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To Carlos E. Alchourrón



Funciones Binarias

para el Cambio de Teorias
Verónica A. Becher

Resumen

El problema del cambio sobre cuerpos de información es realmente interesante.

La legislación se encuentra en constante modificación, nuevos descubrimientos

modifican a las teorias cientificas y los robots deben actualizar su representación

del mundo cada vez que un sensor adquiere nuevos datos. La teoria del cambio

de teorias ofrece un modelo para estos procesos bajo ciertas idealizaciones.

Se asume un lenguaje formal y una noción de consecuencia lógica. La nueva

información es expresada como enunciados en el lenguaje lógico. Conjuntos

de enunciados clausurados por la operación de consecuencia lógica, es decir,

teorias, son modificadas por medio de funciones. Estas toman un conjunto

y un enunciado y retornan el conjunto actualizado. Las funciones de cambio

responden a un principio fundamental: consistencia lógica. El resultado de un

cambio debe ser siempre un conjunto de enunciados mutuamente consistentes.

En 1985 Alchourrón, Gárdenfors y Makinson (en adelante AGM) fueron

.autores de lo que seria la referencia clásica sobre el tema [Alchourrón et aL,

1985]. Concibieron funciones que, bajo la máxima de consistencia, retornan

teorias que preservan lo más posible de las teorias originales y contemplan la
nueva información. Las teorias no deben ser modificadas más allá de lo necesario.

La relación de inclusión entre conjuntos no es suficiente como criterio de minima

pérdida informacional porque, en general, hay inifinitas teorias mutuamente

incomparables con respecto a la relación de inclusión. Por lo tanto puede resultar

imposible seleccionar una única como la más preservativa. En consecuencia las

funciones AGM deben realizar una selección no deterministica o codificar algún
otro criterio de selección.

Al menos en dos respectos la teoria AGM está indefinida. En primer lugar

las teorias de cambio de teorias deben enfrentarse con el problema de la iteracio'n



del cambio. Las funciones AGM modelan cambios singulares, toman una teoria

y retoman una teoria actualizada, realizan un solo paso. Pero tarde o temprano,

habrá otro cambio que inducirá una nueva teoria. Es decir, se deberá. actualizar

la teoria ya actualizada. Aunque el formalismo AGM no prohibe la iteración de

sus funciones omite toda especificación de cómo debe realizarse o cuáles son las

propiedades del cambio sucesivo.

El otro frente indefinido en el formalismo AGM es el problema del cambio

en múltiples teorías. Si dos teorias no son independientes, es de esperar que

las operaciones de cambio respectivas tampoco lo sean. Por ejemplo, si un

teoria está incluida en la otra podria esperarse que el cambio de la primera

esté incluido en el cambio de la segunda. Algunas propiedades de coherencia

deberian vincular la operación de cambio sobre distintas teorias. Este es el tema
central de esta tesis.

Aunque las funciones AGM proveen una noción coherente de cambio para

teorias tomadas separadamente, estas funciones no necesariamente son conjun­

tamente coherentes. Esta es una limitación seria del formalismo AGM y el

presente trabajo está. dedicado a superar esta limitación. Este problema no ha

sido considerado en la teoria AGM y tampoco ha sido objeto de investigación

en el área. Tras argumentar que las funciones AGM son en realidad funciones

unarias (de aridad uno) relativas a la teoria a ser modificada, en este trabajo

se proponen auténticas funciones binarias para el cambio de teorias. El término

binario se refiere a funciones de dos argumentos, es decir de aridad dos.

Las funciones binarias resuelven el problema del cambio en múltiples teorias,

y siendo definicionalmente simples, también resuelven en cierta medida el prob­

lema de la iteración del cambio. Dado que las funciones binarias están definidas

para toda teoria, el resultado de aplicar una función es a su vez otra teoria que

puede ser puesta como argumento de la misma función. En consecuencia, las

funciones binarias inducen un esquema de cambio iterado que es deterministico

respecto de los argumentos de la función. Este comportamiento, que ha sido

interpretado como carente de memoria histórica, no siempre resulta deseable.

Es una preocupación actual entre los investigadores del área la búsqueda de

un modelo general de iteración, un único conjunto de postulados que gobiernen

el cambio reiterado, en el mismo espiritu que los de AGM gobiernan cambios

singulares. Luego de catorce años de la formulación de la teoria AGM se han

planteado varias formalizaciones alternativas que difieren en sus virtudes y de­

fectos, pero se desconoce si tales postulados únicos han de existir; tal vez no



haya una única regularidad que deba ser expuesta.

Dentro de la teoria AGM existen dos funciones binarias que gozan de múltiples

propiedades, pero se corresponden con casos limites de funciones de cambio

aceptables; estas son la función de expansión y las funciones AGM full meet

[Alchourrón and Makinson, 1982]. Riera de la tradición AGM, Katsuno y

Mendelzon han formalizado su operación de update [Katsuno and Mendelzon,

1992] como una función binaria para el cambio de teorias. Las operaciones de

update y revisión AGM denotan dos tipos de cambio que han sido considerados

fundamentalmente diferentes. La función de revisión se ha considerado propicia

para modelizar el proceso de refinamiento o corrección de una representación

de objetos que permanecen estáticos. En contraste, la operación de update

modeliza la noción de cambio sobre la representación de objetos que están en

evolución. En esta tesis se estudian en detalle las vinculaciones formales de

ambas operaciones.

Apartándose de la tradición AGM la operación de update está definida como

un conectivo binario sobre un lenguaje basado en un conjunto finito de variables

proposicionales. Se demuestra que nada crucial depende de ésto, ya que es posi­

ble reformular la operación de update como una funcion binaria que toma una

teoria y un enunciado y retorna una teoria. Sin embargo se exhibe un resultado

inesperado: los postulados de Katsuno y Mendezon son incompletos para carac­

terizar la función de update para lenguajes proposicionales infinitos. Se provee

un conjunto apropiado de postulados, reforzando los originales, y se demuestra

el correspondiente teorema de representación para lenguajes posiblemente infini­

tos. De esta manera se extiende el trabajo original de Katsuno y Mendelzon que

estaba definido solo para el caso finito. Los resultados encontrados completan

y clarifican los de [Peppas and Williams, 1995], quienes ya habian notado que

los postulados originales de update eran incompletos para lenguajes de primer

orden. Adicionalmente se consigue que las operaciones de revisión AGM y la de

update queden en una misma base definicional, permitiendo su comparación y

mejor comprensión, cuando la naturaleza de la diferencia es aún una pregunta

abierta en la literatura de lógica filosófica.

En este trabajo se proponen dos familias de funciones binarias que extienden

el formalismo AGM: las funciones AGM itembles y las AGM analíticas. Ambas

se definen sobre lenguajes posiblemente infinitos, mediante postulados que ex­

tienden a los de AGM y para ambas se demuestran teoremas de representación
sobre distintas estructuras formales.



Las funciones AGM iterables tienen la peculiaridad de ser funciones casi

constantes sobre el primer argumento cuando el segundo está fijo. A pesar de

su simpleza proveen una fuerte noción de coherencia con respecto al cambio

en distintas teorias. De acuerdo con las funciones AGM iterables el cambio

en una teoria depende del cambio de la teoria más grande de todas, que es el

conjunto de todos los enunciados del lenguaje. Se demuestra que las funciones

AGM iterables satisfacen muchas propiedades, tanto para el cambio de múltiples

teorás como para el cambio reiterado.

Las funciones AGM analiticas son funciona binarias de mayor complejidad

definicional que las iterables. Son casi monótonas sobre su primer argumento

cuando el otro está fijo, sin ser funciones constantes ni casi constantes. La

operación de cambio analítica puede calcularse por medio de un análisis por

casos, con la propiedad de que si una teoria es extensión de otra, los casos

considerados para la primera son también casos para la segunda. Una subclase

de funciones analiticas es la de las maxi-analíticas, cuya caracteristica es que

mapean teorias completas en teorias completas. Las funciones analiticas son

candidatas interesantes para el cambio en distintas teorias y también satisfacen

relevantes propiedades del cambio iterado.

Pero las funciones analíticas poseen además otro interés. Proveen una conexión

formal entre la operación de update de Katsuno y Mendelzon y la revisón de

AGM. La revisión AGM analitica se basa en el aparato semántico de update,

y de este modo establece un puente entre dos formalizaciones aparentemente

incomparables.

Por último la tesis provee un resultado de unificación de dos cálculos lógicos

para la teoria AGM: las lógicas CO [Boutilier, 1992] y DFT [Alchourrón, 1995].

A partir de la noción de consecuencia lógica ambas lógicas pueden usarse para

calcular cambios en diferentes teorias. Y aunque las dos son lógicas condi­

cionales, difieren. La semántica de CO es relacional mientras que la de DFT no

lo es. También difieren en la definición del conectivo condicional. Se demuestra

que, bajo condiciones restrictivas apropiadas, las dos lógicas son equivalentes.

En su rol de lógicas para el cambio de teoriass las ocurrencias anidadas del

condicional sugieren una función de cambio que admite iteración. Pero resulta

claro rapidamente que dicha función es trivial.

La tesis plantea direcciones de trabajo futuro, principalmente sugiriendo la

definición de nuevas funciones binarias para. el cambio de teorias y la posibilidad

de proveer un calculo lógico para las funciones AGM iterables y analíticas.
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Chapter 1

Introduction

The problem of change in corpora of information is indeed interesting. Legisla­

tion is under constant modification, new discoveries reshape scientific theories

and robots have to update their representation of the world each time a sensor

gains new data. The theory of theory change offers a model for these processes

under certain idealizations.

A formal language and a notion of logical consequence relation are assumed.

New information is expressed as sentences in the logica] language. Sets of sen­

tences closed under logica] consequence, i.e. theories, are changed by functions.

These take a theory and a.sentence and return an updated theory. There is a

leading principle for change functions: consistency. The result of a change by a

consistent sentence should always bc a consistent theory.

In 1985 Alchourrón, Gardenfors and Makinson (henceforth “AGM”) pub­

lished the article that became the classical reference in the literature on theory

change [Alchourrón et aL, 1985]. They conceived change functions that, under

the maxim of consistency, preserve as much as possible of the original the­

ory while accounting for the new information; theories should not be changed

beyond necessity. Subset inclusion among theories alone is not enough as a

criterion of minimal information loss because, in general, infiniter many theo­

ries are incomparable with each other with respect to set inclusion. Hence, it

may be impossible to select a single one as the most preservative. As a. result

AGM functions must commit to a nondeterministic choice or else encode some
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other criteria for selection. The work of Alchourrón, Gárdenfors and Makinson

created a whole new area of research, also referred to as belief revision (see for

example, [Ga'rdenfors, 1988],[Gárdenfors, 1992]).

At least in two respects the AGM theory is underdefined. One is the problem

of iterated change. AGM functions model single changes, they take one given

theory to an updated theory, they perform one single step. But there will be yet

another change after the one just considered that will induce yet another theory.

That is, we will have to update the already updated theory. Although the

AGM formalism does not forbid the iteration of change functions, it omits any

specification of how it should be performed or what the properties of successive

change are.

The other is the problem of change in multiple theories. If two theories are

not independent of one another we may expect the respective change operations

not to be independent either. For example, if one theory is included in another,

we may expect that the change of the first be included in the change of the

other. Some coherence properties should linking the change operation over

different theories. This is the central topic of this thesis. This problem has

hardly been addressed by the AGM theory and it has not been the object of

much investigation in the theory change community either.

In this thesis we will propose change functions that are defined for every

theory and every formula. As we will stay within the AGM framework, we will

refer to them as binary AGM functions. We use the term binary to mean that

they are functions of arity two; they take a theory and a formula and return

a theory. In particular we will provide two specific formulations, two signifi­

cant subclasses of binary AGM functions. We will establish a relation between

the problem of iterated change and the problem of change in multiple theories

and we will propose binary AGM functions as a definitionally simple scheme

of iterated change. Clearly, binary functions can account for successive change

because a theory returned by one application of a binary function is yet a pos­

sible argument of the same function. If our simple solution for iterated change

possesses enough virtues (for a class of problems at hand) then the maxim of

parsimony in science will have been achieved. Otherwise, if it oversimplifies the

problem, it will be justified to commit to a more complex solution.
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1.1 The Theory of Theory Change in Computer

Science

Computer programs are finite sequencesof symbols that are expected to perform

some task. Thus, programs can be taken to be a symbolic representation of their

output. We may face two different reasons for changing a program. One is when

the program’s output differs from what weexpected it to do. We usually say that

the program is incorrect with respect to its Specifications, or that it “has bugs”.

Correcting the program, also referred as “debugging”, leads to new versions

of the program until one (hopefully) reaches a final version that performs the

desired task.

A different reason to modify a program is when we are given a new speci­

fication of what our program should do. Even though our program was sound

with respect to some original specification, it should now be changed to match

an updated specification. It is not that our program was incorrect, but there is

something different that should be accounted for.

The two examples above illustrate two different forms of changing represen­

tations. The theory of theory change offers a model of the dynamics of represen­

tations. AGM change functions, specially AGM revisions, have been considered

suitable for correcting representations, but not for modeling changes produced

by evolving Specifications. A suitable operation for these kinds of changes has

been proposed by Katsuno and Mendelzon [1992],and the two operations have

been taken as representative of fundamentally different forms of theory change.

The theory of theory change was rapidly included in Artificial Intelligence

(AI). According to the the declarative or logical school, as portrayed by [Hayes,

1985] or [Moore, 1982], when solving problems in AI we start from a represen­

tation of a problem. But such a representation may only be applicable if we

can understand and model how to update it in light of new information. The

state of a program is expected to be in constant change, reflecting the diverse

inputs from the world. Theories of theory change are relevant to AI addressing
this issue.

But why a representation must be a. set of sentences in some logic? As

explained by Boutilier [1992a], of course any formal system will do when it



4 CHAPTER 1. INTROD UCTION

comes to characterizing in a principled manner the reasoning performed by a

program, and logic should be accorded no special status in this regard. If a set

of differential equations will accurater model the behaviour of a program, why

bother with logica] accounts? While prediction of behaviour might be accurate

within any formal system, it is the model-theoretic semantics of logics that give

logical representations their advantage in understanding behaviour. Clearly

formal semantics provides no real meaning to sentences (see [Putnam, 1970]), it

is merely the mapping of one mathematical structure (the logica] language) into

another (an interpretation of the language). These so-called models may be any

structure whatsoever. What different but equivalent representations are useful

for is to grasp a problem from different pcrspectives. Logics are equipped with

formal semantics that justify the notion of consequence in the logic. However,

we require no actual commitment by a system to give an explicit representation

in terms of logical sentences and to reason with a general purpose theorem

prover, only that such a system be able to be understood in such terms.

1.2 Thesis Overview

Throughout we will assume some familiarity with classical propositional logic

and with the AGM theory. In Chapter 2 we will introduce notational conven­

tions and review the background concepts that will be needed. We will briefly

present the definitions and results of theory change that we will be concerned

with.

In Chapter 3 we will formally present the two main problems discussed in

this thesis. On the one hand, the problem of change in multiple theories, which

was originally considered by Alchourrón and Makinson in their article on Safe

Contractions [Alchourrón and Makinson, 1985]. Since then, this problem has

not been the object of much attention in the literature and the existing exam­

ples of functions that provide coherent change in multiple sets were motivated

by unrelated concerns. The problem arises because AGM defined functions that

are relative to a specific given theory and may be inapplicable to another. On

the other hand, the problem of iterated change. Also in the same article on

Safe Contractions appears the very first reference to successive application of
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change operators. In contrast to the problem of change in multiple theories, this

has become a very relevant theme and there is already an important amount

of literature about it. Instead of surveying the different approaches to iterated

change we will isolate a set of significant properties arising from different pro­

posals. Our contribution in this chapter will be to show that although the AGM

model has been criticized for not addressing the problem of iterated change, it

is in fact compatible with iteration. In particular we will show how the subclass

of AGM functions that solves the problem of change in multiple sets, provides a

simple scheme of iterated change. We will dub the functions in this class binary

AGM functions.

A main concern among researchers studying iterated change is whether there

is a unique general model, a single set of properties in the same spirit AGM

postulated functions for single changes. Fourteen years after the inception of the

AGM theory we find several alternative formalizations differing in their virtues

and defects, but remains unknown whether there could exist such a uniform

set of properties of iterated change; perhaps there is no unique regularity to be

exposed.

We will devote Chapter 5 to present a result about a distinctive binary

function authored by Katsuno and Mendelzon [1992], the update operation.

In contrast to the AGM tradition, Katsuno and Mendelzon have formalized

their operation as a connective in a finite language -—namely, a propositional

language over a finite set of propositional variables—. In this chapter we will

reformulate the update operation as a binary function, taking a theory and a for­

mula to an updated theory. Then we will exhibit an unexpected result: Katsuno

and Mendelzon’s postulates are incomplete to characterize the update function

for infinite propositional languages. We will then provide the appropriate set

of postulates, strengthening the original ones, and prove the corresponding rep­

resentation theorem for possiny infinite propositional languages. This result

extends and clarifies previous results in the area.

We will define two families of binary AGM functions. Chapter 4 considers

AGM functions that are almost constant (on their first argument, the second

argument held fixed); we will name them iterable AGM functions. We will show

that despite their definitional simplicity they satisfy a number of significant
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properties of iterated change.

Then, in Chapter 6 we will present binary functions that are almost

monotonous (on their first argument, the second argument held fixed); we will

name them analytic AGM functions. They too satisfy many of properties of

iterated change but they are definitionally more complex than iterable AGM

functions. For both, iterable and analytic functions, we will give formulations

for possiny infinite languages, provide alternative representations and prove

representation theorems.

Analytic AGM functions have two main interests. As AGM functions for

changing multiple theories they possess a significant property. The analytic

change operation is decomposable in the sense that it can can be calculated by

means of simpler operations. The other main interest of analytic AGM functions

is that they provide a formal link between the AGM revision operation and

Katsuno and Mendelzon’s update, when the two have been traditionally taken

as incomparable frameworks.

We will devote Chapter 7 to provide a unification result about two logi­

cal calculus for the AGM theory: DFT [Alchourrón, 1995] and CO [Boutilier,

1992a]. By appealing to the notion of consequence they both allow to calculate

changes in different theories. Although the two are modal conditional logics,

they differ. Boutilier’s semantics is relational while Alchourrón’s is not. They

also differ in the definition of their conditional connective. We will prove that,

under restricting conditions, the two logics are indeed equivalent. In both log­

ics the nested occurrences of the conditional connective suggest a function of

iterated change. Unfortunately, DFT and CO are of no help to the problem of

iterated change since such a function is truly trivial.

Finally, in Chapter 8 we will summarize the contributions of this thesis and

examine avenues for further research.



Chapter 2

The AGM Theory of

Theory Change

Throughout this thesis we will assume knowledge of the AGM theory. In this

chapter we will briefly present the definitions and results that will be needed

in subsequent Chapters, making emphasis on the alternative presentations of

the AGM theory. We shall start introducing notational conventions and basic

definitions.

2.1 Preliminaries

If X and Y are sets, a relation R between X and Y is a set of ordered pairs,

R = {(1,y)|1: e X and y e Y}, a subset of the Cartesian product of X x Y. If

(1:,y) G R we shall write zRy.

A function from X to Y is a relation f such that the domain of f is X and

for each a: e X there is a unique element y in Y with (1:,y) e f. For each a: e X

the unique y e Y is denoted by f(a:). Horn now on we shall write f(a:) = y

instead of (1:,y) e f. The element y is called the value that the function assumcs

at the argument 3:. The words map or mapping and operator are sometimes

used as synonymous for function. The range of f consists of those elements y

of Y for which there exists an a: in X such that f(:¡:) = y. If the range of f

is equal to Y, then f is surjective. If f maps difl'erent elements of the domain

7
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to different elements in the range, then f is injective. If f is surjective and

injective, then it is bijective, establishing a one to one correspondence between

X and Y. The symbol f : X —>Y is used as an abbreviation for “f is a function

from X to Y.” Given a function f : X x Y -> Z, we will refer to the function

f:o : Y —>Z defined f,°(y) = f (10,31)as the projection of f for a fixed value 1:0

of the first argument. Similarly for the second argument, fyo : X —>Z defined

fy°(a:) = f(1:,yo), as the projection of f for a fixed yo e Y.

A function is unary when it is a function on a.single argument. A function is

called binary (n-ary), or of two (n) arguments, if it is defined on a set of ordered

pairs (n-tuples); for example, the sum on the natural numbers is binary.

We will refer to the followingproperties of binary relations. Let X be a set,

and R be a binary relation over elements of X.

R is irreflezive in X if and only if for all z e X, not sz.

R is reflexive in X if and only if for all a: e X,:cR.1:.

R is symmetric in X if and only if for all 33,3;e X if zRy, then yRI.

R is antisymmetric in X if and only if for all 1:,y e X, zRy and yRa: only if

a: = y.

R is transitive in X if and only if for all :t,y, z e X, if :cRyand sz then :Rz.

R is connected in X if and only if for all 2:,y e X if 1:76y, then :cRy or sz.

R is totally connected in X if and only if for all 2:,y G X : zRy or sz.

Notice that total connectedness implies refiexivity.

A relation R over X is virtually connected over Y Q X if and only if for every

3:,y, z E Y if IRy then either :ch or zRy. Equivalently, R Q X x X is virtually

connected over Y g X iff its complement R = X x X —R is transitive over Y.

R is a preorder on X if and only if R is reflexivo and transitive.

R is a partial order on X if and only if R is reflexive, transitive and antisym­

metric.

R is a total order on X if an only if R is antisymmetric, transitive and totally

connected.
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A relation R is well founded on X if every non empty subset of X has a non

empty subset of R-minimal elements; equivalently, if R is free of infinite de­

scending chains.

A relation R on X is acyclic if for any set of elements 3:1,. . . ,xn e X, it is not

the case that 23112.1:2R...a:nRa:1.Let’s notice that for n = 1, acyclicity implies

irreflexivity. For n = 2 acyclicity implies asymmetricity.

To denote arbitrary relations that are orders we will use the symbols 4, -<

<and<_1 sometimes with subscripts. We will write W for the set of natural

numbers, O for the set of ordinals and El for the reals.

We assume familiarity with basic notions of propositional logic. We consider

a classical propositional language L and denote with P the set of all its propo­

sitional letters. If P is finite we will call L a finite propositional language. The

symbols A,V, -I, D, E will denote the usual truth functional connectives. Indis­

tinguishably, we will use the terms formula and sentence to refer to an element

of L. As we only deal with propositional languages the two terms are indeed

equivalent. Capital letters A,B,C will be used to denote arbitrary formulae

of L. We consider Cn a Tarskian consequence operation, a function that takes

each subset of L to another subset of L such that:

(inclusion) X g Cn(X).

(monotony) If X g Y then Cn(X) Q Cn(Y).

(idempotency) Cn(X) g Cn(Cn(X)).

In addition, f0110wing'[Alchourrón et aL, 1985] we assume Cn on L satisfies:

(supra classicality) If A can be derived from X by classical truth functional

logic, then A e Cn(X).

(compactness) If A e Cn(X), then A e Cn(Y) for some finite subset Y g X.

(introduction) If C e Cn(X U{A}) and C e Cn(X U{B}) then C E Cn(X U

{AV (introductionof disjunctioninto the premisses).

Under these assumptions the consequence operation Cn also satisfies the deduc­

tion theorem, that B e Cn(X U {A}) if and only if (A Z)B) G Cn(X),
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A theory is a subset of L closed under Cn. Capital letters K, K’, H are used

for theories of L, and we denote by K the set of all theories of L. While L is

the largest theory, Cn((D)is the smallest. A subset X of L is consistent (modulo

Cn) iff for no formula A do we have (A /\ nA) e Cn(X). A theory is complete

if it sanctions a truth value for each propositional letter.

We take W as the set of all maxima] consistent subsets of L, that is, the set of

all complete consistent extensions of L. The valuation function [ ] : L —>'P(W)

is defined as usual, for any propositional letter p, w e iff p e w. Given

A e L we denote by [A] the proposition for A, or the set of A-worlds, the

set of elements of W satisfying A. For the purposes of this work we consider

the terms maxima] consistent subset of L, valuation on L and possible world,

interchangeable. This, of course, amounts to working with models that are

injective with respect to the interpretation function (no two distinct worlds

satisfy exactly the same formulae) and full (every consistent set of formulae is

satisfied by some world). If K is a theory, [K] denotes the set of possible worlds

including K. Given U a set of possible worlds, Th(U) returns the associated

theory.

We will say that a subset X of W is L-nameable whenever there exists a

formula A in L such that X = When working with relations on W, we

will often refer to a property that Lewis [1973] called the limit assumption.

A preorder relation R on W satisfies the limit assumption if and only if for

any satisfiable formula A in L there exists a set of R-minimal A-words. This

requirement is in general weaker than the well foundedness condition. The limit

assumption just requires that L-nameable non empty subsets of W have set of

minimal elements, as opposed to requiring so for every subset of W.

2.2 AGM Functions

A comprehensive introduction to the AGM theory can be obtained in

[Gárdenfors, 1988; Gardenfors, 1992; Hansson, 1998].

Three are the operations advocated by the AGM model [Alchourrón et aL,

1985]: expansions, revisions and contractions. The first two deal with “accom­

modating” a new formula into the current theory, while the third is a “removing”
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operation. Expansion is the simplest form of theory change. It is a simple addi­

tion function, where a new formula A, hopefully consistent with a given theory

K, is set theoretically added to K and this expanded set is closed under logical

consequence. The function + : 1Kx L -> IK is defined as K+A = Cn(KU{A}).

The expansion function can also be characterized by the following postulates

[Gardenfors, 1982].

(K+1) K + A is a theory. (closure)

(K+2) A E K + A. (success)

(K+3) K e K + A. (inclusion)

(K+4) If A G K then K + A = K. (vacuity)

(K+5) If K g H, K + A g H + A. (monotony)

(K+6) K + A is the g-smallest theory that satisfies closure, success, and in­

clusion. (minimality)

The AGM contraction and revision operations have a more subtle definition.

The contraction function —takes a theory K and a formula A and returns the

contracted theory, notated as K —A. Contractions are changes in a theory

that involve giving up some formulae without incorporating new ones. When

retracting a formula A from K, there may be other formulae in K that entail

A (or other formulae that jointly entail A without separater doing so). In

order to keep K —A closed under logica] consequence, it is necessary to give

up A and other formulae as well. The problem is to determine which formulae

should be given up and which should be retained. In contrast to expansion,

the explicit construction of AGM contraction functions is not so direct. AGM

developed postulates that fully characterize the contraction functions. The first

six postulates, (K-1)—(K-6),are called the basic postulates for contraction and

they characterize partial meet contraction functions. Postulates (K-7) and (K-8)

are called supplementary, and they impose additional conditions, which give rise

to transitively relational contraction functions. These functions will be our focus

of attention. The names of partial meet functions originated in the method for

constructing the functions, that we shall review in the next section.
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(K-l) K —A is a theory. (closure)

(K-2) K —A g K. (inclusion)

(K-3) If A í K, then K - A = K. (vacuity)

(K-4) If not Cn(A) = Cn(Ü) then A e K —A. (success)

(K-5) If A G K, then K g (K —A) + A. (recovery)

(K-6) If Cn(A) = Cn(B) then K —A = K —B. (preservation)

(K-7) (K —A) n (K —B) g K —(A A B). (conjunctive overlap)

(K-S) If A e K —(AAB), then K —(AAB) g K —A. (conjunctive inclusion)

The conjunction of postulates (K*7) and (K*8) is equivalent to the Ventilation

property reported in [Alchourrón et aL, 1985],which provides a factoring on the

contraction by a conjunction from a theory.

(Ventilation) ForallAand B, K-(AAB) = K-A, or K-(AAB) = K-B

orK-(AAB)=K—AOK—B.

The AGM revision function * takes a theory K and a formula A to a revised

theory K * A. The problem here is that the formula. A should be added under

the requirement that the resulting theory be consistent (whenever A is); hence,

A can not just be set theoretically added to K. Revisions are constrained by

the following eight postulates [Alchourrón et aL, 1985].

(K*l) K * A is a theory. (closure)

(K*2) A E K * A. (success)

(K*3) K * A Q K + A. (inclusion)

(K*4) If “A gl K then K + A _C_K arA. (vacuity)

(K*5) K * A = Cn(.L) only if Cn(-1A) = Cn(Ü). (consistency)

(K*6) If Cn(A) = Cn(B) then K * A = K * B. (preservation)

(K*7) K a:(A A B) g (K * A) + B. (superexpansion)

(K*S) If -'B e!K * A then (K * A) + B g K * (A A B). (subexpansion)

As for contractions, the first six are called the basic postulates for revision,
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and they characterize partial meet revision functions. Postulates (K*7) and

(K*8) are supplementary and they give rise to transitiver relational partial

meet revision functions.

A nice feature about revisions and contractions is that they are inter defin­

able. By the Levi identity revisions can be defined in terms of contractions and

expansions. This identity defines revisions as first pruning away all potential

inconsistencies, and then adding the new formula.

(Levi-id) K * A = (K - -|A) + A.

The counterpart of the Levi identity is the Harper identity, which provides

a definition of contractions in terms of revisions. The formulae in K —A is

captured as what K and K a:-|A have in common.

(Harper-id) K - A = K ñ (K *-|A).

It is not hard to verify that the two identities commute. Given the interde­

finability of revisions and contractions throughout this thesis we will present

change functions in either the contraction or revision version, indistinctly.

A crucial remark about the AGM postulates for contraction and revision is

that they indicate nothing about the behaviour of the functions when applied

to different theories K e K. Although change functions are supposedly defined

as binary functions taking two arguments, a theory K and a formula A, they

are in fact a family of independent unary functions:

{*K : L —»IK : K e 1K and *K satisfies K*1-K*8}.

The AGM postulates never refer to revision of different theories, hence the

functions *K can be totally independent. There are no properties shaping the

joint behaviour of the different unary functions. To discover what are these

properties and h0w they interact is a fundamental issue, and we will return to

it in subsequent Chapters. For the moment it should be clear that postulates

(K*1)-(K*8) aim to characterize only the single unary functions *K at a time,

or equivalently, consider * for a fixed, theory K (similarly so for contractions).

That is, the postulates constrain the behaviour of the change function with

respect to all kinds of propositional input but do not deal with varying theories

(see [Rott, 1999] and [Areces and Becher, 1999]).
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The situation is quite different for expansions. The function + is indeed a

binary function + : K x L —»1K, which pr0vides one and the same definition

for every theory K G 1K. A strong coherence property links the expansion of

different theories because set theoretical addition is monotone.

However, in general * and —are not monotone. If one theory is included

in another, the revision of the first is not necessarin included in the revision of

the second:

(Monotony *): If H Q K then H * A g K * A.

Observation 2.1 (follows from [Alchourrón et aL, 1985]) If * is a revi­

sion operation satisfying postulates (K*l),(K*4) and (K*5), in a language ad­

mitting at least two mutually independent formulae A, B (neither A e Cn(B)

nor B e Cn(A)), then monotony fails for *.

PROOF. Let K = Cn(A, B), H1 = Cn(A), H2 = Cn(B). Assume monotony.

As H1-Q K for i e {1,2}, by monotony,H1* -I(A A B) g K a:-(A/\ B)

and H2*—n(A/\B)g K*ñ(A/\B).

By independence, H1 = Cn(A) is consistent with ñ(A/\ B), so H1 * —n(AA

B) = Cn(H1U{-'(A/\ = Cn(A/\ -|B).

Likewise, H2 * -'(A /\ B) = Cn(Hg U {ñ(A /\ B)}) = Cn(B A -1A). Hence,

both (A /\ -|B) and (B A -1A) are included in K * -|(A /\ B).

Therefore, K * -1(AA B) is inconsistent. By postulate (K*5), “(AA B) is

then inconsistent, contradicting the independence of A and B. QED

2.3 Constructions of AGM functions

In the words of Alchourrón and Makinson [1982], the postulates characterize

the change operations by formulating conditions of a more or less inclusional

or equational nature. They allow for clear intuitions about the processes un­

der study and the web of interrelations between them. But another approach

to defining the functions is to seek for explicit constructions. These provide

some kind of foundation for justifying the intuitions. Originally the work on

contraction functions and their associated revision functions in terms of explicit
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constructions was given by Alchourrón and Makinson in [1982]. The represen­

tation theorem linking the explicit functions with the postulates was given in

the celebrated joint paper by the three authors, Alchourrón, Gárdenfors and

Makinson [1985].

2.3.1 Partial Meet Functions

Let K be a theory and A a language formula. The process of eliminating A from

the theory is not uniquely defined unless additional Specifications are given. In

general there are many subsets of a set that do not imply a given formula, and

indeed many maximal such subsets.

Alchourrón and Makinson [1982]base the construction of a contraction func­

tion for theory K and sentence A on the set of maxima] subsets of K that fail

to imply A. They define K LA as the set of all these maxima] subsets.

Definition 2.2

K J- A = {K' Q KIA E Cn(K’) and K’ is C -ma.ximal with this property}.

By the compactness of Cn it follows that K L A is not empty unless Cn(A) =

Cn(0); in addition, the elements of K L A are theories.

Alchourrón and Makinson give two natural ways to to define contraction

functions : by intersection and by choice. The full meet contraction is defined

by putting K —A = r](K L A), when K L A is non-empty, and to be K itself

otherwise.

Definition 2.3 (Full meet contraction)

K_A={ [MK-LA), ifKLA9éQ),K, otherwise .

In contrast, they define mazichoice contraction function by putting K - A equal

to a single element in K L A, whenever K L A is non empty, and K —A = K,

otherwise. To come up with the single element of K L A they require a choice

function that makes the selection (actually, in [Alchourrón and Makinson, 1982]

this function is referred as a choice contraction that they rename as maxichoice

in the AGM joint paper [Alchourrón et aL, 1985]). As they observed, maxi­

choice functions have some rather disconcerting properties. In particular the
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maxichoice revision has the property that for every theory K, whether com­

plete or not, the maxichoice revision of K by A will be complete whenever A

is a proposition inconsistent with K. So in general the result of a maxichoice

revision is a set that is too large. In contrast, the result of a full meet function

is in general too small. In particular when K is a theory with -'A e K the full

meet revision of K by A yields Cn(A), just the consequences of A.

Observatíon 2.4 If * is a full meet revision then for every A E L,

Cn(A), if ñA e K.

Cn(K U {A}), otherwise.
K*A=

AGM explain that the full meet operation is very useful as a point of reference,

as it serves as a natural lower bound of any reasonable change function. As

a result in [Alchourrón et aL, 1985] they propose partial meet functions, which

yield the intersection of some nonempty family of maxima] subsets of the theory

that fail to imply the formula being eliminated.

A partial meet function is based on a selection function sK which returns a

nonempty subset of a given nonempty set K .L A. Let K be a theory, we note

as s" : L —>'P('P(K)) \ {0}, a selection function for K J. A, for A E L. We

furthermore require that s“ (A) = {K} whenever K J. A = (D.The AGM partial

meet contraction function —is then defined, for a theory K, as follows.

Definition 2.5 (Partial meet contraction)

K —A = n s”(A), where s“ is a selection function for K.

Under this definition the contraction function —is formally characterized by

the basic AGM postulates (K-l) to (K-6) ([Alchourrón et aL, 1985], Observa­

tion 2.5.) For —to be characterized by the extended set of postulates, (K-l)

to (K-8), it sufi'lces that s" be transitiver relational, i.e. for each A e L the

selection function returns the smallest elements according to some transitive

relation defined over K .L A ([Alchourrón et aL, 1985], Corollary 4.5.) Explicit

constructions of (transitiver relational) partial meet revisions are definable via

the Levi identity, so the representation results apply for revisions as well.

The AGM theory enjoys three other presentations over quite different formal

structures. We will briefly present them here to be revisited in the Chapters to
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follow. We will first concentrate on Alchourrón and Makinson’s [1985] contrac­

tion function, where they start from a hierarchical ordering over the formulae in

the theory under change. The connection between safe contractions and tran­

sitively partial meet contractions was studied by [Alchourrón and Makinson,

1986] in the finite case, and extended by [Rott, 1992a] for the general case. In

addition, safe contraction functions were later generalized by [Hansson, 1994]

under the name of incision functions.

Then we will focus on epistemic entrenchment orderings, originally defined

by Gárdenfors [1984]. The representation theorem linking the change func­

tions based on epistemic entrenchment relations and partial meet functions was

proved in [Makinson and Gárdenfors, 1988].

Next we will concentrate on the systems of spheres proposed by [Grove,

1988]. They provide a kind of possible worlds semantics for AGM func­

tions. This representation result allowed later for the connection established by

[Boutilier, 1992a] between AGM functions and modal conditional logics. Grove’s

formalization has been of great insight for us too, most of our definitions were

firstly considered in systems of spheres.

2.3.2 Safe Contraction Functions

Alchourrón and Makinson [1985]construct a contraction function based on a

hierarchical ordering in the language. They based the idea on their previous

work on hierarchies of regulations and their logic [Alchourrón and Makinson,

1981i

Let K be a theory, <,, a non-circular relation over K and A a formula in L

we wish to eliminate from K. An element is safe with respect to A (modulo <,,

and given some background Cn) iff it is not a minimal element under <,, of any

minimal subset (under set inclusion) H g K such that A E Cn(H). They define

the safe contraction of K by A as the set of safe elements of K with respect to

A. Let’s study some details. .

A binary relation <,, over a set K is a hierarchy if it is acyclic: for any set of

elements A1,...,An e K,n 2 l, it is not the case that A1 <,,/12 <,, . ..An <,,

A1.

A relation <,, over K continues up Cn if for every A1, A2, A3 e K, if A1 <,,
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A2 and A3 E Cn(A2) then A1 <., A3.

A relation <., over K continues down Cn if for every A1,A2,A3 G K, if

A2 e Cn(A1) and A2 <,,A3 then A1 <,,A3.

A relation <., over K is virtually connected if for every A1,A2,A3 e K if

A1 <_, A2 then either A1 <., A3 or A3 <,, A2.

Let <,, be a virtually connected hierarchy over a theory K that continues

up and down Cn, and let A be a sentence in L. The safe contraction function

—,, is defined as:

Definition 2.6 (Safe contraction)

K —,,A = Cn({B| VK' Q K, s.t. A G Cn(K’) and K’ is g -minima.l with

this property,B í K’ or there is C E K’ s.t. C <.,

The elements of K -,, A are called the safe elements of K with respect to A

since they can not be “blamed” for implying A. An element is safe for A if it

does not belong to any of the g-minimal subsets of K that imply A, or else it

is not <,¡-minima.l in the hierarchy in such subsets.

Alchourrón and Makinson [1985] show that every safe contraction over a

theory K is a partial meet contraction function over K. They also prove the

converse result for finite theories (in the sense that the consequence operation

Cn partitions the elements of K into a. finite number of equivalence classes).

The general case (finite and infinite theories) was proved by [Rott, 1992a]. The

followingrepresentation theorem links safe contractions contractions and partial

meet functions.

Observation 2.7 ([Alchourrón and Makinson, 1986; Rott, 1992a])

Every contraction function — over K satisfying the (K-1)-(K-8) can be

represented as a safe contraction function —,,generated by a hierarchy <,, that

is virtually connected and continues up and down Cn.

2.3.3 Epistemic Entrenchments

An epistemic entrenchment for a theory K is a total relation among the formulae

in the language reflecting their degree of relevance in K and their usefulness

when performing inference. The following five conditions are required for an
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epistemic entrenchment relation su for a theory K [Gárdenfors, 1984;Makinson

and Gárdenfors, 1988]:

(EEl) If A su B and B su D then A su D.

(EE2) If B e Cn(A) then A su B.

(EE3) A su (AA B) or B su (AA B).

(EE4) If theory K is consistent then A í K iff A su B for every B.

(EE5) If B S“ A for every B then A G Cn(Ü).

The associated interpretation is that the epistemic entrenchment of a sentence

is ticd to its overall informational value within the theory. For example, lawlike

sentences generally have greater epistemic entrenchment than accidental gener­

alizations. When forming contractions, the formulae that are retracted are those

with the lowest epistemic entrenchment. Tautologies are the most entrenched,

hence they are never given up.

For any given relation su for a consistent theory K, the formulae in K are

ranked in su, while all the formulas outside K have the su-minimal epistemic

value. That is, by (EE4) for a consistent theory K, all the formulas outside

K are zeroed in su. However, (EE4) is vacuous for the contradictory theory

L. (BED-(EE3) imply connectivity, namely, either A su B or B su A (the

epistemic entrenchment ordering will cover all the sentences).

The AGM contraction function —,, based on an epistemic entrenchment

relation su for K, is defined as follows.

Definition 2.8 (Epistemic entrenchment contraction) Foreveryformula

A in L,

K—“A= {B e KIA e Cn(w)or A <u (AvB)},

where <u is the strict relation obtained from su.

The representation result shows that a revision function can be constructed by

means of an epistemic entrenchment ordering on the language.
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Observation 2.9 ([Makinson and Gárdenfors, 1988]) A contraction

function — for K satisfies (K-1)-(K-8) iff there exists an epistemic en­

trenchment relation for K satisfying (EE1)-(EE5) such that for all A e L,

K —A = K -u A.

2.3.4 Systems of Spheres

Among the alternative presentations of the AGM theory, Grove’s [1988]provides

a possible worlds semantics systems of Spheres. A system of Spheres SK centered

on a theory K is a subset of 'P(W) containing W, totally ordered under set

inclusion, such that [K] is the Q-minimal element of SK. A system SK should

validate the limit assumption, in the sense that for every satisfiable formula A

in the language there exists a g-minimal sphere in SK (written as cK(A)) with

non-emptyintersectionwith

Definition 2.10 (System of Spheres) A system of SpheresSK centered on

theory K is a set of sets of possible worlds that verifies the properties:

(Sl) If U,V e S then U g V or V g U. (totally ordered.)

(S2) For every U G S, [K] Q U. (minimum.)

(S3) W e S. (maximum.)

(S4) For every sentence A such that there is a sphere U in SK with [A]n U 9€

(ll, there is a g-minimal sphere V in S such that [A] ñ V 7€ (ll. (limit

assumption.)

For any sentence A, if [A]has a non-empty intersection with some sphere in SK

then by (S4) there exists a minimal such sphere in SK, say cK But, if [A]

has an empty intersection with all Spheres, then it must be the empty set (since

(S3) assures W is in SK), in this case cK is put to be just W. Given a system

of Spheres SK and a formula A, cK is defined as:

w if [A] = o
CK(A) = .

the C -minimal sphere S’ in SK s.t. S’ n [A] 96(¿l otherwise.

A system SK determines a contraction function —,,for K in the sense that for

every formula A e L and every w e W, w e [K -,,A] ifl'w e (cK(A)n[A])U[K].
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Definition 2.11 (Sphere contraction) Let SK be a system of spheres cen­

tered on K. For every formula A in L,

K -., A = Th((cK(A) ñ [ADU [KD­

Grove proves the following representation result.

Observation 2.12 ([Grove, 1988], Theorems 1,2) —is a revisionfunction

for K satisfying (K-1)-(K-8) iff there exists a system of spheres SK centered on

K such that for all formulas A e L, K —A = K —,,A.

The same approach can be used to model revision functions. If we define K * A

as the theory of (cK(A) ñ [14]),by means of the Levi identity we obtain the

representation theorem for contraction.

Let's turn now to a subclass of AGM functions, the subclass generated by

well founded systems of spheres. A system of spheres SK is well founded if

C is a well founded relation on SK, that is for every subset of X g W there

exists C-minimal sphere in SK intersecting X. In contrast general systems of

spheres establish the requirement only for nameable subsets of W - actually we

require nameability by a single formula rather than a set of formulae -. Following

[Peppas, 1993]we refer to revision functions definable over a well founded system

of spheres as well behaved revision functions. All revision functions for theories

over a finite propositional language are well behaved. But it is well kn0wn that

well founded systems of spheres do not capture all AGM revision functions. This

is perspicuously proved by Peppas in [1993] who exhibits a first order theory

K and a revision function * for K such that no well founded system of spheres

represents *. Peppas characterizes well behaved revision functions the following

postulate.

(K*WB) For every nonempty set X of consistent formulae of L there exists a

formula A e X such that -|A e K * (AV B), for every B e X.

Peppas proves the following.

Observation 2.13 ([Peppas, 1993], Theorem 5.4.3) Let * be a revision

function satisfying (K-1)-(K-8). Then * is well behaved ifl' it satisfies (K*WB)

for every theory K of L.
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It is up to now unclear how strong is the restriction to well behaved revision

functions.

It is possible to recast a system of spheres centered in [K] as a total preorder

j over W, having the elements of [K] as minimal elements, and satisfying the

limit assumption (every L-nameable subset of W must have some -_<-minimal

element). Without loss of generality then a system of spheres centered in [K] can

be seen as a function from W to any totally ordered set with smallest element.

This set can be taken to be 112+,be the set of positive real numbers including

0, but not necessarily so. We define dK : W -> R+ that decorates with real

numbers the nested spheres of a Grove system.

Observation 2.14 For every system of spheres SK there is a function dx on

JR+ such that

dK(v) < dK(w) ifl' (381,52 e SK)('U e 51,111e 82 and 81 C 82), and

dK(v) = dK(w) iff (vsi e SK)(w e Si <=>v e Si).

These functions provide a notion of distance from theories to worlds: If d¡((10) <

dK(v) then w is closer than v or “more consistent” with the current theory K.

And this measure can be naturally extended to functions over sets of worlds

(propositions), by requiring the value assigned to a set X to be the smallest value

assigned to the worlds in X. Special consideration is required if X is empty.

Let now SK be any system of spheres and dK any real function corresponding

to it as in Observation 2.14 above. We first extend dK to any subset of W as

follows. Define dK : 'P(W) -> 112+as:

dK(X) = 0min{dK(w) : w e X} ,if X 9€(D.,ifX=Ü.

In order to represent a system of spheres by a function dK we should impose the

limit assumption on dK. For every nameable subset X , dK(X) must be defined.

But if X is not nameable by a single formula then the set {dK(w) : w e X} can

be infinite, with infinite descending values where the min may be undefined.

The function dK induces a revision function * such that K a:A is the theory

entailed by the set of A-worlds that are closest to K according to the function

dK. Then, if we take



2.3. CONSTRUCTIONS OF AGM FUNCTIONS 23

K a:A = Th({w e [A] : dK(w) = dK([A])})

the revision operation so obtained coincides with the original * operation whose

semantic model was SK .

Well founded systems of spheres are free of infinite descending Chains of

spheres. Consequently for these systems the function dK can be defined over

the ordinals as opposed to be defined over the reals. For instance Spohn’s ordinal

functions [Spohn, 1987] kK : W —>O straightforwardly represent well founded

systems of spheres that are centered on a consistent theory.
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Chapter 3

Binary Functions for

Theory Change

The AGM model has as points of departure a theory to be modified, a formula

to be considered as new information, and change functions. The framework

seems to be that of binary functions that when applied to a theory K and a

formula A return a. new theory K’. However, when we study the AGM model,

we immediately realize that change functions are relative to some given theory.

Then, a function is applicable to theory K, but in general, it is not applicable

to another theory K’. The situation can be compared, for example, to the

square root function on the set of Natural numbers. If we define f : W —>W by

f (n) = fi, the actual domain of f is just the set of perfect squares, because the

value of f is only defined for natural numbers that are perfect squares, and it is

undefined otherwise. So f is only partially defined over IN. Hence, when AGM

functions are regarded as binary functions they are just partially defined on the

set K x L. Once the first argument has been fixed to be a given theory K, the

function is well defined for every language formula. But it may be undefined

when the first argument is any other theory. Henceforth the behaviour of AGM

functions is asymmetrical with the two arguments. For this reason we argue

that AGM functions are not truly binary and they should be taken to be unary

functions —K: L —>K. It is possible to consider a binary - : K x L —>K as

the family of independent unary functions —K, one per theory K, such that

25
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—={—K:L—>K:K€Kand -K satisfies(K-1)-(K—8)}

But this family can be arbitrary. The AGM postulates only aim to constrain the

behaviour of the indexed unary functions separater without trying to correlate

them with each other.

3.1 Change in Multiple Theories

The problem of change in multiple theon'es is simply the problem of an appro­

priate definition of unary change functions that are jointly coherent. Suppose

we possess some complete set of unary change functions, one for each possible

theory K E K. Since the AGM postulates provide no correlation between the

different unary functions we should not expect that the change of one theory be

significantly related to the change of another.

But not all AGM functions are alike in this respect. Expansions are sub­

stantially different to general revisions and contractions. The definition of

+ : K x L —>1K states that for every K e K and for every A e L,

K + A = Cn(K U Expansion is really a function of two arguments,

identically defined for every theory and every formula just in terms of the con­

sequence relation. Being based on Cn, + inherits monotony, which definitely

counts as a coherence property over the change in different theories.

As it stands in the original partial meet construction presented in [Al­

chourrón et aL, 1985], AGM contraction is a unary function relative to a theory

K, —" : L —>1K based on a selection function s" depending on K.

ns"(K_LA) ifKLAaéll)
K otherwise

Partial Meet: —"(A) =

where the set K .L A contains the maximal subsets of K that do not imply A

and the function s“ : L -> 'P('P(K)) \ {0} selects a nonempty subset of K .L A.

The limiting case in which the function s" returns the whole set K J. A gives

rise to the full meet contraction function. The selection function s“ relative to K

disappears, yielding a contraction that depends solely on the explicit arguments

K and A, i.e. if —is a full meet, again we have a binary function —: IKxL —>K.
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Moreover, the representation result states that the full meet contraction function

is defined as K —A = K n Cn(-1A). Like expansions, they depend on no

underlying structure, relative order or selection function, and are applicable to

every theory.

Alchourrón, Gardenfors and Makinson have argued that full meet functions

sufi'er from too much loss of information and have taken them as a demarcation

of the limiting case. The question now is whether it is possible to provide binary

AGM functions which are more interesting than full meet functions. As we will

remark in Chapter 5, outside the AGM framework there is a vivid example of

a binary function with a strong coherence property, Katsuno and Mendelzon’s

update function. In Chapters 4 and 6 we will present two different formulations

of binary AGM functions, one is based on Alchourrón and Makinson’s safe

contraction [1985],the other inspired in the update function.

3.2 Iterated Change

The motivation to consider successive change is indisputable. A change op­

eration takes a theory to a modified theory. But eventually there will be yet

another change after the one just considered that will induce yet another theory.

Hence we will have to update the already updated theory. This problem has

been dubbed the problem of iterated theory change.

A pertinent criticism of the AGM formalism is its lack of definition with

respect to iterated change ( see [Halpern and Friedman, 1996] and Rott [1999;

1998]). The iteration of revisions, contractions and expansions separately is

significant, and even more so the consideration of sequences of different kinds of

change. Although the AGM formalism does not forbid the iteration of change

functions, it omits any specification of how it should be performed or what the

properties of successive change are.

Consider any two formulae A, B, a particular theory K and any AGM change

function ol for K (for example 01 may stand as a transitively relational partial

meet revision for K). In order to calculate the successive changes of K, first

by A and then by B, we need 01 for K but also the change function 02 relative

to (K ol A). The result of the successive change is the theory (K 01 A) 02 B.
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The application of a change function over a theory that is the result of another

change operation is referred as an iterated change.

Once we have understood that AGM change functions are really indexical

(relative to the theory to be changed), an obvious first attempt to deal with

iteration presents itself. If we possess beforehand the complete set of unary

change functions, one for each possible theory, we can freely perform successive

changes. But beware, if there are no coherence properties linking the different

change functions the result obtained can be unexpected and the corresponding

behavior erratic. The whole point is then to investigate ways to coordinate these

different change functions.

Clearly, binary AGM functions can be trivially iterated, that is, (K o A) o B

is well defined. In particular AGM expansions inherit their capacity of iteration

directly from the consequence operation. For instance, for any theory K and

formulae A, B, we have (K + A) + B = Cn(Cn(K U {A}) U {B}) = Cn(K U

{A}u {B})= K + (A /\ B).

For similar reasons, full meet functions (revisions as well as contractions) also

validate that (KoA)oB = Ko(A/\B). The fact that full meet functions can be

iterated can be taken as an evidence for the compatibility of the AGM theory

with iterated change. However, these are too specific binary AGM functions

and the properties they satisfy we do not want them to hold as properties of

binary AGM functions in general.

3.2.1 The Property of Historic Memory

Some advantages of binary functions as a scheme of iterated change are evident:

they are mathematically elegant, definitionally simple and remain close to the

AGM model (each time the theory argument is fixed a standard AGM indexical

function is obtained). But, while formally attractive, binary functions make a

strong simplifying assumption. Each theory is modified in a predetermined way

independently of how we have obtained such a theory. A binary change function

o : JK x L —>1K is deterministic with respect to the theory to be modified, i.e.

it satisfies:

(Functionality) If K = ((HoAl) . . .oAn). then KoA = ((HoAl) . . .oAn)oA,
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But if K is really considered an argument of the function o, this is to be expected.

If f is a function, it is required that f (a) = f (b) whenever a = b. This functional

behavior has been interpreted as a lack of historic memory. Lehmann in [1995]

refers to this property as a “Non Postulate” for he considers that interesting

systems should not make this simplifying assumption.

In spite of the modesty of binary functions as operators for iterated change,

they vary in the subtlety of their associated behavior. According to the represen­

tation results, an AGM change function can be characterized by some ordered

structure. It can be an ordering of formulas in the object language as in the

epistemic entrenchment approach, an ordering of possible worlds as in systems

of spheres or an ordering over maximal consistent sets for partial meet functions.

From this representation perspective binary AGM functions vary according to

the sophistication of their associated structure.

In the simplest case we have binary functions that depend on no order at

all, as expansion and the full meet functions [Alchourrón and Makinson, 1982].

A quite elaborate binary function, outside the AGM framework, is Katsuno and

Mendelzon’s update [Katsuno and Mendelzon, 1992]. Based on a fixed set of

orders of possible worlds (one order relative to each possible world), the update

function is obtained as a fixed combination of such multiple orders.

Proposals for iterated change that possess historic memory ought to expand

the AGM model in such a way that change functions return not only the modified

theory but also a modified version of the change function, or equivalently, return

enough information to construct a new change function. Usually a method or

algorithm to construct the new change function based on the original theory,

the input formula and the previous change function is specified.

This can be done in a qualitative way as in [Boutilier, 1996; Nayak, 1994;

Segerberg, 1997], or by enriching the model with numbers [Spohn, 1987;

Williams, 1994; Darwiche and Pearl, 1997]. Rott in [1998] englobes them un­

der the name of iteratiue functions and gives a thorough comparison. These

are not really going back to a binary function and returning the theory K to

its original role of argument. The “construction” method is more flexible than

considering a binary function. These approaches are very rich — they can avoid

the functional behaviour of the change. But they are usually complex. In these
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frameworks, given a theory K and a formula A, the change function associated

with K o A is not uniquely determined and depends really on a third argument:

the change function for K. But, as insightfully discussed by [Rott, 1999], this

is a circular description.

There are two alternative formalizations of iterative functions that circum­

vent the circularity. One is to consider iterative functions as

°:(K10K)x L _) (Kick)

that operate not just over a theory and a formula but on a more complex

structure: a theory together with the AGM function relative to such theory.

Depending on the chosen representation, each change function relative to a given

theory boils down to some ordering relation, over subsets, over formulae, or over

possible worlds. Let us observe that when working with theories these orderings

are always infinite relations, which may or may not be finitely specified. The

AGM idealization has been altered so that these iterative functions are binary

functions whose first argument is quite complex. They return also a complex

structure encoding the resulting theory and enough information as to define a

standard AGM function for it.

The other alternative formalization for iterative functions is presented by

[Rott, 1999]. He defines iterative functions as unary functions that take a

sequence of logical formulae and return a plain theory. An iterative change

function

o:L“’->K

assigns for each sequence of input formulae the theory resulting after all the

successive changes indicated in the sequence. Rott explains that these unary

functions are relative to a state, a complex structure consisting of a theory

together with its “changing criteria". Like in the previous formalization a state

can be regarded as a theory of together with the standard AGM change function

relative to such a theory.

Although the signatures of the two formalizations are quite different it is

possible to visualize any of the above mentioned methods in both of them. We

regard Rott’s formalization as more elegant and closer in spirit to AGM’s.
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3.3 Some Properties

Clearly, we expect that not any binary function will qualify as coherent. Only

those constrained in a certain way ought to be admissible theory change func­

tions. In the words of [Rott, 1999], “. . .The most general idea to express con­

ditions of coherence seems to be that the change function should be a structure

preserving function, a morphism, in the sense that the values of the function

stand in some special relation whenever the arguments of the function stand in

a special relation.” As we already argued, AGM postulates can be regarded as

coherence constraints over the unary functions separately. In this section we

will review many properties that have been presented in the literature, which

will be of interest in the next Chapters.

Properties of Binary Functions

We will first examine a property that was originally studied in [Alchourrón and

Makinson, 1982] as an intuitive property for change functions. By means of the

Levi identity we know that AGM revisions can be defined from contractions.

Levi. K*A= (K-ñA)+A.

Alchourrón and Makinson [1982] wondered under which conditions, an AGM

revision function could validate the following intuitive condition.

(Permutability) (K —-|A) + A = (K + A) —-|A.

In particular, full meet revisions functions are permutable, but the question

under which conditions an AGM function is permutable was left open in that

paper.

Hansson [1998] proposes reversing the Levi identity as an alternative and

plausible way to define revision when change functions are applied to sets of

formula that are not closed under logica] consequence (bases).

R-Levi. K * A = (K + A) —-|A.

Thus, permutable revisions are equivalently defined by the Levi and the R-Levi

identity.

Consider now o to be a generic binary revision function o : K x L -> K.

Let’s first refer to the Monotony property, which is indeed a postulate of the
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AGM expansion function. a postulate of the AGM expansion function.

(Monotony) If K Q H then K o A g H o A.

For an arbitrary change function, it is strong coherence property that it may not

always be desirable. For instance, as we have already sh0wn in Observation 2.1

general partial meet functions do not validate it, because monotony collapses

with the preservation property. However, full meet revisions satisfy:

(Weak Monotony) If -nAe K and K g H then K o A Q H o A.

In the context of their safe contraction functions [Alchourrón and Makinson,

1985] have considered properties of the intersection and union of theories.

(Weak Intersection) If -uAe (K101(2) then (K1ñKg) 0A =(K10A)n

(K2O

(Weak Union) If -|A e Kang, then (K1UK2)0A= (K1oA)U(K20A).

These properties truly relate the change of arbitrary theories. Quite trivially it

can be proved that AGM expansions satisfy and full meet functions validate the

two. In addition, they also validate the following D-Ventilation condition that

is dual to the Ventilation condition of [Alchourrón et aL, 1985]. AGM provided

the Ventilation as a factoring condition on the contraction by a conjunction

from a theory; they proved it to be equivalent to postulates (K*7) and (K*8).

(D-Ventilation) (K1 ñ K2) o A E {(Kl o A) n (K2 o A), K1 o A, K2 o A}.

However, full meet functions do not in general validate the following two prop­

erties:

(Intersection) (K1 ñ K2) o A = (K1 o A) ñ (K2 o A).

(Union) (K1 U K2) o A = (K1 o A) U (K2 o A).

Full meet functions validate:

(Commutativity) (K o A) o B = (K o B) o A.

(Elimination) (K o A) o B = K o (A AB).

The interest of the Elimination property is that it provides a way to reduce

the iteration of functions to a plain single application of the change function.
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Areces and Rott [1999] have recently devised iterative functions based on the

principle of Elimination, where the change of a theory by a sequence of formulae

is recast to a standard AGM operation by a.formula obtained from the sequence

itself. In the case of expansions and full meet functions, Commutativity follows

from Elimination. However, in Rott and Areces’ framework this is not the case.

Their novel function is a binary function o : L“ —>K, having as first argument

the theory to be revised and the second argument is a sequence of formulae,

the initial segment of the history so far. The revision of the original K by

a sequence of formulae [A1,...,An] yields a theory K o [A1,...,An]. This is

obtained by applying a standard AGM revision function to the theory K, but

the formula to revise it by is obtained as a boolean combination of the formulae

in the input sequence. Rott and Areces provide various algorithms to calculate

such a formula. It is interesting that Rott and Areces’ function may possess

historic memory even though it is based on a standard AGM revision function

relative to the original theory.

Properties of Iterated Change

We will now inspect some properties of iterated change arising from different

proposals. Let’s assume now that o is a generic iterative function. As we have

argued above, trivially, binary functions over 1K x L give rise to iterative func­

tions; henceforth, some of the properties we will discuss are candidate properties

for binary functions.

The following two conditions have been reported by Schlechta Lehmann and

Magidor in [1996] as plausible properties for iterated change. For any pair of

theories K1, K2 and sentences A, B, C, D,

(Or-Right) IfD G (KoA)oC and D G (KoB)oC then D G (Ko(AVB))oC.

(Or-Left) IfD G(Ko(AVB))oC then D E (KoA)oC or D e (KoB)oC.

For (Or-Right) suppose that after successive changes that differ only at step i

(step i being A in one case and B in the other), one concludes that D holds.

Then, one should also conclude D after identical successive changes when step
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i is replaced by the disjunction A V B. We expect D to hold because knowing

which of A or B is true at step i can not be crucial.

The case for (Or-Left) is similar. If one concludes D from the change by a

disjunction, one should conclude it from at least one of the disjuncts.

Lehmann in [1995] argues that certain structures that he calls widening

ranked orders are suitable for iterative change and proposes seven postulates

that fully characterize revision functions based on these structures. In our

notation they are:

(Il) K o A is a consistent theory.

(12) AeKoA.

(13)IfBGKoA,thenADB€K.

(14)IfAEKthen¡{0310...an=KvoBlo...anfornz1.

(15)IfAeCn(B),thenKvoBoBlo...an=KoBoBlo...an.

(16)IfñBeKoAthenKvoBoBlo...an=Kvo(A/\B)oB¡o...an.

(17) Ko-nBoBQCnUfUB).

Postulates (Il-14) are a direct transcription of AGM’s. (15) states that certain

steps in a sequence of changes are negligible. The sequence containing a formula

immediately followed by a logically stronger formula produces the same result

as the counterpart sequence that lacks the logically weaker formula. Intuitively

it says that if immediately after learning some information we obtain more

specific information, the first learning is inconsequential. We consider that

this condition is controversial, or without enough grounds to be a generally

valid principle. Postulate (16)also asserts that under certain circumstances two

sequences give the same result; in particular, when new information is consistent

with the theory obtained so far. In this case the formulae at steps i and i —1

can be replaced by the the single formula that is conjunction of the two. (I7)

implies dependency between two revision steps and consequently enforces (at

least to some extent) the property of historic memory, which in general binary

functions lack.



3.3. SOME PROPERT IES 35

Darwiche and Pearl [1997]have proposed a number of properties for iterated

change. In our notation:

(C1) IfAGCn(B) then(KoA)oB=KoB.

(C2) If ñAGCn(B) then(KoA)oB=KoB.

(C3) IfAGKoBthenA€(KoA)oB.

(C4) If-nAe’KoBthen -1A€(K0A)OB.

(CS)IfñBeKoAandAeKoBthenAe’(KoA)oB.

(CG)If-nBeKoAand ñAeKoBthen -1A€(KoA)oB.

While (Cl)-(C4) have been proposed as desirable properties of iterated revisions,

(CS) and (CG) have been considered too demanding. Condition (Cl) amounts

to Lehmann’s (15) and condition (C2) has been pr0ved inconsistent with the

AGM postulates (K*7) and (K*8) for binary change functions [Lehmann, 1995].

We shall n0w consider four postulates for iterated change. We call the first

one a trivial revision, and it will be studied in Chapter 7. It reduces the revision

by a sequence just to the revision by the last sentence.

(T) KvoB=KoB.

It is quite obvious that the scheme it induces not only lacks historic memory,

but is actually a fake scheme of iterated change. In addition it conflicts with the

AGM postulate (K*4), which requires that it ñB fi!K o A then (K o A) o B =

(K o A) + B. (T) and (K*4) would require that for all A,B e L such that

-|B Q K o A, (K o A) + B = K o B, which is not generally valid.

For the next three postulates for iterated change we followthe presentation

of [Rott, 1998]. The first one is a conservatz've revision. It has been firstly

proposed as a possible worlds construction by Boutilier [1996]that he called a

natural revision. Darwiche and Pearl have supplied the missing completeness

theorem for Boutilier’s operation ([Darwiche and Pearl, 1997], Theorem 11),

providing the following postulate.

(C) If-iBGKoA,thenKvoB=KoB.
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The conservative revision function validates all AGM postulates and (C), hence,

when B is consistent with K o A, K o A o B =Cn((K o A) U Rott has

defined the same function as an epistemic entrenchment construction [1998],and

proved the corresponding representation theorem. Boutilier in [1992c; 1993]has

considered sequences of these revisions and has analyzed different reductions

that can be involved in calculating the final result.

The criticism to conservative functions is that they privilege new informa­

tion at the highest priority possible, but it is given up all to readily when more

information comes in. In Rott’s words [1998], “ They provide no consistent at­

titude toward novelty. The most recent information is always embraced without

reservation, but the last but one piece of information, however, is treated with

utter disrespect.”

The second iterative function is the irrevocable revision of [Segerberg, 1997].

Its characteristic postulate is just the Elimination property of the previous sec­

tion.

(I) KvoB=Ko(A/\B)

Iterative functions are relative to a single AGM function relative to the original

theory K. The postulate induces an irrevocable scheme because the sequence

of revisions by contradictory formulae results in the inconsistent theory, and it

is impossible to overcome the inconsistency by applying further revisions. So,

in order to avoid an inconsistent result the conjunction of the formulae to revise

by in successive revisions has to be logically consistent. Fermé in [1999] has

given the characterization result of irrevocable revisions in terms of epistemic

entrenchment in a form that is close to the constructions reprted in [Rott, 1991].

Finally, there are moderate revisions, as a compromise between the conser­

vative and the irrevocable. They were proposed by Nayak [1994]as an epistemic

entrenchment construction. Its characteristic postulate is:

(M)
KoB ,ifñBECn(A)

K o (A A B) , otherwise.
KOAOB=

Moderate functions always give priority to the new incoming information and,

unless the new formula is logically inconsistent with the previous, the resulting

theory should accommodate all the formulae in the sequence of revisions. Among



3.3. SOME PROPERTIES 37

the models that account for historic memory Nayak’s seems to be the best model

one can get.

Finally, the work of [Segerberg, 1995] and [Cantwell, 1997] on hypertheories

promises a new perspective on iterative functions.
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Chapter 4

Iterable AGM Functions

The aim of this chapter is to define iterable AGM functions, binary functions

that satisfy all AGM postulates, but are close to being a constant function. We

call them iterablc because they provide a definitionally simple scheme for iter­

ated change. We pr0vide extended definitions for each of the five AGM presen­

tations, meet functions, systems of spheres, postulates, epistemic entrenchments

and safe hierarchies, and prove their equivalence.

The basic idea dates back to Alchourrón and Makinson’s work on safe con­

tractions [Alchourrón and Makinson, 1985]. Interestingly, in their paper they

study some properties of the safe contraction function with respect to the in­

tersection and union of theories, and also properties of “multiple contractions.”

They say [Alchourrón and Makinson, 1985], p. 419:

“. . . we shall turn to questions that arise when K (the set of proposi­

tions) is allowed to vary. . . ]But in the case of safe contraction the

way of dealing with variations of K is quite straightforward. As we

are working with a relation < over K the natural relation to consider

over a subset K’ of K is simply the restriction < ñ (A’ x A’) of <

to A’.”

They obtain a general result relating K’ -A to K —A,when K’ g K. As a special

case they apply it to (K —B) —C, since K —B g K always holds. Although not

explicit in their article, a particular case of Alchourrón and Makinson's proposal

is to start with a hierarchical order Overall the formulas of the language. The

39
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simple restriction of the hierarchy over L to the elements of any theory K

provides for a hierarchy over such a theory, hence, an appropriate relation for

the definition of a safe contraction function for K. This setting yields a binary

contraction function based on a unique fixed order of all the formulae, the safe

hierarchy.

Reusing the same fixed order makes sense, for example as pointed out by I.

Levi (indirect personal communication), when involved in tentative reasoning:

a fixed set of facts and laws which are known beforehand constitute the back­

ground knowledge from which a sequence of consistent, but tentative, inference

steps are performed to reach a conclusion. We will come back to this idea in

Section 4.1.5.

The following sections are devoted to the definition of iterable AGM func­

tions in each of the classical presentations, f0110wingthe ideas we just explained

for safe contractions. Notice that since contraction and revision are inter­

definable in the AGM framework via the Levi and Harper identities, the task of

providing iterable change functions can be reduced to defining just one of them

(see Section 4.3 for further details).

4.1 The Five Presentations

4.1.1 Extended Safe Contraction Functions

Let’s recall the definitions. A relation <,, Over a set K is a hierarchy if it is

acyclic: for any set of elements A1, . . .,A,. e K ,n 2 1, it is not the case that

A1 <,¡ A2 <,, . . . An <,, A1. A relation <,, over K continues up Cn if for every

A1,A2,A3 e K, if A1 <,, A2 and A3 e Cn(Ag) then A1 <,, A3. A relation

<., over K is virtually connected if for every A¡,A2,A3 e K if A1 <,, A2 then

either A1 <,, A3 or A3 <,, A2. Let <,, be a virtually connected hierarchy over a

theory K that continues up Cn, and let A be a sentence. The safe contraction

function over K, —K : L —>K, is defined as:

-K(A) = Cn({Bl VK’ g K, s.t. A e Cn(K’) and K' is C-minimal with

this property, B í K’ or there is C e K’ s.t. C <., B}).
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The formulae B of —K(A) are called the safe elements of K with respect to A

since they can not be “blamed” for implying A. An element is safe for A if it

does not belong to any of the g-minimal subsets of K that imply A, or else it

is not <,,-minimal in the hierarchy in such subsets.

Following Alchourrón and Makinson’s idea of restricting the hierarchical

order, we can define the iterable safe contraction function based on a hierarchy

over all the sentences of L.

Definition 4.1 (Derived Order) Let <,, be a hierarchy over the language

L. Then for any theory K the derived hierarchy <5 is defined as <5, = <,,|K

(where RIX is the restriction of R to the elements in X

Observation 4.2 Let <,, be a virtually connected hierarchy that continues up

Cn in L, then for any theory K the relation <5 is a virtually connected hierarchy

and continues up Cn in K.

PROOF. 'IÏivial. The properties of being acyclic, virtually connected and

continuing up Cn are preserved under taking restrictions to theories. QED

Once this result is obtained, to define an iterable safe contraction is straightfor­

ward. We define the binary function —_,:K x L —>K.

Definition 4.3 (Iterable Safe Contraction) Let <,, be a virtuallyconnected

hierarchy that continues up Cn in L. The iterable AGM contraction -,, : JK x

L —>K is defined as

K -,,A = Cn({BI VK’ g K, s.t. A GCn(K') and K’ is g-minimal with

this property, B í K’ or there is C G K’ s.t. C <5 B})

where <5 is the derived safe hierarchy for K.

That —,,satisfies the AGM postulates (K-l) to (K-8) followsfrom Alchourrón

and Makinson’s original results stating that every safe contraction function gen­

erated by a virtually connected hierarchy that continues up Cn over a theory K

is a transitiver relational partial meet contraction function.

As a side remark, notice that definitions 4.1 and 4.3 can be merged in a

unique definition and —,,defined then directly over <,, instead of over <5. This

is just a matter of notation, as in both cases —,,is really a binary function as



42 CHAPTER 4. ITERABLE AGM FUNCTIONS

required. This remark applies as well to the definitions of iterable functions in

the remaining presentations.

In the definitions above we started from a hierarchy <,, for L and defined its

restriction < A relevant question is whether the conversecan also be achieved.

Given a hierarchy for K can a hierarchy for L be defined such that the iterable

function agrees with -" when applied to K?

Observation 4.4 Let —" be an AGM safe contraction function for a given

theory K. Then —"can be extended to an iterable AGM safe contraction -,,,

such that for every A, K —,,A = —"(A).

PROOF. Given <5 the order associated to —“,define <,, as follows: A <,, B ifl'

either (A e K) or (A,B e K and A <,, B). Intuitively, when extending

the order to the whole language, elements in K are promoted in their

safeness while elements outside K are minimally safe. Hom the definition

<5 = <,,|K, and it is not hard to check that <,, is a virtually connected

hierarchy that continues up Cn over L. QED

In [Hansson, 1994]the safe contraction approach is generalized to a “kernel con­

traction”. Instead of implementing a relational way of defining “safe elements”,

selection functions (called incision functions) are introduced. Our results for

safe contraction can easily be extended to kernel contraction.

4.1.2 Extended Partial Meet Contraction Functions

The principle of information economy requires that K —A contains as much as

possible from K without entailing A. For every theory K and sentence A, the

set K .LA of maxima] subsets of K that fail to imply A is the definitional basis

for partial meet contraction functions.

K_LA = {K' g K | A í Cn(K’) and K' is C -ma.ximalwith this property}.

A selection function is a function which returns a nonempty subset of a given

nonempty set. Let K be a theory, we note as s" : L —b'P('P(K))\{Ü}, aselection

function for K .L A, for A e L. We furthermore require that s”(A) = {K}

whenever K .L A = (l).The original AGM partial meet contraction function -"
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is then defined, for a theory K, as

-"'(A) = n sK(A), where s" is a.selection function for K.

Under this definition the contraction function —"satisfies the basic AGM pos­

tulates (K-l) to (K-6). To satisfy the extended set of postulates, (K-l) to (K-8),

it suflices that s“ be transitively relational, i.e. for each A e L the selection func­

tion returns the smallest elements according to some transitive relation defined

over K L A.

In order to define an iterable version of —" richer than the full meet con­

traction, we need to obtain somehow the selections functions s", one for each

eventual K. Of course, we might assume to have all the selection functions be­

forehand. But following the ideas presented in the extension of safe contraction

functions, we would rather synthesize the different s“ out of a unique structure.

The largest possible theory is L, the whole language. Then sL provides for

each formula A a selection function Over all the maxima] consistent sets of L

that do not imply A. It is possible to extract from s" the corresponding s" for

each theory K. This is a consequence of the following two observations: (a) If

A e K, then, trivially, the maxima] consistent subset of K that fails to imply

A is K itself. (b) If A e K, each maxima] consistent subset of K that fails to

imply A is included in a maximal consistent subset of L that fails to imply A

(by a Lindenbaum-style argument, each element in K .L A can be extended to

an element of L .L A). Therefore, we can derive a selection function s"(A) by

just restricting the result of sL(A) to its common part with K.

Definition 4.5 (Derived Selection Functions) Let sL be a selectionfunc­

tion for L. Then, for any theory K the selection function s“ is

{K} ifAe’K
5K(A) =

{K’ e K L A I K’ = KnH' with H’ e sL(A)} otherwise.

It is immediate that each derived s" is indeed a selection function. What is

more interesting is that each s" is transitively relational whenever sL is.

Observation 4.6 If 5L is a transitively relational selection function, then for

any theory K, s“ is a transitively relational selection function.
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PROOF. The intuition is as follows, as 5L is transitiver relational there is

a transitive relation R defined Over L J. A whose smallest elements are

selected by sL(A). This relation R can be projected over each K .L A to

show that s"(A) selects the smallest elements of a transitive relation. QED

Given that s" is a transitively relational selection function we are able to define

an iterable AGM contraction function —,,,,based on the partial meet construc­

tion.

Definition 4.7 (Iterable Partial Meet Contraction) Let 3L be a tran­

sitively relational selection function over L. The iterable AGM contraction

-,,,. : K x L —>1K is defined as K —,,,,.A = fls"(A), where s" is the derived

selection function for K.

By construction -,,,. is an AGM transitively relational partial meet contraction.

It is iterable as it is applicable to any theory K. We now prove that every AGM

partial meet contraction function can be extended to an iterable partial meet.

Observation 4.8 Let —"be an AGM transitively relational partial meet con­

traction function for a given theory K. Then —"can be extended to an iterable

AGM partial meet contraction —,,,,,,such that for every A, K —,,,.A = —"(A).

PROOF. Given a selection function s“ we have to come up with a selection

function 3L. As we previously said, for each H G K J. A there is H’ G

L .L A such that H g H’. Hence, we can define sL(A) = {H’ e L .L

A | EIH e s"(K .L A) and H g H'}. Notice that there can be some

H' e L J. A such that there exists no subset H of K and H g H’, so that

H’ is not selected.

Since s" is transitiver relational there is a relation R over K J. A which

can be lifted to L .L A. If R(H1,H2) then R’(Hí,Há) for H{,Hé E L J. A

such that H,-g Hi. For every H’ e L J. A such that there exists no subset

H of K and H g H’, we define R’(H”,H’) for every H” e L J. A. Now

s"(A) selects the smallest elements of R’. It follows from the definition

that R’ is transitive, hence s" is transitively relational. QED
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4.1.3 Extended Systems of Spheres

In this section we develop a definition of an iterable contraction function based

on Systems of Spheres, which turns out to be equivalent to an early unpublished

result of Makinson (personal communication). We first turn to Grove’s original

framework (Grove, 1988] for AGM functions.

A system of Spheres S centered on a theory K is a set of sets of possible

worlds that verifies the properties:

(Sl) If U,V e S then U g V or V g U. (Totally Ordered.)

(S2) For every U G S, [K] Q U. (Minimum.)

(SB) W e S. (Maximum)

(S4) For every sentence A such that there is a sphere U in S with [A]nU 9€0,

there is a g-minimal sphere V in S such that [A]ñ V 960. (Limit Assumption.)

For any sentence A, if [A] has a non-empty intersection with some sphere in S

then by (S4) there exists a minimal such sphere in S, say cs(A). But, if [A]

has an empty intersection with all Spheres, then it must be the empty set (since

(S3) assures W is in S), in this case c3(A) is put to be just W. Given a system

of Spheres S and a formula A, cs(A) is defined as:

(A) W if [A] = 0c =
s the C -minimal sphere S’ in S s.t. S’ ñ [A] 9€0) otherwise.

Using the function c5, the function fs : L —>'P(W) is defined as fs(A) =

[A]ñc5(A). Given a sentence A, fs(A) returns the closest elements (with respect

to theory K) where A holds. Grove shows that the function defined as —"(A) =

Th([K] U fs(-'A)) is an AGM contraction function. And conversely, for any

AGM contraction function relative to a theory K there is a system of Spheres

S centered on K that gives rise to the same function.

We shall now extend Gr0ve’s construction to obtain an iterable function

using the same strategy we used for partial meet. Again, the central idea is to

consider the inconsistent theory. A system of Spheres for L has the particular

property that its innermost sphere is the empty set, since [L] = 0. Given a

system of Spheres S centered in 0 we define for any theory K a derived system

SK centered on K simply by “filling in” the innermost sphere of S with [K
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Definition 4.9 (Derived System of Spheres) Let S be a systemof spheres

for L. Then for any theory K the derived system of spheres S" is defined as

S"={[K]US¡IS¡€S}. t

Observation 4.10 Let S be a system of spheres for L. Then for any theory

K, S“ is a system of spheres centered on K.

Having defined the method to derive a system of spheres SK, the functions

cg and f5" are as above. We can now define the iterable contraction function

—,,: K x L —>1K, applicable to every theory K and every formula A.

Definition 4.11 (Iterable Sphere Contraction) Let S be a system of

spheres for L. The iterable AGM contraction -,, : IK x L —>K is defined

as K —,,A = Th([K] U fs"(ñA)), where fs" is the derived function for K.

It is clear that —_,is iterable. By Grove’s characterization result it follows that

—,, is an AGM contraction function. We prove that every AGM contraction

function can be extended to an iterable sphere contraction function.

Observation 4.12 Let —"be an AGM contraction functions based on systems

of spheres. Then —"can be extended to an iterable AGM contraction —,,based

on systems of spheres, such that for every A, K —,,A = —"(A).

PROOF. It is enough to prove that if S" is a system of spheres for K, then it

can be extended to a system of spheres for L. Define S centered in (l)as

S = SKU Clearly, S validates (Sl) to (S4) for L. QED

4.1.4 Extended Epistemic Entrenchments

An epistemic entrenchment for a theory K is a total relation among the formulae

in the language reflecting their degree of relevance in K and their usefulness

when performing inference. The following five conditions must hold for an

epistemic entrenchment relation S“ for a theory K [Makinson and Gardenfors,

1988] :

(EEl) If A su B and B su D then A su D.

(EE2) If B e Cn(A) then A 5,, B.

(EE3) A Su (A /\ B) or B su (A A B).
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(EE4) If theory K is consistent then A e K iff A su B for every B.

(EE5) If B 5“ A for every B then A e Cn((l)).

The AGM contraction function —"based on an epistemic entrenchment relation

su for K, is defined as follows. For every formula A in L,

—"(A) = {B e KIA G Cn(lll) or A <ec(AV B)},

where <u is the strict relation obtained from 5“.

For any given relation su for a.consistent theory K, the formulas in K are

ranked in su, while all the formulas outside K have the sge-minimal epistemic

value. That is, by (EE4) for a consistent theory K, all the formulas outside

K are zeroed in su. However, (EE4) is vacuous for the contradictory theory

L. If we consider as a point of departure an epistemic entrenchment over the

contradictory theory L, there is an obvious way to derive an entrenchment order

for any theory K: just depose the formulas not in K to a minimal rank.

Definition 4.13 (Derived Epistemic Entrenchment) Let su be an epis­

temic entrenchment relation for L. Then for any theory K the derived epistemic

entrenchment relation 5: is defined as:

A 5: B iffeither (A 6K) or (A,B e K and A su B).

Again the first step is to establish that our definition is sound.

Observation 4.14 Let su be an epistemic entrenchment relation for L, then

for any theory K, 5: is an epistemic entrenchment relation for K.

Definition 4.15 (Iterable Epistemic Entrenchment Contraction) Let

_<_ube an epistemic entrenchment relation for L.' The iterable AGM contraction

—u:1K><L—>KisdefinedasK-“A= {B e KIA e Cn(0) or A <2 (AVB)},

where <2 is the asymmetric part of 5:, for 5: the derived epistemic entrench­
ment relation for K.

It remains to show that every contraction function based on epistemic entrench­

ments can be extended to an iterable contraction function.

Observation 4.16 Let -" be an AGMcontraction function based on epistemic

entrenchments for a given theory K. Then —"can be extended to an iterable
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AGM contraction —ubased on epistemic entrenchments such that for every A,

K —« A = —"'(A).

PROOF. The key point is to prove that an epistemic entrenchment relation for

K 5: can be extended to a.relation for L.

If K = L then we are done. Suppose K 96L. We claim that 5: is also an

epistemic entrenchment relation for L. Conditions (EEl), (EE2), (EE3)

and (EE5) do not refer to the specific theory so they hold also trivially for

L, while condition (EE4) does not apply as L is inconsistent. QED

4.1.5 Extended Postulates

One of the hallmarks of the AGM formalism is that a contraction operation al­

ways returns a consistent theory. The largest possible theory is the inconsistent

theory L, the whole language. The contraction function over the inconsistent

theory can be regarded as a generic removal procedure leading to consistency.

As every theory is a subset of the inconsistent theory this generic removal pro­

cedure can be applied to any theory. We propose the following postulate:

(K-9) IfAeK, thenK-A=(L—A)0K.

Postulate K —9is extremely simple and reveals the unsophisticated behavior of

our iterable contraction function. Its dual iterable revision postulate is defined

as:

(K*9)If-\AGK, thenK*A=(L*A)

In Section 4.3 we elaborate on the inter-definability of (K*9) and (K-9) via

the Levi and Harper identities. It becomes obvious that a revision function *

satisfying (K*1)- (K*9) is in fact iterable: for any A, B e L, K * A * B is well

defined: If HB GK*A then K*A*B = (L*B); elseK*A*B = (K*A)+B. An

immediate observation is that (K*9) forces independence between two arbitrary

revision steps. Namely, the result of revising a theory is independent of the

preceding steps that lead to it, only the actual theory being revised matters.

This is what we have described as lack of historic memory in Chapter 3, or

as reported in [Friedman and Halpern, 1996], the qualitative analogue of the

Markov Assumption.
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The revision postulate (K*9) is sound with respect to the interpretation

of revision as a kind of tentative reasoning. The revision function for L en­

codes a fixed and pre-established criteria, “the way things are” (facts) and “the

way things work” (laws) in the actual world. A sequence of revisions is then

performed in search of tentative explanations (of the facts) and conclusions (de­

rived from them). When we detect an inconsistency between the hypothesis

elaborated up to now and a new supposition we are trying to adjust to the rea­

soning, we lose confidence in the chain of hypothesis. We should then start it

all over, and accommodate the latest piece of our tentative chain in accordance

with our (fixed and pre-established) criteria, leaving behind our previous wrong

conjectures.

We take (K-l) to (K-9) as defining iterable AGM contraction functions via

postulates. We sh0w in the next section that these functions coincide with the

iterable AGM contraction functions defined above.

Lemma 7.4 in [Alchourrón and Makinson, 1985] can be considered as the

first reference to the ideas put forward in postulate (K-9). But the connec­

tion with iteration is first elucidated by [Rott, 1992b]. He mentions explicitly

(K-9) in connection with generalized entrenchment relations and considers it

as a policy of iteration. He also proves that iterated theory change accord­

ing to this method reduces to change of the inconsistent theory. Remarkably,

[Freund and Lehmann, 1994] proposes precisely the same postulate (K*9) and

shows the correspondence between an AGM revision operation satisfying it and

a rational consistency-preserving consequence relation. Freund and Lehmann

also show that such a revision function admits iteration. Although their pos­

tulate and ours turned out to be identical, the two works are indeed comple­

mentary. In the attempt to elucidate the meaning and effect of (K-9) we were

driven to recast it in the four other standard presentations of AGM (safe hierar­

chies, partial meet functions, systems of spheres and epistemic entrenchments)

and in the next section we will pr0ve that they are indeed equivalent. Fre­

und and Lehmann chose instead to consider the connection existing between

theory change and non-monotonic reasoning [Makinson and Gárdenfors, 1991;

Gárdenfors and Makinson, 1990] and study the effect of the new postulate on

the (non-monotonic) inference relation. The main result in their paper is the
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proof that revisions satisfying (K*l) to (K*9) stand in one-to-one correspon­

dence with rational, consistency-preserving non-monotonic inference relations.

4.2 Equivalences

In this section we will prove the equivalence of the five systems presented. We

first prove that postulates (K-l) to (K-9) characterize the iterable AGM con­

tractions based on systems of spheres.

Theorem 4.17 (Postulates/ Systems of Spheres) Givenan iterable AGM

contraction —satisfying (K-l) to (K-9), there exists a system of spheres S for

L such that for every K and every A, K —A = Th([K] U fs"(ñA)). Conversely,

every —,, based on a system of spheres S for L satisfies postulates (K-l) to

(K-9).

PROOF. As —,,is a contraction based on systems of spheres it satisfies (K-l)

to (K-8). It is trivial to check that it also satisfies (K-9).

By Grove’s original result, for any AGM function for L that satisfies (K-l)

to (K-8) there is a system ofspheres S for L such that L-A = Th(fs(fiA)).

By definition S" = {[K] U Si I S,- E S}. There are two cases. For any

A e K, clearly fs"(ñA) = [K] n [-iA], then Th([K] U fs"(-1A)) = K and

by postulate (K-3), K = K —A, so we are done. For A e K, ¿"(ñ/1) =

mw, thenTh([K]u15M» = Th([K]u ¡ie/4)) = KnThwhA»
= K ñ (L —A), and we are done. QED

We shall prove that —“and the extended postulates are equivalent.

Theorem 4.18 (Postulantes/Episteij Entrenchments) Givenan iterable

AGM contraction — that satisfies (K-l) to (K-9), there exists an epistemic

entrenchment relation su for L such that for every K and every A, K —A =

{B e K l A e Cn(0) or A <5 (A V B)}. Conversely, every -u satisfies (K-l) to

(K-9).

PROOF. Again, by previous results, -u satisfies (K-l) to (K-8) and it is easy

to verify that it also satisfies (K-9).
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Let Se, be the epistemic entrenchment guaranteed to exist for any con­

traction function satisfying (K-l) to (K-8). We already proved that it is

an epistemic entrenchment for L.

If A e K then by (K-3), K —A = K. As su satisfies (EEI) and (EE4),

A<: (AVB) foral] B e K. HenceK-A: {B GK I Ae Cn(0)or

A <2 (A V B)}.

Suppose A e K. As 5: is the restriction of su, K -uA = {B E K IA G

Cn((l))orA<:(AVB)} = Kn{B€L|A€Cn(Ü)) orA<“(AVB)} =

(L - A) n K = K —A, if —satisfies (K-9). QED

We have presented —,,,,.and -,., and showed that they are both iterable

AGM functions relative to some fixed order for the inconsistent theory L. We

now prove that —,,,.and -., are in fact equivalent.

Theorem 4.19 (Meet FImctions/ Systems of Spheres) For each iterable

partial meet contraction -,,,. there exists a system of spheres S for L such that for

every theory K and every A, K -,,,.A = Th([K] Uc‘5‘(-|A)).Conversely, for each

iterable contraction —,,defined by a system of spheres there exists a selection

functions 3L such that for every theory K and every A, K -,, A = ns“ (A).

PROOF. The theorem is a direct consequence of the “Grove connection”

[Makinson, 1993] relating consistent complete theories in the language

of K including A and the elements in {K U Cn(A)|K e K .L HA} by a

total injective mapping. In the particular case when we consider the in­

consistent theory L, this mapping can be recast as a bijection between the

set of all consistent complete theories (worlds) and UAU(L .L A). Once

this connection has been established, the order provided by a system of

spheres centered in 0 defines a transitiver relational selection function 3L

and vice versa. QED

Finally, by using results in [Rott, 1992a] we can establish the equivalence be­

tween iterated epistemic entrenchment contractions and iterated safe contrac­

tions functions, proving that the five approaches presented are indeed five faces

of the same phenomenon.
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Theorem 4.20 (Epistemic Entrenchments/ Safe Hierarchies) For

each iterable epistemic entrenchment contraction -u there exists a virtually con­

nected hierarchy <,, that continues up Cn in L, such that for every theory K

and every A, K-uA = KñCn({B IVK’ g K, s.t. A E Cn(K') and K' is a Q

-minimal with this property, B e! K’ or there is C G K’ s.t. C <5 B}). Con­

versely, for each safe iterable contraction —,,there exists an epistemic relation

su for L, such that for every theory K and every A K —,,A = {B E K l A e

Cn(0) or A <2 (AV B)}.

PROOF. The first part is immediate. As it is proved in [Rott, 1992a], an epis­

temic cntrenchment is also a safe hierarchy. Furthermore the relativization

to K used during iteration is preserved. For the second part, let <,, be

the hierarchy for L associated to —,,.New using the main result in [Rott,

1992a] we can obtain an epistemic cntrenchment relation 5,, such that

the associated contraction function behaves as —,,for L. Take su as the

basis for our epistemic cntrenchment iterable contraction function —,.. If

A e Cn((ll)or A E K, then as both —,,and —uare AGM functions, K-,,A

=K= {BEKIAGCn(0)orA<C’:(AVB)}. IfAQCnUD)andAeK,

as the functions satisfy (K-9), K —_,A= (L —,,A) ñ K = (L —"A) n K

={BeKIAeCn(O))orA<:(AvB)}. QED

4.3 Properties

Postulate (K-9) immediately implies a weak form of monotony of the iterable

function. This has been noticed by Makinson (personal communication).

(Weak Monotony) IfA e K and K Q K’ then K —A g K’ —A.

This is a nice coherence property linking the contractions of different theories

by the same formula. Also the iterable revision satisfies that,

(Almost Constant) If -IA e K, K’ then K * A = K’ * A.

Namely, when the second argument is held fixed, the iterable revision be­

haves almost as a constant function on its first argument. By (K*9), if -|A is

in K then K * A is constant. But as iterable revisions satisfy AGM postulates

(K*3)and (K*4),if -1AE K, then K a:A = Cn(K U
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A key observation about iterable contractions is that they ought to be rel­

ative to the largest theory, L, because attempting to make them relative to a

smaller theory collapses with the AGM recovery postulate.

Observation 4.21 (Makinson, personal communication) Let - be an it­

erable AGM function. There is no value of theory H distinct from L for which

(K-9(H)): If A e K then K —A = (H —A) n K.

is consistent with (K-5) (the postulate of recovery).

PROOF. Suppose H 7€L. Choose any A in H (even T will do).

L =, by (K-5),Cn(L—A)U =,

by condition (K-9(H)) substituting L for K, = Cn(((H- A)nL) U{A}) =

,by monotony of Cn and de Morgan laws, g Cn(((H —A)) U {A}) =

,by (K-5), = H, giving us a contradiction. QED

Although iterable AGM functions are binary and almost constant, they do not

validate commutativity. In general (K —A) —B is different from (K —B) —A.

Just as AGM contraction and revision are inter-definable via the Levi and

Harper identities, so are iterable AGM contractions and revisions. Specifically,

the Levi identity lets us define iterable revision functions:

Levi. K*A= (K--u4)+A.

This is important since it allows for sequences of difl'erent kinds of changes, like

forexample(...((K+A) —B)*D...*C).

In [Alchourrón and Makinson, 1985]it is shown that under appropriate con­

ditions safe contractions are permutable ([Alchourrón and Makinson, 1985],

Lemma 7.1). Given (K-9), an iterable revision function a: can be defined in

terms of an iterable contraction function equivalently via Levi or R-Levi.

Observation 4.22 Iterable AGM contraction functions are permutable.

A direct proof of the above is immediate but the result also derives from Lemma

7.1 in [Alchourrón and Makinson, 1985].

As iterable AGM contractions induce safe contractions functions for each

theory K, the results pr0ved in [Alchourrón and Makinson, 1985] carry over:
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Observation 4.23 Iterable AGM contractions validate:

IfAeKmK2 then(Kang)-A=(K1-A)0(K2—A)
IfAeKmK2 then(K1UK2)—A=(K1—A)U(K2—A).

IfAeK-BandBeK-Athen(K-A)—B=(K-A)n(K-B)=
(K-B)—A.

And similarly for iterable revisions:

(WeakIntersection) If “A e K1ñKg then (K10K2)*A = (K1*A)n(K2*A)

(Weak Union) If -uA e K1 n K2 then (K1 U K2) a:A = (K1 * A) U (K2 * A).

(Weak Commutativity) If HA G K * B and -|B e K * A then

(K*A)*B= (K*A)0(K*B)=(K*B)*A.

In fact, these properties hold not just for two theories but also for indefinitely

many. We shall now show that the D-Ventilation property, which is a strength­

ening of the property Weak Interscetion, is not generally valid for iterable AGM

functions.

(D-Ventilation) (K1 ñ K2) arA G {(Kl * A) ñ (K2 * A), K1 a:A, K2 a:A}.

Observation 4.24 There exist iterable AGM revisions that violate D­

Ventilation.

PROOF. Let L* A = Cn(A/\ fiBA ñC). Assume K1 = Cn({B,A E -IC}) and

K2 = Cn({C,A E -|B}). Then (K1 ñ K2) * A = Cn(ñA A B A C) while

K1=Cn(A/\B/\HC) and K2=Cn(A/\-13AC). QED

Iterable AGM revisions satisfy just three of the six properties of Darwiche and

Pearl [1997].

C1. IfAECn(B) then(K*A)*B=K*B.

C2. If WAGCn(B)then (K*A)*B=K*B.

C3. IfA€K*BthenAe(K*A)*B.
C4. IfñAíK*Bthen-1A€(K*A)*B.
CS. IfHBGKarAandAe’KakBthenAí(K*A)*B.
CG. IfñB€K*AandñA€K*Bthen-|AG(K*A)*B.
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Observation 4.25

i) All iterable AGM functions, satisfy Cl, C3 and C4.

ii) There exist iterable AGM functions violating C2, C5 and CG.

Most noticeably, our iterable AGM functions validate the first six of the seven

postulates of [Lehmann, 1995], the seventh requires the property of historic

memory that iterable functions obviously lack.

Il. K * A is a consistent theory.

I2. A€K*A.

I3. IfB€K*A,thenADB€K.
I4. IfAeKthenK*31*...*BnEK*A*Bl*...*Bn fornz 1.
15. IfAGCn(B),thenK*A*B*Bl*...*BnEK*B*B¡*...*B,,.
16. IfñB €K*A then K*A*B*Bl*...*Bn E K*A*(AAB)*B¡*...*B,..

I7. K*-|B*B QCn(KU{B}).

Observation 4.26

i) All iterable AGM functions, satisfy 11-16.

ii) There exist iterable AGM functions violating I7.

Finally, let’s consider the properties in [Schlechta et aL, 1996].

(Or-Right) IfD E (K*A)*C and D e (K*B)*C then D e (K*(AVB))*C.

(Or-Left) IfD e (K*(AVB))*C then D e (K*A)*C or D e (K*B)*C.

Observation 4.27 Iterable AGM functions satisfy Or-Rjght and Or-Left.

We observe that iterable functions do not comply with the properties asso­

ciated to iterative schemes.

(T) KvoB=KoB.
(C) If-aBEKoA,thenKvoB=KoB.
(I) KvoB=Ko(A/\B)
(M)

K°A°B={KOB ,if-aBECn(A)K o (A A B) , otherwise.

Observation 4.28 There exist iterable functionsviolating (T),(M),(I) and (C).

Modest as they are, it is surprising that iterable AGM functions satisfy a good

number of the standard properties put forward as relevant for iterated change.
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Chapter 5

Update Functions

In this chapter we will concentrate on a distinctive binary function outside the

AGM framework, Katsuno and Mendelzon’s update [Katsuno and Mendelzon,

1992]. We will study various of its formal properties and we will complete and

clarify previous results that extended the function for infinite languages.

Some years after the seminal paper of Alchourrón, Gárdenfors and Makin­

son, Katsuno and Mendelzon presented a new theory change operation which

they called an update. In their paper, Katsuno and Mendelzon compared the

update operation with the previous revision operation and following the work

of [Keller and Winslctt, 1985] provided some interesting remarks on the difl'er­

ences between the two approaches: while revision functions seemed well suited

for modeling the change provoked by evolving knowledge about a static sit­

uation, update operations captured the change in knowledge provoked by an

evolving situation. We quote [Katsuno and Mendelzon, 1992], page 387:

“We make a fundamental distinction between two kinds of mod­

ifications to a kn0wlcdge base. The first one, update consists to

bringing the knowledge base up to date, when the world described

by it changes. . . .The second kind of modification, revision is used

when we are obtaining new information about a static world. . . . We

claim the AGM postulates describe only revisions.”

The two forms of change can be illustrated with the followingexample, which

is an adaptation of Katsuno and Mendelzon’s original one.

57
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Suppose that each day I either have no breakfast at all or I have coffee and

toast. Suppose you are now informed that I had coffeeat breakfast. How should

you incorporate this information into your knowledge? You could take it as an

indication that I had coffee and toast, with which moreover it is consistent,

so you expand your knowledge. This is what AGM revision sanctions for the

example. Another way to look at it, is to perform a case analysis over what you

know. There are just two possibilities that are consistent with your knowledge:

either (1) I have coffeeand toast, or (2) I have neither coffee nor toast. Suppose

(1). Finding that I had a coffee is perfectly reasonable with this case. Let us

say that the outcome of case (1) is the scenario described by case (1) itself. Now

suppose (2). Finding that I actually had a coffee conflicts with the case. You

are obliged to jump to the “closest” scenario to case (2) that accommodates the

information. For instance, it could be that I woke up late and left having no

breakfast; but at the bus stop I bought just a coffee from a vendor. Hom this

case analysis you conclude that definiter I had a coffee but that nothing can

be said about me having toast. This is the type of change dictated by update.

They showed that the two operations have indeed different properties and,

since then, AGM revision and update have been considered essentially different

forms of theory change. The nature of their difference, though, is still an open

question in the philosophical logic literature concerning theory change. For

instance, are there other fundamentally different operations besides revision and

update? A first formal difference between the two operations is that they do not

stand on the same definitional ground. Katsuno and Mendelzon formalized their

update operation as a binary connective between formulae in a logically finite

language —specifically,a propositional language Overa finite set of propositional

variables—, Alchourrón, Gardenfors and Makinson considered the general case

of a possible infinite language and their revision operator takes a. theory and a

formula to the corresponding revised theory.

A number of formal comparisons between the two approaches have been al­

ready investigated. In particular Peppas and Williams [1995]have reformulated

the update operation as a function over theories and extended Katsuno and

Mendelzon’s set of postulats so that an update operator may be used on first

order languages. Implicitly, their article claims that Katsuno and Mendelzon’s
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original postulates would be complete for general propositional languages, but

not for first order. [Peppas and Williams, 1995], page 120:

“Grove [5]used a syntactic representation based on maximal consis­

tent extensions, or equivalently consistent complete theories, without

the restriction of Katsuno and Mendelzonnote in [6]that due to

the one-to-one correspondence between consistent complete theories

and interpretations in the finitary propositional case, their represen­

tation result is derivable from the work of Grove Furthermore,

the one-to-one correspondence between consistent complete theo­

ries and interpretations does not require the finiteness property, and

therefore, in the propositional case Grove’s results have a semantic

counterpart. However, this one-to-one correspondence does not hold

for the more general first order case, and a model-theoretic charac­

terization for this case has not hitherto been established. . . . Katsuno

and Mendelzon [7]introduced a set of postulates for an update oper­

ator on finitary propositional theories We extend their set of postu­

lats so that an update operator may be used on arbitrary first order

theories.”

Their reference [5] stands [Grove, 1988], [6] for [Katsuno and Mendelzon, 1991]

and [7] for [Katsuno and Mendelzon, 1992].

In this chapter we will give a clarification of Peppas and Williams’ result.

After presenting briefiy the standard update operation in Section 5.1, we will

define updates for infinite languages. Then we will prove an unexpected result:

Katsuno and Mendelzon’s original postulates characterizing finite updates are

not sufi'icient for the infinite propositional case. In Section 5.4 we propose a

strengthening of postulate (U8) which enables a representation theorem to be

proved, obtaining the same postulate proposed in [Peppas and Williams, 1995].

Finally we will evaluate the update function against the general properties we

studied in Chapter 3.



60 CHAPTER 5. UPDATE FUNCTIONS

5.1 The Update Operation

Katsuno and Mendelzon define updates only for a classical propositional lan­

guage based on a finite set of propositional variables P. This simplifying assump­

tion has strong consequcnces as the set W of all possible valuations becomes

finite. Two main properties result: every theory can be finitely axiomatized by

a propositional formula; and every total order 4 on W is free of infinite descend­

ing chains. These two properties let Katsuno and Mendelzon provide a simple

definition of the update operator as a binary connective <>in the propositional

language: A<>B is a well formed formula denoting the result of updating the

theory Cn(A) with the formula B. The <)operator is characterized through the

following postulates:

(ul) A<>Bimplies B.

(u2) If A implies B then AOB is equivalent to A.

(u3) If both A and B are satisfiable then A<>Bis also satisfiable.

(u4) If A1 is equivalent to A2 and Bl is equivalent to B'z then A1031 is equiv­

alent to A2032.

(u5) (AGB) AC implies A0(B /\ C).

(u6) If A031 implies B; and A032 implies BI then A031 is equivalent to

A032.

(u7) If Cn(A) is complete then (A031) /\ (A032) implies A<>(BlV BZ).

(u8) (A1 V A2)<>Bis equivalent to (A103) V (A203).

They furthermore consider an additional postulate:

(u9) If Cn(A) is complete and (AGB) AC is satisfiable then AO(B/\C) implies

(AGB) A C.

Katsuno and Mendelzon provide also a semantic characterization of the update

operation through a notion of closeness between possible worlds. They consider

a set of partial preorders on W, {-jw: w e The intuitive meaning is

that v ju, u if and only if v is at least as close to w as u is. The indexical
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preorders -_<ware then used in the definition of the update operation: given

that any theory K can be semantically represented as a set of possible worlds

[K] = {wi e W : K g wi}, we can update K by considering the most plausible

changes (according to jwi) to each w.-to accommodate the new information.

The only requirement on ju, is a centering condition, establishing that for every

w, no world is as close to w as w itself: if v -_<ww then v = w.

The following characterization results hold for the update operation, see

[Katsuno and Mendelzon, 1992] for the details.

Theorem 5.1 Let L be a finite propositional language. The update operator

0 satisfies (u1)-(u8) iiï there exists a model (W, {jwz w G W}) where each ju,

is a partial preorder over W that satisfies the centering condition, such that

[AOB]= UwelA]{vE [B] : v is jw-minimal in

Theorem 5.2 Let L be a finite propositional language. The update operator

<>satisfies (ul) - (u5),(u8) and (u9) iff there exists a model (W, {jwz w e W})

where each ju, is a total preorder that satisfies the centering condition, such

that [AGB]= Uwewh e [B]: v is jw-minimal in (Postulates (u6) and
(u7) are superfluous in presence of the rest.)

5.2 Update for infinite languages

Following the notion of change advocated by Alchourrón, Gárden-fors and

Makinson [Alchourrón et aL, 1985], we generalize the update operation to the­

ories. We redefine the update operator o as a function that takes a theory and

a formula and returns a theory, o : 1Kx L -> K. Notice that in a finite propo­

sitional language this is just a notational variant of Katsuno and Mendelzon’s

original setting. We can straightforwardly recast the postulates governing the

update function for possiny infinite languages as follows:

(U0) K OA is a theory.

(U1) A e KOA.

(U2) IfA e K then KOA= K.

(U3) If K 9€L and A is satisfiable then K<>A 96L.
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(U4) If Cn(A) = Cn(B) then K<>A= KOB.

(U5) K<>(AA B) g Cn(KOA U {B}).

(U6) IfB e KOA and A e K<>Bthen K<>A= KOB.

(U7) If K is a complete theory then KO(A V B) _C_Cn(KOA U KOB).

(U3) (K1 ñ K2)<>A= (¡(1014) n (K20Al­

The additional postulate becomes:

(U9) If K is complete and Cn((KOA) U {B}) 96L then Cn((KOA) U {B}) Q

KO(A A B).

It is quite straightforward to extend the characteristic pointwise semantics of the

standard update function to infinite languages. The notion of closeness between

worlds requires some adjustment. In addition to the centering condition, each

:5.” should satisfy the limit assumption: let A be any formula in L, then there

exists some non-empty set Y, Y g [A] such that each element in Y is a ju,­

minimalelementof Formally,

Vw e W,‘v’Ae L,3Y Q [A],Y 760 such that Vy e Y,Va: e [A],y ju, :c.

Notice that the limit assumption is trivially satisfied in finite propositional lan­

guages.

Definition 5.3 (Update function) Let L be a possiny infinite propositional

language. Let (W,{jw: w e W}) be such that each ju, is a total preorder

over W satisfying the centering condition and the limit assumption. We define

OszLfiKas

KOA = Th( U {v e [A] : v is ;_<w-minimal in [A]}).
we[K]

5.3 A Non-Representation Theorem

The generalized version of the update postulates (U0)-(U9) does not characterize

the update operation in a language with an infinite number of propositional

letters.
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Theorem 5.4 If L is an infinite propositional language, postulates (U0)-(U9)

do not fully characterize the Q operation.

PROOF. Given a propositional language L with an infinite but countable num­

ber of propositional letters we will exhibit a. function o : K x L —>K

satisfying (U0)-(U9) for which there is no model (W, {jwz w e W}), sat­

isfying that VK e 1K,VAe L,KoA= KQA.

We semantically define o as follows. Let us single out an (arbitrary) point

v in W. For every K e K and for every A e L define

0 if [A] = 0.

[Ko A] = [K1 if [K1 g [A].
([K] ñ U {v} if A e 'u and [K] ñ [ñA] 960 is finite.

[A] if A í v or [K] ñ [-nA]is an infinite set.

We first check that o satisfies postulates (U0)-(U9). By definition o triv­

ially satisfies postulates (U0), (U1), (U2), (U3) and (U4).

(U5). We have to show that Ko (AAB) g Cn(KoAU {B}) holds. There
are three cases.

(a) If [K] Q [A]then KoA= K. IfñB e K, then Cn(KoAU{B}) = L

and (U5)is verified.If -|B QK, thenCn(KoAU = Cn(KU

Since A e K, Cn(KU {B}) = Cn(KU {A}u {B}) = Cn(KU {AA B}) =

K o (A A B). Thus, (U5) holds.

(b) Assume [K] ñ [-uA] 96 Ü is a. finite set. If [K] ñ [ñA V HB] is an

infinite set or A /\ B Q v then K o (A /\ B) = Cn(A /\ B) and (U5) holds.

Suppose [K] n [-nAV ñB] is finite and A /\ B e v. So [K o (A A B)] =

([K] ñ [AA B})U {v}, while [K o A] = ([K] n U Since B e v,

lK°AlnlBl = ((([K]n[A])U{v})nlBl)= ([KlnlAlnlBl)U({v}n[Bl)

= ([K] ñ [A]n [B})U {v}: [K o (A A B)], thus (U5) is verified.

(c) If [K] ñ [m4] is an infinito set then [K] ñ [-uAVfiB] is also infinite. By

definition [Ko (AA B)] = [AA B] = Cn([A]U [B})= Cn(K oAU {3}).

(U6). Suppose B e KoA and A e KoB.
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(a) If [K] Q [A]thenKoA=K. SinceBG KoA, thenB e K, so
KoB=K=KoA.

(b) Assume [K] n [HA] 96 0 is a finite set. If A e v then [K o A] =

([K] ñ [A])U Since B G K o A, then ([K] n [A])U {v} Q [B], and

in particular, B e v. Furthermore [K] n[-13] 96 0 is finite. Then, by

definition,[K o B] = ([K]ñ U Since,in addition, A E K o B,

we obtain that ([K] ñ [B]) U {v} Q Therefore, [K] ñ [A] = [K] ñ [B]

and hence under the conditions in (b), K o A = K o B. Now suppose

A ev. Then[KoA] = SinceB GKoA, [A]Q AsA e KoB,

[K o B] Q Hence [K o B] 96 ([K] n [B]) U {v}, because we assumed

A e v. Hence, it must be that [K o B] = [B], so [B] Q Therefore, [A]

=[B]andKoA=KoB.

(c) Assume [K] n [ñA] is an infinite set. Then, [K o A] = Since

B e K o A, then [A] Q There are two possibilities for K o B. If

[K o B] = [B] then, using that A e K o B, we obtain [B] Q [A] and

[KoA] = [KoB]. If [KoB] = ([K] ñ [B]) U {v} then B E v and

[K]n [-uB]is a finite set. Because A E KoB, n [B])U{v} Q [A],and

[K]n[B] Q [K]n[A]. Then, [K]n[sA] Q [K]n[HB]; but this is impossible

because we assumed [K] n [-uA]to be an infinite set and [K] ñ [-\B] to be

finite.

(U7). We want to prove that if K is a complete theory then Ko (AVB) Q

Cn(K o A U K o B). Assume K is complete.

IfA e K, KoA = K and Ko(AVB) = K. Thus, (U7) holds. IffiA e K,

and B e K, then Ko(AVB) = KoB = K, so (U7) holds. IfñA e K, and

-|BeK,ifAGvorBEv,thenKo(AVB)=v,andeitherKoB=v
or K o A = v, so (U7) holds. If -uAE v and -IB e v, then we obtain that

K o (AV B): Cn(AV B), K o B = Cn(B) and K o A = Cn(A). Hence,

(U7) is verified.

(U8). Weshowthat (K10K2)0A =(K10A)ñ(KgoA). Let K = Kang.
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(a) AssumeA e K. Then K10A=K¡, K20A= K2 and KoA = K.

Therefore (U8) is validated.

(b) Assume [K]I"I[HA]is a finite non-empty set and A e v. Then, [K 0A] =

([K]ñ[A])U{v}. If each [K¡]n[-'A], for i = 1,2, is a finite set then [KioA]

= ([KilnlAl)U{v}, i = 1,2, 3° [K014]= ([Klln[A])U([K210[AI)U{v} =

[K1oA]U[K20A]. Otherwise, suppose [K1]ñ[fiA] is an infinite set, and say

A e K2. Then it also holds that [KloA]U[K20A]= (([K1]0[A])U{v})U[K2]

= (([K1] ñ [AD U {v}) U ([K2l n [AD = ([K1] n [All U {v} U ([Kzl 0 [All =

((lKll U [16])n [Al)U{v} = ([Kl n[1‘1])U{v} = [K014]­

(c) Assume [K] ñ [fiA] is an infinite set or -uA e v. If ñA e v then

K oA = K10A = K20A = Cn(A), therefore, (U8) holds. Otherwise, either

[K1]ñ [-|A] or [K210 [-IA] or both are infinite sets. Clearly [K o A] = [A]

and, say, [K1] = So [K o A] = [K1 o A], therefore, independently of

the value of [K2 o A], we obtain that [K o A] = [K1 o A] U [K2 o A].

(U9). Assume that K is complete and [K o A] n [B] 760. We prove that

[Ko(AAB)] Q [KoA]n[B].

(a) IfA e K, KoA = K, by thehypotheses, B GK. So Ko(AAB) = K.

Thus, (U9) is verified.

(b) IfA í K, then since K is complete -|A e K. IfA e v, KoA = v.

By the hypothesis that [K o A] n [B] 76 ll)we conclude B e v. Thus,

[Ko(AAB)] Q [KoA]n[B]. In fact, [Ko(AAB)]= [KoA]ñ[B] =

IfA ev, [KoA] = [A]and [Ko(AAB)] = [AAB]. Thus, [KoA]n[B]=

[K o (A A B)], hence (U9) is verified.

Now suppose for contradiction that there is a. model M = (W, {jwz w e

W}), where each -_<wis a total preorder on W satisfying the limit assump­

tion and the centering condition, such that VK G K, VA E L,K o A =

K OA. Thus, for every theory K such that [K] is a. finite set, and for

every formula A, if -IA e K and A e v, where v is the distinguished point

appearing in the definition of o above, K 0A = K QA = v must hold. This

translates into the followingcondition on the model M.
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VI e lfiAlvvy e [Alav 7€ y; v "<1:y­

N0w let K be a theory such that [K] is an infinite set and let A e L

be such that A E v and -1A G K. Then by definition of o, [K o A] =

[A].However,[KQA]= U:€[K1{ye [A]: y is jI-minimal in =
Because the language is infinite {v} 76 QED

5.4 A Representation Theorem

In the previous section we proved that postulates (U0)-(U9) are insufficient

to characterize the update operation in an infinite language. We propose the

following postulate as a strengthening of Katsuno and Mendelzon’s postulate

(U8) to achieve the representation result.

(IU8) If K = nHi then K<>A= n(H,-<)A).

(IU8) states that the update of an intersection is the intersection of the updates.

Obviously (IU8) implies (U8). We now prove that postulates (U0)-(U9) plus

(IU8) completely characterize the update operation when infinite languages are

allowed. We will make use of the following lemma.

Lemma 5.5 Let ju, a preorder satisfying the limit assumption, an let X, Y be

L-nameable subsets of W. If min5w(X) Q Y then min¿w(X ñY) = min5w(X).

PROOF. Assume min¿w(X) g Y.

(g). Suppose v e min:w(X n Y) but v Q min._<W(X).Then for every

u G X ñ Y, v -_<wu, but there is some z e X such that z -<wv. By the

assumption that mini“, (X) Q Y, z e Y, so z e X n Y. By transitivity of

-<w,z «w 'u, contradicting the minimality of v in X ñ Y.

(Q). Suppose v e min¿w(X) but v e min¿w(X ñ Y).

Then there is some z e X ñ Y such that for all u E X n Y, z -<wu.

By the assumption that mini", (X) g Y, v G Y, moreover v e X r1Y. So

z -<wv, contradicting the minimality of v in X. QED
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Theorem 5.6 Let L be a possibly infinite propositional language, and let Cn be

a classical consequence relation that is compact and satisfies the rule of introduc­

tion of disjunctions into the premisses. An operator 0 satisfies postulates (U0)­

(U7), (IU8), (U9) if and only if there exists a model M = (W, {jwz w e W}),

where each ju, is a total preorder over W centered in w that satisfies the limit

assumption and for any K e K, A e L, K<>A= KOA.

PROOF'.

[4:]. We have to sh0w that the operator Q satisfies postulates (U0)-(U7),

(IU8) and (U9).

(U0) and (U1). Granted since, by Definition 5.3, [KOA]g

(U2). Follows as a consequence of the centering condition.

(U3). Follows by the definition of min on nonempty sets.

(U4). Obvious from the semantic definition of the update operation.

(U5). We have to sh0w that [KOA]n[B] g [KO(A/\B)]. If [KOA]n[B] =

0, the inclusion trivially holds. Assume [KOA] n [B] 96 0. Let u be any

in [KOA]n Then u e Uwelkfive [A]zv is jw-minimal in ñ [B]

= Uwelxlfv e [A]ñ [B] : v is jw-minimal in Let wo 6 [K] be such

that u is jua-minimal in That is V1;e [A], u jwo v. A fortiori,

u e [A]ñ Thus, there is no v G [A]ñ [B] such that v -<.,,ou, so u is

indeedjw-minimalin [A]ñ

(U6). Assume B e KOA and A e KOB. We want to show [KOA] =

[KÓB]. [KOA] = Uwelkflv E [A] : v is jw-minimal in By the

hypothesis that B E KÓA, [KÓA]Q So, [KQA]= Uwelkflv G [A]n

[B] : v is ju, -minimal in [A]n[B]}. Similarly, [KOB] = Uwemfi) e [B] :

v is jw-minimal in [B]}, and by the hypothesis that A e KQB, [KOB] Q

[A]. Hence, [KOB] = Uwe[Kl{v e [A]ñ[B] : v is jw-minimal in [A]r'1[B]}.

Therefore, [KQA] = [KQB], as required.

(U7). We have to prove that when [K] is a Singleton [KOA] ñ [KOB] Q

[KO(AV B)]. Assume [K] = Then, [KOA] = {v e [A] : v is ju­
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minimal in [A]},while [KOB] = {v E [B] : v is ju-minimal in Fur­

thermore [KO(A V B)] = {v E [A V B] : v is ju-minimal in [A V B]} =

{v e [A] U [B] : v is ju-minimal in [A]U = {v e [A] U [B] : v is -_<u­

minimal in [A]or v is ju-minimal in And finally, [KOA]fl [K0B]

= {v e [A]n [B] : v is ju -minima.lin [A]and v is ju -minimal in

Thus, [KM] n [KOB]g [KNA v B)].

(IU8). Assume [K] = U¡e¡[K,-] to show [KOA] = U¿E¡[K¿OA]. By

definition, [KQA]= Uweuíellkifiv e [A] : v is jw-minimal in =

U¿e¡(Uwe[K¡]{vE [A]: v is ju, -minimal in = U¿e¡[K,-OA].

(U9). Assume [K] = {u} and ([KOA]) n [B] 96 (ll. We have to show

[KQ(A/\ B)] g [KQA]n Suppose there is some y e [KOAA B] but

y í [KQA]ñ Then [KOA] g [-1B],contradicting [KOA]n [B] 95(0.

[=>]. Let 0 be a change function satisfying (U0)-(U7), (IU8) and (U9).

We will construct a model M = (W, {5.0: w e W}) such that for every

theory K e IK and formula A e L, K<>A= KQA.

We start by defining the model M. The domain W will be the set of all

complete consistent theories in the language L. Assume {jw2 w e W}

is any set of total preorders satisfying the centering condition, the limit

assumption and the following condition:

(i.) v ju, u iff there exists A e 'uñ u such that v e [wOA]or there exists

no satisñable A such that u e [wOA].

In the limiting case when K is the inconsistent theory or A is unsatisfiable,

K OA and K OA agree. We will now prove, for K and A satisfiable, that

u e [K0A] iff u e [KOA] by analyzing the difierent cases.

Suppose[K]=

[KOA] g [KOA]. Let v e [KOA]. By postulate (U1), [KOA] g [A],

so v e By (i.), for every u e [A], v -_<wu. Hence, v e {y e [A] :

y is ita-minimal in [A]}= [KQA].
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[KOA] g [KOA]. Let v e [KOA]. By definition of O, v e {y e [A] :

y is jw-minimal in So for all u e [A],v ju, u; thus, by (i.), v G

[wOA].

The general case, [K] > 1.

[KoA] g [KM]. Let v e [KoA]. By postulate (IU8), if [K] = U¡e¡[K¡]

then [KoA] = u,e,[K,-<>A].

In particular, [K] = U¿e¡[T¡-] for complete theories Ti. Thus, v G

U¡e¡[T.-<>A]. Hence, v must be in, say, some [TJ-0A], j e I. Then, by

the previous case, v e [TJ-OA].Therefore, v G UweIKl{y E [A] : y is ju,

-minimal in [A]}= [KOA].

[KQA] g [KOA]. Let v E [KOA]. Then, v E Uwelkfly e [A] :

y is jw-minimal in In particular, there exists some w e [K] such

that v e {y e [A] : y is ju, -minimalin By the previous case,

v G [wOA]. But [K] = U1.e¡[T,-]for complete theories Ti, such that w = Tj,

for some j e I. By postulate (IU8) we obtain that when [K] = U¿GI[K¡],

[K<>A]= [TJ-OA]u (uieuflmoAn. Hence v e [KoA]. qeu

Katsuno and Mendelzon’s characterization results based on partial orders as

opposed to partial pre-orders also lift to the infinite case, replacing postulate

(U8) with postulate (IU8).

5.5 Properties

Keller and Winslett’s [1985]first insightful distinction about two fundamentally

difl'erent operations has been taken as a fundamental one in theory change.

In what sense are revision and update so fundamentally different operations?

AGM expansions, revisions and contractions are also different operations from

one another, but not fundamentally so. Revisions and contractions are interde­

finable, and that expansions are a limiting case of revisions. Most importantly,

all AGM functions can be understood in the same semantic framework.

However, revision and update have been given different types of semantics.

Update has a characteristic pointwise semantics that appears in no represen­

tation of the AGM functions. Namely, AGM revision has been recast as some
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ordering over maxima] non-implying sets, entrenchment orderings, plain sys­

tems of spheres and safe hierarchies; all single global orderings. In Chapter 6

we will sh0w that it is possible to define an AGM operation based on the update

semantic apparatus, our analytic revision function.

Among the formal distinctions between revision and update, we have ob­

served that updates have been defined over propositional languages while revi­

sions are for general languages. But, as we have seen, nothing crucial relies on

this difference being possible to characterize the update operation for infinite

languages. Another difl'erence is that update is truly a binary function, while,

as we already remarked, general AGM functions are unary. Moreover, there

is a fundamental property that relates the update of two theories: the update

function is monotone with respect to its first argument, the second held fixed.

Monotony is a direct consequenceof postulate (IU8) and the fact that 0 always

returns a theory, i.e., KOA = Cn(K<>A).

Observation 5.7 O satisfies Monotony.

Pnoor. AssumeK g H. Then K = KnH. By (IU8) K<>A=K<>AnH<>Ag

H<>A. QED

Let’s concentrate now on the properties we presented in section 3.3. Since <>

validates (U8) it also validates Weak Intersection and D-ventilation. Katsuno

and Mendelzon have defined a notion of erasure associated to that of update,

which is defined via the Harper identity. Namely, K -A = K nKOA. Using the

Levi identity erasure and update are interdefinable; hence, K OA = (K —-nA)+

A, where + as the standard expansion function. Our first Observation indicates

that the update operator is not permutable, since the update operation does

not overcome the inconsistent theory.

Observation 5.8 O is not not permutable.

PROOF. For K a consistent theory such that fiA in K, K —fiA = K n K OA

is a consistent theory, such that "A a!K —“A.

However, (K + A) equals L, the inconsistent theory, and applying the

Harper identity, L —fiA = L n L0-\A= L.

Therefore, (K —-|A) + A 96(K + A) —“A. QED
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The update function does not validate Union, Weak Union, Elimination, nor

Commutativity. For case of presentation we will write again the the different

properties, putting a generic function o : 1K x L —vK.

(Union) Cn(K1 U K2) o A = Cn((K10 A) U (K2 o A)).

(Weak Union) If -|A e K1 ñ K2, then Cn(K1 U K2) o A = Cn((K¡ o A) U

(K2 ° Al).

(Elimination) (K o A) o B = K o (A /\ B).

(Commutativity) (K o A) o B = (K o B) o A.

Observation 5.9 There exist update functions violating each of Union, Weak

Union, Commutativity and Elimination.

PROOF‘. Let L be a propositional language based on just two propositional

letters A and B. Let K = Cn(-|A A -|B). Suppose [A] = {101,102}and

[B] = {wnwa}

Let’s first prove that the update function fails Union. Let <>be any one

satisfying the followingpairs of the respective centered preorder relations;

let wl «w. wz, wz «w, w1 and wz «w. w].

Therefore, [K] = {w4} and [KOA] = [K] = {wl}. But [Cn(-1A)<>A]=

{101,102}and [Cn(-13)<>A] = {wz}. Thus, O does not satisfy Union since,

Cn(K1 U K2)<>A 96Cn((K1<>A) U (K20A))­

The same example shows that 0 does not satisfy Weak Union. To see

that the function does not validate Commutativity, let <>be an update

function such that w3 «w, w4, wl «ws wz and let [K] = {wz}.

Then [KOA] = {wz}, [KOAOB] = {wa}, [KOB] = {wa} and

[KOBOA] = {wl}. Thus, K<>A<>B96 KOBOA. This example also

shows that KOAOB 7€ K<>(A A B), since [KO(A /\ B)] = {wl} and

[K OAOB] = {w3}. QED

Interestineg <>fails (Or-Left) but satisfies (Or-Right).

(Or-Right) IfD G (KoA)oC and D e (KoB)oC then D e (Ko(AVB))oC.

(Or-Left) IfD e (Ko(AVB))oC then D e (KoA)oC or D e (KoB)oC.

Observation 5.10 <>validates Or-Right but fails Or-Left.
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PROOF. (Or-Right). Assume (1) D G (KOA)<>C and (2) D e (KOB)<>C.

[KOAV B] = UwelK]{v e [AV B] : v e min:w([AV B])} =

Uwe[K]{v e [A] U [B] =‘U6 min-_<.u(lAl U {131)} =

UwelK}{v e [A] z v e min¿w([A] U [B])}U Uwelkflv e [B] : v e

mináwflAl U [B])}­

Since UweIKlfve [A]: v e min¿w([A]U Q [KOA], and UweIKlfv e

[B] : v e min._<w([A]U Q [KGB], we obtain that [KOAV B] g

[KoA] u [KoB].

¡(KM v Emo] = uwemwlw e [o] = v e miniwacm g

UwelKoÁl{v e [C] : v e min._<w([C])}U Uwe[KoB]{v e [C] : v 6

min:w([Cl)}­

By (1) Uwe[KOA]{v G [Cl 1” e min;<W(lCl)} S [D],

and bYl2) UwE[K<>B]{ve [Cl ï 'Ue min:w(lcl)} S

Therefore,[(KÓAVB)OC]Q

(Or-Left). Let L be a propositional language based on four propositional

letters A,B,C and D. Let K = Cn(ñA A “B A HC) = ws ñ ws. wz =

Cn(A/\ñB/\C/\D), 'UJg= Cn(ñAAB/\C/\D), and wa = Cn(A/\B/\CA-|D),

Let’s prove that the update function fails Or-Left. Let <>be any one

satisfying the followingpairs of the respective centered preorder relations;

let wz «ws w,- for all i 96 5,6, wg «we w,- for all i < 6, and wa «ws w,- for

all i 962,5, wa «w, w.- for all 1'56 9,6.

Therefore, [K] = {w5,w6} and [K0(AV B)] = {102,109}.Since w2,wg e

[C] and w2,w9 e [D] then [K0(AV B)<>C] = {102,109}and D G KO(AV

B)<>C.

On the one hand [KOA] = {102,103}. Since 102,103e [C], [KÓBOC] =

{w2,w3}. Since w3 e! [D], D e KOAOC.

On the other hand [KOB] = {103,109}.Since w3,wg E [C], [KOBOC] =

{w3,wg}. Since w3 í [D], D í KOBOC. QED

Let’s turn our attention to Lehmann’s postulates for iterated change. The

postulates that deal with iteration are not validated by the update operation.
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(Il) K 0A is a consistent theory.

(12)AEKoA.

(13)IfBeKoA, thenADBGK.
(14)IfAeKthen¡{0810...an=KvoB¡o...an fornZ1.
(15)IfAGCn(B),thenKvoBoBlo...oB,.=KoBoBlo...an.
(16)If-|B eKoA thenKvoBoBlo...an = Kvo(AAB)oB¡o...an.
(I7)KoñBoBg Cn(KU

Observation 5.11

i) All update functions satisfy (Il), (12), (I3), (14).

ii) There exist update functions violating (15), (16) and (I7).

PROOF. The Violation of (15), (16) and (I7) can be proved by constructing a

counterexample.

(Il), (I2), (13), (14) follow from postulates (U0)-(U5). QED

Updates do not validate any of Darwiche and Pearl's postulates [1997].

(C1) IfA 6 Cn(B) then (KoA) oB = Ko B.

(C2) If -1Ae Cn(B) then (K o A) o B = K o B.

(03) IfAe KoB thenAe (KoA)oB.
(C4)If-uAQEKoB then HA€(K0A)oB.

(C5)IfaBe KoA andAgKoB thenA€(KoA)oB.
(C6)If-uBe KoA and ñAeKoB then “AG (KoA)oB.

Observation 5.12 There exist update functionsviolating (Cl)-(C6).

Finally, we observe that the update function validates none of the postulates

for iterated change associated to iterative schemes.

(T) KvoB=KoB.
(C) IfñBG KoA, thenKvoB=KoB.
(I) KvoB=Ko(A/\B)
(M)

KoB ,if-‘BECn(A)KvoB=
Ko(A/\B) , otherwise.

Observation 5.13 Thereexistupdate functionsviolating(T),(M),(I)and
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Chapter 6

Analytic AGM Functions

In this chapter we will resume the discussion we initiated in Chapter 5 about the

difference between AGM revision and update and we will end up establishing a

bridge between the two kinds of change. We will provide a new presentation of

AGM revision based on the update semantic apparatus, a pointwise semantics

for revision. Our strategy will be to define a new semantic operation as a variant

of the update operation that we will dub analytic revision. The key idea is that

for each theory K we will define a preorder relation obtained from the indexed

relations of an update model. We will show that our analytic revision is indeed

a binary AGM function, that is defined for every theory and every formula.

Theorem 6.15 is the main theorem of this chapter, and provides a charac­

terization of analytic functions as those AGM functions satisfying (K*1)-(K*8)

plus two new postulates, (Ka) and (K*V), governing the revision of different

theories.

This study builds on our initial work in [Becher, 1995b]. In that paper

our current analytic function was called a. “lazy update” reflecting that it was

semantically defined as a variant of the standard update operation. Lazy update

were just defined for finito languages and we proved they satisfy all AGM revision

postulates.

The independent work of Schlechta, Lehmann and Magidor’s “Distance Se­

mantics for Belief Revision” [Schlechta et aL, 1996] turned out to be related

to ours. Notably, their revision function based on distances and our analytic

75
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revision function are definitionally equivalent, modulo some considerations over

the formal structures they are based on. Our work extends and continues theirs

in several respects. We consider an infinite language and we obtain characteri­

zation results for functions built over non symmetric distances -—aquestion left

open in [Schlechta et aL, 1996]. Also novel in our work is the definition of AGM

revision in the update semantic structure, which allows us to connect these two

seemingly incomparable forms of theory change.

6.1 Analytic revision functions

Our aim is to define the AGM revision function in the semantic framework

of update. We start by noticing some important particularities of the update

function which are not shared with revision. As we already remarked in Chap­

ter 5 update is an “authentic” binary function, but general AGM revisions are

not. Another difference is how they deal with the inconsistent theory. In the

update setup the inconsistent theory is a sink from which the change function

cannot escape. In contrast, the revision of even the inconsistent theory should

be consistent as far as the new information is (by postulate (K*5)); i.e. revision

can rec0ver from inconsistency, update cannot overcome it. Finally, following

the ideal of minimal change, a consistent revision always coincides with an ex­

pansion (by (K*3) and (K*4)), which does not hold for update. And a crucial

consideration is that update possesses a pointwise semantics, that appears in

no presentation of the AGM theory.

Consider a theory as a set of possible scenarios. Katsuno and Mendelzon’s

operation can be calculated by means of a case analysis over the set of complete

scenarios compatible with the original theory. First, for each case find out

its closest outcome that accommodates the new information; then take as the

overall result what is common to all outcomes. Even though for each case the

closest outcome entailing the new information is selected, some outcomes could

be relativer implausible. Could we have a measure to determine when one

outcome is more plausible than another? What is a sensible notion to compare

outcomes? We suggest that one outcome is more plausible than another when

it is at a closer distance from the theory under change. We will first formalize a
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notion of distance we will be concerned with, and then define a new operation

that picks as a result of the changejust the outcomes that are minimally distant.

We will call this operation an analytic revision.

A distance is a binary function f : X x X -—>Y, such that X is a set and Y

is a totally ordered set with minimal element, satisfying that f (2:,y) = min(Y)

iff :1:= y (centering) and f (1:,y) = f (y, 1:) (symmetry). But there are weaker

notions. Ultrametric distances satisfy the centering and the triangular inequality

and pseudo distances just satisfy the centering condition. Since we seek the

connection between revision and update, we are interested in a notion of distance

that corresponds to the proerders of update models. Thus, weshall be concerned

with pseudo distances only, and making some language abuse we will refer to

them just as distances.

Assume L is a possiny infinite propositional language, and W is the set of

all it maxima] consistent sets. Let’s recall Definition 5.3. An update model is a

structure M = (W,{jwz w e W}), such that each ju, is a total preorder over

W satisfying the centering condition and the limit assumption.

It is possible to recast an update model into a model based on functions

having as range any totally ordered set with smallest element. We will consider

the set R+ of real numbers greater or equal to 0, but any other (not well

founded) totally ordered set with smallest element would do. It is clear how

each total preorder in the update model induces a function du, such that all the

information encoded in ju, is placed in du, : W -> R.

‘vim u ifï dw(v) S ¿Mul­

The centering condition establishes a restriction on the possible values of the

functions.

(centering) dw(w) = 0 and for every v e W such that v 9€w, dw(v) > 0.

For each indexical total preorder ju, the limit assumption requires that for each

L-nameable set (by a single formula) [A]there exists some -_<w-minimalelementsof
(limit assumption) For each z G W, for each [A]g W, there are y e [A]such

that Vy’ G [A], (12(9) S dz(y’)­
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The update of K by A is defined as:

KÓA = Th( U {v e[1‘111dw(v)= dw(lAl)})­
w€[K]

Just for convenience we give the following

Definition 6.1 (Distance between two points) Let an update modelM =

(W, {dw : w e W}) be given. We define the distance function d : W x W —>R

between pairs of worlds v,w as the value of w in dv: d(v,w) = dv(w).

Since functions du, obey the centering condition, the distance from a point

to itself is 0 and the distance from a point to every other point is greater than 0.

We will require no further properties on d for the moment. Notice in particular

that this conception of distance is not symmetric since d(w, v) may differ from

d(v,w). Boutilier (personal communication) has provided a good rational for it:

“The lack of symmetry seems certainly appropriate when the ordering mirrors

exogenous change; for instance, it is quite easy to break an egg while it is

hopeless to put it back together.”

We shall extend the above definition to distance between sets, as the result

of a double minimization. The definition of d : P(W) x 'P(W) —>R covers the

limiting case of the empty proposition in a way that will be convenient.

Definition 6.2 (Distance from a set to a set) Let d be a distancefunction

obtained from an update model (W, {dw : w e W}). Let X, Y be subsets of W.

Let f : W —>Hi be any positive (greater that 0) function. We define.

minxex minyey{d(x,y)} , if X, Y 96Ü.

¿(XaYl = minyey{f(y)} , ifX = (¡LY5€0­

0 , if Y = 0.

From now on we assume the extended distance function and, abusing nota­

tion, we will write Singleton sets without braces, i.e. we will write d(u, v) instead

of d({u}, As before,notice the lackof symmetry: in general d(X, Y) is dif­

ferent from d(Y, X). Furthermore we will directly consider models M = (W,d)

instead of the indexical models as we can straightforwardly move from one to

the other. We are ready now to give the formal semantic definition of analytic

revision.
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Definition 6.3 (Analytic revision) Let M = (W,d) be a model and X, Y g

W, then the analytic revision o : ’P(W) x 'P(W) —>'P(W) is defined as

XoY = {y e Y : d(X,y) =d(X,Y)}.

The syntactic counterpart taking as arguments a theory and a formula, i :

K x L -> 1K is simply

m = ThuK]- [AD­

6.2 Connections

6.2.1 Analytic revision and update

The crucial semantic difference between analytic revision and update is that

analytic operation relies on two minimizations while the update just one. As a

direct consequence an analytic revision ignores some of the possible outcomes

that an update would consider. Then the theory resulting from an analytic

revision is at least as informed as that of an update.

Observation 6.4 If K is consistent,KOA g KiA.

PROOF. We want to show that X o Y is included in X <>Y. Suppose y G

X o Y. Then minxex{d(z,y)} = minxex'yley{d(a:,y’)}. Fix a value

2:0 of a: e X such that d(a:o,y) = minxex{d(z,y)}. Then d(a:o,y) =

minxexlyrey{d(z,y’}. Hence d(a:o,y) = minyley{d(a:o,y’}. Hence y e

XOY. QED

The reason for this observation being relative to the consistency of K is that the

update function of the inconsistent theory results in the inconsistent theory. In

contrast, analytic revision overcomes inconsistency. The following result asserts

that when the theory is also complete the two operations coincide.

Observation 6.5 If K is consistent and complete then K¡A = K OA.

PROOF‘.The proof is quite trivial. Let K be consistent and complete, so its

propositionis a Singleton[K]=

Then, [KOA] = U¡E[K1{w E [A] : d¿(w) = d.-([A])} = {w E [A] : ¿“(10) =

dnd/11)} = {w e [A] =d(lKl,w) = d([Kl, {AD} = [K] ° [A]. QED
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We establish precisely the connection between analytic revision and update,

generalizing the two results above.

Observation 6.6 Let K be a consistent theory and (W,d) a structure for the

update operation <>.Then for every formula A there exists a consistent theory

K’ Q K such that KiA = K’OA. In particular, K’ may be chosen as Th({w e

[K]: d(w, = d([K], (Noticethat K' dependsonA.)

PROOF. By Observation 6.4 we know that taking K’ = K provides us with

a theory that is too weak to satisfy the observation. Let’s study this in

detail.

If A is a satisfiable formula, [A] 96(D,so [K OA] is not empty.

By definition [KOA] = UwelKl{v e [A] : dw(v) = dw([A])} = Uwelkflv G

[A] =¿(10,11) = d(ml/11)} =

U{{v 6 [A] =d(w,v) = d(1114141)}Iw G [K] and d(uulAl) = ¿(IMJ/11)}

U

U{{ve [A]:d(w,v)= d(w, :we [K]andd(w, > d([K],

Thus, [K'] shouldbe chosenas [K’]= {wE [K]: d(w, = d([K],

in which case K’QA = KSA. QED

The next lemma states that when a formula is consistent with the theory, the

analytic revision operation is just the addition of the formula to the theory.

Lemma 6.7 If A is consistentwithK, then KiA = Cn(KU

PROOF. Assume A is consistent with K. Then [K] n [A] 96Ü. By the centering

condition d([K],[A]) = 0 and for any v e [K],d([K],v) > 0. Then by

Definition 6.3, [K] o [A] = {w e [A] : d([K],w) = 0}. Thus, [K] o [A] =

[K] n [A]. QED

In spite of the technical connection it is not surprising to find that the analytic

revision is not an update operator.

Observation 6.8 5 satisfies (U0)-(U7) and (U9), fails (IU8) and fails

monotony.
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PROOF. Let’s see first that 3 satisfies (U1)-(U7) and (U9).

(U0) and (U1) are granted since by Definition 6.3, [K] o [A]Q

(U2) follows as a direct consequence of Lemma 6.7.

(U3) is a consequence of the limit assumption of d.

(U4) is obvious from the semantic definition of analytic revision.

(U5)l We have to show that ([K] o [A]) n [B] Q [K] o [A A B]. If ([K] o

[A])n [B] = 0, the inclusion trivially holds.

Assume ([K]o[A])l"I[B] 7€(D.By Definition 6.3, ([K]0[A])n[B] = {w e [A] :

d([K],w) = d(li’ïlalz‘1])}f7[¡3]={w€[A10[311d([K],w)= d([K], {AD}­

A180,[K]°[(A/\ 3)] = {w E [A]“[31=d([K]aw)= d([K], [A]0 {BD}­

Suppose for contradiction that (1) u e ([K] o [A]) n [B], and (2) u E

[K] o [(A /\ R‘om (1) we obtain (3) u e [A]ñ [B], while (2) can be

rewritten as (2’) u e {we [A]ñ [B]: d([K],w) = d([K],[A]n

Then by (2’) and (3) we obtain (4) d([K],u) > d([K],[A]n By (1)

we have that d([K],u) = d([K], [A]),and (3) assures that u e [A]n

Hence we obtain d([K],u) = d([K], [A]ñ [B]), contradicting (4).

(U6) Assume B G KiA and A e KiB. Since d([K], [A]) =

minzelK] minyE[A]{d(z,y)}, there exists v e [K]o [A]such that d([K], v)

d([K],[Al). Similarly, there exists w G [K] o [B] such that d([K],w) =

d([K], [B])­

Since [K] o [A] g [B], then d([K],[A]) = d([K],v) 2 d([K],[B]). Also

since [K] o [B] g [A] d([K],[B]) = d([K],w) 2 d([K],[A]). We obtain

d([K], [AD Z d([K], [13])2 d([K], Ml), thus, d([K], [AD = d([K], [BD- We

conclude, [K] o [A] = [K] o [B], as required.

(U7) Assume [K] = {u}, then distance from [K] is exactly distance from u

and d(u, [AVB]) = d(u, [A]U[B])= min{d(u, [A]),d(u, [B])}. Without loss

of generality assume d(u, [A])5 d(u, Then [K]o [AV B] = [K]o [A];

hence, ([K] o [A]) n ([K] o [B]) g [K] o [AV B].

(U9)2 We have to show that if [K] is a Singleton and ([K] o [A])n [B] is not

' empty then ([K]o[A/\B]) Q ([K]o[A])ñ[B]. Assume (1) ([K].[A])ñ[B] 9‘:

lNotice that this postulate corresponds to the AGM revision postulate (K‘7).
2Notice that this postulate is a partícula: case of the AGM revision postulate (K‘B).



82 CHAPTER 6. ANALYTIC AGM FUNCTIONS

0. Then there is some :I:e [A]ñ [B] such that d([K], [A]) = d([K],:c).

Suppose (2) [K] o [A/\ B] z ([K] o [A])n Then there is some u G

[K] o [AA B)]) but u í ([K] o [A])n By (1) and (2) we obtain (3)

d([K],[A A B]) = d([K],u) > d([K], [A]). By Definition 6.3 and (3), for

every w e [A], if d([K],w) = ([K], [A]) then w e [A]U [-nB], contradicting

(1). Notice for later use that for this proof we have not made use of the

hypothesis that [K] is a Singleton.

To prove that 5 fails postulate (IU8) suffices to to provide witnesses to

(X U Y) o Z 96(X o Z) U (Yo Z). Let X, Y,Z g W non-empty, such that

XnZ=0and ¡”02750. Hence(XUY)ñZ=YñZ;ÉiD.

ByLemma6.7,YoZ=YñZand(XUY)0Z=(XUY)0Z=YnZ.
Therefore, (X U Y) o Z = Y o Z. Hom postulate (U3) proved above,

X o Z 96 0.

Since X o Z may not be included in Y o Z, (U8) may not be satisfied.

For instancelet X = g [AAñB], Y = g [AAB AC], Z = [B],

and let v e [B A-IC]. Let dx, dy satisfy the centering condition such that,

(11(1))= 1. Then, v e XoZ and YoZ = Thus, (XUY)0Z is

difl'erent from (X o Z) U (Y o Z).

That 5 fails monotony can be proved using the same strategy of Observa­

tion 2.1. QED

The analytic revision operation relies only on those possible worlds that regard

the change as minimally distant from the theory under change. Then, if possi­

ble, the analytic revision will understand new information as having caused no

change at all, a mere confirmation of what already was a possibility in our pic­

ture of the world. This behaviour has been stated as Lemma 6.7 and is shared

with AGM revision. In the next section we will show that AGM revisions and

analytic revisions are indeed connected.

6.2.2 Analytic revision and AGM revision

First we will note that the analytic revision function 3 satisfies the AGM pos­

tulates (K*1)-(K*8).
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Theorem 6.9 3 is a revision operator satisfying (K*1)-(K*8).

PROOF. Most postulates followdirectly from Definition 6.3 or from Lemma 6.7.

(K*7) and (K*8) have been proved as postulates (U5) and (U9) respec­

tively, in Observation 6.8. QED

It is important to remark that the key idea behind an analytic revision is to

define a meaningful distance relation between sets in terms of the functions du,

(which in turn were obtained from the ternary relations -_<w).For example, a

candidate distance from a theory K could have been any arbitrary dv. But it is

evident that the change operation this approach would induce does not satisfy

the complete set of AGM revision postulates.

Observation 6.10 AssumeL a languagewith at least two propositional letters,

K an incomplete theory of L, v e [K] a single element of W and dv an real

function for v satisfying the centering condition. Let o be a change operation

for K defined as K o A = Th({y e A : d.,(y) = ¿”([A])}). Then o satisfies

(K*1),(K*2),(K*5)-(K*8) but in general fails (K*3)(K*4).

PROOF. (K*1),(K*2),(K*5)-(K*8) have identical proofs as those in Theo­

rem 6.9.

(K*3). Since we assume K is not complete then there is a formula A

such that A,-uA Q K. Then, either v e [A] or v e [-nA]. Without loss of

generality, suppose v e [ñA]. Then, there is some a:e [K]n We show

a counterexample to (K*3) such that a: e [K o A]. Since L has at least

two propositional letters, there is some u e [A], u 962:. Let d.,(u) < dv(a:).

Then, a: gl [K o A] = {y e [A] : du(y) = ¿”([A])}, as a: is not a minimal

element in dv satisfying A.

If we add to the the previous counterexample that u e [K] and ¿”(u) =

¿”([A]), then postulate (K*4) also fails as u E [K o A] but u e [K] n

QED

Distance from theory K becomes the standard ordering used in the semantic

presentations of AGM revision (a world w is as close as v from theory K if and

only if the distance from [K] to w is not greater than the distance from [K] to

v).
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Theorem 6.9 shows that every analytic revision function is an AGM revision

function. However, what is most interesting about analytic revision is that a

transitiver relational AGM revision function is an analytic revision. Only after

this result we can speak of a true connection between AGM revision and the

semantic structure of update.

Theorem 6.11 (Makinson, personal communication) Every revision

function * for K satisfying the extended set of AGM postulates (K*1)-(K*8) is

an analytic revision function for K.

PROOF. Let * be an AGM revision function for K satisfying (K*1)-(K*8). By

Grove’s result, there is a system of spheres SK for K that represents *.

By Observation 2.14 SK induces an real function dK on W into the reals

greater or equal 0, satisfying (centering) and (Limit Assumption).

The proof of the theorem just consists in showing that any real function

d : W —>HT" satisfying (centering) and (Limit Assumption) can be ex­

tended to a distance function, obtaining the semantic structure of analytic

revision. We define d : W x W —>B" as follows.

i. Vw,v e [K],w 96v, d(w,v) = 1,

ii. Vw e W, d(w,w) = 0,

iii. Vw e [K],Vv e W \ [K], d(w,v) = dK(v),

iv. Vw e W \ [K],Vv e W,d(w,v) = gw(v),

where gw : W —>HF is any function at all assigning values greater than

0. We extend d as a function on sets as usual, taking d((D,v) = dK(v), for

the empty set. We have to check that the function d is of the kind needed

to generate a analytic revision operation. We just check that the induced

relations ju, over W defined by setting

u ju, v iff d(w,u) 5 d(w,v), for all u,v, e W

satisfy (1) ju, is a a total preorder on W, and (2) -_<wis centered at w;

i.e. if v ju, w then v = w.
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Now (1) is immediate. To prove (2), let u e W with u 7€ w. We want

to show that w -<wu; i.e. that if u 7€w then d(w,w) < d(w,u). By the

second case of our definition of d, d(w,w) = 0 for all w e W, hence we

have to show that for w 96u, d(w,u) > 0. If u,w are both in [K], then by

the first case d(w,u) = 1 > 0. If w is not in [K], it follows from the fourth

case that d(w,u) > 0. If w in [K] and u is not, then d(w,u) = r(u) > 0

since r is itself centered in [K Thus in all cases d(w,u) > 0 and we are

done.

It is immediate from the definition of d that (3) for all u,v e W \ [K],

for any w e [K], d(w,v) 5 d(w,u) ifi' dK(v) S dK(u) ifi cK(v) g cK(u),

and (4) for any u,w e [K] and for all v e W \ [K] , d(w,v) = d(u,v) =

d([KLU) = dK(v)­

Now let o be the analytic revision function determined by the struc­

ture (W,d). We have to show that for all A, [K * A] = [K] o

If [K] n [A] 96 0, by (K*4) in Lemma 6.7 we have [K * A] = [K] n

[A] = [K] o Suppose [K] n [A] = 0. By definition of analytic

revision and (4) [K] o [A] = {v G [A] : d([K],v) = d([K],[A])} =

{v e [A] : dK(v) is S-minimal in {dK(w) : w G [A]}}= {v E [A] :

v is in the g-minimal sphere in S that intersects = (by (3) above)

[K * A]. QED

We observe in the proof above and also in Definition 6.2 that we have consid­

erable freedom when defining the behaviour for the revision of the inconsistent

theory. For example we could require what Makinson called the Overkilling

property (O). It says that the analytic revision of an inconsistent theory should

result in plain acceptance of the new information. Coincidentally, this property

defines the revision of the inconsistent theory in [Schlechta et aL, 1996].

(O) If K is inconsistent then K o A = Cn(A).

The analytic revision function that comply with (O) can be characterized by

the function f : W —>R+ involved in the definition of d (see Definition 6.2).

Observation 6.12 (Makinson, personal communication) o satisfies

(K*1)-(K*8) and (O) if and only if f is a constant function.
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PROOF. i satisfies (K*1)-(K*8) and (O) iff, by Theorem 6.9 and 6.11, i is

a analytic revision in (W,d) s.t. if K is inconsistent then K ¡A = Cn(A)

iff i is a analytic revision in (W, d) and for any A, {w e [A] : 21(0),w) =

d(0, [A])}= N0w, {w E [A]: d(ll),w)= dm, = [A]iff for any v,

w in [A], f(w)= f(v) iff f is a constant function. QED

6.3 Representation Theorems

Theorem 6.11 proved the correspondence between analytic revision and AGM

transitiver relational partial meet revisionsof a given theory. However,analytic

revisions are defined for every theory, not just for a given theory, and the analytic

revisions of different theories are not independent. Thus the question whether we

can characterize the family of AGM unary functions corresponding to a given

analytic operation remains. We are looking for the postulates that link the

behaviour of revision of different theories. In the case of a finite propositional

language the needed postulate the D-Ventilation condition that we introduced

in Chapter 3 as the dual to the Ventilation, which we now name

(K*fin) (K1 ñ K2) * A e{K1* A,K2 arA, (K1 * A) ñ (K2 * A)}.

(K*fin) forces a constraint between the revision of a theory and the revision of

theories in which it is included. We can indeed show that in a finite language,

(K*1)-(K*8) and (K*fin) completely characterize analytic revision functions.

Theorem 6.13 Given a finite propositional language L, an operator * satis­

fies postulates (K*1)-(K*8) and (K*fin) if and only if there exists an analytic

revision function i such that for any K G K, A E L, K * A = KiA.

PROOF. By Theorem 6.9 we know that i validates (K*1)-(K*8). We shall

verify that i also validates (K*fin).

Let M be any model for 5 M = (W,d), A any formula of L and K any

theory of L such that K = K1 n K2 for theories K1, K2.

We have to show that in model M, [KSA] e {[KliA], [KgiA], [(K15A)] U

[(K25A)l}­
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By Definition 6.3 [KiA] = {v e [A] : d([K],v) = d([K],[A])}. Also by

definition, d([K],v) = d([K1]U [K2],v) = min{d([K1],v),d([K2],v)} and

d(lKl,ll‘1l)= d(lKll U [K2],[All = mín{d(lK1L[Al),d(lK2],lAl)}­

Then either d([K¡],[A]) < d([K2],[A]) and K¡A = KliA, or

d([K21,lAl)< d(lKlla [All and K514= KzïA, or d(lK1lrlAl) = d(lK2l, [All

and then KSA = KliA n KgiA.

By Theorem 6.11, given a fixed theory K, * restricted to K is a analytic

revision function, but a priori, with respect to different models MK, one

for each theory. We want to prove that this family of functions can actually

be obtained from a single update model. i.e. that when considered as a

binary function, * can be obtained in the semantic framework of analytic

revision.

Take the following model, M = (W,d) where W is the set of complete,

consistent theories of the language and d is defined as d(w,v) = dw(v),

for d,” a function characterizing the behaviour of * when taking w fixed

as first parameter. Also d(0,v) = (10(1)).We extend d to a function on

sets as we did before, by means of the min function. We now proceed by

induction on the size of K.

Clearly, if K is empty or a Singleton, K * A = KSA, by definition of d.

Suppose K is not a Singleton.

[KiA g K a:A]. We want to show that if w G [K * A] then w E [K] o

Clearly, K ¡A = K a:A for [K] a Singleton or [K] the empty set.

Assume [K] = {1:1,. . . ,xn}, v e [K * A] and v e [KiA]. Since * validates

(K*fin) and K is finite, then there must be some a: in [K] such that

v e [as* A]. Let IN = {1: e [K] : v E [as* Also, by Definition 6.3

there must exist some y e [K] such that d(y, [A]) = d([K], [A]). Then

v e o Hencev í [y*A].LetOUT= {ye [K]:v e [yan

Consider the followingsets of two elements, {y1,yz} g OUT, then trivially,

by an application of (K*fin) v í {yhyg} * A. Take now {2,31}such that

1: e IN and y e OUT, then either (1) d(a:, [A]) < d(y, [A])or (2) d(:c, [A]) =

d(y, [A])or (3) d(:r, [A])> d(y, But (1) is impossible since a:,y e [K]



88 CHAPTER 6. ANALYTIC AGM F UNCTIONS

and d(y,[A]) = d([K],[A]). If (2) holds then, (using that v E [:1:arA]),

d(y, [A]) = d(a:,v). Therefore, v e [K] o [A], contrary to our assumption.

Then (3) should be the case for any pair 1:,y. According to our definition of

d, eli/HA) = clï'yl(A) and c{’}(A) 96c{"y}(A). Hence {:c,y} * A = y* A,

therefore, v E {2,31} ao:A.

Now wc are almost done. Notice that by pairing elements of IN with

elements of OUT we can “delete” the elements of IN from [K I.e. let

a: e IN, y E OUT and write [K] as {2,31}U ([K] \ {2}), then applying

(K*fin) v e [Th([K] \ * A]. Because IN is finite, wc will finally have

v e [Th(OUT) * A]. A contradiction.

[K * A g KiA]. Let u e [KiA] and let a: e [K] such that d([K],[A]) =

d(a:,u). Then u E [1*A]. Also, because K is finito, by repeatedly applying

(K*fin) we have [K *A] = U[Ti*A] for some complete theories T,-extending

K. If 1:= T,-for some i we are done. Suppose u e * A] for any Ti. We

now use again (K*fin) and comparison of pairs to arrive to a contradietion

(write [K] = {:1:,T,-}U([K]\{T,-})and consider K*A g Th({a:, T¿})*A must

hold for each Ti). Full details are given for the case of infinite languages

in Theorem 6.15. QED

Postulate (K*fin) appears in [Schlechta et aL, 1996]as a property that revisions

based on pseudo distances satisfy.

The general case is slightly harder. Postulates (K*1)-(K*8) and (K*fin) do

not fully characterize the ¡ operation in a language with an infinite number of

propositional letters.

Observation 6.14 Consider an infinite propositional language L. Postulates

(K*1)-(K*8) and (K*ñn) do not fully characterize the i operation.

PROOF. Given a propositional language L with an infinite but countable num­

ber of propositional letters we will exhibit a function a:satisfying postulates

(K*1)-(K*8) and (K*fin) for which there is no model M = (W,d), satis­

fying that VK E K, VA e L,K * A = KiA. We define * semantically as
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follows. Let K G 1K, A e L and v e [A], then

[K]n[A] , if [K]n[A] 7€0).

[K * A] = {v} , if [K] n [A] = 0 and [K] is finite.

[A] , if [K] n [A] = 0 and [K] is infinito.

For each incompleto theory K e IK such that [K] has a finite number of

elements (i.e., there are only a finite number of maxima] consistent sets

extending K), then let arKbe a fixed AGM maxichoice revision function for

K always returning one and the same maxima] consistent set of A. And

for each incomplete theory K e K such that [K] has an infinite number

of elements then let *K be the full meet revision function for K, namer

K * A = Cn(A).

Clearly * validates (K*fin). If [K] is finite it is easily verified. If [K] is

infinite, for any theories K1,K2 such that K = K1 n K2, either [K1] or

[K2] are infinite. Then either K1 * A = Cn(A) or K2 * A = Cn(A), as

required.

Suppose for contradiction that there is a model M = (W,d) such that

for every K e 1K, for every A E L, K * A = Th({y e [A] : d([K],A) =

d([K],y)})­

According to our definition of *, for every theory K such that [K] is

finite, if [K] ñ [A] = (0then [K akA] = Therefore d must verify that

Va:e W,d(I,I) = 0; V1,w e W,w 96v, d(z,v) < d(I,w).

For any [K] such that [K]f‘I[A]= (l),Then 0 < d([K], = d([K],v), since

for each z e [K], d(m,v) = d(rc, Then [K*A] = {y e [A]: d([K],A) =

d([K],y)}= This contradicts the case when [K] is infinito, because

according to our definition [K * A] = QED

(K*fin) gives us the following insight: when performing the analytic revision of

K by A, we should hear the opinions of the theories to which K can be extended.

If we now turn to the way o is defined given K and A, we see that we can always

identify an element w of [K] which is responsible for defining d([K], Then

[K] o [A] is obtained as the subset of [A]standing at the same distance from [K]

as w is. These complete theories are clearly the ones we should pay attention

to. Following this intuition we propose:
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(K*E) K * A = (KT,-* A), for some complete theories T,-extending K.

(K*V) If K g K' g T, for T a complete theory then, for all A, K * A g T * A

impliesK=I=AgK’*AQT*A.

(K*B) claims there are some complete theories — “the intended interpretations”

of our theory — that determine the result of the revision. (K*V) expresses the

primacy of these complete theories and establishes a restricted form of monotony

for the * operator. In particular, if our theory K is rcgarded as an intersection

of two larger theories K1 and K2, then (K*EI)and (K*V) constrain the revision

of K in terms of the other two. By (K*EI)the revision of each K is guided by

some complete theories. These complete theories either extend K1 or K2 or

both. Then, by (K*V) the revision of K is included in the revision of K1 or in

the revision of K2, or both. Notice that, in the presence of (K*1)-(K*8), the

postulates (K*B) and (K*V) imply (K*fin).

We now prove that the eight AGM postulates plus (K*S) and (K*V) com­

pletely characterize the analytic revision operation.

Theorem 6.15 (Representation Theorem, general case) An operator *

satisfies postulates (K*1)-(K*8), (K*a) and (K*V) if and only if there cxists

a model M = (W,d), where d is a distance function and for any K E K, A E L

K * A = K 3A.

PROOF. We have proved in Theorem 6.9 that i satisfies postulates (K*1)­

(K*8). That i validates (K*B) follows immediately from Definition 6.2,

since min requires the existence of elements in [K] such that their distance

to [A] is minimal. 3 also validates (K*V) since for any Y if .1:e [K] and

d([K],Y) = d(I,Y) then d(z,Y) = min,E[K]{d(z,Y)}. Therefore, for all

X g [K], ifa: e X then d(X,Y) = d(x,Y) and d(X,Y) = d([K],Y) as

required. This proves the right to left implication.

Let’s see the left to right part. Let * be a.change function satisfying (K*1)­

(K*8),(K*El) and (K*V). We will construct a analytic revision model M =

(W, d) which corresponds to o.

We have to show that VK e RNA e L,K *A = KiA.
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We start by defining the model M. The domain W will be the set of all

complete theories in the language L. To define the distance function d,

let {SK } be the family of systems of spheres corresponding to *. If SK

is a given system of Sphere we note as SI-Ka particular element of it, and

for a given formula A, cK(A) is the minimal sphere in SK with nonempty

intersectionwith

As before, we start by determining the value of d for elements in W and

then extend the function to subsets of W as in Definition 6.2. Any function

d : 'P(W) x 'P(W) —>IT" satisfying the following restrictions is appropri­

ate.

i. V1)e W, d(v,v) = 0.

ii. Vv,u,m,d(v,u) < d(v,m) ifl'38123; G S”u E Sf,m e 53813.5?C Sï.

iii. Vv,u,m,d(v,u) = d(v,m) iff VS? G S”u G S? <=>m E 53’.

iv. d({a:,y},X) = d(:1:,X) ¡ffamor) = cm}.

v. d(a:,X) < d(y,X) ¡Hc{=>(X)= cha/HX) and amor) aecíw} (X).

vi. d(a:,X) = d(y, X) iff c{‘l(X) Uely}(X) = cul/HX).

vii. Vv,u, m, d(0,u) < d(0,m) ifl‘33?,33 e S°u e S?,m e 533m? c 53.

To verify that there are indeed distance functions satisfying i) to vii) above

is easy. It is also clear that by case vii), when K is the inconsistent theory

K*A and KiA agree. Fhrthermore if [A]= 0, by (K*5), K* A = L, and

also K ¡A = L by definition. We will now pr0ve, for K and A consistent,

that u e [K =I=A] iff u e [K5A] by analyzing the different cases.

Suppose[K]=

[KiA g K =I=A]. Let u G [K* A], to prove (1) u G {w E [A] : d(w, =

d(v,w)}. Let m G [A] be such that d(v, = d(v,m), then (1) is

equivalent to (2) d(v,m) = d(v,u). By iii) we have to prove that for

all Sil”) e Slvl,u e Sil”) <=>m e Sil”). As d(v, [A]) = d(v,m) then

m G c{”}(A). Let Sil”) be any. If c{”}(A) g SP} then both m and u are

in Sil”). If Sil”) C c(”}(A), then u í 55”}. Suppose m E SP}, but then

d(v, > d(v,m), a contradiction.
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[K * A g K 5A]. To prove the other inclusion, let u e [A] and suppose

d(u,m) = d(v,u) for m E [A]such that d(v, = d(v,m). Suppose

u í c(”}(A). Then by iii) m e cl”}(A). Let Sil") be the g-smallest

such that m e Silu}, c{”}(A) C SP}. By the limit assumption c{”l(A)

is defined and let m’ e eí°}(A) n [A]. But then by i) d(v,m’) < d(v,m)

contradicting the selection of m.

The general case, [K] > 1.

[K*A Q KSA]. Let u e [KiA] and let 1:e [K] be such that d([K], [A]) =

d(:c,u) (notice that then, u e [13A]and by the previous case u e [2::1:

By (K*3), [K *A] = *A] for some complete theories extending‘K. If

for some i, u G [Ti * A] we are done, so assume u e * A] for all i.

Considerforanyi the proposition{I,T,-}g [K Then by (K*V),*A] g

[Th({e,T.-}) * A] g [K * A]. Apply (Ka) to Th({a:,Ti}) * A now. If

[1:* A] g [Th({z,T,-}) * A] we are done. Rests to consider the case when

[Th({:c,T,-}) a:A] = * A], and furthermore [Th({:c,T,-}) a:A] :¡É[1:* A].

But then by condition v), d(T.-,[A]) < d(a:, [A]), contradicting the choice

of 3:.

[K¡A g K * A]. For this inclusion, we should further prove the case for

[K] = {v,w} separately. Suppose u e [K*A], then by (KG), u e U[T¿*A]

for some T,-complete theories extending‘ K, either

a. K*A = v*A. Then by iii), d({v,w}, [A]) = ¿(1),[A]). As u e c{”'"’}(A),

by definition of d, i) and ii) we have that d(v,u) = d(v, [A]) = d([K], [A]).

Henceu e [K]o

b. K a:A = w * A. Similar to a.

c. K * A = v * A nw * A. By iv), d(v,[A]) = d(w,[A]). Also, either

u G c{”}(A) or u e clw}(A). Hence, as above, either d(v,u) = d(v, [A]) or

d(w,u)= d(v, Inbothcases,u e [K]o

[K] > 2. Suppose u E [K * A], then by (K6), u e U[T,-* A] for some

Ti complete theories extending K. In particular, let T,-e W be such that

1LG [Ti *

Let :L'be any in [K], by (KW), K*A g TiarA implies (Tiñz)*A g T,-*A.
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Hence, (T,-n 2:) * A g Ti * A. We are now in the previous cases, of

revising theories whose proposition has cardinality one or two. Therefore

we can claim that (T,-n I)¡A g TiiA. I.e., by definition for all w e [A],

d({T,-,z}, [A]) = d({T,-,a:},w) then d(T.-,[A]) = d({T,-,z},w), iff for all w 6

[A], min{d(T,-,[A]),d(:c,[A])} = min{d(T,-,w),d(a:,w)} then d(T,-,[A]) =

d(T¿,w).

Therefore d(T,-,[A])= d({T,-,z}, As this is true for all a: e [K],

d(T,-,[A]) = d([K],[A]). Because u G [TiiA], d(T,-,u) = d(T¡,[A]) and

u G KiA. QED

Hence, the analytic revision function is indeed a binary AGM function.

Theorems 6.13 and 6.15 are interesting because they give general characteri­

zation results for AGM revisions based on pseudo-distances, for both, the finite

and the general cases.

We now turn our attention to two natural constraints on the distance func­

tions which give rise to proper subclasses of analytic AGM revisions. One is to

consider a distance function d : W x W —>B+ is such that no two points are at

the same distance from a given point, if d(v, u) = d(v, w) then v = w. This is to

take du, the the projection of the distance function Overits first argument, to bc

injective. It is quite strightforward to prove that such a distance function gives

rise to an analytic AGM revision that takes consistent complete theories to con­

sistent complete theories. For complete theories this analytic function behaves

as a maxichoice AGM revision. For this reason we name it maxi-analytic AGM

functions, and we show that they are characterized by the followingpostulate.

(K*M) If K is consistent and complete then, for any A, K * A is complete.

Observation 6.16 (maxi-analytic AGM functions) An operator * satis­

fies postulates (K*1)-(K*8), (K*H) (K*V) and (K*M) if and only if there exists

a distance model M = (W,d), such that for each v G W, dv = d(v,w) is

injective, and for any K e 1K, A G L K * A = KiA.

PROOF. The characterization result followsdirectly for the fact that for every

nameable Y g W, {zIdv(Y) = dv(:c)} is a Singleton. QED
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Another interesting consideration is the case of well founded distances, that is

distances that are definable over the ordinals, d : W x W —>O. Applying Obser­

vation 2.14, a well founded system of spheres centered in [K] can be represented

by ordinal function dK : W —>0. In this setting actual values of the function

d(w, v) can be obtained by counting the number of ancestors of the argument

along the well founded system of spheres centcrcd in As a result we can

precise an actual mapping of well founded update models (W, {5.0: w e W})

to well founded distance models (W,d). In section 2.3.4 we reported that [Pep­

pas, 1993]characterized the class of AGM revision functions, that are definable

over well founded system of spheres. Peppas called them well behaved revision

functions and showed that they are characterized by postulates (K*1)-(K*8)

plus

(K*WB) For every nonempty set X of consistent formulae of L there exists a

formula A e X such that -1A E K * (A V B), for every B G X.

Of course, this characterization carries over analytic functions and update func­

tions. Well behaved analytic AGM functions satisfy (K*1)-(K*8),(K*3),(K*V)

and (K*WB), and are a proper subclass of general analytic functions that can

be characterized semantically by a distance function d over the ordinals.

It is apparent from the proofs of Theorems 6.13 and 6.15 that the distance

function that we use is just a convenient means to express the comparative

relations relative to sets, that are induced from the comparative relations relative

to single points. In fact the analytic operation can bc rcgarded as a particular

case of a more general framework. Consider a model with two ordering relations,

(W,{5110:w e W}, {j}: X e 'P(W)}), being j], 52 possiny independent

(total) preorders on W. Then the o operation would be a double minimization

over the two relations, defined as

“¿a? “¿W
where min._5(V)= {v G V : V2 e V,v j z}. Our definition of analytic revision

in terms of distances obtains in this general framework, by considering 51 as

an ordering encoding d : W x W —>112+and 52 as one encoding the extension

d : 'P(W) x 'P(W) —>112+.We believe it is interesting to study characterization
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results for the double minimization operation on the general framework. This

seems to be the proper setup to investigate which are the needed properties

connecting the two orderings as well as the particular properties of each of

them.

6.4 Properties

We turn now into properties of analytic revisions. Trivially, it is possible to

define a binary AGM function as an accidental collection of unary AGM func­

tions, one for each theory. But, if there are no properties linking the revisions

of the different theories the result obtained can be erratic. For example, as

we reported in Chapter 4 the postulate (K*9) counts as simple way of linking

the revisions of all different theories. It is apparent that the link between the

analytic revisions of different theories is more subtle than the link provided by

(K*9).

Observation 6.17 The followingproperties are not validated by the analytic

revision operation.

(Commutativity) (K * A) * B = (K * B) * A.

(WeakIntersection)If -|A GKanz then (K10K2)*A =(K1*A)0(K2*A).

(Union) (K1 U K2) * A = (K1 a:A) U (K2 * A).

(Weak Union) If -1A G K1 ñ K2 then (K1 U K2) a:A = (K1 a:A) U (K2 a:A).

(K*9)If-nAeK, K*A=L*A.

PROOF. It is not difficult to find analytic revision functions violating each

of these conditions. We preve Commutativity. Let L be a propositional

language over {A,B}. Let [A] = {w2,w4} and [B] = {103,104}. As­

sume [K] = {wl} and d(w1,w2) < d(w1,w4), d(w1,w3) < d(w1,w4),

d(w2,w3) < d(w2,w4), and d(w3,w4) < d(w3, 102).

[KiA] = {wz}, [K33] = {wa}, [KïAiB] = {w3} but [KSBSA] = {1114}.

QED

Being binary AGM functions, analytic revisions can freely perform iterated

change, inheriting the form of iteration of the standard update operation. The
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formal structure M = (W,d) determines the distance from every [K Since the

analytic revision of K by A is a theory K 3A, also a proposition in the same

model M, distance from K ¡A is also defined in the structure. However, as we

have already seen, there is a. crucial difference between the iterating capabil­

ities of the two forms of update: the standard update can not recover from

inconsistency, while analytic revision can. Moreover, analytic revisions satisfy

some natural conditions of iterated change. For any pair of theories K1, K2 and

sentences A, B, C, D,

(Or-Left)IfD e (K*(AVB))*C then D e (K*A)*CorD e (K*B)*C.

(Or-Right)IfD G(K*A)*C and D e (K*B)*C then D e (K*(AVB))*C.

Observation 6.18 Analytic revision functions satisfy Or-Left and Or-Right.

PROOF. Let's name X = [K] . [A], Y = [K] . [B].

(Or-Left). [K] . [A v B]) . [C] = {w e [C]

min(ze[K1.[Av31}min{ye[cn{d(1=ay)}} =

(by (K*7) and (K*8)) [K]0[AVB] = [K]0[A], or [K]0[AVB] = [K].[B],

OF[K] ° [AVB] = ([K]° [A])U([K]° [BD­

Then, either

(1) {w G [C] 1mínueX} miníyelC]}{d(Ïa3/)}} = [K] ° [A]; 0r

(2) {w G [C] =minha}min{ye[c1}{d(ï,y)}}= [K] ° [B]; 01'

(3) {w G [C] = minuexw) min{ye[C]}{d(Ia3/)}} = {w G [C] =

miniminhex} min{ye[cn{d(ï,y)}, minpev} min{ye[cn{d(1,y)}}}

is either equal to [K] o [A] or it is equal to [K] o [B].

(Or-Right). Assume (1) D e (KiA)¡C and (2) D e (KiB)¡C.

By (1) {w G [C] 1min{z€X}min{ze[C]}{d(1ÏvZ)}} S [D].

By (2) {w G [C] i min{y€Y} min{z€[C]}{d(yvz)}} S [D]­

And [K] . [AV 13]. [c1 =

{w G [C] =min{zeny} min(ze[c1}{d(1,z)}} = {w G [C] =

min(min{1,ex}minhem} {d(:z,2)}, min{,ey} minhacn {d(1:,z)})}
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is either equal to [K] o [A]or is equal to [K] o

Then [K] o [AV B] o [C] g QED

The analytic revision function validates five out of these seven postulates of

[Lehmann, 1995].

(Il) K *A is a consistent theory.

(12)Ae Km.

(13)IfBGK*A,thenADB€K.
(14)IfAGK thenK*Bl*...*Bn=K*A*Bl*...*Bn fornz 1.
(L5)IfAGCn(B),thenK*A*B*Bl*...*Bn=K*B*Bl*...*Bn.
(16)1fñB QKa‘Athen K*A*B*B¡*...*Bn = K*A*(A/\B)*B¡*...*Bn.

(I7)K*ñB*B Q Cn(KU{B}).

Condition (17) implies dependency between two revision steps and consequently

cnforces (at least to some extent) the property of “historical memory” which

analytic revisions lack. As remarked by Lehmann, the standard update opera­

tion fails postulates (14), (15) and (17), and satisfies the rest. It is then expected

that the analytic revision operation violates (IS) and (I7) and validates the rest.

Observation 6.19

i) All analytic revision functions satisfy (Il), (12), (13), (14) and (16).

ii) There exist analytic revision functions violating (15) and (I7).

PROOF. The Violation of (15) and (17) can be proved by constructing a coun­

terexample.

(Il), (12), (13), (I4) follow from the AGM postulates (K*l)-(K*4).

For (16)weshould prove that if WBe KSA then KiAiB = K¡A¡(A/\B).

But this is obvioussinceKiAiB = Cn(KiAU{B}) = Cn(KïAU{A/\B}).

QED

Analytic revisions do not validate any of Darwiche and Pearl’s postulates [1997].

(Cl) If A e Cn(B) then (K *A) * B = K*B.

(C2)If “AG Cn(B)then (K*A)*B=K*B.

(C3)IfAEK*BthenA€(K*A)*B.
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(C4)IfñAéK=rBthen -uA95(K*A)*B.

(CS)If-uBeK*AandAgZK*BthenAE(K*A)*B.
(C6)IfñBEKarAandñAGK*BthenñA€(K*A)*B.

Observation 6.20

There exist analytic revision functions violating each of (Cl)-(C6).

PROOF. C1 is just postulate 15 above.

C2. Assume a.propositional language with three variables A, B and C. Let

w e [-nA]ñ[-nB],z e [A]n[ñB], v e [aA]n[B]n[C] and u e [HA]n[B]n[—.C].

Supposed(z,v) < d(z,u) and d(w,u) < d(w,v). Let [K] = Then

[KiA] = {z}, [KSASB] = {v} but [KaB] = {u}.

C3 and C4. Let w e [-1A]ñ [-IB], z E [A] ñ [HB], v G [ñA] ñ [B] ñ [C]

and a:G [A]n[B]n Supposed(w,z) < d(w,a:) < d(w,v) and d(z,v) <

d(z,a:). Let [K] = Then [KiB] = {1:}g [A], [KSA] = {z} and

[KaAiB] = {v} g [A].

C5 and C6. Let w e [ñA] ñ [ñB], z e [A]ñ [-|B], and z e [A]n [B] and

u e [aA]n[B] . Suppose d(w,z) < d(w,u) < d(w,a:) and d(z,:c) < d(z,u).

Let [K] = Then [KiB] = Q [-nA],[KSA]= {z} g [fiB] but

[KiAiB]= {2:}g

QED

As expected, analytic AGM revisions do not Validate the postulates of iterative

schemes.

(T) KvoB=KoB.
(C) If-iBGKoA,thenKvoB=KoB.
(I) KvoB=Ko(A/\B).
(M)

KoB ,if-IBECn(A)
K OA 0 B =

K o (A /\ B) , otherwise.

Observation 6.21 There exist analytic revisionsviolating (T),(M),(I) and (C).



Chapter 7

Logical Caleuli

for Theory Change

Alchourrón’s logic DFT [Alchourrón, 1995]and Boutilier’s CO [Boutilier, 1992a]

are conditional logics that provide a logica] calculus for the AGM theory. In a

very natural way they can be used to calculate changes in different theories, by

appealing to the conscquence operation in each logic. Both logics share the spe­

cial characteristics with respect to the conditional connective common to most

logics for defeasible inference. Namely, they defeat the rules of Modus Ponens,

Strengthening the antecedent, Transitivity, and Contraposition. But the two

logics are clearly different. Although both are modal conditional logics with

possible worlds semantics, CO has a relational semantics requiring a preorder

over possible worlds, while DFT possesses a non-relational semantics based on

a selection function Ch defined over the logica] language. They also differ in

their expressive power and have quite different axiomatic presentations. Spe­

cially, the respective definitions of the conditional connectives stand on different

grounds.

In this chapter we compare the two logics and investigate their con­

nection. After considering some general results of [R0tt, 1993] showing

links between selection functions and binary relations, we will briefly present

the two logics assuming basic knowledge of the standard modal systems.

(For a thorough presentation of standard modal systems see [Chellas, 1980;

99
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Hughes and Cresswell, 1968; Hughes and Cresswell, 1984]). In particular we

will consider the modal systems 85 and 84.3 (85 is the extension of classical

propositional logic with the Necessitation rule and the characteristic axioms K,

4 and 5; while 84.3 possesses the characteristic axioms K, 4 and 3). We will

then revcal the connection between DFT and CO by two main results. One is

that there is a one to one correspondence between the finito models of the two

logics. The other is that the respective definitions of the conditional connectives

are semantically equivalent. These two results will allow us to prove that satisfi­

able sentences in the respective finito propositional languages augmentcd solely

by the respective conditional connectives are in a one to one correspondence.

Since the conditional connectives have the same interpretation we will conclude

that, in the restricted language, the two logics Validate the same conditional

sentcnces.

As of notation, the symbol l- will be used to indicate derivability in different

systems, using a subscript to specify the system. Semantic entailment will be

denoted with the symbol |=. To denote satisfiability in a point w of a model M

we will use M l=w. In addition we will refer to the set of models for a set of

sentences X as: Mods(X)={M : M |= A, for each A e X}.

7.1 Selection functions and Binary relations

Let X be a set and X be a non-empty subset of 'P(X) \(D. A selection function,

or choice function over X is a function s : X —i'P(X) such that s(Y) is a non

empty subset of Y e 'P(X Intuitively, selection functions are supposed to

give us the “best” elements of each Y G 'P(X). The requirement that s(Y) be

non-empty means that the selection function is effective.

A set X of subsets of X is called n-covering (n = 1,2,3...) if it contains

all subsets of X with exactly n elements, X is called nlng-covering if it is n1­

covering and ng-covering. X is called w-covering if it is n-covering for all natural

numbers n = 1, 2,3, . . .. A set X of subsets of X is called additive if it is closed

under arbitrary unions, and it is called finitely additive if it is closed under finito

unions. X is substractive if for every X and X’ in X such that X g X’, X \ X’

is also in X. (If X is 1-covering and finiter additive then X is w-covering.)
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Finally, X is compact if for every X and Xi, i e 1, if X Q U{X¡ : 2'e I} then

X g U{Xi : i e Io} for some finite Io g I.

For example, let L be an arbitrary infinite language, and W the set of max­

ima] consistent extensions of L. For any language sentence A, [A]= {w e W :

A e w}. Let X={[A] g W : A e L} Q 'P(W); be the set of nameable subsets of

W. By cardinalityconsiderations,X is a propersubset of Moreover,X

is not additive nor finitely additive nor 1-coveringnor compact nor substractive.

However, if we take L a propositional language over a finite set of propositional

variables P, and we take W as the set of all maxima] consistent extensions of

L, then X is finiter additive, n-covering, substractive and compact.

A selection function witli domain X is said to be n-covering, (finitely) addi­

tive, substractive, etc., if X is n-covering, (finitely) additive, substractive, etc.

Rott shows that under certain conditions it is possible to recover the relations

underlying choice functions. And conversely, under appropriate conditions a

relation induces a selection function. Generically, choice sets are taken to be

sets of “best” elements in some relation 5. A selection function is relational

with respect to 5 over X, and we write s = S(S), when for every Y e 'P(X)

s(Y) = {y e Y : y 5 y’ for all y' e Y}.

Samuelson preferences are a classical way to recover a relation underlying a

selection function:

53: {(1,1’) e X x X : BY e ’P(X) such that (z,a:’) g Y and I’ e s(Y)}

Ss is not guaranteed to bc reflexivo unless s is l-covering.

In order to show the correspondence of properties of selection functions and

binary relations Rott [1993]formulatcs the following postulates.

I . For all Y,Y’ 6 X such that Y U Y’ G X s(Y U Y') Q s(Y) Us(Y’).

II . For all Y,Y’ e X such that Y U Y’ e X s(Y) ñ s(Y’) g s(Y U Y’).

III . For all Y E X and Y’ such that Y UY’ e X if s(Y UY’) n Y’ 7€(l)then

s(Y) g s(Y U Y’).

IV . ForallYeXand Y’suchthatYUY’eX, ifs(YUY’)nY760then
s(Y) (¿s(YUY’).
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The following lemmas show the connection between selection functions and pref­

erence relations.

Lemma 7.1 ([Rott, 1993],Lemma 1)

If s satisfies I and II and is 12-coveringor additive then s = S(53).

Lemma 7.2 ([Rott, 1993],Lemma 2) (Notation adapted).

(a) If s is 12n-covcring and satisfies I then the complement of 53 is n-acyclic. If

s is w-covering and satisfies I then the complement of 55 is acyclic.

(b) If s is 123-coveringand satisfies I and III then 5, is transitive.

(c) If s is finitely additive and satisfies IV, then the complement of 53 is transi­

tive.

Lemma 7.3 ([Rott, 1993],Lemma 3) (Notationadapted).

(a) If the strict part of 5 is well-founded with respect to X then S(S) is a

selection function over X which satisfies (I) and (II).

(b) If S is transitivo then S(5) is a selection function over X which satisfies

(III).

(c) If the complement of 5 is transitivo then S(5) is a selection function over X

which satisfies (IV).

7.2 The Logic DFT

Alchourrón’s modal conditional logic is based on a propositional language L

augmented with an Sñ-necessity operator El and a revision operator f, which

is in fact another modality. We will refer to this modal language with LD".

Alchourrón bases his construction on the very idea that in a defeasz'blecondi­

tional the antecedent is a contributory condition of its consequent, as opposed

to be a sufficient condition for the consequent. Hence, he defines a defeasible

conditional A >Dn- B meaning that the antecedent A jointly with the set of

assurnptions that comes with it is a sufficient condition for the consequent B.

In order to represent in the object language the joint assertion of the proposi­

tion expressed by a sentence A and the set of assumptions (or presuppositions)
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that comes with it he uses a revision operator f. For example, if A1,...An

are the assumptions associated with A then f A stands for the joint assertion

(conjunction) of A with all the A,- (for all 1 5 i 5 n), where A is always one

of the conjuncts of f A. Although Alchourrón does not explicitly refer to the

cardinality of the set of assumptions for a given proposition, this set may well

be infinite and fA stands for a nominal of the infinito conjunction.

Since [Dn- is the standard modal language of 85 augmented with f, the SS­

possibility operator <>and the strict conditional =>are defined in terms of Elas

usual:

OA Edf -uD-'A and A => B Ed; EI(A I) B).

Definition 7.4 (logic DFT, [Alchourrón, 1995]) The conditional logic

DFT is the smallest set S g LD” such that S contains classical propositional

logie and the following axiom schemata, and is closed under the following rules

of inference:

K E1(A3 B) 3 (DA 3 CIB).

T CIA D A.

4 EIA D ÜÜA.

5 A D BOA.

f.1 (fA D A). (Expansion)

f.2 (A E B) 3 (fA E fB). (Extensionality)

f.3 <>AZ)OfA. (Limit Expansion)

f.4 (mv B) H fA) v (¡(A v B) H fB) v (¡(A v B) H (¡Av fB))

(Hierarchical Ordering)

Nes From A infer DA.

MP From A D B and A infer B.

Axioms K, T, 4 and 5 giver rise to 85, and f.1-f.4 are constraints imposed on

the revision operator f. Condition f.1 is in fact the characteristic axiom T of

standard modal systems. As an axiom constraining f it is quite natural since

it states that f A stands for the conjunction of A and its presuppositions. f.2

asserts that equivalent sentences have equivalent presuppositions. f.3 links the

two modalities. It ensures the existence of consistent presuppositions for any

sentcnce that is not a contradiction. We will see below that condition f.3 carries
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some consequences that we will analyze in semantic terms. f.4 asserts that the

presuppositions of a disjunction are either the presuppositions of one of the

disjuncts, or else the disjunction of the presuppositions of each of the disjuncts.

In a forward reading it implies that f is a normal modality, in the sense that it

satisfies the characteristic axiom K (notice that l-Dn-f (m4) D ñ(f

Alchourrón gives a formal semantic interpretation of the language LD" based

on standard non-relational S5-models.

Definition 7.5 (DFT model) A model for [on is M," = (W,Ch,[ ]) where

W is a non-empty set of possible worlds, the valuation function [ ] maps P into

P(W), and Ch : L —+'P(W) is a selection function such that for each sentence

A, B of [Dn­

Ch.1 Ch(A)g
Ch.2 If [A]= [B] then Ch(A) = Ch(B).

Ch.3 If [A] 760 then Ch(A) 7€0.

Ch.4 Ch(A V B) E {Ch(A), Ch(B), Ch(A) UCh(B)}.

We shall mention that [Alchourrón, 1995] definw the selection function as

Ch“ meaning that the selection is indexed by the particular preferences of an

individual a (as opposed to be a universal selection function for every indi­

vidual). For the purposes of this note this is an irrelevant restriction. The

selection function Ch is proposed as the semantic counterpart of the syntactic

revision operator. Ch(A) is the proposition of the joint assertion of A and its

assumptions, i.e., the worlds in which fA are true.

[fA] = Ch(A).

The four constraints on Ch are in exact correspondence with the four on f. In

particular, Ch.3 reflects that every consistent proposition must contain some

chosen elements.

A DFT frame (W,Ch) is the set of all DFT models having W and Ch.

Satisfaction of a modal formula at world w in a model 1%” = (W,Ch,[ is

given by:

Mm- l=w A iff w e [A] for atomic sentence A.

1%” I=w -vA iff not Mm- }:w A.
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1%” FwAABile/¿n- FwAand 1%”-Fw B.

1%" |=w EIA iff [A] = W.

MwaLMHwECMM.

The derived satisfaction conditions for the connectives O and => are:

M," Fw A =>B iii [A]g

M,” Fw <>Aifï there is some v e W such that v G

Truth in a model M,” = (W,Ch, [ ]) is truth at every point:

1%”- F A ifl' 1%“- Fw A for every w G W.

Truth in a frame (W,Ch) is truth at every model (W,Ch, [ ]).

(W,Ch) F A iff (W,Ch,[ F A for all valuation functions [

Alchourrón proves that his semantic and axiomatic presentations coincide.

Observation 7.6 ([Alchourrón, 1995], Theorem cm-DFT)

For any A e Ion, l'm-"r A iff l=D¡-"rA­

We are ready for the definition of the conditional A >Dn-B. Alchourrón wants

to capture the idea that the antecedent A jointly with the set of assumptions

that comes with it is a sufl'icient condition for the consequent B. To refiect

this intuition, Alchourrón adopts the followingdefinition due to Lennart Áquist

[1973L

Definition 7.7 (DFT conditional connective) A >DnB Ed; El(fA D B).

Satisfaction of a conditional sentence at world w in a.model M," = (W,Ch, [ ])

is given by: 1%“- Fw A >Dn- B ifl' Ch(A) g [B] ifl' 1%” F A >b,.—,-B. As a

result, M," F A >Dn- B iff [A >Dn B] = W. Conversely, M,”- lï’:(A >Dn- B)

ifl' [A >Dn. B] = 0 iff M,”- F -u(A >Dn. B). This means that Alchourrón

conditionals are true at every point in a model, or at none.

Observation 7.8 ([Alchourrón, 1995])

l-DP,(A >Dn B) D E1(A>,,,.r B) and h,” -|(A >Dn B) 3 El—u(A>,,,., B).

In DFT >Dn- is in general difl'erent from =>.

Observatíon 7.9 l-Dn.A => B D A >D,.—,-B but ¡73,7-A >Dn. B 3 A => B.
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PROOF. To prove that h,“- A => B D A >Dn- B, assume l-Dn A => B. Then

for every DFT-model [A]Q Since Ch(A) Q [A], then Ch(A) g [B],

hence, l-Dn. A >Dn- B.

To prove bi," A >Dn B 3 A á B, suppose I-Dn-A >Dn- B. Hence, for

every DFT model Ch(A) g In particular for M,»-r= (, W,Ch, []) such

that W is the set of valuations of the language based on two propositional

variables, A, B. Suppose {whwg} = [A]and {w1,w3} = [B] and Ch(A) =

{wl} provides a model where Mm- l= A >D,.—¡-B and Mm- bé A => B. QED

This proof also shows that >Dn-in DFT does not validate Modus Ponens nor

Contraposition. And similarly, with three propositional letters can be shown

that >Dn-does not Validate Strengthening the antecedent nor Transitivity.

Modus Ponens From A > B and A infer B.

Strengthening From A > B infer A AC > B.

’I‘ransitivity From A > B and B > C infer A > C.

Contraposition From A > B infer fiB > -|A.

As a corollary of the observation above we obtain that in a limiting case >,,,.-r

and => are equivalent. In the particular case where the Choice function sanc­

tions Ch(A) = [A] for every A e [op-r, >Dn collapses with =>. In this case

the Choice function induces an ignorant revision function f, where every sen­

tence becomes its own presupposition. Then, the conditional >Dn. looses all its

defeating properties.

Alchourrón also gives a gives an axiomatic presentation of his logic DFT,

in a purer conditional language, having the conditional connective > added to

those of classical propositional logic. Let’s denote this language by L>. The

following abbreviations are used in Alchourrón’s axiomatisation. A notion of

necessity N, a notion of possibility M and a notion of comparativeness t.

NA Edf‘|A > L; Ed!fiIvñjq;

(A t B) Edr (NEA /\ dB» V “((A VB) > “AD­

Definition 7.10 ([Alchourrón, 1995]) The conditional logic DFT> is the

smallest set S g L> such that S contains classical propositional logic and the

following axiom schemata, and is closed under the following rules of inference:
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DFTl ¡3 (A > A).

DFT2 I->(A > (BAC)] s [A > B) A (A > 0)).

DFT3.1 |->((A > C) A(B > C)) 3 ((Av B) > C).

DFT3.2 I->(A t B) 3 ((Av B) > C) 3 (A > C).

DFT4 ¡3 (A > B) 3 N(A > B).

DFT5 I->«A > B) 3 N-n(A > B).

DFT6 I->NA 3 A.

Ext m3 AEBthenI-> (A>C)E(B>C) andI->(C>A):—:(C>B).

In this purer conditional axiomatization it is also apparent that a conditional

sentence is always impossible or necessary (this is directly entailed by DFT.4

and DFT.5). Alchourrón shows the followingcorrespondence between DFT and

DFT). Let \IIbe a translation function from L> to LD”.

\II(A) = A, if A is a propositional variable.

\II(T) = T and W(_L)= .L.

WA» = MA).
\II(A A B) = \II(A) /\ \II(B).

\II(A> B): EJ(f\II(A)D \II(B)).

Alchourrón proves that the logic DFT) is properly embedded in DFT.

Observation 7.11 ([Alchourrón, 1995], Corr.3) For everyA e L>,

I-> A iff l-Dn. \II(A).

Since the translation \II is not surjective on Ion, that is, there are formulae

of Lon- which are not equivalent to the image of any formula of L>, then the

expressive power of DFT exceeds that of DFT>.

We end up this section with a final remark. Some (infinite) sets of conditional

sentences in L> define single DFT models. Let 1"g L> such that for every purely

propositional A, B e L, either A > B e F or -n(A> B) e l" but not both. Such

a 1"characterises a single DFT-model. We will return to this idea. when we

study how DFT provides a logica] calculus for theory change. We shall now

turn our attention into Boutilier’s logic CO.
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7.3 The Logic CO

The logic CO is one in Boutilier’s family of conditional logics for theory change

and default reasoning [Boutilier, 1992a]. He bases his logics on Humberstone’s

bimodal logic [Humberstone, 1983], which provides a modality that denotes

truth along an accessibility relation and another modality that denotes truth

along the complement of the accessibility relation. The expressive power of this

bimodal logic exceeds that of standard mono modal systems. For instance, it

can express a number of relational properties that are inexpressible in standard

modal logics, like total connectedness, asymmetry and irreflexivity. Humber­

stone’s logic is closely related to temporal logics, which are also based on two

modalities. In temporal logics the modality for the “future” coincides with

Humberstone’s modality for denoting truth along the accessibility relation R.

However, the temporal operator for the “past” denotes truth along the inversa

of relation R, while in Humberstone’s logic the second modality denotes truth

along the complement of R.

Humberstone presented his logic as an enumerable set of axioms, and left

open the question of whether a finite axiomatization existed [Humberstone,

1983]. Boutilier [Boutilier, 1992a] provided the sought finite axiomatization.

The language ICOis defined as a propositional language L augmented with

two modal operators. El is the modality for accessibility along a relation R and

Ü is the modality for inaccessibility, denoting truth along the complement of

relation R. Since Boutilier’s conditional connective is only an abbreviation of

an involved formula in the bimodal language, the expressive power of CO is

preciser that of Humberstone’s. Boutilier defines several connectives in terms

of the primitive El and Ü as follows:

z5AEdr cil-'44;

5A Ed; HÜHA;

ÏÏÏA Ed; EÏA A ÜA; and

5A Ed; -|ÍÏÏ-nA.

Definition 7.12 (logic CO [Boutilier, 1992a]) The conditional logicCO is

the smallest set S Q [co such that S contains classical propositional logic and

the following axiom schemata, and is closed under the following rules of infer­
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ence:

K ñ(A 3 B) 3 (EÏA3 EïB).

K’ Em 3 B) 3 (¡5A3 EB).

4 ÜA 3 ÜÏÏA.

s A 3 66A.

H 8(ñA /\ ÜB) 3 am v B).
Nes Hom A infer ÍÏÏA.

MP From A Z)B and A infer B.

Axioms K and K’ indicate that the two modalities are normal. Axiom 4 ensures

transitivity of the accessibility relation and axiom S, which is only expressible

in a bimodal language, ensures total connectedness. Axiom H gives the rela­

tionship between the two modalities.

CO is sound and complete with respect to 84.3 structures, the structures

whose relations are total preorders.

Definition 7.13 (CO-model, [Boutilier, 1992a]) A CO -model is a triple

MCO= (W, R,[ ]) where W is a set of worlds, with valuation function [ ] : P ->

'P(W), and R is a total preorder on W.

Satisfaction at world w in a model Il/Lo= (W,R,[ is given by:

Mm |=w A ifl' w e [A] for atomic sentence A.

Mo l=w “A ÏH ¡VL-obem A­

Mm |=w EÏA iff for each v such that va, 1%0 l=v A.

It/Lol=w EA ifl' for each v such that not va, Mo |=., A.

The derived connectives have the f0110wingtruth conditions: 5 (5A) is true at

a world if A holds at some accessible (inaccessible) world; EÏA (8A) holds iff

A holds at all (some) worlds. Therefore, the El and 5 modalities behave as 85

modalities.

Truth in a model ¡VL-o= (W, R,[ and in a frame (W, R) are defined as usual.

Mm l= A iff Mm |=w A for every w e W.

(W,R) l= A iff (W,R,[ l: A, for every [

The system CO is characterized by the class of CO-models.

Theorem 7.14 ([Boutilier, 1992a]) l-Co A ifl' l=co A.
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The conditional connective is defined in the bimodal language as follows.

Definition 7.15 (conditional connective in CO , [Boutilier, 1992a])

(A >coB) Edf 5M 3 3M AEu 3 B)))

The conditional A >co B holds in a model when either there are no A worlds at

all, or, when every A-world has access to some point where every R-accessible

world satisfying A also satisfies B. The conditional A >co B states that the

(possiny infinite) chain of R-minimal A-worlds must satisfy B. Boutilier does

not assume the existence of the minimal A-worlds. In the case where such worlds

do exist, obviously A >50 B holds just when B holds at all such worlds. In

contrast, suppose there is some unending chain of R-minimal A-worlds. If some

B-world lies in this chain having the property that B-holds whenever A does,

at all farther accessible worlds in the infinite descending chain, then A >00 B

ought to be considered true. B would hold at the hypothetical limit of A-worlds

in this chain. This is the same truth conditions that Lewis’ [Lewis, 1973] has

imposed to his counterfactuals conditionals in models that do not comply the

limit assumption.

Boutilier argues against the limit assumption. He explains that without the

limit assumption a selection function fails and, vacuously, makes all conditionals

true. But certainly some conditionals should remain true and some others false.

Since CO makes no commitment to the limit assumption this is a point in

which the Boutilier’s and Alchourrón’s formalisms difl'er. A proper subclass

of CO-models is that of models whose accessibility relation satisfies the limit

assumption. Since the limit assumption is not expressible in CO, this class

cannot be syntactically characterized in the bimodal language. In models that

satisfy the limit assumption it is possible to define the set of R-minimal A­

worlds.

Definition 7.16 (min) Let M30a CO-model satisfying the limit assumption.

We define min : ICO —>'P(W) as:

min(A) = {w e W : Mo |=wA and M70¡:93/1 implies va for all v G W}.

When dealing with CO-models that comply the limit assumption, A >60 B is

true in a model Mm just when B is true at each of the R-minimal A-worlds.

The definition of a conditional can be expressed semantically as follows:
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Mm i: A >60 B iff min(A) g [B].

We are ready to compare logic DFT and CO and reveal their connection.

7.4 The Connection between DFT and CO

Let’s first prove the correspondence between DFT models and CO models us­

ing the results in section 7.1. Let’s start specifying how a CO-model Mo =

(W,R,[ ]) satisfying the limit assumption induces a Choice function Cha.

Definition 7.17 (Cha) Let a CO-modelMx, = (W,R,[ that satisfies the

limit assumption, and let A E L. The Choice function ChR induced by the

accessibility relation R is defined as:

ChR(A)= {wG[A]: wa’, Vw’e

To discover the properties of Ch R we want to apply lemma 7.3. As R is a total

preorder satisfying the limit assumption, then strict part of R is well founded,

R is transitive and the complement of R is also transitive. (To see this last

property suppose not zRy and not sz but sz. Since R is connected, then

it must be zRy. Thus, by the transitivity of R we obtain :Ry contrary to our

assumption.) Hence, by lemma 7.3 Cha satisfies (I), (II), (III), and (IV). We

have to check now that ChR validates Ch.1-Ch.4, the characteristic properties

of Alchourrón’s choice functions.

Proposition 7.18 Cha satisfies the followingproperties:

(Ch.1)ChR(A)g

(Ch.2) If [A]= [B] then Chn(A) = ChR(B).

(Ch.3) If [A] 96 (Dthen ChR(A) 96 0).

(Ch.4) ChR(A V B) G {ChR(A), ChR(B), ChR(A) U ChR(B)}.

PROOF. That Cha satisfies Ch.1 and Ch.2 is obvious by definition 7.17.

To see Ch.3 suppose ChR(A) = (0. Then, there is no w e [A] such that

wa’ for all w' e SinceR satisfiesthe limit assumption, [A]= 0.

Let’s see Ch.4. Let X = [A]and Y = There are four cases.
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(1) If ChR(X U Y) 0X = (0and ChR(X UY) n Y = 0)then, by case Ch.1

above, X U Y = Ü,and Ch.4 trivially holds.

(2) Assume ChR(XUY) 0X 96(0and ChR(X UY) nY 960. By postulate

(I) Ch.3(X U Y) Q ChR(X) U ChR(Y). By postulate (IV) ChR(X) g

ChR(XUY) and ChR(X) Q Ch.3(XUY). By de Morgan laws, ChR(X)U

ChR(Y) g ChR(X U Y). Thus ChR(X) U ChR(Y) = ChR(X U Y), and
Ch.4 holds.

(3) AssumeChR(XuY)nX 76(0and ChR(XUY)nY = 0. By postulates

(III) and (IV) ChR(X) g ChR(X U Y). By postulate (II) Ch.3(X) n

Ch.3(X U Y) g ChR(X U X U Y) = ChR(X U Y). And by postulate (I)

ChR(X u Y) g ChR(X) u ChR(Y). Since by Ch.1 Ch(Y) g Y, and by

assumption of Ch.3 ChR(X UY) ñ Y = 0, then ChR(X U Y) Q ChR(X).

Hence ChR(X) g ChR(X UY) g ChR(X); namely, ChR(X) = ChR(X U

Y), and Ch.4 is verified.

(4) The case ChR(X U Y) n X = (0and ChR(X U Y) ñ Y 96(Dis analogue

to case (3) above. QED

Now let’s see how a DFT-model 1%“- = (W,Ch,[ ]) induces a total preorder

RCh on W and gives rise to a CO-model Mm = (W, Rc,“ [ ]).

Definition 7.19 (Ron) Let M," = (W,Ch,[ 1) with Ch ; L —»79(W). The

relation RCh induced by Ch is defined as follows.

RCh = {(w,v) e W x W : BY e 'P(W) such that w,v e Y and w e Ch(Y)}

We have to check RCh is a total preorder on W. Lemma 7.1 states that if

Ch is additive or 12-covering and satisfies (I) and (II) then there exists some

some relation S on W such that the selection function induced by S coincides

with Ch. But Ch. over an infinite set of propositional variables is not additive

nor 12-covering, so the we can’t apply the lemma. As suggested in section 7.1

this is the problem we face when dealing with infinite languages. Let’s consider

L an infinite propositional language, W the set of all its maxima] consistent

extensions and X g 'P(W) the set of all the L-nameable subsets of W.

A preorder R Q W x W automatically determines a preorder relation over

every subset of W, that is, VX g W,R0 X x X is a relation on X. In contrast,
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Alchourrón’s choice function is intrinsically linguistic, that is, it is defined from

L to subsets of W. Hence, Ch provides a.selection just for nameable subsets of

W. The cardinality of L is less than the cardinality of 'P(W) so it is impossible

to provide a one to one correspondence between binary relations on W and

linguistic selection functions. In order to establish a one to one correspondence

we have to be able to name all subsets of W. With this objective we will restrict

to propositional languages based on ñnite sets of propositional variables. Thus,

Ch becomes additive and 12-covering, and we can apply lemma 7.2.

Proposition 7.20 RC7,is a total preorder on W.

PROOF. We apply lemma 7.2. Since Ch is 12-covering and satisfies (I) the

complement of R0,, is acyclic. Since Ch is 123-covering and satisfies (I)

and (II) R0,, is transitive. Since Ch is finiter additive and satisfies (IV)

the complement of Ra, is transitive.

That Rob is totally connected follows from acyclicity of the complement

of 120;.H( if not rRChy and not yRCha: then the complement R0,, would

not be acyclic ). QED

Let’s check that in the finite case ChRCh= Ch and Rc,“ = R.

Observation 7.21 Given a finite propositional language L, ChRCh= Ch and

Rc”.R = R.

PROOF. Assume R g W x W, a total preorder. Let’s define ChR(A) =

{w G [A]: wa’, Vw’e This is additive n-coveringchoicefunction

satisfying (I)-(IV).

Rc,“a = {(w,v) e W x W: BY e 'P(W) such that w,v e Y andw e

ChR(Y)}. By lemma 7.1, directly Cha“ = Ch.

Let's see that R = RChR. Supposeva and not va. Then, there is

some AE wnv and some B e w B e’v such that w E ChR(AVB) and

v 9!ChR(AV B). HencewRCth and not va.

Supposeva and va. Then, for every A e L such that A e w ñ v,

w,v e ChR(A). Hence,wRCth and vRCth.

Therefore,Vw,v,va ifl'wRCth. QED
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Consequently finite DFT models and finite CO models (with the same universe

set W and the same valuation function [ ]) are in a one to one correspondence.

Our next result is that the semantic definitions of the conditional connectives

in CO and DFT coincide.

Observation 7.22 Let A, B propositional formulae of L, then,

PROOF. Let CrM = (W,R,[ ]).

By the definition of the conditional connective in CO,

(w, RJ 1) I= A >co B is minam) g [B] m,

by observation 7.21 ChR(A) g [B] ifi',

by definition of the conditional connective in DFT,

(W,Chn,l l) l= A >brr B- QED

We are now able to state our main result, which reveals the connection be­

tween the two logics: the two logics validate the same conditional sentences in

a restricted language. Let’s define Ig“. and [go as the propositional languages

formed from a finite set P of propositional variables together with the connec­

tives ñ, A augmented solely with the respective conditional connective >¡,,Tand

>co (the connectives 3, V E are defined in terms of ñ, A as usual).

We will define a bijective translation function taking a.sentence in Lg" and

returning a sentence in Igo. We will then prove that this bijective translation

preserves satisfiability in the two logics. As a result will be able to assert

that there is a one to one correspondence of valid sentences in the respective

restricted languages in the two logics, with exactly the same interpretation.

Since the translation just interchanges the respective conditional connectives

the two logics validate the same conditional sentences. Let \II be a translation

function from Lg“. to Igo.

\II(A) = A, if A is a propositional variable.

\II(T) = T and \II(J.) = J_.

\II(-|A)) = fi\II(A).

\II(A /\ B) = \II(A) /\ \II(B).

‘I’(A>brrB) = ‘IJ(A)>00
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Let’s remark that \IIis a bijective translation function.

Theorem 7.23 l-Dn A ill” I-co \II(A).

PROOF. Suppose A e L5,, such that not l-Dn-A.

Given that CO and DFT are sound and complete with respect to their

respective classes, there is a DFT model (W, Ch, [ ]) where A is not true.

By observation 7.22 there is a CO model (W, RCh, [ ]) where \II(A) is not

true. QED

We obtain the following corollary. For any set of sentences X g >n., let’s

define the translation of X as \II(X) = {B e [go : B = \II(A) : A e X}. Then,

Mods(X) l= A iff X l-Dn.A iff \II(X) l-co \II(A) ifl Mods(\I!(X)) |= \I'(A).

We have proved that in the respective restricted languages the theorems of

CO and DFT are in a one to one correspondence, and have the same inter­

pretation. But this correspondence only holds in the restricted languages, that

is, the two logics are not equivalent as a whole. For instance, in DFT there

is no counterpart of the CO modalities for accessibility and inaccessibility. A

question still to be an5wered in this direction is whether the revision operator

f of DFT is expressible in CO. It is clear that the expressive power of DFT

extends that of SS without being exactly clear what is the expressivity added

by the “revision function” f. The study of the formal properties that become

expressible in DFT that are inexpressible in standard systems is an interesting

issue that remains to be investigated.

7.5 A Logical Calculus for Theory Change

Conditional logics were initially developed for modeling “if . . . then” statements

in natural language. Robert Stalnaker [1968]gives a possible worlds semantics

for his logic for “subjunctive conditionals”. A conditional A > B, read as “if A

were true B would be true”. Stalnaker argues that the conditional connective >

should not validate transitivity, nor the strengthening rule, nor contraposition.

For instance, we accept the conditional “If this match were struck, it would

light”, while we deny that “If this match were wet and struck, it would light".
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Stalnaker gives the following “recipe” based on the Ramsey test to evaluate a

conditional in a given theory or state of belief:

“First, add the antecedent (hypothetically) to your stock of be­

liefs; second, make whatever adjustments are required to maintain

consistency (without modifying the hypothetical belief in the an­

tecedent); finally, consider whether or not the consequent is then

true.”(Stalnaker 1968, page 44)

Stalnaker’s formulation of the Ramsey test has been used to provide a formal

connection between theory change and conditional logic.

A conditional A > B is true ifl' B belongs to the revision of K by A.

Based on this formulation Boutilier provides a logical calculus for AGM revision

[1992a].

Mo l= A >co B is equated with B e K * A.

Given the Ramsey test, >co is nothing more than a subjunctive conditional,

interpreted as “If K were revised by A, then B would be accepted”. For any

propositional A, the theory resulting from revision of K by A is:

K*A={B€L:M:OI=A>COB}.

Since total preorders on W satisfying the limit assumption are isomorphic to

Gr0ve’ssystems of spheres with no empty center CO-models are appropriate for

AGM revision, when the theory K being revised is assumed to be a propositional

theory. By appealing to Grove’s result [Gr0ve, 1988] for representing revision

functions, each CO-model satisfying the limit assumption represents a revision

function. Those worlds consistent with K should be exactly those minimal in

R. The interpretation of R is as follows:va ifl'v is as close to theory K as w.

Vwe [K],Vve W, va.

CO models that satisfy this constraint are called revision models for K.

Definition 7.24 ([Boutilier, 1992a]) A revision model for theory K is any

structure ¡Veo=< W,R,[ ] > such that R satisfies the limit assumption, R is
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transitive and totally connected on W and v e {w : W |=w A for all A G K} iff

v is R-minimal in Mo.

Fïill models are those where all propositional valuations are represented. They

have to to be considered in order to allow every consistent sentence be capable

of generating a consistent revision. Boutilier proves that the revision function

determined by a full revision model for K satisfies the eight AGM postulates

for revision (K*1)-(K*8).

Observation 7.25 ([Boutilier, 1992a], Theorem 6.7) Let Neo be afull re­

vision model for K and *M the revision function determined by M. *M is defined

for each A e chL by K *MA = {B e L: M l: A >co B}. Then, *M satisfies

postulates (K*1)—(K*8).

Boutilier defines a modality Bebo to refer to the sentences in K. BeLoA is read

as A is accepted in K. He calls it a modality for belief. The modality Belga is

defined as follows.

Definition 7.26 ([Boutilier, 1992a]) BeLoAEd; ÜÓÏÏA.

The sentence BeLO(A)holds in a revision model when A is true at each minimal

worlds: 1%., |= Bel;-0(A) iff min(T) Q [A] iff 1%0 l: T >co A.

By appealing to the derivability in the logic CO it is possible to calculate

the results of revising a theory K. Each set of conditional sentences I" g [go

such that M ods(l") is a Singleton represents a theory K and the AGM revision

function * for K. For instance, K = {A e L : T >co A e 1‘}. Then, if l" is

conditionally complete then Mods(l") = {Mm}. So, we obtain the following

chain of equivalences:

l‘I-COA>D,.TBiHMOl=A>coBiffmin(A)Q[B]inJl/L-oiffBeK*A.

In this way the logic CO provides a logica] calculus for change in different

theories, by appealing to derivability from different sets F1 and F2. Given the

correspondence we have proved between CO and DFT, all the considerations

about CO as a logical calculus for theory change directly apply to DFT.

One could wonder about calculating iterated change in logic CO. It is possible

to use the Ramsey test to relate iterated changes and acceptance of nested

conditionals [Levi, 1988; Boutilier, 1992b; Lindstróm and Rabinowicz, 1992].
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Different intuitions correspond to whether the nesting of the conditional

connective appears in the antecedent or in the consequent of a conditional con­

struction. One could inspect whether (A > (B > C) can be taken to mean that

C e K a:A * B. This would require two applications of the Ramsey test.

A>(B>C)istrueiff(B>C)EK*AiffC€K*A*B.

But the nested occurrences of the conditional connective collapse into the flat

portions of CO and DFT, as follows. Given a revision model Mm, we have that

Mm I: A > (B > C) is identical to either ¡VLOl: A > T or Mm l: A > .L,

depending whether Mm I= B > C or not. On the one hand Mo I: A > T

is always true, because for all A, min(A) g W and if A is not satisfiable then

min(A) = Ü. On the other hand Mo l: A > J. is always false unless 1%0 l:

-|A. In full revision models this means that A is not satisfiable. Consequently,

A > B > C is true iff (B > C) is true or A is itself inconsistent. This is equated

via the Ramsey test as C 6 K a:A 4:B iff A is inconsistent or C e K * B. Hence,

for consistent formulae A A > (B > C) says that the set K * A * B, is just

K * B. The notion of iteration it yields validates the following postulate that

we advanced in Chapter 3 for a trivial revision function.

(T)

K o B , if A1,...An_1 are satisfiable.
K OA OB =

L , otherwise.

We conclude that nested conditionals in CO or DFT do not provide an inter­

esting logica] calculus for iterated change. This conclusion can also be reached

from our interpretation of CO models as models for revision. If Mo is a revi­

sion model for K, then all the worlds consistent with K are R-minimal in Mo.

Therefore, Mm is just a revision model for K and in general it is not a revision

model for K * A.

Let’s analyze no the case when the nested conditional connective appears in

the antecedent of a conditional construction. Again following the Ramsey test,

the conditional (A > B) > C is equated with C being accepted in the theory

resulting by the revision of K by the conditional sentence (A > B). But such

a revision would collapse with our initial assumptions about how CO provides

a calculus for revision. A CO model induces an AGM revision function *M
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for a. propositional theory K, such that *M satisfies (K*1)-(K*8). Since (K*2)

requires (A > B) e K then K should contain conditional sentences, contrary to

our assumption that K is propositional. The so called “Gárdenfor’s triviality

theorem” or “impossibility theorem” [Gárdenfors, 1986; Rott, 1989]shows that

the AGM revision operation becomes trivial when it is applied to conditional

theories whose conditional sentences are interpreted with the Ramsey test. No

sound conclusions about iterated change can be derived from CO nor DFT from

this interpretation.
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Chapter 8

Conclusions

In this thesis we have argued that although AGM functions provide coherent

change operations for single theories separately, these change operations are not

necessarin jointly coherent. We have regarded this as a serious limitation of the

AGM formalism and the work in this thesis has been devoted to overcome this

limitation.

According to the AGM theory, the change of one theory may be unrelated

to the change of another. For this reason, we have posed that standard AGM

functions are better regarded as unary functions relative to an underlying theory,

which take a formula and return an updated theory.

In this thesis we have defined authentic binary functions for theory change

and we have argued that they solve the problem of change in different theories.

Being definitionally simple they also solve, to some extent, the problem of it­

erated change. Since binary functions are defined for every theory, the result

of one application of a change function is a theory that can yet be put as an

argument of the same change function. Consequently, the scheme for iterated

change induced by binary functions is deterministic with respect to their argu­

ments. This behaviour has been interpreted as a lack of historic memory, which

is not always desirable in a model of iterated change.

We have started our study of binary functions with two exceptions in the

AGM theory, which satisfy a number of elegant properties, AGM expansions

and full meet functions. We have continued with a distinctive binary operation

121
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for theory change outside the AGM framework: Katsuno and Mendelzon’s up­

date. In contrast to the AGM tradition, Katsuno and Mendelzon formalized

their update operation as a binary connective in a finite language. We have

shown that nothing crucial relies on this formal difference, as it is possible to

reformulate the update operator as a binary function that takes a. theory and

a formula and returns a theory. However, we have exhibited an unexpected

result. Katsuno and Mendezon’s postulates are incomplete to characterize the

update function for infinite propositional languages. We have provided an ap­

propriate set of postulates, strengthening theirs, and proved the corresponding

representation theorem for possiny infinite propositional languages. In this way

we have extended Katsuno and Mendelzon’s original work just defined for the

finite case. Our results complete and clarify those of [Peppas and Williams,

1995], who realized that Katsuno and Mendlezon’s framework was incomplete

for first order languages. In addition, we have put the AGM revision and up­

date in an even definitional basis that may allow for a better comparison or

understanding, when the nature of their difference is still an open question in

the philosophical logic literature.

We have given two different formulations extending the AGM framework,

iterable AGM functions and analytic AGM functions. We have proposed them

as plausible candidates for changing multiple theories, and we have also shown

that they satisfy significant properties of iterated change. We have defined both

functions for possiny infinite languages and in both cases we have provided

postulates extending AGM’s and given representation theorems for different

formal structures.

We have defined iterable AGM functions with the peculiar property of being

almost constant on their first argument, the second argument held fixed. In

spite of their quite simple definition they provide a strong notion of coherence

with respect to the change in different theories. According to iterable functions,

the change in one theory depends on the change of the largest theory, the whole

language. We have shown that they satisfy a number of significant properties

that have been presented in the literature.

Analytic AGM functions have been defined as almost monotone functions on

their first argument (the other held fixed) without being almost constant. As
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AGM functions for changing multiple theories we have shown that they possess a

significant property. The analytic change operation can be calculated by means

of a case analysis, such that if one theory is an extension of another the cases

considered for the first can be lift to the cases for the second. In addition, we

have defined and characterized maxi-analytic AGM functions that when applied

to a consistent complete theory they also return a consistent complete theory.

But analytic AGM revisions have also another interest. We have shown

that they provide a formal connection with the update function of Katsuno and

Mendelzon. Analytic functions provide a new presentation of AGM revision

based on the update semantic apparatus establishing in such a way a bridge

between the two seemingly incomparable frameworks.

Finally, we have studied and compared two conditional logics that provide a

logical calculus for theory change, Alchourrón’s logic DFT and Boutilier’s logic

CO. By appealing to the notion of consequence, the two logics can be used to

calculate changes in different different theories. We have revealed the connection

between the two logics sh0wing that in a restricted language, the two logics

validate the same conditional sentences. Hence, under appropriate restricting

conditions the two logics are equivalent. In addition we have identified the

scheme of iterated change induced by the nested occurrences of the conditional

connective in the two logics and we have shown that it yields a trivial notion of

iterated change.

8.1 Further Work

Iterable functions and analytic functions are just two instances of binary AGM

functions, and there is possiny a whole landscape of binary functions that

remains to be considered. Iterable and analytic functions can be regarded as two

extreme poles. The result of an iterable revision is either an expansion or just

the result of revising to the largest theory, the whole language. In contrast, the

result of an analytic revision of some theory is always dependent on the revision

of each of its maxima] consistent extensions. It may be possible to define binary

functions that stay in between the two.

In a different perspective, we believe that our analytic AGM functions can be
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a definitional basis for merge operators [Eihrmann and Hansson, 1994]. In their

most general form they are n-ary functions taking n theories and returning a

theory, o : 1K" —>K, and this path of investigation has hardly been addressed.

Given the link existing between conditionals and theory change, as pursued

for example by [Grahne, 1991] and [Boutilier, 1996], it seems interesting to

investigate conditional logics for our frameworks. In such logics our binary

functions would become connectives in the object language and only finitely

axiomatizable theories would be considered. The iteration of our functions

would be reflected as logical formulae with nested occurrences of the change

operators. Presumably this logic would provide further light on new properties

of binary functions and cstablish a closer link between theory change and the

field of conditional logics.

In this thesis we have not addressed the problem of change functions of con­

ditional theories. A conclusive result, known as Gardenfors impossibility theo­

rem [1986]has showed that AGM revisions operating on a conditional language

are incompatible with the Ramsey test for interpreting conditionals. There is

considerable work in the literature on how to deal with the impossibility the­

orem, proposing either to weaken the Ramsey test or alter the properties of

revisions [Gárdenfors, 1987; Gárdenfors et aL, 1991; Rott, 1989; Levi, 1988;

Boutilier and Goldszmidt, 1993; Hansson, 1992] . But, whatever be the solution

to this dilemma, the notion of change in a conditional theory seems to be best

modeled via binary functions. In their most general form they would take a con­

ditional theory and a conditional formula and they would return a conditional

theory. In the context of conditional theories the property of historic memory

seems to play no role, for what binary functions would provide the appropriate

notion of change in multiple theories and iterated change.
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