Bicliques, Cliques, Neighborhoods y la Propiedad de Helly

Marina E. Groshaus
Universidad de Buenos Aires
Facultad de Ciencias Exactas y Naturales,
Departamento de Computación
Director: Jayme L. Szwarcfiter
Universidad Federal do Rio de Janeiro

Cidade maravilhosa, meu Rio de Janeiro

Agradecimientos

Tenía 17 años, me gustaba ir al cine, bailar, escuchar música, y,...matemática. Tambén me gustaba el arte y la creatividad, y por eso, me anoté para estudiar publicidad con la ilusión adolescente de convertirme en una exitosa publicista. Por otro lado, para satisfacer mi (oculto) lado nerd, me anoté en la carrera de matemática, como quien se anota en un curso de guitarra. "Como hobbie" solía decir ...

El primer año de carrera, dos semanas antes de rendir mi primer parcial, ya como una estudiante universitaria, me plantee dejar la carrera. "Mi cabeza no da para esto", pensaba ...

Mientras viajaba en el 160, un entonces docente, me preguntó por qué no me anotaba en el concurso de ayudante de segunda, que se estaba llamando en ese entonces. "Yo, ayudante?!!!", me preguntaba ...

Se habían terminado las materias a cursar, y los finales pendientes y la tesis de licenciatura, constituían un lejano y oscuro horizonte, el que de ninguna manera pensaba alcanzar. "Largo la carrera, para qué quiero el título", repetía muchas veces...

Se abrió un concurso exclusiva en computación, me anoté. "Siempre supimos que este era mi destino", solíamos decir entre mis amigos de computación.

Un dia me encuentro con la posibilidad de hacer un viaje a Rio de Janeiro, Brasil. Como si las infinitas veces que bailé y escuché música brasilera hubiesen marcado mi camino, ahi me encontraba yo, conociendo a mi director de doctorado, Dr. Jayme Szwarcfiter. "Tengo sangre brasilera", sentía desde chiquita...

Hoy, quiero agradecerles a todos aquellos que, en algún momento de este camino, me acompañaron, me ayudaron, me apoyaron, me escucharon, me entendieron, se enojaron, y principalmente, me quisieron,

A mi director, Jayme, por su paciencia, su capacidad, su tiempo, y principalmente, por haberme dado la oportunidad de trabajar con él en un ambiente tan cálido.

A los jurados, por sus valiosos comentarios y sugerencias.
Al Departamento de Computación, por haberme abierto las puertas.
Al grupo de Combinatoria, por darme un lugar en el grupo, y por ayudarme en todas las peripecias que aparecen, tanto al realizar el doctorado, como a la hora de los trámites, (o no, Isa?)

A mis alumnos, quienes hacen que la docencia sea una de mis grandes pasiones.

A Adri e Danilo, porque sem eles, nao tivesse sido tão feliz nessa maravilhosa cidade, por todas as saidas, os chopes, as longas conversas, e sua amizade. E também a todos os brasileiros que me receberam com muito carinho, Fabio, Luerbio, Raquel, Priscila, Henrique, Rafael, Bernardo, Celina, Zula, Mitre, Marcia e TODOS.

A Fernandito, Maxi, Ale, y Aida, por las miles de veces que los molesté para preguntarles tantas pavadas!

A mis compañeros de oficina, pasados y actuales, por haber aguantado que les provoque problemas auditivos crónicos, por ayudarme en cada detalle, estar siempre dispuestos a escucharme, a solucionarme problemas, a cebarme un mate....

A Pablo F., porque, como siempre le digo, es "la voz de mi consciencia, mi mano derecha". Porque SIEMPRE está para ayudarme, tanto como compañero de docencia, como compañero de oficina, y como amigo, ya sea en lo personal, y lo académico.

A Lu, por estar SIEMPRE, por quererme, apoyarme, por todas nuestras charlas, por todo el aguante, por su amistad, por su incondicionalidad, por las cervezas, por las aventuras, por ser mi hermana y por TODO.

A San, por todo el apoyo que me da, porque son esas palabras que uno necesita escuchar en el momento justo, porque me levanta el ánimo, la autoestima, porque hace de la facultad un lugar de afecto, de cariño, porque es un ejemplo a seguir.

A Luly W., a Luli (Ana), a Vale, por ser mis amigas, por compartir una sonrisa conmigo, en las buenas, y en las malas, por acompañarme en este arduo camino que es vivir.

A Camisa y el Negro, mis amigos "alumnitos" ;) A Patu, Lean, mis raices matemáticas. A Karin, Manu, Dieguito, Matias (tenés novia?), Cristian, Francisco, Juan, Ari, Sebas, Pablo Name y Chino, Manu, Paulinha, Virna, todos mis amigos, por hacerme la vida más feliz.

Ao Fabio. Graças a ele eu estou defendendo minha tese hoje. Por ter me acompanhado e ajudado na etapa final, dando apoio e todo carinho e amor que precisava. Sem ele, eu no poderia ter chegado até aqui. Gracias por hacerme feliz!

Y fundamentalmente a mi familia. A mi tía, por estar siempre cuidandome. A mi papá, por ayudarme a realizar mis sueños, a mi hermano, por apoyarme y darme ese hermoso sobrinito, y especialmente a mi mamá, quien no se cansa de decirme "trabajá un poquito menos", quien estuvo en cada momento, bueno y malo de mi carrera, quien siempre me ayudó a levantar los brazos y seguir, a ella le dedico esta tesis.

Resumen

Un grafo es biclique-Helly cuando el conjunto de bicliques verifica la propiedad de Helly. En esta tesis caracterizamos a la familia de grafos biclique-Helly, y presentamos dos algoritmos polinomiales para el problema de reconocimiento. Por otro lado, relacionamos las clases de grafos bicliqueHelly, clique-Helly, discos-Helly y vecindad-Helly.

Es natural preguntarse si la propiedad de Helly es hereditaria para subgrafos inducidos. En este caso, nos referimos a los grafos clique-Helly hereditarios, discos-Helly hereditarios, biclique-Helly hereditarios y vecindad-Helly hereditarios, respectivamente. Las primeras dos clases fueron estudiadas en la literatura. En esta tesis, estudiamos las dos clases restantes. Presentamos caracterizaciones que se basan en subgrafos prohibidos. Ya que esta familia de subgrafos prohibidos tiene tamaño fijo, las caracterizaciones mencionadas dan lugar a algoritmos polinomiales de reconocimiento de las clases.

Dado un grafo G, la matriz biclique de G es una matriz con valores en el conjunto $\{0,1,-1\}$, donde las columnas y las filas representan los vértices y las bicliques de G, respectivamente, y los valores $1,-1$ en una fila correponden a dos vértices adyacentes de una biclique. Es esta tesis, describimos una caracterización de las matrices bicliques, en forma similar a la empleada en la caracterización de las matrices biclique. En esta caracterización, empleamos el concepto de hypergrafos bipartitos-conformal. Por otra parte, consideramos el caso particular de matrices bicliques de grafos bipartidos.

Dada una familia de subconjuntos \mathcal{F}, el grafo de intersección de \mathcal{F} es un grafo cuyos vértices se corresponden con los conjuntos de \mathcal{F}, donde dos vértices son adyacentes si los correspondientes conjuntos se intersecan. En esta tesis definimos el grafo biclique de $G, K B(G)$, como el grafo de intersección de la familia de bicliques de un grafo. Un grafo G es grafo biclique si $K B(H)=G$, para algún grafo H. En esta tesis presentamos una caracterización de los grafos biclique.

Dado G, definimos $N_{c}(G)$ como el grafo de intersección de las vecindades cerradas de G. En esta tesis estudiamos el grafo $N_{c}(G)$ en relación con la propiedad de Helly.

Los grafos perfectos son importantes desde el punto de vista algorítmico. En este trabajo estudiamos los grafos cuyo grafo biclique es perfecto, es decir, grafos KB-perfectos. Damos una caracterización de los grafos KB-perfectos tales que no continenen al grafo P_{5} como subgrafo inducido.

Abstract

A graph is biclique-Helly when its family of (maximal) bicliques is a Helly family. We describe characterizations for biclique-Helly graphs, leading to polynomial time recognition algorithms. In addition, we relate bicliqueHelly graphs to the classes of clique-Helly, disk-Helly and neighborhoodHelly graphs. A natural question is to determine for which graphs the corresponding Helly property holds for every induced subgraph. This leads to the classes of hereditary clique-Helly, hereditary disk-Helly, hereditary bicliqueHelly and hereditary neighborhood-Helly graphs, respectively. The first two of them have already been characterized. In this thesis, we describe characterizations for the remaining ones, by families of forbidden subgraphs. The forbidden subgraphs are all of fixed size, implying polynomial time recognition for these classes.

Given a graph G, the biclique matrix of G is a $\{0,1,-1\}$ matrix having one row for each biclique and one column for each vertex of G, and such that a pair of $1,-1$ entries in a same row corresponds exactly to adjacent vertices in the corresponding biclique. We describe a characterization for biclique matrices, in similar terms as those employed in the characterization of clique matrices. In the characterizations, we employ the concept of bipartite-conformal hypergraphs. The special case of biclique matrices of bipartite graphs is also considered.

Given a family of subsets of some set \mathcal{F}, the intersection graph of \mathcal{F} is a graph having one vertex for each set of \mathcal{F}, and two vertices are adjacent whenever their corresponding sets intersect. sIn this thesis we define the biclique graph of $G, K B(G)$, as the intersection graph of the family of all bicliques of G. A graph G is a biclique graph if there exists a graph H such that $K B(H)=G$. We present a characterization for biclique graph. The special case of biclique graphs of bipartite graphs is also considered.

The closed neighborhood graph is the intersection graph of the closed neighborhoods of G. We study closed neighborhood graphs in relation to the Helly property.

Perfect graphs are very interesting from an algorithmic point of view. We study the graphs for which the biclique graph is perfect, the KB-perfect graphs. We give a characterization of the of KB-perfect graphs with no induced P_{5}.

Table of contents

1 Introduction 1
1.1 Results of the thesis 3
1.2 Definitions 4
1.3 Different problems on bicliques and related concepts 7
1.4 How the thesis is organized 8
1.4.1 Notation and basic graphs 9
2 Bicliques and the Helly property 11
2.1 Introduction 11
2.2 Biclique-Helly Graphs 13
2.3 Bichromatic-Helly Graphs 18
2.4 Bichromatic-Helly graphs and biclique-Helly graphs 22
2.5 Neighborhood-Helly graphs and other related classes 25
3 Helly hereditary classes 33
3.1 Introduction 33
3.2 Hereditary biclique-Helly graphs 35
3.3 Hereditary open and closed neighborhood Helly graphs 38
3.4 Relations among the hereditary classes 39
4 Biclique matrices 45
4.1 Introduction 45
4.2 Characterization of a biclique matrix 46
4.3 Bipartite graphs 50
4.4 Bipartite-conformal hypergraphs 51
4.5 Algorithms for recognizing biclique matrices and bipartite- conformal hypergraphs with compatible bicoloring 52
5 Biclique graphs 55
5.1 Introduction 55
5.2 Clique Graphs 58
5.3 Biclique Graphs 59
5.4 Bipartite-Helly families 69
5.5 Classes of biclique graphs 71
5.6 E-biclique graphs 74
6 Closed neighborhood graphs 77
6.1 Introduction 77
6.2 The closed neighborhood graph 78
6.3 Closed neighborhood graphs and biclique graphs 81
6.3.1 The Helly property and intersection graphs 82
6.4 About closed neighborhood graphs and open neighborhood Helly graphs 87
6.5 Bicliqual graphs 88
7 Biclique-perfectness 93
7.1 Introduction 93
7.2 B-coordinated graphs, b-biclique-perfect graphs and KB-perfects graphs 94
8 Conclusions 99
8.1 Open problems and future work 99
Bibliography 104
Appendix 104
A p-Completes Sets and p-Cliques 105
A. 1 Maximum p-cliques 108

List of Figures

1.1 Example of bicliques if a graph G 5
1.2 G is not biclique-Helly, G^{\prime} is biclique-Helly. 6
1.3 Cocktail party of order 4, $C P(4)$ 7
1.4 Basic graphs 10
2.1 Examples of extensions of S 14
2.2 Extension of P_{3} 15
2.3 Extension of an independent set 15
2.4 Extension of $\overline{P_{3}}$ 16
2.5 Examples 20
2.6 Example of $H(G)$ 23
2.7 Graph J 27
2.8 Graphs A, B, C and D. 28
2.9 The Cube graph 29
2.10 Intersections between clique-Helly, biclique-Helly, open neghborhood- Helly, closed neighborhood-Helly and disk-Helly graphs. 31
3.1 Examples of Hereditary biclique-Helly, and (open and closed) neighborhood-Helly graphs 33
3.2 The Hajós graph 34
3.3 Graphs $T, C_{5}, C_{6}, Q_{1}, Q_{2}$ and Q_{3} 35
$3.4 \quad C_{6}$ induced by $\left\{v_{1}, w_{2}, v_{3}, w_{1}, v_{2}, w_{3}\right\}$ 36
3.5 Case $k=4$ 37
3.6 Case $k=3$ 37
3.7 Relations between hereditary classes 43
$4.1\{0,1,-1\}$-matrices and the graph G 47
4.2 Matrices M_{1}, M_{2} 48
5.1 Graph P_{5} and its biclique graph 56
5.2 Example of a labeled family 57
5.3 Matrices M_{1}, M_{2} 59
5.4 The triangle is the biclique graph of G 63
5.5 Diamond 63
5.6 Alternatives for vertices a, b, c, c_{1}, d_{1} 64
5.7 Case $c_{1} d$ is not an edge 64
5.8 Bipartite subgraph induced by vertices d, c_{1}, b 65
5.9 Alternatives for vertices a, b, c, d, d_{1} 65
5.10 Bicliques B_{1}, B_{2}, B_{2} 66
5.11 Graph P_{3} and all possible labels of its edges. 67
5.12 Complete subgraphs C_{1}, C_{2}, C_{3} 68
5.13 Complete subgraphs C_{1}, C_{2}, C_{4} and the induced diamond $v_{1}, v_{2}, v_{3}, w^{\prime}$69
5.14 Complete subgraphs C_{4}, C_{5}, C_{6} and the induced diamond $v_{2}, v_{3}, w^{\prime}, w^{\prime \prime}$ 69
5.15 Complete subgraphs C_{1}, C_{2}, C_{3} and the induced diamond v_{1}, v_{2}, v_{3}, w 69
5.16 The graph P_{3} is the E-biclique graph of the graph P_{5} 74
5.17 Graph G and $K_{e}(G)$. 75
6.1 Graph G and its closed neighborhood graph 78
6.2 The Biclique matrix of G and $N_{c}(G)$ 85
6.3 Graph Q 88
6.4 88
$6.5 \quad P_{5}$ 89
6.6 Graph G and $N_{c}(G)$ 91
6.7 Graph P_{5} and its closed neigborhood graph 92

Chapter 1

Introduction

The Helly property plays a very important role in the study of families of subsets of a set. A family of subsets is Helly if every pairwise intersecting subfamily has a common element.

In the scope of graph theory, the study of the Helly property has motivated the introduction of some classes of graphs, as clique-Helly graphs [12, 23, 32, 36, 49], disk-Helly graphs [5, 6], and neighborhood-Helly graphs [10] (i.e., the families of cliques, disks and neighborhoods of a graphs are Helly, respectively.)

Berge ([10]) described a polynomial algorithm to verify if a given family has is Helly. However that the problem of recognizing clique-Helly graphs, can not be solved by using the algorithm proposed by Berge, since the number of cliques of a graph can be exponential. In [52] there is a characterization of clique-Helly graphs that leads to a polynomial time recognition algorithm.

Disk-Helly graphs were studied by Bandelt and Pesch and others [5, 7, 22]. They have described an algorithm with complexity $O\left(m n^{2}\right)$ for recognizing disk-Helly graphs.

In this thesis we study some other families of subsets of a set. In particular, we consider the set of vertices of a graph G. We focus on the family of bicliques of a graph. A biclique of a graph is a subset of vertices that induces a maximal complete bipartite subgraph of G.

We consider in this thesis the graphs whose bicliques form a Helly family, the biclique-Helly graphs. We remark that a graph would have an exponential number of bicliques ([48]). Therefore, as in the case of clique-Helly graphs, the algorithm proposed by Berge would not be efficient for recognizing biclique-Helly graphs. In this thesis, we study this problem and give a characterization of biclique-Helly graphs that leads to a polynomial time algorithm for the recognition problem.

Besides the interest of examining bicliques in the scope of the Helly property, we mention that bicliques have been considered in some different contexts, e.g. [33, 43, 45, 47, 53].

None of the mentioned classes are closed under induced subgraphs. So, a question would be to characterize the graphs for which the Helly property is
preserved for every induced subgraph. It leads to the hereditary classes of clique-Helly, biclique-Helly, neighborhood-Helly and disk-Helly graphs. Hereditary clique-Helly graphs have been characterized in [46], while [22] (c.f. [16]) contains a characterization of hereditary disk-Helly graphs. In this work, we describe forbidden subgraph characterizations for the classes of hereditary biclique-Helly and hereditary neighborhood-Helly graphs. All graphs in these forbidden families are of fixed size. In fact they have at most 8 vertices. Consequently, the characterizations imply polynomial time recognition for hereditary biclique-Helly, hereditary open neighbourhood-Helly and hereditary closed neighbourhood-Helly graphs.

Clique matrices of a graph have been characterized by Gilmore in 1960, and have been employed in different contexts. For example, in the characterizations of interval graphs [28], Helly circular-arc graphs [26] and self-clique graphs [12, 36], as well as in different covering problems involving cliques.

Motivated by the above concept, in this thesis we consider biclique matrices of a graph. We define the biclique matrix of a graph G as the $\{0,1,-1\}$ matrix whose rows are the incident vectors of the bicliques of G. We give a characterization for such matrices, in similar terms as those used in the characterization of clique matrices. Biclique matrices can be employed, for instance in covering problems involving bicliques. Such problems have been considered, among others, by [3, 53].

Given a family of subsets of some set \mathcal{F}, the intersection graph of \mathcal{F} is a graph having a vertex for each set of \mathcal{F}, and two vertices are adjacent whenever their corresponding sets intersect. On the other hand, given a graph G, it is an intersection graph when there exists a family \mathcal{F} of subsets of some set such that G is its intersection graph. It is easy to prove that all graphs are intersection graphs (Marczewski, [44]). Intersection graphs were studied in several contexts (See [39]).

One of the most important problem concerning intersection graphs is the recognition problem. It consists on deciding whether for a given graph G and a family \mathcal{F} of subsets of a set, G is the intersection graph of \mathcal{F}.

Many classes of intersection graphs have been defined, by fixing a suitable family of subsets. For example, clique graphs, interval graphs, chordal graphs, and line graphs (See [15, 16, 23, 24, 27, 38]) .

Clique graphs, i.e., the intersection graph of the family of bicliques of a graph has played an important role in the intersection graph theory. Roberts and Spencer, in [49] give the first characterization for clique graphs. A different one is shown in [2]. However, none of them appeared to lead to a polynomial time algorithm for the recognition problem. Moreover, it was an open problem determining the computational complexity of the clique graph recognition problem. Recently, in [1] it is proved that the mentioned problem is NP-complete.

Motivated by the concept of clique graphs, we define the biclique graph of G as the intersection graph of the family of all bicliques of G. We give a characterization of biclique graphs and show some families of graphs that are not
biclique graphs. However, we leave as open to determine the computational complexity of the recognition problem.

The closed neighborhood graphs (or square graphs) are the intersection graphs of the closed neighborhoods of a graphs. It is proved that recognizing square graphs is NP-complete in the general case, while square graphs of bipartite graphs can be recognized in polynomial time (See [22, 37, 40, $41,54]$). We concentrate on the case of closed neighborhood graphs of open neighborhood-Helly bipartite graphs and study its clique graph and its relation to the biclique graphs.

Berge [8] defined a graph G to be perfect whenever the chromatic number coincides with the cardinality of a maximum clique, for every induced subgraph H of G. Perfect graphs are very interesting from an algorithmic point of view. While determining the clique number and the chromatic number of a graph are NP-complete problems, they are solvable in polynomial time for perfect graphs [30]. Besides, it has been proved recently that perfect graphs can be recognized in polynomial time [17]. For more background information on perfect graphs see [29].

We study the classes of graphs such that their biclique graphs are perfect. For that purpose we define the b-biclique-perfect and b-coordinated graphs, in a similar way as the classes of c-clique-perfect and c-coordinated ($[13,14]$) were defined. We present some conditions in which b-biclique-perfect and bcoordinated graphs have a perfect biclique graph.

1.1 Results of the thesis

We study some properties of bicliques of graphs. We study the Helly property associated to bicliques, for bipartite graphs and in the general case. We give a characterization of biclique-Helly graphs that leads to an algorithm of complexity $O\left(|V(G)|^{3}|E(G)|\right)$ for the recognition problem. We employ a similar concept to extended triangle, which has been used to characterize clique-Helly graphs.

On the other hand, we define the bichromatic-Helly graphs. We give a characterization and an $O\left(|V(G)|^{3}|E(G)|\right)$ time algorithm for recognizing this class of graphs. Also we relate bichromatic-Helly graphs to biclique-Helly graphs, obtaining a second algorithm for recognizing biclique-Helly graphs with the same computational complexity.

Also, the Helly property is studied in the context of neighborhoods, both open and closed neighborhoods are considered. We study the relations between biclique-Helly, clique-Helly and open and closed neighborhood-Helly graphs.

Since the Helly property is not hereditary under induced subgraphs, we study the corresponding hereditary versions separately. We characterize hereditary biclique-Helly graphs by forbidden induced subgraph of finite size, which leads to a polynomial time algorithm for recognizing this class.

Analogously, we characterize hereditary open neighborhood-Helly graphs and closed neighborhood-Helly graphs with no triangles. Finally, we compare these three classes with hereditary clique-Helly graphs.

We define the biclique matrix as the matrix whose rows are the incident vectors of the bicliques of G. We give a characterization of biclique matrices. For that purpose we define the concept of bipartite-conformal hypergraphs, in a similar way as it was defined the concept of conformal hypergraphs, employed to characterize clique matrices (Gilmore, c.f [10]). We prove that recognizing bipartite-conformal hypergraphs with a compatible bicoloring and biclique matrices can be done in $O\left(m^{2} n+m n^{3}\right)$ steps.

We define the biclique graph, as the intersection graph of the family of bicliques of a graph. We study the recognition problem and give a characterization for biclique graphs and the particular case of biclique graphs of bipartite graphs, using the characterization of biclique matrices. For that purpose, we define the bipartite-Helly property for a labeled family of subsets. We give an algorithm of complexity $O\left(m^{3} n+m^{3} n\right)$ for recognizing bipartite-Helly labeled families. This result proves that the recognition problem for biclique graphs is in NP. We study the neighborhood graph of bipartite graphs. We give a relation between bicliques of a bipartite graph G and the cliques of the closed neighborhood graph. We use that relation to prove that, for the case that G is open neighborhood-Helly, the biclique graph of G and the clique graph of the closed neighborhood graph of G coincide.

This result is a useful tool for studying properties of biclique graphs, based on properties of the clique graphs. We employ this tool when we study the class of graphs for which their biclique graph is perfect. We prove that when we restrict to the subclass of graphs without induced P_{5} (bicliqual), that class coincides with the classes of b-coordinated graphs, c-coordinated graphs, c-clique-perfect and b-biclique-perfect graphs. Finally, as an appendix of this thesis, we study a generalization of the concept of cliques, the p-cliques. We characterize the (p, q)-Helly property from a matricial point of view.

1.2 Definitions

Let G be a finite undirected graph, $V(G)$ and $E(G)$ the vertex and edge sets of G, respectively. An independent set in a graph G is a subset of pairwise non-adjacent vertices of G. The independence number $\alpha(G)$ is the cardinality of a maximum independent set of G. Say that a graph is a complete graph when every two vertices are adjacent. A clique of G is a complete subgraph maximal under inclusion. The clique number of G, denoted by $\omega(G)$, is the cardinality of the maximum clique of G. A biclique is a maximal subset $B \subseteq V(G)$ inducing a complete bipartite subgraph in G. Write $B=X \cup Y$ for the corresponding bipartition, restricting to $X, Y \neq \emptyset$. See an example in Figure 1.1. B_{1}, B_{2}, and B_{3} are bicliques of G.

A spanning subgraph of G is a graph H such as $V(H)=V(G)$ and

Figure 1.1: Example of bicliques if a graph G
$E(H) \subseteq E(G)$. A vertex $v \in V(G)$ is universal when it is adjacent to every other vertex of G.

A sequence v_{1}, \ldots, v_{k} of distinct vertices v_{1}, \ldots, v_{k} is a path of length k when $v_{i} v_{i+1}$ is an edge of G, for each $i, 1 \leq i \leq k-1$. On the other hand, when $v_{1} v_{k}$ is also an edge, say that v_{1}, \ldots, v_{k} is a cycle. Denote by P_{k} the induced path with k vertices. Write C_{k} for a cycle having k vertices. By \bar{G} denote the complement of G. The open neighborhood of a vertex $v, N(v)$ is the set of vertices adjacent to v, while the closed neighborhood of v, denoted by $N[v]$ is $N(v) \cup\{v\}$. A vertex with empty an open neighborhood is an isolated vertex. The disk $D_{l}(v)$ of $v \in V(G)$ is the subset of vertices of G whose distance to v is less or equal to l.

A graph is chordal when every cycle of length greater than 3 has a chord.
For $S \subseteq V(G)$, denote by $G[S]$ the subgraph induced in G by S. Say that vertex u dominates vertex v if $N(v) \subseteq N(u)$. We say that v is a dominated vertex. Two vertices are twins if they have the same open neighborhood. A dominated vertex is strictly dominated if it is dominated by a vertex that is not its twin.

Let \mathcal{B} be some family of bicliques of G. The graph $G_{\mathcal{B}}$, formed exactly by the vertices and edges involved in the bicliques of \mathcal{B} is called the biclique subgraph of G, relative to \mathcal{B}. When every biclique of $G_{\mathcal{B}}$ is also a biclique of G, say that it is a special biclique subgraph. Given a family \mathcal{C} of cliques of a graph G, denote by $G_{\mathcal{C}}$ its corresponding clique subgraph, that is, the subgraph formed by the vertices and edges of the cliques of \mathcal{C}. A clique subgraph $G_{\mathcal{C}}$ is special when every clique of $G_{\mathcal{C}}$ is a clique in G.

A property P is hereditary if for every graph G that verifies P, it holds for every induced subgraph. A graph is dismantable if there is an ordering on the vertices v_{1}, \ldots, v_{n} such that v_{i} is a dominated vertex in the graph $G-\left\{v_{1}, . . v_{i-1}\right\}$. Let \mathcal{F} be a family of subsets of some set. Say that \mathcal{F} is intersecting when the subsets of \mathcal{F} pairwise intersect. On the other hand, when every intersecting subfamily of \mathcal{F} has a common element then \mathcal{F} is a Helly family. A graph G is biclique-Helly (clique-Helly, neighborhoodHelly, disk-Helly) when its family of bicliques (cliques, neighborhoods, disks) is Helly. In Figure 1.2, graph G is not biclique-Helly, since the family of bicliques of G is an intersecting family, but there is no a common intersection. On the other hand, graph G^{\prime} is biclique-Helly.

A graph G is hereditary biclique-Helly (clique-Helly, neighborhood-Helly,
disk-Helly) if every induced H is biclique-Helly (cliques-Helly, neighborhoodHelly, disk-Helly).

Figure 1.2: G is not biclique-Helly, G^{\prime} is biclique-Helly.
If G has c cliques $\left\{C_{1}, \ldots, C_{c}\right\}$ then the clique matrix of G is the $c \times n$ $\{0,1\}$-matrix A, defined as $a_{k i}=1$ if and only if $v_{i} \in C_{k}$. Finally, when G has d bicliques $B_{1}, \ldots, B_{d} \subseteq V(G)$, the biclique matrix of G is the $d \times n$ $\{0,1,-1\}$-matrix A, where $a_{k i}=-a_{k j} \neq 0$, precisely when $v_{i}, v_{j} \in B_{k}$ and v_{i}, v_{j} are adjacent, for all $1 \leq k \leq n$ and $1 \leq i \neq j \leq n$.

Given a family of subsets of some set \mathcal{F}, the intersection graph of \mathcal{F} is a graph having vertex for each set of \mathcal{F}, and two vertices are adjacent whenever their corresponding sets intersect. The clique graph $K(G)$ of G is the intersection graph of the cliques of G. Denote by $K^{2}(G)$ the clique graph of $K(G)$. A graph G is self-clique if $K(G)$ is isomorphic to G. Analogously, define the biclique graph $K B(G)$ as the intersection graph of the bicliques of G. The closed neighborhood graph of $G, N_{c}(G)$, is the intersection graphs of closed neighborhoods of G.

A graph is weakly 2-colorable when there is a bipartition U, W of vertices of G such that every clique of G has vertices of both parts.

Given a set S of elements, a family \mathcal{F} of subsets of S is a split of S if for every pair of elements $x, y \in S$, there exist a set in \mathcal{F} containing x, and not containing y.

Given a graph G, say that a family of subgraphs \mathcal{C} covers the edges of G, if every edge belongs to some subgraph of the family.

A clique cover of a graph G is a subset of cliques covering all the vertices of G. The clique-covering number $\theta(G)$ is the cardinality of a minimum clique cover of G.

The chromatic number of a graph G is the smallest number of colors that can be assigned to the vertices of G in such a way that no two adjacent vertices receive the same color, and is denoted by $\chi(G)$. An obvious lower bound is the maximum cardinality of the cliques of G, the clique number of G, denoted by $\omega(G)$.

A graph G is perfect when $\theta(H)=\alpha(H)$ for every induced subgraph H of G (or equivalently, when $\chi(H)=\omega(H)$ for every induced subgraph H). A graph G is K-perfect if $K(G)$ is perfect. Analogously, a graph is $K B$-perfect if its biclique graph is perfect.

A matrix $A \in R^{k \times n}$ is perfect if the polyhedron $P(A)=\left\{x \in R^{n} / A x \leq\right.$ $1, x \geq 0\}$ has only integer extreme points.

Given a set $S=\left\{x_{1}, \ldots, x_{n}\right\}$ and a family $\mathcal{F}=\left\{F_{1}, \ldots, F_{k}\right\}$ of subsets of S, the incidence matrix of \mathcal{F} is a $\{0,1\}$ - matrix with n columns and k rows such that $a_{i j}=1$ if x_{j} belongs to F_{i} and $a_{i j}=0$ otherwise.

A hypergraph \mathcal{H} is defined by a set of vertices $V(\mathcal{H})=\left\{v_{1}, \ldots, v_{s}\right\}$ and a set of hyperedges $E(\mathcal{H})=\left\{E_{1}, \ldots, E_{k}\right\}$, where E_{i} is a subset of $V(\mathcal{H})$, $\left|H_{i}\right| \geq 2$. The dual hypergraph of \mathcal{H} is a hypergraph \mathcal{H}^{*}, with vertex set $V\left(\mathcal{H}^{*}\right)=\left\{E_{1}, \ldots, E_{k}\right\}$, and hyperedges $E\left(\mathcal{H}^{*}\right)=\left\{E_{1}^{*}, \ldots, E_{s}^{*}\right\}$, where $E_{i}^{*}=$ $\left\{E_{j}\right.$, such that $\left.v_{i} \in E_{j}\right\}$, for $1 \leq i \leq s$.

1.3 Different problems on bicliques and related concepts

Bicliques were study in several contexts [3, 18, 25, 34, 43, 45, 47, 48, 55].
In [48], Prisner determined an upper bound for the cardinality of the family of bicliques of a bipartite graph and general graphs. Also, he presented a family of graph, the Cocktail party graphs, for which this bound is reached. Moreover, he proved that no other family verifies that property.

The Cocktail party graph, of order j, denoted by $C P(j)$, is a bipartite graph, $\left|V_{1}\right|=\left|V_{2}\right|=j$, where $v_{i} \in V_{1}$ is adjacent to $w_{j} \in V_{2}$ for every $i \neq j$.

Theorem 1.1 [48] Let G be a bipartite graph and let $\mathcal{B}(G)$ be the family of bicliques of G. Then, $|\mathcal{B}(G)| \leq 2^{\frac{n}{2}}$. The cardinality of the family of cliques of the graph $C P(j)$ is exactly $|\mathcal{B}(G)|=2^{j}$ and no other bipartite graph of $2 j$ vertices has this property.

Observe that the family of bicliques of $C P(j)$ is $\left\{\left(a_{i}, b_{j}\right), i \in I, j \in\right.$ $\{1 \ldots j\} \backslash I, \forall I \subseteq\{1 \ldots j\}\}$. It follows that its cardinality is $2^{j}=2^{\frac{n}{2}}$ (Figure 1.3).

Figure 1.3: Cocktail party of order $4, C P(4)$

Theorem 1.2 [48] Any graph has at most $n^{\frac{5}{2}}\left(1,618034^{n}+o(1)\right)$ bicliques.
It is worth mention that in the proof of this Theorem, appears the gold ratio.

Theorem 1.3 [48] Let G be a bipartite graph with bipartition $V_{1}, V_{2}, C P(j)$ free, for some j. Then, G has at most $\left(\left|V_{1}\right|\left|V_{2}\right|\right)^{j-1}$ bicliques

As a Corollary, he proved the following:
Corollary 1.1 Let Γ be a family of bipartite graphs closed under induced subgraphs. Then there exists a polynomial function $f(n)$ such that every member of the class has at most $f(|V|)$ bicliques if and only if $C P(j) \notin \Gamma$ for some j.

Several concepts related to bicliques were studied. It is worth to mention that in the literature, some of them are also call bicliques.

A c-biclique is a complete subgraph (not necessary induced or maximal). A balanced biclique is a biclique were the bipartition V_{1}, V_{2} has the same cardinality.

Some decision problems related to bicliques, c-bicliques and balanced bicliques were studied. As examples, we mention the Maximun vertex biclique problem and the Maximun edge biclique problem (MBP). The first one consists of deciding if a given graph contains a biclique of at least k vertices $\left(\left|V_{1}\right|+\left|V_{2}\right| \geq k\right)$. The second problem consists of deciding if G contains a biclique with at least k edges, $(|A| \cdot|B| \geq k)$. Those problems have been studied in [25, 45, 55].

1.4 How the thesis is organized

The thesis is organized as follows.
In Chapter 2, we study biclique-Helly graphs, and give a characterization for this family. We also study the Helly property related to open and closed neighborhoods. We also define the bichromatic-Helly graphs and characterize them.

In Chapter 3, we study the classes of hereditary biclique-Helly, hereditary neighborhood-Helly gaphs (both open and closed are considered). Characterizations of these classes are given and the relations between them and the hereditary clique-Helly graphs.

In Chapter 4, we define and characterize biclique matrices, for the general case and for the particular case of bipartite graphs. Also, the concept of bipartite-conformal is defined. Finally, a polynomial algorithm for identifying bipartite-conformal hypergraphs is given and two polynomial algorithms are proposed for recognizing biclique matrices.

In Chapter 5 we define and characterize biclique graphs. We present some families of graphs which are not biclique graphs and study the classes of biclique graphs of some classes of graphs. Also we define the bipartiteHelly property and give a polynomial algorithm for recognizing bipartiteHelly labeled families.

Chapter 6 contains a characterization of the closed neighborhood graph of a biclique graph. Relations between the cliques of the neighborhood graph of a bipartite graph G and bicliques of G are given. The Helly property is also studied in this context.

In Chapter 7 we study those graphs for which the biclique graphs is perfect, i.e., the KB-perfect graphs. We define the b-coordinated graphs and the b-biclique-perfect graphs.

Chapter 8 contains the conclusions of the thesis.

1.4.1 Notation and basic graphs

We remark that along the thesis, we will say that a vertex or an edge belongs to a graph, meaning that it belongs to the vertex set of the graph or the edge set of the graph, respectively. On the same way, we will consider a subgraph of a graph as a subset of vertices or/and edges.

Notation: .

- $G-\{v\}$ is a graph G obtained by removing a vertex v and its incident edges.
- K_{n}, is the complete graph of n vertices.
- C_{n}, is a cycle of n vertices
- F - free, a graph which does not contain the graph F as an induced subgraph.
- $n-f a n$, is an induced path of $n+1$ vertices, and an additional universal vertex. See Figure 1.4
- Hajós graph, with center T: See Figure 1.4
- k-extended Hajós graph with center T, a graph obtained from the Hajós graph by adding k edges between vertices not in the center, $k=1,2,3$. See Figure 1.4

P3

Hájos with center T

1-Extended Hájos with center T

2-Extended Hájos with center T

3-Extended Hájos with center T

Figure 1.4: Basic graphs

Chapter 2

Bicliques and the Helly property

2.1 Introduction

In this Chapter we study the Helly property in the context of bicliques and neighborhoods of a graph. We define the biclique-Helly graphs and give two characterizations for this class, along with polynomial time algorithms for recognizing biclique-Helly graphs. Also we study the classes of open and closed neighborhood-Helly graphs, and relate them to clique-Helly and biclique-Helly graphs.

Helly families of subsets have been studied in different contexts. Berge proposed a polynomial time algorithm $\left(O\left(n^{3}\right)\right)$ to decide whether a given family is Helly or not. It is based on the following Theorem.

Theorem 2.1 [10] A family \mathcal{F} of subsets of a set S is Helly if and only if for every 3-subset S^{\prime} of S, the subfamily of subsets in \mathcal{F} containing at least two elements S^{\prime}, have a common intersection.

In the scope of graph theory, the study of the Helly property has motivated the introduction of some classes of graphs, as clique-Helly graphs [23, 32, 49], disk-Helly graphs [5, 6], and neighborhood-Helly graphs [10]. These classes correspond to the cases where the families subject to the Helly property are cliques, disks and neighborhoods, respectively.

For recognizing clique-Helly graphs the algorithm proposed by Berge is not efficient since the number of cliques can be exponential. Clique-Helly graphs have been characterized in [52]. It is based on the concept of extended triangles and it leads to a polynomial time recognition algorithm. Given a triangle T in G, the extended triangle of T, denoted by $E(T)$ is the subgraph of G induced by the vertices which form a triangle with at least one edge of T. The characterization is given by the following Theorem and it leads to a polynomial time recognition algorithm.

Theorem 2.2 [52] A graph is clique-Helly if and only if every extended triangle has a universal vertex.

In [14] there is another characterization of clique-Helly graphs, which relates properties of the graph with properties of a polyhedron generated by the clique matrix of G. However, note that $K(G)$ might be of exponential size, implying that it does not lead directly to a polynomial time recognition algorithm of clique-Helly graphs.

Theorem 2.3 [14] Let G be a graph with n vertices and m cliques, and let A_{G} be a clique matrix of G and $K(G)$ its clique graph. Then it is equivalent:

1. G is clique-Helly.
2. The clique matrix of $K(G)$ is A_{G}^{T} without including rows.
3. The polyhedrom $\left\{x \in \Re^{m} / A^{T} \cdot x \leq 1, x \geq 0\right\}$ is the same as $\{x \in$ $\left.\Re^{m} / A_{K(G)} \cdot x \leq 1, x \geq 0\right\}$.

Disk-Helly graphs were studied by Bandelt and Pesch and others [5, 7, 22]. They give an algorithm with complexity $O\left(m \cdot n^{2}\right)$ for recognizing disk-Helly graphs:

Theorem 2.4 A graph G is disk-Helly if and only if it clique-Helly and dismantlable.

In this Chapter, we consider the graphs whose bicliques form a Helly family, the biclique-Helly graphs. Besides the interest of examining bicliques in the scope of the Helly property, these graphs could be of interest in the study of retracts [33]. We mention that bicliques have been considered in some different contexts, e.g. [43, 45, 47, 53].

Recall that a graph is biclique-Helly when its family of bicliques is a Helly family. In addition, we relate biclique-Helly graphs to the classes of cliqueHelly, disk-Helly and neighborhood-Helly graphs.

The Chapter is organized as follows.
In Section 2 we describe a characterizations for biclique-Helly graphs. It generalizes the notion of extended triangles.

In Section 3 a weaker notion of clique-Helly graphs is defined, the bichromaticHelly graphs. We give a characterization for bichromatic-Helly graphs which leads to an algorithm for recognizing bichromatic-Helly graphs in in polynomialtime complexity.

In Section 4, a second characterization for biclique-Helly graphs is given. It relates biclique-Helly graphs to bichromatic-Helly graphs. Both characterizations given in this Chapter lead to algorithms for recognizing biclique-Helly graphs, in polynomial-time complexity. Recall that a graph might have an
exponential number of bicliques [48]. Therefore, the algorithm by Berge (Theorem 2.1, see [11], [10] [49]) for recognizing Helly families would not recognize biclique-Helly graphs within polynomial time.

In Section 5 we give a characterization for open neighborhood-Helly graphs, a partial characterization for closed neighborhood-Helly graphs and finally, we relate the class of biclique-Helly graphs to those of clique-Helly graphs, disk-Helly graphs and neighborhood-Helly graphs.

2.2 Biclique-Helly Graphs

In this Section, we describe a characterization for biclique-Helly graphs. The characterization employs a generalization of the idea of extended triangle [22, 52]. We employ the following generalization of the concept of extended triangles.

Say that a vertex v dominates an edge e, when one of the extremes of e either coincides or is adjacent to v. When v dominates every edge of G then v is an edge dominator of G. Clearly, a universal vertex is an edge dominator. For $S \subseteq V(G)$, denote by $G[S]$ the subgraph induced in G by S.

Let $S \subseteq V(G),|S|=3$. Denote by \mathcal{B}_{S} the family of bicliques of G, each of them containing at least two vertices of S. Let S^{*} be the set of vertices of the biclique subgraph $G_{\mathcal{B}_{S}}$. The induced subgraph $G\left[S^{*}\right]$ is called the extension of S. Clearly, $G_{\mathcal{B}_{S}}$ is a spanning subgraph of $G\left[S^{*}\right]$. See some examples in Figure 2.1.

Before we describe the characterization, we prove two useful Lemmas.
Lemma 2.1 Let G be a graph. Then G has neither triangles nor C_{5} 's if and only if each of the extensions in G is a bipartite graph.

Proof: Let G be a graph with no triangles nor induced $C_{5}^{\prime} s$ and $S=$ $\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq V(G)$. If $G\left[S^{*}\right]$ is empty there is nothing to prove. Otherwise $G\left[S^{*}\right]$ has at least two vertices in S. First, examine the alternative when there are only two vertices v_{1}, v_{2} of S in $G\left[S^{*}\right]$. Suppose v_{1} and v_{2} are adjacent. Let X be the subset of vertices of $G\left[S^{*}\right]$ non adjacent to v_{1} and $Y=S^{*} \backslash X$. By definition of $G\left[S^{*}\right]$, any vertex of X must be adjacent to v_{2}, and any of Y is adjacent to v_{1}. Because G has no triangles, any two vertices of X are not adjacent. Similarly, no two vertices of Y are adjacent. Then $G\left[S^{*}\right]$ is bipartite. The second alternative is to assume that v_{1} and v_{2} are not adjacent. Let X be the subset of vertices of $G\left[S^{*}\right]$, simultaneously non adjacent to v_{1} and v_{2}, and $Y=S^{*} \backslash X$. By a similar argument as above, we conclude that $X \cup Y$ is a bipartition of $G\left[S^{*}\right]$, as required.

We examine the situation when all vertices of S are in $G\left[S^{*}\right]$. The alternatives for S are to be a triangle, or a P_{3}, or their complements. However, S can not be a triangle, by hypothesis. We discuss below the other three possibilities.

Figure 2.1: Examples of extensions of S

Suppose S is a P_{3}, with $v_{1} v_{3}$ non adjacent. Denote by $X \subseteq S^{*}$ the subset consisting of those vertices simultaneously non adjacent to v_{1} and v_{3}, and $Y=S^{*} \backslash X$. We show that $X \cup Y$ is a bipartition of $G\left[S^{*}\right]$. Let $v_{i}, v_{j} \in X$, $v_{i} \neq v_{j}$. Suppose that v_{i} and v_{j} are adjacent. Since v_{i} is in $G\left[S^{*}\right]$, there exists v_{i}^{\prime} adjacent to v_{1}, v_{3} and v_{i}. Similarly, there exists vertex v_{j}^{\prime} adjacent to v_{1}, v_{3} and v_{j}. Clearly, $v_{i}^{\prime}, v_{j}^{\prime} \in Y$. Because G has no triangles, $v_{i}^{\prime} \neq v_{j}^{\prime}$ and v_{j}^{\prime} is neither adjacent to v_{i} nor v_{i}^{\prime}. However, in the latter situation, $v_{i}, v_{j}, v_{j}^{\prime}, v_{3}, v_{i}^{\prime}$ form a C_{5}, a contradiction. Consequently, v_{i} and v_{j} are not adjacent, as required.

Next, let $v_{k}, v_{l} \in Y, v_{k} \neq v_{l}$. Assume that v_{k} and v_{l} are adjacent. By definition of $G\left[S^{*}\right]$, both v_{k} and v_{l} are adjacent to at least one of v_{1}, v_{3}. Then v_{k}, v_{l} are both non adjacent to v_{2}, otherwise G has a triangle. Without loss of generality, we may assume that v_{1} and v_{k} are adjacent. Then v_{1}, v_{l} can not be adjacent, implying that v_{3}, v_{l} are adjacent, implying that v_{3}, v_{k} are not. In this case, $v_{1}, v_{k}, v_{l}, v_{3}, v_{2}$ induce a C_{5}, contrary to the hypothesis. Therefore
v_{k} and v_{l} are not adjacent, meaning that $G\left[S^{*}\right]$ is bipartite. Consequently, whenever S is a $P_{3}, G\left[S^{*}\right]$ is indeed bipartite.(Figure 2.2)

Figure 2.2: Extension of P_{3}
In the next alternative, assume that S is an independent set. Let X be the subset of vertices of S^{*} which are non adjacent simultaneously to v_{1}, v_{2}, v_{3}, while $Y=S^{*} \backslash X$. Let $v_{i}, v_{j} \in X, v_{i} \neq v_{j}$. Assume that v_{i}, v_{j} are adjacent. By definition of $G\left[S^{*}\right]$, there exist vertices $v_{i}^{\prime}, v_{j}^{\prime} \in Y$, both of them adjacent to at least two of the three vertices of S. Consequently, one of the vertices of S, say v_{1}, is adjacent to both $v_{i}^{\prime}, v_{j}^{\prime}$. Because G has no triangles, $v_{i}^{\prime} \neq v_{j}^{\prime}$, with v_{i}^{\prime}, v_{j} not adjacent, v_{i}, v_{j}^{\prime} also not adjacent. Then $v_{1}, v_{j}^{\prime}, v_{j}, v_{i}, v_{i}^{\prime}$ form a C_{5}, which is impossible. Hence v_{i}, v_{j} can not be adjacent.(Figure 2.3)

Figure 2.3: Extension of an independent set
In the sequel, examine Y. First, we show that any vertex $v_{k} \in Y$ must be adjacent to at least two vertices of S. By contrary, suppose that v_{k} is adjacent solely to one vertex of S, say v_{3}. By definition of $G\left[S^{*}\right]$, there exists some vertex v^{\prime}, simultaneously adjacent to v_{1}, v_{2} and v_{k}, because no biclique of G contains v_{3}, v_{k}, v_{1} nor v_{3}, v_{k}, v_{2}. Again, by definition of $G\left[S^{*}\right]$, there exists some vertex $v^{\prime \prime}$ adjacent to v_{3}, and to v_{2} or v_{1}. Without loss of generality, let $v^{\prime \prime}$ be adjacent to v_{1}. Because G has no triangles, v_{3} and v^{\prime} are not adjacent, and $v^{\prime \prime}$ is also not adjacent to both v_{k} and v^{\prime}. However, in the latter situation, $v_{1}, v^{\prime \prime}, v_{3}, v_{k}, v^{\prime}$ form a C_{5}, contrary to the hypothesis. Consequently, $v_{k} \in Y$ indeed implies that v_{k} is adjacent to at least two vertices of S. Finally, let $v_{l}, v_{t} \in Y, v_{l} \neq v_{t}$. Then one of the vertices of S, say v_{1}, is adjacent to both v_{l} and v_{t}. Since G has no triangles, v_{l} and v_{t} can not be adjacent. Therefore $G\left[S^{*}\right]$ is bipartite, with bipartition $X \cup Y$.

In the last alternative, S induces a $\overline{P_{3}}$. Let v_{1} and v_{2} be the adjacent vertices in S. By definition of $G\left[S^{*}\right]$, there exists a vertex v_{1}^{\prime} adjacent to both v_{1} and v_{3}. Similarly, there exists v_{2}^{\prime} adjacent to v_{2} and v_{3}. It follows that either a triangle or a C_{5} exist among the vertices $v_{1}, v_{2}, v_{3}, v_{1}^{\prime}, v_{2}^{\prime}$. Consequently. $G\left[S^{*}\right]$ can not contain simultaneously v_{1}, v_{2} and v_{3}, meaning that this case does not occur (see Figure 2.4). The proof is complete.

Figure 2.4: Extension of $\overline{P_{3}}$

Conversely, suppose G has an induced triangle, $T=\left\{v_{1}, v_{2}, v_{3}\right\}$. It is clear that T is included in the extension of T. Suppose now that G contains a $C_{5} ., v_{1}, \ldots, v_{5}$. The extension of $S=\left\{v_{1}, v_{3}, v_{5}\right\}$ contains the induced C_{5}. In both cases, the extensions are not bipartite graphs.

Lemma 2.2 Let G be a biclique-Helly graph. Then G contains neither triangles nor induced C_{5} 's.

Proof: By hypothesis, G is biclique-Helly. First, we show that G has no triangles. By contrary, assume that vertices v_{1}, v_{2}, v_{3} form a triangle and denote by e_{i} the edge $v_{i} v_{i+1(\bmod 3)}, 1 \leq i \leq 3$. There exists some biclique B_{i} containing e_{i}, for each i. Then $\left\{B_{1}, B_{2}, B_{3}\right\}$ constitutes a family of distinct intersecting bicliques. Because G is biclique-Helly, there exists a vertex v common to B_{1}, B_{2}, B_{3}. Clearly, $v \neq v_{1}, v_{2}, v_{3}$, as $v_{i} \notin B_{j}$ if and only if $j=i+1(\bmod 3)$. Because $v \in B_{1}, v$ is adjacent to exactly one between v_{1} and v_{2}, say adjacent to v_{1} and not v_{2}. The latter implies v to be adjacent to v_{3}, because $v \in B_{2}$. Consequently, v, v_{1}, v_{3} form a triangle, meaning that $v \notin B_{3}$. That is, G contains no vertex common to B_{1}, B_{2}, B_{3}, contradicting G to be biclique-Helly.

Next, we show that G has no C_{5} 's. By contrary assume that G does contain such a cycle. Extend each triple of successive vertices of the cycle to a biclique. This family is intersecting, so it has a common vertex v. Since G has no triangles, there is a pair of successive vertices in the cycle that are not adjacent to v. However, they lie with v in a biclique, a contradiction. Consequently, G does not contain C_{5} 's.

The main Theorem is the following. It gives a characterization of bicliqueHelly graphs.

Theorem 2.5 A graph G is biclique-Helly if and only if G has no triangles and each of its extensions has an edge dominator.

Proof: By hypothesis, G is biclique-Helly, then by Lemma 2.2 it follows that G has no triangles. Our aim is to prove that each non empty extension $G\left[S^{*}\right]$ contains an edge dominator, for $S \subseteq V(G),|S|=3$. Denote by \mathcal{B}_{S} the family of bicliques of G, each of them containing at least two vertices of S. Because G is biclique-Helly, there exists some vertex v common to all bicliques of \mathcal{B}_{S}.

On the other hand, since by Lemma 2.2, G has neither triangles nor C_{5} 's, we can apply Lemma 2.1 and conclude that $G\left[S^{*}\right]$ is bipartite. Let $X \cup Y$ be a bipartition of it. Because $G_{\mathcal{B}_{S}}$ is a spanning subgraph of $G\left[S^{*}\right]$, we know that $G_{\mathcal{B}_{S}}$ is bipartite and $X \cup Y$ a bipartition of it. Without loss of generality, let $v \in X$. We show that v is adjacent to all vertices of Y. Otherwise, if $w \in Y$ is not adjacent to v, because $G_{\mathcal{B}_{S}}$ has no isolated vertices, there is an edge e in $G_{\mathcal{B}_{S}}$ incident to w. Clearly, any biclique which contains the extreme vertices of e does not contain v. The latter implies that v is not common to all bicliques of \mathcal{B}_{S}, a contradiction. Consequently, v is adjacent to all vertices of Y, meaning that v is an edge dominator of both $G_{\mathcal{B}_{S}}$ and $G\left[S^{*}\right]$. The proof of necessity is complete.

Conversely, let G be a graph with no triangles and whose extensions contain edge dominators. We prove that G is biclique-Helly. Let $S \subseteq V(G)$, $|S|=3$, and \mathcal{B}_{S} the collection of bicliques of G, containing at least two of the the three vertices of S. Let $G_{\mathcal{B}_{S}}$ be the biclique subgraph of G, relative to \mathcal{B}_{S}, and $G\left[S^{*}\right]$ the extension of S. By hypothesis, $G\left[S^{*}\right]$ has an edge dominator v. It is clear that if $G\left[S^{*}\right]$ is bipartite, then v belongs to every biclique of $G_{\mathcal{B}_{S}}$. We show that $G\left[S^{*}\right]$ is bipartite. Suppose it has an induced odd cycle $C_{2 k+1}$. As v is an edge dominator and G has no triangles, v is alternatively adjacent to vertices $v_{1}, v_{3}, \ldots, v_{2 k+1}$, forming a triangle, a contradiction. The case $v_{i}=v$ is similar.

As $G\left[S^{*}\right]$ is bipartite, every biclique of $G_{\mathcal{B}_{S}}$ is also a biclique of $G\left[S^{*}\right]$. Consequently, v is also contained in every biclique of $G_{\mathcal{B}_{S}}$. Finally, every biclique of \mathcal{B}_{S} is also a biclique of $G_{\mathcal{B}_{S}}$. The latter implies that v is common to all bicliques of \mathcal{B}_{S}.

The conclusion is that, for every subset S of three vertices, the family of bicliques of G having at least two vertices of S contains a common vertex. By [11], G is biclique-Helly.

An algorithm for recognizing whether or not a given graph is bicliqueHelly follows directly from Theorem 2.5. Let G be a graph

Algorithm 2.1 Biclique-Helly graphs (I) First verify if G has triangles. If positive, answer $N O$. Otherwise, for each $S \subseteq V(G),|S|=3$, construct S^{*} and $G\left[S^{*}\right]$, and check if $G\left[S^{*}\right]$ has an edge dominator. If the answer is negative for some S, answer NO; otherwise answer YES.

Algorithm. Input: A graph G

- For every $S \subseteq V(G), S$ different from the complement of a $P_{3}, S=\{x, y, z\}$
$-S^{\star}=\emptyset$
- If S is a triangle, answer NO. Complexity $O\left(|V(G)|^{3}\right)$
- Otherwise, if $y, z \in N(x)$
* For every $k \in N(y)$, if $k \in N(z)$

$$
\begin{gathered}
\cdot S^{*}=S^{*} \cup N[k] \\
* S^{*}=S^{*} \cup N[x] \cup N[z] \cup N[y] . \quad \text { Complexity } O(|E(G)|)
\end{gathered}
$$

- Otherwise, if $y, z \notin N(x)$ and z, y are not adjacent
* For $k \in N(x)$
- If y or $z \in N(k), S^{*}=S^{*} \cup N[k]$
* For $k \in N(y)$
- If $z \in N(k), \quad S^{*}=S^{*} \cup N[k]$. Complexity $O(|E(G)|)$
- If $S^{\star} \neq \emptyset$
* If S^{*} has not an edge dominator, answer NO. Complexity $O(|E(G)|)$
- Answer YES

Checking the existence of a triangle has a cost of $O\left(n^{3}\right)$ time. Constructing $G\left[S^{*}\right]$ and checking the existence of an edge dominator can be done in $O(|E(G)|)$ time. Then, the Algorithm 2.1 terminates within $O\left(|V(G)|^{3}|E(G)|\right)$ steps.

In the next section we study a variation of clique-Helly graphs, the bichromaticHelly graphs.

2.3 Bichromatic-Helly Graphs

In this section, we define a weaker notion of clique-Helly graphs, the bichromatic-Helly graphs.

Let G be a graph and $U \cup W$ an arbitrary bipartition of its vertices. A clique C of G is called bichromatic when it contains at least one vertex of each of the parts U and W. Say that G is bichromatic-Helly (relative to $U, W)$ when its bichromatic cliques form a Helly family. Observe that the bichromatic-Helly property depends strongly on the bipartition $U \cup W$. In Figure 2.5 we can see an example: The graph G is bichromatic-Helly relative to the bipartition $U^{\prime} \cup W^{\prime}$, while G is not bichromatic-Helly relative to the bipartition $U \cup W$.

Let T be a triangle of G. The extended triangle of T, denoted by $E(T)$ is the subgraph of G induced by the vertices which form a triangle with at least one edge of T. Let G be a graph and $U \cup W$ a bipartition of its vertices. A vertex $v \in E(T)$ is a relevant vertex of T if it belongs to some bichromatic clique of G which contains at least one edge of T. The extended relevant triangle of $T, E R(T)$, is the subgraph of $E(T)$ induced by the relevant vertices of T. In Figure 2.5.d we can see an example of the extended relevant triangle of v_{1}, v_{2}, v_{3} relative to U^{\prime}, V^{\prime} for the graph G. In 2.5 .d, we can see the extended relevant triangle of v_{1}, v_{2}, v_{3} relative to U, V for the graph G.

Let G be a graph and let \mathcal{C} be the set of cliques of G. For each subset $\mathcal{C}^{\prime} \subseteq \mathcal{C}$, define the clique subgraph $G_{\mathcal{C}^{\prime}}$ as the subgraph of G formed by the
vertices and edges of the cliques of the subset \mathcal{C}^{\prime} (See an example of $G_{\left\{v_{1}, v_{2}, v_{2}\right\}}$ in Figure 2.5.f).

We formulate a characterization for bichromatic-Helly graphs, which is employed in that for biclique-Helly graphs.

The following Lemma is direct, but it is useful in our proof of the next Theorem.

Lemma 2.3 Let G be a graph and $U \cup W$ a bipartition of its vertices. Let T be a triangle of G and let \mathcal{C} be the set of bichromatic cliques of G having at least one edge of T. Then, the clique subgraph $G_{\mathcal{C}}$ is a spanning subgraph of the extended relevant triangle $E R(T)$.

Proof: Let T be a triangle of G. Let \mathcal{C} be the subfamily of bichromatic cliques of G having at least one edge of T and let $E R(T)$ be the extended relevant triangle of $E(T)$. First we prove that the set of vertices of $G_{\mathcal{C}}$ is the same as the set of vertices of $E R(T)$. Suppose v is a vertex of the clique subgraph $G_{\mathcal{C}}$. Then v belongs to some bichromatic clique of C and therefore v is a relevant vertex of the extended triangle $E(T)$. Conversely, let w be a vertex of $E R(T)$.

It follows that w belongs to some bichromatic clique that contains at least one edge of T. Then, $w \in V\left(G_{\mathcal{C}}\right)$.

Now, let $v w$ be an edge of $E\left(G_{C}\right)$. Then, v and w are vertices of $E R(T)$. As $E R(T)$ is an induced subgraph, $v w$ is an edge of $E R(T)$.

(a) Graph G. Bipartitions U', W' and U,V

(b) G is bichromatic Helly relative to bipartition U', W'

(d) The extended relevant triangle of $\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3\}$ relative to bipartition $\mathrm{U}^{\prime}, \mathrm{W}^{\prime}$

$$
\begin{aligned}
U^{\prime} & =\{v 1 \text { v2 v3 v4 v5 v6 }\} \\
W^{\prime} & =\{v 7 \text { v8 v9 v10 v11 v12 }\}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{U} & =\{\mathrm{v} 2 \mathrm{v} 3 \mathrm{v} 4 \mathrm{v} 8 \mathrm{v} 10 \mathrm{v} 11\} \\
\mathrm{W} & =\{\mathrm{v} 1 \mathrm{v} 5 \mathrm{v} 6 \mathrm{v} 7 \mathrm{v} 9 \mathrm{v} 12\}
\end{aligned}
$$

(c) G is not bichromatic Helly relative to bipartition U, W

(e) The extended relevant triangle of $\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3\}$ relative to bipartition U, W

(f) Clique subgraph G\{v1,v2,v3\}

Figure 2.5: Examples

The following Theorem characterizes bichromatic-Helly graphs for general bipartitions.

Theorem 2.6 Let G be a graph and $U \cup W$ a bipartition of its vertices. Then G is bichromatic-Helly if and only if for every triangle $T, E R(T)$ has a universal vertex.

Proof: Let G be a bichromatic-Helly graph and $U \cup W$ a bipartition of its vertices. Let T be a triangle of G and $E R(T)$ its extended relevant triangle. We will show that $E R(T)$ has a universal vertex. Let \mathcal{C} be the set of bichromatic cliques of G having at least one edge of T. Observe that the cliques of C pairwise intersect. By hypothesis, G is bichromatic-Helly. Then, there exists a vertex v belonging to every clique of \mathcal{C}. It follows that v is a universal vertex of the clique subgraph $G_{\mathcal{C}}$. By Lemma $2.3, G_{\mathcal{C}}$ is a spanning subgraph of $E R(T)$, then $E R(T)$ has a universal vertex.

Conversely, suppose that there exists a subfamily \mathcal{C} of bichromatic cliques which does not verify the Helly property. Consider $\mathcal{C}^{\prime}=\left\{C_{1}, C_{2}, \cdots, C_{k}\right\} \subseteq \mathcal{C}$ a minimal not Helly subfamily of \mathcal{C}. Clearly $k \geq 3$. By the minimality of \mathcal{C}^{\prime}, there is a vertex w_{i} which belongs to every bichromatic clique of the subfamily $\mathcal{C}_{i}^{\prime}=\mathcal{C}^{\prime} \backslash\left\{C_{i}\right\}$. Consider vertices w_{1}, w_{2} and w_{3}. They induce a triangle T in G.

Let $\mathcal{C}^{\prime \prime}$ be the subfamily of bichromatic cliques of G that contains at least one edge of T. Consider the extended relevant triangle $E R(T)$. By hypothesis, $E R(T)$ has a universal vertex v. That means that v belongs to every bichromatic clique that contains at least one edge of T, i.e., v belongs to every bichromatic clique of $\mathcal{C}^{\prime \prime}$.

As $\mathcal{C}^{\prime} \subseteq \mathcal{C}^{\prime \prime}, v$ belongs to every bichromatic clique of \mathcal{C}^{\prime}.
An algorithm for recognizing whether or not a given graph is bichromaticHelly follows directly from Theorem 2.6. Let G be a graph with bipartition $U \cup W$.

Algorithm 2.2 Bichromatic-Helly graphs. For every triangle T, construct $E R(T)$ and check if it has a universal vertex. If the answer is negative for some T, answer NO; otherwise answer YES.

Construct $E R(T)$ and checking if it has a universal vertex can be done in $O\left(\mid(E(G) \mid)\right.$ time. The Algorithm 2.2 terminates within $O\left(|V(G)|^{3}|E(G)|\right)$ steps.

We study the relation between bichromatic-Helly graphs and clique-Helly graphs. If G is bichromatic-Helly relative to some weak 2-coloring, it is clear that G is clique-Helly. On the other hand, a clique-Helly graph G is bichromatic-Helly for every bipartition $U \cup W$. The converse is given by the following Theorem.

Theorem 2.7 G is clique Helly if and only if G is bichromatic-Helly for every bipartition $U \cup W$.

Proof: It is clear that if G is clique-Helly, then G is bichromatic-Helly for every bipartition $U \cup W$.

Conversely, we prove that every extended triangle of G has a universal vertex. Let v_{1}, v_{2}, v_{3} be a triangle and let $E(T)$ be its extended triangle. Consider any bipartition $U \cup W$ of G such

1. $v_{1}, v_{2} \in U, v_{3} \in W$
2. every vertex $w \in E(T)$ which is not adjacent to v_{3}, belongs to W
3. every vertex that is not adjacent to v_{1}, belongs to U

Consider $E R(T)$ the extended relevant triangle of T, relative to bipartition $U \cup W$. It is clear that $E(T) \subseteq E R(T)$. Since, by hypothesis, G is bichromatic-Helly relative to $U, W, E R(T)$ has a universal vertex. Then, it follows that $E(T)$ has a universal vertex and G is clique-Helly.

2.4 Bichromatic-Helly graphs and bicliqueHelly graphs

In this section we formulate another characterization for biclique-Helly graphs, based on bichromatic-Helly graphs. We want to relate bichromatic cliques to bicliques. For that purpose, we make the following construction.

Given a graph G, with vertices $v_{i} \in V(G)$, denote by $H(G)$ the graph obtained from G, by the following construction. For each $v_{i} \in V(G)$, there is a pair of distinct vertices u_{i} and w_{i} in $H(G)$. The edges of $H(G)$ are as follows: u_{i}, u_{j} and w_{i}, w_{j} are adjacent precisely when v_{i}, v_{j} are not, while u_{i}, w_{j} are adjacent when v_{i}, v_{j} are also adjacent. Denote $U=\cup u_{i}$ and $W=\cup w_{i}$. The bipartition $U \cup W$ is called the canonical bipartition of $H(G)$. See an example in Figure 2.6.

The relation between bicliques of a graph G and bichromatic cliques of $H(G)$ is given by the following Lemma.

Lemma 2.4 Let G be a graph. Then there is a 1-2 correspondence between the bicliques of G and the bichromatic cliques of $H(G)$. Moreover, the two cliques of $H(G)$ that correspond to a biclique of G are disjoint.

Proof: Let $B=\left\{z_{i_{1}}, z_{i_{2}}, \ldots, z_{i_{k}}\right\} \cup\left\{z_{i_{1}^{\prime}}, z_{i_{2}^{\prime}}, \ldots, z_{i_{k^{\prime}}}\right\}$ be a biclique of G. Consider the complete subgraph of H induced by $\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}, w_{i_{1}^{\prime}}, w_{i_{2}^{\prime}}, \ldots, w_{i_{k^{\prime}}^{\prime}}\right\}$. We are going to prove that it is a clique. Suppose there is a vertex u of H adjacent to every vertex of the complete subgraph. Without loss of generality, we can assume that $u \in W$. Let z be the corresponding vertex of u

Figure 2.6: Example of $H(G)$
in G. It follows that z is adjacent to every vertex of the set $\left\{z_{i_{1}}, z_{i_{2}}, \ldots, z_{i_{k}}\right\}$, and not adjacent to every vertex of the set $\left\{z_{i_{1}^{\prime}}, z_{i_{2}^{\prime}}, \ldots, z_{i_{k^{\prime}}^{\prime}}\right\}$. Hence, B is not maximal, which is an absurd. Analogously, it can be proved that the complete subgraph induced by $\left\{w_{i_{1}}, w_{i_{2}}, \ldots, w_{i_{k}}, v_{i_{1}^{\prime}}, v_{i_{2}^{\prime}}, \ldots, v_{i_{k^{\prime}}}\right\}$ is a clique of H. It is clear that both cliques are disjoint.

Finally, let $C=\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}, w_{i_{1}^{\prime}}, w_{i_{2}^{\prime}}^{\prime}, \ldots, w_{i_{k^{\prime}}^{\prime}}\right\}$ be a bichromatic clique of H. Observe that $i_{j} \neq i_{s}^{\prime}$ for all j, s because w_{k} is not adjacent to v_{k}. Then, the subgraph induced by vertices $\left\{z_{i_{1}}, z_{i_{2}}, \ldots, z_{i_{k}}\right\} \cup\left\{z_{i_{1}^{\prime}}, z_{i_{2}^{\prime}}, \ldots, z_{i_{k^{\prime}}^{\prime}}\right\}$ is a complete bipartite graph. With similar arguments that before, it can be proved that it is a biclique.

Based on the relation between bicliques and bichromatic cliques we present the second characterization for biclique-Helly graphs.

Theorem 2.8 A graph G is biclique-Helly if and only if

1. G contains neither triangles nor induced C_{5} 's.
2. The graph $H(G)$ is bichromatic-Helly, relative to its canonical partition.

Proof: Let G be a graph, and $U \cup W$ the canonical bipartition of $H(G)$. Suppose G is biclique-Helly. Then Condition 1 holds because of Lemma 2.2. The following observation is useful for proving Condition 2.

Remark 2.1 Let $u_{i} \in U$ and $w_{i} \in W$ be the pair of vertices of $H(G)$, corresponding to $v_{i} \in V(G)$. Then no vertex of $H(G)$ is adjacent to both u_{i} and w_{i}.

The reason why the above assertion is true is simple. Suppose $u_{j} \in U$ is adjacent to $u_{i} \in U$ in $H(G)$. Then v_{i}, v_{j} are not adjacent in G. The latter implies w_{i}, u_{j} not adjacent in $H(G)$. Similarly, $w_{j} \in W$ adjacent to u_{i} implies w_{j} not adjacent to w_{i}. Consequently, Observation 2.1 is true.

Denote by \mathcal{C} a family of intersecting bichromatic cliques of $H(G)$. Let \mathcal{B} be the family of bicliques of G, corresponding to \mathcal{C}. Observe that this is a 1-1 correspondence, because the pair of cliques of $H(G)$ which correspond to
the same biclique of G are disjoint. Since G is biclique-Helly, the bicliques of G contain a common vertex $v_{i} \in V(G)$. Let B_{j} be the biclique of \mathcal{B} corresponding to the bichromatic clique $C_{j} \in \mathcal{C}$. Because $v_{i} \in B_{1}$, it follows $u_{i} \in C_{1}$ or $w_{i} \in C_{1}$. Without loss of generality, assume $u_{i} \in C_{1}$. We show that $u_{i} \in C_{j}$, also for clique $C_{j} \in \mathcal{C}, j \neq 1$. Suppose the contrary and let $u_{i} \notin C_{j}$. Because $v_{i} \in B_{j}$, it follows $w_{i} \in C_{j}$. If $w_{i} \in C_{1}$ then u_{i} and w_{i} must be adjacent, which can not occur. Then $u_{i} \in C_{1} \backslash C_{j}$ and $w_{i} \in C_{j} \backslash C_{1}$. Because C_{1} and C_{j} intersect, there must be some vertex of $H(G)$ belonging to $C_{1} \cap C_{j}$. Such a vertex would have to be simultaneously adjacent to u_{i} and w_{i}, which contradicts Observation 2.1. Consequently, C_{j} contains u_{i}, implying that $H(G)$ is indeed bichromatic-Helly.

Conversely, by hypothesis Conditions 1 and 2 are true for some graph G. We show that G is biclique-Helly. Let \mathcal{B} be an intersecting family of bicliques of G. We construct a family \mathcal{C} of bichromatic cliques of $H(G)$. Each $B_{i} \in \mathcal{B}$ corresponds in $H(G)$ to a pair of disjoint bichromatic cliques C_{i}^{\prime} and $C_{i}^{\prime \prime}$. We choose $C_{i} \in \mathcal{C}$ as to be C_{i}^{\prime} or $C_{i}^{\prime \prime}$, according to the following rule. Arbitrarily, choose $C_{1}=C_{1}^{\prime}$. Note that since B_{1} and B_{i} intersect, C_{1} must intersect C_{i}^{\prime} or $C_{i}^{\prime \prime}$. Then, for $i>1$, if C_{1} and C_{i}^{\prime} intersect then choose $C_{i}=C_{i}^{\prime}$, and otherwise $C_{i}=C_{i}^{\prime \prime}$. First, we show that \mathcal{C}, as above obtained, is an intersecting family. Let $C_{i}, C_{j} \in \mathcal{C}$. If $i=1$ then C_{1} intersects any C_{j}, by construction. Let $i, j \neq 1$. Since B_{i} and B_{j} intersect there exists $v_{s} \in B_{i} \cap B_{j}$. Then C_{i} contains u_{s} or w_{s}. Without loss of generality, let $u_{s} \in C_{i}$. We will show that $u_{s} \in C_{j}$, meaning that C_{i} and C_{j} intersect. Suppose the contrary, $u_{s} \notin C_{j}$. Then $w_{s} \in C_{j}$. Consider the following alternatives for locating $C_{1} \cap C_{i}$ and $C_{1} \cap C_{j}$.

Case 1: $C_{1} \cap C_{i} \cap U \neq \emptyset$ and $C_{1} \cap C_{j} \cap U \neq \emptyset$
Let $u_{i} \in C_{1} \cap C_{i} \cap U$ and $u_{j} \in C_{1} \cap C_{j} \cap U$. If $u_{i}=u_{s}$ then C_{1} also contains u_{s}, implying that u_{j} is adjacent to u_{s}, because $u_{s}, u_{j} \in C_{1}$. Since $w_{s} \in C_{j}, u_{j}$ is also adjacent to w_{s}, contradicting Observation 2.1. Consequently, $u_{i} \neq u_{s}$. Similarly, $u_{j} \neq u_{s}$. Then u_{i}, u_{j}, u_{s} are distinct. Since $u_{s}, u_{i} \in C_{i}, v_{s}$ and v_{i} are not adjacent in G. On the other hand, because $w_{s}, u_{j} \in C_{j}, v_{s}$ and v_{j} are adjacent. Finally, v_{i} and v_{j} are not adjacent, because $u_{i}, u_{j} \in C_{1}$. Since $v_{i}, v_{j} \in B_{1}$, there exists $v_{p} \in B_{1}$ adjacent to both v_{i}, v_{j}. If v_{p}, v_{s} are adjacent then v_{p}, v_{j}, v_{s} form a triangle, which contradicts Condition 1. Then v_{p}, v_{s} are not adjacent. Because $v_{i}, v_{s} \in B_{i}$, there exists a vertex $v_{q} \in B_{i}$, simultaneously adjacent to v_{i} and v_{s}. We conclude that v_{q} is not adjacent neither to v_{p} nor v_{j}, otherwise G would contain a triangle. However in this situation, the vertices $v_{i}, v_{j}, v_{s}, v_{p}, v_{q}$ induce a C_{5} in G, not possible.

Case 2: $C_{1} \cap C_{i} \cap U \neq \emptyset$ and $C_{1} \cap C_{j} \cap W \neq \emptyset$
Let $u_{i} \in C_{1} \cap C_{i} \cap U$ and $w_{j} \in C_{1} \cap C_{j} \cap W$. Similarly as in Case 1, we know that v_{i} and v_{s} are not adjacent. Because $w_{s}, w_{j} \in C_{j}, v_{s}$ and v_{j} are also not adjacent, and $u_{i}, w_{j} \in C_{1}$ implies v_{i}, v_{j} to be adjacent. Since $v_{s}, v_{i} \in B_{i}$, there exists some vertex $v_{p} \in B_{i}$ adjacent to v_{s} and v_{i}. We know that v_{p}, v_{j} are not adjacent, otherwise G would contain a triangle. Also, because $v_{s}, v_{j} \in B_{j}$, there exists $v_{q} \in B_{j}$, adjacent to v_{s}, v_{j}. If v_{p}, v_{q} or v_{q}, v_{i}
are adjacent then G contains a triangle, otherwise the vertices $v_{i}, v_{j}, v_{s}, v_{p}, v_{q}$ induce a C_{5}, which is forbidden by Condition 1 . Therefore Case 2 can also not occur.

Case 3: $C_{1} \cap C_{i} \cap W \neq \emptyset$ and $C_{1} \cap C_{j} \cap U \neq \emptyset$
With the similar arguments as in Case 1, we conclude that Case 3 can not occur.

The alternative $C_{1} \cap C_{i} \cap W \neq \emptyset$ and $C_{1} \cap C_{j} \cap W \neq \emptyset$ is Case 1. The conclusion is that C_{i} and C_{j} intersect, meaning that \mathcal{C} is an intersecting family. By Condition $2, H(G)$ is bichromatic-Helly. Then $H(G)$ contains a vertex common to all cliques of \mathcal{C}. Such a vertex corresponds in G to a vertex common to all bicliques of \mathcal{B}. Therefore G is biclique-Helly.

An algorithm for recognizing whether or not a given graph is bicliqueHelly follows directly from Theorem 2.8. Let G be a graph.

Algorithm 2.3 Biclique-Helly graphs (II) First verify if G has triangles or $C_{5}{ }^{\prime} s$. Then construct the graph $H(G)$. Run the Algorithm 2.2 for recognizing bichromatic-Helly graphs applied to the graph $H(G)$.

Constructing the graph $H(G)$ takes $O\left(|V(G)|^{2}\right)$ steps. The Algorithm 2.3 terminates within $O\left(|V(G)|^{5}\right)$ steps.

2.5 Neighborhood-Helly graphs and other related classes

In this section we relate biclique-Helly graphs to the classes of cliqueHelly, neighborhood-Helly, both open and closed neighborhoods are considered, disk-Helly and clique-Helly.

Recall that a graph is neighborhood-Helly (disk-Helly, clique-Helly) when its family of neighborhoods (disks, cliques, respectively) is Helly. We remark that the classes of open and closed neighborhood-Helly overlap. Neighborhood Helly graphs appears in the context of retracts, for example [4]. Consider the class of open neighborhood-Helly graphs. We describe a characterization of this class of graphs, in terms of extensions. It will be useful for our purpose of relating it to biclique-Helly graphs. Start with the following lemma.

Lemma 2.5 Let G be a open neighborhood-Helly graph. Then G has no triangles.

Proof: Let G be a graph and T be a triangle of G, with vertices v_{1}, v_{2} and v_{3}, respectively. Consider the family of neighborhoods $W=\left\{N\left(v_{1}\right), N\left(v_{2}\right)\right.$, $\left.N\left(v_{3}\right)\right\}$. Since this family is intersecting, there exists a vertex v_{4} in G adjacent
to v_{1}, v_{2} and v_{3}. Now consider the intersecting family $W_{4}=W \cup\left\{N\left(v_{4}\right)\right\}$. As $v_{j} \notin N\left(v_{j}\right)$, there exists a vertex $v_{5} \neq v_{j}, j=\{1,2,3,4\}$, adjacent to v_{1}, v_{2}, v_{3} and v_{4}. Following this procedure, we can construct the family $W_{i}=W \cup\left\{N\left(v_{i}\right)\right\}$ of intersecting neighborhoods and assure the existence of a vertex $v_{i+1} \neq v_{j}$, adjacent to v_{j} for $1 \leq j \leq i$. However, G is finite, leading to a contradiction. Then G can not have triangles.

Let S be an independent set of $G,|S|=3$, and $G\left[S^{*}\right]$ its extension. Denote by $S_{2}^{*} \subseteq S^{*}$ the subset of vertices which are adjacent to at least two vertices of S.

The following Theorem gives a characterization of open neighborhoodHelly graphs.

Theorem 2.9 A graph G is open neighborhood-Helly if and only if G has no triangles and for every independent set $S,|S|=3, S^{*}$ contains a vertex adjacent to all vertices of S_{2}^{*}.

Proof: Let $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ be a set of non adjacent vertices and $G\left[S^{*}\right]$ its extension. Consider the vertices of S_{2}^{*}. It is clear that the family of open neighborhoods of vertices of S_{2}^{*} intersect. By hypothesis, there is a vertex w which belongs to every neighborhood of the family. Then, w is adjacent to all vertices of S_{2}^{*}.

Conversely, let G be a graph satisfying the hypothesis. By contrary, assume that G is not open neighborhood-Helly. For $v_{i} \in V(G)$, denote by N_{i} the open neighborhood of v_{i}. Let $N=\left\{N_{1}, N_{2}, \ldots, N_{l}\right\}, l \geq 3$, be a minimal subfamily of the neighborhoods of G which is not Helly. Then $N-N_{i}$ is a Helly family, meaning that it contains a common element $w_{i} \in N_{j}, j \neq i$. We claim that $v_{i} \neq w_{j}, 1 \leq i, j \leq l$. Clearly, if $i \neq j$ the claim holds because $w_{i} \in N_{j}$ and $v_{j} \notin N_{j}$. Examine the alternative $v_{i}=w_{i}$. It implies that v_{i} is adjacent to v_{k} for any $k \neq i$. Since N_{i} and N_{k} intersect, there exists a vertex w which forms a triangle with v_{i} and v_{k}, a contradiction. Consequently, $w_{i} \neq v_{j}$. Furthermore, w_{i}, w_{j} must be distinct, for $i \neq j$. Finally, we assert that w_{i}, w_{j} are non adjacent. Otherwise, if w_{i}, w_{j} are adjacent, consider any $v_{k}, k \neq i, j$. By the above claim, $v_{k} \neq w_{i}, w_{j}$. Since $w_{i}, w_{j} \in N_{k}$, it follows that w_{i}, w_{j}, v_{k} form a triangle, a contradiction. Then $S=\left\{w_{1}, w_{2}, w_{3}\right\}$ is an independent set. Consider the extension $G\left[S^{*}\right]$, where $S=\left\{w_{1}, w_{2}, w_{3}\right\}$. Observe that as every N_{i} contains at least two of the vertices of S, v_{i} is adjacent to at least two vertices of S and then belongs to S_{2}^{*}. By hypothesis, there is a vertex w adjacent to every vertex of S_{2}^{*}. Then, w belongs to N_{i} for $1 \leq i \leq l$, meaning that G is open neighborhood-Helly.

The characterization given by Theorem 2.9 leads to a possibly faster recognition algorithm than the one resulting by the application of the general test for Helly families ([10]). Furthermore, the characterization of Theorem 2.9 is also useful for proving relations to other classes of Helly families.

The following Proposition gives conditions for a graph with induced C_{6} to be open neighborhood-Helly. It will be useful in the characterization of Hereditary neighborhood-Helly graphs given in Chapter 3.

Proposition 2.1 Let G be an open neighborhood-Helly graph. If G has C_{6} as an induced subgraph, then it contains the graph J of Figure 2.7 as induced subgraph.

Figure 2.7: Graph J
Proof: Suppose G has the graph C_{6} as an induced subgraph. Let v_{1}, v_{2}, v_{3}, v_{4}, v_{5} and v_{6} be the vertices of C_{6}. Consider the neighborhoods $N\left(v_{1}\right)$, $N\left(v_{3}\right), N\left(v_{5}\right)$. As they have pair intersection, there exists a vertex $v_{8} \neq v_{i}, v_{8}$ adjacent to v_{i}, for $i=1,3,5$. Consider now the neighborhoods $N\left(v_{2}\right), N\left(v_{4}\right)$, $N\left(v_{6}\right)$ and $N\left(v_{8}\right)$. As they have pair intersection, there exists a vertex $v_{7} \neq v_{i}$, v_{7} adjacent to v_{i}, for $i=2,4,6,8$. By Lemma $2.5, G$ is has no triangles, then vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}$ induce the graph J.

A characterization of closed neighborhood-Helly graphs, restricted to the triangle-free class, is given in the following Theorem.

Theorem 2.10 Let G be a triangle-free graph. Then G is $\left\{C_{4}, C_{5}, C_{6}\right\}$-free if and only if it is closed neighborhood-Helly.

Proof: Let $N^{\prime}=\left\{N_{i_{1}}, N_{i_{2}}, \ldots, N_{i_{s}}\right\}$ be a minimal subfamily of closed neighborhoods which does not verify the Helly property. Consider the vertex w_{1} which belongs to every $N_{i_{j}}, j \neq 1$ and vertices w_{2} and $w_{3}, w_{2} \in N_{i_{j}}, j \neq 2$, and $w_{3} \in N_{i_{j}}, j \neq 3$. Is is clear that $w_{i_{j}} \neq v_{i_{j}}, j=1,2,3$.

Suppose it is the case that $w_{j}=v_{i_{s}}$ for some j, s. Without loss of generality, suppose $w_{1}=v_{i_{2}}$. It means that $v_{i_{2}}$ is not adjacent to $v_{i 1}$. Then, $v_{i 1} \neq w_{3}$. Also, $v_{i_{2}}$ is adjacent to $v_{i_{3}}$ and w_{2} is not adjacent to $v_{i_{2}}$. Then, $w_{1}, w_{2} \neq v_{i_{3}}$. As G is $C_{4}-$ free, w_{2} and w_{3} are not adjacent. Then $v_{i_{1}} \neq w_{2}$. If $v_{i_{1}}$ is adjacent to $v_{i_{3}}$, it forms a C_{4}, otherwise, they induce a C_{5}. Then this case can not occur.

Now, suppose $w_{j} \neq v_{i_{s}}$ for all j, s. As G is $C_{6}-f r e e$, the the sets $\left\{w_{j}\right\}$ and $\left\{v_{i_{s}}\right\}$ can not be both independent sets. Suppose w_{2} is adjacent to w_{3}. As G is $\left\{C_{5}, C_{4}\right\}-f r e e, w_{1}$ is adjacent to w_{2} and w_{3}. Then, these vertices induce the Hajós graph, contradicting the hypothesis. If $v_{i_{1}}$ is adjacent to
$v_{i_{2}}$, with the same argument we conclude that these six vertices induce the Hajós graph. It follows that G is hereditary closed neighbourhood Helly.

Conversely, suppose G has C_{4} as induced subgraph. Consider $N\left[v_{1}\right]$, $N\left[v_{2}\right], N\left[v_{3}\right]$ and $N\left[v_{4}\right]$. They have a pairwise intersection. Then there is a $v \in N\left[v_{i}\right], \mathrm{i}=1, \ldots, 4$, such that among vertices $v_{1}, v_{2}, v_{3}, v_{4}, v$ there is an induced triangle. Absurd.

Analogously, suppose G has C_{5} as induced subgraph. Consider $N\left[v_{1}\right]$, $N\left[v_{2}\right], N\left[v_{3}\right], N\left[v_{4}\right]$ and $N\left[v_{5}\right]$. They have a pairwise intersection. Then, there is a vertex $v \in N\left[v_{i}\right], \mathrm{i}=1, \ldots, 5$. Then, among $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v$ there is an induced triangle. For the graph C_{6}, consider neighborhoods $N\left[v_{1}\right]$, $N\left[v_{3}\right]$ and $N\left[v_{5}\right]$. They form an intersecting family. Then, there is a vertex $v \in N\left[v_{i}\right], \mathrm{i}=1,3,5$. Then, among vertices v_{1}, v_{3}, v_{5}, v there is an induced triangle.

We study some relations between biclique- Helly graphs and open neigh-borhood-Helly graphs. The following results relate both classes of graphs. For both proofs, we use the characterizations we have presented of the mentioned classes.

Theorem 2.11 Let A, B, C and D be the graphs of Figure 6.3. Let G be a open neighborhood-Helly graph, with no C_{5} 's, and such that every induced subgraph A of it extends to one of the induced subgraphs B, C or D. Then G is biclique-Helly.

Figure 2.8: Graphs A, B, C and D.
Proof: By Lemma 2.5, G has no triangles. We prove that each non empty extension has an edge dominator. Let $S \subseteq V(G),|S|=3$, and $G\left[S^{*}\right]$ the extension of S. By Lemma 2.1, $G\left[S^{*}\right]$ is a bipartite graph. In the case where there are only two vertices of S in S^{*}, clearly the theorem follows.

Discuss the case where $S \subseteq S^{*}$. First, suppose that S is an independent set. By Theorem 2.9 there exists a vertex v in S^{*} adjacent to every vertex of S_{2}^{*}. As $G\left[S^{*}\right]$ is a bipartite graph, it follows that v is an edge dominator of $G\left[S^{*}\right]$, as required.

Consider the case when the subset $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ induces a P_{3}, with v_{1}, v_{2} non adjacent. Let X and Y be the bipartiton of $G\left[S^{*}\right], v_{1}, v_{2} \in X$. In the case $|X|=2$, it is clear that v_{3} is an edge dominator of $G\left[S^{*}\right]$. We analyze the case $|X| \geq 3$. First we prove that the family $\{N(v), v \in X\}$ is
intersecting. Suppose the contrary. Let w_{1}, w_{2} be two vertices of X with no common neighbor. If w_{1} or w_{2} coincides with v_{1} or v_{2}, it follows that there is a vertex adjacent to $v_{1}, v_{2}, w_{1}, w_{2}$, implying that w_{1} and w_{2} have indeed a common neighbor. Assume $w_{1}, w_{2} \neq v_{1}, v_{2}$.

By definition of $G\left[S^{*}\right]$, there exist vertices $v_{w_{1}}, v_{w_{2}} \in Y, v_{w_{1}} \neq v_{w_{2}}$ adjacent to w_{1} and w_{2} respectively, and both adjacent to v_{1} and v_{2}. As w_{1} and w_{2} have no common neighbor, vertices $w_{1}, v_{w_{1}}, v_{1}, v_{w_{2}}, v_{2}$ induce the graph A which does not extend to any of the graphs B, C or D, what leads to a contradiction. Then $\{N(v), v \in X\}$ is an intersecting family. As G is open neighborhood-Helly, there is a vertex v adjacent to every vertex $w \in X$, $v \in S^{*}$. Then, v is an edge dominator in $G\left[S^{*}\right]$. By Theorem 2.5, G is biclique-Helly.

Examine the case where S induces the complement of a P_{3} in G. Similarly as in Lemma 1, by applying the definition of $G\left[S^{*}\right]$, we conclude that G contains a triangle or a C_{5}, contradicting the hypothesis. Finally, the case where S induces a triangle also does not occur, completing the proof.

The converse for a restricted family of graphs is given by the following Theorem.

Theorem 2.12 Let G be a cube - free graph. If G is biclique-Helly then it is open neighborhood-Helly.

Figure 2.9: The Cube graph
Proof: We prove that for every independent set of three vertices $S=$ $\left\{v_{1}, v_{2}, v_{3}\right\}$, its extension $G\left[S^{*}\right]$ has a vertex v adjacent to S_{2}^{*}. Recall that as G is biclique Helly, by Lemma $1, G\left[S^{*}\right]$ is a bipartite graph. Let X, Y be a bipartition of vertices of $G\left[S^{*}\right], S \subseteq X$. Suppose there is no edge dominator in X. By Theorem 2.5, since G is biclique-Helly, $G\left[S^{*}\right]$ has an edge dominator w. Then $w \in Y$. As none of the vertices $v_{i}, i=1,2,3$ are edge dominators, there exist distinct vertices $w_{1}, w_{2}, w_{3} \in Y$ with v_{i} adjacent to w_{j} precisely when $i \neq j$, for $i, j=1,2,3$. Then, vertices $v_{1}, w_{3}, v_{2}, w_{1}, v_{3}, w_{2}, w$ induce the cube graph, absurd. Consequently, $G\left[S^{*}\right]$ has an edge dominator in X. By Theorem 2.9, G is open neighborhood-Helly.

The relation between closed neighborhood-Helly graphs and bicliqueHelly graphs is given in Chapter 3. We prove that closed neighborhood-Helly graphs with no triangles are also biclique-Helly.

Next we relate biclique-Helly graphs, clique-Helly and disk-Helly graphs, and open and closed neighborhood-Helly graphs.

Proposition 2.2 If G is biclique-Helly or open neighborhood-Helly then G is clique-Helly

Proof: Biclique-Helly and open neighborhood-Helly graphs do not contain triangles and so they are clique-Helly.

Proposition 2.3 Let G be a graph with no triangles. Then if G is closed neighborhood-Helly, then it is open neighborhood-Helly.

Proof: Let $W=\left\{N\left(v_{1}\right), N\left(v_{2}\right), N\left(v_{3}\right), \ldots, N\left(v_{k}\right)\right\}$ be a pair intersecting family of open neighborhoods. Consider the family $W^{\prime}=\left\{N\left[v_{1}\right], N\left[v_{2}\right], \ldots, N\left[v_{k}\right]\right\}$. By hypothesis there is a vertex v which belongs to $N\left[v_{i}\right]$, for $1 \leq i \leq k$. Suppose $v=v_{j}$ for some $j, 1 \leq j \leq k$. Consider a vertex $v_{i}, i \neq j$. As $N\left(v_{i}\right) \cap N\left(v_{j}\right) \neq \emptyset$, there exists a vertex v^{\prime} adjacent to v_{i} and v_{j}. As $v_{j} \in N\left(v_{i}\right)$, the vertices v_{i}, v_{j} and v^{\prime} induce the a triangle which is an absurd. Then, $v \neq v_{j}$ for $1 \leq j \leq k$. It follows that v belongs to $N\left(v_{i}\right)$ for $1 \leq i \leq k$.

Finally, consider disk-Helly graphs.
Proposition 2.4 Let G be a disk-Helly graph with no triangles. Then G is biclique-Helly.

Proof: First, we will prove that if G is disk-Helly and has no triangles, then it is C_{5}-free. By contrary assume that the vertices v_{1}, \ldots, v_{5} form a C_{5}. Consider the disks $D_{1}\left(v_{2}\right), D_{1}\left(v_{3}\right)$ and $D_{1}\left(v_{5}\right)$. Since these disks are a Helly family, there is a vertex v adjacent to v_{2}, v_{3}, v_{5}. Then v forms a triangle with v_{2} and v_{3}, contradicting the hypothesis. Now we will prove that the family of bicliques of G is Helly. Let $\mathcal{B}=\left\{B_{1}, \ldots, B_{k}\right\}$ be an intersecting family of bicliques. For each vertex v of each biclique B_{j} of \mathcal{B}, consider the disk $D_{2}(v)$. Observe that if $v \in B_{j}$, the vertices of B_{j} are included in the set of vertices of $D_{2}(v)$. Consequently, the family of disks $\left\{D_{2}(v) / v \in \cup_{1}^{k} B_{j}\right\}$ is also intersecting. As G is disk-Helly, there is a vertex z which belongs to every $D_{2}(v)$. We are going to prove that z belongs to every biclique B_{i} of \mathcal{B}. Let X_{i}, Y_{i} be the bipartition of the vertices of B_{i} into independent sets. Suppose z does not belong to B_{i}. As G has no triangles, z can not be adjacent simultaneously to a vertex of X_{i} and a vertex of Y_{i}. Then, we can assume that $X_{i} \cup\{z\}$ is an independent set. Then there is a vertex $w \in Y_{i}$ which is not adjacent to z. As $z \in D_{2}(w)$, there exists a vertex z^{\prime} adjacent to z and w. Let v be a vertex of X_{i}. If z^{\prime} is adjacent to v then z^{\prime}, v, w forms a triangle contradicting the hypothesis. As $z \in D_{2}(v)$, there is a vertex $z^{\prime \prime}$ adjacent to z and v. It follows that vertices $v, w, z^{\prime}, z, z^{\prime \prime}$ induce

CLIQUE-HELLY

Figure 2.10: Intersections between clique-Helly, biclique-Helly, open neghborhood-Helly, closed neighborhood-Helly and disk-Helly graphs.
a C_{5} or contain a triangle as an induced subgraph which is an absurd. Then, z belongs to B_{i} for $1 \leq j \leq k$.

It is clear that disk-Helly graphs are closed neighborhood-Helly graphs.
The result of Theorem 2.4 can be obtained as a corollary of Theorem 3.5 of Chapter 3, which relates closed neighborhood-Helly graphs, triangle-free, with biclique-Helly graphs.

In Figure 2.10 the relations between the classes we have studied in this Chapter are shown. The empty intersections follows directly from the results we have proved, considering that open neighborhood-Helly and a bicliqueHelly graphs have no triangles.

Chapter 3

Helly hereditary classes

3.1 Introduction

In Chapter 2 we have studied Helly families of a graph. A question would be to characterize graphs for which the Helly property is preserved for every induced subgraph. Considering the graphs of Chapter 2, we refer to hereditary classes of clique-Helly, biclique-Helly, neighborhood-Helly and disk-Helly graphs. Hereditary clique-Helly graphs have been characterized in [46], while [22] (c.f. [16]) contains a characterization of hereditary disk-Helly graphs. In this Chapter, we describe forbidden subgraph characterizations for the classes of hereditary biclique-Helly and hereditary neighborhood-Helly graphs. Both open and closed neighborhoods are considered. All graphs in these forbidden families are of fixed size. In fact they have at most 8 vertices. Consequently, the characterizations imply polynomial time recognition for hereditary biclique-Helly, hereditary open neighborhood-Helly and hereditary closed neighborhood-Helly graphs.

A graph G is hereditary clique-Helly when every of its induced subgraphs is clique-Helly. Similarly, define hereditary biclique-Helly, hereditary open neighborhood-Helly and hereditary closed neighborhood Helly. See examples in Figure 3.1.

Figure 3.1: Examples of Hereditary biclique-Helly, and (open and closed) neighborhood-Helly graphs

Hereditary clique-Helly graphs have been characterized as follows.
Theorem 3.1 [46]: A graph G is hereditary clique-Helly if and only if it does not contain as induced subgraphs neither the Hajós graph, neither any k-extended Hajós graph, $k=1,2,3$.

Figure 3.2: The Hajós graph

Proof: Suppose H is not a clique-Helly subgraph of G. Let $\mathcal{C}=\left\{C_{1}, \ldots, C_{k}\right\}$ be a minimal family of intersecting cliques of H without common intersection in H. Observe that $k \geq 3$. Consider $\mathcal{C} \backslash\left\{C_{1}\right\}$. There is a vertex v_{1} in every clique C_{i}, for $i \neq 1$. Analogously, there are vertices v_{2}, and v_{3} such that $v_{j} \in V_{i}$ for every $i \neq j, j=2,3$.

It is clear that vertices v_{1}, v_{2}, v_{3} induce a triangle of H. As v_{1} does not belong to C_{1}, there is a vertex w_{1} in C_{1} not adjacent to v_{1} but adjacent to v_{2} and v_{3}. Analogously, there exist vertices w_{2}, w_{3}, w_{2} not adjacent to v_{2} and adjacent to v_{1} and v_{3}, and w_{3} not adjacent to v_{3}, adjacent to v_{1} and v_{2}. It follows that among vertices $v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}$, there is an induced graph of Figure 3.2.

For the converse, it is clear that none of the forbidden subgraphs are clique Helly.

The following is a characterization for hereditary disk-Helly graphs.
Theorem 3.2 [22]: A graph G is hereditary disk-Helly if and only if it is chordal and does not contain the Hajós graph as induced subgraph.

Proof: If G is disk-Helly, by Theorem 2.4 it is clique Helly. Then if G is hereditary disk-Helly, it is hereditary clique-Helly and, by Theorem 3.1 G does not contains the Hajós graph as an induced subgraph. It is easy to prove that C_{k} is not disk-Helly, for $k \geq 4$. Consider the family of disks $D 1=\left\{D_{|(k-1)| / 2}\right\}$ if k is odd and $D 2=\left\{D_{|(k-2)| / 2}\right\}$ if k is even. Both are intersecting families without a common vertex. Then G is chordal.

Conversely, let H be a minimal subgraph that is not disk-Helly. If it is not disk-Helly, as G has neither C_{4} nor the Hajos graph as induced subgraphs, by Theorem 3.1, H is clique Helly. By Theorem 2.4, it follows that H is not dismantable. This means that H has not dominated vertices which implies that H has no simplicial vertices. Since chordal graphs are have simplicial vertices, H can not be cordal, leading to an absurd. [20].

In Section 2, we describe a characterization for hereditary biclique-Helly graphs while the proposed characterizations for hereditary open and closed neighborhood-Helly graphs are in Section 3. Relations among these classes are formulated in Section 4.

3.2 Hereditary biclique-Helly graphs

In this Section, we describe a characterization by a finite family of forbidden subgraphs for the class of hereditary biclique-Helly graphs. Recall the following definitions.

Let $S \subseteq V(G),|S|=3$. Denote by \mathcal{B}_{S} the family of bicliques of G, each of them containing at least two vertices of S. Consider the graph $G_{\mathcal{B}_{S}}$ and denote its vertex set by $S^{*} \subseteq V(G)$. The induced subgraph $G\left[S^{*}\right]$ is extension of S. Clearly, $G_{\mathcal{B}_{S}}$ is a spanning subgraph of $G\left[S^{*}\right]$. The lemma below is useful. Recall that we proved in Chapter 2 that if G is a graph with neither triangles nor C_{5} 's, then each of its extensions is a bipartite graph (Lemma 2.1).

The characterization of hereditary biclique-Helly graphs is next formulated in the following Theorem.

Theorem 3.3 A graph G is hereditary biclique-Helly if an only if it does not contain any of the graphs of Figure 3.3, as induced subgraphs.

Figure 3.3: Graphs $T, C_{5}, C_{6}, Q_{1}, Q_{2}$ and Q_{3}
Proof: To prove that the graphs of Figure 3.3 are not biclique-Helly, we show a pairwise intersecting family \mathcal{B} of bicliques with no common vertex, in each case. For the triangle, $\mathcal{B}=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}\right\}$ and $\mathcal{B}=\left\{\left\{v_{1}, v_{2}, v_{3}\right\}\right.$,
$\left.\left\{v_{3}, v_{4}, v_{5}\right\},\left\{v_{1}, v_{2}, v_{5}\right\}\right\}$ for the C_{5}. For the C_{6}, the family is $\mathcal{B}=\left\{\left\{v_{1}, v_{2}, v_{3}\right\}\right.$, $\left.\left\{v_{3}, v_{4}, v_{5}\right\},\left\{v_{1}, v_{5}, v_{6}\right\}\right\}$. Finally, for the graphs Q_{1}, Q_{2} and $Q_{3}, \mathcal{B}=\left\{\left\{v_{1}\right.\right.$, $\left.\left.w_{2}, v_{3}, v_{4}\right\},\left\{v_{2}, v_{3}, v_{4}, w_{1}\right\},\left\{v_{3}, w_{4}, v_{1}, v_{2}\right\},\left\{v_{1}, v_{2}, v_{4}, w_{3}\right\}\right\}$.

Conversely, let G be a graph which does not contain any of the graphs of Figure 3.3, as an induced subgraph. Suppose it is not hereditary bicliqueHelly. Let H be an induced subgraph which is not biclique-Helly, and \mathcal{B} a non Helly family of bicliques of H. We can choose $\mathcal{B}=\left\{B_{1}, \ldots, B_{k}\right\}$ as a minimal such family. Clearly, $k \geq 3$. As for every $i, \mathcal{B} \backslash B_{i}$ is a Helly family, there exists a vertex v_{i} which belongs to B_{j} and not to B_{i}, for all $j \neq i$. Let $S=\left\{v_{1}, \ldots, v_{k}\right\}$ be the collection of such vertices. Write $\alpha_{S}=\alpha(H[S])$.

First, we show that $\alpha_{S} \leq 2$. By contrary, suppose that $\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq S$ is an independent set of H. Since H has no triangles and $v_{i} \notin B_{i}$, there exists a vertex $w_{i} \in B_{i}$ adjacent to v_{j} and not to v_{i}, for $j \neq i$ and $1 \leq$ $i \leq 3$. Then, $\left\{w_{1}, w_{2}, w_{3}\right\}$ is also an independent set. In the latter situation, $\left\{v_{1}, w_{2}, v_{3}, w_{1}, v_{2}, w_{3}\right\}$ induces a C_{6}, which is forbidden. Consequently, indeed $\alpha_{S} \leq 2$. See Figure 3.4.

Figure 3.4: C_{6} induced by $\left\{v_{1}, w_{2}, v_{3}, w_{1}, v_{2}, w_{3}\right\}$
In the sequel, we discuss the possible values k can assume.
Let $k \geq 5$. Denote $S^{\prime}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Clearly, $S^{\prime} \subseteq B_{5}$. For this reason and considering that $\alpha_{S} \leq 2$, we know that S^{\prime} induces a C_{4} in H. Let $v_{1} v_{3}$ and $v_{2} v_{4}$ be the non adjacent pairs in $S^{\prime \prime}$. Again, because $\alpha_{S} \leq 2, v_{5}$ must be adjacent to at least one vertex of S^{\prime}, say adjacent to v_{1}. Because H has no triangles, v_{5} can not be adjacent to v_{2}, nor to v_{4}. However, in this situation, $\left\{v_{2}, v_{4}, v_{5}\right\}$ is an independent set of size 3 , a contradiction. Consequently, $k<5$.

Next, discuss the case $k=4$. Let $S^{\prime}=\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq S$. Since $S^{\prime} \subseteq B_{4}$ and $\alpha_{S} \leq 2, S^{\prime}$ induces a P_{3} in H. Let v_{1} and v_{2} be the non adjacent vertices in S^{\prime}. As $v_{1}, v_{2}, v_{4} \in B_{3}$ and $\alpha_{S} \leq 2$, it follows that S must induce a C_{4} in H. On the other hand, because $v_{i} \notin B_{i}$ and $v_{j} \in B_{i}$ for $j \neq i$, each B_{i} has an additional vertex $w_{i} \in B_{i}, 1 \leq i \leq 4$ with the following properties: because $v_{1} \notin B_{1}$ and H has no triangles, w_{1} is adjacent to v_{2} and not adjacent to v_{1}, v_{3}, v_{4}. Similarly, w_{2} is adjacent to v_{1}, and not to v_{2}, v_{3}, v_{4}, and w_{3} is adjacent to v_{4} and not v_{1}, v_{2}, v_{3}, while w_{4} is adjacent to v_{3} and not v_{1}, v_{2}, v_{4}. See Figure 3.5.

Examine the possible adjacencies among the w_{i} 's. If $w_{1} w_{2}$ or $w_{3} w_{4}$ are adjacent then H contains a C_{5}, forbidden. So, assume these pairs are not adjacent. Let $W=\left\{w_{1} w_{3}, w_{1} w_{4}, w_{2} w_{3}, w_{2} w_{4}\right\}$ be the set of the other possible pairs of w_{i} 's and denote $W^{\prime}=\left\{v_{1}, w_{1}, v_{2}, w_{2}, v_{3}, w_{3}, v_{4}, w_{4}\right\}$. If none of the

Figure 3.5: Case $k=4$
pairs of W is adjacent then W^{\prime} induces the graph Q_{1}. When exactly one of the pairs of W is adjacent then W^{\prime} forms the graph Q_{2}. When precisely the pairs $w_{1} w_{3}$ and $w_{2} w_{4}$, or $w_{1} w_{4}$ and $w_{2} w_{3}$ are adjacent then W^{\prime} induces Q_{3}. Finally, when at least $w_{1} w_{3}$ and $w_{1} w_{4}$, or $w_{2} w_{3}$ and $w_{2} w_{4}$ are adjacent then a C_{6} exists. Consequently, $k=4$ is not possible.

Next, consider the case $k=3$, and let $S=\left\{v_{1}, v_{2}, v_{3}\right\}$. Denote by \mathcal{B}_{S} the subset of bicliques of H containing at least two vertices of S. Then $\left\{B_{1}, B_{2}, B_{3}\right\} \subseteq \mathcal{B}_{S}$. Discuss the possibilities for S. Clearly, S is not a triangle. Since $\alpha_{S} \leq 2, S$ is also not an independent set. Suppose S induces a $\overline{P_{3}}$, with v_{1}, v_{2}, adjacent. As $v_{2}, v_{3} \in B_{1}$, there is a vertex $w_{1} \in B_{1}$ adjacent to v_{2} and v_{3}. Similarly, there exists $w_{2} \in B_{2}$, with w_{2} adjacent to v_{1} and v_{3}. In this case, either a triangle is formed or $\left\{v_{1}, v_{2}, w_{1}, v_{3}, w_{2}\right\}$ induces a C_{5}, which is forbidden.

Examine the remaining alternative, that is S induces a P_{3}. By Lemma $1, H\left[S^{*}\right]$ is bipartite. Let $X \cup Y$ be a bipartition of it. Let v_{1}, v_{3} be the non adjacent pair of vertices of S. Let $v_{1}, v_{3} \in X$ and $v_{2} \in Y$. Because $v_{i} \notin B_{i}$ and $v_{j} \in B_{i}$, for $j \neq i$, there is a vertex $w_{i} \in B_{i}, w_{i} \neq v_{j}, i, j=1,3$, such that $w_{1} \in Y$ is adjacent to v_{3} and not adjacent to v_{1} and v_{2}, while the vertex $w_{3} \in Y$ is adjacent to v_{1} and not to v_{3} and v_{2}. Also, as B_{2} is a biclique, there exists some vertex $w_{2} \in Y$ adjacent to v_{1} and v_{3}. Because $v_{2} \notin B_{2}$, there is also a vertex $w_{2}^{\prime} \in X \cap B_{2}$ which is adjacent to w_{2} and not to v_{2}. Since $\left\{B_{1}, B_{2}, B_{3}\right\}$ is not a Helly family, w_{2} is not common to these three bicliques. Without loss of generality, assume $w_{2} \notin B_{3}$. Then there exists a vertex $w_{3}^{\prime} \in X$ which belongs to B_{3}, w_{3}^{\prime} adjacent to v_{2} and w_{3}, and not to w_{2}. See Figure 3.6.

Figure 3.6: Case $k=3$
Let $W^{\prime}=\left\{v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{2}^{\prime}, w_{3}, w_{3}^{\prime}\right\}$ and $W=\left\{w_{1} w_{2}^{\prime}, w_{1} w_{3}^{\prime}, w_{3} w_{2}^{\prime}\right\}$. If none of the pairs of vertices of W are adjacent then W^{\prime} induces the graph Q_{2}. Otherwise, if $w_{1} w_{2}^{\prime}$ is the only adjacent pair of W then W^{\prime} induces Q_{3}.

In the remaining alternatives, a C_{6} exists among the vertices of W^{\prime}. All cases lead to forbidden subgraphs.

Consequently, $k=3$ is also not possible. However, $k \geq 3$. This contradiction completes the proof.

The characterization given in Theorem 3.3 leads to a polynomial time recognition algorithm which consist of checking if the graph G has any of the forbidden subgraphs.

We remark that, as bipartite hereditary biclique-Helly graphs does not contain the graph C_{6} as induced subgraph, (i.e., the the cocktail party $C P_{3}$ of order 3), the number of bicliques is at most $\left(\left|V_{1}\right|\left|V_{2}\right|\right)^{2}$, according to Theorem 1.3.

3.3 Hereditary open and closed neighborhood Helly graphs

In this Section we study the Helly property relative to the family of open and closed neighborhoods in every subgraph. We describe below characterizations for hereditary open and closed neighborhood-Helly graphs.

Theorem 3.4 Let G be a graph. Then G is hereditary open neighbourhoodHelly if and only if G does not contain C_{6} nor triangles as induced subgraphs.

Proof: Let G be a hereditary open neighborhood-Helly graph. Clearly, any subset $\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq V(G)$ does not induce a triangle in G, otherwise $N\left(v_{1}\right)$, $N\left(v_{2}\right), N\left(v_{3}\right)$ pairwise intersect, but there is no common vertex. Suppose G contains a C_{6}. Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ be the ordering of the vertices in this cycle. Since $N\left(v_{1}\right), N\left(v_{3}\right), N\left(v_{5}\right)$ also pairwise intersect with no common vertex, we conclude that G neither contains a C_{6}.

Conversely, assume the theorem is not true. Then G contains an induced subgraph H which is not open neighborhood-Helly. Consider a minimal family $N=\left\{N\left(v_{1}\right), N\left(v_{2}\right), \ldots, N\left(v_{l}\right)\right\}$ of intersecting neighborhoods with no common vertex in H. Then $l \geq 3$. Because of the minimality, there is a vertex $w_{i} \in N\left(v_{j}\right)$ precisely when $i \neq j$, for all $1 \leq i \leq l$. Since $v_{i} \notin N\left(v_{i}\right)$, we conclude that $w_{i} \neq v_{j}$, for all $i \neq j$. Moreover, we show that $w_{i} \neq v_{i}$ for all i. By contrary, let $w_{i}=v_{i}$. Then, v_{i} and v_{j} are adjacent. On the other hand, since $N\left(v_{i}\right)$ and $N\left(v_{j}\right)$ intersect, there is a vertex w which forms a triangle with v_{i} and v_{j}, which is forbidden by hypothesis. Consequently, $w_{i} \neq v_{j}$, for $1 \leq i, j \leq l$. We claim that w_{1}, \ldots, w_{l} form an independent set in G. The latter is true because, if w_{i}, w_{j} are adjacent, the fact that $w_{i}, w_{j} \in N\left(v_{k}\right)$, for $k \neq i, j$, implies that w_{i}, w_{j}, v_{k} form a triangle of G, contradicting the hypothesis. Similarly, v_{1}, \ldots, v_{l} also form an independent set, otherwise $v_{i} \in N\left(v_{j}\right)$ implies that $v_{i}, v_{j}, w_{k}, k \neq i, j$ form a triangle. In this situation, $w_{i}, w_{j}, w_{k}, v_{i}, v_{j}, v_{k}$ induce a C_{6} in G, impossible. The proof is complete.

As a corollary of the Theorem 3.4, we can relate open neighborhood-Helly graphs with hereditary open neighborhood-Helly.

Next we consider the closed neighborhood-Helly class. We give a characterization of hereditary closed neighborhood-Helly graphs in terms of forbidden subgraphs.

Theorem 3.5 A graph G is hereditary closed neighborhood-Helly if and only if it does not contain C_{4}, C_{5}, C_{6} nor the Hajós graph as induced subgraphs.
Proof: Suppose G contains the Hajós graph H. The family of the closed neighborhoods of the three vertices with degree two in H is intersecting and has no common vertex. Consequently, G can not contain the Hajós graph. Suppose G contains a C_{4}. The family of closed neighborhoods of its four vertices is intersecting and has no common vertex in its induced subgraph. Therefore, no $C_{4}{ }^{\prime} s$ can exist. Similarly, the families of the closed neighborhoods of three vertices in a C_{5}, two of them non adjacent, and the closed neighborhoods of the three mutually non adjacent vertices in a C_{6}, are both intersecting and have no common vertex. Consequently, G does not contain neither C_{5} nor C_{6}.

Conversely, by hypothesis G contains neither the Hajós graph, nor any of C_{4}, C_{5}, C_{6} as induced subgraphs. By contrary, assume that G is not hereditary closed neighborhood-Helly. Then G contains an induced subgraph H which is not closed neighborhood-Helly. Let $N=\left\{N\left[v_{1}\right], N\left[v_{2}\right], \ldots, N\left[v_{l}\right]\right\}$ be a minimal such intersecting family of H with no common vertex. Clearly, $l \geq 3$. By the minimality of l, there exist vertices w_{i}, such that $w_{i} \in N\left[v_{j}\right]$, exactly for $i \neq j$. Compare w_{i} and v_{j}. It is clear, $v_{i} \neq w_{i}$. Suppose $w_{i}=v_{j}$, for some i, j. Without loss of generality, let $w_{1}=v_{2}$. Then, v_{1}, v_{2} are not adjacent, which implies $v_{1} \neq w_{3}$. The latter means that $w_{1}, w_{2} \neq v_{3}$. In this situation, if v_{1}, v_{3} are adjacent, the vertices $w_{1}, w_{3}, v_{1}, v_{3}$ induce a C_{4}, forbidden. Consequently, v_{1}, v_{3} are not adjacent. Examine vertex w_{2}. It follows that when w_{2}, w_{3} are adjacent, the vertices $w_{1}, w_{2}, w_{3}, v_{3}$ induce a C_{4}, and otherwise $w_{1}, w_{2}, w_{3}, v_{1}, v_{3}$ induce a C_{5} in G. Hence, this assumption cannot occur. Finally, assume $w_{i} \neq v_{j}$, for all i, j. Since G does not contain a $C_{6},\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{w_{1}, w_{2}, w_{3}\right\}$ can not be both independent sets. Suppose w_{2}, w_{3} are adjacent. Since G does not contain neither C_{4} nor C_{5}, we conclude that w_{1} must be adjacent to both w_{2}, w_{3}. In this situation, if $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an independent set, $w_{1}, w_{2}, w_{3}, v_{1}, v_{2}, v_{3}$ induce the Hajós graph, otherwise, they induce a C_{4}. In any alternative, a forbidden subgraph arises. The alternative v_{2}, v_{3} to be adjacent instead of w_{2}, w_{3}, is similar, terminating the proof.

3.4 Relations among the hereditary classes

In this Section we relate the classes of hereditary biclique-Helly graphs, neighborhood-Helly graphs, both open and closed, hereditary disk-Helly and hereditary clique-Helly graphs.

We obtain two corollaries of the characterizations formulated in the previous Section.

The corollary below relates hereditary open neighborhood-Helly graphs to the open neighborhood-Helly graphs. It is a consequence of Theorem 3.4 and Lemma 2.5.

Corollary 3.1 A graph is hereditary open neighborhood-Helly if and only if it is open neighborhood-Helly and has no induced subgraph isomorphic to the graph J of Figure 2.7.

Proof: By Lemma 2.5 and Proposition 2.1, G is C_{6} - free and has no triangles. Then, by Theorem 3.4 G is hereditary open neighborhood-Helly. Conversely, if G is hereditary open neighborhood-Helly, it contains no C_{6} and hence, no subgraph isomorphic to J.

The next Corollary relates hereditary closed neighborhood-Helly graphs to closed neighborhood-Helly graphs. It is a direct consequence of Theorem 3.2.

Corollary 3.2 Let G be a closed neighborhood-Helly graph, with no triangles. Then G is hereditary closed neighborhood-Helly.

Next, we relate open neighborhood-Helly graphs to hereditary closed neighborhood-Helly graphs.

Proposition 3.1 Let G be a graph with no triangles, $C_{4}{ }^{\prime} s$, nor $C_{5}{ }^{\prime}$ s. Then if G is open neighborhood-Helly, it is hereditary closed neighborhood-Helly.

Proof: As G is $C_{4}-f r e e$ and has no triangles, it is $J-f r e e$. By Theorem 2.1, G is C_{6} - free. By Theorem 3.5 it follows that is hereditary closed neighbourhood-Helly.

The following Theorem relates hereditary closed neighborhood-Helly graph to hereditary biclique-Helly graphs.

Theorem 3.6 Let G be a hereditary closed neighborhood-Helly graph with no triangles. Then G is hereditary biclique-Helly.

Proof: By Theorem 3.5, if G is hereditary closed neighborhood-Helly and has no triangles, then it is $\left\{C_{4}, C_{5}, C_{6}\right\}-f r e e$. Then, by Theorem 3.3 it is hereditary biclique-Helly. Observe that in the proof of this Theorem, every biclique is in fact a closed neighborhood.

The converse is not true. For example, the graph C_{4} is hereditary bicliqueHelly but it is not closed neighborhood-Helly. (See Figure 3.7)

Corollary 3.3 Let G be a C_{4} - free graph. Then G is hereditary closed neighborhood-Helly and triangle-free if and only if it is hereditary bicliqueHelly.

Proof: If G is C_{4}-free, has no triangles and hereditary closed neighborhoodHelly, by Theorem 3.5 it is also $\left\{C_{5}, C_{6}\right\}$-free. By Theorem 3.3 we conclude G is hereditary biclique-Helly.

Conversely, if G is C_{4} - free and hereditary biclique-Helly, according to Theorem 3.3 it is $\left\{C_{5}, C_{6}\right\}$-free and Hajós-free. From Theorem 3.5 it follows that G is hereditary closed neighborhood-Helly.

Corollary 3.4 Let G be a open neighborhood-Helly graph with no triangles, $C_{4}{ }^{\prime}$ s, nor C_{5} 's. Then:

1. G is hereditary open neighborhood-Helly.
2. G is hereditary closed neighborhood-Helly.
3. G is hereditary biclique-Helly.

Proof: 1) As G has no $C_{4}{ }^{\prime} s$, it is $J-f r e e$. By Corollary 3.1 and Theorem 3.4, G is hereditary open neighborhood-Helly.
2) It follows from Proposition 3.1.
3) It follows from Theorem 3.6

As a consequence of the results presented, we obtain the following relations between closed neighborhood-Helly graphs and hereditary bicliqueHelly, hereditary open neighbourhood-helly and hereditary clique-Helly graphs graphs.

Corollary 3.5 If G is closed neighborhood-Helly with no triangles, then it is hereditary biclique-Helly, hereditary open neighborhood-Helly, hereditary closed neighbourhood-Helly and hereditary clique-Helly.

Finally we can also conclude:
Corollary 3.6 Let G be a bipartite C_{4} - free graph, then it is equivalent:

1. G is closed neighborhood-Helly
2. G is open neighborhood-Helly
3. G is hereditary open neighborhood-Helly.
4. G is hereditary closed neighborhood-Helly.

Proof: 1) $\Longrightarrow 2)$ As G is a bipartite graph, it has no triangles. By Proposition2.3, G is open neighborhood-Helly.
$2) \Longrightarrow 3$) If G is $C_{4}-f r e e$, it is $J-f r e e ~(F i g u r e ~ 2.7), ~ t h e n, ~ b y ~ C o r o l l a r y ~$ 3.1, it is hereditary open neighborhood-Helly.
3) $\Longrightarrow 4$) It follows directly from Proposition3.1.
4) $\Longrightarrow 1$) It follows directly.

Corollary 3.7 Let G be a graph with girth at least 7. Then G is hereditary biclique-Helly, hereditary open neighborhood-Helly and hereditary closed neighborhood-Helly.

The following two results about hereditary disk-Helly graphs are direct.
Corollary 3.8 If G hereditary disk-Helly, then it is hereditary clique-Helly and hereditary closed neighborhood-Helly.

Corollary 3.9 If G is hereditary disk-Helly, with no triangles, then it is hereditary biclique-Helly and consequently, hereditary open neighborhood-Helly.

Figure 3.7 shows the relations between the mentioned hereditary classes.

HEREDITARY CLIQUE-HELLY

Figure 3.7: Relations between hereditary classes

Chapter 4

Biclique matrices and bipartite-conformal hypergraphs

4.1 Introduction

In this Chapter we give a characterization for biclique matrices, in similar terms as those employed in the characterization of clique matrices. The special case of biclique matrices of bipartite graphs is also considered. In the characterizations, we employ the concept of bipartite-conformal.

Clique matrices of a graph have been characterized by Gilmore in 1960, and have been employed in different contexts. For example, in the characterizations of interval graphs [28], Helly circular-arc graphs [26] and self-clique graphs [12, 36], as well as in different covering problems involving cliques.

Motivated by the above concept, we consider biclique matrices of a graph. We describe a characterization for such matrices, in similar terms as those used in the characterization of clique matrices. Biclique matrices can be employed, for instance in covering problems involving bicliques. Such problems have been considered, among others, by [3,53]. We recall that we use biclique matrices for characterizing biclique graphs.

Denote by \mathcal{H} a hypergraph, with vertex set $V(\mathcal{H})$ and hyperedge set $E(\mathcal{H})$. Write $V(\mathcal{H})=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E(\mathcal{H})=\left\{E_{1}, \ldots, E_{m}\right\}$. The 2-section of a hypergraph \mathcal{H} is a graph G_{2}, where $V\left(G_{2}\right)=V(\mathcal{H})$ and such that there is an edge $v_{i} v_{j} \in E\left(G_{2}\right)$ precisely when there exists some hyperedge $E_{k} \supseteq\left\{v_{i}, v_{j}\right\}$, for all $1 \leq i \neq j \leq n$. Say that \mathcal{H} is conformal when each clique of G_{2} is contained in some hyperedge of \mathcal{H}. Say that \mathcal{H} is Helly when every subfamily of intersecting hyperedges contains a common vertex. Given a $\{0,1\}$-matrix A, with n columns and m rows, the associated hypergraph H of A is a hypergraph with n vertices and m hyperedges such that vertex $v_{i} \in V(H)$ belongs to hyperedge E_{j} if and only if $a_{i j}=1$.

The characterization given by Gilmore (c.f. Berge [10]).of clique matrices
can be formulated in terms of the above concepts, applied to $\{0,1\}$-matrices.
Theorem 4.1 ([28]): Let A be a $\{0,1\}$-matrix and \mathcal{H} its associated hypergraph. Then A is a clique matrix of some graph if and only if
(i) each row of A has at least one 1,
(ii) A has no included rows, and
(iii) \mathcal{H} is conformal.

We recall some concepts we use during this Chapter. A bicoloring of G is a bipartition of the vertices of G into subsets V_{1}, V_{2}. A clique of G is bichromatic relative to a bicoloring V_{1}, V_{2} if it contains at least a vertex of V_{1} and a vertex of V_{2}. A weak 2-coloring of G is a bicoloring V_{1}, V_{2} such that every clique of G is bichromatic, relative to V_{1}, V_{2}.

Recall that, if G has c cliques $\left\{C_{1}, \ldots, C_{c}\right\}$ then the clique matrix of G is the $c \times n\{0,1\}$-matrix A, where $a_{k i}=1$ if and only if $v_{i} \in C_{k}$. Finally, when G has d bicliques $B_{1}, \ldots, B_{d} \subseteq V(G)$, the biclique matrix of G is the $d \times n\{0,1,-1\}$-matrix A, where $a_{k i}=-a_{k j} \neq 0$, precisely when $v_{i}, v_{j} \in B_{k}$ and v_{i}, v_{j} are adjacent, for all $1 \leq k \leq n$ and $1 \leq i \neq j \leq n$.

In Section 2, we describe the proposed characterization for biclique matrices. The special case of biclique matrices of bipartite graphs is considered in Section 3. In Section 4 we characterize the class of bipartite-conformal hypergraphs whith compatible bicoloring, which is useful for our purposes. Section 5 contains algorithms for recognizing biclique matrices and bipartiteconformal hypergraphs.

4.2 Characterization of a biclique matrix

In this section, we give a characterization of biclique matrices of a graph.
We employ the following concepts.
Let \mathcal{H} be a hypergraph in which there is a bicoloring \mathcal{C} of the occurrances of each vertex in the hyperedges of \mathcal{H}, using the colors white and black. That is, if vertex v belongs to hyperedges E_{1}, \ldots, E_{k}, then v is assigned a color in each of these hyperedges, and these colors are independent. Define a bicoloring of the edges of the 2 -section G_{2} of \mathcal{H} as follows. Each $v_{i} v_{j} \in E\left(G_{2}\right)$ is black when there exists some edge $E_{k} \supseteq\left\{v_{i}, v_{j}\right\}$, where v_{i} and v_{j} have different colors in E_{k}; otherwise $v_{i} v_{j}$ is white. Define the black section of \mathcal{H}, as the subgraph G_{b} of G_{2}, containing exactly the black edges of G_{2}. Say that \mathcal{H} is bipartite-conformal, relative to \mathcal{C}, when each biclique B of G_{b} is contained in some hyperedge of \mathcal{H}. That is, there is a hyperedge E_{k} such that $v_{i} v_{j}$ is an edge of B precisely when v_{i}, v_{j} have different colors in E_{k}. When every two vertices contained in a hyperedge of \mathcal{H} with the same color are not adjacent in G_{b}, we say that \mathcal{C} is a compatible bicoloring.
(a)

$$
\begin{aligned}
A_{1} & =\left(\begin{array}{rrrrrr}
v_{1} & v_{2} & w_{1} & w_{2} & w_{3} & w_{4} \\
1 & 0 & 0 & -1 & -1 & -1 \\
0 & 1 & -1 & -1 & -1 & 0 \\
-1 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \\
A_{2} & =\left(\begin{array}{rrrrrr}
v_{1} & v_{2} & w_{1} & w_{2} & w_{3} & w_{4} \\
1 & 0 & 0 & -1 & -1 & -1 \\
0 & 1 & -1 & -1 & -1 & 0 \\
1 & 1 & 0 & -1 & -1 & 0
\end{array}\right)
\end{aligned}
$$

(b)

Figure 4.1: $\{0,1,-1\}$-matrices and the graph G

Given a $m \times n\{0,1,-1\}$-matrix A, the associated hypergraph \mathcal{H} of A is the hypergraph having one vertex v_{i} for each column i and one hyperedge E_{k} for each row k of A, such that $v_{i} \in E_{k}$ precisely when $a_{k i} \neq 0$. Define a special bicoloring of occurrances of each vertex in the hyperedges of \mathcal{H} as follows: vertex $v_{i} \in V(\mathcal{H})$ is white in E_{k} when $a_{k i}=1$ and v_{i} is black in E_{k} when $a_{k i}=-1$. When $v_{i} \notin E_{k}$ then v_{i} is uncolored for E_{k}. Such a bicoloring is called the canonical bicoloring of \mathcal{H}.

Let A, A^{\prime} be $\{0,1,-1\}$-matrices. Denote by A_{k} the vector consisting of row k of A. Say that row k is included in row l, when $a_{k i}=1$ implies $a_{l i}^{\prime}=1$ and $a_{k i}=-1$ implies $a_{l i}=-1$, for all $1 \leq i \leq n$, where $A_{l}^{\prime}=A_{l}$ or $A_{l}^{\prime}=-A_{l}$. In general, say that A, A^{\prime} are row-similar when $A_{k}=A_{k}^{\prime}$ or $A_{k}=-A_{k}^{\prime}$, for all $1 \leq k \leq m$.

Figure 4.1(a) illustrates an example of a $\{0,1,-1\}$-matrix with included rows. The last row of A_{1} is included in the first row. The hypergraphs $\mathcal{H}_{1}, \mathcal{H}_{2}$, associated to the matrices A_{1} and A_{2} respectively, have as vertex sets $V\left(\mathcal{H}_{1}\right)=V\left(\mathcal{H}_{2}\right)=\left\{v_{1}, v_{2}, w_{1}, w_{2}, w_{3}, w_{4}\right\}$, and hyperedges $\mathcal{H}_{1}=$ $\left\{E_{1}, E_{2}, E_{3}\right\}, \mathcal{H}_{2}=\left\{E_{1}, E_{2}, E_{3}^{\prime}\right\}$, where $E_{1}=\left\{v_{1}, w_{2}, w_{3}, w_{4}\right\}, E_{2}=\left\{v_{2}, w_{1}\right.$, $\left.w_{2}, w_{3}\right\}, E_{3}=\left\{v_{1}, v_{2}, w_{2}, w_{3}\right\}$ and $E_{3}^{\prime}=\left\{v_{1}, w_{2}, w_{4}\right\}$. Finally, in Figure 4.1(b) we show that the black section G of both hypergrahs \mathcal{H}_{1} and \mathcal{H}_{2} coincides. Observe that \mathcal{H}_{1} is not bipartite-conformal, while A_{2} is a biclique matrix of G.

Remark that whenever A, A^{\prime} are two row-similar matrices then the 2sections G_{2}, G_{2}^{\prime} of their corresponding associated hypergraphs are isomorphic.

Moreover, if $e \in E\left(G_{2}\right)$ and $e^{\prime} \in E\left(G_{2}^{\prime}\right)$ are two corresponding edges in the isomorphism $G_{2} \cong G_{2}^{\prime}$ then they have identical colors in the respective canonical bicolorings.

The following Theorem is the main result of this Chapter. It characterizes biclique matrices of graphs.

Theorem 4.2 : Let A be a $m \times n\{0,1,-1\}$-matrix, and \mathcal{H} its associated hypergraph. Then A is a biclique matrix of some graph if and only if
(i) each row of A has at least one 1 and at least one -1,
(ii) A has no included rows,
(iii) A does not contain as a submatrix, neither M_{1}, nor M_{2}, nor any matrix row-similar to M_{1} or M_{2}, and

$$
\begin{aligned}
M 1=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) & M 2=\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right) \\
\text { (a) Matrix } M_{1} & \text { (b) Matrix } M_{2}
\end{aligned}
$$

Figure 4.2: Matrices M_{1}, M_{2}
(iv) \mathcal{H} is bipartite-conformal, relative to its canonical bicoloring.

Proof: By hypothesis, A is a biclique matrix of some graph G. Let $V(G)=$ $\left\{v_{1}, \ldots, v_{n}\right\}$, and denote its bicliques by $B_{1}, \ldots, B_{m} \subseteq V(G)$. We know that $a_{k i}=-a_{k j} \neq 0$, precisely when v_{i}, v_{j} are adjacent and belong to B_{k}. By definition, there is at least one edge $v_{i} v_{j}$ in biclique B_{k}. In this case, $a_{k i}=-a_{k j} \neq 0$, meaning that row k has at least one 1 and one -1 . Then (i) holds. Next, observe that A is a biclique matrix of some graph if and only if any of the matrices row-similar to A are so. Consequently, row k can not be included in any other row, otherwise B_{k} would not be maximal. Hence (ii) holds.

For (iii), assume that A contains M_{1} as a submatrix. Let k, l and i, j be the pairs of rows and columns of A, respectively, which contain M_{1}. Then row k implies that v_{i}, v_{j} are not adjacent, while row l implies that they are adjacent, impossible. The cases of the remaining forbidden matrices are similar.

Next, examine (iv). Let B_{k} be a biclique of G, with bipartition $V_{1} \cup V_{2}=$ B_{k}. Then row k of A has entries

$$
a_{k i}=\left\{\begin{aligned}
0, & \text { if } v_{i} \neq B_{k} \\
1, & \text { if } v_{i} \in V_{1} \\
-1, & \text { if } v_{i} \in V_{2},
\end{aligned}\right.
$$

for all $1 \leq i \leq n$, where the choice of V_{1}, V_{2} is arbitrary. By the construction of the associated hypergraph \mathcal{H}, the hyperedge $E_{k} \in E(\mathcal{H})$ contains all vertices v_{i}, such that $a_{k i} \neq 0$. Then $E_{k} \supseteq B_{k}$. Let G_{2} be the 2 -section of \mathcal{H} and G_{b} its black section. We show that $G=G_{b}$. Clearly, $V\left(G_{b}\right)=V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. Let $v_{i}, v_{j} \in\left\{v_{1}, \ldots v_{n}\right\}, i \neq j$. First, suppose $v_{i} v_{j} \in E\left(G_{b}\right)$. Then $v_{i} v_{j}$ is a black edge of G_{2}, meaning that v_{i}, v_{j} are assigned different colors in some edge $E_{l} \in E(\mathcal{H})$. That is, $a_{l i}=-a_{l j} \neq 0$. However, A is a biclique matrix of G. Then row l implies that v_{i}, v_{j} are adjacent also in G. Consequently, $E\left(G_{b}\right) \subseteq E(G)$. Finally, consider $v_{i} v_{j} \in E(G)$. Then $v_{i} v_{j}$ belong to some biclique B_{r} of G. That is, there is a row r of A, such that $a_{r i}=-a_{r j} \neq 0$. The latter implies that $v_{i}, v_{j} \in E_{r} \in E(\mathcal{H})$, meaning that $v_{i} v_{j}$ is a black edge of G_{2}, i.e. $v_{i} v_{j} \in E\left(G_{b}\right)$. Consequently $E(G) \subseteq E\left(G_{b}\right)$. That is, $G=G_{b}$. Then B_{k} is an arbitrary biclique of G_{b}. Since $E_{k} \supseteq B_{k}$, it follows that \mathcal{H} is bipartite-conformal.

Conversely, by hypothesis A satisfies (i)-(iv). We show that A is a biclique matrix. In fact, we show that A is a biclique matrix of the black section G_{b} of \mathcal{H}, relative to the canonical bicoloring.

To start, we show that every biclique B of G_{b} corresponds to a row of A. Let $V_{1} \cup V_{2}=B$ be the bipartition of $B, V_{1}, V_{2} \neq \emptyset$. From (iv), we conclude that B is contained in some hyperedge E_{k} of \mathcal{H}. Let $v_{i}, v_{j} \in B$ and examine the possible alternatives. In the first alternative, suppose $v_{i} \in V_{1}$ and $v_{j} \in V_{2}$. Then $v_{i} v_{j} \in E\left(G_{b}\right)$. By definition, $v_{i} v_{j}$ is a black edge of G_{2}. Consequently, v_{i}, v_{j} have distinct colors in some hyperedge of \mathcal{H}. In addition, we know that v_{i}, v_{j} must have distinct colors in any hyperedge of \mathcal{H} that contain both of these vertices. Otherwise A would contain as a submatrix the matrix M_{1}, or M_{2}, or any of matrices row-similar to M_{1} or M_{2}, contradicting (iii). Consequently, the row k of A, corresponding to E_{k}, is such that $a_{k i}=-a_{k j} \neq 0$. In the next alternative, let $v_{i}, v_{j} \in V_{1}$. Since $v_{i}, v_{j} \in E_{k}$, each of these vertices has a color in E_{k}. Because $v_{i} v_{j}$ is not a black edge of G_{2}, it follows that both vertices v_{i}, v_{j} must have identical colors in E_{k}. That is, $a_{k i}=a_{k j} \neq 0$. Finally, when $v_{i} \notin B_{k}$ it easily follows that $a_{k i}=0$. The alternative $v_{i}, v_{j} \in V_{2}$, is similar. Consequently, B corresponds to E_{k}, hence to row k of A.

In the sequel, we show that every row k of A corresponds to some biclique of G_{b}. Let $V_{1} \subseteq V(\mathcal{H})$ be the set of vertices of \mathcal{H} corresponding to the 1 entries of row k of A, and $V_{2} \subset V(\mathcal{H})$, those corresponding to the -1 entries. From (i), it follows that $V_{1}, V_{2} \neq \emptyset$. First, let $v_{i} \in V_{1}$ and $v_{j} \in V_{2}$. Then v_{i}, v_{j} are assigned distinct colors in the hyperedge $E_{k} \in E(\mathcal{H})$. Consequently, $v_{i} v_{j}$ is a black edge of G_{2}, hence $v_{i} v_{j} \in E\left(G_{b}\right)$. Next, let $v_{i}, v_{j} \in V_{1}$. Then v_{i}, v_{j} are both white in E_{k}. Again, we know that whenever v_{i}, v_{j} are both contained in some hyperedge $E_{l} \in E(\mathcal{H})$, then v_{i}, v_{j} have identical colors in E_{l}, otherwise A would contain a forbiden submarix of (iii). Consequently, $v_{i} v_{j}$ is a white edge of G_{2}, meaning that $v_{i} v_{j} \notin E\left(G_{b}\right)$. The situation where $v_{i}, v_{j} \in V_{2}$ is similar. Consequently, $V_{1} \cup V_{2}$ is a complete bipartite set of G_{b} included in a biclique B. Let l be the row corresponding to B. Because of (ii), row k is
not included in any other row. Consequently, $l=k$ and $V_{1} \cup V_{2}$ is indeed the biclique B of G_{b}, completing the proof.

The following property is a consequence of Theorem 4.2
Corollary 4.1 A matrix is a biclique matrix of some graph if and only if it is a biclique matrix of the black section of its associated hypergraph.

4.3 Bipartite graphs

In this section we examine biclique matrices of bipartite graphs.
The following concept is useful. A $\{0,1,-1\}$-matrix A is bipartite when it admits a matrix row-similar to A^{\prime}, such that no column of A^{\prime} has both entries 1 and -1 . It is clear that a graph is bipartite if and only if its biclique matrix is bipartite. We observe that bipartite matrices can be recognized in polynomial-time.

As a direct corollary of the Theorem 4.2, follows a characterization for biclique matrices of bipartite graphs.

Corollary 4.2 : Let A be a $m \times n\{0,1,-1\}$-matrix, and \mathcal{H} its associated hypergraph. Then A is a biclique matrix of some bipartite graph if and only if
(i) each row of A has at least one 1 and at least one -1,
(ii) A has no included rows,
(iii) \mathcal{H} is bipartite-conformal, relative to its canonical bicoloring,
(iv) A is bipartite.

Given a graph G with d bicliques $B_{1}, \ldots, B_{d} \subseteq V(G)$, a positive biclique matrix A of G is a $d \times n\{0,1\}$-matrix such that $a_{i j}=1$ if vertex v_{j} belongs to biclique B_{i} and $a_{i j}=0$ otherwise. Clearly, a biclique matrix corresponds to a positive matrix by replacing each -1 by 1 .

Theorem 4.3 Let G be a graph, A be a clique matrix of G and \mathcal{H} the associated hypergraph of A. Then, the following statements are equivalent:
(1) A is a positive biclique matrix of a bipartite graph H.
(2) A is a positive biclique matrix of a neighborhood-Helly bipartite graph H.
(3) G admits a weak 2-coloring $V_{1}, V_{2} \subseteq V(G)$ and \mathcal{H} is bipartite-conformal, relative to the bicoloring V_{1}, V_{2}.

Proof: $(1) \Rightarrow(2)$: Suppose A is a positive matrix of a bipartite graph H, with bipartition V_{1}, V_{2}. We prove that H is neighborhood-Helly. Let V^{\prime} be a set of vertices of H whose neighborhoods pairwise intersect. Without loss of generality, $V^{\prime} \subseteq V_{1}$. The columns of A corresponding to V^{\prime} pairwise intersect, since any two vertices in V^{\prime} belong to a same biclique. Then, columns of A corresponding to V pairwise intersect and V^{\prime} is a complete subset of G, contained in some clique C. Finally, the columns of A corresponding to V^{\prime} intersect at the row which corresponds to C in A.
$(2) \Rightarrow(3)$: Let V_{1}, V_{2} be the bipartition of H. Considering V_{1}, V_{2} as a bicoloring of vertices of G. Since A is a positive biclique matrix of H, every clique of G is bichromatic, following that V_{1}, V_{2} is a weak 2-coloring of G. It is clear that \mathcal{H} is bipartite conformal, by Corollary 4.2.
$(3) \Rightarrow(1)$: Let V_{1}, V_{2} be the bicoloring of G. Define the bipartite matrix B as follows: for every $i, b_{i j}=a_{i j}$ if $j \in V_{1}$ and $b_{i j}=-a_{i j}$ for $j \in V_{2}$. Since V_{1}, V_{2} is a weak 2-coloring of G, every row of B has at least a 1 and a -1. Since A is a clique matrix, B has not included rows. Finally, by hypothesis, \mathcal{H} is bipartite conformal. Corollary 4.2 says that B is a biclique matrix of a bipartite graph H, ie. A is a positive biclique matrix of H.

4.4 Bipartite-conformal hypergraphs

In this section we characterize bipartite-conformal hypergraphs, having compatible bicoloring. Let \mathcal{H} be a hypergraph, $E(\mathcal{H})=\left\{E_{1}, . . E_{k}\right\}$ and let \mathcal{C} be a bicoloring of the ocurrances of each vertex in the hyeperedges of \mathcal{H}. Let G_{b} be its black section. For every subfamily $\mathcal{E}^{\prime}=\left\{E_{i}, E_{j}, E_{k}\right\}$ of three hyperedges of \mathcal{H}, consider every triple $l_{i}, l_{j}, l_{k}, 1 \leq i, j, k \leq m, l=1,-1$ (white and black, respectively). Let $\mathcal{V}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{1}$ be the subfamily of vertices of \mathcal{H} which belong to at least two hyperedges $E_{s} \in \mathcal{E}^{\prime}, E_{r} \in \mathcal{E}^{\prime}$, with color l_{s}, l_{r}, respectively. Similarly, let $\mathcal{V}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{2}$ be the subfamily of vertices of \mathcal{H} which belong to at least two hyperedges $E_{s} \in \mathcal{E}^{\prime}, E_{r} \in \mathcal{E}^{\prime}$, with color $-l_{s},-l_{r}$, respectively.

Theorem 4.4 Let \mathcal{H} be a hypergraph, and let \mathcal{C} be a compatible bicoloring. Then \mathcal{H} is bipartite-conformal if and only if every induced P_{3} of G_{b} is contained in an hyperedge of \mathcal{H} and every subfamily $\mathcal{V}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{1} \cup \mathcal{V}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{2}$ is contained in an hyperedge of \mathcal{H}.

Proof: Assume that is bipartite-conformal \mathcal{H}. It is clear that every P_{3} is contained in an hyperedge of \mathcal{H}. We prove that $\mathcal{V}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{1}$ and $\mathcal{V}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{2}$ induce independent sets in G_{b}. Let $v_{r}, v_{s} \in \mathcal{V}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{1}$. Then there is an hyperedge, suppose E_{i}, which contains both vertices with color l_{i}. As \mathcal{C} is a compatible bicoloring, v_{r}, v_{s} are not adjacent in G_{b}. Analogously, $\mathcal{V}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{2}$ is an independent set in G_{b}. Finally, let $v_{r} \in \mathcal{V}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{1}, v_{s} \in \mathcal{V}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{2}$. There is an hyperedge in \mathcal{H} that contains v_{r}, v_{s} with different colors, what means that
in G_{b} they are adjacent. Then, the complete bipartite subgraph $\mathcal{V}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{1} \cup$ $\mathcal{V}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{2}$ must be contained in an hyperedge of \mathcal{H}.

Conversely, let B be a biclique with bipartition V_{1}, V_{2}. Suppose it is not contained in an hyperedge. Let B^{\prime} be a minimal bipartite subgraph of B with bipartitions $V_{1}^{\prime} \subseteq V_{1}, V_{2}^{\prime} \subseteq V_{2}\left(V_{1}^{\prime}, V_{2}^{\prime} \neq \emptyset\right)$ which is not contained in an hyperedge. Then, $\left|V_{1}+V_{2}\right| \geq 4$. Consider the case $\left|V_{1}\right|=\left|V_{2}\right|=2$. Let E_{1} be the hyperedge containing $V_{1}^{\prime} \backslash\left\{v_{i_{1}}\right\} \cup V_{2}^{\prime}$. Let l_{1} be the color of vertices of V_{2}^{\prime} in E_{1} (recall that since V_{2}^{\prime} is an independent set, every vertex has the same color in E_{1}). Analogously, let E_{2} be the hyperedge containing $V_{1}^{\prime} \backslash\left\{v_{i_{2}}\right\} \cup V_{2}^{\prime}$. Let l_{2} be the color of the vertices of V_{2}^{\prime} in E_{2}. Finally, let E_{3} be the hyperedge containing $V_{1}^{\prime} \cup V_{2}^{\prime} \backslash\left\{v_{j_{1}}\right\}$. Let l_{3} be the color of vertices of V_{2}^{\prime} in E_{3}. Consider $\mathcal{V}_{\left\{l_{1}, l_{2}, l_{3}\right\}}^{1} \cup \mathcal{V}_{\left\{l_{1}, l_{2}, l_{3}\right\}}^{2}$. We prove that B^{\prime} is included in $\mathcal{V}_{\left\{l_{1}, l_{2}, l_{3}\right\}}^{1} \cup \mathcal{V}_{\left\{l_{1}, l_{2}, l_{3}\right\}}^{2}$. Vertex $v_{i_{1}}$ is contained in E_{2} and E_{3}. Since $v_{j_{2}} \in V_{2}^{\prime}$ is contained in E_{1}, E_{2} and E_{3}, the colors of $v_{j_{2}}$ in E_{1}, E_{2} and E_{3} are l_{1}, l_{2}, l_{3} respectively. Then, as $v_{j_{2}}$ is adjacent to $v_{i_{1}}$ and both are contained in E_{2} and E_{3}, colors of $v_{i_{1}}$ in E_{2} and E_{3} are $-l_{2},-l_{3}$ respectively. Analogously, $v_{i_{2}}$ is contained in E_{1}, E_{3} with colors $-l_{1},-l_{3}$, respectively. Finally, $v_{j_{1}}$ is contained in E_{1}, E_{2} with colors l_{1}, l_{2} respectively. It follows that $V_{1}^{\prime} \subseteq \mathcal{V}_{\left\{l_{1}, l_{2}, l_{3}\right\}}^{1}, V_{2}^{\prime} \subseteq \mathcal{V}_{\left\{l_{1}, l_{2}, l_{3}\right\}}^{2}$. The case where $V_{1}^{\prime} \geq 3$ is similar. We consider $V_{1}^{\prime} \backslash\left\{v_{i_{1}}\right\} \cup V_{2}^{\prime}, V_{1}^{\prime} \backslash\left\{v_{i_{2}}\right\} \cup V_{2}^{\prime}$ and $V_{1}^{\prime} \backslash\left\{v_{i_{3}}\right\} \cup V_{2}^{\prime}$ and conclude there are hyperedges E_{1}, E_{2}, E_{3}, such that $v_{i_{j}} \notin E_{j}$. Finally, consider l_{1}, l_{2}, l_{3} the colors corresponding to vertices of V_{2}^{\prime} in hyperedges E_{1}, E_{2}, E_{3} respectively. In any case, it follows that B^{\prime} is contained in a hyperedge, what is an absurd.

4.5 Algorithms for recognizing biclique matrices and bipartite-conformal hypergraphs with compatible bicoloring

In this Section, we describe an algorithm for deciding if a given hypergraph with a compatible bicoloring \mathcal{C} is bipartite-conformal, and also algorithms for recognizing biclique matrices.

For recognizing biclique matrices, we describe two algorithms. The first is based on Theorem 4.2. The second follows from Corollary 4.1 and employs an algorithm for generating the bicliques of a graph.

The following algorithm for recognizing bipartite-conformal hypergraphs having a compatible bicoloring follows from Theorem 4.4. Let \mathcal{H} be an hypergraph and let \mathcal{C} be its compatible bicoloring.

[^0]The Algorithm 4.1 requires $O\left(m^{2} n+m n^{3}\right)$ steps.
The algorithm for recognizing biclique matrices follows directly from Theorem 4.2. Let A be a $m \times n\{0,1,-1\}$-matrix and let \mathcal{H} be the associated hypergraph of A. We remark that A does not contain as a submatrix, neither M_{1}, nor M_{2}, nor any matrix row-similar to M_{1} or M_{2} (Figure 4.2), if and only if the canonical bicoloring of \mathcal{H} is compatible.

Algorithm 4.2 Biclique matrices (I). First check the conditions (i), (ii), (iii) of Theorem 4.2. If any of these conditions is not satisfied by A, answer NO and stop. Otherwise, check condition (iv) applying the Algorithm 4.1.

The Algorithm 4.2 requires $O\left(m^{2} n+m n^{3}\right)$ steps.
Alternatively, we can also recognize biclique matrices by employing the following algorithm.

Algorithm 4.3 Biclique matrices (II). First, construct the associated hypergraph \mathcal{H} and the black section G_{b}, relative to the canonical bicoloring of A. Let $V\left(G_{b}\right)=\left\{v_{1}, \ldots, v_{n}\right\}$. Generate the bicliques of G_{b} employing algorithm [19]. For every biclique B of G_{b}, construct its corresponding row entry in a biclique matrix of G_{b}. That is, construct an n-vector B^{\prime}, where $b_{i}^{\prime}=-b_{j}^{\prime} \neq 0$ if and only if $v_{i}, v_{j} \in B$ and $v_{i} v_{j} \in E\left(G_{b}\right)$, making arbitrary choices of 1 and -1 , whenever possible. Then find one row l of A, such that $A_{l}=B^{\prime}$ or $A_{l}=-B^{\prime}$. If this condition is satisfied for some row l then remove it from A. Otherwise, answer NO and stop. Perform this procedure m times. If all rows of A have been removed and all bicliques of G_{b} have been generated, then answer YES, otherwise answer NO.

The Algorithm 4.3 requires $O\left(m^{2} n+m n^{3}\right)$ time and $O(n m)$ space.
We remark that similar techniques as above, can be applied to obtain a polynomial time algorithm for recognizing general bipartite-conformal hypergraphs, i.e. not necessarily compatible. For such algorithm, we would again employ the algorithm for biclique generation [19].

Finally, we consider the bipartite case. A polynomial time algorithm for recognizing biclique matrices of bipartite graphs follows directly from Corollary 4.2 , noting that checking if a $\{0,1,-1\}$-matrix is bipartite can be done in $O(m n)$ time.

We remark that if A is a bipartite matrix, we can apply the following algorithm instead of Algorithm 4.1 to check if the associated hypergraph \mathcal{H} is bipartite-conformal.

Let V_{1}, V_{2} the columns with entries 1 and -1 , respectively. Construct A^{\prime} by adding to A one row containing 1 's in the columns of V_{1} and another row containing -1 's in the columns of V_{2}. Run the algorithm proposed by Berge [10] to identify if the columns of A^{\prime} are Helly. It follows that columns of A^{\prime} are Helly if and only if \mathcal{H} is bipartite-conformal

Chapter 5

Biclique graphs

5.1 Introduction

In this Chapter, we consider some special classes of intersection graphs. In particular we consider biclique graphs. We present a characterization for biclique graph. The special case of biclique graphs of bipartite graphs is also considered.

Given a family of subsets of some set \mathcal{F}, the intersection graph of \mathcal{F} is a graph having a vertex for each set of \mathcal{F}, and two vertices are adjacent whenever their corresponding sets intersect. On the other hand, given a graph G, it is an intersection graph when there exists a family \mathcal{F} of subsets of some set such that G is its intersection graph. Intersection graphs were studied in several contexts (See [39]).

All graphs are intersection graphs (Marczewski, [44]). In fact, given a graph G, we can always construct a family \mathcal{F} of subsets $F_{i} \subseteq E(G)$, as follows: For each $v_{i} \in V(G)$, let F_{i} be the set of edges incident to v_{i}. It it is not difficult to prove that G is the intersection graph of \mathcal{F}.

There are many classes of intersection graphs which can be defined, by finding suitable families of subsets. For example, clique graphs, interval graphs, chordal graphs, and line graphs (See [15, 16, 23, 24, 27, 38]) .

Two problems arise when leading with intersection graphs. The recognition problem which consists on deciding whether a given graph G and a family \mathcal{F} of subsets of a set, G is the intersection graph of \mathcal{F}. The second a goal is to study the computational complexity of the mentioned problem.

Recall that the clique graph $K(G)$ of a graph G is the intersection graph of the family of all cliques of G. Two characterizations for clique graphs were given. In [49], Robert and Spencer give the first characterization for clique graphs. A different one is shown in [2]. However, none of them appeared to lead to a polynomial time algorithm for the recognition problem. Moreover, it was an open problem determining the computational complexity of the clique graph recognition problem. Recently, in [1] it is proved that the mentioned problem is NP-complete.

Motivated by the concept of clique graphs, we define the biclique graph of $G, K B(G)$, as the intersection graph of the family of all bicliques of G. A graph G is a biclique graph if there exists a graph H such that $K B(H)=G$. (Figure 5.1)

Figure 5.1: Graph P_{5} and its biclique graph
Recall that given a set S of elements, a family \mathcal{F} of subsets of S is a split of S if for every pair of elements $x, y \in S$, there exist a set in \mathcal{F} containing x, and not containing y. A covering of a family set S is a family \mathcal{F} of subset of S such that each element of S belongs to some set of \mathcal{F}.

Let S be a set of elements, and let L be a set of labels. A subset of F is a L-labeled subset when every element of it has a label of the set L. A family of labeled subsets is a labeled family. We distiguish two labeled sets by its elements considering its labels.

A labeled family of sets \mathcal{F} is well labeled if every element belonging to a set of \mathcal{F} have the same label in all sets of \mathcal{F}.

A labeled family of sets $\mathcal{F}=\mathcal{F}_{1} \cup \mathcal{F}_{2}$ is bipartite-intersecting, if $\mathcal{F}_{1}, \mathcal{F}_{2}$ are well labeled and every set of \mathcal{F}_{1} intersects every set of \mathcal{F}_{2} in at least one element with different label.

A bipartite-intersecting labeled family $\mathcal{F}=\mathcal{F}_{1} \cup \mathcal{F}_{2}$ has a good intersection if every element that belong to some set of \mathcal{F}_{1} and some set of \mathcal{F}_{2}, have different labels in each subfamily $\mathcal{F}_{1}, \mathcal{F}_{2}$.

When every bipartite-intersecting subfamily of \mathcal{F} has a good intersection and contains a common element, then \mathcal{F} is bipartite-Helly.

Given a set S of elements and a set L of labels, $|L|=2$, an L-labeled family \mathcal{F} is a labeled bicovering of S if for every element $x \in S$, there exist two sets in \mathcal{F} containing x, each containing x with different label.

In Figure 5.2 there is an example of a $\{1,-1\}$-labeled family, where v_{a} means that element v has label a. The family \mathcal{F} is a bicovering of S. The subset \mathcal{F}_{2} of S is an example of a well labeled family whereas the subset \mathcal{F}_{1} is not well labeled. The subfamily $\mathcal{F}^{\prime}{ }_{1} \cup \mathcal{F}^{\prime}{ }_{2}$ of \mathcal{F} is bipartite-intersecting, but it has not a good intersection. The subfamily $\mathcal{F}^{\prime \prime}{ }_{1} \cup \mathcal{F}^{\prime \prime}{ }_{2}$ is a bipartiteintersecting subfamily of \mathcal{F} with a good intersection, but it has not a common element. Finally, $\mathcal{F}^{\prime \prime \prime}{ }_{1} \cup \mathcal{F}^{\prime \prime \prime}{ }_{2}$ is a bipartite-intersecting subfamily of \mathcal{F} with a good intersection and contains a common element.

Let A be a $\{0,1,-1\}$-matrix and let \mathcal{F} be the family of columns. We consider \mathcal{F} as a labeled family, where the row i is an element of the column j with label $a_{i j}$ if and only if $a_{i j} \neq 0$. We say that two columns i, j intersect if $a_{k i} \neq 0$ and $a_{k j} \neq 0$ for some row k.

- $S=\{v, w, z, r, s\}, L=\{1,-1\}$
- Subsets of $S: F_{1}=\left\{v_{1}, w_{-1}\right\}, F_{2}=\left\{v_{-1}, w_{-1}\right\}, F_{3}=\left\{s_{-1}, w_{-1}\right\}$, $F_{4}=\left\{v_{1}, z_{1}, r_{-1}, s_{1}\right\}, F_{5}=\left\{v_{-1}, r_{1}, w_{1}\right\}, F_{6}=\left\{v_{1}, w_{1}\right\}, F_{7}=\left\{v_{-1}, w_{1}\right\}$
- $\mathcal{F}=\left\{F_{1}, F_{2}, F_{3}, F_{4}, F_{5}, F_{6}, F_{7}\right\}$
- $\mathcal{F}_{1}=\left\{F_{1}, F_{2}\right\}, \mathcal{F}_{2}=\left\{F_{1}, F_{3}\right\}$
- $\mathcal{F}^{\prime}{ }_{1}=\left\{F_{1}\right\}, \mathcal{F}^{\prime}{ }_{2}=\left\{F_{2}\right\}$
- $\mathcal{F}^{\prime \prime}{ }_{1}=\left\{F_{3}\right\}, \mathcal{F}^{\prime \prime}{ }_{2}=\left\{F_{4}, F_{6}\right\}$
- $\mathcal{F}^{\prime \prime \prime}{ }_{1}=\left\{F_{1}, F_{4}\right\}, \mathcal{F}^{\prime \prime \prime}{ }_{2}=\left\{F_{5}, F_{7}\right\}$

Figure 5.2: Example of a labeled family

On the other hand, given a set $S=\left\{x_{1}, \ldots x_{n}\right\}$ and an L-labeled family $\mathcal{F}=\left\{F_{1}, \ldots, F_{k}\right\}$, the labeled incidence matrix of \mathcal{F} is a L-matrix A with n columns and k rows, where $a_{i j}=l$ if element x_{j} belongs to F_{i} with label l, and $a_{i j}=0$ otherwise.

Given a $\{0,1,-1\}$-vector v, the symmetric of v is the vector $v^{\prime}=-v$. We say that vector v is bi-included in vector w if for every k such that $v_{k}=1$, then $w_{k}=1$ and for k such that $v_{k}=-1$, then $w_{k}=-1$. Let A be a $\{0,1,-1\}$-matrix. We say that a row A_{i} is included in row A_{j} if A_{i} is bi-included in A_{j} or it holds for the symmetric of A_{j}. The induced graph of a $\{0,1\}$-matrix $A \in R^{m \times n}$ is a graph of n vertices where v_{i} is adjacent to v_{j} if there exists a row k in A such that $a_{k i}=a_{k j}=1$. Given a $\{0,1,-1\}$-matrix $A \in R^{m \times n}$, the graph bi-induced by A is a graph of n vertices $v_{1}, v_{2}, \ldots, v_{n}$ where v_{i} is adjacent to v_{j} if there exists a row k in A such that $a_{k i}=1, a_{k j}=-1$.

Recall that a $\{0,1,-1\}$-matrix A is bipartite when it admits a rowsymmetric matrix A^{\prime}, such that no column of A^{\prime} has both entries 1 and -1 . It is clear that a graph is bipartite if and only if its biclique matrix is bipartite.

This Chapter is organized as follows. In Section 2 we study clique graphs. We give a different proof for the characterization of clique graphs given in [49]. In Section 3, we characterize biclique graphs and describe families of graphs which are not biclique graphs. In Section 4 we characterize bipartiteHelly families. This characterization leads to a polynomial time algorithm for recognizing bipartite-Helly families. In Section 5 we characterize classes of biclique graphs of some families of graphs. In Section 6, other class of intersection graphs is considered, the E-biclique graphs.

5.2 Clique Graphs

In this Section we give a different proof for the Theorem of Robert and Spencer, which characterize clique graphs. It is a simpler proof and it employs techniques we use for the characterization of biclique graphs.

Lemma 5.1 [9] Let \mathcal{H} be an hypergraph and let \mathcal{H} be its dual hypergraph. Then, \mathcal{H} is conformal if and only if the family of hyperedges \mathcal{H} is Helly.

Theorem 5.1 [49] A graph G is a clique graph if and only if there exists a family of complete subgraphs \mathcal{C} verifying:

1. \mathcal{C} covers the edges of G
2. \mathcal{C} is a Helly family

Proof: Suppose G is a clique graph, i.e., $G=K(H)$ for some graph H. Let A be a clique matrix of H. Observe that the graph induced by A^{T} is exactly G.

Let \mathcal{C} be the family of complete subgraphs induced by the rows of A^{T}. We prove that it verifies the conditions 1) and 2) of the Theorem. As A is a clique matrix, by Theorem 4.1 and considering the reformulation in Theorem 5.2, its columns are Helly and its rows are not included. Consequently, \mathcal{C} is Helly. Finally, since G is the graph induced by A^{T}, every edge of G is contained in some complete subgraph of \mathcal{C}.

Conversely. Let \mathcal{C} be a family of k complete subgraphs of G, C_{1}, \ldots, C_{k} verifying conditions 1) and 2). Consider the family $\mathcal{C}^{\prime}=\mathcal{C} \cup\left\{\left\{v_{1}\right\}, \ldots,\left\{v_{n}\right\}\right\}$. Consider $B \in\{0,1\}^{(k+n) \times n}$, the incidence matrix of \mathcal{C}^{\prime}, i.e. $b_{i j}=1$ if vertex j belongs to the complete C_{i}^{\prime} and $b_{i j}=0$ otherwise.

Since $b_{(k+j) i}=1$ if and only if $j=i, \mathcal{C}^{\prime}$ has no included columns. By hypothesis, \mathcal{C} is a Helly family and therefore, so are the rows of B.

Consider B^{T}. It has no included rows and its columns are Helly, i.e., it is a clique matrix, according to Theorem 5.2. Let H be the graph induced by B^{T}, as mentioned before, $\left(B^{T}\right)^{T}$ induces the clique graph of H. Hence, B induces $K(H)$. On the other hand, since \mathcal{C} covers edges of G, B induces the graph G. We conclude that $G=K(H)$.

The following Corollary is direct.
Corollary 5.1 [49] Let \mathcal{C} be the family of cliques of a graph G. Then, \mathcal{C} verifies properties 1) and 2) of Theorem 5.1 if and only if G is a clique graph of a clique Helly graph.

5.3 Biclique Graphs

In this Section we give a characterization for bicliques graphs. Also, we prove that complete graphs are biclique graphs and we prove that graphs without induced diamonds, are not biclique graphs.

For our purpose we will need the following Lemmas and Corollaries.
Lemma 5.2 Let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots F_{k}\right\}$ be a $\{1,-1\}$-labeled family. Then, every bipartite-intersecting subfamily has a good intersection if and only if every bipartite-intersecting subfamily $\mathcal{F}^{\prime}=\left\{F_{i}\right\} \cup\left\{F_{j}\right\}$ has a good intersection.

Proof: It is clear that if every bipartite-intersecting subfamily has a good intersection, also does the bipartite-intersecting subfamily $\mathcal{F}^{\prime}=\left\{F_{i}\right\} \cup\left\{F_{j}\right\}$.

Conversely, suppose there is a bipartite-intersecting subfamily $\mathcal{F}^{\prime}=\mathcal{F}_{1} \cup$ \mathcal{F}_{2} which has not a good intersection. Then, there are $F_{i} \in \mathcal{F}_{1}, F_{j} \in \mathcal{F}_{2}$ such that intersect in an element with same label. As \mathcal{F}^{\prime} is a bipartite-intersecting family, so it is the subfamily $\left\{F_{i}\right\} \cup\left\{F_{j}\right\}$. It follows that $\left\{F_{i}\right\} \cup\left\{F_{j}\right\}$ is a bipartite-intersecting family which has not a good intersection, contradicting the hypothesis.

As a corollary, we obtain the following Lemma.
Lemma 5.3 Let A be a $\{0,1,-1\}$-matrix. Then, every bipartite-intersecting subfamily of columns has a good intersection if and only of A does not contain as a submatrix, neither M_{1}, nor M_{2} of Figure 5.3, nor any row-symmetric matrix of M_{1} or M_{2}.

$$
M 1=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \quad M 2=\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right)
$$

Figure 5.3: Matrices M_{1}, M_{2}

Corollary 5.2 Let A be a $\{0,1,-1\}$ - matrix, whose columns verify the bipartite-Helly property. Then, A does not contain as a submatrix, neither M_{1}, nor M_{2}, nor any row-symmetric matrix of M_{1} or M_{2}, of Figure 5.3.

Lemma 5.1 relates the Helly property to the conformal condition for hypergraphs. Similarly, we are going to relate the bipartite-Helly property to the bipartite-conformal condition. We need the following definitions.

We say that a hypergraph is labeled when the family of hyperedges is an L-labeled family. Given a labeled hypergraph \mathcal{H}, we label the family of edges of the dual hypergraph \mathcal{H}^{*} as follows: vertex E_{i} has label j in hyperedge E_{k}^{*} of \mathcal{H}^{*} if and only if vertex v_{k} has label j in hyperedge E_{i} in \mathcal{H}.

Observe that when every pair of hyperedges of \mathcal{H} has a good intersection, the labeling \mathcal{H} induce a compatible bicoloring of \mathcal{H}. In that case, we say that \mathcal{H} has a compatible labeling.

Lemma 5.4 Let $L=\{$ black, white $\}$ be a set of labels, \mathcal{H} an L-labeled hypergraph and \mathcal{H}^{*} its dual L-labeled hypergraph. Then the labeling of \mathcal{H} is compatible and \mathcal{H} is bipartite-conformal if and only if the hyperedges of \mathcal{H}^{*} are bipartite-Helly.

Proof: Observe that every pair of bipartite-intersecting hyperedges of \mathcal{H} has a good intersection if and only if every pair of bipartite-intersecting hyperedges of \mathcal{H}^{*} has a good intersection. We need to prove that \mathcal{H} is bipartiteconformal if and only every bipartite-intersecting family of hypedeges of \mathcal{H}^{*} has common vertex.

Suppose \mathcal{H} is bipartite-conformal. Let G be its black section. Consider $\mathcal{E}_{1} \cup \mathcal{E}_{2}$ a bipartite-intersecting family of hyperedges of \mathcal{H}^{*}, where $\mathcal{E}_{1}=\left\{E_{i_{1}}^{*}, \ldots E_{i_{k}}^{*}\right\}, \mathcal{E}_{2}=\left\{E_{i_{k+1}}^{*}, \ldots E_{i_{s}}^{*}\right\}$.

Since $\mathcal{E}_{1}, \mathcal{E}_{2}$ are well labeled, $V_{1}=\left\{v_{i_{1}}, \ldots v_{i_{k}}\right\}, V_{2}=\left\{v_{i_{k+1}} \ldots v_{i_{s}}\right\}$ are both independent sets in G. On the other hand, since every $E_{i}^{*} \in \mathcal{E}_{1}, E_{j}^{*} \in \mathcal{E}_{2}$ intersect in a different label, vertices $v_{i} \in V_{1}, v_{j} \in V_{2}$ are adjacent in G. It follows that V_{1}, V_{2} induce a bipartite complete subgraph in G. Since \mathcal{H} is bipartite-conformal, there is an hyperedge E_{t} which contains the vertices of $V_{1} \cup V_{2}$. It follows that E_{t} in \mathcal{H}^{*} is a common vertex of $\mathcal{E}_{1} \cup \mathcal{E}_{2}$.

Conversely, let B be a biclique of G with bipartition $V_{1}=\left\{v_{i_{1}}, \ldots, v_{i_{s}}\right\}$, $V_{2}=\left\{v_{i_{s+1}}, \ldots, v_{i_{t}}\right\}$. Consider $\mathcal{E}_{1}=\left\{E_{i_{1}}^{*}, \ldots E_{i_{s}}^{*}\right\}, \mathcal{E}_{1}=\left\{E_{i_{s+1}}^{*}, \ldots E_{i_{t}}^{*}\right\}$, hyperedges of \mathcal{H}^{*}. Since V_{1}, V_{2} are independent sets, $\mathcal{E}_{1}, \mathcal{E}_{2}$ are well labeled. Since every vertex of V_{1} intersects every vertex of $V_{2}, \mathcal{E}_{1} \cup \mathcal{E}_{2}$ is a bipartiteintersecting family in \mathcal{H}^{*}. By hypothesis there is a vertex E_{t} common to $\mathcal{E}_{1}, \mathcal{E}_{2}$. Then, edge E_{t} of \mathcal{H} contains the vertices of B.

Remark 5.1 Let A be a $\{0,1,-1\}$-matrix which does not contain any of the matrices M_{1}, M_{2}, of Figure 5.3, nor any of its symmetric matrices, as a submatrix. Let \mathcal{H} be its associated labeled hypergraph. Then \mathcal{H} is bipartiteconformal if and only if the columns of A are bipartite-Helly.

The following Theorems are reformulations of Theorems 4.14 .2 and Corollary 4.2 , considering the Helly and the bipartite-Helly property. They will be useful in the proof of the characterization of biclique graphs.

Theorem 5.2 : Let A be a $\{0,1\}$-matrix and \mathcal{H} its associated hypergraph. Then A is a clique matrix of some graph if and only if

1. Each row of A has at least one 1,
2. A has no included rows, and
3. The family of columns of A is Helly.

Theorem 5.3 Let A be a $\{0,1,-1\}$-matrix. Then A is a biclique matrix if and only if:

1. A does not contain included rows and has at least a 1 and $a-1$ in each row.
2. The family of columns of A is bipartite-Helly

As a Corollary of Theorem 5.3 it follows a characterization for biclique matrices of bipartite graphs.

Theorem 5.4 Let A be a $\{0,1,-1\}$-matrix. Then A is a biclique matrix of a bipartite graph if and only if

1. A has not included rows
2. A is bipartite with partition V_{1}, V_{2}.
3. The family of columns of A is bipartite-Helly

The following is the main Theorem of the Chapter. It characterizes biclique graphs for general graphs. The proof of this Theorem employs the characterization given in Theorem 5.3 for bicliques matrices.

Theorem 5.5 A graph G is a biclique graph if and only if there exists a $\{1,-1\}$-labeled family \mathcal{C} of subsets of $V(G)$, such that:

1. Each subset induces a complete graph in G and \mathcal{C} covers the edges of G
2. C is a labeled bicovering of $V(G)$
3. C is bipartite-Helly
4. C is a split of $V(G)$

Proof: Suppose G is the biclique graph of a graph H and let A be a biclique matrix of H. Let A^{+}be the matrix of values $\left\{\left|a_{i j}\right|\right\}$ and consider its transpose $\left(A^{+}\right)^{T}$. The graph G induced by $\left(A^{+}\right)^{T}$ is the intersection graph of the columns of $\left(A^{+}\right)^{T}$, i.e., $K B(H)=G$. Let \mathcal{C} be the labeled family of complete subgraphs in G induced by the rows of A^{T}, where vertex w_{i} has label $a_{i j}$ if it belongs to the complete C_{j}.

As A is a biclique matrix, by Theorem 5.3, A has at least a 1 and a -1 in each row and its columns verify the bipartite-Helly property. It follows that \mathcal{C} is a bicovering of G and \mathcal{C} is bipartite-Helly. As G is induced by $\left(A^{+}\right)^{T}$, every edge of G belongs to a complete of \mathcal{C}. We prove that \mathcal{C} is a split. Suppose the contrary, i.e., there exist two vertices v_{i}, v_{j} such that the subfamily of complete subgraphs containing v_{i} is included in the sufamily of complete subgraphs containing vertex v_{j}. In other words, suppose row i of A^{+}is included in row j. Since by Theorem 5.3 A does not have included rows, without loss of generality we can assume that there is a column k such that $a_{k i}=1, a_{k j}=-1$. As neither the symmetric of row i is bi-included in row j,
either there exists a column k^{\prime} such that either $a_{k^{\prime} i}=1, a_{k^{\prime} j}=1$ or $a_{k^{\prime} i}=-1$, $a_{k^{\prime} j}=-1$. In both cases, $a_{k^{\prime} i}, a_{k^{\prime} j} a_{k^{\prime} i}, a_{k^{\prime} j}$ form one of the matrices of Figure 5.3, what leads to a contradiction, according to Lemma 5.2 and Theorem 5.3. Then, \mathcal{C} verifies the conditions of the Theorem.

Conversely, let \mathcal{C} be the labeled family of k complete subgraphs of G given by hypothesis. Consider the matrix $B \in\{0,1,-1\}^{k \times n}$ where $b_{i j}=1$ (respectively, -1) if vertex v_{j} belongs to the complete C_{i} with label 1 (respectively $-1)$ and $b_{i j}=0$ otherwise. Consider B^{T}. Since \mathcal{C} is a bicovering, B^{T} contains at least a 1 and a -1 in each row. As \mathcal{C} is a split of G and is bipartite-Helly, B^{T} has no included rows and its columns are bipartite-Helly. According to Theorem 5.3, B^{T} is a biclique matrix of a graph H. As observed below, the induced graph of $\left(\left(B^{T}\right)^{+}\right)^{T}$ is the biclique graph of H, i.e. $\left(\left(B^{T}\right)^{+}\right)^{T}=B^{+}$ induces $K B(H)$. By hypothesis, every edge of G belongs to a complete of \mathcal{C}, implying that the graph induced by B^{+}is G. We conclude that $G=K B(H)$.

An example of the proof of Theorem 5.5 is given in Figure 5.4. Consider the triangle. The family of complete subgraphs $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{-1}$ verifies the hypothesis of Theorem 5.5. The subfamily \mathcal{C}_{1} has all its vertices are labeled with 1 , and \mathcal{C}_{-1} uses only labels -1 . The matrix B is the labeled incidence $\{0,1,-1\}$-matrix of the family of complete subgraphs $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{-1}$. The graph G is the graph bi-induced by B^{T}. It follows that the triangle is the biclique graph of G.

The following Remark is direct from the proof of Theorem 5.5
Remark 5.2 Let G be a graph and let \mathcal{C} be a $\{1,-1\}$-labeled family of subsets of $V(G)$. Let B be the labeled incidence $\{0,1,-1\}$-matrix of \mathcal{C}. Then, \mathcal{C} verifies the conditions of Theorem 5.5 if and only if B^{T} is the biclique matrix of a graph H. Furtheremore, $K B(H)=G$.

As a corollary of Theorem 5.5, we prove that the recognition problem for bicliques graphs is in $N P$.

Theorem 5.6 Let G be a graph with n vertices. The problem of determining if G is a biclique graph is NP.

Proof: A certificate for G being a biclique graph is a $\{1,-1\}$ labeled family \mathcal{C} of m completes subgraphs of G, satisfying the conditions of Theorem 5.5. First, we show that we can restrict to families \mathcal{C} of size $O\left(n^{2}\right)$, where $V(G)=$ n. For every vertex v_{i}, consider $C^{i_{1}}, C^{i_{1}}$ the subsets in \mathcal{C} containing vertex v_{1} with labels $1,-1$, respectively. For every edge $v_{i} v_{j}$, consider the subgraph $C^{i j} \in \mathcal{C}$ such that $v_{i} v_{j} \in C^{i j}$. Finally, for every pair of vertices v_{i}, v_{j}, consider the subgraphs $C^{i, j}, C^{j, i}$ such that $v_{i} \in C^{i, j}, v_{j} \notin C^{i, j}$ and $v_{j} \in C^{j, i}, v_{i} \notin C^{j, i}$. The subfamily $\mathcal{C}^{\prime}=\left\{C^{i_{1}}, C^{i-1}, C^{i, j}, C^{j, i}, C^{i j}\right\}_{i, j=1 \ldots n}$ verifies conditions 1), 2) 3) of Theorem 5.5 and contains $O\left(n^{2}\right)$ subsets. Remark 5.2 completes the proof of the Theorem.

$$
B=\left(\begin{array}{ccc}
v_{1} & v_{2} & v_{3} \\
1 & 0 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1 \\
-1 & -1 & 0 \\
0 & -1 & -1
\end{array}\right) \quad B^{T}=\left(\begin{array}{ccccc}
z_{1} & z_{2} & z_{3} & w_{1} & w_{2} \\
1 & 0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 & -1 \\
0 & 1 & 1 & 0 & -1
\end{array}\right)
$$

Figure 5.4: The triangle is the biclique graph of G
The next Theorem proves that graphs of more than 3 vertices without induced diamonds are not biclique graphs.

Theorem 5.7 Let G be a connected diamond-free graph with at least four vertices. If G is not a complete graph, then G is not a biclique graph.

Figure 5.5: Diamond

Proof: Let v_{1}, v_{3}, v_{2} be the vertices that induce a P_{3}, and let $e_{1}=\left(v_{1}, v_{2}\right)$, $e_{2}=\left(v_{2}, v_{3}\right)$. Suppose G is the biclique graph of the graph H. Let B_{1}, B_{2} and B_{3} be the corresponding bicliques of v_{1}, v_{2}, v_{3} in H. Let a be the vertex in the intersection of B_{1} and B_{2}, and let b be a vertex in the intersection of B_{2} and B_{3}. Suppose it is the case, $a b$ is an edge of H. If a forms a triangle with some vertex c of B_{3} and b, then $a c$ is contained in some biclique B which intersects B_{1}, B_{2} and B_{3}. Observe that c is not in B_{1} because B_{1} and B_{3} are disjoint bicliques and c is not in B_{2} because $b \in B_{2}, B \neq B_{1}, B_{2}, B_{3}$. It follows that the corresponding vertex v in G along with v_{1}, v_{2} and v_{3} induce a diamond, which leads to a contradiction. As $a \notin B_{3}$ there exists some vertex $c \in B_{3}, c \notin B_{1}, c$ not adjacent to b such that $a c$ is not an edge of H. Similarly, we can conclude that there is a vertex $d \in B_{1}, d \notin B_{3}, d$ not adjacent to a such that $b d$ is not an edge of H. Take a vertex $c_{1} \in B_{3}$ adjacent to c and $d_{1} \in B_{1}$ adjacent to d. We have already proved that a can not be adjacent to c_{1}, neither b is adjacent to d_{1}. If c_{1}, d_{1} are not adjacent vertices, then either the complete bipartite subgraph induced by $\left\{d_{1}, a, b\right\}$ or $\left\{a, b, c_{1}\right\}$ is included in some biclique different from $B_{i}, i=1,2,3$. Then, the corresponding vertex in G forms a diamond with v_{1}, v_{2} and v_{3} what is not possible. (Figure 5.6)

Figure 5.6: Alternatives for vertices a, b, c, c_{1}, d_{1}
Then, $c_{1} d_{1}$ is an edge of H. If d is not adjacent to c_{1}, consider the bipartite complete subgraph $\left\{d_{1}, d, a, c_{1}\right\}$. It is included in some biclique B. As $d \notin B_{3}$, it is clear that $B \neq B_{3}$. As $c_{1} \in B_{3}$, and B_{1}, B_{3} are disjoint bicliques, it is clear that $B \neq B_{1}$. Finally, as $b \in B_{2}$ and b is not adjacent to d it follows $B \neq B_{2}$. As B intersects $B_{i}, \mathrm{i}=1,2,3$, there is a vertex in G which forms a diamond with v_{1}, v_{2}, and v_{3} which leads to a contradiction.

Figure 5.7: Case $c_{1} d$ is not an edge
It follows that c_{1} and d are adjacent. Consider the complete bipartite subgraph $\left\{d, c_{1}, b\right\}$. It is included in some biclique B. As $d \in B_{1}$, and B_{1} and B_{3} are disjoint, $B \neq B_{3}$. As $b \notin B_{1}, B \neq B_{1}$. Finally, $B \neq B_{2}$ because a is in B_{2}, and it is not adjacent to d nor to c_{1}. (Figure 5.8)

Figure 5.8: Bipartite subgraph induced by vertices d, c_{1}, b

Then, the corresponding vertex in G forms a triangle with vertices v_{1}, v_{2}, v_{3}, what contradicts the hypothesis.

Therefore, the case where $a b$ is an edge cannot occur.
We examine the situation where $a b$ is not an edge of H. Let c be a vertex in B_{2} adjacent to a and b. We have just proved that c can not be in B_{1} nor in B_{3}. If a is adjacent to two adjacent vertices d, d_{1} of B_{3} as in Figure 5.9, then the biclique B which contains the edge $a d_{1}$ intersecs B_{1}, B_{2}, B_{3}. Since it contains $a, B \neq B_{3}$, because $b \in B_{2}$ and b is not adjacent to a nor to d_{1}, and $B \neq B_{1}$ while $B \neq B_{2}$ because $d_{1} \notin B_{1}$. It follows that the corresponding vertex of the biclique B in G forms a diamond with v_{1}, v_{2}, v_{3}, what is not possible.

Figure 5.9: Alternatives for vertices a, b, c, d, d_{1}
As $a \notin B_{3}$ and does not form a triangle with two vertices of B_{3}, there is a vertex $d \in B_{3}$ not adjacent to a and adjacent to b. Suppose c is adjacent to d. Consider the biclique B containing $\{d, c, a\}$, because $c \notin B_{1}, B_{3}$ and $b \in B_{2}, B \neq B_{1}, B_{2}, B_{3}$. The corresponding vertex of B in G together with v_{1}, v_{2}, v_{3} induce a diamond, what can not occur.

Analogously, we can affirm that there is a vertex f in B_{1} adjacent to a, not adjacent to b. As we already have proved, c can not be adjacent to f. Consider the two different bicliques B_{i} and B_{j} containing the vertices $\{f, a, c\}$ and $\{b, c, d\}$ respectively. It is clear that $B_{i}, B_{j} \neq B_{2}$ because, as a and b are in B_{2}, neither f or d are in B_{2}. It follows that there is an induced diamond among the vertices $v_{i}, v_{j} v_{1}, v_{2}$ and v_{3} (Figure 5.10).

As a direct consequence of the proof of Theorem 5.7 we obtain the following Corollary.

Corollary 5.3 If G is a biclique graph, every edge which belongs to an induced P_{3} is contained in an induced diamond.

The following result about trees is direct from Theorem 5.7.

Figure 5.10: Bicliques B_{1}, B_{2}, B_{2}

Corollary 5.4 Trees with more than 2 vertices are not biclique graphs.
The special case of biclique graphs of bipartite graphs is considered in the next Theorem.

As a Corollary of Theorem 5.5 we obtain the following characterization of biclique graphs of bipartite graphs.

Theorem 5.8 A graph G is a biclique graph of a bipartite graph if and only if there exists a $\{1,-1\}$-labeled family \mathcal{C} of subsets of $V(G)$, such that:

1. \mathcal{C} can be divided into two subfamilies, $\mathcal{C}_{1}, \mathcal{C}_{2}$ such that \mathcal{C}_{1} is $\{1\}$-labeled and \mathcal{C}_{2} is a $\{-1\}$-labeled subfamily.
2. Each subset induces a complete graph in G and \mathcal{C} covers the edges of G
3. \mathcal{C} is a bicovering of $V(G)$
4. \mathcal{C} is bipartite-Helly
5. \mathcal{C} is a split of $V(G)$

Proof: Let G be a biclique graph of a bipartite graph H with bipartition V_{1}, V_{2}, and let A be a bipartite biclique matrix of H. Let G be the graph induced by $\left(A^{+}\right)^{T}$. Let $\mathcal{C}_{1}, \mathcal{C}_{2}$ be the labeled family of complete subgraphs of G induced by the rows of A^{T}, relative to the bipartition V_{1}, V_{2} respectively. As we have proved in Theorem 5.5, the family $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$ verifies properties $2,3,4,5$. As A is bipartite, it is easy to see that $\mathcal{C}_{1}, \mathcal{C}_{2}$ also verifies property 1.

The converse follows directly from Theorem 5.5.
We prove that complete graphs are biclique graphs of bipartite graphs.
Proposition 5.1 Complete graphs are biclique graphs of bipartite graphs.
Proof: We will use an inductive argument. First, observe that $K B\left(P_{4}\right)=$ K_{3}. Assume that $K B(G)=K_{n}, G$ being a bipartite graph. We construct inductively a bipartite graph G^{\prime} such that $K_{B}\left(G^{\prime}\right)=K_{n+1}$. Let V_{1} and V_{2} be the bipartition of G. Add to G vertices v_{1}^{\prime} and v_{2}^{\prime} and the set of edges
$\left\{\left(v_{1}^{\prime}, w\right), w \in V_{2}\right\} \cup\left\{\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right\}$. The resulting bipartite graph G^{\prime} verifies that $K\left(G^{\prime}\right)=K_{n+1}$.

Using the given characterization for biclique graphs of bipartite graphs, we obtain a different proof for Theorem 5.7, restricted to the bipartite graphs of bipartite graphs. First, we prove that cycles greater that 4 are not biclique graphs of bipartite graphs. Although this is a direct consequence of Theorem 5.7, we formulate a separate proof of it, using similar techniques, as those we employed in Theorem 5.9.

Proposition 5.2 Graphs $C_{k}, k \geq 4$ are not biclique graphs of bipartite graphs.

Proof: Let $G=C_{k}$ be an induced cycle of more than 3 vertices. Suppose it is a biclique graph of a bipartite graph. Hence, by Theorem 5.8 there exist in G a $\{1,-1\}$-labeled bicovering with properties of Theorem 5.1. Let $\left\{v_{1}, v_{2}, \cdots v_{k}\right\}$ be vertices of G. As \mathcal{C} covers edges of G, every edge $l_{i}=\left(v_{i}, v_{i+1}\right)$, is a subset of \mathcal{C}. Observe that \mathcal{C}_{1} (analogously, \mathcal{C}_{2}), can not contain an edge, not having a consecutive edge in \mathcal{C}_{1}. Otherwise, suppose $l_{i}=\left(v_{i}, v_{i+1}\right) \in \mathcal{C}_{1}, l_{i+1}=\left(v_{i+1}, v_{i+2}\right) \in \mathcal{C}_{2}$ and $l_{i+2}=\left(v_{i+2}, v_{i+3}\right) \in \mathcal{C}_{1}$. It contradicts the hypothesis of \mathcal{C} being bipartite Helly. Consider the edge $\left(v_{1}, v_{2}\right)$ and suppose it belongs to \mathcal{C}_{1}. If it is the case that no edge of G belongs to \mathcal{C}_{2}, since \mathcal{C} is a split, every vertex belongs to \mathcal{C}_{2}. In particular v_{1} and v_{2} belong to \mathcal{C}_{2}. Since both complete subgraphs, $\left\{v_{1}\right\},\left\{v_{2}\right\}$ intersect the complete $\left(v_{1}, v_{2}\right)$ of \mathcal{C}_{1}, it contradicts the hypothesis of \mathcal{C} being bipartiteHelly. If it is the case that every edge also belongs to \mathcal{C}_{2}, as we have proved before, every three consecutive edges contradict the bipartite-Helly property. Then, there is an edge, suppose l_{1}, which belongs to \mathcal{C}_{1} and not to \mathcal{C}_{2} and an edge l^{\prime} belonging to \mathcal{C}_{2} and not to \mathcal{C}_{1}. Let s be the minimum edge (v_{s}, v_{s+1}) belonging to \mathcal{C}_{2}. As we observed before, there exist an ordering for vertices of G such that $s \geq 3$. Since s is minimum, $l_{s-1}, l_{s-2} \notin \mathcal{C}_{2}$. As \mathcal{C} is a split, vertex v_{s-1} must belong to a complete of \mathcal{C}_{1} and \mathcal{C}_{2}, so the complete $\left\{v_{s-1}\right\}$ belongs to \mathcal{C}_{2}. It follows that $\left\{v_{s-1}\right\} \in \mathcal{C}_{2}, l_{s} \in \mathcal{C}_{2}$, and $l_{s-1} \in \mathcal{C}_{1}$ are a bipartite intersecting family of \mathcal{C} with no common intersection. Absurd.

We can see by Figure 5.11 that P_{3} is not a biclique graph of a bipartite graph, since all possible labels are considered for its edges and all of them lead to a contradiction.

Figure 5.11: Graph P_{3} and all possible labels of its edges.

Remark 5.3 The graph C_{3} is the biclique graph of P_{5}
Theorem 5.9 is a direct consequence of Theorem 5.7. However, we give another proof from a new point of view based on the characterization of biclique graphs of bipartite graphs.

Theorem 5.9 If G is not a complete graph, diamond-free graph, with more that 3 vertices, then G is not a biclique graph of a bipartite graph.

Proof: Let v_{1}, v_{3}, v_{2} vertices that induce a P_{3}, and let $l_{1}=\left(v_{1}, v_{3}\right), l_{2}=$ $\left(v_{3}, v_{2}\right)$. Suppose G is a biclique graph. Let $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$ be the family of complete graphs given by Theorem 5.8.

As \mathcal{C} is a bicovering and every edge of G belongs to a complete subgraph of \mathcal{C}, there exists some complete subgraph C_{1} containing l_{1}.

Case a): Suppose every complete subgraph that contains l_{1} is in the subfamily \mathcal{C}_{1} (analogously \mathcal{C}_{2}). As v_{1} must be labeled by both labels, there must be a complete subgraph C_{2} in \mathcal{C}_{2} such that $v_{3} \notin C_{2}$, (Figure, 5.12).

Figure 5.12: Complete subgraphs C_{1}, C_{2}, C_{3}
If l_{2} is contained in some complete subgraph C_{3} of \mathcal{C}_{2}, consider the bipartite intersecting subfamily $\left\{C_{1}\right\} \cup\left\{C_{2}, C_{3}\right\}$. By hypothesis, \mathcal{C} is bipartiteHelly, then it must have a common intersection, i.e. there exist a vertex w which forms a diamond with vertices v_{1}, v_{2}, v_{3}, which is an absurd. We conclude that every complete subgraph containing l_{2} is in \mathcal{C}_{1}.

As v_{3} is contained in \mathcal{C}_{2}, there exists a C_{4} in \mathcal{C}_{2} which contains v_{3} such that $v_{2}, v_{1} \notin C_{4}$. Then the subfamily $\left\{C_{1}\right\} \cup\left\{C_{2}, C_{4}\right\}$ has a common vertex w^{\prime}. Observe that w^{\prime} is not adjacent to v_{2}, otherwise vertices $v_{1}, v_{2}, v_{3}, w^{\prime}$ would induce a diamond, (Figure 5.13).

Let C_{6} be a complete subgraph containing l_{2} in \mathcal{C}_{1}. Clearly, $v_{1}, w^{\prime} \notin C_{6}$. As v_{3} is covered by \mathcal{C}_{2} and l_{2} is not covered by \mathcal{C}_{2}, there exists a complete subgraph C_{5} in \mathcal{C}_{2} such that $v_{3}, v_{1}, w^{\prime} \notin C_{5}$. Again, the subfamily $\left\{C_{6}\right\} \cup$ $\left\{C_{4}, C_{5}\right\}$ has a common vertex $w^{\prime \prime}$. Then, v_{2}, v_{3}, w^{\prime} and $w^{\prime \prime}$ induce a diamond contradicting the hypothesis, (Figure 5.14).

Case b). Edges l_{1} and l_{2} are both covered by \mathcal{C}_{1} and \mathcal{C}_{2}. As \mathcal{C} is a split of the vertices of G, there exists a complete subgraph C_{3} which contains v_{1}, and not v_{3}. Without loss of generality, we can suppose $C_{3} \in \mathcal{C}_{1}$. Let $C_{1} \in \mathcal{C}_{2}$

Figure 5.13: Complete subgraphs C_{1}, C_{2}, C_{4} and the induced diamond $v_{1}, v_{2}, v_{3}, w^{\prime}$

Figure 5.14: Complete subgraphs C_{4}, C_{5}, C_{6} and the induced diamond $v_{2}, v_{3}, w^{\prime}, w^{\prime \prime}$
and $C_{2} \in \mathcal{C}_{1}$ the complete subgraphs covering l_{1} and l_{2} respectively. Then, the subfamily $\left\{C_{2}, C_{3}\right\} \cup\left\{C_{1}\right\}$ has a common vertex w. Then, $v_{1} v_{2}, v_{3}$, and w induce a diamond, (Figure 5.15).

Figure 5.15: Complete subgraphs C_{1}, C_{2}, C_{3} and the induced diamond v_{1}, v_{2}, v_{3}, w

5.4 Bipartite-Helly families

In this section we study bipartite-Helly labeled-families. We give a characterization for bipartite-Helly labeled-families that leads to a polynomial time algorithm for the recognition problem.

Recall the following definitions that we have introduced in Chapter 4. Let S a set of n elements, $L=\{1,-1\}$ a set of labels and let \mathcal{F} be an L-labelled family of m subsets of S. For every subset $S^{\prime}=\left\{x_{i}, x_{j}, x_{k}\right\}$ of three elements
of S, consider every triple $l_{i}, l_{j}, l_{k}, 1 \leq i, j, k \leq m, l=1,-1$. Let $\mathcal{F}^{1}\left\{l_{i}, l_{j}, l_{k}\right\}$ be the subfamily of \mathcal{F} of subsets which contains at least two elements $x_{s} \in S^{\prime}$, $x_{r} \in S^{\prime}$, with label l_{s}, l_{r}, respectively. Similarly, let $\mathcal{F}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{2}$ be the subfamily of \mathcal{F} of subsets which contains at least two elements $x_{s} \in S^{\prime}, x_{r} \in S^{\prime}$, with label $-l_{s},-l_{r}$, respectively.

The following Theorem characterizes $\{1,-1\}$-labeled bipartite-Helly families.

Theorem 5.10 A $\{1,-1\}$-labeled family \mathcal{F} is bipartite-Helly if and only if

1. Every bipartite-intersecting subfamily $\mathcal{F}^{\prime}=\left\{F_{i}\right\} \cup\left\{F_{j}\right\}$ of \mathcal{F} has a good intersection
2. Every bipartite-intersecting subfamily $\mathcal{F}=\left\{F_{i}\right\} \cup\left\{F_{j}, F_{k}\right\}$ has a common element
3. Every subfamily $\mathcal{F}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{1} \cup \mathcal{F}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{2}$ has a common intersection.

Proof: We prove that $\mathcal{F}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{1} \cup \mathcal{F}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{2}$ is a bipartite intersecting family. First, we prove that $\mathcal{F}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{1}$ and $\mathcal{F}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{2}$ are well labeled. Let $F_{r}, F_{s} \in$ $\mathcal{F}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{1}$. Then there is an element, suppose x_{i}, which belongs to both subsets with label l_{i}. If F_{r}, F_{s} intersect in an element with different label, $\left\{F_{r}\right\} \cup$ $\left\{F_{s}\right\}$ is a bipartite-intersecting family with not a good intersection, absurd. Analogously, $\mathcal{F}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{2}$ is a well labeled family. Finally, let $F_{r} \in \mathcal{F}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{1}$, $F_{s} \in \mathcal{F}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{2}$. There is an a common element, suppose x_{j}, that belongs to F_{r}, F_{s} with different label, since x_{j} has label l_{j} in F_{r}, and $-l_{j}$ in F_{s}. We conclude that $\mathcal{F}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{1} \cup \mathcal{F}_{\left\{l_{i}, l_{j}, l_{k}, l_{k}\right\}}^{2}$ is a bipartite-intersecting family and therefore, it has a common element.

Conversely. Let $\mathcal{F}^{\prime}=\mathcal{F}_{1} \cup \mathcal{F}_{2}$ be minimal bipartite-intersecting subfamily with no common element. Then, $\left|\mathcal{F}_{1}+\mathcal{F}_{2}\right| \geq 4$. Consider the case $\left|\mathcal{F}_{1}\right|=\mid$ $\mathcal{F}_{2} \mid=2$. Let x_{1} be the common element to $\mathcal{F}_{1} \backslash\left\{F_{i_{1}}\right\} \cup \mathcal{F}_{2}$. Let l_{1} be the label of x_{1} in \mathcal{F}_{2} (recall that since \mathcal{F}_{1} is well labeled, every element has the same label in \mathcal{F}_{2}). Analogously, let x_{2} be the common element to $\mathcal{F}_{1} \backslash\left\{F_{i_{2}}\right\} \cup \mathcal{F}_{1}$. Let l_{2} be the label of x_{2} in \mathcal{F}_{2}. Finally, let x_{3} be the element belonging to $\mathcal{F}_{1} \cup \mathcal{F}_{2} \backslash\left\{F_{j_{1}}\right\}$. Let l_{3} be the label of $x_{3} \mathcal{F}_{2}$. Consider $\mathcal{F}_{\left\{l_{1}, l_{2}, l_{3}\right\}}^{1} \cup \mathcal{F}_{\left\{l_{1}, l_{2}, l_{3}\right\}}^{2}$. We prove that $\mathcal{F}^{\prime}=\mathcal{F}_{1} \cup \mathcal{F}_{2}$ is included in $\mathcal{F}_{\left\{l_{1}, l_{2}, l_{3}\right\}}^{1} \cup \mathcal{F}_{\left\{l_{1}, l_{2}, l_{3}\right\}}^{2}$. Subset $F_{i_{1}}$ contains x_{2} and x_{3}. Since $F_{j_{2}} \in \mathcal{F}_{2}$ contains x_{1}, x_{2} and x_{3}, the labels of $x_{j_{2}}$ in F_{1}, F_{2} and F_{3} are l_{1}, l_{2}, l_{3} respectively. Then, as $F_{j_{2}}$ intersect $F_{i_{1}}$ and both contain x_{2} and x_{3}, theirs labels in $F_{i_{1}}$ are $-l_{2},-l_{3}$ respectively. Analogously, $F_{i_{2}}$ is contains x_{1}, x_{3} with labels $-l_{1}$, $-l_{3}$, respectively. Finally, $F_{j_{1}}$ contains in x_{1}, x_{2} with labels l_{1}, l_{2} respectively. It follows that $\mathcal{F}_{1} \subseteq \mathcal{F}_{\left\{l_{1}, l_{2}, l_{3}\right\}}^{1}, \mathcal{F}_{2} \subseteq \mathcal{F}_{\left\{l_{1}, l_{2}, l_{3}\right\}}^{2}$.

The case where $\mathcal{F}_{1} \geq 3$ is similar. We consider $\mathcal{F}_{1} \backslash\left\{F_{i_{1}}\right\} \cup \mathcal{F}_{2}, \mathcal{F}_{1} \backslash$ $\left\{F_{i_{2}}\right\} \cup \mathcal{F}_{2}$ and $\mathcal{F}_{1} \backslash\left\{F_{i_{3}}\right\} \cup \mathcal{F}_{2}$ and conclude there are elements x_{1}, x_{2}, x_{3}, such that $x_{j} \notin F_{i_{j}}$. Finally, consider l_{1}, l_{2}, l_{3} the labels of the $x_{1}, x_{2}, x_{3} \in \mathcal{F}_{1}$,
respectively. In any case, it follows that $\mathcal{F}^{\prime}=\mathcal{F}_{1} \cup \mathcal{F}_{2}$ has a common element, what is an absurd.

Finally, by Lemma 5.3, every bipartite-intersecting subfamily has a good intersection. We conclude that \mathcal{F} is bipartite-Helly.

We remark that Theorem 5.10 implies that bipartite-Helly $\{1,-1\}$-labeled families can be recognized in polynomial time.

The algorithm is described below. For a given labeled family \mathcal{F}, it answers YES or NO, depending on whether \mathcal{F} is a bipartite-Helly. Let S a set of n elements, $L=\{1,-1\}$ a set of labels, and \mathcal{F} a family of labeled m subsets of S.

Algorithm 5.1 Bipartite-Helly. Check if every bipartite-intersecting subfamily $\left\{F_{1}\right\} \cup\left\{F_{j}\right\}$ has a good intersection. Consider every bipartite-intersecting subfamily $\left\{F_{i}\right\} \cup\left\{F_{j}, F_{k}\right\}$. Check if it has a common intersection. If not, answer NO ad stop. For every $v_{i}, v_{j}, v_{k}, 1 \leq i, j, k \leq n, l=1,-1$, consider $\mathcal{F}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{1}, \mathcal{F}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{2}$. Check if $\mathcal{F}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{1}, \mathcal{F}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{2}$ has a common intersection. If this condition is not satisfied for any l_{i}, l_{j}, l_{k}, answer No and stop. Otherwise answer Yes.

The Algorithm 5.1 requires $O\left(m^{3} n+m^{3} n\right)$ time and $O(n m)$ space.

5.5 Classes of biclique graphs

Is this section we study some subclasses of biclique graphs.
We need the following definitions. Given a family \mathcal{C} of subgraphs of a graph G, a \mathcal{C}-bicovering of the family \mathcal{C} is a pair of subfamilies $\mathcal{C}_{1}, \mathcal{C}_{2}$, such that $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$ and each vertex of G is covered by \mathcal{C}_{1} and \mathcal{C}_{2}, i.e. each vertex belongs to at least one subgraph of \mathcal{C}_{1} and one subgraph of \mathcal{C}_{2}. A family \mathcal{C} of subgraphs is Helly-bicovered if there exists a \mathcal{C}-bicovering, $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$ that verifies the bipartite-Helly property, considering \mathcal{C}_{1} as a $\{1\}$-labeled family, and \mathcal{C}_{2} as a $\{-1\}$-labeled family. When $\mathcal{C}_{1} \cap \mathcal{C}_{2}=\emptyset$, we say that the $\mathcal{C}_{1}, \mathcal{C}_{2}$ is an independent bicovering.

Let G be a a bipartite graph, with bipartition $V_{1} \cup V_{2}$. Say that G has no dominated bipartition if both parts V_{1}, V_{2} have vertices which are not dominated by some vertex of the other bipartition.

Let $\mathcal{C H B}$ be the class of graphs such that the family of cliques is Hellybicovered.

Let $\mathcal{C H B D} \subseteq \mathcal{C H B}$ be the class of graphs such that the family of cliques is Helly-bicovered and has no dominated vertices.

Let $\mathcal{C H B D I}$ be the class of graphs such that the family of cliques is independent Helly-bicovered and has no dominated vertices.

Let $B H E D$ be the class of bipartite biclique-Helly graphs without strictly dominated vertices.

Let $\mathcal{B H} \mathcal{D}$ be the class of bipartite biclique-Helly graphs with no dominated vertices.

Let $\mathcal{B H D B}$ be the class of bipartite biclique-Helly graphs with no dominated bipartition.

We study the classes of $K B(\mathcal{B H} \mathcal{D B})$, i.e. biclique graphs of bipartite biclique-Helly graph with no dominated bipartition.

Theorem 5.11 Let $H \in \mathcal{B H \mathcal { D B }}$, and let $G=K B(H)$, then:

1. There exists a bicoloring V_{1}, V_{2} of the vertices of the clique graph of G such that non empty family of bichromatic cliques of $K(G)$ is Helly and the family of columns of the clique matrix of $K(G)$ is bipartite-Helly, relative to the bipartition $V_{1} \cup V_{2}$.
2. $K(G)$ can be constructed by removing dominated vertices from the induced subgraph of the closed neighborhood graph of a bipartite bicliqueHelly graph.

Proof: By hypothesis, $G=K B(H)$, where H is a bipartite biclique-Helly graph with bipartition $V_{1} \cup V_{2}$, and no dominated bipartition. Consider H^{\prime}, the bipartite biclique-Helly graph obtained by removing the dominated vertices of H. Since H has no dominated bipartition, H^{\prime} has at least one edge. Let $A_{H^{\prime}}^{B}$, be the biclique matrix of H^{\prime}. By Theorem $6.5,\left(A_{H^{\prime}}^{B+}\right)^{T}$ is the clique matrix of G.

It is clear that the transpose of the clique matrix of G induces $K(G)$, i.e. $A_{H^{\prime}}^{B+}$ induces $K(G)$. On the other hand, $A_{H^{\prime}}^{B^{+}}$induces the subgraph of the closed neighborhood graph $N_{c}(H)$, obtained by eliminating the dominated vertices, since the set of dominated vertices of H is the same that of $N_{c}(H)$. We have already proved in Proposition 6.1 that every row of A_{H}^{B+} induces a clique in $N_{c}(G)$. Then, by removing dominated vertices of H, every not included row of $A_{H^{\prime}}^{B}$ is still a biclique in H and then, a clique in $N_{c}(H)$ and so in $K(G)$. As H is biclique-Helly, so are the remaining bicliques after removing dominated vertices. The bicoloring V_{1}, V_{2} of vertices of $N_{c}(H)$ gives a bicoloring to $K(G)$, where every clique induced by rows of A_{H}^{B+} is bichromatic. Moreover, we already proved in Proposition 6.1 that those cliques are the only bichromatic cliques of $N_{c}(H)$. Then, $K(H)$ is bichromatic-Helly. Finally, as the clique matrix of $K(G)$ consists of the matrix $A_{H^{\prime}}^{B+}$, with additional rows corresponding to monochromatic cliques. It follows that the columns of the clique matrix of $K(G)$ is bipartite-Helly for the bipartition V_{1}, V_{2} and every two vertices that belong to a monochomatic clique, also belong to some bichromatic clique.

Theorem 5.12 The following statements hold.

1. $K B(B H D)=C H B D I$

2. $C H B D \subseteq K B(B H E D)$.

Proof: First we prove that $K B(B H D) \subseteq C H B D I$. Let G be a bipartite biclique-Helly graph with no dominated vertices. Let A_{B} be a biclique matrix of G where the first k columns correspond to the vertices of the bipartition V_{1} and the next $n-k+1$ correspond to vertices of V_{2}. As G has no dominated vertices and is biclique-Helly, by Theorem $6.5,\left(A^{B+}\right)^{T}$ is the clique matrix of $K B(G)$. Let \mathcal{C}_{1} be the set of cliques that correspond to the first k rows of A_{B}^{T} and let \mathcal{C}_{2} be the set of cliques that correspond to the next $n-k+1$ rows. It is clear that \mathcal{C}_{1} and \mathcal{C}_{2} are not empty and verify the bipartite-Helly property.

As A_{B} is a biclique matrix, by Theorem $5.4\left(A^{B+}\right)^{T}$ does not have included rows and every row has an entry equal to 1 in the first k columns and another in the last $n-k+1$ columns. Then, every vertex of $K B(G)$ belongs to some clique of \mathcal{C}_{1} and some clique of \mathcal{C}_{2}, where $\mathcal{C}_{1} \cap \mathcal{C}_{2}=\emptyset$ and $K B(G)$ has no dominated vertices. It follows that the cliques of $K B(G)$ are independent Helly-bicovered by \mathcal{C}_{1} and \mathcal{C}_{2}.

Before we prove that $C H B D I \subseteq K B(B H D)$, first we prove that $C H B D \subseteq$ $K B(B H E D)$. Let H be a graph of n vertices in $C H B D$. Let $\mathcal{C}_{1} \cup \mathcal{C}_{2}$ the \mathcal{C}-bicovering of the cliques of $H,\left|\mathcal{C}_{1}\right|=k_{1},\left|\mathcal{C}_{2}\right|=k_{2}$.

Let A be a $\{0,1,-1\}$ matrix with n columns and $k_{1}+k_{2}$ rows, where the columns represent the vertices of H and the rows represent the cliques of \mathcal{C}_{1} and \mathcal{C}_{2} in the order such that $a_{i j}=1$ if vertex j belongs the clique C_{i} in V_{1}, $a_{\left(i+k_{1}\right) j}=-1$ if vertex j belongs to the i th clique of \mathcal{C}_{2}. Consider A^{T}. Its columns verify the bipartite-Helly property for the bipartition $\mathcal{C}_{1} \cup \mathcal{C}_{2}$, where \mathcal{C}_{1} is a $\{1\}$-labeled family and \mathcal{C}_{2} is a $\{-1\}$-labeled family. Each row has a non zero entry for some column of \mathcal{C}_{1} and some column of \mathcal{C}_{2} and it has not included rows, since H has no dominated vertices. By Theorem 5.4 it is a biclique matrix of some graph G. As the transpose of $\left(A^{+}\right)^{T}$ induces the biclique graph of G, then $H=K B(G)$. Observe that the clique matrix of H is the matrix obtained by eliminating the twin rows of A. As the columns of A^{T} represent cliques of H, it has no strictly included columns, so there are no strictly dominated vertices in G. As the columns of the clique matrix of H are Helly, by Theorem 4.1, and Theorem 2.1, so are the columns of A. Then, the rows of A^{T} verify the Helly property which implies that the family of bicliques of G is Helly.

To prove that $K B(B H D)=C H B D I$, observe that if the subfamilies C_{1} and C_{2} has no common clique, then A is the clique matrix of H and A^{T} has no included columns.

Theorem 5.13 Let G be a biclique-Helly bipartite graph, with no dominated bipartition V_{1}, V_{2}. Let \mathcal{C} be the cliques of the biclique graph $K B(G)$. Then, there exists a Helly-bicovering $\mathcal{C}_{1} \cup \mathcal{C}_{2}$ of \mathcal{C}.

Figure 5.16: The graph P_{3} is the E-biclique graph of the graph P_{5}

Proof: Let A^{B} be the biclique matrix of G. By Theorem $6.5,\left(A^{B+}\right)^{T}$ without the included rows is the clique matrix of $K B(G), A_{K B(G)}$. Consider \mathcal{C}_{1} and \mathcal{C}_{2} the subfamily of cliques induced by the rows of $A_{K B(G)}$ corresponding to columns of V_{1} and V_{2} in A^{B}, respectively. By hypothesis, G has no dominated parts V_{1}, V_{2}, then \mathcal{C}_{1} and \mathcal{C}_{2} are non empty subfamilies. By Theorem 5.4, C_{1}, C_{2} is a Helly-bicovering of \mathcal{C}.

5.6 E-biclique graphs

In this section we define the E-biclique graphs and give necessary conditions for a graph to be an E-biclique graph. We also prove that E-biclique graphs are clique graphs.

The biclique graph was defined based on vertex intersection of bicliques. For the E-biclique graphs, we consider the edge intersection of bicliques. Say that two bicliques edge intersect if they contain a common edge. The E biclique graph of a graph, denoted by $K B_{e}(G)$, is the edge intersection graph of the bicliques of G. See an example in Figure 5.16.

The following Theorem gives necessary conditions for a graph to be an E-biclique graph of a bipartite graph.

Theorem 5.14 Let G a bipartite graph. There exist in $K B_{e}(G)$ a family of complete subgraphs which verify the Helly property and covers the edges of $K B_{e}(G)$.

Proof: Let G be a bipartite graph, $E(G)=\left\{e_{1}, \ldots, e_{k}\right\}$ the edges of G and $B_{1}, \ldots B_{q}$ the bicliques of G. Let A be the incidence matrix of the family of bicliques, considering as columns the edges of G, i.e., $a_{i j}=1$ if edge e_{j} belongs to biclique B_{i}. Consider A^{T}. It induces the graph $K B_{e}(G)$. Consider the family of complete subgraphs induced by the rows of A^{T}, i.e., the complete subgraph of $V\left(K B_{e}(G)\right) L_{e_{j}}$, is the subgraph induced by $\left\{w_{s} \in V\left(K B_{e}(G)\right)\right.$ such that $\left.e_{j} \in B_{s}\right\}$. We prove that this family is Helly.

Let $L_{e_{i_{1}}}, \ldots, L_{e_{i_{l}}}$ be a pair intersecting subfamily. Clearly, $L_{e_{i_{h}}} \cap L_{e_{i_{s}}} \neq$ \emptyset implies taht there is a biclique in G that contains $e_{i_{h}}$ and $e_{i_{s}}$. Then, its endpoints induce a bipartite subgraph in G. Since $L_{e_{i_{1}}}, \ldots, L_{e_{i_{1}}}$ pairwise intersect and G is bipartite, $e_{i_{1}}, \ldots, e_{i_{l}}$ induce a bipartite subgraph in G. Therefore, there is a biclique B in G containing $e_{i_{1}}, \ldots, e_{i_{l}}$. Consequently,

Figure 5.17: Graph G and $K_{e}(G)$.
the corresponding vertex w_{B} in $K B_{e}(G)$ belongs to $L_{e_{i_{s}}}$ for every s. Finally, to prove that the family covers the edges of G, observe that there is an edge between two vertices w_{s}, w_{t} in $K B_{e}(G)$ if bicliques B_{s}, B_{t} in G have a common edge e. Then, vertices w_{s}, w_{t} belong to L_{e}.

Corollary 5.5 If G is an E-biclique graph of a bipartite graph, then it is a clique graph.

Proof: It is direct from Theorems 5.1 and 5.14.
Remark 5.4 If G is not a bipartite graph, the family $L_{e}, e \in E(G)$, is not necessary a Helly family. In Figure 5.17 we give an example of a graph G, such that there exists no family that verifies the conditions of Theorem 5.14 in its E-biclique graph, $K B_{e}(G)$.

Chapter 6

Closed neighborhood graphs and the Helly property

6.1 Introduction

In this Chapter we study the closed neighborhood graph and relate it to the concepts we have studied in the previous chapters.

In Section 2 we give a proof of a characterization of closed neighborhood graphs, using the same techniques we have used to characterized biclique graphs. We consider the general case and the subclass of closed neighborhood graphs of bipartite graphs.

In Section 3 we relate closed neighborhood graphs to biclique graphs. We give a relation between bicliques of a bipartite graph and cliques of its closed neighborhood graph. As a consequence, we obtain conditions for a biclique graph of a bipartite graph to be the clique graph of the closed neighborhood graph. Also we relate the Helly property to properties of the biclique matrix and the mentioned classes.

In Section 4 we define the class of bicliqual graphs and give a characterization. We obtain some conditions for a closed neghborhood graph of a bicliqual graph to be clique-Helly.

The technique we have employed in the characterization of biclique graphs and we use for the characterization of closed neighborhood graphs, is a variation of the Krausz type (See also [31, 35, 39, 50, 51]). It is based on properties of matrices: Suppose we want to characterize the intersection graph H of a family \mathcal{F} of subgraphs of G.

1. First, construct the incidence matrix A of the family \mathcal{F}.
2. Characterize the incidence matrix based on properties P of the matrix.
3. Consider every column of the matrix as a complete graph in the intersection graph. Ask conditions for the family of complete subgraphs, according to the properties P of A.
4. Finally, conclude that H is an intersection graph of the family \mathcal{F} if and only if there exists a family of complete subgraphs \mathcal{C} in H such that verifies those conditions.
5. The proof follows considering the fact that A^{T} induces the intersection graph of \mathcal{F}.

6.2 The closed neighborhood graph

In this section we give a different proof for the characterization of closed neighborhood graphs using the ideas mentioned above. Also we study the closed neighborhood graphs of a restricted class, the bipartite graphs.

Let G be a graph, the closed neighborhood graph of $G, N_{c}(G)$, is the intersection graphs of closed neighborhoods of G. If G is bipartite, and $V_{1} \cup V_{2}$ its bipartition, then we say that a vertex of $N_{c}(G)$ belongs to a part V_{i} if it corresponds to a neighborhood of a vertex of V_{i}. Observe that two vertices of V_{1} and V_{2} are adjacent if and only if the vertices in G of the corresponding neighborhoods are adjacent.(Figure 6.1)

Figure 6.1: Graph G and its closed neighborhood graph
Closed neighborhood graphs are useful in the study of biclique graphs. We remark that closed neighborhood graphs are also known in the literature as square graphs (See [22, 37, 40, 41, 54]).

The following Theorem gives a characterization of closed neighborhood graphs.

Theorem 6.1 [41] [42] Let G be a graph and v_{1}, \ldots, v_{n} its vertices. Then G is a closed neighborhood graph if and only if there exists in G a family $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots F_{n}\right\}$ of n complete subgraphs such that

1. For every $i, v_{i} \in F_{i}$
2. Vertex $v_{j} \in F_{k}$ if and only if $v_{k} \in F_{j}$.
3. \mathcal{F} covers the edges of G

Proof: Suppose G is the closed neighborhood graph of H. Let A be the incidence matrix of the family of closed neighborhoods of H, with n rows and n columns, i.e. $a_{i j}=1$ if and only if $v_{i} v_{j}$ is and edge in G or $i=j$. It
is clear that the induced graph of A is G (in fact, matrix A^{T} induces G, but we use the fact that $A^{T}=A$). For $i=1, \ldots, n$, consider F_{i} as the complete subgraph of G induced by each row i of A. We prove that F_{1}, \ldots, F_{n} verifies conditions of the Theorem. Since $a_{i i}=1$ and $a_{i j}=a_{j i}$, conditions 1), 2) are satisfied. Finally, since A induces G, the family satisfies condition 3).

Conversely. Let B be the incidence matrix of the family \mathcal{F}, with n columns and n rows, i.e., $a_{i j}=1$ if and only if vertex v_{j} belongs to the complete subgraph F_{i}. Construct the graph H of n vertices as follows: v_{i} is adjacent to v_{j} if and only if $v_{i} \in F_{j}$, i.e. consider row j of B as the incidence vector of the closed neighborhood of v_{j}. Conditions 1), 2) imply that H is well defined, since $a_{i j}=a_{j i}$ and $a_{i i}=1$. It is clear that the graph induced by B is $N_{c}(H)$. By condition condition 3), $G=N_{c}(H)$

Next, a characterization for closed neighborhood graphs of bipartite graphs.
Theorem 6.2 Let G be a graph with vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The following statements are equivalent:

1. G is a closed neighborhood graph of a bipartite graph
2. There exists in G a family $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots F_{n}\right\}$ of n complete subgraphs such that
(a) $v_{i} \in F_{i}$
(b) If $v_{j} \in F_{i}$, then $v_{i} \in F_{j}$
(c) \mathcal{F} covers the edges of G
(d) There is k such that

- If $j<k, v_{j} \notin F_{t}$ for every $t<k, s \neq t$
- If $j \geq k, v_{j} \notin F_{t}$ for every $t \geq k, s \neq t$.

3. There is bipartition $V_{1} \cup V_{2}$ of the vertices of G such that $v_{i}, v_{j} \in V_{1}$ (analogously, V_{2}) are adjacent if and only if $N\left(v_{i}\right) \cap N\left(v_{j}\right) \cap V_{2} \neq \emptyset$ (analogously $N\left(v_{i}\right) \cap N\left(v_{j}\right) \cap V_{1} \neq \emptyset$).
4. There exists a bipartition $V_{1} \cup V_{2}$ of vertices of G such that
(a) For every triangle v_{1}, v_{2}, v_{3} contained in V_{1} (analogously, V_{2}), either there is a vertex in $V_{2}\left(V_{1}\right)$ adjacent to all v_{1}, v_{2}, v_{3} or there exist $w_{1}, w_{2}, w_{3} \in V_{2}$ such that $v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}$ induce the 3extended Hajós graph with center v_{1}, v_{2}, v_{3}.(Figure 1.4).
(b) For every induced graph P_{3}, with vertices v_{1}, v_{2}, v_{3}, included in V_{1}, there exist vertices $w_{1}, w_{2} \in V_{2}$ such that $v_{1}, w_{1}, w_{2}, v_{3}, v_{2}$ induce a 3-fan.
(c) For every induced $P_{3}, v_{1}, v_{2}, v_{3}$, such that $v_{1}, v_{2} \in V_{1}$ (analogously, $\left.V_{2}\right)$, and $v_{3} \in V_{2}\left(V_{1}\right)$, there is a vertex $w \in V_{2}\left(V_{1}\right)$ such that v_{1}, w, v_{3}, v_{2} induce a diamond.
(d) There is no induced $P_{3}, v_{1}, v_{2}, v_{3}$, such that $v_{1}, v_{3} \in V_{1}$ (analogously, V_{2}), $v_{2} \in V_{2}\left(V_{1}\right)$.
(e) Every edge $v_{1} v_{2}$ which is not contained in a triangle, nor in a P_{3}, has its endpoints in different parts.

Proof:

$1) \Longrightarrow 2$: By Theorem Theorem 6.1, we construct a family $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$, where $v_{i} \in F_{i}$, and $v_{i} \in F_{j}$ if and only if $v_{j} \in F_{i}$. It is clear that if G is bipartite, with bipartition $\left\{v_{1}, \ldots, v_{s-1}\right\} \cup\left\{v_{s}, \ldots, v_{n}\right\}$, then \mathcal{F} verifies the required conditions, for $k=s$.
$2) \Longrightarrow 3)$: Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ be a family verifying the conditions of 2 . Let $V_{1}=\left\{v_{1}, \ldots, v_{k-1}\right\}$, and $V_{2}=\left\{v_{k}, \ldots v_{n}\right\}$. We prove that the bipartition $V_{1} \cup V_{2}$ verifies the requirements of 3 . Let $v_{i}, v_{j} \in V_{1}$ be two adjacent vertices $i, j<k$. There is $t \geq k$ such that $v_{i} v_{j} \in F_{t}$, since \mathcal{F} covers the edges of G. Then, $v_{t} \in N\left(v_{i}\right) \cap N\left(v_{j}\right) \cap V_{2}$. Conversely, if $v_{t} \in N\left(v_{i}\right) \cap N\left(v_{j}\right) \cap V_{2}$, for $v_{i}, v_{j} \in V_{1}$, since \mathcal{F} covers all edges, it follows that $v_{i} v_{t} \in F_{l}$. Then $l=i$ or $l=t$, since $v_{i} \notin F_{m}$ for $m<k, j \neq m$ and $v_{t} \notin F_{m}$ for every $m \geq k, m \neq t$. Analogously, $v_{j} v_{t} \in F_{l^{\prime}}, l^{\prime}=j$ or $l^{\prime}=t$. In any case, it follows that $v_{i}, v_{j} \in F_{t}$ concluding that v_{i}, v_{j} are adjacent.
$3) \Longrightarrow 4)$ We prove that the bipartition given by the hypothesis verifies the requirements. Let v_{1}, v_{2}, v_{3} be a triangle T. Suppose T is contained in V_{1} (analogously, V_{2}). By hypothesis, there is at least a vertex $w \in V_{2}$ adjacent to v_{1}, v_{2}. If some vertex $w \in V_{2}$ is adjacent to v_{1}, v_{2} and also v_{3}, the proof is finished. Otherwise, there exist a vertex $w^{\prime} \in V_{2}$ adjacent to $v_{1}, v_{3}, w \neq w^{\prime}$. Analogously, there is a vertex $w^{\prime \prime} \in V_{2}$ adjacent to v_{2}, v_{3}. Since $N(w), N\left(w^{\prime}\right), N\left(w^{\prime \prime}\right)$ have pairwise intersection in V_{1}, by hypothesis, they are adjacent. We conclude that the vertices $v_{1}, v_{2}, v_{3}, w, w^{\prime}, w^{\prime \prime}$ induce the 3 -extended Hajós graph with center in v_{1}, v_{2}, v_{3}.

If v_{1}, v_{2}, v_{3} induce a P_{3}, then it follows that either it is contained in V_{1} $\left(V_{2}\right)$ or $v_{1}, v_{2} V_{1}$, and $v_{3} \in V_{2}$ (analogously, V_{1}, V_{2} respectively). If v_{1}, v_{2}, v_{3} is in V_{1}, there exists a vertex $w_{1} \in V_{2}\left(V_{1}\right)$ adjacent to v_{2}. Analogously, there is a vertex $w_{2} \in V_{2}\left(V_{1}\right)$ adjacent to v_{2}, v_{3}. Since v_{1} and v_{3} are not adjacent, $w_{2} \neq w_{1}$. It follows that $v_{1}, v_{2}, v_{3}, w_{1}, w_{2}$ induce a 3 -fan.

If it is the case that $v_{1}, v_{2} \in V_{1}$, and $v_{3} \in V_{2}$ (analogously, $v_{1}, v_{2} \in V_{2}$, $\left.v_{3} \in V_{1}\right)$, there exists a vertex $w \in V_{2}\left(V_{1}\right)$ adjacent to v_{2}. As $N(w) \cap N\left(v_{3}\right)$, it follows that v_{1}, v_{2}, v_{3}, w induce a diamond.

Finally, it is clear that any edge $v_{i} v_{j}$, where $v_{i}, v_{j} \in V_{1}\left(V_{2}\right)$ is contained in a triangle.
4) $\Longrightarrow 1)$ Define the bipartite graph H as follows: For every v_{i}, there is a vertex $z_{i} \in V(H)$, and $z_{i} z_{j}$ is an edge of H if and only if $v_{i} \in V_{1}, v_{2} \in V_{2}$ and $v_{i} v_{j}$ is an edge of G. We prove that G is isomorphic to the closed neighborhood graph of H, under the isomorphism which relates v_{i} to $N\left[z_{i}\right]$.

First, we prove that $v_{i} v_{j}$ is an edge of G if and only if $N\left[z_{i}\right], N\left[z_{j}\right]$ intersect. Let $v_{i} v_{j}$ be an edge of G. The case where z_{i} and z_{j} belong to different parts, is clear. Consider the case $v_{i}, v_{j} \in V_{1}$. By hypothesis, if $v_{i} v_{j}$ is contained in
a triangle or a P_{3}. In either cases there is a vertex $w \in V_{2}$ belonging to $v_{i} v_{j}$. The proof is complete.

We remark that closed neighborhood graphs of bipartite graphs can be recognized in $O\left(n^{4}\right)$ [37], whereas the recognition problem is NP-complete in the general case [40].

6.3 Closed neighborhood graphs and biclique graphs

Along this section, when we focus on the class of closed neighborhood graphs of bipartite graph.

Closed neighborhood graphs may be a useful tool in the study of biclique graphs. Moreover, bicliques of a graph G can be related to cliques of its closed neighborhood graph. Consequently, their corresponding biclique graph and clique graph, respectively, are related. Properties of the biclique graph of a bipartite graph G can be obtained by looking at properties of the clique graph of the closed neighborhood graph of G.

In this section, we study relations between bicliques of a bipartite graph G and cliques of its closed neighborhood graph, and between the biclique graph of G and the clique graph of G and $N_{c}(G)$, respectively.

Start with a definition. Let G be a bipartite graph and let $N_{c}(G)$ be the closed neighborhood graph of G. Let B be a biclique of G. Define B^{\star} as the complete subgraph of $N_{c}(G)$ induced by vertices of G corresponding to the closed neighborhoods of the vertices of B. This notation is employed through Chapters 6 and 7.

A relation between bicliques of G and cliques of $N_{c}(G)$ is given by the following Proposition.

Proposition 6.1 Let G be a bipartite graph with bipartition $V_{1} \cup V_{2}$ and let $N_{c}(G)$ be its closed neighborhood graph. Let $\mathcal{B}(G)$ be the set of bicliques of G and let $\mathcal{C}\left(N_{c}(G)\right)$ be the set of cliques of $N_{c}(H)$. Then,

1. For every biclique B of G, B^{\star} is a clique of $N_{c}(G)$
2. If B_{1}, B_{2} are two different bicliques of G, so are the cliques B_{1}^{\star} and B_{2}^{\star} of $N_{c}(G)$
3. Biclique B_{1} intersects biclique B_{2} if and only if B_{1}^{\star} and B_{2}^{\star} intersects.
4. $\mathcal{C}\left(N_{c}(G)\right)$ can be divided into two disjoint subfamilies as follows: $\mathcal{C}\left(N_{c}(G)\right)=$ $\left\{B^{\star}: B \in \mathcal{B}(G)\right\} \cup\left\{C\right.$ such that $V(C) \subseteq V_{1}$ or $\left.V(C) \subseteq V_{2}\right\}$.

Proof: Let B be a biclique and let B^{\star} the complete subgraph in $N_{c}(G)$. First observe that if B_{1}, B_{2} are different bicliques or intersect, also B_{1}^{\star} and
B_{2}^{\star} are. This follows from the fact that B_{1} and B_{2} intersect in G if and only if they have a common vertex v, if and only if B_{1}^{\star} and B_{2}^{\star} contain vertex of $N[v]$. Next, we prove that B^{\star} is a clique of $N_{c}(G)$. Suppose it is not a clique. It means there is a vertex v adjacent to every vertex of B^{\star} in $N_{c}(G)$. Suppose v corresponds to $N[w], w \in V_{1}$. Then, v is adjacent to all vertices of $B_{1}^{\star} \cap V_{2}$. As G is bipartite, w is adjacent to every vertex of $B \cap V_{2}$. We conclude that $B \cup v$ is a complete bipartite subgraph of G, absurd. It follows that B^{\star} is a clique of H. Finally, it remains to prove that every clique in $N_{c}(G)$ containing vertices from V_{1} and V_{2} corresponds to a clique of the form B^{\star}, since it is clear that that every B^{\star} contains vertices from V_{1} and V_{2}. Let C be a clique of $N_{c}(G)$ and consider the vertices of G corresponding to the neighborhoods of vertices of $N_{c}(G)$. Clearly, it is a complete bipartite subgraph B^{\prime} of G. If it is not a biclique of G, it is included in a biclique B. Then, it follows that C in included in B^{\star}. Consequently, $C=B^{\star}$ and $B^{\prime}=B$.

By the close correspondence between bicliques of G and cliques of $N_{c}(G)$, we obtain the following Proposition, relating clique graphs of closed neighborhood graphs and biclique graphs. It is a corollary of the Proposition 6.1.

Proposition 6.2 Given a graph G, the biclique graph $K B(G)$, is an induced subgraph of $K\left(N_{c}(G)\right)$.

6.3.1 The Helly property and intersection graphs

In Proposition 6.2 we have related graph $K B(G)$, with $K\left(N_{c}(G)\right)$. Our next goal is to know when both graphs are indeed, isomorphic. We prove that $K B(G)$ coincides with $K\left(N_{c}(G)\right)$ just when the graph G is open neighborhoodHelly.

The next Lemma is clear, but it is useful for the Theorems that follow.
Lemma 6.1 Let G be a bipartite graphs with bipartition $V_{1} \cup V_{2}$ and let A be its biclique matrix. Then, it is equivalent:

1. Each of the subfamilies of the columns of A corresponding to the parts V_{1} and V_{2} is Helly
2. G is open neighborhood-Helly

Recall that, given a bicoloring $V_{1} \cup V_{2}$ of a graph G, a bichromatic clique is a clique which contains at least a vertex of each parts V_{1} and V_{2}. Recall that a graph is 2-weak colorable when there is a bicoloring of vertices of G such that every clique of G is bichromatic.

Theorem 6.3 Let G be a bipartite graph without isolated vertices, $N_{c}(G)$ its closed neighborhood graph, A_{G}^{B} the biclique matrix and $A_{N_{c}(G)}$ the clique matrix of $N_{c}(G)$. Finally, let $\mathcal{C}\left(N_{c}(G)\right)$ be the set of cliques of $N_{c}(G)$. Then, it is equivalent:

1. G is open neighborhood-Helly
2. $\mathcal{C}\left(N_{c}(G)\right)=\left\{B^{\star}, B\right.$ biclique of $\left.G\right\}$
3. $A_{G}^{B+}=A_{N_{c}(G)}$.

Proof: We prove that 1) and 2) are equivalent. Let G be a open neighborhoodHelly bipartite graph. Suppose there is a clique C in $N_{c}(G)$ containing vertices only from V_{1}. Let v_{1}, \ldots, v_{k} be the vertices of C. By definition, vertices $v_{i}, v_{j} \in V_{1}$ are adjacent if and only if the neighborhoods $N\left[z_{i}\right], N\left[z_{j}\right]$ intersect. Then $N\left[z_{1}\right], \ldots, N\left[z_{k}\right]$ is an intersecting subfamily of neighborhoods. As two vertices of the same part are not adjacent, the subfamily of open neighborhoods $N\left(z_{1}\right) \ldots, N\left(z_{k}\right)$ is intersecting. By hypothesis, there is a vertex $z_{t} \in V_{2}$ in G adjacent to z_{1}, \ldots, z_{k}. It follows that vertex v_{t} together with C induce a complete subgraph of $N_{c}(G)$, absurd. Then, $\mathcal{C}\left(N_{c}(G)\right)=\left\{B^{\star}, B\right.$ biclique of G \}.

Conversely. By contrary, suppose G is not neighborhood-Helly. Let $N\left(z_{1}\right) \ldots N\left(z_{k}\right)$ be an intersecting subfamily of open neighborhoods. Clearly, without loss of generality we can assume that $z_{i} \in V_{1}, i=1, \ldots, k$. Then vertices $v_{1}, \ldots, v_{k} \in N_{c}(G)$ induce a complete subgraph F. Let B^{\star} be the clique containing F. It follows that the biclique B which contains vertices z_{1}, \ldots, z_{k} also contains a vertex $w \in V_{2}$. Clearly, $w \in N\left(z_{i}\right)$ for every $i, i=1 \ldots k$.

Finally, we prove 2$) \Longleftrightarrow 3$). It follows directly from the fact that A_{G}^{B+} induces the closed neighborhood graph $N_{c}(G)$ of G, and every row induces B^{\star}.

As corollaries, we obtain the following direct results.
Corollary 6.1 Given a graph H, the following statements are equivalent:

1. H is a closed neighborhood graph of an open neighborhood-Helly bipartite graph
2. H is a closed neighborhood graph of a bipartite graph G, and the bipartition of vertices of G induces a 2-weak coloring of H.
3. H is 2-weak colorable by the bicoloring induced by a bipartition $V_{1} \cup V_{2}$, where two vertices of V_{1} (analogously, V_{2}) are adjacent if and only if they induce a triangle with some vertex of V_{2} (analogously, V_{1})
4. The columns of the clique matrix of H can be partitioned into V_{1}, V_{2} such that it verifies the bipartite-Helly property, where columns of V_{1} have label 1, and columns of V_{2}, label -1.

Proof: It is a direct consequence of Theorem 6.3
The next Corollary characterizes the graph G such that $K B(G)=K\left(N_{c}(G)\right)$.
Corollary 6.2 Let G be a bipartite graph. Then, G is open neighborhoodHelly if and only if $K B(G)=K\left(N_{c}(G)\right)$.

Proof: It is a direct consequence of Theorem 6.3.
We study the cliques of $N_{c}(G)$ when the bipartite graph G is not neigh-borhood-Helly. In other words, we examine the cliques which are contained in one of the parts.

Proposition 6.3 Let G be a bipartite graph and let $V_{1} \cup V_{2}$ be its bipartition. The cliques of $N_{c}(G)$ which are contained in one of the parts of the bipartition of G are in correspondence with the maximal intersecting families of open neighborhoods without common vertex.

Proof: Let C be a clique of $N_{c}(G)$ included in V_{1}, (analogously, V_{2}). Consider the subfamily of the corresponding neighborhoods of G. Clearly, it is a maximal intersecting subfamily. Suppose $w \in V_{2}$ is a common vertex, then the vertex $N(w)$ of $N_{c}(G)$ belongs to C, which is a contradiction.

Conversely, it is clear that such an intersecting family \mathcal{F} of neighborhoods contains only neighborhoods of vertices of one part (suppose V_{1}) and induces a complete subgraph H^{\prime} of $N_{c}(G)$. Then, H^{\prime} is included in a clique C of $N_{c}(G)$.

Suppose $C=B^{\star}$, where B is a biclique of G. Let $w \in V_{2}$ be a vertex of B. It follows that w is a common vertex of the family \mathcal{F}, absurd. Then, C is included in V_{1}. If H^{\prime} is not C, there is a vertex $N\left(z_{k}\right) \in V_{1}$ adjacent to every vertex of H^{\prime}. Then, $\left\{N\left(z_{k}\right)\right\} \cup \mathcal{F}$ is an intersecting family, which is an absurd since \mathcal{F} is maximal.

As a consequence, we can organize the clique matrix of a closed neighborhood graph of bipartite graphs as follows.

Remark 6.1 Let G be a bipartite graph with k bicliques. The clique matrix of $N_{c}(G)$ can be organized as follows.
-The first k rows are the rows of the biclique matrix of G while the columns are divided into V_{1} and V_{2}. .
-The remaining rows are divided into two groups, first those which have zero entries in columns of V_{1} and the other, which have zero entries in columns of V_{2}.

In Figure 6.2 we can observe the matrices of the graphs of Figure 6.1.
Next we will relate the Helly property applied to the family of bicliques of G, to cliques of $N_{c}(G)$ and cliques in $K B(G)$. Some of the following properties are a direct consequence of results already presented in the thesis.

$$
\begin{aligned}
& A_{G}^{B}=\left(\begin{array}{ccc}
v_{1} & v_{2} & v_{3} \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array} \left\lvert\, \begin{array}{rrr}
w_{1} & w_{2} & w_{3} \\
-1 & 0 & -1 \\
-1 & -1 & 0 \\
0 & -1 & -1 \\
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right.\right)
\end{aligned}
$$

Figure 6.2: The Biclique matrix of G and $N_{c}(G)$
Proposition 6.4 Let G be a bipartite graph with bipartition $V_{1} \cup V_{2}$. Then:

1. If $N_{c}(G)$ is clique-Helly, then G is biclique-Helly.
2. If G is open neighborhood-Helly, then G is biclique-Helly if and only if $N_{c}(G)$ is clique Helly.

Proof:

1. By Proposition 6.1, the set $\mathcal{B}^{\star}=\left\{B^{\star}, B\right.$ biclique of G$\}$ is a subfamily of cliques of $N_{c}(G)$. Recalling that two cliques of \mathcal{B} intersect if and only if their corresponding bicliques in G intersect, it follows that G is biclique-Helly.
2. Is a direct consequence of Theorem 6.3.

We can use the closed neighborhood graph to prove properties of biclique graphs. We study graphs for which their biclique graph is biclique-Helly. We will use the following result on clique graphs.

Theorem 6.4 [49] The clique graph of a clique-Helly graph is clique-Helly
Proof: It a direct consequence from the fact that the transpose of the clique matrix without including rows is the clique matrix of the clique graph (Theorem 2.3).

Proposition 6.5 If G is open neighborhood-Helly and biclique-Helly, then $K B(G)$ is clique Helly.

Proof: As G is open neighborhood-Helly and biclique-Helly, $N_{c}(G)$ is cliqueHelly. By Theorem 6.3, $K\left(N_{c}(G)\right)=K B(G)$. By Theorem 6.4 the clique graph of a clique-Helly graph is clique-Helly.

The Helly property related to bicliques in a graphs has a close relation with the biclique graph, by looking at its clique matrix. It is exposed in the following Theorem.

Let A_{G}^{B} be the biclique matrix of a graph G. Let $A(G)$ be the matrix obtained from $\left(A_{G}^{B+}\right)^{T}$ by removing the included rows.

Theorem 6.5 Let A_{G}^{B} be a biclique matrix of a bipartite graph G. Let H be the graph induced by $\left(A_{G}^{B+}\right)^{T}$. Then, the following statements are equivalent:

1. G is biclique-Helly.
2. $A(G)$ is the clique matrix of $K B(G)$.

Proof: Suppose G is a bipartite biclique-Helly graph. It is clear that $\left(A_{G}^{B+}\right)^{T}$ induces the biclique graph of $G, K B(G)$. As G is biclique-Helly, columns of $\left(A_{G}^{B+}\right)^{T}$ are Helly. Then, $A(G)$ is a clique matrix, according to Theorem 5.2.

Conversely, suppose $A(G)$ is the clique matrix of $K B(G)$. Then, rows of A_{G}^{B} without the columns corresponding to the dominated vertices are Helly. We prove that by adding the included columns, the Helly property is preserved. Let \mathcal{F} be a subfamily of intersecting rows. Suppose two rows intersect at an added column. Clearly, the rows also intersect another column, in other words, every intersecting family of columns of A_{G}^{B} is still an intersecting family after removing included columns. Then, rows of A_{G}^{B} are Helly, i.e. G is biclique Helly.

Remark 6.2 Proposition 6.5 also can be proved by using the fact that columns of A_{G}^{B} are Helly (if G is open neighborhood-Helly) together with Theorem 6.5.

As a Corollary, we obtain the following result:
Corollary 6.3 Let A_{G}^{B} be a biclique matrix of a bipartite graph G and $A_{N_{c}(G)}$ be the clique matrix of $N_{c}(G)$. Let H be the graph induced by $\left(A_{G}^{B+}\right)^{T}$. Then it is equivalent:

1. G is open neighborhood-Helly and biclique-Helly.
2. $A(G)$ is the clique matrix of $K\left(N_{c}(G)\right)$.

Proof: Suppose G is open neighborhood-Helly and biclique-Helly.By Theorem 6.5, $A(G)$ is the clique matrix of $K B(G)$. If G is open neighborhoodHelly, by Corollary $6.2, K B(G)=K\left(N_{c}(G)\right)$.

Conversely, suppose $A(G)$ is the clique matrix of $K\left(N_{c}(G)\right)$. Observe that $A(G)$ induces $K B(G)$. Then, $K\left(N_{c}(G)\right)=K B(G)$ and, according to Corollary $6.2, G$ is open neighborhood-Helly. It follows that $A_{G}^{B+}=A_{N_{c}(G)}$. Then, $A_{N_{c}(G)}^{T}$ is the clique matrix of $K\left(N_{c}(G)\right)$. By Theorem 6.5, G is biclique-Helly.

Theorem 6.6 A clique graph $K(G)$ is a closed neighborhood graph of a biclique-Helly bipartite graph if and only if there exists a bipartition of vertices of the clique graph of $K(G)$ such that:

1. The bichromatic cliques of $K(G)$ are Helly
2. Every pair of vertices of a monochromatic clique belongs to a bichromatic clique.

Proof: First we show that $K(G)$ is a closed neighborhood graph. Let $V_{1} \cup V_{2}$ be the bipartition given by the hypothesis. Since every pair of adjacent vertices belongs to a bichromatic clique, it follows that two vertices of the same bipartition are adjacent if and only if they have a common neighbor in the other bipartition. By Theorem 6.2 $K(G)$ is a closed neighborhood graph of a bipartite graph H, with bipartition V_{1}, V_{2}. Since bichromatic cliques of $N_{c}(H)=K(G)$ correspond to bicliques of H, it follows that H is bicliqueHelly. Conversely. Considering bipartitions V_{1}, V_{2} given by the bipartite graph, the result follows directly from Proposition 6.1 and Theorem 6.2 .

6.4 About closed neighborhood graphs and open neighborhood Helly graphs

We analyze the possible induced diamonds in a closed neighborhood graph $N_{c}(G)$ of a bipartite graph G. Also, we study the alternatives for the extended triangles of $N_{c}(G)$.

Let G be a bipartite graph, and let $V_{1} \cup V_{2}$ be its bipartition. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be an induced diamond in $N_{c}(G), v_{1}, v_{2}$ of degree 3 . We consider only the cases where $v_{1}, v_{2}, v_{3}, v_{4}$ is not contained in one part of the bipartition:

Case 1: $v_{1}, v_{2} \in V_{1}$. It follows that $v_{3} \in V_{2}$, or $v_{4} \in V_{2}$. Without loss of generality, suppose $v_{3} \in V_{2}$. Then, $v_{4} \in V_{1}$, since v_{3} and v_{4} are not adjacent. The case where $v_{1}, v_{2} \in V_{2}$ is analogous. We conclude that if v_{1}, v_{2} belong to one part, suppose V_{1}, also does v_{4}.

Case 2: $v_{1} \in V_{1}, v_{2} \in V_{2}$. As v_{3} and v_{4} are not adjacent, the can not belong to the same part of the bipartition. We conclude that if v_{1} and v_{2} belong to different parts, also do vertices v_{3} and v_{4}.

Observe that in both cases, given a triangle v_{1}, v_{2}, v_{3} in $N_{c}(G)$, every vertex of its extended triangle adjacent to v_{i}, v_{j} belong to the same part V_{1} or V_{2}, determined by the vertices v_{i}, v_{j}.

In the following Proposition, we study the bipartite graphs for which their closed neighborhood does not have induced diamonds included in one part of the bipartition. It is a similar to the result given by the Theorem 2.11

Proposition 6.6 Let $G=V_{1} \cup V_{2}$ be an open neigbourhood-Helly, bipartite graph. Let Q be the graph of Figure 6.3. Then G is Q - free, where $N\left(w_{1}\right) \cap N\left(w_{1}\right)=\emptyset$ if and only if G^{\star} does not have and induced diamond $\left\{w_{1}, w_{2}, v_{3}, v_{4}\right\} \in V_{1}$ (analogously, V_{2})

Figure 6.3: Graph Q
Proof: Suppose G^{\star} has a diamond which vertices $\left\{w_{1}, w_{2}, v_{3}, v_{4}\right\}$ belong to V_{1}. As $N\left(w_{1}\right) \cap N\left(v_{i}\right), N\left(w_{2}\right) \cap N\left(v_{i}\right)$ and $N\left(v_{3}\right) \cap N\left(v_{4}\right)$ are non empty sets and G is open Neigbourhood-Helly, there exist vertices $v_{1}, v_{2} \in V_{2}$ adjacent to w_{1}, v_{3}, v_{4}, and w_{1}, v_{3}, v_{4} respectively. As w_{1} and w_{2} are non adjacent in $N_{c}(G), N\left(w_{1}\right) \cap N\left(w_{1}\right)=\emptyset$.

Conversely, suppose G has the graph Q as induced subgraph, and $N\left(w_{1}\right) \cap$ $N\left(w_{1}\right)=\emptyset$. Then, in $N_{c}(G), w_{1}$ is not adjacent to w_{2} and both vertices are adjacent to v_{4} and v_{3} (See Figure 6.4).

Figure 6.4:

6.5 Bicliqual graphs

In this section we introduce the bicliqual graphs. We give a characterization of bicliqual graphs by forbidden subgraphs. We use bicliqual graphs to
obtain conditions for a closed neighborhood graph to be hereditary cliqueHelly.

In [13] are defined the cliqual graphs as the graphs for which every clique subgraph G_{C} has C as the family of cliques. In [13] it is also proved that the class of cliqual graphs is equivalent to the class of hereditary clique-Helly grahs. It was useful in the characterization of k-perfect graphs ($[13,14]$).

Theorem 6.7 [13] A graph is hereditary clique-Helly if and only if it is cliqual.

Recall that, given a graph G, a clique subgraph $G_{\mathcal{C}}$ of G is the subgraph formed by vertices and edges of the subfamily \mathcal{C} of cliques of G. Similarly, the biclique graph $G_{\mathcal{B}}$ is the subgraph formed by the vertices and edges of the subfamily of bicliques \mathcal{B}. A special clique subgraph is a clique subgraph such that its family of cliques is included in the family of cliques of G. Analogously, define the special biclique subgraph, as the biclique subgraph which has its family of bicliques included in the family of bicliques of G. Given a family of bicliques \mathcal{B}, say that it is bicliqual if for every subfamily \mathcal{B}^{\prime} of \mathcal{B}, the biclique subgraph $G_{\mathcal{B}^{\prime}}$ has \mathcal{B}^{\prime} as the family of bicliques. A graph is called bicliqual if its bicliques form a bicliqual family. It is clear that if the graph is bicliqual, every biclique subgraph is special.

Next, follows a characterization of bicliqual graphs for bipartite graphs, by a forbidden subgraph.

Theorem 6.8 Let G be a bipartite graph. Then G is bicliqual if and only if it does not contain P_{5} as induced subgraph. (Figure 6.5)

Figure 6.5: P_{5}
Proof: Let $V_{1} \cup V_{2}$ be the bipartition of vertices of G and suppose vertices $v_{1}, w_{1}, v_{2}, w_{2}, v_{3}$, where $v_{i} \in V_{1}, w_{j} \in V_{2}$, induce a P_{5} in G. Consider the bicliques B_{1}, B_{2} containing v_{1}, w_{1}, v_{2} and v_{2}, w_{2}, v_{3} respectively. Let $G_{B_{1}, B_{2}}$ the biclique subgraph generated by B_{1}, B_{2}. It is clear that there is a biclique $B_{3} \neq B_{1}, B_{2}$ of $G_{B_{1}, B_{2}}$ which contains vertices w_{1}, v_{2}, w_{2}. It follows that G is is not a bicliqual graph.

Coversely, let G be a bipartite graph with no P_{5} as an induced subgraph. Suppose there is a subfamily $H=B_{1}, \ldots, B_{k}$ of bicliques of G which is not bicliqual. Let G_{H} be the biclique subgraph of G generated by H and let B be a biclique of $G_{H}, B \neq B_{i}, i=1, \ldots, k$. Consider the following set:
$A=\left\{j: \forall U \subseteq B,|U|=j\right.$, there exists a biclique B_{s} containing $\left.U\right\}$. Suppose B has m vertices. Observe that no element of A is greater that $m-1$, since there is no biclique in H containing B. Let $r=\max \{j \in A\}$. It is clear that $j \geq 2$, since every edge of B belongs to a biclique of H. Consider a subset R of $r+1$ vertices of B. As $r+1 \geq 3$, let v_{1}, v_{2}, v_{3} be three vertices of R. Suppose it is the case that they belong to V_{1}. Consider the subset $R \backslash\left\{v_{1}\right\}$. As it has r elements, there is a biclique B_{s} in H which does not contain v_{1}.

Hence, there is a vertex w_{1} adjacent to v_{2}, v_{3}, and not adjacent to v_{1}. Analogously, consider the subset $H \backslash\left\{v_{3}\right\}$. With the same argument, we prove that there is a vertex w_{3} adjacent to v_{2}, v_{1}, and not adjacent to v_{3}. We conclude that $v_{1}, w_{3}, v_{2}, w_{1} v_{3}$ induce a P_{5}. Absurd. Without loss of generality, consider the case $v_{1}, v_{3} \in V_{1}, v_{3} \in V_{2}$. It follows that v_{1}, v_{2}, v_{3} induce the graph P_{3}. Consider $H \backslash\left\{v_{1}\right\}$. By the same argument as we used before, we conclude that there is a vertex w_{1} adjacent to v_{3}, not adjacent to v_{1}. Analogously, there is a vertex w_{3} adjacent to v_{1}, not adjacent to v_{3}. It follows that $w_{1}, v_{3}, v_{2}, v_{1}, w_{3}$ induce the graph P_{5}, which is an absurd.

The following corollary, relates bicliqual graphs to hereditary bicliqueHelly graphs.

Corollary 6.4 Let G be a P_{5} - free, bipartite graph. Then, G is hereditary biclique-Helly.

Proof: Suppose the contrary. Then, by Theorem 3.3, G contains some of the graphs of Figure 3.3 as induced subgraph. Hence, G contains a P_{5}, absurd.

Remark 6.3 The converse of Corollary 6.4 does not holds. The graph P_{5} is not bicliqual but it is hereditary biclique-Helly.

As an application of the previous results, we can relate hereditary cliqueHelly, closed neighborhood graphs to biclique-Helly graphs.

Theorem 6.9 If the closed neighborhood graph $N_{c}(G)$ of a bipartite graph G is hereditary clique-Helly, then G is open neighborhood-Helly and bicliqueHelly and the columns of the clique matrix of $N_{c}(G)$ are Helly-bicovered.

Proof: Suppose $N_{c}(G)$ is hereditary clique-Helly. Observe that $N_{c}(G)=$ $G_{\mathcal{B}^{\star}}$, i.e. $N_{c}(G)$ is the clique subgraph generated by the family of cliques $\left\{B^{\star}, B\right.$ is a biclique of $\left.G\right\}$. As $N_{c}(G)$ is hereditary clique-Helly, by Theorem $6.7, \mathcal{B}^{\star}$ is the family of cliques of $N_{c}(G)$. Hence, $\left|A_{N_{c}(G)}\right|=A_{G}^{B}$. By Theorem 6.3, G is open neighborhood-Helly. On the other hand, as $A_{N_{c}(G)}$ is a biclique matrix of a bipartite graph, columns of $A_{N_{c}(G)}$ are bipartite-Helly for the bipartition $V_{1} \cup V_{2}$, according to Theorem 5.4.

Remark 6.4 The converse does not hold. In Figure 6.6 there is an example of a graph G that is open neighborhood-Helly and biclique-Helly, and $N_{c}(G)$ is not hereditary clique-Helly.

Figure 6.6: Graph G and $N_{c}(G)$
The following Corollary explains when the closed neighborhood graph of a bipartite graph is hereditary clique-Helly.

Corollary 6.5 Let G be a P_{5}-free, bipartite graph. Then $N_{c}(G)$ is hereditary clique-Helly and G is biclique-Helly.

Proof: If G is P_{5}-free. it is a direct consequence of Theorem 3.4 that G is open neighborhood-Helly. Then, by Theorem 6.3, $\mathcal{C}=\left\{B^{\star}, B\right.$ is a biclique of $\left.G\right\}$ is the family of cliques of $N_{c}(G)$. On the other hand, by Theorem $6.8 G$ is bicliqual.

Using Theorem 3.1, we prove that $N_{c}(G)$ is cliqual. Consider the clique subgraph $G_{\left\{B_{1}^{\star} \ldots B_{k}^{\star}\right\}}$ of $N_{c}(G)$ generated by $\left\{B_{1}^{\star} \ldots B_{k}^{\star}\right\}$. Suppose $\left\{B_{1}^{\star} \ldots B_{k}^{\star}\right\}$ is not cliqual, meaning that there is a clique $C \notin\left\{B_{1}^{\star} \ldots B_{k}^{\star}\right\}$ of $G_{\left\{B_{1}^{\star} \ldots B_{k}^{\star}\right\}}$. Consider the case that C is contained in one part, say V_{1}. Let C^{\prime} be a minimal subgraph of C such that no clique of the family $\left\{B_{1}^{\star} \ldots B_{k}^{\star}\right\}$ contains C^{\prime}. It is clear that C^{\prime} has at least 3 vertices. By minimality of C^{\prime}, there is a clique B_{1}^{\star} containing $C^{\prime} \backslash\left\{v_{i_{1}}\right\}$. As $v_{i_{1}}$ is not in B_{1}^{\star}, there is a vertex $w_{1} \in V_{2}$ not adjacent to $v_{i_{1}}$, adjacent to every vertex of $C^{\prime} \backslash\left\{v_{i_{1}}\right\}$. Analogously, there are vertices $w_{2} \in V_{2}$ such that w_{2} is not adjacent to $v_{i_{2}}$, and it is adjacent to every vertex of $C^{\prime} \backslash\left\{v_{i_{2}}\right\}$. Let $v_{i_{3}}$ be a vertex of $C^{\prime}, v_{i_{1}} \neq v_{i_{1}}, v_{i_{2}}$. It follows that in G, vertices $v_{i_{1}}, w_{2}, v_{i_{3}}, w_{1}, v_{i_{2}}$ induce a P_{5}, absurd. Then, C is not included in a part. Then, consider B^{\star} the clique that contains
the complete subgraph C in $N_{c}(G)$. In G, construct the biclique subgraph $G_{B_{1} \ldots B_{k}}$. The corresponding vertices of C in G induce a complete bipartite subgraph contained in a biclique of $G_{\left\{B_{1} \ldots B_{k}\right\}}$. By hypothesis, since G is bicliqual, vertices of C are included in a biclique B_{i}. It follows that C is included in B_{i}^{\star}. Absurd.

Remark 6.5 The converse of Corollary 3.1 does not holds. i.e., the closed neighborhood graph of $P_{5}, N_{c}\left(P_{5}\right)$ is cliqual. (Figure 6.7)

P5

$\mathrm{N}_{\mathrm{c}}\left(\mathrm{P}_{5}\right)$

Figure 6.7: Graph P_{5} and its closed neigborhood graph

Chapter 7

Clique-perfectness and biclique-perfectness

7.1 Introduction

In this Chapter we study some classes related to perfect graphs. We define the class of b-coordinated and b-biclique-perfect graphs. We relate them to the class of graphs for which the biclique graph is perfect, i.e., KB-perfect graphs.

We also study the relation between the mentioned classes and the c-cliqueperfect, c-coordinated and K-perfect graphs.

Recall that K-perfect graphs are those for which the clique graph is perfect. Analogously, say that a graph is KB-perfect when its biclique graph is perfect.

Denote by $M(G)$, the maximum number of cliques that has a common vertex. Given a graph G and a vertex v of G, denote by $m_{b}(v)$ the number of bicliques that contains v. Define $M B(G)$ as the maximum number of bicliques that has a common vertex, i.e., $M B(G)=\max _{v}\left\{m_{b}(v)\right\}$. On the other hand, a clique coloring is a function from a set of colors to the set of cliques of a graph, in such a way that two intersecting cliques have different colors, i.e., a coloring for $K(G)$. Analogously, define the biclique coloring as an assignment of colors to bicliques of a graph, in such a way that two intersecting cliques have different colors, i.e., a coloring of $K B(G)$. Denote by $\chi(K(G))$ the minimum clique coloring, and $\chi(K B(G))$, the minimum biclique coloring.

Remark that $M B(G) \leq M\left(N_{c}(G)\right)$ and $\chi(K B(G)) \leq \chi\left(K\left(N_{c}(G)\right)\right)$. If G is open neighborhood-Helly, then $M B(G)=M\left(N_{c}(G)\right)$ and $\chi(K B(G))=$ $\chi\left(K\left(N_{c}(G)\right)\right)$. In [13], it is defined the class of coordinated graphs as the graphs for which $M(H)$ and $\chi(K(H))$ coincide for every induced subgraph H. Also, the c-coordinated are the graphs for which the equality holds for every special clique subgraph H. On the other hand we define the $b-$ coordinated graphs as the graphs for which $M B(H)=\chi(K B(H))$ for every
special biclique subgraph of H.
A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A biclique-transversal of a graph G is a subset of vertices that meets all the bicliques of G. A biclique-independent set is a collection of pairwise vertex-disjoint bicliques. The clique-transversal number and cliqueindependence number of G, denoted by $\tau_{c}(G)$ and $\alpha_{c}(G)$, are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. Analogously, denote by $\tau_{b}(G)$ and $\alpha_{b}(G)$, the sizes of a minimum biclique-transversal and a maximum biclique-independent set of G, respectively.

It is easy to see that $\tau_{c}(G) \geq \alpha_{c}(G)$ and $\tau_{b}(G) \geq \alpha_{b}(G)$ for any graph G. For G bipartite, observe that $\tau_{b}(G) \leq \tau_{c}\left(N_{c}(G)\right)$ and $\alpha_{b}(G) \leq \alpha_{c}\left(N_{c}(G)\right)$. Indeed, when G is open neighborhood-Helly, the equality holds, i.e. $\tau_{b}(G)=$ $\tau_{c}\left(N_{c}(G)\right), \alpha_{b}(G)=\alpha_{c}\left(N_{c}(G)\right)$.

A graph G is clique-perfect if $\tau_{c}(H)=\alpha_{c}(H)$ for every induced subgraph H of G. The c-clique-perfect graphs, defined in [14] are graphs such that for every special clique subgraph $H, \tau_{c}(H)=\alpha_{c}(H)$. On the other hand, define the b - biclique - perfect graphs as the family of graphs such that $\tau_{b}(H)=\alpha_{b}(H)$ for every special biclique subgraph H.

The c-coordinated and c-clique-perfect graphs are related to K-perfect graphs. In $[13,14]$ hereditary clique-Helly, K-perfect graphs were characterized as follows.

Theorem 7.1 [13] Let G be a clique-Helly K-perfect graph. Then G is $c-$ coordinated and c-clique-perfect.

Theorem 7.2 Let G be an hereditary clique-Helly graph. Then the following statements are equivalent:

1. G is K-perfect.
2. G is c-coordinated.
3. $|C(H)| \leq \alpha_{C}(H) M(H)$ for every clique subgraph H of G.
4. G is c-clique-perfect.

7.2 B-coordinated graphs, b-biclique-perfect graphs and KB-perfects graphs

We study the b-coordinated and b-biclique-perfect graphs in relation to KB-perfect graphs, i.e., graphs whose biclique graphs are perfect. Since bicliques of G are related to cliques of $N_{c}(G)$, it is intuitive to think of a relation between b-coordinated graphs and the c-coordination of its neighborhood graph. The following result summarizes some of these relations, for the class of P_{5}-free graphs.

Theorem 7.3 Let G be a P_{5} - free, bipartite, graph. The following statements are equivalent:

1. G is b-coordinated
2. $N_{c}(G)$ is $c-$ coordinated
3. G is b-biclique-perfect
4. $N_{c}(G)$ is c-clique - perfect
5. $K B(G)$ is perfect
6. $K\left(N_{c}(G)\right)$ is perfect
7. matrix $\left(A_{N_{c}(G)}\right)^{T}$ is perfect
8. matrix $\left(A_{G}^{B}\right)^{T}$ is perfect
9. $|C(H)| \leq \alpha_{c}(H) M(H)$ for every clique subgraph H of $N_{c}(G)$.
10. $|B(H)| \leq \alpha_{b}(H) M B(H)$ for every biclique subgraph H of G.

Proof: 1) $\Longleftrightarrow 2), 3) \Longleftrightarrow 4)$ As G has no induced P_{5}, G is open neighborhoodHelly. Therefore, by Theorem 6.3, $\left\{B^{\star}, B\right.$ biclique of $\left.G\right\}$ is the family of cliques of $N_{c}(G)$. Let H be the clique subgraph $G_{\left\{B_{1}^{\star} \ldots B_{k}^{\star}\right\}}$ of $N_{c}(G)$. By Corollary 6.5, $N_{c}(G)$ is hereditary clique-Helly and according to Theorem 6.7, the cliques of $G_{\left\{B_{1}^{\star} \ldots B_{k}^{\star}\right\}}$ are exactly $\left\{B_{1}^{\star} \ldots B_{k}^{\star}\right\}$.

Consider the biclique subgraph $G_{\left\{B_{1} \ldots B_{k}\right\}}$. By Theorem 6.8, $B_{1} \ldots B_{k}$ are all the bicliques of $G_{\left\{B_{1} \ldots B_{k}\right\}}$. Then, it is clear that $\left.N_{c}\left(G_{\left\{B_{1} \ldots B_{k}\right\}}\right\}\right)=G_{B_{1}^{\star} \ldots B_{k}^{\star}}$. It follows that, if $\operatorname{MB}\left(G_{\left\{B_{1} \ldots B_{k} \ldots B_{s}\right\}}\right)=\chi\left(K B\left(G_{B_{1} \ldots B_{k} \ldots B_{s}}\right)\right)$, then $M(H) \stackrel{ }{=}$ $\chi(K(H))$, meaning that if G is b-coordinated, $N_{c}(G)$ is c-coordinated and, if G is b-biclique-perfect, $N_{c}(G)$ is c-clique-perfect.

Conversely, let $H=G_{\left\{B_{1} \ldots B_{k}\right\}}$ be a biclique subgraph of G. Since G is $P_{5}-f r e e$, the family of bicliques of H are $\left\{B_{1} \ldots B_{k}\right\}$. Let $N_{c}(H)$ be the closed neighborhood graph of H. To conclude our proof, observe that $N_{c}(H)=$ $G_{\left\{B_{1}^{\star} \ldots B_{k}^{\star}\right\}}$. Then, $N_{c}(H)$ is a clique subgraph of $N_{c}(G)$ and since $M\left(N_{c}(H)\right)=$ $F\left(N_{c}(H)\right)$, and $\tau_{c}\left(N_{c}(H)\right)=\alpha_{c}\left(N_{c}(H)\right)$ then $M B(H)=\chi(K B(H))$ and $\tau_{b}(H)=\alpha_{b}(H)$. We conclude that G is b-coordinated and b-biclique-perfect.

The equivalence between 2), 4), 6) and 7) is direct from Theorem 7.2
Next, prove that 2), 5) and 6) are equivalent: Since G is $P_{5}-f r e e$, by Corollary 6.5, $N_{c}(G)$ is hereditary clique Helly. By Theorem 7.2, $N_{c}(G)$ is c - coordinated if and only if $K\left(N_{c}(G)\right)$ is perfect. By Corollary $6.2, G$ is open neighborhood-Helly, and $K B(G)=K\left(N_{c}(G)\right)$. It follows that $K B(G)$ is a perfect graph if and only if $K\left(N_{c}(G)\right)$ is perfect.

We prove that 6) and 7) are equivalent. By Theorem 2.3, since $N_{c}(G)$ is hereditary clique-Helly, the polyhedrom $\left\{x \in \Re^{m} /\left(A_{G}^{\star}\right)^{T} \cdot x \leq 1, x \geq 0\right\}$ is
the same as $\left\{x \in \Re^{m} / A_{K}\left(G^{\star}\right) \cdot x \leq 1, x \geq 0\right\}$. We conclude that $K\left(N_{c}(G)\right)$ is perfect if and only if $A_{K}\left(N_{c}(G)\right)$ is perfect if and only if $\left(A_{N_{c}(G)}\right)^{T}$ is perfect.

The equivalence between 7) and 8) is a direct consequence from the Theorem 6.3.

Finally, we prove the equivalence of items 9) and 10). Given a clique subgraph H formed by cliques $\left\{B_{1}^{\star}, \ldots B_{k}^{\star}\right\}$, the biclique subgraph $G_{\left\{B_{1}, \ldots, B_{k}\right\}}$ of G has $\left\{B_{1}, \ldots, B_{k}\right\}$ as its set of bicliques. Analogously, given a biclique subgraph $G_{\left\{B_{1}, \ldots, B_{k}\right\}}$ of G, it is true that $N_{c}\left(G_{\left\{B_{1}, \ldots, B_{k}\right\}}\right)=\left\{B_{1}^{\star}, \ldots B_{k}^{\star}\right\}$, since G is bicliqual ($P_{5}-$ free) and $N_{c}(G)$ is cliqual (hereditary clique Helly, by Corollary 6.5 and Theorems 6.7,6.8. It follows that for every clique subgraph of H of $N_{c}(G)$, there is a biclique subgraph H^{\prime} in G such that $|C(H)|=$ $\left|B\left(H^{\prime}\right)\right|, M(H)=M B\left(H^{\prime}\right)$ and $\alpha_{c}(H)=\alpha_{b}\left(H^{\prime}\right)$, and conversely, for every biclique subgraph $G_{\mathcal{B}}, N_{c}\left(G_{\mathcal{B}}\right)$ is a clique subgraph of $N_{c}(G)$, verifying that $\mid C\left(N_{c}\left(G_{\mathcal{B}}\right)\left|=\left|B\left(G_{\mathcal{B}}\right)\right|, M\left(N_{c}\left(G_{\mathcal{B}}\right)\right)=M B\left(G_{\mathcal{B}}\right)\right.\right.$ and $\alpha_{c}\left(N_{c}(G)\right)=\alpha_{b}(G)$.

Theorem 7.2 completes the proof.
To study the case when G has indeed a P_{5}, we need to analyze properties of $K B(G)$ disregarding the closed neighborhood graph.

The following Proposition gives some relations between the graph G and its biclique graph.

Proposition 7.1 Let G be a graph. Then:

1. $M B(G) \leq \omega(K B(G))$.
2. If G is biclique-Helly then $M^{B}(G)=\omega(K B(G))$.
3. $\alpha_{b}(G)=\alpha(K B(G))$.
4. $\tau_{b}(G) \geq \theta(K B(G))$.
5. If G is biclique-Helly then $\tau_{b}(G)=\theta(K B(G))$.

Proof:

1. Observe that $m_{b}(v) \leq \omega(K B(G)), \forall v \in V(G)$, since all the vertices that correspond to the $m(v)$ bicliques containing v induce a complete subgraph in $K B(G)$. In particular, $M B(G) \leq \omega(K(G))$.
2. We only need to prove that if G is biclique-Helly, then $\omega(K B(G)) \leq$ $M B(G)$. Let L be a maximum biclique of $K B(G)$ and B_{1}, \ldots, B_{r} be the bicliques of G that correspond to the vertices of L. Since G is a biclique-Helly graph, there is at least one vertex v_{L} in G which belongs to the intersection of all the r bicliques. So, it is easy to see that $M^{B}(G) \geq m^{b}\left(v_{L}\right)=\omega(K B(G))$.
3. It follows from the fact that disjoint bicliques of G correspond to non adjacent vertices in $K B(G)$, and conversely.
4. Let $v_{1}, \ldots, v_{\tau_{b}(G)}$ be a biclique-transversal set of G. For each i, analyze the $m_{b}\left(v_{i}\right)$ vertices in $K B(G)$ corresponding to the bicliques in G that contain the vertex v_{i}. They form a complete set of $K B(G)$. This complete set must be included in some clique L_{i} of $K B(G)$. Observe that these cliques $L_{i}\left(i=1, \ldots, \tau_{b}(G)\right)$ are not all necessarily different. We prove that there is a minimum clique cover of size at most $\tau_{b}(G)$. Let w be a vertex of $K B(G)$. Then, w corresponds to some biclique B_{w} of G. As the set $v_{1}, \ldots, v_{\tau_{b}(G)}$ intersects all the bicliques of G, there is some vertex v_{j} that belongs to B_{w}. This means that the corresponding vertex of B_{w} in $K B(G)$ belongs to the clique L_{j}, i.e., $w \in L_{j}$. Then, the size of the minimum clique cover of $K B(G)$ is at most the size of this biclique cover which is at most $\tau_{b}(G)$.
5. All we need to prove is that if G is biclique-Helly, then $\tau_{b}(G) \leq$ $\theta(K B(G))$. Recall that, as G is biclique-Helly, then by Theorem 6.5 every clique C of $K B(G)$ has a correspondence with a vertex of G, v_{C} satisfying that vertices of C correspond exactly to the family of bicliques of G containing v_{C}. Now, let $L_{1}, \ldots, L_{\theta(K B(G))}$ be a clique cover of $K B(G)$. Let $v_{L_{1}}, \ldots, v_{L_{\theta(K B(G))}}$ be the corresponding vertices in G. We need to prove that they are a biclique-transversal set of G. Let B be a biclique of G and w_{B} its corresponding vertex in $K B(G)$. Then there is an index j such that w_{B} belongs to the clique L_{j} in $K B(G)$. It follows that the associated vertex $v_{L_{j}}$ belongs to B in G.

The next Theorem relates KB-perfect graphs to b-coordinated and b-biclique-perfect graphs.

Theorem 7.4 If G is a biclique-Helly, KB-perfect graph, then G is b-coordinated and b-biclique-perfect.

Proof: Consider a special biclique subgraph $G_{\mathcal{B}}$ of G and let $\left\{B_{1}, \ldots, B_{s}\right\}$ be its family of bicliques. As they are bicliques in G, let H be the subgraph of $K B(G)$ induced by the vertices corresponding to bicliques B_{1}, \ldots, B_{s} in $K B(G)$. Then, by Proposition 7.1, $\alpha_{b}(G)=\alpha(K B(G))$. On the other hand, it is clear that since G is biclique-Helly, so are the special biclique subgraphs. Then, $M B\left(G_{B_{1}, \ldots, B_{k}}\right)=\omega(H)$ and $\tau_{b}(G)=\theta(K B(G))$. Finally, as $K B(G)$ is perfect, $\chi(H)=\omega(H)$ and $\alpha(K B(G))=\theta(K B(G))$. We conclude that $\chi\left(K B\left(\left(G_{B_{1}, \ldots, B_{k}}\right)\right)=M B\left(G_{B_{1}, \ldots, B_{k}}\right)\right.$ and $\alpha_{b}(G)=\tau_{b}(G)$.

In the next Corollary, we study the graphs for which the biclque graph is c-coordinated and c-clique-perfect. The following Lemma is usefull.

Lemma 7.1 [23] Let G be a graph. Denote by $K^{2}(G)$ the clique graph of $K(G)$. Then, $K^{2}(G)$, is an induced subgraph of G.

Corollary 7.1 Let G be an open neigborhood-Helly and biclique-Helly graph such that $N_{c}(G)$ is perfect. Then $K B(G)$ is c-coordinated and c-cliqueperfect.

Proof: Recall that if G is biclique-Helly and open neighborhood Helly, $N_{c}(G)$ and $K B(G)$ are clique-Helly and $K B(G)=K\left(N_{c}(G)\right.$, according to Propositions 6.4, 6.5 and Corollary 6.2. By Lemma $7.1 K^{2}\left(N_{c}(G)\right)$ is an induced subgraph of $N_{c}(G)$. Consequently, if $N_{c}(G)$ is perfect, so is $K^{2}\left(N_{c}(G)\right)$. Then $K\left(N_{c}(G)\right)$ is K-perfect and clique-Helly, and by Theorem 7.1, $K(G)$ is c-coordinated and c-clique-perfect, and so is $K B(G)$.

Chapter 8

Conclusions

A biclique of G is a maximal complete bipartite subgraph of G. A graph is biclique-Helly when its family of bicliques is a Helly family.

We have described characterizations for biclique-Helly graphs, leading to two polynomial time recognition algorithms. We also have considered open and closed neighborhood-Helly graphs.

We have defined the bichromatic-Helly graphs and characterized them, giving a polynomial time algorithm for recognizing this class.

We have described characterizations for hereditary biclique-Helly, and hereditary open and closed neighborhood-Helly graphs, by families of forbidden subgraphs. The forbidden subgraphs are all of fixed size, implying polynomial time recognition for these classes.

We have considered the biclique matrix of a graph and described a characterization of it. We have formulated two polynomial time algorithms for recognizing biclique matrices. On the other hand we have also characterized bipartite-conformal hypergraphs with compatible bicolorings and gave a polynomial time algorithm for the recognition problem.

A biclique graph is the intersection graph of the bicliques of G. We have given a characterization of biclique graphs. We also have studied the classes of biclique graphs of same classes.

We have introduced the concept of bipartite-Helly hypergraphs and proposed a polynomial time algoritmm for recognizing bipartite-Helly labeled families.

The neighborhood graphs have been considered. We have studied the clique graph of this class and relate it to biclique graphs.

We have considered the KB-perfect graphs, i.e., graphs having a perfect biclique graph. We have characterized this class under the restriction of not having induced P_{5} 's.

8.1 Open problems and future work

We leave the following as open questions and future work:

1. Characterize positive biclique matrices of a graph.
2. Determine the computational complexity of recognizing biclique graphs.
3. Find families of graphs for which the problem of recognizing their biclique graphs can be solved in polynomial time.
4. Study the iterated biclique operator, that is, $K B^{i}(G)=K B\left(K B^{i-1}(G)\right)$.
5. Characterize E-biclique graphs
6. Define a b-coloring as a coloring of the vertices of a graph, where two vertices have different colors if they belong to a same biclique. Define the b-perfect graphs as graphs for which the maximum biclique coincides with the minimum b-coloring. Study b-perfect graphs.
7. Define a b-weak coloring as the minimum number of colors that are necessary to color vertices of G in such a way that every biclique of G contains at least two colors. Characterize graphs that are b-weakly 2-colorable, that is, graphs graphs with b-weak coloring number equal to 2 .
8. Define the edge-biclique graph H of a graph G as the graph such that $V(H)=E(G)$, and two vertices of H are adjacent when their corresponding edges in G belong to a same biclique. Characterize edgebiclique graphs.

Bibliography

[1] L. Alcón, L. Faria, C. M.H. de Figueredo, and M. Gutierrez. Clique graph recognition is NP-complete. Proceedings of the 32nd Workshop on Graph Theoretical Concepts in Computer Science (WG 2006).
[2] L. Alcón and M. Gutierrez. A new characterization of clique graphs. Matemática Contemporânea, 25:1-7, 2003.
[3] J. Amilhastre, M. C. Vilarem, and P. and Janssen. Complexity of minimum biclique cover and minimum biclique decomposition for bipartite domino-free graphs. Discrete Appl. Math., 86(2-3):125-144, 1998.
[4] H. Bandelt, M. Farber, and P. Hell. Absolute reflexive retracts and absolute bipartite retracts. Discrete Appl. Math., 44(1-3):9-20, 1993.
[5] H. Bandelt and E. Pesch. Dismantling absolute retracts of reflexive graphs. European J. Combin., 10(3):211-220, 1989.
[6] H. Bandelt and E. Prisner. Clique graphs and Helly graphs. J. Combin. Theory Ser. B, 51(1):34-45, 1991.
[7] C. Beeri, R. Fagin, D. Maier, A. Mendelzon, J. Ullman, and M. Yannakakis. Properties of acyclic database schemes. In STOC '81: Proceedings of the thirteenth annual ACM symposium on Theory of computing, pages 355-362, Prague, 1981. Academia.
[8] C. Berge. Les problèmes de coloration en théorie des graphes. Publ. Inst. Statist. Univ. Paris, 9:123-160, 1960.
[9] C Berge. Graphs and hypergraphs. North-Holland Publishing Co., Amsterdam, 1976.
[10] C. Berge. Hypergraphes. Dunod, Paris, 1987.
[11] C. Berge and P. Duchet. A generalization of Gilmore's theorem. In Recent advances in graph theory (Proc. Second Czechoslovak Sympos., Prague, 1974), pages 49-55. Academia, Prague, 1975.
[12] G. Lin M. C. Bondy, A. Durán and J. Szwarcfiter. Self-clique graphs and matrix permutations. J. Graph Theory, 44(3):178-192, 2003.
[13] F. Bonomo, G. Durán, and M. Groshaus. Coordinated graphs and clique graphs of clique-helly perfect graphs. Utilitas Mathematica, 80, 2006.
[14] F. Bonomo, G. Durán, M. Groshaus, and J. Szwarcfiter. On cliqueperfect and k-perfect graphs.. Ars Combinatoria, To appear.
[15] K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs, and graph planarity using $P Q$-tree algorithms. J. Comput. System Sci., 13(3):335-379, 1976.
[16] A. Brandstädt, V.B. Le, and J. P. Spinrad. Graph classes: a survey. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.
[17] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, and K. Vušković. Recognizing Berge graphs. Combinatorica, 25(2):143-186, 2005.
[18] M. Dawande, P. Keskinocak, J. Swaminathan, and S. Tayur. On bipartite and multipartite clique problems. J. Algorithms, 41(2):388-403, 2001.
[19] V. M. F. Dias, C. M. H. de Figueiredo, and J. Szwarcfiter. Generating bicliques of a graph in lexicographic order. Theoret. Comput. Sci., 337(1-3):240-248, 2005.
[20] G.S. Dirac. On rigid circuit graphs. J. Algorithms, 25, 1961.
[21] M. C. Dourado, F. Protti, and J. Szwarcfiter. The (p, q)-Helly property and its application to the family of cliques of a graph. Mat. Contemp., 25:81-90, 2003.
[22] F. F. Dragan. Centers of Graphs and the Helly property. PhD thesis, Moldava State University, Chisinau, Moldava,, Philadelphia, PA, 1989.
[23] F. Escalante. Über iterierte Clique-Graphen. Abh. Math. Sem. Univ. Hamburg, 39:59-68, 1973.
[24] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific J. Math., 15:835-855, 1965.
[25] M. Garey and David S. and J. Computers and intractability. W. H. Freeman and Co., San Francisco, Calif., 1979.
[26] F. Gavril. Algorithms on circular-arc graphs. Networks, 4:357-369, 1974.
[27] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Combinatorial Theory Ser. B, 16:47-56, 1974.
[28] P. C. Gilmore and A. J. Hoffman. A characterization of comparability graphs and of interval graphs. Canad. J. Math., 16:539-548, 1964.
[29] M. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1980.
[30] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica, 1(2):169197, 1981.
[31] M. Gutierrez and J. Meidanis. On clique graph recognition. Ars Combin., 63:207-210, 2002.
[32] R. C. Hamelink. A partial characterization of clique graphs. J. Combinatorial Theory, 5:192-197, 1968.
[33] P. Hell. Personal communication.
[34] D. S. Hochbaum. Approximating clique and biclique problems. J. Algorithms, 29(1):174-200, 1998.
[35] J. Krausz. Démonstration nouvelle d'une théorème de Whitney sur les réseaux. Mat. Fiz. Lapok, 50:75-85, 1943.
[36] F. Larrión, V. Neumann-Lara, M. A. Pizaña, and T. D. Porter. A hierarchy of self-clique graphs. Discrete Math., 282(1-3):193-208, 2004.
[37] L. C. Lau. Bipartite roots of graphs. In SODA '04: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 952-961, Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics.
[38] P. G. H. Lehot. An optimal algorithm to detect a line graph and output its root graph. J. ACM, 21(4):569-575, 1974.
[39] T. A. McKee and F. R. McMorris. Topics in intersection graph theory. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.
[40] R. Motwani and M. Sudan. Computing roots of graphs is hard. Discrete Appl. Math., 54(1):81-88, 1994.
[41] A. Mukhopadhyay. The square root of a graph. J. Combinatorial Theory, 2:290-295, 1967.
[42] A. Mukhopadhyay. The square root of a graph. J. Combinatorial Theory, 2:290-295, 1967.
[43] H. Müller. On edge perfectness and classes of bipartite graphs. Discrete Math., 149(1-3):159-187, 1996.
[44] H. Müller. Recognizing interval digraphs and interval bigraphs in polynomial time. Discrete Appl. Math., 78(1-3):189-205, 1997.
[45] R. Peeters. The maximum edge biclique problem is NP-complete. Discrete Appl. Math., 131(3):651-654, 2003.
[46] E. Prisner. Hereditary clique-Helly graphs. J. Combin. Math. Combin. Comput., 14:216-220, 1993.
[47] E. Prisner. Bicliques in graphs. II. Recognizing k-path graphs and underlying graphs of line digraphs. In Graph Theoretic Concepts in Computer Science (Berlin, 1997), volume 1335 of Lecture Notes in Comput. Sci., pages 273-287. Springer, Berlin, 1997.
[48] E. Prisner. Bicliques in graphs. I. Bounds on their number. Combinatorica, 20(1):109-117, 2000.
[49] F. Roberts and J. Spencer. A characterization of clique graphs. J. Combinatorial Theory Ser. B, 10:102-108, 1971.
[50] E. Scheinerman. Characterizing intersection classes of graphs. Discrete Math., 55(2):185-193, 1985.
[51] E. Scheinerman. On the structure of hereditary classes of graphs. J. Graph Theory, 10(4):545-551, 1986.
[52] J. Szwarcfiter. Recognizing clique-Helly graphs. Ars Combin., 45:29-32, 1997.
[53] Z. Tuza. Covering of graphs by complete bipartite subgraphs: complexity of 0-1 matrices. Combinatorica, 4(1):111-116, 1984.
[54] Z. Wu, X. Zhang, and X. Zhou. Hamiltonicity, neighborhood intersections and the partially square graphs. Discrete Math., 242(1-3):245-254, 2002.
[55] M. Yannakakis. Node- and edge-deletion NP-complete problems. In Conference Record of the Tenth Annual ACM Symposium on Theory of Computing (San Diego, Calif., 1978), pages 253-264. ACM, New York, 1978.

Appendix A

p-Completes Sets and p-Cliques

In this appendix, we consider a generalization of cliques of a graph, the p-cliques. Also, we relates the to a generalization of the concept of the Helly property. We give a characterization of (p,q)-Helly graphs in terms of the the clique matrix of an certain graph.

We remark that (p, q)-Helly graphs were consider in [21]
Let $\mathcal{F}=\left\{M_{1} \ldots M_{r}\right\}$ be a family of sets. We say that it is a p-intersecting family if for every subfamily $\mathcal{F}^{\prime}=\left\{M_{i_{1}} \ldots M_{i_{s}}\right\}, s \leq p, \cap_{1}^{p} M_{i} \neq \emptyset$.

Let $\mathcal{F}=\left\{M_{1} \ldots M_{r}\right\}$ be a family of sets. We say that it is a (p, q) intersecting family if for every subfamily $\mathcal{F}^{\prime}=\left\{M_{i_{1}} \ldots M_{i_{p}}\right\}$, the cardinality of $\cap_{1}^{p} M_{i} \neq \emptyset$ is greater than q-1. We say that a family is p-intersecting precisely when it is ($\mathrm{p}, 1$)-intersecting.

Let $\mathcal{F}=\left\{M_{1} \ldots M_{r}\right\}$ be a family. We say that it verifies the p-Helly property if for every p-intersecting subfamily $F^{\prime}=\left\{M_{i_{1}} \ldots M_{i_{s}}\right\}, \cap_{1}^{s} M_{i} \neq \emptyset$. A graph G is p-clique-Helly if the family of cliques of G satisfies the p-Helly property. We say that a graph is (p, q)-clique-Helly if every (p, q)-intersecting subfamily of cliques have common intersection in more than $q-1$ vertices. For the special case $\mathrm{q}=1$, we say that the family is p-clique-Helly.

A p-complete subgraph in a graph $G=K(H)$ is a complete subgraph $\left\{v_{1} \ldots v_{n}\right\}$ such that the family of cliques of H corresponding to the vertices $v_{1} \ldots v_{n}$ form a p-intersecting family. A p-complete subgraph is a p-clique if it is maximal under inclusion. A p-clique matrix of a graph G is the incident matrix of the p-cliques of G.

The following Theorem gives some properties of the p-clique matrix of a graph.

Theorem A. 1 Let $G=K(H)$, and let A_{G}^{P} be a p-clique matrix of G. Then,

1. A_{G}^{P} does not have dominated rows.
2. A_{G}^{P} does not contain zero columns.
3. The family of columns of A_{G}^{P} satisfy the p-Helly property.

Proof: Let A_{G}^{P} be a p-clique matrix of a graph G, and suppose it has some row dominated by another row. Since every row represents a p-clique in the graph G, this means there is a p-clique included in another p-clique in G, which is an absurd.

As every vertex is contained in some p-clique, A_{G}^{P} does not contain zero columns.

Let j_{1}, \ldots, j_{r} be a p -intersecting family of columns. Take p of those columns and its corresponding cliques in H. As they have common intersection, there is a p-clique in G containing them. This implies that its corresponding cliques in H belong to a p-intersecting family. Then, these p cliques of H have common intersection. Therefore, the cliques of H corresponding to the vertices j_{1}, \ldots, j_{r} of G form a p-intersecting family and so j_{1}, \ldots, j_{r} must be included in some p-clique of G. Therefore, columns j_{1}, \ldots, j_{r} have common intersection.

We study the p-clque-Helly graphs in relation to the p-clique matrix of the clique graph. Start with the following Lemma.

Lemma A. 1 Let G be a p-clique-Helly graph and let $K(G)$ be its clique graph. Then, each p-clique L of $K(G)$ has an associated vertex v_{L} in G such that the vertices of L in $K(G)$ are exactly those corresponding to the cliques of $C\left(v_{L}\right)$ in G.

Proof: Let L be a p-clique of $K(G)$. Let $w_{1}, w_{2}, \ldots, w_{r}$ be the vertices of $K(G)$ that form the p-clique L, and let $M_{1}, M_{2}, \ldots, M_{r}$ be the cliques of G that correspond to those vertices. As L is a p-clique of $K(G), M_{1}, M_{2}, \ldots, M_{r}$ must be a p-intersecting family. As G is a p-clique-Helly graph, there is at least one vertex in G which belongs to the intersection of all the r cliques. This will be the the associated vertex v_{L} of L. Suppose that there is a clique $M \in C\left(v_{L}\right) \backslash\left\{M_{1}, M_{2}, \ldots, M_{r}\right\}$, and let w be its corresponding vertex in $K(G)$. Then $M \cup\left\{M_{1}, M_{2}, \ldots, M_{r}\right\}$, is a p-intersecting family and $w, w_{1}, w_{2}, \ldots, w_{r}$ induce a complete subgraph of $K(G)$, which contradicts the maximality of L.

Theorem A. 2 Let G be a graph, let A_{G} be a clique matrix of G and let $A_{K(G)}^{P}$ be a p-clique matrix of $K(G)$ with the vertices in the same order as their corresponding p-cliques in A_{G}. Then, the following statements are equivalent:

1. G is p-clique-Helly.
2. The matrix A_{G}^{t} without the dominated rows is a p-clique matrix of $K(G)$.
3. The polyhedron $\left\{x \in R^{k} / A_{G}^{t} x \leq \mathbf{1}, x \geq 0\right\}$
is the same as the polyhedron $\left\{x \in R^{k} / A_{K(G)}^{P} x \leq \mathbf{1}, x \geq 0\right\}$.
Proof: $(i) \Rightarrow(i i)$ Let G be a p-clique-Helly graph and $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ the vertices of G. Note that $C\left(v_{1}\right), \ldots, C\left(v_{n}\right)$ are identified by the columns of A_{G}, so by Lemma $A .1$, every p-clique of $K(G)$ is identified by a column of A_{G}. On the other hand, every column of a vertex of G in A_{G} represents a p-complete subgraph $K(G)$ so it must be included in some p-clique, which is represented in A_{G}^{t} by a row of a vertex of G. This means that this vertex dominates the other. Then the submatrix of A_{G}^{t} obtained by removing the dominated rows is a clique matrix of $K(G)$.
$(i i) \Rightarrow$ (iii) As the variables are nonnegative, the dominated rows of the matrix A_{G}^{t} can be removed without loosing restrictions.
(iii) $\Rightarrow(i)$ Suppose that G is not p-clique-Helly. Let $M_{1}, M_{2}, \ldots, M_{r}$, $r \geq 2$, be a p-intersecting family of cliques in G without common intersection. Without loss of generality, we can assume that those cliques correspond to the first r rows of A_{G}. Then, for each vertex v_{j} there exist a clique $M_{i_{j}}$ not containing it. If we look at the clique matrix of G this means that for every column j, there is some $i_{j} \leq r$ such that $a_{i_{j}}=0$. Let $x=\left(x_{i}\right)$ be the vector: $x_{i}=\frac{1}{r-1}$ for $1 \leq i \leq r$, and $x_{i}=0$ for $r+1 \leq i \leq k$ and compute $\left(A_{G}^{t} x\right)_{j}=\sum_{i=1}^{r} a_{i j} x_{i}+\sum_{i=r+1}^{k} a_{i j} 0$. As for each j there is at least one $i_{j} \leq r$ such that $a_{i_{j} j}=0$, then $\left(A_{G}^{t} x\right)_{j} \leq \frac{r-1}{r-1}=1$ Then, the vector x belongs to the polyhedron $\left\{x \in R^{k} / A_{G}^{t} x \leq 1, x \geq 0\right\}$. Now, let $A_{K(G)}^{P}=\left\{b_{i j}\right\}$ be the p-clique matrix of $K(G)$. As $M_{1}, M_{2}, \ldots, M_{r}$ form a p-intersecting family of cliques in G, there must be a p-clique in $K(G)$ containing their corresponding vertices in the clique graph. Therefore, there is a row i in $A_{K(G)}^{P}$ such that $b_{i j}=1$ for $j \leq r$. Then $\left(A_{K(G)}^{P} x\right)_{i}=\frac{r}{r-1}>1$ and so x does not belong to the polyhedron $\left\{x \in R^{k} / A_{K(G)} x \leq 1, x \geq 0\right\}$, which is a contradiction.

We define the intersection graphs of a family of completes of q elements. Let G be a graph, the graph $\phi_{q}(G)$ is defined in the following way: the vertices of $\phi_{q}(G)$ correspond to completes of G of q vertices, two vertices being adjacent in $\phi_{q}(G)$ if the corresponding completes are contained in a clique.

The Helly property applied to cliques of ϕ_{q} is related to the $(2, \mathrm{q})$-cliqueHelly property. The relation is given by the following Lemma.

Lemma A. $2 G$ is (2,q)-clique-Helly if and only if ϕ_{q} is clique-Helly.
Theorem A. 3 [21] ϕ_{q} is p-clique-Helly if and only if G is (p, q)-clique-Helly.
Proof: \Longrightarrow) Let $C_{1}, C_{2}, \ldots, C_{k}$ be a (p,q)-intersecting family of cliques. Then, each clique has more than q vertices. Let $\overline{C_{1}}, \overline{C_{2}}, \ldots, \overline{C_{k}}$ be the corresponding cliques in ϕ_{q}. As every subfamily of $C_{1}, C_{2}, \ldots, C_{k}$ intersects in at least q
vertices, $\overline{C_{1}}, \overline{C_{2}}, \ldots, \overline{C_{k}}$ is a p-intersecting family of cliques in ϕ_{q}. As ϕ_{q} is p-clique-Helly, there is a vertex w belonging to $\cap{ }_{1}^{k} \overline{C_{i}}$. This vertex corresponds to a subgraph of G of q elements which belongs to $C_{1}, C_{2}, \ldots, C_{k}$.
$\Longleftarrow)$ Suppose G is (p,q)-clique-Helly. Let $\overline{C_{1}}, \overline{C_{2}}, \ldots, \overline{C_{k}}$ be a p-intersecting family of cliques of ϕ_{q}. Take the corresponding cliques in $G, C_{1}, C_{2}, \ldots, C_{k}$. Then they form a (p,q)-intersecting family. As G is is (p,q)-clique-Helly, there exist a complete subgraph of q vertices which belong to $C_{1}, C_{2}, \ldots, C_{k}$. Therefore, the corresponding vertex in ϕ_{q} which belong to $\overline{C_{1}}, \overline{C_{2}}, \ldots, \overline{C_{k}}$.

We give a characterization of (p,q)-clique-Helly graphs.
Theorem A. 4 Let G be a graph. Let $A_{\left(\theta_{q}\right)}^{T}$ be the traspose of the clique matrix of the graph θ_{q}. Then $A_{K\left(\theta_{q}\right)}^{P}=A_{\left(\theta_{q}\right)}^{T}$ if and only if G is (p, q)-cliqueHelly.

Proof: By Theorem A.2, $A_{K\left(\theta_{q}\right)}^{P}=A_{\left.\theta_{q}\right)}^{T}$ if and only if θ_{q} is p-clique-Helly. By Theorem A.3, this is equivalent to the fact that the graph G is (p, q)-ClqiueHelly.

A. 1 Maximum p-cliques

In this section, we extended the concept of $\omega(G)$, considering p-cliques. We relate this concept to $M(G)$.

Let G be a graph and $K(G)$ its clique graph. Denote by $\omega_{p}(K(G))$ the cardinality of the maximum p-clique of the graph $K(G)$.

Theorem A. 5 Let G be a graph. Then $M(G) \leq \omega_{p}(K(G))$ and the equality holds whenever G is a p-clique-Helly graph.

Proof: First, observe that $m(v) \leq \omega_{p}(K(G)) \forall v \in V(G)$, since all the vertices that correspond to the $m(v)$ cliques containing v induce a p-complete subgraph in $K(G)$. In particular, $M(G) \leq \omega_{p}(K(G))$. To prove the equality, we need to prove that if G is p-clique-Helly, then $\omega(K(G)) \leq M(G)$. Let L be a maximum p-clique of $K(G)$ and let v_{L} be the associated vertex in G given by Lemma A.1. Then, $M(G) \geq m\left(v_{L}\right)=\omega(K(G))$.

Theorem A. 6 Let G be a graph. If $M(G)=F(G)$, then $M(G)=\omega_{p}(K(G))=$ $\omega(K(G))$

Proof: By Theorem A. $5, M(G) \leq \omega_{p}(K(G))$. As every p-clique is contained in some clique, it follows that $\omega_{p}(K(G)) \leq \omega(K(G))$. Then, $M(G) \leq$ $\omega_{p}(K(G)) \leq \omega(K(G)) \leq \chi(K(G))=F(G)$.

[^0]: Algorithm 4.1 Bipartite-conformal hyperhraphs. Check if every induced P_{3} of G_{b} is contained in an hyperedge of \mathcal{H}. If negative, answer NO and stop. For every $l_{i}, l_{j}, l_{k}, 1 \leq i, j, k \leq m, l=1,-1$, consider $\mathcal{V}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{1}$, $\mathcal{V}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{2}$. Check if there is an hyperedge E_{t} that contains $\mathcal{V}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{1} \cup \mathcal{V}_{\left\{l_{i}, l_{j}, l_{k}\right\}}^{2}$. If negative answer NO. Otherwise, answer YES.

