BIBLIOTECA CENTRAL LUIS F LELOIR BIBLIOTECA CENTRAL LOIS FACULTAD DE CIENCIAS EXACTAS Y NATURALES UBA

Tesis de Posgrado

Síntesis de hidroxiaminoácidos a partir de D-Glucosamina

Nin, Alejandro Pablo

1993

Tesis presentada para obtener el grado de Doctor en Ciencias Químicas de la Universidad de Buenos Aires

Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente.

This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source.

Cita tipo APA:

Nin, Alejandro Pablo. (1993). Síntesis de hidroxiaminoácidos a partir de D-Glucosamina. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_2604_Nin.pdf

Cita tipo Chicago:

Nin, Alejandro Pablo. "Síntesis de hidroxiaminoácidos a partir de D-Glucosamina". Tesis de Doctor. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 1993. http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_2604_Nin.pdf

UBA Universidad de Buenos Aires

Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293

UNIVERSIDAD DE BUENOS AIRES

SINTESIS DE HIDROXIAMINOACIDOS A PARTIR DE D-GLUCOSAMINA

ALEJANDRO PABLO NIN

DIRECTOR: Dr. OSCAR VARELA

Tesis presentada para optar al Título de DOCTOR DE LA UNIVERSIDAD DE BUENOS AIRES

FACULTAD DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE QUIMICA ORGANICA

TE 55 2604 MS

BUENOS AIRES —1993—

A mis padres, Ana y Carlos, por su amor, paciencia y por haberme enseñado a ser perseverante, y a mi hermana Edith por toda su colaboración y comprensión

Tengo que agradecer al Dr. Oscar Varela quien además de introducirme en el campo de la investigación científica me proporcionó el asesoramiento y el aliento necesarios que fueron de inmenso valor para el desarrollo de este trabajo.

Quiero expresar también mi gratitud a la Dra. Rosa M. de Lederkremer por su apoyo y por brindarme valiosos consejos fruto de su experiencia. Espero que este trabajo sea evaluado por lo que es: El fruto de mis primeros pasos en el área de la investigación. Intento resumir aquí los resultados obtenidos a lo largo de estos años y los ofrezco con mucho cariño a quienes les pueda ser útil.

Quiero expresar mi gratitud a las Instituciones y personas cuya ayuda y apoyo fueron muy valiosos.

A la UBA por las becas que me ha otorgado.

A UMYMFOR por el equipo técnico suministrado.

A las Lic. Z. Marta Marcote y María M. Rivero por la realización de los microanálisis.

A mis compañeros de laboratorio Daniel O. Cicero, Patricia Zunszain, Christián Di Nardo, Miriana Biondic, Sergio Bonesi, Amalia Salinas, Fanny Console, Daniel Murgida y Hernán Orgueira por las horas de trabajo compartidas.

A quienes compartieron el laboratorio conmigo Carla Marino, Griselda De Fina, Liliana Casal, Lucio Jeroncic, Marisa Ramírez, María Laura Uhrig, Rosalía Agustí, Carlos Lima, Alicia Couto, Alberto Postigo, María Andrea Redondo, Verónica Nahmad, Guillermo Bruno, Carola Gallo, Leonardo Iglesias, Alejandro Chiocconi.

A Lucio Jeroncic, Daniel Cicero, Gerardo Caballero, Gustavo Revelli, Sergio Giacopello, Oscar Moradei, Javier Covián, Juan B. Rodríguez por el intercambio de información científica.

A los Drs. Eduardo Gros, Inge Thiel, Arturo Vitale, Alicia Pomilio, Alicia Seldes por la bibliografía suministrada.

A los Drs. Carlos Stortz, Rosa Erra Balsells, Nélida Mazzini, Marta Maier, Jorge F. Sproviero, Cristina Matulewicz, Mónica De Luca, Alicia Fernández Cirelli por su valiosa colaboración.

A Marcelo Cases por su ayuda e invalorable amistad.

A Javier Covián, Oscar Moradei, Sergio Giacopello, Gustavo Revelli, Gerardo Caballero, Cecilia Rodríguez, José Dadon por el apoyo brindado y por todos los momentos compartidos. A mis compañeros de trabajo Osvaldo Teme Centurión, María Inés Errea, Marina Ciancia, Miriam Martins Alho, Mirta Fascio, Alicia Baldessari, Walter Samaniego, Carola Gallo, Luis Iglesias, Silvana Leit, Lidia Galagovsky, Cecile Du Mortier, Enrique Hughes, Alejandra Ponce, Jorge Palermo, Gabriela Cabrera, Rodolfo Biekofsky, Elizabeth Leucowick, Guillermo Amorín, Adriana Stahl, Adriana Casabuono, Cecilia Campos, Cecilia D'Alessandro, Andrés Ferrara, Adriana Kolender, Guadalupe García Liñares, Andrea Brutomeso, Alberto Ghini, Adriana Veleiro, Eduardo Sproviero, Edith Monteagudo, Norma D'Accorso, Carina Canizzaro, José Kovensky, María Moglia.

Al Sr. Jorge Aznárez por toda su ayuda y compañerismo.

Al Sr. Gustavo Arabehety, a los Lic. Gustavo Revelli, Sergio Giacopello, Cristina Tettamanzi y a los Drs. Gerardo Burton, Oscar Varela, Lucio Jeroncic, Darío Doller, Violeta Benedetti, Gerardo Caballero por la realización de los espectros de RMN.

A Marcelo Maraciotola por su disponibilidad y enseñanzas en el campo de la computación.

A la Lic. Mabel B. Tudino y Al Dr. Claudio Colombano por su desinteresada ayuda.

Al personal docente del Departamento de Química Orgánica.

Al personal no docente del Departamento de Química Orgánica, en especial a Eduardo López por su valiosa colaboración.

Al personal de la biblioteca de la FCEN, en especial a L. Susana Zubieta y a Liliana López.

A todos, esta tesis.

INTRODUCCION

CAPITULO I

LOS HIDROXIAMINOACIDOS EN LA NATURALEZA

Los aminoácidos se encuentran abundantemente distribuídos en la naturaleza y dado que forman parte de las proteínas puede obtenérselos en cantidades considerables. En 1820 se aisló la glicina de un hidrolizado de gelatina, y en los siguientes cien años se identificaron 20 aminoácidos más, todos ellos constituyentes de proteínas.¹ Sin embargo, otros aminoácidos, no forman parte de éstas y se los conoce como "no naturales" o "no proteicos". Cerca de mil compuestos de este tipo han sido encontrados en la naturaleza en forma libre, como zwitterión, o como constituyentes de péptidos u otras moléculas, y muchos de ellos presentan interesantes propiedades como antibióticos, quelantes de metales, inhibidores de enzimas, antimetabolitos, etc.¹⁻³

Los aminoácidos no proteicos contienen generalmente por lo menos dos centros quirales y pueden presentar como sustituyentes una variedad de grupos funcionales como hidroxilos, carboxilos, aminas, etc. Por ejemplo, son frecuentes los derivados polihidroxilados de prolinas y de los ácidos pipecólico, glutámico, aminopimélico y aminoadípico.¹

Se ha sugerido que los grupos hidroxilo que se encuentran como sustituyentes de la cadena hidrocarbonada de los aminoácidos son sitios activos de unión al receptor de una proteína o una biomembrana. Cuando dichos hidroxiaminoácidos están incorporados en un péptido, el grupo hidroxilo tiene incidencia en la conformación que adopta el péptido a través de una unión hidrógeno intramolecular o intermolecular.^{4, 5} El conocimiento de la conformación particular que adopta un péptido cuando se une a un receptor específico es importante para comprender la relación que existe entre la estructura y la función de dichas moléculas.

Dentro de los hidroxiaminoácidos alifáticos de carácter básico encontramos como ejemplo a la γ -hidroxi- β -lisina (1), la cual se aisló de hidrolizados de tuberactinomicina A y N, péptidos con acción antituberculosis.⁶ La (2S,4R)-4-hidroxiornitina (2) se aisló de animales marinos inferiores^{7, 8} y de plantas⁹ y como un metabolito originado por diversas reacciones enzimáticas.^{7,10} Es también parte constituyente de la bifenomicina (3), un péptido cíclico que se aisló de *Streptomyces griseorubinosus* N°43078, y que presenta

actividad antibiótica contra bacterias Gram positivas, resistentes a las β -lactamas.¹¹

La (2S,3R,4R)-4-hidroxiisoleucina (4) se aisló como constituyente de la γ -amanitina,¹² un péptido tóxico componente del hongo venenoso *Amanita phalloides* y de las semillas de *Trigonella foenum-graecum*, ampliamente difundidas en el hemisferio norte y de uso culinario frecuente.¹³

Como ejemplo de un hidroxiaminoácido ácido se puede citar el ácido δ hidroxiglutámico (5), aislado de las partes verdes de las plantas *Phlox decussa*¹⁴ y *Linaria vulgaris*.¹⁵ Este compuesto por descarboxilación enzimática, da el ácido 4-amino-2-

hidroxibutírico, el cual es capaz de potenciar la actividad de antibióticos como la kanamicina.^{16, 17}

Por otro lado, existen hidroxiaminoácidos heterocíclicos, donde el heteroátomo es nitrógeno o bien oxígeno, y el tamaño del anillo es comunmente de 5 o 6 miembros. En el primer grupo (anillos de 5 miembros) podemos encontrar a los derivados de la pirrolidina y de la prolina, como ejemplo, la (2S,4S,5R)-4-hidroxi-5-(hidroximetil)prolina (bulgecinina, 6),¹⁸ constituyente del gicopéptido bulgecina (7), un metabolito de *Pseudomonas acidophila*, *Pseudomona mesoacidophila* ^{19, 20} y Chromobacterium violaceum.²¹

Se comprobó que la bulgecina no era un compuesto único, sino que se trata de una mezcla de tres componentes (7 A-C) los cuales poseen la misma estructura básica pero difieren en la sustitución del grupo carboxilato, siendo 7A el componente mayoritario. La bulgecinina por si misma no presenta actividad antibacteriana, pero muestra un marcado sinergismo con antibióticos β -lactámicos como sulfazecina o isosulfazecina. En contacto con bacterias Gram-negativas, la bulgecinina induce un curioso cambio morfológico en la pared

celular el cual es acompañado por un aumento de la sensibilidad del organismo a las β lactamas y como consecuencia la bacteria muere a bajas concentraciones de las mismas.

La (2S,3R,4R)-3,4-dihidroxiprolina (8) es uno de los siete aminoácidos presentes en la virotoxina producida por *Amanita virosa* Secr. (Destroying Angel toadstool)²² y ha sido probada como un inhibidor potencial en la replicación del virus de la inmunodeficiencia humana (HIV), como parte de un proyecto en busca del potencial de derivados de

aminoazúcares para el bloqueo de la biosíntesis de glicoproteínas. Su 3-cis-4-trans-isómero

9 es un componente de una proteína obtenida de ciertas algas unicelulares (diatomáceas).²²

Finalmente, como ejemplo de un hidroxiaminoácido oxigenado de 5 miembros citaremos al ácido licopérdico (10), aislado del hongo Lycoperdon perlatum.²³

En el grupo de aminoácidos heterocíclicos naturales que poseen un anillo de seis miembros encontramos fundamentalmente a los derivados del ácido 2-amino-2piperidincarboxílico, conocido como ácido pipecólico (11). Algunos derivados hidroxilados

de 11 han sido aislados en forma libre de plantas²⁴ como por ejemplo el ácido (2S,4R,5S)-4,5-dihidroxipipecólico (12) aislado de las hojas de *Calliandra hæmatocephalla* y junto con el ácido (2S,4S,5S)-4,5-dihidroxipipecólico (13) de las hojas de la leguminosa *Derris elliptica*. El ácido (2S,3R,4R)-3,4-dihidroxipipecólico (14) al igual que 8, ha sido probado como un inhibidor potencial en la replicación del HIV.^{25, 26}

Se encontró que otro derivado de 11, el ácido (2S,3R,4R,5S)-3,4,5-trihidroxipipecólico (15) aislado de las semillas de *Baphia racemosa*,²⁷ es un inhibidor de la β -D-glucuronosidasa de hígado humano.²⁸

El ácido *cis*-4-hidroxipipecólico (16) se aisló de especies del género Acacia²⁹ (Acacia excelsa, Acacia oswaldii)³⁰ y del género Armeria,^{31, 32} mientras que el ácido 5hidroxipipecólico (17) se identificó casi simultáneamente en varias plantas: Baikiaea plurijuga (Rhodesian Teak), Ceratonia siliqua,³³ Rhapis axcelsa,³⁴ Acacia³⁴.

SINTESIS DE HIDROXIAMINOACIDOS

CAPITULO II

Se ha mencionado anteriormente que los hidroxiaminoácidos libres, o bien las moléculas complejas de las cuales forman parte, son responsables de variadas e importantes propiedades biológicas. Un ejemplo de un hidroxiaminoácido constituyente de antibióticos es la D-(p-hidroxifenil)-glicina presente en las penicilinas semisintéticas Ampicillina y Amoxycilina. Los hidroxiaminoácidos pueden también actuar como sinergistas de antibióticos (*ie.*,bulgecina 7) o a nivel del sistema nervioso central, como la 3-hidroxi-L-tirosina (L-dopa) y la 3-hidroxi- α -metil-L-tirosina [(S)- α -metildopa], utilizadas para tratar ciertas enfermedades como el parkinsonismo³⁵. Además, los aminoácidos no proteicos han sido empleados en la elucidación de mecanismos de reacciones enzimáticas^{36,37}

La gran variedad de estructuras de hidroxiaminoácidos y la variación en las propiedades biológicas como consecuencia de un cambio estructural ha potenciado, en los últimos años, el desarrollo de metodologías sintéticas que permitan la obtención eficiente de dichas moléculas. Dado que los hidroxiaminoácidos poseen generalmente varios centros quirales, las exigencias sintéticas en cuanto a la pureza enantiomérica de dichos compuestos es también cada vez mayor. De ahí que los esfuerzos de numerosos grupos de investigación se dirijan al desarrollo de rutas rápidas y económicas que conduzcan a los compuestos el desarrollo de complejos métodos espectroscópicos y computacionales que permiten elucidar la conformación de las moléculas y su relación con las propiedades físicas, químicas y biológicas de las mismas. Se han desarrollado numerosas estrategias sintéticas que conducen a la obtención de α -aminoácidos ópticamente puros.^{1-3, 38-40} Dichas estrategias involucran generalmente uno de los siguientes pasos clave:

- Hidrogenación altamente estereoselectiva de derivados quirales de dehidroaminoácidos o hidrogenación asimétrica de derivados de dehidroaminoácidos proquirales.
- 2- Utilización de un análogo de glicina como sintón quiral para la obtención de un aminoácido a través de:
 - a- una alquilación por ataque nucleofílico de un carbanión *via* formación de un enlace C-C en la posición α, o
 - b-una sustitución electrofílica de un carbocatión.
- 3- Aminación nucleofílica.
- 4- Aminación electrofílica de derivados carbonílicos ópticamente activos.
- 5- Síntesis enzimática, la cual resulta muy atractiva desde el punto de vista del costo y de la escala.

Si bien todas estas estrategias tienen sus ventajas y desventajas, pueden adaptarse a cada caso particular y resultan interesantes pues permiten la construcción de moléculas por combinación de bloques portadores de distintos grupos funcionales.

Un método general de síntesis diastereo y enantioselectiva de aminoácidos y particularmente β -hidroxiaminoácidos, se basa en la condensación aldólica de derivados quirales de glicina con aldehídos y cetonas, en presencia de iones de metales de transición.⁴³ El incremento de la diastereoselectividad se atribuyó a la formación de complejos del siguiente tipo:

Cuando la condensación aldólica se lleva a cabo con formaldehído y el complejo 18 (con $R_1=R_2=H$), se obtienen dos productos según se use Et_3N o NaCH₃O como catalizador. En el primer caso, la configuración absoluta de la serina obtenida es S y su exceso enantiomérico del 85-90%; mientras que al utilizar NaCH₃O (1N) la configuración absoluta es R y se mantiene el mismo porcentaje de exceso enantiomérico. Este efecto está dado por factores termodinámicos según estudios de equilibrio en la relación (S,S) y (S,R) de los isómeros por variación del pH de la solución y se ha sugerido el mecanismo que se ilustra en el esquema I.

Cuando el pH es bajo, la condensación ocurre de la manera usual, dando una mezcla en el equilibrio de los isómeros con predominio del diastereoisómero (S,S). Cuando el pH es alto el grupo hidroxilo comienza a ionizarse siendo en esta forma más básico que el carboxilato, sustituyéndolo en el plano de coordinación del complejo. La estabilización del anillo quelato de 5 miembros induce a que el grupo carboxilato se aleje del fenilo, en el anillo de 6 miembros, y de esta manera la configuración del correspondiente aminoácido es (R). El método ha sido también empleado para la síntesis de derivados β - y γ -sustituidos del ácido glutámico, α -metil- α -aminoácidos, β -hidroxi- α -aminoácidos,⁴⁵ y, más recientemente para la obtención de prolinas sustituidas.⁴⁶

ESQUEMA I

Recientemente Corey y colaboradores⁴⁷ describieron dos rutas sintéticas enantioselectivas que conducen a la obtención de la (2S,3S)-(22) y la (2R,3S)-3-hidroxileucina-(23). En este caso se parte de bromoacetato de *ter*-butilo (20) el cual reacciona con un bromoborano quiral [(R,R)-19]. El boroenolato resultante condensa con isobutiraldehído para dar el (S,S)- α -bromo- β -hidroxiéster (21), intermediario clave para la síntesis de 22 y 23. (Esquema II).

Una estrategia alternativa conocida desde ya hace varios años consiste en el empleo de hidratos de carbono como moldes quirales para la obtención de aminoácidos,^{48, 49} metodología que ha sido objeto de una reciente revisión.⁵⁰ Esta estrategia se ha aplicado también para la síntesis de hidroxiaminoácidos,^{51, 52} en los cuales se retiene la quiralidad de

los carbonos hidroxilados presentes en el azúcar de partida.

ESQUEMA II

Uno de los primeros ejemplos de esta estrategia, es la síntesis de Wolfrom y colaboradores⁵³ de la *N*-acetil-L-alanina (25) a partir de 2-amino-2-desoxi-D-glucosa (24, D-glucosamina) según se ilustra en el esquema III. Durante el transcurso de la reacción se mantiene la quiralidad de C-2, conduciendo a la estereoquímica correcta en el producto (25).

Schmidt y colaboradores desarrollaron una estrategia general para la síntesis de di y trihidroxiaminoácidos basada en la adición de un fosfonoglicinato a un compuesto carbonílico, seguido de una hidrogenación enantio o diasteroselectiva del doble enlace resultante.^{54, 55} En numerosas oportunidades el compuesto carbonílico empleado fue el (R)-2,3-O-isopropilidén gliceraldehído (**26**), obtenido a partir de un azúcar (1,2;5,6-di-O-

ESQUEMA III

isopropilidén-D-manitol). A modo de ejemplo se muestra en el esquema IV la obtención de la lactona del ácido 2-amino-4,5-dihidroxipentanoico (29) a partir de 26. Por reacción de 26 con el fosfonoglicinato se obtuvo una mezcla Z/E del derivado del ácido 2-pentenoico (27) con una relación Z/E ~92:8. La hidrogenación de 27 con catalizadores no quirales condujo a una mezcla diastereoisomérica de los ésteres metílicos de los ácidos (2S,4S)- y (2R,4S)-2amino-4,5-dihidroxipentanoico (28) en relación ~45:55. Sin embargo, empleando como catalizador quiral en fase homogénea al [Rh(1,5-COD)(R,R)-DIPAMP]+BF₄-(R,R) {ligando: (R,R)-1,2-bis[2-metoxifenilfenilfosfino]etano} se obtuvo el dihidroxiaminoácido (2S,4S) (28) convenientemente protegido con un rendimiento del 93% y un exceso diastereoisomérico >99% (determinado por HPLC). La lactona (29) de configuración (2S,4S) se obtuvo por hidrólisis de 28 en condiciones ácidas.

ESQUEMA IV

El uso de $[Rh(COD)(DIPAMP)]^+BF_4^-$ como catalizador ópticamente activo representa una buena herramienta para la preparación estereocontrolada de diferentes unidades de aminoácidos y su aplicación en la construcción de lipopéptidos de relevancia biológica.⁵⁶⁻⁵⁹

Empleando el método del fosfonoglicinato Schmidt y colaboradores⁶⁰ describieron cuatro rutas sintéticas estereoselectivas de (2S,4R)-4-hidroxiornitina (2) dejando los grupos amino de C-5 y hidroxilo de C-4 protegidos formando un anillo de oxazolidina. En una de las síntesis más elegante se utiliza como sintón al (R)-isopropilidengliceraldehído (26), el cual da origen a la posición terminal del derivado de la hidroxiornitina 34, como se indica en el esquema V. Por tratamiento de 34 con HAcO acuoso a temperatura ambiente se libera al aminoácido del anillo de axazolidina.

ESQUEMA V

La síntesis de dos estereoisómeros de la γ -hidroxiisoleucina (35 y 4) desarrollada por Svensson y colaboradores⁶¹ permitió confirmar en forma inequívoca los constituyentes del péptido γ -amanitina.¹² Como ya se señaló, la γ -amanitina había sido aislada del hongo venenoso Amanita phalloides y de ciertas especias (*Trigonella foenum-graecum*) del hemisferio norte.¹³ Si bien ya se habían descripto algunas síntesis que daban mezclas diastereoméricas^{62, 63} y en las cuales sólo era posible separar los isómeros en baja proporción, y aunque también se habían intentado algunas síntesis enantioselectivas,⁶⁴ por medio de la ruta desarrollada por Svensson y colaboradores⁶⁵ se demostró que las asignaciones estereoquímicas previas eran erróneas. El método empleado permitió la asignación de la estereoquímica absoluta de la γ -hidroxiisoleucina basándose en los La secuencia comenzó con la apertura y simultánea elongación en un carbono del anillo piranósico de 36 por tratamiento con 6 eq. de trimetilaluminio, como se muestra en el esquema VI. La introducción del grupo amino se produjo por apertura estereoselectiva de un epóxido intermediario (39), con retención de la configuración del estereocentro de C-3 (R) de 37. El paso oxidativo (40 \rightarrow 41) consistió en una combinación del reactivo de Jones con Pb(AcO)₄, para dar el azido-ácido 41. La reducción del grupo azido y la simultánea desprotección del hidroxilo de C-4 con sodio en amoníaco líquido condujo al aminoácido 35 que se aisló como el clorhidrato de la lactona 42. La estructura de 42 se confirmó por difracción de rayos X.

Las aldono-1,4-lactonas se han empleado intensivamente para la síntesis de hidroxiaminoácidos, tanto de la serie D como de la L. La estrategia empleada toma como base la configuración original del C-4 de las enonolactonas intermediarias 44 a, b, el cual da origen por hidrogenación al estereocentro de C-2. La excelente estereoselectividad de la reacción de hidrogenación había sido descripta y ampliamente aplicada en nuestro laboratorio,⁶⁶ y ahora empleada por Chittenden y colaboradores para la preparación de hidroxiaminoácidos. Por ejemplo la síntesis de los aminoácidos de la serie D⁶⁷ (2R,4S,5S)[49 a] y (2R,4S,5R)[49 b] se llevó a cabo por mesilación de los compuestos 43 a y b seguido por hidrogenación estereoselectiva de los butenólidos resultantes (44 a, b). El tratamiento con NaN₃ de las desoxilactonas (45 a, b) condujo a los azido-derivados (46 a, b), con inversión de la

ESQUEMA VI

configuración de C-2, los cuales por hidrogenación en presencia de Et_3N condujeron a los isopropilidén derivados 47 a, b. Estos últimos se transformaron en las lactonas 48 a, b por reflujo en HCl diluído y en las norleucinas 49 a, b por hidrólisis en H₂O caliente. Las lactonas 48 a, b, también se obtuvieron directamente por hidrogenación en presencia de ácido a partir de 46 a, b respectivamente. (Esquema VII)

ESQUEMA VII

Por un camino similar se llega a los aminoácidos de la serie L 50 y 51 a partir de Dgalactosa.⁶⁷ (Esquema VIII)

ESQUEMA VIII

La obtención de hidroxiaminoácidos de la serie D en los cuales el nitrógeno forma parte del anillo, a partir de hidratos de carbono, se puede ejemplificar con la síntesis⁶⁸ de (2R,3S,4R)-3,4-dihidroxiprolina (**59**) a partir de D-ribono-1,4-lactona **52**. El 3,4-bencilidén derivado (**53**) de la ribono-1,5-lactona se convirtió en el 2-*O*-trifluorometanosulfonato (**54**). Inesperadamente, la introducción del grupo azida por desplazamiento del sulfonato ocurrió con retención de la configuración de C-2 de la ribonolactona, hecho que se comprobó por cristalografía de rayos X. La secuencia del esquema IX ilustra dicha síntesis.

ESQUEMA IX

La D-glucuronolactona se ha empleado también para la obtención de varios aminoácidos polihidroxilados. Un ejemplo, es la síntesis enantioespecífica de la (2R,3R,4R)-3,4dihidroxiprolina (65).⁶⁹ El reemplazo del hidroxilo de C-5 en el isopropilidén derivado 61 por el grupo azida conduce a la *ido*-azida 62 con inversión de la configuración. Si bien el rendimiento de la reacción es bajo, la secuencia es corta (esquema X) y se puede obtener una cantidad moderada de 65.

ESQUEMA X

Utilizando como intermediario el derivado de la 5-azido-5-desoxi-L-iduronolactona 63 se obtuvo otro aminoácido de la serie D: El ácido (2R,3R,4R,5S)-3,4,5-trihidroxipipecólico (66).⁶⁹ Por hidrogenación catalítica de 63 en ácido acético acuoso se produce la hidrólisis del anillo lactónico y una aminación reductiva intramolecular para dar 66.

También se pueden obtener L-aminoácidos en los cuales el nitrógeno se encuentra como constituyente del anillo. Así por ejemplo en la obtención de 15 a partir del derivado 61 de la glucuronolactona, el paso clave involucra la formación del *gluco*-carbamato 71. Para ello es necesario la introducción del grupo azida con total retención de la configuración para dar la *gluco*-azida 69 como intermediario.⁶⁹ (Esquema XI).

El (4S,5S)-2-(*N*-benciloxicarbonil)amino-5,6-dihidroxihexa-2-en-4-ólido (75) constituye un intermediario útil para la preparación de (2S,4S)-4-hidroxi-Laminoácidos,.como por ejemplo el del ácido (2S,4S,5S)-4,5-dihidroxipipecólico (13) y la (2S,4S,5R)-4-hidroxi-5-(hidroximetil)prolina⁷⁰ (6, bulgecinina).

El tratamiento del compuesto 73 con metóxido de sodio en metanol conduce a 74, el cual da 75, por reducción *in situ* con borohidruro de sodio. Por derivatización selectiva del hidroxilo primario y posterior hidrogenación se obtiene un sólo diastereoisómero (77). Finalmente, por tratamiento de este último con hidróxido de potasio etanólico se llega al derivado del ácido pipecólico (13) según se describe en el esquema XII.

Por una secuencia similar se llega a la obtención de la bulgecinina (6), como se indica en el esquema XIII. En este caso, contrariamente a lo que ocurría con 13, el tratamiento con

ESQUEMA XI

hidróxido de potasio etanólico de 81 en las condiciones en que se obtuvo el ácido 4,5dihidroxipipecólico (13) condujo a una compleja mezcla de productos. Sin embargo,

ESQUEMA XII

empleando bicarbonato de sodio etanólico, se obtuvo la bulgecinina 6.

ESQUEMA XIII

La (2S,4S,5R)-4-hidroxi-5-(hidroximetil)prolina (6),⁵² el ácido (2S,3R,4R,5S)-3,4,5trihidroxipipecólico⁷¹ (15) y el ácido (2S,3R,4R,5R)-3,4,5-trihidroxipipecólico⁵¹ (82) se obtuvieron también a partir de glucosa, empleando rutas relativamente más largas y complejas.

Otra estrategia, que parte también de un derivado comercial de la glucosa (1,2:3,4-di-*O*isopropilidén-D-glucosa, **83**), conduce a aminoácidos polifuncionalizados, mediante una reacción de ciclización intramolecular.⁷² Primeramente se introduce una función amina en el C-5 del hidrato de carbono [por ejemplo para la obtención de la (2S,3R,4R)-3,4dihidroxiprolina (**8**)] o en el C-6 [por ejemplo para la obtención del ácido (2S,3R,4R)-3,4-

ESQUEMA XIV

dihidroxipipecólico (14)], la cual luego desplaza intramolecularmente a un triflato ubicado en C-2. Los hidroxiaminoácidos obtenidos actúan como inhibidores de glicosidasas.⁷² Los

esquemas XIV y XV ilustran las rutas que conducen a 8 y 14, respectivamente.

ESQUEMA XV

Relacionado con este trabajo de Tesis, Hays y colaboradores⁷³ han descripto recientemente la síntesis de un derivado del ácido *cis*-4-hidroxipipecólico (16), el ácido *cis*-4-(fosfonooxi)-2-piperidincarboxílico (88), sin emplear hidratos de carbono como precursores. Se parte de la *N*-3-butenilbencenmetanamina (84), como homoalilamina, la cual condensa con el ácido oxoacético, según la reacción previamente descripta por Grieco y colaboradores,⁷⁴ para dar un ión imonio, el cual experimenta ciclización y posterior
lactonización ($84 \rightarrow 85$).(Esquema XVI). Por hidrogenación catalítica de 85 en metanol se obtiene 86, el cual, por protección selectiva del grupo amino y transesterificación, conduce al intermediario 87. La derivatización de este último con difenilclorofosfato y la posterior

ESQUEMA XVI

desprotección, conducen al compuesto deseado **88**. Otros compuestos análogos de este último, los ácidos 5-hidroxipipecólico⁷⁵ (**89**) y (2,3,4)-trihidroxi-5-hidroximetilén pipecólico⁷⁶ (**91**) han sido recientemente sintetizados: El compuesto **89** se obtuvo a partir del ácido L-glutámico.

El ácido pipecólico 91 se sintetizó a partir de la 2,3:5,6-di-O-isopropilidén manosa (90) según la secuencia indicada en el esquema XVII.

ESQUEMA XVII

RESULTADOS Y DISCUSION

CAPITULO III

PRODUCTOS INSATURADOS OBTENIDOS POR ACILACION DEL ACIDO GLUCOSAMINICO EN DISTINTAS CONDICIONES Como se mencionara en el capítulo de introducción, los hidroxiaminoácidos, moléculas altamente quirales, han sido objeto de variados estudios estructurales y sintéticos, no sólo por tratarse de compuestos naturales, sino también para confirmar la configuración absoluta de algunos productos de los cuales son precursores. Por esta razón, uno de los objetivos de este trabajo de tesis era la obtención de derivados hidroxilados de aminoácidos a partir de hidratos de carbono. En el capítulo II se describieron numerosas rutas sintéticas de hidroxiaminoácidos a partir de diversos compuestos, incluyendo hidratos de carbono. Dado que los azúcares naturales más comunes son las hexosas, la oxidación de C-1 y la sustitución de HO-2 por NH₂ conduciría a un polihidroxiaminoácido de 6 carbonos, es decir, un ácido hexosamínico equivalente a una polihidroxinorleucina. Los ácidos hexosamínicos pueden obtenerse fácilmente por oxidación de los ácidos hexosamínicos, el ácido 2-amino-2-desoxi-D-glucónico (ácido D-glucosamínico, 92), se obtiene con buen rendimiento (~60%) por oxidación con óxido de mercurio de la D-glucosamina (24), un azúcar comercial de bajo costo.⁷⁹ A partir de 92 es posible preparar⁸⁰ la 2-acetamido-2-desoxi-D-manono-1,4-lactona

por epimerización de C-2. La desoxigenación de distintas posiciones de la cadena polihidroxilada de estos compuestos conduciría a una variedad de norleucinas hidroxiladas.

Vekemans y colaboradores⁶⁷ sintetizaron algunas norleucinas 4,5,6-trihidroxiladas a partir de derivados de los ácidos D y L ascórbico. La estrategia empleada, ya detallada en el capítulo II, utiliza como intermediario una 2-O-mesil-2-enonolactona (por ejemplo 44a), la cual se hidrogena para dar la 3-desoxi-2-O-mesil-aldonolactona (45a). Por desplazamiento nucleofílico del mesilato de 45a por azida se obtiene la azida 46a precursora de una norleucina 49a. Como la reacción de sustitución del mesilato procede con inversión de la configuración la norleucina 49a pertenece a la serie D no natural. Recientemente Font y

colaboradores⁸¹ emplearon una estrategia sintética idéntica para preparar derivados de Lnorvalina (94 y 96) a partir de derivados convenientes de D-ribono-1,4-lactona 93 y 95, respectivamente.

El trabajo de Vekemans y colaboradores⁶⁷ pone de manifiesto la utilidad de las

enonolactonas de azúcares para sintetizar derivados de norleucinas de variada estereoquímica. La ruta de Vekemans podría simplificarse considerablemente si el grupo

ESQUEMA XVIII

amino de C-2 se encontrara presente en el hidrato de carbono de partida, es decir si en vez de un ácido aldohexónico se emplea un ácido hexosamínico. Por ejemplo, a partir del ácido glucosamínico (92), podrían obtenerse las lactonas insaturadas 98 y 100, precursoras de 4,5,6-trihidroxi (97) y 4,6-dihidroxinorleucinas (99), respectivamente (Esquema XVIII).

En nuestro laboratorio se había descripto la obtención de lactonas no saturadas por benzoilación prolongada de aldonolactonas con cloruro de benzoflo y piridina a temperatura ambiente. Por ejemplo el 2-benzoiloxi-6-benzoilhexa-2,4-dien-4-ólido⁶⁶ [3-benzoiloxi-5-(2benzoiloxietilidén)-2(5H)-furanona] (101) es el producto de eliminación beta obtenido por benzoilación de aldonolactonas de distinta configuración: D-galactono (102), Dglucono(103) y D-manono-1,4-lactonas (104).

La formación de derivados monoinsaturados de aldohexono-1,4-lactonas es difícil de controlar y en general se obtienen derivados diinsaturados. Sin embargo las heptono-1,4-lactonas [D-glicero-D-gulo-heptono-1,4-lactona (105) y D-glicero-L-mano-heptono-1,4-lactona (106)] producen, bajo las mismas condiciones, productos mono-, di- y triinsaturados, mediante sucesivos procesos de eliminación beta (Esquema XIX).

ESQUEMA XIX

En el caso particular de las 2-amino-2-desoxialdono-1,4-lactonas las reacciones de eliminación beta pueden conducir a lactonas mono- o di-insaturadas. Por ejemplo, Fletcher y colaboradores⁸² observaron que por tratamiento de 2-acetamido-2-desoxi-D-aldono-1,4-lactonas (aldono= glucono, manono o galactono) o de sus 5,6-*O*-isopropilidén derivados con

ESQUEMA XX

hidróxido de potasio metanólico se obtenía una mezcla de las lactonas insaturadas 108 y 109 en aproximadamente la misma proporción. Durante el proceso de β -eliminación se pierde la quiralidad de C-2 y de C-3, y además la reacción transcurre con epimerización de C-4. Las mismas 2-enonolactonas (108 y 109) se obtuvieron (esquema XX) a partir de 2-acetamido-2desoxi-D-manono-1,4-lactona (107) y 2-acetamido-2-desoxi-D-galactono-1,4-lactona (110) por reacción con diciclohexilamina en etanol absoluto.⁸³ Posteriormente en este mismo capítulo se describirán las reacciones que conducen a productos diinsaturados por eliminación de 2-aminohexonolactonas y ácidos 2-hexosamínicos. Productos monoinsaturados obtenidos por acilación del ácido D-glucosamínico (92).

Con el propósito ya enunciado de obtener enonolactonas del ácido D-glucosamínico (92) como intermediaras en la síntesis de norleucinas, se procedió a estudiar la acilación de 92 en distintas condiciones. En primera instancia se realizó la acetilación de 92 con cloruro de acetilo y piridina, obteniéndose una mezcla de dos productos 111 y 112 (esquema XX1), los cuales se separaron por cromatografía en columna de sílicagel.

ESQUEMA XXI

El producto mayoritario presentaba constantes físicas coincidentes con las de la 2acetamido-4,6-di-O-acetil-2,3-didesoxi-D-*eritro*-hex-2-enono-1,5-lactona (111) sintetizada por otra ruta por Pravdic y Fletcher.⁸⁴ El espectro de RMN-¹H de 111 (CDCl₃, Tabla I, Fig I) mostraba un doblete a 7,45 ppm que integraba para un hidrógeno y que se asignó a H-3; a 5,66 ppm aparecía un triplete con $J_{4,5}$ 5,2 Hz atribuído a H-4; a 4,75 ppm se observaba un multiplete que integraba para un hidrógeno correspondiente a H-5; H-6,6' aparecían como doble dobletes a 4,44 y 4,21 ppm, respectivamente, con $J_{5,6}$ 5,8 Hz y $J_{5,6}$, 5,0 Hz; la señal de ~NH aparecía a 7,84 ppm, mientras que la señal correspondiente al metilo del ~NAc aparecía a 2,20 ppm. Finalmente, los metilos de los ~OAc resonaban a 2,08 y 2,14 ppm.

Fig 1. Espectro de RMN-¹H de 111.

TABLA I. Datos de RMN-¹H (100 MHz) de los compuestos 111-114:

Compuesto	Desplazamientos químicos (δ, ppm)							
	H-3	H-4	H-5	H-6,6'	~NH	CH ₃ CON~		
111	7,45	5,66	4,75	4,44; 4,21	7,84	2,20		
112	7,45	←5,	30→	4,45; 4,14	7,72	2,22		
113	а	6,07	5,12	4,78; 4,63	8,62			
114	а	5,56	5,67	4,80; 4,61	8,20			

^aSuperpuesto con señales aromáticas.

El valor de $J_{4,5}$ relativamente pequeño excluye una relación *trans-diaxial* para H-4 y H-5 e indica un predominio del confórmero ${}^{5}H_{O}(D)$ en el equilibrio conformacional. La conformación ${}^{5}H_{O}$ se encontraría estabilizada por el efecto estereoelectrónico del acetato alflico *quasiaxial* (efecto alflico) y es coincidente con la conformación propuesta para otras 2-enono-1,5-lactonas.^{85, 86}

Compuesto	Desplazamientos químicos (δ, ppm)							
	C-1	C-2	C-3	C-4	C-5	C-6		
111	159,7	126,7	117,6	63,6	77,9	62,0		
112	168,6 ^a	126,6	124,9	79,0	70,6	61,3		
113	160,3	127,4	117,3	64,8	78,6	63,2		
114	168,8	126,8	125,1	79,7	71,2	61 ,9		

TABLA II. Datos de RMN-¹³C (25,2 MHz) de los compuestos 111-114:

^a C-1 se encuentrasuperpuesto con los C=O de los grupos acetilos.

Fig 2. Espectro de RMN-¹³C de 111.

El espectro de RMN-¹³C de 111 (CDCl₃, Tabla II, Fig 2) mostraba a 169,9 (x2) y 169,4 ppm los grupos carbonilos de los acetilos y a 24,1; 20,6 y 20,3 ppm los correspondientes metilos. El carbonilo de lactona α , β -insaturada aparecía a 159,7 ppm. Los carbonos vinflicos resonaban a 126,7 (C-2) y 117,6 ppm (C-3), y el C-4 a 63,6 ppm. Las señales de C-3 y C-4 se asignaron por desacople a frecuencia simple de H-3 (7,45 ppm) y H-4 (5,66 ppm), respectivamente. Los carbonos restantes (C-5 y C-6) aparecían respectivamente a δ 77,9 y 62,0.

El producto secundario de la reacción de acetilación se aisló como un jarabe incoloro, cuyo espectro de RMN-¹H (CDCl₃, 100 MHz, Tabla I) coincidía con el descripto en la literatura⁸² (60 MHz) para la 2-acetamido-5,6-di-*O*-acetil-2,3-didesoxi-D-*eritro*-hex-2enono-1,4-lactona (112), obtenida por tratamiento de la 2-acetamido-2-desoxi-D-manono-1,4-lactona con hidróxido de potasio metanólico, y posterior acetilación.

Fig 3. Espectro de RMN-¹³C de 112.

El espectro de RMN-¹³C de 112 (CDCl₃, Tabla II, Fig. 3) mostraba la presencia de un carbonilo de 1,4-lactona insaturada y tres grupos acetilo (170,1, 169,5, 169,1, 168,7). El C-2 y C-3 aparecían a 126,6 y 124,9 ppm; la señal correspondiente a C-4 aparecía a 79,0 ppm, a campos más bajos que la señal de C-5 (70,6 ppm), a diferencia de lo que ocurría con las correspondientes señales de 111 confirmando la presencia de un anillo de cinco miembros.⁸⁷

En un experimento paralelo, el ácido glucosamínico (92) se benzoiló a temperatura ambiente con cloruro de benzoflo en piridina anhidra durante 2 h, al cabo de las cuales se observaron por ccd dos productos principales de Rf 0,40 (mayoritario) y Rf 0,30. Estos productos se aislaron por cromatografía en columna de sílicagel y se caracterizaron en base a sus propiedades físicas y los correspondientes espectros de RMN. El compuesto mayoritario, la 2-benzamido-4,6-di-*O*-benzofl-2,3-didesoxi-D-*eritro*-hex-2-enono-1,5-lactona (113), cristalizó de etanol (pf 130-131°C) y presentó actividad óptica ($[\alpha]_D$ +87°; c 1, acetona). El espectro de RMN-¹H de 113 (CDCl₃, Tabla I, Fig. 4) presentaba entre 8,12 y 7,30 ppm las señales correspondientes a los protones aromáticos y superpuestas con ellas la señal de H-3, según se determinó por integración de esa región. El doble doblete a 6,07 ppm que integraba

Fig 4. Espectro de RMN-¹H de 113.

para un hidrógeno se asignó a H-4 ($J_{3,4}$ 5,0 Hz) y el multiplete centrado en 5,12 ppm ($J_{4,5}$ 4,3 Hz), que también integraba para un hidrógeno, se asignó a H-5; H-6,6' aparecían a 4,78 y 4,63 ppm como dos doble dobletes ($J_{5,6}$ 5,4 Hz, $J_{5,6}$, 4,5 Hz)

El espectro de RMN-¹³C de 113 (CDCl₃, Tabla II, Fig. 5) mostraba la señal de C-1 a 160,3 ppm; las correspondientes a los carbonos vinflicos a 127,4 (C-2) y 117,3 (C-3) ppm; al igual que en el análogo acetilado 111, la señal de C-5 aparece a campos más bajos (78,6 ppm) que la de C-4 (64,8 ppm). Por último la señal de C-6 aparece a 63,2 ppm. En base a estos datos y al análisis elemental 113 se caracterizó como 2-benzamido-4,6-di-O-benzofl-2,3-didesoxi-D-*eritro*-hex-2-enono-1,5-lactona.

Fig 5. Espectro de RMN-¹³C de 113.

Fig 6. Espectro de RMN-¹H de114.

Fig 7. Espectro de RMN-¹³C de 114.

El compuesto minoritario de la mezcla se obtuvo cristalino luego de evaporar el solvente de las fracciones que lo contenían y se caracterizó como 2-benzamido-5,6-di-Obenzoil-2,3-didesoxi-D-eritro-hex-2-enono-1,4-lactona (114), que luego de recristalizarla de etanol dio pf 138-141°C. También era ópticamente activa $[\alpha]_D$ -15° (c 1, cloroformo) y su espectro de RMN-¹H (CDCl₃, Tabla I, Fig. 6) presentaba las siguientes señales: Entre 8,12 y 7,30 ppm un multiplete que integraba para veintiseis hidrógenos correspondientes a los anillos aromáticos de los grupos benzoílo y al H-3; a 5,67 ppm un multiplete correspondiente a H-5 con $J_{4.5}$ 6,0 Hz; a 5,56 ppm un doble doblete que integraba para un hidrógeno (H-4) con $J_{3,4}$ 2,0 Hz; los dos doble dobletes a 4,80 y 4,61 ppm se asignaron a H-6,6' con $J_{5,6}$ 5,5 Hz y $J_{5,6}$, 4,5 Hz. Por último la señal ancha del ~NH aparecía a 8,20 ppm. Al igual que para el compuesto 113, la señal para C-4, en el espectro de RMN-13C (CDCl₃, Tabla II, Fig. 7), aparecía a campos más bajos que la correspondiente a C-5 (79,7 ppm vs. 71,2 ppm); la señal de C-1 aparecía a 168,8 ppm y las de los carbonos vinílicos a 126,8 y 125,1 ppm, respectivamente; por último la señal de C-6 aparecía a 61,9 ppm. En base a estos datos se estableció la estructura de 114 como 2-benzamido-5,6-di-O-benzofl-2,3-didesoxi-D-eritrohex-2-enono-1,4-lactona. El rendimiento global de la reacción de benzoilación, que resultaba de juntar también las fracciones intermedias, era del 96%.

Además de la utilidad señalada anteriormente para la síntesis de hidroxiaminoácidos las enonolactonas de azúcares se han popularizado en los últimos años por su intensivo uso

ESQUEMA XXII

como intermediarios o compuestos de partida para en la síntesis asimétrica de productos naturales. Así por ejemplo el butenólido **116** (esquema **XXII**) derivado de la D-ribono-1,4lactona (**115**), se empleó como sintón quiral en la síntesis de feromonas, antibióticos, análogos de prostaciclinas,⁸⁶ sistemas oxabicíclicos quirales⁸⁹ y una variedad de productos naturales, o compuestos análogos de los mismos.^{67, 90-97}

Las enonolactonas de azúcares resultan también interesantes pues se las encuentra ampliamente distribuidas en la naturaleza, como metabolitos secundarios con actividad fisiológica,^{98, 99} libres¹⁰⁰ (v. gr. vitamina C) o formando parte de moléculas complejas producidas por insectos, plantas, frutos, etc.^{101, 102} En relación con el presente trabajo mencionaremos particularmente a la (+)-leptosphaerina (117), un metabolito del Ascomycete marino *Leptosphaeria oraemaris* (Linder). Nótese que el compuesto (112), obtenido en un sólo paso a partir del ácido D-glucosamínico (92) es en realidad el derivado acetilado de 117. Este hecho pone de manifiesto una vez más la versatilidad de los ácidos aldónicos y aldonolactonas como compuestos de partida para la síntesis de productos naturales.

Productos diinsaturados obtenidos por acilación del ácido D-glucosamínico (92):

A comienzos de este siglo, Neuberg¹⁰³ había descripto que por acetilación del ácido 2amino-2-desoxi-D-glucónico (92) con anhídrido acético y acetato de sodio se obtenía un producto principal que fundía a 125 °C y cuya fórmula empírica era $C_{10}H_{11}NO_5$. Casi 30 años más tarde Bergmann y colaboradores¹⁰⁴ repitieron esta reacción obteniendo un producto de pf 125 °C el cual luego de sucesivas recristalizaciones ascendió a 154 °C. En base a la fórmula molecular y a algunas reacciones químicas efectuadas, este grupo propuso la estructura de 2-acetamido-6-acetoxihexa-2,4-dien-5-ólido [3-acetamido-6acetoximetilenpirán-2-ona] (118) para este compuesto (esquema XXIII). Basándose en esta estructura, Inoue¹⁰⁵ patentó en 1962 un procedimiento para correlacionar la D-glucosamina con el aminoácido 5-hidroxilisina. Por una ruta sintética distinta (esquema XXIV), que

ESQUEMA XXIII

involucraba la formación de un mono-bencilidén acetal formulado (erróneamente) como el clorhidrato del 5,6-O-bencilidén-2-amino-2-desoxi-D-gluconato de etilo (119) Bergmann y colaboradores¹⁰⁴ obtenían un producto insaturado (120), precursor de la supuesta furanona 121, isómera de la anterior (118).

En una comunicación presentada en un congreso Horton y Thomson,¹⁰⁶ en base a datos

espectrocópicos, ponen en duda la estructura asignada por Bergmann¹⁰⁴ como 118. Posteriormente con el advenimiento de las técnicas de resonancia magnética nuclear más sofisticadas, Clarke y colaboradores¹⁰⁷ comprobaron, en concordancia con lo propuesto por Horton y Thomson,¹⁰⁶ que el compuesto 118 era en realidad una mezcla de (E,Z)-2acetamido-6-acetoxihexa-2,4-dien-4-ólido [(E,Z)-3-acetamido-5-(2-acetoxietilidén)-(5H)furán-2-ona] (121). Con el objeto de verificar estos resultados y para intentar la separación de las eventuales furanonas diastereoisoméricas, se repitió el procedimiento descripto por Bergmann¹⁰⁴ para la acetilación del ácido glucosamínico (92) con anhídrido acético y acetato de sodio, el cual condujo a un compuesto cristalino con 93% de rendimiento. El amplio rango de fusión (126-148 °C) del producto de acetilación, después de tres

ESQUEMA XXIV

recristalizaciones sucesivas de agua, evidenciaba que el mismo no se encontraba en alto grado de pureza. En efecto, el análisis de su espectro de RMN-¹H indicó que se trataba de una mezcla de estereoisómeros de *E* y *Z* de **121**, la cual contenía 63% de un isómero y 37% del otro. Una separación parcial de la misma se logró por reflujo del crudo de reacción en tetracloruro de carbono, seguida de 18 h de reposo a temperatura ambiente. La suspensión obtenida se filtró, observándose en el sólido un incremento del isómero mayoritario, cuya proporción aumentaba por recristalización de dicho sólido de agua. Luego de tres recristalizaciones sucesivas se obtuvo el isómero mayoritario puro, el cual dio pf 149-150 °C. Se consideró que la separación de la mezcla por HPLC podría ser efectiva, pero sin embargo, a pesar de utilizar condiciones adecuadas para la separación de otros azúcares acilados [Columna RP18 (tamaño de partícula 10µ), y acetona-agua 1:1] la mezcla isomérica no logró separarse.

Compuesto	Desplazamientos químicos (δ, ppm)						
	H-3	H-5	H-6,6'	~NH	CH3CON~		
(<i>E</i>)-121	7,80	5,77	4,79	8,00	2,25	-	
(Z)- 121	7,49	5,36	4,88	8,01	2,24		
122	a	5,57	5,17	8,24			

TABLA III. Datos de RMN-¹H (100 MHz) de los compuestos (E, Z)-121 y 122:

^aSuperpuesta con los protones aromáticos.

La estructura del isómero mayoritario se asignó como Z por comparación con furanonas análogas sintetizadas con anterioridad en este laboratorio⁸⁷ y con datos espectroscópicos de la literatura,¹⁰⁷ en los cuales se había demostrado en base a experimentos del efecto nuclear de Overhauser que en el estereoisómero Z el H-3 se encontraba a campos mayores. Así en el espectro de RMN-¹H (*E*,*Z*) (CDCl₃,Tabla III) de la mezcla de *E* y Z-121, la señal de H-3 a δ 7,49 correspondía al estereoisómero Z, y la de δ 7,80 al estereoisómero E, centrados en 5,77 y 5,36 ppm se observaban dos tripletes que en total integraban para dos hidrógenos, H-5 (E) y H-5 (Z) respectivamente; H-6,6' aparecían como dos dobletes a 4,79 y 4,88 ppm; por último la señal de ~NAc se observaba a 2,08 ppm y las de ~OAc a 2,25 y 2,24 ppm.

Compuesto	Desplazamientos químicos (δ, ppm)						
	C-1	C-2	C-3	C-4	C-5	C-6	
(<i>E</i>)-121	165,7	127,7	114,9	151,7	106,4	58,6	
(Z)-1 21	166,5	127,2	118,6	149,8	106,6	58,2	
1 22	165,7	а	118,6	145,2	107,4	58,8	

TABLA IV. Datos de RMN-¹³C (25,2 MHz) de los compuestos (E, Z)-121 y 122:

^aSuperpuesta con los carbonos aromáticos.

El espectro de RMN-¹³C de 121 (E,Z) (CDCl₃, Tabla IV) presentaba las señales correspondientes a los carbonos carbonílicos de los acetilos de ambos isómeros a 170,6 y 169,5 (x2); a 165,7 y 166,5 ppm las señales de los carbonos carbonílicos de la lactona (*E* y *Z*, respectivamente; las señales de C-4, C-2, C-3 y C-5 aparecían respectivamente a 151,7, 127,7, 114,9 y 106,9 ppm (isómero *E*) y a 149,8, 127,2, 118,6 y 106,6 ppm (isómero *Z*); y C-6 (*E*) y (*Z*) a 58,6 y 58,2 ppm respectivamente. Por último las señales correspondientes a los metilos de los acetilos se observaban a 24,3; 23,4 y 20,7 ppm.

El compuesto 121 se formaría por 1,4-lactonización de 92 en las condiciones de acetilación, seguido de dos procesos sucesivos de eliminación β de ácido acético. De acuerdo a estudios previos de este laboratorio⁶⁶ la eliminación se produciría por un mecanismo ElcB (esquema XXV). La substracción del H-2 por una base, en este caso el acetato de sodio, genera un carbanión estabilizado por resonancia que luego reordena con la eliminación *syn* o *anti* del grupo acetilo de C-3. Una segunda eliminación del grupo acetilo

ESQUEMA XXV

de C-5 tiene lugar por el mismo mecanismo, ya que el carbanión que se forma por pérdida de H-4 está estabilizado por conjugación con un carbonilo α , β -insaturado. La formación de un carbanión intermediario justifica que la reacción no sea estereoselectiva obteniéndose una mezcla de isómeros.

Con el objeto de determinar si era posible controlar el curso estereoquímico de la segunda eliminación, se emplearon otras condiciones de reacción a partir de la 2enonolactona 112. Por ejemplo, cuando 112 reaccionó con una base fuerte no nucleofílica como el 1,8-diazabiciclo[5,4,0]undec-7-eno (DBU) en un solvente poco polar (CH_2Cl_2), de la mezcla de reacción se obtuvo un compuesto principal que cristalizó de benceno y que fundía a 154°C.

El espectro IR del producto mostraba una banda a 720 cm⁻¹, característica de una γ lactona- α , β -insaturada, con un doble enlace exocíclico de configuración *cis*.¹⁰⁶ El isómero *trans* presenta usualmente una banda a 914 cm⁻¹ que no está presente en la furanona obtenida por acción de la DBU, lo cual indicaría que se trataba del isómero (Z)-121. En efecto, el espectro de RMN-¹H (CDCl₃, Tabla III, Fig. 8) del producto confirmó la presencia de un único estereoisómero ((Z)-121), pues su espectro era superponible con el del isómero mayoritario de la mezcla *E*,*Z*, previamente descripto (Tabla III).

Dado que el tratamiento de 112 con DBU condujo a (Z)-121, se estudió la reacción de dicha base con el derivado benzoilado 114, análogo de 112, en las mismas condiciones. De la mezcla de reacción se obtuvo un compuesto cristalino (pf 189-190 °C) con 62% de rendimiento. En el espectro de RMN-¹H (CDCl₃, Tabla III) del producto se observó la señal ancha del ~NH a 8,24 ppm y un triplete a 5,57 ppm debido al H-5, la señal de H-3 se encontraba superpuesta con las correspondientes a los protones aromáticos y el doblete a

					1.1
	·				ti.
TEL A MORE THE		·····			ţ÷.
				and the second secon	<u> </u>
	<u>4 (* 1977)</u> 4 - Karlon (* 1977)		1.2.3.3.1.4		┼──
	I to be the state				{
The second second second second second	1 - to the state of the state o		CONTRACTOR OF A	ग्रिसेंग रेप तथा करता हुन्छ	÷-
					<u></u> f'
			···		
					<u> </u>
	بجماب بسب بالتشيية	۲. بندار المراجع المراج			<u></u>
	4				
A State of the sta		<u> - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19</u>			<u> </u>
57 10 10 10 10 10 10 10 10 10 10 10 10 10			/		<u>l</u> .
	1.4.				
	ня			感问题是中世常生活。	
	Fight In				
				Acta Acta States	4
				A COLORED AND AND AND AND AND AND AND AND AND AN	
				The particulation of the	N.
A BENERAL PLANE		THEFT		DOT DEPOSIT OF THE PARTY OF THE PARTY	1
					Į.

Fig. 8. Espectro de RMN- 1 H de (Z)-121.

5,17 ppm, que integraba para dos hidrógenos, correspondía a los hidrógenos metilénicos. Si se comparan los desplazamientos químicos de estas señales con los correspondientes al compuesto (Z)-121, se observa que las primeras están ligeramente desplazadas a campos más bajos debido al cambio de los sustituyentes acetilo por benzoílo, pero ambos espectros eran muy similares, por lo cual se asignó una configuración Z al doble enlace exocíclico de 122.

En el espectro de RMN-¹³C (CDCl₃, Tabla IV) de 122 se observaba la señal para el carbono de lactona a 165,7 ppm; la señal de C-2 aparecía superpuesta con las de los carbonos aromáticos, el C-3 resonaba a 118,6 ppm, al igual que en el análogo (Z)-121, y a 145,2; 107,4 y 58,8 se observaban las señales correspondientes a C-4, C-5 y C-6, respectivamente.

Resulta interesante estimar la conformación preferencial a lo largo del enlace C-4-C-5

ESQUEMA XXVI

de las furanonas 121 y 122, porque esta puede tener implicancias en la estereoquímica de los productos de la segunda eliminación. El valor de $J_{4,5}$ (~6 Hz) indicaría un predominio del rotámero que tiene H-4 y H-5 dispuestos antiperiplanarmente (I). Los otros rotámeros (esquema XXVI) sesgados se encontrarían desestabilizados por interacciones gauche generadas por congestión estérica de los sustituyentes (por ejemplo II). La eliminación de 112 y 114 catalizada por DBU, condujo diastereoselectivamente a los isómeros Z-121 y Z-122, contrariamente a lo observado en la acilación de 92 con anhídrido acético/acetato de

sodio a ebullición reacción que conducía a una mezcla (E,Z)-121. La estereoquímica de los productos obtenidos por efecto de la DBU (en CH₂Cl₂ a baja temperatura) sobre las lactonas monoinsaturadas, (112 y 114) indica una relación *syn* entre el grupo aciloximetilo (C-6) y el oxígeno del anillo, en el carbanión resultante (III) de la abstracción del H-4 mediante un mecanismo E1cB, propuesto para estas eliminaciones.^{109, 110} El intermediario III se formaría fácilmente a partir de la conformación preferencial de la cadena lateral (rotámero I, esquema XXVI) de las furanonas 112 y 114. Se ha descripto que el mecanismo E1cB puede tener lugar bajo condiciones de control conformacional.¹¹¹ Probablemente Z-121 y Z-122 se

ESQUEMA XXVII

formen bajo control conformacional, cuando se emplea una base fuerte (DBU) en un solvente poco polar y a baja temperatura. Contrariamente, cuando la eliminación tiene lugar a mayor temperatura podría alcanzarse el intermediario III, precursor del isómero E.

Como los productos obtenidos por acetilación del ácido D-glucosamínico,⁹⁸ fueron identificados inequívocamente como una mezcla de las furanonas isoméricas (*E*)-121 y (*Z*)-121, y sus propiedades diferían de aquellas pertenecientes al compuesto preparado por una ruta diferente¹⁰⁴ pero formulado como 121, era necesario entonces, determinar la estructura correcta para este último compuesto. La estructura de 121 era obviamente incorrecta, pues Karrer y Mayer ¹¹² demostraron que el compuesto de partida no era un 5,6-O-bencilidén derivado del mismo ácido glucosamínico (119) sino un 4,6-O-acetal del mismo, finalmente identificado¹¹³ como el etanol solvato del clorhidrato del ácido 2-amino-4,6-O-bencilidén-2-desoxi-D-glucónico 123 (el cual no podría conducir a 121). Se procedió entonces a la preparación de 123 por agregado de ácido glucosamínico a una mezcla de benzaldehído y etanol absoluto enfriada en un baño de agua-hielo. Como catalizador de la reacción se utilizó ácido clorhídrico gaseoso el cual fue cuidadosamente secado antes de burbujearlo en la mezcla de reacción. (Esquema XXVII)

El bencilidén derivado 123 precipitó del medio de reacción como un sólido blanco, ópticamente activo y su espectro de RMN-¹H en agua deuterada, mostraba a 7,49 ppm un singulete ancho debido a los hidrógenos aromáticos; a 5,72 ppm el singulete del *H*-acetálico; entre 5,8 y 4,9 ppm un multiplete que correspondía a H-2, 3, 4, 5, 6 y 6'; a 3,65 ppm, un cuarteto que integraba para dos hidrógenos y a 1,17 ppm un triplete que integraba para tres hidrógenos debido, respectivamente, al metileno y al metilo del etanol. Estas dos señales disminuían en intensidad hasta desaparecer a medida que el compuesto se secaba exhaustivamente en desecador al vacío, confirmándose que se trataba de un etanol solvato y no de un éster etflico.

La presencia de un sistema 1,3-dioxano en 123 se evidencia por la presencia, en el espectro de RMN-¹³C de 123 [(CD_3)₂SO, Tabla VI, Fig. 9], de la señal del carbono acetálico (100,2 ppm), similar al valor descripto para 2-fenil-1,3-dioxanos por Grindley y Gulasekharam¹¹⁴ pero a campos más altos que los encontrados para 1,3-dioxolanos normales. Además, de acuerdo a las señales que generalmente se encuentran presentes en un anillo 4,6-*O*-bencilidén, las señales a 81,8 y 70,8 ppm se atribuyeron respectivamente a C-4 y C-6, teniendo en cuenta que la incorporación en el anillo dioxano produce un corrimiento a campos más bajos de hasta 10 ppm para dichos carbonos.¹¹⁵

La acetilación de 123 se realizó con anhídrido acético y acetato de sodio a reflujo durante unos minutos produciéndose lactonización y eliminación del acetato en posición β al

		No. 1997	
	u a	1	
	42	a 21	
A CONTRACT OF		· · · · · · · · · · · · · · · · · · ·	
Contraction of the second			
THE AND TRACK TO A	Att State of Andrew Britis	There a case	
	<u> Aliter and a second</u>		and the second
			· · · · · · · · · · · · · · · · · · ·
		(de la d La del la del de la de	
			التي مع مشرق المعالية المعاملين و
		(Marine Electronic States and States)	للاستركيب كالتكليلا للالتك
			in in grader in a second
 A statistical second sec			in a second side in the
一一和社会教室和基督教教会	And the second second second second		
- 一般的 计正确的 医下面的			and the second
	NI HAR A MARKEY.	2. 医静脉管肌 网络小小小小小小小	<u></u>
19 11 日本教育教育教		C4	the first second
	Рьсн	c3	
	 A state of a state o	C5	
			The second second
all we have been and a state of the second and the	Maria William and the state of	whender the and real for the property and a first discount of the	When with a weather with the home the
the state of the s	are stated are and all and	- and a desired to the state of	. 11 Iste al a se al a
150	100	50	
0.14			

Fig. 9. Espectro de RMN-¹³C de 123.

carbonilo lactónico, y obteniéndose **124** como un producto cristalino (pf 193-194 °C) ópticamente activo ($[\alpha]_D$ -32°).

El espectro de RMN-¹H (CDCl₃, 490 MHz, Tabla V, Fig.10) de 124 mostraba la presencia del protón del acetal a 5,64 ppm y además los valores de las constantes de acoplamiento $J_{4,5}$ 9,6 Hz y $J_{5,6}$ 11,2 Hz indicaban una disposición *trans-diaxial* para los H-4, 5 y H-5, 6', lo cual además de confirmar la presencia de un 4,6-*O*-bencilidén acetal unido a un anillo de seis miembros, indicaba una conformación preferencial tipo silla (²'C₅) para el sistema dioxano, que forzaría al anillo lactónico a adoptar una conformación semisilla [^OH₅(D)]. Esta conformación difiere de la observada generalmente para derivados acilados de aldono-1,5-lactonas.⁸⁶

Fig. 10. Espectro de RMN-¹H de 124.

En el espectro de RMN-¹³C (CDCl₃, Tabla VI, Fig. 11) de 124 se observaban los dos carbonos vinflicos a 124,4 ppm (C-2) y 124,0 ppm (C-3). Si se compara con el espectro de 114, la señal de C-1 aparecía a campos más altos como ocurría, por ejemplo, con la 2-acetamido-4,6-di-O-acetil-2,3-didesoxi-D-*eritro*-hex-2-enono-1,5-lactona (111) con respecto al ácido D-glucosamínico. Por otro lado, el C-5 aparecía a campos más bajos debido a la lactonización y el C-4 a campos más altos debido a la insaturación C-2-C-3. El compuesto 124 presentaba el mismo punto de fusión y el mismo poder rotatorio que el compuesto erróneamente asignado como 2-acetamido-5,6-O-bencilidén-2,3-didesoxi-hex-2-enono-1,4-

lactona (120) y caracterizado ahora como 2-acetamido-4,6-O-bencilidén-2,3-didesoxi-Deritro-hex-2-enono-1,5-lactona

Fig. 11. Espectro de RMN-¹³de 124.

Compuesto	Desplazamientos químicos (δ , ppm) y constantes de acoplamiento (J , Hz)							
	H-3 (J _{3,4})	H-4 (J _{4,5})	H-5 (J _{5,6})	H-6,6' (J _{5,6'})	~N <i>H</i>	CH ₃ CON~		
124	a (1,2)	4,70 (9,6)	4,41 (7,0)	4,47; 4,00 (11,2)	7,70	2,15		
118	7,49 (7,2)	6,33		4,84	8,00	2,21		

TABLA V. Datos de RMN-¹H de los compuestos **124** y **118**:

^aSuperpuesta con los protones aromáticos.

Compuesto	Desplazamientos químicos (δ, ppm)							
	C-1	C-2	C-3	C-4	C-5	C-6		
123 ^a	169,1	55,7*	66,4*	81,8	60,2*	70,8*		
124 ^b	161,0	124,4	124,0	73,5*	73,1*	67,6*		
118	150,0*	125,1	122,5	106,4	150,4*	61,5*		

TABLA VI. Datos de RMN-¹³C (25,2 MHz) de los compuestos 123, 124 y 118:

^aPhCH δ 100,2. ^bPhCH δ 102,1. *Las señales pueden estar intercambiadas.

Por tratamiento con ácido clorhídrico concentrado del compuesto 124 se producía la hidrólisis del bencilidén acetal que iba acompañada por la pérdida de una molécula de agua para dar el compuesto 125. Este, por acetilación, condujo al 2-acetamido-6-acetoxihexa-2,4-dién-5-ólido (118), cristalino (pf 117-118 °C), y con constantes físicas idénticas a las descriptas por Bergmann¹⁰⁴ para la furanona 121.

El espectro de RMN-¹H (CDCl₃, 100 MHz, Tabla V, Fig. 12) de 118 presentaba un doblete a 8,22 ppm que integraba para un hidrógeno, con $J_{4,5}$ 7,2 Hz, correspondiente a H-3; un singulete ancho a 8,00 ppm debido al NH; a 6,33 ppm aparecía el doblete de H-4 y a 4,84 ppm el singulete del metileno de C-6. Finalmente los dos singuletes que integraban para tres hidrógenos cada uno, correspondientes a los metilos de los acetilos, aparecían a 2,21 y 2,12 ppm.

El espectro de RMN-¹³C (CDCl₃, 25,2 MHz, Tabla VI, FIg. 13) de 118 mostraba el mismo patrón de señales encontrado para derivados de pirán-2-onas⁸⁷ confirmando que se trataba de un anillo de seis miembros en lugar de un sistema furanona, como el propuesto por Bergmann.¹⁰⁴ Así las señales de los carbonos carbonílicos de los grupos acetilo aparecían a 169,4 ppm (x2) y el carbono carbonílico de la lactona a 159,0 ppm. La señal a 150,4 ppm se asignó a C-5 y las señales a 125,1 y 122,5 ppm se asignaron, respectivamente, a C-2 y C-3. La señal de C-4 aparecía a 106,4 ppm y la del carbono metilénico (C-6) a 61,5 ppm. Finalmente, las señales a 24,6 y 20,7 ppm correspondían a los carbonos de los metilos de los acetilos.

Como conclusión, en este capítulo se describieron los productos obtenidos por acilación del ácido glucosamínico en diferentes condiciones, los cuales resultan útiles como intermediarios para posteriores transformaciones sintéticas. Además se estableció definitivamente la estructura de varios compuestos sobre los cuales existían controversias en la literatura.

En la tabla VII se encuentran resumidas las reasignaciones estructurales.

200	時期後離落da-和水平。1.2.2	的新兴建立 。1	1910 (HAT) (AT)	[注於]符合特地。	•• 대한민국 전신	推动的一些推动
100	A CAR A PARA I TO THE		47. A		200	1. 我们们的
			* * 2 1012	снзсо	10	My Hannah I
🐱 🗇 🖓 👘 🖓	The second s	Later & Later for	$\lim_{t \to 0} \mathcal{L}^{2}[t] + \frac{1}{2} \leq 1$	C CALL COL	sto =	1-4-41-26
10		的地理的	43		* CHARLE	國主權的判例
4.	3	计 大学生 不	20		to the late late is	和自由的时间。
5 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	1 9	「「「「「「「」」」	小江 北部省北部			
Constant I so		和知識目的語		四代这些派了		
	Carlen de partes :	行这些无效的行	· 在.广州部行 (14)的			北部的时候得
	·····································	的秘密的影响。	和法律和法律问题	子的网络	(医血液测试
an estado facto	Replaced in the second	Barl in the	alt in which	ine there will be		A SECTION OF
in my standard	REAL PROPERTY IN	Decastant.	化十十字 化十方	的时代和学生		1月1日 大江台
Barris de Colora		- use	1011月1日	11111111111111111111111111111111111111		
	aller and the life of the c			(2) (4) (4) (4)	1. 建立设计的	
						P-1 14-5
A TRUTTER		1. 1. 1. 1. 1.	ER STE			和新的编制等
		花 网络 属			V the terms of	- 内國之 一日月
Constant of the			1447月1年了。			化的建筑法
C	1.Χ.Ι	1	A service of the service of the	100 100 100 100 100 100 100 100 100 100		
	ATTENA GATABEL A	Sector 1	I Jo Enkard.		124.412-14	South Section 1
的调整管理的		1. N.125725	Sector Reveals	「語語語を必要す	The State of the State	a mill the sectore :
H CAL	1	A CARLES			a de tur	
			A MARTINE AND	the second second		

Fig. 12. Espectro de RMN-¹H de 118.

					14 4 AN 14 19 14
		101 26-7-			
			n an		
			一个一个		$\frac{1}{2} = \frac{1}{2} $
	<u> </u>				
1. <u>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</u>	Realize and the state of the second		<u>+ 1 </u>		
CH3CON C	C5				<u>8 - 74 845 847 4</u>
e aparent mane and	hundramenament	hund		Monardina	the second second
	ió	l	100	50	

Fig. 13. Espectro de RMN-¹³C de 118.
TABLA VII. Reasignaciones estructurales de los compuestos 118, 121, 123 y 124

ESTRUCTURA CORRECTA	ESTRUCTURA ORIGINAL					
(<i>E</i> , <i>Z</i>)-2-acetamido-6-acetoxihexa-2,4-dién- 4-ólido (<i>E</i> , <i>Z</i> -121).	2-acetamido-6-acetoxihexa-2,4-dién-5-ólido (118).					
2-acetamido-6-acetoxihexa-2,4-dién-5-ólido (118).	2-acetamido-6-acetoxihexa-2,4-dién-4-ólido (121).					
etanol solvato del clorhidrato del ácido 2- amino-4,6-O-bencilidén-2-desoxi-D- glucónico (123).	clorhidrato del 2-amino-5,6-O-bencilidén-2- desoxi-D-gluconato de etilo (119).					
2-acetamido-4,6- <i>O</i> -bencilidén-2,3-didesoxi- D- <i>eritro</i> -hex-2-enono-1,5-lactona (124).	2-acetamido-5,6- <i>O</i> -bencilidén-2,3-didesoxi- D- <i>eritro</i> -hex-2-enono-1,4-lactona (120).					

SINTESIS DE DERIVADOS HIDROXILADOS DE NORLEUCINAS Y DEL ACIDO PIPECOLICO

CAPITULO IV

Síntesis de (2S,4S,5R)-4,5,6-trihidroxinorleucina (ácido-2-amino-2,3-didesoxi-Darabino-hexónico).

Como ya se mencionó en el capítulo anterior, los compuestos insaturados convenientemente derivatizados obtenidos a partir del ácido glucosamínico (92), son intermediarios clave para la preparación de norleucinas. Continuando con la estrategia diseñada, se procedió a hidrogenar las enonolactonas y a desproteger los productos resultantes para obtener los aminoácidos libres. En líneas generales las reacciones de hidrogenación se realizaron utilizando en todos los casos acetato de etilo como solvente y Pd (10%) sobre carbono como catalizador. Salvo cuando se indique lo contrario, la presión de hidrógeno aplicada fue de 1 atm (~14,7 psi).

En primera instancia, se procedió a hidrogenar las furanonas 112 y 114. Por hidrogenación de la 2-acetamido-5,6-di-O-acetil-2,3-didesoxi-D-*eritro*-hex-2-enono-1,4lactona (112) se obtuvo con 98% de rendimiento un producto cromatográficamente homogéneo, cuyo espectro de RMN-¹H (CDCl₃, 200,1 MHz, Tabla VIII, Fig. 14) presentaba a 6,45 ppm un doblete ancho que integraba para un hidrógeno, correspondiente al protón de NH; centrado en 5,26 ppm, el sexteto del H-5 con $J_{4,5}$ 6,6 Hz, $J_{5,6}$ 3,5 Hz y $J_{5,6}$.

Fig. 14. Espectro de RMN- 1 H de 126.

Fig. 15. Espectro de RMN-¹³C de 126.

5,4 Hz; hacia campos más altos aparecía H-4, como un multiplete debido a la superposición parcial de H-2 y H-4; el octeto de H-2 estaba centrado en 4,60 ppm con $J_{2,3}$ 5,7 Hz y $J_{2,3}$, 10,7 Hz; H-6 y H-6' aparecían ambos como dobles dobletes centrados en 4,45 ppm y 4,12 ppm, respectivamente, con $J_{5,6}$ 3,5 Hz, $J_{5,6}$, 5,4 Hz y $J_{6,6}$, 12,3 Hz; un multiplete centrado en 2,85 ppm y que integraba para un hidrógeno se asignó a H-3 ($J_{3,3}$, 12,5 Hz, $J_{3,4}$ 8,7 Hz y $J_{3',4}$ 11,8 Hz). Finalmente H-3' aparecía superpuesto con los singuletes correspondientes a los acetilos a aproximadamente 2 ppm.

Compuesto	Desplaza	Desplazamientos químicos (δ , ppm) y constantes de acoplamiento (J , Hz):								
	H-2	H-3	H-3'	H-4	H-5	H-6	H-6'	NH		
	(J _{2,3})	(J _{2,3} .)	(J _{3,3'})	(J _{3,4})	(J _{3',4})	(J _{4,5})	(J _{5,6})	(J _{5,6} [,]) (J _{6,6} [,])		
126	4,60	2,85	~2	4,70	5,26	4,45	4,12	6,45		
	(5,7)	(10,7)	(12,5)	(8,7)	(11,8)	(6,6)	(3,5)	(5,4) (12,3)		
127	(5,7)	3,12 (~11)	2,35 (12,7)	4,93 (8,7)	5,69 (~11)	4,83 (~6)	4,63 (3,6)	6,92 (5,5) (12,3)		

TABLA VIII. Datos de RMN-¹H de los compuestos 126 y 127.

En el espectro de RMN-¹³C (CDCl₃, 50,3 MHz, Tabla IX, Fig. 15) de 126 se observaban a 173,9, 170,6, 170,4 y 169,8 ppm, las señales correspondientes a los carbonilos de amida, acetilo y lactona; C-4, C-5 y C-6 aparecían a 75,1, 70,9 y 61,7 ppm respectivamente; a 49,7 ppm se observaba la señal correspondiente a C-2 y a 32,0 ppm la correspondiente a C-3. Finalmente las señales de los carbonos de los metilos de amida y acetilos aparecían a 22,7, 20,7 y 20,6 ppm.

Estos datos junto con el análisis de C, H y N estaban de acuerdo con la estructura 2acetamido-5,6-di-O-acetil-2,3-didesoxi-D-arabino-hexono-1,4-lactona para **126**.

Como era de esperar la hidrogenación de la 2-benzamido-5,6-di-O-benzofl-2,3didesoxi-D-eritro-hex-2-enono-1,4-lactona (114) dio resultados similares. El producto de hidrogenación, la 2-benzamido-5,6-di-*O*-benzofl-2,3-didesoxi-D-*arabino*-hexono-1,4-lactona (127), se aisló en forma de cristales blancos (pf 205 °C.ópticamente activos ($[\alpha]_D$ -176,5°)), con 97,4% de rendimiento.

Compuesto	Despla	Desplazamientos químicos (δ, ppm):									
	C-1	C-2	C-3	C-4	C-5	C-6					
126	173,9	49,7	32,0	75,1	70,9	61,7					
127	174,1	50,3	32,8	75,6	71,8	62,5					

TABLA IX. Datos de RMN-¹³C de los compuestos 126 y 127.

Fig. 16. Espectro de RMN-¹H de127.

Su espectro de RMN-¹H era similar al de **126**, salvo que los desplazamientos químicos tanto de los protones como de los carbonos, se encontraban a campos más bajos, lo cual puede atribuirse al cambio de sustituyente acetilo por benzoílo. En el espectro de RMN-¹H (CDCl₃, 200,1 MHz, Tabla VIII, Fig. **16**) de **127** se observaba entre 8,05 y 7,40 ppm un multiplete que integraba para quince hidrógenos correspondientes a los anillos aromáticos de los tres grupos benzoílo; a 6,92 ppm aparecía un doblete debido al protón del NH y a 5,69 ppm un sexteto correspondiente al H-5 con $J_{4,5} \sim 6$ Hz, $J_{5,6}$ 3,6 Hz y $J_{5,6}$ · 5,5 Hz. El H-4 aparecía como un multiplete a 4,93 ppm y H-6 daba un doble doblete centrado en 4,83 ppm con $J_{6,6}$ · 12,3 Hz, mientras que H-6' aparecía a campos más altos (4,63 ppm), también como un doble doblete. El multiplete centrado en 3,12 ppm, correspondía a H-3 con $J_{2,3}$ · 3,12 Hz, $J_{3,3}$ · 2,35 Hz y $J_{3,4}$ 4,93 Hz. Finalmente, H-3' aparecía como un doble doblete a 2,35 ppm con $J_{3,*4} \sim 11$ Hz.

El espectro de RMN-¹³C (CDCl₃, 50,3 MHz, Tabla IX, Fig. 17) de 127 mostraba a 174,1 ppm la señal del carbono carbonílico de lactona, a campos más bajos que los carbonos carbonílicos de los grupos benzoatos (167,8, 166,2 y 165,5 ppm). De los carbonos restantes el más desprotegido era el C-4 (75,6 ppm); C-5 y C-6 aparecían respectivamente a 71,8 y 62,5 ppm, y finalmente C-2 y C-3 a 50,3 y 32,8 ppm, respectivamente.

Los valores de las constantes de acoplamiento de **126** y **127** ($J_{2,3}$ 5,7 Hz, en ambos casos; $J_{2,3}$, 10,7 Hz y ~11 Hz, respectivamente, y $J_{3,4}$ 11,8 y ~11 Hz, respectivamente) indicaban para ambos compuestos una configuración D-*arabino*.

La presencia de la cadena lateral en C-4 induciría la adición de hidrógeno al doble enlace por la cara opuesta a la misma. Esto explicaría la alta selectividad observada conduciendo a la adición *syn* de hidrógeno por la cara menos impedida, para dar un único diastereoisómero.

Cabe destacar que el centro asimétrico (C-2) que se había destruído durante la acilación del ácido D-glucosamínico (92), se recupera ahora mediante la hidrogenación estereoselectiva de 112 y 114. Además la secuencia eliminación-hidrogenación, transcurre

Fig. 17. Espectro de RMN-¹³C de127.

con inversión de la configuración para dar el derivado hidroxilado de un aminoácido de la serie L.

Los compuestos 2-acetamido-5,6-di-O-acetil-2,3-didesoxi-D-arabino-hexono-1,4lactona (126) y 2-benzamido-5,6-di-O-benzofl-2,3-didesoxi-D-arabino-hexono-1,4-lactona (127) constituyen derivados acilados de la forma lactónica de una (2S,4S,5R)-4,5,6trihidroxinorleucina. Por desacilación de 126 y 127 se obtendría el mencionado hidroxiaminoácido en forma libre.

Con el objeto de verificar si se mantenía la estereoselectividad observada en la hidrogenación al utilizar condiciones más drásticas, se repitió la reacción con el compuesto 114 empleando en este caso $Pd(OH)_{2}$, previamente hidrogenado, como catalizador y se trabajó bajo aproximadamente 2,4 atmósferas (35 psi) de hidrógeno. Por comparación de los

Fig. 18. Espectro de RMN-¹H de128.

datos de los espectros de RMN se comprobó, que también en estas condiciones, se obtuvo estereoselectivamente el mismo producto (127) que el obtenido por reducción con H_2/Pd (10%) sobre carbono.

Como se contaba con las enono-1,5-lactonas 111 y 113 que también poseían un grupo amido en C-2, resultaba interesante la hidrogenación de las mismas, para obtener la correspondiente polihidroxinorleucina.

Por hidrogenación catalítica de la 2-acetamido-4,6-di-O-acetil-2,3-didesoxi-D-*eritro*hex-2-enono-1,5-lactona (111) se obtuvo la 2-acetamido-4,6-di-O-acetil-2,3-didesoxihexono-1,5-lactona (128) como un jarabe cromatográficamente homogéneo, ópticamente

activo ($[\alpha]_D$ +131,8°), con 98% de rendimiento.

El espectro de RMN-¹H (CDCl₃, 200,1 MHz, Tabla X, Fig. 18) de 128 mostraba a 6,52 ppm un doblete ancho, que integraba para un hidrógeno, debido al protón de NH; a 5,10 ppm aparecía un sexteto que integraba para un hidrógeno y que correspondía a H-4 con $J_{3,4}$ 2,8 Hz, $J_{3,4}$ 7,6 Hz y $J_{4,5}$ 8,1 Hz; el H-2 aparecía como un quinteto centrado en 4,90 ppm con $J_{2,3}$ ~6,8 Hz, y $J_{2,3}$ · 13,0 Hz; el H-5 daba un multiplete centrado en 4,64 ppm con $J_{5,6}$ 3,3 Hz y $J_{5,6}$ · 5,2 Hz; un multiplete entre 4,41 y 4,24 ppm que integraba para dos hidrógenos correspondía a H-6 y H-6' con $J_{6,6}$ · 12,5 Hz; H-3 aparecía como un doble doble doblete centrado en 2,52 ppm con $J_{3,3}$ · 14,5 Hz.

Los valores de las constantes de acoplamiento indicaban una configuración *arabino* para **128**, pues eran concordantes con las constantes de acoplamiento observadas para la didesoxilactona análoga (la 2,4,6-tri-*O*-benzofl-3-desoxi-D-*arabino*-hexono-1,5-lactona) con un sustituyente benzoato en C-2 en vez de acetamido. Dicha didesoxilactona había sido sintetizada en nuestro laboratorio⁸⁵ y su estructura determinada por métodos químicos y espectroscópicos. Posteriormente Nelson¹¹⁶ describió el espectro de RMN-¹H a 270 MHz de este producto, por lo cual se lo pudo comparar detalladamente con el de **128**.

Fig. 19. Espectro de RMN-¹³C de128.

Compuesto	Desplazamientos químicos (δ , ppm) y constantes de acoplamiento (J , Hz).								
	H-2 (J _{2,3})	H-3 (J _{2,3} .)	H-3' (J _{3,3'})	H-4 (J _{3,4})	H-5 (J _{3',4})	H-6 (J _{4,5})	H-6' (J _{5,6})	NH (J _{5,6'}) (J _{6,6'})	
128	4,90 (~6,8)	2,52 (13,0)	(14,5)	5,10 (2,8)	4,64 (7,6)	←4,41 (8,1)	(3,3)	6,52 (5,2) (12,5)	
129	5,22 (6,6)	2,93 (12,6)	2,37 (14,6)	5,53 (~2,8)	5,03	4,77 (~8)	4,65 (3,4)	7,03 (5,4) (12,4)	

TABLA X. Datos de RMN-¹H de los compuestos **128** y **129**.

Fig. 20. Espectro de RMN-¹³C-DEPT de128.

En el espectro de RMN-¹³C (CDCl₃, 50,3 MHz, Tabla XI, Fig. 19) de 128 aparecían las señales de los carbonos carbonílicos a 170,9, 170,4, 170,3 y 169,8 ppm; de las restantes señales, la que aparecía a campos más bajos (76,6 ppm), se asignó a C-5; y las señales a 65,1 y 62,4 ppm, se asignaron a C-4 y C-6, respectivamente; C-2 resonaba a 45,7 ppm y C-3 a 32,0 ppm. Por último los carbonos de los metilos aparecían a 23,0 y 20,9 y 20,7 ppm. Las asignaciones efectuadas se confirmaron mediante experimentos de RMN-¹³C-DEPT (50,3 MHz; Fig. 20) y de desacople a frecuencia única (DFU). Así, las resonancias a 76,6, 65,1, 45,7, 23,0, 20,9 y 20,7 ppm aparecían con fase normal y las resonancias a 62,4 y 32,0 ppm

Fig. 21. Espectro de RMN-¹H de129.

con fase invertida en el experimento DEPT, por lo cual las dos últimas señales correspondían entonces a los carbonos 6 y 3, respectivamente. Empleando la técnica de desacople a frecuencia única (DFU), se establecieron las resonancias de C-5 y C-4. Así, cuando se irradió a la frecuencia correspondiente al hidrógeno 5 (δ = 4,58), la señal a 76,6 ppm apareció como un singulete de mayor intensidad mientras que cuando se irradió a la frecuencia correspondiente al hidrógeno 4 (δ =5,00) la señal que aparecía como un singulete de mayor intensidad era la de 65,1 ppm.

Compuesto	Despla	Desplazamientos químicos (δ, ppm):									
	C-1	C-2	C-3	C-4	C-5	C-6					
128	170 ,9 *	45,7	32,0	65,1	76,6	62,4					
129	170,8*	46,3	32,2	66,2	77,2	63,2					

TABLA XI. Datos de RMN-¹³C de los compuestos 128 y 129.

*Las señales pueden estar intercambiadas con las de los CH_3CO .

Para la hidrogenación efectiva de la 2-benzamido-4,6-di-O-benzoíl-2,3-didesoxi-Deritro-hex-2-enono-1,5-lactona (113) se requirió usar una mayor presión de hidrógeno 1,6 atmósferas, 23,5 psi. El producto de hidrogenación, la 2-benzamido-4,6-di-O-benzoíl-2,3didesoxi-D-arabino-hexono-1,5-lactona (129), se obtuvo como un sólido blanco (99,7%) que después de recristalizarlo de etanol dio pf 158-160 °C y que también resultó ser ópticamente activo ($[\alpha]_D$ +43°).

El espectro de RMN-¹H (CDCl₃, 250 MHz, Tabla X, Fig. 21) de 129 mostraba las siguientes señales: A 7,03 ppm un doblete ancho debido al protón de NH; un cuarteto centrado en 5,53 ppm y que integraba para un hidrógeno, correspondía H-4 con $J_{3,4} \sim 2.8$ Hz, $J_{3',4}$ 7,4 Hz y $J_{4,5} \sim 8$ Hz; H-2 aparecía como un quinteto centrado en 5,52 ppm con $J_{2,NH} \sim 6.6$ Hz, $J_{2,3}$ 6,6 Hz y $J_{2,3}$, 12,6 Hz; un multiplete centrado en 5,03 ppm correspondía a H-5 con $J_{5,6}$ 3,4 Hz y $J_{5,6}$, 5,4 Hz; los H-6 y H-6' aparecían como dos dobles dobletes a 4,77 y 4,65 ppm respectivamente con $J_{6,6'}$ 12,4 Hz. Finalmente las señales correspondientes a H-3 y H-3' aparecían, en el primer caso como un octeto centrado en 2,93 ppm con $J_{3,3'}$ 14,6 Hz y en el segundo caso como un multiplete centrado en 2,37 ppm. Las asignaciones se confirmaron por irradiación selectiva. Así, por saturación de la señal centrada en 7,03 ppm (NH) se observaba una simplificación de la señal a 5,52 ppm (H-3), que ahora aparecía como un cuarteto, y en 2,37 ppm (H-3'). Cuando se

irradió la señal centrada en 5,22 ppm (H-2) las modificaciones ocurrieron en las señales a 7,03 ppm, que aparecía ahora como un singulete ancho, y a 2,93 y 2,37 ppm (H-3 y H-3' respectivamente). Finalmente la irradiación a 5,03 ppm produjo modificación en las señales a 5,53 ppm (H-4), 4,47 ppm (H-6) y a 4,65 ppm (H-6').

Fig. 22. Espectro de RMN-¹³C de129.

En el espectro de RMN-¹³C (CDCl₃, 25,2 MHz, Tabla XI, Fig. 22) de 129 se observaban las señales de los carbonos carbonílicos a 170,8, 167,1, 165,8 y 165,2 ppm; entre 133,6 y 127,0 ppm las señales de los carbonos pertenecientes a los anillos aromáticos de los grupos benzoflo; luego la señal desplazada a campos más bajos, correspondía al carbono de 1,5- lactona (C-5); C-4 y C-6 aparecían a 66,2 y 63,2 ppm respectivamente y a 36,3 y 32,2 ppm, las señales del C-2 y C-3 respectivamente.

Los espectros de RMN-¹H de las piranonas **128** y **129** eran similares, si bien las señales de los hidrógenos del último resonaban a campos más bajos debido a la presencia de los grupos benzoflo en vez de acetilo.

Los espectros de RMN de 128 y 129, al igual que en los análogos furanónicos 126 y 127, demostraba que se trataba de compuestos diastereoisoméricamente puros, e indicaba que la hidrogenación de las enonolactonas precursoras (111, 113, 112 y 114, respectivamente) ocurría con una excelente selectividad diastereofacial por la cara opuesta a la que contiene al sustituyente aciloximetilo. Como ya se mencionó anteriormente (capítulo III), el compuesto 111 se encuentra con un predominio del confórmero ${}^{5}H_{O}$ en el equilibrio conformacional. Por su parte el compuesto 113 adoptaría una conformación similar con una pequeña distorsión, según se evidenciaba por las pequeñas variaciones en los valores de las constantes de acoplamiento. Así la voluminosa cadena lateral en C-5, queda en la posición axial impidiendo el ataque por la cara superior y siendo de esta manera responsable de la inducción asimétrica.

De esta manera, la estereoselectividad observada en la hidrogenación de estas enonolactonas proporciona un método útil y sencillo para controlar la configuración absoluta del C-2 de 3-desoxialdono-1,4- y 1,5-lactonas.

Los valores de las constantes de acoplamiento obtenidos de los espectros de RMN-¹H de **128** y **129**, suministraban información acerca de la conformación de dichos productos. Así, los valores de $J_{2,3}$ y $J_{2,3}$, de **128** y **129** (~6,8 y 13,0 Hz; 6,6 y 12,6 Hz respectivamente) indicarían que H-2 se encontraría, en ambos casos, fuera del ángulo diedro formado por H-3 y H-3'. Además las constantes de acoplamiento entre H-3, H-3' y H-4 ($J_{3,4} \sim 2,8$ Hz y $J_{3',4}$ 7,6 Hz) sugerirían que H-4 estaría ubicado, al menos parcialmente, bisectando el ángulo formulado por H-3-C-3-H-3'.

Estudios sobre las preferencias conformacionales de aldono-1,5-lactonas, establecían que un valor para la constante de acoplamiento vecinal $J_{4,5} \sim 9,2$ Hz estaba de acuerdo con una conformación $B_{2,5}(D)$ para las mismas.¹¹⁶ Así, el valor de $J_{4,5}$ que poseían los productos de hidrogenación **128** y **129** (8,1 y ~8 Hz, respectivamente) revelarían una ligera desviación del ángulo de torsión respecto de aquellas aldono-1,5-lactonas con conformación $B_{2,5}$. Además los valores de $J_{3,4}$ y $J_{3,4}$ indicarían cierta inestabilidad conformacional en la región C-4-C-5, indicando la posible participación del confórmero ${}^{3}H_{2}$ en el equilibrio conformacional, aunque el $B_{2,5}$ sería el predominante.

Todas las furanonas (126, 127) y piranonas (128, 129) obtenidas por acilación del ácido glucosamínico en condiciones de eliminación β seguida de hidrogenación catalítica esteroselectiva, conducen a derivados de una (2S,4S,5R)-4,5,6-trihidroxinorleucina. Sin embargo, sus enonolactonas precursoras 111, 112, 113 y 114 se obtenían con rendimientos moderados o bajos, y mediante separación cromatográfica de mezclas de reacción. Por este motivo se decidió explorar una ruta sintética alternativa de la (2S,4S,5R)-4,5,6-trihidroxinorleucina empleando otra enonolactona como intermediario clave. Dado que se disponía de la 2-acetamido-4,6-*O*-bencilidén-2,3-didesoxi-D-*eritro*-hex-2-enono-1,5-lactona (124), la cual se había obtenido a partir del ácido glucosamínico (92) como único producto y con buen rendimiento (capítulo III), se consideró conveniente intentar su conversión en una trihidroxinorleucina mediante un proceso de hidrogenación y desprotección.

Se procedió pues a hidrogenar la 2-acetamido-4,6-*O*-bencilidén-2,3-didesoxi-D-*eritro*hex-2-enono-1,5-lactona (124) en presencia de Pd (10%) sobre carbono en acetato de etilo a 4,1 atmósferas (60 psi) de presión. Se obtuvo un sólido blanco de aspecto algodonoso (pf 235-237 °C)

con 94 % de rendimiento que resultó ser ópticamente activo ($[\alpha]_D$ +107,6°).

La aparición de las señales pertenecientes al H-2 (4,99 ppm, $J_{2,3}$ 10,7 Hz, $J_{2,3}$ ' 9,2 Hz y $J_{2,NH} \sim 6,3$ Hz) y a los H-3 (2,89 ppm, $J_{3,3}$ ' 3,8 Hz) y H-3' (como un multiplete superpuesto con la señal del metilo del acetilo y centrado aproximadamente en 2,07 ppm) en el espectro de RMN-¹H (CDCl₃, 250 MHz, Tabla XII, Fig. 23 y 24) de 130 como así también el desplazamiento a campos altos de la señal correspondiente a H-3 indicaban que la transformación química de 124 había tenido lugar. A 6,28 ppm se observaba un doblete que integraba para un hidrógeno y que correspondía al protón de NH; hacia campos más altos aparecía el H-5 como un sexteto centrado en 4,52 ppm con $J_{4,5}$ 9,6 Hz, $J_{5,6}$ 5,1 Hz y $J_{5,6}$ ' 10,2 Hz; H-6 aparecía como un doble doblete a 4,42 ppm con $J_{6,6}' \sim$ 9,8 Hz. Centrado en 3,96 ppm un doble doblete, cuya integración equivalía a un hidrógeno, correspondía a H-4 con $J_{3,4}$ 3,7 Hz y $J_{3',4}$ 9,4 Hz; a 3,58 ppm aparecía H-6' como un doble doblete.

Dichas asignaciones se confirmaron por irradiación selectiva. Así por irradiación de la señal centrada en 3,85 ppm (H-6) se observó una transformación de las señales que aparecían a 4,52 ppm (H-5) y 4,42 ppm (H-6). Por saturación de la señal que aparecía a 4,42 ppm (H-6) se veían modificaciones en el multiplete a 4,52 ppm (H-5) y en la señal a 3,96 ppm (H-4). La irradiación a la frecuencia equivalente a 4,99 ppm (H-2) provocaba transformaciones en las señales a 2,89 ppm (H-3) y 2,07 ppm (H-3').

83

Fig. 23. Espectro de RMN-¹H de 130. (Ampliación.)

Fig. 24. Espectro de RMN-¹H de 130.

Fig. 25. Espectro de RMN-¹³C de130.

Por otro lado, en el espectro de RMN- 13 C (CD₃)₂SO, 25,2 MHz, Tabla XIII, Fig. 25) se observaban las señales correspondientes a los carbonos carbonílicos de lactona y amida a 169,8 y 169,6 ppm; las señales entre 136,7 y 125,7 ppm correspondían a los carbonos del anillo aromático; la señal perteneciente al carbono bencílico aparecía a 100,0 ppm y la de C-5 a 72,5 ppm; las señales a 68,0, 67,1 y 44,6 ppm correspondían a C-4, C-6 y C-2 respectivamente. Finalmente C-3 resonaba a 29,9 ppm, y el carbono del metilo del acilo a 22,0 ppm.

Compuesto	Desplaza	Desplazamientos químicos (δ , ppm) y constantes de acoplamiento (J , Hz):							
	H-2	H-3	H-3'	H-4	H-5	H-6	H-6'	NH	
	(J _{2,3})	(J _{2,3} ,)	(J _{3,3} ')	(J _{3,4})	(J _{3',4})	(J _{4,5})	(J _{5,6})	(J _{5,6} [,]) (J _{6,6} [,])	
130	4,99	2,89	#	3,96	4,52	4,42	3,85	6,28	
	(10,7)	(9,2)	(13,8)	(7,7)	(9,4)	(9,6)	(5,1)	(10,2) (9,8)	
132		6,64		4,74 (1,7)	4,55	4,46 (10,3)	4,01 (4,8)	- (10,5) (10,7)	

TABLA XII. Datos de RMN-¹H de los compuestos 130 y 132:

[#]Superpuesto con las señales de los acetilos.

TABLA XIII. Datos de RMN-¹³C de los compuestos 134, 135 y 136:

Compuesto	Despla	Desplazamientos químicos (δ, ppm):								
	C-1	C-2	C-3	C-4	C-5	C-6				
130*	169,8#	44,6	29,9	68,0	72,5	67,1				
132	167,9#	137,1	130,9	73,3	72,8	67,7				

[#]Puede estar intercambiada con uno de los carbonilos de los acetilos. ^{*}PhCH δ 100,0

El compuesto 124 posee un sistema bicíclic, con un anillo 1,3-dioxano transfusionado al anillo lactónico, y además este último poseía una insaturación conjugada con el doble enlace C=O de la lactona. Estas características hacían que 124 adoptara una conformación rígida y que según se evidenciaba por el valor grande de $J_{4,5}$ (~10 Hz) era $^{O}H_{5}$. De esta manera se podría esperar que la adición de hidrógeno tuviera lugar por ambas caras. Sin embargo, esto no estaba de acuerdo con la alta estereoselectividad encontrada en la hidrogenación catalítica de 124, pues el nuevo centro quiral (C-2) poseía configuración S. La misma estereoselectividad se observó aún cuando la reacción de hidrogenación se llevó a cabo empleando un catalizador mucho más activo que el Pd sobre carbono, como es el Ni-Raney y trabajando con la misma presión de hidrógeno. Parece claro que en este caso, una de las caras diastereotópicas del doble enlace se encontraría más accesible que la otra para el acercamiento del reactivo. Sin embargo no resultaba obvio el origen de esta estereoselectividad.

Los valores relativamente grandes para todas las constantes de acoplamiento de 130 $(J_{2,3} \ 10,7, J_{2,3}, 9,2, J_{3,4} \ 7,7 \ y \ J_{3',4} \ 9,4 \ Hz)$ indican que H-2 y H-4 caen fuera del ángulo H-3-C-3-H-3', y además de acuerdo con el valor de $J_{4,5}$ (9,6 Hz), H-4 y H-5 guardan una relación *trans diaxial*. Estos hechos permiten establecer un neto predominio del confórmero $B_{2,5}(D)$ para el anillo lactónico. Además este producto sería conformacionalmente estable, por cuanto el anillo dioxano se encuentra en su conformación silla preferencial, fijando la región de C-4 y C-5, involucrados en la unión de los dos ciclos *trans*-fusionados.

Con el objeto de verificar si la selectividad observada en la hidrogenación de la 2acetamido-4,6-O-bencilidén-2,3-didesoxi-D-*eritro*-hex-2-enono-1,5-lactona tenía también lugar con otros 4,6-O-benzalderivados, se procedió a sintetizar el compuesto **132**. Para ello se partió de la D-glucono-1,5-lactona (**131**) y empleando la técnica descripta por Evans,¹¹⁷ se la trató durante aproximadamente una hora y media con 2,2-dimetoxitolueno en DMF utilizando ácido *p*-toluensulfónico como catalizador y eliminando el metanol liberado por destilación. Después de evaporar el solvente, el producto resultante se acetiló *in situ* con anhídrido acético y acetato de sodio obteniéndose, luego de recristalizar de etanol, unas agujas blancas (pf 146-147 °C), ópticamente activas ($[\alpha]_D$ +61,4°), cuyo análisis elemental estaba de acuerdo con la fórmula C₁₅H₁₄O₆.

El espectro de RMN-¹H (CDCl₃, 250 MHz, Tabla XII, Fig. 26) de 132 presentaba el mismo patrón de señales que el del bencilidén derivado insaturado del ácido glucosamínico (124): El multiplete entre 7,55 y 7,38 ppm que integraba para cinco hidrógenos correspondía a los protones del anillo aromático; a 6,64 ppm aparecía el doblete del hidrógeno vinílico (H-3), el singulete a 5,54 ppm correspondía al hidrógeno metínico del acetal; a campos más altos (4,74 ppm) aparecía un doble doblete correspondiente al H-4 con $J_{3,4}$ 1,7 Hz y $J_{4,5}$ 10,3 Hz y un multiplete centrado en 4,55 ppm debido al H-5 con $J_{5,6}$ 4,8 Hz; H-6 aparecía como un doble doblete a 4,46 ppm con $J_{6,6}$, 10,7 Hz y H-6' como un triplete centrado en 4,01 ppm con $J_{5,6}$, 10,5 Hz. Finalmente los protones del metilo del acetilo aparecían como un singulete a 2,28 ppm.

El espectro de RMN-¹³C (CDCl₃, 25,2 MHz, Tabla XIII, Fig. 27) de 132 mostraba las

Fig. 26. Espectro de RMN-¹H de132.

Fig. 27. Espectro de RMN- 13 C de 132.

señales de los carbono carbonílicos de la lactona y el acetilo a 167,9 y 157,8 ppm; del resto de las señales, la que aparecía desplazada a campos más bajos (137,1 ppm) correspondía a C-2, luego aparecían C-3 a 130,9 ppm, el carbono metínico del acetal a 102,2 ppm, y C-4 y C-5 a 73,3 y 72,8 ppm, respectivamente; a 67,7 ppm se observaba la señal correspondiente a C-6.

En base a estos datos el compuesto 132 se caracterizó como 2-acetoxi-4,6-Obencilidén-2,3-didesoxi-D-*eritro*-hex-2-enono-1,5-lactona.

Los valores de las constantes de acoplamiento $J_{4,5}$ 10,3 Hz y $J_{5,6}$ 10,5 Hz indicaban, al igual que en su análogo **124**, una disposición *trans-diaxial* para los H-4,5 y H-5,6' adoptando una conformación preferencial tipo silla (²'C₅)para el anillo que contiene el grupo aromático y forzando al otro anillo a adoptar una conformación semisilla [^OH₅(D)].

El compuesto 132 se hidrogenó con Pd (10%) sobre carbono como catalizador pero a diferencia de su análogo 124 se trabajó a presión normal. En este caso, como se esperaría en base a la conformación adoptada por 132, pero contrariamente a lo observado con 124, la reacción de reducción condujo cuantitativamente a una mezcla cristalina de dos compuestos (133), según se pudo observar por ccd. Los intentos de separación por cromatografía en columna de sílicagel fueron infructuosos, obteniéndose en cambio una serie de productos de

descomposición que no fueron identificados. Como se trataba de una mezcla cristalina se pensó en la posibilidad de una separación por cristalización fraccionada, la cual tampoco fue exitosa, pues la mezcla no era estable a temperatura ambiente y resultaba necesario conservarla a baja temperatura.

La complejidad de los espectros debido a la presencia de los dos isómeros limitaba la información que podía extraerse de los mismos. En el espectro de RMN-¹³C (CDCl₃, 200,1 MHz, Fig. **28**) de **133** se observaban entre 169,6 y 166,3 ppm cuatro señales correspondientes a los carbonos carbonílicos de 1,5-lactona y de acetilo; las señales aromáticas aparecían entre 136,6 y 126,2 ppm, y las de los carbonos metínicos del acetal a 102,0 y 101,8 ppm; los C-5, C-4, C-2 y C-6, de ambos isómeros, resonaban entre 73,4 y 64,3 ppm. Finalmente, los C-3 aparecían a 32,8 y 30,5 ppm y las señales de los metilos de acetilos a 20,6 ppm.

Fig. 28. Espectro de RMN-¹³C de 133.

La formación de una mezcla isomérica por hidrogenación de 132, y a diferencia de la alta diastereoselectividad observada para los derivados per-O-acilados de enono-1,5-lactonas (por ejemplo 111 y 113), confirmaría que la hidrogenación del doble enlace ocurriría bajo condiciones de control conformacional.

La desprotección parcial de **130** se realizó por tratamiento con HCl (0,25%) en acetona a reflujo, conduciendo, luego de evaporar el solvente, a un compuesto cristalino (pf 160-161 °C), ópticamente activo ($[\alpha]_D$ 10 °) con dos hidroxilos libres (**134**).

Compuesto	Desplazamientos químicos (δ , ppm) y constantes de acoplamiento (J , Hz):							
	H-2	Н-3 Н-3'	H-4	H-5	H-6	H-6'	NH	
	(J _{2,3})	$(J_{2,3})$ $(J_{3,3})$	$(J_{3,4})$	(J _{3',4})	$(J_{4,5})$	(J _{5,6})	$(J_{5,6'}) \ (J_{6,6'})$	
134	5,47	2,89 2,79	5,05	4,48	4,11	4,03	9,53	
	(9,2)	(11,4)	(6,0)	(9,7)	(4,04)	(5,6)	(5,8) (12,3)	
135	4,69	←3,25-2,97→	4,47	5,12	4,09	4,10		
	(10,8)	(9,0)	(9,6)	(6,0)	(3,8)	(5,8)	(~6,0) (11,2)	

TABLA XIV. Datos de RMN-¹H de los compuestos 134 y 135:

En el espectro de RMN-¹H (Py, 200,1 MHz, Tabla XIV, Fig. 29) de 134, se observaba la ausencia de los hidrógenos aromáticos y del singulete a 5,64 ppm debido al hidrógeno metínico de PhCH. Se observaba también, que la señal correspondiente a H-4 (5,05 ppm),

Fig. 29. Espectro de RMN-¹H de134.

aparecía como un octeto con $J_{3,4}$ 6,03 Hz, $J_{3',4}$ 9,74 Hz y $J_{4,5}$ 4,04 Hz, a campos más bajos que el sexteto correspondiente a H-5, centrado en 4,48 ppm, con $J_{5,6}$ 5,6 Hz y $J_{5,6'}$ 5,8 Hz, lo cual sugería que el compuesto obtenido poseía una estructura furanósica. Además, el protón de NH aparecía como un doblete a 9,53 ppm; H-2 se encontraba centrado en 5,47 ppm como un multiplete con $J_{2,3}$ 9,2 Hz y $J_{2,NH}$ 8,1 Hz; H-6 y H-6' aparecían como dos dobletes superpuestos centrados en 4,11 ppm y 4,03 ppm respectivamente con $J_{6,6'}$ 12,3 Hz; H-3 y H-3' daban multipletes centrados en 2,89 y 2,79 ppm respectivamente.

Fig. 30. Espectro de RMN-¹³C de 134.

El espectro de RMN-¹³C (D₂O, 25,2 MHz, Tabla XV, Fig. 30) de 134 presentaba a 178,2 y 175,0 ppm las señales de los carbonos carbonílicos del acetilo y de la lactona. Luego, la señal correspondiente al carbono de 1,4-lactona (C-4) a 79,3 ppm; las resonancias de C-5, C-6 y C-2 aparecían a 72,5, 62,7 y 51,0 ppm, respectivamente; a 29,8 ppm se observaba la señal de C-3 y, finalmente, a 22,8 ppm aparecía la señal del metilo del acetilo.

Estos datos, estaban de acuerdo con la estructura de 2-acetamido-5,6-di-O-acetil-2,3didesoxi-D-*arabino*-hexono-1,5-lactona para el compuesto **134**. Pero también era interesante tener una comprobación química de dicha estructura para verificar que la contracción del anillo había tenido lugar. En este caso esto resultaba sencillo ya que contábamos con un compuesto adecuado (126) con el cual comparar. Se procedió pues a la acetilación de 134 con anhídrido acético y piridina, obteniéndose un jarabe con 90% de rendimiento, cuyos espectros de RMN-¹H y ¹³C eran idénticos a los respectivos obtenidos para 126, proveniente de la hidrogenación de 112 el cual ya había sido caracterizado como una lactona furanósica (capítulo III).

Como se mencionó anteriormente, la desprotección total de **130** conduciría a la forma lactónica de una (2S,4S,5R)-4,5,6-trihidroxinorleucina. En efecto, por tratamiento de **130** con HCl (5N) a reflujo, se obtuvo un sólido cristalino (**135**, pf 185 °C) con 63% de rendimiento cuyo espectro de RMN-¹H (C_5D_5N , 200,1 MHz Tabla XIV, Fig. **31**) mostraba

Fig. 31. Espectro de RMN-¹H de 135.

un multiplete centrado en 5,12 ppm que integraba para un hidrógeno y que se asignó a H-5 con $J_{4,5}$ 3,8 Hz, $J_{5,6}$ 5,8 Hz y $J_{5,6}$, ~6,0 Hz; H-2 aparecía como un doble doblete centrado en 4,69 ppm con $J_{2,3}$ 10,8 Hz y $J_{2,3}$, 9,0 Hz. El doble doble doblete del H-4 se encontraba centrado en 4,47 ppm con $J_{3,4}$ y $J_{3,4}$ 9,6 y 6,0 Hz; H-6 y H-6' aparecían como dos doble dobletes apenas superpuestos a 4,09 y 4,10 ppm respectivamente, con $J_{6,6}$ ' 11,2 Hz. Finalmente, entre 3,25 y 2,97 ppm, aparecía un multiplete que integraba para dos hidrógenos y que se asignó a H-3 y H-3'.

En el espectro de RMN-¹³C (D₂O, 25,2 MHz, Tabla XV, Fig. 32) de 135 se podía observar la señal del carbono carbonílico de lactona a 174,1 ppm; a campos más altos aparecían C-4, C-5, C-6 y C-2 a 79,9, 71,6, 62,5 y 50,3 ppm respectivamente. Por último C-3 se observaba a 28,4 ppm. Si se compara el espectro de 135 con el de 134 se comprueba que prácticamente no hay diferencias en los desplazamientos químicos de los carbonos respectivos.

Fig. 32. Espectro de RMN-¹³C de 135.

Los resultados anteriores junto al análisis elemental de C, H, N y Cl confirmaban que el compuesto 135 era el clorhidrato de la 4,5,6-trihidroxinorleucina en forma lactónica. Este aminoácido no natural con una conformación absoluta 2S,4S,5R para sus centros quirales, no había sido descripto con anterioridad. Mediante la secuencia aquí descripta se lo obtuvo a partir del bencilidén derivado del ácido glucosamínico (123), con un rendimiento total del 24%. La secuencia involucra la creación del centro quiral de C-2, por hidrogenación diastereoselectiva del precursor insaturado 124.

Compuesto	Despla	Desplazamientos químicos (δ, ppm):									
	C-1	C-2	C-3	C-4	C-5	C-6					
134	178,2#	51,0	29,8	79,3	72,5	62,7					
135	174,1	50,3	28,4	79,9	71,6	62,5					

TABLA XV. Datos de RMN-¹³C de los compuestos 134 y 135:

[#]Puede estar cambiada con los carbonilos de los acetilos. ^{*}PhCH δ 100,0

Por otra parte, por hidrogenación del 2-acetamido-6-acetoxihexa-2,4-dién-4-ólido (121) se obtendría un derivado dihidroxilado de la norleucina: La 4,6-dihidroxinorleucina. Con el objeto de obtener este compuesto se procedió a hidrogenar a la furanona 121. Cuando la hidrogenación de 121 se llevó a cabo controlando la absorción de hirógeno, se obtuvo un compuesto cristalino (136), cromatográficamente homogéneo, cuyo espectro de RMN-¹H (CDCl₃, 100,1 MHz, Tabla XVI, Fig. 33) presentaba a 7,58 ppm un singulete

Fig. 33. Espectro de RMN-¹H de136.

 	_									1.1.400.000.004
 ·		-i			en 1 d	Karra and	i			0.570
 :	1						-C6			
 			e carrena		C4		1.000		C5	
 		1	a saana sa	· · · · ·	8 () *		-		- 47 - 11	•
 1/2		1							сйзсоин	
 ļ	E Maria		 MIND. 5.2 	4	-				CH3	co
 1			anten und marte	a para sa		-		- E 2		-11

Fig. 34. Espectro de RMN-¹³C de136.

ancho que integraba para un hidrógeno, debido al protón de NH; a 7,45 ppm aparecía la señal de un hidrógeno vinílico (H-3) como un doblete con $J_{3,4}$ 2,0 Hz; a 5,17 ppm el multiplete de H-4 con $J_{4,5}$ 5,1 Hz y $J_{4,5}$, 7,4 Hz y a 4,24 ppm un multiplete que integraba para dos hidrógenos debido a H-6,6'. En la zona de los metilos de los grupos acetilos (~2 ppm) aparecía superpuesto un multiplete, el cual se atribuyó a H-5,5'.

En el espectro de RMN-¹³C (CDCl₃, Tabla XVII, Fig. 34) del producto aparecían las señales de los carbonos carbonílicos de lactona y amida 169,3 ppm y 170,6 ppm, y las resonancias de dos carbonos vinílicos a 125,6 ppm (C-2) y 128,8 ppm (C-3). La señal del C-4 a 79,0 ppm es diagnóstica⁸⁰ de la presencia de un anillo de 1,4-lactona. El C-6 resonaba a 60,0 ppm y el carbono metilénico (C-5) a 33,0 ppm. En base a estos datos el producto de monohidrogenación de 121, se caracterizó como la 2-acetamido-6-*O*-acetil-2,3,5-tridesoxi-D,L-*glicero*-hex-2-enono-1,4-lactona (136). La quimioselectividad observada en la hidrogenación de 121 se debe a la mayor susceptibilidad del enlace exocíclico de hidrogenarse respecto del endocíclico. Dado que 121 presentaba una estructura prácticamente plana, la adición de hidrógeno al enlace C-4-C-5 podría realizarse por encima o por debajo del plano de la molécula por lo cual la 5-desoxilactona resultante 136 constituye un par D,L, lo cual se verificó midiendo el poder rotatorio de 136, que resultó nulo.

Compuesto Desplazamientos químicos (ô, ppm) y constantes d							e acoplamiento (J, Hz):		
	H-2 (J _{2,3})	H-3 (J _{2,3} ,)	H-3' (J _{3,3} .)	H-4 (J _{3,4})	H-5 (J _{3',4})	H-6,6' (J _{2,NH})	NH (J _{4,5})	CH ₃ CON (J _{4,5'})	
136		7,45		5,17 (2,0)	2,0	4,24	7,60 (5,1)	~2,20 (7,4)	
137	4,63 (8,55)	2,8 7 (12,1)	1,80 (12,3)	4,53 (5,25)	(~12)	4,19 (6,05)	6,37		

TABLA XVI. Datos de RMN-¹H de los compuestos 136 y 137.

Por hidrogenación total de **121** se obtuvo un jarabe cromatográficamente homogéneo, cuyo espectro de RMN-¹H (CDCl₃, 300 MHz, Tabla **XVI**, Fig. **35**) presentaba a 6,37 ppm un doblete ancho característico de N*H*; a 4,63 ppm un doble doblet doblete atribuído al H-2 con $J_{2,3}$ 8,6 Hz, $J_{2,NH}$ 6,1 Hz y $J_{2,3}$, 12,1 Hz; a 4,53 ppm un multiplete que se asignó a H-4; entre 4,25 y 4,12 ppm un multiplete que integraba para dos hidrógenos (H-6,6'); desplazado a campos más altos y centrado en 2,87 ppm aparecía la señal del H-3 como un doble doble doblete con $J_{3,3}$, 12,3 Hz y $J_{3,4}$ 5,25 Hz. Las señales correspondientes a H-5 y H-5' aparecían superpuestas con los singuletes de los metilos de los acetilos. Finalmente, la señal del H-3' aparecía como un doble doblete a 1,80 ppm con $J_{3',4}$ aproximadamente 12 Hz. Las asignaciones fueron confirmadas por irradiación selectiva, Así por irradiación de la señal centrada en 6,37 ppm (N*H*) se produjo una simplificación de la señal a 4,63 ppm (H-2). La irradiación de la señal a 4,53 ppm (H-4) resultó en la transformación de las señales centradas en 2,87 (H-3) y 1,80 ppm (H-3'). Finalmente, la irradiación a 2,87 ppm (H-3) produjo simplificación de las señales centradas en 4,53 ppm (H-4) y en 1,80 ppm (H-3').

Los valores grandes para $J_{2,3}$ (8,6 Hz), $J_{2,3}$, (12,1 Hz) y $J_{3',4}$ (~12 Hz) indican una relación *treo* para los dos centros quirales de **137**. En la configuración *eritro* H-2 (o H-4) quedaría fuera del ángulo diedro formado por H-3 y H-3' y H-4 (o H-2) lo bisectaría, obteniéndose constantes de acoplamiento más chicas. En base a estos datos espectroscópicos

Fig. 35. Espectro de RMN- 1 H de 137.

Fig. 36. Espectro de RMN-¹H de 137.

el producto de hidrogenación se caracterizó como la 2-acetamido-2,3,5-tridesoxi-D,L-*treo*hexono-1,4-lactona (137).

En el espectro de RMN-¹³C (CDCl₃, Tabla XVII, Fig. 36) de 137 se observaban a 174,6 y 170,6 ppm las señales de los carbonos carbonílicos de amida y 1,4 lactona; a 75,0 ppm la señal correspondiente al C-4; la señal de C-6 aparecía a 60,2 ppm, mientras que los carbonos de los metilenos (C-3 y C-5) resonaban a 34,1 y 35,6 ppm y C-2 a 50,1 ppm.

Compuesto	Desplazamientos químicos (δ, ppm):						
	C-1	C-2	C-3	C-4	C-5	C-6	NHCOCH ₃
136	169,3#	125,6	128,8	79,0	33,0	60,0	170,6#
137	170,6#	50,1	34,1#	75,0	35,6#	60,2	174,6#
138	175,3	51,4	34,7#	79,4	38,3#	59,5	

TABLA XVII. Datos de RMN-¹³C de los compuestos 136, 137 y 138.

[#] Las señales pueden encontrarse intercambiadas.

La obtención de 136 y 137 resultaba una confirmación adicional de la estructura de 121. En este punto conviene aclarar que para el producto de hidrogenación total de 121 (es decir, 137) Bergmann y colaboradores¹⁰⁴ habían propuesto incorrectamente la estructura 2acetamido-6-*O*-acetil-2,3,4-tridesoxi-hexono-1,5-lactona. La estructura correcta queda ahora confirmada como la furanona 121.

Cabe destacar la excelente selectividad diastereofacial observada en la hidrogenación total de **121**. El compuesto **137** se obtuvo como un único par de enantiómeros (configuración *treo*) de los dos teóricamente posibles. Previamente habíamos observado un comportamiento similar en la hidogenación de otros derivados diinsaturados de aldono-1,4-lactonas.^{110, 118, 119} La alta diastereoselectividad puede atribuirse a la inducción asimétrica originada por la cadena lateral de **136** en la adición de hidrógeno al doble enlace endocíclico. La presencia de dicha

cadena (en C-4) forzaría a la adición del hidrógeno por la cara opuesta a la misma como se indica en el Esquema XXVIII, resultando en un único par de enantiómeros de configuración *treo*.

Por hidrólisis de los acetilos de 137 con ácido clorhídrico (5N) a reflujo se obtuvo un compuesto cristalino (pf 173-174 °C) que según se pudo determinar por el análisis de su espectro de RMN-¹³C (D₂O-H2O 1:1, 25 MHz, Tabla XVII, Fig. 37). consistía en un único diastereoisómero, para el cual se estableció su estructura como el derivado 1,4-lactónico de la DL-*treo*-4,6-dihidroxinorleucina (138). Así, se observaba a 175,3 ppm la señal correspondiente al carbono carbonflico de la lactona; la señal de C-4 aparecía a campos más bajos (79,4 ppm) que la correspondiente a la misma señal de ácidos aldónicos (por ejemplo el ácido glucosamínico δ C-4) lo cual indicaba una estructura de 1,4-lactona para 138; C-6 y C-2 aparecían

Fig. 37. Espectro de RMN- 13 C de 138.

a 59,5 ppm y a 51,4 ppm, respectivamente; finalmente los carbonos desoxi (C-3 y C-5) resonaban a 34,7 y 38,3 ppm.

Según lo expuesto anteriormente, con excepción de la 2-acetoxi-4,6-O-bencilidén-2,3didesoxi-D-*eritro*-hex-2-enono-1,5-lactona (132), la hidrogenación de dobles enlaces de las enonolactonas resultó siempre estereoselectiva. Además el empleo de lactonas resulta ventajoso pues, como ya se mencionó, se cuenta con dos grupos funcionales encubiertos (COO⁻ y HO); y en el caso particular de las lactonas del ácido glucosamínico (92) la presencia de un grupo amino en C-2 facilita la obtención de α -aminoácidos.

De este modo la secuencia eliminación beta-hidrogenación-hidrólisis, aquí descripta, permite la obtención estereocontrolada de clorhidratos de aminoácidos no naturales, como la (2S,4S,5R)-4,5,6-trihidroxinorleucina (135) y la 2-amino-2,3,5-tridesoxi-D,L-*treo*-hexono-1,4-lactona (138) compuestos que no habían sido descriptos previamente en la literatura. Síntesis del ácido cis-4-hidroxipipiecólico.

En 1955 Virtanen y Kari²⁹ aislaron por primera vez de un extracto alcohólico de *Acacia pentadena*, un aminoácido que luego caracterizaron como ácido *cis*-4hidroxipipiecólico (11, ácido 4-hidroxipipecolínico, ácido *cis*-4-hidroxi-2-piperidíncarboxílico). Años más tarde se lo aisló también de los géneros *Armeria*,^{31, 120} *Acacia*²⁸ (*A. excelsa*, *A. mollissima*,²⁸ y de *Strophanthus scandens*.¹²¹ Más recientemente, se identificó 11 en distintas especies de *Calliandra*¹²² (*C. densifolia*, *C. eriophylla* 2, *C. carbonaria*, *C. mexicana*, *C. pittieri*, *C. speciosa*.)

Además de la amplia distribución en la naturaleza del ácido *cis*-4-hidroxipipecólico (11), resulta interesante por las variadas propiedades biológicas que en general presentan los ácidos pipecólicos. Se ha mencionado en el capítulo I que numerosos compuestos con un anillo nitrogenado polihidroxilado (piperidinas, indolizidinas, pirrolidinas) son potentes inhibidores de glicosidasas tanto *in vitro* como *in vivo*.^{26, 123} Recientes estudios han mostrado que algunos de esos inhibidores posen también actividad antiviral.¹²⁴

Otros derivados del ácido pipecólico son antagonistas potentes y selectivos del receptor cerebral del *N*-metil-D-aspartato (NMDA). Dichos antagonistas constituirían agentes terapéuticos potencialmente útiles para el tratamiento de enfermedades neurodegenerativas como el mal de Alzheimer.^{125, 126} Además el receptor NMDA se encontraría involucrado en una gran cantidad de neuropatologías,¹²⁷⁻¹²⁹ por lo cual la búsqueda de antagonistas del NMDA es objeto de numerosas investigaciones.^{73, 130, 131}

En 1989 Ornstein y colaboradores^{130, 132} describieron que los ácidos 4-(fosfonoalquil)-piperidín-2-carboxílicos **139** y **140** son potentes antagonistas del receptor NMDA. Dos años más tarde, el mismo Ornstein¹³³ publica la síntesis de otros antagonistas de NMDA, los ácidos 4-(tetrazolilalquil)-piperidín-2-carboxílicos (**141**). En particular los ácidos 4-(tetrazolilmetilen)piperidín-2-carboxílicos (**144**) se sintetizaron a partir de *N*-óxido-4-metoxipiridina (**142**). En dicha ruta emplean cianotrimetilsilano y cloruro de *N*,*N*-

dimetilcarbamoflo en diclorometano para introducir un carbono en la posición 2 del anillo, obteniéndose la 2-ciano-4-metoxipiridina (143). Por tratamiento de 143 con hidrógeno a alta presión (1000 psi, Rh/Al₂O₃, 100°C) se saturan los dobles enlaces, y luego de varios pasos que incluyen protección del grupo amino, derivatización e, introducción de la cadena de C-4, obtienen una mezcla de los isómeros *cis* y *trans* 144 que separan por HPLC. Si bien los autores no mencionan el rendimiento global del isómero *cis*, éste puede estimarse alrededor del 18%.

También en 1991, Hays y colaboradores⁷³ sintetizaron un derivado del ácido *cis*-4hidroxipecólico (11), el ácido *cis*-4-(fosfonooxi)-2-piperidincarboxílico (88) que también mostró actividad como antagonista del receptor NMDA. La síntesis de 88 se describió en el capítulo III.

En base a esta novedosa actividad presentada por estos compuestos, resultaba interesante explorar un camino sintético que condujera a la obtención del ácido *cis*-4-hidroxipipecólico (11). Este compuesto (11) había sido recientemente sintetizado por Speckamp y colaboradores¹³⁴ utilizando un catión equivalente de la glicina y, mediante el empleo de SnCl₄ como catalizador para inducir la ciclización intramolecular. Así partiendo del *N*-butenilcarbamato 145 se obtuvo el alcohol 146. Por reflujo de 146 con una solución acuosa diluída de ácido clorhídrico y una posterior cromatografía de intercambio iónico se obtuvo el ácido *cis*-4-hidroxipipecólico.

Dado que en nuestro laboratorio contábamos con lactonas de hidroxiaminoácidos obtenidos a partir del ácido D-glucosamínico, consideramos que sería factible sintetizar el

ácido *cis* 4-hidroxipipecólico empleando dichas lactonas modificadas como precursores. El análisis retrosintético (Esquema XXIX) indicaba que la desconexión del enlace C-6-N conduciría a un sintón equivalente de la aminolactona 138, la cual se había obtenido previamente a partir del ácido D-glucosamínico (92).

Fleet y colaboradores¹³⁵ sintetizaron numerosos derivados de ácidos pipecólicos y piperidínicos (aunque no el ácido *cis* 4-hidroxipipecólico 11) a partir de aldonolactonas

convenientemente protegidas (ver capítulo II). En estas síntesis el grupo amino se introduce por sustitución nucleofílica de un hidroxilo convenientemente derivatizado de la lactona de partida por azida, y posterior reducción. Sin embargo, la ventaja de nuestra estrategia para la construción del ácido *cis*-4-hidroxipipecólico, es que el grupo amino se encuentra como parte del hidrato de carbono de partida (24), lo cual reduce el número de pasos de síntesis.

Como se mencionara en el capítulo III, por acetilación del ácido 2-amino-2-desoxi-Dglucónico (92), se obtuvo la lactona doblemente insaturada 121. Como ya hemos visto, la hidrogenación catalítica de 121 tuvo lugar con excelente selectividad diastereofacial para dar la 3,5-didesoxilactona 137 con 95% de rendimiento como un sólo par de enantioméros con una relación *treo* para sus dos centros quirales. Por desacilación completa de 137 por hidrólisis con una solución 5N de HCl (60 °C) se obtuvo el clorhidrato de 2-amino-2,3,5tridesoxi-D,L-*treo*-hexono-1,4-lactona (138), en forma cristalina. La didesoxilactona 138 posee la funcionalización adecuada en C-2, 4 y 6 y la estereoquímica requerida en C-2 y C-4, para construir al ácido *cis*-4-hidroxipipecólico (11).

La estrategia propuesta para la síntesis de 11, requería la protección del grupo amino de 138 para posteriormente convertir el HO-6 en un buen grupo saliente, con el objeto de realizar una ciclización intramolecular. Dicha protección se llevó a cabo en primera instancia

con 2-(ter-butoxicarboniloxiamino)-2-fenilacetonitrilo (BOC-ON) en una mezcla aguadioxano-Et₃N. De esta manera se obtuvo un jarabe (147) con 54% de rendimiento cuyo espectro de RMN-¹H (CDCl₃, 300 MHz, Tabla XVIII, Fig. 38) mostraba un singulete ancho a 5,18 ppm que correspondía al protón de NH; centrados en 4,65, 4,43 y 3,84 ppm aparecían tres multipletes debidos a H-4, 2 y 6,6', respectivamente; H-3 también daba un multiplete a 2,87 ppm, mientras que las señales correspondientes a H-3', 5, 5' aparecían superpuestas como multipletes entre 2,05 y 1,85 ppm. Finalmente, el singulete intenso a δ 1,47 correspondía a los protones de los metilos del ter-butilo.

Compuesto	Desplazamientos químicos (ô, ppm)							
	H-2	H-3	Н-3'	H-4	H-5	H-5'	H-6	H-6'
147	4,43	2,87	2,05-1,85	4,65	←2,05	-1,85→	←3,	84→
148	4,76-4,30	2,85	2,22	4,76-4,30	←2,	22→	←4,70	54,30→
149	4,47	2,86	2,01-1,80	4,62	2,01	-1,80	←3,	75→
150	4,60-4,34	2,81	2,17-1,77	4,60-4,34	2,17	-1,77	4,60-	4,34
152	4,95-4,60	2,75	2,25-1,80	4,95-4,60	←2,25	-1,80→	← 4,4	40→
153	3,97	2,38	1,63	3,88	2,01	1,51	3,42	2,96

Tabla XVIII. Datos de RMN-¹H de los compuestos 147, 148, 149, 150, 152 y 153.

Fig. 38. Espectro de RMN- 1 H de 147.

Fig. 39. Espectro de RMN- 13 C de 147.

En el espectro de RMN-¹³C (CDCl₃, 25,2 MHz, Tabla XIX, Fig. **39**) de **147** aparecían las señales de los carbonos carbonílicos de lactona y del carbamato a 174,9 y 155,4 ppm, respectivamente; la señal a 78,4 ppm se asignó al carbono metínico del *ter*-butilo y las resonancias de C-4, C-6 y C-2 aparecían a 75,6, 58,6 y 51,6 ppm, respectivamente; en tanto que C-5 y C-3 resonaban a 37,8 y 36,5 ppm. La señal a 28,4 ppm pertenecía a los carbonos metílicos del *ter*-butilo.

Estos datos junto con los resultados del análisis elemental de C e H indicaban la estructura de 2-(*N-ter*-butiloxicarbonil)amino-2,3,5-tridesoxi-D,L-*treo*-hexono-1,4-lactona para 147.

Una vez protegida la función amino, se estaba en condiciones de derivatizar al HO-6 de 147, para convertirlo en un buen grupo saliente. Con este fin, se intentó en primera instancia la sulfonilación de 147 con cloruro de metansulfonilo (cloruro de mesilo) en piridina, obteniéndose una mezcla de la cual el compuesto deseado era difícil de separar. En cambio cuando se trabajó empleando las condiciones descriptas por Varma y colaboradores¹³⁶ para la preparación de tosilatos (1,3 eq. de cloruro de mesilo-piridina en diclorometano) el resultado fue satisfactorio, obteniéndose la 2-(*N-ter*butiloxicarbonil)amino-6-*O*-metansulfonil-2,3,5-tridesoxi-D,L-*treo*-hexono-1,4-lactona (148) con aproximadamente 78% de rendimiento.

Compuesto	Desplazamientos químicos (ô, ppm)						
	C-1	C-2	C-3	C-4	C-5	C-6	
147	174,9	51,6	36,5	75,6	37,8	58,6	
148	174,4	51,3	36,1	73,8	34,9	66,0	
149	174,6	51,8	36,2	75,7	37,7	58,6	
150	174,1	51,6	35,6	73,9	34,8	65,8	
152	173,4	51,1	35,9	76,9	34,9	67,9	
153	171,6	56.0	30,4*	65,3	34,1*	41,9	

TABLA XIX. Datos de RMN-¹³C de los compuestos 147, 148, 149, 150, 152 y 153.

.....

El espectro de RMN-¹H (CDCl₃, 100,1 MHz, Tabla XVIII) de 148 mostraba a 5,16 ppm un singulete ancho correspondiente al protón de NH; entre 4,76 y 4,30 ppm un multiplete que integraba para cuatro hidrógenos (H-2, 4, 6, 6'); a 3,05 ppm un singulete que integraba para tres hidrógenos y que correspondía a los protones metflicos del mesilato; el multiplete centrado en 2,85 ppm se asignó a H-3 en tanto que el multiplete debido a H-3', 5, 5' aparecía a 2,22 ppm; y el singulete intenso a 1,48 ppm que integraba para nueve hidrógenos correspondía a los protones del *ter*-butilo.

El espectro de RMN-¹³C (CDCl₃, 25,2 MHz, Tabla XIX, Fig. 40) de 148 mostraba que la mesilación del HO-6 de 147 provocaba un desplazamiento a campos bajos de la señal correspondiente a C-6 (66,0 ppm), y un desplazamiento a campos altos para el C- β (C-5, 34,9 ppm) con respecto a la misma señales de 147, y en coincidencia con lo observado para la sulfonilación de otros compuestos.¹³⁷ Los carbonos carbonílicos de lactona y del carbamato aparecían a 174,4 y 155,2 ppm, respectivamente; la señal a 80,6 ppm correspondía al carbono metínico del *ter*-butilo; C-4 aparecía a 73,8 ppm y C-2 a 51,3 ppm; el carbono metílico del grupo mesilo aparecía a 37,4 ppm, C-3 a 36,1 ppm; y finalmente la señal perteneciente a los carbonos de los metilos del *ter*-butilo a 28,4 ppm.

Fig. 40. Espectro deRMN-¹³C de 148.

Fig. 41. Espectro deRMN-¹³C-APT de 148.

Las asignaciones de las señales del espectro de RMN-¹³C de 148 se confirmaron mediante un experimento RMN-¹³C-APT (Attached Proton Test).^{138, 139} En dicho experimento debido al diferente comportamiento de las magnetizaciones de los carbonos con distinto grado de protonación, se observa que la aplicación de la secuencia de pulsos APT conduce a un espectro en donde los carbonos cuaternarios y metilenos aparecen en fase normal y los metinos y metilos aparecen con fase invertida (180°). Así, en el espectro (CDCl₃, 25,2 MHz, Fig. 41) de 148 las resonancias a 174,4, 155,2, 80,6, 66,0, 35,7 y 34,9 ppm aparecían con fase normal y las resonancias a 73,8, 51,3, 37,4 y 28,4 ppm con fase invertida. De esta manera las señales a 73,8 y 51,3 ppm se asignaron a C-4 y C-2, respectivamente, y las otras dos señales (37,4 y 28,4 ppm) a los carbono del metilo del mesilo y de los metilos del ter-butilo. Además, este experimento nos permitió identificar las señales de C-3 y C-5: De las tres señales entre 34,9 y 37,4, ppm la que aparece a campos más bajos cambiaba de fase, por lo cual correspondía al CH₃SO₂ y de las otras dos, pertenecientes a CH₂ (35,7 y 34,9 ppm) la correspondiente a C-3 no debería afectarse significativamente por la mesilación de HO-6, pero si la del C-5 (CB) como ya se ha mencionado. En efecto, esta última señal sufría un desplazamiento hacia campos altos de 2,9 ppm en tanto que la de C-3 permanecía inalterada.

Los intentos de optimización del rendimiento de la protección del grupo amino con BOC-ON no permitieron superar el valor mencionado. En vista de ello se intentó la reacción empleando otro reactivo muy utilizado en la síntesis de péptidos, el cloroformiato de bencilo. Este se fue agregando de a gotas sobre una solución del compuesto 138 en diclorometano anhidro y trietilamina. El monitoreo por ccd indicó que a las 5 h de reacción aún quedaba material de partida sin reaccionar, por lo cual se agregaron cantidades adicionales de reactivo y Et₃N, observándose conversión gradual de 138 en 149. De la mezcla de reacción se aisló (68% de rendimiento) la 2-(N-benciloxicarbonil)-amino-2,3,5-tridesoxi-D,L-treo-hexono-1,4lactona (149), como un sólido (pf 76-77 °C), en cuyo espectro de RMN-¹H (CDCl₂ 200,1 MHz, Tabla XVIII, Fig. 42) se observaba: A 7,35 ppm un singulete intenso que integraba para cinco hidrógenos y que correspondía a los protones aromáticos; la señal a 5,46 ppm, como un singulete ancho, pertenecía al protón de NH; el singulete a 5,12 ppm integraba para dos hidrógenos y se asignó a los hidrógenos metilénicos del bencilo; seguidamente, los dos multipletes que integraban cada uno para un hidrógeno a 4,62 y 4,47 ppm, correspondían a H-4 y H-2, respectivamente; el multiplete centrado en 3,75 ppm se asignó a H-6,6'; en tanto que el que aparecía a 2,86 ppm correspondía a H-3. Finalmente, entre 2,01 y 1,80 ppm se observaba otro multiplete debido a H-3', 5, 5'.

En el espectro de RMN-¹³C (CDCl₃, 25,2 MHz, Tabla XIX, Fig. 43) de 149 se observaban a 174,6 y 156,5 ppm las señales de los carbonos carbonílicos de lactona y amida respectivamente; entre 128,7 y 128,2 ppm las señales de los carbonos aromáticos. La señal que aparecía a 75,7 ppm se asignó a C-4; y las señales a 67,4, 58,6 y 51,8 ppm correspondían al carbono metilénico del bencilo, C-6 y C-2, respectivamente. Por último C-5 y C-3 aparecían a 37,7 y 36,2 ppm.

Dado que el rendimiento de este último procedimiento fue superior al obtenido cuando se empleo BOC-ON como protector, resultaba alentador continuar la síntesis por esta ruta. Se procedió así a la mesilación de 149 por agregado de cloruro de metansulfonilo a una solución del compuesto en piridina y diclorometano anhidros. Después de 10 h de reacción

Fig. 42. Espectro de RMN-¹H de 149.

Fig. 43. Espectro de RMN-¹³C de 149.

se obtuvo, luego de una purificación cromatográfica, el 2-(N-benciloxicarbonil)amino-6-Ometánsulfonil-2,3,5-tridesoxi-D,L-*treo*-hexono-1,4-lactona (150) en forma cristalina, de pf 92-93 °C, con 78,3% de rendimiento.

Fig. 44. Espectro de RMN-¹H de 150.

El espectro de RMN-¹H (CDCl₃, 200,1, MHz, Tabla XVIII, Fig. 44) de 150 mostraba a 7,35 ppm la señal correspondiente a los protones aromáticos y a 5,58 ppm un singulete ancho característico del protón del N*H*; el singulete a 5,12 ppm, que integraba para dos hidrógenos correspondía a los protones metilénicos del grupo bencilo y el multiplete entre 4,60 y 4,34 ppm, que integraba para cuatro hidrógenos, correspondían a H-2, 4, 6, 6'. El singulete de los hidrógenos del metilo del mesilo, aparecía a 3,02 ppm. Por último el doble doble doblete a 2,81 ppm correspondía a H-3 y el multiplete entre 2,17 y 1,77 ppm a H-3', 5, 5'.

Cuando se compararon los espectros de RMN- 13 C (CDCl₃, 50,3 MHz, Tabla XIX, Fig. 45) de 150 y 149 se observó que la introducción de un grupo mesilo en C-6 de 149

Fig. 45. Espectro de RMN- 13 C de 150.

provocaba un corrimiento de la señal de C- α (7,2 ppm) a campos bajos, y un desplazamiento de 2,9 ppm a campos altos de la señal del C- β . De forma análoga a lo observado en el caso del compuesto **148**, la señal perteneciente al carbono del metilo del mesilo aparecía a 37,4 ppm. El resto de las señales aparecían a 174,1 y 156,0 ppm (correspondientes a los cabonos carbonílicos de 1,4-lactona y carbamato, respectivamente) y a 73,9, 51,6 y 35,6 ppm las de

C-4, C-2 y C-3, respectivamente.

El paso siguiente consistía en la desprotección del grupo amino y, dado que 151 podía obtenerse a partir de 147 y 149, se llevaron a cabo ambas alternativas.

Para la desprotección del grupo amino de la 2-(N-ter-butiloxicarbonil)amino-6-O-

metánsulfonil-2,3,5-tridesoxi-D,L-*treo*-hexono-1,4-lactona (**148**), se siguió el procedimiento descripto por Jung y colaboradores.¹⁴⁰ Así, una solución de **148** en cloroformo anhidro, se trató durante 1,5 h con ioduro de trimetilsililo , al cabo de la cual se obtuvo el

correspondiente trimetilsililcarbamato (151), el cual no se aisló, sino que se convirtió directamente en la amina libre (152) por tratamiento con metanol. La 2-amino-6-*O*-metánsulfonil-2,3,5-tridesoxi-D,L-*treo*-hexono-1,4-lactona (152) se encontraba escencialmente pura de acuerdo a sus espectros de RMN-¹H y ¹³C y dado que el compuesto era inestable y no resistía la purificación cromatográfica se lo empleó sin purificación posterior para el siguiente paso de síntesis.

En el espectro de RMN-¹H (CD₃OD, 200,1, MHz,Tabla XVIII) de 152 se observaba la ausencia de las señales correspondientes al *ter*-butilo. Los multipletes entre 4,95 y 4,60 ppm y a 4,40 ppm, correspondían respectivamente a H-2, H-4 y a H-6,6'; el singulete a 3,09 ppm correspondía a los hidrógenos del metilo; a 2,75 ppm aparecía un doble doble doblete que se asignó a H-3 y el multiplete entre 2,25 y 1,80 ppm se debía a la superposición de las señales de H-3, 5 y 5'.

En el espectro de RMN-¹³C (CD₃OD, 25,2 MHz, Tabla XIX, Fig. 46) de 152 se

Fig. 46. Espectro de RMN-¹³C de 152.

observaba a 173,4 ppm la señal del carbono carbonflico; hacia campos más altos (76,9 ppm) aparecían las señales de C-4, C-6 y C-2, a 76,9, 67,9 y 51,1 ppm, respectivamente. Las señales a los carbonos metilénicos (C-3 y C-5) aparecían respectivamente a 35,9 y 34,9 ppm.

El compuesto 152 podía obtenerse alternativamente por desprotección del compuesto 150. Para ello este último se hidrogenó a presión atmosférica con Pd (10%) sobre carbono como catalizador obteniéndose la 2-amino-6-O-metánsulfonil-2,3,5-tridesoxi-D,L-*treo*hexono-1,4-lactona (152) como un jarabe homogéneo con 98% de rendimiento. Este rendimiento resultaba muy superior al obtenido en la desprotección del N-BOC derivado (148).

El último paso de la síntesis consistía en inducir la ciclización de 152 por ataque nucleofílico del grupo amino al C-6 y desplazamiento intramolecular del sustituyente mesilato. Para ello 152 se trató con una solución acuosa de KOH (2M) a temperatura ambiente durante 1 h. Finalizado dicho período la solución resultante se neutralizó con ácido clorhídrico 0,1 N y se concentró. El producto de la reacción se purificó por percolación a

través de una columna de intercambio iónico (Dowex 50W, H⁺) eluyendo primero con agua y luego con una solución de piridina (1M). Por liofilización de las fracciones que daban positivo el ensayo con ninhidrina, se obtuvo un sólido amorfo higroscópico el cual se trató con ácido clorhídrico para dar el clorhidrato del ácido *cis*-4-hidroxipipecólico (153) con 55% de rendimiento a partir de 150. Su pf (251-154 °C) era coincidente con el descripto en la literatura¹⁴¹ (253-255 °C) para el clorhidrato del ácido *cis*-4-hidroxipipecólico racémico

aislado de las hojas de Acacia oswaldii.

En el espectro de RMN-¹H (D₂O, 200,1, MHz, Tabla XVIII, Fig. 47) de 153 se observaba un doble doblete a 3,95 ppm debido al H-2 con $J_{2,3}$, 11,2 Hz y $J_{2,3}$ 3,5 Hz; otro multiplete centrado en 3,88 ppm se asignó a H-4 con $J_{3,4}$ 4,2 Hz y $J_{3,4}$ 10,0 Hz; a campos más altos, el multiplete a 3,42 ppm correspondía a H-6 ($J_{5,6}$ 3,5 Hz y $J_{5,6}$ 4,0 Hz) y el de 2,96 ppm a H-6' ($J_{5,6}$, 3,3 Hz, $J_{5',6'}$ 12,5 Hz y $J_{6,6'}$ 13,2 Hz); a 2,38 ppm aparecía H-3 con $J_{3,3}$, 11,4 Hz y $J_{3,5}$ 3,4 Hz; el multiplete a 2,01 ppm se atribuyó a H-5 con $J_{4,5}$ 3,5 Hz y $J_{5,5'}$ 13,7 Hz. Finalmente, los dos multipletes centrados en 1,63 ppm y 1,51 ppm se asignaron a H-3' y H-5' ($J_{4,5'}$, 10,0 Hz), respectivamente. Estas asignaciones se confirmaron mediante experimentos de desacople homonuclear a frecuencia única. Así por desacople a 2,38 ppm (H-3) se observaba simplificación de las señales a 3,95 ppm (H-2), 3,88 ppm (H-4), 2,01 ppm (H-5) y 1,63 ppm (H-3'). Por desacople a 2,01 ppm (H-5) las señales que se

Fig. 47. Espectro de RMN- 1 H de 153.

simplificaban eran a 3,88 ppm (H-4), 3,42 ppm (H-6), 2,96 ppm (H-6'), 2,38 ppm (H-3) y 1,51 ppm (H-5').

El hecho que la irradiación a la frecuencia correspondiente a la resonancia del H-3 produjera una simplificación de la señal perteneciente a H-5 y que, cuando se irradiaba a la frecuencia correspondiente a H-5 se simplificaba la señal del H-3, indicaba la existencia de

un acoplamiento a larga distancia entre ambos, con una constante de acoplamiento ${}^{4}J_{3,5}$ 3,4 Hz. La asignación total del espectro de RMN-¹H de **152** permitió confirmar la estereoquímica de esta molécula. El valor de $J_{2,3ax}$ (11,2 Hz) estaba de acuerdo con una disposición axial para H-2. Además las constantes de acoplamiento entre H-3ax y H-4 y entre H-4 y H-5ax eran de 10,0 Hz en ambos casos, indicando que H-4 se encontraba también en una posición axial. Estos resultados confirmaban la estereoquímica cis de los sustituyentes del anillo de **153** y además permitían establecer una conformación silla ${}^{4}C_{N}$ para el anillo piperidínico, en la cual los sustituyentes de C-2 y C-4 (en relación *cis*) se encuentran dispuestos ecuatorialmente. El valor de ${}^{4}J_{3,5}$ 3,4 Hz sólo es posible si los hidrógenos en cuestión se orientan ecuatorialmente y adoptando los cuatro enlaces sigma entre H-3 y H-5 una disposición W.

En el espectro de RMN-¹³C (D_2O , 50,3 MHz, Tabla XiX, Fig. 48) de 153 aparecían las siguientes señales: A 171,6 ppm la correspondiente al carbono carbonílico del ácido; luego la del C-4, que por estar unido a un hidroxilo es la que experimentaba mayor desprotección; la resonancia a 56,0 ppm se debía al a C-2, unido al grupo amino; C-6 resonaba a 41,9 ppm y, por último C-3 y C-5 a 30,4 y 34,1 ppm, respectivamente.

La ruta sintética aquí descripta conduce diastereoselectivamente al ácido cis 4hidroxipipecólico (153), y cuenta con la ventaja que la didesoxilactona 138 se obtiene

Fig. 48. Espectro de RMN-¹³C de 153.

fácilmente, con buen rendimiento (~83% a partir del ácido glucosamínico) y los pasos restantes de síntesis son simples. Esta ruta sintética resulta favorable si se compara con las otras previamente citadas para la obtención de derivados de 153, las cuales incluyen: Hidrogenación de 2-ciano-4-metoxipiridinas a alta presión y temperatura¹³³ (1000 psi, con Rh/Al₂O₃, 100 °C), ciclización de un catión equivalente de glicina catalizada por un ácido de Lewis a baja temperatura,¹³⁴ o condensación de *N*-3-butenil-bencenmetamina con ácido glioxflico.⁷³

ESQUEMA XXXI. Secuencia de síntesis del ácido *cis*-4-hidroxipipecólico a partir de la D-glucosamina.

REACCIONES DE ENONOLACTONAS CON SnCl₄. SINTESIS DE 5-HIDROXINORVALINA

CAPITULO V

Las aldonolactonas pueden experimentar procesos de eliminación beta durante las reacciones de acilación, que conducen a la formación de 2-enono-1,4-lactonas y 1,5-lactonas. La reacción de benzoilación en condiciones de eliminación beta se ha estudiado en nuestro grupo para la D-glucono-1,5-lactona⁸⁵, la L-ramnono-1,5-lactona⁸⁶ y ahora se ha aplicado al ácido D-glucosamínico que como ya se ha mencionado (capítulo III) produce por acetilación o benzoilación una mezcla fácilmente separable por cromatografía de 2-enono-1,4- y 1,5-lactonas. Mientras en 1,4-lactonas se observaron múltiples eliminaciones,^{142, 143} bajo las mismas condiciones las 1,5-lactonas daban 5,6-dihidro-2-pironas (2-enonolactonas) con rendimientos excelentes.^{85, 86} Sin embargo, una segunda reacción de eliminación de ácido acético o benzoico a partir de 5,6-dihidro-2-pirona 6-sustituida) sólo tiene lugar en condiciones más drásticas, y en el caso de los derivados benzoilados sólo se obtuvieron rendimientos moderados.^{144, 145} Teniendo en cuenta que en la secuencia:

se obtenía un compuesto diinsaturado (125) por acción del ácido clorhídrico sobre la enonolactona (124), sugirió la posibilidad que un ácido de Lewis podría efectuar eficientemente la eliminación, que conduce a la correspondiente pirona. Esto resultaba interesante pues por hidrogenación de la misma se obtendría un intermediario para la síntesis de 5,6-dihidroxiaminoácidos (en forma racémica) que era importante para los fines de esta

ESQUEMA XXXII

tesis. Por este motivo se estudió la reacción de derivados de lactonas insaturadas con SnCl₄.

En primer lugar se efectuó la reacción de la 2-acetamido-4,6-di-O-acetil-2,3-didesoxi-D-*eritro*-hex-2-enono-1,5-lactona (111) con SnCl₄. El compuesto 111 se disolvió en CH₂Cl₂ anhidro, se enfrió a 0°C y se le agregó SnCl₄. A los 60 min de iniciada la reacción el análisis por ccd del crudo mostraba la aparición de una mancha de menor movilidad Rf 0,4 además de la correspondiente al material de partida. Conforme transcurría el tiempo de reacción, la cantidad del compuesto 111 iba disminuyendo y se intensificaba la mancha de (Rf 0,4). Al cabo de 3 h la conversión había sido total y luego del tratamiento correspondiente se obtuvo un producto sólido (90% de rendimiento) el cual recristalizado de etanol dio pf 117-118 °C. Su punto de fusión y sus espectros de RMN-¹H (Tabla V, Fig. 12) eran coincidentes con los obtenidos para la 3-acetamido-6-acetoximetilpirán-2-ona (118; Capítulo III).

La formación de **118** a partir del **111** puede atribuirse a la capacidad del tetracloruro de estaño de coordinarse con el carbono carbonílico del grupo aciloxi alílico, produciéndose la eliminación de este sustituyente, con formación de un carbocatión incipiente estabilizado por resonancia alílica, como se indica en el esquema **XXXII**.

Como además contábamos con la 2-benzamido-4,6-di-O-benzoí1-2,3-didesoxi-Deritro-hex-2-enono-1,5-lactona (113), resultaba interesante aplicar la reacción de eliminación a la lactona insaturada con un sustituyente diferente sobre el doble enlace. Así, la eliminación del benzoato de C-4 de 113 transcurrió luego de 3 h para dar la 3-benzamido-6benzoiloximetilpirán-2-ona (154) como un sólido cristalino con 78% de rendimiento. Por recristalización de 154 de etanol dio pf 144-145 °C.

El espectro de RMN-¹H (CDCl₃, 25,2 MHz, Tabla XX, Fig. 49) de AN56 presentaba las siguientes señales: A 8,7 ppm el singulete ancho del NH; a 8,42 ppm un doblete que integraba para un hidrógeno, debido a H-4 (numeración de pirona) con $J_{4,5}$ 7,5 Hz; entre 8,14 y 7,8 ppm dos multipletes correspondientes a los hidrógenos de los anillos aromáticos; a 6,49 ppm un doblete que también integraba para un hidrógeno y que se asignó a H-5.

	1 H17' 1-11 - 12'
No second second second second second second	
	United to the second of the state
HS HS	
	A STATE OF A
	A BARANCE AND A REPORT OF A
	1 - marked a for the there are not a set of the set of the set
with the first the second second second	Miles way and a second and as second and a
9 8 7 6	5 2 3 2

Fig. 49. Espectro de RMN-¹H de 154.

Fig. 50. Espectro de RMN-¹³C de 154.

134

Finalmente a 5,15 ppm aparecía un singulete intenso que integraba para dos hidrógenos y que fue asignado a los hidrógenos de C-7.

El espectro de RMN-¹³C (CDCl₃, 25,2 MHz, Tabla XXI, Fig. 50) de 154 presentaba a 166,7, 159,8 y 159,2 ppm las señales correspondientes a los carbonos carbonílicos de amida, benzoato y lactona y entre 132 y 126,9 ppm las señales correspondientes a los carbonos de los anillos aromáticos. A 150,6 y 125,2 ppm aparecían las señales correspondientes a C-6 y C-3 respectivamente; las restantes señales aparecían a 122,4 ppm (C-4), a 106,4 ppm (C-5) y a 61,8 ppm (C-7).

Para observar si este comportamiento era general, y con fines comparativos, se decidió intentar la reacción de eliminación sobre 2-aciloxi lactonas insaturadas (155 y 158). La 2,4,6-tri-O-benzoíl-3-desoxi-D-*eritro*-hex-2-enono-1,5-lactona (155), había sido previamente sintetizada por Sala y colaboradores.⁸⁵

Empleando la misma metodología descripta para la obtención de 118, el tratamiento de 155 con SnCl₄ condujo a un compuesto cristalino (156, pf 152 °C) con 83% de rendimiento. En base a los datos espectroscópicos y el análisis elemental de C e H, este producto se

Fig. 51. Espectro de RMN-¹H de 156.

Fig. 52. Espectro de RMN-¹³C de 156.

caracterizó como 3-benzoiloxi-6-benzoiloximetilpirán-2-ona (156).

Así el espectro de RMN-¹H (CDCl₃, 100,1 MHz, Tabla XX, Fig. 51) de 156 mostraba la ausencia de la señal correspondiente a H-6; entre 8,24 y 7,34 ppm aparecían dos multipletes correspondientes a los protones de los anillos aromáticos; H-4 y H-5 aparecían como dobletes a 7,25 y 6,41 ppm, respectivamente, con $J_{4,5}$ 7,2 Hz; el singulete intenso a 5,15 ppm (que integraba para dos hidrógenos) se asignó a los protones metilénicos (H-7,7').

En el espectro de RMN-¹³C (CDCl₃, 25,2 MHz, Tabla XXI, Fig. 52) de 156 se observaban las señales pertenecientes a los carbonos carbonílicos de los grupos benzoílo y de lactona (C-2) a 165,4 y 158,9 ppm, respectivamente; a 155,5 ppm aparecía la señal de C-6, a campos bajos por tratarse de un carbono vinílico unido al oxígeno del anillo. Las señales a 136,9 y 130,7 ppm correspondían a C-3 y C-4, respectivamente; C-5 y C-7 resonaban a 103,8 ppm y a 61,6, respectivamente.

Cuando la reacción de 155 con SnCl_4 se dejaba que alcanzara temperatura ambiente, una vez que 155 se había convertido en 156, se observaba por ccd la aparición de una mancha de distinta movilidad (Rf 0,50) que la correspondiente a 156. Después de 4 h de agitación, la conversión de 156 en el nuevo producto era completa, aislándose de la mezcla de reacción un sólido cristalino (157, pf 130 °C) con 83% de rendimiento.

En el espectro de RMN-¹H (CDCl₃, 100,1 MHz, Tabla XX, Fig. 53) del producto se observaban las señales debidas a los protones aromáticos entre 8,24 y 7,40 ppm; a 7,24 y 6,35 ppm aparecían como dobletes H-4 y H-5 respectivamente, con $J_{4,5}$ 7,3 Hz. Los hidrógenos metilénicos (H-7,7') aparecían a 4,34 Hz como un singulete intenso, desplazado a campos más altos (~0,8 ppm) que la misma señal de 156. Este notable desplazamiento de la señal de H-7,7' y la casi no modificación de los δ correspondientes a H-3 y H-4 sugerían que la modificación había ocurrido sobre el C-7. Esta hipótesis se confirmó por el espectro de RMN-¹³C (CDCl₃, 25,2 MHz, Tabla XXI, Fig. 54) del producto, en el cual la única señal que experimentaba una modificación importante fue la correspondiente a C-7 que aparecía desplazada 21 ppm a campos más altos (40,7 ppm) con respecto a la misma señal del 156

Fig. 53. Espectro de RMN- 1 H de 157.

Fig. 54. Espectro de RMN-¹H de 157.

(61,6 ppm). Las señales de los carbonos restantes prácticamente no se modificaron como puede apreciarse en la tabla XXI.

El análisis elemental del producto estaba de acuerdo con la fórmula $C_{13}H_9O_4Cl$, por lo cual se caracterizó como la 3-benzoiloxi-6-clorometilpirán-2-ona (157). Este se formaría por ataque nucleofílico de cloruro al grupo benzoiloximetilo, activado por tratarse de un benzoato alílico que además podría encontrarse coordinado con el tetracloruro de estaño.

Tabla XX. Datos de RMN-¹H de los compuestos 154, 156, 157, 159 y 162.

Compuesto	Desplazamientos químicos (δ , ppm) y constantes de acoplamiento (J ,Hz).							
	H-4	H-5	H-7	H-7'	CH ₃	NH	J _{4,5}	
154	8,42	6,49	←5	,15→		8,70	7,5	
156	7,25	6,41	←5,15→				7,2	
157	7,24	6,35	←4	,34→			7,3	
159	7,15	6,02			2,28		7,4	
162	7,09	6,31	~	4,31→	2,31			

Compuesto	Desplazamientos químicos (δ, ppm).								
	C-2	C-3	C-4	C-5	C-6	C-7	C ₆ H ₅ CO		
154	159,2	125,2	122,4	106,4	150,6	61,8			
156	158,9	136,9	130,7	103,8	155,5	61,6	165,4		
157	156,7	137,0	130,6	104,0	155,8	40,7	163,5		
159	158,1	134,9	131,7	102,1	159,7	19,5			
162	156,8	136,7	130,3	103,7	155,7	40,5			

Tabla XXI. Datos de RMN-¹³C de los compuestos 154, 156, 157, 159 y 162.

Con fines comparativos resultaba interesante realizar la reacción de eliminación con otro compuesto benzoilado. De este modo se decidió estudiar la reacción cuando el compuesto de partida era una 2-enonolactona de configuración *treo* y no sustituída en C-7. Para ello se empleó la 2,4-di-*O*-benzofl-3,6-didesoxi-L-*eritro*-hex-2-enono-1,5-lactona(158) como compuesto de partida, la cual conduciría a la 3-benzoiloxi-6-metilpirán-2-ona (159). Este compuesto se había sintetizado previamente en este laboratorio¹⁴⁴ por pirólisis de 158. Repitiendo el procedimiento ya descripto, por tratamiento de una solución en diclorometano del compuesto 158 con tetracloruro de estaño se obtenía un único producto según revelaba el análisis por ccd. El producto obtenido cristalizaba de etanol (83% de rendimiento) en forma de cristales amarillo pálido (pf 113-115 °C) y su punto de fusión mezcla con un testigo auténtico de **159** no variaba.¹⁴⁴ El espectro de RMN-¹H de **159** resultaba idéntico al descripto previamente: Mostraba un multiplete entre 8,3 y 7,4 ppm debido a los hidrógenos aromáticos; a δ 7,15 aparecía un doblete debido a H-4; y a δ 6,02 el H-5 se presentaba como un doble doblete acoplado con el grupo metilo (δ 2,28) con $J_{5,CH3}$ 5,7 Hz.

Los derivados 2,4,6-tri-O-acilados de hex-2-enono-1,5-lactonas, como hemos visto reaccionan en condiciones suaves con ácidos de Lewis, como por ejemplo tetracloruro de estaño, para dar derivados de pirán-2-onas con rendimientos superiores al 80%. Teniendo en cuenta que las enonolactonas N-aciladas se obtenían con rendimientos moderados, se decidió probar dicha reacción con los bencilidén derivados de enonolactonas (124 y 132) descriptos en capítulos anteriores. Hemos ahora verificado que empleando esta metodología en derivados 2-acilamido de 2-enonolactonas, los productos formados dependen de los sustituyentes de HO-4 y HO-6. Particularmente, cuando dicho sustituyente era un grupo bencilidén, el rumbo de la reacción cambiaba.

Por ejemplo, cuando el compuesto de partida era la 2-acetamido-4,6-O-bencilidén-2,3-

	· · · · · · · · · · · · · · · · · · ·		
12			
		62 ⁴	и на К1
		1.11	ά.
		CHCO	P
			••• • ••
N.N. HS			<u>i</u>
Carter Carter Carter Carter	÷		L
			•
 			<u>.</u>
- q	i meni	þ.	
│····★/─────────────────────────────────			
┃ • · ┃ • · · · · · · · · · · · · · · ·			·· · •
╡ ╶╢╢╶╧╪┷╴╾╍╌╌╴╶╢╢╶╺╌ ┊╼╍╌╧ <u>╼</u> ╪╸ ╽╢╎╶ ╌╌	··	·	• •
			• •
	· - · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·		r	
			· ·
			····••••••••••••••••••••••••••••••••••
		l	
			······································
		<u>1</u>	

Fig. 55. Espectro de RMN-¹H de 160.

Fig. 56. Espectro de RMN-¹³C de 160.

didesoxi-D-*eritro*-hex-2-enono-1,5-lactona (124), se encontró que el solvente más adecuado para la reacción era una mezcla diclorometano/acetonitrilo, pues permitía que el compuesto 124 se mantuviera en solución a la temperatura de trabajo. De esta manera, por tratamiento de 124 con tetracloruro de estaño en el solvente indicado, se obtuvo, contrariamente a nuestras expectativas, una mezcla de dos productos principales (160 y 161) bien diferenciables por ccd (Rf 0,49 y 0,25).

Por cromatografía en columna de sílicagel se aislaron dos sólidos cromatográficamente homogéneos que se recristalizaron de etanol. El de mayor Rf (160, pf 144-147 °C) se aisló con 53% de rendimiento, en tanto que el otro compuesto, de menor movilidad (161, pf 169 °C), se obtuvo con 28,6%. La estructura de los mismos se determinó por análisis de sus datos espectroscópicos.

El espectro de RMN-¹H (CDCl₃, 100,1 MHz, Tabla XXII, Fig. 55) del componente mayoritario (160) era bastante simple y además de las señales del NHAc [a 8,02 (NH) y 2,21 ppm (CH₃CO)] se observaban tres doble dobletes debido cada uno a un hidrógeno, y mutuamente acoplados entre sí. El doble doblete desplazado a campos más bajos correspondía a H-3 (8,23 ppm) acoplado con el de campos más altos (6,29 ppm, $J_{3,4}$ 7,2 Hz), que se asignó como H-4. El protón restante (H-5) aparecía a 7,25 ppm y presentaba $J_{4,5}$ 5,1 Hz y ${}^{4}J_{3,5}$ 1,8 Hz.

El espectro de RMN-¹³C (CDCl₃, 25,2 MHz, Tabla XXIII, Fig. 56) de 160 mostraba a 169,4 y 159,3 ppm las señales pertenecientes a los carbonos carbonílicos de amida y lactona, respectivamente; la señal a 144,0 ppm se asignó a C-5 y las de 125,8, 122,7 y 107,0 ppm, a C-2, C-3 y C-4 respectivamente. Por último, la señal a 24,6 ppm, correspondía al metilo del acetato. En base a estos datos y al análisis elemental, 160 se caracterizó como la 3-acetamido pirona.

Por comparación de los espectros de RMN-¹H (490 MHz) de los compuestos 2acetamido-4,6-O-bencilidén-2,3-didesoxi-D-*eritro*-hex-2-enono-1,5-lactona (124) y el del producto minoritario (161, CDCl₃, 490 MHz, Tabla XXII, Fig. 57), se observaba que en este

Fig. 57. Espectro de RMN- 1 H de 161.

Fig. 58. Espectro de RMN-¹³C de 161.

último no aparecían las señales correspondientes a los hidrógenos aromáticos ni la del hidrógeno metínico del grupo benzaldehído, y que en su lugar se veían dos dobletes que constituían un sistema AB aislado, con J 6,4 Hz y a valores de δ (5,08 y 4,79) que sugerían la presencia de un grupo formilidén. Además el espectro del producto minoritario, mostraba a 7,94 ppm la señal correpondiente al protón del NH y el doblete de un hidrógeno vinílico (H-3; 7,55 ppm, $J_{3,4}$ 6,7 Hz); el doble doblete centrado en 4,39 ppm se asignó a H-4 con un valor de $J_{4,5}$ llamativamente pequeño (2,0 Hz) y los dobletes centrados en 4,34 y 4,26 ppm correspondían a H-6 y H-5 respectivamente. Debido al ensanchamiento que presenta la señal de H-6, es posible que exista un acoplamiento a larga distancia con OCH_{ec}O; H-6' aparecía como un doble doblete centrado en 3,96 ppm con $J_{5,6'} \sim 1,0$ Hz y $J_{6,6'}$ 13,3 Hz; el singulete intenso a 2,16 ppm correspondía a los protones del metilo.

El espectro de RMN-¹³C (CDCl₃, 25,2 MHz, Tabla XXIII, Fig. 58) del producto (161) presentaba las siguientes señales: A 169,1 y 161,7 ppm las resonancias correspondientes a los carbonos carbonílicos de amida y lactona (C-1); a 128,3 y 116,4 ppm las señales de C-2 y C-3 respectivamente; a 92,7 ppm aparecía la señal de un carbono acetálico que confirmaba la presencia de un grupo formilidén; a 71,9, 67,8 y 66,4 ppm aparecían C-5, C-4 y C-6 respectivamente. Por último la señal a 24,5 ppm se asignó al carbono del metilo del grupo acetilo.

El valor pequeño de $J_{4,5}$ (2,0 Hz) indicaba una relación syn para H-4 y H-5, mientras que el valor relativamente grande de $J_{3,4}$ (6,7 Hz) (Tabla XXIV) sugería un ángulo dihedro pequeño para H-3 y H-4. En efecto, la ecuación de Garbisch¹⁴⁶ predice un valor de ${}^{3}J_{3,4}$ ~5,6 Hz para el ángulo θ entre el H-vinílico (H-3) y el H-alílico (H-4).

$$^{3}J = 6,6\cos^{2}\theta + 2,6\sin^{2}\theta$$

Los valores de $J_{4,5}$ y $J_{3,4}$ indican una relación *treo* para los centros quirales de 161. Contrariamente, para la relación *eritro* los valores esperados serían $J_{4ax, 5ax} \sim 10$ Hz y $J_{3,4}$ ~2,6 Hz (estimado por la ecuación de Garbisch¹⁴⁶), los cuales concordaban perfectamente con los medidos ($J_{4,5}$ 9,6 y $J_{3,4}$ 2,0 Hz) para el compuesto **124** de configuración *eritro*.

En base a los datos espectrales y al análisis elemental que concordaba para la fórmula $C_9H_{11}NO_5$, este producto se caracterizó como 2-acetamido-2,3-didesoxi-4,6-O-formilidén-D-*treo*-hex-2-enono-1,5-lactona (161).

Compuesto	Desplaza	amientos quíi	nicos (δ, ppn	n) y constantes	s de acoplam	iento (J, Hz)
	H-3 (J _{3,4})	H-4 (J _{4,5})	H-5 (J _{5,6})	H-6 (J _{5,6} ,)	H-6'	~N <i>H</i>
124	a (1,2)	4,70 (9,6)	4,41 (7,0)	←4,47; (11,2)	4,00→	7,70
160	8,23 (7,2)	6,29 (5,1)	7,25			8,02
161	7,55 (6,7)	4,39 (2,0)	4,26	4,34 (~1,0)	3,96	7,94

TABLA XXII. Datos de RMN-¹H de los compuestos 124, 160 y 161:

^aSuperpuesta con los protones aromáticos.

TARI A	YYIII	Datos de	RMN-13C	de los com	nuestos	160 v	161.
TIDDIT	AAIII.	Datos uc			pucsios	100 3	101.

Compuesto	Desplaza	Desplazamientos químicos (δ, ppm)								
	C-1	C-2	C-3	C-4	C-5	C-6	_			
160	159,3	125,8	122,7	107,0	144,0	-				
161	161,7	128,3	116,4	67,8	71,9	66,4				

 $^{\#}OCH_{2}O \delta 92,7$. *Las señales pueden estar intercambiadas.

ESQUEMA XXXIII

Resultaba interesante el mecanismo de formación de 160 y 161 por reacción de 124 con tetracloruro de estaño. El primero (160) se originaba por fragmentación del enlace C-5-C-6, y el otro (161), resultaba de un intercambio acetálico (benzaldehído por formaldehído) con inversión de C-4.

Con el objeto de encontrar evidencias que pudieran arrojar datos sobre el posible mecanismo de esta reacción se procedió a realizar el tratamiento con tetracloruro de estaño sobre 124 en condiciones similares y en presencia de anhídrido acético. Después de 1 h de reacción se aislaron dos productos que se identificaron como la 3-acetamido pirona (160) y 3-acetamido-6-acetoximetilpirán-2-ona (118). La formación de este último compuesto permitía suponer la existencia de una especie intermedia originada por hidrólisis del grupo bencilidén y con HO-6 libre o unido al estaño.

Compuesto	J _{3,4}	J _{4,5}	J _{3',4}	J _{5,6}	J _{5,6'}	
124	2,0	9,6	-	7,0	11,2	
130	7,7		~10			
132	1,7	10,3				
161	6,7	2,0			~1,0	
165	8	~1,0	2,5	1,0	1,5	

Tabla XXIV. Constantes de acoplamiento de los compuestos 124, 130, 132, 161 y 165.

La formación de 161 requiere formaldehído, el cual provendría aparentemente del hidroximetilo (C-6) por fragmentación del enlace C-C de 124 que conduce también a 160.

La formación de 160 y 161 podría explicarse en base a un posible mecanismo, que justificaría dichas evidencias (Esquema XXXIII). El tetracloruro de estaño se coordinaría con un heteroátomo del grupo bencilidén, provocando así un reordenamiento electrónico que ocasiona la eliminación de benzaldehído, para dar I. En este intermediario el oxígeno unido a C-6 no posee una carga neta, a diferencia de lo que ocurría en el intermediario III, propuesto para la eliminación de las 2-enonolactonas aciladas 155, 111 y 113 (esquema XXXII). El reordenamiento del par de electrones del O-6, que origina la fragmentación del

enlace C-5-C-6, se encontraría aparentemente favorecido respecto de la abstracción del H-5. Este reordenamiento (camino **a**, Esquema XXXIII) conduciría a 160 liberándose en el proceso una molécula de formaldehído. Esta especie se activaría por el tetracloruro de estaño, experimentando un ataque nucleofílico por el par de electrones del O-6 de I (camino **b**, esquema XXXIII), para dar 161 *via* el intermediario II. Esta reacción procede con inversión de la configuración de C-4.

El mecanismo postulado estaría avalado por el resultado obtenido cuando la reacción de 124 con tetracloruro de estaño se lleva a cabo en presencia de anhídrido acético. En este caso además de 160 se obtiene 118. La especie I es precursora de 160 mediante la secuencia a (esquema XXXIII) que transcurre con fragmentación de C-5-C-6. Si contrariamente I ataca a una molécula de anhídrido acético se originaría un intermediario IV (Esquema XXXIV), análogo al intermediario III, postulado para las reacciones de eliminación de las enonas aciladas (Esquema XXXII), por lo cual de manera similar a lo que ocurre con éstas, se produce la pérdida de H-5 para dar la furanona 118.

ESQUEMA XXXIV

Con fines comparativos, el compuesto 132 sintetizado a partir de la D-glucono-1,5-

Fig. 59. Espectro de RMN-¹H de 162.

Fig. 60. Espectro de RMN-¹³C de 162.

150

lactona (131) se sometió al tratamiento con tetracloruro de estaño. Si bien la metodología empleada fue similar a la ya descripta, cabe destacar que para el análogo 2-acetoxi de 124 (132), la reacción siguió un curso diferente conduciendo, tanto en presencia como en ausencia de anhídrido acético, a 162 como producto mayoritario (162). Este se aisló como un jarabe cromatográficamente homogéneo con 44% de rendimiento.

El espectro de RMN-¹H (CDCl₃, 100,1 MHz, Tabla XXII, Fig. 59) de 162 presentaba semejanzas con el correspondiente a la 3-benzoiloxi-6-clorometilpirán-2-ona (157). Así los dobletes centrados en 7,09 y 6,31 ppm se asignaron a H-4 y H-5 respectivamente; el singulete a 4,31 ppm correspondía a H-7,7' y el singulete a 2,31 ppm a los hidrógenos del metilo del grupo acetilo.

En el espectro de RMN-¹³C (CDCl₃, 25,2 MHz, Tabla XXIII, Fig. 60) de 162 se observaba a 167,5 y 156,8 ppm las señales de los carbonos carbonílicos de acetilo y lactona (C-2); de los siguientes carbonos, el que aparecía a 155,7 ppm se asignó a C-6; las señales a 136,7 y 130,3 ppm se asignaron a C-3 y C-4 respectivamente; C-5 aparecía a 130,7 ppm y C-7 a 40,5ppm. Finalmente la señal a 20,3 ppm se adjudicó al carbono del metilo.

Estos datos espectroscópicos y el análisis elemental de C, H y Cl permitieron asignar a

163 a la estructura de 3-acetoxi-6-clorometilpirán-2-ona.

Los compuestos 161 y 160 son precursores inmediatos de la (2S,4R,5R)-4,5,6trihidroxinorleucina (163 a) y la 5-hidroxinorvalina (163 b), respectivamente. Para su obtención, y a modo de confirmación química de la estructura de los compuestos 160 y 161, se realizó la hidrogenación catalítica de éstos.

La velocidad de hidrogenación de la 3-acetamido-pirán-2-ona (160) a presión atmosférica era muy lenta, por lo que fue necesario trabajar a aproximadamente 4 atmósferas (60 psi) de presión de hidrógeno. Al cabo de 12 h se evaporó el solvente obteniéndose un jarabe cromatográficamente homogéneo (97,4% de rendimiento), el cual se caracterizó como

2-acetamido-2,3,4-tridesoxi-D,L-pentono-1,5-lactona (164, 2-acetamido-δ-valerolactona).

Como era de esperar debido a la planaridad que presentaba el compuesto 160, la entrada de hidrógeno ocurrió por ambas caras, de modo que 164 se encontraba como un par D,L.

En el espectro de RMN-¹³C (CDCl₃, 25,2 MHz, Fig. **61**) de **164** se observaban las señales pertenecientes a los carbonos carbonílicos de amida y lactona (C-1) a 172,3 y 170,4 ppm; a 67,8 y 48,0 ppm aparecían las señales que se asignaron a C-5 y C-2, respectivamente; las señales correspondientes a C-4 y C-3 aparecían a 25,1 y 21,2 ppm y finalmente el carbono metílico a 22,7 ppm.

Fig. 61. Espectro de RMN-¹³C de 164.

Estos datos y el análisis elemental de C e H estaban de acuerdo con la estructura de 2acetamido-2,3,4-tridesoxi-D,L-pentono-1,4-lactona para 164.

Por otro lado la hidrogenación de la 2-acetamido-2,3-didesoxi-4,6-O-formilidén-Dtreo-hex-2-enono-1,5-lactona (161) también se realizó a 4 atmósferas (60 psi) de presión de hidrógeno hasta que el análisis por ccd reveló la ausencia del material de partida. Por evaporación del solvente se obtuvo un jarabe (165, 94% de rendimiento) ópticamente activo $([\alpha]_D + 116^\circ)$ cuyo espectro de RMN-¹H [(CD₃)₂SO, 500 MHz, Fig. 62] se observaba el

Fig. 62. Espectro de RMN- 1 H de 165.

Fig. 63. Espectro de RMN- 13 C de 165.

doblete ancho del NH a 8,20 ppm; los dobletes a 4,90 y 4,74 ppm correspondían a los hidrógenos metilénicos del formilidén; H-2 aparecía como un multiplete centrado en 4,68 ppm $(J_{2,3}, 14 \text{ Hz})$ y H-4 a 4,30 ppm; el doble doblete a 3,98 ppm pertenecía a H-6,6'; H-3 resonaba a 2,63 ppm con $J_{3,3}$, 14 Hz y $J_{3,4} \sim 8$ Hz; el singulete intenso a 1,87 ppm correspodía a los hidrógenos del metilo y finalmente H-3' se observaba a 1,45 ppm con $J_{3',4}$ 2,5 Hz.

En su espectro de RMN-¹³C [(CD₃)₂SO), 25,2 MHz, Tabla **XXV**, Fig. **63**] mostraba a δ 171,2 y a δ 169,0 las señales de los carbonos carbonílicos de lactona (C-1) y amida; a 92,0 ppm resonaba la señal del carbono metilénico del formilidén; C-5, C-4 y C-6 aparecían a 71,0, 69,8 y 66,6 ppm y las señales de C-2 y C-3 a 44,8 y 31,5 ppm. Finalmente, la señal del carbono metílico del acetilo, se observaba a 22,3 ppm. Estos datos se confirmaron por irradiación selectiva. Así, por irradiación a la frecuencia correspondiente a 4,52 ppm (H-5) se observó que la señal a 71,0 ppm aparecía como un singulete intenso , por lo cual se asignó a C-5, y el resto de las señales aparecían como dobletes o tripletes. Por irradiación a 4,28 ppm (H-4) se observó que el singulete más intenso era el de 69,9 ppm, por lo cual se identificó dicha señale como correspondiente al C-4 (69,9 ppm).

En base a estos datos y a los resultados del análisis elemental se determinó la estructura de 2-acetamido-2,3-didesoxi-4,6-O-formilidén-D-lixo-hexono-1,5-lactona para 165.

Tabla XXV. Datos de RMN-¹³C de los compuestos 164, 165 y 166.

	C-1	C-2	C-3	C-4	C-5	C-6
164	170,4*	48,0	21,2	25,1	67,8	-
165#	171,2*	44,8	31,5	69,8	71,0	66,6
166	175,0	53,7	28,6	28,1	61,9	

Compuesto Desplazamientos químicos (ô, ppm).

* Pueden estar intercambiadas con las de amica. $^{\text{#}}OCH_2O\delta 92,0.$

Con el objeto de obtener la 5-hidroxinorvalina, se reflujó el compuesto 164 con una solución de HCl (5N) hasta no observar material de partida por ccd. Después de evaporar el solvente y eliminar el ácido remanente, se obtuvo la 5-hidroxinorleucina (166, pf 219-223 °C) con 45 % de rendimiento. El espectro de RMN-¹³C (D₂O, 25,2 MHz, Tabla XXV) de 166 mostraba la señal correspondiente a C-1 a δ 175,0; C-5 y C-2 aparecían a 61,9 y 53,7 ppm, respectivamente; a 28,6 ppm se observaba la señal correspondiente a C-3 y, finalmente, C-4 aparecía a 28,1 ppm. Los datos del análisis de C e H estaban de acuerdo con los calculados teóricamente y, junto a los datos espectroscópicos, permitieron corroborar la estructura de 166 como el clorhidrato de la 2-amino-pirona.

Como mencionamos anteriormente, la desprotección de 165 conduciría a un derivado hidroxilado de la norleucina. Sin embargo, los intentos de hidrólisis del grupo formilidén resultaban en la descomposición de la muestra, debido a las condiciones enérgicas requeridas.

Se puede concluir que el empleo de tetracloruro de estaño a baja temperatura constituye una ruta corta (sólo dos pasos) y sencilla para la obtención de 3-aciloxi-2-pironas sustituidas en la posición 6 a partir de 5-hidroxi-6-hidroximetil-5,6-dihidro-2-pironas, pasando por los correspondientes derivados acilados. Los compuestos obtenidos por este método son fácilmente purificables por recristalización, evitando de estas manera el aislamiento a través de una cromatografía en columna como ocurría en los trabajos descriptos anteriormente.^{144, 145} En particular, las pironas benzoiladas obtenidas en condiciones drásticas y con rendimientos moderados,¹⁴⁴ pueden obtenerse fácilmente y con excelentes rendimientos por acción del tetracloruro de estaño. Además esta reacción permite la obtención de pironas halogenadas las cuales pueden ser precursoras de una gran variedad de pironas sustituídas en la posición 6.

PARTE EXPERIMENTAL

CAPITULO VI

Los puntos de fusión (pf) se determinaron con un aparato Fisher-Jones, salvo indicación contraria, y no se han corregido.

Los poderes rotatorios se midieron en un polarímetro Perkin-Elmer modelo 141 empleando una lámpara de sodio (λ 589 nm), en microceldas de 1 dm de longitud a temperatura ambiente, utilizando el solvente y la concentración que se indica en cada caso.

Los datos de difracción de rayos X dan espacios interplanares en Å, para radiación de CuKa. El diámetro de la cámara fue de 114,59 mm. Las intensidades relativas se estimaron visualmente: m, (moderada); f, (fuerte); d, (débil); md, (muy débil); mf, (muy fuerte); mmd, (muy muy débil); los números entre paréntesis indican el ordenamiento de intensidades de las líneas más intensas.

Los espectros de resonancia magnética nuclear protónica (RMN-¹H) se efectuaron a 100,1 MHz con un espectrómetro Varian XL-100-15; a 200,1 MHz con un Bruker AC 200, a 250 MHz con un Brucker WM-250, según se indica en cada caso. Los espectros a 490 MHz fueron realizados por el Dr. Lucio Jeroncic en la Universidad de Yale con un equipo alli adaptado (Yale 490).

Los espectros de resonancia magnética nuclear de carbono-13 (RMN-¹³C) se realizaron a 25,2 MHz en un Varian XL-100-15 y a 50,3 MHz en un Bruker AC 200 según se indica en cada caso y se adquirieron empleando desacoplamiento de banda ancha ¹³C (¹H). Mediante experimentos de desacople nuclear selectivo (irradiación de una dada señal de ¹H con una frecuencia única de baja potencia) fue posible asignar señales del espectro de RMN-¹³C. Las señales de metilo, metileno, metino se determinaron por espectroscopía de RMN-¹³C mediante la técnica de desacople saturado (Single Pulse Delayed Decoupling)¹⁴⁷ utilizando la secuencia 90°- τ - FID (τ =7 mseg) cortando el desacoplador durante el período τ y extendiendo artificialmente el origen de la FID al instante posterior a la finalización del pulso mediante un "llenado de ceros". Este método tiene la ventaja de poder utilizar un pulso de observación de cualquier ángulo, y evita el uso de un pulso de 180° como en el método APT (test de protones vecinales)¹³⁹ que es poco selectivo en equipos de RMN sin amplificadores de pulso adicionales, como el utilizado.

Los desplazamientos químicos (δ) se expresan en partes por millón (ppm) respecto del tetrametilsilano (TMS). Los espectros en D₂O se realizaron tomando como referencia la frecuencia del DHO (4,75 ppm). Las constantes de acoplamiento (*J*) se expesan en Hz y sus valores se midieron considerando al espectro de primer orden.

En la cromatografía en capa delgada (ccd) se utilizó la técnica ascendente en placas de aluminio o plástico (Merck) cubiertas con sílicagel G60 F254 (0,2 mm de espesor) o placas de vidrio (Merck) cubiertas con sílicagel G60 F254, (0,25 mm de espesor). El revelado se efectuó con luz ultravioleta de λ 254 nm, y luego por inmersión en una solución de H₂SO₄ 5% (V/V) en etanol que contenía 0,5% (V/V) de *p*-anisaldehído y calentamiento sobre una plancha calefactora. Los sistemas de solventes para la ccd utilizados fueron los siguientes (expresados en V/V):

- A- HAcO-MeCN-EtOH-H₂O 13:1:2:4
- B-PhMe-AcOEt 9:1
- C-PhMe-AcOEt 1:1
- D-PhMe-AcOEt 1:2
- E-PhMe-AcOEt 1:3
- F- Hexano-AcOEt 3:1
- G-Hexano-AcOEt 1:1
- H- AcOEt -MeOH 6,5:1
- I- AcOEt -MeOH 5:1
- J- AcOEt -MeOH 3:1
- K- AcOEt
- L- CHCl₃-AcOEt 3:1

Para la cromatografía en columna se utilizó como relleno sílicagel 60, malla 230-400

(Merck). Generalmente se eluyeron a presión atmosférica aunque algunas veces se aceleró la elución aplicando N_2 a presión o aire comprimido.^{148, 149} Los solventes de elución se indican en cada caso.

Los microanálisis fueron realizados por la Lic. Marta Marcote y la Lic. María de las Mercedes Rivero (UMYMFOR, CONICET-FCEN). Las muestras para microanálisis se secaron previamente a presión reducida en presencia de KOH, calentando sólo en aquellos casos que fue necesario.

Purificación de los solventes:

Todos los solventes se purificaron por destilación. Los solventes anhidros se destilaron en atm de N_2 . Se describen a continuación los procedimientos empleados para obtener solventes anhidros:

Acetonitrilo: Se secó por reflujo sobre P_2O_5 durante 3 h y posterior destilación recogiéndolo sobre tamices moleculares de 4Å.

Benceno: Se reflujó sobre cintas de sodio durante 3 h y luego se destiló.

N,N-Dimetilformamida: Se purificó por secado secuencial¹⁵⁰ con tamices moleculares de 3Å, y se destiló a presión reducida. Se almacenó con tamices moleculares de 3Å.

Etanol y metanol: Se siguió la técnica descripta por Lund y Bjerrum.¹⁵¹ Sobre granallas de magnesio desengrasado y seco (5 g), y iodo (0,5 g) se agregaron 50 a 75 ml del alcohol a secar. La mezcla se calentó hasta la desaparición del iodo [si no se observaba desprendimiento de hidrógeno se le agregó más iodo (0,5 g)]. Se reflujó hasta que todo el

magnesio se convirtió en el alcohóxido correspondiente. Luego se le agregó el resto del alcohol a secar (900 ml) y se reflujó durante una hora más. El alcohol se destiló y se recogió sobre tamices moleculares de 3Å.

Eter etílico: Se pasó por una columna de alúmina activada, luego se reflujó sobre cintas de sodio y se destiló.

Diclorometano: Se reflujó sobre P_2O_5 durante 3 h y luego se destiló recogiéndolo sobre tamices moleculares de 3Å.

Cloroformo: Se secó sobre cloruro de calcio, se reflujó sobre P_2O_5 y luego se destiló guardándolo sobre tamices moleculares de 3Å.

Piridina: Se reflujó sobre KOH durante 3 h y luego se destiló recogiéndola sobre tamices moleculares de 5Å.

1,2-dicloroetano y 1,1,2,2-tetracloroetano: Se agitó con $H_2SO_4(c)$, se lavó sucesivamente con H_2O , solución acuosa de KOH, se secó y luego se reflujó sobre P_2O_5 y se destiló.

Trietilamina: Se reflujó sobre KOH durante 2 h y luego se destiló almacenándola sobre lentejas de KOH.

Reactivos generales. Purificación y/o preparación:

Cloruro de p-toluénsulfonilo (cloruro de tosilo): Se purificó disolviendo el material (10 g) en CHCl₃ (25 ml), filtrando el insoluble, y diluyendo con 5 veces el volumen de hexano (125 ml) para precipitar impurezas. Se filtró y el filtrado se concentró a presión reducida hasta un volumen de 10 ml. En estas condiciones precipitó el cloruro de tosilo.

Ni-Raney: 152 A una solución de NaOH (10%) (600 ml), se agregó lentamente una aleación de Ni-Al (50:50, 40 g), en pequeñas porciones con agitación. Al finalizar el agregado (20 min), la mezcla se calentó a reflujo durante 2 h, al cabo de las cuales se dejó decantar. El sólido se lavó con agua (5 x 200 ml), y luego con etanol (5 x 50 ml); finalmente se cubrió con un pequeño volumen de etanol y se guardó en heladera.

Tetracloruro de estaño: Se destiló sobre granallas de estaño.

Tetrabromuro de estaño: Sobre granallas de estaño (0,79 g, 7 mmol) se agregó bromo líquido (1,07 g; 0,69 ml) de a gotas con contínua agitación, enfriando externamente con un baño de agua-hielo. Después de algunos minutos se dejó reaccionar a temperatura ambiente hasta decoloración de la solución y la completa disolución del metal. Se llevó a seco a presión reducida, obteniéndose el SnBr₄ como un sólido cristalino (pf 31°C), el cual se usó sin posterior purificación.

Obtención de ácido 2-amino-2-desoxi-D-glucónico (92, ácido D-glucosamínico):

Se utilizó el método descripto por Pringsheim y Ruschmann,¹⁵³ y modificado por Wolfrom y Cron.⁷⁹

A una solución del clorhidrato de 2-amino-2-desoxi-D-glucosa (24, clorhidrato de glucosamina; 20 g; 92,75 mmol) en 400 ml de H₂O, se agregó óxido de mercurio amarillo (55 g; 254 mmol). La mezcla se agitó vigorosamente en un baño de H₂O hirviente, observándose que después de 15 min oscurece rápidamente y en los 10 min. siguientes se torna gris oscuro. La solución caliente se filtró a través de un lecho de celite y al filtrado se le burbujeó H₂S [generado por agregado de H₂SO₄ (70%) sobre pirita (FeS)], para precipitar el Hg²⁺ que se encontraba en la solución. Este procedimiento se repitió hasta que se determinó la ausencia de Hg²⁺, por reacción negativa con KI. La solución acuosa se concentró hasta un volumen aproximado de 80 ml y se agregó en frío CH₃OH gota a gota hasta una concentración del 60%. Precipitó así el ácido glucosamínico que se filtró y lavó con varias porciones de CH₃OH (3x30 ml) obteniéndose 13,07 g (~60% de rendimiento). Este producto dio pf 198 °C; $[\alpha]_D$ -14,8° (*c* 4,0, 2,5% HCl) en concordancia con datos de literatura.^{79, 113}

Obtención de 2-acetamido-4,6-di-*O*-acetil-2,3-didesoxi-D-*eritro*-hex-2-enono-1,5lactona (111) y 2-acetamido-5,6-di-*O*-acetil-2,3-didesoxi-D-*eritro*-hex-2-enono-1,4lactona (112):

A una suspensión del ácido 2-amino-2-desoxi-D-glucónico (92; 1,0 g; 5,12 mmol) en piridina anhidra (20 ml), se agregó cloruro de acetilo en porciones de 0,3 ml (1,8 ml en total; 25 mmol) bajo atmósfera de N₂ y con constante agitación. La mezcla se calentó en un baño de H₂O a ebullición durante 1 h y luego se volcó sobre una mezcla de agua-hielo. Después de 1 h de agitación la solución se extrajo con diclorometano. La fase orgánica se lavó sucesivamente con HCl (5%), NaHCO₃(ss), H₂O y se secó sobre MgSO₄. El residuo obtenido por evaporación del solvente reveló por ccd (solvente G) dos productos mayoritarios de Rf 0,39 y Rf 0,33, los cuales se separaron por cromatografía en columna de sílicagel eluyendo con una mezcla de hexano-AcOEt 2:1. El compuesto de menor polaridad se aisló como un jarabe cromatográficamente homogéneo y se caracterizó como 111 (0,42 g; 28,7%), $[\alpha]_{\rm D}$ +137° (c 1, CHCl₃) lit.⁸⁴ $[\alpha]_{\rm D}$ +144,5; RMN-¹H: Tabla I; RMN-¹³C: Tabla II.

El compuesto de mayor polaridad se aisló también como un jarabe y se caracterizó como 112 (0,12 g; 8,21%); $[\alpha]_D$ +58° (c 1,CHCl₃), lit.⁸² $[\alpha]_D$ 58,1°; RMN-¹H: Tabla I; RMN-¹³C: Tabla II.

Las fracciones intermedias de la columna contenían mezcla de los compuestos antes descriptos (0,49 g). Como rendimiento total de la reacción se obtuvo 0,92 g (63%).

Obtención de 2-benzamido-4,6-di-*O*-benzoíl-2,3-didesoxi-D-*eritro*-hex-2-enono-1,5-lactona (113) y 2-benzamido-5,6-di-*O*-benzoíl-2,3-didesoxi-D-*eritro*-hex-2-enono-1,4lactona (114):

A una suspensión del ácido 2-amino-2-desoxi-D-glucónico (92; 1,0 g; 5,12 mmol) en piridina anhidra (20 ml), se agregó, en atmósfera de N₂, cloruro de benzoflo (5 ml; 43 mmol

) gota a gota, manteniendo la temperatura con un baño de agua-hielo y se trató del modo descripto para los compuestos 111 y 112. El jarabe resultante se cromatografió en columna de sílicagel eluyendo con hexano-AcOEt 5:1. Por concentración de las fracciones que contenían al producto de mayor movilidad (Rf 0,40, solvente F) se obtuvo 113 (1,08 g; 44,7%) que cristalizó de etanol; pf 130-131 °C; $[\alpha]_D$ +87° (*c* 1, acetona); RMN-¹H: Tabla I; RMN-¹³C: Tabla II.

Análisis: Calculado para C₂₇H₂₁NO₇: %C 68,78; %H 4,49; %N 2,97.

Encontrado %C 69,13; %H 4,76; %N 3,17.

De fracciones posteriores de la columna se aisló el producto de Rf 0,30 (solvente F), el cual se caracterizó como 114 (0,42 g; 17,4%); el cual cristalizó de etanol; pf 138-141 °C; $[\alpha]_D$ -15° (c 1, CHCl₃); RMN-¹H: Tabla I; RMN-¹³C: Tabla II.

El rendimiento global de la reacción fue de 96%.

Análisis: Calculado para C₂₇H₂₁NO₇: %C 68,78; %H 4,49; %N 2,97. Encontrado %C 68,48; %H 4,47; %N 2,89.

Obtención de (E)- y (Z)-2-acetamido-6-acetoxihexa-2,4-dién-4-ólido [(E)- y (Z)-3acetamido-(2-acetoxietilidén)-5(H)-furán-2-ona (121)]:

Se acetiló el ácido 2-amino-2-desoxi-D-glucónico (92) siguiendo la técnica descripta por Bergmann y colaboradores.¹⁰⁴ Una suspensión de 92 (3,0 g; 1,54 mmol) y acetato de sodio (3 g) en anhídrido acético (25 ml) se agitó vigorosamente y se reflujó durante 3 min. La mezcla de reacción se volcó sobre hielo y después de 1 h de agitación se extrajo con diclorometano (3 x 50 ml) y se lavó sucesivamente con NaHCO₃(ss), H₂O y se secó (MgSO₄). Después de evaporar el solvente se obtuvo un sólido (3,30 g; 95%), el cual después de tres recristalizaciones sucesivas de agua rindió la furanona cristalina (pf 126-148 °C). Bergmann y col.¹⁰⁴ informan para el producto obtenido en estas condiciones pf 117-118 °C.

El espectro de RMN-¹H reveló la presencia de 63% del isómero (Z) y 37% del otro isómero (E). Una separación parcial de los diastereoisómeros pudo lograrse por reflujo del crudo (3,30 g) en tetracloruro de carbono (100 ml). Después de 18 h a temperatura ambiente se filtró la suspensión y luego de tres recristalizaciones de H₂O se consiguió obtener puro al isómero mayoritario (Z; 0,30 g); pf 149-150 °C; Rf 0,52 (solvente G); $\lambda^{CH3CN295}$ (ϵ 31000) y 307 nm (ϵ 28000); difracción de rayos X: 13,80md, 12,06f (3) 10,25m, 9,11d, 6,69md, 6,03d, 5,47m, 4,86md, 4,63d, 4,37m, 4,13m, 398s (4), 3,71mf (1), 3,18f (2), 3,05md, 2,73md, 2,52mmd, y 2,32m.

Análisis: Calculado para C₁₀H₁₁NO₅: %C 53,33; %H 4,92; %N 6,22.

Encontrado %C 53,00; %H 4,88; %N 6,48.

La solución de tetracloruro se evaporó y el residud se recristalizó tres veces de una mezcla etanol-agua (50%) para dar en forma pura el isómero minoritario (*E*; 0,20 g); pf 150-152 °C; Rf 0,52 (solvente G); λ^{CH3CN} 295 (ϵ 30000) y 307 nm (26000); difracción de rayos X: 8,97f (2), 8,05mmd, 7,46m, 5,60md, 5,22s (1), 4,35f (3), 4,11m 3,95m, 3,79f (4), 3,62m,

3,49m, 3,37m, 3,27d, 3,18d, 2,79m, 2,72d, 2,61d, 2,53md, 2,44md, 2,63md, 2,31md, 2,22mmd, 2,13d, 1,95md, 1,90m.

Análisis: Calculado para C₁₀H₁₁NO₅: %C 53,33; %H 4,92; %N 6,22. Encontrado %C 53,36; %H 4,85; %N 6,27.

Obtención de (Z)-3-acetamido-(2-acetoxietilidén)-5(H)-furán-2-ona. [2-acetamido-6-acetoxihexa-2,4-dién-4-ólido, 121]:

A una solución de 2-acetamido-5,6-*O*-acetil-2,3-didesoxi-D-*eritro*-hex-2-enono-1,4lactona (112; 0,15 g; 0,53 mmol) en diclorometano anhidro (20 ml) enfriada a 0°C, se agregó DBU (0,20 ml). La mezcla se mantuvo en permanente agitación a esa temperatura y al abrigo de la luz durante 30 min; luego se diluyó en diclorometano (100 ml) y se extrajo con HCl (5%), agua (2 veces) y se secó (MgSO₄). Después de evaporar el solvente se obtuvo un jarabe que cristalizó de benceno (0,09 g; 71%) y que presentaba las mismas constantes físicas y espectroscópicas que **Z-121** RMN-¹H: Tabla III; RMN-¹³C: Tabla IV.

Obtención de (Z)-3-benzamido-5-(2-benzoiloxietilidén)-(5H)-furán-2-ona [(Z)benzamido-6-benzoiloxihexa-2,4-dién-4-ólido, 122]

A una solución de 2-benzamido-5,6-di-*O*-benzofl-2,3-didesoxi-D-*eritro*-hex-2-enono-1,4-lactona (114; 0,10 g; 0,21 mmol) en diclorometano anhidro (5 ml) enfriada a 0 °C, se le agregó DBU (0,10 ml). La mezcla se mantuvo con permanente agitación a esa temperatura y al abrigo de la luz, durante 30 min; y luego se trató de la misma manera descripta para Z-121. El jarabe resultante cristalizó por agregado de etanol, obteniéndose 122(0,046 g; 62%). Pf 189-190 °C; RMN-¹H: Tabla III;RMN-¹³C: Tabla IV.

Análisis: Calculado para C₂₀H₁₅NO₅: %C 68,76; %H 4,33.

Encontrado %C 69,01; %H 4,54.

Obtención del clorhidrato del ácido 2-amino-4,6-O-bencilidén-2-desoxi-Dglucónico (123):

A una suspensión de ácido 2-amino-2-desoxi-D-glucónico (92, 2,0 g; 10,2 mmol) en etanol absoluto (15 ml), se agregó benzaldehído (3 ml) y luego de enfriada en un baño de agua-hielo, se le burbujeó HCl (g) hasta saturación. Al cabo de un tiempo la suspensión se transformó en una solución límpida y al minuto solidificó. Se agregó éter frío y seco (25 ml) para favorecer el filtrado y el sólido obtenido se lavó con éter frío y seco (4 x 50 ml). Se secó en desecador obteniéndose el etanol solvato de 123 (3,13 g; 88%); pf 133-134 °C; $[\alpha]_D$ -29.2° (c, 0,9, H₂O); lit.¹¹³ pf 129 °C; $[\alpha]_D$ -30,2°; difracción de rayos X: 13,48f, 9,82m 8,04f (3), 7,44d, 5,55d, 4,24f (3), 4,81m, 4,54d, 4,31f (1), 3,83m, 3,71d, 3,61f (2), 3,52d, 3,41m, 325f, 3,13m, 2,95f, 2,73d y 2,61f. RMN-¹³C: Tabla VI.

Análisis: Calculado para C₁₅H₂₄ClNO₇: %C 49,27; %H 6,59; %N 3,83; %Cl 9,70

Encontrado %C 49,37; %H 6,83; %N 4,10; %Cl 9,99.

Después de secarlo durante 3 días al vacío sobre KOH se logró obtener 123 libre de etanol (pf 148-151 °C).

Obtención de 2-acetamido-4,6-*O*-bencilidén-2,3-didesoxi-D-*eritro*-hex-2-enono-1,5-lactona (124):

Una mezcla de 123 (1,0 g; 2,74 mmol), acetato de sodio (1,0 g) y anhídrido acético (20 ml) se reflujó durante 10 min. La solución resultante se volcó sobre hielo y la mezcla se agitó durante 3 h, observándose la aparición de un precipitado cromatográficamente puro (Rf 0,61, solvente C). Por recristalización de etanol se obtuvo 124 (0,32 g; 71%); pf 193-194 °C; $[\alpha]_D$ -31° (*c*, 0,9, CHCl₃); difracción de rayos X: 12,27d, 9,93d, 7,67m, 7,65md, 6,85f (2), 5,58m, 5,41md, 4.85f (3), 4,74d, 4,59d, 4,46d, 4,05d, 3,69f (1), 3,55d y 3,37d; RMN-¹H: Tabla V; RMN-¹³C: Tabla VI.

Análisis: Calculado para C₁₅H₁₅NO₅: %C 62,28; %H 5,23; %N 4,89.

Encontrado %C 62,38; %H 5,40; %N 4,71.

Obtención de 3-acetamido-6-(hidroximetil)pirán-2-ona (125):

Al compuesto 124 (0,65 g; 0,22 mmol) se le agregó ácido clorhídrico concentrado (2 ml). La solución se diluyó luego con agua (20 ml), se extrajo con éter (2 x 30 ml) y la solución acuosa se concentró a presión reducida manteniendo la temperatura aproximadamente en 35 °C hasta que comenzó la cristalización. La solución se enfrió y se filtraron los cristales de 125 (0,12 g; 29%); pf 157-158 °C.

Obtención de 3-acetamido-6-(acetoximetil)-pirán-2-ona (118):

Una mezcla de anhídrido acético (5 ml), acetato de sodio anhidro (0,50 g) y la pirona 125 (90 mg) se calentó a 95-100 °C durante 30 min. Al cabo de ese tiempo la solución se volcó sobre una mezcla de agua-hielo y se dejó agitando durante 30 min., se extrajo con CHCl₃ (3x20 ml), los extractos se lavaron con una solución saturada de NaHCO₃ y se secaron (MgSO₄). Por evaporación del solvente se obtuvo un jarabe con Rf 0,42 (solvente G) por ccd. Por cristalización de etanol absoluto se obtuvo 118 (0,104 g; 95%) en forma de agujas blancas (pf 117-118 °C);. λ^{CH_3} CN 246 (ε10000) y 311 nm (ε18000); difracción de rayos X: 16,05d, 13,38mf (1), 11,40m, 9,35md, 7,95f, 6,62m, 5,48d, 4,92mf (2), 4,42d, 4,05f, 3,69f, 3,51f, 3,27f y 3,14f. RMN-¹H: Tabla V; RMN-¹³C: Tabla VI.

Análisis: Calculado para C10H11NO5: %C 53,33; %H 4,92; %N 6,22.

Encontrado %C 52,99; %H 5,03; %N 6,31.

Obtención de 2-acetamido-5,6-di-*O*-acetil-2,3-didesoxi-D-*arabino*-hexono-1,4lactona (126):

La 2-acetamido-5,6-di-O-acetil-2,3-didesoxi-D-*eritro*-hex-2-enono-1,4-lactona (112; 0,10 g; 0,35 mmol) disuelta en AcOEt (7 ml) se trató con hidrogeno a temperatura ambiente y presión atmosférica en presencia de Pd (10%) sobre C. A las 4 h se observó por ccd (Solvente I) la desaparición del material de partida y la aparición de una mancha de Rf 0,73. Se filtró el catalizador por un embudo de vidrio sinterizado y el residuo se lavó varias veces

con acetato de etilo. Por evaporación del solvente se obtuvo un jarabe que se caracterizó como 126 (98 mg; 98%); $[\alpha]_D$ +82° (c, 1,2, CHCl₃); RMN-¹H: Tabla VIII; RMN-¹³: Tabla IX.

Análisis: Calculado para C₁₂H₁₇NO₇: %C 50,17; %H 5,96. Encontrado %C 50,59; %H 6,04.

Obtención de 2-benzamido-5,6-di-*O*-benzoil-2,3-didesoxi-D-*arabino*-hexono-1,4lactona (127):

La 2-benzamido-5,6-di-*O*-benzofl-2,3-didesoxi-D-*eritro*-hex-2-enono-1,4-lactona (114; 0,18 g; 0,38 mmol) disuelta en AcOEt (15 ml) se hidrogenó a temperatura ambiente y a 2,4 atm (35 psi) en presencia de PdOH, previamente hidrogenado en CH₃OH (5 ml). Después de 12 h se observó por ccd una única mancha de Rf 0,42 (solvente G). El catalizador se filtró por un embudo de vidrio sinterizado y el residuo se lavó varias veces con AcOEt. Por evaporación del solvente se obtuvo la 2-benzamido-5,6-di-*O*-benzoil-2,3-didesoxi-D-*arabino*-hexono-1,4-lactona (127; 0,18 g; 97,4%) como un sólido blanco de pf 205 °C; $[\alpha]_D$ -176,5° (*c*, 0,92, CHCl₃); RMN-¹H: Tabla VIII; RMN-¹³C: Tabla IX.

Análisis: Calculado para C₂₄H₂₃NO₇: %C 68,49; %H 4,90; %N 2,96. Encontrado %C 68,43; %H 4,69; %N 3,12.

Obtención de 2-acetamido-4,6-di-*O*-acetil-2,3-didesoxi-D-*arabino*-hexono-1,5lactona (128):

La 2-acetamido-4,6-di-O-acetil-2,3-didesoxi-D-eritro-hex-2-enono-1,5-lactona (111; 0,10 g; 0,35 mmol) disuelta en AcOEt (7 ml) se hidrogenó a temperatura ambiente y presión atmosférica en presencia de Pd (10%) sobre C. A las 4 h se observó por ccd (solvente J) la conversión del compuesto de partida en un producto de Rf 0,63. Se filtró el catalizador por un embudo de vidrio sinterizado y el residuo se lavó varias veces con acetato de ctilo. Por evaporación del solvente se obtuvo un jarabe que se caracterizó como 128 (98 mg; 97%);

 $[\alpha]_{D}$ +131,8° (c, 1,2, CHCl₃); RMN-¹H: Tabla X; RMN-¹³C: Tabla XI.

Análisis: Calculado para C₁₂H₁₇NO₇: %C 50,17; %H 5,96.

Encontrado %C 50,33; %H 6,38.

Obtención de 2-benzamido-4,6-di-*O*-benzoíl-2,3-didesoxi-D-*arabino*-hexono-1,5lactona (129):

La 2-benzamido-4,6-di-*O*-benzofl-2,3-didesoxi-D-*eritro*-hex-2-enono-1,5-lactona (113; 0,67 g; 1,42 mmol) disuelta en AcOEt (15 ml) se hidrogenó a temperatura ambiente y a 23,5 psi en presencia de Pd (10%) sobre C. A las 9 h se observó por ccd (solvente F) una única mancha de Rf 0,12. Se filtró el catalizador por un embudo de vidrio sinterizado y el residuo se lavó varias veces con AcOEt. Por evaporación del solvente se obtuvo **129** (0,67 g 99,7%) como un sólido cristalino. Por recristalización de etanol dio pf 158-160 °C; $[\alpha]_D$ +43° (*c*, 1, CHCl₃); RMN-¹H: Tabla X; RMN-¹³C: Tabla XI.

Análisis: Calculado para C27H23NO7: %C 68,50; %H 4,90; %N 2,96,

Encontrado %C 68,35; %H 5,18; %N 3,25.

Obtención de 2-acetamido-4,6-*O*-bencilidén-2,3-didesoxi-D-*arabino*-hexono-1,5lactona (130):

Una solución de 124 (0,50 g; 1,7 mmol) en AcOEt (20 ml) se hidrogenó a temperatura ambiente y a 4 atmósferas de presión en presencia de Pd (10%) sobre C (0.05 g). A las 12 h se observó por ccd (solvente C) el consumo total del compuesto de partida y la aparición de una única mancha [Rf 0,12 (solvente C); Rf 0,48 (solvente K)]. El catalizador se filtró por un embudo de vidrio sinterizado y el residuo se lavó varias veces con AcOEt a ebullición. Por evaporación del solvente se obtuvo la 2-acetamido-4,6-*O*-bencilidén-2,3-didesoxi-D*arabino*-hexono-1,5-lactona en forma cristalina (130; 0,47 g; 94%); pf 235-237 °C; $[\alpha]_D+107,6 (c, 0.8, DMSO)$. RMN-¹H: Tabla XII; RMN-¹³C: Tabla XIII. Análisis: Calculado para C₁₅H₁₇NO₅: %C 61,85; %H 5,88; %N 4,81

Encontrado %C 62,06; %H 5,98; %N 5,01.

Obtención de 2-O-acetil-4,6-O-bencilidén-3-desoxi-D-*eritro*-hex-2-enono-1,5lactona (132):

Se empleo la técnica descripta por M. E. Evans.¹¹⁷ En un tubo "dedo" se preparó una solución de D-glucono-1,5-lactona (2,0 g; 11,2 mmol) en DMF (10 ml) a la cual se agregó 2,2-dimetoxitolueno y ácido *p*-toluensulfónico (6 mg). El tubo se colocó en el rotavapor mediante un tubo diseñado para retener el solvente y se hizo vacío con una bomba regulando la presión interna de manera tal de mantener un reflujo suave y una lenta evaporación. La temperatura del baño se mantuvo a 60 ± 5 °C. Después de 100 min se aumentó la temperatura del baño hasta 85 ± 5 °C y se disminuyó la presión del sistema para llevar a seco. El jarabe obtenido se disolvió en Ac₂O (10 ml), se agregó NaAcO (0,5 g) y se calentó a ebullición durante 3 min. La mezcla de reacción se volcó sobre hielo y después de 1 h de agitación se obtuvo un precipitado, el cual se filtró al vacío. El sólido se recristalizó de etanol, para dar agujas blancas de 2-*O-acetil*-4,6-*O*-bencilidén-3-didesoxi-D-*eritro*-hex-2-enono-1,5-lactona (132; 2,47 g; 76%); Rf 0,57 (solvente F); pf 146-147 °C; [α]_D +61,4° (*c*, 2,6, CHCl₃); RMN-¹H: Tabla XII; RMN-¹³C: Tabla XIII.

Análisis: Calculado para C₁₅H₁₄O₆: %C 62,07; %H 4,87 Encontrado %C 62,36; %H 4,73.

Obtención de 2-O-acetil-4,6-O-bencilidén-3-desoxi-D-*arabino*-hexono-1,5-lactona y 2-O-acetil-4,6-O-bencilidén-3-desoxi-D-*ribo*-hexono-1,5-lactona (133):

Una solución de 132 (0,33 g; 1,13 mmol) en AcOEt (10 ml) se agitó en atmósfera de H_2 en presencia de Pd (10%) sobre C. El análisis por ccd (solvente F) reveló la presencia de dos manchas de menor movilidad (Rf₁ 0,40 y Rf₂ 0.36) y la ausencia del material de partida. El catalizador se filtró a través de un embudo de vidrio sinterizado y el solvente se evaporó obteniéndose un compuesto blanco cristalino (133; 0,332 g; 100%); pf 104-120 °C;
$[\alpha]_D$ +78,4° (c, 1,8, CHCl₃). Por análisis de los espectros de RMN-¹H y de ¹³C (Fig. 28) se observó la presencia de dos isómeros. Los intentos de separación por cromatografía en columna de sílicagel fueron infructuosos, obteniéndose gran cantidad de productos de descomposición.

Análisis: Calculado para C₁₅H₁₅O₆: %C 61,85; %H 5,19. Encontrado %C 61,97; %H 5,34.

Obtención de 2-acetamido-2,3-didesoxi-D-arabino-hexono-1,4-lactona (134):

Una suspensión de 130 (0,55 g; 1,9 mmol) en una solución de (0,25%) de HCl en acetona se reflujó durante 1,5 h. Al cabo de ese tiempo se observó por ccd (solvente K) que la reacción había sido completa. Se neutralizó con BaCO₃, se filtró, se evaporó el solvente y el jarabe obtenido se sometió a una extracción con agua-éter etflico. La fase acuosa se llevó a seco a presión reducida obteniéndose la 2-acetamido-2,3-didesoxi-D-*arabino*-hexono-1,4-lactona (134; 0,365 g; 95,5%); pf 160-161 °C; $[\alpha]_D$ -10° (c, 0,9, H2O); RMN-¹H: Tabla XIV; RMN-¹³C: Tabla XV.

Obtención de 2-acetamido-5,6-di-*O*-acetil-2,3-didesoxi-D-*arabino*-hexono-1,4lactona (126):

Una solución de 134 (20 mg; 0,098 mmol) en una mezcla 1:1 de anhídrido acéticopiridina se agitó a temperatura ambiente durante 2 h y luego se volcó sobre agua y se extrajo con diclorometano (2x10 ml). La fase orgánica se lavó sucesivamente con solución acuosa de HCl (0,5 N), NaHCO₃ (ss), H₂O y se secó (MgSO₄). El solvente se evaporó a presión reducida obteniéndose la 2-acetamido-5,6-di-O-acetil-2,3-didesoxi-1,4-lactona (126; 25 mg; 90%) como un jarabe cromatográficamente homogéneo, que presentaba las mismas propiedades físicas y espectroscópicas que 126 obtenido previamente a partir de 112.

Obtención del clorhidrato de la lactona de la (2S,4S,5R)-4,5,6trihidroxinorleucina (2-amino-2,3-didesoxi-D-*arabino*-hexono-1,4-lactona, 135):

Una suspensión de 130 (0,10 g; 0,50 mmol) en HCl (5N, 5 ml) se reflujó durante 90 min., al cabo de los cuales el análisis por ccd (solvente K) de la mezcla de reacción reveló la desaparición del compuesto de partida. La solución se evaporó a presión reducida con el agregado de sucesivas porciones de agua para terminar de eliminar el HCl. El residuo se dejó en desecador al vacío sobre KOH, obteniéndose un compuesto cristalino el cual se recristalizó de etanol y se caracterizó como el clorhidrato de la (2S,4S,5R)-4,5,6-trihidroxinorleucina (135, 43 mg; 63%); pf 185°C; RMN-¹H: Tabla XIV; RMN-¹³C: Tabla XV.

Análisis: Calculado para C₆H₁₂NO₄Cl: %C 36,47; %H 6,12. Encontrado %C 36,87; %H 6,58.

Obtención de 2-acetamido-6-*O*-acetil-2,3,5-tridesoxi-D,L-*glicero*-hex-2-enono-1,4lactona (136):

A una solución de (E,Z)-121 (0,20 g; 1,20 mmol) en AcOEt (15 ml) se agregó Pd (10%) sobre C y se agitó con H₂ a presión atmosférica durante 2 h, al cabo de las cuales se filtró el catalizador a través de un embudo de vidrio sinterizado. El filtrado se concentró obteniéndose un sólido blanco cromatográficamente puro (Rf 0,34, solvente G). Por cristalización de etanol se obtuvo 120 (0,18 g; 62%); analíticamente puro; pf 109-111 °C; RMN-¹H: Tabla XVI; RMN-¹³C: Tabla XVII.

Análisis: Calculado para C₁₀H₁₃NO₆: %C 52,86; %H 5.77; %N 6,16 Encontrado %C 52,69; %H 6,04; %N 6,19.

Obtención de 2-acetamido-6-*O*-acetil-2,3,5-tridesoxi-D,L-*treo*-hexono-1,4-lactona (137):

A una solución de (E-Z) 121 (0,29 g; 1,20 mmol) se agregó Pd (10%) sobre C y se

aplicó hidrogeno a presión atmosférica hasta que cesó el consumo (6 h). Después de filtrar el catalizador y evaporar el solvente, se obtuvo 121 (0,29 g; 97%) como un jarabe cromatográficamente homogéneo (Rf 0,1, solvente G). RMN-¹H: Tabla XVI; RMN-¹³C: Tabla XVII.

Análisis: Calculado para C₁₀H₁₅NO_{6:} %C 52,40; %H 6,60; %N 6,11 Encontrado %C 52,17; %H 6,77; %N 5.91.

Obtención del clorhidrato de la lactona de la 4,6-dihidroxinorleucina (2-amino-2,3,5-tridesoxi-D,L-*treo*-hexono-1,4-lactona, 138):

Una solución de 2-acetamido-6-O-acetil-2,3,5-tridesoxi-D,L-*treo*-hexono-1,4-lactona (137; 1,0 g; 0,44 mmol) en HCl (5N, 25 ml) se calentó a 65 ± 5 °C durante 18 h, al cabo de las cuales no se detectó el compuesto de partida por ccd (solvente C). La solución se concentró a presión reducida, y el residuo obtenido se lavó varias veces con metanol, se secó al vacío, y finalmente se disgregó en una pequeña cantidad de etanol absoluto y se filtró obteniéndose 0,69 g (86,6%) de **138**. Una muestra analítica obtenida por una segunda disgregación dio pf 173-174 °C (para el compuesto erróneamente formulado como clorhidrato del ácido 2-amino-5,6-dihidroxihexanoico Bergmann y col.¹⁰⁴ informan 175 °C.)

Obtención de 2-(*N*-terbutiloxicarbonil)-amino-2,3,5-tridesoxi-D,L-*treo*-hexono-1,4lactona (147):

A una solución del clorhidrato de 2-amino-2,3,5-tridesoxi-D,L-treo-hexono-1,4 lactona (138; 0,23 g; 1,26 mmol) en una mezcla agua-dioxano (1:1, 4,1 ml) se le agregó Et_3N (0,46 ml; 3,30 mmol) y 2-(*ter*-butoxicarboniloxiimino)-2-fenilacetonitrilo (BOC-ON, 0,34 g; 1,4 mmol). Después de 24 h de agitación a temperatura ambiente no se detectó el compuesto de partida (138) por ccd (solvente E). La mezcla de reacción se concentró a presión reducida y se evaporó varias veces con H₂O para eliminar la Et_3N . El residuo se disolvió en HCl (0,5 N) y se extrajo primeramente con éter y luego con AcOEt. Este último extracto se secó

(MgSO4) y se concentró para dar 147 (0,17 g; 54%) como un jarabe cromatográficamente homogéneo (Rf 0,36; solvente E). RMN-¹H: Tabla XVIII; RMN-¹³C: Tabla XIX.

Obtención de 2-(*N*-terbutiloxicarbonil)-amino-6-*O*-metánsulfonil-2,3,5-tridesoxi-D,L-treo-hexono-1,4-lactona (148):

A una solución enfriada a 0 °C de 2-(N-terbutiloxicarbonil)-amino-2,3,5-tridesoxi-D,Ltreo-hexono-1,4-lactona (147; 0,145 g; 0,64 mmol) en CH_2Cl_2 anhidro (15 ml) y piridina anhidra (0,104 ml; 2 eq) se agregó lentamente y con agitación continua y en atmósfera de N₂, cloruro de metánsulfonilo (0,116 ml; 1,5 eq). Después de 1 h se dejó alcanzar temperatura ambiente y se continuó agitando hasta que por ccd (solvente E) no se observó compuesto de partida (147). La solución se concentró y el residuo obtenido se cromatografió por una columna de sílicagel eluyendo con PhMe-AcOEt (2:1). Se juntaron las fracciones que contenían el producto de Rf 0,57 (solvente E), obteniéndose después de evaporar el solvente, 148 cromatográficamente puro, el cual se caracterizó en base a sus espectros de RMN-¹H (Tabla XVIII) y de ¹³C (Tabla XIX).

Obtención de 2-(*N*-benciloxicarbonil)-amino-2,3,5-tridesoxi-D,L-*treo*-hexono-1,4lactona (149):

A una suspensión del clorhidrato de 2-amino-2,3,5-tridesoxi-D,L-*treo*-hexono-1,4lactona (**138**; 0,47 g; 2,59 mmol) en CH_2Cl_2 anhidro (10 ml) se agregó Et_3N (0,90 ml, 6,5 mmol), y se agitó hasta desaparición de la turbidez. La solución se enfrió en un baño de agua-hielo y después de 15 min, se le agregó 1,4 eq de cloroformiato de bencilo (0,52 ml, 3,6 mmol) mediante una jeringa, bajo continua agitación y en atmósfera de nitrógeno. Se dejó alcanzar temperatura ambiente y a las 5 h el análisis por ccd (Rf 0,15, solvente J) aún indicaba la presencia del material de partida (**138**). Se agregaron entonces volúmenes adicionales de Et_3N (0,18 ml, 1,3 mmol) y cloroformiato de bencilo (0,19 ml, 1,3 mmol) adicionales y se dejó reaccionando durante la noche. La solución se concentró a presión reducida y el jarabe obtenido se disolvió en CH_2Cl_2 (50 ml), se extrajo con H_2O (2 veces) y se secó (MgSO₄). El residuo obtenido luego de evaporar el solvente se cromatografió en una columna de sílicagel, empleando PhMe-EtOAc (2:1) como eluyente. Por concentración de las fracciones que contenían al compuesto de Rf 0.52 (solvente K) se obtuvo **149** (0,44 g; 61%) en forma cristalina De fracciones posteriores se aisló material sin reaccionar (49 mg; rendimiento corregido 68%); Pf 76-77 °C

Análisis :Calculado para C₁₄H₁₇NO₅: %C 60,21; %H 6,14; %N 5,02. Encontrado %C 60,52; %H 5,70; %N 5,02.

Obtención de 2-(*N*-benciloxicarbonil)-amino-6-*O*-metansulfonil-2,3,5-tridesoxi-D,L-*treo*-hexono-1,4-lactona (150):

A una solución de **149** (0,429 g; 1,5 mmol) en CH_2Cl_2 anhidro (3,5 ml) se agregó piridina (0,243 ml; 2 mmol) con agitación continua y en atmósfera de N₂. La solución se enfrió a -10°C en un baño de H₂O-hielo-NaCl y se agregó lentamente cloruro de mesilo (0,174 ml; 2,3 mmol). Después de 1 h se dejó alcanzar temperatura ambiente y se continuó agitando hasta que no se detectó por ccd (solvente K) el compuesto de partida (10 h). La mezcla de reacción se llevó a sequedad a presión reducida y el jarabe obtenido se disolvió en CH_2Cl_2 , se lavó con H₂O, se secó (MgSO₄) y concentró. El residuo se cromatografió en una columna de sílicagel empleando PhMe-EtOAc (2:1) como eluyente. Las fracciones que contenían el compuesto de Rf 0,36 (solvente C) se juntaron y concentraron obteniéndose **150** (0,43 g; 78,3%) el cual se disolvió en AcOEt y se precipitó con hexano obteniéndose cristales de pf 92-93 °C; RMN-¹H: Tabla **XVIII**; RMN-¹³C: Tabla **XIX**.

Análisis :Calculado para C₁₅H₁₉NO₇S: %C 50,41; %H 5,36; %S 8,97.

Encontrado %C 50,87; %H 5,24; %S 9,07.

Obtención de la 2-amino-6-*O*-metánsulfonil-2,3,5-tridesoxi-D,L-*treo*-hexono-1,4lactona (152):

*- A partir de 150:

A una solución de 150 (0,43 g; 1,20 mmol) en AcOEt (20 ml) se agregó 10% Pd sobre C (40 mg) y la suspensión se agitó durante la noche en atmósfera de H₂. Se filtró el catalizador a través de un embudo de vidrio sinterizado y el filtrado se concentró obteniéndose un jarabe (0,25 g; 98%) cromatográficamente homogéneo (Rf 0,34, solvente J), el cual se caracterizó como 2-amino-6-O-metansulfonil-2,3,5-tridesoxi-D,L-*treo*-hexono-1,4lactona. RMN-¹H: Tabla XVIII; RMN-¹³C: Tabla XIX.

**- A partir de 148:

A una solución de 148 (75 mg; 0,24 mmol) en CHCl₃ (0,12 ml) se le agregó 1,2 eq de $(CH_3)_3SiI$ (59 mg, 0,29 mmol) y después de agitar durante 80 min en atmósfera de N₂ el análisis por ccd (solvente E) reveló ausencia total del compuesto de partida. En ese momento se interrumpió la reacción por agregado de metanol (47 µl, 1,15 mmol), se agitó unos minutos y la solución se evaporó a presión reducida obteniéndose 152 (20 mg; 40%) cuyo espectro de RMN-¹³C era coincidente con el del producto obtenido en *.

Obtención del clorhidrato del ácido *cis*(±)-4-hidroxipipecólico (153):

Una solución de 2-amino-6-O-metánsulfonil-2,3,5-tridesoxi-D,L-*treo*-hexono-1,4lactona (69 mg; 0,32 mmol) en KOH acuoso 2M (1,2 ml) se agitó durante 1 h a temperatura ambiente. El examen por ccd (solvente J) reveló sólo una mancha que quedó retenida en el origen (Rf 0). La solución se neutralizó con HCl (0,1 N) y se concentró. El sólido obtenido se percoló a través de una columna cromatográfica rellena con una resina Dowex 50W(H⁺) con una solución de piridina acuosa (1M). El eluído se liofilizó, se disolvió en HCl (2M) y se concentró a presión reducida. El clorhidrato del ácido *cis*-4-hidroxipipecólico (153) cristalizó de etanol absoluto (25 mg; 43%) y dio pf 253-255 °C, coincidente con el descripto en la literatura.¹⁴¹ RMN-¹H: Tabla XVIII; RMN-¹³C: Tabla XIX.

Obtención de 3-acetamido-6-acetoximetilpirán-2-ona (118):

A una solución de 2-acetamido-4,6-di-*O*-acetil-2,3-didesoxi-D-*eritro*-hex-2-enono-1,5lactona (111; 0,30 g; 1,05 mmol) en diclorometano anhidro (5 ml) enfriada a 0°C, se agregó tetracloruro de estaño (0,15 ml; 1,29 mmol) en atmósfera de N₂ y bajo continua agitación. Después de 3 h, cuando se registró por ccd (solvente C) consumo total del compuesto de partida, la mezcla de reacción se diluyó con diclorometano (15 ml) y se lavó con un volumen igual de NaHCO₃(ss). La fase acuosa se extrajo nuevamente con diclorometano. Los extractos orgánicos se juntaron, se lavaron con agua y se secaron (MgSO₄). Por evaporación del solvente se obtuvo un sólido cristalino que se caracterizó como 3acetamido-6-acetoximetilpirán-2-ona (118; 0,27 g; 90%). Por recristalización de etanol se obtuvieron unos cristales blancos de pf 117-118 °C; Rf 0,4 (solvente C); RMN-¹H: Tabla V; RMN-¹³C: Tabla VI.

Análisis: Calculado para C₁₀H₁₁NO₅: %C 53,33; %H 4,92; %N 6,22.

Encontrado %C 52,90; %H 5,14; %N 6,36.

Obtención de 3-benzamido-6-benzoiloximetilpirán-2-ona (154):

A una solución de 2-benzamido-4,6-di-O-benzofl-2,3-didesoxi-D-*eritro*-hex-2-enono-1,5-lactona (113; 0,12 g; 0,25 mmol) en diclorometano anhidro (4 ml) enfriada a 0 °C, se agregó $SnCl_4$ (0,05 ml; 0,43 mmol) bajo agitación contínua y en atmósfera de N₂. A las 3 h se trató de la manera descripta para la preparación del análogo acetilado 118.

El sólido obtenido se recristalizó de EtOH obteniéndose cristales blancos (Rf 0,47, solvente B) de 3-benzamido-6-benzoiloximetilpirán-2-ona (154; 0,07 g; 78%; Pf 144-145 °C; RMN-¹H: Tabla XX; RMN-¹³C: Tabla XXI.

Análisis: Calculado para C₂₀H₁₅NO₅: %C 68,76; %H 4,33; %N 4,00

Encontrado %C 68,77; %H 4,31; %N 4,06.

Obtención de 3-benzoiloxi-6-benzoiloximetilpirán-2-ona (156):

A una solución de 2,4,6-tri-O-benzoil-3-desoxi-D-*eritro*-hex-2-enono-1,5-lactona (155; 0,48 g; 1 mmol) en diclorometano anhidro (2 ml) se agregó en atmósfera de N₂,bajo contínua agitación y enfriando a 0 °C, $SnCl_4$ (0,18 ml; 1,5 mmol). Después de 1 h se observó por ccd (solvente B) la conversión total de 155 en un producto de menor movilidad (Rf 0,45). La mezcla se diluyó con diclorometano (15 ml) y se lavó con NaHCO₃(ss) (2x10 ml), con agua (2x10 ml), se secó (MgSO₄) y se filtró. El filtrado se concentró a presión reducida y el sólido resultante se recristalizó de etanol obteniéndose la 3-benzoiloxi-6-benzoiloximetilpirán-2-ona (156; 0,30 g; 83%) de pf 152 °C; RMN-¹H: Tabla XX; RMN-¹³C: Tabla XXI.

Análisis: Calculado para C₂₀H₁₄O₆: %C 68,57; %H 4,03

Encontrado %C 68,52; %H 4,26.

Obtención de 3-benzoiloxi-6-clorometilpirán-2-ona (157):

A una solución de 2,4,6-tri-O-benzoil-3-desoxi-D-*eritro*-hex-2-enono-1,5-lactona (155; 0,35 g; 0,74 mmol) en CH₂Cl anhidro, enfriada a 0 °C, se agregó bajo contínua agitación SnCl₄ (0,13 ml; 1,11 mmol). Después de 1 h se dejó alcanzar temperatura ambiente. La agitación se continuó por 4 h, al cabo de las cuales se observó por ccd (solvente B) una única mancha de Rf 0,50. Se diluyó con CH₂Cl₂, se lavó con NaHCO₃(ss) (2 x 10 ml), H₂O (2 x 10 ml), se secó (MgSO₄), se filtró y se evaporó el solvente. El sólido cristalino resultante se recristalizó de una mezcla de etanol-agua para dar 3-benzoiloxi-6-clorometilpirán-2-ona (157; 0,163 g; 83%); pf 130 °C; RMN-¹H: Tabla XX; RMN-¹³C: Tabla XXI.

Análisis: Calculado para C₁₃H₉O₄Cl: %C 59,00; %H 3,43; %Cl 13,40 Encontrado %C 58,73; %H 3,59; %Cl 13,66.

Obtención de 3-benzoiloxi-6-metilpirán-2-ona (159):

A una solución de 2,4-di-O-benzofl-3,6-didesoxi-L-*eritro*-hex-2-enono-1,5-lactona (158; 33 mg; 0,1 mmol) en diclorometano anhidro (1,2 ml) enfriada a 0 °C se agregó bajo continua agitación y en atmósfera de N₂, SnCl₄ (0,012 ml; 0,10 mmol). A las 3 h de reacción se observó por ccd (solvente B) la desaparición del compuesto de partida y la aparición de un único compuesto de mayor polaridad Rf 0,36. Para aislarlo se procedió como se describió para la síntesis de 118, obteniéndose, en forma cristalina la 3-benzoiloxi-6-metilpirán-2-ona (159; 18 mg; 83%); pf 113-115 °C; lit¹⁴⁴ pf 112-114 °C.

Obtención de 2-acetamido pirona (160) y 2-acetamido-2,3-didesoxi-4,6-*O*formilidén-D-*eritro*-hex-2-enono-1,5-lactona (161):

A una solución de 2-acetamido-4,6-O-bencilidén-2,3-didesoxi-D-*eritro*-hex-2-enono-1,5-lactona (**124**; 0,45 g; 1,56 mmol) en CH₂Cl₂ anhidro (5 ml) y CH₃CN (0,5 ml) se agregó tetracloruro de estaño (200 μ l; 1,56 mmol), y se agitó a temperatura ambiente y bajo atmósfera de N₂. Al cabo de 1 h el análisis por ccd (solvente C) reveló que el compuesto de partida se había transformado en dos compuestos principales de Rf 0,49 y Rf 0,25. La mezcla de reacción se diluyó con CH₂Cl₂ (30 ml) y se lavó sucesivamente con NaHCO₃(ss) (20 ml) y H₂O (20 ml), se secó (MgSO₄) y se evaporó el solvente obteniéndose un sólido amarillento. Este se cromatografió mediante una columna de sílicagel, empleando PhMe-AcOEt 4:1 como eluyente. Por evaporación de las fracciones de la columna que contenían al producto de Rf 0,49 se obtuvo la 2-acetamido pirona (**160**; 0,13 g; 53%), la cual recristalizada de etanol dio pf 144-147 °C ; RMN-¹H: Tabla XXII; RMN-¹³C: Tabla XXIII.

Análisis: Calculado para C₇H₇NO₃: %C 54,90; % H4,61; %N 9,19

Encontrado %C 55,16; % H4,81; %N 9,20.

De fracciones posteriores de la columna se aisló el producto de Rf 0,25, la 2acetamido-2,3-didesoxi-4,6-O-formilidén-D-*treo*-hex-2-enono-1,5-lactona (161; 95 mg; 28,6%), que por recristalización de etanol dio pf 169-195 °C; RMN-¹H: Tabla XXII; RMN-¹³C: Tabla XXIII.

Análisis: Calculado para C₉H₁₁NO₅: %C 50,71; %H5,20; %N6,57. Encontrado %C 50,76; %H5,24; %N6,84.

Reacción de 124 con SnCl₄ en presencia de anhídrido acético:

Esta reacción se repitió en condiciones similares pero con el agregado de anhídrido acético: Así a una solución de 124 (70 mg; 0.24 mmol) en CH_2Cl_2 (1,2 ml) y CH_3CN (0,4 ml), enfriada a 0 °C, se agregó con continua agitación y bajo atmósfera de N₂, $SnCl_4$ (35 µl; 1,2 eq). Después de 1 h, el análisis por ccd (solvente C) reveló la desaparición de la mancha de Rf 0,25, aunque permanecía la correspondiente al compuesto de Rf 0,49, y además aparecía otra que tenía la misma movilidad que el compuesto 118 (Rf 0,4). La reacción se trató entonces de la misma manera descripta anteriormente y el análisis de los espectros de RMN confirmó la identidad de los compuestos 118 y 160.

Obtención de 3-acetoxi-6-clorometilpirán-2-ona (162):

A una solución de 2-acetoxi-4,6-*O*-bencilidén-2,3-didesoxi-D-*eritro*-hex-2-enono-1,5lactona (132; 0,59 g; 2,91 mmol) en diclorometano anhidro enfriada a 0 °C (5 ml) se agregó con continua agitación y bajo atmósfera de N₂, SnCl₄ (0,28 ml; 1,2 eq). Luego de 1 h de reacción se observó por ccd un producto mayoritario (Rf 0,52, solvente G), el cual se aisló de la manera descripta anteriormente, como un jarabe cromatográficamente homogéneo y se caracterizó como 3-acetoxi-6-clorometil-piran-2-ona (162; 0,18 g; 44%). RMN-¹H: Tabla XX; RMN-¹³C: Tabla XXI.

Análisis: Calculado para C₈H₇O₄Cl: %C 47,43; %H 3,48; %Cl 17,50. Encontrado %C 47,52; %H 3,64; %Cl 17,53.

Esta reacción se repitió en condiciones similares pero con el agregado de anhídrido

acético. Así a una solución de 132 (0,59 g; 2,91 mmol) en diclorometano anhidro (5 ml) enfriada a 0 °C se agregó con continua agitación y bajo atmósfera de N₂, SnCl₄ (0,28 ml; 1,2 eq). A la hora de reacción se observó por ccd una mancha (Rf 0,52, solvente C) coincidente con el compuesto 162 y no hubo variación a medida que transcurría el tiempo. La mezcla se trató de la misma manera descripta anteriormente y el compuesto aislado coincidía con 162 según demostró el análisis de sus espectros de RMN.

Obtención de la 1,5-lactona de la *N*-acetil-norvalina (2-acetamido-2,3,4-tridesoxi-D,L-glicero-pentono-1,5-lactona, 164):

Una solución de 3-acetamido-pirán-2-ona (160; 0,10 g; 0,65 mmol) en acetato de etilo (10 ml) se agitó bajo una presión de 4 atmósferas de H₂ usando Pd(10%) sobre C como catalizador. Al cabo de 12 h el compuesto de partida había desaparecido, observándose sólo una mancha por ccd (solvente H) de Rf 0,42. El catalizador se filtró a través de un embudo de vidrio sinterizado. Por evaporación del solvente se obtuvo un jarabe que se caracterizó como (164; 0,10 g; 97,4%). RMN-¹H: RMN-¹³C: Tabla XXV.

 Análisis: Calculado para C7H11NO3:
 %C 53,49; %H 7,05; %N 8,91.

 Encontrado
 %C 53,35; %H 6,90; %N 8,79.

Obtención de 2-acetamido-2,3-didesoxi-4,6-*O*-formilidén-D-*lixo*-hexono-1,5lactona (165):

A una solución de 2-acetamido-2,3-didesoxi-4,6-*O*-formilidén-D-*eritro*-hex-2-enono-1,5-lactona (161; 0,10 g; 0,47 mmol) en AcOEt (15 ml), se agregó Pd (10%) sobre C como catalizador y se agitó bajo una presión de 4 atmósferas de presión hasta que el análisis por ccd (solvente c) reveló ausencia del compuesto de partida. La mezcla de reacción se filtró a través de un embudo de vidrio sinterizado y el filtrado se llevó a seco obteniéndose 165 (0,95 g; 94%); $[\alpha]_D$ +116° (*c* 0,6; DMSO); pf 241 °C; Rf=0,22 (solvente D); RMN-¹³C: Tabla XXV.

 Análisis: Calculado para C9H13NO5:
 %C 50,23; %H 6,09; %N 6,51

 Encontrado
 %C 50,21; %H 5,85; %N 6,49.

Obtención del clorhidrato de la 2-amino-pirona (166):

Una solución de (164; 0,12 g; 0.76 mmol) en HCl (5N, 5 ml) se reflujó durante 1 h, luego de la cual se observó por ccd (solvente H) la total desaparición del material de partida. La mezcla de racción se llevó a seco a presión reducida y después de varias evaporaciones con H₂O para terminar de evaporar el ácido, se obtuvo el clorhidrato de la 2-amino pirona (166; 41 mg; 45%) como un sólido cromatográficamente homogéneo, Rf 0,14 (solvente J); pf 219-223 °C.

Análisis: Calculado para C5H10NO2Cl: %C 39,62; %H 6,65; %N 9,24.

Encontrado %C 39,22; %H 6,43; %N 8,91.

ANEXO

ABREVIATURAS

Ac	Acetilo
AcOEt	Acetato de etilo
Bn	Bencilo (PhCH ₂)
Bu ^t	ter-butilo
Bz	Benzoflo (PhCO)
c	Concentración
ccd	Cromatografía en capa delgada
COD	Ciclooctadienil
Cy ₂ NH	Diciclohexilamina
DBU	1,8-diazabiciclo[5.4.0]undecán-7-eno
DCC	1,3-diciclohexilcarbodiimida
DFU	Desacople a frecuencia única
DMF	N,N-dimetilformamida
DMSO	Dimetilsulfóxido
ENO	Efecto nuclear de Overhauser
Et	Eülo
Et ₃ N	Trietilamina
Fig.	Figura
HPLC	High Performance Liquid Chromatography
Hz	Hertz
<i>i</i> -PrCHO	<i>iso</i> butiraldehído
IR	Infrarrojo
J	Constante de acoplamiento escalar
Lit.	Literatura
Me	Metilo
МеОН	Metanol
Ms	Metánsulfonilo

MsCl	Cloruro de metánsulfonilo
NaTFA	Trifluoroacetato de sodio
OPr	Propóxido
pf	Punto de fusión
Ph	Fenilo
PhMe	Tolueno
ppm	Partes por millón
Ру	Piridina
(R,R)-[Rh(1,5COD)(DIPAMP)] ⁺ BF4 ⁻	Tetrafluoroborato de 1,2-etenodienil bis[(O-
	metoxifenilfosfina]rodio(1,5-ciclooctadieno)
RMN	Resonancia magnética nuclear
TBDMS	ter-butildimetilsilil
TFA	Acido trifluoroacético
THF	Tetrahidrofurano
TsCl	Cloruro de p-toluénsulfonilo
Z	PhCH ₂ OCO
ZCI	PhCH ₂ OCOCl

BIBLIOGRAFIA

- 1- Wagner, I. y Musso, H. Angew Chem Int. Ed. Engl 22, 816, 1983.
- 2- Hunt, S. Chemistry and Biochemistry of the Amino Acids Barret, G. C., Ed.; Chapman and Hall: London, pág 55, 1985.
- 3- O'Donnell. M. J., Ed. Tetrahedron 44, 5253, 1988.
- 4- Umezawa, H.; Aoyagi, T.; Morishima, H.; Matsuzaki, M.; Hamada, H.; Takeuchi, T. J. Antibiot. 23, 2569, 1970.
- 5- Rich, D. H. Proteinase Inhibitors; Barret A. J.; Salvensen, G. Eds.; Elsevier: New York, 1986.
- 6- Wakamiya, T.; Shiba, T.; Kaneko, T. Bull. Chem. Soc. Jpn. 45, 3668, 1972.
- 7- Fujita, Y. Bull. Chem. Soc. Jpn. 32, 439, 1959.
- 8- Makisumi, S. J. Biochem. (Tokyo), 49, 284, 1961.
- 9- Bell, E. A.; Tirimanna, A. S. L. Nature (London) 197, 901, 1963.
- 10- Makisumi, S. Mem. Fac. Sci. Kyushu Univ. Ser. C. Chem. 5, 107, 1964.
- 11- Ezaki, E.; Iwami, M.; Yamashita, M.; Hashimoto, S.; Komori, T.; Umehara, K.; Mine,
 Y.; Koshaka, M.; Aoki, H.e Imanaka, H. J. Antibiot. 38, 1453 1985.
- 12- Wieland, T.; Hasan, M. y Pfaender, P. Justus Liebigs. Ann. Chem. 717, 205, 1968.
- 13- Fowden, L.; Pratt, H. M. y Smith, A. Phytochemistry 12, 1707, 1973.
- Benoiton, L.; Winita, M.; Birnbaum, S. M. y Greenstein, J. P. J. Am. Chem Soc. 79, 6192, 1957.
- 15- Hatanaka, S. Acta Chem. Scand. 16, 513, 1962.
- 16- Naito, T.; Toda, S.; Fujikawa, K.; Miyaki, Y.; KOshiyama, H.; Ohkuma, H. y Kamiyama, T. J. Antibiot. 26, 297, 1973.
- 17- Sato, H.; Kusumi, T.; Imaye, K. y Kakisawa, H. Bull. Chem. Soc. Jpn. 49, 2815, 1976.
- 18- Shinagawa, S.; Kasahara, F. Harada, S. y Asai, M. Tetrahedron 40, 3465, 1984.
- 19- Imada, A.; Kintaka, K.; Nakao, M.; Shinagawa, S. J. Antibiot. 35, 1400, 1982.
- 20- Shinagawa, S.; Makai, M.; Kintaka, K.; Imada, A.; Asai, M. JAntibiot. 38, 17, 1985.
- 21- Cooper, R. y Unger, S. J. Org. Chem. 51, 3942, 1986.

- 22- Kahl, J. U.; Wieland, Th. Liebigs. Ann. Chem. 1445, 1981.
- 23- Wieland, H. y Witkop, B. Justus Liebigs Ann. Chem. 543, 171, 1940.
- 24- Marlier, M.; Dardenne, G. y Casimir, J. Phytochem. 15, 183, 1976.
- 25- Tyms, A. S.; Berrie, E. M.; Ryder, T. A.; Nash, R. J.; Hegarty, M. P.; Taylor, D. L.; Mobberley, M. A.; Davis, J. M.; Bell, E. A.; Jeffries, D. J.; Taylor-Robinson, D. y Fellows, L. E. Lancet, 1025, 1987.
- 26- Fleet, G. W. J.; Karpas, A.; Dwek, R. A.; Fellows, L. E.; Tyms, A. S.; Petursson, S. Namgoong, S. K.; Ramsden, N. G.; Smith, P. W.; Son, J. C.; Wilson, F. X.; Witty, D. R.; Jacob, G. S. y Rademacher, T. W. FEBS Lett. 237, 128, 1988.
- 27- Manning, K. S.; Lynn, D. G.; Shabanowitz, J.; Fellows, L. E.; Singh, M. y Scrire, B.
 D. J. Chem. Soc. Chem. Commun. 127, 1985.
- 28- di Bella, I. C.; Dorling, P.; Fellows, L. E. y Winchester, B. FEBS Lett. 176, 61, 1984.
- 29- Virtanem y Kari Acta Chem. Scand. 9, 170, 1955.
- 30- Clark-Lewis y Mortimer, Nature 184, 1234, 1959.
- 31- Fowden, Biochem. J. 70, 629, 1958.
- 32- Virtanem y Gmelin, Acta Chem. Scandn 13, 1244, 1959.
- 33- Grobbelaar, N. Pollard, J. K. and Steward, C. Nature, 175, 703, 1955.
- 34- Virtanen, A. I. and Kari, S. Acta Chem. Scand. 8, 1290, 1954.
- 35- Claine, D. B. y Sandler, M. Nature 226, 21, 1970.
- 36- Nass, G.; Poralla, K. y Zähner, H. Naturwiss enschaften 58, 603, 1971.
- 37- Trowitzsch, W. y Sahm, H. Naturforschung, Teil C 32, 78, 1977.
- Assimmetric Synthesis, Chiral Catalysis; Morrison, J. D., Ed.; Academic: Orlando, FL, 1985; Vol.5.
- 39- Izumi, Y.; Chibata, I.; Itoh, T. Angew. Chem., Int. Ed. Engl. 17, 176, 1978.
- 40- Coppola, G. M.; Schuster, H. F. Assimmetric Synthesis: Construction of Chiral Molecules Using Amino Acids; Wiley Interscience: New York, 1987.
- 41- Martens, J. Top. Curr. Chem., 125, 165, 1984.

- 42- Valentine, D.; Scott, J. W. Synthesis, 329, 1978.
- 43- Drauz, K.; Kleeman, A. y Martens, J. Angew. Chem., Int. Ed. Engl. 21, 584, 1982.
- 44- Williams, R. M. Synthesis of Optically Active a-Amino Acids; Pergamon Press: Oxford, 8013, 1989.
- 45- Belokon, Y. N.; Bulychev, A. G.; Vitt, S. V.; Struchkov, Y. T.; Batsanov, A. S.; Timofeeva, T. V.; Tsyryapkin, V. A.; Ryzhov, M. G.; Lysova, L. A.; Bakhmutov, V. I. y Belikov, V. M. J. Am. Chem. Soc. 107, 4252, 1985.
- Belokon, Y. N.; Bulychev, A. G.; Pavlov, V. A.; Fedorova, E. B.; Tsyryapkin, V. A.;
 Bakhmutov, V. A. y Belikov, V. M. J. Chem. Soc., Perkin Trans. I, 2075 1988.
- 47- Corey, E. J.; Lee, D.-H. y Choi, Soongyu Tetrahedron Lett. 33, 6735, 1992.
- 48- Hannessian, S. Total Synthesis of Natural Products: The "Chiron" Approach, Pergamon, Oxford, 1983.
- 49- Miyashita, M.; Chida, N. y Yoshikoshi, A. J. Chem. Soc., Chem. Commun. 195, 1984.
- 50- Cintas, P. Tetrahedron 47, 6079, 1991.
- 51- Bernotas, R. C. y Ganem, B. Tetrahedron Lett. 26, 4981, 1985.
- 52- Wakamiya, T.; Yamanoi, K. Nishikawa, M. y Shiba, T. Tetrahedron Lett. 26, 4759, 1985.
- 53- Wolfrom, M.; Lemieux, R. U. y Olin, S. M. J. Am. Chem. Soc. 71, 2870, 1949.
- 54- Schmidt, U.; Lieberknecht, A.; Kazmaier, U.; Griesser, H.; Jung, G. y Metzger, J. Synthesis 49, 1991.
- 55- Schmidt, U.; Lieberknecht, A.; Wild, J. Synthesis 53, 1984.
- 56- Hantke, K.; Braun, V Eur. J. Biochem 34 284, 1973.
- 57- Wiesmüller, K. -H.; Bessler, W. G. y Jung, G. Hoppe-Seyler's Z. Physiol. Chem. 364, 593, 1983.
- 58- Prass, W.; Ringsdorf, H.; Bessler, W. G.; Wiesmüller, K. -H. y Jung, G. Biochim. Biophys. Acta 900, 116, 1987.
- 58- Jung, G.; Wiesmüller, K. -H.; Becker, G.; Bühring, H. -J. y Bessler, W. G. Angew.

Chem. 97, 883, 1985.

- 60- Schmidt, U.; Meyer, R.; Leitenberg, V.; Stäbler, F. y Lieberknecht, A. Synthesis 409, 1991.
- 61- Inghardt, T.; Fredj, T. y Svensson, G. Tetrahedron 47, 6469, 1991.
- 62- Hasan, M.; Georgopoulos, D. y Wieland, T. Liebigs Ann. Chem. 781, 1976
- 63- Gieren, A.; Narayanan, P.; Hoppe, W.; Hasan, M.; Michl, K.; Wieland, T; Smith, H.
 O.; Jung, G. y Breitmaier, E. Justus Liebigs Ann. Chem. 1561, 1974.
- 64- Gull, R.y Schollkopf, U. Synthesis 1052, 1985.
- 65- Inghardt, T.; Fredj, T y Svensson, G. Tetrahedron 47, 6469, 1985.
- 66- Marino, C.; Varela, O. y de Lederkremer, R. M. Carbohydr. Res. 220, 145, 1991.
- 67- Vekemans, J. A. J. M.; de Bruyn, R. G. M.; Caris, R. C. H. M.; Kokx, A. J. P. M.; Konings, J. J. H. G.; Godefroi, E. F. y Chittenden, G. J. F. J. Org. Chem. 52, 1093, 1987.
- 68- Baird, P. D.; Dho, J. C.; Fleet, G. W. J.; Peach, J. M.; Prout, K. y Smith, P. W. J. Chem. Soc., Perkin Trans. I, 1785, 1987.
- 69- Bashyal, B. P.; Chow, H. -F.; Fellows, L. E. y Fleet, G. W. J. Tetrahedron 43, 415, 1987.
- 70- Bashyal, B. F.; Chow, H. -F.; y Fleet, G. W. J. Tetrahedron 43, 423, 1987.
- 71- Fleet, G. W. J.; Fellows, L. E. y Smith, P. W., Tetrahedron 43, 979, 1987.
- 72- Fleet, G. W. J. y Witty, D. R., Tetrahedron: Assimmetry 1, 119, 1990.
- 73- Hays, S. J.; Malone, T. C. y Johnson, G. J. Org. Chem. 56, 4084, 1991.
- 74- Larsen, S. D.; Grieco, P. A.; Fobare, W. F. J. Am. Chem. Soc. 108, 3512, 1986.
- 75- Ko, K.-Y; Lee, K.-I. y Kim, W.-J. Tetrahedron Lett., 33, 6651, 1992.
- 76- Bruce, I.; Fleet, G. W. J.; di Bello, I. C. y Winchester, B. Tetrahedron 48, 10191, 1992.
- 77- Hardegger, E.; Furter, H. y Kiss, J. Helv. Chim. Acta 41, 2405, 1985.
- 78 Kuhn, R.y Kirshenlohr, W. Justus Liebigs Ann. Chem. 600, 115, 1965.
- 79- Wolfrom, M. y Cron, M. J. Am. Chem. Soc. 74, 1715, 1952.

- 80- Hecht, S. M.; Rupprecht, K. M.; Jacobs, P. M. J. Am. Chem. Soc. 101, 3982, 1979.
- 81- Ariza, J.; Díaz, M.; Font, J. y Ortuño, R. M. Tetrahedron 49, 1315, 1993.
- 82- Pravdic, N. y Fletcher Jr., H. G. Carbohydr. Res. 19, 339, 1971.
- 83- Pokorny, M.; Zissis, E. y Fletcher Jr., H. G. Carbohydr. Res. 43, 345, 1975.
- 84- Pravdic, N. y Fletcher Jr., H. G. Carbohydr. Res. 19, 353, 1971.
- 85- de Lederkremer, R. M.; Litter, M. I. y Sala, L. F. Carbohydr. Res. 36, 185, 1974.
- 86- Varela, O.; Fernandez Cirelli, A. y de Lederkremer, R. M. Carbohydr. Res. 70, 27, 1979.
- 87- Fernández Cirelli, A. Sznaidman, M. Varela, O. y de Lederkremer, R. M. Tetrahedr.
 39, 313, 1983.
- 88- Mann, J. y Thomas, A. J. Chem. Soc., Chem. Commun. 737, 1985.
- 89- Drew, M. G. B.; Mann, J. y Thomas, A. J. Chem. Soc., Perkin Trans II, 2279, 1986.
- 90- Barret, A. G. M. y Sheth, H. G. J. Org. Chem. 48, 5017, 1983.
- 91- Chen, S. y Joullié, M. M. J. Org. Chem. 49, 2168, 1984.
- 92- Attwood, S. V. y Barrett, A. G. M. J. Chem. Soc., Perkin Trans. I, 1315, 1984.
- 93- Hanessian, S.;Hodges, P. J.; Murray, P. J. y Shaoo, S. P. J. Chem. Soc., Chem. Commun., 754, 1986.
- 94- Ziegler, F. E. y Kneisley, A. Heterocycles 25, 105, 1987.
- 95- Stork, G. y Rychnovsky, S. D. J. Am. Chem. Soc. 109, 1564, 1987.
- 96- Hanessian, S. y Murray, P. J. J. Org. Chem. 52, 1170, 1987.
- 97- Vekemans, J. A. J. M.; Franken, G. A. M.; Dapperens, C. W. M.; Godefroi, E. F. y Chittenden, G. J. F. J. Org. Chem. 53, 627, 1988.
- 98- Haynes, L. J. Quart. Rev. 2, 46, 1948.
- 99- Pattenden, G. Fortschritte Chem. organ. Naturstoffe 35, 133, 1978.
- 100- Seib, P. A.; Tolbert, B. M. Ascorbic Acid: Chemistry, Metabolism and Uses; Advances in Chemistry 200; American Chemical Society: Washington D. C. 1982.
- 101- Ravid, U.; Silverstein, R. M. y Smith, L. R. Tetrahedron 34, 1449, 1978.

- 102- Cardellach, J.; Font, J. y Ortuño, R. M. J. Heterocycl. Chem. 21, 327, 1984.
- 103- Neuberg, C. Ber. 35, 4009, 1902.
- 104- Bergmann, M.; Zervas, L. y Silberkweit, E. Ber. 64, 2428, 1931.
- 105- Inoue, J. Jap. Pat.6511/1962, Chem. Abstr. 59,760e, 1963.
- 106- Horton, D. y Thomson, J. K. Abstr. Pap. Am. Chem. Soc. Meeting 157th, CARB 15, 1969.
- 107- Clarke, C. T., Jones; J. H. y Walker, R. J. Chem. Soc., Perkin Trans. I, 1001, 1976.
- 108- Bohlmann, F.; Bernowski, H. y Arndt, C. Ber. 98, 2236, 1965.
- 109- Jeroncic, L. O.; Varela, O.; Fernández Cirelli, A. y de Lederkremer, R. M. Tetrahedron 39, 1425, 1983.
- 110- Litter, M. I. y de Lederkremer, R. M. Carbohydr. Res. 26, 431, 1973.
- 111- Redman, R. P.; Thomas, P. J. y Stirling, C. J. M. J. Chem. Soc. Chem. Commun. 43, 1978.
- 112- Karrer, P. y Mayer, J. Helv. Chim. Acta 20, 407, 1937.
- 113- Hope, D. B. y Kent, P. W. J. Chem. Soc., 1831, 1955.
- 114- Grindley, T. B. y Gulasekharam, V. Carbohydr. Res., 74, 7, 1979.
- 115- Bock, K.; Pedersen, C. y Pedersen, H. Advan. Carbohydr. Chem. Biochem. 42, 193, 1984.
- 116- Nelson, C. R. Carbohydr. Res. 163, 275, 1987.
- 117- Evans, M. E. Carbohydr. Res. 21, 473, 1972.
- 118- Varela, O.; Fernández Cirelli, A. y de Lederkremer, R. M. Carbohydr. Res. 100, 424, 1982.
- 119- Sala, L. F.; Fernández Cirelli, A. y de Lederkremer, R. M. Carbohydr. Res. 78, 6, 1980.
- 120- Virtanen, A. I. y Gmelin Acta Chem. Scand. 13, 1244, 1959.
- 121- Schenk, V. W. y Schutte, H. R. Flora 153, 426, 1963.
- 122- Romeo,, J. T.; Swain, L. A. y Bleecker, A. B. Phytochemistry 22, 1615, 1983.

- 123- Setoi, H.; Kayakiri, H.; Takeno, H. y Hashimoto, M. Chem. Pharm. Bull. 35, 3995, 1987.
- 124- Sunkara, P. S.; Inamura, N.; Bowlin, T. L.; Liu, P. S. y Sjoerdsma, A. Biochem. Biophys. Res. Comm. 148, 206, 1987.
- 125- Choi, D. W. Neuron 1, 623, 1988.
- 126- Greenamyre, J. T. Arch Neurol. 43, 1058, 1986.
- 127- Meldrum, B. S. Science 216, 899, 1982.
- 128- Simon, R. P.; Swan, J. H.; Griffiths, T.; Meldrum, B. S. Science 226, 850, 1984.
- 129- Wieloch, T. Science 230, 681, 1985.
- Hutchison, A. J.; Williams, M.; Angst, C.; de Jesus, R.; Blanchard, L.; Jackson, R. H.;
 Wilusz, E. J.; Murphy, D. E.; Bernard, P. S.; Schneider, J.; Campbell, T.; Guida, W. y
 Sills, M. A. J. Med. Chem. 32, 2171, 1989.
- 131- Bigge, C. F.; Wu, J.-P.; Drummond, J. R. Tetrahedron Lett. 32, 7659, 1991.
- 132- Ornstein, P. L.; Scaus, J. M.; Chambers, J. W.; Huser, D. L.; Leander, J. D.; Wong, D.
 T.; Paschal, J. W.; Jones, N. D.; Deeter, J. B. J. Med. Chem. 32, 827, 1989.
- 133- Orstein, P. L.; Schoepp, D. D.; Arnold, M. B.; Leander, J. D.; Lodge, D.; Paschal, J.
 W. y Elzey, T. J. Med. Chem. 34, 90, 1991.
- 134- Esch, P. M.; Boska, I. M.; Hiemstra, H. y Speckman, W. N. Synlett 38, 1989.
- 135- Fleet, G. W. J.; Son, J. C. Tetrahedron 44, 2637, 1989 y referencias ahí citadas.
- 136- Kabalka, G. W.; Varma, M. y Varma, R. S. J. Org. Chem. 51, 2386, 1986.
- 137- Bock, K. y Pedersen, C. Adv. Carbohydr. Chem. Biochem. 41, 27, 1983.
- 138- Pah, S. L. y Shoolery, J. N. J. Magn. Res. 46, 535, 1982.
- 139- Shoolery, J. N. J. Nat. Prod. 47, 226, 1984.
- 140- Jung, E. J. y Lyster, M. A. Chem. Comm. 315, 1978.
- 141- Clark-Lewis, J. y Mortimer, P. I. J. Chem. Soc. 189, 1961.
- 142- Varela, O.; Fernández Cirelli, A. y de Lederkremer, R. M. Carbohydr. Res. 85, 130, 1980.

- 143- Jeroncic, L. O.; Sznaidman, M. L.; Fernández Cirelli, A.; de Lederkremer, R. M. Carbohydr. Res. 191, 130, 1989.
- 144- Varela, O.; Fernández Cirelli, A. y de Lederkremer, R. M. Carbohydr. Res. 79, 219, 1980.
- 145- Nelson, C. R.; Gratzl, J. S. Carbohydr. Res. 60, 267, 1978.
- 146- Garbisch Jr., E. W. J. Am. Chem. Soc. 5561, 1964.
- 147- Bigler, P. J. Mag Res. 55 468, 1983.
- 148- Still, W. C. y Khan, M. J. Org. Chem. 43, 2923, 1978.
- 149- Taber, D. F. J. Org. Chem. 47, 1351, 1982.
- 150- Burfield, D. R. y Smithers, R. M., J. Org. Chem. 43, 3966, 1978
- 151- Lund y Bjerrum Ber. 64, 210, 1931.
- 152- Domínguez, X. A.; López, I. C. y Franc, R. J. Org. Chem. 26, 1625, 1961.
- 153- Pringsheim, Hans y Ruschmann, Gerhard Ber. 48, 680, 1915.

RESUMEN

Los hidratos de carbono simples, debido a su abundancia natural y por el número elevado de centros quirales que contienen, son compuestos de partida convenientes para la síntesis asimétrica de productos naturales. Los conceptos de "moldes quirales" (chiral templates) y "quirones", provienen del campo de los hidratos de carbono y han sido asiduamente utilizados durante la última década. Desde este punto de vista se consideró la conveniencia de emplear azúcares comunes como precursores de hidroxiaminoácidos, moléculas quirales de importancia biológica.

Los hidroxiaminoácidos se han aislado de plantas ya sea en forma libre, o bien combinados formando parte de moléculas complejas, como el glicopéptido bulgecina, un metabolito de *Chromobacterium violaceum*, con actividad antibiótica.

El análisis retrosintético de moléculas como los aminoácidos de cadena polihidroxiladas sugiere a las enonolactonas y pironas derivadas del ácido D-glucosamínico (ácido 2-amino-2-desoxi-D-glucónico) como precursores adecuados de síntesis. A su vez el ácido D-glucosamínico (92) puede obtenerse por oxidación con óxido de mercurio (II) de la D-glucosamina (24), un azúcar comercial de bajo costo.

El primer objetivo de este trabajo de Tesis fue estudiar las reacciones de eliminación beta que ocurrían por acilación del ácido D-glucosamínico (92), con el propósito ya enunciado de obtener enonolactonas precursoras de hidroxiaminoácidos de cadena lineal de 6 carbonos (norleucinas). Se procedió pues a acetilar al ácido D-glucosamínico (92) con cloruro de acetilo y piridina, obteniéndose una mezcla de dos productos, los cuales se aislaron por cromatografía en columna e identificaron como la 2-acetamido-4,6-di-*O*-acetil-2,3-didesoxi-D-*eritro*-hex-2-enono-1,5-lactona (111) y la 2-acetamido-5,6-di-*O*-acetil-2,3-didesoxi-D-*eritro*-hex-2-enono-1,4-lactona (112). En un experimento paralelo se benzoiló 92 con cloruro de benzoílo y piridina anhidra (2 h, temp. amb.), para dar los derivados benzoilados cristalinos 113 y 114, análogos de 111 y 112, respectivamente.

Por otra parte, se condujo la acetilación de 92 en condiciones más drásticas (Ac_2O a ebullición, AcONa) para promover la eliminación múltiple de ácido acético. Esta reacción

condujo a una mezcla diastereoisomérica de (E,Z)-3-acetamido-5-(2-acetoxietilidén)-(5H)furán-2-ona, (121), en una relación Z:E 67%:37% (determinada en base al espectro de RMN-¹H). La estructura de 121 se estableció por métodos espectroscópicos y por ulteriores transformaciones sintéticas. La confirmación de la estructura de 121 resultaba de interés para resolver controversias planteadas en la literatura respecto de la misma. Además por cuidadosa recristalización fraccionada fue posible aislar en forma pura el diastereoisómero mayoritario (Z-121).

Con el objeto de sintetizar la 3-acetoximetilpirán-2-ona (118) se preparó el 4,6-*O*bencilidén derivado del ácido D-glucosamínico (92), el cual se aisló como el clorhidrato de su etanol solvato (123). Dado que 123 tiene su HO-4 bloqueado, por acetilación se obtuvo fácilmente (71% de rendimiento) el derivado de la 2-enono-1,5-lactona (124). La remoción del grupo 4,6-*O*-bencilidén de 124, por hidrólisis ácida, promovió la simultánea insaturación del C-5-C-6 (numeración de pirona) para dar la 2-acetamido-6-hidroximetilpirán-2-ona (125) la cual se acetiló conduciendo a 118. La confirmación de la estructura de 118, erróneamente asignada por Bergmann y colaboradores,¹⁰⁴ reviste particular importancia ya que en una patente japonesa, Inoue describió un procedimiento para correlacionar aminoazúcares, *via* la piranona incorrectamente formulada como 118, con aminoácidos (5hidroxilisina).

Las enonolactonas 111, 112, 113, 114, y 124 se sometieron a hidrogenación catalítica (H_2/Pd) con la finalidad de obtener las correspondientes desoxilactonas las cuales pueden considerarse derivados de una 4,5,6-trihidroxinorleucina. La hidrogenación catalítica de los mencionados compuestos tuvo lugar con excelente selectividad diastereofacial para dar en todos los casos la 3-desoxilactona de configuración D-*arabino*. La inducción asimétrica en los derivados de furanona (112 y 114) se debería a la orientación de la cadena lateral de C-4; y en las piranonas (111 y 113) a la disposición *quasi*-axial del grupo aciloximetilo de C-5 en la conformación ${}^{5}H_{O}$. Estos grupos ejercerían control estérico durante la hidrogenación induciendo el ataque del H-2 por la cara menos impedida, es decir, la opuesta a dichos

sustituyentes. Los productos de hidrogenación 126 y 127 representan derivados acilados de la forma 1,4-lactónica de la (2S,4S,5R)-4,5,6-trihidroxinorleucina; 128, 129 y 130 constituyen, los dos primeros derivados acilados y el último (130) un 4,6-O-bencilidén derivado, de la forma 1,5-lactónica del mismo compuesto. Por desprotección de 130 (HCl 5N, reflujo) se obtuvo el clorhidrato de la forma 1,4-lactónica de la (2S,4S,5R)-4,5,6trihidroxinorleucina (135).

Por otra parte, la hidrogenación de (E,Z)-2-acetamido-6-acetoxihexa-2,4-dién-4-ólido (121) se obtuvo, por absorción controlada de hidrógeno, el producto de hidrogenación parcial, la 2-acetamido-6-O-acetil-2,3,5-tridesoxi-D,L-glicero-hex-2-enono-1,4-lactona (136) y por hidrogenación total de ésta (136) o de 121, la 2-acetamido-2,3,5-tridesoxi-D,L-treohexono-1,4-lactona (137). En este caso la hidrogenación de 121 resultó también estereoselectiva, obteniéndose un único par enantiomérico, de los dos teóricamente posibles. Por desacetilación de 137 (HCl 5N, reflujo) se obtuvo el derivado 1,4-lactónico del clorhidrato de la DL-treo-4,6-dihidroxinorleucina (138).

El análisis retrosintérico del ácido *cis*-4-hidroxipipecólico (11) revelaba que 138 resultaba un intermediario clave para su síntesis. El ácido *cis*-4-hidroxipipecólico se encuentra en numerosas especies vegetales, y su síntesis ha resultado mde interés pues su derivado 4-fosforilado resultó ser un antagonista selectivo del receptor cerebral del *N*-metil-D-aspartato (NMDA), el cual se encontraría involucrado en numerosas neuropatologías. Los antagonistas del NMDA son agentes terapéuticos potenciales para el tratamiento de enfermedades neurovegetativas, como el mal de Alzheimer.

Por este motivo, la síntesis de 11 fue el siguiente objetivo de este trabajo. El grupo hidroxilo de C-4 admitiría una variedad de sustituyentes, y estos productos serían inhibidores potenciales del sitio NMDA.

En primera instancia se procedió a proteger el grupo amino de 138 preparando los derivados N-BOC (147) y N-carbobenzoxi (149). Luego se mesiló el HO-6 para dar, respectivamente 148 y 150. Para inducir el ataque del grupo amino sobre el C-6, con

desplazamiento del mesilato, se desprotegieron 148, por tratamiento con iodotrimetilsilanometanol, y 150, por hidrogenación catalítica, obteniéndose el 2-amino-6-mesilato 152.La ruta $138 \rightarrow 149 \rightarrow 150 \rightarrow 152$ daba mejores rendimientos que la alternativa via 148. La formación del anillo piperídinico tuvo lugar cuando se trató 152 con una solución acuosa de KOH. El ácido *cis*-4-hidroxipipecólico (11) se aisló mediante una columna de intercambio iónico y se caracterizó como su derivado clorhidrato. Esta ruta sintética comparaba favorablemente respecto de otros procedimientos de síntesis de derivados de 11, descriptos en la literatura.

El hecho que la 2-enonolactona 124 se convirtió en la piranona 125 por tratamiento en medio ácido, nos llevó a considerar que un ácido de Lewis podría promover la misma transformación en condiciones suaves. En efecto, por tratamiento de las enonolactonas (por ejemplo 111 y 113) con $SnCl_4$ en CH_2Cl_2 se obtuvieron las correspondientes piranonas (118) y 154, respectivamente, con excelentes rendimientos. En el caso de la 2,4,6-tri-O-benzoíl-3desoxi-D-eritro-hex-2-enono-1,5-lactona (155) se obtuvo la piranona 156, la cual por períodos más prolongados de reacción experimentaba sustitución del benzoato alílico por cloro, para dar la 3-benzoiloxi-6-clorometilpirán-2-ona (157). Este hecho ponía de manifiesto que el producto final de la eliminación promovida por SnCl₄ de 2-enonolactonas, dependía de los sustituyentes de éstas. Así, cuando el 4,6-O-bencilidén derivado 124 se trató con SnCl₄ se obtuvieron dos productos principales, los cuales se caracterizaron como la 3acetamidopirona (160) y la 2-acetamido-2,3-didesoxi-4,6-O-formilidén-D-treo-hex-2-enono-1,5-lactona (161), con rendimientos de 53% y 30%, respectivamente. El primer producto (160) se originaba por fragmentación del enlace C-5-C-6 y el otro 161 resultaba de un intercambio acetálico de benzaldehído por formaldehído (presumiblemente generado en la formación de 160), con inversión de C-4. El compuesto 161 es precursor de la (2S,4R,5R)-4,5,6-trihidroxinorleucina (163 a), y 160 de la 5-hidroxinorvalina (163 b). La forma 1,5lactónica del clorhidrato de este último compuesto (166) se obtuvo por hidrogenación catalítica de 160, seguida de N-desacetilación.

Parte de este trabajo de Tesis dio origen a las siguientes publicaciones:

"Confirmation of the structure of the products obtained on acylation of 2-amino-2deoxy-D-gluconic acid". D. Horton, J. K. Thomson, O. Varela, A. P. Nin & R. M. de Lederkremer. Carbohydr. Res. 193, 49-60, 1989.

"Ready conversion of sugar derived 5,6-dihydro-2-pyrones into 3-acyloxy- and 3acylamido-2-pyrones". A. P. Nin, O. Varela & R. M. de Lederkremer. Synthesis 1, 73-74, **1991**.

"Diastereoselective synthesis of cis-4-hydroxypipecolic acid from D-glucosamine". A. P. Nin, O. Varela & R. M. de Lederkremer. Tetrahedron (en prensa).

ancounder Atom

INDICE

Página

CAPITULO I. Los hidroxiaminoácidos en la naturaleza.CAPITULO II. Síntesis de hidroxiaminoácidos.RESULTADOS Y DISCUSION3
CAPITULO II. Síntesis de hidroxiaminoácidos.RESULTADOS Y DISCUSION3
RESULTADOS Y DISCUSION 3
CAPITULO III. Productos insaturados obtenidos por acilación del ácido
glucosamínico en distintas condiciones. 3
Productos monoinsaturados obtenidos por acilación del ácido D-
glucosamínico. 4
Productos diinsaturados obtenidos por acilación del ácido
D-glucosamínico. 5
CAPITULO IV. Síntesis de derivados hidroxilados de norleucinas y del ácido
pipecólico. 6
Síntesis de (2S,4S,5R)-4,5,6-trihidroxinorleucina. 6
Síntesis del ácido cis-4-hidroxipipecólico. 10
CAPITULO V. Reacciones de enonolactonas con SnCl ₄ . Síntesis de
5-hidroxinorvalina. 13
PARTE EXPERIMENTAL. 15
CAPITULO VI.
Instrumental y métodos generales. 16
Purificación de los solventes. 16
Reactivos generales. Purificación y/o preparación. 16
ANEXO. 18
ABREVIATURAS. 18
BIBLIOGRAFIA. 19
RESUMEN.
INDICE. 20