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Objetos inyectivos en estructuras residuadas.
Forma algebraica del teorema de

Cantor - Bernstein - Schróder

La presente tesis es un estudio de objetos inyectivos en clases de estruc­
turas residuadas asociadas con la lógica y del teorema de Cantor - Bernstein
- Schróder. En la primera parte se investigan inyectivos y retractos absolutos
en clases de retículos residuados y pocrims. Algunas de las clases conside­
radas son las MTL-álgebras, IMTL-álgebras, BL-álgebras, NM-álgebras y
los hoops acotados. En la segunda parte es desarrollado un marco alge­
braico para la validez del teorema de Cantor-Bernstein-Schróder aplicable
a álgebras con una estructura subyacente de retículo tal que los elemen­
tos centrales de este retículo determinan una descomposición directa del
álgebra. Se dan condiciones necesarias y suficientes para la validez del teo­
rema de Cantor-Bernstein-Schróder en estas álgebras. Estos resultados son
aplicados para obtener versiones del teorema en retículos ortomodulares,
álgebras de Stone, BL-álgebras, MV-álgebras, pseudo MV-álgebras álgebras
de Lukasiewicz y álgebras de Post of order n.

Palabras claves: Objetos injecti'ves, Retractos absolutos, Retículos residua­
dos, Bl-álgebras, Elementos Centrales, Variedades.
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Injectives in residuated structures .
An algebraic version of the

Cantor - Bernstein - Schróder theorem

The present thesis is a study of injectives in several classes of residu­
ated structures associated with logic and the Cantor - Bernstein - Schróder
theorem. In the first part we investigate injectives and absolute retracts in
classes of residuated lattices and pocrims. Among the classes considered
are MTL-algebras, IMTL-algebras, BL-algebras, NM-algebras and bounded
hoops. In the second part is developed an algebraic frame for the valid­
ity of the Cantor-Bernstein-Schróder theorem, applicable to algebras with
an underlying lattice structure and such that the central elements of this
lattice determine a direct decomposition of the algebra. Necessary and suf­
ficient conditions for the validity of the Cantor-Bernstein-Schróder theorem
for these algebras are given. These results are applied to obtain versions
of the Cantor-Bernstein-Schróder theorem for orthomodular lattices, Stone
algebras, BL-algebras, MV-algebras, pseudo MV-algebras, Lukasiewicz and
Post algebras of order n.

Keywords: Injective objects, Absolute retracts, Residuated lattices, Bl-algebras,
Central elements, Varieties.



Prefacio

Las estructuras residuadas, originadas en los trabajos de Dedekind sobre de
la teoría de ideales en anillos, aparecen en muchos campos de la matemática,
y son particularmente comunes en álgebras asociadas con sistemas lógicos.

Dichas álgebras son estructuras (A,O,-—>,5) donde A es un conjunto
no vacío, _<_es un orden parcial en A y G, —>son operaciones binarias
satisfaciendo la siguiente relación para cada a, b,c in A:

a®b5c siysolosi agb-bc.

Importantes ejemplos de estructuras residuadas relacionadas con la lógica
son las álgebras de Boole (correspondientes a la lógica clásica), las álgebras
de Heyting (correspondientes al intuicionismo), los retículos residuados (co­
rrespondientes a la lógica sin regla de contracción [35]), BL-álgebras (corres­
pondientes a la lógica difusa básica de Hájek [26]), MV-álgebras (correspon­
dientes a la lógica multivaluada de Lukasiewicz [10]).

Estos ejemplos, con la excepción de los retículos residuados son hoops
[5], es decir, satisfacen la ecuación mG) —>y) = y (D(y —> Todas las
estructuras mencionadas son casos particulares de monoides conmutativos
integrales residuados parcialmente ordenados , o pocrimspor simplicidad

En los primeros cuatro capítulos de esta tesis se estudian objetos inyec­
tivos y retractos absolutos en clases de retículos residuados y pocrims. En el
capítulo 2 se dan también algunos resultados sobre injectivos en variedades
más generales.

El conocido teorema de Cantor-Bernstein-Schróder (teorema CBS, por
simplicidad) dice que si un conjunto X puede sumergirse en otro Y y vice­
versa, entonces existe una función biyectiva entre ambos. A finales de los
cuarenta, Sikorski [39] (ver también Tarski [40])mostró que el teorema CBS
es un caso particular de un resultado para álgebras de Boole a-completas.
Recientemente muchos autores extendieron el resultado de Sikorski a clases
de álgebras más generales que las álgebras de Boole como, por ejemplo,



retículos ortomodulares, [16], MV-algebras [15], pseudo MV-algebras [30].
En el último capítulo de la tesis se da un marco algebraico general para
la validez del teorema CBS, que permitie derivar todas las versiones men­
cionadas. Se establecen también, bajo el mismo marco, versiones del teorema
CBS para retículos residuados, en particular para BL-algebras, álgebras de
Stone [2], álgebras de Lukasiewicz y álgebras de Post de orden n [2, 6].

En más detalle, el contenido de la tesis es el siguiente: el Capítulo 1
presenta definiciones básicas y pr0piedades de las estructuras residuadas.
El único resultado original de este capítulo es la Proposición 1.2.13. En el
Capítulo 2 se muestra que bajo ciertas hipótesis no demasiado restrictivas
sobre una variedad de álgebras V, la existencia de objetos inyectivos no tri­
viales en V es equivalente a la existencia de un álgebra auto-inyectiva simple
y máxima. Además, con técnicas de ultraproductos, se obtienen propiedades
reticulares de inyectivos en variedades de álgebras ordenadas. Los resultados
del Capítulo 2 son aplicados en el Capítulo 3 para el estudio de inyectivos en
variedades de retículos residuados. Estos resultados están sumarizados en
la tabla 3.1. En el Capítulo 4 se investigan inyectivos en clases de pocrims
y hoops, estos resultados están sumarizados en la tabla 4.1.

El marco abstracto para el teorema CBS es dado por las L-variedades de
álgebras, introducidas en la primera sección del Capítulo 5. En la Sección 5.2
se muestran varios ejemplos L-variedades. En la Sección 5.3 se dan condi­
ciones necesarias y suficientes para la validez del teorema CBS en álgebras
pertenecientes a L-variedades. En la Sección 5.4 se muestran algunas condi­
ciones globales sobre álgebras de una L-variedad que resultan ser suficientes
para la validez del teorema CBS. En la Sección 5.5 se muestra que los re­
tractos absolutos en una L-variedad satisfacen el teorema CBS. Finalmente,
en la Sección 5.6 se da una versión del teorema CBS para conjuntos parcial­
mente ordenados.

El contenido de los Capítulos 2 y 3, así como los resultados del Capítulo
4 que siguen a la Definición 4.3.7 están reproducidos en el trabajo [22]. Los
resultados del Capítulo 4 anteriores a la Definición 4.3.7 están en el trabajo
[23]. Los resultados del Capítulo 5, con excepción de los de la Sección 5.5,
están en el trabajo [21].



Preface

Residuated structures, rooted in the work of Dedekind on the ideal theory
of rings, arise in many fields of mathematics, and are particularly com­
mon among algebras associated with logical systems. They are structures
(A, o, —>,5) such that A is a nonempty set, 5 is a partial order on A and o
and —>are binary operations such that the following relation holds for each
a, b, c in A:

aObSc ifi’agb-m.
Important examples of residuated structures related to logic are Boolean
algebras (corresponding to classical logic), Heyting algebras (corresponding
to intuitionism), residuated lattices (corresponding to logics without con­
traction rule [35]), BL-algebras (corresponding to Hájek’s basic fuzzy logic
[26]), MV-algebras (corresponding to Lukasiewicz many-valued logic [10]).
All these examples, with the exception of residuated lattices are hoops [5], i.
e., they satisfy the equation a:o —>y) = y Q (y —> All the mentioned
examples are particular cases of partially ordered commutat'ive residuated
integral monoids,or pocn'msfor short

In the first four Chapters of this thesis we investigate injectives and ab­
solute retracts in classes of residuated lattices and pocrims. In Chapter 2
we also present some results on injectives in more general varieties.

The famous Cantor-Bernstein-Schróder theorem (CBS theorem, for short)
states that, if a set X can be embedded into a set Y and viceversa, then
there is a one-to-one function of X onto Y. At the end of the forties, Siko­
rski [39] (See also Tarski [40]) showed that the CBS theorem is a particular
case of a statement on a-complete boolean algebras. Recently several au­
thors extended Sikorski’s result to classes of algebras more general than
boolean algebras, like orthomodular lattices [16], MV-algebras [15], pseudo
MV-algebras [30]. The aim of the last chapter of this thesis is to give a
general algebraic frame for the validity of the CBS theorem, from which all



the versions mentioned above can be derived, as well as versions of the CBS
theorem for residuated lattices, in particular for BL-algebras, and also for
Stone algebras [2], Lukasiewicz and Post algebras of order n [2, 6].

In more detail, the content of the thesis is as follows: In Chapter 1 we
recall some basic definitions and properties of residuated structures. The
only original result of this chapter is Proposition 1.2.13. In Chapter 2 we
show that under some mild hypothesis on a variety V of algebras, the exis­
tence of nontrivial injectives is equivalent to the existence of a self-injective
maximum simple algebra. Moreover, we use ultrapowers to obtain lattice
properties of the injectives in varieties of ordered algebras. The results of
Chapter 2 are applied in Chapter 3 to the study of injectives in varieties of
residuated lattices. The results obtained are summarized in Table 3.1. In
Chapter 4 we investigate injectives in classes of pocrims and hoops. The
results are summarized in Table 4.1.

The abstract frame for the CBS theorem is given by the L-varieties of
algebras, introduced in the first section of Chapter 5. In Section 5.2 we
show that there are many examples of L-varieties. Necessary and sufficient
conditions for the validity of the CBS theorem in algebras belonging to an
L-variety are given in Section 5.3, which is the main section of this paper.
In Section 5.4 we look for some simple global conditions on algebras of an
L-variety that are sufficient for the validity of the CBS theorem. In Section
5.5 we show that absolute retracts in L-varieties satisfy the CBS theorem.
Finally, in Section 5.6 we give a version of the CBS theorem for partially
order-ed sets.

The content of Chapters 2 and 3, as well as the results following Def­
inition 4.3.7 in Chapter 4, are reproduced in the paper [22]. The results
of Chapter 4, until Definition 4.3.7, are in the paper [23]. The results of
Chapter 5, with the exception of those in Section 5.5 are in the paper [21].
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Chapter 1

Residuated Structures

1.1 Basic Notions

We recall from from [2]and [7]some basic notions of injectives and universal
algebra. Let A be a class of algebras. For all algebras A, B in A, [A,B]A
will denote the set of all homomorphisms g : A —>B. In this case, classes
of algebras are considered as categories. A subcategory B of a category .A
if reflective is there is a functor 'R,: A —>B, called reflector, such that for
each A E A there exists a morphism (DMA) e [A, 'R(A)]A with the following
properties:

i) If f e [A,A’]A then the following diagram is commutative

f
A —- A’

(DMA) 1 E 1 «DM/y)

RM) af) R(A’)

ii) If B e B and f e [A,B]A then there exists a unique morphism f’ 6
['R(A)B]B such that the following diagram is commutative

A —> B

‘Ï’RMH5/:
72(A) f

11



An algebra A in A is injective iff for every monomorphism f e [B, A]A
and every g e [B,C]A there exists h G [C,A]A such that the following
diagram is commutative

fB—-A

91 E/h
C

A is self-injective iff every homomorphism from a subalgebra of A into A,
extends to an endomorphism of A.

An algebra B is a retract of an algebra A if'fthere exists g e [B, A]A and
f E [A,B]A such that f g = 1B. Notice that g is necessarily a monomorphism
and f is an epimorphism. Also, if the morphisms are functions, then g is
injective and f is surjective. An algebra B is called an absolute retract
in .A iff it is a retract of each of its extensions in .A. It is well-known (and
easy to verify) that a retract of an injective object is injective.

A non-trivial algebra T is said to be minimal in .Aiff for each non-trivial
algebra A in A, there exists a monomorphism f : T —>A.

For each algebra A, we denote by Con(A) the congruence lattice of A,
the diagonal congruence is denoted by A and the largest congruence A2 is
denoted by V. A congruence 6M is said to be maximal if‘f0M aé V and
there is no congruence 0 such that 0M C 0 C V. An algebra I is simple
ilf Con(I) = {A,V}. A simple algebra is hereditarily simple ifl' all its
subalgebras are simple. An algebra A is semisimple iff it is a subdirect
product of simple algebras.

An algebra A has the congruence extension property (CEP) iff for
each subalgebra B and 0 E Con(B) there is a 45e Con(A) such that 0 =
d)ñ A2. A variety V satisfies CEP iff every algebra in V has the CEP. It is
clear that if V satisfies CEP then every simple algebra is hereditarily simple.

An algebra A is rigid iff the identity homomorphism is the only auto­
morphism.

Let 7' be a type of algebras. A quasi-identity of type T is either an
identity p = q or a formula of the form (pl = q1)/\- - -A (pn = qn) => (p = q)
where pl ---pn,q1 - --qn,p,q are terms in the language 7'. A quasivariety is
a class A of algebras of the same type that can be axiomatized by a set of
quasi-identities, called a basis for .A. A subquasivariety B of a quasivariety
A is a relative subvariety of A provided that a basis of B can be obtained
by adding only identities to a basis of .A. Let A be a quasivariety and

12



A e A. A congruence 0 in A is said relative to the quasivariety .A iff
A/0 e .A. We denote by ConA(A), the relative congruences lattice of A.
The set ConA(A) is closed under arbitrary intersections and hence form
a complete lattice. Note that A and V are always congruences relatives
to A. We say that an algebra A e A is simple relative to .A provided
ConA(A) = {A, V} and we say that A is semisimple relative to .A iff it
is a subdirect product of algebras simple relative to A.

1.2 Pocrims and Hoops

Definition 1.2.1 A pocrim [5] is an algebra (A,O,—>,1) of type (2,2,0)
satisfying the following azioms:

1. (A, O, 1) is an abelian monoid,

2.:1:—>1=1,

3.1-»:1:=a:,

4-(I-'y)->((Z->I)->(Z-*y))=1,
5-I->(y->z)=(m®y)->z,

6. If :1:—>y=1 and y—>1:=1 then m=y.

We denote by M the class of all pocrims. M is a quasivariety which is
not a variety [29]. If A e M, we can define an order in A by .7:5 y iff
.7:—>y = 1. With this order, the structure (A, O, —>,1, 5) is a commutative
partial ordered monoid in which 1 is the upper bound.

An element a: e A is called idempotent iff :1:O a: = ar, and the set of all
idempotent elements in A is denoted by I dp(A).

For all a e A, we inductively define al = a and a"+1 = a" O a.
It is easy to verify the following proposition:

Proposition 1.2.2 The following assertz'onshold in every pocrim A, where
ar,y,z denote arbitrary elements of A:

(1)a:—>:1:=1,

(2)=v->(y->z)=y->(I->z),

(13)30624321)?mSy-u,



(0233/ 1'17”1=a=->y,

(5)r®ySy,
(6)IO(37-’y)íy,

(7)a5b=>1:—>a5:1:—>b,

(8) aíb=>a—>a:2b—>a:,

(9)a5b=>a®zngb®z,

(10)a—>b=V{a:€A:aOa:5b}. CJ

We recall now some well-known facts about implicative filters and con­
gruences on pocrims. Let A be a pocrim and F g A. Then F is an im­
plicative filter iff it satisfies the followingconditions:

1) IGF,

2)ifoFandm->y€F,thenyeF.

It is easy to verify that a non-empty subset F of a pocrim A is an implicative
filter ilï for all a, b e A:

- IfaeFandaSb,thenb€F,
- ifa,b€F,thenaOb€F.

The intersection of any family of implicative filters is again an implicative
filter. We denote by (X) the implicative filter generated by X g A, i.e., the
intersection of all implicative filters of A containing X. We abbreviate this
as (a) when X = {a} and it is easy to verify that

(X)={m€A:3 w1,---,wneX suchthat xZwlon-Own}.

The set Filt(A) of all implicative filters of A, ordered by inclusion, is a
bounded lattice. For any implicative filter F of A,

6p={(a:,y)€A2:a:—>y,y—bmeF}

is a congruence relative to M. Moreover F = {11:e A : (37,1) E 0p}.
Conversely, if 0 e ConM(A) then F9 = e A : (ar,1) e 0} is an implicative

14



filter and (ar,y) e 0 iff (z —>y, 1) e 0 and (y -> a),1) e 0. Thus the
correspondence F -) 0p establishes an order isomorphism betweenConM(A)
and Filt(A).

If F e Filt(A), we shall write A/F instead of A/üp, and for each me A
we shall write [m]o(or simply when 0 is understand) for the equivalence
class of 3:.

Definition 1.2.3 A bounded pocrim is an algebra (A,G),—v,0,1) of type
(2,2,0,0) such that:

1. (A, G),—>,1) is a pocrim

2. 0 —>37 =1

The quasivariety of bounded pocrims is denoted by Mo. Observe that since
0 is in the clone of operations, then we require that for each morphism f,
f (0) = 0. Observe that {0,1} is a subalgebra of each non-trivial A e Mo,
which is a boolean algebra. Hence {0,1}, with its natural boolean algebra
structure, is the minimal algebra in each subquasivariety of Mo. Thus the
variety of boolean algebras BA is a relative variety of all subquasivarieties
of bounded pocrims.

On each bounded pocrim A we can define a unary operation -I by

-a:17=:1:—>0.

Note that an implicative filter F of a bounded pocrim is proper ifl"0 does
not belong to F. Hence a standar application of Zorn’s Lemma gives that
every implicative filter in a boundedpocrim is contained in a maximal filter.

Let A be a bounded pocrim. An element a in A is called nilpotent iff
there exists a natural number n such that a" = 0. The minimum n such
that a" = 0 is called the nilpotence order of a. An element a in A is
called dense ifï -Ia = 0, and it is called a unity ifl' for all natural numbers
n, 4a") is nilpotent. The set of dense elements of A will be denoted by
Ds(A). It is easy to verify that Ds(A) is an implicative filter.

A bounded pocrim A is called dense free iff Ds(A) = If A is a
relative subvariety of Mo, we denote by 'D.7-'(.Á)the full subcategory of A
whose elements are the dense free algebras of A.

Proposition 1.2.4 Let A be a relative subvariety of Mo. Then we have:

1. DFM) = {A/Ds(A) : A e A}

15



2. DÏ(A) is the subquasivariety of .A characterized by the quasiequation
-I—I:E = 1 => :1: = 1 .

Proof: To prove1.,weneedto provethat Ds(A/Ds(A)) = Let
be a dense element in A/Ds(A). Therefore [nm] = [0] and then -a: —>0 =
-m:r e Ds(A). Thus ña: = -I-ma:= 0, that is a:e Ds(A). Hence =
2. is immediate. El

Definition 1.2.5 If A is a bounded pocrim then we define:

Rad(A) = “{F : F is a maxima] implicative filter of A}.

Proposition 1.2.6 Let A be a boundedpocrim. Then:

1. Rad(A) = {a E A : a is a unity}.

2. Ds(A) g Rad(A).

Proof: 1) Suppose that a í Rad(A). Then there exists a maximal im­
plicative filter F in A such that a í F. Since F is maxima], there exists
b e F and a natural number n such that a" (Db = 0. By Proposition 1.2.2
b 5 ña". Hence ña" e F, and (-ua")"‘ 760 for each natural number m. Thus
a is not a unity. On the other hand, if a is not a unity then han)“ 760
for each natural number m. We consider the implicative filter generated by
ña", i.e., (flan). By Zorn’s Lemma there exists a maxima] implicative filter
F containing (-ua"). Since ña” e F, a is not an element of F. Therefore
a í Rad(A). 2) Is an obvious consequence of 1). Ü

Proposition 1.2.7 Let A be a boundedpocrim. Then A is relative semisim­
ple ifi’Rad(A) = {1}

Proof: SuppOSe that A is relative semisimple. Let f : A —>Hifi Li,
be a subdirect embedding with L,- a relative simple bounded pocrim for
each i e I. Then F,- = K er(7r,-f) is maximal implicative filter in A. Thus
Rad(A) g mi“ Fi = Conversely,if Rad(A) = {1}then A = A/Rad(A)
and A can be subdirectly embedded in Hiel A/Fi, with F,- a maximal im­
plicative filter for each i e I. Hence A is relative semisimple. El

If .A is a relative subvariety of Mo, we denote by Sem(.A) the full sub­
category of A whose elements are relative semisimple algebras of A.

16



Proposition 1.2.8 If .A is a relative sabvariety of Mo then Sem(.A) =
{A/Rad(A) : A G A}

Proof: Since Filt(A/Rad(A)) = [Rad(A), A], then F is a maximal implica­
tive filter in A iff it is maximal in A/Rad(A). Thus Rad(A/Rad(A)) = {1}
and A/Rad(A) is relative semisimple. El

If Rad(A) has a least element a, i.e., Rad(A) = [a), then a is called the
principal unity of A. It is clear that the principal unity is the minimum
unit. Hence it is an idempotent element, and obviously, it generates the
radical.

Lemma 1.2.9 Let A be a bounded pocn’m having principal unity a. If rcE
Rad(A) then, :1:—>-aa = -'a.

Proof: a: —>-ra = ñ(:1:G)a) = ña since a is the minimum unity. D

Proposition 1.2.10 Let A be a linearly ordered boundedpocrim. Then:

1. a is a unity in A ¿fi a is not a nilpotent element.

2. Ifa is a unity in A, then -1a < a.

Proof.- 1) If a < 1 and there exists a natural number n such that a" = 0,
then -|(a") = 1 and a is not a unity. Conversely, suppose that a is not
a unity. Since A is linearly ordered, we must have a" 5 -u-n(a") < -|(a").
Hence a2" = 0 and a is nilpotent, which is a contradiction. 2) Is an obvious
consequence of 1). El

Corollary 1.2.11 Let A be a boundedpocrim such that there exists an em­
bedding f : A —>Hi6, Li, with Li a linearly ordered bounded pocn’m for each
ie I. Then a is a unity in A ififor each i e I, a,-= n¡f(a) is a unity in
Li, where 7ri is the projection onto L1-.

Proof: If a is a unity in A then ai = mf(a) is a unity in Li, because
homomorphisms preserve unites. Conversely, suppose that a is not a unity.
Therefore there is an n such that ñ(a") is not nilpotent, and hence ñ(a") í
ñfi(a"). Since f is an embedding and since L1-is linearly ordered for each
i e I, there exists j e I such that ññ(a_’¡‘)S -I(a_’7-‘),and by Proposition
1.2.10 aj is not a unity in Lj.

Ü



Remark 1.2.12 If a bounded pocrim A is subdirect product of línearly or­
dered bounded pocrims, then the radical of A is characterized by equations.
More precisely:

Rad(A) = {11:e A : Vn e N, (aun)? = 0}

Proposition 1.2.13 Let A be a relative subvariety of Mo. Then 'DJ-"(A)
and Sem(.A) are reflective subcategories of A, and the reSpective reflectors
preserve monomomhisms.

Proof: If A E A, for each a: e A, will denote the Rad(A)-congruence
class of m. We define S(A) = A/Rad(A), and for each f e [A,A’]A, we let
S (f) be defined by S(f)([:1:]) = [f (12)]for each a: e A. Since homomorphisms
preserve unities, we obtain a well defined function S( f) : A/Rad(A) —>
A’/Rad(A’). It is easy to check that S is a functor from .A to S€M(.A).
To show that S is a reflector, note first that if pA : A —>A/Rad(A) is the
canonical projection, then the followingdiagram is commutative:

f
A —>A’

pA l E 1 pA’

A/Rad(A) —> A/Rad(A’)
SU)

Suppose that B e S(.A) and f e [A,B]_A. Since Rad(B) = {1}, the
mapping r—>f(a:) defines a homomorphism g : A/Rad(A) —>B that
makes the following diagram commutative:

f
A —- B

PA E
1 /g

A/Rad(A)

and it is obvious that g is the only homomorphism in [A/Rad(A), B]sem(A)
making the triangle commutative. Therefore we have proved that S is
a reflector. We proceed to prove that S preserves monomorphisms. Let
f e [A,B]Abe a monomorphismandsupposethat = (S(f))(y),
i.e., [ = [f(y)]. Then for each number n there exists a number m
suchthat o = (wm e ¡(mmm = ¡(mas —»mmm). Sincefis a
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monomorphism then —>y)"))"‘ = 0 and :1:—>y G Rad(A). Inter­
changing a: and y, we obtain = [y] and S( f) is a monomorphism. The
statements about 'D.7-'(A) can be proved with similar arguments. El

Corollary 1.2.14 Let A be a relative subvan'ety of Mo. If A is injective
either in 'DJ:(A) or in Sem(.A), then A is injective in A.

Proof: It is well-known that if 'D is a.reflective subcategory of A such that
the reflector preserves monomorphisms then an injective object in D is also
injective in .A [2, 1.18]. Then the theorem follows from Propositions 1.2.13.
Ü

Definition 1.2.15 A Hoop [5]is a pocrim satisfying the followingcondition:
xSy iff a:=.1:®(a:—>y).

Every hoop is a meet semilattice, where the meet operation is given by
:1:Ay=:l:®(m—>y).

Observe that in a hoop A, rr 5 y iff there is z e A such that a: = z o y.

Theorem 1.2.16 An algebra,(A,O, —>,1) is a hoop ifl

1. (A, O, 1) is an abelian monoid,

2. :1: —> a: = 1,

3- (aC->31)OI= (y->=v)®y,

4-x->(y->z)=(I®y)->z­

Proof: See ([5, Theorem 1.2]) Cl

Hence, the class of all hoops form a. variety. This variety is noted by H0.
In hoops, all congruences are identified to implicative filters.

Proposition 1.2.17 If .A is a variety of hoops then A satisfies CEP.

Proof: Let A be a. hoop and let B be a subhoop of A. For each implica­
tive filter F of B, let (F) A be the implicative filter of A generated by F.
Clearly F g (F) A. To see the converse, let b e B n (F) A. Then there exists
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al,---,an e F such that al G)a2(D---®a,1 5 b. Since b E B and F is an
implicative filter of B, hence upward closed, it follows that b e F. El

Let k be a natural number. A k-potent hoop [5] is a hoop satisfying
mk= xk“. We denote the class of k-potent hoop by H0(k). It is clear that
H0(2) is the variety of brouwerian semilattices [33].

A basic hoop [1] is an algebra (A,/\,V,G),—>,1) of type (2,2, 2,2,0) such
that:

1. (A, O, —>,1) is a hoop,

2. (A, A, V, 1) is lattice with greatest element 1,

3. (:1:—>y)V(y->a:)=1.

Basic hoops are also known as generalized BL-algebras [13]. We denote
by BH the variety whose element are basic hoops.

1.3 Residuated Lattices

Definition 1.3.1 A residuated lattice [35]or commutative integral residu­
ated 0, l-lattice [31], is an algebra (A, A, V, o, —>,0,1) of type (2, 2, 2, 2, 0,0)
such that:

1. (A, o, —>,1, 0) is a bounded pocrim

2. L(A) = (A, V, A,0, 1) is a bounded lattice,

3. (sz) —>y=1.

Residuated lattices form a variety RL defined by the following equations:

1. (A, G),l) is an abelian monoid,

2. L(A) = (A, V, A,O, 1) is a bounded lattice,

3. (IOy)->z=rv->(y->z),

4- ((mfiy)om)Ay=(m->y)®z,
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5. (sz)->y=1.

A is called an inuolutz’veresiduated lattice or a Girard monoid [27] if it also
satisfies the equation:

6. -a-ua: = m.

A is called distributive if satisfies 1.-5. as well as:

7.1:A(sz)=(:1:/\y)V(a:/\z).

The subvariety of Girard monoids is noted by GM. Following the notation
used in [31],the variety of residuated lattices that satisfy the distributive law
is denoted by 'D'RE, and DQM will denote the variety of distributive Girard
monoids. In residuated lattÍCes, congruences are in correspondence with
implicative filters. In the next proposition we collect some easy consequences
of the definition of residuated lattices.

Proposition 1.3.2' Let A be a residuated lattice and Z g A. Then:

1- I®(yVZ) = (mGyWÜJG-z),

2-1->(y/\z)=(I-*y)/\(I->z),
3- (17V?!)->z) = (iv->z)/\(r->y),

.xOnyAy

.m5y=>-aa:5-ay,

4

5

6. ifVZ ezists,thenaovzezz =VzezaOz,

7. ifVZ exists, then V2622 —>a = Azezz —>a,

8. ifAZ ean'sts,thena—>Azezz = Azezad z

CI

Proposition 1.3.3 Let A be a residuated lattice. Then the following con­
ditions are equivalent:

1. (a —>b) V (b —>a) = 1 (prelinearity),
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2. a—>(ch)=(a—>b)V(a—>c),

3. (aAb) —>c= (a—>c)V(b—>c).

Proof: See ([27, Theorem 2.3]) El

Lemma 1.3.4 Let A be a residuated lattice satisfying the prelinearity equa­
tion. Then following conditions are valid:

1. a2Ab25a®bSa2Vb2,

2. a®(b/\c)=(aOb)/\(a®c),

3. (aVb)/\c=(a/\c)V(b/\c).

Proof: See ([27, Lemma 2.4]) El

Proposition 1.3.5 Let A be a Girard monoid. Then following conditions
are valid:

1. (a —>b) = fi(a® -'b),

2. ñ(a A b) = -raV ñb.

Proof: See ([27, Proposition 2.8]) El

Proposition 1.3.6 Let A be a Girard monoid. Then following conditions
are equivalent:

1. A satisfies the prelinean'ty equation,

2. zO(y/\z) = (mGy)/\(a:®z).

Proof: See ([27, Proposition 2.9]) Cl

Lemma 1.3.7 Let A be a Girard monoid satisfying the prelinearity equa­
tion. Then the negation has at most one fixed point.

Proof: See ([27, Lemma 2.10]) D

Proposition 1.3.8 Let A be a residuated lattice. Then following conditions
are equivalent:
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1. a 5 b => 33:e A s.t. b = a Oz, (divisibility)

2. aAb=a®(a.—>b),

3. a—>(bAc) = (aAb)®((a/\b) —>c).

Proof: See ([27, Lemma 2.5]) El

Proposition 1.3.9 Let A be a residuated lattice with dim'sibility. Then fol­
lowing conditions are valid:

1. Ifa is idempotent then a Ab = a o b for each b e A,

2. aGbS a2Vb2,

3. (aVb)Ac: (aAc)V(b/\c).

Proof: See ([27, Proposition 2.6]) CI

Proposition 1.3.10 If .A is a subvan’etyof RL, then .A satisfies CEP.

Proof: This followsfrom the same argument used in Proposition 1.2.17 . El

It is easy to verify the following proposition:

Proposition 1.3.11 Let A be a residuated lattice. Then A is simple ifi’for
each a < 1, a is nilpotent. El
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Chapter 2

Injectives, simple algebras
and ultrapowers

2.1 Injectives and simple algebras

Definition 2.1.1 Let V be a variety. Two constant terms 0,1 of the lan­
guage of V are called distinguished constants iff A |= 0 7€ 1 for each non­
trivial algebra A in V.

Lemma 2.1.2 Let A be variety with distinguished constants 0,1 and let A
be a non-trivial algebra in A. Then A has mamimalcongruences, and for each
simple algebra I e A, all homomorphisms f zI —>A are monomorphisms.

Proof: Since for each homomorphism f : A —>B such that B is a non­
trivial algebra, f(0) aé f(1) then for each 0 E Con(A)\{A2}, (1,0) QE6.
Thus a standard application of Zorn lemma shows that Con(A)\{A2} has
maxima] elements. The second claim follows from the simplicity of I and
f(0) fi f(1)- ¡:1

Definition 2.1.3 A simple algebra IM is said to be maximum simple [22]
iff for each simple algebra I, I can be embedded in IM.

Theorem 2.1.4 Let .A be a variety with distinguished constants 0,1 hav­
ing a minimal algebra. If A has non-trivial injectives, then there exists a
maximum simple algebra I.

Proof: Let A be a non-trivial injective in .A. By Lemma 2.1.2 there is a
maximal congruence 0 of A. Let I = A/Ü and p : A —>I be the canonical
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projection. Since A has a minimal algebra it is clear that for each simple
algebra J, there exists a monomorphism h : J —>A. Then the composition
ph is a monomorphism from J into I. Thus I is a maximum simple algebra.
Ü

We want to establish a kind of the converse of the above theorem.

Theorem 2.1.5 Let .A be a variety satisfying CEP, with distinguished con­
stants 0,1. If I is a self-injective maximum simple algebra in .A then I is
injective.

Proof: For each monomorphism g : A —»B we consider the following
diagram in .A:

fA—-I
91

B

By CEP, I is hereditarily simple. Hence f (A) is simple and K er( f) is
a maxima] congruence of A such that (0,1) í Ker( f). Further Ker( f) can
be extended to a maxima] congruence 0 in B. It is clear that (0, 1) 9€0 and
00A2 = K e7'(f). Thus if we consider the canonical projection p : B —>B/0,
then there exists a monomorphism g’ : f (A) —»B/0 such that

f 1!(A)
A —>f(A)- I

91 9'1

B 7 3/0
Since I is maximum simple, B/9 is isomorphic to a subalgebra of I.

Therefore, since that I is self-injective, there exists a monomorphism (p :
3/0 —>I such that gog’= 1¡(A). Thus (<pp)g= f and I is injective. El

Lemma 2.1.6 If A is a rigid simple injective algebra in a,variety, then all
the subalgebms of A are rigid. El
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2.2 Injectives, ultrapowers and lattice properties

We recall from [4] some basic notions on ordered sets that will play an im­
portant role in what follows. An ordered set L is called bounded provided
it has a smallest element 0 and a greatest element 1. The decreasing seg­
ment (a] of L is defined as the set e L : a: S a}. The increasing segment
[a) is defined dualy. A subset X of L is called down-directed (upper­
directed) iff for all a, b e X, there exists a: G X such that a: 5 a and a: S b
(a. S .7:and b S ar).

Lemma 2.2.1 Let L be a lattice and X be a down (upper) directed subset
of L such that X does not have a minimum (maximum) element. If .7: is the
implicative filter in 'P(X) generated by the decreasing (increasing) segments
of X, then there exists a non-principal ultrafilter U such that .7:Q U.

Proof: Let (a], (b] be decreasing segments of X. Since X is a down­
directed subset, there exists a: E X such that :1:S a and a: 5 b, whence
acE (a] n (b] and f is a proper implicative filter of 'P(X). By the ultrafilter
theorem there exists an ultrafilter U such that .7:g U. Suppose that LIis the
principal filter generated by SinceX does not have a minimum element,
there exists z e X such that a: < c. Thus (2] e U and it is a proper subset
of (c], a contradiction. Hence U is not a principal filter. By duality, we can
establish the same result when X is an upper-directed set. Ü

Definition 2.2.2 A variety V of algebras has lattice-terms ifi' there are
terms of the language of V defining on each A e V Operations V, A, such
that (A,V, A) is a lattice. V has bounded lattice-terms if, more0ver, there
are two constant terms 0,1 of the language of V defining on each A e V a
bounded lattice (A,V,A,0, 1). The order in A, denoted by L(A), is called
the natural order of A.

Observe that each subvariety of a variety with (bounded) lattice-terms is
also a variety with (bounded) lattice-terms.

Remark 2.2.3 Let V be a variety with lattice-terms and A e V. AX/U will
always denote the ultrapower corresponding to a down (upper) directed set
X of A with respect to the natural order, without smallest (greatest) element
and a non-principal ultrafilter U of 'P(X), containing the filter generated by

26



the decreasing (increasing) segments of X. For each f E AX, [f] will denote
the U-equivalence class of f. Thus [1X] is the U-equivalence class of the
canonical injection X '-+ A and for each a e A, [a] is the U-equivalence class
of the constant function a in AX. It is well-known that iA(a) = [a] defines
a monomorphism A —>AX/U (see [8, Corollary 4.1.13]).

Theorem 2.2.4 Let V be a variety with lattice-terms. If there exists an
absolute retract A in V, then each down-directed subset X g A has an
infimum, denoted by /\ X. Moreover if P(:r) is a first-order positive formula
(see of the language of V such that each a E X satisfies P(:r), then /\ X
alsosatisfies
Proof: Let X be a down-directed subset of the absolute retract A. Suppose
that X does not admit a minimum element and consider an ultrapower
AX/U. Since A is an absolute retract there exists a homomorphism cpsuch
that the following diagram is commutative:

1A
A —> A

¿A1 E

AX/u/‘P'
We first prove that 30([1x]) is a lower bound of X. Let a E X. Then

[1X]5 [a] since e X: 1x(a:)5 a(:r)} = G X : :1:5 a} E M. Thus
Lp([1x]) 5 Lp([a])= a and Lp([1X])is a lower bound of X. We proceed now
to prove that <p([1x]) is the greatest lower bound of X. In fact, if b e A is
a lower bound of X then for each :t E X we have b S 1:. Thus [b] S [1x]
since e X : 5 1x(a:)}= e X : bs = X eu. Nowwehave
b = Lp([b])5 <p([1x]). This proves that cp([1x]) = AX. If each a e X satis­
fies the first order formula P(:r) then [1x] satisfies P(a:) and, since P(a:) is a
positive formula, it follows from ([8, Theorem 3.2.4] ) that 30([1x]) satisfiesEl
In the same way, we can establish the dual version of the above theorem.
Recalling that a lattice is complete iff there exists the infimum A X (supre­
mum V X), for each down-directed (upper-directed) subset X, we have the
following corollary:

Corollary 2.2.5 Let V be a variety with lattice-terms. If A is an absolute
retract in V, then L(A) is a complete lattice. Ü
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Chapter 3

Injectives in Residuated
Lattices

3.1 Radical-dense varieties

Definition 3.1.1 We will say that a variety A is radical —dense [22]pro­
vided that A is a subvariety of 'RL and Rad(A) = Ds(A) for each A in
A.

An example of radical-dense variety is the variety of Heyting algebras
(i.e RL plus the equation :1:O y = :1:Ay). The variety of Heyting algebras is
noted by 'H.

Theorem 3.1.2 Let .A be a radical-dense variety. IfA is a non-semisimple
absolute retract in A, then A has a principal unity e and {0, e, 1} is a sub­
algebra of A isomomhic to the three element Heyting algebra H3.

Proof: Let A be a non-semisimple absolute retract. Unities are character­
ized by the first order positive formula ña: = 0 because Rad(A) = Ds(A).
Since Ds(A) is a down-directed set, by Theorem 2.2.4 there exists a min­
imum dense element e. It is clear that e is the principal unity and since
e < 1, {0, e, 1} is a subalgebra of A, which coincides with the three element
Heyting algebra H3. El

Definition 3.1.3 Let .A be a radical-dense variety. An algebra T e .A is
called a testd-algebra iff there are e,t e Rad(T) such that e is an idempotent
element, t < e and e —>t S e.
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An important example of a testd-algebra is the totally ordered four element
Heyting algebra H4 = {0 < b < a < 1} whose operations are given as
follows:

I®y=IAa

T_) _ 1, ifzSy,
' y_ y, ifa:>y.

Theorem 3.1.4 Let A be a radical-dense variety. If A has a non-trivial in­
jective and contains a testd-algebra T, then all injectives in .A are semisim­
ple.

Proof: Suppose that there exists a non-semisimple injective A in A. Then
by Lemma 3.1.2, there is a monomorphism a : H3 —>A such that a(a) is
the principal unity in A. Let i : H3 —>T be the monomorphism such that
i(a) = e. Since A is injective, there exists a homomorphism go: T —»A such
that the following diagram commutes

a
H3 —' A

i 1 7
T ‘P

Since a(a) is the principal unity in A and t S e, then, by commutativity,
cp(e) = Lp(t) = a(a). Thus <p(e—>t) = 1, which is a contradiction since
by hypothesis cp(e —>t) 5 <p(e)= a(a) < 1. Hence .A has only semisimple
injectives. El

3.2 Injectives in RL, 9M, DRE and DQM

Proposition 3.2.1 Let A bea residuated lattice. Then the set A° = {(a, b) E
A x A : a 5 b} equipped with the operations

(a1,b1)/\(a2,b2) :=(a1/\a2,b1/\ bg),
(a1,b1) V (a2,b2) Z= (a1 V a2,b1 V b2),
(al,b1)®(02,b2) I= (010 (12,0116) ¿72)V ((12O 171)),
(01,171)—’(02,62)1=((01 -‘ a2) A (bl -> 52),a1-> b2)­

is a residuated lattice, and the following properties hold:
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1. The map i : A —>A° defined by i(a) = (a,a) is a, monomomhism.

2. ñ(a, b) = (-1b,ña) and ñ(0, 1) = (0,1).

3. A is a Girard monoid ifi' A° is a, Girard monoid.

4. A is distributive ifi' A° is distributive.

Proof: See [27, IV Lemma 3.2.1]. Cl

Definition 3.2.2 We say that a subvariety.A of RL is o-closed ifi'for all
A e A, A° e A.

Theorem 3.2.3 If a subvan'ety A of RL is o-closed, then .A has only
trivial absolute retracts.

Proof: Suppose that there exists a non-trivial absolute retract A in A.
Then by Proposition 3.2.1 there exists an epimorphism f : A° —>A such
that the following diagram is commutative

1AA-—>A

¿13
Ao/f

Thus there exists a e A such that f(0, 1) = a = f(a,a). Since (0,1)
is a fixed point of the negation in A° it follows that 0 < a < 1. We have
f(a,1) = 1. Indeed, (0,1) —>(a,a) = ((0 —>a) /\ (1 —>a),0 —>a) = (a,1).
Thus f(a,1) = f((0, 1) —>(a,a)) = f(0,1) -> f(a, a) = a —»a = 1. In view
of this we have 1 = f(a,1) Of(a,1) = f((a,1) G)(a, 1)) = f(a®a,(ao 1)V
(ao 1)) = f((aOa,a)) 5 f((a,a)) = a, whichis a contradictionsincea < 1.
Hence .A has only trivial absolute retracts. CI

Corollary 3.2.4 RL, 9M, ’DRL and 'DQM have only trivial absoluto re­
tracts and injectives. El
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3.3 Injectives in SRL-algebras

Definition 3.3.1 A SRL-algebra is a residuated lattz'cesatisfying the equa­
tion:

(S) IIIA ña: = 0

The variety of SRL-algebras is denoted by SRL.

Proposition 3.3.2 If A is a SRL-algebra, then 0 is the only nilpotent in
A.

Proof: Suppose that there exists a nilpotent element z in A such that
0 < at, having nilpotence order equal to n. By the residuation property
we have zn‘l 5 17:. Thus 1:"‘1 = a: Amn’l 5 a: A -|.7: = 0, which is a
contradiction since a: has nilpotence order equal to n. El

Corollary 3.3.3 Let A be a subvariety of SRL. Then the two-element
boolean algebra is the maximum simple algebra in A and Sem(A) = BA.

Proof: Follows from Propositions 3.3.2 and 1.2.6. El

Corollary 3.3.4 If .A is a subvariety of SRL then A is a radical-dense
variety.

Proof: Let A be an algebra in .Aand let a be a unity. Thus -ua is nilpotent
and hence ña = 0. El

Corollary 3.3.5 If A is a subvariety of SRL, then all complete boolean
algebras are injectives in A.

Proof: By Corollary 3.3.3 the two-element boolean algebra is the maxi­
mum simple algebra in .A. Since it is self-injective, by Theorem 2.1.5 it is
injective. Since complete boolean algebras are the retracts of powers of the
two-element boolean algebra, the result is proved. Cl

As an application of this theorem we prove the following results :

Corollary 3.3.6 In SRL and 'H, the only injectives are complete boolean
algebras.

Proof: Follows from Corollary 3.3.5 and Theorem 3.1.4 because the testd­
algebra H4 belongs to both varieties. D

Remark 3.3.7 The fact that injective Heyting algebras are exactly com­
plete boolean algebras was proved in [3] by different arguments.
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3.4 MTL-algebras and absolute retracts

Definition 3.4.1 An MTL-algebra[19]is a residuated lattice satisfying the
pre-linearity equation

(Pl) (iv->31)V(y->=v)=1

The variety of MTL-algebras is denoted by MTL.

Proposition 3.4.2 Let A be a residuated lattice. Then the following con­
ditions are equivalent:

1. A e MTL.

2. A is a subdirect product of linearly ordered residuated lattices.

Proof: [27, Theorem 4.8 p. 76 CI

Corollary 3.4.3 MTC is subvariety of 'D'RL. CI

Corollary 3.4.4 Let A be a MTL-algebra.

1. If A is simple, then A is linearly ordered.

2. Ife is a unity in A, then ne < e.

Proof: 1) Is an immediate consequence of Proposition 3.4.2. 2) If we con­
sider that the ith-coordinate vr,-f (e) of e in the subdirect product f : A ——>
Hiel L1-is a unity, for each i e I, then by Proposition 1.2.10, ñn¿f(e) <
nif(e). Thus ne < e. El

To obtain the analog of Theorem 3.1.2 for varieties of MTL-algebras, we
cannot use directly Theorem 2.2.4, because the property of being a unity is
not a first order property. We need to adapt the proof of Theorem 3.1.2 to
this case:

Theorem 3.4.5 Let A be a subvariety ofM’TL. IfA is an absolute retract
in .A then A has a principal unity e in A.

Proof: By Proposition 3.4.2 we can consider a subdirect embedding f :
A -—>Hifi L,- such that L1-is linearly ordered. We define a family H (Li) in
A as follows: for each i G I
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(a) if there exists ei = min{u e L1-: u is unity} then H (Li) = Li,

(b) otherwise, X = {u e L,- : u is unity} is a down-directed set without
least element. Then by Proposition 2.2.4 we can consider an ultra­

product LSV/uof the kind considered after Definition 2.2.2. We define

H (Li) = LIX/u. It is clear that H (Li) is a linearly ordered .A-algebra.
If we take the class e,- = [1x] then e,- is a unity in H (Li) since for
every natural number n, 0 < e? ifl' e X : 0 < (1X(:1:))"}e U and
{mEX:O< (1X(:I:))"=a:"}=XGU.

We can take the canonical embedding j,- : L1-—>H (Li) and then for each
i e I we can consider e1-as a unity lower bound of L,-in H (Li). By Corollary
1.2.11, (el-LE; is a unity in Hi6, H(L,—).Let j : Hi6, L1-—>nie, H(L,-) be the
monomorphism defined by j((a:¡)¿e¡) = (j¡(a:,-)),-e1. Since A is an absolute
retract there exists an epimorphism (p : Hi6¡ H (Li) —>A such that the
following diagram commutes:

f j
A —> Hi6] Li —’ Hi6] H(Li)

1A
A

Let e = go((e¿)¿e¡). It is clear that e is a unity in A since (p is an ho­
momorphism. If u is a unity in A then (eat-el S jf(u) and by com­
mutativity of the above diagram, e = <p((e¿)i€¡) 5 (pjf(u) = u. Thus
e = min{u e A : u is unity} resulting in Rad(A) = [8).

Ü

3.5 Injectives in WNM-algebras and MTL

Definition 3.5.1 A WNM-algebra (weak nilpotent minimum) [19] is an
MTL-algebra satisfying the equation

(W) "(m@y)V((I/\y)-*(330y))=1.

The variety of WNM-algebras is noted by WN M.

Theorem 3.5.2 The following conditions are equivalent:
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1. I is a simple WNM-algebra.

2. I has a coatom v. and its operations are given by

0, ifm,y<1
rey: 11:,ify=1

y, ifa:=1

L #zSy
xfiy= a UI=1

u, ify<z<1.

Proof: =>). For Card(I) = 2 this result is trivial. If Card(I) > 2 then we
only need to prove the following steps:

a) If at,y < 1 in I then a:G y = 0: Since I is simple, equation
implies that 3:2= 0 for each a: e I \ Hence if a: 5 y < 1, then
mGySyGy=0

b) I has a coatom: Let 0 < a: < 1. We have that ña: < 1 and, since I is
simple, we also have -|-na:< 1. Then by a) it follows that fix 5 fina: 5
anna: = -na:, i. e., -ua:= fifiz. If 0 < 3:,y < 1, again by a) we have
-na:o fly = 0. Thus -v:c5 -n-Iy = -vy. By interchanging a: and y we
obtain the equality ña: = -uy. Now it is clear that if 0 < a: < 1, then
u = -Ia: is the coatom in I.

c) Ify<:1:<1then:v—>y=u:Sincem—>y=V{t€I:t®a:5y},
this supremum cannot be 1 because y < r. Thus, in view of item a),
a: —->y is the coatom a.

<=) Immediate.
El

Example 3.5.3 We can build simple WNM-algebras having arbitrary car­
dinality if we consider an ordinal 'y = Suc(Suc(a)) with the structure given
by Proposition 3.5.2, taking Suc(a) as coatom. These algebras will be called
ordinal algebras.

Proposition 3.5.4 WNM and MTL have only trivial injectives.

Proof: Follows from Proposition 2.1.4 since these varieties contain all or­
dinal algebras. El
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3.6 Injectives in SMTL-algebras

Definition 3.6.1 An SMTL-algebra [20]is a MTL-algebra satisfying equa­
tion (S The variety of SMTL-algebrasis denoted by SM’ÏL.

Proposition 3.6.2 The only injectives in SMTL are complete booleanal­
gebras.

Proof: Follows from Corollary 3.3.5 and Theorem 3.1.4 since the testd­
algebra H4 belongs to SM’ÏL. El

3.7 Injectives in HSMTL-algebras

Definition 3.7.1 A HSMTL-algebra [19]is a SMTL-algebra satisfying the
equation:

(H) (“20((1'02)-+(y®z)))->(I->y)= 1­

The variety of HSMTL-algebras is denoted by HSM'ÏC.

Proposition 3.7.2 Let A be an HSMTL-algebra. Then 1 is the only idem­
potent dense element in A.

Proof: By equation H it is easy to prove that, for each dense element e, if
eG.1:= ¿Oy then a: = y. Thus if e is an idempotent dense then ¿(al = e(De
and e = 1.

Theorem 3.7.3 Let .A be a subvariety of HSM’ÏL. Then the injectives in
A are exactly the complete boolean algebras.

Proof: Follows from Corollary 3.3.5, Theorem 3.1.2 and Proposition 3.7.2.

3.8 Injectives in BL, MV, PL, and in Linear Heyt­
ing algebras

Definition 3.8.1 A BL-algebra [26]is an MTL-algebra. satisfying the equa­
tion

(B)- z®(m->y)=a=/\y
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We denote by BL the variety of BL-algebras. Important subvarieties of BC
are the variety MV of multi-valued logic algebras (MV-algebras for short),
characterized by the equation fina: = a: [10, 26], the variety 'PL of product
logic algebras (PL-algebras for short), characterized by the equations (H)
plus (S) [26, 11],and the variety HC of linear Heyting algebras, characterized
by the equation a:o y = a:Ay (also known as Gódel algebras [26]).

Remark 3.8.2 It is well-knownthat MV is generated by the MV-algebra
R[0_¡]= ([0, 1], o, —>,A,V,0, 1) such that [0,1] is the real unit segment, A, V
are the natural meet and join on [0,1] and G)and -> are defined as follows:
.1:o y := maa:(0,m + y — 1), a: —>y := min(1,1— a: + y). Rlolll is the
maximum simple algebra in MV (see [10, Theorem 3.5.1]). Moreover RIO,”
is a rigid algebra (see [10, Corollary 7.2.6]), hence self-injective. Injective
MV-algebras were characterized in [25, Corollary 2.11]) as the retracts of
powers of Rloyll.

Proposition 3.8.3 If .A is a subvariety of 'PL, then the only injectives of
A are the complete boolean algebras.

Proof: Follows from Theorem 3.7.3 since 'PE is a subvariety of HSMTL.
El

Proposition 3.8.4 The only injectives in HL are the complete boolean al­
gebras.

Proof: Follows from Corollary 3.3.5 and Theorem 3.1.4 since the algebra
testd H4 lies in SMTL. Cl

Proposition 3.8.5 BC is a radical-densevariety.

Proof: See [12, Theorem 1.7 and Remark 1.9]. El

Proposition 3.8.6 Injectives in BL are exactly the retracts of powers of
the MV-algebra Rlo'll .

Proof: By Remark 3.8.2 and Propositions 3.8.5 and 2.1.5, retracts of a
power of the RIO,” are injectives in BC. Thus by Theorem 3.1.4, they are
the only possible injectives since H4 lies in BL. El
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3.9 Injectives in IMTL-algebras

Definition 3.9.1 An involutive MTL-algebra (or ¡MTL-algebra) [19] is a
MTL-algebra satisfying the equation

(I) n-aa: = a3.

The variety of IMTL-algebras is noted by IM’ÏL.

An interesting IMTL-algebra, whose role is analogous to H3 in the
radical-dense varieties, is the four element chain I4 defined as follows:

ol1 a b o —>¡ 1 a b 0 1

1 1 a b o 1 1 a b 0 a

a a a 0 0 a 1 1 b b

b b 0 0 o b 1 1 1 a b=ña

o o 0 0 o o 1 1 1 1 0

Theorem 3.9.2 Let .Abea a subvan'etyofIMTL. IfA is a non-semisimple
absolute retract in .A, then A has a principal unity e and {0,-|€,€, 1} is a
subalgebra of A which is isomorphic to I4.

Proof: Follows from Theorem 3.4.5. El

Definition 3.9.3 Let A be a subvariety of IM’TL. An algebra T is called
a test¡-algebra iff, it has a subalgebra {0, --e,e, 1} isomorphic to I4 and there
exists t e Rad(T) such that t < e.

Theorem 3.9.4 Let .A be a subvariety of IM'ÏL IfA has a. non-trivial
injective and contains a test ¡-algebra, then injectives are semisimple.

Proof: Let T be a test¡-algebra and t e Rad(T¿) such that t < e. We can
consider a subdirect embedding f : T —->1-11-61Hj such that LJ- is linearly
ordered. Let atj = 7l'jf for each a: e T and 7rj the jth-projection. Since
t < e, exists s e J such that n63 < nts < ts < e, and by Corollary 1.2.11 , ts
and e, are unities in the chain Hs with es idempotent. Note that Hs is also a
testl-algebra. To see that es —>t9 S e, observe first that 0 < es O -uts since,
if es o fits = 0 then es < -a-|ts = t,i which is a contradiction. Consequently,
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ne, 5 ese-«ts since, if ¿sonia S ne, then eso-¡ts = (63)2Oñt35 «(De = 0.
Thus we can conclude that es —>ts = ñ(<-:3o ñts) 5 fines = es. Suppose
that there exists a non-semisimple injective A in .A. Then by Theorem 3.9.2,
let a : L; —>A be a monomorphism such that a(a) is the principal unity in
A. Let 2': I4 —>H3 be the monomorphism such that i(a) = es. Since A is
injective, there exists a homomorphism gp: Hs —>A such that the following
diagram commutes:

a
I4—-A

HE/H,”
Since a(a) is the principal unity in A and ts 5 es then, by commutativity,
90(53)= <p(t3) = a(a). Thus 90(63—>ts) = 1, which is a contradiction since
Lp(e,—+te) 5 <p(es)= a(a) < 1. Hence A has only semisimple injectives. Cl

Proposition 3.9.5 ÍM’ÏC has only trivial injectives.

Proof: Suppose that there exists non-trivial injectives in IMTL. By
Theorem 2.1.4 there is a simple maximum algebra I in IMTL. We consider
the six elements I M TL chain IGdefined as follows:

G) 1 al t a2 as 0 -* 1 al t az a3 0 1

1 1 al t a2 as 0 1 1 a1 t az aa 0 al
al al a2 (la a3 0 0 al 1 1 al al t a3

t t 03 aa 0 0 0 t 1 1 1 al a1 a2 t

02 a2 as 0 0 0 0 a2 1 1 1 1 al t a2

aa aa 0 O 0 0 0 aa 1 1 1 1 1 a1

o o o 0 0 0 o o 1 1 1 1 1 1 “3

0

Since I is simple maximum we can consider Ig and Rlo’ll as subalgebras of
I. In view of this and using the nilpotence order we have that 1/2 < t < 3/4

since I is a chain. Therefore we can consider u = VR[o_ll{mE Rlo'll : .1:< t}

and v = ARWIH E Rlolu : a: > t} and it is clear that u,v e RIM] since
Rlo,1]is a complete algebra. Thus u < t < v. This contradicts the fact that
the order of Rlo'll is dense. Consequently IMTL: has only trivial injectives.
El
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3.10 Injectives in NM-algebras

Definition 3.10.1 A nilpotent minimum algebra. (or NM-algebra) [19]is an
IMTL-algebra satisfying the equation (W).

The variety of NM-algebras is noted by NM. As an example we consider
Nlo'll = ([0,1],O, —>,A, V,0, 1) such that [0,1] is the real unit segment, A, V
are the natural meet and join on [0,1] and (Dand -—>are defined as follows:

_ mAy fi1<m+y
me y _ { 0, otherwise,

T _’ _ 1, if a: 5 y
' y _ maat(y,1 — otherwise .

Note that {0, á, 1} is the universe of a subalgebra of Nlo'll, that we denote
by L3. The subvariety of NM generated by L3 coincides with the variety
[.3 of three-valued Lukasiewicz algebras (see [37, 9]).

Proposition 3.10.2 L3 is the maximum simple algebra in NM, and it is
self-injective.

Proof: Let I be a simple algebra such that Card(I) > 2. By Theorem
3.5.2 I has a coatom u satisfying Ha: = u for each 0 < zz < 1. Thus
a: = fina: = -nu = u for each 0 < a: < 1. Consequently Card(I) = 3 and
I = L3. Ü

Corollary 3.10.3 Sem(NM) = L3. D

Proposition 3.10.4 Injectives in NM coincide with complete Post alge­
bras of order 3.

Proof: By Proposition 3.5.2, Theorem 2.1.5 and Theorem 3.9.4 injectives
in NM are semisimple since N[o_1]is an algebra Test l. Thus by Proposition
3.10.3 and [37], [9, Theorem 3.7], complete Post algebras of order 3 are the
injectives in NM. Ü
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:3:
-\-|z=z

Table 3.1: Injectives in Varieties of Residuated Lattices
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Chapter 4

Injectives in Pocrims and
Hoops

4.1 Absolute retracts in pocrims

Proposition 4.1.1 Let A be a pocrim and J. be a new symbol not belonging
to A. We can consider .L 69A = A U {.L} with the following operation:

mGy, ifar,y€A
.L, ifat=.Lory=_LmGL y = {

J_, ifareAandy=_L
1, ifa: =_L

Then (L GBA,O¿, —>¿,1) is a pocrim with smallest element .L, and A is a
subalgebra of J. EBA.

—)_Ly=

Proof: Immediate El

Definition 4.1.2 Let .Abe a relative subvariety of M. Then we say that
.A is (.L EB)-closed iff for all A e A, .L GBA e A

Theorem 4.1.3 IfA is a (L 63)-closedrelative subvariety of M, then ab­
solute retracts in A are trivial algebras.

Proof: Suppose that there exists a non-trivial absolute retract A in .A.
Let i : A —>_LEBAbe the monomorphism such that i(a:) = az. Then there
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exists an epimorphism f :_L63A —>A such that the composition fi = 1A.
Let 0 = f(.L). Since for all a: e A, 0 = f(J.) S f(i(a:)) = a), we have
that 0 is the smallest element of A. In .L 69A we have that 0 —->_L=L.

Therefore f(O —>J_)= f(.L) = 0. On the other hand, since i(0) = 0,
f(O) —>f(.L) = 0 —>0 = 1. Hence 0 = f(O —>_L)but f(O) —>f(.L) = 1,
which is a contradiction. Consequently A have only trivial absolute retracts.
El

Corollary 4.1.4 IfA is a (.L GB)-closedrelative subvariety of M, then A
has only trivial injectives. Ü

Corollary 4.1.5 M, H0, HÜUC),BH have only trivial absolute retract
and trivial injectives. El

4.2 Injectives in quasivarieties of bounded pocrims

Proposition 4.2.1 M0, has only trivial absolute retract and trivial injec­
tives.

Proof: It follows from the same argument used in Theorem 4.1.3 Ü

Proposition 4.2.2 Let .A be a (J. ea)-closedrelative subvariety of Mo . If
B is injectivein A thenDs(B) ñ Idp(B) =

Proof: Let B be an injective in A. If there is an element a e Ds(B) ñ
Idp(B) with a < 1, then {0,a, 1} would be a subalgebra of B such that
Ds(B) = B\{0}. Extend it to a maximal totally ordered subalgebra C of B
such that Ds(C) = C\{0}, and let ic : C —>B be defined by iC(.1:)= In
the algebra _LEBCwe have _L< 0. To avoid confusion, we define a := 0. Now
we define f : C —>L6C such that f(O) =L and for each rc> 0, = 2:.
It easy to verify that f is a monomorphism. Since B is injective there exist
a morphism g :J. GBC—>B such thar gf = ic since B is an injective object.
We derive from this the following asertions:

1. g(a) e C (since C is a maximal subchain of B with the property
Ds(C) = C —{0}),

2- g(a) 7€0 (since n90!) = g(na) = g(l) = 0),

3. g(a) < 1 (since a < a and then g(a) 5 g(a) = a < 1).
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Now we have that for alla: e C- {0}, z —>g(a) = g(a:) —>g(a) = g(a: —>
a) = g(a) < 1 by item Thus g(a) < at. Hence by item (1) we obtain
g(a) < g(a) which is an obvious contradiction. Therefore we conclude that
Ds(B)ñ Idp(B)= CI

Proposition 4.2.3 Let .A be a (J. GB)-closedrelative subvariety of Mo. If
B is injectivein A thenDs(B) =

Proof: Let B be an injective in .A. We assume that there is an element
a e Ds(B) with a < 1. For all natural number n 2 1, ñ(a") = 0 since
-v(a")=a"—>0=a"’1—>(a—>0)=a"‘l—>0=---=a—>0=0. Thus
a" > 0 for all n 2 1, and then the principal implicative filter (a) is proper.
Let A = (a) U A is closed by -I since if a: = 0 then ña: = 1 and for
a: e (a) there is exist n 2 1 sucht that :r 2 a" and then -a.1:S -u(a") = 0.
Since (a) is an implicative filter, this proves that A e Mo. Let AL =_L EBA
and let g : A —>AL be the monomorphism such that g(0) =_L and g(a:) = a:
if m E (a). Since B is injective, there is exist a morphism f : Ai —>B such
that:

1 l
|||l toA

91
SAJ.

f(0) e Ds(B) since ñf(0) = f(-10) = f(0 —>J_)= f(J_) = 0, and
f(0) < 1 since f(0) S f(a) = 1A(a) = a < 1. Moreover f(0) e Idp(B) since
f(0) O f(0) = f(0 OO) = f(0). Thus f(0) E Ds(B) ñ Idp(B) which is a
contadition by Proposition 4.2.2. ThereforeDs(B) = CI

Theorem 4.2.4 Let A be (L Ga)-closedrelative subvariety of Mo. Then A
is injectivein .Aifi’A is injectivein 'DÏ

Proof: If A is injective in .Athen by Proposition 1.2.14 Ds(A) = {1}, thus
A E D704) and A is injective in A/Ds. Conversaly by Propositions 1.2.13
since DÏ(A) is a reflective subcategory of .A and the reflector preserves
monomorphism. It is well-known that if B is a reflective subcategory of A
such that the reflector preserves monomorphisms then an injective object in
B is also injective in .A [2, 1.18]. Thus A is injective in 'D.7-'(.A)then A is
injective in A. D
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4.3 Injectives in varieties of bounded hoops

Definition 4.3.1 A bounded hoop is a bounded pocrim (A, o, —>,0, 1) such
that (A, o, —»,1) is a hoop. It is clear that the class 7-100of bounded hoops
is a variety contained in Mo whose homomorphism satisfying 90(0)= 0.

Important subvarieties of 'HOOare BC, SBB, 'PL, 'H, BA.

Lemma 4.3.2 Let A be a bounded hoop, then the following assertz'ons are
valid:

1. mO-Ia:=0,

2. -|(-a-na:—>a:)=0 i.e. nom->17 e Ds(A),

3. a:=-I-|a:®(ñ-'a:—>a:).

Proof: 1) mena: = 2:6)(2 —>0) = mAO = 0. 2) Is the same ar­
gument used in [13, Lemma 1.3]. 3) a: 5 -|-na: since :1:(D —|:L‘= 0, then
:1:=a:A-I-ua:=a:O(-I-a:—>a:). El

Lemma 4.3.3 Let A be a. residuated lattice, then the following assertz'ons
are equivalent

1. A is a MV-algebra.

2. A is Girard-monoid which satisfy the equations :1:A y = :1:G)(a: -> y).

Proof: See [27, IV Lemma 2.14] and [28, VI Lemma 2.3] El

Proposition 4.3.4 If A e 7100 then 'D.7-'(A) is a Girard-monoid.

Proof: Let A e .A and e A/Ds(A). By lemma.4.3.2 we have that
= [ñ-aar] G)[-a-aa:—>2:] and n-m —>a: e Ds(A), thus [-ma: —>az]= [1] then
= [near] i.e. A/D3(A) is a Girard-monoid.

Corollary 4.3.5 1. DSi-"(7100)= 'D.7-'(BL)= MV.

2. DSi-"(8311)= 'DJ-"(H) = DTU-(L) = BA.
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Proof: 'D.7-'(7100) and 19.7:(36) is MV since their elements are Girard­
monoid satisfying the equation :1:A y = a:O -> y) (Lemma 4.3.3). The
other equalities are immediate. Ü

Corollary 4.3.6 1. A is injective in HOO or BC ifi A is a retract of a
power of the M V-algebra RIM].

2. A is injective in SBB, 'H or HL ifl A is a complete boolean algebra.

Proof: Since all these classes are (.L 63)-closed, the results follows from
Theorem 1.2.14, Corolary 4.3.5 and the well-known characterization of in­
jective MV-algebras (see [25, Corollary 2.11]) and injective boolean algebras
[38]. ¡:1

In the last corollary we characterize injectives in BL, SBB, 'H or HE by
arguments different of those uSed in section 3.8. We can give another proof
about the injectives in HOO using arguments of chapter 2 and chapter 3.
We need a previous result:

Definition 4.3.7 A Wajsberghoop [5]is a hoop that satisfies the following
equation

(T) (af->y)->y=(y—>a:)—>a:.

Each Wajsberg hoop is a lattice, in which the join operation is given by
IVy=(m->y)->y­

Proposition 4.3.8 A simple hoop with smallest element Ois a simple MV­
algebra.

Proof: Let I be a simple hoop. Then by [5, Corollary 2.3] it is a totally
ordered Wajsberg hoop. If 0 is the smallest element in I then by the equation
(T), anar:(at->O)—>0=(0—>a:)—>z=1—>:s=a:. HenceitisanMV­
algebra. Since the MV-congruences are in correspondence with implicative
filters, I is a simple MV-algebra. El

Proposition 4.3.9 Let I ,J be simple hoops with smallest elements 01,0.)
respectively. If (,0: I —>J is a hoop homomorphism then cp is also an M V­
homomorphism, i.e., (p(0¡) = OJ.
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Proof: Suppose that go(0;) = a. Since J is simple, there exists a natural
number n such that a" = OJ. Thus we have, go(O¡)= (p( = (<p(0¡))" =
a" = OJ. Ü

The following two results are obtained in the same way as Theorems 3.1.2
and 3.1.4 respectively.

Theorem 4.3.10 Let A be a subvan'ety of 7-100. If A is a non-semisimple
absolute retract in A, then Ds(A) has a least element e i.e, Ds(A) = and
{0, e, 1} is a subalgebra of A isomomhic to the three element Heyting algebra
H3. Ü

Theorem 4.3.11 Let .A be a subvariety of HOO. IfA has a non-trivial in­
jectives and contains the Heyting algebra H4 then injectives are semisimple.
Cl

Corollary 4.3.12 Injectives in HOO are exactly the retracts of powers of
the MV-algebra Rlo'll.

Proof: By Proposition 4.3.8, semisimple bounded hoops are MV-algebras.
Therefore Rlo'll is the maximum simple algebra and it is self injective by
Proposition 4.3.9. Thus by Theorem 2.1.5 retracts of powers of the MV­
algebra R[0_1¡are injectives in HOo. By Theorem 4.3.11 they are the only
injectives, because H4 lies in HOO. El

Table 4.1: Injectives in Pocrims and Hoops
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Chapter 5

The
Cantor-Bernstein-Schróder
Theorem

5.1 Basic notions

We recall from [36] other notions of lattice theory that will play an im­
portant role in what follows. Let L = (L,V,/\) be a lattice. Given a,b,c
in L, we write: (a, b, c)D iH (a V b) A c = (a /\ c) V (b /\ c); (a, b, c)D" iff
(aAb)Vc = (aVc)/\(ch) and (a,b,c)T ilï (a, b,c)D, (a,b,c)D* hold for all
permutations of a,b,c. In this case we say that {a,b,c} is a distributive
triple. An element z of a lattice L is called a neutral element iff for all
elements a, b e L we have (a, b, z)T. An element z of a bounded lattice is
called a central element iff z is a neutral element having a complement,
which we shall denote by -nz. The set of all central elements of L is called
the center of L and is denoted by Z(L). An interval [a,b] of a lattice A is
defined as the set e A : a 5 m5 b}. A sequence (anna, of elements of
a lattice L with O is called orthogonal iff an A am = 0 whenever m,n are
distinct elements. In particular, L is called orthogonally a-complete iff,
for all orthogonal sequences (an)n6w, VnEuan exists . A subset S of L is
called a a-sublattice of L when it contains with any countable subset X of
S also AX and VX.
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Proposition 5.1.1 For each boundedlattice L, its center Z (L) is a boolean
sublattice of L. El

Notation: The supremum (infimum) in Z(L) of a family (ame; of Z(L),
if it exists, will be denoted by [Jl-Hai (I‘ll-Emi),to distinguish it from the
supremum Via a,- (infimum AiE, a,- ) in L, which need not belong to Z (L).

Definition 5.1.2 A variety V of algebras is an L- variety [21] ifi’

(1) there are terms of the language of V defining on each A e V operations
V, A, 0,1 such that L(A) = (A,V,/\,0, 1) is a bounded lattice;

(2) for all A e V and for all z e Z(L(A)), the binary relation 92 on
A defined by aOzb ifi'a A z = b A z is a congruence on A, such that
A E“A/Gz x A/qu.

For an algebra A in an L-variety, we will write simply Z(A) instead of
Z (L(A))­

Observe that each subvariety of an L-variety is an C-variety.

Definition 5.1.3 Let V be an L-variety of algebras of similarity type 7'.
For all A G V, all z e Z(A) and all operation symbols f e T, we define
fz(.r1,...,:1:n) = z Af(:1:1,...,a:n), where n is the arity off. Moreover, we
define [OizlA= (lovzl’ (fz)f6r)'

Taking into account that for each f e r of arity n and elements (131,. . . ,xn in
A, ziez(a:¿/\z) for i = 1...n; we have f(a:1,. . . ,zn)ezf(a:1 A2,. . . ,a'nAz),
i.e., f(:r:1/\z,...,a:n/\z)/\z = f(a:¡, . . . ,atn)/\z. Nowit is easy to prove the
following result:

Proposition 5.1.4 The correspondenceaz/Gz H a:/\ z defines an isomor­
phism from A/(9z onto [0,z],4. Morever, the correspondence a: H Az, .1:/\
nz) defines an isomorphism from A onto A/0z x A/l9..z. El

5.2 Examples of L-varieties

Example 5.2.1 The variety Lo] of boundedlattices and its subvarieties. In
particular, the subvarieties of modular and of distributive lattices.
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Example 5.2.2 A lattice with involution [34]is an algebra (L, V,A,N) such
that (L,V,/\) is a lattice and N is a unary operation on L that fulfils the
following conditions:

(i) rwvrc = a: and (ii) N(a: V y) = Na: A Ny.

The variety L,-of bounded lattices with involution which satisfy the Kleene
equation (iii) m/\ Na: = (IA Nm)/\ (yV Ny) is an L-variety. Indeed, suppose
L e L,-and let z e Z (L). It is clear that GZ is a lattice congruence. To see
that e, also preserves the operation N, observe first that N2 = -uz. Indeed,
we have

-nz=ñz/\1=ñz/\(szwñz)=(-izANz)V(-vz/\N-|z)5

(-vaNz)V(zVNz)=zVNz.
Hencenz = -12/\(zVNz)= fizANz, and then zVNz 2 zvfiz = 1.
Consequently, taking into account properties (i) and (ii), we can conclude
that N2 is the complement of z, i. e., Nz = -uz. Suppose now that rr /\ z =
y /\ z. Then Na: V -12 = Ny V nz, which implies z A :1:= z A y. This shows
that N is preserved by GZ.

Subvarieties of Li are the variety (9L of ortholattices [4,36], characterized
by the equation m A Na: = 0, and the variety IC of Kleene algebras [2],
characterized by the distributive law. The intersection OLD/C is the variety
B of boolean algebras. An important subvariety of OC is the variety OMC
of orthomodular lattices [4, 36].

Example 5.2.3 The variety BuJofpseudocomplemented distributive lattices
[2]. We prove that the pseudo complement * has Gz-compatibility. Indeed,
let B GBu, z G Z(B), and a,b€ B. IfaAz = bAz, then (aAz)Vñz =
(b /\ z) V nz. Hence a V -12 = b V nz because z e Z(A). Consequently,
(av-Iz)‘ = (bV-iz)’ and a."A2 = b‘ Az.
The variety of Stone algebras ST is the subvariety of Bu,characterized by
the equation (acAy)‘ = ar‘Vy"

Example 5.2.4 Subvarietiesof RL

Example 5.2.5 En, the varieties of Lukasiewicz and of Post algebras of
order n 2 2 [2], as well as the various types of Lukasiewicz - Moisil algebras
whichare consideredin
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Example 5.2.6 'PMV, the variety of pseudo MV-algebras. A pseudo MV­
algebra [30]is an algebra (A, 63,’ ,N , 0, 1) of type (2, 1, 1,0, 0) such that when
definingthe derived operations by year := (rr- ey’)”, mVy= me (af' Oy),
a:/\ y := a:o (cc’ e) y) the following axioms are satisfied

1. ze(y®z)=(a:®y)632,

2. m®0=063zr=z and m®1=1€Bar=L

3.1"'=0 and 1‘=0,

4- (10‘ EBy’)“ = (3?“ GByN)’,

5- m®(m“®y) =y€9(y”Om) = (mOy‘)€By= (yOI‘MBI,

6. mo(:c-eay)=(zeay“)oy,

7. (27)" = cc.

L(A) = (A, V, /\,0, 1) is a bounded distributive lattice (Corollary 1.14 [24]).
'PMV is categorically equivalent to lattice ordered (not necessarin abelian)
groups with a strong unit [17].

Proposition 5.2.7 [17]Let G be a lattice ordered group with a strong unit
u, we consider the interual [0,u] equipped with the following operations

grey =(:1:+y)Au,
a: =u—.7:,
ar“ =a:—u,

then I"(G,u) = ([0,u],63,—,rv,0,u) is a pseudo MV-algebra and for each
pseudo M V-algebra. A, there exist a lattice ordered group G with a strong
unit u such that A = I"(G,u).

Ü

Lemma 5.2.8 'PMV is an L- variety.

Proof: Let A = F(G, u) G 'PMV. Through this proof, z will denote
an element of Z (A), and a,b elements of A. We have to prove that the
operations e, —and N are ez-compatible. Note first that z A (a + b) S
(z A a) + (z /\ b) ([4, Page 296, Ex.3]), thus z A (a 63b) 5 (z /\ a) GB(z /\ b).
On the other hand, (zAa)€B(z/\b) = uA((zAa)+(zAb)) = uA(z+z)A
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(2+a)/\(2+b)/\(a+b) S (uA(z+z))/\(uA(a+b)) = (zGBz)/\(a®b)
= z /\ (a e b), because z 63z = z by [30, Lemma 3.2]). Hence z A (a 63b) =
(z Aa) e (z Ab), and EBis ez-compatible. To prove that - is Gz-compatible,
note that ifaAz = bAz then (aAz)’ = (bAz)’ i.e.,u-(aAz) = u- (bAz).
By [24, Proposition 1.16], we have u + (—a V —z) = u + (—bV —z) and we
obtain (u —a) V (u —z) = (u —b) V (u —z) i.e, a‘ V z' = b‘ V z". Thus
(a‘ Vz’)/\z = (b’ Vz‘)Az. SinceL(A) is distributive and by [30,Corollary
3.3] z- is the complement of z, and z‘z“ , we infer that a’ A z = b‘ Az.
Similarly we verify that N has 9, —compatibility. El

5.3 The CBS property

The aim of this section is to give a formulation of the CBS theorem for
algebras in L-varieties. We begin by proving some technical results.

Proposition 5.3.1 Let L be a. bounded lattice. Then following assertions
hold for all z E Z(L):

1. Z([0, 2]) = Z(L) n [0,2].

2. [fm E Z([O,z]) then the complement of a: relative to [0,2] is azar =
z A -Ia:.

Proof: Let a: e Z ([0,z]).We first prove that, if :1:is a neutral element in
[0,z], then a: is a neutral element in L. Let a,b e L.

a (a,b,z)D: :1:/\(aVb)=(a:A(aVb))/\(2Vñz)=(:1:/\(aVb)/\2)V
(mA(aVb)/\-|z) = (mA(aVb)/\z)V0 = :1:/\((a/\z)V(b/\z)) =
(a:/\ (a/\ 2)) V (a:/\ (bA 2)) = (a:/\ a) V /\ b). By the same argument
it is possible to check (b,a,z)D.

b (1:,b,a)D: aA(a:Vb) = (aA(:nVb))/\(zvfiz) = (aA(a:Vb)/\z)V(aA(:I:V
b)/\-|z) = ((aAz)/\((a:Vb)Az))V(aA((a:Añz)V(bA-rz))) = ((aAz)/\
((arAz)V(bAz)))V(aA(0V(b/\ñz))) = ((aAz)A(:1:V(bAz)))V(a/\b-nz)=
((aAzAar)V(a/\b/\z))v(aAb-Iz) = (aAz)V((a/\bAz)V(a/\b-Iz)) =
(aAnt) V((aA b) V(2V ñ2)) = (aAm) V(aAb). By the same argument
it is possible to check (b,a:,a)D, (z,a,b)D and (a,:1:,b)D.

c (a,b,z)D‘:a:v(a/\b)= (xV(a/\b))/\(2Vñz) =((:1:V(a/\b))/\z)V
((mV(a/\b))/\ñz) = ((mAz)V(aAb/\z))V((a:/\ñz)v(aAbAñz)) =
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(mV(a/\b/\z))V(OV(a/\b/\-Iz)) = (mV((a/\z)/\(bAz)))V(a/\b/\-uz) =
((mV(a/\z))/\(mV(bAz)))V(a/\b/\ñz)= ((zVa)A(sz)/\(:I:V
b)A(sz))V(aAb/\ñz) = ((mVa)/\(a:Vb)/\z)V(a/\b/\-az)=
((mVa)A(me))V(a/\b/\ñz))/\(2V(a/\b/\ñ2)) = (mVa)/\(a:Vb)A
(zV(a/\b)) = (xVa)A(a:vb)A(zVa)/\(zvb) = (mVa)/\(:cvb).
By the same argument it is possible to check that (b,a,a:)D*.

CL. (m,b,a)D*:aV(:1:/\b)=(aV(:I:/\b))/\(2Vñz) =((aV(:I:/\b)/\2)V
((aV(1:/\b)/\-Iz)=((aAz)V(:1:/\b/\z))V((aAñz)V(a:/\b/\-rz))=
((aAz)Va:)/\((aAz)V(bAz)))V((aA-|z)V0) = ((aVaz)A(aV
b)/\z)V(a/\-uz)=(((aVaz)/\(aVb))V(a/\-az))/\(zV(a/\-az))=
(aV az)A (aV b) /\ (zVa) = (aVar) /\ (aVb). By the same argument it
is possible to check (b,a:,a)D‘, (1:,a,b)D" and (a,:1:,b)D".

Thus z is neutral in L. We proceed now to prove that if a: is complemented
in [0,z] then a: is also complemented in L. In fact, let -aza:be the complement
ofa: in [0,2]and define 3:1by 1:1= psz-iz. Henceszl = IV(fizílIV-IZ) =
z V -Iz = 1 and since a: is a neutral element, a: A 21:1= 0. Thus m1 is the
complement of a: in L. From the two preceding results, it follows that
.7:e Z (L). On the other hand, it is easy to verify that if .7:is a neutral
element in L then a: is a neutral element in [0,2]. Moreover, if :1:has a
complement ña: in L, then ya: = -u:E/\ z is the complement of a: in [0,2].
Therefore if me [0,z] is a central element in the lattice L, then a: is a central
element in the lattice [0,z]. CI

Proposition 5.3.2 Let V be an iC-variety, A, B E V, a:A —>B an isomor­
phism. Then

(1) for all z e Z(A), a(z) e Z(B), and the restriction ofa to Z(A) is a
boolean algebra isomomhism from Z (A) onto Z (B);

(2) for all z e Z(A), the restriction ofa to [0,z]_4is an isomorphism from
[0,z]A onto [0,a(z)]B. D

Definition 5.3.3 Let V be an L-variety. We say that A e V possesses
the CBS property iff the followingholds: Given B e V and b G Z(B)
such that there is a e Z(A) with A É [0,b]3 and B É [O,a]A, it follows that
A 2' B.

Proposition 5.3.4 Let V be an L-variety. The following conditions are
equivalent for each A E V:
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(1) A possesses the CBS property.

(2) For all b e Z(A), ifA E [0,b]A, then for all z e Z(A) such that z 2 b
we have A É [0,z]A.

Proof: We suppose that A possesses the CBS property. Let z, b e Z (A)
be such that z 2 b and A E’ [0,b]A. We denote by B the V-algebra [0,z]A.
By Proposition 5.3.1, b e Z(B). Now we have A E [0,b]B and B É [0,2]A
(for this we use the identity idlofil), and we conclude that A É [0,z]A. For
the converse, suppose that B E V, a e Z(A), b e Z(B) and that there are
morphisms a:A —>[0,b]B and fizB —>[0,a]A. If z = fl(b), then A E’ [0,z]A
and a 2 z. Now by the hypothesis A É [0,a],4. This proves that A E’ B. D

Let V be an C-variety, A e V, b E Z(A) and let azA —>[0,b]A be an
isomorphism. If we consider z e Z (A) such that z _>_b and the V-algebra
B = [0,z]A, then there is an isomorphism BzB —>[0,a]A (for instance we
can take fl = id[0_z¡). We define recursively two sequences, (an)new in A,
(bn)n5win B, called respectiver the A-sequence and the B-sequence as
follows:

ao = 1A bo = 13 = z
a1 = fi(z) = a b1= a(ao) = b

an+1= bn+1= a(an)
Then the sequence

(a2 /\ “(13,04 /\ “as, - - .) = (azn /\ na2n+1)neu,n21

is called a CBS sequence. Fixing‘ b,z as above, then for each pair of
isomorphisms a:A —>[0, b]B, BzB —>[0, a]A we have a CBS sequence, which
we will denote by (b, z, (1,5).

Proposition 5.3.5 Let V be an L-van‘ety, A e V, and let (b,z,a,fi) be a
CBS sequence. Then

(1) the A, B-sequences are strictly decreasing in Z (A),

(2) (b,z,a,fi) is an orthogonal sequence in Z(A), and
60101211/\ na2n+1) = a2n+2 /\ na2n+3 fOTn 2 0.
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Proof: By Proposition 5.3.2 it is easy to see that a1 = a, bl = b, and
that all ambn are central elements. Hence (b,z,a,fi) is in Z(A). By the
injectivity of a and fl, (anna.H (bn)neware strictly decreasing. Let m, n e w
such that m < n. Since (an)n€w is strictly decreasing, (azm A ña2m+1) A
(a2n /\ “a2n+1) S (02m /\ -‘Ü'2m+l)/\ (a2m+1 /\ “a2n+1) = 0- Finally, 5001211/\
“a2n+1) = ,B(a(a2n) /\ a(a2n+1)) = fi(a(02n) /\ b /\ -‘Ü(a2n+l)) = .B(b2n+l/\
-‘b2n+2) = .B(b2n+l) /\ a /\ fifi(b2n+2) = 02n+2 /\ "azn+3- Ü

Definition 5.3.6 Let V be an L-uariety and A e V. Then A is called
CBS complete ifi for all b e Z(A) such that A Ey [0,b]A and for all
z E Z (A) such that z 2 b there ean‘stsa CBS sequence (b,z,a, fl) which has
the (boolean) supremum Ll,12¡(a2n/\ fia2n+1).

Theorem 5.3.7 Let V be an L-uariety. Then the following conditions are
equivalent for each A e V:

(1) A is CBS complete.

(2) A possesses the CBS property.

Proof: Suppose that A is CBS complete. Let z,b E Z(A) be such that
z 2 b, A 2' [0,b],4 and B = [0,2]A. We want to prove that A 2’ [0,2]A = B.
By the hypothesis there are isomorphisms, azA —>[0,b]3, fizB —>[0,a],4
defining A, B-sequences

‘10= 1A bo = 13 = z
a1 = a bl =

an+l = fi(bn) bn+l = a(an)

and the CBS sequence (b,z, a, fi) = (agnAña2n+1)newm21with y = Un21(a2n/\
ña2n+1). Let x = y V ña. By Proposition 5.1.4 we have

A É [0,ñat] x [0,11;]. (5.1)

Since y G Z([0, a]) by Proposition 5.3.1, we have

[0,a],4 2' [0, flag] x [0,y] = [0,a A ny] ><[0,y]. (5.2)

But -ua:= a /\ -1y, hence

[0, fiar] = [0, a /\ -ny]. (5.3)

54



By Proposition 5.3.2, [0,3] 2' [0,Ba(a:)] = [0,Ba(|_lneu (12,,A ña2n+1)] =
[0,Lln6wfia(a2n /\ Ha2n+1)],and by Proposition 5.3.5 , fia(a2n A quan“) =
(a2n+2A 112,1”). Thus we have

[0»a7]É [0aUn21(02n A n02n+1)l = [0,3/1- (5.4)

¿From (5.1),(5.2),(5.3) and (5.4) we obtain that A '.‘—.‘[0,a], hence A Ey B.
Suppose now that A possesses the CBS property. Let b e Z (A) be

such that we can find an isomorphism a:A —>[0,b],¡ and a z e Z(A) such
that z 2 b. By hypothesis there is an isomorphim fl:[0,z]A —>A. The
corresponding A, [0,z]A-sequences have the form

ao = 1A bo = z

a1 = Ü(bo) = 1 bl = 01010) = Z
a2 = B(b1) = fi(2) b2 = a(a1) = z
aa = 6072) = m2) ba = 01012)= 05(2)

It is easy to show (by induction) that agn = a2n+1 for all n 2 1 . Thus
we have (b,z, a, fi) = (0,0, 0,. . .) and the boolean supremum is 0. Therefore
there exists at least one CBS sequence associated with z 2 b admitting the
boolean supremum. Therefore A is CBS complete. El

Corollary 5.3.8 Let V be an L-variety and A e V. If Z(A) is an orthogo­
nally o-complete lattice, then A possesses the CBS property. El

Corollary 5.3.9 (Sikorski) Thea-complete Booleanalgebraspossesses the
CBS property. El

Corollary 5.3.10 Let A be a CBS complete algebra in an L-variety V.
ThenACé'A2ifiAEAnforalanZ

Proof: It is an easy adaptation of the proof of Proposition 3.2 in [16]. El

Remark 5.3.11 It is worth noting that the a-completeness condition for
Boolean algebras is not necessary for the CBS property, as is shown by the
Boolean algebra BN of finite and cofinite subsets of N. BN is not even
orthogonally a-complete. Indeed, {2n}neN is an orthogonal sequence in
BN, but VneN{2n} is not in BN. By cardinality arguments it is very easy
to see that BN E [0,X]BN iff X is a cofinite set. Thus BN possesses the

55



CBS Property. On the other hand, there are Boolean algebras which do
not possesses the CBS property. For instance, Hanf constructed a Boolean
algebra B such that B 2’ B3 but B ?É B2 [32, 56.2]. This means that
B E“[(0,0,0), (0,0, 1)]33 but B ¿É[(0,0,0),(0,1,1)]Ba.

5.4 Centers and a-completeness

In general, the a-completeness of an algebra A in an L-variety does not imply
that Z(A) is an orthogonally a-complete lattice, as the following example
shows:

Example 5.4.1 Let BN be as in Remark 5.3.11 and let HN be the Heyt­
ing algebra of all ideals of BN. We observe that HN is a complete Heyting
algebra such that Z(HN), which is formed by the principal ideals generated
by the elements of BN, is not orthogonally a-complete. Indeed, the princi­
pal ideals ((2n))ne N form an orthogonal sequenCe in Z (HN), but obviously
this sequence does not have a central supremum. It is worth noting that
HN possesses the CBS property, as can be shown by cardinality arguments
similar to those used in Remark 5.3.11.

In what followswe give examples of L-varieties V with the property that
a-completeness conditions on the algebras in V guarantee the corresponding
a-completeness of their centers, and then, in the light of Corollary 5.3.8, the
CBS property of these algebras.

5.4.1 Orthomodularlattices

Proposition 5.4.2 _LetL be a.a-complete orthomodular lattice and (an)ne,_,,
a sequence in Z(L) Then Vnewan G Z(L), i.e., Unew an = V116“,an.

Proof: The proof is an easy adaptation of the proof of (5.14) and (29.16)
in [36]. El

5.4.2 Stone algebras

Proposition 5.4.3 Let S be a Stone algebraand (a¡)¿e¡ afamin of central
elements such that there exist /\,-G¡a,- and Vie, ai. Then I’Iiemi = A,“ a,­
(i.e. Aiel ai E Z(S)) and LJigai = -n-uVie, ai. Thus ifS is a a-complete,
(orthogonally (Jr-complete)Stone algebra then Z(S) is a a-complete (orthog­
onally a-complete) lattz'ce.
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Proof: It is well-knownthat Z(S) = e S : -|-Ia:= (see Let
a = Aiüai. For all i e I, if a 5 ai, then -ma 5 -a-ua,-= ai. Thus
-ma 5 me, ai = a, and since a 5 ñ-Ia, we have a e Z(S). From the basic
properties of the pseudocomplement it follows that -|-' Vie, a,- e Z (S) and
it is easy to see that -I-' Vie; ai is the least boolean upper bound of (ame 1.
Cl

5.4.3 BL-algebras

Lemma 5.4.4 [14] For each A e BL, let Idp(A) = {:1:G A : mO a: = be
the set of all idempotent elements of A. Idp(A) is a Heyting algebra, Z(A)
is a subalgebra of Idp(A) and z e Idp(A) ifi’z ® a = z A a for alla e A. El

Lemma 5.4.5 Let B be a.BL-algebra and (a¿)ie¡ a sequence in B such that
Via a,- ezists. Then we have

1- ae Vie] ai = Viel(a® ai); (ViEIai) _’ b = Aiel(ai —’b);

a /\ Vie; ai = Viel(a A(li) and “(Via ai) = Aiel "ai;

2. if (az-he; is a family in Idp(B) then Vie, a,-E Idp(B).

Proof: Item 1) follows from basic the properties of residuated lattices [27].
To Prove 2), let a = Vielai. By item 1), we have aoa = ao Vie] ai =
Vi€’(a®aí) = Vi€I(a Aai) = Vie] ai = a. CI

Lemma 5.4.6 [14] Let B be a BL-algebra. The following conditions are
equivalent:

1. z G Z(B),

2. zV nz = 1,

3. there is v in Idp(b) such that z = -rv. CI

Proposition 5.4.7 Let B be a BL-algebraand (ame; a sequencein Z(B)
such that there exist Vie, a,- and Aiel ai. Then Llielai = -u-|Vie, a,- and
niélai = Aiel ai­

Proof: If (a¿)n€¡ is a sequence in Z(B) with a = /\¿€¡ ai, by Lemma 5.4.6
it suffices to show that avña = 1. According to Lemma 5.4.5 we have aV-aa
= (Aiel ai) V"a = “(V1161WH)V“a = “((VieI “'Gi)Aa) = “ Vielhai Aa)
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= 1, therefore Hielai = /\¿€¡a,¿ . According to Lemmas 5.4.6.2, 5.4.5.3, we
have nn Vie, ai e Z(B) and nn Vie, a1-is a boolean upper bound of (al-fiel.
Moreover, if b is a boolean upper bound of (ame, then Vie, a,- 5 b hence,
‘Ifi V¿e¡ a1-S b, thus Llielai = “IñV1-€¡ ai. El

Corollary 5.4.8 IfB is a a-complete (orthogonallya-complete) BL-algebra
then Z (B) is a a-complete (orthogonally o-complete) lattice. El

Proposition 5.4.9 If B is a a-complete (orthogonally a-complete) PL­
algebm 01‘M V-algeb'ra.then Z (B) is a a-sublattice (orthogonal a-sublattice)
of L(B).

Proof: If B is a PL-algebra then according to Proposition 3.1 in [11],
Idp(B) = Z(B). Thus by Lemma 5.4.5.2, Linguan = VnEWan for (an)new in
Z(B). If B is an MV-algebra then using Lemma 5.4.5.2 and -u-n.1:= :1:we
have the same result.

Ü

5.4.4 Lukasiewicz and Post algebras of order n

Proposition 5.4.10 [9,Lemma 3.1] Let A be a Lukasiewicz algebra of order
n 2 2. IfA is a-complete, then Z(A) is a a-sublattice of L(A). El

5.4.5 Pseudo MV-algebra

Let A be a pseudo MV-algebra. If A is a-complete, then A is an MV-algebra
(see [17, Theorem 4.2] and [18, Proposition 2.8]). Thus by Proposition 5.4.7,
Z(A) is a a-sublattice of L(A) and if A is orthogonally a-complete then Z(A)
is an orthogonally a-complete lattice (see Proposition 3.4 in [30]).

5.5 CBS theorem and absolute retracts

Theorem 5.5.1 Let A be absolute retract in an L-variety V. Then Z(A)
is a complete lattice.

Proof: Let X be downdirectedsubset of Z Supposethat X does not
admit minimum element and consider the ultrapower AX/M as in Remark
2.2.3. It is not very hard to see that the U-equivalence class [1x] is a neutral
element in AX/U, having a complement ñ[1x] given by the Ll-equivalence
class of the function X —>A such that a:H -|:r:. Thus [1x] e Z(AX/U). The
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same arguments used in Theorem 2.2.4 give that AX E Z (A). Therefore
we have proved that the infimum in A of a down directed subsets of Z (A)
belongsto Z From this the result followsby a standard argument. El

Corollary 5.5.2 Each absolute retract in an L-variety satisfies the CBS
property.

Proof: It follows by Theorem 5.5.1 and Corollary 5.3.8. El

5.6 CBS-type theorem for posets

The category of posets and monotonic functions will be denoted by 'Pos.
Let A be a poset and X Q A. X is decreasing (increasing) iff for all
a: e X, if a 5 a: (a 2 z), then a e X. The set of all decreasing sets in A
is denoted by O(A), and it is well-known that O(A) has the structure of a
complete Heyting algebra. Let L be a complete lattice and let k e L. Then
k is said to be compact iiï for every subset S of L, if k 5 V S then k 5 V T
for some finite subset T of S. It is easy to show that (a] is compact in O(A).
Moreover, X e O(A) is compact iff there exist a1, . . . ,an in A such that
X = (a]] U... U (an]. It is easy to show that Z(O(A)) = {B e O(A) :
B is an increasing set} and that Z(O(A)) is a complete lattice.

Lemma 5.6.1 Let A, B beposets. If O(A) and O(B) are isomorphic then
A and B are isomomhic. Ü

Theorem 5.6.2 Let A, B be posets and let X Q A and Y g B be simulta­
neoasly increasing and decreasing sets. If there are isomorphisms a:A —>Y
and fi:B —>X, then A 21:0, B.

Proof: We first prove that O(A) Ep“ [0,Y]. For all S e O(A) we
have S = Ua€S(a] and (a(a)] g Y, since Y is decreasing. Consequently,
if 1/):O(A) —>[0,Y] is such that S = Ua€S(a] H Ua€S(a(a)], then it is easy
to show that 1/)is an order isomorphism under g. Analogously, we can ob­
tain that O(B) E1903[0,X But these Pos-isomorphisms are also Heyting
isomorphisms. Then by Theorem 5.3.7, O(A) E O(B) as Heyting algebras.
Finally, in view of Lemma 5.6.1 we have A E1203B. Cl
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