.1 and 2.6.2. We give the proof for the
readers convenience.

Let d(z) = dist(z, 2N d{u > 0}). First, take = such that d(z) < tdist(z, 09Q).
Let y € 0{u > 0} N OBg)(x). As u > 0 in By (x), Lu = 0 in that ball and u
is an L— subsolution in Bsg;)(y). By using the gradient estimates and Harnack

inequality (see Lemmas 1.2.18 and 1.2.14) and property (2) of Definitions 2.6.1 and
2.6.2 we have,

IVu(z)| <C——= sup u<C—— sup u
d<x> Bz)(z) d(m) Baa(z) (v)

1 1/v
< (O— ( ][ mda:) <CC,p...
d<$> B3a(a)(y)

So, the result follows in the case d(z) < fdist(z, 0€2).

Let r; such that dist(x,0Q) > r; > 0 Va € D, take D', satisfying D CC D' CC

Q) given by
D' = {xz € Q/dist(x, D) < r1/2}.

Let z € D. If d(z) < 1dist(z, 02) we have proved that [Vu(z)| < C.

If d(z) > Ldist(z,09), u > 0 in B%(a:) and B%(x) C D' so that |Vu(z)| <
%HUHLOO(D/).

To prove the second part of (1), consider now a connected domain D that contains
a free boundary point and let D’ as in the previous paragraph. Let us see that
||| (pry is bounded by a constant that depends only on N,v,D,71,,d, and go.
Let 7o = 7 and x¢ € D’. Since D' is connected and not contained in {u > 0} N €,
there exists @1, ...,z € D' such that z; € Bro(xj-1) j = 1,....k, By(x;) C {u> 0}
j=0,..,k—1and B, (zx) € {u > 0}. Let yo € {u >0} N B, (vx). As uis an L—
subsolution, by Lemma 1.2.14 there exists C' depending on N, 7, d, go such that,

() < 0(7[3

where in the last inequality we have used property (2) of Definitions 2.6.1 and 2.6.2.
By Harnack inequality (Theorem 1.2.16) we have u(xj11) > cu(z;). Inductively
we obtain u(zg) < Cry Vg € D'. Therefore, the supremum of u over D’ can be
estimated by a constant depending only on N,~,ry, A, d, and gq.

1/
u%ix) < CChazro,

27 (yO)

In order to prove (2) we use that Lemma 2.4.3 holds if u; is a sequence of
functions satisfying properties (1) and (2) of Definitions 2.6.1 and 2.6.2 with the
same constants ¢,,;, and C,,... Then, the rest of the proof follows as in Theorem
2.44. ]

REMARK 2.6.8. Now, we are under the conditions used in the proof of Theorem
2.4.5 and therefore this result applies to functions u satisfying properties (1) and (2)
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of Definition 2.6.1 and 2.6.2. This is, Q N 0{u > 0} has finite perimeter and there
exists a Borel function g, defined on QNd{u > 0} such that Lu = q,HN~|d{u > 0}.

As u satisfies the conclusions of Theorem 2.4.5, then Remark 1.4.62 also holds.
We also have that any blow up sequence satisfies the properties of Lemma 1.6.13.

Moreover, we have the following result that holds at points xg € O..q{u > 0}
that are Lebesgue points of the function ¢, and are such that

200 b

(Here B'(xg,r) = {2/ € RN71/|2'| < r}).

Recall that HY™! — a.e. point in Opeq{u > 0} satisfies (2.6.9) (see Theorem
1.4.65).

<1

LEMMA 2.6.10. If u is a function satisfying properties (1), (2) and (3) of Defi-
nition 2.6.1 or 2.6.2 we have that q,(zo) = g(\*) for HN=! a.e zg € Oyeq{u > 0}.

PRrOOF. Clearly, we only have to prove the statement for weak solutions (II).
If u satisfies (3) of Definition 2.6.2, take zg € O,eq{u > 0} such that
u(z) = N (x — xo, v(20))” + o|x — x0|).
Take pr — 0 and ug(z) = iu(aso + prx). If £ € CF°(Q2) we have

—/ g(|Vu|) = vgdx—/ qu(z)edHN L,
{u>0} [Vl O{u>0}

and if we replace & by &(x) = pkg(%) with £ € C5°(Bgr), k > ko and we change
variables we obtain,

Vu
- / 9(| V) —E Ve da / Gu(z0 + prx)EdHN L
{ur>0} |v | O{ur>0}

Now, recall that for a subsequence, X{u, >0} — X{zy<o} i LL(RY) and

g(|Vuk|)|§Z:| - (|Vu0|)|§f;0| *— weakly in L2 (IRY). Thus,

Vu Vu
/ (V) 2% Ve dr — 9(|Vg|)
{ur>0} |v |

VEdx
{zn <0} |v |

On the other hand, d{uy > 0} — {zx = 0} locally in Hausdorff distance. Then,
if ¢ is a Lebesgue point of ¢, satisfying (2.6.9),

(2.6.11) / qu(z0 + prz)€ dHYN 1 — qu(x0) / EdHN T
&{up>0} {xn=0}
As, Vug = —A*enX{ay<0y, we deduce that for almost every point zg € Opea{u >

0}7 Qu<x0) = g()‘*) U
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Now we prove the asymptotic development for weak solutions satisfying Defini-
tion 2.6.1.

LEMMA 2.6.12. If u satisfies (1),(2), (3) and (4) of Definition 2.6.1, then for
2o € Orea{u > 0} satisfying (2.6.9), u has the following asymptotic development
(2.6.13) u(z) = N (x — xo,v(x0))” + 0|z — x0|)

where v(xg) is the unit outer normal to the free boundary at xy.

PROOF. Let xg € Oreqf{u > 0} and let pp — 0. Let ug(z) = piku(xo + pr) be a
blow up sequence (observe that wy is again a weak solution in the rescaled domain).
Assume that u; — uo uniformly on compact subsets of IRY. Also assume that
v(xzo) = en. As in the proof of Theorem 2.5.5 we deduce that

uy >0 in {zy <0}

uy=0 in {zy > 0}.
Let us see that uy > 0 in {zx < 0}. To this end, let D CC {zxy < 0} and let
¢ € C°(D). For k large enough,

v
(2.6.14) - / (I Vur )~ ¢ dy — / g (x) AR,
{uk>0} |vuk’ ared{uk>0}

By Lemma 1.4.67, we have that for every z¢ € 0,..q{u > 0} satisfying (2.6.9),
HYNH0{ur >0} N D) — 0 ask — oo.

Thus, the right hand side of (2.6.14) goes to zero as k — oo. Since the left hand

side goes to
VUO
— —Véd
/g(|Vu0])’vu0|V§ x

we deduce that Lug =0 in {xy < 0}. Thus, up > 0 in {zxy < 0}.
As in Theorem 2.5.5 we have that there exists 0 < \y < oo such that
up(x) = Aoxy + of|x]).
By property (2) of Lemma 1.6.13 we have that
X{up>0} = X{ox<0p 0 L (RY) as k — .

Let now £ € Cg°(IRY) in (2.6.14). Passing to the limit as k¥ — oo and using
Lemma 1.6.13 (1) we get,

Vu
- / 9(1Vuo)) 22 e dr = / g(N)E() RV,
{xn<0} V| {xn=0}

Replacing & by r€(z/r) with r — 0, using the fact that fug(rz) — Aoz uni-
formly on compact sets of IRY, changing variables and passing to the limit we get

9(Mo) /{a:N<0} Endr = g()\*)/ E(x) dHN L

{zN=0}
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Thus, A\g = A*.

At this point we proceed as in Theorem 2.5.5 to deduce that actually ug(z) =
Nz (observe that here we are using property (4) of Definition 2.6.1). As the blow
up limit ug is independent of the blow up sequence p; we conclude that u has the
asymptotic development (2.6.13). O

Now we prove the property that we mentioned in the introduction to this section.
The following lemma only holds for weak solutions satisfying Definition 2.6.1.

LEMMA 2.6.15. If u satisfies (1), (2) and (3) of Definition 2.6.1,

1. HN=Y0{u > 0} \ Opea{u > 0}) =0
2. |IDN{u =0} >0 for every open set D C Q containing a point of {u = 0}.
3. For any ball B in {u = 0} touching QN o{u > 0} at xy, there holds that,

2.6.16 1 — >\
(2.6.16) s B =

ProoF. By Theorem 1.4.64 we have,
(2.6.17) |\1tu| (B (20)) = o(r™ 1) forr — 0

for HN~! almost all points zg € d{u > 0}\9reqa{u > 0} (Recall that f1, = —=Vx{us0y)-
Let zp € 0{u > 0} \ Orea{u > 0} satisfying (2.6.17). Then, if ug is a blow up limit
with respect to balls B, (x(), we obtain for £ € C'OO(Bl) that,

Vu VEdr — / Vu V¢ dx
- [ st ODW . [ o mw -
_ . —x _
= Vg )/ €<y 0) dHV !
8Ted{u>0}mBPk($O) pk

1-N * Y — o
oo [ () i)
< Cpy (B, () — 0,

therefore Luy = 0. Since u(0) = 0, we must have uy = 0, but this contradicts the
nondegeneracy property (2) of the Definition 2.6.1. Therefore (1) holds.

To prove (2), suppose that x(,~0y = 1 almost everywhere in D, hence the reduced
boundary must be outside of D. Then, by Definition 2.6.1 (3), Lu = 0 in D, and
therefore u is positive. Hence D N {u = 0} = 0.

In order to prove (3), Let [ be the finite limit on the left of (2.6.16), and yx — xo
with u(yx) > 0 and
u(yk)
dp
Consider the blow up sequence u;, with respect to By, (zx), where x), € 0B are points
with |zx — yx| = di, and choose a subsequence with blow up limit wg, such that
T — Yk
e := lim

k—o0 dk

— l, dk = diSt(yk,B).
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exists. Then by construction, since I > 0 by nondegenaracy, uo(—e) = [, and
up(z) < =l{x,e) for x - e < 0, up(x) = 0 for - e > 0. Both, ug and I{x,e)~ are
L solutions in {uy > 0}, and coincide in —e. Since | > 0, and |Vug| > [/2 in
a neighborhood of —e, we have that £ is uniformly elliptic there. Then we can
apply the strong maximum principle to conclude that they must coincide in that
neighborhood of —e. By a continuation argument, we have that uy = I{z,€)~.

By the Representation Theorem, V ¢ € C§°(B1), ¢ >0

(2.6.18)
_ Vuk VUO
udHle—/ Vu \Y% dm—>—/ Vu Vpdx
L. e [ V) v [ V) v

=g(I) / pdHN!
{{2,¢)=0}

and

/ wdHN T > / ole.vy, ) dH !

a{Uk>O} a’r‘ed{uk>0}

(2.6.19) :/goe.d,uuk :/ 8eg0dx—>/ Oep dx
{ur>0} {{x,e)<0}

= / edHN L.
{(I76>:0}

Therefore, for weak solutions of type I and II we have,

g(1) > liminf ¢, (z).
T—T0

Now, if u is a weak solution of type I we have, that q,(z) = g(\*) for H¥~1—
a.e x € QN o{u > 0}. Thus, g(I) > g(A*) and I > \*. O

We then conclude,

THEOREM 2.6.20. If u satisfies (1),(2) (3) and (4) of Definition 2.6.1, then for
HN a.e g € O{u > 0}, u has the asymptotic development (2.6.13)

Proor. It follows by Lemmas 2.6.12 and 2.6.15. 0

REMARK 2.6.21. Now we have that with the additional hypothesis (4), weak so-
lutions (I) satisfy the same properties that we proved in the previous section for
minimizers (with the only difference that in (/) we have a less than or equal instead
of an equal). Observe that minimizers have the asymptotic development (2.6.13) at
every point in their reduced free boundary, but we only proved that this development
holds at almost every point of Oreq{u > 0} when u is a weak solution.

REMARK 2.6.22. We have proved that weak solutions I are also weak solutions
11
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7. Regularity of the free boundary

In this section we prove the regularity of the free boundary of a weak solution
u in a neighborhood of every “flat” free boundary point. In particular, we prove
the regularity in a neighborhood of every point in O,eq{u > 0} where u has the
asymptotic development (2.6.13). Then, if u is a minimizer, 0,.q{u > 0} is smooth
and the remainder of the free boundary has HN~!'— measure zero.

The proof of the regularity of the free boundary is based on the works [4] and
[10]. The main differences with [10] come from the fact that we don’t assume the
locally uniform positive density of the set {u = 0} at the free boundary. This is
a property satisfied by minimizers that is not know to hold, in principle, for weak
solutions that appear in a different context. This uniform density property implies,
in particular, that H¥~'— almost every point on the free boundary belongs to the
reduced free boundary and this is a very strong assumption that we don’t want to
make.

The proof will be done in a series of steps.

7.1. Flatness and nondegeneracy of the gradient.

DEFINITION 2.7.1 (Flat free boundary points). Let 0 < o0,,0_ <1 and 7 > 0.
We say that u is of class

F(oy,0_;7) in B,= B,(0)
of
1. 0 € 0{u > 0} and

u=20 for xn > oup,
u(x) > =N(xy +0o_p) for xzy < —0o_p.

2. |[Vu| < X1+ 1) in B,.

If the origin is replaced by xo and the direction ey by the unit vector v we say that
w is of class F(o4,0_;7) in By(x) in direction v.

REMARK 2.7.2. First, observe that we may suppose that xo = 0 and p = 1, if not
we replace u by vi(x) = u(zg + xp)/p. We also may suppose that \* = 1. In fact,
take the function g*(t) = g(\*t). Then, g* satisfies condition (0.0.2) with the same
d and go. If vo = v1/N\*, then vy satisfies all the properties of weak solution where
the constants in (2) are replaced by Cpaz /N and cpin/N*, and in (3) and (4) we
have a one instead of \*. Finally, if we take vs(x) = vo(Tx) where T is a rotation
with T'(e,) = v then u is a weak solution in B,(xy) with u € F(oy,0_;7) in B,(zo)
in direction v, if only if v is a weak solution in By associated to the function g*,
N =1 and with vs € F(oy,0_;7) in By in direction ex. In this section we will
then suppose that p =1, xg = 0, \* =1 and v = ey but, by this observation, we
will have that all the following results hold also in the general case.

We will prove the following results,
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THEOREM 2.7.3. There exists og > 0 and Cy > 0 such that
u € F(o,1;0) in By implies u € F(20,Cyo;0) in By,
for 0 <o < og.
THEOREM 2.7.4. For every 6 > 0 there exist o5 > 0 and Cs > 0 such that
u € F(o,1;0) in By implies |Vu| >1—06in ByjyN{ry < -Cso}
for 0 <o < os.

We first prove the following weak forms of the theorems.

LEMMA 2.7.5. For every € > 0 there exists 0. > 0 such that
u € F(o,1;0) in By implies u € F(20,e;0) in By,

for0 <o <o..

Proor. We develop the proof of the Lemma in several steps.
Step I We use the following construction from [4] and [5]. Let

—Ilyl* )
1= 9Jy[?
for |y| < 1/3 and n(y) = 0 for |y| > 1/3, and chose s > 0 maximal such that
Bin{u>0}cCcD:={x € By:ay <o—sn)},
where = = (2/, xy). Hence, there exists a point
2 € By NOD N o{u > 0}.

n(y) = exp (

89

Observe also that s < o since 0 € d{u > 0}. Now, let £ € 0B3y with {y < —1/2.
We want to prove an estimate for u(§) from below. Consider the solution v = v, ,

of,
Lv=0 in D\ B,(¢),
v =0, on 0DnN By,
v=_1+0)(c—xzy), on OID\ By,
v=—(1-ko)xy, on 0B,(§),

where £ > 0 is large and p > 0 is a small constant to be chosen later.
Step II The function v = v, , constructed above satisfies.

0_,v(2) <1+ Co —crko  for z € ByjyNOD
for some positive constants C' = C(p) and ¢ = ¢(p), if 0 < 0 < (K, p).

The idea of the proof is to construct an explicit L— supersolution w in D\ B,(§) in
order to to estimate v. We construct w of the form w = v; — kowve, where v and v,

are defined below.

First, let v; and vy be defined as follows.

= (1 —exp(—judy)) in D,
M1

(%1
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where
di(r) = —wn + 0 — sn(a’),
and p1,7, depending on ¢ are positive constants. Then,

1< |Vd| <1+ Co, |D%d| < Co.

Hence, if b;; is the matrix defined in Remark 1.2.25 with ellipticity 3 we have,
(2.7.6)
bi; Dijv1 = Y1 exp(—padr )by (Dyjdi—pa Didy Dydy) < 1 exp (—pady)(Co—B" ) < 0,

if we choose p; = Cio for C large. Next,
(2.7.7)  |Vui(x)] = v exp(—p1dy)|Vdy| > v exp(—pidy) > 71(1 —2C10) > 1,
if 0 < 2,7 =1+ Cyo for Cy = 3C) and o < go(Ch).

Hence by Remark 1.2.25 v; is an £— supersolution in D.

Moreover, if ¢ <1 then,

(2.7.8) vi(z) > mdi(z)(1 —2u1) > (1 + %U)dl(x)

if o S (7()(01).

If x € 0D\ B; and if |2/| > 1/3 then n(z') = 0 and we have v(z) = 0. If
x € 0D\ By and if |2/| < 1/3 then 2y > —/2/3 and by (2.7.8) we have,

vy (z) > (1 + Cl/Z)dl(a:) =o—ay+ %a(a —an)— (1+ %0)577

>a—:vN~|—0 0+\/_ 1+£0)—0—xN+(02\/2/_3—1)
za—xN+0(U—|—1)za—xN—i—a(U—xN):v(x),
if 0 < oo(Ch).
If v € 0B,(¢) and if p < —1/4 then xx < —1/4 and by (2.7.8) we have,

0le) 2 (14 C/Dda(w) = o — Ty + (o = sn)(1+ T) 2 —aw — Loy

> —xn + koxy = v(x).

Therefore, for z € (D \ B,(£))

vi(z) > (1+ %U)dl(x) > v(x),
if o is sufficiently small. By the maximum principle,
vi(z) >v  in D\ B,(§).
We also have that at z € By, N 9D
(2.7.9) |Vui(2)] =1 |Vdi| <1+ Co.
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Next, we define vy depending on B, () by
vae) = 2(explndy) 1) in D\ By(€),
2

with constants s, o, and D C D a domain with smooth boundary containing
D\ By10(0B] x {0}), and d5 is a function in C?(D \ B,(§)) satisfying,

dy =0 on 8[),

dg =1 on 8Bp(§),

C>|Vdy| >c¢>0 inD)\B,®¢).

Thus,
(2.7.10)

bij Dijva = 2 exp(pady)bij(Dijd + po Dida Djda) > o exp(pads)(—C + cpiz) > 0,
if p15 is large enough. Then choosing ~, such that v, =1 on 9B,(§) we have that in
D\ B,(&) we have

(2.7.11) |Vug| = y9exp(uads)|Vdy| < C,

and at the point z

(2.7.12) |Vue(2)| = 72|Vda(z)| > ¢ > 0.

Thus by (2.7.6) and (2.7.10), the function w = v; — ko, satisfies
(2.7.13) by Dijw < 0 in D\ B,(€)

with

w=wv >v on oD.
If z € 9B,(£) and p < 1/4, then —zy < —1/4 and using (2.7.8) with C3 = 2 > 3k
we have that,
w(z) > (14 Cs0)dy(z) — ko = —xy — Cso0xy + (1 4+ Cs0) (0 — sn) — ko
> —xy — 3koxN — Ko > —xN — okry = v(x).
Therefore
(2.7.14) w(z) > v(z) ond(D\ B,(£))

The functions vy, vy are C? and we proved in (2.7.7) and (2.7.11) that |Vo;| > 1
and |Vvg| < C. We obtain that |Vw| > |Vui| —ko|Vue| > 1—=Cro > 0if 0 < o(k).
This fact and (2.7.13) will imply that w is an £- supersolution. On the other hand,
by (2.7.14) w > v on d(D \ B,(£)), then by comparison we have that w > v in

D\ B,(€). Therefore, by (2.7.9) and (2.7.12) we have,
0_,v(z) < 0_,w(z) = |[Vui(2)| — ko|Vua(2)] <14 Co — cko.

Step III By (4) in Definition 2.6.2 and (3) in Lemma 2.6.15 we have that, if B is
a ball in {u = 0} touching the free boundary at xy then

I wz)
msup ———= .
o P dist(z, B) =
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We want to prove that, for large k = k(p)
(2.7.15) u(xe) > v(ze) for some xe € OB,(E).

Indeed, otherwise u < v on 0B,(¢); also v < v on 0D (by 2.7.1 with (2) 7 = o).
Therefore u < v on d(D \ B,(§)) and, by comparison principle, also v < v in
D\ B,(€). By step III applied to z we have that

1<1 — <9,
< limsup G ap) = 9-0)

and the contradiction follows by step II choosing « large enough .
Now, for k large, we have
u(€) = u(xe) — p(1+0) = v(we) — p(1 4+ 0) = —(1 — ko )(ze) v — p(1 + o)
> —(w¢)v — ko —2p > =En —4p
for 0 < o(p) sufficiently small. That is,
(2.7.16) u(&) > —&v —4p  on {§ € 0B3q,én < —1/2}.
Integrating along vertical lines and using that |Vu| < 1+ o, we obtain for a > 0,
wé+aey) >ull)—all+o)>—Ev—4p—a—ao > —(Ev+a)—5p
for 0 < o(p). Choosing p = £/10, we complete the proof of the Lemma. O
LEMMA 2.7.17. For every e > 0 and 0 > 0 there exists 0.5 > 0 such that
u € F(o,1;0) in By implies |Vu| >1—0in By N{zy < —¢}

for0 <o <o.ps.

PROOF. Assume the contrary. Then there exists a sequence uy € F(1/k,1;1/k)
such that

|Vug| <1 =0 for some x, € Byjp N {zy < —€}.

From Lemma 2.7.5 we have that u, € F(2/k,1/k;1/k) and letting k& — oo we
obtain,

ug(x) — ug(z) =z  uniformly on By 4.

Moreover on the set {ug > 0} = {xx < 0} the convergence is locally in C'*. This
implies that if 2, — zo € BypsN{zy < —¢}, then |Vu(zy)| < 1—6 which contradicts
the fact that |Vug| = 1. O

PrROOF OF THEOREM 2.7.3. We revisit the proof of Lemma 2.7.5. Choose p =
1/10 and xk = k(p) such that (2.7.15) holds. We can refine the estimate (2.7.16) as

follows. Set,
w(z) = (1+0)(0 —zn) — u(2).
Then u € F(0,1;0) implies w(z) > 0 in By,(§) and
<

w(x 6) —(z 5) —U($§)+C'0§ Co.
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From o sufficiently small, we know from Lemma 2.7.17 that |Vu| > 1/2, hence u
will satisfy 7u = 0, where 7 was define in (1.2.26). As a consequence, w will also
satisfies Lw = 0. Then, applying the Harnack inequality we obtain that

w(e) < Culee) < Co
or
u(§) > v —Co  on {{ € 0By, En < —1/2}.
Integrating along vertical lines and using that |Vu| < 1+ o, we conclude that
u(§ +aey) 2 u(§) = —(1+o0)a > —(y +a) - Co,
which implies that v € F(20,Co;0) in By s. O
PROOF OF THEOREM 2.7.4. Assume the contrary. Then there exists a se-
quence o, — 0 and uy € F(oy, 1;04) such that
Vg, (z%)] < 1 — 6 for some ¥ € Byjs N {xy < —koy}.

Let dy, = dist(a®, 0{uy, > 0}) and y* € d{uy > 0} be such that |z* — y*| = dj. From
Theorem 2.7.3 it follows that dy, > (k — Cy)oy. Define now

_ _uk(yk+2dk) N _;Ek—yk
Wle) = =g B= g

Then one easily verify that

_ 1
T € F(M o) in B,

2(k — Cy) 7
1 Co+1
Pl = 1/2, (7 <——<1— )
2kl = 1/2, (Z)n < =3 G
and |Vug(Z)| < 1 — 0. This is a contradiction to Lemma 2.7.17. O

7.2. Nonhomogeneous blow-up. We shall denote points in RY by (y, h)
with y € R¥"" and h € R. Balls in R¥~! by B/(y) and By = B; N {h < 0}.

LEMMA 2.7.18. Let u, € F(oy,0k;7) in B, with o, — 0, TkO'k_Q — 0. For
y € BY, set

fi () = sup{h : (pry, owprh) € O{uy > 0}},
fo () = inf{h : (pry, oxprh) € O{uy > 0}}.
Then, for a subsequence,
1. f(y) = lim SUp =y fi (2) = lim insz:gO fr (2) forall y € By.

Further, ff — f, fo — [ uniformly, f(0) = 0, |f] < 1 and f is
continuous.

2. f s subharmonic.
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PROOF. Define,

Dy :={(y,h)/(y,orh) € By N {u > 0}}.
We can choose a subsequence u; such that the set Dy, is convergent in Hausdorff
distance, and for a subsequence we define f as in (1). Therefore, for yo € Bj there
exist points y;, for all k£ such that
Y — Yo, and f]j(yk) — f(Yo)-

As f is upper semicontinuous, given ¢ > 0 there exists o > 0 such that for k big,

<B:1(yk:) x [fiF () + 6, oo)) A D, =0
and then
(B;(yk) < [(fi (yr) + ), oo)) N By N {u > 0} = 0.

As (yr, o6 f 1 (yr)) € O{ug > 0}, then uy € F(opd/a, 1; 1) in Bo((yk, o fi (Yk))-

Since o, — 0 7, = O(0y) we can apply Theorem 2.7.3 for k large, and obtain
up € F(2040/a, Cogd/a; ) in Boyo((Yk, o fi (yx)), which implies that for large k
the set

{(y.h) € Bi/ly =l < /4 and  h <op(fi (yx) — CO)}
is contained in {u; > 0}, that is

fo (W) > fif (yn) = C for y € By u(un),
then lim inf;:wo fr (y) > f(yo) —2C6 which proves the assertion.

We may assume by replacing u; by u, = pikuk(pkx), that pp = 1. Let us assume,
by contradiction that there is a ball B (yo) C Bj and a harmonic function g in a
neighborhood of this ball, such that

g>fondB,(y) and f(yo) > g(vo)-

Let
Z = B)(yo) x R, 7" ={(y,h) € Z, h > org(y)},
Z= ={(y,h) € Z, h < oy9(y)}, Z° ={(y,h) € Z, h = arg(y)}.

Take ds(A)(x) = min{(1/8)dist(z,R" \ A), 1}, then by the Representation The-
orem 2.4.5 (see Remark 2.6.8) we arrive at,

\Y
| oV sz dr = [ (2 ) a5
{up>0} |Vug| O{uy>0}

taking 0 — 0 and assuming that HY1(Z° N 0{us, > 0}) = 0 (if this is not true we
replace g by g + ¢y for a small constant ¢y) we have that

(2.7.19) / g(|Vugl) Vg vdHN T = / Qu, (1) dHN L
{ur>0}NZo ]Vuk\ O{ur>0}NZ+
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As uy, € F(oy, 0k, ;) we have that |Vu,| < A\*(1 + 7;) and, by Lemma 2.6.10, there
holds that g, (r) = g(A*) for HN~! — a.e point in d,cq{uy > 0}. Then, by (2.7.19)
we have,

(2.7.20) gV YHN T (Oreq{ur > 0} N ZT) < gN (14 7)) HY " ({ug > 0} N Zy).

On the other hand, using the fact that f(yo) > g(v0), we can prove the following
excess area type estimate,

(2.7.21) HY N (Orea B N Z) > HNTY(Zy) + co?,
where Ey = {u, > 0} U Z~. We leave the proof for a moment.
We also have,
HY YO0 Ex N Z) < HY Y ZT N Orea{ur, > 0}) + HY "2 Zy N {uy, = 0}).

Using this inequality, (2.7.21) and the fact that HY~1(Zy N 0{us, > 0}) = 0 (if this
is not true we replace g by g + ¢y for a small constant ¢y) we have that,

(2.7.22) HY N (Oreq{ur >0y N Z7T) > HY 1 (Zo N {ug > 0}) + cof.
Finally by (2.7.20) and (2.7.22) we have that,

g [HY " {ug > 0} N Zg) + coj] < gN (1 + 7))HY 7 ({ur, > 0} N Zp).
Therefore, for some positive constant ¢ we have

g (1 +7)) —g(A)

c <
= 2
Ok

and this contradicts the fact that Z — 0 as & — oo.

9k
So, we only have to prove (2.7.21). Let as take, for £ > 0, the solution of,
An = —p, in B},(yo),
n=g on 9B, (yo),

Where ¢, € C5°(B,(%0)), 0 < ¢, < 1 and is supported in By (y). By the uniform
estimates of 7, we have that, when x — 0, n converges uniformly to g. Then since
f(yo) > g(yo), we can choose x sufficiently small such that 7 is less that f in B}, (yo).

Let Z+ = {(y,h) € Z, h > own(y)}, and define analogously Z~ and Z,. As

before, we can assume that the sets Z, N OE), have HY~! measure zero.

First observe that, since u, € F(oy,0k;7%), then 0{uy > 0} lies in the strip
{|z| < o1 }. Therefore, we have,

(2.7.23) 1ZF N Ey] <|Z' 0 {up >0} + 12 N Z*| < coy,

(2.7.24) 1Z7\ Ep| <127\ {ux > 0} < coy
Now, take the vector field,

(_Ukvn(ml)ﬂ 1)
Vi(x) = :
Mo V1+1oeVn(al)?
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We see that,

_ ok A7 n op Z dn  On On
VI+1oVn@)R - (L loeVn(@)?)*? | 4= | 0vidz; O Ox;’

then, as D?n is bounded and An < 0 we have that

(2.7.25) divV,, > —Co;.

Moreover, if z € B/ (yo) \ B,(yo) then A = 0 and we have that |divV}| < Coj.
Now, observe that, by construction of  we have that, if k is large enough

B.(yo) x RNZ~ C Ej,

diVVk =

therefore
(2.7.26) divVi| < Co}  in Z7\ Ej.

On the other hand we have,

/ div(ds(Z1)Vi) dz < / ds(ZDYV)| dHY ™ < HY"Y(Z" N OreaEr),
Ey

87‘edEk
and since

/ div(ds(Z)V;) dx — —
By dZ+NEy

we have using (2.7.23) and (2.7.25) that,
HYNZH N OpeqEr) > HYN(Z° N Ey) — Cot.
Analogously, we get,

HYNZ™ N OreaBr) > /

82_\Ek
and using (2.7.24) and (2.7.26) we obtain,

HN"NZ™ N OpeqEr) > HYH(Z°\ E}) — Cot.

Vv dHN 1 + / divV} dx

ZtNE;

Viv dHN 1 —/ divV} dzx,

Z_\E)c

Thus, we proved

(2.7.27) HY"YZ N OyeBr) > HNY(Z°) — Co}.

Finally, using that g is harmonic in B (yo) and n = g on 9B, (y) we get,

Y20 - 120 =

By, (yo

<\/1 + o V2 — /1 + |ang|2> dHN !
)
>cot [ (1o = VgP) dr¥ - Cof
B, (yo)

= ca,%/ |V — Vgl?dH"N ™! — Coy.
B, (yo)

Combining this last inequality with inequality (2.7.27), we obtain the desired esti-
mate.
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0

The following Lemma was proved in [5],

LEMMA 2.7.28. Let w be a function satisfying:

¢ijDijw =0 in By N {h < 0}, where ¢;j is an elliptic constant matriz.

w(y,0) = g(y) in the sence that w(y, h) converges in L' to g as h 10

g is subharmonic and continuous in By, ¢(0) = 0.

w(0,h) < CIhl,

w > —C.
Then

1/2 4
/ —2( ][ 9(y) dHN‘Q) dr < Gy,
A

where Cy is a constant depending only on C.

PROOF. See Lemma 5.5 in [5]. O

LEMMA 2.7.29. There exists a positive constant C' = C(N) such that, for any

1/4 4
/ —2(][ f = Fly) dHY ) dr < G,
o T OB, (y)

PROOF. It follows as in Lemma 8.3 at [10]. Without loss of generality we assume
pr = 1. Also, it is sufficient to prove it for yo = 0, since uyp € F(80%,80%;Tx) in
31/4(?%01@]?(90))-

h)+ h
STEP I. Set wy(y, h) — WM 1

Ok

. Then for subsequence,

lim wy, = w exists everywhere in By .

k—o0

The convergence is uniform in compact subsets of B, and w satisfies

N-1 ,
1
(2.7.30) cijDijw = Dyw + %DNW =0 in By,
i=1
(2.7.31) w(0,R) <0,
(2.7.32) w(y,0) = f(y) in the sense that hh%l, w(y, h) = f(y),
(2.7.33) lw| < C,
(2.7.34) w(y, h) —w(y,0) <0 for all (y,h) € By .
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In fact, since the free boundary of wy lies in the strip |zy| < o, |Vug| < 1+ 7,
Tr < o, and we have wy < C'in By . The flatness assumption also implies wy, > —C
in By, and thus

lwg| < C'in By .
By Theorem 2.7.4 we have that
(2.7.35) [Vug| > 1/2  in ByN{h < —Cyoy}
for oy, sufficiently small. Then by Remark 1.2.25, wu; satisfies
bij(Vug)Djju, =0

where b;; was define in (1.2.27), for h < —Cyoy. Therefore, we have

(2736) bij(Vuk)Dijwk =0 in B1 N {h S —C(]O'k}.

From the flatness assumption and by Theorem 1.2.19 we have that for D C By
|uk|lcrs(py is bounded, and therefore, for a subsequence, uy — u in C'(D). Again,
by the flatness assumption, we have that u = —h.

On the other hand, as wy, satisfies the uniformly elliptic equation (2.7.36) with
continuous coefficients, and as the wy are bounded we have by Remark 1.2.30 and
Theorem 1.2.29 that for any compact set D C By and any ¢ > 1, [|wi|c18(p) and
|wk||w2a(py are bounded, therefore we may assume

W, — W in C' in compact subsets of By

2.7.37
( ) D*wy, — D*w in L} (By) for any pg > 1.

Therefore, passing to the limit in (2.7.36) we obtain (2.7.30). Clearly, (2.7.33) is
valid.
Since,

1 Vug| —1
Ok Ok Ok

and w(0,0) = 0 we obtain, for h <0
wi(0,h) < [h]2E =0,
Ok

thus w(0,h) <0 and (2.7.31) follows.
It only remains to prove (2.7.32). First we show that for small 6 and large K

(2.7.39) wg(y, h) — f(y) uniformly in D,

where D := B]_s x [-K, —1]. By Lemma 2.7.18, it is sufficient to prove
(2.7.40) wi(y, h) — fif (y) — 0.

From (2.7.38) and by the definition of f," we obtain
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Tk

wi(y, how) — fif (v) < wily, onfit (W) — £ (v) + (fF () — h)a—k

(2.7.41) - N
= (fiily) - h)g—k <(1 +K)a—k =0.

To show (2.7.40) take a sequence y, € B} 5, —K < h; < —1 and consider u; in

Bro, (21), where zy, is the free boundary point zy = (yx, 0% i (vx)) and R is a large
constant. If we define,

o= L swp (FH) — £ (),

R YE€BR,, (Uk)

we have that x € d{u, > 0} and
up(y,h) =0 if (y,h) € Bro, (x1), h— owfi (y) > 0xRoy,

and that means that,
u, € F(0k, 1;7,)  in Bpre, (xk).

Observe that, by Lemma 2.7.18, 25; — 0, then we can apply Theorem 2.7.3 and
obtain that,
U € F(Q(Sk, Cék; Tk) in B(R/Q)O—k (xk),

for 05 = max{dx, 7. }. Hence, for —R/2 < h < —C(R/2)é},

’U,k(Ik + hakeN) Z —(hO’k + Cék(R/2)0k>
In other words,

ug(xg + horen) + hoy,
Ok

For any —K < hy < —1 we have that 0 < f," (yx) — hx <1+ K < R/2 if we choose
R large (depending only on K). Therefore, by taking h = — f;7 (yx) + hy in (2.7.42)
and by (2.7.41) we obtain

wi(Yr: onh) = fi (Yr) — 0
and this holds for any (yx, hyx) € D, therefore (2.7.40) holds.

We now use a barrier argument. Let €25 be a C°>° domain with regular boundary
that approximates B;_; in such a way that

For small € > 0, let also g. be a C'"™° function on 0§25, which satisfies,

f—2e<g.<f—e ondQsNIB;_3;N{h =0}
(2.7.43) g < f—¢e ondsnN{h=0}
ge <w—¢ ondQsnN{h <0}
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Let now, &, solve the Dirichlet problem,
bijlen)D;j®. =1 iny &.=g. on 0.

Take (y,h) € Qs N {h = —Koy}. By continuity of ®_, by (2.7.43) and (2.7.39)
we have that,
O (y, —0pK) < P(y,0) +¢/2 < f(y) —e/2 < wi(y, —0, K),
for k < k(K,0d,¢).

On the other hand, if (y, h) € 0Qs N{h < —Ko\} we have by (2.7.43), (2.7.37)
that

P, <w—e < wy,
for k > k(0, K, ¢).
Therefore,
(2.7.44) wp > P, on I(QsN{h < —Koi})
for large k > k(e, 0, K).

We may assume that K > 2C, where Cj is the constant in (2.7.35). The func-
tion wy, is bounded and satisfies (2.7.36) which is uniformly elliptic, with elipticity
constant 3. Then, by interior gradient estimates, we deduce that

C
(K — 00)0' k
where C' is independent of &k, K. In particular

|Vwk] < in Qgﬂ{hg —KO’k},
c

(2745) ]Vuk — <—€N)| < 2% 1 Q(; N {h < —KO’k}.

Hence, if z € V = Qs N {h < —Koy} then

bij(Vug) Dig®. = (bij(Vug) — bij(—en)) Dy ®c + 1

(2.7.46)
> 1 — [P |11 )10 (Vug) — bij(—en)|| Lo v)-

The function

g'(pDlpl _ \pips
Hi;(p) = ( - 1)
g([pl) pl?
is uniformly continuous in any ring {¢ < |p| < C}. Therefore, as 1/2 < |Vug| <
1+7; in QsN{h < =Ko}, by (2.7.45) we can choose K = K (e, ) sufficiently large
to make the right hand side of (2.7.46) positive. Thus,
bw(Vuk)DUQE > bU(Vuk)Dka in Q5 N {h < —KO’k}

and combining with (2.7.44) we deduce . < wy in QsN{h < — Koy}, for sufficiently
large k. Letting k — oo we obtain w(y, h) > ®.(y, h) in s and consequently,

liminfw(y, h) > (y) - 2,
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for y € B|_55. Similarly, by constructing a barrier from above, we obtain

limsupw(y, h) < f(y) + 2e,
h—0—

for y € B|_55. Since € and 0 were arbitrary, the proof of (2.7.32) is completed.
Now, take h < b/ < 0 then by (2.7.38) we have that

wi(y, h) — wi(y, 1) < E|h— 1),
Ok

and taking limit we have,
w(y7 h) - ’LU(y, hl) <0.
Using (2.7.32) we get, taking A’ — 0 that w(y, h) — w(y,0) < 0, and the proof of
(2.7.34) is completed.
STEP L. Fix § € B} ,(0) and define,

. y _h _ _
w (y7h>:w(§+y7§)_w(yao)a <y7h)€Bl'

Then if Y
¢) =1 +9) - f(9)
we have by Step I and Lemma 2.7.28 that

/2 q
— *(y) dHN72) dr < Cy,
/o r? <][aB;(y)g ) ) =

and by definition we have,
1/4 4
|5 - s ) i< ),
o "N o)
and the result follows. O

The following Lemma was proved in [4],

LEMMA 2.7.47. Let g be a function satisfying,

g is subharmonic and continuous in Bj

9(0)207 ’gySL
there exists C7; > 0 such that if y € Bi/z

1/4 4
— — dHN72) dr < CY.
[ 5, amsa )<

1. g is Lipschitz in Bi /4 with Lipschitz constant depending on C7 and N.

2. There ezists a constant C' = C(N) > 0 and for 0 < 6 < 1, there exists
co = c(0,N) > 0, such that we can find a ball B. and a vector | € RN™!
with

Then

0
cog<r<@, [I|<C, and g(y)Sl-y+§T for |yl <.
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PROOF. See Lemma 7.7 and Lemma 7.8 in [4]. O

Now by Lemmas 2.7.29 and 2.7.47 we have the following,
LEMMA 2.7.48.

1. f s Lipschitz in 31/4 with Lipschitz constant depending on Cy and N.

2. There ezists a constant C' = C(N) > 0 and for 0 < 6 < 1, there exists
co = c(0,N) > 0, such that we can find a ball B! and a vector | € RN~!
with

0
cg<r<0, [[[<C, and fly)<ly+gr for |y <r

Now, we can improve the flatness,

LEMMA 2.7.49. Let 0, C, cg as in Lemma 2.7.48. There exists a positive con-
stants og, such that

(2.7.50) uw € F(o,0;7) in B, in direction v
with o < 0y, T < 090?, implies
u € F(0o,1;7) in B, in direction v
for some p and v with cgp < p < 0p and |[v — v| < Co, where o9 = gg(0, N).
PROOF. Let uy a sequence as in Lemma 2.7.18. That is, uy, € F(oy,0p;7%) in
B, (zx) in direction vy, with oy, < 1/k, 7 < 07 /k and C*py < oy,.
For simplicity, we assume that x; = 0 and v, = ey for all k. Then if we define

f as in Lemma 2.7.18 we have by Lemma 2.7.48 that

0
f(y)él-y+§7‘ for |y| <,

with 7,/ as in that lemma. Therefore, again by Lemma 2.7.18 we have for £k large
depending on 6 that,

fify) <l-y+6r  forfy| <
This means, by the definition of f,", that
up(pry, prh) =0 if (y,h) € B, with h > oyl -y + Qoyr.
But this means that wuy, is of class F'(oy, 1;0%) in By, in direction 7y, with
~ 0o, _ (=al 1)

Pk ‘= PET, o) = ——, V = .
V14 |oxl)? V14 |opl?

As 7y < Ooy, copr < pr. < Op, and |1, — ey| < Coy, the conclusion of the lemma is
fulfilled for wy.

For the case x and v arbitrary, we take vg(z) = ug(zx + prTrx)/pr Where T}, is
a rotation, with Tpeny = vy O
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LEMMA 2.7.51. Gwen 0 < 0 < 1, there exist positive constants oy, cg and C
such that

(2.7.52) u € F(o,1;7) in B, in direction v
with 0 < oy and T < 0902, then
u € F(0o,00;0°T) in B, in direction v
for some p and v with cop < p < 1p and |v —v| < Co, where ¢g = co(0, N),
C' =C(N,0,q0), 09 = 09(0,N).

PRrROOF. Assume that p = 1. If gy is small enough, we can apply Theorem 2.7.3
and obtain

u € F(Co,Co;7) in By, in direction v.
Then for 0 < 0, < % we can apply Lemma 2.7.49, if again oy is small, and we obtain
(2.7.53) u € F(Cho,Co;7) in B,, in direction 14
for some rq, 14 with

co, <2ry < by, and |1, —v| < Co.

We obtain the improvement of the value 7 inductively. In order to improve 7, we
consider the functions U, = (G(|Vul) — G(A*) — 5)+ and Uy = (G(|Vu|) — G()\*))+
in By,,. By Lemma 2.5.3, and (4) in Definitions 2.6.1 and 2.6.2 we know that U.
vanishes in a neighborhood of the free boundary. Since U, > 0 implies G(|Vul|) >
G(X\*) + ¢, the closure of {U. > 0} is contained in {G(|Vu|) > G(\*) +¢/2}.

Since |Vu| is bounded from above in By, and from below in the set {G(|Vu|) >
G(X\*) +¢/2}, we have that F(|Vul|) > cin the set {G(|Vu|) > G(\*) +¢/2} N By,,.
Then hypothesis (1.2.32) and (1.2.33) of Lemma 1.2.31 are satisfied, and we have
that v = G(|Vul) satisfies,

Muv = D;(b;j(Vu)D;v) >0 in {G(|Vu|) > G(A\") +¢/2} N By,
where b;; is defined in (1.2.26), and is S-elliptic in {G(|Vu|) > G(\*) 4+ ¢/2}.
Extending the operator M with the uniformly elliptic divergence-form operator
Muw = D;(bij(z)Djw) in By,
with measurable coefficients such that
Bij(@) = by(Va) in {G(Vul) > GO) +2/2},

we obtain
MU. >0 in Ba,,.

Moreover, by (2.7.52) we have that U. < G(A*(1 + 7)) — G(X\*) and by (2.7.53)
U.=0in B = B, u(%n),if Co <1/2.
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Take now, V such that,

MVIO n Bgm\B7
V=G\(1+7))—G(\*) ondBy,,
V=0 on 0B.

Then, there exists 0 < ¢(N,8) < 1 such that V < ¢(G(A\*(1+ 7)) — G(\*)) in B,,.
Applying the maximum principle we have that, U. < ¢(G(A*(1 + 7)) — G(A*)) in
B,,. Taking ¢ — 0 we obtain,

G(|Vu|) €GN (1+7) +GA\)1—¢) in B,.
Since, G(A*(1+ 7)) = G(X*) + g(A*)A*T + o(7) we have that
G (1+7)) + G —c¢) =G\) + cg A)IN'T + o(7),
and since G is strictly increasing, we have,
IVul < GTHGN) + cg(X)N*T + o(T))
1
g(A)

1
= )\*<1 +7’(c—}- —O(T))> < )\*<1 +T—(C+ )),
T 2
if we choose 7 small enough. And we see that if we choose ¢; small enough (depend-

ing on N), we have

where 6, = \/%.

We can repeat this argument a finite number of times, and we obtain

="+ (g(A) X e+ o(T)) + o(T)

u € F(0y0,1;037) in B,, in direction vy,

u € F(0)'0,1;02™7) in B,, .. in direction vy,
with
co; < 2r; < 0;, and |, —v| <

0.
1— 6y
Finally we choose m large enough and use Theorem 2.7.3. 0J

7.3. Smoothness of the free boundary.

THEOREM 2.7.54. Suppose that u is a weak solution, and D CC Q. Then there
exist positive constants oo, C' and o such that if

u € F(o,1;00) in B,(zo) C D in direction v
with o < ag, p < po(Go,0), then
B,ja(z0) N 0{u > 0} is a CH* surface,

more precisely, a graph in direction v of a C** function, and, for any x1, x5 on this
surface

xr1 — To |
[p(@1) = v(ws)] < Co| 22

p
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PROOF. By property (4) in Definitions 2.6.1 and 2.6.2 we have that, for every
p— neighborhood D, of D N d{u > 0},

|Vu(x)] < X +7(p), for every x € D,
where 7(p) — 0 when p — 0.
Therefore,
u e F(o,1;7) in B,(zo) in direction v.
Applying Theorem 2.7.3 we have that
u € F(Coo,Coo;7) in B,a(xo) in direction v
if o <opand 7 < o.
Let 1 € B,2(x9) N 0{u > 0} then
u € F(Coo,1;7) in B,js(1) in direction v
and applying again Theorem 2.7.3 we have,
u € F(Cio,C50;7) in B,a(x1) in direction v
if Coo < 0p and 7 < Cyo.

Let 0 < 0 <1, take pg = p/4, vy = v, C = C§, 0 < % and 7 < 0yC?*0*. Now, by
Lemma 2.7.51 and iterating we get that there exist sequences p,, and v, such that,

u € F(0"Co,0mCa;0°"7) in B,, (x1) in direction vy,
with cgpm < pms1 < pm/4 and |V — V| < 0™Co.
Thus, we have that |(z — z1,v,,)| < " Cop,, for z € B, (x1) N 0{u > 0}.
We also have that there exists v(zq) = limy, 0 ¥ and
com
1-46

V(1) — U] < .

Now let & € B,,/4(21) N 0{u > 0} and choose m such that py,1 < |z — 21| < pp,.
Then

r—x 1 1
(z — zq,v(x1))] < C@m(f(’ 1 91| —I—pm) < 00m0<1_9 +a>|x—a¢1|

and since |z — 21| > "™ py we have

|r —x

o log(0
Po

log(co)’

Qm—i-l < (
and we conclude that
Co
[(z — 21, v(21))] < p—a|$ — x|

% 9
Cy’ C
choose pg small enough such that if p < py, 7(p) < min{o, Cyo, 09C?0?}. O

Finally, observe that the result follows if we take, o = min{oy, } and if we
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REMARK 2.7.55. By Lemma 2.6.12 and Definition 2.6.2 we have that there exists
a set A C Opeq{u > 0}, with HN"Y(0yeq{u > 0} \ A) = 0, such that for zo € A we
have that uw € F(o,,1;00) in B,(xo) in direction v,(xo), with o, — 0 for p — 0.
Observe that by Theorem 2.5.5 when w is a minimizer A = Opeq{u > 0}. Hence
applying Theorem 2.7.54 we have,

THEOREM 2.7.56. Suppose that g satisfies (0.0.2). If u is a weak solution then
there exists a subset A C Opea{u > 0} with HN Y (Opea{u > 0} \ A) = 0 such that
for any xy € A there exists v > 0 so that B,(xg) N d{u > 0} is a C** surface.
Moreover, if u satisfies Definition 2.6.1 then the remainder of O{u > 0} has HN =1
measure zero. Finally, if u is a minimizer, Oreq{u > 0} is a CY* surface and

HY=1(0{u > 0} \ Opeq{u > 0} = 0.

7.4. Full regularity of minimizers in the case N = 2. We will prove,
for minimizers of 2.0.1 that in dimension two, for a subclass of functions satisfying
(0.0.2), their whole free boundary is a C** surface.

The class that we consider consists of those functions satisfying condition (0.0.2)
and such that,

(2.7.57) There exist constants ¢ty and k& > 0 so that g(t) < kt for t < t.

Observe that this condition is satisfied for example, if § > 1 or when gy > 1 and

g9(1)

there exists a constant C' such that lir% T =C.

In order to prove the full regularity, we first need two lemmas, the first one holds
for any dimension and for any ¢ satisfying (0.0.2).

LEMMA 2.7.58. Let u € K be a local minimizer. Given D CC ), there exist
constants C' = C(N, D, \*), ro = ro(N, D) > 0 and v = v(N, D) > 0 such that, if
xo € DNO{u >0} and r < ry, then

sup |[Vu| < X+ Cr.
By (zo)

PRrROOF. The proof is similar to the proof of Theorem 7.1 in [10] but here we
make a little modification by using a result of [21]. This result allows us to avoid
having to add any new hypothesis to the function g.

Let U., Uy, M and M be as in Lemma 2.7.51. Then MUE > 0 in €.
For any r > 0 set
he(r) = sup U, ho(r) = sup Uy,

By (o) B, (o)
for any r < ro = dist (D, 092) and zy € D N o{u > 0}.
Then, he(r) — U, is a M- supersolution in the ball B,(z,) and

he(r)—U. >0 in B,(xo)
= he(r) in B.(z) N{u = 0}.
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Applying the weak Harnack inequality (see [17] Theorem 8.18) with 1 < p < N/(N—
2), we get

inf  (ho(r) — U.) > er 2|\ he(r) — Uel|po(Boao)) = che(r),
BT/Q(xO)

since, by Theorem 2.1.1, | B,(z0) N {u = 0}| > ¢r™. Taking now € — 0 we obtain
inf (ho(?") — Uo) Z Cho(?"),

B,./2(:E())
for some 0 < ¢ < 1, which is the same as

sup Uy < (1 —c)ho(r).
B'r/2(x0)

Therefore
,
V< (1=
ho (5) < (1= cho(r),
from which it follows that ho(r) < Cr7 for some C' > 0, 0 < v < 1. That is,
G(|Vu]) < G\") + Cr”
and therefore
|Vu| < X4 Cr?

and now the conclusion of the lemma follows. O

In the following Lemma is where we need to impose condition (2.7.57).

LEMMA 2.7.59. Let ®(t) = g(t)t — G(t), and g satisfying condition (2.7.57). Let
xo be a free boundary point, D CC Q and B,(x¢) C D. Take v = max(u — tn,0),
where t >0, n € C3°(Q), n =0 in Q\ Bug,y, 1 >0 and |Vn| < C/t. Then,

/ (G(Vel) - G(Vu)de < ®(|Vul) ds
By (zo)n{u>0}

By, (zo)N{0<u<tn}

+ Cotz/ (V| du,
By (w0)N{u>tn}

for Cy = Co(N, 0, go, dist(D,00),C).

PRrROOF. The Lemma follows as in Theorem 4.3 in [5] by making some modifica-
tions.

First, observe that for 0 < s < 1 we have |Vu — tsVn| < |Vu|+ C < Cy + C,
where (] is the constant in Theorem 2.2.25 . On the other hand, if g satisfies
(2.7.57), and if F(a) = 42 then for 0 < a < Cy + C, there exists a constant Cy such

a

that F'(a) < Cy. Therefore we have that,
(2.7.60) F(|Vu—stVn|) <Cp  forall 0 <s < 1.
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Set f(p) = G(|p|), then
(2.7.61)

f(Vv) = f(Vu) = /0 fp(Vu—tV(u—0))V(v—u)dt = f,(Vu)V(v — u)

i /o1 /ot V(v —=u)fpp(Vu = sV(u=))V(v - u)dsdt.

On the set {u > tn} we have v — u = —tn, hence by (1.2.24) and (2.7.60) we have,

1t
/ / / V(v —=1u)fpp(Vu—sV(u—v))V(v—u)dsdtde
{u>tn}NBy(zo) JO JO

< C/ Vv — Vul* dr = cﬂ/ |Vn|? dx.
{u>tn}NBu(zo) {u>tn}NB, (o)

On the set {u < tn} we have v = 0 and thus,

1t
/ / / V(v —u)fpp(Vu—sV(u—0))V(v—u)dsdt
{u<tn}nNBu(zo0) JO JO

1t
= / / / Vufp,((1 —s)Vu)Vudsdt de.
{u<tn}NBy(zo) JO JO

(2.7.62)

Next,
0= £(0) = f(Vu) —/0 fo(1 = )Vu)Vudt = f(Vu) — f,(Vu)Vu
+/1 /t Vufp((1 —s)Vu)Vudsdt
/ / / ) fpp(Vu — sV (u —v))V(v — u) dsdt
(2.7.63) {utn}NBu(wo)

</ ®(Vul) da
{u<tn}nB(zo)
Therefore by (2.7.61), (2.7.62) and (2.7.63) we have

/ (G(IVol) - G(Vul)) da

By (z0)n{u>0}

< / @(!Vu])dx—i—(?tz/ \Vn\Qd:IJ+/fp(Vu)V(v—u) dr.
{u<tn} {u>tn} Q

In the last integral the integrand vanishes on the set {u = 0}. Since also v —u =0
on 0{u > 0} and Lu = 0 on {u > 0}, this integral vanishes. (For a rigorous proof
approximate v — u by —min(u — 0, tn) for 6 > 0). The result follows. O

Now, following ideas from [2], using Lemmas 2.7.58 and 2.7.59, we prove, for
N =2 and g satisfying (2.7.57) the following,
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THEOREM 2.7.64. Let N = 2, g satisfying (2.7.57) and u a minimizer. Then,
for any ball B, centered at the free boundary we have,

][ (D) — B(Vu))* — 0 as r — 0,
B,-N{u>0}
where ®(t) = g(t)t — G(t) and P(N*) = A.
PROOF. Let 1 > u > r, and take v, as in Lemma 2.7.59, then J(u) < J(v) and

(2.7.65) AS/B( (@ =G de

/BM (zo)N{0<u<tn}

Let t = Cr, where C' is the constant such that v < Cr in B,. Now choose

sz in B, () \ By(xo),
n(z) =<1 in B,(xo)
0 in \ BN<$0),

observe that the condition |Vn| < C/t is satisfied if we choose p such that p > 2r.
Observe that,
(@A) —q’(!VUI))dl’:/ (@A) = ©(|Vul)) " da

By, (zo)N{0<u<tn}

/B#(:co)ﬂ{0<u<tn}

_ / (®(|Vu) — DO))* de.
By (zo)N{0<u<tn}

On the other hand by our election of ¢ and 7, we have that in B,, u < tn and
then by Lemma 2.7.59, (2.7.65) and the definition of \*, we have,

/ (B(X) — &(|Vul))* de < / (@(|Vul)) — ((A))* di
By (z0)N{u>0} By (zo)

L o
log(p/r)
By Lemma 2.7.58, we have that ®(|Vu|) —®(A*) < (N +Cr7)—Dd(N*) = D' (&)Cr7,
for \* < <N+ O As /() = ¢ (1)t < gog(t), and as ¢ is nondecreasing we
have that ®'(£) < gog(§) < gog(A* + Cr”). Therefore we have,

1 @)~ 2(vul))*de < (¢ T
— ) — U r < ( + )
72 B, (z0)N{u>0} 2 log (/1)
Taking r = p**#, with 8 < min{v/2,1/2}, we have the desired result. O

COROLLARY 2.7.66. Let N = 2, suppose that g satisfies (0.0.2) and moreover
satisfies (2.7.57). Let v € K be a solution to (2.0.1). Then d{u > 0} is a C1*
surface locally in €.
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PRrROOF. The proof follows now as in [4], we give the proof here for the readers
convenience. Let u; be a blow up sequence converging to ug. Since, Vu, — Vuyg
a.e in RY | we conclude from Theorem 2.5.3 and Theorem 2.7.64 that |Vug| = \* in
By N {up > 0}, and then

\% A*
0= Lug = div(%Vw) = %Auo in {up > 0}.
Therefore ug is harmonic in {ug > 0}, and if we take v = |Vug|?, we have 0 = Av =
| D?ug|?* and that means that Vug is constant in each connected component of this
set. Therefore, by Lemma 1.6.13 (5) and (7) we have,

uy = N max(z, vy, 0) + g max(—z, vy, $),

for some 1y and ¢,s > 0. Since {uy = 0} has positive density at the origin, we
have that s > 0 or ¢ = 0. Therefore, we have proved that any blow up sequence
has a subsequences that converges to a half linear function vy = A* max(x, v, 0) in
some neighborhood of the origin, then applying Theorem 2.7.54 we have the desired
result. OJ



CHAPTER 3

The optimization problem

In this Chapter we study, the following optimization problem. Take €2 a smooth
bounded domain in RY and ¢, € WV¢(Q), a Dirichlet datum, with ¢y > ¢y > 0
in A, where A is a nonempty relatively open, C? subset of 9Q. Here W% (Q) is a
Sobolev-Orlicz space (see Chapter 1). Let

Ko={uecWh(Q)/{u> 0} =a, u= g, on dN}.

Our problem is to minimize in K, the functional J(u) = [, G(|Vu|)dz , with
g = G’ satisfying (0.0.2).

1. The penalized problem

In order to solve our original problem in a way that allows us to perform non
volume preserving perturbations we follow the idea of [2] and consider instead the
following penalized problem: We let

K={ueW"¥Q)/u=¢, ondQ}

and

(3.1.1) T.(u) = / G(IVul) de + Fo(|{u > 0})),

where

Then, the penalized problem is
(P.) Find u. € £ such that J.(u.) = inlgja(v).
ve

In the next section we will study the properties of solutions to (F.).

1.1. Existence, regularity of minimizers and their free boundaries.
We begin by discussing the existence of extremals and the regularity. We are going
to give some properties of the minimizers, but as the functional 7. is very similar to
the one in Chapter 2, we are only going to state the results and avoid any proof. The
only difference between the two functionals is that in Chapter 2 the functional is
lineal in [{u > 0}| and here it is piecewise linear. Next, we prove that any minimizer
of J. is a weak solution, as defined in Chapter 2. Therefore we will have, by the
results therein that the free boundary is smooth.

111
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THEOREM 3.1.2. Let Q C RY be bounded. Then there exists a solution to the
problem (P:). Moreover, any such solution u. has the following properties:

1. ue is locally Lipschitz continuous in €2, and for D CC €2 we have that,
|Vu||L=(D) < C with C = C(N, go, 6, dist(092, D)).

2. Lu. =0 in {u. > 0}.

3. There are constants 0 < cpin < Cpaz, ¥ > 1, such that for balls B,.(x) C D
with x € O{u. > 0}

1 1/
Cmin S - (][ Uzd[)?) S Omaa;
T\ B.(z)

4. For every D CC (), there exist constants C,c > 0 such that for every
z € DN {u. >0},
cdist(z, 0{u. > 0}) < u.(z) < Cdist(x, 0{u. > 0}).

5. For every D CC Q, there exists a constant ¢ > 0 such that for x € 0{u. >
0} and B,(x) C D,

The constants may depend on ¢.
PRroOF. Observe that since F; satisfies,
1
if A< B, then e(A— B) < F.(A) — F.(B) < —(A- B),
€
then if u. is a minimizer, B, CC €2 and v is a solution of
Lv=0 1in B, v—u. € Wy(B,).
we have the following inequality
e(|B; N{v > 0} = |B: N {ue > 0}]) < Fe(|B N {v > 0}]) — F(| By N {ue > 0}])
1
< E(|Br M {U > 0}| - |Br M {ue > O}D

Therefore all the proofs of sections 3, 4 and 5 of Chapter 2 can be modify using this
fact. Observe that here, all the constants may depend on ¢.

!
From now on we drop the subscript € and denote by u instead of u. a solution
to (P.).

THEOREM 3.1.3 (Representation Theorem). Let u € K be a solution to (P.).
Then,

L. HN YD N o{u > 0}) < oo for every D CC Q.
2. There exists a Borel function q, such that

Lu=q, H" ' 0{u > 0}.
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3. For D CC ) there are constants 0 < ¢ < C' < oo depending on N, D
and € such that for B,(x) C D and x € 0{u > 0},

c<qu(z) < C, eV <HNTY (B (z)nofu > 0}) < CrN L
4. HN=1(0{u > 0} \ Oreqa{u > 0}) = 0.

PROOF. See Theorem 1.4.54. Observe that D N d{u > 0} has finite perimeter,
thus, the reduce boundary O,eq{u > 0} is defined as well as the measure theoretic
normal v(z) for z € Orea{u > 0} (see Chapter 1 Section 4.2). O

We are going to prove, that any solution to (P.), u is a weak solution in the sense
of Definition 2.6.1. First we prove that, if we take two points on the free boundary
such that the blow up sequences with respect to these points have blow up limits
that are half planes, then the slopes must coincide. Finally we will prove that the
function ¢, is constant and that property (4) of Definition 2.6.1 is satisfied with
N = g7(q,). We will divide the proof into several lemmas.

LEMMA 3.1.4. Let xg,x1 € 0{u > 0} and p, — 07. Fori = 0,1 let x;) — z;
with u(z; ) = 0 such that B, (z;x) C 2 and such that the blow-up sequence

1
Ui k() = %U(%k + i)

has a limit u;(x) = \{x,v;) ", with 0 < \; < 00 and v; a unit vector. Then N\g = \;.

PROOF. Assume that A\; < A\¢ then we will perturb the minimizer u near x
and x; and get an admissible function with less energy. To this end, we take a
nonnegative C§° function ¢ supported in the unit interval. For k large, define

( T —
r + Pzﬁé(‘P—kM‘)Vo for v € By, (zo),

() = T — P%¢(|$—p+7k|>’/1 for z € B, (z1x),

(T elsewhere,
which is a diffeomorphism if £ is big enough. Now let
ve(r) = u(m; ' (2)),
then, vy is an admissible function. Let us also define
(3.1.5) ni(y) = (=1)"o(|yvs.
We have
(3.1.6) F.({ox > 0}]) = Fe([{u > 0}]) = o(p ™).
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In order to estimate the other term in J. we make a change of variables and get

o /B (G(IVex]) — G(Vul)) de

Pk ('772)

B1(0)N{ui,r>0}

On the other hand, by Lemma 1.6.13, we have

By (0) N {u;p, >0} — B1(0) n{y-v; <0}, as k — 0, and
Vi — Vu; = =X\iviX{yw)<oy a-¢ in B(0).

Therefore

P! /B GOV~ G(ul) dr

/ (GOiv() — g D) dy
B1(0)n{{y,vi)<0}

Using that
: gADA _ i g @' (lyl)
divln) = TGy v D = (1 (1= GRS ) 5 )
— (-1 (1= 22 divla)
we obtain

o [ (G~ GOV

(- o(ly]) dHY(y),
B1(0)n{y-v;=0}
where ®(t) = g(t)t — G(t). Hence
/Qa(ywu) d — /Q G(|Vul) dz =
(3.1.7) = (@) - 20) | o(ll) dHY 1 (y)
B1(0)n{y1=0}
+o(py ™).

If we take k large enough we get

J=(0x) < Te(u),

a contradiction.
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LEMMA 3.1.8. Let xy € QN o{u > 0} and let
A = Azp) = limsup |Vu(zx)|.

T—1z()

u(z)>0

Then, there exist sequences yy, dp and v such that the blow up sequence with respect
to By, (yx) has limit,
uo(z) = Mz, v)~.

PROOF. Let g € QN O{u > 0} and let
A = Azp) = limsup |Vu(x)|.

ug;;)z>00
Then there exists a sequence z, — x such that

u(zg) >0, IVu(zp)| — A

Let y be the nearest point to z; on QN O{u > 0} and let dy = |z — yx|. Consider

the blow up sequence with respect to By, (y) with limit ug, such that there exists
Yk — 2k

v:= lim
k—oo dk ’

and suppose that v = ey. As in Lemma 2.5.3 we can prove that 0 < A\ < co and
up(z) = —Axy in {zy < 0}.

Finally by Lemma 1.6.13 we have that 0 € 0{uy > 0} and then, using Lemma
1.6.13 we see that ug satisfies the hypotheses of Theorem 1.5.1. Therefore ug = 0 in
{zy > 0}. Then ug = Nz, v)". O

LEMMA 3.1.9. For HN 1-a.e. ¢ € Oreaf{u > 0}, there exist a sequence v, such
that if u,, is the blow up sequence with respect to B., (x¢) we have that,
Up — Nz, v(x0))~

with v(xg) the outward unit normal of 0{u > 0} at xy in the measure theoretic sense
and A" = g7 (qu(0)).

PrOOF. Take zy € Opa{u > 0} and suppose that v(zg) = ey. We consider
a blow up sequence with respect to balls B,, (zo), with blow up limit uy. As in
Theorem 2.5.5 we have,

uy =0 in {zy >0},
up >0 in {zy < 0}.

And, as in Lemma 2.5.9 we have that for a.e HV"! 25 € Opeq{u > 0}, qu,(7) =
¢u(o) in the sense that for all £ € C3(B,)
\Y%
(3.1.10) —/ 9(|Vug)) il Védr = qu(xo) [ &(2,0)dHN
Brn{an<0} [V

Bl

From the boundary regularity we have, that this is satisfied in the classical sense,
Therefore |, ug(x) = Nxy + of|z]).
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Take now g, a blow up sequence of ug, with respect to balls B, (0). Then,
Up,; — Upo = )\*x]}

Now, we want to construct a blow up sequence of v with limit ug. Observe, that

1
u(zo + prptix) — too(2)| < —|ug(pz) — vo(pz)] + [uo;(2) — uoo(z)],
Pkt Hj

and since uy — o uniformly over compacts sets we have that for j > j,, |u;(z) —
upo(z)| < 1/n and for k > ky,, |up(pjz) — wo(px)| < pji/n if |z| < n. We may
suppose that j, > n and k, > n. Taking v, = pg,u;,, we have that v, — 0 and

|ty () —upo(z)| < 2/nin B,,. Replacing & by {(x) = 5(%)7,1 in (3.1.10), changing
variables and passing to the limit we get

/ g(A\ )&y dx = (', 0)HN Y,
Bin{zn<0} B

and the result follows. O

THEOREM 3.1.11. Let u € K be a solution to (P.) and q, the function in Theorem
3.1.3. Then, there exists a positive constant A\, such that

(3.1.12) limsup |Vu(z)| = Ay, for every xo € QN O{u > 0}
ugE;)g;OO
(3.1.13) qu(z0) = g(Au), HY T —ae xp € QN O{u > 0}.

PROOF. Let 21 € Opeq{u > 0} satisfying the properties of Lemma 3.1.9. Set
A = g Y(qu(x1)). Then, there exists a blow up sequence u,, — A {(z,v(x))~. For
any xog € 0{u > 0}, we have by Lemma 3.1.8, that there exists for a certain unit
vector v(zg) a blow up sequence ur — A(zo)(z,v(x9))”. Then, by Lemma 3.1.4,
we have that A(zg) = A, and then (3.1.12) follows. If we apply Lemmas 3.1.9 and
3.1.4 again, we obtain (3.1.13) for almost every point in 0,.¢{u > 0}, and the result
follows by Theorem 3.1.3 (4). O

REMARK 3.1.14. Now we have, by properties (1), (2), (3) in Theorem 2.1.1,
(2), (4) in Theorem 3.1.3 and Theorem 3.1.11 that any minimizer satisfies all the
properties of the definition of weak solution I in Chapter 2. Therefore we have by
Theorem 2.7.56 and Remark 2.7.55 in Chapter 2 the following reqularity result for
the free boundary 0{u > 0}.

COROLLARY 3.1.15. Let u € K be a solution to (P.). Then Opeq{u > 0} is a
CY8 surface locally in Q2 and the remainder of the free boundary has HN~'—measure
zero.
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1.2. Full regularity for the case N = 2. We will prove, that in dimension
two, for the subclass of functions satisfying (0.0.2) and (2.7.57), their whole free
boundary is a C''? surface.

As in Section 7.4 of Chapter 2, the following lemma holds for any dimension and
for any 0 and g,

LEMMA 3.1.16. Let u € K be a local minimizer. Given D CC 1, there exist
constants C' = C(N, D, \,), ro = ro(N,D) > 0 and v = v(N, D) > 0 such that, if
xo € DNO{u >0} and r < ry, then

sup |Vu| < A, +Cr.
By (z0)

PROOF. The proof follows as in Lemma 2.7.58 by using the density property of
the set {u = 0} (Theorem 3.1.2 (5)).

O

Now, we have to do some changes on the proof of Theorem 2.7.64, since here
there is no explicit relation between the constant A, and the parameter ¢ of the
functional J. (recall that for the minimization problem in Chapter 2, we use that
we have the relation ®(A\*) = A). In order to prove the full regularity of the free
boundary, we need the following lemma, that also holds for any dimension and for
any 0 and go.

LEMMA 3.1.17. Let x1 be regular free boundary point.

Take
|z — 24
T+ pPe ( vu(x1)  for x € B,(z1),
Tp(x) = 8
x elsewhere,
where ¢ € Cg°(—1,1) with ¢'(0) = 0.
Let
(3.1.18) 5= p2/ é (M) dHY
By (z1)Nd{u>0} P

Take vs(x) = vy(x) = u(r, *(x)), then

3119) [ GV~ GOTu) e = —1pY 00 + o)
Bp(ffl)

where [ = lim,_, pN;SH and ®(t) = g(t)t — G(1).

PRrROOF. The proof is included in the proof of Lemma 3.1.4.. 0

The following lemma is the place where, as in Lemma 2.7.59, we need to impose
condition (2.7.57).
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LEMMA 3.1.20. Let ®(t) = g(t)t — G(t), and g satisfying condition (2.7.57). Let
xg be a free boundary point , D CC Q and B,(x9) C D. Take v = max(u — tn,0),
where t >0, n € C3°(Q2), n =0 in Q\ Buwy and |Vn| < C/t. Then,

/ (G(1Vel) - G(Vul) e < ®(|Vul) do
By (zo)N{u>0}

By, (zo)N{0<u<tn}

+Cot? / V| du,
B, (zo)N{u>tn}

for Cy = Cy(N, 9, go, dist(0%2, D), C).
ProoOF. It follows as in Lemma 2.7.59, by using Theorem 3.1.2 (1). O

Now, following ideas of [19], using Lemmas 3.1.16, 3.1.17 and 3.1.20, we prove,
for N =2 and ¢ satisfying (2.7.57) the following

THEOREM 3.1.21. Let N = 2, g satisfying (2.7.57) and u a minimizer. Then,
for any ball B, centered at the free boundary we have,

L, (8O0 = 0(Fu) = 0 when 0.
where ®(t) = g(t)t — G(t).

PrOOF. Let 0 <r < p,t > 0 and vy be the function defined in Lemma 3.1.20. By
Theorem 2.1.1 u < Cr in B,(zg). Take t = Cr and let 6, = [{0 < u < tn} N B, (x)|.

Now, let us take z; far from z and such that 0{u > 0} N B,, (x1) is regular, for
ry small. Let p be such that (3.1.18) is satisfied for § = d;, and consider v; = vy,
defined in B, (z1) as in Lemma 3.1.17. Then, the function

v in By(zo)
v=<(wv in B, (x)
u  elsewhere

is admissible for our minimization problem and [{v > 0}| = [{u > 0}|. Therefore,
by Lemmas 3.1.17 and 3.1.20 we have

0 < Je(v) = Je(u)

-/ @V~ GV + [ (@9 - 6(val) ds

B?“l (1'1)
< / @(!VU!)%—Cﬂ/ (V|2 dx — 1p°®(\,) + o(p?).
By (zo)N{u<tn} By (zo)N{u>tn}
By the definition of §; we have,
(®(\) — D(|Vul)) da goﬂ/ Va2 dz + o)

Byu(zo)n{u>tn}

+ ((st - lpg)q)()‘u)

/Bu (zo)N{0<u<in}
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Now choose

log(p/]x — o) :
10g(#/"“> m Bu(a?o) \ BT("L‘U)7

(@) =91 in B, (zo)
0 in \ BM(ZEQ),
observe that the condition |Vn| < C/t is satisfied if we choose p such that u > 2r.

By our election of ¢ and n we have,

/ (B(A) — B(|Vul))* di < / (@(Vul)) — (B(\))" dz
By (zo)N{u>0}

BM(QCO)
Lo
log(p/r)
By Lemma 3.1.16, we have that ®(|Vu|)—®(\,) < ®(A\,+Cr7)—d(\,) = &'(£)Cr7,
for Ay, < &< AN, +Cr7. As O'(t) = ¢/ ()t < gog(t), and as g is nondecreasing we
have that ®'(£) < gog(€) < gog(Ay + CT7).

Therefore by the definition of [ we have

+0(p*) + (6 — 1p* )P (\y).

W= +op”)  _ C

r? log(i/7)’
As 0; < cpu® we have that o(p®) = o(u?). Taking r = ph(u)?, where h(p) =
max (,u, 0(#“22)) with § < min{v/2,1/2}, we have the desired result. O

][ (B(A) — &(|Vu]))* do <
By (zo)N{u>0}

Now we have, as in Corollary 2.7.66 the following,

COROLLARY 3.1.22. Let N = 2, g satisfying (2.7.57) and u € K be a solution to
(P.). Then 8{u > 0} is a C* surface locally in <.

2. Behavior of the minimizer for small ¢ .

In this section, since we want to analyze the dependence of the problem with
respect to e, we will again denote by wu. a solution to problem (F).

To complete the analysis of the problem, we will now show that if ¢ is small
enough, then
{ue > 0} = a.
To this end, we need to prove that the constant A\, := A, is bounded from above

and below by positive constants independent of . We perform this task in a series
of lemmas.

LEMMA 3.2.1. Let u. € K be a solution to (P.). Then, there exists a constant
C > 0 independent of € such that

Ae < C.
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Proor. First we will prove that there exist C,c¢ > 0, independent of €, such

that
¢ < Hue. >0} < Ce +a.

In fact, by taking ug such that |[{uy > 0}| < a we have that J.(up) < C then we
have that F.(|[{u. > 0}|) < C thus obtaining the bound from above. We also have
that [, G(|Vu.|) is bounded. As u. = ¢ on 99, we have, by Lemma 1.1.5, that
|Vu. — Vol < C and, by Lemma 1.2.10, we also have |Ju. — poll¢ < C. Then,
|te|lwr.c) < C. Using the Sobolev trace Theorem, the Hélder inequality and the
embedding Theorem 1.1.9 we have, for ¢ < § + 1

N S+1—
/ A AHY < Clu > O FT el
[2)9]
5+1—q
1

d+1—q
< CHUE > 0}| o1 H“eH?/Vl,G(Q) < C’|{u€ > 0}| ot

and thus we obtain the bound from below.
Take D CC €2 smooth, such that § = |D| > « and |Q2\ D| < ¢. Then,

IDN{u. >0} <a+Ce <6
for € small enough. On the other hand,
|D N {ue > 0} > {ue > 0} — [\ D| = ¢ — [\ D[ >0,

Therefore by the relative isoperimetric inequality (see [13] 5.6.2) we have
N—-1

HY (D N dfu. > 0}) > cmin{\D N {u. > 0}, |D N {u. = O}]}T
>c> 0.

Now let w be the £L— solution in €2 with boundary data equal to ¢y. Using Theorem
3.1.3 and Theorem 2.5.3 we have,

Cc > / F(|Vue|)VuV(ue — w) de = / wg(Ae) dHN !
Q

QNI{ue >0}
> / wg(A\.) dHN 1 > g(A\) (inf w)HY 1D N 0{u. > 0}) > cg(\.).
DNd{ue>0} D
Now the result follows.
O

LEMMA 3.2.2. Let u. € K be a solution to (P.), B, CC  and v a solution to
Lv=0 1in B,, v=u. ondB,.
Then, there ezists a positive constant v = (9, go, N) such that

1 17\ ¢
|V(ue —v)|%dx > C|B, N {u. =0} | - (][ u dm)
By r -

for all ¢ > 1 and where C' is a constant independent of €.
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PROOF. First let us assume that B, = B;(0). For |z| < 1 we consider the

change of variables from Bj into itself such that z becomes the new origin. We call
u.(z) =u((1 - |z))z + ), v.(x) = v((1 — |z])z + ) and define

1
rgzinf{r/g <r<1 and wu,(ré :O},

if this set is nonempty. Observe that this change of variables leaves the boundary
fixed.

Now, for almost every & € 9B; we have
(3.2.3)

1 1 1a
0lr69) = [l = ) dr < (1= r ( / |v<uz—vz><rf>|w> .

Let us assume that the following inequality holds
1/
u” dx) .

Then, using (3.2.3) and (3.2.4), integrating first over 0B and then over |z| < 1/2
we obtain as in [4],

(3.2.4) 0:(re€) > C(N, Q) (1 — r¢) (][

By

a/y
|V(u—v)|?dz > C|B; N {u =0} <][ u”dx) :
B1 Bl
If we take u,(x) = tu(xo + ra) (where x is the center of the ball B,) then

V(4 — v)7de = / IV (u— )l dy,
B1 B,

|B; N {u, =0} =rN|B,Nn{u=0} and

1/~ 1 1/~
(][ u) dzn) = - (][ u” dy) :
By r T

so we have the desired result.

Therefore we only have to prove (3.2.4). If [(1 — r¢)z + 1| < %, by Harnack
inequality,
v,(re€) > Onv(0).
By the weak Harnack inequality 1.2.15 we have

(3.2.5) 0(0) > a(N, Q) <][B o dx) S N.0) (][B o dm) )

If|(1—re)z+1rel] > % we prove by a comparison argument that inequality (3.2.4)
also holds. In fact, again by Harnack inequality,

1/~
v > Cya <][ u” dx) in Bsy.
B1



122 3. THE OPTIMIZATION PROBLEM

1/
Let w(x) = (e — =) (][ u’ dx) . There exists A = A(N, ) such that
B

Lw >0 in By \ Bsa,
1/
w < Cya <][ u” dx) on 0Bs)y4,
B
w=0 on 0By,

(see Lemma 1.2.47) so that,

1/
v>w>C(1—|z|) (][ u'ydz) in B\ Bsja.
By

Therefore

v2(re€) 2 C’<1 — (1 =r¢)z +r§§|> <][ u dx . > C(1—re) (][

By By

1/~
u” dx)

since |z| < 3. So that (3.2.4) holds for every r¢ > 1.

This completes the proof.

Without loss of generality, from now on we will suppose that gy > 1.

LEMMA 3.2.6. Let u. and v be as in Lemma 3.2.2, and B, a ball centered on the
free boundary, then if r is small enough (depending on ) we have,

(3.2.7) / (G(|Vu]) = G(Vo]) dx > c/ IV, — Vol dy

T T

for some constant C' independent of €.

PROOF. Let,
Ay ={z € B, : |Vu, — Vv| <2|Vu.[}, Ay ={z € B, :[Vu. — Vou| > 2|Vu|},
then B, = A; U Ay and by Theorem 1.2.38 we have that,
| (@9l - Gavehydr = o [ GV~ Vol ds

(3.2.8) " 42
+/ F(|Vu.|)|Vu: — VU|2dx).
Aq

Therefore we have, using that go > 1 and (gl) in Lemma 1.1.1, that when
|IVu.| <1 and |Vv — Vu.| <1,

G(|Vu. — Vv|) > C|Vu, — Yo%t

(329) —1 —1 :
F(|Vu.|) > C|Vu " > C|Vu. — Vo|P in A;.
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On the other hand, by Lemma 3.2.1 and (3.1.12), we have that for small r (depending
on ¢), |Vue| is bounded by a constant independent of €. By Lemma 1.2.18 there
exist Cp, C1 = Cy, C1(N, go, 0) such that,
C[) Cl
sup G(|Vv]) < — G(|Vv])dx < — (14 G(|Vu.]))dx < C,
B r Bgr r BQT‘

if we choose r small (depending on ¢) and where C' is independent of e. Therefore,
(3.2.9) holds for all z € B,. Combining (3.2.8) and (3.2.9) we obtain the desired
result.

0J

LEMMA 3.2.10. Let u. € K be a solution to (P:). Then
Ae > ¢ >0,

where ¢ is independent of €

Proor. We will use the following fact that we prove in Lemma 3.2.16 bellow:
For every ¢ > 0 there is a neighborhood of A in 2 where u. > 0.

Let yo € A and let D; with 0 < ¢t < 1 be a family of open sets with smooth
boundary and uniformly (in € and ) bounded curvatures such that Dy is an exterior
tangent ball at yy, D; contains a free boundary point, Dy CC D; for t > 0 and

D, N o C A.

Let t € (0,1] be the first time such that D; touches the free boundary and let
x9 € 9Dy N O{u. > 0} N Q. Now, take w such that Lw = 0 in D, \ Dy with w = ¢,
on 0Dy and w = 0 on dD;. Thus w < u. in D, N Q and 0_,w(xy) > ¢ with ¢ > 0
independent of . Therefore, for r» small enough,

1/v 1/v
(3.2.11) (][ u dx) > <][ w? d:v) > re,
By (zo) By (zo)

with ¢ is independent of ¢.

If vg is the solution to

vo =ue on IB,.(xy),

{L’vo =0 in B, (x)

then, by Lemma 3.2.2, we have

1 17\ ¢
|V (u. — vo)|?dx > C|B, N {u. = 0} (— (][ ul dx) ) :
By " \J B.

Then be Lemma 3.2.6 we obtain,
(3.2.12)

/BT(G(!VuaD — G(|Vuw|) dz > C|B, N {u. = 0} (% (][BT . dg;) 1/7>

go+1
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Then by (3.2.11)
(3.2.13) / (G(Vue]) — G Vo)) d > c6,
B’I‘(IO)

where 0, = |B,(z9) N {u. = 0}| and ¢ is a constant independent of .

Consider now a free boundary point z; away from zy. We can choose x; to be
regular.

Let us take
2 |z — 2]
— — | { eB ,
Tp(fL‘) — x p ¢ ( p ) v 5(‘/1“1) or x P(x1>

x elsewhere,
where ¢ € C3°(—1,1) with ¢/(0) =0
Now choose p such that

r—
5, = pQ/ o <—‘ 1') N
By (x1)Nd{us>0} P

Take v,(7,(x)) = u.(x) and
vo  in By(xg)
v=1{v, inB,(z)
u.  elsewhere.
Thus, we have that
(3.2.14) {v > 0}| = [{u. > 0}].

On the other hand as in Lemma 3.1.4, we have

/B (@19~ GOV dy

(V) dy / G(|Vul) dz

/Tp(Bp(ml))ﬂ{vp>0} Bp(z1)

= / p(G(|Vue|)divny — F(|Vu|)Vu.DnVu.) + o(p) dx
B, (z1)N{u>0}

where n(y) = —¢(|y|)v(x1). Using the fact that |Vn| is bounded from above by a
constant independent of p and ¢, and that |Vu.| = A\. + O(p®) in B,(x;) we have

| 60V = GOVl dy < KGO 4 o)

BP(II)

but, d, has the same order of pV*! then

(3.2.15) / (G(IVv,]) = G(|Vue|)) dy < KG(A:)d, + o(6).
By (1)

Therefore by (3.2.13), (3.2.15) and (3.2.14) we have
0< J:(v) = T(u:) < —cb, + KG(A:)0, + 0(6,)
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and then A\, > ¢ > 0. [

LEMMA 3.2.16. For every € > 0 there exists a neighborhood of A in € such that
ue > 0 in this neighborhood.

PROOF. Let yo € A and let Bs(zp) be an exterior tangent ball to 02 at yo such
that QN B = {yo}. Let us take ¢ small enough so that Bas(29) N9 CC A. Let w.
be a minimizer of

(3.2.17) To(w) = / G(IVuwl) d + é\{w S 0}NR|

in {w € WHS(R), w = 0 on 0Bss(2), w = cp on OBs(2)}. Here R = Bos(20) \
Eg(Z()).

Every minimizer of (3.2.17) is radially symmetric and radially decreasing with
respect to zp. This is seen by using Schwartz symmetrization after extending w. to
Bs(zp) as the constant function ¢y (see Chapter 1, section 7). This symmetrization
preserves the distribution function and strictly decreases the [, G(|Vul)dz unless
the function is already radially symmetric and radially decreasing (see Proposition
1.7.16). Moreover, these minimizers are ordered and their supports are nested. Let
us take as w, the smallest minimizer.

By the properties of w. there holds that w. is strictly positive in a ring around
Bs(zp). Also w, is continuous in R. Recall that u. is continuous in €. Let us see
that u. > w. in R N . This will prove the statement.

Assume instead that {w. > u.} # 0.

Let us first consider the function v = min{u., w.} in R N . Since u. > c¢o > w;
on 0N R and u. > 0 = w, on N IR there holds that v = w. on I(R N Q).
Therefore, the function v = v in RN Q, v = w. in R \ Q is an admissible function
for the minimization problem (3.2.17). Since w, is the smallest minimizer and, by
assumption v < w. and v # w,, there holds that J.(v) > J.(w.). Since v = w, in
R\ Qand in RNOQN{w. < u.} and equal to u. outside those sets there holds that
(with D = RN QN {w. > u.d),

1 1
(3.2.18) / G(|Vuel) dr + < [{u. > 0} N D] > / G(|Vuw.l) dr + ~[{w. > 0} D).
D D

Let now ¥ = max{u.,w.} in RN, v = u, in Q\ R. This function is admissible
for (P.) so that

[ Gl ds+ (o> 0}) = | GUVuLDdo+ Fo({u. > 0}).

Since ¥ = w, in D and v = u, in Q\ D,

/Guwg)dwmq{ua > 0} + [{w. > 0} N D| - |{ur > 0} N D)
(3.2.19) P
> /D (V) d + F.(|{u. > 0}]).
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By (3.2.18) and (3.2.19) (with C, = [{w. > 0} N D| and C,, = |{u. > 0} N D|)
we have,

/DG(|vu€|>da;>/DG(|vwa|>dx+§(cw—ou)
zémwwm%uwmpwm—mm%>W+@fcu

+ —(Cy — Cy).

m | =

Thus,
Full{ue > 0} + Cu =€) = Eu(|{ue > 0)) > 2(Cu — C1)
which is a contradiction since F.(A) — F.(B) < 1(A—B)if A> B and C, > C,
by the definition of D.
Therefore, u. > w. in R N and the lemma is proved. O

With these uniform bounds on \., we can prove that |{u. > 0} N Q| = a.

THEOREM 3.2.20. Under the same hypotheses of Lemma 3.2.10, there exists

g0 > 0 such that for e < gq, |[{u. > 0} = a. Therefore, u. is a minimizer of J in
K.

PROOF. Arguing by contradiction, assume first that [{u. > 0}| > a. Let z; €
O{us > 0} NQ be a regular point. We will proceed as in the proof of Lemma 3.2.10.
Given 0 > 0, we perturb the domain {u. > 0} in a neighborhood of z;, decreasing
its measure by . We choose § small so that the measure of the perturbed set is still
larger than a. Take v,(7,(z)) = u.(x), and let

b )V in B,(z1)
u.  elsewhere,

where 7, is the function that we have considered in the previous lemma.

We have
ogx@»—xwa:[}mvmwx—[}mv%mm+aﬂw>ow

—an%>mn

< KG(\)5 + 0.(6) — %5
1

< (k:G(C) - -

) d+0:(0) <0,

if £ < g9 and then § < dp(¢). A contradiction.

Now assume that [{u. > 0}| < a. This case, is a little bit different from the
other. First, we proceed as in the previous case but this time we perturb in a
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neighborhood of z; the set {u. > 0} increasing its measure. That is, take

T+ PP <@) vu. (1) for € By(x1),

x elsewhere,

To(x) =

where ¢ € C§° supported in the unit interval, take v,(7,(z)) = u.(x) and

Y {vp in B,(z1)

u. elsewhere.

For p small enough we have [{v > 0}| < a and

[{v > 0} — [{us > 0} = Cp" ™ +o(p" 1),
therefore
(3.2.21) E.({v>0}) = F.(|{uc > 0}]) < Cep™ ™ + o (pV11).

In order to estimate the other term, we will make use of a blow up argument as
in Lemma 3.1.4. In fact, we take u,(y) = %u(xl + py) and we change variables to
obtain,

o /B (@9~ GV ds

-/ pIG(IVa,iv(n) — F(I 9]} (V) DV + ofp) dy
B1(0)n{u,>0}
where 7(y) = ¢(|y|)v(z1). Now, as in Lemma 3.1.4 we get,

) (@)~ 6T d

o) [ S(lul) ().
B1(0)n{y-v=0}
Therefore

(3.2.22) / (G(IVv,]) — G(IVu.|)) do = —CpVTrd(N.) + o(pN ).
Bp(ml)
Finally, combining (3.2.21) and (3.2.22) we have

0< J.(v) = T(u.) = /QG(|VU|)d:1: —/QG(|VUE|) dx

+ Fo({v > 0}]) = Fe([{u. > 0})
—BO) PN 1 0 (pNHY) 4 CepNH
(—B(c) + C=)p¥*1 + 0.(p7 1) < 0,
if £ < e; and then p < po(e). Again a contradiction that ends the proof.

<
<

As a corollary, we have the desired result for our problem
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COROLLARY 3.2.23. Suppose that g satisfies (0.0.2). Then any minimizer u of J
in Kq is a locally Lipschitz continuous function, Oreq{u > 0} is a CY? surface locally
in Q and the remainder of the free boundary has H™ ' —measure zero. Moreover if
N =2 and g satisfies (2.7.57) then 0{u > 0} is a C*P surface locally in §).

PRrooOF. If u is minimizer of J in Iy, by Theorem 3.2.20 we have that for small
¢ there exists a solution u. to (P.) such that |[{u. > 0}| = « then u is a solution to
(P.). Therefore, the result follows. O



CHAPTER 4

The singular perturbation problem

In this chapter we study the following problem. For any ¢ > 0, take u® a solution

of,
(P.) Luf = Be(u®), u®>0.
A solution to (P.) is a function u® € WH%(Q) N L*°(Q) such that
Vu®
(4.0.1) /g(|VuE|) —Vpdr = —/gpﬁa(ua) dx
Q |Vue| Q

for all p € C§°(92).

Where f.(s) = 13(2), with # € Lip(R), supported in [0,1], and such that
satisfies, fol B(s)ds = M for a constant M.

We are interested in what happens with the limiting problem, when ¢ — 0.

In this chapter we will assume all the time, that g satisfies condition (0.0.2).

1. Uniform bound of the gradient

We begin by proving that solutions of the perturbation problem are locally uni-
formly Lipschitz. That is, the u®’s are locally Lipschitz, and the Lipschitz constant
is independent of €. To prove this result, we will first need to prove a couple of
lemmas.

LEMMA 4.1.1. Let u® be a solution of
Luf = B(u®) in By, (xo)

such that u®(xg) < 2e. Then, there ezists C = C(N, 10,9, go, || 5|0, g(1)) such that,
ife <1,
(Vus (o) < C.

PROOF. Let v(z) = 2uf(zo+ex). Thenife <1, Lv = B(v) in B,, and v(0) < 2.

By Harnack inequality (see Remark 1.2.21) we have that 0 < v(z) < Cy in B,y )2

with C; = C1(N, go, 0, || Blleo) therefore, again by Remark 1.2.21 we have that
[Vo(0)] < ©

with € = O(N,, g, 9,70, 9(1)) 0

129
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LEMMA 4.1.2. Let u® be a solution of
Luf = P(u”) in By,
and 0 € 0{u® > €}, then for x € Byjy N {u® > €},
u?(x) < e+ Cdist(x, {u® < e}),
with C'= C(N, 0, go, || 8lles, 9(1))-

PROOF. For zy € Byjy N {u® > €} take, mg = u*(zy) — € and
dp = dist(xg, {u® < e}N By). Since 0 € H{u® > e} N By, g < 1/4. We want to prove
that, mo < C(N7 57 Yo, ”ﬁ”om g(l))(SO
Since, Bys,(zo) C {u® > e} N By we have that, u* — e > 0 in By, (z9) and
L(u® —¢) = 0. By Harnack inequality there exists ¢; = ¢1(N, go, d) such that
B TS 2T

Let as take ¢ = emHlEl® — emm with = %, and where K is the constant defined
0

in Lemma 1.2.47 that depends only on N and go. Then, we have that Lo > 0 in
By, \ By /2 (see the proof of Lemma 1.2.47).

Let now ¢(z) = camop (¥ — ) for © € Bs,(x0) \ Bsy/2(wo). Then, again, by
Lemma 1.2.47 we have that, if we choose ¢y conveniently depending on N, 9, go

Ly(x) >0 in By, (20) \ Bsya(wo)
=0 on 0Bs, ()
P = c1my on 0B, /2(x0).

By the comparison principle (see Lemma 1.2.35) we have,

(4.1.3) Y(x) <u(z) —e  in Bs,(20) \ Bsy/2(z0).
Take yo € 0Bs,(z0) N O{u® > e}. Then, yo € By/» and
(4.1.4) Y(yo) = u(yo) —e = 0.

Let v = w, then if ¢ < 1 we have that £v° = 3(v°) in By, and v*(0) = 1.
Therefore, by Harnack inequality (see Remark 1.2.21) we have that maxp, 07 < c
and
(4.1.5) Vu(yo)| = [V (0)| < Cmaxv® < cj.

B4
Finally, by (4.1.3), (4.1.4) and (4.1.5) we have that, |Vi(yo)| < |[Vus(yo)| < cs.
Observe that |V (yo)| = camoe %2udy < cs, therefore

2
c3eM% c30e2K/0

= 4}
Co 2#50 024K 0

moy <

and the result follows.
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Now, we can prove the main result of this section,

PROPOSITION 4.1.6. Let u® be a solution of
Luf = P(u”) in By,
0 € 0{u® > e}, then we have for x € Bys,
Vur(z)| < C
with C' = C(N, 4, go, [|8]ls, 9(1)).

PRrROOF. By Lemma 4.1.1 we know that if zy € {u® < 2e} N By then,
|VUE(I0>| S C()
with C(O = CO(N7 57 40, Hﬁ”oo,g(l))
Let zo € Bys N {u® > e} and &g = dist(zo, {u® < e}).

As 0 € 0{u® > e} we have that 6, < 1/8. Therefore, Bs,(zo) C {u® > e} N By
and then Lu® = 0 in By, (zo) and by Lemma 4.1.2

(4.1.7) u*(x) < e+ Cidist(x, {u® <e}) in Bs,(x).
1. Suppose that ¢ < édy with ¢ to be determined. Then, if x € Bs,(zo)

there holds that dist(z, 0{u® > ¢} < 20y. Let v(z) = “(x%ﬂ then Lv =
Be(uf(xg + dpz)) = 0 in B;. Therefore, by Lemma 1.2.18

[Vo(0)] < Csupu,
B1

with C = C(N, g9, 6, g(1)). We obtain,
C C 0
IVu(z9)] < — sup v < —(e+Cdy) < C(c+C).
0 Bs,(zo) 9

2. Suppose that € > ¢dy. By (4.1.7) we have,
C
UE(IL'()) <e+ 0150 < (1 + T1>5 < 28,
c
if we choose ¢ big enough. By Lemma 4.1.1, we have |Vu®(z¢)| < C, with

C = C(Na 9o, 57 Hﬁ”oo;,Q(l))
The result follows. 0

With this lemmas we obtain the following,

COROLLARY 4.1.8. Let u® be a solution of
Luf = B(u’) inQ,

with ||u®|| o) < L. Then, we have for ' CC Q, that there exists €y(€2,§Y') such
that if € < 50( L),

IVui(z)| < C  in &Y
with C = C(N,8,go, L |13]r 9(1), dist(, 592).
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PROOF. Let 7 > 0 such that Vo € ', B.(z) C Q and € < 7. Let z € (V.

1. If 69 = dist(xg, 0{u® > e}) < 7/8, let yo € O{u® > £} such that |zg — yo| =
do. Let v(z) = m, and T = ®—* then |Z| < 1/8. As 0 € 0{v > ¢/7}
and Lv = B./-(v) in By, we have by Proposition 4.1.6

|Vu(zo)| = |Vo(z)| < C.
2. If 6y = dist(xg, 0{u® > €}) > 7/8, there holds that
a) Brjs(wg) C {u® > e}, or
b) BT/g(xg) C {UE < 5},
In the first case, Lu® = 0 in B, 3(x¢). Therefore,
|Vu€(x0)| S C<N7 9o, 67 T, g<1)7 L)
In the second case, we can apply Lemma 4.1.1 and we have,
VU (20)] < C(N, go,0,7,9(1),2[| Blo)-

The result is proved.

2. Passage to the limit

Since we have that |Vu°| is bounded by a constant independent of £, we have that
there exists a function u € Lip(2) such that, for a subsequence ¢; — 0, u% — u. In
this section we will prove some properties of the function .

PROPOSITION 4.2.1. Let {u®} be a uniformly bounded family of solutions of (P:).
Then for any sequence g5 — 0 there exists a subsequence € — 0 and u € Lip;,.(€2)
such that,

1. w5 — u uniformly in compact subsets of €2,

2. Lu=01in Q\ o{u > 0}

3. There exists a locally finite measure p such that ﬁgg (u83) — [t as measures
in Y, for every Y CC Q,

4. Vusi — Vu in LT(Q),

loc

[ F(7uvave = - [ s
Q Q
for all p € C§°(2). Moreover u is supported on QN O{u > 0}.

PRroOF. (1) follows by Corollary 4.1.8.
To prove (2), take E CC {u > 0} then u > ¢ > 0 in E. Therefore, u% > ¢/2 in

E for ¢ small. If we take ¢’ < c/2 as Lufi =0 in {us > e}, we have that Lufi =0
in E, then |u® |cremy < C. For a subsequence we have,
Vu' — Vu  uniformly in E

therefore, Lu = 0.
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To prove (3), let us take ' CC €2, and ¢ € C5°(2) with ¢ = 1in Q. Asin
[Vusi|| < C, we have that

Clp) > /Q B (u5)p d > 5 Ber (u) da.

Therefore, ﬂe; (u€9 ) is bounded in L]

loe(§2), so that, there exists a locally finite measure
4 such that

B (uS) = as measures

that is, for every ¢ € Cy(Q),

| oseds — [ o
Q Q

We divide the proof of (4) in several steps.

Step 1. Let Q" CC €, then by Corollary 4.1.8, |Vu®| < C in . Therefore for
a subsequence ¢ we have that there exists £ € (L>(€'))" such that,

Vusi — Vu x — weakly in (L®(Q))Y
(4.2.2) A(Vus) =& % —weakly in (L®°(Q)Y

/ . .
usi — uniformly in €

where A(p) = F(|p|)p. For simplicity we call £’ = e.
We want to prove that, for any v € C§° ()

(4.2.3) / A(Vu)Vvdr — | A(Vu)Voudz.
/ Q/

First, as A is monotone (i.e (A(n) — A(£),n— &) >0V n,& € RY) we have that,
for any w € Wh¢(Q)),

(4.2.4) I— / (A(Va) — A(Vw)) (Ve — Vi) da > 0.

Therefore,
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(4.2.5)
-/ Be(u®)u® dx —/

=— [ B(u)u"dx — / A(Vu)Vus dr + 1
Q/

/

A(Vu)Vwdr — / A(Vw)(Vu® — Vw)dx

U /

= — N Be(u)udr — . Be(uf)(u® — u)p de — N Be(u®)(u® —u)(1 — ) dx
- / A(Vu)Vusdr + 1

A(Vu )V (uf —u)p dx + / A(Vus)(u® — u)Vi de

/

_  (u)ud
> Q,ﬂ(u)uaﬂ-/

— | B()(w —u)(l—o)dz — [ A(Vu)Vu' du,
o o

where in the last inequality we are using (4.2.4) and (0.3.2).

Now, take 1) = 1); — xq. Then if Q' is regular we have [, |Vi;|dz — Per .
We have that,

| [ AT )90 de] < Cllat = ey [ (9651 de < Cl =
! Q/
taking v¢; — xq in (4.2.5) we obtain,

A(Vu)Vwdr — / A(Vw)(Vu® — Vw)dx

/

-/ Be(u®)u® dx —/

>~ [ B(u)ude + / AV )V (uF — ) dr — Cllu® — ul| o
Q/

/

/

—/ A(Vu®)Vus dz
=— [ B(u)udr — / A(Vue)Vudr — Cllu® — ul| oo (o)
o '

therefore, taking ¢ — 0 we get using (4.2.2) and (3) that,

—/ udp — wadx—/ A(Vw)(Vu—Vw)dasZ—/ udp — | EVudx
/ Q/ !

! Q/
and then,

(4.2.6) / (& — A(Vw))(Vu — Vw) dz > 0.

Take now w = u+ Av with v € C§°(Q). Dividing by A and taking A — 07 in (4.2.6),
we obtain,

/ (€ — A(V))Vudz > 0,
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chaining v by —v we obtain the desired result.

Step 2 Therefore passing to the limit in the equation

(4.2.7) 0= [ ANV )Vo+ | B(u)pdr,
o

Q/
we have by Step 1, that for every ¢ € C3° (),

(4.2.8) 0= [ A(VuVo+ | pdpu.
94 94

Taking ¢ = vy in (4.2.7) with ¢» € C§°(§Y’) we have that

0= [ ANV)VuYde+ [ AVu)u*Vipde + | G(u’)u d.
Q/

o o
Using that,
/ ANV VY de — | A(Vu)uVy de
U Q/
B dr — | wibdu
o o
we obtain

e—0 ’

0 = lim < A(Vu®)Vu dx) + [ A(Vuw)uV dx +/ updp.
Q/

Q/
Taking now, ¢ = ut) in (4.2.8) we have,

0= N A(Vu)Vu dx + N A(Vu)uVi dx + /, u du.
Therefore,
lii]% N A(Vus)Vutyp dr = // A(Vu)Vuyp dz.
Then,

/ (A(Vu®)Vu® — A(Vu)Vu) dx

< / (A(V) Ve — A(Vu) V)i da| + / (A Tu) (1~ ) d
+ / A(Vu)Vu(l — ) dx
< / (A(VE)ViE — A(Va) V) da

+C [ |1 —=1|dx.
Q/
So that, taking ¢ — 0 and then ¢ — 1 a.e with 0 <1 < 1 we obtain,

(4.2.9) / A(Vu®)Vude — [ A(Vu)Vudzr.

Q/
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As

/ AV )Vupder — | A(Vu)Vup dx
! Q/
we also have, doing the same calculation, that

(4.2.10) / A(Vu)Vudr — | A(Vu)Vudz.

Q/

Step 3. By the monotonicity of A we have,

/Q/ G(|Vwe|) dx — /Q, G(|Vul) dx = /, /01 A(Vu + H(ViF — Vu)) V(1 — u) do
> // A(Vu)V(u® — u) dx.

Therefore, by step 3 we have,

e—0

liminf/ G(\vuﬂ)dx—/ G(|Vul) dz > 0.
Step 4. By Step 2 we have,

// G|V da — /Q G(|Vul) dz — / /01 A(Vu + (Vi — V)V (o — ) de
< // A(Vu)V(u® —u)dx — 0.
Then, Step 3 implies,
(4.2.11) / G(Vul)da — [ G(|Vul)de

Step 5. Let u® = su+ (1 — s)u®. Then,
(4.2.12)

N G(|Vu|) dz — /Q/ G(|Vu©])dx = // /01 A(Vu*)V(u — uf) dsdz

_ / | /0 (A(TH) — AUV (0 — o) ds d + % / AV )Y (u — o) da.

Q/
As in the proof of Theorem 1.2.38, we have that

/ , /0 1(A<Vu5) — A(VW))V(u® — u) ds du
> C(/A2 G(|Vu — Vuf|) dz + /Al F(|Vu|)|Vu — Vu5|2dx>,

where A; and A, were define in Theorem 1.2.38. Therefore, by (4.2.9), (4.2.10),
(4.2.11) and (4.2.12) we have,

(/ G(|VU—VU€|)dI+/ F(|Vu|)|Vu—Vu€|2dx> — 0.
A2 Al



2. PASSAGE TO THE LIMIT 137

Then, if we prove that
([ cvu-vahdr+ [ FOV)ITu-Tupar) =€ [ [V Vit i
As Ay o

the result follows.
In fact, we can suppose that, go > 1. If ¢t < C then g(t) > C1t%. As |Vu| < Cj
and |Vu — Vu®| < Cy, for some constant Cyy we have
G(|Vu. — Vu|) > C|Vu, — Vu|% ™
F(|Vu.|) > C1|[Vu. [ > C|Vu, — Vul®™' in A;.
and the claim follows.

Finally (5) holds by (4), (3) and (2). O

LEMMA 4.2.13. Let {u®} be a uniformly bounded family of solutions of (P.,) in
Q such that v — u uniformly on compact subsets of €2 and €; — 0. Let o, x, €
QNo{u > 0} be such that x,, — xy asn — oo. Let A\, — 0, uy,(z) = ﬁu(xn—i—)\nx)
and (u)y, (z) = ﬁusj (xn + Anz). Suppose that uy, — U as n — oo uniformly on

compact sets of RY. Then, there exists, j(n) — oo such that for every j, > j(n)
there holds that ¢;, /A, — 0 and

1. (usn)y, — U uniformly in compact subsets of RY.
2. V(usin)y, — VU in LIT(RN),

loc

3. Vuy, — VU in L (RY).

loc

PrOOF. By simplicity we assume x,, = xy. Then

_ 1 1
[, () = U(@)] < [5=u™ (w0 + @An) = —ulwo + @An)| + |un, = U(x)| = I + 11,

n

Fix £k > 0 and 6 > 0. Then, if n > n(k,d) there holds that 17 < § in By(0).

For the other bound, let » > 0 such that B,(zq) C ' CC 2. Observe that, for
each n there exists j(n) such that if j > j(n)

|u¥i (z) — u(z)| < An for x € B, (x).
n
Therefore, if j > j(n) with n large such that A, < r/k we have I < < for z € By,(0).
So, for j > j(n) and n large
1
|(u™)y, (x) = U(z)| <0+ - for x € By(0).

Then, if j, > j(n) (u%),, — U uniformly in By(0). We may assume, without loss
of generality that ¢;/)\, < 1/n for j > j(n). So (1) is proved.
It is easy to see that (u®)y, are solutions to (F.,/y,) in By (0) for n large.

By Proposition 4.2.1 there exists a subsequence j;, such that V(u“n)y — VU
in L9%1(By). Then also (2) holds.
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Let now, 0 > 0 and consider,
[V, = VU[| < |[Vuy, = V(&) [| + [V (um)s, = VU[ =T+ 11,

where all the norms are in L9 (By). By (2) we know that I7 < ¢ if j > j, and
n large. Moreover, by Proposition 4.2.1 we have,

19t = | |Vu — V&9 (29 + A\,x) do
By,
1
= —% / |Vu — Vu |9 (z) do < §%+
An B k(o)
if n is sufficiently large so that A,k < r and then, j large enough. This proves (3).
O

Now we prove a technical lemma that is the basis of our main results.

LEMMA 4.2.14. Let u® be solutions to
Lu = [ (u)
in Q. Then, for any 1 € C§°(2) we have,

(4215 - /Q GV )b, dar + /Q PV )ViEV i, de = /Q B.(u )b,
where Be(s) =[5 Be(7) dr.

Proor. For simplicity, since ¢ will be fixed throughout the proof, we will denote
u® = u. We know that [Vu| < Cy. Take g,,(t) = g(t) + £, then

(4.2.16) min{1, 63 < SO0 et g0}

gn(t)
Take A, (p) = %p, and L, (v) = div(A,(Vv)). Then, if ' CC Q and we take u,
the solution of

(4.2.17) {Enun = B:(u) in Q'

Uy = U on 0

we have by (4.2.16) that all the g/,s belong to the same class and then, by Theorem
1.2.19, [Jup||cre@y < C with C independent of n. Therefore, there exists ug such
that, for a subsequence

U, — Uy uniformly in Q'

Vu, — Vug uniformly in Q.
On the other hand, A,(p) — A(p) uniformly in compact sets of RY. Then, Lug =
Be(uf), and, as ug = v on I and Lu® = [.(u), there holds that ug = u®. (Observe
that in the proof of the Comparison Principle, in Lemma 1.2.35 we can change the

equation Lu = 0, by Lu = f(z) with f € L>(€) to prove uniqueness of the Dirichlet
problem).
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Now let us prove that the following equality holds,
_/ G|Vt 0y d + / Fo(| Vi) Vit V) 1y, d = — / B ()t .
Q Q Q

In fact, for n fixed we have that F,(t) = g,(t)/t > 1/n and then by Theorem
1.2.34, u, € W*2(Q). As u, is a weak solution of (4.2.17) and as u, € W>?(Q),
taking as test function in the weak formulation u,,,, we have that

/ Fo([Vun ) Vun ¥ (o, ) dz = — / B () ttpy b d
Q Q

As (Gn(|Vug|)z, = gn(|Vun|)‘§Z:‘(Vun)zl = F(|Vu,|)Vu,(Vuy,),, we have
that

- [ GVl do [ Ful1Vu) VT, do = = [ G
Q Q Q
Passing to the limit as n — 0 and integrating by parts, we get,

—/G(]Vu])wm olrzf—i-/F(|Vu|)VuV1,Dugg1 dac:/BE(u)wI1 dx.
0 Q 0

PROPOSITION 4.2.18. Let xy € €) and let u* be solutions to
LuF = [, (u*)

in Q. If us* converge to a(x — o)} uniformly in compact subsets of Q, with g, — 0
as k — oo and o € R, then

a=0 or a=o1M).
Where ®(t) = g(t)t — G(1).
PROOF. Assume that xq = 0. Since u®* > 0, we have that o > 0. If a = 0 there

is nothing to prove. So let us assume that o > 0. Let ¢ € C{°(2). By Lemma
4.2.14 we have,

(4.2.19) —/G(\Vus’ﬂ)wxl dx+/F(|Vu€’“|)VuEkV1pui’; dx:/BEk(us’“)wzl.
0 Q 0
Since 0 < B, (s) < M, there exists M(x) € L>*(Q2), 0 < M(z) < M, such that

B., — M(x) » weakly in L>(Q). If y € QN {z; > 0}, then v > “¥* in a
neighborhood of y for k large. Thus, u®* > ¢, and we have

ufk /ey,
Bowe) = [ Bs)ds = 0

Using Proposition 4.2.1 we have that
VB, (u:,) = B, (us,)Vu™ — 01in L, (2N {z; < 0}).



140 4. THE SINGULAR PERTURBATION PROBLEM

Hence, M (z) = M € [0, M] in QN {z; < 0}. Passing to the limit in (4.2.19), using
the strong convergence result in Proposition 4.2.1 we have

[ Gapdet [ Feeado=ar [ e T [,
{z1>0}

{z1>0} {z1>0} {z1<0}
Then,
(—G(a) + g(a)a) / Yy, dv =M Vg, dw + M Vy, dx.
{z1>0} {z1>0} {z1<0}
And, integrating by parts, we obtain
(—G(a) + g(a)a) / Ydx' =M Ydx' — M Uy, da’.
{1’120} {x1=0} {1‘120}

Thus, (—G(a) + g(a)a) = M — M. Let as see that a = ®~1(M), we want to show

that M = 0.
Let K CC {x; < 0}. Then for any ¢ > 0 there exists 0 < 6 < 1 such that,
[KN{e< B, (u7) <M—c}| <|KN{d<u“/e; <1—0}
< [K N {8, (u™) = a/e;}[ = 0
as j — 0, where a = infj5,_g 6 > 0, and we are using that §(u®) — 0 in L'(K) by
Proposition 4.2.1. And as B(u®) — M in L'(K) we conclude that,
IKN{e<M<M—¢}|=0
for every € > 0, then M =0 or M = M, since o > 0 we must have M = 0. 0

PROPOSITION 4.2.20. Let xy € Q, and let u* be a solution to Lur = [, (u*) in
Q, where g’ satisfies (4.2.24). If u* converges to a(x — x¢)] +v(x — x0)] uniformly
in compact subsets of Q, with o,y >0 and €, — 0 as k — oo, then

a=vy< o (M).

PROOF. We can assume that xy = 0. Since u®* satisfies (4.2.15) and o,y > 0
we have, if y € QN {x; > 0}, then u* > ** in a neighborhood of y for k large and
then, u®* > ;. So that

ufk [eg
Bowe) = [ bsyds = 01

The same happens if 4y < 0. Then B, (u%) — M in L,

loc

in (4.2.15) we deduce that, for ant ¥ € C§°(Q) we have,

[ e@unde - [ e o= [ M,
{x1>0} {CE1<O} Q
Integrating by parts we obtain,

/ O () dr’ — / O(y)pdr' =0
{z1=0} {z1=0}

(). Passing to the limit

and then a = 7.
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Now assume that o > ®~1(M). We will prove that this is a contradiction.

Step 1. Let Ry = {z = (z1,2") € RN : |z,] < 2,|2| < 2}. We can assume that
Rq C Q.

We will construct a family {v*7} of solutions of (F,) in Ry satisfying v® (z1,2") =
v (—x1,2') in Re, and such that v — w uniformly on compact subsets of Ry,
where u(z) = a|z1|. To this end, we take b., = supg, [u® — u| and v*/ the minimal
solution (the minimum of all supersolutions) to (P.) in R, with boundary values
v% = u — b, on OR,. By Proposition 4.2.1, there exists v € Lip;,.(R2) such that,
for a subsequence that we still denote v/, v%5 — v uniformly on compact subsets of

Rs. From the minimality of v% we have that u > v.
To prove the other inequality, let w € CV#(R), satisfying
(F(Jw'))w') =B(w) imR, w(0)=1, '(0)=a.

Observe that, when w'(s) > 0 the equation is locally uniformly elliptic and then
w € C*(R). Suppose that there exists an s € R such that w'(s) = 0, take s; the first
positive time such that this happens. Then, if we multiply by w’ in the equation
and we integrate, we obtain

"(s1)

—®(a) = d(w'(s1)) — P(a) = / g'(s)sds = B(w(sy)) — M > —M
w'(0)

which means that ®(a) < M, a contradiction. Analogously if w’(s) = 0 somewhere

in {s < 0}. Then, w’ > 0 everywhere. By the same calculation as before, we obtain

that for any s € R we have,

P(w'(s)) — ®(a) = B(w(s)) — M <0,
and
(4.2.21) O(w'(s)) = B(w(s)) + ®(a) — M > &(a) — M = d(a),

for some « > @ > 0. Then, @ < w'(s) < a. As w is increasing, we obtain that
w'(s) = a for s > 0, and there exists § < 0 such that w(s) = 0, which means by
(4.2.21) that w'(5) = @, and then w'(s) = a for all s < §, therefore

{1+a5 s>0
w(s) =1q _ _ _
a(s —s) s < 3.

€j

be ; _
Let w (x1) = qw(x—l — T 8), then

b..
J

Qegj

b,
L) = b,

QeEj

w7 (0) :sjw(— +§> zsjd<§—

and w*'(s) < a. Therefore, w* < u — b, in R, so that, w* < v% on JR;, and then

by the comparison principle below (Lemma 4.2.25) we have that w® < v% in R..
be. be, _ _

Take 1 > 0, then for j large z; — -2 > % then %(ml — ) +5> 2%1] +5>0, and

therefore w® = e +ax; — 2b., +ae;5, then in any compact set of {x; > 0}, w™ — u

uniformly. Passing to the limit, we get that « < v in Ry N {x; > 0}. Observe that,
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by the uniqueness of the minimal solution, we have that v% (zy,2") = v% (—x, 2').
Thus, we obtain that u < v in Rs.

Step 2. Let Rt = {z: 0 <2y < 1,]2/| < 1}. Define,

F = / POV ) (v o' + / (Ve Yoo dS,
OR+N{z1=1} IR+ {|a!|=1}

where v,,% is the exterior normal of v% on OR™ N {|z'| = 1}. We first want to prove
that,

F < / <G(|Vv6f|) +B., (vsf')> dz'.
8R+ﬂ{x1:1}

To prove this, we proceed as in the proof of Lemma 4.2.14. This is, we can
suppose that F'(s) > ¢, by using an approximation argument. Therefore, we can
suppose that v € W%2(R;). Using the weak formulation of (P.) in R™ we have,

0
E — R £j — F €; € €j
v= [ g (coven)ae= [ [ pqe ey

_ / / div(F(|Voe ) Voo ) d — / B ()T = H, — G,
R+ R+

Using the divergence theorem and the fact that v3)(0,2") = 0 (by the symmetry in
the z1 variable) we find that, H; = Fj.

From the convergence of v — u = «|z1| in Ry and Proposition 4.2.1 we have
that

Vo — ae;  aein Ry =Ry N{xy > 0}

Since |Vv®| are uniformly bounded, from the dominate convergence theorem we
deduce that,

Jj—oo

(4.2.22) lim F; = / g(a)adr'
OR+N{z1=1}
and

0 . e
Fy=E;+G;= // dxy G(le 1+ Bey(v ]))> d
= / <G |Vvaf| + Baj (Uaj))> d{L‘/
OR*TN{z1=0}
/ (G Vo] + ng(v‘ff))> da’
OR+N{x1=1}

/ (GVe™ [ + B (v9))) do.
8R+ﬂ{1’1:1}

IN
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Using again that v — u = «|z;| uniformly on compact subsets of R, we have that
|Vvi| — o uniformly and B. (v¥) = M on OR* N {z; = 1}, and therefore

(4.2.23) limsup F; < / (G(a) + M) dz'

j—00 OR+N{z1=1}

Therefore, by (4.2.22) and (4.2.23) we obtain ®(a) < M which is a contradiction.
O

Now we prove the comparison principle needed in the proof of the lemma above.
This is the step where we need an additional hypothesis: There exist —1 < a1 < ay
such that for any s,t > 0 we have,

(4.2.24) g'(ts) > min{s®', s**}¢'(t)

LEMMA 4.2.25. Let w(z1) be a strictly increasing solution of L(w®) = [-(w®)
on R such that lims_,_ o w*(s) < 0 and v*(x) > 0 a solution of Lv¢ = [.(v°) in
R ={x=(x1,2') :a <z <b,|2'| <r}, continuous up to OR. Then, if ¢’ satisfies
condition (4.2.24) the following comparison principle holds: if v¢(x) > w®(xy) for
all x € OR then v¥(x) > w®(xy) for all x € R.

PROOF. Since lim,_,_ o w®(s) < 0 and v°(x) > 0, we can find 7 such that,

w(zy —7) <v°(z) onR.
For n > 0 sufficiently small define,
w(@1) 1= w(py(z1 — ¢5)),
where ¢, (s) = s+ ns? and ¢, > 0 is the smallest constant such that ¢, (s —¢,) < s

on [—27, 27] (observe that ¢, — 0 when  — 0). If ¢, —% < —27 then ¢,(s—¢,;) <0
for s < ¢,. Observe that, in [-27,27] w*" < w® and as n — 0 w*" — w*® uniformly.

If we call @,(s) = ¢, (s — ¢;) computing we have,
L(w™") = g'(w (&) @) w™" (8,)(8,)* + o' (0 () )™ (54) F.
If we define

() = {m G =1 {a1 if w®'(F,)(s) > 1

ay if g (s) <1 ay if w¥(,)(s) < 1.

Using condition (4.2.24), that L¢, > 0 and w®’ > 0 we have,
L(w™") > g (w (&) w™" (@) (@) + ¢' () @y (W ()
= Lw (Py) (@) + Ly (w™ (§)) 2 > Lw®(§,)(F)) "+
= Bl )

Since, . (w*") = 0 when z; < ¢, and ¢, > 1 when 21 > ¢,, we have that L(w™") >
Be(w®"). Summarizing,

Lw™" > B (w*"), w*" —w®asn—0 and w™" < we.
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Let now 7 < 0 the smallest constant such that
w*(z, — 1) <0v°(x) on R.

We want to prove that 7* = 0. By the minimality of 7*, there exists a point z* € R
such that w®"(zx} — 7*) = v*(z*). If 7% > 0, then w*"(x; — 7°) < W (z;) <
wé(z1) < v°(z) on OR, and hence, x* is an interior point of R. At this point
observe that the gradient of w®"(z; — 7*) is non-degenerate. Since Lw®"(x} —7%) >
Be(woM(x* — 7)) = B.(v¥(x*)) = Lv°(z*), we have that this happens in an open set.
We also have w®(x; — 7*) < v*(z) in R and w*"(z} — 7°) = v°(a*).

AswoM(xf—7") < v°(2*) in R and w*"(z; —7*) = v°(x*) we have that Vw"(z]—
%) = Vo (2*). Let,

Lv = a;;(Vw™" (21 — 7)) Vpya;

where a;; was define in (1.2.23). Since Vw®" is nondegenerate, L is uniformly elliptic
near the point z*, and since Vw®"(z{—7*) = Vo (2*), we have that Lw="(z —7*) >
Lvf(z*) and Lv®(x*) = (B.(v®) therefore v° is C? near that point and, we have, for
some 0 > 0

Lw®"(xy — 7*) > Lv*(x) in Bs(x*)
wo(x — 1) = v°(x*)
woM(xy — 1) < v¥(x) in R,

but since L is uniformly elliptic near z*, these three statements contradict the strong
comparison principle. Therefore 7" = 0 and then w®"” < v® on R. Letting n — 0 we
obtain the desired result.

O

3. Asymptotic behavior of limit solutions

Now we want to prove for g satisfying conditions 2.7.57 and 4.2.24 the asymptotic
development of the limiting function uv. We will obtain this result, under suitable
assumptions on the function u. First we give the following,

DEFINITION 4.3.1. Let v be a continuous nonnegative function in a domain ) €
RYN. We say that v is non-degenerate at a point o € QN {v = 0} if there exist c,
ro > 0 such that

1

(4.3.2) — vdx > cr  for 0 <r <.
r

Br(z0)

We say that u is uniformly non-degenerate on a set A C {u = 0} if (4.3.2) holds
for every xy € A with the same constants ¢ and .

We have the following,

THEOREM 4.3.3. Suppose that g' satisfies condition (4.2.24). Letu® be a solution
to (P.,;) in a domain €2 C RY such that u¥ — w uniformly on compact subsets of
Qandej — 0. Let kg € QN O{u > 0} be such that d{u > 0} has an inward unit
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normal 1 in the measure theoretic sense at xqy, and suppose that u is non-degenerate
at xo. Under these assumptions, we have

u(z) =0 N (M){x — zo0,m)" + 0|z — z9)).

The proof of this theorem is based on the following result,

THEOREM 4.3.4. Suppose that g' satisfies condition (4.2.24). Letu® be a solution
to (P.,) in a domain Q) C RY such that u — u uniformly in compact subsets of
as €; — 0. Then,

limsup |[Vu(z)| < &~ H(M).

T—x0

PROOF. Let
a = limsup |Vu(z)|.
T—x0
Since u € Lipe(Q2) a < oo. If, @ = 0 we are done. So, suppose that o« > 0. Then
there exists a sequence z;, — x( such that

u(zx) > 0, \Vu(z)| — a.

Let y, be the nearest point from z; to @ N O{u > 0} and let dp = |zx — yxl-
Consider the blow up sequence u,4, with respect to By, (yx). Since u is Lipschitz,
and ug, (0) = 0 for every k, there exists ug € Lip(RY), such that ug, — g uniformly
in compact sets of RY. And we also have that ug is an £— solution in {ug > 0} (see
proof of (6) in Lemma 1.6.13).

Now, set zx = (2 — yx)/dr € OB;. We may assume that zy — z € 0B;. Take,

VE = — = .

Vg, (zk)] - [Vu(z)]
Passing to a subsequence, we can assume, that v, — e;. Observe that By3(Z) C
Bj(zg) for k large, and therefore v is an £— solution there. By interior C* gradient
estimates, we have Vuy, — Vug uniformly in By/3(Z), and therefore |Vu(z,)| —

Ox,uo(Z). Thus, 0, ue(T) = a.

Next, we claim that |[Vug| < o in RY. In fact, let R > 1 and § > 0. Then, there
exists, 7o > 0 such that |Vu(z)| < a+6 for any x € B, r(xg). For |z, —zo| < ToR/2
and dy < 70/2 we have, By, r(2x) C Bryr(x) and therefore |Vug, (z)] < a+6 in Bg
for k large. Passing to the limit, we obtain |Vugy| < a4 0 in Bg, and since ¢ and R
were arbitrary, the claim holds.

Lemma 1.2.28 says that if w = g—g‘i then
&Ej (aij(Vug)Djw) =0 in Bl(i')

Since this is a uniformly elliptic equation near z, w < « in By(Z) and w(Z) = a,
the strong maximum principle implies that w = « in B,(Z). Thus |Vug| = « in
B,(z) for some r > 0. Now, by a continuation argument, we have w = « in B;(Z).
As 8,,up = «a then, for some y € RY we have ug(z) = a(z; — y1) in By(Z). Since
Lug =0 in {up > 0} by continuation we have, ug(z) = a(xy —y1) in {z1 > y1}.
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As ug > 0 and Lug = 0 in {ug > 0} and ug = 0 in 27 = y; we have by Lemma
1.5.10 that
u =7 —x)+o(lr—y|) inz—y <0
for some v > 0.

Now, define for A > 0 (ug)x(z) = %uo()\a: + y). There exists a sequence A, — 0
and ugy € Lip(RY) such that (ug)\, — ugy uniformly in compact subsets of RY.
We have ug(x) = az] +~r]. By Lemma 4.2.13 there exists a sequence g} — 0 such
that u% is a solution to (Psg) and u% — g uniformly on compact subsets of R,
Applying a second time Lemma 4.2.13 we find a sequence 5}’ — 0 and a solution
usl to (ng) converging uniformly in compact subsets of RY to uy,. Now we can
apply Proposition 4.2.18 in the case that v = 0 or Proposition 4.2.20 in the case
that v > 0, and we conclude that o < ®~1(M).

O

PROOF OF THEOREM 4.3.3. Assume that xy = 0, and n = e;. Take uy(z) =
su(Az). Let p > 0 such that B, CC €, since uy € Lip(B,,) uniformly in X,
ux(0) = 0, there exists \; — 0 and U € Lip(R") such that uy, — U uniformly
on compact subsets of RY. From Proposition 4.2.1 and Lemma 4.2.13, Luy = 0 in
{u), > 0}. Using that we are at a point where we have an inward normal in the
measure theoretic sense, we have, for fixed k,

Huyx>0}N{zy <0}NBx| -0 asA—0.

Hence, U is non negative in {z; > 0}, LU = 0 in {U > 0} and U vanishes in
{z1 < 0}. Then, by Lemma 1.5.10 we have that, there exists o > 0 such that,

U(z) = azf +o(|z]) in {x; > 0}.

By Lemma 4.2.13 we can find a sequence €; — 0 and solutions usi to (Pz;) such that
us — U uniformly on compact subsets of RY as j — oo. Define U, (z) = %U()\x),
then Uy — ax{ uniformly on compact subsets of RY. Applying again Lemma 4.2.13
we find a second sequence 0; — 0 and u% solution to (P,,) such that u” — oz}

uniformly on compact subsets of R and,

Vu" — axiz>ope1  in Lfg:l(RN).

Now we proceed as in the proof of Proposition 4.2.18. Let ¢ € C5°(RY) and choose
uz3 ¢ as test function in the weak formulation of Lu = 3, (u%?). Then,

B,, (u) — MxX{z;>0) + MX{$1<0} x weakly in L™
with M =0 or M = M. Moreover ®(a) = M — M.

By the non degeneracy assumption on u we have,
1

— >
N uy, dr > cr

T
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and then,

1
T_N/B Uy, dx > cr.

Therefore a > 0. So that we have that M = 0. Then, a = ®~(M).
We have shown that,

O~ (M)zy + of|z|) x1 >0
0 T < 0.

By Theorem 4.3.4, |VU| < & '(M) in R¥. As U = 0 on {z; = 0} we have,
U< ® Y M)xy in {z; > 0}.

Since |[VU(0)] = @ '(M) > 0, near zero U satisfies a linear uniformly el-
liptic equation (defined in (1.2.26)) and the same equation is satisfied by w =
U—-® M)z, in {z; > 0} N B,(0) for some r > 0. We also have w < 0 so
that by Hopf’s boundary principle we have that w = 0 in {z; > 0}. And the proof
is completed. O

THEOREM 4.3.5. Let u® be a solution to (P.,) in a domain Q@ C RN such that
us — w uniformly in compact subsets of Q as ¢; — 0. Let zop € QN o{u > 0}
and suppose that u is non-degenerate at xoq. Assume there is a ball B contained in
{u = 0} touching x, then,

4.3.6 | —_—
( ) Hfli})lp dist(z, B)

u(z)>0

— (M),

PROOF. Let [ be the finite limit in the left of (4.3.6), and y, — xo with u(yg) > 0
and
u(yk)
dy,
Consider the blow up sequence uy, with respect to By, (zx), where z;, € OB are points
with |z — yx| = di, and choose a subsequence with blow up limit ug, such that
T — Yk
e := lim

k—oo dk

— I, dy = dist(y, B).

exists. Then, by construction, ug(—e) = I, ug(x) < —l{(z,e) for (z,e) <0, up(x) =0
for (x,e) > 0. By the non-degeneracy assumption, we have that [ > 0. Both, uy and
[{x-e)T are L solutions in {ug > 0}, and from the maximum principle we have that
(since [ > 0) they must coincide in a neighborhood of —e, by continuation we have
that ug = l(z - €)*. Then, we have by, Proposition 4.2.18, that [ = ®~1(M).

OJ
4. Regularity of the free boundary

Now, we can prove a regularity result for the free boundary of limits of solution
of problem (P.),
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THEOREM 4.4.7. Suppose that g satisfies (0.0.2) and moreover ¢' satisfies condi-
tion (4.2.24). Let u® be a solution to (P.;) in a domain Q C RN such that u® — u
uniformly in compact subsets of Q as ¢; — 0. Let xg € QN J{u > 0}, be such
that there is an tnward unit normal n in the measure theoretic sense at xy. Suppose
that u is uniformly non-degenerate at the free boundary in a neighborhood of xq (see
Definition 4.3.1). Then, there exists r > 0 so that B,.(x) N 0{u > 0} is a C*
surface.

Proor. By Corollary 4.1.8, Theorem 4.3.3, Theorem 4.3.5 and the non-
degeneracy assumption we have that u is a weak solution in the sense of Definition
2.6.2. Therefore Theorem 2.7.56 applies, and the result follows.

O
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