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para preguntarles tantas pavadas!
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dome. A mi papá, por ayudarme a realizar mis sueños, a mi hermano, por
apoyarme y darme ese hermoso sobrinito, y especialmente a mi mamá, quien
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Resumen

Un grafo es biclique-Helly cuando el conjunto de bicliques verifica la
propiedad de Helly. En esta tesis caracterizamos a la familia de grafos
biclique-Helly, y presentamos dos algoritmos polinomiales para el problema
de reconocimiento. Por otro lado, relacionamos las clases de grafos biclique-
Helly, clique-Helly, discos-Helly y vecindad-Helly.

Es natural preguntarse si la propiedad de Helly es hereditaria para sub-
grafos inducidos. En este caso, nos referimos a los grafos clique-Helly heredi-
tarios, discos-Helly hereditarios, biclique-Helly hereditarios y vecindad-Helly
hereditarios, respectivamente. Las primeras dos clases fueron estudiadas en
la literatura. En esta tesis, estudiamos las dos clases restantes. Presentamos
caracterizaciones que se basan en subgrafos prohibidos. Ya que esta familia
de subgrafos prohibidos tiene tamaño fijo, las caracterizaciones mencionadas
dan lugar a algoritmos polinomiales de reconocimiento de las clases.

Dado un grafo G, la matriz biclique de G es una matriz con valores en
el conjunto {0, 1,−1}, donde las columnas y las filas representan los vértices
y las bicliques de G, respectivamente, y los valores 1,-1 en una fila corre-
ponden a dos vértices adyacentes de una biclique. Es esta tesis, describimos
una caracterización de las matrices bicliques, en forma similar a la empleada
en la caracterización de las matrices biclique. En esta caracterización, em-
pleamos el concepto de hypergrafos bipartitos-conformal. Por otra parte,
consideramos el caso particular de matrices bicliques de grafos bipartidos.

Dada una familia de subconjuntos F , el grafo de intersección de F es
un grafo cuyos vértices se corresponden con los conjuntos de F , donde dos
vértices son adyacentes si los correspondientes conjuntos se intersecan. En
esta tesis definimos el grafo biclique de G, KB(G), como el grafo de inter-
sección de la familia de bicliques de un grafo. Un grafo G es grafo biclique si
KB(H) = G, para algún grafo H. En esta tesis presentamos una caracteri-
zación de los grafos biclique.

Dado G, definimos Nc(G) como el grafo de intersección de las vecindades
cerradas de G. En esta tesis estudiamos el grafo Nc(G) en relación con la
propiedad de Helly.

Los grafos perfectos son importantes desde el punto de vista algoŕıtmico.
En este trabajo estudiamos los grafos cuyo grafo biclique es perfecto, es decir,
grafos KB-perfectos. Damos una caracterización de los grafos KB-perfectos
tales que no continenen al grafo P5 como subgrafo inducido.
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Abstract

A graph is biclique-Helly when its family of (maximal) bicliques is a
Helly family. We describe characterizations for biclique-Helly graphs, leading
to polynomial time recognition algorithms. In addition, we relate biclique-
Helly graphs to the classes of clique-Helly, disk-Helly and neighborhood-
Helly graphs. A natural question is to determine for which graphs the corre-
sponding Helly property holds for every induced subgraph. This leads to the
classes of hereditary clique-Helly, hereditary disk-Helly, hereditary biclique-
Helly and hereditary neighborhood-Helly graphs, respectively. The first two
of them have already been characterized. In this thesis, we describe charac-
terizations for the remaining ones, by families of forbidden subgraphs. The
forbidden subgraphs are all of fixed size, implying polynomial time recogni-
tion for these classes.

Given a graph G, the biclique matrix of G is a {0, 1,−1} matrix having
one row for each biclique and one column for each vertex of G, and such
that a pair of 1,-1 entries in a same row corresponds exactly to adjacent
vertices in the corresponding biclique. We describe a characterization for
biclique matrices, in similar terms as those employed in the characteriza-
tion of clique matrices. In the characterizations, we employ the concept of
bipartite-conformal hypergraphs. The special case of biclique matrices of
bipartite graphs is also considered.

Given a family of subsets of some set F , the intersection graph of F is
a graph having one vertex for each set of F , and two vertices are adjacent
whenever their corresponding sets intersect. sIn this thesis we define the
biclique graph of G, KB(G), as the intersection graph of the family of all
bicliques of G. A graph G is a biclique graph if there exists a graph H such
that KB(H) = G. We present a characterization for biclique graph. The
special case of biclique graphs of bipartite graphs is also considered.

The closed neighborhood graph is the intersection graph of the closed
neighborhoods of G. We study closed neighborhood graphs in relation to the
Helly property.

Perfect graphs are very interesting from an algorithmic point of view.
We study the graphs for which the biclique graph is perfect, the KB-perfect
graphs. We give a characterization of the of KB-perfect graphs with no
induced P5.
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Chapter 1

Introduction

The Helly property plays a very important role in the study of families
of subsets of a set. A family of subsets is Helly if every pairwise intersecting
subfamily has a common element.

In the scope of graph theory, the study of the Helly property has mo-
tivated the introduction of some classes of graphs, as clique-Helly graphs
[12, 23, 32, 36, 49], disk-Helly graphs [5, 6], and neighborhood-Helly graphs
[10] (i.e., the families of cliques, disks and neighborhoods of a graphs are
Helly, respectively.)

Berge ([10]) described a polynomial algorithm to verify if a given family
has is Helly. However that the problem of recognizing clique-Helly graphs,
can not be solved by using the algorithm proposed by Berge, since the number
of cliques of a graph can be exponential. In [52] there is a characterization of
clique-Helly graphs that leads to a polynomial time recognition algorithm.

Disk-Helly graphs were studied by Bandelt and Pesch and others [5, 7, 22].
They have described an algorithm with complexity O(mn2) for recognizing
disk-Helly graphs.

In this thesis we study some other families of subsets of a set. In partic-
ular, we consider the set of vertices of a graph G. We focus on the family of
bicliques of a graph. A biclique of a graph is a subset of vertices that induces
a maximal complete bipartite subgraph of G.

We consider in this thesis the graphs whose bicliques form a Helly family,
the biclique-Helly graphs. We remark that a graph would have an expo-
nential number of bicliques ([48]). Therefore, as in the case of clique-Helly
graphs, the algorithm proposed by Berge would not be efficient for recog-
nizing biclique-Helly graphs. In this thesis, we study this problem and give
a characterization of biclique-Helly graphs that leads to a polynomial time
algorithm for the recognition problem.

Besides the interest of examining bicliques in the scope of the Helly prop-
erty, we mention that bicliques have been considered in some different con-
texts, e.g. [33, 43, 45, 47, 53].

None of the mentioned classes are closed under induced subgraphs. So, a
question would be to characterize the graphs for which the Helly property is

1
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preserved for every induced subgraph. It leads to the hereditary classes
of clique-Helly, biclique-Helly, neighborhood-Helly and disk-Helly graphs.
Hereditary clique-Helly graphs have been characterized in [46], while [22]
(c.f. [16]) contains a characterization of hereditary disk-Helly graphs. In
this work, we describe forbidden subgraph characterizations for the classes
of hereditary biclique-Helly and hereditary neighborhood-Helly graphs. All
graphs in these forbidden families are of fixed size. In fact they have at most 8
vertices. Consequently, the characterizations imply polynomial time recogni-
tion for hereditary biclique-Helly, hereditary open neighbourhood-Helly and
hereditary closed neighbourhood-Helly graphs.

Clique matrices of a graph have been characterized by Gilmore in 1960,
and have been employed in different contexts. For example, in the character-
izations of interval graphs [28], Helly circular-arc graphs [26] and self-clique
graphs [12, 36], as well as in different covering problems involving cliques.

Motivated by the above concept, in this thesis we consider biclique matri-
ces of a graph. We define the biclique matrix of a graph G as the {0, 1,−1}-
matrix whose rows are the incident vectors of the bicliques of G. We give
a characterization for such matrices, in similar terms as those used in the
characterization of clique matrices. Biclique matrices can be employed, for
instance in covering problems involving bicliques. Such problems have been
considered, among others, by [3, 53].

Given a family of subsets of some set F , the intersection graph of F is
a graph having a vertex for each set of F , and two vertices are adjacent
whenever their corresponding sets intersect. On the other hand, given a
graph G, it is an intersection graph when there exists a family F of subsets
of some set such that G is its intersection graph. It is easy to prove that all
graphs are intersection graphs (Marczewski, [44]). Intersection graphs were
studied in several contexts (See [39]).

One of the most important problem concerning intersection graphs is the
recognition problem. It consists on deciding whether for a given graph G
and a family F of subsets of a set, G is the intersection graph of F .

Many classes of intersection graphs have been defined, by fixing a suit-
able family of subsets. For example, clique graphs, interval graphs, chordal
graphs, and line graphs (See [15, 16, 23, 24, 27, 38]) .

Clique graphs, i.e., the intersection graph of the family of bicliques of a
graph has played an important role in the intersection graph theory. Roberts
and Spencer, in [49] give the first characterization for clique graphs. A dif-
ferent one is shown in [2]. However, none of them appeared to lead to a
polynomial time algorithm for the recognition problem. Moreover, it was an
open problem determining the computational complexity of the clique graph
recognition problem. Recently, in [1] it is proved that the mentioned problem
is NP-complete.

Motivated by the concept of clique graphs, we define the biclique graph of
G as the intersection graph of the family of all bicliques of G. We give a char-
acterization of biclique graphs and show some families of graphs that are not
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biclique graphs. However, we leave as open to determine the computational
complexity of the recognition problem.

The closed neighborhood graphs (or square graphs) are the intersection
graphs of the closed neighborhoods of a graphs. It is proved that recogniz-
ing square graphs is NP-complete in the general case, while square graphs
of bipartite graphs can be recognized in polynomial time (See [22, 37, 40,
41, 54]). We concentrate on the case of closed neighborhood graphs of open
neighborhood-Helly bipartite graphs and study its clique graph and its rela-
tion to the biclique graphs.

Berge [8] defined a graph G to be perfect whenever the chromatic number
coincides with the cardinality of a maximum clique, for every induced sub-
graph H of G. Perfect graphs are very interesting from an algorithmic point
of view. While determining the clique number and the chromatic number of
a graph are NP-complete problems, they are solvable in polynomial time for
perfect graphs [30]. Besides, it has been proved recently that perfect graphs
can be recognized in polynomial time [17]. For more background information
on perfect graphs see [29].

We study the classes of graphs such that their biclique graphs are perfect.
For that purpose we define the b-biclique-perfect and b-coordinated graphs,
in a similar way as the classes of c-clique-perfect and c-coordinated ( [13, 14])
were defined. We present some conditions in which b-biclique-perfect and b-
coordinated graphs have a perfect biclique graph.

1.1 Results of the thesis

We study some properties of bicliques of graphs. We study the Helly
property associated to bicliques, for bipartite graphs and in the general case.
We give a characterization of biclique-Helly graphs that leads to an algorithm
of complexity O(|V (G)|3|E(G)|) for the recognition problem. We employ a
similar concept to extended triangle, which has been used to characterize
clique-Helly graphs.

On the other hand, we define the bichromatic-Helly graphs. We give
a characterization and an O(|V (G)|3|E(G)|) time algorithm for recognizing
this class of graphs. Also we relate bichromatic-Helly graphs to biclique-Helly
graphs, obtaining a second algorithm for recognizing biclique-Helly graphs
with the same computational complexity.

Also, the Helly property is studied in the context of neighborhoods, both
open and closed neighborhoods are considered. We study the relations be-
tween biclique-Helly, clique-Helly and open and closed neighborhood-Helly
graphs.

Since the Helly property is not hereditary under induced subgraphs,
we study the corresponding hereditary versions separately. We character-
ize hereditary biclique-Helly graphs by forbidden induced subgraph of finite
size, which leads to a polynomial time algorithm for recognizing this class.
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Analogously, we characterize hereditary open neighborhood-Helly graphs and
closed neighborhood-Helly graphs with no triangles. Finally, we compare
these three classes with hereditary clique-Helly graphs.

We define the biclique matrix as the matrix whose rows are the incident
vectors of the bicliques of G. We give a characterization of biclique matrices.
For that purpose we define the concept of bipartite-conformal hypergraphs,
in a similar way as it was defined the concept of conformal hypergraphs, em-
ployed to characterize clique matrices (Gilmore, c.f [10]). We prove that rec-
ognizing bipartite-conformal hypergraphs with a compatible bicoloring and
biclique matrices can be done in O(m2n + mn3) steps.

We define the biclique graph, as the intersection graph of the family of bi-
cliques of a graph. We study the recognition problem and give a characteriza-
tion for biclique graphs and the particular case of biclique graphs of bipartite
graphs, using the characterization of biclique matrices. For that purpose, we
define the bipartite-Helly property for a labeled family of subsets. We give
an algorithm of complexity O(m3n + m3n) for recognizing bipartite-Helly
labeled families. This result proves that the recognition problem for biclique
graphs is in NP. We study the neighborhood graph of bipartite graphs. We
give a relation between bicliques of a bipartite graph G and the cliques of the
closed neighborhood graph. We use that relation to prove that, for the case
that G is open neighborhood-Helly, the biclique graph of G and the clique
graph of the closed neighborhood graph of G coincide.

This result is a useful tool for studying properties of biclique graphs, based
on properties of the clique graphs. We employ this tool when we study the
class of graphs for which their biclique graph is perfect. We prove that when
we restrict to the subclass of graphs without induced P5 (bicliqual), that class
coincides with the classes of b-coordinated graphs, c-coordinated graphs, c-
clique-perfect and b-biclique-perfect graphs. Finally, as an appendix of this
thesis, we study a generalization of the concept of cliques, the p-cliques. We
characterize the (p,q)-Helly property from a matricial point of view.

1.2 Definitions

Let G be a finite undirected graph, V (G) and E(G) the vertex and edge
sets of G, respectively. An independent set in a graph G is a subset of pairwise
non-adjacent vertices of G. The independence number α(G) is the cardinality
of a maximum independent set of G. Say that a graph is a complete graph
when every two vertices are adjacent. A clique of G is a complete subgraph
maximal under inclusion. The clique number of G, denoted by ω(G), is the
cardinality of the maximum clique of G. A biclique is a maximal subset
B ⊆ V (G) inducing a complete bipartite subgraph in G. Write B = X ∪ Y
for the corresponding bipartition, restricting to X, Y 6= ∅. See an example
in Figure 1.1. B1, B2, and B3 are bicliques of G.

A spanning subgraph of G is a graph H such as V (H) = V (G) and
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w1 w2

v2

w3 w2

v1 v2

w3w2

v1

w3 w4

w1 w2

v1 v2

w3 w4

G B3B2B1

Figure 1.1: Example of bicliques if a graph G

E(H) ⊆ E(G). A vertex v ∈ V (G) is universal when it is adjacent to every
other vertex of G.

A sequence v1, ..., vk of distinct vertices v1, . . . , vk is a path of length k
when vivi+1 is an edge of G, for each i, 1 ≤ i ≤ k − 1. On the other hand,
when v1vk is also an edge, say that v1, ..., vk is a cycle. Denote by Pk the
induced path with k vertices. Write Ck for a cycle having k vertices. By G
denote the complement of G. The open neighborhood of a vertex v, N(v) is
the set of vertices adjacent to v, while the closed neighborhood of v, denoted
by N [v] is N(v) ∪ {v}. A vertex with empty an open neighborhood is an
isolated vertex. The disk Dl(v) of v ∈ V (G) is the subset of vertices of G
whose distance to v is less or equal to l.

A graph is chordal when every cycle of length greater than 3 has a chord.
For S ⊆ V (G), denote by G[S] the subgraph induced in G by S. Say that

vertex u dominates vertex v if N(v) ⊆ N(u). We say that v is a dominated
vertex. Two vertices are twins if they have the same open neighborhood. A
dominated vertex is strictly dominated if it is dominated by a vertex that is
not its twin.

Let B be some family of bicliques of G. The graph GB, formed exactly
by the vertices and edges involved in the bicliques of B is called the biclique
subgraph of G, relative to B. When every biclique of GB is also a biclique
of G, say that it is a special biclique subgraph. Given a family C of cliques
of a graph G, denote by GC its corresponding clique subgraph, that is, the
subgraph formed by the vertices and edges of the cliques of C. A clique
subgraph GC is special when every clique of GC is a clique in G.

A property P is hereditary if for every graph G that verifies P , it holds
for every induced subgraph. A graph is dismantable if there is an ordering
on the vertices v1, ..., vn such that vi is a dominated vertex in the graph
G − {v1, ..vi−1}. Let F be a family of subsets of some set. Say that F is
intersecting when the subsets of F pairwise intersect. On the other hand,
when every intersecting subfamily of F has a common element then F is
a Helly family. A graph G is biclique-Helly (clique-Helly, neighborhood-
Helly, disk-Helly) when its family of bicliques (cliques, neighborhoods, disks)
is Helly. In Figure 1.2, graph G is not biclique-Helly, since the family of
bicliques of G is an intersecting family, but there is no a common intersection.
On the other hand, graph G′ is biclique-Helly.

A graph G is hereditary biclique-Helly (clique-Helly, neighborhood-Helly,
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disk-Helly) if every induced H is biclique-Helly (cliques-Helly, neighborhood-
Helly, disk-Helly).

G G�

w1 w2

v1 v2 v3

v1 v2

v4v3 w1w2

w3w4

Figure 1.2: G is not biclique-Helly, G′ is biclique-Helly.

If G has c cliques {C1, . . . , Cc} then the clique matrix of G is the c × n
{0, 1}-matrix A, defined as aki = 1 if and only if vi ∈ Ck. Finally, when
G has d bicliques B1, . . . , Bd ⊆ V (G), the biclique matrix of G is the d × n
{0, 1,−1}-matrix A, where aki = −akj 6= 0, precisely when vi, vj ∈ Bk and
vi, vj are adjacent, for all 1 ≤ k ≤ n and 1 ≤ i 6= j ≤ n.

Given a family of subsets of some set F , the intersection graph of F
is a graph having vertex for each set of F , and two vertices are adjacent
whenever their corresponding sets intersect. The clique graph K(G) of G is
the intersection graph of the cliques of G. Denote by K2(G) the clique graph
of K(G). A graph G is self-clique if K(G) is isomorphic to G. Analogously,
define the biclique graph KB(G) as the intersection graph of the bicliques of
G. The closed neighborhood graph of G, Nc(G), is the intersection graphs
of closed neighborhoods of G.

A graph is weakly 2-colorable when there is a bipartition U,W of vertices
of G such that every clique of G has vertices of both parts.

Given a set S of elements, a family F of subsets of S is a split of S if for
every pair of elements x, y ∈ S, there exist a set in F containing x, and not
containing y.

Given a graph G, say that a family of subgraphs C covers the edges of G,
if every edge belongs to some subgraph of the family.

A clique cover of a graph G is a subset of cliques covering all the vertices
of G. The clique-covering number θ(G) is the cardinality of a minimum clique
cover of G.

The chromatic number of a graph G is the smallest number of colors that
can be assigned to the vertices of G in such a way that no two adjacent
vertices receive the same color, and is denoted by χ(G). An obvious lower
bound is the maximum cardinality of the cliques of G, the clique number of
G, denoted by ω(G).

A graph G is perfect when θ(H) = α(H) for every induced subgraph H
of G (or equivalently, when χ(H) = ω(H) for every induced subgraph H). A
graph G is K-perfect if K(G) is perfect. Analogously, a graph is KB-perfect
if its biclique graph is perfect.
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A matrix A ∈ Rk×n is perfect if the polyhedron P (A) = {x ∈ Rn/Ax ≤
1, x ≥ 0} has only integer extreme points.

Given a set S = {x1, ..., xn} and a family F = {F1, ..., Fk} of subsets of
S, the incidence matrix of F is a {0, 1}−matrix with n columns and k rows
such that aij = 1 if xj belongs to Fi and aij = 0 otherwise.

A hypergraph H is defined by a set of vertices V (H) = {v1, ..., vs} and
a set of hyperedges E(H) = {E1, ..., Ek}, where Ei is a subset of V (H),
| Hi |≥ 2. The dual hypergraph of H is a hypergraph H∗, with vertex set
V (H∗) = {E1, ..., Ek}, and hyperedges E(H∗) = {E∗

1 , ..., E
∗
s}, where E∗

i =
{Ej, such that vi ∈ Ej}, for 1 ≤ i ≤ s.

1.3 Different problems on bicliques and re-

lated concepts

Bicliques were study in several contexts [3, 18, 25, 34, 43, 45, 47, 48, 55].
In [48], Prisner determined an upper bound for the cardinality of the

family of bicliques of a bipartite graph and general graphs. Also, he presented
a family of graph, the Cocktail party graphs, for which this bound is reached.
Moreover, he proved that no other family verifies that property.

The Cocktail party graph, of order j, denoted by CP (j), is a bipartite
graph, | V1 |=| V2 |= j, where vi ∈ V1 is adjacent to wj ∈ V2 for every i 6= j.

Theorem 1.1 [48] Let G be a bipartite graph and let B(G) be the family of
bicliques of G. Then, | B(G) |≤ 2

n
2 . The cardinality of the family of cliques

of the graph CP (j) is exactly | B(G) |= 2j and no other bipartite graph of 2j
vertices has this property.

Observe that the family of bicliques of CP (j) is {(ai, bj), i ∈ I, j ∈
{1...j}\I, ∀I ⊆ {1...j}}. It follows that its cardinality is 2j=2

n
2 (Figure 1.3).

a2 a3

b3 b1

a4a1

b4 b2

Figure 1.3: Cocktail party of order 4, CP (4)

Theorem 1.2 [48] Any graph has at most n
5
2 (1, 618034n + o(1)) bicliques.

It is worth mention that in the proof of this Theorem, appears the gold
ratio.

Theorem 1.3 [48] Let G be a bipartite graph with bipartition V1, V2, CP (j)-
free, for some j. Then, G has at most (| V1 || V2 |)j−1 bicliques
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As a Corollary, he proved the following:

Corollary 1.1 Let Γ be a family of bipartite graphs closed under induced
subgraphs. Then there exists a polynomial function f(n) such that every
member of the class has at most f(| V |) bicliques if and only if CP (j) /∈ Γ
for some j.

Several concepts related to bicliques were studied. It is worth to mention
that in the literature, some of them are also call bicliques.

A c-biclique is a complete subgraph (not necessary induced or maximal).
A balanced biclique is a biclique were the bipartition V1, V2 has the same
cardinality.

Some decision problems related to bicliques, c-bicliques and balanced bi-
cliques were studied. As examples, we mention the Maximun vertex biclique
problem and the Maximun edge biclique problem (MBP). The first one con-
sists of deciding if a given graph contains a biclique of at least k vertices
(| V1 | + | V2 |≥ k). The second problem consists of deciding if G contains a
biclique with at least k edges, (| A | · | B |≥ k). Those problems have been
studied in [25, 45, 55].

1.4 How the thesis is organized

The thesis is organized as follows.
In Chapter 2, we study biclique-Helly graphs, and give a characterization

for this family. We also study the Helly property related to open and closed
neighborhoods. We also define the bichromatic-Helly graphs and characterize
them.

In Chapter 3, we study the classes of hereditary biclique-Helly, hereditary
neighborhood-Helly gaphs (both open and closed are considered). Charac-
terizations of these classes are given and the relations between them and the
hereditary clique-Helly graphs.

In Chapter 4, we define and characterize biclique matrices, for the general
case and for the particular case of bipartite graphs. Also, the concept of
bipartite-conformal is defined. Finally, a polynomial algorithm for identifying
bipartite-conformal hypergraphs is given and two polynomial algorithms are
proposed for recognizing biclique matrices.

In Chapter 5 we define and characterize biclique graphs. We present
some families of graphs which are not biclique graphs and study the classes
of biclique graphs of some classes of graphs. Also we define the bipartite-
Helly property and give a polynomial algorithm for recognizing bipartite-
Helly labeled families.

Chapter 6 contains a characterization of the closed neighborhood graph
of a biclique graph. Relations between the cliques of the neighborhood graph
of a bipartite graph G and bicliques of G are given. The Helly property is
also studied in this context.
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In Chapter 7 we study those graphs for which the biclique graphs is
perfect, i.e., the KB-perfect graphs. We define the b-coordinated graphs and
the b-biclique-perfect graphs.

Chapter 8 contains the conclusions of the thesis.

1.4.1 Notation and basic graphs

We remark that along the thesis, we will say that a vertex or an edge
belongs to a graph, meaning that it belongs to the vertex set of the graph or
the edge set of the graph, respectively. On the same way, we will consider a
subgraph of a graph as a subset of vertices or/and edges.

Notation : .

• G−{v} is a graph G obtained by removing a vertex v and its incident
edges.

• Kn, is the complete graph of n vertices.

• Cn, is a cycle of n vertices

• F − free, a graph which does not contain the graph F as an induced
subgraph.

• n−fan, is an induced path of n+1 vertices, and an additional universal
vertex. See Figure 1.4

• Hajós graph, with center T : See Figure 1.4

• k-extended Hajós graph with center T , a graph obtained from the Hajós
graph by adding k edges between vertices not in the center, k = 1, 2, 3.
See Figure 1.4
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 C5

3-fan
K6

 P3

Hájos with center T

1-Extended Hájos
with center T

3-Extended Hájos
with center T

2-Extended Hájos
with center T

 T T  T

 T

Figure 1.4: Basic graphs



Chapter 2

Bicliques and the Helly
property

2.1 Introduction

In this Chapter we study the Helly property in the context of bicliques
and neighborhoods of a graph. We define the biclique-Helly graphs and give
two characterizations for this class, along with polynomial time algorithms
for recognizing biclique-Helly graphs. Also we study the classes of open
and closed neighborhood-Helly graphs, and relate them to clique-Helly and
biclique-Helly graphs.

Helly families of subsets have been studied in different contexts. Berge
proposed a polynomial time algorithm (O(n3)) to decide whether a given
family is Helly or not. It is based on the following Theorem.

Theorem 2.1 [10] A family F of subsets of a set S is Helly if and only if
for every 3-subset S ′ of S, the subfamily of subsets in F containing at least
two elements S ′, have a common intersection.

In the scope of graph theory, the study of the Helly property has mo-
tivated the introduction of some classes of graphs, as clique-Helly graphs
[23, 32, 49], disk-Helly graphs [5, 6], and neighborhood-Helly graphs [10].
These classes correspond to the cases where the families subject to the Helly
property are cliques, disks and neighborhoods, respectively.

For recognizing clique-Helly graphs the algorithm proposed by Berge is
not efficient since the number of cliques can be exponential. Clique-Helly
graphs have been characterized in [52]. It is based on the concept of extended
triangles and it leads to a polynomial time recognition algorithm. Given a
triangle T in G, the extended triangle of T , denoted by E(T ) is the subgraph
of G induced by the vertices which form a triangle with at least one edge of
T . The characterization is given by the following Theorem and it leads to a
polynomial time recognition algorithm.

11
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Theorem 2.2 [52] A graph is clique-Helly if and only if every extended tri-
angle has a universal vertex.

In [14] there is another characterization of clique-Helly graphs, which
relates properties of the graph with properties of a polyhedron generated by
the clique matrix of G. However, note that K(G) might be of exponential
size, implying that it does not lead directly to a polynomial time recognition
algorithm of clique-Helly graphs.

Theorem 2.3 [14] Let G be a graph with n vertices and m cliques, and let
AG be a clique matrix of G and K(G) its clique graph. Then it is equivalent:

1. G is clique-Helly.

2. The clique matrix of K(G) is AT
G without including rows.

3. The polyhedrom {x ∈ <m/AT · x ≤ 1, x ≥ 0} is the same as {x ∈
<m/AK(G) · x ≤ 1, x ≥ 0}.

Disk-Helly graphs were studied by Bandelt and Pesch and others [5, 7, 22].
They give an algorithm with complexity O(m.n2) for recognizing disk-Helly
graphs:

Theorem 2.4 A graph G is disk-Helly if and only if it is clique-Helly and
dismantlable.

In this Chapter, we consider the graphs whose bicliques form a Helly
family, the biclique-Helly graphs. Besides the interest of examining bicliques
in the scope of the Helly property, these graphs could be of interest in the
study of retracts [33]. We mention that bicliques have been considered in
some different contexts, e.g. [43, 45, 47, 53].

Recall that a graph is biclique-Helly when its family of bicliques is a Helly
family. In addition, we relate biclique-Helly graphs to the classes of clique-
Helly, disk-Helly and neighborhood-Helly graphs.

The Chapter is organized as follows.
In Section 2 we describe a characterizations for biclique-Helly graphs. It

generalizes the notion of extended triangles.
In Section 3 a weaker notion of clique-Helly graphs is defined, the bichromatic-

Helly graphs. We give a characterization for bichromatic-Helly graphs which
leads to an algorithm for recognizing bichromatic-Helly graphs in in polynomial-
time complexity.

In Section 4, a second characterization for biclique-Helly graphs is given.
It relates biclique-Helly graphs to bichromatic-Helly graphs. Both characteri-
zations given in this Chapter lead to algorithms for recognizing biclique-Helly
graphs, in polynomial-time complexity. Recall that a graph might have an
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exponential number of bicliques [48]. Therefore, the algorithm by Berge
(Theorem 2.1, see [11], [10] [49]) for recognizing Helly families would not
recognize biclique-Helly graphs within polynomial time.

In Section 5 we give a characterization for open neighborhood-Helly graphs,
a partial characterization for closed neighborhood-Helly graphs and finally,
we relate the class of biclique-Helly graphs to those of clique-Helly graphs,
disk-Helly graphs and neighborhood-Helly graphs.

2.2 Biclique-Helly Graphs

In this Section, we describe a characterization for biclique-Helly graphs.
The characterization employs a generalization of the idea of extended triangle
[22, 52]. We employ the following generalization of the concept of extended
triangles.

Say that a vertex v dominates an edge e, when one of the extremes of e
either coincides or is adjacent to v. When v dominates every edge of G then
v is an edge dominator of G. Clearly, a universal vertex is an edge dominator.
For S ⊆ V (G), denote by G[S] the subgraph induced in G by S.

Let S ⊆ V (G), |S| = 3. Denote by BS the family of bicliques of G, each of
them containing at least two vertices of S. Let S∗ be the set of vertices of the
biclique subgraph GBS

. The induced subgraph G[S∗] is called the extension
of S. Clearly, GBS

is a spanning subgraph of G[S∗]. See some examples in
Figure 2.1.

Before we describe the characterization, we prove two useful Lemmas.

Lemma 2.1 Let G be a graph. Then G has neither triangles nor C5’s if and
only if each of the extensions in G is a bipartite graph.

Proof: Let G be a graph with no triangles nor induced C ′
5s and S =

{v1, v2, v3} ⊆ V (G). If G[S∗] is empty there is nothing to prove. Other-
wise G[S∗] has at least two vertices in S. First, examine the alternative
when there are only two vertices v1, v2 of S in G[S∗]. Suppose v1 and v2 are
adjacent. Let X be the subset of vertices of G[S∗] non adjacent to v1 and
Y = S∗ \X. By definition of G[S∗], any vertex of X must be adjacent to v2,
and any of Y is adjacent to v1. Because G has no triangles, any two vertices
of X are not adjacent. Similarly, no two vertices of Y are adjacent. Then
G[S∗] is bipartite. The second alternative is to assume that v1 and v2 are
not adjacent. Let X be the subset of vertices of G[S∗], simultaneously non
adjacent to v1 and v2, and Y = S∗ \X. By a similar argument as above, we
conclude that X ∪ Y is a bipartition of G[S∗], as required.

We examine the situation when all vertices of S are in G[S∗]. The alter-
natives for S are to be a triangle, or a P3, or their complements. However,
S can not be a triangle, by hypothesis. We discuss below the other three
possibilities.
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Figure 2.1: Examples of extensions of S

Suppose S is a P3, with v1v3 non adjacent. Denote by X ⊆ S∗ the subset
consisting of those vertices simultaneously non adjacent to v1 and v3, and
Y = S∗ \X. We show that X ∪ Y is a bipartition of G[S∗]. Let vi, vj ∈ X,
vi 6= vj. Suppose that vi and vj are adjacent. Since vi is in G[S∗], there exists
v′i adjacent to v1, v3 and vi. Similarly, there exists vertex v′j adjacent to v1, v3

and vj. Clearly, v′i, v
′
j ∈ Y . Because G has no triangles, v′i 6= v′j and v′j is

neither adjacent to vi nor v′i. However, in the latter situation, vi, vj, v
′
j, v3, v

′
i

form a C5, a contradiction. Consequently, vi and vj are not adjacent, as
required.

Next, let vk, vl ∈ Y , vk 6= vl. Assume that vk and vl are adjacent. By
definition of G[S∗], both vk and vl are adjacent to at least one of v1, v3. Then
vk, vl are both non adjacent to v2, otherwise G has a triangle. Without loss
of generality, we may assume that v1 and vk are adjacent. Then v1, vl can not
be adjacent, implying that v3, vl are adjacent, implying that v3, vk are not. In
this case, v1, vk, vl, v3, v2 induce a C5, contrary to the hypothesis. Therefore
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vk and vl are not adjacent, meaning that G[S∗] is bipartite. Consequently,
whenever S is a P3, G[S∗] is indeed bipartite.(Figure 2.2)

vjv1 v3

v�j

vi

v�i

x

y vl

v1

v2vk

x

y

v3

Figure 2.2: Extension of P3

In the next alternative, assume that S is an independent set. Let X be the
subset of vertices of S∗ which are non adjacent simultaneously to v1, v2, v3,
while Y = S∗ \X. Let vi, vj ∈ X, vi 6= vj. Assume that vi, vj are adjacent.
By definition of G[S∗], there exist vertices v′i, v

′
j ∈ Y , both of them adjacent

to at least two of the three vertices of S. Consequently, one of the vertices
of S, say v1, is adjacent to both v′i, v

′
j. Because G has no triangles, v′i 6= v′j,

with v′i, vj not adjacent, vi, v
′
j also not adjacent. Then v1, v

′
j, vj, vi, v

′
i form a

C5, which is impossible. Hence vi, vj can not be adjacent.(Figure 2.3)

vj
v1

v�j

vi

v�i

Figure 2.3: Extension of an independent set

In the sequel, examine Y . First, we show that any vertex vk ∈ Y must be
adjacent to at least two vertices of S. By contrary, suppose that vk is adjacent
solely to one vertex of S, say v3. By definition of G[S∗], there exists some
vertex v′, simultaneously adjacent to v1, v2 and vk, because no biclique of G
contains v3, vk, v1 nor v3, vk, v2. Again, by definition of G[S∗], there exists
some vertex v′′ adjacent to v3, and to v2 or v1. Without loss of generality, let
v′′ be adjacent to v1. Because G has no triangles, v3 and v′ are not adjacent,
and v′′ is also not adjacent to both vk and v′. However, in the latter situation,
v1, v

′′, v3, vk, v
′ form a C5, contrary to the hypothesis. Consequently, vk ∈ Y

indeed implies that vk is adjacent to at least two vertices of S. Finally, let
vl, vt ∈ Y , vl 6= vt. Then one of the vertices of S, say v1, is adjacent to both
vl and vt. Since G has no triangles, vl and vt can not be adjacent. Therefore
G[S∗] is bipartite, with bipartition X ∪ Y .

In the last alternative, S induces a P3. Let v1 and v2 be the adjacent ver-
tices in S. By definition of G[S∗], there exists a vertex v′1 adjacent to both v1

and v3. Similarly, there exists v′2 adjacent to v2 and v3. It follows that either
a triangle or a C5 exist among the vertices v1, v2, v3, v

′
1, v

′
2. Consequently.

G[S∗] can not contain simultaneously v1, v2 and v3, meaning that this case
does not occur (see Figure 2.4 ). The proof is complete.
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v�1
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Figure 2.4: Extension of P3

Conversely, suppose G has an induced triangle, T = {v1, v2, v3}. It is
clear that T is included in the extension of T . Suppose now that G contains
a C5., v1, ..., v5. The extension of S = {v1, v3, v5} contains the induced C5.
In both cases, the extensions are not bipartite graphs.

Lemma 2.2 Let G be a biclique-Helly graph. Then G contains neither tri-
angles nor induced C5’s.

Proof: By hypothesis, G is biclique-Helly. First, we show that G has no
triangles. By contrary, assume that vertices v1, v2, v3 form a triangle and
denote by ei the edge vivi+1(mod 3), 1 ≤ i ≤ 3. There exists some biclique Bi

containing ei, for each i. Then {B1, B2, B3} constitutes a family of distinct
intersecting bicliques. Because G is biclique-Helly, there exists a vertex v
common to B1, B2, B3. Clearly, v 6= v1, v2, v3, as vi /∈ Bj if and only if
j = i + 1(mod 3). Because v ∈ B1, v is adjacent to exactly one between v1

and v2, say adjacent to v1 and not v2. The latter implies v to be adjacent
to v3, because v ∈ B2. Consequently, v, v1, v3 form a triangle, meaning that
v 6∈ B3. That is, G contains no vertex common to B1, B2, B3, contradicting
G to be biclique-Helly.

Next, we show that G has no C5’s. By contrary assume that G does
contain such a cycle. Extend each triple of successive vertices of the cycle to
a biclique. This family is intersecting, so it has a common vertex v. Since
G has no triangles, there is a pair of successive vertices in the cycle that are
not adjacent to v. However, they lie with v in a biclique, a contradiction.
Consequently, G does not contain C5’s.

The main Theorem is the following. It gives a characterization of biclique-
Helly graphs.

Theorem 2.5 A graph G is biclique-Helly if and only if G has no triangles
and each of its extensions has an edge dominator.

Proof: By hypothesis, G is biclique-Helly, then by Lemma 2.2 it follows that
G has no triangles. Our aim is to prove that each non empty extension G[S∗]
contains an edge dominator, for S ⊆ V (G), |S| = 3. Denote by BS the family
of bicliques of G, each of them containing at least two vertices of S. Because
G is biclique-Helly, there exists some vertex v common to all bicliques of BS.
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On the other hand, since by Lemma 2.2, G has neither triangles nor C5’s, we
can apply Lemma 2.1 and conclude that G[S∗] is bipartite. Let X ∪ Y be a
bipartition of it. Because GBS

is a spanning subgraph of G[S∗], we know that
GBS

is bipartite and X ∪ Y a bipartition of it. Without loss of generality,
let v ∈ X. We show that v is adjacent to all vertices of Y . Otherwise, if
w ∈ Y is not adjacent to v, because GBS

has no isolated vertices, there is
an edge e in GBS

incident to w. Clearly, any biclique which contains the
extreme vertices of e does not contain v. The latter implies that v is not
common to all bicliques of BS, a contradiction. Consequently, v is adjacent
to all vertices of Y , meaning that v is an edge dominator of both GBS

and
G[S∗]. The proof of necessity is complete.

Conversely, let G be a graph with no triangles and whose extensions
contain edge dominators. We prove that G is biclique-Helly. Let S ⊆ V (G),
|S| = 3, and BS the collection of bicliques of G, containing at least two of the
the three vertices of S. Let GBS

be the biclique subgraph of G, relative to BS,
and G[S∗] the extension of S. By hypothesis, G[S∗] has an edge dominator
v. It is clear that if G[S∗] is bipartite, then v belongs to every biclique of
GBS

. We show that G[S∗] is bipartite. Suppose it has an induced odd cycle
C2k+1. As v is an edge dominator and G has no triangles, v is alternatively
adjacent to vertices v1, v3,..., v2k+1, forming a triangle, a contradiction. The
case vi = v is similar.

As G[S∗] is bipartite, every biclique of GBS
is also a biclique of G[S∗].

Consequently, v is also contained in every biclique of GBS
. Finally, every

biclique of BS is also a biclique of GBS
. The latter implies that v is common

to all bicliques of BS.
The conclusion is that, for every subset S of three vertices, the family of

bicliques of G having at least two vertices of S contains a common vertex.
By [11], G is biclique-Helly.

An algorithm for recognizing whether or not a given graph is biclique-
Helly follows directly from Theorem 2.5. Let G be a graph

Algorithm 2.1 Biclique-Helly graphs (I) First verify if G has tri-
angles. If positive, answer NO. Otherwise, for each S ⊆ V (G), |S| = 3,
construct S∗ and G[S∗], and check if G[S∗] has an edge dominator. If the
answer is negative for some S, answer NO; otherwise answer YES.

Algorithm. Input: A graph G

• For every S ⊆ V (G), S different from the complement of a P3, S = {x, y, z}

– S? = ∅
– If S is a triangle, answer NO. Complexity O(|V (G)|3)
– Otherwise, if y, z ∈ N(x)

∗ For every k ∈ N(y), if k ∈ N(z)
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· S∗ = S∗ ∪N [k]
∗ S∗ = S∗ ∪N [x] ∪N [z] ∪N [y]. Complexity O(|E(G)|)

– Otherwise, if y, z /∈ N(x) and z, y are not adjacent

∗ For k ∈ N(x)
· If y or z ∈ N(k), S∗ = S∗ ∪N [k]

∗ For k ∈ N(y)
· If z ∈ N(k), S∗ = S∗ ∪N [k]. Complexity O(|E(G)|)

– If S? 6= ∅
∗ If S∗ has not an edge dominator, answer NO. Complexity O(|E(G)|)

• Answer YES

Checking the existence of a triangle has a cost of O(n3) time. Con-
structing G[S∗] and checking the existence of an edge dominator can be
done in O(| E(G) |) time. Then, the Algorithm 2.1 terminates within
O(|V (G)|3|E(G)|) steps.

In the next section we study a variation of clique-Helly graphs, the bichromatic-
Helly graphs.

2.3 Bichromatic-Helly Graphs

In this section, we define a weaker notion of clique-Helly graphs, the
bichromatic-Helly graphs.

Let G be a graph and U ∪W an arbitrary bipartition of its vertices. A
clique C of G is called bichromatic when it contains at least one vertex of
each of the parts U and W . Say that G is bichromatic-Helly (relative to
U,W ) when its bichromatic cliques form a Helly family. Observe that the
bichromatic-Helly property depends strongly on the bipartition U ∪W . In
Figure 2.5 we can see an example: The graph G is bichromatic-Helly relative
to the bipartition U ′ ∪W ′, while G is not bichromatic-Helly relative to the
bipartition U ∪W .

Let T be a triangle of G. The extended triangle of T , denoted by E(T )
is the subgraph of G induced by the vertices which form a triangle with at
least one edge of T . Let G be a graph and U ∪W a bipartition of its vertices.
A vertex v ∈ E(T ) is a relevant vertex of T if it belongs to some bichromatic
clique of G which contains at least one edge of T . The extended relevant
triangle of T , ER(T ), is the subgraph of E(T ) induced by the relevant vertices
of T . In Figure 2.5.d we can see an example of the extended relevant triangle
of v1, v2, v3 relative to U ′, V ′ for the graph G. In 2.5.d, we can see the
extended relevant triangle of v1, v2, v3 relative to U, V for the graph G.

Let G be a graph and let C be the set of cliques of G. For each subset
C ′ ⊆ C, define the clique subgraph GC′ as the subgraph of G formed by the
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vertices and edges of the cliques of the subset C ′ (See an example of G{v1,v2,v2}
in Figure 2.5.f).

We formulate a characterization for bichromatic-Helly graphs, which is
employed in that for biclique-Helly graphs.

The following Lemma is direct, but it is useful in our proof of the next
Theorem.

Lemma 2.3 Let G be a graph and U ∪W a bipartition of its vertices. Let
T be a triangle of G and let C be the set of bichromatic cliques of G having
at least one edge of T . Then, the clique subgraph GC is a spanning subgraph
of the extended relevant triangle ER(T ).

Proof: Let T be a triangle of G. Let C be the subfamily of bichromatic
cliques of G having at least one edge of T and let ER(T ) be the extended
relevant triangle of E(T ). First we prove that the set of vertices of GC is the
same as the set of vertices of ER(T ). Suppose v is a vertex of the clique
subgraph GC. Then v belongs to some bichromatic clique of C and therefore
v is a relevant vertex of the extended triangle E(T ). Conversely, let w be a
vertex of ER(T ).

It follows that w belongs to some bichromatic clique that contains at least
one edge of T . Then, w ∈ V (GC).

Now, let vw be an edge of E(GC). Then, v and w are vertices of ER(T ).
As ER(T ) is an induced subgraph, vw is an edge of ER(T ).
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(b) G is bichromatic Helly relative to
      bipartition U�, W�

(c) G is not bichromatic Helly relative to
     bipartition U, W

(f) Clique subgraph G{v1,v2,v3}

(a) Graph G. Bipartitions  U�, W� and  U,V
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Figure 2.5: Examples
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The following Theorem characterizes bichromatic-Helly graphs for general
bipartitions.

Theorem 2.6 Let G be a graph and U ∪ W a bipartition of its vertices.
Then G is bichromatic-Helly if and only if for every triangle T , ER(T ) has
a universal vertex.

Proof: Let G be a bichromatic-Helly graph and U ∪ W a bipartition of
its vertices. Let T be a triangle of G and ER(T ) its extended relevant
triangle. We will show that ER(T ) has a universal vertex. Let C be the set
of bichromatic cliques of G having at least one edge of T . Observe that the
cliques of C pairwise intersect. By hypothesis, G is bichromatic-Helly. Then,
there exists a vertex v belonging to every clique of C. It follows that v is a
universal vertex of the clique subgraph GC. By Lemma 2.3, GC is a spanning
subgraph of ER(T ), then ER(T ) has a universal vertex.

Conversely, suppose that there exists a subfamily C of bichromatic cliques
which does not verify the Helly property. Consider C ′ = {C1, C2, · · · , Ck} ⊆ C
a minimal not Helly subfamily of C. Clearly k ≥ 3. By the minimality of
C ′, there is a vertex wi which belongs to every bichromatic clique of the
subfamily C ′i = C ′ \ {Ci}. Consider vertices w1, w2 and w3. They induce a
triangle T in G.

Let C ′′ be the subfamily of bichromatic cliques of G that contains at
least one edge of T . Consider the extended relevant triangle ER(T ). By
hypothesis, ER(T ) has a universal vertex v. That means that v belongs to
every bichromatic clique that contains at least one edge of T , i.e., v belongs
to every bichromatic clique of C ′′.

As C ′ ⊆ C ′′, v belongs to every bichromatic clique of C ′.

An algorithm for recognizing whether or not a given graph is bichromatic-
Helly follows directly from Theorem 2.6. Let G be a graph with bipartition
U ∪W .

Algorithm 2.2 Bichromatic-Helly graphs. For every triangle T , con-
struct ER(T ) and check if it has a universal vertex. If the answer is negative
for some T , answer NO; otherwise answer YES.

Construct ER(T ) and checking if it has a universal vertex can be done in
O(| (E(G) |) time. The Algorithm 2.2 terminates within O(|V (G)|3|E(G)|)
steps.

We study the relation between bichromatic-Helly graphs and clique-Helly
graphs. If G is bichromatic-Helly relative to some weak 2-coloring, it is
clear that G is clique-Helly. On the other hand, a clique-Helly graph G is
bichromatic-Helly for every bipartition U ∪W . The converse is given by the
following Theorem.
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Theorem 2.7 G is clique Helly if and only if G is bichromatic-Helly for
every bipartition U ∪W .

Proof: It is clear that if G is clique-Helly, then G is bichromatic-Helly for
every bipartition U ∪W .

Conversely, we prove that every extended triangle of G has a universal
vertex. Let v1, v2, v3 be a triangle and let E(T ) be its extended triangle.
Consider any bipartition U ∪W of G such

1. v1, v2 ∈ U , v3 ∈ W

2. every vertex w ∈ E(T ) which is not adjacent to v3, belongs to W

3. every vertex that is not adjacent to v1, belongs to U

Consider ER(T ) the extended relevant triangle of T , relative to bipar-
tition U ∪ W . It is clear that E(T ) ⊆ ER(T ). Since, by hypothesis, G is
bichromatic-Helly relative to U,W , ER(T ) has a universal vertex. Then, it
follows that E(T ) has a universal vertex and G is clique-Helly.

2.4 Bichromatic-Helly graphs and biclique-

Helly graphs

In this section we formulate another characterization for biclique-Helly
graphs, based on bichromatic-Helly graphs. We want to relate bichromatic
cliques to bicliques. For that purpose, we make the following construction.

Given a graph G, with vertices vi ∈ V (G), denote by H(G) the graph
obtained from G, by the following construction. For each vi ∈ V (G), there is
a pair of distinct vertices ui and wi in H(G). The edges of H(G) are as follows:
ui, uj and wi, wj are adjacent precisely when vi, vj are not, while ui, wj are
adjacent when vi, vj are also adjacent. Denote U = ∪ui and W = ∪wi. The
bipartition U∪W is called the canonical bipartition of H(G). See an example
in Figure 2.6.

The relation between bicliques of a graph G and bichromatic cliques of
H(G) is given by the following Lemma.

Lemma 2.4 Let G be a graph. Then there is a 1-2 correspondence between
the bicliques of G and the bichromatic cliques of H(G). Moreover, the two
cliques of H(G) that correspond to a biclique of G are disjoint.

Proof: Let B = {zi1 , zi2 , ..., zik} ∪ {zi′1 , zi′2 , ..., zi′
k′
} be a biclique of G. Con-

sider the complete subgraph of H induced by {vi1 , vi2 , ..., vik , wi′1 , wi′2 , ..., wi′
k′
}.

We are going to prove that it is a clique. Suppose there is a vertex u of H
adjacent to every vertex of the complete subgraph. Without loss of gener-
ality, we can assume that u ∈ W . Let z be the corresponding vertex of u
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u1 u4u3u2

G

v2

v4

v3 v1

w1 w4w3w2

H(G)

Figure 2.6: Example of H(G)

in G. It follows that z is adjacent to every vertex of the set {zi1 , zi2 , ..., zik},
and not adjacent to every vertex of the set {zi′1 , zi′2 , ..., zi′

k′
}. Hence, B is

not maximal, which is an absurd. Analogously, it can be proved that the
complete subgraph induced by {wi1 , wi2 , ..., wik , vi′1 , vi′2 , ..., vi′

k′
} is a clique of

H. It is clear that both cliques are disjoint.
Finally, let C = {vi1 , vi2 , ..., vik , wi′1 , wi′2 , ..., wi′

k′
} be a bichromatic clique

of H. Observe that ij 6= i′s for all j, s because wk is not adjacent to vk.
Then, the subgraph induced by vertices {zi1 , zi2 , ..., zik} ∪ {zi′1 , zi′2 , ..., zi′

k′
} is

a complete bipartite graph. With similar arguments that before, it can be
proved that it is a biclique.

Based on the relation between bicliques and bichromatic cliques we present
the second characterization for biclique-Helly graphs.

Theorem 2.8 A graph G is biclique-Helly if and only if

1. G contains neither triangles nor induced C5’s.

2. The graph H(G) is bichromatic-Helly, relative to its canonical partition.

Proof: Let G be a graph, and U ∪ W the canonical bipartition of H(G).
Suppose G is biclique-Helly. Then Condition 1 holds because of Lemma 2.2.
The following observation is useful for proving Condition 2.

Remark 2.1 Let ui ∈ U and wi ∈ W be the pair of vertices of H(G),
corresponding to vi ∈ V (G). Then no vertex of H(G) is adjacent to both ui

and wi.

The reason why the above assertion is true is simple. Suppose uj ∈ U is
adjacent to ui ∈ U in H(G). Then vi, vj are not adjacent in G. The latter
implies wi, uj not adjacent in H(G). Similarly, wj ∈ W adjacent to ui implies
wj not adjacent to wi. Consequently, Observation 2.1 is true.

Denote by C a family of intersecting bichromatic cliques of H(G). Let B
be the family of bicliques of G, corresponding to C. Observe that this is a
1-1 correspondence, because the pair of cliques of H(G) which correspond to
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the same biclique of G are disjoint. Since G is biclique-Helly, the bicliques
of G contain a common vertex vi ∈ V (G). Let Bj be the biclique of B
corresponding to the bichromatic clique Cj ∈ C. Because vi ∈ B1, it follows
ui ∈ C1 or wi ∈ C1. Without loss of generality, assume ui ∈ C1. We show
that ui ∈ Cj, also for clique Cj ∈ C, j 6= 1. Suppose the contrary and let
ui 6∈ Cj. Because vi ∈ Bj, it follows wi ∈ Cj. If wi ∈ C1 then ui and wi

must be adjacent, which can not occur. Then ui ∈ C1 \Cj and wi ∈ Cj \C1.
Because C1 and Cj intersect, there must be some vertex of H(G) belonging
to C1 ∩ Cj. Such a vertex would have to be simultaneously adjacent to ui

and wi, which contradicts Observation 2.1. Consequently, Cj contains ui,
implying that H(G) is indeed bichromatic-Helly.

Conversely, by hypothesis Conditions 1 and 2 are true for some graph
G. We show that G is biclique-Helly. Let B be an intersecting family of
bicliques of G. We construct a family C of bichromatic cliques of H(G).
Each Bi ∈ B corresponds in H(G) to a pair of disjoint bichromatic cliques
C ′

i and C ′′
i . We choose Ci ∈ C as to be C ′

i or C ′′
i , according to the following

rule. Arbitrarily, choose C1 = C ′
1. Note that since B1 and Bi intersect, C1

must intersect C ′
i or C ′′

i . Then, for i > 1, if C1 and C ′
i intersect then choose

Ci = C ′
i, and otherwise Ci = C ′′

i . First, we show that C, as above obtained, is
an intersecting family. Let Ci, Cj ∈ C. If i = 1 then C1 intersects any Cj, by
construction. Let i, j 6= 1. Since Bi and Bj intersect there exists vs ∈ Bi∩Bj.
Then Ci contains us or ws. Without loss of generality, let us ∈ Ci. We will
show that us ∈ Cj, meaning that Ci and Cj intersect. Suppose the contrary,
us 6∈ Cj. Then ws ∈ Cj. Consider the following alternatives for locating
C1 ∩ Ci and C1 ∩ Cj.

Case 1: C1 ∩ Ci ∩ U 6= ∅ and C1 ∩ Cj ∩ U 6= ∅
Let ui ∈ C1∩Ci∩U and uj ∈ C1∩Cj∩U . If ui = us then C1 also contains

us, implying that uj is adjacent to us, because us, uj ∈ C1. Since ws ∈ Cj, uj

is also adjacent to ws, contradicting Observation 2.1. Consequently, ui 6= us.
Similarly, uj 6= us. Then ui, uj, us are distinct. Since us, ui ∈ Ci, vs and
vi are not adjacent in G. On the other hand, because ws, uj ∈ Cj, vs and
vj are adjacent. Finally, vi and vj are not adjacent, because ui, uj ∈ C1.
Since vi, vj ∈ B1, there exists vp ∈ B1 adjacent to both vi, vj. If vp, vs are
adjacent then vp, vj, vs form a triangle, which contradicts Condition 1. Then
vp, vs are not adjacent. Because vi, vs ∈ Bi, there exists a vertex vq ∈ Bi,
simultaneously adjacent to vi and vs. We conclude that vq is not adjacent
neither to vp nor vj, otherwise G would contain a triangle. However in this
situation, the vertices vi, vj, vs, vp, vq induce a C5 in G, not possible.

Case 2: C1 ∩ Ci ∩ U 6= ∅ and C1 ∩ Cj ∩W 6= ∅
Let ui ∈ C1 ∩ Ci ∩ U and wj ∈ C1 ∩ Cj ∩ W . Similarly as in Case 1,

we know that vi and vs are not adjacent. Because ws, wj ∈ Cj, vs and vj

are also not adjacent, and ui, wj ∈ C1 implies vi, vj to be adjacent. Since
vs, vi ∈ Bi, there exists some vertex vp ∈ Bi adjacent to vs and vi. We know
that vp, vj are not adjacent, otherwise G would contain a triangle. Also,
because vs, vj ∈ Bj, there exists vq ∈ Bj, adjacent to vs, vj. If vp, vq or vq, vi
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are adjacent then G contains a triangle, otherwise the vertices vi, vj, vs, vp, vq

induce a C5, which is forbidden by Condition 1. Therefore Case 2 can also
not occur.

Case 3: C1 ∩ Ci ∩W 6= ∅ and C1 ∩ Cj ∩ U 6= ∅
With the similar arguments as in Case 1, we conclude that Case 3 can

not occur.
The alternative C1 ∩ Ci ∩W 6= ∅ and C1 ∩ Cj ∩W 6= ∅ is Case 1. The

conclusion is that Ci and Cj intersect, meaning that C is an intersecting
family. By Condition 2, H(G) is bichromatic-Helly. Then H(G) contains a
vertex common to all cliques of C. Such a vertex corresponds in G to a vertex
common to all bicliques of B. Therefore G is biclique-Helly.

An algorithm for recognizing whether or not a given graph is biclique-
Helly follows directly from Theorem 2.8. Let G be a graph.

Algorithm 2.3 Biclique-Helly graphs (II) First verify if G has trian-
gles or C5

′s. Then construct the graph H(G). Run the Algorithm 2.2 for
recognizing bichromatic-Helly graphs applied to the graph H(G).

Constructing the graph H(G) takes O(|V (G)|2) steps. The Algorithm 2.3
terminates within O(|V (G)|5) steps.

2.5 Neighborhood-Helly graphs and other re-

lated classes

In this section we relate biclique-Helly graphs to the classes of clique-
Helly, neighborhood-Helly, both open and closed neighborhoods are consid-
ered, disk-Helly and clique-Helly.

Recall that a graph is neighborhood-Helly (disk-Helly, clique-Helly) when
its family of neighborhoods (disks, cliques, respectively) is Helly. We remark
that the classes of open and closed neighborhood-Helly overlap. Neighbor-
hood Helly graphs appears in the context of retracts, for example [4]. Con-
sider the class of open neighborhood-Helly graphs. We describe a character-
ization of this class of graphs, in terms of extensions. It will be useful for
our purpose of relating it to biclique-Helly graphs. Start with the following
lemma.

Lemma 2.5 Let G be a open neighborhood-Helly graph. Then G has no
triangles.

Proof: Let G be a graph and T be a triangle of G, with vertices v1, v2 and
v3, respectively. Consider the family of neighborhoods W = {N(v1), N(v2),
N(v3)}. Since this family is intersecting, there exists a vertex v4 in G adjacent
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to v1, v2 and v3. Now consider the intersecting family W4 = W ∪ {N(v4)}.
As vj /∈ N(vj), there exists a vertex v5 6= vj, j = {1, 2, 3, 4}, adjacent to
v1, v2, v3 and v4. Following this procedure, we can construct the family
Wi = W ∪{N(vi)} of intersecting neighborhoods and assure the existence of
a vertex vi+1 6= vj, adjacent to vj for 1 ≤ j ≤ i. However, G is finite, leading
to a contradiction. Then G can not have triangles.

Let S be an independent set of G, |S| = 3, and G[S∗] its extension.
Denote by S∗2 ⊆ S∗ the subset of vertices which are adjacent to at least two
vertices of S.

The following Theorem gives a characterization of open neighborhood-
Helly graphs.

Theorem 2.9 A graph G is open neighborhood-Helly if and only if G has
no triangles and for every independent set S, |S| = 3, S∗ contains a vertex
adjacent to all vertices of S∗2 .

Proof: Let S = {v1, v2, v3} be a set of non adjacent vertices and G[S∗] its
extension. Consider the vertices of S∗2 . It is clear that the family of open
neighborhoods of vertices of S∗2 intersect. By hypothesis, there is a vertex w
which belongs to every neighborhood of the family. Then, w is adjacent to
all vertices of S∗2 .

Conversely, let G be a graph satisfying the hypothesis. By contrary,
assume that G is not open neighborhood-Helly. For vi ∈ V (G), denote by Ni

the open neighborhood of vi. Let N = {N1, N2,...,Nl}, l ≥ 3, be a minimal
subfamily of the neighborhoods of G which is not Helly. Then N − Ni is a
Helly family, meaning that it contains a common element wi ∈ Nj, j 6= i.
We claim that vi 6= wj, 1 ≤ i, j ≤ l. Clearly, if i 6= j the claim holds because
wi ∈ Nj and vj /∈ Nj. Examine the alternative vi = wi. It implies that vi is
adjacent to vk for any k 6= i. Since Ni and Nk intersect, there exists a vertex
w which forms a triangle with vi and vk, a contradiction. Consequently,
wi 6= vj. Furthermore, wi, wj must be distinct, for i 6= j. Finally, we assert
that wi, wj are non adjacent. Otherwise, if wi, wj are adjacent, consider any
vk, k 6= i, j. By the above claim, vk 6= wi, wj. Since wi, wj ∈ Nk, it follows
that wi, wj, vk form a triangle, a contradiction. Then S = {w1, w2, w3} is
an independent set. Consider the extension G[S∗], where S = {w1, w2, w3}.
Observe that as every Ni contains at least two of the vertices of S, vi is
adjacent to at least two vertices of S and then belongs to S∗2 . By hypothesis,
there is a vertex w adjacent to every vertex of S∗2 . Then, w belongs to Ni for
1 ≤ i ≤ l, meaning that G is open neighborhood-Helly.

The characterization given by Theorem 2.9 leads to a possibly faster
recognition algorithm than the one resulting by the application of the general
test for Helly families ([10]). Furthermore, the characterization of Theorem
2.9 is also useful for proving relations to other classes of Helly families.
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The following Proposition gives conditions for a graph with induced C6

to be open neighborhood-Helly. It will be useful in the characterization of
Hereditary neighborhood-Helly graphs given in Chapter 3.

Proposition 2.1 Let G be an open neighborhood-Helly graph. If G has C6

as an induced subgraph, then it contains the graph J of Figure 2.7 as induced
subgraph.

v1

v2 v3

v4

v5
v6

v7

v8

J

Figure 2.7: Graph J

Proof: Suppose G has the graph C6 as an induced subgraph. Let v1, v2,
v3, v4, v5 and v6 be the vertices of C6. Consider the neighborhoods N(v1),
N(v3), N(v5). As they have pair intersection, there exists a vertex v8 6= vi, v8

adjacent to vi, for i = 1, 3, 5. Consider now the neighborhoods N(v2), N(v4),
N(v6) and N(v8). As they have pair intersection, there exists a vertex v7 6= vi,
v7 adjacent to vi, for i = 2, 4, 6, 8. By Lemma 2.5, G is has no triangles, then
vertices v1, v2, v3, v4, v5, v6, v7, v8 induce the graph J .

A characterization of closed neighborhood-Helly graphs, restricted to the
triangle-free class, is given in the following Theorem.

Theorem 2.10 Let G be a triangle-free graph. Then G is {C4, C5, C6}−free
if and only if it is closed neighborhood-Helly.

Proof: Let N ′ = {Ni1 , Ni2 , ..., Nis} be a minimal subfamily of closed neigh-
borhoods which does not verify the Helly property. Consider the vertex w1

which belongs to every Nij , j 6= 1 and vertices w2 and w3, w2 ∈ Nij , j 6= 2,
and w3 ∈ Nij , j 6= 3. Is is clear that wij 6= vij , j = 1, 2, 3.

Suppose it is the case that wj = vis for some j, s. Without loss of gen-
erality, suppose w1 = vi2 . It means that vi2 is not adjacent to vi1. Then,
vi1 6= w3. Also, vi2 is adjacent to vi3 and w2 is not adjacent to vi2 . Then,
w1, w2 6= vi3 . As G is C4− free, w2 and w3 are not adjacent. Then vi1 6= w2.
If vi1 is adjacent to vi3 , it forms a C4, otherwise, they induce a C5. Then this
case can not occur.

Now, suppose wj 6= vis for all j, s. As G is C6 − free, the the sets {wj}
and {vis} can not be both independent sets. Suppose w2 is adjacent to w3.
As G is {C5, C4} − free, w1 is adjacent to w2 and w3. Then, these vertices
induce the Hajós graph, contradicting the hypothesis. If vi1 is adjacent to
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vi2 , with the same argument we conclude that these six vertices induce the
Hajós graph. It follows that G is hereditary closed neighbourhood Helly.

Conversely, suppose G has C4 as induced subgraph. Consider N [v1],
N [v2], N [v3] and N [v4]. They have a pairwise intersection. Then there is
a v ∈ N [vi], i=1,...,4., such that among vertices v1, v2, v3, v4, v there is an
induced triangle. Absurd.

Analogously, suppose G has C5 as induced subgraph. Consider N [v1],
N [v2], N [v3], N [v4] and N [v5]. They have a pairwise intersection. Then,
there is a vertex v ∈ N [vi], i=1,...,5. Then, among v1, v2, v3, v4, v5, v there
is an induced triangle. For the graph C6, consider neighborhoods N [v1],
N [v3] and N [v5]. They form an intersecting family. Then, there is a vertex
v ∈ N [vi], i=1,3,5. Then, among vertices v1, v3, v5, v there is an induced
triangle.

We study some relations between biclique- Helly graphs and open neigh-
borhood-Helly graphs. The following results relate both classes of graphs.
For both proofs, we use the characterizations we have presented of the men-
tioned classes.

Theorem 2.11 Let A, B, C and D be the graphs of Figure 6.3. Let G be
a open neighborhood-Helly graph, with no C5’s, and such that every induced
subgraph A of it extends to one of the induced subgraphs B, C or D . Then
G is biclique-Helly.

A

v1

vw2vw1

w1 w2

v2
v2

v
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vw1 vw2
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v1

B C

v

v2
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vw1 vw2

w2

v1

D

v

v2

w1

vw1 vw2

w2

v1

Figure 2.8: Graphs A, B, C and D.

Proof: By Lemma 2.5, G has no triangles. We prove that each non empty
extension has an edge dominator. Let S ⊆ V (G), |S| = 3, and G[S∗] the
extension of S. By Lemma 2.1, G[S∗] is a bipartite graph. In the case where
there are only two vertices of S in S∗, clearly the theorem follows.

Discuss the case where S ⊆ S∗. First, suppose that S is an independent
set. By Theorem 2.9 there exists a vertex v in S∗ adjacent to every vertex of
S∗2 . As G[S∗] is a bipartite graph, it follows that v is an edge dominator of
G[S∗], as required.

Consider the case when the subset S = {v1, v2, v3} induces a P3, with
v1, v2 non adjacent. Let X and Y be the bipartiton of G[S∗], v1, v2 ∈ X.
In the case |X| = 2, it is clear that v3 is an edge dominator of G[S∗]. We
analyze the case |X| ≥ 3. First we prove that the family {N(v), v ∈ X} is
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intersecting. Suppose the contrary. Let w1, w2 be two vertices of X with no
common neighbor. If w1 or w2 coincides with v1 or v2, it follows that there
is a vertex adjacent to v1,v2,w1,w2, implying that w1 and w2 have indeed a
common neighbor. Assume w1, w2 6= v1, v2.

By definition of G[S∗], there exist vertices vw1 , vw2 ∈ Y , vw1 6= vw2 adja-
cent to w1 and w2 respectively, and both adjacent to v1 and v2. As w1 and
w2 have no common neighbor, vertices w1, vw1 , v1, vw2 , v2 induce the graph
A which does not extend to any of the graphs B, C or D, what leads to a
contradiction. Then {N(v), v ∈ X} is an intersecting family. As G is open
neighborhood-Helly, there is a vertex v adjacent to every vertex w ∈ X,
v ∈ S∗. Then, v is an edge dominator in G[S∗]. By Theorem 2.5, G is
biclique-Helly.

Examine the case where S induces the complement of a P3 in G. Similarly
as in Lemma 1, by applying the definition of G[S∗], we conclude that G
contains a triangle or a C5, contradicting the hypothesis. Finally, the case
where S induces a triangle also does not occur, completing the proof.

The converse for a restricted family of graphs is given by the following
Theorem.

Theorem 2.12 Let G be a cube− free graph. If G is biclique-Helly then it
is open neighborhood-Helly.

v1 v3

v2

w3 w1

w2

w

Figure 2.9: The Cube graph

Proof: We prove that for every independent set of three vertices S =
{v1, v2, v3}, its extension G[S∗] has a vertex v adjacent to S∗2 . Recall that as
G is biclique Helly, by Lemma 1, G[S∗] is a bipartite graph. Let X,Y be a bi-
partition of vertices of G[S∗], S ⊆ X. Suppose there is no edge dominator in
X. By Theorem 2.5, since G is biclique-Helly, G[S∗] has an edge dominator
w. Then w ∈ Y . As none of the vertices vi, i = 1, 2, 3 are edge dominators,
there exist distinct vertices w1, w2, w3 ∈ Y with vi adjacent to wj precisely
when i 6= j, for i, j = 1, 2, 3. Then, vertices v1, w3, v2, w1, v3, w2, w induce the
cube graph, absurd. Consequently, G[S∗] has an edge dominator in X. By
Theorem 2.9, G is open neighborhood-Helly.

The relation between closed neighborhood-Helly graphs and biclique-
Helly graphs is given in Chapter 3. We prove that closed neighborhood-Helly
graphs with no triangles are also biclique-Helly.
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Next we relate biclique-Helly graphs, clique-Helly and disk-Helly graphs,
and open and closed neighborhood-Helly graphs.

Proposition 2.2 If G is biclique-Helly or open neighborhood-Helly then G
is clique-Helly

Proof: Biclique-Helly and open neighborhood-Helly graphs do not contain
triangles and so they are clique-Helly.

Proposition 2.3 Let G be a graph with no triangles. Then if G is closed
neighborhood-Helly, then it is open neighborhood-Helly.

Proof: Let W = {N(v1), N(v2), N(v3), ..., N(vk)} be a pair intersecting fami-
ly of open neighborhoods. Consider the family W ′ = {N [v1], N [v2], ..., N [vk]}.
By hypothesis there is a vertex v which belongs to N [vi], for 1 ≤ i ≤ k.
Suppose v = vj for some j, 1 ≤ j ≤ k. Consider a vertex vi, i 6= j.
As N(vi) ∩ N(vj) 6= ∅, there exists a vertex v′ adjacent to vi and vj. As
vj ∈ N(vi), the vertices vi, vj and v′ induce the a triangle which is an ab-
surd. Then, v 6= vj for 1 ≤ j ≤ k. It follows that v belongs to N(vi) for
1 ≤ i ≤ k.

Finally, consider disk-Helly graphs.

Proposition 2.4 Let G be a disk-Helly graph with no triangles. Then G is
biclique-Helly.

Proof: First, we will prove that if G is disk-Helly and has no triangles, then
it is C5 − free. By contrary assume that the vertices v1, . . . , v5 form a C5.
Consider the disks D1(v2), D1(v3) and D1(v5). Since these disks are a Helly
family, there is a vertex v adjacent to v2, v3, v5. Then v forms a triangle
with v2 and v3, contradicting the hypothesis. Now we will prove that the
family of bicliques of G is Helly. Let B = {B1, . . . , Bk} be an intersecting
family of bicliques. For each vertex v of each biclique Bj of B, consider the
disk D2(v). Observe that if v ∈ Bj, the vertices of Bj are included in the
set of vertices of D2(v). Consequently, the family of disks {D2(v)/v ∈ ∪k

1Bj}
is also intersecting. As G is disk-Helly, there is a vertex z which belongs
to every D2(v). We are going to prove that z belongs to every biclique Bi

of B. Let Xi, Yi be the bipartition of the vertices of Bi into independent
sets. Suppose z does not belong to Bi. As G has no triangles, z can not
be adjacent simultaneously to a vertex of Xi and a vertex of Yi. Then, we
can assume that Xi ∪ {z} is an independent set. Then there is a vertex
w ∈ Yi which is not adjacent to z. As z ∈ D2(w), there exists a vertex z′

adjacent to z and w. Let v be a vertex of Xi. If z′ is adjacent to v then
z′, v, w forms a triangle contradicting the hypothesis. As z ∈ D2(v), there is
a vertex z′′ adjacent to z and v. It follows that vertices v, w, z′, z, z′′ induce
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Figure 2.10: Intersections between clique-Helly, biclique-Helly, open
neghborhood-Helly, closed neighborhood-Helly and disk-Helly graphs.

a C5 or contain a triangle as an induced subgraph which is an absurd. Then,
z belongs to Bi for 1 ≤ j ≤ k.

It is clear that disk-Helly graphs are closed neighborhood-Helly graphs.
The result of Theorem 2.4 can be obtained as a corollary of Theorem 3.5

of Chapter 3, which relates closed neighborhood-Helly graphs, triangle-free,
with biclique-Helly graphs.

In Figure 2.10 the relations between the classes we have studied in this
Chapter are shown. The empty intersections follows directly from the results
we have proved, considering that open neighborhood-Helly and a biclique-
Helly graphs have no triangles.
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Chapter 3

Helly hereditary classes

3.1 Introduction

In Chapter 2 we have studied Helly families of a graph. A question
would be to characterize graphs for which the Helly property is preserved
for every induced subgraph. Considering the graphs of Chapter 2, we refer
to hereditary classes of clique-Helly, biclique-Helly, neighborhood-Helly and
disk-Helly graphs. Hereditary clique-Helly graphs have been characterized in
[46], while [22] (c.f. [16]) contains a characterization of hereditary disk-Helly
graphs. In this Chapter, we describe forbidden subgraph characterizations
for the classes of hereditary biclique-Helly and hereditary neighborhood-Helly
graphs. Both open and closed neighborhoods are considered. All graphs in
these forbidden families are of fixed size. In fact they have at most 8 vertices.
Consequently, the characterizations imply polynomial time recognition for
hereditary biclique-Helly, hereditary open neighborhood-Helly and hereditary
closed neighborhood-Helly graphs.

A graph G is hereditary clique-Helly when every of its induced subgraphs
is clique-Helly. Similarly, define hereditary biclique-Helly, hereditary open
neighborhood-Helly and hereditary closed neighborhood Helly. See examples
in Figure 3.1.

Hereditary clique-helly

Hereditary biclique-helly

Hereditary open neighborhood-helly

Hereditary close neighborhood-helly

Figure 3.1: Examples of Hereditary biclique-Helly, and (open and closed)
neighborhood-Helly graphs

33
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Hereditary clique-Helly graphs have been characterized as follows.

Theorem 3.1 [46]: A graph G is hereditary clique-Helly if and only if it
does not contain as induced subgraphs neither the Hajós graph, neither any
k-extended Hajós graph, k=1,2,3.

Figure 3.2: The Hajós graph

Proof: Suppose H is not a clique-Helly subgraph of G. Let C = {C1, ..., Ck}
be a minimal family of intersecting cliques of H without common intersection
in H. Observe that k ≥ 3. Consider C \ {C1}. There is a vertex v1 in every
clique Ci, for i 6= 1. Analogously, there are vertices v2, and v3 such that
vj ∈ Vi for every i 6= j, j = 2, 3.

It is clear that vertices v1, v2, v3 induce a triangle of H. As v1 does not
belong to C1, there is a vertex w1 in C1 not adjacent to v1 but adjacent to v2

and v3. Analogously, there exist vertices w2, w3, w2 not adjacent to v2 and
adjacent to v1 and v3, and w3 not adjacent to v3, adjacent to v1 and v2. It
follows that among vertices v1, v2, v3, w1, w2, w3, there is an induced graph of
Figure 3.2.

For the converse, it is clear that none of the forbidden subgraphs are
clique Helly.

The following is a characterization for hereditary disk-Helly graphs.

Theorem 3.2 [22]: A graph G is hereditary disk-Helly if and only if it is
chordal and does not contain the Hajós graph as induced subgraph.

Proof: If G is disk-Helly, by Theorem 2.4 it is clique Helly. Then if G is
hereditary disk-Helly, it is hereditary clique-Helly and, by Theorem 3.1 G
does not contains the Hajós graph as an induced subgraph. It is easy to
prove that Ck is not disk-Helly, for k ≥ 4. Consider the family of disks
D1 = {D|(k−1)|/2} if k is odd and D2 = {D|(k−2)|/2} if k is even. Both are
intersecting families without a common vertex. Then G is chordal.

Conversely, let H be a minimal subgraph that is not disk-Helly. If it is not
disk-Helly, as G has neither C4 nor the Hajos graph as induced subgraphs,
by Theorem 3.1, H is clique Helly. By Theorem 2.4, it follows that H is not
dismantable. This means that H has not dominated vertices which implies
that H has no simplicial vertices. Since chordal graphs are have simplicial
vertices, H can not be cordal, leading to an absurd. [20].
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In Section 2, we describe a characterization for hereditary biclique-Helly
graphs while the proposed characterizations for hereditary open and closed
neighborhood-Helly graphs are in Section 3. Relations among these classes
are formulated in Section 4.

3.2 Hereditary biclique-Helly graphs

In this Section, we describe a characterization by a finite family of forbid-
den subgraphs for the class of hereditary biclique-Helly graphs. Recall the
following definitions.

Let S ⊆ V (G), |S| = 3. Denote by BS the family of bicliques of G, each
of them containing at least two vertices of S. Consider the graph GBS

and
denote its vertex set by S∗ ⊆ V (G). The induced subgraph G[S∗] is extension
of S. Clearly, GBS

is a spanning subgraph of G[S∗]. The lemma below is
useful. Recall that we proved in Chapter 2 that if G is a graph with neither
triangles nor C5’s, then each of its extensions is a bipartite graph (Lemma
2.1).

The characterization of hereditary biclique-Helly graphs is next formu-
lated in the following Theorem.

Theorem 3.3 A graph G is hereditary biclique-Helly if an only if it does not
contain any of the graphs of Figure 3.3, as induced subgraphs.
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v4 w1w3
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v4 w1w3

w2 w4v1
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v4 w1w3

w2 w4v1

v2

v1

v2 v3

v5

v4

v6

C6

v1

v2

v3

v4v5

Q1 Q3Q2

Figure 3.3: Graphs T , C5, C6, Q1, Q2 and Q3

Proof: To prove that the graphs of Figure 3.3 are not biclique-Helly, we show
a pairwise intersecting family B of bicliques with no common vertex, in each
case. For the triangle, B = {{v1, v2}, {v1, v3},{v2, v3}} and B = {{v1, v2, v3},
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{v3, v4, v5}, {v1, v2, v5}} for the C5. For the C6, the family is B = {{v1, v2, v3}
, {v3, v4, v5}, {v1, v5, v6}}. Finally, for the graphs Q1, Q2 and Q3, B = {{v1,
w2, v3, v4}, {v2, v3, v4, w1},{v3, w4, v1, v2}, {v1, v2, v4, w3}}.

Conversely, let G be a graph which does not contain any of the graphs
of Figure 3.3, as an induced subgraph. Suppose it is not hereditary biclique-
Helly. Let H be an induced subgraph which is not biclique-Helly, and B a
non Helly family of bicliques of H. We can choose B = {B1, . . . , Bk} as a
minimal such family. Clearly, k ≥ 3. As for every i, B \Bi is a Helly family,
there exists a vertex vi which belongs to Bj and not to Bi, for all j 6= i. Let
S = {v1, . . . , vk} be the collection of such vertices. Write αS = α(H[S]).

First, we show that αS ≤ 2. By contrary, suppose that {v1, v2, v3} ⊆ S
is an independent set of H. Since H has no triangles and vi 6∈ Bi, there
exists a vertex wi ∈ Bi adjacent to vj and not to vi, for j 6= i and 1 ≤
i ≤ 3. Then, {w1, w2, w3} is also an independent set. In the latter situation,
{v1, w2, v3, w1, v2, w3} induces a C6, which is forbidden. Consequently, indeed
αS ≤ 2. See Figure 3.4.

v2

w1

w2

w3

v1

v3

Figure 3.4: C6 induced by {v1, w2, v3, w1, v2, w3}

In the sequel, we discuss the possible values k can assume.
Let k ≥ 5. Denote S ′ = {v1, v2, v3, v4}. Clearly, S ′ ⊆ B5. For this reason

and considering that αS ≤ 2, we know that S ′ induces a C4 in H. Let v1v3

and v2v4 be the non adjacent pairs in S ′. Again, because αS ≤ 2, v5 must be
adjacent to at least one vertex of S ′, say adjacent to v1. Because H has no
triangles, v5 can not be adjacent to v2, nor to v4. However, in this situation,
{v2, v4, v5} is an independent set of size 3, a contradiction. Consequently,
k < 5.

Next, discuss the case k = 4. Let S ′ = {v1, v2, v3} ⊆ S. Since S ′ ⊆ B4

and αS ≤ 2, S ′ induces a P3 in H. Let v1 and v2 be the non adjacent vertices
in S ′. As v1, v2, v4 ∈ B3 and αS ≤ 2, it follows that S must induce a C4

in H. On the other hand, because vi 6∈ Bi and vj ∈ Bi for j 6= i, each Bi

has an additional vertex wi ∈ Bi, 1 ≤ i ≤ 4 with the following properties:
because v1 6∈ B1 and H has no triangles, w1 is adjacent to v2 and not adjacent
to v1, v3, v4. Similarly, w2 is adjacent to v1, and not to v2, v3, v4, and w3 is
adjacent to v4 and not v1, v2, v3, while w4 is adjacent to v3 and not v1, v2, v4.
See Figure 3.5.

Examine the possible adjacencies among the wi’s. If w1w2 or w3w4 are
adjacent then H contains a C5, forbidden. So, assume these pairs are not
adjacent. Let W = {w1w3, w1w4, w2w3, w2w4} be the set of the other possible
pairs of wi’s and denote W ′ = {v1, w1, v2, w2, v3, w3, v4, w4}. If none of the
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Figure 3.5: Case k = 4

pairs of W is adjacent then W ′ induces the graph Q1. When exactly one of
the pairs of W is adjacent then W ′ forms the graph Q2. When precisely the
pairs w1w3 and w2w4, or w1w4 and w2w3 are adjacent then W ′ induces Q3.
Finally, when at least w1w3 and w1w4, or w2w3 and w2w4 are adjacent then
a C6 exists. Consequently, k = 4 is not possible.

Next, consider the case k = 3, and let S = {v1, v2, v3}. Denote by
BS the subset of bicliques of H containing at least two vertices of S. Then
{B1, B2, B3} ⊆ BS. Discuss the possibilities for S. Clearly, S is not a triangle.
Since αS ≤ 2, S is also not an independent set. Suppose S induces a P3, with
v1, v2, adjacent. As v2, v3 ∈ B1, there is a vertex w1 ∈ B1 adjacent to v2 and
v3. Similarly, there exists w2 ∈ B2, with w2 adjacent to v1 and v3. In this
case, either a triangle is formed or {v1, v2, w1, v3, w2} induces a C5, which is
forbidden.

Examine the remaining alternative, that is S induces a P3. By Lemma
1, H[S∗] is bipartite. Let X ∪ Y be a bipartition of it. Let v1, v3 be the non
adjacent pair of vertices of S. Let v1, v3 ∈ X and v2 ∈ Y . Because vi 6∈ Bi

and vj ∈ Bi, for j 6= i, there is a vertex wi ∈ Bi, wi 6= vj, i, j = 1, 3, such
that w1 ∈ Y is adjacent to v3 and not adjacent to v1 and v2, while the vertex
w3 ∈ Y is adjacent to v1 and not to v3 and v2. Also, as B2 is a biclique,
there exists some vertex w2 ∈ Y adjacent to v1 and v3. Because v2 6∈ B2,
there is also a vertex w′

2 ∈ X ∩ B2 which is adjacent to w2 and not to v2.
Since {B1, B2, B3} is not a Helly family, w2 is not common to these three
bicliques. Without loss of generality, assume w2 /∈ B3. Then there exists a
vertex w′

3 ∈ X which belongs to B3, w′
3 adjacent to v2 and w3, and not to

w2. See Figure 3.6.

v3 w1

w3 w2 w� 2v1

v2w�3

Figure 3.6: Case k = 3

Let W ′ = {v1, v2, v3, w1, w2, w
′
2, w3, w

′
3} and W = {w1w

′
2, w1w

′
3, w3w

′
2}. If

none of the pairs of vertices of W are adjacent then W ′ induces the graph
Q2. Otherwise, if w1w

′
2 is the only adjacent pair of W then W ′ induces Q3.
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In the remaining alternatives, a C6 exists among the vertices of W ′. All cases
lead to forbidden subgraphs.

Consequently, k = 3 is also not possible. However, k ≥ 3. This contra-
diction completes the proof.

The characterization given in Theorem 3.3 leads to a polynomial time
recognition algorithm which consist of checking if the graph G has any of the
forbidden subgraphs.

We remark that, as bipartite hereditary biclique-Helly graphs does not
contain the graph C6 as induced subgraph, ( i.e., the the cocktail party CP3

of order 3), the number of bicliques is at most (| V1 || V2 |)2, according to
Theorem 1.3.

3.3 Hereditary open and closed neighborhood

Helly graphs

In this Section we study the Helly property relative to the family of open
and closed neighborhoods in every subgraph. We describe below characteri-
zations for hereditary open and closed neighborhood-Helly graphs.

Theorem 3.4 Let G be a graph. Then G is hereditary open neighbourhood-
Helly if and only if G does not contain C6 nor triangles as induced subgraphs.

Proof: Let G be a hereditary open neighborhood-Helly graph. Clearly, any
subset {v1, v2, v3} ⊆ V (G) does not induce a triangle in G, otherwise N(v1),
N(v2), N(v3) pairwise intersect, but there is no common vertex. Suppose
G contains a C6. Let v1, v2, v3, v4, v5, v6 be the ordering of the vertices in
this cycle. Since N(v1), N(v3), N(v5) also pairwise intersect with no common
vertex, we conclude that G neither contains a C6.

Conversely, assume the theorem is not true. Then G contains an induced
subgraph H which is not open neighborhood-Helly. Consider a minimal
family N = {N(v1), N(v2), ..., N(vl)} of intersecting neighborhoods with no
common vertex in H. Then l ≥ 3. Because of the minimality, there is a
vertex wi ∈ N(vj) precisely when i 6= j, for all 1 ≤ i ≤ l. Since vi /∈ N(vi),
we conclude that wi 6= vj, for all i 6= j. Moreover, we show that wi 6= vi

for all i. By contrary, let wi = vi. Then, vi and vj are adjacent. On the
other hand, since N(vi) and N(vj) intersect, there is a vertex w which forms
a triangle with vi and vj, which is forbidden by hypothesis. Consequently,
wi 6= vj, for 1 ≤ i, j ≤ l. We claim that w1, ..., wl form an independent
set in G. The latter is true because, if wi, wj are adjacent, the fact that
wi, wj ∈ N(vk), for k 6= i, j, implies that wi, wj, vk form a triangle of G,
contradicting the hypothesis. Similarly, v1, ..., vl also form an independent
set, otherwise vi ∈ N(vj) implies that vi, vj, wk, k 6= i, j form a triangle. In
this situation, wi, wj, wk, vi, vj, vk induce a C6 in G, impossible. The proof is
complete.
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As a corollary of the Theorem 3.4, we can relate open neighborhood-Helly
graphs with hereditary open neighborhood-Helly.

Next we consider the closed neighborhood-Helly class. We give a charac-
terization of hereditary closed neighborhood-Helly graphs in terms of forbid-
den subgraphs.

Theorem 3.5 A graph G is hereditary closed neighborhood-Helly if and only
if it does not contain C4, C5, C6 nor the Hajós graph as induced subgraphs.

Proof: Suppose G contains the Hajós graph H. The family of the closed
neighborhoods of the three vertices with degree two in H is intersecting
and has no common vertex. Consequently, G can not contain the Hajós
graph. Suppose G contains a C4. The family of closed neighborhoods of
its four vertices is intersecting and has no common vertex in its induced
subgraph. Therefore, no C4

′s can exist. Similarly, the families of the closed
neighborhoods of three vertices in a C5, two of them non adjacent, and the
closed neighborhoods of the three mutually non adjacent vertices in a C6,
are both intersecting and have no common vertex. Consequently, G does not
contain neither C5 nor C6.

Conversely, by hypothesis G contains neither the Hajós graph, nor any of
C4, C5,C6 as induced subgraphs. By contrary, assume that G is not hereditary
closed neighborhood-Helly. Then G contains an induced subgraph H which
is not closed neighborhood-Helly. Let N = {N [v1], N [v2], ..., N [vl]} be a
minimal such intersecting family of H with no common vertex. Clearly,
l ≥ 3. By the minimality of l, there exist vertices wi, such that wi ∈ N [vj],
exactly for i 6= j. Compare wi and vj. It is clear, vi 6= wi. Suppose wi = vj,
for some i, j. Without loss of generality, let w1 = v2. Then, v1, v2 are not
adjacent, which implies v1 6= w3. The latter means that w1, w2 6= v3. In
this situation, if v1, v3 are adjacent, the vertices w1, w3, v1, v3 induce a C4,
forbidden. Consequently, v1, v3 are not adjacent. Examine vertex w2. It
follows that when w2, w3 are adjacent, the vertices w1, w2, w3, v3 induce a C4,
and otherwise w1, w2, w3, v1, v3 induce a C5 in G. Hence, this assumption
cannot occur. Finally, assume wi 6= vj, for all i, j. Since G does not contain
a C6, {v1, v2, v3} and {w1, w2, w3} can not be both independent sets. Suppose
w2, w3 are adjacent. Since G does not contain neither C4 nor C5, we conclude
that w1 must be adjacent to both w2, w3. In this situation, if {v1, v2, v3} is an
independent set, w1, w2, w3, v1, v2, v3 induce the Hajós graph, otherwise, they
induce a C4. In any alternative, a forbidden subgraph arises. The alternative
v2, v3 to be adjacent instead of w2, w3, is similar, terminating the proof.

3.4 Relations among the hereditary classes

In this Section we relate the classes of hereditary biclique-Helly graphs,
neighborhood-Helly graphs, both open and closed, hereditary disk-Helly and
hereditary clique-Helly graphs.



CHAPTER 3. HELLY HEREDITARY CLASSES 40

We obtain two corollaries of the characterizations formulated in the pre-
vious Section.

The corollary below relates hereditary open neighborhood-Helly graphs
to the open neighborhood-Helly graphs. It is a consequence of Theorem 3.4
and Lemma 2.5.

Corollary 3.1 A graph is hereditary open neighborhood-Helly if and only if
it is open neighborhood-Helly and has no induced subgraph isomorphic to the
graph J of Figure 2.7.

Proof: By Lemma 2.5 and Proposition 2.1, G is C6 − free and has no
triangles. Then, by Theorem 3.4 G is hereditary open neighborhood-Helly.
Conversely, if G is hereditary open neighborhood-Helly, it contains no C6

and hence, no subgraph isomorphic to J .

The next Corollary relates hereditary closed neighborhood-Helly graphs
to closed neighborhood-Helly graphs. It is a direct consequence of Theorem
3.2.

Corollary 3.2 Let G be a closed neighborhood-Helly graph, with no trian-
gles. Then G is hereditary closed neighborhood-Helly.

Next, we relate open neighborhood-Helly graphs to hereditary closed
neighborhood-Helly graphs.

Proposition 3.1 Let G be a graph with no triangles, C4
′s, nor C5

′s. Then
if G is open neighborhood-Helly, it is hereditary closed neighborhood-Helly.

Proof: As G is C4 − free and has no triangles, it is J − free. By Theorem
2.1, G is C6 − free. By Theorem 3.5 it follows that is hereditary closed
neighbourhood-Helly.

The following Theorem relates hereditary closed neighborhood-Helly graph
to hereditary biclique-Helly graphs.

Theorem 3.6 Let G be a hereditary closed neighborhood-Helly graph with
no triangles. Then G is hereditary biclique-Helly.

Proof: By Theorem 3.5, if G is hereditary closed neighborhood-Helly and
has no triangles, then it is {C4, C5, C6} − free. Then, by Theorem 3.3 it is
hereditary biclique-Helly. Observe that in the proof of this Theorem, every
biclique is in fact a closed neighborhood.

The converse is not true. For example, the graph C4 is hereditary biclique-
Helly but it is not closed neighborhood-Helly. (See Figure 3.7)
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Corollary 3.3 Let G be a C4 − free graph. Then G is hereditary closed
neighborhood-Helly and triangle-free if and only if it is hereditary biclique-
Helly.

Proof: If G is C4−free, has no triangles and hereditary closed neighborhood-
Helly, by Theorem 3.5 it is also {C5, C6}-free. By Theorem 3.3 we conclude
G is hereditary biclique-Helly.

Conversely, if G is C4 − free and hereditary biclique-Helly, according to
Theorem 3.3 it is {C5, C6}-free and Hajós-free. From Theorem 3.5 it follows
that G is hereditary closed neighborhood-Helly.

Corollary 3.4 Let G be a open neighborhood-Helly graph with no triangles,
C4

′s, nor C5
′s. Then:

1. G is hereditary open neighborhood-Helly.

2. G is hereditary closed neighborhood-Helly.

3. G is hereditary biclique-Helly.

Proof: 1) As G has no C4
′s, it is J − free. By Corollary 3.1 and Theorem

3.4, G is hereditary open neighborhood-Helly.
2) It follows from Proposition 3.1.
3) It follows from Theorem 3.6

As a consequence of the results presented, we obtain the following re-
lations between closed neighborhood-Helly graphs and hereditary biclique-
Helly, hereditary open neighbourhood-helly and hereditary clique-Helly graphs
graphs.

Corollary 3.5 If G is closed neighborhood-Helly with no triangles, then it
is hereditary biclique-Helly, hereditary open neighborhood-Helly, hereditary
closed neighbourhood-Helly and hereditary clique-Helly.

Finally we can also conclude:

Corollary 3.6 Let G be a bipartite C4 − free graph, then it is equivalent:

1. G is closed neighborhood-Helly

2. G is open neighborhood-Helly

3. G is hereditary open neighborhood-Helly.

4. G is hereditary closed neighborhood-Helly.
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Proof: 1) =⇒ 2) As G is a bipartite graph, it has no triangles. By
Proposition2.3, G is open neighborhood-Helly.

2) =⇒ 3) If G is C4−free, it is J−free (Figure 2.7), then, by Corollary
3.1, it is hereditary open neighborhood-Helly.

3) =⇒ 4) It follows directly from Proposition3.1.
4) =⇒ 1) It follows directly.

Corollary 3.7 Let G be a graph with girth at least 7. Then G is heredi-
tary biclique-Helly, hereditary open neighborhood-Helly and hereditary closed
neighborhood-Helly.

The following two results about hereditary disk-Helly graphs are direct.

Corollary 3.8 If G hereditary disk-Helly, then it is hereditary clique-Helly
and hereditary closed neighborhood-Helly.

Corollary 3.9 If G is hereditary disk-Helly, with no triangles, then it is
hereditary biclique-Helly and consequently, hereditary open neighborhood-Helly.

Figure 3.7 shows the relations between the mentioned hereditary classes.
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Figure 3.7: Relations between hereditary classes
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Chapter 4

Biclique matrices and
bipartite-conformal
hypergraphs

4.1 Introduction

In this Chapter we give a characterization for biclique matrices, in similar
terms as those employed in the characterization of clique matrices. The
special case of biclique matrices of bipartite graphs is also considered. In the
characterizations, we employ the concept of bipartite-conformal.

Clique matrices of a graph have been characterized by Gilmore in 1960,
and have been employed in different contexts. For example, in the character-
izations of interval graphs [28], Helly circular-arc graphs [26] and self-clique
graphs [12, 36], as well as in different covering problems involving cliques.

Motivated by the above concept, we consider biclique matrices of a graph.
We describe a characterization for such matrices, in similar terms as those
used in the characterization of clique matrices. Biclique matrices can be em-
ployed, for instance in covering problems involving bicliques. Such problems
have been considered, among others, by [3, 53]. We recall that we use biclique
matrices for characterizing biclique graphs.

Denote by H a hypergraph, with vertex set V (H) and hyperedge set
E(H). Write V (H) = {v1, . . . , vn} and E(H) = {E1, . . . , Em}. The 2-section
of a hypergraph H is a graph G2, where V (G2) = V (H) and such that
there is an edge vivj ∈ E(G2) precisely when there exists some hyperedge
Ek ⊇ {vi, vj}, for all 1 ≤ i 6= j ≤ n. Say that H is conformal when each
clique of G2 is contained in some hyperedge of H. Say that H is Helly when
every subfamily of intersecting hyperedges contains a common vertex. Given
a {0, 1}-matrix A, with n columns and m rows, the associated hypergraph
H of A is a hypergraph with n vertices and m hyperedges such that vertex
vi ∈ V (H) belongs to hyperedge Ej if and only if aij = 1.

The characterization given by Gilmore (c.f. Berge [10]).of clique matrices

45
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can be formulated in terms of the above concepts, applied to {0, 1}-matrices.

Theorem 4.1 ([28]): Let A be a {0, 1}-matrix and H its associated hyper-
graph. Then A is a clique matrix of some graph if and only if

(i) each row of A has at least one 1,

(ii) A has no included rows, and

(iii) H is conformal.

We recall some concepts we use during this Chapter. A bicoloring of G
is a bipartition of the vertices of G into subsets V1, V2. A clique of G is
bichromatic relative to a bicoloring V1, V2 if it contains at least a vertex of
V1 and a vertex of V2. A weak 2-coloring of G is a bicoloring V1, V2 such that
every clique of G is bichromatic, relative to V1, V2.

Recall that, if G has c cliques {C1, . . . , Cc} then the clique matrix of G
is the c × n {0, 1}-matrix A, where aki = 1 if and only if vi ∈ Ck. Finally,
when G has d bicliques B1, . . . , Bd ⊆ V (G), the biclique matrix of G is the
d× n {0, 1,−1}-matrix A, where aki = −akj 6= 0, precisely when vi, vj ∈ Bk

and vi, vj are adjacent, for all 1 ≤ k ≤ n and 1 ≤ i 6= j ≤ n.
In Section 2, we describe the proposed characterization for biclique ma-

trices. The special case of biclique matrices of bipartite graphs is considered
in Section 3. In Section 4 we characterize the class of bipartite-conformal
hypergraphs whith compatible bicoloring, which is useful for our purposes.
Section 5 contains algorithms for recognizing biclique matrices and bipartite-
conformal hypergraphs.

4.2 Characterization of a biclique matrix

In this section, we give a characterization of biclique matrices of a graph.
We employ the following concepts.
Let H be a hypergraph in which there is a bicoloring C of the occurrances

of each vertex in the hyperedges of H, using the colors white and black.
That is, if vertex v belongs to hyperedges E1, ..., Ek, then v is assigned a
color in each of these hyperedges, and these colors are independent. Define a
bicoloring of the edges of the 2-section G2 of H as follows. Each vivj ∈ E(G2)
is black when there exists some edge Ek ⊇ {vi, vj}, where vi and vj have
different colors in Ek; otherwise vivj is white. Define the black section of H,
as the subgraph Gb of G2, containing exactly the black edges of G2. Say
that H is bipartite-conformal, relative to C, when each biclique B of Gb is
contained in some hyperedge of H. That is, there is a hyperedge Ek such
that vivj is an edge of B precisely when vi, vj have different colors in Ek.
When every two vertices contained in a hyperedge of H with the same color
are not adjacent in Gb , we say that C is a compatible bicoloring.
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(a)

A1 =




v1 v2

1 0
0 1

−1 0

w1 w2 w3 w4

0 −1 −1 −1
−1 −1 −1 0

0 1 0 1




A2 =




v1 v2

1 0
0 1
1 1

w1 w2 w3 w4

0 −1 −1 −1
−1 −1 −1 0

0 −1 −1 0




(b)
w1 w2

v1 v2

w3 w4

2-section of H2 G: Black section

v1 v2

w1 w2 w3 w4

Figure 4.1: {0, 1,−1}-matrices and the graph G

Given a m × n {0, 1,−1}-matrix A, the associated hypergraph H of A is
the hypergraph having one vertex vi for each column i and one hyperedge
Ek for each row k of A, such that vi ∈ Ek precisely when aki 6= 0. Define
a special bicoloring of occurrances of each vertex in the hyperedges of H as
follows: vertex vi ∈ V (H) is white in Ek when aki = 1 and vi is black in Ek

when aki = −1. When vi 6∈ Ek then vi is uncolored for Ek. Such a bicoloring
is called the canonical bicoloring of H.

Let A,A′ be {0, 1,−1}-matrices. Denote by Ak the vector consisting of
row k of A. Say that row k is included in row l, when aki = 1 implies a′li = 1
and aki = −1 implies ali = −1, for all 1 ≤ i ≤ n, where A′

l = Al or A′
l = −Al.

In general, say that A,A′ are row-similar when Ak = A′
k or Ak = −A′

k, for
all 1 ≤ k ≤ m.

Figure 4.1(a) illustrates an example of a {0, 1,−1}-matrix with included
rows. The last row of A1 is included in the first row. The hypergraphs
H1, H2, associated to the matrices A1 and A2 respectively, have as ver-
tex sets V (H1) = V (H2) = {v1, v2, w1, w2, w3, w4}, and hyperedges H1 =
{E1, E2, E3}, H2 = {E1, E2, E

′
3}, where E1 = {v1, w2, w3, w4}, E2 = {v2, w1,

w2, w3}, E3 = {v1, v2, w2, w3} and E ′
3 = {v1, w2, w4}. Finally, in Figure 4.1(b)

we show that the black section G of both hypergrahs H1 and H2 coincides.
Observe that H1 is not bipartite-conformal, while A2 is a biclique matrix of
G.

Remark that whenever A,A′ are two row-similar matrices then the 2-
sections G2, G

′
2 of their corresponding associated hypergraphs are isomorphic.
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Moreover, if e ∈ E(G2) and e′ ∈ E(G′
2) are two corresponding edges in

the isomorphism G2
∼= G′

2 then they have identical colors in the respective
canonical bicolorings.

The following Theorem is the main result of this Chapter. It characterizes
biclique matrices of graphs.

Theorem 4.2 : Let A be a m × n {0, 1,−1}-matrix, and H its associated
hypergraph. Then A is a biclique matrix of some graph if and only if

(i) each row of A has at least one 1 and at least one -1,

(ii) A has no included rows,

(iii) A does not contain as a submatrix, neither M1, nor M2, nor any matrix
row-similar to M1 or M2, and

M1 =

(
1 1
1 −1

)
M2 =

(
1 −1
1 1

)

(a) Matrix M1 (b) Matrix M2

Figure 4.2: Matrices M1, M2

(iv) H is bipartite-conformal, relative to its canonical bicoloring.

Proof: By hypothesis, A is a biclique matrix of some graph G. Let V (G) =
{v1, . . . , vn}, and denote its bicliques by B1, . . . , Bm ⊆ V (G). We know
that aki = −akj 6= 0, precisely when vi, vj are adjacent and belong to Bk.
By definition, there is at least one edge vivj in biclique Bk. In this case,
aki = −akj 6= 0, meaning that row k has at least one 1 and one -1. Then (i)
holds. Next, observe that A is a biclique matrix of some graph if and only if
any of the matrices row-similar to A are so. Consequently, row k can not be
included in any other row, otherwise Bk would not be maximal. Hence (ii)
holds.

For (iii), assume that A contains M1 as a submatrix. Let k, l and i, j be
the pairs of rows and columns of A, respectively, which contain M1. Then
row k implies that vi, vj are not adjacent, while row l implies that they
are adjacent, impossible. The cases of the remaining forbidden matrices are
similar.

Next, examine (iv). Let Bk be a biclique of G, with bipartition V1 ∪V2 =
Bk. Then row k of A has entries

aki =





0, if vi 6= Bk

1, if vi ∈ V1

−1, if vi ∈ V2,
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for all 1 ≤ i ≤ n, where the choice of V1, V2 is arbitrary. By the con-
struction of the associated hypergraph H, the hyperedge Ek ∈ E(H) con-
tains all vertices vi, such that aki 6= 0. Then Ek ⊇ Bk. Let G2 be the
2-section of H and Gb its black section. We show that G = Gb. Clearly,
V (Gb) = V (G) = {v1, . . . , vn}. Let vi, vj ∈ {v1, . . . vn}, i 6= j. First, sup-
pose vivj ∈ E(Gb). Then vivj is a black edge of G2, meaning that vi, vj are
assigned different colors in some edge El ∈ E(H). That is, ali = −alj 6= 0.
However, A is a biclique matrix of G. Then row l implies that vi, vj are adja-
cent also in G. Consequently, E(Gb) ⊆ E(G). Finally, consider vivj ∈ E(G).
Then vivj belong to some biclique Br of G. That is, there is a row r of
A, such that ari = −arj 6= 0. The latter implies that vi, vj ∈ Er ∈ E(H),
meaning that vivj is a black edge of G2, i.e. vivj ∈ E(Gb). Consequently
E(G) ⊆ E(Gb). That is, G = Gb. Then Bk is an arbitrary biclique of Gb.
Since Ek ⊇ Bk, it follows that H is bipartite-conformal.

Conversely, by hypothesis A satisfies (i)-(iv). We show that A is a biclique
matrix. In fact, we show that A is a biclique matrix of the black section Gb

of H, relative to the canonical bicoloring.
To start, we show that every biclique B of Gb corresponds to a row of

A. Let V1 ∪ V2 = B be the bipartition of B, V1, V2 6= ∅. From (iv), we
conclude that B is contained in some hyperedge Ek of H. Let vi, vj ∈ B and
examine the possible alternatives. In the first alternative, suppose vi ∈ V1

and vj ∈ V2. Then vivj ∈ E(Gb). By definition, vivj is a black edge of
G2. Consequently, vi, vj have distinct colors in some hyperedge of H. In
addition, we know that vi, vj must have distinct colors in any hyperedge
of H that contain both of these vertices. Otherwise A would contain as a
submatrix the matrix M1, or M2, or any of matrices row-similar to M1 or
M2, contradicting (iii). Consequently, the row k of A, corresponding to Ek,
is such that aki = −akj 6= 0. In the next alternative, let vi, vj ∈ V1. Since
vi, vj ∈ Ek, each of these vertices has a color in Ek. Because vivj is not a
black edge of G2, it follows that both vertices vi, vj must have identical colors
in Ek. That is, aki = akj 6= 0. Finally, when vi 6∈ Bk it easily follows that
aki = 0. The alternative vi, vj ∈ V2, is similar. Consequently, B corresponds
to Ek, hence to row k of A.

In the sequel, we show that every row k of A corresponds to some biclique
of Gb. Let V1 ⊆ V (H) be the set of vertices ofH corresponding to the 1 entries
of row k of A, and V2 ⊂ V (H), those corresponding to the -1 entries. From
(i), it follows that V1, V2 6= ∅. First, let vi ∈ V1 and vj ∈ V2. Then vi, vj are
assigned distinct colors in the hyperedge Ek ∈ E(H). Consequently, vivj is
a black edge of G2, hence vivj ∈ E(Gb). Next, let vi, vj ∈ V1. Then vi, vj are
both white in Ek. Again, we know that whenever vi, vj are both contained in
some hyperedge El ∈ E(H), then vi, vj have identical colors in El, otherwise
A would contain a forbiden submarix of (iii). Consequently, vivj is a white
edge of G2, meaning that vivj 6∈ E(Gb). The situation where vi, vj ∈ V2 is
similar. Consequently, V1 ∪ V2 is a complete bipartite set of Gb included in
a biclique B. Let l be the row corresponding to B. Because of (ii), row k is
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not included in any other row. Consequently, l = k and V1 ∪V2 is indeed the
biclique B of Gb, completing the proof.

The following property is a consequence of Theorem 4.2

Corollary 4.1 A matrix is a biclique matrix of some graph if and only if it
is a biclique matrix of the black section of its associated hypergraph.

4.3 Bipartite graphs

In this section we examine biclique matrices of bipartite graphs.
The following concept is useful. A {0, 1,−1}-matrix A is bipartite when

it admits a matrix row-similar to A′, such that no column of A′ has both
entries 1 and -1. It is clear that a graph is bipartite if and only if its biclique
matrix is bipartite. We observe that bipartite matrices can be recognized in
polynomial-time.

As a direct corollary of the Theorem 4.2, follows a characterization for
biclique matrices of bipartite graphs.

Corollary 4.2 : Let A be a m × n {0, 1,−1}-matrix, and H its associated
hypergraph. Then A is a biclique matrix of some bipartite graph if and only
if

(i) each row of A has at least one 1 and at least one -1,

(ii) A has no included rows,

(iii) H is bipartite-conformal, relative to its canonical bicoloring,

(iv) A is bipartite.

Given a graph G with d bicliques B1, . . . , Bd ⊆ V (G), a positive biclique
matrix A of G is a d× n {0, 1}-matrix such that aij = 1 if vertex vj belongs
to biclique Bi and aij = 0 otherwise. Clearly, a biclique matrix corresponds
to a positive matrix by replacing each -1 by 1.

Theorem 4.3 Let G be a graph, A be a clique matrix of G and H the asso-
ciated hypergraph of A. Then, the following statements are equivalent:

(1) A is a positive biclique matrix of a bipartite graph H.

(2) A is a positive biclique matrix of a neighborhood-Helly bipartite graph
H.

(3) G admits a weak 2-coloring V1, V2 ⊆ V (G) andH is bipartite-conformal,
relative to the bicoloring V1, V2.
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Proof: (1) ⇒ (2) : Suppose A is a positive matrix of a bipartite graph H,
with bipartition V1, V2. We prove that H is neighborhood-Helly. Let V ′ be a
set of vertices of H whose neighborhoods pairwise intersect. Without loss of
generality, V ′ ⊆ V1. The columns of A corresponding to V ′ pairwise intersect,
since any two vertices in V ′ belong to a same biclique. Then, columns of A
corresponding to V pairwise intersect and V ′ is a complete subset of G,
contained in some clique C. Finally, the columns of A corresponding to V ′

intersect at the row which corresponds to C in A.
(2) ⇒ (3) : Let V1, V2 be the bipartition of H. Considering V1, V2 as a

bicoloring of vertices of G. Since A is a positive biclique matrix of H, every
clique of G is bichromatic, following that V1, V2 is a weak 2-coloring of G. It
is clear that H is bipartite conformal, by Corollary 4.2.

(3) ⇒ (1) : Let V1, V2 be the bicoloring of G. Define the bipartite matrix
B as follows: for every i, bij = aij if j ∈ V1 and bij = −aij for j ∈ V2. Since
V1, V2 is a weak 2-coloring of G, every row of B has at least a 1 and a −1.
Since A is a clique matrix, B has not included rows. Finally, by hypothesis,
H is bipartite conformal. Corollary 4.2 says that B is a biclique matrix of a
bipartite graph H, ie. A is a positive biclique matrix of H.

4.4 Bipartite-conformal hypergraphs

In this section we characterize bipartite-conformal hypergraphs, having
compatible bicoloring. Let H be a hypergraph, E(H) = {E1, ..Ek} and let
C be a bicoloring of the ocurrances of each vertex in the hyeperedges of H.
Let Gb be its black section. For every subfamily E ′ = {Ei, Ej, Ek} of three
hyperedges of H, consider every triple li, lj, lk, 1 ≤ i, j, k ≤ m, l = 1,−1 (
white and black, respectively). Let V1

{li,lj ,lk} be the subfamily of vertices of
H which belong to at least two hyperedges Es ∈ E ′, Er ∈ E ′, with color ls, lr,
respectively. Similarly, let V2

{li,lj ,lk} be the subfamily of vertices of H which
belong to at least two hyperedges Es ∈ E ′, Er ∈ E ′, with color −ls, −lr,
respectively.

Theorem 4.4 Let H be a hypergraph, and let C be a compatible bicolor-
ing. Then H is bipartite-conformal if and only if every induced P3 of Gb is
contained in an hyperedge of H and every subfamily V1

{li,lj ,lk} ∪ V2
{li,lj ,lk} is

contained in an hyperedge of H.

Proof: Assume that is bipartite-conformal H. It is clear that every P3

is contained in an hyperedge of H. We prove that V1
{li,lj ,lk} and V2

{li,lj ,lk}
induce independent sets in Gb. Let vr, vs ∈ V1

{li,lj ,lk}. Then there is an
hyperedge, suppose Ei, which contains both vertices with color li. As C is a
compatible bicoloring, vr, vs are not adjacent in Gb. Analogously, V2

{li,lj ,lk} is

an independent set in Gb. Finally, let vr ∈ V1
{li,lj ,lk}, vs ∈ V2

{li,lj ,lk}. There is
an hyperedge in H that contains vr, vs with different colors, what means that
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in Gb they are adjacent. Then, the complete bipartite subgraph V1
{li,lj ,lk} ∪

V2
{li,lj ,lk} must be contained in an hyperedge of H.

Conversely, let B be a biclique with bipartition V1, V2. Suppose it is not
contained in an hyperedge. Let B′ be a minimal bipartite subgraph of B
with bipartitions V ′

1 ⊆ V1, V ′
2 ⊆ V2 (V ′

1 , V
′
2 6= ∅) which is not contained in an

hyperedge. Then, | V1 + V2 |≥ 4. Consider the case | V1 |=| V2 |= 2. Let E1

be the hyperedge containing V ′
1 \ {vi1}∪ V ′

2 . Let l1 be the color of vertices of
V ′

2 in E1 (recall that since V ′
2 is an independent set, every vertex has the same

color in E1). Analogously, let E2 be the hyperedge containing V ′
1 \{vi2}∪V ′

2 .
Let l2 be the color of the vertices of V ′

2 in E2. Finally, let E3 be the hyperedge
containing V ′

1∪V ′
2 \{vj1}. Let l3 be the color of vertices of V ′

2 in E3. Consider
V1
{l1,l2,l3}∪V2

{l1,l2,l3}. We prove that B′ is included in V1
{l1,l2,l3}∪V2

{l1,l2,l3}. Vertex
vi1 is contained in E2 and E3. Since vj2 ∈ V ′

2 is contained in E1, E2 and E3,
the colors of vj2 in E1, E2 and E3 are l1, l2, l3 respectively. Then, as vj2

is adjacent to vi1 and both are contained in E2 and E3, colors of vi1 in E2

and E3 are −l2, −l3 respectively. Analogously, vi2 is contained in E1, E3

with colors −l1, −l3, respectively. Finally, vj1 is contained in E1, E2 with
colors l1, l2 respectively. It follows that V ′

1 ⊆ V1
{l1,l2,l3}, V ′

2 ⊆ V2
{l1,l2,l3}. The

case where V ′
1 ≥ 3 is similar. We consider V ′

1 \ {vi1} ∪ V ′
2 , V ′

1 \ {vi2} ∪ V ′
2

and V ′
1 \ {vi3} ∪ V ′

2 and conclude there are hyperedges E1, E2, E3, such that
vij /∈ Ej. Finally, consider l1, l2, l3 the colors corresponding to vertices of
V ′

2 in hyperedges E1, E2, E3 respectively. In any case, it follows that B′ is
contained in a hyperedge, what is an absurd.

4.5 Algorithms for recognizing biclique ma-

trices and bipartite-conformal hypergraphs

with compatible bicoloring

In this Section, we describe an algorithm for deciding if a given hyper-
graph with a compatible bicoloring C is bipartite-conformal, and also algo-
rithms for recognizing biclique matrices.

For recognizing biclique matrices, we describe two algorithms. The first
is based on Theorem 4.2. The second follows from Corollary 4.1 and employs
an algorithm for generating the bicliques of a graph.

The following algorithm for recognizing bipartite-conformal hypergraphs
having a compatible bicoloring follows from Theorem 4.4. Let H be an
hypergraph and let C be its compatible bicoloring.

Algorithm 4.1 Bipartite-conformal hyperhraphs. Check if every in-
duced P3 of Gb is contained in an hyperedge of H. If negative, answer NO
and stop. For every li, lj, lk, 1 ≤ i, j, k ≤ m, l = 1,−1, consider V1

{li,lj ,lk},
V2
{li,lj ,lk}. Check if there is an hyperedge Et that contains V1

{li,lj ,lk} ∪ V2
{li,lj ,lk}.

If negative answer NO. Otherwise, answer YES.
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The Algorithm 4.1 requires O(m2n + mn3) steps.
The algorithm for recognizing biclique matrices follows directly from The-

orem 4.2. Let A be a m × n {0, 1,−1}-matrix and let H be the associated
hypergraph of A. We remark that A does not contain as a submatrix, neither
M1, nor M2, nor any matrix row-similar to M1 or M2 (Figure 4.2), if and
only if the canonical bicoloring of H is compatible.

Algorithm 4.2 Biclique matrices (I). First check the conditions (i), (ii),
(iii) of Theorem 4.2. If any of these conditions is not satisfied by A, answer
NO and stop. Otherwise, check condition (iv) applying the Algorithm 4.1.

The Algorithm 4.2 requires O(m2n + mn3) steps.
Alternatively, we can also recognize biclique matrices by employing the

following algorithm.

Algorithm 4.3 Biclique matrices (II). First, construct the associated
hypergraph H and the black section Gb, relative to the canonical bicoloring
of A. Let V (Gb) = {v1, . . . , vn}. Generate the bicliques of Gb employing
algorithm [19]. For every biclique B of Gb, construct its corresponding row
entry in a biclique matrix of Gb. That is, construct an n-vector B′, where
b′i = −b′j 6= 0 if and only if vi, vj ∈ B and vivj ∈ E(Gb), making arbitrary
choices of 1 and -1, whenever possible. Then find one row l of A, such that
Al = B′ or Al = −B′. If this condition is satisfied for some row l then
remove it from A. Otherwise, answer NO and stop. Perform this procedure
m times. If all rows of A have been removed and all bicliques of Gb have been
generated, then answer YES, otherwise answer NO.

The Algorithm 4.3 requires O(m2n + mn3) time and O(nm) space.
We remark that similar techniques as above, can be applied to obtain

a polynomial time algorithm for recognizing general bipartite-conformal hy-
pergraphs, i.e. not necessarily compatible. For such algorithm, we would
again employ the algorithm for biclique generation [19].

Finally, we consider the bipartite case. A polynomial time algorithm
for recognizing biclique matrices of bipartite graphs follows directly from
Corollary 4.2, noting that checking if a {0, 1,−1}-matrix is bipartite can be
done in O(mn) time.

We remark that if A is a bipartite matrix, we can apply the following
algorithm instead of Algorithm 4.1 to check if the associated hypergraph H
is bipartite-conformal.

Let V1, V2 the columns with entries 1 and -1, respectively. Construct A′

by adding to A one row containing 1’s in the columns of V1 and another row
containing -1’s in the columns of V2. Run the algorithm proposed by Berge
[10] to identify if the columns of A′ are Helly. It follows that columns of A′

are Helly if and only if H is bipartite-conformal
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Chapter 5

Biclique graphs

5.1 Introduction

In this Chapter, we consider some special classes of intersection graphs.
In particular we consider biclique graphs. We present a characterization for
biclique graph. The special case of biclique graphs of bipartite graphs is also
considered.

Given a family of subsets of some set F , the intersection graph of F is
a graph having a vertex for each set of F , and two vertices are adjacent
whenever their corresponding sets intersect. On the other hand, given a
graph G, it is an intersection graph when there exists a family F of subsets
of some set such that G is its intersection graph. Intersection graphs were
studied in several contexts (See [39]).

All graphs are intersection graphs (Marczewski, [44]). In fact, given a
graph G, we can always construct a family F of subsets Fi ⊆ E(G), as
follows: For each vi ∈ V (G), let Fi be the set of edges incident to vi. It it is
not difficult to prove that G is the intersection graph of F .

There are many classes of intersection graphs which can be defined, by
finding suitable families of subsets. For example, clique graphs, interval
graphs, chordal graphs, and line graphs (See [15, 16, 23, 24, 27, 38]) .

Two problems arise when leading with intersection graphs. The recog-
nition problem which consists on deciding whether a given graph G and a
family F of subsets of a set, G is the intersection graph of F . The second a
goal is to study the computational complexity of the mentioned problem.

Recall that the clique graph K(G) of a graph G is the intersection graph
of the family of all cliques of G. Two characterizations for clique graphs were
given. In [49], Robert and Spencer give the first characterization for clique
graphs. A different one is shown in [2]. However, none of them appeared to
lead to a polynomial time algorithm for the recognition problem. Moreover, it
was an open problem determining the computational complexity of the clique
graph recognition problem. Recently, in [1] it is proved that the mentioned
problem is NP-complete.

55
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Motivated by the concept of clique graphs, we define the biclique graph
of G, KB(G), as the intersection graph of the family of all bicliques of G. A
graph G is a biclique graph if there exists a graph H such that KB(H) = G.
(Figure 5.1)

w1 w2

v1 v2 v3

Figure 5.1: Graph P5 and its biclique graph

Recall that given a set S of elements, a family F of subsets of S is a split
of S if for every pair of elements x, y ∈ S, there exist a set in F containing
x, and not containing y. A covering of a family set S is a family F of subset
of S such that each element of S belongs to some set of F .

Let S be a set of elements, and let L be a set of labels. A subset of F
is a L-labeled subset when every element of it has a label of the set L. A
family of labeled subsets is a labeled family. We distiguish two labeled sets
by its elements considering its labels.

A labeled family of sets F is well labeled if every element belonging to a
set of F have the same label in all sets of F .

A labeled family of sets F = F1 ∪ F2 is bipartite-intersecting , if F1,F2

are well labeled and every set of F1 intersects every set of F2 in at least one
element with different label.

A bipartite-intersecting labeled family F = F1∪F2 has a good intersection
if every element that belong to some set of F1 and some set of F2, have
different labels in each subfamily F1,F2.

When every bipartite-intersecting subfamily of F has a good intersection
and contains a common element, then F is bipartite-Helly.

Given a set S of elements and a set L of labels, | L |= 2, an L-labeled
family F is a labeled bicovering of S if for every element x ∈ S, there exist
two sets in F containing x, each containing x with different label.

In Figure 5.2 there is an example of a {1,−1}-labeled family, where va

means that element v has label a. The family F is a bicovering of S. The
subset F2 of S is an example of a well labeled family whereas the subset F1

is not well labeled. The subfamily F ′
1 ∪ F ′

2 of F is bipartite-intersecting,
but it has not a good intersection. The subfamily F ′′

1 ∪ F ′′
2 is a bipartite-

intersecting subfamily of F with a good intersection, but it has not a common
element. Finally, F ′′′

1 ∪ F ′′′
2 is a bipartite-intersecting subfamily of F with

a good intersection and contains a common element.
Let A be a {0, 1,−1}-matrix and let F be the family of columns. We

consider F as a labeled family, where the row i is an element of the column
j with label aij if and only if aij 6= 0. We say that two columns i, j intersect
if aki 6= 0 and akj 6= 0 for some row k.
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• S = {v, w, z, r, s}, L = {1,−1}
• Subsets of S: F1 = {v1, w−1}, F2 = {v−1, w−1}, F3 = {s−1, w−1},

F4 = {v1, z1, r−1, s1}, F5 = {v−1, r1, w1}, F6 = {v1, w1}, F7 = {v−1, w1}
• F = {F1, F2, F3, F4, F5, F6, F7}
• F1 = {F1, F2}, F2 = {F1, F3}
• F ′

1 = {F1}, F ′
2 = {F2}

• F ′′
1 = {F3}, F ′′

2 = {F4, F6}
• F ′′′

1 = {F1, F4}, F ′′′
2 = {F5, F7}

Figure 5.2: Example of a labeled family

On the other hand, given a set S = {x1, ...xn} and an L-labeled family
F = {F1, ..., Fk}, the labeled incidence matrix of F is a L-matrix A with n
columns and k rows, where aij = l if element xj belongs to Fi with label l,
and aij = 0 otherwise.

Given a {0, 1,−1}-vector v, the symmetric of v is the vector v′ = −v.
We say that vector v is bi-included in vector w if for every k such that
vk = 1, then wk = 1 and for k such that vk = −1, then wk = −1. Let A
be a {0, 1,−1}-matrix. We say that a row Ai is included in row Aj if Ai is
bi-included in Aj or it holds for the symmetric of Aj. The induced graph of a
{0, 1}-matrix A ∈ Rm×n is a graph of n vertices where vi is adjacent to vj if
there exists a row k in A such that aki = akj = 1. Given a {0, 1,−1}-matrix
A ∈ Rm×n, the graph bi-induced by A is a graph of n vertices v1,v2,...,vn where
vi is adjacent to vj if there exists a row k in A such that aki = 1, akj = −1.

Recall that a {0, 1,−1}-matrix A is bipartite when it admits a row-
symmetric matrix A′, such that no column of A′ has both entries 1 and
-1. It is clear that a graph is bipartite if and only if its biclique matrix is
bipartite.

This Chapter is organized as follows. In Section 2 we study clique graphs.
We give a different proof for the characterization of clique graphs given in
[49]. In Section 3, we characterize biclique graphs and describe families of
graphs which are not biclique graphs. In Section 4 we characterize bipartite-
Helly families. This characterization leads to a polynomial time algorithm
for recognizing bipartite-Helly families. In Section 5 we characterize classes
of biclique graphs of some families of graphs. In Section 6, other class of
intersection graphs is considered, the E-biclique graphs.
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5.2 Clique Graphs

In this Section we give a different proof for the Theorem of Robert and
Spencer, which characterize clique graphs. It is a simpler proof and it employs
techniques we use for the characterization of biclique graphs.

Lemma 5.1 [9] Let H be an hypergraph and let H be its dual hypergraph.
Then, H is conformal if and only if the family of hyperedges H is Helly.

Theorem 5.1 [49] A graph G is a clique graph if and only if there exists a
family of complete subgraphs C verifying:

1. C covers the edges of G

2. C is a Helly family

Proof: Suppose G is a clique graph, i.e., G = K(H) for some graph H. Let
A be a clique matrix of H. Observe that the graph induced by AT is exactly
G.

Let C be the family of complete subgraphs induced by the rows of AT . We
prove that it verifies the conditions 1) and 2) of the Theorem. As A is a clique
matrix, by Theorem 4.1 and considering the reformulation in Theorem 5.2,
its columns are Helly and its rows are not included. Consequently, C is Helly.
Finally, since G is the graph induced by AT , every edge of G is contained in
some complete subgraph of C.

Conversely. Let C be a family of k complete subgraphs of G, C1, ..., Ck

verifying conditions 1) and 2). Consider the family C ′ = C ∪ {{v1}, ..., {vn}}.
Consider B ∈ {0, 1}(k+n)×n, the incidence matrix of C ′, i.e. bij = 1 if vertex
j belongs to the complete C ′

i and bij = 0 otherwise.
Since b(k+j)i = 1 if and only if j = i, C ′ has no included columns. By

hypothesis, C is a Helly family and therefore, so are the rows of B.
Consider BT . It has no included rows and its columns are Helly, i.e., it

is a clique matrix, according to Theorem 5.2. Let H be the graph induced
by BT , as mentioned before, (BT )T induces the clique graph of H. Hence, B
induces K(H). On the other hand, since C covers edges of G, B induces the
graph G. We conclude that G = K(H).

The following Corollary is direct.

Corollary 5.1 [49] Let C be the family of cliques of a graph G. Then, C
verifies properties 1) and 2) of Theorem 5.1 if and only if G is a clique graph
of a clique Helly graph.
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5.3 Biclique Graphs

In this Section we give a characterization for bicliques graphs. Also, we
prove that complete graphs are biclique graphs and we prove that graphs
without induced diamonds, are not biclique graphs.

For our purpose we will need the following Lemmas and Corollaries.

Lemma 5.2 Let F = {F1, F2, ...Fk} be a {1,−1}-labeled family. Then, every
bipartite-intersecting subfamily has a good intersection if and only if every
bipartite-intersecting subfamily F ′ = {Fi} ∪ {Fj} has a good intersection.

Proof: It is clear that if every bipartite-intersecting subfamily has a good
intersection, also does the bipartite-intersecting subfamily F ′ = {Fi}∪{Fj}.

Conversely, suppose there is a bipartite-intersecting subfamily F ′ = F1 ∪
F2 which has not a good intersection. Then, there are Fi ∈ F1, Fj ∈ F2 such
that intersect in an element with same label. As F ′ is a bipartite-intersecting
family, so it is the subfamily {Fi} ∪ {Fj}. It follows that {Fi} ∪ {Fj} is a
bipartite-intersecting family which has not a good intersection, contradicting
the hypothesis.

As a corollary, we obtain the following Lemma.

Lemma 5.3 Let A be a {0, 1,−1}-matrix. Then, every bipartite-intersecting
subfamily of columns has a good intersection if and only of A does not contain
as a submatrix, neither M1, nor M2 of Figure 5.3, nor any row-symmetric
matrix of M1 or M2.

M1 =

(
1 1
1 −1

)
M2 =

(
1 −1
1 1

)

Figure 5.3: Matrices M1, M2

Corollary 5.2 Let A be a {0, 1,−1} − matrix, whose columns verify the
bipartite-Helly property . Then, A does not contain as a submatrix, neither
M1, nor M2, nor any row-symmetric matrix of M1 or M2, of Figure 5.3.

Lemma 5.1 relates the Helly property to the conformal condition for hy-
pergraphs. Similarly, we are going to relate the bipartite-Helly property to
the bipartite-conformal condition. We need the following definitions.

We say that a hypergraph is labeled when the family of hyperedges is an
L-labeled family. Given a labeled hypergraph H, we label the family of edges
of the dual hypergraph H∗ as follows: vertex Ei has label j in hyperedge E∗

k

of H∗ if and only if vertex vk has label j in hyperedge Ei in H.
Observe that when every pair of hyperedges of H has a good intersection,

the labeling H induce a compatible bicoloring of H. In that case, we say that
H has a compatible labeling.
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Lemma 5.4 Let L = {black, white} be a set of labels, H an L-labeled hy-
pergraph and H∗ its dual L-labeled hypergraph. Then the labeling of H is
compatible and H is bipartite-conformal if and only if the hyperedges of H∗

are bipartite-Helly.

Proof: Observe that every pair of bipartite-intersecting hyperedges of H has
a good intersection if and only if every pair of bipartite-intersecting hyper-
edges of H∗ has a good intersection. We need to prove that H is bipartite-
conformal if and only every bipartite-intersecting family of hypedeges of H∗

has common vertex.
Suppose H is bipartite-conformal. Let G be its black section. Con-

sider E1 ∪ E2 a bipartite-intersecting family of hyperedges of H∗, where
E1 = {E∗

i1
, ...E∗

ik
}, E2 = {E∗

ik+1
, ...E∗

is}.
Since E1, E2 are well labeled, V1 = {vi1 , ...vik}, V2 = {vik+1

...vis} are both
independent sets in G. On the other hand, since every E∗

i ∈ E1, E
∗
j ∈ E2

intersect in a different label, vertices vi ∈ V1, vj ∈ V2 are adjacent in G. It
follows that V1, V2 induce a bipartite complete subgraph in G. Since H is
bipartite-conformal, there is an hyperedge Et which contains the vertices of
V1 ∪ V2. It follows that Et in H∗ is a common vertex of E1 ∪ E2.

Conversely, let B be a biclique of G with bipartition V1 = {vi1 , ..., vis},
V2 = {vis+1 , ..., vit}. Consider E1 = {E∗

i1
, ...E∗

is}, E1 = {E∗
is+1

, ...E∗
it}, hy-

peredges of H∗. Since V1, V2 are independent sets, E1, E2 are well labeled.
Since every vertex of V1 intersects every vertex of V2, E1 ∪ E2 is a bipartite-
intersecting family in H∗. By hypothesis there is a vertex Et common to
E1, E2. Then, edge Et of H contains the vertices of B.

Remark 5.1 Let A be a {0, 1,−1}-matrix which does not contain any of the
matrices M1, M2, of Figure 5.3, nor any of its symmetric matrices, as a
submatrix. Let H be its associated labeled hypergraph. Then H is bipartite-
conformal if and only if the columns of A are bipartite-Helly.

The following Theorems are reformulations of Theorems 4.1 4.2 and Corol-
lary 4.2, considering the Helly and the bipartite-Helly property. They will
be useful in the proof of the characterization of biclique graphs.

Theorem 5.2 : Let A be a {0, 1}-matrix and H its associated hypergraph.
Then A is a clique matrix of some graph if and only if

1. Each row of A has at least one 1,

2. A has no included rows, and

3. The family of columns of A is Helly.

Theorem 5.3 Let A be a {0, 1,−1}-matrix. Then A is a biclique matrix if
and only if:



CHAPTER 5. BICLIQUE GRAPHS 61

1. A does not contain included rows and has at least a 1 and a -1 in each
row.

2. The family of columns of A is bipartite-Helly

As a Corollary of Theorem 5.3 it follows a characterization for biclique
matrices of bipartite graphs.

Theorem 5.4 Let A be a {0, 1,−1}-matrix. Then A is a biclique matrix of
a bipartite graph if and only if

1. A has not included rows

2. A is bipartite with partition V1, V2.

3. The family of columns of A is bipartite-Helly

The following is the main Theorem of the Chapter. It characterizes bi-
clique graphs for general graphs. The proof of this Theorem employs the
characterization given in Theorem 5.3 for bicliques matrices.

Theorem 5.5 A graph G is a biclique graph if and only if there exists a
{1,−1}-labeled family C of subsets of V (G), such that:

1. Each subset induces a complete graph in G and C covers the edges of G

2. C is a labeled bicovering of V (G)

3. C is bipartite-Helly

4. C is a split of V (G)

Proof: Suppose G is the biclique graph of a graph H and let A be a biclique
matrix of H. Let A+ be the matrix of values {| aij |} and consider its
transpose (A+)T . The graph G induced by (A+)T is the intersection graph
of the columns of (A+)T , i.e., KB(H) = G. Let C be the labeled family of
complete subgraphs in G induced by the rows of AT , where vertex wi has
label aij if it belongs to the complete Cj.

As A is a biclique matrix, by Theorem 5.3, A has at least a 1 and a -1
in each row and its columns verify the bipartite-Helly property. It follows
that C is a bicovering of G and C is bipartite-Helly. As G is induced by
(A+)T , every edge of G belongs to a complete of C. We prove that C is a
split. Suppose the contrary, i.e., there exist two vertices vi, vj such that the
subfamily of complete subgraphs containing vi is included in the sufamily of
complete subgraphs containing vertex vj. In other words, suppose row i of
A+ is included in row j. Since by Theorem 5.3 A does not have included
rows, without loss of generality we can assume that there is a column k such
that aki=1, akj=-1. As neither the symmetric of row i is bi-included in row j,
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either there exists a column k′ such that either ak′i=1, ak′j = 1 or ak′i = −1,
ak′j = −1. In both cases, ak′i, ak′j ak′i, ak′j form one of the matrices of Figure
5.3, what leads to a contradiction, according to Lemma 5.2 and Theorem 5.3.
Then, C verifies the conditions of the Theorem.

Conversely, let C be the labeled family of k complete subgraphs of G given
by hypothesis. Consider the matrix B ∈ {0, 1,−1}k×n where bij = 1 (respec-
tively, -1) if vertex vj belongs to the complete Ci with label 1 (respectively
-1) and bij = 0 otherwise. Consider BT . Since C is a bicovering, BT contains
at least a 1 and a -1 in each row. As C is a split of G and is bipartite-Helly,
BT has no included rows and its columns are bipartite-Helly. According to
Theorem 5.3, BT is a biclique matrix of a graph H. As observed below, the
induced graph of ((BT )+)T is the biclique graph of H, i.e. ((BT )+)T = B+

induces KB(H). By hypothesis, every edge of G belongs to a complete of C,
implying that the graph induced by B+ is G. We conclude that G = KB(H).

An example of the proof of Theorem 5.5 is given in Figure 5.4. Consider
the triangle. The family of complete subgraphs C = C1 ∪ C−1 verifies the
hypothesis of Theorem 5.5. The subfamily C1 has all its vertices are labeled
with 1, and C−1 uses only labels -1. The matrix B is the labeled incidence
{0, 1,−1}-matrix of the family of complete subgraphs C = C1 ∪ C−1. The
graph G is the graph bi-induced by BT . It follows that the triangle is the
biclique graph of G.

The following Remark is direct from the proof of Theorem 5.5

Remark 5.2 Let G be a graph and let C be a {1,−1}-labeled family of subsets
of V (G). Let B be the labeled incidence {0, 1,−1}-matrix of C. Then, C
verifies the conditions of Theorem 5.5 if and only if BT is the biclique matrix
of a graph H. Furtheremore, KB(H) = G.

As a corollary of Theorem 5.5, we prove that the recognition problem for
bicliques graphs is in NP .

Theorem 5.6 Let G be a graph with n vertices. The problem of determining
if G is a biclique graph is NP .

Proof: A certificate for G being a biclique graph is a {1,−1}labeled family
C of m completes subgraphs of G, satisfying the conditions of Theorem 5.5.
First, we show that we can restrict to families C of size O(n2), where V (G) =
n. For every vertex vi, consider Ci1 , Ci−1 the subsets in C containing vertex
v1 with labels 1, -1, respectively. For every edge vivj, consider the subgraph
Cij ∈ C such that vivj ∈ Cij . Finally, for every pair of vertices vi, vj, consider
the subgraphs Ci,j, Cj,i such that vi ∈ Ci,j, vj /∈ Ci,j and vj ∈ Cj,i, vi /∈ Cj,i.
The subfamily C ′ = {Ci1 , C i−1 , C i,j, Cj,i, C ij}i,j=1...n verifies conditions 1), 2)
3) of Theorem 5.5 and contains O(n2) subsets. Remark 5.2 completes the
proof of the Theorem.
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v3

v2
v1

1

11

C1

v1

v3

v2

v3

v2

v1

C-1

1 1- -

B =




v1 v2 v3

1 0 0
0 0 1
1 1 1
−1 −1 0
0 −1 −1




BT =




z1 z2 z3

1 0 1
0 0 1
0 1 1

w1 w2

−1 0
−1 −1
0 −1




w1 w2

z1 z2z3

G

Figure 5.4: The triangle is the biclique graph of G

The next Theorem proves that graphs of more than 3 vertices without
induced diamonds are not biclique graphs.

Theorem 5.7 Let G be a connected diamond-free graph with at least four
vertices. If G is not a complete graph, then G is not a biclique graph.

v2

v4

v3 v1

Figure 5.5: Diamond
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Proof: Let v1, v3, v2 be the vertices that induce a P3, and let e1 = (v1, v2),
e2 = (v2, v3). Suppose G is the biclique graph of the graph H. Let B1, B2

and B3 be the corresponding bicliques of v1, v2, v3 in H. Let a be the vertex
in the intersection of B1 and B2, and let b be a vertex in the intersection of
B2 and B3. Suppose it is the case, ab is an edge of H. If a forms a triangle
with some vertex c of B3 and b, then ac is contained in some biclique B
which intersects B1, B2 and B3. Observe that c is not in B1 because B1 and
B3 are disjoint bicliques and c is not in B2 because b ∈ B2, B 6= B1, B2, B3.
It follows that the corresponding vertex v in G along with v1, v2 and v3

induce a diamond, which leads to a contradiction. As a /∈ B3 there exists
some vertex c ∈ B3, c /∈ B1, c not adjacent to b such that ac is not an edge
of H. Similarly, we can conclude that there is a vertex d ∈ B1, d /∈ B3, d
not adjacent to a such that bd is not an edge of H. Take a vertex c1 ∈ B3

adjacent to c and d1 ∈ B1 adjacent to d. We have already proved that a can
not be adjacent to c1, neither b is adjacent to d1. If c1,d1 are not adjacent
vertices, then either the complete bipartite subgraph induced by {d1, a, b} or
{a, b, c1} is included in some biclique different from Bi, i = 1, 2, 3. Then, the
corresponding vertex in G forms a diamond with v1, v2 and v3 what is not
possible. (Figure 5.6)
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a

b

d 1c

d1
c

a

b

d 1c

d1

Figure 5.6: Alternatives for vertices a, b, c, c1, d1

Then, c1d1 is an edge of H. If d is not adjacent to c1, consider the
bipartite complete subgraph {d1, d, a, c1}. It is included in some biclique B.
As d /∈ B3, it is clear that B 6= B3. As c1 ∈ B3, and B1, B3 are disjoint
bicliques, it is clear that B 6= B1. Finally, as b ∈ B2 and b is not adjacent
to d it follows B 6= B2. As B intersects Bi, i=1,2,3, there is a vertex in G
which forms a diamond with v1, v2, and v3 which leads to a contradiction.

c

a

b

d 1c

d1

Figure 5.7: Case c1d is not an edge

It follows that c1 and d are adjacent. Consider the complete bipartite
subgraph {d, c1, b}. It is included in some biclique B. As d ∈ B1, and B1

and B3 are disjoint, B 6= B3. As b /∈ B1, B 6= B1. Finally, B 6= B2 because
a is in B2, and it is not adjacent to d nor to c1. (Figure 5.8)
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b

d 1c
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Figure 5.8: Bipartite subgraph induced by vertices d, c1, b

Then, the corresponding vertex in G forms a triangle with vertices v1,v2,v3,
what contradicts the hypothesis.

Therefore, the case where ab is an edge cannot occur.
We examine the situation where ab is not an edge of H. Let c be a vertex

in B2 adjacent to a and b. We have just proved that c can not be in B1 nor
in B3. If a is adjacent to two adjacent vertices d, d1 of B3 as in Figure 5.9 ,
then the biclique B which contains the edge ad1 intersecs B1, B2, B3. Since it
contains a, B 6= B3, because b ∈ B2 and b is not adjacent to a nor to d1, and
B 6= B1 while B 6= B2 because d1 /∈ B1. It follows that the corresponding
vertex of the biclique B in G forms a diamond with v1, v2, v3, what is not
possible.

dc

a b d1

Figure 5.9: Alternatives for vertices a, b, c, d, d1

As a /∈ B3 and does not form a triangle with two vertices of B3, there is
a vertex d ∈ B3 not adjacent to a and adjacent to b. Suppose c is adjacent
to d. Consider the biclique B containing {d, c, a}, because c /∈ B1, B3 and
b ∈ B2, B 6= B1, B2, B3. The corresponding vertex of B in G together with
v1, v2, v3 induce a diamond, what can not occur.

Analogously, we can affirm that there is a vertex f in B1 adjacent to
a, not adjacent to b. As we already have proved, c can not be adjacent to
f . Consider the two different bicliques Bi and Bj containing the vertices
{f, a, c} and {b, c, d} respectively. It is clear that Bi, Bj 6= B2 because, as a
and b are in B2, neither f or d are in B2. It follows that there is an induced
diamond among the vertices vi, vj v1, v2 and v3 (Figure 5.10).

As a direct consequence of the proof of Theorem 5.7 we obtain the fol-
lowing Corollary.

Corollary 5.3 If G is a biclique graph, every edge which belongs to an in-
duced P3 is contained in an induced diamond.

The following result about trees is direct from Theorem 5.7.
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Figure 5.10: Bicliques B1, B2, B2

Corollary 5.4 Trees with more than 2 vertices are not biclique graphs.

The special case of biclique graphs of bipartite graphs is considered in the
next Theorem.

As a Corollary of Theorem 5.5 we obtain the following characterization
of biclique graphs of bipartite graphs.

Theorem 5.8 A graph G is a biclique graph of a bipartite graph if and only
if there exists a {1,−1}-labeled family C of subsets of V (G), such that:

1. C can be divided into two subfamilies, C1, C2 such that C1 is {1}-labeled
and C2 is a {-1}-labeled subfamily.

2. Each subset induces a complete graph in G and C covers the edges of G

3. C is a bicovering of V (G)

4. C is bipartite-Helly

5. C is a split of V (G)

Proof: Let G be a biclique graph of a bipartite graph H with bipartition
V1, V2, and let A be a bipartite biclique matrix of H. Let G be the graph
induced by (A+)T . Let C1, C2 be the labeled family of complete subgraphs of
G induced by the rows of AT , relative to the bipartition V1, V2 respectively.
As we have proved in Theorem 5.5, the family C = C1 ∪C2 verifies properties
2, 3, 4, 5. As A is bipartite, it is easy to see that C1, C2 also verifies property
1.

The converse follows directly from Theorem 5.5 .

We prove that complete graphs are biclique graphs of bipartite graphs.

Proposition 5.1 Complete graphs are biclique graphs of bipartite graphs.

Proof: We will use an inductive argument. First, observe that KB(P4) =
K3. Assume that KB(G) = Kn, G being a bipartite graph. We construct
inductively a bipartite graph G′ such that KB(G′) = Kn+1. Let V1 and V2

be the bipartition of G. Add to G vertices v′1 and v′2 and the set of edges
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{(v′1, w), w ∈ V2} ∪ {(v′1, v′2)}. The resulting bipartite graph G′ verifies that
K(G′) = Kn+1.

Using the given characterization for biclique graphs of bipartite graphs,
we obtain a different proof for Theorem 5.7, restricted to the bipartite graphs
of bipartite graphs. First, we prove that cycles greater that 4 are not biclique
graphs of bipartite graphs. Although this is a direct consequence of Theorem
5.7, we formulate a separate proof of it, using similar techniques, as those we
employed in Theorem 5.9.

Proposition 5.2 Graphs Ck, k ≥ 4 are not biclique graphs of bipartite
graphs.

Proof: Let G = Ck be an induced cycle of more than 3 vertices. Sup-
pose it is a biclique graph of a bipartite graph. Hence, by Theorem 5.8
there exist in G a {1,−1}-labeled bicovering with properties of Theorem
5.1. Let {v1, v2, · · · vk} be vertices of G. As C covers edges of G, every edge
li = (vi, vi+1), is a subset of C. Observe that C1 (analogously, C2), can not
contain an edge, not having a consecutive edge in C1. Otherwise, suppose
li = (vi, vi+1) ∈ C1, li+1 = (vi+1, vi+2) ∈ C2 and li+2 = (vi+2, vi+3) ∈ C1.
It contradicts the hypothesis of C being bipartite Helly. Consider the edge
(v1, v2) and suppose it belongs to C1. If it is the case that no edge of G
belongs to C2, since C is a split, every vertex belongs to C2. In particular
v1 and v2 belong to C2. Since both complete subgraphs, {v1}, {v2} intersect
the complete (v1, v2) of C1, it contradicts the hypothesis of C being bipartite-
Helly. If it is the case that every edge also belongs to C2, as we have proved
before, every three consecutive edges contradict the bipartite-Helly property.
Then, there is an edge, suppose l1, which belongs to C1 and not to C2 and an
edge l′ belonging to C2 and not to C1. Let s be the minimum edge (vs, vs+1)
belonging to C2. As we observed before, there exist an ordering for vertices of
G such that s ≥ 3. Since s is minimum, ls−1, ls−2 /∈ C2. As C is a split, vertex
vs−1 must belong to a complete of C1 and C2, so the complete {vs−1} belongs
to C2. It follows that {vs−1} ∈ C2, ls ∈ C2, and ls−1 ∈ C1 are a bipartite
intersecting family of C with no common intersection. Absurd.

We can see by Figure 5.11 that P3 is not a biclique graph of a bipartite
graph, since all possible labels are considered for its edges and all of them
lead to a contradiction.

v3

v1 v2

1 -1

1 1

1/-1 1/-1

Figure 5.11: Graph P3 and all possible labels of its edges.



CHAPTER 5. BICLIQUE GRAPHS 68

Remark 5.3 The graph C3 is the biclique graph of P5

Theorem 5.9 is a direct consequence of Theorem 5.7. However, we give
another proof from a new point of view based on the characterization of
biclique graphs of bipartite graphs.

Theorem 5.9 If G is not a complete graph, diamond-free graph, with more
that 3 vertices, then G is not a biclique graph of a bipartite graph.

Proof: Let v1, v3, v2 vertices that induce a P3, and let l1 = (v1, v3), l2 =
(v3, v2). Suppose G is a biclique graph. Let C = C1 ∪ C2 be the family of
complete graphs given by Theorem 5.8.

As C is a bicovering and every edge of G belongs to a complete subgraph
of C, there exists some complete subgraph C1 containing l1.

Case a): Suppose every complete subgraph that contains l1 is in the
subfamily C1 (analogously C2). As v1 must be labeled by both labels, there
must be a complete subgraph C2 in C2 such that v3 /∈ C2, (Figure, 5.12).

v3v1 v2

C1

C2

C3

1

2

2

v3v1 v2

C1

C2 C3

w

Figure 5.12: Complete subgraphs C1, C2, C3

If l2 is contained in some complete subgraph C3 of C2, consider the bipar-
tite intersecting subfamily {C1} ∪ {C2, C3}. By hypothesis, C is bipartite-
Helly, then it must have a common intersection, i.e. there exist a vertex
w which forms a diamond with vertices v1, v2, v3, which is an absurd. We
conclude that every complete subgraph containing l2 is in C1.

As v3 is contained in C2, there exists a C4 in C2 which contains v3 such
that v2, v1 /∈ C4. Then the subfamily {C1} ∪ {C2, C4} has a common vertex
w′. Observe that w′ is not adjacent to v2, otherwise vertices v1,v2, v3, w′

would induce a diamond, (Figure 5.13).
Let C6 be a complete subgraph containing l2 in C1. Clearly, v1, w

′ /∈ C6.
As v3 is covered by C2 and l2 is not covered by C2, there exists a complete
subgraph C5 in C2 such that v3, v1, w

′ /∈ C5. Again, the subfamily {C6} ∪
{C4, C5} has a common vertex w′′. Then, v2, v3, w′ and w′′ induce a diamond
contradicting the hypothesis, (Figure 5.14).

Case b). Edges l1 and l2 are both covered by C1 and C2. As C is a split
of the vertices of G, there exists a complete subgraph C3 which contains v1,
and not v3. Without loss of generality, we can suppose C3 ∈ C1. Let C1 ∈ C2
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v3v1 v2
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C2
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Figure 5.13: Complete subgraphs C1, C2, C4 and the induced diamond
v1, v2, v3, w

′

v3v1 v2

w�C4

2

2
1

v3

v2

C5

w�C4

w��

C6C6 C5

Figure 5.14: Complete subgraphs C4, C5, C6 and the induced diamond
v2, v3, w

′, w′′

and C2 ∈ C1 the complete subgraphs covering l1 and l2 respectively. Then,
the subfamily {C2, C3} ∪ {C1} has a common vertex w. Then, v1 v2, v3, and
w induce a diamond, (Figure 5.15).

v3v1 v2

C2

C3

2

1

1

v3v1 v2

C2
w

C1
C1

C3

Figure 5.15: Complete subgraphs C1, C2, C3 and the induced diamond
v1, v2, v3, w

5.4 Bipartite-Helly families

In this section we study bipartite-Helly labeled-families. We give a char-
acterization for bipartite-Helly labeled-families that leads to a polynomial
time algorithm for the recognition problem.

Recall the following definitions that we have introduced in Chapter 4. Let
S a set of n elements, L = {1,−1} a set of labels and let F be an L-labelled
family of m subsets of S. For every subset S ′ = {xi, xj, xk} of three elements
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of S, consider every triple li, lj, lk, 1 ≤ i, j, k ≤ m, l = 1,−1 . Let F1{li, lj, lk}
be the subfamily of F of subsets which contains at least two elements xs ∈ S ′,
xr ∈ S ′, with label ls, lr, respectively. Similarly, let F2

{li,lj ,lk} be the subfamily
of F of subsets which contains at least two elements xs ∈ S ′, xr ∈ S ′, with
label −ls, −lr, respectively.

The following Theorem characterizes {1,−1}-labeled bipartite-Helly fam-
ilies.

Theorem 5.10 A {1,−1}-labeled family F is bipartite-Helly if and only if

1. Every bipartite-intersecting subfamily F ′ = {Fi}∪{Fj} of F has a good
intersection

2. Every bipartite-intersecting subfamily F = {Fi} ∪ {Fj, Fk} has a com-
mon element

3. Every subfamily F1
{li,lj ,lk} ∪ F2

{li,lj ,lk} has a common intersection.

Proof: We prove that F1
{li,lj ,lk} ∪ F2

{li,lj ,lk} is a bipartite intersecting family.

First, we prove that F1
{li,lj ,lk} and F2

{li,lj ,lk} are well labeled. Let Fr, Fs ∈
F1
{li,lj ,lk}. Then there is an element, suppose xi, which belongs to both subsets

with label li. If Fr, Fs intersect in an element with different label, {Fr} ∪
{Fs} is a bipartite-intersecting family with not a good intersection, absurd.
Analogously, F2

{li,lj ,lk} is a well labeled family. Finally, let Fr ∈ F1
{li,lj ,lk},

Fs ∈ F2
{li,lj ,lk}. There is an a common element, suppose xj, that belongs

to Fr, Fs with different label, since xj has label lj in Fr, and −lj in Fs.
We conclude that F1

{li,lj ,lk} ∪F2
{li,lj ,lk,lk} is a bipartite-intersecting family and

therefore, it has a common element.
Conversely. Let F ′ = F1∪F2 be minimal bipartite-intersecting subfamily

with no common element. Then, | F1 + F2 |≥ 4. Consider the case | F1 |=|
F2 |= 2. Let x1 be the common element to F1 \ {Fi1} ∪ F2. Let l1 be
the label of x1 in F2 (recall that since F1 is well labeled, every element
has the same label in F2). Analogously, let x2 be the common element
to F1 \ {Fi2} ∪ F1. Let l2 be the label of x2 in F2. Finally, let x3 be
the element belonging to F1 ∪ F2 \ {Fj1}. Let l3 be the label of x3 F2.
Consider F1

{l1,l2,l3} ∪ F2
{l1,l2,l3}. We prove that F ′ = F1 ∪ F2 is included in

F1
{l1,l2,l3} ∪ F2

{l1,l2,l3}. Subset Fi1 contains x2 and x3. Since Fj2 ∈ F2 contains
x1, x2 and x3, the labels of xj2 in F1, F2 and F3 are l1, l2, l3 respectively.
Then, as Fj2 intersect Fi1 and both contain x2 and x3, theirs labels in Fi1

are −l2, −l3 respectively. Analogously, Fi2 is contains x1, x3 with labels −l1,
−l3, respectively. Finally, Fj1 contains in x1, x2 with labels l1, l2 respectively.
It follows that F1 ⊆ F1

{l1,l2,l3}, F2 ⊆ F2
{l1,l2,l3}.

The case where F1 ≥ 3 is similar. We consider F1 \ {Fi1} ∪ F2, F1 \
{Fi2} ∪ F2 and F1 \ {Fi3} ∪ F2 and conclude there are elements x1, x2, x3,
such that xj /∈ Fij . Finally, consider l1, l2, l3 the labels of the x1, x2, x3 ∈ F1,
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respectively. In any case, it follows that F ′ = F1∪F2 has a common element,
what is an absurd.

Finally, by Lemma 5.3, every bipartite-intersecting subfamily has a good
intersection. We conclude that F is bipartite-Helly.

We remark that Theorem 5.10 implies that bipartite-Helly {1,−1}-labeled
families can be recognized in polynomial time.

The algorithm is described below. For a given labeled family F , it answers
YES or NO, depending on whether F is a bipartite-Helly. Let S a set of n
elements, L = {1,−1} a set of labels, and F a family of labeled m subsets
of S.

Algorithm 5.1 Bipartite-Helly. Check if every bipartite-intersecting sub-
family {F1}∪{Fj} has a good intersection. Consider every bipartite-intersecting
subfamily {Fi}∪{Fj, Fk}. Check if it has a common intersection. If not, an-
swer NO ad stop. For every vi, vj, vk, 1 ≤ i, j, k ≤ n, l = 1,−1, consider
F1
{li,lj ,lk}, F2

{li,lj ,lk}. Check if F1
{li,lj ,lk}, F2

{li,lj ,lk} has a common intersection. If
this condition is not satisfied for any li, lj, lk , answer No and stop. Otherwise
answer Yes.

The Algorithm 5.1 requires O(m3n + m3n) time and O(nm) space.

5.5 Classes of biclique graphs

Is this section we study some subclasses of biclique graphs.
We need the following definitions. Given a family C of subgraphs of a

graph G, a C-bicovering of the family C is a pair of subfamilies C1, C2, such
that C = C1∪C2 and each vertex of G is covered by C1 and C2, i.e. each vertex
belongs to at least one subgraph of C1 and one subgraph of C2. A family C of
subgraphs is Helly-bicovered if there exists a C-bicovering, C = C1 ∪ C2 that
verifies the bipartite-Helly property, considering C1 as a {1}-labeled family,
and C2 as a {−1}-labeled family. When C1 ∩ C2 = ∅, we say that the C1, C2 is
an independent bicovering.

Let G be a a bipartite graph, with bipartition V1 ∪ V2. Say that G has
no dominated bipartition if both parts V1, V2 have vertices which are not
dominated by some vertex of the other bipartition.

Let CHB be the class of graphs such that the family of cliques is Helly-
bicovered.

Let CHBD ⊆ CHB be the class of graphs such that the family of cliques
is Helly-bicovered and has no dominated vertices.

Let CHBDI be the class of graphs such that the family of cliques is
independent Helly-bicovered and has no dominated vertices.

Let BHED be the class of bipartite biclique-Helly graphs without strictly
dominated vertices.
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Let BHD be the class of bipartite biclique-Helly graphs with no domi-
nated vertices.

Let BHDB be the class of bipartite biclique-Helly graphs with no domi-
nated bipartition.

We study the classes of KB(BHDB), i.e. biclique graphs of bipartite
biclique-Helly graph with no dominated bipartition.

Theorem 5.11 Let H ∈ BHDB, and let G = KB(H), then:

1. There exists a bicoloring V1, V2 of the vertices of the clique graph of G
such that non empty family of bichromatic cliques of K(G) is Helly and
the family of columns of the clique matrix of K(G) is bipartite-Helly,
relative to the bipartition V1 ∪ V2.

2. K(G) can be constructed by removing dominated vertices from the in-
duced subgraph of the closed neighborhood graph of a bipartite biclique-
Helly graph.

Proof: By hypothesis, G = KB(H), where H is a bipartite biclique-Helly
graph with bipartition V1 ∪ V2, and no dominated bipartition. Consider
H ′, the bipartite biclique-Helly graph obtained by removing the dominated
vertices of H. Since H has no dominated bipartition, H ′ has at least one
edge. Let AB

H′ be the biclique matrix of H ′. By Theorem 6.5, (AB+
H′ )T is the

clique matrix of G.
It is clear that the transpose of the clique matrix of G induces K(G), i.e.

AB+
H′ induces K(G). On the other hand, AB+

H′ induces the subgraph of the
closed neighborhood graph Nc(H), obtained by eliminating the dominated
vertices, since the set of dominated vertices of H is the same that of Nc(H).
We have already proved in Proposition 6.1 that every row of AB+

H induces
a clique in Nc(G). Then, by removing dominated vertices of H, every not
included row of AB

H′ is still a biclique in H and then, a clique in Nc(H) and
so in K(G). As H is biclique-Helly, so are the remaining bicliques after re-
moving dominated vertices. The bicoloring V1, V2 of vertices of Nc(H) gives
a bicoloring to K(G), where every clique induced by rows of AB+

H is bichro-
matic. Moreover, we already proved in Proposition 6.1 that those cliques are
the only bichromatic cliques of Nc(H). Then, K(H) is bichromatic-Helly.
Finally, as the clique matrix of K(G) consists of the matrix AB+

H′ , with ad-
ditional rows corresponding to monochromatic cliques. It follows that the
columns of the clique matrix of K(G) is bipartite-Helly for the bipartition
V1, V2 and every two vertices that belong to a monochomatic clique, also
belong to some bichromatic clique.

Theorem 5.12 The following statements hold.

1. KB(BHD) = CHBDI
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2. CHBD ⊆ KB(BHED).

Proof: First we prove that KB(BHD) ⊆ CHBDI. Let G be a bipartite
biclique-Helly graph with no dominated vertices. Let AB be a biclique matrix
of G where the first k columns correspond to the vertices of the bipartition V1

and the next n− k + 1 correspond to vertices of V2. As G has no dominated
vertices and is biclique-Helly, by Theorem 6.5, (AB+)T is the clique matrix
of KB(G). Let C1 be the set of cliques that correspond to the first k rows
of AT

B and let C2 be the set of cliques that correspond to the next n− k + 1
rows. It is clear that C1 and C2 are not empty and verify the bipartite-Helly
property.

As AB is a biclique matrix, by Theorem 5.4 (AB+)T does not have included
rows and every row has an entry equal to 1 in the first k columns and another
in the last n− k +1 columns. Then, every vertex of KB(G) belongs to some
clique of C1 and some clique of C2, where C1 ∩ C2 = ∅ and KB(G) has no
dominated vertices. It follows that the cliques of KB(G) are independent
Helly-bicovered by C1 and C2.

Before we prove that CHBDI ⊆ KB(BHD), first we prove that CHBD ⊆
KB(BHED). Let H be a graph of n vertices in CHBD. Let C1 ∪ C2 the
C-bicovering of the cliques of H, | C1 |= k1, | C2 |= k2.

Let A be a {0, 1,−1} matrix with n columns and k1 + k2 rows, where the
columns represent the vertices of H and the rows represent the cliques of C1

and C2 in the order such that aij = 1 if vertex j belongs the clique Ci in V1,
a(i+k1)j = −1 if vertex j belongs to the ith clique of C2. Consider AT . Its
columns verify the bipartite-Helly property for the bipartition C1∪C2, where
C1 is a {1}-labeled family and C2 is a {−1}-labeled family. Each row has
a non zero entry for some column of C1 and some column of C2 and it has
not included rows, since H has no dominated vertices. By Theorem 5.4 it is
a biclique matrix of some graph G. As the transpose of (A+)T induces the
biclique graph of G, then H = KB(G). Observe that the clique matrix of H
is the matrix obtained by eliminating the twin rows of A. As the columns
of AT represent cliques of H, it has no strictly included columns, so there
are no strictly dominated vertices in G. As the columns of the clique matrix
of H are Helly, by Theorem 4.1, and Theorem 2.1, so are the columns of A.
Then, the rows of AT verify the Helly property which implies that the family
of bicliques of G is Helly.

To prove that KB(BHD) = CHBDI, observe that if the subfamilies C1

and C2 has no common clique, then A is the clique matrix of H and AT has
no included columns.

Theorem 5.13 Let G be a biclique-Helly bipartite graph, with no dominated
bipartition V1, V2. Let C be the cliques of the biclique graph KB(G). Then,
there exists a Helly-bicovering C1 ∪ C2 of C.
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Figure 5.16: The graph P3 is the E-biclique graph of the graph P5

Proof: Let AB be the biclique matrix of G. By Theorem 6.5, (AB+)T without
the included rows is the clique matrix of KB(G), AKB(G). Consider C1 and
C2 the subfamily of cliques induced by the rows of AKB(G) corresponding to
columns of V1 and V2 in AB, respectively. By hypothesis, G has no dominated
parts V1, V2, then C1 and C2 are non empty subfamilies. By Theorem 5.4,
C1, C2 is a Helly-bicovering of C.

5.6 E-biclique graphs

In this section we define the E-biclique graphs and give necessary condi-
tions for a graph to be an E-biclique graph. We also prove that E-biclique
graphs are clique graphs.

The biclique graph was defined based on vertex intersection of bicliques.
For the E-biclique graphs, we consider the edge intersection of bicliques. Say
that two bicliques edge intersect if they contain a common edge. The E-
biclique graph of a graph, denoted by KBe(G), is the edge intersection graph
of the bicliques of G. See an example in Figure 5.16.

The following Theorem gives necessary conditions for a graph to be an
E-biclique graph of a bipartite graph.

Theorem 5.14 Let G a bipartite graph. There exist in KBe(G) a family of
complete subgraphs which verify the Helly property and covers the edges of
KBe(G).

Proof: Let G be a bipartite graph, E(G) = {e1, ..., ek} the edges of G and
B1, ...Bq the bicliques of G. Let A be the incidence matrix of the family of
bicliques, considering as columns the edges of G, i.e., aij = 1 if edge ej belongs
to biclique Bi. Consider AT . It induces the graph KBe(G). Consider the
family of complete subgraphs induced by the rows of AT , i.e., the complete
subgraph of V (KBe(G)) Lej

, is the subgraph induced by { ws ∈ V (KBe(G))
such that ej ∈ Bs}. We prove that this family is Helly.

Let Lei1
, ..., Leil

be a pair intersecting subfamily. Clearly, Leih
∩ Leis

6=
∅ implies taht there is a biclique in G that contains eih and eis . Then,
its endpoints induce a bipartite subgraph in G. Since Lei1

, ..., Leil
pairwise

intersect and G is bipartite, ei1 , ..., eil induce a bipartite subgraph in G.
Therefore, there is a biclique B in G containing ei1 , ..., eil . Consequently,
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KBe(G)G

Figure 5.17: Graph G and Ke(G).

the corresponding vertex wB in KBe(G) belongs to Leis
for every s. Finally,

to prove that the family covers the edges of G, observe that there is an
edge between two vertices ws, wt in KBe(G) if bicliques Bs, Bt in G have a
common edge e. Then, vertices ws, wt belong to Le.

Corollary 5.5 If G is an E-biclique graph of a bipartite graph, then it is a
clique graph.

Proof: It is direct from Theorems 5.1 and 5.14.

Remark 5.4 If G is not a bipartite graph, the family Le, e ∈ E(G), is not
necessary a Helly family. In Figure 5.17 we give an example of a graph G,
such that there exists no family that verifies the conditions of Theorem 5.14
in its E-biclique graph, KBe(G).
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Chapter 6

Closed neighborhood graphs
and the Helly property

6.1 Introduction

In this Chapter we study the closed neighborhood graph and relate it to
the concepts we have studied in the previous chapters.

In Section 2 we give a proof of a characterization of closed neighborhood
graphs, using the same techniques we have used to characterized biclique
graphs. We consider the general case and the subclass of closed neighborhood
graphs of bipartite graphs.

In Section 3 we relate closed neighborhood graphs to biclique graphs. We
give a relation between bicliques of a bipartite graph and cliques of its closed
neighborhood graph. As a consequence, we obtain conditions for a biclique
graph of a bipartite graph to be the clique graph of the closed neighborhood
graph. Also we relate the Helly property to properties of the biclique matrix
and the mentioned classes.

In Section 4 we define the class of bicliqual graphs and give a charac-
terization. We obtain some conditions for a closed neghborhood graph of a
bicliqual graph to be clique-Helly.

The technique we have employed in the characterization of biclique graphs
and we use for the characterization of closed neighborhood graphs, is a varia-
tion of the Krausz type (See also [31, 35, 39, 50, 51]). It is based on properties
of matrices: Suppose we want to characterize the intersection graph H of a
family F of subgraphs of G.

1. First, construct the incidence matrix A of the family F .

2. Characterize the incidence matrix based on properties P of the matrix.

3. Consider every column of the matrix as a complete graph in the inter-
section graph. Ask conditions for the family of complete subgraphs,
according to the properties P of A.

77
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4. Finally, conclude that H is an intersection graph of the family F if and
only if there exists a family of complete subgraphs C in H such that
verifies those conditions.

5. The proof follows considering the fact that AT induces the intersection
graph of F .

6.2 The closed neighborhood graph

In this section we give a different proof for the characterization of closed
neighborhood graphs using the ideas mentioned above. Also we study the
closed neighborhood graphs of a restricted class, the bipartite graphs.

Let G be a graph, the closed neighborhood graph of G, Nc(G), is the
intersection graphs of closed neighborhoods of G. If G is bipartite, and
V1 ∪ V2 its bipartition, then we say that a vertex of Nc(G) belongs to a part
Vi if it corresponds to a neighborhood of a vertex of Vi. Observe that two
vertices of V1 and V2 are adjacent if and only if the vertices in G of the
corresponding neighborhoods are adjacent.(Figure 6.1)

Nc[G]

w1 w2

v1 v2 v3

w3
w1 w2

v1 v2 v3

w3

G

Figure 6.1: Graph G and its closed neighborhood graph

Closed neighborhood graphs are useful in the study of biclique graphs.
We remark that closed neighborhood graphs are also known in the literature
as square graphs (See [22, 37, 40, 41, 54]).

The following Theorem gives a characterization of closed neighborhood
graphs.

Theorem 6.1 [41] [42] Let G be a graph and v1, ..., vn its vertices. Then
G is a closed neighborhood graph if and only if there exists in G a family
F = {F1, F2, ...Fn} of n complete subgraphs such that

1. For every i, vi ∈ Fi

2. Vertex vj ∈ Fk if and only if vk ∈ Fj.

3. F covers the edges of G

Proof: Suppose G is the closed neighborhood graph of H. Let A be the
incidence matrix of the family of closed neighborhoods of H, with n rows
and n columns, i.e. aij = 1 if and only if vivj is and edge in G or i = j. It
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is clear that the induced graph of A is G (in fact, matrix AT induces G, but
we use the fact that AT = A). For i = 1, ..., n, consider Fi as the complete
subgraph of G induced by each row i of A. We prove that F1, ..., Fn verifies
conditions of the Theorem. Since aii = 1 and aij = aji, conditions 1), 2) are
satisfied. Finally, since A induces G, the family satisfies condition 3).

Conversely. Let B be the incidence matrix of the family F , with n
columns and n rows, i.e., aij = 1 if and only if vertex vj belongs to the
complete subgraph Fi. Construct the graph H of n vertices as follows: vi is
adjacent to vj if and only if vi ∈ Fj, i.e. consider row j of B as the incidence
vector of the closed neighborhood of vj. Conditions 1), 2) imply that H is
well defined, since aij = aji and aii = 1. It is clear that the graph induced
by B is Nc(H). By condition condition 3), G = Nc(H)

Next, a characterization for closed neighborhood graphs of bipartite graphs.

Theorem 6.2 Let G be a graph with vertices {v1, v2, ..., vn}. The following
statements are equivalent:

1. G is a closed neighborhood graph of a bipartite graph

2. There exists in G a family F = {F1, F2, ...Fn} of n complete subgraphs
such that

(a) vi ∈ Fi

(b) If vj ∈ Fi, then vi ∈ Fj

(c) F covers the edges of G

(d) There is k such that

• If j < k, vj /∈ Ft for every t < k, s 6= t

• If j ≥ k, vj /∈ Ft for every t ≥ k, s 6= t.

3. There is bipartition V1 ∪ V2 of the vertices of G such that vi, vj ∈ V1

(analogously, V2) are adjacent if and only if N(vi) ∩ N(vj) ∩ V2 6= ∅
(analogously N(vi) ∩N(vj) ∩ V1 6= ∅).

4. There exists a bipartition V1 ∪ V2 of vertices of G such that

(a) For every triangle v1, v2, v3 contained in V1 (analogously, V2), ei-
ther there is a vertex in V2 (V1) adjacent to all v1, v2, v3 or there
exist w1, w2, w3 ∈ V2 such that v1, v2, v3, w1, w2, w3 induce the 3-
extended Hajós graph with center v1, v2, v3.(Figure 1.4).

(b) For every induced graph P3, with vertices v1, v2, v3, included in V1,
there exist vertices w1, w2 ∈ V2 such that v1, w1, w2, v3, v2 induce a
3-fan.

(c) For every induced P3, v1, v2, v3, such that v1, v2 ∈ V1 (analogously,
V2), and v3 ∈ V2 (V1), there is a vertex w ∈ V2 (V1) such that
v1, w, v3, v2 induce a diamond.
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(d) There is no induced P3, v1, v2, v3, such that v1, v3 ∈ V1 (analo-
gously, V2), v2 ∈ V2 (V1).

(e) Every edge v1v2 which is not contained in a triangle, nor in a P3,
has its endpoints in different parts.

Proof:
1) =⇒ 2): By Theorem Theorem 6.1, we construct a family F = {F1, ..., Fn},

where vi ∈ Fi, and vi ∈ Fj if and only if vj ∈ Fi. It is clear that if G is bipar-
tite, with bipartition {v1, ..., vs−1} ∪ {vs, ..., vn}, then F verifies the required
conditions, for k = s.

2) =⇒ 3): Let F = {F1, ..., Fn} be a family verifying the conditions of 2.
Let V1 = {v1, ..., vk−1}, and V2 = {vk, ...vn}. We prove that the bipartition
V1∪V2 verifies the requirements of 3. Let vi, vj ∈ V1 be two adjacent vertices
i, j < k. There is t ≥ k such that vivj ∈ Ft, since F covers the edges of G.
Then, vt ∈ N(vi) ∩ N(vj) ∩ V2. Conversely, if vt ∈ N(vi) ∩ N(vj) ∩ V2, for
vi, vj ∈ V1, since F covers all edges, it follows that vivt ∈ Fl. Then l = i or
l = t, since vi /∈ Fm for m < k, j 6= m and vt /∈ Fm for every m ≥ k, m 6= t.
Analogously, vjvt ∈ Fl′ , l′ = j or l′ = t. In any case, it follows that vi, vj ∈ Ft

concluding that vi, vj are adjacent.
3) =⇒ 4) We prove that the bipartition given by the hypothesis verifies

the requirements. Let v1, v2, v3 be a triangle T . Suppose T is contained
in V1 (analogously , V2). By hypothesis, there is at least a vertex w ∈ V2

adjacent to v1, v2. If some vertex w ∈ V2 is adjacent to v1, v2 and also v3,
the proof is finished. Otherwise, there exist a vertex w′ ∈ V2 adjacent to
v1, v3, w 6= w′. Analogously, there is a vertex w′′ ∈ V2 adjacent to v2, v3.
Since N(w), N(w′), N(w′′) have pairwise intersection in V1, by hypothesis,
they are adjacent. We conclude that the vertices v1, v2, v3, w, w′, w′′ induce
the 3-extended Hajós graph with center in v1, v2, v3.

If v1, v2, v3 induce a P3, then it follows that either it is contained in V1

(V2) or v1, v2 V1, and v3 ∈ V2 (analogously, V1, V2 respectively). If v1, v2, v3 is
in V1, there exists a vertex w1 ∈ V2 (V1) adjacent to v2. Analogously, there
is a vertex w2 ∈ V2 (V1) adjacent to v2, v3. Since v1 and v3 are not adjacent,
w2 6= w1. It follows that v1, v2, v3, w1, w2 induce a 3-fan.

If it is the case that v1, v2 ∈ V1, and v3 ∈ V2 (analogously, v1, v2 ∈ V2,
v3 ∈ V1), there exists a vertex w ∈ V2 (V1) adjacent to v2. As N(w)∩N(v3),
it follows that v1, v2, v3, w induce a diamond.

Finally, it is clear that any edge vivj, where vi, vj ∈ V1 (V2) is contained
in a triangle.

4) =⇒ 1) Define the bipartite graph H as follows: For every vi, there is
a vertex zi ∈ V (H), and zizj is an edge of H if and only if vi ∈ V1, v2 ∈ V2

and vivj is an edge of G. We prove that G is isomorphic to the closed
neighborhood graph of H, under the isomorphism which relates vi to N [zi].

First, we prove that vivj is an edge of G if and only if N [zi], N [zj] intersect.
Let vivj be an edge of G. The case where zi and zj belong to different parts,
is clear. Consider the case vi, vj ∈ V1. By hypothesis, if vivj is contained in
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a triangle or a P3. In either cases there is a vertex w ∈ V2 belonging to vivj.
The proof is complete.

We remark that closed neighborhood graphs of bipartite graphs can be
recognized in O(n4) [37] , whereas the recognition problem is NP-complete
in the general case [40].

6.3 Closed neighborhood graphs and biclique

graphs

Along this section, when we focus on the class of closed neighborhood
graphs of bipartite graph.

Closed neighborhood graphs may be a useful tool in the study of biclique
graphs. Moreover, bicliques of a graph G can be related to cliques of its closed
neighborhood graph. Consequently, their corresponding biclique graph and
clique graph, respectively, are related. Properties of the biclique graph of
a bipartite graph G can be obtained by looking at properties of the clique
graph of the closed neighborhood graph of G.

In this section, we study relations between bicliques of a bipartite graph
G and cliques of its closed neighborhood graph, and between the biclique
graph of G and the clique graph of G and Nc(G), respectively.

Start with a definition. Let G be a bipartite graph and let Nc(G) be the
closed neighborhood graph of G. Let B be a biclique of G. Define B? as the
complete subgraph of Nc(G) induced by vertices of G corresponding to the
closed neighborhoods of the vertices of B. This notation is employed through
Chapters 6 and 7.

A relation between bicliques of G and cliques of Nc(G) is given by the
following Proposition.

Proposition 6.1 Let G be a bipartite graph with bipartition V1 ∪ V2 and let
Nc(G) be its closed neighborhood graph. Let B(G) be the set of bicliques of G
and let C(Nc(G)) be the set of cliques of Nc(H). Then,

1. For every biclique B of G, B? is a clique of Nc(G)

2. If B1, B2 are two different bicliques of G, so are the cliques B?
1 and B?

2

of Nc(G)

3. Biclique B1 intersects biclique B2 if and only if B?
1 and B?

2 intersects.

4. C(Nc(G)) can be divided into two disjoint subfamilies as follows: C(Nc(G)) =
{B? : B ∈ B(G)} ∪ { C such that V (C) ⊆ V1 or V (C) ⊆ V2}.

Proof: Let B be a biclique and let B? the complete subgraph in Nc(G).
First observe that if B1, B2 are different bicliques or intersect, also B?

1 and
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B?
2 are. This follows from the fact that B1 and B2 intersect in G if and only

if they have a common vertex v, if and only if B?
1 and B?

2 contain vertex
of N [v]. Next, we prove that B? is a clique of Nc(G). Suppose it is not a
clique. It means there is a vertex v adjacent to every vertex of B? in Nc(G).
Suppose v corresponds to N [w], w ∈ V1. Then, v is adjacent to all vertices
of B?

1 ∩ V2. As G is bipartite, w is adjacent to every vertex of B ∩ V2. We
conclude that B∪v is a complete bipartite subgraph of G, absurd. It follows
that B? is a clique of H. Finally, it remains to prove that every clique in
Nc(G) containing vertices from V1 and V2 corresponds to a clique of the form
B?, since it is clear that that every B? contains vertices from V1 and V2.
Let C be a clique of Nc(G) and consider the vertices of G corresponding to
the neighborhoods of vertices of Nc(G). Clearly, it is a complete bipartite
subgraph B′ of G. If it is not a biclique of G, it is included in a biclique
B. Then, it follows that C in included in B?. Consequently, C = B? and
B′ = B.

By the close correspondence between bicliques of G and cliques of Nc(G),
we obtain the following Proposition, relating clique graphs of closed neigh-
borhood graphs and biclique graphs. It is a corollary of the Proposition
6.1.

Proposition 6.2 Given a graph G, the biclique graph KB(G), is an induced
subgraph of K(Nc(G)).

6.3.1 The Helly property and intersection graphs

In Proposition 6.2 we have related graph KB(G), with K(Nc(G)). Our
next goal is to know when both graphs are indeed, isomorphic. We prove that
KB(G) coincides with K(Nc(G)) just when the graph G is open neighborhood-
Helly.

The next Lemma is clear, but it is useful for the Theorems that follow.

Lemma 6.1 Let G be a bipartite graphs with bipartition V1 ∪ V2 and let A
be its biclique matrix. Then, it is equivalent:

1. Each of the subfamilies of the columns of A corresponding to the parts
V1 and V2 is Helly

2. G is open neighborhood-Helly

Recall that, given a bicoloring V1 ∪ V2 of a graph G, a bichromatic clique
is a clique which contains at least a vertex of each parts V1 and V2. Recall
that a graph is 2-weak colorable when there is a bicoloring of vertices of G
such that every clique of G is bichromatic.
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Theorem 6.3 Let G be a bipartite graph without isolated vertices, Nc(G)
its closed neighborhood graph, AB

G the biclique matrix and ANc(G) the clique
matrix of Nc(G). Finally, let C(Nc(G)) be the set of cliques of Nc(G). Then,
it is equivalent:

1. G is open neighborhood-Helly

2. C(Nc(G)) = {B?, B biclique of G }
3. AB+

G = ANc(G).

Proof: We prove that 1) and 2) are equivalent. Let G be a open neighborhood-
Helly bipartite graph. Suppose there is a clique C in Nc(G) containing ver-
tices only from V1. Let v1, ..., vk be the vertices of C. By definition, vertices
vi, vj ∈ V1 are adjacent if and only if the neighborhoods N [zi], N [zj] intersect.
Then N [z1], ..., N [zk] is an intersecting subfamily of neighborhoods. As two
vertices of the same part are not adjacent, the subfamily of open neighbor-
hoods N(z1)..., N(zk) is intersecting. By hypothesis, there is a vertex zt ∈ V2

in G adjacent to z1, ..., zk. It follows that vertex vt together with C induce a
complete subgraph of Nc(G), absurd. Then, C(Nc(G)) = {B?, B biclique of
G }.

Conversely. By contrary, suppose G is not neighborhood-Helly. Let
N(z1)...N(zk) be an intersecting subfamily of open neighborhoods. Clearly,
without loss of generality we can assume that zi ∈ V1, i = 1, ..., k. Then ver-
tices v1, ..., vk ∈ Nc(G) induce a complete subgraph F . Let B? be the clique
containing F . It follows that the biclique B which contains vertices z1, ..., zk

also contains a vertex w ∈ V2. Clearly, w ∈ N(zi) for every i, i = 1...k.
Finally, we prove 2) ⇐⇒ 3). It follows directly from the fact that AB+

G

induces the closed neighborhood graph Nc(G) of G, and every row induces
B?.

As corollaries, we obtain the following direct results.

Corollary 6.1 Given a graph H, the following statements are equivalent:

1. H is a closed neighborhood graph of an open neighborhood-Helly bipar-
tite graph

2. H is a closed neighborhood graph of a bipartite graph G, and the bipar-
tition of vertices of G induces a 2-weak coloring of H.

3. H is 2-weak colorable by the bicoloring induced by a bipartition V1∪V2,
where two vertices of V1 (analogously, V2) are adjacent if and only if
they induce a triangle with some vertex of V2 (analogously, V1)

4. The columns of the clique matrix of H can be partitioned into V1, V2

such that it verifies the bipartite-Helly property, where columns of V1

have label 1, and columns of V2, label -1.
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Proof: It is a direct consequence of Theorem 6.3
The next Corollary characterizes the graph G such that KB(G) = K(Nc(G)).

Corollary 6.2 Let G be a bipartite graph. Then, G is open neighborhood-
Helly if and only if KB(G) = K(Nc(G)).

Proof: It is a direct consequence of Theorem 6.3.

We study the cliques of Nc(G) when the bipartite graph G is not neigh-
borhood-Helly. In other words, we examine the cliques which are contained
in one of the parts.

Proposition 6.3 Let G be a bipartite graph and let V1∪V2 be its bipartition.
The cliques of Nc(G) which are contained in one of the parts of the bipartition
of G are in correspondence with the maximal intersecting families of open
neighborhoods without common vertex.

Proof: Let C be a clique of Nc(G) included in V1, (analogously, V2). Consider
the subfamily of the corresponding neighborhoods of G. Clearly, it is a
maximal intersecting subfamily. Suppose w ∈ V2 is a common vertex, then
the vertex N(w) of Nc(G) belongs to C, which is a contradiction.

Conversely, it is clear that such an intersecting family F of neighborhoods
contains only neighborhoods of vertices of one part (suppose V1) and induces
a complete subgraph H ′ of Nc(G). Then, H ′ is included in a clique C of
Nc(G).

Suppose C = B?, where B is a biclique of G. Let w ∈ V2 be a vertex of
B. It follows that w is a common vertex of the family F , absurd. Then, C
is included in V1. If H ′ is not C, there is a vertex N(zk) ∈ V1 adjacent to
every vertex of H ′. Then, {N(zk)} ∪F is an intersecting family, which is an
absurd since F is maximal.

As a consequence, we can organize the clique matrix of a closed neigh-
borhood graph of bipartite graphs as follows.

Remark 6.1 Let G be a bipartite graph with k bicliques. The clique matrix
of Nc(G) can be organized as follows.

-The first k rows are the rows of the biclique matrix of G while the columns
are divided into V1 and V2. .

-The remaining rows are divided into two groups, first those which have
zero entries in columns of V1 and the other, which have zero entries in
columns of V2.

In Figure 6.2 we can observe the matrices of the graphs of Figure 6.1.
Next we will relate the Helly property applied to the family of bicliques

of G, to cliques of Nc(G) and cliques in KB(G). Some of the following
properties are a direct consequence of results already presented in the thesis.
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AB
G =




v1 v2 v3

1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 0 1

|
|
|
|
|
|

w1 w2 w3

−1 0 −1
−1 −1 0

0 −1 −1
−1 0 0

0 −1 0
0 0 −1




ANc(G) =




v1 v2 v3

1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 0 1
− − −
1 1 1
0 0 0

|
|
|
|
|

w1 w2 w3

1 0 1
1 1 0
0 1 1
1 0 0
0 1 0
0 0 1
− − −
0 0 0
1 1 1




Figure 6.2: The Biclique matrix of G and Nc(G)

Proposition 6.4 Let G be a bipartite graph with bipartition V1 ∪ V2. Then:

1. If Nc(G) is clique-Helly, then G is biclique-Helly.

2. If G is open neighborhood-Helly, then G is biclique-Helly if and only if
Nc(G) is clique Helly.

Proof:

1. By Proposition 6.1, the set B? = {B?, B biclique of G} is a subfamily
of cliques of Nc(G). Recalling that two cliques of B intersect if and
only if their corresponding bicliques in G intersect, it follows that G is
biclique-Helly.

2. Is a direct consequence of Theorem 6.3.

We can use the closed neighborhood graph to prove properties of biclique
graphs. We study graphs for which their biclique graph is biclique-Helly. We
will use the following result on clique graphs.

Theorem 6.4 [49] The clique graph of a clique-Helly graph is clique-Helly

Proof: It a direct consequence from the fact that the transpose of the clique
matrix without including rows is the clique matrix of the clique graph (The-
orem 2.3).
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Proposition 6.5 If G is open neighborhood-Helly and biclique-Helly, then
KB(G) is clique Helly.

Proof: As G is open neighborhood-Helly and biclique-Helly, Nc(G) is clique-
Helly. By Theorem 6.3, K(Nc(G)) = KB(G). By Theorem 6.4 the clique
graph of a clique-Helly graph is clique-Helly.

The Helly property related to bicliques in a graphs has a close relation
with the biclique graph, by looking at its clique matrix. It is exposed in the
following Theorem.

Let AB
G be the biclique matrix of a graph G. Let A(G) be the matrix

obtained from (AB+
G )T by removing the included rows.

Theorem 6.5 Let AB
G be a biclique matrix of a bipartite graph G. Let H be

the graph induced by (AB+
G )T . Then, the following statements are equivalent:

1. G is biclique-Helly.

2. A(G) is the clique matrix of KB(G).

Proof: Suppose G is a bipartite biclique-Helly graph. It is clear that (AB+
G )T

induces the biclique graph of G, KB(G). As G is biclique-Helly, columns of
(AB+

G )T are Helly. Then, A(G) is a clique matrix, according to Theorem 5.2.
Conversely, suppose A(G) is the clique matrix of KB(G). Then, rows of

AB
G without the columns corresponding to the dominated vertices are Helly.

We prove that by adding the included columns, the Helly property is pre-
served. Let F be a subfamily of intersecting rows. Suppose two rows intersect
at an added column. Clearly, the rows also intersect another column, in other
words, every intersecting family of columns of AB

G is still an intersecting fam-
ily after removing included columns. Then, rows of AB

G are Helly, i.e. G is
biclique Helly.

Remark 6.2 Proposition 6.5 also can be proved by using the fact that columns
of AB

G are Helly (if G is open neighborhood-Helly) together with Theorem 6.5.

As a Corollary, we obtain the following result:

Corollary 6.3 Let AB
G be a biclique matrix of a bipartite graph G and ANc(G)

be the clique matrix of Nc(G). Let H be the graph induced by (AB+
G )T . Then

it is equivalent:

1. G is open neighborhood-Helly and biclique-Helly.

2. A(G) is the clique matrix of K(Nc(G)).
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Proof: Suppose G is open neighborhood-Helly and biclique-Helly.By Theo-
rem 6.5, A(G) is the clique matrix of KB(G). If G is open neighborhood-
Helly, by Corollary 6.2, KB(G) = K(Nc(G)).

Conversely, suppose A(G) is the clique matrix of K(Nc(G)). Observe that
A(G) induces KB(G). Then, K(Nc(G)) = KB(G) and, according to Corol-
lary 6.2, G is open neighborhood-Helly. It follows that AB+

G = ANc(G). Then,
AT

Nc(G) is the clique matrix of K(Nc(G)). By Theorem 6.5, G is biclique-Helly.

Theorem 6.6 A clique graph K(G) is a closed neighborhood graph of a
biclique-Helly bipartite graph if and only if there exists a bipartition of vertices
of the clique graph of K(G) such that:

1. The bichromatic cliques of K(G) are Helly

2. Every pair of vertices of a monochromatic clique belongs to a bichro-
matic clique.

Proof: First we show that K(G) is a closed neighborhood graph. Let V1∪V2

be the bipartition given by the hypothesis. Since every pair of adjacent
vertices belongs to a bichromatic clique, it follows that two vertices of the
same bipartition are adjacent if and only if they have a common neighbor in
the other bipartition. By Theorem 6.2 K(G) is a closed neighborhood graph
of a bipartite graph H, with bipartition V1, V2. Since bichromatic cliques of
Nc(H) = K(G) correspond to bicliques of H, it follows that H is biclique-
Helly. Conversely. Considering bipartitions V1, V2 given by the bipartite
graph, the result follows directly from Proposition 6.1 and Theorem 6.2 .

6.4 About closed neighborhood graphs and

open neighborhood Helly graphs

We analyze the possible induced diamonds in a closed neighborhood graph
Nc(G) of a bipartite graph G. Also, we study the alternatives for the extended
triangles of Nc(G).

Let G be a bipartite graph, and let V1 ∪ V2 be its bipartition. Let
v1, v2, v3, v4 be an induced diamond in Nc(G), v1, v2 of degree 3. We con-
sider only the cases where v1, v2, v3, v4 is not contained in one part of the
bipartition:

Case 1: v1, v2 ∈ V1. It follows that v3 ∈ V2, or v4 ∈ V2. Without loss of
generality, suppose v3 ∈ V2. Then, v4 ∈ V1, since v3 and v4 are not adjacent.
The case where v1, v2 ∈ V2 is analogous. We conclude that if v1, v2 belong
to one part, suppose V1, also does v4.
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Case 2: v1 ∈ V1, v2 ∈ V2. As v3 and v4 are not adjacent, the can not
belong to the same part of the bipartition. We conclude that if v1 and v2

belong to different parts, also do vertices v3 and v4.
Observe that in both cases, given a triangle v1, v2, v3 in Nc(G), every

vertex of its extended triangle adjacent to vi, vj belong to the same part V1

or V2, determined by the vertices vi, vj.
In the following Proposition, we study the bipartite graphs for which their

closed neighborhood does not have induced diamonds included in one part
of the bipartition. It is a similar to the result given by the Theorem 2.11

Proposition 6.6 Let G = V1 ∪ V2 be an open neigbourhood-Helly, bipar-
tite graph. Let Q be the graph of Figure 6.3. Then G is Q − free, where
N(w1) ∩ N(w1) = ∅ if and only if G? does not have and induced diamond
{w1, w2, v3, v4} ∈ V1 (analogously, V2)

v3

v4

w1

w2

v1

v2

Q

Figure 6.3: Graph Q

Proof: Suppose G? has a diamond which vertices {w1, w2, v3, v4} belong to
V1. As N(w1)∩N(vi), N(w2)∩N(vi) and N(v3)∩N(v4) are non empty sets
and G is open Neigbourhood-Helly, there exist vertices v1, v2 ∈ V2 adjacent
to w1, v3, v4, and w1, v3, v4 respectively. As w1 and w2 are non adjacent in
Nc(G), N(w1) ∩N(w1) = ∅.

Conversely, suppose G has the graph Q as induced subgraph, and N(w1)∩
N(w1) = ∅. Then, in Nc(G), w1 is not adjacent to w2 and both vertices are
adjacent to v4 and v3 (See Figure 6.4).

v3

v4

w1

w2

Figure 6.4:

6.5 Bicliqual graphs

In this section we introduce the bicliqual graphs. We give a characteriza-
tion of bicliqual graphs by forbidden subgraphs. We use bicliqual graphs to
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obtain conditions for a closed neighborhood graph to be hereditary clique-
Helly.

In [13] are defined the cliqual graphs as the graphs for which every clique
subgraph GC has C as the family of cliques. In [13] it is also proved that
the class of cliqual graphs is equivalent to the class of hereditary clique-Helly
grahs. It was useful in the characterization of k-perfect graphs ([13, 14]).

Theorem 6.7 [13] A graph is hereditary clique-Helly if and only if it is
cliqual.

Recall that, given a graph G, a clique subgraph GC of G is the subgraph
formed by vertices and edges of the subfamily C of cliques of G. Similarly,
the biclique graph GB is the subgraph formed by the vertices and edges of the
subfamily of bicliques B. A special clique subgraph is a clique subgraph such
that its family of cliques is included in the family of cliques of G. Analogously,
define the special biclique subgraph, as the biclique subgraph which has its
family of bicliques included in the family of bicliques of G. Given a family of
bicliques B, say that it is bicliqual if for every subfamily B′ of B, the biclique
subgraph GB′ has B′ as the family of bicliques. A graph is called bicliqual if
its bicliques form a bicliqual family. It is clear that if the graph is bicliqual,
every biclique subgraph is special.

Next, follows a characterization of bicliqual graphs for bipartite graphs,
by a forbidden subgraph.

Theorem 6.8 Let G be a bipartite graph. Then G is bicliqual if and only if
it does not contain P5 as induced subgraph. (Figure 6.5)

w1 w2

v1 v2 v3

Figure 6.5: P5

Proof: Let V1 ∪ V2 be the bipartition of vertices of G and suppose vertices
v1, w1, v2, w2, v3, where vi ∈ V1, wj ∈ V2, induce a P5 in G. Consider the
bicliques B1, B2 containing v1, w1, v2 and v2, w2, v3 respectively. Let GB1,B2

the biclique subgraph generated by B1, B2. It is clear that there is a biclique
B3 6= B1, B2 of GB1,B2 which contains vertices w1, v2, w2. It follows that G
is is not a bicliqual graph.

Coversely, let G be a bipartite graph with no P5 as an induced subgraph.
Suppose there is a subfamily H = B1, ..., Bk of bicliques of G which is not
bicliqual. Let GH be the biclique subgraph of G generated by H and let
B be a biclique of GH , B 6= Bi, i = 1, ..., k. Consider the following set:
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A = {j : ∀ U ⊆ B, | U |= j, there exists a biclique Bs containing U}.
Suppose B has m vertices. Observe that no element of A is greater that
m− 1, since there is no biclique in H containing B. Let r = max{j ∈ A}. It
is clear that j ≥ 2, since every edge of B belongs to a biclique of H. Consider
a subset R of r +1 vertices of B. As r +1 ≥ 3, let v1, v2, v3 be three vertices
of R. Suppose it is the case that they belong to V1. Consider the subset
R \ {v1}. As it has r elements, there is a biclique Bs in H which does not
contain v1.

Hence, there is a vertex w1 adjacent to v2, v3, and not adjacent to v1.
Analogously, consider the subset H \ {v3}. With the same argument, we
prove that there is a vertex w3 adjacent to v2, v1, and not adjacent to v3.
We conclude that v1, w3, v2, w1 v3 induce a P5. Absurd. Without loss of
generality, consider the case v1, v3 ∈ V1, v3 ∈ V2. It follows that v1, v2, v3

induce the graph P3. Consider H \ {v1}. By the same argument as we used
before, we conclude that there is a vertex w1 adjacent to v3, not adjacent to
v1. Analogously, there is a vertex w3 adjacent to v1, not adjacent to v3. It
follows that w1, v3, v2, v1, w3 induce the graph P5, which is an absurd.

The following corollary, relates bicliqual graphs to hereditary biclique-
Helly graphs.

Corollary 6.4 Let G be a P5− free, bipartite graph. Then, G is hereditary
biclique-Helly.

Proof: Suppose the contrary. Then, by Theorem 3.3, G contains some of the
graphs of Figure 3.3 as induced subgraph. Hence, G contains a P5, absurd.

Remark 6.3 The converse of Corollary 6.4 does not holds. The graph P5 is
not bicliqual but it is hereditary biclique-Helly.

As an application of the previous results, we can relate hereditary clique-
Helly, closed neighborhood graphs to biclique-Helly graphs.

Theorem 6.9 If the closed neighborhood graph Nc(G) of a bipartite graph
G is hereditary clique-Helly, then G is open neighborhood-Helly and biclique-
Helly and the columns of the clique matrix of Nc(G) are Helly-bicovered.

Proof: Suppose Nc(G) is hereditary clique-Helly. Observe that Nc(G) =
GB? , i.e. Nc(G) is the clique subgraph generated by the family of cliques
{B?, B is a biclique of G}. As Nc(G) is hereditary clique-Helly, by Theorem
6.7, B? is the family of cliques of Nc(G). Hence, | ANc(G) |= AB

G. By Theorem
6.3, G is open neighborhood-Helly. On the other hand, as ANc(G) is a biclique
matrix of a bipartite graph, columns of ANc(G) are bipartite-Helly for the
bipartition V1 ∪ V2, according to Theorem 5.4.
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Remark 6.4 The converse does not hold. In Figure 6.6 there is an example
of a graph G that is open neighborhood-Helly and biclique-Helly, and Nc(G)
is not hereditary clique-Helly.
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Figure 6.6: Graph G and Nc(G)

The following Corollary explains when the closed neighborhood graph of
a bipartite graph is hereditary clique-Helly.

Corollary 6.5 Let G be a P5− free, bipartite graph. Then Nc(G) is hered-
itary clique-Helly and G is biclique-Helly.

Proof: If G is P5-free. it is a direct consequence of Theorem 3.4 that G is
open neighborhood-Helly. Then, by Theorem 6.3, C = {B?, B is a biclique of G}
is the family of cliques of Nc(G). On the other hand, by Theorem 6.8 G is
bicliqual.

Using Theorem 3.1, we prove that Nc(G) is cliqual. Consider the clique
subgraph G{B?

1 ...B?
k
} of Nc(G) generated by {B?

1 ...B
?
k}. Suppose {B?

1 ...B
?
k}

is not cliqual, meaning that there is a clique C /∈ {B?
1 ...B

?
k} of G{B?

1 ...B?
k
}.

Consider the case that C is contained in one part, say V1. Let C ′ be a
minimal subgraph of C such that no clique of the family {B?

1 ...B
?
k} contains

C ′. It is clear that C ′ has at least 3 vertices. By minimality of C ′, there is a
clique B?

1 containing C ′ \ {vi1}. As vi1 is not in B?
1 , there is a vertex w1 ∈ V2

not adjacent to vi1 , adjacent to every vertex of C ′ \{vi1}. Analogously, there
are vertices w2 ∈ V2 such that w2 is not adjacent to vi2 , and it is adjacent
to every vertex of C ′ \ {vi2}. Let vi3 be a vertex of C ′, vi1 6= vi1 , vi2 . It
follows that in G, vertices vi1 , w2, vi3 , w1, vi2 induce a P5, absurd. Then,
C is not included in a part. Then, consider B? the clique that contains
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the complete subgraph C in Nc(G). In G, construct the biclique subgraph
GB1...Bk

. The corresponding vertices of C in G induce a complete bipartite
subgraph contained in a biclique of G{B1...Bk}. By hypothesis, since G is
bicliqual, vertices of C are included in a biclique Bi. It follows that C is
included in B?

i . Absurd.

Remark 6.5 The converse of Corollary 3.1 does not holds. i.e., the closed
neighborhood graph of P5, Nc(P5) is cliqual. (Figure 6.7)

w1 w2

v1 v2 v3

P5 Nc(P5)

w1 w2

v1 v2 v3

Figure 6.7: Graph P5 and its closed neigborhood graph



Chapter 7

Clique-perfectness and
biclique-perfectness

7.1 Introduction

In this Chapter we study some classes related to perfect graphs. We define
the class of b-coordinated and b-biclique-perfect graphs. We relate them to
the class of graphs for which the biclique graph is perfect, i.e., KB-perfect
graphs.

We also study the relation between the mentioned classes and the c-clique-
perfect, c-coordinated and K-perfect graphs.

Recall that K-perfect graphs are those for which the clique graph is per-
fect. Analogously, say that a graph is KB-perfect when its biclique graph is
perfect.

Denote by M(G), the maximum number of cliques that has a common
vertex. Given a graph G and a vertex v of G, denote by mb(v) the number
of bicliques that contains v. Define MB(G) as the maximum number of
bicliques that has a common vertex, i.e., MB(G) = maxv{mb(v)}. On the
other hand, a clique coloring is a function from a set of colors to the set of
cliques of a graph, in such a way that two intersecting cliques have different
colors, i.e., a coloring for K(G). Analogously, define the biclique coloring
as an assignment of colors to bicliques of a graph, in such a way that two
intersecting cliques have different colors, i.e., a coloring of KB(G). Denote
by χ(K(G)) the minimum clique coloring, and χ(KB(G)), the minimum
biclique coloring.

Remark that MB(G) ≤ M(Nc(G)) and χ(KB(G)) ≤ χ(K(Nc(G))). If
G is open neighborhood-Helly, then MB(G) = M(Nc(G)) and χ(KB(G)) =
χ(K(Nc(G))). In [13], it is defined the class of coordinated graphs as the
graphs for which M(H) and χ(K(H)) coincide for every induced subgraph
H. Also, the c-coordinated are the graphs for which the equality holds
for every special clique subgraph H. On the other hand we define the b −
coordinated graphs as the graphs for which MB(H) = χ(KB(H)) for every

93
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special biclique subgraph of H.
A clique-transversal of a graph G is a subset of vertices that meets all

the cliques of G. A biclique-transversal of a graph G is a subset of vertices
that meets all the bicliques of G. A biclique-independent set is a collection of
pairwise vertex-disjoint bicliques. The clique-transversal number and clique-
independence number of G, denoted by τc(G) and αc(G), are the sizes of
a minimum clique-transversal and a maximum clique-independent set of G,
respectively. Analogously, denote by τb(G) and αb(G), the sizes of a min-
imum biclique-transversal and a maximum biclique-independent set of G,
respectively.

It is easy to see that τc(G) ≥ αc(G) and τb(G) ≥ αb(G) for any graph
G. For G bipartite, observe that τb(G) ≤ τc(Nc(G)) and αb(G) ≤ αc(Nc(G)).
Indeed, when G is open neighborhood-Helly, the equality holds, i.e. τb(G) =
τc(Nc(G)), αb(G) = αc(Nc(G)).

A graph G is clique-perfect if τc(H) = αc(H) for every induced subgraph
H of G. The c-clique-perfect graphs, defined in [14] are graphs such that
for every special clique subgraph H, τc(H) = αc(H). On the other hand,
define the b − biclique − perfect graphs as the family of graphs such that
τb(H) = αb(H) for every special biclique subgraph H.

The c-coordinated and c-clique-perfect graphs are related to K-perfect
graphs. In [13, 14] hereditary clique-Helly, K-perfect graphs were character-
ized as follows.

Theorem 7.1 [13] Let G be a clique-Helly K-perfect graph. Then G is c–
coordinated and c-clique-perfect.

Theorem 7.2 Let G be an hereditary clique-Helly graph. Then the following
statements are equivalent:

1. G is K-perfect.

2. G is c-coordinated.

3. |C(H)| ≤ αC(H)M(H) for every clique subgraph H of G.

4. G is c-clique-perfect.

7.2 B-coordinated graphs, b-biclique-perfect

graphs and KB-perfects graphs

We study the b-coordinated and b-biclique-perfect graphs in relation to
KB-perfect graphs, i.e., graphs whose biclique graphs are perfect. Since bi-
cliques of G are related to cliques of Nc(G), it is intuitive to think of a
relation between b-coordinated graphs and the c-coordination of its neigh-
borhood graph. The following result summarizes some of these relations, for
the class of P5-free graphs.



CHAPTER 7. BICLIQUE-PERFECTNESS 95

Theorem 7.3 Let G be a P5 − free, bipartite, graph. The following state-
ments are equivalent:

1. G is b− coordinated

2. Nc(G) is c− coordinated

3. G is b-biclique-perfect

4. Nc(G) is c− clique− perfect

5. KB(G) is perfect

6. K(Nc(G)) is perfect

7. matrix (ANc(G))
T is perfect

8. matrix (AB
G)T is perfect

9. |C(H)| ≤ αc(H)M(H) for every clique subgraph H of Nc(G).

10. |B(H)| ≤ αb(H)MB(H) for every biclique subgraph H of G.

Proof: 1) ⇐⇒ 2), 3) ⇐⇒ 4) As G has no induced P5, G is open neighborhood-
Helly. Therefore, by Theorem 6.3, {B?, B biclique of G} is the family of
cliques of Nc(G). Let H be the clique subgraph G{B?

1 ...B?
k
} of Nc(G). By

Corollary 6.5, Nc(G) is hereditary clique-Helly and according to Theorem
6.7, the cliques of G{B?

1 ...B?
k
} are exactly {B?

1 ...B
?
k}.

Consider the biclique subgraph G{B1...Bk}. By Theorem 6.8, B1...Bk are
all the bicliques of G{B1...Bk}. Then, it is clear that Nc(G{B1...Bk

}) = GB?
1 ...B?

k
.

It follows that, if MB(G{B1...Bk...Bs}) = χ(KB(GB1...Bk...Bs)), then M(H) =
χ(K(H)), meaning that if G is b-coordinated, Nc(G) is c-coordinated and, if
G is b-biclique-perfect, Nc(G) is c-clique-perfect.

Conversely, let H = G{B1...Bk} be a biclique subgraph of G. Since G is
P5−free, the family of bicliques of H are {B1...Bk}. Let Nc(H) be the closed
neighborhood graph of H. To conclude our proof, observe that Nc(H) =
G{B?

1 ...B?
k
}. Then, Nc(H) is a clique subgraph of Nc(G) and since M(Nc(H)) =

F (Nc(H)), and τc(Nc(H)) = αc(Nc(H)) then MB(H) = χ(KB(H)) and
τb(H) = αb(H). We conclude that G is b-coordinated and b-biclique-perfect.

The equivalence between 2), 4) , 6) and 7) is direct from Theorem 7.2
Next, prove that 2), 5) and 6) are equivalent: Since G is P5 − free, by

Corollary 6.5, Nc(G) is hereditary clique Helly. By Theorem 7.2, Nc(G) is
c − coordinated if and only if K(Nc(G)) is perfect. By Corollary 6.2, G is
open neighborhood-Helly, and KB(G) = K(Nc(G)). It follows that KB(G)
is a perfect graph if and only if K(Nc(G)) is perfect.

We prove that 6) and 7) are equivalent. By Theorem 2.3, since Nc(G) is
hereditary clique-Helly, the polyhedrom {x ∈ <m/(A?

G)T · x ≤ 1, x ≥ 0} is
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the same as {x ∈ <m/AK(G?) ·x ≤ 1, x ≥ 0}. We conclude that K(Nc(G)) is
perfect if and only if AK(Nc(G)) is perfect if and only if (ANc(G))

T is perfect.
The equivalence between 7) and 8) is a direct consequence from the The-

orem 6.3.
Finally, we prove the equivalence of items 9) and 10). Given a clique

subgraph H formed by cliques {B?
1 , ...B

?
k}, the biclique subgraph G{B1,...,Bk}

of G has {B1, ..., Bk} as its set of bicliques. Analogously, given a biclique
subgraph G{B1,...,Bk} of G, it is true that Nc(G{B1,...,Bk}) = {B?

1 , ...B
?
k}, since

G is bicliqual (P5−free) and Nc(G) is cliqual (hereditary clique Helly, by
Corollary 6.5 and Theorems 6.7,6.8. It follows that for every clique subgraph
of H of Nc(G), there is a biclique subgraph H ′ in G such that |C(H)| =
|B(H ′)|, M(H) = MB(H ′) and αc(H) = αb(H

′), and conversely, for every
biclique subgraph GB, Nc(GB) is a clique subgraph of Nc(G), verifying that
|C(Nc(GB)| = |B(GB)|, M(Nc(GB)) = MB(GB) and αc(Nc(G)) = αb(G).

Theorem 7.2 completes the proof.

To study the case when G has indeed a P5, we need to analyze properties
of KB(G) disregarding the closed neighborhood graph.

The following Proposition gives some relations between the graph G and
its biclique graph.

Proposition 7.1 Let G be a graph. Then:

1. MB(G) ≤ ω(KB(G)).

2. If G is biclique-Helly then MB(G) = ω(KB(G)).

3. αb(G) = α(KB(G)).

4. τb(G) ≥ θ(KB(G)).

5. If G is biclique-Helly then τb(G) = θ(KB(G)).

Proof:

1. Observe that mb(v) ≤ ω(KB(G)), ∀v ∈ V (G), since all the vertices
that correspond to the m(v) bicliques containing v induce a complete
subgraph in KB(G). In particular, MB(G) ≤ ω(K(G)).

2. We only need to prove that if G is biclique-Helly, then ω(KB(G)) ≤
MB(G). Let L be a maximum biclique of KB(G) and B1, . . . , Br be
the bicliques of G that correspond to the vertices of L. Since G is a
biclique-Helly graph, there is at least one vertex vL in G which belongs
to the intersection of all the r bicliques. So, it is easy to see that
MB(G) ≥ mb(vL) = ω(KB(G)).

3. It follows from the fact that disjoint bicliques of G correspond to non
adjacent vertices in KB(G), and conversely.
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4. Let v1, . . . , vτb(G) be a biclique-transversal set of G. For each i, analyze
the mb(vi) vertices in KB(G) corresponding to the bicliques in G that
contain the vertex vi. They form a complete set of KB(G). This
complete set must be included in some clique Li of KB(G). Observe
that these cliques Li (i = 1, . . . , τb(G)) are not all necessarily different.
We prove that there is a minimum clique cover of size at most τb(G).
Let w be a vertex of KB(G). Then, w corresponds to some biclique Bw

of G. As the set v1, . . . , vτb(G) intersects all the bicliques of G, there is
some vertex vj that belongs to Bw. This means that the corresponding
vertex of Bw in KB(G) belongs to the clique Lj, i.e., w ∈ Lj. Then,
the size of the minimum clique cover of KB(G) is at most the size of
this biclique cover which is at most τb(G).

5. All we need to prove is that if G is biclique-Helly, then τb(G) ≤
θ(KB(G)). Recall that, as G is biclique-Helly, then by Theorem 6.5
every clique C of KB(G) has a correspondence with a vertex of G,
vC satisfying that vertices of C correspond exactly to the family of bi-
cliques of G containing vC . Now, let L1, . . . , Lθ(KB(G)) be a clique cover
of KB(G). Let vL1 , . . . , vLθ(KB(G))

be the corresponding vertices in G.
We need to prove that they are a biclique-transversal set of G. Let B
be a biclique of G and wB its corresponding vertex in KB(G). Then
there is an index j such that wB belongs to the clique Lj in KB(G).
It follows that the associated vertex vLj

belongs to B in G.

The next Theorem relates KB-perfect graphs to b-coordinated and b-
biclique-perfect graphs.

Theorem 7.4 If G is a biclique-Helly, KB-perfect graph, then G is b-coordinated
and b-biclique-perfect.

Proof: Consider a special biclique subgraph GB of G and let {B1, ..., Bs} be
its family of bicliques. As they are bicliques in G, let H be the subgraph
of KB(G) induced by the vertices corresponding to bicliques B1, ..., Bs in
KB(G). Then, by Proposition 7.1, αb(G) = α(KB(G)). On the other hand,
it is clear that since G is biclique-Helly, so are the special biclique subgraphs.
Then, MB(GB1,...,Bk

) = ω(H) and τb(G) = θ(KB(G)). Finally, as KB(G)
is perfect, χ(H) = ω(H) and α(KB(G)) = θ(KB(G)). We conclude that
χ(KB((GB1,...,Bk

)) = MB(GB1,...,Bk
) and αb(G) = τb(G) .

In the next Corollary, we study the graphs for which the biclque graph is
c–coordinated and c-clique-perfect. The following Lemma is usefull.

Lemma 7.1 [23] Let G be a graph. Denote by K2(G) the clique graph of
K(G). Then, K2(G), is an induced subgraph of G.
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Corollary 7.1 Let G be an open neigborhood-Helly and biclique-Helly graph
such that Nc(G) is perfect. Then KB(G) is c–coordinated and c-clique-
perfect.

Proof: Recall that if G is biclique-Helly and open neighborhood Helly, Nc(G)
and KB(G) are clique-Helly and KB(G) = K(Nc(G), according to Propo-
sitions 6.4, 6.5 and Corollary 6.2. By Lemma 7.1 K2(Nc(G)) is an induced
subgraph of Nc(G). Consequently, if Nc(G) is perfect, so is K2(Nc(G)).
Then K(Nc(G)) is K-perfect and clique-Helly, and by Theorem 7.1, K(G) is
c-coordinated and c-clique-perfect, and so is KB(G).



Chapter 8

Conclusions

A biclique of G is a maximal complete bipartite subgraph of G. A graph
is biclique-Helly when its family of bicliques is a Helly family.

We have described characterizations for biclique-Helly graphs, leading to
two polynomial time recognition algorithms. We also have considered open
and closed neighborhood-Helly graphs.

We have defined the bichromatic-Helly graphs and characterized them,
giving a polynomial time algorithm for recognizing this class.

We have described characterizations for hereditary biclique-Helly, and
hereditary open and closed neighborhood-Helly graphs, by families of for-
bidden subgraphs. The forbidden subgraphs are all of fixed size, implying
polynomial time recognition for these classes.

We have considered the biclique matrix of a graph and described a char-
acterization of it. We have formulated two polynomial time algorithms for
recognizing biclique matrices. On the other hand we have also character-
ized bipartite-conformal hypergraphs with compatible bicolorings and gave
a polynomial time algorithm for the recognition problem.

A biclique graph is the intersection graph of the bicliques of G. We have
given a characterization of biclique graphs. We also have studied the classes
of biclique graphs of same classes.

We have introduced the concept of bipartite-Helly hypergraphs and pro-
posed a polynomial time algoritmm for recognizing bipartite-Helly labeled
families.

The neighborhood graphs have been considered. We have studied the
clique graph of this class and relate it to biclique graphs.

We have considered the KB-perfect graphs, i.e., graphs having a perfect
biclique graph. We have characterized this class under the restriction of not
having induced P5‘s.

8.1 Open problems and future work

We leave the following as open questions and future work:
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1. Characterize positive biclique matrices of a graph.

2. Determine the computational complexity of recognizing biclique graphs.

3. Find families of graphs for which the problem of recognizing their bi-
clique graphs can be solved in polynomial time.

4. Study the iterated biclique operator, that is, KBi(G) = KB(KBi−1(G)).

5. Characterize E-biclique graphs

6. Define a b− coloring as a coloring of the vertices of a graph, where two
vertices have different colors if they belong to a same biclique. Define
the b − perfect graphs as graphs for which the maximum biclique
coincides with the minimum b-coloring. Study b-perfect graphs.

7. Define a b-weak coloring as the minimum number of colors that are
necessary to color vertices of G in such a way that every biclique of
G contains at least two colors. Characterize graphs that are b-weakly
2-colorable, that is, graphs graphs with b-weak coloring number equal
to 2.

8. Define the edge-biclique graph H of a graph G as the graph such that
V (H) = E(G), and two vertices of H are adjacent when their cor-
responding edges in G belong to a same biclique. Characterize edge-
biclique graphs.
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Appendix A

p-Completes Sets and p-Cliques

In this appendix, we consider a generalization of cliques of a graph, the
p-cliques. Also, we relates the to a generalization of the concept of the Helly
property. We give a characterization of (p,q)-Helly graphs in terms of the
the clique matrix of an certain graph.

We remark that (p,q)-Helly graphs were consider in [21]
Let F = {M1...Mr} be a family of sets. We say that it is a p-intersecting

family if for every subfamily F ′ = {Mi1 ...Mis}, s ≤ p, ∩p
1Mi 6= ∅.

Let F = {M1...Mr} be a family of sets. We say that it is a (p,q)-
intersecting family if for every subfamily F ′ = {Mi1 ...Mip}, the cardinality
of ∩p

1Mi 6= ∅ is greater than q-1. We say that a family is p-intersecting
precisely when it is (p,1)-intersecting.

Let F = {M1...Mr} be a family. We say that it verifies the p-Helly
property if for every p-intersecting subfamily F ′ = {Mi1 ...Mis}, ∩s

1Mi 6= ∅.
A graph G is p-clique-Helly if the family of cliques of G satisfies the p-Helly
property. We say that a graph is (p,q)-clique-Helly if every (p,q)-intersecting
subfamily of cliques have common intersection in more than q-1 vertices. For
the special case q=1, we say that the family is p-clique-Helly.

A p-complete subgraph in a graph G = K(H) is a complete subgraph
{v1...vn} such that the family of cliques of H corresponding to the vertices
v1...vn form a p-intersecting family. A p-complete subgraph is a p-clique if it
is maximal under inclusion. A p-clique matrix of a graph G is the incident
matrix of the p-cliques of G.

The following Theorem gives some properties of the p-clique matrix of a
graph.

Theorem A.1 Let G = K(H), and let AP
G be a p-clique matrix of G. Then,

1. AP
G does not have dominated rows.

2. AP
G does not contain zero columns.

3. The family of columns of AP
G satisfy the p-Helly property.
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Proof: Let AP
G be a p-clique matrix of a graph G, and suppose it has some

row dominated by another row. Since every row represents a p-clique in the
graph G, this means there is a p-clique included in another p-clique in G,
which is an absurd.

As every vertex is contained in some p-clique, AP
G does not contain zero

columns.
Let j1, . . . , jr be a p-intersecting family of columns. Take p of those

columns and its corresponding cliques in H. As they have common intersec-
tion, there is a p-clique in G containing them. This implies that its corre-
sponding cliques in H belong to a p-intersecting family. Then, these p cliques
of H have common intersection. Therefore, the cliques of H corresponding
to the vertices j1, . . . , jr of G form a p-intersecting family and so j1, . . . , jr

must be included in some p-clique of G. Therefore, columns j1, . . . , jr have
common intersection.

We study the p-clque-Helly graphs in relation to the p-clique matrix of
the clique graph. Start with the following Lemma.

Lemma A.1 Let G be a p-clique-Helly graph and let K(G) be its clique
graph. Then, each p-clique L of K(G) has an associated vertex vL in G such
that the vertices of L in K(G) are exactly those corresponding to the cliques
of C(vL) in G.

Proof: Let L be a p-clique of K(G). Let w1, w2, . . . , wr be the vertices of
K(G) that form the p-clique L, and let M1,M2, . . . , Mr be the cliques of G
that correspond to those vertices. As L is a p-clique of K(G), M1,M2, . . . , Mr

must be a p-intersecting family. As G is a p-clique-Helly graph, there is at
least one vertex in G which belongs to the intersection of all the r cliques.
This will be the the associated vertex vL of L. Suppose that there is a
clique M ∈ C(vL) \ {M1,M2, . . . , Mr}, and let w be its corresponding ver-
tex in K(G). Then M ∪ {M1,M2, . . . ,Mr}, is a p-intersecting family and
w, w1, w2, . . . , wr induce a complete subgraph of K(G), which contradicts
the maximality of L.

Theorem A.2 Let G be a graph, let AG be a clique matrix of G and let AP
K(G)

be a p-clique matrix of K(G) with the vertices in the same order as their
corresponding p-cliques in AG. Then, the following statements are equivalent:

1. G is p-clique-Helly.

2. The matrix At
G without the dominated rows is a p-clique matrix of

K(G).
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3. The polyhedron {x ∈ Rk/At
Gx ≤ 1, x ≥ 0}

is the same as the polyhedron {x ∈ Rk/AP
K(G)x ≤ 1, x ≥ 0}.

Proof: (i) ⇒ (ii) Let G be a p-clique-Helly graph and V (G) = {v1, v2, . . . , vn}
the vertices of G. Note that C(v1), . . . , C(vn) are identified by the columns
of AG, so by Lemma A.1, every p-clique of K(G) is identified by a column
of AG. On the other hand, every column of a vertex of G in AG represents
a p-complete subgraph K(G) so it must be included in some p-clique, which
is represented in At

G by a row of a vertex of G. This means that this vertex
dominates the other. Then the submatrix of At

G obtained by removing the
dominated rows is a clique matrix of K(G).

(ii) ⇒ (iii) As the variables are nonnegative, the dominated rows of the
matrix At

G can be removed without loosing restrictions.
(iii) ⇒ (i) Suppose that G is not p-clique-Helly. Let M1,M2, . . . , Mr ,

r ≥ 2, be a p-intersecting family of cliques in G without common intersection.
Without loss of generality, we can assume that those cliques correspond to
the first r rows of AG. Then, for each vertex vj there exist a clique Mij

not containing it. If we look at the clique matrix of G this means that for
every column j, there is some ij ≤ r such that aij = 0. Let x = (xi) be the
vector: xi = 1

r−1
for 1 ≤ i ≤ r, and xi = 0 for r + 1 ≤ i ≤ k and compute

(At
Gx)j =

∑r
i=1 aijxi +

∑k
i=r+1 aij0. As for each j there is at least one ij ≤ r

such that aijj = 0, then (At
Gx)j ≤ r−1

r−1
= 1 Then, the vector x belongs to

the polyhedron {x ∈ Rk/At
Gx ≤ 1, x ≥ 0}. Now, let AP

K(G) = {bij} be the
p-clique matrix of K(G). As M1,M2, . . . , Mr form a p-intersecting family of
cliques in G, there must be a p-clique in K(G) containing their corresponding
vertices in the clique graph. Therefore, there is a row i in AP

K(G) such that

bij = 1 for j ≤ r. Then (AP
K(G)x)i = r

r−1
> 1 and so x does not belong to the

polyhedron {x ∈ Rk/AK(G)x ≤ 1, x ≥ 0}, which is a contradiction.

We define the intersection graphs of a family of completes of q elements.
Let G be a graph, the graph φq(G) is defined in the following way: the
vertices of φq(G) correspond to completes of G of q vertices, two vertices
being adjacent in φq(G) if the corresponding completes are contained in a
clique.

The Helly property applied to cliques of φq is related to the (2,q)-clique-
Helly property. The relation is given by the following Lemma.

Lemma A.2 G is (2,q)-clique-Helly if and only if φq is clique-Helly.

Theorem A.3 [21] φq is p-clique-Helly if and only if G is (p,q)-clique-Helly.

Proof: =⇒) Let C1, C2, ..., Ck be a (p,q)-intersecting family of cliques. Then,
each clique has more than q vertices. Let C1, C2, ..., Ck be the corresponding
cliques in φq. As every subfamily of C1, C2, ..., Ck intersects in at least q
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vertices, C1, C2, ..., Ck is a p-intersecting family of cliques in φq. As φq is p-
clique-Helly, there is a vertex w belonging to ∩k

1Ci. This vertex corresponds
to a subgraph of G of q elements which belongs to C1, C2, ..., Ck.

⇐=) Suppose G is (p,q)-clique-Helly. Let C1, C2, ..., Ck be a p-intersecting
family of cliques of φq. Take the corresponding cliques in G, C1, C2, ..., Ck.
Then they form a (p,q)-intersecting family. As G is is (p,q)-clique-Helly,
there exist a complete subgraph of q vertices which belong to C1, C2, ..., Ck.
Therefore, the corresponding vertex in φq which belong to C1, C2, ..., Ck.

We give a characterization of (p,q)-clique-Helly graphs.

Theorem A.4 Let G be a graph. Let AT
(θq) be the traspose of the clique

matrix of the graph θq. Then AP
K(θq)=AT

(θq) if and only if G is (p,q)-clique-
Helly.

Proof: By Theorem A.2, AP
K(θq)=AT

θq) if and only if θq is p-clique-Helly. By
Theorem A.3, this is equivalent to the fact that the graph G is (p,q)-Clqiue-
Helly.

A.1 Maximum p-cliques

In this section, we extended the concept of ω(G), considering p-cliques.
We relate this concept to M(G).

Let G be a graph and K(G) its clique graph. Denote by ωp(K(G)) the
cardinality of the maximum p-clique of the graph K(G).

Theorem A.5 Let G be a graph. Then M(G) ≤ ωp(K(G)) and the equality
holds whenever G is a p-clique-Helly graph.

Proof: First, observe that m(v) ≤ ωp(K(G)) ∀v ∈ V (G), since all the
vertices that correspond to the m(v) cliques containing v induce a p-complete
subgraph in K(G). In particular, M(G) ≤ ωp(K(G)). To prove the equality,
we need to prove that if G is p-clique-Helly, then ω(K(G)) ≤ M(G). Let L
be a maximum p-clique of K(G) and let vL be the associated vertex in G
given by Lemma A.1. Then, M(G) ≥ m(vL) = ω(K(G)).

Theorem A.6 Let G be a graph. If M(G) = F (G), then M(G) = ωp(K(G)) =
ω(K(G))

Proof: By Theorem A.5, M(G) ≤ ωp(K(G)). As every p-clique is con-
tained in some clique, it follows that ωp(K(G)) ≤ ω(K(G)). Then, M(G) ≤
ωp(K(G)) ≤ ω(K(G)) ≤ χ(K(G)) = F (G).
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