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Abstract

Un Estilo de Arquitectura de Software es una clase de arquitecturas que exhiben un
patrén comun. Si la reusabilidad y la clasificacién de arquitecturas son objetivos princi-
pales para permitir explotar trabajo previo, la identificacién de una arquitectura dentro
de un estilo especifico, requiere lenguajes expresivos y bien fundados para representar es-
tilos. Los requerimientos de los sistemas modernos incluyen distribucién, concurrencia,
reconfiguracion y movilidad. Por lo tanto, es necesario desarrollar el lenguaje de estilos y
por consiguiente su semantica formal. Esta tesis presenta un marco formal para describir
estilos de arquitectura de software basado en los sistemas de transformacion de grafos.
En particular, para describir estilos elegiinos utilizar gramaticas libres de contexto para
Reescritura de Hiperejes (Hyperedge Replacement (HR) graminars) y gramaticas HR de
Sincronizacién (Synchronized HR (SHR) grammars) para modelar la comunicacién y la
coordinacién entre componentes. En la segunda parte de la tesis continuamos usando
gramaticas HR (sin sincronizacién) para describir estilos e introducimos un enfoque es-
pecifico, basado en teoria de tipos, para describir las reconfiguraciones (llamadas trans-
formaciones). Por analogia, podemos pensar en estilos como tipos para las instancias de
arquitectura y en derivaciones HR como pruebas de tipo. Las reconfiguraciones deben
preservar los tipos: en terminologia de la teoria de tipos esta propiedad se llama subject
reduction. Nuestro método consiste en definir transformaciones sobre pruebas de tipo.
Los diferentes temas en la tesis son acompaiados por ejemplos especificos y por un caso
de estudio que es utilizado a lo largo de la tesis.



Resumen

La evolucidon de los sistemas de software y la creciente complejidad de sus procesos de
desarrollo han hecho necesario establecer pasos de diseno bien definidos que permitan
reducir el gap entre requerimientos e implementaciones. En esta direccién, en anos
recientes, un drea importante de la investigacion ha tratado con las Arquitecturas de
Software. Basicamente, una arquitectura de software es una descripcién de alto nivel
de un sistema complejo, con un nivel adecuado de abstraccion que permite capturar
del dominio del problema los componentes, a partir de los requerimientos, que seran
disenados detalladamente mds adelante. Un FEstilo de Arquitectura de Software es una
clase de arquitecturas que exhiben un patrén comin. Si la reusabilidad y la clasificacién
de arquitecturas son objetivos principales para permitir que los disenadores exploten el
trabajo previo, la identificacién de una arquitectura de un sistema dentro de un estilo
especifico requiere lenguajes expresivos y bien fundados para representar estilos.

Los requerimientos de los sistemas modernos imponen nuevas caracteristicas a la
descripcion de las arquitecturas de software. Estos incluyen la distribucién, la concur-
rencia, la reconfiguracion y la movilidad. Por lo tanto, es necesario desarrollar el lenguaje
de estilos que soporte estas caracteristicas y por consiguiente su semantica formal. En-
tonces, la descripcién de un estilo de arquitectura de software debe incluir la estructura
de los tipos de componentes y sus interacciones, los patrones de comunicacién, y las
leyes que gobiernan la reconfiguracién y/o la movilidad en la arquitectura. Siguiendo
esta linea de investigacidn, es nuestro objetivo contribuir a la formalizacién de modelos
para la descripcion de arquitecturas y estilos de arquitectura de software.

Esta tesis presenta un marco formal para la descripcion de estilos de arquitectura de
software basado en los sistemas de transformacion de grafos. Una gramadtica de grafos
caracteriza una clase de grafos que comparten caracteristicas estructurales y estd com-
puesta por un conjunto de reglas de reescritura llamadas producciones. Inicialmente,
los grafos representan las configuraciones estdticas de las arquitecturas y las gramadticas
representan los estilos. Luego, podremos incluir producciones que especifiquen las inter-
acciones en runtime entre componentes, la reconfiguracién y la movilidad.

Las arquitecturas de sistemas pueden ser controladas de manera centralizada a través
de un coordinador o administrador, o pueden ser sistemas denominados self organising
en los cuales la coordinacién estd distribuida localmente entre los componentes. Los



sistemas que teneimos en mente son distribuidos, heterogéneos y mdviles, y por lo tanto
elegimmos una cstrategia self organising. En particular, para describir estilos elegimos
utilizar grandticas libres de contexto para Reescritura de Hiperejes (Hyperedge Replace-
ment (HR) grammmars) y gramdticas HR de Sincronizacién (Synchronized HR (SHR)
grammars) para modelar la comunicacién y la coordinacién entre componentes. Un
hipereje es un elemento atémico con una etiqueta (de un alfabeto con rango) y con
tantos tentaculos como el rango de su ctiqueta. Un conjunto de nodos y un conjunto
de hiperejes forman un hipergrafo si cada hipereje esta conectado, por sus tentaculos,
con sus nodos de enlace (attachment nodes). Los hipercjes corresponden a los compo-
nentes y sus nodos de cnlace son sus puertos de comunicacién con otros coniponentes.
Una produccién HR reescribe un solo hipereje en un hipergrafo cualquiera. Entonces,
para modelar la coordinacién de los componentes de la arquitectura combinamos ree-
scritura de grafos con condiciones de sincronizacién, obteniendo los sistemas SHR. Las
producciones sincronizadas se especifican agregando condiciones en los nodos que per-
miten coordinar varias reescrituras, determinando la manera en que los componentes
interactian y se reconfiguran. Las producciones para (la etiqueta de) un hipercje deter-
minado representan las posibles evoluciones para un determinado tipo de componente
del estilo. Las producciones de una grametica sc agrupan en tres conjuntos: el primer
conjunto contienc las producciones HR para la construccion de todas las posibles con-
figuraciones iniciales del estilo. El segundo conjunto contiene las producciones SHR que
modelan la evolucién de la comunicaciéon para cada tipo de componente, y cl tercer con-
junto contiene las producciones SHR para la recoufiguracion de la estructura del estilo.
Las producciones de la comunicacién requieren sincronizacion pero no pueden cammbiar
la estructura topoldgica del grafo.

Con respecto a literatura auterior, ésta tesis presenta una extension de los sistemas
SHR con la adicién de mouwilidad de nombres (name mobility como en w-calculus). Esta
extension perniite aumentar substancialinente el poder expresivo del método para la
representacion de sistemas complejos méviles y reconfigurables, mantieniendo al nismo
tiempo la capacidad de describirlos de una manera descentralizada y distribuida.

Representaimos a los hipergrafos y los sistemas SHR en forma textual usando syntac-
tic judgements. Esto permite una clara separacién entre reescritura y coordinacion,
y la introduccién de varios mecanismos de sincronizacion como adecuadas édlgebras
(méviles) de sincronizacién. Especificamente, presentammos las reglas de inferencia al
estilo SOS para las dlgebras de sincronizacién Hoare (CSP) y Milner (CCS, m-calculus).
Sin embargo. en nuestra propuesta extendemos las algebras de proceso permitiendo la
sincronizaciéon simultdnea de cualquier mimero de participantes. Las condiciones de
sincronizacion para movilidad se resuelven via unificacion.

Como resultado importante y evidencia formal del poder expresivo del método, pre-
sentamos un resultado de correspondencia que prucha que SHR con sincronizaciéon de
Miluer subsume al #-calculus. Para esto, definiinos una traduccién donde una transicion
cn w-calculus se representa como una transicion del correspondiente syntactic judgement
traducido (es decir, un paso de reescritura). Puesto que w-calculus estd equipado con
una semdntica interleaving y sélo sincronizaciones entre pares de elementos, la prueba es

una correspondencia completa entre w-calculus y una version restringida de los sistemas
SHR.



En la segunda parte de la tesis continuamos usando gramaticas HR (sin sincronizacién)
para describir estilos e introducimos un enfoque especifico basado en teoria de tipos para
describir las reconfiguraciones de estilos (llamadas transformaciones). Las nociones de
reconfiguraciéon y movilidad implican modificaciones a la estructura de la arquitectura
cambiando componentes y conexiones. Estas modificaciones que un sistema puede sufrir
conducen a la pregunta de cémo podenios asegurar que los cambios sean consistentes con
el estilo al cual pertenece el sistema. Por analogia, podemos pensar en los estilos como
tipos para las instancias de arquitectura y en derivaciones HR como pruebas de tipo.
Las reconfiguraciones deben preservar los tipos: en terminologia de la teoria de tipos
esta propiedad se llama subject reduction. Nuestro método consiste en definir transfor-
maciones sobre pruebas de tipo, en lugar que sobre grafos: mientras que cortar y pegar
pruebas de tipo resulten nuevamente en pruebas de tipo, la propiedad de subjet reduc-
tion estd garantizada. La formalizacién se efectia representando grafos y producciones
como términos de un célculo A tipado, donde un paso de derivacién HR corresponde a
aplicacidon seguido por reduccién 3. Entonces, las transformaciones se especifican como
reescritura de términos (de alto orden): si todas las reglas de reescritura transforman
pruebas de tipo en pruebas de tipo, entonces todas las posibles reescrituras satisfacen
subject reduction. El uso de cdlculo A introduce la idea de reescritura de grafos de
alto orden, permitiendo la parametrizacién del proceso de diseno con caracteristicas de
componentes y conectores que podrian ser especificados mds adelante, manteniendo la
garantia de consistencia.

La principal diferencia del método para reconfiguraciéon usando SHR con respecto al
que utiliza transformaciones, es que SHR es mds dindmico, ya que es aplicable a sistemas
abiertos en ejecucion sin control global, a excepcion de la sincronizacién. Por el otro
lado, el método con transformaciones puede ser 1util para trabajar al nivel de diseno
estdtico, es decir, cambiar los pasos del diseno del sistema para producir un sistema
diverso pero consistente. De todas maneras, el iltimo método puede ser aplicado para
especificar clases muy generales de reconfiguraciones y movilidad (como se demuestra
en los ejemplos de la tesis), pero requiere un conocimiento global de la estructura del
sistema.

Los diferentes temas introducidos en la tesis son acompaiiados por ejemplos es-
pecificos que permiten clarificar las diversas construcciones y demostrar su poder ex-
presivo, y por un caso de estudio de un sistemna remoto de asistencia médica que es
utilizado a lo largo de toda la tesis.



Extended Abstract

The evolution of software systems and the increased complexity of their developing pro-
cesses have led to the necessity of establishing well defined design steps to close the gap
between requirements and implementations. In this direction, in recent years a main
research area has concerned Software Architectures. Basically, a software architecture is
a high-level description of a complex system, with an adequate level of abstraction that
enables capturing, from its requirements, the components of the problem domain to be
later designed in more detail. A Software Architecture Style is a class of architectures
exhibiting a common pattern. If reusability and classification of architectures are main
goals to allow designers to exploit previous work, the identification of a system architec-
ture within a specific style requires expressive and well founded languages to represent
styles.

The requirements of modern systems impose new characteristics to the description
of software architectures. These include distribution, concurrency, reconfiguration and
mobility. Therefore, it is necessary to develop the style language and its formal semantics
accordingly. Thus, the description of a software architecture style must include the
structure of component types and of their interactions, the communication patterns,
and the laws governing reconfiguration and/or mobility changes in the architecture. In
this line of research our goal is to contribute to the formalization of models for the
description of software architectures and of software architecture styles.

This thesis presents a formal framework based on graph transformation systems for
the description of software architecture styles. A graph grammar characterizes a class of
graphs that share structural characteristics and it is composed of a set of rewriting rules
called productions. At first, graphs represent the static configurations of architectures
and grammars represent styles. Later we will be able to include productions specifying
runtime interactions among components, reconfiguration and mobility.

System architectures can be managed in a centralized manner by an explicit coordina-
tor or administrator, or can be self organising indicating that coordination management
is distributed locally among components. The systems we have in mind are distributed,
heterogeneous and mobile, thus we choose a self-organising approach. In particular,
we choose context-free Hyperedge Replacement (HR) grammars to describe styles and
Synchronized HR (SHR) grammars to model communication and coordination among

XV



components. A hyperedge is an atomic item with a label (from a ranked alphabet) and
with as many tentacles as the rank of its label. A set of nodes together with a sct of
hyperedges form a hypergraph if each hyperedge is connected, by its tentacles, to its
attaclunent nodes. Hyperedges correspond to components and their attachiment nodes
are their commmunication ports with other compouents. A HR production rewrites a
single hyperedge into an arbitrary hypergraph. Then, to model the coordination of the
architecture compouents we combine graph rewriting with synchronizing conditions ob-
taining SHR systems. We specify synchronized productions by adding conditions on
nodes which allow to coordinate several rewritings, thus determining how components
interact and are recoufigured. The productions for a given hyperedge (label) represent
the possible evolutions for a given component type of the style. The productions of a
grammar arc grouped in three sets: the first set contains the HR productions for the
counstruction of all possible initial configurations of the style. The sccoud set contains
the SHR productions that model the conunuication evolution for each component type
and the third set contains the SHR productions for the reconfiguration of the style struc-
ture. The communication productions require synchronization but cannot change the
topological structure of the grapl.

With respect to previous literature, this thesis presents an extension of SHR with the
addition of name mobility (as in w-calculus). This extension allows us to substantially
increase the expressive power of the approach for representing complex mobile and re-
configurable systems, still maintaining the ability of describing them in a decentralized,
distributed way.

We represent hypergraphs and SHR systems in textual fonin using syntactic judge-
ments. This allows the clear scparation of rewriting and coordination and the intro-
duction of various synchronization mechanisins as suitable (mobile) synchronization al-
gebras. Specifically, we present the inference rules in the SOS style for Hoare (CSP)
and Milner (CCS. w-calculus) synchronization algebras. However, we extend process
algebras in that we allow svnchronizations of any number of partners at the same time.
Constraint conditions for mobility are solved via unification.

As an iniportant outcome and a forinal evidence of the expressive power of the ap-
proach. we present a correspondence result proving that SHR with Milner synchroniza-
tion subsumes w-calculus. We define a translation where a transition in the w-calculus is
represented as a transition of the corresponding translated judgement (i.e. a rewriting
step). Since w-calculus is equipped with an interleaving semantics and only with two-
partner synchronizations, we prove a complete correspondence between w-calculus and
a restricted version of SHR systems.

In the second part of the thesis we continue using HR grammars (without synchro-
nization) for describing styles and we introduce a specific, type-based approach for de-
scribing style reconfigurations (called transformations). The notions of reconfliguration
and mobility imply changes to the architecture structure by changing components and
connections. These modifications that a system may suffer lead to the question of how
we assure that changes are consistent with the style the system belongs to. By analogy,
we can think of styles as types for the architecture instances and of HR derivations as
typing proofs. Reconfigurations must preserve types: in type theory terminology, this
property is called subject reduction. Our approach is to define transformations on typ-
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ing proofs rather than on graphs: as long as cutting and pasting typing proofs still yields
typing proofs, subject reduction is guaranteed. The formalization is done by representing
both graphs and productions as terms of a typed A-calculus, where a HR derivation step
corresponds to application followed by (-reduction. Then, transformations are specified
as (higher order) term rewritings: if all the term rewriting rules transform typing proofs
into typing proofs, then all the possible rewritings satisfy subject reduction. The use of
A-calculus introduces the idea of higher order graph rewriting, allowing to parameter-
ize the design process with component and connector features which could be specified
later, still guaranteeing consistency.

The main difference of the approach for reconfiguration using SHR with respect
to the one using transformations, is that SHR is more dynamic in the sense that it
applies to running open-ended systems withiout global control except for synchronization,
whereas the approach with transformations may be useful for working at the level of
blueprints, i.e. it rearranges the design steps of the system to produce a different but
consistent system. Thus, the latter method can be applied to specify very general kinds
of reconfigurations and mobility (as it is shown in the thesis examnples), but it requires
a global knowledge of system structure.

The different topics introduced in the thesis are accompanied by specific examples
to clarify the various constructions and to show their expressive power, and by a case
study of a remote medical care system that is used all along the thesis.



Part 1

Introduction



Chapter 1

Modeling Software Architectures and
Software Architectures Styles

1.1 Software Architectures and Software Architec-
ture Styles

The evolution of software systems and the increased complexity of their developing
process (including the maturity of the field as an engineering discipline) have led to the
necessity of establishing well defined design steps to close the gap between requirements
(related to the domain of a problem to solve) and implementations. In this direction,
in recent years a main research area has concerned Software Architectures. Basically, a
software architecture is a high-level description of a complex system, with an adequate
level of abstraction that enables capturing, from its requirements, the components of the
problem domain to be later designed in more detail. A software architecture description
is intended to give all participants of a project a general knowledge of the structure of
the system to be implemented.

As some of the well known definitions of software architectures we can quote:

From [Perry, D. and Wolf, A., 1992],

Architecture is concerned with the selection of architectural elements,
their interactions, and the constraints on those elements and their interac-
tions necessary to provide a framework in which to satlisfy the requirements
and serve as a basis for the design.

Some of the benefits we expect to gain from the emergence of software
architecture as a major discipline are: 1) architecture as the framework for
satisfying requirements; 2) architecture as the technical basis for design and
as the managerial basis for cost estimation and process management; 3) ar-
chitecture as an effective basis for reuse; and 4) architecture as the basis for
dependency and consistency analysis.

From [Garlan, D. and Shaw, M., 1996],



4 Chapter 1. Modeling Software Architectures and Software Architectures Styles

As the size and complexity of software systems increase, the design and
specification of overall systems structure become more significant issues than
the choice of algorithms and data structures of computation. Structural is-
sues include the organization of a system as a composition of components;
global control structures; the protocols for communication, synchronization,
and data access: the assignment of functionality to design elements: the com-
position of design elements; physical distribution: scaling and performance;
dimensions of cvolution; and sclection among design alternatives. This is
the Software Architecture level of design.

Abstractly. software architecture involves the description of elements from
which systems are built, interactions among those elements, patterns that
guide their composition, and constraints on these patterns.

From [Hofneister, C. et al., 1999a],

The two main aspects of a Software Architecture are that it provides a
design plan - a blue print - of a system. and that it is an abstraction to help
manage the complezity of a system.

This design plan isn't a project plan that describes activities and staffing
for designing the architecture or developing the product. Instead, it is a struc-
tural plan that describes the elements of the system, how they fit together,
and how they work together to fulfill the system’s requirements. It is used as
a blueprint during the development process, and it is also used to negotiate
system requirements, and to set expectations with customers, and marketing
and management personnel. The project manager uses the design plan as
mput to the project plan.

The other main aspect of software architecture is that it is an abstraction
that helps manage complexity. The software architecture is not a comprehen-
sive decomposition or refinement of the system: Many of the details needed
to implement the system are abstracted and encapsulated within an element
of the architecture.

The software architecture should define and describe the elements of a
system at a relatively coarse granularity. It should describe how the elements
Julfill the system requirements, including which elements are responsible for
which functionality, how they interact with each other, how they interact with
the outside world, and their dependencies on the execution platform.

A Software Architecture Style is a class of architectures exhibiting a common pattern.
This allows to abstract details of particular components giving a way to categorize
paradigms of architectures and to obtain new instances of systeins from a specific style.
A style can be seen as a type for a given architectural instance.

If reusability and classification of architectures are main goals to allow designers to
exploit previous work at an early stage of the development process, the identification
of a system architecture within a specific style requires expressive and well founded
languages to represent styles.



1.1. Software Architectures and Software Architecture Styles

To support architecture-based development, formal modeling notations and analysis
and development tools that operate on architectural specifications are needed. Architec-
ture Description Languages (ADLs) and their accompanying toolsets have been proposed
as the answer. Loosely defined, an ADL for software applications focuses on the high-
level structure of tlie overall application rather than the implementation details of any
specific source module [Medvidovic, N. and Taylor, R., 1997].

An ADL provides a way of specifying the elements used in the architecture, gener-
ally both as types and instances. It also provides support for interconnecting element
instances to form a configuration [Hofmeister, C. et al., 1999a]. As a model of a system
at a high level of abstraction, an ADL is intended (and can only be expected) to provide
a partial depiction of the system.

For the formal description of software architectures many methods have been used.
Research included revision of semantic models used in other areas. We can mention
work done with languages and models as Z [Allen, R. and Garlan, D., 1992}, CHAM
[Inverardi, P. and Wolf, A. L., 1995], Darwin [Magee, J. and Kramer, J., 1996a], Wright
[Allen, R. and Garlan, D., 1994]. Other projects for the development of ADLs are C2
[Medvidovic, N. et al., 1996], SADL [Moriconi, M. et al., 1995], Rapide [Lukham, D.
et al., 1995] and others. For a comparison of the ADLs produced in the last years,
Medvidovic and Taylor present in [Medvidovic, N. and Taylor, R., 1997] a classification
and comparison framework for a deep analysis of their characteristics.

The requirements of modern systems impose new characteristics to the description
of software architectures. These include distribution, concurrency, reconfiguration and
mobility. The evolution of models for the description of software architectures first talked
about the description of configurations, components (and connectors) and interactions
among components. Then, expansion, distribution and heterogeneity of systems (for
example Internet and the World Wide Web) impose the possibility of changing the
configuration of system networks, upgrade of components and subsystems; and addition
and removal of components without a prior knowledge of how the system will evolve (for
example adhoc networks and peer-to-peer systems). And finally, as a last step in the
evolution, the integration of (logical or physical) mobility of systems (for example mobile
agents and wireless technology). All these issues talk about system reconfiguration,
which means that there is an evolution of the architecture reflected in changes over the
structure of configurations. Therefore, it is necessary to develop the style language and
its formal semantics accordingly.

Even thouglh the relevance of addressing reconfiguration is widely recognized at the
architectural level, the ability of ADLs to express reconfiguration differs among the dif-
ferent languages [Medvidovic, N. and Taylor, R., 1997]. In this thesis we will distinguish
between two types of reconfiguration from the architectural point of view:

oSt atic Reconfiguration: Changes take place ”off-line” at the architecture level
and may be related with new or revision of requirements, new design decisions
or evolution of the design process during the generation and/or maintenance of a
software architecture.

eDyna mic Reconfiguration: Changes take place at run-time, i.e. during execu-
tion of the corresponding system. The simplest kind of dynamic reconfiguration
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is the addition and removal of components. More complex recoufigurations are
changes in the topology of the architecture and can include also mobility of conr-
ponents.

Morcover, we are convinced that recoufiguration has to be treated as a main issuc
at the level of style descriptions. Thus, the description of a software architecture style
must include the structure of component types and of their interactions, the cornmui-
cation patterns, and the laws governing reconfiguration and/or wmobility changes in the
architecture. In this line of research our goal is to contribute to the formalization of
models for the description of software architectures and of software architecture styles.

1.2 Why Graphs and Graph Transformations?

The description of software architectures may include various types of diagrais that
model different aspects of a system. These diagrams can have a formal basis with
well-defined semantics [Medvidovic, N. and Taylor, R., 1997] or can be used in a more
inforinal way simply as a notational standard [Booch, G. et al, 1999]. Most of the
inforimal approaches to represent software architectures have been based in box-and-line
drawing with the intention to commuuicate, among a project teau, the intuition of the
systemn structure under development. But also, this lack of formality prevents to clearly
define the semantics of components and comiections and the specification of relevant
systemr properties. In any case, all these diagrams can be abstracted as some types
of graphs. Therefore, we propose using graph models as a suitable abstraction for the
architectural level with the benefits of a formal foundation together with its intuitive
graphical approach.

More specifically. this thesis presents a formal framework based on graph transfor-
mation systems for the description of software architecture styles. A graph grammar
characterizes a class of graphs that share structural characteristics and it is composed of
an initial graph and set of rewriting rules called productions. Applying rewriting rules
to graphs yields graph rewritings or graph transformations. The rewriting of a graph
applyiug a graimmar production corresponds to a direct derivation step and a sequence of
direct derivation steps starting from an initial graph is a derivation. At first, grapls rep-
resent the static configurations of architectures and graumnars represent styles. Later we
will be able to include productions specifying runtime interactions among components,
reconfiguration and mobility, allowing their explicit description at the level of style lan-
guage. Then, grammmar derivations will show evolution of systein configurations. Tle
use of graph transformations to specify systems is not new and the amount of work in
this area shows its relevance in computer science. Besides the extensive work on foun-
dations [Rozenberg, 1997], we can mention its application in the areas of concurrency,
parallelism and distribution [Elrig, H. et al., 1999b); for functional languages, visual and
object-oriented languages and software engineering [Ehrig, H. et al., 1999a]; and the pro-
posal of general formal frameworks for system modeling [Engels, G. and Heckel, R., 2000:
Mens, T., 2000].

System architectures can be managed in a centralized manner by an explicit coor-
dinator or adininistrator, or can be self organising [Magee, J. and Kramer, J., 1996b]
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indicating that coordination inanagement is distributed locally among components. The
systems we have in mind are distributed, heterogeneous and mobile, thus we choose
a self-organising approach. In particular, we choose context-free Hyperedge Replace-
ment (HR) grammars [Drewes, F. et al., 1997] to describe styles and Synchronized HR
(SHR) grammars to model communication and coordination among components (SHR
was first used to represent distributed systems [Degano, P. and Montanari, U., 1987,
Montanari, U. et al., 1999]). A hyperedge is an atomic item with a label (from a ranked
alphabet) and with as many tentacles as the rank of its label. A set of nodes to-
gether with a set of hyperedges form a hypergraph if each hyperedge is connected, by
its tentacles, to its attachment nodes. Hyperedges correspond to components and their
attachment nodes are their communication ports with other components. A HR pro-
duction rewrites a single hyperedge into an arbitrary hypergrapli. HR systems allow
the application of more than one production at the same time but the specification of
components may require that various components need to synchronize. Then, to model
the coordination of the architecture components we combine graph rewriting with syn-
chronizing conditions obtaining SHR systeims. We specify synchronized productions by
adding conditions on nodes which allow to coordinate several rewritings (called synchro-
nized rewriting), thus determining how components interact and are reconfigured. The
productions for a given hyperedge (label) represent the possible evolutions for a given
component type of the style. Using SHR let each component locally define the coordina-
tion with other components, supporting a self organising approach. Then, synchronizing
two or more productions correspond to the application of a rewriting rule obtained (re-
solving the synchronizing conditions) from the combination of context-free productions
of the respective components. The productions of a gramnmar are grouped in three sets:
the first set contains the HR productions for the construction of all possible initial con-
figurations of the style. The second set contains the SHR productions that model the
communication evolution for each component type and the third set contains the SHR
productions for the reconfiguration of the style structure. The communication produc-
tions require synchronization but cannot change the topological structure of the graph.
We first presented these ideas in [Hirsch, D. et al., 1998] and [Hirsch, D. et al., 1999].
The problem of finding the set of productions to use in a synchronized rewriting step is
called the rule-matching problem [Degano, P. and Montanari, U., 1987]. The solution of
the rule-matching problem is implemented considering it as a finite domain constraint
problem [Mackworth, A.K., 1998]. An analysis of some techniques to solve this problem
in a distributed and efficient way can be found in [Montanari, U. and Rossi, F., 1999;
Montanari, U. et al., 1999]. The description of these techniques is out of the scope of
tlis thesis.

With respect to previous literature, this thesis presents an extension of SHR with the
addition of name mobility (as in m-calculus [Milner, R., 1999; Sangiorgi, D. and Walker,
D., 2001]). This extension allows us to substantially increase the expressive power of the
approach for representing complex mobile and reconfigurable systems, still maintaining
the ability of describing them in a decentralized, distributed way. The extension is
obtained by adding the capability of creation and sharing of names to the definition
of SHR productions. Now, a condition on a node is accompanied by a tuple of node
names that the edge to be replaced wants to share during synchronization. This means
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that a component is sharing the name of some of its ports with other components of
the architecture. In this way, we have the synchronization of multiple comnponents using
SHR, and at the same time. the possibility of rearranging the topology of the graph by
name passing. The locality of synchrounizations together with coutext free productions
allow us to achicve complex coordination of components along a graph without fixing
a priori the number of participauts of the resulting synchronized rewriting step. This
feature constitutes a powerful support of the model for the description of distributed
systems. This work was first introduced in [Hirsch, D. et al., 2000] and continued in
[Hirsch, D. and Montanari, U.. 2001a; Hirsch, D. and Montanari, U., 2001b).

In the second part of the thesis we continue using HR grammars (without syucliro-
nization) for describing styles and we introduce a specific, type-based approach for de-
scribing style reconfigurations (called transformations). The notions of reconfiguration
and mobility imply changes to the architecture structure by changing components and
connections. These modifications that a systein may suffer lead to the question of how
we assure that changes are cousistent with the style the system belongs to. By analogy,
we can think of styles as types for the architecture instances and of HR derivations
as typing proofs. Recounfigurations must preserve types: in type theory terminology,
this property is called subject reduction. Our approach is to define transformations on
typing proofs rather than on graphs: as long as cutting and pasting typing proofs still
yields typing proofs, subject reduction is guaranteed. In this way, once a transfornnation
is obtained it is assured that it is a consistent reconfiguration with respect to the style.
Thus. a transformation is applied over a derivation segnient returiiing a new derivation
seginent. After applying the transforination over a derivation, its result corresponds to
the reconfigured segment of a new derivation. It is important to mention that because
transformations arc over derivation segments they can be composed and applied to sev-
cral parts of a graph. Also, after a transformation is obtained. you can start from any
of the derivations of the new resulting graph allowing the application of other transfor-
mations. Our aim is to give architects a tool to specify i a consistent way complex
reconfigurations over the architectures they are working with. This is fundamental for
software architecture modeling because once a transforination is obtained and its cor-
rectuess chiecked (that it starts and ends with valid derivations), it can be included in
a library of transformations for its future use. This work was introduced in [Hirsch, D.
aud Montanari, U., 2000] and [Hirsch, D. and Montanari, U., 1999).

The main difference of the approach for reconfiguration using SHR with respect
to the one using transformations, is that SHR is more dynamic in the sense that it
applies to runming open-cuded systemns without global control except for synclironization,
whereas the approach with trausformations may be uscful for working at the level of
blueprints, i.c. it rcarranges the design steps of the system to produce a different but
consistent system. Thus, the latter method can be applied to specify very general kinds
of reconfigurations and mobility (as it is shown in the thesis examples), but it requires a
global knowledge of system structure. Some possible steps for combining both methods
are described in the future work in Chapter 10. In [Medvidovic, N. and Taylor, R., 1997
the author differentiate these concepts as evolvability and dynamisi, where, evolution,
refers to “off-line” changes to an architecture (what we called static reconfiguration),
and dynamism, on the other hand, refers to modifying the architecture while the systemnt
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is executing (what we called dynamic reconfiguration).

1.3 Thesis Results

Resuming what we have introduced above, the main goal of this thesis is motivated in
the generation of supporting formal models for the description of software architecture
styles. On one side, we choose software architecture as the focus of our research based on
its recognized importance in the development of a mature software engineering process.
On the other side, we use graph transformation systems as supporting model based
on its, already stated, usefulness for the high level description of systems and their
evolution. But also, we realized that the results we have obtained go beyond the domain
of software architectures. Besides the general goal of the thesis we can summarized its
main contributions:

First of all, we present an extension of SHR systems with the addition of name mo-
bility. This extension allows us to increase the expressive power of HR obtaining the
good characteristics of a graphical calculus and the possibility for describing complex
mobile and reconfigurable systems. In this way we are able to propose an alternative
modelling approach following a self organising philosophy (using local information with-
out the necessity of a global control) that gives a useful solution for more real problems
of distributed systems. This approach contrasts with push-out graph transformation
models [Rozenberg, 1997] where graph rewriting is specified by context-sensitive rules
implying centralized control.

We represent hypergraphs and SHR systems in textual form using syntactic judge-
ments. This allows the clear separation of rewriting and coordination and the intro-
duction of various synchronization mechanisms as suitable (mobile) synchronization al-
gebras. Specifically, we present the inference rules in the SOS style for Hoare (CSP)
and Milner (CCS, m-calculus) synchronization algebras. However, we extend process
algebras in that we allow synchronizations of any number of partners at the same time.
Synchronizing conditions for mobility are solved via unification. We have to mention
that the initial work of SHR [Degano, P. and Montanari, U., 1987; Montanari, U. and
Rossi, F., 1999; Montanari, U. et al., 1999] only uses Hoare synchronization (without
mobility).

As an important outcome and a formal evidence of the expressive power of the ap-
proach, we present a correspondence result proving that SHR with Milner synchroniza-
tion subsumes 7-calculus. We define a translation where a transition in the 7-calculus is
represented as a transition of the corresponding translated judgement (i.e. a rewriting
step). At this point, it is necessary to comment on the differences between w-calculus
and synchronized rewriting. On the one hand, 7-calculus is equipped with an inter-
leaving semantics and only with two-partner synchronizations. On the other, we are
using graph transformations with synclironized rewriting wlich is a distributed concur-
rent model allowing for multiple, simultaneous synchronizations and rewriting. It is
clear that there are graph transitions (the concurrent ones) that cannot be obtained
in 7-calculus. Thus, we prove a complete correspondence between m-calculus and a re-
stricted version of SHR systems. For this we restrict the synchronization mechanism to
what we call the Milner, transition system. Proofs constructed with Milner, transition
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system are trausitions corresponding to sequential steps of w-calculus.

We consider this correspoudence result as fundamental for the thesis given the rele-
vance of w-calculus for process calculi specially for mobility languages. The fact that we
obtain a graphical calculus that subsumes w-calculus is a strong support for graphical
formal languages as a next step in the high-level description of distributed, concurrent
and mobile systeins.

The sccond part of the thesis introduce a type-based approach for describing recon-
figuration rules (transforinations), where styles are seen as types and HR derivations
as typing proofs. The emphasis of this approach is on maintaining style cousistency
after reconfiguration, where counsistency is obtained by thie subject reduction property.
The formalization is done by representing both graphs and productions as teris of a
typed A-calculus, where a HR derivation step correspouds to application followed by 3-
reduction. Then, transformations are specified as (higher order) term rewritings: if all
the termm rewriting rules transform typing proofs into typing proofs, then all the possible
rewritings satisfy subject reduction. Furthermore, the use of A-calculus introduces the
idea of higher order graph rewriting, allowing to parameterize the design process with
component and connector features whicli could be specified later, still guaranteeing con-
sistency.

Finally, the different topics introduced in the thesis are accompanied by specific
examples to clarify the various constructions and to show their expressive power, and
by a case study of a remote medical care system that is used all along the thesis.

1.4 Related Work

As related work using grapl transforination for describing software architectures we have
[Le Métayer, D., 1998] which has beeu the first to propose the use of graph grammmars for
describing software architecture styles. In [Le Métayer, D., 1998], Le Métayer presents
a dual approach with context-free productions where nodes represent components and
edges their communication links. Graphis are used to represent architectural instances
where a graph is formally defined as a set of relation tuples. Also reconfiguration is
trecated but using a centralized approacl. Together with the context-free grannnar a
coordinator is defined that is in charge of managing the architecture reconfiguration.
The coordinator is expressed using conditional graplh rewriting witl rules (1ot coutext-
frce) o entities, links and couditions on public variables of entities textual specification.
These variables are the only interactions among entities and the coordinator and are set
by entities (in the textual language specification) indicating when a rule can be applied.
In {Le Métayer, D., 1998] ouly binary and unary relations are used.

Le Metayer complenents the graph grammar for the style with a small language with
a CSP like notation used for describing entity (i.c. components) behavior including the
pattern of interactions among them. The difference witl our approach is that Le Metayer
only uses grammars to generate tlic static configuration of the style. He also uses context-
free productions but they are applied over unary relations that identify compouents. In
spite of the fact that both approaches highlights the separation of static configuration,
coordination and computation, the graph representation using relations mixes the static
configuration with the dynamics of the communications (see Section 4.4) by coumecting
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components with communication links, instead of using ports (or connectors generally
speaking). In our case, synchronized context-free productions can do the job while
keeping the self organising philosophy we propose.

Again, as related work on specifying consistent reconfigurations we can mention [Le
Métayer, D., 1998]. In his paper Le Métayer, together with the context free grammar for
the static structure of the style and the coordinator conditional rules for reconfiguration,
proposes a semi-decidable algorithm for "type checking” of styles to ensure tliat the
coordinator does not break the style structure (which defines the type). The algorithm
corresponds to a proof of convergence of graph rewriting rules. On the contrary, in
our approach using A-calculus the consistency of the reconfiguration does not need to
be verified given that it is assured by the typing rules of the grammar. Also, we have
to mention that part of the checking that is done in [Le Métayer, D., 1998] for the
coordinator rules, is due to the set representation that was chosen. For example, when
a component is removed it means that the coordinator rule has to take into account
the deletion of the node and also all the edges corresponding to its communication links
(this is not needed in our representation).

Other work on graph transformation for reconfiguration and description of software
architectures and styles are [Wermelinger, M., 1999] and [Wermelinger, M. and Fiadeiro,
J., 2002]. These works use a program design language (COMMUNITY) to represent
program states and computations, and an algebraic framework based on category theory
to represent architectures and their reconfigurations. In these case architectures are
diagrams of a specific category with designs as nodes and morphisms among designs
as arrows. Designs are graphs whose nodes are programs (written in COMMUNITY)
and arcs denote superposition relationships. Then, reconfiguration is specified using
conditional graph rewriting rules that depend on the state of the involved components
(designs). Reconfiguration rules are based on the double-pushout approach to graph
transformation. The inclusion of a given architecture in a style is determined (instead of
a graph grammar) by typed graphs that define the ways that architectures are allowed to
be constructed. This is done by equipping every architecture instance with a morphism
to the corresponding type graph for the style.

The work in [Wermelinger, M., 1999; Wermelinger, M. and Fiadeiro, J., 2002},
presents an alternative approach for software architecture reconfiguration using graph
transformation, but we considered that in relation to our work it is at a different level.
Our work is more concrete, in the sense that graphs are specific configurations of the
architecture and reconfigurations are applied (and specified) over the explicit component
network (in contrast to the morphisms among designs and the double-pushout rules).
Also, the work in [Wermelinger, M., 1999; Wermelinger, M. and Fiadeiro, J., 2002] is
limited with respect to the self organising approach presented in this thesis and the
possible treatment of open systems. These is due to the fact that it requires context
sensitive rules not allowing the possibility of unbound synchronizations (i.e. unbound
number of participants in a reconfiguration) and the movement of components along the
complete configuration graph. The use of typed graphs is a good typing solution for
style description assuring consistency of the style but is limited for the specification of
complex reconfigurations including the specification of hybrid styles (i.e. combination
of different kind of styles) and the possibility of constructing consistent reconfigurations
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from smaller incousistent steps (sec Part VI). In [Taentzer, G. et al., 1998] distributed
graph transformation for dynamic change management is also applied. This approach
also handle reconfiguration via transformation rules but they are based on geueral graph
rewriting rules and thus assume a global, centralized control driving recoufigurations.
Even if in this section we are conmnenting on related work using graph transforma-
tion for software architectures, based on the already stated relevance of w-calculus as
a foundational calculi for mobility and its relation with our work, we liave to mention
the language called Darwin [Magee, J. et al., 1995]. Darwin is an ADL specially de-
sign for distributed systems with its semantics expressed in the w-calculus [Magee, J.
and Kramer, J., 1996a]. Darwin supports only constrained dynamic manipulation of
architectures where the iuitial architecture may depend on some parameters and during
runtiine couponents may be replicated aud deleted. Darwin has a supporting tool tlhat
allows graphical and textual representations. In spite of this and considering that we
are presenting a formal model and not a specific ADL, it is clear that languages like
Darwin could benefit from our proposal of a calculus that directly supports a graphical
approacli, concurrency and increased expressive power for dynamic reconfigurations.
Finally, we consider that it is important to mention the work (in other arcas than
software architecture) that have been derived from our research. In [Kénig, B. and
Montanari, U., 2001], the authors present a bisimilarity for synchronized graph rewriting
with name mobility (only for Hoare synchronization), based on the work of {Hirsch, D.
et al., 2000], proving it to be a congruence. Also they introduce a so-called format
which is a syntactic condition on productions ensuring that bisimilarity is a congrucuce.
This last result is original not only for graph rewriting, but also for mobility in general.
Also, triggered by [Hirsch, D. and Montanari, U., 2001b], we can mention the work
of [De Nicola, R. et al., 2003] in the area of global computing applications for wide
arca networks, including the introduction of an extension of the approach to cope with
quantitative Quality of Services (QoS) requirements. The work in [Ferrari, G.L. et al.,
2001] introduces a semantics of ambient calculus based on synchronize rewriting with
Miluer synclironization; and the work in [Lanese, I. and Montanari, U., 2002] introduces
a traunslation for synchironize rewriting with Hoare synchronization to logic programining,

1.5 Thesis Organization

In this part of the thesis we have introduced thie notions of software architectures and
software architecture styles. Also, we have presented the motivation of our approach for
using graph transformations for modeling systeins and their recoufigurations, comment
on related work and sunnnarize the main results of the thesis. It is in the rest of this
thesis that we work out these ideas.

In Part II we preseut the basic definitions for HR systeins and w-calculus.

In Part III we give an introduction to our approach witliout much forimal details
(i.e. only the graphical side), with the goal of introducing the rcader to the idca of
using graph transformation mnodels to represent softwarc architecture styles. This part
is intended as a intuitive first step to the next parts of the thesis. In Chapter 3 we
introduce how to represent architecture static coufiguratious using hypergraphs and we
present a case study from tlhe telemedicine area that will be used to exemplified the new
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notions. The use of graph grammars for describing styles is presented in Chapter 4. In
this part we use SHR systems without mobility, separating productions in three sets:
thie Style Static Configuration Set, the Communication Pattern Set and the Dynamic
Reconfiguration Set. The level of reconfiguration that can be achieved here is limited to
simple creation and removal of components.

Part IV presents the formalization of SHR with the addition of name mobility. In
Chapter 5 we formalize the notion of hypergraphs as well formed syntactic judgements
generated from a set of axioms and inference rules. In Chapter 6 we also formalize
SHR with name mobility as syntactic judgements generated from a set of axioms and
inference rules, and present the inference systems for Hoare and Milner synchronization
algebras.

In Part V, with the goal of studying the expressive power of tlie formalism introduced
in Part IV, we give in Chapter 7 a translation for m-calculus using SHR Systems with
Milner synchronization. We present a translation function and state the correspondence
theorems.

Part VI presents an alternative approach for specifying reconfigurations (called trans-
formations). The method warranties that if the transformation can be specified, then
its application over system instances will be consistent with respect to the expected
architecture style configuration. In Chapter 8 we show how to specify reconfigurations
by transformation rules over grammar derivations, and in Chapter 9 we give a first idea
of how this approach can be used by a designer that may want to specify a reconfigu-
ration in a more constructive (and maybe more intuitive) way with intermediate steps
that may not end in valid configurations of the style. In relation with this last topic,
[Medvidovie, N. and Taylor, R., 1997] and [Hofmeister, C. et al., 1999a] comment about
the necessity of ADL’s tolerance and/or support for incomplete architectural descrip-
tions, how common they are during design and the advantages of allowing incomplete
descriptions. However [Medvidovic, N. and Taylor, R., 1997], also mentioned that most
existing ADLs and their supporting toolsets have been built around the notion that
precisely these kinds of situations must be prevented.

Finally, in Part VII we present our conclusions and ideas for future work.



Part 11

Background



Chapter 2

Basic Notions

2.1 Hypergraphs

A hyperedge, or simply an edge, is an atomic item with a label (from a ranked alphabet
LE = {LE,}n=0,,..) and with as many (ordered) tentacles as the rank of its label. A set
of nodes together with a set of such edges form a hypergraph (or simply a graph) if each
edge is connected, by its tentacles, to its attachment nodes. Similarly as in [Drewes,
F. et al., 1997], a graph is equipped with a set of external nodes identified by distinct
names. The difference with the definition in [Drewes, F. et al.,, 1997] is that instead
of using names, they use a sequence of external nodes. External nodes can be seen as
the connecting points of a grapl with its environment (i.e. the context). Graphs are
considered in this paper up to isomnorphism.

DEFINITION 2.1. [Hypergraphs] Let A be a fixed infinite set of names and LE a ranked
alphabet of labels. An edge-labelled hypergraph, or simply a graph, is defined as a tuple
G = (N, E, att, ext,laby g, labyn) where,

1. N is a set of nodes.
2. Eis a set of edges.

3. att : E — N* is the connection function (each edge can be connected to a list of
nodes).

4. ext C N is a set of external nodes.

labpg :E — LE is the labeling function of edges, where rank(lab.g(e)) = |att(e)|
foralle € E.

[S1]

6. labpy :ex t — N is the labeling injective function of external nodes.

17
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2.2 Hyperedge Replacement (HR) Systems

A HR production rewrites a single edge into an arbitrary graph. Productions will be
written as L — R. A production p = (L — R) can be applied to a graph G yielding
H (G =, H) if there is an occurrence of an edge labelled by L in G. A result of
applying p to G is a graph H which is obtained from G by removing an edge with label
L, and embedding a fresh copy of R in G by coalescing the external nodes of R with
the corresponding attachnient nodes of the replaced liyperedge. This notion of edge
replacement yields the basic steps in the derivation process of au HR grammar.

DEFINITION 2.2. [HR Production] Given a set of external nodes ezt, a HR production
pis a pair (L, R, cat) (noted as L — R), where:

1. L is a label of Iiyperedge.
2. Ris a graph.

3. The attachment nodes of the edge with label L and the external nodes of graph
R are exactly those in ext.

4. The nodes in ext cannot be deleted by p.

DEeFINITION 2.3. [HR Grammar] A HR Grammar is a pair HRG = (G, P), where:
1. Gy is a graph.
2. P is a sct of HR productions.

3. The rewriting step resulting from the application of a production p; to graph G;-,
(Gi-1 =pi Gi) is a direct derivation step. A HR derivation is a finite sequence
of direct derivation steps of the form Gy =, G, =2 ... = G, = H, where
Pl,---,Pn are in P.

2.3 Synchronized HR (SHR) Systems

DEFINITION 2.4. [SHR Production] Given a sct Act of actions, a SHR production p is
a tuple (L, R, ext, f), where:

1. (L, R,ext) is a HR production.

2. f:ext — Act®, assign tuples of actions to the attachiment nodes of an edge labelled
with L.

A SHR grammar consists of an initial graph and a set of SHR productions. A SHR
derivation is obtained by starting with the initial graph and applying a sequence of
rewriting rules, where each rewriting rule is obtained by synchronizing possibly several
SHR productions. How many productions will synclironize depends on the synchroniza-
tion mechanism. Note that HR productions are special cases of SHR productions where
Act = 0.
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DEFINITION 2.5. [SHR Grammar] Given a set Act of actions, a SHR Grammar is a pair
SHRG = (G, P), where:

1. Gy is a graph.
2. P is a set of SHR productions.

3. The rewriting step resulting from the application of a rule P, to graph G;_,
(Gi-1 =pi G;) is a direct derivation step. A SHR derivation is a finite sequence
of direct derivation steps of the form Gy =p, G} =ps ... =pn G, = H, where
Py, ..., P, are sets of SHR productions of P.

2.4 The m-Calculus

The m-calculus [Milner, R., 1999; Sangiorgi, D. and Walker, D., 2001] is a name passing
process algebra. Many different versions of the w-calculus have appeared in the litera-
ture. The m-calculus we present here is synchronous, monadic, with guarded recursion
and guarded sum.

DEFINITION 2.6. [w-Calculus Syntax] Let AV be the countable set of names. The syntax
of m-calculus agent terms, ranged over by P,Q, ..., are defined by the grammar:

P = nil | ZTI‘;.P,- | P|P | vz. P | rec X. P

i=1

In order we have, inaction, guarded sum, parallel composition, restriction and recur-
sion.
Prefizes, ranged over by 7, are defined as:

T o= Iy | z(y)

They correspond to the output action and input action. The occurrences of y in z(y).P
and vy. P are bound; free names of agent P are defined as usual and we denote them
with fn(P). Also, we denote with n(P) and n(r) the sets of (free and bound) names of
agent P and prefix m, respectively. The 7 symbol will be considered as an action given
that we are interested in the synchronization of components but not in their internal
computations.

Also, we require that any free occurrence of X in rec X. P must be in the scope of a
prefix (guarded recursion).

If o is a name substitution, we denote with Po the agent P whose free names have
been replaced according to substitution o, in a capture-free way.

DEFINITION 2.7. [w-Calculus Structural Congruence] We define m-calculus agents up to
a structural congruence =; it is the smallest congruence that satisfies axioms in table 2.1.
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(alpha) P = Q if P and Q arc alpha equivalent with respect to bounded names
(par)  Plnil=P  PlQ=Q|P  P|(QIR)=(PIQ)IR
(res) va.nil = nil ve.vy.P=vy.va. P

ve.(P|Q) = Plvx.Q ifx ¢ u(P)

(rec)  recX.P = Plrec X.P/X]

Table 2.1: #-Calculus Structural Axioms

We remark that P = Q implics Po = Qo and In(P) = fu(Q): so, it is possible to
define the effect of a substitution and to define the free names also for agents up to
structural cquivalence.

DEFINITION 2.8. [w-Calculus Operational Semantics]

The operational semantics of the 7-calculus is defined via labelled transitions P ——
P’, where P is the starting agent, P’ is the target one and a is an action. There arc
many versions for the operational semantics of w-calculus but we will not describe them
in this thesis. We refer to [Milner, R., 1999; Sangiorgi, D. and Walker, D., 2001} for
further explanations of the different semantics.

For the translation presented in Chapter 7 we will use the late operational semantics
of w-calculus and its corresponding trausition systen.

The transitions for the operational semantics are defined by the rules of Table 2.2.
The actions an agent can perform are defined by the following syntax:

a == 71 | 2(2) | zy | 2(2)

and are called respectively synchronization, bound input, free output and bound output
actions; = and y arc free names of « (fu(a)), whereas z is a bound name (bn(a));
moreover o) = fu(a) Ubn(a).

(Sum) Y0, o;.P; 25 P with o; = z(y), Ty

2 d Iy z(2)
(Par) _P—P if bu(e) Nfi(Q) =0 (Com) P—=P Q—=Q

PIQ = P'|Q PIQ — P'|Q'{y/=}
(c )Pﬂp' 0 o (Open) P2~ ¢
lose = ; pen) ————— ifx #y
PlQ = vy.(P'|Q) vy. P 29 pr

PP
Re: fa :
(Res) v P vr P % n(a)

ooy E2E 2220 0=0

Table 2.2: 7-Calculus Operational Semantics
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The prefix z(z) for bound input means input some name along link named = and call
it y. A free output Ty means output the name y along the link named z. A bound
output Z(z) is not available at the syntactic level and corresponds to the emission of
a private name of an agent to the environment, i.e., z is a name that was previously
restricted: in this way, the channel becomes public and can be used for further commu-
nications between the agent and the environment. Rule (Open) allows to share with the
environment a node that was originally bounded. This rule may be used for sharing a
port of communication that was local among some processes and that now they want
to allow others to communicate with them by that port. and together with rule (Close)
causes an extrusion. Extrusion allows to export and share bounded nodes. But once
synchronization is completed, it hides away those private names that were synchronized
meaning that the names are still bound, but their scope has grown.

DEFINITION 2.9. [Agents]

eAgen t Term: An agent term is any term generated by the grammar in Defini-
tion 2.6.

eAgen t: An agent is an agent term that represents a class of terms up to structural
equivalence.

eSe quential Agent: Some of the agent terms equivalent to it have guarded sum
as top operator.

The following definition for standard decomposition of sequential agents will be needed
for the translation of w-calculus to SHR systems in chapter 7.

DEFINITION 2.10. [Standard Decomposition] The Standard Decomposition of a sequen-
tial agent P is defined as: R
P=o pP

where op and P are the standard substitution and standard agent of P, respectively,
and with 0P = (60p)P also standard, for any name permutation o.

o~

The standard agent P is obtained by:
1. Find the first of the equivalent terms of P with respect to structural equivalence.
2. Distinguish and order all free variable occurrences. We assume fn(13) = {v},..., U}

We assume that there is a procedure that, by a given order over the equivalence class of
P, returns the corresponding standard substitution and standard agent for P. Also, we
have that Vv.(o,p = yop) A (YP = P) with v any substitution.

For example, assuming that sequential process P = Ty.z(w).nil + z(y).nil is the first
(by a given order) of its class, we have:

op = |[z/v1,y/v2, z/vs, T/v4] and P= D)vo.v3(w).nal + v4(y)



Part III
Software Architecture Styles and Grammars

In Part III we give an introduction to our approach without much formal details
(i.e. only the graphical side), with the goal of introducing the reader to the idea of
using graph transformation models to represent software architecture styles. This part
is intended as a intuitive first step to the next parts of the thesis.

In this part of the thesis we present to the reader the idea of using graph transfor-
mation models to represent software architecture styles. The presentation in this part
is intended as an introduction to our approach without much formal details (i.e. only
the graphical side), with the goal of introducing the reader to the idea of using graph
transformation models to represent software architecture styles. This part is intended
as a intuitive first step to the following parts of the thesis.

In Chapter 3 we introduce how to represent architecture static configurations using
hypergraphs and we present a case study from the telemedicine area that will be used
to exemplified the new notions. The use of graph grammars for describing styles is
presented in Chapter 4. In this chapter we use SHR systems without mobility. The
approach separates productions in three sets: the Style Static Configuration Set, the
Communication Pattern Set and the Dynamic Reconfiguration Set. The level of re-
configuration that can be achieved lere is limited to simple creation and removal of
components. As we already mentioned in the introduction of this thesis we are inter-
ested in a self organising approach and consequently focused on graph transformation
models supporting this idea, i.e. the use of context-free grammars.



Chapter 3

Software Architectures and Graphs

One of the basic steps in the construction of a software system is the identification
of its software architecture ([Garlan, D. and Shaw, M., 1996; Perry, D. and Wolf, A,
1992]), that means that the different participants of the project must agree on a system
configuration of its components and the definition of the interactions among them.

In this chapter we will focus only on the representation of the static configuration
of software architectures. We present graphs as a formal model for describing software
architectures, more specifically, graphs are proposed for describing the static configura-
tions of systems. At the end of this chapter we also comment about related work using
graphs based approaches to support multiple view architectures.

3.1 Case Study: Remote Medical Care System

This section presents a case study from the telemedicine area, which will be used in
some of the different chapters of this thesis. This case study is motivated by a real
system developed as part of a project carried out by University of L'Aquila and Parco
Scientifico e Tecnologico d’Abruzzo, a regional consortium of public and private research
institutions and manufacturing industries in Italy. Also, it was proposed as a working
case study for the Tenth International Workshop on Software Specification and Design
(IWSSD-10) [Inverardi, P. and Muccini, H., 2000].

The current trend in healtlicare is to transition patients from hospital care to home
care as quickly as feasible. The Teleservices and Remote Medical Care System (TRMCS)
is intended to provide and guarantee assistance services to at home or mobile users. This
type of patient does not need continuous assistance but may need prioritized assistance
when urgencies happen, in which case the patient would call a help center for assistance.
The systern must handle help request to a help center from patients with a medical emer-
gency. Also, patients may have internet-based medical monitors that give continuous
readouts. A help center may be contracted to read these monitors over the net and raise
alerts when dangerous values are detected.

25
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The case study can be examined from many perspectives like requirements, safety
critical aspects, security, design and user interface. Some of the requirements of the
system related to dynamic changes and reconfigurations are as follow.:

eBe open to new service installations.

eHand le users that are geographically distributed and heterogeneously connected,
offering homogencous service costs.

eHand le dynamic changes of users and their locatious.

eSu pport mobile users.

Others requirements not directly related with dynamics but which can affect the
possible solutions include:

eGua rantee continuous service of the system.

oeGua rantce the delivery of help service in response to a help request in a specific
critical time range.

eHand le several help request in parallel that compete for service by overlapping in
time and space.

eSu pport conflict resolution according to resolution policies that minimize user
damage.

For clarity, the operations of the different components have been simplified. The
three types of units operate as follows.

User sends cither alarm (i.e. help requests) or check signals (i.c. control messages) on
the uscr subsystein state or on the user health state, respectively.

Router accepts signals (control or alarm) from the Users. It forwards the alarm re-
O
quests upward to the Server and checks the behavior of the user subsystem through
the control messages.

Server reccives alarms from Routers and dispatches the help requests.

The software architecture of the system follows a hicrarchical style. There is only
one server in the system. A variable number of routers are connected to the server and
a variable number of users are connected to each router.
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3.2 Graphical Notations: Semiformal and Formal
Languages

To fulfill the task of obtaining the software architecture of a given system, usually,
practitioners rely on box-and-line drawings with the intention to communicate, among
a project team, the intuition of the system structure under development. Many of
the graphical notations that practitioners have used or are using do not have a formal
semantics that allows a clear understanding for the meaning of these kind of diagrams.
An example of these informal notations that is being used widely, almost imposed in
many organizations as a standard, is UML [Booch, G. et al., 1999]. In spite of being a
notation that comes from the object-oriented universe, and not being initially thought
with that goal, it is being used for system architecture description. The problem (among
others) with these informal notations is that it is very difficult to reconcile the different
interpretations that can be given to the same diagram by different participants of a
project.

On the other side, we have the development of Architecture Description Languages
(ADLs), which are languages specially developed to cope with the architectural aspects
of a system [Medvidovic, N. and Taylor, R., 1997]. In general, most of these formalisms
support graphical descriptions with defined semantics that allow some type of analysis,
although many of them are restricted to specific domains or the use of one type of
style. It is in the direction of understanding which is the best way of describing software
architectures that many researchers are investigating the real suitability (or not) of
using languages like UML for architectural description and their relationship with ADLs
[Garlan, D. and Kompanek, A., 2000; Hofineister, C. et al., 1999a; Hofmeister, C. et al.,
1999b; Medvidovic, N. and Rosemblum, D., 1999].

But above all the mentioned approaches we can see a common denominator. They
use graphical notations for supporting comrmunication of ideas among people. It is in
this context, that we see graphs as the nearest (and most general) formal model to
the box-and-line drawing representation. And with this in mind, one of our goals is to
introduce the reader to a common formal ground among tlie many languages, notations
and tools that he/she may find, trying to identify which one is the best suited for his/her
needs, and also if it is necessary, to be able to develop them formally.

3.3 Graphs for SA Static Configurations

A graph represents a state of the static configuration of the architecture. The configura-
tion evolution from one state to the other will be modeled as graph rewriting from one
graph to another. At this point, you should imagine that there are various possibilities of
representations for architectures as graphs, depending on how edges and nodes are inter-
preted with respect to components and communication links or ports. In this thesis, we
will follow the representation first introduced for software architectures in [Hirsch, D. et
al., 1998] and [Hirsch, D. et al., 1999], where a software architecture structural topology
is described as a hypergraph where hiyperedges are components and nodes are communi-
cation ports. Hyperedges sharing a node mean that there is a communication link among
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the components. Names and other attributes of components can be seen as labels of
the hypergraph. Then we can give a definition of a hyperedge (or simply an edge) as an
atomic itemn with a label (from a ranked alphabet LE = {LE,}{n =0,1,...}) and with
as maiy (ordered) tentacles as the raunk of its label. A set of nodes together with a set
of such edges forms a hypergraph (or simply a graph) if cach edge is connected, by its
tentacles, to its attachment nodes. Note that the usual notion of graph is a special case
of hypergraphs where all hyperedges have rank 2. You can find the formal definitions
in Section 2.1 and more information about hypergraphs in [Drewes, F. et al., 1997].

3.4 Example

As an example, you can see in Figure 3.1a. a hypergraph representing an instance of the
style used for the TRMCS system. Hyperedges (components) are drawn as boxes with a
label for the component name and they are conmected together by nodes (conmmunication
ports). In this case, we have one Server component and two Routers, the first one
with one User and the second with two of them. The communication port AlarmRSp
connects the Server and Routers and it is used to forward User alariis to the Server.
The communication port Signalp connects a Router with its Users aud it is used to
send User alarms to the Router and to send check signals from the Router to a User.

Saver
:
AlamRS |
Router Route
Signdp l Sgndp
User User User
a)

Figure 3.1: Representations of a software architecture configuration as a graph.
a) Components as Hyperedges. b) Components as Nodes.

Another possible representation of architectures as graphs and the first work in which
(context-free) graph grammars are used to represent styles is [Le Métayer, D.. 1998]. Le
Metayer presents a dual approach where nodes represent coniponents and edges their
communication links. Graphs are used to represent architectural instances where a graph
is formally defined as a sct of relation tuples of the for R(ey, ..., ¢,) where R is a n-ary
relation and ¢; are entity names (note that this definition also allows the representation
of hypergraphs). In [Le Métayer, D., 1998] only binary and unary relations are used,
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a binary relation L(e),e,) represents a directed link of name L between e, and e; (a
communication link from component e; to component e;); and a unary relation L(e)
characterizes the role of entity e (e is a component L) in the architecture. As an
example, Figure 3.1b. shows the same TRMCS instance of Figure 3.1a. with this
notation, where component types Server, Router and User are unary relations, and
communication links (not ports) AlarmRS ,AlarmUR and Check are directed edges
(binary relations). Nodes s,, 7}, T2, u;, u2, uz are the components of the system. Again, it

is worth noticing that these two approaches are not the only ones, and that other possible
ways of interpreting architecture structures can be applied. For example, the dual
ones of these two are options. A second point to comment is about another important
notion of software architecture, which are connectors. Connectors represent interactions
among components. They may represent simple interactions or can be entities that
have to deal with complex communication mechanisms and protocols. In our context of
graph representation, connectors can be seen as simple communication ports (as in the
hypergraph approach). But also, if they must specify complex interactions they can be
treated as first class entities like components (but as a distinguished class) with their
corresponding behavior to coordinate interactions (also known as roles [Allen, R. and
Garlan, D., 1994]). In this setting, nodes are the connections between components and
connectors.

3.5 Multiple Views

Another important topic that is of relevance in the area of Software Design is the notion
of view. A view is the representation of a system from a given set of requirements
or properties of interest. The goal of using views is to reduce comnplexity, separation
of concerns and help in analysis. Usually, views are represented with different types
of diagrams, for example, in UML you have class diagrams, statecharts, deployment
diagrams, etc., that are used to describe different aspects of a system. In the area of
software architecture the use of views has been proposed and studied too. For example
we have [Kruchten, P.B., 1995], where the 4 + 1 View Model is introduced, and [Bass,
L. et al., 1998] where the use of views is proposed to analyze architectures. A third
work that applies a multiple view approach and relates UML with software architecture
is [Hofmeister, C. et al., 1999a).

But one of the main problems with views is how to keep and/or check consistency
among views. Another problem is how to be able (if possible and desired) to obtain an
integrated view from the basic ones. As far as we know, the existing formal ADLs do not
support a multiple view approach, but some work has been done on its formalization
and the treatment of the problems mentioned above. We can mention [Fradet, P. et
al., 1999] and [Périn, M., 2000}, where a graph notation is used to represent different
views of a system and diagrams with multiplicity (in the spirit of UML class diagrams)
define a class of graphs for each type of view. Multiplicity is used to constraint the
number of connections on nodes for graphs in a class. Also, an algorithm is proposed
to check the consistency among views and a language of constraints is introduced to
express more complex consistency requirements together with a decision procedure to
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check if diagras satisfy constraints expressed in that language.

Another work in this line is [Heckel R., 1998], where an object-oriented approach
is introduced to specify different views of a system using open graph transformation
systems based on a loosc semantics. In [Heckel R., 1998], a view is an incowplete
specification of a system focusing on a particular aspect or subsystem, aud then a view
specifies only what, at least, has to happen on a system’s state. Views are obtained
from a conimon reference model and evolve concurrently with corresponding extensions
to the original reference model to keep consistency when new dependencies appear ainong
views. At the end, views are compositionally integrated to obtain the overall system
specification. For temporal specification and verification of safety and lifeness properties
temporal arrow logic [Marx, M. et al., 1996] is used.

Then, following the idea of graphs as a general model for systemn architectures, and
as it was already mentioned that it is used in other works, views can be seen as a family
of graphs where each view may have a different interpretation of the meaning of nodes
and edges.

In this thesis we will not work with different views leaving this topic for future work
(sec chapter 10).



Chapter 4

Software Architecture Styles and Graph
Grammars

Now that we have introduced graphs as a representation of the static configuration of
architecture instances, we want to go to a higher level and talk formally about classes of
architectures sharing similar characteristics, i.e. software architecture styles. To achieve
this goal, in this chapter we present graph grammars. At the same time, the use of gram-
mars comes with the notion of graph rewriting or graph transformation which together
will let us describe the evolution of a system architecture not only as transformations
over system instances, but at the level of style.

4.1 Graph Grammars and Graph Transformations
for Styles

The motivation to introduce the use of styles is very important. It allows reuse of
architectures by the identification of related structures on supposedly different systems
[Perry, D. and Wolf, A., 1992; Garlan, D. and Shaw, M., 1996; Bass, L. et al., 1998]. And
also, it will make possible to compare different styles (i.e. classify styles in a taxonomy)
being able to choose which is the best one to fulfill the requirements for a system to be
implemented. It is clear that the use of informal notations without a defined semantic
does not allow a clear notion of what is the meaning of the different diagrams that are
used to describe the architecture. As a consequence it is very difficult to talk about
styles and reusability.
The description of a software architecture style must contain:

oTh e structure model of coinponent types and their interactions or connections, i.e.
the structural topology.

oTh e communication pattern, i.e. the interactions among component types.

eTh e laws governing the dynamic changes in the architecture configuration, i.e.
reconfiguration and/or mobility.

31
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A graph grammar characterizes a class of graphs with shnilar characteristics aud is
composed of a set of rewriting rules called productions (which are the ones that define
the general structure of the graphs of the class). A production rewrites a graph into
another graph, deleting some clements (nodes and edges), generating new ones, and
preserving others. Also, as we already mentioned, the application of rewriting rules to
graphs drives to the notion of graph rewriting or graph transformation, which itself,
it in is very uscful and another motivation for the approach. Using graph grammars
and graph rewriting not only let us specify the construction of the static structure
of systems for a given style. Later we will be able to include productions specifying
runtime interactions among compouents, rcconfiguration and mobility, allowing their
explicit description at the level of style language. In conclusion, a graph gives a simple
view of the structure of an architectural instance at a given state, separated from the
application of the rewriting rules that show the evolution between states.

The use of graph transformation to specify systems is not new and the amount of
work in this arca shows its relevance in computer scicnce. As we already mentioned
in the introduction (sce Section 1.2) and chapter 3, [Le Métayer, D., 1998] has been
the first to propose the use of graph grammars for describing software architecture
styles. Also, we can mention its application in the areas of concurrency, parallelism
and distribution [Ehrig, H. et al., 1999b]; for functional languages, visual and object-
oriented languages and software enginecring [Ehrig, H. et al., 1999a); and the proposal
of general formal frameworks for system modeling [Engels, G. and Heckel, R., 2000;
Mens, T., 2000].

There are many formalisims for rule based graph specification and transformation. In
this thesis we will just consider context-free graph grammars. Context-free productions
can be specified in terms of node replacement or edge replacement. As we introduced
in Section 1.2, thinking about the new generation of systems and their requirements
for distribution, heterogencity and mobility, is that we are interested in modeling self
organising systems [Magee, J. and Kramer, J., 1996D], i.c., management is distributed
among components without a central coordinator. Then, continuing with the approach
proposed in [Hirsch, D. et al., 1998] and [Hirsch, D. et al., 1999], we describe a software
architecture style using context-free Hyperedge Replacement (HR) grammars [Drewes,
F. et al., 1997] and Synchronized HR (SHR) grammars to model communication and
coordination among components (SHR was first used to represent distributed systems
[Degano, P. and Montanari, U., 1987; Montanari, U. et al., 1999]).

The productions of a grammar are grouped in three sets:

oSt atic Configuration Set: This set of productions represents the construction of
all possible initial configurations of the class of architectures modeled by the style,
i.e. the static structure of architectures.

eDyna mic Reconfiguration Set: This set contains the productions for the dynaic
evolution of the style configuration, this means create and remove components. In
this case SHR productions are used to coordinate the reconfiguration of architec-
tures.

¢Co mimumication Pattern Set: This set contains the productions that model the
communication cvolution for each type of comnponent. These productions are SHR
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productions that during rewriting will synchronized for the evolution of the system.
Productions in this sct cannot change the topological structure of the graph.

4.2 Style Static Configuration

A HR production (or simply a production) rewrites a single (hyper)edge into an arbitrary
graph. Productions will be written as L — R. A production p :L — R can be applied to
a graph G yielding H (G =, H) if there is an occurrence of an edge labelled by L in G.
A result of applying p to G is a graph H which is obtained from G by removing an edge
with label L, and embedding a fresh copy of R in G by coalescing the corresponding
attachment nodes. In the standard definition for HR systems, no nodes are deleted.
This notion of edge replacement yields the basic steps in the derivation process of an
HR grammar. See the formal definitions in Section 2.2.

In Figure 4.1 we have a graph H containing an edge with label L,an d another with
label L,. Then, we have two productions, p;t hat rewrites an edge with label L,with a
graph R, and p, that rewrites an edge with label L, with a graph R,. The right hand
side of the figure shows the result of applying p, and p. to the edges in graph H. The
result of rewriting graph H is a new graph where the two edges with labels L, and L,
were replaced by graphs R, and R,. Note that R; and R, can be any graphs, containing
new edges and nodes, but that L, and L, attachment nodes cannot be deleted (maybe
other edges in graph H — B are attached to that nodes too). Here, nothing is said
about the order in which productions are applied, and this implies some properties of
HR systems (and other rule-based formalisms).

These properties are sequentialization and parallelization, confluence and associativ-
ity. Sequentialization and parallelization say that it does not matter to replace edges of
a hypergraph one after another, or simultaneously. Confluence says that edges of a hy-
pergraph can be replaced in any order without affecting the result. Finally, associativity
says that if an edge is replaced and afterwards an edge of the new part is replaced again
by a new hypergraph, the same result is obtained by first replacing the last edge and
them replace the first with the result. These properties show the suitability of hyperedge
replacement for specifying distributed and concurrent systems.

The application of a production p to a graph G yielding H (G =, H) is called a
direct derivation step. Given a set of productions P, a sequence of direct derivation
steps starting from graph G, of the form Go =, G) =2 ... =pn Gn = H, where
D1, -..,Pn are in P, is called a derivation of length n. From the above properties it can
be seenr that there can be more than one possible derivation from Gy to G,.

A HR grammar consists of an initial graph Gy and a set of productions P. A
derivation in the grammar is obtained by starting with the initial graph G and applying
a sequence of rewriting rules, each obtained by productions in P.

For the definition of the static configuration set of a style, a set of productions is
specified which represents the construction of all possible initial configurations of the
class of architectures modeled by the style. After obtaining an initial configuration for
a desired system instance, the evolution of the system begins.
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L2

Hisagraph B={L1,L2};p1={L1 = R1};p2={L2 = R2}

Figure 4.1: Applications of context-free graph productions.
5 Pl grapi |

4.2.1 Example

Using the TRMCS case study, Figure 4.2a. shows the initial graph and the static con-
figuration set of productions for the TRMCS hierarchical style. Recalling, components
are edges (boxes) and communication ports are nodes. Edge labels have two parts, one
is the component name and the other is the status of the component that represents its
different states during evolution. For the static productions the status is always Init,
meaning that they are in a kind of initialization phase. After the initialization phase,
components change to an Idle status applying the Idle Productions (not shown) which
means that the architecture instance can start using its dynamic evolution productions
from the other sets.

The initial graph corresponds to the Server type component. Production Cre-
ate Router (CR) adds a Router type component attached to the Server (using port
AlarmRSp) and creates a new port Signalp (new nodes are depicted as blank nodes
in productions). Production Create User (CU) adds a User type component attached
to one of the Routers (using port Signalp). These two productions together with the
initial graph generate all the static configurations of the style. Figure 4.2b. shows one
possible derivation to generate the graph configuration in Figure 3.1a. Double lined
components indicate edges over which productions are applied.
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Initial Graph Creale Rauter (CR) Creale User (CU)
v v e T AlamRSp T AlamRSp
(Init) (Init) (Init)
Router Router
l l — (ny | — | (iny)
AlamRSp
AlamRS AlamRSp l Sand ® Sond
Rode gndp gnap
(Init)
User
Signdp (Init)
a
Server Sava Server Saver
(Init) CR (Init) CR (Init) cu (Iniy) U
l —> —> Aamrsy  — Namipy —
AlamRSp ] ‘
AlamRSp
Ru:(e- Router Router Router Router
(Iniv) (Init) (Init) (Ini)) (Init)
Sgnd Signdp
l Signdp l l [ ] nep ®
Signdp Sgndp
User
(Init)
Saver Saver
(Init) cu (Init)
lAlarnFﬁa . | AlarmRSp
Router Router Router Router
(Init) (Init) (Init) (Ini)
Signdp Signdp Signdp Sgndp
® e * -
User User User User User
(Iniy) (Ini) (Init) (Ini)) (Init)
b)

Figure 4.2: a) Initial Graph and Static Configuration Set. b) An Architecture Derivation.

4.3 Style Dynamic Reconfiguration

To model coordination of the evolution of a software architecture configuration, we need
to choose a way of selecting which components will evolve and communicate. Using
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graph rewriting we may need to specify that more than once production has to be applied
at the same time (i.c. various components need to synchronize). For this, we combine
graph rewriting with synchronizing conditions obtaining SHR systems. We specify syn-
chronized productions by adding conditions (or generally actions) on nodes which allow
to coordinate several rewritings (called synchronized rewriting). thus determining how
components iuteract and are reconfigured.

For this, assuming to have an alphabet of actions Act, we associate some labels
(actions) to the (attachment) nodes in the left member of productions. In this way, cach
rewrite of an edge must match actions with its adjacent edges and they have to move
as well. This technique was already applied in [Degano, P. and Montanari, U., 1987;
Montanari, U. et al., 1999] to represent distributed systems.

a b
*1 T1 <T1 (T1
A1 A2 L 03 B1 B2

.2 .2 ¢ o2

—O 3

Figure 4.3: Synchronized Rewriting.

For example, consider the two productions in Figure 4.3. The first production
rewrites an cdge with label A) into an edge A, with rank three, creating a new node.
The other production does the same for edges with labels By and B,. Now, lets take, like
in the figure, a graph that contains edges A, and B which share one node, such that no
other edge in the graph is attached to that node. Each of the productions have a action
on that node (a and b), which means that the production can be applied only if actions
on nodes are satisfied. If a # b, then the edges cannot rewrite together (using that
productions). If @ = b, then they can move, via each of its corresponding production.
This is called a synchronized rewriting step. This type of synchronization mechanism,
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called Hoare synchronization, is the basic one, but other types of coordination policies
can be used.

The problem of finding the set of productions to use in a synchronized rewriting step
is called the rule-matching problem [Degano, P. and Montanari, U., 1987]. The solution
of the rule-matching problem is implemented considering it as a finite domain constraint
problem [Mackworth, A.K., 1998]. An analysis of some techniques to solve this problem
in a distributed and efficient way can be found in [Montanari, U. and Rossi, F., 1999;
Montanari, U. et al., 1999]. The description of these techniques is out of the scope of
this thesis.

Now that the notions of production, graph rewriting and synchronized rewriting
have been introduced, we can easily define SHR grammars (or simply a grammars).
A grammar consists of an initial graph G, and a set of SHR productions P. A SHR
derivation is obtained by starting with the initial graph G, and applying a sequence of
rewriting rules, each obtained by synchronizing possibly several SHR productions (see
Section 2.3). How many productions will synchronize depends on the synchronization
mechanism. It is worth noticing that HR productions are special cases of SHR produc-
tions where Act = @, which allow to include cases where components may not need to
synchronize.

The dynamic reconfiguration set of a style defines a set of productions which repre-
sent allowed structural changes that architectural instances can suffer during their evo-
lution, like for example the creation of a new component or the removal of an existing
one. This set contains SHR productions to model the coordination of a reconfiguration
where many components are involved. SHR systems support our intention to propose a
self-organising approach ([Magee, J. and Kramer, J., 1996b]) where there is no central
coordinator controlling the system evolution and each component defines its own evo-
lution. The application of these productions (and the ones for communication) is done
after an initial configuration of a system is achieved using the static configuration set.

4.3.1 Example

Figure 4.4 shows some possible reconfiguration productions for the case study. In this
example we use the Hoare synchronization mechanism for productions, so actions on a
port must be matched by all components sharing it. Actions are within brackets allowing
synchronization on tuples. All productions are applied in the Idle status specifying that
reconfiguration can only occur when there are no communication interactions among
the involved components, which otherwise can provoke erroneous states [Kramer, J. and
Magee, J., 1990].

The first two productions have no actions and represent the creation of a new User
and the removal of an existing one. Of course, this is a design choice that lets Users
appear and disappear at any moment, and it can be specified in other ways. In the case
of a removal of a Router it is not so simple, because a Router can have a number
of Users attached to him. The Remove Router production is an example of the use of
coordinated rewriting to model] negative actions. The action < noUSER > is imposed
on the signalp port where the Router and its Users are connected. A action in this
port means that for this production to be applied it must coordinate with all other
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components connected to that port (i. ¢. the Users). So. if all neighbors agree on
the action, then everybody can rewrite. But in this case, the only one with this action
is the Router and it cannot leave the system while Users are attached to it. When
all Users connected to the Router leave the system then the production with action
< noUSER > is satisfied and then it can be applicd to the Router. The production
can be applied because there are no neighbors, so the Router is the only one that has
to agree on the action.

The rest of the productions represent a scenario where there is a forced removal of a
Router and its Users. To avoid ending in an inconsistent state they have to synchronize
(< remove >) to be removed at the same time. It is worth noticing that using SHR
productions allow the specification of reconfigurations with an unbound number on
participants and also that computation is not stopped while a system is reconfigured.

Add NewUser Remove User
T AlarmRSp AlamHSpT T Sondp @ Sgndp
Router Router User
(dle) > (Ide) (Ide) —
l Signdp Sgndp
User
(Ide)
Remove Router
T AlarmRSp AlamRSp @
Router 3
(Idie)
l Signdp Sondp @ <NoUSER>
ForcedRemoval Scenario
<Remove>
T AlarmRSp AlarmRSp @ Sgndp @ Sgndp
Router User
(Idle) - (1dle) -—
® Sgndp Signdp @ <Remove>

Figure 4.4: Dynamic Reconfiguration.
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As we already introduced in Section 1.4, in the area of software architecture recon-
figuration other work has been done using graph grammars and graph transformation.
In [Le Métayer, D., 1998] also reconfiguration is treated, using a centralized approach.
Together with the context-free grammar a coordinator is defined that is in charge of
managing the architecture reconfiguration. The coordinator is expressed using condi-
tional graph rewriting with rules (not context-free) on entities, links and conditions on
public variables of entities textual specification. Tlese variables are the only interac-
tions among entities and the coordinator and are set by entities (in the textual language
specification) indicating when a rule can be applied.

Other work on graph transformation for reconfiguration on software architectures are
[Wermelinger, M., 1999] and {Wermelinger, M. and Fiadeiro, J., 2002] where a program
design language (COMMUNITY) is used to represent program states and computations,
and algebraic graph rewriting is employed for architecture reconfigurations. In [Taentzer,
G. et al.,, 1998] distributed graph transformation for dynamic change management is
applied. These approaches also handle reconfiguration via transformation rules but
they are based on general graph rewriting rules and thus assumne a global, centralized
control driving reconfigurations.

4.4 Style Communication Pattern

The communication pattern set can be represented as SHR productions where the com-
munication pattern is modeled by synchronized rewriting. In this way, the communi-
cation evolution can be specified independently for each component type. Productions
in this set do not change the configuration of the architecture, they only model possi-
ble interactions among components that may change, at most, component status. This
representation gives an abstract representation of interactions compatible with the rest
of the style description, but it is not our intention to make compulsory use of the graph
modeling. Maybe it is more comfortable for a designer to specify the communication
pattern in some textual formal language. What we want to show is that there is a
graphical notion (compatible with the rest of the style description) that if desired can
be used instead or as a complement of a lower level description. One thing to point out
is the flexibility of using SHR productions that can be used for scenario-based specifi-
cation of interactions and also with the possibility of easily adding new scenarios (just
by introducing more productions).

As we pointed out, using productions for the communication pattern offers an ab-
straction compatible with the rest of the style specification which is good for analysis
and general understanding of the system, but a designer may choose to use a textual
language to model communications. For example in [Le Métayer, D., 1998}, Le Metayer
complements the graph grammar for the style with a small language with a CSP like
notation used for describing entity (i.e. components) behavior. The difference of both
approaches is that Le Metayer only uses grammars to generate the static configuration of
the style obtaining graphs of the form presented in Figure 1b. He also uses context-free
productions but they are applied over unary relations that identify components.

In spite of the fact that both approaches highlights the separation of static configura-
tion, coordination and computation, the graph representation in Figure3.1b. mixes the
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static configuration with the dynamics of the commmunications by councecting conponents
with communication links, instead of using ports (or counectors generally speaking). For
example, an instance of the case study style with fifty users attached to a router would
still be connected by one port in our approach, while in the relation approach there
would be fifty edges from the Router to the User and fifty from the user to the router.
But still, in this second representation nothing else is said about how these links are
related to cach other completing the specification of the communication pattern (these
is what we would identify as the role of a conmector). In our case, SHR productions
can do the job. In [Le Métayer, D., 1998], the language of cntities is used to model
components behavior including the pattern of interactions among them.

But, as an example of how both ideas can be complemented we can use the language
of entitics in [Le Métayer, D., 1998] as a textual representation of the communication,
which offers the designer an alternative abstraction to productions.

4.4.1 Example

Following with the case study, we can show how the textual and graphical representation
can support each other. Figure 4.5 and Figure 4.6a. show the textual and graphical
specification of one possible conununication scenario, the User Sends Alarm Scenario.
This scenario describes a User (patient) sending an alarm for help to a Router, whom
forwards it to the Server. After receiving the alarin the Server returns an acknowl-
edgement to the Router and from him to the User, indicating that the help request
was reccived and it is being sent to the User.

We will not fully describe the textual language and only use enough of it to exemplify
the ideas mentioned above. The language has a CSP like notation, with *[) as the
repetitive command and G — C a guarded command. There are two possibilities for
input and output commnunication commands:

ea € L7 and a € Llv: correspond to the establishiment of a rendezvous with
any component linked to the currcut entity through a port of name L. This
allows a component to communicate with an unbounded munber of entities without
knowing their namne (This is not possible in CSP).

ea : L7v and a : L'w: correspond to the establishment of a rendezvous with the
explicit component linked to the current entity through a port of name L. This is
necessary for a component to complete a series of communications with the same
partner.

In this example we introduce another synchronization mechanism for the graphical
representation, the point-to-point communication, where the synchronization is done
between one sender and one receiver. The sender is represented with a production
containing a tuple and the ! symbol on the shared node and the receiver is represented
with a production containing the same tuple and the ? symbol on the corresponding
node. A synchronized rewriting step represents the interaction of the two components.

The notation of the form A — B — C is a shortcut for two productions of the form
A — B and B — C. Also, with this notation each column of productions corresponds,
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Server:  priv status: {IDLE, RA}
ack, alarm: int
infout  AlarmRSp
ent r
body lnitS ; status ;= IDLE;
*[ (status = IDLE) = r€ AlarmRSp ? <alarm> ; status := RA
(status = RA) — r:AlarmRSp ! <ack> ; status := IDLE]

Router:  priv status: {IDLE, AA}
alarm, ack, help: int
infout  AlarmRSp, Signalp
ent u,s
body lni!R ; status := IDLE;
*[ (status = IDLE) — u € Signalp ? <help> ; s € AlarmRSp ! <alarm> ;
status := AA
(status = AA) — s:AlarmRSp ? <ack> ; u: Signalp ! <ack> ;
status := IDLE)]

User: priv status: {IDLE, WH}

ack, help: int
infout  Signalp
ent r

body lnitU ; status := IDLE;
*[ (status = IDLE) — r € Signalp ! <help> ; status := WH
(status = WH) — r: Signalp ? <ack> ; status := IDLE]

Figure 4.5: Textual representation for the Communication Pattern: User Sends Alarm Scenario.

for each component type, to the productions that participate on a synchronized rewriting
step. The Idle status indicates that the component is not participating in any interaction
or reconfiguration and it is ready to participate in a new one.

We have to note that in this part of the thesis we use for the point-to-point communi-
cation the CSP notation (! and ?) with the goal of pointing out the relation of our graph
grammar approach and the textual representation introduced in {Le Métayer, D., 1998].
The formalization of point-to-point communication (also named Milner synchronization)
is done in Part IV following a w-calculus notation.

Productions in Figure 4.6a. describes a User (patient) sending an alarm for help
to a Router, whom forwards it to the Server. This is done with the first column of
productions where the User sends the alarm < help >! going to a Waiting for Help
(WH) status, the Router attached to that User receives it (< help >?) and forwards
it to the Server (< alarm >!) going to Receiving Alarm status. The scenario is
completed by the return of an acknowledgement (< ack >) from the Server to the
Router and from him to the User. After all these the components return to the
Idle status. Figure 4.6b. shows the application of the productions to the architecture
instance where the User of the first Router sends an alarm. Note that a mapping from
the textual representation to productions is very simple and can be use to complement
both abstractions.



42 Chapter 4. Software Architecture Styles and Graph Grammars

User Sends Alarm Senario WH: Waiting for Help
Server Server Server AA: Attending Alarm
(Idle) (RA) (Idie) RA: Reiving Alarm

— —
l ld\larm>? l<Ad(>!
AlarmRSp AlarmRSp AlarmRSp
T AlamRSp AlarmRSp T <Alarm>! AlarmRSp T<Ad(>7
Router Router Router
(Idie) > (AA) > (Ide)
l Signdp Signdp l <Help>? Signdp l <Acks!
T Signdp SQnapT <Help>! SQnapT <Ack>?
User — > User — > User
(idie) (WH) (1die)
a
Server Server Server
(Idte) (RA) (Idie)
<Alarm>| AlarmRSp :> <Ack> | AlamRSp :> AlamRSp
Router Router Router Router Router Router
(Idie) (idie) (AA) (1dte) (idie) (1dle)
Signdp Signdp <Adk> ‘Sgndp Signdp ‘Signap Signdp
<Hep>
User User User User User User User User User
(1de) (Idle) (ldle) (WH) (Ide) (Idle) (Idle) (Ide) (Idle)
b)

Figure 4.6: Communication Pattern Set. a) User Sends Alarm Scenario. b) Derivation showing the
synchronized rewriting for the scenario.

Another possible scenario (the graphical view) is the one in Figure 4.7 where a
Router checks a User subsystem. In this case there are two alternatives. The first one,
where the User answers that everything is ok, is represented by the synchronization of
productions in Figure 4.7a. And the second in Figure 4.7h., where the User answers
with an error signal that is forwarded to the Server for its attention. Note that in the
second alternative the acknowledgement is between Server and Router that afterwards
return to Idle to continue attending other Users. The User with the error returns to
the Idle without the need of any synchronization, modeling non-deterministically that
in some moment the error is going to be fixed and it will start to work ok again. This
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User Responds CK
T AlarmRSp AlarrnRa:T
Router > Router
(Idie) (idle)
l Signdp Sgnapl <Chedcs!
T Signdp Sgnde <Chedk>?
Usar E— User
(dle) (1die)
3
Error: User Subsystem Efror
UNC: User Chedc No OK
Server Server Server .
(Idle) (UE) (Idle) UE: User Eror
— —
l l <AlarmCheck>? l<.Ad(Enot>!
AlarmRSp AlarmRSp AlarmRSp
T AlarmRSp AIarrnR&JT <AlarmCheck>| AlarmRSp @ <AckError>?
Router Router Router
(Idte) > (UNC) > (Idie)
l Signdp Signdp l <NoCheds! Signdp l
T Signdp SgnapT <NoChed>? SgnapT
Usar — Usar e User
(Idle) (Ermor) {Idle)
b)

Figure 4.7: Communication Pattern Set: Router Checks User Scenario. a) User responds ok.
b) User responds with an error.

was a choice of design, and a second possibility is making the Router wait until the
problem was fixed.

At this point, we have shown how graminars and graph rewriting can be used to
model the evolution of software architecture styles including the communication pat-
tern and the dynamic reconfiguration, while being able to keep a clear separation of
configuration and coordination policies. The increased expressiveness is achieved while
keeping the simplicity of context-free descriptions for the behavior of each component,
and implementing the coordination policies through the synchronization mechanism at
the production application level. This seems to be a nice way to express synthetically
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but explicitly coordination specification at the architectural level.

Our work goes in the direction of finding suitable ways of modeling software ar-
chitectures without embodying in the description a specific coordination policy, rather
the approach is to specify the minimal requirements on the coordination policy which
can then be refined in the subsequent development steps into a specific one. To this
respect we think the approach we present using synchronized rewriting is a step in the
right direction. Constraint matching and synchronized production selection allows for
an explicit, declarative but minimal specification of the coordination policies that can be
legitimately adopted when implementing the system. Moreover the context free nature
of the productions allows for a clean and simple specification of the reconfiguration step
at the component level, in a completely distributed fashion.



Part IV
Adding Dynamic Reconfiguration to Styles

The design of software systems that include mobility or dynamic reconfiguration of
their components is becoming more frequent. Consequently, it is necessary to have the
right tools to handle their description at all stages of the development process. More
specifically, it is fundamental to be able to cope with these type of requirements also in
the design phase and specially for software architectures.

With this in mind and understanding the relevance of visual languages specially
at the design level, we present in this part of the thesis a graphical model using
SHR systems with the addition of name mobility (as in w-calculus [Milner, R., 1999;
Sangiorgi, D. and Walker, D., 2001]). This extension to SHR systems increases the
expressive power of the approach introduced in Part III, where the level of reconfig-
uration we were able to achieve was still limited. In this way we obtain the good
characteristics of a graphical calculus together with the expressive power to describe
complex mobile systems. The capability of creation and sharing of ports together with
multiple simultaneous synchronizations give us a very powerful tool to specify more com-
plex evolutions, reconfiguring multiples components by identifying specific ports. Apart
from the graphical side, we can relate our calculus with w-calculus [Milner, R., 1999;
Sangiorgi, D. and Walker, D., 2001]. The difference is that 7-calculus is sequential in
the sense that it allows only one synchronization at a time, while synchronized rewriting
allows multiple and concurrent synchronizations all over the graph.

This part of the thesis presents the formal treatment for the addition of mobility to
SHR systems. This is needed to obtain a clear semantics of the visual model of graphs
and allows the formal definition of the synchronizing mechanisms. The formalization of
these notions is given in chapters 5 and 6 by the use of syntactic judgements. Note that
in this part of the thesis we put the emphasis in reconfiguration and mobility, but it is
clear that the formal model we present here can include the three production sets that
were defined in Part HI.

SHR with name mobility was first introduced in [Hirsch, D. et al., 2000] for modelling
software architecture styles and their reconfigurations. The presentation in [Hirsch, D.
et al., 2000] was only for Hoare synchronization and only with the possibility of sharing
new nodes (i.e. new names) as in the wl-calculus [Sangiorgi, D., 1996]. Now we follow
the presentation in [Hirsch, D. and Montanari, U., 2001b; Hirsch, D. and Montanari, U.,
2001a; Hirsch, D. and Montanari, U., 2001¢c] allowing to pass both new names and old
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names in a synchronization and the formal definition for Hoare and Milner transition
systems. Also, we introduce the use of bounded nodes for a compositional presentation
and allow the synchronization of old names with new names. These three capabilities
are nccessary to model the w-calculus. In Part V we present a translation for a-calculus
using Milner synchronization with the goal of studying the expressive power of the
approach.

In the area of graph transformation and its application to systcin modelling there
are interesting work (for example, [Rozenberg, 1997; Elrig, H. et al., 1999b}) where,
in general, system transformations are represented with productions where their left
hand side are non context-free graphs (with exception of [Montanari, U. et al., 1999]).
This means that they imply a centralized control that needs to know the complete map
of the system, which is not well suited for distributed systems. Also none of these
techniques includes any synchronization mechanism with mobility. On the other side,
our use of context-free productions with synchronization and mobility is a powerful tool
for describing self organising distributed systems.

The formalism presented in this part of the thesis gives a solid foundation for graph-
ical mobile calculi which are well-suited for high level description of distributed and
concurrent systeins, reflected by our main practical goal that is, once again, formalizing
the description of software architecture styles including their reconfigurations.



Chapter 5

Hypergraphs and Syntactic Judgements

In this chapter we formalize the notion of hypergraphs as well formed syntactic judge-
ments generated from a set of axioms and inference rules. For an extensive presentation
on the foundations of hypergraphs and HR Systems we refer to [Drewes, F. et al., 1997]
and for the basic definitions to Section 2.1.

We present a definition of graphs as syntactic judgements, where nodes correspond to
names, external nodes to free names and edges to basic terms of the form L(z,,...,z,),
where x; are arbitrary names and L € LE.

DEFINITION 5.1. [Graphs as Syntactic Judgements] Let N be a fixed infinite set of
names and LF a ranked alphabet of labels. A syntactic judgement (or simply a judge-
ment) is of the form I' - G where,

1. [' C N is a set of names (the interface of the graph).

2. G is a term generated by the grammar: G ::= L(Z) | G|G | ve.G | nil

where T is a vector of names, L is an edge label with rank(L) = |Z] and y is a
name.

Let fn(G) denote the set of all free names of G, i.e. all names in G not bound by a v
operator. We demand that fn(G) C I

We use the notation I',z to denote the set obtained by adding z to I', assuming
z & I'. Similarly, we will write I'},['; to state that the resulting set of names is the
disjoint union of I'y and I'.

DEFINITION 5.2. [Structural Congruence and Well-Formed Judgements]

oSt ructural Congruence = obey structural axioms in Table 5.1.

oTh e well-formed judgements for constructing graphs over LE and N are those
generated by applying the syntactic rules in Table 5.1 up to axioms of structural
congruence.

47
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Structural Axioms

(AG1) (G1|G2)|Gs = G\|(G2l|G3) (AG2) G\|G2 = G2|G,
(AG3) Glnil =G (AG4) vavy.G = vyva.G
(AG5) vz.G =G ifx € fn(G) (AG6) ve.G =vy.Gly/z} if y ¢ fn(G)

(AGT) vz.(G1|G2) = (v2.G))|G2 if z € fn(G,)

Syntactic Rules

Le LEm Yi € Uj:l...ll{:l:j}

(RG1) Tiye. ., Ty F nal (RG2) Tiy-ya E L(yr, .-, Ym)
'FG, THG, N kG
(RG3) 1 G (RGY) +rza

Table 5.1: Well-formed judgments

Axioms (AG1), (AG2) and (AG3) define the associativity, commutativity and iden-
tity over nil for operation |, respectively. Axioms (AG4) and (AGJ) state that the nodes
of a graph can be hidden only once and in any order, and axioms (AG6) and (AG7)
define alpha conversion of a graph with respect to its bounded names and the interplay
between hiding and the operator for parallel composition, respectively.

If necessary, thanks to axiom (AG4), we will write v X, with X = |J;, to abbreviate
vx,.vra...vr,. Note that using the axioms, for any judgement we can always have an
cquivalent normal form I' F vX.G, with G a subterm containing only composition of
edges. It is clear from the above definitions that I’ and X can be made disjoint sets
of nodes using the axioms and that nodes(G) C (I' U X) (with nodes(G) the set of all
nodes appearing in G).

Rule (RG1) creates a graph with no edges and n nodes and rule (RG2) creates a
graph with n nodes and one edge labelled by L and with m tentacles (note that there
can be repetitions among nodes in ¥, i.e. some tentacles can be attached to the same
node). Rule (RG3) allows to put together (using |) two graphs that share the same sect
of external nodes. Finally, rule (RG4) allows to hide a node from the environment.

We can state the following correspondence theorem.

THEOREM 5.3. [Correspondence of Graphs and Judgements] Well-formed syntactic judge-
ments up to structural axioms are isomorphic to graphs up to isomorphism.

Proof. The first part of the theorem, from judgements to graphs, can be proved by
induction on the structure of judgements generated by the grammar presented in Defini-
tion 5.1. For this we define the following translation function [-] (up to isomorphism),
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Base Case:

.[ [zly vy Tk F nzl]] = ({nl) ‘o )nk}7 wvwv {nl) .. )nk}1 @1 {(nhzl)? v ,(nk,fk)}),
i.e., is a graph with no edges and k ezternal nodes.

of [z1,...,zx F L1, -, Ym)] =
({nh oo ank}7 {eL}a {(eln <mMip,...,Myy >)}a {nly e )nk}a {(eln L)}1
{(nlyzl)v SRR (nk’l‘k)}) with (mi =n; zﬁyl = zj):
i.e., is a graph with k external nodes and one edge with label L € LE,,.
Inductive Hypothesis: Given a judgement I' + G, the translation [I" F G'], for any
proper subterm G’ of G, is a graph.
o [+ vz.G]
By the I.H. we know that,

[T,z F G] = (N U {n.}, E,att,ext U {n;},labg, labon U {(ns,z)}), with n, &
NUezt and labyy :N — T.

Then by rule (RG4) we can define,
[CFvz.G) = (NU{n;}, E,att,ext,lab.g, lab.n)

In words, we have the same graph for H but with one less external node.

o[ [+ Gi|G:]
By the I.H. we know that,
[T F Gi] = (N1, Ey, atty, exty, laby gy, labpy, cex ty — ) and
[T F Ga] = (N, E,, atty, exty, laby s, labyns ez ty — T)
Then by rule (RG3) we can define,
[T F G\|G2] = (N, UY(N,), E\ U E,, att, U ¥*(att,), exty, labpgy Ulaby g2, labpny ),

with U the bijective function for the isomorphic graph for Go with respect to the
external nodes, defined as ¥(n?) = n} if labyn1(n}) = labna(n?) for all n} € ext,

In words, [T & G\|G2] is the graph obtained from [’ F Gi] and [[ F G2] by
identifying homonymous ezternal nodes.

Conversely, we prove the second part of the theorem by construction using the syn-
tactic rules of table 5.1.

o For a graph with no edges and no bound nodes we use rule (RG1).

e For a graph G with m > 0 edges, n nodes and no bound nodes:

1. Using rule (RG2) applied m times to create, for each edge e in G, the judgement
for a graph with n external nodes and one edge,

lab} yo(extc) - labpng(e)(laby yg(attc(e))) and
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2. Using rule (RG3) applied m — 1 times over the m judgements created in step
1.

e For a graph G with n nodes and r < n bound nodes:

3. Beginning with the judgement for graph G’ of n caternal nodes that corresponds
to graph G but with no bound nodes (obtained by the previous steps). apply r
times rule (RG4) for each node to be bound.

Completing the proof of the isomorphism, it is obvious that the compositions of the
corresponding translations result in identities. O

5.1 Ring Example

We use graphs to represent system software architectures. In this context, edges arc
compouents and nodes are ports of communication. External nodes are connecting
ports to the environment. Edges sharing a node mean that there is a communication
link ammong them. So, let us take the graph in Figure 5.1a that represents a ring of four
components with two connecting ports. Edges representing compounents are drawn as
boxes attached to their corresponding ports. The label of an cdge is the name of the
component and the arrow indicates the order of the attachinent nodes. In this case we
only have edges with two tentacles. Names in filled nodes identify external nodes and
empty circles are bound nodes. Figure 5.1b shows how the corresponding well-formed
judgement is obtained. Note that (RG3) needs the same sct of names I' in both premises.

C C C C
L Y, 2w Cx, w) (RG2) x.y,zw - Clw.y) (R x.y,zw - Cly.2) (RGD X,y 2w Czx) (RG)
b (RG3)
- Xy, 2w — Cx, w) | Clw, y) X%, 2w i Cly,2)|C(z,x)
_—— (RG3)

‘_ xy,5w  Cx,w)|Cwy)|Cy2)!Czx)
B (RGH)

%Y. 27— vw. Cix. w) ! Cw, y) {1 Cly, 2)| C(z, x)

(RG4)

%y -vzw.Cx.w);CwyiCy2|Czx)
b)

Figure 5.1: The graph and the corresponding judgement for the ring example
<) grap I & Judg g I



Chapter 6

SHR Systems with Name Mobility

In this chapter we introduce the notion of SHR systems adding to it the capability
of name creation and mobility. We formalize these notions as well formed syntactic
judgements generated from a set of axioms and inference rules, allowing to model in a
simple way the synchronization and reconfiguration of graphs. Also, using judgements to
represent graphs and their rewriting will be useful for analyzing different synchronization
policies and the expressive power of the approach.

S

The following definitions present an extension to SHR systems where we allow the
declaration and creation of names on nodes and use synchronized rewriting for name
mobility. In this way it is possible to specify reconfigurations over the graphs by changing
the connections between edges.

The following sections introduce the approach with a general definition of SHR. This
allows the introduction of different synchronization mechanisms achieved by the possi-
bility of defining different (mobile) synchronization algebras (and their corresponding
transition rules). Specifically, we present the “implementation” of Hoare and Milner
synchronization styles.

It is worth mention, that [Konig, B. and Montanari, U., 2001] presents a bisimilarity
for synchronized graph rewriting with name mobility (based on the work of [Hirsch, D.
et al., 2000]) proving it to be a congruence. Also they introduce a so-called format which
is a syntactic condition on productions ensuring that bisimilarity is a congruence. This
last result is original not only for graph rewriting, but also for mobility in general.

6.1 SHR Systems as Syntactic Judgements

Recalling what was introduced in Chapter 4, to model synchronized rewriting, it is
necessary to add some labels to the nodes in productions. Assuming to have an alphabet
of actions Act, then we associate actions to some of the nodes. In this way, each rewrite of
an edge must synchronize actions with (a number of) its adjacent edges and then all the
participants will have to move as well (how many depends on the synchronization policy).

51
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[t is clear that synchronized rewriting will allow the propagation of synchronization all
over the graph where productions are applied. A SHR grammar, or simply a grammar,
consists of an initial graph and a set of productions. A derivation is obtained by starting
with the initial graph and applying a sequence of rewriting rules, ecach obtained by
synchronizing possibly several productions.

As we saw in Chapter 4, for the Hoare synchronization all adjacent edges must match
the actions imposed on the shared node and for Milner synchronization only two of the
adjacent edges will synchronize by matching their complementary actions (usually called
observatious). For simplicity, in this part of the thesis we will work only with one action
per node.

Now that we have synchronized rewriting, we need to add to productions the capa-
bility of sharing nodes. This is obtained by letting a production to declare new names
for the nodes it creates, and by sharing these names and/or other existing names with
the rest of the graph using the synchronization process. This is done in a production
by adding to the action in a node, a tuple of names that it wants to commmunicate.
Therefore, the synchronization of a rewriting rule has to match not only actions, but
also the tuples of names. After the matching is obtained and the productions applied,
the declared names that were matched are used to obtain the final graph of the rewriting
by merging the corresponding nodes.

As is done in w-calculus, we allow to merge new nodes with other nodes (new or old).
Merging ammong already existing nodes is not allowed. Relaxing this constraint, would
permit fusions of nodes in the style of the fusion-calculus [Victor. B., 1998]. Instead, we
will also consider a syntactic restriction of our formalism in which we will allow merging
new nodes only, in the style of the wl-calculus [Sangiorgi, D., 1996]. We will study
the relationship with #-calculus in Part V discussing the corresponding translations for
7 and wl-calculus. These policies of which nodes are shared are independent of the
synchronization mechanisms applied.

To forinalize SHR systemns we use, as in Chapter 5, judgements and define the notion
of transitions.

DEFINITION 6.1. [Transitions] Let AV be a fixed infinite set of names and Act a ranked
set of actions, where each action a € Act is associated with an arity (indicating the
numnber of nodes it can share). We define a transition as:

r-G-5Tr,AFG

with A:T—- (Act x N*) A ={z]|Jz. A(x) = (a,9), 2 ¢ T, z € set(y)}

A transition is represented as a logical sequent which says that G is rewritten into G’
satisfying a set of requirements A. The free nodes of graph G’ must include the free
nodes of G and those new nodes (A) that are used in synchronization. Note that A is
determined by the I’ and A of the corresponding transition.

The set of requirements A C I' x Act x N* can be defined as a partial function in
its first argument, i.e. if (z,a. %) € A we write A(t) = (a,¥) with arity(a) = |§]. With
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A(z) T we mean that the function is not defined for z, i.e. that there is no requirement
in A with z as first argument. Function set(y) returns the set of names in vector .
The definition of A as a function means that all edges in G, attached to node z that
are participating in a synchronization, must satisfy the conditions of the corresponding
synchronization algebra. The function is partial since not all nodes need to be loci of
synchronization.

Note that to share only new nodes, it is enough to impose on A the condition that
names of vectors § should not be in " (set(y) NI' = 0). Then, A does not depend on I'
and can be written as:

A= U set(¥)

zay € A

We can redefine productions and grammars with respect to judgements.

DEFINITION 6.2. [Productions] A SHR production, or simply a production, is a transi-
tion of the form:

:cl,...,:c,,l—L(:c,,...,a:,,)Lzl,...,zn,Al—G’

Productions have to be applied over different graphs, so they will be alpha convertible. In
this way, names can be changed to match the ones of the graph to apply the production
and new names can be arranged to avoid name clashing and a correct synchronization.
The context-free character of productions is here made clear by the fact that the graph
to be rewritten consists of a single edge with distinct nodes.

DEFINITION 6.3. [Grammars] Let N be a fixed infinite set of names, LE a ranked
alphabet of labels and Act a ranked set of actions. A grammar consists of:

1. An initial graph I'g F Gy,
2. a set P of productions and

3. a synchronization mechanism.

A derivation is a finite or infinite sequence of the form [y F Gy Ayp 1 F Gy KR
L Ty b Gn..., where Ty - Gioy =5 T F G;, i = 1...7m is a transition in the
set T'(P) of transitions generated by P. Transitions T'(P) are generated by P applying
the transition rules of the chosen synchronization mechanism, as defined in the next
sections.

6.2 Hoare Synchronization

The first synchronization mechanism we present is Hoare synchronization, where each
rewrite of an edge must share on each attachment node the same action with all the
edges connected to that node.
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For example, consider n edges which share one node, such that no other cdge is
attached to that node, and let us take one production for cach of these edges. Each of
these productions have an action on that node (a; for i = 1...n). If ¢; # «; (for some
i,7), then the n edges cannot be rewritten together (using these productions). If all
a; are the sae, then they can move, via the context-sensitive rewriting rule obtained
by merging the n context-free productions. The use of SHR productions in a rewriting
system implies the application of several productions where all edges to be rewritten
and sharing a node must apply productions that satisfy the same actions.

Given that Hoare synclhironization (formally) requires that all edges sharing a node
must participate in the synchronization, but since not all nodes need to be loci of
synchronization, an identity action ¢ is defined which is required in a node by all the
productions which do not synchronize on that node. We impose the condition that the
identity action has arity zero, so if it is imposed on a node then no namme can be shared
on that node. We have to note that in Chapter 4 we abuse of the graphical notation
and identity actions where not included in the examples.

In particular, to model edges which do not move in a transition we need productions
with identity actions on their external nodes, where an edge with label L is rewritten
to itself. This is called the id production id(L). Then, the sct P of productions must
include productions #d(L) for all symbols L in LE. The corresponding judgements are
as follow.,

{(z1,6.<>) 0 (T08.<>)}

ooy B Ly, .o ) Tyyeoosy b L(xy, .o xy).

For any relation R C I' x Act x N* we define n(R) = U, o ner set(#) and will call
a mapping pr : A — n(R) the most general unifier (mgu) of R (with A = n(R)\I')
wlienever pp is a function and if, of all p’ with this property, pp identifies the minimal
number of names. The mapping pg is exactly the most general unifier of the equations
(a =b AN (§ = 2) (whenever (x,a,%),(x.b,2) € R) and is unique up to injective
renaming. It does not exist if there are tuples (v, . %), (z,b0,2) € R with a # b or if
the equations § = Z imply an equation v = w with v, w different old names. Thus the
external nodes (i.e., z € I') that appear in n(R) are considered constants. In this way
new names are unified with either new or old names, but it is not possible to have a
unification among old names (two different constants cannot be unified).

The mgu is necessary to resolve the identification of names (i.c. nodes) that is
consequence of a synchronization operation and to avoid nae capture.

DEFINITION 6.4. [Hoare Transition System] Let < G, P > be a grammar. All transi-

tious T(P) using Hoare synchronization are obtained from the transition rules in Ta-
ble 6.1.

Rule (ren) is necessary to allow applying a production to different graphs (this is
done by substitution £). In this way, nanes can be changed to match the ones of the
graph to apply the production and new names can be arranged to avoid name clashing
and a correct synchronization. For the set of new nodes A, € is an injective substitution
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Ty, I b L(zy, .., Tn) A, Ty, I, AFGEP

(ren) "
6(1"17 "1:1:7&)! F l_ g(L(Ilr "11:11)) pf(_l(i(’l\)) E(Ili "11:71)1 Fa A, l_ P&(A)(&(G))

if pe(a) exists

TG AL T A FG, TEG,25T,0F G

(com Pryony (R1UAZ) s
FFG]|G2 FyAI_pAlUAz(Gllcz)

if Ay N Ay =0 and pa,ua, exists

AU{(z,a,9)}

zkG Iz, AFG z € n(A)

(open) -
'rve.G — T A'FvZ.G

AU{(z,a,)}

(hzde) F,Il"G n F,iE,AI‘GI :1:¢n(A)
rcveG — I, AV vz, 2.G

where Z = set(y)\(A'UT)

Table 6.1: Transition Rules for Hoare Synchronization

of new names. The non-injectiveness of £ allows to apply the production over graphs
with edges that may have several tentacles attached to the same node.

Notice that pea)(£(A)) is still a function on requirements therefore requirements on
nodes identified by £ must coincide. Also, isolated nodes,with no requirement on them,
are added (those in I') for the application of successive transition rules. Remember
that for any transition, as presented in Definition 6.1, A is uniquely identified by the
corresponding I and A (e.g. A = n(A)\I).

Rule (com) is the one that completes the synchronization process. Given that all
edges must participate, Hoare synchronization is modeled as the union of the synchro-
nization requirements (pa,ua, (A1 U A2)) where the existence of pa,ua, assures that the
rule can ounly be applied when the requirements on all the nodes are satisfied and the
shared nodes are actually identified. Condition A} N A, = @ avoids name capture.

Rule (open) allows to share with the environment a node that was originally bounded.
This rule may be used for sharing a port of communication that was Iocal among some
components and that now they want to allow others to communicate with them by that
port. Note as we are opening name = we still have to keep bounded those names that
are only shared by z (i.e. set Z). Notice that {z} UA =A'U Z.

Also, rule (open) is used for what is called an eztrusion allowing the creation of
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privately shared ports. Extrusion allows to export and share bounded nodes. But once
synchronization is completed, it hides away those private names that were synchronized
meaning that the nances are still bound, but their scope has grown. Extrusion is usually
(as in Miluer synchronization and w-calculus) done by using together rules (open) and
(close). But in the case of Hoare synchronization, where many edges have to synchronize
in a shared node, a (close) rule is not very useful because it cannot be sure when to hide
the private names that are extruded. It is more reasonable to use the (com) and at the
end of the whole operation use rule (hide) on the corresponding names.

Rule (hide) deals with hiding of names. It indicates that we do not only have to hide
the wanted name, but also all the names shared by synchronization only on that name
(i.c. set Z). Note that there is little difference witlr rule (open), which is the fact that
for rule (hide) the node to be hidden () must not be shared by other nodes. In this
case, A=A UZ.

6.2.1 Example

[n this example an instance of the ring architecture style starts with a ring configuration
and at some point in its evolution is reconfigured to a star. Given that in this part of the
thesis we arc focused on the reconfiguration and mobility issue, we omit the component
state from its identification.

Figurce 6.1a shows the granunar. The initial graph together with production Brother
construct rings. Production Star Reconfiguration is used to reconfigure a ring into a
star by creating a new node (w) and synchronizing using action . The new node is
distributed among compouents to identify it as the center of the star. Requirements
(r,7, < w>) and (y,r, < w >) are represented graphically imposing the pair (r, < w >)
on nodes x and y on the right hand side, meaning that the rewriting step is only possible
if requircments are satisfied.

Figure 6.1b shows a possible derivation where a ring of four componeuts is reconfig-
ured (thick arrow). Components with thick border indicate the component where rule
Brother is applied. Figure 6.2 shows part of the proof that corresponds to the final step
of the derivation in Figure 6.1b. Given their simplicity and for clarity of the example
we omit the idle productions and the application of rule ren for the proof.

This simple example shows how the approach can be used to specify complex re-
configurations including the combination of different styles. In [Hirsch, D. et al., 2000]
another example of reconfiguration can be found based on a real case of a Remote
Medical Care System.

6.3 Milner Synchronization

Now that we have presented Hoare synchronization which can be considered as the most
general type of synchronization, we formalize in this section the Milner synchronization.

This synclironization mechanism ouly allows, in a node, to synchronize actions from
two of all edges sharing that node, and ouly those two edges will be rewritten as a
consequence of that synclironization.
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Initial Graph: Brother: Star Reconfiguration:
E r<w>
y Y ? y y
X
®)
% " i o
X Zl xX@® x@
r<w?>
C
C {(x,r,<w>), (y.r,<w>)}
— (RG2)
Xi- C(x,X) x€‘<> X, ¥+ Clxy) > XY, Wi S(Wy)

X, ¥ C(x,y) SpsElRRY X, ¥,z C(x,2) | C(zy)

X Brother

r<ti>
(1)
Figure 6.1: Ring grammar with star reconfiguration
{(x,r,<tl>), (w,r,.<t1>)} (y,r,<12>), (w,r,<12>))
XYZW - C(x,w) ——————» xy,zwitl - S(thw)  xyzw - C(wy)———» xyzw,2 1 S(t2,y) (Com)
p={tl/2}
(A)
{(x,r.<tl>), (yr<tl>), (w,r <ll>)}
XY.ZW = C(x,w) | C(wy) > xy,zwtl = S(tly) | S(tl w)
{(y,r,<t3>), (z,1,<t3>)} {(x,1,<14>), (z,1r,<14>))
XY,ZW |- C(y,2) ——— > xy,zw,3 - §(t3,2) XYZW F C(zX) —————» x,y,z,w,t4 |- S(t4,x) (Com)
‘ p= {13114}
(B)
{(xr<3), (yr,<t3), (z1,<3>))
xy.zw k- Cly,2) | Czx) > xy.zw,B 1 S(13,x) | §(t3,2)
A
@ ®) (Com)
(i) p= {1/}
y,,<t>), (wr<tl>), (u<ll>)l
xy.zw - Clxw) | Cwyy) | Cly,z) | Clzx) > XY,z Wil = S(thx) [ S(tLy) | S(tl,w) | S(II,Z)
4) (5)

Figure 6.2: Proof of transition between graphs (4) and (5) in Figure 6.1b

In this case, the set of actions Act is formed by two disjoint sets of actions and
coactions (Act™ and Act™), and a special silent action (7 with arity(t) = 0). For
each action a € Act™ there is a coaction @ € Act™. A requirement of the form (z,a, 3)
represents an output of names in ¢ via port z with action a and a requirement of the form
(z,a,¥) represents an input of names in ¥ via port z with action a. A synchronization
will result of the matching of an action and its corresponding coaction with the resulting
unification of their shared names as it was done for Hoare synchronization. Given that
after synchronizing two requirements we are sure that the synchronization in that node
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is finished, the corresponding tuples are replaced by a silent action and an empty list of
namnes.

Note that what we are defining is a general Milner synchronization where simulta-
ncous synchronizations are allowed, so the w-calculus synchronization mechanism is a
special case where ouly one synchronization at a time is allowed. For Milner synchro-
nization we do not need an idle action e.

For a better understanding of their relationship the selection of the notation for
actions and coactions for this part of the thesis is similar to 7-calculus. In Section 4.4,
we use a CSP like notation for the communication pattern.

DEFINITION 6.5. [Milner Transition System] Let < Gy, P > be a grammar. All tran-
sitions T(P) using Milner synclironization are obtained from the transition rules in
Table 6.2 starting from the sct of productions P over the initial graph Gy.

Property P(R). mgu pp and function m(R) arc defined at the top of Table 6.2 and
are nceded in rules (ren) and (com/close).

Property P(R) is satisfied if set R contains tuples that respect the Milner synchro-
nization condition over actions in a node. This means that if in node « there are (only)
two tuples trying to synchironize, then there is an action « in the first one and a coaction
@ in the other. The mgu pp is defined in a shimilar way as for Hoare Synchronization but
satisfying the corresponding Milner condition. Function mn(R) is in charge of solving the
synchronization, generating the new set of requirements where the synchronizing tuples
are replaced by silent actions.

Rule (ren) is necessary to allow applying a production to different graphs (this is done
by € that is a possibly non-injective substitution). In this way, names can be changed
to natch the ones of the graph to apply the production and new names can be arranged
to avoid name clashing and a correct synchronization. For the set of new nodes A, £ is
an injective substitution of new names. The non-injectiveness of £ allows to apply the
production over graphs with edges that may have several tentacles attached to the same
node. Set A’ includes only those new nanes that are still being shared by other external
nodes that have not been synchronized yet. The application of function m is necessary
given that if an edge have several tentacles attached to the same node, we have to check
if putting together their respective requirements still respects Milner synclhironization.
Therefore, m(€(A)) is still a function on requircments and requirements on nodes identi-
fied by £ must satisfy property P. Condition ((A(x;) | A &(A(x:)) = E(A(x}))) implies
x; # x; = €x; # Exj) avoids the case wlere substitution £ makes two tentacles share the
same node (§x; = x;) with exactly the same requirement tuples (E(A(z;)) = §(A(x5)))

Also. isolated nodes are added (those in I') for the application of successive transition
rules. Remember that for any trausition, as presented in Definition 6.1, A is uniquely
identified by the corresponding I' (in this case x,...,x,) and A.

Rule (com/close) is the responsible of identifying nodes. This rule takes care of
two types of commmunication. The first one is when an existing node is shared and
identified with some new nodes (an old node is merged with new nodes). The result
of the synchronization works as a usual (com) rule (i.e synchronization occurs but no
name is restricted, sec for example rule (Com) in Section 2.4). The second type of
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P(R) = [Vz.{(a, V)|(z, ¢, V) € R} = {(a,?), (@, W)} or {(a,?)} or 0]
pr = mgu {v = ¥|3z.(z,q,?), (z,a,7) € R}

m(R)(z) = case{(a,V)|(z,a,v) € R}
{(a,9),(@w)} — (r,<>)
{(a7 1-;)} - (CI, PRI_’)

Zy, . Tn F L(z), .., Tn) A, Ty, In,AFGEP

L, é(zy, .., zn) F EL(xy, .., T0) meEn) [,é(x1, .., Z0), A F vZ.pea(€G)

(ren)

if [(A(z:) | A &(A(z:)) = £(A(z;))) implies z; # T; = £x; # €4
and P(€A) and pgp exists
where

Z = pea(68)\((z1, -1 Ta) U A)

TG AT A FG, TFG 25T,A, -G,

(com/close) m(A1UA2) ' 1
'k GG [, A F vZ.pa,un,(G'h1G'2)

if AyN Ay =0 and P(A; UA) and pa,ua, exists

where
Z = pAlqu(Al U Az)\(r ) A)

rrFG, ST, AFG, TFG,

ar
(par) =+ GilG2 25T, A+ (Gh[Ga)

kG -5Tz,ARG
(res) =
FFvz.G —TIA'FvZ.G
where (A(z) 1 V A(z) = (1,<>)) and A’ = A\{(z,7,<>)} and
7 - { 0 if z€n(A)

{z} otherwise

Table 6.2: Transition Rules for Milner Synchronization
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conununication is when only new nodes are identified. which usually corresponds to
what is called a (Close) rule. In this case when the rule is used together with rule (res)
they cause an eztrusion. These rules allow to export and share bounded nodes. But once
synchronization is completed, rule (com/close) hides away those private names that were
synchronized (Z) meaning that the names are still bound. but their scope has grown. Set
A includes only those new naies that are still being shared by other external nodes that
have not been synchronized yet. Condition (A;NA, = ) is necessary to avoid (similarly
to what happens in (ren)) the case where the two transitions contain requirement tuples
that are exactly equal and that are not validated by property P(\; U A»).

Rule (par) is defined as usual allowing the application of a transition over a subgraph
of a bigger one.

Rule (7res) takes account of four cases. The first two (A(z) T or A(x) = (7, <>) with
x the name to extrude, i.e. x € n(A)) correspond to what is usually called an (Open)
rule that works in a shmilar way as for Hoare synchronization. They are used to export
bounded nodes (in these cases Z = @). The other cases are for the bounding operation
that in Milner Synchronization is called restriction. In the first case the rule restricts
a node not participating in a synchironization (A(x) T) and in the second one the rule
is applied over nodes where a synchronization has taken place because we are sure that
it is complete (A(x) = (1, <>)). A node that can still participate in a synchronization
(A(x) # (7, <>)) caunot be bound.

6.3.1 Example

This example presents a tree structure style and the necessary reconfiguration produc-
tions to move a leaf from one father component to another. The instances of this style
arc trees with a root (R), a middle level of components (M) counected to the root, and
for each middle component a nunber of leafs (L) connected to it.

Figure 6.3b shows the so-called static productions that construct the style configu-
rations. The initial graph (not shown in the figure) is a root component. Figure 6.3a
corresponds to the reconfiguration productions and their judgements. The first produc-
tion is the one applied to the leaf to be moved, declaring the node (t) where it will be
received. The second production is for the actual father of the leaf, which synchronizes
with the leaf (using action Move) and with the new father (using action MoveLeaf). And
the last production is the one for the new father synchronizing and attaching the leaf to
the corresponding node (r).

A system instance of the style is shown in Figure 6.3¢ where a leaf (noted as L*) is
moved in one step from the third M component to the first one. Components and ports
with thick border and grey color, respectively. are the ones participating in the synchiro-
nization. Figure 6.3d shows part of a possible proof that corresponds to Figure 6.3¢. The
first part of the proof (until (A)) corresponds to the synchronization in node w using
the first and second production over M(w,x) and L(w). The second part of the proof
(until (B)) is obtained applying rule (par) on the third production over M(y,x) and
the subgraph that does not participate in the synchronization. Then, rule (com/close)
is applied again on transitions (A) and (B) for the synchronization in node x. Again
for clarity of the example we omit the application of rule ren over the productions.
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Reconfiguration Productions:
Move <t> Movelcaf<t> Moveleaf<r>
i J e OO s ? s s
| !
0 » O
r r r®
{(r, mc, <)} Move <> {(s, Movd.caf, <r >)}
r= L()——— 1, t- L(t) {(r, Mowe, <t>), T, s M(rs) —————— 1, s |- M(rs)

(s, MoveLeaf, <t>)}
e )

s, U= M(rs)

r, s M(rs)

Static Productions:

OE . O E

b) ‘
, Move,<1>), (x, MoveLcaf, , Move
T, i O Mo, <2), (s, Moreloat <) XYWZ - MWX) XYWz -L(w) { e Sl X,y.w,zu-L(u)
(caniclose)
(A) {(w, T, <), (x, MoreLeaf, <t>)} Gk
X,Y,W,Z = M(w,x) | L(W) > XYWzt = M(w,x) | L(9)
(x, Movelaaf, <y >)}
XYWz - My, X)—————— X,y,W,z - M(y.x) xywzi-Rx) | Mzx) | L) | L) )
(B) (x, MoveLaaf, <y >)}
XYWz = M(y,X) | Rx) | M(z,x) | L(Y) | LOV) —————— x,y.w,z - M(y,x) | Rx) | M(z,x) | L(3) | L&)
» ®) (camiclose)
p =1yt

{(w, T, <) (x, T, <)}

» XYW,z - R(x) | Myx) | Mzx) | Mw,x) | L(y)| L(y)| L(W)

X,¥,W.z - R(x) | My,x) | M(z,x) | M(w,x) | L(y)| L(w) | L(w)
d)

Figure 6.3: Milner Synchronization Example

6.4 Two Examples of Expressive Power

This section presents two examples to show a glimpse of the expressive power obtained
by the addition of name mobility to SHR systems.

The first example is the generation of complete graphs and the second example is the
generation of n X n square tiles (or grids). Both examples use Hoare synchronization.
These examples are usual examples to measure expressive power. Specially, the tiles
example is used by many authors in the area of graph transformation systems.

6.4.1 Complete Graphs

A complete graph is a graph where for each pair of nodes there is a connection between
them. In this example directed graphs are used but it is very simple to modify the
grammar to include edges in both directions. This example shows a grammar where
each synchronized rewriting step generates the next complete graph. Figure 6.4 shows
the two productions that are used to generate graphs. The initial graph is the complete
graph of two nodes.
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The idea is to impose a total order among nodes where in cach step the new node
(z) is the new maximum of the graph. In this way this node is the only one where
productions can synchronize (using constraint a < = >). Wit this, only the n—1 (with
n the number of nodes) edges that are connected to this node are rewritten generating
the edges from the older nodes to the new n+1 node. Given that for n nodes the degree
is n — 1, it is necessary to distinguish a director edge that is in charge (besides adding
one of the normal edges like the other ones) to create the missing edge from the actual
maximum (node 1) to the new one (node 1 + 1). Also this edge will be the director for
the next step. Figure 6.5

The idea of imposing a total order is a special case of finding an arborescence (a
directed tree) in a graph where the maximum corresponds to the root of the tree.

Productions Initial Graph
2 2

2 2 2
a< x > D (x) a< x> (x)
D | : o
1 1

Figure 6.4: Complete Graphs Grammar.

a<x> D (x)
D l :
; —>

Figure 6.5: Derivation of Complete Graphs.
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6.4.2 Tiles

The grammar in Figure 6.6 generates in rewriting step n the (n +1) x (n + 1) tile. The
idea is similar to the previous example. Edges are oriented towards the right and the
bottom side. In this case synchronization will only occur on the nodes of the right and
bottom sides. Only the edges on these sides (namely V' , H , DV and DH) and the
internal edges connected to these nodes are rewritten. Each of the V' and H edges will
be in charge of creating part of a new cell from rows and columns 1 to n — 1. As with
the complete graph we have to distinguish two director edges (one vertical DV and one
horizontal DH), that are in charge of completing cells for column and row n, and the
new n + 1 extreme bottom cell. The two last productions allow for the internal edges to
agree on the synchronization. The initial graph is the 1 x 1 tile. Figure 6.7 shows the
first three derivation steps.

In both grammars synchronous termination for reaching a terminal graph can be
obtained adding the corresponding productions and terminal symbols.

It is worth noticing that both examples have been done using Hoare synchronization,
which it is the basic kind of synchronization, but that the Tiles example can also be
done in a similar way with Milner synchronization. In this case only four productions
are needed (very similar to the ones in the example, except that the last two for internal
edges are not used). On the contrary, the Complete Graph example cannot be done
using Milner synchronization.

Productions
1 1 1 1 2
b<y> (y) .i..z c<y> a< x>
DV — v —
a<x >
2 2 (yy H DH (x)
DV
(x)
1 1 1 2 | 2
b<z> (2z) .L.. c<z> c<y>
v — v —
b<y> 7]
2 2 (z H (y)
. Initial Graph
1
l 2 1 2
o—ro )
*—re > b<w> DV
ew DH

2

Figure 6.6: N x N Tiles Gramnar.
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O O
w2 H @2 (y2) H DH )

Figure 6.7: Derivation of Tiles.



Part V

A Translation for m-Calculus

With the goal of studying the expressive power of the formalism presented in Part IV
we are presenting in Chapter 7 a translation for 7-calculus using SHR Systems with
Milner synchronization.

We consider this correspondence result as fundamental for the thesis given the rele-
vance of m-calculus for process calculi specially for mobility languages. The fact that we
obtain a graphical calculus that subsumes 7-calculus is a strong support for graphical
formal languages as a next step in the high-level description of distributed, concurrent
and mobile systems.



Chapter 7

SHR Systems vs. m-Calculus

The m-calculus [Milner, R., 1999; Sangiorgi, D. and Walker, D., 2001] is a name passing
process algebra. Many different versions of the m-calculus have appeared in the litera-
ture. The m-calculus we present here is synchronous, monadic, guarded recursion and
guarded sum. For a definition of m-calculus and its operational semantics see Section 2.4.

For this example we will use the late operational semantics of m-calculus and its
corresponding transition system.

7.1 Translation

Now we present a translation function from m-calculus to SHR Systems with Milner
synchronization and state the correspondence theorems.

At this point, it is necessary to comment on the differences between 7-calculus and
synchronized rewriting that will affect the definition of the translation from one to the
other. For the m-calculus we have an interleaving operational semantics that allows
only a sequential evolution of agents, i.e. only one action is allowed at a time. On the
other side, we are using graph transformation with synchronized rewriting which is a
distributed concurrent model allowing for multiple and simultaneous synchronizations
and rewriting. In spite of the fact that the translation function that we are defining in
Section 7.1 does not allows multiple synchronization on one edge, it is still possible to
have concurrent independent transition steps. So, to avoid this and be able to prove the
correspondence of w-calculus with the more expressive universe of graph rewriting, we
impose a simple condition over rule (com/close) of the Milner Transition System (see
Table 6.2). The condition for this rule states that, |A)|= |Az|= |m(A; UA,)|.

The above condition together with the translation restriction imposed by the "se-
quentiality” of w-calculus give that for any rule, applied in a proof under these conditions,
it cannot be the case that |A| > 1. Therefore, for the rest of the section we will use
the simplified version of Milner Transition System of Table 7.1. We refer to this system
as the Milner, Transition System or Milner, Synchronization. For simplicity in the

67
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TFG-AMT ARG eP

TeNn.
(ren) [T F €G 25 I €T, EA + €G

where A = {(v,out, < w >)}, A=0or A= {(v,in,< w >)}, A = {w}

{(z.out,<y>)} {(z,in,<2>)}

kG, 'FG, TFHG,

(CO’ITL ) F, zk G,Q
" {(z,7,<>)} ) )
FI‘G1|GQ FI—Glle{y/z}
where /){(z.out.<y>)}U{(:.in.<z>)} = {y/z}
{(z.,0ut,<y>)} {(z.in,<y>)}
CFG, “Ury+Gy TG, Ly G
(closer)
i {{zir.<>)}

'k G,|G:

[ Fvy.(Gh|G"2)

I'FG,5ST,AFG, TFG,

ary
(par=) =17 GilGs 25T, A F (G1[Ga)

where A =0 | {(v,0ut,< w>)}!| {(v,in,<w >)} | {(v,7,<>)}

TzFG-STr,AFG
. L z e n(A), A(x) T
TkuveG 5T, AFve.G # n(A), M)

(ress)

where A =0 | {(v,0ut, < w >)}| {(v,in,< w>)} | {(v,7,<>)} withv,w #z

{(z,7.<>)}

Cz+G Co, ARG
TFuveG -5 AR v G

{(z,out,<y>)}

CLyFG
'Fvy.G

LyFG
{(z.out,<y>)} Y 75 T
Ly G

(openz)

Table 7.1: Transition Rules for Milner, Synchronization
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1. [niljr =T+ nil
2. [rec X. P]r = [P [rec X. P/ X]]r

[Ple=TFGr [Qr=TF Go
[PIQ)r =T+ Gp|Go

iad

4 '[P]]r'I=F,II‘G
" [vr.Plr=TFvz.G

P=gpP sequential standard, fn(P)CT
[Plc =Tk opLp(w,... ’vlfn(ﬁ)l)

Productions (Late)

o

P2 Q P sequential standard agent

6. {(v,out,<w>)}
[Plmcpy [Qlncr)
P Q P sequential standard agent with w a fized name, w ¢ fn(P)
7. {(v,in,<w>)}
[Plmcp) [Qlm(pruiw)

Table 7.2: Translation Function for w-calculus

treatment of the cases, we separate rule (com/close) in rules (com,) and (close.), and
rule (res) in rules (res,) and (open,) .

DEFINITION 7.1. [Translation Function for 7-Calculus] Let A be a fixed infinite set of
names. We define a translation function [P]r for m-calculus agents, with respect to a
set of names (I' C NV), as follows:

1. Any agent term for agent P is chosen.

2. The agent term is translated by structural recursion using the definition in Ta-
ble 7.2.

The edges that are created by the translation have labels that correspond to the
standard agents of the uppermost level of sequential subterms of the agent term to be
translated. Two agents with the same standard agent will produce the same label, with
its rank corresponding to the number of free variables of the standard agent (which
by definition is the maximum number of distinguishable free variables occurrences, see
Definition 2.10). The standard substitution defines the attachment nodes of each edge
with that label. This means that if a variable occurs n times in a sequential agent, the
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corresponding trauslated edge will have n tentacles attached to the same node in the
grapl.

The use the standard decomposition is fundamental to correctly define the correspon-
dence between agents and graphs. Productions are defined over edge labels and have to
be applied over different edges with the same label (which corresponds to a sequential
subagent). The variable names in an agent define the connections among its different
subagents, and the evolution of an agent implies the possible substitution of names. If
we do not use the standard decomposition, then the translation of an ageut will produce
labels containing variable names that may change with each rewriting step ending up
with an infinite nuiber of edge labels (i.e. a grammar with infinite productions) and
two equivalent ageuts may be translated to two non isomorphic graphs. This includes
the case when the renaniiug implies the matching of two previously different naines (i.e.
two chanuels are connected together reducing the number of free variables in the agent)
which may change also the rank (i.e. number of teutacles) of the labels.

A transition in the 7-calculus will be represented as a transition of the corresponding
translated judgement (i.e. a rewriting step). Productious are gencrated based on the
possible transitions of these sequential agents with the corresponding label as the left
hand side of the production and the target agent as the right hand side. Actions are
translated as requiremeuts on the transitions. For m-calculus we have one action for in-
puts (in) and one coaction for outputs (out). Then, the evolution of the agent is modeled
using the Miluer; transition system introduced in table 7.1. Note that synchronization
of m-calculus agents can happen ouly between sequential agents, aud this corresponds
exactly to the result of synchronization among edges.

All the above intuitive correspondence presentation is what is formally proved in the
rest of this section ending with Theorem 7.20.

To close the definition of the translation function the following theorem proves that
[-Ir is well defined.

THEOREM 7.2. The translation function [~]r is well defined. For any agent terms P

and Q, P =Q = [P]r = [Q]r.

Proof Sketch. The theorem is proved by induction on the structural azioms of w-
calculus.

e For a-conversion it is obvious by graph azxiom (AGG).

e For (par) it is obvious by graph azioms (AG,). (AG3) and (AG,).

e For (res) it is obvious by graph azioms (AG,), (AG;) and (AGy).

e For (rec) it is obvious by definition of [recX.p]r. O

The uext step is to prove the bijective correspondence of agents and judgements (i.e.

graphs). This is done in Theorem 7.5, but first we need to define the following inverse
function for judgemennts.
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DEFINITION 7.3. We define {|-]}, as a translation function for graphs (with agent terms
as labels) to m-calculus agents.

1. {T'+ nid]} = nil.

2. {T+opLp(u,... ,v”"(;,)l)]} = opP with fﬂ(O’pﬁ) Cr.

3. {TF GGy} = T+ Gi}I{I' F Ga}}-

4. {T+vz.G} =vz{l,z+ GJ}.

THEOREM 7.4. The translation function {{-]} is well defined. For any graphs I' + G,
andl"l—G'2, FI‘Gl=F|‘G2=>{[F|‘01]}={[F|"‘G2D’.

Proof Sketch. The theorem is proved by induction on the structural axioms of graphs,
as it was done for [—]r, matching the corresponding structural azioms of m-calculus.
w-calculus. O

THEOREM 7.5. [Correspondence of w-calculus agents and syntactic judgements] There is
a bijective correspondence, with respect to the translation function [—]r, of m-calculus
agents (up to structural arioms) and well-formed syntactic judgements with sequential
standard agents as labels (up to structural azioms and isolated nodes).

Proof. To prove this theorem we have to prove that:
1L A{[PIr]} = P.
2. T+FGRr=TFG.

We restrict I' to fn(P) and the names used in G. Any other I 2 I, corresponds to
isolated nodes as the only difference in the translation.

1. {[Plnp]} = P ? It is proved by structural induction.
Base Case:

e For {[[nil]o]} = {0 F nil]} = nil.

e For P= apﬁ sequential standard,

{[[P]fn(P)]} = {[fn(P) (o apr(‘Ul, e ’vlfn(f")l)]} = O’pﬁ

e We have by Inductive Hypothesis that, {[Plmp)]} = P and {[Qln)] = Q-
This implies that (with T' = fn(P) U in(Q) = m(P|Q)), {[PIr]} = P and
{IQIr]} = Q. Then by definition,

P|Q = {[PI-HIQIc] = {[PIQIr]
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e We have by Inductive Hypothesis that, {[Plmp)]} = P. Then by definition

of {{-]} and [-].

ve{[Plwmp))} = vez.P
{{[vz. Plmcpy/=l} ve {[Plwe}

o We have by Inductive Hypothesis and aziom (rec) that,

{l[rec X. Plinrec x. p}} = {[Plrec X. P/ X}in(rec x. P} = Plrec X. P/ X]
PlrecX.P/X] = recX.P

2. {{TFG}r =Tk G ? It is proved by induction.

Base Case:

For [{J0 F nill}]p = [nil]p = O F nal.

e For P= ap13 sequential standard,

[{fn(P) - apLp(v1,- - -, vy gy Himer)
= ﬂdpP]]r,,(p) = fll(P) + 0',>LF*,(’U1, N ’vlfn(ﬁ)l)

We have by Inductive Hypothesis that, [{T + G\}jr = T + G, end [{T F
GoHir =T+ G,. Then by definition of [-] and {-]},

I'FGiG, = [T+ Gi}{TF Galr
[[{IF = G1|G2]}]l‘ [{IF F GlI}l{IF - Gz]}]]r

We have by Inductive Hypothesis that, [{',ztF Gl}}rz =T,z + G. Then by
definition of {{-]} and [-],

'Fvz.G [vz. {T,z F G}|r
[{C+FveGHlr = [vz. {T,2F G}]r

(]

Now that the correspondence between agents and judgements has been proved, The-
orem 7.16 shows that the derivations of any graph reachable from an initial graph Go
(obtained by the translation) use productions from a finite set.
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DEFINITION 7.6. For any agent term P, we define S(P) as the set of standard sequential
subagents of P.

S'(nil) = 0

S (iai.P,-) {iai.P,-} U LnJS'(Pi)
S’t(_rlec X.P) = S'E?)[rec X. P/;]
S'(X) 0
S'(A|P) = S(R)US'(PR)
S'vz.P) = S'(P)

e —

S(P) = S'(P)

The definition of standard decomposition is extended over sets as usual.

DEFINITION 7.7. For any graph obtained by translation function [—], we define Seq(G)
as the set of standard sequential subagents of the agents in the labels of G.

Seq([PIr) = S{[PIr})

PROPOSITION 7.8. Functions S(P) and Seq(G) are well defined:
1. P =Q implies S(P) = S(Q).
2. Gy = G, implies Seq(G,) = Seq(G.).

Proof Sketch. By induction on the structural arioms. Obvious by definition of S(P)
and Seq(G). O

DEFINITION 7.9. [Finite Derivation] We define the notion of finite derivation (noted as
=>) over transitions as:

NLFG 5 LFG,
FII‘G1=>F2|‘02

F1|‘G1—A—>F2|‘G2 F2|‘Gg=>F3I‘G3
F1FG1$F3FG3

DEFINITION 7.10. [Proof Term] We define the notion of proof term (using connector //)
as:
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r:{xi}/y €R dif/xi
r({dih)/ 1y
Set R is a set of inference rules, 7 : {x;}/y is a rule with name r and preconditions {z;}

and result y. Terms d;//x; are the corresponding proof terms for the preconditions of
y. Finally, »({¢;})//y is the proof term for y.

DEFINITION 7.11. For any derivation proof term D we define the set Prod(D) of pro-
ductions it uses as:

Prod (w//rl FLp ST,k G) = {1*1 FLp ATy G}
Prod (r({d})/fy) = |JProd(di/ /=)

The proof system for finite derivations includes rules in Definition 7.9 and transition
rules for Milner; synchronization including the production axiom (see table 7.1). Set
Prod is defined over the proof system for finite derivations.

LEMMA 7.12. P = Q implies S(Q) C S(P).
Proof. We proceed by induction on rules for w-calculus transition system.

Base Case:

—— —

o For (Sum), S(X, &.P) = {0, ei. B} UL, S(P) 2 S'(P) = S(P;).

IH
e For (Par). S(PIQ) = S(P)US(Q) 2 S(P)US(Q) = S(PIQ).
e For (Com), by definition of standard decomposition we have that for any sequential

agent P and substitution v, P = YP. Then, S(P|Q) = S(P) U S(Q) 15 S(P)u
S(Q) = S(PYuS(Q{y/z}) = S(P'lQ'{y/z}).

e For(Close), S(PIQ) = S(P)US(Q) 2 S(P)US(Q) = S(PIQ) = S(wy. (PIQ)).
o For (Open). S(vy. P) = S(P) 2 S(P').
e For (Res), S(vx. P) = S(P) I_g S(P'y=S(ve. P').

e For (Cong), S(P') = S(P) 2 S(Q) = S(Q"). o

LEMMA 7.13. S(P) = Seq([P]r) fm(P)CT.

Proof. Obvious by definition of Seq and Theorem 7.5. m]
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LEMMA 7.14. T; F Gy, -5 Ty + G, implies Seq(T's F G3) C Seq(T'y F Gy).

Proof. We proceed by induction on rules for Milner, transition system.
Base Case:

For productions, it is obvious by definition of [—]r and Lemmas 7.12 and 7.13.

For rules (ren,), (res,) and (open,), it is obvious since lab(G,) = lab(G}),
lab(G2) = lab(G3) and they are of the form,

N kG Tk G
O Gy 55Ty -Gy

For rule (par,), we have that lab(l', A + G3) = lab(T" F G3) and by Inductive Hy-
pothesis that Seq(T', A F G}) C Seq(T'+ G,). Then, Seq(I',A+ G})U Seq(I', A+
G,) C Seq(l'+ G)) U Seq(T' + G»).

For rule (com,) we want,
idinlal) T+ G\|G2{y/z} implies
Seq(F F G’;IG’z{y/z}) g Seq(l" - Gllcz)

L+ G\|Ge

Then by definition of Seq,

Seq(I'+ G'1{y/z}) U Seq(T = G'2{y/z}) C Seq(T'+ G1) U Seq(T' - Gy).

which is true by Inductive Hypothesis and that lab(G}) = lab(G' {y/z}), lab(G}) =
lab(G3{y/z})-

For rule (close,) it is similar to rule (com,). o

LEMMA 7.15. We Prove the following properties for Seq.

1.
2
3.
4

Seq(T F nil) = 0.

Seq(l'+ Lp(Z)) = S(P) with P sequential standard.
Seq(I'F G,1|G,) = Seq(T'F G;) U Seq(T' F Gs).
Seq(I' F vz.G) = Seq(T',z ++ G).

Proof.

L
2.

Seq(T F nil) = Seq([nil]r) = S({{[nél]c]}) = 0.
Seq(I' + Lp(Z)) = S(P),byLemma 7.13 with P sequential standard.
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3. By Translation and Theorem 7.5. Seq(T' F G,|G2) = S(P|Q) with [P]r =T'+ G,
and [Q)r = '+ G,. Then, S(P|Q) = S(P)U S(Q) = Seq(T'+ G1) U Seq(T + Gy)
by Lemma 7.13.

4. By Translation and Theorem 7.5, Seq(T + va.G) = S(vx. P) = S(P) = Seq(l',x F
G) with [P]r; =T, 2 FG. 0

THEOREM 7.16. The evolution of any graph ' F Gy can be described by a finite set of
productions.

Proof. The Proof has three steps:
1. Prod(d//ToF Go=TFG) C {r FLp -ST'FG |Pe ch(Go)}.

2. For all Lp, an edge label, the set {T'+ Lp L G'} is finite.
3. Seq(Gy) is finite.

Point 1) says that the set of productions used as azioms for a finite derivation proof
starting from a graph G,, only corresponds to productions where the edge label in the left
hand side corresponds to some sequential standard agent in set Seq(Go). Points 2) says
that for any edge label Lp of the corresponding signature, the set of possible productions
that can be obtained as transitions from edges labelled by Lp is finite. Finally, to complete
the proof point 3) says that the set of sequential standard subagents from which come all
edge labels that are used in a derivation (i.e. Seq(Gy). is finite.

1. It is proved by computation induction on the proof of derivations:

Base Case:
e For (reng), we know by definition that

Q € Seq(T'F Lg)
Prod (@//r FLo-T,AF c) C {LP A, G| PeSeq(T F LQ)}

Prod (r(dl)//l“’,ﬁl" FeLo S5 I el eA k- gc) def
Prod (0//F FLo-ATAF G)

Then, given that Q is sequential standard and by definition ';?2 = Q, we have
Seq(I'F Lg) = Seq(I", €T+ ELg) and,

Prod (r(d.) //T €0+ €Lg <5 T €T, €Ak €G) C
{L,) AL G| P e SeqI”, €T gLQ)}
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o For rule,
[‘]II_GI—A')le_Gz FQI_G2=>F3I_G'3
F]|‘Gl=>F3|‘G3

We know that,

IH '

Prod (az,//rl FG ST,k Gg) C {Lp A, G'| P e Seq(l, F G,)}
IH ’
Prod(dy//T2F Gy = T3 G3) C {LP A, G| Pe Seq(Ty - Gg)}

def

Prod (T(dl,dQ)//Fl + Gl =I3tF Gs)
Prod (dl //T F Gy 2Ty F Gz) U Prod(ds//TsF Gy = T3+ Gs)

Then, by Lemma 7.14, ') F G, AN FG, implies Seq(G2) C Seq(G,).
And this implies,

{1p 2G| PeSeTi G} € {Lr 25 G| P € Seq(Tat Go)}
Then we have,

Prod (dl /ITiF G 5T,k Gz) U Prod(dy//Tst Ga = Ta b Ga) C
{Lp N, G| Pe Seq(T, F Gl)} u {Lp A, G| PeSeq(laF Gz)} ,

which implies
Prod(r(dy,ds)//T\ F Gy = T3 - Ga) C {L,, A, G'| Pe Seq(ly Gl)}
e For rule,

NFG ST,FG,
FII_G1=>F2|_G2

We know that,

Prod (y/ /Ty + Gy -T2+ Gy) < {Lr 246" | P e Seq(Ty +G1)}
Prod (r(d)//T1 F G1 = To - Ga) ¥ Prod (atl /I F Gy ATy - Gg)
Then,

Prod(r(di)//Ty F G = T - Ga) C {Lp A, G| P e Seq(l, F Gl)}
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e For (com;) we know that,
17; )
Prod (dl//l‘ FG ATk G;) C {Lp M, G| PeSeqT+ Gl)}
IH
-

Prod (d«z//r FGy 24T 2k c;) {LP M, G| Pe Seq(TF Gz)}

Prod (r(d,, &)/ [T+ Gi|Gz 25 T+ GGy {w/2}) ¢
Prod (dl//l“ FGy AT+ G;) U Prod (dg//l" FGy 25T,z G;)
Then, given that Seq(I' F G,|G2) = Seq(I' F G1) U Seq(I" F G2) we have,
Prod (r(dl, d)//TF Gi|Gs 2T F G’llG’z{y/z}) C
{Lp AN, G| Pe Seq(l'+ G,)} U {Lp AL, G| PeSeq(T+ Gg)} =
{Lp AL G| PeSeql+ G.IGz)}

e For (close;), it is similar to (com,).

e For (par;) we know that,
A , IH Al ,
Prod (d,//r FG - T AF G,) C {Lp AL G| PeSeq(TF G,)}

Then, given that Seq(I' + G,) C Seq(I' + G,) U Seq(T" + G3) = Seq(T
G\1|G2) we have,

def
Prod (1‘((1;)//[‘ FGi|Gs T, AF G’,le) C
{Lp A, G| PeSeqT+ Gl)} C {Lp AL G| PeSeql'+ GI|GQ)}
e For (res;) we know that,

IH "
Prod(d//T,z+ Gy T,z AF GQ) C {Lp 2G| P Seq(T,z+ Gy}

Prod (T(dl)//l" Frve.G, R A F U:E.Gz) def

Prod (dl //T.zF Gy T e, AF Gz)
Then, given that Seq(I' & vz.G,) = Seq(L',z + G,) we have,
Prod (r(dl) /T Fvz.Gy AT A F U:B.G'g) C
{Lp A, G| PeSeq(TF ux.G,)}
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e For (open,) we know that,

IH

Prod(dl//[‘yl-Gl—>Fyl-G’2) C
{Lp—>G |P€SequI—G)}

Prod( (d)//TF vy.Gy 2T yI—Gg) def

Prod (dl//I“,y FG AT yk Gg)

Then, given that Seq(I' F vy.G,) = Seq(T',y + G,) we have,

Prod (r(dl)//F Fvy.G, A, CLyk G2> -
{Lp AN, G' | Pe Seq(T+ uy.Gl)}

2. Any edge label Lp corresponds, by translation, to a sequential agent that is a
guarded sum. This guarded sum has a finite number of terms, so finally, under the

late semantics the set {I' - Lp Arr G'} is finite.

3. First we prove that S(P) is finite. By structural induction:

Base Case:

o] S(ni)| =0

o S(X)I=10

oS (30 aiP)=1+5",|5(a:.P)| which is finite by I.H.

o| S(rec X. P)|= |S(P)[rec X. P/X]|= |S(P)| which is finite by I.H.
o| S(P|Q)| = |S(P)| + |S(Q)| which are finite by [.H.

o| S(vz. P)|= |S(P)| which is finite by I.H.

Now we prove that Seq(G) is finite. By structural induction:

Base Case:

o| Seq(I'F Lp)| = |S(P)| which is finite.

o| Seq(C'Fnil)]=0

o| Seq(I'F G,|G2)|= Seq(I'F G,)| + Seq(T' + G3)| which are finite by I.H.

o| Seq(T' + vz.G)| = |Seq(T, z + G)| which is finite by L.H. 0

COROLLARY 7.17. For all agent term P, Prod(d//[P]r, = I'F G) is finite.
Proof. By the translation function [P]r, is a graph. Then the corollary is proved by
Theorem 7.16. ]
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As we alrcady mentioned, we are mapping w-calculus that lias a sequential oper-
ational semantics (one transition at a time) to a distributed concurrent context. So
it is clear that there are transitions for judgements (the concurrent ones) that caunot
be obtained in w-calculus. Then, the following theorem states that a transition step
in w-calculus is done, if and only if, there is a judgement transition between the cor-
responding trauslations under the Milner, transition system. Proofs constructed with
Milner, transition system are transitions corresponding to sequential steps of @-calculus.
Also, we have to say that the theorem below is sufficient to prove the sciantic corre-
spondence given that Theorem 7.5 already proved the bijective correspondence of the
translation from agents to judgements (i.c. graphs). In this way, we are sure that any
graph resulting from a transition has a corresponding agent.

One thing to mention is about the translation of 7 actions. The standard operational
semantics of the 7-calculus is defined via labelled transitions P — P’ with « an action,
where P - P’ indicates that agent P goes to P’ by an internal action. This is done
without the need of specifying on which port the internal action takes place and is due
to the fact that as being sequential it is the only action occurring. In a distributed
concurrent context we need to know where actions are taking place, as more than one
action can happen at the sanie tinie.

Under the conditions of Milner, rules we have no concurrent actions but still we are
in a distributed context, so for the case of 7 actions we have two possible translations
((x,7.<>) or B). This translation depends if it is the case of a synchronization in a
visible node or if the node where the synclironization has taken place is being restricted
using rule (res;). Actually, this is the only case where |A| # 1 for a transition obtained
from Milner; rules.

LEMMA 7.18. For any agent P and substitution o. [P]ro = [0 P],r.

Proof. We proceed by structural induction:
Base Casc:

e For [ni]r it is obvious.
e For P sequential, we have that P = 0’,;13 and yP = o, p'*,/'I\’. Then, by translation:

IIP]]I‘ v = 'k A,'O‘[’L,‘s('l"ls REE f,,(f»)l)
[vPlr

And they arc equal by properties of standard decomposition that say vop = o.p
and P = ~P.

AI.F = a’,TPL_;'i,('Ul. ey 'Ul fl\(‘;?’)l)

ﬂPlQ]][ o = o'k O‘Gpla'GQ
le(PIQ)er = [0PloQlor = ol F Gop|Gsg

Then, by Inductive Hypothesis we have 6Gp = Gop and 0Gg = G,o.
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[vz.Plr o = ol'kFvz.oGp
[o(vz. P)lor = oLt vz.Gyp

Then, by Inductive Hypothesis we have cGp = G,p.

[recX.Plr 0 = [PlrecX.P/X]]r o
[orec X. Plor = [rec X.0P),r = [oP[rec X.o0P/X]]jor

Then, by Inductive Hypothesis we have,
[Plrec X. P/ X])r o = [oP[rec X. o P/ X]}or

LEMMA 7.19. For all 0 and P sequential such that P = P,
1. P =5 Q implies P' LR Q witha=~d, Q =~Q'.
2. pr =)/ Q' implies P = Q with a = v/, Q = Q'

Proof. First, given that P is sequential we have that a = z(y),Zy. Then, by standard
decomposition and with P = yP' we obtain that:

— ~

(P =0opP) A (T’\’ = '7}3) A (o4pr = yop') A (P = «P') implies (P’ = P = '71?’) A(op =
0'.7p').

1
P -2, Q implies apP ™% 0pQ”" with (0pQ” = Q = yop Q" = Q)
A (opa”’ =a =vyopa’ =vd')

implies P Q’
implies stP’ 25 Q"
impl‘ies O'P”ﬁ UP_’G: O'PIQ”
implies P =5 Q' with (o =opa”) AN (Q =0pQ")

2.

P Q' implies op P L Q' implies op P =, Q' implies yop P 2, Q'

implies a.,prﬁ 2%, Q' implies 0'p}3 RLA vQ' implies P = Q
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THEOREM 7.20. [Semautic Correspondence] For any w-calculus agents P and Q. P —

Q. if and only if, there is a transition [P]r {lede;) (@}, with fn(P) C T, (Q). fm(a) C
I"and T CT".

Proof. For the left-right direction, we prove the theorem by rule induction on the 7-
calculus operational semantics.

Base Case:

e For (sum), we have by standard decomposition that P = 3., ;. '—Upz o i B

and by Lemma 7.19 that Z:‘:l o;.P; 72y op'(P;). Then, by translation of pro-
ductions we obtain,

(o7 (@)} )
" [o5'(P)lr fu(P)CT

fn(z ai. ) F Lp(vi, ..o, vygpy)
i=1

Now applying rule (ren,) with £ = op and any I, and by Lemma 7.18 we obtain,

{lop (@) op) -1
T, op fu(Z o;.P)F U[)L";(Ul,...,'l)l rn(f>)|) ——  [op (Pl op =

i=1

{loj)ll'.apl"}

})j]][',a‘pr'

[, fn( Za, Y opLp(vy,.. v”]fn(f’)l)

Inductive Hypothesis: For any transition of a subterm P’ of P of the form P' = Q

. o v e ajrs
there is a basic transition [ F Gp el }

nodes)

[+ Gg (up to alpha conversion of bounded

e For (par), we know that [P|Q]r = 'k Gp|Gg and by Inductive Hypothesis there

{lolr}
—_

is a transition '+ Gp I+ Gp. Then using rule (parz) with ' F Gg we

obtain I' + GplGQ “Oi;} 'k GP'IGQ with IV + GpllGQ = [[P’lQ]]rl.
e For (com), we have by Inductive Hypothesis (with fu(P). u(Q) C I'),

{(z.out.<y>)}

P2 p mmplies I'FGp 'k Gp
z(2) ) ) {(x,in,<z>)}
Q = Q' implies TFGqg [2F Gy
{{z.7.<>)}

Then, using rule (com,) we obtain I' - Gp|Gg 't Gp|Gg{y/z} and
by Lemma 7.18 we have that [P'|Q'{y/z}Ir = [P'|Q1r.. {y/z}.
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o For (close), we have by Inductive Hypothesis (with fn(P), fn(Q) CT andy ¢T'),

T {( out,< >)}
piY p implies TFGp i Ly Gp
{(z)in,<y>)}
28 @ implies T+ Gq Iy Gy
{(z,7<>)}

Then, using rule (close,) we obtain I' - Gp|Gg L'k vy (Gp|Go).
e For (open), we have by Inductive Hypothesis (with fn(P) C T'U {y},

{(z,out,<y>)}

P p implies T,y+ Gp

F,y (o GP'

{(z,out,<y>)}

Then, using rule (open,) we obtain '+ vy.Gp L,y Gp.

e For (res), we have to check two cases:

1. For A = {(v,0ut, < w >)}{(v,in, < w >)}{(y, 7, <>)} with v,w,y # z, we
have by Inductive Hypothesis that, P — P’ implies ',z Gp 2, Fz,AF
Gp with z € n(A) and A(z) 1 for A = {[a]rza}

i ) . {(z,out,<y>)}
P22 P implies T,y Gp it

FinGP'

Then, using the first rule (res,) we obtain I' - vz.Gp A, CLAFvz.Gpr.

2. In the second case we have a = T and we assume that it happens on the node
that is being restricted. So, by inductive Hypothesis we have,

{(z,tau,<>)}

P 5 P implies T,z+ Gp

F,II‘GP'

Then, using the second rule (res;) we obtain '+ vz.Gp 2.rr vz.Gpr.

Conversely, for the second part of the theorem, we want to prove that, given P, a
w-calculus agent, [P]r ArrG implies P — Q, A = [a]r, " F G = [Qr, with
fn(P) C T C I and fn(a),fn(Q) C I". Theorem 7.5 assures that the inverse function
for the translation exists.

We proceed by rule induction on Milner, Transition System.

Base Case:

e For productions is obvious by definition.

Inductive Hypothesis: For any subterm P’ of P with [P]r = " + G there is a
transition P' = Q, with A = [a]r, " F G = [Q]r, fn(P) C T, fn(P"),C I
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For (ren;), we have that IV €' - €G = [Q]r er and by Inductive Hypothesis, I'

G-HT,AFG €P implies P =~ P'. P sequential standard and I' - G = [P]r,
F,A F G’ = [[P’]][A

Then, by Lemma 7.18, €' F €G = [Qler = [Plr € = [EP]er. and by Theorem 7.5,
Q=¢P.

Finally, by Lemmas 7.18 and 7.19, and Theorem 7.5 we obtain €P Lo, EP' with,

l¢aler.ca

[€P]er
[Plr €

ﬂéPll]fl'.EA =

lar.a € [{P’]]r.A €= fF - EG E_‘\_, ETLEAF EG/

For (par;), we have by Inductive Hypothesis, I' + G, A rAatr G\ implies
P =5 P'. Then, by Theorem 7.5 we have Q = {[[' F Gy}. Using rule (par) we

obtain P|Q — P’'|Q which by translation gives I' - G,|G, AL AF G|G,.
For (com), we have by Inductive Hypothesis (with fn(P),fn(Q) C T),

{(z,out.<y>)}

C+G, T'FG, implies P2 P!
{(z.in,<z>)}

C'FG, [,zFG, implics Q ) Q

Then, using rule (com), P|Q —— P'|Q'{y/z}. And by translation, [P|Q]r = 'k
G\|G2 and [r]r = (z,7,<>), we conclude by Lemma 7.18 that [P'|Q'{y/z}]r =
'+ G|Gy{y/z}-

For (close), we have by Inductive Hypothesis (with fn(P).fu(Q) € T'),

{(z,0ut.<y>)} i
kG, ki L,y+ Gy implies P W, pr
{(z.in,<y>)}
G, o L,y G, implies Q =W o

Then, using rule (close), P|Q — vz. P'|Q'. And by translation, [P|Q]r = I
G\|G2 and [vz. P'|Q)r = T F va(GY|Gy) with [7]r = (x, 7, <>).

For (openg), we have by Inductive Hypothesis (with y # x),

{(z.0ut.<y>)} i
Lyt+G Rl I,y G implies P =% P

Then, using rule (open) we obtain vy. P 0 P And by translation, [vy. P]r =

'kvyG.
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e For (res;), we have two cases:

1. For z &€ n(A)andA(z) 1.

By Inductive Hypothesis, we have ',z + G A, [z, A+ G implies P —=» P’
with z € fn(P) and = & n(a). Then, using rule (res) we obtain, vr. P —
vz. P’ where [vz. PJr =T+ vz.G and [vz. P|ra =T, A F vz.G' by trans-
lation.

2. This is the same case as bellow, but instead of choosing [T]r = {(z,7,<>)},
we choose for the new transition [T]r = @ given that the synchronization is
on the node to be restricted. 0

7.2 m-calculus vs. wl-calculus

In this section we briefly present a study of a restriction of our formalism to share only
new nodes, in the style of wl-calculus [Sangiorgi, D., 1996].

With the goal of studying the expressive power of 7-calculus, in [Sangiorgi, D., 1996],
the mobility mechanisms of the m-calculus were separated in two, respectively called
internal and external mobility. The study of the wl-calculus, which corresponds to the
calculus that uses only internal mobility (i.e. only new nodes can be shared), showed
that internal mobility is responsible for much of the expressive power of w-calculus.

In the case of our formalism to share only new nodes we have, for a transition
TFG-HT,AFG, to impose on A the condition that names in n(A) should not be
in I (n(A)NT =0). Then, A does not depend on I' and can be written as:

A= U set(y)

zay € A

The application of this restriction has almost no effect in any of the presented tran-
sition systems. Only the corresponding open operation (rule (open) for Hoare and
the specific case of rule (res) for Milner) is not necessary because no old name can by
shared. With respect to the translation in Section 7.1, with wl-calculus we have only

the actions:
T | | z(z) | Z(2)

Then, the transition system in Table 2.2 does not need the (Com) and (Open) rules,
and the (Sum) rule is replaced for the bounded rule:

(Sum)Za,—.P,— =4 P; with o; = z(y), Z(y)
i=1

Also, the Milner,, transition system in Table 7.1 does not need the (com,) and (open.,)
rules, and rule number 6 of the translation in table 7.2 has to be changed by:
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P Q P sequential standard agent with w a ficzed name, w ¢ fn(P)

{(v,out,<w>)}
[Plice)

Al the correspondence results are still valid.

[QlmPyow)



Part VI
Adding Design Transformations to Styles

One major problem in the specification and verification of software architectures and
especially with distributed systems, is when system evolution includes reconfiguration.
Some of the existing approaches for modeling software architecture styles deal with these
problems but only partially. Others only allow for fixed description of styles, components
and connectors.

One important issue is how to assure consistency of the specified reconfiguration with
respect to a style. In this part of the thesis, we continue with the idea of supporting
graph and graph transformation as a general framework for style specifications. Then,
based on the use of graph grammars as language for style description, we complement
the approach with a method for specifying more complex reconfigurations (called trans-
formations) over the topology of an architecture style. The method warranties that
if the transformation can be specified, then its application over system instances will
be consistent with respect to the expected architecture style configuration. For this
method, we do not use synchronized rewriting, we only use graph gramninars as style
description language and transformations for defining the evolution of the topology.

The main difference of this method with respect to the one presented in Part IV
using name mobility, is that the method in Part IV is more dynamic in the sense that it
applies to running open-ended systemns without global control except for synchronization,
whereas the approach with transformations may be useful for working at the level of
blueprints, i.e. it rearranges the design steps of the system to produce a different but
consistent system. Thus, the latter method can be applied to specify very general kinds
of reconfigurations and mobility (as it is shown in the thesis examples), but it requires a
global knowledge of system structure. Some possible steps for combining both methods
are described in the future work in Chapter 10.

Our motivation can be summarized agreeing with and quoting Le Métayer [Le
Métayer, D., 1998]:

We believe that a better basis for mastering large software systems is to
ensure that they respect the desired topology and properties by construction
rather than trying to try to prove it a posteriori.
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Including dynamic changes as part of the style let us be sure that the specified changes
are the only ones allowed for all style instances. Therefore, consistency checking is valid
also for all style instances.

As related work on specifying cousistent reconfigurations we can mention again [Le
Métayer, D., 1998]. In his paper Le Métayer, together with the context free grammar for
the static structure of the style and the coordinator conditional rules for reconfiguration,
proposes a seini-decidable algorithm for "type checking” of styles to ensure that the
coordinator does not break the style structure (which defines the type). The algorithin
corresponds to a proof of convergence of graph rewriting rules. Also, part of the checking
of the coordinator rules is due to the set representation that was chiosen in [Le Métayer,
D., 1998]. For example, when a component is removed it means that the coordinator rule
has to take into account the deletion of the node and also all the edges corresponding
to its communication links (this is not needed in our representation).

In Chapter 8 we show how to specify reconfigurations by transformation rules over
graminar derivations. For this we introduce a new (and more useful) notion of grammar
derivation and then formalize the approach by introducing an innovative representation
of HR systems as higher-order terms of a typed A-calculus. In Chapter 9 we give a
first idea of how this approach can be used by a designer that may want to specify a
reconfiguration in a more constructive (and maybe nore intuitive) way with interinediate
steps that may not correspond to valid configurations of the style.



Chapter 8

Consistent Transformations over
Derivations

As it was done in Part III, in Section 8.1 we first give an infornal introduction to the
method, with an example from the TRMCS case study of Section 3.1. In Section 8.2 we
present the formalization of the method based on A-Calculus.

8.1 Reconfiguration by Transformations

The method specifies reconfigurations by transformation rules over grammar deriva-
tions. Again, we assume HR grammars as formalism for describing styles. Then, for
each graph of a style there is a set of derivations of the grammar that are the possible
ways of constructing it from the application of grammar productions. A transformation
is applied over a derivation segment and returns a new derivation segment. The idea
is that to apply a transformation over a graph (i.e. architecture) you have to find a
derivation segment of that graph (from the style) that matches the transformation. Af-
ter applying the transformation, its result corresponds to the reconfigured segment of a
graph derivation. This result is part of a valid derivation of the graph obtained by the
desired reconfiguration. This assures that a transformation is between valid derivations.
It is important to mention that because transformations are over a derivation segment
they can be composed and applied to several parts of a graph. Also, after a transfor-
mation is obtained, you can start from any of the derivations of the new graph allowing
for other transformations to be applied.

It is clear that our aim is to give architects a tool to specify in a consistent way com-
plex reconfigurations over the architectures they are working with. This is fundamental
for software architecture modeling because once a transformation is obtained and its
correctness checked (that it starts and ends with valid derivations), it can be included
in a library of transformations for its future use. This work was introduced in [Hirsch,
D. and Montanari, U., 2000] and [Hirsch, D. and Montanari, U., 1999]. In this part of
the thesis we do not use SHR productions.

89
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Given a HR Grammar grammar and the set of edge labels for the graphs it gener-
ates, we distinguish two sets of symbols, nonterminal (NT) and terminal labels (T).
Nonterminals are labels that appear in the left-hand side of productions and terminals
are labels that appear only in the right-hand side of productions.

GO =P G1 =P G2=> """ =P Gn-1=PGn=Gi =P Gn+1=G"i+1
P1 P2 P3 Pn-1

H‘ F||+I=Pi+|
I 2

GO=p T1=Pp T2=p""" =P Tn1="PTn=T"i Pn+1=Pi+1
P1

P2 P3 Pn-1 Pn
\ L / o
Pi
P2

b)

Figure 8.1: Definitions of Derivation.

A transformation is a rewrite rule of the forin L = R that transforms a derivation
seginent L (input segment) into a derivation segment R (output segment). It is easy to see
that thie ordinary notion of graph derivation (see Figure 8.1a.), i.e. a sequence of graphs
and productions, could not serve this purpose. In fact, a derivation segment is limited
by (we could also say: is typed with) two graphs, and could be reasonably replaced only
with a scgment typed with the same two graphs, which thus would eventually produce
the same result. To be able to specify transformations, we introduce a new notion of
derivation that equips derivation segments with a less stringent notion of type. For
this we slightly chauge the definition of graph and production. Given a graph G; that
contains a set NTG of nonterminal symbols we identify its nonterminal edges as an
ordered list (actually, the order is only necessary among edges with the same labels).
Then, we identify the type of G; with that list of nonterminal edges (note that graph
types are not uniquely defined). In the same way the nonterminal edges in the right-
hand side of productions are ordered. In this way, in a functional setting, we can see now
that each derivation step (Gt =41 Giy1) is typed by the graph types (T; =41 Tis1),
and is obtained as a parallel composition of the application of production p;., over
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a nonterminal symbol L;,; that appears in G; with a set of identities for the rest of
nonterminal edges in G; (see Figure 8.2). Finally, a derivation can be described as a
sequential compositions (starting from the initial graph) of productions and auxiliary
rules which permutes the nonterminals (p in Figure 8.2) composed in parallel with
identities.

Figure 8.1b. shows (not including the identities for a simpler picture), the new defi-
nition for derivations and how a transformation can be applied. Now, we can transform
a derivation segment (from p; to p,, typed by Tian d T,,) by another segment (p} to p!)
with the same type. This means that pf, has to expect a label that is compatible with
Ti( not necessary the same one of p,) and that the application of p; must have as result
a graph with type T} = T, (with G probably different from G,). The derivation can be
divided in three parts, the segment before the transformation input segment, the input
segment itself and the rest of the derivation. As the interfaces (the types) of the input
and output segments of the transformation are the same, the rest of the derivation is
not changed. But as the result of the application of the transformation we obtain a
new derivation (by composing again the three segments) ending with a different graph

(Gn+l 74 G;+l)'

8.1.1 Example

Using the TRMCS we exemplified the method. We specify a transformation that de-
scribes tlie reconfiguration of a set of Users when their Router fails. The failure of a
Router is specified as a production that changes from a Router in an Idle state to
a Router in a Fail state. What we want is that if a Router fails then all its Users
have to be moved to another Router. Both segments must respect the type of the
subgraph they have to be applied to, and they should talk about the involved Routers,
i.e. the one that fails and the one receiving the Users, and also it has to be appli-
cable for any number of Users. This is done by a simple transformation (Figure 8.2)
over the derivation segment that contains the Fail Production, which corresponds to the
input transformation segment. Note that the expected type for the input segment is
two Router symbols in Idle state, where the Fail Production is applied over the first
Router (noted with double line) together with an identity for the second Router label.
The ending type of the segment is one Fail Router and one Idle Router labels.

In this case the output segment of the transformation is the same production but
with an additional permutation (p) over the two Routers that are involved. Figure 8.2
includes a functional notation style specification of the transformation. Symbols e and
® correspond to the functional and parallel compositions, respectively.

Also, the designer has to choose the correct derivation. In this case it is easy, the
Fail Production has to be applied to the first Router before the second one generates
its Users. In this way after the transformation all the Users (the ones from the failing
Router and the rest from the receiving Router) are together. Figure 8.3 shows the
application of the transformation over a derivation. As you can see the transformation
is applied over the corresponding input segment, while the other parts of the initial
derivation are the same. Then, after the transformation, a new valid derivation is
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Fail Produdion (F)

AlarmRSp T AlarmRSp
Router R Router
(dle) (Fal)
l Signdp l Signdp
Tradormation
Input Sgyment
F
Router X Router = Router Router
(de) (Idie) fah | X | ode
Output Segnent
1 2 r=2-11-2 2 1 F
Router Router = Router Router = Router Router
tdey | X | (ide) aae | X | ade Fany | X | de
Input Segment = (Fail ® id) 1 Rige X Rge = Reai X Rige

OutputSegmeri = p o (Fail ® id) : R 4,X Rige = Rea X Rigo
Trarsformation = (Fail ® id) = p ¢ (Fail ® id) : Rigo X Rige = Rrai X Rige

Figure 8.2: Transformation Rule.

obtained that respects the types but finishes with a different graph where all Users of
tlie Fail Router are connected to the working Router.

The use of this method is intended in two formms. The first one is at the time when
a designer wants to specify a reconfiguration for systems of a specific style. The second
one is when a designer wants to apply one or more transformations, that are already
specified and included in a library, to the style of the system she is working with. In
the first case, to specify a transformation, the designer has to find an input segment
for the subgraph that she wants the reconfiguration to happen, and a derivation for
the resulting subgraph after the recoufiguration takes place. With these, the desired
transformation is formally specified and can be added to the style description, being
sure that it is consistent with respect to the style. For tlie second case, if a desigher
wants to apply an already specified transformation to follow tlie dynamic evolution of a
specific system instance, it means that he has its grapl specification. So, he can apply
the transformation to a derivation that matches the input segment of the transforiation
and then obtain the new derivation for the reconfigured system.
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Figure 8.3: Application of the Transformation Rule.

With this method, transformations can be composed in parallel and applied simul-
taneously to different parts of a system being sure that the composition respects the
style, given that it has to respect the type of the corresponding transformations.

8.2 Higher-Order Replacement Systems

For the rest of this chapter we present the formalization of the ideas introduced in
Section 8.1.

In [Hirsch, D. and Montanari, U., 1999] we introduce a first approach to model recon-
figurations with HR grammars as language for software architecture style description,
with a representation of graphs as terms of a simply typed A-calculus and using tiles
[Gadducci, F. and Montanari, U., 1999] to specify consistent transformations over a
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style. Then, in [Hirsch, D. and Montanari, U., 2000] we presented a deeper analysis of
the relationship between HR systems and ligher-order terms of a A-calculus. The work
presented in this section follows this line of work. For this purpose, we dcfine a struc-
ture of type classes that is used to achieve a formalization (and differentiation) of the
entities that appear in hyperedge replaceinent systems (graphs, productions, granunars,
derivations and derivation trees). Also correspondence theorems are presented. The
formalization with higher-order teris gives a clear representation of structures, shows
thiat the specification method can have an efficient implementation and also allows the
definition of a more expressive concept of derivation which is necessary to obtain a useful
notion of consistent transformation already introduced in Section 8.1.

For the rest of this chapter we will use an example of a software architecture style
explaining the different topics we will introduce. The exainple is an architecture style
that describes a class of distributed systems that are arranged as trees (for example
WANSs) where their nodes are rings of components (for example LANs). The different
rings are interconnected using bridge components.

8.2.1 Higher-Order Replacement and A-Calculus

In this section we give a representation of HR systems as higher order terins of a simply
typed A-calculus. We consider typed A-terins in A~ [Mitchell, J., 1996].

First of all, we need to add some details to the definitions of replaceimnent systems of
Chapter 2.

As we already mentioned, we define a set NT of nonterminal edge labels (i.e. labels
on the left part of productions) and T a set of terminal edge labels (i.e. labels that only
appear on the right part of productions) with TN NT = @. \We define a nonterminal
graph as a graph with an ordered list of edges labelled by nonterminals. A partial
derivation is defined in the same way as a derivation except that the final graph is a
nonterminal graph.

A derivation is characterized by its derivation tree. A (partial) derivation tree is a
term whose constructors are the productions of the grammar and whose frec variables
are the nonterminals in the leafs.

Figure 8.4a shows the initial graph and grammar productions of the ring-tree style
previously introduced. In this example, the tree of rings is composed of three types of
comnponents (i.e. edges): C is a generic component of a ring, P is a port component that
indicates a point from where a new ring can be created and b is an external connection
inserted in a ring. Two such b components form a bridge. C and P are nonteriinal
symbols, and b and c are termninals where c is a terminal symbol for components of
type C. The initial graph of a ring tree is a ring with only one component. Productions
Brother and Port create a new component or port, respectively, and production Bridge
replaces a port P with a bridge that connects an existing ring witl a new one. Production
Component is the terminal rule for components C. Numbered nodes indicate the order
of external nodes of productions and numbers on nonterminal edges indicate their order
in nonterminal graphs.

Figure 8.4b is an example of a partial derivation over the grammar. The boxes in
bold indicate the nonterminal over which the next production is applied. For exanple,
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Figure 8.4: The grammar and a derivation of the ring-tree style.

the partial derivation tree of Figure 8.4b is,

Init < Brother < Port < C1, Bridge < C2 >>, Brother < C3,C4 >>> (8.1)

As we already mentioned, for the formalization we use typed A-terms (or simply
terms) in A7¢ i.e., terms with ezponential types, product types and unit. As we will
show below, a graph is described as a term of the calculus whose type is given by the
number of external nodes and the nonterminal symbols of the graph it represents. Note
that, as nonterminals define the interfaces for the application of productions on deriva-
tions, here the type of their corresponding terms will have the same role assuring the
correct construction of derivations. Also, productions and derivations are represented as
terms. For this we have to define the A-signature ¥ = (88,C) of the language. For unit
type € there is only one value (the empty list) which we write as <>. First we define a
set B of type constants.

Type Constants: B={1, *x}UT, 7;=U7[k
3

where 7] is the ranked set of Label Types with a type in 7;* for each k-hyperedge nonter-
minal symbol that appears in the productions. These types are needed to differentiate
among nonterminal edges with the same number of attachment nodes. This set will
change for each particular case. For the ring-tree example we have, 7; = {C , P}. We
will denote 1 X 1 X ... asn with0 =e.

N——

Now we define the set Cof term constants. We introduce two operators in the
signature. The | operator is used to put together edges. The v operator is for the new
nodes created by the productions and term v(An.M), is abbreviated as vn.M in the
style of Higher Order Abstract Syntax (HOAS) [Church, A., 1940].

Term Constants: C={:*xx*—x,v:(1—=x)—>x}U T, U NT,
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where T is the set of terminal constants with a constant for each terminal edge that
appears in the productions, and NT is the set of nonterminal constants with a constant
for each nonterminal symbol that appears in the productions. These sets will change for
each particular case. For the ring-tree example we have, T, = {b:3 — %, ¢:2 — %}
and NT,= {cc:C , cp: P}.

Azioms: rle =qlp vmwn. M =vnvm. M
pi(glr)=lq) |r MlynN=vnM|N , n¢g fv(M)

It is iimportant to distinguish between constants of the method (i.e. | and v) and
constants of the particular examples (i.e. term and type constants for terminal and
nonterminal edge labels).

Graphs as Functions

Given the definition of the corresponding A-signature, now we define in this section the
correspoudence between graphs and terms and in the next section the correspondence
with productions and derivations.

There are two classes of graphs, nonterininal and terminal graphs. The graphs in the
first class possibly contain nouterminal symbols, the others do not. The next theorem
states the correspondence between these graphs and certain terms of the calculus. For
this we first define a set of type classes used to type terms corresponding to graphs.

Graph Types : Ty = Thoges = *  Thodesii= 0|1 |. ..
Nonterminal Edge Types : Toe ::=Trnodes = * Trnodes::=0x T° |1l x T' |..
Nonterminal Graph T!/PCS :Tng::= nonterm — 7; Ilorllcr'vn::‘:e I Imntcnn X 7:1(:

Class 7, is the class of types for terminal graphs. These graphs are represented
as sccond order terms of type n — * with n the number of external nodes of the
corresponding graph.

Class 7, is the class of types for the first order terms that represent nonterminal
edges. The type of these terins is given by the number of attachment nodes of the edge
and its corresponding label type.

Class 7, is the class of types for nonterminal graphs. These graphs are represented
as higher order terms. As we mentioned, types define the interfaces, in this cases the
types specify functions which take as many arguments as are the nonterminals (7, onterm)
and return a value of terminal graph type (7).

For example, taking the ring-tree style we can define the terins for the graphs in Fig-
ure 8.5. The terminal graph on figure a will have a type of class 7, and the nonterminal
graph on figurc b that has two non terminals will have a type of class 7;,,. Parenthesized
node labels iu the figure are just for making the correspondence with terms, but they
are not needed.

Terminal Graph: X < ny,ng > . ving.vma.vmy.
c(ny, ng) [b (g, my, ny) | b(ing, my, my) | c(mg,my) 2> =
Nonterminal Graph: ) < zcp,Ter > . A < ny,ng,ng,ng > . vm.

:ECl(nlanZch) Ib (n’2=7”') nl) |b (71’357n‘7n4) IT C?(n-‘h"i}) CC)
: (2XC—»*)X(2XC—»*)—»(4—'*)
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Figure 8.5: Example of terminal and nonterminal graphs

For Figure 8.5a we define two external nodes and for Figure 8.5b four external nodes.
The rest of the nodes are created using the v operator. The number of external nodes
is part of the definition of a graph. We state the correspondence in the next theorem.

THEOREM 8.1. [Graphs and Terms Correspondence] There is a one-to-one correspon-
dence between graphs (up to isomorphism) and terms (up to equivalence) of type T, for
terminal graphs and T,, for nonterminal graphs.

Proof. The first part of the theorem, from A-terms to graphs (with respect to the corre-
sponding A-signature), is proved by construction defining the following translation func-
tion [—]:

First, as presented in Section 8.2.1, by definition of the \-signature we have that, for
each label type T}* in T; there is a k-hyperedge nonterminal symbol in NT, and for each
term constant of type k — * in T, there is a k-hyperedge terminal symbol in T.

For terms of type T,:

ofA<ny,...,n,>.vmy....um,. t T o] =
<{nl»"'7nr)ml)*"|ms}|Et’atth{nl)'")nr})labLEt;labLNt)r

where E,, att,, labyg, : B, — T, labyn, are given as expected by the structure
of subterm t (constructed using operator |) and the definition of the \-calculus
signature.

For terms of type Tpq:

ofA<zy,...,Zn>. A<y, , 0, > umy..oumg b 2 Ty X X Ty — (1 — )]
is defined in the same way as for terms of type Ty, but in this case labyg, : £y —
TUNT (i.e. Nonterminal graphs).

Conversely, we prove again the second part of the theorem by construction in a similar
way as the first part. The signature of the \-calculus is constructed from the terminal
and nonterminal symbol sets of graphs defining the corresponding terms.

e For a graph G with only terminal labels and n external nodes, the corresponding
term tg is of type n — *.
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e For a graph G with n edges with nonterminal labels and r external nodes, the
corresponding term tg is of type Ty X ... X Ty — (r — %), with Ty; of the
corresponding rank.

Completing the proof of the isomorphism, it is obvious that the compositions of the
corresponding translations result in identities. O

Productions and Derivations as Functions

In this section we define the correspondence of productions and derivations with terms.
We first introduce the use of an environment in the calculus representing the notion of
a HR system. The, a set of type classes is defined to type terms corresponding to pro-
ductions and derivations. As in the previous section, a theorem for the correspondence
is presented.

An environment p is a set of variable definitions giving for each variable Var; a cor-
respounding term ¢; : 7; (i.e. p= [t;/Var,..ty/Var,]). This allows to include in terms
the variables in the environment, variables being typed with the types of their interpre-
tation. The application pM over a term M is a substitution where each free variable of
M is replaced by its definition in p. So, given a fixed A-signature corresponding to an
alphabet of nouterminal and terminal symbols NT and T of a graph rewriting system
HRG =< Gy, P,NT.T >, we define a corresponding environment that contains the
definitions of the initial graph Gy and the productions in P. This enviromment defines
the interpretation of terms for graphs and derivations over the grammar produced by

HRG.
Now we define the type classes needed to type productions and derivations.

Production Types : T, ::= Tnonterm = The

The class 7, defines types for productions which arc represented as higher order
terins. The input interface is the nonterminal symbol to be replaced on the left side
and the output interface is the set of nonterminals on the graph on the right side. It
should be observed that, in the usual graphical representation, production “arguments”
are on the right, while the “result” is on the left. But this representation is inverted
in functional types, where the variable types are on the left and result types are on
the right of the arrows. Thus a production is a function which takes a tuple of terms
for the nonterminals on the right side (Z,onterm) and returns a term of the type of the
nonteriinal on the left side (7).

As an example, we define the enviromment of the ring-trec with the terms of the
productions and initial graph in Figure 8.4a.
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d
Brother & ) < Tcl,Toz > - A < ny,ng,ne > .vm.

zer(m,ng, cc) |z ca(n,mycc) : 2xC - x)x (2xC - *x) = (2xC — *)

Port ¥ A< Tc,Zp > . A < ny,ng,ne > . vm. zec(m,ng, cc) | zp(ny, m, cp)
t(2XC o) x(2XxP—ox)>(2xC > %)

. d
Bridge “f A <Zc>.A<n,ng,np> . Vm.rvmye.rm;.

b(ny, my, n2) |b (me, my,m3) |t c(ma,ma,cc) : (2xC > %) > (2%x P — %)
Component W re>. < ny,ng,ne > . ¢(n,ne) € = (2x C — *)
Init déf/\<:cc>./\<n>.:vc(n,n,cc) :(2XxC > x) > (1> %)

Derivation Types:

In the case of derivations, we have derivations that start with the initial graph of the
system and end in a terminal graph and partial derivations that start with the initial
graph of the system and end in a nonterminal graph. Hence, the derivation type is the
graph type 7, and the partial derivation type is the nonterminal graph type 7,,.

Then by definition a (partial derivation) derivation is a sequence of applications of
productions of the form Go =51 Gi =42 ... =pn Gn, where py,...,p, arein P and G, is
a (nonterminal) terminal graph. More formally each derivation step G; =pi+1 Gis1 can
be seen as a parallel composition of the application of production p;;, over a nonterminal
symbol L;,, that appears on G; with a set of identities for the rest of nonterminal edges
in G;. Then, the corresponding term that represents the derivation can be described
as a sequence of functional compositions of production names (starting from the initial
graph) and identities composed in parallel. The operations of identity and sequential
and parallel composition over closed terms id,, (M o N) and (M ® N) are defined as:

Identity Sequential Composition
; — . . M:ig—6§ , Nir—o
idy = AL:T.T T T MoN = Az, M(Nz) 71—8

Parallel Composition
M:.r—o0 , N:§—n
M®N = A<z,y>:7x6.<Mz, Ny> (7xb)—(oxm)

For example, the term for the partial derivation of Figure 8.4b is,

Init o Brother o (idaxc—. ® Brother) o (Port ® idoxc—. ® id2xc—s)
°(id2xC—m ® BTldge ® id?xc—n ® idZXC—'t)
((2XCox)x2xCo*x)x(2xCo*x)x(2xC —>x) > (1 %))

Note that the names of the productions and the initial graph are free variables which
will be replaced by their definitions in the corresponding environment. The type of the
derivation term is given by the definitions in p.

As it is already mentioned, a derivation is characterized by a derivation tree. For
each derivation tree there is a set of equivalent sequential derivations. So derivations
can be characterized also as a term based on its derivation tree. The term based on
derivation tree (8.1) for derivation of Figure 8.4b is,
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A< xer Lo, ko3, Loy > -
(Init < Brother < Port < x¢y, Bridge < xcq >>, Brother < xcy, 2y >>>)
(2XxC-#)x(2xCo+x)x2xCo*)x(2xC —*)—> (1> %))

Note that this term and the previous one are equivalent.

THEOREM 8.2. [Productions and Derivations Correspondence] Given @ HR Grammar
HRG = (Gy, P, NT.T), there is a onec-to-one correspondence between productions and
partial derivations (up to isomorphism) over HRG and terms (up to equivalence) re-
spectively of the formn,

AT, &y > A<y, o, g, Mgy > . L
26y X LT = %) x ... X (in X LT™ — %) = (k x LT* — «)
where term t can only contain v but not A binders or o and ® operators.

2. inito tyo...ot,: Twitht €Ty
where each t; is a parallel composition of a production name in the environment
of HRG with a set of identities.

Proof. For the first part of the theorem, from A-terms to productions and partial deriva-
tions (with respect to the corresponding A-signature) we have:

For productions we have that a production is a pair (L, R) where L is a hyperedge (label)
and R is a graph. Then, we define a translation function [—] in a similar way as in
Theorem 8.1 and construct the two graphs.

o[ [A<ay, .y > A<y g, gy > L
2@ x LT = %) x ... x (ip x LT™ — ¥) = (k x LT* — %)] = (L, R) with

L = ({nl,...,nk},{eL’rk},{(eer,<nl,...,nk >)}s{n|,---:”k}s{(c’f"k’LTk)}’
{(1“,1),...,('7'Lksk)}>

R = ({"'l’ oo )nk} U -‘Vt-, {CLTI'la v ,CL’I'in} U Et, {(el,’l'i117'l7l)s B
(errims )} Uatty, {ny, ...}, {(ecrin, LTit). - . ., (errin, LTin) } U labpgy,
labLNt)

where (given as expected by the structure of subtermt) N, are the new nodes created
by the production (defined by v), E, are the edges with terminal symbols, att, are the
assignments of attachment nodes for edges with terminal symbols, labrg, :E ¢y — T
is the labelling function for edges with terminal symbols, lab; x, is the labelling of
nodes and ngj are the attachment nodes for the nonterminal edges.

For partial derivations we can prove by induction on the structure of terms.
Base Case:

e For init we have the translation defined in Theorem 8.1 where the term with type
in 7,4 corresponds to the initial (nonterminal) graph.



8.2. Higher-Order Replacement Systems 101

Inductive Hypothesis: Given a term inito t;0...0t,, where inito tyo0...0t,
with type in T,y corresponds to a partial derivation Go =>p) ... =pg-1) Gg-1 and t,
corresponds to the parallel composition of a set of identities and a term for a production
Dq, then inito tyo...ot, corresponds to the partial derivation Go =p1 ... =pg-1) Gg-1
=5 Gy

o We have term inito tyo...0t, ) of type (3 X LT"'— *) x ... X (in x LT™ —
*) — (r — %) which by Inductive Hypothesis corresponds to derivation G =>p) ...
=pg-1) Gg-1 and LT correspond to the nonterminal symbols of G, .

Then, we have term t, of type (hy x LT™ — %) x ... X (hp x LT"™ — ) —
((33 x LT — %) X ... X (i, X LT™ — x)).

Then, the sequential composition inito t;0...0t,_y o t, has type (hy x LT" —
*) X ... X (hyp x LT"™ — %) — (r — %) where, by the translation function
defined above from terms to productions, results in the addition of derivation step
Gy-1 =p(g-1) G to the partial derivation for G,_,.

Conversely, for productions we prove again the second part of the theorem by con-
struction in a similar way as the first part.

e For a production (L, R) we can construct the corresponding subterm t from the
structure of graph R using v and | and the corresponding signature. Then, we
add the binding A < n,, ..., g, Ny > for the external nodes (m,...,ni) and the
labelling ny4y of L; and the binding A < z,,...,z, >for the nonterminal symbols
of R.

e For a derivation Go =p1 ... =pm Gn we give the environment with the defini-
tion of Init for the translation for Gy and [ty/Var,,..t,/Var,] for productions
P1,-..,Pn- Then, to construct the term for the derivation starting with Init, for
each derivation step G; =pi Giy1 we apply (the sequential composition of) the
parallel composition of production name Var; with the corresponding identities for
the symbols that are not rewritten. The ordering of each parallel compositions is
given by the ordering of the nonterminals symbols of graph G;.

Completing the proof of the isomorphism, it is obvious that the compositions of the
corresponding translations result in identities. O

An interesting point is if we take derivations and abstract the names of the produc-
tions (i.e. bound free variables with a A binder). In this way, we obtain (with respect to
a signature) a production independent abstract derivation tree, with the names as place-
holders, that can be applied over different grammars satisfying the production types.
We define the corresponding type classes.

Abstract Derivation Types:

Tod = Tprod = Ty Torod::= Tprod X T
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Abstract Partial Derivation Types:
erd 1= dprodo — T;)g 7;)r0(l0::= d I %rorlo X 77)

Classes 7,4 and 7,4 take a tuple of productions and returus a terminal and nonter-
y
minal grapl, respectively.
Abstract Derivation:

A < Brother, Port, Bridge > . A < ¢y, Tca, s, Lca > -
Brother(Brother(xc, tc2), Port(zcy, Bridge(ze,)))
: ((2)(C—>*)X(2XC—9*)—b(2XC—»*))X
(2xPo#)x2xCo%x)o2xCo*x)x(2xC o) = (2xP — %)) >
((2xC o) x2xCox)x(2xCo*x)x{(2xC—*) > (2xC — %))

8.2.2 Derivation Transformations

Once derivations are represented as terms, what is needed is a notion of rewriting system
which ensures that derivations are rewritten into derivations. In the area of software
architecture, this could be used to specify complex reconfigurations which however trans-
form systems which are instances of a particular style into instances of the sane style.

A rather general strategy to achieve this aimn is to require that a set of rewrite rules
is specified, where cach rule L = R transforins a derivation segment L of the granunar
into a derivation segment R. Applying the rule would mean to replace L with R in the
derivation of some graph G, obtaining a possibly very different graph G’, which however
is automatically guaranteed to belong to the language gencrated by the granunar.

It is easy to see that the ordinary notion of graph derivation, i.e. a sequence of graphs
and productions, could not serve this purpose. In fact, a derivation segment is limited
by (we could also say: is typed with) two graphs, and could be reasonably replaced only
with a segment typed with the same two graphs, which thus would eventually produce
the samne result.

To allow for a more expressive concept, we need to equip derivation segments with
a less stringent notion of type. This is exactly what we have achieved with the notion
of derivation introduced in the previous section. In our running example

Init o Brother o (idaxc—. ® Brother) o (Port @ idaxc—. ® idaxc—s)
o(idaxc—- ® Bridge @ idyxc—s ® idaxc—.)
((2xC =) x(2xCo¥)x2xCo*x)x(2xC —*)—> (1 - x))

we have a derivation composed of four steps, where thie composition of the steps is
achicved via the second order function composition operator o. The composition is
possible if the (functional) type of the range of the first function is the same as the type
of the domain of the second. For instance for the last o operator in the above term, the
type is:

2XCo*x)x2xPox)x(2xCo*)x(2xC — %)

which clearly expresses the labels and arities of the nonterminals still to be expanded
at that stage of the derivation.
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It is now clear what a rewrite rule L = R is, which is adequate for our aim: both
L and R are derivations segments of the given graminar with the same initial and final
functional types.

For instance, we may want a transformation over the ring-tree style which specifies a
reconfiguration that allows to break any ring of the tree into two smaller rings obtaining
a new consistent instance of the style. The transforination is specified by the following
rewrite rule:

Brother = Port o (idaxc—. ® Bridge)
((2xCo#x)x(2xC—-x)> (1xC —x)

whicl), in words, replaces the creation of a new C component with the creation of a P
component and with its evolution into a bridge and a new C component. Notice that
replacing one derivation segment with the other one leaves the rest of the derivation as
it was, in this case the evolution of the two C nonterminals.

Figure 8.6 shows in graphical form the initial and final derivation segments of the
transformation and the transformation applied over the derivation on Figure 8.4b.

Note that transformations of the above kind can be applied in sequence to build
more complex effects, and also they can be applied simultaneously over non overlapping
segments of a derivation.

Derivation transformations can be used in the area of software architecture to specify
complex reconfigurations of styles. This is an important issue, especially for distributed
systems, allowing the designer to have a library of reconfigurations and to select the
reconfigurations that a system will be allowed to undergo. To specify a reconfiguration
of a style, a designer has to find the initial and final derivation segments over the style
grammar. Once he has the transformation it can be applied over any instance of that
style. The language of graphs gives a visual presentation of styles and transformations
and on the other side the correspondence to lambda calculus gives the semantics and
shows that the method is implementable.

How could this notion of rewrite system be fully formalized, generalized and in-
plemented? An obvious option is to resort to type theory and to some higher order
theorem prover, eg. Isabelle. In this setting, the power of higher order graph rewriting
could be fully exploited, allowing to parameterize the design process with component
and connector features which could be specified later, still guaranteeing consistency.

Another option would be to employ rewriting logic by Jose Meseguer [Meseguer, J.,
1992], which is equipped with a rather general theory and is the base of several im-
plementations, notably Maude [Clavel, M.G. et al., 1998] at SRI International. True,
rewriting logic is presently only first order, but general conditional and nonconditional
axioms are allowed. In our approach, it should be possible to model our higher or-
der derivation trees as first order terms, provided that suitable axioms are added that
identify all the derivation trees generating the same graph.

Tile logic [Gadducci, F. and Montanari, U., 1999] would be a more concrete alter-
native. Tile logic is based on rewriting rules with side effects and generalizes both SOS
and rewriting logic (in the nonconditional case). Side effects can be used to synchronize
several rules, thus building complex atomic transformations reminiscent of nondeter-
ministic transactions. Tile logic has been equipped with a higher order theory [Bruni,



104 Chapter 8. Consistent Transformations over Derivations

R. and Montanari, U., 1999], where both configurations to be rewritten and side ef-
fects are siiply typed lambda terms. Stripping side effects from higher order tile logic,
one would get a higher order version of rewriting logic, as needed herc. However, also
the additional features of tile logic could be very useful. For instance, several complex
transformations of practical interest in software architecture cannot be broken down
into sequences of simpler transformations, since the interinediate configurations would
not satisfy the requirements of the style. The synclironized transformations which can
be expressed in tile logic would not require the consistency with the style of the in-
termediate configurations, and would still make sure that when the transformation is
completed, consistency is fully reinstated.

Initial Segment: ) Final Scgment: ,
2 ® 2 6
, i , i
' <]
- 7 —-
. 0 .
L [ b b K
1 1 Y 2
O C
° o
1 1

Transformation Application:

Figure 8.6: A transformation



Chapter 9

Consistent Transformations via
Inconsistent Steps

9.1 Building Consistent Transformations

This approach is useful for many types of transformations but there may exist complex
transformations that cannot be broken down into sequences of simpler transformations,
since the intermediate configurations would not satisfy the requirements of the style.
And also, a designer may want to specify a reconfiguration in a more constructive
(and maybe more intuitive) way with intermediate steps tliat may not end in valid
configurations of the style.

To deal with these cases, we can use again the new definition of derivation. The
designer is allowed to specify a complex reconfiguration as the composition of smaller
ones that can have intermediate non-valid configurations. For example, Figure 9.1a.
shows a geometrical representation of the transformation that is obtained by diagram
pasting of three smaller ones (Figure 9.1b.). The three transformations in Figure 9.1b.
are obtained defining two new productions (I; and I,) that do not belong to the valid
productions of the style. This means that the application of this type of productions
can generate graphs that do not belong to the valid style grammar. Looking at the
geometrical diagram, non-valid productions correspond to vertical arrows. For example,
in Figure 9.1b. we have three transformations of the form:

Py, = P, T =Ty

! . /)
Piysel, = LeP,, Tin—T,,
Piys => LeP,; Tis—Tys

The pasting of these transformations is given by matching of the interfaces defined by
productions I, and I, and their types. But, in spite of the fact that non-valid productions
can be applied, given that they are typed (by nonterminals), the final transformation
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Figure 9.1: Transformations by construction. a) A consistent transformation by composition of three
inconsistent ones. b) Inconsistent transformations.

is a valid transformation between cousistent derivation segments (they do not contain
non-valid productions).
In the case of Figure 9.1a. we have transformation:

PiyeP.,0P.3 = P.'I.;.l L4 P."+2 L4 P.'I+3 T — Tizs

This final valid transformation is the result of looking at the upper and lower deriva-
tion segients obtained after putting together the smaller transformations. But we can
also see this transformation as a sequence of steps through the inconsistent intermediate
states using the smaller transformations. In the example we have (graphically you can
follow the arrows of Figure 9.1a):

Piy1oPygePiiy =P 1ePigelyePl ., = PyyelhePl ,eP 4 = Pl eP 8P 4

With this constructive method we can incrementally specify a reconfiguration with
possible intermnediate inconsistent states, but at the end when the upper and lower
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derivation segments do not contain non-valid productions we are sure that the resulting
transformation is a valid one. You should notice that it is possible not only to paste
transformations horizontally, but also vertically. And of course as before, simultaneous
(parallel) application is possible.

9.1.1 Example

To exemplify the method we present a transformation over the TRMCS that moves a
User from one Router to another. But in this case we want to specify that the User
moves from the first Router, to the Server, and afterwards to the second Router.
For this transformation we define in Figure 9.2a. production Inconsistent User, that
attaches a User to the Server. Tle valid transformation is composed of two smaller
inconsistent transformations. Figure 9.2b. shows the diagram representation of the
whole transformation typed by the corresponding nonterminal. The first transformation
in Figure 9.2c. changes the creation of a User attached in the first Router (CU) by
the creation of a User attached to the Server (IU) using the non-valid production.
And the second transformation takes the creation of the User attached to the Server
and changes it by the creation of a User attached to the second Router. Figure 9.3
shows the application of the transformation to a derivation (identities are omitted for
simplicity).
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Figure 9.2: Transformation that moves a User through the Server.

a) Non-valid Production.
b) Complete Transformation. ¢) Inconsistent Transformations.
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Chapter 10

Conclusions and Future Work

The main goal of this thesis was to introduce graph grammars as a general formal
framework supporting graphical notations for the description of software architecture
styles. Grammars characterize classes of graphs that represent the instances of a style.
In this way, the commonalties that identify a style are described as productions of the
grammar. Graphs represent the static configuration of systems while the notion of graph
transformation is used for the description of the evolution of the architecture instances.
Also, the use of grammars allows us specifying not only the general static configuration
of the style but it makes possible to include the communication pattern and dynamic
reconfiguration at the level of style while achieving a separation of coordination and
computation.

Specifically, in Parts III and IV, we have introduced the framework following a self-
organising approach using HR grammars [Drewes, F. et al., 1997] together with syn-
chronized rewriting (SHR systems [Degano, P. and Montanari, U., 1987; Montanari, U.
et al., 1999]) and the addition of name mobility. In this way we were able to add the
description of interactions and dynamic reconfigurations of software architecture styles.
Based on the rewriting system specified by the grammars we describe the style as a
set of productions that model the initial structural topology of the architecture, the
laws governing the topological changes, and its communication pattern. The use of syn-
chronizing conditions to model coordination of components allows a clear description of
component interactions and controlled dynamics and the application of the distributed
solutions for the rule-matching problem. Also, context-free rules are a natural way for
modeling the behavior of comnponents independently of each other allowing a distributed
implementation.

To complement the above ideas, in Part VII we proposed an alternative method to
SHR systems where complex reconfigurations are specified as transformations over the
derivations of a grammar. In this way, once a transformation is obtained it is assured
that it is a consistent reconfiguration with respect to the style. The main difference of
this method with respect to the one presented in Part IV using name mobility, is that the
method in Part IV is more dynamic in the sense that it applies to running open-ended
systems without global control except for synclironization, whereas the approach with
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transformations may be uscful for working at the level of blueprints, i.e. it rearranges the
design steps of thie system to produce a different but consistent system. Thus, the latter
method can be applied to specify very general kinds of reconfigurations and mobility
(as it is shown in the thesis examples), but it requires a global knowledge of system
structure.

We represent hiypergraphs and SHR systems in textual form using syntactic judge-
ments. This allows the clear separation of rewriting and coordination and the intro-
duction of various synchronization mechanisius as suitable (1nobile) synchronization al-
gebras. Specifically, we present the inference rules in the SOS style for Hoare (CSP)
and Milner (CCS, w-calculus) synchronization algebras. However, we extend process
algebras in that we allow synclironizations of any mnnber of partners at tlic same tinie.
Synchronizing conditions for mobility are solved via unification. \We have to mention
that the initial work of SHR [Degano, P. and Montanari, U., 1987: Montanari, U. and
Rossi, F., 1999: Montanari. U. et al., 1999] only uses Hoare synchronization (without
mobility).

But also, we realized that the results we have obtained go beyond the domain of soft-
ware architecturces. Specially, the addition of name mobility to SHR systemns. their for-
malization as syntactic judgements that let us introduce various synchronization mech-
anisms as suitable (imobile) synchronization algebras (for example the inference rules
in the SOS style for Hoare and Milner synchronization algebras in chapter 6), and the
correspondence proof of SHR systems with the 7-Calculus (sce Part V), are a strong
support for graphical formal languages as a next step in the high-level description of dis-
tributed, concurrent and mobile systemns. With respect to this, we have commmnented the
related work (see Section 1.4) in other areas than software architecture that have been
derived from our research ([Kénig. B. and Montanari, U., 2001; Ferrari, G.L. et al., 2001;
De Nicola, R. et al., 2003; Lanese, L. and Montanari, U., 2002]).

As future work we are interested in various possible directions.

First, one point to note is that we only describe flat architectures. but we think that
our approach can be easily extended to cope with hierarchical graphs. In this respect,
we can mention specially the research of [Drewes, F. et al., 2000] on hierarchical HR
systenis as a possible starting point of our work. Also, in the specific area of software
architecture, it would be interesting to study the specification of architectural connectors
and their possible integration (and corresponding consequences) as primitive eutities of
the model.

For the formal side of our work, we are interested in continue the study of the
expressive power of this model, investigate its abstract semautics and develop new syn-
chronization mechanisms. From the application point of view we want to see the use-
fuluess of the approach for the formalization of more specific domains with an inherent
self-orginising strategy, as for examiple peer-to-peer systems. And obviously, it is clear
that a necessary next step includes the implementation of thiese ideas and investigate
techniques to analyze system properties over the graph derivations such as, invariaut
checking, reachability and static analysis.

With respect to the work on higher-order HR systeis it should be noted that the
translation froin graph representation to terms can be automated and that the lambda
representation not only gives a seinantics for the grapli rewriting systems, but also shows
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that the method is implementable. As already mentioned, full formalization of trans-
formations should be investigated combining the use of synchronized rewriting. The
synchronized transformations can be used to formalized the ideas introduced in Chap-
ter 9 for specifying consistent transformation with intermediate inconsistent steps. In
Chapter 9 we mentioned Tile logic [Gadducci, F. and Montanari, U., 1999] as a con-
crete alternative. The synchronized transformations which can be expressed in tile logic
would not require the consistency with the style of the intermediate configurations, and
would still make sure that when the transformation is completed, consistency is fully re-
instated. Finally, an interesting topic of research is that the use of A-calculus introduces
the idea of higher order graph rewriting allowing the possibility of parameterizing the
design process with component and connector features which could be specified later,
still guaranteeing consistency.
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