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Objetos inyectivos en estructuras residuadas.
Forma algebraica del teorema de
Cantor - Bernstein - Schroder

La presente tesis es un estudio de objetos inyectivos en clases de estruc-
turas residuadas asociadas con la légica y del teorema de Cantor - Bernstein
- Schréder. En la primera parte se investigan inyectivos y retractos absolutos
en clases de reticulos residuados y pocrims. Algunas de las clases conside-
radas son las MTL-dlgebras, IMTL-algebras, BL-dlgebras, NM-4algebras y
los hoops acotados. En la segunda parte es desarrollado un marco alge-
braico para la validez del teorema de Cantor-Bernstein-Schréder aplicable
a algebras con una estructura subyacente de reticulo tal que los elemen-
tos centrales de este reticulo determinan una descomposicién directa del
algebra. Se dan condiciones necesarias y suficientes para la validez del teo-
rema de Cantor-Bernstein-Schroder en estas algebras. Estos resultados son
aplicados para obtener versiones del teorema en reticulos ortomodulares,
algebras de Stone, BL-algebras, MV-algebras, pseudo MV-algebras dlgebras
de Lukasiewicz y dlgebras de Post of order n.

Palabras claves: Objetos injectives, Retractos absolutos, Reticulos residua-
dos, Bl-dlgebras, Elementos Centrales, Variedades.
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Injectives in residuated structures .
An algebraic version of the

Cantor - Bernstein - Schroder theorem

The present thesis is a study of injectives in several classes of residu-
ated structures associated with logic and the Cantor - Bernstein - Schréder
theorem. In the first part we investigate injectives and absolute retracts in
classes of residuated lattices and pocrims. Among the classes considered
are MTL-algebras, IMTL-algebras, BL-algebras, NM-algebras and bounded
hoops. In the second part is developed an algebraic frame for the valid-
ity of the Cantor-Bernstein-Schréder theorem, applicable to algebras with
an underlying lattice structure and such that the central elements of this
lattice determine a direct decomposition of the algebra. Necessary and suf-
ficient conditions for the validity of the Cantor-Bernstein-Schréoder theorem
for these algebras are given. These results are applied to obtain versions
of the Cantor-Bernstein-Schréder theorem for orthomodular lattices, Stone
algebras, BL-algebras, MV-algebras, pseudo MV-algebras, Lukasiewicz and
Post algebras of order n.

Keywords: Injective objects, Absolute retracts, Residuated lattices, Bl-algebras,
Central elements, Varieties.



Prefacio

Las estructuras residuadas, originadas en los trabajos de Dedekind sobre de
la teoria de ideales en anillos, aparecen en muchos campos de la matematica,
y son particularmente comunes en dlgebras asociadas con sistemas légicos.

Dichas dlgebras son estructuras (4,®,—, <) donde A es un conjunto
no vacio, < es un orden parcial en A y ©, — son operaciones binarias
satisfaciendo la siguiente relacién para cada a,b,c in A:

a®b<c siysolosi a<b-—-c

Importantes ejemplos de estructuras residuadas relacionadas con la légica
son las 4lgebras de Boole (correspondientes a la légica cldsica), las dlgebras
de Heyting (correspondientes al intuicionismo), los reticulos residuados (co-
rrespondientes a la légica sin regla de contraccién [35]), BL-dlgebras (corres-
pondientes a la légica difusa basica de Hajek [26]), MV-dlgebras (correspon-
dientes a la 16gica multivaluada de Lukasiewicz [10]).

Estos ejemplos, con la excepcion de los reticulos residuados son hoops
(5], es decir, satisfacen la ecuacién z ® (z — y) = y © (y — ). Todas las
estructuras mencionadas son casos particulares de monoides conmutativos
integrales residuados parcialmente ordenados , o pocrims por simplicidad [5).

En los primeros cuatro capitulos de esta tesis se estudian objetos inyec-
tivos y retractos absolutos en clases de reticulos residuados y pocrims. En el
capitulo 2 se dan también algunos resultados sobre injectivos en variedades
mas generales.

El conocido teorema de Cantor-Bernstein-Schréder (teorema CBS, por
simplicidad) dice que si un conjunto X puede sumergirse en otro Y y vice-
versa, entonces existe una funcién biyectiva entre ambos. A finales de los
cuarenta, Sikorski [39] (ver también Tarski [40]) mostré que el teorema CBS
es un caso particular de un resultado para édlgebras de Boole o-completas.
Recientemente muchos autores extendieron el resultado de Sikorski a clases
de dlgebras mds generales que las dlgebras de Boole como, por ejemplo,



reticulos ortomodulares, [16], MV-algebras [15], pseudo MV-algebras [30].
En el ultimo capitulo de la tesis se da un marco algebraico general para
la validez del teorema CBS, que permitie derivar todas las versiones men-
cionadas. Se establecen también, bajo el mismo marco, versiones del teorema
CBS para reticulos residuados, en particular para BL-algebras, dlgebras de
Stone (2], dlgebras de Lukasiewicz y dlgebras de Post de orden n {2, 6).

En mas detalle, el contenido de la tesis es el siguiente: el Capitulo 1
presenta definiciones basicas y propiedades de las estructuras residuadas.
El tnico resultado original de este capitulo es la Proposicién 1.2.13. En el
Capitulo 2 se muestra que bajo ciertas hipdtesis no demasiado restrictivas
sobre una variedad de dlgebras V, la existencia de objetos inyectivos no tri-
viales en V es equivalente a la existencia de un dlgebra auto-inyectiva simple
y maxima. Ademas, con técnicas de ultraproductos, se obtienen propiedades
reticulares de inyectivos en variedades de dlgebras ordenadas. Los resultados
de] Capitulo 2 son aplicados en el Capitulo 3 para el estudio de inyectivos en
variedades de reticulos residuados. Estos resultados estian sumarizados en
la tabla 3.1. En el Capitulo 4 se investigan inyectivos en clases de pocrims
y hoops, estos resultados estin sumarizados en la tabla 4.1.

El marco abstracto para el teorema CBS es dado por las £-variedades de
dlgebras, introducidas en la primera seccién del Capitulo 5. En la Seccién 5.2
se muestran varios ejemplos L-variedades. En la Seccién 5.3 se dan condi-
ciones necesarias y suficientes para la validez del teorema CBS en algebras
pertenecientes a L-variedades. En la Seccién 5.4 se muestran algunas condi-
ciones globales sobre dlgebras de una L-variedad que resultan ser suficientes
para la validez del teorema CBS. En la Seccién 5.5 se muestra que los re-
tractos absolutos en una L-variedad satisfacen el teorema CBS. Finalmente,
en la Seccién 5.6 se da una versién del teorema CBS para conjuntos parcial-
mente ordenados.

El contenido de los Capitulos 2 y 3, asi como los resultados del Capitulo
4 que siguen a la Definicién 4.3.7 estan reproducidos en el trabajo [22). Los
resultados del Capitulo 4 anteriores a la Definicién 4.3.7 estdn en el trabajo
[23). Los resultados del Capitulo 5, con excepcién de los de la Seccién 5.5,
estan en el trabajo [21].



Preface

Residuated structures, rooted in the work of Dedekind on the ideal theory
of rings, arise in many fields of mathematics, and are particularly com-
mon among algebras associated with logical systems. They are structures
(A, ®, —, <) such that A is a nonempty set, < is a partial order on A and ©
and — are binary operations such that the following relation holds for each
a,b,cin A:

a®b<c iff a<b-—oec

Important examples of residuated structures related to logic are Boolean
algebras (corresponding to classical logic), Heyting algebras (corresponding
to intuitionism), residuated lattices (corresponding to logics without con-
traction rule [35]), BL-algebras (corresponding to Hajek’s basic fuzzy logic
[26]), MV-algebras (corresponding to Lukasiewicz many-valued logic [10]).
All these examples, with the exception of residuated lattices are hoops [5], i.
e., they satisfy the equation z ® (z — y) = y ®© (y — z). All the mentioned
examples are particular cases of partially ordered commutative residuated
integral monoids, or pocrims for short [5).

In the first four chapters of this thesis we investigate injectives and ab-
solute retracts in classes of residuated lattices and pocrims. In Chapter 2
we also present some results on injectives in more general varieties.

The famous Cantor-Bernstein-Schréder theorem (CBS theorem, for short)
states that, if a set X can be embedded into a set Y and viceversa, then
there is a one-to-one function of X onto Y. At the end of the forties, Siko-
rski [39] (see also Tarski [40]) showed that the CBS theorem is a particular
case of a statement on o-complete boolean algebras. Recently several au-
thors extended Sikorski’s result to classes of algebras more general than
boolean algebras, like orthomodular lattices [16], MV-algebras [15], pseudo
MV-algebras [30]. The aim of the last chapter of this thesis is to give a
general algebraic frame for the validity of the CBS theorem, from which all



the versions mentioned above can be derived, as well as versions of the CBS
theorem for residuated lattices, in particular for BL-algebras, and also for
Stone algebras (2], Lukasiewicz and Post algebras of order n [2, 6)].

In more detail, the content of the thesis is as follows: In Chapter 1 we
recall some basic definitions and properties of residuated structures. The
only original result of this chapter is Proposition 1.2.13. In Chapter 2 we
show that under some mild hypothesis on a variety V of algebras, the exis-
tence of nontrivial injectives is equivalent to the existence of a self-injective
maximum simple algebra. Moreover, we use ultrapowers to obtain lattice
properties of the injectives in varieties of ordered algebras. The results of
Chapter 2 are applied in Chapter 3 to the study of injectives in varieties of
residuated lattices. The results obtained are summarized in Table 3.1. In
Chapter 4 we investigate injectives in classes of pocrims and hoops. The
results are summarized in Table 4.1.

The abstract frame for the CBS theorem is given by the L-varieties of
algebras, introduced in the first section of Chapter 5. In Section 5.2 we
show that there are many examples of L-varieties. Necessary and sufficient
conditions for the validity of the CBS theorem in algebras belonging to an
L-variety are given in Section 5.3, which is the main section of this paper.
In Section 5.4 we look for some simple global conditions on algebras of an
L-variety that are sufficient for the validity of the CBS theorem. In Section
5.5 we show that absolute retracts in L-varieties satisfy the CBS theorem.
Finally, in Section 5.6 we give a version of the CBS theorem for partially
ordered sets.

The content of Chapters 2 and 3, as well as the results following Def-
inition 4.3.7 in Chapter 4, are reproduced in the paper [22]. The results
of Chapter 4, until Definition 4.3.7, are in the paper [23]. The results of
Chapter 5, with the exception of those in Section 5.5 are in the paper [21].
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Chapter 1

Residuated Structures

1.1 Basic Notions

We recall from from [2] and [7] some basic notions of injectives and universal
algebra. Let A be a class of algebras. For all algebras A, B in A, [A, B]a
will denote the set of all homomorphisms g : A — B. In this case, classes
of algebras are considered as categories. A subcategory B of a category A
if reflective is there is a functor R : A — B, called reflector, such that for
each A € A there exists a morphism ®5(A4) € (4, R(A)]4 with the following
properties:

i) If f € [A, A’) 4 then the following diagram is commutative

f
A — A

®r(A) | = | Pr(4’)
R(A) 7-2’_(}) R(A)

ii) If B € B and f € [A, B]4 then there exists a unique morphism f’ €
[R(A)B]p such that the following diagram is commutative

f
A — B
Pr(A)) E/:
Ry 7

11



An algebra A in A is injective iff for every monomorphism f € [B, A] 4
and every g € [B,C]4 there exists h € [C, A]4 such that the following
diagram is commutative

f

B A

g E/h
C

A is self-injective iff every homomorphism from a subalgebra of A into A,
extends to an endomorphism of A.

An algebra B is a retract of an algebra A iff there exists g € [B, A] 4 and
f € [A, B] 4 such that fg = 1p. Notice that g is necessarily a monomorphism
and f is an epimorphism. Also, if the morphisms are functions, then g is
injective and f is surjective. An algebra B is called an absolute retract
in A iff it is a retract of each of its extensions in A. It is well-known (and
easy to verify) that a retract of an injective object is injective.

A non-trivial algebra T is said to be minimal in A iff for each non-trivial
algebra A in A, there exists a monomorphism f: T — A.

For each algebra A, we denote by Con(A) the congruence lattice of A,
the diagonal congruence is denoted by A and the largest congruence A2 is
denoted by V. A congruence 6y is said to be maximal iff fps # V and
there is no congruence 6 such that 8y C 8 C V. An algebra I is simple
iff Con(I) = {A,V}. A simple algebra is hereditarily simple iff all its
subalgebras are simple. An algebra A is semisimple iff it is a subdirect
product of simple algebras.

An algebra A has the congruence extension property (CEP) iff for
each subalgebra B and 8 € Con(B) there is a ¢ € Con(A) such that § =
¢ N A2, A variety V satisfies CEP iff every algebra in V has the CEP. It is
clear that if V satisfies CEP then every simple algebra is hereditarily simple.

An algebra A is rigid iff the identity homomorphism is the only auto-
morphism.

Let 7 be a type of algebras. A quasi-identity of type 7 is either an
identity p = ¢ or a formula of the form (py = q1)A---A(pr=¢n) = (p=q)
where p1---pn,q1- - qn, P, q are terms in the language 7. A quasivariety is
a class A of algebras of the same type that can be axiomatized by a set of
quasi-identities, called a basis for .A. A subquasivariety B of a quasivariety
A is a relative subvariety of A provided that a basis of B can be obtained
by adding only identities to a basis of A. Let A be a quasivariety and

12



A € A. A congruence 4 in A is said relative to the quasivariety A iff
A/6 € A. We denote by Con4(A), the relative congruences lattice of A.
The set Con4(A) is closed under arbitrary intersections and hence form
a complete lattice. Note that A and V are always congruences relatives
to A. We say that an algebra A € A is simple relative to A provided
Con4(A) = {A,V} and we say that A is semisimple relative to A iff it
is a subdirect product of algebras simple relative to A.

1.2 Pocrims and Hoops

Definition 1.2.1 A pocrim [5] is an algebra (A,©,—,1) of type (2,2,0)
satisfying the following axioms:

1. (A,0,1) is an abelian monoid,
r—1=1,

l-z=n1z,

(zoy) = (zom) > (oy) =1,

z—(y—2)=(z0y) — 2

S N b

If z—-y=1 and y—oz=1 then x=y.

We denote by M the class of all pocrims. M is a quasivariety which is
not a variety [29]. If A € M, we can define an order in A by z < y iff
2 — y = 1. With this order, the structure (4, ®, —, 1, <) is a commutative
partial ordered monoid in which 1 is the upper bound.

An element x € A is called idempotent iff z ©z = z, and the set of all
idempotent elements in A is denoted by Idp(A).

For all a € A, we inductively define a! = a and a®t! = a® @ a.

It is easy to verify the following proposition:

Proposition 1.2.2 The following assertions hold in every pocrim A, where
z,y,z denote arbitrary elements of A:

(1) z -z =1,
(2)z—-(y—2z)=y—(z—2),

(3) z0y<z iff z<y—z,

13



(4)z<y iff 1=z—>y,

(5) 20y <y,

(6) z0(z—y) <y,

(7) a<b=>z—-a<z—>Yb,

(8) a<b=a—-z2>2b- 1,

(9) a<b=a0@z<b0Oz,

(10) a - b=\V{z € A:aOz < b}. 0

We recall now some well-known facts about implicative filters and con-
gruences on pocrims. Let A be a pocrim and FF C A. Then F is an im-
plicative filter iff it satisfies the following conditions:

1) 1e F,
2) ifr€e Fandx - y€ F,theny € F.

It is easy to verify that a non-empty subset F of a pocrim A is an implicative
filter iff for all a,b € A:

-Ifae Fanda<yb,thenb€e F,
-ifa,be F,thena®be F.

The intersection of any family of implicative filters is again an implicative
filter. We denote by (X) the implicative filter generated by X C A, i.e., the
intersection of all implicative filters of A containing X. We abbreviate this
as (a) when X = {a} and it is easy to verify that

(X)={z€A:3 wy,---,w, € X such that 22> w; ©O--- O wy,}.

The set Filt(A) of all implicative filters of A, ordered by inclusion, is a
bounded lattice. For any implicative filter F of A,

0p={(m,y)€A2::1:—ry,y-—>a:€F}

is a congruence relative to M. Moreover FF = {z € A : (z,1) € Of}.
Conversely, if 8 € Conaq(A) then Fg = {z € A: (z,1) € 6} is an implicative

14



filter and (z,y) € 6 iff (z — y,1) € 8 and (y — z,1) € 6. Thus the
correspondence F' — O establishes an order isomorphism between Conpq(A)
and Filt(A).

If F € Filt(A), we shall write A/F instead of A/0F, and for each z € A
we shall write [z]p (or simply [z] when 6 is understand) for the equivalence
class of x.

Definition 1.2.3 A bounded pocrim is an algebra (A,®,—,0,1) of type
(2,2,0,0) such that:

1. (A,0,—,1) is a pocrim
2.0-z=1

The quasivariety of bounded pocrims is denoted by Mq. Observe that since
0 is in the clone of operations, then we require that for each morphism f,
f(0) = 0. Observe that {0,1} is a subalgebra of each non-trivial A € My,
which is a boolean algebra. Hence {0,1}, with its natural boolean algebra
structure, is the minimal algebra in each subquasivariety of Mg. Thus the
variety of boolean algebras BA is a relative variety of all subquasivarieties
of bounded pocrims.
On each bounded pocrim A we can define a unary operation — by

-r=1—0.

Note that an implicative filter F' of a bounded pocrim is proper iff 0 does
not belong to F. Hence a standar application of Zorn’s Lemma gives that
every implicative filter in a bounded pocrim is contained in a mazimal filter.

Let A be a bounded pocrim. An element a in A is called nilpotent iff
there exists a natural number n such that ¢ = 0. The minimum n such
that a™ = 0 is called the nilpotence order of a. An element a in A is
called dense iff —a = 0, and it is called a unity iff for all natural numbers
n, -(a™) is nilpotent. The set of dense elements of A will be denoted by
Ds(A). It is easy to verify that Ds(A) is an implicative filter.

A bounded pocrim A is called dense free iff Ds(A) = {1}. If Ais a
relative subvariety of Mg, we denote by DF(A) the full subcategory of A
whose elements are the dense free algebras of A.

Proposition 1.2.4 Let A be a relative subvariety of Mqo. Then we have:

1. DF(A) = {A/Ds(A): A € A}

15



2. DF(A) is the subquasivariety of A characterized by the quasiequation
——zr=1=z=1.

Proof:  To prove 1., we need to prove that Ds(A/Ds(A)) = {[1]}. Let [x]
be a dense element in A/Ds(A). Therefore {-z] = [0] and then -z — 0 =
—-z € Ds(A). Thus ~z = =—=-z =0, that is € Ds(A). Hence [z] = [1].
2. is immediate. O

Definition 1.2.5 If A is a bounded pocrim then we define:
Rad(A) = {F : F is a maximal implicative filter of A}.
Proposition 1.2.6 Let A be a bounded pocrim. Then:
1. Rad(A) = {a € A: a is a unity}.
2. Ds(A) C Rad(A).

Proof: 1) Suppose that a € Rad(A). Then there exists a maximal im-
plicative filter F' in A such that a € F. Since F is maximal, there exists
b € F and a natural number n such that a® ® b = 0. By Proposition 1.2.2
b < —=a™. Hence —a™ € F, and (—a™)™ # 0 for each natural number m. Thus
a is not a unity. On the other hand, if a is not a unity then (-a™)™ # 0
for each natural number m. We consider the implicative filter generated by
-a", i.e., (ma™). By Zorn’s Lemma there exists a maximal implicative filter
F containing (—a"). Since —a™ € F, a is not an element of F. Therefore
a & Rad(A). 2) Is an obvious consequence of 1). 0

Proposition 1.2.7 Let A be a bounded pocrim. Then A is relative semisim-
ple iff Rad(A) = {1}

Proof: ~ Suppose that A is relative semisimple. Let f : A — [[.c; L,
be a subdirect embedding with L; a relative simple bounded pocrim for
each i € I. Then F; = Ker(m;f) is maximal implicative filter in A. Thus
Rad(A) C N;er Fi = {1}. Conversely, if Rad(A) = {1} then A = A/Rad(A)
and A can be subdirectly embedded in [[;c; A/F;, with F; a maximal im-
plicative filter for each 7 € I. Hence A is relative semisimple. m]

If A is a relative subvariety of My, we denote by Sem(.A) the full sub-
category of A whose elements are relative semisimple algebras of A.

16



Proposition 1.2.8 If A is a relative subvariety of Mo then Sem(A) =
{A/Rad(A) : A € A}

Proof:  Since Filt(A/Rad(A)) = [Rad(A), A], then F is a maximal implica-
tive filter in A iff it is maximal in A/Rad(A). Thus Rad(A/Rad(A)) = {1}
and A/Rad(A) is relative semisimple. m}

If Rad(A) has a least element a, i.e., Rad(A) = [a), then a is called the
principal unity of A. It is clear that the principal unity is the minimum
unit. Hence it is an idempotent element, and obviously, it generates the
radical.

Lemma 1.2.9 Let A be a bounded pocrim having principal unity a. If z €
Rad(A) then, £ — —a = —a.

Proof: 1z — —a = —-(z ®a) = —a since a is the minimum unity. 0
Proposition 1.2.10 Let A be a linearly ordered bounded pocrim. Then:

1. a is a unity in A iff a is not a nilpotent element.

2. If a is a unity in A, then —a < a.

Proof: 1) If a <1 and there exists a natural number n such that a™ =0,
then —~(a™) = 1 and a is not a unity. Conversely, suppose that a is not
a unity. Since A is linearly ordered, we must have a” < --(a”) < —(a").
Hence a?® = 0 and a is nilpotent, which is a contradiction. 2) Is an obvious
consequence of 1). 0

Corollary 1.2.11 Let A be a bounded pocrim such that there exists an em-
bedding f : A — [l;¢; Li, with L; a linearly ordered bounded pocrim for each
i € I. Then a is a unity in A iff for each i € I, a; = m;f(a) is a unity in
L;, where m; is the projection onto L; .

Proof: If a is a unity in A then a; = m;f(a) is a unity in L;, because
homomorphisms preserve unites. Conversely, suppose that a is not a unity.
Therefore there is an 7 such that —~(a™) is not nilpotent, and hence —~(a™) £
——(a™). Since f is an embedding and since L; is linearly ordered for each
i € I, there exists j € I such that =—(a}) < —(a}), and by Proposition
1.2.10 a; is not a unity in Lj.

(]
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Remark 1.2.12 If a bounded pocrim A is subdirect product of linearly or-
dered bounded pocrims, then the radical of A is characterized by equations.
More precisely:

Rad(A) = {z € A:Vn € N, (~(z")? =0}

Proposition 1.2.13 Let A be a relative subvariety of Mo. Then DF(A)
and Sem(A) are reflective subcategories of A, and the respective reflectors
preserve monomorphisms.

Proof: If A € A, for each = € A, [z] will denote the Rad(A)-congruence
class of z. We define S(A) = A/Rad(A), and for each f € [A, A')4, we let
S(f) be defined by S(f)([z]) = [f(z)] for each z € A. Since homomorphisms
preserve unities, we obtain a well defined function S(f) : A/Rad(A) —
A’/Rad(A’). 1t is easy to check that S is a functor from A to SEM(A).
To show that S is a reflector, note first that if p4 : A — A/Rad(A) is the
canonical projection, then the following diagram is commutative:

f
A — A

PA 1
A/Rad(A) — A/Rad(A")
S(f

l pA

Suppose that B € S(A) and f € [A4, B]4. Since Rad(B) = {1}, the
mapping [z] — f(z) defines a homomorphism g : A/Rad(A) — B that
makes the following diagram commutative:

f
A — B
pal =
| /g
A/Rad(A)

and it is obvious that g is the only homomorphism in [4/Rad(A), B]sem(a4)
making the triangle commutative. Therefore we have proved that S is
a reflector. We proceed to prove that S preserves monomorphisms. Let
f € [A, B) 4 be a monomorphism and suppose that (S(f))(z) = (S(f))(y),
ie., (f(z)] = [f(y)]. Then for each number n there exists a number m
such that 0 = (=((f(z) = f(¥)™)™ = f((~((z — ¥)"))™). Since f is a
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monomorphism then (=((z — y)*))™ = 0 and ¢ — y € Rad(A). Inter-
changing = and y, we obtain [z] = [y] and S(f) is @ monomorphism. The
statements about DF(A) can be proved with similar arguments. m]

Corollary 1.2.14 Let A be a relative subvariety of Mg. If A is injective
either in DF(A) or in Sem(A), then A is injective in A.

Proof: It is well-known that if D is a reflective subcategory of A such that
the reflector preserves monomorphisms then an injective object in D is also
injective in A [2, 1.18]. Then the theorem follows from Propositions 1.2.13.
(]

Definition 1.2.15 A Hoop [5] is a pocrim satisfying the following condition:
z<y iff z=z0(z—y).

Every hoop is a meet semilattice, where the meet operation is given by
zAy=z0 (z —y).
Observe that in a hoop A, z < y iff thereis z € A such that z =20 y.

Theorem 1.2.16 An algebra (A, ®,—,1) is a hoop iff
1. (A,0,1) is an abelian monoid,
2.zx—-zx=1,
3. (z—y)oz=(y—2)0y,
420 @y—2)=(@0y) —=z

Proof:  See ([5, Theorem 1.2]) O

Hence, the class of all hoops form a variety. This variety is noted by HO.
In hoops, all congruences are identified to implicative filters.

Proposition 1.2.17 If A is a variety of hoops then A satisfies CEP.
Proof: Let A be a hoop and let B be a subhoop of A. For each implica-

tive filter F' of B, let (F)4 be the implicative filter of A generated by F.
Clearly F C (F) 4. To see the converse, let b € BN (F) 4. Then there exists
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aj, ' ,an, € Fsuchthat aj©as ®---®Q@a, < b. Since b € B and F is an
implicative filter of B, hence upward closed, it follows that b € F. ]

Let k be a natural number. A k-potent hoop [5] is a hoop satisfying
zF = z%¥+1, We denote the class of k-potent hoop by HO(k). It is clear that
HO(2) is the variety of brouwerian semilattices [33].

A basic hoop [1] is an algebra (4,A,V,0,—,1) of type (2,2,2,2,0) such
that:

1. (A,0,—,1) is a hoop,
2. (A,A,V,1) is lattice with greatest element 1,
3 (z—-y)Vy—2)=1.

Basic hoops are also known as generalized BL-algebras [13]. We denote
by BH the variety whose element are basic hoops.

1.3 Residuated Lattices

Definition 1.3.1 A residuated lattice [35] or commutative integral residu-
ated 0, 1-lattice [31], is an algebra (A, A, V, 0, —,0,1) of type (2,2,2,2,0,0)
such that:

1. (A,0,—,1,0) is a bounded pocrim
2. L(A) = (A, V,A,0,1) is a bounded lattice,
3. (zAy)—y=1
Residuated lattices form a variety RL defined by the following equations:

1. (A,0,1) is an abelian monoid,
2. L(A) = (A, V,A,0,1) is a bounded lattice,
3. (zOy)—z=z—>(y—2),

4. (z—y)ox)Ay=(z—y) Oz,

20



5. (xAy)—my=1.

A is called an involutive residuated lattice or a Girard monoid {27] if it also
satisfies the equation:

6. -z ==2.
A is called distributive if satisfies 1.-5. as well as:
T.zA(yVz)=(zAy)V(zAz).

The subvariety of Girard monoids is noted by GM. Following the notation
used in [31], the variety of residuated lattices that satisfy the distributive law
is denoted by DR L, and DGM will denote the variety of distributive Girard
monoids. In residuated lattices, congruences are in correspondence with
implicative filters. In the next proposition we collect some easy consequences
of the definition of residuated lattices.

Proposition 1.3.2 Let A be a residuated lattice and Z C A. Then:
1.z0(yVve) =(z0y)V(r0z),

2 (yAz) = (&> y) Ale - 2),

(zVy) > 2) = (3 - 2) Az > ),

rOQYy<TAY,

rly= <y,

if V Z exists, thena©O V,ezz = V,cza0 z,

if V Z exists, then \/,czz = a= \,czz — a,

o NS & ™ L b

if A Z exists, thena — \,cz2=N\,eza— 2
o

Proposition 1.3.3 Let A be a residuated lattice. Then the following con-
ditions are equivalent:

1. (a—>b)v(b—a)=1 (prelinearity),
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2.a—- (bVve)=(a—b)V(a—c),
3. (anb)—-c=(a—c)V(b— o).
Proof:  See ([27, Theorem 2.3)) m]

Lemma 1.3.4 Let A be a residuated lattice satisfying the prelinearity equa-
tion. Then following conditions are valid:

1. a2Ab2<a@b<a’?Vi?,
2. a0 (bAc)=(a®Ob)A(a®c),
3 (avb)Ac=(anc)V(bAc).
Proof:  See ([27, Lemma 2.4]) O

Proposition 1.3.5 Let A be a Girard monoid. Then following conditions
are valid:

1. (a = b) =-(a®-b),
2. 2(aAb) =-aV b
Proof:  See ({27, Proposition 2.8]) (m]

Proposition 1.3.6 Let A be a Girard monoid. Then following conditions
are equivalent:

1. A satisfies the prelinearity equation,
2 z0(yAN2)=(Z0y)A(z02).
Proof:  See ([27, Proposition 2.9]) O

Lemma 1.3.7 Let A be a Girard monoid satisfying the prelinearity equa-
tion. Then the negation has at most one fized point.

Proof:  See ([27, Lemma 2.10]) O

Proposition 1.3.8 Let A be a residuated lattice. Then following conditions
are equivalent:
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l.a<b=3Iz €A st. b=a®z, (divisibility)
2. aNb=a0®(a —b),
3. a—=(bAc)=(anb)O((aAb) = c).
Proof:  See ({27, Lemma 2.5]) (m

Proposition 1.3.9 Let A be a residuated lattice with divisibility. Then fol-
lowing conditions are valid:

1. If a is idempotent thena Ab=a ©b for eachb€ A,

2. a®b<a?vh?

3. (avb)Ac=(aAc)V(bAc).
Proof:  See ([27, Proposition 2.6)) (m
Proposition 1.3.10 If A is a subvariety of RL, then A satisfies CEP.
Proof:  This follows from the same argument used in Proposition 1.2.17. O

It is easy to verify the following proposition:

Proposition 1.3.11 Let A be a residuated lattice. Then A is simple iff for
each a < 1, a is nilpotent. m]
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Chapter 2

Injectives, simple algebras
and ultrapowers

2.1 Injectives and simple algebras

Definition 2.1.1 Let V be a variety. Two constant terms 0,1 of the lan-
guage of V are called distinguished constants iff A = 0 # 1 for each non-
trivial algebra A in V.

Lemma 2.1.2 Let A be variety with distinguished constants 0,1 and let A
be a non-trivial algebra in A. Then A has mazimal congruences, and for each
simple algebra I € A, all homomorphisms f : I — A are monomorphisms.

Proof:  Since for each homomorphism f : A — B such that B is a non-
trivial algebra, f(0) # f(1) then for each 8 € Con(A)\{42}, (1,0) ¢ 6.
Thus a standard application of Zorn lemma shows that Con(A4)\{A?} has
maximal elements. The second claim follows from the simplicity of I and

f(0) # f(1). o

Definition 2.1.3 A simple algebra I is said to be mazimum simple [22]
iff for each simple algebra I, I can be embedded in Iy,.

Theorem 2.1.4 Let A be a variety with distinguished constants 0,1 hav-
ing a minimal algebra. If A has non-trivial injectives, then there exists a
mazimum simple algebra I.

Proof: Let A be a non-trivial injective in A. By Lemma 2.1.2 there is a
maximal congruence 6 of A. Let I = A/6 and p: A — I be the canonical
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projection. Since .A has a minimal algebra it is clear that for each simple
algebra J, there exists a monomorphism h : J — A. Then the composition
ph is a monomorphism from J into I. Thus I is a maximum simple algebra.
(m]

We want to establish a kind of the converse of the above theorem.

Theorem 2.1.5 Let A be a variety satisfying CEP, with distinguished con-
stants 0,1. If I is a self-injective marimum simple algebra in A then I is
injective.

Proof:  For each monomorphism g : A — B we consider the following
diagram in A:

f
A — I
9|
B

By CEP, I is hereditarily simple. Hence f(A) is simple and Ker(f) is
a maximal congruence of A such that (0,1) ¢ Ker(f). Further Ker(f) can
be extended to a maximal congruence € in B. It is clear that (0,1) ¢ 6 and
8N A? = Ker(f). Thus if we consider the canonical projection p : B — B/#,
then there exists a monomorphism ¢’ : f(A) — B/6 such that

f ly(a)
A — f(4) —
9| = 4|
B —I; B/6

Since I is maximum simple, B/6 is isomorphic to a subalgebra of I.
Therefore, since that I is self-injective, there exists a monomorphism ¢ :
B/6 — I such that pg' = 15(A). Thus (pp)g = f and [ is injective. O

Lemma 2.1.6 If A is a rigid simple injective algebra in a variety, then all
the subalgebras of A are rigid. a
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2.2 Injectives, ultrapowers and lattice properties

We recall from [4] some basic notions on ordered sets that will play an im-
portant role in what follows. An ordered set L is called bounded provided
it has a smallest element 0 and a greatest element 1. The decreasing seg-
ment (a] of L is defined as the set {z € L : z < a}. The increasing segment
(@) is defined dualy. A subset X of L is called down-directed (upper-
directed) iff for all a,b € X, there exists z € X such that x < aand x < b
(a <z and b< ).

Lemma 2.2.1 Let L be a lattice and X be a down (upper) directed subset
of L such that X does not have a minimum (mazrimum) element. If F is the
implicative filter in P(X) generated by the decreasing (increasing) segments
of X, then there erists a non-principal ultrafilter U such that F CU.

Proof:  Let (a], (b] be decreasing segments of X. Since X is a down-
directed subset, there exists £ € X such that 2 < a and = < b, whence
z € (a]N(b] and F is a proper implicative filter of P(X). By the ultrafilter
theorem there exists an ultrafilter i such that 7 C Y. Suppose that I is the
principal filter generated by (¢]. Since X does not have a minimum element,
there exists € X such that z < c¢. Thus (z] € U and it is a proper subset
of (¢], a contradiction. Hence U is not a principal filter. By duality, we can
establish the same result when X is an upper-directed set. m]

Definition 2.2.2 A variety V of algebras has lattice-terms iff there are
terms of the language of V defining on each A € V operations V, A, such
that (A,V,A) is a lattice. V has bounded lattice-terms if, moreover, there
are two constant terms 0,1 of the language of V defining on each A € V a
bounded lattice (4,V,A,0,1). The order in A, denoted by L(A), is called
the natural order of A.

Observe that each subvariety of a variety with (bounded) lattice-terms is
also a variety with (bounded) lattice-terms.

Remark 2.2.3 Let V be a variety with lattice-terms and A € V. AX /U will
always denote the ultrapower corresponding to a down (upper) directed set
X of A with respect to the natural order, without smallest (greatest) element
and a non-principal ultrafilter & of P(X), containing the filter generated by
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the decreasing (increasing) segments of X. For each f € AX, [f] will denote
the U-equivalence class of f. Thus [1x]| is the U-equivalence class of the
canonical injection X < A and for each a € A, [a] is the U-equivalence class
of the constant function a in AX. It is well-known that i4(a) = [a] defines
a monomorphism A — AX /U (see [8, Corollary 4.1.13]).

Theorem 2.2.4 Let V be a variety with lattice-terms. If there exists an
absolute retract A in V, then each down-directed subset X C A has an
infimum, denoted by \ X. Moreover if P(x) is a first-order positive formula
(see [8]) of the language of V such that each a € X satisfies P(z), then A X
also satisfies P(zx).

Proof: Let X be a down-directed subset of the absolute retract A. Suppose
that X does not admit a minimum element and consider an ultrapower
AX/U. Since A is an absolute retract there exists a homomorphism ¢ such
that the following diagram is commutative:

14
A — A
ia =
AXu ¥

We first prove that ¢({1x]) is a lower bound of X. Let a € X. Then
[1x]) € [a] since {z € X : 1x(z) < a(z)} ={r € X : 2 < a} € U. Thus
¢([1x]) < ¢([a]) = a and ¢([1x]) is a lower bound of X. We proceed now
to prove that ¢([1x]) is the greatest lower bound of X. In fact, if b€ A is
a lower bound of X then for each z € X we have b < z. Thus [b] < [1x]
since {z € X : b(z) < 1x(z)} ={r € X:b< z} = X € U. Now we have
b= p([b]) £ ¢([1x]). This proves that ¢([1x]) = A X. If each a € X satis-
fies the first order formula P(x) then [1x] satisfies P(z) and, since P(z) is a
positive formula, it follows from ([8, Theorem 3.2.4] ) that ¢([1x]) satisfies
P(z). m

In the same way, we can establish the dual version of the above theorem.
Recalling that a lattice is complete iff there exists the infimum A X (supre-
mum V X), for each down-directed (upper-directed) subset X, we have the
following corollary:

Corollary 2.2.5 Let V be a variety with lattice-terms. If A is an absolute
retract in V, then L(A) is a complete lattice. m]
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Chapter 3

Injectives in Residuated
Lattices

3.1 Radical-dense varieties

Definition 3.1.1 We will say that a variety A is radical — dense [22] pro-
vided that A is a subvariety of RL and Rad(A) = Ds(A) for each A in
A.

An example of radical-dense variety is the variety of Heyting algebras
(i.e RL plus the equation z @ y = z Ay). The variety of Heyting algebras is
noted by H.

Theorem 3.1.2 Let A be a radical-dense variety. If A is a non-semisimple
absolute retract in A, then A has a principal unity € and {0,¢,1} is a sub-
algebra of A isomorphic to the three element Heyting algebra Hj.

Proof: Let A be a non-semisimple absolute retract. Unities are character-
ized by the first order positive formula -z = 0 because Rad(A) = Ds(A).
Since Ds(A) is a down-directed set, by Theorem 2.2.4 there exists a min-
imum dense element €. It is clear that ¢ is the principal unity and since
€ <1, {0,¢1} is a subalgebra of A, which coincides with the three element
Heyting algebra Hj. m]

Definition 3.1.3 Let A be a radical-dense variety. An algebra T' € A is
called a testq-algebra iff there are €,t € Rad(T) such that € is an idempotent
element, t <eande =t <e.
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An important example of a testq-algebra is the totally ordered four element
Heyting algebra H4y = {0 < b < a < 1} whose operations are given as
follows:

TQy=zTAy,
_ {1, ifz<y,
a:—>y—{y’ ifz>y.

Theorem 3.1.4 Let A be a radical-dense variety. If A has a non-trivial in-
jective and contains a testy-algebra T, then all injectives in A are semisim-
ple.

Proof:  Suppose that there exists a non-semisimple injective A in A. Then
by Lemma 3.1.2, there is a monomorphism a : H3 — A such that a(a) is
the principal unity in A. Let 7 : H3 — T be the monomorphism such that
i(a) = €. Since A is injective, there exists a homomorphism ¢ : T — A such
that the following diagram commutes

a

Hy —
T 'Y
Since a(a) is the principal unity in A and t < ¢, then, by commutativity,
¢(e) = p(t) = a(a). Thus (¢ — t) = 1, which is a contradiction since

by hypothesis p(e — t) < ¢(€) = a(a) < 1. Hence A has only semisimple
injectives. m]

A

3.2 Injectives in RL, GM, DRL and DGM

Proposition 3.2.1 Let A be a residuated lattice. Then the set A° = {(a,b) €
A x A:a < b} equipped with the operations

(al,bl) A (ag, bg) = (a1 Aas, b A bz),

(a1,b1) V (az,b2) := (a1 Vag, by Vv bo),

(a1,b1) © (ag, b2) := (a1 © az, (a; © by) V (a2 O by)),
(al,bl) - (ag,bg) = ((a1 — ag) A (b] — bz),al — bg).

is a residuated lattice, and the following properties hold:
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1. The map i: A — A° defined by i(a) = (a,a) is a monomorphism.
2. —(a,b) = (=b,—a) and -(0,1) = (0,1).
3. A is a Girard monoid iff A° is a Girard monoid.
4. A is distributive iff A® is distributive.
Proof:  See [27, IV Lemma 3.2.1). O

Definition 3.2.2 We say that a subvariety A of RL is o-closed iff for all
Ac A A% c A

Theorem 3.2.3 If a subvariety A of RL is o-closed, then A has only
trivial absolute retracts.

Proof:  Suppose that there exists a non-trivial absolute retract A in A.
Then by Proposition 3.2.1 there exists an epimorphism f : A° — A such
that the following diagram is commutative

14
A — A

i| =
e

Thus there exists a € A such that f(0,1) = ¢ = f(a,a). Since (0,1)
is a fixed point of the negation in A it follows that 0 < a < 1. We have
f(a,1) = 1. Indeed, (0,1) — (a,a) = ((0 = a) A(1 = a),0 — a) = (a,1).
Thus f(a,1) = f((0,1) — (a,a)) = f(0,1) — f(a,a) =a — a = 1. In view
of this we have 1 = f(a,1) ® f(a,1) = f((a,1) ©(a,1)) = f(e®a,(a® 1)V
(a@1)) = f((a®a,a)) < f((a,a)) = a, which is a contradiction since a < 1.
Hence A has only trivial absolute retracts. m]

Corollary 3.2.4 RL, GM, DRL and DGM have only trivial absolute re-
tracts and injectives. a
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3.3 Injectives in SRL-algebras

Definition 3.3.1 A SRL-algebra is a residuated lattice satisfying the equa-
tion:

(S) zA-z=0

The variety of SRL-algebras is denoted by SRL.

Proposition 3.3.2 If A is a SRL-algebra, then 0 is the only nilpotent in
A

Proof:  Suppose that there exists a nilpotent element z in A such that
0 < z, having nilpotence order equal to n. By the residuation property
we have 2" ! < -z, Thus z" ! =z Az"! < 2 A -z = 0, which is a
contradiction since z has nilpotence order equal to n. ]

Corollary 3.3.3 Let A be a subvariety of SRL. Then the two-element
boolean algebra is the mazimum simple algebra in A and Sem(A) = BA.

Proof:  Follows from Propositions 3.3.2 and 1.2.6. (m]

Corollary 3.3.4 If A is a subvariety of SRL then A is a radical-dense
variety.

Proof: Let A be an algebra in A and let a be a unity. Thus —a is nilpotent
and hence -a = 0. (]

Corollary 3.3.5 If A is a subvariety of SRL, then all complete boolean
algebras are injectives in A.

Proof: By Corollary 3.3.3 the two-element boolean algebra is the maxi-
mum simple algebra in 4. Since it is self-injective, by Theorem 2.1.5 it is
injective. Since complete boolean algebras are the retracts of powers of the
two-element boolean algebra, the result is proved. m]

As an application of this theorem we prove the following results :

Corollary 3.3.6 In SRL and H, the only injectives are complete boolean
algebras.

Proof:  Follows from Corollary 3.3.5 and Theorem 3.1.4 because the testy-
algebra H4 belongs to both varieties. m]

Remark 3.3.7 The fact that injective Heyting algebras are exactly com-
plete boolean algebras was proved in [3] by different arguments.
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3.4 MTL-algebras and absolute retracts

Definition 3.4.1 An MTL-algebra [19] is a residuated lattice satisfying the
pre-linearity equation

(P1) z—-yViy—z)=1
The variety of MTL-algebras is denoted by M7 L.

Proposition 3.4.2 Let A be a residuated lattice. Then the following con-
ditions are equivalent:

1. Ae MTL.
2. A is a subdirect product of linearly ordered residuated lattices.

Proof: (27, Theorem 4.8 p. 76 ]. @]

Corollary 3.4.3 MTL is subvariety of DRL. @]
Corollary 3.4.4 Let A be a MTL-algebra.

1. If A is simple, then A is linearly ordered.
2. If e is a unity in A, then —e <e.

Proof: 1) Is an immediate consequence of Proposition 3.4.2. 2) If we con-
sider that the ith-coordinate m; f(e) of e in the subdirect product f : A —
[Ticy Li is a unity, for each i € I, then by Proposition 1.2.10, -7, f(e) <
m;f(e). Thus —e < e. O

To obtain the analog of Theorem 3.1.2 for varieties of MTL-algebras, we
cannot use directly Theorem 2.2.4, because the property of being a unity is
not a first order property. We need to adapt the proof of Theorem 3.1.2 to
this case:

Theorem 3.4.5 Let A be a subvariety of MTL. If A is an absolute retract
in A then A has a principal unity e in A.

Proof: By Proposition 3.4.2 we can consider a subdirect embedding f :
A — [l;c; Li such that L; is linearly ordered. We define a family H(L;) in
A as follows: for eachie I
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(a) if there exists e; = min{u € L; : u is unity} then H(L;) = L;,

(b) otherwise, X = {u € L; : uisunity} is a down-directed set without
least element. Then by Proposition 2.2.4 we can consider an ultra-
product L Ju ©of the kind considered after Definition 2.2.2. We define
H(L;) = L¥ ;. 1t is clear that H(L;) is a linearly ordered .A-algebra.
If we take the class e; = [1x] then e; is a unity in H(L;) since for
every natural number n, 0 < e? if {z € X :0< (1x(2))"} €/ and
{zeX:0< (Ix(z))*=z"}=X €U.

We can take the canonical embedding j; : L; — H(L:) and then for each
i € I we can consider e; as a unity lower bound of L; in H(L;). By Corollary
1.2.11, (e;i)ier is a unity in [[;c; H(L;). Let j : [T;ey Li — I1;er H(L:) be the
monomorphism defined by j((z;)ier) = (ji(z:))ier- Since A is an absolute
retract there exists an epimorphism ¢ : [[;c; H(Li) — A such that the
following diagram commutes:

f J
A — [Lerli — IliesH(L:)

14
A

Let e = p((ei)ier). It is clear that e is a unity in A since p is an ho-
momorphism. If u is a unity in A then (e;)ier < jf(u) and by com-
mutativity of the above diagram, e = p((ei)ier) < @jf(u) = w. Thus

e = min{u € A : u is unity} resulting in Rad(A) = [;)
(]

3.5 Injectives in WNNM-algebras and MTL

Definition 3.5.1 A WNM-algebra (weak nilpotent minimum) [19] is an
MTL-algebra satisfying the equation

(W) ~(z0y)V((zAy) - (z0y)) =1
The variety of WNM-algebras is noted by WN M.

Theorem 3.5.2 The following conditions are equivalent:

33



1. I is a simple WNM-algebra.

2. I has a coatomn u and its operations are given by

0, ifr,y<l1
zQy=¢z tfy=1

y, fz=1

1, ifx<y
roy=y =1
u, fy<z<l

Proof: =). For Card(I) = 2 this result is trivial. If Card(I) > 2 then we
only need to prove the following steps:

a) Ifz,y < 1in I then 2 ®y = 0: Since I is simple, equation (W)
implies that 2 = 0 for each z € I'\ {1}. Hence if z < y < 1, then
zrOQy<yoOy=0.

b) I has a coatom: Let 0 < £ < 1. We have that -~z < 1 and, since I is
simple, we also have -—~z < 1. Then by a) it follows that -z < -z <
-z = -z, i e, nz = -z. If0 < z,y < 1, again by a) we have
-z ©@ -y = 0. Thus -~z < -~y = —y. By interchanging =z and y we
obtain the equality -z = —y. Now it is clear that if 0 < = < 1, then
u = -z is the coatom in I.

¢) Ify<z<lthenz —>y=uw Sincez—»y=V{tel:t0z <y},
this supremum cannot be 1 because y < z. Thus, in view of item a),
z — y is the coatom u.

<) Immediate.
]

Example 3.5.3 We can build simple WNM-algebras having arbitrary car-
dinality if we consider an ordinal v = Suc(Suc(a)) with the structure given
by Proposition 3.5.2, taking Suc(a) as coatom. These algebras will be called
ordinal algebras.

Proposition 3.5.4 WN M and MTL have only trivial injectives.

Proof:  Follows from Proposition 2.1.4 since these varieties contain all or-
dinal algebras. ]
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3.6 Injectives in SMTL-algebras

Definition 3.6.1 An SMTL-algebra [20] is a MTL-algebra satisfying equa-
tion (S). The variety of SMTL-algebras is denoted by SMTL.

Proposition 3.6.2 The only injectives in SMTL are complete boolean al-
gebras.

Proof:  Follows from Corollary 3.3.5 and Theorem 3.1.4 since the test4-
algebra H, belongs to SMTL. O

3.7 Injectives in I[ISMTL-algebras

Definition 3.7.1 A I[ISMTL-algebra [19] is a SMTL-algebra satisfying the
equation:

(IT) (20 ((r02) > (y02)) > (z—y)=1
The variety of [ISMTL-algebras is denoted by [ISM7T L.

Proposition 3.7.2 Let A be an IISMTL-algebra. Then 1 is the only idem-
potent dense element in A.

Proof: By equation II it is easy to prove that, for each dense element ¢, if
e®x = €@y then 2 = y. Thus if ¢ is an idempotent dense then e©1 = e Q¢
and € = 1.

Theorem 3.7.3 Let A be a subvariety of ISMTL. Then the injectives in
A are ezactly the complete boolean algebras.

Proof:  Follows from Corollary 3.3.5, Theorem 3.1.2 and Proposition 3.7.2.

3.8 Injectives in BL, MV, PL, and in Linear Heyt-
ing algebras

Definition 3.8.1 A BL-algebra [26] is an MTL-algebra satisfying the equa-
tion

(B). zO(@—y)=cAy
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We denote by BL the variety of BL-algebras. Important subvarieties of BL
are the variety MV of multi-valued logic algebras (MV-algebras for short),
characterized by the equation ——az = z [10, 26], the variety PL of product
logic algebras (PL-algebras for short), characterized by the equations (II)
plus (S) [26, 11], and the variety HL of linear Heyting algebras, characterized
by the equation £ ® y = z A y (also known as Gddel algebras [26]).

Remark 3.8.2 It is well-known that MV is generated by the MV-algebra
Rjo3; = ([0,1],0,—,A,V,0,1) such that [0,1] is the real unit segment, A, V
are the natural meet and join on [0, 1] and ® and — are defined as follows:
0y :=max(0,z +y—1), z - y = min(l,1 -z +y). Ry is the
maximum simple algebra in MYV (see (10, Theorem 3.5.1]). Moreover Ryg
is a rigid algebra (see [10, Corollary 7.2.6]), hence self-injective. Injective
MV-algebras were characterized in [25, Corollary 2.11]) as the retracts of
powers of Rjg 1)

Proposition 3.8.3 If A is a subvariety of PL, then the only injectives of
A are the complete boolean algebras.

Proof: Follows from Theorem 3.7.3 since PL is a subvariety of ISMTL.
]

Proposition 3.8.4 The only injectives in HL are the complete boolean al-
gebras.

Proof:  Follows from Corollary 3.3.5 and Theorem 3.1.4 since the algebra
testy Hy lies in SMTL. m]

Proposition 3.8.5 BL is a radical-dense variety.
Proof:  See [12, Theorem 1.7 and Remark 1.9]. 0

Proposition 3.8.6 Injectives in BL are exactly the retracts of powers of
the MV-algebra Ry, .

Proof: By Remark 3.8.2 and Propositions 3.8.5 and 2.1.5, retracts of a

power of the Rjg) are injectives in BL. Thus by Theorem 3.1.4, they are
the only possible injectives since Hy lies in BL. ]
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3.9 Injectives in IMTL-algebras

Definition 3.9.1 An involutive MTL-algebra (or IMTL-algebra) [19] is a
MTL-algebra satisfying the equation

(N -z = 1.

The variety of IMTL-algebras is noted by ZM7T L.

An interesting IMTL-algebra, whose role is analogous to H3 in the
radical-dense varieties, is the four element chain I defined as follows:

@1 a b 0 =] 1 a b 0 1
111 a b 0 1|1 a b 0 .
ala a 0 0 al|l 1 b b

blb 0 0 0 b1 1 1 a b=-a
ofo o o0 o0 01 1 1 1 0

Theorem 3.9.2 Let A be a a subvariety of IMTL. If A is a non-semisimple
absolute retract in A, then A has a principal unity € and {0,-¢,€,1} is a
subalgebra of A which is isomorphic to Iy.

Proof: Follows from Theorem 3.4.5. 0O

Definition 3.9.3 Let A be a subvariety of ZMT L. An algebra T is called
a testy-algebra iff, it has a subalgebra {0, =, ¢, 1} isomorphic to I; and there
exists t € Rad(T) such that ¢t < e.

Theorem 3.9.4 Let A be a subvariety of IMTL. If A has a non-trivial
injective and contains a testy-algebra, then injectives are semisimple.

Proof: Let T be a testj-algebra and t € Rad(T;) such that ¢ < . We can
consider a subdirect embedding f : T — [[;¢; Hj; such that L; is linearly
ordered. Let z; = m; f(x) for each z € T and 7; the jth-projection. Since
t < e, exists s € J such that —e¢; < —t, < t; < €, and by Corollary 1.2.11 , ¢,
and €, are unities in the chain H; with ¢, idempotent. Note that H, is also a
testj-algebra. To see that €; — t, < ¢, observe first that 0 < ¢, © -, since,
if € © -ty = 0 then ¢; < —-—t; = t, which is a contradiction. Consequently,
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—€; < €, t, since, if €Oty < €, then e,Ots = (€5)20 -ty < €€ = 0.
Thus we can conclude that €, — t; = —(e; © ~t;) < -—€; = €. Suppose
that there exists a non-semisimple injective A in .A. Then by Theorem 3.9.2,
let a : Iy — A be a monomorphism such that a(a) is the principal unity in
A. Let i: Iy —» H, be the monomorphism such that i(a) = €,. Since A is
injective, there exists a homomorphism ¢ : H; — A such that the following

diagram commutes:
e

Iy —
Sy
H =¥

Since a(a) is the principal unity in A and t; < €, then, by commutativity,

A

@(€e5) = p(ts) = a(a). Thus p(e; — t;) = 1, which is a contradiction since
p(es — t5) < p(es) = a(a) < 1. Hence A has only semisimple injectives. O

Proposition 3.9.5 ZTMTL has only trivial injectives.

Proof:  Suppose that there exists non-trivial injectives in ZMTL. By
Theorem 2.1.4 there is a simple maximum algebra I in ZM7T L. We consider
the six elements IMTL chain Ig defined as follows:

©O|1 @& t a a3z Q -1 a t a a3 (o 11
111 a1 t a2 a3 0 1|1 a1 ¢t a a3 0
[ Y31
ai|lay a2 a3 a3 (0 O a (1 1 a4 a t a3
t|t a3 a3 0 0 O t |1 1 1 a a a ¢t
azlaz a3 (O 0 O0 O a2 |1 1 1 1 a1 ¢ dao
ag{az O 0 0 0 O ag | 1 1 1 1 1 a
olo o o0 o o o ofl1 1 1 1 1 1 1%
s 0

Since [ is simple maximum we can consider I and R[p ) as subalgebras of
I. In view of this and using the nilpotence order we have that 1/2 < t < 3/4
since I is a chain. Therefore we can consider u = VRIO‘”{.T € R,y : * < t}
and v = /\R[o,u{m € Ry : = > t} and it is clear that u,v € Ry since
Rjo,1) is a complete algebra. Thus u < ¢ < v. This contradicts the fact that
the order of R|g ) is dense. Consequently ZMT L has only trivial injectives.
0
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3.10 Injectives in NM-algebras

Definition 3.10.1 A nilpotent minimum algebra (or NM-algebra) [19] is an
IMTL-algebra satisfying the equation (W).

The variety of NM-algebras is noted by N M. As an example we consider
N, = ([0,1],©,—,A,V,0,1) such that [0,1] is the real unit segment, A, V
are the natural meet and join on [0, 1] and ® and — are defined as follows:

_JxzAy, ifl<z+y
TOY = { 0, otherwise,

1, fr<y

roy= {ma:z(y, 1—2z) otherwise .

Note that {0, %, 1} is the universe of a subalgebra of Njg ), that we denote
by L3. The subvariety of N M generated by L3 coincides with the variety
L3 of three-valued Lukasiewicz algebras (see [37, 9]).

Proposition 3.10.2 L3 is the marimum simple algebra in NM, and it is
self-injective.

Proof: Let I be a simple algebra such that Card(I) > 2. By Theorem
3.5.2 I has a coatom u satisfying -z = u for each 0 < z < 1. Thus
r = -~z = ~u = u for each 0 < z < 1. Consequently Card(I) = 3 and
I =Ls. (]

Corollary 3.10.3 Sem(NM) = L3. m)

Proposition 3.10.4 Injectives in N M coincide with complete Post alge-
bras of order 3.

Proof: By Proposition 3.5.2, Theorem 2.1.5 and Theorem 3.9.4 injectives
in N M are semisimple since Njo,y) is an algebra T'est;. Thus by Proposition
3.10.3 and [37], [9, Theorem 3.7], complete Post algebras of order 3 are the
injectives in N’ M. w
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Variety Equations Injectives
[RL Trivial
DRL RL+zA(yVz)=(zAy)V(zAz) Trivial
GM RL+—z=x Trivial
DGM GM+zA(yVz)=(zAy)V(zA2) Trivial
MTL RL+(z—y)V(y—z)=1 Trivial
WNM MTL+-(zO0y)V((zAy) = (z0y) =1 Trivial
IMTL MTL+-—x=2z Trivial
BL MTL+zAy=z0(z—y) Retracts of powers of Ry j
MY BL+-—z=zx Retracts of powers of Ry 1)
SRL RL+zA-z=0 Complete boolean algebras
SMTL MTL+zA-x=0 Complete boolean algebras
NSMTL | SMTL+--z20((z0z) = (yO=z)) < (r — y) | Complete boolean algebras
PL NMSMTL+xAy=z0(z— y) Complete boolean algebras
HL BL+zAy=z0Qy Complete boolean algebras
NM WNM+-—z=1z Complete Post algebras of order 3

Table 3.1: Injectives in Varieties of Residuated Lattices
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Chapter 4

Injectives in Pocrims and
Hoops

4.1 Absolute retracts in pocrims

Proposition 4.1.1 Let A be a pocrim and L be a new symbol not belonging
to A. We can consider L @A = AU {1} with the following operation:

_Jz0y, fz,yed
-TOJ_y—{_L’ fex=Lor y=1
r—y, fr,yeA
—1LYy= J-’ 1fT€Aandy=_]_
1, 'I:f:l::_l_

Then (L ®A,O1,—1,1) is a pocrim with smallest element L, and A is a
subalgebra of L & A.

Proof: Immediate 0O

Definition 4.1.2 Let A be a relative subvariety of M. Then we say that
Ais (L ®)-closed iff forall Ac A, L&A € A

Theorem 4.1.3 If A is a (L &)-closed relative subvariety of M, then ab-
solute retracts in A are trivial algebras.

Proof:  Suppose that there exists a non-trivial absolute retract A in A.
Let i : A -1 ®A be the monomorphism such that i(z) = 2. Then there
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exists an epimorphism f :L @A — A such that the composition fi = 14.
Let 0 = f(L). Since for all z € A, 0 = f(1) < f(i(z)) = =, we have
that 0 is the smallest element of A. In L ®A we have that 0 —L1=1.
Therefore f(0 —L) = f(L) = 0. On the other hand, since 7(0) = 0,
f(0) = f(L)=0—-0=1. Hence 0 = f(0 —1) but f(0) — f(L) =1,
which is a contradiction. Consequently A have only trivial absolute retracts.
0

Corollary 4.1.4 If A is a (L @®)-closed relative subvariety of M, then A
has only trivial injectives. ]

Corollary 4.1.5 M, HO, HO(k), BH have only trivial absolute retract
and trivial injectives. m]

4.2 Injectives in quasivarieties of bounded pocrims

Proposition 4.2.1 My, has only trivial absolute retract and trivial injec-
tives.

Proof: It follows from the same argument used in Theorem 4.1.3 O

Proposition 4.2.2 Let A be a (L ®)-closed relative subvariety of My . If
B is injective in A then Ds(B) N Idp(B) = {1}.

Proof: Let B be an injective in A. If there is an element a € Ds(B) N
Idp(B) with a < 1, then {0,a,1} would be a subalgebra of B such that
Ds(B) = B\{0}. Extend it to a maximal totally ordered subalgebra C of B
such that Ds(C) = C\{0}, and let i¢c : C — B be defined by i¢(z) = z. In
the algebra L &C we have 1< 0. To avoid confusion, we define a := 0. Now
we define f : C —L @®C such that f(0) =L and for each = > 0, f(z) = z.
It easy to verify that f is a monomorphism. Since B is injective there exist
a morphism g : 1 &C — B such thar gf = i¢ since B is an injective object.
We derive from this the following asertions:

1. g(a) € C (since C is a maximal subchain of B with the property
Ds(C) = C - {0}),

2. g(e) # 0 (since ~g(a) = g(-~a) = g(L1) = 0),

3. g(a) <1 (since a < a and then g(a) < g(a) =a < 1).
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Now we have that for all z € C - {0}, = — g(a) = g(z) — g(a) = g(z —
a) = g(a) < 1 by item (3). Thus g(a) < z. Hence by item (1) we obtain
g(a) < g(a) which is an obvious contradiction. Therefore we conclude that
Ds(B) N Idp(B) = {1}. O

Proposition 4.2.3 Let A be a (L ®)-closed relative subvariety of Mo. If
B is injective in A then Ds(B) = {1}.

Proof: Let B be an injective in A. We assume that there is an element
a € Ds(B) with a < 1. For all natural number n > 1, =(a") = 0 since
(@) =a"—-0=a"'!'-(a—=0=a"!—>0=..-=a—0=0. Thus
a™ > 0 for all n > 1, and then the principal implicative filter (a) is proper.
Let A = (a) U {0}. A is closed by - since if z = 0 then -z = 1 and for
z € (a) there is exist n > 1 sucht that z > a™ and then -z < =(a™) = 0.
Since (a) is an implicative filter, this proves that A € My. Let A} =1 ®A
and let g : A — A be the monomorphism such that g(0) =L and g(z) ==z
if z € (a). Since B is injective, there is exist a morphism f: A} — B such
that:

—

A
A — B
g =

A~ f

f(0) € Ds(B) since ~f(0) = f(-0) = f(0 —-1) = f(L) = 0, and
f(0) < 1 since f(0) < f(a) =14(a) =a < 1. Moreover f(0) € Idp(B) since
f(0)® f(0) = f(0®0) = f(0). Thus f(0) € Ds(B) N Idp(B) which is a
contadition by Proposition 4.2.2. Therefore Ds(B) = {1}. 0

Theorem 4.2.4 Let A be (L ®)-closed relative subvariety of Mgo. Then A
is injective in A iff A is injective in DF(A).

Proof: If A is injective in A then by Proposition 1.2.14 Ds(A) = {1}, thus
A € DF(A) and A is injective in A/Ds. Conversaly by Propositions 1.2.13
since DF(A) is a reflective subcategory of A and the reflector preserves
monomorphism. It is well-known that if B is a reflective subcategory of A
such that the reflector preserves monomorphisms then an injective object in
B is also injective in A (2, I.18]. Thus A is injective in DF(A) then A is
injective in A. ]
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4.3 Injectives in varieties of bounded hoops

Definition 4.3.1 A bounded hoop is a bounded pocrim (A, ®, —,0,1) such
that (A, ®, —, 1) is a hoop. It is clear that the class HOp of bounded hoops
is a variety contained in Mg whose homomorphism satisfying ¢(0) = 0.

Important subvarieties of HOq are BL, SBL, PL, H, BA.

Lemma 4.3.2 Let A be a bounded hoop, then the following assertions are
valid:

1. 20-z=0,
2. ~(~~z—>z)=0 ie -~z —2z€ Ds(A),

3. z=-z0 (~z—2x).

Proof: 1) z@®@-z =z0(zx — 0) = 2A0 = 0. 2) Is the same ar-
gument used in [13, Lemma 1.3]. 3) £ < —-z since z ® -z = 0, then
z=zA-z=20 (-~ — ). o

Lemma 4.3.3 Let A be a residuated lattice, then the following assertions
are equivalent

1. Ais a MV-algebra.

2. A is Girard-monoid which satisfy the equations t Ay =z 0 (z — y).

Proof:  See [27, IV Lemma 2.14] and (28, VI Lemma 2.3] o

Proposition 4.3.4 If A € HOq then DF(A) is e Girard-monoid.
Proof: Let A € A and [z] € A/Ds(A). By lemma 4.3.2 we have that
[z] = [+~2] © [-~z — z] and ~—~x — z € Ds(A), thus [--z — z] = [1] then
[#] = [~—z] i.e. A/Ds(A) is a Girard-monoid. o
Corollary 4.3.5 1. DF(HOq) = DF(BL) = MV.

2. DF(SBL) = DF(H) = DF(HL) = BA.
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Proof: DF(HOp) and DF(BL) is MV since their elements are Girard-
monoid satisfying the equation z Ay = 2 ®© (z — y) (Lemma 4.3.3). The
other equalities are immediate. (m]

Corollary 4.3.6 1. A is injective in HOq or BL iff A is a retract of a
power of the MV-algebra Rjg y).

2. A is injective in SBL, H or HL iff A is a complete boolean algebra.

Proof:  Since all these classes are (L @®)-closed, the results follows from
Theorem 1.2.14, Corolary 4.3.5 and the well-known characterization of in-
jective MV-algebras (see [25, Corollary 2.11]) and injective boolean algebras
(38]. ]

In the last corollary we characterize injectives in BL, SBL, H or HL by
arguments different of those used in section 3.8. We can give another proof
about the injectives in HOg using arguments of chapter 2 and chapter 3.
We need a previous result:

Definition 4.3.7 A Wajsberg hoop [5] is a hoop that satisfies the following
equation

(T) (z—y)—y=(@y—z)—>=

Each Wajsberg hoop is a lattice, in which the join operation is given by
tVy=(z—y)—y.

Proposition 4.3.8 A simple hoop with smallest element 0 is a simple MV-
algebra.

Proof: Let I be a simple hoop. Then by [5, Corollary 2.3] it is a totally
ordered Wajsberg hoop. If 0 is the smallest element in I then by the equation
(T),~z=(xz—>0)—>0=(0—>2z)—>z=1-— z =z Hence it is an MV-
algebra. Since the MV-congruences are in correspondence with implicative
filters, I is a simple MV-algebra. m]

Proposition 4.3.9 Let I,J be simple hoops with smallest elements 07,0,

respectively. If ¢ : I — J is a hoop homomorphism then ¢ is also an MV-
homomorphism, i.e., o(0r) = 0,.
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Proof:  Suppose that ¢(0;) = a. Since J is simple, there exists a natural
number n such that a® = 0,;. Thus we have, p(0r) = ¢(07) = ((0/))* =
a® = OJ. a

The following two results are obtained in the same way as Theorems 3.1.2
and 3.1.4 respectively.

Theorem 4.3.10 Let A be a subvariety of HOq. If A is a non-semisimple
absolute retract in A, then Ds(A) has a least element € i.e, Ds(A) = [¢) and
{0,¢,1} is a subalgebra of A isomorphic to the three element Heyting algebra
Hj. O

Theorem 4.3.11 Let A be a subvariety of HOg. If A has a non-trivial in-
jectives and contains the Heyting algebra Hy then injectives are semisimple.
O

Corollary 4.3.12 Injectives in HOp are exactly the retracts of powers of
the MV-algebra R ).

Proof: By Proposition 4.3.8, semisimple bounded hoops are MV-algebras.
Therefore Rjp; is the maximum simple algebra and it is self injective by
Proposition 4.3.9. Thus by Theorem 2.1.5 retracts of powers of the MV-
algebra R|o ;) are injectives in HOg. By Theorem 4.3.11 they are the only

injectives, because Hy lies in HOy. 0

Variety | Equations Injectives |

M Trivial

Mo M+0—-oz=1 Trivial

HO M+@z—-y)Oz=(y—2)Oy | Trivial

HO(k) | HO + z* = z*+1 Trivial

HOo HO+0—-z=1 Retracts of powers of Ryg )

BH HO+(z—-y)V(y—z)=1 Trivial

Table 4.1: Injectives in Pocrims and Hoops
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Chapter 5

The
Cantor-Bernstein-Schroder
Theorem

5.1 Basic notions

We recall from [36] other notions of lattice theory that will play an im-
portant role in what follows. Let L = (L,V,A) be a lattice. Given a,b,c
in L, we write: (a,b,¢)D iff (aVbd)Ac= (anc)V (bAc); (a,b,c)D* iff
(anb)ve=(aVc)A(bVe) and (a,b,¢)T iff (a,b,c)D, (a,b,c)D* hold for all
permutations of a,b,c. In this case we say that {a,b,c} is a distributive
triple. An element z of a lattice L is called a neutral element iff for all
elements a,b € L we have (a,b,z)T. An element z of a bounded lattice is
called a central element iff z is a neutral element having a complement,
which we shall denote by —z. The set of all central elements of L is called
the center of L and is denoted by Z(L). An interval [g,b] of a lattice A is
defined as the set {z € A:a <z < b}. A sequence (a)ne. of elements of
a lattice L with 0 is called orthogonal iff a, A a,, = 0 whenever m, n are
distinct elements. In particular, L is called orthogonally o-complete iff,
for all orthogonal sequences (an)new, Vaew @n exists . A subset S of L is
called a o-sublattice of L when it contains with any countable subset X of
S also AX and V X.
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Proposition 5.1.1 For each bounded lattice L, its center Z(L) is a boolean
sublattice of L. (|

Notation: The supremum (infimum) in Z(L) of a family (a;)ies of Z(L),
if it exists, will be denoted by U;ecra; (Miera;), to distinguish it from the
supremum V;¢; a; (infimum A;c;a; ) in L, which need not belong to Z(L).

Definition 5.1.2 A variety V of algebras is an L- variety [21] iff

(1) there are terms of the language of V defining on each A € V operations
V, A, 0,1 such that L(A) = (A,V,A,0,1) is a bounded lattice;

(2) for all A € V and for all z € Z(L(A)), the binary relation O, on
A defined by aO,b iff a ANz = bA 2 is a congruence on A, such that
A= A/O, x A/O,,.

For an algebra A in an L-variety, we will write simply Z(A) instead of
Z(L(A))-

Observe that each subvariety of an L-variety is an L-variety.

Definition 5.1.3 Let V be an L-variety of algebras of similarity type 7.
For all A €V, all z € Z(A) and all operation symbols f € T, we define
f(x1,...,xn) = 2 A f(z1,...,2,), where n is the arity of f. Moreover, we

define (0, z]4 = ([0, 2], (f:)ser).

Taking into account that for each f € 7 of arity n and elements z,,...,z, in
A, 2;0,(z;N2) fori=1...n; we have f(z1,...,2,)0, f(T1A2,...,Tn A 2),
ie, f(xr1Az,...,caAZ)Az = f(x1,...,Tn) Az. Now it is easy to prove the
following result:

Proposition 5.1.4 The correspondence /0O, — z A z defines an isomor-

phism from A/©, onto [0, z]a. Morever, the correspondence x — (z Az, a A
—z) defines an isomorphism from A onto A/8, x A/6_,,. o

5.2 Examples of L-varieties

Example 5.2.1 The variety Loy of bounded lattices and its subvarieties. In
particular, the subvarieties of modular and of distributive lattices.
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Example 5.2.2 A lattice with involution [34] is an algebra (L, V, A, ~) such
that (L,V,A) is a lattice and ~ is a unary operation on L that fulfils the
following conditions:

(1) ~~z =z and (ii) ~(zVy)=~xA~y.

The variety £; of bounded lattices with involution which satisfy the Kleene
equation (iii) A~z = (z A~x)A(yV ~y) is an L-variety. Indeed, suppose
L€ L;and let z € Z(L). It is clear that ©, is a lattice congruence. To see
that ©, also preserves the operation ~, observe first that ~z = —z. Indeed,
we have

~z=-zAl==2A(~2V~m2)=(n2A~2)V (m2A~2) £

(mzA~2Z)V (2V~2) =2V ~2.

Hence -z = =z A (2V~2) = -zA~z, and then 2V ~2z > 2V -z = 1.
Consequently, taking into account properties (i) and (ii), we can conclude
that ~z is the complement of z, i. e., ~z = =z. Suppose now that z A z =
y A z. Then ~z V -z = ~y V -z, which implies z Az = z A y. This shows
that ~ is preserved by O,.

Subvarieties of £; are the variety OL of ortholattices [4, 36], characterized
by the equation z A ~z = 0, and the variety K of Kleene algebras (2],
characterized by the distributive law. The intersection OLNK is the variety
B of boolean algebras. An important subvariety of OL is the variety OML
of orthomodular lattices [4, 36].

Example 5.2.3 The variety B,, of pseudocomplemented distributive lattices
[2]. We prove that the pseudo complement * has ©,-compatibility. Indeed,
let B€ B, z€ Z(B),and a,b€e B. IfaAz=bAz, then (aAz)V-z=
(bAz)V -z. Hence aV -z = bV -z because z € Z(A). Consequently,
(av-z)*=(bv-z)*and a* Az=b"A2z.

The variety of Stone algebras ST is the subvariety of B, characterized by
the equation (z Ay)* = z* v y* [2].

Example 5.2.4 Subvarieties of RL
Example 5.2.5 L,, the varieties of Lukasiewicz and of Post algebras of

order n > 2 [2], as well as the various types of Lukasiewicz - Moisil algebras
which are considered in [6].
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Example 5.2.6 PMYV, the variety of pseudo MV-algebras. A pseudo MV-
algebra [30] is an algebra (A, ®,~,~,0,1) of type (2,1, 1,0, 0) such that when
defining the derived operations by y©Oz := (z~®y™)~, zVy =26 (2~ 0Qy),
zAy:=z0 (z~ ®y) the following axioms are satisfied

. 2o (y®2z)=(z0y) ® 2,

z®0=0@0z=2 and z®l=1@z=1,

1¥=0 and 1~ =0,

(@-@y™ ) =@~ oy™),

T (r"0yY)=yS(y 0z)=(z0y7)Sy=(yoOz7 )BT,
zO(z"@y)=(z®y) Oy,

N o s W b

(z=)" ==

L(A) = (A, V,A,0,1) is a bounded distributive lattice (Corollary 1.14 (24]).
PMYV is categorically equivalent to lattice ordered (not necessarily abelian)
groups with a strong unit {17).

Proposition 5.2.7 [17] Let G be a lattice ordered group with a strong unit
u, we consider the interval [0, u] equipped with the following operations

2@y =(x+y)Au,
T =u-=z,

~

T~ =z —u,

then T'(G,u) = ([0,u],®,—,~,0,u) is a pseudo MV-algebra and for each
pseudo MV-algebra A, there exist a lattice ordered group G with a strong
unit u such that A = (G, u).

O

Lemma 5.2.8 PMYV is an L- variety.

Proof: Let A = I'(G,u) € PMYV. Through this proof, z will denote
an element of Z(A), and a,b elements of A. We have to prove that the
operations @, — and ~ are ©,-compatible. Note first that z A (a + b) <
(zAa)+ (zAb) ([4, Page 296, Ex.3]), thus zA (a® b) < (2 Aa) ® (2 Ab).
On the other hand, (zAa)® (zAb) =uA((zAa)+(zAb)) =uA(z+2)A
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(z+a)A(z+b)A(a+b) S (un(z+2)A(un(a+b))=(z®2)A(aDDb)
= 2z A (a ® b), because 2 ® z = z by [30, Lemma 3.2]). Hence zA (a ®b) =
(zAa)® (zAb), and @ is ©,-compatible. To prove that - is ©,-compatible,
note that if aAz = bAz then (aA2)” = (bAz)" ie,u—(aAz) =u—(bA2).
By [24, Proposition 1.16], we have u + (—aV —z) = u+ (-bV —z) and we
obtain (u —a)V(u—2)=(u—-b)V(u—-2)ie, aVz- =b"Vz . Thus
(a=Vz~)Az = (b-Vz~)Az. Since L(A) is distributive and by [30, Corollary
3.3] 2~ is the complement of z, and 272~ , we infer that a™ Az = b~ A z.
Similarly we verify that ~ has ©, — compatibility. m]

5.3 The CBS property

The aim of this section is to give a formulation of the CBS theorem for
algebras in L-varieties. We begin by proving some technical results.

Proposition 5.3.1 Let L be a bounded lattice. Then following assertions
hold for all z € Z(L):

1. Z([0,2)) = Z(L)n [0, 2.

2. If x € Z([0,2]) then the complement of z relative to [0,2] is -,z =
ZAN\ I

Proof:  Let z € Z(|[0, z]).We first prove that, if = is a neutral element in
[0, 2], then z is a neutral element in L. Let a,b € L.

a (a,b,z)D: zA(aVb)=(zA(aVbd)A(zV-z)=(zA(aVbd)AZ)V
(@A(aVO)A-2z)=(xA(aVb)AZ)VO=zA((aNz)V(bAZ)) =
(xA(an2))V(zA(bA2)) = (zAa)V (zAD). By the same argument
it is possible to check (b,a,z)D.

b (z,b,a)D: an(zVd) = (aA(zVD))A(zV-z) = (aA(zVD)AZ)V(aA(zV
bYA-z) = ((aA2)A((zVO)A2))V(aA((zA-2)V (bA-2Z))) = ((anz) A
((zA2)V(bAZ)))V(aA(0V(bA-2))) = ((aA2)A(zV(bAZ)))V(aAb-z) =
((anzAZ)V(aNbAZ))V(aAb-2) = (aAz)V ((aADAZ)V (aAb-2Z)) =
(anz)V((and)V(zV-z)) = (aAz)V (aAb). By the same argument
it is possible to check (b, z,a)D, (z,a,b)D and (a,z,b)D.

¢ (a,b,z)D*:xzV (aAb)=(xzV(aAb)A(zV-z)=((zV(aAb)AZ)V
(zv(and)A-2z)=((zA2)V(aAbAZ))V((xA-2)V(aANbA-Z)) =
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(zV(aAbAZ))V(0V(aAbA-Z)) = (zV((aA2)A(bAZ)))V(aAbA-Z) =
((zV(@Az)IA(zV(BA2))V(eAbA-zZ)=((zVa)A(zV2Z)A(zV
b)A(zV2)V(eAbA-z)=((zVa)A(zVb)AZ)V(aANbA-zZ) =
((xvVa)A(zVbd)V(aAbA-2))A(zV(aAbA-2)) = (zVa)A(zVD)A
(zV(aAb)=(xVa)A(zVb)A(zVa)A(zVd)=(zVa)A(zVb).
By the same argument it is possible to check that (b,a,z)D".

(z,b,a)D*: aV(zAb)=(aV(zAb)A(zV-2)=((aV(zAb)A2)V
((av(zAb)A-2z)=((aNz)V(zAbAZ))V((aA-2)V(ZAbDA-2)) =
((anz)Vz)A((anz)V(bA2Z)V((eaA-2)V0) = ((aVz)A(aV
b)Az)V(an-z)=(((avz)A(aVbd)V(aA-2))A(zV (aA-2))=
(avz)A(aVvb)A(zVa)=(aVzZ)A(aVd). By the same argument it
is possible to check (b, z,a)D*, (z,a,b)D* and (a,z,b)D*.

Thus z is neutral in L. We proceed now to prove that if z is complemented
in [0, z] then z is also complemented in L. In fact, let =,z be the complement
of z in [0, z] and define 21 by z; = —,zV-z. Hence zVz) = 2V (~,zV-2) =
zV -z = 1 and since z is a neutral element, £ A z; = 0. Thus z; is the
complement of 2 in L. From the two preceding results, it follows that
z € Z(L). On the other hand, it is easy to verify that if z is a neutral
element in L then z is a neutral element in [0,z]. Moreover, if = has a
complement -z in L, then =,z = -z A z is the complement of z in [0, z].
Therefore if z € [0, z] is a central element in the lattice L, then z is a central
element in the lattice [0, z|. o

Proposition 5.3.2 Let V be an L-variety, A,B € V, a:A — B an isomor-
phism. Then

(1) for all z € Z(A), a(z) € Z(B), and the restriction of a to Z(A) is a
boolean algebra isomorphism from Z(A) onto Z(B);

(2) for all z € Z(A), the restriction of a to [0, z]4 is an isomorphism from
[0,2]4 onto [0,a(2)]B. O

Definition 5.3.3 Let V be an L-variety. We say that A € V possesses
the CBS property iff the following holds: Given B € V and b € Z(B)
such that there is a € Z(A) with A = [0,b]p and B = [0, a] 4, it follows that
A= B.

Proposition 5.3.4 Let V be an L-variety. The following conditions are
equivalent for each A € V:

52



(1) A possesses the CBS property.

(2) For allbe€ Z(A), if A=(0,b]a, then for all z € Z(A) such that z > b
we have A = [0, 2] 4.

Proof: ~ We suppose that A possesses the CBS property. Let z,b € Z(A)
be such that z > b and A4 2 [0,b]4. We denote by B the V-algebra [0, 2] 4.
By Proposition 5.3.1, b € Z(B). Now we have A = [0,b]p and B = [0, 2]4
(for this we use the identity idg.}), and we conclude that A = [0,2]4. For
the converse, suppose that B € V, a € Z(A), b € Z(B) and that there are
morphisms a:A — [0,b]p and B:B — [0,a]4. If z = B(b), then A 2 [0, 2]4
and a > z. Now by the hypothesis A = [0, a]4. This proves that A = B. D

Let V be an L-variety, A € V, b € Z(A) and let a:A — [0,bj4 be an
isomorphism. If we consider z € Z(A) such that z > b and the V-algebra
B = [0,2]4, then there is an isomorphism 3:B — [0,a]4 (for instance we
can take 8 = id[O,Z]). We define recursively two sequences, (an)new in A,
(br)new in B, called respectively the A-sequence and the B-sequence as
follows:

ag=14 bo=1p==z2
a1=p(z)=a b1 = afag) = b
ant1 = B(bn) bnt+1 = a(an)

Then the sequence

(ag N\ —ag, a4 A —as, . . ) = (agn A _'a2n+l)n€w,n21

is called a CBS sequence. Fixing b,z as above, then for each pair of
isomorphisms a:4 — [0,b]g, 5:B — [0, a]a we have a CBS sequence, which
we will denote by (b, z, a, 8).

Proposition 5.3.5 Let V be an L-variety, A € V, and let (b,2,a,3) be a
CBS sequence. Then

(1) the A, B-sequences are strictly decreasing in Z(A),

(2) (b,z,a,B) is an orthogonal sequence in Z(A), and
Bafazn A ~a2n41) = G2n42 A —G2n43 for n > 0.
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Proof: By Proposition 5.3.2 it is easy to see that a; = a, by = b, and
that all an, b, are central elements. Hence (b,z,a, ) is in Z(A). By the
injectivity of a and B, (@p)new, (bn)new are strictly decreasing. Let m,n € w
such that m < n. Since (ap)ne, is strictly decreasing, (azm A —a2m+1) A
(agn A -G2n41) < (@2m A —02m41) A (@2m41 A ma2n41) = 0. Finally, Ba(agn A
—agn+1) = Blafazn) A a(azn+1)) = Bla(azn) A b A ~afaznt1)) = Blban+1 A
—bon+2) = B(b2n+1) A a A —=B(bans2) = G2ns2 A mazn43. o

Definition 5.3.6 Let V be an L-variety and A € V. Then A is called
CBS complete iff for all b € Z(A) such that A =y [0,b]4 and for all
z € Z(A) such that z > b there erists a CBS sequence (b, z,a, 3) which has
the (boolean) supremum Upn>1(a2n A —G2n41).

Theorem 5.3.7 Let V be an L-variety. Then the following conditions are
equivalent for each A € V:

(1) A is CBS complete.

(2) A possesses the CBS property.

Proof:  Suppose that A is CBS complete. Let z,b € Z(A) be such that
z>b, A=[0,b]4 and B = [0,2]4. We want to prove that A = [0,2]4 = B.
By the hypothesis there are isomorphisms, a:4 — (0,b]g, 8:B — [0,a]4
defining A, B-sequences

ag =14 bho=1g=2z
a) =a bl =
ny1 = ,B(bn) bn+l = a(an)

and the CBS sequence (b, z, a, 8) = (a2nAa2n+1)new,n>1 With y = Up>1(agnA
—aon+1)- Let x = yV —a. By Proposition 5.1.4 we have

A=[0,-z] x [0, 7). (5.1)
Since y € Z([0, a]) by Proposition 5.3.1, we have
[0,a]4 = [0, ay] x [0, 9] = [0,a A —y] x [0, 4]. (5.2)
But -2 = a A -y, hence

[0,-z] = [0,a A —y]. (5.3)
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By Proposition 5.3.2, [0, z] = [0, Ba(z)] = [0, Ba(Unco, @20 A a2n+1)] =
[0,Uneo Ba(agn A =a2q41)), and by Proposition 5.3.5 , fa(azn A mazn+1) =
(a2n4+2 A ~a2n4+3). Thus we have

[0,:1,‘] = [0’ UﬂZI(G'?n A _'a2n+l)] = [07 y]' (5‘4)

¢From (5.1),(5.2),(5.3) and (5.4) we obtain that A = [0, a], hence A =y B.

Suppose now that A possesses the CBS property. Let b € Z(A) be
such that we can find an isomorphism a:A — [0,b]4 and a z € Z(A) such
that z > b. By hypothesis there is an isomorphim £:[0,z]4 — A. The
corresponding A, [0, z] 4-sequences have the form

ag =14 bo= 2

a; = B(bo) =1 by = a(ag) = 2

az = B(b1) = B(z) b =a(a)) =z

a3 = B(b2) = B(z) b3 = a(az) = af(z)

It is easy to show (by induction) that ag, = agn4) for all n > 1 . Thus
we have (b, z,a, 8) = (0,0,0,...) and the boolean supremum is 0. Therefore
there exists at least one CBS sequence associated with z > b admitting the
boolean supremum. Therefore A is CBS complete. m]

Corollary 5.3.8 Let V be an L-variety and A € V. If Z(A) is an orthogo-
nally o-complete lattice, then A possesses the CBS property. m]

Corollary 5.3.9 (Sikorski) The o-complete Boolean algebras possesses the
CBS property. m]

Corollary 5.3.10 Let A be a CBS complete algebra in an L-variety V.
Then A= A? iff A= A™ for alln > 2.

Proof: 1t is an easy adaptation of the proof of Proposition 3.2 in [16]. O

Remark 5.3.11 It is worth noting that the o-completeness condition for
Boolean algebras is not necessary for the CBS property, as is shown by the
Boolean algebra By of finite and cofinite subsets of N. By is not even
orthogonally o-complete. Indeed, {2n},en is an orthogonal sequence in
By, but \/,en{2n} is not in By. By cardinality arguments it is very easy
to see that By = [0, X]p, iff X is a cofinite set. Thus By possesses the
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CBS Property. On the other hand, there are Boolean algebras which do
not possesses the CBS property. For instance, Hanf constructed a Boolean
algebra B such that B = B?® but B ¥ B2 [32, §6.2]. This means that
B =(0,0,0),(0,0,1)]gs but B % [(0,0,0),(0,1,1)]gs.

5.4 Centers and o-completeness

In general, the o-completeness of an algebra A in an L-variety does not imply
that Z(A) is an orthogonally o-complete lattice, as the following example
shows:

Example 5.4.1 Let By be as in Remark 5.3.11 and let Hy be the Heyt-
ing algebra of all ideals of By. We observe that Hy is a complete Heyting
algebra such that Z(Hy), which is formed by the principal ideals generated
by the elements of By, is not orthogonally o-complete. Indeed, the princi-
pal ideals ({(2n))nen form an orthogonal sequence in Z(Hy ), but obviously
this sequence does not have a central supremum. It is worth noting that
Hx possesses the CBS property, as can be shown by cardinality arguments
similar to those used in Remark 5.3.11.

In what follows we give examples of L-varieties V with the property that
o-completeness conditions on the algebras in V guarantee the corresponding
o-completeness of their centers, and then, in the light of Corollary 5.3.8, the
CBS property of these algebras.

5.4.1 Orthomodular lattices

Proposition 5.4.2 Let L be a o-complete orthomodular lattice and (an)new
a sequence in Z(L)Then V, ¢, an € Z(L), i.e., | lpey, @n = Vpew n-

Proof:  The proof is an easy adaptation of the proof of (5.14) and (29.16)
in [36]. 0

5.4.2 Stone algebras

Proposition 5.4.3 Let S be a Stone algebra and (a;)icsr a family of central
elements such that there exist \;c;a; and \/;cya;. Then Nicra; = Ajcrai
(i.e. Nierai € Z(S)) and Uicra; = -~V ;cra;. Thus if S is a o-complete,
(orthogonally o-complete) Stone algebra then Z(S) is a o-complete (orthog-
onally o-complete) lattice.
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Proof: It is well-known that Z(S) = {z € S : -z = x} (see [2]). Let
a = Nja;. Foralli el if a < a; then -—a < -—a; = a;. Thus
—=a < Ajer @i = a, and since a < —-a, we have a € Z(S). From the basic
properties of the pseudocomplement it follows that =—\V/;c;a; € Z(S) and
it is easy to see that ——\/;c; a; is the least boolean upper bound of (a;)ie;-
(m]

5.4.3 BL-algebras

Lemma 5.4.4 [14] For each A€ BL, let Idp(A) = {zr € A:z O x =x} be
the set of all idempotent elements of A. Idp(A) is a Heyting algebra, Z(A)
is a subalgebra of Idp(A) and z € Idp(A) iff zQa=2Aa forallae A. O

Lemma 5.4.5 Let B be a BL-algebra and (a;)ic; a sequence in B such that
Viey @i exists. Then we have

1. a®Vierai = Vier(a®ai), (Vierai) = b= Ajer(ai = b),
aAVierai = Vigr(an a;) and "(Viel a;) = Nier —ai;

2. if (a;)ier is a family in Idp(B) then \/;c; a; € Idp(B).

Proof:  Item 1) follows from basic the properties of residuated lattices [27].
To prove 2), let @ = V;¢;a;. By item 1), we have a ©a = a © V¢ a; =
Vier(@®ai) = Vig(aAai) = Vigrai = a. =

Lemma 5.4.6 [14] Let B be a BL-algebra. The following conditions are
equivalent:

1. z € Z(B),
2. zvVz=1],

3. there is v in Idp(b) such that z = —w. D

Proposition 5.4.7 Let B be a BL-algebra and (a;)ic; a sequence in Z(B)
such that there exist \/;cya; and A;cja;. Then Uicra; = == \V;cra; and
Micrai = Ny ai.

Proof:  If (ai)ner is a sequence in Z(B) with a = A;¢; a;, by Lemma 5.4.6
it suffices to show that aV—-a = 1. According to Lemma 5.4.5 we have aV —-a
= (Nigrai) V-a = ~(Vper —ai) V—a = =((Vigs ~ai) Aa) = = V;gr(-ai Na)
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= 1, therefore M;cra; = A;cya; . According to Lemmas 5.4.6.2, 5.4.5.3, we
have ==V, a; € Z(B) and =~V a; is a boolean upper bound of (a;)ie;.
Moreover, if b is a boolean upper bound of (a;)ics then V;c;a; < b hence,
- ViGI a; < b, thus Ujcra; = -~ Viel a;. (]

Corollary 5.4.8 If B is a o-complete (orthogonally o-complete) BL-algebra
then Z(B) is a o-complete (orthogonally o-complete) lattice. m]

Proposition 5.4.9 If B is a o-complete (orthogonally o-complete) PL-
algebra or MV-algebra then Z(B) is a o-sublattice (orthogonal o-sublattice)
of L(B).

Proof: If B is a PL-algebra then according to Proposition 3.1 in [11],
Idp(B) = Z(B). Thus by Lemma 5.4.5.2, Uncu@n = Ve, @n for (an)neo in
Z(B). If B is an MV-algebra then using Lemma 5.4.5.2 and -~z = = we

have the same result.
O

5.4.4 Lukasiewicz and Post algebras of order n

Proposition 5.4.10 (9, Lemma 3.1] Let A be a Lukasiewicz algebra of order
n> 2. If A is o-complete, then Z(A) is a o-sublattice of L(A). o

5.4.5 Pseudo MV-algebra

Let A be a pseudo MV-algebra. If A is o-complete, then A is an MV-algebra
(see [17, Theorem 4.2] and [18, Proposition 2.8]). Thus by Proposition 5.4.7,
Z(A) is a o-sublattice of L(A) and if A is orthogonally o-complete then Z(A)
is an orthogonally o-complete lattice (see Proposition 3.4 in (30]).

5.5 CBS theorem and absolute retracts

Theorem 5.5.1 Let A be absolute retract in an L-variety V. Then Z(A)
is a complete lattice.

Proof: Let X be down directed subset of Z(A). Suppose that X does not
admit minimum element and consider the ultrapower AX /U as in Remark
2.2.3. It is not very hard to see that the U{-equivalence class [1x] is a neutral
element in AX /U, having a complement —[1x] given by the U-equivalence
class of the function X — A such that z +— —z. Thus [1x] € Z(AX /U). The
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same arguments used in Theorem 2.2.4 give that A X € Z(A). Therefore
we have proved that the infimum in A of a down directed subsets of Z(A)
belongs to Z(A). From this the result follows by a standard argument. O

Corollary 5.5.2 FEach absolute retract in an L-variety satisfies the CBS
property.

Proof: It follows by Theorem 5.5.1 and Corollary 5.3.8. m]

5.6 CBS-type theorem for posets

The category of posets and monotonic functions will be denoted by Pos.
Let A be a poset and X C A. X is decreasing (increasing) iff for all
r € X, ifa<z(a>x),then a € X. The set of all decreasing sets in A
is denoted by O(A), and it is well-known that O(A) has the structure of a
complete Heyting algebra. Let L be a complete lattice and let kK € L. Then
k is said to be compact iff for every subset Sof L, if k <\/ Sthen k< VYT
for some finite subset T of S. It is easy to show that (a} is compact in O(A).
Moreover, X € O(A) is compact iff there exist a;,...,a, in A such that
X = (@]U...U(an). It is easy to show that Z(O(A)) = {B € O(A) :
B is an increasing set} and that Z(O(A)) is a complete lattice.

Lemma 5.6.1 Let A, B be posets. If O(A) and O(B) are isomorphic then
A and B are isomorphic. (]

Theorem 5.6.2 Let A, B be posets and let X C A and Y C B be simulta-
neously increasing and decreasing sets. If there are isomorphisms c:A —»'Y
and B3:B — X, then A 2p,s B.

Proof: We first prove that O(A) =p,s [0,Y]. For all S € O(A) we
have S = U,es(a] and (a(a)] C Y, since Y is decreasing. Consequently,
if :0(A) — [0,Y] is such that S = U,cs(a) — Uqses(a(a)], then it is easy
to show that 1) is an order isomorphism under C. Analogously, we can ob-
tain that O(B) =p,s [0, X]. But these Pos-isomorphisms are also Heyting
isomorphisms. Then by Theorem 5.3.7, O(A) = O(B) as Heyting algebras.
Finally, in view of Lemma 5.6.1 we have A =p,s B. 0
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