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Abstract

Substitution spans many areas in programming language theory. It plays a central role in the
lambda, calculus (hence functional programming), in first and higher-order unification (hence logic
programming), in parameter passing methods (hence imperative programming), etc. Recently re-
searchers became interested in shifting from the usual atomic, coarse grained view of substitution
to a more refined, fine grained one. Substitution is promoted from the metalevel (our language of
discourse) to the object-level (our language of study). This is interesting when studying the opera-
tional interpretation of the formalisms in question. Calculi of object-level or explicit substitution is
the concern of this thesis. The following three study axes are developed.

First we consider perpetual rewrite strategies in lambda calculi of explicit substitutions. These
are rewrite strategies that preserve the possibility of infinite derivations. Also, we study how to
characterize inductively the set of terms that do not possess infinite derivations (the strongly nor-
malizing terms). Polymorphic lambda calculus with explicit substitutions shall receive our attention
too, including properties such as subject reduction and strong normalization.

Secondly, we put the ¢-calculus of M.Abadi and L.Cardelli augmented with explicit substitutions
under the microscope. This calculus is at the level of the lambda calculus but is based on objects
instead of functions. Properties such as simulation of the lambda calculus, confluence and preserva-
tion of strong normalization (terms which are strongly normalizing in ¢ are also strongly normalizing
in ¢ with explicit substitutions) are considered.

Finally, we address the task of reducing higher-order rewriting to first-order rewriting. We fix
a variant of Z.Khasidashvili’s ERS (dubbed SERS4) as our departing formalism and provide a
conversion procedure to encode any ERS as a first-order rewrite system in which a rewrite step
takes place modulo an equational theory determined by a calculus of explicit substitutions. The
latter is achieved with the aid of a macro-based presentation of calculi of explicit substitutions, thus
parametrizing the conversion procedure over any calculus of explicit substitutions in compliance
with the aforementioned presentation. The conversion procedure is in charge of encoding higher-
order pattern matching and substitution in the first-order framework. Properties relating the rewrite
relation in the higher-order framework and that of the resulting first-order system are studied in
detail. We then identify a class of SERSg, for which the resulting first-order system does not
require the equational theory to implement higher-order pattern matching, thus contenting itself
with syntactic matching. It is argued that this class of systems is appropriate for transferring results
from the first-order framework to the higher-order one. As a non-trivial example we study the
transfer of the (strong) standardization theorem.
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Resumen

La operacién de sustitucién constituye un engranaje bdsico en los fundamentos de la teoria de
lenguajes de programacién. Juega un rol central en el lambda célculo (por ende, en lenguajes de
programacién funcional), en unificacén de primer orden y de orden superior (por ende, en lenguajes
de programacién basados en el paradigma légico), en modalidades de pasaje de pardmetros (por
ende, en lenguajes de programacioén imperativos), etc. Recientemente, investigadores en informética
se han interesado en el pasaje de la nocién usual de la sustitucién, atémica y de gruesa granularidad,
hacia una nocién maés refinada, de mis fina granularidad. La nocién de sustitucién es transportada
del metalenguaje (nuestro lenguaje de discurso) al lenguaje objeto (nuestro lenguaje de estudio).
Como consecuencia de ello se obtienen los llamados cdlculos de sustituciones explicitas. Estos son
de sumo interés a la hora de estudiar la interpretacién operacional de los formalismos en cuestién y
constituyen los objetos de interés de esta tesis. Se desarrollan los siguientes tres ejes de estudio:

Primero, se consideran estrategias de reescritura perpetuas en lambda célculos con sustituciones
explicitas. Estas son estrategias de reescritura que preservan la posibilidad de reducciones infinitas.
Se propone una caracterizacién inductiva del conjunto de términos que no poseen reducciones in-
finitas (los llamados fuertemente normalizantes). Un lambda célculo polimérfico con sustituciones
explicitas también es analizado, incluyendo propiedades tales como subject reduction y normalizacién
fuerte.

Segundo, colocamos el ¢-cilculo de M. Abadi and L. Cardelli enriquecido con sustituciones
explicitas bajo el microscopio. Este calculo se encuentra en un nivel semejante de abstraccién
al lambda cdlculo pero se basa en objetos en lugar de funciones. Propiedades tales como simulacién
del lambda célculo, confiuencia y preservacién de la normalizacién fuerte (aquellos términos que son
fuertemente normalizantes en ¢ también lo son en ¢ con sustituciones explicitas) son consideradas.

Finalmente, dirigimos nuestra atencién a la tarea de relacionar la reescritura de orden superior con
aquella de primer orden. Fijamos una variante de los ERS (apodados SERSy;) de Z. Khasidashvili
como nuestro formalismo de orden superior de partida y definimos un proceso de conversién que
permite codificar cualquier SERSy; como un sistema de reescritura de primer orden. En este tiltimo,
cada paso de reescritura se lleva a cabo médulo una teoria ecuacional determinada por un célculo de
sustituciones explicitas. La misma se formula de manera genérica a través de una presentacién de
célculos de sustituciones explicitas basada en macros y axiomas sobre estas macros, parametrizando
de esta manera al procedimiento de conversién sobre cualquier cédlculo de sustituciones explicitas que
obedece la presentacién basada en macros. El procedimiento de conversién se encarga de codificar
pattern matching de orden superior y sustitucion en el entorno de reescritura de primer orden.
Asimismo, propiedades que relacionan la nocién de reescritura en el orden superior con aquella de
primer orden son analizadas en detalle. Se identifica una clase de SERSg4p para los cuales el sistema
de primer orden resultante de su conversién no requiere una teoria ecuacional para implementar
pattern matching de orden superior, bastando para ello matching sintéctico. También se argumenta
que esta clase de sistemas de orden superior es apropiada para transferir resultados del entorno
de reescritura de orden superior a aquella de primer orden. A modo de ejemplo no-trivial de ello,
estudiamos la transferencia del teorema de standarizacién (fuerte).
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Résume étendu

Le calcul peut étre considéré comme la tiche consistant a la transformation d’un objet, la donnée, en un objet
nouveau, le résultat, en utilisant certaines régles de transformation. Un systéme de réécriture de termes [Klo92]
est un modeéle calculatoire dans le sens ol les objets sont spécifiés comme des séquences de symboles et les régles
de transformations comme des ensembles de paires d’objets capturés par un schéma ou régle de réécriture. Un
premier exemple de systéme de réécriture de termes est le A-calculus [Chu4l], créé par A. Church dans les
années 1930. Les objets s’appellent A-termes et représentent des fonctions ; la seule régle de transformation
est la régle B qui code le processus d’application d’une fonction a son argument. Par exemple, le terme “Az.z"
représente la fonction identité, ’occurrence la plus & gauche de “z” joue le méme réle que le parameétre formel
d’une fonction ou procédure dans un langage impératif de programmation (tel que Pascal).

Le A-terme “(Mz.z) 4” est un exemple d’application d’une fonction a son argument, il représente la fonction
identité appliquée & la représentation de ’entier 4. On remarque que I’application est dénotée par la juxtaposition
des termes. On peut alors calculer en appliquant effectivement la fonction a ’argument gréace a la régle 8 :

(M. M)N -5 M{z < N}

ol M et N dénotent des A-termes arbitraires et = une variable arbitraire. L’expression (Az.M)N est aussi
nommée le membre gauche de la régle et abrégée LHS. Les symboles e{e «— o}! qui apparait dans le membre
droit (abrégé désormais RHS) de la régle représente I'opération de substitution dans le méta-langage : M{z —
N} représente donc le A-terme qui résulte du remplacement des occurrences de la variable z (le paramétre
formel) dans M par N (le paramétre actuel). En réalité, seules les occurrences dites libres de la variable z sont
remplacées, mais nous reviendrons sur les détails techniques plus tard. Un A-terme de la forme (Az.M)N est
appelé un B-radical. L’exemple suivante illustre un calcul en un seul pas de la régle 8 :

(Mz.z)d —p z{z—4} =4

On dit que le A-terme (Az.z)4 se f-réduit au terme 4. Un A-terme sans S-radical est une S-forme normale ou
plus simplement forme normale. Le A-terme 4 est en particulier une forme normale.

Il est possible de montrer que le A-calculus avec la seule régle 8 peut représenter ou coder toutes les fonctions
calculables (plus formellement les fonctions partielles récursives). Ce fait de méme que sa formulation simple
et concise justifie 'intérét de la communauté informatique pour ce formalisme. Il est cependant difficile de
concevoir des programmes concrets écrits sous forme de A-termes. Les langages de programmation fonctionnels
(comme, par exemple, ML [MTH90], Haskell [HW88] et CAML [WL93]) sont essentiellement des représentations
utilisables en pratique du A-calculus. Méme s’ils ont considérablement évolué ces cinq derniéres années, ils
partagent tous comme fondement théorique le A-calculus. En fait, pour tous ces langages, le A-calculus fournit
un scénario de preuve convenable pour I’étude de nouvelles constructions de langages.

Certaines questions auparavant négligées sont désormais étudiées par les informaticiens car le A-calculus est
considéré comme la base de certains langages de programmation :

e Le processus de calcul s’arréte-t-il & partir d’un A-terme quelconque ?

¢ Etant donné un A-terme avec au moins deux $-radicaux, ceux-ci peuvent-ils étre réduits dans un ordre
quelconque ?

e Peut-on considérer le nombre de pas de f-réduction cornme une bonne mesurede la consommation des
ressources de calcul ? Par exemple, les pas suivants de F-réduction ont-ils le méme coiit ?

(Mzz)d —p z{z—4}=4
(M.zz)d —p (zz){z—4}=44

10On utilisera @ pour dénoter un trou qui sera remplacé dans la suite par des expressions.
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Le premier de ces points, la “terminaison” ou “normalisation forte’, a été étudiée en profondeur. Le A-
calculus, tel que nous I’avons présenté, ne jouit pas de la propriété de terminaison. L’exemple le plus simple?
pour illustrer ceci est le A-terme AA ou A = \z.zz.

(Mz.zz)A —p (zx){T — A} = AA -5 AA —5 . ..
Cependant, pour des ensembles restreints de termes® on a montré que la propriété de terminaison est vraie.

Revenons au deuxiéme point. Le théoréme de Church-Rosser, peut-étre le premier théoréme syntaxique
important développé pour le A-calcul, dit que si deux A-termes M; et M; sont obtenus & partir d’un autre A-
terme M comme résultats de F-réductions, alors il existe un autre A-terme M3 tel que M; et M, se f-réduisent
(en un nombre convenable de pas) & M3. Ce fait est illustré ainsi :

MI’/ﬂMxMz
N

ou la fleche —»5 dénote zéro ou plusieurs pas de S-réduction (ce qu’on appelle aussi B-dérivation). Par
conséquent, si ’on déduit différents radicaux dans M on trouve toujours un réduit commun (M3 dans la figure).
Une conséquence importante de ce fait est que si un A-terme posséde une forme normale, alors elle est unique.

Quant au troisieéme point, celui de I’analyse raffinée des propriétés des B-dérivations (que nous appellerons
“techniques d’implantation”), comme par exemple les techniques de partage d’information sur les graphes et
les machines abstraites. Une idée relativernent récente est de donner a ’opération de substitution dans le
méta-langage (le langage du discours) le droit de citoyenneté dans le langage-objet (le langage d’étude) en
Pintroduisant comme un nouvel opérateur. Ceci entraine 1’addition de nouvelles régles de réécriture, donnant
lieu au calcul dit calcul de substitutions qui permet de décrire son mécanisme. De cette maniére, la f-régle doit
étre modifiée en remplagant la substitution du méta-langage par le nouvel opérateur de substitution explicite qui
le spécifie. Comme résultat de cette transformation on obtient un A-calculus de substitutions explicites. Avant
de présenter un exemple, nous étudierons I'opération de substitution dans le méta-langage (celle qui est utilisée
dans le membre droit de la régle 8) sur laquelle sont fondés les calculs de substitutions explicites. Comme il
a été dit plus haut, M{z — N} représente le A-terme obtenu en remplagant les occurrences de la variable z
(le parametre formel) dans M par N (le parametre actuel). Cette notion est définie en considérant toutes les
formes possibles de M, c’est-a-dire : une variable, une abstraction (un terme de la forme M\y.P, ou P est un
A-terme et y une variable) ou bien une application d’un A-terme a un autre A-terme :

PQ{{z —~ N} ¥ Pl{z—N}Q{z ~ N}

OyP)z = N} = M.(P{z N} z#y
z{z — N} N
y{z — N} =y sy

La premiére clause peut étre lue ainsi : le résultat de la substitution des occurrences de = par N dans PQ est
’application des termes résultant de la substitution des occurrences de z par N dans P et Q. Nous pouvons
supposer qu’il n’y a pas de terme de la forme Az.M’ dans M, grice a la possibilité de renommer les variables
dites liées, un rapport détaillé de ce fait se trouve au chapitre 2 de la thése. La deuxiéme clause peut s’expliquer
d’une maniére semblable et les deux derniéres sont évidentes. Par conséquent, {z « N} traverse M jusq’aux
variables et finalement les variables sont remplacées par une copie de N ou restent inaltérées en méme temps
que la copie de N est rejetée. Si les clauses de cette définition sont orientées de gauche & droite et les accolades
remplacées par des crochets, en internalisant ainsi ’opérateur de substitution du méta-langage comme un nouvel

2En effet, on a montré que AA est le \-terme le plus petit (ayant le moins de symboles) qui admet une B-réduction in-

finie [RSSX99, Omega théoréme de Sgrensen).
3Par exemple, les termes simplement typés ou les termes avec des types polymorphes |[GLT89).



opérateur dans le langage-objet, nous obtenons le Ax-calcul [Ros92, Blo97] :

(Az.M)N —Beta M{z:=N)

(PQ)(:=N) —upp P(z:=N)Q(z:=N)
(\y.P)(z:=N) —Lem My.(P(z:=N)) z#y
z{z := N) —var N

y(z :=N) —Varf Y T#y

Maintenant un terme est soit une variable, soit une application d’un terme & un autre terme (représenté, comme
auparavant, par juxtaposition), soit une abstraction, soit un terme de la forme P(z := Q) appelé une “cléture”.
De la méme maniére que la portée de = (terme dans lequel les occurrences de z sont liées) dans Az.M est M, le
terme P est la portée de z dans P(z := Q). Alors le RHS de la régle Beta est un terme nouveau dans le calcul
et peut étre considéré comme une substitution en attente qui devra étre exécutée. Le calcul de substitutions de
Ax est obtenu & partir de Ax en enlevant la Beta-régle et sera dénoté par x. Chaque pas de fB-réduction peut
étre simulé dans le Ax-calcul. Considérons, par exemple, le premier pas de la f-dérivation décrite plus haut. I1
peut étre simulé dans Ax comme suit :

(Az.2Z)A —Beta (22)(T := A) = app (T := A)z(T 1= A) D var Az(T := A) = ver AA

L’un des bénéfices des calculs de substitutions explicites est que la substitution peut maintenant étre calculée
d’une fagon contrdlée. Par exemple, certaines substitutions en attente peuvent ne pas étre exécutées, comme
’illustre ’exemple suivant :

(My-(Az.2) ()N —peta ((Az.2)(yy))(y := N)
— App (’\z'z)(y = N)(yy)(y = N)
—Lem (Az.2(y = N))(yy){y := N)
—Varf (z\:z:.z)(yy) (y = N)
—Beta 2(T:= (yy)(y := N))
—Verf 2

Il faut remarquer qu’il n’a pas été nécessaire de calculer la substitution (yy)(y := N), en réduisant ainsi le temps
de calcul et la duplication superflue du terme N. Les calculs de substitutions explicites seront le principal sujet
d’étude de cette thése.

En présence d’un calcul de substitutions explicites pour le A-calculus il est naturel de se demander si les
propriétés dynamiques (celles du A-calculus) sont toujours valides. Nous énumérons trois exemples :

e Simulation : Si un A-terme M se B-réduit a N alors M devrait aussi se réduire & N dans le calcul de
substitutions explicites. Ceci est cohérent avec notre vue des calculs de substitutions explicites en tant
qu’analyse plus précise de la G-réduction, et par la suite du processus de substitution.

e Church-Rosser : Le A-calculus jouit de la propriété de Church-Rosser. Son calcul de substitutions explicites
devrait en jouir aussi. Si I’on interpréte le “sens” d’un terme comme sa forme normale (dans notre cadre
simplifié des termes sans forme normales n’ayant pas de “sens”), alors I’absence de cette propriété pourrait
rendre quelques termes “ambigus” (termes avec plus d’une forme normale). Ceci est bien sfir indésirable
puisque, comme nous I’avons déja remarque, il n’y a pas de A-termes ambigus dans le A-calculus.

e Préservation de la Normalisation Forte (PSN) : Si un A-terme n’admet pas de dérivations infinies dans le
A-calculus, alors quand on réduit ce méme terme dans le calcul de substitutions explicites on ne devrait pas
engendrer une dérivation infinie non plus. Le processus d’augmenter le A-calculus avec des substitutions
explicites peut étre vu comme un processus d’enrichissement de dérivations. N’importe quelle paire de
A-termes M et N tels que M —»g N bénéficie d'une riche provision de dérivations alternatives. PSN
garantit que ’on enrichit avec précaution.

Il y a encore des autres propriétés telles que la normalisation forte du calcul de substitutions associé (qui
dans notre exemple serait x).
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Compte rendu de la thése
Le corps principal de cette these est divisé en trois parties :

Partie T { Cha.p?tre 3 : Perpétuité dans le calcul de substitutions explicites Ax
Chapitre 4 : Perpétuité dans le calcul de substitutions explicites Aws

Partie 11 { Chapitre 5 : Enregistrements et substitutions explicites pour les objets et les fonctions
Chapitre 6 : Une notation de De Bruijn pour la réécriture d’ordre supérieur

Partie III Chapitre 7 : De la réécriture d’ordre supérieur a la réécriture du premier ordre
Chapitre 8 : Transfert de la standardisation

Celles-ci sont précédées par une bréve introduction aux théories de réécriture, M-calculus et calculs de substitu-
tions explicites (chapitre 2). Dans la suite nous présentons un résumé du contenu de ces parties en détaillant
les principaux résultats obtenus dans chacune d’entre elles.

Partie I : Perpétuité dans les calculs de substitutions explicites

La premiére partie de la these étudie la perpétuité dans les calculs de substitutions explicites : la contraction
de radicaux qui préserve la possibilité de dérivations infinies, ces radicaux sont appelés des radicaux perpétuels.
Une stratégie de réécriture qui réduit toujours un radical perpétuel est appelée stratégie de réécriture perpétuelle.
Par exemple, la stratégie “plus & gauche” (celle qui réduit le radical le plus a gauche) n’est pas perpétuelle pour
le A-calculus. En effet, il suffit de considérer le A-terme M = (A\z.y)(AA) ot A = Az.zz. Alors M admet une
B-dérivation infinie, tout simplement en réduisant le radical le plus a droite :

(Az.y)(AA) =5 (Az.y)(AA) —p . ..

Mais si ’on réduit le radical le plus & gauche dans M on obtient le terme N = y qui est une forme normale.
Comme le lecteur peut observer, ceci est di & la nature d’effacement du radical contracté puisque le sous-terme
AA n’apparait plus dans N, il a été effacé. L’intérét des stratégies perpétuelles est que, si elles normalisent un
terme M, alors ce terme est fortement normalisant (c’est & dire, toutes les dérivations commengant par M sont
finies). Par exemple, nous utiliserons nos études sur la perpétuité pour caractériser inductivement 1’ensemble
de tous les termes du Ax-calcul qui sont fortement Ax-normalisables. Par “inductivement” nous voulons dire
que I’ensemble sera décrit comme le plus petit ensemble vérifiant certaines régles, de la méme maniére que 'on
décrit ’ensemble des A-termes ou I’ensemble des théorémes d’un certain systéme logique [Acz77]. Nous utilisons
aussi la perpétuité pour donner une preuve de normalisation forte d’un lambda calcul polymorphe avec des
substitutions explicites.

Les stratégies de réécriture perpétuelles pour le A-calculus ont été introduites dans [BBKV76), une étude
d’ensemble récente est [RSSX99]. Un systéme de réécriture de termes ( TRS) est dit uniformément normalisable
si tous ses radicaux sont perpétuels. Un TRS est dit orthogonal ou déterministe si le membre gauche de chaque
regle a au plus une occurrence de chaque variable et si il n’y a pas de superposition. En fin, on a les TRS
non-effacants : dans un terme quelconque les arguments déterminés par le LHS d’une régle apparait aussi
dans les arguments déterminés par le RHS. J.W. Klop [Klo80] a montré que tous les CRS orthogonaux non-
effacants (et alors tous les TRS du premier ordre orthogonaux non-effagants) sont uniformément normalisables,
en généralisant ainsi le Théoréme de Church [CR36] qui établit que le A;-calcul* est uniformément normalisables.
Quant & la caractérisation des radicaux perpétuels Z. Khasidashvili (Kha94, Kha0l] a montré que tous les
radicaux non-effagants sont perpétuels dans les ERS (et donc que tous les radicaux non-effagants sont perpétuels
dans les TRS orthogonaux du premier ordre), en généralisant ainsi le Théoréme de Conservation [BBKV76] qui
établit que les Br-radicaux (i.e. les B-radicaux dans A;) sont perpétuels dans le A-calculus. Les abréviations
CRS et SERS sont des noms de formalismes de réécriture d’ordre supérieur, le lecteur peut trouver plus de
détails dans le chapitre 6 de la thése. On peut se référer & [KOOOla] pour une étude exhaustive des stratégies de
réécriture perpétuelles et une caractérisation des radicaux perpétuels dans les systemes de réécriture de termes
d’ordre supérieur.

Tous ces résultats sont formulés pour des systémes orthogonaux, mais le calcul de substitutions explicites
Ax n’est pas orthogonal. Les résultats sur la perpétuité déja développés ne peuvent donc pas s’appliquer.
Nous étudierons perpétuité dans le Ax-calcul en adaptant une technique introduite a I’origine pour montrer

41e \j-calcul est obtenu a partir du A-calculus en restreignant la formation des termes : toute abstraction Az.M doit contenir
au moins une occurrence libre de la variable z dans M.
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préservation de la normalisation forte des calculs de substitutions explicites [BBLRD96]. Les applications de
cette étude sont :

e formulation d’une définition inductive de I’ensemble des termes fortement Ax-normalisables,
e deux stratégies de réécriture perpétuelles pour Ax, 'une d’elles est calculable,
e une preuve de normalisation forte d’un calcul typé polymorphe avec des substitutions explicites.

Nous étudions aussi Aws. Le Aws-calcul [DG99] est un calcul de substitutions explicites fondé sur la notation
de De Bruijn (une notation pour le termes dans lequel les variables sont codés par des nombres) qui est
considérablement plus compliqué que Ax & cause de la présence de la composition des substitutions. Nous
développons pour Aws un programme d’étude semblable & celui que nous venons de décrire pour Ax, la seule
différence étant que nous ne traitons pas un calcul polymorphe avec des substitutions explicites fondé sur Aws.
Pour offrir au lecteur une idée sir la maniére de composer des substitutions nous donnons un exemple de régle
qui fait cette tache dans le Ax-calcul :

M{z:=N)(y:=0) —, M(z:=N(y:=0)) siyn’est pas libre dans M

Dans le chapitre 4 de la thése nous développons une stratégie de réécriture perpétuelle pour Aws et nous
formulons une caractérisation inductive du Aws-termes qui terminent.

Récemment, des travaux supplémentaires sur la perpétuité pour des systémes non-orthogonaux, avec des
applications & des calculs de substitutions explicites, ont été développés [KOOO1b).

Proposition de Perpétuité et quelques applications

Le chapitre 3 de la thése commence par considérer les résultats fondamentaux de la technique de preuve
développées par P. Lescanne et al dans [BBLRD96] afin de démontrer la préservation de la normalisation
forte de Av, un autre calcul de substitutions explicites que nous introduisons briévement dans le chapitre 2.
Cette technique est fondée sur ’assignation d’une mesure aux dérivations et sur ’application d’un argument
de minimalité, semblable & celui que Nash-Williams [NW63] a utilisé pour arriver & une contradiction dans
la preuve du théoréme de Kruskal. Nous appliquons cette méme technique pour démontrer la proposition de
perpétuité. Cette proposition dit que si M se réécrit dans N & ’aide du calcul de substitutions x et M posséde
une Ax-dérivation infinie, alors N aussi. Dans le cas ol la régle de réécriture Varf est utilisée pour obtenir IV de
M, nous devons demander additionnellement que le terme éliminé par cette régle soit fortement Ax-normalisable.

Cette proposition est suffisante pour pouvoir formuler une caractérisation inductive de I’ensemble des Ax-
termes qui terminent, c’est & dire qui ne sont pas la source d’une dérivation infinie. En effet, sept schémas
d’inférence sont proposés et a partir de la proposition mentionnée auparavant, nous montrons que ces schémas
capturent exactement ’ensemble des Ax-termes qui terminent.

Ensuite, nous considérons des stratégies perpétuelles pour le Ax-calcul. Une Ax-stratégie de réécriture est
une fonction F(e) de Ax-termes en termes telle que pour tout Ax-terme M on a M —,; F(M), & I’exception
du cas ol M soit une forme normale. Dans ce derniére cas nous avons F(M) = M. On dit qu’une stratégie est
perpétuelle si 00xy(M) implique 0oxz(F(M)), ol 0xx(M) indique que M est la source d’une dérivation infinie
dans Ax.

Nous formulons deux stratégies de réécriture pour Ax. Nous montrons qu’elles sont perpétuelles & ’aide de
la proposition de perpétuité. Les deux stratégies consistent a réécrire 'un des Ax radicaux le plus & gauche, a
exception du cas ol ce radical est un Varf-radical y(z := Q). Dans ce derniére cas soit un radical dans Q est
réduit soit le Varf-radical lui méme est réduit selon des conditions sur Q.

Le probléme suivant sur les stratégies maximales est resté ouvert. Soit F une Ax stratégie de réécriture.
Définissons Lr(M) < min{n | F7*(M) est une Ax-forme normale} ou FO(M) %' M et 7+ (M) ¥ £ (7 (21)).
Alors on dit que F est maximal ssi M posséde une Ax-forme normale et Lx(M) coincide avec la longueur max-
imale d’une dérivation qui méne M a sa forme normale. La stratégie Foo(e) (Définition 3.16, Section 3.2.2 de
la thése) est elle maximale?

Lambda calcul polymorphe avec substitutions explicites

Le polymorphisme est une discipline de types qui permet aux fonctions de s’appliquer sur des arguments de
différents types. Ceci aide & la réutilisation de code et, avec les fonctions d’ordre supérieur, est I’'un des
ingrédients essentiels de n’importe quel langage de programmation moderne. Un exemple classique de fonction
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polymorphe est la fonction identité I = Az.z. Notons que pour un terme quelconque, cette fonction retourne une
copie de ce terme, sans regarder la nature du terme en question. Ainsi, pour chaque type 7 on dit que I posséde
type 7 — 7. Ceci peut étre rendu interne dans le langage des types en assignant le type V7.7 — 7 & I, ol T joue
le réle d’une variable de type, qui varie sur tous les éléments de I'univers de types. Le systéme F [Gir72, GLT89)
est un ensemble de régles de typage pour typer des types polymorphes et deux régles de réécriture : le regle
B et une régle pour instancier des variables de type par des types arbitraires. Nous augmentons le calcul F
avec des substitutions explicites, en obtenant F;. Comme nous pouvons abstraire pas seulement de variables
de terme mais aussi de variables de type, deux notions distinctes de substitution seront introduites et étudiées :
substitution de terme et substitution de type. On considére alors les propriétés suivantes :

e Préservation de types : la préservation de types est démontrée pour F.;. Ce résultat n’est pas vrai pour
d’autres formulations de lambda calculs avec substitutions explicites basés sur Ax [Blo97]. Cette situation
a été ensuite inversée dans [Blo99, Blo01], elle peut donc étre vue comme une solution indépendante 2 ce
probléme. Un travail en relation avec nos résultats est celui de C. Mufioz [Muii97b] qui définit un lambda
calcul typé avec substitutions explicites (basé sur une variante linéaire & gauche du calcul o) et types
dépendants. Il démontre la préservation de types pour ce calcul en introduisant des annotations de type
dans le constructeur de substitutions e - ¢ de Ao. Notre solution consiste & considérer des contextes de
typage dans lesquels une notion d’égalité de types modulo un calcul de substitutions explicites pour les
substitutions de types sont pris en compte.

e Normalisation forte : nous démontrons que tous les termes polymorphes typables sont fortement nor-
malisables. La preuve est obtenue en appliquant la technique des candidats de réductibilité de J-Y. Gi-
rard [Gir72], méme si nous suivons plutét la présentation donnée par J. Gallier [Gal90]. La réductibilité
pour démontrer des propriétés de calculs avec substitutions explicites apparait d’abord dans [Mufi97b]
et [Rit93], néanmoins elle est seulement utilisée pour démontrer la normalisation faible. En ce qui concerne
la normalisation forte, il y a eu aussi d’autres contributions indépendantes [Rit99, DLO1, Her00]. L’idée
que nous suivons consiste & définir une fonction d’effacement Frase(e) qui élimine toute I'information de
types d’un terme typé dans F,; en produisant un Ax-terme non typé.

— Montrer que si un terme résultant de l’effacement de l'information de types est fortement Ax-
normalisable, alors le terme original est fortement F,;-normalisable.

— Nous obtenons ainsi le résultat suivant : si M est Fe,-typable alors Erase(M) est fortement Ax-
normalisable. Nous généralisons ce but en montrant que si M est typable alors Erase(M) suivi d’une
séquence de substitutions explicites est fortement Ax-normalisable, ceci implique clairement que lui
méme est fortement Ax-normalisable.

— Le point précédent est démontré a I’aide de la technique des candidats de réductibilité ou les candidats
sont des sous-ensembles de Ax-termes qui terminent. La proposition de perpétuité est cruciale pour
que cette technique puisse étre appliquée.

Partie II: Subtitutions explicites pour un calcul & objets

Nous considérons ici un calcul avec substitutions explicites pour modéliser des langages orientés objets en
enrichissant le ¢-calcul de M. Abadi et L. Cardelli {AC96] avec des substitutions explicites. Le ¢-calcul est un
formalisme qui se trouve au méme niveau d’abstraction que le lambda calcul, mais qui se base sur des objets
3 la place que sur des fonctions. On peut le considérer un calcul minimal dans le sens qu’il s’avere difficile de
concevoir un calcul plus simple pour modéliser des constructions des langages orientés objets. Un objet dans le
¢-calcul est une collection de méthodes, les seules structures calculatoires dans le formalisme.

Le c¢-calcul est Turing complet dans le sens qu’il peut représenter toutes les fonctions calculables. En
particulier, ce résultat est démontré [AC96) en proposant une traduction du lambda calcul dans le ¢-calcul. La
traduction simple et élégante qui achéve ce codage est appelée la traduction fonction-objet. Maintenant, si on
fixe un calcul de substitutions explicites, disons e, pour rendre la méta-substitution dans ¢ au niveau objet, il est
naturelle d’espérer que le calcul de substitutions explicites résultant e soit capable de coder Ae. Par exemple,
si on considére des substitutions explicites a la v [BBLRD96] pour augmenter le s-calcul, obtenant ainsi ¢v, on
voudrait vérifier que Av est codable dans sv, et ainsi v serait au moins si expressif que le lambda calcul. Dans
un contexte ol les variables liées son dénotées par des noms et pas par des indices, D. Kesner and P.E. Martinez
Lépez [KMLO8] ont vérifié que Ax peut étre simulé dans ¢x. Pour vérifier cette propriété de simulation ils
ont adapté la traduction fonction-objet en introduisant une nouvelle notion de substitution appelée substitution



d’invocation. Cette substitution se comporte différemment de la notion usuelle de substitution car elle représente
plutét un remplacement qu’une notion de substitution d’ordre supérieur. De plus, dans ’environnement avec
indices et substitutions explicites présenté dans cette thése, nous avons vérifié que les enregistrements sont aussi
nécessaires pour coder le Ae dans e via une traduction fonction-objet. Le chapitre 5 de la thése étudie un
calcul du premier-ordre avec explicit substitutions pour le ¢-calcul avec enregistrements comme constructeurs
primitifs. Simulation du Mv-calcul, confiuence et préservation de la normalisation forte conforment le centre
d’attention de ce chapitre.

L’étude des calculs avec substitutions explicites s’est initiée dans le domaine du A-calculus, cependant il
y a eu plusieurs travaux dans le domaine plus général de la réécriture d’ordre supérieur connue sous le nom
des CRS [Klo80], en particulier les Explicit Combinatory Reduction Systems [BR96] et les eXplicit Reduction
Systems (XRS) de Pagano [Pag98]. Ces formalismes, méme s’ils sont définis dans un cadre d’ordre supérieur
travaillent avec un calcul de substitutions explicites fixe (¥ dans le cas des Explicit CRS et o4 dans le cas des
XRS). Nous verrons que notre calcul de substitutions explicites proposé comme une implémentation du ¢-calcul
n’est une instance d’aucun de ces deux formalismes mentionnés auparavant. Au moment de la rédaction de cette
thése nous avons appris ’existence d’une formalisation indépendante du s-calcul publiée par M-O. Stehr [Ste00]
et basée sur une représentation alternative qui utilise les termes avec la notation de Berkling. Cette notation
peut étre vue comme le résultat de fusionner les indices de De Bruijn et les noms de variables. Ce notation
serve pas pour résoudre nos problémes.

Un autre travail mélangeant calculs avec substitutions explicites et calculs orientés objets est celui de F. Lang
et al [LLL98]. Le mérite de ce travail est de donner un environnement unifié pour étudier la sémantique
opérationnelle de plusieurs calculs a objets, donc il peut étre vu comme une approche orthogonale & la notre.
De plus, ce formalisme est basé sur une extension du AObj-calcul [FHM94] plutét que du s-calcul. Comrme le
AObj-calcul inclut le A-calculus, les traductions fonction-objet ne sont pas nécessaires dans ce cadre.

L’incorporation de substitutions explicites a ¢

Le ¢-calcul avec substitutions explicites et indices de De Bruijn, que nous appellerons ¢gs.s-calculus, est présenté
dans le chapitre 5 de la thése. Ce calcul introduit deux formes de substitution dans le langage objet : substitution
ordinaire et substitution d’invocation. Les régles de réduction pour les substitutions ordinaires sont basés sur le
calcul \v de P. Lescanne et al. Mais nous avons aussi des enregistrements (explicites) dans le langage objet de
Sabes- La section 5.4.1 de la thése explique pourquoi nous avons besoin des enregistrements comme constructeurs
primitifs dans le langage.

Les substitutions de la forme a/ sont appelées substitutions ordinaires tandis que les substitutions contenant
@! sont appelées substitutions d’invocation. L’ajustement des indices sera différent pour ces deux types de
substitutions. Une autre caractéristique intéressante de qp.s €st qu’elle posséde une forme limitée de composition
de substitutions.

Comme nous ’avons dit auparavant les enregistrements peuvent étre simulés dans le g4p-calculus d’une
maniére trés naturelle. Cette situation n’est plus valable lorsque les substitutions explicites sont introduites
dans le formalisme et lorsque ’on veut coder le Av-calcul dans le ¢4pes-calculus & I’aide d’une traduction fonction-
objet. Les détails se trouvent dans la section 5.4.1 de la thése.

Enfin, quelques propriétés de <45.s sont étudiées. La premiére d’entre elles dit que de la méme maniére
que ¢ est capable de simuler A-calculus, le ¢gpes-calcul peut simuler Av. On regarde aussi quelques propriétés
essentielles qui sont demandées pour n’importe quel calcul avec substitutions explicites qui implémente un
autre calcul ou la substitution est au niveau du langage du discours. La premiére de ces propriétés est la
confiuence; on utilise pour la démontrer la méthode d’intérpretation [Har89]. La deuxiéme est la préservation
de la normalisation forte. On utilise pour la démontrer une technique due & Bloo et Geuvers [BH98]. Cette
propriété est 1’'un des ingrédients essentiels dans n’importe quel implémentation via des substitutions explicites,
surtout s'il y a quelque forme d’interaction entre les substitutions comme dans notre cas.

Partie III: de la réécriture d’ordre supérieur a la réécriture du premier ordre

La partie III de la thése concerne la traduction de la réécriture d’ordre supérieur a la réécriture du premier
ordre modulo une théorie équationnelle. La réécriture (de termes) d’ordre supérieur concerne la transformation
de termes en présence de mécanismes de liaison pour les variables et des substitutions. Sa théorie a commencé
avec le travail pionnier de J.W. Klop en 1980 dans sa thése [K1080]. L’exemple paradigmatique de systéme de
réécriture d’ordre supérieur est le A-calculus. La notion de substitution dans ce calcul est une opération méta
qui peut étre vue comme la conséquence de I’existence d’un symbole spécial appelé symbole de liaison qui a



le pouvoir de lier des variables dans les termes. Ceci a pour conséquence que la substitution ne peut pas étre
considérée comume la notion usuelle de remplacement du premier ordre, mais plutét comme une opération qui
doit respecter le statut (libre ou lié) de chaque variable. Dans ce sens, il est juste de dire que la substitution
est un ‘remplacement respectueux’. Cependant, il serait erroné de considérer la substitution comme un concept
trivial : la théorie de la réécriture d’ordre supérieur est considérablement plus compliqué que celle du premier
ordre.

Plusieurs formalismes de réécriture d’ordre supérieur (HORS) existent, la recherche dans ce domaine est
actuellement trés active. Dans le travail fondateur de J.W. Klop [K1080] les Combinatory Reduction Systems
(CRS) ont été introduits. Plusieurs formalismes ont été définis plus tard : les Ezpression Reduction Sys-
tems (ERS) de Z. Khasidashvili {Kha90], les Higher-Order Rewrite Systems (HRS) de T. Nipkow [Nip91], les
Higher-Order Term Rewrite Systems D.A. Wolfram (Wol93], les Higher-Order term Rewriting Systems de V.
van Oostrom et F. van Raamsdonk [OR94] qui recouvrent plusieurs autres formalismes [Oos94, Raa96] et les
Ezplicit Reduction Systems (XRS) de B. Pagano [Pag98] qui utilisent les indices de De Bruijn. La thése de F.
van Raamsdonk présente une étude d’ensemble dans ce domaine [Raa96).

Méme si au niveau méta I’exécution d’une substitution est toujours atomique, le coiit de son calcul dépend
de la forme des termes, en particulier si la capture de variables doit étre évitée en utilisant des renommage
de variables liées (a-conversion). En conséquence, il y a un intérét bien pratique pour essayer d’éviter ’a-
conversion, car n’importe quelle implantation d’un systéme de réécriture d’ordre supérieur doit inclure des
instructions concrétes pour appliquer des substitutions. Comme nous ’avons déja mentionné, il y a une technique
standard introduite par De Bruijn, appelée la notation des indices de De Bruijn, pour éviter la a-conversion.
La représentation des variables via des indices élimine complétement la capture de variables. Cependant, les
formalismes de De Bruijn ont été étudiés uniquement pour quelques systémes particuliers (et uniquement au
niveau des termes) et il n’y pas de formalisme général de réécriture d’ordre supérieur avec indices. Nous étudions
ce probléme dans cette thése en ne nous focalisant pas uniquement sur les termes (comme il est usuellement
fait dans la littérature pour le A-calcul [KR98]) mais aussi sur les méta-termes, qui sont les objets syntaxiques
utilisés pour exprimer un systéme de réécriture d’ordre supérieur. Plus précisément, nous introduisons une
notation de De Bruijn pour les ERS, en obtenant ainsi la classe SERS3,. En effet, nous formulons une version
simplifiée des ERS que nous appelons Simplified ERS (SERS), et ensuite nous considérons une notation de
De Bruijn pour ce formalisme. La raison du choix du formalisme ERS est que sa syntaxe est plus proche du
M-calcul. Ainsi la régle de réécriture 3 s’écrit comme app((Az.M), N) = M|z «— N] ot M et N dénotent deux
termes quelconques.

Le formalisme SERS peut étre vu comme 1’interface d’un langage de programmation fondé sur la réécriture
d’ordre supérieur. Comme I’utilisation de formalismes fondés sur les variables avec noms sont nécessaires pour
linteraction des humains avec les ordinateurs d’une maniére amicale, les ressources techniques tels que les
indices de De Bruijn (et, plus tard, les substitutions explicites) ne doivent pas étre visibles, autrement dit, elles
doivent étre considerées comme une décision d’implantation. Un point clé sera ’étude détaillée de la relation
entre les SERS et les SERSy. Les définitions dévelopées dans ce chapitre fournissen des traductions de la
syntaxe d’ordre supérieure avec noms vers celui des indices et vice-versa. Ces traductions sont des extensions &
’ordre supérieur des traductions qui ont été présentées dans [Cur93|, et aussi étudiées dans [KR98].

Quant aux formalismes de réécriture d’ordre supérieure basés sur des indices de De Bruijn, il y a au moins, a la
connaissance de ’auteur, trois classes : les Ezplicit CRS [BR96), les Ezplicit Reduction Systems (XRS) [Pag98],
et le Calculus of Indezed Names and Named Indices (CINNI) [Ste00). Dans [BR96] des substitutions explicites
i la A\x [Ros92, Blo97] sont ajoutées au formalisme CRS comme un premier pas vers 'utilisation de la réécriture
d’ordre supérieure avec des substitutions explicites pour la modélisation de I’exécution des programmes fonc-
tionnels d’une fagon fidele. Comme ceci est fait dans un environnement de variables avec norms, ’a-conversion
doit étre prise en compte dans ces systémes. La classe des XRS de B. Pagano constitue le premier formalisme
de réécriture d’ordre supérieur qui utilise la notation des indices de De Bruijn et des substitutions explicites.
Ils sont présentés comme une généralisation du Aoy-calcul [CHL96| mais aucune connexion avec des formal-
ismes bien établis comme les CRS, les ERS et les HRS 4 été établie. En effet, ’expression de régles naturelles
des SERS dans le formalisme des XRS n’est pas triviale. On peut considérer comme exemple un systéme de
réécriture pour des expressions logiques tel que si imply(e;, e2) se réduit a une constante true alors e; implique
logiquement a ez. Une régle de réécriture possible serait :

imply(3zVyM, Vy3zM) —imp true
Un essaie naif pour représenter cette régle dans un XRS pourrait étre :

imply(IVM,V3IM) —imp,, true
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Mais elle n’a pas l’effet désiré parce que IVM et VAM correspondent a 3zVyM et Vz3yM mais VzIyM et
VYy3zM ne sont pas équivalents. Observer que méme si nous incorporons des substitutions explicites aux XRS,
ce probléme se manifeste déja au niveau des indices de De Bruijn. Autre exemple qui peut étre intéressant est
la régle qui exprime ’extensionalité fonctionnelle 7 :

Mz.(app(M,z)) = M si z n’apparait pas libre dans M

qui est usuellement exprimée dans un systéme fondé sur des indices de De Bruijn et substitutions explicites par
la régle nq4p suivante :
Aapp(M,1)) = N si M =¢ N[1]

ot M =¢ N signifie que M et N sont équivalents modulo la théorie des substitutions explicites £ (on peut
prendre par exemple v). Ni la régle imp ni n4p peuvent étre exprimées dans le formalisme XRS. Ils n’ont
donc pas, en principe, le méme pouvoir d’expression que les ERS. Quant aux systémes de M-O.Stehr [Ste00]
mentionnés plus haut le méme probléme apparait : aucune relation n’est établie avec les systémes de réécriture
d’ordre supérieur.

Systémes de réduction d’expressions simplifiées

Le chapitre 6 de la thése introduit le formalisme de réécriture d’ordre supérieur de variables avec noms appelé
SERS. Ce formalisme est une simplification convenable des ERS de Khasidashvili [Kha90] qui consiste a
restreindre les symboles de liaison aux symboles qui lient une seule variable et a restreindre la substitution & la
substitution simple (en opposition avec la substitution simultanée ou paralléle).

Un exemple d’un SERS est le A-calculus, obtenu avec la signature qui contient le symbole fonctionnel app
et le symbole lieur ), aussi comme les SERS-régles de réécriture : app(Aa.X,Z) —g X|a — Z]. Observer que
nous avons des symboles de fonction (tel que app), des symboles de liaison (tel que A), des méta-variables pour
les termes (telles que X et Z) et des méta-variables pour les variables lié (telle que ). Nous avons aussi des
méta-variables pour les variables libres. Tant app(Aa.X, Z) comme X|a « Z] sont appelés méta-termes et sont
utilisés pour définir des régles de réécriture. L’expression e[e «— o] est appelée I’opérateur de méta-substitution
et représente une substitution suspendue.

Un autre exemple est le Ax-calcul [BR96, Ros92|. Il est définit en considérant la signature qui contient les
symboles fonctionnels {app, subs} et les symboles de liaison {), o'}, avec les SERS-régles de réécriture suivantes :

app(la.X, Z) — Beta Subs(oca.X,Z)
subs(oa.(app(X,Y)),Z) —4pp app(subs(ca.X,Z), subs(ca.Y, Z))
subs(ca.)B.(X), Z) —Lam AB.(subs(ca.X, Z))

subs(oca.a, Z) —Ver 2

3ubs(aa.ﬁ, Z) — Varf E

Le ﬁ dans la derniére régle représente une variable libre (c’est un exemple d’une méta-variable pour les
variables libres), donc elle ne peut pas recevoir en assignation la méme variable que celle assignée a a.

Les régles de réécriture sont instanciées a ’aide des valuations pour pouvoir obtenir la relation de réécriture
sur les termes. Une valuation assigne tout simplement des termes aux méta-variables pour les termes, des
variables aux méta-variables pour les variables et elle exécute les substitutions suspendues qui sont représentées
par ’opérateur de méta-substitution. Bien sir, tout cela doit étre fait avec attention, ’ensemble des valuations
admissibles est identifié et ce sont uniquement ces valuations qui peuvent étre utilisées pour instancier des
régles de réécriture. Par exemple, le An-calcul est obtenu en ajoutant la SERS-régle de réécriture suivante au
A-calculus : Ae.(app(X,a)) —, X. Une valuation admissible serait une valuation telle que la variable assignée
4 a n’apparait pas libre dans le terme assigné a X.

Systémes de réduction d’expressions simplifiées avec des indices

On introduit le systéme de réécriture d’ordre supérieur avec indices de De Bruijn, appelé SERS4s, en utilisant
des exemples. En particulier, nous considérons d’abord le cas du lambda calcul avec des indices de De Bruijn :
app(AXa, Ze) = XolZc). Les expressions app(AXq, Ze) et Xq[Z] sont appelés méta-termes de De Bruijn.
Bien qu’il y n’a pas plus de méta-variables pour les variables liés nous avons encore des méta-variables pour les
termes (telle que X,) et des méta-variables pour les variables libres (voir 8 dans I’exemple dessous). Noter que
maintenant les méta-variables pour les termes portent une étiquette, et que ces étiquettes forment une partie
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intégrale de ces méta-variables. Une méta-variable de la forme X; indique qu’elle apparait dessous un nombre
d’opérateurs de liaison, notamment un pour chaque symbole dans I’étiquette I. L’opération o[e] & droite est
nommée [’'opérateur de méta-substitution de De Bruijn et représente une substitution de De Bruijn suspendue.

Un deuxiéme exemple est le systéme suivant qui est obtenu en traduisant le Ax-calcul a ’aide de la traduction
que nous développons dans le chapitre 6 de la theése :

app(MX o, Ze)
Ms(U(GPP(Xm Ya))! ZC)
subs(c(A(Xpa)), Ze)
.‘mbs(o‘(l),AZe)
subs(o(8(8)), Z.)

subs(0Xq, Z)

app(subs(o X, Z,), subs(0Yy, Ze))
g(subs(a(xaﬁ): Zp))

B

Ll

La régle subs(o(AM(Xpa)), Ze) — A(subs(o(Xap), Zg)) est intéressante parce qu’elle montre I'utilisation de la
commutation des symboles de liaison (confronter X, et X4p) et elle illustre en méme temps comment quelque
sorte d’ajustement sera nécessaire pour aller de Zg vers Z,.

En effet, des valuations seront nécessaires pour instancier des régles de réécriture et obtenir de cette fagon
la relation de réduction sur les termes. Ces valuations doivent respecter les étiquettes des méta-variables.
Considérons pour 'instant la SERS-régle de réécriture :

£a.(§B.X) —r £B.(6a.X)

et son traduction dans les formalisme SERSg; :

§(§(Xﬁa)) ra §(§(Xaﬁ))

Une valuation est dite valide si elle respecte les étiquettes des méta-variables. Par exemple, si Xpa est
instanciée avec I'indice 1 alors X,g doit étre instanciée avec l'indice 2. Quand on fait de la’instantiation des
régles de réécriture de De Bruijn, uniquement des valuations valides seront utilisées.

Propriétés

Une des propriétés élémentaires qui nous intéresse est le rapport entre les formalismes SERS et SERSy,. Nous
montrons que la réécriture dans le formalisme SERS peut étre simulée dans celle de SERSy;, et vice-versa. Pour
le premier cas nous avons besoin de définir plusieurs traductions (que nous appelons T'(e) sans distinction) :
de termes vers termes de De Bruijn, de méta-termes vers méta-termes de De Bruijn et de valuations vers
valuations de De Bruijn. Aprés nous étudions des propriétés de base de ces traductions. Comme nous ’avons
déja mentionné, le dernier exemple en haut est obtenu en traduisant le Ax-calcul comme un SERS. Une fois que
ces traductions sont fixées nous pouvons montrer que si s se réécrit en t dans le formalisme SERS en utilisant
la regle de réécriture (G, D), alors T(s) se réécrit en T'(¢t) dans le formalisme SERSy, en utilisant la regle de
réécriture De Bruijn T(G, D).

Quant au deuxiéme point on procéde d’une fagon similaire pour obtenir les traductions U(e). Pourtant, ce
point a besoin d’un travail plus technique que le précédent puisque la traduction d’un terme de De Bruijn (ou
un méta-terme de De Bruijn) peut ne pas donner un terme unique (ou méta-terme). Dans le cas ol deux termes
différents sont obtenus ils seront a-équivalents (ou v-équivalents - une notion définie dans le chapitre 6 - dans
le cas des méta-termes). Une question additionnelle qui nous intéresse est la garantie que les valuations de De
Bruijn valides soient traduites vers des valuations admissibles dans le formalisme SERS. En fin, nous montrons
que si a se réécrit dans b dans le formalisme SERSy, en utilisant la régle de réécriture (L, R), alors U(a) se
réécrit dans U (b) dans le formalisme SERS en utilisent la regle U(L, R).

La partie finale du chapitre 6 étudie la rapport entre les traductions mentionnées dans le paragraphe
précédent. Celle ci donne lieu & deux résultats qui disent, respectivernent, qu’étant donné un méta-terme
M alors U(T(M)) est équivalent & M (dans un sens précis, voir la section 6.1 de la thése), et qu’étant donné
un méta-terme de De Bruijn A alors T(U(A)) est identique & A. Ces résultats sont utilisés pour montrer que la
confluence est préservée en traduisant un systéme de réécriture SERS vers un systéme de réécriture SERS ;.
Plus précisément nos montrons que, d’un coté, si R est un SERS qui est confluent alors T(R) est un SERSg
confluent aussi. D’autre cbté, nos montrons que si R est un SERSy;, confluent alors U(R) est un SERS confluent.
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De la réécriture d’ordre supérieur vers la réécriture de premier ordre

Comme nous ’avons déja dit ci-dessus, ’opération de substitution ne peut pas étre cadrée comme une opération
simple de remplacement telle que la substitution dans les théories du premier ordre. En conséquence, des
chercheurs se sont intéressés par la formalisation de la substitution d’ordre supérieure a I’aide de substitutions
ezplicites, de telle fagon que les formalismes/systémes d’ordre supérieur soient exprimables dans des formal-
ismes/systémes du premier ordre : la notion de variable liée n’existe plus et la substitution devient du rem-
placement. Un exemple bien connu de la combinaison d’indices de De Bruijn et de substitutions explicites est
la formulation des différents calculs du premier ordre pour le A-calculus [ACCL91, BBLRD96, KR95, DGO1].
D’autres exemples sont les traductions de 'unification d’ordre supérieur vers la unification du premier ordre
modulo [DHKO00], la logique d’ordre supérieur vers celle du premier ordre modulo [DHKO1), la démonstration
automatique d’ordre supérieur vers celle du premier ordre modulo [DHK98], etc.

Le cas du A-calculus est intéressant mais en méme temps pas toute & fait représentatif des problémes que
I’on peut trouver quand on fait du codage de systémes d’ordre supérieur vers le premier ordre. La raison c’est
que dans ce cas particulier il suffit de se débarrasser de ’a-conversion et de promouvoir la substitution du
niveau méta au niveau objet. En effet, le remplacement des variables usuelles par des indices de De Bruijn
et 'introduction de substitutions explicites suffisent pour rendre un systéme du premier ordre, tels que les
exemples précédents le montrent. Pourtant, c’est ne pas le cas pour des systémes de réécriture d’ordre supérieur
arbitraires. Cette a dire, ’élimination de I’a-conversion et I’introduction de substitutions explicites n’est pas
suffisante pour obtenir un systéme simple (dans le sens de la réécriture du premier ordre modulo une théorie
équationelle vide). La raison est que dans la réécriture d’ordre supérieur® le LHS des régles de réécriture sont
des motifs d’ordre supérieur [Nip91, Oos94]. En conséquence il faut coder aussi le filtrage des motifs d’ordre
supérieur quand on se dirige vers le formalisme du premier ordre. Un exemple simple de cet fait est le cas de la
ndp-régle de réécriture :

Mapp(Xa, 1)) —q, Xe

Noter que X¢ du membre droit de la regle, qui n’apparait pas dans un contexte de liaison, est en relation
avec ’occurrence de X, & gauche, que cette fois ci apparait sous un contexte de liaison. Ceci peut étre vu
comme la raison pour laquelle la régle n4s avait regu tellement d’attention [Rio93, Har92, Bri95, Kes96), filtrage
syntaxique ne suffit donc pas. On peut bien dire que le test d’occurrence est une caractéristique du filtrage
d’ordre supérieur qui ne peut pas étre traité au premier ordre. Dans I’exemple de la régle 54, le lecteur peut
vérifier que le terme A(app(3,1)) se réécrit en 2. Dans un formalisme de rééeriture du premier ordre avec des
substitutions explicites on a la formulation alternative :

Mapp(X[1],1)) = X

Cependant, pour vérifier que le terme du premier ordre 3 soit de la forme X|[1] le filtrage du premier ordre
ne suffit plus : nous avons besoin d’£-filtrage, c’est & dire, filtrage modulo une théorie équationnelle £. Etant

donné un calcul de substitutions £ nous aurons besoin de résoudre ’équation 3 ;g X|1).
Un autre exemple, peut étre moins évident, est obtenu par la régle de commutation C :

imply(3a.VB.X,VB.3c.X) — true

qui exprime le fait que la formule qui apparait dans le premier argument de la fonction imply implique le
deuxi¢me argument. La traduction naive vers le premier ordre, notamment imply(3(V(X)), V(3(X))) — true,
n’est évidemment pas correcte. Autant nous prendrons son codage dans le formalisme des indices de De Bruijn
SERSga, et aprés nous le traduirons vers le premier ordre en utilisant la conversion qui est présentée dans le
chapitre 7 de la thése en obtenant Cj, :

imply(3(V(X)), V(X [2 - 1- 1%)))) — true

Maintenant, la régle Cy, a exactement la signification que 1’on attends.

Le but du chapitre 7 est de donner un algorithme de conversion, appelé la Procédure de Conversion,
qui permet de coder la réécriture d’ordre supérieur dans la réécriture du premier ordre modulo une théorie
équationelle £. Ceci est intéressant du point de vue théorique parce que le pouvoir d’expression des systémes
de réécriture d’ordre supérieur et du premier ordre n’est pas le méme. Pourtant, un sujet plus pratique se

5Dans le formalisme SERS les LHS sont toujours des motifs d'ordre supérieur, mais c’est ne pas le cas pour d’autres formalismes
comme par exemple les HRS.
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manifeste, la possibilité de transférer des résultats développés dans les systémes du premier ordre vers ceux
d’ordre supérieur. Dans le chapitre 8 nous transférons le Théoreme de Standardisation de la réécriture du
premier ordre vers celle d’ordre supérieur. Des techniques concernant la confluence, terminaison, complétion,
des stratégies d’évaluation, etc., doivent étre étudiées. Ce n’est pas encore clair comment on peut transférer
des techniques telles que dependency pairs [AGO00], semantic labelling [Zan95] ou complétion [BD88] vers la
réécriture d’ordre supérieur. Méme les techniques qu’ont été déja formulées pour I’ordre supérieur comme le
RPO pour les systémes d’ordre supérieur [JR99], sont beaucoup plus compliquées que dans ses versions du
premier ordre correspondantes [Der82, KL80]. Nous obtenons aussi une caractérisation de la classe des SERSy»
(qui inclut le A-calculus) telle que chaque SERSgp peut étre traduit & un systéme de réécriture du premier ordre
complet (£ = @). Nous argumentons que ces systémes, appelés SERS gy essentiellement du premier ordre , sont
plus convenables pour transférer des propriétés.

Un commentaire final sur la Procédure de Conversion concerne le fait que nous n’ajouterons pas un calcul de
substitutions explicites concret a cette procédure. Nous avons plutét choisit de travailler avec une formulation
abstraite des calcul de substitutions explicites comme il a été fait dans [Kes96, Kes00] pour traiter la confluence
de plusieurs lambda calculs avec substitutions explicites. En conséquence, la méthode que nos proposons peut
étre utilisée avec plusieurs calculs de substitutions explicites tels que o [ACCL91], o4 [HL89], v [BBLRDY6],
f [Kes96)], d [Kes96], s [KR95], x [LRDI5].

La procédure de conversion

La section 7.2 de la thése introduit le formalisme du premier ordre appelé “Explicit Expression Reduction
Systems” (EzERS) utilisé pour traduire les systémes de réécriture d’ordre supérieur fondés sur les indices de De
Bruijn aux systémes du premier ordre. Un EzERS est un systéme de réécriture du premier ordre contenant :

e Un ensemble de régles de réécriture propres gouvernant le comportement des symboles de fonction et de
liaison dans la signature.

e Un ensemble de régles de réécriture des substitutions, appelé le calcul de substitution gouvernant le
comportement des symboles de substitution dans la signature, et utilisé pour propager et exécuter/éliminer
les substitutions.

Un enseroble de régles de réécriture arbitraires ne remplit pas nécessairement les conditions requises par un
calcul de substitutions. Pour cela nous donnons une présentation générale fondée sur des macros. N’importe
quelle instance de ce calcul, obtenue en associant des opérateurs de substitution fixés a ces macros, sera donc
considérée un calcul de substitutions. Des propriétés supplémentaires imposées & ces calculs fourniront ce que
nous appelons Basic Substitution Calculiqui sera dénoté par W. Cette idée a été introduite par D. Kesner [Kes986,
Kes00] pour donner une preuve unique de confluence comprenant toute une série de calculs de substitutions
explicites fondés sur des indices de De Bruijn. Nous bénéficions ainsi de ce fait en pouvant réduire la réécriture
d’ordre supérieur & un cadre du premier ordre ol le calcul de substitutions peut étre n’importe quel calcul de
substitutions explicites qui s’adapte & notre présentation fondée sur des macros. Nous ne sommes donc pas
obligés de restreindre notre étude & un calcul particulier de substitutions explicites.

La réécriture dans un EzERS R,y est tout simplement la réécriture dans un systéme du premier ordre R mod-
ulo W-égalité. Cependant, nous fournissons aussi un sous-ensemble des EzERS appelé sytémes de premier ordre
simples (FEzERS), dénotés aussi Ry ol R est un systéme de réécriture du premier ordre dans lequel la réécriture
est donnée tout simplement par les régles de R UW. Pour qu'un EzERS remplisse les conditions d’un FEzERS
nous exigeons que les LHSs des régles ne contiennent aucune occurrence de ’opérateur de substitution. Par
exemple, si W est un calcul de substitution de base tel que le g-calcul et R = {app(AX,Y) —p,, X|[cons(Y, id)]}
alors Ryy est un FEZERS, et si R’ = R U {A(app(X[shift], 1)) —n, X}, R}y est un EzERS. Alors nous avons
1{app(M1, ¢)-id] =R, 1[l[c-id]-id]. Aussi, A(app(3,1)) ==, 2. La derniére réduction est obtenue en remarquant
que A(app(3,1)) =0 Mapp(2(1],1)) —n4 2-

Nous présentons briévement des exemples d’applications de la Procédure de Conversion, un algorithme pour
traduire un systéme de réécriture d’ordre supérieur dans le formalisme SERSg, vers un EzERS du premier ordre.
La Procédure de Conversion est assez compliquée puisque plusieurs conditions, essentiellement par rapport aux
étiquettes des méta-variables, doivent étre vérifiées pour qu’une valuation puisse étre admise comme valide. On
peut considérer, par exemple, la n45-régle Mapp(Xa, 1)) — X.. La condition sur les valuations SERSg, pour
participer & la relation de réécriture induite sur les termes est qu’elle soit valide, comme nous le présentons
au chapitre 6. La validité assurera, dans ce cas, que la meéta-variable X, ne soit pas instanciée avec l'indice



1. La Procédure de Conversion devra codifier cette condition dans le cadre du premier ordre. = L’idée est
de remplacer toutes les occurrences des méta-variables X; par une variable du premier ordre X suivie d’une
substitution explicite d’actualisation des indices appropriées qui calcule les valuations valides. Alors, le résultat
serait : A(app(X|[shift],1)) — X. Cependant, celui-ci est un exemple simple, mais dans la situation générale
I’ajout des macros shift ne sera pas suffisant. Un témoin de ce fait est la régle de commutation de symboles de
liaison C-régle que nous avons vu plus haut.

Voici quelques exemples de conversion de régles ol nous avons fixé W comme le o-calcul. Nous encourageons
le lecteur a se référer au chapitre 7 de la these pour des détails supplémentaires.

SERSgp-régle de réécriture conversion
’\(app(xa, 1)) — Xe /\(GPP(X[T], 1)) - X
AMA(Xap)) = MA(Xpa)) AAX) = AMAX[2-1-(ToD])

FOMXap)) MA(Xpa))) = MXy) | FAX[T 0 1)), AMAX[T 0 11))) = MX[T])

app(AXa, Ze) —Ba Xa[Ze] app(/\X, Z) i X[Z : 1'd]

Le systéme résultant de la Procédure de Conversion est codé comme un EzERS. Dans quelques cas ce dernier
systéme peut étre codé comme un FEzERS ou la réduction est définie sur les termes du premier ordre et le
filtrage est tout simplement celui du premier ordre (filtrage syntaxique), en arrivant a un systéme de premier
ordre simple.

Propriétés de la procédure de conversion et des systémes essenticllement du premier ordre

Nous étudions aussi la connexion entre la réécriture d’ordre supérieur et la réécriture du premier ordre modulo :
la Proposition de Simulation dit que tout pas de réécriture d’ordre supérieur peut étre simulé ou implanté par
la réécriture de premier ordre, et la Proposition de Projection dit que les pas de réécriture dans la version du
premier ordre d’un systéme R d’ordre supérieur peuvent étre projetés dans R. La Proposition de Simulation
établit que si a se réécrit en b dans un SERSg, R alors a aussi se réécrite en b dans la version du premier ordre
fo(R)w. La Proposition de Projection établit que les dérivations dans un EzERS ou FEzERS fo(R)w peuvent
étre projetées dans des dérivations dans R: si a se réécrit en b dans fo(R) alors W(a) se réécrit en W(b)
dans R ol W(a) est la W forme normale de a. Ceci assure que nous n’ajoutons pas des dénuées de sens dans
le systéme traduit au premier ordre. Des propriétés supplémentaires des dérivations projetées sont étudiées au
chapitre 8, ol des dérivations standard sont considérées.

Finalement nous fournissons un critére tres simple appelé condition-fo que peut étre utilisé pour décider si
un systéme de réécriture d’ordre supérieur peut étre traduit dans un systéme de réécriture de premier ordre
simple (i.e. modulo une théorie équationnelle vide). En particulier, nous pouvons vérifier que plusieurs calculs
d’ordre supérieur dans la littérature, tel que le lambda calcul, satisfont cette propriété. Comme le lecteur
peut remarquer d’apres le chapitre 7 ou la condition-fo est définie en détail, plusieurs résultats concernant les
systémes d’ordre supérieur (ex. perpétuité [KOOOla)], standardisation [Mel96]) exigent linéarité & gauche (une
méta-variable peut apparatre au plus une fois dans le LHS d’une régle), et complétement étendu ou locale (si
une méta-variable X (¢,,...,t,) apparat dans le LHS d’une régle de réécriture alors t1,...,t, est la liste des
variables liées par dessus). Le lecteur peut trouver intéressant de remarquer aussi que ces conditions ensemble
semblent impliquer la condition-fo. Une preuve de ce fait entranerait le développement de résultats dans les
systémes de réécriture d’ordre superieur ou via une traduction convenable au formalisme SERSg ; nous le
laissons comme travail futur.

Bien sir, tous les systémes de réécriture du premier ordre sont des SERS4 essentiellement du premier ordre,
d’ol ces derniéres systémes ne sont pas nécessairement linéaire a gauche. Aussi, un SERSy, orthogonal n’est-il
pas nécessairement essentiellement du premier ordre, I’exemple principal de ce fait étant le systéme dont la seule
régle est ngp. Nous illustrons cette situation.



xvi

SERSa

e )
Essentiellement du premier ordre

Bav Unap

Il nous semble juste de dire, d’une maniére informelle, qu’un systéme SERSy), est essentiellement du premier
ordre si le filtrage de motifs d’ordre supérieur peut étre réduit au filtrage syntaxique du premier ordre. Nous
soutenons que les systémes SERSg, essentiellement du premier ordre sont appropriées pour transférer des
résultats des systémes du premier ordre. Comme évidence de notre thése nous entreprenons dans le chapitre 8
la tache de transférer une propriété non triviale des systémes de réécriture du premier ordre (linéaire & gauche)
a cette classe de systémes: le Théoreme de Standardisation.

Transfert de la standardisation

La procédure de conversion est intéressante d’au moins deux points de vue. De la perspective d’expressivité
elle établit comment la réécriture d’ordre supérieur peut étre codée comme la réécriture du premier ordre
modulo une théorie équationnelle, et d’ailleurs elle caractérise un sous-ensemble des SERSy; pour lesquelles la
théorie équationnelle est vide. De la perspective pratique elle ouvre la possibilité de transférer des résultats
du cadre du premier ordre ver celui d’ordre supérieur. Le chapitre 8 de la thése essaye de poursuivre cette
derniére perspective plus en détail. Exactement, nous étudions comment lever le Théoréme de Standardisation
du premier ordre & ’ordre supérieur.

Concretement, nous montrons le Théoréme de Standardisation pour la classe des systémes de réécriture
d’ordre supérieur (linéaire & gauche) qui sont essentiellement du premier ordre. Ceci prouve que certaines
techniques développées pour le premier ordre sont applicables & la classe des systémes de réécriture d’ordre
supérieur qui sont essentiellement du premier ordre. Nous retrouvons une notion similaire (méme un peu
plus forte) a celle de systéme d’ordre supérieur essentiellement du premier ordre dans 1’étude de stratégies
perpetuelles [KOOO1b] aussi bien que dans P’étude de standardisation axiomatique [Mel96] lorsqu’on regarde
les conditions imposées au formalisme d’ordre supérieur pour que les preuves fonctionnent.

Le transfert de la standardisation est accompli en utilisant des idées dues & P-A. Melliés. En effet,
dans [Mel00] il montre le résultat suivant : toute dérivation standard v de M & N dans Ao ou N est en
o- forme normale est projetée sur une dérivation standard o(v) de o(M) & N dans le A-calculus. Nous mon-
trons que, en effet, ceci est vrai non seulement pour le A-calculus, mais pour tous les systémes essentiellement
du premier ordre, dans lequel nous retrouvons bien evidemment le A-calculus. Nous baptisons ce résultat le
transfert de standardisation généralisé : si R est un SERSyy linéaire a gauche et essentiellement du premier
ordre alors toute dérivation standard v de M & N dans fo(R), oi N est en o-forme normale est projetée sur
une dérivation standard o(v) de (M) & N dans R.

La procédure résultante pour standardiser une SERSg,-dérivation T consiste en :

1. “Implanter” la SERSg,-dérivation YT comme une FEzERS-dérivation v en utilisant la Proposition de
Simulation.

2. Appliquer la standardisation du premier ordre & v [Bou85) pour obtenir une dérivation ¢ du premier ordre
standard.

3. Projeter la dérivation ¢ en utilisent la Proposition de Projection pour obtenir o(¢). Utiliser ensuite le
résultat du transfert de standardisation généralisé pour conclure que o(¢) est une dérivation standard
dans le cadre de I’ordre supérieur.
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Nous pouvons signaler qu’un bénéfice supplémentaire de notre résultat est la possibilité d’étudier la théorie
des dérivations “nécessaires” pour les systémes linéaire & gauche et non-orthogonaux en appliquant la technique
développées dans [Mel00]. Ceci est laissé comme travail futur.

En montrant 3 travers un exemple concret (le théoréme de standardisation) comment transférer des résultat
du premier ordre vers l’ordre supérieur, notre contribution nous pousse encore plus a ’étude des propriétés
d’ordre supérieur a travers leurs images au premier ordre. Notre traduction des systémes d’ordre supérieur
vers le premier ordre ouvre la porte a une nouvelle approche technique pour comprendre les systémes d’ordre
supérieur.
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Chapter 1

Introduction

Computation may be seen as the task of transforming some given input object into some new output object by
means of transformation rules. A Term Rewrite System [Klo92] is a model of computation in the sense that
objects are specified as sequences of symbols and transformation rules as sets of pairs of objects captured by
rewrite schemas or rules. An early example of a Term Rewrite System is the A-calculus [Chu4l], devised by
A.Church in the 1930s. The objects are called A-terms and they represent functions; the only transformation
rule is the B-rewrite rule, which represents the result of applying a function to an argument. For instance, the
term ‘Az.z’ represents the identity function, the leftmost occurrence of ‘z’ plays a similar role as that of the
formal parameter of a function or procedure in imperative programming languages such as Pascal. The A-term
‘(Az.z) 4’ represents function application, namely the identity function applied to the representation of the
number four. Note that application is represented by juxtaposition. We may compute by actually applying a
function to an argument by means of the S-rewrite rule:

(Az.M)N —p M{z < N}

where M and N denote arbitrary A-terms, and z an arbitrary variable. The symbol e{e «— e}! appearing on
the right-hand side (RHS) of the rule denotes the operation of metalevel substitution: M{z — N} stands for
the A-term resulting from replacing the occurrences of the variable z (the formal parameter) in M by N (the
actual parameter). In fact, just the so called free variable occurrences of « are replaced but we shall leave these
details for the moment. A A-term of the form (Az.M)N, where M and N denote arbitrary \-terms and z an
arbitrary variable, is called a S-redex. An example of a one-step computation using the BF-rewrite rule is:

(Azx)d —p z{z—4} =4

The A-term (A\z.z)4 is said to S-reduce or B-contract to the A-term 4. A A-term without occurrences of a -redex
is called a B-normal form, or simply a normal form. The M-term 4 is a normal form.

The A-calculus with just the B-rewrite rule may be shown to represent or encode all computable functions
(formally defined as the partial recursive functions). This fact, together with its simple formulation, justifies its
appeal to the Computer Science community. However, it is hard to imagine writing even simple programs by
laying out A-terms. Functional programming languages are user-friendly versions of the A-calculus. Examples
of these languages are: ML [MTH90], Haskell [HW88] and CAML [WL93]. Although they have evolved a great
deal over the years, they may be seen to share the A-calculus as a common theoretical foundation. Thus, for
these languages, the A-calculus provides a convenient test-bed for studying new language features.

Some previously irrelevant issues arise with the interest of Computer Science in A-calculus as a basis for
programming languages:

e Does computation eventually terminate for any A-term?
e Given a \-term with two or more B-redexes, can they be computed in any order?

¢ In terms of consumption of computational resources, say CPU time, is the number of S-rewrite steps a
faithful measure? For example, do the following rewrite steps ‘cost’ the same?

(Azz)4d —p z{z—4}=4
(Az.zz)d —p (zz){z—4}=4

1We shall often use the ‘e’ symbol as a place holder at metalevel.

1
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Termination or Strong Normalization, the first issue, has been studied rather thoroughly. The A-calculus,
as we have presented it above, does not enjoy termination. The simplest example? is the A-term AA where
A = )dz.xzx.

(Az.zz)A —p (zz){z — A} = AA -5 AA —5 . ..

However for restricted subsets® termination may be shown to hold. Let us address the second issue. The
Church-Rosser Theorem is perhaps the first important syntactic result developed for the A-calculus®. It states
that if two A-terms M; and M> result from some other A-term M by a number of B-rewrite steps, then there
exists some A-term M3 such that both M; and M; reduce via some number of B-rewrite steps to M3 (M; and
M, are said to be ‘joinable’). This may be illustrated as follows:

M
;/ﬁ X
M, M,

ﬁ‘\ ;—"".-.ﬁ
M,

where the —»g arrow denotes zero or more 3-rewrite steps. Thus if we contract different redexes in M we
may always find a common reduct. An important consequence of the Church-Rosser property is that if a A-term
has a normal form then it is unique.

As regards the third issue, a finer analysis of the properties of S-rewrite sequences or S-derivations (analysis
which we shall boldly call implementation techniques), also much work has been done. Graph sharing mech-
anisms and Abstract Machines are common to this area. A recent approach is to promote the substitution
operation from the metalevel (the language of discourse) to the object-level (the language of study) by introduc-
ing it as a new term. This entails the addition of new rewrite rules, which make up the substitution calculus,
to describe its behaviour. Also, the B-rewrite rule must be modified by replacing metalevel substitution with
the new explicit substitution operator which implements it. As a result of this process we obtain a calculus of
explicit substitutions for the A-calculus. Before looking at an example, let us take a closer look at metalevel
substitution (the operation used on the RHS of the B-rewrite rule) on which calculi of explicit substitution are
based. As already mentioned, M {z « N} stands for the A\-term resulting from replacing the occurrences of the
variable z (the formal parameter) in M by N (the actual parameter). This notion is defined by considering all
the possible forms M may take, namely a variable, an abstraction (a term of the form Ay.P for some A-term P
and variable y) or an application of a A-term to another A-term:

(PQ{z —N} =¥ P{z—N}Q{z«~ N}
(Ow.P){z — N} & xy.(P{z« N}) z#y
z{z — N} e N

y{z — N} ey T#y

The first clause may be read as follows: the result of substituting the occurrences of by N in PQ is that of
substituting the occurrences of z by N in P on one hand, and applying the resulting term to the one obtained
by substituting the occurrences of z by N in Q, on the other. We may assume that there is no term of the
form Az.P in M, this stems from the possibility of changing the names of so called bound variables, a detailed
account of which may be found in Chapter 2. The second clause may be explained similarly, and the final two
clauses speak for themselves. So the {z — N} may be seen to traverse M until it reaches a variable, in which
case this variable is either replaced by a copy of N, or is left unaltered and at the same time a copy of N is
discarded.

By orienting the clauses of this definition from left to right and replacing the curly brackets by square ones,
thus promoting the substitution operator into new operator in the object-language as discussed above, we obtain

2]t may be proven that indeed AA is the smallest A-term, in the sense of the number of variables, applications and A-symbols,
admitting an infinite B-rewrite derivation [RSSX99, Sgrensen’s Omega Theorem|. See also (Ler76]

3Such as the simply typable terms, or the polymorphically typable terms (GLT89].

4)\s-calculus to be precise, see introduction to Chapter 3.
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the Ax-calculus [Ros92, Blo97]:

(Az.M)N —Beta M(z:= N)

(PQ)(z:=N) —4app Plz:=N)Q(z:=N)
(My.P)(z:=N) —Lem My.(P(z:=N)) T#y
z(z := N) —ver N

y(z := N) —Varf Y T#yY

So now a term is either a variable, an application of a term to another term (represented by juxtaposition, as
before), an abstraction, or a term of the form P(z := Q) called a closure. Thus the RHS of the Beta-rewrite rule
is a new term in the calculus, and may be seen as a pending substitution yet to be executed. The substitution
calculus of \x is obtained from Ax by disregarding the Beta-rewrite rule, and is abbreviated x. Each B-rewrite
step may be simulated in the Ax-calculus by means of a number of Ax-rewrite steps, namely a Beta-rewrite step
followed by a number of x-rewrite steps. Consider, for example, the first S-rewrite step of the above mentioned
infinite B-derivation. It may be simulated in Ax as follows:

(Az.2Z)A > Beta (TT)(T 1= D) = ppp T(T := A)T(T := A) = vr Az(T 1= A) 2 ypr AA

A benefit of calculi of explicit substitutions, among others, is that substitution may now be computed in a
controlled manner. For example, some pending substitutions may not need to be executed, as illustrated below:

(M y.(Az.2)(yY))N —Beta ((Az.2)(yy))(y := N)
—app  (Az.2)(y := N)(yy)(y :== N)
—Lam (’\z'z(y = N))(yy)(y = N)
—very (Az.2)(yy)(y == N)
—Beta 2(T:= (yy)(y = N))
—Varf 2

Note that there has been no need to compute the substitution (yy)(y := N) thus reducing computation time
and unnecessary duplication of the term V. Calculi of explicit substitutions shall constitute the main theme of
this thesis.

When confronted with a calculus of explicit substitutions for the A-calculus, it is only natural to wonder
whether its fundamental dynamical properties (those of the A-calculus) are retained. We list three examples:

e Simulation: If a A-term M B-rewrites to N then M should also rewrite to N in the calculus of explicit
substitutions. This is coherent with our view of calculi of explicit substitutions as a fine-grained analysis
of the B-rewrite step, and hence of the process of substitution.

e Church-Rosser: The A-calculus enjoys the Church-Rosser property. Its explicit substitution calculus should
do so too. If one interprets the ‘meaning’ of a term as its normal form (hence in our simplified® form
setting terms without normal form have no ‘meaning’), then failure of Church-Rosser could render some
terms ‘ambiguous’ (terms with more than one normal form). This is certainly undesirable since as already
mentioned, there are no ‘ambiguous’ A-terms in the A-calculus.

e Preservation of Strong Normalization (PSN): If a A-term admits no infinite 3-rewrite derivation then when
computing the same term in the calculus of explicit substitutions no infinite rewrite derivation should arise
either. The process of augmenting the A-calculus with explicit substitutions may be seen as a process of
enrichment of derivations. Any pair of A-terms M and N such that M —» N is benefited with a rich
supply of alternative derivations. PSN guarantees that we enrich with caution.

Further properties arise such as strong normalization of the substitution calculus (which in our example
would be x): All the rewrite derivations of the substitution calculus should terminate.

1.1 Hot Spots

Although the origins of explicit substitution dates back to the work of N.G.de Bruijn [Bru78] and also P-
L.Curien [Cur86, Cur93], only in the last decade has it received full attention ([KROO| provides a survey). A
wide range of research subjects have arised of which we shall mention just a few:

SIndeed, it is simplified since in A-calculus it is terms without a so called head-normal form that may be interpreted as having
no ‘meaning’ (Bar84, Th.16.1.3].
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o Discovering a A-calculus with explicit substitutions simultaneously satisfying confluence on open terms
(CR), simulation of one-step F-rewrites (Simulation), and preservation of strong normalization has been
an important source of research. Although Simulation and CR are simpler to obtain, P-A.Mellies has
shown that preservation of strong normalization may not hold [Mel95]. A first step was taken by
C.Muiioz [Muii96]: the A¢-calculus satisfies CR and PSN but not Simulation (however, it simulates innner-
most f-rewrite steps). A further attempt was the Ase-calculus by F.Kamareddine and A.Rios [KR97):
Ase enjoys CR and Simulation, and for some time it was not known if PSN held, however only recently
B.Guillaume came up with a proof of failure of PSN [Gui99]. Based on the latter proof, B.Guillaume
and R.David proposed the Aws-calculus {DG99], a calculus which satisfies PSN and CR. It, moreover,
satisfies Simulation provided A-terms are decorated with certain labels, which may be seen as representing
application of the weakening rule when considering a typing discipline. Thus, although compliance with
Simulation is somewhat questionable, Aws appears to be the furthest one may get today in the direction
of a calculus satisfying all three of the above mentioned properties. Further work in this direction is the
calculus of H. Goguen and J.Goubault-Larrecq [GGL00] based on extended K, S and I combinators.

e Various techniques for proving preservation of strong normalization in calculi of explicit substitutions have
appeared. The first of these proofs of PSN seems to have been given independently by R.Bloo [Blo95]
and P.Lescanne [BBLRD96] (see [Blo97] for historical remarks). Later, R.Bloo and H.Geuvers provided
a new technique for proving PSN based on recursive path orders [BH98]. In this thesis we shall have a
chance of taking a closer look at this technique, together with the one by P.Lescanne. E.Ritter introduced
a technique for proving PSN based on Girard’s ‘candidats de reductibilité’ [Rit99]. In order to prove
PSN for the Aws-calculus B.Guillaume and R.David [DG99, DGO1] have seen themselves in the need of
introducing yet a further proof technique based on constricting strategies (see Chapter 4 of this thesis for
further details), since previous techniques seem not to be applicable. Perhaps the most recent is that of
V.van Oostrom et al [KOOO01b] for Ax based on standardization. This plethora of methods suggests that
no sufficiently general technique for proving PSN has yet been found.

¢ Reducing higher-order formalisms/problems to a first-order setting has been a further area of active re-
search in explicit substitutions. Perhaps a word on our intended meaning of ‘reducing’ is in order: three
ingredients are required, some higher-order formalism/problem, some first-order formalism/problem, and
an encoding of the former into the latter. The prime example is that of the lambda calculus. Calculi of
explicit substitutions such as Ao [ACCL91], Av [BBLRD96] and As [KR95] are first-order formulations
of the lambda calculus. Indeed, by introducing de Bruijn indices notation [Bru72, Bru78] and explicit
substitutions a first-order term rewrite system (no binding operators, substitution - as defined above -,
nor a-conversion present) is obtained in which each B-rewrite step may be encoded. G.Dowek, T .Hardin,
and C.Kirchner [DHK95|] reduce higher-order unification to first-order unification modulo the calculus
of explicit substitutions Ao [ACCL91], they also consider the case of higher-order pattern unification
in [DHKP98]. M.Ayala-Rincén and F.Kamareddine do the same using the Ase-calculus of explicit substi-
tutions [ARKO0O]. Other examples are that of reducing higher-order logic to first-order modulo [DHKO1]
and higher-order theorem proving to first-order modulo [DHK98]. In this thesis we shall address the issue
of reducing higher-order rewriting to first-order rewriting modulo.

¢ Extending the notion of explicit substitution calculi beyond the A-calculus has also deserved much at-
tention. R.Bloo and K.Rose define Explicit Combinatory Reduction Systems [BR96] by augmenting
J.W Klop’s Combinatory Reduction Systems (CRS) [Klo80] with explicit substitutions. Explicit Combi-
natory Reduction Systems are not first-order rewrite systems since they require dealing with a-conversion.
B.Pagano defines Explicit Reduction Systems (XRS) {Pag98] a first-order formalism of higher-order rewrit-
ing, based on an extension of the Aoy-calculus [HL89], which caters for arbitrary binders and function
symbols (and not just lambda abstraction and application as in the lambda calculus). Since no relation
with existing higher-order rewrite formalisms such as HRS [Nip91], CRS [Klo80], ERS [Kha90], etc. is
established, in the light of our above mentioned interpretation of ‘reducing’, we are inclined not to consider
this work as reducing higher-order rewriting to first-order rewriting. More recently, M-O.Stehr introduced
the Calculus of Indexed Names and Named Indices (CINNI) [Ste00], based on so called Berkling’s notation
- a convenient amalgamation of de Bruijn indices and names notation (see [Ste00] for references). It is
a first-order calculus which allows the encoding of binders and substitution. However, as in the case of
XRS no relation is established with existing higher-order rewrite systems. We shall study an encoding of
Z Khasidashvili’s ERS [Kha90| in a first-order setting with the aid of explicit substitutions.
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1.2 Overview of the Thesis

This thesis is divided into three parts which conform its main body. The latter is preceded by a brief introduction
to the theories of rewriting and lambda calculus followed by an overview of some basic calculi of explicit
substitutions and their outstanding properties.

Part I In Part I we study perpetual rewrite strategies in two calculi of explicit substitutions, namely, Ax and
Jvs. A perpetual strategy is one that preserves the possibility of infinite derivations. Current literature
on perpetual strategies in term rewriting require that the property of orthogonality be fulfilled, however
calculi of explicit substitution are not orthogonal®. We exploit the techniques developed for proving preser-
vation of strong normalization in order to obtain perpetual strategies for calculi of explicit substitutions.
Moreover, we also obtain a characterization of the strongly normalizing terms (those admitting no infinite
derivations). The latter is particularly welcome in the setting of Aws due to the presence of substitution
composition which complicates matters. Perhaps a word or two on substitution composition may portray
the difficulties encountered when present in a calculus of explicit substitutions.

Consider the Ax-calculus. In a term of the form P{z := Q) let us call Q the body of the substitution.
The point is that in the Ax-calculus the bodies of substitutions are sealed units: although Ax-rewrite steps
may take place inside them, they do not interact in any way with other subterms of the term in which
they occur - in the sense that there is no rewrite rule that ‘combines’ a body of a substitution with some
other term. Indeed, by inspecting the rewrite rules of the Ax-calculus one may observe that the bodies
of all substitutions on the RHSs occur identically on their respective LHS. When a rule allowing the
composition of substitution is introduced, such as:

M(z:=N)y:=0) -, M(z:=N({y:=0)) ifydoes notoccur free in M

this no longer holds. In the c-rewrite rule, the substitution body N(y := O) does not occur on the LHS.
As a consequence, bodies of substitutions which behaved well as sealed units in the sense that they were
not sources of infinite derivations may no longer do so. For example, the term 2(z := yy)(y := A) has two
substitution bodies, namely, yy and A. Both are terminating terms. However, if we apply the c-rewrite
rule we obtain z{z := (yy)(y := A)) where a new substitution body (yy)(y := A), source of an infinite
Ax-derivation, has appeared. To sum up, devising perpetual rewrite strategies and characterizing the
strongly normalizing terms in Aws shall require more work than for Ax, this is developed in Chapter 4.

Chapter 3 deals with the Ax-calculus for which we also show how we may take advantage of our studies on
perpetuality in proving strong normalization of a polymorphic lambda calculus with explicit substitutions.

Polymorphism is a typing discipline that allows functions to be applied to arguments of possibly different
types. This promotes code reuse and, in the presence of higher-order functions, is one of the essential
ingredients in any modern functional programming language. The classical example of a polymorphic
function is the identity function I = Az.z. Note that given some term, this function returns a copy of
it, regardless of the nature of the term in question. Thus, for any type 7 we say that I has type 7 — 7.
This may be internalized in the language of types by assigning the type Vr.r — 7 to I, where 7 plays the
role of a type variable, ranging over all elements in the universe of types. System F [Gir72, GLT89] is a
set of typing rules for typing polymorphic terms, together with two rewrite rules: the Zrewrite rule, and
a rewrite rule for instantiating type variables by arbitrary types. We shall augment the F-calculus with
explicit substitutions obtaining F, and, in addition to strong normalization, also study subject reduction
for the extended typing rules. Since in F’ we may abstract not only term variables but also type variables,
two distinct notions of substitution shall be introduced and studied: term and type substitutions. Subject
Reduction and Strong Normalization are then considered. The proof of the latter property is obtained by
applying J-Y.Girard’s ‘candidats de reductibilité’ proof technique [Gir72]. The work reported in Chapter 3
of this part of the thesis has been published as [Bon99a, Bon01]. Chapter 4 is joint work with A.Arbiser
and A.Rios.

Part IT Part II introduces the ¢-calculus of M.Abadi and L.Cardelli {AC96]. This calculus is at the level of
the lambda calculus but is based on objects instead of functions. Objects are composed of methods. The
basic operations on objects are method invocation and method override. Fields may be represented as
methods which do not use their self parameter (Section 5.3). An encoding of the lambda calculus in ¢,

6This should be considered a virtue, not a defect!
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the function-object translation, is provided in [AC96|: each S-rewrite step may be encoded as a number
of ¢-rewrite steps. This encoding makes use of fields and metalevel substitution. We shall augment ¢ with
explicit substitutions & la Av [BBLRD96], previously shifting to a de Bruijn indices notation, obtaining

the Gapes-calculus. An attempt to encode Av in Ggpes by extending in a natural way the function-object
translation shall reveal two obstacles:

1. encoding application: explicit substitutions interfere with the encoding of fields as methods which
do not use their self parameter.

2. encoding abstraction: the use of metalevel substitution in the function-object translation requires a
new notion of explicit substitution in order to be encoded soundly in this setting.

The first issue is taken care of by introducing fields as primitive constructs, the second by introducing
the notion of invoke substitution. Simulation of Mv is then seen to hold. Finally, we consider confluence
and preservation of strong normalization. A weak form of composition between explicit substitution and
invoke substitution (which is also explicit) shall require the latter issue to be considered with care. The
work reported in this part has been published as [Bon99b).

Part III Part IIT is concerned with reducing higher-order rewriting to first-order rewriting modulo. This part
is subdivided into three chapters. An important requirement was fixed at the offset: a well-established
higher-order rewrite formalism was to be used as the departing formalism. Chapter 6 introduces (a
simplification of) Z.Khasidashvili’s Expression Reduction Systems (ERS) [Kha90], and introduces a de
Bruijn notation for it in order to get rid of a-conversion. The result is the SERSy, rewrite formalism.
Chapter 7 introduces the first-order rewrite formalism with explicit substitutions ExERS. We then present
an encoding, called the Conversion Procedure, translating any higher-order rewrite system into first-order
rewriting modulo an equational theory £ (in the EzERS-formalism). The latter equational theory is that
of the substitution calculus. In other words, a rewrite step M —g N in a higher-order SERS4 R may
be encoded as a rewrite step

M =& M’ _’fo(‘R.) N’ =& N

where M’ —,r) N’ is a rewrite step in the first-order version of R (the first-order rewrite system
resulting from applying the Conversion Procedure to R) and M =¢ M’ implements higher-order pattern
matching. Assuming the substitution calculus S¢ from which £ originates is a confluent first-order term
rewrite system, and that M, N are terms without closures, it may be proved that in fact we have:

M —Se MI _’fo(‘R.) N/ —»Se N

That is to say, a higher-order rewrite step is encoded as a series of Sg expansions, followed by a first-order
rewrite step in fo(R), and finally a series of rewrite steps in the substitution calculus’. Finally, we provide
a simple syntactical criterion to determine a subclass of the SERSg, systems which may be encoded as
full first-order systems in the sense that M = M’, where ‘=" denotes syntactical equality. It is fair to say
that, for these systems, higher-order pattern matching may be directly encoded as syntactic first-order
matching. In other words, in order to determine if a rewrite rule is applicable to some term syntactic
matching suffices. This class includes many systems such as, for example, the A-calculus. Chapter 8
argues that for this subclass of systems techniques developed for first-order rewriting may be lifted or
transferred to higher-order rewriting. It does so by transferring the Standardization Theorem [CF58,
HL91, Klo80, Bou85, Mel96]. This is achieved by generalizing a result due to P-A.Melli¢s [Mel00]. The
material reported in chapters 6 and 7 of this part is joint work with D.Kesner and A.Rios and has been
published as [BKR00, BKRO1].

Finally, we conclude and discuss further research directions. Also, the conclusions pertaining to each chapter
have been grouped together in this final chapter.

There is no interdependence between parts I, IT and III, they may be read in any order. Due to the rather
technical nature of this thesis the reader is advised not to cover all proofs on a first reading, notably in chapters 6
and 7. In the hope of contributing to readability I have moved some of the more routine proofs to an appendix.

This work has been typeset using IXIEX and Xy-pic.

7A similar decomposition of higher-order rewrite steps is studied extensively by V. van Oostrom and F. van Raamsdonk [OR94,
Oos94] in order to define a general formalism for higher-order rewriting encompassing many known higher-order rewrite systems in
the literature. See Chapter 7 for further details.




Chapter 2

Rewriting, Lambda Calculus and
Explicit Substitutions

This chapter presents the theory and basic results of rewriting, lambda calculus and calculi of explicit substitu-
tions relevant to this thesis. We shall first give a brief overview of abstract rewriting and shall also consider term
rewriting. We then present the lambda calculus with variable names followed by the lambda calculus where the
variable names are replaced by certain numbers, called de Bruijn indices {Bru72, Bru78]. Finally, we provide a
brief overview of some calculi of explicit substitutions.

The primary aim of this chapter is to fix notation and by no means pretends to be a tutorial on the subject.
As we go along we shall provide the reader with pointers to appropriate literature.

2.1 Rewriting

Rewriting is a model of computation in that a class of objects together with a class of transformation rules
specifying how these objects may be transformed into other objects, is provided. Depending on the choice of
objects we may have different flavours of rewriting. If the objects are terms (i.e. elements of the algebra of
terms as defined in universal algebra) then we speak of term rewriting, if the objects are graphs then we speak
of graph rewriting, and so on.

For a survey on rewriting the reader may wish to consult [Hue80, DJ90, Kl092]. Recently a text book on
rewriting has appeared [BN98].

Definition 2.1 An Abstract Rewrite System (ARS) R is a pair (A4, R) where A is a set of objects and R is a
binary relation on A (i.e. R C A x A). We call R the rewrite relation or the reduction relationof R. If a,b € A
and (a,b) € R then we write aRb or a —x b and say that a R-rewrites or R-reduces to b. If R is clear from the
context we just say that a rewrites or reduces to b.

Note that Abstract Rewrite Systems are indeed abstract since no further requirements than those of Defini-
tion 2.1 are demanded.

We use the ‘=" symbol to denote equality of objects in A. Also, we write g for the smallest reflexive and
transitive relation containing —x. Furthermore, =% stands for the smallest reflexive, symmetric and transitive
relation containing —x. A sequence of the form:

a9 R @] SR 02 PR -.- =R Gp—1 DR Cn
is called a (finite) R-derivation from ag to a,,. Let ag, a1, ...,ay,... be elements of A. A sequence of the form
a9 SR G PR A2 DR ... DR Ap SR ...
is an infinite R-derivation from ag.

Definition 2.2 Let R = (4, R) be an ARS.

o We say R satisfies the diamond property if for every a,b, ¢ € A such that @ - b and a —x c there exists
d € A such that b —»¢ d and ¢ — 5 d.



8 CHAPTER 2. REWRITING, LAMBDA CALCULUS AND EXPLICIT SUBSTITUTIONS

e We say R is locally confluent if for every a,b,c € A such that ¢ —x b and @ —% c there exists d € 4 such
that b ¢ d and ¢ =5 d.

e We say R is confluent if for every a,b,c € A such that a -z b and a —»% c there exists d € 4 such that
b—»r dand c »r d.

e We say R is Church-Rosser if for every a,b € A such that a =g b there exists d € A such that a —»r d
and b >R d.

The items comprising Definition 2.2 are depicted in Figure 2.1.

. =R -b

R o R R ¥R Ry 4R A4

d d d d

Figure 2.1: Properties of ARS

It may be shown that R is confluent if and only if R is Church-Rosser. Note that if R is confluent then it
is locally confluent; the converse is not true, as the following example illustrates:

et
a-<—} c——d
w~_

However if R is terminating then the converse does hold.

Definition 2.3 Let R = (4, R) be an ARS.
e An element a € A is said to be in R-normal form if there is no b € A such that ¢ —% b.
e If a »g b and b is 2 R-normal form then b is said to be a R-normal form of a.

e An element a € A is R-normalizing if there exists a R-normal form of a. If all elements of A are
R-normalizing then we say R is weakly normalizing.

o An element a € A is strongly R-normalizing if every R-derivation starting from a is finite (thus ending in
a R-normal form). If all elements of A are strongly R-normalizing then we say R is strongly normalizing.
We use SN for the set of elements in A that are strongly R-normalizing.

e An element a € A is R-finitely branching if the set {b| a —x b} is finite. R is finitely branching if every
a € A is R-finitely branching.

When R is clear from the context we often omit the prefix ‘R-’ in the above defined notions.

Note that if a term is not strongly R-normalizing then it admits at least one infinite R-derivation. If an
element a € A admits an infinite R-derivation then we write coz (a).

Another word used to designate strongly normalizing ARS is ‘terminating’. Confluence and termination are
two of the most important properties studied in ARS.

Lemma 2.4 (Newman’s Lemma) Let R be an ARS. If R is terminating and weakly confluent then it is
confluent.

See [Hue80] for a proof.
Below IN stands for the natural numbers including the number zero.
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Definition 2.5 Let R = (4, R) be an ARS. We define the function mazredg(e) : A — INU {oo} as

n  if there is a R-derivation a —g ¢; —r @2... 9g @y
mazredr (a) def such that for any R-derivation a —¢ a} =% a5... »r a,, wehave m <n
oo otherwise

Thus if @ € A is strongly R-normalizing and R-finitely branching , mazredg(a) returns the length of the
longest R-derivation from a otherwise it returns the special symbol co.
The proof of the following result is left to the reader.

Lemma 2.6 Let R = (4, Ry UR;) and S = (B, >) be ARS’s such that S is strongly normalizing. If

1. (A, R;) is strongly normalizing, and

2. there exists a function f : A — B such that ¢ — g, bimplies f(a) > f(b) and @ — g, b implies f(a) > f(})?,
then R is strongly normalizing.

We shall now consider term rewriting. More precisely, we shall present first-order term rewriting: the set of
objects are first-order terms.

Definition 2.7 (First-Order Terms) A signature ¥ is a pair (¥, V) where Z; is a set of function symbols,
each of which is equipped with a natural number called its arity, and V is a denumerably infinite set of objects
called variables. The set of first-order terms generated by X is the smallest set 75 such that:

l. forallz €V, z € Tx.

2. for every function symbol g € ¥y of arity n, for every a,,...,an € Tz we have g(a1,...,e,) € Tx. Ifn =0
then we just write g.

The set Ty, is known as the term algebra over signature X. A term without variables is called a ground term.

Definition 2.8 (Subterm) Let a,b € Ty,. We say that a is a subterm of b iff a C b holds. The latter is defined
as the smallest reflexive relation such that: if ¢ C d then ¢ C g(ay,...,85_1,d,0:41,...,0,) for all g € Ty of
arity n and for all ay,...,8;-1,Q4+1,...,a8n € Tx. If a is a subterm of b and a # b then we say that a is a strict
subterm of b, written a C b.

Given some term a € T we may replace the variables in a by other terms. This operation is known as
(first-order) substitution, and is specified in terms of assignments.

Definition 2.9 (Assignment) Let £ = (X, V) be a signature. An assignmentover L is a functionp: ¥V — Tg
such that p(z) # z for only finitely many variables. An assignment can be extended homomorphically to a
mapping g : Tg — Ty, as follows:

£ p(z)

9(p(a1), ..., P(an))

p(z) -
Plg(ar,...,an)) =
where g € Ty of arity n. This extension is referred to as a substitution and is abbreviated p (i.e. without the
overlining).

Thus a substitution replaces simultaneously all occurrences of variables by their respective p-images.

Definition 2.10 (Unifiable Terms) Let T be a signature. Two terms a,b € Ty are said to be unifiable if
there exists a substitution p over X such that p(a) = p(b). This substitution is known as a unifier of a and b.

The notion of unifiable terms shall be required when defining orthogonal first-order term rewrite systems
(Definition 2.12).

1The relation > is defined in S as expected: a > bifa > bora = b.
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Definition 2.11 (First-Order Term Rewrite System) A first-order term rewrite system (TRS) over T is
a pair R = (X, R) where £ = (Zy,V) is a signature and R is a set of pairs of terms (I,r) in 7y called rewrite
rules (1 is the LHS? and 7 the RHS of the rule) such that: [ is not a variable, and the set of variables in 7 are
included in that of 1.

The rewrite relation induced by R is written a —% b and defined as:

p substitution, (I,7) € R a—-rb ge€Zjofarityn>1

p(l) == p(r) g(e1,..-,8i-1,0,8541,...,8n) == g(a1,...,8i-1,b,Gi41,. .., an)

Note that if the LHS of a rewrite rule were allowed to be a variable then the resulting TRS would be trivially
non-terminating. The same happens if we permit occurrences of variables on the RHS which do not occur on
the left-hand side. In the latter case we also risk rendering our TRS trivially non-confluent.

Definition 2.12 (Orthogonal Term Rewrite Systems) Let R = (X, R) be a TRS.

e A term a is linear if all variables occur at most once in a. R is said to be left-linear if the LHS of each
rule in R is linear.

e Let (I,7) and (g, d) be rewrite rules in R. If there exists a non-variable subterm I of ! such that I’ and g
are unifiable, then (I,7) and (g, d) are said to overlap. Since by this definition every rewrite overlaps with
itself we shall rule out this case, in other words, if I’ = I, and I’ and g are uniflable then we shall demand
that (I,7) and (g, d) are different rewrite rules. R is said to be non-overlapping or non-ambiguous if R
does not contain a pair of overlapping rewrite rules.

e If R is left-linear and non-overlapping then we say it is orthogonal.

Orthogonal TRS enjoy good properties. In particular, all orthogonal TRS are confluent [Hue80].

2.2 The Lambda Calculus

The theory of lambda calculus was introduced by A.Church in the 1930s [Chu32| as part of a more general theory
related to his studies on the foundations of mathematics. By orienting the equations of the theory we obtain
a confluent rewrite system, a result which was first proved for the equational theory in order to establish its
consistency. The lambda calculus deals with functions and function application, and at the same time achieves
a high level of abstraction by using an intuitive set of constructors to represent them and just one rule, namely
the application of a function to an argument. Terms represent functions and the functions are put to work by
applying them to arguments. The strength of the calculus lies in that an argument can be another function. In
fact, a function may by applied to (a copy of) itself.

We shall present a brief introduction to the lambda calculus. First we introduce the usual presentation with
variables, then we shall consider a presentation in which variables are replaced with numbers called indices. For
further details the reader is referred to the standard reference [Bar84]. See also [Kri90].

2.2.1 The Lambda Calculus with Names
Definition 2.13 Let V be a denumerably infinite set of variables.

e The set of terms of the lambda calculus are called lambda terms or A-terms and denoted 7. They are
defined as the smallest set such that the following three conditions hold:

~ ifz €V then z € T,
— if My, My € T, then (M]Mg) € 7,, and
— if M €T, and z € V then (Az.M) € 7,.

We shall often abbreviate definitions of terms by using BNF-style notation. In this case we would write:

M:=z|(MM)| (Xz.M)

2LHS stands for left-hand side and RHS for right-hand side.
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where z ranges over the objects in V.

In order not to clutter the notation of terms with many parenthesis some conventions are taken into
account. Application associates to the left and binds stronger than abstraction. For example, Az.wzy
stands for (Az.((wz)y)). A term of the form M;M; is called an application, a term of the form Az.M is
called an abstraction. The symbol ‘X’ is called a binder and z in ‘Az’ is called a binding variable.

o The set of free variables of a lambda term M is denoted FV (M) and defined as:

FV(z) e (1}
FV(M\M,) & FV(M)UFV(M,)
Fv(pa.M) & Fv(M)\{z}

where ‘\’ is the subtraction operation on sets. A lambda term M is closed if FV (M) = 0. The occurrences
of (non-binding) variables in a term which are not free are said to be bound. Thus, if M = Az.wzy then
FV (M) = {w,y}, and z is a bound variable. The term M = Az.y has no bound variables. Note that two
different occurrences of the same variable need not be both bound nor free, as illustrated by the following
example: (\z.z)z.

We shall use letters M, N,O, P, ... to denote arbitrary lambda terms. The subterm relation is defined as in
the first-order case by considering the signature X = (X, V) where the set of function symbols Xy consists of
the application symbol and an infinite number of ‘binder’ symbols Az, one for each =z € V.

It is common to identify terms differing only in the names of the variables they bind. For example, Az.z and
Ay.y are considered as representing the same function, namely the identity function. Terms identified in this
way (by renaming their bound variables) are called a-convertible or a-equivalent. We write =, for the relation
of a-conversion. Def. 2.14 below shall provide a formal definition of a-conversion.

Note that the subterm relation is not compatible with renaming in the following sense: if P C Q and
P’ =, P, then not necessarily do we have P’ C Q. Likewise, if P C Q and @’ =, Q, then not necessarily do
we have P C Q’. For an example of the first case consider P = Az.z, Q = Ay.\z.z, and P’ = )\z.z. The second
case may be illustrated in a similar way.

Renaming is important for defining substitution. Substitution is the notion corresponding to replacement
as seen in TRS. However, in TRS any variable may be replaced by any term, whereas in the lambda calculus
only the free variables may undergo such a transformation. This is a key difference. Indeed, let us consider the
lambda terms as first-order terms by using the signature X, as defined above. Then the assignment p(z) = y
and p(z) = z for all z # z applied to the term M = M\y.z yields p(\y.z) = Ay.y. The problem with this result
is that a variable which enjoyed the status of being free in M, namely z, has now been replaced by a variable
which is bound (y). Had we first renamed the bound variable y in M to z yielding Az.z then applying p we
would have obtained Az.y, which is intuitively what we expect if abstractions are considered as representing
functions.

Definition 2.14 (Substitution) o The result of substituting a term IV for all free occurrences of a variable
z in a term M is written M{z «— N} and defined inductively® as follows:

z{z — N} e N

y{z < N} E oy ifaty

(MiMo){z — N} ¥ M {z — N}Mz{z — N}

(My.M){z — N} e Az.M,{y — z}{z — N} where z does not occur at all in A\y.M;, zor N

e a-conversion of lambda terms, denoted =, is the smallest equivalence relation such that:

if M{z —y} = N then Az.M =, Ay.N
if My =4 Ny and M3 =, Ny then M;M; =, NN,

3In full precision, it is defined by induction on the length of M, that is to say the number of variables, abstractions and
applications in M.
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The important clause of the definition of substitution is the last one: when a substitution traversing a term
reaches a lambda binder we rename its bound variable to a fresh one in order to avoid unwanted capture of
variables. Note that any variable z satisfying the conditions of this clause may be selected. Thus one may think
of M{z « N} as a class of terms rather than just one term. The terms in this class are a-equivalent. Therefore,
substitution is defined on a-equivalence classes of terms. It may be shown that it is well-defined:

Lemma 2.15 If M, =, M3 and N) =, N3 then My{z — N,} =4 Ma{z — N,}.
The following variable convention is adopted in order to ease the presentation of the calculus.

Remark 2.16 (Variable Convention) Names of bound variables are different from the names of free vari-
ables, and moreover, different occurrences of the lambda binder have different binding variables.

Thus we consider (Ay.y)z instead of (Az.z)z, and (Az.zz)(\y.yy) instead of (Az.zz)(Az.zz). We shall
identify a-equivalent terms, thus ‘=" shall stand for ‘=,’, unless otherwise stated.
Substitution satisfies the following property.
Lemma 2.17 (Substitution Lemma) M{z — N}{y — O} = M{y — O}{z — N{y < O}} if z ¢ FV(O).
The B-rewrite rule is stated as follows.
Definition 2.18 (B-rewrite rule) We say M B-rewritesto N iff M —g N, where the latter relation is defined
by the following inference schemes:
M, —g N, Mz —g N3 M —g N
Az M)N =g M{z =N} MM, 55 My MiMa—5 MyNy  Az.M —p Az.N

The leftmost inference scheme of Def. 2.18 is called the 3-rewrite aziom. It is the only inference scheme which
makes use of substitution. The substitution M {z «— N} takes place at the metalevel, thus it is external to the
calculus. The B-rewrite rule is sometimes defined by exhibiting just the S-rewrite axiom and then demanding
that the ‘contextual closure’ of this axiom be taken. Contextual closure means we should add the remaining
inference schemes of Def. 2.18 to the B-rewrite axiom. We too shall follow this practice in order to shorten the
presentation, whenever possible. Nevertheless, in this chapter and for expository purposes we present the full
inference schemes for some of the calculi. Let us see an example of a B-derivation in the lambda calculus.

Example 2.19 Let A = Az.zz. We may apply A to itself and obtain the following B-derivation:
(Mz.zz)A —p (zz){z — A} = AA -5 AA —p . ..

Since we have identified a-equivalent terms it must be verified that the 3-rewrite relation is well-defined.
Indeed, the following result holds:

Lemma 2.20 If M =, M’ and M —g N then there exists a lambda term N’ =, N such that M’ —5 N’.
Two further properties satisfied by the S-rewrite relation [Bar84] are:

Lemma 2.21 If M —g M’, then for every lambda term N we have:
1. M{z — N} —»g M'{z — N}.
2. N{z «~ M} —»g N{z — M'}.

This may be proved by induction on M in the first item, and by induction on N in the second one.

The abstract rewrite system induced by the lambda calculus is obtained by setting A = 7, and R = —;.
We thus say that the lambda calculus is confluent if the induced abstract rewrite system is, and likewise for
the other notions we saw in the previous section. Example 2.19 shows that the lambda calculus is not strongly
normalizing.

Proposition 2.22 (Confluence of the lambda calculus) The ARS (7, —p) is confluent.

See [Bar84] for a proof.

4Sometimes, just the axiom is provided and the fact that the contextual closure must be taken is left implicit. In this case the
axiom is called “rule” and so we speak of the 3-rule.
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2.2.2 The Lambda Calculus with De Bruijn Indices

The fact that the definition of substitution (Def. 2.14) is not a function on terms but rather on equivalence
classes of terms may be seen as a drawback when implementing it on a computer. In particular, the selection
of some appropriate variable z requires checking that it is not used already (we say z is a fresh variable). A
simple solution® to this problem is that of replacing variable names (an ‘absolute addressing’ mechanism) with
de Bruijn indices [Bru72, Bru78] (a ‘relative addressing’ mechanism). A given occurrence of a bound variable
in a term, say z, is replaced by a number which indicates to which binder it corresponds, counting upwards
in the tree representation of the term starting from the occurrence of this variable. For example, Az.(Ay.(zy))
is replaced by A(A(21)). This situation is depicted in Figure 2.2, where the ‘@’ symbol stands for application.
Note that although the tree representation of a term has not yet been defined formally, we leave it on intuitive
level for the time being. A formal definition is given in Chapter 8 (Section 8.2).

O <—> <— >

2/ \1

Figure 2.2: An example de Bruijn term

The identity function Az.z is replaced by Al, also Ay.y is replaced by A1. Representation of free variables is
retrieved from a given ordering of the variables in such a way that an occurrence of a variable n represents the
(n — m)-th free variable in the aforementioned ordering when n > m and there are m lambda binders above
this occurrence n. For example, the term Az.(yz) is written as A(23) assuming y = z; and z = z,.

Since variable names are no longer used there is no need for a-conversion. So can we say that substitution
in the presence of de Bruijn indices notation is reduced to replacement? Certainly not. Consider (A1){{1 — a}
where a is any indexed term, and b{n — c} stands for the result of replacing all occurrences of the index n in
b for c¢. Then if we use replacement we obtain (A1){1 «— e} = Aa, an unexpected result since the index 1 in
Al represents a bound variable and hence cannot be substituted for any term at all. When traversing a lambda
symbol the index to be replaced should be incremented by one.

A further inconvenience may arise with unwanted capture of free indices (i.e. indices representing free
variables), analogous to the case of variable names already discussed. An example is (A2){1 «— 1}. Assuming
the above mentioned problem on bound indices has been solved, we have,

241 — 1} = A2f2<1}) = Al

The index 1 which is substituted for 2 (i.e. the rightmost occurrence of the symbol 1 in the expression (A2){1 «
1}) represents the first variable in the reference context, however after the substitution has taken place the same
index 1 is bound in Al. Thus when traversing a lambda binder substitution shall have to do some index adjusting.
All in all the de Bruijn indices notation takes care of some problems (non-determinism in the definition of
substitution) but introduces others (index adjustment).
We now introduce the formal definitions. The lambda calculus as introduced in Section 2.2.1 shall be referred
to as the named lambda calculus.

Definition 2.23 o The de Bruijn terms of the indexed lambda calculus, denoted 7,,,, are defined as:
a :=n| (aa) | (Aa)

where n is a natural number greater than zero. Notational conventions similar to those of the named
lambda calculus are adopted in order not to clutter the notation.

3There are other possible solutions which are not dealt with in this thesis such as the use of de Bruijn levels [LRD95] and
Berklings notation [Ste00].
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e The set of free indices of a de Bruijn term a, denoted FI(a), is defined as:

FIn) % {n}
FlI(a1a2) def FI(a1)U FI(a2)

FI(Aa;) % FI(a)\1
where for every set of indices S, the operation S\\j is defined as {n —j | n € S and n > j}.

There are some presentations of de Bruijn indices notation in which the first index is O rather than 1.
However, this is largely a matter of taste.

We shall use letters a, b, ¢, .. . for indexed lambda terms. The subterm relation is defined as in the first-order
case by considering the signature (X, V) where X consists of the application operation, the lambda binder
and all the indices interpreted as constants. The full set of first-order terms thus obtained is called the set of
open de Bruijn terms. We restrict our attention to the induced subterm relation over the restricted set of closed
terms, that is, those terms that do not have occurrences of first-order variables (objects in V).

We shall now consider the definition of substitution in the de Bruijn indices setting. As mentioned above,
this requires introducing a family of functions that perform index updating, namely the updating functions.

Definition 2.24 (Indexed substitution) The result of substituting a term b for the index n in a term a is
denoted ef{n — b} and defined:

(@102)fn — b} ¥ aifn — bhas{n — b}

(Aarfn —b} E Mafn+1<b})
m-—1 ifm>n

m{n — b} L ur®) ifm=n
m fm<n

where for i > 0 and n > 1 we define the updating functions U*(e) as follows:

Ur(aras) & UP@)UP(an)

Ura) E MUR (@)
n def m+n-1 ifm>1i
urm) = \{m ifm<i

Note how the index n is incremented by one unit when substitution traverses a lambda binder in the second

clause of the definition of substitution. Also, the reason for defining m{n « b} % m — 1 if m > n is that
de Bruijn substitution shall be generated by the (de Bruijn version of the) B-rewrite rule, hence the decrement
follows from the fact that a lambda binder has been eliminated. So one might say that this definition is tailored

for the lambda calculus.

A minor simplification is to define m{{n «— b} def UZ~1(b) when m = n and modify the definition of the
updating functions accordingly by allowing superindices to be zero and defining U*(m) 4 m +n when m > i.

The Substitution Lemma (Lemma 2.17) may also be formulated in the indexed lambda calculus. In this
formulation condition z ¢ FV(O) of Lemma 2.17 is reflected as a condition on the indices in the de Bruijn

indices setting, namely that ¢ < n.

Lemma 2.25 (Substitution Lemma for the Indexed Lambda Calculus) Let a,b,¢c € 7,,,. Then for all
n,i > 1 such that i < n we have afi — b}{n —c} =afn+1 —cHi —b{n—i+1 < c}}

The Bqp-rewrite rule is stated as follows.

Definition 2.26 (Bgs-rewrite rule) We say a Bgs-rewritesto biff @ —g,, b, where the latter relation is defined
by the following inference schemes:

a1 =g, b az —py b2 a—py b

(Aa)b —p, ofl < b} a1a2 —g,, biaz a1a2 —g, a1bs Aa —g, Ab
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The leftmost inference scheme of Def. 2.26 is called the B45-rewrite ariom. Once again, it is not uncommon
to present the Bgj-rewrite rule by taking the contextual closure of the Bap-rewrite axiom, and exhibiting just
this axiom. In the indexed lambda calculus the infinite derivation of Example 2.19 takes the following form.

Example 2.27 Let Agy = A(11). We may apply Ay, to itself and obtain the following B4p-derivation:

(M11)Agp —ps (1)1 Aa}
= 1{l — Ap}ifl — Aw}
= Uy (Aap)U3 (Ags)
= AgpAgs
—gs Aala

Ba
Note that U3 (Ags) = AMUL(1)UL(1)) = A(11) since 1 < 1.

As in the named lambda calculus, the indexed lambda calculus induces an abstract rewrite system by taking
the pair (A, R) where A =7T,, and R =—pg,,.

Proposition 2.28 (Confluence of the indexed lambda calculus) The ARS (7, ,,—g,,) is confluent.

See [KR98] for a proof. The latter proof is based on translations between terms with variables and indexed
terms.

2.3 Calculi of Explicit Substitutions

This section introduces the concept of explicit substitutions and provides a brief overview of some calculi of
explicit substitutions. The central idea is to depart from the lambda calculus and introduce new rules for
computing the substitution process from within the language, rather than interpret it as a metalevel operation.
However since we have provided the reader with two different presentations of the lambda calculus, the named
lambda calculus and the indexed lambda calculus, the calculi of explicit substitutions which we shall overview in
this section shall, accordingly, be based either on the named lambda calculus or on the indexed lambda calculus.
Since variable names provide a more user-friendly environment we shall begin the section by considering the
Ax-calculus. After that, three calculi of explicit substitutions based on the indexed lambda calculus shall be
dealt with, Av, Ao and A\ws. Note that this amounts to a small fraction of the calculi of explicit substitutions
published in the literature. A recent survey including pointers to relevant literature is [KR0O0].

2.3.1 The A\x-calculus

The Ax-calculus [Ros92, Blo97] is a calculus of explicit substitutions for the named lambda calculus. We shall
follow R.Bloo’s exposition of the calculus from [Blo97].
As the reader may recall, the S-rewrite axiom (Def. 2.18) takes the following form:

(Az.M)N -3 M{z — N}

The expression M {z — N} denotes a term, namely the one resulting from M by substituting all free occurrences
of the variable z in M with N. Therefore, the substitution takes place in one go, as an atomic operation. In
calculi of explicit substitutions this operation is computed from within the calculus by means of new rewrite
rules. The B-rewrite axiom is replaced by the following Beta-rewrite axiom:

(Az.M)N —5 M{z := N)

This time, the expression M(z := N) is just a new term in the language, and no substitution operation is
fired. One may regard M{z := N) as a term with a pending substitution. This pending substitution is called a
substitution or a closure. The intended meaning of M (z := N) is of course the term resulting from substituting
all free variable occurrences of z in M by N. However since substitution is left pending in M(z := N) new
rules must be introduced in order to compute it. These additional rules determine the substitution calculus.

As a result one B-rewrite step shall be refined into a series of smaller rewrite steps in the calculus of explicit
substitutions. First a Beta-rewrite step shall create a closure, then the rules of the substitution calculus are
put to work in order to compute the pending substitution.
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Definition 2.29 Let V be a denumerably infinite set of variables. The terms of Ax, denoted 7., are defined
inductively as follows:
M=z |(MM)| (Az.M) | (M(z := M))

where z ranges over V. A term is called pure if it contains no subterms of the form M, (z := M,). Similar
notational conventions to that of the lambda calculus are adopted. Furthermore, we shall adopt the convention
that substitution associates to the left and binds stronger than both application and abstraction.

It is instructive to compare the definition of the Ax-terms to that of the terms of the lambda calculus
(Def. 2.13). An extra binder has been added. We shall use letters M, N, O, P,... for Ax-terms, and u, v, w, z, 9, 2
for variables. A term of the form ‘M (z := N)’ is pronounced ‘M where N is substituted for 2’. We call M the
target of the substitution, IV its body, and z the substitution variable.

In Chapter 3 we shall make use of the size of a Ax-term. The size of a Ax-term is the number of variables,
applications, abstractions and substitutions in it. This may be formalized as follows:

Definition 2.30 The size of a Ax-term M is written |M| and defined inductively as follows:

aef

|| 1

| M, M, L 14 My + M,
|Az.M| €1+ M|
IMy(z = Ma)| & 1+ M|+ | My

For example, |Az.(yy)(z := u)| is 6.

Definition 2.31 The set of free variables of a Ax-term M, denoted FV (M), is defined inductively as follows:

FV(z) e (5}

FV (M M,) e FV(My) U FV(M)
FV(\z.M) L FVv(M)\ {z}
FV(Miz:=Ms)) = (FV(M)\{z})UFV (M)

From this definition one may see that a closure acts as a new binder in the language, in a term M;(z := M)
all free variable occurrences of = in M, are said to be bound by the closure.

Since we are still in the presence of variable names in the extended language of Ax we must extend the notion
of a-conversion accordingly. This requires first defining metalevel substitution. Note however that metalevel
substitution shall not be used in the rewriting process, except for possible renamings of bound variables.

Definition 2.32 (Metalevel Substitution and a-conversion) e Substitution in Ax is defined induc-
tively as follows:

def

z{z — N} = N
y{z — N} Ly ifsty
(M, M,){z — N} € M,{z — N}Mo{z — N}
(Ow.M){z — N} ¥ M {y « 2}z — N}
where z does not occur at all in \y.M;, z or N
Mi(y:= M)z — N} & My zHz — NYz:= Mz{z — N})

where z does not occur at all in My, M,y or N

e o-conversion (denoted =,) on Ax-terms is defined as the least equivalence relation such that:
if M{z —y} =a N then Mz.M =, Ay.N
if My =4 N; and Mz =, N> then M;M; =5 N1 N>
if M1{$ — y} ~a N1 and Mz =a Nz then Ml(:B = Mz) “a N](y = Ng)

We write [M], for the a-equivalence class of M.
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A variable convention similar to the one adopted for the lambda calculus is adopted here.

Remark 2.33 (Variable Convention for Ax) Names of bound variables are different from the names of free
variables, and moreover, different occurrences of the lambda binder and the substitution binder have different
binding variables.

We now consider the rewrite rules of the Ax-calculus.

Definition 2.34 We say M \x-rewritesto N iff M —); N, where the latter relation is defined by the following
inference schemes:

e ION o M@= (N = P) o Mz = YN = P) "7
Lam Var
(My.-M)(z := P) =z \y.(M(z = P)) z(z:=P) »x P
z ¢ FV(M)
M{z:=P)—->u M

My - My M; = N>

MiM; — N1M2 MiM2 —x: Mi1N,
M- N My = My

Az.M — )y Az.N Mi(z := M) —xz N1z := Ma)
M; - N

M1(a: = M2) —ax M1(.’.‘B = NZ)

An equivalent presentation, as discussed in Def. 2.18 for the A-calculus, is given in Figure 2.3. If these
rules are adopted as axiom schemes and the contextual closure is taken (meaning that the remaining inference
schemes of Def. 2.34 are added to these axiom schemes) then we obtain the inference schemes of Def. 2.34. So
the presentation of Figure 2.3 may be seen as a shorthand for that of Def. 2.34.

(Az.M)N —Beta Mz :=N)

(MN)(z:=P) —app M(z:=P)N(z:=P)
(M.M)(:=P) —ram My.(M(z:=P))

z{z := P) —ver P

M(z := P) —g M z ¢ FV(M)

Figure 2.3: Alternative presentation of Ax

The Ge-rule is referred to as the garbage collection rule; the substitution body P in this rule is called garbage.
The Ax-calculus without the Beta-rule is called the substitution calculus of Ax and is denoted by x. We write
x \ Gc for the rewrite system x without the Gc-rule. The x-calculus is strongly normalizing and confluent, and
its normal forms are pure terms [Blo97, Ch.13].

Lemma 2.35 The x-calculus is strongly normalizing, confluent, and the x-normal forms are pure terms.

Thus if M € T); then we use x(M) to denote its unique x-normal form. The reason for calling x the
substitution calculus is that the following result holds:

Lemma 2.36 Let M,N € T); and y € V. Then x(M(y := N)) = x(M){y « x(N)}.

Thus indeed the usual metalevel notion of substitution (Def. 2.14) may be computed step-by-step via the
x-calculus.

A variant of the Ax-calculus is the Ax~-calculus whose rules are those of the Ax-calculus except for the
Gc-rule which is replaced by the more restricted garbage collection rule y(z := P) — vary y where z # y. Note
that Ax is more general than Ax~ in the sense that — ;- C—xx but — z £ — .
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Remark 2.37 Every Ax—-redex is a Ax-redex.

The abstract rewrite system (A, R) induced by Ax is obtained by setting 4 = 7,; and R =—,,. Thus
notions such as confluence and normalization make sense in Ax too. For example,

e SN, stands for the set of Ax-terms that are strongly Ax-normalizing.

o If M € SNj; then mazred :(M) denotes the length of the longest Ax-derivation starting from M to
its (unique, see Lemma 2.39 below) Ax-normal form. Note that since there are only a finite number of
Ax-redexes in any Ax-term, we may conclude Ax is finitely branching.

Definition 2.38 A substitution (z := N) is called void in M(z := N) if ¢ ¢ FV(x(M)). Void reduction,
denoted 5 ,;, is Ax-rewriting inside the body of a void substitution. More precisely, it is obtained by the

inference scheme:
N = N' z ¢ FV(x(M))

M(z := N) -, M{z:= N')

together with the last five inference schemes of Def. 2.346.
The following two results are taken from [Blo97].
Lemma 2.39 (Simulation, Projection, Confluence) ¢ (Simulation). Let M,N be terms in 7,. If
M —g N then M 5, N.
o (Projection). Let M, N be terms in 7;.
1. If M — )z N then x(M) —»g x(N).
2. If M — o N is not a void reduction then x(M) -13,5 x(N).
o (Confluence). The ARS (7,z, —z) is confluent.

Perhaps the most interesting property enjoyed by Ax is preservation of strong normalization (PSN): if a is
strongly f-normalizing then a is strongly Ax-normalizing. The proof of this fact is not straightforward. Several
techniques have been introduced for proving PSN of which we shall see a few in Part I of this thesis. As regards
the Ax-calculus in particular, the most appropriate source for further information is [Blo97]. We provide a new
proof of this result in Section 4.1.2, of Chapter 3.

Proposition 2.40 Let Ax*® def {M €Tz |VYNCM, x(N) € SN);:}. Then Ax™® = SN ),.

The above characterization of SN ,, first appeared in [BG96]. The same work includes in the list of future
research lines the study of an inductive characterization of the set SN ;. By inductively we mean describing the
set as the smallest set closed under some set of rules, as when defining the set of A-terms or the set of theorems
of some logic system [Acz77). This shall be dealt with in Chapter 3. Note that since all strongly S-normalizing
pure terms are in Ax* one obtains PSN of Ax.

Proposition 2.41 (PSN of Ax) The Ax-calculus enjoys preservation of strong normalization.

Finally, we define Ax-rewrite strategies. They shall be used in Chapters 3 and 4.

Definition 2.42 (\x-Rewrite Strategy) 1. A one-step Ax-rewrite strategyis a function F(e) : Thy — T
such that for all M € T); we have M —,; F(M), unless M is in normal form, in which case F(M) = M.

2. A many-step Ax-rewrite strategy is a function F(e) : 7\ — T); such that for all M € 7); we have
M &, F(M), unless M is in normal form, in which case F(M) = M.

3. A strategy is called Ax-perpetual if 00z(M) implies 00y (F(M)).

6Where the occurrences of —y; have been replaced by — ;.
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If F(e) is a one-step Ax-rewrite strategy then an F(e)-derivation is a derivation of the form M —);
F(M) —=xx F(F(M)) =z .... Similarly, if F(e) is a many-step Ax-rewrite strategy then an F(e)-derivation
is a derivation of the form M 5,; F(M) 5,; F(F(M)) 5, .... Likewise, we may define rewrite strate-
gies for other calculi such as the lambda calculus. If our interest in Ax-strategies is that they construct valid
Ax-derivations in a deterministic manner then Def. 2.42 shall suffice. However, note the following:

o A strategy as defined above does not necessarily indicate which redex occurrence to contract in order
to go from M to F(M), it is possible that there be more than one. Consider for example the term
M =z(y := N)(y := N) wherey ¢ FV(N) and z # y. Then M —); z(y := N) by rewriting two different
Gec-redex occurrences which we indicate by underlining them: z(y := N)}{(y := N) or z{y := N)(y := N).

o A further source of ambiguity is when a redex occurrence does not suffice to determine which rewrite rule
should selected to rewrite, this occurs in rewrite systems where two different rules overlap at the root
position and the result of applying either of them is the same (see the example of the parallel-or rewrite
system in [KOOOla)).

In Chapter 3 we shall study perpetual rewrite strategies for Ax. When formulating the strategies we shall
indicate the redex occurrence to be contracted and the rewrite rule too.

2.3.2 The Av-calculus

The first calculus of explicit substitutions based on de Bruijn indices notation that we shall look at is the
Av-calculus of P.Lescanne [Les94, BBLRD96].

Definition 2.43 The terms of the Av-calculus, denoted 7., are defined by the following two sorted grammar:

Terms M := n|(MM)|(M)|(M]s])
Subst s TIM/|1(s)

where 7 is a natural number greater than zero. Once again, the ‘C’ symbol is used for the subterm relation,
and it is defined as expected. Terms of sort Terms without subterms of the form M(s] are called pure terms.

In contrast to the Ax-calculus terms may be of two sorts, namely Terms or Subst. Terms of the former
sort speak for themselves, terms of the latter sort represent substitutions. A substitution may have one of
the following forms: either it is a shift substitution (7), or it is a simple substitution (M/), or it is a lift of a
substitution s (1} (s)). The usual conventions that application and e[e] associate to the left, and that e[e] binds
stronger than application which binds stronger than ), are adopted. Also repeated application of lift is defined

as follows: 1° (s) & s, 4"*! (s) =t (4™ (s)). All substitutions in Av are of the form 4™ (M/) or 4™ (1) for n
some natural number.

Definition 2.44 We say M \v-rewritesto N iff M —),, N, where the latter relation is defined by the contextual
closure of the following inference axioms:

(AM)N —Beta M[N/]
(MN)|s] —App M(s|N(s]
(/\M)[S] —*Lam /\(M[TT (3)])
(n + 1) [ﬂ (3)] = RVarLift n[3][T]

1t ()] —FVarLife 1
(n+1)[M/] —rver n

1[M/] —FVar M

n[1] —vVarshift n+1

The Av-calculus without the Beta-rewrite rule is the substitution calculus, or the wv-calculus. The shift
and simple substitutions may be seen as basic substitutions, whereas the lift operator adjusts substitutions.
Shift represents the substitution which increments all the free indices of its target by one unit. For example,
1[1] —av 2. However (A1)[1] =y Al, since the index 1 is not free in the term Al.

Note how the lift substitution operator is introduced when a substitution traverses the lambda binder in
rule Lam. 1 (s) indicates that if s assigns some term M to index n then it should now do so to index n + 1.
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Also it indicates that if M is ever assigned to some index n + 1 then the free indices in M must de adjusted
since they shall now appear under a new lambda binder (the one s has just traversed). These two observations
are expressed by the rules RVarLift and FVarLift.

Lemma 2.45 The v-calculus is strongly normalizing, confluent, and the v-normal forms are pure terms.

The relation between explicit substitution and the updating operators and implicit substitutions is expressed
in the following lemma.

Lemma 2.46 (Relating explicit and metalevel substitution) Let M, N € 7, of sort Terms. Then:
o u(ME™ (D]... (™ (M) =URLL s, (W(M)).
o y(M[t™(N))) = v(M){n < v(N)}.
Other properties of the Av-calculus are:
Lemma 2.47 (Simulation, Projection, Confluence) ¢ (Simulation). Let M, N be terms in 7,,. If
M —g, Nthen M 5,, N.
o (Projection). Let M, N € Ty, of sort Terms. If M —,, N then v(M) —»g, v(N).
e (Confluence). The ARS (Thv, —xv) is confluent.

As Ax, v also enjoys preservation of strong normalization [BBLRD96). The technique which is used to
prove this result shall be studied in detail in Chapter 3.

Proposition 2.48 (PSN of \v) The \v-calculus enjoys preservation of strong normalization.

2.3.3 The \o-calculus

The Ao-calculus was introduced by M.Abadi et al [ACCL91] and has its roots in the work of P-L.Curien [Cur86).
It is usually regarded as the first calculus of explicit substitutions whose properties such as confluence and
strong normalization of the substitution calculus were studied. For some time it was not known if Ao enjoyed
preservation of strong normalization until P-A Melli¢s introduced a counterexample in [Mel95]. An analysis of
this counterexample is provided in R.Bloo’s PhD thesis [Blo97].

Definition 2.49 The terms of the Ao-calculus, denoted 7, are defined by the following two sorted grammar:

Terms M == 1| (MM)|(\M)]|(M[s)
Subst s = T|id |M-s| sos
Indices greater than 1 are expressed with the aid of explicit substitutions: 2 def 1[1], 3 def 1[T o 1], and so
on. Once again, the ‘C’ symbol is used for the subterm relation, and it is defined as expected. Terms of sort
Terms without subterms of the form M|s] are called pure terms.

Definition 2.50 We say M \o-rewrites to N iff a —,, b, where the latter relation is defined by the contextual
closure of the following inference schemes:

(AM)N — Beta M(N - id)
(MN)[s] —App M(s|N(s]
(AM)[s] — Lam AM([1-(so 1))
M[S][t] = Clos M[s [} t]

1[M . 3] ~VerCons M

1[id) — Varld 1

(M-s)ot — Map Mlt]- (sot)
idos —IdL s

(81082)083 —ass 810 (s2083)

To(M-s)  —shitcons S
Toid — Shiftld T
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Although both MAv and )Mo have terms of sort Terms and Subst, only Ao provides inference schemes for
rewriting substitutions. Indeed, the last five rules of Def. 2.50 rewrite terms of sort Subst. Also, in contrast to
v, Ao provides composition of substitutions, if s and ¢ are substitutions (i.e. terms of sort Subst) then sot
denotes their composition: first apply substitution s then apply substitution ¢.

Ao without the Beta-rewrite rule is called the substitution calculus and is denoted o.

Lemma 2.51 The o-calculus is strongly normalizing, confiuent, and the o-normal forms are pure terms.

See [ACCL91, Rio93, Zan95|.

Note that although there is no rule of the form soid — s or of the form M(id] — M they are admissible in
the sense that all its ground instances may be simulated in the o-calculus [ACCL91].

The following lemma. relates Ao-reduction and B-reduction, and also mentions confluence.

Lemma 2.52 (Simulation, Projection, Confluence) ¢ (Simulation). Let M, N be terms in 7,,. If
M —g, N then M 5,, N.

e (Projection). Let M, N € T,, of any sort. If M —,, N then o(M) —g, a(N).
e (Confluence). The ARS (T)s, —*xo) is confluent.

The Ao-calculus exhibits a more complex dynamical nature than Ax and Av. This is due to the presence
of substitution composition. A consequence of this fact is failure of preservation of strong normalization. This
result was proved by P-A.Melliés [Mel95] and came somewhat as a surprise. Also, it has contributed significantly
to boost researchers’ interest in calculi of explicit substitutions.

2.3.4 The MAws-calculus

The Aws-calculus is a calculus of explicit substitutions based on de Bruijn indices notation which also enjoys the
presence of substitution composition however in a different way than that of A\o. Moreover, so called update tags
are also present. A term with an update tag is of the form (i) M, indicating that all free indices in M should
be incremented by i units. Substitutions have the form M[i/N, j] indicating that indices i must be replaced by
(i)N and that there was a tag (j) embracing the Beta-redex that fired the substitution. The following rewrite
step illustrates how substitutions may be composed in Aws:

4{0/00, 0][0/200, 0] — e 4[0/(00)[0/00,0}, 1]

8 t sot

There are no updating tags in the above two terms. Note that, as originally introduced in [DG99, DGO1],
de Bruijn indices start from 0 instead of 1.

As the reader may have noted there is no explicit operator in the language to denote the composition of
substitutions as in the case of Ao. In fact there is only one sort, namely the sort of terms. However, a substitution
may be composed with another one in the sense of the example above or may even jump over another one as
described in the ¢2 rewrite rule of Def. 2.58.

Just as \v ‘implements’ the indexed lambda calculus, Aws also implements a calculus. This calculus, called
v, is very similar to the indexed lambda calculus but, as already mentioned, differs in that it includes so called
updating tags. So before going into the details of the Aws-calculus we shall briefly go over Aw.

Definition 2.53 (The Aw-calculus) The set of terms M € 7, is defined as:

M
N

N | (k)N where k € INg
n|AM| MM wheren €Ny

The (o)e operator is the updating or update operator. Note that no two consecutive updating operators may
appear in a term in 7)y. The updating operator has higher precedence than the application operator, so (k) PQ
means ((k)P)Q. The Aw-calculus is defined on the set T, by the rules:

(AM)N =z, m(M{0/N,0})
((K)AM)N —pgs m(M{0/N,k})
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where m is given by the m(ixing)-rule: (i)()M —. (i + j)M. Metalevel substitution e{e/e, e} is defined
as:
OM{i/N,5} = AM{i+1/N,5)
(M M2){i/N,5} F Myii/N,j}Ma{i/N, 5}

o def [ (G+Hk-1)M i <k
(()M){i/N,5} = (k)M {i — k/N, j} ; >k
o
n{i/N, 5} “ LN e

n+j—-1 n>i
where 7,5 € IN.
Intuitively a term of the form (k)M represents the term M where all free indices have been incremented by
k units. The mixing rule allows all adjacent updating tags to be fused, and hence the reducts of £, and & to

be terms in 7). Note that it is the presence of the update tags that has forced the usual 84 -rewrite rule to be
split in two, namely 81 and 52.

Example 2.54 Here is an example of a Aw-derivation.

(A(00))A(00) —ps m™((00){0/X(00),0}) = ((0)A(00))(0)A(00)
—pz  m((00){0/(0)A(00),0}) = m(((0){0)(00))(0)(0}A(00)) = ((0)A(00)){0)(00)

It is instructive to establish the relation between Aw and the Agp-calculus. For this we need the following
translation from Aw-terms to de Bruijn terms. E : Tyy — T, is defined as follows:

E(n) -

EOM) ¥ \EWM)
E(MN) E(M)E(N)
E((k)M) = Us(E(M))

The relation between this new notion of metalevel substitution and the usual notion of metalevel substitution
as defined in Def. 2.24 is as follows: E(M{i/N,j}) = U], ,(E(M)){i — E(N)}. This may be used to show:

Lemma 2.55 1. Let M,N € T),. If M —,y N then E(M) —g,, E(N).

2. Let M € T), and P € T, such that E(M) —g, P. Then there exists N € T, such that M —,; N and
E(N) = P.

Definition 2.56 (Terms in Aws) The set of terms of the Aws-calculus, denoted 7, is defined as follows:

M == n|\M|MM| (k)M |M[i/M,j] wheren,i, j k€ Ny

o[e/e, 0] is called the substitution operator. Terms without occurrences of the substitution operator are called
pure terms. Positions in terms are defined as usual; we use M|, to denote the subterm of M occurring at

position p.

Remark 2.57 For the readers familiar with the As-calculus [KR95] the translation into As of (k)P is wE(P),
and of P[i/Q, j] is ¢i,,(P)o*Q.

We shall use (E) to denote the sequence of explicit updating operators (k;)...(kn). In particular, i{ we
want to stress the fact that n > 0 we write (k*). Also, we shall use "k to abbreviate 3 ., k; where (k) is
(k1) ... (kn). The following characterization of the Aws-terms may be proved by induction on M.
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Definition 2.58 (The \ws-calculus) The Aws-calculus is defined by the following rewrite rules:

5 { OM)N =4 M[0/N,0]
(KYAM)N  —p2  M[O/N, K]

[ (AM)[i/N, j] -1 MM[i+1/N,j])
(MiMo)[i/N,j] —a  Mi[i/N,j]Mz[i/N, 4]
(()M)[i/N,j] —e (k+i-1)M i<k
((k)M)[i/N,j]  —e2 (k)M[i—k/N,j] i>k
n[i/N, j] —p1 7 n<i

e ﬁ n[i/N,j] —n2 (7')N n=1

n[i/N,j] —n n+j-—1 n>1
M[k/N,Ué/P,j] —c MIk/N[i—k/Pjl,5+1-1] k<i<k+l
M{k/N.J[i/P,j] —e Mli—1+1/P,jjk/Nli—k/P,il,l] k+1<i

| GYG)M —m  (i+)M

The B-calculus is just rules bl and b2. The substitution ws-calculus is the Aws-calculus without the rules bl
and b2. The p-calculus is the ws-calculus without the m-rule. In [DGO01] it is proved that p and ws are strongly
normalizing and confluent. We use NF} to denote the set of p-normal forms. Note that pure terms are not
necessarily in substitution normal form (i.e. in ws-normal form) since they may contain m-redexes.

The Mus-calculus is the first” lambda calculus with explicit substitutions to satisfy simulation of one-step
B-rewrite reduction®, confluence on open terms and preservation of strong normalization.

Lemma 2.59 (Simulation, Projection, Confluence) e (Simulation). Let M, N be terms in 7,,. If
M =y N then M 5, N.

o (Projection). Let M, N € Tyys. If M — 5y N then ws(M) —,, ws(N).
¢ (Confluence). The ARS (Thus, —awe) is confluent.
In fact, if the grammar of Def. 2.58 is enlarged with metavariables XY, ... obtaining the set of open terms,
say To,:
- M := n|X|AM|MM| (kM| M[i/M,j] where n,i,jk € No

where X ranges over the set of metavariables, then the ARS (7,,, —ws¢) is confluent too, where — )y is
just Aws-rewriting but over the terms in 7y},,. We say that Aws is confluent on open terms.

Proposition 2.60 (PSN) J\vs enjoys preservation of strong normalization.

See [DGO1] for a proof.

7Together, it seems [DGO1), with the work by H.Goguen and J.Goubault-Larrecq [GGLOO).
8However, see Lemma 2.59(1) and note that the terms M and N belong to T, and not Ty
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Chapter 3

Perpetuality in Ax

Part I of this thesis studies perpetuality in calculi of explicit substitution. Perpetuality studies the contraction
of rewrite steps that preserve the possibility of infinite derivations. We shall mainly be concerned with perpetual
redezes, in other words redexes whose contraction preserves the possibility of infinite derivations. A rewrite
strategy which always contracts a perpetual redex is called a perpetual rewrite strategy. For example, the
leftmost strategy is not perpetual for the A-calculus. Indeed, consider the A-term M = (Az.y)(AA) where
A = Az.zz. Then M admits an infinite f-derivation, simply contract repeatedly the rightmost S-redex:

(Az.y)(AA) =5 (Az.y)(AA) —p ...

Yet by contracting the leftmost B-redex in M we obtain the term N = y which is a normal form. As the reader
may observe, this is due to the erasing nature of the redex contracted since the subterm AA no longer appears
in N, it has been erased. The Ar-calculus is obtained from the A-calculus by restricting term formation: for
every abstraction Az.M there is at least one free variable occurrence of z in M. In the Aj-calculus all redexes
are perpetual [CR36]. The interest in perpetual strategies is that if they normalize a term M then this term is
strongly normalizing, that is, all derivations starting from M are finite. For example, we shall apply our studies
on perpetuality for characterizing inductively the set of all the terms in Ax that are strongly Ax-normalizing.
By inductively we mean describing the set as the smallest set closed under some set of rules, as when defining
the set of A-terms or the set of theorems of some logic system [Acz77]. We shall also apply it for proving strong
normalization of a typed polymorphic lambda calculus with explicit substitutions.

Perpetual rewrite strategies for the A-calculus were introduced in [BBKV76], a recent survey is [RSSX99]. A
Term Rewrite System is called uniformly normalizable if all redexes are perpetual. J.W.Klop [Klo80]!. showed
that all non-erasing orthogonal CRSs (hence all non-erasing orthogonal Term Rewrite Systems) enjoy this
property, thus generalizing Church’s Theorem [CR36] stating that the A;-calculus is uniformly normalizable. In
the direction of characterizing perpetual redexes, Z.Khasidashvili [Kha94, Kha01] proved that all non-erasing
redexes are perpetual in orthogonal ERSs (hence all non-erasing redexes are perpetual in orthogonal Term
Rewriting Systems), thus generalizing the Conservation Theorem [BBKV76| stating that S;-redexes (i.e. #-
redexes in A1) are perpetual in the A-calculus. See [KOOOla] for a thorough treatment of perpetual rewrite
strategies and a characterization of perpetual redexes in higher-order term rewrite systems.

All these results are formulated for orthogonal systems, but the calculus of explicit substitutions Ax is not
orthogonal. Indeed, the Beta-rewrite rule and the App-rewrite rules overlap forming a critical pair.

((Az.M)N)(y := O)

Beta App
M(z := N){y :=0) (Mz.M)(y := O)N(y := O)

Thus the results on perpetuality already developed do not apply. So we study perpetuality in the Ax-calculus by
adapting a technique originally introduced for proving preservation of strong normalization of calculi of explicit
substitutions [BBLRD96]. Applications of this study are a formulation of an inductive definition of the set
of strongly Ax-normalizable terms, two perpetual rewrite strategies for Ax one of which is computable, and a

1However, see [O0s96).
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28 CHAPTER 3. PERPETUALITY IN XX

proof of strong normalization of typed terms in a polymorphic lambda calculus with explicit substitutions, F.s.
System F [Gir72, GLT89)] is a set of typing rules for typing polymorphic terms, together with two rewrite rules:
the B-rewrite rule, and a rewrite rule for instantiating type variables by arbitrary types. We shall augment
the F-calculus with explicit substitutions obtaining F., and, in addition to strong normalization, we also study
subject reduction for the extended typing rules. In fact the original motivation from which the work reported
in this chapter resulted was an attempt to apply J.Y.Girard’s ‘candidats de reductibilité’ technique in order to
prove strong normalization for Fe,. Reducibility for proving properties of calculi of explicit substitution first
appear in [Mufi97b| and [Rit93], however only for proving weak normalization. As regards strong normalization,
apart from this work, there have been independent contributions [Rit99, DLO01, Her00]. The results developed in
this chapter have been published in [Bon99a, Bon01]. Further work on perpetuality for non-orthogonal systems,
with applications to calculi of explicit substitutions, has been developed in [KOOOQ1b].

Structure of the chapter

We shall begin by going over the fundamental results behind the proof technique devised by P.Lescanne et
al in [BBLRD96] to prove preservation of strong normalization for Av. This technique is based on assigning a
measure on derivations and applying a minimality argument, a la Nash-Williams’ [NW63] proof of Kruskal’s
tree theorem, in order to arrive at a contradiction. We apply this technique in order to conclude that if M and
N are Ax-terms then:

1. if M = Pi(z:= P,)P3... P, € SNz then N = (Az.P,)P2... P, € SN ;.
2. if M -;\gc N and N € SN, then M € SN ,;.
3. if M -G, N and P,N € SN j;, where P is the garbage erased by the Ge-redex, then M € SN ;.

This shall suffice in order to provide an inductive characterization of the terms in SN »; and perpetual rewrite
strategies for Ax. These strategies are not refinements of the usual strategies for the A-calculus. In other words,
if (o) is some one-step rewrite strategy for the A-calculus, hence M —g F(M) for all A\-terms M not in normal
form, then in the explicit substitution formulation F; of F(e) we shall not necessarily have M —»,; F(M) where
the steps in the this derivation are of the form M —,; F2(M) —i; Fo(F(M)) =z ... FR(M).

A further application of the above mentioned result is the possibility of applying Girard’s ‘candidats de
reductibilité’ [Gir72] proof technique in order to prove strong normalization of a polymorphic lambda calculus
with explicit substitutions. For this we formulate F,,, a polymorphic A-calculus of explicit substitutions which
incorporates two flavours of substitutions: term and type substitutions. Subject reduction is proved for F.;. The
latter result was shown to fail for other formulations of higher-order lambda calculi with explicit substitutions
based on Ax [Blo97]. This situation was later reverted in [Blo99, Blo01], so it may be seen as an independent
solution to this problem. Additional related work is that by C.Mufioz [Muii97b] who defines a typed lambda
calculus with explicit substitutions (based on a left-linear variant of Ao) and dependent types. He proves subject
reduction for this calculus by introducing type annotations in the e - ¢ constructor of Ao.

Finally, we prove strong normalization for all polymorphically typable terms.

3.1 The Perpetuality Proposition

We shall begin our study on infinite derivations in Ax. For this we recall the closure tracing technique introduced
in [(BBLRD96] for proving preservation of strong normalization for the calculus Av. In [BBLRD96] inflnite
derivations starting from pure terms are studied since it is PSN which is of interest, here we study infinite
derivations starting from any term. On the way we shall encounter some simplifications on this technique as a

tool for proving PSN. ‘
An overview of the Ax-calculus is given in Chapter 2. The reader already familiar with this calculus of

explicit substitutions may read on, otherwise we recommend taking a glimpse at Section 2.3.1 before continuing.
Nonetheless, we recall some of the properties of Ax which we shall use in this section.

Definition 2.38. A substitution (z := N) is called void in M(z := N) if z ¢ FV(x(M)); M is said to be
the target of the substitution and N its body. Void reduction, denoted sz, is Ax-reduction inside the body of
a void substitution.
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A )x-contezt, or simply a context, is a Ax-term with a ‘hole’. More precisely, if we use the distinguished
variable O to denote this hole then a context is just a term with exactly one occurrence of 0. An example is
Az.0(y = 2).

Let us recall how B-rewrite steps may be executed via the Ax-calculus:

Lemma 2.39 (Projection). Let M, N be terms in 7);. Then
1. If M —); N then x(M) —»g x(N).

2. If M — geia N is not a void reduction then x(M) i»p x(N).

Consider some infinite Ax-derivation ¢ : My —,; M; —); .... Since x is strongly normalizing an infinite
number of Beta-rewrite steps must take place in ¢. If all these Beta-rewrite steps were not void then we would
obtain an infinite G-derivation from the pure term x(Mp), using the Projection Lemma. Therefore, if we already
know that x(Mp) is strongly S-normalizing, then we may conclude that at some point on, in ¢, all Bete-rewrite
steps are void. In fact, it may be shown that at some point on in ¢ all Ax-rewrite steps are void. This result is
the starting point of P.Lescanne et al’s method for proving PSN. We formalize it below (see [Blo97, Proposition
4.15)).

Lemma 3.1 If My, My, ... € T), such that x(Mp) € SNg and My —xz M —); ... is an infinite Ax-derivation
then there is a k € IN such that for all i > k, M; =5y M;,;.

Proof. Since x is strongly normalizing we may assume the infinite Ax-derivation has the form My —»;
M; —Beta M2 -; M3.... Now by Lemma 2.39(1) we have x(Mg) —g x(M2) —g x(My) —+g x(Ms) ..., where
by Lemma 2.39(2) we have x(M3s) 55 X(Mapny2) if Mans1 — Beta Mans2 is not void.

Now since x(Mj) € SN g there is a j € IN such that for all i > j we have My, 5 Beta Mai42. We must now
prove that from some point onwards not only the Beta-reductions are void but also the x-reductions. This is
done by defining an interpretation h on 7yy:

h(z) e
R(MN) L h(M)+h(N) +1
h(Az.N) e RN) +1

R(M(z:=N)) % { (L+h(N)) x (M) if z€ FV(x(M))

2 x h(M) if z¢ FV(x(M))

In the last clause of the definition of k2 note that if z ¢ FV(x(M)) then h(N) is neglected, hence any
reduction steps inside IV shall not alter (M (z := N)). In fact one may verify that:

o if M 5,; N then h(M) = h(N), and
e if M —; N is not void then h(M) > h(N).

Thus there must be a k > j such that for all i > k we have that not only Ma;;1 ~>geta Mair2 but also
My Sy Moy .

Note that in contrast to [BBLRD96] there has been no need to define internal/external positions (since they
have been captured by the definition of k) and to prove commutation of internal /external reductions in order
to prove Lemma 3.1 [BBLRD96, Lemma 13]. This is clearly an advantage since commutation results are long,
tedious and technical. It thus suggests a simplified variant of the proof technique introduced in [BBLRD96] for
proving PSN.

So now we know that if ¢ : Mg —x My —); ... is an infinite Ax-derivation and x(Mp) is strongly §-
normalizing, then at some point on in ¢ all Ax-rewrite steps are void. We shall see that from ¢ we may learn
of the existence of an infinite Ax-derivation in which from some point on all Ax-rewrite steps take place within
the ‘same’ closure. This requires the notion of a skeleton of a term which first appeared in [KR95]. The
corresponding concept in terms of positions occurs under the name frontier in [BBLRD96].



30 CHAPTER 3. PERPETUALITY IN XX

Definition 3.2 (Skeleton) The skeleton of a term M in T, denoted SK(M), is defined inductively as follows

SK(z) e 5

SK(N1N») e SK(N)SK(N,)
SK()\y.N) < \y.SK(N)
SK(Ni(z:=N3)) % SK(Ny)(z:= o)

where the ‘e’ symbol may be seen as a place-holder (much the same as the ‘D’ symbol in a context).
Intuitively, the skeleton of a term is the part where only reductions which do not take place in bodies of
substitutions are possible.

Remark 3.3 Note that if M =,; N then SK(M) = SK(N).

Lemma 3.4 If Mo, M, ... € T\, such that x(Mp) € SNg and My —xx M; — ) ... is an infinite Ax-derivation
then there exists k € IN, a variable y, a context C and Ax terms P, Qk, Qx+1, @k+2, - . . such that

Mo —ax Ml iz - —Fix Mk = C[P(y = Qk)]
%’,\x C[P(y := Qx+1)]
= C[P(y:= Qr42))

where for i > k the 7 + 1-rewrite step takes place in Q;.

Proof. Consider an infinite Ax-derivation ¢ : M = M; —); Ma —,x M3... starting from M. Then since
x(M) € SN g we may apply Lemma 3.1 and obtain a k € IN such that for all 7 > k we have M; 5,; M;;1. And
hence by Remark 3.3 we have SKK(M) = SK(M;) for all i > k.

Now as there are only a finite number of closures in SKK(M) and, since the reductions within these closures
are independent in the sense that they occur in parallel positions, by Kénig’s Lemma an inflnite derivation must
take place within the same closure in SK(Mi). Thus Mz = C[P(y := Qx)] for some context C and

= C[P(y:= Q)]
Sar CIP(y:= Qr+1)]
1’,\: C[P(y := Qr+2)]

My = Mz —)5x ... =2 M

is an infinite Ax-derivation starting from M. .

Finally, Lemma 3.4 together with the fact, proved below, that closures may be traced back shall provide all
the tools for proving our main perpetuality result.

Lemma 3.5 (One-step closure tracing) Let M, N € T)y with M —); N = C[P(y := Q)]. Then,

1. either M = C'[P'(y := Q)] for some context C’,

2. or, M = C'[P'(y := Q')] for some context C’ and Q' —»: Q,

3. or, M = C[(My.P)Q).

Proof. We use induction on M and consider the following two cases:

e The reduction takes place at the root. First note that if P(y := Q) occurs in a subterm of N which is
‘also a subterm of M then for some context C’ and P’ = P the first item holds trivially. Also note that
this includes the cases where the rule applied at the root is Var or Ge. Otherwise we must have one of

the following:
— M = (M\y.P)Q —Beta P(y := Q) = N with C = 0. Then the third item holds.
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- M = (MiM2)(y := Q) = app Mi(y := Q)M2(y := Q) = N where P is M; or M,. Then we take
P’ = MM, and C’ = O and the first item holds.

- M= (Mz.P)(y :== Q) —=Lem A2.P(y := Q) = N. Then we take C' = O, P’ = Az.P and item one
holds.

e The reduction is internal.

— M = z. The result holds vacuously.

— M = M;M; with either M; —,; M{, or My —); M3. We consider the first case, the other being
similar. Thus N = M{M,. We have two further cases to consider.

* The subterm P(y := Q) occurs in M;. We then use the induction hypothesis.
* The subterm P(y := Q) occurs in M>. Then the first item trivially holds.

— M = \z.M; with M; —); M]. We use the induction hypothesis.
- M= M1<Z = Mg) with

x either, M1 — )y M] and N = M{(z := M>). Thenif P(y := Q) occurs in M] we use the induction
hypothesis. If it occurs in Mz then the first item trivially holds. Finally, if N = P(y := Q) then
we take C’ = O, P’ = M; and the first item holds.

* or, M —y; Mj and N = M;(z := M3). Then if P(y := Q) occurs in M; then the first item
trivially holds. If it occurs in M then we use the induction hypothesis. Finally, if N = P(y := Q)
then we take C’' =0, P’ = M; and @ = M, and the second item holds.

This result extends naturally to many-step derivations. It may be proved by induction on the number of
rewrite steps.

Lemma 3.6 (Closure tracing) Let M;,...,M, € T); such that M; —); M;;; for i € 1,..,n — 1, and
M, = C[P({y := Q)]. Then,

1. either there is an i € 1,..,n — 1 such that M; = C’'[(\y.P")Q’] for some context C’ and Q' — ), Q,
2. or, M; = C'|P'(y := Q')] for some context C’ and Q' —»»; Q.

Definition 3.7 (Derivation ordering) Let ¢ and ¥ be two infinite derivations starting from a term M.
Then the derivation ¢ : M1—xzp, M2—22,0, M3 ... Mp—axp, Mp1 ... is said to be smaller than the derivation
Y Mi—ax g Ma—ax,gMa. .. Mp— 2. My ... if pi = ¢; for i <n and ¢y is a proper prefix of pn.

Remark 3.8 Suppose M = C[P(y := Q)] —x N. Then there are two possibilities:
1. either, the reduction step takes place in Q, i.e. N =C[P(y:=Q’)] and Q —,; Q’,
2. or, it does not take place inside Q.

In the second case we then have that the substitution body Q also occurs in N or else it was erased as a
result of applying the Ge-rule (Q is subterm of garbage erased by Ge). This observation shall be made more
precise in the following lemma.

Lemma 3.9 Let M = C[P(y := Q)] —x N such that the x-reduction step does not take place inside Q, and
let S be the term (substitution body) eliminated by the Ge-rule if it was applied, then

e either, Q occurs in NV
eor,QCS.
Proof. By induction on the context C.

e C=0. Then M = P(y := Q) —y N. We have two further cases to consider:
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— the reduction takes place at the root. If the rule applied was App, Lam or Var then the first item
holds. If the rule applied was Gec then S = Q and the second item holds.

— the reduction is internal. Then we must have P —, P’ and the first item trivially holds.

® C = C'O (the case C = OC’ is analogous). Then the reduction step M = C'[P(y := Q)]O —, N must
be internal and N = N;N;. We have two further cases to consider:

— C'[P(y:= Q)] =z N1 and N = O. Then the result follows from the induction hypothesis.
— N; = C'|P(y := Q)] and O —; N,. Then the first item trivially holds.

¢ C = Mv.C’. Then the reduction M = My.C’[P(y := Q)] —; N must be internal and the result follows by
the induction hypothesis.

o C=C'(z:=0). Thus C'[P(y := Q)](z := O) =, N. We have two further cases to consider:

— the reduction takes place at the root. If the rule applied is Gc then S = O and N = C'[P(y := Q)]
and the first item trivially holds. Suppose then that the rule applied is App, Lam or Var. Then
C’ # O and one of the following must hold: C’ = C"R, C’ = RC" or C' = A\y.C" for some context
C”. In all cases the first item holds.

— the reduction is internal. Then we have two cases:
* either, C'[P(y := Q)] —z N; and N = N;(z := O) in which case the result follows from the
induction hypothesis.
* or, O —; Ny and N = C'|P(y := Q)](z := N;) and the first item holds.

e C =0O(v:=C"). Then we have M = O(v := C'[P(y := Q)]) —x N. We consider two cases:

— the reduction takes place at the root. If the rule applied was App, Lam or Var then the first item
holds. If the rule applied was Gc then S = C'[P(y := Q)] and the second item holds.

— the reduction is internal. Then

* either, O —; Ny and N = N;(v := C'[P(y := Q)]) and the first item holds trivially.

x or, C'[P(y := Q)] —x N; and N = O(v := N;) and the result follows from the induction
hypothesis.

Before proceeding to the main proposition of this section we would like to discuss the relation with the work
in [BBLRD96] for proving PSN.

o What P. Lescanne et al do for PSN. They consider a2 minimal infinite Ax-derivation starting from a pure
term. Thus they can always trace back the closure (guaranteed to exist by Lemma 3.4) to its (unique) point
of creation (here the Beta-rule) and obtain a smaller derivation than the original one, hence contradicting
minimality.

o What we do for perpetuality. Suppose M —; N and IV € SN ;. Given a minimal inflnite Ax-derivation
starting from M we trace back the closure (guaranteed to exist by Lemma 3.4). But now there are two
possible situations as dictated by Lemma 3.6:

— either, the closure was created by a Beta-rule. We then argue as above and contradict minimality.

— or, (an ancestor of) the body of the closure, say Q, belongs to the original term M. But then since
M —; N we may reason as follows:

* either, the substitution body Q also occursin N, in which case we arrive at a contradiction since
N € SNz and Q ¢ SNy,

x or, Q is a subterm of garbage, ie. M —¢g. N and Q C P where P is the substitution body
eliminated by Ge, then by requiring that all eliminated garbage be strongly Ax-normalizing terms
we arrive at a contradiction,
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* or, the reduction step M —, N takes place inside the substitution body Q, i.e. Q —; Q' for some
Q' C N. Then we may apply inductively the same reasoning in order to obtain a contradiction.
Note that since there are a finite number of closures in M this case may not repeat itself an
infinite number of times.

These ideas may be formalized as follows.

Lemma 3.10 Let M, N € T);.
1. Suppose M —;\gc N and N € SN, then M € SN ;.

2. Suppose M = C[Pi(z := P)] —g. C[P1} = N where the Gc-rewrite step takes place at the position of
the hole, and P, N € SN, then M € SN );.

Proof. Both items are proved simultaneously by (course of values) induction on the number of occurrences
n of the closure operator in M. Note that since M —; N by hypothesis there must be at least one occurrence
of the closure operator in M.

e n = 1. Suppose that M ¢ SN ; and let ¢ : M = M; —; M2 —); M3... be a minimal infinite derivation
starting from M. Now since N € SN ), then x(N) € SN and hence x(M) € SN (since x(M) = x(N)).
Then by Lemma 3.4 we may construct the following infinite Ax-derivation,

¢,:M1 ——x M2 )z --- ) Mk = C[P(y = Qk)lp
%’,\x C[P(y := Qr+1)lp
= C[P(y:= Qr+2)lp

for some k € IN, position p, variable y, context C and Ax-terms P, Qx, Qr+1,@k+2,-- .- Note that the
sequence (Qx, Qk+1, @k+2, - - -) is an infinite Ax-derivation.

Now by the closure tracing Lemma 3.6 there are two possibilities for the origin of the closure (y := Qk):

— either, it was created sometime before by an application of the Beta-rule, i.e. there exists j < k, a
context C’ and a position p; such that:

M:i = Cl[()‘y-Pl)Q]p,-—’Beta.PjCI[P’(y = Q)]Pj = Mj+1
with Q —xx Q. But then we may construct the infinite Ax-derivation

¢” : M] —x M2 el =Ax Mj = C’[()\yPI)QlP’
—PAx CI[()‘y-PI)Qk]Pj
= C'((Oy-P)Qk+1lp
1’,\: C'[()‘y-Pl)Qk+2]Pj

Note that ¢” is smaller than ¢ since at step 7 we reduce a proper subterm of (A\y.P’)Q and obtain
nonetheless an infinite Ax-derivation. Thus we contradict the minimality of ¢.

— or, (an ancestor of) the body of the closure, belongs to the original term M, i.e. M = C'|P'(y := Q)]
for some context C’ and terms P’ and Q with Q@ —»x Qk. Here we have two further cases to consider:
1. either the reduction step M = C’'[P'(y := Q)} —x N takes place in Q, ie. N = C'[P'(y:=Q’)|
and Q —z Q's
2. or it does not take place inside Q.

But the first case is not possible since n = 1 and therefore there are no occurrences of the closure
operator in Q. So the reduction step M = C'|P’(y := Q)] —x N does not take place inside Q, and
therefore by Lemma 3.9, we have that either Q occurs in N (which is in SN ;) or is a subterm of
garbage (i.e. Q C P,) and hence also is in SN, as the additional requirement on application of
Ge-rule states. Thus we arrive at a contradiction (closure tracing has determined that there is an
infinite Ax-derivation starting from Q and, on the other hand, we have Q € SN ;).
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¢ n > 1. Westart off as in the previous case; the only difference is when the closure tracing lemma determines
that (an ancestor of) the body of the closure, belongs to the original term M, ie. M = C'[P'(y = Q)]
for some context C’ and terms P’ and Q with Q —x Qx. Here it is possible that the reduction step
M = C'[P'(y := Q)] —x N takes place in Q, i.e. N = C'[P'(y := Q)] and Q —; Q. In this case, since
N € SN); we have Q' € SNz and we may apply the induction hypothesis w.r.t. Q and obtain that
Q € SN ;. Hence we obtain a contradiction.

Proposition 3.11 (Perpetuality Proposition) Let M, N € T,;. Then
1. if M = Py(z := P,)P3...P, € SNy then N = (A\z.P,)P,... P, € SN );.
2. if M —;\gc N and N € SN, then M € SN ;.
3. if M = D[Py(2 := P3)]q— Gc,¢D[Pi]q = N for some context D and P;, N € SN; then M € SN ;.

Proof. The last two items have already been proved (Lemma. 3.10). For the first item we consider the term
Pi(z := P3)P;...P, € SN);. Then Py,...,P, € SN);. Therefore, any inflnite derivation starting from the
term (Az.P;)P; ... P, must have the form,

(\2.P)Ps...Pn -  (Az.P))P}...P.
—Beta Pl(z:=Py)P;... P,
—ax ...

where P; —»; P! for i € 1..n. Then there is an infinite derivation,

Pi(z:=P)Ps...Pn —»x Pl{z:=P)P,...P.
—a ...

contradicting the hypothesis. .

Remark 3.12 Note that the above technique may be applied to the explicit substitution formulation of the
substitution lemma, more precisely, we have that if y ¢ FV(P) and C[M(z := P)(y := N(z := P))], is strongly
Ax-normalizing then C[{M(y := N)(z := P)], is also strongly Ax-normalizing. Obviously this does not mean
that we may add the inferred rule (ie. M(y:= N){(z := P) —¢, M(z := P)(y := N(z := P))) to Ax without
(trivially) losing strong normalization.

This remark shall be used in the proof of strong normalization for a polymorphic lambda calculus with
explicit substitutions (Lemma 3.63).

3.2 Some Applications of the Perpetuality Analysis

This section considers some applications of the perpetuality analysis elaborated in Section 3.1: an inductive
characterization of SN )., two perpetual rewrite strategies for Ax, and strong normalization by reducibility for
a polymorphic lambda calculus with explicit substitutions F,,. This last issue shall be considered in detail in
Section 3.3. The technique presented in this section is based on similar results obtained for the A-calculus with
the B-rewrite rule [RS95].

3.2.1 Characterizing Terminating Terms in Ax

We give an inductive characterization of the terms in SN,y by combining the technique presented by F. van
Raamsdonk and P. Severi in [RS95] and the Perpetuality Proposition (Proposition 3.11). This characterization
shall be used in the proof of perpetuality of some rewrite strategies studied in Section 3.2.2.

Lemma 3.13 Every M € T is of one of the following forms:
1. IP] ‘e Pn
2. \z.P
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3. (\z.P)P,...P,

4. Py(z; :=Q1)...(Tm =Qm)Pi... P, where m > 1 and P, is not a closure (i.e. it is either a variable, an
abstraction or an application).

Proof. By induction on the term M. .

A word on notation before continuing: if M, Ny,...,Nm € T)x and z1,...,Zm € V for m > 0 then we use
M* to denote the term M (z; := Np)...(zm := Np).

Definition 3.14 Let SN C T,x be the smallest set closed under the inference schemes:

Pi,...,Pn € SN zGVR PesSN
1 —_—
zP)... P, € SN Az.P e SN
M(z:= N)P,...Pn € SN

(Az.M) NPy ...P. € SN

N*Py...Ph€SN z€3Z, vP...P,€SN N€eSN zeV
z{(z := N)*Py... P, € SN i y(z := N)*P,...P, € SN
(Mi(z := N)Ma(z := N))*P; ... P, € SN . (A\y.-M{z := N))*P,...P, € SN
(MyM3)(z := NY*Py...Pn € SN (\y.-M)(z := N)*Py...Po € SN

where inference scheme (R5) is subject to the restriction = # y.

Each inference scheme is quantified over n and m (if m also occurs in it). Thus for example inference scheme
(R5) should be read as: for allm >0andn >0, if N € SN and y(z; := N1)...(Tm := Np)Py... P, € SN
and y # z then y(z := N)(z; := Ny)...(&m = Np)P, ... P, € SN.

Lemma 3.15 SN,; = SN.

Proof.

e SNy C SN. Let M € SN ;. We prove by induction on (mazred);(M), |M|), using the usual lexicographic
ordering, that M € SN. By Lemma 3.13 we have the following cases to consider:

— M =zP, ... P,. Then since M is strongly Ax-normalizing, P,,..., P, are strongly Ax-normalizing.
By the induction hypothesis we have that Pj,..., P, € SN. Thus by inference scheme (R1) we
obtain zP; ... P, € SN (note that this case includes the base case, i.e. all variables are in SN).

— M = )z.P. As above P is strongly Ax-normalizing, and therefore by the induction hypothesis,
P € SN. Using inference scheme (R2) we conclude that Az.P € SN.

— M = (Az.Py)P, ... P,. Thensince M —pgiq Po(z := P1)P,... P, we have that Py(z := P;)P;..P, €
SN ). By the induction hypothesis Po(z := P;)P;... P, € SN, and thus by inference scheme (R3)
we conclude that M € SN

- M=PFPs(z1:=Q1).. . {Tm = Qm)P1... P, where m > 1 and P, is not a closure (i.e. not of the form
P/(z := Q')). Thus we have the following cases to consider:

* Pp=z7. Then Q1(z2 :== Q2) ... (Zm := Qm)P1 ... P, € SN )z, and by the induction hypothesis
this term belongs to SA. Then by inference scheme (R4) we obtain that M € SN.

* Py =y # z1. Then y(z2 := Q2)...(zm = Qm)P1... P, € SN); and by induction hypothesis
it is also an element of SN. Also, since M € SN ,; we have Q; € SN, and by the induction
hypothesis Q; € SN. Then by inference scheme (R5) we obtain that M € SN.

* Po = M\y.N. Then (M\y.N(z; := Q1)){z2 = @Q2)...(zm = Qm)P1...P, € SN);. By the
induction hypothesis (A\y.N(z1 := Q1)) (z2 := Q2)...(Zm := Qm)P1... P, € SN. Then using
inference scheme (R7) we obtain that M € SN.

* Pp = NiN>. Then we have (Ny(z; := Q1)Na(z1 := Q1)){(z2 := Q2) ... (& == Qm)P1... Py €
SNA;. And (N1(I1 = Q])Nz(xl = Ql))(zg = Qz) (zm = Qm)P;[ Pn € SN, by the
induction hypothesis. Using inference scheme (R6) we may conclude that M € SN.
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® SN C SN ;. By induction on the derivation of M € SN.

~ M = zP,... P, where Py,..., P, € SN. By the induction hypothesis we have P,, ..., P, € SN ;.
And therefore zP; ... P, is also strongly Ax-normalizing.

— M = Az.P where P € SN. Similar to the previous case.

— M = (A\z.R)P, ... P, where Po(z := P1)P;... P, € SN. Then by induction hypothesis we have
Po(z := P)P;... P, € SN ;. Thus by the Perpetuality Proposition 3.11(1), M € SN ,.

- M =xzi(z1 = Q1)...(Tm = Qm)P; ... P, where Q1(z2 = Q3)...(Tm = Qm)P;...P, € SN.
Then by induction hypothesis Q1(z2 := Q2)...(zm := Qm)P1... P, € SN, and thus by the Per-
petuality Proposition 3.11(2) we may conclude that M € SN ;.

- M =ylz1:= Q1)...(Tm = Qm)Py... P, where y # z,, Q1 € SN and y(z2 := Q2)...(Tm =
Qm)P1 ... P, € SN. Then by induction hypothesis Q, € SN, and
Y(T2 := Q2) ... (Tm = Qm)P1 ... P, € SN);. And applying the Perpetuality Proposition 3.11(3) we
obtain M € SN .

- M = (N1N3)(z1 := Q1)...(Tm :=Qm)Py...Poor M = (Qy.N)(z1 == Q1) ... (Tm := Qm)P1...P,.
Similar to the above cases using the Perpetuality Proposition 3.11(2).

Some variations of Def. 3.14 are possible. Rule (R5) may be replaced by the following rule (R5’) yielding

the characterization SA”:
M*P,...P,€SN NESN z€3,
M(z := NY*P,...P, € SN

with the restriction that z ¢ FV(M). Then Lemma 3.15 may be proved for SN”’. As a consequence, we also
obtain SN = SN".

Another possible characterization of SN, as reported in [Xi96] for the A-calculus with B-reduction, is
SNz = {M € Ty | H(M) < oo} where

R5'

'H(M;)=ma.x{n|M11>M2|>...|>M,,}

and p is the union of the strict subterm relation and leftmost reduction for Ax (written here —,), i.e. b 5 Uy
where Az.P D P, PQD P, PQ D Q, Pz :=Q) D P, P(r := Q) D Q. The proof relies on the Perpetuality
Proposition.

3.2.2 Perpetual Rewrite Strategies for Ax

Here we extend the perpetual rewrite strategies for the lambda calculus presented in [BK82] and [BBKV76]
to the calculus of explicit substitutions Ax, and, following [RS95], use the characterization of SN, (Def. 3.14)
to prove that they indeed constitute perpetual strategies. Section 2.3.1 provides the definition of Ax-rewrite
strategy. Recall that a Ax-rewrite strategy F(e) is called Ax-perpetual if 00)z(M) implies 00z (F(M))

First we present the effective strategy F,(e). Then the strategy F(e) shall be considered.

Definition 3.16 (The strategy Foo(¢)) Let M be a term in 7j; which is not in normal form. Let M = C[A]
where A is the leftmost Ax~-redex? of M. We define F., (o) as follows:

def

FooCl(My-P)Q]) = ClPy:= Q)
FouolClOw-P)z:=Q))) ¥ CPy.P(z:= Q)
FuolCl(PP)y = Q) =¥ ClPly:=QP(y:=Q)]
Foo(Clyty = Q) e C[%l[ ] i s
def V4 1 11 normal 1orm,
Foo(Clzly == Q)]) = { Clz(y == F(Q))] otherwise

In the last inference scheme we have y # z.

2Recall that a Ax~-redex is a Ax-redex.
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The idea in F,(e) is to always contract the leftmost Ax~-redex unless a (potentially infinite) term may be
erased by the restricted garbage collection rule (the only rule which may erase subterms).

Proposition 3.17 F(e) is a perpetual rewrite strategy for Ax.

Proof. We prove that if Foo(M) is strongly normalizing then M is strongly normalizing. For this, the
characterization of Def. 3.14 shall be used. Thus we assume Fo,(M) € SN and we shall show that M € SN
by induction on the number of derivation steps of Foo(M) € SN. By Lemma 3.13 we have the following cases
to consider for M:

e M =yP),...P,. Thenwehave Foo (M) = yP, ... P,_1 Foo(P;)Pit1 - - . P, where Py, ..., P;_; are in normal
form. Then since Foo (M) € SN we have Foo(P;) € SN. Then by the induction hypothesis P; € SN and
we can construct a derivation in SN of M.

o M = \y.P. Then we have Foo(M) = M\y.Foo(P). By the induction hypothesis P € SN. Hence, M € SN.

e M = (\y.P)P,...P,. Then we have Foo(M) = Py := P,}P,... P,. Since Foo(M) € SN using inference
scheme (R3) we obtain that M € SN.

oM = Po(yh = Q1)...(ym = Qm)P1... P, with m > 1 and P, not a closure (i.e. not of the form
P'(z:=Q’)). We consider four further cases: '

— Py =y;. Then Foo (M) = Q1{(y2 := Q3) ... (¥m = Qm)P: ... P,. Then by using inference scheme
(R4) we obtain M € SN.

— Py = z # 3. Then we have two cases to consider:
* @, is in normal form. Then Foo(M) = 2(y2 := Q2) ... (ym := Qm)P1 ... P,. Since @Q; € SN,
we have Q) € SN. And then by using inference scheme (R5) we obtain M € SN.

* @, is not in normal form. Then we have Foo (M) = 2(y1 := Foo(Q1)) .- - (Um = Qm)Pi1 ... Py.
Now since Foo (M) € SN then Foo(Q1) € SN and hence, by the induction hypothesis, Q; € SN.
Then we can construct a derivation in SN of M using clause (R5).

- Po = Pépél Then .7'-°°(M) = (Pé(yl = Q])Pél(yl = Q]))(yg = Qz) e (ym = Qm)P1 .. .Pn. Then
by using inference scheme (R6) we obtain M € SN

— Py = Az.Pj. Then Foo(M) = (Az.Pi(y1 := Q1))(¥2 .= Q2) ... (Um := Qm)P; ... P,. Then by using
inference scheme (R7) we obtain M € SN.

Remark 3.18 Let F be a Ax-rewrite strategy and define

Lp(M) def min{n | F*(M) is in Ax-normal form}
where FO(M) % M and Fr+!(M) % F(F*(M)). Then F is said to be mazimal iff Lp(M) = mazred:(M)
for every Ax-term M. The question whether Fo,(e) is maximal is left open. The perpetual rewrite strategy Foo
for the A-calculus [BBKV76] has been shown to be a maximal strategy [Sgr96].

Definition 3.19 (The strategy F(e)) Let M be a term in T); which is not in normal form. Let M = C|[A]
where A is the leftmost Ax™-redex of M. We define F(e) as follows:

F(Cl(M-P)Q)) E ClP(y:= Q)]
FCP=P)y:=Q)) ¥ CPzPly:=Q)
FC(PAP)y=Q)) ¥ ClP(y:=QPRy:=Q)
F(Clyly = Q))) "éf c'[%l“ focs
—— def z i € SN )y
orw=al ¥ { G rop o

In the last inference scheme we have y # z.
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Proposition 3.20 F(e) is a perpetual rewrite strategy for Ax.
Proof. The proof is similar to that of Proposition 3.17. .

Note that these strategies are not refinings of the original ones (those defined on the A-calculus with 3
reduction) in the following sense: if we start from a pure term M then the strategy for Ax yields a rewrite
sequence consisting of a Beta-rewrite step followed by x-reduction to x-normal form, which corresponds to the
B-reduction step induced by the original strategy. Before illustrating with an example we recall the strategy
Fo(e) BBKV76].

Definition 3.21 (Fo(e)) Let M be a term in 7, which is not in S-normal form (denoted M ¢ NFp). Let
M = C[(My.P)Q] where (A\y.P)Q is the leftmost B-redex of M. Then Foo(M) is defined as follows:

et [ ClP{ly—Q}] ify€FV(P)orQe&NF
racloura) L GO e R e g s

Let M € T,. More generally, one may wonder whether there exists a positive integer n such M X ax FR(M)
and FZ, (M) = Foo(M). Consider the term M = (A\z.AAz)z where A = Ay.yy. Then Foo (M) = AAz. On the
other hand, for no positive integer n is 7, (M) a pure term (and hence F% (M) # Foo(M)) as the following
portion of reduction of the strategy Fo,(e®) suggests:

M
—Beta (AATZ)(z = 2)
—app (AA)(T:=2) z(z:=2)
—app Az :=2) Az :=2) z(z := 2)
—lom (My.(yy)(z = 2)) Az :=2) z(z = 2)
e ()@ = 2){y = Al = 2)) o(@ = 2)
o (Y= 2) ¥z = )y = Ale = 2)) 3z = 2)
—app YT =2}y = Az := 2)) y(z := 2)(y := Az := 2)) z(z := 2)
—ce Yy =0(:=2)) y(z = 2)(y ;= B(z := 2)) z(z := 2)
—var Az :=2) ylz :=2)(y:=Az:=2)) z(z:=2)

We shall continue our discussion on perpetual rewrite strategies for Ax in Section 4.1. The interested reader
is invited to skip to the aforementioned section resting assured that the material on the polymorphic lambda
calculus with explicit substitutions to be presented next may be read independently.

3.3 The Polymorphic Lammbda Calculus with Explicit Substitutions

As a final application of our studies in perpetuality for Ax we shall formulate a polymorphic lambda calculus
with explicit substitutions called F,, and prove the properties of subject reduction and strong normalization
(of its typed version). The first subsection presents the untyped F-calculus with explicit substitutions and then
introduces its typed version. Subject reduction followed by strong normalization is considered next.

3.3.1 F.,;: The Rewrite Rules

In this subsection we introduce the polymorphic lambda calculus [Gir72, GLT89] with explicit substitutions.
This rewrite system which we shall call F,, will first be introduced as an untyped calculus in the sense that no
typing rules for terms shall be given, Section 3.3.2 shall deal with its typed version.

Let V, be an infinite set of type variables s,¢,u, ..., and V be an infinite set of term variables (referred to
simply as variables) z,y, 2, .. ..

Definition 3.22 The set of types and terms (referred to, without distinction, as raw terms) of the Fe,-calculus
is defined by the following two grammars, respectively:

types o :u=t|o1 — 02| Vio | o[t :=0]
terms M=z |Az:0M|AtM|MN | Mo | M(z:=N)| M|t :=o]
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The operator o(e := o) is called the term substitution operator and e[e := e] the type substitution operator.
A term which does not contain occurrences of a (term or type) substitution operator is called a pure term.
Likewise, a type which does not contain occurrences of the type substitution operator is called a pure type.

We denote with RT the set of all raw terms, i.e. those generated by the terms and types grammars, and
T the set of proper terms in R7, i.e. those generated by the terms grammar. Letters p, 0,7, ... are used for
types, letters M, N,O, P,Q, ... are used for terms and letters A, B, C, ... are used for raw terms.

The set of free variables of a term M is denoted FV (M) and the set of free type variables of a raw term A
is denoted FTV(A). We also use BV (M) and BTV(A) to denote the set of bound variables of M and bound
type variables of A, respectively. Also, we sometimes use BTV (4, B) as a shorthand for BTV (A) U BTV(B).
These notions are defined as usual; we give below the definition of FTV as an example.

Definition 3.23 Let A be a raw term. The set of free type variables of A is defined as follows:

FTV(t) < 1} FTV(At.P) 4 prv(P)\ {t}
FTV(e = 1) * FTV(6)UFTV(r) FTV(PQ) &' FTV(P)UFTV(Q)
FTV(vte) & FTV(e)\(t} FTV(Po) 4 PTV(P)U FTV (o)

FTV(olt := 7)) & (FTV(0)\ {t}) UFTV(r) FTV(P(z := Q)) % FTV(P)U FTV(Q)
FTV(z) <y FTV(Pt:=0]) % (FTV(P)\ {t})UFTV(0)
FTV(iz:0.P) & FTV(6)UFTV(P)

As mentioned in Chapter 2, when dealing with calculi of explicit substitution and in order to obtain first
order rewriting systems for the A-calculus, it is not uncommon to use de Bruijn indices notation. Since our main
objective is to concentrate on the properties of subject reduction and strong normalization we have chosen to
use the variable name based Ax in order to minimize the ‘noise’ introduced by updating (i.e. 7(e)index updating
in de Bruijn indices calculi) and thus provide the reader with a more intuitive setting.

We recall the familiar notions of substitution and a-conversion for terms (types are treated similarly). The
present definition extends Def. 2.32 to the extended syntax of F,.

def

z{z — N} = N

y{z — N} L oy ifzty

(M M3){z — N} < M {z — N}My{z — N}
(Az:0.M){z — N} e azioM

(M\y: 0.M){z — N} =

(My(z = Mz)){z — N} &
(My(y = Mp)){z — N}

(At.M){z «— N} e
(Ma){z — N}

7[t := o]{z « N}
Mt := o}{z — N}

N :o.M{y — y}Hz « N},

ify ¢ FV(N)U{z} U(FV(M)\ {y})
M, (z .= Ma{z — N})

M{y — yHz — N}y := Mp{z < N}),
ify ¢ FV(N)U {z} U(FV(M)\ {v})
At.M{z — N}

M{z « N}o

Tt := o]

M{t — s}{z « N}[s:= 0]

if s¢ FTV(N)U(FTV(M)\ {t})

Syntactical equality modulo o-conversion is thus the smallest equivalence relation verifying:

ifM=Pad A=B then MA=PB
ifM=N,o=7andy ¢ FV(N)\{z} then Mlz:0.M =)y:7.N{z « y}
if M=P,N=Qandy¢ FV(N)\{z} then M{z:=N)= Pz —y}{y:=Q)
if M =P and s ¢ FTV(P)\ {t} then At.M = As.P{t « s}

if A=B,c=T1and s¢ FTV(B)\ {t} then A[t:=0]=B{t— s}s:=1]

As in the untyped lambda calculus we shall adopt the following variable convention: we assume that the names
of bound (term or type) variables shall always be chosen so that they differ from the free ones. Moreover, each
occurrence of a (term or type) abstraction operator has a different binding variable.
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(Az: 0. M)N —Betaz M(z := N)
(At.M)7 —rBeta M][t:=1T]

(MN){z := P) —zpp M(z:=P)N(z:=P)
My:oM)(z:=P) —uum ;\)y :o0.(M(z := P))

:B(:L‘ = P) —zvar

M(z = P) — 2gc M z ¢ FV(M)
(MO’)(I = P) —zappt M(I = P)O'

(At.M)(z := P) —dam: At.M(z:= P)

(MN)[t = 7] —atapp Mt :=T|N[t :=17]

Ay:oM)t:=71] —uem M:oft:=T1.(M[t:=T])

t[t = T] —ztvar! T

O'[t = ‘I’] —ztgc 4 t¢ ‘FTV(J)
st == 7] —ztvar2 S

(Moa)[t := 7] —stappt Mt := T]o[t ;== 7]

(AuM)[t == 7] —atlame  AuM[t = 7]

(o1 = o)t:=7] —u o1t :==71) > o2ft 1= 7]

(Vuo)[t := 7] —zt Vu.olt := 7]

Figure 3.1: The F,,-calculus

Definition 3.24 (F.; and subsystems) The Fs-calculus is given by the rules in Figure 3.13. The F.,-
calculus without the rules Beta2 and 7Beta is referred to as the ES-rewrite system (or ES-calculus). The
F.e-calculus without the Beta2 rule is called the ES”-rewrite system. The third group of rules is called the
ZT-rewrite system.

As regards the choice of the rules perhaps it is worth mentioning that the Ge-rule may be replaced by the
more restricted garbage collection rule RGc without affecting the results. The same applies to the ztgc-rule and
what might be called the restricted garbage collection rule for types t[s := 7] — 4. t. Also, the ztvar2-rule
may be replaced by the more general rule M[t := 7] — ;5020 M.

We shall now prove that the ES"-rewrite system is strongly normalizing. Intuitively, one notes that the
substitution calculus ES ‘pushes’ substitution operators deeper and deeper into a term/type until they are
performed or eliminated. As for the rule 7Beta one notes that it eliminates an occurrence of the binder A.
Thus we shall first prove that the ES-rewrite system is strongly normalizing by interpreting it into a simpler
calculus equipped with a well-founded reduction notion and showing that reduction is preserved. Then for the
full system ES” we use this result plus Lemmas 2.6 (see appendix) and 3.31.

Definition 3.25 The set of terms constructed from the alphabet 4 = {x,\(e,0), A0, 0 — o, 0.0, 0fe]}, denoted
S, is defined by the grammar a ::= % | AM(a,a) | Aa | a.a | a[a] | a — a. Also, we define the following well-founded
ordering ] > . > *, A\, A, — on the alphabet A.

Assuming all symbols of .4 have multiset status, this well-founded ordering induces a well-founded Recursive
Path Ordering (RPO) on the full set of terms S [Der82] denoted >7; (see appendix).

Definition 3.26 We define the translation Ry(e) : RT — S as

3The reason for prefixing the second group of rules with a z is somewhat arbitrary, however some resource for distinguishing
these rules from those of Ax was sought for since reduction between F., and Ax is later compared (Lemma 3.48(2)).
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def

Ri(@)=Ralt) & « Ri(M(z:=N) & Ry(M)[R:(N)]
R1(MN) L Ry(M)R(N)  RaMft=7]) & Ri(M)[Ri(7)]
R1(Mo) & Ry(M)Ri6)  Rifo—7) L Ry(0) = Ry(7)
ROz 0.(M) ¥ AMRi(0), Ri(M)) Ry(Vt.o) ' ARy (0)

Ry (At M) € AR (M)

Note that R;(e) simply forgets all variables and all binding variables. For example R;(z(z := y})) = *[*].

Lemma 3.27 The ES-rewrite system is strongly normalizing on R7T.

Proof. One shows that if A, B are raw terms in R7 such that A —gs B then we have R, (A) >1; R1(B).

Since the ES-rewrite system is also locally confluent, by Newman’s Lernma we may conclude that it is
confluent. Thus if A € RT then we shall use ES(A) to denote the unique ES-normal form of A. Since the ZT
subcalculus is strongly normalizing (it is included in ES) and locally confluent then by Newman’s Lemma we
may also conclude that it is confluent. Thus if ¢ is a type then we use ZT' (o) to denote its unique ZT-normal
form. Also, we shall use =z7 to denote the reflexive, symmetrical and transitive closure of one step reduction
in ZT.

Remark 3.28 One may verify in the style of [Rio93, pp.63-64] that if o is a type then ZT(c) is a pure type
and if A is a raw term then ES(A) is a pure term or type. Note that if M € T then ZT(M) not only may not
be a pure term (for example if it has occurrences of the term substitution operator) but also may not have pure
types since term substitutions may block the execution of type substitutions.

Before proceeding to the property of strong normalization of ES”, we mention some technical properties of
ZT and ES which shall be used later.

Lemma 3.29 Let p, 0,7 be pure types, P and Q terms in 7, and 71, T> any types.
l. pt —THu —o{t —7}}=plu—oc}{t — 7} if u g FTV (7).
2. ZT(n[t = 12]) = ZT(n){t — ZT(m)}.
3. ES(P(z := Q)) = ES(P){z — ES(Q)}.
4. ES(P[t := 7)) = ES(P){t — ZT(n)}.

Proof. The first item is the substitution lemma and is proved by induction on p. The second item is first
proved for 7; and 72 pure types and then using Remark 3.28. Item three is dealt with in a similar fashion. Item
four is similar, but uses the observation that for a type o, we have ES(c) = ZT (o) and also uses item (2).

Next we extend the SN property of ES to the rewrite system ES”,i.e. ES with the additional rule 7 Beta. For
this we use Lemma 2.6 (see appendix). We thus define a translation Rz(e) from terms in R7 to S such that the
conditions of Lemma 2.6 are met. The latter translation shall forget type applications and type substitutions.

Definition 3.30 We define the translation Ry(e) : RT — S as

Ra(z) = Ra(0) = » Ra(At.M) € AR (M)
Ra(MN) T Ry(M)R2(N)  Re(M{z:=N)) & Ry(M)[Ro(N)]
Ra(Mo) L Ry(M) Ro(M[t:=71]) & Ry(M)

Ra(Az : 0.(M)) AMRz(0), R2(M))
Lemma 3.31 Let M and N be terms in 7. Then

1. If M —;Beta N then Ro(M) »1, R2(N), and
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2. If M —gs N then Ro(M) =1, Ra(N).

Proof. In both items we use induction on the reduction M —, N with r = 7Beta or r € ES. Let us
consider the first item. Suppose the reduction is at the root. Then M = (At.P)r and N = P[t := 7] and

R2(M) = AR,(P) and R3(N) = R2(P) and hence we obtain the desired result. If the reduction is internal
then we apply the inductive hypothesis and the monotonicity of RPOs.

The second item is similar. Note that if M —zr N or M —,oppt N then Ry(M) = Ry(N). For the
remaining rules we first consider the case where the reduction takes place at the root, for when the reduction
is internal we may apply the induction hypothesis and the monotonicity of >7;.

¢ 7 = zapp. Then M = (PQ)(z := R) and N = P(z := R)Q(z := R) and Ra(M) = (R2(P).R2(Q))[R2(R)]
and Rz(N) = (R2(P)[R2(R)]).(R2(Q)[Rz(R)]). Since [] >> . we verify that Ra(M) =1 R2(P)[Rz(R)]
and R2(M) =7 R2(Q)[R2(R)]. Let us consider the first of these, the other one being similar. By the
‘equal heads’ case we have (R2(P).R2(Q), R2(R)) =7 (R2(P), R2(R))*.

o7 = zlam. Then M = (A\y : o.P)(z := Q) and N = My : 0.P(z := Q) and we have Ry(M) =
(A(R2(0), R2(P))[R2(Q)] and Ra(N) = A(R2(0), R2(P)[R2(Q)]). Since [J > A we must verify that
R2(M) =7; R2(0) and Ro(M) >7; Ra(P)[R2(Q)]. The first is direct; for the second we may verify that
(A(R2(0), R2(P)), R2(Q)) =7; (R2(P), R2(Q))-

e 7 = zvar, 2g9c. The result follows by the subterm property of recursive path orderings.

o 7 = zlamt. Then M = (At.P){(z := Q) and N = At.P(z := Q) and Ry(M) = (AR2(P))[R2(Q)] and
R2(N) = A(R2(P)[R2(Q)]). Then [] > A and we must thus verify that Ro(M) >1, R2(P)[R2(Q)]. We
conclude using the ‘equal heads’ case.

Corollary 3.32 The ES™-rewrite system is strongly normalizing on 7.

Definition 3.33 (The z and Az-rewrite systems) Let us denote the rewrite system obtained by taking ES
and eliminating the subsystem ZT and rules zappt and zlamt, the z-rewrite system. We define Az as z and the
rewrite rule Beta2. We recall these rules below.

(/\1,‘ O'(M))N —Betaz M(z = N)

(MN){z := P) —zpp M(x:=P)N(z := P)
Az My:0.(M))(z:=P) —usm My:o0.(M(z:= P))
z z(z := P) —ar P
M(z := P) —ge M z¢ FV(M)

The Az and z calculi are the explicit substitution calculus for the simply typed lambda calculus (typed Ax)
and its subcalculus for computing explicit substitutions (typed x), respectively. Note that from Lemma 3.27 we
have that z is strongly normalizing.

3.3.2 F,: The Typing Rules

In this section we introduce the typing rules for F,s. As already mentioned, in [Blo97] explicit substitutions were
added to the Pure Type Systems formalism [Bar92]. Although we deal only with an explicit substitution version
of F, already for this calculus subject reduction was shown to fail. The counterexample exhibited in [Blo97] is
the pure term M = (As.(\f : s = s.\z : s.fz))t. We refer the reader interested in Explicit Pure Type Systems
(EPTS) to [Blo97]. After proving subject reduction for F,s, we conclude by showing how the typing rules deal
with M. Independently in [Blo99, Blo01], the notion of Explicit Type System is introduced, a presentation of
pure type systems with explicit substitutions which enjoys the subject reduction property.

Definition 3.34 (Type assignment) A type assignment is a finite set of pairs {z; : 61,...,Zn : 0n} such
that the variables are pairwise distinct and each o; is a (not necessarily pure) type. The domain of the type
assignment is the set {z,...,z,}. If the types o; with i € 1..n are pure then I is said to be a pure type
assignment. Type assignments are denoted with capital greek letters I, A, .... We use Dom(I') to denote the
domain of I

4A word on notation, (...) is used for multisets and )_-’7-‘ is the usual extension of >7; to multisets (Oos94, Chapter 1].
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Definition 3.35 (Type judgement) A type judgement is an expression of the form I't> M : o where ' is a
type assignment, M is a term in 7 and o is a pure type. If, moreover, I is a pure type assignment and M is a

pure term then ' > M : o is said to be a pure type judgement.

We shall sometimes use I'(z;) = o; to denote the type assigned to the variable z; by the type assignment
['={z;:01,...,Zn: 0n}. Also we use the abbreviation ¢t ¢ FTV(T) for t ¢ FTV (I'(y)) for every y € Dom(T’).

Definition 3.36 Let I’ = {z; : 01,...,Zn : 0n} be a type assignment, ¢t a type variable and 7 a type. Then
[(:=r) is any member of the set of type assignments { {z; : 01, ...,2n : 0.} | 0} =27 03[t := 7] for alli € 1..n}.

Definition 3.37 (Derivable type judgements) The set of derivable type judgements in F.s is defined by
the typing rules given in Figure 3.2. The rule tabs is subject to the following restriction: ¢ ¢ FTV(I).

z:0€Tl
—_—a
> z:2T(o)

T

I'bM:0-7 '>bDN:o
I'bMN:T

app

'>M:Vio ;
> M7:0o{t — ZT(7)}

app

Lz:ooM:1r ' N:2ZT(0)
FeM{z:=N):7

subs

z:oOM: 7T ab
s
o (Mz:0.(M)):ZT(0c) = 7

'>M:o

tabs
o (At.M) :Vio

I'>M:o

tsubs
Cig=r) O Mt := 7] : 0{t — ZT(7)}

Figure 3.2: Typing rules of the Fe,-calculus

Definition 3.38 A term M € 7 such that there exists a type assignment I" and a pure type o such that the
judgement ' > M : o is derivable in the type system of Figure 3.2 is called typable. The set of typable terms is

denoted 7.

In a typing judgement I' > M : o the type o assigned to the term M is always a pure type. Also, we refer

to the size of a derivation as the number of applications of rules it contains.

Example 3.39 Two examples of type derivations follow.

f:8—s8z:8Df:9—s8 fi:s—os,z:8Dz:s

app
fis8—s,2z:3>fz:8
abs
f:s—=s8DAz:8.fx:5— 8
tsubs
fitotp(Az:sfz)s:=¢t]:t ot
abs

BAf:it=t(Az:sfz)s:i=¢t]):(tot)=(t—t)

fis—=8z:8Df:s—s8 f:s—s8z:8Dzx:s

app
f:s—os,z:5D fz:8
abs
f:s—>s8DMz:sfr:s5—s
tsubs
fi(s—o8)s:=tp Mz :sfr)s:=t):t ot
abs

DAfi(s—>9)[s:=t](Az:s.fz)[s:=¢t]:(t=t) = (t =)

Note that for the application of tsubs in the upper type derivation we use (t — t) =z (s — s)[s = t].
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The typing rules of the usual (Church style presentation) of F' is given by all rules in Figure 3.2 without rules
subs and tsubs and restricting all type judgements to pure type judgements. Thus when speaking of derivable
type judgements in F' we shall explicitly mention so, otherwise we shall assume that the type system referred
tois Fe,.

In devising a rule for typing type substitutions our first intuition is that it should resemble an application
of the rule for type variable abstraction followed by that of type variable application. But the introduction
of a type substitution in a term M presents some difficulties. Consider a derivable premise I' > M : o and
suppose we add the type substitution [t := 7] to M in order to obtain I'> M|t := 7] : o{t — ZT(7)}. Then
we immediately note that the context I' should not remain the same for if z € FV(M) then the type assigned
to z by the type assignment I" has now fallen under the scope of the type substitution. For example, consider
the application of tsubs in the upper derivation of Example 3.39. The variable f, which has type s — s in the
premise, has now fallen under the scope of type substitution [s := ¢}, so its type must be affected accordingly.
This motivates the use of I';;.— ) in the rule tsubs.

An alternative approach could be to include the application of the type substitutions in the types of the
variables in the type assignment I’ from the start. This requires some mechanism of control in order to ensure
that the type substitution applied to the term M is the same as the one which has been applied to the type of
the variable in the type assignment (and in the same order if more than one has been applied).

We shall first consider the relation between typing in F' and typing in F.;. As expected, all terms typable
in F are typable in F,,(the typing rules for Fe, include those of F). And if a term is typable in F,, then its
ES normal form is typable in F' (Lemma 3.42).

The following result is used when showing that F has the subject reduction property.

Lemma 3.40 Let ',z : 7> M : 0 and ' > N : T be derivable pure type judgements in F. Then [' > M {z «
N} : o is derivable in F.

Proof. By induction on the size of the derivationof ',z : 7> M : 0.

Derivability is closed under type substitution in F'.

Lemma 3.41 Let ['t> M : ¢ be a pure type judgement and 7 a pure type. If ' > M : ¢ is derivable in F' and
BTV(M,0,T)NFTV(r) =0 then I'{t — 7} > M{t «— 7} : 0{t — 7} is derivable in F.

Proof. By induction on the size of the derivation of I'> M : 0.

Note that the subs rule internalises Lemma 3.40 and rule tsubs internalises Lemma 3.41.

Lemma 3.42 Let I'> M : o be a derivable type judgement in Fe;. Then ZT(T') > ES(M) : o is derivable in
F.

Proof. By induction on the derivation of [' > M : ¢ using Lemmas 3.40 and 3.41 and Lemma 3.29(2) and
(3). We shall consider the interesting cases.

o case subs. Then the derivation runs

Lz:ppP:o I'>Q:2T(p)
F>Plz:=Q):0

subs

By induction hypothesis we have that ZT'('),z : ZT(p) > ES(P) : ¢ and ZT(T) > ES(Q) : ZT(p) are
derivable type judgments in F. Then by Lemma 3.40 we have that ZT([') > ES(P){z — ES(Q)}:cisa
derivable type judgement in F. Finally applying Lemma 3.29(3) we are done.

o case (tsubs). Then the derivation runs

ApP:p

tsubs
A=r) D> Plt := 7] : p{t « ZT(7)}
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where I’ = Ay, and o = p{t « ZT(7)}. Remark that p is pure. Then by the induction hypothesis the
type judgement ZT(A) > ES(P) : p is derivable in F. Applying Lemma 3.41 we obtain that ZT(A){t «
ZT(1)} > ES(P){t — ZT(7)} : p{t «— ZT(7)} is derivable in F. We conclude by observing the following:

— By Lemma 3.29(4) we have ES(P[t := 1)) = ES(P){t — ZT(7)}.

— On the other hand, suppose z : p; € A. Then we have  : p3 € A=, with p2 =27 p1[t := 7]. Since
ZT is confluent and SN we have ZT(p2) = ZT(p:1{t := 7]) =L 3.202) ZT(p1){t «— ZT(7)}, which
concludes the case since we then have ZT(A(..—r) = ZT(A){t «— ZT(7)}.

In order to prove the subject reduction property for F.; we need two auxiliary results, the weakening lemma
and the context reduction lemma.

Lemma 3.43 (Weakening) If't> M : o is a derivable type judgement, and z : 7 is such that z ¢ Dom(I') U
BV (M), and BTV(M)NFTV(r) =0 thenI',z: 7> M : 0 is a derivable type judgement.

Proof. By induction on the size of the derivation of I' > M : . The interesting cases are
e case (abs). Then the derivation runs

Fy:p>P:p
abs
CoMy:p.P:2T(p) - p

Now by the conditions of the lemma we have = # y and thus by induction hypothesis we obtain

Ly:pz:7>P:p
Cz:7oMy:p.P:2T(p) = ¢

abs

e case (tsubs). Then the derivation runs

A>P:o

- tsubs
BDimp) > Plt = p : o' {t — ZT(p)}

where I' = A=, and 0 = o’{t « ZT(p)}. Then by induction hypothesis we have

Az:T>P:o
tsu
Ap=p)y T : 7D Plt:=p]: 0'{t — ZT(p)}

bs

Note that since ¢ € BTV (P[t := p]) by the condition of the lemma we have ¢t ¢ FTV(7) and therefore
T{t == p] = agc T

We shall need the following lemmma for the subject reduction property, it states that if a context types a
term P with type o then the context resulting from rewriting the original one also types P with o.

Lemma 3.44 (Context reduction) Let I',z : 7> P : o be any derivable type judgement and suppose
7T—ozp 7, then ',z : 7/ > P : 0 is a derivable type judgement.

Proof. By induction on the size of the derivation of ',z : 7> P : 0.
e case (var). We have two further subcases to consider.

— P =c. Then 0 = ZT(7). And since T =z 7 we have ZT(r) = ZT(r’). Then [,z : 7' >z : ZT(7)
is a derivable type judgement.
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— P=y #z. Then 0 = ZT(p) with y: p € " and we are done.

o cases (app), (abs), (tapp), (subs) and (tabs). We use the induction hypothesis. For the case (tabs) note
that if T =21 7/ then FTV () C FTV (7).

o case (tsubs). Then the derivation runs

Az:p> P oy

tsubs
Ajp=oy), T : 7D Pt :=01] : 02{t — ZT (o)}

where T =27 plt := 01]. But then 7/ =27 p[t := 0;]. And we may construct the following derivation (see
Def. 3.36):

Az:p> P 0y

tsubs
Afti=o,) : 7' D P'[t := 01] : 02{t — ZT(01)}

Lemma 3.45 (Subject reduction) Let I'> M : o be a derivable type judgement and suppose M — F., N.
Then I'> N : o is a derivable type judgement.

Proof. By induction on the reduction M —F,, N using Lemmas 3.43 and 3.44 (see appendix).

We finish this section with the counterexample [Blo97, Prop.7.27] mentioned in the introduction of the
section that states that the EPTS Fz does not verify the subject reduction property and we show how this
situation is remedied.

Example 3.46 Consider the pure term M = (As.(\f : 8 = s.)z : 5.fz))t. It is typable in F,,

f:s—os8,z:8Df:s—8 f:9—s8,2:5Dz:3s

app
f:s—s8,z:8> fx:8
abs
fis—=sDAz:s.fr:s8—>s
abs
DAf:s—s8Az:8.fz:(s—8)— (5> )
tabs

BDAs.(Af:8— 3Xz:8.fz):Vs.(s = 8) = (s> 3)
ta;

D(As.(Af:soshz:afa))t:(tot) o (t—1)
Now we have the following reduction sequence:

M —.pea (M :8—>38)z:s.fz)[s:=1
—alam  Af (s> 8)[s:=1t].(M\z:s.fz)[s ;=]
»zr A :it—ot(Az:s.fz)[s:=t

The last term is also typable as illustrated by Example 3.39 (as well as the intermediate term \f : (s —
s)[s :==t].(A\z : s.fz)[s :=t]).

3.3.3 Strong Normalization of Typed F,

In this subsection we prove the strong normalization property for the typed F., calculus. We follow the
presentation given by Gallier in [Gal90]. The idea is to define an erasing function Erase(e) that when applied
to a typed term in F., eliminates all typing information producing an untyped Ax-term, and proceed as follows:

1. show that if a term resulting from erasing all type information, say Frase(M), is strongly Ax-normalizing
then the original term, i.e. M, is strongly Fe,-normalizing.
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2. thus, the result follows if we can show that Frase(M) is strongly Ax-normalizing for typable M. We gen-
eralize this goal by showing that if M is typable then Erase(M) concatenated by a series of explicit sub-
stitutions is strongly Ax-normalizing; clearly this implies that Erase(M) itself is strongly Ax-normalizing.

3. this previous goal is proved by using the candidates of reducibility technique where the candidates are
suitable subsets of SN ..

Although we have chosen to give a direct proof of strong normalization of F,; by means of the reducibility
technique, other proofs relating strong normalization of F.s to that of F' are possible (Blo99, BloO1].
We shall begin by considering the type information erasing function and then consider the reducibility proof.

Definition 3.47 (Erasing function) We define the function Erase(e) : T — Ty,

FErase(z) e 5 Erase(At.M) def Prase(M)
Erase(MN) def Erase(M)Brase(N) FBrase(Mo) ef FErase(M)
Erase(M(z := N)) def Erase(M)(z := Erase(N)) Prase(M[t := o)) &« Erase(M)

Prase(\z : 0.(M)) wf Az.(Brase(M))

We recall that x is the substitution calculus of Ax. It propagates the substitution operators until they are
performed or eliminated. The following lemma shows that a F.s-rewrite step may collapse to a Ax-term via the
erasing function or be simulated by a Ax-rewrite step.

Lemma 3.48 Let M\\N € T
1. If M —, N with r € (Fes \ Az) then Erase(M) = Erase(N).
2. If M —; N then Erase(M) — )y Erase(N).

Proof. Both items are proved by induction on the rewrite step M —, N with r € (Fe, \ Az) and € Az,
respectively. We prove the second item:

e The reduction takes place at the root.

— r = Beta2. Then M = (Mz : 0.(P))Q and N = P(z := Q), and therefore we have Frase(M) =
(Az.(Brase(P)))Erase(Q) and Frase(N) = FErase(P)(z := Frase(Q)). Thus Erase(M) —peta
Brase(N).

— 7 = zapp. Then M = (PQ)(z := R) and N = P{z := R)Q(z := R). And therefore on one hand
Prase(M) = (Erase(P)Erase(Q))(z := Erase(R)) and on the other Frase(N) = FErase(P)(z :=
Prase(R)) Erase(Q)(z := Erase(R)) and by the rule app we are done.

— r=zlam. Then M = (\y : 0.P){(z := Q) and N = My : 0.P(z := Q). And therefore Erase(M) =
(M\y.Erase(P)){z := PFrase(Q)) and we also have Erase(N) = M\y.Frase(P)(z := Prase(Q)) and by
the rule lam we are done.

— r = var or r = gc. We resolve as above.

e The reduction is internal. In all cases we use the induction hypothesis and compatibility of —);. Also
note that in the cases where the context is Po or P[t := o] only reductions in P may have taken place.

Proposition 3.49 Let M be a term in 7. If there is an infinite Fs-derivation starting from M, then there
is an infinite Ax-derivation starting from Erase(M).

Proof. Suppose we have an infinite F,,-derivation starting from M. Then since the rewrite system S =
Fes \ Mz is strongly normalizing (as a consequence of Corollary 3.32) the derivation must have the form M =
M, »5 Ma —); M3 -»g My —»; Ms... where the reductions — ), occur infinitely many times. Then by
Lemma 3.48 we obtain an infinite Ax-derivation starting from Frase(M).

Next, our aim shall be to show that if M is a typable term in the polymorphic lambda calculus with explicit
substitutions then the untyped Ax-term Erase(M) is strongly Ax-normalizing, thus allowing us to conclude that
M is strongly Fes-normalizing. As already mentioned, we shall use Tait’s version of Girard’s candidates of
reducibility technique [Tai75).
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The proof of strong normalization of F,,

In this section we apply Tait’s version of the technique of candidates of reducibility in which the candidates are
untyped Ax-terms.

Definition 3.50 (Substitution) A substitutionis a function ¢ : V — T); such that ¢(z) # z for only finitely
many ¢ € V. The finite set {z | ¢(z) # z} is called the domain of ¢ and is denoted Dom(¢). When ¢ has
domain Dom(I') for some type assignment I of interest we write ¢ : ' — 7,;.

Definition 3.51 (P-substitution) A substitution ¢ is called a p(arallel)-substitution if for every z; € Dom(¢)
we have ; ¢ U,¢ pom(q) FV (6(2))-

Definition 3.52 (Explicification of a substitution) Let ¢ be a (possibly p-) substitution and let [i;,. . ., in)

be any ordering of the variables in Dom(¢). Then an ezplicification ¢: Tay — Thz of ¢ is defined as $(M) def

M(:Bi1 = ¢(‘Ti1 )) v (:1:.-,. = ¢($in))-

Intuitively a p-substitution represents a parallel substitution. Usually when one defines a substitution ¢
and applies it to a term, the substitution process takes place ‘in parallel’. Since Ax incorporates sequential
substitution into the object-level and in order to apply the usual reducibility technique we give conditions
(definition of p-substitutions) on these sequential substitutions so that they may behave as desired. It should
be noted that the explicification of a substitution ¢ is not the usual notion of universal algebra that we are
accustomed to, rather ¢ takes a term and applies the substitution ¢ in an ‘explicit’ way be means of pending
explicit substitutions. The notion of explicification depends on the ordering of the variables of Dom(¢) given
by its user.

Definition 3.53 Let C and D be sets of untyped terms in 7). Then we deflne the function space of C in D,
denoted [C — D), as [C —» D] = {M € Ty | YN € C, MN € D}. We refer to (¢ — o] as the function space
constructor.

Definition 3.54 A nonempty family of sets of (untyped) terms in 7, C, is called type closed if it verifies the
following properties

1. every C € C is nonempty,

2. C is closed under the function space constructor,

3. given any C-indexed family (Ac)cec of sets in C, then ncec Ac €C, and
4. every C € C is closed under a-equivalence.

Note that since we identify a-equivalent terms at the metalevel the last item of this definition is trivially
satisfied. We shall use the notation M € |JC to say that M is an untyped Ax-term in C for some member C of
the family C.

Definition 3.55 (Assignment) Let C be a type closed family. An assignment is a functionn : ¥V — C. Given
a set C € C and a type variable ¢ we use [t := C] to denote the assignment such that for all v € V we have
7lt := C](v) = C if v =t and 7|t := C](v) = n(v) otherwise. Although the e[s := ] symbol has already been
used for the closure operator we expect the overloading not to cause any confusion.

Definition 3.56 Given an assignment 77 : V — C, for every pure type o, the set [o]n is defined as

Itlr o) iftev
[(01 = o2)ln j—ﬁi (lo1)n = loaln]
Vt.oln = Neeclolnlt :=C)

In the following lemma we assume by the variable convention that the bound type variables in o do not
occur free in 7. The third item is referred to as “Girard’s trick” [Gal90]. The proof may be found in [Gal90].

Lemma 3.57 1. Given two assignments 771 : ¥V — C and 72 : ¥ — C, for every pure type o, if 71 and 72
agree on FTV (o) then [o]m = [o])n.
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2. Let o and 7 be pure types. Then for every assignment 7: YV — C we have [o{t — 7}]n = [oln[t := [7In].

3. Let C be a type closed family. Then for every assignment 7 : YV — C, for every pure type o, we have
[eclnec.

In order to prove strong normalization on typable terms we impose some conditions on the members of a
type closed family. Before proceeding we recall some notation: if M, Ny,..., Ny, € Tyy and z1,...,Zm € V then
we use M* to denote the term M({z) := Ny)...{(Tm := Np,) for m > 0.

Definition 3.58 We say that a family C of sets of untyped Ax-terms is a family of candidates of reducibility iff
it is type closed and satisfies the following. For every set C € C we have,

For every variable z € V, z € C.
. For all M,N € T),, if M(z := N) € C then (\z.M) N € C.
For all M € |JC and for all m >0, and V,,...,Ny, € |JC if M* € C then z(z:= M)* € C

For all M, N € |JC and for every z € Vand all m > 0and Ny,...,Ny,, € JC if M* € C and z ¢ FV (M)
then M(z := N)* € C.

. For all My, M; € Ty, for every ¢ € V and all m > 0, and N, Ny,..., N, € |JC if (M;(z := N)My(z :=
N))* € C then (M1 M,)(z := N)* € C.

R6. For all M € T),, for every z € V, and all m >0, and N, Ny,..., N, € JC, if Oy.M(z := N))* € C and
y ¢ FV(N) then (\y.M)(z:=N)*€C.

R7. For all M,N € Ty, for all m >0, for all P, Ny,...,N, € |JC, ify ¢ FV(P) and M(z := P)(y := N(z =
P))* € C then M(y := N)(z:= P)* € C.

FEEE

&

Condition (R7) is the explicit version of the substitution lemma (Lemma A .4).

Now we may prove (roughly) that if a term in 7 is typable with type o then its image via any explicification
of a p-substitution ¢ (satisfying the conditions of the lemnma) is in the member set of the family C interpreting
the type o.

Lemma 3.59 Let C be a family of candidates of reducibility. For every derivation of ' > M : o for some term
M € T, for every assignment 7 : V — C, for every p-substitution ¢ : I' — Ty, if ¢(z) € [ZT([(z))ln for
every z € Dom(I'), then for every explicification ¢ of ¢ we have ¢(Erase(M)) € [o]n.

Proof. By induction on the size of the derivation of ' > M : o.

o Base case. Then the derivation consists solely of ' > z : ZT(p) where z : p € I'. Now by hypothesis we
know that ¢(z) € [ZT(p)ln. Let [z,,...,Z,] be any ordering of the variables in Dom(I') and suppose
z; = z. Then we reason as follows

¢(z) € [Z2T(p)In hypothesis
¢(z)(zn = ¢(zn)) € [ZT()In (R4), ¢ p-subs
;ﬁ(x)(l'jﬂ = @(Tj+1)) .. . (Tn := #(zn)) € [ZT(p)In kR4), ¢ p-subs

(T = ¢(@))(Tj+1 = $(Zj41)) - - (Zn = ¢(2n)) € [2T(p)ln  (R3)

(21 := ¢(z1)) .. . (Tn = ¢(za)) € [ZT(p)In (R4), T type judg.
e Inductive case. Let k + 1 be the length of this derivation. We analyse the last derivation rule applied,

— app. Thus the derivation ends as follows,
'M:7—-0 I'bDN:T
I'>MN:o

app
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Then by the induction hypothesis we have that ¢(Erase(M)) € [r — on and also that ¢(Erase(N)) €
[7]n for any explicification ¢ of ¢. By the definition of [r — o]y we have ¢( Erase(M))¢( Erase(N)) €
[eln. That is,

Erase(M)(z, := ¢(z1))..(zn := ¢(z,)) Erase(N)(z; := ¢(1))..(Tn := ¢(z,)) € [o]n. Then applying
condition (R5) repeatedly we obtain,

(Erase(M)Erase(N))(z: := ¢(z1)) . .. (Tn := ¢(zn))
= ﬁue(MN)(zl = $(21)) .. . (Tn = $(n))
€ \|oln

Since this applies for any explicification ¢ of ¢ meeting the conditions of the lemma we are done.
abs. Then the derivation ends as follows:
z: 7o M:p
FoAdx:7TM:ZT(t)—p

abs

Let N be any term in [ZT(7)]n and ¢ any explicification of ¢ with ordering of variables [z1, . .., Z,).
We choose a representative in the a-equivalence class [(Az. Erase(M))(z1 := (1)) - . . (Tn := ¢(Tn))]as
say (Az’.Erase(M'))(z] := ¢(z1)) ... (Z) = ¢(zn)) (note that renaming commutes with the erasing
function) such that
1. ' ¢ FV(¢(z;)) fori € l.nand 2’ ¢ FV(N) and z; # 7’ for i € 1..n, and
2. z{ ¢ FV(¢(z;)) and z; ¢ FV(N), fori,j € 1..n.
We have to rename z in order to avoid name clashes (first item). But since we are working with p-
substitutions this entails more renaming (second item) so that we may be able to apply the induction
hypothesis when it is needed. Note that since ¢ is a p-substitution no renaming takes place inside
the ¢(x;)s in the representative of the a-equivalence class chosen.
Let ¢’ be the resulting p-substitution, i.e. the substitution defined as
oy def [ (i) if z=g;
¢(x) = { N ifz=d
Since the induction hypothesis holds for every derivation of length < k and for every assignment 7
satisfying the conditions of the lemma, we have that for every explicification ¢’ of ¢’, ¢'( Erase(M’)) €
[pln. In particular, Erase(M')(z] := ¢(z1)) ... (z), = #(za))(z’ := N) € [p]n.
Then by condition (R2) we obtain that (Az’.Erase(M')(z} := ¢(z1)) ... (=}, := #(zn)))N € [p]n
Since this is valid for every N € [ZT(r)]n then by definition of [ZT(7) — p]n we have that,
2z’ Brase(M')(z} = ¢(z1)) . .. (=, := ¢(zn)) € [2T(7) — pln
Finally since ¢ FV(¢(z;)) for i € 1..n (first item above) we may apply condition (R6) repeatedly
obtaining, (\z'. Erase(M’))(z] := ¢(z1)) . .. (2}, := @#(zn)) € [ZT(7) — pln
And by closure under a-equivalence we conclude,
(Az.Brase(M))(z1 := ¢(z1)) . .. (Tn = ¢(zn))

= FErase()\z : T.M){(z1 ;= ¢(1)) - .. (T = @(z40))

= ¢(PBrase(z : T.M))

€ [2T(r) - pln
subs. Then the derivation ends as follows

Lz:ToMy:0o > Mz:Z2T(7)
subs
C> M (z:=M):0o

Let ¢ be any p-substitution with domain I satisfying the conditions of the lemma. Now we choose
a representative of the equivalence class

(Erase(M,)(z := Erase(Mz)(z1 := ¢(21)) - - - (Tn 1= $(2n)))]a
say Erase(M})(z' := Erase(Mz)(z1 := ¢(z1)) ... (Tn := ¢(zn))), such that
1. 2’ ¢ Dom(I'), and
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2. =’ ¢ FV(¢(Prase(M,)) (and thus z’ ¢ FV (¢(z;)) with j € 1..n).
Let ¢’ be the substitution ¢’ : ([, 2’ : 7) — 7, defined as

def [ P(z:) if z=ux
#(z) _f{ ¢(Erase(M2)) if z=12'

Note that due to the first and second item, and that z; ¢ FV(¢(Erase(M;)) with i € 1..n (since
they are all bound and ¢ is a p-substitution) the resulting substitution is a p-substitution.

Since the induction hypothesis holds for any derivation of length < k and for every assignment satisfy-
ing the conditions of the lemma, on one hand for every explicification ¢ of ¢ we have ¢( Erase(M,)) €
[ZT(7)ln. Another application of the induction hypothesis to the derivation ending in the left
premise of the application of subs allows us to infer that for every explicification ¢ of ¢ we have
¢ (Erase(M!)) € [o]n. In particular we have,

Erase(M})(z1 := ¢(21)) . .. (Tn := ¢(z0)) (¢’ := Erase(Mz)(z; := ¢(z1)) ... (zn := ¢(zn))) € [oln.
Since z’ ¢ FV (¢(z;)) (item 2) we may apply condition (R7) repeatedly and obtain Erase(Mi)(z’ :=
Erase(M))(z; == ¢(z1)) . .. (zn == ¢(zy)) € lo]n.

And since [o]7 is closed under a-equivalence

Erase(My)(z := Erase(M2))(z1 := ¢(z1)) . .. (Tn := &(zy))
Erase(Mi{z := M2))(z1 := ¢(z1)) .. . (Tn := $(Zn))
¢(Erase(My(z := M3))) € [oln

— tapp. Then the derivation ends as follows
' M:Vtp .
Lo M7:p{t — ZT(1)}

app

By the induction hypothesis, for any explicification ¢ of ¢ we have ¢(Erase(M)) € [Vt.p]n. Now since
vt.oln = Neeclplnlt := Cl, we have ¢(Erase(M)) € [p]nit := C] for every C € C. In particular
if we take C = [ZT(7)]n € C, we have ¢(Erase(M)) € [pln[t := [ZT(7)]n). By Lemma 3.57(2) we
have that [p{t — ZT(7)}|n = [plnlt :== [ZT(7)]n], and therefore ¢(Erase(MT)) = ¢(Erase(M)) €
lo{t — ZT(7)}In.

— tabs. The derivation ends as follows.
e M:p

t
o> (At.M) :Vt.p

where t ¢ FTV(['(z)) with £ € Dom().

Then t ¢ FTV(ZT(I(z))) for every z € Dom(T’) (since if 7 —z1 7’ then FTV(r’) C FTV(7)) and
by Lemma 3.57(1) we have [ZT(T'(z))]n = [ZT(T(z))In{t := C] for every C € C. Since the induction
hypothesis holds for every derivation of length < k, for every 7, and for every p-substitution ¢
satisfying the conditions of the lemma, it holds for every C € C when applied to the derivation
I'> M : p, to every 7t := C] and to every p-substitution ¢ such that ¢(z) € [ZT(['(z))}n. Therefore,
for every C € C and for every explicification ¢ of ¢ we have ¢(Erase(M)) € [p]n[t := C]. And thus
¢(Erase(At.M)) = ¢(Erase(M)) € (ceclolnlt := C) = [Vt.pln.

— tsubs. The derivation ends as follows.

abs

A>P:p
tsubs
A=) > P[t := 7] : p{t «— ZT(7)}

Let  be any assignment and ¢ any p-substitution with domain Aj._,) meeting the conditions of the
lemma. Consider any z : 01 € Aj.—) and its corresponding z : 02 € A. Then by hypothesis we
have ¢(z) € [ZT(01)ln and since 01 =zr 05t := 7] then ZT(0,) = ZT(02){t — ZT(7)} using the
fact that ZT is complete and Lemma 3.29(2). Thus [ZT(01)]n = [2T (02){t — ZT(7)}In =L 3.57(2)
(2T (a2)In(t := (2T (7)]).

We apply then the induction hypothesis with p-substitution ¢ and assignment 5[t := [ZT(7)]n]
and obtain that for every explicification ¢ of ¢ we have ¢(Erase(P)) € [plnlt := [ZT(7)}n]). But
since Erase(P) = Erase(P[t := 7]) and by Lemmas 3.57(2) and 3.29(2) we may conclude that
¢(Erase(P[t := 7])) € [p{t — ZT(7)}In.
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In order to obtain families of candidates of reducibility for proving properties of Erase(M) where M € T
Girard has shown that conditions R1-R7 must be strengthened.

Definition 3.60 (Saturated set) Let S be a nonempty set of terms in 7)y.

1. We say that S is closed iff whenever Mz € S then M € S where z € V.

2. Let S be closed. A subset C C S which is closed under a-equivalence is called saturated iff the following
conditions hold

S1.
S2.

S3.

S4.

S5.

Se.

S7.

For every variablez € V, foralln >0and all P,...P, € S,zP,...P, € C.

For all M,N € Ty, alln >0and all P,,...,P, € S, if M(z := N)P, ... P, € C then

(Az.M) NP,...P, € C.

Foral M € Sandforallm >0,n >0and all N;,..., N, € Sand P,,...,P, € Sif M*P,...P, € C
then z{(z := M)*P,...P, € C.

For al M,\N € S,allm>0,n >0, all Ny,...,Ny, all P,...,P, € S, and every variable z in V
such that z ¢ FV(M) if M*P, ... P, € C then M(z := N)*P,...P, € C.

For all M, M3 € T),, for every variable z € V and for allm > 0, and N, N;,...,N,, € Sand alln >0
and P, ..., P, € Sif (My(z := N)Ma(z :== N))*P, ... P, € C then (M M3){z := N)*P,...P, € C.
For all M € Ty, for every £ € V, and all m > 0, and N,N;,...,Nm € S, and all n > 0 and
P,...,P,eSif (\y.M(z:= N))*P,...P, € C then (\y.M)(z := N)*P,...P, € C.

For all M,N € Ty, for allm > 0, for all P,N,,...,N,, € S, foraln >0and P;,...,P, € S if
y ¢ FV(P) and M(z := P)(y :== N(z := P))*P,... P, € C then M(y := N){(z:= P)*P,...P, € C.

Lemma 3.61 Let S be a nonempty closed set of terms in 7),, let C be the family of saturated subsets of S,
and assume that S is saturated. Then C is a family of candidates of reducibility.

Proof. Note that conditions (S1)-(S7) imply conditions (R1)-(R7), respectively. Therefore we are left to
verify that C is a type closed family. First of all note that the family C is nonempty since S € C. Also,

e By condition (S1) each saturated subset is nonempty since it contains all variables.

e Let C and D be saturated subsets of S. We must show that [C — D| = {M € 7, | VN € C, MN € D}
is a saturated subset of S.

[C — D] is a subset of S. Let M € [C — D). Since there is some variable z € C, we have Mz € D.
And since S is closed, M € S.

(S1). Since D is a saturated subset of S then by (S1) for every variable z € V and for all n > 0
and P;,...,P,,P € S we have zP; ... P,P € D. Since this is valid for every P € C, we have
zP,...P, € [C - D).

(S2). Let M and N be any terms in T);. Let P;...P, be terms in S. Suppose that M(z :=
N)P,...P, € [C — D]. Then for every P € C we have M(z := N)P,...P,P € D. Since
D is saturated, by (S2) we have (A\z.M) NP;...P,P € D. Since this holds for every P € C,
(Az.M) NP, ...P, € [C - Dj.

(S3). Let M be a term in S. Let Ny,...,Nm and Pi... P, be terms in S. Suppose that M(z; :
Ny)...(@m := Np)Py ... P, € [C — D). Then for every P € C we have M(z; := Ni)...(zZm
Np)Py ... P,P € D and since D is a saturated subset of S by (S3) z(z := M)(z; := N1)...(Tm :
Np)Py...P,P € D. Since this holds for every P € C we have z(z := M)(z; := N)...(Zm
Nm)Py...P, € [C — D).

The remaining cases are dealt with likewise.

e Note that properties (S1)-(S7) of saturated subsets of S are preserved under arbitrary intersections, and
thus for the C-indexed family of saturated subsets of S, (Ac)cec we have (g Ac is a saturated subset

of S.
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e A saturated subset of S is closed under a-equivalence by definition.

Proposition 3.62 Let S be a nonempty closed set of terms in 7),, let C be the family of all saturated subsets
of S, and assume that S is saturated. Let M € T that type checks under the type assignment I' = {z; :
O1,...,Tp : On} and let z1,..., 2, be fresh variables. Then Erase(M)(z; := z1)...(Zi, := zn) € S where
i1,...,1in is any ordering of the variables in Dom(T’).

Proof. By Lemmma 3.61 we have that C is a family of candidates of reducibility. Finally, we conclude by
Lemma 3.57(3) and Lemma 3.59. .

Therefore in order to prove properties of Erase(M) when M is a typable polymorphic term we need saturated
sets satisfying these properties. In particular, since we are interested in strongly Ax-normalizing terms (SN ;)
we shall prove that the set SN ), is a closed saturated set. The key ingredient in the proof of this result is the
Perpetuality Proposition.

Lemma 3.63 The set SN ), is a closed saturated set.

Proof. We must verify that SN ), is closed and verifies (S1)-(S7). Note that if Mz is strongly Ax-normalizable
then M also, so SN, is closed. We are left to check that SN, verifies

e (S1). Suppose P, ... P, € SN )z then for every variable z € V, zP, ... P, is strongly Ax-normalizing.
e (S2). By the Perpetuality Proposition 3.11(1).

e (S3)-(S6). By the Perpetuality Proposition 3.11(2),(3).

e (S7). By Remark 3.12.

Therefore since SN »; is a nonempty closed subset of 7); and is itself saturated, if we construct the family
of saturated subsets of SN, we obtain, by Lemma 3.61, a family of candidates of reducibility. This allows us
to prove the following corollary.

Corollary 3.64 Let M be a term in 7. Then M is strongly F.,-normalizing.

Proof. Suppose M € T™. Then there is a type assignment ' = {z; : 0},...,Z, : 05} and a pure type o
such that ' > M : o is a derivable type judgement.

Let z),..., zn be fresh variables. Then by Proposition 3.62 we have Erase(M)(z;, := z1)...(z;, := zn) €
SNz where 4,,...,1, is any ordering of the variables in Dom(I'). But then we also have Erase(M) € SN,
and finally by Proposition 3.49 we may conclude that M is strongly F,,-normalizing. .
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Chapter 4

Perpetuality in Aws

This chapter studies perpetuality in the Aws-calculus. It does so by exploiting the proof technique introduced
in [DG99, DGO1] for proving preservation of strong normalization of Aws. The Aws-calculus is a calculus of
explicit substitutions based on de Bruijn indices notation which is considerably more involved than Ax due to
the presence of substitution composition. Indeed, although in contrast to the case of Ax-terms the Aws-terms
are decorated with updating tags (Def. 2.53), it is the presence of rewrite rules allowing substitutions to be
composed which introduces technical difficulties which are not present in Ax. A term with an update tag is
of the form (i) M, indicating that all free indices in M should be incremented by 7 units. Substitutions have
the form M|[i/N, j] indicating that indices 7 must be replaced by ()N and that there was a tag (j) embracing
the Beta-redex that fired the substitution. The following rewrite step illustrates how substitutions may be
composed in Avs:

4(0/00, 0)(0/A00,0] — us 4[9/((1))[0//\“],0], ];]

8 t sot

Note that, as originally introduced in [DG99, DGO01], de Bruijn indices start from 0 instead of 1 as introduced
in Section 2.2.2. There are no updating tags in the above two terms. The example below shall include updating
tags.

The Aws-calculus is the first! lambda calculus with explicit substitutions to satisfy simulation of one-step &
rewrite reduction?, confluence on open terms and preservation of strong normalization. It is often mentioned that
an advantage of calculi of explicit substitutions is that substitutions may be executed in a controlled manner.
They may be delayed, for instance, in order to avoid unwanted duplication of the body of the substitution.
However, in such a case all substitutions ‘above’ the delayed instance are blocked. This is witnessed in the
Ax-calculus for example. The interest in Aws is that these substitutions ‘above’ the delayed one may jump
(provided certain conditions are fulfilled) over it thanks to rewrite rules for substitution composition. This
constitutes an interesting scenario for the study of rewrite strategies.

As already mentioned in Chapter 3 the literature on perpetual rewrite strategies requires orthogonality, a
property which is not fulfilled by Aws. Hence these results do not apply. Furthermore, the closure tracing
technique used in Chapter 3 is not applicable either due to the presence of substitution composition. Indeed,
although as in Ax, rewrite steps in infinite Aws-derivations must be void (Def. 2.38) from some point on, the sub-
stitution body which is source of an infinite Aws-derivation may have been created by composing substitutions.
An example follows.

4[0/00, 0](0/A(00), 0] — xus 4(0/(00)(0/200,0), 1] —»us 4{0/(0)(A00) (0)(A00), 1] —»rus - --

The substitution body (00)[0/100,0] shall be the source of an infinite Aws-derivation. It does not seem possible
to trace back this body and make use of the minimality argument.

Recently, an extension of uniform normalization (all redexes are perpetual) to non-orthogonal systems was
presented in [KOOO1b]. Due to the fact that decent terms are not preserved by ws-reduction (see Section 4.2.4)
the technique developed in that work does not seem to be directly applicable either.

1Together, it seems [DGO01], with the work by H.Goguen and J.Goubault-Larrecq [GGLOO).
2However, see Section 4.2.
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In this chapter we define a perpetual rewrite strategy for Mws and use it to prove that an inductive char-
acterization of a class of terms in Aws captures exactly those that are strongly Aws-normalizing. The results
build on the so called constricting, and in particular zoom-in strategies of the lambda calculus [Gra96, RSSX99,
Mel96, KOOOla). The strategy may be summarized as follows:

¢ Step 1. Given a Aws-term M admitting an infinite Aws-derivation we obtain a subterm N of M still having
an infinite Aws-derivation, but such that every strict subterm of NV is strongly Aws-normalizing. Thus N
is 2 ‘minimal’ subterm of M admitting an infinite Aws-derivation.

e Step 2. The resulting term N may have a Beta-redex as head redex® or a ws-redex, where ws is the
substitution calculus of Aws. Now in the former case the Beta-redex is easily seen to be perpetual, that
is to say, contracting this redex does not result in a term which is strongly Aws-normalizing. However in
the latter case it is not clear that the head ws-redex (or any ws-redex for that matter) is perpetual. This
problem is due to the non-orthogonality of Aws. We solve it by introducing a labelling strategy, described
briefly in Step 3.

e Step 3. Given a minimal (in the sense discussed above) Aws-term N admitting an infinite Aws-derivation,
the labelling strategy labels an explicit substitution operator in N, yielding N. The resulting labelled
substitution operator enjoys the property that it may be eliminated from N (by computing it) via a notion
of labelled rewriting that preserves the possibility of infinite Aws-derivations. The proof that this notion
of labelled rewriting is perpetual relies on the proof technique used for proving preservation of strong
normalization of Aws [DG99, DGO1].

The perpetual rewrite strategy shall then be used to show that a certain set of terms determined by four
inductive rule schemas are exactly the set of strongly Aws-normalizing terms.

Structure of the chapter

Due to the technical complications arising in Aws, partly because of the ‘noise’ introduced by the updating
tags, but more fundamentally due to the presence of substitution composition, we have chosen to present the
basic ideas in the context of the Ax-calculus. Of course, substitutions may not be composed in Ax, however
we believe that the effort is nonetheless worthwhile from an expository point of view. It helps pinpoint the
main steps outlined above, and prepares the reader for the material on Aws that follows. After introducing
the labelled Aws-calculus we study the labelling strategy for Aws. This shall constitute the core of the chapter.
Finally, we formulate the rewrite strategy and prove it perpetual. We end the chapter with the characterization
of the strongly \ws-normalizing terms.

The material presented in this chapter is joint work with A.Arbiser and A.Rios [ABROO].

4.1 Zooming-in on Ax

In this section we formulate a perpetual zoom-in Ax-strategy, in preparation for Section 4.2 on Aws.

Definition 4.1 Let M € T such that 00),(M). A subterm N of M such that c0),(N) and every proper
subterm of N is strongly Ax-normalizing, is called a minimal perpetual subterm.

An infinite Ax-derivation is called constricting [Gra96, RSSX99] if it is of the form
C1[M,] —ax C1[Ca[Mz]] —ax C1[C2[C3[M3])] —ax - ..

where the M; are minimal perpetual subterms and the redex contracted in the step Ci[...Ci{M;]...] —ax
Cil...Ci[Cis1[Mi41]) .. ] is a subterm of M;. A (one-step) perpetual rewrite strategy F(e) for \x is called
constricting if any infinite F(e)-derivation M — )z F(M) —ix F(F(M)) —x ... is constricting. In the
case that F(e) is a many-step rewrite strategy then it is constricting if any infinite F(e)-derivation M Fax
F(M) Hr F(F(M)) Fax ... is constricting. A zoom-in rewrite strategy is a constricting strategy which in

3Actually, there are two ‘Beta’ rules in Aws however at the moment it is the intuitive grasp we are seeking so we shall ignore
this issue for the time being.
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each term contracts the leftmost redex of a minimal subterm with an infinite derivation. The strategies Fo(®)
and F(e) of Def. 3.16 and 3.19, respectively, are not zoom-in strategies since in M = (Az.z)(AA) they contract
the leftmost Beta-redex (yielding z(z := AA)). However, this redex is not the leftmost redex of a minimal
subterm of M admitting an infinite Ax-derivation since AA is a subterm of M with this property. For the same
reason, neither of the strategies are constricting either.

The chapter aims at introducing a constricting strategy which is partly zoom-in in the sense that in a term
M, if the leftmost redex of a minimal subterm N with an infinite derivation is a Beta-redex, then it contracts
it. If not, then the leftmost Ax-redex of this subterm is an x-redex. At this point we need some indication of
which redex to contract. For this we introduce a labelling strategy which amounts to a function which selects an
x-redex in N to compute. By compute we mean label or mark the x-redex in /N and then contract, repeatedly,
all marked x-redexes until none are left. The whole process shall yield a many-step Ax-rewrite strategy.

Of course, from the Perpetuality Proposition 3.11 we know that contracting any x-redex (and in particular
the leftmost one) in N shall yield a full perpetual zoom-in strategy. However, this result does not hold for Aws,
but rather a more restricted one (Corollary 4.40). Therefore, since this section’s aim is to introduce the work
done for Aws in the context of Ax in order to get a grip of the main ideas, we shall use the labelling strategy
also for Ax, as discussed above.

The reader not familiar with Ax is referred to Section 2.3.1 of Chapter 2.

4.1.1 The Labelled Substitution Calculus

We shall begin by deflning labelled terms and labelled Ax-rewriting. Labels shall allow us to mark x-redexes,
Beta-redexes shall not be labelled. Compare the definition of labelled terms below with that of the Ax-terms,
denoted 7, (Def. 2.29).

Definition 4.2 (Labelled Ax-terms) The labelled Ax-terms, denoted 7, are given by the following gram-
mar:
M = z|lM|MM|M(z:=M)|M{z:=N)) where N € T),

The o{(e := o)) operator is called the labelled substitution operator. Note that the body of a labelled substitution
operator is a Ax-term (and thus contains no occurrences of the labelled substitution operator). The set of free
variables of a term M is denoted FV (M) and defined as usual. In the sequel we shall refer to e(e := @) as the
unlabelled substitution operator.

So for instance z{(z := y))((y := z)) is a valid labelled Ax-term, however z{(z := y({(y := z)))) is not since the
term y((y := z)) is not a Ax-term. The labels shall allow us to trace the computation of substitutions. We now
present the rewrite rules that compute labelled substitutions.

Definition 4.3 (The x, xc and Ax-rewrite systems) The Ax-rewrite system is given by the Ax-rewrite sys-
tem together with the x-rewrite system. The x-rewrite system is defined by the following rewrite rules:

(MN)(z:=P))  —upp M({z:=P)N(z:=P)

Cu.(M)){z == P) —iam M.(M({z:= P))

z((z := P)) —ver P

M({z := P)) —iGe M z ¢ FV(M)

Reduction in the Ax-rewrite system is called labelled reduction. The xc-rewrite system is the x-rewrite system
together with the following composition rule:

P(z := Q){(y := R)) —¢ P(y := R)(z := Qv := R))

Note that the c-rewrite rule allows labelled substitutions to jump over unlabelled substitutions. However, no
jumping is allowed between substitutions of the same kind, i.e. labelled or not.

Lemma 4.4 (Properties of xc) The xc-rewrite system is strongly normalizing and confluent. The set of
xc-normal forms is 7yx.

Proof. Confluence is a consequence of strong normalization and local confluence of xc (all three critical pairs
are joinable), by applying Newman’s Lemma (Lemma 2.4). That the set of xc-normal forms is 7, follows from
a close study of the rewrite rules of xc.
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We now prove strong normalization by means of a translation to a set of ground terms equipped with a
well-founded ordering obtained by the recursive path ordering (RPO) method [Der82]. Consider the alphabet
{*,@,0(s),0((e)), \(#)} and the terms S over this alphabet defined as a ::= * | Q(a, a) | A(e) | a(e) | a{{a)). Then
the well-founded precedence (()) > () > @, A(), » induces a well-founded order on S, denoted >1;, as dictated
by the RPO method (where all function symbols are assigned multiset status). Finally we show, by induction
on M, that if M —;c N then T(M) >1, T(N) where T is the translation defined as follows:

T(z) el .

T(MN) = QT(M), T(N))
T(\z.M) L \NT(M))
T(M(z:=N)) € T(M)(TN))
T(M(z:=NY)) € TM)(TW))

As an example consider the case M = P(z := Q){(y := R)) —». P(y := R))(z = Q((y := R))) = N. Then
(M) : (T(PYT(@M(T(R)) and T(N) = (T(P)(T(R))){T(Q)(T(R))). Now since () > () we must verify
two subcases:

1. T(M) =5, T(P)(T(R)). According to the equal heads case we must verify that (T'(P)(T(Q)), T(R)) ~T
(T(P), T(R)) where >7. is the usual multiset extension of >7;. Since T(P) is a subterm of T'(P)(T(Q))
we are done.

2. T(M) 7, T(Q){T(R))). Similar to the case above.

Labelled substitutions may be eliminated in two ways: by erasing all labelling information (Def. 4.5) or by
executing the labelled substitutions (Lemma 4.4). The process of erasing labelling information shall be referred
to as ‘unlabelling’.

Definition 4.5 (Unlabelling for 7);) For M € T); we define |M| € 7), as:

la € g

|\z.P| < az|P)
1PQl = P
Pz:=Q) ¥ |P(z:=Q)

P(z:=Q) ¥ [Plz:=Q)

Let us now see how labelled rewriting and unlabelled rewriting may be related. The following result may be
proved by induction on M.

Lemma 4.6 (Unlabelling rewrite projection and lifting) Let M, N € T); and M’, N’ € T);. The follow-
ing diagrams hold:

MmN Ml e
lof il lo) L°Jl o)
Y Y Y Y Y
|M] < N |M] Ve V] M ——>N'

(2) (b) (o)

Definition 4.7 (The )\__xi and Ax°-rewrite systems) Reduction in the Ax-rewrite system may be partitioned
into reduction in the Ax* and Ax®-rewrite systems, i.e. Ax = Ax" & A\x®, where:

1. The Ax'-rewrite system is Ax-reduction in the bodies (denoted Ax‘-reduction, i.e. the contextual closure of
—g: if M =z N then P{{z := M)) - g P{{z := N))) of labelled substitutions together with x-reduction.

2. The Ax®-rewrite system is Ax-reduction over Tyy except inside the bodies of labelled substitution operators.
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Remark 4.8 Let us denote with 7322 those terms in 7j, such that all bodies of labelled substitution operators

are strongly Ax-normalizing terms*; thus T;:—b C T)y. Note that TA?—b is closed with respect to Ax U c-reduction.
This may be verified by a close inspection of the rewrite rules and observing that no new bodies of substitutions
are created. In particular, T;:—b is closed with respect to Ax*-reduction.

So we know that any )\x-derivation consists of Ax* and Ax® steps. If the derivation starts from a term in

T2 and is infinite then in fact we shall conclude that there are infinitely many Axe-rewrite steps. We shall
reach this conclusion by showing that Ax* is terminating on the set of terms in 7; ﬁ’b‘

Lemma 4.9 The Ax'-rewrite system is strongly normalizing on ’1}’:—1’

Proof. The idea is to define a strictly positive total function h such that h(M;) > h(M2) if My — ) Ma.
This function results from merging the original interpretation used to show that the x-calculus is SN and the
idea that each Ax-rewrite step in the body of a labelled substitution must be taken into account.

Consider the strictly positive total functions g : Tyy — IN>? and h : Ty — IN>°

g(x) def h(z) def

g(MN) e (M) +g(N) +1 h(MN) e (M) +R(N)+1
9(Az.M) e gM) +1 h(\z.M) € M) +1
oM(z:=N)) € gMy+gN)+1  h(M(z:=N)) % h(M)+h(N)+1

h(M(z = NY)) = h(M)(mazredx(N) + mazg(N) + 1)

where for N € SN ); we have mazg(N) def maz{g(P) | N -z P}. We now proceed to verify that h(M,;) >
h(M3) if My —,, M3 by induction on the position where the rewrite step takes place.

e The rewrite step is at the root. Let mazred z(P) = n and mazg(P) = m in the following rewrite steps:

— (lApp). Then h(MN){z := P)) = (h(M)+h(N)+1)(n+m+1) > h(M)(m+n+ 1)+ h(N)(m+
n+1)+1=h(M{z = P))(N{z = P)).

— (ILam). Then h((M\y.M)({(z := P)) = (R(M)+1)(n+m+1) > h(M)(m+n+1)+1=h(Ay.M({z =
P)).

— (IVar). Then h(z{z := P))) = n+m+ 1 > h(P) by definition of m. Indeed, note that m
mazg(P) > g(P) = h(P) since P € T);.

—~ (IGc¢). Then h(M((y := P))) = h(M)(n+m+ 1) > h(M), as in the previous case.

~ (Ax?). Suppose M((z := P)) —xi M{z := P’)) (recall that a Ax'-rewrite step at the root is a
Ax-rewrite step in P).

Then h(M)(mazred s (P)+mazg(P)+1) > h(M)(mazred sy (P')+mazg(P’)+1) since mazred ;(P) >
mazredx(P’) and mazg(P) 2 mazg(P’).

e The rewrite step is internal. Then we consider each possible context: if M; = M3My or M; = Az.Mj3 or
M; = M3(z := M,) then we use the induction hypothesis. If M; = M3{(z := P)) then the Ax"-rewrite step
must be in M; (it cannot be in P since there are no labelled substitution operators in P) and we may also
use the induction hypothesis yielding h(M3) > h(M3) and thus h(M3)(n + m + 1) > h(M3)(n + m + 1).

Lemma 4.10 (Labelled rewrite projection) Let M, N € T,;. The following diagram holds:

4The letters ‘snb’ in T; f stand for ‘strongly normalizing bodies’, and the underlining in snb recalls the reader that it is just
the bodies of labelled substitutions which are referred to.
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The proof of Lemma 4.10 is by induction on M and requires using metalevel substitution (Def. 2.32). Also,
Lemma 4.11 is by induction on M.

Lemma 4.11 (Ax°-rewrite projection) Let M, N € T);. The following diagram holds:

M———N
Ax'

xc xc

xe(M) > x¢(N)

We would like to bring the reader’s attention to the fact that for the proofs of Lemmas 4.10 and 4.11 to go
through the full power of the garbage collection rule (Ge-rule) is needed. Consider the outcome if the restricted
garbage collection rule (z(y := P) —,¢. x) were used instead: M = z(y := z){(z := P)) =) e z{z:=P) = N
yet xc(M) = P(y := z) and xc(N) = P but in general we do not have xc(M) —,g. xc(N).

As a consequence of Lemmas 4.10 and 4.11 we have the following result:

Corollary 4.12 (Perpetuality of labelled rewriting) Let M € ’1';:'—" If there is an infinite Ax-derivation
from M then there is an infinite Ax-derivation from xc(M). o

Proof. Suppose there is an infinite Ax-derivation starting from M. Then since the Ax‘-rewrite system is
strongly normalizing on TA?_', (Lemma 4.9) this derivation must have the form:

M= Mo -”&i M1 —\x¢ Mg —»A!i M3 > \x¢ M4...

Then applying Lemma 4.10 (extended to many step reduction and noting that Ax* C Ax) and Lemma 4.11 we
may construct the following diagram and conclude the proof:
M. 4 ——> -

Mo - M, pve > Mo —» M3 -

Ax Ar' Ax
2 T
- Ax T Ax x - Ax T Ax

Note that since Ax-reduction includes Ax-reduction Corollary 4.12 also holds if Ax is replaced by Ax in its
statement. It is possible to strengthen this result and prove that each xc-reduction step is Ax-perpetual. This
leads to a new proof of perpetuality of the strategies presented in Section 3.2.2 and allows to infer the other
results presented in that chapter, such as the inductive characterization of the set SN ,; and termination of
typed F.s. The reader may find further details in [ABROO].

4.1.2 A Digression: PSN

Corollary 4.12 shall be the main result used in proving perpetual our rewrite strategy (Def. 4.26). Although in
this chapter we are not interested in proving preservation of strong normalization, we would like to show how
Corollary 4.12 may be used for this purpose.

We shall use M € <), as an abbreviation for M € 7, N 00,,, i.e. the set of pure terms that admit infinite
Ax-derivations. Given a pure term M such that 00y;(M) (hence M € tx,,) the following zoom-in function V(e)
allows us to obtain a ‘minimal’ (in the sense that all strict subterms are strongly Ax-normalizing terms) pure
termm N such that also NV € xy; and N C M. This definition is a variant of Definition 4.8 in [RSSX99).

Definition 4.13 (Zoom-in function on pure terms) V(e) : bxtyy— 7, is defined:

V(zPQR) e yQ if P€ SNyx, Q¢ SN
V()\z.P) € v(Pp)

V((0z.P)QR) ¥ (\zP)QR ifP,Q Re SNy
V((0z.P)QR) ¥ v(p) if P& SNz
V(()z.P)GSR) & v(S) if P, € SN, S ¢ SNax
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Lemma 4.14 (Properties of V(e)) For all M € pqy; we have:
1. V(M) = (Az.P)QR for some P,Q, R € SN ;.
2. VIM)Cc M.
3. V(M) € bxy,.

Lemma 4.15 (Lifting lemma) Let M € bqy, with V(M) = (Az.P)QR. Then there exists an infinite \x-

derivation starting from V(M) def P{z := Q)R, i.e. the following diagram holds:

V(M Beta,; Mo Ml ‘Mg Ax

S I

where Beta, just stands for leftmost Beta-reduction where a labelled substitution operator is introduced instead
of an unlabelled one.

Ax Ax

Proof. The proof follows from Lemma 4.6(c) and the fact that any infinite Ax-derivation starting from V(M)
may be transformed into another one in which the first reduction step is 2 Beta,;-reduction step. .

Lemma 4.16 Let M € tx);. Then there exists IV € i<y, such that M —g N.

Proof. Let M € pxijz. Then by Lernma 4.14(3) we have V(M) € ;. Using the Lifting Lemma (Lemma 4.15)
we may construct the top part of the following diagram:

V(M) Beta; Mo Ax My Ax M, Ax M, Ax
% L-JI L-JI L-JI L-JI
> ’ > ’ _ ’
s VM) M= M- My
<
+ +
N’ = &(V(M)) e e ceeeeenen o D A;> ,\x»

The bottom part is completed by using Corollary 4.12. Finally, since V(M) C M there is a pure context
(a context without occurrences of the substitution operator) C such that M = C[V(M)] and N = C[N’] with
N € td)y.

The following zoom-in strategy was proved perpetual for the A-calculus by Melliés [Mel96]. Here we present
the zoom-in strategy on pure terms based on our Def. 4.13. It is perpetual for the Ax-calculus too (see proof of
Corollary 4.18).

Definition 4.17 (Zoom-in strategy for pure terms) Let M € tq),. The zoom-in strategy Z(e): bayy,—
7, is defined as:

z(zPQR) P = 1()); if B € SNy, Q ¢ SN
Z(\z.P) €' rz.z(P)

Z(M.P)QR) ¥ P{z—QIR iPQReSN,
zZ(Az.P)QR) ¥ (\zz(P)QR i PgSNy
Z(\z.P)@SR) ¥ (\z.P)Jz(S)R if P,§ € SNy, S ¢ SN

Finally, we conclude the section by showing PSN for Ax.

Corollary 4.18 (PSN for Ax) Let M € txiy; then M € oog.
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Proof. By applying repeatedly Lemma 4.16 we obtain an infinite S-derivation starting from M. See [ABROO]
for details.

M 2 V(M) €bax
8} Biy
ZM) 2 M 2 V(Z(M)) € xix
B* B&
Z(z(M)) 2 N 2 V(Z(z(M))) € b
ﬁ* ﬁll
Z(z(z(M))) 2 N3

4.1.3 The Zx(e) Perpetual Strategy

In this section we introduce a substitution labelling strategy for Ax. This consists in defining a strategy over
a class of terms (the domain of the labelling strategy) which selects an occurrence of a substitution operator
that may safely be computed while preserving the possibility of infinite Ax-derivations. But before proceeding
we present the zoom-in function for Ax.

Given a term M admitting an infinite Ax-derivation, the strategy Zx(e) shall zoom-in into the term in order
to select the redex to contract. The same effect is obtained by the following zoom-in function, the only difference
being that this function just selects the minimal subterm where the strategy Zx(e) shall find its redex without
actually contracting any redex at all.

Definition 4.19 (Zoom-in function) Let M € T); such that 00);(M). We define Vx(M) by induction on
M:

Vx(zPQR) € vx(Q) if P€ SNy, Q¢ SNy
Vx()\z.P) € vx(P)

Vx((\z.P)QR) € (\cP)QR if P,Q Re SNy
Vx((\z.P)QR) € vx(P) if P& SN
Vx((0z.P)GSR) & vx(S) if P,Q € SNz, S ¢ SN
V(Pz:=Q)F) ¥ Plz:=QF ifP,Q Re SNy
Vx(Pz:=QR) ¥ vxp) if P ¢ SN

Vi(Plz =QR) & vx(Q if P€ SNy, Q¢ SN

def

Vx(P(z := Q)QSR) Vx(S) if P,Q,Q € SN, S & SN

Vx(e) satisfies some properties for which we shall require the following definition of decent terms which first
appeared in {Blo97].
Definition 4.20 (Decent terms) We define the set of decent terms T, C T, as: M € T, iff the bodies
of the substitutions in M are Ax-strongly normalizing® (i.e. if Ny (z := N3) C M then N3 € SN ).

The set of decent terms is closed under x-rewriting, in other words, x-rewriting does not introduce sub-
stitutions whose bodies possess infinite Ax-derivations if there were none in the first place. This fails for the
Aws-calculus, as we shall see.

Lemma 4.21 (Preservation of decent terms by x-reduction) Let M € T,;7*%. If M —; N then N €
T,
The proof follows from a close inspection of the x-rewrite rules. Now back to the properties of Vx(e).

Lemma 4.22 (Properties of Vx(e)) For all M € 7, such that 00,,(M) we have:

1. Vx(M) = (Az.P)QR or Vx(M) = P(z := Q)R for some P, Q, R € SN, (hence Vx(M) € T).

5The letters ‘snbd’ in TA""" stand for ‘strongly normalizing bodies’. Note that they are not underlined so as to remind the reader
that it is the bodies of unlabelled substitution operators which are referred to. Likewise, Ax is not underlined to remind the reader
that we are dealing with Ax-terms (no labels are present).
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2. Vx(M)C M.
3. cox(VE(M)).

Now depending on the result of Vx(M) two situations may arise. The action to be taken by Zx(e) shall
depend on this result.

1. If V(M) = (Az.P)QR with P,Q, R € SN, then Zx(M) shall simply contract the leftmost Beta-redex
of Vx(M). Hence constituting a zoom-in strategy as commented in the introduction of this section.

2. However, if Vx(M) = P(z := Q)R for some P,Q, R € SN s, then Zx(e) must decide which x-redex to
contract in Vx(M). This task shall be derived to the labelling strategy. The latter shall select, in this
case, the innermost-leftmost substitution, label it, and compute it by means of the xc-rewrite system.

This division of the strategy Zx(e) shall prove convenient for analysing the more complex case of Aws.
Let us now address the labelling strategy. First some notation: we call an occurrence N;(z := N3) C M of
a substitution operator innermost if Ny € 7,, that is to say, if N; is a pure term.

Definition 4.23 (Innermost substitution labelling) Let M € 7,57 then M denotes the term M where the
innermost-leftmost substitution has been labelled if M is not pure, and M otherwise. Thus e : 7,57 — T, if&

(see Remark 4.8 for the definition of TA’:_,’)'

We now define a (many-step) x-reduction strategy that reduces innermost substitution operators.

Definition 4.24 (Substitution labelling strategy) The substitution labelling strategy for Ax is given by

the (many-step) x-reduction strategy Lx(e) : 7P® — 7,57t as Lx(M) e x¢(M). The domain of the labelling
strategy is the set 7,570

Note that we may just as well have defined Lx(e) as Lx(M) def x(M) since the composition rule is not
used in the reduction M —»;. xc(M) due to the fact that it is innermost substitutions that are labelled.

Note that Lx(e) is an x-strategy, indeed: if M is not pure then M i»! xc(M) and hence by Lemma 4.6(2)
M= M| 5, |zc(M)| = xc(M). Also, Lx(M) € T3 by Lemma 4.21.

Lemma 4.25 (Properties of Lx(e)) 1. The Lx(e) strategy is x-normalizing: for all M € T,5* there exists
n 2> 0 such that Lx"(M) is in x-normal form.

2. The Lx(e) strategy is Ax-perpetual: let M € T;3* and also 00xx(M). Then cox(Lx(M)).

Proof. The first item is a consequence of strong normalization of the x-rewrite system. The second item
follows from Corollary 4.12. Indeed, since 0o0y,(M) then by Lemma 4.6(c) M has an infinite Ax-derivation.
Corollary 4.12 yields 00, (xc(M)). .

Note that if M € 7,5 such that 0cox,(M), then from repeated application of the Lx(e) strategy to Vx(M)
we obtain x(Vx(M)) € tdyy-

Definition 4.26 (The Zx(e) Strategy) Let M € 7); such that 00)s(M), and let C be the context such that
M = C[Vx(M)]. We define Zx(M) as:

C|P(z := Q)R) if Vx(M) = (\z.P)QR

def
(M) = { ClLx(P(z = Q)B)] if Vx(M) = P(z = Q)R

Note how in the sixth clause, the Lx(e) strategy is in charge of selecting the closure to compute. By the
observation just before Lemma 4.25, Zx(e) is indeed a many-step Ax-rewrite strategy. It is also perpetual.

Lemma 4.27 The Zx(e) strategy is perpetual.
This may be proved for Zx(M) by induction on M using Lemma 4.25(2).
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4.2 Zooming-in on Aws

Next we shall consider the setting of the Aws-calculus. In the lines of the work developed in the previous section
we shall formulate a perpetual rewrite strategy for Aws. Also, an inductive characterization of the terms in
SN yue shall be given. As already mentioned, due to the presence of rewrite rules allowing the composition
of substitutions the problem is technically more demanding. A brief introduction to the Aws-calculus may be
found in Section 2.3.4 of Chapter 2. Although the rewrite rules of Aws are reproduced below for the reader’s
convenience she/he is advised to take a quick look at the aforementioned section.

Warning on notation to the reader familiar with Aws: in order to be consistent with the nomenclature
used in Chapter 3 we have adopted the term labelled instead of tagged as used in [DGO1]. Thus, for example,

well-tagged terms in the terminology of [DGO01] shall be referred to as well-labelled here.

4.2.1 The labelled \ws-calculus

We begin this section by characterizing the set of Aws-terms as given in Def. 2.56 of Chapter 2.

Lemma 4.28 Every term M in T)y, has exactly one of the following forms:

1. (k)nR

2. (R)AP

3. (E)A\P)QR

4. ((F)P/Q.1)E

5. ((F*)(PQ)R

We recall from Def. 2.58 the rewrite rules of the Aws-calculus.

5 { (AM)N >4 MI0/N,Q]
((kYAM)N —p2  MI[O/N, k]

[ (AM)[i/N, ;] - MMI[i+1/N,3)
((K)M)[i/N,j) —er (k+i-1)M
((k)M)[i/N,j]  —ee (k)M[i—k/N,j)

ws ¢ n[‘l/N,J] —ny TN
nfi/N, ] —nz (N
nli/N, j] —ns n+j-—1
M[k/N)i/P,j] —e1 Mk/Ni-k/Pj)j+1-1]
Mk/N,0)[i/P.j] —ce Mli-1+1/P,j|[k/N[i—k/P,j]1]
L (M —m  (i+)M

The B-calculus is just rules b1 and b2. The substitution ws-calculus is the Aws-calculus without the rules b1

and b2. The p-calculus is the ws-calculus without the m-rule.

i<k

1>k

n<i

n=1

n>1
k<i<k+l
k+1<i

Before recalling the labelled Aws-calculus from [DGO1] we define the labelled Aws-terms.

Definition 4.29 (Labelled terms) The set of labelled terms, denoted Ty, is defined as:

M = n|AM|MM| (k)M |M[i/M,j]| N[i/P,j] wheren,i,j,k € No and N, P € Thwe

The ofe/e, o] operator is called the labelled substitution operator. Note that the target and body of a labelled

substitution operator are terms without occurrences of labelled substitution operators.
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Definition 4.30 (Labelled rewriting) The labelled Aws-calculus, denoted \ws, consists of the Aws-calculus
together with the following set of rewrite rules (called the ws-calculus):

AMMNE/NGL —u MM+ 1/N,j])
(MiMR)[i/N, 51— Mi[i/N,jIM:[i/N, 5]

((RYM)[E/N, Gl —ier (k+i—-1)M i<k
((RYM)[i/N,j]  —ie2 (k)MFi —k/N, j] i>k
n[i/N, j] —ng T n<i
n[i/N,j] —me ()N n=i
nl[i/N, j] —ims n+j—1 n>i
M[k/NO/P, 3] =i Mk/N[i-k/P,j),5+1-1] kE<i<k+l

Note that there is no Im-rule (labelled version of the m-rewrite rule) in the ws-calculus (this simplifies some
proofs).

In our exposition on Ax, the labelled Ax-calculus of Section 4.1.1, after introducing it we immediately
considered properties of its substitution calculus (x) and showed how Ax-rewriting related to Ax-rewriting by
an unlabelling function. Here we shall do the same. However, in contrast to Ax we shall not rewrite all labelled
terms, but instead consider labelled rewriting on a restricted set of terms of the set 7). The reason is that
substitution composition must be taken into account. This restricted set of labelled Aws-terms shall be seen to
behave correctly in the presence of substitution composition when perpetuality is under the microscope.

Let us consider an example in order to shed further light on this issue. Let M be a Ax-term such that
00xx(M). From Corollary 4.12 it follows that any x-redex in M such that the body of the substitution involved
in this x-redex (denoted by the letter P in Def. 2.34) is strongly Ax-normalizing, is a Ax-perpetual redex. Indeed,
it suffices to label this substitution, apply Corollary 4.12, and project the resulting Ax-derivation with the help of
iterns (2) and (b) of Lemma 4.6. However, this does not hold in Aws. Consider the term M = 4[0/00, 0][0/A00,0].
Then, as illustrated in the introduction of this chapter, 0oxys(M). Also, the term 00 is clearly strongly Aws-
normalizing (in fact it is in normal form). However, the ws-redex (more precisely, the n3-redex) involving the
only substitution whose body is the term 00 is not perpetual since the resulting term is 3[0/A00,0], which
no longer admits an infinite Aws-derivation. The problem is that we have erased a substitution that could
potentially be combined with some other substitution by means of substitution composition, on its way to
constructing an infinite derivation.

The restricted set of Aws-terms are called well-labelled terms. This notion is due to R.David and B.Guillaume
and is the key to the proof of PSN for Aws [DGO1].

Remark 4.31 In order to convey the intuition behind Def. 4.32 assume we are given a non-pure term M € Tjys.
We would like to know if the term resulting from labelling some substitution operator in M occurring at position
p is well-labelled. For this, and before labelling any substitution, three conditions must be met:

SN body. The body of the substitution operator at p is a Aws-strongly normalizing term. We do not wish the
labelling strategy to erase terms having an infinite derivation.

Safe propagation. The substitution at p, once labelled, may safely be propagated by the ws-calculus until it
is completely executed. In other words, there are no substitutions ‘below’ p and which could potentially
block the propagation of the labelled substitution operator.

Non-interaction. Substitution operators above p or substitution operators which may be created above p
may not interact with (the substitution operator at) p in the sense that they may not compose with p.
Intuitively, this seeks to uphold compliance with the SN body condition.

The predicate B(e, o) verifies the Safe propagation condition and (e, @) all three of them.

Definition 4.32 (Well-labelled terms) A term M is called well-labelled if there exists m € IN such that
H(M,m). We use WL to denote the set of well-labelled terms. The H(e,e) C T,us X IN relation makes use of
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the B(e,e) C T,us X IN relation. Both are defined below:

B(n,m)
B(A\(M),m) if B(M,m+1)
B(MN,m) if B(M,m) and B(N,m)
i< m and B(M,m - i)
B((i)M,m) iff or
1>m

i<m<i+jand B(N,m - 1)
B(M([i/N,j],m) iff or
i+j <mand B(N,m — i) and B(M,m —j+1)

H(n,m)
HOA(M), m) if HM,m+1)
H(MN,m) if H(M,m) and H(N,m)
i < m and H(M,m — i)
H((EM,m) iff or

i>mand M € Th

m < 1 and M,NG'TAH

or
H(M[i/N,jl,m) iff i<m<i+jand H(N,m —i) and M € Taws

or

i+j <mand H(N,m-i) and H(M,m - j +1)
H(M[i/N,jl,m) if i=m, M,N € Taer N € SN and B(M,m)

Example 4.33 Let M = 4(0/(0)(200) (0)(200),1]. Then 4f0/(0)(A00) (0)(100),1] is not well-labelled since
the SN body condition fails.

Let N = 4[2/00,0](0/A(00),0]. Then the term 4[2/00, 0}[0/A(00),0] is not well-labelled since safe propa-
gation fails. Indeed, the labelled substitution may not be computed by ws-rewriting because it is ‘blocked’ by
the innermost substitution.

Let O = 4[0/00,0}(0/A(00),0]. Then 4[0/00,0}{0/A(00),0] is not well labelled since the non-interaction
condition fails: O —, 4(0/00{0/A00,0],1]. However, 4(0/00,0][0/A(00),0] is well-labelled.

Now that we have restricted the terms and singled out the ‘good’ ones we continue by defining an appropriate
unlabelling function and relating labelled rewriting to unlabelled rewriting, as done for Ax in the previous
chapter.

Definition 4.34 (Unlabelling for T)us) We define |o] : Thus — Tous given by

In = on
My E MN]
(M) (M)

(k) M] L (k)M
M[i/P5) ¥ |M|E/\P, 4]
MEi/P Gl ¥ Mli/Pj)

Note that in the last clause it is unnecessary to define |[M[i/P,j] as |M][i/|P],]] since the term M[i/P, j]
requires that M, P € T,y (s0 in this case [M| = M and |P| = P).

Having defined labelled and unlabelled Aws-rewriting the following lemma relates these notions.

Lemma 4.35 (Unlabelling rewrite projection and lifting) Let M,N,Q € 7, and P’ € WL. The fol-
lowing diagrams hold:

M—g>N  M-—p>N P> @
o) SHECE o l'Jl o)
Y Y Y Y B
|M] - IN] [M] s N] P— € WL

(a) (b) (c)
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See [ABROO| for the proof.

Lemma 4.36 (Properties of well-labelled terms) 1. If M € NF (i.e. M is a pure term) then B(M, m)
holds for all m > 0.

2. If M € Ty (i.e. M contains no labelled substitution) then H(M, m) holds for all m > 0.
3. IfMe€ WLand N C M then N € WL.

4. The set WL is closed under Aws-rewriting; i.e. for all M, N € Tyy, if M € WL and M — )y N, then
N e WL.

As in the Ax-calculus labelled substitutions may be eliminated by executing them (Lemma 4.37) or by erasing
them (Def. 4.34).

Lemma 4.37 (Properties of ws) The ws-rewrite system is strongly normalizing and confluent on the set of
well-labelled terms. The ws-normal forms of well-labelled terms do not contain occurrences of the labelled
substitution operator, i.e. if M € WL then ws(M) € Tyys.

Definition 4.38 (The Jus’ and \vs®-rewrite systems) Reduction in the Aws-rewrite system may be par-
titioned into reduction in the Aws® and Aws®-rewrite systems, i.e. Aws = Aws’ & \ws®, where :

1. The Aws'-rewrite system is Aws-rewriting in the bodies of labelled substitutions (i.e. the contextual closure
of —p: if M —y4s N then P[i/M,j] =g P[i/N,j]) together with ws-rewriting.

2. The Aws®-rewrite system is Aws-rewriting over Ty ezcept inside the bodies of labelled substitution opera-
tors.

Lemma 4.39 (labelled rewrite projection) Let M be a well-labelled term. The following diagrams hold:

M———N M——N

N

ws(M) --wus(N)  us(M) ;: us(N)
1) ()

The following key result analogous to Corollary 4.12 in the setting of Ax is formulated in [DGO1]. Its proof
follows from Lemma 4.39 and the fact that \ws’-rewriting is strongly normalizing on the set of well-labelled
terms ([DGO1, Lemma 8.19]

Corollary 4.40 (Perpetuality of labelled rewriting) Let M € WL. If M has an infinite Aws-derivation
then ws(M) has an infinite Aws-derivation.

Note how, in Corollary 4.40, the set of terms is restricted to the well-labelled terms. Compare this with
Corollary 4.12 for Ax where the full set of labelled terms is considered.

4.2.2 The Labelling Strategy for Aws

We shall now study how to replay the analysis behind the Zx(e) Ax-perpetual strategy in the Aws-calculus. We
shall first begin by introducing the zoom-in function which selects the minimal subterm where Zws(e) shall find
its redex. If the leftmost redex of the resulting term is a b1 or b2-redex then all works smoothly. However, if
this is not the case then we shall be in the need of introducing a labelling strategy.

Definition 4.41 (Decent Aws-terms) We define the set of decent terms T,5™ C Ty as: M € T,7 if the
bodies of the substitutions in M are strongly Aws-normalizing (i.e. if N}[i/N3,7] C M then Ny € SN .,).

Note that contrary to the x-calculus (Lemma 4.21), the set 7,5 is not closed under ws-reduction nor
p-reduction as explained when introducing the well-labelled terms (also see Section 4.2.4).
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Definition 4.42 (Zoom-in function for Aws) Let M € T, such that coy.s(M). We define Vus(M) by
induction on M as:

vus({E)nPQR) € yus(Q) if P€ SN us, @ € SN rus

vus((K)(AP)) £ yus(P)

vus(((F)AP)QR) e yus(P) if P& SNy,

vus(((F)A\P)OSE) L yus(S) if P,Q € SNxus, S & SN sus

vus(((K)AP)QR) e (HIAP)QR if P,Q,R € SN s

ves((k)(P(i/Q, ) R) = vus(P) if P ¢ SN ru

vus((R)(Pli/Q, 5)) B) = vus(Q) if P € SN jue, Q € SN us
vus((K)(Pli/Q,j))RiSR:) & vus(S) if P,Q,R1 € SN sus,S € SNus
vus((K)(P(i/Q, 1)) R) = (®)(Pli/Q)R if P.Q,R€ SNy

Vus((k+)(PQ)R) ' yus(P) if P& SN aus

vus((E*)(PQ)R) e yus(Q) if P € SN s and Q € SN s

vus((k+)(PQ)R,SR) ' yus(S) if P,Q, R} € SNus, S & SN yus

vus((K*)(PQ)R) L (k) (PQRE i PQRe€ SN

Lemma 4.43 (Properties of Vus(e)) For all M € T, such that 0oy, (M) we have:

1. vws(M) = ((E)AP)QR or Vus(M) = (k)(P[i/Q, ) E or Vus(M) = (k*)(PQ)R for some P,Q, B € SN 5.,
(hence Vus(M) € T3).

2. vws(M)C M.
3. oo (Vws(M)).

In the case that the zoom-in function yields (k*)(PQ)R we follow [DGO1) and use the context notation
below to access its leftmost redex.

Definition 4.44 (Body context) The set of body contezts is given by the grammar: B = O | (k)(B) | BM
where O denotes a hole. We use letters B, B',... to denote body contexts. The depth of a body context B,
denoted depth(B), is defined as: depth(0)=0, depth((k)(B’)) = k + depth(B’), depth(B’M) = depth(B’).
Lemma 4.45 If M = ((k+)(PQ))R for P,Q, R € SN )us then either

o M= B[((I;’)I\P')Q'] for some body context B and P’,Q’, K, or

o M= B[(I;’)(P’[i/Q’,j])] for some body context B and P/, Q' 1, j, K.
Moreover, the body context B in both items is unique.

Proof. We prove the following more general result: if N = (E)((l.)PQ)ﬁ where 00y (N), the outermost
symbol of P is not an update tag (i.e. P # (I')S for some I’ > 0 and Aws-term S) and P,Q, R € SNy, then
either

e N = B[((F)A\P’)Q’) for some body context B and P’,Q’,¥, or

e N = B[(k")(P'[i/Q", j])) for some body context B and P',Q’, i, 3,k'.

The proof is by structural induction on -P. Note that P must be of one of the following forms:
e P =n. Then we contradict the assumption that coyus(M) so this case holds trivially.

¢ P=PP,. Then N = (k)( l—}(Pl Pg)Q)R The induction hypothesis may be a.pphed to the subterm of N:
(l} (P, P2)Q where r replaces k P, replaces P, P; replaces @, and Q replaces R. Thus two situations may
arise:
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- (M(P1P,)Q = B'(((K")AP")Q") for some P",Q", (k).
- () (PP2)Q = B'[(K")(P"['/Q", 7)) for some P”,Q",i', 5", (k").

In either case let B” = (k)(O)R and define B = B”[B’[)] and conclude.
e P = )\P,. Then by taking B = (E)(CI)E we may conclude directly.
e P = P\[i/P,,j]. Then by taking B = (k)(OQ)R we may conclude directly.
. Uniqueness of B follows by contruction. .

Consider the following problem: given a non-pure Aws-term M, is it always possible to label some substi-
tution operator in M such that the resulting term is well-labelled? By Remark 4.31 there are at least three
reasons why this is not necessarily true. The term 4[0/(A00)()\00), 1] is an example since the body of the
only substitution is not a strongly Aws-normalizing term, so the SN body condition fails. We may refine the
question further and ask: given a decent Aws-term M, is it always possible to label some substitution operator
in M such that the resulting term is well-labelled? The answer is, once again, no. Consider for example the
term M = (A(0(0/0,0]))1; here the problem is that the substitution operator is not ‘interaction-free’ (hence
non-interaction shall fail) in the following sense: a bl step may create a substitution that is composable with
the one under the A in M, possibly creating a source of an infinite derivation.

We shall prove the following result: if a decent Aws-term M is interaction-free (Def. 4.47) then it admits
a well-labelling, i.e. there is some substitution in M that can be labelled such that the resulting term is a
well-labelled term. In the case that M has an infinite Aws-derivation Lemma 4.35(c) and Lemma 4.40 shall
complete our labelling strategy. The set of decent interaction-free terms shall constitute the domain of the
labelling strategy.

Definition 4.46 (Substitution occurrences) Let M € T),,. We shall use SO(M) to denote the set of
positions of substitution operators in M.

Definition 4.47 (Interaction-free substitutions and terms) Let M € Ty, p € SO(M) and m > 0. The
substitution at occurrence p is an interaction-free substitution of level m in M if IF(M,m,p) holds, where
IF(e,e,0) is defined as:

[F(AN,m, 1.p) if IF(N,m+1,p)
IF(N1N2,m, 1.p) if IF(Ny,m,p)
IF(N1N2,m,2.p) if IF(N3,m,p)

IF((i)N,m, 1.p) if i<mand IF(N,m-1i,p)

IF(N[i/N2,3),m,1p) if i+j<mand I[F(N),m—-j+1,p)
IF(N,[i/Ng,j),m,2.p) if i< mand IF(N;,m—1,p)
1F(N1[i/Ng,j],m,€) if m=1

We say M € Ty, is an interaction-free term when IF (M, m, p) holds for some p € SO(M) and m > 0. Also,

we use T;{,, C T7® to denote the set of decent Aws-terms that are interaction-free.

7&"8

T:m% (decent)

Ave

The intuition behind interaction-free substitutions follows the lines of Remark 4.31. Consider a decent non-
pure term M. If some substitution is labelled in M the resulting term shall be well-labelled if the remaining
two conditions of Remark 4.31 are met: safe propagation and non-interaction. The interaction-free predicate of
Def. 4.47 guarantees non-interaction. Furthermore, we shall see that this suffices for a decent term to admit a
well-labelling, for the condition of safe propagation may always be met (Proposition 4.51).
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The following result formalizes the idea that if B(M,m) does not hold, for some term M and m > 0, then
there is an interaction-free substitution blocking m-level substitutions, in other words, there is an interaction-free
substitution with strictly higher level in M.

Lemma 4.48 Suppose B(M,m) does not hold. Then there is a p € SO(M) and a level k > m such that
IF (M, k,p) holds.

Proof. By induction on M.
e M = n. Holds vacuously.

e M = M M,. Then since B(M,m) does not hold either B(M;,m) or B(Mz, m) does not hold. Then we
apply the induction hypothesis.

e M = A\(N). Then it must be that B(N,m + 1) does not hold. Then by induction hypothesis there is a
p’ € SO(N) of level k¥’ such that IF(N,k',p") with &’ > m + 1. But then IF(A(N),k’ — 1,1.p") holds and
we are done.

e M = (i)N. Then it must be that ¢ < m and B(N, m —1) does not hold (the case m < i is not possible since
B(M,m) would thus hold). The induction hypothesis yields a p’ € SO(N) and a level k¥’ with k¥’ > m —i
such that IF(N,k',p’). Then by Def. 4.47 we have IF(M, k' + 4,1.p’) with k' + i > m and we are done.

e M = M,[i/N, j]. Then since B(M,m) does not hold we have three cases to consider:

1. m <i. Then IF(M,i,¢€) holds trivially.

2. i <m < i+j and B(N,m—1) does not hold. Then by the induction hypothesis there is a p’ € SO(N)
and a level k' with k¥’ > m — i such that IF(N,k’,p’) holds. Then by Def. 4.47 (sixth clause) also
IF(M,[i/N, j],k’ +14,2.p’) holds where k' + i > m.

3. i+ j < m and two further subcases must be considered:

(2) B(N,m — i) does not hold. Then by the induction hypothesis there is a p’ € SO(N) and a
level k' with k¥’ > m — i such that IF(N,k’,p’) holds. Then by Def. 4.47 (sixth clause) also
IF(M;[i/N, 3],k +1,2.p’) holds where k' +1 > m.

(b) B(M;,m —j+ 1) does not hold. Then by the induction hypothesis there is a p’ € SO(M;) and a
level k' with k' > m — j + 1 such that IF(M,,k’,p’) holds. Then by Def. 4.47 (fifth clause) also
IF(M,[i/N,j),K' +j — 1,1.p') holds where k' + j —1 >m. Note that k¥’ +j —1>m > i +j.

Let M, denote the term obtained from M by labelling the substitution operator at position p.

Lemma 4.49 Let M € Tyus. Let p € SO(M) with M|, = N;[i/N2, j|. Suppose furthermore that:
1. N3 € SN \ua,
2. B(Ny,i), and
3. IF(M,m,p) for some m > 0.

Then H(M,, m) holds.

Proof. By induction on M.
e M = n. Holds vacuously.

e M = M, M,. Suppose p = 1.p/ with p’ € SO(M,) (the case p = 2.p' with p’ € SO(M) is similar). Then by
the induction hypothesis (M), m) holds. Also, since Mz € Thus then H(Mz,m) holds (Lemma 4.36)(2).
Thus since M = M;M; we may conclude H(M,m).

¢ M = A(N). Then p = 1.p' with p’ € SO(N) and we must verify that H(JN,m + 1) holds which follows
from the induction hypothesis. Note that the induction hypothesis may be applied since IF(N,m + 1,p/)
follows from hypothesis 3.
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e M = (i)N. Note that since IF({z)N,m,p) holds, we must have that p = 1.p’ with p’ € SO(N) and
m > i and IF(N, m —1i,p’). We must thus verify that H(N, m — i) holds. For this we apply the induction
hypothesis taking N for M, p’ for p and m — i for m.

e M = N|[i’/P,j'). We have three further cases to consider depending on the form of p:

— p=1.p with p’ € SO(N). Then since IF(N[i/P, '], m,1.p’) holds by hypothesis 3 we have i’ +j' <
m and IF(N,m — j' + 1,p’) holds. By induction hypothesis H(N,m — j' + 1) holds. Also, since
P € T)us the by Lemma 4.36(2) we have that H(P,m — i’) holds. Thus by Def. 4.32 we conclude
that H(M,m) holds.

— p=2.p' with p’ € SO(P). Then since IF(N[i/P,j'], m,2.p’) holds by hypothesis 3 we have i < m
and [F(P,m~—1%,p’) holds. By induction hypothesis H(P, m —i’) holds. Now we consider two further
subcases:

1. m < + 7. Then since N € T.s we have H(M,m).

2. m > i +j’. Then since N € Tyus by Lemma 4.36(2) we have H(N, m —j'+1). Then by Def. 4.32
we may conclude H(M,m).

- p= ¢ and hence N[i'/P, j'] = N1[i/Na, j] and m = i. Then H(N;[i/N2,j],m) holds by hypothesis 1
and 2.

The following lemma states that if a substitution at position p with target IN; is interaction-free in M, and
Nj itself has an interaction-free substitution at position g, then the latter is interaction-free in M too.

Lemma 4.50 Suppose that M € Ty, and that there exist p,q € SO(M), k,! > 0 such that
1. Mlp = N1i1/ Py, 51) with IF(M, k,p),
2. Ni|g = Nalin/Ps, j2) with IF(Ny,1,q), and
3.1>14.
Then IF(M,k + € + j1,p.1.q) wheree=1-14; — 1.
Proof. By induction on the length of p.

® p=e¢. Then M = N1['i1/P1,j1] and k = i;. Now IF(N][il/Pl,jll,il +e+ 5, l.q) iff i; +e +h2u+n
and IF(Ny,i; + e+ 1,q). Since i; + e + 1 = then by hypothesis 2 we are done.

e p=1.p". Then we must consider each possible M:

— M = \(M'). Then IF(MM’),k+e+j1,1.p'.1.q) if IF(M’ k+e+71+1,p'.1.q). But by hypothesis 1 we
know IF(M’,k+1,p") holds. Then by induction hypothesis we have that IF(M’,k+1+e+j1,0’.1.q)
holds and we are done. Note that e remains unaltered since it depends solely on ! and 7; which remain
unaltered when the induction hypothesis is applied.

- M = MiM,. Then IF(Mi Mo,k + e + j1,1.p".1.q) if IF(My,k + e+ j1,p'.1.q). But by hypothesis 1
we know [F (M, k,p’) holds. Then by induction hypothesis we have that IF(M;,k + e+ 71,9".1.9)
holds and we are done.

- M = (@)M’. Then IF(G)M' k+e+j1,1p' . 1.q) if k+e+j1 >iand IF(M' k+e+ 7 —1i,0'.1.q).
But by hypothesis 1 we know k > i and IF(M’ k —i,p’) holds. Thus k + e + j; > i. We are left to
verify that IF(M’, k + e + j; — 1,p’.1.q) holds, a result that follows by induction hypothesis.

— M = N'li/fP',j']. Then IF(N'(i/P',5|,k+e+j1,1p'.1q) if ' +5 < k+e+j and IF(N', k +
e+j1 —j' +1,p'.1.q). But by hypothesis 1 we know k > i + j/ and IF(N',k — j' + 1,p') holds.
Thus k+ e+ 7y > 7 + 7. We are left to verify that IF(N',k+e + 71 — 5 + 1,p’.1.q) holds. But by
induction hypothesis we have that IF(N’,k —j'+ 1 + e + j;,p".1.¢) holds and we are done.

o p=2.p'. Here we have two further cases to consider:
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— M = M;M;. Then IF(M 1M,k + e+ j1,2.p'.1.q) if IF(My, k + e+ j1,p’.1.9). But by hypothesis 1
we know [F(Mgz,k,p’) holds. Then by induction hypothesis we have that [F(M, k + € + ji,7".1.9)
holds and we are done.

- M = N'[/P',§'). Then IF(N'[i'/P',§'),k + e+ j1,29'.1.q) if # < k+ e+ j1 and IF(P',k+ e +
J1—1%,p'.1.q). But by hypothesis 1 we know k > i’ and IF(P’,k —i',p’) holds. Thus k+e + j; > 7'.
We are left to verify that IF(P',k + e + j1, — i/,p’.1.q) holds. But by induction hypothesis we have
that IF(P',k — i + e+ j1,p’.1.q) holds and we are done.

Proposition 4.51 If a decent Aws-term M is interaction-free then it admits a well-labelling, i.e. there is some
substitution in M that can be labelled such that the resulting term is a well-labelled term.

Proof. Let p € SO(M) with M|, = N[i/P,j] and such that IF(M,m,p). We shall use induction on the
number of substitution operators n occurring in N.

e n =0. By Lemma 4.36(1) B(N, ?) holds. Lemma 4.49 concludes the case.

e n > 0. If H(M,,m) holds then we are done. Otherwise, Lemma 4.49 reveals that B(N, ) does not hold.
Lemma 4.48 then yields ¢ € SO(N) and ! > 7 such that N|, = N’[¢//P’,j| and IF(N,l,q). Now by

Lemma 4.50 we have IF(M,m + e + j,p.1.q) where e 4f ) _i—1. Then we may apply the inductive
hypothesis and conclude the case.

Definition 4.52 (Substitution labelling strategy for Aws) The substitution labelling strategy for Aws is
given by the (many-step) ws-reduction strategy Lws(e) : Ty, — Tyue defined as

def -{M if Mg T

Lus(M) = WS(M ) pe1sus(M,p)) Otherwise

where p € SO(M) is the outermost-leftmost interaction-free substitution operator in M. The domain of the
labelling strategy is defined as the set 7';“{8

The labelling algorithm labelSubs(e, ) is an algorithm that selects the appropriate substitution to label in
order to guarantee that the resulting term, once labelled, is a well-labelled term. It shall build on the results
developed above. Let M € T;{, and p € SO(M) with M|, = Nolio/Po, jo] and IF(M, ke,p). The algorithm
labelSubs(e, ) on the input (M, p) is defined in Figure 4.1.

Example 4.53 Consider the term N = ((A\(0[2/1,0]))3)(0/2,0] € T\i Then labelSubs(N,e¢) returns 1.1.1,
i.e. the occurrence of the inner substitution. Indeed, the term ((A(0[2/1,0]))3)[0/2, 0] is not well-labelled (safe
propagation fails). However, ((A(0]2/1,0]))3)(0/2,0] is well-labelled.

For the sake of comparison with the results already introduced for Ax (Section 4.1.3), if M € 7;"{,, then
we shall abbreviate M),pe15us(M,p)» Where p € SO(M) is the outermost-leftmost interaction-free substitution
operator in M, by M.

Note that 7y, is not closed under Lws(e)-reduction. Let M = ((0(0/0,0])1)[2/1,0]. Then M € T since
the outermost substitution is interaction-free yet Lws(M) = (A0[0/0,0])1 ¢ ’T;{s Moreover, Lws(M) may not

even be decent for M € T, : indeed, M = 4(0/00,0}(0/A(00),0] € 7,7, yet Lus(M) = 4[0/(0)(A00)(0)(100), 1] ¢
T

Lemma 4.54 (Properties of Lus(e)) 1. Lws(e) is a (many-step) p-(hence ws-) rewrite strategy.
2. Lws(e) is Aws-perpetual.

Proof. For the first item suppose M € ’1;'{,, since M i’u ws(M), then by Lemma 4.35(a) we have

M= M i», lws(M)] = ws(M). For the second item suppose there is an infinite Aws-derivation starting from
M, then by Lemma 4.35(c) there is an infinite Aws-derivation starting from M. Corollary 4.40 concludes the
item.
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labelSubs (M,p);

begin
r:=0;
L= ko;
while ~H(M,,!) do --Termination guaranteed by proof of Proposition 4.51
begin

--Note that IF(M,1,p) holds by Lemma 4.50--

Lemma 4.49 reveals that —~B(Ny,1i,)

Apply Lemma 4.48 and obtain g,y € SO(N,) and a level k1 > i, with
IF(Nnkf+1,‘1r+1)- Let Nr|qr+1 = r+1[ir+1/Pr+11jr+1]

p:=p.lgr41;
l:=14+e+ jr vhere e=kry) —i,—1;
ri=r+1;

end;

return p;

end;

Figure 4.1: The labelling algorithm

4.2.3 The Zws(e) Perpetual Strategy for Aus

We are almost in condition of defining the zoom-in reduction strategy for Aws. A final remark related to the
use of the Lws(e) by the Zws(e) strategy is required. We have to guarantee that the term to which Lws(e) is
applied is in the domain of this labelling strategy. Since Zws(e) shall recur to the labelling strategy twice we
must verify that this condition is met.

Remark 4.55 1. Suppose M = (k)(P[z/Q, _7])R with P,Q, R € SN then M € 'I}'{s Indeed, first note
that M is decent. Also, if I = (3" k) +i where R = Ry ... R, and (k) = (k1) ... (km) then IF(M,1,17+™)

holds.

2. Suppose M = B[(k) P[i/Q, 3))] with P, Q, R € SN u where R is the set of arguments of applications in
B, then M € T’ Indeed, note that M is decent. Also, if I = depth(B) +i+ 3k and p is the position
of the hole in the body context B and (k) (k1) ... (k) then IF(M,1,p.1™).

Definition 4.56 (The Zws(e¢) strategy for Aws) Let M € T,,, and let C be the context such that M =

C|Vwus(M)]. We define the (many-step) Aws-strategy Zws(M) by Zws(M ) S M if M € SNy otherwise
Zus(M) is defined as:

( Cl(PO/Q.CRA  ifves(M) = ((EAP)QR _
ClLws((B)(Pi/Q,j) B)  if vus(M) = (k)(Pi/Q i) E 3 .
zes(y) 4 | CIBIP10/Q K] if Vus(M) = (k*)(P Q) R and (F*)(PQ)R = B|((F)\(P"))Q/

. for some body_‘context B_‘ and P’..Q' Re S_J‘V we
ClLws(B[(K')P'[i/Q',]))]  if Vws(M) = (k*)(P Q) R and (k*)(PQ)R = B[(K) P'[i/Q'", J]
for some body context B and P,Q, R € SN us

\

Lemma 4.57 (Zus(e) is a (many-step) \vws-strategy) For all M € Ty, we have M —» g, Zus(M). More-
over, if M & SN e then M 5., Zus(M).

Proof. If M € SN s then we are done. So let us assume that M ¢ SN .. According to Lemma 4.28 we
have the following cases to consider.

= (k)nR. Then R = R, PR, where R; € SNy, and P ¢ SN)w. And Zws(M) = (k)nR,Zus(P)R;.
By the induction hypothesis we have P Fsve Zws(P) and therefore M B rve Zus(M).

= (E)z\P. Then P ¢ SN )y, and we use the induction hypothesis.
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o M= ((k)/\P)QR If Por Qor R ¢ SN then we use the induction hypothesis. Otherwise, M —,
(ZE)A(P))QR —s2 PI0/Q, T k|R = zus(M).

e M = ((k)P[i/Q,j))R. fPorQor R & SN »us then we use the induction hypothesis. Otherwise, we use
Lemma 4.54(1).

M = (kt)(PQ)R. IfPor Qor B ¢ SN aus then we use the induction hypothesis. Otherwise we have two
cases to consider as dictated by Lemma 4.45:

1. M= B[((l;’))\Pl)Ql] for some body context B. Then
B(()AP)Q1] »m B{((Q_ F)AP)Q1] b2 BIP1[0/Q1, > F)

2. M = B((K")P1[i/Q, j]) for some body context B. Then we use Lemma 4.54(1).

Proposition 4.58 The Zws(e) reduction strategy is st-perpetual.

Proof. Suppose M has an infinite Aws-derivation. We prove by induction on M (using Lemma 4.28) that
Zws(M) also has an infinite Aws-derivation.

= (K)nR. Then Zus(M) = (K)nR)Zus(R')R; where R = Ry R'Rs, R, € SN sus, and R’ & SN yus. Then
by induction hypothesis we are done.

o M= (k)AP Then Zws(M) = (k)A(Zws(P)) and P ¢ SN )us. Thus we apply the induction hypothesis.

o M= ((k)AP)QR. If P,Q & SN ) or there is some R’ & SN ., in E then we apply Zws(e) and apply the
induction hypothesis. So suppose that P,Q, R € SN us. Then any infinite Aws-derivation starting from
M must have the form:

(RAP)QR —»xus (K)AP)Q'R =3 P'(0/Q, KR s ..
where k' = 3" k. Thus we may construct an infinite Aws-derivation from Zws(M) as follows:
P(0/Q,K'|R —»xus P'[0/Q KR 3 ...
and conclude the case.

o M = ((k)P[i/Q,3))R. If P,Q & SN sue or there is some R’ & SN 5y, in R then we apply Zws(e) and apply
the induction hypothesis. So suppose that P, Q, R € SN yus. Now since there is an infinite Aws-derivation
starting from M then by Lemma 4.35(c) there is an infinite Aws-derivation starting from M where M is
defined in Remark 4.55(1). Then by Lemma 4.40 we are done.

o M = (k*)(PQ)R. If P,Q ¢ SN jys or there is some R’ & SN sy in R then we apply Zws(e) and apply the
induction hypothesis. So suppose that P, Q, Resn avs- We consider two further cases depending on the
form of M, as dictated by Lemma 4.45:

— M = B[({K")A\(P}))Q] for some body context B. Then any infinite Aws-derivation starting from M
must be of the form:

BI((K)A(P))@1) = B'I((DMP1)Q4]) =5 B'(P1[0/Q}, 1] —aws ---
where | = ) K. Then we may construct the following infinite Aws-derivation starting from Zws(M):
B(P1[0/Q1,!] =xwe B'[P1[0/Q1, 1] »aus - - -

- M= B[(I;' YP1[i/Q1,7]] for some body context B. Now since there is an infinite Aws-derivation
starting from M then by Lemma 4.35(c) there is an infinite Aws-derivation starting from M where
M is defined in Remark 4.55(2). Then by Lemma 4.40 we are done.
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4.2.4 Characterizing Terminating Terms in Aws

We shall now formulate an inductive characterization of the terms in SN yys. The proof needed for the charac-
terization makes use of the perpetuality of the strategy Zws(e).

Note that Bloo and Geuvers’ characterization of SN ; (Proposition 2.40) does not adapt straightforwardly
to the Aws-calculus. In other words, the inclusion {M | VN C M, ws(N) € SN} C SN, does not hold.
Consider the term M = 4[0/00, 0J[0/A(00),0]. The subterms of M are {4, 0,00, A\(00),4[0/00,0], M}. Note that
the ws-normal form of each of these terms is a strongly Aw-normalizing term, however, M is not a strongly
Aws-normalizing term:

M —., 4{0/00{0/A00,0], 1] —»; 4[0/(0)(A00)(0)(A00), 1] —»xqs - ..

This follows from the failure of preservation of decent terms by ws-reduction. We shall use our labelling strategy
in order to formulate a characterization of the terms in SN ).

Definition 4.59 Let SN C Tue be the smallest set closed under the clauses:
P,....,P,eSN nZOI PesSN
(kYmP, ... P, € SN (k)A\P € SN

ws(B[Pi/Q.j])) € SN P,Q € SN j=>k B[P0/Q,j)| € SN
= - Subs — Betas
B[P[i/Q,j]) € SN B[((k)M(P))Q) € SN
In clauses Subs and Betas recall that B ranges over body contexts (Def. 4.44).

Proposition 4.60 SN ., = SN.
Proof.

o SNy C SN.

Let M € SNus. We prove by induction on (mazredus(M),| M |) where | M | denotes the size of M
(i.e. the number of variables, applications, abstractions, updatings and substitution operators), using the
usual lexicographic ordering, that M € SN. According to Lemma 4.28 we have the following cases to
consider:

— M = (k)nR where R = R, ...R,. Then since M € SNy, each R; € SNy, with i € 1..n. By the
induction hypothesis R; € SN with i € 1..n. Then clause Ind concludes the case.

- M= (E)AP. Then P € SN »» and we use the induction hypothesis and clause Abs.

- M = ((k)AP)QR. Then P[0/Q,j]R € SN where j = k. By the induction hypothesis
Pl0/Q, j]fi € SN. Now set B %' 0 and apply clause Betas to conclude the case.

- M = ((k)P[i/Q,j])R. Then ws((k)P[i/Q,j|R) € SNw by Lemma 4.54(1). By the induction
hypothesis we know ws((k)P[i/Q, j|E) € SN'. Also, we have P,Q € SN by the induction hypothesis.
Set B % (E)CIE and apply clause Subs to conclude the case.

- M= (E"’)(PQ)R‘. We have two cases to consider as dictated by Lemma 4.45:

1. M = B'[((K)A(P1))Q1) for some body context B’. Then B'|P1[0/Q1, K] € SNuw. The

induction hypothesis yields B'[P,{0/Q1, Y ¥]] € SN. Set B 4 B’ and apply Betas to conclude
the case.

2. M = B'|(K)P,[i/Q1,7]] for some body context B’. Then we proceed as in the previous case:

ws(B'[(F)Py[i/Q1,5]]) € SN and P, Q; € SN by induction hypothesis. Set B %' B’((£")0) and
apply clause Subs to conclude the case.

¢ SN C SN us.

By induction on the derivation of M € SN. The cases of clauses Ind and Abs are direct; those of Subs
and Betas follow from Proposition 4.58:
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— (Subs). Suppose M = B[Pi/Q,j]] ¢ SN »us. First note that the conditions P,Q € SN ,,, together
with ws(B[P[i/Q, j]]) € SN e guarantee that M is decent. We proceed by a case analysis on the form
of B indicating for each form the defining case of Zws(e) which allows us to arrive at a contradiction.

* B = (..((OM;)M3)...M,) with n > 0. Then by the ninth defining case we arrive at a contradic-
tion.

* B = (.((({*)OM1)M,)...M,) with n > 0. Ninth defining case.
* B = (.((I*)(B"M’)M;)M3)...M,) with n > 0. Last defining case.
— (Betas). Suppose M = B[((kK)M(P))Q] ¢ SNu. We proceed by a case analysis on the form of

B indicating for each form the defining case of Zws(e) (Def. 4.56) which allows us to arrive at a
contradiction.

* B = (..((OM;)M3)...M,,) withn > 0. Then by the fifth defining case we arrive at a contradiction.
* B = (.(((I*)OM)M,)...M,) with n > 0. Last defining case.
* B = (.((I*)(B"M'")M;)M5)...M,,) with n > 0. Last defining case.

Note that SN is deterministic in the sense that if M € SN )y, then there is a unique derivation of M in
SN.
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Explicit Substitutions for a Calculus of
Objects
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Chapter 5

Fields and Explicit Substitutions for
Objects and Functions

This chapter studies a calculus of explicit substitutions for modeling object-oriented languages: the ¢-calculus
of M.Abadi and L.Cardelli [AC96] is augmented with explicit substitutions. The ¢-calculus is a formalism
which is at the level of abstraction of that of the A-calculus, but which is based on objects instead of functions.
It may be regarded as a minimul calculus of objects in the sense that it is difficult to conceive a simpler
calculus for modelling object-oriented language constructs. Objects are the only computational structures in
the calculus. An object is a collection of methods; each method has a bound variable that represents self and a
body that produces a result. Only two operations are present and both apply to objects: method invocation and
method update. The calculus is Turing complete in the sense that lambda calculus may be encoded via suitable
objects [AC96]. The simple and elegant translation achieving this encoding, the function-object translation,
shall be seen shortly. Now assuming some calculus of explicit substitutions, say e, is used to render metalevel
substitution in ¢ at the object-level, it is natural to expect the resulting calculus of explicit substitutions e
to be able to encode \e. For example, if explicit substitutions & la v [BBLRD96| are considered in order to
augment the ¢-calculus, obtaining v, then we would want to verify that Av may be encoded in v, and hence
rest assured that ¢v shall be at least as expressive as the lambda calculus. In a variable name setting D.Kesner
and P.E.Martinez Lépez [KML98] have verified that indeed this is so, more precisely, they have verified that
Ax may be simulated in ¢x. However, they have observed that in a de Bruijn indices setting, in order to verify
that this sirnulation property indeed holds by adapting the aforementioned function-object translation, a new
substitution notion must be introduced: invoke substitution. Invoke substitution behaves differently from the
usual notion of substitution as regards the way in which de Bruijn indices are adjusted. For example, in Av-style
calculi of explicit substitutions we have n + 1{af] — pvar n since the substitution a/ was supposedly generated
by a Beta-redex and hence a lambda binder has now disappeared. However, for invoke substitution we have
n + 1{@l] =gy 7+ 1. Note that the index n + 1 suffers no alteration. In an explicit substitution setting,
the author has verified that fields are an appropriate tool in order to encode Ae in e via the corresponding
function-object translation. This chapter shall study a first-order calculus of explicit substitutions for the ¢-
calculus with fields as primitive constructs. Simulation of the Av-calculus, confluence and preservation of strong
normalization shall be the focus of our attention.

As mentioned in the introduction the study of calculi of explicit substitution has arised in the setting of
A-calculus, however there have been attempts to study explicit substitutions in a more general setting such as
Explicit Combinatory Reduction Systems [BR96|, based on the higher-order rewriting formalism CRS [Klo80)
and eXplicit Reduction Systems (XRS) of Pagano [Pag98]. These formalisms although defined in a higher-order
rewriting setting deal with a fixed ‘built-in’ calculus of explicit substitutions (X in Explicit CRS and o4 in XRS).
We shall see below that our calculus of explicit substitutions implementing the ¢-object calculus is an instance
of neither of these formalisms. At the time of writing this thesis the author has learned of an independent
formalization of the ¢-calculus published by M-O.Stehr [Ste00] based on an alternative representation for terms
called Berkling’s notation. This notation may be seen as the result of fusing both de Bruijn indices and variable
names. The variable name part of the notation is most appropriate for simulating fields (as done in the ¢-
calculus), however the de Bruijn indices part of the notation requires index adjustment to be brought into the
scene. The latter implies that invoke substitution or some analoguous notion shall also be required in order for
the function-object translation to succeed, hence switching to Berkling’s notation does not solve our problems.

79



80 CHAPTER 5. FIELDS AND EXPLICIT SUBSTITUTIONS FOR OBJECTS AND FUNCTIONS

Further work merging calculi of explicit substitutions and calculi of objects is that of F.Lang et al [LLL98].
This work aims at providing a unifying framework for studying operational semantics of various object-calculi,
so may be considered orthogonal to our approach. Moreover, the framework is based on an extension of the
AObj-calculus [FHM94| rather than the ¢-calculus. Since the AObj-calculus builds on the A-calculus there is no
need to consider function-object translations there.

Structure of the chapter

We begin by briefly recalling the main constructs of the ¢-calculus and immediately go on to consider the
cgp-calculus, < in a de Bruijn indices setting. After addressing some basic properties of the ¢-calculus with
de Bruijn indices, we augment it with fields. A field may be seen as a method which does not use its self
parameter. In the ¢-calculus fields and proper methods have been unified as methods. By declaring methods
that have no occurrences of its self parameter, fields may be simulated. This behaviour may also be achieved
in the ¢gp-calculus. Nevertheless, we introduce fields as primitive constructs (hence methods and fields coexist)
since when working in an explicit substitutions setting it shall be seen that this simulation is no longer possible.
Having introduced fields into the gq4p-calculus we proceed to prove the confluence of the resulting calculus.

Section 5.4 introduces the main calculus of this chapter: the ¢gpes-calculus. The latter results from ¢ by
introducing fields and explicit substitutions in the style of \v [BBLRD96]. In an attempt to encode Av via the
function-object translation two issues appear as obstacles:

1. encoding application: explicit substitutions interfere with the encoding of fields as methods which do not
use their self parameter.

2. encoding abstraction: the use of metalevel substitution in the function-object translation requires a new
notion of explicit substitution in order to be encoded soundly in the explicit substitution setting.

The first issue is taken care of by introducing fields as primitive constructs, the second by introducing the
notion of invoke substitution. Simulation of Av is then seen to hold. Finally, we focus on confluence of ¢gpes
and preservation of strong normalization. We use the interpretation technique in order to prove confluence and
the recursive path ordering-based technique due to R.Bloo and H.Geuvers [BH98] to prove PSN. The latter
property requires detailed attention since two notions of explicit substitution coexist in the ¢gpes-calculus and a
weak form of interaction (in the form of a rewrite rule) is present.

The work reported in this chapter has been published as [Bon99bj.

5.1 The ¢-calculus

We have at our disposal an infinite list of variables denoted z,y, z,. .., and an infinite list of labels denoted
1,;,U,.... The labels shall be used to reference methods. An object is represented as a collection of methods
denoted l; = ¢(z;).a;. We use l; for representing method names and ¢(z;).a; for method bodies. The labels of
an object’s methods are assumed to be all distinct. Operations allowed on objects are method invocation and
method update. A method invocation of the method I; in an object [l; = ¢(z;).0;,"1™"] is represented by the
term [l; = ¢(z;).a,°€").l;. The order in which the methods appear does not matter. As a result of method
invocation, not only the corresponding method body is returned but also, this method body is supplied with
a copy of its host object. Thus method bodies are represented as ¢(z;).a; where < is a binder that binds the
variable z; in a;. This variable called self will be replaced by the host object when the associated method is
invoked. It is this notion of self captured by the ¢-calculus that allows an object to operate on itself. The other
valid operation on objects is method update. A method l; = ¢(z;).a; in an object o0 may be replaced by a new
method U = ¢(z}).a], thus resulting in a new object o’.
The terms of the g-calculus, denoted 7¢, may be described more precisely by the following grammar:

a == z|al|aa<l=¢(z)a>|[k=¢(zi).0, "

We say that z is a variable, a.l is a method invocation, a Q < | = ¢(z).a > is a method update and
[l = ¢(:)-0;,*€"™] is an object. Free and bound variables are defined as expected. We shall write F'V (a) for
the free variables of a. A variable convention similar to the one present in lambda calculus is adopted: terms
differing only in the names of their bound variables (i.e. a-equivalent) are considered identical. For example,
[l = ¢(z).(z.1;)] and [l; = <(y).(y.l1)] are identified.
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Example 5.1 (Natural numbers object) The natural numbers may be represented as objects. Here we
show the number zero. All other natural numbers may be obtained from this one by using its succ method.

zero & [tszero = ¢(z).true,
pred = ¢(z).z,
suce = ¢(z).(((z Q < iszero = ¢(z).false >) < < pred = s(y).z >)]

Note how the succ method has two nested method override operations. It indicates that when called it must
modify the method iszero of self by replacing it with the method which returns the constant false. Moreover,
it must modify the method pred so that it answers correctly with the previous number object.

Before defining the rewrite rules of the ¢-calculus we need to take a quick look at substitution. The result
of substituting a free variable z in a term a for a term b shall be denoted a{z «— b}. It is defined as follows.

Definition 5.2 (Substitution) Let ¢ and b be terms in 7¢ and let z be a variable. Then the substitution of
z by b in a, denoted a{z — b}, is defined as:

[l = s(zs) m €z — b} ¥ [l = ¢(z:) mifz — b} €17 fz#z,i€1.n
al{z « b} ¥ a{z < b}.l

adA<l=¢(z).e>{z b} W afc — b} a<l=¢(2)e{z—b}> ifz#2

z{z — b} =y

y{z b} E oy frty

Note that by the variable convention in the first clause we assume that z; ¢ FV (b) for every 7 in 1..n, and
likewise z ¢ FV(b) in the third clause.

The semantics of the ¢-calculus, referred to as primitive semantics in [AC96], is defined by the following
rewrite rules:

[l = s(z).0°€ ") = ai{z; — [ =¢(2)0, "}  jeln
(L= s(z:)-a " a <l =g(z).a> = [l =¢(z)a, Li=c(z:).e '™ jel.n

The first rule defines the semantics of method invocation. The result of invoking the method l; = ¢(z;).a; (a
‘call’ to method ¢(z;).a;) is the body of the method a; where the self variable has been replaced by a copy of
the host object. The second rule defines the semantics of method update. Note that the substitution operator
is not part of the -calculus but rather a metaoperation.

Example 6.3 Consider the natural number object zero from Example 5.1. If we invoke the method succ of
the object zero then we may obtain an object representing the natural number one.

zero.succ —»¢ |[iszero = ¢(z).false,
pred = ¢(z).zero
succ = ¢(z).(((z < < iszero = ¢(z).false >) < < pred = ¢(y).z >)]

Note how the iszero method now correctly returns false, and how the pred method has also been modified
appropriately. Compare the resulting object with the zero object.

Example 5.4 The following example is that of an object with the capability of making a backup copy of itself.

bkupObject def [retrieve = ¢(z1).21,
backup = ¢(z2).z2 Q < retrieve = ¢(z,).z3 >,
(possibly additional methods)]

Then a call to the backup method of bkupObject returns an new object bkupObject’ which when calling its
retrieve method shall return the original backup object bkupObject. In other words, o.backup.retrieve —» o.

As regards the expressive power of this calculus, it is shown in [AC96] that lambda terms can be encoded
as objects and that S-reduction can be simulated by ¢-reduction.
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Definition 5.5 (The function-object translation) The translation << ¢ =~ from A-terms to 7T, is defined:

<< T >> = z
<< Az.a =~ [arg = ¢(2).2.arg, val = ¢(z). << @ == {z « z.arg}]
<< ab >> e <e-® -<-<b>->—

where c®d = (c < < arg =(y).d >).val with y ¢ FV(d)

For instance the A-term (Az.z)y is encoded as the ¢-term ([arg = ¢(2).z.arg, val = ¢(z).z.a19] < < arg =
s(v).y >).val.
It is then proved for A-terms e and b that if @ —g b then << @ >~—».<< b >>~. In the preceding example
we have:
((arg = ¢(2).z.arg, val = ¢(z).z.ar9] < < arg = ¢(v).y >).val
—¢ [arg = ¢(v).y, val = ¢(z).z.arg|.val
—¢ (z.arg){z « [arg = ¢(v).y, val = ¢(z).z.arg|}
= |arg = ¢(v).y, val = ¢(z).z.arg].arg
—¢  y{v < [arg = ¢(v).y, val = ¢(z).z.arg]}
=y

5.2 The ¢-calculus with de Bruijn Indices

We now shift to a de Bruijn indices setting. Instead of labelling bound variables with names (as above) variables
are labelled with natural numbers (see Section 2.2.2). For example, the term [l; = ¢(z1).[l2 = ¢(v1).71,l3 =
s(21)-21], la = <(z3).y2) shall be represented as [I; = ¢([lz =¢(2),13 = ¢(1)]), 14 = <(2)]. Asin the Agp-calculus the
advantage attained is that there is no longer any need to perform renaming of bound variables. Nevertheless we
must take care of index adjustments: if a substitution drags a term under a binder, its indices must be adjusted
in order to avoid unwanted capture of indices.

The terms of the ¢-calculus with de Bruijn indices (the ¢45-calculus), denoted 7¢,,, are characterized by the
following grammar:

a == mlal|aa<l=g¢(a)>[k=q(a;) i€

where m is a natural number greater than zero. Since the order of methods in an object is not important
we shall hereafter identify objects which differ only in the order of appearance of their methods.

An example of a term in 7, is the de Bruijn representation of the abovementioned ¢-term resulting from
applying the function-object translation, asuming that the index of the variable y in our reference context is 1:
(larg = s.1.arg, val =¢.1.arg] < < arg =¢.2 >).val.

The set of free indices of a term a € T,,,, denoted FI(a) is defined inductively as follows:

FI(m) L {m)

FI(bl) FI(b)

FIba<l=¢(c)>) ¥ FI®)U(FI()\1)

FI([l = g(as) €7)) € (FI(@)\1)U...U (FI(an)\1)

where for SCIN and k € IN we have S\k={n-k:ne€ S,n>k}.
We now define substitution in the setting of indices.

Definition 5.6 (Ordinary Substitution) Let ¢ and b be pure terms and n > 1. The substitution of a by &
at level n, denoted af{n — b}, is defined as follows:

def

= s(a) rmign b} [l = sl + 1 B)

(a.){n — b} e ofn — b}l

a<d<l=¢(c)> {n b} e a{n«—b}}<.l<lig(c{[n+1«—b]})>
aet mn— 1 z.f m z n

m{n < b} = Fb) ifm=n

m ifm<n
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where for every i > 0 and n > 1, U*(e) is an updating function from terms in 7, to terms in 7, defined
as follows:

Ur ([l = s(as) €+m)) def [l = SR 1 (as)) €™

Ur(a.l) € Ur(e)l

Uraa<l=c(c)>) € uUre) a<l=¢Ur,(c)>
def m+n—-1 ifm>i

U (m) - { m ifm<i

Remark 5.7 Note that U} (a) = a. Also, U{¢(a) increments all indices representing free variables (in the usual
sense) by one.

Having defined our terms and substitution we may now define the appropriate rewrite rules.

Definition 5.8 (Reduction in the ¢4-calculus) Reduction in the ¢gp-calculus is defined by the following
rewrite rules:

[l = s(as) P17 = ol [l =c(as) "]}
i =sla) “Mm] Q< =6() > -y [l =6(), b = c(ay) €177

Notice that substitution is still a metaoperation in this calculus, completely external to the reduction rules
of the formalism.

We now address some basic properties concerning the behaviour of reduction in the ¢gp-calculus. The
Substitution Lemma, preservation of reduction via the updating functions, and preservation of reduction via de
Bruijn substitution are the properties we shall look at. We first require the following technical lemma.

Lemma 5.9 1. Let a,b € 7;,,. Then Vi, j,k such that i > 0,5 > 0 and j <i < j + k we have U **(a){i —
b} =Uf(a).

2. Let a,b € T;,,. Then Vi,n, k such that i < n — k we have U}(a){n « b} =Ui(af{n —i+1 — b}).
3. Let a,b € T;,,. Then Vn, k such that n < k + 1 we have U (afn — b}) = u,f+1(a){{n — L{,{_nﬂ(b)]}.
Proof. By induction on a. .

As expected, the classical Substitution Lemma [Bar84, Lemma 2.1.16] also holds in the de Bruijn setting.
The usual conditions demanded on free variables, in order for this result to hold in the variable name setting,
are reflected as conditions on the indices in the de Bruijn setting.

Lemma 5.10 (Substitution Lemma) Let a,b,c € T,,. Then Vn,i > 1 such that i < n we have affi —
bHn—cl=cfn+l—c}{i—bfn—-i+1+~c}}

Proof. The proof is by induction on a, using Lemma 5.9 (items 1 and 2).

The following results state that every rewrite step in the ¢g45-calculus is preserved by the updating functions.
Since the definition of de Bruijn substitution relies on that of the updating functions Lemma 5.11 shall be
required in order to prove that also de Bruijn substitution preserves ¢g4;-rewrite steps. The latter result is
presented as Lemma 5.12. Both are proved by induction on a; the first uses Lemma 5.9(3), and the second the
Substitution Lemma and Lemma 5.11.

Lemma 5.11 Let o,a’ € T;,,. If a —,, o’ then Uj(a) —., Ui(d').

Lemma 5.12 Let a,a’ € Tg,, and n > 1. If a —,, o’ then
1. affn — b} -, o'{n— b}
2. b{n —a} -, b{n —a'}
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Confluence of the ¢45-calculus may be proved by providing translation functions from terms with variable
names to terms with de Bruijn indices and the corresponding results that these definitions are well-behaved
with respect to the updating functions, substitution and reduction. The result then follows from confluence of
¢. The details are rather straightforward and hence ommitted.

Lemma 5.13 (Confluence of the ¢g-calculus) The ¢45-calculus is confluent.

5.3 The ¢-calculus with de Bruijn Indices and Fields

This section introduces de ¢gp-calculus with felds, called gﬁb-calculus, and proves its confluence. The gﬁb-
calculus is a straightforward extension of ¢4 and is formulated in preparation for the introduction of explicit
substitutions in Section 5.4.

From a general standpoint an object may be regarded as an entity encapsulating state (fields) and behaviour
(methods) in an object-oriented language. These methods allow the object to modify its local state as well as
interact with other objects. Let us concentrate on fields. Consider an object calculator that possesses a field
which allows the user (another object) to store some intermediate result. For this the object interface includes
a method save(n) where n is the number to be stored that returns a new calculator object where n has been
saved as an intermediate result. Also, in order to retrieve this value it includes a method recall. Thus one
would expect the equation calculator.save(n).recall=n to be true. This is characteristic of the behaviour
of fields. As mentioned in [AC96] the ¢-calculus does not include field contructs as primitive. Nevertheless,
methods that do not use the self variable may be regarded as fields. Indeed, let b be a term in the ¢-calculus
such that it has no occurrence of a variable z. Then we have

L=g(z)b])l o b{z— [l =c(z)b]} =b

Thus we obtain exactly b, the body of the method I = ¢(z).b.

Now consider the setting where variables are represented no longer by variable names but by de Bruijn
indices. Then we could attempt to proceed as above. Consider a term b in the ¢gp-calculus such that 1 ¢ FV(b).
Then we have,

(L= s®)d —qy b1 — [l =<(B)]} = b~

where b~ represents b with free indices decremented in one unit. The result obtained is not the same as the
body of the method I = ¢(b).
Thus we may simulate fields in ggs-calculus by representing them as methods I = ¢(b*) where b* represents

b where all free indices are incremented in one unit (b* def UZ(b)). Nevertheless, we shall introduce fields as
primitive constructs in the language. The reason for doing so is that when explicit substitutions are introduced
into the calculus and the translation of (an explicit substitution version of) the A-calculus into this extension
studied, field simulation is no longer for free (Section 5.4).

Therefore in our de Bruijn setting we incorporate, as a primitive notion, that of a field. The terms of the
¢-calculus a la de Bruijn with fields (hereafter the cﬁb-calculus), denoted 72&'»’ are called pure terms and are

characterized by the following grammar:

a == nlal|lea<m>|[mi"
m = l=g|l:=a
g == ¢
where n is a natural number greater than zero. Note that we have chosen the above presentation for the
sort of methods over the more natural m ::= ! = ¢(a) |l := a. This is done in preparation for the following

section where we shall extend the sort of method bodies (g above) with explicit substitutions.

An object is constructed by a list of methods and fields. A method is denoted ‘I = g’ where [ is its label and
g its body. A field is denoted ‘I := a’ where [ is its label and a its body. Note that we may override a method
with a field and viceversa; so there is only one sort of labels (i.e. labels for fields and labels for methods are not
distinguished).

The set of free indices of a term a € 7;51’ , denoted FI(a) is defined similarly as done in Section 5.2. Note that
for fields we add FI(! := a) 4 pr (). The same applies for ordinary substitution and the updating functions.
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For fields and method bodies we add (! := a){{n < b} = ofn— b} and ¢(a)fn — b} o s(afn+1 < b},

and UP(L:=b) & 1:=uUr(®) and UP(s(a)) & U2, (a)).
We now define the appropriate reduction rules using the notion of substitution defined above.

Definition 5.14 (Reduction in the g{u,-calculus) Reduction in the gﬂb-calculus is defined by the following
rewrite rules:

I = c(a),miiEI""'i#j]-lj -y afl —[l; = c(a)’miiEI..n,i;éj]}
)

od ¢ S
[miiel..n] a< lj = s.(a) > _’<£,, [l_-,' = S'(a). m_zEL.n.z#J]

%
m " a<lj=a> -y [l := a, m, €™

The second rule indicates that the bodies of fields should be projected without undergoing any index ad-
justment. Notice that substitution is still a metaoperation in this calculus, completely external to the rewrite
rules of the formalism.

As for the ¢gp-calculus, basic properties concerning substitution (such as the Substitution Lemma), and
preservation of reduction via substitution and the updating functions, also hold for the g‘{b-calculus. These
results are used in the appendix to prove that gg,, is confiuent.

Lemma 5.15 (Confluence of the cﬁb-calculus) The cﬂb-ca.lculus is confluent.

We finish this section with a word on the relation between the g{",-calculus and the ¢45-calculus. Firstly,
note that since ng’];d;b and by the definition of reduction in the ¢gp-calculus and in the gﬁb-ca.lculus we have

that for any a,b € T, if ¢ —, b then a — <, b. In order to show that the g{",-calculus can be simulated in the
sdp-calculus we define the following translation function.

Definition 5.16 The translation h(e): 7;5‘. — T, is defined as,

h(n) = on hl=g)  EF 1=h(g)
h(b.l) =YY hl=0) ¥ 1=cU(h(a)))
rba<m>) € ) << h(m)> h(jm, €0 "]) E [h(m;) €1
h(s(b)) L o(n(v))

Note that if ¢ is a term in T, then h(t) =t¢.
We may now verify that if ¢ and b are terms in 7y and @ —g b then h(a) —, h(b). This requires first
proving the following two items.

1. Leta € Tdb' i >0 and k > 0. Then h(U¥(a)) = UF(R(a)).
2. Let a,b € ’1;5 and k > 0. Then h(af{k — b}) = h(a){k — h(})}.

The proofs are straightforward but tedious and hence omitted.

5.4 Introducing Explicit Substitutions

The ¢-calculus with explicit substitutions and de Bruijn indices, which we shall hereafter refer to as the ¢gpes-
calculus, is presented in this section. This calculus introduces two forms of substitution into the object-language:
ordinary substitution and invoke substitution. Also, since the ¢gpes-calculus builds on q,{,, we have (explicit)
fields in the object-language at our disposal. We sum up the object calculi we have already seen in Figure 5.1.
In this section we shall explain why we have incorporated fields into the object-language.

Let us begin by describing the set of terms of our new calculus. The set of terms of the ¢gp.,-calculus, denoted
Tca.,» consists of terms of sort Term and terms of sort Subst. These are defined by the following grammar (sort
Term to the left and sort Subst to the right):
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Calculus || Notation of Fields Substitution
variables

< [ Names Simulated Implicit

sy || Indices Simulated Implicit
A [ Indices Primitive Implicit
Sdbes || Indices Primitive Explicit

Figure 5.1: Variants of ¢

e = nlalle<a<m>|[m*€ "] s
m = l=g|l:=a s == af QLI (s)IT
g == <(a)]gls]

where 7 is a natural number greater than zero.

Unless otherwise stated when we say that “a is a term in 7,_,” we mean “a is a term in 7., , of sort Term”".
A closure is a term of the form a[s]. A term that does not contain occurrences of closures as subterms is called
a pure term. A term c[s] may be regarded as the term o with pending substitution s. The substitution operator
o[o] is part of the calculus (i.e. it is at the object-level). A substitution s with an occurrence of a/ is called
an ordinary substitution whereas a substitution s with an occurrence of @! is called an invoke substitution.
Properties of invoke substitutions shall be studied later. Note that if we erase the grammar rules generating
closures then we obtain the set 7;.{{

The substitution grammar (and substitution calculus) for ordinary substitution is based on the calculus of ex-
plicit substitution for the lambda calculus, Av [Les94]. Although there are many calculi of explicit substitutions
in the literature we are inclined to using Av due to its simplicity.

We shall frequently use the notation fi* (s) and a(s|* defined inductively as

) = s ot &

1) € (@ (s) als]*t € afs](s]

The semantics of the ¢gpes-calculus is defined by the set of rewrite rules given in Figure 5.2.

The rule MI activates a method invocation. The rule FI activates a field invocation. The rules MO, FO
activate method override and field override respectively. Rules SM, SO, SF, SB, SI, SU allow the propagation
of the substitution operator through method body, object, field, method, invocation and override constructors.
Rules FVar, RVar, Finv, RInv, FVarLift, RVarLift, VarShift allow the computation of substitutions on indices.
Finally, the rule CO expresses a form of interaction of substitutions, and SW expresses a (weak) form of
commutation or switching of substitutions. These two rules will be used in simulating Av in the ¢gp.s-calculus.

It is interesting to compare rules RVar and RInv. The creation of a substitution of the form b/ is accompanied
by the elimination of a binder (see rule MI'). Hence all ‘free’ indices should be decremented in one unit. Whereas
in the case of the invoke substitution operator ‘@e’ no such adjustment is made. This is because the invoke
substitution is only applied to bound indices, as we shall see below. This may be illustrated by the following
observation, which may be verified by induction:

Proposition 5.17 For every term a in 7, _and n > 1 and every i > 0,

; nl n=i+l A n—1 n>i+l
it @) e, {7 R ff @] ~me q ol =il

where R; = {FInv, RInv, FVarLift, RVarLift, VarShift} and Ry = { FVar, RVar, FVarLift, RVarLift, VarShift}

The exact relationship between the explicit substitution operators and their metalevel counterparts shall be
made precise in Section 5.5.

The ¢gpes-calculus without the rules M/, MO, FI and FO is referred to as the ESDB rewrite system. Note
that ESDB is not locally confluent since for example the term 1{@L;][[!; := b}/] reduces to two different terms
by the rules FInv and CO respectively, and requires FI to close the diagram. The rewrite system obtained by
eliminating rules CO and SW is called the BES (Basic Explicit Substitution)-rewrite system.
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[lj = S‘(a-). miael...n.z.#y]_lj —u7 a[[lj = S_(a),1_7,"‘_161..11.,176_1]/]

[ 1= a,m <], —w @

[mii € 1..n] Q< lj = g> — M0 [[ - g, m;?l..n,t?ﬁJ] J €l.n
[mii € l“"’] Q<L lj =a > —F0 [lJ =a, m;el..n,i#J] j€l.n
(s(c))ls) —sM sl (s)])

[mize 1""][3] —s0 [m1[s] i€ 1..n]

(l = a)[g] —SF l.= a[s]

(t=g)s) —sB L= g[s]

a.lis] =51 als].l

aa<m>|[s —sy a[s] 9 <m[s] >

1[0/] —FVar a

p+ 1[0'/] —RVar P

1{@l] —FIny 1.1

p+1(a@l] — Rinv p+1

1[tr ()] —FVorLift 1

p+1[f (s)] —nRvarLift  P3)(T)

P[T]_ ) _ o —Vershifr P+1

a[f (@) (Il = b,m; ™ ]/)] —co alf* (/)]

alf? (@)](1* (s)] —sw altt* (s)) (1 (1)) k>i

Figure 5.2: The ¢gp.s-calculus

5.4.1 The Need for Explicit Fields

In Section 5.3 we saw that although the qﬂb-calculus incorporated fields as primitive constructs this is not strictly
necessary as fields may be simulated in the ¢gp-calculus in a rather natural way (Definition 5.16). This situation
no longer holds when explicit substitutions are introduced and when we attempt to encode the Av-calculus in
the ¢J,.,-calculus using the function-object translation (Definition 5.5). Let us delve deeper into this issue.

Let us ignore fields as a primitive construct in the language for the moment and return to our simulation of
fields as discussed in Section 5.3. A field b is represented as the method [ = ¢(b*). The ¢gpes-calculus is then
reduced to, say, <j;.,, Where rules FI, FO, SF and CO have been eliminated.

Now when we attempt to translate the Av-calculus into the ¢j;, -calculus in the style of << e >> (Defini-
tion 5.5) we arrive naturally to the following translation function k:

ka/) £ k(a)/ kn) € n
kf(s) B 4 (k(s) k(o) & [arg = (1.arg), val = <(k(a)[@arg])]
k(als) £ k(a)[k(s)] K ¥ o1

k(@) E (k(a) < < arg = s(k(b)*) >).val

But the meaning of k(b)* is no longer clear since k(b) may have occurrences of the explicit substitution
operator (it is no longer a pure term). To remedy this situation the next logical step would be to introduce an

‘explicit substitution version’ of the et operator which in fact we already have: the T operator. The final clause

of the definition of k is now replaced by k(ab) <« (k(e) < < arg = s(k(b)[T]) >).val

So now we proceed to verify that the translation is correct (preserves Au-reduction). Consider for example
the Av-reduction rule (Aa)b — peta afb/]. Then we must have k((Aa)b) -,  k(a[b/]). We can go as far as:

k((\a)b) def
(larg = s(1.arg), val = ¢(k(a)[Q@arg))] < < arg = c(k(b)[1]) >).val —mo
[arg = s(k(b)[T]), val = s(k(a)[@arg])].val —MI

k(a)[@arg][larg = s(k(b)[1]), val = ¢(k(a)(@arg])}/]
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Thus in order to arrive at k(a)[k(b)/] we are in need of adding to the ¢}, -calculus a commutation rule of
the form: a[f* (@2;)][ (& = s((1)), m;* " ™]/)] = com alf (b/)] (taking i = O suffices for our example).
But adding a rule like Com clearly introduces confluence problems.

A variant could be Com’ defined as: a[ff (@L)])[* (I; = <(b), m;*$*™*%9)))] —com a[ft* (c/)] where
b =pgs c[f]. The major drawbacks are then the fact that the rule is conditional and (computationally)
expensive checking on the equational substitution theory is required (this resembles problems studied when
dealing with 7-contraction in explicit substitution calculi [Bri95, Rio93, Kes00]).

These problems stem from the fact that the formulation of rules which are subject to restrictions on the free
variables in a de Bruijn indices setting and in the presence of explicit substitutions is non trivial. Here, we have
solved these issues by a minor change in the syntax so as to represent fields as primitive operators. In fact, the
rewrite rule CO of the named ¢gs presented in [KML98] is conditional, whereas the CO-rule presented in this
work, in a de Bruijn index setting, is actually simpler since no condition is present.

5.4.2 Encoding Av-terms in the ¢g..,~calculus

Let us now consider how to encode the lambda calculus with explicit substitutions Av in the ¢gpes-calculus. We
start by augmenting the grammar productions for the terms of the ¢4p.s-calculus in order to allow abstractions
and applications as legal terms. We then define a translation from terms in the Av-calculus into this augmented
set of terms which preserves reduction. We recall the main definitions of the Av-calculus, see Section 2.3 for
further details. Terms are defined by the following grammars ¢t ::= n | t¢ | At | t[s] with n a natural number
greater than zero, and s ::=7 [t/ | f (s). We recall the rules below.

(Aa)b — Beta a[b/] n+ 1[0/] — RVar n
(a' b) [3] —App a[S]b[S] I[ﬂ (3)] —* FVarlLift 1
/\0.[3] —Lam ’\(a[ﬂ (3)]) n+ llﬁ (3)] —RVarlLift n[S][T]
lle/] —Fver @ n[T] —varshift n+1

The mixed set of terms, which we shall call 7)¢,_,, consists of terms of sort Term and terms of sort Subst
(which remain unaltered). The terms of sort Term are defined by the following grammar:

nlal|la<d<m>|[m*€ "] afs]| Xa|(aa)
l=gl|l:=a

fn
g s(a) | gls]

where n is any natural number greater than zero.

The rewrite rules of the Aggpes-calculus consists of the rewrite rules of the ¢apes-calculus together with the
rules Beta, Lam and App of the Au-calculus (note that the remaining rules of Av already belong to the ¢gpes-
calculus). The resulting system may be proved confluent using the interpretation technique [Har87] and the
fact that the corresponding system with metalevel substitutions is an orthogonal rewrite system.

The encoding of Av-terms into AS4ses-terms makes use of the invoke explicit substitution operator ‘@e’ and
fields.

Definition 5.18 (Translation of Aggpes-terms into Ggpes-terms) The translation < e > from Aggpes-terms
into terms in T, is defined as follows:

<n> = n <s@> ¥ g(<ar)
def def

<alx> = <a> . <af> = <a>/
<ad<m> ¥ o= a<<m>> < ()= & f(<s>)
<[m;* € 1"~ def [<xmy>= € 1] <> def ,

1
<l=g> T |=<g> <ol ¥ @
<l:=a> def l:=<a> <a > def [a,rg = g(l,arg),-ua,l = g‘(-<a>— [@arg])]
<als] >~ e Lo [<s>] <ab> & <o @ <b>

where p® ¢ def (p 9 < arg := q >).val
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The translation interprets the lambda expressions abstraction and application into objects leaving the rest of
the constructions without modifications. The translation of an abstraction introduces the invoke substitution.
Note that the index level 1 (to which the invoke substitution applies) is bound. This reveals a difference as
regards the behaviour of ordinary and invoke substitutions, as discussed above. Ordinary substitution is of no
use since its index adjusting mechanism does not exhibit the desired behaviour.

We illustrate the translation with an example. Consider the K combinator defined as K = A)\2

<K == |arg = ¢(1.arg),val = ¢([arg = ¢(1.arg), val = ¢(2[@arg])])[@arg]|

The principal motivation behind the introduction of the rules describing the interaction of ordinary substi-
tution and invoke substitution lies in the following proposition.

Proposition 5.19 (Sapes simulates Mv) Let a, b be Aggpes-terms. If @ — ), b then <a>—»¢,,  <b>.

Proof. The proof is by structural induction on the Av-term. We just consider the cases < (Aa)b>—»¢,, , <
a[b/] = (Case 1) and < Aa[s] =—»,,., < A(a[ft (8)]) > (Case 2) as examples.

Case 1.
<(Aa)b> def
(larg = ¢(1.arg),val = ¢(<a> [@arg])] < < arg :=<b>>)wal —p0
larg :=<b>,val = ¢(<a> [Qarg])].val — M1
<a> [@arg]|larg :=<b>,val = ¢(<a> [@arg])]/] —co
<a> [<b> /) def
<ab/]>
Case 2.
<(Aa)[s] - def
larg = ¢(1l.arg), val = ¢(<a> [@arg])][<s>] —350
[arg = (s(1.arg))[<s>],val = (s(<a> [@arg]))[<s>]| —»BES
[arg = <(l.arg[ft (<s>)]),val =¢(<a> [@arg]itt (xs>)])] —»BEs
[erg = ¢(1.arg), val = g(<a> [@arg](ft (<s>)])] —sw

larg = ¢(l.arg),val = ¢(<a> [ff (<5>)][@arg])] def

<Mafft (9)]) >

The cases where the reduction is internal are similar and may be dealt with by applying the induction hypothesis.

We may therefore conclude that Av-derivations may be translated into ¢4pes-derivations, thereby implement-
ing objects and functions at the same time.

5.5 Confluence and PSN of the ¢;.,~-calculus

In this section we shall prove some essential properties required for any calculus of explicit substitutions im-
plementing a calculus where substitution operates at the metalevel. Firstly, we st.ud}' some properties of the
substitution calculus such as strong normalization. Then the relation between the ¢, -calculus and the ¢gy,s-
calculus is stated (Propositions 5.30 and 5.31). This allows us to prove confluence of the full calculus with
explicit substitutions. Finally, we shall prove the property of preservation of strong normalization, that is, that
every strongly normalizing term in gﬁb-ca.lculus must also be strongly normalizing in the ¢gpes-calculus. Since
we allow some interaction between substitutions this property is essential in our current setting.

For the proof of confluence we shall use the interpretation method; the proof of preservation of strong
normalization is based on the technique introduced by R.Bloo and H.Geuvers in [BH98, Blo97].
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5.5.1 Confluence

Confluence shall be the first of the properties we shall look at. We shall use the interpretion method which
requires that we study how Q{b may be simulated in ¢g.s, and viceversa (via some appropriate interpretation
function). For this we shall use the BES-calculus to interpret terms in 7, into terms in T; Figure 5.3 pictures
the diagram we shall complete in this section. Diagrams 1 and 2 of this figure shall be closed by Proposition 5.31,
namely that each qd,,,,-rewnte step may be projected via BES interpretation into a qﬁb-derwatlon Diagram
3 follows from confluence of cdb (Lemma 5.15). Finally, the fact that BES(b;) —,,., ¢ and BES(by) —,,, ¢
follows from BES(b,) »g C and BES(bs) —» 4 ¢ and Proposition 5.30, since after all ¢4, is a calculus of

explicit substitutions for ﬂ{b

b BES by
1 2
BE BES(a) BES

BE'S(b1 BES(bz)

Figure 5.3: The Interpretation Method

Strong normalization of BES may be obtained from strong normalization of ESDB. The latter result is
rather tedious but standard techniques suffice. The details may be found in the appendix (Section A.2.2).
Confluence of BES then follows from local confluence (there is no overlapping) by applying Newman’s lemma.
This entails the following result.

Corollary 5.20 (Uniqueness of BES-normal forms) The BES-normal forms are unique.

Thus we shall use BES-normal forms to interpret terms of 7, into terms in T<£ . We shall now show that
BES-normal forms are exactly ’J;;fb .

Proposition 5.21 (BES-normal forms are pure terms) The BES-normal forms (of terms of sort Term)
are pure terms (of sort Term). Thus if ¢ is a term (of sort Term) then we use BES(c) to denote the BES-normal
form of c.

Proof. Pure terms are clearly in BES-normal form. So we must show that every term in BES-normal form
is a pure term. We proceed in the style of [Ri093]. Supposé ¢ € T,,, is a BES-normal form, we use induction
on c.

o ¢ =n. It is clear that for any n, n is a pure term.

o c=alg(e),(l =g),(:=a),a<a<m>or [m*€". Then since c is a BES-normal form then
the subterms must be BES-normal forms. Thus, by the induction hypothesis they are pure terms and
therefore also c is.

e ¢ = g[s]. Suppose g[s] is a BES-normal form. Then g is a BES-normal form, thus, by the induction
hypothesis, g is a pure method. But then g = ¢(a) for some pure term a, in which case, ¢(a)(s] cannot
be a BES-normal form due to the presence of the rule SM in BES. Therefore gs] is not a BES-normal
form.
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e c = a[s]. Since a[s] is a BES-normal form then a must be in BES-normal form. Thus by the induction
hypothesis we may assume a is a pure term and therefore cannot be a closure. By SO, SF, SB, SI, SU
the term a cannot be [m;* € "], al, (l:=a), (Il =g) or a < <m >. So ¢ must be an index p and we
analyse s.

— s #1 (&) since FVarlift, RVarlift are in BES.
— 8 # @l since FInv, RInv are in BES.

— 8 # b/ since FVar, RVar are in BES.

— 8 #1 since VarShift is in BES.

Thus e[s] may not be a BES-normal form and therefore this case does not arise.

The next step in our studies is to consider how qﬁb may be simulated in ¢gps and viceversa (via BES-
interpretation). In order to accomplish such a task we must take a closer look at the relation between explicit
substitutions in the gapes-calculus and their implicit (or metalevel) counterparts. This concerns not only usual
substitution but also invoke substitutions. We shall thus continue with some technical results on invoke substi-
tutions and then resume (with Lemma 5.28) our analysis between explicit and implicit substitutions.

We shall use ¢ < ¢ — @ >> to denote invoke substitution at the metalevel. Intuitively, if a is a term in 7;5‘. , 1
is an index and ! is a label, then a < 7 « I >> denotes the term that results by replacing every occurrence of 7 in
a with the method invocation i.l. The difference with a term such as a{i « .1} is that in ordinary substitution
all indices greater than i are decremented in one unit. This owes to the fact that an ordinary substitution arises
when a binder (such as ¢) symbol has been eliminated and thus adjustment of indices is needed. In contrast,
since invoke substitution is used in an encoding process and is not generated by a rule eliminating a binder,
no such adjustment is necessary. We consider this operation to be a substitution in the sense that constructors
such as binders and override operators are traversed until indices are reached, at which point the replacement
takes place.

Definition 5.22 (Invoke Substitution) Let a € 7215’ l a label, and n > 0. Then the invoke substitution of
a with [ at level n, noted a K n «— I >>, is defined as follows:

(s <gne=1l> def

[m,."el""']<<n<—l>>
(el n—1>
ad<m>Ln—1l>
I=c() <ne=1>
(=) gnel>

nE€ne=1l>

slegn+l—1>)

[mi < n— 1> €1-m)
aLn=Il>UV

ek n—I>» a<mKLn~1I>>
(l=¢lc)gne—1>)

l:=bgne1l>)
def n'l ifn'=n
- n ifn #n

def
def
def
def
def

Remark 5.23 Note that if k > i then U¥(b) < i — | >= UL (b) since UL () increases all free indices in b by k
units.

The following lemmas shed some light on the interaction between ordinary substitutions and invoke substi-
tutions and the updating functions. All items are proved by induction on a.

Lemma 5.24 For any terms e, b,cG’T‘i , labels 1,!’ and indices i, j, k, n
1.Ifi,k>0andk>ithena<i—I> kb =afk b} gi—1l>
2. Ifi,k>0andk>itheneKi—I><Lk D=0k l!><i=1l>
. Ifi>0thena<i—1> i — b} =afi — b}

4. Ifi,n>0,k>0andi<n—kthenUi(c) Kn—b>=Ul(a<n—-i+1<b>>)
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5. Ifi>0and1<i<nthenefi —bpKn—I>=e<knt+l=I>ficbgkn—-i+1<1>}
6. Ifi,j>0and k>0and k>ithen Ul (e i —1>) =Ul(a) i —1>.

Invoke substitution preserves reduction in the gﬂb-calculus as the following lemma illustrates. It may be
proved for k = 1 by induction on a (using Lemma 5.24(5)) and then extended to derivations of length k > 1.

Lemma 5.25 Let a,0' € T,y andi>0and k2 0. Thenifa S o' theno i 135, o i1
db

We may no resume the plan we set out to follow. Our first result relating explicit and implicit substitution
considers the updating functions. Ordinary and invoke substitution shall be the subject of the second result,
namely Lemma 5.29

Lemma 5.26 (Relation between explicit and implicit substitutions I) For any ¢ € T, and i > 0 we
. db
have, BES(c[fi* (1)]) = UZ(c).

Proof. We use induction on c. And for the base case (¢ is a de Bruijn index n) we use induction on 7.

Lemma 5.27 Let a € 74 and k,i > 0. Then we have BES(a[t* (N)f) = Uit (a).
Proof. By induction on 7 using lemmas 5.26 and A.3(3).

Corollary 5.28 Let a € T;,,, and k,i > 0 we have BES(a[ft* (1)]?) = U;*(BES(a)).
Proof. By the previous lemma we have BES (a[f* (1)]*) = BES(BES(a){tt* (1)]*) = U3t} (BES(a)).

Lemma 5.29 (Relation between explicit and implicit substitutions II) For any a,b € 7, , and i > 0
we have:

1. BES(a[#f*(b/)]) = BES(e){i + 1 — BES(b)}
2. BES(a[f(Ql)]) = BES(a) <i+1—1>

Proof. We prove the first and second item using structural induction on a and considering firstly the case
where a is a pure term. Then, in order to complete the proof of these two items, we consider the case where a

is not a pure term.
As for ordinary substitution we have

e a = n. By Proposition 5.17(2) and the uniqueness of BES-normal forms we have

n-1 . n>i+1
BES(n[ft* (b/)])={ BES(Y(1]') n=i+1
n n<i+l

And by the definition of substitution (Def. 5.6) and Corollary 5.28 one may verify that in each case the
term is exactly n{i + 1 — BES(b)}.

e a = c.l. Then we have
BES(c.l[tt* (b/)]) = BES(c[t* (b/)]-1) = BES(c[f* (b/)]).l=c{i+1— BES(b)}.l=cl{i+1— BES(b)}

The other cases hold by the induction hypothesis, just as the second case considered above.
Now for the invoke substitution we proceed analogously, considering a pure term e and using structural
induction on a.

e a = n. By Proposition 5.17(1) and the uniqueness of BES-normal forms we have

BES(n[ft* (Q1)]) = { Z'l Z:iii

And by the deflnition of invoke substitution (Def. 5.22) we may easily verify that in each case the term is
exactly n K i+ 1—1>.
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e a = c.l’. Then we have BES(c.l'[{* (@l)]) = BES(c[t* (@)]V) =c<itl—I> V=cl <i+tl 1>

The other cases hold by the induction hypothesis, just as the second case considered above.
Now suppose a is not a pure term, then we have:

e BES(alff* (b/)]) = BES(BES(a)[* (b/)]) by uniqueness of BES-normal forms. Now since BES(a) is pure
(Proposition 5.21) the previous case for pure terms applies and we have by uniqueness of BES-normal
forms BES(BES(a)){i + 1 «— BES(b)} = BES(a){i+1 — BES(b)} .

e BES(a[f (@l)]) = BES(BES(e)[ft* (@l)]) by uniqueness of BES-normal forms. Now since BES(a) is pure
(Proposition 5.21) the previous case for pure terms applies and we have by uniqueness of BES-normal
forms BES(BES(a)) € i+1—1>»=BES(e) <i+11>.

The following lemma states that reduction in S}{b is preserved by the ggpes-calculus.

Proposition 5.30 (The ¢gpe,-calculus simulates the qﬁb-ca.lculus) Let @, b be pure terms. Ifa — o, b then

a —»g, b

Proof. By structural induction on a. For each case we consider the cases where reduction takes place at the
root or is internal.

o a= ClJ
— The reduction is not at the root: then ¢ —¢,, ¢ and b = ¢/.l and we may apply the induction

hypothesis.

— The reduction is at the root and ¢ = [l; = ¢(d),m,* € ™| with 1 < j < n. Also, b= dff1 — c}.
Therefore we have, c.l; —umr dlc/] —¢,., BES(d[c/]). By Lemma 5.29(1) and the fact that d and ¢
are pure terms we have BES(d[c/]) = df1 — c}.

— The reduction is at the root and ¢ = [l; :=d, m,-" € 1""".’éj] with 1 < j < n. Also, b = d. Therefore
we have, c.l; —pr d

e a = ¢(c). Then the reduction must be internal and we may apply the induction hypothesis.
ec=cI<m>.

— The reduction is not at the root: then ¢ — 4, dorm— 4, m’ and we may apply the induction
hypothesis.

— The reduction is at the root and ¢ = [m;* € ™} and m = (}; = ¢(d)) with 1 < j < n. Then
b=[l; = g(d),mii € 1"""';éj]. Therefore we have, a — p0 b.

— The reduction is at the root and ¢ = [m,* € *| and m = (I; := d) with 1 £ j < n. Then
b=l :=d, m,.‘ € 1.n3#9) Therefore we have, @ — o b.

e a = [m,;* € "], In this case the reduction is internal and we may apply the induction hypothesis.

The remaining cases are similar and may be handled accordingly by making use of the induction hypothesis.

Proposition 5.31 (The g{,b-ca.lculus simulates the ggps-calculus) Let a,b € T, ,. If a —,, b then
BES(a) oA BES(b). Moreover, if @ =g b with R = {MI,FI,MO,FO} and the reduction takes place
at the root then BES(a) — o, BES(b).

Proof. By structural induction on a. For each case we consider the case where reduction takes place at the
root, the other cases follow by applying the induction hypothesis.

Suppose that @ —», b with r € BES then BES(a) = BES(b). Therefore the only interesting cases are those
where r € {MI, FI, MO, FO,CO, SW}.
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e Caser=MI.a=][l;= q(b,-),m,." € 1""""éj].l_.,- and b = b;{[l; = ¢(bj),m;* € V"™*#9)/]. Then

BES(a) [t = s(BES(b;)), BES(m;) * € 1..n,i¢j]_lj
N BES(b;){1 — BES(|l; = ¢(b;), m,;* € 1-™#}

=7 5200) BES(b{([l; = s(bj),m;* € ™))
= BES(b)

l

e Caser=FI. a=[lj:=d,mS € ™%l and b = d. Then

BES(a) = [l := BES(d), BES(ms) * € 1-mi#i) [,
—4 BES(d)
db

= BES(b)

¢ Caser=MO.a=cQ<lj=f>wherec=[m € "], and b= [l; = f,m,; € ""™**I), Then we have
BES(ca<lij=f>) = BES(c) @ < lj = BES(f) >

= [BES(my) *€ "] @ < l; = BES(f) >
= (l; = BES(f), BES(m;) € 1-™i#])
BES(b)

o Caser=FO0. a=c<<lj:=d>wherec=[m; € 1"}, and b = [I; := d,m,;*® "™**7]. Then we have
[BES(ms) % I-n] @ < I; := BES(d) >
—bcﬁb [l] := BES(d), BES(my) i€ 1..n,1';éj]
BES(b)

o Case r = CO. a = cfff ()|t (1L := dym,*€"™#4])] and b= cft (d)).
Now by Lemma 5.29 we have:

BES(a) BES(c) < i+ 1« l;> {i + 1 — [l; :== BES(d), BES(m;) *€1-mi#1]}

=L 5.24(3) BES(C)H% +1« [lj = BES(d), BES(m,) iel"n’i¢j].1j}

Note that [l; := BES(d), BES(m;) *€1-™#7] [, =g BES(d). Thus by Lemma A.5(2) we have

BES(c){i+ 1« [l; := BES(d), BES(m;) ‘Gl"“""j].lj}} >d BES(c){i + 1< BES(d)}
=L 5.29(1) BES(C[TT" (d/)])
= BES(b)

e Case r = SW. a = c[t’ (@))][t* (s)] and b = c[t* (s)]{4* (@!)] where k > i. We shall analyse each
possible form of s.

— 8 ={" (b/). Then BES(a) = BES(c) €« i+1 1> {k+n+ 1« BES(b)} and also BES(b) =
BES(c){k+n+ 1« BES(b)} < i+ 1« l>>. Both terms are equal by Lemma 5.24(1).

— s =f{"(T). On one hand we have

BES(a) = BES(BES(c[f (@)])[**™ (1))
=L 5.28 Ug+n(BES(c[t* (@L)]))
=unique BES—-nf uf+n(BES(BES(C)[TT’ (@l)]))

On the other hand we have



5.5. CONFLUENCE AND PSN OF THE sppgs-CALCULUS 95

BES(b) = BES(BES(c[**™ (N)(#* (@1)))
=L 5.29(2) BES(c[t**™ N)) €i+ 11>
=unique BES—nf BES(BES(C)[ﬂk+" (T)]) Li+lel>
=L 5.28 U, . (BES(c)) €i+1—1>

Due to the restriction k > 1, it follows that k +n > i + 1. Then by applying Lemma 5.24(6) both
terms are equal.

— s ={"(@l’). On one hand we have

BES(a) = BES(BES (c[t* (@)))[**" (@l')))
= s202) BES(c[*(@)) «k+n+1<U>
=p 5202 BES()Ki+le=I><k+n+1«l'>

On the other hand we have BES(b) = BES(c) < k+n+ 1« ' >« i+ 1 « |l >. Both terms are
equal by Lemma 5.24(2).

Theorem 5.32 (Confluence of ¢gpes-calculus) The ¢gp.s-calculus is confluent.

Proof. Let a,b, ¢ be terms of sort Term in 7, , such that ¢ »,  band ¢ —»,  c. Then by Proposition 5.31
we have BES(a) —» 4, BES(b) and BES(a) —» 4 BES(c). Since by Lemma 5.15 the q{",-ca.lculus is confluent we
may obtain a pure term d such that BES(b) —» 4, d and BES(c) —» 4 d, and by Proposition 5.30 we may close
the diagram by b —»ggs BES(b) —»«,_, d and ¢ »pgs BES(c) —,_, d. See Figure 5.3

5.5.2 Preservation of Strong Normalization

Preservation of strong normalization for the ggpes-calculus is the last property we shall look at. We shall use
a technique due to Bloo and Geuvers [BH98]. As remarked before, this property is an essential ingredient in
any explicit substitution implementation of a calculus, more so if there is some form of interaction between
substitutions as is our case.

The idea is to define a subset F of terms in Tg,,, which is closed under <g4;.s-reduction and which contains
all the pure terms which admit no finite g‘{b-derivations. Then, one defines a translation S(e) from terms in F
to terms in a set 7;, the latter of which are equipped with a well-founded order »7;. Finally, it is shown that
if @ —,,, b for a € F, then S(a) is strictly greater than S(b) in this order >7;. In full rigour we shall see that
Sdbes may be partitioned into two subsystems, say R; and R, with R, strongly normalizing. Then it is shown
that if a —p, b for a € F, then S(a) >1; S(b) and if a — g, b for a € F, then S(a) =7 S(b). By Lemma 2.6
this suffices for our purpose.

We recall the definition of mazred,(e) from Chapter 2, more precisely of ma.:meddb (o).

Def. 2.5.
We define the function ma.rn:ddb(o) : 7;4’5 — INU {00} as:
n  if there is a derivation a —d 61 —g A2.. 4 an
ed s (a) & ch that f derivation ¢ 2, . r, we h <
mazr <‘{b(a) = su at for any derivation a -4 @) =4 @3... =4 0y We havem <n
oo otherwise

Thus if ¢ is a term in 7:.’» , then if a is strongly normalizing, maz1'ed<jb(a,) returns the length of the longest

cafu,-reduction sequence from e otherwise it returns the special symbol co. Below we state some properties
satisfled by this function.

Lemma 5.33 (Properties of marreddb(o)) Let a € 7;1»' i >0and k > 0. And suppose ma.:creddb(a) < 00
and mazredcjb([miiel""]) < 0o. Then we have:

1. maxredcjb(a)=maxred<£b(<(a))
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2. mazred s (m;) < maxreddb([m‘.'.el""]) for each j€ 1..n

3. ma.rreddb(a):marredq:b(l = a), maxredgi (g)=ma.rredq:b(l =g)

4. ma:credde(a) < nw:vreddb(a.l)

5. marredcjb(a)=maned<&'b(ui(a))

6. maa:reddb(a) < marreddb(a < m>)and ma.zredd‘(m) < mazredqvb(a A< m>)
7. mazredcgb(a) = mazredcgb(a Li=1>)

Note that all items but for (5) and (7) are direct. One observes that the argument of left-hand side (for
example, a in the first item) is included in the argument of the right-hand side (¢(a)), and moreover, no reduction
rules apply at the root of the argument (in our example ¢(a)). The intuition behind the proofs of items (5) and
(7) is that the updating functions as well as the invoke substitution operator do not introduce new redexes.
The former merely adjusts indices and the latter modifies a term by substituting occurrences of an indice,
say n, with occurrences of n.l. Thus informally, ¢ and U} (a) have the same set of redexes, likewise for a and
a € i «— | >. These proofs require the development of additional lemmas that we shall tackle below, namely
Lemma 5.34, 5.35 and 5.36.

Lemma 5.34 Let a € T‘i , 7 >0and k > 0. Then we have the following:
o if u,{ (a) = [m;**"]. Then a = [m}*€*"] € Tﬂfs where u,{(mg) =m,.
) ifuz(a) = (1= ¢(b)). Thena = (l=¢(¥)) € 7:_;', where L{,{H(b’) =b.
o ifUj(a) = (1:=b). Then o = (1:= ¥) € T; where U](¥') =b.
o if U}(a) = <(b). Then a =(t') € T; where Ul () =b.

Proof. By a close inspection of the clauses defining the updating functions.

Lemma 5.35 Let e € T<i, and 7 > 0. Then we have the following:
o ifa < j—1>=[m* "] Then a = [m} " ¢ T,; where mi L j—1>=my.
eifagj—1>=('=¢®)). Thena=(=¢(¥)) € 7255 where ¥ € j+1—1>=0b.
eifaje—I>=('":=b). Thena= (! :=b’)€7;£ where b/ € j « I >=b.
o ifa € j 1 >=¢(b). Then a =¢(V) e‘];:b whgreb’<<j<—l>>=b.

Proof. By a close inspection of the clauses defining the invoke substitution.

Lemma 5.36 Let ¢,b € ’1;&:5, j>0and k>0.
1. If U;Z(a) —d, b then there exists ¢ € ’1;3«5 such that b= Uj(c) and a -y
2. Ifa<<j<—l>>—>€£b b then thereexistsce'];:b such that b=c <« j < ! > and a—g C.

Proof. By induction on a using lemmas 5.34 and A.3(4) for the first item, and lemmas 5.34 and 5.24(4) for
the second item.

e a = n. Trivial since there is no redex.

e a =d.l;. Then Ujd.y) = Ui(d).L; = b. Thus we have three cases to consider:
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— The reduction is internal. Thus U] i (d) = 4 d’' and b = d'.l;. Then by the induction hypothesis there
isade '1;:‘:5 such that d’ = L(J(c’) and d —d c’. Then we take ¢ = ¢’.l;. Note that since d —d, d

we have d.l; — d1;, and also UL (c l;) = U(d).l; = d' lj =b.
— The reduction takes place at the root and Uj(d) = [l; = c(e),mi"el"""'#j ] and b = efl « u,’;(d)}.

Now by Lemma 5.34 there is an ¢’ and m; with i € 1..n,i # j such that d = [l; = s(e'),m; i€l.nizi)
with e = U] ,(¢’) and m; = U(m]). Then we have,

b = U (€)1 — Ui}
=L A3@)n=1) Ui(e{1l —d})
Thus we take ¢ = €' {1 — d}.
— The reduction is at the root and Uj(d) = [l; = e,mi"El""‘i’ej] and b = e. Now by Lemma 5.34
there is an ¢’ and m} with i € 1..n,i # j such that d = [I; := ¢/, m] *¢*™*%J] with e = U](¢') and
m; = U (m}). Then since d.l; = e we take c=¢'.

a = [m€"]. Then e = U,{([mi‘EI""]) = [UI(m;) *€™]. So the reduction must be internal. Thus
b = [b,Uj(my) €1-™#h] with U (mp) — o, b’. Then by induction hypothesis there is a ¢’ such that
¥ =Ui(c) and my, = . So we take ¢ = ¢/, m, €1 ™Fh),

e a =d a<m>. Then U](a) =Ui(d) < <U](m) >. Thus we have three further cases to consider,

— The reduction is internal. Then U,{ (@) = d, € (the case where U,{(m) g € is treated similarly).

Then by induction hypothesis there is a ¢ such that e = u,{ (d)and d — <, c. In which case we take
c=d A<m>.

— The reduction is at the root and Uj(d) = [m;*¢*"] and Ul(m) = (I = <(e)) and b = [ln =
s(e), m € ™" Now by Lemma 5.34 we have d = [m]*€!""] where m; = UJ(m}), and also,
m = (I = ¢(e')) where e = U], (¢'). Then we take ¢ = [l = ¢(¢’), m; *}™*#"],

— The reduction is at the root and Uj(d) = [m,*¢*"] and Ui(m) = (In := €¢) and b = [In =
e,m,-iel“"'#h]. We proceed as in the previous case.

In the remaining cases the reduction must be internal and we proceed as above.
For the second item the proof is in the line of the proof of Lemma 5.36. The only difference is that in the
case where a = d.l; instead of using the Lemma A.3(4) we use Lemma 5.24(4).

e a=d.l;. Then (dl;) K j—I>»=d<j~1>.l; -4 b Thus we have three cases to consider:
¢] 3 3T,

— The reduction is internal. Thusd € j « ! >y d’ and b = d'.l;. Then by the induction hypothesis
there isa ¢ € T; suchthatd = € j«—I>and d =g c. Then we take ¢ = ¢.l;. Note that
smced——»qf c’wehave d.l; =g ¢ l;, and also (c’ij)<<.1<—i>> dgje—=1l>»lj=d.l=b

— The reduction is at the root and d < j « I >= [l; = s(e),m;* " ™| andb=efl —d K j— 1>
}. Now by Lemma 5.35 there is an ¢’ and m] withi € 1..n zaégsuchthatd— [l; = s(e’), m} *€-™#)
withe=e’<<_'i+1<—l>>andm..-=m§<<j«—l>>. Then we have,

b = e’<<j+1‘_l>>ﬁl‘_d<<ji—l>>:ﬂ
=L s24a)n=1) €fl—d}<«ji~1I>
Thus we take c = ¢’{1 — d}.

— The reduction is at the root and d K j — I >= [l; := e, m‘ia"" "éj] and b = e. Now by Lemma 5.35

there is an ¢’ and m} with i € 1. n,z;éjsuchtha.td—[l = ¢, m} €M) yithe=¢' € j —~ 1>
and m; = m} <<j4—l>> Then since d.l; _'cﬁ,,e weta.kec—e
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We are now in conditions of proving items (5) and (7) of Lemma 5.33.

Proof. The proof of both items is similar. We concentrate on the first item. Recall that Lemma A.5(3)
indicates that if o —d @’ then Uj(a) —d Ui(a’). Thus we have mazred o (e) £ mazred ” (Ui(a)). And, by

Lemma 5.36(1), we have mazred o (a) 2 mazred ) (Ui (a)). Hence mazred ol a) mazred s (Uk(a))
Sd»

Definition 5.37 (SN pure terms of 7, ) Let SN < denote the set of all the gdb-strongly normalizing pure
terms of T, ,.
Then we may define F as F = {a € I, [ for all b C a of sort Term, BES(b) € SN%}.

Next we show that F is closed with respect to reduction in the ggpes-calculus. We recall the reader that we
write b C a to indicate that b is a subterm of a.

Lemma 5.38 (F is closed under ¢gpes-rewriting) Let a,b € 7;:°. Ifa € F and a —,,, b then b € F.
Proof. We show that for every e C b we have BES(e) € SN <L The proof is by induction on a.

o a = n. Trivial since there is no redex.

e a = c.l. Then there are three subcases to consider

— The reduction is internal. Thus ¢ —,,, ¢ and since ¢ € F (since a € F) by the induction hypothesis
we obtain that ¢ € F. It remains to see that BES(c'.l) € SN e Thus suppose that BES(c'.l) &

SN oy then since @ —,_, b we have by Proposition 5.31 that BES(a) > BES(b). But then
BE'S (a) & SN oy contradicting the hypothesis that a € F.

— The reduction takes place at the root, ¢ = [I; = ¢(d),m;****™%#7] and | = I;. Then b = d[[l; =

¢(d),m;€™%9)/]. If e C d or e C c then since a € .’F we are done. Suppose then that e = b.
Then by Proposition 5.31 we have BES(a) — 4, BES(b). Therefore since @ € F it must be that

BES(b) € SN%.
— The reduction is at the root and ¢ = [l; := d,m,;**™**J]. Then b = d and since b C a we are done.
e a =c 4 <m >. Then there are three subcases we should consider

— The reduction is internal. Here we have either ¢ —, , ¢ or m —,  m’'. In both cases we use the
induction hypothesis.

~ The reduction is at the root, ¢ = [m;*1"*] and m = (I; = ¢(d)) and b = [l; = ¢(d), m; i € 1..n,i # j].
Now if e C (I; = ¢(d)) or e C m; with i € 1..n,7 # j then since a € F we are done. If e = b we
proceed as in the previous cases.

— The reduction is at the root, ¢ = [m;*¢!"] and m = (I; := d). Similar to the previous case.
¢ a = c[s]. Then we must consider the following subcases

— The reduction is internal. Here it may occur that ¢ —,_, ¢ or that s =fi* (d/) and d —¢,_ d'. In
both cases we conclude as above.

— The reduction is at the root. Here we consider each possible rule applied,

x SM. Thus ¢ = ¢(d). We must consider,
- e C d. We use the induction hypothesis.
. e C 3. We use the induction hypothesis.
- e = dlft (s)]. Note that BES(a) = BES(s(d)[s]) = BES(s(e)) = s(BES(e)). Then since
BES(ae) € SN o4, it must be that BES(e) € SN o
- e = b. Using Proposition 5.31 and hypothesis a € F as before.
The rules SO, SF,SB,SI, SU are treated similarly.
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* FVar. Direct since b C a.

x LVar. Direct since indices are strongly normalizing. The same applies to FInv, RInv, FVarLift
and VarShift.

*x RVarLift. The interesting case is e = n[s]. Then we have BES(a) = BES(b) =L 5.26
UZ(BES(n[s])). Now BES(n[s]) must be strongly normalizing for otherwise using Lemma A.5(3)
we would contradict the strong normalization of BES(a).

x CO. This rule presents no problems.

* SW. Then ¢ = o/[ff* (Ql)] and s =ft* (s). If e C @’ or e C s’ then we use the hypothesis. If
e = b then since BES(a) = BES(b) (see case SW in the proof of Proposition 5.31) we may use
the hypothesis. As for the case e = o[ft* ()], we have BES(b) =, s.202) BES(d'[t* (¢)]) <
i+ 1« 1>. Then BES(a’[ft* (s)]) must be strongly normalizing for otherwise by Lemma 5.25
we would contradict the strong normalization of BES(a) = BES(b).

¢ a = ¢(c).Then the reduction must be internal, ie. ¢ —,,, ¢/. As before, since ¢ € F we have ¢ € F.
For the interesting case e = b we proceed as above: since no rule may be applied at the root of b by
Proposition 5.31 and the hypothesis e € F we may conclude.

¢ a = [m;*¥1""]. Then the reduction must be internal, ie. m; — o, m; for some j € 1.n. We use the
induction hypothesis.

The remaining cases may be dealt with similarly.

Lemma 5.39 Let a,b € ’1;;}. Then @ — b implies marred%(a)Zma:zred‘i(b). If mazred s (e)< oo then
nwﬂ'eddb(a)>mazred<é(b).

Proof. The interesting case is the second statement. Suppose that mazred o (e)< oo, say mazred s (@)=n
Then mazred o (b)# oo, thus we may assume that mazred o, (b)= k and therefore there exists a derivation
b— o, b — 4, b2 L= by which is maximum. Suppose k > n, then we would obtain the derivation ¢ — 4,
b = b - ba... A bk of length k + 1 greater than n.

Lemma 5.39 generalizes to one or more gﬁb-rewrite steps as follows.

Corollary 5.40 Let a,b € 724’@ and ma.:l:red<£ (e)< oo then a i’cﬂ, b implies maa:red<i (a.)>mazred<:° (®).

We now move on to labelled terms. Recall that the aim is to define a set of labelled terms 7; equipped with
a well-founded ordering >7;, and a translation S(e) from terms in F to terms in 7;. We shall then show that

1. if a € F then a —g o implies S(a) >7; S(a’), where R = {MI, FI, MO, FO}, and
2. if a € F then a — g o’ implies S(a) >7; S(a’), where R = capes — {MI, FI, MO, FO}.

From this we shall obtain PSN reasoning by contradiction (Proposition 5.46).

Definition 5.41 (Labelled terms) We define the set labelled terms, denoted 77, over the alphabet A =
{*,0,0.n0,<(0,0),0(0),, 0[e],,5(e), [0],0 = o, 0 := ¢} by the following grammar:

t * | £.00 | {t)n | tlo)n | <t ) | [ €2
u o= f | o:=1¢

f s | f(t)n

where n is a natural number greater or equal to zero.

Definition 5.42 (Translation from F to 7;) The translation S(e) : F — 7; is defined as follows:
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S(n) E
S([m: €1..n]) ::;f [S(m_‘_)i €1..n]
(1= g) = 50 =s()
igl = a) ;f S(l) :=S(a)
s(a)) = <(S(a))
S(al) &f 8(a).nS(1) where n = maan'eds_jb (BES(a.l))
Sea<m>) ¥ «(S(a),S(m)

S ®)) ¥ S(@)(SB)a  where n = mazred ; (BES(alft (v/)])
Sa M) E S
S(altt @) = S(@)[SWln  where n = mazred ; (BES(alt (@1))))

where S(l) = o.

We define a precedence (partial ordering) on the set of operators of A as follows: e.,410 3> e(e), > e[e],. >
0..0 > <(e,0) > c(e),0 = 0,0 := 9, o], x 0. Then since > is well-founded the induced Recursive Path Ordering
‘1 defined below is well-founded on 7; [Der82)].

Note that since RPOs are Simplification Orderings [Der82] the subterm property holds, that is, if s,t € 7;
and s is a proper subterm of ¢ then t >, s.

Lemma 5.43 Let a € F. Then a —g ¢’ implies S(a) >7; S(a') where R = {MI, FI, MO, FO}.
Proof. The proof is by structural induction on a.

e a = n. Trivial since there is no redex.
o a = b.l. Then we have three cases to consider.

— The reduction is internal. Thus b —r b’ and by induction hypothesis we have S(b) =7, S(b'). Note
that S(b.l) = S(b).;,0 and S(b'.l) = S(b').,0. Now by Proposition 5.31 we have that BES(b) A

BES(b'). Therefore we consider two cases:?

x BES(b) = BES(Y’). Then m = n and therefore we must use the ‘equal heads’ case for comparing
the terms. And in effect, we have (S(b),0) >, (S(¥),0).

* BES(b) I)ﬂ{u BES(Y'). Then by Corollary 5.40 maz'reddb(BES(b)) > ma:t:reddb(BES(b’)). But
then since ., 3> .n and S(b).;m0 >1; S(¥) and S(b).mo >1; o, we are done.

— The reduction is at the root and a = [l; = ¢(c), m,*€*-™#J J.lj. Then o’ = c[[l; = ¢(c), m;*€¥"™#9)/].
Now S(a) = S([l; = s(c),m;*€""™%]) n0 and S(a') = S()(S({l; = <(c),m;*€*™*7])), and by
Proposition 5.31 and Corollary 5.40 we have m > n. Then since .., ><>, and S(a) >1; S(c) and
S(e) »1 S([l; = s(c), m;*€*"™%7)) we may conclude S(a) >, S(a’).

— The reduction is at the root and ¢ = [l; := ¢, m‘-"El""".#].lj. Then o’ = ¢. Now S(a) = S([l; =
s(c), m;*€1™#9)) o and S(a’) = S(c) and therefore S(a) »7; S(a’).

e a = b < < m >. Then we have three cases to consider:

— The reduction is internal in which case either b — g b’ or m —g m’. Both are handled as in the
previous case but making use of the ‘equal heads’ case.

— The reduction is at the root and m = (l; = ¢(c)). Thend = [m,-"el"f‘] anda’ = [l; = s(e),m ™),
Therefore S(a) = <(S(b), S(m)) and S(a’) = [S(; = s(c)), S(m;) *€1™i#I]. And, since <i(e,¢) > []
we must verify that S(e) »1; S(l; = ¢(c)) and S(a) >7 S(m;) with i € 1..n,i # j all of which are
valid.

1Note that strictly speaking it suffices to consider the case BES(b) = BES(V) since if t = f(t1,..,tn) and s = g(s1, .., 5m) then
(1, - tn) >-5,-, (81, - 8m) implies ¢ >=7; s1,..,t >7; sm. We chose to consider both for the sake of clarity.




5.5. CONFLUENCE AND PSN OF THE sppgs-CALCULUS 101

— The reduction is at the root and m = (I; := c). Then b = [m;*¢*"] and o’ = [}; := ¢, mi"el""'#j].

Analogous to the previous case.
e a = [m;*€1"]. Then the reduction must be internal and we make use of the induction hypothesis.
e a = b[s]. Then the reduction must be internal and we have two cases to consider,

— case b —p b'. Then by induction hypothesis S(b) >1; S(b’). Now we analyse by cases on s.

* s =0t (¢/). Then S(a) = S(b)(S(c))n where n = nwa:redcgh(BES(a)) and S(a’) = S(V')(S(¢))m
where m = mazred o (BES(a')). Now by Proposition 5.31 we have BES(b) —» o, BES(Y).
Therefore we consider,

- BES(b) = BES(V).Then m = n since BES(a) =L 529 BES(b){i + 1 — BES(c)} =
BES(V){i+1 « BES(c)} =L s.20 BES(a"). And the fact that (S(b),S(c)) >7, (S(¥), S(c))
concludes this case.

- BES(b) —t»a& BES(V'). Then by Lemma A.6(1) we obtain BES(a) =L 5.29 BES(b){i +1 —
BES(c)} -13‘_56 BES(b'){i+1 «— BES(c)} =L s5.20 BES(a’). Thus by Corollary 5.40 we have
n > m. Now since <>,><>,, and S(a) >7; S(¥’) and S(a) >7; S(c) we may conclude
S(a) »1; S(a’).

x s =f1t*(7). Then 8(e) = S(b) >, S(¥') = S(a').

* s =ft* (@l). Then S(a) = S(b)[o)n where n = ma:z:reddb(BES(a)) and S(a') = S(¥')[o)m where
m = mazred <‘{"(BE'S (e’)) and we reason as in the first subcase but making use of Lemma 5.25.

— case s =f}*(¢/) and ¢ —g . Thus by induction hypothesis S(c) >, S(¢). Also, S(a) = S(b)(S(c))n
where n = ma:n'eddb(BES(a)) and S(a') = S(b)(S(c'))m where m = ma.rredcgb(BES(a’)). Now by
Proposition 5.31 we have BES(c) —» o, BES(c’). Therefore we consider,

+ BES(c) = BES(c'). Then m = n since BES(a) =, 520 BES(b){i +1 — BES(c)} = BES(b){i +
1« BES(c')} =L s.20 BES(a’). And as (S(b), S(c)) =7, (S(b), S(c')), we are done.

*x BES(c) i’% BES(c’). Then by Lemma A.6(2) we have BES(a) =[ 509 BES(b){i + 1 «
BES(c)} — 4 BES(b){i+1 — BES(c)} =L 5.20 BES(a'). Then we must consider two subcases:

1. BES(a) 5 o BES(a’). Then by Corollary 5.40 we have n > m. And in order to conclude
S(a) >1; S(a’) we may verify that S(b)(S(c))n >7; S(b) and S(b)(S(c))n >7 S(¢).
2. BES(a) = BES(a’). Then n = m and we may verify that (S(b), S(c)) »7; (S(b),S())-

The remaining cases (¢ = (I = g), e = (! := ¢) and ¢ = ¢(c)) are handled by making use of the induction
hypothesis.

Lemma 5.44 Let a € F. Then a —p o’ implies S(a) >7; S(a’) where R = sgps — {MI, FI, MO, FO}.
Proof. The proof is by structural induction on a.

e a = n. Trivial since there is no redex.

e a = b.l. Then the reduction must be internal and therefore b — g b’ and by induction hypothesis we have
S(b) =5 S(b'). Now by Proposition 5.31 we have BES(b) —» 4, BES(b'). Thus we must consider two
cases:

— BES(b) = BES(Y'). Then BES(b.l) = BES(Y'.l) and mazred 4 (BES(b.1)) = ma.zreddb(BES(b’.l)),
which allows us to conclude that S(b).n0 =7 S(b').n0.

- BES(b) & 4, BES(Y’). Here we reason as in the corresponding case of the previous lemma.

e a = b <« < m >. Then the reduction must be internal and have two cases to consider,
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— case b —pg /. Thus by the induction hypothesis S(b) >1; S(¥') and therefore one may verify that
AS(), 5(m)) =7 AS(Y), S(m)).

— case m —p m'. Then we use the induction hypothesis as above.
¢ a = [m;*€1"]. Then the reduction must be internal and we make use of the induction hypothesis.

¢ a = b[s]. Then there are three cases to consider,

— The reduction is internal and b — g %’. Then we proceed as in the corresponding case of the previous
lemma, considering additionaly the case BES(b) = BES(b') from which we may infer the desired
result using the ‘equal heads’ case.

— The reduction is internal and s =ft*(¢/) and ¢ — g . Then we proceed as in the corresponding case
of the previous lemma considering additionaly the case BES(c) = BES(c).

— The reduction takes place at the root. Then there are several cases we must consider depending on
the rule applied,

* SM. Then a = ¢(c)[s] and &’ = ¢(c|[ft (s)]). Now depending on s we have,

- 8 =ft* (d/). Then we have S(a) = (s(S(c)))(S(d))n and S(a') = <(S(c)(S(d))m) where
n= ma.rredd‘(BES(a)) and m = ma.rreddb(BES(c[ﬂ (3)]))- Note that,

n = mazreddb(BES(g(c)[s]))
= mazred; (BES(s(clt (2))))
- mazred.; (s(BES(clft (s)))
=L 5.33(1) maa:reddb(BES(c[‘[[ (8)]))
= m
Now since ()n > ¢() we must verify that S(e) = (s(S5(c)))(S(@))n =17, S(c)(S(d))m and
therefore that ((S(c)), S(d)) =7; (S(c), S(d)) which is valid.

- 8 =f*(1). Then S(a) =¢(S(c)) = S(a').

. 8 =ft* (@!). This is similar to case when s =f\* (d/). Note that S(a) = (s(S(c)))[o}m and
S(a') = ¢(S(c)[o])- By a similar argument we have m = n and [], >> <() and we proceed
similarly.

— SO. Then a = [m;*€1"|[s] and o’ = [m;[s] ¥€1-"]. Then depending on s we have,

x s =f* (d/). Then S(a) = [S(m;) *€1-"|(S(d))n -and S(a’) = [S(m;)(S(d)), ;€] where n =
mazredq:b(BES(a)) and n; = ma:creddb(BES(m,-[s])). Now since (), > [.] we must verify that
S(a) = [S(m;) €1 ")(S(d))n =7 S(mi)(S(d))n, for each i € 1..n. By Lemma 5.33(2) we have
n > n; so we have two further cases to consider,

1. n > ny. Then since ()n > ()n, we verify that S(a) = [S(m;) *€!-")(S(d))n =1 S(m;) and
S(a) = [S(mu) *€1-"|(S(d))n =7 S(d).
2. n = n;. We verify that ([S(m;) *€!-"],8(d)) =7, (S(mu), S(d)).
* 8 =f*(1). Then S(a) = [S(m;) *¢!"] = §().
x s =f*(@!). This is similar to case when s =ft* (d/).
— SF. Then a = (! := ¢)[s] and @' = (I := c[s]). Then depending on s we have,

*+ 3 =f* (d/). Then S(e) = (o := 8(c))(S(d))n and S(a') = o := (S(c)(S(d))m) where n =
ma.rreddb(BES((l :=¢)|s])) and m = ma.zreddb(BES(c[s])). Now since (), >:= we must verify
that S(a) = (0 := S(c))(S(d))n =7 © and that S(a) = (0 := §(¢))(S(d))n =7 S(c)(S(d)}m. The
first is valid trivially. As for the second item note that,

n = maa:reddb(BES((l = c)|s])).
ma.zredcdfb(l := BES(c[s]))
=L 5.333) mazred s (BES(c[s]))
= m
so we must verify that (o := S(c), S(d)) =7, (S(c), S(d)) which is valid.
* 3 =1t*(1). Then S(a) = (o := 8(c)) = S(a).
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* 8 =ft*(@l). This is similar to case when s =f*(d/).

— SB. Then a = (I = f)[s] and o’ = (! = f[s]) and we proceed as in the previous case.
— SI. Then a = b.l[s] and @’ = b[s].l. Then depending on s we have,

* 5 ={* (d/). Then we have S(a) = (S(b).50)(S(d))n and S(a’) = S(b)(S(d))q.-mo where n =
maa:redcib(BES(a)) andm = nwa:redcib(BES(a’)). Note that m = n. Now since () > . we must
verify that S(a) = (S(b).p0)(S(d))n =7 S(b)(S(d))q and that S(a) = (S(b).p0)(S(d))n =7 ©.
The second is valid trivially. As for the first we have,

n = mazreddb(BES((b.l)[s]))
maxreddb(BES(b[s].l))
mazreddb(BES(b[s]).l)

L 5.33(4) mazreddb(BES(b[s]))
q

v

So we have two further cases to consider,
1. n > g. Then since (), > () we simply verify that (S(b).,0)(S(d))r >7; S(b) and that
(5(8).50)(S(d))n =7 S(d).
2. n=q. We verify that (S(b).,0,S(d)) =7, (S(b), S(d)).
* s =ft* (1). Then S(a) = S(b).n,0 and S(a’) = S(b).;,0 where n = maa:reddb(BES(b.l)) and
m= marreddb(BES(b[s].l)). Then we reason,
m = maxredc‘{o(BES(b[s].l))
marreddb(BE'S(b[s]).l)
=Ls2  mazredy (UF(BES(b)).)
= mazred ” (UZ(BES(b.)))
=L 5.33(5) mmedc;,',,(BES(b'l))
= n
And we may verify that (S(b),0) =7, (S(b),0).
* s =1*(Ql'). Then S(a) = S(b).m © [0]» and S(a’) = S(b)[o]g.50. Then since n = p and [}n > .n
we proceed analogously to the case s =f*(d/).

— SU. Then a=b < < m > [3] and @’ = b[s] < < m|s] >. Then depending on s we have,

* s =f* (d/). Then S(a) = (<(S(b),S(m)))(S(d))n and S(a’) = AS(B)(S(d))p, S(M)(S(d))q)-

Now since ()n >> < we must verify that S(a) = (Q(S(b),S(m)))(S(d))n =7 S(b)(S(d)), and
that S(a) = (Q(S(b), 8(m)))(S(d))r =7 S(M)(S(d))g.
Recall that n = maa:‘reddb(BES(b aA<m>[s]) = marreddb(BE’S(b[s]) < < BES(m[s]) >),
p= maa:redq:b(BES(b[s])) and ¢ = ma.'zredgi(BES(m[s])). Then by Lemma 5.33(6) n» > p and
n > q. We consider the first item (the second is similar). If n > p then since S(b) and S(d) are
subterms of S(a) we may conclude S(a) >1; S(¢’). The case n = p is similar.

* 8 =1*(1). Then S(a) = a(S(d), S(m)) = S(a').

* s =f* (@!). Then S(a) = (A(S(),S(m)))[o)- and S(a’) = <(S(b)[o]p, S(m)[o]g). Then we
proceed analogously to the case s =f*(d/).

—~ FVar. Then a = 1[b/] and ¢’ = b. Then S(a) = *(S(b))n and S(a’) = S(b) where n
ma.zredcé(BES(l[b/])). Since S(a’) is a subterm of S(a) we are done.

— RVar. Then a = m + 1[b/] and @’ = m. Then 8(a) = *(S(b))n and S(a’) = * where n =
mazredcjb(BES(m + 1[b/])). Since S(a’) is a subterm of S(a) we are done.

— FInv. Then a = 1{@!l] and o’ = 1.I. Then S(a) = *[o]o and S(a') = *.g0. Since [Jo > .0 we may
verify that indeed S(a) > S(a’).

— RInv. Then a = 1[f} (s)] and ¢’ = 1. Then S(¢’) = x and as for S(a) we must consider the following
cases depending on s,

* 3 =1t*(d/). Then S(a) = *(S(d))o and we are done.
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* s =f{*(1). Then S(a) = * and we are done.
* 8 =f*(@!). Then S(a) = x[o]o and we are done.
— RVarLift. Then a = p+ 1[f (s)] and o’ = p[s]{7]. We must consider the following cases depending
on s,
* s ={* (d/). Then S(a) = *(S(d));n and S(a’) = *(S(d))n where n = mazred o, (BES(a)) and
m = mazred <, (BES(p(s])). Then we reason as follows,

m mazred s (BES(a))
nmredCZ(BES(a’))
=Ls26  mazred ; (U3(BES(pls))))
=L 5.33(5) nmrrech(BES(p[s]))

Thus we use the ‘equal heads’ case and we are done.
*+ 3 =ft*(1). Then S(a) = » = S(a’) and we are done.
* s =ft*(@!). Then S(a) = x[oJo = S(a’) and we are done.
— VarShift. Then a = n[f] and a" = n+ 1. Then S(e) = » = S(a’).
~ CO. Then a = bl (@)1 ([l = ¢,m,"*"™7]/)] and o’ = b[f* (c/)]. Then we have S(a) =
S®)[olp(S([l; = e, m € ™#9))), and S(a.') = S§(b)(S(c))q- Then by Proposition 5.31 we have
BES(a) - o BES(a'), thus by Lemma 5.39 n > q. As remarked before it suffices to consider the
case n = q. We must verify that (S(b)[o]p, S([l; := ¢, m,;*€!" ) =4 . (S(b),S(c)) which is valid.
— SW. Then a = b[ff* (Q)][4* (s)] and o’ = b[ft* ( s)][ﬂ‘ (@!1)] with £ > i. We must consider the
following cases depending on s,

* 8 ={¥ (d/). Then S(a) = S(b)[o)m(S(d))n and S(a’) = S(b)(S(d))qlo),- Since n = p and
<>n> [Jn we must verify that S(a) = S(b)[o}m(S(d))n =7 S(b)(S(d))q and that S(a) =
S()[o)m(S(@))n =7 o. The second item is straightforward. As for the first item we reason as
follows,

mazred < (BE’S(a))

maa:red . (BES(a’))

mazred :b(BES(bm" ) <i+le1>)

magred s (BES(b[f* (s)]))

q
And since (S(b)[o}m, S(d)) =7, (S(b),S(d)) we are done.

* 8 ={V (7). Then S(a) = S(b)[o}» and S(a’) = S(b)[c], where n = nwz'redﬁb(BES(b[fr" (@?))))
and p = mazred <é:k(BI:'J.S'(a.’ ))- Then we reason as follows,

n

=L 5.29(2)
=L 5.33(7)

n mazred ; (BES(b[f* (@1))))
=L 5.29(2) maa:red ) (BES(b) Li+le1>)
=L 5.33(5) marred » (Uk+_.,(BES(b) Li+1le1>))
=7 5.24(6) mam'ed » (l«l,c+J BES(D)) <i+1«1>)
=L 5.28 ma:cred s (BES(b[ﬁ’H'J M) €i+1e=1>)
=L s.20(2) mMazred Q(BES(a’))
= p

x s =7 (@). Then S(a) = S(b)[o])mlc)n
. (S(b)[o]p,0). Recall that m = mazred, . (BES(b[* (@!)])) and

p = mazred,y (BESGI1** (@1)).

verify that (S(b)[o}m,0) =4

m
=L 5.29(2)
=L 5.33(7)
=L 5.33(7)

and S(a') = S(b)[elplols-

Since n = ¢ we must

We show below that m = p,
mazreddb(BES(b[fr" @)

mazred 1 (BES(b) €i+1«1>)
maa:red ” (BES(b))

ma.z'red " (BES(b) Lk+ji+110U>)
P
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The remaining cases (¢ = (I = g), e = (I :== ¢) and a = ¢(c)) are handled by making use of the induction
hypothesis.

Remark 5.45 Lemma 5.43 still holds if the rules RVar, FVar, FInv, CO are added to R.

We may now prove the main proposition of this subsection, namely, the proposition of preservation of strong
normalization for the ¢gpes-calculus.

Proposition 5.46 (PSN of the ¢aes-calculus) The ¢gpes-calculus preserves strong normalization.

Proof. Suppose that the ¢gp.5-calculus does not preserve strong normalization. Thus there is a pure term
a which is strongly qﬁb-normalizing but which possesses an infinite derivation in the ¢gpes-calculus. Since the
rewrite system S = ESDB U {MO, FO, FI} is strongly normalizing this derivation must have the form

Q@=Q) —Hg a2 M| Q3PS Ay M A5 - ..

where the reductions asx — pmr a2x+1 for k > 1 occur infinitely many times. Now since a is in F, and since by
Lemma 5.38 the set F is closed under reduction in c‘{b we obtain an infinite sequence

S(a) = S(a1) =7 S(az) =7 S(a3) =7 S(aq) >7 S(as)...

This contradicts well-foundedness of the recursive path ordering > ;.
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Chapter 6

A de Bruijn Notation for Higher-Order
Rewriting

Higher-order (term) rewriting concerns the transformation of terms in the presence of binding mechanisms for
variables and substitution, its theory may be seen to start with the pioneering work of J.W.Klop in his 1980
PhD thesis [K10o80]. The paradigmatic example of a higher-order rewrite system is the A-calculus:

(Az.M)N —g M{z « N}

The right-hand side of this rule makes use of substitution: M{z «— N} denotes the term which results from
substituting N for all free occurrences of z in M. Substitution is a metalevel notion (it lives in the world of
our language of discourse) that may be seen as a consequence of the existence of special symbols called binder
symbols that have the power to bind variables in terms. This entails that substitution may not be confined
to usual first-order replacement, but rather has to be careful to respect the status (free or bound) of variables
when doing its work. In this sense, it is fair to say that substitution is ‘respectful replacement’. However, it is
a mistake to dismiss substitution as a trivial concept: the theory of higher-order rewriting is considerably more
involved than that of first-order rewriting.

Many higher-order rewrite systems (HORS) exist and work in the area is currently very active. In the seminal
work of J.W.Klop [K1080] Combinatory Reduction Systems (CRS) were introduced. Several formalisms intro-
duced later, of which we mention some, are: Z.Khasidashvili’s Ezpression Reduction Systems (ERS) of which an
early reference is [Kha90], T.Nipkow introduces Higher-Order Rewrite Systems (HRS) in [Nip91], D.A.Wolfram
defines Higher-Order Term Rewrite Systems [Wol93|, V. van Oostrom and F. van Raamsdonk introduce Higher-
Order term Rewriting Systems [OR94] as a general higher-order rewriting formalism encompassing many known
formalisms [O0s94, Raa96] and B.Pagano defines Ezplicit Reduction Systems (XRS) [Pag98| using de Bruijn
indices notation. F. van Raamsdonk’s PhD thesis provides a survey [Raa96].

This chapter aims at getting rid of a-conversion in the substitution process. Although from the metalevel
the execution of a substitution is atomic, the cost of computing it highly depends on the form of the terms,
especially if unwanted variable capture conflicts must be avoided by renaming bound variables. So this aim has
a practical interest since any implementation of higher-order rewriting must include instructions for computing
this notion of substitution. As illustrated in Section 2.2.2, there is a standard technique introduced by de Bruijn
to get rid of a-conversion. De Bruijn indices take care of renaming because the representation of variables by
indices completely eliminates the capture of variables. However, de Bruijn formalisms have only been studied
for particular systems (and only on the term level) and no general framework of higher-order rewriting with
indices has been proposed. We address this problem here by focusing not only on de Bruijn terms (as usually
done in the literature for A-calculus [KR98]) but also on de Bruijn metaterms, which are the syntactical objects
used to express any general higher-order rewrite system formulated in a de Bruijn context. More precisely, we
shall introduce a de Bruijn notation for Expression Reduction Systems, obtaining SERS4. In fact, we shall
formulate a slightly simplified version of ERS that we shall call Simplified ERS (SERS), better suited for our
purposes, and then consider a de Bruijn notation for this formalism. The reason for choosing the ERS formalism
is that its syntax is close to the ‘usual’ presentation of the A-calculus. For example, the S-rewrite rule is written
app((Az.M), N) — M|z « N] where M and N can be instantiated by any terms.

The SERS formalism may be viewed as an interface of a programming language based on higher-order
rewriting. Since the use of variable name based formalisms are necessary for humans to interact with computers
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in a user-friendly way, technical resources like de Bruijn indices (and, later on, explicit substitutions) should
live behind the scene, in other words, should be implementation concerns. Moreover, it is required of whatever
is behind the scene to be as faithful as possible as regards the formalism it is implementing. So a key issue
shall be the detailed study of the relationship between SERS and SERS4,. The definitions developed in this
chapter give formal translations from higher-order syntax with names to higher-order syntax with indices and
vice-versa. These translators are extensions to the higher-order setting of the translations presented in [Cur93],
also studied in [KR98).

As regards existing higher-order rewrite formalisms based on de Bruijn index notation and/or explicit substi-
tutions to the best of the author’s knowledge there are three: Ezplicit CRS [BR96|, Explicit Reduction Systems
(XRS) [Pag98), and the Calculus of Indezed Names and Named Indices (CINNI) [Ste00]. In [BR96] explicit
substitutions & la Ax [Ros92, Blo97] are added to the CRS formalism as a first step towards using higher-order
rewriting with explicit substitutions for modeling the evaluation of functional programs in a faithful way. Since
this is done in a variable name setting a-conversion must be dealt with as in CRS. Pagano’s XRS constitutes the
first HORS which fuses de Bruijn indices notation and explicit substitutions. It is presented as a generalization
of the Ao4-calculus [CHL96| but no connection has been established between XRS and well-known systems such
as CRS, ERS and HRS. Indeed, it is not clear at all how some seemingly natural rules expressible, say, in the
ERS formalism, may be written in an XRS. As an example, consider a rewrite system for logical expressions
such that if imply(e;, e2) reduces to the constant true then e; logically implies e; in classical first-order predicate
logic. A possible rewrite rule could be:

imply (3zVyM,Vy3zM) —imp true
A naive attempt might consider the rewrite rule:
imply(IYM ,V3IM) —imp,, true

as a possible representation of this rule in the XRS formalism, but it does not have the desired effect.
Indeed, for example the term imply(3zVy.z, Vy3z.x) is an instance of the imp-rule, whereas its naive de Bruijn
representation imply(3v2, ¥31) is not an instance of imp,,. Note that regardless of the fact that XRS incorporate
explicit substitutions, this problem arises already at the level of de Bruijn notation. Another example of interest
is the extensional rule for functional types 7:

Mz.(app(M,z)) — M if z is not free in M
which is usually expressed in a de Bruijn based system with explicit substitutions as 74
Mapp(M,1)) = N if M =¢ N(1]

where M =¢ N means that M and N are equivalent modulo the theory of explicit substitutions £ (for example
£ might be v). Neither the imp-rule nor 74, is possible in the XRS formalism so that they do not, in principle,
have the same expressive power as ERS. Recently, the author has learned of an alternative representation for
terms introduced by K.J.Berkling (see [Ste00] for references). This notation is used by M-O.Stehr [Ste00] to
eliminate a-conversion from higher-order rewrite systems. As in B.Pagano’s XRS, no relation to established
HORS in the literature is presented. In fact, the definition of the higher-order rewriting setting is not provided.
We shall show that SERS, allows rules such as those previously mentioned to be faithfully represented, and at
the same time shall establish precise links with ERS.

Structure of the chapter

We begin by introducing our work and study scenario, the SERS formalism. After defining notions such
as pre-metaterms, metaterms and terms and their corresponding notions of substitution, we consider rewrite
rules. Valuations are then introduced in order to put rewrite rules to work. Metaterms are used to specify
rewrite rules, and rewrite rules are used to rewrite terms. The de Bruijn based formalism SERSgp is defined in
Section 6.2, and analogous concepts are considered in that setting. Next we undertake the task of comparing
these two formalisms: Section 6.3 studies an encoding of SERS in SERS4, and Section 6.4 considers the opposite
encoding. In each case, this requires that we deal with a static phase by showing how terms and rewrite rules
may be encoded, and a rewrite-preservation phase or dynamical phase in which we must show that valuations,
and hence the induced rewrite relation, may also be encoded appropriately. The SERS-to-SERS direction
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shall prove to be technically more demanding than the other. The reason is that we have a choice for selecting
appropriate names for variables and metavariables, and we must rest assured that the results are not biased
by our selection. Also, the valuations obtained by this process of translation must yield ‘good’ valuations in
the sense that they are permitted to be used in order to use the rewrite rules for rewriting terms. Finally we
consider preservation of confluence:

e if R is a confluent SERS then its translation to the de Bruijn indices setting, U(R), is a confluent SERSgs.

e if R is a confluent SERSy; then is translation to the named setting, T(R), is a confluent SERS.

6.1 Simplified Expression Reduction Systems

We introduce the name based higher-order rewrite formalism SERS. The latter is an appropriate simplification
of Khasidashvili’s ERS [Kha90] which consists in restricting binders to those which bind one variable and
restricting substitution to simple substitution (in contrast to simultaneous or parallel substitution).

Definition 6.1 (Signature) A SERS-signature X consists of the denumerable (and possibly infinite) disjoint
sets:

e I, = {z1,%2,%3,...} a set of variables, arbitrary variables are denoted z,y, ...

® Spmy = {01, a2,03,...} aset of pre-bound o-metavariables (o for object), denoted o, 3, ...

® Yimy = {01,03,03, ...} a set of pre-free o-metavariables, denoted apB,...

e Timy = {X1, X2, X3,...} a set of t-metavariables (t for term), denoted X,Y, Z,. ..

o Xy = {fi, f2, fa,-..} aset of function symbols equipped with a fixed (possibly zero) arity, denoted f, g, h, ...
o Iy = {1, A2, A3, ...} a set of binder symbols equipped with a fixed (non-zero) arity, denoted A, g, v,§, ...

The union of Xpmy and Lgm, is the set of o-metavariables of the signature. When speaking of metavariables
without further qualifiers we refer to o- and t-metavariables. Since all these alphabets are ordered, given any
symbol s we shall denote O(s) its position in the corresponding alphabet.

Definition 6.2 (Labels) A label is a finite sequence of symbols of an alphabet. We shall use k,1,1;,... to
denote arbitrary labels and € for the empty label. If s is a symbol and ! is a label then the notation s € [
means that the symbol s appears in the label [, and also, we use sl to denote the new label whose head is s
and whose tail is I. Other notations are |I| for the length of | (number of symbols in !) and at(l, n) for the n-th
element of | assuming n < |l|. Also, if s occurs (at least once) in ! then pos(s, !) denotes the position of the first
occurrence of s in 1. If 4 is a function defined on the alphabet of a label I = s; ... s,, then 6(I) denotes the label
0(s1)...0(sy). In the sequel, we may use a label as a set (e.g. if S is a set then S NI denotes the intersection
of S with the underlying set determined by !) if no confusion arises. A simple label is a label without repeated
symbols.

Definition 6.3 (Pre-metaterms) The set of SERS pre-metaterms over ¥, denoted PMT, is defined by:
M = cala|X|fM,...,M)|€a(M,...,M)| Mla — M|

Arities are supposed to be respected, i.e. a pre-metaterm like f(M;,..., M,) (resp. fa.(M,,...,M,)) is
generated by the grammar only if f (resp. §) has arity n > 0 (resp. n > 0).

We shall use M, N, M;, ... to denote pre-metaterms. The symbol e[e «— o] in the pre-metaterm M, (o «— Ma)
is called metasubstitution operator. The o-metavariable o in a pre-metaterm of the form fa.(M;,..., M) or
M, [a «— M,] is referred to as the formal parameter. The set of binder symbols together with the metasubstitu-
tion operator are called binder operators, thus the metasubstitution operator is a binder operator (since it has
binding power) but is not a binder symbol since it is not an element of Tp.
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The main difference between SERS and ERS is that in the latter binders and metasubstitutions are de-
fined on multiple o-metavariables. Indeed, pre-metaterms like §a; ... ax.(My,...,Mp) and M(a;...af «
M, ..., Mi] are possible in ERS, with the underlying hypothesis that o) ...ax are all distinct and with the
underlying semantics that M(a;...ax — Mi,..., Mi] denotes usual (parallel) substitution. It is well known
that multiple substitution can be encoded by simple substitution. Indeed, M(a; ...ax +— M,,..., My] can be
encoded as the pre-metaterm M[a; « Billaz — Bo]...[ax — Bi][B1 — Mi][B2 — Ma}...[Bx «— My}, where
B, ..., Bk are fresh pre-bound o-metavariables. As for £a; ...04.(My,..., M,,) it may be encoded with the
help of two binder symbols £ and £ as the pre-metaterm £a;.(£aa.(... & ax.(My, ..., My,))). There is also a
notion of scope indicator in ERS, used to express in which arguments of the quantifier variables are bound.
Scope indicators shall not be considered in SERS since they do not seem to contribute to the expressive power
of ERS.

A pre-metaterm M has an associated tree, denoted tree(M), in the following way:

o the tree of a metavariable , & or X is the tree with the single node o, @ and X, respectively.

e if Th,..., Ty, are the trees of My,..., My, then the tree of f(M,,..., My,) is that of Figure 6.1(a).

e if T\, ..., T, are the trees of My,..., My, then the tree of £a.(M,, ..., M,) is that of Figure 6.1(b).
o if Ty, T> are the trees of M), M>, then the tree of M;[a «— M) is that of Figure 6.1(c).

The tree of f(M,..., M) has the expected form, however the tree of M, [a — M,] may seem somewhat odd
since there are two nodes above the tree of M;. The reason is that the metasubstitution operator is asymmetric
in that its left argument M, is considered to be under a binding effect whereas M> is not. We would like this
to be reflected in the structure of the tree, enabling us to look “above” a position (Figure 6.1(c)) in a tree to
know under which binders it occurs.

f o sub
/\ /\ /\
T - Ta T, - Ta [ e T,

)
(2) (b) (c)

Figure 6.1: Pre-Metaterms as Trees

A position is a label over the alphabet IN. We use € to denote the empty word in IN*. Given a pre-metaterm
N appearing in M, the set of occurrences of N in M is the set of positions of tree(M) where tree(N) occurs
(positions in trees are defined as usual). The parameter path of a position p in tree(M) is the list containing all
the (pre-bound) o-metavariables occuring in the path from p to the root of tree(M). Likewise, we may define
the parameter path of an occurrence of N in M.

Example 6.4 Consider the pre-metaterm M = f((£a.(X)),Y). Then X occurs at position 1.1 and Y at
position 2. The parameter path of 1.1 (or just X) is & and the parameter path of 2 (or just Y) is €. Consider
the pre-metaterm M = pB.(X[e «— X7.(9(8,9(7,Z))))). Then the submetaterm X\y.(g(8,9(7, Z))) occurs at
position 1.2 and g(7, Z) occurs at position 1.2.1.2; the parameter path of 1.2 (or just 2y.(g(B,9(n, 2)))) is B,
the parameter path of 1.2.1.2 is 8.

The following definition introduces the set of metaterms, which are pre-metaterms that are well-formed
in the sense that they prevent the use of the same name for two different occurrences of a formal parameter
appearing in the parameter path of a given pre-metaterm, i.e. all the formal parameters appearing in the same
path of a pre-metaterm must be different. Also, it guarantees that metavariables in ¥pm, only occur bound.
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Definition 6.5 (Metaterms) A pre-metaterm M € PMT over I is said to be a metaterm over I iff the
predicate WF (M) holds, where WF (M) iff WF (M) holds, and WF,;(M) is defined by induction on the
structure of the pre-metaterm M for any label ! as follows:

e WFi(o)iffael

o WF (@) and WF(X) hold iff | is a simple label

e WF(f(M,,...,M,)) iff for all 1 <i < n we have WF;(M;)

o WFi(€a.(M,...,M,)) if a ¢l and for all 1 < i < n we have WF o (M;)
o« WF (M, [a — My)) iff a ¢ | and WF,(M,) and WF(M,).

Example 6.6 The pre-metaterms f(£a.(X), Aa.(Y)), f(ﬁ, Aa.(Y)) and g(Aa.(£8.(h))) are metaterms, while
the pre-metaterms f(a,£a.(X)) and f(B, Aa.(€a.(X))) are not.

In the sequel, pre-bound (resp. pre-free) o-metavariables occurring in metaterms shall simply be referred to
as bound (resp. free) o-metavariables. Also, we shall assume, whenever possible, some fixed signature ¥ and
hence speak of pre-metaterms or metaterms instead of pre-metaterms over ¥ or metaterms over ¥. As we shall
see, metaterms are used to specify rewrite rules.

Definition 6.7 (Free metavariables of pre-metaterms) Let M be a pre-metaterm, then FMVar(M) de-
notes the set of free metavariables of M, which is defined as follows:

FMVar(X) ¥ {X} FMVar(c) ¥ {a} FMVar(a) & (&}
FMVar(f(M,,..., My,)) % UL, FMVar(M;)

FMVar(€a.(My, ..., M) % (UL, FMVar(M)))\ {a}
FMVar(Myla — Ma)) = (FMVar(M;) \ {a}) U FMVar(Ms,)

All metavariables in a pre-metaterm M which are not free are bound. We use BMVar(M) to denote the
bound metavariables of a pre-metaterm M. Note that only o-metavariables may occur bound in a metaterm,
metavariables of the form @ or X; shall always occur free (if they occur at all) in a metaterm. We denote
the set of all the metavariables of a metaterm or a pre-metaterm M by MVar(M). So we have MVar(M) =
FMVar(M) U BMVar(M).

Let M be the metaterm f(3, Aa.Y). Then FMVar(M) = {E,Y}, MVar(M) = {E, Y,a}, and BMVar(M) =
{a}. If M is the metaterm f(B, Aa.c) then FMVar(M) = {B}, BMVar(M) = {a} and MVar(M) = {e, B}.

Definition 6.8 (Terms and contexts) The set of SERS terms over T, denoted 7, and contexts are defined
by:

Terms t
Contexts C

z| f(t,....,t) | €x.(t,...,1)
ol f@,...,C,...,t) | &z.(¢,...,C, ..., 1)

where O denotes a ‘hole’. We shall use s,t,t;,... for terms and C, D for contexts. Contexts are just terms
with exactly one occurrence of a hole. The z in £z is called a binding variable. We remark that in contrast to
other formalisms dealing with higher-order rewriting such as CRS, the set of terms is not contained in the set
of pre-metaterms since the set of variables and the set of o-metavariables are disjoint. Terms shall be obtained
from metaterms by suitable instantiation of o-metavariables and t-metavariables.

With C[t] we denote the term obtained by replacing ¢ for the hole O in the context C. Note that this
operation may introduce variable capture. We define the label of a context as a sequence of variables as follows:

label(D) def ¢

label(f(t:,...,C,...,tn)) = 1abel(C)
label(éz.(t1,...,C, ..., tn)) ef label(C)z
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For example, the label of the context f(Az.(z,&y.(h(y,0)))) is the sequence yz. The label of a context is a

notion analogous to that of a parameter path of an occurrence, but defined for terms instead of pre-metaterms
and where the only occurrence considered is that of the hole. The reason for not using the name ‘parameter
path’ is just because the latter notion is defined on pre-metaterms, and contexts are not pre-metaterms.

Definition 6.9 (Free variables of terms) Let t € 7', the set FV/(t) of free variables in ¢ is defined by:

FV(z) = (2}
FV(f(ts,... ta)) E UL, FV(t)

1=

FV(€z.(t1,...,ta)) & (UL, FV(8)) \ {z}

This definition can be extended to contexts by adding the clause FV(O) .

Substitution on terms can be defined as follows:

Definition 6.10 ((Restricted) substitution of terms) The (restricted) substitution of a term t for a vari-
able z in a term s, denoted s{z « t}, is defined:

z{z — t} ey

y{z — t} < ifz#y
fGn )z =t} ¥ fs{z—th... sn{z—t})

£z.(s1,...,8n){z — t} def £z.(s1,...,5n)

&y.(s1,-- -, 8n){z — t} def y.(si{z —t},...,sn{z —t})
ifz#y, and (y ¢ FV(t) or z ¢ FV(s))

Thus e{e — e} denotes the substitution operator on terms, but it may not apply a-conversion (renaming
of bound variables) in order to avoid variable captures. Therefore this notion of substitution is not defined for
all terms (hence its name). For example (£y.z){z « y} is not defined. When defining the notion of rewrite
relation on terms induced by rewrite rules we shall take a-conversion into consideration in order to guarantee
that any substitution to be performed may be completed with restricted substitution. This shall allow us to
‘localize’ a-conversion when applying rewrite rules.

The fourth clause of Def. 6.10 could be avoided. However this complicates the definition of a-conversion, and
also of v-equivalence (Def. 6.11) if the notion of restricted substitution for pre-metaterms is modified accordingly.
So we shall stick to Def. 6.10 as it stands.

We may define a-conversion on terms as the smallest reflexive, symmetric and transitive relation closed by
contexts verifying the following equality:

(@) €z.(s1,.--,%n) =a E&y(si{z—y},...,sn{z —y}) y doesnotoccurin sy,...,3,

Note that since y does not occur in 3y, . .., s, substitution is defined. We shall use ¢t =, s to denote that the
terms ¢ and s are a-convertible. This conversion is sound in the sense that ¢t =, s implies FV () = FV(s). In
fact, the latter identity holds at the occurrence level: if p is an occurrence of a free variable z in ¢ then we find
z at position p in s too (and vice-versa).

The notion of a-conversion for terms has a corresponding one for pre-metaterms which we call v-equivalence
(v for variant). The intuitive meaning of two v-equivalent pre-metaterms is that they are able to receive the
same set of potential ‘valuations’ (Def. 6.19). Thus for example, as one would expect, Aa.X #, AB.X because
when o and X are replaced by z, and 3 is replaced by y, one obtains Az.z and A\y.z, which are not a-convertible.
However, since pre-metaterms contain t-metavariables, the notion of v-equivalence is not straightforward as the
notion of a-conversion in the case of terms. More on the intuitive idea of v-equivalence shall be said below.

Definition 6.11 (v-equivalence for pre-metaterms) Given pre-metaterms M and N, we say that M is
v-equivalent to N, iff M =, N where =, is the smallest reflexive, symmetric and transitive relation closed by
metacontexts! verifying:

(v1)  Ea.(P,...,P) =, B.(PAga—pB> ... Po<La—p>)

(v2) Pila«— B =, P<a—p> [ P

1 Metacontexts are defined analogously to contexts. The notion of ‘label of a context’ is extended to metacontexts as expected.
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where P; does not contain t-metavariables for 1 < i < n, and

(v1) B is a pre-bound o-metavariable which does not occur in P, ..., P,, and
(v2) B is a pre-bound o-metavariable which does not occur in P,

P «a—Q@Q>> is the restricted substitution for pre-metaterms:

def

aka+—Q> = Q
o Ka—Q> Yy afto
& Ka—Q> def &
X<a—Q> 4f x

f(My,... M) <e—Q> EiM<a—Q>,..., M, <a—Q>)
(M, ..., Mp))<a—Q> ¥ ca.(My,..., My)

(o' (My,...,M,))<a—Q> def o (M <a—@Q>,.... M, La—Q>)

if @ # o/ and (o/ ¢ FMVar(Q) or a ¢ FMVar(M;))

Mo — My<a—Q>)

L (M a—Q>)[ — My<a—Q>]

if @ # o and (o' ¢ FMVar(Q) or a ¢ FMVar(M,))

(Ml — M) <a— Q>
(Mo — M) <a—Q>

Example 6.12 Aa.c: =y AB.B, Aa.f =y A3.f, but M. X #u A3.X, AB.Aa.X #, Aa.N3.X.

Note that pre-metaterms may be seen as contexts where the holes of a context are represented by t-
metavariables. However, metaterms are not treated as first class citizens as in [BdV99].

We shall now consider the rewrite rules of a SERS. The rewrite rules are specified by using metaterms,
whereas the rewrite relation is defined on terms.

Definition 6.13 (SERS-rewrite rule) A SERS-rewrite rule over ¥ is a pair of metaterms (G, D)% over £
(also written G — D) such that:

e the first symbol (called head symbol) in G is a function symbol or a binder symbol,
e FMVar(D) C FMVar(G), and

e G contains no occurrence of the metasubstitution operator.

Definition 6.14 (SERS) A SERS is a pair (X, R) where ¥ is a SERS-signature and R is a set of SERS-rewrite
rules over X.

We shall often omit ¥ and write R instead of (X, R), if no confusion arises.

Example 6.16 The A-calculus is defined by considering the signature containing the function symbols £y =
{app} and binder symbols I, = {A}, together with the SERS-rewrite rule: app(Aa.X,Z) —g X|a « Z]. The
An-calculus is obtained by adding the following SERS-rewrite rule: Aa.(app(X,a)) —, X.

Example 6.16 The Ax-calculus [BR96, Ros92] is defined by considering the signature containing the function
symbols X; = {app, subs} and binder symbols X, = {), o}, together with the following SERS-rewrite rules:

app(Aa.X, Z) —Beta Subs(ca.X,Z)
subs(oa.(app(X,Y)),Z) —app app(subs(ca.X,Z),subs(ca.Y,Z))
subs(oa.AB.(X), Z2) —Lam AB.(subs(ca.X, 2Z))

subs(oa.a, Z) —Var 2

subs(ca.B, Z) —rce B

2We shall reserve letters L and R for the de Bruijn formalism SERSg,.
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Example 6.17 The AA-calculus [RS94] is defined by considering the signature containing the function symbols
Z; = {app} and binder symbols Ty = {), A}, together with the following SERS-rewrite rules:

app(la.X, Z) —Beta X|o « 2]
app(La.X, Z) —ar  AB.(X[a « My.(app(B, app(7, 2)))))
Ac.(app(e, X)) —a2 X

Aa.(app(e, (AB.(app(a, X))))) —as X
Example 6.18 A further example is the foldl recursion scheme over lists.

foldl(éa.(£8.X), Y, nil) - Y
foldl(§a.(6.X),Y, cons(Z, W) —yp  foldl(€a.(66.X), X[a — Y][B — Z], W)

We shall now proceed to define the way in which rewrite rules are instantiated in order to obtain the induced
rewrite relation on terms. This implies defining how the ‘holes’ in the metaterms of the rule, represented by
t-metavariables and o-metavariables, are replaced by terms and variables, respectively. Thus the notion of
valuation shall be introduced, followed by some additional conditions imposed on these valuations in order to
single out the ‘good’ valuations (referred to as admissible valuations) from the ‘bad’ ones. A word on notation:
if @ is a (partial) function from a set S) to a set S, then we use Dom(6) to denote its domain, i.e. the subset
of Sy for which it is defined.

Definition 6.19 (Valuation) A variable assignment over T is a (partial) function 6, from o-metavariables
to variables with finite domain, such that for every pair of o-metavariables a, ﬂ we have 0,a # Gvﬁ (pre-bound
and pre-free o-metavariables are assigned different values).

A valuation 6 over ¥ is a pair of (partial) functions (6,, 6;) where 6, is a variable assignment over X and 6,
maps t-metavariables in ¥ to terms over X. It is defined as:

def

b = 6bya
ba ¥ o,
def
06X = 6,X

A valuation 6 may be extended in a unique way to the set of pre-metaterms M such that MVar(M) C Dom(6),
where Dom(8) denotes the domain of 6, as follows:

o(f(My,...,My)) ¥ f@M,...,0M,)
B(ca. (M, ..., Mp)) % €0,0.(0M,...,0M,)
O(M e — Ms)) = 0(Mi){0yc — OM3})

We shall not distinguish between ¢ and 8 if no ambiguities arise. Also, we sometimes write 6(M) thereby
implicitly assuming that M Var(M) C Dom(6).

Returning to the intuition behind v-egquivalence the idea is that it can be translated into a-conversion in
the sense that M =, N implies M =, 0N for any valuation  such that M and 0N are defined. Indeed,
coming back to Example 6.12 and taking § = {a/z, B/y, X/z}, we have 8(\a.c) = dz.z =4 Ay.y = 6()\B.0)
and 6(Ma.f) = Az.f =4 My.f = 0(AB.f). However 8(Aa.X) = Az.z #4 My.z = 6(AB.X) and §(A\B.Ia.X) =
AYIAT.T #o Az Ny.z = 00 A\B.X).

As the reader may have observed, a valuation computes a metasubstitution operator by executing metalevel
substitution. However, since metalevel substitution is restricted in that no a-conversion is allowed to take place,
we must require the valuation to be capable of executing all metasubstitution operators in a given pre-metaterm.

Definition 6.20 (Safe valuations) Let M be a pre-metaterm over ¥ and 6 a valuation over £. We say that
8 is safe for M if MVar(M) C Dom(6) and M is defined, i.e. the substitutions generated by the last clause of
Def. 6.19 can be computed. Likewise, if (G, D) is a rewrite rule, we say that 8 is safe for (G, D) if 6D is defined.

Note that if the notion of substitution we are dealing with were not restricted then a-conversion could be
required in order to apply a valuation to a pre-metaterm. Also, for any valuation 8 and pre-metaterm M with
MVar(M) C Dom(6) that contains no occurrences of the metasubstitution operator @ is safe for M. Thus, we
only ask 6 to be safe for D (not G) in the previous definition.
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The following condition is the classical notion of admissibility used in higher-order rewriting [Raa96] to avoid
inconsistencies in rewrite steps. It runs under the name “variable-capture-freeness” in the case of ERS [KOOO01a]
and aims at ruling out certain valuations which after instantiating a rewrite rule leave some free and bound
occurrences of the same variable. An example is the rewrite rule Aa.X — X and the valuation which assigns z
to a and X. The resulting rewrite step is Az.z — z which has an occurrence of = which is bound on the left
and and occurrence of £ which is free on the right.

Definition 6.21 (Path condition for t-metavariables) Let X be a t-metavariable. Consider all the occur-
rences pi,...,pn of X in (G, D), and their respective parameter paths I, ...,l, in the trees corresponding to
G and D. A valuation @ verifies the path condition for X in (G, D) if for every z € FV (6X), either (for all
1< i< n wehave z € 0l;) or (for all 1 <i < n we have z ¢ 0l;).

This definition may be read as: one occurrence of z € FV(6X) with X in (G, D) is in the scope of some
binding occurrence of z iff every occurrence of X in (G, D) is in the scope of a bound o-metavariable o with
0a = z. For example, consider the SERS rule Aa.(68.X) — £B8.X and the valuations 6, = {a/z, B/y, X/z}
and 6, = {a/z, B/y, X/z}. Then 6, verifies the path condition for X, but 6, does not since when instantiating
the rewrite rule with 6, the variable z shall occur both bound (on the LHS) and free (on the RHS).

Note that our formalism allows us to specify the restricted garbage collection rule rGc of Ax (Example 6.16)
as originally done in [Ros92], while formalisms such as CRS force one to change this rule to a stronger one,
namely Ge, written as subs(ca.X,Z) —g. X, where the path condition (Def. 6.21) on valuations guarantees
that if X/t is part of the valuation 6, then (a) cannot be in FV(t).

We may then single out the ‘good’ valuations by the following notion of admissible valuations.

Definition 6.22 (Admissible valuations) A valuation 0 over ¥ is admissible for a rewrite rule (G, D) over
X iff the following conditions hold:

e 0 is safe for (G, D),
e if @ and B occur in (G, D) with o # 8 then 6y # 6,3, and
e 0 verifies the path condition for every t-metavariable in (G, D).

Note that an admissible valuation is safe by definition, but a safe valuation may not be admissible: consider
the rule Aa.app(X, @) — X, the valuation 6§ = {a/z, X/x} is trivially safe (there is no metasubstitution operator
on the RHS) but is not admissible since the path condition is not verified: z € 6(a) but ¢ 6(¢) (z occurs bound
on the LHS and free on the RHS).

Having defined rewrite rules and (admissible) valuations we find ourselves ready to present the rewrite
relation induced on terms by a rewrite rule.

Definition 6.23 (Rewriting terms) Let (3, R) be a set of SERS-rewrite rules and s, t terms over . We say
that s R-rewrites or R-reduces or R-contracts to t, written s —x ¢, iff there exists a rewrite rule (G, D) € R,
an admissible valuation 6 for (G, D) and a context C such that s =, C[6G) and t =, C[0D]. The term 6G is
called a (G, D)-redez. A redex in a term M is determined by a rewrite rule and a position in tree(M).

We shall occasionally drop the subscript in the rewrite relation when it is clear from the context. Note that,
as in first-order rewriting, rewriting does not create new variables.

Lemma 6.24 Let 6 be an admissible valuation for a rewrite rule (G, D). Then FV(6D) C FV(6G).
Proof. Suppose z € FV(8D). Then

e if = comes from a free o-metavariable 8 occurring in D with 6 = z, then since FM Var(D) C FMVar(G)
we also have that 8 occurs in G. Moreover, by definition of valuation, variables assigned to free o-
metavariables cannot be captured, so that we necessarily have z € FV(6G).

e if z comes from instantiating a t-metavariable Z occurring in D, then Z occurs in D at position pp,
z € FV(6Z) and z does not appear in 6(lp), where lp is the parameter path of pp in D. Now, since
FMVar(D) C FMVar(G), we also have that Z occurs in G, let us say at position pg. Suppose that
z ¢ FV(0G). The only possible case is that z was captured in G so that z € BV (6G). Therefore z
appears in 6(lg), where lg is the parameter path of pg in G, which contradicts the fact that 6 verifies the
path condition for Z in (G, D).



118 CHAPTER 6. A DE BRUIJN NOTATION FOR HIGHER-ORDER REWRITING

The rewrite relation on terms satisfies the following property:
Corollary 6.25 Let s,t € T, if s »x ¢, then FV(t) C FV(s).

Proof. If s —x t, then there exists a rule (G, D) € R and a context C such that s =, C[6G) and t =, C[6D)]
where 0 is an admissible valuation for (G, D). Since FV(C[0G]) = FV(s) and FV(C[0D]) = FV(t) we can
reason directly on C[0G] and C[6D]. Suppose z € FV(C[0D]). Then either z € FV(C), in which case we
trivially have z € FV(C[0G]), or z € FV(6D). Then by Lemma 6.24 z € FV(6G) and since z is not captured
in C, we also have z € FV(C[0G)). .

6.2 Simplified Expression Reduction Systems with Indices

We introduce the de Bruijn indices based higher-order rewrite formalism SERS;,. We shall follow Section 6.1
and introduce de Bruijn metaterms, de Bruijn terms, de Bruijn valuation, and finally, de Bruijn rewriting. We
shall thus put in practice the following notational convention: in order to distinguish a concept defined for the
SERS formalism from its corresponding version (if it exists) in the SERSy, formalism we may prefix it using
the qualifying term ‘de Bruijn’, eg. ‘de Bruijn metaterms’.

Definition 6.26 (de Bruijn signature) A SERSy;, signature ¥ consists of the denumerable (and possibly
infinite) disjoint sets:

o Xy = {1, 02,03,...} a set of symbols called binder indicators, denoted ¢, 3, ...
® i, = {@1,83, ...} a set of i-metavariables (i for index), denoted &, 5, . ..

® Timy = {X}, X2, X},...} aset of t-metavariables (t for term), where | ranges over the set of labels built
over binder indicators, denoted X;,Y;, Z, ...

o Xy = {f1, f2, f3,...} aset of function symbolsequipped with a fixed (possibly zero) arity, denoted f, g, b, ...
o Ty = {A1, A2, A3, ...} a set of binder symbols equipped with a fixed (non-zero) arity, denoted A, g, v, &, ...

We remark that the set of binder indicators is exactly the set of pre-bound o-metavariables introduced in
Def. 6.1 (Zpmy)- The reason for using the same alphabet in both formalisms shall become clear in Section 6.3,
but intuitively, we need a mechanism to annotate binding paths in the de Bruijn setting to distinguish metaterms
like £8.(€c.X) and £a.(€6.X) appearing in the same rule when translated into a SERSy, system.

Definition 6.27 (de Bruijn pre-metaterms) The set of de Bruijn pre-metaterms over L, denoted PMT 4,
is defined by the following two-sorted grammar:

metaindices I == 1|s(I)|a
pre-metaterms A u= I|X;| f(A,...,A)|&(A,...,A) | A[A)

The symbol efe] in a pre-metaterm A[A] is called de Bruijn metasubstitution operator. The binder symbols
together with the de Bruijn metasubstitution operator are called binder operators, thus the de Bruijn metasub-
stitution operator is a binder operator (since it has binding power) but is not a binder symbol since it is not an
element of X;.

We shall use A4, B, A;, ... to denote de Bruijn pre-metaterms and the convention that S°(1) = 1, s°(&) = &
and s7t1(n) = S(s7(n)). As usually done for indices, we shall abbreviate 57~1(1) as j.

Positions may be defined by associating a tree to each de Bruijn pre-metaterm, as was done in the case of
SERS. As one might expect, tree(A) must have one of the forms depicted in Figure 6.2. The ‘subs’ in the
rightmost tree may be seen as a dummy function symbol.

Even if the formal mechanism used to translate pre-metaterms with names into pre-metaterms with de Bruijn
indices will be given in Section 6.3, let us introduce intuitively some ideas in order to justify the syntax used for
i-metavariables. In the formalism SERS there is a clear distinction between free and bound o-metavariables.
This fact must also be reflected in SERSg,, where bound o-metavariables are represented with indices and free
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|

Figure 6.2: de Bruijn Pre-Metaterms as Trees

o-metavariables are represented with i-metavariables (this distinction between free and bound variables is also
used in some formalizations of A-calculus [Pol93]). However, free variables in SERSy;, appear always in a binding
context, so that a de Bruijn valuation of such kind of variables has to reflect the adjustment needed to represent
the same variables but in a different context. This can be done by surrounding the i-metavariable by as many
operators S as necessary. As an example consider the pre-metaterm £a.8. If we translate it to £3, then a de
Bruijn valuation like k = { ﬁ/ 1} binds the variable whereas this is completely impossible in the name formalism
thanks to the conditions imposed on a name valuation (condition on variable assignments in Def. 6.19). Our
solution is then to translate the pre-metaterm {a.ﬁ by £ (S(ﬁ)) in such a way that there is no capture of variables
since k(£(S(B))) is exactly £(2). The solution adopted here for translating pre-free o-metavariables into the de
Bruijn formalism is in some sense what is called pre-cooking in [DHK95]: the pre-cooking function takes a
Ao-term with t-metavariables and suffixes them with as many explicit shift operators as the number of binders
present in its parameter path. This avoids variable capture when the higher-order unification procedure finds
solutions for the t-metavariables.

We use MVar(A) (resp. MVar;(A) and MVar,(A)) to denote the set of all metavariables (resp. i- and
t-metavariables) of the de Bruijn pre-metaterm A.

As in the SERS formalism, we also need here a notion of well-formed pre-metaterm. The first motivation is
to guarantee that labels of t-metavariables are correct w.r.t the context in which they appear, the second one is
to ensure that indices like j (resp. S7(@)) correspond to bound (resp. free) variables. Indeed, the pre-metaterms
€(Xap), £(€(4)) and £(&) shall not make sense for us, and hence shall not be considered well-formed.

Definition 6.28 (de Bruijn metaterms) A pre-metaterm A € PMT gy, over X is said to be a metaterm
over ¥ iff the predicate WF(A) holds, where WF(A) iff WF(A), and WF;(A) is defined by induction on the
structure of the pre-metaterm A for any label [ as follows:

WF(s(1)) if j+ 1< |l

WF(S7(Q)) iff j = |!| and [ is a simple label

WZF(Xy) iff l = k and [ is a simple label

WFI(f(Aq,...,Ay)) iff for all 1 < i < n we have WF(4;)

WF(€(Ay, ..., Ay)) iff there exists o ¢ I such that for all 1 < i < n we have WF4(4;)
WZFi(A,[A2)) if WF(A2) and there exists a ¢ ! such that WF (4;)

Therefore indices of the form S-7 (1) may only occur in metaterms if they represent bound variables and well-
formed metaindices of the form S7/(@) always represent a free variable. Note that when considering WF;(M)
and WF,(A) it is Definitions 6.5 and 6.28 which are referenced, respectively.

Example 6.29 Pre-metaterms §(Xa,/\(Ypa,2)), f(ﬁ,A AMYa,S(@))) and g(A(€c)) are metaterms, whereas the
pre-metaterms f(S(&), £(Xp)), AM(€(Xaa)), F(B, ME(S(B)))) are not.

Definition 6.30 (Linear metaterms) A de Bruijn pre-metaterm (or metaterm) M is linear if it contains at
most one occurrence of any X-based metavariable. Note that the de Bruijn metaterm f(A(§(Xap)), §(MXpa)))
is not linear since there are two occurrences of X-based metavariables, neither is f(A(Xa), £(Xa)). However,
app(A X4, Ye) is linear.
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Definition 6.31 (Pattern of a metaterm) The pattern of a metaterm A is the metacontext® obtained by
replacing every metavariable X; by some hole Ox,. Note that if there is more than one occurrence of a
metavariable then there shall be more than one occurrence of its associated hole. We write pattern(A) for the
pattern of A.

Definition 6.32 (de Bruijn terms and de Bruijn contexts) The set of de Bruijn terms over ¥, denoted
Tab, and the set of de Bruijn contexts over ¥ are defined by:

1]5(n)
n| f(a,...,0)|&(a,...,a)
0| fle,...,E,...,a) | &(e,...,E,...,a)

We use a,b, aj, b;,. .. for de Bruijn terms and E, F, ... for de Bruijn contexts. The notion of tree(a) may
be defined as for de Bruijn pre-metaterms. We may refer to the binder path number of a context, which is the
number of binders between the O and the root. In contrast to Def. 6.8, we have here that de Bruijn terms are
also de Bruijn pre-metaterms, that is, Tg, C PMT 45, although note that some de Bruijn terms may not be
de Bruijn metaterms, i.e. may not be well-formed de Bruijn pre-metaterms. Indeed, the valid term £(£(4)) is
not a metaterm, however, the index 4 may be seen as a constant in the metaterm £(£(4)). If an arbitrary free
variable is wished to be represented in a metaterm, then i-metavariables should be used.

de Bruijn indices n
de Bruijn terms a
de Bruijn contexts FE

Definition 6.33 (Free de Bruijn variables) We denote by FV(a) the set of free variables of a de Bruijn
term a, which is defined as follows:

FV(n) = {n}
Fv(f(ali"'va‘n)) U?:l FV(G"‘)
FV((ar,...,an)) ¥ (UL, FV(a)\1

where for every set of indices S, the operation S\\j is deflned as {n — j | n € S and n > j}.

When encoding SERS 4, systems as SERS systems we shall need to speak of the free variable names (objects
in ,, from the definition of a SERS signature) associated to the free de Bruijn indices. For example, if
a = £(1,2,3), then FV(a) = {1,2}. The named variable associated to the free index 1 is z;, and likewise for
2 it is z5. In general, we write Names(S) for the names of the variables whose indices are in the set S. For
example, Names(FV (2)) = {z1,z2}.

Definition 6.34 (de Bruijn substitution) The result of substituting a term b for the index n > 1 in a term
a is denoted af{n — b} and defined:

flar,-..,an)fn =0} = fla1f{n b}, ...,an{n —0b})

£(ay,...,an)frn b} = €Elaifn+1<b},...,anfn+1<d})
m-1 ifm>n

m{n « b} def {ug(b) ifm=n
m ifm<n

where for i > 0 and n > 1 we define the updating functions U]*(e) as follows:

u?(f(a'li"'raﬂ)) = f(uf(al),,uf'(an))

Ur(E(ay, ... an) F €U (1), U (an))
n def +n-1 ifm>:1
2 Sl P

Due to the various notions of substitution and replacement introduced so far, in Figure 6.3 we give a brief
synopsis of the situation. We abbreviate “not applicable” by “na”. In the case of valuations, we use the same
notation for SERS valuations and SERS4s valuations.

3In full precision we obtain a metaterm with possibly many holes. However, by abuse of notation we shall speak in terms of
metacontexts.
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Operator Names | de Bruijn || Terms | Metaterms || Explicit | Implicit
Mo — M, v v v

ti{z « ta2} v i v
A [4q] v v v

arf{n — az} v v v
M<«a—p> v Vv Vv
valuations: {e/e,...,e/e} v N na na na na

Figure 6.3: Notions of substitution

Definition 6.35 (Free de Bruijn metavariables) Let A be a de Bruijn pre-metaterm. The set of free
metavariables of A, FMVar(A), is defined as:

FMVar(l) %o

def FMVar(f(A, ..., An)) = Ur, FMVar(4s:)
%ZM(EU)) et ff; Vor)  pavare(ds, ..., An)) % Un, FMVar(4s)
ar(@) = 1& FMVar(A[A2]) 4 FMVar(A;) UFMVar(As)

FMVar(X) ¥ (X1}

Note that this definition also applies to de Bruijn metaterms. The set of names of free metavariables of A
is the set of free metavariables of A where each X; is replaced simply by X. We shall write NFM Var(A) for
the names of the free metavariables in A. For example, NFMVar(f(AXq,Y., @)) = {X,Y,@}. This notion will
be used for the first time in Def. 6.36.

We now consider the rewrite rules of an SERSy,. This includes defining valuations, their validity, and the
term rewrite relation in SERS45. Rewrite rules are specified with de Bruijn metaterms, whereas the induced
rewrite relation is on de Bruijn terms.

Definition 6.36 (de Bruijn rewrite rule) A de Bruijn rewrite rule over ¥ is a pair of de Bruijn metaterms
(L, R) over ¥ (also written L — R) such that:

e the first symbol (called head symbol) in L is a function symbol or a binder symbol,
e NFMVar(R) C NFMVar(L), and

e the metasubstitution operator does not occur in L.

Definition 6.37 (SERS) A SERSy, is a pair (X, R) where T is a SERS4,-signature and R is a set of SERS -
rewrite rules over Z.

As in the case of SERS, we shall often omit X and write R instead of (X, R), if no confusion arises.

Example 6.38 The Ag5-calculus is defined by considering the signature containing the function symbols £, =
{app} and binder symbols X, = {A}, together with the following SERSy;-rewrite rule: app(AXa, Z:) —p,
XalZc}. The Agpnap-calculus is obtained by adding the following SERSgs-rewrite rule: A(app(Xa, 1)) —ng Xe-

See also Examples 6.53 and 6.54.

Definition 6.39 (de Bruijn valuation) A de Bruijn valuation x over X is a pair of (partial) functions (k;, k¢)
where k; is a function from i-metavariables to positive integers?, and «, is a function from t-metavariables to

de Bruijn terms. It is defined as:
def

Kkl = 1
kS(I) = s(kI)
~ def -~

Ka = ki
def
KX = KX

4Integers greater than 0.
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A valuation x determines in a unique way a function % from the set of pre-metaterms A with FMVar(4) C
Dom(k), where Dom(k) denotes the domain of «, to the set of terms as follows:

R(f(A1,....An) ¥ fRA,,...,RAn)
E({(Ah ey An)) déf g(EAla e |EA7I.)
7(A1[A2) E R(4;){1 — R4z}

Note that in the above definition the substitution operator efe — e} refers to the usual substitution defined
on terms with de Bruijn indices (Def. 6.34).

We now introduce the notion of value function which is used to give semantics to metavariables with labels
in the SERSa, formalism. The goal pursued by the labels of metavariables is that of incorporating ‘context’
information as a defining part of a metavariable. As a consequence, we must verify that the terms substituted
for every occurrence of a fixed metavariable coincide ‘modulo’ their corresponding context. Dealing with such
notion of ‘coherence’ of substitutions in a de Bruijn formalism is also present in other formalisms but in a more
restricted form. Thus for example, as mentioned before, a pre-cooking function is used in [DHK95] in order
to avoid variable capture in the higher-order unification procedure. In XRS [Pag98] the notions of binding
arity and pseudo-binding arity are introduced in order to take into account the parameter path of the different
occurrences of t-metavariables appearing in a rewrite rule. Then it is required (roughly) that the binding
arity of a t-metavariable on the LHS of a rewrite rule (rewrite rules are required to be left-linear) equals the
pseudo-binding arity of the same t-metavariable occurring on the RHS of the rule. Our notion of ‘coherence’ is
implemented with valid valuations (Def. 6.41) and it turns out to be more general than the solutions proposed
in [DHK95] and [Pag98].

Definition 6.40 (Value function) Let a € 73, and ! be a label of binder indicators. Then we define the value
function Value(l, a) as Value®(l, a) where

) n fn<i
Value' (I, n) © J at(ln-i) if0<n-i<|
Tp—i—|l fn—17> lll
Value'(l, f(ar, ..., an)) = f(Value'(l,a1), ... Value*(l, an))
Value* (L, &(ay, - . ., an)) gef E(Value'*(l,a1),..., Value*t1(l, a,))

It is worth noting that Value*(l,n) may give three different kinds of results. This is just a technical resource to
make easier later proofs. Indeed, we have for example Value(aB,£(f(3,1))) = £(f(B,1)) = Value(Be, £(£(2,1)))
and Value(e, f(£1, A2)) = f(£1, Azy) # F(E1, Aa) = Value(a, f(€1, A2)). Thus the function Value(l,a) interprets
the de Bruijn term a in an l-context: bound indices are left untouched, free indices referring to the l-context are
replaced by the corresponding binder indicator and the remaining free indices are replaced by their corresponding
variable names. It might be observed that if repeated binder indicators are allowed in the label ! of Def. 6.40
then this intuition would not seem to hold. Indeed, for our purposes the case of interest is when the label !
is simple. Nevertheless, many auxiliary results may be proved without this requirement thus we prefer not to
restrict this definition prematurely (by requiring ! to be simple).

In order to introduce the notion of valid de Bruijn valuations let us consider the following rule:

£a.(¢B.X) —r EB.(6o-X)

Even if translation of rewrite rules into de Bruijn rewrite rules has not been defined yet (Section 6.3), one
may guess that a reasonable translation would be the following rule:

&(E(Xﬁa)) ra §(§(Xaﬁ))

which indicates that B (resp. a) is the first bound occurrence in the LHS (resp. RHS) while c (resp. ) is the
second bound occurrence in the LHS (resp. RHS). Now, if X is instantiated by =, a by  and 3 by y in the
SERS system, then we have an r-rewrite step £z.(§y.(z)) — &y.(€x.(z)). However, to reflect this fact in the
corresponding SERSy, system we need to instantiate Xgo by 2 and Xag by 1, thus obtaining an rqp-rewrite
step £(£2) — £(€1). This clearly shows that de Bruijn t-metavariables having the same name but different label
cannot be instantiated arbitrarily as they have to reflect the renaming of variables which is indicated by their
labels. This is exactly the role of the property of validity:
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Definition 6.41 (Valid de Bruijn valuation) A de Bruijn valuation  over I is said to be valid if for every
pair of t-metavariables X; and X;- in Dom(k) we have Value(l,kX,) = Value(l',kXy). Likewise, we say that
a de Bruijn valuation k is valid for a rewrite rule (L, R) if every metavariable in (L, R) is in Dom(k) and for
every pair of t-metavariables X; and Xy in (L, R) we have Value(l,xX;) = Value(l',xXy).

It is interesting to note that there is no concept analogous to safeness (Def. 6.20) as used for named SERS due
to the use of de Bruijn indices. Also, the last condition in the definition of an admissible valuation (Def. 6.22)
is subsumed by the above Def. 6.41 in the setting of SERSq4s.

Example 6.42 Returning to the above mentioned example we have that & = {Xga/2, Xop/1} is valid for the
rule 743 since Value(Be,2) = a = Value(af, 1).

Another interesting example is the n-contraction rule Az.app(X,z) — X ifz ¢ FV(X). It can be ex-
pressed in the SERS formalism as the rule Aa.app(X,a) —, X, and in the SERSy; formalism as the rule
AMapp(Xa, 1)) —ng Xe-

Remark that this kind of rule cannot be expressed in the XRS formalism since it does not verify the binding
arity condition. Our formalism allows us to write rules like 74, because valid valuations will test for coherence
of values. Indeed, an admissible valuation for 7 is a valuation 6 such that X does not contain a free occurrence
of 6(a). This is exactly the condition used in any usual formalization of the #-rule. A valid valuation & for 74
could, for example, be a valuation k = {X,/m, X/n} such that Value(a,kX,) = Value(e, kX,), that is, m = 1
is not possible, and n is necessarily m — 1.

To summarize, valid valuations guarantee that the unique value assigned to a t-metavariable X in the
framework with names is translated accordingly in the de Bruijn framework w.r.t the different label contexts of
all the occurrences of X in the rewrite rule. This is, in some sense, an updating of X w.r.t the different label
contexts where it appears, and it gives us the right notion of coherence for valuations.

Definition 6.43 (Rewriting de Bruijn terms) Let R be a set of de Bruijn rules over ¥ and a,b de Bruijn
terms, over .. We say that a R-rewrites or R-reduces or R-contracts to b, written a —x b, iff there is a de
Bruijn rule (L, R) € R and a de Bruijn valuation « valid for (L, R) such that ¢ = E|xL] and b = E[«R)], where
E is a de Bruijn context. The term kL is called an (L, R)-redez. A redex in a term a is determined by a rewrite
rule and a position in tree(a).

Thus, the term A(app(A(app(1,3)),1)) rewrites by the 74, rule to A(app(1,2)), using the (valid) valuation
k = {Xo/Mapp(1, 3), X/ Mapp(1,2))}.

Lemma 6.44 Let « be a valid valuation for a rewrite rule (L, R). Then FV(xR) C FV (xL).
Proof. Suppose n € FV(kR). Then

o if n comes from a free o-metavariable E occurring in R, then there is an m such that sS™ (E) occurs in R
and kB8 = n, where m is the number of binders ‘above’ 8 in R. Since L and R are de Bruijn metaterms
and the names of FMVar(R) are included in the names of FMVar(L) there is an m' such that S™ (5)

occurs in L where m’ is the number of binders ‘above’ this occurrence of E Hence by definition of free
variable n € FV(xL).

e if n comes from instantiating a t-metavariable Z; occurring in R then n + |l| € FV(k2;). Since L and
R are de Bruijn metaterms and the names of FMVar(R) are included in the names of FMVar(L) then
there is an occurrence of Zp in L for some label of binder indicators I’. Since x is valid for (L, R) then
Value(l,k2Z;) = Value(l',kZy). Now as n+|l| € FV (kZ;) we have that z,, occurs in Value(l, kZ;) and hence
also in Value(l’,xZy). Therefore n + |I'| € FV(k2)). Finally, by well-formedness of the pre-metaterm L
we have n € FV(kL).

The rewrite relation on de Bruijn terms satisfies the following property:

Corollary 6.45 Let a € Tg. If a — b, then FV(b) C FV(a).

Proof. If @ —r b, then there exists a valid valuation « for a rewrite rule (L, R) in R such that a = E[xL)]
and b = E[kR] . Then either n € FV(E), in which case we trivially have n € FV(a), or otherwise n € FV(kR).
Then by Lemma 6.44 also n € FV (kL) and since n is not captured in E, we also have n € FV (a).
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6.3 From Names to Indices...

In this section we show how rewriting in the SERS formalism may be simulated in the SERSy, formalism.
This requires two well-distinguished phases which we can refer to as the definition phase and the rewrite-
preservation phase. The definition phase consists in defining appropriate translations from pre-metaterms,
terms and valuations in the SERS setting into the corresponding notions in the SERS ), setting, work which is
carried out in the first part of this section. The second part deals with the rewrite-preservation phase, that is,
showing how SERS rewrite steps can be simulated via SERS4, rewrite steps. The rewrite-preservation phase
shall use the results developed in the definition phase.

6.3.1 The Definition Phase

We shall begin by showing how to translate terms to de Bruijn terrs.

Definition 6.46 (From terms (and contexts) to de Bruijn terms (and contexts)) The translation of
a term t, denoted T'(t), is deflned as T,(t) where

T,.(z) %ef {?(Z(f;kfm o ::
To(f(ts- b)) ¥ f(Tlts), -, Til(tn))

Ty(€z.(tr, - tn)) & ETp(t1),- .., Toaltn))

The translation of a context, denoted T'(C), is defined as above but adding the clause T} (0O) < p.

As a consequence of the previous definition, there is a clear bijection between the set of free variables of a
term t and the set of free variables of its de Bruijn representation T'(t).

The following lemma will be used in the main statements of this section; it states that variable renaming
commutes with translation.

Lemma 6.47 Let s € T, let [, k be labels of variables and z,y variables such that y does not occur at all in s
and z,y ¢ l. If s{z « y} is defined then Tiyk(s{z « y}) = Tizk(s).

Proof. By induction on s.

e 3 = z. Then we reason as follows:

lelc(:c{:E s y}) = lelc(y)
= pos(y, lyk)
= Jl|+1 X))
= pos(z,lzk) (z¢l)
= Tl:l:k(s)

o 3=z # z. Then Tiy(z{z — y}) = Tiyx(2z). We consider two further cases:

— z € lyk. Since y # z (y does not occur in s) Tiyk(z) = pos(z, lyk) = pos(z,lzk) = Tizk(2).
— z ¢ lyk. Then Ty (2) = O(2) + |lyk| = O(2) + |lzk| = Tizx(2)-

e s= f(s1,...,8n). We use the induction hypothesis.
o 3s=£x.(s1,...,3,). We reason as follows:
Tigk (s{z «— y}) = Tiyk (£2.(81, .., 8n)) = Tizk (6z-(51, - - -, 8n))

Now it may be shown that for any term s and variable z such that z ¢ FV (s), we have Tizx(s) = Tizx(s)
for any z ¢ FV(s). The last equality then follows from the fact that z ¢ FV(£z.(s1,...,ss)) and by
considering z = y.
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e s=¢£z.(s),...,8,) with z # x. Note that 2z # y by hypothesis. We reason as follows:

Tiyk(s{z =y} = E(Tayr(ar{z — v} ..., Tayk(sn{z < 3}))
= &(Tuzk(s1),- - Tuzk(sn)) (i.h.)
= nzk(s)

As expected, the translation satisfies:

Lemma 6.48 (T is compatible with a-conversion) Given two terms s,¢t € T such that s =, t we have
Tk(s) = Tk(t) for any label of variables k.

Proof. By induction on the derivation of s =, t.

e Base cases. If s = t then the result holds trivially, so suppose s =, t and the conversion takes place
at the root. Then s = £z.(s1,...,3n) =a &y.(81{z — ¥},...,3n{z — y}) =t where y is a variable not
occurring in sy,...8,. Then by Lemma 6.47 we have Ti(s) = &(Tzx(s1), ..., Tzk(8n)) = E(Tyk(s1{z ~
¥}, Tyr(sn{z — y})) = Ti(t).

o Inductive cases:

— § =, t follows from ¢ =, 5. We use the induction hypothesis.
— 8 =4 t follows from s =, s’ and s’ =, t. We use the induction hypothesis.

— the conversion is internal. Then two further cases are considered:

* 8= f(s1,...,8i,...,8n) and t = f(81,...,8},...,3,) wWhere s; =, s!. We conclude by using the
induction hypothesis.
* $=6x.(81,...,8,...,8,) and t = &zx.(s1,...,8],...,8,) where 8; = 8. Then we have Tx(s) =

E(Tzk(1), .., Tok(si)s - - - Tok(sn)) =in. E(Tax(s1), .. Tak(8)), - - ., Tax(sn)) = Tic(2).

We now consider a translation from pre-metaterms to de Bruijn pre-metaterms. We shall also use the letter
T for this translation in an attempt to avoid having to introduce yet another symbol.

Definition 6.49 (From pre-metaterms to de Bruijn pre-metaterms) A pre-metaterm M is translated
as T(M), where T(M) is defined as T,(M) where T, (M) is defined by

Ti(@) % pos(a,k), ifack T.(f(M,...,Mo)) ¥ f(T(M),..., T (M)
T,@) ¥ ski(g) T(Ea.(My,..., Mp)) ¥ T, (My),..., Tu(My))
T(X) & Xk Ti(Mla—M)) % T,,00)[T (M)

Note that if M is a metaterm, then T(M) will be defined and will only have t-metavariables with simple
labels. Note also that, for some pre-metaterms, such as £a.(3, the translation T'(e) is not defined. Moreover, if
M is a metaterm then T (M) is a de Bruijn metaterm.

Lemma 6.50 (T preserves well-formedness) If M is a metaterm, then 7'(M) is a de Bruijn metaterm.

Proof. We need to prove a more general result: let M be a pre-metaterm, if WF (M), then WF(T,(M)).
This is proved by induction on M.

e M = a. Then o €l and we have WF(T;(a)) if WF(pos(a,!)). And the latter holds trivially.
e M =3&. Then WF(T)(a)) if WF(s"/(&)). And the latter holds trivially.

e M = X. Then we have WF (T (X)) iff WFi(X,) and | is simple. And the latter holds trivially.
e M = f(M,,...,M,). By induction hypothesis.
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o M = fa.(M,...,M,). Then WF(T\(éa.(M,, ..., M,))) if WFg(T,,(M;)) with 1 < i < n for some
B ¢ l. Since WF (M) we have o ¢ | and WF 4 (M;), so that we may take 8 = o and conclude by the
induction hypothesis.

o M = M|a «— M,]. Similar to the previous case.

Example 6.51 Let M = £a.(X,)\3.(Y,a)), M’ = f(B, Ac.(Y,a)) and M” = g(Ma.(£6.(h))). Then their
respective translations are 4 = £(Xq, A(Ypa,5(1))), A’ = f(B, M(Ya,S(@))) and A" = g(A(£(R))), which are
metaterms as remarked in Example 6.29.

Definition 6.52 (From SERS rewrite rules to SERSy, rewrite rules) Let (G, D) be a rewrite rule in the
SERS formalism. Then T(G, D) denotes the translation of the rewrite rule, defined as (T(G), T(D)).

As an immediate consequence of Lemma 6.50 and Def. 6.52, if (G, D) is an SERS rewrite rule, then T(G, D)
is an SERSy, rewrite rule.

Example 6.53 (Ax continued) Following Example 6.16, the specification of Ax in the SERS s formalism is
given below. It results from translating the rewrite rules of Example 6.16.

app(MXa, Ze)
subs(o(app(Xa, Ya)), Ze)
subs(o0(MXpa)), Ze)
subs(o(1), Ze)
subs(a(s(B)), Z.)

subs(0 X q, Ze)
app(wbs(o'Xm Ze): S'Ubs(O'Ya, Ze))
E(MS(U(Xaﬁ% Zp))

o~

B

A A A

The rule subs(o(AM(Xga)), Ze) — A(subs(0(Xap), Zg)) is interesting since it illustrates the use of binder
commutation from Xga to Xos and shows how some index adjustment shall be necessary when going from Zg
to Z..

Example 6.54 (The AA-calculus continued) The translation of the AA-calculus (Example 6.17) yields the
following rewrite rules in the SERS4p formalism:

app(/\(Xa), Z,_) —Ba Xa [Zeﬂ
app(A(Xa), Ze) —a, A(Xep[M(app(S(1), app(1, Z,5)))})
A(app(1, Xa)) -4, Xe

A(app(1, (Alapp(S(1), Xga))))) —a, X
We remark that the translation of Aj;, A2 and A3 would not be possible in XRS.

Suppose some rewrite rule (L, R) is used to rewrite a term s. Then s =, C[6(L)] for some context C and
admissible valuation §. When encoding this rewrite step in the SERSy;, setting we shall have to encode not only
terms and metaterms, but also the valuation €. Def. 6.55 below shows how one may encode valuations. This
definition is parametrized over a label k, an issue which we would like to clarify. Suppose the metavariable X,
occurs in L, then when 6 instantiates X; the status of any variable z in the resulting term, 8(X;), can be of one
of four clases:

e either, z is bound in 6(X;),

eor,z is free in 6(X,) but is bound by some binder above X in the rewrite rule, in other words, there is a
binder indicator a € I such that 8(a) = z,

e or, z is free in (X;) and z is not bound by the binders above X; in the rule, i.e. z ¢ 6(l), but z is bound
by a binder above the O in the context C,

e or, z is free in (X;), it is not bound by the binders above X in the rewrite rule, and it is not bound by
a binder in the context C above the O. Thus z is free in s.
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Therefore, when translating a valuation to the SERSy, setting we need to know what the names of the
variables of the binders above the O are. For example, if the third case holds then when translating to indices
we must assign = an index which avoids being captured in the context. This is the role of the label k in the
following definition.

Definition 6.55 (From valuations to de Bruijn valuations) Let 6 be a valuation and k be a label of
variables. Then the translation of @ w.r.t the label k (referred to as the context label) is defined as the de Bruijn

valuation:
To(0)(X1) & Ty, (6(X)) if () is defined
T,(0)@) € T(6®)

where X, & € Dom(6).

6.3.2 The Rewrite-Preservation Phase

In this section we study the rewrite-preservation phase, that is, we show that the translations of the definition
phase ensure that the notion of rewriting in the formalism with de Bruijn indices has the same semantics as the
corresponding one with names.

The following lemmas will be used in the proof of the main result of this section, namely Proposition 6.62,
which states that SERS-rewriting may be simulated as SERS4-rewriting.

Lemma 6.56 Let s € 7 and a € Ty, let = be a variable and [, k be labels of variables with |l| = i — 1 and
z € l. Then T, (s) = T} ()i — a}.

Proof. By induction on s. We shall consider the case that s is a variable, the others follow from the induction
hypothesis.

e 3 = z. Then T, (z) = pos(z,lk) = pos(z,lzk) = pos(z,lzk){i «— a}. The last equality holds since
pos(z, lzk) < i.
e 5 =y # z. We have three cases to consider:

— y € l. Then T}, (y) = pos(y,lk) = pos(y,lzk) = pos(y,lck){i — a}. The last equality holds since
pos(y, lzk) < i.

— y¢landy € k. Then T, (y) = pos(y,lk) = pos(y, lzk) — 1 = pos(y, lzk){i — a}. The last equality
holds since pos(y, lzk) > i.

— y ¢ lk. Then T),(y) = O(y) + llk| = O(y) + |lzk| — 1 = T, (v){¢ — a}-

Lemma 6.57 Let s € 7, let Uy, l5, k be labels of variables such that || = j, |l2| =i~ 1 and FV(s)Niz = 0.
Then nllzk(s) = u;(n,k(s))'

Proof. By induction on s. We shall consider the case that s is a variable, the others follow from the induction
hypothesis. Suppose s = z. Note that since by hypothesis = € l; we have three cases to consider:

e z € l;. Then T}, ,(z) = pos(z,lil2k) = pos(z,lik) = L{;:(pos(a:, l1k)). The last equality holds since
pos(z, lik) < j.

e 2 ¢l and z € k. Then T, |, . (z) = pos(z, lil2k) = pos(z,lik) +i - 1= L(J':(pos(a:, L k)).

e z ¢ lhik. Then T, (z) = O(z) + |hilk| = O(z) + [Lhk| + i — 1 = U(T), 4 (z)).

Lemma 6.568 Let s,t € T, [,k be labels of variables with || = i — 1, let z be a variable such that = ¢ /, and
suppose FV(t)Nl=0. If s{z « t} is defined then T}, (s{z — t}) = T, (s)§i — T, (1)}

Proof. By induction on s.



128

CHAPTER 6. A DE BRUIJN NOTATION FOR HIGHER-ORDER REWRITING

8 = z. Then we have: .

UY(T (1) (L.657)
ifi — T,(t)}

T i = T,()} (= ¢1)

s =y # z. Then we have three subcases to consider:

Ty ()

— y € . Then T, (y) = pos(y,lk) = pos(y,lzk) = T, (y) = T, (¥){i — T, (t)}. The last equality
holds because pos(y,!) < 1.

-y ¢land y € k. Then T}, (y) = pos(y, lk) = pos(y,lek) — 1 = Ty, (y) — 1 = T (9){i ~ T ()}
The last equality holds because pos(y, lzk) > i.

~ y ¢ lk. Then T, (y) = O(y) + |1k = O@) + |iok| - 1 = T () — 1 = Ty, ()4 — Tu(6)}. The last
equality holds because O(y) + |lzk| > i.

8= f(s1,.-.,8n).- The we have

T, (s{z — t})

F(Typ(si{z —t}), ..., T (sn{z —t}))

STz ()i = T, (1)}, ... ek (sa) i — T, ()}
Tk (s)fi < Ty (1) }

o
-

s = £y.(s1,...,8,). Note that since s{z «— t} is defined by hypothesis we know that y ¢ FV(t) for
otherwise s{z « t} would not be defined. We consider two further cases:

— y # z. Then we have

Ty (s{z —t}) E(T,u(s1{z —t},...,sn{z —1t}))
i ETua(s)fi+1 =T} ... Tu(sn){i +1 < T()})

= Tk ()i — T (1) }

— y = z. Then we have

Ty (s{z —t}) Ty (6z-(s1,- -, 90))
E(T k(1)) - - - Tpp(sn))
E(Tzlzk(sl){i +1 Tk(t)B' ce YT:l:l:l:k(s'n) {Z +1« Tk(t)}) (L656)

Tl:l:k(ga:'(sh AR s'n))Hi A Tk(t)B

As expected, the translation is well-behaved w.r.t contexts and valuations. We take the opportunity to recall

the reader that the notion of a label of a context is given in Def. 6.8. Induction on the context C in the following
result may be used for proving it.

Lemma 6.59 (T is modular w.r.t contexts) Let C be a context, ! the label of C and t € 7. Then for every
label k we have, T}, (C[t]) = T,,(C)(T;(t)]-

Lemma 6.60 (T is modular w.r.t. valuations) Let M be a pre-metaterm, ! a label of binder indicators,
and suppose

1. WF(M),

2. 8 = (0,,6,) is a valuation such that @, is injective on the bound o-metavariables, and

3. @ is safe for M.

Then for every label k we have Ty, (6M) = T, (6)(T;(M)).
Proof. By induction on the pre-metaterm M. Since WF (M) we have the following cases to consider:

e M =o€l Then Te(,)k((?cx) = pos(0a, 0(1)) =nyp.2 pos(a,l) = T, (0)(pos(a, 1)) = T, (6)(T(a)).
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e M = &. Then by the definition of valuation and since & ¢ ! because [ is a label of binder indicators:

~ pos(0a, k) +16()| iffaek
Ton(6@) = { O(68) + [0()k] ~  otherwise.

sll(pos(8a, k)) iffack
si(O(6&) + |k|]) otherwise.

T, (6)(s"'(a))
T,.(6)(Ty(a))

o M = X. Then Ty, (6X) = T;,(8)(X1) = T(6)(Ty(X))-

M = f(M,,...,M,). Then we have

=in. (T (O)(T (M), . .., T, (0)(T(My)))
o M =¢a.(M,...,M,). Then we have
To(,)k(ega.(Ml, o My)) = {(Ta(a)a(,)k(ﬂMl), R Te(a)a(l)k(aMn))
(TR (0)(To (M), ..., Th(0)(Ty, (Mn)))

(L]
o
&

T, (0)(T(Ea.(Ms, ..., Ma))

M = Mj[a — M;]. Then we have
Tonyr (0(Mi o — Ms]))

Te(l)k(oMl{ov(a) — 0M:})
=L. 6.58 Tg(a)g(l)k(OMl){{l A Te(,)k(ﬁMz)B»
i.h. T (0)(To(M1)) 1 — T, (0)(Ty(M2)) }

T, (0)(T,, (M) [T, (M2)])
T, (6)(Ty (Mo — M)

Note that since 8 is safe for M we may apply Lemma 6.58 above with ! = ¢. Indeed, 6,(a) ¢ 6(!) and
FV(OM2)No(l) =0 forl =e.

Lemma 6.61 Let k, k' be labels of binder indicators, ! a label of variables and & be an injective function on the
set of binder indicators. Then for every t € T, every p > 0, every z, ..., Ty, if for every z € FV(t)\ {zy,...,%p}
we have z € (k) iff z € §(k’), then

Value®(k, T, o ok (t) = ValueP(K'\ T, . sen(t))
Proof. We use induction on t.
e t = . We have the following further cases to consider:
— z=z; with 1 <7 <p. Then
ValueP(k, T, ok (2)) = ValueP(k,i) =i= ValueP(k',i) = ValueP(k', T;, ..z 60y (=)

1---Tp

— z € (k) N (k') and the previous case does not hold. Let ¢ = pos(z, 8(k)) and j = pos(z, 8(k’)).
Then at(k,i) = at(k’,j) by injectivity of § and we have

Value? (k, T,,. 2,600 (=) Value? (k,p + )

at(k,1)

at(k’, 5)

Value? (k',p + 7)
Valuep(kl' T:l:l...:l:,ﬂ(k’)l (:L‘))
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— z €l and the previous cases do not hold. Then for some i with 1 < i < |I| we have

ValueP (k, T,,. 2000 () ValueP(k,p + |0(k)]| + i)
T

ValueP (K',p + |0(K')| + 7)
Value? (K, T, . ,000:(®))

-z & {zT1,...,zp}, € (k) U O(K'), = ¢ l. Then we have

ValueP (k, Ty, zpogn(@) = ValueP(k,O(z) + p + |6(k)l|)
To(z)+|l|

Value?(k',O(z) + p + [8(k")1])
ValueP(kl,T:lu_zpe(k,)l(:z:))

o t = f(t1,...,t,). By induction hypothesis we have Value?(k, T:;...z,ﬂ(k)l(t")) = Value”(k’.Tn.__:’o(k,),(t,-))
so the property trivially holds.

e t=¢£z.(t1,...,tn). Then we have

Value?(k, T, . oxp(6T-(t1 -, tn)))

Va’luep(k' E(Tzzl...:,,a(k)l (tl)' Tt Tz:,...zpa(k)l(tn)))

E(Value® (b, Ty, o opgn (1), ValueP (kT gii(En)))
ih §(ValueP (K, Ty, o py(t1))s o ValueP (K, Ty ooy (8n)))
= Value®(k', T, . sru(62-(t1,- . tn)))

We can finally conclude with the main result of this section which ensures that the SERS,, formalism
preserves SERS-rewriting.

Proposition 6.62 (Simulating SERS-rewriting via SERS;,-rewriting) Suppose s — ¢ in the SERS for-
malism using the rewrite rule (G, D). Then T(s) — T(t) in the SERSy) formalism using the de Bruijn rewrite
rule T(G, D).

Proof. By definition of the rewrite relation (Def. 6.23) there is an admissible valuation @ for (G, D) and there
is a context C such that s =, C[#G]| and t =, C[0D]. By Lemma 6.48 T(s) = T(C[6G]) and T(t) = T(C[6D])).
Note that T(G, D) = (T(G),T(D)) is a de Bruijn rewrite rule by Lemma 6.50. The proof thus proceeds in
two steps: in Step 1 we show that there exists a de Bruijn valuation x and a de Bruijn context E such that
T(s) = E[(kT(G)] and T(t) = E[kT(D)); Step 2 consists in showing that « is a valid de Bruijn valuation for
(T(G), T(D)).

e Step 1. By Lemma 6.59 we have T(s) = T(C)[T,.(6G)] and T'(t) = T(C)[T(6D)], where k is the label of
the context C, and T(C) is a de Bruijn context. By hypothesis G is well-formed and @ is safe for G (so
that 6, is injective on the set of bound o-metavariables). As a consequence we can apply Lemma 6.60 so
that T} (6G) = T,(6)(T(G)) and T, (6D) = T, (6)(T(D)), where T, (6) is a de Bruijn valuation. Thus we
may take def T,(6) and E def T(C).

e Step 2. We have still to show that T} () is valid for (T(G),T(D)). By Def. 6.41 we have to check
that Value(l, T (6)(X:)) = Value(V,T,(6)(Xy)) for every pair of t-metavariables X; and X appear-
ing in the de Bruijn rewrite rule (T(G),T (D)), that is, by Def. 6.55, that Value(l,To(,)k(O(X ) =
Value(l', Toayk (6(X))). Finally, verifying the following conditions allows us to conclude from Lemma 6.61
with p=0:

— 6(X) is a term in T by definition of valuations.

— @ is injective on bound o-metavariables since it is admissible,

— finally, we need to show that for every variable z € FV(8.X) we have z € 9(l) iff z € §(!’). But this
immediately follows from the fact that 6 verifies the path condition for X in (G, D) because it is
admissible.
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6.4 ...And Back

In this section we show that SERS are operationally equivalent to SERSy,. For that, we show how the notion
of rewriting in the SERS4; formalism may be simulated in the SERS. As in Section 6.3 we shall develop the
required results by distinguishing the definition phase and the rewrite-preservation phase.

6.4.1 The Definition Phase

In this section we study the definition phase, that is, we define translations from the SERSq4, to the SERS
formalism. We shall begin with a translation from de Bruijn terms to terms with variable names. This shall
make use of the Names(e) function given below Def. 6.33.

Definition 6.63 (From de Bruijn terms (and contexts) to terms (and contexts)) The translation of

a € Ty , denoted U(a), is defined as U ma(FV(a))(a) where, for every finite set of variables S, and every label
of variables k, U (a) is defined as follows:

aef [ at(k,n) ifn<|k|
Uf(n) - { Tk if n > |k| and Tn—|k| € S
US(far, ..., an)) & F(US(a1),. .., U (an))

US(&(ay,. .. 0n)) = €2.(US.(a1),...,US (an)) foranyz ¢ kUS

The translation of a de Bruijn context E, denoted U(E), is defined as above but adding the clause UZ (D) def
0. We remark that we can always choose z ¢ k U S since both k and S are finite.

Note that U(e) is not a function in the sense that the choice of bound variables is non-deterministic. However,
one can show that if ¢ and ¢’ belong both to U(a), then ¢t =, ¢’. Thus, U(e) can be seen as a function from de
Bruijn terms to a-equivalence classes.

We remark that given a set of variables S, a de Bruijn term a and a label k, the translation U ,'f (a) is always
defined if Names(FV (a)\|k|) C S. It is quite evident that FV (£(a))\n is exactly FV(a)\(n + 1). Also, if
U$(Cla]) is defined and |!| is the binder path number of C (see Def. 6.32), then U (a) is also defined. Note,
moreover, that if z € FV(U$(a)) then z € SUk..

Definition 6.64 (From de Bruijn pre-metaterms to pre-metaterms) The translation of the de Bruijn
pre-metaterm A, denoted U(A), is defined as U,(A), where U;(A) is defined as follows:

Uy(si(1)) © at(l,i+1) ifi+1<|l
Ui(s" (@) =a
Ui(X1) = x

Ul(f(A1,- .-, An) ¥ f(UI(AL), . .., Ui(An))
Uil(E(A1, - -, A)) & €a.(Uai(41), .., Uni(An))

if 1<i<n WZFa(A;) for some o ¢ 1
Ui(A;[Az2]) E Uai(A1) (e — Ui(4s)]

if WFai(A,) for some a ¢ 1

As in Def. 6.63 we remark that the translation of a de Bruijn pre-metaterm is not a function since it depends
on the choice of the names for o-metavariables. Indeed, two different pre-metaterms obtained by this translation
will be v-equivalent. Also, for some de Bruijn pre-metaterms such as £(2), the translation may not be defined.
However, it is defined on de Bruijn metaterms.

Definition 6.65 (From SERS,;, rewrite rules to SERS rewrite rules) Let (L, R) be a de Bruijn rewrite
rule then its translation, denoted U (L, R), is the pair of metaterms (U(L), U(R)).

Note that if A is such that WF;(A) holds then its translation U;(A) is also a named metaterm, that is,
WF (Ui (A)) also holds. Therefore, by Def. 6.13 the translation of a de Bruijn rewrite rule is a rewrite rule in

the SERS formalism. As mentioned above, if a de Bruijn pre-metaterm A is not a de Bruijn metaterm then
Ui(A) may not be defined.



132 CHAPTER 6. A DE BRUIJN NOTATION FOR HIGHER-ORDER REWRITING

Example 6.66 Consider the de Bruijn rule app(AX,, Ze) — A(XaplM(app(S(1), app(1, Z,)))]) from Exam-
ple 6.54. The rule obtained by the translation of Def. 6.64 is

app(Aa. X, Z) — AB.(X[a «— Ay.(app(B, app(v, 2)))))

Whereas, for the rule subs(a(S(E)),Ze) — [ we obtain subs(a'y.(ﬁ), Z)— B for some bound o-metavariable 5.

Definition 6.67 (From de Bruijn valuations to valuations) Let k = (k;, k¢) be a de Bruijn valuation, S
be a finite set of variables and k a label of variables, and 6, be a variable assignment such that:

1. 8,(c) ¢ SUEK, for any a € Dom(6,), and

at(k,x:(a)) if k(&) < |k|

2. for every @ € Dom(k;), 0,(a) = { Trsoy 1k otherw. with 2, a)_jx| € S

The translation of « is the valuation Ug, s x)(k) def (6, 6:), where

6. X def Ui(,)k(nX,) for any X; in Dom(k)

Condition 2 on 6, says that if an i-metavariable in A is bound (or free) in the context k as interpreted via
k then the new valuation Ugg, s k)(k) must reflect this fact. We will now show that if « is a valid de Bruijn
valuation then this definition is correct, that is, the definition does not depend on the choice of the t-metavariable
X in Dom(k). For that, we need some lemmas which are developed in the appendix (Section A.3.1).

Lemma 6.68 (Translation of de Bruijn valuations is correct) The valuation U s x)(k) given in Def. 6.67
is correct if x is valid, where correct means that for every X; and Xy in Dom(k) we have Ués; wk(kX1) =a

Ués; o (kX1’), whenever both terms are defined.

Proof. Since k is valid we have Value(l, kX;) = Value(l',kXy') for every X; and X[ in Dom(x). Then by
Lemma A.20 we may conclude Ui(l)k(KX,) =4 Ué(l,)k(ny). .

6.4.2 The Rewrite-Preservation Phase

In this section we study the rewrite-preservation phase, that is, we show that the translations of the defini-
tion phase ensure that the notion of rewriting in the formalism with names has the same semantics as the
corresponding one with de Bruijn indices. More precisely, we seek to prove the following:

Proposition 6.73 (Simulating SERS ;-rewriting via SERS-rewriting) Assume ¢ — b in the SERSg;
formalism using rewrite rule (L, R). Then U(e) — U(b) in the SERS formalism using rule U(L, R).

For that we need to develop some intermediate results. These results start with Lemma 6.69 and end with
Lemma 6.72.

Lemma 6.69 (U is modular w.r.t de Bruijn contexts) Let E be a de Bruijn context, [, k labels where
|| is the binder path number of E and a € Tg. If US(E[a]) and Uj(a) are defined, then UZ(Ela]) =a
UR (B) Ui (a)).

Proof. By induction on the context E.
e E = 0. Then |l = ¢ and the result holds trivially.

e E = f(ay,...,E',...,an). Note that the binder path number of E and E’ are the same. We reason as
follows:

f(U(@),-.., U (E'lal),. .., U (an))
e f(U(a1),...,.US(ENUR(a)),-- . Ui(an)) (ih)
U (B) Ui (a)]

Uks(f(alo-"rE/[a]r‘-')a'n))
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e E=¢(ay,...,E', ... ,a,). Sincel is a label such that || is the binder path number of E, we have [ = l'y
for some label I’ and variable y. We now reason as follows:
UP (&(ax, - ..,E’[a.], cerGn))
= (= (Ufk(al) (E"[al), .-, Ugi(an))
=a €2.(U k(al){I - z} E’[a]){z —z},...,Ug(an){z — 2}) (z fresh)
=a £z.(U k(al) zk(E,[a]) Usk(an)) (L.A.18)
=a £2.(U} (01){3/ — z} . ,Ufk(E’[a]){y —z},...,Us(an){y — 2}) (L.A18)
== & (U (1), U o «(E'la)), . (an))
=a &Y. (U % (a1), - U (BN Uy (a)] Ugk(an)) (ih.)
= US(E)[ k(a')]

Note that = ¢ k and y € k for otherwise they could not have been chosen by the U (o) translation mapping

as candidate variables for binding.

Lemma 6.70 Let a € Ty, Uy, 2 and k be labels of variables with |l;| = j and |lz| = i—1. Then U,f,zk(u;:(a)) =q

U () if US) (a) is defined.

Proof. We proceed by induction on a. The case a = f(ay, ...

consider the other ones.
e a = n. We have two cases to consider:

-n < J Then Ulllzk(ui(n)) =

1,2k(n) = at(lylxk,n) = at(l1k,n) =

,an) holds by the induction hypothesis, so we

Ulsk (n).

- n>j. Then US,,(Ui(n)) = U, (n+i— 1) and we have two further subcases to consider:

< |lilak|. Then since n < |l k| we have U,S,Qk(n +i-1) = at(lhilbk,n+i-1) =

xn+i—1> |l112k| Then since n > |l]k| we have U,‘f,zk(n-}-i - 1) = Tpgi-1—|lilok| = Tn—|l1k| =

*xn+i—-1<
at(lik,n) = U,lk(n)
Uifk(n)-
e a =£(ay,...,an). Then we reason as follows:

US 1,k Ui (a)) §z. (Ufhz,k( .+1(0-1))

Ufm,k( J+1(a1)))

=o €2.(U3 2l k(al) Uzllk(an)) (i.h.)
= &2'.(U; #h k(al){z —z'},.. zllk(a"n){z —2'}) (2’ fresh)
=q £2'.(U; /hk(al) z’llk(aﬂ)) (L.A.18)

&' (U, hk(al){y —z'},.
&y (U, x(a1), -
Ullk(a)

!
R

o Usik(en){y — 2'}) (L.A.18)
yhk(a-n))

The phrase “z’ fresh” should be read, in full rigor, as “z’ does not occur in U7 ,(a;) nor in Uy ,(a:)

forl1 <:i<n".
Lemma A.18 above.

The definition of U$(e) and the hypothesis that U,l k(a) is defined, allows us to apply

Lemma 6.71 Let a,b € Tg, I and k labels of variables with |l| = i1, z a variable such that z ¢ lkUS. Then
Ui (afi — b}) =a US,(a){z « U$(b)}, assuming both sides of the equation are defined.

Proof. The proof is by induction on a.

e a = n. We have three further cases to consider:
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— n < i. Then we reason as follows:

U,‘i(aﬂi —b}) Uﬁ;(n)

at(lk,n)

at(lzk,n)

at(la:k n){z — Uf(b)} (z¢))

Uize(m){z — U (b)}

— n > i. Then since U (a{i — b}) = U (n — 1) we consider two further cases:
* n— 1< |lk|. We reason as follows:

Uin—-1) = at(lk,n—1)

= at(lzk,n)

= at(l:rk n){z — U,f(b)} (z ¢ k)

= USk(n){z — US(b)}

* n— 1> |lk|. We reason as follows:
U(n—1) = Zp_1_p

= Tn-|izk|
= zn ltzk{Z — § c(0)} (z¢38)
= Ugx(n){z — U7 (0)}

— n = 1. Then on one hand we have Uj3(ifi — b}) = U3 (Ui(b)). And on the other US,(G){z —
US(b)} = z{z — US(b)} = US (). Lemma 6.70 concludes this case.

e a = f(ay,...,an). We use the induction hypothesis.

e a =¢(as,...,an). Then we reason as follows:
k(a{{i —b})

=  Ez.(USi(a1fi +1<08}),..., U3 (anfi + 1 —b})) (z¢lkUS by..
(..Def. 6.63)

=a &y.(U, uc(al{{z +1=b}){z < y} Uik(anfi +1 b)) {z —9}) (y fresh)

=a &y.(U, zk(axi{z +10b}),..., ,,uc(an{{t +1<5}) (L.A.18)

= £&y.(Uy ok (a1){z < UZ(b)},.. yl:k(aﬂ){z —UZ(4}) (ih.)

=a &Y. (U 12k} ._y}(al){a: - Uk (b)} ) (zq:k){z —y} (a,,,){a: ~UZ(®}H (see below)

=a &y.(U; 'l:k(al){z —yHz <~ UZ(®)},. ’la:k (an){z' —yHz <~ UZ(®)}) (L.-A.18)

=a &y.(U, 'lzk(al){z - Us(b)}{z - y} ’l::k(a'ﬂ){z —~UZ()H2 —y}) (Subst.L.)

=a §z ( z'lzk(al){z = UZ®)} - ’l:k(aﬂ){z - Uk )

= Ul:l:k (a){z « Uk (5)}
Note that since the RHS of the equation to prove is defined, from the last line above we learn that
2/ ¢ lzkU S and 2’ ¢ FV(US(b)).

“Subst.L.” refers to the substitution lemma for the A-calculus [Bar84], which is also valid for our restricted
notion of substitution and reads as follows: s{z — t}{y —u} = s{y — u}{z — t{y — u}} if z ¢ FV(u)
for distinct variables z and y, and both sides of the equation together with the term t{y + u} are defined.

Lemma 6.72 (U is modular w.r.t valuations) Let us consider a de Bruijn valuation k& = (i, k¢), a de
Bruijn pre-metaterm A, a finite set of variables S, a variable assignment 8, verifying the hypothesis in Def. 6.67,
a label of binder indicators ! and a label of variables k. If the following conditions hold:

1. x is valid,
2. KA is defined,
3. @, is defined over ! and the bound o-metavariables in U;(A),
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4. 0, is injective on the bound o-metavariables,
5. Names(FV (kA)\|0,()k|) C S, and
6. WF (A).

Then, U;;’L(‘)k(KA) =a Ugg,,s,x)(k)Ui1(A).

Intuitively k represents the context information where the reduction is performed (thus k is a label of
variables). We also require Names(FV (kA)\\|0,(1)k|) C S to ensure that U‘f"(,)k(ch) is defined.

Proof. By induction on A. Below we shall use LHS and RHS to denote the left and right hand side
respectively, of the equation to prove.

¢ A = Xj. Since WF(X}) by the Hypothesis 6, we have that h = [ and so LHS = U‘i(,)k(nX,). And on

the other hand
Uts,,s,k) (K) (U1 (X1))

Ue,,s.k)(K)X
Ug. oy (R Xv) ( with X;» € Dom(k))

RHS

Then since « is valid (Hypothesis 1) we may apply Lemma 6.68 to conclude.
e A =S/(@). Since WF(S’(@)) holds by the Hypothesis 6, then j = |l|. We have

LHS = Ug 1, (ks!(@))
US 00 6 (x:(@))
at(k,ki(@))  if 5:(@) < K
T (&) k| otherw. with z,,a)—|x| € S

On the other hand we have

RHS Ugs,,s.k) (K)(UI(SH| (@)))
U(a:,\,s,k) (k)a

0,(a)

We can conclude LHS = RHS because 6, satisfies the requirements of Def. 6.67.
e A =5%(1). Since WF;(57(1)) holds by the Hypothesis 6, j + 1 < |!|. Thus,

Us,,s.k) (k) (Ui(S7(1)))
U,,s.x) (k) (at(l,5 + 1))
0y(at(l,j +1))

LHS = U‘,Su(,)k(nsi(l)) RHS
= Uf,sv(,)k(siu))

at(6,(1),7+ 1)

0y(at(l,j + 1))

e A=¢(A;,...,Ap). Then we reason as follows

RHS U(O.,,S,k) (K)(Ul(f(Al, ey An)))
Us,,s.k) (K)(Ea.(Uai(A1), - - ., Uai(4r))) (where a satisfies 1 <i < n..)
((WFaul(A), fora g l)

£0y(a).(Uco,,5.,5) (K)(Uat(A1)), - - -, Ua,,5,5) (K) (Uat(Ar))))

In order to apply the induction hypothesis we need to verify the hypothesis for A;. The Hypothesis 1 holds
by definition and the Hypothesis 2 is evident since xA is defined. Hypothesis 3 holds since by hypothesis 6,
is defined over ! and the bound o-metavariables in Uj(A4) = £a.(Uat(A1), - .-, Uai(Ar)), hence it is defined
over the bound o-metavariables in Ugy(A;) U al for 1 < 7 < n. We have then to verify the Hypothesis 5,
that is, Names(FV (kA;)\|0,(cl)k|) C S; but this is evident by the Hypothesis 5 for A and the general fact
that FV(&(ay,...,an))\n = FV(a,,...,a,)\n+1. Hypothesis 6 is also true because when translating the
de Bruijn pre-metaterm A we choose o verifying the condition WF4;(A;). Thus applying the induction
hypothesis we have:
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RHS = EB (a) (Ua (al) k(KA ) 9 (atl) k(K'A"‘))

=, &2'.((U .,(al)k(K'Al)){o (cx) - z’} S(US v(al)k(nAn)){O,,(a) —2'}) (2’ does not occur..)

=a £2.(Ug (g W (a)k) {6, (a).-z'}(";‘l) -1 U@, (atyk) (6. (@)} (K4n))
=a &Z.(U, 26, (l)k(K 1)) U/a (1)k(K n

= &(U] OOz }(KAl)r : (20 (t)k){z.-z'}('“An))
=a §£2.(U] 20, (l)k(KAl){z —z } za Ok (kAn){z «2'})
=a £z (Uze (1)k(’5A1) za (,)k(KA.,.))

On the other hand we have

LHS = %(()k("’(g(Alv sy A‘n)))
U, ([)k(E(KAlr-- KAn))

e A= f(Ay,...,A,). Then we have

LHES = 0 (()k(K'(f(AI;---yAn))) RHS
o « k(f(K'Ala . kAR))
F(Ug, e (kdi), ..., Ui(,)k(nA,,))

We can immediately conclude by induction hypothesis.
¢ A = A;[A2]. Then we have
LHS = Uf ([)k(K(AllAﬂ))
Us, (kA1 {1 — KAs})

On the other hand we have

RHS Us.,s.k) (k) (U1(A1[A2]))
Us,,s.x) (k) (Uat (A1) [ — Ui(A2))])

Ues,,s.0) (k) (Ui(f(Ay, ...,
U, s.x) (%) f(Ui(Ayq), .. .,
fU,,s4)(K)UI(A1), ...,

(m Ués:,(a()k(KA"))
(L.A.18)

(6 injective and..)
(..hyp. Def. 6.67)
(z ¢ 0,(Nk U S)
(L.A.18)

€2.(US, (KA1, - US, 1 (kAR)) (2 ¢ 8,()k U S)

An)))
Ul (An))
Uts.,.s,k) (K)Ui(An))

(where « is such that 1 <i < n..)

(. WFau(Az), for a ¢l)

(U;(o.,.s.k)(K)(Uat(Al))){ov(a) — Ug,.s.x) (k) (Ui(A42))}

e Up,ap(kA1){0u(e) — Uéi(,)k(KAz)} (i.h)

Remark that in the last step the inductive hypothesis may be applied by the same reasons we used in the

case of the binder.

Now, since 6, is injective and satisfies the conditions of Def. 6.67, then 6,(a) ¢ S U 6,(l)k and we can

then conclude by applying Lemma 6.71.

The reader should note that the translation of a valid de Bruijn valuation is an admissible named valuation.
Recall that a valuation is admissible for a rewrite rule (G, D) iff the following conditions hold:

e § is safe for (G, D) (Def. 6.20),
e if o and 8 occur in (G, D) with a # 8 then 6, # 6,3, and

o @ verifies the path condition (Def. 6.21) for every t-metavariable in (G, D).

Safeness is considered in Lemma A.21 and Lemma A.23 goes on to consider admissibility. Both results are
developed in the appendix (Section A.3.2). So we move on directly to the main result of this section, i.e. that

the SERS formalism preserves SERSg,-rewriting.



6.4. ..AND BACK 137

Proposition 6.73 (Simulating SERS;,-rewriting via SERS-rewriting) Assume ¢ — bin the SERSy, for-
malism using rewrite rule (L, R). Then U(a) — U(b) in the SERS formalism using rule U(L, R).

Proof. Let us consider the de Bruijn rewrite step ¢ — b using a de Bruijn valuation x« which is valid for
(L, R). Without loss of generality we can suppose that x is only defined on the metavariables of (L, R). And,
let U(L, R) = (G, D). By definition of the rewrite relation we have a de Bruijn context E such that a = E[kL]
and b = E[xR]. We proceed as follows:

e Take S as the set of variables Names(FV (a)) so that US(a) is defined. Note that since FV(b) C FV(a)
holds by Corollary 6.45, US (b) is also defined.

o Take any simple label k of variables such that SNk = 0 and |k| is the binder path number of E .

e Now, to apply Lemma 6.69 we need to show that US (kL) and U (kR) are defined, which follows from the
first and second items. Therefore, US(E[kL]) =o US(E)[UZ (kL)] and U3 (E[kR)) = U3 (E)[US (xR)].

¢ The next step is to apply Lemma 6.72 in order to decompose U (kL) and U (kR). First of all, let us fix
any variable assignment @, such that it verifies the following requirements:

— it is defined over all the o-metavariables in U,(L) and U.(R) and only on these.

— it is injective on the bound o-metavariables,

— 6y(a) ¢ SUk for any bound o-metavariable @ € Dom(f,) (i.e. the variables assigned to bound
o-metavariables in the rewrite rule (U(L), U(R)) are not confused with the free variables in a and b,
that is, with the variables in S, nor with the variables bound in (the label of) the context where the
rewrite-step takes place, that is, the variables in k).

— We also define 8, on the free o-metavariables the rewrite rule (U(L), U(R)) as the hypothesis dictates,
i.e. for all & we define

oo { (@) £ R(@) < Y
v Ty (&)~ (k] otherw. with z, (z)— x| € S

We shall now consider the case of US (kL), the other one being similar. We must thus meet the conditions
of the lemma in order to resolve U (kL). Let I = e.

K is valid by hypothesis.

kL is defined since a = E[kL).

We also have that 6, is defined over € and the bound o-metavariables in U,(L) and U(R),
The assignment 6, is injective over the bound o-metavariables,

Names(FV (xL)\|k|) holds since by definition we set S = Names(FV (a)) (Note that by Corollary 6.45
we have Names(FV (b)) C S),

6. Finally, WF(L) holds since (L, R) is a de Bruijn rewrite rule and hence L and R are well-formed
de Bruijn pre-metaterms.

oLk WD

We may thus apply Lemma 6.72.

Let us summarize our situation:

US(E(kL])) =a UZ(E)[US(xL)) (L.6.69)
=a UZ(E)[Ugq, 55 (K)U(L)] (L.6.72)
= UZ(E)[Up,,s.x) (k)G
and
US(E[kR]) =o US(E)US(kR)| (L.6.69)

U2 (E)[Uts, 5.0 (K)(U(R))] (L.6.72)
UZ(E)[Us,,s,x) (k) D]

o
R

So we now define the named context C &' US(E) and we also define the named valuation §' % Ugs,,s,x)()-

Then we have U(a) = C[0'G] and U(b) = C[¢'D). In order to conclude that U(a) — U(b), by definition of
SERS-rewriting, we are left to verify that 6’ is admissible for (G, D). Now,
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1. We have that Uy, sk)(k) is defined for all the metavariables of G and D since U, sx)(x)(G) and
Uig,,s,k)()(D) are defined.
2. We have that 6, is injective on all the bound o-metavariables in (G, D) by definition of 6,,.
We can then apply Lemma A.23 and conclude that ¢ is admissible for (G, D).

6.5 Preserving Confluence

This section studies the relationship between the translation functions over pre-metaterms and terms introduced
above. This gives rise to two results stating, respectively, that given a metaterm M then U(T'(M)) is v-equivalent
to M (see Figure 6.4), and that given a de Bruijn metaterm A then T(U(A)) is identical to A. These results
are used to show that confluence is preserved when translating an SERS rewrite system into a SERS4s rewrite
system, and are listed below and proved in the appendix (Section A.3.3):

e Let M € PMT such that WF(M). Then U(T(M)) =, M (Corollary A.26).
e Let t € 7. Then U(T(t)) =a t (Corollary A.28).

o Let A€ PMT . If WF(A) then T(U(A)) = A (Corollary A.30).

e Let a € Ty,. Then T(U(a)) = a (Corollary A.32).

named metaterms de Bruijn metaterms

Figure 6.4: v-equivalence

Lemma 6.74 Let (G,D) and (G, D’) be SERS rewrite rules such that G =, G’ and D =, D’. Then
_)(G,D)=_)(G',D’)-

Proof. Without loss of generality we prove that if s — (g p) t then s —(g,p) t. Thus let us assume that
there is an admissible valuation @ for (G, D) and a context C such that s =, C[0G] and C[8D] =, t.

The set of bound o-metavariables occurring in (G’, D’) may be divided into two (not necessarily disjoint)
sets B, and B;. In B; we find those bound o-metavariables which occur in the parameter path of some t-
metavariable in (G’, D’), and in B, the other bound variables occurring in (G’, D’). The o-metavariables in B,
are not renamed in any way by the v-equivalence relation (Def. 6.11). We define the valuation 6’ = (6;,6,) as
follows:

o.x € o,x
0a ¥ 6,0 ifach
6,5 T 6,8

In order to fully define # we must consider the value it assigns to those o-metavariables in B, which are not in
B,. For these we simply require & to assign any variables such that: the resulting valuation is safe for (G', D'),
and ), is injective on the bound o-metavariables.

Observe the following:
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1. MVar(G’,D’) C Dom(¢'),
2. @' is by construction an admissible valuation for (G, D’), and
3. § =4 C[6G) =, C|##G’] and t =, C[6D] =, C(¢D’].

Hence s —(¢',pn L. ‘ .

Corollary 6.76 Let (G, D) be an SERS rewrite rule. Then the rewrite relations generated by (G, D) and
U(T(G, D)) are identical.

Proof. Use Corollary A.26, Lemma 6.74 and the fact that the translations preserve well-formedness.

Theorem 6.76 If R is a confiuent SERS then T(R) is a confluent SERS ;.

Proof. Suppose @ —»1(g) band a —» (g c for some de Bruijn terms q, b, c. Applying the translation mapping
U(e) and using Proposition 6.73 we may obtain the diagram (b) of Figure 6.5. The reductions denoted by the
dotted lines are obtained by Corollary 6.75 and the confluence of R.

Now applying the translation mapping T'(e) and using Proposition 6.62 we obtain the diagram (c) of Fig-
ure 6.5. Finally, Corollary A.32 and Corollary A.30 yield the desired diagram illustrated as diagram (a) in
Figure 6.5.

a Ul@ T(U(a))
T(‘R/ \:‘(R) U(T('R.)‘)/ \r:('r(n)) T(U(T(‘R.;V Viua(n»)
b f U(b) U(e) T(U(®)) T(U(c))
TRy T(R)
; ¥ U(T(R)) < U(T(R)) TUTRN N g TUEERY)
(s) s s
(2) (b) (c)

Figure 6.5: Diagrams for preservation of confluence

Theorem 8.77 If R is a confluent SERSy; then U(R) is a confluent SERS.

Proof. Suppose s — y(r) t1 and s —y(g) t2 for some terms s,¢;,¢2. Applying the translation mapping T'(e)
and using Proposition 6.62 we may obtain the diagram (b) of Figure 6.6. The reductions denoted by the dotted
lines are obtained by the confluence of R. Note also that Corollary A.30 has been used.

Now applying the translation mapping U(e) and using Proposition 6.73 we obtain the diagram (c) of Fig-
ure 6.6. Finally, Corollary A.28 and the definition of reduction Def. 6.23 yield the desired diagram illustrated
as diagram (a) in Figure 6.6.

Note that in fact the proofs of Theorem 6.76 and Theorem 6.77 are applicable to the more general diamond
property (Def. 2.2(1)) hence we obtain preservation of this property in both directions.
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Chapter 7

From Higher-Order to First-Order
Rewriting

As observed in Chapter 6 substitution may not be dismissed as simple replacement (also known as grafting
in some circles) as in first-order theories. Thus many researchers became interested in the formalization of
higher-order substitution by explicit substitutions, so that higher-order systems/formalisms could be expressible
in first-order systems/formalisms: the notion of variable binding is dropped because substitution becomes
replacement. A well-known example of the combination of de Bruijn indices and explicit substitutions is the
formulation of different first-order calculi for the A-calculus [ACCL91, BBLRD96, KR95, DG01]. Other examples
are the translations of higher-order unification to first-order unification modulo [DHKG0], higher-order logic to
first-order logic modulo [DHKO1], higher-order theorem proving to first-order theorem proving modulo [DHK98],
etc.

Now the case of the A-calculus is interesting but at the same time not fully representative of the problems
we are faced with when encoding a higher-order system into a first-order setting. For in this particular case it
is enough to take care of a-conversion and promote metalevel substitution to the object-level. Indeed, replacing
the usual variables names by de Bruijn indices and introducing explicit substitutions suffices to yield a first-
order rewrite system, as the above mentioned examples illustrate. However, this is not always the case for
an arbitrary higher-order rewrite system. In other words, eliminating a-conversion and introducing explicit
substitutions is not enough to yield an equivalent full first-order system (full in the sense of first-order rewriting
modulo an empty equational theory). The reason is that in higher-order rewriting! the LHS of a rewrite rule is
a higher-order pattern [Nip91, Oos94). So we must somehow also encode higher-order pattern matching when
encoding in the first-order framework. The fact that introducing de Bruijn indices plus explicit substitutions
suffices for the A-calculus is saying that for this particular rewrite system higher-order matching is doing nothing
more than what first-order matching could do. We stress, once again, that this is not always the case. A simple
example of such a fact, which we shall consider in this chapter, is the 7745-rewrite rule:

’\(aPP(Xan 1)) —na Xe

Note that X, on the right-hand side of the rule, which does not appear in any binding context, is related to
the occurrence of X, on the left-hand side, which appears inside a binding context. This may be seen as the
reason why the 7745-rule has received so much attention [Rio93, Har92, Bri95] since syntactic matching no longer
suffices®. That is to say, ‘occurs check’ is a feature of higher-order pattern matching which first-order matching
cannot cope with. In an example 7qy-rewrite step the reader may verify that the term A(app(3,1)) rewrites to
2. In a first-order setting with explicit substitution, we have the alternative formulation:

Mapp(X[1],1)) = X

1That is, higher-order rewriting in the SERS higher-order rewrite formalism, though in an arbitrary higher-order rewrite
formalism (such as HRS) the LHS need not be a (higher-order) pattern.

2When represented in the HRS formalism [Nip91] the LHS of 7 is a higher-order pattern, moreover it is a non-fully-extended
pattern (there are free variables not applied to all bound variables above it). The problems introduced by 77 in this case are due to
the latter fact. However, this is not the only problematic situation. It may be the case that the LHS of a rule is a fully-extended
pattern yet introducing de Bruijn indices and promoting substitution to the object-level does not suffice to obtain a full first-order
system. An example of the latter phenomenon is the rule f(Az.A\y.F(z,y), Az.A\y.F(y,z)) — c. See Section 7.4.3.
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However, in order for the term X (7] to match the subterm 3 we need £-matching, that is, matching modulo an

equational theory £. For an appropriate substitution calculus £ we would need to solve the equation 3 ;5 X1
Another, perhaps less evident, example is given by a commutation rule C such as:

imply(3a.VB.X,VB.3c.X) — true

which expresses that the formula appearing as the first argument of the imply function symbol implies the
one in the second argument. The naive translation to first-order, namely imply(3(V(X)),V(3(X))) — true, is
evidently not correct, so that we take its encoding in the de Bruijn higher-order formalism SERS4 and then
translate it to first-order via the conversion presented in this chapter obtaining Cy,:

imply(3(V(X)), V(X [2 - 1- 1%]))) — true

Now, the rule Cy, has exactly the same intended meaning as the original higher-order rule C: in order for
a term to be an instance of this rule the term ¢’ instantiated for the rightmost X must be the one instantiated
for the leftmost X, say ¢, except that all 1-level and 2-level indices in ¢ shall be interchanged in order to obtain
t’. Of course, The following rewrite rule Cjo also does the job:

mply(3(V(X([2- 1- 17))), Y(3(X))) — true

However, note that both Cy, and Cf, induce the same rewrite relation on terms.

The goal of this chapter is to provide a conversion algorithm for encoding higher-order rewrite systems
in first-order rewriting modulo an equational theory £. This is interesting from a theoretical point of view
because the expressive power of higher and first-order formalisms may be compared. However, another more
practical issue arises, that of the possibility of transferring results developed in the first-order framework to
the higher-order one. In Chapter 8 we shall transfer the Standardization Theorem from first-order rewriting to
higher-order rewriting. Techniques concerning confluence, termination, completion, evaluation strategies, etc.
should be looked at. Moreover, this is interesting for two further reasons: on one hand it is still not fully clear
how to transfer techniques such as dependency pairs [AG00], semantic labelling [Zan95] or completion [BD88]
to the higher-order framework, and on the other hand, termination techniques such as RPO for higher-order
systems [JR99] turn out to be much more complicated than their respective first-order versions [Der82, KL80].
Also, we obtain a characterization of the class of SERS;; (including the A-calculus) for which a translation
to a full (£ = 0) first-order rewrite system exists. We shall argue that it is this class of systems, dubbed the
essentially first-order SERS4, that are better suited for the above mentioned transfer of properties.

To the best of our knowledge there are, at least, two formalisms, B.Pagano’s XRS [Pag98| and M-O.Stehr’s
CINNI [Ste00], which study encoding of higher-order rewrite formalisms as first-order rewriting using explicit
substitutions. The formalism XRS, which is a first-order formalism, is based on de Bruijn indices and is
presented as a generalization of the first-order Aog-calculus [HL89] to higher-order rewriting and not as a
first-order formulation of higher-order rewriting. Consequently, as we have seen in Chapter 6, many well-known
higher-order rewriting systems cannot be expressed in such a formalism. In the case of CINN/ a similar situation
arises, no relation to established HORS in the literature is presented. Also, the fact that the definition of the
higher-order rewriting formalism used is not fully clear does not allow us to consider transferring results from the
first-order framework. Chapter 6 has provided a presentation of higher-order rewriting based on de Bruijn indices
(SERS4) which does away with a-conversion and has established precise links between the ERS formalism and
SERS 4. Here we take the next step, and encode all SERS,, as first-order rewrite systems with the aid of explicit
substitutions. Moreover, we do not attach to the encoding any particular substitution calculus. Instead, we
have chosen to work with an abstract formulation of substitution calculi, as done for example in [Kes96, Kes00]
to deal with confluence proofs of A-calculi with explicit substitutions. As a consequence, the method we propose
can be put to work in the presence of different calculi of explicit substitution such as ¢ [ACCL91], o4 [HL89],
v [BBLRDY6], f [Kes96), d [Kes96], s [KR95], x [LRD9S].

Finally, we mention the work of van Oostrom and van Raamsdonk [OR93]. Although it is common to
call rewriting in the presence of binders and substitution higher-order rewriting (practice which we have also
followed), in full precision it is only over terms that we abstract. However, in higher-order rewrite formalisms
such as HRS we may abstract over functions or functions that take functions as arguments, and so on. In [OR93]
it is shown that CRS and HRS have the same “matching power” when attention is restricted to pattern HRS.
However, HRS have more “rewriting power” than CRS, in other words one HRS-rewrite step needs (possibly)
many CRS-rewrite steps in order to be simulated. This is because substitution is computed in CRS by means of
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a subclass of B-derivations called developments (cf. Def. 8.37) whereas HRS have full S-rewriting at its disposal
for computing substitutions.

Structure of the chapter

The chapter begins by taking a closer look at i-metavariables (Def. 6.26). In particular we explain why the
present chapter deals with SERSg4, without i-metavariables. We trust the reader is convinced of the convenience
of such a decision. We then introduce the first-order rewriting framework with explicit substitutions EzERS
which shall constitute the destination formalism of our Conversion Procedure. This requires defining Basic
Substitution Calculi, a macro-based presentation of calculi of explicit substitutions adapted to the present
setting from [Kes96, Kes00]. This general presentation shall allow us the freedom of choosing from a wide range
of calculi of explicit substitution when converting a higher-order rewrite system to first-order.

Section 7.3 introduces the Conversion Procedure, heart of this chapter, and illustrates its use with some
examples. This procedure takes a SERS4 R and produces a first-order modulo rewrite system fo(R)w, where
W is some Basic Calculus of Explicit Substitutions (such as for example ¢). It is the Conversion Procedure’s
responsability to compute index ajustments in order correctly encode higher-order pattern matching in the
first-order setting. The rewrite rules produced may or may not have occurrences of the explicit substitution
operator on the LHSs. If this is not the case then syntactic matching suffices. Otherwise, as in the 7745 example,
we need matching modulo the induced equational theory of the basic substitution calculus W. The former
systems are dubbed essentially first-order higher-order rewrite systems.

This is followed by a study of the properties of this procedure: independence of pivot selection (a techni-
callity concerning the Conversion Procedure), the Simulation Proposition and the Projection Proposition. The
Simulation Proposition states that fo(R)yy is able to simulate R-rewriting. Conversely, the Projection Propo-
sition states that if a —o(R),, b then W(a) -z W(b), in fact we shall see that one fo(R)w-rewrite step may
be encoded as one parallel R-rewrite step.

We conclude by presenting the definition of essentially first-order higher-order rewrite systems, the class of
higher-order rewrite systems that lend themselves to a full first-order conversion (rewrite system modulo an
empty equational theory). Chapter 8 shall transfer the Standardization Theorem for this class of systems.

7.1 On Index-Metavariables

In this chapter we shall deal with the SERS4, formalism without i-metavariables. The main reason for excluding
them is that they appear to be nothing more than a ‘hack’ in order to represent calculi such as Ax and, in general,
do not enjoy good properties. In order to delve a little deeper into this issue we shall make informal use of the
notions of descendant and residual, however Chapter 8 presents full formal definitions. These notions shall not
be used beyond the present section in this chapter.

The idea behind orthogonalily in term rewriting is that the contraction of a redex does not destroy other
redexes but instead leaves a number of their ‘residuals’ (for a precise definition see Section 8.2 in Chapter 8).
This is referred to as the Residual Property. Having this in mind the following is a possible definition of
orthogonality for SERSs (see [GKK00, KOvR93]):

Definition 7.1 (SERSg-Orthogonality) Let (X,R) be a SERSy, such that R = {(L;, R;) | i € I'}.
1. R is non-overlapping if the following holds:

o Let L; = C[X}|]...[X[*] where C is the pattern of L; (Def. 6.31) and X,’;, are all the metavariables

in L;. If the redex x(C[X}]...[X[']) contains an instance of L; for some j # i, then this instance
must be already contained in one of the n(Xl’;).

e Likewise if k(C[X}\]...[X[]) properly contains an instance of L;.
2. R is left-linear if all L; are linear (Def. 6.30).
3. R is orthogonal if it is non-overlapping and left-linear.

These are what one might consider as the ‘natural’ syntactic conditions for an SERSy to be considered
orthogonal. They are a straightforward extension of orthogonality for first-order rewriting [K1092). Consider
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the following SERSy, S consisting of two rewrite rules: S = {app(AX,,Y.) —p, Xo[Y:], f(&) — s ¢} where
app, f, c are function symbols and ) is a binder symbol.

Intuitively, S should by all means be regarded as an orthogonal system. One is relieved to know that indeed
S satisfies orthogonality. Yet to one’s surprise S is not confluent! Indeed,app(A(f(1)),b) reduces to f(b) by the
Bap-rule and to ¢ by the f-rule followed by an application of the Bg-rule.

The problem stems in that S does not satisfy the Residual Property, a fundamental property of orthogonal
systerns, which in the case of first-order systems (and ERS and CRS) is implied by SERS4;-orthogonality:

Definition 7.2 (Residual Property) Let R be a SERSg; and let (L, R) be a rewrite rule in R. The Residual
Property for R reads: the descendants of an (L, R)-redex u in a under contraction of any other non-overlapping
redex v in a, are (L, R)-redexes.

In [KOOO1a], Z.Khasidashvili et al define Context Sensitive ERS (CCERS). A CCERS is a ERS where
term formation may be restricted (such as when considering typed terms in the A-calculus) and the rewrite
relation may be restricted to operate in certain contexts (possibly all in which case it is said to be context-
free), and where the valid assignments x may be restricted to some relevant subclass. In order to account
for orthogonality in CCERS they consider a different definition of orthogonality which explicitly requires the
Residual Property to be fulfilled. The reason for bringing this issue to the reader’s attention is that one may
consider S as a CCERS (more precisely a context-free conditional ERS, term formation and contexts are not
restricted but valid valuations are) where for the f-rule we may replace @ by a t-metavariable Z, and define the
set of admissible assignments as those that assign only indices to this metavariable.

Definition 7.3 (CCERS-Orthogonality) A CCERS is orthogonal if
1. every LHS is linear,
2. redex patterns do not overlap, and
3. R satisfies the Residual Property>.

Under this new definition S is no longer orthogonal: the term f(b) (descendant of f(1) in app(A(f(1)),b))
is not an admissible redex since the valuation which assigns the term b to the metavariable Z, does not belong
to the subclass of allowed valuations. This means that the local conditions of left-linearity and non-overlapping
do not ensure that S behaves as expected (that is, is orthogonal in the sense of the Residual Property).

In full precision, S suffers a problem we might call ‘lack of sort generality’. Let the sort I be the subset of
de Bruijn terms that are de Bruijn indices and T be sort of de Bruijn terms. Then I is a subsort of T. Consider
once again the term a = app(A(f(1)),b). When we apply the f-rule to a we are claiming that 1 is of sort I
(for these are the only valid values that the metavariable Z, may be instantiated with). Yet when we apply the
Bap-rule to a we replace 1 with b: hence a term of sort I has been ‘transformed’ to a term of sort T. This is
perfectly valid since I is a subsort of T, however the f-rule no longer copes with terms of sort T.

As regards literature on higher-order rewriting where the presence of ‘variable’ metavariables in rewrite
rules are allowed the work by P.A.Melli¢s in his PhD thesis [Mel96] should be mentioned. Melli¢s defines CRS
with names where names are just a new sort of terms (See Remark 4.14 in [00s97]). All in all we have the
following sorts in the CRS with names framework: variables, names, term metavariables, name metavariables,
terms and metaterms. Now name metavariables may only be substituted by names. This allows the LHSs of
rewrite rules to contain free name metavariables and guarantees that the above mentioned problem does not
arise. Also, this may be generalized to n-sorts. Note that although the LHSSs of rules may contain free name
metavariables, free variable metavariables are not permitted in the formalism since this would introduce the
difficulties mentioned above. Returning to the SERSy; framework we see that this sort-scheme present in the
CRS with names formalism is not straightforwardly applicable as long as indices may be bound and potentially
substituted by terms.

So we have, at least, three approaches to this problem:

1. Approach a la Melli¢s: introduce a new sort of variables which, either may be bound by binders but may
only be substituted by other variables of the same sort (and not by terms), or may not be bound at all,
in which case they behave as constants. The problem with these solutions is that they do not address the
original motivation for introducing i-metavariables: representing indices which are free in the context of

3Formulated as Def. 7.2 but for CCERS.
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where X rangesover V, f over [y, £ over I}, and o over I';. The arguments of o are assumed to respect the sorts
prescribed in its substitution declaration (i.e. d; is a term or substitution in compliance with its substitution
declaration), and function and binder symbols are assumed to respect their arities too.

Letters a, b, ¢, ... and s, s;, . .. are used for terms and substitutions, respectively. Letters o,0’, ... are used for
all objects of the term algebra without making distinction of sorts. The e[e] operator is called the substitution
operator. Binder symbols and substitution operators are considered as having binding power. We shall use a[s]"
to abbreviate a[s].. . [s] (n-times). Terms without occurrences of the substitution operator (resp. objects in V)
are called pure (resp. ground) terms. Similarly for contexts. A contezt is a ground term with one (and only
one) occurrence of a distinguished term variable called a ‘hole’ (and denoted O). Letters E, E;, ... are used
for contexts. The notion of binder path number is defined for pure contexts exactly as in the case of de Bruijn
contexts (Def. 6.32). Note that contexts have no variables (except O).

The formalism of EzERS that we are going to use in order to encode higher-order rewriting consists of two
sets of rewrite rules, a set of proper rewrite rules, and a set of substitution rules. Let us define these two concepts
formally.

Definition 7.6 (Substitution macros) Let [, be a substitution signature. The following symbols not in-
cluded in T, are called substitution macros: cons : (TS), lift : (S), id : (¢) and shift’ : (¢) for j > 1. We shall
abbreviate shift’ by shift. Also, if j > O then lift?(s) stands for s if j = 0 and for kft(lift’~!(s)) otherwise.
Furthermore, if 7 > 1 then cons(a;, ..., a;, s) stands for cons(a,, ... cons(a;, 3)).

Definition 7.7 (Term rewrite and equational systems) Let I be an EzERS signature. An eguation is a
pair of terms L = R over I" such that L and R have the same sort and a term rewrite rule is a pair of terms
(L, R) over I, such that:

1. L and R have the same sort,

2. the head symbol of L is a function, binder or substitution symbol, and

3. the set of variables of L includes those of R.

An equational (resp. term rewrite) system is a set of equations (resp. term rewrite rules).

As usual, we shall need some mechanism for instantiating rewrite rules.

Definition 7.8 (Assignment) Let p be a (partial) function mapping variables in V to terms. We define an
assignment p as the unique extension of p over the set 7 such that:

A(n) = on

A(X) = p(X)

P(als]) €' 5a)(p(s)]
A(far,...,an)) ¥ f(B(ar),...,Blan))
(e, ...,an) E E@@),...,Blan))
Bo(dr,....dn)) € o(p(d),...,P(dn))

We shall often abbreviate 7 as p. Assignments are required in order to define the rewrite relation induced
by a rewrite system.

Definition 7.9 (Rewriting and Equality) Let o and o’ be two ground terms of sort T or S. Given a rewrite
system R, we say that o rewrites to o’ in one step, denoted 0 —x o, iff 0 = E[pL] and o’ = E[pR) for some
assignment p, some context E and some rewrite rule (L, R) in R. We shall use -»g to denote the reflexive
transitive closure of the one-step rewrite relation.

Given an equational system £, we say that o equals o' modulo £ in one step, denoted o =} ¢, iff o = E|[pL]
and o’ = E|[pR] for some assignment p, some context E and some equation L = R in £. We use =¢ to denote
the reflexive symmetric transitive closure of =}, and say that o equals o’ modulo £ if 0 =¢ o'.
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Definition 7.10 (Substitution calculus) A substitution calculus over an EzERS signature T consists of a
set W of first-order term rewrite rules, and an interpretation of each substitution macro as some combination
of substitution symbols from I'; of corresponding signature. Def. 7.11 shall require certain properties for these
interpretations to be considered meaningful.

An example of a substitution calculus is o [ACCL91] with cons(t,s) =t - s, lift(s) = 1 (so 1), id = id and
shift’ =T o...(1 o 1), where 1 appears j times. In [Kes96, Kes00] the reader will find full detailed proofs of this
fact (that o is a substitution calculus), and examples of further calculi of explicit substitutions that are also
substitution calculi.

The next step is to add further requirements on substitution calculi in order for them to deserve that name.
These conditions are assembled in the definition of a Basic Substitution Calculus.

Definition 7.11 (Basic substitution calculus) A substitution calculus W over T is said to be basic if the
following conditions are satisfied:

1. W is complete (strongly normalizing and confluent) over the ground terms in 7. We use W(a) to indicate
the unique W-normal form of a.

2. W-normal forms of ground terms are pure terms.

3. For each f €[y and £ € [

W(f(a'ly---ra'n)) = f(W(a.l),,W(a,,))
W((ar,...,an)) = EW(a1),...,W(an))

4. Rules for propagating substitutions over function and binder symbols are contained in W, for each f € Iy
and € € 4
(Funcy) f(X',...,X")[s] — f(X[s),...,X"[s])
(Bindg) €(XY,....X™s] — &X*[lfi(s)),..., X"[lift(s)))

. For every substitution s, 1[lift(s)] =w 1.

. For every substitution s and every m > 0, m + 1[lift(s)] =y m[s)[shift].

5

6

7. For every term ¢ and substitution s we have 1[cons(a, s)] = a.

8. For every term a, substitution s, m > 0 we have m + 1[cons(a, s)] =y m[s].
9

. For every m,j > 1 we have m[shift’] =y m + j.
10. For every ground term a we have a[id] = a.

The first four conditions may be seen as primitive conditions that W should satisfy in order to be called a
substitution calculus. The remaining conditions describe the behaviour expected of the substitution macros.

Example 7.12 The o [ACCL91), o4 [HL89] and ¢ [Muii97a] calculi are basic substitution calculi where the
set of function and binder symbols are {app} and {\}, respectively.

The reader may have noted that the macro-based presentation of substitution calculi makes use of parallel
substitutions (since cons(e, ) has substitution declaration TS). Nevertheless, the results presented in this work
may be achieved via a macro-based presentation using a simpler set of substitutions (such as for example the
one used in (Kes00]), where scons(e) (the ‘s’ in scons is for ‘simple’) has substitution declaration T and the
macro shift’ is only defined for j = 1. Indeed, the expression a[cons(bs, - . ., bn, shift’)] could be denoted by the
expression

a[lift"™ (shift)) [scons(by [shift]"~1)). .. [scons(by))

Definition 7.13 (EzERS and FEzERS) Let I be an EzERS signature, W a basic substitution calculus over

I’ and R a set of term rewrite rules. If each rule of R has sort T then Ry def (T, R, W) is called an Explicit

Expression Reduction System (EzERS). If, in addition, the LHS of each rule in R contains no occurrences of
the substitution operator e[e] then Ry is called a Fully Explicit Expression Reduction System (FEzERS).

4In contrast to the previous item we use — instead of =y.
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Since rewriting in SERSy, only takes place on terms, and first-order term rewrite systems will be used to
simulate higher-order rewriting, all the rules of a term rewrite system R are assumed to have sort T. However,
rewrite rules of W may have any sort (i.e. T or S).

Example 7.14 Consider the signature " formed by Iy = {app}, It = {\} and I'; any substitution signature.
Let W be a basic substitution calculus over I'. Then for R : {app(A\X,Y) —g, X[cons(Y,id)]} we have that
Rw is an FEZERS, and for R’ : RU {A(app(X [shift],1)) —q4 X}, R}y is an EzERS.

Rewriting in an EzERS Ryy is first-order rewriting in R modulo W-equality. In contrast, rewriting in a
FEzERS Ry is just first-order rewriting in R U W.

Definition 7.15 (EzERS and FEzERS-rewriting) Let Ry be an EzERS, R’y a FEzERS and o, 0’ ground
terms of sort S or T. We say that o Ryy-reduces or rewrites to o/, written o —g,, o, iff 0 =g/ 0o (ie.
0 =y 01 —x 0} =w 0'); and o R}, -reduces or rewrites to o, iff o —r:Lw 0.

We apologize for the abuse of notation: 0 —x ) o intuitively suggests that it is equivalence classes of terms
that are rewritten however, as defined above, this is not the case. Instead, it is terms that are rewritten.

Example 7.16 Fix W to be the g-calculus and consider the FEzERS R, of Example 7.14. Then we have
1[app(M1,¢) - id] —r, 1[1[c-4d]- id]. Also, A(app(8,1)) —=;, 2, where R} is that of Example 7.14. This follows
from observing that A(app(3,1)) =, Mapp(2[1],1)) —na 2.

7.2.1 Properties of Basic Substitution Calculi

This subsection takes a look at properties enjoyed by basic substitution calculi and introduces a condition
called the Scheme [Kes00]. Basic substitution calculi satisfying the scheme ease inductive reasoning when
proving properties over them without compromising the genericity achieved by the macro-based presentation.

Definition 7.17 (The Scheme) We say that a basic substitution calculus W obeys the scheme iff for every
index m and every substitution symbol o € I'; of arity g one of the following two conditions hold:

1. There exists a de Bruijn index n, positive numbers i3, ...,%, (r > 0) and substitutions u,,...,ux (k > 0)
such that
o 1<1i;,...,4, < ¢ and all the i;’s are distinct
o for all 03,...,0, we have: m[o(o01,...,00)] =w nl0i,]...[0:.][21] ... [uk]
2. There exists an index ¢ (1 < 4 < ¢) such that for all 0,,...,0, we have: m[o(0;,...,04)] =w $:
We assume these equations to be well-typed: whenever the first case holds, then o;,, ..., 0;, are substitutions,

whenever the second case holds, o; is of sort T.

Example 7.18 Example of calculi satisfying the scheme are o, o4, v, f and d [Kes96, Kes00].

We now take a quick look at some properties of arbitrary basic substitution calculi (that is, of basic substi-
tution calculi that may or may not satisfy the scheme). On a first reading the reader may wish to skim over
this section and proceed to the main section of this chapter, namely Section 7.3.

Lemma 7.19 (Behavior of Substitutions in Basic Substitution Calculi) Let W be a basic substitution
calculus and m > 1.

_— R m — n[s|(shift]* ifm >n
1. For all n > 0 and substitution s in S: m[lift"(s)] =w { m ifm<n
2. For all n > m > 1 and all terms a,, ..., a,: m[cons(ay,...,an, )] =w am
3. For all pure terms a,b and m > 1: af{m « b} =y a[lift™ ' (cons(b, id))].

The first and third items of Lemma 7.19 are proved in [Kes00], the second item follows from the definition
of a basic substitution calculus. For the proof of the following lemma the reader is referred to [Kes00).
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Lemma 7.20 Let W be a basic substitution calculus, ¢ a pure term and s a term of sort S. Then the following
holds: W(a/[s|[shift]) = W(a[shift][lift(s)]).

Corollary 7.21 Let W be a basic substitution calculus, @ a pure term and s a term of sort S. For every
m > n > 0 we have a[shift]*[lift™ (s)] =w a[lift™ " (s)][shift]".

Lemma 7.22 Let W be a basic substitution calculus, e a pure term, and b a term of sort T. For every n > 0,
allift™ (shift))[ift™ (cons (b, id))] = @

Proof. The proof of this fact uses the following result:

If W is a basic substitution calculus, ¢ is a term of sort T and s a term of sort S. Then for every m > 1 and
n>0

m—n-—1[s][shift]* ifm>n+1
m|lift" (cons(c, 8))] =w { m ifm<n+1
c[shift]™ ifm=n+1

Lemma 7.23 (Substitution commutation) Let W be a basic substitution calculus, ¢ a pure term, b any
term, s a term of sort S. Then for every m > n > 0 we have:

a[lift™ (cons (b, id)))[ft™ (s)) =w allift™** (s))[lift™ (cons(b[lft™ ~"(s)), id)))-
Proof. By induction on the structure of a.

e a = j. Then we consider three further cases:

—-j3>n+1.
W(a[lift™ (cons(b, id))][lift™ (s)])
=r. 7.100) W(i — n[cons(b, id)|[shift]"[lift™ (s)])
= W(j = n — 1[shift]*[lift™ (s)])
=721 W( —n = 1{Lf™"(s)][shift]")
and
W(allift™* (s))[lift" (cons(bllift™ ™ (s)}, id))))
= W(j — n — 1[lft™ " (s)][shift] [shift]™ [lift" (cons (b[lift™ ™™ (s)), id))))
= W( — n — 1{lift™ " (s)][shift] [cons(b[lft™ " (s)], id)}[shift]™)
=L 7.22 W(j - n — 1{lift™ " (s)][id][shift]")
=pes 7.1100) W —n — 1{lft™ " (s))[shift]™)
—j=n+1
W(j[lift" (cons(b, id))]({lift™ (s)])
=L 71001) W(1[cons(b,id)][shift]" [lift™ (s)])
= W(b[shift]*[Lift™ (s)])
= W(b[lft™ " (s)][shift]™)
and

W™ () [fE" (cons (B[lAE™ ™ (5)), id))])
WL{lifE™="(s)) [shift] (ift™ (cons(b[lft™ ™ (5)), id)))
W(L[shift]" (ift™ (cons(b[lif™ " (s)), id))))

W(n + 1[lift" (cons (b[lift™ " (s)], id))])
W(1[cons (b[1ift™ " (s)}, id)){shift]")

W(b[Eft™"(s)] [shift]")

— j <n+1. Then we have:

1 T I T |

W(j(lift™ (cons(b, id))](lift™ (s)))
=L. 7.19(1) W(j[liﬂm(s)])
=r.7190) J
=r. 7.1001) WU(lft" (cons(bllift™ " (s)], id))])
=1 7100y W™ ()] [lift™ (cons (b[lift™ " (s)), id))])

e o = f(a;,...,an) or a=E&(ay,...,an). Use the induction hypothesis.
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7.3 From Higher-Order to First-Order Rewriting

We now present the Conversion Procedure, an algorithm to translate any higher-order rewrite system in the
formalism SERS4; to a first-order EzERS. The Conversion Procedure is somewhat involved since several condi-
tions, mainly related to the labels of metavariables, must be met in order for a valuation to be admitted as valid
(Def. 6.41). Consider for instance the ngp-rewrite rule A(app(Xa,1)) — X.. The condition on valuations in
SERSg in order to participate in the induced rewrite relation on terms is that they be valid, as we have seen in
Chapter 6. Validity shall ensure, in this case, that the metavariable X, is not instantiated to the index 1. The
Conversion Procedure shall have to guarantee that this holds in a first-order setting. The idea is to replace all
occurrences of metavariables X; by a first-order variable X followed by an appropriate indez-adjusting explicit
substitution which computes valid valuations. Thus, the output would be: A(app(X|[shift],1)) — X. However
this is just a simple case, and in the general situation, incorporating shift macros shall not suffice. A witness
to this fact is the commutation of binders rule in the introduction to this chapter.
We first give the conversion rules of the translation, then we prove its properties in Section 7.4.

7.3.1 The Conversion Procedure

Definition 7.24 (Binding allowance) Let A be a metaterm and {X,,,..., X, } the set of all the metavari-
ables with name X occurring in A. Then, the binding allowance of X in A, noted Bas(X), is the set ﬂ?=1 4.
Likewise, we define the binding allowance of X in a rule (L, R), written Ba(y g)(X), as the set ;. l; where
{Xy,..., X1} is the set of all metavariables with the name X in L and R.

Example 7.25 Let A= f(E(Xa): g(E(A(XBa))v E(’\(Xorr))))v then BaA(X) = {a}

Definition 7.26 (Shifting index) Let A be a metaterm, X, a metavariable occurring in A, and 7 a position
in l. The shifting index determined by X, at position i, denoted Sh(X}, %), is defined as

Sh(X;,i) % |{j]at(l,j) ¢ Baa(X),j€1l.i~1}

Thus Sh(X,?) is just the total number of binder indicators in ! at positions 1..i — 1 that do not belong to
Ba,(X). Remark that Sh(X;, 1) is always 0.

Example 7.27 If A = f(£§(Xa), 9(6(M(Xpa)), E(MXay)))) then Sh(X4,1) = Sh(Xay,2) =0, Sh(Xga,2) = 1.

Definition 7.28 (Pivot) Let (L, R) be a SERS-rewrite rule and {X,,,..., X;,} be the set of all X-based
metavariables in (L, R). If Bacz, r)(X) # 0, then X;; for some j € 1..n is called an (X -based) pivot if

1. |l;] £ |k for all ¢ € 1..n, and
2. Xy; € L whenever possible.

A pivot set for a rewrite rule (L, R) is a set of pivot metavariables, one for each name X in L such that
Ba(z, r)(X) # 0. This notion extends to a set of rewrite rules as expected.

Note that Def. 7.28 admits the existence of more than one X-based pivot metavariable. A pivot set for
(L, R) fixes a metavariable for each metavariable name having a non-empty binding allowance.

Example 7.29 Both metavariables X,g and Xg, can be chosen as X-based pivot in the rewrite rule
Implies(I(V(Xap)), V(3(Xpa))) — true

In the rewrite rule f(Ye, g(M&(Xap)), ME(Xpa))) — €(Xa, Ya) the metavariable X, is the only possible X-based
pivot, also, Y is the only Y-based pivot.

Let us recall some notation from Def. 6.2. If | = ;... ay, is 2 label of binder indicators then at(l,7) = o,

for i € 1..n. Also, pos(a,l) = o; where i is the smallest number in 1..n such that & = o4, and is undefined
otherwise.

Definition 7.30 (Conversion of metavariables) Consider a SERSqy-rewrite rule (L, R) and a pivot set for
(L, R). We consider the following cases for every metavariable name X occurring in L:
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1. Ba¢z py(X) = 0. Then convert each metavariable X, in (L, R) to the term X [shift!'l], and those metavari-
ables X; with ! = ¢ simply to X.

This shall allow, for example, the rewrite rule f(A(epp(X4,1), X)) = X. to be converted to the first-order
rewrite rule f(A(app(X[shift], 1), X)) — X.

2. Bag r)(X) = {B1,...,Bm} with m > 0. Let X, be the pivot metavariable for X given by the hypothesis.
We convert all occurrences of a metavariable Xj in (L, R) to the term X [cons(b,,. .., by, shift? )] where

i |k] + [2\Bag, ry(X)|. The b;’s shall depend on whether X is a pivot metavariable or not, as described
below. As an optimization and in the particular case that the resulting term X([cons(b,, ..., by, shift?)] is
of the form X{cons(1,...,]!, shift“')], then we simply convert X to X.

The substitution cons(bs, ..., by, shift’ ) is called the indez-adjusting substitution corresponding to X and
each b; is defined as follows:

(a) if X is the pivot (hence l = k), then

by = i if at(l, 1) € Bay, g)(X)
I + 1 +Sh(Xy,3) if at(l,3) & Bag, gy (X)

(b) if Xx is not the pivot then

b — pos(Bh, k) if i = pos(Bh, l) for some By € Ba(y, gy(X)
|k] + 1+ Sh(X;,7) otherwise

Recall that at(l,7) returns the symbol in label ! at position 7 with 1 < ¢ < ||, and pos(a, ) returns the
position of a in the label ! assuming it is in l.

Note that for an index-adjusting substitution cons(by,...,by, shift’) each b; is a distinct de Bruijn index
and less than or equal to j. Substitutions of this form, in the particular case where we fix the basic substitution
calculus to o, have been called pattern substitutions in [DHKP98], where unification of higher-order patterns
via explicit substitutions is studied.

Now that we know how to convert metavariables we can address the conversion of rewrite rules. Before
proceeding we recall that the name of a metavariable X; is X. The names of the free metavariables of a
metaterm M is written NFMVar(M) (Def. 6.35).

Definition 7.31 (Conversion of rewrite rules) Let (L, R) be a SERSg-rewrite rule and let P be a pivot

set for (L, R). The conversion of the rewrite rule (L, R) via P, denoted Cp(L, R), is defined as Cp(L,R) = ef
(C(L le)(L),C([' R)(R)) where C(L R)(4) is defined by induction on A, where NFMVar(A) C NFMVar(L), as:

Cg"R)(n) © n
X skt  ifBar)(X)=0andl#e
X[cons(bl, ... ,b|[|, shz'ft’)] if Bagy, R)(.X) # 0 and
c-P(x,) «f cons(by, ..., by, shift?) #
cons(l,...,|l| shift!'h)
X otherwise
CEP(f(Ay,..., An)) B FCEP(A),...,.c0 P (An))
“ B (E(Ay,. .., An)) E P (A),....c5P(4n)
“ B (A1[A2]) E ) (A1) [cons(cﬁf"”(A», id))

The term X [cons(by,. .., by, shift’)] on the RHS of the second clause is the index-adjusting substitution corn-
puted in Def. 7.30.

It should be noted how the de Bruijn metasubstitution operator efe] is converted to the term substitution
operator efe].

Example 7.32 Below we present some examples of conversion of rules. We have fixed W to be the o-calculus.
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SERS g, -rewrite rule Piwot selected Converted rule
Aapp(Xa, 1)) = X. Aapp(X[1],1)) —» X

MA(Xap)) = MM Xpa)) Xap AAX) = AAMX[2-1-(To D))
FOMA(Xap)), MA(XBa))) = MX4) FOAX[T o 1) AAMX[T 0 1)) = MX(T])
PPN Xar Ze) =gy XalZe] XayZe on LHS | app(AX,2Z) — X|(Z - id]

The dash in the ‘pivot selected’ column for the first and third rows indicates that the binding allowance of X
in the respective rule is the empty set and hence no pivot is required.

Note that if the SERS g-rewrite rule (L, R) which is input to the Conversion Procedure is such that for every
name X in (L, R) there is a label ! with all metavariables in (L, R) of the form X;, then all X; are replaced
simply by X. This is the case of B4, of Example 7.32.

Example 7.33 (Foldl) Let us represent the usual foldl-recursion scheme over lists as defined for example in
Haskell. Consider the EzERS signature containing I'y = {nil, const®, foldl} and I', = {€}. Then the foldl-rewrite
system:

SOldU(E(E(Xap)), Yo, nil) - v

foldl(§(€(Xap)), Ye, const(Ze, We)) —  foldl(§(§(Xap)), XaplYallZe), We)

is converted to

foldl(§(£(X)), Y, nil) %
foldl(€(£(X)), Y, const(Z,W)) —  foldl(€(£(X)), X[Y[1] - id}(Z - id], W)

Example 7.34 (Natural numbers recursor) Consider the EzERS signature containing the function sym-
bols I'y = {zero, suc, rec} and binder symbols ', = {£}. Then the rec-rewrite system:

rec({(E(Xap)),lQ,zero) - Y.
rec(£(£(Xap)), Yo suc(Ze)) —  XaplZpllrec(§(6(Xap)), Ye, Ze)]

is converted to
rec(§(£(X)), Y, zero) - Y

rec(§(£(X)), Y, suc(2)) —  X[Z[1] - id][rec(£(§(X)), Y, Z) - id]

Also, observe that if we replace our cons(e,e) macro by a scons(e) of substitution declaration T as defined
in [Kes96, Kes00] then the last clause of Def. 7.31 converts a metaterm of the form A[B] into A[scons(B)],
yielding first-order systems based on substitution calculi, such as v, which do not implement parallel substitution.

The system resulting from the Conversion Procedure is coded as an EzERS, a framework for defining first-
order rewrite systems where W-matching is used. Moreover, if it is possible, an EzERS may further be coded as
a FEIERS (Def. 7.13) where reduction is defined on first-order terms and matching is just syntactic first-order
matching, obtaining a full first-order system.

Definition 7.35 (Conversion Procedure) Let I’ be an EzERS signature, let R be a SERSy;, and let W be
a substitution calculus over I'. The Conversion Procedure consists in selecting a pivot set for each rewrite rule

in R and converting all its rewrite rules as dictated by Def. 7.31. The resulting set of rewrite rules is written
fo(R). The EzERS fo(R)y is called a first order-version of R.

In what follows we shall assume given some fixed basic substitution calculus W. Thus, given a SERSy R
we shall speak of the first-order version of R.

Of course, we must also consider pivot selection. Assume given some rewrite rule (L, R) and different pivot
sets P and Q for this rule. It is clear that Cp(L, R) and Cq(L, R) shall not be identical.

SAlthough cons is the usual abbreviation for the list constructor, we shall use const so as not to cause confusion with the
cons-macro.
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Example 7.36 Consider the following binder-commutation rule
imply(3(V(Xpa)), ¥(3(Xap))) —c true

If we select X, as the X-based pivot we obtain the following conversion of C: imply(3(V(X)),V(3(X[2-1 -
id]))) —¢, true. However, X,p may also be selected as an X-based pivot metavariable. In this case, the
resulting converted rewrite rule shall be different: imply(3(V(X[2 - 1 - id])), Y(3(X))) =g, true

Nevertheless, the rewrite relation generated by both of these converted rewrite rules is identical.

Proposition 7.37 (Pivot Selection) Let (L, R) be 2 SERS ,-rewrite rule and let P and Q be different pivot
sets for this rule. Then the rewrite relation generated by both Cp(L, R) and Cq(L, R) are identical.

Proposition 7.37 is important, for it makes clear that the Conversion Procedure is not biased by the selection
of pivot sets (as regards the induced rewrite relation). Thus only now may we speak of the first-order version of
a SERS4, R. The proof of this proposition is rather technical and is relegated to Section A.4.1 of the appendix.

7.4 Properties of the Conversion Procedure

This section studies the connection between higher-order rewriting and first-order rewriting modulo. Sec-
tion 7.4.1 first shows that the Simulation Proposition holds: any higher-order rewrite step may be simulated or
implemented by first-order rewriting. Section 7.4.2 considers the Projection Proposition, namely, that rewrite
steps in the first-order version of a higher-order system R can be projected in R. Finally, we give in Sec-
tion 7.4.3 a syntactical characterization of higher-order rewrite systems that can be translated into first-order
rewrite systems modulo an empty theory. We shall see that, for example, the A-calculus is covered by this
characterization.

7.4.1 The Simulation Proposition

In order to simulate higher-order rewriting in a first-order framework we have to deal with the conversion of
valid valuations into assignments. Recall that valuations are the devices through which SERSg-rewrite rules
are instantiated in order to obtain the induced rewrite relation. Likewise, assignments are used for instantiating
first-order rewrite rules, i.e. EzERSrewrite rules. For converting valuations to assignments two families of
index-adjustment operations are required, decrementors and adjusters.

Consider a metavariable X; in a SERS -rewrite rule (L, R), and suppose we are given a valid de Bruijn
valuation k. Let X[cons(by, ..., by, shift’)] be the conversion of the metavariable X; (Def. 7.30) where k is the
label of the X-based pivot metavariable. We shall seek to define an assignment p such that the value that p
assigns to X satisfies the following equation:

p(X)[cons(bl, . blkl- Sh’iftj)] =w K.(X[)

The term assigned to p(X) shall be obtained from k(X;). This result is stated as Lemma 7.45.

Definition 7.38 (Decrementors) For every i,j > 0 and de Bruijn ground term a we define DI (a) as follows:

j def n fnli+yj
Di(n) = {n—j if n>i+j
. def - -
Dg(f(al .- @n)) - f(D;:_,(a'l) - -D.?(f_ln))
Di(E(ar.-.an)) & €Dl 1(a1)... Dl (en)
Lemma 7.39 Consider a SERSgs-rewrite rule (L, R), metavariables X;, Xx € (L, R), and a valuation « valid
for (L, R). For all ¢ > 0, if
1. kX; = Dja] for some pure context D having binder path number ,

2. Value'(l,a) = Value'(k,b), and
3. the binding allowance of X in (L, R) is the empty set (i.e. Bagz, r)(X) =0),
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then D} (a) = DI¥ (3).
Proof. By induction on e.

e a = n. We consider the following cases:

- n<i+|l|. Then Dyl(a,) =n. If n < i then since Value’(l,a) = n = Value*(k,b), we have b = n and
the result holds. . .
Otherwise, if i < n < i+|l| then since by Hypothesis 2 we have Value*(l,n) = at(l,n—i) = Value'*(k,b)
we must have b = m with i < m < i+ |k| and at(l,n — ) = at(k,m — 7). But by Hypothesis 3 there
must be some X in (L, R) such that at(l,n —i) € I/, and hence Value(l',kXy) # Value(l,kX;) by
Def. 6.40 (since at(l,n —3) occurs in Value(l, kX;) but at(l,n — %) does not occur in Value(l’, kXr)),
contradicting the assumption that x is valid.

- n>i+|l|. Then Dl”(a.) =n - |l|. Also, since Value*(l,a) = zn_i_; = Value'(k,b), we have b=m
with m > |k| + i and n — || — i = m — |k| — i. Then D}*'(b) = m — |k| and the result holds.

e a = f(ay,...,an). Then Dyl(a) =f(Dy'(a1),...,Dl”(a.n)).
Now by Hypothesis 2 we have that b = f(by,...,b,) with Valuc"(l, a;) = Value®(k, bj) forall 1 <j<n.

Then the induction hypothesis yields Dy'(aj) = Dy"(bj) for j € 1..n and we may conclude the case by
Def. 7.38.

e a=E£(ay,...,an). Then Dyl(a) = E(Dﬂl(al), e ,Dﬂ_l(aﬂ)).

Now by Hypothesis 2 we have that b= £(by, . .., bn) with Value'*!(l,a;) = Value*t!(k,b;) forall 1 < j <
n. Then the induction hypothesis concludes the case.

Lemma 7.40 Consider a SERSg-rewrite rule (L, R), metavariables X;, X\ € (L, R) and a valuation « valid
for (L, R). For all > 0, if

1. kX; = D|a] for some pure context D having binder path number i,

2. Value'(l, a) = Value®(k, b), and

3. the binding allowance of X in (L, R) is the empty set (i.e. Bay, g)(X) = 0),
then DI (a)[lift* (shift™)) =y b.

Proof. By induction on a.

e a = n. Then we have three further cases to consider:

1. n < i. Then 'Dyl (n)[lifti(shift|k|)] = n[lift'(shift*')] =L! n. Now by Hypothesis 2 we have
Value'(l,n) = n = Value*(k,b) and therefore b = n and we are done.

2. i < n <i+|ll. Then since by Hypothesis 2 we have Value'(l,n) = at(l,n — i) = Value'(k,b) we
must have b = m withi < m < i+ |k| and at(l,n — i) = at(k,m —i). But by Hypothesis 3 there
must be some X in (L, R) such that at(l,n — i) ¢ l’, and hence Value(l',kX]) # Value(l,xX;) by
Def. 6.40 (since at(l,n — i) occurs in Value(l, xX;) but at(l,n — i) does not occur in Value(l', kX)),
contradicting the assumption that x is valid.

3. n>1i+|ll. Then

DY (n) [tift* (shift™™))
= (n — L) [Eft* (shaft!™)]
= (n — 1] — 3)[shift™ ] shift)"
=y’ MO (= W] = i+ k] hafe]
=w n = U] + [k

The last equality follows from % applications of Def. 7.11(9).
Now by Hypothesis 2 we have Valuei(l,n) = Tpoiy = Value®(k,b) and therefore b = m with
m >i+|k|and n—7— [l| = m —i — |k|. From this it follows that n — |I| = m — |k| and we are done.
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¢ a = f(ay,...,an). Then D! (a)[lift'(shiftX))] =y (DI (ar)[lift*(shift™!)],.. ., DM (an)[lift*(shift'™))) by
condition 2 of Def. 7.10.

Now by Hypothesis 2 we have that b = f(b,,...,b,) with Valuei(l.aj) = Value*(k, bj)forall1<j < n

Then the induction hypothesis yields Dll'(aj)[lifti(shift'k')] =w b; for j € 1..n and we may conclude the
case.

e a =§(ay,...,an). Then by condition 2 of Def. 7.10 we have that
DY (o) [tift* (shift™)] =y €(DLLy (ar)[lift** (shift™)), ..., DLL, (am) 1ift** (shift*)))

Now by Hypothesis 2 we have that b= &(by, ..., bs) with Value**t!(l, a;) = Value**! (k, bj)foralll <5 <
n. Then the induction hypothesis concludes the case.

Definition 7.41 (Adjusters) Let X; be a pivot metavariable in a SERSg-rewrite rule (L,R), i > 1, a a
de Bruijn ground term and let cons(b,, ..., by, shift“""“\a‘(‘--“)(x)i) be the index-adjusting substitution corre-
sponding to X;. Then A!(a) is defined as follows:

n ifn<i

n if at(l,n —4) € Bag, p)(X) and 0 < n — i < |l
Al(n) 4 ! undefined if at(l,n ~1) € BaL, p)(X) and 0 < n—i < |I]

pos(n —1i,b; .. .b|1|) +i ifjll<n-i< I+ 12\ Ba(L.R)(X)I

n — [l \ Ba(, p)(X)| if n—1> || + !\ Bag,ry(X)I

Af (a1 .. .an)) E f(A(ar). .. Al(an))
AE(ar ... an)) E (AL 1 (a1) ... AL, (en)

Lemma 7.42 (Well-definedness of Adjusters) Consider a SERSg;-rewrite rule (L, R) and some pivot set
P for (L,R). Let X; € (L, R) be the X-based pivot metavariable for some X € NFMVar(L), and let x be a
valuation valid for (L, R). For all i > 0, if

1. kX, = FEla] for some pure context E with 7 the binding path number of E, and
2. the binding allowance of X in (L, R) is not empty (i.e. Ba(y g)(X) # 0),
then Al(a) is defined.

Proof. By induction on a. We shall only consider the base case, the others follow by using the induction
hypothesis. Suppose a = n. We have four further cases to consider:

1. n < 4. Then there is no problem.

2. i < n <i+|l|. The only case of conflict is if at(l,n — i) ¢ Ba(y g)(X). Then there must be a X;/ in
L such that at(l,n — i) ¢ I'. Consequently Value(l,kX;) # Value(l',kX,) since at(l,n — i) occurs in
Value(l, kX;) but at(l,n — ) does not occur in Value(!’, kX;-). This contradicts the assumption that « is
valid for (L, R).

3. ll| < n—i < || +[1\Bay,r(X)|. Then we must verify that pos(n — 4,b;...b);) is defined. Now
let 7 = |l\ Bacz,g)(X)| then by Def. 7.30 there are subindices j; < ... < jr such that b;, = [I| +1 +
Sh(X;, 41), -, bj. = |I| + 1+ Sh(X, 5;). By noting that 1 + Sh(X, j,) = r we are done.

4. n—i> |l| + |l \ Bagz,r)(X)|. This case presents no problems.

Lemma 7.43 Consider a SERS ,-rewrite rule (L, R) and some pivot set P for (L, R). Let X; € (L, R) be the
X-based pivot metavariable for some X € NFMVar(L), let Xix € (L, R), and let « be a valuation valid for
(L, R). For all i > 0, if
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1. kX; = D|a] for some pure context D having binder path number equal to 3,
2. Value'(l, a) = Value'(k,b), and
3. The binding allowance of X in (L, R) is not empty (i.e. Ba(z, gy(X) # 0),

then .A.‘i(a)[lifti(s)] =w b where s = cons(cy,...,cy, shiftlkl""“\a‘(‘--’”(x)') is the index-adjusting substitution
corresponding to Xj.

Proof. Let j = |k| + |1\ Ba(z,r)(X)|. We proceed by induction on a.
e a = n. Then we have four further cases to consider:
1. n < 4. Then Al(n)[lift (cons(cy, . .., ¢y, shift?))] = n[lift* (cons(cy, . . ., ¢y, shift?))] =5! n.
Now by Hypothesis 2 we have Value*(l,n) = n = Value'(k, b) and therefore b = n and we are done.

2. i <n <i+ |l|. Here we consider the two cases:
— at(l,n — i) € Ba( g)(X). Then

Al (n)[lift*(cons(ca, .. ., e}, shift?)))
= nllift’(cons(cy, . .., ey, shift?))]

=)l,.’",1 (n - i)[m(cla e O 8h’1’ﬂ])][3h1ﬂ]‘
=w Cn_i[Sh'iftP
=W Cn—it+i

So we are left to verify that ¢,,_; +i = 0.

Now by Hypothesis 2 we have Value!(l,n) = at(l,n—i) = Value*(k,b) and therefore b = m with

i<m<|k|+iand at(l,n — i) = at(k,m —i).

We consider where ¢,,—; might ‘come from’.

(a) n—1i = pos(By,l) with B, € Bagy p)(X) and c,_; = pos(Bx, k). But then by Hypothesis 2
and the fact that k is a simple label we must have ¢,_; = m — %, which concludes the case.

(b) There is no By, € Ba(y r)(X) with n — i = pos(B,l). This contradicts our assumption that
at(l,n — 1) € Bagy, p)(X).

Note that in the particular case that X; = X; then¢,—; =n -7 and we have n —i +i =n.

- at(l,n—1) ¢ Ba(;, p)(X). By Well-definedness of Adjusters (Lemma 7.42) this case is not possible.

3l <n-i<L|l|+ |l\Ba(L'R)(X)|. Then

Ag(n)[liﬂz(cons(ch e Oy Sh"'.ﬂj))] i
= (pos(n —i,d;...dy) +13)[lift"(cons(ca, . . ., ey, shift’)))
=w pos(n—1i,di...dy)[cons(cs,.. ., cp, shift?))[shift]}
=w ¢ [shift]’
=w & +1i

where r = pos(n —7,d; .. .dy). Note that Lemma 7.42 is used here.
So we are left to verify that ¢, + ¢ =b.
We must consider where ¢, might ‘come from”:

(a) r = pos(Bh,l) with By € Ba(y, p)(X) and ¢, = pos(Br, k). Then clearly, at(l,7) € Ba(z,g)(X).
However, since 7 = pos(n — i,d;...dy) this means that d, = n —i. Also, recall that we are
currently considering the case dr = n —4 > [l|. But then by Def. 7.30 at(l,7) ¢ Bag gr)(X)
contradicting our knowledge of the opposite fact.

(b) ¢ = |k} + 1 +Sh(Xy,7).

Now note that it is not possible for d, = r (and hence at(l,r) € Ba(, g)(X)) since then we may
reason as in item 3a. Sod, = n —1i = || + 1 + Sh(X;,7) (¥). Recall that we are left to verify
that |k| + 1 + Sh(Xy,r) +i=0b. .

Now by Hypothesis 2 we have Value'(l,n) = q_;—y = Value*(k,b) and therefore b = m with
m>i+ |kl and n—i—|l| =m —1— |k|. From this it follows that n — |l| = m — |k|. So now we
must see that |k| + 1 + Sh(X;,7) + i = n — |l| + |k|, or simply 1 + Sh(X,,r) + i = n — |l|. This
follows from (*).
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Note that in the particular case where X = X, then ¢, =n —iand we have n —i 4+ i = n.
4. n—i> |l| + [L\ Ba,r)(X)|. Then

Al (n)[lift* (cons(cy, . . . s ey shift?))] .
(n — |1\ Bagz, p) (X)) [lift* (cons(ea, . . ., eyy, shift?))]
w  (n—|l\Bay p)(X)| —i)[cons(ca,.. ., ey, shift?)][shift]*
w n-— K‘\ B[aIEIL'R)(X)I —i— [t + |k| + |t \ Bagy, gy (X)| +4
n— [l +

Note that in the particular case that X; = X, we have k = [ and the result holds directly. Otherwise,
by Hypothesis 2 we have Value'(l,n) = z,_;_jy = Value*(k,b) and therefore b = m with m > i + ||
and n —i — |l| = m — i — |k|. From this it follows that n — |l| = m — |k| and we may conclude the
case.

e a = f(a1,...,a,). Then

Aj(a) lift* (cons(ey, ..., ey, shift’))] . -
=w f(A(a1)[lift (cons(cy, ..., cu), shift?))], . . ., Ak(an ) [lift* (cons(cy, . . ., ¢y, shift?))])

Now by Hypothesis 2 we have that b = f(b;,...,b,) with Valuei(l,aj) = Value'(k,b;) for all 1 < j < n.
Then the induction hypothesis concludes the case.
e a =§&(ay,...,an). Then

A(a) [lz'ft"(com;(ch -y epp, shift?))] ) ) :
=w §(A§+l(a1)[h'ft'“(cons(c1, ooy ey shift?))], . .. ,A§+1(a.n)[lift‘+1(cons(c1, TR 2))))

Now by Hypothesis 2 we have that b = £(bs, . .., bn) with Value™*'(l,a;) = Value'*(k, bj) foralll < j <
n. Then the induction hypothesis concludes the case.

We know how to convert SERSg,-rewrite rules. In order to prove our simulation result we must convert
SERSg,-valuations. This makes use of decrementors and adjusters.

Definition 7.44 (Valuation conversion) Let (L, R) be a SERSg,-rewrite rule, & a valid valuation for (L, R)
and P a pivot set for (L, R). The conversion of k via P is defined as the assignment p where for each X €
NFMVar(L):

e Case Bagy py(X) = 0. Then p(X) def Dg'(nX,) where X, is any metavariable from L. Note that

Lemma 7.39 guarantees that this is a correct definition (take D = D).

e Case Ba(y, g)(X) = {B1,...,Bn} with n > 0. Then we define p(X) def Ab(kX;) where X is the X-based
pivot metavariable as dictated by P.

Lemma 7.45 Let (L, R) be a SERSq-rewrite rule, k a valid valuation for (L, R) and p the conversion of « via P
for some pivot set P for (L, R). If L = C|A] for some metacontext C and metaterm A, then ﬁ(C},L'R)(A)) =y KA.
Likewise, if R = C|A] then 5(C"® (4)) =w x(4).

Proof. Both items are proved by induction on A.
e A=n. Then LHS = p(n) = n = kn = RHS.

e A = X,. Note that since X is a subterm of a metaterm (i.e. a well-formed pre-metaterm) k is a simple
label. According to Def. 7.31 we have three subcases to consider:
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1. Ba(L.R)(X) = (0. Then

LHS = B(X [shift'¥])
= B(X)[shift™]
=Def. 740 DY (kX1)[shift!¥]]
={&.) 7.40 K.Xk

where X, is any metavariable from L.

2. Bagz, g)(X) # 0 and cons(by, .. .,b|,|,shiftj) # cons(l, ..., I, shift!') where X, is the X-based pivot
metavariable as dictated by P. Then

LHS

(X [cons(by, ..., by, shift”)))
ﬁ(X)[cons(bl, vy blll: 3h’lﬂ'7)] )
A{)(nX,)[cons(bl, ey b|,|, shzft*’)]

{"\" 7.43 K.Xk

3. Bagy g)(X) # @ and cons(b,, ..., by, shift’) = cons(l, ..., |1, shift"!!) where X, is the X-based pivot
metavariable as dictated by P. Then

LHS = A(X)
= Af)(K.X[)
=1L”V 7.43 KXk

Note that the third equality holds by the fact that cons(1,...,|!|, shift“') behaves as the identity
substitution.

o A= f(Ay,...,Ay). Then LHS = f(B(CEP(A))), ..., BCEP(A4,))) =i f(kAy, ..., kA,) = RHS.
o A=£(Ay,...,Ay). Then LHS = £((CE™ (A1), ..., PICE"P (4,))) =ib- £(kAy, ..., kAn) = RHS.

e A = A [A2]. This case is considered for the second item only since the de Bruijn metasubstitution
operator may not occur on the LHS of a SERSy,-rewrite rule.

LHS B(Cs P (A1[A4a]))

A(CE (41))cons(B(CH " (42)), id))
ih (kA;)[cons(kAs, id)]
L.7193) kA {1 — kdy}

k(A1[A42])

RHS

-

Proposition 7.46 (Simulation Proposition) Let R be a SERS,, and let fo(R)w be its first-order version.
Suppose ¢ —¢ b then

1. if fo(R)w is an EzERS then a — g (r)/w b.
2. if fo(R)w is a FEzERS then a —,(r) © -»w b where o denotes relation composition.

Proof. For the first item, suppose @ —g b. Then there must be a SERSy;-rewrite rule (L,R) € R, a
valuation « valid for (L, R) and a pure context E such that ¢ = E[kL] and b = E[xR]. Let (L', R’) =Cp(L, R)
be the converted version of rule (L, R) via some pivot set P for (L, R). Let p be the conversion of k via P
(Def. 7.44). By Lemma 7.45 we have:

1. (L") =w &L and
2. p(R") =w kR.
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Thus from p(L’) =y kL and B(R’) =y kR we have E[p(L’)] =w E[xL] and E[p(R’')] =w E|kR), re-
spectively. Finally, we have on the one hand a = E[xL] =w E[p(L’)], so a =w E[p(L’)], and on the other,
b= El<R) =w E[p(R')}, s0 b=y E[p(R)].

As for the second item note that if fo(R)y is a FEzERS then L’ is a pure term. Also, by definition, &

is a pure assignment. Thus p(L’) = kL. And p(R’) -»w kR since kR is a pure term. Therefore we have
a = E[kL} = E[p(L")] = ,r) E[F(R')] »w E[xR}.

7.4.2 The Projection Proposition

We now wish to prove that derivations in an EzERS or FEzERS fo(R)w may be projected into derivations
in R. This ensures in some sense that we did not add meaningless computations in the translated first-order
system. As a consequence we prove that fo(R)w is conservative over R (Def. 7.57). Further properties of the
projected derivations shall be studied in Chapter 8, where standard derivations shall be considered.

We shall first begin by showing that if a =3, r) b then for any term s of sort S we have W(a[s]) =3(.,r)
W(b[s]). The meaning of @ =1, r) b shall be made precise shortly, however on an intuitive level it means that
a rewrites to b by applying a number of parallel (L, R)-rewrite steps.

Remark 7.47 Let A be a pre-metaterm and suppose WF(A). Then any metavariable occurring in A must
be of the form X for some label I. Moreover lk is a simple label.

Lemma 7.48 Let A be a pre-metaterm and suppose WF(A). Consider a valuation k with MVar(A) C

Dom(k). Then W((kA)[lift'*!(s)]) = txA where ¢ is a valuation defined as: x(Xux) et W((eXu)[lft"™* (s)])
for all I such that X;x occurs in A.

Proof. By induction on A.

e A = n. Note that since WFi(n) we have n < |k|. Then LHS = W((kn)[lift"*!(s)]) = W(n[lift'*!(s)]) =
n=un= RHS.

e A = X;. Then since WF(Xx/) we have k = k' and LHS = W((sX))[lift™*!(s)]) = wxA.
e A= f(Ay,...,A,). Then

LHS =Pef- TG s(W((kA1)[Hft™H (3)]), ..., W((kAn) [Bft™ (3)]))

=w. f(l«]chly e ,L:An)
- flAy, ..., 0Ay)
= RHS

where «x = |Ji_, tk. Note that if X, € Dom(v;’;) N DOTTL(L{) for j,j' € 1.n with j # j/ then J(Xp) =
jl
4 (Xp).

e A=¢(Ay,...,An). By hypothesis there is an a such that WFax(4;) for all ¢ € 1..n. Then

LHS =Pef 7160 gW((xAy)[lft™ (s)]), ..., W((kdn) lift ™11 ()]))
=w E(LLkAl, ey l'gkAn)
= g(bakAl, cey LakAn)

where toxr = Ui_; tax- Note that if X, € Dom(sl,) N Dom(vZ:k) for j,j' € 1.n with j # j' then
e (Xp) = e (Xp)-

By the well-formedness predicate we know that since any metavariable in A; has the form X,qx for some
label p we have tx(A;) = tard; for all i € 1..n. More precisely, in the definition of tak let p be a label

such that X,qx is a metavariable in A; for some : € 1..n, then in the definition of ¢, we take p’ = pa and
obtain tx(Xpx) = tak(Xpak). Hence we may continue as follows:

E(takAl, - - - takAn) = E(kd1, . .., tAn) = A
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e A = A;[A:z]. By hypothesis there is an o such that WF ,x(A;), and WF(A42). Then

LHS = W((x(A1[A2]) 1t ()])

= W((kA1{1 — rA})[lft¥!(s)])

=p.7103) W((kA;[cons(kAa, id)])[lift™* (s)])

=p7m WA (s)][cons((kA2)[lift ¥ (s)], id)])
WW((Ay) [lft ¥ (s)]) [cons (W((A2) [lift™ (5))), id)))
=L.7.19(3) W((":Al)[ﬁ.ﬂlklﬂ(s)])ﬁl - W((KAZ)[Iiﬂlkl(-’)])B
=ih. tak (A1) 1 — w(A2)}
Lk(A1)H1 — Lk(AZ)B
we(Ar[A42])

The before last equality may be justified as in the previous case.

We now verify that the valuation . from Lemma 7.48 (k = €) is a valid valuation assuming & is, and hence
can be used in rewriting terms. More precisely,

Lemma 7.49 Let & be a valid valuation for a SERSg-rewrite rule (L, R) and let s be any substitution. Then
¢ is also valid for (L, R), where u(X;) € W((kX))[lift"!(s)]) for all X; in (L, R).

Proof. This follows from the following more general result by considering the case ¢ = 0. Let a,b
be pure terms. Then for all i > 0, Value*(ki,a) = Value(ks,b) implies Value'(ky, W(a[lift'**!*i(s)])) =
Value® (ko, W(b[lift'*2! 7 (s)))).

The latter is proved by induction on a. We shall consider the case where a is an index for the other cases
follow by using the induction hypothesis. Let a = n, we consider three further subcases:

e n <i. Then b =rn and Value'(ky, W(a[lift™!*¥(s)])) = n = Value*(kz, W(b[lift'*?'*(5)])). The latter
holds by Lemma 7.19(1), and therefore, the result holds.

ei < n < |kl +7 Then b = m with i < m < |ko] + ¢ and at(ky,n — i) = at(ks,m — 7). We
have W(a[lz’ft““'“(s)]).: n and Value® (kz, W(b[lift"*?*¥(s)])) = m, by Lemma 7.19(1). Thus, we have
Value® (ky, W(allift™1*%(s)])) = at(k;,n — 1) = at(ks, m — i) = Value® (ko, W(b[lift'*2!**(s)])).

e n > |k;| +¢. Then b =m with m > |ka| +7 and z,_|k,|—i = Zm—|k,|—i- Then we reason as follows:

Win - [kl — lslshife 1)
WW(n — [k — i(s)[shift] 41+

Woallift™*1*4(s)))

[

And likewise,
Wl 1+ (8)]) = W(m — |ko| — i[s][shift] k21+1)
W(W(m — |ks| — is])[shift]!¥2!+%)

Now W(n — |ki| —i[s]) = W(m — |ka| — i[s]), since n — |k1| —i = m — |ka| — 3.

Observation: for any pure term a, Value'(k1,a) = Value*(kz,b) implies Value®(ky, W(a[shift]/*11+%)) =
Value® (kz, W(b[shift]|¥21+%)). This may be verified by induction on a and using condition 9 of the definition
of a Basic Substitution Calculus (Def. 7.11).

By the observation we may conclude the case.
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Definition 7.50 (Parallel SERS ,-rewriting) Let R be a SERSy; and let a and b be de Bruijn terms. We
say that a R-rewrites in parallel to b iff a =3r b, where the latter relation is defined as:

x valid for (L,R) € R
P (refl) (red)
kL 3% KR
a;3pb; foralll<i<n (clos-1) a;3rb; foralll<i<n (clos-b)
clos- clos-
f(all"')a"l)jnf(bli"')bﬂ) E(a'l)"wa'ﬂ)=‘R£(b1|-”)bﬂ)

Note that - C=3r C—+R, and that 3 is reflexive. In the case of R = {(L, R)} we shall abbreviate a = b
as a 3(L,R) b.

Lemma 7.51 Let a,b be pure terms and let (L, R) be a SERSap-rewrite rule. If ¢ =3y, Rr) b then for any term
s of sort S we have W(a[s]) =(L,r) W(b]s])-

Proof. By induction on the derivation of a =3, r) b

e refl. Then the result holds trivially.

e red. Let G = pattern(L) (Def. 6.31). Then a = G[K.Xli:]x;‘, "[KXli:lX,‘“ where Xfl‘,...,X:: are all the
metavariables in L, and « is a valid valuation for (L, R). Then

Wals]) = GIW((kX;})[lift " (s)))] X (X2l ()] i

So define ¢t X ;: ef W((xX, fj’)[h’ft“"'(s)]). Then since ¢ is valid for (L, R) by Lemma 7.49, an application of
red allows us to conclude: W(als]) 3. r) t(R) =L. 7.48(x=¢c) W((kR)[s]) = W(b][s]).

e clos-f. Then by the induction hypothesis we have W(a;[s]) =1, r) W(bi[s]) for all 1 < i < n. We con-
clu(de( using cblo)T—S W(f(a1,...,an)[s]) = fW(a1ls]), ..., W(enls])) Sw,r) FW(bar]s]), ..., W(bn[s])) =
W f bl,..., n)|3])-

e clos-b. As in the case clos-f.

Note that in particular Lemma 7.51 holds when a —(; g) b since the one-step rewrite relation is included in
the parallel rewrite relation.

Lemma 7.52 (Projecting assignments) Let (L, R) be a SERS-rewrite rule, (L', R') = Cp(L, R) for some
pivot set P for (L, R), let p be an assignment for (L, R').

Define the valuation x as: def (L,R)
kXx = WE(Cp ™ (Xk)))

If L = C|[A] for some metacontext C and metaterm A, then W(ﬁ(cg"a) (A))) = kA. Likewise, if R = C|A] then
WE(CE(A)) = k4.

Proof. Both items are proved by induction on A.
e A =n. Then LHS = W(p(n)) =n = kn = RHS.
e A= Xy. Then LHS = W(B(CL"™ (X1))) =hypothesis KXk
e A= f(A1,...,As). Then
LHS =P 71O fw(p(cy P (A1), ..., WECE ™ (4n)) =i f(kAr,... kAn) = RHS
e A=¢€(Ay,...,An). Then

LHS =P T1®) gW(p(C P (A1), .., WE(CE ™ (4n))) =3% €(kAs, ..., kAn) = RHS
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e A = A,[A2]. This case is considered for the second item only since the de Bruijn metasubstitution
operator may not occur on the LHS of a SERSas-rewrite rule.

LHS = WY (41142])))
= W(BCS ™ (41))[cons(BIC P (A2)), id)))
=Pel- 71O WW(ECE (A1) [cons(W(R(CE" ™ (42)). id)])

=i W(kA;[cons(kA2, id)))
=r. 7203) kA1{l — kA2}

= k(A1[A2])

= RHS

In order to use the valuation of Lemma 7.52 we need to prove that it is valid. This is the issue of Lemma 7.53
and Corollary 7.54.

Lemma 7.53 Consider a SERSgy-rewrite rule (L, R), metavariables Xx,, Xk, occurring in (L, R) and a desig-
nated pivot metavariable X;. Let a be any pure term. Then for all i > 0 we have:

Value® (ky, W(allift*(s1)])) = Value® (kz, W(allift(s2)]))

where 81 = cons(by, ..., by, shz'ft'k‘H“\B‘('--“)(x)') and sz = cons(ca, ..., ¢y, shift“‘"+“\°"’--“)(x)|) are the index-
adjusting substitutions (using pivot X)) of Xx, and Xj,, respectively.

Proof. We shall assume that X, # X; and X, # X;. The case where X;, = X, or X, = X, is analogous.
We proceed by induction on a.

e a = n. We have three subcases to consider.

— n < i. Then by Lemmma 1 Va.lue"(kl,n) =n= Valuei(kg,n).
- i< n<|l]+i. Now we consider two further cases:
* n — i = pos(Bh,l) for some By € Bay g)(X). Then b,—; = pos(Bn, k1) and cp—; = pos(Bh, k2)
by Def. 7.30. Therefore Value*(ky,bn_; +1) = Bn = Value*(kz, cn_i + 1).
* There is no By € Ba(y g)(X) such that n—i = pos(Bs,!). Then b,_; = |k1|+1+Sh(X;,n—1) and
cn—i = |k2|+1+8Sh(X;,n—i). Hence, Value*(ky,bn—;+1i) = T14sn(x;n—i) = Value'(kz, cni+1).
— n > |l| +4i. Then W(a[lift'(s1))) =n- [} + |k1| + [\ Bacz,g)(X)| and W(a[lift'(s2)]) = n — I} +
k2| + |1\ Bagr,r)(X)|. Thus Value'(ki,n — [l + [k1| + |1\ Bac,m)(X)]) = Zn—i-jti+i\Bagz py(X) =
Value®(kz2,n — || + k2| + |l \ Baz, r) (X))
e a = f(a1,...,an). Then
Value® (k1, W(allift'(s1)])) .
= Value'(ky, f(W(a1[lift*(s1)]), - ... W(aa[lift*(s1)])))
= f(Value'(k1, W(a1[lift*(s1)])), - - - , Value® (ky, W(an[lift' (s1)])))

= f(Value'(kz, W(a1 [t (s2)])), ..., Value® (kz, W(anlift'(s2)])))
= Value*(kz, W(a[lift*(s2)]))

e a =§(ay,...,an). Similar to the previous case.

Corollary 7.54 (From assignments to valid valuations) Consider a SERSgp-rewrite rule (L, R), metavari-
ables Xi,, Xk, occurring in (L, R) and a designated pivot metavariable X;. Let p be an assignment. Then

Value(ky, W(B(X)[s1])) = Value(ks, W(p(X)ls2]))

where s, = cons(by, ..., by, shift!*1+H1N\Baw.m OO and g9 = cons(cy, .. ., s shift!k2l+10\BaqL.2) (X)) gre the index-
adjusting substitutions (using pivot X;) of X, and Xj,, respectively.
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Proof. Since W is a basic substitution calculus it has unique normal forms. Also, by condition 2 of Def. 7.11
we have that W(a) is a pure term for any term a. Thus

Value(ky, W(p(X)[s1]))

Value(k1, WW(p(X))[s1]))
Value® (ky, WW(5(X))[s1]))
L7ss  Value®(ko, WW(B(X))s2]))
Value(kz, WW(p(X))(s2]))
Value(kz, W(p(X)[s2]))

Lemma 7.55 (Interpretation of EzERS-rewriting) Let W be a basic substitution calculus satisfying the
scheme. Let o be a term of W of sort T or S. Let (L', R') = Cp(L, R). If 0 =/ gy 0’ then

1. if o is of sort T then W(0) =3(1,r) W(0').

2. for every pure term d of sort T such that d[o] is a term of sort T, and every n > 0, W(d[lift" (0)]) =3(L,r)
W(d[lft"(0"))).

Proof. We show simultaneously the two items by induction on the lexicographic ordering (o, d), where o and
d denote, respectively, the ordering induced by their structures.

e 0 is a de Bruijn index or a substitution constant. Then both items holds vacuously since by definition the
LHS of a SERSgp-rewrite rule must have a function or binder symbol as head symbol. Thus o is a normal
form.

e 0= f(a,...,a,) or o =£&(ay,...,an). There is nothing to prove for the second item. For the first:

— the reduction is at the root. Then o = pL’. Define & for all X) € L as:
kX E WECH (X))
Note that k is a valid valuation by Corollary 7.54, and also, W(pL’) = kL by Lemma 7.52. So

kL SL,r) kR =1. 752 W(pR') = W(').
— the reduction is internal. Then we use the induction hypothesis.
e 0 = a[s]. There is nothing to prove for the second item. We consider two cases for the first property:
- o = a'[s] with @ — (1 r) &’. By the i.h. W(a) =, r) W(e’). Then W(a[s]) = W(W(a)[s]) =(L,r)
W(W(a')[s]) by applying Lemma 7.51.
- o' = q[s'] with s =1/ gy &. Since W(a) is a pure term we have that W(o) = W(W(a)[s]) S(L,r)
W(W(a)[s']) = W(0') by the induction hypothesis of item 2 since (s, W(a)) < (as], W(a)).

e 0 is a substitution o(s1,...,8;5,...,8) (¢ >0), and o' = 0(31,...,39,...,3.,), where s; — (1, r") s_’.,-, then
there is nothing to prove for the first property since o is not a term. For the second property we proceed
by induction on d.

—d = f(d1,...,dn) or d = &(d1,...,dn) then the property holds by the induction hypothesis since
(0,d;) < (0,d) for all 1 < i < n, and applying clos-f or clos-b.
— d = m. Then we must verify that for all n > 0: W(m[lft"(0)]) =(L,r) W(m[Lft"(d)]).
We proceed by induction on n.
1. if » = 0, then we proceed by cases as dictated by the definition of the scheme (Def. 7.17).

(a) Suppose there exists a de Bruijn index r, indices ;,...,i, (p > 0) and also substitutions
uy,...,uk (k > 0) such that 1 < 4;,...,4p < g, the ¢;’s are all distinct and for all s;...3g
mlo(s1, ... Sq)] =w Tlsi,] - [85,)[wa] . . - [u].

i. ifj & {41,...,4p}, then W(m/[0']) is also equal to the term W(r([s;,]...[s:,][u1].. . [uk]) and
the property is trivial since W(m/[o]) = W(m/[0']).
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if 5 € {i1,...,%p}, let us say j = iy, then the term W(m[o']) is equal to the term
W(r(sy,]. .. [si,]. - [8:,][wa] . .- [ux]) and W(r[s;,] . . . [ss,_,]) = eis a pure term (Def. 7.11(2)).
We have (s;,,¢€) < (6(s1,...,85,...,8¢),m), so that we can apply the induction hypothesis
(2) to obtain:

Wlelsin]) S(r,r) W(elsi,))

Now, the term W(e[s;, ]) is pure, so that we can repeatedly apply Lemma 7.51 to obtain:

W(mlo]) = WW(elsi, ) [singn] - - - [85, ][] - . - [us])
S.r) WOV(e[si])[Sing] - - - [85,][wa] - - - [uk])
= W(m/[o'])

(b) Suppose there exists an index 7 with 1 < ¢ < g such that for all s;...s, we have that
mlo(sy, ... 8)] =w 3.

i.

if ¢ # j, then the term W(m/[o]) is also equal to W(s;) and the property is trivial since
W(mlo]) = W(m[o']).

if i = 7, then W(m/[0']) = W(s}) (where s; is a term because the equations are well-typed)
and (s;,m) < (o(s1,-..,85,...,8,), M), so the property holds by the induction hypothesis
(1) since W(mlo]) = W(s;) =1,y W(s]) = W(mlo').

2. if n > 0, then we consider two cases:

(a) if m < n, then by Lemma 7.19(1) we obtain:

W(m/[lift™ (0)}) = m = W(m[lift" (o')])

(b) if m > n, then by Lemma 7.19(1) we obtain:

W(mllift" (0)]) = W(m — 1[lift™~" (o)) [shift])

and

W(m{lift™(')]) = W(m — 1{lift" " (o')) [shift])
Since variables are equivalent with respect to our ordering (o0,d), (d(s1,...,3j,...,8),m) =
(o(s1,-..,95,...,84),m—1), and then the induction hypothesis on n can be applied to obtain

W(m — 1[lif" (o)) S,k W(m — 1[lift" (o))

Since every W-normal form is a pure term by Def. 7.11(2), we may finally apply Lemma 7.51,
so that

W(mllift"(0)]) = W(W(m — 1[lift" " (0)]) [shift])
S,r) WW(m = 16" (o)) [shift])
= W(mllift" (o))

Proposition 7.56 (Projection Proposition) Let R be a SERSq and let fo(R)w be its first-order version
where W is a basic substitution calculus satisfying the scheme. If a —,(r),, b then W(a) =z W(b).

Proof. We consider two cases, one for EzERS-rewriting and one for FExERS rewriting.

EzERS-rewriting Suppose that @ —,(r)/w b using rewrite rule (L', R') = Cp(L, R) where P is a pivot set for

(L, R) € R, a context E and assignment p. Thus a =y E[p(L’)] and b =y E[p(R’)].

Now since E[p(L’)] —,r") E[p(R')} then by Lemma 7.55 we may conclude that W(E[p(L')]) S(,r)
W(E|[p(R')]). Also since a =y E[p(L’)]) we know that W(a) = W(E|[p(L')]), likewise we know that
W(b) = W(E[p(R’)]). Therefore W(a) = W(E[p(L")]) S(1.r) W(E[p(R')]) = W(b) as desired.

FEzERS-rewriting Suppose fo(R) is a FEZERS and that @ —g=)juw b. Then if @ — b the result holds

trivially. Thus let us assume that @ — () b using rewrite rule (L', R’) = Cp(L, R) where P is a pivot
set for (L, R) € R, a context E and assignment p. Then a = E[p(L’)] and b = E[p(R’)]. Now since
E[p(L")] —',r’y E[p(R')] then by Lemma 7.55 we may conclude that W(a) = W(E[p(L')]) 3 r)
W(E[p(R')]) = W(b) as desired.
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Since IrC—»r, we may replace W(a) =g W(b) by W(a) -»g W(b) in the statement of the Projection
Proposition.

Definition 7.57 Let R and S be binary relations defined over sets A and B with A C B, respectively. We say
S is conservative over R if aSb implies aRb for all a € A.

Noting that W(a) = e for pure terms a (Def. 7.11(2)) we may conclude.

Corollary 7.568 (Conservativity) Let R be a SERSg,. Then fo(R)yy-rewriting is conservative over R-
rewriting.

7.4.3 Essentially First-Order HORS

This last subsection gives a very simple syntactical criterion that can be used to decide if a given higher-order
rewrite system can be translated into a full first-order rewrite system (modulo an empty equational theory). In
particular, we can check that many higher-order calculi in the literature, such as the lambda calculus, verify
this property.

Definition 7.59 (Essentially first-order HORS) A SERSy, R is called essentially first-order if fo(R)w is
a FExERS for W a basic substitution calculus.

Definition 7.60 (fo-condition) A SERSy, R satisfies the fo-condition if every rewrite rule (L, R) € R satis-
fes: for every name X in L let X, ..., X;, be all the X-based metavariables in L, then

L. Iy =1;... =l and (the underlying set of) I, is Ba(z g)(X), and
2. for all X € R we have |k| > |I;].

In the above definition note that I; = l3... = |, means that labels [;, ..., l, must be identical (for example
aff # Ba). Also, by Def. 6.36, |, is simple, in other words, it does not have repeated elements.

Example 7.61 Consider the Ag-calculus consisting of the sole rule: app(AXq,Ye) —p, Xa[Ye]- The Ba-
calculus satisfies the fo-condition.

Proposition 7.62 puts forward the importance of the fo-condition. Its proof relies on a close inspection of
the Conversion Procedure.

Proposition 7.62 Let R be a SERSy, satisfying the fo-condition. Then R is essentially first-order.

Further examples of essentially first-order SERSy, are the foldl-rewrite system of Example 7.33 and the
natural numbers recursor rewrite system rec of Example 7.34.

Note that many results on higher-order systems (e.g. perpetuality [KOOOla], standardization [Mel96])
require left-linearity (a metavariable may occur at most once on the LHS of a rewrite rule), and fully-eztendedness
or locality (if a metavariable X (¢,, ... ,t,) occurs on the LHS of a rewrite rule then ¢y, .. ., t, is the list of variables
bound above it). The reader may find it interesting to observe that these conditions together seem to imply the
fo-condition. A proof of this fact would require either developing the results of this work in the above mentioned
HORS or via some suitable translation to the SERSy; formalism, and is left to future work.

Of course, all first-order rewrite systems are essentially first-order SERSg;: indeed all metavariables in first-
order rewrite systems carry ¢ as label. Hence the latter systems need not be left-linear. Also, an orthogonal
SERS4, (Def. 7.1) need not be essentially first-order, the prime example of this fact being the rewrite system
consisting of the sole rule 74,. Below we picture this situation.
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Informally, it seems fair to say that a SERS, system is essentially first-order if higher-order pattern matching
may be reduced to syntactic first-order matching. We claim that essentially first-order SERS4; systems are
appropriate for transferring results from first-order systems. As evidence of our claim we shall undertake the
task of transferring a non-trivial property of (left-linear) first-order rewrite systems to this class of higher-order
rewrite systems, namely the Standardization Theorem. This shall constitute the focus of our attention in
Chapter 8.

However, before considering the Standardization Theorem the transfer of a more basic property presents
itself, namely the Critical Pair Theorem (CPT): a first-order rewrite system is locally confluent iff all its critical
pairs are joinable [BN98, Th.6.2.4]. This result is useful for proving that a finite and strongly normalizing TRS
is confluent since by Newman’s Lemma we only have to check that all critical pairs are joinable. One may
obtain rather immediately the following:

Proposition 7.63 (Transfer of the CPT) Let R be an essentially first-order SERSg,. If all the critical pairs
of fo(R)w are joinable then R locally confluent.

Proof. Suppose A —,, B; and A —,., B,, where 1,72 are rewrite rules in R. Then by the Simulation
Proposition A —j4,,) B} »w By and A —yq,) Bj —»w B, as depicted in Figure 7.1. Then 1 may be
completed by hypothesis (we use CPT for first-order rewriting and the fact that all critical pairs of fo(R)w
are joinable). Note that since R is essentially first-order then it is the usual first-order critical pairs that we
are referring to. The items marked 2 follow from the Projection Proposition and the fact that W implements
metalevel substitution (Lemma 7.19(3)).

Jo(R)w ~\ ‘— Jo(R)w
!

B C

ST

C

B,

Figure 7.1: Transferring the CPT

So let us now move on to the Standardization Theorem.



Chapter 8

Transferring Standardization

The Conversion Procedure (Def. 7.35) is of interest from at least two perspectives. From the ezpressability per-
spective it establishes how higher-order rewriting may be encoded as first-order rewriting modulo an equational
theory, and it moreover characterizes a subclass of SERSq, for which the equational theory is empty. From
the practical perspective it opens up the possibility of transferring results from the first-order framework to the
higher-order one. This chapter attempts to pursue the latter perspective in more detail. In full precision, we
shall study how to lift the Standardization Theorem from first-order rewriting to higher-order. Before plung-
ing ourselves into such a task we provide the reader with an informal discussion on standardization and then
consider a more detailed (although still brief) survey.

When studying rewrite systems the Standardization Theorem allows one to single out certain canonical
derivations in the class of a larger set of derivations. This is useful since many properties dealing with derivations
may then focus their attention on the canonical ones. In particular, standardization is a convenient tool when
considering normalizing rewrite strategies. For instance, given some term M in a rewrite system, it may
have a normal form while at the same time admit infinite derivations. As an example, consider the A-term
M = Kc(AA) where K = Az.\y.z and A = Az.zz. Then M admits the normal form c:

Kc(AA) —p (My.c)(AA) —p ¢

However, we may also reduce the S-redex AA in M, obtaining the same term, hence repeating the process we
may obtain a derivation of arbitrary length. Assuming we are interested in obtaining a normal form from M
we would like to have some strategy at our disposal indicating which redex in M to contract next in order to
achieve our goal. Avoiding the nondeterminism caused by a term with more than one redex is of particular
importance when implementing rewrite systems on a computer. A reasonable normalizing strategy for M, as
suggested by the above mentioned example, is to contract the leftmost redex. So what is a standard derivation
and how does it relate to this normalizing strategy? A standard derivation is one in which redex contraction
takes place in a left to right direction. Once a (-redex has been contracted in a term M, all the (residuals of)
B-redexes to the left of M are forbidden to be contracted in subsequent rewrite steps. The latter B-redexes
thus remain ‘frozen’ for the rest of the derivation. In 1958 the first standardization theorem was proved by
H.B.Curry and R.Feys [CF358] for the A-calculus: for every B-derivation from a term M to a term N there exists
a standard (3-derivation from M to N. As a consequence of this result, it was shown that the leftmost rewrite
strategy is normalizing for all terms. Indeed, a standard derivation from a term M to a term N in S-normal
form must be a leftmost derivation for otherwise there would be some frozen redex which is present in N.

In first-order rewriting one would like similar results to hold. Since non-orthogonal rewrite systems may not
be confluent the fundamental results on standardization began with the class of orthogonal (left-linear and non-
overlapping) systems. The major question was how to extend the notion of standard derivations to the first-order
case. For a restricted class of orthogonal systems (the left-normal systems) a straightforward generalization of
the notion of standard derivation of the A-calculus is available. An orthogonal first-order rewrite system is
left-normal if all function symbols occur to the left of all variables in every LHS of a rule. For this class
of systems the standardization theorem holds, and moreover, the leftmost-outermost rewrite strategy may be
shown to normalize any term [O’D77]. To see that the leftmost-outermost strategy may fail to normalize for
non-left-normal systems consider the following example. Let R = {f(X,a) — b, ¢ — ¢, d — a}. Note that the
constant a occurs to the right of the variable X in the LHS of the first rewrite-rule, hence R is not left-normal.
There is a derivation from the term f(c, d) to a normal form: f(c,d) — f(c,a) — b yet the leftmost-outermost
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strategy leads to an infinite derivation: f(c,d) — f(c,d) — .... A strategy that normalizes all terms in any
orthogonal first-order term rewrite system is the parallel-outermost rewrite strategy {O’D77, Klo92].

A generalization of the notion of standard derivations for all orthogonal systems was presented by G.Huet and
J-J. Lévy [HL79]. They show that the Standardization Theorem holds for all orthogonal systems. Normalizing
strategies may be obtained from this result, by contracting, so called needed redexes. However, determining if a
redex is needed or not is not decidable in general, so a subclass of orthogonal systems was also considered, the
strongly sequential systems, for which efficient normalizing strategies are exhibited.

This notion of standard derivations was later extended to non-orthogonal left-linear first-order rewrite sys-
tems by G.Boudol [Bou85]. Also, work by J.W.Klop [K1080] has allowed a simpler formulation of the notion of
standard derivation, based on rewriting derivations.

Finally, we consider the case of higher-order rewriting. Just as in the first-order case, a straightforward
generalization of the notion of standard derivation of the A-calculus may be obtained for the class of left-
normal orthogonal CRS. For this notion of standard derivations the Standardization Theorem holds, and
normalization of the leftmost-outermost rewrite strategy too [Klo80]. For the full class of orthogonal systems
the Standardization Theorem also holds by providing a definition of standard derivation based on rewriting
derivations (an idea apparently due initially to J.W.Klop) [O0s96]. It should also be mentioned that work on
standardization in Aziomatic Reduction Systems allows one to obtain the standardization theorem for left-linear
fully-extended (called local in [Mel96]) higher-order rewrite systems (hence not necessarily orthogonal) [GLM92,
Mel96]. In [Oos96] standardisation of second and higher-order rewriting are related: each HRS [Nip91|-rewrite
step is decomposed into a replacement step (in which no substitution takes place) followed by B-rewrite steps to
B-normal form. It is claimed that by decomposing an HRS-derivation, standardizing the decomposed derivation
and then ‘projecting’ back a standard HRS-derivation is obtained. Our work relates first and second-order
rewriting.

We shall prove the standardization theorem for the class of (left-linear) essentially first-order higher-order
term rewrite systems (Def. 7.59). Our contribution is not in the standardization theorem itself since this may
be obtained, for example, as an instance of the axiomatic standardization theorem of P-A.Melliés [Mel96] but
rather by the proof method we use: we shall transfer the standardization theorem from the first-order setting to
the higher-order setting. This is put forward as evidence that, for the class of essentially first-order higher-order
rewrite systems, techniques developed for the first-order setting are applicable. Further evidence of this fact,
as already mentioned in Chapter 7, is available: a number of results proved for higher-order systems require
that certain conditions be imposed on the higher-order formalism in question (for example, CRS [Mel96] or
HRS [KOOO1a)) for the proofs to go through; it so happens that these conditions force, as it seems, the resulting
class of restricted higher-order systems to be, what we have called in the SERSy;, framework, essentially first-
order systems.

It may be observed that a further benefit of our result is the possibility of applying the theory of needed
derivations for non-orthogonal left-linear systems, as developed in [Mel96, Mel00], in order to show that all
needed derivations are normalizing for calculi of explicit substitution implementing any orthogonal essentially
higher-order rewrite system (and not just for Ao as shown in [Mel00]). This is left to future work.

The transfer of standardization is achieved by applying ideas due to P-A.Melliés. In [Mel00] P-A.Mellies
shows the following:

Proposition 8.1 (Melliés) Every standard derivation v : M — N in Ao with N in o-normal form is pro-
jected! onto a standard derivation o(v) : (M) - N in the AF-calculus.

We shall show that in fact this not only holds for the AB-calculus, which lives comfortably in the class of
essentially first-order higher-order rewrite systems, but for the whole class.

Proposition 8.2 Let R be a left-linear essentially first-order SERS . Every standard derivation v : M —» N
in fo(R), with N in o-normal form is projected onto a standard derivation o(v) : 6(M) -» N in R.

The resulting standardization procedure for standardizing a SERSg4,-derivation T consists in:

1. ‘Implement’ the SERSgs-derivation T as a FEzERS derivation v (see Figure 8.1) by means of the Simu-
lation Proposition (Proposition 7.46).

2. Apply first-order standardization on v [Bou85] yielding a standard (first-order) derivation ¢.

1See Section 8.3 for the definition of the projection of a derivation.
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3. Project the derivation ¢ by means of the Projection Proposition (Proposition 7.56) obtaining a(¢). Use
Proposition 8.2 to conclude that o(¢) is a standard derivation in the higher-order framework.

In fact, we shall take a small step further and prove that T and o(¢) are Lévy permutation equivalent, when
v and ¢ are.

T o(¢)
Simula.tion[ IPro jection
UV A AN ¢

first-order
standardization

Figure 8.1: Standardization Procedure

Structure of the chapter

We begin by formalizing the notion of descendant and residual in SERSy;. Residuals allow redexes to be

traced along derivations. Thus if R and U are redexes in a term M and M LAY, , then the residuals of R
via the U-rewrite step in /N may be defined with the aid of the notion of descendant. In general, R and U
are required to be non-overlapping since otherwise there seems to be no general way of defining the notion of
residual. However, given a FEZERS R,y it shall make sense for us to trace R-redexes via W-derivations, even
though R-redexes may overlap W-redexes. Thus a different notion of tracing, which we call correspondence,
shall be introduced.

After defining what it means for a derivation to be standard we recall the definition of the projection of a
fo(R)w-derivation ¢ into its higher-order derivation W(¢).

The notions of uncontributable symbol (intuitively, those that verify the property that any rewrite step
below them cannot create redexes above them) and correspondent allow P-A Melliés’ proof technique to be
applied to the case of arbitrary fo(R)w-derivations, obtaining Proposition 8.2.

The final section of this chapter proves a strong standardization theorem. This is achieved by showing that
if a first-order derivation ¢ standardizes to another first-order derivation 1, with ¢ Lévy permutation equivalent
to 1, then their projections W(¢) and W(%), are also Lévy permutation equivalent.

8.1 Preliminaries

This section presents a more detailed survey on standardization in rewriting, and then introduces some notation.
The reader already familiar with standardization may safely skip to the subsection on notation.

8.1.1 A Brief Survey

In 1958 the first standardization theorem was proved by H.B.Curry and R.Feys [CF58] for the AB-calculus:
for every (-derivation from a term M to a term N there exists a standard B-derivation from M to N. Before
defining standard (B-derivations we illustrate by means of an example the concept of descendant of a symbol
(which we shall use for defining standard derivations) via some -derivation, a formal development of this notion
may be found in Section 8.2.

Example 8.3 Let M = A((Mz.z)z). The descendants of the rightmost A-symbol in M via the derivation
M = A((Mz.2)z) —p ((A\*z.2)z)((\*z.2)z) = N are all the A\-symbols marked with an asterisk in N. The
leftmost A-symbol in M has no descendants in V.

By marking the head A-symbol of a S-redex we may trace B-redexes. A standard B-derivation is defined as
follows (we present an equivalent definition due to J.W.Klop [Kl080]):
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Definition 8.4 (Standard B-derivation) Let v : My 3 M; 3 ... be a finite or infinite B-derivation. We
decorate v with markers ‘*’ as follows: suppose up to M, _; the markers have already been attached and consider
the step M, 3 M,,1. Mark

1. every ) in M, which descends from a A* in M,_,, and
2. every ) of a B-redex in M,, whose head ) is to the left of that of r,, if not yet marked.
We say v is standard if no marked redex is contracted.

Note that a redex that is marked may be considered frozen in the sense that it shall never be reduced.
Moreover, by observing that contracting a non-marked redex in a term M does not erase the marked redexes
in M, we may conclude that not only are marked redexes never reduced but also they are never erased. Let us
consider examples of standard and non-standard derivations.

Example 8.5 Let I = Az.z. Then the derivation: A(Iz) » Az — 2z is not standard: indeed by applying
Def.8.4 we obtain the following derivation decorated with markers: (\*z.zz)(Iz) — (M\*z.zz)z — 22; note that
the last redex contacted is a marked redex since its A is marked with an asterisk. The derivation A(Iz) —
(Iz)(I1z) = (Iz)z — zz is not standard either. However, the §-derivation: A(Iz) — (I2)(Iz) — z(I2) — 2z is
standard.

We may observe that in a standard derivation computation takes place from left to right. As a consequence
normalization of the leftmost rewrite strategy in the AG-calculus is obtained. Indeed, a standard derivation
from a term M to a term N in S-normal form must be a leftmost derivation for otherwise there would be some
marked redex which is present in N.

In 1978 J-J.Lévy [Lév78]| strengthens this result and proves, with the aid of a notion of equivalence on
B-derivations (Lévy permutation equivalence), that there exists a unique standard rewrite derivation in each
equivalence class of §-derivations. This result is sometimes referred to as strong standardization in the literature.

In 1980 J.W.Klop [Klo80] provides two new proofs of strong standardization for A3. The first proof consists
of computing a standard derivation by repeatedly extracting the so called leftmost contracted redex. The second
proof [Klo80, Section I.10] is based on rewriting B-derivations: a so called anti-standard pair is replaced by a
standard pair in a B-derivation. By proving strong normalization and confluence of this notion of 2-dimensional
rewriting he establishes strong standardization. He also shows that the equivalence of S-derivations induced by
this notion of 2-dimensional rewriting coincides with Lévy permutation equivalence.

Perhaps the most important step in standardization was its extension to first-order rewriting. The task
of freeing oneself from the left-to-right bias introduced by standardization in the context of the AB-calculus
was perhaps the challenging task, as remarked in [MelO1]. Let us restrict attention to the class of orthogonal
first-order rewrite systems (OTRS). Consider the following adaptation of Def. 8.4 to first-order rewriting:

Definition 8.6 (K-standard derivation) Let R be an OTRS and v : My 23 M; 13 ... be a finite or infinite
R-derivation. We decorate v with markers ‘*’ as follows: suppose up to M,_; the markers have already been
attached and consider the step M, I Mp41. Mark

1. every symbol s in M,, which descends from a s* in M,,_;, and
2. every R-redex in M, whose head symbol is to the left of that of ry,, if not yet marked.
We say v is standard if no marked redex is contracted.

Let us consider some of the problems presented by OTRS as regards standardization.

Example 8.7 The leftmost-outermost strategy no longer normalizes. Indeed, consider the following OTRS
R = {f(X,a) = b, ¢ = ¢, d — a} taken from [HLI1]. There is a standard derivation from the term f(c, d)
to its normal form: f(c,d) — f(c,a) — b yet the leftmost-outermost strategy leads to an infinite derivation:
fle,d) = f(e,d) — ...

Thus the leftmost-outermost strategy is no longer normalizing for OTRS. But things may get worse for the
standardization theorem itself may fail.
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Example 8.8 Consider the OTRS § = {f(X,a) — ¢(X,X), ¢ — d, i(X) — X} taken from [Klo80) and
consider also the derivation v : f(c,i(a)) — f(c,a) — g(c,c) — g(d,c). Then recalling the definition of K-
standard derivation (Def. 8.6) and inspecting the derivation graph of the term f(c,i(a)) in Figure 8.2 the reader
may note that there is no standard derivation from f(c,i(a)) to g(d, c).

f(e,i(a))

N

f(d,i(a)) f(c,a)

7

f(d,e) g(c,9)

R TN

g(d! d) - g(c, d) g(da C)
v

Figure 8.2: S-graph of the term f(c,i(a))

In 1979 G.Huet and J-J.Lévy [HL79] (later published as [HL91]) proposed the following notion of standard
derivation for OTRS:

Definition 8.9 (HL-standard derivation) Let R be an OTRS and let v : My 23 M; 3 ... be a finite or
infinite R-derivation. We say v is standard if for every rewrite step rn, with M, = C[pL}, and M1 = C[pR]:

1. either all 7; with j > n are not above? p,

2. or, if My, = C'|[p'L’]qy and Mmy1 = C'[p'R'], is the first rewrite step with m > n in v above p then
p = q.p’ with p’ a non-variable position of L'.

Thus in a HL-standard derivation computation proceeds in an outside-in fashion. The only situation where
a redex 7; occurring at a position ¢ may be contracted after and above a redex r; (with ¢ < j) at position p
with g above p, is when 7; ‘contributes’ to the redex ;. The derivation f(c,d) — f(c,a) — b of Example 8.7 is
a HL-standard derivation. The derivation v of Example 8.8 is also a HL-standard derivation.

It is also shown in [HL91] that if R is an orthogonal term rewrite system and v : M —»g N then there is a
unique (up to permutation of disjoint redexes) HL-standard derivation ¢ : M —»g N with ¢ Lévy permutation
equivalent to v.

In 1985 G.Boudol [Bou85] extended the work of G.Huet and J-J.Lévy to the case of left-linear ambiguous
term rewrite systems. This extension to term rewrite systems allowing the presence of critical pairs is a non-
trivial extension. First-order conditional rewriting has been dealt with by T.Suzuki [Suz96].

In 1992 G.Gonthier, J-J.Lévy and P-A.Mellies [GLM92] published an axiomatic standardization theorem.
Abstract Reduction Systems [Klo92] are equipped with a primitive residual relation for tracing redexes along
derivations and also a primitive nesting relation between redexes yielding Aziomatic Reduction Systems. For
those Axiomatic Reduction Systems satisfying some axioms an abstract proof of standardization was obtained.
Thus by an appropriate instantiation of the axioms they obtain a proof of standardization covering, among oth-
ers, the A\B-calculus, OTRS, orthogonal CRS, and some graph based systems (e.g. dags, interaction networks).
The proof is based on ideas taken from J.W.Klop’s first proof of standardization for A3 [K1080].

In his 1996 PhD thesis P-A.Melliés [Mel96] continues the study of axiomatic rewrite systems, and in par-
ticular, axiomatic standardization. Based on a modified axiomatics for his Axiomatic Reduction Systems he
presents a new proof of strong standardization. Although the construction of a standard derivation proceeds by
extracting external redexes as in {GLM92], this process of extraction is computed by a notion of 2-dimensional
rewriting, as in J.W.Klop’s second proof (although, in contrast to J.W.Klop, a notion of 2-dimensional rewriting
modulo certain permutations is put to work). Finally, the full power of the 2-dimensional approach to standard-
ization is explored in [Mel0l}: Aziomatic Rewrite Systems (AzRS) are introduced as a pair consisting of a graph

2Def. 8.10.
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and a binary relation between the paths in this graph. The axioms on AzRS impose conditions on this relation
between paths and no longer speak in terms of residual relations, nesting relations and compatibility [GLM92].

As regards graph-rewriting, in 1995 D.Clark and R.Kennaway {CK96] extended the work of G.Huet, J-J.Lévy
and G.Boudol to graph rewriting systems.

In the realm of higher-order rewriting in his PhD thesis [Klo80] J.W.Klop proves strong standardization
for the class of left-normal orthogonal (called regular in [K1080]) CRS. The notion of standard derivation he
uses is K(lop)-standard derivation of Def. 8.6. The problems mentioned in examples 8.7 and 8.8 are avoided
by restricting attention to the subclass of left-normal orthogonal CRS: a CRS R is left-normal if all function
symbols occur to the left of all metavariables in every LHS of a rule in R. Examples of left-normal orthogonal
CRS are \@ and Combinatory Logic.

As already mentioned [GLM92, Mel96] also cover higher-order rewriting. Moreover, the abstract standard-
ization theorem in [Mel96)] applies to left-linear CRS admitting critical pairs (see also [WM00]). In [Oos96]
van Oostrom provides a proof of standardization based on 2-dimensional rewriting for orthogonal HRS thus
extending® the work of J.W.Klop. The results by G.Gonthier et al, P-A.Melliés and van Oostrom do not insist
on left-normality hence the standard derivations obtained are unique up to disjoint permutation of redexes,
in contrast to the uniqueness of standard derivations obtained by J.W.Klop for left-linear orthogonal CRS.
However, as a bonus J.W.Klop obtains normalization of the leftmost rewrite strategy for left-normal orthogonal
CRS [Klo80, Remark 6.2.8.10).

8.1.2 Notation

We shall use letters r, u, v, ... for FEzERSredexes and R, U, V, ... for SERSg,-redexes; v, ¢, 9, w, ... for FEzERS-
derivations and T, ®, ¥, Q, ... for SERS4-derivations; and R, S for SERSg,. We say that a derivation of the
form M; 33 M, 33 M;... M, 3 M, ., has length n; this derivation is also written u,;...;u,. Every term M
induces an empty derivation eps which we abbreviate e that satisfies e;¢ = ¢;e = ¢ (where ¢ is a FETERS or
SERS 45-derivation).

Recall that fo(R)w denotes the FEzERS which is the first-order version of the SERS4, R (Def. 7.35) and
where the substitution calculus has been fixed to be the W-calculus, for some basic substitution calculus W.
The rewrite rules in fo(R) are fo(R)UW (Def. 7.15). In the sequel we shall fix o as basic substitution calculus
unless stated otherwise.

We recall that a SERSy,-metaterm M is linear if it contains at most one occurrence of an X-based metavari-
able (Def. 7.1). We say R is left-linear if the LHS of each rewrite rule in R is linear.

8.2 Descendants and Residuals

This section introduces the notions of descendants and residuals with the primary objective of fixing notation.
Descendants shall allow us to frace subterms and to define residuals. In full precision, we shall study the
descendants of positions along rewrite derivations. We then study some specific properties of descendants in
the substitution calculus o.

8.2.1 Definitions

A position is a sequence of natural numbers (i.e. elements of IN*); ¢ denotes the empty sequence. We use
letters p, q, ... for positions. The set of positions of a SERS4-pre-metaterm (Def. 6.27) M is denoted Pos(M),
and the subterm of a pre-metaterm M at a position p € Pos(M) is denoted M|p; both notions are defined
simultaneously as follows:

e if M is a de Bruijn index or a metavariable then: Pos(M) def {€} and M|, < M.

o if M = f(My,...,M,) for f a function symbol, or M = £(M,..., My) for £ a binder symbol then:

Pos(M) def {e} U {ip|p € Pos(M;), 1 <i<n} and M| 4f M. Also, M|; ef M;|, where1 <i<n.

o if M = M;[M,] then: Pos(M) % {¢}U{l.p|pe Pos(M)} U{2p|p € Pos(Mz)} and M| & M. Also,

Ml o def M|y where 1 <7 <2.

3And also correcting (see [Mel96, Section 6.2.2]).
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Note that this definition covers de Bruijn terms (since they are de Bruijn pre-metaterms) and FEzERS terms
(since they are frst-order terms, in particular the substitution operator e[e] is regarded as a binary function
symbol [|(e,e)). Also, this definition of positions is different (in the case of the de Bruijn metasubstitution
operator) from the one we dealt with in Chapter 6 (just after Def. 6.27), where positions were defined on the
basis of trees which were associated to de Bruijn pre-metaterms. The latter definition introduced a dummy
function symbol sub when associating a tree to a pre-metaterm containing a de Bruijn metasubstitution operator
(Figure 6.2), and proved appropriate for studying parameter paths. In this chapter we revert to the classical
definition of position where the de Bruijn metasubstitution operator is considered as a binary function symbol
(see [KOOO1a)).

Definition 8.10 (On positions and symbol positions) We write < for the prefix ordering on positions (
p < qiff ¢ = p.p") and < for the strict prefix ordering on positions. When p < g we say p is ‘above’ or is a ‘prefix
of’ ¢, and when p < g we say p is ‘strictly above’ or is a ‘strict prefix of’ q. If p £ g and ¢ £ p then p and ¢ are
said to be disjoint, written p || ¢. A position p in M is called a symbol position if M|, = f(M,, ..., M) for some
function symbol f, or M|, = {(M},..., M,) for some binder symbol £. In that case we write p € SPos(M).
Furthermore, SPos(M, f) stands for the set of positions of the symbol f in the term M (be it a binder or a
function symbol). The position of a redez in a term is the position of its head symbol in that term. A position
is above (resp. strictly above) a redex if it is above (resp. strictly above) the position of its head symbol.

Definition 8.11 (Preservation of a position) A derivation u;;...;u, preserves a position p when none of
the redexes u; is above p.

If p = p’.i is a position in M where i is some natural number then we define prev(p, M) def ?.

Definition 8.12 (Patterns, arguments, and nested redexes) Subterms of a redex M = p(L) that corre-
spond to metavariables in L are the arguments of M, and the pattern of M is the pattern of L (Def. 6.31). If
V and U are redexes in a term M then we say V nests U in M if U occurs in an argument of V in M.

Note that in order to determine if V nests U not only do we need to know that V is a redex but we also
have to know what rewrite rule it is an instance of. For example if R = {a —4 b, f(Xc) —s b, f(a) —y2 b}
then both a and f(a) are redexes, however to determine if f(a) nests a we need to know what redex f(a) is an
instace of.

Example 8.13 Consider the term M = app(A(M(app(21,1))),2). Note that M is a B-redex. The subterms
A(app(A1,1)) and 2 are arguments of M, the remaining symbols in M conform the pattern of M. If we replace
the arguments of M with some distinguished constant O then the pattern of M may be written app(A(0), 0).
The B-redex in A(app(A1,1)) is nested by M.

In the literature on higher-order rewriting it is not uncommon to decompose each rewrite step into two
parts (we shall follow [KOOO1a)): a TRS part in which the LHS is replaced by the RHS without evaluating the
metasubstitution operators, and a substitution part where the delayed metasubstitution operators are evaluated.
The reason for introducing this refinement of a higher-order rewrite step (initially due to J.W.Klop [Klo80})
is that the RHSs of rewrite rules may contain nested metasubstitution operators rendering the task of tracing
terms via the rewrite step non-trivial. The descendant relation of a reduction step can be obtained by composing
the descendant relation on the TRS part and the descendant relation of the metasubstitution evaluation part.

Definition 8.14 Let (2, R) be a SERSy and let £’ be the SERS;-signature resulting from augmenting ¥ with
a fresh function symbol f and binder symbol £. The substitution-frozen variant of (Z, R), written (¥, SF.V (‘R))
(or simply SFV (R) is no confusion may arise), is obtained by replacing every occurrence of the metasgbstltulflon
operator M[N] on the RHS of a rewrite rule with the metaterm f (E(M),N). The @3titution-evdmt1m variant
of (L, R) is defined as the SERSy, consisting of the alphabet £’ and the sole rewrite rule:

f(E(Xa), Ye) — XalYe]
We write (£, SEV(R)) (or, simply SEV(R)) for the substitution-evaluation variant of (I, R).

A SERSg, whose RHSs do not contain occurrences of the metasubstitution operator ofe] is ca.lled. simple.
The substitution-frozen variant of a SERSgy is always simple. We shall define the descendant relation on a
simple SERSa and on the substitution-evaluation variant of SERSy, separately.
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Definition 8.15 (Descendants of positions in a TRS step) Let R be a simple SERSy, and let U be an
(L, R)-redex for (L, R) € R occurring at a position p in a term M, let M AN , and let ¢ be a position in M.

1. If p and q are disjoint, then the descendant of g is the same* position ¢ in N.
2. If ¢ < p, then again the descendant of g is the position ¢ in N.

3. If ¢ = p.p’ where p’ is a nonvariable position of L, then the descendant of q is the position p in N (i.e. the
position of the contractum of U) °.

4. If ¢ = p.p;.p’ where p; is the position of the ith-from-the-left metavariable occurrence in L, then the
descendants (possibly none at all) of ¢ are all the positions in N of the form g; = pplp’ for 1 <j < m;
where p},...,pl" are the positions of all occurrences of that same metavariable in R.

We write p[U]q if the the position ¢ in IV is a descendant of the position p in M.

Subterms may be traced by their positions. If P is a subterm of M occurring at a position p and p[U]g,
then the subterm of N at position ¢ is the descendant of P via U. Note that every subterm except erased ones
have one or more descendants.

Example 8.16 Consider the step M = app(c, AM(app(AP, Q)[id])) — Func,,, app(c, A(app((AP)[id], Q[id]))) =
N. Here are some examples of descendants of this TRS step. The term N is a descendant of the term M by
case 2 of Def. 8.15. The term app((AP)[id], Q[id]) is a descendant of app(AP, Q)[id] and app(\P, Q) by case
3 of Def. 8.15; the subterm AP of N is a descendant of the same subterm in M by case 4 of Def. 8.15; both
occurrences of the subterm id in N are descendants of id in M (i.e. it has two descendants). The subterm c in
N is a descendant of ¢ in M by case 1 of Def. 8.15.

If S is a set of positions we use the notation S[U] for {q| p[U]q for some p € S}. Let us consider now how
to trace terms via a substitution step.

Definition 8.17 (Descendants of positions in a substitution step) Let U = f(£(0,), O3) be a SEV(R)-
redex in M at a position p, let M LAY , and let ¢ be a position ¢ in M.

1. If p and q are disjoint, then the descendant of g is the same position ¢q in N.
If ¢ < p, then again the descendant of g is the position g in N.

If g=p.1.1.p' (i.e. M|y C Oy), then the descendant of q is the position p.p’ in N.

I

If ¢ = p.2.p' (i.e. M|, C O2), then the descendants (possibly none at all) of ¢ are the positions in N of
the form ¢; = p.p;.p’ with 1 < i < n where p1,...,pn are the positions of all occurrences of the constant
symbol * in O1 {1 «— *}°.

The descendants of arbitrary derivations of a SERS,, may be obtained by decomposing each step into a TRS
step and (zero or more) substitution steps, applying the descendant concept as defined above, and taking the
transitive closure and noting that relation composition is associative. If T is an R-derivation then Y-descendants
are defined to be the descendants under the decomposition of Y. Also, we shall speak of the T-descendants
of a position p for p € SPos(M) meaning the T-descendants of the subterm at position p in M. The ancestor
relation is the inverse of the descendant relation.

Residuals shall be defined for redexes only whereas descendants are defined for all subterms. Contracted
redexes shall not have residuals (however, they do have descendants).

Definition 8.18 (SERSg-residual) Let M Y N in a SERS4 R with U an (L, R)-redex, let V C M be an
(L', R')-redex, and let P C N be a U-descendant of V. We call P a U-residual of V, written V{U}P, if

4There is a slight abuse of notation here since positions are relative to terms.

5This definition coincides with that of G.Boudo! [Bou85] where the term trace is used instead of descendant and that of
Z.Khasidashvili [Kha93) where a related notion called essentiallity is studied.

6Since » is a constant note that for the updating functions we have U (%) = *. Also, recall that efe — e} is the de Bruijn
substitution on terms (Def. 6.34)
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1. the patterns of U and V do not overlap, and
2. Pisan (L', R')-redex.

A redex in N is said to be created if it is not the residual of a redex in M. When considering the class of
left-linear SERSy, the second condition in Def. 8.18 may be dropped, as in the first-order case. Observe that
since first-order rewrite systerns are a strict subclass of SERS; the above definition applies to them too.

Example 8.19 Consider the following OTRS from Example 8.7 R = {f(X,a) =5 b, c > ¢, d >4 a} and the

rewrite step M = f(c,d) —q4 f(c,a) = N. The redex f(c,a) in N is created since it is not a residual of a redex
in M. However, the occurrence of ¢ in IV is a residual of the c-redex in M.

We would now like to introduce the correspondence relation, a notion belonging to the first-order rewrite sys-
tems FEERS. In a FEzERS Ryy we shall sometimes be interested in tracing R-redexes through W-reductions,
for W some basic substitution calculus. Although first-order rewrite systems are particular SERSgps, Def. 8.18
is too general for our purposes. The problem is that R-redexes may overlap W-redexes since W is in charge
of propagating the substitution operator. This entails that an R-redex may be ‘lost’ when traversed by a
substitution operator.

Example 8.20 Consider the basic substitution calculus o. The Beta-redex in M is lost in the following o-
reduction-step:

M = app(\P, Q)["d] = Funcapp app(()\P)[’ld], Q['ld])

A notion of residual for the particular case of the Ao-calculus relating to that of the A-calculus has been
studied in [Ber92]. In order to regain lost R-redexes through W-derivations we shall introduce the correspon-
dence relation. Owing to the fact that a basic substitution calculus is a first-order rewrite system (Def. 7.10)
this notion makes use of the descendant concept for the TRS part of higher-order rewrite steps (Def. 8.15).

Definition 8.21 (FEzERS-correspondence) Let Ry be a FEzERS. Let r be an (L, R) € R-redex occurring
in M. Let v: M - N be a W-derivation. Suppose

1. 7 € M v-descends to a subterm u C N at position g, i.e. p[v]g where p is the position of the head symbol
of r, and

2. u = N|q is an (L, R)-redex.

then u is a v-correspondent of r in N, written r{{v)u.

Example 8.22 Assume P and Q are pure terms (they contain no occurrences of the substitution operator)
and consider the derivation: M = app(AP, Q)[id] — punc,,, app((AP)[id], Q[id]) -, app(A(P),Q@) = N Then
the Beta-redex at position 1 in M has the Beta (or §)-redex at position € in N as correspondent.

As remarked before there seems to be no general way of defining the residual of a redex under the contraction
of some other overlapping redex. However, for the particular case of substitution calculi (in particular we shall
use it in the case of o only; see Remark 8.46) Def. 8.21 shall accomplish its duty, and it is only in the context
of such calculi that the latter definition must be considered. However, this Def. 8.21 seems to make sense for
any basic calculi of substitutions satisfying ‘similar properties as those of o which we shall study in the next
subsection, of which three important ones are: o may not create function or binder symbols, the ancestor relation
induced by o rewriting over the function and binder symbols is a total function, and any two o-derivations to
o-normal form induce the same descendant relation on positions.

8.2.2 Tracing Terms in the Substitution Calculus

We now study some basic properties concerning o-residuals and o-correspondents of R-redexes in a FEZERS R, .
This entails the study of descendants of positions of function and binder symbols via o-derivations. Figure 8.3
recalls the rewrite rules of the basic substitution calculus o over some signature I'. We begin with a remark.

Remark 8.23 If p € SPos(M, f) for some function or binder symbol f, v : M -, N and p[.u]q then. q €
SPos(N, f). That is to say, o-descendants of function or binder symbols are once again function or binder
symbols, and moreover, they have the same ‘name’. This may be verified by inspecting the rewrite rules of the

o-calculus.
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F(P1,.. . Po)[s] = Pune, F(Ps], ..., Pals))
&(Py,...,Po)[s] —Bing, EP1-(soD)],..., Pall-(s01)])

P[s}[t] = Clos Plsot]

]-[P . 5] —VerCons P

1[id) — Varld 1

(P-3)ot — Map Plt] - (sot)
idos —rdL s
(sy083)083 — Ass 810(s3033)
To(P-s) —ShiftCons 3

T oid — Shiftld T

Figure 8.3: The o-calculus

The next property we look at is parametricity [Oos94] of o over function and binder symbols. The intuition
is that the names of function and binder symbols which are traced is of no importance in a o-derivation to
normal form. As mentioned in [Oos94], an example of a parametric calculus is the A-calculus: it is parametric
over ‘symbols’ [K1080, 1.10.1.2] (any two AB-derivations from M to a S-normal form N are Lévy permutation
equivalent). Let us write M —, N when M o-rewrites to o-normal form N.

Lemma 8.24 (Parametricity of o) All derivations v : M —, N (i.e. N in o-normal form) induce the same
descendant relation [u] over SPos(M) x SPos(N).

Proof. We use a proof technique due to van Oostrom [Oos94]. We must prove that if v,¢ : M »—, N then
[v] = [¢}. Before proceeding two observations:

Observation 1. The o-calculus does not create function or binder symbols, i.e. if S C SPos(M) is the set of
all positions in M of some (binder or function) symbol f and M 5, N’ then Sfr] is the set of all symbol
positions of f in N’ .

Observation 2. If we replace some (function or binder) symbol f in M occurring at a position p with a fresh
symbol g obtaining M’, then the derivation v is transformed into a new g-derivation v/, and
plvlg <= plv'lq
This may be verified by induction on the length of v.

Now let p € SPos(M, f) (i.e. p is a position of the symbol f in the term M) and let g be a fresh symbol.
Then replacing f with g in M yields a term M’ and two new o-derivations v’ and ¢’ from M’ to N; and N>,
respectively, such that:

plvlg <= plv'lg and p[s)q <= pl¢'lq (8.1)

Since g is a fresh symbol then:
plv']lg <= the head symbol of N, is g (8.2)

Indeed, the left-to-right direction follows from Remark 8.23. For the right-to-left direction suppose the head
symbol of Ny|q is g and that p € SPos(M, g) then by the first observation it follows that p must be an ancestor
of g, that is, pfv']q.

So, completing the equivalences 8.1 with the equivalence 8.2 we obtain:

plvlg <= plv'lg <= the head symbol of N}|, is g

and
pl¢lg < pl¢’lg < the head symbol of No|, is g

Finally, the result follows from noting that N; = N> from the confluence of the o-calculus.
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It is not clear that Lemma 8.24 holds for arbitrary o-derivations due to the possibility of “syntactic coin-
cidences” [HL91]. The following example illustrates this phenomenon when arbitrary symbols are traced over
arbitrary o-derivations.

Example 8.25 Let P = 1[id][id] and Q@ = 1[id]. Then v : 1[id][id] —cios 1[id 04id] — 141 1[id] and ¢ :
1[id]{id] — var14 1{id]. If we trace the subterm 1(d] in P occurring at position 1 we obtain 1fv]e and 1[¢]1.

Given a FEzERS R, we shall be tracing R-redexes. Thus the following result shall be useful. Its proof relies
on Lemma 8.24.

Corollary 8.26 (Parametricity of o over R-redexes) Let R, be a FEZERS. All derivations v: M —, N
(i.e. N in o-normal form) induce the saine correspondence relation ((v)) over R-redexes.

Corollary 8.26 allows us to speak of the correspondents of some R-redex in M, in o(M). A related notion
of equivalence of derivations is strong equivalence as defined by Hindley in [Hin78] (see also [Klo80]): two
derivations v: M — N and ¢ : M — N are Hindley-equivalent if for every redex r € M the residuals of r via
v coincide with those of  via ¢.

The following notion of lined-up symbol positions shall be used when dealing with strong standardization.
It was introduced by the author in an early proof of the Projection Proposition, and independently in [Mel96]
as part of a “dynamical order” on Ao-terms (see Section 8.3.2 for further details).

Definition 8.27 (Lined-up symbol positions) Let p,q € SPos(M). We say p is lined-up with ¢ in M iff
p =o0.1.p) and g = 0.2.¢' and one of the following two conditions hold:

e either, the head-symbol of M|, is e[e],
¢ or, the head-symbol of M|, is ec e.

A set S of disjoint symbol positions in a term M is lined-up if for every p, ¢ € S either p is lined-up with ¢ in
M or q is lined-up with p in M. Also, if r and u are redexes in M, we say 7 is lined-up with » in M iff the
positions of their head symbols are lined-up.

As an example of lined-up symbol positions consider the term M = f(c)[g(1) - ((f(2) - id) 0 (g(2) - id))]. Then
the position 1 is lined-up with position 2.1 (and with 2.2.1.1, and with 2.2.2.1), however 2.1 is not lined-up with
1. Also 2.1 is not lined-up with 2.2.1.1. The position 2.2.1.1 is lined-up with 2.2.2.1.

Note that the relation ‘is lined-up with’ is not symmetrical since if p is lined-up with g in M then p is to the
left of ¢ in M. The intuition behind Def. 8.27 is that lined-up R-redexes may potentially yield nested residuals
via o-reduction.

Definition 8.28 (Conflict-free set of symbol positions) A set S of symbol positions in M is called a
conflict-free set of positions in M if S is a set of disjoint non-lined-up symbol positions in M.

Lemma 8.29 (Descendants of a conflict-free set) Let M be a term and S be a conflict-free set of symbol

positions in M. Suppose M 2o N. Let S’ be the set of u-descendants of positions in S in N. Then S’ is a
conflict-free set in N, i.e. all u-descendants of positions in S are once again disjoint and, moreover, they are
non-lined-up.

Proof. Let S be a conflict-free set in M and suppose M 2 N. The proof is by induction on the (length of
the) position where the rewrite step takes place. We shall consider only the cases where the rewrite takes place

at the root, for the other cases follow by applying the induction hypothesis.

1. f(P1,...,P.)[s] = f(P:ls],..., Pals]). If S = {p} then the u-descendants of p are a conflict free-set in N
(note that if p € s then p shall have n descendants). Otherwise, consider any two positions p,q € S with
p # q. Then
e cither, there are indices i,j with 1 <i,j < n such that p € P; and g € P;,
® or, p,q €8.
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In both cases their u-descendants are disjoint and non-lined up. Note that it is not possible that p € P;
for some 1 < i < n and g € 3 since S is non-lined-up.

2. &(Py,...,Pn)[s] = &(P1[1-(301)],--., Pa[l-(301)]). As in the previous case.

3. P[s][t] — P[sot]. If S = {p} then either p € P, or p € sor p € t. These cases are seen to hold. Otherwise,
consider any two positions p,q € S with p # ¢q. Then it must be that p,q € P, or p,g € sor p,q € ¢, in
all cases S’ is seen to be a conflict-free set in N.

4. 1fid] = 1 or T oid —1. These cases hold trivially since S = 0 and there are no u-descendants to consider.

5. 1[P-3] —» P. If S = {p} then either p € P, or p € s and the result follows since p has at most one
u~-descendant. Otherwise, consider any two positions p, ¢ € S with p # gq. Then either p,g€ Porp,g€ s
or p € P and q € s, and the result holds as above.

6. idos— s, To(P-3)— 3, (s1052)033 — slo(s2033), and (P-t)os — P[s]-(tos) are analogous to
the previous case.

We recall the reader that M —, N indicates that M o-rewrites to the o-normal form N.

Corollary 8.30 (Correspondents of a conflict-free set) Let R, be a FEzERS. Consider a term M and a
conflict-free set S of R-redex positions in M. Suppose v : M »—, N. Let S’ be the set of v-correspondents of
redexes in S in N. Then §’ is a conflict-free set in N, i.e. all v-correspondents of redexes in S are once again
disjoint and, moreover, they are non-lined-up.

We have seen how descendants of non-lined up positions behave, now we shall look at how descendants of
lined-up positions behave. This is not required for the standardization theorem (Proposition 8.2 anounced in the
introduction of the chapter), it shall be required when considering strong standardization (Proposition 8.58).
We seek to prove the following two propositions:

Proposition 8.31 (Correspondents of lined-up redexes) Let R, be a FEzERS. Let r,u be R-redexes in
M such that r is lined-up with v in M. Let v : M »—, N and let 7’ be a v-correspondent of r and u’ a
v-correspondent of u in N. Then one of the following holds:

1. either, 7’ nests v/,

2. or, 7 is disjoint with u’.

Proposition 8.32 (Correspondents of nested redexes) Let R, be a FEZERS. Let 7, u be R-redexes in M
such that r nests u. Let v : M —, N and let 7’ be a v-correspondent of r and v’ a v-correspondent of » in N.
Then one of the following holds:

1. either, ' nests v/,
2. or, 7 is disjoint with u’'.

In order to prove Proposition 8.31 and 8.32 we need to prove more general statements. This we set out to
do below.

Lemma 8.33 (One-step descendants of symbol positions which are one above the other) Letp,q €
SPos(M) with p < q. Let M S, N and let p’ be a u-descendant of p and ¢’ a u-descendant of g in N. Then
either p’ < ¢’ or {p’,q’} is a conflict-free set in N.

Proof. By a close inspection of the rewrite rules in the o-calculus. We proceed by induction on the (length
of the) position where the rewrite step takes place. Also, we shall assume M is either a term of sort T or S.

e rewrite-step at the root position.
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L f(My, ..., Mp)[s] = f(Mi[s],..., My[s]). If p,q € M; for some 1 < i < n then p’,¢ are unique and
P <¢.Ifp=1and g € M; with 1 <i < nthenp’ =¢ < ¢. Finally, if p,q € s then
r<q ifi<p andi<q forsomel<i<n
{p', ¢’} conflict-free  otherwise
2. &My, ..., M,)[s] = E(Py[1-(so1)],..., Pa[l-(s01)]). As in the previous case.
3. P[s][t] = P[sot]. Then either p,qg € P, or p,g € s, or p,q € t. In each case p’, ¢ are unique and
<.
1[¢d) — 1 or T oid —T. These cases hold trivially since there are no symbol positions in M.
1[P-s] — P. Then p,q € P and p’, ¢’ are unique, and p’ < ¢'.
idos — 3. Then p,q € s and p/, ¢’ are unique, and p’ < ¢'.

1 o(P - s) — s. Analogous to the previous case.

® N ook

(s1052) 083 — slo(s20s3). Then either p,q € s, or p,q € s3 or p,q € s3. In all cases p’, ¢ are
unique and p’ < ¢'.

9. (P-s)ot— P[t]-(sot). If p,g€ P or p,q € s then p’,¢’ are unique and p’ < ¢’. Otherwise p,q € ¢
and we reason as follows:

p<qd if1.2<p and12< ¢
P<d if22<p and22< ¢
{?’, ¢’} conflict-free  otherwise

e rewrite-step at an internal position.

1. M = f(My,...,M,) and M; 5, M for some i € 1.n. If p,q € M; with i # j then the result is
direct, if ¢ = j then we use the induction hypothesis. Otherwise p = ¢ in which case p’ is unique and
P < ¢ forall ¢ € q[u].

2. M =¢(M,...,M,). As in the previous case.
3. M = Pl[s]. Then either p,q € P or p,q € s. In both cases we apply the induction hypothesis.

4. M =P -sor M =sot. Asin the previous case.

The reader should note that Lemma 8.33 no longer holds if arbitrary positions in M are considered. Indeed,
recall that the substitution operator traverses function and binder symbols.

Corollary 8.34 (Descendants of symbol positions which are one above the other) Let p,q € SPos(M)
with p < ¢q. Let v: M —, N and let p’ be a v-descendant of p and ¢’ a v-descendant of ¢ in N. Then either
P < ¢ or {p',¢'} is a conflict-free set in V.

Proof. By induction on the length n of v.

e n = 0. The result holds directly.

u

e n > 0. Suppose v = ¢;u and M & M’ =, N. Since p[v]p’ and gfv]q’ there exist (unique) positions
P1,q1 € SPos(M') such that p[¢]p: and pi[u}p’, and g[é)q: and ¢q1{ulq’.
By the induction hypothesis two cases may arise:

1. Either, p1 < q1. Then by Lemma 8.33 we are done.

2. Or, {p1,q1} is a conflict-free set in M’. Then by Lemma 8.29 the set {7/, ¢’} is conflict-free in M and
we are done.

Lemma 8.35 (One-step descendants of lined-up symbol positions) Let p,q € SPos(M) with p lined-
up with g. Let M =, N and let p’ be a u-descendant of p and ¢’ a u-descendant of ¢ in N. Then one of the
following holds:
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1. either, p' < ¢,
2. or, {p/,¢'} is a conflict-free set in N,
3. or, p' is lined-up with ¢ in N.

Proof. By a close inspection of the rewrite rules in the o-calculus. We proceed by induction on the (length
of the) position where the rewrite step takes place. Also, we shall assume M is either a term of sort T or S.

e rewrite-step at the root position.

L f(My,...,Mp)[s]| = f(Mils],..., Ma[s]). Then
— If p,qg € M; with 1 <7 < n then p/,¢ are unique and p’ is lined-up with ¢’.
—Ifp=1and g € sthenp =e< ¢ for all ¢ € gfu].
— If p,q € s then one of the following cases holds:
p' lined-up with ¢ ifi<p andi<q forsomeg<i<n
{?’, ¢} conflict-free otherwise
— pEM; forsomel <i<nandq€s.
p' lined-up with ¢ ifi<¢
{?', ¢} conflict-free otherwise
2. (M, ..., M,)[s] = &(M,[bft(s)), ..., Mn|lft(s)]). As in the previous case.
P[s|[t] —» P[sot]. If p,g€ P, or p,q € s, or p,q € t then p’,¢ are unique and p’ is lined-up with ¢’.
If pe M and g € s or q € t then the same holds. If p € s and ¢ € ¢ then also p’, ¢’ are unique and p’
is lined-up with ¢’. No other cases are possible.

w

1[id]) — 1 or T oid —T. These cases hold trivially since there are no symbol positions in M.
1[P-s] — P. Then p,q € P and p/, ¢’ are unique, and p' is lined-up with ¢'.
idos — s. Then p,q € s and p’, ¢’ are unique, and p’ lined-up with ¢’.
1 o(P - s) — s. Analogous to the previous case.
(s1032) 083 — slo(s20s3). Then p/,q are unique and p’ is lined-up with ¢'.
(P-s)ot— PJt]-(sot). Then
— If p,g € Por p,q € s then p', ¢’ are unique and p’ is lined-up with ¢’.
— If p€ P and g € t (the case p € s and q € ¢ is analogous) then we reason as follows:
p’ lined-up with ¢ if1.2<¢
{p', ¢’} confiict-free  otherwise
— If p,q € t then we reason as follows:
{ p' lined-up with¢ if1.2<p’and12<¢

© ® N o

7’ lined-up with ¢ if22<p and22<¢
{7',q'} conflict-free otherwise

e rewrite-step at an internal position.
1. M = f(M,,...,M,) and M; 5, M for some i € 1..n. Then either p,qg € M, with j # i and the
result is direct, or p,¢q € M; and we may use the induction hypothesis.
2. M =¢&(M,...,M,). As in the previous case.

3. M = P[s]. Then if p,q € P or p,q € s we apply the induction hypothesis. Otherwise p € P and
g € s in which case p’ is lined-up with ¢’ for all p’ € p[u] and ¢’ € g[u].

4. M = P - s. We use the induction hypothesis.

5. M = sot. Analogous to the case M = P[s].

Corollary 8.36 (Descendants of lined-up symbol positions) Let p,q € SPos(M) with p lined-up with q.
Let v: M —, N and let p’ be a v-descendant of p and ¢’ a v-descendant of ¢ in N. Then one of the following
holds:
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1.p< ¢, or
2. {p',¢'} is a conflict-free set in N, or
3. P’ is lined-up with ¢’ in V.

Proof. The proof makes use of Lemma 8.35, Lemma 8.33 and Lemma 8.29. We proceed by induction on the
length n of v.

e 1. = 0. The result holds directly.

u

e n > 0. Suppose v = ¢;u and M ¢ M’ S, N. Since p[v]p’ and gfv]q there exist (unique) positions
P1,q1 € SPos(M’) such that p[¢lp: and p;[u]p’, and g[¢lq and q:[ulq’.

By the induction hypothesis three cases may arise:

1. Either, p; < q1.- Then by Lemma 8.33 we are done.
2. Or, p; is lined-up with ¢; in M’. Then by Lemma 8.35 we are done.

3. Or, {p1,q1} is a conflict-free set in M’. Then by Lemma 8.29 the set {¢’, ¢} is conflict-free in M and
we are done.

Note that in Corollary 8.36 if v is a o-derivation to o-normal form then the case p’ lined-up with ¢’ in N
is not possible. The proof of Proposition 8.31, however, is not a direct consequence of this fact since a priori it
is not clear that p’ < ¢’ in NV, where ¢/ (resp. ¢’) is the v-descendant of the position of the head symbol of =
(resp. u), assures us that 7’ nests u’. We shall see that indeed r’ nests u'.

Proof.[of Proposition 8.31]
Let p (resp. gq) be the position of the head symbol of r (resp. u) in M. First an observation.

Observation: Note that 7{v))r’ implies the following:
o Let p[v]p’. For every position o in the pattern of r there is a unique o’ with ofu]o’ such that p’ < o'.

e Let 0 and prev(o, M)" be positions in the pattern of r. Let o’ and 0” be the unique (by the previous item)
symbol positions such that ofv}o’ and prev(o, M)fuv}o” and p’ < o' and p’ < o”. Then o” = prev(d, N).
Moreover, if the term at position o is in the i-th argument of the function or binder symbol at position
prev(o, M) then also the term at position ¢ is in the i-the argument of the function or binder symbol at
position o”.

This observation simply states that the pattern of r may be reconstructed in r'.

Suppose p{v]p’ and g[v]g’. By Corollary 8.36 either p’ < ¢/, or {¢/, ¢’} is a conflict-free set in N, or p’ is
lined-up with ¢’ in N. Since N is a g-normal form, the last case is not possible. If {p’, ¢’} is a conflict-free set
in N, then 7’ and v’ are disjoint and we are done. Otherwise, suppose 7’ < ¢’. We are left to verify that +' and
u’ do not overlap.

Suppose that u’ overlaps 7, that is, there is a position o’ in the pattern of 7’ such that o’ is also a position in
the pattern of u’. We have ¢/ < ¢’ < 0/, as Figure 8.4 illustrates. By the previous observation applied to r there
must be a position o; in the pattern of r such that o;[ujo’. Likewise, applying the observation to u there must
be a position o5 in the pattern of u such that o;[v]o’. But this contradicts the fact that the ancestor relation
is a (partial) function. Therefore, r’ nests u’.

Proposition 8.32 may be proved in a similar manner.

7Recall that prev(p.n, M) def p, where n € IN and p.n € Pos(M).
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Figure 8.4: Non-overlapping redexes may not have overlapping correspondents.

8.3 From Standard fo(R),-derivations to Standard R-derivations

We shall now show that standard fo(R),-derivations project onto standard R-derivations via o-interpretation
(Hardin interpretation). This requires recalling the notion of finite developments and standard derivations.

Definition 8.37 (Developments) A development of a set of non-overlapping redexes S in M, in a SERSg;
R is an R-derivation T : Mo 28 M; 23 M, 23 ... which only contracts residuals of redexes in S. T is a complete
development if no residuals of redexes in S remain.

Thus in a development of a set of redexes S of a term M no newly created redexes may be contracted,
only residuals of those redexes in S are allowed to be contracted. The property of Finite Developments (FD)
states that all developments of a set of non-overlapping redexes are finite. FD is usually proved in the setting of
orthogonal (Arst or higher-order systems) in which case any set of redexes in any term is always non-overlapping.
However, in the case of left-linear ambiguous systems FD still makes sense provided a set S of non-overlapping
redexes is considered, and that the residuals of two non-overlapping redexes is non-overlapping. The latter
property may be verified in first-order term rewrite systems and SERSy,, among other higher-order rewrite
formalisms, in the style of Proposition 8.31.

Proposition 8.38 (Finite Developments) All developments of redexes in a term M in a SERSg R are
finite and cofinal (they end in the same term).

For a proof of FD in the setting of (orthogonal) SERS see {Kha0l]. FD for regular CRS may be found
in [K1080], for the more general HRS (and correcting [Klo80]) see [00s97]. In fact, the following strengthening
of FD is seen to hold [Oos94]:

Proposition 8.39 (Strong Finite Developments) All developments of a finite set of non-overlapping re-
dexes in a term M in a SERSg, R are finite and cofinal. Moreover, all complete developments of the same set
of redexes induce the same residual relation.

Our interest in strong FD is that it shall be used for defining standard derivations following the Klop-
Melliés [MelO1] presentation based on rewriting derivations. More precisely, we shall require strong FD in order
to define irreversible permutations. It is also required for ‘sequentializing’ parallel rewrite steps.

Definition 8.40 Let R be a SERSy;. Let S be a set of disjoint R-redexes in M. Let M =3z N be a parallel
R-rewrite step (Def. 7.50) contracting only redexes in S. A sequentialization of the rewrite step M 3z N is
any complete development of S in M.

Note that if M =3¢ N then any sequentialization of S in M is a derivation ending in N. This follows from
the Strong Finite Developments proposition.

Definition 8.41 (Reversible and irreversible permutations) Let R be a SERSg;.
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1. Let R and U be R-redexes in M occurring at disjoint positions. A reversible permutation is a pair of
derivations R; U'OU; R’ such that U’ is the unique R-residual of U, and R’ is the unique U-residual of R.

2. Let R and U be R-redexes in M such that R occurs in an argument of U. An irreversible permutation is
a pair of derivations R;U’ > U; T such that U’ is the unique R-residual of U, and the derivation T is a
complete development of the (possibly empty set of) U-residuals of R.

The reversible permutation relation is symmetric. It relates any two complete developments of a fixed pair
of disjoint redexes in a term.

Definition 8.42 (Standardization preorder, Lévy permutation equivalence) Let R be a SERS.

1. A reversible (resp. irreversible) standardization step is a pair of R-derivations T = & (resp. T 5 )
such that T = T1; ¥; T3, ® = T1;Q; T2, and ¥OQ (resp. ¥ > ). In either case we write T = &. The
standardization preorder = is the least reflexive and transitive relation containing 3.

2. The Lévy permutation equivalence = is defined as the least equivalence relation containing =.
3. The reversible permutation equivalence =~ is defined as the least equivalence relation containing =.

Since first-order rewrite systems are a particular case of SERSy;, the following definition of standard deriva-
tions apply to them too.

Definition 8.43 (Standard derivation) Let R be a SERS ;. A derivation Y : M -z N is standard in R
when there is no sequence:

T=To3T1>...5Ti1 > T

of k-1 reversiblc_a steps = followed by an irreversible step é», for k > 1. Or equivalently, if T is in normal form
with respect to =-rewriting modulo ~.

The reversible standardization steps are necessary for the nested and nesting redexes of an irreversible
standardization step to ‘meet’ each other.

Example 8.44 Let R = {f(X,a) — b, ¢ — ¢, d — a} be the OTRS of Example 8.7 and consider the derivation
(contracted redexes have been underlined): f(d, f(d,d)) — f(d, f(d,a)) — f(d, f(a,a)) — f(a,f(a,a)) —
f(a,b). There is no irreversible standardization step applicable, however we may reorganize it via reversible
standardization steps as follows: f(d, f(d,d)) — f(d, f(d,e)) — f(a, f(d,a)) — f(a, f(a,a)) — f(e,b). The
final two rewrite steps constitute an irreversible standardization redex.

Before ending the subsection we shall define how to project fo(R),y derivations onto R-derivations, for R
an essentially first-order SERSg; (Def. 7.35). We recall the Projection Proposition (Proposition 7.56) for it shall
be used for projecting first-order derivations to the SERSq, framework. Also, we shall seize the opportunity to
recall the other main result of Chapter 7, namely, the Simulation Proposition (Proposition 7.46). The latter,
although not used for defining the projection of a derivation, shall be used when defining our standardization
procedure, as observed in the introduction to the chapter.

Proposition 7.56 (Projection Proposition) Let R be a SERS,;, and let fo(R)yy be its first-order version,
where W is a basic substitution calculus satisfying the scheme. If M —,(x),, N then W(M) =z W(N).

That is to say, a fo(R)w-step v may be simulated by a parallel R-step (Def. 7.50). If u is a W-step then
W(M) = W(N), otherwise W(M) rewrites to W(N) by rewriting the disjoint correspondents of u in W(M)3.
We recall the reader that this parallel rewrite relation is reflexive.

Proposition 7.46 (Simulation Proposition) Let R be a SERSy and let fo(R)yy be its first-order version.
Suppose M —x N then

1. if fo(R)w is an EzERS then M —gr)/w N.

8The notion of correspondent has been defined for the basic substitution calculus o only, and we shall make use of this result in
the latter case only.
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2. if fo(R)w is a FEzERS then M — gy © - N where o denotes relation composition.

The second item of the Simulation Proposition, the item of our interest in this chapter, may be interpreted
as: all derivations in a SERS4, R may be ‘implemented’ by derivations in the first-order setting via its first-order
version. So now we consider what it means to project a derivation from the FEzERS setting to the SERSg4;
setting.

Definition 8.45 (Projection of fo(R),y-derivations) Let ¢ be a fo(R)yy-derivation. We define W(¢) by
induction on the length of ¢:

Wiem) ¥ ew(M)
gy 4 [ ewaniW®) M SwWN
W(y; = i
(v 9) { v W) M Sy N

where v;;...;v, is any sequentialization of the parallel rewrite step W(M) =3 W(N), the latter of which
results from applying the Projection Proposition to the rewrite step M — fo(R) N.

In full precision, W applied to a fo(R)w-derivation yields an ~-equivalence class of R-derivations. In this
section we shall only deal with the case in which W is the o-calculus.

Remark 8.46 It seems appropriate to shed some light on the motivation behind introducing both the usual
first-order residual relation for FEZERS ([e]) and the new correspondence relation for FEZERS ({(e))). Recall
that we shall ‘implement’ a SERSy-derivation T as a FEzERS derivation v (see Figure 8.5) by means of the
Simulation Proposition. We then shall apply first-order standardization on v making use of the usual first-order
residual relation yielding a standard (in the first-order framework) derivation ¢. Finally, we are left to verify
that the projection of ¢, namely o(¢), is a standard derivation in the higher-order framework. This is where
the correspondence relation comes in, since it shall allow us to trace the destination of fo(R)-redexes appearing
in ¢, in the derivation o(¢).

T a(¢)
Simulation[ IProjection (correspondence relation ((e)})
R I R e T e aa vV
first-order ¢
standardization

(residual relation [e])

Figure 8.5: Standardization Procedure

8.3.1 Standardization

Definition 8.47 ((Un)contributable symbol) Let Ry = (I', R, W) be a left-linear FEzERS. A function or
binder symbol g € T of arity n is called uncontributable in R,y if

1. either, g does not occur on the LHS of any rule in Ry,

2. or, g occurs on the LHS of a rule in Ryy only under the form g(Xi,..,X,) (i.e. it occurs applied to
metavariables).

A symbol in I which is not uncontributable is called contributable.

The idea behind uncontributable symbols is that redexes strictly below them cannot create redexes above
them (Lemma 8.50).
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Example 8.48 The A-symbol is an example of an uncontributable symbol in the Ao-calculus, i.e. in fo(B),.
Whereas, the application symbol is a contributable symbol in Ao due to the Beta-rule. As a further example,
for any essentially first-order SERSq, R the cons-symbol e - e is uncontributable in R,.

Although the definition of uncontributable symbol as it stands shall suffice for our purposes a more general
formulation is possible. One may define the notion of ¢-uncontributable symbol for ¢ a non-zero natural number.
A symbol g of arity n is i-uncontributable for 7 < n if either the first case of Def. 8.47 holds, or g occurs on the
LHS or a rule in Ry only under the form g(M,,..., M;, X, M;.1,...,M,). That is to say, it may only occur
on the LHS of a rewrite rule with its ith argument applied to a metavariable. We may then define a symbol of
arity n as uncontributable if it is z-uncontributable for all 1 <7 < n.

Also note that the notion of uncontributable symbol does not coincide with that of constructor symbol in a
constructor TRS [Klo92|: given a constructor TRS there may be constructor symbols which are contributable
(e.g. ‘¢’ in f(s(s(z))) — z) and likewise there may be uncontributable symbols that are not constructor symbols
(eg. fin f(z) — a).

The proof of the following lemma [Mel00, Lemma 6.3] originally formulated for the Ao-calculus holds without
further ado for an arbitrary FEzERS Ry, and is included here for the sake of completeness.

Lemma 8.49 Let Ry be a FEZERS. Suppose that a position p is strictly above a redex P = Q. For every
derivation ¢ = 7;:

1. either, ¢ preserves p,

2. or, ¢ is equal modulo ~ to a derivation ¢;;u;v; ¢2 such that ¢; preserves the position p, the position p is
strictly above the redex u, and the redex v is above p.

Proof. We begin by proving a claim: if u;;..;u; : P - R is a Ryy-derivation which preserves the position
p, and contracts a redex strictly below p then it may be reorganized into a derivation vi;...;v; which is ~-
equivalent to u;;..; u; such that v; is strictly below p. Let u;;..;u; : P — R be a Ryy-derivation which preserves
the position p, and contracts a redex strictly below p. Let ux be the last redex strictly below p. If k < j, the
redex ux41 which is not strictly below p may be permuted reversibly before ux. Observe that the resulting
derivation uy;...;u; Ug, ;.. ;U; preserves p, and contracts the redex u; ., strictly below p. Repeating the
process j — k times, one constructs a derivation v;...;v; = uy;...; u; whose last redex v; is strictly below p.

Let ¢ = r1;...;Tn be a derivation and p an occurrence which strictly above r;. We suppose that ¢ does
not preserve p. Let 7;1; be the first redex in ¢ which is above p. By the above claim, there exists a derivation
v1;...;v; equal to ry;...;7; modulo =~ whose last redex u = v; is strictly below p. We conclude.

Lemma 8.50 Let R, be a left-linear FEzERS. Suppose that a position p is strictly above a redex P 5 Q.
Every standard derivation ¢ = ;1 preserves p when:

1. either, p is a g-node for g an uncontributable symbol in R,,

2. or, pis a g-node for g a function or binder symbol in R, and % is a o-derivation.

Proof. Given the standard derivation ¢ = r;9 and the occurrence p strictly above 7 we apply Lemma 8.49.
If the first case holds then we are done, we shall see that given the hypothesis the second case cannot hold.

Suppose that v is above the occurrence p and that p is strictly above u in a pair M %X N3 P. The
derivation u;v cannot be standard, unless u creates v. Now, in at least the following two cases creation is not
possible:

1. When the occurrence p is the occurrence of an uncontributable symbol in R,. Note that this includes the
cons-node o - .

2. When the occurrence p is a function or binder symbol node and u is a o-redex the only possible pattern of
creation is when u is a ( Punc) ;-redex for some function symbol f or a (Bind)¢-redex for some binder symbol
€ and v is an fo(R)-redex. This may be seen to hold due to the fact that function and binder symbols
are uncontributable in the o-calculus, or stated equivalently: substitutions are created “downwards”. For
example, the pair M = g(h(c)[id]) —juncy g(h(clid])) — ¢ where R &' {g(h(X)) — c}, p = ¢ in M, the
position at which v occurs in N is € and the position at which u occurs in M is 1.
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The restriction to left-linear FEzERS in Lemma 8.50 is essential for otherwise a redex strictly below p could
create a redex above p.

Lemma 8.51 Let R, be a left-linear FEZERS. Let v : M —» N be a standard R,-derivation with N in
o-normal form. Then no R,-redex ever appears below a cons-node o - .

Proof. By contradiction. Suppose there exists an r; contracted in ¢ = ry; .. .; ry, strictly below the occurrence
p of a cons-node. Then by Lemma 8.50(1) the derivation ry;...;r, preserves p. Since N is a pure term we
arrive at a contradiction.

A remark before proceeding to the main proposition.

Remark 8.52 Let R be an essentially first-order SERSy; and let fo(R), be its first-order version. Let 7 be
a fo(R)-redex in M occurring at a position p with 7 not in the body of a substitution. Let R be its (unique)
corresponding R-redex in o(M) occurring at a position p’, i.e. 7{U)R for v : M —, o(M) any o-derivation
from M to o-normal form. Then for every ¢ € SPos(c(M)) with ¢ < p/, we have ¢ < p where g € SPos(M)
is the (unique) ancestor of ¢’ (see Figure 8.6). Note that although the ancestor relation, in general, is not a
(partial) function, in the case of the o-calculus and when dealing with positions of (function or binder) symbols,
we do indeed obtain a unique ancestor (see the rewrite rules in Figure 8.3). For example, in the rewrite-step
M = f(My,...,My)[8] = punc, f(Mi]s],...,M[s]) = N both € and 1 in M are ancestors of € in N, yet when
considering solely the positions of f-symbols it is just 1 in M we are interested in.

o)

S
ol

Figure 8.6: Ancestors of symbol positions.

We are now ready to prove the main proposition.
Proposition (8.2. Let R be a left-linear essentially first-order SERS;4,. Every standard derivation v :
M — N in fo(R), with N in o-normal form is projected onto a standard derivation o(v) : o(M) - N in R.

Proof. First note that by Lemma 8.51 no fo(R)-redex contracted in v : M —» N ever occurs inside a
substitution s, since fo(R)-redexes are of sort T and thus would have to take place inside a cons-node. As
remarked in [Mel00] this does not hold for o-redexes as the following example T : M —», N illustrates®:

T:M=1[(1id)o (N - id)] —map 1[1[NV - id] - (id © (N - id))] = varcons L[N - id] = varcons N

This property implies that every fo(R)-redex contracted in v has a unique correspondent R-redex in o(v).
Let o(v) = Ry;...;R, and let p: {1,...,0} — {1,...,n} be the function which associates to any R-redex
Ry in o(v) the unique fo(R)-redex ryk) in v = 71;...;7n to which it corresponds. Let Rx and Rx4y be two
consecutive R-redexes in o(v). Note that the fo(R),-derivation ry;...;7j = Tpk)+15 - - - ; Tp(k+1)—1 between 7
and 7,(x+1) contracts only o-redexes.

We shall now show that:

9Although brackets are kings in Ax (KOOO1b), they are ‘almost’ kings in Ao.
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Case 1. every reversible standardization step o(v) = ® in R may be mirrored as a (non-empty) series of
reversible standardization steps v = ... = ¢ in fo(R),, where o(¢) = ®, and

Case 2. every irreversible standardization step o(v) 2 dinR may be mirrored as a (non-empty) series of
standardization steps v= ... > ¢’ = ... = ¢ in fo(R),, where a(¢) = ®.

Hence the result follows by reasoning by contradiction since every standardisation step acting on the pro-
jected higher-order rewrite derivation may be mimicked by projection-related standardisation steps of the same
nature (reversible/irreversible) over first-order derivations. So we shall now focus on these two items.

Case 1. Suppose two R-redexes Ri and Ry.; can be permuted using a reversible permutation, that is,
Ri; Rk+1OR,; Ry, . We construct a fo(R),-derivation ¢ such that v ~ ¢ and a(¢) = Ry;...; ki Riy1i---3 Rp.
By Lemma 8.50, the derivation ry;...;7; preserves the occurrence of any function or binder symbol strictly
above 7,x). And, in particular, the lowest function or binder symbol g appearing above Ry : o(P) — o(Q)
and Ry.; in the term o(P) which, by Remark 8.52, is strictly above Tok) in P. Then the derivation ¢ =
Tp(k)iTii - - - 1743 Tp(k+1) May be reorganized modulo = into a derivation %’ such that o(y') = Rj; R}, as
follows: let p be the occurrence of g in P and assume PJ, = g(IVy, ..., Ny,,) and suppose Tp(k) occurs in N, and
the head symbol of 7, 1) occurs in Vi, for l3,l; € 1..m and [; # ly:

1. First contract all the redexes in v prefixed by p.l;
2. Second contract 7,k+1),

3. Third contract the (unique) residual of 7p(x),

4. Finally contract the remaining redexes of .

Case 2. Suppose two R-redexes Ry and Ry.; can be permuted using an irreversible permutation Ry; Ry.1 >
%; ¥. Observe the following:

Observation: by Remark 8.52 all the symbols in the redex pattern of (the ancestor of) Ry strictly above
Ry in o(P) are present in P above the occurrence of r,(x). Moreover, none of these symbols occurs embraced
by a substitution. This follows from two facts:

1. on the one hand, by Lemma 8.50, the derivation ry;...;7; preserves all these symbols (in particular the
lowest one), and

2. on the other, 7,(x41) is an fo(R)-redex hence its LHS contains no occurrences of the substitution operator
o[o].

Having concluded with our observation we proceed with the proof of Case 2. We consider two subcases,
reasoning by contradiction in each one:

o The redex 7 in P occurs under an uncontributable symbol g belonging to the pattern of Ri4;. By
Lemma 8.50 the path 7;;...; r, preserves every uncontributable symbol strictly above r,(x). Among these
symbols is the symbol g involved in the pattern of Rx1. The redex 7,(x41) is above the position of this
symbol. We reach a contradiction.

¢ All symbols above 7,(x) in P belonging to the pattern of Ry, are contributable. Suppose that the two
R-redexes Ry and Ri.1 can be permuted using an irreversible permutation Ri; Rx4+1 > Rj; ¥; we shall
arrive at a contradiction. Let p be the occurrence of the unique ancestor of the head symbol g of Ri.,,
in P, and P|, = g(M,..,Mr,). By Lemma 8.50 the derivation r;;...;7; preserves p. Let | € 1..m such
that r,) occurs in M;. We may then reorganize modulo = the derivation ¥ = r,(x); 7i;- .. 75 Tp(k+1)
obtaining v/, as follows:

1. First rewrite all redexes in r;;...;7; prefixed by p.1,p.2,...,p.l —1,p.l + 1,..,p.m in turn (i.e. first all
those prefixed by p.1, then those by p.2, and so on) and those disjoint to p.

2. Second, rewrite all redexes prefixed by p.l but disjoint to the (unique) residual of 7 (). At this
moment the redex 7,(x+1) must have emerged since
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— by the Observation there are no substitution symbols in M; between p and the position of (),
and
= Tj+1 = Tpk+1), L€ it is an fo(R)-redex and hence its LHS contains no occurrences of the
substitution operator e[e].
3. Thirdly, rewrite the (unique) residual of r,(x), say r;(k , followed by the redexes in ry;. .. ;7; prefixed
by the occurrence of 7,(x), i.e. those not rewritten in Step 1 or Step 2.

4. Finally, rewrite 7,(x41)-

Note that ¢’ = }; 95 where ] consists solely of o-rewrite steps and ¥5 = T:,(k);"'kﬁ 3Tk (k1)
for some m < j —i. Applying m + 1 irreversible standardization steps starting from 3 we may obtain
Y5 = r;(k+1); Yroys Yrey i+« -3 Pry,, - Finally, setting ¢ = ¥}; ¥4 we may conclude.

Note that Proposition 8.2 fails for arbitrary standard derivations v : M — N in fo(R),.

Example 8.53 Let R be the A-calculus, and let Ao = fo(R), be its first-order version. Then the derivation
starting from M = ((A(11))1)[(M1)c- id), ¢ is a standard first-order derivation:

&+ (MUDDIADe - id) = peta (AADI(Lfe - id] - id] —peca (1)1 - i1 e - id] - id]
However, a(¢) is not standard in the SERS, framework.
o(¢) : (AM(11))((A1)c) —p (A(11))c —p cc

The reader may have noticed that although the (only) two B-redexes in M are disjoint, they are lined-up
(see Proposition 8.31). Thus although they occur at disjoint positions in M, when we project via o their
correspondents become nested. A solution proposed by Mellies [Mel01] is to divide the class of reversible
permutations (used for standardization in the first-order framework) into two subclasses: one subclass which
remains reversible, and another which is transformed into irreversible. So now we have two classes of irreversible
permutations, the usual (say nesting) ones, and the new lined-up (lu) irreversible permutations. The latter are
defined as follows. Let R, be a FEzERS. Then R;U’ >, U; R’ where the R-redex U is lined-up with the R-
redex R in M and U’ is the unique R-residual of U, and R’ is the unique U-residual of R. Under this extended
definition of permutation (and induced notion of standardization) Proposition 8.2 seems (verifying the details
is left to future work) to apply to arbitrary standard derivations v : M — N in fo(R),. Note, however, that
when implementing a higher-order derivation via the Simulation Proposition as illustrated in Figure 8.1 of the
introduction to the chapter, the resulting derivation shall always end in a pure term.

The full standardization procedure takes the following form.

Definition 8.54 (Standardization Procedure) The standardization procedure applied to a derivation T :
M -z N of a left-linear essentially first-order SERS4, R consists in the following steps (see Figure 8.1):

Step 1 (Simulation). Apply the Conversion Procedure to R obtaining a full first-order rewrite system fo(R),
(Def. 7.35). Note that fo(R), shall always be ambiguous'® even if R is orthogonal. The Simulation
Proposition yields as output a fo(R),-derivation v : M —,(z), N implementing the R-derivation T.

Step 2 (Standardization). Use the standardization procedure described in [Bou85] applicable to first-order
left-linear ambiguous rewrite systems. The output is a fo(R),-derivation ¢ such that ¢ = v and ¢ is
standard in fo(R),.

Step 3 (Projection). Project the standard derivation. Define the R-derivation ® as o(¢). Proposition 8.2
guarantees that ® is standard in R.

Note that the standardization procedure yields a unique standard derivation modulo reversible permutations.
This procedure allows us to conclude with the following result:

Theorem 8.55 (Standardization for SERSy;) Let R be a left-linear essentially first-order SERSq,. Assume
T : M - N. Then there is a standard derivation ® : M -»g N.

The restriction to essentially first-order SERSgs is necessary since it is this class of systems that may be
converted to full first-order rewrite systems. We now consider a strong version of standardization.

10 Assuming the alphabet contains some symbol of strictly positive arity.
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8.3.2 Strong Standardization

This subsection deals with strong standardization of SERSgy-derivations. Given a derivation T in some left-
linear essentially first-order SERS;, R, the Standardization Procedure provides us with a standard derivation
® in R. However, we would like ¢ to be not just any standard derivation coinitial and cofinal with T, but also
Lévy permutation equivalent to ®, in other words, ® = T. We shall see that this transfer of standardization
not only provides us with a standardization result but also yields strong standardization.

Proposition 8.56 Let v and ¢ be fo(R),-derivations. If v = ¢ then o(v) = o(¢).
Before providing a proof we would like to draw the readers attention to the statement of this proposition.

It does not hold that v = ¢ implies o(v) = o(¢).

Example 8.57 Let R be the A-calculus, and let Ao = fo(R), be its first-order version. Then v = ¢ (more
precisely, vO¢) where (the redexes contracted at each step have been underlined in order to ease readability)

v+ (MADD[(M)e - id] = peta (11)[1 - id)[(AL)c - id) — Bera (11)[L - id](L[c - id] - id]
¢: ((’\(11))1)[& -id] = Beta (A(11))1(1[c - 4d] - id] — Beta (1)1 - dd][1[c - 4d] - id]

However, o(¢) =N o(v) (and o(v) A o(¢)), since

o(v) : (A(11))((Al)e) = ((M(1))e)((A1)e) —p c((Al)c) —p cc
o(¢) : (AM11))((A1)e) —p (A(11))c —p cc

The reason for this is that vO¢ by permuting two disjoint but lined-up redexes as illustrated in Example8.53.

Proof.[of Proposition 8.56) Let v/ : M = N, % N for {r,u} fo(R),-redexes in M such that r does not nest
u, and o’ is the (unique) r-residual of u. It suffices to show that the claim holds for the following two cases:

Case 1. if v/O¢’ for ¢’ = u;r’ then o(v’) = o(¢’), and
Case 2. if v/ > ¢’ for ¢’ = u;¢” then o(v') = 0o (¢').

Our analysis depends on whether r and u are o or fo(R)-redexes in M and shall distinguish cases 1 and 2
as needed.

1. In either case, if » and u are o-redexes then the result holds trivially.

2. Suppose u is a o-redex and 7 a fo(R)-redex (the viceversa case is analogous). Then
o(v') : o(M) 3 o(N1) = o(N) and o(¢) : o(M) = o(N2) 2w a(N')

By parametricity of o over fo(R)-redexes (Corollary 8.26) the correspondents of » € M in o(N,) are
the same as those in o(M). Then any two sequentializations of the parallel R-step shall yield equivalent
derivations modulo =.

3. Suppose both u and r are fo(R)-redexes in M. Here we distinguish the two subcases:

o Reversible permutation (Case 1). Suppose {r,u} are disjoint redexes in M. Then if the corre-
spondents of {r,u} via o are disjoint in o(M) we may simply sequentialize the derivation of the
corresponding redexes. Otherwise, by Corollary 8.30 we may assume that r is lined-up with u. Let
S = {r1,...,mn} be the set of (pairwise disjoint by Corollary 8.30) correspondents of r in o(M).
Then by Proposition 8.31 each correspondent u’ of v is either disjoint with all redexes in S or is
nested by some (one) redex in S. Finally, note that set of correspondents of v in (M) are pairwise
disjoint too by Corollary 8.30.

Thus we may construct the standardization o(v') < o(¢’) where o(v’) rewrites all r;s in some order
and then rewrites all the correspondents of u’s in some order, and o(¢’') rewrites all (correspondents
of) u in some order, and then all the (unique) correspondents of the r;s in some order.
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e Irreversible permutation (Case 2). Suppose u nests 7. Let S = {u,,...,u,} be the set of (disjoint
by Corollary 8.30) correspondents of u in o(M). Then by Proposition 8.32 each correspondent of r
in o(M) is either disjoint with all redexes in S or is nested by some (one) redex in S. Finally, note
that the set of correspondents of = in o(M) is pairwise disjoint too by Corollary 8.30.

Thus we may construct the standardization o(v’) = o(¢’) where o(v’) rewrites all the correspondents
of r in some order and then rewrites all the (unique correspondents of the) u;s in some order, and
o(¢’) rewrites all the u;s in some order and then all the (correspondents of) 7 in some order.

As a consequence of Proposition 8.56 if v = ¢ then o(v) = g(¢). We may now formulate the strong version
of the standardization theorem.

Proposition 8.58 (Strong standardization for SERS4,) Suppose R is a left-linear essentially first-order
SERSg and T : M —»z N. Then T may be standardized to a unique (modulo reversible permutation equiva-
lence) standard derivation ® : M —»g N which is Lévy permutation equivalent to Y.



Conclusions

This thesis is concerned with term rewriting and, in particular, calculi of explicit substitutions. We have
considered perpetual reductions in calculi of explicit substitutions in Part I, we have dealt with the Ax-calculus
and then considered the more involved Aws-calculus. Part II augmented M.Abadi and L.Cardelli’s object
calculus ¢ with explicit substitutions and analyzed some difficulties arising when simulating the lambda calculus
(more precisely, Av). Part III studied the encoding of higher-order rewriting in first-order rewriting and then
considered the transfer of the Standardization Theorem from the first-order case to the higher-order one. A
brief synopsis of the contents of the thesis together with hints at future research directions follows.

Part I: Perpetuality in Calculi of Explicit Substitutions

Calculi of explicit substitutions are non-orthogonal by nature. This state of affairs may be witnessed by
considering how the class of derivations between terms is affected when a calculus is augmented with explicit
substitutions. In particular, any two pure terms M and N such that there is a derivation from M to N are
furnished with a rich supply of alternative derivations between them. Preservation of strong normalization
(PSN) is in charge of verifying that we enrich with caution.

Let us expound further on this issue fixing the lambda calculus as our setting in order to simplify matters.
Define a pair of pure A-terms (M, N) as bounded if there exists n > 0 such that for all derivations v : M g N
we have |v| < n. Then an appropriate condition for avoiding indiscriminated enrichment of derivations could
be the following notion of preservation of boundedness (PB): let Ae be a calculus of explicit substitutions for the
A-calculus; we say e satisfies preservation of boundedness if for every bounded pair (M, N) the following holds:
3n > 0Vv: M —»),, N’ with e(N’) = N we have |[v| < n. Although PSN is not strictly equivalent with this
notion, the more general techniques required to prove PSN are enough to prove preservation of boundedness.
However, in some settings PB could be preferred over PSN. An example is the infinitary A-calculus [KKSdV95],
where potentially infinite normal forms are of interest. PSN would not be of much use in infinitary lambda
calculus with explicit substitutions, however PB is applicable.

The techniques developed in order to prove PSN have not been fully exploited. Part I shows how these
techniques may fruitfully be applied in order to yield perpetual rewrite strategies and inductive characterizations
of strongly normalizing terms in calculi of explicit substitutions. In the case of Ax it is worth noting that these
results have been applied with success in order to verify, via the Tait-Martin L6f-Girard proof method, strong
normalization of a polymorphic lambda calculus with explicit substitutions. The latter calculus is defined and
studied in Chapter 3. As for the Aws-calculus the presence of substitution composition makes the inductive
characterization of its strongly normalizing terms a pleasant newcomer. Future lines of research are:

¢ An open problem is that of finding a maximal strategy for Ax (Remark 3.18). Although the strategy Feo(o)
is a candidate, we have not succeeded in verifying this. Note that this has also been left pending in [BH98]
(together with the task of providing an inductive characterization of the set of strongly Ax-normalizing
terms which we have addressed in this thesis).

o It is rather unfortunate that nothing on strong normalization of typed Aws has been said. The reducibility
technique should be applicable with the aid of the characterization of the strongly Aws-normalizing terms.

¢ From a more general standpoint, the plethora of methods for proving PSN, as described in the introduction
of the thesis, suggests the lack of a sufficiently general proof technique for dealing with this property.

191
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Part II: Explicit Substitutions for a Calculus of Objects

The origins of calculi of explicit substitution stem in category theory and lambda calculus, however current
widespread use of the object-oriented programming paradigm gives rise in a natural way to the question of
whether the virtues of promoting metalevel substitution to the object-level in the context of foundational calculi
for functional programming, make themselves present in analogous calculi for the object-oriented paradigm. In
an attempt to answer this question Part II of this thesis puts Abadi and Cardelli’s ¢-calculus [AC96) under the
microscope; it is presented in a de Bruijn indices setting and is augmented with explicit substitutions. Although
the minimum properties of ¢, such as confluence, are shown to be retained subtle issues concerning simulation
of functional calculi have driven us to introduce a new substitution operator (invoke substitution) together with
fields into the language. Compliance with the property of preservation of strong normalization in the presence
of interaction between the new substitution operator and the usual explicit substitution operator is the issue of
the last section of this part. As regards future research directions we mention:

¢ Type systems for the -calculus are thoroughly studied in [AC96], including subtypes and polymorphism.
It would be interesting to extend our work to these settings.

o As already mentioned, existing formalisms for implementing higher-order rewriting via explicit substitu-
tions, such as XRS and explicit CRS, are not able to cope with our augmented ¢-calculus due to the
presence of two distinct notions of substitution. Therefore, an issue which deserves further attention is
how to extend these frameworks for higher-order rewriting in order to revert this situation.

Part III: From Higher-Order to First-Order Rewriting

Among the virtues of explicit substitutions is the fact that it allows higher-order calculi to be reduced to first-
order ones, the \-calculus being the prime witness of this fact. Part III inquires into the following fundamental
issues:

1. What other calculi besides the A-calculus are witnesses of this reduction to first-order?
2. What benefits result from it (hence justifying our calling it a virtue)?

As regards the first of these issues, we consider the general case of reducing higher-order rewrite systems
to a first-order setting by presenting an encoding of the former into the latter. A distinctive advantage of our
approach is that a well-established higher-order rewrite formalism is used as the departing formalism, namely
a simplified variant of Khasidashvili’s Expression Reduction Systems [Kha90]. Explicit Expression Reduction
Systems is the first-order formalism defined as the destination formalism. A translation, called the Conversion
Procedure, to first-order rewriting modulo an equational theory is considered, followed by a simple syntactic
criterion to determine if a system may be reduced to a first-order rewrite system where the equational theory is
empty (systems we have dubbed essentially first-order higher-order rewrite systems). Moreover, this translation
commits to no particular calculus of explicit substitutions but rather relies on a generic macro-based substitution
calculus encompassing many existing calculi, of the kind, in the literature. Also, it is argued that relating higher-
order rewriting to first-order rewriting is not only appealing from an expressive-power point of view but also
from the possibility of transferring results from the vast body of properties of the first-order framework to the
higher-order one. This is the approach we take for shedding some light on the second issue. We argue that the
class of essentially first-order SERSy; is appropriate for such a task. Of course, this program is worthy of no
serious consideration unless the class of essentially first-order systems includes ‘interesting’ systems, however
the A-calculus, among others, lives comfortably inside this class. The last chapter of Part III is devoted to the
transfer of standardization. We list some interesting research directions:

e The Conversion Procedure amounts to incorporating, into the first-order notion of reduction, not only
the computation of substitutions but also the higher-order (pattern) matching process. Indeed, so called
pattern substitutions [DHKP98], arise naturally in the setting of the Conversion Procedure. It would
be interesting to distinguish by means of different substitution operators and calculi, substitutions for
matching and for ‘usual’ substitution in the rewrite system resulting from the Conversion Procedure.
This would yield calculi of explicit substitutions and explicit matching.
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e We have not considered preservation of strong normalization for the translation of higher-order rewrite
systems. In the case of Explicit CRS some work has been done [BR96, Blo97]. In a first approach it seems
convenient to fix some calculus of explicit substitutions. However, in order to maintain the parametricity
achieved by using a general macro-based substitution calculus (basic substitution calculi) it would no
doubt be of interest to identify additional conditions on basic substitution calculi which would guarantee
PSN. This is related to the above mentioned research line on sufficiently general proof techniques for
proving PSN.

e The transfer of other properties such as completion are left to future work.

o Chapter 8 raises the question of whether not only Ao but the whole class of essentially first-order SERSg4;
enjoy finite normalization cones. From this one would be able to conclude that external derivations are
normalizing in the explicit substitution counterpart of any orthogonal essentially first-order SERS4s.

e A precise comparison in the lines of [OR93] but between SERS and the HRS formalism would be inter-
esting. Also one could compare SERS™ and HRS. As already mentioned the metasubstitution operator
may not occur on the LHS of a SERS rewrite rule. However, it seems that our results on simulation and
projection can be extended to the case where they may occur on the LHS of a rewrite rule (the lemmata
required are the same as those already developed in Part III). Let us denote this variant of SERS by
SERS™. Observe that SERS™ has more ‘matching power’ than SERS. However (and in relation to the
previous item), note that this would not be ‘equivalent’ to lifting the pattern condition on HRS since
matching is computed by ‘developments’ in SERS™.
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e We have not considered preservation of strong normalization for the translation of higher-order rewrite
systems. In the case of Explicit CRS some work has been done [BR96, Blo97]. In a first approach it seems
convenient to fix some calculus of explicit substitutions. However, in order to maintain the parametricity
achieved by using a general macro-based substitution calculus (basic substitution calculi) it would no
doubt be of interest to identify additional conditions on basic substitution calculi which would guarantee
PSN. This is related to the above mentioned research line on sufficiently general proof techniques for
proving PSN.

o The transfer of other properties such as completion are left to future work.

o Chapter 8 raises the question of whether not only Ao but the whole class of essentially first-order SERSg;
enjoy finite normalization cones. From this one would be able to conclude that external derivations are
normalizing in the explicit substitution counterpart of any orthogonal essentially first-order SERS 3.

e A precise comparison in the lines of [OR93] but between SERS and the HRS formalism would be inter-
esting. Also one could compare SERS* and HRS. As already mentioned the metasubstitution operator
may not occur on the LHS of a SERS rewrite rule. However, it seems that our results on simulation and
projection can be extended to the case where they may occur on the LHS of a rewrite rule (the lemmata
required are the same as those already developed in Part III). Let us denote this variant of SERS by
SERS™. Observe that SERS™ has more ‘matching power’ than SERS. However (and in relation to the
previous item), note that this would not be ‘equivalent’ to lifting the pattern condition on HRS since
matching is computed by ‘developments’ in SERS™.
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Appendix

A.1 Perpetuality in Calculi of Explicit Substitutions

Definition A.1 (RPO) Let s = f(s1,..,8m,) and ¢t = g(¢ty, ..,t,) be terms in 7;. Then s >4 t if and only if
one of the following holds:

1. (subterm) s; >7; t or s; =t for some i € 1.m
2. (decreasing heads) f > g and s >7 t1,..,8 >7; tn
3. (equal heads) f = g and (s1, .., 5m) >7; (1, tn)

where >7. is the extension of »7; to multisets.

Lemma A.2 (Subject reduction) Let I't> M : o be a derivable type judgement and suppose M —p, N.
Then ' > N : o is a derivable type judgement.

Proof. By induction on the reduction M —, N with r € F;. Thus we consider the cases when the reduction
takes place at the root and when the reduction is internal.
Suppose the reduction takes place at the root. Then we have the following cases to analyse:

e r = Beta2. Then M = (Az: 7.P)Q and N = P(z := Q) and the derivation runs

Nz:7r>P:o

abs
FreMx:r.P:ZT(r)— o 'esQ:2T(7)

app
's(M:7.P)Q:¢o

and we obtain

Nz:r>P:0¢ T>Q:2T(7)
subs

> P(z:=Q):0o
e 7 = 7Beta. Then M = (At.P)T and N = P[t := 7] and the derivation runs

' P:o
———————————tabs
I'> At.P:Vt.o'

tapp
I'> (At.P)r:d'{t — ZT(7)}
where t ¢ FTV(I'). We may obtain

'>P:o’

¢
> Plt:=1]:0'{t — ZT(7)}
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Note that ' € { {z,:0],...,Zn : 0L} | o}, =z7 o;[t := 7| for alli € 1..n} where [ = {0y,...,0,}, since
t ¢ FTV(T) and we may use the rule ztgc.

o 7 = zapp. Then M = (PQ)(z := R) and R = P{z := R)Q{z := R) and the derivation runs as follows

I'z:7DpP:ioy—0o Nz:70Q:0n

app
Lz:70PQ:o I'>R:ZT(7)

P> (PQ)z:=R):0

subs

and we may obtain

Nz:7pP:01—0 T>R:ZT(7) Nz:7>Q:01 T R:ZT(7)
sub

''>P{z:=R):01 >0 reQ@:=R): 0

app
I'>P{z:=R)Q(z:=R): 0o

r = zlam. Then M = (\y: 01.(P)){(z := Q) and N = Ay : 07.(P(z := Q)). The derivation runs

Nz:ry:01>P:09

abs
Tz:7D Ay:01.(P: 2T(01) — a2) 'eQ:27(r)
I'> (A\y:o1.(P))z := Q) : ZT(01) = o2

L]

Now by the variable convention we may assume that all bound type variables in Q do not occur free in o,
and that y does not occur bound in Q. Then by Lemma 3.43 we have that I,y : o1 > Q : 7 is a derivable
type judgement. This allows us to construct the following derivation.

Nz:ny:o1DP:o2 Ny:a1>Q:2ZT(7)

]
Ny:o1>Plz:=Q):02
abs

' Ay:a1.(Plz:=Q)): ZT(01) — o2
7 = zvar. Then M = z(z := P), N = P, 0 = ZT(0’) and the derivation runs

Nz:o'>z:2T(’) ' P:2T()
I'o z(z:= P): ZT(c")

And the subderivation ending in the I' > P : ZT(0”) suffices.
7 = zgc. Then M = Q(z := P) and N = Q with z ¢ FV(Q), and the derivation runs

Nz:7>Q:2T(c’) T'>P:2ZT(7)
I'cQ(z:=P): ZT(c")

But one may verify by induction that if I, z : 7>>Q : o is 2 derivable type judgement such that z ¢ FV(Q),
then I'> Q : o is also a derivable type judgement. This concludes de case.

r = zappt. Then M = (Pr'){z:= Q) and N = P(z:= Q)7 and 0 = ¢’{t — ZT(7')} where

Iz:70> P:Vto'

tapp
T,z:7> Pr':d’'{t — ZT(")} I'> Q:2T(+)
I'> (Pr')(z:= Q) : o'{t — ZT()}

Then we may commute the application of rules tapp and subs as follows

Nz:rp P:Vto T'DQ:2ZT(7)

s
' P(z:= Q) : Vt.o’

tapp
' P(z := Q)7 : o't — ZT(7")}
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e 7 = zlamt. Then M = (At.P){z := Q) and N = At.P(z := Q) and the derivation runs

Lz:roP:p

tabs
Fz:7> At.P:Vtp 'eQ:ZT(7)

I'> (At.P)(z:= Q) : Vt.p i

where t ¢ FTV(I',z : 7). And we may obtain

Nz:70P:p ToQ:27T(1)
F'>Plz:=Q):p
' At.P(z:= Q) :Vt.p

S

e r = ztapp. Then M = (PQ)[t := 7] and N = P[t := 7]Q[t := 7] and the derivation runs

ApP:oy—a2 ADQ:on
Ap PQ:os
tsubs
A[l::-r-! > (PQ)[t = '7'] : Uz{t — ZT(T’)}

app

And we may obtain

A P:oy— o2 ADQ:oy
tsubs t
A(¢:=-l-] > Plt:=1]: (01 — 72){t = ZT(T)} A[t::-p-] > Qlt := 7| roy{t — ZT(T)}
app

Ae:=r) O Plt := 7|Q[t := 7] : 02{t — ZT(7)}
e r = ztlam. Then M = (Ay: 0’.(P))[t := 7] and N = )y : ¢/t := 7].(P[t := 7]) and the derivation runs

Ay:0d'>P:p
abs

ADMy:0' . P:2T(d')—p
tsubs

Ape.=r) > Ay : 0" P)[t := 7] : (ZT(0") = p){t — ZT(7)}
and we may obtain

Avy:0'>P:p
tsubs
Apgmr)yy: It := 7] > Plt := 7] : p{t — ZT(7)}

tsubs
Afg=r) > My : 0'[t ;= 7). Pt := 7] : ZT([t := 7]) = p{t — ZT(7)}

Then by Lemma 3.29(2) we are done.
¢ r = ztvar2. Then M =zt := 7] and N = z and the derivation runs

A z: ZT(p)
tsubs
Ajg=q) O z[t := 7] : ZT(p){t — ZT(7)}

where £: p € A. Let z: o' € Ay.—~) and therefore o/ =zr p[t := 7). Then ZT(p’) = ZT(p){t — ZT(7)}
using Lemma 3.29(2) and the fact that ZT is complete. Then Ap.—,) &z : ZT(p') = ZT(p){t — ZT(7)}
is a derivable type judgement (using var).

Note that if the ztvar2-rule were replaced by the ztgc2-rule then the following result, which may be proved
by induction on the size of the derivation, would be required: if At> M : p is derivable and t ¢ FTV (M)
then Af.—r) > M : p{t «— ZT(1)} is derivable for any type 7.

e r = ztappt. Then M = (P7)[t := 7] and N = P[t := 7']r[t := 7’] and the derivation runs
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AP P:Vup

tapp
A Pr:p{u+~ ZT(7)}
tsubs

Afe=rr) & (P7)[t := ') : plu — ZT(r)H{t — ZT(+")}
and we may obtain

AD P:Vup
subs

t
Afzrr) B Plt := 7] : (Vu.p){t — ZT(7")} = Vu.p{r — ZT(r')}

Api=rr) & Pt := 7|7t := 7] : p{t — ZT(7")}{u — ZT(r[t := 7'])}

Then using Lernma 3.29(1) and (2) we are done.

o r = ztlamt. Then M = (Au.P)[t := 7] and N = Au.P[t := 7] and we assume by the variable convention
that u ¢ FTV (7). Then the derivation runs

AD>P:p
—————— tabs
AD Au.P:Vup

tsubs
A= r) & (Au.P)[t := 7] : (Vu.p){t — ZT(7)}

where u ¢ FTV(A). We may assume by the variable convention that u ¢ FTV (As.—r)) and thus obtain
the derivation

A P:p

¢
Ajimr) > Plt :=1) : p{t — ZT(7)}

Apg:=r) > Au.P[t := 7] : Yu.p{t — ZT(7)}

Suppose now that the reduction is internal. Then we consider the following cases according to each possible
context C

e C = Az : 17.P. We must consider two possible cases:

— P —p, P’ and therefore N = Az : 7.P’. This case is handled by the induction hypothesis.
— 7 —z7 T’ and therefore N = Az : 7/.P. Then the derivation runs

Fz:7v>P:p
abs

' lx:7.P:ZT(t) = p

And we may conclude by using the context reduction Lemma 3.44 on the derivation ending in the
premise of abs followed by a new application of abs, and noting that ZT'(7) = ZT(1').

o C = At.P. Then P -, P’ and N = At.P’ and we use the induction hypothesis.

e C = PQ. Then either P - P’ and therefore N = P'Q, or Q —F_ @ and therefore N = PQ’. In both
cases we use the induction hypothesis.

e C = Pp. Then either P —f_, P’ and therefore N = P'p, or p =z p’ and therefore N = Pp/. For the
first case we use the induction hypothesis. The second case is resolved by a new application of tapp and
noting that ZT'(p) = ZT(¢').

¢ C = P(z := Q). Then either P —p, P’ and therefore N = P'(z := Q), or Q —F,, Q' and therefore
N = P(z := Q). In both cases we use the induction hypothesis.

e C = P[t := 7]. Then the derivation runs

ApP:p

tsubs
A[t:=‘r] i P[t = T] : p{t - ZT(T)}
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And either P —p_, P’ and therefore N = P’[t := 7], or T — 2z 7’ and therefore N = P[t := 7']. For the
first case we use the induction hypothesis. For the second we construct the following derivation.

ADP:p
ubs

ts
Afi=r) D Pt :=7'] : p{t — ZT(7")}

We are left to verify that the assignment Ay._,) is in the set of type assignments { {z; : 07,...,2, :
o} | 0} =z1 o[t :==7'] for all i € 1.n} = A(.—,}, where A = {21 : 01,...,Zn : On}, which is true since
T —27 ’7".

A.2 Explicit Substitutions for a Calculus of Objects

A.2.1 Confluence of cﬁb

We prove confluence of gﬁb by adapting a proof technique presented in [Tak89), a variation of the Tait-and-
Martin Lof technique. For this, a notion of parallel rewriting is required, analogous to that defined in [Tak89)]
for the A-calculus but in the ¢-calculus. But before that, some basic properties of c‘{b-rewriting and preservation

of gﬁb-rewriting by updating and substitution, must be considered

As regards the behaviour of substitutions with respect to substitution, the updating functions and reduction
we have the following results (similar properties in the framework of calculi of explicit substitution appeared in
[KR95]):

Lemma A.3 1. Let g, b€ 7;55' Then Vi, j,k such that > 0,7 > 0and j < i < j+ k we have L(_;"”(a){{i —
b} = Uf(a).

2. Let a,b€ 7y and i <n —k. Then Ui(a)fn — b} =Ui(afn—i+1 < b}).

3. Letac T#’L and p < k < p+j. Then Uy (Uj(a)) = U "1 (a).

4. Let a,b€ 7;55 and 7 < k + 1. Then Ui(afn — b}) = Ui, ,(a)fn — Ui}
5. Let a€ Ty andn <1+ 1. Then Ul (U (@) = U U, sy _n(a)).

6. Let a,c € 7;.{»' Then UZ(a){k+1—c} =a.

Proof. All but the last item are proved by induction on a. The last item may be proved by using item (1)
and the fact that for any j > 0 we have U} (a) = a.

The Substitution Lemma also holds for the c'{b-ca.lculus. For the sake of completeness we have included its
proof in full detail.

Lemma A.4 (Substitution Lemma) Let a,b,c € 7;.55 Then Vn > 0,Vi, 1 <i < n,affi — b}fn —c} =
afn+le—c}fi —bvfn—-i+1«c}}.

Proof. By induction on a using Lemma A.3, items (1) and (2). .

The reduction relation is preserved by substitution and the updating functions. Since the proofs of these
results resemble those of the corresponding results in the ¢45-calculus we have omitted them.

Lemma A.5 Let g,a/,b € ’1;/ . Thenifa — 4 a’ then
dd db

1. afn — b} = a'{n — b}
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2. b{n —a} g b{n —a'}
3. Ui(a) = Ui (a’).

In fact the following, more precise, variant of the preceding lemma shall be used later. Its proof relies on
Lemma A.5.

Corollary A.6 Let a,d’ € 7;.55 and k£ > 0. Thenifa L3 4, a’ then

1. affn < b} _k’cﬁ,, a'{n — b}
2. bfn — a} - bn —d'}

We now consider its confluence by adapting a proof technique presented in [Tak89)], a variation of the
Tait-and-Martin L6f technique. For this, a notion of parallel rewriting is required, analogous to that defined
in [Tak89] for the A-calculus but in the ¢-calculus. Figure A.l provides such a definition. Also, the results
developed in the previous subsection shall be used.

a=a a=ad g=4g
= Ind R — 5 —Mm
n=n el=dl l:=a=1:=d l=g=21=¢
a.=>a.' m,ém:iel.n Ob a:}al m-_—\',m/ o
- - v
s(a) = ¢(a’) [m; €1 "] = [m] *€1-7] ad<m>=d a<m' >

b=>b mi=>mii€lni#j

[lj - §(b),mii€1"n'i¢j].lj = b’{l - [lJ = q(b’),m; iEl..n,i;&j]B Im
a=a b=V mi=2miiel.ni#j
n — a " :
[l == o, mi€ ™) | = of (i€ a < 1y = (b) >= [I; = s(b), m] €1-m]

b=>bd mi=>mii€lni#j
Oa

[miiel..n] a< lj = >= [lj = b',m; iEl..n]

Figure A.1: Parallel reduction in the qﬂb-calculus

Definition A.7 (Maximal Complete Development) Let a € 7:15 then we define a* (the Maximal Com-
plete Development of a) inductively as follows:

n* def

([l_—,- - q(b),mi"a""'#j].lj)‘ def 3 [lj = ¢(b*), m} iel..n,i;ej]]}
([lj = b, miiEI..n,i;éj].lj).. déf b*

(al)* def o1 if a.l is not a redex

s(v)* e o)

(t=9)" e = g*

(1:=b)* g

(m " a <l =c>)* &

(Imf€-m) @ <l =) >)* & [l =c(b), mp €]

(a9 <m>)* X g a<m*> ifaa<m> isnotaredez.

el def [my i€l-n)

[lj = c-’ m: iel..n,iaéj]

[m
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The result below considers the behaviour of the parallel reduction relation respect to the updating functions
and substitution.

Lemma A.8 Let a,b € sz,' If a = b then Vk,n > 0 we have U (a) = UZ(b).

Proof. By induction on a.

¢ a = p. Then b = p and we may use rule (Ind).

e a = c.l;. Then there are three subcases we must consider:

— b= .l; and ¢ = ¢. Then by the induction hypothesis we have U (c) = UP(c’). Then using rule (I)
we obtain UZ(c).l; = UL().L;.

—c=[l; = ¢(d),m, €™ ] and b = d'{1 — [I; = ¢(d), m; *¢'™*I]}, where d = &’ and m; = m/.
Then by induction hypothesis we have U, , (d) = UL, ,(d") and UL (m;) = U (m]), and therefore,

Roald) = U (@) Up(ma) = U (m) .
[l = s(UR1 (), U (ms) €139 = Up, (@)L — [l = s@UR,1 (@), Up (ms) F€1-7#1]}

And by Lemma A.3(4) (n = 1) we have that U2, (d')f1 — [l; = c(UP, ('), UR(m]) €1-ni#i]} =
UR(d' 1 — [l = o(@), m; "))

- ¢ = [l := d,m;* ™) and b = &', where d = d’. Then by the induction hypothesis we have
7(d) = UP(d’), and therefore by rule (Ia), we have [l; := UP(d), UL (m;) €1-™#9).1; = UP(d')

e a = ¢ a4 < m>. Then we consider three cases, one for each of the possible rules that could have been
applied (i.e. (Ov),(Om),(Oa)). They are dealt with as above.

The remaining cases are similar and are dealt with as above.

Lemma A.9 Let d,d',¢e,¢ €T andn>1. If d = d' and e = ¢’ then we have d{n — e} = d'{n — ¢'}.

Proof. We use induction on d.

e d = p. Then d' = p and we have

p—-1=p{n—¢€} ifp>n
p{n—e} = Ug(e) > U () =pin—¢€} ifp=n
p=pin—c} ifp<n

Case p = n is justified by using Lemma A.8.
e d = c.l;. Then we must consider three subcases:

-d =/l withc=>c. Thenclfn — e} = c{n—e}l=>fn €}l =C.lfn « €} by the
induction hypothesis.

—c=[; = s(b), m; €™} and &' = V{1 — I = ¢(t'),m, €™} with b= b and m; = m/.
Now c.lifn — e} = [l; =s(b{n+ 1 — e}),m:{n — e} €1-mi#I] 1.
By induction hypothesis bf{n + 1 — e} = ¥{n + 1 — ¢’} and m;{n — e} = m|{n — €'}, therefore
by applying rule (Im) we obtain

s = s(bfn + 1 e}), mifn — e} F€-miF| Y
¥{n+1— e}l —[l; =s(t'{n+ 1 e'}),m{n — &'} €-mi#]}
bVn+1—¢€}{l — [t = g(b’),m: ‘61"""'#.7']{“' —¢'}}

b’{l — [lj = S_(b/), m: iGl..n.i#j]}{n - CIB

d{n«— €'}

clifn — e}

T

o
t~
»
IS
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—-c= [l :=b, miiel“"'i’éj ] and d’ = & with b= . Now by the induction hypothesis we have that
b{n — e} = v/{n — €'} thus resulting in

bﬁn — e} = b’{{n — e'B
[l := bfn — e}, m €™ L = Y fn — €'}

Ia

e d = ¢(a). Then from the definition of parallel reduction it must be that d’ = ¢(a’) with a = o’. By
induction hypothesis af{n + 1 — e} = a’{n + 1 — €’} thus resulting in

afrn+le—e}=>adfn+1—¢€}
s(efn+l—e})=>c(@{n+1<¢€})

and by the definition of substitution we are done.

e d = (I = g). Then by studying the inference rules defining the parallel reduction relation we conclude that
d' = (Il = g') with g = g’. We resolve using the induction hypothesis in a similar fashion to the previous
case.

e d = (I := a). Then by studying the inference rules defining the parallel reduction relation we conclude
that &’ = (I := &’) with a = a’. We resolve using the induction hypothesis in a similar fashion to the
previous case.

e d =a < < m >. There are three subcases we must consider:

— d' =a’ 9 <m > with a = o’ and m = m’. Then we resolve using the induction hypothesis.
—d= [miiel..n] a< lj = ¢(b) >. Then d = [lj = g(bl)'mé i€1..n.i¢j] where b = b’ and m; = m;

Now by induction hypothesis bf{n + 1 e} = b'{n+1 — €'} and m;{n — e} = mi{n — €'} al-
lowing us to conclude using the Om-rule:

bfn+l—e}=bfn+1—e} mifn—e}=mi{n—¢€}
[mifn — e} € " a<ly=sb{n+1—e}) >= [ =c(t/{n+ 1< €'}),mi{n — e} 1€1-mi#7]

And by the definition of substitution we are done.

- d=[m€"") 9 <l;:=b>. Then d& = [l; := ¥, m] ““>™**7] where b = ¥’ and m; = m/.
Now by induction hypothesis we have b{n — e} = ' {n — ¢’} and m;{n — e} = mi{n — €'} al-
lowing us to conclude:
b{n—e} =>¥V{n—e} mifn—e}=>mifn—¢€}
[mifn — e} € ") < <lj :=bfn — e} >= [l; := b'{n — €'}, m{{n — '} €177

And by the definition of substitution we are done.

e d = [m,*€!"] and therefore d' = [m] **1"] where m; = mj. Then we resolve using the induction hypoth-
esis.

Proposition A.10 Let a,b € 7;15' If a = b then b = a*.

Proof. We use induction on ¢ and lemmas A.8 and A.9.

e a =n. Then b = n and we are done.

e a = c.l where c.l is not a redex. Then b = ¢/.l and ¢ = ¢’. By induction hypothesis ¢’ = ¢* then by rule
(I) we may conclude ¢’.l = c¢*.l and since (c.l)* = c*.l we are done.

ea=|[;= g(d),miiel""'i#j ].L;. Then there are two subcases we must consider.
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i
where (I; = ¢(d)) = m/; and m; = m]. And we may further state that m} = (}; = ¢(d)) withd = d".
Then using the induction hypothesis we may obtain

— b= c.l; with [l; = ¢(d),m,*$""™7] = ¢. Studying the rules we verify that ¢ = [m}, m; i€l.niz)

d =d* m{=m} I
[lj - g‘(d’),m; t€1..n.t#]].lj = d'{l — [lj = g(d"),m; :el..n,tyé_y]}
Note that [l; = (d'),m; “"™].l; = ¢l; and also d*{1 « [l; = ¢(d*),m} €]} = ([I; =
g(d)‘mitel..n,i#]].lj)-.

— b=d'{1 « [I; = ¢(d'), m} *€*™#7]}. Then we must have d = d’ and m; = m} with i € 1..n,i # j.
Then by induction hypothesis &’ => d* and m] = m}. Thus

d=d
M, Mm
L=¢(d) =1 =¢(d") mi=>m! i€l.ni#j

[l = ((dl).m:- iel..n,i#j] = [l = g(d"),m: iel..n,i#j]

Ob

Now since d’ = d* by Lemma A.9 we may conclude
d’{l — [lg = g(d’),m: i€1..n.i#j]} = d*fl [l] - ((d"),m: ie]""'i#j]}}

i€1-m4#7] 1. Then there are two subcases we must consider.

ea=|;:=dm

— b= cl; with [I; := d,m, €™ = /. Studying the rules one may verify ¢’ = [m}, m; *€!"™*J)

where (I; := d) = m/ and m; = m]. And we may further state that m} = (l; := d’s with d = d'.
Then using the induction hypothesis we may obtain
d=d*
[ := &', m} € ™FI L = g fo
Note that [I; := d',m} **™*9]1; = ¢ I; and d* = [l := d, m;*$1 ™) 13
— b=d with d = 4’ and by induction hypothesis d’ = d* and we are done.

¢ a = [m,*€1-"]. Then it must be that b = [m}*€!"] where m; = m/. By induction hypothesis we have
1[;hat rrez;l ¢] m} and therefore applying rule (Ob) we get [m] ‘"] = [m} €!-#]. Note that [m€!")* =
m: 1] R .

ea=d<da<m>andeaisnot aredex. Then b = d <« <m’ > with d = & and m = m’. We conclude
using the induction hypothesis.

¢ o = [m;*€1"] 9 <l = ¢(d) >. Then we must consider two subcases:

— b=a' 9 <m > where [m, "] = o’ and (}; = 5(d)) = m’. Then it must be that o’ = [m] *€!-"]
with m; = mj} and m’ = (I; = ¢(d’)) with d = d’. Then by induction hypothesis we obtain m; = m}
and d’ = d* and therefore

d=d m{=>m
1 i€l.n = / = s i€l..n,iFj om
[m; } 9 <l =¢(d) >= [l; = ¢(d*), m; ]

- b= [l = ¢(d),m; €1-m4#9] where m; = m; for i € 1.n,i # j and d = d’. Then by induction
hypothesis we obtain m} => m! and d’ = d* and obtain

d=>d" mi=>m] iclni#j
[lj = g.(d/)’,m'g iel..n,i#:il = [lj = g‘(d"),m;' i€1..n,£#j]

e a = [m;*!"] 9 <l; :=d>. Then we must consider two subcases:

—b=d a<m > where [m;**}"| = o’ and (I; := d) = m’. Then it must be that o’ = [m] *€!-"|
with m; = m; and m’ = (I; := d') with d = d’. Then by induction hypothesis we obtain m = m}
and d’ = d* and therefore
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d =d* m|=m
[m: i€1..n] a< lj =g S>= [lj = d",m;‘ iel..n.i;éj]

—b=[; =d,m €1 M%9) where m; =m; for i € 1.m,i # j and d = d’. Then by induction
hypothesis we obtain m} => m} and d’ = d* and therefore

d=d" m{=>m! i€lni#j

[l =4d, m,; iel..n.#j] = [l := d*,m} €1-mid] Ob

The cases for methods and fields are similar.

As an immediate corollary of Lemma A.10 we may conclude that the parallel reduction relation satisfies the
diamond property. This entails confluence of cﬁb.

Proof.[of Lemma 5.15] Firstly, note that — cgbg = C—» oy The first inclusion follows from the form of the
rules defining the parallel reduction relation and the fact that for every a € 7':‘55 we have a = a. The second
inclusion may be proved by induction. Therefore we have that =*=—» e The diamond property of = concludes
the proof.

A.2.2 Strong Normalization of BES
We shall denote the rewrite system whose only rule is SW by the SW-rewriting system or SW for short.

Definition A.11 (External form) We define an ezternal form as a term a[fit (k1)][1%2 (k2))...[t% (kn)]
where k; may be @, b/ or 1 in 7, such that it verifies the following conditions:

1. ais not a closure.

Note that in an external form a[f*! (k1)][*2 (k2)]...[fi*> (kn)] the only possible SW-reductions may occur
in a or in k; with 7 € 1..n. We shall use the following lemmas for the proof of weak normalization.

Lemma A.12 If a[s)][s2]..[sn] is an external form then for every sp+1 =ft**+! (kp+1) there is an external form
b = a[s;,][85,]-.[8jn,1] Such that {1, ..., jn+1] is a permutation of [1, ..., n+1] of the form [1,...,i-1,n+1,i,...,n]
and 0[31][32]...[8n+1] —>SW b.

Proof. By induction on n.

e Case n = 0. Since ¢ is not a closure, a[s;] is an external form and a[s1] »sw a[s1).

e Case n > 0. We may assume s, =f** (@!) and i, > in otherwise we are done. Now we consider the
following cases:

— If kpy1 = @I then a[sy][sg)..[sn][fi**+ (Q)] —=sw a[s1][s2].-. [+t (@)][sn]. Now we apply the
induction hypothesis to a[s1][s2].-.[sn—1] and [f*=+! (@!')] and obtain an external form e such that
a[s1][s2)--[sn=1) [+ (@l')] »sw e. Now the resulting permutation of [1,...,n —1,n + 1] can have
one of two forms

% [1,...,n—1,n+1]. Then e ends in the substitution [fi*~+* (@!')] in which case e[s,] is an external
form. The resulting permutation of [1,...,n+ 1} is [1,...,n—1,n+ 1,n].

# [1,...,i—1,n+ 1,i,...,n — 1]. Then e ends in the substitution [s,_;] = [f*-* (@I")] and
therefore e[s,] is an external form since a[s,](s2]...[sx] is. The resulting permutation is {1, ..., -
1,n+1,%,...,n—-1,n}.

Therefore we have a[s)](s2]...[sn]["+! (@V)] = sw a[s1][s2]...[f1*"+* (@l)][sn] »sw €[sn] and e[sn]
is an external form.
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— If k,;1 = ¢/ then we may apply SW and obtain a.[.sl][:32]...[_1t"'-+l (c)}if* (@l)]. Now by applying
the induction hypothesis to the term afs1][sz]...[sn-1] and [f**+! (c/)] we obtain an external form e.
Now the resulting permutation of {1,...,7 — 1,n + 1] can have one of two forms

* [1,...,n—1,n+1]. Then e ends in the substitution [f**+! (¢/)] in which case e[s,] is an external
form. The resulting permutation of [1,...,n+1]is [1,...,n—1,n+ 1,n].

% [1,...,4—1,n+ 1,4,...,n — 1]. Then e ends in the substitution [sn—;] = [fi**-* (@I”)] and
therefore e[s,] is an external form since a[s;][sz]...[s] is. The resulting permutation is [1,...,7i—
L,n+1,4,...,n—1,n]

The case where ky..; =T is similar.

Lemma A.13 If a[s](s2]...[sn] is a term in T¢,,, such that a is not a closure then for every sny+1 =fi**+! (kn41)
there is an external form b = a[s;,](si,]...[8i,,,] such that [iy,...,in41] is a permutation of [1,..,n + 1] and
a[s1](s2]--.[sn+1} »sw b.

Proof. By induction on n and using Lemma A.12.

Lemma A.1l4 (Weak Normalization of SW) The SW-rewriting system is weakly normalizing.

Proof. Using the technique presented in [KR97]. Let a be any term in 7., ,. We shall use structural
induction on e to prove that there exists a’ € SW-normal forms such that ¢ »sw a'.

e If a = n then we are done.

e The other cases where a is not a closure are straightforward since the normal form is computed by obtaining
the normal forms of the subterms.

¢ So suppose a = b(s,][sz]...[sx] and b is not a closure. By the previous lemma, a —»gsw b[s;,][ss,].--[s:.]-
Since b and every s;; is simpler than a we may apply the induction hypothesis and obtain normal forms
b’ and s}, such that b »sw b and s;; —»sw si,. Note that if s, =1* (k;) with k; being of the form @!
or ¢/ or T then s} must be of the form s;, =1* (k}) where k} is @l or ¢ /(with ¢ -»sw ) or . But then
we may obtain a normal form for a, namely v'[s;, ]{si,]...(s} ].

For the proof of strong normalization of SW we shall need the following lemma which we state without
proof (see [Oos98] for a proof and some historical remarks) .

Lemma A.15 Let A = (S, R) be an Abstract Reduction System such that:
¢ R is weakly normalizing.
e R locally confluent.
e there exists a function f : S — IN such that aRb implies f(a) < f(b).
then R is strongly normalizing.
Lemma A.16 (Strong Normalization of SW) The SW-rewrite system is strongly normalizing.
Proof. We define the following function f : 7, — N>«

f(n) = f([mi€m) € TR f(ma)
f(ad) = f(a) f(als)) = 2f(a) + ()
flea<m>) ¥ fa)+ f(m) M) E 2f(s)
(s(a)) L f(a) f(@u) ¥

fit=g) = f(g) (b)) |

Fl:=1) L) I0) lef
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We prove by induction on a that if ¢ —sw b then we have f(a) < f(b). Below we consider the cases where
the reduction takes place at the root, the other cases hold by the induction hypothesis.
In fact, since k > i we have

Falf® @D)1* (s)]) = 4f (@) + 2 + 2 + 25 f(s) < 4f(a) +25f(s) + 2 f(s) + 2 = f(alt* (s)][0* (1))
Since SW is locally confluent (the rule SW overlaps itself and the corresponding critical pair may be closed
in SW) the strong normalization property follows from weak normalization and by applying Lemma A.15.

For the proof of strong normalization of ESDB we shall need Lemma 2.6.

Lemma A.17 (SN of ESDBU{MO, FO, FI}) ESDBU{MO, FO, FI} is strongly normalizing.

Proof. We deflne a lexicographic order based on a measure f : 7, — IN>2 x IN»» by providing two

polynomial components k : T¢, +— IN>2 and k : T, +— IN>; and then letting f(z) def (h(z), k(z)). The
functions h and k are defined in Figure A.2. Note that for any substitution s, h(s) > 2.

h(n) € o k(n) def on

h(a.l) € h(a) +A() k(a.l) e k(a) + k()
hMa<a<m>) ¥ h(a)+h(m)+1 ka<a<m>) ¥ k() +k(m)+1
h(s(a)) L h(a)+1 k(s(a)) € k(a)+1

h(l:= a) ' RhQ1) + h(a) k(l := a) e k(1) + k()

h(l = g) = h() + h(g) k(i = g) = k(1) + k(g)
h([m,-" € 1--n]) déf Z?:l h(m) +n+1 k([m'-" € 1..n]) déf 22;1 k(m,) +n+1l
h(als)) ' h(a)h(s) k(als]) = k(a)k(s)

h(f: (3)) = h(s) k(h (3)) L 2k(s)

h(b/) = R k(b/) = k)

h(Ql) def 3 k(Q) def 3

k(1) df 5 k(1) def 3

where h(l) = k(1) ¥ 1

Figure A.2: Polynomial interpretation

Now we may show by structural induction on u that if v — ggsu(mo,Fo,F1,co} v then f(u) > f(v), and if
u —sw v then f(u) = f(v). Finally, we conclude by applying Lemma 2.6 and A.16.

We shall consider reductions at the root only since for internal reduction the property holds by the induction
hypothesis.

o ifu=[l := a,mi €™ —pr 0 = then h(u) = h(}; := @) + T ;4; h(ms) + 1+ 1> h(a) = h(v).
o ifu=[mi ") a<ly=f>opo [l = f,m ™| = v, then
h(w) = (T0, h(ms) + 0+ 1) + h(l; = ) + 1> h{l; = f) + ST h(ms) + 0+ 1.
o if u=[m € " 9 <l = a>or0 [lj = a,m; ™| = v, then
h(u) = (X0, h(ms) + 7+ 1)+ h(l = a) + 1 > h(lj == a) + L7 h(ms) + n+ 1.
o if u = (s(c))[s] =sm s(c[ft (s)]) = v, then h(u) = (h(c) + 1)k(s) > h(c)h(s) + 1 = h(v).

o ifu=[m;} € "|[s] =50 [mi[s] € I+"] = v, then h(u) = (T, h(ms) + n + 1)h(s) > Y1) h(mi)h(s) +
n+ 1= h(v).
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o if u = (I := a)[s] =sF | := als] = v, then h(u) = (1 + k(a))h(s) > 1 + h(a)h(s) = h(v).
o ifu=(l=g)[s] =sB = g[s] =v, then h(u) = (1 + h(g))h(s) > 1 + h(g9)h(s) = h(v).
o if u = a.l[s] — g7 a[s].l = v, then h(u) = (k(a) + 1)h(s) > h(e)h(s) + 1 = h(v).

eifu=a<<m>[s] osu als] 9 < m[s] >= v, then h(u) = (h(a) + h(m) + 1)h(s) > h(a)h(s) +
h(m)h(s) + 1 = h(v).

e if u = 1{a/] = Fvar @ = v, then h(z) = 2k(a) > h(e) = h(v).

e if u = n + 1{a/] 9 Rvar 1 = v, then h(u) = 2**1h(a) > 2" = h(v).

o if u =1(@l] > py 1.l = v, then h(u) =6 > 3 = h(v).

o ifu=n+1[Ql 5pmy n+ 1 =, then h(z) = 2*+13 > 27+1 = h(v).
o if u = 1{f (3)] = FvarLife 1 = v, then k(u) = 2k(s) > 2 = h(v).

o if u=n+ 1{f (s)] = rverList 7[s](T] = v, then
f(w) = (2**1h(s),2™+2k(s)) > (277'h(s),2"k(5)3) = f(v).

o if u = n[l] = varshise 7 + 1 = v, then f(u) = (27+1,273) > (2"+1,27+1) = f(v).

o if u = alff (@I ([l = b,m ™)) 500 ol (8/)] = v, then h(u) = h(a)3(h(l := b) +
Y2 h(mg) +n + 1) > h(a)h(b) = h(v).

o if u = [ (@))[f* (s)] —sw a[h* (s)][f* (@)] with k > i then f(u) = (h(a)3h(s), k(a)2'.3.2%.k(s)) =
(h(a)3h(s), k(a)2¢.3.2% k(s)) = h(v).

A.3 A de Bruijn Notation for Higher-Order Rewriting

A.3.1 From de Bruijn Valuations to Correct Valuations

In this section we shall prove that the translation of a valid de Bruijn valuation (Definition 6.67) does not
depend on the choice of the t-metavariable.

Lemma A.18 (Renaming and the UJ(e) translation) Let ! be a label of variables, z and y be two vari-
ables, S be a set of variables and a be a de Bruijn term such that:

l.z€eland 2 ¢ S,
2. y does not occur in U (a), and

3. Names(FV(a)\|l]) C S.
Then we have U (a){z «— y} =4 Uﬁz‘_y}(a).

Proof. The condition Names(FV (a)\|!|) C S is required for U (a) and U,'S{'z,__y}(a) to be defined. The proof

proceeds by induction on a. The case where a is of the form f(a,, ..., a,) follows from the induction hypothesis
so we consider the remaining ones.

e a = n. We have two further cases to consider:

— 1< n < |l|. Then on one hand U (n){z « y} = at(l,n){z « y} = at(i{z — y},n) = Uﬁz‘_y}(n).

— n > |l|. Then since z ¢ S we have U (n){z — y} = zp_y{z — ¥} = Ty = Tn_ig

2=y} =
Uﬁv—v}(n)'
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e a =¢(ay,...,a,). Then we reason as follows:
Uf(a{z—y} = ¢&(U. 1(01) 4(0«.)){2 —y}
= & (US(a)lz — g}, US(en){z — 1)) (2 € Lhence 2 £ 2
and y not in U (a))
=a &z.(U, 4{;._,,)(111) U;({,,._y}(an)) (i.h.)
=a &v.( ;1{;._1,}(“1){3 - ”} U;[{z._y} (an) {x - 'U}) (v fresh)
Za E‘U( vl{za—y}{:l:a-—v}(al) Ufl{zc——y}{:c——v}(aﬂ)) (lh)
=q &u.( ul{z.._y)(al) fl{,,._y} (an)) (z#yandz ¢l)

« £v. w(w:{u—y}){ww}(“l)' . U(w:{zw}){ww}(“ﬂ))

“a £'U (U l{zo——y}(al){w - 'U} le{zo—y}(a‘n){w - 'U}) (ih)

o WU, (@) Uiy (am) (w €z — y}US)
= Ufryple)

Since the translation function on the LHS and RHS of the equation to prove may have chosen different
variables for the £ binder we relate them through a fresh variable v.

Lemma A.19 Let a and b be de Bruijn terms, ! and !’ labels of binder indicators and « a binder indicator.
Then for j > 0 we have: Value’t'(l,a) = Value’*'(,b) implies Value! (ol,a) = Value? (o’ ,b).

Proof. By induction on a.

e a =m. Since Value’!(l,m) = Value?*'(I', ) we have b = n for some index n. We proceed by cases:

— m < j+ 1. Then since Value’*!(l,m) = m = Value’** (I, n) by Definition 6.40 we have n = m and
therefore Value’ (al, m) = Value’ (al’,n).

— m > j + 1. We have two different cases:

* m—(j+1) < ||. Then by hypothesis we have Value’*!(l,m) = at(l,m—(j+1)) = Value’*}(V, n),
and hence 0 < n—(j+1) < |I'| and at(l,m — (j + 1)) = at(¥,n — (j + 1)). Therefore
Value? (al,m) = Value’(od’,n) since l <m —j <|alland 1 < n — j < |al/|.

— (5 +1) > |l|. Then by hypothesis we have Value’*!(l,m) = Tpy_(j41)-p = Value? (U, n),
and hencen— (j+1) > || and m — (j + 1) — |l| = n = (j + 1) — |I'|. Therefore Value?(ad, m) =
Tm—j|al] = Value? (ad’, n).

e a = f(aj,...,an). By Definition 6.40 and the hypothesis we have necessarily that b = f(b1,...,bs)
and Value’ +1(l a;) = ValuedT1(l',b;) for 1 < i < n so that by induction hypothesis we can conclude
Value’ (al, a;) = Value? (al’,b;) and thus Value?(al,a) = Value’ (al’, b).

e a = £(a1,...,an). By Definition 6.40 and the hypothesis we have necessarily that b = £(by,...,bs)
and Value't2(l,0;) = Value?*?(I',b;) for 1 < i < n so that by induction hypothesis we can conclude
Value’* (ad, a;) = Value?*!(al’,b;) and thus Value’ (al, a) = Value? (al’, b).

Note that the converse of Lemma A.19 does not hold (for & may already be present in I or I/). Indeed,
Value®(aa, 2) = Value®(aa, 1), yet Value® (a,2) # Value'(a,1). The value function is used to determine when
a de Bruijn valuation is valid or not. It is defined in the SERS4 formalism in order to describe reduction
on de Bruijn terms. A natural question which arises is that of the relationship between value equivalent de
Bruijn terms considered as named terms via de U (o) translation in the SERS formalism. The following lemma
investigates this matter.

Lemma A.20 Let a,b € T, S be a set of variables, [, 1’ be labels of binder indicators, k a label of variables,
and 6, a variable assignment If both U wx(a) and Ug k(b) are defined, then Value(l,a) = Value(V',d)

implies Uo (i)k(a) Us, (l,)k(b)
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Proof. By induction on a.

209

e o =m. Since Value®(l,m) = Value®(l’,b) we have b = n for some index n. The left hand side reads

at(gv(l), 777-) m < |l
Ug,e(m) = at(k,m— ) || <m < |Kl|
T —|tk| m > |kl| and Z,,_jix) € S

We now consider the following cases:

— m < |l|. Then since Value®(l,m) = at(l,m) = Value®(!',n) we have n < || and at(l,m) = at(l/, n).

Then Ui(l,)k(n) = at(0y(l'),n) = 0,(at(l’,n)) = 6,(at(l,m)) = va(,)k(m).

— |l| < m < |lk|. Then since Value®(l,m) = Ty = Value®(l',n) we have n > |I'| and Zpm_y) = Tn—17|-
Then m — |I| = n — |V'|. Thus U;,s ank(n) = at(k,n —|l']) = at(k,m - [I]) = Uég wk(m).

— m > |lk|. Then since Value®(l,m) = z,,_)y = Value®(l',n) we have n > |l’| and Ty_| = Tn-j|-
Then m — |l| = n — || and since m > |lk| we also have n > |k|. Thus Uo k() = Tk =

Tm-|tk| = Ua,(,)k(m)

ea = f(a1,...,an). Since Value®(l,a) = Value®(l',b) we have b = f(bl,.. ,bn) and Value (lya) =

Value®(V',b;) for 1 < i < n. Then by the induction hypothesis we have Uj (’)"(a")
hence Uau(l)k(a) “a 9u(")k(b)

Ug, (,,)k(b) and

e a = £(ay,...,an). Since Value®(l,e) = Value®(l’,b) we have b = £(by,...,b,) and Value'(l,a;) =
Value! (I',b;) for 1 < i < n. Then Value®(Bl,a;) = Value®(Bl,b;) holds by Lemma A.19, where in
particular we can take 3 to be a frah o-metavariable such that 6, is undefined on 8. Let us extend the
function 6, to 3 by deﬂmng 6y (ﬂ) = z, where z is a fresh variable such that z ¢ 6,(1)6, (! )k US. Then
smce Us b, (,)k(a,.) and U3, o, (,,)k(b ) are defined we can apply the induction hypothesis to get Uo gk (@) =

29 (,)k(a’) zﬂ (l')k(b ) - 9 (ﬂl’)k(b ) for 1 < i < n.
We now reason as follows:

Ua.,(t)k(f(ah . ,a—n))

€z (U o (l)k(al) zg (l)k(an)) (z ¢ 6,(1)k U S)
=a £2.(U3, Ok "‘1){z - z} Uy klan){z = 2})
= £z (Uza (l)k(al) zo (,)k(an)) (L.A.18)
=a §z. (Uzo (1')k(b1) zG (l’)k(bﬂ)) (ih.)

£2.(U, Yo (l’)k(bl){y — z} Ugpo ik (ba){y — 2})  (L.A.18)

= Uev(ll)k(g(bll seey b ))

=a &Y. ( ¥6,(1")k (b1), . yo (1')k(bn)) (y € 6,(V')k U S by Def. 6.63)

Note that, in general, the converse of Lemma A.20 does not hold. Indeed it suffices to consider k = ¢, | = a,
!=p8,a=10>b=1, 8 =0 and the variable assignment 6, = 6,8 = z. Then UZ(a) = z = US(b) but

Value(a, 1) = a # B = Value(B,1).

We can now show that the translation of de Bruijn valuations is correct in the sense mentioned above. This

is completed in Chapter 6 as Lemma 6.68.

A.3.2 From Valid de Bruijn Valuations to Admissible Valuations

This subsection shows that if we depart from a valid valuation x in the de Bruijn indices setting and we
translate this valuation as dictated by Definition 6.67 into a valuation in the SERS setting, then we obtain
an admissible valuation. In other words, the resulting valuation is safe (Definition 6.20) and verifies the path

condition (Definition 6.21).

A word on notation: we shall use §,;, ... to denote o-metavariables (that is, § may either be a pre-bound

o-metavariable such as ¢, or a pre-free metavariable such as @).
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Lemma A.21 (valid de Bruijn valuations translate to safe valuations) Let x be a valid de Bruijn val-
uation for a rewrite rule (L, R), 6, a variable assignment satisfying the requirements of Definition 6.67, S a
finite set of variables, k a label of variables, and U(L, R) = (G, D) the translation of (L, R). If the following
conditions hold

L. U, ,s,x)(k) is defined for all metavariables of G and D, and
2. 6, is injective on the set of bound o-metavariables of (G, D).

then Ugg, s,x)(x) is safe for (G, D).

Proof. Recall that Uy, sx)(k) def (8y, 8;) where:

0. x %« Uasv(,)k(nX,) for any X; € Dom(k)

So first we must verify that for every t-metavariable in (G, D), U,,s.x)(k) is indeed defined, but this is
guaranteed by Hypothesis 1.

In what follows we shall abbreviate Ug, s.x)(k) with 6’ for the sake of readability. Suppose that ¢’ is not safe
for (G, D), then unwanted variable capture arises in #’D (since the metasubstitution operator does not occur
on the LHS of a rewrite rule, no renaming problems can arise in G). Thus there exist metaterms M, and M»
and a formal parameter « such that

® Mj|a « My] occurs in D (or equivalently D = C[M,[a — M,]] for some metacontext C),
o @ is defined for M, and M,,

e da€ FV(¢'M,), and

e for some variable z we have z € BV (¢’ M,) and also z € FV(6'M,).

The metaterm D may be depicted as in Figure A.3(a) where /; denotes the label of the metacontext C.

oy .11 .u .u
A b b b
/N /7 \ / 7/ \
[l M, [ M, [ ]la . [ ]la .
| | a e
M, . M, Y . Y
z z
(2) (b) (c) (d)

Figure A.3: Tree form for D
Before proceeding we will show the following:

Fact A.22 The free variable occurrence z € FV (6’ M;) cannot be bound by a formal parameter 8 € I; (i.e. for
all 8 € l; we have 8'(8) # z.). This may be verified by contradiction as follows. Suppose that for some 8 € [,
we have 8'(8) = z. Thus, by definition of Ug, sx)(k) we have 6,(B8) = z. Let us consider the bound occurrence
of z in & M;. There are two possibilities:

1. z comes from the instantiation of a bound o-metavariable, so that z = ¢'(8’) for some formal paraineter
B’ in M,. Now since D is a well-formed pre-metaterm we must have 8 # 3. But #(8’) is equal to 6,(8)
by definition, so that 8, assigns the same value, namely z, to two different bound o-metavariables § and
B’ of D, thus contradicting Hypothesis 2.
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2. z comes from the instantiation of a t-metavariable, so that z € BV (t) with ¢ = 'Y for some t-metavariable
Y occurring in M;. By Definition 6.67 we have

t = Uj, (1Y)

for some t-metavariable Y; occurring in Dom(x) with { = l'al; (see Figure A.3(b)). Therefore by definition
of the term translation function UJ(e) (Definition 6.63) the variable = cannot be a candidate for binding
in kY] since it already occurs in the label 6, (l)k, indeed, 8 € I and 6,(8) = =.

Thus we have proven that the free variable occurrence z in ’Ms cannot be bound by a formal parameter in
the label of the metacontext C.

We now return to the proof of the lemma. Let us consider where the free variable occurrence of z comes from
in @ M. We have two possible cases:

1. There is an occurrence of an o-metavariable § in M> such that 6,(6) = z. As observed above, since z may
not be bound by a formal parameter in /; (i.e. there is no 8 € l; with 6,(8) = z) then § ¢ ;. Thus § = E’
for some free o-metavariable E’ or else the pre-metaterm D would not be a metaterm. So then E’ isa
free o-metavariable in D and thus by the Hypothesis 1 Ugg, s,x)(k) is defined on B'. Now, the assignment

6, satisfies the requirements of Definition 6.67, so that in particular by the second requirement we must
have 6,(8') =z € SUk.

We now analyse where the bound occurrence of z comes from in 8’ M; in order to arrive at a contradiction.
Here too we have two cases to consider:

(a) = = 6,(B") for some formal parameter 8" occuring in M,. Now, 6,(8”) € SU k since 6, satisfies the
requirement of Definition 6.67 by hypothesis, so that we arrive at a contradiction.

(b) z comes from instantiating some t-metavariable Z in M, i.e. £ € BV (6’Z) for some t-metavariable
Z in M, (Figure A.3(b)). Thus there is a t-metavariable Z; with | = l’al; in Dom(k), a simple label
K and an index m such that U,f‘;au(,,a,l)k(m) =z = at(k'6,(Vady )k, m) .
Now since z is bound in §’Z we have m < |k'6,(l')]. But then by definition of U?(e) we have
z ¢ SUB,(al))k, in other words, = cannot have been used as a candidate variable for binding. In
particular, z ¢ SU k. This is a contradiction since we already know that z € SUk.

2. There is an occurrence of a t-metavariable Y in M, such that z € FV(6'Y). Then there is an occurrence
of Vi in Dom(k) with | = lpl; such that z € FV(Ui(,zll)k(nlﬂ)) where [, is the label “above” M,
(Figure A.3(c)). Note that since for this occurrence of z we have z € FV (6'M,) then we must have that
z € Sorzeb,(L)k.

We now analyse where the bound occurrence of z comes from in /M;. Here too we have two cases to
consider:

(a) £ = 0,(8") for some formal parameter 8” occurring in M;. If £ € S or £ € k we arrive at a
contradiction with the fact that 6, verifies the requirements of Definition 6.67 (saying that 6,(8") ¢
SUk). Moreover, if z € 6,(l;) we contradict Fact A.22.

(b) z comes from instantiating some o-metavariable Z in M), i.e. z € BV (6'Z) for some t-metavariable
Z in M, (Figure A.3(d)). Thus there is an o-metavariable Z; in Dom(k) with Il = l'al;, a simple
label k¥’ and an index m such that U,f,eu(,,a,l)k(m) =z = at(k’0,(l'aly)k, m).

Now since z is bound in M; we have m < |k’0,(l')|]. But then by definition of U$(e) we have
z ¢ SUb,(al))k. In particular, z ¢ SU6,(l;)k. This is a contradiction since we already know that
z € S orx€ by(lh)k.

Lemma A.23 (From valid de Bruijn valuations to admissible valuations) Let s be a valid de Bruijn
valuation for a rewrite rule (L, R), 6, a variable assignment verifying the hypothesis in Definition 6.67, and
U(L,R) = (G, D) the translation of (L, R). If the following conditions hold

1. Ugg,,s,x)(k) is defined for all metavariables of G and D, and
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2. @, is injective on the set of bound o-metavariables of (G, D).

then Ujg, s,x)(%) is admissible for (G, D).

Proof. We shall abbreviate Ug, s.x)(k) by & in order to improve readability. Since by Lemma A.21 we have
that @’ is safe then by Definition 6.22 we have still to check the following properties:

o @ verifies the path condition for X in (G, D): If no t-metavariable occurs more than once then the property
is trivial so let us suppose that there is a t-metavariable X in (G, D) oceuring at two different positions p
and p’. Let us take any variable z € FV(6'X) and let ! and I’ be the parameter paths of p and p’ in the
trees corresponding to G or D. Suppose 6'X = U, s.x) (k)X ef Ués; (,)k(nXl). Then since « is valid by
Lemma 6.68 Ui(,)k(K,Xl) =q Ui(,,)k(an). As a consequence, the set of free variables of both terms is
the same. Now, to show that @ verifies the path condition for X in (G, D) let us suppose that = € 6,(l).
Since the o-metavariables in ! are bound in the rule (G, D), and 6, is defined for all the metavariables of
(G, D) by Hypothesis 1, then by the requirements of Definition 6.67 z € S U k. Now, since z is free in
Ufi (,,)k(K.X[') then z must be in S U 8,(l')k, which implies that z is necessarily in 6,(l’). This allows us
to conclude that 6 verifies the path condition for X in (G, D).

o if the pre-bound o-metavariables a and f occur in (G, D) with a # 3, then 6,a # 6,3: this property
trivially holds by Hypothesis 2.

A.3.3 Preserving Confluence
We start by a technical lemma that will be used later.

Lemma A.24 Let M € PMT without occurrences of t-metavariables, and let
1. kal be a simple label, k' a label such that |k = |k’}, @’ a pre-bound o-metavariable,
2. B a bound o-metavariable such that it does not occur in U kai(Tk-a1(M)), and
3. WFianu(M) hold.

Then (U kot (Tkra1(M))) <o —B>=y Urgi(Tirar1(M)).

Proof. By induction on M. Let k = B,...B, and k¥’ = B;...8;. By Hypothesis 3 we have the following
cases to consider:

e M =o” € k' and hence o = §} for some 1 < j < n. Then we have

Ukat(Tirat(M)) Ko 3>= B Ka—B>=pyp1 B; = Urpt(Tiran(M))

e M =qa"” €l and o ¢ k’. Then we have

Ukat(Trrat(M)) Ko B>= o' Ka—B>=np1 " = Urpt(Twan(M))

e M =a’ and o’ ¢ k. Then we have

Uiat(Trant(M)) Ka—B>= aka—p>= 8 = Urp(Tiran(M))

e M = a. Then we have

Uiat(Trrart(M)) Ka—p>=a<a— >=a = Urg (T a1(M))

e M = f(M,,...,M,). Then we use the induction hypothesis.
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o M=¢£0".(M,...,M,;). We reason as follows:
(Ukat(Terani(M)))) <a—p> = (68 .(Upkat(Tarkat(M1)), ..., Upkat(Tarkart(Mn)))) Ka—pF>>
for 8’ ¢ kal such that WF grxai(Tak'a1(M;)) holds for 1 < i < n. Since B # B’ by hypothesis 2, continue

(&.B,-(Uﬁ'kal (Ta”k’a'l(Ml)): seey Uﬂ’kal(Ta"k’a’l(Mn)))) <<a‘_,3>>

£ (U prkat(Tarkran(M))) Ka—=B>,. .., (Uprat(Tarw ot (Mp))) a—p>) by ih
EB'.(Upkpt(Tarwat(Mi)), - - -, Ugkpi(Tarkrart(Mn)))

= Ura(Twan(€o . (My,..., My)))

I
<

Q
S

e M = M,[¢/ — Ms,]. Similar to the previous case.

Lemma A.25 Let M € PMT and [l a simple label. If WF (M) then U(Ti(M)) =, M.
Proof. By induction on M.
e M = o. Then since WF (M) we have a € | and thus U(Ti(a)) = Ui(pos(e,!)) = c.
e M =&. Then U((Ty(@)) = U, (s"(&)) = &.
e M = X. Then Uy(Ti(X)) = Ui(X)) = X.
e M = f(M,,..., Mp). We use the induction hypothesis.
o M =¢€a.(M,...,M,). We reason as follows:

Ui(Ti(§a.(My, ..., Mp))) = Ut(§(Ta(M1), - .., Tat(Mn))) = £B-(U pi(Tat(M1)), . - ., U pt(Teut(Mr)))
where 3 ¢ I. We have two further cases to consider:

1. There are no occurrences of t-metavariables in M. Now if 8 = a we conclude by using the induction
hypothesis so let us assume then that 3 # o.

§B.(Up(Tat(M)), ..., Upi(Tet(Mn)))

6. (Up(Ta(M) <B—F'>, ..., Upi(Tai(Mn)) <B—F'>) (B not in Ug(Teu(M;)))
0 -(Upi(Tau(M1)), . .., U pt(Tat(Ms))) (L.A.24)

€0 .(Uat(Ta(M)) a—=B">,...,.Ua(Ta(Mp)) Ka—F'>>) (L.A.24)
Ea-(Ual(Tal(Ml))v ey chl (Tal(Mn)))

£C!.(M1, sy M'n) (lh)

<

<

<

2. There is an occurrence of a t-metavariable X in M. In this case since U;(T;(M)) is defined we observe
that it must be that 8 = a. Indeed, we have that Xy occurs in T;(M) for some label I’. Hence
when translating this metavariable to the de Bruijn setting we shall arrive at U gi(Xiat), which is
defined only for 1”8l = l'al. Therefore, 8 = a and we use the induction hypothesis.

e M = M;|a «— M;]. We proceed as above.

Corollary A.26 Let M € PMT such that WF(M). Then U (T(M)) =, M.

Lemma A.27 Let t € 7 such that FV(t) C SU! for ! any label and S a finite set of variables. Then
UF(Ty(t) =a t.

Proof. By induction on the structure of ¢.

o t = z. Then there are two cases to consider:
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— z € l. Then U3 (T;(z)) = US(pos(z, 1)) = z.
- :cs¢ l. Then US(T\(z)) = US(O(z) + |l|). By hypothesis z € SU! so that z € S and then
UP(O@) + lIf) = zoz) =z

o t = f(t1,...,ta). Then US(T,(t)) = f(UE(Ty(tr)), ... yUS(Ty(tn))) =a f(t1,-..,ts). The last step holds
by induction hypothesis.

o t==Ex.(t1,...,tn). Then

Uls(Ta(&v (t1,...,tn)))
U[ (6( l(tl)) |Txl(tn)))

= £2.(U3 Tzl(tl)) - U(T, 1(t))) (z¢ sul

=a £2.(U3 ;(tn)){z — z’} US(Tu(ta)){z = 2'}) (2 not in UZ(T;,(t:)))
= & (U T(t1)), xl(tn))) (L.A.18)

= &.(U3 g To(tr){z 2’} Ua(To(ta)){z — 2'})  (L.A.18)

=e £z.(U I(Tzz(tl)) ULy (t)) (z¢1)

=a £z.(t1,...,t5) (i.h.)

Corollary A.28 Let t € 7. Then U(T'(t)) =

Lemma A.29 Let A € PMT 4 and | be any simple label. If WF;(A) then T;(U,(A)) = 4
Proof. By induction on A.

e A = /(1). Then Ti(Ui(A)) = Ty(at(l,5 + 1)) = pos(at(l,j + 1),1). Since ! is simple then pos(at(l,; +
1),1) = 87(1) and we are done.

e A=-5/(@). Then j = ||| and T}(U(4)) = Ti(a) = §7(&).
¢ A=X;. Thenl=k and T;(U(A)) =Ti(X) = X
e A= f(A1,...,A;). Then

T(U(4)) = Ti(f(Ui(A1),--.,Ui(An)))
=in. f(TI(U(A1)), ..., Ti(Ui(A1)))
= f(Al"“aAl)

o A=¢(A,,..., An). Then
Ty (U.(A)) Ti(fa.(Uai(A1), - -, Uat(44)))

ETat(Uat(A1)),-- . Tat(Uai(Ar)))
ih. E(A1,...,An)

We remark that o ¢ | by Definition 6.64 so the induction hypothesis can be applied.
e A= A[A;]. Then
Ty(U1(4)) T:( (A1) = Ui(42)))
Ty(U(A)) T ( at(A))[Ti(U1(42))]
TiI(U(A) =in AilA42])

We remark that o ¢ | by Deflnition 6.64 so the induction hypothesis can be applied.

Corollary A.30 Let A € PMT . If WF(A) then T(U (4)) = A

Lemma A.31 Let a be a de Bruijn term and ! be any simple label such that Names(FV(e)\|l|) € S and
INS = 0. Then T,(U(a)) = a.
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Proof. By induction on the structure of a.
e a = n. Then there are two cases to consider:

— n < |l|. Then T,(Uf(a)) = T (at(l,n)) = pos(at(l,n),l). Since l is simple, then pos(at(l,n),!) = n.

-n> ||| and 2, € S. T}(UZ(a)) = Ty(xn—y). Since I does not contain variables in S, then
Ty(zp—y) =n -l + | =n.

¢ a= f(a,...,an). Then T{(UF(a)) = f(T(UF(a1)),- -, Ty(UF (an))) =in f(1, -, an).

e a = £(a,...,as). Then T}(US(a)) = &(T,(US(a1)), ..., Ty(US(a1))) =in £(a1,...,an). We remark
that z ¢ U S by Definition 6.63 so that z! is simple and it does not contain variables of S so that we can
apply the induction hypothesis.

Corollary A.32 Let a € 7gy. Then T(U(a)) = a.

A.4 From Higher-Order to First-Order Rewriting

A.4.1 On Pivot Selection

It is clear that Cp(L, R) and Cq(L, R) shall not be identical. Nevertheless, the rewrite relation generated by
both of these converted rewrite rules is identical.

Before proving this proposition, let us consider a rewrite rule (L, R) and let X, , ..., X, be all the X-based
metavariables in (L, R) with Bay, g)(X) # 0. Let X;, and Xi, be two possible X-based pivots for (L, R). Note
that we must have either X;,, X, € L, or X, X;, € R (in which case |k| > |l;| and |k| > |l5| for all X} € L).
Also, we have |l;]| = |l2|, a fact that shall be made use of freely below.

Let us consider two different conversions (a) and (b) as dictated by Definition 7.30 taking any metavariable
Xy, for 1 €£i < n and yielding a first-order term:

(8) Xi, ~  Xlcons(ai,...,af,), shifts1F1\Baq 2y (XD1))
and
(b) Xi, ~  Xlcons(di,...,b}, shift!sI+1ia\Pae.mXOly)

Note that clause 1 of Definition 7.30 does not present itself since the case of interest is when Ba(y, gy(X) # 0.

The first translation (a) corresponds to the conversion dictated assuming X, as the pivot, while the second
translation (b) assumes that X, is the pivot.

On an informal account, the substitution cons(af,. ..,al",ll,shz'ft“"*"“\a‘(’--‘”(xn) may be seen as repre-
senting a function f; from indices to indices (hence assuming X is only instantiated with indices). Likewise,
cons(bl, .. |,2|,shzft“ il+liz\Bage, ’”(x)') represents a function g;. We shall therefore be intersted in finding a
function h whlch may be represented by a pattern substitution such that f; = g; o h. We shall see that the

pattern substitution cons(cy,.. c““,shzft' 1) defined below satisfies this requirement. Define the following
indices ¢; for all 1 < j < |L]:

a? if at(l1,5) € Baz, r)(X)

G = { pos(a?,bj..bf; |) otherwise (A1)

Remark A.33 Note that the second clause of the definition of c; is defined. Indeed, if at(l;,j) & Ba(z,r)(X)
then a = |la| + 1 + sh(Xy,,5) and since |l;| = |l2|, &y and l; are simple, and Ba(y, R)(X) # 0 both {; and I
have the same number of o-metavariables not included in Ba(, R)(X ). Thus there is a j° € 1..|l3] such that
b = || + 1 + Sh(X,,, 5’) with Sh(Xy,, ") = Sh(Xy,, ), and hence a2 = b},.

The relation between the two translations (a) and (b) given above can be summarized by the following result:
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Lemma A.34 Let n be the number of X-based metavariables in (L, R) and let X;, and X;, be two distinct
pivots for (L,R). Let h > 0 and 1 < i < n. Take any assignment p and indices a;- (1 <37 < |ul) and
b5 (1 < j <|lz]) as indicated above in the translations (a) and (b). Then

(pX)[lft"(cons(af, .., @}, shift! !+ 1\B.m Ol
=w  (pX)[lift" (s)][lift" (cons (B}, ..., b, |, shift!i1+112\Bee.m (XDl y))

where s = cons(cy, - - ,cl,ll,shift”") defined in the equation A.1.

Proof. Note that we may assume that pX is a pure term without loss of generality. We proceed by induction
on pX.

e pX = j. We consider three subcases:
— j < h. Then Lemma 1 allows us to conclude this case.

— h<j<|l1| + k. Then

LHS =w j— h|cons(ai,... ,af,ll, shift”'”l"\a‘“--“)(x)')][shift]" =w af;-_h +h
RHS =w cj-nlcons(d,..., b}, shift!sI¥12\Be.m O] [ghige]h

We shall consider two further cases. Recall that X;, is an X-based pivot for conversion (a) and X,
is an X-based pivot for conversion (b).

1. i = 1. Suppose
* at(ly,j — h) = B € Ba( g)(X). Then

RHS

a2_plcons(b}, ..., b} |, shiftliI+1i2\Beew. OO shyfgh
pos(B, lz) cons(b}, . .., bl |, shift11+112\Bece. GOy g ]
=W Bpoa(pa) R

= pos(B, i)+ R

= j—-h+h

=w LHS

Recall that all labels are simple (no repeated elements).
* at(l;[,j - h) ¢ Ba(L,R)(X).

RHS
= pos(a?_h, b%..bllh])[cons(b{, e blllzl' shiftlh1+1i2\Bac R (ON) | [ shift ]
= pos(lla| + 1 +Sh(Xy,, 5 — h),b}..b} | Jcons(bi, ..., b}, shift!I+Hi2\Beew. OOy [ ghyfe]
=w |l2| + 1+ Sh(X;,,j —h) +h
= |lll+1+Sh(Xlu.7_h)+h
=w LHS

2. i > 2. Suppose
* at(ly,j — h) = B € Ba(y,r)(X). Then

RHS =  a?_[cons(bs,. .. by, shiftlhs1+12\8ac.m GOy (shift P
pos(B, Lz cons(by, ..., b, shift! V22w m GO ghift]>
L

pos(B,li)+h
w LHS

If i = 2 then the last step follows from the case 2(a) of Definition 7.30 (since X, is a pivot
metavariable occurrence for conversion (b)), otherwise it follows from case 2(b) of the same
definition.
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* at(ly,7—h) ¢ Ba(L'R)(X). Then LHS =y |l;| + 1 +8h(Xy,,5 — h) + h. Also,
RHS _
= pos(al_y, b0}, eons(B, .. by, shif! 1o\ mEO e ;
pos(lla] + 1 + Sh(Xu,, 5 — ), bl..bj,, Yeons(bi, ..., bf,, shift!!s*1a\Bece. O hife]>
Now since |lz| + 1+ Sh(Xi,,5 — k) > |l1]| and |l;] = |l2| there must be some 1 < j' < |l such
that b:l,-, = |l3] + 1 + Sh(Xy,,5") (and hence at(l, j’) ¢ Ba(g, ry(X)) with Sh(Xy,,5 —h) =
Sh(X,,j’) (see Remark A.33). Thus we may continue as follows:
pos(|la| + 1+ Sh(Xy,, 5 — ), bl..bl, M[cons(bi, ..., by, shift!t 112\ m O)(shift]
= J'lcons(8,. .., by, shiftlI 2\ m 0Ny [ ghigy)
= ||+ 14+sh(Xy,5)+h
The last equality follows from the fact that at(ls, 5') € Bacz, ry(X).
— j>|lil +h. Then
LHS
4 — hlcons(a}, .., af, |, shift!sI1h \Bae.m Oy ghyfy
w J—h—Ihl+ L]+l \ Bag g)(X)|+ A
J = [l + li] + |4 \ Bagg, gy (X)]
3 = lia| + [k + [l2 \ Bagz, gy (X))
=w  slift*(cons(bi, .., by, shife s\ m OO

w3 = hleons(cy,..., cuyp, shift!™!)][shift]M[Jift" (cons(ds, . .., by, shafel s +i=\Bece.mCNy))
=w RHS

e pX = f(dy,...,dn). We use the induction hypothesis.
e pX =§(dy,...,dn). Then by the induction hypothesis we have

d;[lift™*" (cons(al, .., afy, shift! s+ B COlyy)
=w  &;[lift" (cons(cn, ..., ey, shift )[R (cons (b, .. ., B, shift!hiIHIiz VP m (Ol

for all j € 1..n which allows us to conclude the case.

]
2

Proof.[of Proposition 7.37] Let (L1, Ry) ¥ Cp(L, R) and (L5, Ry) % Co(L, R). Suppose a —(z, ;) b. Then

there exists a context E and an assignment p such that a =y E[p(L1)] and b =y E[p(R;)].

For all X € NFMVar(L) define the assignment 7 as: X def p(X)[s] where s = cons(cy, ... ,c|,l|,shift”")
and the ¢;s are defined in equation A.1. Consider now an occurrence of a metavariable X;, € (L, R) where
{Xi,,..., X1} are all the X-based metavariables in (L, R).

e If Bagy, p)(X) = @ then both conversions shall convert X;, to the term X[shift':!]. This case needs no
further consideration.

e If Ba¢y, p)(X) # 0 then each conversion shall convert X;, to (possibly) different terms:
X[cons(al,. .. ,a,l"m, shift“"””‘“‘"--““xn)] on one hand, and X[cons(bi, ... ’blilzl' 3h¢ft|‘-‘|+l'2\3‘<l--n)(x)l)]‘
on the other. Here we may apply Lemma A.34 and obtain:
(pX)[cons(al, ..., gy |, shaft! I+ \Bw RN =y (nX)[cons(BS, ..., b, , shifelsIH12\Bae.m O]
If conversion (a) deployed the identity optimization then
cons(al,. .., aly, shiftlsIH\Bwm Ol = oong(1,. ., [1y], shift!h])

and X, is converted to X and we may use the fact that pX =y (pX)[cons(l,...,|L|, shift!")] and
Lemma A.34 as above. A similar observation holds for the (b) conversion.
Therefore we may obtain p(L1) =w n(L2) and p(R;) =w n(R2), so that a =y E[p(L,)] =w E[n(L2)] and
b =w Elp(R1)] =w E[n(Rz)), i.e. @ —(L,,r,) b-
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