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Espacios Invariantes por Traslaciones con Generador Refinable

Resumen. Analizamos la estrucutura de espacios invariantes por traslaciones con

generador refinable y de soporte compacto. Primero estudiamos el caso unidimen-

sional con dilatación 2. Demostramos que existe una nueva representación de estos

espacios en término de funciones con un cierto tipo de homogeneidad. En particular,

esta clase de funciones incluye a todos los polinomios homogéneos que son repro-

ducibles por el generador, lo cual relaciona esta representación con el grado de pre-

cisión o ”accuracy” del espacio. Mostramos que estas funciones se pueden construir a

partir de vectores asociados al espectro de la matriz de escala del generador. Caracte-

rizamos completamente la clase de todas las funciones homogéneas y demostramos que

reproducen al generador. Esto lo generalizamos a espacios invariantes por traslaciones

en Rd, cuyo generador cumple una ecuación de refinabilidad con factor de dilatación

matricial. Estos resultados son potencialmente útiles en aplicaciones de teoŕıa de

aproximación, teoŕıa de wavelets y teoŕıa de muestreo. Finalmente, consideramos el

problema del muestreo o ”sampling” en espacios invariantes por traslaciones de L2(R)

generados por funciones cuyas traslaciones enteras son un marco para el espacio.

En particular estudiamos los espacios de muestreo ([SZ04], [SZ99]). Caracterizamos

las funciones que pertenecen a espacios de muestreo y obtuvimos descomposiciones

atómicas de estos espacios en subespacios de muestreo.

Palabras claves. Funciones homogéneas, espacios invariantes por traslaciones, grado

de precisión, funciones refinables, espacios de muestreo, marcos.
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Refinable Shift Invariant Spaces

Abstract. We analyze the structure of refinable shift invariant spaces with a com-

pactly supported generator. First we study the one-dimensional case with dilation

2. We provide a new representation of these spaces in terms of functions with a

special property of homogeneity. In particular, this class of functions includes all

the homogeneous polynomials that are reproducible by the generator, which links

this representation to the accuracy of the space. We show that these functions can

be constructed from vectors associated to the spectrum of the scale matrix of the

generator. We completely characterize the class of all homogeneous functions and

show that they reproduce the generator. We generalize these results to shift invari-

ant spaces in Rd with a generator that satisfies a refinement equation which dilation

factor is an expansive matrix. These results are potentially useful in applications to

approximation theory, wavelet theory and sampling. Finally, we consider the sam-

pling problem in shift invariant spaces of L2(R), generated by functions which integer

translates are a frame for the space. In particular we study sampling spaces ([SZ04],

[SZ99]). We characterize the functions that belong to sampling spaces and we obtain

atomic decompositions of these spaces in sampling subspaces.

Key words. Homogeneous functions, shift invariant spaces, accuracy, refinable func-

tions, sampling spaces, frames.
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Introducción

Una función ϕ : R −→ C de soporte compacto se llama refinable si satisface la

ecuación

ϕ(x) =
N∑

k=0

ckϕ(2x− k), (1)

donde c0, ..., cN son escalares complejos. Los escalares ck se denominan la máscara de

la función.

El espacio invariante por traslaciones (EIT) generado por ϕ se define como

S(ϕ) = {f : R −→ C : f(x) =
∑

k∈Z
ykϕ(x + k), yk ∈ C}.

Espacios invariantes por traslaciones con generador refinable suscitan especial interés,

dado que aparecen naturalmente en el estudio de la teoŕıa de wavelets, la teoŕıa de

aproximación y la teoŕıa de sampling. El objetivo general de esta tesis es proporcionar

información sobre la estructura de estos espacios.

En varios casos, no se conoce la fórmula expĺıcita de ϕ, sin embargo, muchas

propiedades de ϕ pueden obtenerse a partir de la máscara. Una cuestión fundamental

es cuándo el espacio S(ϕ) contiene polinomios y de qué grado. El grado de precisión

de ϕ es el mayor entero κ, tal que todos los polinomios de grado menor o igual que

κ− 1 pertenecen a S(ϕ).

El grado de precisión de ϕ está relacionado con el orden de aproximación de

S(ϕ), ([Jia95a],[dB90]), y con los momentos nulos y la suavidad de la wavelet aso-

ciada, en el caso en que ϕ genera un análisis de multiresolución ([Mey92]). Existen

varias equivalencias conocidas para el grado de precisión. En particular, bajo la

1
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hipótesis de independencia lineal de sus traslaciones enteras, ϕ tiene grado de pre-

cisión κ, si y sólo si {1, 2−1, ..., 2−(κ−1)} son autovalores de la matriz T ∈ C(N+1)×(N+1)

definida por T = {c2i−j}i,j=0,...,N (la matriz de escala), y además existen polinomios

p0, ..., pκ−1 con grado(pi) = i, tal que cada uno de los vectores vi = {pi(k)}k=0,...,N es

un autovector a izquierda de T correspondiente al autovalor 2−i ([Dau88], [CHM98]).

Además, si ϕ tiene grado de precisión κ, entonces para s = 0, 1, ..., κ− 1 se tiene que

xs =
∑

k∈Z ps(k)ϕ(x− k), donde ps es el polinomio que provee el autovector para el

autovalor 2−s (ver [CHM98]).

Dado que ϕ tiene soporte compacto, S(ϕ) tiene ”localmente” un número finito

de generadores. Llamaremos base local de S(ϕ) a un conjunto de funciones en S(ϕ),

cuyas restricciones a [0, 1] forman una base de todas las funciones en S(ϕ) restringidas

a [0, 1].

Por lo observado, si ϕ tiene grado de precisión κ, conocemos κ funciones lineal-

mente independientes en [0, 1] (i.e. los monomios mónicos de grado menor que κ),

cada una asociada a un autovalor de T. Sea ϕ el spline cardinal de grado n − 1, es

decir la convolución n-veces de la función caracteŕıstica del intervalo [0, 1]. Entonces

todos los polinomios de grado menor o igual que n − 1 pertenecen a S(ϕ). Es más,

el conjunto {1, x, x2, . . . , xn−1} es una base local para S(ϕ), y el espectro de T es

exactamente el conjunto {1, 2−1, . . . , 2−(n−1)}.
Ahora, si ϕ no es un spline cardinal, entonces T podŕıa tener algún autovalor λ

distinto a una potencia de 1/2.

Si las potencias de 1/2 están asociadas a polinomios homogéneos, ¿qué funciones

en S(ϕ) estarán asociadas a autovalores arbitrarios λ? Si uno considera todos los

autovalores y sus funciones asociadas, ¿se logrará obtener una base local de S(ϕ)?

Blu y Unser [BU02] estudiaron las que ellos llaman funciones de base radiales

autosimilares y mostraron la relación que hay entre estas funciones y generadores de

análisis de multiresolución. Por otro lado, Zhou [Zho02] descubrió la existencia en

S(ϕ) de funciones que satisfacen h(x) = λh(2x). A cada autovalor simple λ de T se le

puede asociar una función que satisface una ecuación de este tipo. Sin embargo, estas

funciones no alcanzan para obtener una representación completa del espacio. Por
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este motivo, nosotros consideramos todo el espectro de T para una función refinable

y de soporte compacto general. A partir de esto, logramos reconstruir el generador

ϕ en término de funciones asociadas al espectro de T, obteniendo aśı una nueva

representación de S(ϕ). Probamos que estas funciones proveen una base local de S(ϕ).

La ventaja de esta base es que incluye a todos los monomios xs que pertenecen a S(ϕ),

y aquellas funciones de la base que no son polinomios homogéneos aún preservan

cierto tipo de homogeneidad. Además, estas funciones se pueden obtener a partir

de los vectores que pertenecen a la base de Jordan de T. También mostramos que

T necesariamente es inversible, si se supone que las trasladadas enteras de ϕ son

linealmente independientes.

Luego pasamos a analizar el caso multidimensional con un generador que cumple

una ecuación de refinamiento con factor de dilatación arbitraria. Más precisamente,

consideramos una función ϕ : Rd −→ C de soporte compacto que satisface

ϕ(x) =
∑

k∈Λ

ckϕ(Ax− k), ck ∈ C, (2)

donde Γ ⊂ Rd es un reticulado arbitrario, Λ es un subconjunto finito de Γ, y A es

tal que A(Γ) ⊂ Γ y todos los autovalores de A satisfacen |λ| > 1. El EIT S(ϕ)

ahora es el espacio de funciones que se escriben como combinación lineal infinita de

las Γ-trasladadas de ϕ. Sea Q ⊂ Rd un mosaico o ”tile” para Γ, i.e. las trasladadas

{Q+k}k∈Γ cubren Rd con intersección de medida de Lebesgue cero. Una base local de

S(ϕ) ahora es un conjunto de funciones en S(ϕ) cuyas restricciones a Q constituyen

una base de las funciones de S(ϕ) restringidas a Q. Se obtuvieron resultados análogos

al caso unidimensional, en particular se mostró que se puede construir una base

local de S(ϕ) que consiste solamente de funciones que satisfacen una ecuación de

homogeneidad.

En la última parte de este trabajo estudiamos el problema del muestreo (sampling)

en EIT. Sea F un espacio de funciones definidas en R, y X ⊂ R un subconjunto dis-

creto. La teoŕıa de muestreo estudia cuándo una función puede ser reconstruida a

partir de sus valores {f(xk)}k∈Z. El resultado básico es el llamado ”Teorema del Sam-

pling Clásico”, que resuelve el problema en el espacio de Paley-Wiener de funciones
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de banda limitada (funciones en L2(R) con transformada de Fourier soportada en

[−1
2
, 1

2
]). Toda función en este espacio puede ser representada por la fórmula

f(x) =
∑

k∈Z
f(k)

sin(π(x− k))

π(x− k)
,

donde la convergencia es uniforme y en L2(R). El espacio de Paley-Wiener es un

EIT refinable con función generadora sinc(x) = sin πx
πx

. En muchas aplicaciones no

corresponde a la situación real asumir que una función es de banda limitada. Además,

la función sinc(x) tiene decaimiento lento, lo cual se traslada en una reconstrucción

pobre. Por ello se ha comenzado recientemente a estudiar el problema del muestreo

en otros espacios de funciones. En [AG00], Aldroubi y Gröchenig lo estudiaron en

espacios generados por splines, y en [Wal92] Walter lo estudió en subespacios de

wavelet. Las trasladadas de la función sinc(x) constituyen una base ortonormal del

espacio de Paley-Wiener, en particular un marco. Esto lleva a considerar el muestreo

en ciertos subespacios de L2(R) generados por funciones cuyas trasladadas forman

un marco, llamados espacios de muestreo ([SZ04], [SZ99]). Logramos caracterizar las

funciones que pertenecen a estos espacios y obtener una descomposición atómica de

ellos.

El trabajo está organizado de la siguiente manera: En el caṕıtulo 1 presentamos un

resumen de las propiedades básicas de EIT definidos en R, en particular también de los

EIT con generador refinable (con factor de dilatación 2). En el caṕıtulo 2 mostramos

la nueva representación de estos últimos en término de funciones que llamaremos

(2, λ, r)-homogéneas y proveemos algunos ejemplos. En el caṕıtulo 3 introducimos los

conceptos y las herramientas correspondientes al caso multidimensional con factor de

dilatación matricial, y en el caṕıtulo 4 extendemos los resultados del caṕıtulo 2 a este

nuevo caso. En el caṕıtulo 5 presentamos algunos resultados obtenidos sobre espacios

de muestreo.

No están incluidas las demostraciones de resultados ya conocidos.
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Descripción de los resultados originales

Los resultados originales de esta tesis se concentran principalmente en los caṕıtulos

2, 4 y 5. Se basan en los art́ıculos [CHM06], [CHM05] y [BCH05].

Sea ϕ : R −→ C de soporte compacto que satisface (1). Sea `(Z) el espacio de

todas las sucesiones definidas en Z. El operador de subdivisión asociado a la máscara ck

es el operador Sc : `(Z) → `(Z) definido por Sc(α)j =
∑

i∈Z αic2i−j. (Asumimos ct = 0

si t 6= 0, . . . , N). Sea T la matriz de escala definida anteriormente. Mostramos la

conexión que hay entre las propiedades espectrales de Sc y T. En particular, probamos

que cada vector de la base de Jordan de T se puede extender a una sucesión en `(Z)

que satisface la misma relación pero para Sc. Luego mostramos, usando la teoŕıa de

ecuaciones en diferencias, que las dimensiones de los núcleos de T y de Sc son iguales.

Además, a cada vector no nulo en el núcleo de T, le corresponde una combinación

lineal no trivial de las trasladadas enteras de ϕ que produce la función cero.

Sea λ ∈ C, λ 6= 0, y sea r ≥ 1 un entero. Decimos que una función h es (2, λ, r)-

homogénea si satisface la siguiente ecuación:

r∑

k=0

(
r

k

)
(−λ)r−kh(2−kx) = 0 p.c.t.p.,

donde r se denomina el orden de homogeneidad, y λ el grado. En particular, para

r = 1, tenemos h(x) = λh(2x).

Pudimos caracterizar completamente todas las funciones (2, λ, r)-homogéneas en

S(ϕ). SeaH ⊂ S(ϕ) el subespacio generado por todas las funciones (2, λ, r)-homogéneas

en S(ϕ) con λ ∈ C cualquiera y r ∈ N. Suponiendo que las trasladadas enteras de ϕ

son linealmente independientes, mostramos que dim(H) = N+1 y que hay una base de

H relacionada con el espectro de T. Más precisamente dada una base B = {v0, . . . , vN}
de CN+1 que produce la forma de Jordan de T, asociamos a cada vector v ∈ B una

única función (2, λ, r)-homogénea S(ϕ), donde λ y r satisfacen v(T − λI)r = 0.

Las primeras N de estas funciones son una base local de S(ϕ). Esto permite

reconstruir al generador ϕ a partir de las funciones homogéneas y da una nueva

representación de las funciones en S(ϕ).
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Luego consideramos una función ϕ : Rd −→ C de soporte compacto que satis-

face (2) y el EIT generado por ella. Al pasar al caso multidimensional general, la

situación se tornó más compleja, por lo que tuvimos que utilizar técnicas distintas.

Una de las dificultades que aparecieron fue encontrar la matriz apropiada T, dado que

hallar el soporte exacto de ϕ puede resultar dif́ıcil en dimensiones mayores. Tuvimos

que utilizar propiedades geométricas de atractores, mosaicos y conjuntos admisibles,

relacionadas con el soporte de ϕ, para poder definir esta matriz. Esta fue fundamen-

tal para el análisis de la clase de funciones (A, λ, r)-homogéneas, i.e. funciones con

dominio en Rd tal que (DA − λI)rh = 0, donde DA es el operador de dilatación dado

por DAf(x) = f(A−1x). Nuevamente pudimos asociar a cada vector de la base de

Jordan de T una función (A, λ, r)-homogénea y obtener aśı una base local de S(ϕ).

Además, demostramos que si ϕ tiene grado de presición κ, el espacio de todas las

funciones (A, λ, r)-homogéneas en S(ϕ) contiene ακ =
∑κ−1

s=0 ds polinomios lineal-

mente independientes, donde ds es el número de monomios de grado s linealmente

independientes.

En el último caṕıtulo obtuvimos condiciones necesarias y suficientes para que una

función en L2(R) pertenezca a un espacio de muestreo. Para ello, probamos primero

que si una función f pertenece a un espacio de muestreo, entonces el EIT generado

por f también es un espacio de muestreo. Luego aplicamos los resultados obtenidos

al problema de los conjuntos determinantes. Básicamente, un conjunto determinante

es un conjunto de generadores para un EIT ([ACH+04]). Mostramos que dado un

conjunto determinante de un espacio de muestreo, el espacio puede descomponerse

como suma de subespacios de muestreo, cada uno generado por un elemento del

conjunto determinante.



Introduction

A compactly supported function ϕ : R −→ C is called refinable if it satisfies the

equation

ϕ(x) =
N∑

k=0

ckϕ(2x− k), (1)

where c0, ..., cN are complex scalars. The scalars ck are the mask of the function.

The shift invariant space (SIS) generated by ϕ is defined by

S(ϕ) = {f : R −→ C : f(x) =
∑

k∈Z
ykϕ(x + k), yk ∈ C}.

Shift invariant spaces with refinable generator arise particular attention because they

appear in wavelet theory, approximation theory and sampling theory. The main goal

of this thesis is to provide information about the structure of these spaces.

In many cases we don’t know the explicit formula of ϕ, nevertheless many prop-

erties of ϕ can be obtained from the mask. One fundamental question is when S(ϕ)

contains polynomials and of which degree. The accuracy of ϕ is the maximum integer

κ such that all polynomials of degree less or equal κ− 1 are contained in S(ϕ).

The accuracy is related to the approximation order of S(ϕ) ([Jia95a], [dB90] and

the references therein), and with the zero moments and the smoothness of the as-

sociated wavelet when ϕ generates a multiresolution analysis [Mey92]. There are

many well known equivalent conditions for accuracy. In particular, under the hy-

pothesis of linear independence of its integer translates, ϕ has accuracy κ, if and

only if {1, 2−1, ..., 2−(κ−1)} are eigenvalues of the (N + 1)× (N + 1) matrix T defined

7
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by T = {c2i−j}i,j=0,...,N (the scale matrix), and there exist polynomials p0, ..., pκ−1 of

degree(pi) = i such that each of the vectors vi = {pi(k)}k=0,...,N is a left eigenvector

of T corresponding to the eigenvalue 2−i ([Dau88], [CHM98]). Furthermore, if ϕ has

accuracy κ, then for s = 0, 1, ..., κ− 1 it is true that xs =
∑

k∈Z ps(k)ϕ(x− k), where

ps is the polynomial that provides the eigenvector for 2−s.

Since ϕ is compactly supported, S(ϕ) has ”locally” a finite number of generators.

A set of functions in S(ϕ) which restrictions to [0, 1] is a basis for all the functions in

S(ϕ) restricted to [0, 1], is called a local basis.

If ϕ has accuracy κ, by the preceding observations we know κ linearly independent

functions in [0, 1] (i.e. the monomials xs with s < κ), each of them associated to an

eigenvalue of T. Let ϕ be the B-spline of degree n− 1, i.e. the convolution n-times of

the characteristic function of the interval [0, 1]. Then all the polynomials with degree

less or equal n−1 belong to S(ϕ), in fact, {1, x, x2, . . . , xn−1} is a local basis of S(ϕ),

and the set {1, 2−1, . . . , 2−(n−1)} is the spectrum of T.

Now, if ϕ is not a B-spline, T could have an eigenvalue which is not a power of

1/2.

If powers of 1/2 are associated to homogeneous polynomials, what type of func-

tions in S(ϕ) are associated to an arbitrary eigenvalue λ? If we consider the whole

spectrum of T , is it possible to obtain a local basis of S(ϕ)?

Blu and Unser [BU02] studied what they call self-similar radial basis functions,

and showed the relations between these functions and generators of multiresolution

analysis. On the other side, Zhou [Zho02] recently showed the existence of functions

in S(ϕ) that satisfy h(x) = λh(2x). Each simple eigenvalue λ of T can be associated

to a function that satisfies this equation. However, since we wanted a complete

representation of S(ϕ), we considered the whole spectrum of T. From here, we could

reconstruct the generator ϕ in terms of functions associated to the spectrum of T,

and obtained a new representation of S(ϕ). We showed that these functions provide a

local basis of S(ϕ). The advantage of this basis is that it includes all the monomials xs

in S(ϕ), and the functions of the basis which are not homogeneous polynomials still

preserve certain type of homogeneity. Furthermore, these functions can be obtained
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from vectors of the Jordan basis of T. We also showed that T is necessarily invertible

if we assume that the integer translates of ϕ are linearly independent.

Then we analyzed the multidimensional case, with a generator that satisfies a

refinement equation with arbitrary dilation factor. More precisely, we considered a

compactly supported function ϕ : Rd −→ C such that

ϕ(x) =
∑

k∈Λ

ckϕ(Ax− k), ck ∈ C, (2)

where Γ ⊂ Rd is an arbitrary lattice, Λ is a finite subset of Γ, and A is such that

A(Γ) ⊂ Γ and all the eigenvalues of A satisfy |λ| > 1. The SIS S(ϕ) is the space of

functions that can be written as an infinite linear combination of the Γ-translates of

ϕ. Let Q ⊂ Rd be a tile for Γ, i.e. the translates {Q + k}k∈Γ cover Rd with overlaps

of Lebesgue measure zero. A local basis of S(ϕ) is a set of functions in S(ϕ) which

restrictions to Q are a basis of the functions of S(ϕ) restricted to Q. We obtained

analogous results to the one-dimensional case, in particular we showed that a local

basis of S(ϕ) can be constructed, which consists solely of functions which satisfy an

equation of homogeneity.

In the last part of this work we considered the sampling problem in SIS. Let F be

a space of functions defined in R, and X ⊂ R a discrete subset. The sampling theory

studies when a function can be reconstructed from its values {f(xk)}k∈Z. The basic

result is the ”Classical Sampling Theorem” which resolves the problem in the Paley-

Wiener space of band-limited functions (functions in L2(R) with Fourier Transform

supported in [−1
2
, 1

2
]). Every function of this space can be represented by the formula

f(x) =
∑

k∈Z
f(k)

sin(π(x− k))

π(x− k)
,

where the convergence is uniform and in L2(R). The Paley-Wiener space is a refinable

SIS with generating function sinc(x) = sin πx
πx

. In many applications the real situation

is that the functions are not band-limited. Besides, the sinc function has slow decay.

This is why recently the sampling theory in other spaces received more attention. In

[AG00], Aldroubi and Gröchenig studied the sampling problem in spaces generated by
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B-splines and in [Wal92] Walter studied it in wavelet subspaces. We know that for the

Paley-Wiener space the integer translates of the function sinc(x) are an orthonormal

basis, in particular a frame. Therefore it is natural to consider sampling in certain

subspaces of L2(R), called sampling spaces, which are generated by functions which

integer shifts are a frame ([SZ04], [SZ99]). We characterized the functions that belong

to sampling spaces and obtained atomic decompositions of sampling spaces.

This work is organized as follows: In chapter 1 we present a review of the basic

properties of SIS defined on the real line, in particular also properties of refinable SIS

(with dilation factor 2). In chapter 2 we show the new representation of refinable

SIS in terms of what we will call (2, λ, r)-homogeneous functions. In chapter 3 we

introduce the concepts and tools used for the multidimensional case with arbitrary

dilation, and in chapter 4 we extend the results obtained in chapter 2 to this new

case. In Chapter 5 we present some results about sampling spaces.

Proofs of known results are not included.

Description of original results

The original results are mainly concentrated in chapters 2, 4 and 5. They are based

on the articles [CHM06], [CHM05] and [BCH05].

Let ϕ : R −→ C be a compactly supported function that satisfies (1). Let `(Z)

be the space of all the sequences defined in Z. The subdivision operator associated to

the mask ck is the operator Sc : `(Z) → `(Z) defined by Sc(α)j =
∑

i∈Z αic2i−j. (We

assume ct = 0 if t 6= 0, . . . , N). Let T be the scale matrix defined before. We showed

the relation between the spectral properties of Sc and T. In particular, we proved that

every vector of the Jordan can be extended to a sequence in `(Z) that satisfies the

same relation but for Sc. Using the theory of difference equations, we then showed

that the dimension of the kernel of T is the same as the one of Sc. Furthermore, we

showed that to each non-zero vector in the kernel of T , there corresponds a non-trivial

linear combination of the integer translates of ϕ yielding the zero function.
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Let λ ∈ C, λ 6= 0, and r ≥ 1 an integer. We say that a function h is (2, λ, r)-

homogeneous if it satisfies the following equation:

r∑

k=0

(
r

k

)
(−λ)r−kh(2−kx) = 0 p.c.t.p.,

where r is called the order of homogeneity and λ the degree. In particular, for r = 1,

we have h(x) = λh(2x).

We characterized completely all (2, λ, r)-homogeneous functions in S(ϕ). Let H ⊂
S(ϕ) the span of all the (2, λ, r)-homogenoeus functions in S(ϕ), for any λ ∈ C and

r ∈ N. We showed that under the hypothesis of linear independence of the translates

of ϕ, dim(H) = N + 1, and that there is a basis of H, corresponding to the spectrum

of T . More precisely, given a basis B = {v0, . . . , vN} of CN+1 that yields the Jordan

form of T we associated to each vector v ∈ B a unique (2, λ, r)-homogeneous function

in S(ϕ), where λ and r satisfy v(T − λI)r = 0.

The first N of these functions are a local basis of functions in S(ϕ) restricted to

[0, 1]. This allows to reconstruct the generator ϕ from the homogeneous functions,

and gives a new representation for the functions in S(ϕ).

We then considered a compactly supported function ϕ : Rd −→ C which satisfies

(2), and the generated shift invariant space. When moving to higher dimensions, the

situations turned out to be complex. This is why we had to use other techniques. One

difficulty that appeared was to find the appropriate matrix , T since the determination

of the exact support of ϕ can be difficult. We had to use geometric properties of

attractors, tiles and admissible sets, related to the support of ϕ, in order to define

this matrix. This matrix was fundamental for the analysis of the class of (A, λ, r)-

homogeneous functions, i.e. functions defined in Rd such that (DA− λI)rh = 0. Here

DA is the dilation operator given by DAf(x) = f(A−1x).

Again we could associate to each vector of the Jordan basis of T a (A, λ, r)-

homogeneous function and from here obtain a local basis of S(ϕ). Furthermore, we

proved that if ϕ has accuracy κ, the space of all (A, λ, r)-homogeneous functions

contains ακ =
∑κ−1

s=0 ds linearly independent polynomials, where ds is the number of

linearly independent monomials of degree s.
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In the last chapter we obtained necessary and sufficient conditions in order that a

function in L2(R) belongs to a sampling space. To see that, we first proved that if a

function belongs to a sampling space, then the SIS generated by f also is a sampling

space.Then we applied these results to the problem of determinig sets. Basically, a

determining set is a generating set for a SIS in L2(R) ([ACH+04]). We showed that

given a determining set of a sampling space, the space can be decomposed as a sum

of sampling subspaces, each of them generated by an element of the determining set.



Chapter 1

Refinable Shift Invariant Spaces in
R

1.1 Introduction

The theory of shift invariant spaces is of great importance in the study of wavelets,

splines, approximation theory, sampling theory, Gabor systems and other areas. We

will focus in this chapter on shift invariant spaces defined on the real line.

Let Γ be a lattice, i.e. the image of Z under any nonsingular linear translation.

Definition 1. A shift invariant space (SIS) S is a space of functions on R that is

invariant under lattice translates, i.e.,

f ∈ S ⇒ f(· − k) ∈ S, for every k ∈ Γ. (1.1.1)

In this and the following chapter we will assume that Γ is the integer lattice Γ = Z.

Let Φ : R −→ Cr defined by Φ(x) = (ϕ1(x), . . . , ϕr(x))t. We define the SIS generated

by Φ as

S(Φ) = {f : R −→ Cr : f(x) =
∑

k∈Z

r∑
i=1

yk,iϕi(x + k), yk,i ∈ C} =

= {
∑

k∈Z
ykΦ(x + k), yk ∈ C1×r}.

13
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We will assume that the functions ϕi are compactly supported. If this is the case,

the previous expression is well defined.

If r > 1, then S(Φ) is called a finitely generated shift invariant space and ϕ1, . . . , ϕr

are the generators of S(Φ). In this work we will mostly deal with SIS generated by a

single function ϕ (i.e. r = 1), which are called principal shift invariant spaces (PSI).

We will then write S(ϕ) instead of S(Φ).

A simple example is the PSI generated by ϕ0 = χ[0,1]. It is the space of all

piecewise constants with possible discontinuities at Z. In wavelet theory the space

V0 = S(ϕ) ∩ L2(R) is a SIS that plays an important role. Under appropiate condi-

tions the nested spaces Vj = {f(2j·) : f ∈ V0} form a multiresolution analysis from

which a wavelet basis for L2(R) can be constructed. In uniform sampling typically

band-limited SIS are employed, i.e. they are generated by a function whose Fourier

transform is compactly supported. The most known example in this context is the

Paley-Wiener space generated by the function sinc(x) = sin πx
πx

, where we have the

classical representation of a signal in terms of the Whittaker cardinal series. In Ga-

bor Analysis, the Weyl-Heisenberg system of SIS is constructed from one SIS W,

which is generated by a (or several) window function. The other SIS of this system

are modulations of W, i.e. they are obtained by multiplying W by an exponential

function.

SIS that are generated by refinable functions are of particular interest, since they

appear naturally in the study of wavelets, splines and subdivision schemes. The space

V0 = S(ϕ)∩L2(R) generated by the scaling function ϕ of the multiresolution analysis

mentioned before, is a refinable SIS, as it is any SIS generated by splines.

A crucial property of a SIS is if it contains polynomials and up to which degree,

since this is closely related to the approximation properties of the space. This is why

the accuracy of the generating function plays an important role.

In this chapter we will present a review of the basic properties of SIS and refinable

SIS. The references are [Ron01], [Jia95a], [Dau92], [Woj97], [HW96] and [Mey92].
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1.2 Properties of Shift Invariant Spaces

An important operator that came up in the theory of SIS is the synthesis operator.

We denote `(Z) the space of all the sequences defined on Z and `0(Z) the space of all

the finitely supported sequences on Z.

Definition 2. Let Φ : R −→ Cr such that ϕi is compactly supported for every

1 ≤ i ≤ r. The linear mapping defined on (`(Z))r by

TΦ(y) =
r∑

i=1

∑

k∈Z
yk,iϕi(x− k) (1.2.1)

is called the synthesis operator of S(Φ).

We will concentrate now on the PSI case. The synthesis operator of S(ϕ) is then

Tϕ(y) =
∑

k∈Z
ykϕ(x− k).

Definition 3. We say that the integer translates {ϕ(· − k)}
k∈Z of ϕ : R −→ C are

globally linearly independent or linearly independent, if

∑

k∈Z
αkϕ(· − k) ≡ 0, =⇒ αk = 0,∀k

for any sequence α ∈ `(Z).

Observe that this definition is stronger than the classical linear independence,

where the sequences α are only the finitely supported ones. The linear independence

of the integer translates of ϕ, or equivalently the injectivity of Tϕ, is one of the most

important properties of a SIS. Note that the restriction of Tϕ to `2(Z) is always

injective.

The following necessary and sufficient conditions for linear independence (which

hold also in Rd), are due to A. Ron.
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Theorem 1. ([Ron89]) The integer translates of a compactly supported integrable

function ϕ : R −→ C are linearly independent if and only if ϕ̂ does not have any

1-periodic zero (in C).

The next result is valid if the spatial dimension is 1 but not in the multidimensional

case (the space generated by the shifts of the characteristic function of the squares

with vertices (0, 0), (1, 1), (0, 2), (−1, 1) is a counterexample). It can be found in

[Ron90] and more general for the FSI case in [Jia97].

Theorem 2. Let ϕ : R −→ C be a compactly supported integrable function. Then

S(ϕ) contains a compactly supported generator θ whose integer translates are linearly

independent.

Even though S(ϕ) is an infinite dimensional space, the fact that ϕ is compactly

supported implies that S(ϕ) is ”locally” finite dimensional. This motivates the fol-

lowing definition.

Definition 4. Let ϕ : R −→ C be a compactly supported function and E ⊂ R such

that E0 6= ∅. We will say that {ϕ(· − k)}
k∈Z are locally linearly independent on E if

∑

k∈Z
αkϕ(· − k) ≡ 0 on E =⇒ αk = 0 ∀k ∈ Kϕ(E),

where

Kϕ(E) = {k ∈ Z : |(Supp(ϕ) + k) ∩ E| > 0}.

The integer translates of ϕ are called strongly locally linearly independent if they are

locally linearly independent on any set E with E0 6= ∅.
Obviously local linear independence implies global linear independence.

A basic notion, which is important in many areas like wavelet theory and sampling

theory is the stability of the integer translates of the generators of SIS.
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Definition 5. Let ϕ ∈ Lp(R). We will say that ϕ has stable integer translates if there

exist positive constants c1 and c2 such that

c1‖a‖p ≤
∥∥∥∥∥∥
∑

k∈Z
akϕi(· − k)

∥∥∥∥∥∥
p

≤ c2‖a‖p (1.2.2)

for all a ∈ `0(Z).

If p = 2 it is said that {ϕ(· − k)}
k∈Z is a Riesz sequence. In this case, condition

(1.2.2) is often stated in the Fourier domain. That is, there exist A,B > 0 such that

A ≤
∑

k∈Z
|ϕ̂(w + k)|2 ≤ B a.e. w ∈ R. (1.2.3)

A Riesz sequence {ϕ(·−k)}
k∈Z is called a Riesz basis for a closed subspace V ⊆ L2(R)

if span{ϕ(· − k)}
k∈Z = V. For ϕ ∈ L2(R) the 1-periodic function

Gϕ(w) =
∑

k∈Z
|ϕ̂(w + k)|2 (1.2.4)

is called the grammian of ϕ. If in (1.2.3) A = B = 1, i.e. Gϕ ≡ 1, the system

{ϕ(· − k)}
k∈Z is orthonormal.

Constructions of wavelets from a multiresolution analysis depend on the stability

of the integer translates of the underlying scaling function. In sampling theory, the

stability is important for the reconstruction of a function from its discrete sampled

values in a stable way, i.e., small perturbations of the sampled values of a function

produce a function ”close” to the original one.

The next result which is very useful in wavelet theory can be found in [Dau92].

Proposition 1. Suppose that ϕ ∈ L2(R) is a function such that {ϕ(· − k)}
k∈Z is

a Riesz sequence. Then there exists a function φ ∈ span{ϕ(· − k)}
k∈Z such that

{φ(· − k)}
k∈Z is an orthonormal system. For each such φ, the system {φ(· − k)}

k∈Z
is an orthonormal basis for the space span{ϕ(· − k)}

k∈Z.
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Remark. The most natural choice for a function φ as in Proposition 1 that gives the

orthonormal basis for span{ϕ(· − k)}
k∈Z, is given by

φ̂ =
ϕ̂(w)

Gϕ(w)
1
2

.

1.3 Refinability

A function ϕ : R −→ C with compact support is called refinable if there exists a

complex sequence {ck}k∈Z such that ϕ satisfies the equation

ϕ(x) =
∑

k∈Z
ckϕ(2x− k), (1.3.1)

The scalars {ck}k∈Z are the mask of the refinable function.

Note. Equation (1.3.1) is often called the scaling equation.

A key goal is the determination of properties of a refinable ϕ based on the mask.

Given a refinement mask, it is a matter of interest to determine the existence, unique-

ness and smoothness of the solutions of the refinement equation (1.3.1). See [CDM91],

[CH94], [DL91], [DL92], [DGL91], [Eir92], [Rio92], [Wan95], among others. It is

known that if the sum of the coefficients of the mask is 2, there always exists a

solution to (1.3.1), but this may be a solution in the distributional sense.

Theorem 3. If the mask {ck}k∈Z satisfies
∑

k∈Z ck = 2, the equation (1.3.1) has a

unique compactly supported disributional solution ϕ satisfying ϕ̂(0) = 1

The solution ϕ with ϕ̂(0) = 1 is called the normalized solution of (1.3.1).

Equation (1.3.1) is also fundamental in the context of subdivision schemes. Com-

putations of solutions to (1.3.1) can be done using the subdivision scheme [CDM91].

Examples The function ϕ0 = χ[0,1] is refinable since

ϕ0(x) = ϕ0(2x) + ϕ0(2x− 1).
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The so called hat function

ϕ1(x) = χ[0,1] ∗ χ[0,1] =





x for 0 ≤ x < 1

2− x for 1 ≤ x ≤ 2

0 otherwise,

satisfies

ϕ1(x) =
1

2
ϕ1(2x) + ϕ1(2x− 1) +

1

2
ϕ1(2x− 2).

For

ϕ2(x) = χ[0,1] ∗ χ[0,1] ∗ χ[0,1] =





1
2
x2 for 0 ≤ x < 1

−(x− 3
2
)2 + 3

4
for 1 ≤ x ≤ 2

1
2
(x− 3)2 for 2 ≤ x ≤ 3

0 otherwise,

holds

ϕ2(x) =
1

4
ϕ2(2x) +

3

4
ϕ2(2x− 1) +

3

4
ϕ2(2x− 2) +

1

4
ϕ2(2x− 3).

In fact, for every n ∈ N the B-spline of degree n, which is obtained by convoluting

n + 1 times the function χ[0,1] by itself, is a refinable function, which satisfies

ϕn(x) =
n+1∑

k=0

2−n

(
n + 1

k

)
ϕn(2x− k).

It is also positive and supported on the interval [0, n + 1].

The graph of the refinable function given by

f(x) =
1

3
f(2x) +

2

3
f(2x− 1) +

2

3
f(2x− 2) +

1

3
f(2x− 3) (1.3.2)

can be seen in Figure 1.1.

Observe that if ϕ is refinable, we obtain in (1.3.1)

ϕ(
β

2m
) =

∑

k∈Z
ckϕ(

β

2m
− k), for every β ∈ Z. (1.3.3)
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Figure 1.1: Refinable function for coefficients 1/3, 2/3, 2/3, 1/3

Hence ϕ can be determined for all dyadics, thus everywhere in the case that ϕ is

continuous.

We can assume that only finitely many ck are nonzero, since ϕ is compactly

supported. So the refinement equation (1.3.1) can be written (translating if necessary)

ϕ(x) =
N∑

k=0

ckϕ(2x− k). (1.3.4)

We will consider the shift invariant space generated by ϕ

S(ϕ) = {f : R −→ C : f(x) =
∑

k∈Z
ykϕ(x + k), yk ∈ C}.

A refinable SIS is a SIS with a refinable generator. Refinable SIS and refinable

generators have been studied extensively, since they are very important in wavelet

theory and approximation theory.

1.3.1 Refinability in Wavelet Theory

The development of wavelets as a tool for a new representation of functions in L2

began in 1980. The main goal of wavelet theory is the study of orthonormal bases in L2
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generated by dilations and translations of certain functions. Wavelets arise particular

attention because of their multiple applications in signal representation and image

compression. They constitute an alternative to traditional signal processing methods

which are based on Fourier analysis. The advantage of wavelet analysis is that it

is well localized in time and frequency, and hence produces better approximation of

data that have discontinuities and pronounced local variations.

Definition 6. A wavelet is a function ψ ∈ L2(R) such that the family

{
ψj,k(x) = 2

j
2 ψ(2jx− k) : j, k ∈ Z

}
, (1.3.5)

is an orthonormal basis for L2(R).

The family (1.3.5) is called a wavelet basis and the function ψ the mother wavelet.

The series

f =
∑

j,k∈Z
〈f, ψj,k〉ψj,k

turned out to converge in most of the function spaces. The use of these bases in

signal treatment is based on the fact that for sufficiently smooth signals they produce

a great number of scalar products 〈f, ψj,k〉 near to zero. This is a desirable property

in many applications, in particular in image compression. The first example of a

wavelet basis that has been constructed is the Haar basis, generated by the mother

wavelet

ψ(x) =





x for 0 ≤ x < 1
2

2− x for 1
2
≤ x ≤ 1

0 otherwise.

Its main limitation is that it is discontinue. In 1986 a general method for constructing

smooth wavelets was developed by S. Mallat and Y. Meyer. It is based on the notion

of multiresolution analysis, which plays a crucial role in signal theory and image

processing.
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Multiresolution Analysis

Most of the known ”good” wavelets arise from a multiresolution analysis. It is the

starting point of a pyramidal algorithm formulated by S. Mallat for the construction

of the wavelet coefficients of a signal. A signal is decomposed in this way in subbands.

Multiresolution analysis allows to study images at different scales.

Definition 7. A multiresolution analysis (MRA) is a sequence {Vj}j∈Z of closed

subspaces of L2(R) that satisfy:

(1) Vj ⊂ Vj+1;

(2) f ∈ Vj if and only if f(2·) ∈ Vj+1 for every j ∈ Z;

(3)
⋂

j∈Z Vj = {0};

(4)
⋃

j∈Z Vj = L2(R);

(5) there exists a function ϕ ∈ V0 such that {ϕ(· − k)}
k∈Z is an orthonormal basis

for V0.

The function ϕ in (5) is called the scaling function of the multiresolution analysis.

Remark. By Proposition 1 we can can relax condition (5) replacing ”orthonormal

basis” by ”Riesz basis”, in a lot of literature you can find it stated that way.

Condition (4) tells us that every function in L2(R) can be approximated as closely

as we want by its projection on Vj for a sufficiently big j.

The Scaling Function

From Definition 7 we can see that the multiresolution analysis is completely deter-

mined by the scaling function ϕ. So a method to obtain a MRA is to start with a ϕ
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and set V0 = span{ϕ(·−k)}
k∈Z. The other spaces Vj will be determined by condition

(2), so we will have to check conditions (1), (3), (4) and (5).

Examples of MRA The function χ[0,1] generates the MRA {Vj}j∈Z, where Vj is

Vj =
{
f ∈ L2(R) : f is constant on

[
2−jk, 2−j(k + 1)

] ∀k ∈ Z}
.

The sequence of spaces {Vj}j∈Z, where

Vj =
{
f ∈ L2(R) : f is continuous and f is linear on

[
2−jk, 2−j(k + 1)

] ∀k ∈ Z}
,

is a MRA.

More general, for

Vj =
{
f ∈ L2(R) : f ∈ Cn−1 is polynomial of degree n on

[
2−jk, 2−j(k + 1)

] ∀k ∈ Z}

we have that {Vj}j∈Z is a MRA.

The MRA associated to the function sinc(x) = sin πx
πx

is given by

Vj =
{
f ∈ L2(R) : Supp(ϕ̂) ⊂ [−2j−1, 2j−1

]}
. (1.3.6)

Since ϕ ∈ V0 ⊂ V1, by condition (2) we have that ϕ( ·
2
) ∈ V0. Since {ϕ(· − k)}

k∈Z
is a basis of V0,

ϕ(
x

2
) =

∑

k∈Z
ckϕ(x− k), (1.3.7)

which is equivalent to

ϕ(x) =
∑

k∈Z
ckϕ(2x− k),

and hence ϕ is a refinable function. So we have that every scaling function of a MRA

is necessarily refinable.

Note. If {ϕ(· − k)}
k∈Z is orthonormal, the coefficients are given by

ck = 〈ϕ(
·
2
), ϕ(· − k)〉.
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We will now describe how to construct a wavelet basis given a multiresolution

{Vj}j∈Z in L2(R) with scaling function ϕ. Let W0 be the orthogonal complement of

V0 in V1, i.e.,

V1 = V0

⊕
W0 (1.3.8)

Dilating the elements of W0 by 2j, we get a closed subspace Wj of Vj+1 such that

Vj+1 = Vj

⊕
Wj for every j ∈ Z. (1.3.9)

As Vj −→ {0} if j −→ −∞, it follows that

Vj+1 = Vj

⊕
Wj =

j⊕

l=−∞
Wl. (1.3.10)

As Vj −→ L2(R) if j −→∞, we have

L2(R) =
∞⊕

j=−∞
Wj. (1.3.11)

Hence, in order to have a wavelet, we need a function ψ ∈ W0 such that {ψ(·−k)}
k∈Z

is an orthonormal basis of W0. Any such a ψ satisfies, by condition (2) and the

definition of Wj, that {
2

j
2 ψ(2j · −k) : k ∈ Z

}

is an orthonormal basis of L2(R).

Observe that the space Wj contains the ”details” that are added when we pass

from approximation at the scale 2j to the approximation at the finer scale 2j+1.

An explicit formula of a wavelet ψ in terms of the scaling function is given in the

following theorem.

Theorem 4. ([Mal89]) Let ϕ ∈ L2(R) be a scaling function with orthonormal shifts

associated to a MRA. If ϕ satisfies the refinement equation ϕ(x) =
∑

k∈Z ckϕ(2x−k),

then with

ψ :=
∑

k∈Z
(−1)kc1−kϕ(2 · −k) (1.3.12)
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the collection
{

2
j
2 ψ(2j · −k) : j, k ∈ Z

}
forms an orthonormal basis of wavelets for

L2(R).

Thus the problem of finding a wavelet with ”good” properties such as compact

support, smoothnes and high approximation order of the spaces Vj, is reduced to

find the appropiate scaling function. A decisive step in this direction was made by

Daubechies in [Dau88]. She defines the scaling function implicitly as a solution to a

refinement equation (1.3.1) with a mask chosen in such a way that the solution has

the desired properties. In particular {ck}k∈Z should decrease rapidly.

Usually there is not an explicit mathematical formula for the scaling function ϕ

nor the wavelet ψ. Nevertheless there are algorithms used to approximate it. The

cascade algorithm designed by Daubechies and Lagarias [DL91] for the construction

of the scaling function of compactly supported orthonormal wavelets associated to a

MRA is a particular case of a subdivision scheme.

1.3.2 Refinability and Subdivision Schemes

Subdivision methods are recursive schemes used in computer graphics to approximate

curves and surfaces interpolating discrete data. The iteration of certain algorithm

produces at every stage a denser data set. The curve (or surface) is then approximated

by the polygon (polyhedral surface) that interpolates the data.

The following is an example of a subdivision method proposed first by de Rham.

Let θ be defined by

θ(x) =





1 + x for − 1 ≤ x < 0

1− x for 0 ≤ x ≤ 1

0 otherwise.

(1.3.13)

For a given refinement mask {ck}k∈Z, begin with

ϕ0(x) = θ(x).
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Then replace ϕ0 by the refined polygon

ϕ1(x) =
∑

k∈Z
ckϕ(2x− k).

The iteration scheme

ϕn+1(x) =
∑

k∈Z
ckϕn(2x− k), n ∈ N (1.3.14)

is called the subdivision scheme or refinement scheme associated with the mask

{ck}k∈Z.

We say that the subdivision scheme converges in Lp if there exists a function

ϕ ∈ Lp(R) such that

lim
n→∞

‖ϕn − ϕ‖p = 0. (1.3.15)

Cavaretta, Dahmen and Michelli proved that if the subdivision scheme is conver-

gent, then the limit function ϕ is the normalized solution of the refinement equation

(1.3.1). They also proved the following result about convergence of the subdivision

scheme for p = ∞ ([CDM91]). Jia extended it to the the case 1 ≤ p ≤ ∞.

Theorem 5. ([Jia95b]) Let ϕ be the normalized solution to the refinement equation

(1.3.1), where
∑

k∈Z ck = 2. If ϕ ∈ Lp(R) (1 ≤ p < ∞) or ϕ is a continuous function

in the case p = ∞, and if the integer translates of ϕ are stable, then the subdivision

scheme associated with mask {ck}k∈Z converges to ϕ in Lp. If the subdivision scheme

associated with mask {ck}k∈Z converges in Lp (1 ≤ p ≤ ∞), then

∑

i∈Z
cj−2i = 1, for every j ∈ Z. (1.3.16)

The subdivision operator associated to the mask {ck}k∈Z is the operator

Sc : `(Z) → `(Z) (1.3.17)

defined by

Sc(α)j =
∑

i∈Z
αic2i−j.
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Note. The subdivision operator is sometimes defined in a different but equivalent way

as

S̃c(α)j =
∑

i∈Z
αicj−2i. (1.3.18)

If h : `(Z) → `(Z) is the operator h(α)k = α−k, then hS̃ch = Sc and therefore Sc and

S̃c share most of the properties. For a nice account of properties of the subdivision

operator see, [BJ02].

1.4 Accuracy

Definition 8. Let ϕ : R −→ C be a compactly supported function. Then a function

f is reproducible by integer translates of ϕ, (or shorter reproducible by ϕ) if there exist

complex scalars {yk}k∈Z such that

f(x) =
∑

k∈Z
ykϕ(x + k), (1.4.1)

i.e., f ∈ S(ϕ).

Given a ϕ, it is important to know what conditions must satisfy ϕ if we want all

polynomials up to a certain degree to be reproducible from integer translates of ϕ.

Let κ ∈ N. Denote Πκ the space of all polynomials of degree less or equal than κ, i.e.,

Πκ =

{
p : p(x) =

κ∑
i=0

aix
i : ai ∈ C

}
.

It is known that if a polynomial of degree m can be reproduced by a compactly

supported ϕ, then every polynomial of degree less than m can also be reproduced by

translates of ϕ, i.e. Πm ⊂ S(ϕ).
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So it is natural to ask if there is a maximum integer κ such that Πκ ⊂ S(ϕ). It

is known that this is always true for a compactly supported ϕ (see for [CHM99] and

references therein). These observations lead to the following definition.

Definition 9. Let ϕ : R −→ C be a compactly supported function. Then ϕ has

accuracy κ if κ is the maximum integer such that Πκ−1 ⊂ S(ϕ).

The next proposition presents a property of the scalars used in (1.4.1) for the case

that f is a polynomial.

Proposition 2. ([CHM99]). Assume that ϕ is compactly supported and its integer

translates are linearly independent. Let p ∈ S(ϕ) be a polynomial of degree m, and

write p(x) =
∑

k∈Z ykϕ(x+k). Then there exists a polynomial up(x) of degree m such

that yk = up(k).

Corollary 1. ([CHM99]). Assume that ϕ is compactly supported and its integer

translates are linearly independent. If ϕ has accuracy κ, then the map µ : Πκ−1 −→
Πκ−1 defined by µ(p) = up is a linear bijection of Πκ−1 onto itself.

As a consequence, if ϕ is as in Corollary 1, for each polynomial u ∈ Πκ−1 the

function q(x) =
∑

k∈Z u(k)ϕ(x + k)) is itself a polynomial with deg(q) = deg(u).

Let K be a compact set and δ(K) its diameter. Denote [a] the integer part of

a real number a, and Π the set of all polynomials with complex coefficients. The

following result shows that κ is related to the diameter of the support of ϕ.

Proposition 3. ([CHM99]). Let ϕ be a compactly supported function. Then the set

of polynomials reproducible by ϕ is a finite-dimensional subspace of Π, and

dim(Π ∩ S(ϕ)) ≤ [δ(Supp(ϕ))] + 1.
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1.4.1 Accuracy and Approximation Power

The main goal of approximation theory is to approximate arbitrary functions by

simpler ones, i.e. polynomials, trigonometric sums, etc., which are easier to compute.

If we want a more precise approximation usually we have to increase the complexity

of the approximants. As we will see, the approximation power of function is tied to

its accuracy.

We consider approximation in Lp(R), 1 ≤ p ≤ ∞. For a subset G of Lp(R), the

distance of a function f ∈ Lp(R) to G is given by

distp(f,G) := inf
g∈G

‖f − g‖p.

Let m ∈ N and 1 ≤ p ≤ ∞.

Define S = S(ϕ) ∩ Lp(R). For h > 0, let Dh be the operator defined by Dhf =

f(·/h), where f is an arbitrary function on R. We denote

Sh = {Dh(f) : f ∈ S} = Dh(S).

The Sobolev space

W p
m(R) = {f ∈ Lp(R) : ∀α ≤ m, ∃uα ∈ Lp(R) such that

∫ ∞

−∞
fν(α) = (−1)α

∫ ∞

−∞
uαν ∀ ν ∈ C∞

c (R)}

is the space of all functions whose weak derivatives up to order m lie in Lp(R).

Definition 10. Let ϕ : R −→ C be a compactly supported function in Lp(R). Given

a real number m ∈ N we say that S(ϕ) provides Lp- approximation order m if, for

each f ∈ W p
m(R) there exists a positive constant Cf such that

distp(f, Sh) ≤ Cfh
m (1.4.2)

for every h > 0. (Cf is independent of h).
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Definition 11. We say that S(ϕ) provides Lp- density order m if for each f ∈
W p

m(R),

lim
h→0+

distp(f, Sh)

hr
= 0. (1.4.3)

The following theorem shows the close relation between the approximation order

provided by S(ϕ) and polynomial reproducibility.

Theorem 6. ([Jia97]) Let ϕ : R −→ C be a compactly supported function in Lp(R), 1 ≤
p ≤ ∞. Let κ ∈ N. Then the following statements are equivalent:

(1) S(ϕ) provides Lp- approximation order κ.

(2) S(ϕ) provides Lp- density order κ− 1.

(3) S(ϕ) has accuracy κ.

(4) S(ϕ) contains a compactly supported function η such that

∑

j∈Z
p(j)η(· − j) = p for every p ∈ Πκ−1.

This result is no longer true for FSI (with more than one generator) in Rd, d > 1.

In [dBH83] a counterexample for the case d = 2 is presented.

Accuracy and order of approximation can also be characterized in terms of the

Fourier transform. The classical Strang-Fix conditions appeared first in [Sch46] and

[SF73].

Definition 12. A compactly supported function ϕ ∈ L2(R) satisfies the Strang-Fix

conditions of order m if

ϕ̂(0) 6= 0 and ϕ̂(s)(l) = 0, ∀l ∈ Z− {0}, 0 ≤ s ≤ m− 1. (1.4.4)
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Actually there exists the following equivalence between accuracy and the Strang-

Fix conditions.

Theorem 7. [SF73] Assume that ϕ ∈ C1(R) is compactly supported and has linearly

independent integer translates. Then the following statements are equivalent:

(1) ϕ satisfies the Strang-Fix conditions of order κ.

(2) ϕ has accuracy κ.

Now let us consider a compactly supported function in L2(R) that is refinable.

Taking Fourier transform on both sides of the equation

ϕ(x) =
N∑

k=0

ckϕ(2x− k).

yields

ϕ̂(2w) =
1

2

(
N∑

k=0

cke
−2πiwk

)
ϕ̂(w).

The trigonometric polynomial

m0(w) =
1

2

N∑

k=0

cke
−2πiwk

is called the symbol of ϕ. If we assume that the integer shifts of ϕ are orthonormal,

we have

1 =
∑

k

|ϕ̂(2w + k)|2

=
∑

k

|ϕ̂(w +
k

2
)|2|m0(w +

k

2
)|2

=
∑

k

|ϕ̂(w + k)|2m0(w)2

+
∑

k

|ϕ̂(w +
1

2
+ k)|2m0(w +

1

2
)2,
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and so

|m0(w)|2 + |m0(w +
1

2
)|2 = 1.

Many properties of a refinable function can also be obtained in terms of properties

of the symbol m0, in particular the Strang-Fix conditions can be characterized in the

following way:

Theorem 8. Assume that ϕ ∈ L2(R) is a refinable compactly supported function with

linearly independent integer translates. Then the following statements are equivalent:

(1) ϕ satisfies the Strang-Fix conditions of order κ

(2) 1
2

is a zero of order κ of m0, i.e., m
(s)
0 (1

2
) = 0 for 0 ≤ s ≤ κ− 1.

As a consequence we have that the symbol can be factorized as

m0 = (1 + e2πiw)κ−1R(w).

For a refinable function the Strang-Fix conditions can also be obtained from the

well known ”sum-rules”. Assuming proper hypothesis, a function ϕ that satisfies

(1.3.4) has accuracy κ if and only if

N∑

k=0

ck = 2 and
N∑

k=0

(−1)kkjck = 0 for j = 0, . . . , κ− 1. (1.4.5)

1.4.2 Accuracy and Wavelets

For a wavelet that stems form a MRA, we want the associated scaling function to

have high accuracy. It leads to good approximation properties of the spaces V0 which

define the multiresolution analysis. The accuracy of the scaling function is closely

related to the vanishing moments of the wavelet as we can see from the following

proposition.
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Proposition 4. Assume that ϕ ∈ L2(R) is a compactly supported scaling function

of a MRA and has orthonormal shifts. Let ψ be the associated wavelet, defined by

(1.3.12). Then the following are equivalent.

(1)
∫ +∞
−∞ xsψ(x) dx = 0 for s = 0, . . . , κ− 1.

(2) ϕ has accuracy κ.

Thus, if the accuracy κ of the scaling function ϕ is high, as a consequence of

Taylor’s theorem, the wavelet coefficients of the smooth part of a signal will be small.

This yields good signal compression for the applications. As we can deduce from

(1.3.12), the scaling function and the wavelet have the same smoothness. It is also

true that accuracy is necessary for a compactly supported scaling function to be

smooth, as we can deduce from the following theorem and Proposition 4.

Theorem 9. ([Mey92]) Assume that ϕ ∈ L2(R) is a compactly supported scaling

function of a MRA and has orthonormal shifts, and let ψ be the corresponding wavelet.

If ψ ∈ Ck then
∫ +∞
−∞ xsψ(x) dx = 0 for s = 0, . . . , k.



Chapter 2

Local Bases for Refinable Shift
Invariant Spaces on the Real Line

2.1 Introduction

In this chapter we will consider a compactly supported function ϕ : R −→ C that

satisfies the refinement equation (1.3.4), i.e.

ϕ(x) =
N∑

k=0

ckϕ(2x− k).

It can be shown that ϕ must be supported in the interval [0, N ] (see for [LRM91]).

Let T be the (N + 1)× (N + 1) matrix, the scale matrix, defined by

T = {c2i−j}i,j=0,...,N . (2.1.1)

Here, and always throughout this work, we assume ct = 0, if t 6= 0, . . . , N.

In Chapter 1 we already presented equivalent conditions for accuracy. The next

proposition gives a characterization of accuracy which is of particular importance for

what we are concerned with in this thesis.

Proposition 5. ([Dau92], [CHM98]) Let ϕ be a compactly supported function satis-

fying (1.3.4). Assume that {ϕ(·−k)}
k∈Z are linearly independent. Then the following

statements are equivalent

34
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(1) The function ϕ has accuracy κ.

(2) The numbers {1, 2−1, ..., 2−(κ−1)} are eigenvalues of the matrix T defined above

and there exist polynomials p0, ..., pκ−1 with degree(pi) = i such that the vector

vi = {pi(k)}k=0,...,N is a left eigenvector of T corresponding to the eigenvalue

2−i, i = 0, ..., κ− 1.

One interesting property is that if ϕ has accuracy κ, then for s = 1, ..., κ − 1 it

is true that the scalars used to reproduce xs from ϕ are precisely the components of

the eigenvector vs, i.e.

xs =
∑

k∈Z
ps(k)ϕ(x− k). (2.1.2)

where ps is the polynomial that provides the eigenvector for 2−s (see for [CHM98]).

Hence there exists a relation between the spectrum of T and certain functions in

S(ϕ) (more precisely between the eigenvalues 2−s and the monomials xs). This mo-

tivates the study of the spectral properties of T to further investigate its relationship

with functions in S(ϕ). This is our main purpose.

Consider the space

I(ϕ) = {f/[0,1] : [0, 1] −→ C : f/[0,1](x) = f(x) ∀x ∈ [0, 1], f ∈ S(ϕ)}. (2.1.3)

The space I(ϕ) is finite dimensional. A canonical set of generators is the set

{ϕ(x− k)/[0,1] : [0, 1] −→ C; k such that |(Supp(ϕ) + k) ∩ [0, 1]| > 0}.

We will call the algebraic dimension of the vector space I(ϕ) the local dimension of

S(ϕ) and we will note it dim[0,1]S(ϕ). A basis of I(ϕ) is named a local basis for S(ϕ).

It is easy to see that

dim[0,1]S(ϕ) ≤ length(Supp(ϕ)) = N.

The following is a remarkable property of refinable compactly supported univariate

functions.
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Theorem 10. ([LRM91]) Let ϕ : R −→ C a refinable compactly supported function

such that {ϕ(· − k)}
k∈Z are globally linearly independent. Then {ϕ(· − k)}

k∈Z are

strongly locally linearly independent.

This result implies that for a univariate function that satisfies (1.3.4), actually we

have dim[0,1]S(ϕ) = N.

By Proposition 3 we know that if ϕ has accuracy κ, then κ ≤ N.

When ϕ is the B-spline of degree N−1, then the accuracy is N , i.e. it is maximum.

Moreover, the set {1, x, x2, . . . , xN−1} is a local basis for S(ϕ), and the spectrum of

T consists exactly of {1, 2−1, . . . , 2−(N−1)}.
Let ϕ be a univariate refinable compactly supported function with accuracy κ

which is not a B-spline. We saw that powers of 1/2 are eigenvalues associated

to monomials. What can we say about the other eigenvalues and eigenvectors if

κ < N? Which kind of functions in S(ϕ) are associated to an arbitrary eigenvalue

λ? Since dim[0,1]S(ϕ) = N, we know that we can complete the set of functions

{1, x, x2, . . . , xκ−1} to a local basis of S(ϕ). Could this be done with functions asso-

ciated to the other eigenvalues?

In the case that λ is a simple eigenvalue, Blu and Unser [BU02] and later Zhou

[Zho02] showed that λ is associated to what they call a 2-scale λ-homogeneous func-

tion, that is, a function in the SIS that satisfies the relation h(x) = λh(2x). In

particular, the monomial xk satisfies this property for λ = 2−k. However, to obtain a

complete representation of the space it is necessary to consider the whole spectrum of

T. This is what we will do in this chapter. We will show that there exists a local basis

which contains the monomials {1, x, x2, . . . , xκ−1}, and certain functions, which can

also be obtained from the spectrum of T, which are not homogeneous polynomials but

still satisfy a property of homogeneity. Hence one obtains a different way of writing

the functions of S(ϕ). We also show that if {ϕ(· − k)}
k∈Z are linearly independent,

then T is invertible.
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2.2 Notation

Let ϕ : R −→ C be a function supported in [0, N ] satisfying (1.3.4).

For each x ∈ R let φ(x) be the infinite column vector associated to ϕ, namely

φ(x) = {ϕ(x + k)}
k∈Z =




...

ϕ(x− 1)

ϕ(x)

ϕ(x + 1)
...




. (2.2.1)

Define the double bi-infinite matrix L = Lϕ by

L = [c2i−j]i,j∈Z . (2.2.2)

Observe that each row of L is a double shift of the preceding one. Hence L is a

”downsampled Toeplitz matrix” or a ”two-slanted matrix.”

If ϕ satisfies the refinement equation, then for k ∈ Z

[Lφ(2x)]k =
∑

j∈Z
c2k−jϕ(2x + j)

=
∑

l∈Z
clϕ(2x + 2k − l)

= ϕ(x + k) = [φ(x)]k.

The converse also holds, hence the refinement equation can be written

φ(x) = Lφ(2x).

Using the matrix L, the subdivision operator (1.3.17) can be recast as

Scα = αL α ∈ `(Z)

were α on the right-hand side of the equation is thought as an infinite row vector.

Note that the scaling matrix T defined in (2.1.1) is a finite submatrix of L. We will
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consider in our analysis the matrices M, T0, T1, that are submatrices of T and are

defined as M = [c2i−j]i,j=1,...,N−1, T0 = [c2i−j]i,j=0,...,N−1, T1 = [c2i−j]i,j=1,...,N .

That is,

T =




c0 0 . . . . . . . . . . 0

c2 c1 c0 0 . . . 0
... c3 c2 c1 . . .

...

0
...

...
...

... cN−2

0 . . . . . . . . . 0 cN




=




c0 0 0
... M

...

0 0 cN


 . (2.2.3)

Note that c0 and cN must be non-zero, since Supp(ϕ) = [0, N ].

Now, if Y ∈ `(Z), define Y 0 and Y M as the restriction of Y to the indexes

{0, . . . , N}, and {1, . . . , N − 1}, respectively, i.e., Y 0 = (Y0, . . . , YN),

Y M = (Y1, . . . , YN−1).

Note. Throughout this work, (L− λI) is considered as an operator on `(Z), defined

by left-multiplication (i.e. Y 7−→ Y (L−λI), where Y is a double infinite row vector).

I is the identity operator acting on `(Z). By an abuse of notation, we will use the

notation I for all identity operators, without distinguishing the space they are acting

on. Note also that properties of the matrix L translate directly into properties of the

subdivision operator Sc.

2.3 Spectral properties of L

The following proposition will show how the spectral properties of L are related to

those of T . The case r = 1 has been studied earlier by [CHM00], [JRZ98], [Zho01,

Zho02].
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Proposition 6. Let λ ∈ C

(1) Let Y ∈ `(Z) and r ∈ N, r ≥ 1. If Y ∈ Ker(L− λI)r, then Y 0 ∈ Ker(T − λI)r.

Moreover, if λ 6= 0, Y 6= 0 and Y ∈ Ker(L− λI)r, then Y 0 6= 0.

(2) If v ∈ Ker(T −λI)r and λ 6= 0, then there exists an extension Yv ∈ `(Z) of v (i.e.

Y 0
v = v) such that Yv ∈ Ker(L− λI)r.

Proof. The matrix L can be decomposed in blocks as

L =




R 0 0

P T Q

0 0 S




(2.3.1)

where we decompose Z as

Z = A− ∪ A0 ∪ A+ (2.3.2)

with A− = Z ∩ (−∞,−1], A0 = Z ∩ [0, N ] and A+ = Z ∩ [N + 1, +∞), and

R = L|A−×A− P = L|A0×A− T = L|A0×A0 Q = L|A0×A+ S = L|A+×A+ .

This block form of the matrix, is closed under multiplication. So if r ≥ 1, r ∈ N,

Lr =




Rr 0 0

Pr T r Qr

0 0 Sr




where

Pr =
r−1∑

k=0

T kPRr−k−1 and Qr =
r−1∑

k=0

T kQSr−k−1. (2.3.3)
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Since

(L− λI) =




R− λI 0 0

P T − λI Q

0 0 S − λI




,

we have

(L− λI)r =




(R− λI)r 0 0

P λ
r (T − λI)r Qλ

r

0 0 (S − λI)r




,

where P λ
r and Qλ

r are as in (2.3.3) with the obvious changes.

Note that the matrix S is upper triangular, with diagonal (0, 0, 0, . . . ), and hence

(S − λI)r is upper triangular, with diagonal ((−λ)r, (−λ)r, (−λr), . . . ).

Analogously, we observe that R is lower triangular with zeroes in the main diag-

onal, so (R− λI)r is lower triangular with diagonal ((−λ)r, (−λ)r, (−λ)r, . . . ).

If Y = (Y −, Y 0, Y +), then Y (L− λI)r can be written as

(Y −(R− λI)r + Y 0P λ
r , Y 0(T − λI)r, Y 0Qλ

r + Y +(S − λI)r). (2.3.4)

So if Y ∈ Ker(L− λI)r, then Y 0 ∈ Ker(T − λI)r.

We now want to show that if Y ∈ Ker(L− λI)r, λ 6= 0, Y 6= 0, then Y 0 6= 0.

For this, let k0 ∈ Z be such that Yk0 6= 0. If 0 ≤ k0 ≤ N , we are done. Assume that

k0 > N . Then, since Y (L− λI)r = 0, in particular, the k0 element of this product is

0. But since λ 6= 0, (S−λI)r is upper triangular with (−λ)r in the diagonal, therefore

the only non-zero elements of column k0 of (L − λI)r are between 0 and k0. Hence

there has to be a k1, 0 ≤ k1 < k0, such that Yk1 6= 0. Again, if 0 ≤ k1 ≤ N we are

done, otherwise we repeat the argument until kj is in the desired interval.
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If k0 < 0, the argument works in the same way, reversing the role of (S − λI)r

and (R− λI)r.

For the proof of part (2), assume that v ∈ CN+1, v ∈ Ker(T − λI)r. We want

to find an infinite vector Y ∈ `(Z), such that Y 0 = v and Y ∈ Ker(L − λI)r. From

equation (2.3.4) we know that if Y ∈ `(Z),

[Y (L− λI)r]+ = Y 0Qλ
r + Y +(S − λI)r, and [Y (L− λI)r]− = Y 0P λ

r + Y −(R− λI)r.

Therefore, if Y ∈ Ker(L− λI)r, and Y 0 = v, then Y + and Y − have to satisfy

Y +(S − λI)r = −vQλ
r and Y −(R− λI)r = −vP λ

r . (2.3.5)

Again using the fact that (S − λI)r and (R− λI)r are triangular, if λ 6= 0, there are

unique solutions for Y + and Y − and they can be obtained recursively.

The last proposition tells us that the elements of the spectrum of T are intimately

related to those of L. But by the special form of T (see equation (2.2.3)), we can

actually use the (N − 1) × (N − 1) matrix M to obtain the spectrum of T , as the

following proposition shows:

Proposition 7. Let λ 6= 0 ∈ C.

(1) Let v0 = (v0, . . . , vN) ∈ CN+1 and r ∈ N, r ≥ 1. If v0 ∈ Ker(T − λI)r then vM =

(v1, . . . , vN−1) ∈ Ker(M − λI)r. Moreover, if λ 6= c0, λ 6= cN , v0 ∈ Ker(T − λI)r,

and v0 6= 0, then vM 6= 0.

(2) If vM = (v1, . . . , vN−1) ∈ Ker(M − λI)r and λ 6= c0 and λ 6= cN , then there exists

an extension v0 ∈ CN+1 of v, such that v0 ∈ Ker(T − λI)r.
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Proof. The proof is immediate by noting the special block-form of T given in equation

(2.2.3).

2.4 The kernel of L

The case λ = 0 could not be handled with the methods of Proposition 6, since the

matrices R and S in (2.3.1) have zeros in the main diagonal. Instead, we need some

results from the theory of difference equations which we present below [Hen62].

2.4.1 Difference Equations

Consider the linear difference equation with constant coefficients of order r

u0yn + u1yn+1 + · · ·+ uryn+r = 0 y = {yn}n∈Z, (2.4.1)

where uk ∈ C, u0 6= 0, ur 6= 0 with characteristic polynomial P (x) =
∑r

k=0 ukx
k.

A solution to the equation (2.4.1) is a sequence Y in `(Z) that satisfies (2.4.1) for

all k ∈ Z. A vector y = (y0, . . . , ym) with m ≥ r + 1 is a finite solution of (2.4.1) if it

satisfies (2.4.1) for n = 0 to n = m− r − 1.

The space of solutions S ⊂ `(Z) has dimension r, and a basis of this space (the

fundamental basis) can be written in the following way:

Let h ≥ 1 be an integer, and let d1, . . . , dh be arbitrary non-zero complex numbers

with di 6= dj if i 6= j. Let r1, . . . , rh be positive integers. To each pair (di, ri),

i = 1, . . . , h, we will associate a sequence ai = {aik}k∈Z defined as follows: Set r =

r1 + · · · + rh and r0 = 0. Let 0 ≤ i ≤ r − 1 and s = s(i), j = j(i) be the unique

integers that satisfy r0 + · · ·+ rs−1 ≤ i < r1 + · · ·+ rs, j(i) = i−∑s(i)−1
k=0 rk. Define

aik =





sg(k) |k|!
(|k|−j(i))!

dk
s(i) for |k| ≥ j(i)

0 |k| < j(i).
i = 0, . . . , r − 1, k ∈ Z, (2.4.2)

where sg(k) is the sign of k.
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So, if P is the characteristic polynomial associated to (2.4.1), consider the pairs

{(di, ri) : where di is a root of P and ri its multiplicity}. The sequences {aik}k∈Z,

i = 0, . . . , r − 1, form a basis of S, the subspace of `(Z) of the solutions to (2.4.1).

It is also known from the theory of difference equations that every solution is

determined unequivocally by any r consecutive elements of it. Hence, if y is a solution

such that r consecutive elements are 0, then y is the zero solution.

We will now associate to the pairs {(di, ri) : i = 1, . . . , h} the r × r matrix

A = [aij]i,j=0,...,r−1. Then (cf. Henrici [Hen62], p. 214)

det(A) =
∏

1≤l<s≤h

(dl − ds)
rl+rs

h∏
i=1

(ri − 1)!!, (2.4.3)

where 0!! = 1 and k!! = k!(k − 1)! . . . 1!. Since di 6= dj for i 6= j, det(A) 6= 0 and A is

invertible.

Let us now consider a system of k linear difference equations with constant coef-

ficients of order r :

ui0yn + · · ·+ uiryn+r = 0, i = 1, . . . , k, n ∈ Z, (2.4.4)

and let Pi be the characteristic polynomial of equation i, Pi(x) =
∑r

j=0 uijx
j. Define

D =
⋃k

i=1{d : Pi(d) = 0} = {d1, . . . , ds}, and for each d ∈ D define rd = max{ri :

ri is the multiplicity of d in Pi}. Note that rd ≥ 1 ∀d ∈ D. We then have the pairs

(di, rdi
) = (di, ri). Define the index of the system to be t =

∑
d∈D rd ≤ kr. Let ` be the

degree of the maximum common divisor p, of {Pa, . . . , Pk}. Hence, Pi(x) = p(x)P̃i(x),

with degree P̃i = r − `. (Note that ` could be 0.) With the above notation, we have

the following proposition:

Proposition 8. The space Sk of solutions to the system (2.4.4) has dimension `,

where ` is the degree of the maximum common divisor of the characteristic polyno-

mials. Moreover, if t is the index of the system (2.4.4), and z is a vector of length t
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that satisfies (2.4.4), then it can be extended to a sequence yz = {yj}j∈Z solution of

(2.4.4) and such that yj = zj, j = 1, . . . , t.

Proof. Let p be the maximum common divisor of P1, . . . , Pk, and let ` = deg(p). It

is clear that dim(Sk) ≥ `.

For the other inequality, consider the t × t matrix A = [aij]i,j=0,...,t−1, with aij

defined in (2.4.2) for the pairs {(di, ri)} defined above and t being the index of the

system (2.4.4). Since di 6= dj for i 6= j, det(A) 6= 0 by (2.4.3), and A is invertible.

Assume now that y ∈ Sk. Then y is a solution to all k difference equations of

(2.4.4), hence there exist α1, . . . , αk vectors of length r, such that

Aiα
i = [y0, . . . , yt−1]

t 1 ≤ i ≤ k, (2.4.5)

where Ai is an t × r matrix whose columns are a fundamental system for equation

i. Note that Ai is a sub-matrix of A, whose columns correspond to some columns

{i1, . . . , ir} of A.

Now let α̃i be vectors of length t, such that α̃i
h = 0 whenever h 6∈ {i1, . . . , ir} and

α̃i
is = αi

s, s = 1, . . . , r. Then we have for i, j = 1, . . . , k

Aα̃i = Aiα
i = [y0, . . . , yt−1]

t = Ajα
j = Aα̃j, (2.4.6)

and henceA(α̃i−α̃j) = 0, for all i 6= j and therefore, by the invertibility ofA, α̃i = α̃j,

for all i 6= j. Therefore the only non-zero elements of αi can be those corresponding

to the columns associated to the roots of p. Hence y is a linear combination of `

columns, and therefore dim(Sk) ≤ `.

By noting that for the previous proof we only used the first t coordinates of the

infinite sequences, we have the following immediate corollary.
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Corollary 2. If z is a vector of length t that satisfies (2.4.4), then it can be extended

to a sequence yz = {yj}j∈Z solution of (2.4.4) and such that yj = zj, j = 1, . . . , t.

2.4.2 The Ker(L)

We can now return to our double infinite matrix L and look at the special case

λ = 0. As it turns out, the kernel of L is characterized by the vectors in the kernel

of M . Since c0 and cN are non-zero, the matrices T and M have kernels of the same

dimension. Moreover, we have the following proposition:

Proposition 9. Consider the polynomials pe and po of degree q = N−1
2

(we assume

N to be odd) pe(x) = c0 + c2x + · · · + c2qx
q, po(x) = c1 + c3x + · · · + c2q+1x

q. Then

dim(Ker(L)) = dim(Ker(M)) = degree(p), where p is the maximum common divisor

of the polynomials pe and po. In particular, if dim(Ker(M)) > 0, pe and po have a

common root. Furthermore:

(1) For every Y ∈ Ker(L), Y 6= 0, we have Y M 6= 0 and Y M ∈ Ker(M).

(2) Conversely, for each v ∈ Ker(M), v 6= 0, we have Yv 6= 0 and Yv ∈ Ker(L).

Proof. Let us first observe that Y ∈ `(Z) is in the kernel of L, if and only if Y satisfies

the system of difference equations





c0vn + c2vn+1 + · · ·+ c2qvn+q = 0,

c1vn + c3vn+1 + · · ·+ c2q+1vn+q = 0.
(2.4.7)

Therefore, by Proposition 8, Ker(L) is the subspace generated by the fundamental

solutions associated to the roots of p, the maximum common divisor of po and pe.

This shows that dim(Ker(L)) = degree(p).
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On the other side, if Y ∈ Ker(L), since (Y L)M = Y MM we conclude that Y M ∈
Ker(M), and if Y M is the zero vector, then the solution Y of (2.4.7) has N − 1

consecutive zeros, so Y = 0. Hence, if Y 6= 0, then Y M 6= 0, which proves (1).

To see that if v = (v1, . . . , vN−1) satisfies vM = 0, then v can be extended, just

note that the sequence v1, . . . , vN−1 must satisfy the difference equations system of

order q = N−1
2

(we assumed N to be odd) given by (2.4.7). Since the index t of the

system (2.4.7) satisfies t ≤ 2q = N − 1, and v is a non-trivial common solution of

length N − 1, by Corollary 2 this solution can be extended in such a way that the

extension satisfies both difference equations. This proves (2).

From (1) and (2) it is immediate that dim(Ker(L)) = dim(Ker(M)).

Note. The fact that dim(Ker(M)) > 0 implies that pe and po have a common root

was proved under some minor technical conditions by Meyer [Mey91]. Related results

can also be found in [JW93].

2.4.3 Invertibility of L

Propositions 6 and 7 relate the spectral properties of the matrix M to the ones of the

operator L. The next proposition shows a necessary condition for the independence

of the integer translates of the function ϕ, in terms of the matrix M .

Proposition 10. With the above notation, consider the following properties:

(1) {ϕ(· − k)}
k∈Z are linearly independent.

(2) The operator L : `(Z) −→ `(Z), Y 7−→ Y L is one-to-one.

(3) The matrix M is invertible.
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Then (2) ⇐⇒ (3) and (1) =⇒ (2).

Proof. (1) =⇒ (2) Assume Y L = 0. Define F (x) = Y φ(x). Then we have F (x) =

Y φ(x) = Y Lφ(2x) = 0. Now, Y φ(x) = 0 =⇒ Y = 0, therefore Ker(L) = {0}.
(2) ⇐⇒ (3) is a consequence of Proposition 9.

Note: We do not know if either (2) or (3) implies (1).

2.5 Homogeneous functions

Assume now that Y ∈ Ker(L− λI)r, and define h(x) = Y φ(x). So, h satisfies

0 = Y (L− λI)rφ(x) = Y

(
r∑

k=0

(
r

k

)
(−λ)kLr−k

)
φ(x)

= Y

(
r∑

k=0

(
r

k

)
(−λ)kφ(

x

2r−k
)

)
,

=
r∑

k=0

(
r

k

)
(−λ)kh(

x

2r−k
).

Equivalently, if Da is the operator defined by (Daf)(x) = f(a−1x), we have that h

satisfies

(D2 − λI)rh = 0. (2.5.1)

We will say that a function h is (2, λ, r) homogeneous, if h satisfies (2.5.1) (r is the

order of homogeneity, and λ is the degree), and we will denote by H(2, λ, r) the space

of all (2, λ, r)- homogeneous functions.

Remark (1). A (2, λ, r)-homogeneous function is a particular case of a poly-scale refin-

able distribution. The concept of poly-scale refinable distribution is a generalization

of refinability. See for instance [DD02, Sun05a].
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Remark (2). Note that if

h ∈ H(2, λ, r), then h ∈ H(2, λ, s) for every s ≥ r.

Therefore the “order of homogeneity” will be defined by

min{s : h ∈ H(2, λ, s)}.

Remark (3). If h is homogeneous (of any order), then h(0) = 0. The values of any

homogeneous function of order r in (0, +∞) are completely determined by its values

on any interval of the type
[

1
2k+r ,

1
2k

)
, k ∈ Z. (Analogously, the values on (−∞, 0),

are obtained from the values in any interval of the type
(− 1

2k ,− 1
2k+r

]
). To see this,

note that by choosing x = 2rt in (2.5.1), we obtain

r∑

k=0




r

k


 (−λ)kh(2kx) = 0,

and therefore

h(x) = −
r∑

j=1




r

j


 (−λ)jh(2jx) and (2.5.2)

h(2rx) = −
r−1∑
j=0




r

j


 (−λ)j−rh(2jx) which is equivalent to

h(x) = −
r∑

j=1




r

j


 (−λ)−jh(2−jx). (2.5.3)

So, if x ∈ [
1

2k+r+1 ,
1

2k+r

)
, then for j = 1, . . . , r, 2jx ∈ [

1
2k+r−j+1 ,

1
2k+r−j

) ⊂ [
1

2k+r ,
1
2k

)
,

and using (2.5.2), we determine h(x). Iterating this procedure, we see that all values

in the interval
(
0, 1

2k+r

)
can be determined.
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On the other hand, for x ∈ [
1
2k , +∞)

, we use (2.5.3), and observe that if x ∈
[

1
2k , 1

2k−1

)
, for j = 1, . . . , r, 2−jx ∈ [

1
2k+j ,

1
2k+j−1

) ⊂ [
1

2k+r ,
1
2k

)
.

Remark (4). In the case of order of homogeneity 1, (e.g. r = 1), h is a 2-scale

homogeneous function as described by Zhou [Zho02].

Proposition 11. Assume {ϕ(·−k)} are linearly independent. Let φ be as in (2.2.1).

If g1, . . . , gn ∈ S(ϕ), gi = Y iφ, then {g1, . . . , gn} are linearly independent functions if

and only if {Y 1, . . . , Y n} are linearly independent in `(Z).

Proof. We observe that

n∑
i=1

αigi =
n∑

i=1

αi

(
Y iφ

)
=

(
n∑

i=1

αiY
i

)
φ.

This equation, together with the linear independence of the translates of ϕ, tells us

that
∑

i αigi ≡ 0 if and only if (
∑

i αiY
i) = 0, which proves the desired result.

Theorem 11. Assume that {ϕ(· − k)} are linearly independent. If h = Y φ (h ∈
S(ϕ)), and h ∈ H(2, λ, r), then vh = Y 0 ∈ Ker(T − λI)r. Reciprocally, if v ∈
Ker(T − λI)r, then the function h = Yvφ is in H(2, λ, r). (Here Yv is the unique

extension of v to a vector in Ker(L− λI)r by Proposition 6.)

Proof. For the first claim, note that

0 =
r∑

k=0




r

k


 (−λ)r−kh(2−kx)

=
r∑

k=0




r

k


 (−λ)r−kY Lkφ(x)

= Y (L− λI)r φ(x).
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Then, Y (L− λI)r = 0 and by Proposition 6, vh ∈ Ker(T − λI)r.

For the converse first observe that if v = 0 the result is trivial. Assume v 6= 0 and

v ∈ Ker(T − λI)r; then by Proposition 10 λ 6= 0. Hence (by Proposition 6) there is a

unique extension Yv ∈ Ker(L− λI)r, so h = Yvφ is in H(2, λ, r).

2.5.1 Local basis of homogeneous functions

Theorem 12. Assume that {ϕ(· − k)} are linearly independent. Let Λ be the set

of eigenvalues of T , and let B = {v0, . . . , vN} be a basis of CN+1 that gives the

Jordan form of T . Let H =
⊕

λ∈ΛHλ ⊂ S(ϕ), where Hλ(ϕ) = {h ∈ S(ϕ) : h ∈
H(2, λ, k), for some k ≥ 1}, λ ∈ Λ. Then we have that dim(H) = N + 1.

Remark. Note that we can choose both v0 = (1, 0, . . . , 0) and vN = (0, . . . , 0, 1) to be

in the basis B, corresponding to the eigenvalues c0 and cN , respectively.

Proof. If vi ∈ B (0 ≤ i ≤ N), then vi ∈ Ker(T − λI)k and vi 6∈ Ker(T − λI)k−1, for

some λ ∈ Λ, and k ≥ 1. So to each vi ∈ B, we can associate a unique pair (λ, k).

Let us denote such vi = v(λ, k). (Note that by the previous observation, v0 = v(c0, 1)

and vN = v(cN , 1).)

After Theorem 11, we can associate to each v(λ, k) a function hv(λ,k) inH(2, λ, k)∩
S(ϕ). Furthermore, the functions {hv(λ,k)}v∈B, are linearly independent.

For this, observe that since the vectors in B are linearly independent, its extensions

{Yv} are linearly independent in `(Z), and therefore the functions {hv(λ,k)}v∈B are

linearly independent.

One can see that if a finite number of functions are homogeneous for the same λ,
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then a linear combination of them is also homogeneous for the same λ. More precisely,

n∑
i=0

αihi(λ, ki) = h(λ, k), where k = max
i

(ki),

for

(D2 − λI)k h = (D2 − λI)k
n∑

i=0

αihi =
n∑

i=0

αi (D2 − λI)k hi = 0.

Hence, if pT , the characteristic polynomial of T , is factorized as

pT (x) =
∏

λ∈Λ

(x− λ)rλ ,

then dim(Hλ) = rλ, and a basis of Hλ is the set of (2, λ, k)-homogeneous functions

associated to the vectors v ∈ B, such that v = v(λ, k), for some k ≥ 1.

Now consider

H =
⊕

λ∈Λ

Hλ ⊂ S(ϕ).

With the notation above we have: The correspondence

v(λ, k) ∈ B 7−→ hv(λ,k) ∈ H, (2.5.4)

extends linearly to a linear isomorphism τ : CN+1 −→ H.

Corollary 3. We have the following commutative diagram:

CN+1 ←→ H

l ↗

W

where W = span{Yv : v ∈ B}.
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Proof. The extension

v(λ, k) 7−→ Yv(λ,k),

defined earlier, can also be extended to an isomorphism τ̃ : CN+1 −→ W ⊂ `(Z).

Theorem 13. Assume that ϕ has linearly independent integer translates. Let B =

{v0, . . . , vN} be as before, a Jordan basis for T , and let B be the (N + 1) × (N + 1)

matrix that has the vectors vi as rows. Let

φ0(x) =




ϕ(x)

ϕ(x + 1)

...

ϕ(x + N)




and h(x) =




h0(x)

h1(x)

...

hN(x)




,

where hi is the homogeneous function associated to the vector vi. Then we have

(i) h(x) = Bφ0(x) x ∈ [−1, 1].

(ii) φ0(x) = Tφ0(2x) and h(x) = BTB−1h(2x) x ∈ [−1/2, 1/2], where BTB−1 is

in Jordan form.

(iii) There exists a local basis of S(ϕ) consisting of homogeneous functions. More-

over, if ϕ has accuracy κ, this basis can be chosen to contain the polynomials

{1, x, · · · , xκ−1}.

Remark. Note that (ii) is a statement about the refinability of both φ0 and h, where

the scaling matrix of h is the Jordan form of the scaling matrix of φ0.

Proof. Since the support of ϕ is [0, N ], ϕ(x+k) = 0 if k 6∈ {0, 1, . . . , N} for x ∈ [−1, 1].

Then

hi(x) = Y iΦ(x) = viΦ
0(x) x ∈ [−1, 1].



53

So we have

h(x) = Bφ0(x) x ∈ [−1, 1]. (2.5.5)

This shows that for every interval I ⊂ [−1, 1] the functions {ϕ(x), ϕ(x+1), · · · , ϕ(x+

N)} span the same space than the functions {h0, · · · , hN} when restricted to I.

Since {ϕ(x), ϕ(x + 1), · · · , ϕ(x + N − 1)} is a local basis of S(ϕ), if vN has

been chosen to be vN = (0, · · · , 0, 1), using equation (2.5.5) {h0, · · · , hN−1} are

a local basis for S(ϕ). Moreover, if ϕ has accuracy κ ≤ N , then we can choose

v0, · · · , vκ−1 to be the eigenvectors associated to the eigenvalues {1, · · · , 2−κ+1}, and

hence {h0, · · · , hN−1} = {1, x, · · · , xκ−1, hκ, · · · , hN−1}.
This proves (i) and (iii).

For (ii), again using the fact that the support of ϕ is [0, N ], it is easily seen that

if x ∈ [−1
2
, 1

2
] then φ(x) = Tφ(2x). Then we have BΦ0(x) = BTB−1BΦ0(2x), x ∈

[−1
2
, 1

2
].

2.5.2 The D2 operator

Let D2 be the operator defined earlier (D2g)(x) = g(x
2
). Then D2 : S(ϕ) −→ S(ϕ) is

well defined. To see this, consider g ∈ S(ϕ), g(x) = Y φ(x) with Y ∈ `(Z).

t(x) ≡ D2g(x) = g(
x

2
) = Y φ(

x

2
) = Y Lφ(x).

Since Y L ∈ `(Z) we have that t ∈ S(ϕ).

Assume that the translates of ϕ are linearly independent. Then the following

diagram commutes:

S(ϕ)
D2−−−→ S(ϕ)

P
y

yP
`(Z)

L−−−→ `(Z)



54

where P is the function that associates to each element of S(ϕ) its coordinates in

{ϕ(x + k)}. P is a linear isomorphism.

Let now π : `(Z) −→ CN+1 be the projection to the N + 1 first coordinates,

π(Y ) = Y 0 = (Y0, . . . , YN). We then have

S(ϕ)
D2−−−→ S(ϕ)

P
y

yP
`(Z)

L−−−→ `(Z)

π

y
yπ

CN+1 T−−−→ CN+1

where the second diagram also commutes by (2.3.4).

In addition, we have the inclusion

CN+1 E↪→ `(Z)
P−1

−→ S(ϕ),

where E(v) = Yv, which makes the inclusion τ : v 7→ hv defined in (2.5.4) also one to

one.

Let H = τ(CN+1). Then H ⊂ S(ϕ) is a subspace of S(ϕ) that is D2-invariant.

2.5.3 Generalizations

Throughout this work “function” has meant “measurable function”. However, with

the obvious modifications, the results of this chapter hold for the case that ϕ is a

generalized function or distribution. It is interesting to consider the generalization of

the results to arbitrary dilations m ≥ 1 in R, and in higher dimensions with arbitrary

dilation matrices. We will see later that most of the results are still true in these

cases.



55

–1

1

2

3

4

–2 –1 1 2 3 4

Figure 2.1: Daubechies D4 with the homogeneous functions.

2.6 Examples for N = 3

B-spline. The B-spline of degree 2 is the refinable function that satisfies

b(x) =
1

4
b(2x) +

3

4
b(2x− 1) +

3

4
b(2x− 2) +

1

4
b(2x− 3). (2.6.1)

The B-splines are those functions for which the accuracy is maximum and so coincides

with the dimension of the matrix T0. Therefore, in this case, the eigenvalues of T0 are

1 (for the constant functions), 1
2

(for the linear functions), and 1
4

(for the quadratic

functions).

Daubechies D4. Daubechies wavelets are those refinable functions of N coefficients

that are orthogonal and provide the highest order of accuracy possible. (Note that

the splines do not form an orthonormal basis.) The scaling function D4 satisfies:

D4(x) =
1 +

√
3

4
D4(2x) +

3 +
√

3

4
D4(2x− 1) +

3−√3

4
D4(2x− 2) +

1−√3

4
D4(2x− 3).

D4 has accuracy 2 (it reproduces the constant and the linear functions). In this case

the matrix T0 has eigenvalues 1, 1
2

and c0 = 1+
√

3
4

. So a basis for

span{D4(x), D4(x + 1), D4(x + 2)}x∈[0,1]

is also given by span{1, x, hc0(x)}x∈[0,1], where hc0 is the homogeneous function asso-

ciated to c0 (see Figure 2.1).
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Figure 2.2: Scaling function for coefficients 1/3, 2/3, 2/3, 1/3 with Homogeneous func-
tions - h1, h2, h3. h3 is a 2-homogeneous function

(λ, 1)-Homogeneous functions are not enough. In the two previous examples,

we could always obtain a basis of span{f(x), f(x + 1), f(x + 2)}x∈[0,1] just by using

1-homogeneous functions. The following example is to illustrate that even in the

simple case of only 4 coefficients it may be necessary to use homogeneous functions

of order bigger than 1. Consider the function

f(x) =
1

3
f(2x) +

2

3
f(2x− 1) +

2

3
f(2x− 2) +

1

3
f(2x− 3). (2.6.2)

It can be shown that f has accuracy 1, and the eigenvalues of T are {1, 1
3
}. So in this

case, span{f(x), f(x+1), f(x+2)}x∈[0,1] = span{1, h{1/3,1}(x), h{1/3,2}(x)}x∈[0,1], where

h{1/3,1} is a 1-homogeneous function corresponding to the eigenvalue 1/3, and h{1/3,2}

is a 2-homogeneous function corresponding to the eigenvalue 1/3 (see Figure 2.2).



Chapter 3

The Multidimensional Setting

3.1 Introduction

In this chapter we will introduce the notation and concepts that arise if we want to

extend the theory developed so far to the multivariate case with arbitrary dilation.

The 2-refinable or 2-scaling functions we studied before are a special case of what are

called self-similar functions.

Let Γ be a lattice in Zd. A dilation matrix associated to Γ is d× d matrix A such

that

(1) A(Γ) ⊂ Γ and

(2) A is expansive, i.e. every eigenvalue λ of A satisfies |λ| > 1.

We will say that a compactly supported function ϕ : Rd −→ C is refinable with

respect to A and Γ, if it satisfies the dilation equation

ϕ(x) =
∑

k∈Λ

ckϕ(Ax− k), x ∈ Rd, (3.1.1)

for some finite subset Λ ⊂ Γ, and coefficients ck ∈ C.

The shift invariant space (SIS) generated by ϕ is the space

S(ϕ) =

{
f : Rd −→ C : f(x) =

∑

k∈Γ

ykϕ(x + k), yk ∈ C, k ∈ Γ

}
.
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Note again that since ϕ is compactly supported, the right hand side of the previous

equation is well defined.

Definition 13. We say that the Γ translates {ϕ(· − k)}k∈Γ are linearly independent

or globally linearly independent, if for any sequence {αk}k∈Γ in `(Γ),

∑

k∈Γ

αkϕ(· − k) ≡ 0 implies αk = 0.

As in the one-dimensional case, a function that satisfies (3.1.1) and has orthonor-

mal lattice translates is the starting point for the construction of orthogonal wavelet

bases associated with a multiresolution analysis [GM92],[KV92],[Mey92],[CD93]. The

generalized concept of multivariate wavelets is the following.

Definition 14. A collection of wavelets associated with a dilation matrix A is a finite

set of functions ψ1, . . . , ψl in L2(Rd) such that the system

{
ψi

j,k(x) = |detA| j
2 ψ(Ajx− k) : j, k ∈ Γ, 1 ≤ i ≤ l

}
,

forms an orthonormal basis for L2(Rd).

A multiresolution analysis in the general setting is defined as follows.

Definition 15. A multiresolution analysis (MRA) associated with a dilation matrix

A is a sequence of closed subspaces {Vj}j∈Z which satisfy:

(1) Vj ⊂ Vj+1;

(2) f ∈ Vj if and only if f(A·) ∈ Vj+1 for every j ∈ Z;

(3)
⋂

j∈Z Vj = {0};

(4)
⋃

j∈Z Vj = L2(Rd);
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(5) there exist a function ϕ ∈ V0 called the scaling function such that {ϕ(· − k)}k∈Γ

is an orthonormal basis for V0.

We again have that condition (1) implies that ϕ ∈ V0 ⊂ V1, and so by conditions

(2) and (5) we obtain that ϕ is refinable with respect to A and Γ. Analogously to the

one-variable case we define W0 as the orthogonal complement of V0 in V1, and

Wj =
{
f(Aj·) : f ∈ W0

}
.

So in order to have a collection of wavelets associated with the dilation matrix A we

need ψ1, . . . , ψl ∈ W0 such that

{
ψi(· − k) : k ∈ Γ, 1 ≤ i ≤ l

}

is an orthonormal basis for W0.

There exist relatively simple examples on the real line if we take A = m in-

teger. Given V0 and the scaling function of a MRA with dilation 2, we define

Vj = {f(mj·) : f ∈ V0} .

Actually if d > 1, finding wavelets associated to a MRA can be a difficult task.

Gröchenig and Madych [GM92] showed that there exists Haar-type multiresolution

analysis in L2(Rd).

3.2 Attractors, Tiles and Admissible Sets

Let Γ be a lattice and A a dilation matrix associated to Γ. Since Γ = U(Zd), where

U is an invertible matrix, the matrix U−1AU maps Zd into itself. Hence U−1AU is

an integer matrix which has integer determinant, and consequently A has also integer

determinant. The group Γ/A(Γ) has order | det(A)| (see for example [Woj97]). Set

m = | det(A)|,

and let D = {d1, . . . , dm} be a set of representatives of the group Γ/A(Γ) of order m,

i.e. Γ is partitioned into the disjoint cosets

Γi = A(Γ)− di = {Ak − di : k ∈ Γ}.
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We call D a full set of digits, or digit set. For example, a full set of digits of the group

Z/m(Z) (i.e. d = 1, Γ = Z, and A = m) is the set Zm = {0, . . . ,m− 1}.
Assume that γ1, . . . , γd is a set of generators for Γ, that is, γ1, . . . , γd are linearly

independent vectors in Rd and

Γ = {l1γ1 + . . . + ldγd : li ∈ Z}.

The set

P = {x1γ1 + . . . + xdγd : 0 ≤ xi < 1}

is a fundamental domain for the group Rd/Γ, i.e. it is a full set of representatives of

Rd/Γ. This means that Rd is partitioned into the disjoint sets {P + k}k∈Γ. Observe

that there exists am isomorphism between Rd/Γ and the d-dimensional torus, since

[0, 1)d = {U−1x : x ∈ P}.

3.2.1 Attractors

For each k ∈ Γ, we define wk : Rd −→ Rd by

wk(x) = A−1(x + k).

Since A is a dilation matrix, A−1 is contractive for some appropriate norm in Rd, so

each wk is a contractive mapping on Rd for that norm.

The space

H(Rd) = {K ⊂ Rd : K 6= ∅ and K is compact},

is a complete metric space under the Hausdorff metric d defined by

d(B, C) = inf {ε > 0 : B ⊂ Cε and C ⊂ Bε} ,

where

Bε =
{
x ∈ Rd : dist(x,B) < ε

}
.



61

For each finite subset H ⊂ Γ, we define

wH(B) =
⋃

k∈H

wk(B) = A−1(B + H)

It can be shown that wH is a contractive map in H(Rd) (using that each wk is a

contractive mapping on Rd). Consequently, by the Contraction Mapping Theorem,

there exists a unique nonempty compact set KH ⊂ Rd such that

wH(KH) = KH , i.e. KH = A−1(KH + H).

In fact, we can write

KH =
∞∑

j=1

A−j(H) =

{ ∞∑
j=1

A−jhj : hj ∈ H

}
. (3.2.1)

The set KH is called the attractor of the iterated function system (IFS )generated by

{wk}k∈H . [Hut81].

3.2.2 Tiles

Given the digit set D = {d1, . . . , dm}, we consider the attractor

Q = KD =
∞∑

j=1

A−j(D) =

{ ∞∑
j=1

A−jεj : εj ∈ D

}
(3.2.2)

of the iterated system generated by {wd}d∈D. We have that, for γ ∈ Γ

KD+γ =
∞∑

j=1

A−j(D + γ) =
∞∑

j=1

A−jD + (A− I)−1γ = KD + (A− I)−1γ. (3.2.3)

Therefore we can assume without loss of generality that 0 ∈ D, and hence, by equation

(3.2.2), we have 0 ∈ Q.

The set Q satisfies the following properties (see [Ban91] and [GM92]):

a)
⋃

k∈Γ Q + k = Rd.
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b) Q0 6= ∅, Q = Q0, and |∂Q| = 0.

c) |Q ∩ (Q + k)| = 0 for every k ∈ Γ − {0} if and only if |Q| = |P |, where P

is a fundamental domain for Rd/Γ. In this case Q ∩ (Q + k) ⊂ ∂Q for all

k ∈ Γ− {0}.

A longstanding problem was the question of whether for each dilation matrix

A there exists a full set of digits D such that the corresponding attractor Q is a

tile, that is, the Γ- translates {Q + k}k∈Γ cover Rd with overlaps of measure zero

(hence |Q| = |P |). Lagarias and Wang showed that this happens if d = 1, 2, 3 or if

|det(A)| > d (see for [LW95],[LW96], [LW97]). A counterexample was found recently.

In [Pot97] it is shown that for d = 4 and

A =




0 1 0 0

0 0 1 0

0 0 −1 2

−1 0 −1 1




(3.2.4)

there does not exist a set of digits D such that Q = KD is a tile.

In [GM92] it is proved that if Q is a tile then the function χQ generates a mul-

tiresolution analysis of L2(Rd) (the Haar-type MRA mentioned before).

We will assume in this work that Q is a tile.

Examples An example of a tile in R2 is the set known as the ”twin dragon” obtained

if we choose the dilation matrix

A =

(
1 −1

1 1

)
(3.2.5)

(which maps the lattice Γ = Z2 into itself via an expansion by
√

2 and a rotation

by π
4
), and the digit set D = {(0, 0), (1, 0)}. This tile has a fractal boundary. Its

characteristic function is the solution to the refinement equation with Λ = {d1, d2}
and cd1 = cd2 = 1 (see Figure 3.1).
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Figure 3.1: Twin Dragon Attractor
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Figure 3.2: Parallelogram Attractor

For the dilation matrix

A′ =

(
1 1

1 −1

)
(3.2.6)

and D = {(0, 0), (1, 0)}, the tile is the parallelogram with vertices

{(0, 0), (1, 0), (2, 1), (1, 1)}

(see Figure 3.2).

The sublattices A(Z2) and A′(Z2) coincide. These two matrices are known as the

quincunx dilation matrices and the sublattice as the quincunx lattice of Z2.
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3.2.3 Admissible sets

Let H be a fixed finite subset of Γ

Definition 16. We say that a set Ω ⊂ Γ is H-admissible if

A−1(Ω + H) ∩ Γ ⊂ Ω, (3.2.7)

which is equivalent to say that wH(Ω) ∩ Γ ⊂ Ω.

Remark. If H ⊂ H
′
and Ω is H

′
-admissible, then Ω is H-admissible.

We immediately have the following Proposition:

Proposition 12. If ΩH is defined as ΩH = KH ∩Γ, then ΩH is an H-admissible set.

Proof. Since ΩH ⊂ KH , we have

wH(ΩH) ∩ Γ ⊂ wH(KH) ∩ Γ = ΩH ,

which shows the desired property.

Let `(Γ) be the space of all sequences defined in Γ, and let L be the infinite matrix

associated to the refinement equation (3.1.1)

Lij =





cAi−j for Ai− j ∈ Λ

0 otherwise .
(3.2.8)

In this work we will mainly be interested in Λ-admissible sets. The reason for that

is that if Ω ⊂ Γ is Λ-admissible, then the space `(Ω) = {Y ∈ `(Γ) : yk = 0, k 6∈ Ω} is

right invariant under L.

We will need to “extend” finite vectors to infinite ones with certain prescribed

properties, and such that they coincide with the finite one if restricted to a finite

subset of the lattice. Therefore, the following result which is due to [CHM00] (not

exactly as we state it here), will be very useful.
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Proposition 13. For each finite H ⊂ Γ, there exists a strictly increasing sequence

{Ωn}n≥0 of H-admissible sets whose union is Γ, such that Ω0 = ΩH and

wH(Ωn+1) ∩ Γ ⊂ Ωn (3.2.9)

for all n ≥ 0.

Proof. Let ‖ · ‖ be any norm in Rd such that ‖A−1‖ < 1 and fix ε > 0, such that

H ⊂ B(ε), where B(ε) = {x ∈ Rd : ‖x‖ ≤ ε}, the closed ball with radius ε centered

at the origin. Now set

δ0 =
ε

‖A−1‖−1 − 1
. (3.2.10)

Choose δ > δ0 in such a way that ΩH ⊂ B(δ) and set F0 = B(δ). Since δ > δ0, we

have ‖A−1‖(δ + ε) < δ. Hence,

wH(F0) = A−1(B(δ) + H) ⊂ A−1(B(δ + ε)) ⊂ B(‖A−1‖(δ + ε)) ⊂ B(δ) = F0.

We define recursively Fj+1 = wH(Fj) for j ≥ 0. It is easy to see, by induction, that

Fj+1 ⊂ Fj for every j. Since F0 is compact, the Contraction Mapping Theorem tells

us that
⋂

Fj = KH . It follows that Fj ∩ Γ = ΩH for every j large enough, and

consequently {Fj ∩ Γ} is a finite collection of sets. Let

ΩH = Ω0 ( Ω1 ( · · · ( ΩN = F0 ∩ Γ

be the distinct elements of this collection and fix 0 ≤ n < N . Since there exists a

j ∈ N such that

Ωn = Fj ∩ Γ ( Fj−1 ∩ Γ = Ωn+1,



66

we have

wH(Ωn+1) ∩ Γ ⊂ wH(Fj−1) ∩ Γ = Fj ∩ Γ = Ωn. (3.2.11)

So inclusion (3.2.9) holds for n = 0, 1, . . . , N − 1.

Now we set δN = δ and define recursively, δn+1 = δn

‖A−1‖ − ε for n ≥ N . The

sequence of numbers δN < δN+1 < · · · is increasing. Define Ωn = B(δn) ∩ Γ for

n > N . If Ωn+1 = Ωn, we skip that one and continue until Ωn+k 6= Ωn. In this way

we obtain a strictly increasing sequence of sets {Ωk}k≥N . Combining with the sets

Ω0, . . . , ΩN constructed previously, we have a strictly increasing sequence {Ωn}n≥0.

The inclusion

wH(Ωn+1) ∩ Γ ⊂ Ωn (3.2.12)

holds for every n ∈ N0, since for n ≥ N , again there exist a j ∈ N such that

Ωn = B(δj) ∩ Γ ( B(δj+1) ∩ Γ = Ωn+1,

and then

wH(Ωn+1) = A−1(Ωn+1 + H) ⊂ B(‖A−1‖(δj+1 + ε)) = B(δj). (3.2.13)

We already showed that Ω0 = ΩH is H-admissible. Since Ωn ⊂ Ωn+1, it follows from

(3.2.12) that Ωn+1 is H-admissible for every n ∈ N0, which completes the proof.

Corollary 4. If H ( H ′ ⊂ Γ, then there exists n0 ≥ 1 and a strictly increasing

sequence {Ωn}n≥0 of H-admissible sets whose union is Γ, such that

Ω0 = ΩH , Ωn0 = ΩH′ , and wH(Ωn+1) ∩ Γ ⊂ Ωn for all n ≥ 0.
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Proof. First construct the sequence {Ω′
n} associated to H ′ using the previous propo-

sition. Note that by Remark 3.2.3 the sets Ω′
n are also H-admissible.

Using the notation of the previous proof, let j0 be such that Fj0 ∩ Γ = ΩH′ . Now

consider the sequence {Gj}j≥j0 , where Gj0 = Fj0 and Gj+1 = wH(Gj), for j ≥ j0.

Since

Gj0+1 = wH(Gj0) = A−1(Fj0 + H) ⊆ A−1(Fj0 + H ′) = wH′(Fj0) ⊆ Fj0 = Gj0 ,

then Gj+1 ⊆ Gj and therefore ∩j≥j0Gj = KH and hence, {Gj ∩ Γ} is again a finite

collection of sets of say n0 + 1 elements. Consider now the distinct elements

ΩH = Ω0 ( Ω1 ( · · · ( Ωn0 = Fj0 ∩ Γ = ΩH′ ,

and let

Ωn0+k = Ω′
k.

This new sequence satisfies all the desired properties.

For a more complete treatment of admissible sets see [CHM04] and also Jia [Jia98].

3.3 Accuracy in higher dimensions

We will use the notation of [CHM98].

Let x = (x1, . . . , xd)
t ∈ Rd. With the standard multi-index notation we write

xα = xα1
1 · · · xαd

d , where α = (α1, . . . , αd) with each αi a nonnegative integer. Denote

by

|α| = α1 + · · ·+ αd

the degree of α. The number of multi-indices α of degree s is

ds =

(
s + d− 1

d− 1

)
.
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We write β ≤ α if βi ≤ αi for 1 ≤ i ≤ d, and we set

(
α

β

)
=






α1

β1


 · · ·


αd

βd


 if β ≤ α

0 if βi > αi for some i.

Definition 17. The accuracy of ϕ is the highest degree κ such that all multivariate

polynomials q with degree (q) < κ are in S(ϕ).

It can be shown that if ϕ is a compactly supported solution of the refinement

equation (3.1.1) then Supp(ϕ) ⊂ KΛ, where the set KΛ is the particular case taking

H = Λ in (3.2.1). As a consequence, any such ϕ has necessarily finite accuracy (see

for [CHM04]).

For each integer s ≥ 0, we define the vector valued function X[s] : Rd −→ Cds by

X[s](x) = [xα]|α|=s, x ∈ Rd.

The ordering of the multi-indices α of degree s is not important as long as the same

ordering is used throughout.

We will now look at the behavior of X[s](x) under the multiplication by an arbi-

trary d× d matrix Z with scalar entries zi,j. If |α| = s, then (Zx)α is not in general

a monomial, except for the special case A = cId. Instead, it is a new polynomial of

degree s, that is still homogeneous, but possibly involves all terms xβ with |β| = s.

Let Z[s] = [zs
α,β]|α|=s,|β|=s be the ds×ds matrix whose scalar entries zs

α,β are defined

by the equation

∑

|β|=s

zs
α,βxβ = (Zx)α =

d∏
i=1

(zi,1x1 + · · ·+ zi,dxd)
αi .

The matrices Z[s] and their properties have been intensively studied in [CHM98],

[CHM99].

Examples If Id denotes the identity matrix in Rd, we have that

(Id)[s] = Ids .
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For d = 1 (that is, Z is a scalar) holds

Z[s] = Zs, X[s](x) = xs.

For d = 2, let A′ be the quincunx matrix defined before

A′ =

(
1 1

1 −1

)

and consider the monomial x(1,2) = x1x
2
2. We have

A′x =

(
1 1

1 −1

)(
x1

x2

)
=

(
x1 + x2

x1 − x2

)
,

so

(A′x)(1,2) =

(
x1 + x2

x1 − x2

)(1,2)

= (x1 + x2)(x1 − x2)
2

= x3
1 − x2

1x2 − x1x
2
2 + x3

2

= x(3,0) − x(2,1) − x(1,2) + x(0,3).

As we can see (A′x)(1,2) is not a monomial anymore. The vector of all monomials of

degree 3 is

X[3] =




x3
1

x2
1x2

x1x
2
2

x3
2




.
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Dilation by A′ gives

X[3](A
′x) =




(x1 + x2)
3

(x1 + x2)
2(x1 − x2)

(x1 + x2)(x1 − x2)
2

(x1 − x2)
3




=




1 3 3 1

1 1 −1 −1

1 −1 −1 1

1 −3 3 −1







x3
1

x2
1x2

x1x
2
2

x3
2




= A′
[3]X[3](x).

This is analogous to the one-dimensional equation (2x)3 = 23x3, except that now the

factor A′
[3] is not a scalar but a matrix.

In general, dilation of X[s](x) by a matrix Z obeys the rule

X[s](Zx) = Z[s]X[s](x), (3.3.1)

since

X[s](Zx) = [(Zx)α]|α|=s

= [zs
α,β]|α|=s,|β|=s[x

α]|α|=s

= Z[s]X[s](x).

Hence, for s = 1 and any matrix Z we have

Z[1]X[1](x) = X[1](Zx) =




(Zx)1

...

(Zx)d




= Z




x1

...

xd


 = ZX[1],



71

and thus Z[1] = Z.

If Z and W are two matrices,

(ZW )[s]X[s](x) = X[s](ZWx) = Z[s]X[s](Wx) = Z[s]W[s]X[s](x).

Hence

(ZW )[s] = Z[s]W[s]

and consequently, if Z is invertible,

(Z−1)[s] = (Z[s])
−1.

The following generalization of Proposition 2 states that if a compactly supported

ϕ with independent translates has accuracy κ, then the coefficients used to reconstruct

polynomials from translates of ϕ are also polynomials evaluated at lattice points.

Proposition 14. ([CHM98]) Assume that ϕ : Rd −→ C is compactly supported and

that the translates of ϕ along Γ are linearly independent. If ϕ has accuracy κ, and q is

any polynomial with deg(q) < κ, then there exists a unique polynomial uq : Rd −→ C

with deg(uq) = deg(q) such that

q(x) =
∑

k∈Γ

uq(k)ϕ(x + k).

The next result for the multivariate case is analogous to Proposition 5. It pro-

vides sufficient conditions for a refinable function to have accuracy κ, which are also

necessary in the case that ϕ has independent translates.

Theorem 14. ([CHM98]) Assume that ϕ : Rd −→ C satisfies the refinement equa-

tion (3.1.1), and that ϕ is integrable and compactly supported. Consider the following

statements.

(I) ϕ has accuracy κ
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(II) There exists a collection of scalars {vα : 0 ≤ |α| < κ} such that

(i) v0ϕ̂(0) 6= 0, and

(ii) Y[s] = A[s]Y[s]L for 0 ≤ s < κ,

where Y[s] = (y[s](k))k∈Γ is the row vector of evaluations at lattice points of the column

vector of polynomials y[s] : Rd −→ Cds×1

y[s](x) =
∑

0≤β≤α

(−1)|α|−|β|




α

β


 vβxα−β.

Then we have the following.

(a) If the translates of ϕ along Γ are linearly independent, then statement (I) implies

statement (II).

(b) Statement (II) implies statement (I).



Chapter 4

Homogeneous Functions in Rd

4.1 Introduction

In chapter 2 we considered a function ϕ : R −→ C supported in [0, N ] that satisfies

the 2-scale refinement equation (1.3.4). We showed that to each vector from a basis

that gives the Jordan of the matrix T it is possible to associate a function (λ, r)-

homogeneous in S(ϕ) that satisfies

(D2 − λI)rh = 0.

These functions are linearly independent and provide a local basis which contains all

the monomials xk within the accuracy. The generator ϕ can be completely obtained

from this local basis.

In this chapter we extend this study to Rd, with a general dilation matrix A and

an arbitrary full rank lattice Γ ⊂ Rd, i.e. we consider a compactly supported function

ϕ : Rd −→ C which satisfies the refinement equation (3.1.1)

ϕ(x) =
∑

k∈Λ

ckϕ(Ax− k), ck ∈ C.

Analogously to the one-dimensional case, we will consider functions that satisfy

the relation λh(Ax) = h(x) (see section 4.3). Here h : Rd → C, A is a d × d

invertible matrix and λ ∈ C. More in general, we will consider functions satisfying

that (DA − λI)rh = 0. To avoid any ambiguity, we will say that functions satisfying

73
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this equation are in the class H(A, λ, r), in place to use the word homogeneous, since

we will also be dealing with polynomials that are homogeneous in the standard way,

(i.e. a polynomial p of degree s is homogeneous, if p(ax) = asp(x), x ∈ Rd ∀a ∈ R).

Note however, that with this definition, for d = 2 the monomial h(x1, x2) = x1x2 will

be in H(A, λ, 1) only if A is diagonal and λ = 1
A11A22

.

Let Q ⊂ Rd be a tile for Γ. The dimension of the space

Q(ϕ) = {f/Q : Q −→ C : f/Q(x) = f(x) ∀x ∈ Q, f ∈ S(ϕ)} (4.1.1)

will be called the local dimension of S(ϕ) and a basis of Q(ϕ) a local basis of S(ϕ).

In one dimension, the accuracy of ϕ was immediately related to spectral properties

of the finite submatrix T of L = [cAi−j]i,j∈Γ. In higher dimension the situation is much

more complex (see [CHM98], [CHM99], [CHM00]). The difficulty here is to find the

appropriate matrix T . Since we are in Rd, the indexes vary along a d-dimensional

lattice, so to write L as a matrix, one has to order the points. Which order is

not important, as long as it is always the same. In the one dimensional case, it was

straightforward to look at a submatrix of L that was intimately related to the support

of ϕ. In the higher dimensional setting, it may be a difficult problem to determine

the support exactly. This is one of the problems one has to overcome to solve the

question raised here.

However, analogous results to the one-dimensional case could be obtained. We

show that that local basis of S(ϕ) can be obtained using solely functions from

H(A, λ, r), where λ is an eigenvalue for a finite submatrix of L. Hence each function

in S(ϕ) can be written locally as a linear combination of the translates of functions

in H(A, λ, r).

We further show that if ϕ has accuracy κ, the space of all the functions in the

class H(A, λ, r) in S(ϕ) contains αk =
∑κ−1

s=0 ds linearly independent polynomials.
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4.2 The spectrum of L

Let us now return to the refinement equation (3.1.1), ϕ(x) =
∑

k∈Λ ckϕ(Ax − k). If

we consider the infinite column vector

Φ(x) = {ϕ(x + k)}k∈Γ, (4.2.1)

this equation becomes, analogously to the one-dimensional case

Φ(x) = LΦ(Ax), (4.2.2)

since, for i ∈ Γ

[LΦ(Ax)]k =
∑
j∈Γ

cAk−jϕ(Ax + j)

=
∑

l∈Γ

clϕ(Ax + Ak − l)

= ϕ(x + k) = [Φ(x)]k.

As already mentioned, the set KΛ, which is the particular case taking H = Λ in (3.2.1),

satisfies that if ϕ is a compactly supported solution of the refinement equation (3.1.1),

then Supp(ϕ) ⊂ KΛ (see[CHM04]). Also, by Proposition 12, the set ΩΛ = KΛ ∩ Γ is

Λ-admissible. However, it is not necessarily true that Supp ϕ ⊂ ∪λ∈ΩΛ
Q + λ.

We will therefore consider the bigger set

Ω′ = KΛ′ ∩ Γ,

where

Λ′ = Λ−D ⊃ Λ.

In [CHM04] it was shown that the translations of Q using all elements of Ω′ cover the

support of the compactly solution to (3.1.1), more precisely,

KΛ ⊂ Q + Ω′.

Moreover, Ω′ is Λ′ admissible, and hence also Λ-admissible. As noted earlier, the

Λ-admissibility of Ω′ guarantees that the space `(Ω′) = {Y ∈ `(Γ) : yk = 0, k 6∈ Ω′} is

right invariant under L.

Let now {Ωn}n≥0 be a sequence of subsets of Γ that satisfies:
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• Ω0 = ΩΛ

• For i ≥ 0, Ωi ( Ωi+1, and ∪iΩi = Γ

• For i ≥ 0 Ωi are Λ-admissible and wΛ(Ωi+1) ∩ Γ ⊆ Ωi.

• Ωn0 = Ω′

• For i ≥ n0, Ωi are Λ′-admissible and wΛ′(Ωi+1) ∩ Γ ⊆ Ωi.

These sets exist by Proposition 13 and its Corollary 4.

We denote by {Tn}n≥0 the finite submatrices of L

Tn = [cAi−j]i,j∈Ωn . (4.2.3)

Since Ωn ⊂ Ωn+1, if the order in Γ is appropriately chosen, actually Tn is a submatrix

of Tn+1, for each n.

Let Y = {yk}k∈Γ ∈ `(Γ) be an infinite row vector, and Pn : `(Γ) −→ C1×Ωn , n ≥ 0

be the restriction mappings defined by

PnY = {yk}k∈Ωn . (4.2.4)

We consider L− λI : `(Γ) −→ `(Γ) the left-multiplication operator who maps Y −→
Y (L− λI) (where I is the identity operator acting on `(Γ)). By abuse of notation, I

will be any identity operator, no matter on which space it is acting on.

Note. In what follows we will use powers of the matrix (L − λI). Note that these

powers are point-wise well defined, since the rows of the matrix L have a finite number

of non-zero elements.

The next proposition shows the relation between the spectrum of L and Tn:

Proposition 15. Consider λ ∈ C, r ∈ N and n ≥ 0.
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(1) Let Y ∈ `(Γ). We have

Y ∈ Ker(L− λI)r implies PnY ∈ Ker(Tn − λI)r. (4.2.5)

Conversely,

(2) If v ∈ Ker(Tn − λI)r and λ 6= 0, then we can extend v to an infinite row vector

Yv (i.e. Yv ∈ `(Γ) and PnYv = v), so that Yv ∈ Ker(L− λI)r.

(3) If λ 6= 0, Y 6= 0 and Y ∈ Ker(L−λI)r, then PnY 6= 0. In particular the extension

in (2) of v to Yv is unique.

Proof.

(1) First note that j ∈ Ωn and Ai−j ∈ Λ implies i ∈ Ωn. For, in this case, Ai ∈ Ωn+Λ

and since Ωn is a Λ-admissible set it follows that i ∈ A−1(Ωn+Λ)∩Γ ⊂ Ωn. Hence

j ∈ Ωn, i 6∈ Ωn =⇒ [L− λI]ij = 0. (4.2.6)

Moreover, we will show by induction on r that,

if j ∈ Ωn and i 6∈ Ωn, then [(L− λI)r]ij = 0. (4.2.7)

ii

(a) The case r = 1 is simply (4.2.6), since we assume that ck = 0 if k 6∈ Λ.

(b) Suppose now that (4.2.7) holds for some fixed r ≥ 1. Using (a), for j ∈ Ωn

we have

[(L− λI)r+1]ij =
∑

k∈Γ

[(L− λI)r]ik[L− λI]kj

=
∑

k∈Ωn

[(L− λI)r]ik[L− λI]kj.

Now, if i 6∈ Ωn, the inductive hypothesis yields that the last sum is zero.
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Therefore, the statement is true for all r ∈ N.

To prove the first part of the Proposition, let Y ∈ `(Γ) and Y ∈ Ker(L− λI)r.

Applying the preceding equality, we obtain for each j ∈ Ωn

[(PnY )(Tn − λI)r]j =
∑
i∈Ωn

yi[(L− λI)r]ij

=
∑
i∈Γ

yi[(L− λI)r]ij

= [Y (L− λI)r]j = 0.

This completes the proof of (1).

(2) Assume that v ∈ C1×Ωn , λ 6= 0 and v ∈ Ker(Tn − λI)r. We want to construct a

vector Yv ∈ `(Γ) such that PnYv = v and Yv ∈ Ker(L− λI)r.

We now prove by induction on r that,

for j ∈ Ωk+1, i 6∈ Ωk, k ≥ 0, [(L− λI)r]ij =





0 for i 6= j

(−λ)r for i = j.

(4.2.8)

(a) Case r = 1. If i were such that Ai−j ∈ Λ, then i ∈ A−1(Ωk+1 +Λ)∩Γ ⊂ Ωk.

Hence, if i 6∈ Ωk then Ai− j 6∈ Λ and so Lij = 0, and therefore [L−λI]ij = 0

for i 6= j, and [(L− λI)]jj = −λ.

(b) Assume that (4.2.8) holds for r ≥ 1. Then for j ∈ Ωk+1 and i 6∈ Ωk, k ≥ 0,

we have

[(L− λI)r+1]ij =
∑

`∈Γ

[(L− λI)r]i`[L− λI]`j

=
∑

` 6∈Ωk

[(L− λI)r]i`[L− λI]`j,
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since by the inductive hypothesis [(L− λI)r]i` = 0 if ` ∈ Ωk ⊂ Ωk+1 and

i 6∈ Ωk. It follows using the case r = 1 that

[(L− λI)r+1]ij =





0 for i 6= j

(−λ)r+1 for i = j,

(4.2.9)

which proves (4.2.8), for every r ∈ N.

Define now yj = vj for j ∈ Ωn, and define recursively, for j 6∈ Ωn,

yj =
−1

(−λ)r

∑
i∈Ωk

yi[(L− λI)r]ij, j ∈ Ωk+1\Ωk, k ≥ n. (4.2.10)

The vector Yv = {yj}j∈Γ is an extension of v. To see that Yv ∈ Ker(L − λI)r,

since (Y (L− λI)r)j =
∑

i∈Γ yi[(L− λI)r]ij, we have:

• If j ∈ Ωn, then by (4.2.6)

∑
i∈Γ

yi[(L− λI)r]ij =
∑
i∈Ωn

yi[(Tn − λI)r]ij

=
∑
i∈Ωn

vi[(Tn − λI)r]ij = 0. (4.2.11)

• If j 6∈ Ωn, then there exists k ∈ N0, k ≥ n such that j ∈ Ωk+1\Ωk. Therefore,

∑
i∈Γ

yi[(L− λI)r]ij =
∑
i∈Ωk

yi[(L− λI)r]ij +
∑

i 6∈Ωk

yi[(L− λI)r]ij

=
∑
i∈Ωk

yi[(L− λI)r]ij + yj(−λ)r)

= 0. (by (4.2.10))

(3) For the last part of the Proposition, assume that λ 6= 0, Y 6= 0, and Y ∈ Ker(L−
λI)r. To show that PnY 6= 0, take k0 ∈ Γ such that yk0 6= 0. If k0 ∈ Ωn, there is
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nothing to prove. Otherwise, let

t0 = min{k ∈ N : k0 ∈ Ωk}. (4.2.12)

Since Y (L− λI)r = 0,

∑
i∈Γ

yi[(L− λI)r]ik0
=

∑
i∈Ωt0−1

yi[(L− λI)r]ik0
+

∑

i6∈Ωt0−1

yi[(L− λI)r]ik0

=
∑

i∈Ωt0−1

yi[(L− λI)r]ik0
+ yk0(−λ)r = 0.

So, there exist k1 ∈ Ωk, 0 < k < t0, such that yk1 6= 0. If k1 ∈ Ωn, we can stop

here. If not, we repeat the procedure until kj ∈ Ωn.

Remark.

• Since the previous Proposition is true for any set of the sequence Ωn, in fact

the smallest matrix T0 already has all the spectral information of L.

• The extension of the vectors of Ker(T0 − λI)r to vectors of Ker(L − λI)r will

produce intermediate vectors of Ker(Tn − λI)r, by the construction of the sets

Ωn produced in Corollary 4.

For the special case λ = 0, under some mild assumptions, we have an additional

property.

Lemma 1. If {ϕ(· − k)}k∈Γ are linearly independent, then the operator L : `(Γ) −→
`(Γ), Y 7−→ Y L is one to one.
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Proof. Let Y L = 0. Then

Y Φ(x) = Y LΦ(Ax) = 0. (4.2.13)

Since {ϕ(·−k)}k∈Γ are linearly independent, Y Φ = 0 implies Y = 0, so Ker(L) = {0}.

4.3 The class H(A, λ, r)

Assume Y ∈ Ker(L− λI)r. If we define h(x) = Y Φ(x), we have

0 = Y (L− λI)rΦ(x) = Y

(
r∑

k=0

(
r

k

)
(−λ)r−kLk

)
Φ(x)

= Y

(
r∑

k=0

(
r

k

)
(−λ)r−kΦ(A−kx)

)
,

=
r∑

k=0

(
r

k

)
(−λ)kh(Ak−rx).

This leads to the following definition:

Definition 18. A function h is in the class H(A, λ, r), if it satisfies

r∑

k=0




r

k


 (−λ)kh(Ak−rx) = 0 for every x ∈ Rd. (4.3.1)

If we define the operator DA by DA(f)(x) = f(A−1x), then h is in H(A, λ, r) if

and only if

(DA − λI)rh = 0.

A function in H(A, λ, r) will also be said to be of class H(A, λ, r).

Note that if h ∈ H(A, λ, r), then h ∈ H(A, λ, s) for every s ≥ r.
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Proposition 16. Let V ⊂ Rd be a bounded set such that 0 ∈ V 0 and V ⊂ AV . Set

C = AV \ V and a ∈ Z. Let h be a function of class H(A, λ, r). Then the values of

h in Rd \ {0} can be determined from its values in any set of the type:

C̃ =
a+r⋃

k=a

AkC.

Furthermore, if λ 6= 1 then h(0) = 0.

Proof. Since h ∈ H(A, λ, r) we get that

h(x) = −
r∑

k=1




r

k


 (−λ)kh(Akx) and (4.3.2)

h(x) = −
r∑

k=1




r

k


 (−λ)−kh(A−kx). (4.3.3)

On the other side, it has been proved in [ACM04] that the set C satisfies:

a)
⋃

j∈ZAjC = Rd\{0}

b) The sets {AjC}
j∈Z are pairwise disjoint.

So, from (4.3.2) we deduce that the values of h in Aa−1C can be obtained from the

values in C̃, and analogously, from (4.3.3) the values of h in Aa+r+1C can be obtained

from the values in C̃.

Then we proceed inductively to obtain all the values in Rd \ {0}. Finally, it is

immediate from the definition, that h(0) = 0 when λ 6= 1.

Proposition 17. Suppose {ϕ(· − k)}k∈Γ are linearly independent. Let f1, . . . , fl ∈
S(ϕ), fi = Y iΦ, where Y i ∈ `(Γ) . Then f1, . . . , fl are linearly independent functions

if and only if Y 1, . . . , Y l are linearly independent in `(Γ).
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Proof. Since

l∑
i=1

αifi =
l∑

i=1

αi(Y
iΦ) =

(
l∑

i=1

αiY
i

)
Φ, (4.3.4)

and the translates of ϕ along the lattice Γ are linearly independent, we conclude that

∑l
i=1 αifi ≡ 0 if and only if (

∑l
i=1 αiY

i) = 0, which leads to the desired result.

Remark. Let E : S(ϕ) −→ `(Γ) be the function that associates to each element of

S(ϕ), its coordinates in {ϕ(x + k)}. Proposition 17 shows that E is an isomorphism.

Proposition 18. Assume that {ϕ(· − k)}k∈Γ are linearly independent.

(1) If h ∈ S(ϕ), h = Y Φ and h ∈ H(A, λ, r), then Y ∈ Ker(L − λI)r and PnY ∈
Ker(Tn − λI)r.

Conversely

(2) Assume that λ 6= 0, v ∈ Ker(Tn − λI)r and that Yv is the unique extension of v

such that Yv ∈ Ker(L − λI)r (see Proposition 15). Then the function h = YvΦ

belongs to H(A, λ, r).

Proof. If h = Y Φ is of class H(A, λ, r), then we have

0 =
r∑

k=0




r

k


 (−λ)kh(Ak−rx)

=
r∑

k=0




r

k


 (−λ)kY Lr−kΦ(x)

= Y (L− λI)r Φ(x).

Since the Γ translates of ϕ are linearly independent, it follows that Y (L− λI)r = 0,

and consequently, by Proposition 15, PnY ∈ Ker(Tn − λI)r.
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To prove the second part, note that if v = 0, the statement is trivially true. If

λ 6= 0 and v ∈ Ker(Tn − λI)r and v 6= 0, then, by Proposition 15 we can extend v to

a vector Yv ∈ Ker(L− λI)r, and so the function h = YvΦ is of class H(A, λ, r).

4.3.1 Jordan decomposition of Tn

Let mn = #Ωn. Consider the set ∆n of eigenvalues of Tn and the associated Jordan

basis Bn = {v1, . . . , vmn} of Cmn . For each vi ∈ Bn we have that vi ∈ Ker(Tn − λI)k

and vi 6∈ Ker(Tn − λI)k−1 for some λ ∈ ∆n, and for some k ≥ 1. So to each vi

there corresponds a unique pair (λ, k). Note however that to two different vis in the

basis there could correspond the same pair. For each vector of Bn, set vi = vi(λ, k).

If λ 6= 0, by Proposition 18 we can associate to each vi(λ, k) a function hvi(λ,k) in

H(A, λ, k) ∩ S(ϕ). Since the vectors vi(λ, k) are linearly independent, its extensions

{Yvi
} are linearly independent in `(Γ), so the functions {hvi(λ,k)}vi∈Bn,λ6=0 are linearly

independent.

If h1, . . . , hl are of classH(A, λ, ki), for some ki, i = 1, . . . , l, then a linear combina-

tion of them is of class H(A, λ, k), with k = max1≤i≤l(ki), for if h =
∑l

i=0 αihi(λ, ki),

then

(DA − λI)k h = (DA − λI)k
l∑

i=0

αihi =
l∑

i=0

αi (DA − λI)k hi = 0,

and consequently, h ∈ H(A, λ, k).

Let

χTn(x) =
∏

λ∈∆n

(x− λ)rλ (4.3.5)

be the characteristic polynomial of Tn, and set

Hλ(ϕ) = {h ∈ S(ϕ) : h ∈ H(A, λ, k), for some k ≥ 1 }, λ ∈ ∆n.

Then, if λ 6= 0, using Proposition 18, dim(Hλ(ϕ)) = rλ and a basis for Hλ(ϕ) are

the functions of class H(A, λ, k) corresponding to the vectors vi ∈ Bn, such that
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vi = vi(λ, k), for some k ≥ 1. So, if we denote

H =
⊕

λ∈∆n,λ6=0

Hλ(ϕ) ⊂ S(ϕ),

then, dim(H) = mn− r0, where r0 is the dimension of the subspace generated by the

vectors of the Jordan basis associated to λ = 0. (Note that mn =
∑

λ∈∆n,λ6=0 rλ.)

In order to be able to include the case λ = 0 in our analysis, we need to consider

the case in which Supp ϕ ⊂ ∪ω∈ΩnQ + ω. This will guarantee, that (except for a

possible set of measure zero), ϕ(x + k) = 0 if k 6∈ Ωn.

4.3.2 The case in which Ωn contains Supp(ϕ)

If we recall the choice of the sequence {Ωn} at the beginning of section 4.2, it is clear,

that for n ≥ n0, we have that Supp ϕ ⊆ ∪ω∈ΩnQ + ω, and hence, the local dimension

of S(ϕ) is dim span{ϕ(x + k)}k∈Ωn .

In that case for x ∈ Q◦, λ 6= 0, hvi(λ,k)(x) =
∑

l∈Ωn
[vi(λ, k)]lϕ(x+l) since ϕ(x+j) =

0 if j 6∈ Ωn.

Moreover for λ = 0 we have the following Proposition:

Proposition 19. Let n ≥ n0, and let r0 be the power of x in χTn (c.f. (4.3.5)).

Consider vi = vi(0, r), with r ≤ r0. Define h(x) =
∑

k∈Ωn
[vi]kϕ(x + k). Then h ≡ 0

a.e. on Q.

We postpone the proof to remark that with this Proposition, if n ≥ n0, and Bn is

(as before) the matrix whose rows are the vectors of the Jordan basis for Tn, then




hv1(λ,k)(x)
...

hvmn (λ,k)(x)


 = BnPnΦ(x) a.e. x ∈ Q. (4.3.6)

Hence, since the matrix Bn is invertible the local dimension of S(ϕ) coincides with

dim span{hvi(λ,k)(x), x ∈ Q, vi ∈ Bn}, which is equal to the dimension of H.
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So the local dimension of S(ϕ) can be found by finding the Jordan form of any of

the finite matrices Tn as long as n ≥ n0.

Moreover, any function of the shift-invariant space S(ϕ) can be written as a linear

combination of the lattice translates of the homogeneous functions. Namely, let f ∈
S(ϕ), then

f(x) =
∑
γ∈Γ

αγϕ(x + γ) x ∈ Rd, αγ ∈ C. (4.3.7)

If we call g : Rn −→ Cmn and h : Rn −→ Cmn the functions

g(x) = PnΦ(x)χQ(x) and h(x) =




hv1(λ,k)(x)
...

hvmn(λ,k)(x)


 χQ(x), (4.3.8)

and for γ ∈ Γ we denote by αγ = (αi1+γ, . . . , αimn+γ) the vector of length mn whose

indices are in Ωn + γ (here Ωn = {i1, . . . , imn}), then (4.3.7) becomes

f(x) =
∑
γ∈Γ

αγg(x + γ), (4.3.9)

and using (4.3.6) we obtain

f(x) =
∑
γ∈Γ

βγh(x + γ) where βγ = αγB−1
n . (4.3.10)

We will now prove Proposition 19. For this, let r0 be the power of x in χTn

(c.f. (4.3.5)). Choose m ≥ n large enough such that

Ωm ⊃ Ωn0 −
(
D + AD + · · ·+ Ar0−1D

)
. (4.3.11)

Define the matrices [(Tk)d]ij = cAi−j+d, i, j ∈ Ωk, for any k ∈ N, and d ∈ D. It is

shown in [CHM04], that if x ∈ Q, for any r ≥ 1 there exists yr ∈ Q, γr ∈ Γ, such that

x = A−r(yr + γr) with γr = dr + Adr−1 + · · ·+ Ar−1d1 (4.3.12)

where di ∈ D, 1 ≤ i ≤ r. Therefore, if k ≥ n0 and Pk is as in (4.2.4)

PkΦ(x) = (Tk)d1 . . . (Tk)drPkΦ(Arx− γr) x ∈ Q. (4.3.13)

For convenience, we will call Ω = Ωm.



87

Lemma 2. With the previous notation, if r ≤ r0, then for k ∈ Ω and j ∈ Ωn0, we

have

[T r
m]k(j−γr) = [(Tm)d1 . . . (Tm)dr ]kj ,

where γr ∈ D + AD + · · ·+ Ar−1D.

Remark. Note that the preceding equation does not state that both matrices are

equal.

Proof. We will prove the Lemma by induction on r. Let γr be as in (4.3.12).

• The case r = 1 is trivial by the definition of (Tm)d1 .

• r − 1 =⇒ r Observe first that by the choice of Ω,

[Tm]u(j−γr) = [(Tm)dr ]u(j−Aγr−1) , u ∈ Ω, j ∈ Ωn0 .

Now

[T r
m]k(j−γr) =

∑
u∈Ω

[
T r−1

m

]
ku

[Tm]u(j−γr)

=
∑
u∈Ω

[
T r−1

m

]
ku

[(Tm)dr ]u(j−Aγr−1)

=
∑

u∈Ωn0−γr−1

[
T r−1

m

]
ku

[(Tm)dr ]u(j−Aγr−1) , (4.3.14)

where the last equality follows from the Λ′-admissibility of Ωn0 . But

[(Tm)dr ]u(j−Aγr−1) = [(Tm)dr ](u+γr−1)j , u ∈ Ωn0 − γr−1, j ∈ Ωn0 ,
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and therefore, using induction and the Λ′-admissibility of Ωn0 , (4.3.14) becomes

[T r
m]k(j−γr) =

∑
u∈Ωn0−γr−1

[
T r−1

m

]
ku

[(Tm)dr ](u+γr−1)j

=
∑

`∈Ωn0

[
T r−1

m

]
k(`−γr−1)

[(Tm)dr ]`j

=
∑

`∈Ωn0

[
(Tm)d1 . . . (Tm)dr−1

]
k`

[(Tm)dr ]`j

=
∑

`∈Ω

[
(Tm)d1 . . . (Tm)dr−1

]
k`

[(Tm)dr ]`j

which completes the inductive step.

We can now prove Proposition 19.

Proof. Let Ω = Ωm be as before, and let x ∈ Q \ (∂Q ∪⋃r
i=1 A−i∂Q + A−iD + · · ·+

A−1D). Note that with this choice of x, Arx − γr ∈ Q◦, and therefore, if u 6∈ Ωn0 ,

then ϕ(Arx− γr + u) = 0.

Using this, together with the previous lemma, and equation (4.3.13) for k = m,

we have

[T r
mPmΦ(Arx)]k =

∑
j∈Ω

[T r
m]kj ϕ(Arx + j)

=
∑
j∈Ω

[T r
m]k(j−γr) ϕ(Arx− γr + j)

=
∑
j∈Ω

[(Tm)d1 . . . (Tm)dr ]kj ϕ(Arx− γr + j)

= ϕ(x + k).
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Therefore, for x ∈ Q \ (∂Q ∪⋃r
i=1 A−i∂Q + A−iD + · · ·+ A−1D)

h(x) =
∑

k∈Ωn

[vi]kϕ(x + k)

=
∑

k∈Ωn

[vi]k
∑
j∈Ω

[T r
m]kj ϕ(Arx + j)

=
∑
j∈Ω

( ∑

k∈Ωn

[vi]k [T r
m]kj

)
ϕ(Arx + j) = 0

4.4 Accuracy and homogeneous polynomials

In this section we will relate the previously obtained results, to the accuracy of a

refinable function. If A is the dilation matrix corresponding to the refinement equa-

tion (3.1.1), by (3.3.1)

X[s](A
−1x) = A−1

[s]X[s](x).

If Js is the Jordan form of A−1
[s], then there exists an invertible ds × ds matrix Qs

such that QsA
−1

[s]Q
−1
s = Js. So we have that

QsX[s](A
−1x) = (QsA

−1
[s]Q

−1
s )QsX[s](x).

Denote by Q̃s(x) = QsX[s](x). Observe that Q̃s(x) =
(
Q̃1

s(x), . . . , Q̃ds
s (x)

)t

is a

column vector of polynomials of degree s that are homogeneous. By the previous

equation, we have that

Q̃s(A
−1x) = JsQ̃s(x).
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Let β be an eigenvalue of A−1
[s] and B the Jordan block of order ` associated to β,

i.e.,

B =




β 0 . . . 0 0

1 β . . . 0 0

. . . . . . .

0 0 . . . β 0

0 0 . . . 1 β




∈ C`×`.

We write Q̃B(x) for the vector that is the restriction of Q̃s(x) to the coordinates that

correspond to the block B, i.e, if j, j + 1, . . . , j + ` − 1 are the columns of B in Js

then Q̃B(x) =
(
Q̃j

s(x), . . . , Q̃j+`−1
s (x)

)t

. Since

Q̃s(A
−1x) = JsQ̃s(x),

we have

Q̃B(A−1x) = BQ̃B(x). (4.4.1)

This relation will enable us to show how, under the hypothesis of accuracy, we can

relate the Jordan form of A−1
[s] to the one of Tn. This relation also gives a necessary

condition for ϕ to have accuracy κ.

Proposition 20. Assume that ϕ has accuracy κ and that {ϕ(· − k)}k∈Γ are linearly

independent. Let s < κ. If β is an eigenvalue of A−1
[s] and B is a Jordan block of

A−1
[s] associated to β of order `, then Tn has a Jordan block associated to β of order

`′ with `′ ≥ `.

Proof. Consider Q̃B(x) = (Q̃1
B(x), . . . , Q̃`

B(x)). It follows from (4.4.1) that

Q̃1
B(A−1x) = βQ̃1

B(x)

Q̃2
B(A−1x) = Q̃1

B(x) + βQ̃2
B(x)

...
...

Q̃`
B(A−1x) = Q̃`−1

B (x) + βQ̃`
B(x).

(4.4.2)
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Since Q̃i
B(x) ∈ S(ϕ) for 1 ≤ i ≤ `, we can write

Q̃i
B(x) = Y iΦ(x),

for some infinite column vector Y i. From (4.4.2) we have for 2 ≤ i ≤ `,

Y iΦ(A−1x) = Y i−1Φ(x) + βY iΦ(x),

which implies

Y iLΦ(x)− βY iΦ(x) = Y i−1Φ(x).

So, the linear independence of {ϕ(· − k)}k∈Γ yields

Y i(L− βI) = Y i−1. (4.4.3)

Since Q̃`
B(x) ∈ H(A, β, `), by Proposition 18 we have that v = PnY ` ∈ Ker(Tn−βI)`.

Consider the vectors v1 = PnY
`, v2 = (PnY

`)(Tn− βI), . . . , v` = (PnY
`)(Tn− βI)`−1.

Let us show that v1, . . . , v` are linearly independent: Assume that

∑̀
i=1

αivi = 0. (4.4.4)

Since
(∑̀

i=1

αivi

)
(Tn − βI)`−1 =

(
l∑

i=1

αiv(Tn − βI)i−1

)
(Tn − βI)`−1

= (
∑̀
i=1

αiv(Tn − βI)`+i−2

= α1v(Tn − βI)`−1,

it follows from (4.4.4) that

α1v(Tn − βI)`−1 = 0.
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Since for every Y ∈ `(Γ), r ∈ N we have that

(PnY )(Tn − βI)r = Pn(Y (L− βI)r),

part 3 of Proposition 15 tells us that v(Tn − βI)`−1 6= 0. Hence α1 = 0. If we

multiply each side of (4.4.4) by (Tn − βI)`−2 we see that α2 = 0. Analogously

α3 = . . . = α` = 0 and therefore v1, . . . , v` are linearly independent. This implies

that we have a Jordan block of Tn associated to β of order at least `. We can repeat

this procedure for every Jordan block B1, . . . , Bk of A−1
[s] associated to β of respective

orders l1 ≥ l2 ≥ . . . ≥ lk. Let, for 1 ≤ j ≤ k

Q̃
lj
Bj

(x) = Y
lj
j Φ(x).

All we have to prove now is that

PnY l1
1 , (PnY l1

1 )(Tn − βI), . . . , (PnY l1
1 )(Tn − βI)l1−1,

...

PnY lk
k , (PnY

lk
k )(Tn − βI), . . . , (PnY

lk
k )(Tn − βI)lk−1

are linearly independent. Let

α1
1PnY

l1
1 + α2

1(PnY
l1
1 )(Tn − βI)+ . . . + αl1

1 (PnY
l1
1 )(Tn − βI)l1−1+

...

α1
kPnY lk

k + α2
k(PnY lk

k )(Tn − βI)+ . . . + αlk
k (PnY lk

k )(Tn − βI)lk−1 = 0

(4.4.5)

Let B1, . . . , Bt the Jordan blocks of order l1. If we multiply each side of the previous

equation by (Tn − βI)l1−1, we obtain

t∑
i=1

α1
i (PnY

l1
i )(Tn − βI)l1−1 = 0, i.e.
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Pn

(
t∑

i=1

α1
i Y

l1
i (L− βI)l1−1

)
= 0.

Since
∑t

i=1 α1
i Y

l1
i (L− βI)l1−1 ∈ Ker(L− βI), part 3 of Proposition 15 implies that

t∑
i=1

α1
i Y

l1
i (L− βI)l1−1 = 0.

So, since by (4.4.3) and Proposition 17, Y l1
1 (L − βI)l1−1, . . . , Y l1

t (L − βI)l1−1 are

linearly independent, it follows that α1
1 = . . . = α1

t = 0. Repeating a similar argument

for every lj, 2 ≤ j ≤ k we can see that every scalar of (4.4.5) is equal to zero. This

completes the proof.

Let us now recall (4.4.1), and notice that

Q̃B(A−1x)− βQ̃B(x) = (B − βI)Q̃B(x).

Equivalently, if we recall the definition of DA of the previous section, DA(f)(x) =

f(A−1x), we have

(DA − βI)Q̃B(x) = (B − βI)Q̃B(x),

where the product on the left side is understood coordinatewise. Moreover, for k ∈ N,

(B − βI)kQ̃B(x) =
k∑

i=0

(
k

i

)
(−β)k−iBiQ̃B(x)

=
k∑

i=0

(
k

i

)
(−β)k−iDi

AQ̃B(x)

= (DA − βI)kQ̃B(x).

In particular, since (B − βI) is nilpotent of order `, we have

(DA − βI)`Q̃B(x) = (B − βI)`Q̃B(x) = 0.

Hence, all entries of Q̃B(x) belong to H(A, β, `). We can repeat this argument for

every Jordan block associated to β and every eigenvalue β of A−1
[s]. It follows that
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each component of Q̃s(x) belongs to H(A, λ, r) for some eigenvalue λ of A−1
[s], and

some r ∈ N. Since Qs is an invertible matrix and the monomials xα with |α| = s

are linearly independent, it follows that Q̃1
s(x), . . . , Q̃ds

s (x) are linearly independent,

and all homogeneous polynomials q(x) = q(x1, . . . , xn) with deg(q) = s, are a linear

combination of Q̃1
s(x), . . . , Q̃ds

s (x).

We can now state the next theorem:

Theorem 15. Assume that ϕ has accuracy κ and that {ϕ(· − k)}k∈Γ are linearly

independent. If q is a homogeneous polynomial in Rd with deg(q) < κ, then q ∈ H =

⊕
λ∈∆n

Hλ(ϕ), where ∆n is the set of eigenvalues of Tn.

Proof. Let s < κ, and let Q̃s and Q̃B be as before. Since ϕ has accuracy κ, and s < κ,

all components of Q̃B (in fact all components of Q̃s) are in S(ϕ), and satisfy

Q̃B(A−1x) =




β 0 . . . 0 0

1 β . . . 0 0

. . . . . . .

0 0 . . . β 0

0 0 . . . 1 β




Q̃B(x). (4.4.6)

If we denote by Q̃1
B(x) the first coordinate of Q̃B(x) we see that Q̃1

B(x) is actually of

class H(A, β, 1). Hence, by Proposition 18, Q̃1
B(x) = Y Φ, where PnY ∈ Ker(Tn−βI).

This means that β is also an eigenvalue of Tn and the theorem follows.

The following corollary imposes conditions on the eigenvalues of Tn, under the

hypothesis of accuracy.

Corollary 5. Assume that ϕ has accuracy κ and that {ϕ(· − k)}k∈Γ are linearly

independent. Let λ1, . . . , λd be the eigenvalues of A (counted with multiplicity). If

η = ( 1
λ1

, . . . , 1
λd

), then [ηα]|α|=s are eigenvalues of Tn, for s = 0, 1, . . . , κ− 1.
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Proof. Let λ1, . . . , λd be the eigenvalues of A. By [CHM98], [λα]|α|=s are the eigen-

values of A[s]. Also, recall that since A is invertible, A[s] is also invertible and

(A[s])
−1 = A−1

[s]. So the eigenvalues of A−1
[s] are [ηα]|α|=s. We have already proved

that if ϕ has accuracy κ and s < κ, then every eigenvalue of A−1
[s] is also an eigenvalue

of Tn. So the result follows.



Chapter 5

Sampling in Shift Invariant Spaces

5.1 Introduction

Given a function f which is defined on the real line. What information of f can be

obtained if we only know its values on a discrete set? This question only has sense if

we restrict ourselves to an adequate class of functions.

Let F be a space of functions defined on R, and X ⊂ R a discrete subset. The

main goal of the sampling theory is to recover a function from its values {f(xk)}k∈Z.

If the elements of X form a regular grid (i.e. they are equidistant), the sampling is

uniform.

Let σ > 0. The space of σ band-limited functions is defined by

Pσ =
{

f ∈ L2(R) : Supp(f̂) ⊂ [−σ, σ]
}

.

The space P1/2 is called the Paley-Wiener space.

The classical result in sampling theory is the Whittaker-Shannon-Theorem which

states that every function f ∈ Pσ can be recovered from its samples f( k
2σ

)
k∈Z by the

following formula

f(x) =
∑

k∈Z
f(

k

2σ
)
2σ sin(π(2σx− k))

π(2σx− k)
,

where the series on the right hand side converges uniformly and in L2(R).

96
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The sampling theory developed into different directions (see for [BF00]). Lately

there have been discovered deep connections with wavelet theory, frames and repro-

ductive Hilbert spaces.

The Paley-Wiener space mentioned before is a refinable SIS space generated by the

function sinc(x) = sin πx
πx

, which is the scaling function associated to the MRA given

in (1.3.6). Sampling theory in spaces other than the space of band-limited functions

recently aroused considerable interest. This is in part because the band-limitedness

assumption is not very realistic in many applications. Besides, the sinc function has

slow decay which translates in poor reconstruction.

Aldroubi and Gröchenig studied sampling in spline-type spaces which are refinable

SIS generated by the spline of degree n ([AG00]).

In [Wal92], Walter extended the classical sampling theorem to wavelet subspaces

generated by scaling functions which satisfy certain conditions.

Let us recall that a SIS in L2(R) is a subspace of L2(R), such that it is invariant

under integer translations.

Given functions f1, f2, . . . , fn ∈ L2(R), we will denote by S(f1, . . . , fn), the SIS

generated by the integer translates of these functions, i.e. the L2(R)- closure of the

span of the set {fi(· − k) : i = 1, ..., n, k ∈ Z}.

Definition 19. A sequence {φk}k∈Z is a frame for a separable Hilbert space H if

there exist positive constants A and B that satisfy

A‖f‖2 ≤
∑

k∈Z
|〈f, φk〉|2 ≤ B‖f‖2 ∀f ∈ H.

Note. If A = B, we say that the frame is tight, and if {φk}k∈Z satisfies the right

inequality in the above formula, it is called a Bessel sequence.

When the set {fi(· − k) : i = 1, ..., n, k ∈ Z}, forms a frame of S(f1, . . . , fn), we

will write sometimes V (f1, . . . , fn) instead of S(f1, . . . , fn), to stress this fact. It is

known that every space S(f1, . . . , fn) contains functions g1, . . . , gl, with l ≤ n, such

that S(f1, . . . , fn) = V (g1, . . . , gl).
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The integer translates of the function sinc(x) = sin πx
πx

are an orthonormal base

of P1/2, in particular a frame. This leads to consider sampling in the more general

setting of spaces generated by functions which integer translates form a frame.

A sampling space is a space V (ϕ) where the generator has special properties which

we will state below.

Our main goal in this chapter is to find characterizations of functions of L2(R)

that belong to a general sampling space V (ϕ) and to study the structure of V (ϕ).

5.2 Definitions and Preliminaries

We will consider the following definition of sampling spaces, that appears in [SZ04],

[SZ99].

Definition 20. A closed subspace V (ϕ) of L2(R) is called a sampling space if there

exists a function s such that:

(1) The translates {s(· − k)}
k∈Z are a frame for the space V (ϕ).

(2) For every sequence {ck}k∈Z ∈ `2(Z) the series
∑

k∈Z cks(·−k) converges pointwise

to a continuous function.

(3) For every f ∈ V (ϕ),

f(x) =
∑

k∈Z
f(k)s(x− k), (5.2.1)

where the convergence is in L2(R) and uniform in R.

The function s is called the sampling function of V (ϕ).

Recall that the grammian of a function ϕ ∈ L2(R) is the function Gϕ(ω) =
∑

k∈Z |ϕ̂(ω + k)|2. We will denote by Eϕ the set Eϕ = {w ∈ R : Gϕ(ω) > 0}. The set

Eϕ is periodic i.e. Eϕ = Eϕ + k for every integer k.
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For a shift invariant space S(φ) it is known ([dBVR94a]) that the integer translates

of the function ϕ defined by

ϕ̂(ω) =





φ̂(ω)

Gφ(ω)
1
2

for ω ∈ Eφ

0 otherwise,

(5.2.2)

form a tight frame of S(φ), in particular S(φ) = V (ϕ).

A basic tool in the analysis of sampling and signal processing is the Zak transform.

Definition 21. For f ∈ L2(R) the Zak transform of f is the function on R2:

Zf (x, ω) =
∑

k∈Z
f(x + k)e−2πikω.

For properties of the Zak transform see [Jan88].

Sun and Zhou gave the following characterization of the sampling spaces defined

above:

Proposition 21. ([SZ99]) Let V (ϕ) be a shift invariant space. Then the following

two assertions are equivalent:

(i) The space V (ϕ) is a sampling space

(ii) The function ϕ is continuous,
∑

k∈Z |ϕ(x− k)|2 is bounded on R and

AχEϕ(ω) ≤ |Zϕ(0, ω)| ≤ BχEϕ(ω) a.e. ω

for some constants A,B > 0.

The next result can be found in [BL98].
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Proposition 22. The sequence {φ(· − k)}
k∈Z is a frame for the closure in L2(R) of

the space it spans if and only if there exist positive constants A and B that satisfy

A ≤ Gφ(ω) ≤ B a.e. ω ∈ Eφ. (5.2.3)

Note. Recall that {φ(· − k)}
k∈Z is a Riesz basis for the closure in L2(R) of the space

it spans if and only if equation (5.2.3) holds a.e. ω ∈ R.

It is known that if the sequence {φk}k∈Z is a frame for the Hilbert space H, then

f ∈ H if and only if f =
∑

k∈Z ckφk, for some ck ∈ `2(Z) with convergence in L2(R).

The following is an important characterization for a PSI of L2(R) in terms of the

Fourier transform of the generator.

Theorem 16. ([dBVR94a]) Let S(φ) be a shift invariant space. A function f is in

S(φ) if and only if f̂ = rφ̂ for some periodic function r of period one, with rφ̂ ∈ L2(R).

The analogous result for FSI has been proved in [dBVR94b].

Notation. Let f, g ∈ L2(R). We denote

[f, g](x) =
∑

k∈Z
f(x + k)g(x + k).

Observe that Gf (ω) = [f̂ , f̂ ](ω).

Since the Fourier transform preserves the scalar product, if V is a closed subspace

of L2(R) and PV is its orthogonal projection, we have that P̂V (f) = PV̂ (f̂), where

V̂ = {f̂ : f ∈ V }.
In [dBVR94a] this formula for the orthogonal projection was obtained:

P
Ŝ(ϕ)

(f̂)(ω) = r(ω)ϕ̂(ω),

where

r(ω) =





[f̂ ,ϕ̂](ω)
[ϕ̂,ϕ̂](ω)

for ω ∈ Eϕ

0 otherwise.
(5.2.4)
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5.3 Functions in Sampling Spaces

In this section we will first show that if a function f belongs to a sampling space,

then S(f) is a sampling space itself. We will see that the sampling function of S(f) is

the orthogonal projection, onto S(f), of the sampling function of the original space.

From here, using the characterization of sampling spaces given by Sun and Zhou in

[SZ99], we obtain necessary and sufficient conditions for a function f to belong to a

sampling space.

We will need the following results.

Proposition 23. ([SZ04]) Let V (ϕ) be a sampling space with sampling function s.

Then there exists a sampling space V (ϕ̃) with sampling function s̃ such that:

(1) The space V (ϕ) is a subspace of V (ϕ̃)

(2) The sequence {s̃(· − k)}
k∈Z is a Riesz basis for V (ϕ̃).

Lemma 3. Assume V (ϕ) ⊂ L2(R) is a shift invariant space and ϕ is a continuous

function. Let φ ∈ V (ϕ) such that {φ(·−k)}
k∈Z is a Bessel sequence. If

∑
k∈Z |ϕ(x+

k)|2 < L < +∞ ∀x ∈ R, then
∑

k∈Z |φ(x + k)|2 < L′ < +∞ ∀x ∈ R.

The proof of this lemma is in [SZ99] for the case that {φ(· − k)}
k∈Z is a frame of

V (ϕ), but the same proof works if it is only a Bessel sequence.

Lemma 4. ([Sun05b]) If ϕ ∈ L2(R) is continuous and
∑

k∈Z |ϕ(x+k)|2 < L < +∞,

then Zϕ(x, ω) = 0 ∀x ∈ R, a.e. ω ∈ R \ Eϕ.

Remark. Let V (ϕ) be a sampling space and s its sampling function. For f ∈ V (ϕ),

f̂(ω) = Zf (0, ω)ŝ(ω) a.e. ω ∈ R.

Therefore we obtain

Gf (ω) = |Zf (0, ω)|2Gs(ω) a.e. ω ∈ R.
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To see this, observe that

f(x) =
∑

k∈Z
f(k)s(x− k),

with uniform convergence and in L2(R), so

f̂(ω) = (
∑

k∈Z
f(k)e−2πikω)ŝ(ω) = Zf (0, ω)ŝ(ω) a.e. ω ∈ R,

and then ∑

k

|f̂(ω + k)|2 = |Zf (0, ω)|2
∑

k

|ŝ(ω + k)|2 a.e. ω ∈ R,

hence

Gf (ω) = |Zf (0, ω)|2Gs(ω) a.e. ω ∈ R.

We obtained the following properties:

Lemma 5. Let V (ϕ) be a sampling space and s its sampling function. Then we have:

i) If φ1, φ2 ∈ L2(R) and S(φ1) = S(φ2), then Eφ1 = Eφ2 (up to a set of measure

zero). In particular if {φ(· − k)}
k∈Z is a frame for V (ϕ) then Eϕ = Eφ.

ii) The sampling function satisfies Zs(0, ω) = χEs(ω) a.e.ω ∈ R.

iii) For f ∈ V (ϕ), Ef = {ω ∈ R : Zf (0, ω) 6= 0} (up to a set of measure zero).

iv) The sampling function s is unique, up to a set of measure zero, and satisfies

ŝ(ω) = φ̂(ω)
Zφ(0,ω)

χEϕ(ω) for each generator φ whose translates form a frame of

V (ϕ).

Proof. i) If {φ(· − k)}
k∈Z is a frame for V (ϕ) then there exists {ck}k∈Z ∈ `2(Z) such

that

ϕ(x) =
∑

k∈Z
ckφ(x− k).
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So Gϕ(ω) = |(∑
k∈Z cke

−2πikω)|2Gφ(ω) a.e. ω ∈ R, which yields Eϕ ⊆ Eφ (up to a

set of measure zero). Similarly we obtain the other inclusion. Now, if φ1, φ2 generate

the same SIS, we can modify these generators as in (5.2.2) to obtain tight frames,

and the result follows.

ii) Since we have ŝ(ω+k) = Zs(0, ω)ŝ(ω+k) a.e. ω ∈ R, it follows that Zs(0, ω) =

1 for almost every ω ∈ Es. On the other side, by Proposition 21, Zs(0, ω) = 0 for

almost every ω /∈ Es.

iii) We have

Gf (ω) = |Zf (0, ω)|2Gs(ω) a.e. ω ∈ R.

Using Proposition 23 we can assume that {s(·−k)}
k∈Z is a Riesz basis of the sampling

space, so Gs(ω) 6= 0 a.e. ω ∈ R, which implies iii).

iv) Let φ be a generator whose translates form a frame of V (ϕ). We have φ̂(ω) =

Zφ(0, ω)ŝ(ω) a.e. ω ∈ R. By i), Eϕ = Eφ, so using iii),

ŝ(ω) =
φ̂(ω)

Zφ(0, ω)
a.e. ω ∈ Eϕ

and the result follows.

Now we are ready to proof the following theorem.

Theorem 17. Let V (ϕ) be a sampling space with sampling function s and f ∈ L2(R).

If f ∈ V (ϕ) then S(f) is a sampling space with sampling function sf = PS(f)(s), where

PS(f)(s) is the orthogonal projection of s onto S(f). In this case ŝf = ŝχEf
.

Proof. For f ∈ V (ϕ), we define

ĥ(ω) =





f̂(ω)
Zf (0,ω)

for ω ∈ Ef

0 otherwise.

(5.3.1)
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Observe that by Lemma 5 iv) the function h is well defined. Using Theorem 16, it is

easy to see that S(f) = S(h). To show that {h(· − k)}
k∈Z is a frame sequence, first

observe that Eh = Ef , so for almost every ω ∈ Eh,

Gh(ω) =
Gf (ω)

|Zf (0, ω)|2 = Gs(ω),

which is uniformly bounded below and above.

Now we will see that S(f) = V (h) is a sampling space:

Since h ∈ S(f) ⊆ V (ϕ), h is continuous. By Proposition 21 and Lemma 3,

∑
k∈Z |h(x + k)|2 is uniformly bounded in R. So by Lemma 4, Zh(0, ω) = 0 a.e. ω ∈

R \ Eh. Furthermore, for almost every ω ∈ Eh,

Gh(ω) = |Zh(0, ω)|2Gs(ω).

Since Eh ⊆ Es (up to a set of measure zero), we can write for almost all ω ∈ Eh

Gh(ω)

Gs(ω)
= |Zh(0, ω)|2,

and using that Gh(ω) and Gs(ω) are both bounded above and below in Eh, we have

that |Zh(0, ω)| is also bounded above and below. Hence, using Proposition 21, we

can conclude that S(f) is a sampling space. Moreover, h is its sampling function.

To see this, it suffices to prove that for every g ∈ S(f), ĝ(ω) = Zg(0, ω)ĥ(ω). But for

g ∈ S(f) ⊆ V (ϕ),

ĝ(ω) = Zg(0, ω)ŝ(ω),

and since ĥ(ω) = ŝ(ω) for ω ∈ Eϕ, we have that ĝ(ω) = Zg(0, ω)ĥ(ω) for almost

every ω ∈ Ef . On the other hand, since g ∈ S(f), there exists a 1-periodic function

r, such that ĝ(ω) = r(ω)f̂(ω), and therefore the equality also holds for almost every

ω ∈ R \ Ef .
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Hence

ŝf (ω) = ĥ(ω) = ŝ(ω)χEf
(ω) a.e. ω ∈ R.

Finally we prove that ĥ is actually the projection of s onto S(f), i.e. ĥ = P̂S(f)(s).

For almost every ω ∈ Ef ,

P̂S(f)(s)(ω) =
[ŝ, f̂ ](ω)

[f̂ , f̂ ](ω)
f̂(ω) =

[ŝ, Zf (0, ·)ŝ](ω)

[f̂ , f̂ ](ω)
Zf (0, ω)ĥ(ω) = |Zf (0, ω)|2 [ŝ, ŝ](ω)

[f̂ , f̂ ](ω)
ĥ(ω) = ĥ(ω),

and for almost every ω ∈ R \ Ef , we have

P̂S(f)(s)(ω) = ĥ(ω) = 0.

As a consequence, by Proposition 21, we have the following necessary and sufficient

conditions for a function to belong to a sampling space.

Theorem 18. Assume f ∈ L2(R). Then f belongs to a sampling space if and only if

the function h defined by ĥ = f̂

Gf
1
2

in Ef and zero otherwise, satisfies:

(1) h is continuous.

(2) The function
∑

k∈Z |h(x− k)|2 is bounded on R.

(3) There exist constants A, B > 0 such that

AχEf
(ω) ≤ |Zh(0, ω)| ≤ BχEf

(ω) a.e. ω.
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5.4 Decompositions of Sampling Spaces

The results of the preceding section can now be applied to the problem of determining

sets.

Given a set F = {f1, . . . , fm} ⊂ L2(R) where fi are functions that belong to

an unknown shift invariant space V (ϕ), it is an important matter to be able to

decide whether this set F is sufficient to determine V (ϕ). This leads to the concept

of determining sets of shift invariant spaces. In [ACH+04], the problem is solved if

{ϕ(· − k)}
k∈Z is a Riesz basis of V (ϕ).

We study the problem for the case that V (ϕ) is a sampling space. We give nec-

essary and sufficient conditions on F , needed for determining the unknown sampling

space V (ϕ). Moreover we decompose the sampling space V (ϕ) as the sum of the sam-

pling spaces S(fi). In particular the sampling function s of V (ϕ) can be recovered

from the functions fi.

Definition 22. Let V (ϕ) be a shift invariant space. The set F = {f1, . . . , fm} ⊂
V (ϕ) is a determining set for V (ϕ) if for any g ∈ V (ϕ) there exist α1, . . . , αm 1-

periodic measurable functions such that:

ĝ = α1f̂1 + · · ·+ αmf̂m.

Theorem 19. Assume V (ϕ) is a sampling space. Then F = {f1, . . . , fm} ⊂ V (ϕ) is

a determining set for V (ϕ) if and only if the set

Z =

(
m⋃

i=1

Efi

)
4Eϕ

has Lebesgue measure zero (where 4 denotes the symmetric difference of sets1).

Moreover, if F is a determining set for V (ϕ), then

V (ϕ) = S(f1) + · · ·+ S(fm).

1A4B = (A \B) ∪ (B \A).
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Proof. Let s be the sampling function of V (ϕ).

Assume that F = {f1, . . . , fm} ⊂ V (ϕ) is a determining set for V (ϕ). Recall that by

Lemma 5, Eϕ = Es (up to a set of measure zero). Since

Gfi
(ω) = |Zfi

(0, ω)|2Gs(ω) a.e. ω ∈ R,

for almost every ω ∈ Efi
, ω belongs to Eϕ, so the set ∪m

i=1Efi
\ Eϕ has Lebesgue

measure zero.

On the other side there exist α1, . . . , αm 1-periodic measurable functions such that

ϕ̂(ω) =
m∑

i=1

αi(ω)f̂i(ω),

so

Gϕ(ω) =
∑

k∈Z
|ϕ̂(ω + k)|2 ≤

∑

k∈Z

(
m∑

i=1

|αi(ω)f̂i(ω + k)|
)2

.

Hence the set Eϕ \ ∪m
i=1Efi

has Lebesgue measure zero.

To prove the reciprocal it suffices to show that there exist α1, . . . , αm 1-periodic

measurable functions such that

ŝ(ω) =
m∑

i=1

αi(ω)f̂i(ω). (5.4.1)

Define the sets Bi inductively by B1 = Ef1 , and for 2 ≤ i ≤ m, Bi = Efi
\⋃i−1

j=1 Bj.

For 1 ≤ i ≤ m set

αi(ω) :=





1
Zfi

(0,ω)
for ω ∈ Bi

0 otherwise.

(5.4.2)

Since ŝ(ω) = αi(ω)f̂i(ω) a.e. ω ∈ Bi, equation (5.4.1) holds.

Finally we will see that V (ϕ) = S(f1) + · · ·+ S(fm). Since

∫

R
|αi(ω)|2|f̂i(ω)|2dω =

∫

Bi

|ŝ(ω)|2dω < +∞,
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it follows that αif̂i ∈ S(fi) (see Theorem 16), so V (ϕ) ⊆ S(f1) + · · ·+ S(fm).

To show the other inclusion, let g ∈ S(f1) + · · · + S(fm). Then there exist

β1, . . . , βm 1-periodic measurable functions such that βif̂i ∈ L2(R), 1 ≤ i ≤ m,

and ĝ = β1f̂1 + · · · + βmf̂m. So, using that f̂i(ω) = Zfi
(0, ω)ŝ(ω), we have that

ĝ(ω) = (β1(ω)Zf1(0, ω)+· · ·+βm(ω)Zfm(0, ω))ŝ(ω). Since ĝ ∈ L2(R) and β1Zf1(0, ω)+

· · · + βmZfm(0, ω) is a 1-periodic function, applying again Theorem 16, g belongs to

V (ϕ).

From Theorem 17 we can also obtain the following decomposition of a sampling

space.

Proposition 24. Let V (ϕ) be a sampling space and let {Ej}j∈N be a partition of

Eϕ in periodic measurable sets (i.e. Eϕ =
⋃

j Ej, |Ej ∩ El| = 0 for all j 6= l, and

Ej + k = Ej for every integer k).

Define for j ∈ N, ϕj by ϕ̂j = ϕ̂χEj
. Then we have:

V (ϕ) =
⊕

j∈N
V (ϕj),

where V (ϕj) is a sampling space for each j. Furthermore, if s is the sampling function

of V (ϕ) then the Fourier transform of the sampling function sj of V (ϕj) is ŝj = ŝχEj
.

Proof. Since ϕ satisfies that there exist A,B ≥ 0 such that

A ≤ Gϕ(ω) ≤ B a.e. ω ∈ Eϕ,

then each ϕj has the same property in Ej. We conclude that {ϕj(· − k)}
k∈Z is

a frame sequence. Furthermore, note that ϕj ∈ V (ϕ) since χEj
is 1-periodic and

χEj
ϕ̂ ∈ L2(R). Hence, by by Theorem 17, V (ϕj) is a sampling space.
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Let us show now that V (ϕ) =
⊕

j V (ϕj). Assume that f ∈ V (ϕ). Then f̂ = mf ϕ̂

with mf ∈ L2[0, 1).

So, f̂ =
∑

j(mfχEj
)(χEj

ϕ̂) =
∑

j mjϕ̂j, where mj = mfχEj
∈ L2[0, 1). Then

f̂j := mjϕ̂j ∈ V (ϕj). That is f =
∑

j fj, fj ∈ V (ϕj).

On the other side, assume that gj ∈ V (ϕj) and
∑

j gj = 0. Write ĝj = θjϕ̂j with

θj ∈ L2[0, 1).

Suppose that for some r ∈ N, the set M := {ω : ĝr(ω) 6= 0} has positive Lebesgue

measure. Since M ⊂ Er we have that for almost all ω ∈ M,

0 =
∑

j

ĝj(ω) = ĝr(ω) = θr(ω)ϕ̂r(ω).

The fact that ω ∈ Er implies that for some integer k, ϕ̂(ω + k) 6= 0.

Then we can write 0 = θr(ω + k)ϕ̂r(ω + k) = θr(ω)ϕ̂r(ω + k).

So, θr(ω) = 0. That is θr ≡ 0 a.e. in M, which is a contradiction. We conclude

that gj ≡ 0 for all j.

Since ϕj ∈ V (ϕ), by Theorem 17, ŝj = ŝχEϕj
= ŝχEj

and this completes the proof.

Example We will give an example of the decomposition mentioned in Proposition

24.

The sampling space generated by ϕ(x) = sin πx
πx

is the Paley Wiener Space P1/2. In

this case Eϕ = R. Let {aj}j∈N ⊂ R>0 a strictly decreasing sequence such that a1 = 1
2

and limj→+∞ aj = 0.

Set Ej = ([−aj,−aj+1] ∪ [aj+1, aj]) + Z. Following Proposition 24, it is clear that

{Ej}j∈N is a partition of Eϕ in periodic measurable sets and

V (ϕ) =
⊕

j∈N
V (ϕj),
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where ϕ̂j(ω) = χ[−aj ,−aj+1]∪[aj+1,aj ](ω). In this way we produce a decomposition in

sampling spaces corresponding to different frequency bands. Notice that when aj =
1
2j , we obtain the wavelet subspaces for the Shannon wavelet.

Remark. We observe that it is natural to consider the sampling problem on a general

lattice aZ + b, with a ∈ R>0, b ∈ R. For this, let T : L2(R) → L2(R) be an unitary

operator and V = V (ϕ) a sampling space. Set W = T (V ).

Consider g ∈ W and call f = T −1g. Then f =
∑

k f(k)tkϕ, where tk is

the translation operator tkh(x) = h(x − k). So, g = T f =
∑

k f(k)(T ◦ tk)ϕ =

∑
k T −1(T f)(k)(T ◦ tk)ϕ. That is

g =
∑

k

(T −1g)(k)(T ◦ tk)ϕ, ∀g ∈ W.

Let us now define the unitary dilation operator Da by Daf(x) =
√

af(ax) and T
by T = Da◦tb. Denote φ = T ϕ. Then, due to the commutation relation Datk = t k

a
Da,

the following sampling formula holds:

g =
∑

k

g(
k + b

a
)φ(x− k

a
), ∀g ∈ Va,b = span({φ(· − k

a
), k ∈ Z})).



Index of Symbols

B(ε) = {x ∈ Rd : ‖x‖ ≤ ε}
E0 interior of E ⊂ Rd

∂E boundary of E ⊂ Rd

E closure of E ⊂ Rd

|E| Lebesgue measure of E ⊂ Rd

f̂ Fourier transform of f given by the formula

f̂(w) =
∫ +∞
−∞ f(x)e−2πixw dx

〈f, g〉 inner product in L2(R) given by 〈f, g〉 =
∫ +∞
−∞ f(x)g(x) dx

A dilation matrix

A[s] matrix related to dilation of X[s] by A

ck coefficients in the refinement equation

D = {d1, . . . , dm}, digit set associated with A

ds number of multi-indices of degree s

H(A, λ, r) space of (A, λ, r)-homogeneous functions

KH attractor of IFS {wk}k∈H

L = [cAi−j]i,j∈Γ

Lp(E) =
{
f : E −→ C such that

∫
E
|f(x)|p dx < ∞}

‖f‖p

(∫
E
|f(x)|p dx

) 1
p (1 ≤ p < +∞)

‖f‖∞ essential supremum of f on E

m = |det(A)|
m0(w) symbol of the refinement equation
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d dimension of domain of the refinable function

Q = KD, tile associated with A and D

Supp(f) support of f

Vj subspaces in multiresolution analysis

wk affine map wk(x) = A−1(x + k)

wH wH(B) =
⋃

k∈H wk(B)

X[s] vector of all polynomials of degree s

δj,k Kronecker delta

Γ lattice in Rd invariant under A

κ accuracy

Λ support of coefficients in refinement equation

Λ′ = D − Λ

χE characteristic function of a set E

`(Γ) the space of all the sequences defined on Γ

`0(Γ) the space of all the finitely supported sequences on Γ
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