biblioteca central Luisf leloir
F C E N - U B A

Tesis Doctoral

Sobre subclases y variantes de los grafos perfectos

Bonomo, Flavia

2005

Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente.

This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source.

Citatipo APA:

Bonomo, Flavia. (2005). Sobre subclases y variantes de los grafos perfectos. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.

Citatipo Chicago:

Bonomo, Flavia. "Sobre subclases y variantes de los grafos perfectos". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2005.

EXACTAS

Facultad de Ciencias Exactas y Naturales

UBA

Universidad de Buenos Aires

UNIVERSIDAD DE BUENOS AIRES
Facultad de Ciencias Exactas y Naturales

SOBRE SUBCLASES Y VARIANTES DE LOS GRAFOS PERFECTOS

Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área Ciencias de la Computación.

Flavia Bonomo

Director de tesis: Dr. Guillermo A. Durán
Lugar de trabajo: Facultad de Ciencias Exactas y Naturales, UBA

Buenos Aires, 2005

A mi familia, que es lo que más quiero en el mundo.

Agradecimientos

A Willy, por toda su ayuda, por ser un excelente director, por empujarme siempre a crecer y por ser tan buena persona.

A Dani, Luli y Ale, mis hermanitos del alma, por ayudarme siempre y soportarme (a veces), y también por estar siempre. A mis papás Santi y Susi, por ser los mejores del mundo, por haberme apoyado siempre, por hacer el esfuerzo y venir a mi tesis. A mi mamá también por haber sido la primera que me enseñó matemática en serio, seguramente de no haber sido por eso no estaría hoy acá sino dos pabellones más allá. A Abu por ser como es y por estar siempre conectada con nosotros, a pesar de la distancia.

A Dora, Matilde y Romi (en estricto orden alfabético), por ser mis mejores amigas desde hace más de diez años. A Lean por estar siempre y por tener esa telepatía especial para saber cuando llamar. A Edu por su ayuda en los momentos difíciles, allá y acá.

A Pati y Constanza por aguantarme en la oficina este último tiempo, por los consejos, y por ser tan buena gente. A Gaby, Dano, Santi, Edu, Julián, Silvia, Malena, Agustín, Gustavos, Fernando, Juan Pablo, Juan, Fábio, Adrián, Martín, Angélica, Enrique, Flor, Nico, Xavier, Ale, Juan, Fran, Pablos, Mariano, Gabo, Diego, Charly, Marcelo, Laurita, y seguro que de alguno me estoy olvidando pero espero que no se ofenda, por estos muchos (o pocos pero importantes) años de amistad.

A mis amigos de conexión y afines, con quienes compartimos un proyecto de facultad en estos últimos dos años y de quienes aprendí mucho. A los chicos de sumatoria con quienes espero que tengamos también una experiencia así de buena.

A Jayme, Oscar y Maria, de quienes aprendí realmente mucho, por su gran colaboración en esta tesis. A Javi, por toda su ayuda, siempre es un placer trabajar con él. A todos ellos por ser, además de ser científicos brillantes, excelentes personas.

A Fábio, Frédéric y Martín por la excelente predisposición y sus valiosos comentarios y sugerencias.

Por último, más o menos como diría Gastón: A Willy, ya que muchos de los que hacemos grafos acá se lo debemos a él, a mis amigos, a mi novio, a mi ex-novio, a mis hermanos, mami y papi, los amo!! ;)
\qquad
Abstract

On subclasses and variants of perfect graphs

Perfect graphs were defined by Claude Berge in 1960. A graph G is perfect whenever for every induced subgraph H of G, the chromatic number of H equals the cardinality of a maximum complete subgraph of H. Perfect graphs are very interesting from an algorithmic point of view: while determining the clique number and the chromatic number of a graph are NP-complete problems, they are solvable in polynomial time for perfect graphs.

Since then, many variations of perfect graphs were defined and studied, including the class of clique-prefect graphs. A clique in a graph is a complete subgraph maximal under inclusion. A clique-transversal of a graph G is a subset of vertices meeting all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. A graph G is clique-perfect if the sizes of a minimum clique-transversal and a maximum clique-independent set are equal for every induced subgraph of G. The term "clique-perfect" was introduced by Guruswami and Pandu Rangan in 2000, but the equality of these parameters had been previously studied by Berge in the context of balanced hypergraphs.

A characterization of perfect graphs by minimal forbidden subgraphs was recently proved by Chudnovsky, Robertson, Seymour and Thomas, and a polynomial time recognition algorithm for this class of graphs has been developed by Chudnovsky, Cornuéjols, Liu, Seymour and Vušković. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. Another open question concerning cliqueperfect graphs is the complexity of the recognition problem. In this thesis, we present partial results in these directions, that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph is either a line graph, or claw-free hereditary clique-Helly, or diamond-free, or a Helly circular-arc graph. Almost all of these characterizations lead to polynomial time recognition algorithms for clique-perfection in the corresponding class of graphs.

Berge defined a hypergraph to be balanced if its vertex-edge incidence matrix is balanced, that is, if it does not contain the vertex-edge incidence matrix of an odd cycle as a submatrix. In 1998, Dahlhaus, Manuel and Miller consider this concept applied to graphs, defining a graph to be balanced when its vertex-clique incidence matrix is balanced. Balanced graphs are an interesting subclass in the intersection of perfect and clique-perfect graphs. We give two new characterizations of this class, the first one by forbidden subgraphs and the second one by clique subgraphs. Using domination properties we define four subclasses of balanced graphs. Two of them are characterized by $0-1$ matrices and can be recognized in polynomial time. Furthermore, we propose polynomial time combinatorial algorithms for the stable set problem, the clique-independent set problem and the clique-transversal problem in one of these subclasses. Finally, we analyze the behavior of balanced graphs and these four subclasses under the clique graph operator.

Keywords: balanced graphs, clique graph, clique-perfect graphs, diamond-free graphs, Helly circular-arc graphs, hereditary clique-Helly claw-free graphs, K-perfect graphs, line graphs, perfect graphs.

Resumen

Sobre subclases y variantes de los grafos perfectos

Los grafos perfectos fueron definidos por Claude Berge en 1960. Un grafo G es perfecto cuando para todo subgrafo inducido H de G, el número cromático de H es igual al tamaño de un subgrafo completo máximo de H. Los grafos perfectos son de gran interés desde el punto de vista algorítmico: si bien los problemas de determinar la clique máxima y el número cromático de un grafo son NP-completos, éstos se resuelven en tiempo polinomial para grafos perfectos.

Desde entonces, fueron definidas y estudiadas gran cantidad de variantes de los grafos perfectos. Entre ellas, los grafos clique-perfectos. Una clique en un grafo es un subgrafo completo maximal con respecto a la inclusión. Un transversal de las cliques de un grafo G es un subconjunto de vértices que interseca a todas las cliques de G. Un conjunto de cliques independientes es un conjunto de cliques disjuntas dos a dos. Un grafo G es clique-perfecto si el tamaño de un transversal de las cliques mínimo coincide con el de un conjunto de cliques independientes máximo, para cada subgrafo inducido de G. El término "clique-perfecto" fue introducido por Guruswami y Pandu Rangan en 2000, pero la igualdad de esos parámetros fue estudiada previamente por Berge en el contexto de hipergrafos balanceados.

En 2002, Chudnovsky, Robertson, Seymour y Thomas demostraron una caracterización de los grafos perfectos por subgrafos prohibidos minimales, cerrando una conjetura abierta durante 40 años. También durante el año 2002 fueron presentados dos trabajos, uno de ellos de Chudnovsky y Seymour, y el otro de Cornuéjols, Liu y Vušković, que mostraban que el reconocimiento de esta clase era polinomial, resolviendo otro problema abierto formulado mucho tiempo atrás. La lista de subgrafos prohibidos minimales para la clase de grafos clique-perfectos no se conoce aún, y también es una pregunta abierta la complejidad del problema de reconocimiento. En esta tesis presentamos resultados parciales en estas direcciones, es decir, caracterizamos los grafos cliqueperfectos por subgrafos prohibidos minimales dentro de ciertas clases de grafos, a saber,
grafos de línea, grafos clique-Helly hereditarios sin claw, grafos sin diamantes y grafos arco-circulares Helly. En casi todos los casos, estas caracterizaciones conducen a un algoritmo polinomial de reconocimiento de grafos clique-perfectos dentro de la clase de grafos correspondiente.

Berge definió los hipergrafos balanceados como aquellos tales que su matriz de incidencia es balanceada, es decir, no contiene como submatriz la matriz de incidencia de un ciclo impar. En 1998, Dahlhaus, Manuel y Miller consideran este concepto aplicado a grafos, llamando balanceado a un grafo cuya matriz de incidencia cliques-vértices es balanceada. Los grafos balanceados constituyen una interesante subclase en la intersección entre grafos perfectos y clique-perfectos. En esta tesis damos dos nuevas caracterizaciones de esta clase de grafos, una por subgrafos prohibidos y la otra por subgrafos clique. Usando propiedades de dominación definimos cuatro subclases de grafos balanceados. Dos de ellas son caracterizadas por matrices binarias y pueden ser reconocidas en tiempo polinomial. Además, proponemos algoritmos polinomiales combinatorios para los problemas de conjunto independiente máximo, conjunto de cliques independientes máximo y transversal de las cliques mínimo para una de esas subclases. Finalmente, analizamos el comportamiento del operador clique sobre la clase de grafos balanceados y sus subclases.

Palabras clave: grafo clique, grafos arco-circulares Helly, grafos balanceados, grafos clique-Helly hereditarios $\sin K_{1,3}$, grafos clique-perfectos, grafos de línea, grafos K perfectos, grafos perfectos, grafos \sin diamantes.

Table of Contents

Abstract i
1 Introduction 1
1.1 Definitions, notation, and background properties 2
1.2 Balanced, perfect and clique-perfect graphs 6
1.3 Preliminary results 9
2 On Balanced Graphs 12
2.1 Preliminary results 13
2.2 New characterizations of balanced graphs 14
2.3 Graph Classes: $V E, E E, V V$ and $E V$ 17
2.3.1 Inclusion relations 17
2.3.2 Matrix characterizations 19
2.3.3 Maximum stable set in $V V$ graphs 20
2.4 Clique graphs of balanced graphs 20
3 Partial characterizations of clique-perfect graphs 28
3.1 Some families of clique-perfect and clique-imperfect graphs 29
3.2 Partial characterizations 31
3.2.1 Diamond-free graphs 32
3.2.2 Line graphs 33
3.2.3 Hereditary clique-Helly claw-free graphs 37
3.2.4 Helly circular-arc graphs 58
3.3 Recognition algorithms 70
4 Conclusions 74
Bibliography 76
Index 81

CHAPTER 1

Introduction

Perfect graphs were defined by Claude Berge in 1960 [4]. A graph G is perfect whenever for every induced subgraph H of G, the chromatic number of H equals the cardinality of a maximum complete subgraph of H. Many known classes of graphs are perfect, like bipartite graphs, chordal graphs, and comparability graphs. Perfect graphs are very interesting from an algorithmic point of view: while determining the clique number and the chromatic number of a graph are NP-complete problems, they are solvable in polynomial time for perfect graphs [47]. For more background information on algorithms on perfect graphs, we refer to [46].

Since then, many variations of perfect graphs were defined and studied, including the class of clique-prefect graphs. A clique-transversal of a graph G is a subset of vertices meeting all the cliques of G. A clique-independent set is a collection of pairwise vertexdisjoint cliques. A graph G is clique-perfect if the sizes of a minimum clique-transversal and a maximum clique-independent set are equal for every induced subgraph of G. The term "clique-perfect" was introduced by Guruswami and Pandu Rangan in 2000 [48], but the equality of these parameters had been previously studied by Berge in the context of balanced hypergraphs [10].

A characterization of perfect graphs by minimal forbidden subgraphs was recently proved [24], and a polynomial time recognition algorithm for this class of graphs has been developed [23]. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. Another open question concerning clique-perfect graphs is the complexity of the recognition problem. In Chapter 3, we present partial results in these directions, that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph is either a line graph, or claw-free hereditary clique-Helly, or diamond-free, or a Helly circular-arc graph. In almost all the cases, these characterizations lead to polynomial time recognition algorithms for clique-perfection in the corresponding class of graphs.

Berge defined a hypergraph to be balanced if its vertex-edge incidence matrix is balanced. In [36], Dahlhaus, Manuel and Miller consider this concept applied to graphs, defining a graph to be balanced when its clique matrix is balanced. Balanced graphs are an interesting subclass in the intersection of perfect and clique-perfect graphs. In Chapter 2, we give two new characterizations of this class, one by forbidden subgraphs and the other one by clique subgraphs. Using properties of domination we define four subclasses of balanced graphs. Two of them are characterized by $0-1$ matrices and can be recognized in polynomial time. Furthermore, we propose polynomial time combinatorial algorithms for the stable set problem, the clique-independent set problem and the clique-transversal problem in one of these subclasses. Finally, we analyze the behavior of balanced graphs and these four subclasses under the clique graph operator.

In the remaining part of this chapter we give some basic definitions and background properties, and in Chapter 4 we present a more detailed survey of the obtained results.

1.1 Definitions, notation, and background properties

Let G be a simple finite undirected graph, with vertex set $V(G)$ and edge set $E(G)$. Denote by \bar{G} the complement of G. Given two graphs G and G^{\prime} we say that G^{\prime} is smaller than G if $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, and that G contains G^{\prime} if G^{\prime} is isomorphic to an induced subgraph of G. When we need to refer to the non-induced subgraph containment relation, we will state this relation explicitly.

A class of graphs \mathcal{C} is hereditary if for every $G \in \mathcal{C}$, all induced subgraphs of G also belong to \mathcal{C}.

Let H be a graph and let t be a natural number. The disjoint union of t copies of the graph H is denoted by $t H$.

Some special graphs mentioned along this thesis are shown in Figure 1.1.

Neighborhoods, completes and domination
The neighborhood of a vertex v in a graph G is the set $N_{G}(v)$ consisting of all the vertices adjacent to v. The closed neighborhood of v is $N_{G}[v]=N_{G}(v) \cup\{v\}$. The common neighborhood and the closed common neighborhood of an edge $e=v w$ are $N_{G}(e)=N_{G}(v) \cap N_{G}(w)$ and $N_{G}[e]=N_{G}[v] \cap N_{G}[w]$, respectively, and, in a more general way, the common neighborhood and the closed common neighborhood of a nonempty subset of vertices W are $N_{G}(W)=\bigcap_{w \in W} N_{G}(w)$ and $N_{G}[W]=\bigcap_{w \in W} N_{G}[w]$, respectively. We define $N_{G}(\emptyset)=N_{G}[\emptyset]=V(G)$.

For an induced subgraph H of G and a vertex v in $V(G) \backslash V(H)$, the set of neighbors of v in H is the set $N_{G}(v) \cap V(H)$. A subset of vertices S of G is an homogeneous set if for every pair of vertices v, w in S, the set of neighbors of v in $G \backslash S$ is equal to the set of neighbors of w in $G \backslash S$.

Figure 1.1: Some graphs mentioned in this thesis.

Let v, w be vertices and e, f edges of a graph G. We say that the vertex v (edge e) dominates vertex $w\left(\right.$ edge f) if $N_{G}[v] \supseteq N_{G}[w]\left(N_{G}[e] \supseteq N_{G}[f]\right)$. Similarly, the vertex v (edge e) dominates the edge f (vertex w) if $N_{G}[v] \supseteq N_{G}[f]\left(N_{G}[e] \supseteq N_{G}[w]\right)$. Two vertices v and w are twins if $N_{G}[v]=N_{G}[w]$; and u weakly dominates v if $N_{G}(v) \subseteq$ $N_{G}[u]$.

A complete set or just a complete of G is a subset of pairwise adjacent vertices (in particular, an empty set is a complete set). We denote by K_{n} the graph induced by a complete set of size n.

Let X and Y be two sets of vertices of G. We say that X is complete to Y if every vertex in X is adjacent to every vertex in Y, and that X is anticomplete to Y if no vertex of X is adjacent to a vertex of Y. Let A be a set of vertices of G, and v a vertex of G not in A. Then v is A-complete if it is adjacent to every vertex in A, and A-anticomplete if it has no neighbor in A.

A clique is a complete set not properly contained in any other complete set. We may also use the term "clique" to refer to the corresponding complete subgraph. The clique number $\omega(G)$ is the cardinality of a maximum clique of G.

A stable set in a graph G is a subset of pairwise non-adjacent vertices of G. The stability number $\alpha(G)$ is the cardinality of a maximum stable set of G.

A diamond is the graph isomorphic to $K_{4} \backslash\{e\}$, where e is an edge of K_{4}. A graph is diamond-free if it does not contain a diamond.

A complete of three vertices is called a triangle, and a stable set of three vertices is called a triad.

A vertex v of G is universal if $N_{G}[v]=V(G)$. A vertex v is called simplicial if $N[v]$
induces a complete, and singular if $V(G) \backslash N[v]$ induces a complete. Equivalently, a vertex is singular if it does not belong to any triad. The core of G is the subgraph induced by the set of non-singular vertices of G. Note that a vertex belongs to exactly one clique if and only if it is simplicial.

Let v, w be vertices of G. Denote by $M(G)$ the set of cliques of G, by $M(v)$ the set of cliques of G that contain v, and by $M(v, w)$ the set of cliques of G that contain v and w.

Let G be a graph and let H be a not necessarily induced subgraph of G. The graph H is a clique subgraph of G if every clique of H is a clique of G.

A clique cover of a graph G is a subset of cliques covering all the vertices of G. The clique covering number of G, denoted by $k(G)$, is the cardinality of a minimum clique cover of G. It is easy to verify that $k(G) \geq \alpha(G)$ for any graph G.

The chromatic number of a graph G is the smallest number of colors that can be assigned to the vertices of G in such a way that no two adjacent vertices receive the same color, and is denoted by $\chi(G)$. Equivalently, $\chi(G)$ is the cardinality of a minimum covering of the vertices of G by stable sets. An obvious lower bound for $\chi(G)$ is the clique number of G.

A clique-transversal of a graph G is a subset of vertices meeting all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The cliquetransversal number and clique-independence number of G, denoted by $\tau_{c}(G)$ and $\alpha_{c}(G)$, are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. It is easy to see that $\tau_{c}(G) \geq \alpha_{c}(G)$ for any graph G.

Cutsets

Let G be a graph and let X be a subset of vertices of G. Denote by $G \mid X$ the subgraph of G induced by X and by $G \backslash X$ the subgraph of G induced by $V(G) \backslash X$. The set X is connected, if there is no partition of X into two non-empty sets Y and Z, such that no edge has one endpoint in Y and the other one in Z. In this case the graph $G \mid X$ is also connected. The set X is anticonnected if it is connected in \bar{G}. In this case the graph $G \mid X$ is also anticonnected.

The set X is a cutset if $G \backslash X$ has more connected components than G has. Let G be a connected graph, X a cutset of G, and M_{1}, M_{2} a partition of $V(G) \backslash X$ such that M_{1}, M_{2} are non-empty and M_{1} is anticomplete to M_{2} in G. In this case we say that $G=M_{1}+M_{2}+X$, and $M_{i}+X$ denotes $G \mid\left(M_{i} \cup X\right)$, for $i=1,2$. When $X=\{v\}$, we simplify the notation to $M_{1}+M_{2}+v$ and $M_{i}+v$, respectively.

Let X be a cutset of G. If $X=\{v\}$ we say that v is a cutpoint. If X is complete, it is called a clique cutset. A clique cutset X is internal if $G=M_{1}+M_{2}+X$ and each M_{i} contains at least two vertices that are not twins.

Cycles, holes and suns

A sequence v_{1}, \ldots, v_{k} of distinct vertices $(k \geq 3)$ is a cycle in a graph G if $v_{1} v_{2}$, $\ldots, v_{k-1} v_{k}, v_{k} v_{1}$ are edges of G. These edges are called the edges of the cycle. The length of the cycle is the number k of its edges. An odd cycle is a cycle of odd length. In subsequent expressions concerning cycles, all index arithmetic is done modulo the length of the cycle.

A chord of a cycle is an edge between two vertices of the cycle that is not an edge of the cycle. A cycle is chordless if it contains no chords.

A hole is a chordless cycle of length at least 4. An antihole is the complement of a hole. A hole of length n is denoted by C_{n}. A hole or antihole on n vertices is said to be odd if n is odd.

A graph is chordal if it does not contain a hole as an induced subgraph.
An r-sun (or simply sun) is a chordal graph G on $2 r$ vertices, $r \geq 3$, whose vertex set can be partitioned into two sets, $W=\left\{w_{1}, \ldots, w_{r}\right\}$ and $U=\left\{u_{1}, \ldots, u_{r}\right\}$, such that W is a stable set and for each i and j, w_{j} is adjacent to u_{i} if and only if $i=j$ or $i \equiv j+1$ $(\bmod r)$. A sun is $o d d$ if r is odd. A sun is complete if U is a complete.

A graph is bipartite when it contains no cycles of odd length or, equivalently, when its vertex set can be partitioned into two stable sets.

A 4 -wheel is a graph on five vertices v_{1}, \ldots, v_{5}, such that $v_{1} v_{2} v_{3} v_{4} v_{1}$ is a hole and v_{5} is adjacent to all of $v_{1}, v_{2}, v_{3}, v_{4}$. A 3 -fan is a graph on five vertices v_{1}, \ldots, v_{5}, such that $v_{1} v_{2} v_{3} v_{4} v_{1}$ induce a path and v_{5} is adjacent to all of $v_{1}, v_{2}, v_{3}, v_{4}$.

A sequence $v_{1}, E_{1}, \ldots, v_{k}, E_{k}$ of distinct vertices v_{1}, \ldots, v_{k} and distinct hyperedges E_{1}, \ldots, E_{k} of a hypergraph H is a special cycle of length k if $k \geq 3, v_{i}, v_{i+1} \in E_{i}$ and $E_{i} \cap\left\{v_{1}, \ldots, v_{k}\right\}=\left\{v_{i}, v_{i+1}\right\}$, for each $i, 1 \leq i \leq k$.

Intersection graphs

A family of sets S is said to satisfy the Helly property if every subfamily of S consisting of pairwise intersecting sets has a common element.

A graph is clique-Helly (CH) if its cliques satisfy the Helly property, and it is hereditary clique-Helly (HCH) if H is clique-Helly for every induced subgraph H of G.

Consider a finite family of non-empty sets. The intersection graph of this family is obtained by representing each set by a vertex, two vertices being adjacent if and only if the corresponding sets intersect.

A graph G is an interval graph if G is the intersection graph of a finite family of intervals of the real line.

A circular-arc is the intersection graph of arcs on a circle. A representation of a circular-
arc graph is a collection of circular intervals, each corresponding to a unique vertex of the graph, such that two intervals intersect if and only if the corresponding vertices are adjacent. A Helly circular-arc (HCA) graph is a circular-arc graph admitting a representation whose arcs satisfy the Helly property. In particular, in a Helly circulararc representation of a graph, for every clique there is a point of the circle belonging to the circular intervals corresponding to the vertices in the clique, and to no others. We call such a point an anchor of the clique (note that an anchor may not be unique).

A claw is the graph isomorphic to the bipartite graph $K_{1,3}$. A graph is claw-free if it does not contain a claw.

The line graph $L(G)$ of G is the intersection graph of the edges of G. A graph F is a line graph if there exists a graph H such that $L(H)=F$. Clearly, line graphs are a subclass of claw-free graphs.

The clique graph $K(G)$ of G is the intersection graph of the cliques of G. We can define $K^{j}(G)$ as the j-th iterated clique graph of G, where $K^{1}(G)=K(G)$ and $K^{j}(G)=$ $K\left(K^{j-1}(G)\right), j \geq 2$.

If \mathcal{H} is a class of graphs, then $K(\mathcal{H})$ denotes the class of clique graphs of the graphs in \mathcal{H}, and $K^{-1}(\mathcal{H})$ the class of graphs whose clique graphs are in \mathcal{H}.

Clique graphs of several classes of graphs have been already characterized. A good survey on this topic can be found in [69].

1.2 Balanced, perfect and clique-perfect graphs

Let M_{1}, \ldots, M_{k} and v_{1}, \ldots, v_{n} be the cliques and vertices of a graph G, respectively. A clique matrix of G, denoted by A_{G}, is a $0-1$ matrix whose entry (i, j) is 1 if $v_{j} \in M_{i}$, and 0 otherwise.

A 0-1 matrix M is balanced if it does not contain the vertex-edge incidence matrix of an odd cycle as a submatrix. A 0-1 matrix M is totally balanced if it does not contain the vertex-edge incidence matrix of a cycle as a submatrix.

Berge defined in 1969 (c.f. [37]) a hypergraph to be balanced if its vertex-edge incidence matrix is balanced, or equivalently, if it contains no special cycles of odd length. For further details, we refer to $[6,7]$. Applying this concept to graphs, one obtains the class of balanced graphs, composed by those graphs having a balanced clique matrix. Note that balanced graphs are well defined, since if the clique matrix of a graph is balanced then all its clique matrices are balanced. Balanced graphs were considered in [36].

The clique hypergraph of a graph G has $V(G)$ as vertex set and all the cliques of G as hyperedges. Clearly, a graph G is balanced if and only if its clique hypergraph is balanced.

A graph is strongly chordal when it is chordal and each of its cycles of even length at least 6 has an odd chord [42]. Such a class corresponds exactly to totally balanced
graphs, i.e., graphs whose clique matrices are totally balanced [1]. Clearly, strongly chordal graphs are balanced graphs.

A 0-1 matrix M is totally unimodular if the determinant of each square submatrix of M is 0,1 or -1 . A graph G is totally unimodular if its clique matrix is totally unimodular. Since the determinant of the vertex-edge incidence matrix of an odd cycle is ± 2, totally unimodular matrices are balanced matrices and then totally unimodular graphs are balanced graphs.

A graph G is trivially perfect if for all induced subgraphs H of G, the cardinality of the maximum stable set of H is equal to the number of cliques of H. Interval graphs and trivially perfect graphs are totally unimodular graphs [46] and, therefore, they are balanced graphs.

Perfect graphs were defined by Claude Berge in 1960 [4]. A graph G is perfect if $\chi(H)=\omega(H)$ for every induced subgraph H of G. Perfect graphs have received much attention in the last forty years, and there are many publications on this topic.

A graph is minimally imperfect if it is not perfect but all its proper induced subgraphs are. It is not difficult to see that odd holes and odd antiholes are not perfect. Berge conjectured in 1961 [5] that these are the only minimally imperfect graphs, that is, a graph is perfect if and only if it does not contain odd holes or odd antiholes. This conjecture was known as the Strong Perfect Graph Conjecture until 2002, when it was finally proved by Chudnovsky, Robertson, Seymour and Thomas.

Theorem 1.2.1 (Strong Perfect Graph Theorem). [24] Let G be a graph. Then the following are equivalent:
(i) no induced subgraph of G is an odd hole or an odd antihole.
(ii) G is perfect.

The second big open open question about perfect graphs was finally answered in 2003: a polynomial time recognition algorithm for perfect graphs was developed by Chudnovsky, Cornuéjols, Liu, Seymour, and Vušković [23].

A weaker result on perfect graphs, also conjectured by Berge and proved by Lóvasz in 1972 [55] and independently by Fulkerson [43] some months later, states that a graph is perfect if and only if its complement is perfect.

Theorem 1.2.2 (Perfect Graph Theorem). [55] Let G be a graph. Then the following are equivalent:
(i) $\omega(H)=\chi(H)$ for every induced subgraph H of G.
(ii) $\alpha(H)=k(H)$ for every induced subgraph H of G.
(ii) $\omega(H) \alpha(H) \geq|V(H)|$ for every induced subgraph H of G.

A matrix $M \in R^{k \times n}$ is perfect if the polyhedron $P(M)=\left\{x / x \in R^{n}, M x \leq \mathbf{1}, x \geq 0\right\}$ has only integer extrema. Chvátal [27] proved the theorem below connecting perfect matrices with perfect graphs.

Theorem 1.2.3. [27] A graph G is perfect if and only if its clique matrix is perfect.

Since balanced matrices are perfect [44], it follows that balanced graphs are perfect graphs.

Between 1961 and 2002, many partial results related with the Strong Perfect Graph Conjecture were proved. In particular, the characterization of perfect graphs by minimal forbidden subgraphs was proved for some subclasses of graphs:

- Circular graphs, proved by Buckingham and Golumbic [18, 19].
- Planar graphs, by Tucker [72].
- Pretty graphs, that is, graphs in which every induced subgraph has a vertex v whose neighborhood induce a $\left\{P_{4}, 2 K_{2}\right\}$-free graph, by Maffray, Porto and Preissmann [59].
- P_{4}-free graphs, by Seinsche [67].
- claw-free graphs, by Parthasarathy and Ravindra [60].
- diamond-free graphs, by Tucker [75] and Conforti [30].
- K_{4}-free graphs, by Tucker [73, 74, 76].
- C_{4}-free graphs, by Cornuéjols, Conforti and Vušković [34].
- bull-free graphs, by Chvátal and Sbihi [29].
- dart-free graphs, by Sun [68].
- chair-free, by Sassano [65].
- Total graphs, by Rao and Ravindra [63]. The total graph $T(G)$ of $G=(V, E)$ has as vertex set $V \cup E$, where V induces G, E induces $L(G)$, and every vertex corresponding to an edge is adjacent to the vertices corresponding to its endpoints.
- Triangular graphs, by Le [52]. The triangular graph of $G, L_{3}(G)$ is the edgeintersection graph of the triangles of G.

A graph G is clique-perfect if $\tau_{C}(H)=\alpha_{C}(H)$ for every induced subgraph H of G. We say that a graph is clique-imperfect when it is not clique-perfect. A graph is minimally clique-imperfect if it is not clique-perfect but all its proper induced subgraphs are. Clique-perfect graphs have been implicitly studied in $[2,10,17,15,21,40,48,53]$, and the term "clique-perfect" was introduced in [48].

The two main open problems concerning this class of graphs are the following.

- find all minimal forbidden induced subgraphs for the class of clique-perfect graphs, and
- is there a polynomial time recognition algorithm for this class of graphs?

There are some partial results in these directions. In [53], clique-perfect graphs are characterized by minimal forbidden subgraphs for the class of chordal graphs, and this characterization leads to a polynomial time recognition algorithm for clique-perfect chordal graphs. In [57], minimal graphs G with $\alpha_{c}(G)=1$ and $\tau_{c}(G)>1$ are explicitly described.

Clique-perfect graphs are neither a subclass nor a superclass of perfect graphs. For example, antiholes of length $6 k+3$ are clique-perfect but not perfect, and antiholes of length $6 k \pm 2$ are perfect but not clique-perfect.

A graph G is a comparability graph if there exists a partial order in $V(G)$ such that two vertices of G are adjacent if and only if they are comparable by that order. Comparability graphs are both perfect and clique-perfect. Another class in the intersection between perfect and clique-perfect graphs are balanced graphs.

1.3 Preliminary results

A graph G is K-perfect if its clique graph $K(G)$ is perfect. K-perfect graphs are neither a subclass nor a superclass of clique-perfect graphs. However, the following lemma establishes a connection between the parameters involved in the definition of cliqueperfect graphs and those corresponding to perfect graphs.

Lemma 1.3.1. [15] Let G be a graph. Then:
(1) $\alpha_{c}(G)=\alpha(K(G))$.
(2) $\tau_{c}(G) \geq k(K(G))$. Moreover, if G is clique-Helly, then $\tau_{c}(G)=k(K(G))$.

The class of hereditary clique-Helly graphs can be characterized by forbidden induced subgraphs.

Theorem 1.3.2. [61] A graph G is hereditary clique-Helly if and only if it does not contain the graphs of Figure 1.2.

Hereditary clique-Helly graphs are of particular interest because in this case it follows from Lemma 1.3.1 that if $K(H)$ is perfect for every induced subgraph H of G, then G is clique-perfect (the converse is not necessarily true). In fact, the following proposition holds.

Proposition 1.3.1. Let \mathcal{L} be a hereditary graph class, which is HCH and such that every graph in \mathcal{L} is K-perfect. Then every graph in \mathcal{L} is clique-perfect.

Figure 1.2: Forbidden induced subgraphs for hereditary clique-Helly graphs: (left to right) 3 -sun (or 0 -pyramid), 1-pyramid, 2 -pyramid and 3 -pyramid.

Proof. Let G be a graph in \mathcal{L}. Let H be an induced subgraph of G. Since \mathcal{L} is hereditary, H is a graph in \mathcal{L}, so it is K-perfect. Since \mathcal{L} is an $H C H$ class, H is cliqueHelly and then, by Lemma 1.3.1, $\alpha_{C}(H)=\alpha(K(H))=k(K(H))=\tau_{C}(H)$, and the result follows.

We will also use the following results on perfect graphs, cutsets and clique graphs (some of the results below are immediate, and in these cases we do not give a proof or a reference; we state these results for future reference).
Lemma 1.3.3. Let G be a graph and v be a simplicial vertex of G. Then G is perfect if and only if $G \backslash\{v\}$ is.
Theorem 1.3.4. [9] Let G be a graph and X be a clique cutset of G, such that $G=$ $M_{1}+M_{2}+X$. Then the graph G is perfect if and only if the graphs $M_{1}+X$ and $M_{2}+X$ are.
Theorem 1.3.5. [76] Let G be a perfect graph and let $e=v_{1} v_{2}$ be an edge of G. Assume that no vertex of G is a common neighbor of v_{1} and v_{2}. Then $G \backslash e$ is perfect.

Let P be an induced path of a graph G. The length of P is the number of edges in P. The parity of P is the parity of its length. We say that P is even if its length is even, and odd otherwise.
Theorem 1.3.6. Let G be a graph, and let $u, v \in V(G)$ non-adjacent and such that $\{u, v\}$ is a cutset of $G, G=M_{1}+M_{2}+\{u, v\}$. For $i=1,2$, let G_{i} be a graph obtained from $M_{i}+\{u, v\}$ by joining u and v by an even induced path. If G_{1} and G_{2} are perfect, then G is perfect.

Proof. Suppose G_{1} and G_{2} are perfect, and G contains an odd hole or an odd antihole, denote it by A. Since no odd antihole of length at least 7 has a one- or two-vertex cutset, if A is an odd antihole of length at least 7, then A is contained either in G_{1} or in G_{2}, a contradiction. So A is an odd hole, and it is not contained in $M_{i}+\{u, v\}$ for $i=1,2$, thus $\{u, v\}$ is a cutset for A. Let A_{1}, A_{2} be the two subpaths of A joining u and v. Then both A_{1}, A_{2} have length at least two, and one of them, say A_{1}, is odd. But then, if A_{1} is contained in $M_{i}+\{u, v\}$, the graph G_{i} contains an odd hole, a contradiction.

Theorem 1.3.7. [5] Let G be a graph and let U be a homogeneous set in G. Let G^{\prime} be the graph obtained from G by deleting all but one vertex of U. Then G is perfect if and only if both G^{\prime} and $G \mid U$ are.

Theorem 1.3.8. Let G be a graph, and let $u, v \in V(G)$ such that u weakly dominates v. Then G is perfect if and only if both $G \backslash\{u\}$ and $G \backslash\{v\}$ are.

Proof. The "only if" part is clear, so it is enough to prove that if $G \backslash\{u\}$ and $G \backslash\{v\}$ are perfect, then so is G. Since neither odd holes nor odd antiholes contain a pair of vertices such that one of them weakly dominates the other one, the result follows from Theorem 1.2.1.

Lemma 1.3.9. Let G be a graph and H a clique subgraph of G. Then $K(H)$ is an induced subgraph of $K(G)$.

Lemma 1.3.10. If G is disconnected, then so is $K(G)$, and G is K-perfect if and only if each connected component is.

Lemma 1.3.11. If G admits twins u, v, then $K(G)=K(G \backslash\{v\})$.
Theorem 1.3.12. [41] If G is a clique-Helly graph then $K^{2}(G)$ is the subgraph of G obtained by identifying twin vertices and then removing dominated vertices.

Theorem 1.3.13. [15] Let G be an HCH graph such that $K(G)$ is not perfect.
(1) If $K(G)$ contains $\overline{C_{7}}$ as induced subgraph, then G contains a clique subgraph H in which identifying twin vertices and then removing dominated vertices we obtain $\overline{C_{7}}$, and such that $K(H)=\overline{C_{7}}$.
(2) If $K(G)$ contains $C_{2 k+1}$ as induced subgraph, for some $k \geq 2$, then G contains a clique subgraph H in which identifying twin vertices and then removing dominated vertices we obtain $C_{2 k+1}$, and such that $K(H)=C_{2 k+1}$.

Theorem 1.3.14. [62] Let G be a claw-free graph with no induced 3 -fan, 4-wheel or odd hole. Then $K(G)$ is bipartite.

CHAPTER 2

On Balanced Graphs

Berge defined a hypergraph to be balanced if its vertex-edge incidence matrix is balanced. In [36], Dahlhaus, Manuel and Miller consider this concept applied to graphs, calling a graph to be balanced when its clique matrix is balanced. Balanced graphs are an interesting subclass lying in the intersection of perfect and clique-perfect graphs.

This chapter is organized as follows.
In Section 2.1 we describe background properties of balanced graphs.
In Section 2.2 new characterizations of balanced graphs are presented. The first one is by forbidden subgraphs and the second one is by clique subgraphs.

In Section 2.3 four subclasses of balanced graphs are introduced using simple properties of domination. We analyze the inclusion relations between them. Two of these classes are characterized using 0-1 matrices and these characterizations lead to polynomial time recognition algorithms. In the final part of this section, we present a combinatorial algorithm for the maximum stable set problem in one of these subclasses.

Finally, in Section 2.4 we study the clique graphs of balanced graphs and these four subclasses. As a corollary of these results, we deduce the existence of combinatorial algorithms for the maximum clique-independent set and the minimum clique-transversal problems for one of these subclasses of balanced graphs.

The results of this chapter appear in [16].

2.1 Preliminary results

Hereditary clique-Helly graphs can be characterized by means of their clique matrix, as the following result due to Prisner shows.

Theorem 2.1.1. [61] A graph G is hereditary clique-Helly if and only if A_{G} does not contain a vertex-edge incidence matrix of a 3 -cycle as a submatrix.

This theorem implies the following result.
Corollary 2.1.1.1. Let G be a balanced graph. Then G is hereditary clique-Helly.
In [61] it is also proved that no connected hereditary clique-Helly graph has more cliques than edges, implying the following result.

Corollary 2.1.1.2. Let G be a connected balanced graph. Then the number of cliques of G is at most the number of edges of G.

There exists an algorithm which calculates all the cliques of a graph in $O(m n k)$ time where m is the number of edges, n the number of vertices and k the number of cliques [71] (the algorithm sequentially generates each clique in $O(m n)$ time). So a clique matrix of a hereditary clique-Helly graph can be computed in polynomial time in the size of the graph. On the other hand, Conforti, Cornuéjols, and Rao formulated a polynomial time recognition algorithm for balanced 0-1 matrices [32]. These two algorithms and the fact that hereditary clique-Helly graphs have no more than m cliques imply the following result.

Corollary 2.1.1.3. [36] There is a polynomial time recognition algorithm for balanced graphs.

Let A be a $0-1$ matrix. We say that the row i is included in the row k if for every column $j, A(i, j)=1$ implies $A(k, j)=1$. It is not difficult to see that the clique matrix of a graph G and the clique matrix of an induced subgraph of G are related.

Lemma 2.1.2. Let G be a graph and H an induced subgraph of G. Then A_{H} is the submatrix of A_{G} obtained by keeping the columns corresponding to the vertices of H and removing the included rows.

On the other hand, if G is a hereditary clique-Helly graph, the clique matrix of G and the clique matrix of a clique subgraph of G are related.

Theorem 2.1.3. [61] Let G be a hereditary clique-Helly graph and S a subset of its cliques. Let H be the subgraph of G formed by the vertices and edges of S. Then H is a clique subgraph of G and A_{H} is the submatrix of A_{G} obtained by taking the rows corresponding to the cliques in S and the columns corresponding to the vertices of these cliques.

Since a submatrix of a balanced matrix is also balanced, these results imply that balanced graphs are closed under induced subgraphs and clique subgraphs.

Fulkerson, Hoffman and Oppenheim [44] proved the following result which implies that balanced matrices are perfect matrices.

Theorem 2.1.4. [44] If M is a balanced matrix, then the polyhedra $P(M)=\{x / x \in$ $\left.R^{n}, M x \leq 1, x \geq 0\right\}$ and $Q(M)=\left\{x / x \in R^{n}, M x \geq \mathbf{1}, x \geq 0\right\}$ have only integer extrema.

By Theorem 2.1.4 and Theorem 1.2.3, balanced graphs are perfect graphs.
A 0-1 matrix A is k-colorable if there exists a k-coloring of its columns such that for every row i that has at least two 1 s in columns corresponding to colors J and L, there are entries $A(i, j)=A(i, l)=1$, where column j has color J and column l has color L. Berge proved the following theorem.
Theorem 2.1.5. [8] A 0-1 matrix A is balanced if and only if every submatrix of A is k-colorable for every k.

Based on the proof of Theorem 2.1.5 and using the bicoloring algorithm of Cameron and Edmonds [20], a balanced matrix can be efficiently k-colored [33]. It is not difficult to verify that for a graph G a $\chi(G)$-coloring of A_{G} gives an $\chi(G)$-coloring of G. Moreover, for a balanced graph G, a $\chi(G)$-coloring of G is equivalent to a $\omega(G)$-coloring of G and $\omega(G)$ can be easily calculated, hence there exists a polynomial time combinatorial algorithm to find an optimal coloring of a balanced graph [31].

Berge and Las Vergnas proved in [10] a theorem about balanced hypergraphs which can be formulated in terms of graphs in the following way:

Theorem 2.1.6. [10] If G is a balanced graph then $\tau_{\mathrm{c}}(G)=\alpha_{\mathrm{c}}(G)$.
Corollary 2.1.6.1. Balanced graphs are clique-perfect.

Moreover, the clique-transversal number $\tau_{\mathrm{c}}(G)$ (and hence the clique-independence number $\alpha_{\mathrm{c}}(G)$) of a balanced graph G can be polynomially determined by linear programming [36].

2.2 New characterizations of balanced graphs

Some subclasses of balanced graphs are characterized by forbidden subgraphs, as the two following theorems show.

Theorem 2.2.1. [42] A strongly chordal graph is balanced if and only if it does not contain suns.

Theorem 2.2.2. [53] A chordal graph is balanced if and only if it does not contain odd suns.

In this section, two new characterizations of balanced graphs are presented. The first one, by forbidden subgraphs and the second one, by clique subgraphs.

An extended odd sun is an odd cycle C and a subset of pairwise adjacent vertices $W_{e} \subseteq N_{G}(e) \backslash C$ for each edge e of C, such that $N_{G}\left(W_{e}\right) \cap N_{G}(e) \cap C=\emptyset$ and $\left|W_{e}\right| \leq\left|N_{G}(e) \cap C\right|$. Clearly, odd suns are extended odd suns. The smallest extended odd sun is the Hajós graph (Figure 2.1).

Figure 2.1: Hajós graph, also called 3 -sun or 0 -pyramid.
Figure 2.2 presents other examples of extended odd suns. Note that the subsets W_{e} and W_{f}, corresponding to the edges e and f respectively, may overlap.

Figure 2.2: Two examples of graphs that are not balanced. In the first one, $W_{e_{1}}=$ $W_{e_{7}}=\left\{w_{1}\right\}, W_{e_{2}}=\left\{w_{2}\right\}, W_{e_{3}}=\left\{w_{3}\right\}$ and $W_{e_{4}}=W_{e_{5}}=W_{e_{6}}=\emptyset$. In the second one, $W_{e_{1}}=\left\{w_{1}, w_{2}\right\}, W_{e_{2}}=\left\{w_{3}\right\}, W_{e_{3}}=\left\{w_{4}\right\}, W_{e_{4}}=\left\{w_{5}\right\}$ and $W_{e_{5}}=W_{e_{6}}=W_{e_{7}}=\emptyset$.

Theorem 2.2.3. A graph is balanced if and only if it does not contain an extended odd sun.

Proof. Let G be a graph. Suppose that G has the following extended odd sun: an odd cycle $C=\left\{v_{1}, \ldots, v_{2 k+1}\right\}$ and a subset of pairwise adjacent vertices $W_{i} \subseteq N_{G}\left(e_{i}\right) \backslash C$ for each edge $e_{i}=v_{i} v_{i+1}$ of C, such that $N_{G}\left(W_{i}\right) \cap N_{G}\left(e_{i}\right) \cap C=\emptyset$.

Let $e_{i}=v_{i} v_{i+1}$ be an edge of C. Then $\left\{v_{i}, v_{i+1}\right\} \cup W_{i}$ is contained in a clique M_{i} of G, and $M_{i} \cap C=\left\{v_{i}, v_{i+1}\right\}$ because $N_{G}\left(e_{i}\right) \cap N_{G}\left(W_{i}\right) \cap C=\emptyset$.

Now, if we choose the rows of A_{G} corresponding to $M_{1}, \ldots, M_{2 k+1}$ and the columns of A_{G} corresponding to $v_{1}, \ldots, v_{2 k+1}$, we have a vertex-edge incidence matrix of an odd cycle as a submatrix of A_{G}. So, A_{G} is not balanced, and thus G is not balanced.

Conversely, suppose that G is not a balanced graph, and then A_{G} is not a balanced matrix. So, we have the following submatrix A^{\prime} in A_{G}, where $M_{1}, \ldots, M_{2 k+1}$ are cliques of G and $v_{1}, \ldots, v_{2 k+1}$ are vertices of G :

	v_{1}	v_{2}	v_{3}	\ldots	$v_{2 k+1}$
M_{1}	1	1	0	\ldots	0
M_{2}	0	1	1	\ldots	0
M_{3}	0	0	1	\ldots	0
.
.	\cdot
.
$M_{2 k+1}$	1	0	0	\ldots	1

Figure 2.3: Vertex-edge incidence matrix of an odd cycle.

Thus $v_{1}, \ldots, v_{2 k+1}$ is an odd cycle C of G and M_{i} is a clique such that $M_{i} \cap C=$ $\left\{v_{i}, v_{i+1}\right\}$. Let e_{i} be the edge $v_{i} v_{i+1}$. Then either $N_{G}\left(e_{i}\right) \cap C=\emptyset$ and then we define W_{i} to be the empty set, or for each $v \in N_{G}\left(e_{i}\right) \cap C$ there is a vertex w in M_{i} non-adjacent to v, and those vertices form a subset of pairwise adjacent vertices $W_{i} \subseteq N_{G}\left(e_{i}\right) \backslash C$ such that $N_{G}\left(W_{i}\right) \cap N_{G}\left(e_{i}\right) \cap C=\emptyset$ and $\left|W_{i}\right| \leq\left|N_{G}\left(e_{i}\right) \cap C\right|$.

Remark 2.2.1. Extended odd suns are not necessarily minimal. The Hajós graph is an induced subgraph of the extended odd sun of Figure 2.4.

Theorem 2.2.4. A graph G is balanced if and only if G is hereditary clique-Helly and no clique subgraph of G contains an odd hole.

Proof. $\Rightarrow)$ Let G be a balanced graph. By Corollary 2.1.1.1, G is $H C H$. Let H be a clique subgraph of G. Since balancedness is hereditary for clique subgraphs, H is balanced. Since induced subgraphs of H are also balanced, H cannot contain an odd chordless cycle of length ≥ 5.
\Leftrightarrow Suppose that G is not a balanced graph, thus A_{G} is not a balanced matrix. If A_{G} contains the vertex-edge incidence matrix of a 3 -cycle as a submatrix, then G is not $H C H$. Otherwise, G is $H C H$ and A_{G} contains the vertex-edge incidence matrix of an odd hole as a submatrix A^{\prime} (Figure 2.3, with $k \geq 2$). Let H be the subgraph of G formed by the vertices and edges of the cliques of G corresponding to the rows of A^{\prime}, and let H^{\prime} be the subgraph of H induced by the vertices corresponding to the columns of A^{\prime} (these vertices are vertices of H by the construction of A^{\prime}). By Theorem 2.1.3, H is a clique subgraph of G and the clique matrix A_{H} is the submatrix of A_{G} obtained by keeping the rows of A^{\prime} and then removing the null columns. Now, by Lemma 2.1.2, the clique matrix $A_{H^{\prime}}$ of H^{\prime} is A^{\prime}. Thus H^{\prime} is an odd hole.

Figure 2.4: An extended odd sun which is not minimal.

2.3 Graph Classes: $V E, E E, V V$ and $E V$

In this section we define and study four classes of graphs, that arise from simple domination properties. These graphs form natural subclasses of balanced graphs.

We define a graph G to be a $V E$ graph if any odd cycle of G contains a vertex that dominates some edge of the cycle, where the edge is non-incident to the vertex.

We define a graph G to be an $E V$ graph if any odd cycle of G contains an edge that dominates some vertex of the cycle.

Finally, we define a graph G to be a $V V$ (resp. $E E$) graph if any odd cycle of it contains a vertex (resp. edge) that dominates some other vertex (resp. edge) of the cycle.

2.3.1 Inclusion relations

We now analize inclusion relations between these graph classes.
Theorem 2.3.1. Let G be an $E V$ graph. Then G is an $E E$ graph and a $V V$ graph.

Proof. Let $C=\left\{v_{1}, \ldots, v_{2 j+1}\right\}$ be an odd cycle of G. By hypothesis, as G is an $E V$ graph, there is an edge $e=v_{i} v_{i+1}$ of C that dominates a vertex v_{k} of C. Then $e=v_{i} v_{i+1}$ dominates $e_{1}=v_{k-1} v_{k}$ and $e_{2}=v_{k} v_{k+1}$, and at least one of these edges is not equal to e. So, G is an $E E$ graph. On the other hand, v_{i} and v_{i+1} dominate v_{k}, and at least one of them is different from v_{k}. In consequence, G is a $V V$ graph too.

Theorem 2.3.2. Let G be an $E E$ graph. Then G is a VE graph.

Proof. Let $C=\left\{v_{1}, \ldots, v_{2 j+1}\right\}$ be an odd cycle of G. By hypothesis, as G is an $E E$ graph, there is an edge $e=v_{i} v_{i+1}$ that dominates an edge $f=v_{k} v_{k+1}$ of $C(e \neq f)$. We may suppose that $v_{i} \neq v_{k+1}$, so v_{i} dominates $f=v_{k} v_{k+1}$, which implies that G is a $V E$ graph.

Theorem 2.3.3. Let G be a VV graph. Then G is a VE graph.

Proof. Let $C=\left\{v_{1}, \ldots, v_{2 j+1}\right\}$ be an odd cycle of G. By hypothesis, as G is a $V V$ graph, there is a vertex v_{i} that dominates a vertex $v_{k}\left(v_{i} \neq v_{k}\right)$. We may suppose that $v_{k} \neq v_{i-1}$, so v_{i} dominates $f=v_{k} v_{k+1}$, which implies that G is a $V E$ graph.

Finally, we can determine that these classes of graphs are included in the class of balanced graphs.

Figure 2.5: Intersection between all the classes.
Theorem 2.3.4. Let G be a VE graph. Then G is a balanced graph.
Proof. Suppose that A_{G} is not a balanced matrix. So, we have the matrix of Figure 2.3 as a submatrix A^{\prime} in A_{G}, where $M_{1}, \ldots, M_{2 k+1}$ are cliques of G and $v_{1}, \ldots, v_{2 k+1}$ are vertices of G. Then $v_{1}, \ldots, v_{2 k+1}$ is an odd cycle of G and M_{i} is a clique that contains the edge $v_{i} v_{i+1}\left(M_{i} \in M\left(v_{i}, v_{i+1}\right)\right)$. But M_{i} does not contain another vertex v_{j} of the cycle, otherwise there would be a 1 in the position (i, j) of A^{\prime}. So $M_{i} \notin M\left(v_{j}\right)$ for $j \neq i, i+1$. This fact implies that $N_{G}\left[v_{i} v_{i+1}\right] \nsubseteq N_{G}\left[v_{j}\right]$ for $j \neq i, i+1$, for any edge $v_{i} v_{i+1}$ of the cycle, thus G is not a $V E$ graph.

Corollary 2.3.4.1. $V E, E E, V V$ and $E V$ graphs are perfect graphs.

Note: Figure 2.5 shows examples of minimal graphs belonging to the possible intersections defined by the inclusions among these classes. The examples can be checked with no difficulty. We can see in this figure that the inclusions are proper.

Remark 2.3.1. Bipartite graphs are EV graphs.
Remark 2.3.2. $V E, E E, V V$ and $E V$ graphs are hereditary classes of graphs.

2.3.2 Matrix characterizations

Let e_{1}, \ldots, e_{m} and v_{1}, \ldots, v_{n} be the edges and vertices of a graph G, respectively. Denote by $w_{1 i}$ and $w_{2 i}$ the endpoints of the edge e_{i}. We define two matrices in $\{0,1\}^{m \times n}$:

- $A_{V E}(G)$, whose entry (i, j) is 1 if $N_{G}\left[e_{i}\right] \subseteq N_{G}\left[v_{j}\right]$, and 0 otherwise.
- $A_{V V}(G)$, whose entry (i, j) is 1 if $N_{G}\left[w_{1 i}\right] \subseteq N_{G}\left[v_{j}\right]$ or $N_{G}\left[w_{2 i}\right] \subseteq N_{G}\left[v_{j}\right]$, and 0 otherwise.

Clearly, both matrices can be constructed in polynomial time.
Theorem 2.3.5. A graph G is a $V E$ graph if and only if $A_{V E}(G)$ is a balanced matrix.

Proof. $\Rightarrow)$ Suppose that $A_{V E}(G)$ is not a balanced matrix. So, we have the following submatrix A^{\prime} in $A_{V E}(G)$, where $e_{1}, \ldots, e_{2 k+1}$ are edges of G and $v_{1}, \ldots, v_{2 k+1}$ are vertices of G :

	v_{1}	v_{2}	v_{3}	\ldots	$v_{2 k+1}$
e_{1}	1	1	0	\ldots	0
e_{2}	0	1	1	\ldots	0
e_{3}	0	0	1	\ldots	0
.	\cdot
.
.	\cdot
$e_{2 k+1}$	1	0	0	\ldots	1

Figure 2.6: Vertex-edge incidence matrix of an odd cycle.
Let $1 \leq i \leq 2 k+1$. Since $N_{G}\left[e_{i}\right] \subseteq N_{G}\left[v_{i}\right] \cap N_{G}\left[v_{i+1}\right], v_{i}$ and v_{i+1} are adjacent, and then $v_{1}, \ldots, v_{2 k+1}$ is an odd cycle of G. Let f_{i} be the edge $v_{i} v_{i+1}$. Then $N_{G}\left[e_{i}\right] \subseteq N_{G}\left[f_{i}\right]$. So, if the vertex v_{j} dominates the edge f_{i}, then it also dominates the edge e_{i} and, therefore, there must be a 1 in the position (i, j) of A^{\prime}. So the vertex v_{j} does not dominate the edge f_{i} for $j \neq i, i+1$, for any edge f_{i} of the cycle. Thus G is not a $V E$ graph.
$\Leftarrow)$ Suppose that G is not a $V E$ graph. Then there is an odd cycle $C=\left\{v_{1}, \ldots, v_{2 k+1}\right\}$ such that, for any $e_{i}=v_{i} v_{i+1}$ and any $j \neq i, i+1, N_{G}\left[e_{i}\right] \nsubseteq N_{G}\left[v_{j}\right]$.

Now, if we choose the rows of $A_{V E}(G)$ corresponding to $e_{1}, \ldots, e_{2 k+1}$ and the columns of $A_{V E}(G)$ corresponding to $v_{1}, \ldots, v_{2 k+1}$, we have a vertex-edge incidence matrix of an odd cycle as a submatrix of $A_{V E}(G)$, so it is not a balanced matrix.

Corollary 2.3.5.1. There is a polynomial time recognition algorithm for $V E$ graphs.
Theorem 2.3.6. A graph G is a $V V$ graph if and only if $A_{V V}(G)$ is a balanced matrix.

Proof. $\Rightarrow)$ Suppose that $A_{V V}(G)$ is not a balanced matrix. So, we have the matrix of Figure 2.6 as a submatrix A^{\prime} in $A_{V V}(G)$, where $e_{1}, \ldots, e_{2 k+1}$ are edges of G and $v_{1}, \ldots, v_{2 k+1}$ are vertices of G.

Let $1 \leq i \leq 2 k+1$. By definition of $A_{V V}(G), N_{G}\left[e_{i}\right] \subseteq N_{G}\left[v_{i}\right] \cap N_{G}\left[v_{i+1}\right]$, and therefore v_{i} and v_{i+1} are adjacent. Then $v_{1}, \ldots, v_{2 k+1}$ is an odd cycle of G.

Note that, if the vertex v_{j} dominates the vertex v_{i}, there must be a 1 in the position (i, j) of A^{\prime} and a 1 in the position $(i-1, j)$ of A^{\prime} (the sums must be understood modulo $2 \mathrm{k}+1$). However, the latter does not occur. So the vertex v_{j} does not dominate the vertex v_{i} for any $j \neq i$. Thus G is not a $V V$ graph.
$\Leftarrow)$ Suppose that G is not a $V V$ graph. Then there is an odd cycle $C=\left\{v_{1}, \ldots, v_{2 k+1}\right\}$ such that, for any $i \neq j, N_{G}\left[v_{i}\right] \nsubseteq N_{G}\left[v_{j}\right]$. If we choose the rows of $A_{V V}(G)$ corresponding to $e_{1}, \ldots, e_{2 k+1}$ and the columns of $A_{V V}(G)$ corresponding to $v_{1}, \ldots, v_{2 k+1}$, we have a vertex-edge incidence matrix of an odd cycle as a submatrix of $A_{V V}(G)$, so it is not a balanced matrix.

Corollary 2.3.6.1. There is a polynomial time recognition algorithm for $V V$ graphs.

2.3.3 A combinatorial algorithm for the maximum stable set in $V V$ graphs

The maximum stable set problem can be solved in polynomial time for perfect graphs by a linear programming-based algorithm [47] (and in consequence for balanced graphs and its subclasses too). We present here a purely combinatorial polynomial time algorithm (i.e., non LP-based) for the problem of determining the maximum stable set in $V V$ graphs.

Lemma 2.3.7. Let G be a graph and v, w two vertices of G such that v dominates w. Then there exists a maximum stable set S of G such that v does not belong to S.

Proof. Let S be a maximum stable set in G. If v does not belong to S, the lemma holds. Otherwise, w cannot belong to S because it is adjacent to v. As v dominates $w, S \backslash\{v\} \cup\{w\}$ is a maximum stable set that does not contain v.

Theorem 2.3.8. There exists a polynomial time combinatorial algorithm to find a maximum stable set for $V V$ graphs.

Proof. Let G be a $V V$ graph. If there exists a vertex v that dominates another vertex w, then remove v. This procedure is repeated until no more dominating vertices exist. We obtain an induced subgraph G^{\prime} that can be constructed in polynomial time. As $V V$ graphs are hereditary, G^{\prime} lies in this class. So, G^{\prime} has no odd cycle (and in consequence it is a bipartite graph). By Lemma 2.3.7, a maximum stable set in G^{\prime} is a maximum stable set in G. Such a set can be found in $O\left(n^{5 / 2}\right)$ time [50].

2.4 Clique graphs of balanced graphs

Clique graphs of several classes of graphs have already been characterized. Trees, interval graphs, chordal graphs, block graphs, clique-Helly graphs and Helly circular-arc
graphs are some of them [69]. In this section we show that the class of balanced graphs and the class of totally unimodular graphs are fixed classes under the clique operator, i.e., $K(B A L A N C E D)=B A L A N C E D$ and $K($ TOTALLY UNIMODULAR $)=$ TOTALLY UNIMODULAR, and finally we present a characterization of clique graphs of $V E, E E, V V$ and $E V$ graphs.

Some previous definitions and lemmas are needed. To this end, let A_{G}^{t} denote the transpose matrix of A_{G}. Then it holds the following lemma.

Lemma 2.4.1. [15] Let G be a clique-Helly graph. Then $A_{K(G)}$ is the submatrix of A_{G}^{t} obtained by removing the included rows.

Define the graph $H(G)$ where $V(H(G))=\left\{q_{1}, \ldots, q_{k}, w_{1}, \ldots, w_{n}\right\}$, each q_{i} corresponds to the clique M_{i} of G, and each w_{i} corresponds to the vertex v_{i} of G. The vertices q_{1}, \ldots, q_{k} induce the graph $K(G)$, the vertices w_{1}, \ldots, w_{n} induce a stable set and w_{j} is adjacent to q_{i} if and only if v_{j} belongs to the clique M_{i} in G.

Theorem 2.4.2. [49] Let G be a clique-Helly graph and $H(G)$ as defined above. Then the cliques of $H(G)$ are induced by $N_{G}\left[w_{i}\right]$ for each i, w_{i} is a simplicial vertex of $H(G)$ for every i, and $K(H(G))=G$.

Let $A \in R^{n \times m}$ and $B \in R^{n \times k}$ be two matrices. We define the matrix $A \mid B \in R^{n \times(m+k)}$ by $(A \mid B)(i, j)=A(i, j)$ for $i=1, \ldots, n, j=1, \ldots, m$ and $(A \mid B)(i, m+j)=B(i, j)$ for $i=1, \ldots, n, j=1, \ldots, k$. Let I_{n} be the $n \times n$ identity matrix.

As a corollary of Theorem 2.4.2, we have the following result.
Corollary 2.4.2.1. Let G be a clique-Helly graph and $|V(G)|=n$. Then $A_{H(G)}=$ $A_{G}^{t} \mid I_{n}$.

From Lemma 2.4.1 we can deduce the following result, also proved in [7].
Theorem 2.4.3. If G is a balanced graph then $K(G)$ is also balanced.
Theorem 2.4.4. A graph G is balanced if and only if G is clique-Helly and $H(G)$ is balanced.

Proof. $\Rightarrow)$ If G is a balanced graph, then by Corollary 2.1.1.1, G is a clique-Helly graph. So, we have that $A_{H(G)}=A_{G}^{t} \mid I_{n}$ (Corollary 2.4.2.1), and A_{G} is balanced, so A_{G}^{t} is balanced. On the other hand, all the columns of the vertex-edge incidence matrix of an odd cycle have two nonzero entries, so $A_{H(G)}$ is balanced.
\Leftarrow If G is a clique-Helly graph and $H(G)$ is balanced, $G=K(H(G)$) (Theorem 2.4.2) and then G is balanced (Theorem 2.4.3).

The following corollary, mentioned in [56], follows from Theorem 2.4.3, Corollary 2.1.1.1 and Theorem 2.4.4.

Corollary 2.4.4.1. The class of balanced graphs is fixed under K, that is, $K(B A L A N C E D)=B A L A N C E D$.

Next, we show that similar results hold for the class of totally unimodular graphs.
Theorem 2.4.5. If G is a totally unimodular graph then $K(G)$ is also totally unimodular.

Proof. If G is a totally unimodular graph then G is a balanced graph and then G is a clique-Helly graph (Corollary 2.1.1.1). So Lemma 2.4.1 holds. If A_{G} is a totally unimodular matrix, then A_{G}^{t} is totally unimodular too, since for every square matrix $M, \operatorname{det}(M)=\operatorname{det}\left(M^{t}\right)$. And every submatrix of a totally unimodular matrix is totally unimodular. So, $A_{K(G)}$ is a totally unimodular matrix.

Theorem 2.4.6. A graph G is totally unimodular if and only if G is clique-Helly and $H(G)$ is totally unimodular.

Proof. $\Rightarrow)$ If G is a totally unimodular graph then G is a balanced graph and consequently G is a clique-Helly graph (Corollary 2.1.1.1). We have that $A_{H(G)}=A_{G}^{t} \mid I_{n}$ (Corollary 2.4.2.1), and A_{G} is totally unimodular, so A_{G}^{t} is totally unimodular. Every square submatrix M of $A_{H(G)}$ can be written as $M=M_{1} \mid M_{2}$, where M_{1} is a submatrix of A_{G}^{t} and M_{2} is a submatrix of I_{n}. So, using determinant properties, M is singular or $\operatorname{det}(M)= \pm \operatorname{det}\left(M_{3}\right)$, where M_{3} is a square submatrix of M_{1}. Then, in both cases, $\operatorname{det}(M)=0$ or ± 1. Therefore $H(G)$ is totally unimodular.
$\Leftarrow)$ If G is a clique-Helly graph and $H(G)$ is totally unimodular, $G=K(H(G))$ (Theorem 2.4.2) and then G is totally unimodular (Theorem 2.4.5).

Corollary 2.4.6.1. The class of totally unimodular graphs is fixed under K, i.e., $K(T O T A L L Y$ UNIMODULAR $)=$ TOTALLY UNIMODULAR.

Finally, we present a characterization of clique graphs of $V E, E E, V V$ and $E V$ graphs.
Let $S=\left\{M_{1}, \ldots, M_{2 k+1}\right\}$ be an odd set of cliques of G, where M_{r} intersects M_{r+1} for $r=1, \ldots, 2 k+1$ (all the index sums must be understood modulo $2 k+1$).

A graph G is a dually $E E$ graph ($D E E$ graph) if for any such a set S there exist i, j, $1 \leq i, j \leq 2 k+1, i \neq j$, such that $M_{i} \cap M_{i+1} \subseteq M_{j} \cap M_{j+1}$.

A graph G is a dually $V E$ graph ($D V E$ graph) if for any such a set S there exist i, j, $1 \leq i, j \leq 2 k+1, i \neq j, i+1 \neq j$, such that $M_{i} \cap M_{i+1} \subseteq M_{j}$.
Theorem 2.4.7. Let G be a $D E E$ graph. Then G is a DVE graph.

Proof. Let $S=\left\{M_{1}, \ldots, M_{2 k+1}\right\}$ a set of cliques of G, where M_{i} intersects M_{i+1} for $i=$ $1, \ldots, 2 k+1$. By hypothesis, as G is a $D E E$ graph, there are cliques $M_{i}, M_{i+1}, M_{j}, M_{j+1}$ such that $M_{i} \cap M_{i+1} \subseteq M_{j} \cap M_{j+1}(i \neq j)$. So $M_{i} \cap M_{i+1} \subseteq M_{j}$, and if $i+1=j$ then $i \neq j+1, i+1 \neq j+1$ and $M_{i} \cap M_{i+1} \subseteq M_{j+1}$, which implies that G is a $D V E$ graph.

Theorem 2.4.8. Let G be a DVE graph. Then G is a balanced graph.

Proof. Suppose that A_{G} is not a balanced matrix. So, we have the matrix of Figure 2.3 as a submatrix A^{\prime} in A_{G}, where $M_{1}, \ldots, M_{2 k+1}$ are cliques of G and $v_{1}, \ldots, v_{2 k+1}$ are vertices of G. Then $\left\{M_{1}, \ldots, M_{2 k+1}\right\}$ is an odd set of cliques of G where M_{i} intersects M_{i+1} for $i=1, \ldots, 2 k+1$. On the other hand, v_{i} is a vertex that belongs to $M_{i} \cap M_{i+1}$ but v_{i} does not belong to another clique M_{j} of the set, otherwise there would be a 1 in the position (j, i) of A^{\prime}. So $v_{i} \notin M_{j}$ for $j \neq i, i+1$. This fact implies that $M_{i} \cap M_{i+1} \nsubseteq M_{j}$ for $j \neq i, i+1$, for any $i=1, \ldots, 2 k+1$, thus G is not a $D V E$ graph.

Theorem 2.4.9. Let G be a graph.

- If G is a DVE graph then $K(G)$ is $V E$.
- If G is a $D E E$ graph then $K(G)$ is $E E$.
- If G is a $V E$ graph then $K(G)$ is $D V E$.
- If G is a $E E$ graph then $K(G)$ is $D E E$.

Proof. Let G be a graph. Classes $D V E, D E E, V E$ and $E E$ are subclasses of balanced graphs, and balanced graphs are clique-Helly. So, if G belongs to some of these classes, then G is a clique-Helly graph. The vertices of $K(G)$ are the cliques of G, and by Lemma 2.4.1 we know that the cliques of $K(G)$ are some $M(v)$ with $v \in V(G)$.

Let $\left\{M_{1}, \ldots, M_{2 k+1}\right\}$ be an odd cycle in $K(G)$, then M_{i} intersects M_{i+1} in G, for $i=1, \ldots, 2 k+1$.

If G is a $D V E$ graph, there are cliques M_{i}, M_{i+1}, M_{j} such that $M_{i} \cap M_{i+1} \subseteq M_{j}$ $(i, i+1 \neq j)$. Let $M(v)$ be a clique of $K(G)$ that contains M_{i} and M_{i+1}. Then, in G, v lies in $M_{i} \cap M_{i+1}$ implying that v is in M_{j} and therefore $M(v)$ contains M_{j} too. So, in $K(G)$, the vertex M_{j} dominates the edge $M_{i} M_{i+1}$ and, as a consequence, $K(G)$ is in $V E$.

If G is a $D E E$ graph, there are cliques $M_{i}, M_{i+1}, M_{j}, M_{j+1}$ such that $M_{i} \cap M_{i+1} \subseteq$ $M_{j} \cap M_{j+1}(i \neq j)$. Let $M(v)$ be a clique of $K(G)$ that contains M_{i} and M_{i+1}, then, in G, v lies in $M_{i} \cap M_{i+1}$ implying that v is in $M_{j} \cap M_{j+1}$ and therefore $M(v)$ contains M_{j} and M_{j+1} too. So, in $K(G)$, the edge $M_{j} M_{j+1}$ dominates the edge $M_{i} M_{i+1}$ and, in consequence, $K(G)$ is in $E E$.

Now, let $\left\{M\left(v_{1}\right), \ldots, M\left(v_{2 k+1}\right)\right\}$ be an odd set of cliques in $K(G)$, where $M\left(v_{i}\right)$ intersects $M\left(v_{i+1}\right)$ for $i=1, \ldots, 2 k+1$. Then for each i there exists a clique M_{i} of G such that v_{i} and v_{i+1} belong to M_{i}, and then v_{i} and v_{i+1} are adjacent in G, so $v_{1}, \ldots, v_{2 k+1}$ is an odd cycle in G.

If G is in $V E$, there is a vertex v_{j} of the cycle that dominates the edge $v_{i} v_{i+1}$ with $j \neq i, i+1$. Let M be a vertex of $K(G), M$ lies in $M\left(v_{i}\right) \cap M\left(v_{i+1}\right)$ in $K(G)$, v_{i} and
v_{i+1} belong to M in G, and therefore v_{j} belongs to M too. So $M \in M\left(v_{j}\right)$, and in consequence $M\left(v_{i}\right) \cap M\left(v_{i+1}\right) \subseteq M\left(v_{j}\right)$. Then $K(G)$ is a $D V E$ graph.

If G is in $E E$, there is an edge $v_{j} v_{j+1}$ of the cycle that dominates the edge $v_{i} v_{i+1}$ with $j \neq i$. Let M be a vertex of $K(G), M$ lies in $M\left(v_{i}\right) \cap M\left(v_{i+1}\right)$ in $K(G), v_{i}$ and v_{i+1} belong to M in G, and therefore v_{j} and v_{j+1} belong to M too. So $M \in M\left(v_{j}\right) \cap M\left(v_{j+1}\right)$, and in consequence $M\left(v_{i}\right) \cap M\left(v_{i+1}\right) \subseteq M\left(v_{j}\right) \cap M\left(v_{j+1}\right)$. Then $K(G)$ is a $D E E$ graph.

Theorem 2.4.10. Let G be a clique-Helly graph.

- G is a DVE graph if and only if $H(G)$ is $V E$.
- G is a DEE graph if and only if $H(G)$ is $E E$.
- G is a $V E$ graph if and only if $H(G)$ is DVE.
- G is a EE graph if and only if $H(G)$ is DEE.

Proof. Let G be a clique-Helly graph and $H(G)$ as defined in Theorem 2.4.2, with $V(H(G))=\left\{q_{1}, \ldots, q_{k}, w_{1}, \ldots, w_{n}\right\}$, each q_{i} corresponds to the clique M_{i} of G, and each w_{i} corresponds to the vertex v_{i} of G. By Theorem 2.4.2, the cliques of $H(G)$ are $N_{H(G)}\left[w_{i}\right]$ for each i. Then w_{i} and all its incident edges are dominated between themselves, and every vertex in $N_{H(G)}\left(w_{i}\right)$ dominates w_{i} and all its incident edges.

Let C be an odd cycle in $H(G)$. If there is a vertex w_{i} in C, then C contains an edge that dominates another edge, and a vertex that dominates an edge non incident to it.

If there is not such a vertex, C is an odd cycle $\left\{q_{r_{1}}, \ldots, q_{r_{2 s+1}}\right\}$ that corresponds to an odd set of cliques $\left\{M_{r_{1}}, \ldots, M_{r_{2 s+1}}\right\}$ of G, such that $M_{r_{i}}$ intersects $M_{r_{i+1}}$ for $i=$ $1, \ldots, 2 s+1$.

If G is a $D V E$ graph, there are cliques $M_{r_{i}}, M_{r_{i+1}}, M_{r_{j}}$ such that $M_{r_{i}} \cap M_{r_{i+1}} \subseteq M_{r_{j}}$ $(i, i+1 \neq j)$. Let $N_{H(G)}\left[w_{l}\right]$ be a clique of $H(G)$ that contains $q_{r_{i}}$ and $q_{r_{i+1}}$. Then, in G, v_{l} lies in $M_{r_{i}} \cap M_{r_{i+1}}$ implying that v_{l} is in $M_{r_{j}}$ and therefore, in $H(G), N_{H(G)}\left[w_{l}\right]$ contains $q_{r_{j}}$ too. So, in $H(G)$, the vertex $q_{r_{j}}$ dominates the edge $q_{r_{i}} q_{r_{i+1}}$ and, in consequence, $H(G)$ is $V E$.

If G is a $D E E$ graph, there are cliques $M_{r_{i}}, M_{r_{i+1}}, M_{r_{j}}, M_{r_{j+1}}$ such that $M_{r_{i}} \cap M_{r_{i+1}} \subseteq$ $M_{r_{j}} \cap M_{r_{j+1}}(i \neq j)$. Let $N_{H(G)}\left[w_{l}\right]$ be a clique of $H(G)$ that contains $M_{r_{i}}$ and $M_{r_{i+1}}$. Then, in G, v_{l} belongs to $M_{r_{i}} \cap M_{r_{i+1}}$ implying that v_{l} belongs to $M_{r_{j}} \cap M_{r_{j+1}}$. Therefore, in $H(G), N_{H(G)}\left[w_{l}\right]$ contains $q_{r_{j}}$ and $q_{r_{j+1}}$ too. So, in $H(G)$, the edge $q_{r_{j}} q_{r_{j+1}}$ dominates the edge $q_{r_{i}} q_{r_{i+1}}$ and, in consequence, $H(G)$ is $E E$.
Now, let $\left\{N_{H(G)}\left[w_{r_{1}}\right], \ldots, N_{H(G)}\left[w_{r_{2 s+1}}\right]\right\}$ be an odd set of cliques in $H(G)$, where $N_{H(G)}\left[w_{r_{i}}\right]$ intersects $N_{H(G)}\left[w_{r_{i+1}}\right]$ for $i=1, \ldots, 2 s+1$. Then for each i there exists a vertex $q \in N_{H(G)}\left[w_{r_{i}}\right] \cap N_{H(G)}\left[w_{r_{i+1}}\right]$. So $v_{r_{i}}$ and $v_{r_{i+1}}$ belong to the corresponding clique M of G, and then $v_{r_{i}}$ and $v_{r_{i+1}}$ are adjacent in G, so $v_{r_{1}}, \ldots, v_{r_{2 s+1}}$ is an odd cycle in G.

Figure 2.7: Intersection between the dual classes $E E$ and $D E E$.

Figure 2.8: Intersection between the dual classes $V E$ and $D V E$.

If G is a $V E$ graph, there is a vertex $v_{r_{j}}$ of the cycle that dominates the edge $v_{r_{i}} v_{r_{i+1}}$ with $j \neq i, i+1$. Let q_{l} be a vertex of $H(G), q_{l}$ lies in $N_{H(G)}\left[w_{r_{i}}\right] \cap N_{H(G)}\left[w_{r_{i+1}}\right]$ in $H(G), v_{i}$ and v_{i+1} belong to M_{l} in G, and therefore v_{j} belongs to M_{l} too. So q_{l} belongs to $N_{H(G)}\left[w_{r_{j}}\right]$, and in consequence $N_{H(G)}\left[w_{r_{i}}\right] \cap N_{H(G)}\left[w_{r_{i+1}}\right] \subseteq N_{H(G)}\left[w_{r_{j}}\right]$. Then $H(G)$ is $D V E$.

If G is a $E E$ graph, there is an edge $v_{r_{j}} v_{r_{j+1}}$ of the cycle that dominates the edge $v_{r_{i}} v_{r_{i+1}}$ with $j \neq i$. Let q_{l} be a vertex of $H(G), q_{l}$ lies in $N_{H(G)}\left[w_{r_{i}}\right] \cap N_{H(G)}\left[w_{r_{i+1}}\right]$ in $H(G), v_{r_{i}}$ and $v_{r_{i+1}}$ belong to M_{l} in G, and therefore $v_{r_{j}}$ and $v_{r_{j+1}}$ belong to M_{l} too. So q_{l} belongs to $N_{H(G)}\left[w_{r_{j}}\right] \cap N_{H(G)}\left[w_{r_{j+1}}\right]$ in $H(G)$, and in consequence $N_{H(G)}\left[w_{r_{i}}\right] \cap N_{H(G)}\left[w_{r_{i+1}}\right] \subseteq$ $N_{H(G)}\left[w_{r_{j}}\right] \cap N_{H(G)}\left[w_{r_{j+1}}\right]$. Then $H(G)$ is $D E E$.

The converse properties follow from Theorem 2.4.2 and Theorem 2.4.9 applied to $H(G)$.

Corollary 2.4.10.1. $K(D E E)=E E$ and $K(E E)=D E E$.
Corollary 2.4.10.2. $K(D V E)=V E$ and $K(V E)=D V E$.

Theorem 2.4.11. Let G be a graph. If G is a $V V$ graph then $K^{2}(G)$ is a bipartite graph.

Proof. If G is a $V V$ graph then G is clique-Helly (Corollary 2.1.1.1). Every odd cycle of G has a dominated vertex, and therefore, by Theorem 1.3.12, $K^{2}(G)$ is a bipartite graph.

Theorem 2.4.12. Let G be a graph. Then $K(G)$ is a bipartite graph if and only if G is a clique-Helly graph and $H(G)$ is an EV graph.

Proof. $\Rightarrow)$ Let G be a graph, $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $M(G)=\left\{M_{1}, \ldots, M_{k}\right\}$. Since $K(G)$ is a bipartite graph, G is clique-Helly because any set of pairwise intersecting cliques has at most two elements. Clearly, $V(H(G))=V(K(G)) \cup\left\{w_{1}, \ldots, w_{n}\right\}$ as in the definition of $H(G)$. Also, $K(G)$ is a bipartite graph and by the definition of $H(G)$, every odd cycle C of $H(G)$ must contain a vertex w_{i} from $\left\{w_{1}, \ldots, w_{n}\right\}$. By Theorem 2.4.2, w_{i} is a simplicial vertex, so the edges of C incident to w_{i} dominate the vertex w_{i}, and then $H(G)$ is an $E V$ graph.
$\Leftarrow)$ If G is a clique-Helly graph and $H(G)$ is an $E V$ graph, it is a $V V$ graph too. So by Theorem 2.4.11, $K^{2}(H(G))=K(G)$ is a bipartite graph.

Corollary 2.4.12.1. $K^{2}(V V)=K^{2}(E V)=$ the class of bipartite graphs.

Proof. We will prove that $K^{2}(E V) \subseteq K^{2}(V V) \subseteq B I P A R T I T E \subseteq K^{2}(E V)$ and therefore the three classes are the same. The first inclusion holds because $E V \subseteq V V$. The second inclusion follows from Theorem 2.4.11. Now, for every bipartite graph G we have that $K(H(G))=G$ and by Theorem 2.4.12 applied to $H(G), H^{2}(G)$ is an $E V$ graph and $K^{2}\left(H^{2}(G)\right)=G$. So the third inclusion holds too.

The class K^{-1} (BIPARTITE) has been analyzed and characterized by forbidden subgraphs in [62].

Corollary 2.4.12.2. $K(V V)=K(E V)=K^{-1}($ BIPARTITE $)$.
Proof. Let G be a $V V$ graph. By the last corollary, $K^{2}(G)=K(K(G))$ is bipartite so $K(G)$ belongs to $K^{-1}($ BIPARTITE $)$. Therefore $K(E V) \subseteq K(V V) \subseteq K^{-1}$ (BIPARTITE). On the other hand, let G be a graph belonging to K^{-1} (BIPARTITE), then by Theorem 2.4.12 $H(G)$ is $E V$ and $G=K(H(G))$. So $K^{-1}($ BIPARTITE $) \subseteq K(E V) \subseteq$ $K(V V) \subseteq K^{-1}($ BIPARTITE $)$ and we have that the three sets are equal.

As a consequence of this result, we deduce the existence of non LP-based algorithms to find a maximum clique-independent set and a minimum clique-transversal for $V V$ graphs.

Corollary 2.4.12.3. There exists a polynomial time combinatorial algorithm to find a maximum clique-independent set and a minimum clique-transversal for $V V$ graphs.

Proof. Let G be a $V V$ graph. Then $K(G)$ belongs to $K^{-1}($ BIPARTITE $)$ and can be constructed in polynomial time. Moreover, a maximum clique-independent set of G can

Figure 2.9: Inclusion between the classes.
be obtained from a maximum stable set of $K(G)$, and a minimum clique-transversal of G can be constructed from a minimum clique covering of $K(G)$. Since the graphs $K^{-1}($ BIPARTITE $)$ are claw-free [62] there exists a polynomial time combinatorial algorithm for maximum stable set in these graphs [66]. As $K(G)$ is also perfect, we can use the polynomial time combinatorial algorithm for minimum clique covering in claw-free perfect graphs [51]. So, the result holds.

To close the section, we verify that K^{-1} (BIPARTITE) graphs are a subclass of $D E E$.
Theorem 2.4.13. $K^{-1}(B I P A R T I T E) \subseteq D E E$.
Proof. Let $G \in K^{-1}$ (BIPARTITE). Suppose that there exists an odd set $S=\left\{M_{1}\right.$, $\left.\ldots, M_{2 k+1}\right\}$ of cliques of G, where M_{i} intersects M_{i+1} for $i=1, \ldots, 2 k$ and $M_{2 k+1}$ intersects M_{1}. Then the corresponding vertices in $K(G)$ form an odd cycle, but $K(G)$ is a bipartite graph, so such a set does not exist, and G is $D E E$.

Note 1. Figure 2.9 shows that all these inclusions are proper.

Partial characterizations of clique-perfect graphs

A graph G is clique-perfect if the cardinality of a maximum clique-independent set of H equals the cardinality of a minimum clique-transversal of H, for every induced subgraph H of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this chapter, we present partial results in this direction, that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to certain classes.

This chapter is organized as follows.
In Section 3.1 we present some families of clique-perfect and clique-imperfect graphs.
In Subsection 3.2.1 we characterize clique-perfect diamond-free graphs by forbidden induced subgraphs. In Subsections 3.2.2, 3.2.3, and 3.2.4 we characterize clique-perfect graphs by minimal forbidden induced subgraphs, when the graph is a line graph, clawfree hereditary clique-Helly, or a Helly circular-arc graph, respectively.

Finally, in Section 3.3 we present polynomial time recognition algorithms for cliqueperfection in these last three classes of graphs.

Extended abstracts of the results in this chapter appear in [11] and [14]. The full versions were recently submitted $[12,13]$.

3.1 Some families of clique-perfect and clique-imperfect graphs

Some known classes of clique-perfect graphs are dually chordal graphs [17], comparability graphs [2] and balanced graphs [10].

Proposition 3.1.1. Complements of acyclic graphs are clique-perfect.

Proof. Let G be a complement of an acyclic graph. If \bar{G} contains a vertex v of degree zero, then every clique of G contains v, so $\alpha_{c}(G)=\tau_{c}(G)=1$. Otherwise, since G does not contain a universal vertex, $\tau_{c}(G)>1$ and since \bar{G} is acyclic, \bar{G} contains a vertex w of degree 1 . Let z be the neighbor of w in \bar{G}. Every clique of G not containing z must contain w by maximality. So $\tau_{c}(G)=2$. On the other hand, since every connected component of \bar{G} is a tree with at least two vertices, we can obtain two disjoint maximal stable sets in \bar{G}, thus $\alpha_{c}(G)=2$. Since the class of acyclic graphs is hereditary, the equality between α_{c} and τ_{c} holds for every induced subgraph of G.

A generalized sun is defined as follows. Let G be a graph and C be a cycle of G not necessarily induced. An edge of C is non proper (or improper) if it forms a triangle with some vertex of C. An r-generalized sun, $r \geq 3$, is a graph G whose vertex set can be partitioned into two sets: a cycle C of r vertices, with all its non proper edges $\left\{e_{j}\right\}_{j \in J}\left(J\right.$ is allowed to be an empty set) and a stable set $U=\left\{u_{j}\right\}_{j \in J}$, such that for each $j \in J, u_{j}$ is adjacent to the endpoints of e_{j} only. An r-generalized sun is said to be odd if r is odd. Clearly, odd holes and odd suns are odd generalized suns.

Figure 3.1: Some examples of odd generalized suns.

Theorem 3.1.1. [15] Odd generalized suns and antiholes of length $t=1,2 \bmod 3$ $(t \geq 5)$ are not clique-perfect.

Unfortunately, not every odd generalized sun is minimally clique-imperfect (with respect to taking induced subgraphs). Nevertheless, odd holes and complete odd suns are minimally clique-imperfect, and we will distinguish two other kinds of minimally clique-imperfect odd generalized suns in order to state a characterization of $H C A$ clique-perfect graphs by minimal forbidden induced subgraphs.

A viking is a graph G such that $V(G)=\left\{a_{1}, \ldots, a_{2 k+1}, b_{1}, b_{2}\right\}, k \geq 2, a_{1} \ldots a_{2 k+1} a_{1}$ is a cycle with only one chord $a_{2} a_{4} ; b_{1}$ is adjacent to a_{2} and $a_{3} ; b_{2}$ is adjacent to a_{3} and a_{4}, and there are no other edges in G.

A 2-viking is a graph G such that $V(G)=\left\{a_{1}, \ldots, a_{2 k+1}, b_{1}, b_{2}, b_{3}\right\}, k \geq 2, a_{1} \ldots a_{2 k+1} a_{1}$ is a cycle with only two chords, $a_{2} a_{4}$ and $a_{3} a_{5} ; b_{1}$ is adjacent to a_{2} and $a_{3} ; b_{2}$ is adjacent to a_{3} and $a_{4} ; b_{3}$ is adjacent to a_{4} and a_{5}, and there are no other edges in G.

Proposition 3.1.2. Vikings and 2-vikings are clique-imperfect.

Proof. Vikings and 2 -vikings are odd generalized suns, where in both cases the odd cycle is $a_{1} \ldots a_{2 k+1} a_{1}$, and the stable sets are $\left\{b_{1}, b_{2}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$, respectively.

We now present two new families (neither odd generalized suns nor antiholes) of minimal clique-imperfect graphs.

For $k \geq 2$, define the graph S_{k} as follows: $V\left(S_{k}\right)=\left\{a_{1}, \ldots, a_{2 k+1}, b_{1}, b_{2}, b_{3}\right\}, a_{1} \ldots$ $a_{2 k+1} a_{1}$ is a cycle with only one chord $a_{3} a_{5} ; b_{1}$ is adjacent to a_{1} and $a_{2} ; b_{2}$ is adjacent to a_{4} and $a_{5} ; b_{3}$ is adjacent to a_{1}, a_{2}, a_{3} and a_{4}, and there are no other edges in S_{k}.

For $k \geq 2$, define the graph T_{k} as follows: $V\left(T_{k}\right)=\left\{a_{1}, \ldots, a_{2 k+1}, b_{1}, \ldots, b_{5}\right\}, a_{1} \ldots a_{2 k+1} a_{1}$ is a cycle with only two chords, $a_{2} a_{4}$ and $a_{3} a_{5} ; b_{1}$ is adjacent to a_{1} and $a_{2} ; b_{2}$ is adjacent to a_{1}, a_{2} and $a_{3} ; b_{3}$ is adjacent to $a_{1}, a_{2}, a_{3}, a_{4}, b_{2}$ and $b_{4} ; b_{4}$ is adjacent to a_{3}, a_{4} and $a_{5} ; b_{5}$ is adjacent to a_{4} and a_{5}, and there are no other edges in T_{k}.

Proposition 3.1.3. Let $k \geq 2$. Then S_{k} and T_{k} are clique-imperfect.

Proof. Every clique of S_{k} contains at least two vertices of $a_{1}, \ldots, a_{2 k+1}$, so $\alpha_{c}\left(S_{k}\right) \leq k$. The same holds for T_{k}, so $\alpha_{c}\left(T_{k}\right) \leq k$. On the other hand, consider in S_{k} the family of cliques $\left\{a_{1}, a_{2}, b_{1}\right\},\left\{a_{2}, a_{3}, b_{3}\right\},\left\{a_{3}, a_{4}, b_{3}\right\},\left\{a_{4}, a_{5}, b_{2}\right\}$ and either $\left\{a_{5}, a_{1}\right\}$, if $k=2$, or $\left\{a_{5}, a_{6}\right\}, \ldots,\left\{a_{2 k+1}, a_{1}\right\}$, if $k>2$. No vertex of S_{k} belongs to more than two of these $2 k+1$ cliques, so $\tau_{c}\left(S_{k}\right) \geq k+1$. Analogously, consider in T_{k} the family of cliques $\left\{a_{1}, a_{2}, b_{1}\right\},\left\{a_{2}, a_{3}, b_{2}, b_{3}\right\},\left\{a_{3}, a_{4}, b_{3}, b_{4}\right\},\left\{a_{4}, a_{5}, b_{5}\right\}$ and either $\left\{a_{5}, a_{1}\right\}$, if $k=2$, or $\left\{a_{5}, a_{6}\right\}, \ldots,\left\{a_{2 k+1}, a_{1}\right\}$, if $k>2$. No vertex of T_{k} belongs to more than two of these $2 k+1$ cliques, so $\tau_{c}\left(T_{k}\right) \geq k+1$.

The minimality of vikings, 2-vikings, S_{k} and $T_{k}(k \geq 2)$ will be proved as a corollary of the main theorem of Subsection 3.2.4.

A drum is a graph G on $2 r$ vertices whose vertex set can be partitioned into two sets, $W=\left\{w_{1}, \ldots, w_{r}\right\}$ and $U=\left\{u_{1}, \ldots, u_{r}\right\}$, such that $w_{1} \ldots w_{r}$ and $u_{1} \ldots u_{r}$ are cycles, every chord of these cycles belongs to a triangle, and for each i and j, w_{j} is adjacent to u_{i} if and only if $i=j$ or $i \equiv j+1(\bmod r)$. A drum is complete if U and W are completes. Denote by D_{r} the complete drum on $2 r$ vertices.

Proposition 3.1.4. Drums on $2 r$ vertices with $r=1,2 \bmod 3(r \geq 4)$ are cliqueimperfect.

Proof. Let G be a drum on $2 r$ vertices, $r \geq 4$, as defined above. Every clique of G contains at least three vertices, so $\alpha_{c}(G) \leq\left\lfloor\frac{2 r}{3}\right\rfloor$. On the other hand, consider the $2 r$ cliques of G having nonempty intersection with U and W. Every vertex of G belongs
to three of these cliques, so $\tau_{c}(G) \geq\left\lceil\frac{2 r}{3}\right\rceil$. It follows that if $r=1,2 \bmod 3$ then $\tau_{c}(G)>\alpha_{c}(G)$.

Remark 3.1.1. It is not difficult to check that D_{3} is clique-perfect and drums on 8 and 10 vertices are minimally clique-imperfect if and only if they are complete. On the other hand, complete drums on $2 r$ vertices with $r \geq 6$ are clique-imperfect since they contain the graph $D_{6} \backslash\left\{w_{1}, w_{4}\right\}$, which is minimally clique-imperfect.

In [57] the minimal graphs G such that $K(G)$ is complete (i.e. $\alpha_{c}(G)=1$) and no vertex of G is universal (i.e., $\tau_{c}(G)>1$) are characterized. The graph $Q_{n}, n \geq 3$, is defined as follows: $V\left(Q_{n}\right)=\left\{u_{1}, \ldots, u_{n}\right\} \cup\left\{v_{1}, \ldots, v_{n}\right\}$ is a set of $2 n$ vertices; v_{1}, \ldots, v_{n} induce $\overline{C_{n}}$; for each $1 \leq i \leq n, N_{Q_{n}}\left[u_{i}\right]=V\left(Q_{n}\right)-\left\{v_{i}\right\}$.

The following result will be useful for our purposes.
Theorem 3.1.2. [57] For $k \geq 1, \alpha_{c}\left(Q_{2 k+1}\right)=1$ and $\tau_{c}\left(Q_{2 k+1}\right)=2$. Moreover, if G is a graph such that $\alpha_{c}(G)=1$ and $\tau_{c}(G)>1$, then G contains $Q_{2 k+1}$ for some $k \geq 1$.

As a corollary of Theorem 3.1.2, graphs $Q_{2 k+1}$, where $k \geq 1$, are not clique-perfect. Note that Q_{n} contains $\overline{C_{n}}$, so Q_{n} is neither clique-perfect nor minimally clique-imperfect for $n=1,2 \bmod 3, n \geq 5$. On the other hand, Q_{3} is the 3 -sun, so it is minimally cliqueimperfect.

Proposition 3.1.5. Let $k \geq 1$. Then $Q_{6 k}$ is clique-perfect and $Q_{6 k+3}$ is minimally clique-imperfect.

Proof. Let $k \geq 1$. By Theorem 3.1.2, $Q_{6 k+3}$ is clique-imperfect. On the other hand, in $Q_{6 k}$, the set $\left\{v_{1}, u_{1}\right\}$ is a clique-transversal, and $A=\left\{v_{i}: i\right.$ is odd $\} \cup\left\{u_{i}: i\right.$ is even $\}$ and $B=\left\{v_{i}: i\right.$ is even $\} \cup\left\{u_{i}: i\right.$ is odd $\}$ are two disjoint cliques. Let $n=3 t$, with $t \geq 1$. In order to prove the minimality of $Q_{6 k+3}$ as well as the clique perfection of $Q_{6 k}$, it remains to show that the equality of τ_{c} and α_{c} holds for every proper induced subgraph of Q_{n}. Please note that $Q_{n} \backslash\left\{v_{i}\right\}$ is the complement of an acyclic graph, so it is cliqueperfect by Proposition 3.1.1, and we have to consider only the induced subgraphs of Q_{n} containing all the vertices v_{1}, \ldots, v_{n}. In $\overline{C_{3 t}}$, we have $\tau_{c}\left(\overline{C_{3 t}}\right)=\alpha_{c}\left(\overline{C_{3 t}}\right)=3$, so suppose there are some vertices from u_{1}, \ldots, u_{n}, but no all of them. Without loss of generality, let H be an induced subgraph of Q_{n} such that v_{1}, \ldots, v_{n} and u_{1} belong to H and u_{n} does not. Then $\left\{v_{1}, u_{1}\right\}$ is a clique-transversal of H. If n is even, $A=\left\{v_{i}: i\right.$ is odd $\} \cup\left\{u_{i} \in H: i\right.$ is even $\}$ and $B=\left\{v_{i}: i\right.$ is even $\} \cup\left\{u_{i} \in H: i\right.$ is odd $\}$ are two disjoint cliques of H. If n is odd, $A=\left\{v_{i}: i<n\right.$ and i is odd $\}\left\{\left\{u_{i} \in H: i\right.\right.$ is even $\}$ and $B=\left\{v_{i}: i\right.$ is even $\} \cup\left\{u_{i} \in H: i\right.$ is odd $\}$ are two disjoint cliques of H. That concludes the proof.

3.2 Partial characterizations

For some classes of graphs, it is enough to exclude the families of clique-imperfect graphs presented in Section 3.1 in order to guarantee that the graph is clique-perfect.

Theorem 3.2.1. [53] Let G be a chordal graph. Then G is clique-perfect if and only if no induced subgraph of G is an odd sun.

The main results in this chapter are the following four theorems, which will be proved in the next subsections.

Theorem 3.2.2. Let G be a diamond-free graph. Then G is clique-perfect if and only if no induced subgraph of G is an odd generalized sun.

Theorem 3.2.3. [12] Let G be a line graph. Then G is clique-perfect if and only if no induced subgraph of G is an odd hole or a 3-sun.

Theorem 3.2.4. [12] Let G be an $H C H$ claw-free graph. Then G is clique-perfect if and only if no induced subgraph of G is an odd hole or an antihole of length seven.

Theorem 3.2.5. Let G be an HCA graph. Then G is clique-perfect if and only if it does not contain a 3-sun, an antihole of length seven, an odd hole, a viking, a 2-viking or one of the graphs S_{k} or T_{k}.

3.2.1 Diamond-free graphs

In this subsection we prove Theorem 3.2.2, which states that if a graph G is diamondfree, then G is clique-perfect if and only if it does not contain odd generalized suns. To accomplish this, we first prove that diamond-free graphs with no odd generalized suns are K-perfect.

Theorem 3.2.6. Let G be a diamond-free graph. If G does not contain odd generalized suns, then $K(G)$ is perfect.

Proof. By Theorem 1.2.1, it suffices to prove that $K(G)$ contains no odd holes or odd antiholes. By [22], G being diamond-free implies that $K(G)$ is diamond-free, and hence $K(G)$ contains no antihole of length at least 7. Suppose $K(G)$ contains an odd hole $k_{1} k_{2} \ldots k_{2 n+1}$, where $k_{1}, \ldots, k_{2 n+1}$ are cliques of G. Then G contains an odd cycle $v_{1} v_{2} \ldots v_{2 n+1} v_{1}$, where v_{i} belongs to $k_{i} \cap k_{i+1}$ and no other k_{j}. Since G contains no odd generalized suns, we may assume that some edge of this cycle, say, $v_{1} v_{2}$ is in a triangle with another vertex of the cycle, say v_{m}. Now v_{1}, v_{2} both belong to k_{2}, and v_{m} does not. Since k_{2} is a clique, it follows that v_{m} has a non-neighbor w in k_{2}. But now $\left\{v_{1}, v_{2}, v_{m}, w\right\}$ induces a diamond, a contradiction.

We are now in position to prove the characterization of clique-perfect diamond-free graphs.

Proof of Theorem 3.2.2. By Theorem 3.1.1, if G is clique-perfect then no induced subgraph of G is an odd generalized sun. As a direct corollary of Theorem 1.3.2, it follows that diamond-free graphs are $H C H$. Thus, since the class of diamond-free graphs with no odd generalized suns is hereditary, the converse follows from Theorem 3.2.6 and Proposition 1.3.1.

3.2.2 Line graphs

The purpose of this subsection is to prove Theorem 3.2.3, which states that if G is a line graph, then G is clique-perfect if and only if it does not contain odd holes or a 3 -sun. We start by analyzing line graphs with no odd holes or induced 3 -suns.

Graphs such that its line graph is perfect were characterized by Trotter.
Theorem 3.2.7. [70] Let H be a graph. The graph $G=L(H)$ is perfect if and only if H contains no odd cycle of length at least five.

As a corollary of Theorem 3.2.7, a line graph G is perfect if and only if it contains no odd hole. In [58] Maffray gave a third equivalent statement.

Theorem 3.2.8. [58] Let $G=L(H)$ be the line graph of a graph H. Then the following three conditions are equivalent:
(i) G is a perfect graph.
(ii) H does not contain any odd cycle of length at least five.
(iii) Any connected subgraph H^{\prime} of H satisfies at least one of the following properties:

- H^{\prime} is a bipartite graph;
- H^{\prime} is a complete of size four;
- H^{\prime} consists of exactly $p+2$ vertices $x_{1}, \ldots, x_{p}, a, b$, such that $\left\{x_{1}, \ldots, x_{p}\right\}$ is a stable set, and $\left\{x_{j}, a, b\right\}$ is a triangle for each $j=1, \ldots, p$.
- H^{\prime} has a cutpoint.

Theorem 3.2.9. If G is a line graph and G does not contain odd holes, then $K(G)$ is perfect.

Proof. Let $G=L(H)$. By Lemma 1.3.10, we may assume H is connected. Since G has no odd holes, it follows that all the odd cycles of H are triangles. So by Theorem 3.2.8 either H is a bipartite graph, or H is a complete of size four, or H consists of exactly $p+2$ vertices $x_{1}, \ldots, x_{p}, a, b$, such that $\left\{x_{1}, \ldots, x_{p}\right\}$ is a stable set, and $\left\{x_{j}, a, b\right\}$ is a triangle for each $j=1, \ldots, p$, or H has a cutpoint.

If H is bipartite then $G=K(H)$ and $K(G)=K^{2}(H)$ is an induced subgraph of H (Theorem 1.3.12), so it is bipartite and hence perfect.

If H is a complete of size four, then $K(L(H))$ is the complement of $4 K_{2}$, and so it is perfect (it is the complement of a bipartite graph).

If H consists of exactly $p+2$ vertices $x_{1}, \ldots, x_{p}, a, b$, such that $\left\{x_{1}, \ldots, x_{p}\right\}$ is a stable set, and $\left\{x_{j}, a, b\right\}$ is a triangle for each $j=1, \ldots, p$, then all the cliques of G contain the vertex corresponding to the edge $a b$ of H, so $K(G)$ is a complete graph, and hence perfect.

Suppose H has a cutpoint x, and let M_{x} be the complete subgraph of G induced by the vertices corresponding to the edges of H incident to x. Since x is a cutpoint of H, M_{x} is a clique of G, and let v be the vertex of $K(G)$ corresponding to M_{x}.

If $H=H_{1}+H_{2}+x$ and both H_{1} and H_{2} have at least one edge, then v is a cutpoint of $K(G)$, and $K(G)=M_{1}+M_{2}+v$, where M_{i} is the clique graph of the line graph of the subgraph of H formed by H_{i} and the edges incident to x with their respective endpoints. So the property follows from Theorem 1.3.4 by an inductive argument.

Otherwise, x is adjacent to at least one vertex y of degree one in H. Let M_{x}^{\prime} be the complete subgraph of $L(H \backslash\{y\})$ induced by the vertices corresponding to the edges of $H-\{y\}$ incident to x. If M_{x}^{\prime} is still a clique of $L(H \backslash\{y\})$, then $K(G)=K(L(H \backslash\{y\}))$, and the property holds by an inductive argument.

If M_{x}^{\prime} is not a maximal complete in $L(H \backslash\{y\})$, then x has degree 3 in H, and the other two neighbors z and w of x in H are adjacent. The cliques intersecting M_{x} in G pairwise intersect (all of them contain the vertex corresponding to the edge $w z$ of H), so v is simplicial in $K(G)$. On the other hand, $K(L(H \backslash\{y\}))=K(G) \backslash\{v\}$, so the property follows from Theorem 1.3.3 by an inductive argument.

Theorem 3.2.3 is an immediate corollary of the following result.
Theorem 3.2.10. Let G be a line graph. Then the following are equivalent:
(i) no induced subgraph of G is and odd hole, or a 3-sun.
(ii) G is clique-perfect.
(iii) G is perfect and it does not contain a 3-sun.

Proof. The equivalence between (i) and (iii) is a corollary of Theorem 3.2.7. From Theorem 3.1.1 it follows that (ii) implies (i).

It therefore suffices to prove that (i) implies (ii). This proof is again by induction on $|V(G)|$. The class of line graphs with no odd holes or induced 3 -suns is hereditary, so we only have to prove that for every graph in this class τ_{C} equals α_{C}. By Theorem 3.2.9, every such graph is K-perfect. So, if G is an $H C H$, by Lemma 1.3.1, $\tau_{C}(G)=k(K(G))=\alpha(K(G))=\alpha_{C}(G)$. Let $G=L(H)$ and suppose that G is not $H C H$. Then G contains a $0-, 1-, 2$ - or 3 -pyramid.

A 0 -pyramid is a 3 -sun. A 2 -pyramid is not a line graph, and therefore is not an induced subgraph of G.

Assume first that H contains a complete set of size four, say K. By Lemma 1.3 .10 we may assume H is connected. We analyze how vertices of $V(H) \backslash K$ attach to K. If a vertex v is adjacent to two different vertices of K, then H contains an odd cycle as a subgraph and G contains an odd hole. If two different vertices v, w are adjacent to two different vertices of K, then H contains a trinity as a subgraph and so G contains a 3 -sun. These cases can be seen in Figure 3.2.

Figure 3.2: How the remaining vertices of H can be attached to the K_{4}.

So only one of the four vertices $x_{1}, x_{2}, x_{3}, x_{4}$ of K may have neighbors in $H \backslash K$, say x_{1}. Let $v, w, z_{1}, z_{2}, z_{3}$ and z_{4} be the vertices of G corresponding to the edges $x_{1} x_{2}, x_{3} x_{4}$, $x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{4}$ and $x_{2} x_{3}$ of H, respectively. The vertex w is adjacent in G only to z_{1}, z_{2}, z_{3} and z_{4}, which induce a hole of length 4 and are adjacent also to v. So $G \backslash\{w\}$ is a clique subgraph of G (every clique of $G \backslash\{w\}$ is a clique of G). On the other hand, since x_{2} has no neighbors in $H \backslash K$, all the neighbors of v are vertices corresponding to edges of H containing x_{1}, and they are a complete in G. This situation can be seen in Figure 3.3.

Figure 3.3: Structure of G when H has a K_{4}.
By the inductive hypothesis, $G \backslash\{w\}$ is clique-perfect. Let A be a maximum cliqueindependent set and T be a minimum clique-transversal of $G \backslash\{w\}$. By maximality and by the structure of G, A has exactly one clique containing v. Adding w, four new cliques appear, each one disjoint from a different one of the four cliques containing v, and adding w to T we have a clique-transversal of G, so $\alpha_{C}(G)=\alpha_{C}(G \backslash\{w\})+1=$ $\tau_{C}(G \backslash\{w\})+1=\tau_{C}(G)$. So we may assume that H contains no complete set of size four.

Since if G contains a 3 -pyramid, then H contains a complete set of size four, it follows that the only remaining case is when G contains a 1-pyramid. Since G contains a 1-pyramid, H contains as a subgraph a graph on five vertices v_{1}, \ldots, v_{5} where v_{1} is adjacent to v_{2}, v_{3} and v_{4}, v_{2} is adjacent to v_{3} and v_{4}, and v_{3} is adjacent to v_{5} (Figure 3.4). Moreover, v_{3} and v_{4} are not adjacent because H does not contain a complete set of size four, v_{1} and v_{2} are not adjacent to v_{5}, otherwise H contains an odd cycle as a subgraph, and v_{1} and v_{2} do not have other neighbors, otherwise H contains a trinity as a subgraph. Then v_{1} and v_{2} form a cutset in H, because if there is a path $v_{3} P v_{4}$ in
$H \backslash\left\{v_{1}, v_{2}\right\}$, then either $v_{3} P v_{4} v_{1} v_{3}$ or $v_{3} P v_{4} v_{1} v_{2} v_{3}$ is an odd cycle in H.

Figure 3.4: Subgraph of H when H contains no K_{4} and G contains a 1-pyramid.
Let w_{1}, \ldots, w_{5} be the vertices of G corresponding to the edges $v_{1} v_{3}, v_{2} v_{3}, v_{1} v_{4}, v_{2} v_{4}$ and $v_{1} v_{2}$ of H, respectively. Then $w_{1} w_{2} w_{4} w_{3} w_{1}$ is a hole of length four in G, w_{5} is adjacent only to $w_{1}, w_{2}, w_{3}, w_{4}$ and w_{2}, w_{3}, w_{5} is a cutset of G. The remaining neighbors of w_{1} or w_{2} are adjacent to both w_{1} and w_{2}, and form a non-empty complete in G (they are the vertices corresponding to the edges of H containing v_{3} and not v_{1} or v_{2}, and there exists at least one such edge, namely the edge $v_{3} v_{5}$). Similarly, the neighbors of w_{3} or w_{4} are adjacent to both w_{3} and w_{4}, and form a (possibly empty) complete in G. The structure of G in this case can be seen in Figure 3.5.

Figure 3.5: Structure of G when H has no K_{4}.
We show that $\alpha_{C}(G)=\alpha_{C}\left(G^{\prime}\right)$ and $\tau_{C}(G)=\tau_{C}\left(G^{\prime}\right)$, where G^{\prime} is the line graph of the graph H^{\prime}, obtained from H by deleting the edges $v_{2} v_{3}$ and $v_{1} v_{4}$. So $G^{\prime}=G \backslash\left\{w_{2}, w_{3}\right\}$.

Since every clique transversal of G^{\prime} either contains w_{5}, or contains both w_{1} and w_{4}, it follows that every clique transversal of G^{\prime} is a clique transversal of G. On the other hand, starting with a clique transversal T of G and replacing the vertices w_{2} and w_{3} by w_{1} and w_{4} respectively, if w_{2} or w_{3} belong to T, produces a clique transversal of G^{\prime}. Therefore $\tau_{C}(G)=\tau_{C}\left(G^{\prime}\right)$.

We claim that there is a maximum clique-independent set of G not containing either of the cliques $\left\{w_{1}, w_{3}, w_{5}\right\},\left\{w_{2}, w_{4}, w_{5}\right\}$. Suppose the claim is false. Let I be a clique independent set of G, we may assume I contains the clique $\left\{w_{1}, w_{3}, w_{5}\right\}$. Then I does not contain any other clique containing w_{1} or w_{5}; and since the only clique containing w_{2} and not w_{1} is $\left\{w_{2}, w_{4}, w_{5}\right\}$, it follows that every clique in I is disjoint from $\left\{w_{1}, w_{2}, w_{5}\right\}$. But now the set obtained from I by removing the clique $\left\{w_{1}, w_{3}, w_{5}\right\}$ and adding the clique $\left\{w_{1}, w_{2}, w_{5}\right\}$ has the desired property. This proves the claim.

Let I a maximum clique independent set of G not containing either of the cliques $\left\{w_{1}, w_{3}, w_{5}\right\},\left\{w_{2}, w_{4}, w_{5}\right\}$. Let I^{\prime} be a set of cliques of G^{\prime}, obtained from I by replacing the clique $\left\{w_{1}, w_{2}, w_{5}\right\}$ by $\left\{w_{1}, w_{5}\right\}$ if $\left\{w_{1}, w_{2}, w_{5}\right\} \in I$, and the clique $\left\{w_{3}, w_{4}, w_{5}\right\}$ by $\left\{w_{4}, w_{5}\right\}$ if $\left\{w_{3}, w_{4}, w_{5}\right\} \in I$. Conversely, every clique independent set of G^{\prime} gives rise to a clique independent set of G, and therefore $\alpha_{C}(G)=\alpha_{C}\left(G^{\prime}\right)$.

But now, since G^{\prime} is a proper induced subgraph of G, it follows inductively that $\alpha_{c}\left(G^{\prime}\right)=\tau_{C}\left(G^{\prime}\right)$, and therefore $\alpha_{c}\left(G^{\prime}\right)=\tau_{C}\left(G^{\prime}\right)$. This completes the proof of Theorem 3.2.10.

3.2.3 Hereditary clique-Helly claw-free graphs

The main purpose of this subsection is to prove Theorem 3.2.4, which states that if a graph G is $H C H$ claw-free, then G is clique-perfect if and only if it does not contain odd holes or an antihole of length seven.

To simplify the notation along this subsection, let us call a graph interesting if it does not contain odd holes or an antihole of length seven. We will use Proposition 1.3.1 to prove the characterization for $H C H$ claw-free graphs, so first we will prove the following result.

Theorem 3.2.11. Let G be an interesting $H C H$ claw-free graph. Then $K(G)$ is perfect.

To prove Theorem 3.2.11 we need some previous results.
We start with some definitions in order to state some useful structure theorems for claw-free graphs.

A graph G is prismatic if for every triangle T of G, every vertex of G not in T has a unique neighbor in T. A graph G is antiprismatic if its complement graph \bar{G} is prismatic.

Construct a graph G as follows. Take a circle C, and let $V(G)$ be a finite set of points of C. Take a set of intervals from C (an interval means a proper subset of C homeomorphic to $[0,1]$) such that there are not three intervals covering C; and say that $u, v \in V(G)$ are adjacent in G if the set of points $\{u, v\}$ of C is a subset of one of the intervals. Such a graph is called circular interval graph. When the set of intervals does not cover C, the graph is called linear interval graph.

Circular interval graphs form a subclass of Helly circular-arc graphs.

Figure 3.6: Example of a circular interval graph and its circular interval representation.
Let G be a graph and A, B be disjoint subsets of $V(G)$. The pair (A, B) is called a homogeneous pair in G if for every vertex $v \in V(G) \backslash(A \cup B), v$ is either A-complete or A-anticomplete and either B-complete or B-anticomplete. If, in addition, B is empty, then A is called a homogeneous set. Let (A, B) be a homogeneous pair such that A, B are both completes, and A is neither complete nor anticomplete to B. In these circumstances the pair (A, B) is called a W-join. Note that there is no requirement that $A \cup B \neq V(G)$. The pair (A, B) is non-dominating if some vertex of $G \backslash(A \cup B)$ has no neighbor in $A \cup B$, and it is coherent if the set of all $(A \cup B)$-complete vertices in $V(G) \backslash(A \cup B)$ is a complete.

Suppose that V_{1}, V_{2} is a partition of $V(G)$ such that V_{1}, V_{2} are non-empty and there are no edges between V_{1} and V_{2}. The pair $\left(V_{1}, V_{2}\right)$ is called a 0 -join in G. Thus G admits a 0 -join if and only if it is not connected.

Suppose now that V_{1}, V_{2} is a partition of $V(G)$, and for $i=1,2$ there is a subset $A_{i} \subseteq V_{i}$ such that:

- for $i=1,2, A_{i}$ is a complete, and $A_{i}, V_{i} \backslash A_{i}$ are both non-empty
- A_{1} is complete to A_{2}
- every edge between V_{1} and V_{2} is between A_{1} and A_{2}.

In these circumstances, the pair $\left(V_{1}, V_{2}\right)$ is called a 1-join.
Suppose that V_{0}, V_{1}, V_{2} are disjoint subsets with union $V(G)$, and for $i=1,2$ there are subsets A_{i}, B_{i} of V_{i} satisfying the following:

- for $i=1,2, A_{i}, B_{i}$ are completes, $A_{i} \cap B_{i}=\emptyset$, and A_{i}, B_{i} and $V_{i} \backslash\left(A_{i} \cup B_{i}\right)$ are all non-empty
- A_{1} is complete to A_{2}, and B_{1} is complete to B_{2}, and there are no other edges between V_{1} and V_{2}
- V_{0} is a complete, and for $i=1,2, V_{0}$ is complete to $A_{i} \cup B_{i}$ and anticomplete to $V_{i} \backslash\left(A_{i} \cup B_{i}\right)$.

The triple $\left(V_{0}, V_{1}, V_{2}\right)$ is called a generalized 2 -join, and if $V_{0}=\emptyset$, the pair $\left(V_{1}, V_{2}\right)$ is called a 2 -join. This is closely related to, but not the same as, what has been called a 2 -join in some papers, like [23].

The last decomposition is the following. Let $\left(V_{1}, V_{2}\right)$ be a partition of $V(G)$, such that for $i=1,2$ there are completes $A_{i}, B_{i}, C_{i} \subseteq V_{i}$ with the following properties:

- For $i=1,2$ the sets A_{i}, B_{i}, C_{i} are pairwise disjoint and have union V_{i}
- V_{1} is complete to V_{2} except that there are no edges between A_{1} and A_{2}, between B_{1} and B_{2}, and between C_{1} and C_{2}
- V_{1}, V_{2} are both non-empty.

In these circumstances it is said that G is a hex-join of $G \mid V_{1}$ and $G \mid V_{2}$. Note that if G is expressible as a hex-join as above, then the sets $A_{1} \cup B_{2}, B_{1} \cup C_{2}$ and $C_{1} \cup A_{2}$ are three completes with union $V(G)$, and consequently no graph G with $\alpha(G)>3$ is expressible as a hex-join.

Figure 3.7: Scheme for 1-join, 2-join and hex-join.
Finally, the classes $\mathcal{S}_{0}, \ldots, \mathcal{S}_{6}$ are defined as follows.

- \mathcal{S}_{0} is the class of all line graphs.
- The icosahedron is the unique planar graph with twelve vertices all of degree five. For $0 \leq k \leq 3$, $i \operatorname{cosa} a(-k)$ denotes the graph obtained from the icosahedron by deleting k pairwise adjacent vertices. A graph $G \in \mathcal{S}_{1}$ if G is isomorphic to $i \operatorname{cosa}(0), i \operatorname{cosa}(-1)$ or $i \operatorname{cosa}(-2)$. As it can be seen in Figure 3.8, all of them contain odd holes.
- Let H_{1} be the graph with vertex set $\left\{v_{1}, \ldots, v_{13}\right\}$, with adjacency as follows: $v_{1} v_{2} \ldots v_{6} v_{1}$ is a hole in G of length $6 ; v_{7}$ is adjacent to $v_{1}, v_{2} ; v_{8}$ is adjacent to v_{4}, v_{5} and possibly to $v_{7} ; v_{9}$ is adjacent to $v_{6}, v_{1}, v_{2}, v_{3} ; v_{10}$ is adjacent to v_{3}, $v_{4}, v_{5}, v_{6}, v_{9} ; v_{11}$ is adjacent to $v_{3}, v_{4}, v_{6}, v_{1}, v_{9}, v_{10} ; v_{12}$ is adjacent to v_{2}, v_{3},

Figure 3.8: Graphs $i \operatorname{cosa}(0), i \operatorname{cosa} a(-1)$ and $i \cos a(-2)$.
$v_{5}, v_{6}, v_{9}, v_{10}$; and v_{13} is adjacent to $v_{1}, v_{2}, v_{4}, v_{5}, v_{7}, v_{8}$. A graph $G \in \mathcal{S}_{2}$ if G is isomorphic to $H_{1} \backslash X$, where $X \subseteq\left\{v_{11}, v_{12}, v_{13}\right\}$. Please note that vertices $v_{3} v_{4} v_{5} v_{6} v_{9} v_{3}$ induce a hole of length five in G.

Figure 3.9: Graph $H_{1} \backslash\left\{v_{11}, v_{12}, v_{13}\right\}$. Every graph in \mathcal{S}_{2} contains it as an induced subgraph.

- \mathcal{S}_{3} is the class of all circular interval graphs.
- Let H_{2} be the graph with seven vertices h_{0}, \ldots, h_{6}, in which h_{1}, \ldots, h_{6} are pairwise adjacent and h_{0} is adjacent to h_{1}. Let H_{3} be the graph obtained from the line graph $L\left(H_{2}\right)$ of H_{2} by adding one new vertex, adjacent precisely to the members of $V\left(L\left(H_{2}\right)\right)=E\left(H_{2}\right)$ that are not incident with h_{1} in H_{2}. Then H_{3} is claw-free. Let \mathcal{S}_{4} be the class of all graphs isomorphic to induced subgraphs of H_{3}. Note that the vertices of H_{3} corresponding to the members of $E\left(H_{2}\right)$ that are incident with h_{1} in H_{2}, form a complete in H_{3}. So every graph in \mathcal{S}_{4} is either a line graph or it has a singular vertex.
- Let $n \geq 0$. Let $A=\left\{a_{1}, \ldots, a_{n}\right\}, B=\left\{b_{1}, \ldots, b_{n}\right\}, C=\left\{c_{1}, \ldots, c_{n}\right\}$ be three pairwise disjoint completes. For $1 \leq i, j \leq n$, let a_{i}, b_{j} be adjacent if and only if $i=j$, and let c_{i} be adjacent to a_{j}, b_{j} if and only if $i \neq j$. Let $d_{1}, d_{2}, d_{3}, d_{4}$, d_{5} be five more vertices, where d_{1} is $(A \cup B \cup C)$-complete; d_{2} is complete to $A \cup B \cup\left\{d_{1}\right\} ; d_{3}$ is complete to $A \cup\left\{d_{2}\right\} ; d_{4}$ is complete to $B \cup\left\{d_{2}, d_{3}\right\} ; d_{5}$ is adjacent to d_{3}, d_{4}; and there are no more edges. Denote by H_{4} the graph just
constructed. A graph $G \in \mathcal{S}_{5}$ if (for some n) G is isomorphic to $H_{4} \backslash X$ for some $X \subseteq A \cup B \cup C$. Note that vertex d_{1} is adjacent to all the vertices but the triangle formed by d_{3}, d_{4} and d_{5}, so it is a singular vertex in G (see Figure 3.10).

Figure 3.10: Graph H_{4}, for $n=2$.

- Let $n \geq 0$. Let $A=\left\{a_{0}, \ldots, a_{n}\right\}, B=\left\{b_{0}, \ldots, b_{n}\right\}, C=\left\{c_{1}, \ldots, c_{n}\right\}$ be three pairwise disjoint completes. For $0 \leq i, j \leq n$, let a_{i}, b_{j} be adjacent if and only if $i=j>0$, and for $1 \leq i \leq n$ and $0 \leq j \leq n$ let c_{i} be adjacent to a_{j}, b_{j} if and only if $i \neq j \neq 0$. Let the graph just constructed be H_{5}. A graph $G \in \mathcal{S}_{6}$ if (for some n) G is isomorphic to $H_{5} \backslash X$ for some $X \subseteq A \cup B \cup C$, and then G is said to be 2 -simplicial of antihat type (Figure 3.11).

Figure 3.11: Graph H_{5}, for $n=2$.

We shall use the following structure theorems for claw-free graphs.
Theorem 3.2.12. [26] Let G be a claw-free graph. Then either $G \in \mathcal{S}_{0} \cup \cdots \cup \mathcal{S}_{6}$, or G admits twins, or a non-dominating W-join, or a coherent W-join, or a 0 -join, or a 1 -join, or a generalized 2-join, or a hex-join, or G is antiprismatic.

Theorem 3.2.13. [25] Let G be a claw-free graph admitting an internal clique cutset. Then G is either a linear interval graph or G is the 3-sun, or G admits twins, or a 0 -join, or a 1-join, or a coherent W-join.

In the remainder of this subsection we use Theorems 3.2.12 and 3.2.13 to prove that every interesting $H C H$ claw-free graph is K -perfect. The proof is by induction on $|V(G)|$.

Circular Interval Graphs

We first prove that clique graphs of interesting $H C H$ circular interval graphs are perfect.

Lemma 3.2.14. Let G be a circular interval graph. Then $K(G)$ is an induced subgraph of G.

Proof. Let G be a circular interval graph with vertices v_{1}, \ldots, v_{n} in clockwise order, say. We define a homomorphism v from $V(K(G))$ to $V(G)$ (meaning that for two distinct vertices $a, b \in V(K(G)), v(a) \neq v(b)$; and a is adjacent to b if and only if $v(a)$ is adjacent to $v(b))$. For every clique M of G, since no three intervals in the definition of a circular interval graph cover the circle, $M=\left\{v_{i}, \ldots, v_{i+t}\right\}$ (where the indices are taken $\bmod n)$. In this case we say that v_{i} is the first vertex of M. We define $v(M)=v_{i}$. Since v_{i} is the first vertex of a unique clique, it follows that $v(M) \neq v\left(M^{\prime}\right)$ if M and M^{\prime} are distinct cliques of G. It remains to show that $v(M)$ is adjacent to $v\left(M^{\prime}\right)$ if and only if $M \cap M^{\prime} \neq \emptyset$. If M and M^{\prime} intersect at a vertex v_{k}, then the clockwise order of $v(M)$, $v\left(M^{\prime}\right)$ and v_{k} is either $v(M), v\left(M^{\prime}\right), v_{k}$ or $v\left(M^{\prime}\right), v(M), v_{k}$ and in both cases $v(M)$ and $v\left(M^{\prime}\right)$ are adjacent. On the other hand, if there are two cliques such that $v(M)$ and $v\left(M^{\prime}\right)$ are adjacent, we may assume $v(M)$ appears first clockwise in the circular interval which contains both $v(M)$ and $v\left(M^{\prime}\right)$. Then since $v(M)$ is the first vertex of the clique M, it follows that $v\left(M^{\prime}\right)$ belongs to M, so M and M^{\prime} intersect.

Proposition 3.2.1. Let G be an $H C H$ interesting circular interval graph. Then $K(G)$ is perfect.

Proof. By Lemma 3.2.14, $K(G)$ is an induced subgraph of G. Since G is $H C H$ and interesting, it contains no odd hole and no antihole of length at least seven, and therefore it is perfect by Theorem 1.2.1.

Decompositions

We now show that if an interesting $H C H$ claw-free graph admits one of the decompositions of Theorem 3.2.12, then either it is K-perfect or we can reduce the problem to a smaller one.

Theorem 3.2.15. Let G be an interesting $H C H$ claw-free graph. If G admits a 1-join, then $K(G)$ has a cutpoint $v, K(G)=H_{1}+H_{2}+v$, and $H_{i}+v$ is the clique graph of a smaller interesting $H C H$ claw-free graph.

Proof. Since G admits a 1-join, it follows that $V(G)$ is the disjoint union of two nonempty sets V_{1} and V_{2}, each V_{i} contains a complete M_{i}, such that $M_{1} \cup M_{2}$ is a complete and there are no other edges from V_{1} to V_{2}. So $M_{1} \cup M_{2}$ is a clique in G. Let v be the vertex of $\mathrm{K}(\mathrm{G})$ corresponding to $M_{1} \cup M_{2}$. Every other clique of G is either contained in V_{1} or in V_{2}, and no clique of the first type intersects a clique of the second type. So
v is a cutpoint of $K(G)$, and $K(G)=H_{1}+H_{2}+v$. Let G_{i} be the graph obtained from $G \mid V_{i}$ by adding a vertex v_{i} complete to M_{i} and with no other neighbors in G_{i}. Then G_{i} is isomorphic to an induced subgraph of G, so it is interesting, $H C H$ and claw-free, and for $i=1,2, H_{i}+v$ is isomorphic to $K\left(G_{i}\right)$ (where the vertex v is mapped to the vertex of $K\left(G_{i}\right)$ corresponding to the clique $M_{i} \cup\left\{v_{i}\right\}$ of $\left.G_{i}\right)$. This proves Theorem 3.2.15.

Theorem 3.2.16. Let G be an interesting HCH claw-free graph. If G admits a generalized 2-join and no twins, 0-join or 1-join, then there exist two clique graphs of smaller interesting $H C H$ claw-free graphs, H_{1} and H_{2}, such that if H_{1} and H_{2} are perfect, then so is $K(G)$.

Proof. Since G admits a generalized 2-join, it follows that $V(G)$ is the disjoint union of three sets V_{0}, V_{1} and V_{2}, for $i=1,2$ each V_{i} contains two completes A_{i}, B_{i} such that A_{i}, B_{i} and $V_{i} \backslash\left(A_{i} \cup B_{i}\right)$ are all non-empty, $A_{1} \cup A_{2} \cup V_{0}$ and $B_{1} \cup B_{2} \cup V_{0}$ are completes and there are no other edges from V_{1} to V_{2} or from V_{0} to $V_{1} \cup V_{2}$. Since G admits no twins, it follows that $\left|V_{0}\right| \leq 1$.

So $A_{1} \cup A_{2} \cup V_{0}$ and $B_{1} \cup B_{2} \cup V_{0}$ are cliques of G, and they correspond to vertices w_{1}, w_{2} of $K(G)$. Every other clique of G is either contained in V_{1} or in V_{2}, and no clique of the first type intersects a clique of the second type. So $\left\{w_{1}, w_{2}\right\}$ is a cutset in $K(G)$.

If V_{0} is non-empty, then w_{1} is adjacent to w_{2} and $\left\{w_{1}, w_{2}\right\}$ is a clique cutset in $K(G)$. Let $V_{0}=\left\{v_{0}\right\}$. Now $K(G)=M_{1}+M_{2}+\left\{w_{1}, w_{2}\right\}$, where, for $i=1,2$, $H_{i}=M_{i}+\left\{w_{1}, w_{2}\right\}$ is the clique graph of the subgraph of G induced by $V_{i} \cup\left\{v_{0}\right\}$. By Theorem 1.3.4, $K(G)$ is perfect if and only if H_{1} and H_{2} are. So we may assume that V_{0} is empty, and therefore w_{1} is non-adjacent to w_{2}.

We start with the following easy observation:
${ }^{(*)}$ Let S be a graph which is either a claw, or an odd hole, or $\overline{C_{7}}$, or a $0-, 1-, 2$-, or 3 -pyramid, and suppose there exists a vertex $s \in V(S)$, whose neighborhood is the union of two non-empty completes with no edges between them. Then S is and odd hole.

Since G admits no 0 -join or 1 -join, for $i=1,2$ there exist a_{i} in A_{i} and b_{i} in B_{i} joined by an induced path with interior in $V_{i} \backslash\left(A_{i} \cup B_{i}\right)$. (The interior of a path are the vertices different from the endpoints; the interior may be empty, if a_{i} and b_{i} are adjacent.)

Then, since G contains no odd hole, for every a_{i} in A_{i} and b_{i} in B_{i}, all induced paths from a_{1} to b_{1} with interior in $V_{1} \backslash\left(A_{1} \cup B_{1}\right)$ and all induced paths from a_{2} to b_{2} with interior in $V_{2} \backslash\left(A_{2} \cup B_{2}\right)$ have the same parity.

Case 1: This parity is even.
Note that in this case A_{i} is anticomplete to B_{i}. Let H be the graph obtained from $K(G)$ by adding the edge $w_{1} w_{2}$. Since A_{i} is anticomplete to B_{i}, there is no clique in G intersecting both $A_{1} \cup A_{2}$ and $B_{1} \cup B_{2}$. So w_{1} and w_{2} have no common neighbor in $K(G)$. By Theorem 1.3.5, if H is perfect then $K(G)$ is.

Construct graphs G_{i} with vertex set $V_{i} \cup\left\{v_{i}\right\}$, where $G_{i}\left|V_{i}=G\right| V_{i}$ and v_{i} is complete to $A_{i} \cup B_{i}$ and has no other neighbors in G_{i}. Now, $H=M_{1}+M_{2}+\left\{w_{1}, w_{2}\right\}$, with $M_{i}+\left\{w_{1}, w_{2}\right\}=K\left(G_{i}\right)$, and $\left\{w_{1}, w_{2}\right\}$ is a clique cutset in H. By Theorem 1.3.4, it follows that if $K\left(G_{1}\right)$ and $K\left(G_{2}\right)$ are perfect then H is perfect and thus $K(G)$ is perfect.

We claim that for $i=1,2$ the graphs G_{i} are claw-free, $H C H$ and interesting. Suppose that G_{1}, say, is not. So G_{1} contains an induced subgraph S isomorphic to a claw, an odd hole, $\overline{C_{7}}$, or a $0-, 1-, 2$ - or 3 -pyramid. If $V(S)$ does not contain v_{1}, then S is isomorphic to an induced subgraph of G, a contradiction. If $V(S)$ contains v_{1} but has empty intersection with A_{1} or B_{1}, say B_{1}, then S is isomorphic to an induced subgraph of G, obtained by replacing v_{1} by any vertex of A_{2}, a contradiction. So $V(S)$ meets both A_{1} and B_{1}, and therefore the neighborhood of v_{1} in S can be partitioned into two non-empty completes A_{S}, B_{S}, such that A_{S} is anticomplete to B_{S}. By (*), S is an odd hole. Let $a_{1} \in A_{1}$ and $b_{1} \in B_{1}$ be the neighbors of v_{1} in S. Then $S \backslash\left\{v_{1}\right\}$ is an induced odd path from a_{1} to b_{1} with interior in $V_{1} \backslash\left(A_{1} \cup B_{1}\right)$, a contradiction.

Case 2: This parity is odd.
Construct graphs G_{i} with vertex set $V_{i}+\left\{v_{A, i}, v_{B, i}\right\}$, where $G_{i}\left|V_{i}=G\right| V_{i}, v_{A, i}$ is complete to $A_{i}, v_{B, i}$ is complete to $B_{i}, v_{A, i}$ is adjacent to $v_{B, i}$, and there are no other edges in G_{i}. Now, $K(G)=M_{1}+M_{2}+\left\{w_{1}, w_{2}\right\}$, and $K\left(G_{i}\right)$ is obtained from $M_{i}+\left\{w_{1}, w_{2}\right\}$ by joining w_{1} and w_{2} by an induced path of length two. By Theorem 1.3.6, if $K\left(G_{1}\right)$ and $K\left(G_{2}\right)$ are perfect, so is $K(G)$.

We claim that both G_{i} are claw-free, interesting and $H C H$. Suppose that G_{1} contains an induced subgraph S isomorphic to a claw, an odd hole, $\overline{C_{7}}$, or a $0-, 1-, 2-$ or 3 -pyramid.

If $V(S)$ does not contain $v_{A, 1}$ or $v_{B, 1}$, say $v_{B, 1}$, then S is isomorphic to an induced subgraph of G, obtained by replacing $v_{A, 1}$ by any vertex of A_{2}, a contradiction. If $V(S)$ contains $v_{A, 1}$ and $v_{B, 1}$ but has empty intersection with A_{1} or B_{1}, say B_{1}, then S is isomorphic to an induced subgraph of G, obtained by replacing $v_{A, 1}$ and $v_{B, 1}$ by two adjacent vertices a_{2}, c_{2} of V_{2} such that $a_{2} \in A_{2}$ and $c_{2} \in V_{2} \backslash A_{2}$ (such a pair of vertices exist because there is at least one path from A_{2} to B_{2} in G), a contradiction. So $V(S)$ meets both A_{1} and B_{1}, and the neighborhood of $v_{A, 1}$ in S can be partitioned into two non-empty completes with no edges between them, namely $A_{S}=A_{1} \cap V(S)$ and $\left\{v_{B, 1}\right\}$. By $\left(^{*}\right) S$ is an odd hole. Let $a_{1} \in A_{1}$ and $b_{1} \in B_{1}$ be the neighbors of $v_{A, 1}$ and $v_{B, 1}$ in $V(S) \cap V_{1}$, respectively. Then $S \backslash\left\{v_{A, 1}, v_{B, 1}\right\}$ is an induced even path from a_{1} to b_{1} with interior in $V_{1} \backslash\left(A_{1} \cup B_{1}\right)$, a contradiction. This concludes the proof of Theorem 3.2.16.

Lemma 3.2.17. Let G be an $H C H$ graph such that \bar{G} is a bipartite graph. Then $K(G)$ is perfect.

Proof. In this proof we use the vertices of $K(G)$ and the cliques of G interchangeably. By Theorem 1.2.1, if $K(G)$ is not perfect then it contains an odd hole or an odd antihole.

Let A, B be two disjoint completes of G such that $A \cup B=V(G)$. If there exists a vertex v of G adjacent to every other vertex in G, then v belongs to every clique of G and $K(G)$ is a complete graph, and therefore perfect. So we may assume that no vertex of A is complete to B and no vertex of B is complete to A. Then A and B are cliques of G, and every other clique of G meets both A and B. The degrees of A and B in $K(G)$ is $|V(K(G))|-1$, so they cannot be part of an odd hole or an odd antihole in $K(G)$.

It is therefore enough to show that there is no odd hole or antihole in the graph obtained from $K(G)$ by deleting the vertices A and B. We prove a stronger statement, namely that there is no induced path of length two in this graph. Since every hole and antihole of length at least five contains a two edge path, the result follows.

Suppose for a contradiction that there are three cliques X, Y and Z in G, each meeting both A and B, and such that X is disjoint from Z, and both $X \cap Y$ and $Y \cap Z$ are non-empty. From the symmetry we may assume that $X \cap Y$ contains a vertex $a_{x y} \in A$.

Suppose first that there is a vertex $a_{y z} \in A \cap Y \cap Z$. Let b_{y} be a vertex in $Y \cap B$. Since no vertex of B is complete to A, there is a vertex a in A non-adjacent to b_{y}. Since $a_{y z}$ does not belong to X, there is a vertex b_{x} in X non-adjacent to $a_{y z}$, and since A is a complete, b_{x} belongs to B. Analogously, since $a_{x y}$ does not belong to Z, there is a vertex b_{z} in $B \cap Z$ non-adjacent to $a_{x y}$. But now $\left\{a_{x y}, a_{y z}, b_{y}, b_{z}, b_{x}, a\right\}$ induce a 1-, 2- or 3-pyramid, a contradiction.

So $A \cap Y \cap Z$ is empty, and therefore $B \cap Y \cap Z$ is non-empty, and, by the argument of the previous paragraph with A and B exchanged, $B \cap X \cap Y$ is empty. Choose $b_{y z}$ in $B \cap Y \cap Z$. Choose a_{z} in $Z \cap A$, then $a_{z} \notin X \cup Y$. Since a_{z} does not belong to X, there is a vertex $b_{x} \in X$ non-adjacent to a_{z}, and since A is a complete, b_{x} is in B. Since $b_{y z}$ does not belong to X and B is a complete, there is a vertex $a_{x} \in A \cap X$ non-adjacent to $b_{y z}$; and since $a_{x y}$ does not belong to Z and A is a complete, there is a vertex $b_{z} \in B \cap Z$ non-adjacent to $a_{x y}$. But now $\left\{a_{z}, a_{x y}, b_{y z}, a_{x}, b_{x}, b_{z}\right\}$ induces a 2or a 3 -pyramid, a contradiction. This proves Lemma 3.2.17.

Theorem 3.2.18. Let G be a connected interesting HCH claw-free graph, and suppose G admit no twins. Assume that G admits a coherent or a non-dominating W-join (A, B). Then either $K(G)$ is perfect, or there exist induced subgraphs G_{1}, \ldots, G_{k} of G, each smaller than G, such that if $K\left(G_{i}\right)$ is perfect for every $i=1, \ldots, k$, then $K(G)$ is perfect.

Proof. Choose a coherent or non-dominating W -join (A, B) with $A \cup B$ minimal. Let C be the vertices complete to A and anticomplete to B, D be the vertices complete to B and anticomplete to A, E be the vertices complete to $A \cup B$, and F be the vertices anticomplete to $A \cup B$. Since the W -join (A, B) is either coherent or non-dominating, it follows that either E is a complete, or F is non-empty.
3.2.18.1 $A \cup C, B \cup D$ are both completes, and E is anticomplete to F.

Suppose not. Assume first that there exist two nonadjacent vertices c_{1}, c_{2} in C. Choose
a in A and b in B such that a is adjacent to b, now $\left\{a, c_{1}, c_{2}, b\right\}$ is a claw, a contradiction. So C is a complete, and since A is a complete, it follows that $A \cup C$ is a complete. From the symmetry it follows that $B \cup D$ is a complete.

Next assume that there are two adjacent vertices e in E and f in F. Choose a in A and b in B such that a is not adjacent to b. Then $\{e, a, b, f\}$ is a claw, a contradiction. This proves 3.2.18.1.

Let E_{1} be a clique of $G \mid E$. Let \mathcal{L} be the set of all cliques of $G \mid(A \cup B)$. Let

$$
U=\left\{E_{1} \cup L: L \in \mathcal{L} \text { and } L \neq A, B\right\} .
$$

Since E is anticomplete to F, and every member of U meets both A and B, it follows that the members of U are cliques of G.
3.2.18.2 We may assume that $|U| \geq 2$.

Suppose $|U| \leq 1$. Since in G there is at least one edge between A and B, it follows that there is a unique clique L in $G \mid(A \cup B)$ meeting both A and B, and $|U|=1$. Let $A^{\prime}=A \cap L, B^{\prime}=B \cap L$. Then A^{\prime} is complete to $B^{\prime}, A \backslash A^{\prime}$ is anticomplete to B and $B \backslash B^{\prime}$ is anticomplete to A. Since G does not admit twins, each of $A^{\prime}, A \backslash A^{\prime}$, $B^{\prime}, B \backslash B^{\prime}$ has size at most 1 , and by the minimality of $A \cup B$ at most one of $A \backslash A^{\prime}$, $B \backslash B^{\prime}$ is non-empty. By the symmetry, we may assume that $B \backslash B^{\prime}$ is empty and $\left|A^{\prime}\right|=\left|B^{\prime}\right|=\left|A \backslash A^{\prime}\right|=1$. Let $A^{\prime}=\left\{a_{1}\right\}, B^{\prime}=\left\{b_{1}\right\}$ and $A \backslash A^{\prime}=\left\{a_{2}\right\}$.
If $K\left(G \backslash\left\{a_{2}\right\}\right)=K(G)$ then the theorem holds, so we may assume not. Therefore there exists a subset E^{\prime} of E such that $M=A \cup E^{\prime}$ is a clique of G. It follows, in particular, that no vertex of C is complete to E.

Assume first that E is a complete, consider the cliques $M_{1}=\left\{a_{1}, b_{1}\right\} \cup E$ and $M_{2}=$ $\left\{a_{1}, a_{2}\right\} \cup E$ of G. Since every clique of G containing a_{2} also contains a_{1}, it follows that every clique of G that has a non-empty intersection with M_{2}, meets M_{1}. Therefore the vertex w_{1} of $K(G)$, corresponding to M_{1}, weakly dominates the vertex w_{2} of $K(G)$, corresponding to M_{2}. Since $K(G) \backslash\left\{w_{1}\right\}$ is an induced subgraph of $K\left(G \backslash\left\{a_{1}\right\}\right)$ and $K(G) \backslash\left\{w_{2}\right\}=K\left(G \backslash\left\{a_{2}\right\}\right)$, by Theorem 1.3.8, $K(G)$ is perfect if $K\left(G \backslash\left\{a_{1}\right\}\right)$ and $K\left(G \backslash\left\{a_{2}\right\}\right)$ are, and the theorem holds. So we may assume that E is not a complete.

Next we claim that D is empty. Since E is not a complete, there are two non-adjacent vertices e_{1}, e_{2} in E, and let d in D. If d is non-adjacent to both of e_{1} and e_{2}, then $\left\{b_{1}, e_{1}, e_{2}, d\right\}$ is a claw, a contradiction. But then, $\left\{b_{1}, e_{1}, e_{2}, d, a_{1}, a_{2}\right\}$ induces a 1- or 2 -pyramid, a contradiction. This proves that D is empty.

Since D is empty, every clique disjoint from F contains the vertex a_{1}, and, since every clique containing a vertex of F is disjoint from A, B and E, it follows that the vertices of $K(G)$ corresponding to the cliques $\left\{a_{1}, b_{1}\right\} \cup E^{\prime}$, with E^{\prime} a clique of $G \mid E$, are simplicial in $K(G)$. By Lemma 1.3.3, $K(G)$ is perfect if and only if $K\left(G \backslash\left\{b_{1}\right\}\right)$ is. This proves 3.2.18.2.
3.2.18.3 We may assume that no vertex of B is complete to A, and no vertex of A is complete to B.

Suppose there is a vertex $b \in B$ complete to A. Since A is not complete to B, there is a vertex $b^{\prime} \in B \backslash\{b\}$. By 3.2.18.2, $|A|>1$. But now $(A, B \backslash\{b\})$ is a coherent or non-dominating W -join in G, contrary to the minimality of $A \cup B$. This proves 3.2.18.3.

In view of 3.2.18.2 and 3.2.18.3, we henceforth assume that $|U| \geq 2$, no vertex of A is complete to B, and no vertex of B is complete to A.
3.2.18.4 E is a complete.

Since no vertex of B is complete to A, and there is at least one edge between A and B, there is a vertex $a_{1} \in A$ with a neighbor b_{1} and a non-neighbor b_{2} in B. Since b_{1} is not complete to A, there is a vertex $a_{2} \in A$, non-adjacent to b_{1}. Since A, B are both cliques, a_{1} is adjacent to a_{2} and b_{1} to b_{2}. If there exist two non-adjacent vertices e_{1} and e_{2} in E, now $\left\{a_{1}, a_{2}, b_{1}, b_{2}, e_{1}, e_{2}\right\}$ induces a 2 - or a 3 -pyramid in G, a contradiction. This proves 3.2.18.4.
3.2.18.5 Every vertex of $K(G) \backslash U$ with a neighbor in U is complete to U.

Throughout the proof of 3.2.18.5 we use cliques of G and vertices of $K(G)$ interchangeably.

It follows from 3.2.18.4 that $E_{1}=E$. Let w be a vertex of $K(G) \backslash U$ with a neighbor in U. Since w has a neighbor in U, it follows that w meets one of A, B, E. If w meets E, then w is complete to U and the result follows. If w includes one of A, B, then since every member of U meets each of A, B, we again deduce that w is complete to U and the result follows. So we may assume that w is disjoint from E, and the sets $w \cap(A \cup B), A \backslash\{w\}$, and $B \backslash\{w\}$ are all non-empty.

Assume first that w meets both A and B. Since w is a clique of $G, C \cup F$ is anticomplete to B and $D \cup F$ is anticomplete to B, it follows that $w \subseteq A \cup B \cup E$. But now, since w is a clique, it follows that w includes E and w belongs to U, a contradiction. So we may assume that w is disjoint from at least one of A and B.

By the symmetry we may assume that w is disjoint from B, and therefore w meets A. Since $F \cup D$ is anticomplete to A, it follows that w is a subset of $A \cup C \cup E$, and since w is a clique, w includes A, a contradiction. This proves 3.2.18.5.
3.2.18.6 U is a homogeneous set in $K(G)$ and the graph $K(G) \mid U$ is perfect.

It follows from 3.2.18.5 that U is a homogeneous set in $K(G)$. The graph $K(G) \mid U$ is isomorphic to the graph obtained from $K(G \mid(A \cup B \cup E))$ by deleting the vertices corresponding to the cliques $A \cup E$ and $B \cup E$. Since $\overline{G \mid(A \cup B \cup E)}$ is bipartite, it follows from Theorem 3.2.17 that $K(G) \mid U$ is perfect. This proves 3.2.18.6.

Choose $u \in U$.
3.2.18.7 If there exist $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$, such that a_{1} is adjacent to b_{1} and not
to b_{2}, and a_{2} is adjacent to b_{2} and not to b_{1}, then either $K(G)$ is perfect, or there is an induced subgraph G^{\prime} of G, such that $K(G) \backslash(U \backslash\{u\})=K\left(G^{\prime}\right)$.

If there exist non-adjacent $c \in C$ and $e \in E$, then $\left\{a_{1}, a_{2}, e, c, b_{1}, b_{2}\right\}$ induces a 1 pyramid, a contradiction, so C is complete to E, and similarly D is complete to E. By 3.2.18.4, E is a complete. Since G admits no twins, $|E| \leq 1$. If $C \cup D$ is empty, then, since G is connected, F is empty, and G is the complement of a bipartite graph. By Lemma 3.2.17, $K(G)$ is perfect. So we may assume that C is non-empty, and in particular, $A \cup E$ is not a clique of G. But now $K(G) \backslash(U \backslash\{u\})=K\left(G \backslash\left((A \cup B) \backslash\left\{a_{1}, b_{1}, b_{2}\right\}\right)\right)$. This proves 3.2.18.7.

To finish the proof, let $a_{1} \in A$ and $b_{1} \in B$ be adjacent. By 3.2.18.3, there exist a vertex $b_{2} \in B$, non-adjacent to a_{1} and a vertex $a_{2} \in A$ non-adjacent to b_{1}. If a_{2} is adjacent to b_{2}, then the theorem follows from 3.2.18.6, 3.2.18.7 and Theorem 1.3.7. So we may assume that a_{2} is non-adjacent to b_{2}. Let $G^{\prime}=G \backslash\left((A \cup B) \backslash\left\{a_{1}, b_{1}, a_{2}, b_{2}\right\}\right)$. We deduce from 3.2.18.2 that G^{\prime} is smaller than G. Moreover, G^{\prime} is an induced subgraph of G. But $K(G) \backslash(U \backslash\{u\})=K\left(G^{\prime}\right)$, and, together with 3.2.18.6 and Theorem 1.3.7, this implies that the theorem holds. This proves Theorem 3.2.18.

Theorem 3.2.19. Let G be an interesting $H C H$ claw-free graph. Suppose G admits a hex-join and no twins and every vertex of G is in a triad. Then $G=C_{6}$.

Proof. Since G admits a hex-join, there exist six completes $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$ in G such that A_{i} is anticomplete to B_{i} and complete to B_{j} for i different from j; $A_{1} \cup A_{2} \cup A_{3}$ and $B_{1} \cup B_{2} \cup B_{3}$ are non-empty; and $V(G)=A_{1} \cup A_{2} \cup A_{3} \cup B_{1} \cup B_{2} \cup B_{3}$. Since every vertex of G is in a stable set of size three and no stable set of size three meets both $A_{1} \cup A_{2} \cup A_{3}$ and $B_{1} \cup B_{2} \cup B_{3}$, it follows that A_{i}, B_{i} are all non-empty.

Suppose there is an edge $a_{1} a_{2}^{\prime}$ with a_{1} in A_{1} and a_{2}^{\prime} in A_{2}. Since every vertex is a stable set of size three, there exists a stable set $\left\{b_{1}, b_{2}, b_{3}\right\}$ with b_{i} in B_{i} and a stable set $\left\{a_{1}, a_{2}, a_{3}\right\}$ with a_{i} in A_{i}. Since G is interesting, $a_{1} a_{2}^{\prime} b_{1} a_{3} b_{2} a_{1}$ is not a hole in G, so a_{2}^{\prime} is adjacent to a_{3}. But now $\left\{a_{2}^{\prime}, a_{1}, a_{2}, a_{3}\right\}$ is a claw in G, a contradiction. So A_{1} is anticomplete to A_{2}, A_{3}. Since the vertices of A_{1} are not twins in G, it follows that $\left|A_{1}\right|=1$. From the symmetry, $\left|B_{i}\right|=\left|A_{i}\right|=1$ for all i, and $G=C_{6}$. This proves Theorem 3.2.19.

Theorem 3.2.20. Let G be an interesting HCH graph. Assume that G admits no twins and no coherent or non-dominating W-join, and contains no stable set of size three. Then $K(G)$ is perfect.

Proof. We may assume G contains either a 4 -wheel or a 3 -fan, otherwise, by Theorem 1.3.14, $K(G)$ is bipartite.

Case 1: G contains a 4-wheel. Let $a_{1} a_{2} a_{3} a_{4} a_{1}$ be a hole and let c be adjacent to all a_{i}. We claim every vertex in G is adjacent to c. Suppose v is non-adjacent to c. Then since G contains no stable set of size three, from the symmetry we may assume v is adjacent to a_{1}, a_{2}. But now $\left\{a_{1}, a_{2}, a_{3}, a_{4}, c, v\right\}$ induces a $1-, 2-$, or 3 -pyramid, a contradiction.

So every clique in G contains c, then $K(G)$ is a complete graph and the result follows. This proves Case 1.

Case2: G contains a 3 -fan and no 4 -wheel.
Let A_{1}, \ldots, A_{k} be anticonnected sets in G, pairwise complete to each other, with $k>2$, $\left|A_{1}\right|>1$, and subject that with maximal union, say A. (Such sets exist because there is a 3 -fan. Let $a_{1} a_{2} a_{3} a_{4}$ be a path and let c be adjacent to all a_{i}. Then $A_{1}=\left\{a_{1}, a_{3}\right\}$, $A_{2}=\left\{a_{2}\right\}, A_{3}=\{c\}$ make a family of sets with the desired properties.)

Suppose $\left|A_{2}\right|>1$. Then, since A_{1}, A_{2} are both anticonnected, each of A_{1}, A_{2} contains a non-edge, say $a_{i} b_{i}$. Choose a_{3} in A_{3}. Now $\left\{a_{1}, a_{2}, b_{1}, b_{2}, a_{3}\right\}$ is a 4 -wheel, a contradiction. So for $2 \leq i \leq k,\left|A_{i}\right|=1$, and let $A_{i}=\left\{a_{i}\right\}$.
(*) No vertex in $V(G) \backslash A$ is complete to more than one of A_{1}, \ldots, A_{k}.
Let v be a vertex in $V(G) \backslash A$ and define $I=\left\{i: 1 \leq i \leq k\right.$ and v is complete to $\left.A_{i}\right\}$ and $J=\left\{j: 1 \leq j \leq k\right.$ and v has a non-neighbor in $\left.A_{j}\right\}$. Suppose $|I|>1$. Define $A_{t}^{\prime}=A_{t}$ for $t \in I$ and $A_{J}^{\prime}=\bigcup_{j \in J} A_{j} \cup\{v\}$. Then $\left\{A_{i}^{\prime}\right\}_{i \in I}, A_{J}^{\prime}$ is a collection of at least three anticonnected sets, pairwise complete to each other, but their union is a proper superset of A, contrary to the maximality of A. This proves $\left({ }^{*}\right)$.
(**) There is no C_{4} in A_{1}.
Otherwise, G contains a 4 -wheel with center a_{2}, a contradiction. This proves (${ }^{* *}$).
Since $\left|A_{1}\right|>1$ and A_{1} is anticonnected, A_{1} contains a non-edge, and so, since there is no stable set of size three in G, every vertex of $V(G) \backslash A$ has a neighbor in A_{1}. Let $A^{\prime}=A \backslash A_{1}$. If no vertex of $V(G) \backslash A$ has a neighbor in A^{\prime}, then the vertices of A^{\prime} are twins, a contradiction.

So there exists v in $V(G) \backslash A$ with a neighbor in A_{1} and a neighbor a^{\prime} in A^{\prime}. By $\left(^{*}\right) v$ has a non-neighbor $a^{\prime \prime}$ in A^{\prime}. If v has two non-adjacent neighbors in A_{1}, say x, y then $x v y a^{\prime \prime} x$ is a 4 -hole and a^{\prime} is complete to it, so G contains a 4 -wheel, a contradiction. So the neighbors of v in A_{1} are a complete. Since G has no stable set of size three, the non-neighbors of v in A_{1} are a complete. Thus $G \mid A_{1}$ is complement bipartite, and since it is anticonnected the bipartition is unique, say X, Y, both X and Y are nonempty, and every vertex of $V(G) \backslash A$ with a neighbor in A^{\prime} is either complete to X and anticomplete to Y, or complete to Y and anticomplete to X. Let X^{\prime} be the vertices with a neighbor in A^{\prime} and complete to X, Y^{\prime} be the vertices with a neighbor in A^{\prime} and complete to Y. Then, $X^{\prime} \cup Y^{\prime}$ is non-empty, and since there is no stable set of size three in $G, X^{\prime}, Y^{\prime}$ are both completes.

For $i=2, \ldots, k$ let X_{i} be the vertices of X^{\prime} adjacent to a_{i}, and let Y_{i} be defined similarly. By $\left(^{*}\right), A_{i} \cap A_{j}=\emptyset$ for $i \neq j$, and the same holds for B_{i}, B_{j}. If there is an edge from X to Y then there is no edge from X_{i} to Y_{i}, or else G contains a 4-wheel with center a_{i}. Let Z be the vertices of G with no neighbor in A^{\prime}. Then, since G contains no triad, Z is a complete.
3.2.20.1 Every vertex in Z is complete to $X^{\prime} \cup Y^{\prime}$ and to one of X, Y.

If some vertex z in Z has a non-neighbor x_{2} in X_{2}, then z, x_{2}, a_{3} is a stable set of size three, a contradiction, so Z is complete to X^{\prime}, and similarly Y^{\prime}. Next suppose some vertex z in Z has a non-neighbor x in X and a non-neighbor y in Y. Then x is adjacent to y, and there is an odd antipath Q from x to y in $X \cup Y$. Thus $x Q y z x$ is an antihole, so Q has length $1 \bmod 3$. But then Q has length at least 4 , and so $X \cup Y$ contains a C_{4}, contrary to $\left({ }^{* *}\right)$. This proves 3.2 .20 .1 .

Let Z_{x} be the vertices of Z complete to X, and let $Z_{y}=Z \backslash Z_{x}$.
3.2.20.2 $k \leq 4$ and $X^{\prime}=X_{i}, Y^{\prime}=Y_{j}$ for some i different from j.

Suppose both X_{2}, X_{3} are non-empty, choose x_{2} in X_{2} and x_{3} in X_{3}. Then $a_{2} x_{2} x_{3} a_{3} a_{2}$ is a hole of length four, and every x in X is complete to it, so G contains a 4-wheel, a contradiction. So we may assume that $X^{\prime}=X_{2}$ and, similarly, $Y^{\prime}=Y_{j}$ for some j. If Y_{2} is non-empty, then since x_{2}, y_{2}, a_{3} is not a stable set of size three, x_{2} is adjacent to y_{2}. Since A_{1} is anticonnected, there exist non-adjacent vertices $x \in X$ and $y \in Y$. But now $x x_{2} y_{2} y a_{3} x$ is a hole of length five, a contradiction. So Y_{2} is empty and therefore i is different from j, say $j=3$. Since a_{4}, a_{5} are not twins, $k \leq 4$. This proves 3.2.20.2.

By 3.2.20.2 we may assume that $X^{\prime}=X_{2}, Y^{\prime}=Y_{3}$. Let M_{1} be the vertices in X with a neighbor in $Z_{y}, M_{2}=X \backslash M_{1}$. Let N_{1} be the vertices in Y with a neighbor in $Z_{x}, N_{2}=X \backslash N_{1}$.
3.2.20.3 If $Z, X^{\prime}, Y^{\prime}$ are all non-empty then the theorem holds.

We may assume Z_{x} is non-empty. Since $a_{2} x_{2} z y_{3} a_{3} a_{2}$ (where $z \in Z, x_{2} \in X_{2}$ and $y_{3} \in Y_{3}$) is not a hole of length five, X_{2} is complete to Y_{3}. Suppose z in Z_{x} has a neighbor y in Y. Since A_{1} is anticonnected, y has a non-neighbor x in X. But now $a_{3} z a_{2} y_{3} x y x_{2} a_{3}$ (with x_{2} in X_{2} and y_{3} in Y_{3}) is an antihole of length seven, a contradiction. So Z_{x} is anticomplete to Y. Choose z in Z_{x} and non-adjacent x in X and y in Y. Then $z x a_{2} y y_{3} z$ is a hole of length five, a contradiction. This proves 3.2.20.3.
3.2.20.4 If Z is empty then the theorem holds.

The pairs (X, Y) and $\left(X_{2}, Y_{3}\right)$ are coherent homogeneous pairs, and since G does not admit twins or a coherent W -join, all four of these sets have size ≤ 1. Every vertex of G is adjacent to a_{3}, except the vertex x_{2} of X_{2}, if X^{\prime} is non-empty. So every clique of G contains either a_{3} or x_{2}, and therefore $K(G)$ is perfect (it is either a complete graph, or the complement of a bipartite graph). This proves 3.2.20.4.

In view of 3.2.20.4, we henceforth assume that $Z \neq \emptyset$. By 3.2.20.3 we may assume X^{\prime} is empty, and so Y^{\prime} is non-empty. By 3.2 .20 .2 we may assume $Y^{\prime}=Y_{3}$. Since the vertices of Y_{3} are not twins, $Y_{3}=\left\{y_{3}\right\}$.
3.2.20.5 Z is complete to Y.

Suppose not. Choose z in Z, with a non-neighbor y is in Y. Then z in Z_{x}. Since A_{1} is anticonnected, y has a non-neighbor x in X. But now $z x a_{2} y y_{3} z$ is a hole of length
five, a contradiction. This proves 3.2 .20 .5 .
Let M be the set of vertices in X with a neighbor in Z. Suppose some z in Z has adjacent neighbors x in X and y in Y. Then $x y a_{3}$ is a triangle, z is adjacent to x, y and not to $a_{3} ; y_{3}$ is adjacent to a_{3}, y and not to x. Choose a non-neighbor x^{\prime} of y in X. Then x^{\prime} is adjacent to a_{3}, x. But now the graph induced by $\left\{x, x^{\prime}, y, y_{3}, a_{3}, z\right\}$ is a 1- or 2-pyramid, a contradiction. This proves that M is anticomplete to Y. Now (Z, M) is a coherent homogeneous pair, and the same for $(X \backslash M, Y)$. Since G admits no twins and no coherent W -join, all four of these sets have size ≤ 1. Also, since a_{2} and a_{4} are not twins, $k=3$. Let $Z=\{z\}$. Every vertex of G different from z is adjacent to a_{3}. So every clique of G contains either a_{3} or z, and then $K(G)$ is perfect (it is the complement of a bipartite graph). This completes the proof of Theorem 3.2.20.

Theorem 3.2.21. Let G be an interesting $H C H$ claw-free graph, and suppose that G is connected, does not admit a coherent or non-dominating W-join, a 1 -join or twins. If G contains a stable set of size three and a singular vertex, then $K(G)$ is perfect.

Proof. The proof is by induction on $|V(G)|$. Assume that for every smaller graph G^{\prime} satisfying the hypotheses of the theorem, $K\left(G^{\prime}\right)$ is perfect. Let v be a singular vertex in G with maximum number of neighbors. Let A be the set of neighbors of v and B be the set of its non-neighbors. Since v is singular, B is a complete.

Since G contains a stable set of size three, and every such set meets both A and B (because B is a clique, and G is claw-free), there exist vertices in B that are non singular. Let U be the set of all such vertices.
3.2.21.1 If U is anticomplete to A then $K(G)$ is perfect.

Let $V=B \backslash U$, so every vertex of V is singular, and since G is connected, V is nonempty. Let a_{1}, a_{2} be two non-adjacent vertices in A. If $b \in V$ is non-adjacent to both a_{1}, a_{2}, then $\left\{b, a_{1}, a_{2}\right\}$ is a stable set of size three, and if b is adjacent to both a_{1}, a_{2} then $\left\{b, a_{1}, a_{2}, u\right\}$ is a claw for every $u \in U$; in both cases we get a contradiction. So every vertex in V is adjacent to exactly one of a_{1}, a_{2}. Suppose there exist v_{1}, v_{2} in V with v_{i} adjacent to a_{i}. Then $v_{1} v_{2} a_{2} v a_{1} v_{1}$ is a hole of length five, a contradiction. So one of a_{1}, a_{2} is anticomplete to V, and therefore the other one is complete to V. Let A_{1} be the vertices in A complete to V, A_{2} be the vertices in A anticomplete to V and $A_{3}=A \backslash\left(A_{1} \cup A_{2}\right)$. It follows from the previous argument that $A_{1} \cup A_{3}$ and $A_{2} \cup A_{3}$ are both completes. If A_{3} is non-empty, then $|V|>1$ and $\left(A_{3}, V\right)$ is a coherent W-join, a contradiction. So we may assume A_{3} is empty. Now $\left(A_{1}, A_{2}\right)$ is a coherent homogeneous pair, and all the vertices of each of U, V are twins. So all these sets have size at most 1 and $K(G)$ is the clique graph of an induced subgraph of a 4-edge path, and hence perfect. This proves 3.2.21.1.

So we may assume that there exists a non-singular vertex u in B with a neighbor in A. Let M be the set of neighbors of u in A, N the set of non-neighbors. Since u is non-singular, N contains two non-adjacent vertices x, y. Choose m in M. If m is adjacent to both x, y then $\{m, x, y, u\}$ is a claw. If m is non-adjacent to both x, y then $\{v, x, y, m\}$ is a claw. So every vertex in M is adjacent to exactly one of x, y. So there
is no complement of an odd cycle in $G \mid N$, and therefore the complement of $G \mid N$ is bipartite and N is the union of two completes.

Let M_{1} be the vertices in M adjacent to x, M_{2} those adjacent to y, then $M_{1} \cup M_{2}=M$ and $M_{1} \cap M_{2}=\emptyset$.

If there exists m_{1} in M_{1} and m_{2} in M_{2} such that m_{1} is adjacent to m_{2}, then the graph induced by $\left\{m_{1}, m_{2}, v, x, y, u\right\}$ is 3 -sun, a contradiction. So there are no edges between M_{1} and M_{2}, M_{1} is anticomplete to y and M_{2} is anticomplete to x. Since $\left\{v, m, m^{\prime}, y\right\}$ is not a claw for m, m^{\prime} in M_{1}, it follows that M_{1} is a complete, and the same holds for M_{2}.

Case 1: M_{1} and M_{2} are both non-empty.
Since A contains no stable set of size three (for otherwise there would be a claw in G), every vertex in N is complete to one of M_{1}, M_{2}. Let N_{3} be the vertices complete to $M_{1} \cup M_{2}, N_{1}$ the vertices of $N \backslash N_{3}$ complete to M_{1} and N_{2} vertices of $N \backslash N_{3}$ complete to M_{2}. So $x \in N_{1}$ and $y \in N_{2}$. Since $\left\{m, n, n^{\prime}, u\right\}$ is not a claw for m in M_{1} and n, n^{\prime} in $N_{1} \cup N_{3}$, it follows that $N_{1} \cup N_{3}$ is a complete. Similarly $N_{2} \cup N_{3}$ is a complete. Suppose N_{3} is non-empty, and choose $n \in N_{3}$. Then n is complete to $(A \cup\{v\}) \backslash\{n\}$, and therefore is singular (for its non-neighbors are a subset of B); and by the choice of v, n and v are twins. Since G admits no twins, it follows that N_{3} is empty. Suppose some n_{1} in N_{1} is adjacent to n_{2} in N_{2}. Choose m_{1}^{\prime} in M_{1} non-adjacent to n_{2} and m_{2}^{\prime} in M_{2} non-adjacent to n_{1}. Then $m_{1}^{\prime} n_{1} n_{2} m_{2}^{\prime} u m_{1}^{\prime}$ is a hole of length five, a contradiction. So N_{1} is anticomplete to N_{2}. Suppose n_{1} in N_{1} has a neighbor m_{2}^{\prime} in M_{2}. Then $\left\{m_{2}^{\prime}, n_{1}, y, u\right\}$ is a claw, a contradiction. So N_{1} is anticomplete to M_{2}, and, similarly, N_{2} is anticomplete to M_{1}.

For $i=1,2$ choose m_{i}^{\prime} in M_{i}, and assume that m_{i}^{\prime} has a non-neighbor b_{i} in B. If m_{1}^{\prime} and m_{2}^{\prime} have a common non-neighbor $b \in B$, then $\left\{u, m_{1}^{\prime}, m_{2}^{\prime}, b\right\}$ is a claw, a contradiction. So there are two vertices b_{1} and b_{2} in B such that b_{1} is non-adjacent to m_{1}^{\prime} and adjacent to m_{2}^{\prime}, and b_{2} is non-adjacent to m_{2}^{\prime} and adjacent to m_{1}^{\prime}. But then $m_{1}^{\prime} b_{2} b_{1} m_{2}^{\prime} v m_{1}^{\prime}$ is a hole of length five, again a contradiction. So, exchanging M_{1} and M_{2} if necessary, we may assume that M_{1} is complete to B, and since G admits no twins, $\left|M_{1}\right|=1$, say $M_{1}=\left\{m_{1}\right\}$.

Let b be a vertex of B with a neighbor in N_{1}. We claim that b is complete to M_{2} and anticomplete to N_{2}. For if b has a non-neighbor m_{2} in M_{2}, then $n_{1} b u m_{2} v n_{1}$ is a hole of length five; and if b has a neighbor n_{2} in N_{2}, then $\left\{b, n_{1}, n_{2}, u\right\}$ is a claw; in both cases a contradiction. This proves the claim.

So every vertex of B is either anticomplete to N_{1}, or complete to M_{2} and anticomplete to N_{2}. Let B_{1} be the set of vertices of B with a neighbor in N_{1}. Then $\left(B_{1}, N_{1}\right)$ is a non-dominating homogeneous pair, and since G does not admit a non-dominating W-join or twins, it follows that $\left|B_{1}\right| \leq 1$ and $\left|N_{1}\right|=1$, say $N_{1}=\left\{n_{1}\right\}$.

Assume that B_{1} is non-empty, let $B_{1}=\left\{b_{1}\right\}$. Let $B_{2}=B \backslash B_{1}$. We claim that in this case B_{2} is complete to M_{2}. If b_{2} in B_{2} has a non-neighbor m_{2} in M_{2}, then $b_{2} \neq b_{1}$ and $\left\{b_{1}, n_{1}, m_{2}, b_{2}\right\}$ is a claw, a contradiction. This proves the claim. But now the vertices
of M_{2} are all twins, and since G does not admit twins, $\left|M_{2}\right|=1$. Moreover, $\left(B_{2}, N_{2}\right)$ is a non-dominating homogeneous pair, and since G does not admit a non-dominating W-join or twins, it follows that $\left|B_{2}\right|=\left|N_{2}\right|=1$, so $B_{2}=\{u\}$ and $N_{2}=\left\{n_{2}\right\}$. But now every clique of G contains either v or b_{1}, and hence $K(G)$ is the complement of a bipartite graph, and therefore perfect. This finishes the case when B_{1} is non-empty.

If B_{1} is empty, $\left(B, M_{2} \cup N_{2}\right)$ is a non-dominating homogeneous pair, and since G does not admit a non-dominating W-join or twins, it follows that $|B|=\left|M_{2} \cup N_{2}\right|=1$, a contradiction because both M_{2} and N_{2} are non-empty. This finishes the case when both M_{1} and M_{2} are non-empty.

Case 2: One of M_{1}, M_{2} is empty.
We may assume that M_{2} is empty, and so M is complete to x and anticomplete to y. Let N_{1} be the set of vertices in N complete to M, N_{2} the set of vertices in N that are anticomplete to M and let $N_{3}=N \backslash\left(N_{1} \cup N_{2}\right)$.

We claim that $N_{1} \cup N_{3}$ and $N_{2} \cup N_{3}$ are both completes. Choose two different vertices n_{3} in $N_{3} \cup N_{1}$ and n_{1} in N_{1}, and let m be a neighbor of n_{3} in M. Since $\left\{m, u, n_{1}, n_{3}\right\}$ is not a claw, n_{1} is adjacent to n_{3}; and therefore N_{1} is a complete and N_{1} is complete to N_{3}. Next, choose two different vertices n_{3} in $N_{3} \cup N_{2}$ and n_{2} in N_{2}, and let m be a non-neighbor of n_{3} in M. Since $\left\{v, m, n_{2}, n_{3}\right\}$ is not a claw, n_{2} is adjacent to n_{3}; and therefore N_{2} is a complete and N_{2} is complete to N_{3}. Finally, suppose there exist two non-adjacent vertices n_{3} and n_{3}^{\prime} in N_{3}. Since $\left\{m, u, n_{3}, n_{3}^{\prime}\right\}$ is not a claw for any $m \in M$, it follows that no vertex of M is adjacent to both n_{3} and n_{3}^{\prime}. Let m be a neighbor of n_{3} in M and m^{\prime} be a neighbor of n_{3}^{\prime} in M. Then m is non-adjacent to n_{3}^{\prime} and m^{\prime} is non-adjacent to n_{3}, and the graph induced by $\left\{v, m, m^{\prime}, u, n_{3}, n_{3}^{\prime}\right\}$ is a 3 -sun, a contradiction. So N_{3} is a complete. This proves the claim. Since there exist two non-adjacent vertices in N, both N_{1} and N_{2} are non-empty.
3.2.21.2 Let b in B adjacent to n_{3} in N_{3} and to m in M. Then n_{3} is non-adjacent to m.

Suppose they are adjacent. Let m^{\prime} be a non-neighbor of n_{3} in M, and let n_{2} be in N_{2}. Then $n_{3} m v$ is a triangle, b is adjacent to $n_{3}, m ; n_{2}$ is adjacent to v and $n_{3} ; m^{\prime}$ is adjacent to v and m, and this is a 0 -, 1 - or 2 -pyramid, a contradiction. This proves 3.2.21.2.
3.2.21.3 Every vertex in N_{1} has a non-neighbor in N_{2}.

Suppose some vertex n_{1} of N_{1} is complete to N_{2}. Then the set of non-neighbors of n_{1} is included in B, and therefore n_{1} is singular; and it is complete to $A \backslash\left\{n_{1}\right\}$. From the choice of v, n_{1} has no neighbor in B, but now n_{1} and v are twins, a contradiction. This proves 3.2.21.3.
3.2.21.4 M is complete to B.

Let B_{1} be the set of vertices in B that are complete to M. Suppose there exists b_{2} in $B \backslash B_{1}$, and let m be a non-neighbor of b_{2} in M.
3.2.21.4.1 $\left|N_{2}\right|=1, N_{2}$ is anticomplete to B, and consequently all stable sets of size
three using u share a vertex in A.
Let n be in N_{2}. Since $n b_{2} u m v n$ is not a hole of length five, it follows that n is nonadjacent to b_{2}, and the same holds for every vertex of $B \backslash B_{1}$. So n is anticomplete to $B \backslash B_{1}$. Since $\left\{b_{1}, b_{2}, m, n\right\}$ is not a claw for $b_{1} \in B_{1}$, it follows that n is anticomplete to B_{1}, and the same holds for every vertex of N_{2}. Therefore N_{2} is anticomplete to B. But now $\{v\} \cup N_{1} \cup N_{3}$ is a clique cutset separating N_{2} from $M \cup B$. By Theorem 3.2.13, G is either a linear interval graph or G is the 3 -sun, or G admits twins, or a 0 -join, or a 1-join, or a coherent W-join, or it is not an internal clique cutset; and it follows from the hypotheses of the theorem and from Theorem 3.2.1, that we may assume that the last alternative holds, and $\left|N_{2}\right|=1$, say $N_{2}=\left\{n_{2}\right\}$. Now, since M, B and $N_{1} \cup N_{3}$ are all completes, it follows that n_{2} belongs to every stable set of size three using u. This proves 3.2.21.4.1.
3.2.21.4.2 N_{1} is anticomplete to n_{2}.

Follows from 3.2.21.3.
3.2.21.4.3 We may assume that every vertex of B has a neighbor in A.

Suppose not. Let b be a vertex of B anticomplete to A.
We claim that in this case $K(G)$ is perfect if and only if $K(G \backslash\{b\})$ is. Since every vertex of $G \backslash B$ has a non-neighbor in B, B is a clique of G. b is a simplicial vertex and B is the only clique containing b. Let v_{B} be the vertex of $K(G)$ corresponding to B. There are two possibilities: either $B \backslash\{b\}$ is a clique of $G \backslash\{b\}$, and then $K(G \backslash\{b\})=K(G)$, or there is a vertex m_{B} in A complete to $B \backslash\{b\}$ in G, and then $K(G \backslash\{b\})=K(G) \backslash\left\{v_{B}\right\}$. The vertex m_{B} belongs to M because, in particular, it is adjacent to u. We claim that every clique of G different from B and having non-empty intersection with B contains the vertex m_{B}. Otherwise, there is a clique of G containing a vertex of B, say b_{3}, and a vertex a of A non-adjacent to m_{B}. But now $\left\{b_{3}, b, m_{B}, a\right\}$ is a claw, a contradiction. Thus v_{B} is simplicial in $K(G)$, and Lemma 1.3.3 completes the proof of the claim. But now, since $K(G \backslash\{b\})$ is perfect, so is $K(G)$. This proves 3.2.21.4.3.

We henceforth assume that every vertex of B has a neighbor in A.
3.2.21.4.4 Let $b \in B$ be a vertex non-adjacent to some $n_{3} \in N_{3}$; and let m be in M. Then n_{3} is adjacent to m.

Suppose not. Then b is in a stable set of size three $\left\{b, n_{3}, m\right\}$ and b has a neighbor in A; and by 3.2.21.4.1 applied to b instead of $u,\left\{b, n_{2}\right\} \cup N_{1}$ does not contain a stable set of size three. So b is complete to N_{1}. But now $\left\{n_{1}, b, m, n_{3}\right\}$ is a claw for every $n_{1} \in N_{1}$, a contradiction. This proves 3.2.21.4.4.
3.2.21.4.5 B is anticomplete to N_{3}.

Suppose a vertex $b \in B$ has a neighbor $n \in N_{3}$. By the definition of N_{3}, n has a neighbor m in M. By 3.2.21.2, m is non-adjacent to b. By 3.2.21.4.4 n is adjacent to m. But now $\left\{n, n_{2}, b, m\right\}$ is a claw, a contradiction. This proves 3.2.21.4.5.

Now $M \cup N_{1}$ is a clique cutset separating $\{v\} \cup N_{2} \cup N_{3}$ from B. Since $|B|>1$ and $\left|\{v\} \cup N_{2} \cup N_{3}\right|>1$, it follows from Theorem 3.2.13, that G is a linear interval graph, and therefore $K(G)$ is perfect by Theorem 3.2.1. This completes the proof of 3.2.21.4.

By 3.2.21.4, for every non-singular vertex in B, the set of its neighbors in A is complete to B.
3.2.21.5 B is anticomplete to N_{3}.

Suppose some vertex $b \in B$ has a neighbor $n_{3} \in N_{3}$. By the definition of N_{3}, n_{3} has a neighbor in M, and this contradicts 3.2.21.2. This proves 3.2.21.5.
3.2.21.6 N_{3} is empty and $|M|=1$.

If N_{3} is non-empty then $|M|>1$ and $\left(N_{3}, M\right)$ is a coherent homogeneous pair. So N_{3} is empty, but now the vertices of M are twins, so $|M|=1$. This proves 3.2.21.6.

It follows from 3.2.21.6 that every singular vertex in B has at most one neighbor in A, and since M is complete to B and has size 1 , every singular vertex in B is complete to M and anticomplete to $A \backslash M$. Therefore the vertices of U are all twins, and since G admits no twins, $U=\{u\}$. Let $B_{2}=B \backslash U$.
3.2.21.7 B_{2} is non-empty.

Otherwise $\left(N_{1}, N_{2}\right)$ is a coherent homogeneous pair, so each of them has size 1 and $K(G)$ is a three-edge path. This proves 3.2.21.7.
3.2.21.8 If n_{1} in N_{1} is non-adjacent to n_{2} in N_{2}, then every b in B_{2} is adjacent to exactly one of n_{1}, n_{2}.

Let b_{2} in B_{2}. Since b_{2} in B_{2} is singular, b_{2} is adjacent to at least one of n_{1}, n_{2}. Since $\left\{b_{2}, n_{1}, n_{2}, u\right\}$ is not a claw, b_{2} is non-adjacent to at least one of n_{1}, n_{2}. This proves 3.2.21.8.
3.2.21.9 No vertex of N_{1} has a neighbor and a non-neighbor in B_{2}.

Suppose n_{1} in N_{1} has a neighbor b_{1} in B_{2} and a non-neighbor b_{2} in B_{2}. By 3.2.21.3 n_{1} has a non-neighbor n_{2} in N_{2}. By 3.2.21.8 n_{2} is adjacent to b_{2} and not to b_{1}. But now $b_{1} n_{1} v n_{2} b_{2} b_{1}$ is a hole of length five, a contradiction. This proves 3.2.21.9.

Let N_{11} be the vertices of N_{1} complete to $B_{2}, N_{12}=N_{1} \backslash N_{11}$. So N_{12} is anticomplete to B. It follows from 3.2.21.8 every vertex of N_{2} is either complete to N_{11} or to N_{12}. Let N_{22} be the set of vertices in N_{2} with a non-neighbor in N_{11}. Then N_{22} is complete to N_{12}. Let N_{21} be the vertices in N_{2} with a non-neighbor in N_{12}. Then N_{21} is complete to N_{11}. Let $N_{23}=N_{2} \backslash\left(N_{21} \cup N_{22}\right)$. So N_{23} is complete to N_{1}. By 3.2.21.8 B_{2} is anticomplete to N_{22} and complete to N_{21}. Now $\left(B_{2}, N_{23}\right)$ is a coherent homogeneous pair, and all the vertices of $N_{11}, N_{12}, N_{22}, N_{21}$ are twins, so all these sets have size at most 1.

Now, every clique of G contains either v or b_{2}, so $K(G)$ is the complement of a bipartite graph, and hence it is perfect. This completes the proof of Theorem 3.2.21.

Basic classes

We finally show that if an interesting $H C H$ claw-free graph belongs to one of the basic classes of Theorem 3.2.12, then its clique graph is perfect.

Theorem 3.2.22. If G is interesting $H C H$, antiprismatic and every vertex of G is in a triad, then $K(G)$ is perfect.

Proof. We prove that G contains no 4 -wheel or 3 -fan, and then, by Theorem 1.3.14, $K(G)$ is bipartite.

Suppose G contains a 4 -wheel. Let $a_{1} a_{2} a_{3} a_{4} a_{1}$ be a hole and let c be adjacent to all a_{i}. Since every vertex is in a triad, there are two vertices c_{1}, c_{2} different from $a_{1}, a_{2}, a_{3}, a_{4}$ such that $\left\{c, c_{1}, c_{2}\right\}$ is a stable set. Since G is antiprismatic, every other vertex in G is adjacent exactly to two of $\left\{c, c_{1}, c_{2}\right\}$. In particular, each a_{i} is adjacent either to c_{1} or to c_{2}. If two consecutive vertices of the hole, for instance a_{1}, a_{2}, are adjacent to the same c_{j}, then $\left\{a_{1}, a_{3}, a_{2}, a_{4}, c, c_{j}\right\}$ induces a $1-, 2$ - or 3 -pyramid, a contradiction because G is $H C H$. So, without loss of generality, we may assume that a_{1} and a_{3} are adjacent to c_{1} and not to c_{2}, while a_{2} and a_{4} are adjacent to c_{2}, and not to c_{1}. But then $\left\{a_{1}, a_{2}, a_{3}, c_{2}\right\}$ is a claw, a contradiction. This proves that G does not contain a 4 -wheel.

Suppose now that G contains a 3-fan. Let $a_{1} a_{2} a_{3} a_{4}$ be an induced path and let c be adjacent to all a_{i}. Since every vertex is in a triad, there are two vertices c_{1}, c_{2} different from $a_{1}, a_{2}, a_{3}, a_{4}$ such that $\left\{c, c_{1}, c_{2}\right\}$ is a stable set. Since G is antiprismatic, each a_{i} is adjacent either to c_{1} or to c_{2}. If a_{2} and a_{3}, are adjacent to the same c_{j}, then $\left\{a_{1}\right.$, $\left.a_{3}, a_{2}, a_{4}, c, c_{j}\right\}$ induces a 0 -,1- or 2-pyramid, a contradiction because G is $H C H$. So, without loss of generality, we may assume that a_{2} is adjacent to c_{1} and not c_{2}, while a_{3} is adjacent to c_{2} and not c_{1}. Since $\left\{a_{3}, a_{2}, c_{2}, a_{4}\right\}$ is not a claw, a_{4} is adjacent to c_{2}, and, analogously, a_{1} is adjacent to c_{1}. By the same argument applied to the 3 -fan induced by the path $a_{2} c a_{4} c_{2}$ and the vertex a_{3}, there is a vertex d adjacent to a_{4} and c_{2} but not adjacent to a_{2}, c or a_{3}, and so $d \notin\left\{a_{1}, a_{2}, a_{3}, a_{4}, c, c_{1}, c_{2}\right\}$ (see Figure 3.12).

Figure 3.12: Situation for the second part of the proof of Theorem 3.2.22.
Since $c_{1} a_{2} a_{2} a_{4} d c_{1}$ is not a hole of length five, d is non-adjacent to c_{1}. Thus c_{1}, c and d form a triad, but the vertex c_{2} is adjacent only to one of them, a contradiction because G is antiprismatic. This concludes the proof of Theorem 3.2.22.

Theorem 3.2.23. Let $G \in \mathcal{S}_{6}$ be a connected interesting HCH graph such that every vertex of G is in a triad. Then $K(G)$ is perfect.

Proof. Let A, B and C be the sets of vertices of the graph H_{5} in the definition of the class \mathcal{S}_{6}, and let A_{G}, B_{G} and C_{G} be those sets intersected with $V(G)$. Every triad in G is of the form $\left\{a_{i}, b_{j}, c_{k}\right\}$, since A_{G}, B_{G} and C_{G} are complete sets. Moreover, either $i=j=0$ or $k=i$ and $j=0$ or $k=j$ and $i=0$. Since every vertex of G is in a triad, it follows that A_{G}, B_{G} and C_{G} are non-empty and if $i \neq 0$ and $a_{i} \in A_{G}$, then $b_{0} \in B_{G}$ and $c_{i} \in C_{G}$. Analogously, if $i \neq 0$ and $b_{i} \in B_{G}$, then $a_{0} \in A_{G}$ and $c_{i} \in C_{G}$. Let $I_{A}=\left\{i>0: a_{i} \in A_{G}\right\}, I_{B}=\left\{i>0: b_{i} \in B_{G}\right\}$ and $I_{C}=\left\{i>0: c_{i} \in C_{G}\right\}$. Then $I_{A} \cup I_{B} \subseteq I_{C}$.

Assume first that $I_{C} \backslash\left(I_{A} \cup I_{B}\right)$ is non-empty. Since every vertex is in a triad, it follows that a_{0} and b_{0} belong to G. Since the set $C^{\prime}=\left\{c_{i}: i \in C \backslash\left(I_{A} \cup I_{B}\right)\right\}$ is complete to $V(G) \backslash\left(C^{\prime} \cup\left\{a_{0}, b_{0}\right\}\right)$, and the only cliques containing a_{0} or b_{0} are A_{G} and B_{G}, respectively, it follows that every pair of cliques of G, except for the pair A_{G}, B_{G}, has non-empty intersection. Thus $K(G)$ is a split graph (that is, $V(K(G))$ is the union of a stable set and a complete), and hence $K(G)$ is perfect [46].

So we may assume that $I_{A} \cup I_{B}=I_{C}$. If $\left|I_{A} \cup I_{B}\right| \geq 3$, we may assume by switching A and B if necessary that $1,2 \in I_{A}$, and then the graph induced by $\left\{a_{1}, a_{2}, c_{1}, c_{2}, c_{3}, a_{0}\right\}$ is a 1-pyramid, a contradiction because G is $H C H$. On the other hand, since G is connected, both I_{A} and I_{B} are non-empty and $\left|I_{A} \cup I_{B}\right| \geq 2$. So, without loss of generality, we consider three cases: $I_{A}=I_{B}=\{1,2\} ; I_{A}=\{1,2\}$ and $I_{B}=\{2\}$; $I_{A}=\{1\}$ and $I_{B}=\{2\}$. Graphs obtained in each case are depicted in Figure 3.13, with their corresponding clique graphs, which are all perfect. That concludes this proof.

Figure 3.13: Last three cases for the proof of Theorem 3.2.23.
Proof of Theorem 3.2.11. Let G be an interesting $H C H$ claw-free graph. The proof is by induction on $|V(G)|$, using the decomposition of Theorem 3.2.12. Assume that for every smaller interesting $H C H$ claw-free $G^{\prime}, K\left(G^{\prime}\right)$ is perfect. We show that $K(G)$ is perfect.

If G admits twins, then $K(G)$ is perfect by Lemma 1.3.11, and if G is not connected, then $K(G)$ is perfect by Lemma 1.3.10. If G is connected, admits a 1 -join and no
twins, then $K(G)$ is perfect by Theorem 3.2.15 and Lemma 1.3.4. If G admits no twins, 0 - or 1 -joins, but admits a 2 -join, then $K(G)$ is perfect by Theorem 3.2.16. If G admits a coherent or non-dominating W -join and no twins, then $K(G)$ is perfect by Theorem 3.2.18. If G contains a singular vertex, then $K(G)$ is perfect by Theorems 3.2.20 and 3.2.21. So we may assume not. If G admits a hex-join and no twins, then by Theorem 3.2.19 $G=K(G)=C_{6}$, and therefore $K(G)$ is perfect.

So we may assume that G admits none of the decompositions of the previous paragraph, and by Theorem 3.2.12, G is antiprismatic, or belongs to $\mathcal{S}_{0} \cup \cdots \cup \mathcal{S}_{6}$.

If $G \in \mathcal{S}_{0}$, then $K(G)$ is perfect by Theorem 3.2.9. The graphs $i \operatorname{cosa} a(-2), i \operatorname{cosa}(-1)$ and $i \operatorname{cosa}(0)$ contain holes of length five, and therefore are not interesting, so $G \notin \mathcal{S}_{1}$. $G \notin \mathcal{S}_{2}$, because vertices $v_{3}, v_{4}, v_{5}, v_{6}, v_{9}$ induce a hole of length five in H_{1} (Figure 3.9). If $G \in \mathcal{S}_{3}$, then by Proposition 3.2.1, $K(G)$ is perfect. If $G \in \mathcal{S}_{4}$ then, since G does not contain a singular vertex, G is a line graph and $K(G)$ is perfect by Theorem 3.2.9. $G \notin \mathcal{S}_{5}$, because the vertex d_{1} in the definition of the class \mathcal{S}_{5} is singular. If $G \in \mathcal{S}_{6}$, then $K(G)$ is perfect by Theorem 3.2.23, and finally, if G is antiprismatic, then $K(G)$ is perfect by Theorem 3.2.22. This completes the proof of Theorem 3.2.11.

Theorem 3.2.4 is an immediate corollary of the following:
Theorem 3.2.24. Let G be claw-free and assume that G is $H C H$. Then the following are equivalent:
(i) no induced subgraph of G is an odd hole, or $\overline{C_{7}}$.
(ii) G is clique-perfect.
(iii) G is perfect.

Proof. Since every antihole of length at least eight contains a 2-pyramid, it follows from Theorem 1.3.2 that no $H C H$ graph contains an antihole of length at least eight. Thus the equivalence between (i) and (iii) is a corollary of Theorem 1.2.1. From Theorem 3.1.1 it follows that (ii) implies (i). Finally, by Theorem 3.2.11 and Proposition 1.3.1, we deduce that (i) implies (ii), and this completes the proof.

3.2.4 Helly circular-arc graphs

In this subsection we provide a proof of Theorem 3.2.5, which states that if a graph G is $H C A$, then G is clique-perfect if and only if it does not contain the graphs of Figure 3.14.

In fact, we will show that an $H C A$ graph that does not contain any of the graphs of Figure 3.14 is K-perfect. The class of clique-perfect graphs is neither a subclass nor a superclass of the class of K-perfect graphs. But K-perfection allows us to apply similar arguments to those used in the proof of Proposition 1.3.1 in order to prove

Figure 3.14: Minimal forbidden subgraphs for clique-perfect graphs inside the class of $H C A$ graphs. Dotted lines represent any induced path of odd length at least 1.

Theorem 3.2.5 for $H C A$ graphs that are also $H C H$. The graphs in $H C A \backslash H C H$ are handled separately.

We start with some straightforward results about $H C A$ graphs.
Throughout this subsection, an arc of a circle defined by two points will be called a sector, in order to distinguish them from arcs corresponding to vertices of an $H C A$ graph. For example, the bold arc in Figure 3.15 is one of the two sectors defined by the points a and b. Given a collection \mathcal{C} of points on the circle, for $a, b, c \in \mathcal{C}$ we say that c is between a and b if the sector defined by a and b that contains c does not contain any other point of \mathcal{C}. For example, in Figure 3.15, the point c is between a and b but the point d is not.

Figure 3.15: Example of notation. The bold arc is one of the two sectors defined by the points a and b of the circle. The point c is between a and b but the point d is not.

Lemma 3.2.25. Let G be an HCA graph that has an HCA representation with no two arcs covering the circle. Then G is $H C H$.

Proof. Suppose not. By Theorem 1.3.2, G contains a $0-1-, 2-$, or 3 -pyramid P. Let $\left\{v_{1}, \ldots, v_{6}\right\}$ be the vertices of P, such that v_{1}, v_{2}, v_{3} form a triangle; v_{4} is adjacent to v_{2} and v_{3} but not to $v_{1} ; v_{5}$ is adjacent to v_{1} and v_{3} but not to $v_{2} ; v_{6}$ is adjacent to v_{1} and v_{2} but not to v_{3}. Since P is an induced subgraph of G, P has an $H C A$ representation with no two arcs covering the circle. Let $\mathcal{A}=\left\{A_{i}\right\}_{1 \leq i \leq 6}$ be such a representation, where the $\operatorname{arc} A_{i}$ corresponds to the vertex v_{i}. The sets $C_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $C_{2}=\left\{v_{1}, v_{2}, v_{6}\right\}$ are cliques of P, let a be an anchor of C_{1} and b of C_{2}. Then a and b are distinct points of the circle. Let S_{1} and S_{2} be the two sectors with ends a, b. Since A_{1}, A_{2} do not cover the circle, and a, b belong to both A_{1} and A_{2}, we may assume that S_{1} is included both in A_{1} and in A_{2}. Since $a \in A_{3}$ but $b \notin A_{3}$, it follows that A_{3} has an endpoint,
say c, in $S_{1} \backslash\{b\}$ (see Figure 3.16). But now, since the pairs A_{1}, A_{3} and A_{2}, A_{3} do not cover the circle, it follows that either $A_{1} \cap A_{3} \subseteq A_{2}$, or $A_{2} \cap A_{3} \subseteq A_{1}$. In the former case there is no anchor for the clique $\left\{v_{1}, v_{3}, v_{5}\right\}$, and in the later there is none for the clique $\left\{v_{2}, v_{3}, v_{4}\right\}$; in both cases a contradiction.

Figure 3.16: Scheme of representation of arcs A_{6}, A_{1}, A_{2} and A_{3}, in the proof of Lemma 3.2.25.

Lemma 3.2.26. Every HCA representation of a 4 -wheel has two arcs covering the circle.

Proof. Let $\left\{a_{1}, a_{2}, a_{3}, a_{4}, b\right\}$ be the vertices of a 4 -wheel W, where $a_{1} a_{2} a_{3} a_{4} a_{1}$ is a cycle of length four and b is adjacent to all of $a_{1}, a_{2}, a_{3}, a_{4}$, and let $\mathcal{A}=\left\{A_{1}, A_{2}\right.$, $\left.A_{3}, A_{4}, B\right\}$ be an $H C A$ representation of W. Let p_{1}, p_{2}, p_{3} and p_{4} be anchors of the cliques $\left\{a_{1}, a_{2}, b\right\},\left\{a_{2}, a_{3}, b\right\},\left\{a_{3}, a_{4}, b\right\},\left\{a_{4}, a_{1}, b\right\}$, respectively. Then there are only two possible circular orders of the anchors: $p_{1}, p_{2}, p_{3}, p_{4}$ and the reverse one, and for $1 \leq i \leq 4$, each arc A_{i} passes exactly through p_{i} and p_{i-1} (index operations are done modulo 4). Since the arc B passes through the four points p_{i}, it follows that B and one of the A_{i} cover the circle.

Lemma 3.2.27. If G is an $H C A$ graph and it has an $H C A$ representation without two arcs covering the circle, then this representation cannot have three arcs covering the circle.

Proof. Let \mathcal{A} be a $H C A$ representation for a $H C A$ graph G. Suppose that there are three arcs A, B, and C in \mathcal{A} covering the circle \mathcal{C} but no two arcs cover it. Since $A \cup B$ do not cover the circle, there is a point c in $\mathcal{C} \backslash(A \cup B)$. Since $\mathcal{C}=A \cup B \cup C$, it follows that $c \in C$. Analogously, there exist points a and b in $A \backslash(B \cup C)$ and $B \backslash(A \cup C)$, respectively. Since the arcs are open and $A \cup B \cup C$ but no two of them cover \mathcal{C}, the three arcs mutually intersect. Since \mathcal{A} verifies the Helly property, there is a common intersection point p of A, B and C. But since a belongs to A and neither b nor c belong to A, p cannot lie between b and c. Analogously, it cannot lie neither between a and b nor between a and c, a contradiction.

Lemma 3.2.28. Let S denote the unit circle. Let G be an HCA graph that has an $H C A$ representation with no two arcs covering S, and let \mathcal{A} be such a representation. Let H be a clique subgraph of G. Then H is $H C A$ and has an $H C A$ representation
\mathcal{A}^{\prime} with no two arcs covering S. Moreover, let M_{1}, \ldots, M_{s} be the cliques of H, and for $1 \leq i \leq s$ let a_{i} be an anchor of M_{i} in \mathcal{A}. Let $\varepsilon=\frac{1}{3} \min _{1 \leq i<j \leq s} \operatorname{dist}\left(a_{i}, a_{j}\right)$, where $\operatorname{dist}\left(a_{i}, a_{j}\right)$ denotes the length of the shortest sector of S between a_{i} and a_{j}. For an arc $A \in \mathcal{A}$ that contains at least one of the points a_{1}, \ldots, a_{s}, let the derived arc A^{\prime} of A be defined as follows: let $a_{i_{k}}, \ldots, a_{i_{m}}$ be the points of a_{1}, \ldots, a_{s} traversed by A in clockwise order, let u be the point of S which is at distance ε from $a_{i_{k}}$ going anti-clockwise, and v the point of S which is at distance ε from $a_{i_{m}}$ going clockwise. Then A^{\prime} is the arc with endpoints u and v and containing all of $a_{i_{k}}, \ldots, a_{i_{m}}$. In this notation, \mathcal{A}^{\prime} is precisely the set of all arcs A^{\prime} that are the derived arcs of some $A \in \mathcal{A}$ such that A contains at least one of a_{1}, \ldots, a_{s}. Please note that \mathcal{A}^{\prime} depends on the choice of the anchors a_{1}, \ldots, a_{s}.

Proof. Let H^{\prime} be the intersection graph of the arcs of \mathcal{A}^{\prime}. We claim that H^{\prime} is isomorphic to H. Since the arcs of \mathcal{A}^{\prime} are sub-arcs of the arcs of \mathcal{A} that correspond to vertices of G that belong to $\bigcup_{i=1}^{s} M_{i}$, there is a one-to-one correspondence between the vertices of H^{\prime} and the vertices of H, and we may assume that $V(H)=V\left(H^{\prime}\right)$. Moreover, for every clique M_{i} and every $A \in \mathcal{A}$, the derived arc of A contains a_{i} if and only if A does. So M_{1}, \ldots, M_{s} are cliques on H^{\prime}, and a_{i} is an anchor of M_{i}. Since two vertices of a graph are adjacent if and only if there exists a clique containing them both, in order to show that H is isomorphic to H^{\prime}, it remains to check that every two adjacent vertices of H^{\prime} belong to M_{i} for some i. But it follows from the construction of \mathcal{A}^{\prime} (and in particular from the choice of ε) that $A_{1}^{\prime} \cap A_{2}^{\prime} \neq \emptyset$ for $A_{1}^{\prime}, A_{2}^{\prime} \in \mathcal{A}^{\prime}$, if and only if $a_{i} \in A_{1}^{\prime} \cap A_{2}^{\prime}$ for some $1 \leq i \leq s$, which means that the corresponding vertices of H^{\prime} belong to the clique M_{i}. This proves that $E(H)=E\left(H^{\prime}\right)$ and completes the proof of the lemma.

Figure 3.17 provides an example of the construction of Lemma 3.2.28.

H

Figure 3.17: $H C A$ representation of the clique subgraph H of G whose cliques are a, c, d and f.

Remark 3.2.1. Let G be an $H C A$ graph with representation \mathcal{A}, and let H be a clique subgraph of G with representation \mathcal{A}^{\prime} given by Lemma 3.2.28, with anchors a_{1}, \ldots, a_{s}. Let $A_{1}^{\prime}, A_{2}^{\prime} \in \mathcal{A}^{\prime}$ be the derived arcs of $A_{1}, A_{2} \in \mathcal{A}$. Then $A_{1} \cap A_{2}$ may be non-empty even if $A_{1}^{\prime}, A_{2}^{\prime}$ are disjoint, but no point of $A_{1} \backslash A_{1}^{\prime}$ or $A_{2} \backslash A_{2}^{\prime}$ belongs to $\left\{a_{1}, \ldots, a_{s}\right\}$.

Lemma 3.2.29. Let G be an HCA graph and let \mathcal{A} be an $H C A$ representation of G. Let M_{1}, \ldots, M_{k}, with $k \geq 5$, be a set of cliques of G such that $M_{i} \cap M_{i+1}$ is non-empty for $i=1, \ldots, k$, and $M_{i} \cap M_{j}$ is empty for $j \neq i, i+1, i-1$ (index operations are done modulo k). Let $S=\left\{v_{1}, \ldots, v_{k}\right\}$ such that $v_{i} \in M_{i-1} \cap M_{i}$. Let $w \in M_{i} \backslash S$ nonadjacent to v_{i+2}. Then the neighbors of w in S are either $\left\{v_{i}, v_{i+1}\right\}$, or $\left\{v_{i-1}, v_{i}, v_{i+1}\right\}$, or $\left\{v_{i-2}, v_{i-1}, v_{i}, v_{i+1}\right\}$.

Proof. For $1 \leq i \leq k$ let m_{i} be an anchor of M_{i}, let A_{i} be the arc of \mathcal{A} corresponding to v_{i}, and let W be the arc corresponding to w. Since for every i, A_{i} contains m_{i-1} and m_{i}, and no m_{j} with $j \neq i-1, i$, it follows that there are only two possible circular orders of the anchors: $m_{1}, m_{2}, \ldots, m_{k}$ and the reverse one. Since w belongs to M_{i}, it is adjacent to v_{i} and v_{i+1}, and $m_{i} \in W$. Since w is non-adjacent to v_{i+2}, w does not belong to M_{i+1}, and $m_{i+1} \notin W$. Since $w \in M_{i}$ and M_{i} is disjoint from M_{j} for $j \neq i-1, i, i+1$, it follows that $m_{j} \notin W$ for $j \neq i-1, i$ (see Figure 3.18). Now, if $m_{i-1} \notin W$, then the neighbors of w in S are v_{i} and v_{i+1} or v_{i-1}, v_{i}, v_{i+1}, and if $m_{i-1} \in W$, then the neighbors of w in W are v_{i-1}, v_{i}, v_{i+1} or $v_{i-2}, v_{i-1}, v_{i}, v_{i+1}$.

Figure 3.18: Scheme of representation of $\operatorname{arcs} A_{i-3}, \ldots, A_{i+2}$ and W, in the proof of Lemma 3.2.29.

Theorem 3.2.30 gives a sufficient condition for the clique graph of an $H C A$ graph to be perfect.

Theorem 3.2.30. Let G be an HCA graph. If G does not contain any of the graphs in Figure 3.14, then $K(G)$ is perfect.

Proof. Let G be an $H C A$ graph which does not contain any of the graphs in Figure 3.14, and \mathcal{A} be an $H C A$ representation of G. Assume first that there are two arcs $A_{1}, A_{2} \in \mathcal{A}$ covering the circle, and let v_{1}, v_{2} be the corresponding vertices of G. Then the cliquetransversal number of G is at most two, because every anchor of a clique of G is contained in one of A_{1}, A_{2}, and therefore every clique contains either v_{1} or v_{2}. Since, by Lemma 1.3.1, the clique covering number of $K(G)$ is less or equal to the cliquetransversal number of $G, K(G)$ is the complement of a bipartite graph, and so it is perfect.

So we may assume no two arcs of \mathcal{A} cover the circle, and so by Lemma 3.2.27 no three arcs of \mathcal{A} cover the circle. By Lemma 3.2.25, G is $H C H$, so $K(G)$ is also $H C H$ [3].

Consequently, if $K(G)$ is not perfect, then it contains an odd hole or $\overline{C_{7}}$ (for every antihole of length at least eight contains a 2 -pyramid, and therefore is not HCH by Theorem 1.3.2).

Suppose first that $K(G)$ contains $\overline{C_{7}}$. By Theorem 1.3.13, G contains a clique subgraph H in which identifying twin vertices and then removing dominated vertices we obtain $\overline{C_{7}}$. Consider the $H C A$ representation \mathcal{A}^{\prime} of H given by Lemma 3.2.28, and let v_{1}, \ldots, v_{7} be vertices inducing $\overline{C_{7}}$ in H, where the cliques are $\left\{v_{1}, v_{3}, v_{5}\right\},\left\{v_{3}, v_{5}, v_{7}\right\},\left\{v_{5}, v_{7}, v_{2}\right\}$, $\left\{v_{7}, v_{2}, v_{4}\right\},\left\{v_{2}, v_{4}, v_{6}\right\},\left\{v_{4}, v_{6}, v_{1}\right\}$ and $\left\{v_{6}, v_{1}, v_{3}\right\}$. That is essentially the unique circular order of the cliques (the other possible order is the reverse one), so the arcs A_{1}, \ldots, A_{7} corresponding to v_{1}, \ldots, v_{7} must appear in \mathcal{A}^{\prime} as in Figure 3.19.

Figure 3.19: $H C A$ representation of $\overline{C_{7}}$.
If some pair of non-adjacent vertices v_{i}, v_{j} in H are adjacent in G, then there are three arcs covering the circle in \mathcal{A}, a contradiction. Otherwise $\left\{v_{1}, \ldots, v_{7}\right\}$ induce $\overline{C_{7}}$ in G, a contradiction.

Next suppose that $K(G)$ contains $C_{2 k+1}$, for some $k \geq 2$. By Theorem 1.3.13, G contains a clique subgraph H in which identifying twin vertices and then removing dominated vertices we obtain $C_{2 k+1}$, and such that $K(H)=C_{2 k+1}$. Consider the HCA representation \mathcal{A}^{\prime} of H given by Lemma 3.2.28 corresponding to anchors $a_{1}, \ldots, a_{2 k+1}$, and let $v_{1}, \ldots, v_{2 k+1}$ be vertices inducing $C_{2 k+1}$ in H, where the cliques are $v_{i} v_{i+1}$ for $1 \leq i \leq n-1$ and $v_{n} v_{1}$. Then in G the graph induced by $v_{1}, \ldots, v_{2 k+1}$ is a cycle, say C, with chords. We assume that $v_{1}, \ldots, v_{2 k+1}$ are chosen to minimize the number N of such chords. Again, that is essentially the unique circular order of the cliques (the other possible order is the reverse one), so the arcs $A_{1}^{\prime}, \ldots, A_{2 k+1}^{\prime}$ corresponding to $v_{1}, \ldots, v_{2 k+1}$ must appear in \mathcal{A}^{\prime} as in Figure 3.20.

Now it is possible that two disjoint arcs $A_{i}^{\prime}, A_{j}^{\prime} \in \mathcal{A}^{\prime}$ are derived from arcs $A_{i}, A_{j} \in \mathcal{A}$ whose intersection is non-empty, but it follows from Remark 3.2.1 that in this case $|j-i|=2$ (throughout this proof, indices of vertices in a cycle should be read modulo the length of the cycle). The proof now breaks into cases depending on the values of k and N.

Case $k=2$:
As there are no three arcs in \mathcal{A} covering the circle, C can have at most one chord incident with each vertex and so $N \leq 2$. The possible $H C A$-representations of $G \mid\left\{v_{1}, \ldots, v_{5}\right\}$

Figure 3.20: $H C A$ representation of $C_{2 k+1}, k \geq 2$.
are depicted in Figure 3.21. Let M_{1}, \ldots, M_{5} be the cliques of H such that M_{1} contains v_{1} and v_{2}, M_{2} contains v_{2} and v_{3}, \ldots, M_{5} contains v_{5} and v_{1}, for $1 \leq i \leq 5, a_{i}$ is an anchor of M_{i}, and the vertices corresponding to $M_{1}, M_{2}, \ldots, M_{5}$ induce C_{5} in $K(G)$.

Figure 3.21: Possible cases for $k=2$, corresponding to no chords, one chord or two chords in the cycle.

1. $\mathrm{N}=0$: In this case G contains an odd hole, a contradiction.
2. $\mathrm{N}=1$: Suppose that the vertices v_{1} and v_{3} are adjacent in G. As v_{3} does not belong to M_{1}, there is a vertex w_{1} in M_{1} which is not adjacent to v_{3}. Analogously, there is a vertex w_{2} in M_{2} which is not adjacent to v_{1}. The vertices w_{1} and w_{2} are non-adjacent, otherwise $\left\{v_{1}, v_{3}, w_{2}, w_{1}, v_{2}\right\}$ induce a 4 -wheel, which does not have an $H C A$ representation with no three arcs covering the circle. For $i=1,2, w_{i}$ can have two, three or four neighbors in C.
2.1. If w_{1} and w_{2} have two neighbors each one, then $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, w_{1}, w_{2}\right\}$ induce a viking.
2.2. If w_{1} and w_{2} have four neighbors each one, then $\left\{v_{1}, w_{2}, w_{1}, v_{3}, v_{5}, v_{2}, v_{4}\right\}$ induce $\overline{C_{7}}$.
2.3. If one of w_{1}, w_{2} has three neighbors, say w_{1}, for the other case is symmetric, then if follows from Lemma 3.2 .29 that w_{1} is adjacent to v_{5}, v_{1}, v_{2}. But now $\left\{w_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ induce C_{5}.
2.4. If one of w_{1}, w_{2} has two neighbors and the other one has four neighbors, we may assume that w_{1} has two and w_{2} has four (the other case is symmetric). The clique M_{4} does not intersect M_{2}, so w_{2} does not belong to M_{4} and there is a vertex w_{3} in M_{4} which is not adjacent to w_{2}.
If the arcs corresponding to w_{3} and v_{3} intersect in a point of the circle that is between a_{3} and a_{4}, then one of them passes through a point that belongs both to the arc corresponding to v_{5} and to the arc corresponding to w_{2}, but w_{3} is non-adjacent to w_{2} and v_{3} is non-adjacent to v_{5}, a contradiction. If the arcs corresponding to w_{3} and v_{3} intersect in a point of the circle between a_{1} and a_{2}, then the arcs corresponding to v_{3}, v_{4} and w_{3} cover the circle. So w_{3} and v_{3} are not adjacent, and w_{3} can be adjacent either to v_{4}, v_{5}, v_{1} and v_{2}; or to v_{4}, v_{5} and v_{1}; or only to v_{4} and v_{5}. In the first case, the vertices $v_{1}, w_{2}, w_{3}, v_{3}, v_{5}$, v_{2}, v_{4} induce $\overline{C_{7}}$. In the second case, the vertices $v_{1}, v_{2}, w_{2}, v_{4}, w_{3}$ induce C_{5}. In the last case, the eight vertices induce S_{2}.
3. $\mathrm{N}=2$: The same vertex cannot belong to two chords, so all the cases are symmetric to the case where v_{1} is adjacent to v_{3} and v_{2} to v_{4}. As v_{3} does not belong to M_{1}, there is a vertex w_{1} in M_{1} which is not adjacent to v_{3}. Analogously, as v_{2} does not belong to M_{3}, there is a vertex w_{3} in M_{3} which is not adjacent to v_{2}.
Please note that if w_{3} is adjacent to v_{1} then their corresponding arcs must intersect in a point of the circle between a_{4} and a_{5}, because w_{3} is not adjacent to v_{2}. But in this case the arcs corresponding to v_{1}, v_{3} and w_{3} cover the circle, so w_{3} is not adjacent to v_{1}. Analogously, we can prove that w_{1} is not adjacent to v_{4}.
3.1. If w_{1} and w_{3} are adjacent, then their corresponding arcs must intersect in a point of the circle between a_{4} and a_{5}, because w_{1} is non-adjacent to v_{3} and v_{4} and w_{3} is non-adjacent to v_{1} and v_{2}. So both are adjacent to v_{5}, and the vertices $v_{1}, v_{4}, w_{1}, v_{3}, v_{5}, v_{2}, w_{3}$ induce $\overline{C_{7}}$.
3.2. If w_{1} and w_{3} are not adjacent but both of them are adjacent to v_{5}, the vertices $w_{1}, v_{2}, v_{3}, w_{3}, v_{5}$ induce C_{5}.
3.3. The remaining case is when w_{1} and w_{3} are not adjacent but at most one of them is adjacent to v_{5}.
For this case, we have to consider the clique M_{2}. Since v_{1} and v_{4} do not belong to M_{2}, there is a vertex in M_{2} which is not adjacent to v_{1} and there is a vertex in M_{2} which is not adjacent to v_{4}.
3.3.1. If there is a vertex w which is non-adjacent to v_{1} and v_{4}, then w cannot be adjacent either to w_{1} or w_{3}, otherwise $\left\{v_{1}, v_{3}, w, w_{1}, v_{2}\right\}$ (or $\left\{v_{2}, w\right.$, $\left.w_{3}, v_{4}, v_{3}\right\}$, respectively) induce a 4 -wheel, a contradiction by Lemma 3.2.26.

Therefore, if each of w_{1} and w_{3} has two neighbors in C, then the vertices $v_{1}, \ldots, v_{5}, w_{1}, w, w_{3}$ induce a 2 -viking in G, and, if w_{1} and w_{3} have two and three neighbors (respectively) in C, the vertices $v_{1}, v_{2}, v_{3}, w_{3}, v_{5}, w_{1}, w$ induce a viking in G (the case when w_{1} has three neighbors and w_{3} has two neighbors in C is symmetric).
3.3.2. If there is no such a vertex w, every vertex of M_{2} is either adjacent to v_{1} or to v_{4}. Then there exist two vertices w_{2} and w_{4} in M_{2}, such that w_{2} is adjacent to v_{4} but not to v_{1} and w_{4} is adjacent to v_{1} but not to v_{4}. Since by Lemma 3.2.26 G does not contain a 4 -wheel, it follows that w_{2} is not adjacent to w_{1} and w_{4} is not adjacent to w_{3}. If neither w_{4} nor w_{2} is adjacent to v_{5}, then the vertices $v_{1}, w_{4}, w_{2}, v_{4}, v_{5}$ induce C_{5}. If w_{2} and w_{4} are both adjacent to v_{5}, then the arcs corresponding to w_{2}, w_{4} and v_{5} cover the circle. Otherwise, suppose w_{2} is adjacent to v_{5} and w_{4} is not (the other case is symmetric), so by the circular-arc representation w_{2} belongs to M_{3}, and it is adjacent to w_{3}.
In this case w_{2} is a twin of v_{3} in H. Consider the hole $v_{1} v_{2} w_{2} v_{4} v_{5} v_{1}$ of H, say C^{\prime}. In $G\left\{v_{1}, v_{2}, w_{2}, v_{4}, v_{5}\right\}$ induces a cycle with two chords, $v_{2} v_{4}$ and $w_{2} v_{5}$. If vertex w_{3} has only two neighbors in C, then it has two neighbors in C^{\prime}, namely w_{2} and v_{4}, and it is non-adjacent to v_{2} and v_{5}, so we get a contradiction by a previous case (Case 3.3.1).
The last case is when w_{3} has three neighbors in C and w_{1} has only two. If w_{3} belongs to M_{4} then w_{3} and v_{4} are twins in H, but the cycle of H obtained by replacing v_{4} with w_{3} in C has only one chord in G, contrary to the choice of C.
If w_{3} does not belong to M_{4}, let w_{5} be a vertex of M_{4}, that minimizes the distance of the endpoint of its corresponding arc that lies between a_{3} and a_{4}, to a_{4}. Since none of w_{2}, v_{3}, w_{3} belongs to M_{4}, they are not adjacent to w_{5}. The set of neighbors of w_{5} in C includes $\left\{v_{4}, v_{5}\right\}$ and, by Lemma 3.2.29, is a subset of $\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$. If w_{5} is adjacent to v_{1} and v_{2}, then the arcs corresponding to vertices v_{2}, v_{4} and w_{5} cover the circle. If w_{5} is adjacent to v_{1} but not to v_{2}, then the vertices $v_{1}, w_{4}, w_{2}, v_{4}, w_{5}$ induce C_{5}. If w_{5} has only two neighbors in $C\left(v_{4}\right.$ and v_{5}), then w_{1} and w_{5} are non-adjacent, because w_{1} is non-adjacent to v_{5} and w_{5} is non-adjacent to v_{1}. Now if w_{4} and w_{1} are non-adjacent, then the vertices $\left\{v_{1}, \ldots, v_{5}, w_{1}, \ldots, w_{5}\right\}$ induce T_{2}, otherwise, the eight vertices $v_{1}, w_{4}, v_{3}, v_{4}, v_{5}, w_{1}, w_{2}, w_{5}$ induce S_{2}.

Case $k \geq 3$: Let $M_{1}, \ldots, M_{2 k+1}$ be the cliques of H such that M_{1} contains v_{1} and v_{2}, M_{2} contains v_{2} and $v_{3}, \ldots, M_{2 k+1}$ contains $v_{2 k+1}$ and v_{1}, for $1 \leq i \leq 2 k+1, a_{i}$ is an anchor of M_{i}, and the vertices corresponding to $M_{1}, M_{2}, \ldots, M_{2 k+1}$ induce $C_{2 k+1}$ in $K(G)$. We remind the reader that if v_{i} is adjacent to v_{j} in G, then $|i-j| \leq 2$.

If $N=0$, then G contains an odd hole, one of the forbidden subgraphs of Figure 3.14. If $N=1$, say $v_{1} v_{3}$ is a chord of C, then the arcs corresponding to v_{1} and v_{3} intersect in some point of the circle that is between a_{1} and a_{2}. The vertices v_{1}, v_{2} and v_{3} belong to some clique M of G, distinct from M_{i} for $i=1, \ldots, 2 k+1$. Every anchor of M is between a_{1} and a_{2}, every vertex of M which is not in H is only adjacent to vertices of H belonging to M_{1} or M_{2} (their corresponding arcs are bounded by a_{1} and a_{2}), and every vertex of M in H belongs to M_{1} or M_{2}. Both M_{1} and M_{2} are disjoint from $M_{4}, \ldots, M_{2 k}$, so M is disjoint from $M_{4}, \ldots, M_{2 k}$. But the vertex v_{1} belongs to $M \cap M_{2 k+1}$ and vertex v_{3} belongs to $M \cap M_{3}$, and therefore $M, M_{3}, M_{4}, \ldots, M_{2 k}, M_{2 k+1}$
induce $C_{2 k}$ in $K(G)$.
Repeating this argument twice (we do not use the fact that the cycle is odd, but only the fact that it has at least six vertices), if there exist two chords $v_{i} v_{i+2}$ and $v_{j} v_{j+2}$ in C such that $v_{i} v_{i+1}, v_{i+1} v_{i+2}, v_{j} v_{j+1}$ and $v_{j+1} v_{j+2}$ are four distinct edges of G, we can reduce the problem to a smaller one, the case of an odd hole with $2 k-1$ vertices induced in $K(G)$.

So we only need to consider two cases:

- $N=1$; and
- $N=2$, and for some i, v_{i} is adjacent to v_{i+2} and v_{i+1} is adjacent to v_{i+3}.

1. $\mathrm{N}=1$: Suppose that the vertices v_{1} and v_{3} are adjacent in G. As v_{3} does not belong to M_{1}, there is a vertex w_{1} in M_{1} which is not adjacent to v_{3}. Analogously, there is a vertex w_{2} in M_{2} which is not adjacent to v_{1}. The vertices w_{1} and w_{2} are nonadjacent, otherwise $\left\{v_{1}, v_{3}, w_{2}, w_{1}, v_{2}\right\}$ induces a 4 -wheel, contrary to Lemma 3.2.26. By Lemma 3.2.29 the vertex w_{1} has two, three or four neighbors in C and they are consecutive in it $\left(v_{2}\right.$ and v_{1}; or v_{2}, v_{1} and $v_{2 k+1}$; or $v_{2}, v_{1}, v_{2 k+1}$ and $v_{2 k}$, respectively). Analogously, w_{2} has two, three or four neighbors in C and they are consecutive in the cycle (v_{2} and v_{3}; or v_{2}, v_{3} and v_{4}; or v_{2}, v_{3}, v_{4} and v_{5}, respectively). In all cases w_{1} and w_{2} have no common neighbors in $V(C) \backslash\left\{v_{2}\right\}$, since $k \geq 3$.
1.1. If w_{1} and w_{2} have exactly two neighbors each one in C, the vertices v_{1}, \ldots, $v_{2 k+1}, w_{1}, w_{2}$ induce a viking.
1.2. If w_{1} and w_{2} have exactly four neighbors each one in C, the vertices w_{1}, v_{2}, w_{2}, $v_{5}, \ldots, v_{2 k}$ induce $C_{2 k-1}$.
1.3. If one of w_{1}, w_{2} has exactly three neighbors in C (suppose w_{1}, the other case is symmetric), the vertices $w_{1}, v_{2}, v_{3}, \ldots, v_{2 k+1}$ induce $C_{2 k+1}$.
1.4. If one of w_{1}, w_{2} has exactly two neighbors in C and the other one has exactly four neighbors in C, suppose w_{1} has two and w_{2} has four (the other case is symmetric). The clique M_{4} is disjoint from M_{2}, so w_{2} does not belong to M_{4} and there is a vertex w_{3} in M_{4} which is not adjacent to w_{2}.
The arc corresponding to w_{3} cannot pass through the points of the circle corresponding either to M_{3} (because w_{2} and w_{3} are not adjacent) or to M_{6} (because M_{4} and M_{6} are disjoint), so if the arcs corresponding to w_{3} and v_{3} have nonempty intersection, they must intersect at a point of the circle that is between a_{3} and a_{4}. In this case one of them passes through a point that belongs to both the arc corresponding to v_{5} and the arc corresponding to w_{2}, but w_{3} is non-adjacent to w_{2}, and v_{3} is non-adjacent to v_{5}. So w_{3} and v_{3} are not adjacent, and, by Lemma 3.2.29, w_{3} can be adjacent either to v_{4}, v_{5}, v_{6} and v_{7}; or to v_{4}, v_{5} and v_{6}; or only to v_{4} and v_{5}. In the first case, the vertices $v_{1}, v_{3}, v_{4}, w_{3}, v_{7}, \ldots, v_{2 k+1}$ induce $C_{2 k-1}$. In the second case, the vertices $v_{1}, v_{2}, w_{2}, v_{4}, w_{3}, v_{6}, \ldots, v_{2 k+1}$
induce $C_{2 k+1}$. In the last case, w_{3} is non-adjacent to w_{1} because both are nonadjacent to v_{6}, hence the $2 k+4$ vertices $v_{1}, \ldots, v_{2 k+1}, w_{1}, w_{2}$, w_{3} induce S_{k}.
2. $\mathrm{N}=2$, and for some i, v_{i} is adjacent to v_{i+2} and v_{i+1} is adjacent to v_{i+3} :

Without loss of generality, we may assume that $i=1$, so the chords are $v_{1} v_{3}$ and $v_{2} v_{4}$. As v_{3} does not belong to M_{1}, there is a vertex w_{1} in M_{1} which is not adjacent to v_{3}. As v_{2} does not belong to M_{3}, there is a vertex w_{3} in M_{3} which is not adjacent to v_{2}. No vertex of G belongs to more than two cliques of $M_{1}, \ldots, M_{2 k+1}$. These facts imply that the vertices w_{1} and w_{3} are non-adjacent, and, by Lemma 3.2.29, each of them has two, three or four consecutive neighbors in C. The vertex w_{3} can be adjacent to v_{3}, v_{4}, v_{5} and v_{6}; or to v_{3}, v_{4} and v_{5}; or only to v_{3} and v_{4}. The vertex w_{1} can be adjacent to $v_{2}, v_{1}, v_{2 k+1}$ and $v_{2 k}$; or to v_{2}, v_{1} and $v_{2 k+1}$; or only to v_{2} and v_{1}.
2.1. If w_{3} has four neighbors in C, then the vertices $v_{1}, v_{3}, w_{3}, v_{6}, \ldots, v_{2 k+1}$ induce $C_{2 k-1}$. The case of w_{1} having four neighbors is symmetric.
2.2. If w_{1} and w_{3} have three neighbors each one in C, then the vertices w_{1}, v_{2}, v_{3}, $w_{3}, v_{5}, \ldots, v_{2 k+1}$ induce $C_{2 k+1}$.
2.3. It remains to analyze the cases when w_{1} and w_{3} each have two neighbors in C, and when one of them has three neighbors in C and the other one has two. For these cases, we have to consider the clique M_{2}.
Since v_{1} and v_{4} do not belong to M_{2}, there is a vertex in M_{2} which is not adjacent to v_{1} and there is a vertex in M_{2} which is not adjacent to v_{4}.
2.3.1. If there is a vertex $w \in M_{2}$ which is non-adjacent to v_{1} and v_{4}, then w is non-adjacent to w_{1} and w_{3}, for otherwise $\left\{v_{1}, v_{3}, w, w_{1}, v_{2}\right\}$ (or $\left\{v_{2}, w\right.$, $\left.w_{3}, v_{4}, v_{3}\right\}$, respectively) induces a 4 -wheel, contrary to Lemma 3.2.26. Therefore, if w_{1} and w_{3} have two neighbors each in C, then the vertices $v_{1}, \ldots, v_{2 k+1}, w_{1}, w, w_{3}$ induce a 2 -viking in G. If w_{1} and w_{3} have two and three neighbors (respectively) in C, then $v_{1}, v_{2}, v_{3}, w_{3}, v_{5}, \ldots$, $v_{2 k+1}, w_{1}, w$ induce a viking in G. If w_{1} has three neighbors and w_{3} has two neighbors in C, then $w_{1}, v_{2}, v_{3}, \ldots, v_{2 k+1}, w, w_{3}$ induce a viking in G.
2.3.2. If no such a vertex w exists, then every vertex of M_{2} is either adjacent to v_{1} or to v_{4}, and there exist two vertices w_{2} and w_{4} in M_{2}, such that w_{2} is adjacent to v_{4} but not to v_{1} and w_{4} is adjacent to v_{1} but not to v_{4}. Since G does not contain a 4 -wheel, it follows that w_{2} is not adjacent to w_{1} and w_{4} is not adjacent to w_{3}. If w_{4} is not adjacent to $v_{2 k+1}$ and w_{2} is not adjacent to v_{5}, then the vertices $v_{1}, w_{4}, w_{2}, v_{4}, \ldots, v_{2 k+1}$ induce $C_{2 k+1}$. If w_{4} is adjacent to $v_{2 k+1}$ and w_{2} is adjacent to v_{5}, then the vertices $w_{4}, w_{2}, v_{5}, \ldots, v_{2 k+1}$ induce $C_{2 k-1}$. Otherwise, suppose w_{2} is adjacent to v_{5} and w_{4} is not adjacent to $v_{2 k+1}$ (the other case is symmetric), so since G is a circular-arc graph, w_{2} belongs to M_{3}, and it is adjacent to w_{3}. In this case w_{2} is a twin of v_{3} in H. Consider the hole $v_{1} v_{2} w_{2} v_{4} \ldots v_{2 k+1} v_{1}$,
say C^{\prime}, in H. The graph induced by $\left\{v_{1}, v_{2}, w_{2}, v_{4}, \ldots, v_{2 k+1}\right\}$ in G is a cycle with two chords, $v_{2} v_{4}$ and $w_{2} v_{5}$. If the vertex w_{3} has exactly two neighbors in C, then it has exactly two neighbors in C^{\prime}, namely w_{2} and v_{4}, and it is non-adjacent to v_{2} and v_{5}, and we get a contradiction by a previous case (Case 2.3.1).
The last case is when w_{3} has three neighbors in the cycle and w_{1} has only two. If w_{3} belongs to M_{4} then w_{3} and v_{4} are twins in H, but the cycle of H obtained by replacing v_{4} with w_{3} in C has only one chord in G, contrary to the choice of C.
If w_{3} does not belong to M_{4}, let w_{5} be a vertex of M_{4}, that minimizes the distance of the endpoint of its corresponding arc that lies between a_{3} and a_{4}, to a_{4}. Since w_{2}, v_{3}, w_{3} do not belong to M_{4}, they are not adjacent to w_{5}. The neighbor set of the vertex w_{5} includes $\left\{v_{4}, v_{5}\right\}$ and, by Lemma 3.2.29, is a subset of $\left\{v_{4}, v_{5}, v_{6}, v_{7}\right\}$. If w_{5} is adjacent to v_{6} and v_{7}, then the vertices $v_{1}, v_{3}, v_{4}, w_{5}, v_{7}, \ldots, v_{2 k+1}$ induce $C_{2 k-1}$. If w_{5} is adjacent to v_{6} but not to v_{7}, then the vertices $v_{1}, w_{4}, w_{2}, v_{4}, w_{5}, v_{6}, \ldots, v_{2 k+1}$ induce $C_{2 k+1}$. So we may assume that v_{4} and v_{5} are the only neighbors of w_{5} in C. But now, if w_{4} and w_{1} are not adjacent, then the vertices $v_{1}, \ldots, v_{2 k+1}, w_{1}, \ldots, w_{5}$ induce T_{k}, and otherwise, the $2 k+4$ vertices $v_{1}, w_{4}, v_{3}, \ldots, v_{2 k+1}, w_{1}, w_{2}, w_{5}$ induce S_{k}.

In each case we get a contradiction. This concludes the proof.

We can now prove the characterization theorem for $H C A$ graphs.
Proof of Theorem 3.2.5. The "only if" part follows from Theorem 3.1.1, Proposition 3.1.2 and Proposition 3.1.3. Let us prove the "if" statement. Let G be an $H C A$ graph which does not contain any of the graphs in Figure 3.14, and let \mathcal{A} be an $H C A$ representation of G. Since the class of $H C A$ graph is hereditary, it is enough to prove that $\tau_{c}(G)=\alpha_{c}(G)$.

Assume first that some two arcs of \mathcal{A} cover the circle. Then $\tau_{c}(G) \leq 2$. If $\tau_{c}(G)=1$ or $\alpha_{c}(G)=2$, then $\alpha_{c}(G)=\tau_{c}(G)$ and the theorem holds. So we may assume that $\tau_{c}(G)=2$ and $\alpha_{c}(G)=1$. By Theorem 3.1.2, G contains $Q_{2 k+1}$ for some $k \geq 1$. It is not difficult to check that the 3 -pyramid is not an HCA graph. Moreover, $\overline{C_{2 k+1}}$ (an induced subgraph of $Q_{2 k+1}$) contains the 3-pyramid for $k \geq 4$. So, G contains either Q_{3}, or Q_{5}, or Q_{7}. But Q_{3} is the 3 -sun, Q_{5} contains C_{5} and Q_{7} contains $\overline{C_{7}}$, a contradiction.

So we may assume that no two arcs of \mathcal{A} cover the circle. But now, by Lemma 3.2.25 and Theorem 3.2.30, G is clique-Helly and K-perfect, and so, by Lemma 1.3.1, $\tau_{c}(G)=$ $\alpha_{c}(G)$.

It is easy to check that no two graphs of the families represented in Figure 3.14 are properly contained in each other. Therefore, as a corollary of Theorem 3.2.5, we obtain the following result.

Corollary 3.2.30.1. Vikings, 2-vikings, S_{k} and $T_{k}(k \geq 2)$, are minimally cliqueimperfect.

3.3 Recognition algorithms

Chordal graphs can be recognized in polynomial time [64]. On the other hand, Theorem 2.2.2 and Theorem 3.2.1 imply that the recognition problem for clique-perfect chordal graphs can be reduced to the recognition of balanced graphs, which is solvable in polynomial time (Corollary 2.1.1.3).

The recognition problem for line graphs can be solved in polynomial time [54]. By Theorem 3.2.10, the recognition of clique-perfect line graphs can be reduced to the recognition of perfect graphs with no 3 -sun, which is solvable in polynomial time [23].

By Theorem 3.2.24, the recognition of clique-perfect HCH claw-free graphs can be also reduced to the recognition of perfect graphs.

Helly circular-arc graphs can be recognized in polynomial time [45] and, given a Helly representation of an $H C A$ graph G, both parameters $\tau_{c}(G)$ and $\alpha_{c}(G)$ can be computed in linear time $[38,39]$. However, these properties do not immediately imply the existence of a polynomial time recognition algorithm for clique-perfect $H C A$ graphs, because we need to check the equality for every induced subgraph. The characterization in Theorem 3.2.5 leads to such an algorithm, which is strongly based on the recognition of perfect graphs. The algorithm is based on the ideas applied in [35] for recognizing balanceable matrices.

Algorithm:

Input: An $H C A$ graph $G=(V, E)$.
Output: True if G is clique-perfect, False if G is not.

1. Check if G contains a 3 -sun. If G contains a 3 -sun, return False.
2. (Checking for odd holes and $\overline{C_{7}}$) Check if G is perfect. If G is not perfect, return False.
3. (Checking for vikings) For every 7 -tuple $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b_{1}, b_{2}$ such that the edges between those vertices in G are $a_{1} a_{2}, a_{2} a_{3}, a_{2} a_{4}, a_{3} a_{4}, a_{4} a_{5}, b_{1} a_{2}, b_{1} a_{3}, b_{2} a_{3}, b_{2} a_{4}$, and possibly $a_{1} a_{5}$, do the following:
(a) If a_{1} is adjacent to a_{5}, return False.
(b) Let G^{\prime} be the graph obtained from G by removing the vertices a_{2}, a_{3}, a_{4}, b_{1}, b_{2} and all their neighbors except for a_{1} and a_{5}, and adding a new vertex c adjacent only to a_{1} and a_{5}.
(c) Check if G^{\prime} is perfect. If G^{\prime} is not perfect, return False.
4. (Checking for 2-vikings) For every 8 -tuple $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b_{1}, b_{2}, b_{3}$ such that the edges between those vertices in G are $a_{1} a_{2}, a_{2} a_{3}, a_{2} a_{4}, a_{3} a_{4}, a_{3} a_{5}, a_{4} a_{5}, b_{1} a_{2}$, $b_{1} a_{3}, b_{2} a_{3}, b_{2} a_{4}, b_{3} a_{4}$ and $b_{3} a_{5}$, do the following:
(a) If a_{1} is adjacent to a_{5}, return FALSE.
(b) Let G^{\prime} be the graph obtained from G by removing the vertices $a_{2}, a_{3}, a_{4}, b_{1}$, b_{2}, b_{3} and all their neighbors except for a_{1} and a_{5}, and adding a new vertex c adjacent only to a_{1} and a_{5}.
(c) Check if G^{\prime} is perfect. If G^{\prime} is not perfect, return FALSE.
5. (Checking for S_{k}) For every 8-tuple $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b_{1}, b_{2}, b_{3}$ such that the edges between those vertices in G are $a_{1} a_{2}, a_{2} a_{3}, a_{3} a_{4}, a_{3} a_{5}, a_{4} a_{5}, b_{1} a_{1}, b_{1} a_{2}, b_{2} a_{4}$, $b_{2} a_{5}, b_{3} a_{1}, b_{3} a_{2}, b_{3} a_{3}, b_{3} a_{4}$, and possibly $a_{1} a_{5}$, do the following:
(a) If a_{1} is adjacent to a_{5}, return FALSE.
(b) Let G^{\prime} be the graph obtained from G by removing the vertices $a_{2}, a_{3}, a_{4}, b_{1}$, b_{2}, b_{3} and all their neighbors except for a_{1} and a_{5}, and adding a new vertex c adjacent only to a_{1} and a_{5}.
(c) Check if G^{\prime} is perfect. If G^{\prime} is not perfect, return FALSE.
6. (Checking for T_{k}) For every 10-tuple $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$ such that the edges between those vertices in G are $a_{1} a_{2}, a_{2} a_{3}, a_{2} a_{4}, a_{3} a_{4}, a_{3} a_{5}, a_{4} a_{5}, b_{1} a_{1}$, $b_{1} a_{2}, b_{2} a_{1}, b_{2} a_{2}, b_{2} a_{3}, b_{2} b_{3}, b_{3} a_{1}, b_{3} a_{2}, b_{3} a_{3}, b_{3} a_{4}, b_{3} b_{4}, b_{4} a_{3}, b_{4} a_{4}, b_{4} a_{5}, b_{5} a_{4}$, $b_{5} a_{5}$, and possibly $a_{1} a_{5}$, do the following:
(a) If a_{1} is adjacent to a_{5}, return FALSE.
(b) Let G^{\prime} be the graph obtained from G by removing the vertices a_{2}, a_{3}, a_{4}, $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$ and all their neighbors except for a_{1} and a_{5}, and adding a new vertex c adjacent only to a_{1} and a_{5}.
(c) Check if G^{\prime} is perfect. If G^{\prime} is not perfect, return FALSE.

7. Return True.

Correctness: The output of the algorithm is TruE if it finishes in step (7), otherwise the output is False. Let us prove that, given as input an $H C A$ graph G, the algorithm finishes in step (7) if and only if G does not contain the graphs of Figure 3.14. The correctness of the algorithm then follows from Theorem 3.2.5.

Let G be an $H C A$ graph. Step (1) will output FALSE if and only if G contains a 3 -sun. So henceforth suppose that G does not contain a 3 -sun.

1. Step (2) will output FALSE if and only if G contains an odd hole or $\overline{C_{7}}$.

If G contains an odd hole or $\overline{C_{7}}$ then it is not perfect. Conversely, if G is not perfect it contains an odd hole or an odd antihole. Since G is $H C A$, it does not contain an antihole of length at least nine. So G must contain an odd hole or $\overline{C_{7}}$. This proves 1 . So henceforth suppose that G is perfect, and, in particular, it does not contain an odd hole or $\overline{C_{7}}$.
2. Step (3) will output FALSE if and only if G contains a viking.

If G contains a viking H with $V(H)=\left\{a_{1}, \ldots, a_{2 k+1}, b_{1}, b_{2}\right\}$ and adjacencies as defined in Section 3.1, at some point the algorithm will consider the 7-tuple a_{1}, a_{2}, a_{3}, $a_{4}, a_{5}, b_{1}, b_{2}$. In H, either $k=2$ and a_{1} is adjacent to a_{5} (in this case the algorithm will output FALSE at step (3.a)) or a_{5} and a_{1} are joined by an odd path of length at least three, $a_{5} a_{6} \ldots a_{2 k+1} a_{1}$. Since $a_{6}, \ldots, a_{2 k+1}$ are non-neighbors of $a_{2}, a_{3}, a_{4}, b_{1}$, b_{2}, it follows that $c a_{5} a_{6} \ldots a_{2 k+1} a_{1} c$ is an odd hole in G^{\prime}, so the algorithm will output FALSE at step (3.c).

Conversely, if the algorithm outputs FALSE at step (3.a), then $\left\{a_{1}, \ldots, a_{5}, b_{1}, b_{2}\right\}$ induce a viking in G. If the algorithm outputs FALSE at step (3.c), then G^{\prime} is not perfect. Since at this point we are assuming that G is perfect, the vertex c must belong to an odd hole or odd antihole in G^{\prime}. Since it has degree two, c belongs to an odd hole $c a_{5} v_{1} \ldots v_{2 t} a_{1} c$ in G^{\prime}. Since $v_{1}, \ldots, v_{2 t}$ are different from and non-adjacent to a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, it follows that $\left\{a_{1}, \ldots, a_{5}, v_{1}, \ldots, v_{2 t}, b_{1}, b_{2}\right\}$ induce a viking in G. This proves 2. So henceforth suppose that G contains no viking.
3. Step (4) will output FALSE if and only if G contains a 2-viking.

If G contains a 2 -viking H with $V(H)=\left\{a_{1}, \ldots, a_{2 k+1}, b_{1}, b_{2}, b_{3}\right\}$ and adjacencies as defined in Section 3.1, at some point the algorithm will consider the 8 -tuple a_{1}, a_{2}, a_{3}, $a_{4}, a_{5}, b_{1}, b_{2}, b_{3}$. In H, either $k=2$ and a_{1} is adjacent to a_{5} (in this case the algorithm will output FALSE at step (4.a)) or a_{5} and a_{1} are joined by an odd path of length at least three, $a_{5} a_{6} \ldots a_{2 k+1} a_{1}$. Since $a_{6}, \ldots, a_{2 k+1}$ are non-neighbors of $a_{2}, a_{3}, a_{4}, b_{1}, b_{2}$, b_{3}, it follows that $c a_{5} a_{6} \ldots a_{2 k+1} a_{1} c$ is an odd hole in G^{\prime}, so the algorithm will output FALSE at step (4.c).

Conversely, if the algorithm outputs FALSE at step (4.a), then $\left\{a_{1}, \ldots, a_{5}, b_{1}, b_{2}, b_{3}\right\}$ induce a 2 -viking in G. If the algorithm outputs FALSE at step (4.c), then G^{\prime} is not perfect. Since at this point we are assuming that G is perfect, the vertex c must belong to an odd hole or odd antihole in G^{\prime}. Since it has degree two, c belongs to an odd hole $c a_{5} v_{1} \ldots v_{2 t} a_{1} c$ in G^{\prime}. Since $v_{1}, \ldots, v_{2 t}$ are different from and non-adjacent to a_{2}, $a_{3}, a_{4}, b_{1}, b_{2}, b_{3}$, it follows that $a_{1}, \ldots, a_{5}, v_{1}, \ldots, v_{2 t}, b_{1}, b_{2}, b_{3}$ induce a 2-viking in G. This proves 3 . So henceforth suppose that G contains no 2 -viking.
4. Step (5) will output FAlSE if and only if G contains S_{k} for some $k \geq 2$.

If G contains S_{k} for some $k \geq 2$, with $V\left(S_{k}\right)=\left\{a_{1}, \ldots, a_{2 k+1}, b_{1}, b_{2}, b_{3}\right\}$ and adjacencies as defined in Section 3.1, at some point the algorithm will consider the 8-tuple $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b_{1}, b_{2}, b_{3}$. In S_{k}, either $k=2$ and a_{1} is adjacent to a_{5} (in this case the algorithm will output FALSE at step (5.a)) or a_{5} and a_{1} are joined by an odd path of length at least three, $a_{5} a_{6} \ldots a_{2 k+1} a_{1}$. Since $a_{6}, \ldots, a_{2 k+1}$ are non-neighbors of $a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}$, it follows that $c a_{5} a_{6} \ldots a_{2 k+1} a_{1} c$ is an odd hole in G^{\prime}, so the algorithm will output FALSE at step (5.c).

Conversely, if the algorithm outputs FALSE at step (5.a), then vertices $\left\{a_{1}, \ldots, a_{5}\right.$, $\left.b_{1}, b_{2}, b_{3}\right\}$ induce S_{2} in G. If the algorithm outputs FALSE at step (5.c), then G^{\prime} is not perfect. Since at this point we are assuming that G is perfect, the vertex c must
belong to an odd hole or odd antihole in G^{\prime}. Since it has degree two, c belongs to an odd hole $c a_{5} v_{1} \ldots v_{2 t} a_{1} c$ in G^{\prime}. Since $v_{1}, \ldots, v_{2 t}$ are different from and non-adjacent to $a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}$, it follows that vertices $\left\{a_{1}, \ldots, a_{5}, v_{1}, \ldots, v_{2 t}, b_{1}, b_{2}, b_{3}\right\}$ induce S_{t+2} in G. This proves 4. So henceforth suppose that G does not contain S_{k} for $k \geq 2$.
5. Step (6) will output FALSE if and only if G contains T_{k} for some $k \geq 2$.

If G contains T_{k} for some $k \geq 2$, with $V\left(T_{k}\right)=\left\{a_{1}, \ldots, a_{2 k+1}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$ and adjacencies as defined in Section 3.1, at some point the algorithm will consider the 10-tuple $a_{1}, \ldots, a_{5}, b_{1}, \ldots, b_{5}$. In T_{k}, either $k=2$ and a_{1} is adjacent to a_{5} (in this case the algorithm will output FALSE at step (6.a)) or a_{5} and a_{1} are joined by an odd path of length at least three, $a_{5} a_{6} \ldots a_{2 k+1} a_{1}$. Since $a_{6}, \ldots, a_{2 k+1}$ are non-neighbors of $a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}$, it follows that $c a_{5} a_{6} \ldots a_{2 k+1} a_{1} c$ is an odd hole in G^{\prime}, so the algorithm will output FALSE at step (6.c).

Conversely, if the algorithm outputs FALSE at step (6.a), then vertices $\left\{a_{1}, \ldots, a_{5}\right.$, $\left.b_{1}, \ldots, b_{5}\right\}$ induce S_{2} in G. If the algorithm outputs FALSE at step (6.c), then G^{\prime} is not perfect. Since at this point we are assuming that G is perfect, the vertex c must belong to an odd hole or odd antihole in G^{\prime}. Since it has degree two, c belongs to an odd hole $c a_{5} v_{1} \ldots v_{2 t} a_{1} c$ in G^{\prime}. Since $v_{1}, \ldots, v_{2 t}$ are different from and non-adjacent to $a_{2}, a_{3}, a_{4}, b_{1}, \ldots, b_{5}$, it follows that $\left\{a_{1}, \ldots, a_{5}, v_{1}, \ldots, v_{2 t}, b_{1}, \ldots, b_{5}\right\}$ induce T_{t+2} in G. This proves 5 , and completes the proof of correctness.

Time complexity: The time complexity of the best known algorithm to recognize perfect graphs is $O\left(|V|^{9}\right)$ [23]. So the time complexity of this algorithm is given by step (6) and it is $O\left(|V|^{19}\right)$.

Thus we can affirmatively answer the question of the existence of a polynomial time recognition algorithm for clique-perfect graphs within the class of $H C A$ graphs.

CHAPTER 4

Conclusions

In this thesis we mainly work on clique-perfect graphs, a variation of perfect graphs. We study in particular a class of graphs in the intersection of perfect and clique-perfect graphs: balanced graphs.

A graph is balanced when its clique matrix is balanced. We give two new characterizations of balanced graphs, the first one by forbidden subgraphs (Theorem 2.2.3) and the second one by clique subgraphs (Theorem 2.2.4).

Using properties of domination we define four subclasses of balanced graphs: $V V, V E$, $E E$ and $E V$ graphs. We analyze the inclusion relations between them. Classes $V V$ and $V E$ are characterized using 0-1 matrices and the characterizations lead to polynomial time recognition algorithms. We also study the behavior of the clique graph operator on balanced graphs and these four subclasses. Some of these classes are fixed under the clique graph operator, while some others have a clique-dual class of graphs, as Table 4.1 shows.

Class \mathcal{A}	$K(\mathcal{A})$	Reference
Balanced	Balanced	$[56]$
DEE	EE	Cor 2.4.10.1
DVE	VE	Cor 2.4.10.2
EE	DEE	Cor 2.4.10.1
EV	K^{-1} (bipartite)	Cor 2.4.12.2
Totally Unimodular	Totally Unimodular	Cor 2.4.6.1
VE	DVE	Cor 2.4.10.2
VV	K^{-1} (bipartite)	Cor 2.4.12.2

Table 4.1: Clique graphs of subclasses of balanced graphs.

As a corollary of these results, we deduce the existence of polynomial time combinatorial algorithms for the maximum stable set, maximum clique-independent set and the minimum clique-transversal problems for $V V$ graphs.

Results in Chapter 3 allow us to formulate partial characterizations of clique-perfect graphs by forbidden subgraphs, as Table 4.2 shows. Some of these characterizations also lead to a polynomial time recognition algorithm for clique-perfect graphs within the analyzed class.

Graph classes	Forbidden subgraphs	Recognition	Reference
Chordal graphs	odd suns	\mathbf{P}	$[53,32]$
Diamond-free graphs	odd generalized suns	$?$	Thm 3.2.2
Line graphs	odd holes, 3-sun	\mathbf{P}	Thm 3.2.3
HCH claw-free graphs	odd holes, $\overline{C_{7}}$	\mathbf{P}	Thm 3.2.4
HCA graphs	3-sun, odd holes, $\overline{C_{7}}$, vikings, 2-vikings, S_{k}, T_{k}	\mathbf{P}	Thm 3.2.5

Table 4.2: Known partial characterizations of clique-perfect graphs by forbidden induced subgraphs, and computational complexity of the recognition problem.

Note that in the last three cases all the forbidden induced subgraphs are minimal. In the second case, however, we need to forbid every odd-generalized sun. Obviously, in this case it is enough to forbid diamond-free odd generalized suns. It is easy to see that all such suns have no improper edges but we do not yet know what the minimal diamondfree odd generalized suns are. It also remains as an open question the complexity of the recognition of clique-perfect diamond-free graphs.

Finally, it is also shown in Chapter 3 that for the graph classes in Table 4.2, cliqueperfect graphs are both perfect and K-perfect, that is, their clique graphs are also perfect.
[1] R. Anstee and M. Farber, Characterizations of totally balanced matrices, Journal of Algorithms 5 (1984), 215-230.
[2] V. Balachandhran, P. Nagavamsi, and C. Pandu Rangan, Clique-transversal and clique-independence on comparability graphs, Information Processing Letters 58 (1996), 181-184.
[3] H. Bandelt and E. Prisner, Clique graphs and Helly graphs, Journal of Combinatorial Theory. Series B 51 (1991), 34-45.
[4] C. Berge, Les problèmes de colorations en théorie des graphes, Publications de l'Institut de Statistique de l'Université de Paris 9 (1960), 123-160.
[5] C. Berge, Färbung von Graphen, deren sämtliche beziehungsweise, deren ungerade Kreise starr sind (Zusammenfassung), Wissenschaftliche Zeitschrift der Martin-Luther-Universität Halle-Wittenberg, Mathematisch-Naturwissenschaftliche Reihe 10 (1961), 114-115.
[6] C. Berge, Sur certains hypergraphes généralisant les graphes biparties, In: Combinatorial Theory and Applications (P. Erdös, A. Rényi, and V. Sós, eds.), NorthHolland, Amsterdam, 1970, pp. 119-133.
[7] C. Berge, Balanced matrices, Mathematical Programming 2 (1972), 19-31.
[8] C. Berge, Notes sur les bonnes colorations d'un hypergraphe, Cahiers du Centre d'etudes de Recherche Operationnelle 15 (1973), 219-223.
[9] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1985.
[10] C. Berge and M. Las Vergnas, Sur un théorème du type König pour hypergraphes, Annals of the New York Academy of Sciences 175 (1970), 32-40.
[11] F. Bonomo, M. Chudnovsky, and G. Durán, Partial characterizations of cliqueperfect graphs, Electronic Notes in Discrete Mathematics 19 (2005), 95-101.
[12] F. Bonomo, M. Chudnovsky, and G. Durán, Partial characterizations of cliqueperfect graphs I: sublcasses of claw-free graphs, Discrete Applied Mathematics (2005), submitted.
[13] F. Bonomo, M. Chudnovsky, and G. Durán, Partial characterizations of cliqueperfect graphs II: diamond-free and Helly circular-arc graphs, Discrete Mathematics (2005), submitted.
[14] F. Bonomo and G. Durán, Characterization and recognition of Helly circular-arc clique-perfect graphs, Electronic Notes in Discrete Mathematics 22 (2005), 147150.
[15] F. Bonomo, G. Durán, M. Groshaus, and J. Szwarcfiter, On clique-perfect and K-perfect graphs, Ars Combinatoria, to appear.
[16] F. Bonomo, G. Durán, M. Lin, and J. Szwarcfiter, On Balanced Graphs, Mathematical Programming. Series B 105 (2006), 233-250.
[17] A. Brandstädt, V. Chepoi, and F. Dragan, Clique r-domination and clique r packing problems on dually chordal graphs, SIAM Journal on Discrete Mathematics 10 (1997), 109-127.
[18] M. Buckingham and M. Golumbic, Partitionable graphs, circle graphs and the strong perfect graph conjecture, Discrete Mathematics 44 (1983), 45-54.
[19] M. Buckingham and M. Golumbic, Recent results on the strong perfect graph conjecture, Annals of Discrete Mathematics 20 (1984), 75-82.
[20] K. Cameron and J. Edmonds, Existentially polytime theorems, DIMACS. Series in Discrete Mathematics and Theoretical Computer Science 1 (1990), 83-100.
[21] M. Chang, M. Farber, and Z. Tuza, Algorithmic aspects of neighbourhood numbers, SIAM Journal on Discrete Mathematics 6 (1993), 24-29.
[22] L. Chong-Keang and P. Yee-Hock, On graphs without multicliqual edges, Journal of Graph Theory 5 (1981), 443-451.
[23] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, and K. Vušković, Recognizing Berge Graphs, Combinatorica 25 (2005), 143-187.
[24] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The Strong Perfect Graph Theorem, Annals of Mathematics, to appear.
[25] M. Chudnovsky and P. Seymour, Claw-free graphs I. Clique cutsets, manuscript, 2004.
[26] M. Chudnovsky and P. Seymour, Claw-free graphs III. Sparse decompositions, manuscript, 2004.
[27] V. Chvátal, On certain polytopes associated with graphs, Journal of Combinatorial Theory. Series $B 18$ (1975), 138-154.
[28] V. Chvátal, Star-cutsets and perfect graphs, Journal of Combinatorial Theory. Series B 39 (1985), 189-199.
[29] V. Chvátal and N. Sbihi, Bull-free berge graphs are perfect, Graphs and Combinatorics 3 (1987), 127-139.
[30] M. Conforti, $\left(K_{4}-e\right)$-free graphs and star cutsets, Lecture Notes in Mathematics 1403 (1989), 236-253.
[31] M. Conforti, 2004, personal communication.
[32] M. Conforti, G. Cornuéjols, and R. Rao, Decomposition of balanced matrices, Journal of Combinatorial Theory. Series B 77 (1999), 292-406.
[33] M. Conforti, G. Cornuéjols, and K. Vušković, Balanced Matrices, Discrete Mathematics, to appear.
[34] M. Conforti, G. Cornuéjols, and K. Vušković, Square-free perfect graphs, Journal of Combinatorial Theory. Series B 90 (2004), 257-307.
[35] M. Conforti and G. Zambelli, Recognizing Balanceable Matrices, Mathematical Programming. Series B, to appear.
[36] E. Dahlhaus, P. Manuel, and M. Miller, Maximum h-colourable subgraph problem in balanced graphs, Information Processing Letters 65 (1998), 301-303.
[37] P. Duchet, Hypergraphs, In: Handbook of Combinatorics (R. Graham, M. Grötschel, and L. Lovász, eds.), Elsevier, Amsterdam, 1995, pp. 381-432.
[38] G. Durán, M. Lin, S. Mera, and J. Szwarcfiter, Clique-independent sets on Helly circular-arc graphs, Electronic Notes in Discrete Mathematics 18 (2004), 103-108.
[39] G. Durán, M. Lin, S. Mera, and J. Szwarcfiter, Algorithms for finding cliquetransversals of graphs, Annals of Operations Research (2005), submitted.
[40] G. Durán, M. Lin, and J. Szwarcfiter, On clique-transversal and clique-independent sets, Annals of Operations Research 116 (2002), 71-77.
[41] F. Escalante, Über iterierte clique-graphen, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 39 (1973), 59-68.
[42] M. Farber, Characterizations of strongly chordal graphs, Discrete Mathematics 43 (1983), 173-189.
[43] D. Fulkerson, On the perfect graph theorem, In: Mathematical Programming (T. Hu and S. Robinson, eds.), Academic Press, New York, 1973, pp. 69-76.
[44] D. Fulkerson, A. Hoffman, and R. Oppenheim, On balanced matrices, Mathematical Programming 1 (1974), 120-132.
[45] F. Gavril, Algorithms on circular-arc graphs, Networks 4 (1974), 357-369.
[46] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs, second ed., Annals of Discrete Mathematics, vol. 57, North-Holland, Amsterdam, 2004.
[47] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981), 169-197.
[48] V. Guruswami and C. Pandu Rangan, Algorithmic aspects of clique-transversal and clique-independent sets, Discrete Applied Mathematics 100 (2000), 183-202.
[49] R. Hamelink, A partial characterization of clique graphs, Journal of Combinatorial Theory. Series B 5 (1968), 192-197.
[50] J. Hopcroft and R. Karp, An $n^{5 / 2}$ algorithm for maximum matchings in bipartite graphs, SIAM Journal on Computing 2 (1973), 225-231.
[51] W. Hsu and G. Nemhauser, Algorithms for minimum covering by cliques and maximum clique in claw-free perfect graphs, Discrete Mathematics $\mathbf{3 7}$ (1981), 181-191.
[52] V. Le, Perfect k-line graphs and k-total graphs, Journal of Graph Theory $\mathbf{1 7}$ (1993), 65-73.
[53] J. Lehel and Z. Tuza, Neighborhood perfect graphs, Discrete Mathematics 61 (1986), 93-101.
[54] P. Lehot, An optimal algorithm to detect a line graph and output its root graph, Journal of the ACM 21(4) (1974), 569-575.
[55] L. Lovász, A characterization of perfect graphs, Journal of Combinatorial Theory. Series B 13 (1972), 95-98.
[56] A. Lubiw, Orderings and some combinatorial optimization problems with geometric applications, Ph.D. thesis, Department of Computer Science, University of Toronto, Toronto, 1985.
[57] C. Lucchesi, C. Picinin de Mello, and J. Szwarcfiter, On clique-complete graphs, Discrete Mathematics 183 (1998), 247-254.
[58] F. Maffray, Kernels in perfect line-graphs, Journal of Combinatorial Theory. Series B 55 (1992), 1-8.
[59] F. Maffray, O. Porto, and M. Preissmann, A generalization of simplicial elimination orderings, Journal of Graph Theory 23 (1996), 203-208.
[60] K. Parthasarathy and G. Ravindra, The strong perfect-graph conjecture is true for $K_{1,3}$-free graphs, Journal of Combinatorial Theory. Series B 21 (1976), 212-223.
[61] E. Prisner, Hereditary clique-Helly graphs, The Journal of Combinatorial Mathematics and Combinatorial Computing 14 (1993), 216-220.
[62] F. Protti and J. Szwarcfiter, Clique-inverse graphs of bipartite graphs, The Journal of Combinatorial Mathematics and Combinatorial Computing 40 (2002), 193-203.
[63] S. Rao and G. Ravindra, A characterization of perfect total graphs, Journal of Mathematical and Physical Sciences 11 (1977), 25-26.
[64] D. Rose, R. Tarjan, and G. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM Journal on Computing 5 (1976), 266-283.
[65] A. Sassano, Chair-free Berge graphs are perfect, Graphs and Combinatorics 13 (1997), 369-395.
[66] N. Sbihi, Algorithmes de recherche d'un stable de cardinalite maximum dans un graphe sans etoile, Discrete Mathematics 29 (1980), 53-76.
[67] D. Seinsche, On a property of the class of n-colorable graphs, Journal of Combinatorial Theory. Series B 16 (1974), 191-193.
[68] L. Sun, Two classes of perfect graphs, Journal of Combinatorial Theory. Series B 53 (1991), 273-292.
[69] J. Szwarcfiter, A survey on Clique Graphs, In: Recent Advances in Algorithms and Combinatorics (C. Linhares Sales and B. Reed, eds.), Springer-Verlag, New York, 2003, pp. 109-136.
[70] L. Trotter, Line perfect graphs, Mathematical Programming 12 (1977), 255-259.
[71] S. Tsukiyama, M. Idle, H. Ariyoshi, and Y. Shirakawa, A new algorithm for generating all the maximal independent sets, SIAM Journal on Computing 6(3) (1977), 505-517.
[72] A. Tucker, The strong perfect graph conjecture for planar graphs, Canadian Journal of Mathematics 25 (1973), 103-114.
[73] A. Tucker, Critical perfect graphs and perfect 3-chromatic graphs, Journal of Combinatorial Theory. Series B 23 (1977), 143-149.
[74] A. Tucker, The validity of the strong perfect graph conjecture for K_{4}-free graphs, In: Topics on Perfect Graphs (C. Berge and V. Chvátal, eds.), North-Holland, Amsterdam, 1984, pp. 149-157.
[75] A. Tucker, Coloring perfect ($K_{4}-e$)-free graphs, Journal of Combinatorial Theory. Series B 42 (1987), 313-318.
[76] A. Tucker, A reduction procedure for coloring perfect K_{4}-free graphs, Journal of Combinatorial Theory. Series B 43 (1987), 151-172.
$\alpha(\cdot)$, see stability number
$\alpha_{c}(\cdot)$, see clique-independence number $\chi(\cdot)$, see chromatic number
$\omega(\cdot)$, see clique, number
$\tau_{c}(\cdot)$, see clique-transversal number
0 -join, 38, 41
0 -pyramid, 10
1-join, 38, 41, 42
1-pyramid, 10
2-join, 39
2-pyramid, 10
3-fan, 5, 11
3 -pyramid, 10
3 -sun, 10, 32-34, 41, 62, 69, 70
4 -wheel, $5,11,60$
acyclic graph
complement of, 29
anchor, 6
anticomplete, 3
anticomplete to, 3
anticonnected, 4
antihole, $5,29,32,37,57,58,62,69$
odd, 5, 7, 70
antiprismatic, 37, 41, 56
balanced
graph, $6,13-16,18,21,23,29,70$
hypergraph, 6,14
matrix, $6,14,19$
bipartite, 5, 11, 18, 25-27
complement of, 44
$\overline{C_{7}}, 32,37,57,58,62,69$
chord, 5
chordal, 5, 14, 70
dually, 29
strongly, 6, 14
chromatic number, 4
circular interval graph, 37, 42
circular-arc graph, 5
circular-arc representation, 5
claw-free, $6,8,11,32,37,41-43,45,48$, 51, 56-58, 70
clique, 3
cover, 4
covering number, 4
graph, $6,11,21-23,25,26,32,33$, $37,42-45,48,51,56,57,62$
hypergraph, 6
matrix, $6,13,21$
number, 3
subgraph, 4, 11, 13, 16, 61
clique-Helly, 5, 21, 24, 26
hereditary, $5,9,13,16,37,42-45$, 48, 51, 56-59
clique-imperfect, 8
minimally, 8
clique-independence number, $4,14,31$, 70
clique-independent set, 4,26
clique-perfect, $8,9,14,29-32,34,58,69$, 70
clique-transversal, 4,26
clique-transversal number, 4, 14, 31, 70
coloring, 14
comparability, 9,29
complement, 2
complete, 3
set, 3
complete to, 3
connected, 4
core, 4
cutpoint, 4
cutset, 4
clique, 4,10
internal, 4, 41
cycle, 5
odd, 5
diamond, 3
diamond-free, $3,8,32$
domination, 3,11
weakly, 3,11
drum, 30
complete, 30, 31
$E(\cdot), 2$
EE, 17, 18, 23-25
dually, 22-25, 27
$E V, 17,18,26$
generalized 2-join, 39, 41, 43
$H(\cdot), 21$
$H C A$, see circular-arc graph
$H C H$, see clique-Helly, hereditary
Helly, 5
Helly circular-arc, 6, 32, 38, 59-62, 69, 70
hereditary class, 2,9
hex-join, 39, 41, 48
hole, 5
odd, $5,7,11,16,29,32-34,37,57$, $58,62,69,70$
homogeneous
pair, 38
set, $2,10,38$
icosahedron, 39
imperfect
minimally, 7
interesting graph, $37,42,43,45,48,51$, 56, 57
intersection graph, 5
interval graph, 5
$K(\cdot)$, see clique, graph
$k(\cdot)$, see clique, covering number
K-complete, 31
K-perfect, $9,32,33,37,42-45,48,51$, $56,57,62$
K_{n}, see complete
line graph, $6,32-34,39,70$
linear interval graph, 37, 41
$N(\cdot)$, see neighborhood
neighborhood, 2
perfect
graph, $7,8,10,11,14,18,34,58$, 70
matrix, 8,14
$Q_{n}, 31,69$
recognition algorithm, 13, 19, 20, 70
$\mathcal{S}_{0} \ldots \mathcal{S}_{6}, 39-41,57$
sector, 59
simplicial vertex, 3,10
singular vertex, 4, 51
$S_{k}, 30,32,62,69-71$
stability number, 3
stable set, 3,20
sun, 5,14
complete, 5
extended odd, 15
generalized, 29, 32
odd, 5, 14
$T_{k}, 30,32,62,69-71$
totally balanced
graph, 6
matrix, 6
totally unimodular, 22
graph, 7
matrix, 7
triad, 3, 48, 51, 56
triangle, 3
trivially perfect, 7
twins, 3, 11, 41
universal vertex, 3,31
$V(\cdot), 2$
VE, 17-19, 23-25
dually, 22-25
viking, 29, 30, 32, 62, 69-71
$V V, 17-20,25,26$
W-join
coherent, 38, 41, 45
non-dominating, 38, 41, 45

