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Título: Convexidad Geodésica, Espacios Simétricos y Operadores de
Hilbert-Schmidt

Resumen: En un conjunto de operadores inversibles y positivos (concretamente en el
grupo de operadores Hilbert-Schmidt con unidad adjunta) se introduce una estructura
Riemanniana natural que convierte este espacio en una variedad simétrica de curvatura
seccional no positiva. Este espacio puede describirse como un cociente mediante la ac-
ción de automor�smos interiores. Estudiamos las subvariedades Riemannianas geodési-
camente convexas, que resultan ser caracterizables por una propiedad algebraica de
su tangente; en particular estudiamos el grupo de isometrías de estas subvariedades.
Mostramos cómo cualquier espacio simétrico del tipo no compacto puede ser isométrica-
mente identi�cado con una de estas subvariedades mencionadas. Para cualquier subvar-
iedad convexa y cerrada, construimos una proyección ortogonal que permite factorizar
cualquier operador de la variedad mediante un factor en la subvariedad y un factor
ortogonal a la misma. Esta factorización es única (y depende analíticamente de los
parámetros). Incluimos una sección dedicada al estudio de la geometría de las órbitas
unitarias de un operador �jo, donde calculamos las geodésicas de estas órbitas para las
distintas métricas que pueden introducirse.

2000 Mathematics Subject Classi�cation. Primary 58B20, 58B25; Secondary 22E65, 53C35

Palabras clave: operador de Hilbert-Schmidt, operador positivo, geodésica, convexi-
dad, factorización, espacio simétrico, grupo unitario, espacio homogéneo
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Title: Geodesic Convexity, Symmetric Spaces and Hilbert-Schmidt
Operators

Abstract: A natural Riemannian structure is given to the set of positive invertible
(unitized) Hilbert-Schmidt operators; this metric makes this set a nonpositively curved,
in�nite dimensional Hilbert manifold. We give an intrinsic (algebraic) characterization of
such submanifolds, and we study their group of isometries. We show that any symmetric
space of the noncompact type can be isometrically embedded in this manifold. For
any convex, closed submanifold we construct an orthogonal projection by means of the
Riemannian exponential, a projection which provides a unique factorization for any
operator in the manifold; the factors being an operator in the submanifold and the
exponential of an operator orthogonal to the submanifold. We include a �nal section
devoted to the study of the unitary orbits of a �xed operator and the diverse geometries
that arise from endowing this orbit with di�erent Riemannian metrics.

2000 Mathematics Subject Classi�cation. Primary 58B20, 58B25; Secondary 22E65, 53C35

Keywords and phrases: Hilbert-Schmidt class, positive operator, geodesic, convexity,
factorization, symmetric space, unitary group, homogeneous space
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Allá al fondo está la muerte, pero no tenga miedo.

Sujete el reloj con una mano, tome con dos dedos la

llave de la cuerda, remóntela suavemente. Ahora se

abre otro plazo, los árboles despliegan sus hojas, las

barcas corren regatas, el tiempo como un abanico se va

llenando de sí mismo y de él brotan el aire, las brisas

de la tierra, la sombra de una mujer, el perfume del

pan.

¾Qué más quiere, qué más quiere? Átelo pronto a

su muñeca, déjelo latir en libertad, imítelo anhelante.

El miedo herrumbra las áncoras, cada cosa que pudo

alcanzarse y fue olvidada va corroyendo las venas del

reloj, gangrenando la fría sangre de sus rubíes. Y allá

en el fondo está la muerte si no corremos y llegamos

antes y comprendemos que ya no importa.

Julio Cortázar, "Instrucciones para dar cuerda al

reloj"
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Introducción

Una variedad de Hadamard es una variedad diferenciable, Riemanniana, conexa,
simplemente conexa y de curvatura seccional no positiva. Desde el punto de
vista topológico, es un objeto extremadamente simple.
Sin embargo, [Eb96] para cualquier variedad M de curvatura no positiva, los
grupos de homotopía πk(M), k ≥ 2 son nulos, y M puede ser expresada como
un cociente de una variedad de Hadamard (el revestimiento universal de M) por
un grupo de isometrias del revestimiento (el grupo de isometrias en cuestión es
isomorfo a π1(M)).
La geometría de los espacios de curvatura no positiva es ciertamente rica y
tiene aplicaciones en muchas otras ramas de la matemática, como las funciones
armónicas ([Cor92], [GS92], [KS93], [MSY93]), las variedades de dimensión 3
y los grupos de Klein ([MS84], [Gab92], [Can93], [CJ94], [Min94], [McM96],
[Otal96], [Gab97], [Otal98], [Min99], [Kap01], [GMT03]), teoría de rango y rigidez
([Ball85], [BBE85], [BBS85], [BS97], [EH90], [BB95], [Lee97]), topología de al-
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tas dimensiones ([FH81], [FJ93] and [CGM90]), grupos hiperbólicos y geometría
cuasi-conforme ([Gro87], [Pan89], [BM91], [RS94], [Sela95], [Bow98a], [Bow98b],
[BP99], [BP00], [HK98]), teoría de grupos geométrica y combinatoria ([Gro87],
[DJ91], [Sch95], [CD95], [BM97], [KL97a], [KL97b], [Esk98]) y dinámica ([Cro90],
[Otal90], [BCS95], [BFK98]).
Los tratados clásicos [Hel62] de Sigurdur Helgason y [BGS85] de Wallman et al.,
la introducción a la geometría de los espacios de tipo no compacto de Patrick
Eberlein [Eb96], o el artículo de difusión por el mismo autor [Eb89] contienen
muchos (sino todos) los resultados relevantes concernientes a la geometría de
espacios de curvatura no positiva, como la Ley de Cosenos, proyecciones ortogo-
nales, convexidad de la función distancia, la construcción del espacio de frontera
y los teoremas sobre rigidez y rango.
Concentrémonos brevemente en seis resultados que son válidos [Hel62] en cualquier
variedad de Hadamard M de dimensión �nita:

1. La función exponencial Expp : TpM → M es un difeomor�smo para cada
punto p ∈M.

2. Para cada par de puntos p,q ∈M existe una única geodésica minimizante
normal (i.e. de velocidad unitaria) que une p con q.

3. Para cualquier triángulo geodésico en M (cuyos lados son las geodésicas de
longitudes a, b y c) se tiene la Ley de Cosenos Hiperbólica, que dice:

c2 ≥ a2 +b2 −2abcos(θ), donde θ es el ángulo opuesto a c

4. La suma de los ángulos internos de cualquier triángulo geodésico es a lo
sumo π.

5. Para cualquier par de geodésicas α, β en M, la función

f(t) = dist(α(t),β(t))

es una función real convexa.
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6. Supongamos que C es un conjunto convexo cerrado de M. Entonces para
cada p ∈M existe un único punto ΠC(p) ∈ C tal que

dist(p,ΠC(p))≤ dist(p,q) para cualquier q ∈ C

En el contexto Riemanniano, el punto ΠC(p) se denomina pie de la per-
pendicular de C a p.

Las nociones de completitud como espacio métrico y de completitud en el sentido
geodésico están íntimamente ligadas por el teorema de Hopf-Rinow. Como este
teorema es falso en dimensión in�nita [Atkin75] [Atkin97], la compacidad de los
entornos de M parece ser relevante para que los resultados mencionados más
arriba sean ciertos. Sin embargo, esto no es así ya que todos estos resultados son
válidos en el contexto de los espacios de curvatura no positiva (que son espacios
métricos donde alguna desigualdad de comparación de triángulos es válida). En
particular, la prueba de la existencia de un único punto que realice la distancia a
un conjunto convexo cerrado (sin suponer la compacidad de los entornos) puede
encontrarse en [Jost97].
Nosotros vamos a ir en una dirección distinta, y lo que haremos será extender
estos resultados a una variedad diferenciable Σ∞ que es localmente isomorfa a
un espacio de Hilbert de dimensión in�nita (en realidad, a la parte real de una
cierta álgebra de Banach B). La variedad Σ∞ es simplemente conexa, completa
en el sentido geodésico (y en el métrico), y tiene curvatura seccional no positiva:
es más, Σ∞ = GL+(B) resulta ser un espacio simétrico en el sentido usual (Rie-
manniano) de la palabra. Todas las herramientas de la geometría Riemanniana
estarán a mano y podremos explorar relaciones entre el álgebra de Banach y la
geometría de la variedad.
Por ejemplo, probaremos que la única geodésica minimizante que realiza la dis-
tancia entre un punto y un conjunto convexo y cerrado debe ser ortogonal al
conjunto, obteniendo de esta manera un teorema de factorización para operado-
res, con muchas aplicaciones inmediatas.
El primer resultado de la lista será obvio a partir de la de�nición de Σ∞; para
probar los otros cinco, vamos a tener que revisar y poner en contexto algunos
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resultados de la literatura existente sobre geometría en espacios de operadores.
El espacio Σ∞ es simétrico y tiene curvatura no positiva, y es universal en esta
categoría, en el sentido siguiente: cualquier espacio simétrico y de curvatura no
positiva puede identi�carse isométricamente con alguna subvariedad cerrada y
convexa de Σ∞.
Aunque no vamos a hacer uso de ella en este manuscrito, hacemos notar al lector
que la teoría de clasi�cación de L∗-álgebras (ver [Sch60] [Sch61] por J.R. Schue,
[CGM90] por Mira, Martin and González, o [Neh93] por E. Neher) provee un
ambiente más abstracto (más general si se quiere) de trabajo para esta variedad
y sus subvariedades: la parte real de cualquier L∗-álgebra puede ser naturalmente
identi�cada con una subvariedad cerrada y convexa de Σ∞.
A lo largo de este manuscrito, vamos a usar Expp para denotar la exponencial
Riemannian de nuestra variedad en el punto p, y usaremos asimismo exp en vez
de Exp1, que es la exponencial usual de operadores.

Comentamos brevemente la organización y los resultados más relevantes de este
manuscrito. Los resultados previos están mencionados como tales y los resultados
nuevos son los indicados a continuación como Teorema 1, Teorema 2, . . . hasta
el Teorema 14:

En la sección II, introducimos la notación y los preliminares necesarios para la
construcción de una variedad de Hilbert de dimensión in�nita que resulta ser
completa, simplemente conexa y tiene curvatura seccional no positiva.
El espacio ambiente para casi todos los cálculos es el espacio de Banach con
producto interno dado por la traza HR = {λ+a}, donde λ es un número real y a

es un operador autoadjunto Hilbert-Schmidt que actúa en un espacio de Hilbert
separable H. Como conjunto, Σ∞ := exp(HR). Como la exponencial es analítica
es fácil ver que Σ∞ es abierto en HR (Proposición II.3).
La métrica que introducimos en Σ∞ (II.4) es similar a la métrica que hace de las
matrices inversibles y positivas un espacio simétrico:

〈X,Y〉
p

=
〈
Yp−1,p−1X

〉
2

para p ∈ Σ∞ y X,Y ∈HR,

donde < α+a,β+b >2= αβ+2tr(b∗a). Con esta métrica la variedad Σ∞ tiene
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una derivada covariante (II.5) dada por

∇XY = X(Y)−
1

2

(
Xp−1Y +Yp−1X

)

donde X(Y) denota derivación del campo Y en la dirección de X (derivación hecha
en el espacio lineal HR); la curvatura seccional (4) está dada por la fórmula

Rp(X,Y)Z = −
1

4
p

[[
p−1X,p−1Y

]
,p−1Z

]

donde [x,y] = xy−yx denota el conmutador usual de operadores en L(H)

En (IV.9) probamos existencia y unicidad de curvas minimizantes:

Teorema 1 Pongamos ‖X‖p = ‖p−1
2 Xp−1

2‖2 y L(α) =
∫1

0 ‖α(t)‖ 
α(t) dt. Si

dist(p,q) = inf {L(α) : α⊂ Σ∞, αessuave, α(0) = p,α(1) = q}

entonces la curva γpq(t) = p
1
2

(
p−1

2 qp−1
2

)t
p

1
2 es el camino mas corto en

Σ∞ que une p con q; es mas,

dist(p,q) = L(γpq) = ‖ ln(p
1
2 q−1p

1
2 )‖2 ≡ ‖ 
γpq(t)‖γpq(t)

Probamos (III.5) que los campos de Jacobi a lo largo de geodésicas γ son convexos
(en el sentido siguiente: t 7→ ‖J(t)‖γ(t) = 〈J(t), J(t)〉γ(t) es una función convexa),
y como un corolario (III.6), obtenemos
Teorema 2 La función real t 7→ dist(γ(t),δ(t)) es convexa para cualquier
par de geodésicas γ,δ ∈ Σ∞.

Como conocemos la expresión de las geodésicas, conocemos la expresión para la
exponencial Riemanniana Expp : TpΣ∞ → Σ∞, que está dada por

Expp(v) = p
1
2 exp

(
p−1

2 vp−1
2

)
p

1
2 = pep−1v

Esta función es un Cω-difeomor�smo (analítico) sobreyectivo para cada p (IV.6),
y lo mismo se aplica para la restricción de Expp al �brado tangente de cualquier
subvariedad cerrada y geodésicamente convexa M⊂ Σ∞.
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También probamos (IV.11) que la suma de los ángulos internos de cualquier
triángulo geodésico en Σ∞ es menor o igual que π (que es una condición de no
positividad para la curvatura seccional); probamos explícitamente que la cur-
vatura seccional es no positiva en la Proposición III.3.

Como un corolario de todas estas desigualdades, obtenemos
Teorema 3 La variedad Σ∞ con la distancia geodésica es un espacio métrico
completo

En la sección V, recordamos algunas de�niciones y una serie de resultados sobre
conjuntos cerrados y geodésicamente convexos, que son la categoría de subva-
riedades para los cuales el teorema de proyección (Teorema 5) se aplica. En
particular, se tiene el siguiente resultado:

Resultado Supongamos que m es un subespacio cerrado del tangente tal
que

[X, [X,Y]] ∈m siempre que X,Y ∈m

Entonces M = exp(m) ⊂ Σ∞ con la métrica inducida es una subvariedad
cerrada y geodésicamente convexa.
Este resultado se debe principalmente a Mostow [Mos55] (aunque Pierre de la
Harpe sugiere que su demostración se extiende trivialmente a operadores Hilbert-
Schmidt en [Har72]). Es debido a este resultado (que por otra parte caracteriza
todas las subvariedades que pasan por 1 con esta propiedad de convexidad)
que uno está en condiciones de a�rmar que estos conjuntos convexos existen en
abundancia (ver el Corolario V.11).
En particular, cualquier subálgebra (cerrada) de los operadores Hilbert-Schmidt
da lugar a un ejemplo de subvariedad convexa. Otros ejemplos se obtienen con-
siderando el conjunto de operadores que actúan en un subespacio determinado de
H. En la sección V.2.1 damos una lista extensa (pero por supuesto no completa)
de conjuntos convexos.

En la sección V.3 adoptamos el punto de vista de Élie Cartan, y estudiamos
las subvariedades convexas de M como espacios simétricos homogéneos para la
acción de un grupo de operadores inversibles GM. Este grupo es el grupo de Lie
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más pequeño que contiene a M (dentro del grupo de los operadores inversibles
de la forma λ+a con a Hilbert-Schmidt y λ un escalar). El resultado principal
de esta sección es el Teorema IV de más abajo (V.29). A lo largo de todo el
manuscrito, usamos GL(B) para denotar el grupo de elementos inversibles de un
álgebra de Banach B; asimismo escribimos U(B) para denotar el gupor de ele-
mentos unitarios. La notación I0(M) se utilizará para referirnos a la componente
arcoconexa de la identidad del grupo de isometrías de M.

Teorema 4 Si M = exp(m) es convexa y cerrada, y GM ⊂ GL(HC) es el
subgrupo de Lie con álgebra de Lie gM = m⊕ [m,m], entonces

(a) P(GM) = M, con lo cual M es un espacio homogéneo para GM.

(b) Para cada g =| g | ug (su descomposición polar de Cauchy) en GM, se
tiene | g |=

√
gg∗ ∈M⊂GM, y además ug ∈ K⊂GM donde K es el sub-

grupo de Lie de isotropía K = {g∈GM : gg∗ = 1} con álgebra de Lie k =

[m,m]. En particular, GM tiene una descomposición polar

GM 'M×K = P(GM)×U(GM)

(c) M = P(GM)'GM/K

(d) M tiene curvatura seccional no positiva.

(e) Para g ∈GM, consideremos Ig(r) = grg∗. Entonces I : GM → I0(M).

(f) Tomemos p,q ∈ M, y de�namos g = p
1
2 (p−1

2 qp−1
2 )

1
2 p−1

2 ∈ GM. En-
tonces Ig es una isometría en I0(M) que mapea p en q, es decir GM

actúa transitivamente e isométricamente en M.

En la sección VI enunciamos y demostramos el teorema principal sobre existencia
y unicidad de la geodésica minimizante entre un punto y un convexo (VI.9):
Teorema 5 Sea M una subvariedad cerrada y geodésicamente convexa de
Σ∞ . Entonces para cada punto p ∈ Σ∞, existe una única geodésica normal
γp que une p con M tal que

Long(γ) = dist(p,M)
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Es más, esta geodésica es ortogonal a M, y si ΠM : Σ∞ → M es la función
que asigna a p el otro extremo de γp en M, entonces ΠM es una función
contractiva para la distancia geodésica.

Como un corolario directo (VI.13), obtenemos una descomposición polar para
elementos inversibles relativa a una subvariedad convexa dada. Esta descom-
posición se asemeja fuertemente a la descomposición de Iwasawa (ver [Hel62])
para grupos de Lie:

Teorema 6 Supongamos que M = exp(m)⊂ Σ∞ es una subvariedad cerrada
y convexa. Entonces para todo g ∈ GL(HC) existe una factorización única
de la forma

g = pevu, donde p ∈M,v ∈m⊥,u ∈U(HC) es un operador unitario.

La función g 7→ (p,ev,u) es una biyección analítica que da un isomor�smo

GL(HC)'M× exp(m⊥)×U(HC)

La sección VII trata algunas aplicaciones del teorema de factorización. Cuando
éste se aplica a la variedad de operadores diagonales (VII.2), se obtiene una
descomposición de los operadores positivos como un producto de un operador
diagonal positivo y la exponencial de un operador autoadjunto codiagonal:

Teorema 7 Tomemos un operador A (Hilbert-Schmidt y autoadjunto) tal
que 1 +A > 0. Entonces existen: un operador D estrictamente positivo y
diagonal (perturbación de un múltiplo de la identidad por un operador de
Hilbert-Schmidt) y un operador autoadjunto Hilbert-Schmidt V (de diagonal
nula) tales que vale la siguiente factorización:

1+A = D eVD

Es más, D y V son los únicos con las propiedades mencionadas que hacen
válida esta factorización, y la función que asigna 1+A 7→ (D,V) es analítica
real.
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Una aplicación directa (VII.4) de este último teorema nos da una demostra-
ción alternativa de una ya conocida factorización para matrices (Teorema 3 del
artículo [Mos55] por G.D. Mostow, ver también el Teorema 1 del artículo [CPR91]
por G. Corach, H. Porta y L. Recht)

Resultado Tomemos una matriz positiva e inversible A ∈M+
n. Entonces

existen únicas matrices D,V ∈Mn tales que D es diagonal y estrictamente
positiva, V es autoadjunta y tiene diagonal nula, y vale la siguiente fórmula:

A = D eVD

Las funciones A 7→ D y A 7→ V son analíticas reales.

Un corolario particularmente agradable (VII.3) de los Teoremas 6 y 7 es el sigu-
iente. Esta descomposición es comparable a la descomposición de Iwasawa para
grupos de Lie de dimensión �nita, ver [Hel62]:
Teorema 8 Para todo g ∈GL(HC), existe una única factorización

g = dewu,

donde d es un operador diagonal, positivo e inversible de HC, w es un
operador autodjunto con diagonal nula de HC, y u es un operador unitario
de HC.

En la sección VIII discutimos una foliación de codimensión uno del espacio to-
tal dada por hojas cerradas y totalmente geodésicas. El espacio tangente de
cada hoja es el conjunto de todos los operadores Hilbert-Schmidt autoadjuntos
(conjunto que de aquí en más abreviaremos HSh). Las hojas también resultan
paralelas en el sentido siguiente: la distancia entre dos hojas es constante y está
dada por la longitud de cualquier geodésica que sea simultáneamente ortogonal
a ambas (VIII.4).

Probamos que la curvatura seccional es trivial para 2-planos verticales con res-
pecto a la foliación (Proposición VIII.5), y también (VIII.6) que Σ∞ es isométrica
al producto directo de dos subvariedades completas y totalmente geodésicas:
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Σ1 = exp(HSh) y Λ (la subvarieda de escalares positivos). Es decir, hay un
isomor�smo Riemanniano

Σ∞ ' Σ1×Λ

La hoja Σ1 contiene a la identidad, y su espacio tangente es el conjunto de opera-
dores Hilbert-Schmidt autoadjuntos, así que toda vez que sea posible trabajamos
dentro de Σ1 para evitar la manipulación innecesaria de escalares.
La versión intrínseca del teorema de factorización toma una forma más simple
en Σ1; basándonos en resultados de la sección V, se lee:
Teorema 9 Supongamos que m⊂HSh es un subespacio cerrado tal que

[x, [x,y]] ∈m para todo x,y ∈m

Entonces para cualquier a ∈ HSh existe una única descomposición de la
forma

ea = ex ev ex

donde x ∈m, y v ∈HSh veri�ca tr(vz) = 0 para todo z ∈m. El operador x es
el único minimizante en m de la aplicación

y 7→ tr
(
ln2(ea/2e−yea/2)

)

No podemos dejar de señalar que este resultado es un análogo en dimensión
in�nita de un teorema de G.D. Mostow para matrices [Mos55].

En la sección VIII.2, construimos una inclusión topológica del espacio M+
n de

matrices positivas e inversibles (de n×n) en Σ1 (esta inclusión también puede
hallarse -aunque con otro formalismo- en [AV03]). La inclusión resulta cerrada
y geodésicamente convexa; en (VIII.10) sólo consideramos elementos p ∈ Σ1 y
mostramos otra aplicación del teorema de factorización:
Teorema 10 Si identi�camos M+

n con el primer bloque de la representación
matricial de los operadores Hilbert-Schmidt (en cualquier base ortonormal
pre�jada), entonces para todo operador positivo e inversible eb (b es Hilbert-
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Schmidt y autoadjunto) existe una única factorización de la forma

eb =

(
eA 0

0 1

)
exp

{(
e−A 0

0 1

)(
On×n Y∗

Y X

)}

En la sección IX, bosquejamos la demostración de la inclusión de las variedades
simétricas del tipo no compacto en M+

n (este resultado se debe a Patrick Eberlein,
ver [Eb85]). Esta inclusión junto con la inclusión isométrica de M+

n en Σ1

(sección VIII.2) nos da el siguiente resultado:

Teorema 11 Para cualquier variedad simétrica M del tipo no compacto
existe una inclusión de M en Σ1 que es un difeomor�smo entre M y una
variedad cerrada y geodésicamente convexa de Σ1. Esta inclusión preserva
el tensor métrico en el siguiente sentido: el pull-back en M del producto
interno de Σ1 resulta ser un múltiplo constante y positivo del producto
interno de M, en cada componente irreducible de de Rham. Identi�cando
M con su imagen, M factoriza Σ∞ via la aplicación contractiva ΠM.

En la sección X, para un operador ea ∈ Σ1 �jo, consideramos la acción del grupo
unitario de L(H) mediante la conjugación g 7→ geag∗; también consideramos la
acción (mediante la misma conjugación) del grupo de operadores unitarios que
son perturbaciones escalares de operadores Hilbert-Schmidt. La órbita para los
dos grupos no es necesariamente el mismo conjunto (Ejemplo X.5). Recordemos
que utilizamos U(B) para denotar el grupo de unitarios del álgebra de Banach
involutiva B.

Discutimos condiciones necesarias y su�cientes para que la órbita Ω tenga una
estructura analítica de subvariedad (aquí Ω denota la órbita para alguno de los
dos grupos mencionados). Una respuesta parcial al problema está dada por el
Teorema 12 (X.6) y el Teorema 13 (X.3), que a�rman:

Teorema 12 Si la C∗-álgebra generada por a y 1 es de dimensión �nita, en-
tonces la órbita de ea para la acción del grupo de unitarios Hilbert-Schmidt
admite una estructura analítica de subvariedad de Σ∞.
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Teorema 13 La órbita de ea para la acción del grupo de unitarios de L(H)

admite una estructura analítica de subvariedad de Σ∞ si y sólo si la C∗-
álgebra generada por a y por 1 es de dimensión �nita.

Los resultados de la sección X.2 están vinculados con el estudio de las geodésicas
de Ω para las diferentes métricas Riemannianas que este conjunto admite. En
la sección X.2.1 miramos la órbita como subespacio del espacio Euclídeo de los
operadores Hilbert-Schmidt; mostramos que para cualquier h autoadjunto, la
curva

γ(t) = eitheae−ith

es una geodésica de Ω siempre que ea − 1 es un proyector ortogonal y h es
codiagonal en la representación asociada a este proyector (X.11).
También demostramos que, para cualquier ea, estas curvas son las geodésicas
usuales de Σ1 sólo en el caso trivial, es decir, cuando se reducen a un punto
(esta es la Proposición X.9); en particular, cuando la órbita es considerada como
subvariedad del espacio Euclídeo de los operadores Hilbert-Schmidt, se deduce
que la misma no es geodésica en ninguno de sus puntos (en el caso en que ea −1

es un proyector).

En la sección X.2.2 consideramos la órbita de un operador ea como subvariedad
Riemanniana Ω⊂ Σ1; el resultado principal es el Teorema XII que enunciamos a
continuación (X.14). A lo largo de este manuscrito, usaremos [ , ] para denotar
el conmutador usual de operadores. Estos resultados son válidos para la órbita
por la acción de cualquiera de los dos grupos U(L(H)) o U(HC), ya que las dos
acciones inducen la misma subvariedad de Σ1 cuando ea−1 es un proyector (esto
se demuestra en el Lema X.7):

Teorema 14 Supongamos que ea = 1+A con A un proyector ortogonal, y
Ω⊂ Σ1 es la órbita unitaria de ea. Entonces

1. Ω es una subvariedad Riemannian de Σ1

2. TpΩ = {i[x,p] : x ∈ HSh} y TpΩ⊥ = {x ∈HSh : [x,p] = 0}
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3. La acción del grupo unitario es isométrica en Ω, es decir

distΩ (upu∗,uqu∗) = distΩ (p,q)

para cualquier operador unitario u ∈ L(H).

4. Para cualquier v = i[x,p]∈ TpΩ, la exponencial de la variedad está dada
por

ExpΩ
p (v) = eighg∗pe−ighg∗

donde p = geag∗ y h es la parte codiagonal de g∗xg (en la repre-
sentación matricial asociada al proyector A, ver la Proposición X.11).
En particular, la exponencial está de�nida en todo el tangente de la
órbita.

5. Si p = geag∗, q = weaw∗, y h es un operador codiagonal, autoadjunto
tal que w∗geih conmuta con ea, entonces la curva

γ(t) = eitghg∗pe−itghg∗

es una geodésica de Ω⊂ Σ1, que une p con q.

6. Si tomamos h ∈ HSh, entonces L(γ) =
√

2
2 ‖h‖2

7. La exponencial ExpΩ
p : TpΩ → Ω es sobreyectiva.

En la última sección concluimos el manuscrito con algunas preguntas pendientes
y comentarios.
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Precedentes

� En su tesis doctoral de 1955, "In�nite Dimensional Manifolds and Morse
Theory" [McA65], J. McAlpin estableció los fundamentos de la geometría
Riemanniana en dimensión in�nita. Entre otros resultados relevantes, probó
que una variedad de Hilbert de curvatura seccional no positiva tiene una
exponencial Riemanniana que es un isomor�smo entre el tangente y la va-
riedad para cualquier punto p∈M. También probó que la exponencial tiene
diferencial expansiva en cualquier punto: este resultado está íntimamente
conectado con la convexidad de los campos de Jacobi y de la distancia
geodésica, dos hechos que juegan un papel central en las construcciones de
este manuscrito.

� La convexidad de la distancia geodésica y los campos de Jacobi en var-
iedades modeladas por álgebras de operadores es objeto de estudio en varios
trabajos de G. Corach, H. Porta y L. Recht [CPR92], [CPR94]. La convex-
idad de la distancia en el contexto de operadores acotados positivos puede
pensarse como una reinterpretación de la clásica desigualdad de Segal para
operadores en L(H): ‖ex+y‖ ≤ ‖ex/2eyex/2‖.

� Basándose en la construcción clásica de una estructura Riemanniana para
el conjunto M+

n de matrices positivas e inversibles (la primera publicación
sobre el particular parece ser el artículo [Mos55] de G.D. Mostow), E. An-
druchow y A. Varela muestran en un artículo reciente [AV03] como los ope-
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radores Hilbert-Schmidt con el producto interno dado por la traza proveen
un marco conveniente para la construcción de una variedad Hilbertiana Σ∞
que resulta ser una variedad de Hadamard en el sentido clásico (Riema-
nniano). Este manuscrito está basado en la mencionada construcción. Ver
tambien [Har72] por P. de la Harpe.

� El teorema de factorización de este manuscrito tiene precedentes obvios
en la descomposición polar de Cauchy para operadores, pero también cabe
mencionar el artículo [CPR91] por Corach et al. (ver también [Mos55]).
En un artículo de H. Porta y L. Recht [PR94] se demuestra un resultado
de descomposición similar pero en el contexto de C∗-álgebras y esperanzas
condicionales.

� En [Eb85], Patrick Eberlein muestra como cualquier espacio simétrico M

del tipo no compacto puede ser incluido topológicamente en P(g) (los ope-
radores positivos inversibles que actúan en el álgebra del Lie del grupo de
isometrías de M). Esta inclusión da un conjunto cerrado y geodésicamente
convexo, y resulta una isometría en el siguiente sentido: si g∗ es el pull-back
de la métrica de P(g), entonces g∗ es un múltiplo constante de la métrica
de M en cada componente irreducible de de Rham de M.

� La conexión entre el espectro de un operador, y la existencia de una estruc-
tura homogénea reductiva para la órbita del operador en cuestión ha sido
objeto de estudio a través de los años para diversos autores, incluyendo
Andruchow, Deckard, Fialkow, Raeburn y Stojano� en [DF79], [AFHS90],
[Rae77], [AS89], [AS91], [Fial79] and [AS94]. En particular, [DF79] parece
ser el primer estudio sistemático del tema.

� La geometría de los espacios homogéneos reductivos que aparecen natu-
ralmente en álgebras de Banach ha sido extensamente estudiada, y men-
cionaremos sólo algunos artículos: Corach, Porta y Recht estudian el espa-
cio de idempotentes en ([PR87a], [PR87b], [CPR93b], [CPR90b]), el con-
junto de operadores positivos inversibles es tratado en [CPR92], [CPR93a],
[AV03], y el espacio de elementos relativamente regulares en [CPR90a].
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Banderas generalizadas (grassmanianas, etc) son también estudiadas por
Andruchow, Durán, Mata-Lorenzo, Recht, Stojano�, y Wilkins en [ARS92],
[DMR00], [DMR04a], [DMR04b], [Wilk90]. Las isometrías parciales se es-
tudian en [AC04], la esfera de un módulo de Hilbert se trata en [ACS99],
y los pesos en álgebras de von Neumann algebras han sido estudiados por
Andruchow y Varela en [AV99].
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I Introduction

I.1 Hadamard manifolds
A Hadamard manifold is a Riemannian manifold which is simply connected, com-
plete, and has nonpositive sectional curvature. From the topological viewpoint,
it is a very simple object.
However, (see [Eb96]) for any manifold M of nonpositive sectional curvature,
the higher homotopy groups (πk(M), k≥ 2) vanish, and M can be expressed as
a quotient space of a Hadamard manifold (the universal covering of M) and a
suitable deckgroup of isometries of the covering which is isomorphic to π1(M).
The geometry of nonpositevely curved spaces is indeed rich and has applica-
tions in many other branches of mathematics, such as harmonic maps ([Cor92],
[GS92], [KS93], [MSY93]), 3-manifolds and Kleinian groups ([MS84], [Gab92],
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I INTRODUCTION

[Can93], [CJ94], [Min94], [McM96], [Otal96], [Gab97], [Otal98], [Min99], [Kap01],
[GMT03]), structure theory and rigidity ([Ball85], [BBE85], [BBS85], [BS97],
[EH90], [BB95], [Lee97]), high dimensional topology ([FH81], [FJ93], [CGM90]),
hyperbolic groups and quasi conformal geometry ([Gro87], [Pan89], [BM91],
[RS94], [Sela95], [Bow98a], [Bow98b], [BP99], [BP00] and [HK98]), geometric and
combinatorial group theory ([Gro87], [DJ91], [Sch95], [CD95], [BM97], [KL97a],
[KL97b] and [Esk98]) and dynamics ([Cro90], [Otal90], [BCS95], [BFK98]).
The classical treatises [Hel62] by Sigurdur Helgason and [BGS85] by Wallman
et al., the introduction to the geometry of spaces of the noncompact type by
Patrick Eberlein [Eb96], or the expository survey by the same author [Eb89]
collect many of the relevant facts concerning the geometry of these objects, such
as the Law of Cosines, orthogonal projections, convexity of the distance function,
the construction of the boundary space, and rank rigidity theorems.
Let's focus brie�y on six basic results which are valid (see [Hel62]) in any
Hadamard manifold M of �nite dimension:

1. The exponential map Expp : TpM → M is a di�eomorphism for each p∈M.

2. For each pair p,q ∈ M there exists a unique normal (i.e. unit speed),
minimizing geodesic from p to q.

3. For any geodesic triangle in M whose sides are geodesics of length a, b and
c, we have the Hyperbolic Law of Cosines, which states:

c2 ≥ a2 +b2 −2abcos(θ), where θ is the angle opposite to c

4. The sum of the interior angles of any such triangle is at most π.

5. For any pair of geodesics α, β in M, the function

f(t) = dist(α(t),β(t))

is a real convex function.

6. Let C be a convex closed subset of M. Then for each p ∈M there exists a
unique point ΠC(p) ∈ C such that

dist(p,ΠC(p))≤ dist(p,q) for any q ∈ C

2



I.1. Hadamard manifolds

In the Riemannian context, the point ΠC(p) is called the foot of the per-
pendicular from p to C.

The notions of completeness as metric space and completeness in the geodesic
sense are intimately related by Hopf-Rinow's theorem. Since this theorem is false
in in�nite dimensions (see [Atkin75], [Atkin97]), compactness of neighbourhoods
of M seems to be relevant for these results to hold true. However, statements
1 through 6 are known to be valid in the setting of nonpositively curved spaces
(which are metric spaces where some geodesic triangle comparison inequality is
valid). In particular, the proof of existence of a unique distance-realizing point for
any closed convex set (without assuming local compactness of neighbourhoods)
can be found in [Jost97].
We will go in an alternate direction, in order to extend these results to a manifold
Σ∞ which is locally isomorphic to an in�nite dimensional Hilbert space (in fact,
the real part of a Banach algebra B). The manifold Σ∞ is simply connected,
complete, and has nonpositive sectional curvature; moreover, Σ∞ = GL+(B) is a
symmetric space in the usual Riemannian sense. All the tools of the Riemannian
geometry will be at hand, and we will be able to explore relationships between
the Banach algebra and the geometry of the manifold.
For instance, we will prove that the unique minimizing geodesic that realices
distance between a point and a convex set must be orthogonal to that set, ob-
taining in this way a decomposition theorem for operators, with many immediate
applications.
The �rst result of the list will be apparent from the de�nition of Σ∞; to prove
the second, the third, the fourth and the �fth we will have to collect some facts
from the existing literature of geometry on spaces of operators.
The space Σ∞ is symmetric and nonpositively curved, and universal in this
category in the sense that every symmetric space of the noncompact type can be
(almost) isometrically embedded as a geodesically convex, closed submanifold.
Though we will not need it along this manuscript, it should be noted that the
general classi�cation theory of L∗-algebras (see [Sch60] and [Sch61] by J.R.Schue,
[CGM90] by Mira, Martin and González, or [Neh93] by E. Neher) provides a gen-
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I INTRODUCTION

eral abstract framework for this manifold and its convex submanifods: the real
part of any L∗-algebra can be naturally embedded as a convex closed submanifold
of Σ∞.

I.2 The main results
A few words about notation: we will use greek characters α,β,δ, . . . to denote real
and complex numbers, and capital characters Σ,Λ,∆,Ω,. . . to denote manifolds.
The �rst characters of the alphabet a,b,c,d, · · · will be reserved for Hilbert-
Schmidt operators and as usual, p,q,r,s, . . . will be used for points (in Σ∞);
sometimes we will use capital letters A,B,C,D, . . . to stress the fact that this
points are positive invertible operators in the unitized Banach algebra of Hilbert-
Schmidt operators. The capital letters X,Y,Z,W,. . . will be used sometimes to
denote selfadjoint operators (tangent vectors) in the mentioned Banach algebra.
German characters a,k,m,p, . . . will be used as customary in Lie group theory to
denote Lie algebras (or to denote certain subspaces of Lie algebras). Throughout,
Expp will denote the exponential of the Riemannian manifold at the point p,
and we will use exp instead of Exp1, which is the usual exponential of operators.

Now we outline the organization and main results of this work (previous results
are mentioned as such, and new results are Theorem 1, Theorem 2, . . . trough
Theorem 14):

In section II, we introduce some notation and recall a few results we will need
for the construction of a Hilbert manifold of in�nite dimension Σ∞, which is
complete, simply connected and has nonpositive sectional curvature.
The ambient space for most of the computations is the Banach space with trace
inner product HR= {λ+a}, where λ is a real number and a is a selfadjoint Hilbert-
Schmidt operator acting on a separable Hilbert space H. As a set, Σ∞ := exp(HR).
The exponential is an open mapping so Σ∞ is open in HR (Proposition II.3).
The metric we introduce (II.4) resembles the metric of the positive invertible
matrices when they are regarded as symmetric space:

〈X,Y〉
p

=
〈
Yp−1,p−1X

〉
2

for p ∈ Σ∞ and X,Y ∈HR,
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I.2. The main results

where < α+a,β+b >2= αβ+ tr(b∗a). With this metric the manifold Σ∞ has
covariant derivative (II.5) given by

∇XY = X(Y)−
1

2

(
Xp−1Y +Yp−1X

)

where X(Y) denotes derivation of the vector �eld Y in the direction of X (per-
formed in the ambient space HR); the sectional curvature (4) is given by

Rp(X,Y)Z = −
1

4
p

[[
p−1X,p−1Y

]
,p−1Z

]

where [x,y] = xy−yx denotes the standard commutator of operators in L(H)

In Theorem I (IV.9) we prove that the unique geodesic for the connection in-
troduced is given by an explicit formula which involves only the starting and
endpoints of the curve:

Theorem 1 Set ‖X‖p = ‖p−1
2 Xp−1

2‖2, and L(α) =
∫1

0 ‖α(t)‖ 
α(t) dt. If

dist(p,q) = inf {L(α) : α⊂ Σ∞, α is smooth , α(0) = p,α(1) = q}

then the curve γpq(t) = p
1
2

(
p−1

2 qp−1
2

)t
p

1
2 is the shortest path joining p to

q in Σ∞; moreover,

dist(p,q) = L(γpq) = ‖ ln(p
1
2 q−1p

1
2 )‖2 ≡ ‖ 
γpq(t)‖γpq(t)

We prove (III.5) that Jacobi �elds along geodesics γ are convex (in the sense
that the real map t 7→ ‖J(t)‖γ(t) = 〈J(t), J(t)〉γ(t) is convex), and as a corollary
(III.6), we get
Theorem 2 The real map t 7→ dist(γ(t),δ(t)) is convex for any pair of
geodesics γ,δ ∈ Σ∞.

Since we know the formula for the geodesics, we also know that the Riemannian
exponential Expp : TpΣ∞ → Σ∞ is given by

Expp(v) = p
1
2 exp

(
p−1

2 vp−1
2

)
p

1
2 = pep−1v

5



I INTRODUCTION

This map is a Cω di�eomorphism onto Σ∞ for each p (IV.6), and the same is
true for the restriction of Expp to the tangent bundle of any geodesically convex,
closed submanifold M of Σ∞.

A corollary for all these inequalities is
Theorem 3 The manifold Σ∞ with the geodesic distance is a complete met-
ric space

We also prove (IV.11) that the sum of the inner angles of any geodesic triangle in
Σ∞ is less or equal than π, which is nonpositive constrain on sectional curvature;
we prove explicitly that sectional curvature is nonpositive in Proposition III.3.

In section V, we recall some de�nitions and facts about closed, geodesically con-
vex subsets, which are the submanifolds where the projection theorem (Theorem
5) applies. In particular, we have the following result

Result Assume m is a closed subspace such that [X, [X,Y]] ∈ m whenever
X,Y ∈m. Then M = exp(m)⊂Σ∞ with the induced metric is a closed, geodesi-
cally convex submanifold.
This result is mainly due to Mostow [Mos55] (though Pierre de la Harpe sketches
the proof for Hilbert-Schmidt operators in [Har72]), and it shows that there are
plenty of this sets (see Corollary V.11).
In particular, any closed abelian subalgebra of Hilbert-Schmidt operators pro-
vides an example of a convex submanifold. Other examples are provided by
operators acting on �xed subspaces of H. In section V.2.1 we give a list of
convex sets; this list is exhaustive but by no means complete.

In section V.3 we take Élie Cartan's viewpoint, and study convex submanifolds
M as homogeneous symmetric spaces for the action of a convenient group GM.
This group is the smaller Lie group -inside the invertible operators of the Banach
algebra- containing M. The main result is Theorem IV below (V.29). Through-
out, GL(B) stands for the group of invertible elements in the Banach algebra B
and I0(M) for the connected component of the identity of the group of isometries
of M :
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I.2. The main results

Theorem 4 If M = exp(m) is convex and closed, and GM ⊂ GL(HC) is the
Lie subgroup with Lie algebra gM = m⊕ [m,m], then

(a) P(GM) = M, so M is a homogeneous space for GM.

(b) For any g =| g | ug (Cauchy polar decomposition) in GM, we have
| g |=

√
gg∗ ∈M ⊂ GM, and also ug ∈ K ⊂ GM where K is the isotropy

Lie subgroup K = {g ∈GM : gg∗ = 1} with Lie algebra k = [m,m]. In par-
ticular, GM has a polar decomposition

GM 'M×K = P(GM)×UGM

(c) M = P(GM)'GM/K.

(d) M has nonpositive sectional curvature.

(e) For g ∈GM, consider Ig(r) = grg∗. Then I : GM → I0(M).

(f) Take p,q ∈ M, and set g = p
1
2 (p−1

2 qp−1
2 )

1
2 p−1

2 ∈ GM. Then Ig is an
isometry in I0(M) which sends p to q, namely GM acts transitively
and isometrically on M.

In section VI we state and prove the main result about uniqueness and existence
of the minimizing geodesic (VI.9):

Theorem 5 Let M be a geodesically convex, closed submanifold of Σ∞.
Then for every point p ∈ Σ∞, there is a unique normal geodesic γp joining
p to M such that L(γp) = dist(p,M).
This geodesic is orthogonal to M, and if ΠM : Σ∞ → M is the map that
assigns to p the end-point of γp, then ΠM is a contraction for the geodesic
distance.

As a corollary (VI.13), we obtain a polar descomposition relative to any �xed
convex submanifold. This decomposition resembles the Iwasawa decomposition
of (�nite dimensional) Lie groups, see [Hel62]:
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Theorem 6 Assume M = exp(m) ⊂ Σ∞ is a closed, convex submanifold.
Then for any g ∈GL(HC) there exists a unique factorization of the form

g = pevu, where p ∈M,v ∈m⊥,u ∈U(HC) is a unitary operator.

The map g 7→ (p,ev,u) is an analytic bijection which gives an isomorphism

GL(HC)'M× exp(m⊥)×U(HC)

Section VII deals with a main application of the factorization theorem. When
applied to the manifold of diagonal operators (VII.2), provides a decomposi-
tion of positive operators as a product of a diagonal positive operator and the
exponential of a codiagonal, selfadjoint operator:
Theorem 7 Take any selfadjoint Hilbert-Schmidt operator A such that
1 + A > 0. Then there exist a diagonal, strictly positive Hilbert-Schmidt
perturbation of the identity D and a selfadjoint Hilbert-Schmidt operator V

with null diagonal such that the following factorization holds:

1+A = D eVD

Moreover, D and V are unique and the map 1+A 7→ (D,V) is real analytic.
A straightforward application (VII.4) of the last theorem is an alternative proof
to an already known decomposition for matrices (Theorem 3 of the paper [Mos55]
by G.D. Mostow, see also Theorem 1 of the paper [CPR91] by Corach, Porta and
Recht)
Result Fix a positive invertible matrix A ∈M+

n. Then there exist unique
matrices D,V ∈ Mn, such that D is diagonal and strictly positive, V is
symmetric and with null diagonal, and the following formula holds

A = D eVD

Moreover, the maps A 7→ D and A 7→ V are real analytic.

A nice corollary (VII.3) of Theorems 6 and 7 is the following; this decomposition
is close to the Iwasawa decomposition [Hel62] of (�nite dimensional) Lie groups:

8
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Theorem 8 For any g ∈GL(HC), there is a unique factorization

g = dewu,

where d is a positive invertible diagonal operator of HC, w is a selfadjoint
operator with null diagonal in HC and u is a unitary operator of HC.

In section VIII, we discuss a foliation of codimension one of the total space by
totally geodesic, closed leaves. The tangent space of each leaf is the Banach
space of selfadjoint Hilbert-Schmidt operators (shortly, HSh). The leaves are
also parallel in the sense that geodesics that have minimal length among those
which join them are orhogonal to both of them (Proposition VIII.4).
We prove that sectional curvature is trivial along vertical 2-planes (Proposition
VIII.5), and also (VIII.6) that Σ∞ is isometric to the direct product of the
complete and totally geodesic submanifolds Σ1 = exp(HSh) and Λ (the positive
scalars), i.e.

Σ∞ ' Σ1×Λ

The leaf Σ1 contains the identity and its tangent space is the set of selfadjoint
Hilbert-Schmidt operators, so whenever it is possible, we work inside Σ1 to avoid
the manipulation of scalars.
The intrinsic version of the decomposition theorem takes a simpler form; based
upon the results of section V, it reads:
Theorem 9 Assume m⊂HSh is a closed subspace such that

[x, [x,y]] ∈m for any x,y ∈m

Then for any a ∈ HSh there is a unique decomposition of the form

ea = ex ev ex

where x∈m, and v∈HSh is such that tr(vz) = 0 for any z∈m. The operator
x is the unique minimizer in m of the map

y 7→ tr
(
ln2(ea/2e−yea/2)

)

9
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This is an in�nite dimensional analogue of a theorem of G.D. Mostow for matrices
[Mos55].

In section VIII.2, we embed the space M+
n of positive invertible n×n matrices

in Σ1 (this embedding can also be found in [AV03]). This embedding is closed
and geodesically convex; in (VIII.10) we only consider elements p∈ Σ1 and show
another application of the main theorem:
Theorem 10 If we identify M+

n with the �rst block of the matrix representa-
tion of the Hilbert-Schmidt operators (in any �xed orthornomal basis), for
any positive invertible operator eb (b is Hilbert-Schmidt and selfadjoint)
there is a unique factorization of the form

eb =

(
eA 0

0 1

)
exp

{(
e−A 0

0 1

)(
On×n Y∗

Y X

)}

In section IX, we sketch the proof of the inclusion of symmetric manifolds of
the noncompact type in M+

n (this result is due to P. Eberlein, see [Eb85]). This
result together with the embedding of M+

n in Σ1 (see section VIII.2) gives us

Theorem 11 For any symmetric manifold M of the noncompact type there
is an embedding into Σ1 which is a di�eomorphism betwen M and a closed,
geodesically convex submanifold of Σ1. This map preserves the metric ten-
sor in the following sense: if we pull back the inner product of Σ1 to M,
then this inner product is a (positive) constant multiple of the inner product
of M (on each irreducible de Rham factor of M). Assuming we identify M

with its image, M factorizes Σ∞ via the contractive map ΠM.

In section X, for �xed ea ∈Σ1, we consider the action of the full unitary group of
L(H) by means of the conjugation g 7→ geag∗, and also the action of the unitaries
that are Hilbert-Schmidt perturbations of a scalar multiple of the identity. The
orbit acting with either group is not necessarily the same set (Example X.5).
Throughout, U(B) stands for the unitary group of the involutive Banach algebra
B.

10
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We discuss whether the orbit Ω can be given an analytic structure of subman-
ifold; this question is partially answered by Theorem 12 (X.6) and Theorem 13
(X.3), which state:

Theorem 12 If the C∗-algebra generated by a and 1 is �nite dimensional,
then the orbit of ea with the action of the Hilbert-Schmidt unitaries can be
given an analytic submanifold structure.

Theorem 13 The orbit of ea under the action of the full unitary group
of L(H) can be given an analytic submanifold structure if and only if the
C∗-algebra generated by a and 1 is �nite dimensional.

The results of section X.2 are related to the study of the geodesics of the orbit
Ω, with di�erent Riemannian metrics. In section X.2.1 we immerse the orbit
in the Euclidean space of Hilbert-Schmidt operators and we give it the induced
metric: we show that for any selfadjoint h, the curve

γ(t) = eitheae−ith

is a geodesic of the orbit whenever ea − 1 is an orthogonal projector and h is
codiagonal in the representation associated to ea −1. This is Proposition X.11.

We also show that, for any ea, these curves are the usual geodesics of Σ1 only
if they are constant curves (this is Proposition X.9); in particular, when the
orbit is regarded as a submanifold of the Euclidean space of Hilbert-Schmidt
operators, this submanifold is not geodesic in any of its points whenever ea −1

is an orthogonal projector.

In section X.2.2 we take a peak at the geodesics of the orbit of ea as a Riemannian
submanifold Ω⊂ Σ1; the main result is Theorem XII below (X.14). Throughout
[ , ] stands for the usual commutator of operators, and these results are valid
for the action of any of the groups U(L(H)) or U(HC) because they induce the
same manifold in Σ1 (this is proved in Lemma X.7):

Theorem 14 Assume ea = 1+A with A an orthogonal projector, and Ω⊂Σ1

is the unitary orbit of ea. Then

1. Ω is a Riemannian submanifold of Σ1.

11
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2. TpΩ = {i[x,p] : x ∈ HSh} and TpΩ⊥ = {x ∈ HSh : [x,p] = 0}.

3. The action of the unitary group is isometric, namely

distΩ (upu∗,uqu∗) = distΩ (p,q)

for any unitary operator u ∈ L(H).

4. For any v = i[x,p] ∈ TpΩ, the exponential map is given by

ExpΩ
p (v) = eighg∗pe−ighg∗

where p = geag∗ and h is the codiagonal part of g∗xg (in the matrix
representation of Proposition X.11). In particular, the exponential
map is de�ned in the whole tangent space.

5. If p = geag∗, q = weaw∗, and h is a selfadjoint, codiagonal operator
such that w∗geih commutes with ea, then the curve

γ(t) = eitghg∗pe−itghg∗

is a geodesic of Ω⊂ Σ1, which joins p to q.

6. If we assume that h ∈HSh, then L(γ) =
√

2
2 ‖h‖2

7. The exponential map ExpΩ
p : TpΩ → Ω is surjective.

In the last section we end the exposition with some open questions and remarks.
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I.3. Precedents

I.3 Precedents
� In his 1955 PhD. Thesis "In�nite Dimensional Manifolds and Morse The-
ory" [McA65], J. McAlpin set the foundations of the Riemannian geometry
in in�nite dimensions. Among other relevant results, he proved that a non-
positively curved Hilbert manifold M has a Riemannian exponential which
is an isomorphism for each p ∈ M, and that this exponential has an ex-
pansive di�erential at any point. This result is deeply connected with the
convexity of the Jacobi �elds and the geodesic distance, two facts that lay
deeply in the core of this manuscript.

� Convexity of Jacobi �elds and the geodesic distance (in manifolds mod-
eled on L(H)) was studied by G. Corach, H. Porta and L. Recht [CPR92],
[CPR94]. In this context of positive invertible operators of L(H), convexity
can be thought of as a reinterpretation of Segal's classical inequality for
operators: ‖ex+y‖ ≤ ‖ex/2eyex/2‖.

� Based upon the classical construction of a Riemannian structure on the
set M+

n of positive invertible n×n matrices, (the �rst publication on the
subject seems to be the paper [Mos55] by G.D. Mostow), E. Andruchow
and A. Varela show in a recent paper [AV03] how the Hilbert-Schmidt
operators HS with inner product given by the trace provide a convenient
framework for the construction of a Hilbert manifold Σ∞ modeled on the
real Hilbert space HSh, that turns out to be a Hadamard manifold in the
classical (Riemannian) sense of the term. This manuscript is based upon
the mentioned construction. See also [Har72] by P. de la Harpe.

� The decomposition theorems have obvious precedents in the polar decompo-
sition of operators, but we should also mention the splitting of the positive
set of a matrix algebra (see [Mos55] by Mostow, [CPR91] by Corach et al.)
and the paper by Porta and Recht [PR94] which deals with C∗-algebras and
conditional expectations.

13
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� In [Eb85], Patrick Eberlein shows that any symmetric manifold M of the
noncompact type can be embedded in P(g) (the positive invertible opera-
tors acting in the Lie algebra of the group of isometries of M) as a closed,
geodesically convex submanifold. This embedding is isometric in the fol-
lowing sense: if g∗ is the pull back of the metric of P(g) on M, then g∗ is
a constant multiple of the metric of M on each irreducible de Rham factor
of M.

� The relationship between the spectrum of an operator, and the existence
of a homogeneous reductive structure for the orbit of that operator has
been systematically studied through the years by diverse authors, including
Andruchow, Deckard, Fialkow, Raeburn and Stojano� in [DF79], [AFHS90],
[Rae77], [AS89], [AS91], [Fial79] and [AS94]. In particular, [DF79] seems
to be the �rst systematic approach to the subject.

� The geometry of the homogeneous reductive spaces which appear naturally
in Banach and C∗-algebras has been extensively studied, and we should
mention a few articles: Corach, Porta and Recht study the space of idempo-
tents in ([PR87a], [PR87b], [CPR93b], [CPR90b]), the set of positive invert-
ible operators is treated in the papers [CPR92], [CPR93a] and [AV03], and
the space of relatively regular elements in a Banach Algebra in [CPR90a].
Generalized �ags (grassmanians, spectral measures, etc) are also studied
by Andruchow, Durán, Mata-Lorenzo, Recht, Stojano�, and Wilkins in
[ARS92], [DMR00], [DMR04a], [DMR04b] and [Wilk90]. Partial isome-
tries are studied in [AC04], the sphere of a Hilbert module is treated in
[ACS99], and weights on von Neumann algebras are studied by Andruchow
and Varela in [AV99].
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II The Main Objects Involved

The framework of this manuscript is the von Neumann algebra L(H) of bounded
operators acting on a complex, separable Hilbert space H.

II.1 Hilbert-Schmidt operators

Throughout, HS stands for the bilateral ideal of Hilbert-Schmidt operators of
L(H): this is the ideal of compact operators with singular values lying in `2.
Recall that HS is a Banach algebra without unit when given the norm

‖a‖2 = 2 tr(a∗a)
1
2 = 2


∑

i≥1

〈aei,aei〉



1
2
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where {ei}i∈N is any given orthonormal basis of H. The reader can �nd many of
the statements we will use about trace operators and trace ideals in [Simon89].

In L(H) we consider some Fredholm operators:

HC = {a+λ : a ∈ HS, λ ∈ C},

the complex linear subalgebra consisting of Hilbert-Schmidt perturbations of
scalar multiples of the identity. This algebra is not norm closed, in fact, its
closure in the uniform norm of L(H) is the set of compact perturbations of scalar
multiples of the identity.

There is a natural Hilbert space structure for this subspace, where scalar oper-
ators are orthogonal to Hilbert-Schmidt operators, which is given by the inner
product

〈a+λ,b+β〉
2

= 4tr(ab∗)+λβ

The algebra HC is complete with this norm, for the Hilbert-Schmidt operators
are complete with the trace inner product.

Remark II.1. Another natural (but not quadratic) norm is given by the formula

‖a+λ‖1 = 2 tr(a∗a)
1
2 + | λ |

With this norm HC becomes a Banach algebra, that is

‖(a+λ)(b+β)‖1 ≤ ‖a+λ‖1‖b+β‖1

However, we will use the norm de�ned by the inner product, that is

‖a+λ‖2 =
√
‖a‖2

2
+ | λ |2 =

(
4tr(a∗a)+ | λ |2

)1
2

Both norms are equivalent, but ‖ · ‖2 provides an Euclidean structure for HC.

We also use the term Banach algebra for a normed algebra B where the sum
and product are continuous operations; this is slightly di�erent from the usual
de�nition (see Rickart [Rick60] or Guichardet [Guich67]).
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The model space that we are interested in is the real part of HC:

HR = {a+λ : a∗ = a, a ∈ HS, λ ∈ R},

which inherits the structure of real Banach space, and with the same inner
product, becomes a real Hilbert space.
Remark II.2. For this inner product, we have (by cyclicity of the trace)

〈XY,Y∗X∗〉
2

= 〈YX,X∗Y∗〉
2

for any X,Y ∈HC, and also

〈ZX,YZ〉
2

= 〈XZ,ZY〉
2

for X,Y ∈HC and Z ∈HR

We will use HSh to denote the closed subspace of selfadjoint Hilbert-Schmidt
operators. In HR, consider the subset

Σ∞ := {A > 0,A ∈HR}

This is the set of invertible operators a+λ such that σ(a+λ)⊂ (0,+∞), with
a selfadjoint and Hilbert-Schmidt, λ ∈ R.
Note that, since a is compact, then 0 ∈ σ(a), which forces λ > 0 because

σ(a+λ)⊂ (0,+∞) ⇐⇒ σ(a)⊂ (−λ,+∞)

Our main reference for standard facts about functional analysis, operator alge-
bras and functional calculus is the four volume treatise of Functional Analysis
by Michael Reed and Barry Simon, [RS79].

II.2 Some basic geometrical facts
The following result is elementary, but we will give a proof anyway to get a taste
of the nature of the objects involved, see also Corollary V.12:
Proposition II.3. Σ∞ is an open set of HR.
Proof. Consider the analytic exponential map exp : HC → HC that assigns

A 7→ eA =
∑ An

n!
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The restriction of exp to HR is well de�ned because for every Hilbert-Schmidt,
selfadjoint operator and every real λ we can write ea+λ = b+β, where

b = eλ
∑ ak

k!
and β = eλ

Obviously, β is real and b is selfadjoint; moreover b lies in HS because the latter
is a bilateral ideal in L(H), and b = a ·c for a bounded operator c.
We claim that Σ∞ = exp(HR). One inclusion has already been proved. To prove
the other, apply the functional calculus to the function g(x) = ln(x) and the
operator b+β ∈ Σ∞. Since this operator is positive, the logarithm has the form
of a series; an argument similar to the one we used for the exponential shows
that ln(β+b) = λ+a, with λ real and a Hilbert-Schmidt (and selfadjoint). This
proves that the logarithm gives a local analytic inverse of exp, so exp maps onto.
The proof of our initial assertion follows from general results about Banach
algebras and analytic maps: any analytic map (from a Banach algebra into
itself) with an analytic local inverse is locally open, and as a consequence, Σ∞ =

exp(HR)⊂HR is open.

Remark II.4. For p ∈ Σ∞, we identify TpΣ∞ with HR, and endow this manifold
with a (real) Riemannian metric by means of the formula

〈X,Y〉
p

=
〈
p−1X,Yp−1

〉
2

=
〈
Xp−1,p−1Y

〉
2

where 〈α+a,β+b〉2 = αβ+4tr(b∗a). Throughout, ‖X‖2
p

:= 〈X,X〉
p
, which can

be rewritten as

‖X‖2
p

= ‖p−1
2 Xp−1

2‖2 =
〈
Xp−1,p−1X

〉
2

=
〈
p−1X,Xp−1

〉
2

,

and is the norm of tangent vectors X ∈ TpΣ∞.

Lemma II.5. Covariant derivative in Σ∞ (for the metric introduced in Re-
mark II.4) is given by the expression

(∇XY)p = {X(Y)}p −
1

2

(
Xpp−1 Yp +Ypp−1 Xp

)
(1)
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where X(Y) denotes derivation of the vector �eld Y in the direction of X

(performed in the linear space HR).

Proof. Note that ∇ is clearly symmetric and veri�es all the formal identities
of a connection; the proof that this is the Levi-Civita connection relays on the
compatibility condition between the connection and the metric,

d

dt
〈X,Y〉γ =

〈
∇ 
γX,Y

〉
γ

+
〈
X,∇ 
γY

〉
γ

where γ is a smooth curve in Σ∞ and X,Y are tangent vector �elds along γ. This
identity is straightforward from the de�nitions for both terms and the cyclicity
of the trace.

Euler's equation ∇ 
γ 
γ = 0 reads

�γ − 
γγ
−1 
γ = 0, (2)

and
γpq(t) = p

1
2

(
p−1

2 qp−1
2

)t
p

1
2 (3)

is the unique solution of Euler's equation with γ(0) = p and γ(1) = q.

These curves look formally equal to the geodesics between positive de�nite ma-
trices (regarded as a symmetric space), and we will prove (Theorem IV.9 ) that
the unique minimizing geodesic (i.e. the shortest path) joining p to q is given
by the curve above.

Lemma II.6. The metric in Σ∞ is invariant under the action of the group of
invertible elements: if g is an invertible operator in HC, then Ig(p) = gpg∗

is an isometry of Σ∞.

Proof. Note that drIg(X) = gXg∗ for any X ∈ TrΣ∞, so

‖gXg∗‖2
grg∗ =

〈
gXg∗(g∗)−1r−1g−1,(g∗)−1r−1g−1gXg∗

〉
2

=

=
〈
gXr−1g−1,(g∗)−1r−1Xg∗

〉
2

=
〈
Xr−1, r−1X

〉
2

= ‖X‖2
r
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where the third equality in the above equation follows from Remark II.2 (naming
X = gXr−1, Y = g−1).
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III Local Structure

III.1 The curvature tensor
Proposition III.1. The manifold Σ∞ has a curvature tensor given by the
following commutant of operators:

Rp(X,Y)Z = −
1

4
p

[[
p−1X,p−1Y

]
,p−1Z

]
(4)

Proof. This follows from the de�nition R (X,Y) = ∇X∇Y −∇Y∇X −∇[X,Y] (here
∇ stands for the covariant derivative) together with the formula for ∇ given in
Lemma 1.

De�nition III.2. A Riemannian submanifold M⊂Σ∞ is �at at p∈M if sec-
tional curvature vanishes for any 2-subspace of TpM. M is a �at manifold
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if it is �at at any p ∈M.
A Riemannian submanifold M ⊂ Σ∞ (with the induced metric) is geodesic
at p ∈M if geodesics of the ambient space starting at p which have initial
velocity in TpM, are also geodesics of M. M is a totally geodesic manifold
if it is geodesic at any p ∈ M. Equivalently, any geodesic of M is also a
geodesic of the ambient space Σ∞.

Obviously, in this context curvature and commutativity are related; the following
proposition makes this relation explicit:

Proposition III.3. Assume M⊂ Σ∞ is a submanifold. Assume further that
M is �at and geodesic at p ∈M. Then, if X,Y ∈ TpM, p−1

2 Xp−1
2 commutes

with p−1
2 Yp−1

2

Proof. Since M is geodesic at p, the curvature tensor is the restriction of the cur-
vature tensor of Σ∞. Set X = p−1

2 Xp−1
2 , Y = p−1

2 Yp−1
2 . Then a straightforward

computation shows that

〈Rp(X,Y)Y,X〉p = −
1

4

{〈
XY2,X

〉
2

−2〈YXY,X〉
2
+

〈
Y2X,X

〉
2

}

Now X,Y ∈HR, so X = λ+a, Y = β+b, and the equation reduces to

〈Rp(X,Y)Y,X〉p = −
1

2

{
tr(a2b2)− tr((ab)2)

}
(5)

The Cauchy-Schwarz inequality for the trace tells us that curvature at p ∈ Σ∞
is always nonpositive, and it is zero if and only if a and b commute. Hence
whenever M is �at, X and Y commute for any pair of tangent vectors X,Y ∈ TpM

as stated.

Corollary III.4. Sectional curvature of Σ∞ is everywhere nonpositive.
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III.2 Convexity of the Jacobi �elds
Let J(t) be a Jacobi �eld along a geodesic γ of Σ∞. That is, J is a solution of
the di�erential equation

D2J

dt2
+Rγ(J, 
γ) 
γ = 0 (6)

Next we show that the norm of a Jacobi �eld is convex. If X,Y ∈HR are regarded
as tangent vectors of Σ∞ at the point p, then the following condition (which is a
non positive sectional curvature condition) holds (see Proposition III.3 above):
〈Rp(X,Y)Y,X〉p ≤ 0. Then

1

2

d2

dt2
〈J,J〉γ =

〈
D2J

dt2
, J

〉

γ

+

〈
DJ

dt
,
DJ

dt

〉

γ

=

= −〈Rγ(J, 
γ) 
γ,J〉γ +

〈
DJ

dt
,
DJ

dt

〉

γ

≥ 0

In other words, the smooth function t 7→ 〈J,J〉γ is convex.

But more can be said: the norm of the Jacobi �eld (and not of the square of
the norm just noted) is a convex function.

Proposition III.5. Let γ be a geodesic of Σ∞ and J a Jacobi �eld along γ.
The map t 7→ ‖J‖γ = 〈J,J〉

1
2
γ is convex.

Proof. Clearly, is su�ces to prove this assertion for a �eld J which does not
vanish. By the invariance of the connection and the metric under the action of
the group of invertible operators, it su�ces to consider the case of a geodesic
γ(t) = etX starting at 1 ∈ Σ∞ (X ∈ HR). For the �eld K(t) = e−tX/2J(t)e−tX/2

the Jacobi equation translates into

4�K(t) = K(t)X2 +X2K(t)−2XK(t)X. (7)

We may assume (since scalars are orthogonal to Hilbert-Schmidt operators) that
J⊂HSh. In this case, 〈J,J〉1/2

γ = tr(γ−1Jγ−1J)1/2 = tr(K2)1/2 = ‖K‖2

Let us prove therefore that the map t 7→ f(t) = ‖K(t)‖2 is convex, for any (non
vanishing) solution K of (7). Note that f(t) is smooth, and 
f = tr(K2)−1/2tr(K 
K).
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Then
�f = −tr(K2)−3/2tr(K 
K)2 + tr(K2)−1/2{tr( 
K2)+ tr(K�K)}.

We multiply this expresion by tr(K2)3/2 to obtain

tr(K2)3/2�f(t) = −tr(K 
K)2 + tr(K2)tr( 
K2)+ tr(K2)tr(K�K). (8)

The �rst two terms add up to a non negative number. Indeed,

tr(K 
K)2 ≤ tr(K2)tr( 
K2)

by the Cauchy-Schwarz inequality for the trace. Therefore, it su�ces to show
that tr(K�K) is non negative. Using (7),

tr(K�K) =
1

4
{tr(K2X2)+ tr(KX2K)−2tr(KXKX)} =

1

2
{tr(K2X2)− tr(KXKX)}.

This number is positive, again by the Cauchy-Schwarz inequality:

tr(KXKX) = tr((XK)∗KX)≤ tr((XK)∗XK)1/2tr((KX)∗KX)1/2 = tr(K2X2)

Corollary III.6. If γ and δ are geodesics, the map f : t 7→ dist(γ(t),δ(t)) is a
convex function of t.

Proof. Distance between γ(t) and δ(t) is given by the geodesic αt(s), obtained
as the s variable ranges in a geodesic square h(s,t) with vertices in the starting
and ending points of γ and δ, namely {γ(t0),δ(t0),γ(t1),δ(t1)}

Taking the partial derivative along the direction of s gives a Jacobi �eld J(s,t)

along the geodesic βs(t) = h(s,t) and it also gives the speed of αt. Hence

f(t) =

∫1

0
‖∂αt

∂s
(s)‖αt(s)ds =

∫1

0
‖J(s,t)‖h(s,t)ds

This equation states that f(t) can be written as the limit of a convex combination
of convex functions ui(t) = ‖J(si, t)‖h(si,t), so f must be convex itself.
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Lemma III.7. The following inequality holds for any X,Y ∈HR:

dist(eX,eY) = ‖ ln
(
eX/2e−YeX/2

)
‖2 ≥ ‖X−Y‖2 (9)

Proof. Take γ(t) = etx, δ(t) = ety and f as in the previous Corollary (by the
orthogonality of scalars we may assume that x,y ∈ HSh). Note that f(0) = 0,
hence f(t)/t≤ f(1) for any 0 < t≤ 1; hence lim

t→0+
f(t)/t≤ f(1). We assert that

f(t)/t =
1

t
‖ ln

(
etx/2e−tyetx/2

)
‖2 = tr

([
1

t
ln

(
etx/2e−tyetx/2

)]2
)1/2

,

since
1

t
ln

(
etx/2e−tyetx/2

)
=

d

dt
|t=0 ln

(
etx/2e−tyetx/2

)

and the logarithm of β(t) = etx/2e−tyetx/2 can be approximated uniformly by
polinomials pn(β) =

∑
k αn,kβk for t close enough to zero (β(0) = 1). Then

d
dtβ |t=0= x−y, and we obtain the desired inequality.
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IV Global Structure

IV.1 The exponential map
Remark IV.1. We will use the notation Expp : TpΣ∞ → Σ∞ to denote the ex-
ponential map of Σ∞. Note that Expp(V) = p

1
2 e p− 1

2 V p− 1
2 p

1
2 . Rearranging the

exponential series we get a simpler expression

Expp(V) = p ep−1V = eVp−1
p

A straightforward computation also shows that for p,q ∈ Σ∞ we have

Exp−1
p (q) = p

1
2 ln(p−1

2 qp−1
2 )p

1
2

We will prove that the di�erential of the Riemannian exponential is an analytic
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IV GLOBAL STRUCTURE

isomorphism; this is a standard result and we follow [Lang95], [McA65]:

Lemma IV.2. Let γ be a geodesic such that γ(0) = p, 
γ(0) = V. Let J be a
Jacobi �eld along a geodesic γ, with J(0) = 0 and 
J(0) = ∇ 
γJ(0) = W ∈ TpΣ∞ =

TV (TpΣ∞). Then, for any t ∈ R>0

1

t
J(t) = d

(
Expp

)
tV

(W)

Proof. Take F(t,s) = Expp (t(V + sW)). Then Fs is a geodesic for each s and
F0 = γ. Let K be the Jacobi �eld along γ given by d

ds |s=0F. Then

K(t) = d
(
Expp

)
tV

(tW) = t d
(
Expp

)
tV

(W)

Clearly K(0) = 0; on the other hand if we divide by t and take limit for t → 0+,
we get 
K(0) = d

(
Expp

)
0
(W) = Id(W) = W. By the uniqueness of the Jacobi

�elds along geodesics, it must be that K = J.

Remark IV.3. If J,K are Jacobi �elds along a geodesic γ, then
〈(

∇ 
γJ
)
(t),K(t)

〉
γ(t)

=
〈
J(t),

(
∇ 
γK

)
(t)

〉
γ(t)

+C

for some real constant C. This follows easily di�erentiating the above expression
and using the derivation property of the covariant derivative.

Lemma IV.4. The exponential map Expp : TpΣ∞ → Σ∞ has an expansive
di�erential, namely

‖d(
Expp

)
V

(W)‖Expp(V) ≥ ‖W‖p

for any p ∈ Σ∞, V ∈ TpΣ∞ and W ∈ TV (TpΣ∞) = TpΣ∞.

Proof. From the de�nition of the exponential map and the metric, together with
Lemma IV.2 and the convexity of the Jacobi �elds.
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IV.1. The exponential map

Lemma IV.5. Take p∈Σ∞, V ∈ TpΣ∞. Set q =Expp(V), Y =−P
q
p(V) (namely

Y = − 
γ(1) if γ(t) = Expp(tV)). Then
〈
d

(
Expp

)
V

(W),Z
〉
q

=
〈
W,d

(
Expq

)
Y

(Z)
〉
p

Proof. Let J(t) be the Jacobi �eld along γ such that J(1) = 0 and ∇ 
γJ(1) = Z;
let K(t) be the Jacobi �eld along γ such that K(0) = 0, 
K(0) = ∇ 
γK(0) = W. By
Remark IV.3,

〈(
∇ 
γJ

)
(1),K(1)

〉
γ(1)

=
〈
J(1),

(
∇ 
γK

)
(1)

〉
γ(1)

+C = 0+C = C

where C equals
〈(

∇ 
γJ
)
(0),K(0)

〉
γ(0)

−
〈
J(0),

(
∇ 
γK

)
(0)

〉
γ(0)

= −
〈
J(0),

(
∇ 
γK

)
(0)

〉
γ(0)

Take L the unique Jacobi �eld along β(t) = γ(1 − t) such that L(0) = 0 and
∇ 
βL(0) = Z. Then L(t) = J(1− t), so J(0) = L(1) and we get

〈Z,K(1)〉γ(1) = −〈L(1),W〉γ(0)

Since γ(0) = p and γ(1) = q = Expp(V), Lemma IV.2 gives the result.

Corollary IV.6. The Riemannian exponential Expp : TpΣ∞ → Σ∞ has a Cω

di�eomorphism for any p ∈ Σ∞; in particular, exp : HR → Σ∞ is a Cω dif-
feomorphism.

Proof. By Lemma IV.4, for each p ∈ Σ∞ and each V ∈ TpΣ∞, the di�erential
map A = d

(
Expp

)
V

is injective, has closed range and a bounded inverse on its
range. By Lemma IV.5, the adjoint map A∗ = d

(
Expp

)
V

∗ equals d
(
Expq

)
−Y

,
which has the same property. Now Ran(A) = Ran(A) = Ker(A∗)⊥ = {0}⊥, hence
A is surjective. Using the inverse map theorem for Banach manifolds [Lang95],
we obtain the result.
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Corollary IV.7. If d expX denotes the di�erential at x of the usual expo-
nential map X 7→ eX, then the following inequality holds for any X,Y ∈HR:

‖d expX(Y)‖eX = ‖e−X
2 d expX(Y)e−X

2 ‖ ≥ ‖Y‖2

Proof. Rewriting the inequality of Lemma IV.4 above for p = 1, V = X and W = Y

we obtain the result.

Corollary IV.8. For any X∈HSh, the map TX : Y 7→ e−X/2dexpX(Y)e−X/2 is
bounded, selfadjoint for the 2-inner product (when restricted to HSh) and
invertible. The inverse is contractive i.e

‖T−1
X (Z)‖2 ≤ ‖Z‖2

Proof. The map is clearly bounded and invertible, the bound for the inverse
follows from the proof of the previous Lemma. To prove that it is selfadjoint,
note that

<TX(Y),Z>2= tr(ZTX(Y))= tr


e−X/2

∑

n≥0

1

n!

∑

p+q=n−1

XpYXqe−X/2Z


 =

=
∑

n≥0

1

n!

∑

p+q=n−1

tr(e−X/2XpYXqe−X/2Z) =

=
∑

n≥0

1

n!

∑

p+q=n−1

tr(Xpe−X/2Ye−X/2XqZ) =

=
∑

n≥0

1

n!

∑

p+q=n−1

tr(e−X/2XqZXpe−X/2Y) = tr(TX(Z)Y) =< Y,TX(Z) >2

IV.2 The shortest path and the geodesic distance
We measure curves in Σ∞ using the norms in each tangent space, namely

L(α) =

∫1

0
‖ 
α(t)‖α(t) dt (10)
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IV.2. The shortest path and the geodesic distance

We de�ne the distance between two points p,q ∈ Σ∞ as the in�mum of the
lenghts of smooth curves in Σ∞ joinint p to q, namely

dist(p,q) = inf {L(α) : α⊂ Σ∞, α is smooth, α(0) = p, α(1) = q}

For any pair of elements p,q ∈ Σ∞, we have the smooth curve γpq ⊂ Σ∞

γpq(t) = p1/2
(
p−1/2qp−1/2

)t
p1/2

joining p to q (which is the unique solution of the Euler equation in Σ∞). A
straightforward computation shows that

‖ 
γpq(t)‖γpq(t) ≡ ‖ ln(p1/2q−1p1/2)‖2 = L(γpq)

Theorem IV.9. Let a,b ∈ Σ∞. Then the geodesic γab is the shortest curve
joining a and b in Σ∞, if the length of curves is measured with the metric
de�ned above (10).

Proof. Let α be a smooth curve in Σ∞ with α(0) = a and α(1) = b. We must
compare the length of α with the length of γab. Since the invertible group acts
isometrically for the metric, it preserves the lengths of curves. Thus we may
act with a−1/2, and suppose that both curves start at 1, or equivalently, a = 1.
Therefore γ1b(t) := γ(t) = etX, with X = lnb. The length of γ is then ‖X‖2.
The proof follows easily from the inequality proved in Corollary IV.7. Indeed,
since α is a smooth curve in Σ∞, it can be written as α(t) = eβ(t), with β = lnα.
Then β is a smooth curve of selfadjoint operators with β(0) = 0 and β(1) = X.
Moreover,

L(γ) = ‖X‖2 = ‖X−0‖2 = ‖
∫1

0


β(t) dt‖2 ≤
∫1

0
‖ 
β(t)‖2 dt

On the other hand, by the mentioned inequality,

‖ 
β(t)‖2 ≤ ‖e−
β(t)

2 dexpβ(t)( 
β(t))e−
β(t)

2 ‖2 = ‖dexpβ(t)( 
β(t))‖eβ(t) = ‖ 
α(t)‖α(t)
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IV GLOBAL STRUCTURE

Thus,
L(γ)≤

∫1

0
‖ 
α(t)‖α(t) dt = L(α)

Remark IV.10. The geodesic distance induced by the metric is given by

dist(a,b) = ‖ ln(
a−1/2ba−1/2

)‖2

Corollary IV.11. The sum of the inner angles of any geodesic triangle in
Σ∞ is less or equal than π

Proof. The previous remark, inequality (9) in Lemma III.7, together with the
invariance of the metric for the action of the group of invertible operators, leads
to

l2i ≥ l2i+1 + l2i−1 −2li+1li−1 cos(αi) (11)

squaring both sides of the inequality. Here li (i=1,2,3) are the sides of any
geodesic triangle and αi is the angle opposite to li. These inequalities show that
we can construct an Euclidian triangle in the a�ne plane with sides li. For this
Euclidian triangle with angles βi (opposite to the side li) we have

l2i = l2i+1 + l2i−1 −2li+1li−1 cos(βi)

This equation together with inequality (11) imply that the angle βi is bigger
than αi for i = 1,2,3. Adding the three angles we have

α1 +α2 +α3 ≤ β1 +β2 +β3 = π

As a corollary of these inequalities we obtain the completeness of the metric
space (Σ∞,dist), where dist is the geodesic distance:

Proposition IV.12. Σ∞ is a complete metric space with the distance induced
by the minimizing geodesics.
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IV.2. The shortest path and the geodesic distance

Proof. Consider a Cauchy sequence {pn} ⊂ Σ∞. Again by virtue of inequality
(9) of Lemma III.7, Xn = ln(pn) is a Cauchy sequence in HR. Since Hilbert-
Schmidt operators are complete with the trace norm, there is a vector X ∈ HR
such that Xn → X in the trace norm. As the inverse map, the exponential map,
the product and the logarithm are all analytic maps with respect to the trace
norm, dist(pn,eX) = ‖ ln(eX/2e−XneX/2)‖2 → 0 when n → ∞.
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V Convex Submanifolds

Convex sets are particulary useful in geometry, and play a major role in the
theory of hyperbolic (i.e. nonpositevely curved) spaces.

V.1 De�nitions
De�nition V.1. A set M⊂ Σ∞ is geodesically convex (also totally convex, or
convex) if given any two points p,q ∈M, the unique geodesic of Σ∞ joining
p to q lays entirely in M.

Note that convex sets are connected. We refer the reader to Chapter IV, Section
5 of [SakT96] for a discussion of the di�erent kinds of convex (strong, local, total)
Riemannian objects. However, in our context, all de�nitions agree, because Σ∞
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V CONVEX SUBMANIFOLDS

is complete and for any two points there exists a unique normal (i.e. unit speed)
geodesic joining them (which is clearly minimizing).

De�nition V.2. A Riemannian submanifold M ⊂ Σ∞ is complete at p ∈M

if ExpM
p is de�ned in the whole tangent space and maps onto M. We say

that M is a complete manifold if it is complete at any pont.

Remark V.3. Note that M is geodesic at p if and only if ExpM
p = Expp. In

particular ExpM
p is de�ned in the whole TpM. So if M is geodesic at p, then M

is complete at p if and only if for any point q ∈M, there is a geodesic γ of M

joining p to q (in other words, if ExpM
p = Expp maps onto M).

Remark V.4. Σ∞ is complete; moreover, Expp is a di�eomorphism onto Σ∞ for
each p ∈ Σ∞. The reader should be careful with other notions of completeness,
because, as C.J. Atkin shows in [Atkin75] and [Atkin97], Hopf-Rinow's theorem
does not necessarily hold in (in�nite dimensional) Banach manifolds.

These previous notions are strongly related, as the following proposition shows:

Proposition V.5. Let M ⊂ Σ∞ be a Riemannian submanifold of Σ∞ (with
the induced metric). Then

M geodesically convex ⇐⇒ M complete and totally geodesic

Proof. The proof of (⇐) is trivial; let's prove (⇒). To see that M is complete,
take p,q ∈ M. Then there exists a geodesic α of Σ∞ joining p to q, α ⊂ M.
Among curves in M joining p to q, α is the shortest. So α is a critical point of
the variational problem in M, hence a geodesic of M. To see that M is totally
geodesic, take γ a geodesic of M joining p to q. By virtue of the convexity,
there is a geodesic α of Σ∞ joining p to q; by the preceding argument α is also
a geodesic of M. We can assume that q is close enough to p for the exponential
map of M to be an isomorphism, and in this situation, geodesics are unique, so
α = γ is a geodesic of Σ∞.
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V.2. An intrinsic characterization of convexity

Remark V.6. The reader should be aware of the fact that the concept of con-
vexity is strong, and completely general (M does not need to have the induced
submanifold metric, in fact, for the de�nition of geodesically convex to make
sense, it is not necessary for M to have any manifold structure at all).

V.2 An intrinsic characterization of convexity
As always, [ , ] denotes the usual commutator of operators in L(H). To deal with
convex sets the following de�nition will be useful:

De�nition V.7. We say that a subspace m ⊂ HR is a Lie triple system if
[[A,B],C] ∈m for any A,B,C ∈m.

Remark V.8. Note that whenever a,b,c are selfadjoint operators, d = [a, [b,c]]

is also a selfadjoint operator. So, for any algebra of operators a⊂HC, m = Re(a)

is a Lie triple system in HR. This is also true for a Lie algebra of operators a.

Remark V.9. Assume M ⊂ Σ∞ is a submanifold such that 1 ∈ M, and M is
geodesic at p = 1. Then T1M is a Lie triple system, because the curvature
tensor at p = 1 is the restriction to T1M of the curvature tensor of Σ∞, and
R1(X,Y)Z = −1

4 [[X,Y],Z].

This particular condition on the tangent space turns out to be strong enough to
ensure convexity; this result is standard:

Theorem V.10. Assume m⊂HR is a closed subspace, set M = exp(m)⊂ Σ∞
with the induced topology and Riemannian metric.

If m is a Lie triple system, then p,q ∈M ⇒ pqp ∈M

Proof. As Pierre de la Harpe pointed out, the proof of G.D. Mostow for ma-
trices in [Mos55] can be translated to Hilbert-Schmidt operators without any
modi�cation: we give a sketch of the proof here. We assume p = eX, q = eY with
X,Y ∈ HSh.
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V CONVEX SUBMANIFOLDS

Set DX :HS→HS, DX = LX −RX, the di�erence between left and right multipli-
cation by X in HS (which is clearly a bounded linear operator from HS to HS).
First we establish the identity

TX(Y) = sinhc(DX/2)(Y) (12)

where TX is the map from Corollary IV.8, and sinhc(Z)=
sinh(Z)

Z =
∑

n≥0
Z2n

(2n+1)!

is an entire function. Note that sinhc(Z) = eZ−e−Z

2Z . To prove (12), we take
derivative with respect to t in the identity X(t)eX(t) = eX(t)X(t), where X(t) =

X+ tY; after rearranging the terms we come up with
(
eDX/2 − e−DX/2

)
Y = DX ◦TX(Y)

Note that if DX were invertible, we would be set; this is clearly not the case.
However, D2

X = DX◦DX is selfadjoint when restricted to HSh, and since TX is also
sefaldjoint (cf Corollary IV.8), the operator T = TX −sinhc(DX/2) is selfadjoint
on HSh (note that sinhc(Z) involves only even powers of Z). The equation above
says that we have proved that DX ◦ T(Y) = 0 for any Y ∈ HS; in other words T

maps HSh into {X} ′ = {b∈HSh : bX=Xb}. A straightworward computation shows
that Tb = 0 for any b ∈ {X} ′, which proves equation (12) since T is selfadjoint.
Now for X,Y ∈ m consider the curve eα(t) = etXeYetX. Clearly α(0) = Y ∈ m;
we will prove that α obeys a di�erential equation in HSh which has a �ow that
maps m into m, and with that we will have eα(1) = eXeYeX ∈ em = M.
Di�erentiating at t = t0 the equation yields to

Xeα(t0) + eα(t0)X = dexpα(t0)( 
α(t0)) =
d

ds
|s=0 exp(α(t0)+ s 
α(t0)) =

= eα(t0)/2Tα(t0)( 
α(t0))eα(t0)/2 = eα(t0)/2 · sinhc(Dα(t0)/2)( 
α(t0)) · eα(t0)/2

Note that sinhc(Z) is invertible whenever Z is a bounded linear operator, and
also that the power series for Zcoth(Z/2) involves only even powers of Z; hence


α = senhc−1(Dα/2)◦ (e−α/2Xeα/2 + eα/2Xe−α/2) =

= senhc−1(Dα/2)◦ (Reα/2Le−α/2 +Re−α/2Leα/2)X =
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V.2. An intrinsic characterization of convexity

= senhc−1(Dα/2)◦ (Deα/2 +De−α/2)(X) =

= senhc−1(Dα/2)◦ (eDα/2 + e−Dα/2)(X) =

= Dα coth(Dα/2)(X) =
∑
n

cnD2n
α X =

=
∑
n

cnD2
α ◦ · · · ◦D2

α(X) = F(α)

Since D2
Z(X) = [Z, [Z,X]], F(Z) =

∑
n cnD2n

Z (X) can be regarded as a map from m

to m, and since it is clearly an analytic map of HS into HS, it ful�lls a Lipschitz
condition. Now the unique solution must be α(t) = ln(etXeYetX) ⊂ m. Hence
eα(1) = pqp ∈M and the claim follows.

Corollary V.11. Assume M = exp(m)⊂ Σ∞ as above, and m is a Lie triple
system. Then M is geodesically convex.

Proof. Take p,q ∈ M. Then p = eX, q = eY with X,Y ∈ m. If we set r =

e−X/2eYe−X/2, then r ∈ M because e−X/2 and eY are in M. Moreover, Z =

ln(r) ∈m. But the only geodesic of Σ∞ joining p to q is

γ(t) = eX/2etZeX/2, so γ⊂M

Corollary V.12. Assume m⊂HR is a closed abelian subalgebra of operators.
Then the manifold M = exp(m)⊂Σ∞ is a closed, convex and �at Riemannian
submanifold. Moreover, M is an open subset of m and an abelian Banach-
Lie group.

Proof. The �rst assertion follows from the fact that m is a Lie triple system.
Curvature is given by commutators, hence M is �at. Since m is a closed subal-
gebra, eX =

∑ Xn

n! ∈ m for any X ∈ m, so M ⊂ m. That M is open in m follows
from Corollary IV.6.

Corollary V.13. Assume M = exp(m) is closed and �at. If M is geodesic at
p = 1, then M is a convex submanifold. Moreover, M is an abelian Banach-
Lie group and M is an open subset of m.
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Proof. If M is geodesic and �at at p = 1, T1M = m is abelian (by Proposition
III.3). Now we can apply the previous corollary.

The de�nition of symmetric space we adopt is the usual de�nition for Riemannian
manifolds, see the book [Hel62] by Sigurdur Helgason:

De�nition V.14. A Hilbert manifold M is called a globally symmetric space
if each point p ∈ M is an isolated �xed point of an involutive isometry
sp : M → M. The map sp is called the geodesic symmetry at p.

Theorem V.15. Assume M = exp(m) is closed and geodesically convex. Then
M is a symmetric space; the geodesic symmetry at p ∈ M is given by
sp(q) = pq−1p for any q ∈M. In particular, Σ∞ is a symmetric space.

Proof. Observe that, for p = eX, q = eY , sp(q) = eXe−YeX; this shows that sp

maps M into M. To prove that sp is an isometry, consider the geodesic αV of
M such that α(0) = q and 
α(0) = V . Then α(t) = qetq−1V and

dq(sp)(V) =
d

dt
|t=0(sp ◦αV) = −pq−1Vq−1p

Since M has the induced metric, ‖pq−1Vq−1p‖2
pq−1p

= ‖V‖2
q by Lemma II.6

(with g = pq−1). In particular, dpsp = −id, so p is an isolated �xed point of sp

for any p ∈M.

Theorem V.10 and its corollaries imply that Σ∞ (as any symmetric space) con-
tains plenty of convex sets; in particular

Remark V.16. We can embed isometrically any k-dimensional plane in Σ∞ as a
geodesically convex, closed submanifold: take an orthonormal set of k commuting
operators (for instance, �x an orthonormal basis {ei}i∈M of H, and take pi =

ei⊗ei, i = 1, · · · ,k), now take the exponential of the linear span of this set . In
the languaje of symmetric spaces, we are saying that rank(Σ∞) = +∞.

Following the usual notation for symmetric spaces, we set I0(M)=the connected
component of the identity of the group of isometries of M.
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V.2. An intrinsic characterization of convexity

Remark V.17. Assume 1 ∈ M ⊂ Σ∞ is closed and convex. Then, since any
isometry ϕ is uniquely determined by its value at 1∈M and its di�erential d1ϕ,
I0(M) carries a natural structure of Banach-Lie group (this result was proved by
J. Eells in the mid 60's, [Eells66]). Moreover, the Lie algebra of I0(M) identi�es
naturally whith the Killing vectors of M. We can be more precise in this context:
take ϕ ∈ I0(M), and consider

ϕ (q) = ϕ(1)
1
2 ·ϕ(q) ·ϕ(1)

1
2 .

Note that d1ϕ is a unitary operator of T1M = m (with the natural Hilbert-
space structure), so there is an inclusion J : I0(M) ↪→ M×U (L(m)) given by
ϕ 7→ (ϕ(1),d1ϕ). We will see later that the unitary operators of the form x 7→
gxg∗ (inner automorphisms) are enough to act transitively on M (g must be in
GM, see Theorem V.29).

Theorem V.18. Assume M = exp(m) is closed and geodesically convex. Then
I0(M) acts transitively on M.

Proof. Take p = eX, q = eY two points in M and γ(t) = petp−1V the geodesic
joining p to q. Note that p = γ(1) = pep−1V = evp−1

p. If we consider the curve
of isometries ϕt = sγ(t/2) ◦ sp, since ϕ0 = id, then ϕt ⊂ I0(M). Now

ϕ1(p) = e1
2Ve−XeXe−X e1

2Ve−XeX = eVe−XeX = q

which proves that I0(M) acts transitively on M.

Remark V.19. If M = exp(m) is closed and convex, in particular it is geodesic
at p for any p ∈M, so TpM = Exp−1

p (M) = {p
1
2 ln(p−1

2 qp−1
2 )p

1
2 : q ∈M} (see

Remark IV.1). This observation together with Theorem V.10 proves the identi-
�cation

TpM = p
1
2 (T1M)p

1
2 = p

1
2 mp

1
2

From previous identi�cations of the tangent space it follows easily (see Remark
II.2) that an operator V ∈ HR is orthogonal to M at p (that is, V ∈ TpM⊥) if
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V CONVEX SUBMANIFOLDS

and only if
〈
p−1

2 Zp−1
2 , V

〉
2

=
〈
p−1

2 V p−1
2 ,Z

〉
2

= 0 for any Z ∈m

In particular, T1M⊥ = m⊥ = {V ∈HR : 〈V,Z〉
2

= 0 for any Z ∈m}.

Remark V.20. Note that when m is a closed commutative associative subalgebra
of HR, p

1
2 = eX/2 ∈ m, which also iplies that the map Y 7→ p

1
2 ·Y ·p1

2 is a linear
automorphism of m; so TpM = m = T1M in this case (for any p ∈M). This also
follows easily from Corollary V.12. Clearly,

TpM⊥ = T1M⊥ = m⊥ for any p ∈M

Remark V.21. Assume M ⊂ Σ∞ is geodesically convex. Then, if γ is the
geodesic joining p to q, the isometry ϕt = sγ(t/2) ◦sp translates along the curve
γ, namely

ϕt(γ(u)) = p e t
2p−1V ·p−1 ·p eup−1V ·p−1 ·p e t

2p−1V =

= p e t
2p−1V · eup−1V · e t

2p−1V = p e(u+t)p−1V = γ(u+ t)

Now take any tangent vector W ∈ Tγ(u)M, and set

W(t) := (dϕt)γ(u)(W) = e t
2Vp−1 ·W · e t

2p−1V

Then W(t) is the parallel translation of W from γ(u) to γ(u+t); namely ∇ 
γ W≡
0 (this follows from a straightforward computation using equation (II.5))

We conclude that the map (dϕt)γ(u) : Tγ(u)M → Tγ(u+t)M gives parallel trans-
lation along γ, namely (dϕt)γ(u) = Pt+u

u (γ). In particular, since q = γ(1) =

p
1
2 ep− 1

2 Vp
1
2 p

1
2 ,

W 7→ p
1
2 (p−1

2 qp−1
2 )

1
2 p−1

2 ·W ·p−1
2 (p−1

2 qp−1
2 )

1
2 p

1
2

gives parallel translation from TpM to TqM.

Remark V.22. It should also be noted that the exponential map of M (whenever
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V.2. An intrinsic characterization of convexity

M is a convex submanifold) is the restriction to TpM of the exponential map
Expp : TpΣ∞ → Σ∞, hence it is a Cω di�eomorphism from TpM to M for any
p ∈M; in particular, when M = exp(m), exp : m → M is a Cω di�eomorphism.

V.2.1 A few examples of convex sets
We list several Lie triple systems of HR; for some of them we show in this
manuscript an explicit factorization theorem. The general factorization theorems
(Theorem VI.11, Theorem VI.12 and Theorem VI.13) apply for any of these (to
be precise, to their closures in the trace norm):

1. For any subspace s⊂HR, the subspace ms = {X ∈HR : [X,Y] = 0 ∀ Y ∈ s} is
a Lie triple system.

2. In particular, for any Y ∈ HR, mY = {X ∈ HR : [X,Y] = 0} is a Lie triple
system.

3. The family of operators in HR which act as endomorphisms of a closed
subspace S⊂H form a Lie triple system in HR.

4. Any norm closed abelian subalgebra of HR is a Lie triple system, in partic-
ular

(a) The diagonal operators (see section VII). This is a maximal abelian
closed subspace of HR, hence the manifold ∆ (which is the exponential
of this set) is a maximal �at submanifold of Σ∞.

(b) The scalar manifold Λ = {λ ·1 : λ ∈ R>0} is the exponential of the Lie
triple system R ·1⊂HR.

(c) For �xed a ∈ HSh, the real part of the closed algebra generated by a,
which is the closure in the 2-norm of the set of polynomials in a.

5. The real part of any Lie subalgebra of HC is a Lie triple system (in partic-
ular: the real part of any associative Banach subalgebra).

6. Any real Banach-Lie algebra g with a compatible Riemannian product in-
variant under inner automorphisms has a complexi�cation which leads to
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V CONVEX SUBMANIFOLDS

the structure of an L∗-algebra, and any L∗-algebra can be embedded as a
closed Lie subalgebra of HS (see [CGM90] and [Neh93]).

7. If G is a simply connected semisimple locally compact Lie group, then any
irreducible representation of C∗(G) into L(H) maps CK(G) (the continous
functions with compact support) into HS (see [Bag69]). This inclusion is
also true for any irreducible subrepresentation of the left regular represen-
tation of a unimodular group G.

V.3 Convex manifolds as homogeneous spaces

De�nition V.23. A Banach-Lie group is a group G together with a compat-
ible Banach manifold structure. If G is a Banach-Lie group, we say K⊂G

is a Lie subgroup if K is a subgroup of G which is also a split-embedded
submanifold (hence a closed subgroup) of G.

We recall (for a proof, see for instance [Lang95] or [Lar80]) a result for quotients
of Banach-Lie groups:

Theorem V.24. Let G be an analytic Banach-Lie group, and K a Banach-
Lie subgroup. Then on the left cosets space G/K there exists a unique
analytic manifold strutcture such that the projection is a submersion. The
canonical action G×G/K → G/K is analytic.

For any Banach algebra B, we will denote GL(B) the group of invertible elements.
Note that this group has a natural structure of manifold as an open set of the
algebra, so GL(B) is always a Banach-Lie group with Lie algebra B.

Remark V.25. The group GL(HC), having the homotopy type of the inductive
limit of the groups GL(n,C) (see [Har72], section II.6) is connected; moreover,
there is a homotopy equivalence

GL(HC)' S1×S1×SU(∞)

Here SU(∞) stands for the inductive limit of the groups SU(n,C)

44



V.3. Convex manifolds as homogeneous spaces

The following result is standard in �nite dimension (see for instance, [Hel62]);
we say that G is a selfadjoint subgroup of GL(HC) (G∗ = G) if g∗ ∈G whenever
g ∈ G. Note that G is selfadjoint i� g∗ = g, where g denotes the Lie algebra of
the Lie group G.
We will use | x |=

√
xx∗ to denote the modulus of an element x ∈ B (as usual, B

is an involutive Banach algebra).

Theorem V.26. Fix a connected Lie subgroup G⊂GL(HC) such that G∗ = G.
Let P be the analytic map

P : GL(HC) → GL(HC) where g
P7−→gg∗ =| g |2

If K denotes the isotropy group of P (namely K = P−1(1)∩G with the induced
analytic structure), then g = p⊕ k, where k is the Lie algebra of K and p are
the selfadjoint elements of g. In particular, K is a Lie subgroup of G.

Proof. Note that σ(g) = g∗ is involutive so its di�erential at g = 1 gives an
involution Θ of g that induces the desired splitting of the Lie algebra of G. Now
K is a Lie subgroup because the Lie algebra splits.

Remark V.27. For M = exp(m) a geodesically convex closed manifold in Σ∞,
consider

[m,m] = span{[A,B] : A,B ∈m} =

{∑

i∈F

[Ai,Bi] : Ai,Bi ∈m; F a �nite set
}

Note that all the operators in [m,m] are skewadjoint. Set gM = m⊕ [m,m]. Then
gM is a closed Lie subalgebra of HC because m is a Lie triple system (see [Hel62]).
Since HC is a Hilbert space and gM is closed, the Lie algebra splits: it follows
that gM is integrable (see [Lang95]). Let GM be the connected Lie subgroup of
GL(HC) corresponding to the Lie algebra gM.
Since (A+[B,C])∗ = A+[C,B] for any A,B,C∈m, then M⊂GM and G∗

M = GM.
It is also clear that k = [m,m] (in the notation of Theorem V.26). GM is the
smallest Lie group containing M.
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V CONVEX SUBMANIFOLDS

The elements of M are indeed the positive elements of GM, and the elements
of K the unitary operators of GM; we prove it below. Note that when m is an
abelian Lie subalgebra, gM = m and also GM = M⊂m is an open set.

Lemma V.28. With the notation of the previous remark and the hypothesis
of Theorem V.26, we have P(GM)⊂M.

Proof. Since gM splits, there are neighbourhoods of zero Um ⊂m and Uk ⊂ k =

[m,m] such that the map Xm + Yk 7→ eXmeYk is an isomorphism from Um⊕Uk

onto an open neighbourhood VM of 1 ∈ GM. Clearly, the group generated by
VM is open (and closed) in GM, and so is the whole of GM. So, for any g∈GM,

g = (eX1eY1)α1 · · ·(eXneYn)αn

for some selfadjoint operators Xi ∈Um, some skewadjoint operators Yi ∈Uk, and
αi = +1.

Now eXeYeX ∈ M whenever X,Y ∈ m (see Theorem V.10), so mere inspection
of the expression for P(g) = gg∗ shows that P(g) will be in M if we can prove
that eYeXe−Y ∈ M whenever X ∈ m and Y ∈ k (namely, if we can prove that
kMk∗ ⊂M for any k ∈ K). It will be enough to show this holds for X ∈ m and
Y =

∑
i[Ai,Bi] ∈ [m,m] because M is closed. We assert that this is true, but to

avoid cumbersome notations we write the proof for Y = [A,B]. The proof of the
general case is identical.

Consider the map F : HR → HR given by F(z) = [[A,B],z]. Since F maps m into
m, the �ow of F in m stays in m, so the ordinary di�erential equation 
X(t) =

F(X(t)) has unique solution in m if X(0) ∈m is given (see [Lang95]). Take α(t) =

e t[A,B]X e−t[A,B]. Then α(0) = X ∈m; moreover


α(t) = e t[A,B][[A,B],X] e−t[A,B] = [[A,B],e t[A,B]X e−t[A,B]] = F(α(t))

which proves that α(t) ∈m for any t≥ 0. In particular,

α(1) = e [A,B]X e−[A,B] ∈m

46



V.3. Convex manifolds as homogeneous spaces

As e [A,B] is a unitary operator, exponentiating both sides leads to

e [A,B]eX e−[A,B] ∈M

The previous lemma will be used to prove the �rst of the following results:

Theorem V.29. If M = exp(m) is convex and closed, and GM ⊂ GL(HC) is
the connected Lie subgroup with Lie algebra gM = m⊕ [m,m], then

(a) P(GM) = M, so M is a homogeneous space for GM.

(b) For any g =| g | ug (Cauchy polar decomposition) in GM, we have

| g |=
√

gg∗ ∈M⊂GM,

and also ug ∈ K⊂GM where K is the isotropy Lie subgroup
K = {g ∈GM : gg∗ = 1} with Lie algebra k = [m,m]

In particular, GM has a polar decomposition

GM 'M×K = P(GM)×U(GM)

(c) M = P(GM)'GM/K

(d) M has nonpositive sectional curvature.

(e) For g ∈GM, consider Ig(r) = grg∗. Then I : GM → I0(M).

(f) Take p,q ∈ M, and set g = p
1
2 (p−1

2 qp−1
2 )

1
2 p−1

2 ∈ GM. Then Ig is an
isometry in I0(M) which sends p to q, namely GM acts transitively
and isometrically on M.

Proof. Since any p ∈M is the exponential of some X ∈ m, we get p = P(eX/2),
which proves that M⊂ P(GM); the other inclusion is given by Lemma V.28.
To prove (b), note that P(GM) = M = exp(m); namely for any g ∈ GM, gg∗ =

P(g) ∈ M; hence gg∗ = eX0 for some X0 ∈ m which implies that | g |= eX0/2 ∈
M⊂GM. By de�nition, ug =| g |−1 · is an element of GM (and clearly ug ∈ K).
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V CONVEX SUBMANIFOLDS

Statement (c) follows from Theorem V.26, Remark V.27 and statement (b).
The assertion in (d) follows from (a) and the fact that M is totally geodesic,
together with equation (5) in the proof of Proposition III.3.
To prove (e) , note that Ig is an isometry of M because M has the induced
metric so Lemma II.6 applies; from Lemma V.28 we deduce that kMk∗ ⊂M for
any k ∈ K; from Theorem V.10 and statement (b) follows easily that Ig maps M

into M; since GM is connected, we have the assertion.
Statement (f) follows from statement (e) and the proof of Theorem V.18.

From folk results (or from the classi�cation of L∗-algebras, see [Neh93] and
[CGM90]) follows that

[HS,HS] = HS and [HSh,HSh] = iHSh,

so taking m = HR = R⊕HSh we get k = iHSh, hence gM = R⊕HS = HC/iR,

hence

GΣ∞ = GL(HC)/S1 = {α+a ; α ∈ R>0, a ∈ HS and −α /∈ σ(a)}

In the preceding line σ(a) denotes the spectrum of a as an element of L(H).
Clearly P(GΣ∞) = P(GL(HC)) = Σ∞ since any positive invertible operator has an
invertible square root. On the other hand it is also obvious that the isotropy
group K equals U(HC) (the unitary group of HC, see section X), so

Corollary V.30. There is an analytic isomorphism given by polar decom-
position

Σ∞ 'GL(HC)/U(HC)

The manifold of positive invertible operators Σ∞ is a homogeneous space
for the group of invertible operators GL(HC), which acts isometrically and
transitively on Σ∞.

This last statement is well known, and Theorem V.29 can be seen as a natural
generalization in this context.
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VI Factorization Theorems

Combining the usual theory of Hadamard manifolds with some ad-hoc techniques
for the in�nite-dimensional context, we shall prove that given a geodesically
convex closed submanifold M of Σ∞, there is a unique geodesic γ joining p and
M, such that the length of γ is exactly the distance between p and M.

VI.1 Geodesic projection

We will use the �rst and second variation formulas for curves in Riemannian
manifolds; we refer the reader to [Lang95].

Proposition VI.1. Let M be a geodesically convex subset of Σ∞, and let
p ∈ Σ∞. Then there is at most one normal geodesic γ of Σ∞ joining p and
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VI FACTORIZATION THEOREMS

M such that L(γ) = dist(p,M). In other words, there is at most one point
q ∈M such that dist(p,q) = dist(p,M).

Proof. Suppose there are two such points, q and r ∈ M, joined by a geodesic
γ3 ∈M, such that L(γ1) =dist(p,q) = L(γ2) =dist(p,r) = d(p,M). We construct
a proper variation of γ≡ γ1, which we call Γs.
The construction follows the �gure below, where

σs(t) = σ(s,t) = p
1
2

[
p−1

2 q
1
2

(
q−1

2 rq−1
2

)s
q

1
2 p−1

2

]t
p

1
2

is the minimal geodesic joining p with γ3(s).

Γ(s,t) =





σ(s,t) if 0≤ t≤ 1

γ3 (s(2− t)) if 1≤ t≤ 2

Note that

γ(t) = Γ(0,t) =

{
σ(t,0) if 0≤ t≤ 1

q if 1≤ t≤ 2
=

{
γ1(t) if 0≤ t≤ 1

q if 1≤ t≤ 2

so

γ(t) =

{

γ1(t) if 0≤ t≤ 1

0 if 1≤ t≤ 2

Also note that the variation vector �eld (which is a piecewise Jacobi �eld for
the curve γ) is given by equations

V(t) =
∂Γ

∂s
(t,0) =





∂σ
∂s (t,0) if 0≤ t≤ 1

(2− t) 
γ3(0) if 1≤ t≤ 2

If ∆i 
γ denotes the jump of the tangent vector �eld to γ at ti, namely 
γ(t+
i )−


γ(t−
i ), and Γ is a proper variation of γ, then the �rst variation formula for
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VI.1. Geodesic projection

γ : [a,b] → Σ∞ reads

‖ 
γ‖ d

ds
|s=0L(Γs) = −

∫b

a
〈V(t),Dt 
γ(t)〉dt −

k−1∑

i=1

〈V(ti),∆i 
γ〉

where Dt stands for the covariant derivative.
In this case, Dt 
γ is zero in the whole [0,2], because γ consists (piecewise) of
geodesics. The jump points are t0 = 0, t1 = 1 and t2 = 2, so the formula reduces
to

‖ 
γ‖ d

ds
|s=0L(Γs) = −〈V(1),∆1 
γ〉

Thus, we get
〈 
γ3(0), 
γ1(1)〉=

d

ds
|s=0L(Γs)‖ 
γ‖

Recall that γ3 ⊂M, and that γ1 is minimizing. Then the right hand term is
zero, which proves that γ1 and γ3 are orthogonal at q. Similarly, γ2 and γ3 are
orthogonal at r.
Hence, the sum of the three inner angles of this geodesic triangle is at least π.
It follows from Lemma IV.11 that the angle at p must be null, which proves that
γ1 and γ2 are the same geodesic, and uniqueness follows.

Now, we consider the problem of the existence of the minimizing geodesic. We
can rephrase the problem in the following way:

Theorem VI.2. Let M be a geodesically convex submanifold of Σ∞, and p a
point of Σ∞ not in M. Then existence of a geodesic joining p with M such
that L(γ) = dist(p,M) is equivalent to the existence of a geodesic joining p

with M with the property that γ is orthogonal to M.

Proof. In fact, the existence of such a geodesic is equivalent to the existence of a
point qp ∈M such that dist(p,M) = dist(p,qp), and we will show that if q ∈M

is a point such that γqp is orthogonal to M at q, then dist(q,p) = dist(M,p).
The other implication follows from the uniqueness theorem.
For this, consider the geodesic triangle generated by p,q and d, where d is any
point in M di�erent form q. As γqp is orthogonal to TqM, it is, in particular,
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VI FACTORIZATION THEOREMS

orthogonal to γqd. Then, by virtue of the hyperbolic Cosine Law (equation
(11)), we have

L(γdp)2 ≥ L(γqp)2 +L(γqd)2 > L(γqp)2

which implies dist(q,p) < dist(d,p).

We conclude that the existence problem is equivalent to the question:

� Is NM, the normal bundle of M, di�eomorphic to the whole Σ∞, via the
exponential map?

The answer to the local version of this question is yes, by virtue of the inverse
function theorem. The reader can �nd the Banach space version of such theorem
in [Lang95].

Lemma VI.3. Set E : NM → Σ∞, the map which assigns (q,V) 7→ Expq(V).
Then there is an open neighbourhood M⊂Ωε ⊂ Σ∞ such that Ωε ⊂ E(NM)

and Ωε is Cω di�eomorphic to the open tube {(p,V) : ‖V‖p < ε}⊂NM.

Proof. With the proper identi�cations, the di�erential of E at (1,0) ∈ NM is
the identity map because T1M⊕T1M⊥ = T1Σ∞. The inverse map theorem gives
a local neighbourhood, and the invariance of the metric for the maps Ip : X 7→
p

1
2 Xp

1
2 (p ∈M) gives the desired tube.

Remark VI.4. Clearly E(NM)⊂Σ∞ is the set of points in Σ∞ with the following
property: there is a point q ∈M such that dist(q,p) = dist(M,p).

Note that the map ΠM : E(NM) → M, which assigns to p ∈ E(NM) the unique
point q ∈M such that dist(q,p) = dist(M,p) is injective. This map is obtained
via a geodesic that joins p and M, and this geodesic is orthogonal to M, therefore
we will call ΠM(p) the foot of the perpendicular from p to M.

Theorem VI.5. The map ΠM is a contraction, namely

dist(ΠM(p),ΠM(q))≤ dist(p,q)

52



VI.1. Geodesic projection

Proof. We may assume that p,q /∈ M, and that ΠM(p) 6= ΠM(q). If γp is a
geodesic that joins ΠM(p) to p and γq is a geodesic that joins ΠM(q) to q, set

f(t) = dist(γp(t),γq(t))

Note that f(0) = d(ΠM(p),ΠM(q)) and f(1) = dist(p,q). We also know that f is
a convex function of t (Corollary III.6). If we prove that f ′(0)≥ 0, it will follow
that f is monotone increasing, and we will have proved the assertion.
Take a variation σ(t,s), being σt(s) the unique geodesic joining γp(t) to γq(t).
Then σ(t,0) = γp(t), σ(t,1) = γq(t), σ(0,s) = γ(s) is the geodesic joining ΠM(p)

to ΠM(q) (which is contained in M by virtue of the convexity), and �nally σ(1,s)

is the geodesic joining p to q. This construction is better shown in the following
�gure:

Note that f(t) = L(σt). We apply the �rst variation formula to this particular
σ, to get

‖ 
γ‖ d

dt
|t=0L(σt) = −

∫1

0
〈V(s),Ds 
γ(s)〉ds + 〈V(1), 
γ(1)〉− 〈V(0), 
γ(0)〉

The fact that γ is a geodesic and observation of the �gure above reduces the
formula to

‖ 
γ‖ f ′(0) = −〈V(1),− 
γ(1)〉+ 〈−V(0), 
γ(0)〉
Looking at the �gure also shows that V(0) = 
γp(0), V(1) = 
γq(0). Recalling that
the angles at M are right angles, we get f ′(0) = 0.
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VI FACTORIZATION THEOREMS

Remark VI.6. In the preceding proof, f ′(0) = 0 implies that it is exactly in
this geodesic joining the projections that the distance between the projecting
geodesics is minimal. This is related with the fact that Σ∞ is a symmetric
manifold. There is an alternate proof for the fact that f ′(0) = 0, which involves
nothing but a little bit of the Riesz functional calculus; we include it because
we think the proof shows in what extent this result can be translated to other
algebras of operators such as a von Neumann algebra with a faithful trace (where
the Riemannian structure is not necessarily complete in the metric sense). See
Remark XI.5. For simplicity we assume that M = exp(m) where m ⊂ HSh is a
closed Lie triple system.

Proof. Let's consider the square of the distance function

f2(t) = dist2(γp(t),γq(t)) = dist2(ExpΠM(p)(tV),ExpΠM(q)(tW))

Naming r = ΠM(p), s = ΠM(q), recall that

γp(t) = r
1
2 etr− 1

2 Vr− 1
2
r

1
2 γq(t) = s

1
2 ets− 1

2 Ws− 1
2
s

1
2

Since V ∈ (TrM)⊥ and W ∈ (TsM)⊥, we have

< V,r
1
2 Xr

1
2 >r= tr

(
Xr−1

2 Vr−1
2

)
= 0 for any X ∈m = T1M and

< W,s
1
2 Ys

1
2 >s= tr

(
Ys−1

2 Ws−1
2

)
= 0 for any Y ∈m = T1M

(13)

Now we use the formula dist(eA,eB) = ‖ ln(eA/2e−BeA/2)‖2 for A = ln(γp(t))

and B = ln(γq(t)), to write

f2(t) = ‖ ln(γ
1
2
pγ−1

q γ
1
2
p)‖2

2 = tr

(
ln2(γ

1
2
pγ−1

q γ
1
2
p)

)

Now assume that C is a simple, positively oriented curve in C, around the spec-
trum of α0 = r

1
2 s−1r

1
2 . Then we can use the Cauchy formula to calculate ln2(a)
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VI.1. Geodesic projection

for any element a ∈HC such that σ(a)⊂ int(C), namely

ln2(a) =
1

2πi

∫

C
ln2(z)(z−a)−1dz (14)

Naming α(t) = γ
1
2
p(t)γ−1

q (t)γ
1
2
p(t), this formula holds true for α0 = α(0) and for

α(t) for t su�ciently small, since α is a smooth function of t and the spectrum
is a lower semicontinuous function.

Note that

f2(t) = tr
(
γ−1

2 (t)γ
1
2 (t) ln2(α(t))

)
= tr

(
γ−1

2 (t) ln2(α(t))γ
1
2 (t)

)

but for X invertible in HC, Xg(a)X−1 = g(XaX−1) for any element a ∈ HC and
any analytic function g in a neighbourhood of σ(a); this follows from formula
(14) above and the identity X(z−a)−1X−1 = (z−XaX−1)−1. This leads to

f2(t) = tr
(
ln2

[
γp(t)γ−1

q (t)
])

=
1

2πi

∫

C
ln2(z)tr

[(
z−γp(t)γ−1

q (t)
)−1

]
dz

by the linearity of the trace.

Now we compute f ′(0); note �rst that γp(0)γ−1
q (0) = rs−1 and also that

d

dtt=0
γp(t)γ−1

q (t) = −Vs−1 + rs−1Ws−1

Using the ciclicity of the trace we get

d

dtt=0
f2(t) = −

1

2πi

∫

C
ln2(z)tr

[(
z− rs−1

)−2
(−Vs−1 + rs−1Ws−1)

]
dz =

= tr

[(
−

1

2πi

∫

C
ln2(z)

(
z− rs−1

)−2
dz

)(
−Vs−1 + rs−1Ws−1

)]

Now we integrate by parts the �rst factor inside the trace, and what we obtain
(since d

dzln2(z) = 2 ln(z)z−1 = 2z−1 ln(z) and C is a closed curve) is

2f(0)f ′(0) = tr





 1

2πi

∫

C

2 ln(z)z−1
(
z− rs−1

)−1
dz




(
−Vs−1 + rs−1Ws−1

)

 =
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= −tr





 1

2πi

∫

C

2 ln(z)z−1
(
z− rs−1

)−1
dz


Vs−1


+

+tr





 1

2πi

∫

C

2 ln(z)z−1
(
z− rs−1

)−1
dz


rs−1Ws−1




So, by ciclicity of the trace and linearity,

2f(0)f ′(0) = −
1

2πi

∫

C

2 ln(z)z−1 tr

[
s−1

(
z− rs−1

)−1
V

]
dz+

+
1

2πi

∫

C

2 ln(z)z−1 tr

[
s−1

2

(
z− rs−1

)−1
rs−1Ws−1

2

]
dz

Now we use the identities

r
1
2 (z− r

1
2 s−1r

1
2 )−1r−1

2 = (z− rs−1)−1 = s
1
2 (z− s−1

2 rs−1
2 )−1s−1

2

to arrive to the expression

2f(0)f ′(0) = −
1

2πi

∫

C

2 ln(z)z−1 tr

[
s−1r

1
2

(
z− r

1
2 s−1r

1
2

)−1
r−1

2 V

]
dz+

+
1

2πi

∫

C

2 ln(z)z−1 tr

[(
z− s−1

2 rs−1
2

)−1
s−1

2 rs−1
2 s−1

2 Ws−1
2

]
dz=

= −2tr
[
s−1r

1
2 r−1

2 sr−1
2 ln(r

1
2 s−1r

1
2 )r−1

2 V
]
+

+2tr
[
ln(s−1

2 rs−1
2 )s

1
2 r−1s

1
2 s−1

2 rs−1
2 s−1

2 Ws−1
2

)
=

= −2tr
[
ln(r

1
2 s−1r

1
2 )r−1

2 Vr−1
2

]
+2tr

[
ln(s−1

2 rs−1
2 )s−1

2 Ws−1
2

]
=

= 0+0 = 0

by the orthogonality relations (13), naming X = ln(r
1
2 s−1r

1
2 ) (recall that M is

convex), and Y = ln(s−1
2 rs−1

2 ). Since we assumed that r 6= s, we have f(0) 6= 0,
which proves that f ′(0) = 0.
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VI.1. Geodesic projection

Let's get back to our problem: we wish to prove that E(NM) = Σ∞. We will do
that by proving that it is both open and closed in Σ∞. First we to prove that it
is open:

Lemma VI.7. For λ ∈ [1,+∞), set ηλ : E(NM) → E(NM) by ηλ(Expp(V)) =

Expp(λV). Then E(NM) = ∪
λ≥1

ηλ(Ωε), and each ηλ : Ωε → Σ∞ is a Cω

di�eomorphism with its image.

Corollary VI.8. The set E(NM) is open in Σ∞.

Let's prove the Lemma; the geometric idea of the proof is due to Porta and Recht
[PR94]:

Proof. Clearly ∪λ≥1ηλ(Ωε)⊂ E(NM). On the other hand, if r = Expp(V) and
‖V‖p < ε then r ∈ Ωε = η1(Ωε). We may assume that ‖V‖p ≥ ε; taking λ =

‖V‖p/c for any c < ε does the job.
We will prove that, for any λ ≥ 1 and r ∈Ωε, d(ηλ)r : TrΣ∞ → Tηλ(r)Σ∞ is a
linear isomorphism, and this will prove the assertion. Take α ⊂Ωε a geodesic
such that α(0) = r and 
α(0) = X. Since α is a geodesic, we have dist(α(t), r) =

t‖ 
α(0)‖r for t ≥ 0 (see section IV.2). Set β(t) = ηλ ◦α; then β(0) = ηλ(r) and

β(0) = d(ηλ)r (X). Clearly dist(β(t),ηλ(r)) ≤ Lt

0(β) =
∫t

0 ‖ 
β(s)‖β(s)ds. On the
other hand,

dist(ηλ(α(t)),ηλ(r))≥ dist(α(t), r) = t‖X‖r

where the inequality comes from the proof of Theorem VI.5, since λ ≥ 1. If we
put together these two inequalities and divide by t, we get

1

t

∫t

0
‖ 
β(s)‖β(s)ds≥ ‖X‖r

and taking limit for t → 0+ gives

‖d(ηλ)r (X)‖ηλ(r) ≥ ‖X‖r

Now set Aλ = I−1
ηλ(r) ◦d(ηλ)r ◦ Ir, where the maps Ip : V 7→ p

1
2 Vp

1
2 are linear

isomorphisms (see Lemma II.6). If we consider Aλ : T1Σ∞ → T1Σ∞ = HR, what
the inequality above says is that ‖Aλ(X)‖2 ≥ ‖X‖2 for any X ∈HR.
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Clearly η1 = idΩε and d(η1)r = idTrΣ∞ ; since the map (λ,r) 7→ ηλ(r) is analytic
from R>0×Ωε to Σ∞, there is an open neighbourhood of 1 ∈ R such that Aλ

is an isomorphism. Assume Aλ is invertible for λ ∈ [1,m): then ‖A−1
λ ‖L(HR) ≤ 1

for any λ ∈ [1,m). Since Am = lim
λ→m−

Aλ (in the operator norm of L(HR)) and
‖AmA−1

λ −1‖ ≤ ‖Am −Aλ‖< 1 if λ is close enough to m, we get that AmA−1
λ is

invertible, thus Am is invertible. Since the maps Ip are isomorphisms, we have
proved that d(ηλ)r is an isomorphism for any λ≥ 1, for any r ∈Ωε.

Now we are ready to prove the main result of this section:

Theorem VI.9. Let M be a geodesically convex, closed submanifold of Σ∞.
Then for every point p ∈ Σ∞, there is a unique normal geodesic γp joining
p to M such that L(γp) = dist(p,M).
Moreover, this geodesic is orthogonal to M, and if ΠM : Σ∞ → M is the map
that assigns to p the end-point of γp, then ΠM is a contraction for the
geodesic distance.

Proof. The theorem will follow once we prove that E(NM) = Σ∞. But since
Σ∞ is connected and E(NM) is open, it is enough to prove that E(NM) is also
closed.
Let p ∈ E(NM). There exist points qn ∈M, Vn ∈ TqnM⊥ such that

p = lim
n

pn = lim
n

Expqn
(Vn)

Now observe that qn = ΠM(pn), so dist(qn,qm) ≤ dist(pn,pm). As {pn} con-
verges to p, it is a Cauchy sequence. It follows that {qn} is also a Cauchy
sequence; since M is closed (and then complete), there must exist a point q ∈M

such that q = lim
n

qn. We assert that dist(p,q) = dist(p,M). First observe that

dist(p,qn)≤ dist(p,pn)+dist(pn,qn)

and dist(pn,qn) = dist(pn,M), so

dist(p,qn)≤ dist(p,pn)+dist(pn,M)

Taking limits gets us to the inequality dist(p,q)≤ dist(p,M), which shows that
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VI.1. Geodesic projection

the distance between p and M is given by dist(p,q). This concludes the proof.

Note that Σ∞ decomposes as a direct product: with the contraction ΠM, we can
decompose Σ∞ by picking, for �xed p,

1. the unique point q = ΠM(p) such that dist(p,q) = dist(p,M)

2. a vector Vp normal to TqM such that the geodesic in Σ∞ with this initial
velocity starting at q passes through p.

Note that Vp = Exp−1
ΠM(p)(p), and also ‖Vp‖p = dist(p,M).

Since the exponential map is an analytic function on both of its variables (recall
that, for any q ∈ Σ∞, and any V ∈HR, Expq(V) = qeq−1V), we get

Theorem VI.10. The map p 7→ (ΠM(p),Vp) is the inverse of the exponential
map (q,Vq) 7→ Expq(Vq), and it is, in fact, a real-analytic isomorphism
between the manifolds NM and Σ∞.

This is a remarkable global analogue of the (linear) orthogonal decomposition of
tangent spaces; we can read the theorem in a di�erent fashoin if we recall that
all points and tangent vectors are operators. This theorem is inspired mainly by
the results on C∗-algebra decompositions [CPR91]

Theorem VI.11. Fix a closed, geodesically convex submanifold M of Σ∞.
Take any operator A ∈ Σ∞. Then there exist operators C ∈ Σ∞,V ∈HR such
that C ∈M, V ∈ TCM⊥, and:

A = CeC−1V (15)

Moreover, C and V are unique, and the map A 7→ (C,V) (which maps Σ∞ →
NM) is a real analytic isomorphism between manifolds.

Naming B = C
1
2 , W = C−1

2 VC−1
2 , equation (15) reads

A = BeWB
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VI FACTORIZATION THEOREMS

for unique B,W.

Using the tools of section V, we can restate the theorem in terms of intrinsic
operator equations (see [Mos55] for the �nite dimensional analogue):

Theorem VI.12. Assume m ⊂ HR is a closed Lie triple system. Then for
any operator A ∈ HR, there exist unique operators X ∈m, V ∈m⊥ such that
the following decomposition holds:

eA = eX eV eX

The operator X is the unique minimizer in m of the map

Y 7→ ‖ ln(eA/2e−YeA/2)‖2

As a corollary, we obtain a polar descomposition relative to any �xed convex
submanifold. This decomposition resembles the Iwasawa decomposition of (�nite
dimensional) Lie groups, see [Hel62]:

Theorem VI.13. Assume M = exp(m)⊂Σ∞ is a closed, convex submanifold.
Then for any g ∈ GL(HC) there exists a unique factorization of the form
g = eXeVu where X ∈m, V ∈m⊥ and u ∈U(HC) is a unitary operator.
The map g 7→ (eX,eV ,u) is an analytic bijection which gives an isomorphism

GL(HC)'M× exp(m⊥)×U(HC)

Proof. Since gg∗ ∈ Σ∞, we can write gg∗ = eXe2VeX with X ∈ m and V ∈ m⊥.
Setting u = (eXeV)−1g = e−Ve−Xg we have

uu∗ = e−Ve−Xgg∗e−Xe−V = 1 and also u∗u = g∗e−Xe−Ve−Ve−Xg = 1

Hence u is a unitary operator and g = eXeVu. This factorization is unique
because if g = eX1eV1u1 = eX2eV2u2, then gg∗ = eX1e2V1eX1 = eX2e2V2eX2 , so
X1 = X2, V1 = V2 and then u1 = u2.
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VII Some Applications

VII.1 Preliminaries

We will use the factorization theorem in several ways; for convenience we �rst
state the following lemma, which we will be useful on several ocasions:

Lemma VII.1. (the generalized exponential formula): for the exponential
map in Σ∞, we have

Expα+a(β+b) = (α+a)e(α+a)−1(β+b) = (α+a)[1+(α+a)−1(β+b)+ · · · ]

= (α+a)

[
1+

β

α
+

1

2

(
β

α

)2

+ · · ·+k

]
= α eβ/α +k

where α eβ/α ∈ R and k is a Hilbert-Schmidt operator.
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VII SOME APPLICATIONS

We need some remarks before we proceed with the main applications. Fix an
orthonormal basis of H.

1. The diagonal manifold ∆ ⊂ Σ∞ we de�ne below is closed and geodesically
convex.

∆ = {d+α > 0 : d is a diagonal Hilbert-Schmidt operator and α ∈ R}

This is due to the fact that the diagonal operators form a closed abelian
subalgebra (see Propositions III.3 and Corollary V.12 ).

2. If p0 ∈ ∆, then Tp0∆ = {α+d; α ∈ R, d a diagonal operator} = T1∆ by Re-
marks V.19 and V.20.

3. Consider the map A 7→ AD = the diagonal part of A. Then

(a) For Hilbert-Schmidt operators we have AD =
∑
i

piApi where con-
vergence is in the 2-norm (and hence in the operator norm); here
pi = ei ⊗ ei = 〈ei, ·〉ei is the orthogonal projection in the real line
generated by ei

(b) (AD)D = AD

(c) tr
(
ADA

)
= tr((AD)2)

(d) tr(ADB) = tr(AB) if B is diagonal

4. The scalar manifold Λ = {λ ·1 : λ ∈ R>0} is geodesically convex and closed
in Σ∞, with tangent space R ·1⊂HR

5. A vector V = µ+u ∈ Tp0∆
⊥ if and only if µ = 0 and uD = 0. This follows

from: Remarks V.19 and V.20, the fact that µ+uD ∈ Tp0∆, and Remark
(3) of this list.

VII.2 The factorization itself

Theorem VII.2. (in�nite dimensional diagonal factorization): Take any
selfadjoint Hilbert-Schmidt operator a. Then there exist a real scalar λ >
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VII.2. The factorization itself

0, a positive invertible Hilbert-Schmidt diagonal operator d and a Hilbert-
Schmidt selfadjoint operator with null diagonal V such that the following
formula holds:

a+λ = (d+λ)e(d+λ)−1V = (d+λ)
1
2e(d+λ)− 1

2 V(d+λ)− 1
2

(d+λ)
1
2

Moreover (for �xed λ) d and V are unique and a+λ 7→ (d,V) (wich maps
Σ∞ → N∆) is a real analytic isomorphism between manifolds.

Proof. Let λ = ‖a‖∞+ε, for any ε > 0. Then p = a+λ∈Σ∞, and Π∆(p) = d+α.
The operator d satis�es our requirements. Now pick the unique V ∈ Td+α∆⊥

such that Expd+α(V) = p, this operator V has zero diagonal because of remark
(5) above. As a consequence of the 'exponential formula' (Lemma VII.1), α = λ,
for in this case, β = 0.

This theorem can be rephrased saying that, given a selfadjoint Hilbert-Schmidt
operator a, for any λ ∈ R>0 such that a+λ > 0, one has a unique factorization

a+λ = D eWD

where D = (λ+d)
1
2 > 0 is a diagonal operator and W = D−1VD−1 is a selfadjoint

operator and has null diagonal.

Corollary VII.3. For any g ∈GL(HC), there is a unique factorization

g = deWu,

where d is a positive invertible diagonal operator of HC, W is a selfadjoint
operator with null diagonal in HC and u is a unitary operator of HC.

Proof. It is a consequence of the previous remark together with Theorem VI.13.

We now observe that, for �nite (strictly positive) matrices, we could choose λ = 0

(in a sense we will make precise) because any matrix has �nite spectrum. With
this observation in mind, we can state and prove a �nite dimensional analogue of
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the factorization theorem, which has a simpler form. We should remark that (in
this particular case) this result is exactly Theorem 3 of [Mos55] by G.D. Mostow
(see also [CPR91] by Corach, Porta and Recht). The only thing to remark is
that the geometric intrepretation of the splitting is crystal clear in this context,
because the diagonal matrix D is the closest diagonal matrix to A, and V is the
initial direction of the geodesic starting at D which joins D to A. We will use
the standard notation

M+
n = {M ∈ Cn×n : Mt = M†, σ(M)⊂ (0,+∞)}

The dagger (†) stands for complex conjugation of the coe�cients of M.
We will use Mn to denote the tangent space of M+

n at Id; recall that M+
n is

open in Mn, and also that Mn can be identi�ed with the hermitian matrices of
Rn×n.

Theorem VII.4. (�nite dimensional diagonal factorization): Fix a positive
invertible matrix A ∈ M+

n. Then there exist unique matrices D,V ∈ Mn,
such that D is diagonal and strictly positive, V is symmetric and with null
diagonal, which make the following formula hold:

A = D eVD

Moreover, the maps A 7→ D and A 7→ V are real analytic.

Proof. We will prove the result using block products. For this, choose an or-
thonormal basis of H, and write Hilbert-Schmidt operators as in�nite matrices.
In this way we can embed M+

n in Σ∞, by means of the map that sends A to the
�rst n×n block:

A →
(

A 0

0 1

)
= a+1, where a =

(
A−1 0

0 0

)
∈ HSh

Note that a+1 = A+P(KerA)⊥, and that a+1 > 0 because A > 0.
Using the in�nite dimensional theorem, we can factorize a+1 = deVd, where V =

d−1Wd−1 and W is orthogonal to the diagonal submanifold ∆⊂Σ∞. Obviously,

d =

(
D 0

0 D∞

)
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but note that V = ln
(
d−1(a+1)d−1

)
so

V = ln
(

D−1AD−1 0

0 D−2∞

)
=

(
ln(D−1AD−1) 0

0 ln(D−2∞ )

)

which shows that the desired V (the �rst block of V) has the desired properties,
as V has them. Now a+1 = deVd reads

(
A 0

0 1

)
=

(
D 0

0 D∞

)
exp

{(
V 0

0 ln(D−2∞ )

)}(
D 0

0 D∞

)
=

=

(
D 0

0 D∞

)(
eV 0

0 D−2∞

)(
D 0

0 D∞

)
=

(
D eVD 0

0 1

)

and comparing the �rst blocks, we have the claim.

Remark VII.5. In [AV03] Andruchow and Varela prove that there is a natural,
�at embedding of M = M+

n into Σ∞ (Proposition 4.1 and Remark 4.2). This
embedding makes M+

n a closed, geodesically convex submanifold of Σ∞. We will
postpone a projection theorem for this submanifold for the sake of simplicity.
See Theorem VIII.10
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VIII A Foliation of Codimension One

In this section we describe a foliation of the total manifold, and show how to
translate the results from previous sections to a particular leaf (the submanifold
Σ1). We begin with a description of the leaves.

VIII.1 The leaves Σλ

Recall that we write HSh (hermitian Hilbert-Schmidt operators) to denote the
closed vector space of operators in HR with no scalar part. We de�ne the follow-
ing family of submanifolds (for �xed λ ∈ R>0):

Σλ = {a+λ ∈ Σ∞, a ∈ HSh}

Observe that Σλ∩Σβ = /0 when λ 6= β, since a+λ = b+β implies a−b = β−λ.
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In this way, we can decompose the total space by means of these leaves,

Σ∞ =
∐

λ>0

Σλ

Theorem VIII.1. The leaves Σλ are closed and geodesically convex subman-
ifolds of Σ∞.

Proof. The fact that the projection ΠΛ is a contractive map implies that Σλ is
closed, one must only observe that Σλ = Π−1

Λ (λ).
To show that Σλ is convex we recall that, by virtue of the 'exponential formula'
(Lemma VII.1), for any real λ > 0 and any p ∈ Σλ, there is an identi�cation via
the inverse exponential map at p, TpΣλ = HSh.

Remark VIII.2. Take δ+ c ∈ Ta+λΣλ
⊥. Since Ta+λΣλ can be identi�ed with

HSh, condition
〈δ+c,d〉a+λ = 0 ∀ d ∈ HSh

immediately translates into

tr

[
(a+λ)−1

[
(δ+c)(a+λ)−1 −

δ

λ

]
d

]
= 0 ∀ d ∈ HSh

This says that Ta+λΣ⊥λ = span(a+λ); shortly TpΣ⊥λ = span(p) for any p ∈ Σλ.

Proposition VIII.3. Fix real α,λ > 0. Set Πα,λ = ΠΣλ
|Σα : Σα → Σλ. Then

1. Πα,λ(p) = λ
αp, so Πα,λ(p) commutes with p

2. Πα,λ is an isometric bijection between Σα and Σλ, with inverse Πλ,α.

3. Πα,λ gives parallel translation (see Remark V.21) along 'vertical' geodesics
joining both leaves.

Proof. Notice that for a point b+α ∈ Σα to be the endpoint of the geodesic γ

starting at a+λ ∈ Σλ such that L(γ) = dist(b+α,Σλ), we must have

b+α = Expa+λ(x+c) = Expa+λ(k.(a+λ)) = ek(a+λ)

68



VIII.1. The leaves Σλ

because x+ c ∈ Ta+λΣλ
⊥. From Lemma VII.1, we deduce that k = ln

(
α
λ

)
, and

a = λ
αb. So, b+α = α

λ (a+λ) and also

γ(t) = (a+λ)
(

α
λ

)t

Now it is obvious that Πλ(b+α) = λ
α(b+α) and commutes with b+α.

To prove that Π is isometric, observe that

dist(Πα,λ(p),Πα,λ(q)) = dist
(

λ

α
p,

λ

α
q

)
= dist(p,q)

by inspection of the geodesic equation (2) of section II and Remark II.4.
That Π gives parallel translation along γ follows from q = λ

αp and Remark V.21.

Proposition VIII.4. The leaves Σα, Σλ are also parallel in the following
sense: any minimizing geodesic joining a point in one of them with its
projection in the other is orthogonal to both of them. For any b+α ∈ Σα,

dist(b+α,Σλ) = dist(Σα,Σλ) =| ln
(

α
λ

)
|

In particular, the distance between α,λ in the scalar manifold Λ is given by
the Haar measure of the open interval (α,β) on R>0. (This was remarked
by E. Vesentini in his paper [Ves76] ).

Proof. It is a straightforward computation that follows from the previous results.

Since Σ∞ is a symmetric space, curvature is preserved when we parallel-translate
bidimensional planes; note also that vertical planes are commuting sets of oper-
ators, so

Proposition VIII.5. For any point p ∈ Σλ, sectional curvature of vertical
2-planes is trivial.
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Figure 1: The geodesics γ and δ are minimizing, the geodesic β is not

Proof. We know that p generates TpΣ⊥λ ; take any other vector V ∈ TpΣλ =HSh.
Equation (4) of section II says

〈Rp(p,V)V,p〉p = −
1

4

〈[[
p−1p,p−1V

]
p−1V

]
,pp−1

〉
2

= 0

Theorem VIII.6. The map T : Σ∞ → Σ1×Λ , which assigns

a+α 7→
(

1

α
(a+α),α

)

is bijective and isometric (Σ1 and Λ have the induced submanifold metric).
In other words, there is a Riemannian isomorphism

Σ∞ ' Σ1×Λ

Proof. Another straightforward computation.

The previous theorems show that the geometry of Σ∞ is essentially the geometry
of Σ1; in particular, the factorization theorem inside Σ1 has a simpler form; we
state it below

Theorem VIII.7. Fix a closed, geodesically convex submanifold M of Σ1.
For any a+ 1 ∈ Σ1, there is a selfadjoint Hilbert-Schmidt operator d such
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n in Σ1

that d + 1 ∈ M, and a selfadjoint Hilbert-Schmidt operator V, such that
V ∈ Td+1M⊥, which make the following formula hold:

1+a = [1+d] e(1+d)
−1

V

Moreover d and V are unique, and the map 1+a 7→ (1+d,V) (which maps
Σ1 to NM) is a real analytic isomorphism between manifolds. Equivalently,

1+a = [1+d]
1
2 e(1+d)

− 1
2 V (1+d)

− 1
2

[1+d]
1
2

The intrinsic version of the theorem reads (see Theorem V.11):

Theorem VIII.8. Assume m⊂HSh is a closed subspace such that

[x, [x,y]] ∈m for any x,y ∈m

Then for any a ∈ HSh there is a unique decomposition of the form

ea = ex ev ex

where x∈m and v∈HSh is such that tr(vz) = 0 for any z∈m. The operator
x is the unique minimizer in m of the map

y 7→ tr
(
ln2(ea/2e−yea/2)

)

VIII.2 The embedding of M+
n in Σ1

We are ready to state and prove a projection theorem for M = M+
n (the positive

invertible n×n matrices with complex coe�cients).

First note that we can embed M+
n ↪→ Σ1 for any n∈N (see the proof of Theorem

VII.4). Fix an orthonormal basis {en}n∈N of H, set pij = ei⊗ ej, and identify
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Mn with the set

T =





n∑

i,j=1

aij pij : aij = aji ∈ R


⊂HSh

In this way, we can identify isometrically the manifolds M+
n with the set

P =
{
eT : T ∈ T

}
⊂ Σ1

and the tangent space at each eT ∈ P is T . P is closed and geodesically convex
in Σ1 by Corollary V.11
Let's call S = span(e1, · · · ,en), S⊥ = span(en+1,en+2 · · ·). The operator PS is
the orthogonal projection to S and QS = 1−PS is the orthogonal projection to
S⊥.
Using matrix blocks, for any operator A ∈ L(S), we identify

T =

(
A 0

0 0

)
and P =

(
eA 0

0 1

)

Remark VIII.9. There is a direct sum decomposition of HSh = T ⊕ J where
operators in J∈ J are such that PS JPS = 0. A straightforward computation using
the matrix-block representation shows that tr(ab) = 0 for any a∈ T ,b∈ J , which
says T ⊥ = J .
So the manifolds exp(J ) and P = exp(T ) are orthogonal at 1, the unique inter-
section point.

Theorem VIII.10. (projection to positive invertible n×n matrices) : Set
P 'M+

n ⊂ Σ1 with the above identi�cation. Then for any positive invertible
operator eb ∈ Σ1, (b ∈HSh) there is a unique factorization of the form

eb =

(
eA 0

0 1

)
exp

{(
e−A 0

0 1

)(
On×n Y∗

Y X

)}

where ea = eAPS +QS ∈ P 'M+
n, (a ∈ T ), X∗ = X acts on the subspace S⊥

and Y ∈ L(S,S⊥).
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n in Σ1

An equivalent expression for the factorization is

eb =

(
eA/2 0

0 1

)
exp

{(
On×n e−A/2Y∗

Ye−A/2 X

)}(
eA/2 0

0 1

)

Yet another form is the following: for any p∈Σ1 exist unique V ∈HSh such that
PSVPS = 0, and unique q∈ Σ1 such that PS qQS = QS qPS = 0 and QS qQS = QS

which make the following equation valid

p = q eVq

Proof. From previous theorems and the observations we made, we know that

eb =

(
eA/2 0

0 1

)
exp

{(
e−A/2 0

0 1

)(
V11 V∗21

V21 V22

)(
e−A/2 0

0 1

)}(
eA/2 0

0 1

)

for some A ∈ L(S) and some V ∈ HSh. That V11 = 0 follows from the fact (see
Remark VIII.9) that T ⊥ = J , and V ∈ TeaP⊥ i� tr(e−ABe−AV11) = 0 for any
B ∈ T . This says that V has the desired form.

Remark VIII.11. Since V is orthogonal to P at any point, in particular it is
orthogonal to P at 1; so 1 is the foot of the perpendicular from eV to P , or, in
other words, 1 is the point in P closest to eV ; the distance between 1 and eV is
exactly ‖V‖2 .
In the notation of Theorem VIII.10, ea = 1 if and only if A = 0, if and only if
V = b, and we conclude that for any b ∈HSh such that PS bPS = 0, the point in
P closest to eb is 1. This is nothing but Remark VIII.9 in disguise.

Remark VIII.12. For any b ∈ HSh, it holds true that the operator

ea = eAP
Sn

+P
S
⊥
n

=

(
eA 0

0 1

)
= exp

(
A 0

0 0

)

is the '�rst block' n×n matrix which is closest to eb in Σ∞, and with a slight
abuse of notation for the traces of L(Sn) and L(S⊥n), we have

dist(P ,eb) = dist(ea,eb) =

∣∣∣∣
∣∣∣∣
(
On×n Y∗

Y X

)∣∣∣∣
∣∣∣∣
ea

=

√
‖Y e−A/2‖2

2
+‖X‖2

2
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IX Embedding Symmetric Spaces
of the Noncompact Type

IX.1 A classical result

In a series of notes devoted to the geometry of manifolds of nonpositive sectional
curvature (in particular, [Eb85]), Patrick Eberlein puts together a result which
'does not seem to be stated in the literature in precisely this form' (sic).
Eberlein shows that every symmetric (real, �nite dimensional) manifold M of
noncompact type can be realized isometrically as a complete, totally geodesic
sumanifold of M+

n(R), where n = dim(M), with the precaution that one multi-
plies the metric on each irreducible de Rham factor of M by a suitable constant.
If I0(M) denotes the connected component of the isometry group of M that
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contains the identity, then G = I0(M) is a Lie group when given the compact-
open topology; if g is the Lie algebra of G, the idea of this result is based in
the representation of M into End(g). In the following paragraphs we outline the
main tools an ennunciate the result.
We state the de Rham decomposition theorem; for a proof see Theorem 6.11 of
Chapter III in [SakT96]

Theorem IX.1. Let M be a complete simply connected Riemannian mani-
fold. Then M is isometric to the Riemannian direct product M0×M1×·· ·×
Mk, where M0 is Euclidean space and the other Mi are complete simply
connected irreducible Riemannian manifolds. Moreover, this decomposition
is unique up to order.

Let (M,〈 , 〉M) be a symmetric space of noncompact type (i.e. simply connected,
with no Euclidean de Rham factor and nonpositive sectional curvature). For
these manifolds, G = I0(M) is a semisimple Lie group (see [Eb85]).
Fix a point p∈M. Since M is symmetric, the geodesic symmetry sp generates an
involutive automorphism σp of I0(M), where σp(g) = sp◦g◦sp. The di�erential
of this map gives an involutive Lie algebra automorphism (see section V of this
manuscript, [Eb85], or [Hel62]) Θp = dpσp : g → g; this map is characterized by
the equation

σp

(
etX

)
= e t Θp(X) for all X ∈ g and all t ∈ R

and gives a canonical decomposition of g where m identi�es with the tangent
space TpM and k = Fix(Θp).
Let's denote with B : g×g → R the Killing form of G, which maps

(X,Y) 7→ trace(adX◦adY)

We de�ne an inner product on g using the Killing form:

〈X,Y〉g = −B [Θp(X),Y] = −trace(adΘp(X)◦adY)

Now we ennunciate a few facts that we prove only partially, because they can
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be deduced from the general theory of representations (see, for instance, section
6.2, Chapter IV of [SakT96]), or can be found in Eberlein's paper [Eb85]. See
also section V.2 of this manuscript.

� The fact that G is semisimple ensures that B is nondegenerate.

� By de�nition, Adg is the di�erential at Id∈G of the g-inner automorphism
αg, that is, the map which sends φ 7→ gφg−1; since this map �xes Id, its
di�erential is an endomorphism of g.

� G acts transitively on M, by means of the symmetries spq , where pq is the
middle point of the minimal geodesic joining p to q.

� This inner product makes m ⊥ k; adX is symmetric relative to this inner
product for any X ∈m, and adX is skew-symmetric for any X ∈ k.

� Recall that adX(Z) = [X,Z]. Then adX = d
dt t=0

α
(
etX

)
and also AdeX =

eadX.

� tr(adX) = 0 for any X ∈ g. This is due to the following:

1. We can span g with a basis {Ei}, such that Θp(Ei) = εiEi, εi = +1 and
B[Ei,Ej] = εiδij , so 〈Ei,Ej〉g = δij

2. 〈adX(Ei),Ei〉g = −B [adX(Ei),Θp(Ei)] = −εiB [adX(Ei),Ei]

3. tr(adX) =
n∑

i=1

〈adX(Ei),Ei〉g = −
n∑

i=1

εiB [adX(Ei),Ei]

4. B [adZ(X),Y] = −B [X,adZ(Y)] (this can be deduced using the Jacobi identity
twice)

� AdG ⊂GL(g), in fact AdG ⊂ SL(g). This a consecuence of:

1. The image of the exponential map e : g → G generates G; in other words

G = ∪
n

e(g)n

2. det(eA) = etrA for any linear operator A

3. The two previous observations
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� If we denote with a dagger the adjoint whith respect to the inner product
introduced above, then Ad

†
G ⊂ SL(g) also.

� The inner product 〈·, ·〉g is invariant under AdK, that is

〈AdkX,AdkY〉g = 〈X,Y〉g for any k ∈ K

(K is the isotropy group of p).

� If q ∈M is such that q = g1(p) = g2(p) (gi ∈ G) then calling u = g−1
1 g2,

u is in the isotropy group K of p, and using that the inner product is
AdK-invariant, we get

Ad†
g1

Adg1 = Ad†
g2

Adg2

� Moreover, Ad : G → SL(g) is injective. This is a consecuence of the fact
that M has no Euclidean de Rham factor (see [Wolf64]).

Theorem IX.2. Fix a point p in any symmetric (real, �nite dimensional)
manifold M of noncompact type. Then the map Fp : M → GL+(g) given by

q = g(p) 7→ Ad†
gAdg

is a di�eomorphism with a closed, totally geodesic submanifold of GL+(g)

Moreover, if we pull back the inner product on GL+(g) to M, this inner
product di�ers only by a constant positive factor from the inner product of
M, on each irreducible de Rham factor of M.

Proof. That Ad†
gAdg is positive and invertible in End(g), and the map is well

de�ned is a consequence of the previous observations.
The proof of the theorem can be found in Eberlein's survey, Proposition 19 of
[Eb85].
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IX.2 A new result

Now �x an orthonormal basis {X1, · · · ,Xn} of g and identify Xi with ei in Rn.
Then we obtain an embedding Fp : M → Σ∞ which is the composition of the pre-
vious map, the identi�cation of GL(g) with GL(n,R), and the isometric, closed
and geodesically convex embedding of M+

n(R) in Σ∞ (see section VIII.2 of this
manuscript and also section 4 of [AV03] by Andruchow et al.).
In this way, we can identify M with a subset of the �rst n×n block in the matrix
representation of Σ∞; in the notation of section VIII.2, M can be identi�ed with
a closed and geodesically convex submanifold of P ; remember that operators in
P have a matrix representation of the form

(
eA 0

0 1

)

Theorem IX.3. For any (�nite dimensional, real) symmetric manifold M

of the noncompact type (that is, with no Euclidean de Rham factor, simply
connected and with nonpositive sectional curvature), there is an embedding
FM : M−→ Σ∞ which is a di�eomorphism betwen M and a closed, geodesi-
cally convex submanifold of Σ∞. This map preserves the metric tensor in
the following sense: if we pull back the inner product on Σ∞ to M, then
this inner product is a (positive) constant multiple of the inner product of
M (on each irreducible de Rham factor of M). Moreover, FM (M)⊂ Σ1.

This theorem together with the general factorization theorem says that, for any
�nite dimensional symmetric manifold M of the noncompact type, we can project
operators in Σ∞ using the contraction ΠM (assuming we identify M with its
image FM (M)).
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X Unitary Orbits

There is a distinguished leaf in the foliation we de�ned in Section VIII, namely
Σ1, which contains the identity. Moreover, Σ1 = exp(HSh). We will focus on
this submanifold since the nontrivial part of the geometry of Σ∞ is, by Theorem
VIII.6 contained in the leaves. We won't have to deal with the scalar part of
tangent vectors, and some computations will be less involved.

X.1 The action of the unitary groups U (HC) and U (L(H))

We are interested in the orbit of an element 1+a ∈ Σ1 under the action of some
group of unitary operators.

We �rst consider the group of unitaries of the complex Banach algebra of 'uni-
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X UNITARY ORBITS

tized' Hilbert-Schmidt operators. To be precise, let's call

U (HC) = {g = λ+a : a ∈ HS,λ ∈ C,g∗ = g−1}

It is apparent from the de�nition that | λ |= 1 (so we can write λ = eiθ), and
also that a must be a normal operator; this de�nition can be restated (naming
g = a+λ = u+ iv+ eiθ) in the form of the following operator equation:

(u+ cos(θ))2 +(v+ sin(θ))2 = 1

It will be apparent from the de�nition of the action that we will be always able
to choose θ = 0, so g = 1+x with x a normal operator and σ(x) ⊂ S1 − 1 (here
−1 denotes translation in the complex plane).
The Lie algebra of this Lie group consists of the operators of the form i(x+ r1)

where x is a Hilbert-Schmidt, selfadjoint operator, and r is a real number, that
is

T1 (U(HC)) = iHR = {a+λ : a∗ = −a and λ ∈ i R}

Since these are the antihermitian operators of the unitized Hilbert-Schmidt alge-
bra, we have T1 (U(HC)) = H ah

C . But we mentioned early that it will be enough
to consider unitaries λ+x with λ = 1; in this case, with a slight abuse of notation,
we have an identi�cation

T1 (U(HC)) = iHSh

Remark X.1. The problem of determining whether a set in Σ1 can be given
the structure of submanifold (or not) can be translated into the tangent space
by taking logarithms; to be precise, note that

exp(uau∗) = ueau∗

for any a ∈ HSh and any unitary operator u, and that this map is an analytic
isomorphism between Σ1 and its tangent space. We will state the problem in
this context.

We �x an element a in the tangent space (that is, a∈HSh) and make the unitary
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group act via the map

πa : U(HC) → HSh g 7→ gag∗

De�nition X.2. Let Sa := {gag∗ : g ∈ U(HC)} be the orbit of a selfadjoint
Hilbert-Schmidt operator.

� When is the orbit Sa of a selfadjoint Hilbert-Schmidt operator a submani-
fold of HSh?

The answer to this question can be partially answered in terms of the spectrum:

Theorem X.3. If the algebra C∗(a) generated by a and 1 is �nite dimen-
sional, then the orbit Sa ⊂HSh can be given an analytic submanifold struc-
ture.

Proof. We give the tools for constructing the proof, and refer the reader to
[AS89] and [AS91]. A local section for the map πa is a pair (Ua,ϕa) where Ua

is an open neighbourhood of a in HSh and ϕa is an analytic map from Ua to
UHC such that:

� ϕa(a) = 1

� ϕa restricted to Ua∩Sa is a section for πa, that is

πa ◦ϕa |Ua∩Sa = idUa∩Sa

A section for πa provides us with su�cient conditions to give the orbit the
structure of immerse submanifold of HSh (see Propostion 2.1 of [AS89]). The
section ϕa can be constructed by means of the �nite rank projections in the
matrix algebra where C∗(a) is represented. The �nite dimension of the algebra
is key to the continuity (and furthermore analyticity) of all the maps involved. To
�x some notation, as in Theorem 1.3 of [AS91], suppose n =

∑p
i=1 ni = dimC∗(a)

and τ is the ∗-isomorphism

τ : C∗(a) → Mn1(C)⊕Mn2(C)⊕·· ·⊕Mnp(C)
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Consider the set of systems of projections (here p2
i = pi = p∗i,pipj = 0 for any

i 6= j):

Pn = {(p1, · · · ,pn) ∈H n
C :

m∑

i=1

pi = 1}

Denote ei
jk ∈Mni(C) the elementary matrix with 1 in the (j,k)-entry and zero

elsewhere, but embedded in the direct sum; take pi
jk(X) the polynomial which

makes ei
jk = pi

jk(τ(a)), and consider the following element in HSh: ei
jk = pi

jk(a)

There is a neighbourhood Ua of a in HSh such that 1 −
[
ei
11 −pi

11(x)
]2 has

strictly positive spectrum, because r(x) = ‖x‖≤ ‖x‖2 and HC is a Banach algebra
(here r(x) denotes spectral radius). The map

ϕa(x) =

p∑

i=1

ni∑

j=i

pi
j1(x)Ei

11

[
1−

(
Ei

11 −pi
11(x)

)2
]−1

2

Ei
1j

is a cross section for πa, and it is analytic from Ua ⊂ HSh → UHC since the
pi

jk are multilinear and all the operations are taken inside the Banach algebra
HC (the computation that proves that ϕa is in fact a cross section for πa is
straightforward and can be found in the article by Andruchow et al., [AFHS90]).

Remark X.4. At �rst sight, it is not obvious if this strong restriction (on the
spectrum of a) is necessary for Sa to be a submanifold of HSh. The main
di�erence with the work done so far by Deckard and Fialkow in [DF79], Raeburn
in [Rae77], and Andruchow et al. in [AS89], [AS91] is that the Hilbert-Schmidt
operators (with any norm equivalent to the ‖ ·‖2-norm) are not a C∗-algebra. A
remarkable byproduct of Voiculescu's theorem [Voic76] says that, for the unitary
orbit of an operator a with the action of the full group of unitaries of L(H), it is
indeed necessary that a has �nite spectrum. For the time being, we don't know
if this is true for the algebra B = HC.

Let's examine what happens when we act with the full group U(L(H)) by means
of the same action. For convenience let's �x the notation
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Sa = {uau∗ : u ∈U(L(H))}

We will develop an example that shows that the two orbits (Sa and Sa) are,
in general, not equal when the spectrum of a is in�nite. Since a is compact
and selfadjoint, we can assume that a is a diagonal operator; that is, there's an
orthonormal basis {ek} of H such that

a =
∑

k

α k ek⊗ek, where
∑

k

| αk |2= tr(a∗a) < +∞

Example X.5. Take H = l2(Z), S ∈ L(H) the right shift (Sek = ek+1). Then S

is a unitary operator with S∗ek = ek−1. Pick any a of the form

a =
∑

k∈Z
rk ek⊗ek and

∑

k

| rk |2< +∞

where all the rk are di�erent. (For instance, rk = 1
|k|+1 would do). Obviously,

a ∈ HSh. We a�rm that there is no Hilbert-Schmidt unitary such that SaS∗ =

waw∗

Proof. To prove this, suppose that there is an w∈UHC such that SaS∗ = waw∗.
From this equation we deduce that S∗w commutes with a, and given the partic-
ular a and the fact that S∗w is unitary, we have

S∗w =
∑

k∈Z
ωk ek⊗ek with | ωk |= 1

because C∗(a) is maximal abelian. Multiplying by S we get to

w =
∑

k∈Z
ωk (Sek)⊗ek =

∑

k∈Z
ωk ek+1⊗ek

or, in other terms, wek = ωkek+1. Since w is a compact perturbation of a scalar
operator, w must have a nonzero eigenvector x, with eigenvalue α = eiθ (since
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w is also unitary); comparing coe�cients the equation αx = wx reads

αxk = ωk−1xk−1, where x =
∑

k

xkek

This is impossible because x∈ l2(Z), but the previous equation leads to | xk |=| xj |

for any k,j ∈ Z.

As we see from the previous example, the two orbits do not coincide in general.
For the action of the full group of unitaries we have the following:

Theorem X.6. The set Sa ⊂HSh (the orbit of the Hilbert-Schmidt operator
a under the action of U(L(H)), the full unitary group) can be given an
analytic submanifold structure if and only if the C∗-algebra generated by a

and 1 is �nite dimensional.

Proof. The 'only if' part goes in the same lines of the proof of the previous
theorem but being careful about the topologies involved, since now we must
take an open set Ua ⊂ HSh such that the map φ : Ua → U(L(H)) is analytic.
But this can be done since the polynomials pi

jk are now taken from Ua to L(H)n,
and the maps + and · are analytic since ‖x.y‖L(H) ≤ ‖x‖2‖y‖2 .
The relevant part of this theorem is the 'if' part. Suppose we can prove that the
orbit Sa is closed in L(H). Then Voiculescu's theorem (see [Voic76], Proposition
2.4) would tell us that C∗(a) is �nite dimensional. This is a deep result about
∗−representations, and the argument works in the context of L(H), but not in
HC because the latter is not a C∗-algebra.
To prove that Sa is closed in L(H), we �rst prove that it is closed in HC. To
do this, observe that if Sa is an analytic submanifold of HSh, then Sa must
be locally closed in the ‖ · ‖2 norm. Since the action of the full unitary group is
isometric, the neighbourhood can be chosen uniformly, that is, there is an ε > 0

such that for all c ∈Sa, the set Nc = {d ∈Sa : ‖c−d‖2 ≤ ε} is closed in HSh

(with the 2-norm, of course). This is another way of saying that Sa is closed in
HSh.
Now suppose an = unau∗n → y in L(H). We claim that ‖an −y‖2 → 0, which
follows from a dominated convergence theorem for trace class operators (see
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[Simon89], Theorem 2.17). The theorem states that whenever ‖an −y‖∞ → 0

and µk(an)≤ µk(a) for some a∈HS, and all k (here µk(x) denotes the non zero
eigenvalues of | x |), then ‖an −y‖2 → 0.
Observe that | an |= un | a | u∗n so we have in fact equality of eigenvalues. This
proves that Sa is closed in L(H) since it is closed in HSh.

We proved that, when the spectrum of a is �nite, Sa and Sa are submanifolds
of Σ1. But more can be said: Sa and Sa are the same subset of HSh (compare
with Example X.5):

Lemma X.7. If a ∈ HSh has �nite spectrum, then the orbit under both
unitary groups are the same submanifold.

Proof. The main idea behind the proof is the fact that, when σ(a) is �nite, a

and gag∗ act on a �nite dimensional subspace of H (for any g ∈ U(L(H))). To
be more precise, let's call S = Ran(a), V = Ran(b), where b = gag∗. Note that
V = g(S) so S and V are isomorphic, �nite dimensional subspaces of H. Naming
T = S+V this is another �nite dimensional subspace of H, and clearly a and b

act on T , since they are both selfadjoint operators. For the same reason, there
exist unitary operators P,Q ∈ L(T) and diagonal operators Da,Db ∈ L(T) such
that

a = PDaP∗, b = QDbQ∗

But σ(b) = σ(gag∗) = σ(a), so Da = Db := D. This proves that b = QP∗aPQ∗

(the equality should be interpreted in T). Now take PT the orthogonal projector
in L(H) with rank T , and set u = 1 + (QP∗ − 1T )PT (note the slight abuse of
notation). Then clearly u ∈U (HC) and uau∗ = b.

X.2 Riemannian structures for the orbit Ω

Suppose that there is, in fact, a submanifold structure for Sa (resp. Sa). Then
the tangent map ( = d1πa) has image

{va−av : v ∈ Bah},
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where B stands for L(H) (resp. HC). So, in this case

TaSa( or TaSa) = {va−av : v ∈ Bah}

We can go back to the manifold Σ1 via the usual exponential of operators; we
will use the notation

Ω = eSa or Ω = eSa

without further distinction, since the meaning will be clear from the context.
Note that Ω = {ueau∗ : u ∈U(B)}⊂ Σ1 and we can identify

TeaΩ = {vea − eav : v ∈ Bah} = { i(hea − eah) : h ∈ Bh}

Remark X.8. For any p ∈Ω, we have

TpΩ = {vp−pv : v ∈ Bah} and TpΩ⊥ = {x ∈ HSh : [x,p] = 0}

These two identi�cations follow from the de�nition of the action, and the equality

〈x,vp−pv〉p = 4tr
[
(p−1x−xp−1)V

]

The submanifold Ω is connected: the curves indexed by w ∈ Bah,

γw(t) = etweae−tw

join ea to ueau∗, assuming that u = ew.

We can ask whether the curves γw will be the familiar geodesics of the ambient
space (equation (3) of section II). Of course they are trivial geodesics if a and w

commute. We will prove that this is the only case, for any a:

Proposition X.9. For any a ∈HSh, the curve γw is a geodesic of Σ1 if and
only if w commutes with a. In this case the curve reduces to the point ea.

Proof. The (ambient) covariant derivative for γw (equations (II.5) and (2) of
section II) simpli�es up to weawe−a = eawe−aw or, writing w = ih (h is self-
adjoint)

heahe−a = eahe−ah (16)
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Consider the Hilbert space (H,〈 , 〉a) with inner product

〈x,y〉a =
〈
e−a/2x,e−a/2y

〉
,

where 〈 , 〉 is the inner product of H. The norm of an operator x is given by

‖x‖a = sup
‖z‖a=1

‖xz‖a = sup
‖e−a/2z‖=1

‖e−a/2xz‖∞ = ‖e−a/2xea/2‖∞

because e−a/2 is an isomorphism of H. This equation also shows that the Banach
algebras (L(H),‖ · ‖∞) and B = (L(H),‖ · ‖a) are topologically isomorphic and, as
a byproduct, σB(h) ⊂ R. From the very de�nition it also follows easily that B
is indeed a C∗-algebra.
A similar computation shows that X∗B = eaX∗e−a. Note that ea is B-selfadjoint,
moreover, it is B-positive. We can restate equation (16) as

hh∗B = h∗Bh,

This equations says that h is B-normal, so a theorem of Weyl and von Neumann
(see [Dav96]) says it can be aproximated by diagonalizable operators with the
same spectrum; since h has real spectrum, h turns out to be B-selfadjoint . That
h is B-selfadjoint reads, by de�nition, eahe−a = h∗B = h; this proves that a and
h (and also a and w) commute.

X.2.1 The orbit Ω as a Riemannian submanifold of HSh

We've shown earlier that the orbit of an element a ∈ HSh has a structure of
analytic submanifold of HSh (which is a �at Riemannian manifold) if and only
if Ω = ea has a structure of analytic submanifold of Σ1.
Since the inclusion Ω⊂ HSh is an analytic embedding, we can ask whether the
curves

γw(t) = etweae−tw

will be geodesics of Ω as a Riemannian submanifold of HSh (with the induced
metric).
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For this, we notice that the geodesic equation reads �γw(t) ⊥ Tγw(t)Ω, and we
use the elementary identities 
γ = wγ−γw, �γ = w2γ− 2wγw+γw2; we get to
the following necessary and su�cient condition using the caracterization of the
normal space at γ(t) of the previous section:

w2γ2 −2wγwγ+2γwγw−γ2w2 = 0

But observing that e−wtγ
+1 ewt = e+a , this equation transforms in the operator

condition
w2e2a −2weawea +2eaweaw− e2aw2 = 0 (17)

Let's �x some notation: set ea = 1+A with A ∈HSh; then the tangent space at
ea can be thought of as the subspace

TeaΩ = { i(Ah−hA) : h ∈ Bh}⊂HSh

and its orthogonal complement in HSh is (see Remark X.8)

TeaΩ⊥ = { x ∈ Bh : [x,A] = 0}

It should be noted that both subspaces are closed by hypothesis. Then equation
(17) can be restated as

h2A2 −2hAhA+2AhAh−A2h2 = 0 (18)

where h is the hermitian generating the curve

γ(t) = 1+ eithAe−ith = eitheae−ith

Let's consider the case when A2 = A:

Remark X.10. If A2 = A, A must be a �nite rank orthogonal projector (since
A = ea − 1 and a is a Hilbert-Schmidt operator). Hence, σ(a) must be a �nite
set, and in this case (Lemma X.7) the orbit with the full unitary group and the
orbit with the Hilbert-Schmidt unitary group are the same set.

To solve the problem of the geodesics completely, we review the work of Corach,
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Porta and Recht ([PR96] or, more speci�cally [CPR93a]); we follow the idea of
section 4 of that article and put the result in context.
Observe that when A is a projector, we have a matrix decomposition of the
tangent space of Σ1, namely HSh = A0⊕A1, where

A0 =

{(
x11 0

0 x22

)}
and A1 =

{(
0 x12

x21 0

)}

In this decomposition, x11 = AhA , x22 = (1−A)h(1−A) are selfadjoint opera-
tors (since h is) and also x∗12 = x21 = (1−A)hA for the same reason.

Theorem X.11. Whenever A = ea −1 is a projector, any curve of the form
γ(t) = eitheae−ith with h selfadjoint and codiagonal is a geodesic of Ω ⊂
HSh

Proof. Note that A0 = TeaΩ⊥, and A1 = TeaΩ; note also that equation (18)
translates in this context to x11x12 = x12x22, a condition which is obviously
full�lled by h ∈A1.

Remark X.12. Equation (18) translates exactly in 'h0 commutes with h1' when-
ever h = h0 +h1 ∈HSh, and we have

[A0,A1]⊂A1 [A0,A0]⊂A0 [A1,A1]⊂A0

Since the orbit under both unitary groups coincide (Remark X.10), assume that
we are acting with G = U(B); since the tangent space at the identity of this
group can be identi�ed with Bah, the above commutator relationships say that
iA0⊕ iA1 is a Cartan decomposition of the Lie algebra g = Bah. It is apparent
that iA0 is the vertical space, and iA1 is the horizontal space (see section IX).
Moreover,

A0 ·A0 ⊂A0 A1 ·A1 ⊂A0 A0 ·A1 ⊂A1 A1 ·A0 ⊂A1

Corollary X.13. If ea −1 is an orthogonal projector, there is no point p∈Ω

such that Ω is geodesic at p.
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X UNITARY ORBITS

X.2.2 The orbit Ω as a Riemannian submanifold of Σ1

In this section we give Ω the induced Riemannian metric as a submanifold of
Σ1, and discuss shortly the form of the geodesics and the sectional curvature.
Recall that covariant derivative in the ambient space is given by

∇ 
γ 
γ = �γ− 
γγ−1 
γ

and the orthogonal space to p ∈ Ω are the operators commuting with p, so
∇ 
γ 
γ⊥ TγΩ if and only if

�γγ−γ�γ+γ 
γγ−1 
γ− 
γγ−1 
γγ = 0 (19)

This is an odd equation; we know that any curve in Ω starting at p = ea must
be of the form γ(t) = g(t)eag(t)∗ for some curve of unitary operators g.
For the particular curves γ(t) = eitheae−ith, h(t) = ith, so 
h(t) = ih, and �h(t)≡
0; equation (19) reduces to the operator equation

heahe−a +he−ahea = e−aheah+ eahe−ah (20)

or X∗ = X, where X = heahe−a +he−ahea.

Recall that, when the spectrum of ea is �nite, the unitary groups U(L(H)) and
U (HC) induce the same manifold Ω⊂ Σ1.

Theorem X.14. Assume ea = 1 + A with A an orthogonal projector, and
Ω ⊂ Σ1 is the unitary orbit of ea. Then (throughout [ , ] stands for the
usual commutator of operators)

(1) Ω is a Riemannian submanifold of Σ1.

(2) TpΩ = {i[x,p] : x ∈ HSh} and TpΩ⊥ = {x ∈ HSh : [x,p] = 0}.

(3) The action of the unitary group is isometric, namely

distΩ (upu∗,uqu∗) = distΩ (p,q)

for any unitary operator u ∈ L(H).
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X.2. Riemannian structures for the orbit Ω

(4) For any v = i[x,p] ∈ TpΩ, the exponential map is given by

ExpΩ
p (v) = eighg∗pe−ighg∗

where p = geag∗ and h is the codiagonal part of g∗xg (in the matrix
representation of Proposition X.11). In particular, the exponential
map is de�ned in the whole tangent space.

(5) If p = geag∗, q = weaw∗, and h is a selfadjoint, codiagonal operator
such that w∗geih commutes with ea, then the curve

γ(t) = eitghg∗pe−itghg∗

is a geodesic of Ω⊂ Σ1, which joins p to q.

(6) If we assume that h ∈ HSh, then L(γ) =
√

2
2 ‖h‖2

(7) The exponential map ExpΩ
p : TpΩ → Ω is surjective.

Proof. Statements (1) and (2) are a consequence of Remark X.10 and Theorems
X.3 and X.6. Statement (3) is obvious because the action of the unitary group is
isometric for the 2-norm (see Lemma II.6). To prove statement (4), take x∈HSh,
and set

v = i[x,p] = i(xgAg∗−gAg∗x) = ig[g∗xg,ea]g∗

Observe that
e−a = (1+A)−1 = 1−

1

2
A

Rewriting equation (20), we obtain

h2A−Ah2 +2AhAh−2hAhA = 0

Now if y = g∗xg, take h = the codiagonal part of y; clearly hA−Ah = yA−Ay,
so

γ1(t) = eitheae−ith

is a geodesic of Ω starting at r = ea with initial speed w = i[y,ea] = g∗vg (see
Proposition X.11). Now consider γ = gγ1g∗. Clearly γ is a geodesic of Ω starting
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at p = geag∗ with initial speed v. To prove (5), note that

γ(t) = geihteae−ihtg∗ = eitghg∗geag∗eitghg∗ = eitghg∗peitghg∗

which shows that γ(0) = p and γ(1) = q because w∗geihea = eaw∗geih. To
prove (6), we can assume that p = ea, and then

L(γ)2 = ‖[h,p]‖2
p = ‖[h,ea]‖2

ea = 4 · tr(2heahe−a −2h2)

Now write h as a matrix operator [0,Y∗,Y,0] ∈ A1 (see Proposition X.11), to
obtain

tr(2heahe−a −2h2) = tr(Y∗Y) = 1
2 tr(h2),

hence L(γ)2 = 2tr(h2) = 1
2‖h‖

2

2
as stated. The assertion in (7) can be deduced

from folk results (see [Br93]) because q = weaw∗ and p = geag∗ are �nite rank
projectors acting on a �nite dimensional space (see the proof of Lemma X.7).
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XI Concluding Remarks

Remark XI.1. Theorem X.3 doesn't answer whether is it necessary that the
spectrum of a should be �nite for the orbit to be a submanifold, when we act
with U (HC) (see Remark X.4). The problem can be stated in a very simple
form:

� Choose any involutive Banach algebra with identity B, take a = a∗ ∈ B.

� Name Sa the image of the map πa : U(B) → B which assigns u 7→ uau∗

� Is the condition "a has �nite spectrum" necessary for the set Sa ⊂ B to be
closed?

Remark XI.2. The standard representation of L(H) (acting on the Hilbert-
Schmidt operators by left or right product) induces a morphism of the latter
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operators into the state space of L(H). Hyperbolic geometry of states seems to
be possible in this context.

Remark XI.3. It should be interesting to �nd an applicaction of the factoriza-
tion theorem in the theory of integral equations. Such a nonlinear factorization
should take the following form: if k is the symmetric kernel of the equation

(Kf)(t) =

∫

I
k(s,t)f(s)ds

(namely f 7→ Kf is a selfadjoint operator of L2(I)), then �nd λ > 0 such that K

is a positive invertible operator and �nd a convenient LTS to project to (for
instance: diagonal operators) then write

K = Dexp(Y)D−λ

with D
1
2 the diagonal invertible operator closest to K+λ in the geodesic distance,

and Y a codiagonal operator. The equation should take the form

(Kf)(t) =

∫

I

∫

I

∫

I
d(v,t)j(u,v)d(s,u)f(s)dsdudv−λf(t)

If Y is small, the original equation could be replaced by

(Df)(t) =

∫

I
d(s,t)f(s)ds−λf(t)

with an error term that can be bounded using the inequalities of section III.

Remark XI.4. In several recent papers (the latest at the moment we write these
lines is [CGM]), R. Cirelli, M. Gatti and A. Manià propose a delinearization
program for quantum mechanics based in identifying the pure state space with a
convenient homogeneous manifold (the in�nite projective space). The manifold
Σ∞ seems to be another convenient setting for a delinearization program.
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Remark XI.5. Assume A is a von Neumann algebra with a faithful trace τ (for
instance, the reduced group algebra of a unimodular locally compact group), and
Ah for stands for the selfadjoint elements of A . If we use GL(A) to denote the
group of invertible elements of A , and A+ to denote the set of positive invertible
elements, then a construction similar to the one we made for Hilbert-Schmidt
operators can be made in order to construct a nonpositively curved manifold
Σ := A+ with an invariant metric (under the action of the group GL(A) with
action g 7→ gpg∗), setting

〈x,y〉2 := τ(y∗x) and 〈x,y〉p := τ(y∗p−1xp−1)

The tangent space at any point p ∈ Σ can be naturally identi�ed with Ah. All
the results concerning curvature, convexity of the geodesic distance, minimality
of the geodesics, geodesic triangles, and algebraic characterization of convex
submanifolds of sections III, and V of this manuscript hold true with proofs that
can be translated almost verbatim.
One technical obstacle that should be remarked is the following: with this in-
ner product given by a faithfull trace, the induced pre-Hilbert space that we
construct in Ah is not complete. This is an obstacle for the construction of
the projections, but it can be saved with a re�nement [PR94] of the argument
we used in section VI, when we proved that the set of points in Σ that can be
projected to a convex submanifold is open and closed in the norm topology.
The natural subsets where one would be able to project are the hermitian part
of subalgebras of A . By a result of Takesaki [Tak72], for any subalgebra M of A
there is a conditional expectation E : A → M compatible with the trace, namely
τ(E(x)y) = τ(xy) for any y ∈ M and any x ∈ A . In this way the kernel of the
conditional expectation acts as an 'orthogonal complement' of Mh (with respect
to the trace inner product): M ⊥

h is a closed involutive subspace of Ah.
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