BIBLIOTECA CENTRAL LUIS F LELOIR BIBLIOTECA CENTRAL LUIS FACULTAD DE CIENCIAS EXACTAS Y NATURALES UBA

Tesis de Posgrado

Métodos cuánticos para teorías de campo de orden superior

Oxman, Luis E.

1992

Tesis presentada para obtener el grado de Doctor en Ciencias Físicas de la Universidad de Buenos Aires

Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente.

This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source.

Cita tipo APA:

Oxman, Luis E.. (1992). Métodos cuánticos para teorías de campo de orden superior. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_2568_Oxman.pdf

Cita tipo Chicago:

Oxman, Luis E.. "Métodos cuánticos para teorías de campo de orden superior". Tesis de Doctor. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 1992. http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_2568_Oxman.pdf

UBA Universidad de Buenos Aires

Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293

UNIVERSIDAD DE BUENOS AIRES FACULTAD DE CIENCIAS EXACTAS Y NATURALES

Métodos Cuánticos para Teorías de Campo de Orden Superior

Autor

Luis E. Oxman

Director de Tesis

Carlos G. Bollini

-1992-

Tesis presentada para optar al título de Doctor en Ciencias Físicas

E Oxindn

Resumen

En este trabajo estudiaremos las teorías de campo de orden superior, haciendo énfasis en el tratamiento de los modos complejos (grados de libertad asociados a parámetros complejos de masa).

En el primer capítulo mostramos la relación de los modos complejos y las teorías de métrica indefinida; también veremos que estos modos aparecen de manera natural cuando se extiende el modelo supersimétrico de Wess-Zumino a un espacio de dimensión mayor a cuatro.

En el segundo capítulo presentaremos los métodos lagrangianos para campos que obedecen ecuaciones de orden superior. Usando el teorema de Nöether construiremos los tensores canónicos, en particular obtendremos el hamiltoniano (magnitud conservada por la simetría ante traslaciones temporales).

Para estudiar las características escenciales del tratamiento de los modos complejos, consideraremos en el tercer capítulo un modelo de orden superior en el cual intervienen un modo de masa real y un par de modos complejos conjugados. El requerimiento de que a nivel cuántico el hamiltoniano genere las traslaciones temporales del sistema nos llevará al algebra de conmutadores para los coeficientes en el desarrollo de Fourier de los campos. La representación para los operadores correspondientes a los modos complejos, a diferencia del caso habitual de masa real (donde la representación es holomorfa), se asemeja a la de los operadores canónicos de posición e impulso, actuando sobre funciones de z y \overline{z} . Obtendremos entonces una representación para el operador de energía-momento lo cual nos permitirá representar al vacío y calcular los valores de expectación de los distintos productos de operadores de campo. En particular, el propagador para los modos complejos resultará mitad avanzado y mitad retardado.

En el cuarto capítulo calcularemos la auto-energía a segundo orden para el modelo

anteriormente descrito (con una auto-interacción $\lambda \phi^3$). Para ello representaremos a los distintos propagadores por medio de funcionales analíticas y obtendremos la expresión para la convolución de dos funcionales analíticas definidas por caminos de integración generales. Mostraremos entonces que el diagrama de auto-energía es compatible con unitariedad y la eliminación de los modos complejos del espacio asintótico.

l'inalmente, en el quinto capítulo estudiaremos algunas propiedades de la autoenergía a segundo orden. Siendo la teoría relativista y el vacío invariante de Lorentz, las amplitudes de probabilidad para los distintos procesos deben ser invariantes de Lorentz; verificaremos entonces que la auto-energía calculada es invariante de Lorentz. Además, veremos que los modos complejos actúan como reguladores pues mejoran el comportamiento ultravioleta de la auto-energía debida sólo al modo real.

Indice

In	Introducción		
1	Modelos con Parámetros Complejos de Masa		
	1.1	Modelos Efectivos	7
	1.2	El Modelo de Wess-Zumino en <i>d</i> dimensiones	15
2	Métodos Variacionales		22
	2.1	Principio Variacional	22
	2.2	El Teorema de Nöether	23
3	Tratamiento de los Modos Complejos		
	3.1	Un Modelo de Orden Superior	29
	3.2	Cuantificación de los Modos Complejos	30
	3.3	Cálculo de los Propagadores	36
	3.4	Funciones de Green	37
	3.5	Las Anti-transformadas de Fourier como Funcionales Analíticas	40
4	Unitariedad Perturbativa		
	4.1	Cálculo de Convoluciones	45
	4.2	Cálculo de la Funcional $W_1 * W_2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	50

	4.3	Cálculo de la Auto-energía	52	
5	Propiedades de la Auto-energía		57	
	5.1	Invariancia de Lorentz	57	
	5.2	Comportamiento Ultravioleta	60	
	5.3	El Valor de Expectación del Producto de Cuatro Operadores	62	
Co	Conclusiones			
Bi	Bibliografía			

Introducción

El tratamiento de las divergencias en Teoría Cuántica de Campos ha sido siempre un desafío y varias propuestas han sido presentadas a un nivel fundamental.

Los reguladores de Pauli-Villars relacionados a campos verdaderos, como fue propuesto por Lee y Wick [1] fue uno de los primeros intentos en esa dirección.

En la actualidad este tipo de ideas cobra interés en Gravedad Cuántica (Boulware [2], Boulware y Gross [3]), donde el cálculo perturbativo (aplicado a la acción usual) lleva a divergencias proporcionales a distintas potencias del tensor curvatura [4]. Esto implica que las divergencias no pueden ser removidas por una redefinición (renormalización) de los términos en la acción original. Tendremos entonces una secuencia infinita de contratérminos cada uno con una parte finita que no puede ser determinada por la teoría sino que debería obtenerse con observaciones. Una teoría que tiene infinitos parámetros a determinar por observaciones carece de valor pues no tiene poder predictivo (no renormalizabilidad). En ciertas teorías, si se toma como punto de partida (a un nivel fundamental) un lagrangiano con términos cuadráticos en la curvatura (ver [5]), se obtienen divergencias que también son cuadráticas en la curvatura y por lo tanto pueden ser removidas por renormalización [6]. La dificultad básica en estas teorías es que las ecuaciones de movimiento son de cuarto orden. Es bien sabido que las ecuaciones de orden superior presentan en general propiedades que parecen no ser adecuadas desde un punto de vista físico (ver sin embargo ref. [7], para el caso de una dimensión relevante). Clásicamente las teorías de orden superior son inestables debido a que el hamiltoniano (magnitud conservada por invariancia temporal) no esta acotado por debajo. Cuánticamente, al igual que en la propuesta de Lee y Wick, el comportamiento ultravioleta de los propagadores (mejor que p^{-2}) implica la existencia de métricas indefinidas. Ahora la inestabilidad reaparece pues las correcciones cuánticas por la interacción llevan en general a la aparición de polos complejos conjugados en la hoja física de los propagadores (modos exponenciales). Por lo tanto, el problema a resolver en este tipo de teorías es el de asegurar la estabilidad.

Para tener estabilidad, la teoría debe ser tal que podamos eliminar del espacio asintótico los grados de libertad correspondientes a los modos complejos. Es claro que esto no se puede hacer de palabra. Si empezamos con partículas físicas la interacción podría crear modos exponenciales "conjugados" y por lo tanto la teoría restringida al espacio de partículas normales sería no unitaria.

Con el fin de eliminar los modos complejos, Cutkosky, Landshoff, Olive y Polkinghorn [8] y también Lee y Wick [9] adoptaron prescripciones definidas para modificar los diagramas de Feynman y asi lograr la unitariedad. En este respecto, Boulware y Gross mostraron que estos diagramas modificados no pueden ser interpretados como elementos de matriz de productos de operadores [3].

En la referencia [10], Nakanishi estudió el tratamiento de los modos complejos, por medio de una teoría local de campos, incluyendo masas complejas en un lagrangiano de segundo orden. En ese trabajo fue implementado un conjunto de prescripciones de Lee-Wick sobre la matriz S tomando la continuación analítica de los propagadores de Feynman sobre las masas complejas. Sin embargo, tales prescripciones no llevan a amplitudes invariantes de Lorentz, como fue mostrado por Nakanishi [11] y por Gleeson, Moore, Rechenberg y Sudarshan [12].

Introducción

Los modos complejos también pueden estudiarse en teorías de orden superior, las cuales en general dan lugar a masas complejas a nivel del lagrangiano. Si uno considera un polinomio en el operador de D'Alambert $\mathcal{P}(\Box)$, el lagrangiano, $\mathcal{L} = \frac{1}{2}\phi \mathcal{P}(\Box)\phi$ lleva a la ecuación

$$\mathcal{P}(\Box)\phi = 0 \tag{0.1}$$

La descomposición de (0.1) en factores de Klein-Gordon muestra que tenemos "masas" que son de la forma $e^{i\alpha_s}m_s^2$. Como el lagrangiano debe ser real, las raíces complejas en $\mathcal{P}(\Box)$ ocurren en pares complejos conjugados. Un ejemplo aparece en una generalización natural del modelo supersimétrico de Wess-Zumino a espacios de dimensión mayor a cuatro (ref. [13]). En este modelo, los campos libres componentes del supercampo obedecen una ecuación generalizada de Klein-Gordon de la forma:

$$(\Box^n - m^{2n})\phi = 0 \tag{0.2}$$

Para n = 1 tenemos la ecuación usual de Klein-Gordon. Para n = 2 tenemos:

$$(\Box^2 - m^4)\phi = (\Box - m^2)(\Box + m^2)\phi = 0$$
 (0.3)

cuyas soluciones representan una partícula normal y un taquión. La cuantificación del campo del taquión para $\vec{k}^2 < m^2$ ha sido estudiada en la ref. [17]. La ecuación (0.3) ha sido analizada en las referencias [18] y [19]. Para n = 4 podemos escribir a la ecuación (0.2) según:

$$(\Box^4 - m^8)\phi = (\Box^2 - m^4)(\Box^2 + m^4)\phi = 0$$
 (0.4)

Uno de los factores es el operador diferencial de la ecuación (0.3). El otro factor es

$$\Box^{2} + m^{4} = (\Box - im^{2})(\Box + im^{2}) \tag{0.5}$$

el cual contiene dos masas complejas, con fases $\alpha = \pm \frac{\pi}{2}$. En este punto es conveniente advertir acerca del significado del término "masa compleja". En realidad, e^{ikx} es una solución de la ecuación (0.1) cuando $k_0 = \pm (\vec{k}^2 + e^{i\alpha_s}m_s^2)^{\frac{1}{2}}$ Sin embargo, veremos en este trabajo que esta exponencial no es una verdadera excitación del campo, y en particular no será cierto (para $\alpha_s \neq 0$) que $E = \hbar k_0$ y $\vec{p} = \hbar \vec{k}$. El hamiltoniano será hermítico y el espectro de H será real y continuo: $-\infty < E <$ $+\infty$. En otras palabras, para masas complejas no existen estados del campo de tipo partícula similares a las excitaciones de un campo de partículas normales. Es decir, que con "masa compleja" nos referiremos a un modo efectivo asociado con un polo en la primera hoja de Riemann o a un parámetro que aparece al factorizar ciertos lagrangianos de orden superior.

El tratamiento de estos modos complejos será bien distinto del tratamiento que se hace de las resonancias, las cuales estan asociadas con polos en la segunda hoja de Riemann. Las resonancias son básicamente partículas inestables. Cuando la interacción que produce el decaimiento de la resonancia se apaga debemos obtener una partícula estable. Por lo tanto toda descripción (por ej. por medio de espacios de Hilbert equipados) de los estados resonantes (definicion del vacío, operadores de creación, propagadores) debe ser de tipo partícula (ver por ej. ref. [20]). Es decir que el tratamiento de las resonancias debe ser una "prolongación analítica" del tratamiento de las partículas estables.

En este trabajo encararemos el estudio de los modos complejos en el marco de una teoría local de campos (de orden superior) con parámetros complejos de masa. Seguiremos un procedimiento natural de cuantificación para los distintos grados de libertad del campo, que llevará a propiedades de analiticidad que más adelante describiremos. Quedará claro que estas propiedades están relacionadas con la posibilidad de eliminar a los modos complejos del espacio asintótico, requerimento que no tiene correlato en el caso de las resonancias. En este último caso, la inestabilidad significa simplemente que una resonancia puede decaer en otras partículas, mientras que para los modos complejos la inestabilidad significaría un comportamiento "exponencial" no físico.

En el lenguaje de la teoría local de campos, el requerimiento de estabilidad se puede enunciar pidiendo que los modos complejos sólo aparezcan en estados virtuales. Como vimos, esto se podrá hacer consistentemente si la teoría definida sobre el espacio asintótico de partículas normales es unitaria. La posibilidad de unitariedad dependerá de la forma en la cual los modos complejos son propagados. Esta propagación debería "confinar" a los modos complejos en estados virtuales.

En el procedimiento de cuantificación que seguiremos nos encontraremos con que el propagador para los campos con parámetros complejos de masa resulta ser mitad retardado y mitad avanzado (ver ref. [21]). Wheeler y Feynman introdujeron este tipo de función de Green para tratar a la radiación electromagnética en un absorvente "completo" [22][23]. En esta situación un "fotón" una vez emitido tiene que ser absorvido y no hay lugar para la partícula asintótica y libre. Correspondientemente, cl "propagador de Wheeler" (mitad retardado y mitad avanzado) no tiene el efecto de partícula libre del polo y no se producirá ningún estado asintótico pues la parte absortiva de la función de Green "valor principal" es cero. Esto significa que la unitariedad se satisfará automáticamente a nivel árbol.

Para ver las propiedades escenciales de la cuantificación, consideraremos un sistema simple donde un campo escalar tiene asociado un lagrangiano de orden superior con una masa real y dos parámetros de masa complejos conjugados. Estudiaremos entonces la auto-energía de la partícula normal a segundo orden. Este cálculo implica que hay que convolucionar propagadores pues como veremos los valores medios de vacío del producto de operadores de campo contienen los términos usuales del teorema de Wick. Será conveniente representar a los propagadores por medio de funcionales analíticas que aprenderemos a convolucionar. Este cálculo mostrará que la unitariedad se verifica en el segundo orden de perturbaciones pues la parte absortiva de la auto-energía no dependerá de los parámetros complejos de masa. El vacío con el cual formulamos la teoría es el único estado invariante de Lorentz, por lo tanto los resultados que obtendremos también deberán serlo. Verificaremos entonces, para el caso de la auto-energía, que la amplitud obtenida es invariante de Lorentz. Finalmente notaremos que los modos complejos actúan como reguladores de la contribución a la auto-energia que proviene del sector de partícula normal. En particular esta mejora del comportamiento ultravioleta lleva en 4 dimensiones a una auto-energía finita (ver ref. [24]).

Capítulo 1

Modelos con Parámetros Complejos de Masa

En este capítulo motivaremos el estudio de los modelos con parámetros complejos de masa a nivel del lagrangiano. En primer lugar mostraremos la relación entre los modos complejos y las teorías de métrica indefinida; luego presentaremos el modelo supersimétrico de Wess-Zumino en dimensión superior.

1.1 Modelos Efectivos

Consideremos una teoría para un modo escalar donde el propagador iG(p) viene dado por

$$\frac{-i\Lambda^2}{p^2(p^2 - \Lambda^2)} = i\left(\frac{1}{p^2} - \frac{1}{p^2 - \Lambda^2}\right)$$
(1.1)

donde $p^2 = p_0^2 - \vec{p}^2$. Este tipo de propagador es de interés debido a su comportamiento ultravioleta mejor que p^{-2} .

Las dificultades aparecen si intentamos asociar este propagador con campos fundamentales. Supongamos que la prescripción para esquivar a los polos es la de Feynman:

$$i\left(\frac{1}{p^2+i\epsilon}-\frac{1}{p^2-\Lambda^2+i\epsilon}\right) \tag{1.2}$$

8

En este caso, en ambos modos, propagaremos energías positivas hacia el futuro y negativas hacia el pasado. Por lo tanto, siguiendo la interpretación de Stuckelberg-Feynman, el espacio de estados tendrá energías positivas. Sin embargo la métrica de este espacio deberá ser indefinida: Como veremos más adelante, si la métrica del espacio fuese definida positiva, usando el teorema óptico deberiamos obtener que la parte absortiva del propagador tiene un signo definido. Pero, teniendo en cuenta que

$$\frac{1}{z+i\epsilon} = P(\frac{1}{z}) - i\pi\delta(z)$$

donde P es la prescripción valor principal, resulta de (1.2):

$$-\mathcal{I}m\,i(1.2) = -\pi\delta(p^2) + \pi\delta(p^2 - \Lambda^2) \tag{1.3}$$

Vemos entonces que el modo de masa Λ^2 y el modo de masa nula contribuyen con signos opuestos. Para ver con claridad la relación entre estas propiedades y la métrica del espacio de estados, consideremos un espacio de Hilbert de métrica indefinida y finitos grados de libertad. Tomemos a los vectores $|i\rangle$ como base de este espacio. Entonces podemos representar a un vector $|x\rangle$ según:

$$|x\rangle = x_i |i\rangle$$

El producto escalar entre dos estados $|y\rangle$ y $|x\rangle$ puede escribirse

$$\langle x|y\rangle = \overline{x}_i \eta^{ij} y_j = x^{\dagger} \eta y$$

donde la métrica η^{ij} es una matriz hermitica ($\eta^{\dagger} = \eta$). Un operador sobre este espacio de Hilbert se representa por una matriz $A_i^{\ j}$:

$$\hat{A}|x\rangle = A_i^{\ j} x_j |i\rangle \tag{1.4}$$

Es decir que el vector $\hat{A}|x$ tiene componentes Ax. Un operador \hat{A}^* se dice adjunto de \hat{A} si verifica la propiedad

$$\langle x|\hat{A}|y\rangle = \langle y|\hat{A}^*|x\rangle \tag{1.5}$$

con lo cual la representación A^* de \hat{A}^* resulta

$$A^{\bullet} = \eta^{-1} A^{\dagger} \eta \tag{1.6}$$

donde A^{\dagger} es la matriz traspuesta conjugada de A. Por lo tanto la matriz asociada a un operador autoadjunto ($\hat{A}^* = \hat{A}$) verifica $\eta A = A^{\dagger} \eta$. De (1.5) notamos además que los valores de expectación $\langle x | \hat{A} | x \rangle$ de un operador autoadjunto son reales. Si \hat{U} es un operador que preserva la métrica (pseudounitario), entonces su representación matricial U debe cumplir con la propiedad:

$$x^{\dagger}U^{\dagger}\eta Uy = x^{\dagger}\eta y$$
 es decir, $U^{\dagger}\eta U = \eta$ (1.7)

o, usando (1.6), queda en términos de operadores $\hat{U}^*\hat{U} = I$. Notamos que un operador pseudounitario se puede escribir de la forma $\hat{U} = e^{i\hat{A}}$, donde \hat{A} es un operador autoadjunto. Según vimos, para que un operador tenga valores de expectación reales debe ser autoadjunto; por lo tanto en una teoría de métrica indefinida, el operador Hamiltoniano \hat{H} deberá ser autoadjunto y en concecuencia el operador formal de dispersión

$$\hat{S} = T \exp i \int dt \, \hat{H}_{int} \tag{1.8}$$

será pseudounitario:

$$\hat{S}^*S = I \tag{1.9}$$

Veamos cual es la generalización del teorema óptico que se obtiene a partir de la relación (1.9). Con este fin escribimos $\hat{S} = I + \hat{T}$ con lo cual obtenemos

$$\hat{T}^{*} + \hat{T} = -\hat{T}^{*}\hat{T}$$
(1.10)

Si consideramos el caso de dispersión hacia adelante para el estado $|x\rangle$, obtenemos

$$\langle x|\hat{T}|x\rangle + \langle x|\hat{T}^*|x\rangle = -\langle x|\hat{T}^*\hat{T}|x\rangle \tag{1.11}$$

Consideremos ahora por simplicidad el caso en que tenemos dos tipos de vectores en la base; los $|i, +\rangle$ y los $|k, -\rangle$, con la propiedad:

$$\langle i, +|j, +\rangle = \delta_{ij}$$
 $\langle k, -|r, -\rangle = -\delta_{kr}$ (1.12)

(y los productos cruzados nulos). Es decir que los vectores $|k, -\rangle$ tienen la métrica cambiada respecto a los $|i, +\rangle$. Es inmediato verificar que la identidad se puede escribir según

$$I = \sum_{i} |i, +\rangle \langle i, +| - \sum_{k} |k, -\rangle \langle k, -|$$
(1.13)

Insertando esta identidad en (1.11) obtenemos

$$2\mathcal{I}m\,i\langle x|\hat{T}|x\rangle = -\sum_{i}|\langle i, +|\hat{T}|x\rangle|^2 + \sum_{k}|\langle k, -|\hat{T}|x\rangle|^2 \tag{1.14}$$

Consideremos por ejemplo una teoría $\lambda \phi^4$. A nivel árbol, la dispersión hacia adelante esta dada por el propagador con un factor negativo que viene por tener un $i\lambda$ en cada vértice. Por lo tanto, comparando (1.3) y (1.14) vemos, como habíamos adelantado, que el modo de masa cero corresponde a una métrica positiva, mientras que el modo de masa Λ corresponde a una métrica negativa. Es claro que un modelo con métrica indefinida donde haya un acoplamiento no trivial entre sus modos no puede ser interpretado en término de probabilidades. Por lo tanto, para que tales modelos sean aceptables es necesario agregar requerimientos físicos. Lee y Wick impusieron como requerimiento que los modos de métrica negativa esten degenerados con estados de métrica positiva que estén en el continuo. Esto significa que los modos de métrica negativa pasarían via la interacción a modos de métrica positiva. Para estudiar las concecuencias de este requerimiento tomemos un caso un poco más general que el dado en (1.2) donde (además de otros modos) tenemos un modo de masa m_1 y un modo de masa m_2 cuyos propagadores en ausencia de interacciones son

$$iG_1 = i \frac{1}{p^2 - m_1^2 + i\epsilon}$$
 y $iG_2 = -i \frac{1}{p^2 - m_2^2 + i\epsilon}$ (1.15)

con lo cual el modo m_1 es de métrica positiva mientras que el m_2 es de métrica negativa. En presencia de interacciones los propagadores tendrán correcciones cuánticas. Si $\Sigma_1(p^2)$ y $\Sigma_2(p^2)$ son la amplitud irreducible de una partícula para un modo m_1 y un modo m_2 respectivamente, tenemos que los propagadores completos son:

$$i\Delta_{1}(p^{2}) = iG_{1} + iG_{1}\Sigma_{1}iG_{1} + iG_{1}\Sigma_{1}iG_{1}\Sigma_{1}iG_{1} + \dots$$

$$= iG_{1}\frac{1}{1 - iG_{1}\Sigma_{1}}$$

$$= i\frac{1}{p^{2} - m_{1}^{2} + i\epsilon - i\Sigma_{1}}$$
(1.16)

y similarmente

$$i\Delta_{2}(p^{2}) = iG_{2} + iG_{2}\Sigma_{2}iG_{2} + iG_{2}\Sigma_{2}iG_{2}\Sigma_{2}iG_{2} + \dots$$

$$= iG_{2}\frac{1}{1 - iG_{2}\Sigma_{2}}$$

$$= -i\frac{1}{p^{2} - m_{2}^{2} + i\epsilon + i\Sigma_{2}}$$
(1.17)

Antes de analizar los efectos de las correcciones cuánticas necesitamos discutir algunas propiedades acerca de la estructura de analiticidad de las amplitudes. Las amplitudes $\Sigma_1(p^2)$ y $\Sigma_2(p^2)$ serán funciones analíticas de p^2 . En el marco de una teoría local de campos, estas amplitudes podrán calcularse y la estructura de analiticidad quedará determinada. Esto significa que los cortes de estas funciones no podrán ser cualesquiera sino que estarán sobre el eje real (las partículas virtuales tienen momento real) en los valores p^2 para los cuales hay un continuo de estados conectados con el modo en cuestión. Este corte define lo que se llama la primera hoja de Riemann (hoja física) de la amplitud. El valor de la función en el corte no está definido, sí en cambio está bien definida la prolongación analítica desde arriba del corte y desde abajo del corte. La teoría de campos también nos dice de que lado hay que considerar a la amplitud: La prescripción $+i\epsilon$ que hay en cada propagador libre lleva a que las amplitudes se obtienen de $\Sigma_1(p^2 + i\epsilon)$ y $\Sigma_2(p^2 + i\epsilon)$ (p^2 real), es decir que las funciones respectivas deben "verse" viniendo desde la hoja fisíca por arriba. Una propiedad importante es que la discontinuidad en el corte de las Σ resulta ser el doble de la parte imaginaria de las $i\Sigma(p^2 + i\epsilon)$ (es decir que hay corte sólo si hay parte imaginaria de $i\Sigma$). Por lo tanto, resulta para la determinación en la hoja física de Σ :

$$\mathcal{I}m\,i\Sigma(p^2 - i\epsilon) = -\mathcal{I}m\,i\Sigma(p^2 + i\epsilon) \tag{1.18}$$

Estas partes imaginarias pueden calcularse teniendo en cuenta que las Σ son amplitudes de dispersión hacia adelante (fuera de la capa de masa) a las cuales se puede aplicar el teorema óptico generalizado visto en (1.14):

$$2\mathcal{I}m\,i\Sigma(p^2+i\epsilon) = -\sum_i |\langle i,+|\hat{T}|p\rangle|^2 + \sum_k |\langle k,-|\hat{T}|p\rangle|^2 \tag{1.19}$$

donde las amplitudes en el segundo miembro se consideran con p fuera de la capa de masa y para el modo correspondiente. El indice i es ahora un indice continuo que barre todos los estados de métrica positiva, similarmente el indice k barre todos los estados de métrica negativa. En nuestro análisis consideraremos dos escalas de masas una para los modos de métrica positiva y otra escala mayor para los modos de métrica negativa, de forma tal que al modo m_1 le sea energéticamente posible, a lo sumo, pasar a modos en el continuo de métrica positiva; mientras que para el modo m_2 necesariamente deberá ser posible pasar a modos de métrica positiva (y sólo a estos).

Teniendo en cuenta que la prescripción $+i\epsilon$ también aparece en las Σ podemos analizar la estructura de analiticidad de los propagadores absorviendo en (1.16) y (1.17) el $+i\epsilon$ en p^2 y estudiar a los propagadores como funciones analíticas de p^2 complejo. Es claro que los cortes de $\Delta_1(p^2)$ y $\Delta_2(p^2)$ son los mismos cortes de $\Sigma_1(p^2)$ y $\Sigma_2(p^2)$ respectivamente, y por lo tanto determinan la hoja física de los propagadores. Para estudiar los polos consideremos primero al propagador $\Delta_1(p^2)$. Los polos de este propagador se obtienen de la ecuación

$$p^2 = m_1^2 + i\Sigma_1(p^2) \tag{1.20}$$

Para simplificar el análisis consideremos que las Σ no son divergentes. Por lo tanto si el modo m_1 no se acopla a ningún otro modo, el polo será simplemente m_1^2 que es la masa de la partícula libre. Cuando se prende la interacción la presencia de Σ_1 producirá un corrimiento en la posición del polo del propagador. Supongamos que el valor $p^2 = m_1^2$ pertenece al corte de la función Σ_1 . Si la constante de acoplamiento es pequeña, la solución a (1.20) estará cerca de m_1^2 . Veamos sin embargo que la ecuación (1.20) no tiene solución si consideramos para Σ_1 la hoja física. En efecto, debido a nuestra escala de masas, usando (1.19), resulta (para p^2 en la escala m_1^2) $\mathcal{I}m i\Sigma_1(p^2 + i\epsilon) < 0$ y debido a (1.18) resulta $\mathcal{I}m i\Sigma_1(p^2 - i\epsilon) > 0$. Entonces por continuidad, en toda una zona sobre el corte ($\mathcal{I}m p^2 > 0$) tenemos $\mathcal{I}m i\Sigma_1(p^2) < 0$ y similarmente debajo del corte $(\mathcal{I}m p^2 < 0)$ tenemos $\mathcal{I}m i\Sigma_1(p^2) > 0$. Estas propiedades son incompatibles con la ecuación (1.20) en la hoja física. Por ejemplo, si $\mathcal{I}m p^2 < 0$ el miembro derecho de (1.20) diría contrariamente que $\mathcal{I}m p^2 > 0$. Para que la ecuación (1.20) tenga solución hay que considerar, en vez de la hoja física, la determinación de $\Sigma_1(p^2)$ en la segunda hoja de Riemann. La segunda hoja (n hoja no física) se obtiene por prolongación analítica (desde la hoja física) de $\Sigma_1(p^2 + i\epsilon)$ a valores $p^2 \operatorname{con} \mathcal{I}m p^2 < 0$. Entonces, por continuidad tenemos que para una zona con $\mathcal{I}m p^2 < 0$ resulta en la segunda hoja $Im i\Sigma_1(p^2) < 0$. Por lo tanto, la ecuación (1.20) con la determinación en la segunda hoja de $\Sigma_1(p^2)$ ahora sí es compatible. La posición del polo se puede hallar por aproximaciones sucesivas a la ecuación (1.20), es decir, como límite de la sucesión:

$$m_1^2 + i\Sigma_1(m_1^2)$$
 $m_1^2 + i\Sigma_1(m_1^2 + i\Sigma_1(m_1^2))$ (1.21)

La posición del polo es con buena aproximación:

$$m_1^2 + i\Sigma_1(m_1^2) \tag{1.22}$$

Si con el valor $p^2 = m_1^2$ al modo m_1 no le es energéticamente posible pasar a ningún otro modo, entonces el miembro derecho de (1.19) es nulo y resulta $\mathcal{I}m i\Sigma_1(m_1^2) = 0$. Por lo tanto, de (1.22), el efecto de la interacción sólo es correr al polo sobre el eje real (renormalización de la masa por la interacción). Si como consideramos anteriormente al modo m_1 sí le es energéticamente posible pasar vía la interacción a modos de métrica positiva (es decir, $p^2 = m_1^2$ pertenece al corte), tendremos que este modo se vuelve inestable y queda representado por un polo en la segunda hoja de Riemann del propagador $\Delta_1(p^2)$ ("resonancia").

Estudiemos ahora los polos del propagador $\Delta_2(p^2)$, para lo cual (de (1.17)) hay que considerar la ecuación

$$p^2 = m_2^2 - i\Sigma_2(p^2) \tag{1.23}$$

Teniendo en cuenta el requerimiento de que el modo m_2 esté energéticamente conectado con modos de métrica positiva (y sólo con estos) obtenemos de (1.19) que $\mathcal{I}m i\Sigma_2(p^2 + i\epsilon) < 0$ para p^2 en la escala de m_2^2 . Entonces, por continuidad, en una zona con $\mathcal{I}m p^2 > 0$, resulta en la hoja física $\mathcal{I}m i\Sigma_2(p^2) < 0$ y la ecuación (1.23) es compatible; mientras que en la segunda hoja hay una zona con $\mathcal{I}m p^2 < 0$ donde $\mathcal{I}m i\Sigma_2(p^2) < 0$ y la ecuación (1.23) no es compatible. La solución que se obtiene en la hoja física es con buena aproximación:

$$m_2^2 - i\Sigma_2(m_2^2)$$

Se puede demostrar que si $p^2 = \mu^2$ satisface la ecuación (1.23), $p^2 = \overline{\mu}^2$ también es solución. Vemos entonces que en el caso de las resonancias en la expresión del propagador que se obtiene de la teoría de campos, es decir la determinación en la hoja física, no aparecen polos complejos; mientras que para el modo de métrica negativa aparece un par de polos complejos conjugados en la hoja física del propagador $\Delta_2(p^2)$. Por lo tanto, en la hoja física, el propagador $\Delta_2(p^2)$ tiene un factor

$$\frac{1}{(p^2 - \mu^2)(p^2 - \overline{\mu}^2)} \qquad \qquad \mu^2 \approx m_2^2 - i\Sigma_2(m_2^2) \qquad (1.24)$$

que se lo puede pensar como la inversa del operador $(\Box + \mu^2)(\Box + \overline{\mu}^2)$. Esta es una de las propiedades que motiva la inclusión de parámetros complejos en el lagrangiano, desde un principio, para estudiar la posibilidad de eliminar a los modos correspondientes del espacio asintótico.

1.2 El Modelo de Wess-Zumino en *d* dimensiones

En esta sección mostraremos una extensión natural del modelo de Wess-Zumino a un espacio de dimensión superior d. Esta extensión se realiza de forma tal que se mantiene la supersimetría de la teoría (ver ref. [13]). El lagrangiano para esta teoría será necesariamente de orden superior lo cual llevará a ecuaciones generalizadas de Klein-Gordon, para cada campo componente del supercampo, que contienen a pares de factores de Klein-Gordon con parámetros de masa complejos conjugados.

Una teoría supersimétrica presenta una simetría ante transformaciones definidas que mezclan bosones y fermiones (grupo de supersimetría). Para hablar de fermiones en dimensión superior introduzcamos brevemente a los espinores en un espacio de dimensión par $d = 2\nu$ (ver [14] y [15]).

Consideremos un espacio métrico $E = (V, \eta)$ donde V es un espacio vectorial de dimensión 2ν y η es el tensor métrico con componentes $\eta_{\mu\nu}$ en la base canónica c_{μ} . El álgebra de Clifford $C_{\eta}(V)$ para el espacio E queda definida por sus generadores a_{μ} asociados a los vectores c_{μ} de V, los cuales satisfacen:

$$\{ a_{\mu} , a_{\nu} \} = 2\eta_{\mu\nu} I \tag{1.25}$$

Un elemento general del álgebra $C_{\eta}(V)$ está dado por

$$a = \sum_{p=0}^{d} A^{\mu_1} ..$$
 (1.26)

donde $A^{\mu_1 \dots \mu_p}$ son las componentes de un tensor totalmente antisimétrico. Por lo tanto, la dimensión del álgebra de Clifford es $2^d = 2^{\nu} \times 2^{\nu}$. Esto lleva a pensar en realizar a los generadores a_{μ} (y por lo tanto a los elementos del álgebra) como matrices γ_{μ} de $2^{\nu} \times 2^{\nu}$:

$$\{ \gamma_{\mu} , \gamma_{\nu} \} = 2\eta_{\mu\nu} I$$
 (1.27)

Además, teniendo en cuenta que al vector $x^{\mu}e_{\mu}$ le corresponde el elemento del álgebra $X = x^{\mu}\gamma_{\mu}$, se puede ver de (1.27) que ante una transformación $x \to \Lambda x$ en V (que preserva η) se induce en el álgebra una transformación $S(\Lambda)$ según:

$$X \to S^{-1}(\Lambda) X S(\Lambda) \tag{1.28}$$

Por ejemplo, si hacemos una reflexión con respecto a un hiperplano definido por una normal \vec{a} , $\vec{a}^2 = 1$:

$$\vec{x}' = \vec{x} - 2(\vec{x}.\vec{a})\vec{a} \qquad t' = t$$

en el álgebra se induce la transformación

$$X' = X - \{ X, A \} A = -AXA \qquad A = a^{i} \gamma_{i} \qquad (1.29)$$

donde usamos que de (1.27) resulta { X, Y } = 2(x, y), y en particular $A^2 = 1$. Si componemos con otra reflexión según \vec{b} obtenemos una rotación que debido a (1.29) se induce al álgebra de Clifford según

$$X \to BAXAB \tag{1.30}$$

la cual es una transformación de la forma (1.28) pues BAAB = BB = 1. Entonces, podemos pensar equivalentemente en las matrices γ_{μ} como matrices de endomorfismos de un espacio V_D de dimensión 2^{ν} en el cual ante una transformación A se induce en V_D la transformación $\psi \to S(\Lambda)\psi$, $\psi \in V_D$. El espacio V_D es el espacio de los espinores de Dirac asociados al espacio metrico E. En general, es posible elegir una base en V_D de modo que las matrices γ_{μ} tengan la siguiente estructura

$$\gamma_{\mu} = \begin{pmatrix} 0 & \sigma_{\mu} \\ \tilde{\sigma}_{\mu} & 0 \end{pmatrix}$$
(1.31)

Esta es la llamada representación de Weyl. Puede verse que en esta base las transformaciones propias de Lorentz tienen la estructura

$$\left(\begin{array}{cc}
s & 0\\
0 & t
\end{array}\right)$$
(1.32)

(notar que el producto de un número par de matrices de la forma (1.31) tiene la forma (1.32)) y por lo tanto hay dos subespacios invariantes ante el grupo de Lorentz propio. A los espinores pertenecientes a uno u otro subespacio se los llama espinores de Weyl de primera y segunda clase respectivamente. Consideremos un espinor ψ de V_D que en la base de la representación de Weyl tiene componentes ψ_i . Entonces, las primeras (segundas) $2^{\nu-1} \psi_i$ son componentes sobre el primer (segundo) subespacio invariante y las denotamos por ψ_{α} y $\psi_{\dot{\beta}}$, $\dot{\beta} = 2^{\nu-1} + \beta$ donde α , $\beta = -1, ..., 2^{\nu-1}$. Recordando que las γ_{μ} son matrices de endomorfismos sobre V_D , en la representación de Weyl, tenemos que sus índices se denotan por σ_{μ}) $_{\alpha}^{\dot{\beta}}$ y $\tilde{\sigma}_{\mu}$) $_{\beta}^{\alpha}$.

Vemos entonces que los espinores de Weyl en un espacio de dimensión superior $d = 2\nu$ tienen $2^{\nu-1}$ componentes. Esta relación entre el número de componentes de un espinor de Weyl y la dimensión d del espacio implicará, en una teoría supersimétrica, una relación entre d y el orden de las ecuaciones de movimiento.

El grupo de supersimetría simple contiene a los generadores bosónicos usuales P_{μ} y a los generadores espinoriales Q_{α} (y sus adjuntos $\overline{Q}^{\dot{\beta}}$) que satisfacen el álgebra (ver por ej. [16]):

$$\{Q_{\alpha}, Q_{\beta}\} = 0 \qquad \{\overline{Q}^{\dot{\alpha}}, \overline{Q}^{\dot{\beta}}\} = 0 \qquad (1.33)$$

$$\{Q_{\alpha}, \overline{Q}^{\dot{\beta}}\} = P_{\alpha}^{\dot{\beta}} = P_{\mu}\sigma_{\mu})_{\alpha}^{\dot{\beta}}$$
(1.34)

Un elemento general del grupo de supersimetría se representa según:

$$\exp i(x^{\alpha}_{\dot{\beta}}P^{\dot{\beta}}_{\alpha} + \theta^{\alpha}Q_{\alpha} + \overline{\theta}_{\dot{\beta}}\overline{Q}^{\dot{\beta}})$$
(1.35)

donde las θ^{α} y $\overline{\theta}_{\dot{\beta}}$ son variables de Grassmann (anticonmutan).

A los parámetros $x^{\alpha}_{\dot{\beta}}$, θ^{α} y $\overline{\theta}_{\dot{\beta}}$, que determinan un elemento del grupo, se los puede identificar con un espacio extendido (superespacio). Ahora, a los generadores del grupo se los puede realizar, a nivel clásico, como operadores diferenciales actuando sobre campos $\Phi(x^{\alpha}_{\dot{\beta}}, \theta^{\alpha}, \overline{\theta}_{\dot{\beta}})$ definidos sobre este superespacio (supercampos):

$$P_{\alpha}^{\dot{\beta}} = i\partial_{\alpha}^{\dot{\beta}} = i\sigma_{\mu})_{\alpha}^{\dot{\beta}}\partial_{\mu}$$
$$Q_{\alpha} = 2^{-\frac{1}{2}}(i\frac{\partial}{\partial\theta^{\alpha}} + \overline{\theta}_{\dot{\beta}}\partial_{\alpha}^{\dot{\beta}}) \qquad \qquad \overline{Q}^{\dot{\beta}} = 2^{-\frac{1}{2}}(i\frac{\partial}{\partial\overline{\theta}_{\dot{\beta}}} + \theta^{\alpha}\partial_{\alpha}^{\dot{\beta}})$$

También se pueden definir, como es usual, las derivadas covariantes:

$$D_{\alpha} = 2^{-\frac{1}{2}} \left(\frac{\partial}{\partial \theta^{\alpha}} + i \overline{\theta}_{\dot{\beta}} \partial_{\alpha}^{\dot{\beta}} \right) \qquad \qquad \overline{D}^{\dot{\beta}} = 2^{-\frac{1}{2}} \left(\frac{\partial}{\partial \overline{\theta}_{\dot{\beta}}} + i \theta^{\alpha} \partial_{\alpha}^{\dot{\beta}} \right)$$

las cuales connutan con los elementos del grupo (1.35) y por lo tanto permiten fijar condiciones sobre los supercampos invariantes supersimétricas. Por ejemplo, una representación irreducible del supergrupo de traslaciones se obtiene sobre los "campos quirales", los cuales satisfacen:

$$\overline{D}^{\dot{\theta}} \Phi = 0 \tag{1.36}$$

La solución general a (1.36) resulta:

$$\Phi(x,\theta,\overline{\theta}) = e^{\frac{1}{2}\theta^{\alpha}\overline{\theta}_{\dot{\theta}}\partial_{\alpha}^{\beta}}\Phi_{0}(x,\theta)$$
(1.37)

÷

donde

$$\Phi_0 = \sum_{s=0}^{\omega} \frac{1}{s!} \theta^{\alpha_1} \dots \theta^{\alpha_s} \psi_{\alpha_1 \dots \alpha_s}(x) \qquad \qquad \omega = 2^{\nu-1}$$
(1.38)

Para construir la densidad lagrangiana supersimétrica, para el supercampo quiral libre, hay que usar expresiones biliniales en los campos que ante una transformación de supersimetría cambien a los sumo en una divergencia. Una cantidad con esta propiedad es la "componente D" del producto $\overline{\Phi}\Phi$ la cual es el factor que acompaña al producto de las ω variables θ por las ω variables $\overline{\theta}$:

$$\overline{\Phi}\Phi|_{D} = \overline{\Phi}_{0}e^{i\theta^{\alpha}\overline{\theta}_{\dot{\beta}}\partial_{\alpha}^{\beta}}\Phi_{0}|_{D}$$

$$= \sum_{s=0}^{\omega} \frac{i^{s}}{(\omega-s)!s!s!}\epsilon^{\alpha_{1}\dots\alpha_{\omega}}\epsilon_{\dot{\alpha}_{\omega}\dots\dot{\alpha}_{1}}\overline{\psi}^{\dot{\alpha}_{s}\dots}$$

$$\partial_{\alpha_{s+1}}^{\dot{\alpha}_{s+1}}\dots\partial_{\alpha_{\omega}}^{\dot{\alpha}_{\omega}}\psi_{\alpha_{1}\dots\alpha_{s}}$$
(1.39)

Este será el término cinético pues contiene derivadas de los campos componentes.

El otro factor que cambia por una divergencia es la "componente F" del producto Φ^2 la cual corresponde al término en el que aparece el producto de las ω variables θ solamente:

$$\Phi^{2}|_{F} = \Phi_{0}^{2}|_{F}$$

$$= \sum_{s=0}^{\omega} \frac{1}{(\omega-s)!s!} \epsilon^{\alpha_{1}\cdots\alpha_{\omega}} \psi_{\alpha_{1}\cdots\alpha_{s}} \psi_{\alpha_{s+1}\cdots\alpha_{\omega}} \qquad (1.40)$$

El término asociado a esta cantidad le dará masa a los campos pues no contiene derivadas.

Usando (1.39) y (1.40) obtenemos la generalización del lagrangiano de Wess-Zumino a dimensión d:

$$\mathcal{L} = \overline{\Phi}\Phi|_D + c\Phi^2|_F + h.c. \tag{1.41}$$

Como la acción debe ser adimensional, tenemos que la dimensión (en unidades de masa) para las distintas magnitudes que intervienen debe ser: $[\Phi] = \frac{d-\omega}{2}$, $[c] = \frac{\omega}{2}$; con lo cual podemos escribir $c = m^{\frac{\omega}{2}}$.

Si para el lagrangiano de Wess-Zumino hacemos variaciones respecto a los campos $\overline{\psi}$ obtenemos las ecuaciones de movimiento:

$$\frac{1}{s!} \epsilon_{\dot{\alpha}_{\omega} \dots \dot{\alpha}_{1}} \partial_{\alpha_{s+1}}^{\dot{\alpha}_{s+1}} \dots \partial_{\alpha_{\omega}}^{\dot{\alpha}_{\omega}} \psi^{\alpha_{s+1} \dots \alpha_{\omega}} = -(-i)^{s} m^{\frac{\omega}{2}} \overline{\psi}_{\dot{\alpha}_{s} \dots}$$
(1.42)

donde hemos llamado

$$\psi^{\alpha_{s+1}\dots\alpha_{\omega}} = \epsilon^{\alpha_1\dots\alpha_{\omega}}\psi_{\alpha_1\dots\alpha_s} \qquad \overline{\psi}_{\dot{\alpha}_{s}\dots\dot{\alpha}_1} = \epsilon_{\dot{\alpha}_{\omega}\dots\dot{\alpha}_1}\overline{\psi}^{\dot{\alpha}_{\omega}\dots}$$
(1.43)

Si conjugamos (1.42) y cambiamos s por $\omega - s$ obtenemos:

$$\frac{1}{(\omega-s)!} \epsilon^{\alpha_1 \cdots \alpha_\omega} \partial_{\alpha_1}^{\dot{\alpha}_1} \cdots \partial_{\alpha_s}^{\dot{\alpha}_s} \overline{\psi}_{\dot{\alpha}_s \cdots \dot{\alpha}_1} = -(i)^s m^{\frac{\omega}{2}} \psi^{\alpha_{s+1} \cdots \alpha_\omega}$$
(1.44)

Multiplicando (1.42) por

$$\cdots \alpha_{s}\beta_{s+1} \cdots \beta_{\omega} \partial_{\alpha_{1}}^{\dot{\alpha}_{1}} \cdots \partial_{\alpha_{s}}^{\dot{\alpha}_{s}}$$

obtenemos (usando que $\epsilon_{\dot{\alpha}_{\omega}} \dots \dot{\alpha}_{1} \partial_{\alpha_{1}}^{\dot{\alpha}_{1}} \dots \partial_{\alpha_{\omega}}^{\dot{\alpha}_{\omega}} = \omega! \Box^{\frac{\omega}{2}}$):

$$\left(\Box^{\frac{\omega}{2}} + m^{\omega}\right)\psi = 0 \tag{1.45}$$

donde ψ es una componente cualquiera del supercampo.

En cuatro dimensiones ($\omega = 2$) se obtiene la ecuación usual de Klein-Gordon. En dimensión general *d* estas ecuaciones son de orden superior $\omega = 2^{\frac{d}{2}-1}$. En dimensión mayor o igual a seis aparece un modo taquiónico el cual fue estudiado en las referencias [25] y [26]. Cuando la dimensión es mayor o igual a ocho aparecen pares de raíces complejas conjugadas ("modos complejos"). El estudio de los modos complejos será el objetivo de los siguientes capítulos.

En resúmen vemos que existen varios caminos que llevan a la conveniencia de estudiar lagrangianos cuyos campos obedecen ecuaciones de orden superior. O bien por teorías gravitatorias que introducen potencias del tensor de curvatura, o bien por teorías que intentan regularizar las divergencias usuales mediante campos fundamentales, o bien cuando se examina la supersimetría simple en espacios de dimensión superior.

Estos ejemplos muestran que al profundizar el exámen de algunas teorías de campo, surge la necesidad de considerar modos que corresponden a parámetros de masa complejos. Resulta entonces conveniente examinar teorías cuyo lagrangiano incluya campos que obedecen ecuaciones de movimiento del tipo de Klein-Gordon, pero cuyo término en el cuadrado de la masa es ahora un número complejo.

Capítulo 2

Métodos Variacionales

En este capítulo presentaremos los sistemas lagrangianos de orden superior (ver ref. [27]). Usando métodos variacionales obtendremos las ecuaciones de movimiento y el teorema de Nöether generalizado. Aplicaremos estos procedimientos para obtener las ecuaciones correspondientes al lagrangiano de Wess-Zumino obtenido en el capítulo anterior. El teorema de Nöether es la base para el procedimiento de cuantificación que seguiremos. Si un sistema a nivel clásico tiene ante cierta transformación de los campos una simetría que implica la conservación de cierta magnitud A, pediremos a nivel cuántico, donde las variables dinámicas pasan a ser operadores, que \hat{A} genere la transformación de simetría.

2.1 Principio Variacional

Consideremos un sistema dado por la densidad lagrangiana

$$\mathcal{L} = \mathcal{L}(\phi, \partial \phi, ..., \partial^m \phi) \tag{2.1}$$

donde $\phi(x)$ es un campo escalar real, y $\partial^k \phi$ representa la dependencia del lagrangiano con las derivadas de orden k del campo ϕ . Suponemos que la dimensión del espaciotiempo es ν y la signatura de la métrica es (+, -, -, .., -). Las ecuaciones de evolución se obtienen de pedir que se cumpla el principio de mínima acción:

$$\delta S = 0 \qquad \qquad S = \int d^{\nu} x \,\mathcal{L} \tag{2.2}$$

Ante una variación de la configuración de $\phi(x)$ a $\phi(x) + \delta \phi(x)$, la acción varía en

$$\int d^{\nu}x \,\delta\mathcal{L} \tag{2.3}$$

donde

$$\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi + \frac{\partial \mathcal{L}}{\partial_{\mu} \phi} \delta \partial_{\mu} \phi + ... + \frac{\partial \mathcal{L}}{\partial_{\mu_{1}} \partial_{\mu_{2}} \phi} \delta \partial_{\mu_{1}} \partial_{\mu_{2}} \phi + ...$$

$$= (\frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial_{\mu} \phi} + \partial_{\mu_{1}} \partial_{\mu_{2}} \frac{\partial \mathcal{L}}{\partial_{\mu_{1}} \partial_{\mu_{2}} \phi} - ...) \delta \phi$$

$$+ derivadas totales$$
(2.1)

Por lo tanto de (2.3) y (2.4) obtenemos que la acción es estacionaria entorno a la configuración $\phi(x)$ que satisface:

$$\sum_{k=0}^{m} (-1)^{k} \partial_{\mu_{1}} ... \partial_{\mu_{k}} \frac{\partial \mathcal{L}}{\partial_{\mu_{1}} ... \partial_{\mu_{k}} \phi} = 0$$
(2.5)

En el caso en que el lagrangiano es función de las derivadas del campo sólo a través del operador de D'Alambert D, las ecuaciones de Euler-Lagrange toman la forma:

$$\frac{\partial \mathcal{L}}{\partial \phi} + \Box \frac{\partial \mathcal{L}}{\partial \Box \phi} + \Box^2 \frac{\partial \mathcal{L}}{\partial \Box^2 \phi} + .. = 0$$
(2.6)

2.2 El Teorema de Nöether

Supongamos que nuestro sistema presenta una simetría ante cierta transformación de los campos. Esto significa que la densidad lagrangiana cambia a lo sumo en una divergencia ante dicha tansformación. De la primera linea en (2.4) resulta para una variación general de los campos $\delta\phi$

$$\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi + \partial_{\mu} [\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \delta \phi] - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial_{\mu} \phi} \delta \phi + \partial_{\mu_{1}} [\frac{\partial \mathcal{L}}{\partial_{\mu_{1}} \partial_{\mu_{2}} \phi} \delta \partial_{\mu_{2}} \phi] - \partial_{\mu_{2}} [\partial_{\mu_{1}} \frac{\partial \mathcal{L}}{\partial_{\mu_{1}} \partial_{\mu_{2}} \phi} \delta \phi] + \partial_{\mu_{1}} \partial_{\mu_{2}} \frac{\partial \mathcal{L}}{\partial_{\mu_{1}} \partial_{\mu_{2}} \phi} \delta \phi - \dots$$
(2.7)

y por lo tanto, considerando variaciones entorno a la solución de las ecuaciones de Euler-Lagrange obtenemos

$$\delta \mathcal{L} = \partial_{\mu} \left[\left(\frac{\partial \mathcal{L}}{\partial_{\mu} \phi} - \partial_{\mu_{1}} \frac{\partial \mathcal{L}}{\partial_{\mu_{1}} \partial_{\mu} \phi} + \partial_{\mu_{1}} \partial_{\mu_{2}} \frac{\partial \mathcal{L}}{\partial_{\mu_{1}} \partial_{\mu_{2}} \partial_{\mu} \phi} - ... \right) \delta \phi + \left(\frac{\partial \mathcal{L}}{\partial_{\mu_{1}} \partial_{\mu} \phi} - \partial_{\mu_{2}} \frac{\partial \mathcal{L}}{\partial_{\mu_{1}} \partial_{\mu_{2}} \partial_{\mu} \phi} + ... \right) \delta \partial_{\mu_{1}} \phi \left(\frac{\partial \mathcal{L}}{\partial_{\mu_{1}} \partial_{\mu_{2}} \partial_{\mu} \phi} - ... \right) \delta \partial_{\mu_{1}} \partial_{\mu_{2}} \phi + ... \right]$$
(2.8)

En el caso en que el lagrangiano es sólo una función de $\Box^k \phi \equiv \phi^{(k)}$ se obtiene de (2.8)

$$\delta \mathcal{L} = \partial_{\mu} \sum_{s,t=0} \left\{ \Box^{s} \frac{\partial \mathcal{L}}{\partial \phi^{(s+t+1)}} \partial^{\mu} \delta \phi^{(t)} - \partial^{\mu} \Box^{s} \frac{\partial \mathcal{L}}{\partial \phi^{(s+t+1)}} \delta \phi^{(t)} \right\}$$
(2.9)

En particular, si el sistema está aislado (no hay campos externos) debe haber simetría de traslación en el espacio-tiempo (el lagrangiano no depende explícitamente de x^{μ}) y obtenemos que la variación $\delta \mathcal{L} = \partial_{\mu} \mathcal{L} \epsilon^{\mu}$ (donde $\epsilon^{\mu} = \delta x^{\mu}$) está dada por (2.8) o (2.9) con $\delta \phi = \partial_{\mu} \phi \epsilon^{\mu}$. Por ejemplo, para el caso en que el lagrangiano depende sólo de los $\phi^{(k)}$ obtenemos de (2.9) (usando $\delta \mathcal{L} = \partial_{\mu} \mathcal{L} \eta^{\mu\nu} \epsilon_{\nu}$ y la independencia de los ϵ_{ν})

$$\partial_{\mu}T^{\mu\nu} = 0 \tag{2.10}$$

donde $T^{\mu\nu}$ es el tensor de energía-momento:

$$T^{\mu\nu} = \sum_{s,t=0} \left\{ \Box^s \frac{\partial \mathcal{L}}{\partial \phi^{(s+t+1)}} \partial^{\mu} \partial^{\nu} \phi^{(t)} - \partial^{\mu} \Box^s \frac{\partial \mathcal{L}}{\partial \phi^{(s+t+1)}} \partial^{\nu} \phi^{(t)} \right\} - \eta^{\mu\nu} \mathcal{L}$$
(2.11)

Consideremos como ejemplo el lagrangiano

$$\frac{1}{2}\phi(\Box + m_1^2)(\Box + m_2^2)\phi$$
 (2.12)

que salvo una divergencia es igual a

$$\mathcal{L} = \frac{1}{2}(\Box + m_1^2)\phi(\Box + m_2^2)\phi$$

= $\frac{1}{2}(\Box\phi)^2 + \frac{1}{2}(m_1^2 + m_2^2)\phi\Box\phi + \frac{1}{2}m_1^2m_2^2\phi^2$ (2.13)

de donde obtenemos

$$\frac{\partial \mathcal{L}}{\partial \phi} = +\frac{1}{2}(m_1^2 + m_2^2)\Box\phi + m_1^2 m_2^2\phi \qquad \qquad \frac{\partial \mathcal{L}}{\partial \Box \phi} = \Box \phi + \frac{1}{2}(m_1^2 + m_2^2)\phi \qquad (2.14)$$

por lo tanto, la ecuación de Euler-Lagrange (2.6) resulta

$$\frac{\partial \mathcal{L}}{\partial \phi} + \Box \frac{\partial \mathcal{L}}{\partial \Box \phi} = (\Box + m_1^2)(\Box + m_2^2)\phi = 0$$
(2.15)

Del tensor de energía-momento (2.11) obtenemos la densidad hamiltoniana $\mathcal{H} = T^{00}$:

$$\mathcal{H} = \left(\Box\phi + \frac{m_1^2 + m_2^2}{2}\phi\right)\ddot{\phi} - \left(\Box\dot{\phi} + \frac{m_1^2 + m_2^2}{2}\dot{\phi}\right)\dot{\phi} - \mathcal{L}$$
(2.16)

El hamiltoniano se obtiene de

$$H = \int dV \mathcal{H} \tag{2.17}$$

usando para ϕ una solución a la ecuación (2.15).

Una solución general de (2.15) se puede poner según $\phi = \phi_1 + \phi_2$:

$$(\Box + m_1^2)\phi_1 = 0 \qquad (\Box + m_2^2)\phi_2 = 0 \qquad (2.18)$$

Estas funciones se pueden representar como es usual:

$$\phi_n(x) = \int \frac{d\vec{k}}{2\omega_n} e^{i\vec{k}\cdot\vec{r}} (a_{nk}^* e^{i\omega_n t} + a_{n(-k)} e^{-i\omega_n t})$$
(2.19)

doude n = 1, 2 y $\omega_n^2 = (\vec{k}^2 + m_n^2)^{\frac{1}{2}}$. De (2.16) y (2.18) obtenemos

$$\mathcal{H} = \frac{1}{2} (m_2^2 - m_1^2) [(\phi_1 - \phi_2)(\ddot{\phi}_1 + \ddot{\phi}_2) \\ -\dot{\phi}_1^2 + \dot{\phi}_2^2] + \frac{1}{2} (m_2^2 - m_1^2)^2 \phi_1 \phi_2$$

$$= \frac{1}{2} (m_2^2 - m_1^2) [(\phi_1 \ddot{\phi}_1 - \dot{\phi}_1^2) - (\phi_2 \ddot{\phi}_2 - \dot{\phi}_2^2)] \\ + productos \ cruzados \qquad (2.20)$$

donde el último término contiene productos entre ϕ_1 y ϕ_2 (y sus derivadas). Como debido a (2.10) II se conserva, veinos que este último término no puede contribuir a II. En efecto, al hacer en (2.17) la integral en el volumen aparecerán exponenciales en $(\omega_1 \pm \omega_2)t$ con el mismo \vec{k} para ambas frecuencias, y teniendo en cuenta que $m_1 \neq m_2$ quedan siempre términos dependientes del tiempo que deben cancelarse entre si.

Vemos además de (2.11) que el primer término se puede escribir según:

$$(m_2^2 - m_1^2)[\mathcal{H}_1 - \mathcal{H}_2]$$
 (2.21)

doude \mathcal{H}_n es la densidad hamiltoniana correspondiente al lagrangiano

$$\mathcal{L}_n = \frac{1}{2}\phi_n(\Box + m_n^2)\phi_n$$

Obtenemos por lo tanto que

$$II = \frac{1}{2}(m_2^2 - m_1^2) \int d\vec{k} \left[(a_{1k}^* a_{1k} + a_{1k} a_{1k}^*) - (a_{2k}^* a_{2k} + a_{2k} a_{2k}^*) \right]$$
(2.22)

Vemos que la inversa del operador en (2.15) es (salvo en los ceros de los denominadores)

$$\frac{1}{m_1^2 - m_2^2} \left(\frac{1}{p^2 - m_1^2} - \frac{1}{p^2 - m_2^2} \right)$$

por lo tanto el sistema descrito por (2.12), de acuerdo a lo visto en el capítulo 1, debe tener métrica indefinida. Este hecho lo podemos ver ahora por medio de la cuantificación canónica. Si imponemos que H genere las traslaciones temporales del sistema (ec. de Heisenberg) obtenemos de

$$[\phi, II] = i\dot{\phi} \tag{2.23}$$

las reglas de connutación:

$$[a_{1k}, a_{1k'}] = \frac{\omega_1}{m_2^2 - m_1^2} \delta(\vec{k} - \vec{k'}) \qquad [a_{2k}, a_{2k'}] = -\frac{\omega_2}{m_2^2 - m_1^2} \delta(\vec{k} - \vec{k'}) \qquad (2.21)$$

y venos con claridad que la métrica indefinida aparece debido a la diferencia de signo entre los connutadores. Con el fin de entender la forma simple (2.22) que toma Hnotamos que en la solución a la ecuación (2.15) $\phi = \phi_1 + \phi_2$ los ϕ_n (que satisfacen (2.18)) se pueden poner según

$$\phi_1 = \frac{(\Box + m_2^2)}{m_2^2 - m_1^2} \phi \qquad \phi_2 = \frac{(\Box + m_1^2)}{m_1^2 - m_2^2} \phi \qquad (2.25)$$

Si extendemos esta propiedad ("off-shell") como una definición de los ϕ_n cuando ϕ no es solución, vemos que $\mathcal{L} = \frac{1}{2}\phi(\Box + m_1^2)(\Box + m_2^2)\phi$ se puede escribir según

$$\mathcal{L} = (m_2^2 - m_1^2) [\frac{1}{2} \phi_1 (\Box + m_1^2) \phi_1 - \frac{1}{2} \phi_2 (\Box + m_2^2) \phi_2]$$
(2.26)

Venios entonces de (2.22) que si bien ϕ_1 y ϕ_2 no son independientes en (2.26), para el cálculo de *II* pueden tomarse independientes.

Ahora podemos hacer la generalización al caso en que

$$\mathcal{L} = \frac{1}{2}\phi \mathcal{P}(\Box)\phi \qquad \mathcal{P}(\Box) = (\Box + m_1^2)(\Box + m_2^2)(\Box + m_3^2) \qquad (2.27)$$

La ecuación de movimiento es

$$(\Box + m_1^2)(\Box + m_2^2)(\Box + m_3^2)\phi = 0$$
(2.28)

Podemos poner $\phi = \phi_1 + \phi_2 + \phi_3$, donde cada término es solución a un factor en (2.28). Entonces obtenemos

$$\phi_{1} = \frac{(\Box + m_{2}^{2})(\Box + m_{3}^{2})}{(m_{2}^{2} - m_{1}^{2})(m_{3}^{2} - m_{1}^{2})}\phi$$

$$\phi_{2} = \frac{(\Box + m_{1}^{2})(\Box + m_{3}^{2})}{(m_{1}^{2} - m_{2}^{2})(m_{3}^{2} - m_{2}^{2})}\phi$$

$$\phi_{3} = \frac{(\Box + m_{1}^{2})(\Box + m_{2}^{2})}{(m_{1}^{2} - m_{3}^{2})(m_{2}^{2} - m_{3}^{2})}\phi$$
(2.29)

Nuevamente extendiendo esta propiedad fuera de las soluciones como una definición resulta

$$\mathcal{L} = (m_2^2 - m_1^2)(m_3^2 - m_1^2)\frac{1}{2}\phi_1(\Box + m_1^2)\phi_1$$

$$+(m_1^2 - m_2^2)(m_3^2 - m_2^2)\frac{1}{2}\phi_2(\Box + m_2^2)\phi_2 +(m_1^2 - m_3^2)(m_2^2 - m_3^2)\frac{1}{2}\phi_3(\Box + m_3^2)\phi_3$$
(2.30)

Esta propiedad puede verificarse fácilmente notando que por la definición de las ϕ_n tenemos por ejemplo

$$\mathcal{P}(\Box)\phi = (m_2^2 - m_1^2)(m_3^2 - m_1^2)(\Box + m_1^2)\phi_1 \tag{2.31}$$

y similares. Por lo tanto resulta para el miembro derecho en (2.30)

$$\mathcal{L} = \frac{1}{2} [\phi_1 \mathcal{P}(\Box) \phi + \phi_2 \mathcal{P}(\Box) \phi + \phi_3 \mathcal{P}(\Box) \phi]$$

= $\frac{1}{2} \phi \mathcal{P}(\Box) \phi$ (2.32)

Entonces, por analogía con el caso anterior, obtenemos para el hamiltoniano del Estema:

$$II = \frac{1}{2} \int d\vec{k} \left[(m_2^2 - m_1^2)(m_3^2 - m_1^2)(a_{1k}^* a_{1k} + a_{1k}a_{1k}^*) + (m_1^2 - m_2^2)(m_3^2 - m_2^2)(a_{2k}^* a_{2k} + a_{2k}a_{2k}^*) + (m_1^2 - m_3^2)(m_2^2 - m_3^2)(a_{3k}^* a_{3k} + a_{3k}a_{3k}^*) \right]$$
(2.33)

Por lo tanto, no existe dificultad, en principio, para partir de un lagrangiano de orden superior y construir las ecuaciones de movimiento y los tensores canónicos: en particular, el hamiltoniano como generador de los desplazamientos temporales. Además, ordenando por ejemplo las masas en la forma $m_1^2 < m_2^2 < m_3^2$, se advierte en (2.33) que los modos ϕ_1 y ϕ_3 contribuyen positivamente a la energía mientras que el modo m_2 lo hace negativamente. La generalización de (2.27) a polinomios de la forma

$$\mathcal{P} = \prod_{i=1}^{N} (\Box + m_i^2)$$

con $m_i^2 < m_{i+1}^2$ (i = 1, ..., N-1) lleva a hamiltonianos en los cuales los ϕ_{2s+1} contribuyen positivamente, y los ϕ_{2s} contribuyen negativamente a la energía. La

cuantificación canónica de los campos lleva también a relaciones de conmutación para los operadores a_i y a_i^* que alternan también el signo según que *i* sea par o impar (cf. (2.24)). El caso de los parámetros complejos lo estudiaremos en la sección 3.2.

Capítulo 3

Tratamiento de los Modos Complejos

En este capítulo desarrollaremos el tratamiento de los modos complejos. Para estudiar las características escenciales de la cuantificación de estos modos consideraremos un lagrangiano simple, donde interviene un modo de masa m y dos modos cuyos parámetros de masa son complejos conjugados.

Seguiremos un procedimiento natural de cuantificación a partir del cual obtendremos el vacío de la teoría. Con este vacío calcularemos el propagador correspondiente a los modos complejos que resultará mitad avanzado y mitad retardado.

3.1 Un Modelo de Orden Superior

En nuestro modelo tomaremos un campo escalar real que obedece la ecuación cúbica en el operador D'Alambertiano:

$$(\Box + m^{2})(\Box + \mu^{2})(\Box + \overline{\mu}^{2})\phi = j(\phi)$$
(3.1)
donde $\Box = \partial_0^2 - \nabla^2$ y μ es un parámetro complejo. El lagrangiano para el campo libre es

$$\mathcal{L} = \frac{1}{2}\phi(\Box + m^2)(\Box + \mu^2)(\Box + \overline{\mu}^2)\phi$$
(3.2)

Cualquier solución real a la ecuación para el campo libre, puede escribirse según:

$$\phi = \phi_m + \phi_\mu + \phi_\mu^* \tag{3.3}$$

$$\phi_m(x) = \int \frac{d\vec{k}}{2\omega_m} e^{i\vec{k}\cdot\vec{r}} (a_k^* e^{i\omega_m t} + a_{-k} e^{-i\omega_m t}) \qquad (3.4)$$

$$\phi_{\mu}(x) = \int \frac{d\vec{k}}{2\omega} e^{i\vec{k}\cdot\vec{r}} (b_k e^{i\omega t} + c_{-k} e^{-i\omega t})$$
(3.5)

 $\omega_m = (\vec{k}^2 + m^2)^{\frac{1}{2}}$, $\omega = (\vec{k}^2 + \mu^2)^{\frac{1}{2}}$, $\mathcal{I}m\,\omega > 0$.

Usando (2.33) obtenemos el hamiltoniano total:

$$H = \frac{1}{2} \int d\vec{k} \left[\frac{1}{\alpha} (a_k a_k^* + a_k^* a_k) + \frac{1}{\beta} (b_k c_k + c_k b_k) + \frac{1}{\overline{\beta}} (b_k^* c_k^* + c_k^* b_k^*) \right]$$
(3.6)

donde $\alpha^{-1} = (\mu^2 - m^2)(\overline{\mu}^2 - m^2)$; $\beta^{-1} = (m^2 - \mu^2)(\overline{\mu}^2 - \mu^2)$ Similarmente, se pueden construir los generadores de las traslaciones y los generadores de las rotaciones y "boosts" los cuales satisfacen el álgebra de Poincare. Además, el campo ϕ puede ser tratado como un escalar de Lorentz, como fue mostrado por Nakanishi en la referencia [28] (ver también [29]).

3.2 Cuantificación de los Modos Complejos

La ecuación de Heisenberg [ϕ , |H|] := $i\dot{\phi}$ implica

$$[H, a_k] = -\omega_m a_k$$
, $[H, b_k] = \omega b_k$, $[H, c_k] = -\omega c_k$ (3.7)

• .

dando, junto con (3.6):

$$\begin{bmatrix} a_k \ , \ a_{k'}^* \end{bmatrix} \qquad \alpha \omega_m \delta(\vec{k} - \vec{k'}) \tag{3.8}$$

$$[c_k, b_{k'}] = \beta \omega \delta(\vec{k} - \vec{k}') \qquad (3.9)$$

$$\begin{bmatrix} b_k , c_{k'}^* \end{bmatrix} = \begin{bmatrix} c_k , b_{k'}^* \end{bmatrix} = 0$$

$$\begin{bmatrix} b_k , b_{k'}^* \end{bmatrix} = \begin{bmatrix} c_k , c_{k'}^* \end{bmatrix} = 0$$
 (3.10)

Adoptaremos las siguientes redefiniciones:

$$(\alpha \omega_m)^{-\frac{1}{2}} a_k \to a_k \qquad \qquad i(\beta \omega)^{-1} c_k \to c_k \qquad (3.11)$$

De modo que (3.6), (3.8) y (3.9) ahora se escriben:

$$H = \frac{1}{2} \int d\vec{k} [\omega_m \{ a_k , a_k^* \} - i\omega \{ b_k , c_k \} + i\overline{\omega} \{ c_k^* , b_k^* \}]$$
(3.12)

$$[a_k, a_{k'}] = \delta(\vec{k} - \vec{k'})$$
 (3.13)

$$[c_k, b_{k'}] = i\delta(\vec{k} - \vec{k}') \qquad (3.14)$$

El sector usual ϕ_m está representado por los operadores a_k^* y a_k los cuales crean y aniquilan partículas de masa m, respectivamente. Cada grado de libertad \vec{k} puede ser considerado como un oscilador armónico de frecuencia ω_m . Antes de estudiar los grados de libertad correspondientes a los modos complejos, consideremos las posibles representaciones para el modo real. Una representación posible para cada modo real está dada simplemente por:

$$a_k \to \frac{1}{\sqrt{2}}(x + \frac{d}{dx})$$
 $a_k^* \to \frac{1}{\sqrt{2}}(x - \frac{d}{dx})$

como operadores sobre funciones f(x), $x \in R$ (de cuadrado integrable) y el producto interno dado por $\int_{-\infty}^{+\infty} dx f(x)\overline{g}(x)$. Otra posibilidad es la representación holomorfa (ver por ej. [30]) donde se representa a cada a_k^{\pm} como un operador multiplicativo $(a_k^{\pm} \rightarrow \overline{z} \in C)$. Vemos que el operador $\frac{d}{d\overline{z}}$ es el que cumple con la propiedad

$$\left[\begin{array}{c}\frac{d}{d\overline{z}}, \ \overline{z}\end{array}\right] = 1$$

Por lo tanto, comparando con (3.13), deberíamos hacer $a_k \rightarrow \frac{d}{d\overline{z}}$. Sin embargo, para que estos operadores sean uno adjunto del otro, la medida para el producto interno no puede ser sólamente $dzd\overline{z}$ pues en tal caso quedaría (tomando el adjunto de a_k) $a_k^* \rightarrow \frac{d}{d\overline{z}}^- = \frac{1}{2}(\frac{d}{dx} + i\frac{d}{dy})^- = -\frac{d}{dz}$ lo cual no se corresponde con la representación multiplicativa con la cual empezamos. Para que todo cierre es necesario considerar que operamos sobre funciones sólo de \overline{z} y que el producto interno viene dado por

$$(f,g) = \int dz d\overline{z} e^{-\overline{z}z} f(\overline{z}) \overline{g(\overline{z})}$$

Con este producto interno es fácil ver que, efectivamente, se verifica $(\overline{z}f,g) = (f, \frac{d}{d\overline{z}}g)$. Además, cualquier función analítica en \overline{z} puede expandirse en término de los monomios

$$\psi_n(\overline{z}) = \frac{\overline{z}^n}{\sqrt{n!}} \tag{3.15}$$

l'sando que para cada grado de libertad, $h_k \to \omega_m \overline{z} \frac{d}{d\overline{z}}$ vemos que estos monomios son autoestados de *n* cuantos ($h\overline{z}^n = \omega_m \overline{z} \frac{d}{d\overline{z}} \overline{z}^n = n\omega_m \overline{z}^n$); y verifican ortonormalidad:

$$(\psi_n, \psi_m) = \frac{1}{\sqrt{n!}\sqrt{m!}} \int dz d\overline{z} \, e^{-\overline{z}z} \overline{z}^n z^m$$

$$= \frac{1}{\sqrt{n!}\sqrt{m!}} \frac{1}{\pi} \int_0^\infty d\rho \, \rho \int_0^{2\pi} d\alpha \, \rho^{n+m} e^{i\alpha(n-m)} e^{-\rho^2}$$

$$= \delta_{nm} \qquad (3.16)$$

Estudiemos ahora la representación para los modos complejos. Podemos representar a cada c_k como un operador multiplicativo:

$$c_k \to z$$
, $z \in C$

El operador $-i\frac{d}{dz}$ verifica:

$$\left[z, -i\frac{d}{dz}\right] = i \tag{3.17}$$

y por lo tanto, comparando con (3.14), debemos tomar la representación

$$b_k \to -i \frac{d}{dz}$$

Es claro que ahora no funciona la representación holomorfa (la cual da comutadore, no triviales entre pares de operadores adjuntos), contradiciendo (3.10). Sin embargo, como ahora b_k y c_k no son uno adjunto del otro, la medida para el producto interno sí puede darse por $dzd\bar{z}$. Con esta medida obtenemos:

$$c_k^* \to \overline{z} \qquad b_k^* \to (-i\frac{d}{dz})^* = -i\frac{d}{d\overline{z}}$$
 (3.18)

y venios fácilmente que los connutadores en (3.10) también se verifican. Nótese que ahora el espacio sobre el cual actúan los operadores son funciones de z y \overline{z} $f = f(z, \overline{z})$, mientras que en la representación holomorfa son funciones sólo de \overline{z} .

En resúmen, la representación en el sector de los modos complejos resulta, para cada grado de libertad \vec{k} (cf. (3.12)):

$$b_k \to -i\frac{d}{dz} , \ b_k^* \to -i\frac{d}{d\overline{z}} , \ c_k \to z , \ c_k^* \to \overline{z}$$
 (3.19)

$$h_k \to -\omega \left(z \frac{d}{dz} + \frac{1}{2} \right) + \overline{\omega} \left(\overline{z} \frac{d}{d\overline{z}} + \frac{1}{2} \right) \quad , \quad \vec{p}_k \to \vec{k} \left(\overline{z} \frac{d}{d\overline{z}} - z \frac{d}{dz} \right)$$
(3.20)

con el producto escalar $\langle f|g \rangle = \int dz \int d\overline{z} f \overline{g}$, el cual en coordenadas polares es $\int_0^\infty d\rho \rho \int_0^{2\pi} d\alpha f \overline{g}$, donde $z = \rho e^{i\alpha}$

 h_k y \vec{p}_k son la densidad de energía y de momento, respectivamente. La expresión para \vec{p}_k puede obtenerse del tensor de energía-momento, pero es más sencillo tomar la expresión para h_k y escribir \vec{k} en el lugar de ω . Las autofunciones de momento nulo deben verificar la ecuación (cf. (3.20))

$$z\frac{df}{dz} = \overline{z}\frac{df}{d\overline{z}} \tag{3.21}$$

cuyas soluciones son $f = f(z\overline{z})$. Actuando con h sobre funciones del argumento $z\overline{z}$ (momento nulo), obtenemos:

$$h f(z\overline{z}) = (\overline{\omega} - \omega)(z\overline{z}f' + \frac{1}{2}f)$$

= $-2i \operatorname{Im} \omega(z\overline{z}f' + \frac{1}{2}f)$ (3.22)

Esta ecuación de autovalores para h puede escribirse según:

$$\frac{h}{2\mathcal{I}m\omega}f = Ef$$

$$i(\neg \overline{z}f' + \frac{1}{2}f) \qquad (3.23)$$

$$(iE - \frac{1}{2})f = z\overline{z}\frac{df}{dz\overline{z}}$$

$$f^{(E)} = c(z\overline{z})^{iE - \frac{1}{2}}$$

$$= c(\rho^2)^{iE - \frac{1}{2}} \qquad (3.24)$$

Las funciones (3.24) definen un sistema ortogonal, como puede verse haciendo un cambio de variables $x = \ln \rho$ en la integral del producto escalar:

$$\langle f^{(E)} | f^{(E')} \rangle = cc' \int_0^\infty d\rho \, \rho(\rho^2)^{i(E-E')-1}$$

$$= cc' \int_0^\infty \frac{d\rho}{\rho} \rho^{2i(E-E')}$$

$$= cc' \int_{-\infty}^{+\infty} dx \, e^{2i(E-E')x}$$

$$= \frac{\pi}{2} cc' \delta(E-E')$$

$$(3.25)$$

Vennos entonces, que el espectro es continuo y se extiende desde $-\infty$ hasta $+\infty$.

La representación del estado de vacío (energía y momento nulos) se obtiene de (3.21) (con E = 0): $f^{(0)} = (z\overline{z})^{-\frac{1}{2}}$, y tiene norma (notar que $f^{(0)}$ pertenece a un continuo)

$$\langle 0|0\rangle = \int \frac{dz}{z} \int \frac{d\overline{z}}{\overline{z}}$$
(3.26)

La evaluación de valores de expectación en el vacío es simple pues

$$\langle 0|z^{n} \frac{d^{m}}{dz^{m}}|0\rangle = \int \frac{dz}{\sqrt{z}} z^{n} \frac{d^{m}}{dz^{m}} \frac{1}{\sqrt{z}} \int \frac{d\overline{z}}{\overline{z}}$$

$$\simeq \int \frac{dz}{z} z^{n-m} \int \frac{d\overline{z}}{\overline{z}}$$

$$(3.27)$$

es nulo para cualquier $n \neq m$. Este resultado se obtiene fácilmente en coordenadas polares a partir de la integración en los ángulos. Para n = m = 1 obtenemos:

$$\langle 0|z\frac{d}{dz}|0\rangle = \int dz d\overline{z} (z\overline{z})^{-\frac{1}{2}} z\frac{d}{dz} (z\overline{z})^{-\frac{1}{2}}$$

$$= -\frac{1}{2} \int \frac{dz}{z} \int \frac{d\overline{z}}{\overline{z}}$$

$$= -\frac{1}{2} \langle 0|0\rangle$$

$$(3.28)$$

$$\langle 0|\bar{z}\frac{d}{d\bar{z}}|0\rangle = -\frac{1}{2}\langle 0|0\rangle \qquad (3.29)$$

$$\langle 0|z\frac{d}{d\overline{z}}|0\rangle = \langle 0|\overline{z}\frac{d}{dz}|0\rangle = 0$$
(3.30)

Si traducimos estas relaciones a valores de expectación de vacío del producto de operadores de campo (cf. (3.19)), obtenemos:

$$\langle 0|c_k b_{k'}|0\rangle = \frac{i}{2}\delta(\vec{k} - \vec{k'}) = -\langle 0|b_k c_{k'}|0\rangle$$
(3.31)

$$\langle 0|c_k^* b_{k'}^*|0\rangle = \frac{i}{2} \delta(\vec{k} - \vec{k'}) = -\langle 0|b_k^* c_{k'}^*|0\rangle$$
(3.32)

$$\langle 0|c_k c_{k'}|0\rangle = 0 = \langle 0|b_k b_{k'}|0\rangle =$$

$$\langle 0|c_k c_{k'}^*|0\rangle = \langle 0|b_k b_{k'}^*|0\rangle = \langle 0|c_k b_{k'}^*|0\rangle$$
(3.33)

Notamos que para el sector de masas complejas no es cierto que la energía es proporcional a ω (ni tampoco a $|\omega|$). El espectro de energías es real y continuo extendiéndose de $-\infty$ a $+\infty$. Observamos también que en (3.4) las exponenciales son soluciones de las ecuaciones de movimiento para el campo libre y que el operador a_k^- crea estados para los cuales $E = \hbar \omega_m$. Sin embargo, a pesar del hecho que las exponenciales en (3.5) son también soluciones a la ecuación (3.1), no hay ningún estado del campo para el cual $E = (\vec{p}^2 + \mu^2)^{\frac{1}{2}}$.

3.3 Cálculo de los Propagadores

De los valores de expectación (3.31) a (3.33) vemos que los términos del campo ϕ en (3.3) no están correlacionados entre si, obteniendo por lo tanto

$$\langle 0|T \phi(x)\phi(y)|0\rangle = \langle 0|T \phi_m(x)\phi_m(y)|0\rangle + \langle 0|T \phi_\mu(x)\phi_\mu(y)|0\rangle + \langle 0|T \phi_\mu^*(x)\phi_\mu^*(y)|0\rangle$$
(3.34)

De (3.4) y (3.8) obtenemos como es usual (usando $a_k|0\rangle = 0$)

$$\langle 0|T\phi_m(x)\phi_m(y)|0\rangle = \frac{i\alpha}{4\pi}F(x-y)$$
(3.35)

donde F es la función causal de Feynman:

$$F(x) = -2\pi i \int \frac{d\vec{q}}{2\omega_m} e^{-i\vec{q}\cdot\vec{r}} \{\Theta(t)e^{-i\omega_m t} + \Theta(-t)e^{i\omega_m t}\}$$
(3.36)

Para evaluar el propagador correspondiente a $\phi_{\mu}(x)$ usamos que, de la redefinición (3.5) y los valores de expectación (3.31) y (3.33) se obtiene:

$$\langle 0|\phi_{\mu}(x)\phi_{\mu}(y)|0\rangle = -i\beta \int \frac{d\vec{q}}{2\omega} \int \frac{d\vec{q}'}{2\omega'} e^{i\vec{q}\cdot\vec{r}} e^{i\vec{q}'\cdot\vec{r}'} \{\omega'\langle 0|b_{q}c_{-q'}|0\rangle e^{i\omega t} e^{-i\omega' t'} + \\ +\omega\langle 0|c_{-q}b_{q'}|0\rangle e^{-i\omega t} e^{i\omega' t'} \}$$

$$= \frac{\beta}{4} \int \frac{d\vec{q}}{2\omega} e^{i\vec{q}\cdot(\vec{r}-\vec{r}')} (e^{i\omega(t'-t)} - e^{-i\omega(t'-t)})$$

$$= \frac{i\beta}{2} \int \frac{d\vec{q}}{2\omega} c^{i\vec{q}\cdot(\vec{r}-\vec{r}')} sen \,\omega(t'-t)$$

$$(3.37)$$

Esta expresión cambia el signo ante el intercambio de x e y. Por lo tanto, resulta:

$$\langle 0|T \phi_{\mu}(x)\phi_{\mu}(y)|0\rangle$$

= $sg(t - t') \langle 0|\phi_{\mu}(x)\phi_{\mu}(y)|0\rangle$
= $\frac{i\beta}{4\pi}W(x - y)$ (3.38)

donde hemos llamado

$$W(x) = -2\pi sg(t) \int \frac{d\vec{q}}{2\omega} e^{-i\vec{q}\cdot\vec{r}} sen\,\omega t \qquad (3.39)$$

Similarmente obtenemos:

$$\langle 0|T \phi_{\mu}^{*}(x)\phi_{\mu}^{*}(y)|0\rangle = \frac{i\overline{\beta}}{4\pi}\overline{W}(x-y)$$
(3.40)

Entonces resulta para el propagador total

$$\langle 0|T \phi(x)\phi(y)|0\rangle = = \frac{i}{2\pi} \{ \alpha F(x-y) + \beta W(x-y) + \overline{\beta W}(x-y) \}$$
(3.41)

3.4 Funciones de Green

Como es usual, el propagador para el campo $\phi_m(x)$ está dado por F(x) (la función de Feynman) que es una función de Green para la ecuación

$$(\Box + m^2)\phi_m = 0 \tag{3.42}$$

Esta propiedad se pone de manifiesto teniendo en cuenta que, de (3.36), resulta

$$F(x) = \int d\vec{q} \int_{\Gamma_F} dq_0 \frac{1}{q_0^2 - \omega_m^2} \times e^{i(q_0 t - \vec{q}.\vec{r})}$$
(3.43)

donde Γ_F es el camino de Feynman que puede tomarse igual a R, el eje real q_0 , si adicionamos una pequeña parte imaginaria negativa a la masa $(m \rightarrow m - i\epsilon)$. Busquemos ahora una expresión similar a (3.43) para la función W(x).

La ecuación

$$(\Box + \mu^2)\phi_{\mu} = 0 \tag{3.41}$$

tiene como función de Green particular a la transformada de Fourier de la función

$$G(q) = \frac{1}{q^2 - \mu^2} = \frac{1}{q_0^2 - \vec{q}^2 - \mu^2}$$
(3.45)

es decir,

$$G(x) = \int d\vec{q} \int_{R} dq_0 \frac{1}{q_0^2 - \omega^2} \times e^{i(q_0 t - \vec{q}.\vec{r})}$$
(3.46)

La función (3.45) tiene dos polos en el plano complejo q_0 . Estos polos están dados por $q_0 = \pm \omega$ donde

$$\omega = \sqrt{\vec{q}^2 + \mu^2} \qquad \qquad \mathcal{I}m\,\omega > 0 \qquad (3.17)$$

Podemos escribir:

$$G(q) = \frac{1}{(q_0 - \omega)(q_0 + \omega)} = \frac{1}{2\omega} \left(\frac{1}{q_0 - \omega} - \frac{1}{q_0 + \omega} \right)$$
(3.48)

y los dos polos se muestran explícitamente. Podemos obtener otras funciones de Green sumándole a G(x) soluciones a la ecuación homogénea (3.44). Por ejemplo tomemos en (3.46) en vez de una integración sobre R, una integración sobre un camino Γ que vaya (en q_0) de $-\infty$ a $+\infty$:

$$G(x) = \int d\vec{q} \int_{\Gamma} dq_0 \frac{1}{q_0^2 - \omega^2} \times e^{i(q_0 t - \vec{q}, \vec{r})}$$
(3.19)

Teniendo en cuenta que la exponencial es una función analítica, tenemos que el camino Γ se podrá escibir equivalentemente, como una integración sobre R más lazos que rodeen a los polos en $\pm \omega$:

$$\Gamma \approx R + aC_{\omega} + bC_{-\omega} \tag{3.50}$$

donde C_z es un lazo que rodea a z en sentido positivo. La función obtenida de este modo será una función de Green pues la contribución de los lazos es una solución de la homogénea (evalúan a e^{iqx} en $q_0 = \pm \omega$). La función de Green retardada $G_R(x)$ (nula para t < 0) se obtiene tomando un camino de integración q_0 de forma que ambos polos queden por encima del camino. Equivalentemente, recordando que el polo en $-\omega$ se halla en el semiplano inferior ($\mathcal{I}m \omega > 0$) podemos integrar a lo largo del eje real q_0 si adicionamos un lazo que rodea al polo $-\omega$ en sentido anti-horario:

$$\Gamma_R \approx R + C_{-\omega} \tag{3.51}$$

Similarmente, la función de Green avanzada (nula para t > 0) se obtiene rodeando al polo $+\omega$ en sentido horario:

$$\Gamma_A \approx R - C_\omega \tag{3.52}$$

Veamos ahora que la función W(x) dada por (3.39) es una función de Green mitad retardada y mitad avanzada. De (3.51) y (3.52) deducimos

$$\frac{1}{2}G_{R}(x) + \frac{1}{2}G_{A}(x) = \int \frac{d\vec{q}}{2\omega} e^{-i\vec{q}.\vec{r}} \int_{R+\frac{1}{2}C-\omega-\frac{1}{2}C_{\omega}} dq_{0} e^{iq_{0}t} \left\{ \frac{1}{q_{0}-\omega} - \frac{1}{q_{0}+\omega} \right\}$$

$$= \int \frac{d\vec{q}}{2\omega} e^{-i\vec{q}.\vec{r}} \{2\pi i e^{i\omega t} \Theta(t) + 2\pi i e^{-i\omega t} \Theta(-t) - (3.53)$$

$$-i\pi e^{i\omega t} - i\pi e^{-i\omega t} \}$$

$$= i\pi \int \frac{d\vec{q}}{2\omega} e^{-i\vec{q}.\vec{r}} \{e^{i\omega t} (\Theta(t) - \Theta(-t)) - e^{-i\omega t} (\Theta(t) - \Theta(-t))\}$$

$$= -2\pi sg(t) \int \frac{d\vec{q}}{2\omega} e^{-i\vec{q}.\vec{r}} sen \,\omega t \qquad (3.54)$$

Resulta entonces de (3.39) y (3.54) que $W(x) = \frac{1}{2}G_R(x) + \frac{1}{2}G_A(x)$. Por lo tanto, de (3.51) y (3.52), obtenemos:

$$W(x) = \int d\vec{q} \int_{\Gamma_W} dq_0 \frac{1}{q_0^2 - \omega^2} \times e^{i(q_0 t - \vec{q}.\vec{r})}$$
(3.55)

El camino Γ_W es mitad retardado y mitad avanzado:

$$\Gamma_W = \frac{1}{2}(R + C_{-\omega}) + \frac{1}{2}(R - C_{\omega}) = R + \frac{1}{2}(C_{-\omega} - C_{\omega})$$
(3.56)

Análogamente, obtenemos

$$\overline{W}(x) = \int d\vec{q} \int_{\Gamma_{\overline{W}}} dq_0 \frac{1}{q_0^2 - \overline{\omega}^2} \times e^{i(q_0 t - \vec{q}, \vec{r})}$$
(3.57)

$$\Gamma_{\overline{W}} = \frac{1}{2}(R + C_{\overline{\omega}}) + \frac{1}{2}(R - C_{-\overline{\omega}}) = R - \frac{1}{2}(C_{-\overline{\omega}} - C_{\overline{\omega}})$$
(3.58)

Llamaremos a W(x) y Γ_W la función y camino de Wheeler respectivamente. Según veremos en la próxima sección estas funciones son la extensión del valor principal a valores complejos de las masas.

Wheeler y Feynman introdujeron funciones valor principal para tratar a la radiación clásica en un absorvente completo (ver referencia [22] y también [31]). E absorvente completo, un fotón una vez emitido debe ser absorvido y por lo tanto no existen fotones asintóticos. Correspondientemente, a nivel árbol, una teoría cuántica con aquellos propagadores no tendría las partículas asintóticas asociadas pues la parte absortiva del propagador valor principal es cero.

3.5 Las Anti-transformadas de Fourier como Funcionales Analíticas

Del mismo modo en que la cuantificación del campo ϕ_m lleva al propagador de Feynman, vimos que la cuantificación natural de los modos complejos lleva a un propagador que es mitad retardado y mitad avanzado. Para el cálculo de los distintos diagramas es necesario trabajar con los propagadores en la representación de momentos. Por ejemplo, podemos anti-transformar Fourier en (3.43) si consideramos $\Gamma_F = R$ y $m \to m - i\epsilon$ obteniendo

$$F(q) = \frac{1}{q_0^2 - \omega_m^2 + i\epsilon}$$
(3.59)

Sin embargo, es claro que no tiene sentido tomar en esta expresión el límite $\epsilon \rightarrow 0$. La prescripción *ic* significa que luego de hacer las integrales hay que tomar el límite. Entonces, en realidad lo que está correctamente definida es la operación

$$\lim_{\epsilon \to 0} \int d\vec{q} \int_R dq_0 \frac{1}{q_0^2 - \omega_m^2 + i\epsilon} \times$$
(3.60)

como una función de funciones (funcional). Por lo tanto, la anti-transformada de Fourier de F(x) debe considerarse como la funcional (3.60). Esta funcional, operando sobre funciones analíticas, es equivalente a

$$\int d\vec{q} \int_{\Gamma_F} dq_0 \frac{1}{q_0^2 - \omega_m^2} \times$$
(3.61)

tomando para Γ_F cualquier camino que esquive al polo en $-\omega_m$ por debajo y al polo en $+\omega_m$ por arriba. De este modo vemos que, en general, la anti-transformada de Fourier de las funciones de Green (3.43), (3.55) y (3.57) (que tienen la forma $G(x) = \int d\vec{q} \int_{\Gamma_G} dq_0 \frac{1}{q_0^2 - \omega_G^2} \times e^{i(q_0 t - \vec{q}.\vec{r})}$) son funcionales G que actúan sobre funciones de prueba $\varphi(q_0, \vec{q})$ que son analíticas (en q_0) en una región que contiene a Γ_G :

$$G\{\varphi\} = \int d\vec{q} \int_{\Gamma_G} dq_0 \frac{1}{q_0^2 - \omega_G^2} \times \varphi(q_0, \vec{q})$$
(3.62)

En particular, $G\{e^{iqx}\}$ es la transformada de Fourier de la funcional analítica G (ver ref. [32]) la cual es precisamente la función de Green G(x). La funcional "delta" δ_{z_0} es la que evalúa a una función de prueba en el punto z_0 ($\delta_{z_0}\{\varphi\} = \varphi(z_0)$). En el caso de las funcionales analíticas podemos representar a esta funcional vía el teorema de Cauchy (ver referencia [32] y también [10] y [33]):

$$\delta_{z_0} = \frac{1}{2\pi i} \oint dz \, \frac{1}{z - z_0} \times \tag{3.63}$$

Esta funcional δ será llamada real o compleja dependiendo de que z_0 sea un número real o complejo.

Si definimos la funcional G según

$$G = \int d\vec{q} \int_R dq_0 \frac{1}{q_0^2 - \omega^2} \times$$
(3.64)

la cual, al estar definida como una integración sobre R, se puede asociar con la función G(q) en (3.48), obtenemos de (3.55) y (3.56), que la anti-transformada de Fourier de W(x) resulta

$$W = \int d\vec{q} \int_{\Gamma_W} dq_0 \frac{1}{q_0^2 - \omega^2} \times$$

$$= \int d\vec{q} \int_{R+\frac{1}{2}(C_{-\omega}-C_{\omega})} dq_0 \frac{1}{2\omega} \left\{ \frac{1}{q_0-\omega} - \frac{1}{q_0+\omega} \right\} \times$$

$$= G - \frac{1}{2} \int \frac{d\vec{q}}{2\omega} \left[\int_{C_{-\omega}} dq_0 \frac{1}{q_0+\omega} \times + \int_{C_{\omega}} dq_0 \frac{1}{q_0-\omega} \times \right]$$

$$= G - i\pi \int d\vec{q} \frac{1}{2\omega} [\delta_{\omega} + \delta_{-\omega}] \qquad (3.65)$$

Similarmente, de (3.57) y (3.58), resulta para la anti-transformada de Fourier de $\overline{W}(x)$

$$\overline{W} = \overline{G} + i\pi \int d\vec{q} \frac{1}{2\overline{\omega}} [\delta_{\overline{\omega}} + \delta_{-\overline{\omega}}]$$
(3.66)

donde \overline{G} se obtiene de (3.64) con el reemplazo $\omega \to \overline{\omega}$.

Consideremos ahora el caso en que ω tiende al eje real ($Im\omega > 0$). Usando la notación usual podemos escribir a la funcional δ por medio de la "función" δ de Dirac según:

$$\delta_{\omega} = \int_{R} dq_0 \,\delta(q_0 - \omega) \times \tag{3.67}$$

con lo cual (3.65) toma la forma

$$W = \int d\vec{q} \int_{R} dq_{0} \left(\frac{1}{q_{0}^{2} - \omega^{2} - i\epsilon} - \frac{i\pi}{2\omega} [\delta(q_{0} - \omega) + \delta(q_{0} + \omega)] \right) \times$$
$$= \int d\vec{q} \int_{R} dq_{0} \left[\frac{1}{q_{0}^{2} - \omega^{2} - i\epsilon} - i\pi\delta(q_{0}^{2} - \omega^{2}) \right] \times$$
$$= \int d\vec{q} \int_{R} dq_{0} P\left[\frac{1}{q_{0}^{2} - \omega^{2}} \right] \times$$
(3.68)

donde P es la prescripción valor principal. Similarmente \overline{W} tiende a

$$\overline{W} = \int d\vec{q} \int_{R} dq_{0} \left[\frac{1}{q_{0}^{2} - \omega^{2} + i\epsilon} + i\pi\delta(q_{0}^{2} - \omega^{2}) \right] \times$$
$$= \int d\vec{q} \int_{R} dq_{0} P \left[\frac{1}{q_{0}^{2} - \omega^{2}} \right] \times$$
(3.69)

Vemos entonces que ambas funcionales de Wheeler son la extensión de la funcional de Green valor principal a valores complejos del parámetro de masa. Las ecuaciones (3.65) y (3.66) son similares a las ecuaciones para el caso de masas reales:

$$P = \overline{F} - i\pi\delta(q^2 - m^2) \qquad P = F + i\pi\delta(q^2 - m^2) \qquad (3.70)$$

las cuales relacionan la función de Feynman F con la función valor principal de Cauchy. En realidad, cuando $\vec{q}^2 >> m^2$ los polos de G(q) y $\overline{G}(q)$ se aproximan al eje real q_0 en posiciones similares a la correspondiente para la prescripción " $i\epsilon$ " de Feynman (para las funciones anticausales y causales, respectivamente).

En resúmen, en este capítulo mostramos como tratar a los modos complejos, mediante el análisis de un campo que obedece una ecuación relativamente sencilla de orden superior.

La ecuación cuántica de Heisenberg lleva a las relaciones de conmutación que obedecen los coeficientes del desarrollo en soluciones exponenciales. Estas relaciones son las usuales para los operadores de creación y destrucción para el modo de masa real, mientras que para los modos complejos las relaciones de conmutación se asemejan a los operadores canónicos de posición e impulso. Esto permite encontrar a las autofunciones de energía definida y en particular al vacío de los modos complejos. De esta manera fue posible calcular los valores medios de vacío y los propagadores correspondientes que, para los modos complejos resultan ser las funciones de Wheeler, mitad avanzadas y mitad retardadas. Por último expresamos a las transformadas de Fourier de estos propagadores como funcionales analíticas, lo cual resultará adecuado para el cálculo de los diagramas de Feynman.

Capítulo 4

Unitariedad Perturbativa

En este capítulo calcularemos la auto-energía (para una interacción $\lambda \phi^3$) correspondiente a un sistema cuyo lagrangiano libre está dado por la ecuación (3.2). Luego, estudiaremos sobre este diagrama la unitariedad de la teoría. Como vimos en el capítulo 1, el teorema óptico relaciona la parte absortiva de la dispersión de una partícula hacia adelante con la sección eficaz total de decaimiento de esa partícula. En la parte absortiva, el operador \hat{T} interviene linealmente, mientras que en la sección eficaz interviene cuadráticamente (cf. (1.14)). Como el teorema óptico se debe verificar orden a orden, tenemos por ejemplo que la parte absortiva de la auto-energía a segundo orden, debe igualarse con la sección eficaz asociada a la desintegración de la partícula a primer orden. Puesto de otra manera, el cálculo de la parte absortiva nos dice cuales son los modos que debemos poner en las "patas externas" de modo que se verifique unitariedad. Por lo tanto, para que el diagrama de auto-energía sea consistente con unitariedad y la eliminación de los modos complejos del espacio asintótico deberá ocurrir que su parte absortiva no dependa de las masas complejas.

4.1 Cálculo de Convoluciones

En el próximo capítulo veremos que si bien el vacío en el sector de los modos complejos

 \cdot s aniquilado por ninguno de los operadores b, c ó sus adjuntos, la auto-energía a segundo orden está dada, como es usual, por la convolución de los propagadores.

Según vimos, la representación natural de los propagadores se realiza por medio de funcionales analíticas. Consideremos por simpleidad el caso de una única variable. La convolución de dos funcionales (no necesariamente analíticas) F y G se define de acuerdo a:

$$F * G\{\varphi\} = F_1 G_2 \varphi(q_1 + q_2) \tag{1.1}$$

donde los subíndices en F y G se refieren a la variable de φ sobre la cual actúan las funcionales correspondientes. Veamos que ésta es la generalización de la convolución de funciones. En efecto, en el caso en que las funcionales toman la forma

$$F = \int_{-\infty}^{+\infty} dq f(q) \times \qquad \qquad G = \int_{-\infty}^{+\infty} dq g(q) \times \qquad (1.2)$$

resulta de (4.1)

$$F * G\{\varphi\} = \int_{-\infty}^{+\infty} dq_1 \int_{-\infty}^{+\infty} dq_2 f(q_1)g(q_2) \times \varphi(q_1 + q_2)$$

=
$$\int_{-\infty}^{+\infty} dq \int_{-\infty}^{+\infty} dq_1 f(q_1)g(q - q_1) \times \varphi(q)$$
(4.3)

de doude obtenemos

$$F * G = \int_{-\infty}^{+\infty} dq f * g(q) \times$$
(4.1)

De (4.1) obtenemos la generalización directa para el cálculo del producto de convolución de dos funcionales de Green (3.62):

$$G_1 * G_2\{\varphi\} = \int d\vec{q_1} \int d\vec{q_2} \int_{\Gamma_1} dq_1 \int_{\Gamma_2} dq_2 \frac{\varphi(q_1 + q_2, \vec{q_1} + \vec{q_2})}{(q_1^2 - \omega_1^2)(q_2^2 - \omega_2^2)}$$
(4.5)

Notamos que la transformada de Fourier de la funcional convolución es igual al producto de las transformadas de Fourier, ya que si φ es la exponencial, $\varphi = e^{i(q_1+q_2)x} =$ $e^{iq_1x}e^{iq_2x}$ has integrales se factorizan:

$$G_1 * G_2 \{ e^{iqx} \} = G_1 \{ e^{iq_1x} \} G_2 \{ e^{iq_2x} \} = G_1(x) G_2(x)$$

Cambiando en (4.5) las variables espaciales a $\vec{k} = \vec{q_1} + \vec{q_2}, \ \vec{q} = \vec{q_2}$, y usando la representación de Cauchy:

$$\varphi(q_1 + q_2, \vec{k}) = \frac{1}{2\pi i} \oint_{\Gamma_{12}} dk_0 \frac{\varphi(k_0, \vec{k})}{k_0 - q_1 - q_2}$$
(1.6)

donde Γ_{12} es un camino que rodea, en sentido positivo, a los puntos de la forma $q_1 + q_2$ con $q_1 \in \Gamma_1$, $q_2 \in \Gamma_2$; obtenemos:

$$G_1 * G_2\{\varphi\} = \frac{1}{2\pi i} \oint_{\Gamma_{12}} dk_0 \int d\vec{k} \, G(k_0, \vec{k}) \, \varphi(k_0, \vec{k}) \tag{1.7}$$

$$G(k_0, \vec{k}) = \int d\vec{q} \int_{\Gamma_1} dq_1 \int_{\Gamma_2} dq_2 \left[(q_1^2 - \omega_1^2)(q_2^2 - \omega_2^2)(k_0 - q_1 - q_2) \right]^{-1} \\ = \int \frac{d\vec{q}}{4\omega_1\omega_2} \int_{\Gamma_1} dq_1 \int_{\Gamma_2} dq_2 \left(\frac{1}{q_1 - \omega_1} \frac{1}{q_2 - \omega_2} + \frac{1}{q_1 + \omega_1} \frac{1}{q_2 + \omega_2} - \frac{1}{q_1 - \omega_1} \frac{1}{q_2 - \omega_2} - \frac{1}{q_1 - \omega_1} \frac{1}{q_2 - \omega_2} \right) \frac{1}{k_0 - q_1 - q_2}$$
(4.8)

$$\omega_1^2 = (\vec{k} - \vec{q})^2 + m_1^2 , \ \omega_2^2 = \vec{q}^2 + m_2^2 ; \ m_i \in C$$
(4.9)

Por lo tanto, las integrales sobre q_1 y q_2 que definen a $G(k_0, \vec{k})$ resultan ser de la forma

$$\int_{\Gamma_1} dq_1 \int_{\Gamma_2} dq_2 \frac{1}{q_1 - z_1} \frac{1}{q_2 - z_2} \frac{1}{k_0 - q_1 - q_2}$$
(1.10)

donde se supone que z_1 y z_2 son números complejos. En general, Γ_i es un camino que contiene al eje real más posibles lazos (cf. (3.56), (3.58)) ($\Gamma_F = R$). Cuando Γ_i contiene a un lazo, podemos usar en (4.10) la fórmula de Cauchy. Cuando la integración se realiza a lo largo del eje real, usamos (ver [34])

$$\int_{-\infty}^{+\infty} dx \frac{1}{(x-a)(x-b)} = 2i\pi \frac{(\eta_a - \eta_b)}{a-b}$$
(1.11)

donde $\eta_z = \frac{1}{2} sg \mathcal{I}m z$. Luego de hacer en (4.8) las integrales (4.10) obtenemos

$$G_1 * G_2\{\varphi\} = \int dk_0 \int d\vec{k} \left[2\pi i \int \frac{d\vec{q}}{4\omega_1\omega_2} I_{12}(k_0, \vec{k}, \vec{q}) \right] \varphi(k_0, \vec{k})$$
(4.12)

donde la expresión para I_{12} depende de los caminos Γ_1 y Γ_2 . Tenemos básicamente tres casos de interés:

i- $\Gamma_1 = R$, $\Gamma_2 = R$

Calculemos por ejemplo la integral (4.10) correspondiente al primer término en (4.8). El resultado luego de usar dos veces la fórmula (4.11) (con $z_1 = \omega_1, z_2 = \omega_2$) da:

$$(2\pi i)^2 (\eta_{\omega_1} + \eta_{\omega_2}) \frac{(\eta_{\omega_1 + \omega_2} - \eta_{k_0})}{k_0 - \omega_1 - \omega_2}$$

Debido al factor $\eta_{\omega_1} + \eta_{\omega_2}$, esta integral es no nula sólo si ω_1 y ω_2 están en el semiplano superior ($\eta_{\omega_1} = \eta_{\omega_2} = \pm \frac{1}{2}$) o en el semiplano inferior ($\eta_{\omega_1} = \eta_{\omega_2} = -\frac{1}{2}$), lo cual implica que $\omega_1 + \omega_2$ estará en el semiplano superior ($\eta_{\omega_1+\omega_2} = \pm \frac{1}{2}$) o en el semiplano inferior ($\eta_{\omega_1+\omega_2} = -\frac{1}{2}$), respectivamente. Ahora bien, la integración sobre k_0 , en (4.7), se debe realizar sobre Γ_{12} que es, en este caso, un camino que rodea en sentido positivo a los puntos del eje real. En concecuencia, Γ_{12} corre justo debajo de R ($\eta_{k_0} = -\frac{1}{2}$) de izquierda a derecha y justo sobre R ($\eta_{k_0} = \pm \frac{1}{2}$) de derecha a izquierda. Entonces, cuando $\eta_{\omega_1} = \eta_{\omega_2} = \pm \frac{1}{2}$ sólo sobrevive la parte de Γ_{12} con $\eta_{k_0} = \pm \frac{1}{2}$ que puede ser deformada en $\pm R$ para dar

$$(2\pi i)^2 (\eta_{\omega_1} + \eta_{\omega_2}) \left[\frac{\pm 1}{k_0 - \omega_1 - \omega_2} \right]_{\pm R} = (2\pi i)^2 (\eta_{\omega_1} + \eta_{\omega_2}) \left[\frac{1}{k_0 - \omega_1 - \omega_2} \right]_R$$

donde el subíndice R en el corchete significa que k_0 debe integrarse a lo largo del eje real. Comparando con (4.12) vemos que éste es el primer término que aparecerá en I_{12} (salvo el factor $(2\pi i)^2$). Los términos restantes se deducen de manera análoga para dar:

$$I_{12} = (\eta_{\omega_1} + \eta_{\omega_2}) \left[\frac{1}{k_0 - \omega_1 - \omega_2} - \frac{1}{k_0 + \omega_1 + \omega_2} \right]_R$$

$$-(\eta_{\omega_1} - \eta_{\omega_2}) \left[\frac{1}{k_0 - \omega_1 + \omega_2} - \frac{1}{k_0 + \omega_1 - \omega_2} \right]_R$$
(4.13)

ii: $\Gamma_1 = C_{\omega_1}, \ \Gamma_2 = R$

Aqui usamos la fórmula de Cauchy y (4.11) para obtener

$$I_{12} = \left[\frac{\frac{1}{2} + \eta_{\omega_2}}{k_0 - \omega_1 - \omega_2}\right]_{B_{\omega_1}} + \left[\frac{\frac{1}{2} - \eta_{\omega_2}}{k_0 - \omega_1 - \omega_2}\right]_{A_{\omega_1}} - \left[\frac{\frac{1}{2} + \eta_{\omega_2}}{k_0 - \omega_1 + \omega_2}\right]_{A_{\omega_1}} - \left[\frac{\frac{1}{2} - \eta_{\omega_2}}{k_0 - \omega_1 + \omega_2}\right]_{B_{\omega_1}}$$
(4.14)

donde A_z (resp. B_z) corre paralelo a R justo sobre z (resp. debajo de z).

Para $\Gamma_1 = C_{-\omega_1}$, $\Gamma_2 = R$ el resultado es (4.14) con $\omega_1 \to -\omega_1$ y un cambio de signo en todos los términos. Cuando $\Gamma_1 = R$ y $\Gamma_2 = C_{\omega_2}$, es suficiente intercambiar en (4.14) ω_1 y ω_2 .

iii- $\Gamma_1 = C_{\omega_1}, \Gamma_2 = C_{\pm \omega_2}$

En este caso, en el que los caminos de integración son dos lazos, una aplicación doble de la fórmula de Cauchy lleva a:

$$I_{12} = \pm \left[\frac{1}{k_0 - \omega_1 + \omega_2} \right]_{C_{\omega_1 + \omega_2}}$$
(4.15)

y para $\Gamma_1=C_{\pm\omega_1},\,\Gamma_2=C_{\pm\omega_2}$ obtenemos

$$I_{12} = \mp \left[\frac{1}{k_0 + \omega_1 \mp \omega_2}\right]_{C - \omega_1 \pm \omega_2}$$
(1.16)

Con estas fórmulas se obtiene, como era de esperar, que la convolución de una funcional de Green retardada con una avanzada da cero. Además, la convolución de dos funcionales de Green retardadas (resp. avanzadas) da otra funcional retardada (resp. avanzada).

La convolución de dos propagadores de Feynman (eq. (3.43)) corresponde al caso

Teniendo en cuenta que ω_1 y ω_2 tienen una pequeña parte imaginaria negativa

$$(\eta_{\omega_1} = \eta_{\omega_2} = -\frac{1}{2}) \text{ obtenemos (cf. (4.12) y(4.13))}$$

$$F * F\{\varphi\} = \int_R dk_0 \int d\vec{k} \left[2\pi i \int \frac{d\vec{q}}{4\omega_1\omega_2} \left(\frac{1}{k_0 + \omega_1 + \omega_2} - \frac{1}{k_0 - \omega_1 - \omega_2} \right) \right] \varphi(k_0, \vec{k})$$
(4.17)

Para un dado valor de energía-momento real p_0, \vec{p} , la contribución $\Sigma(p)$ de esta funcional a la auto-energía es directamente el corchete en (4.17) con $k_0, \vec{k} \to p_0, \vec{p}$. Para calcular $\Sigma(p)$ ($m_1 = m_2 = m$) podemos pasar al sistema del centro de masa, integrar las variables angulares y cambiar la variable radial a $s = 4(\vec{q}^2 + m^2)$. El resultado es

$$\Sigma(p) = 2\pi i \frac{\pi^{\frac{\nu-1}{2}}}{\Gamma(\frac{\nu-1}{2})} \int_{4m^2}^{\infty} ds \, s^{-\frac{1}{2}} \frac{(s-4m^2)^{\frac{\nu-3}{2}}}{s-p^2-i\epsilon} \quad (p^2 = p_0^2 - \vec{p}^2) \tag{1.18}$$

donde ν es la dimensión del espacio-tiempo. El resultado de la integración es (ver [31])

$$\Sigma(p) = i\pi^{\frac{\nu}{2}}(m^2)^{\frac{\nu-4}{2}}\Gamma(\frac{4-\nu}{2})F(1,\frac{4-\nu}{2};\frac{3}{2};\frac{p^2+i\epsilon}{4m^2})$$
(4.19)

Esta es la auto-energía usual la cual presenta un corte (cf. (4.18)) a lo largo del eje real p^2 desde $4m^2$ a ∞ , donde físicamente es posible la producción de un par (mm). La sección eficaz total para este proceso está dada (salvo factores) por la discontinuidad en el corte; la cual se obtiene de (4.17) o (4.18) tomando la parte absortiva de $\Sigma(p)$:

$$\mathcal{I}m\,i\Sigma(p) = -2\pi^2 \int \frac{d\vec{q}}{4\omega_1\omega_2} (\delta(p_0 - \omega_1 - \omega_2) + \delta(p_0 + \omega_1 + \omega_2)) \quad (4.20)$$

$$= -2\pi^2 \frac{\pi^{\frac{\nu-1}{2}}}{\Gamma(\frac{\nu-1}{2})} (p^2)^{-\frac{1}{2}} (p^2 - 4m^2)_+^{\frac{\nu-3}{2}}$$
(1.21)

Notamos que la función $\mathcal{I}m i\Sigma(p)$ en (4.20) puede asociarse con la funcional:

$$\int_{R} dp_{0} d\vec{p} \,\mathcal{I}m \,i\Sigma(p) \times$$

$$= -2\pi^{2} \int_{R} dp_{0} d\vec{p} \int \frac{d\vec{q}}{4\omega_{1}\omega_{2}} (\delta(p_{0} - \omega_{1} - \omega_{2}) + \delta(p_{0} + \omega_{1} + \omega_{2})) \times \quad (4.22)$$

y escribiendo esta expresión por medio de funcionales δ de Cauchy obtenemos la funcional "discontinuidad":

$$\int_{R} dk_0 \int d\vec{k} \,\mathcal{I}m \,i\Sigma(k) \times = i\pi \int dk_0 \int d\vec{k}$$

$$\int \frac{d\vec{q}}{4\omega_1\omega_2} \left(\left[\frac{1}{k_0 - \omega_1 - \omega_2} \right]_{C_{\omega_1 + \omega_2}} + \left[\frac{1}{k_0 + \omega_1 + \omega_2} \right]_{C_{-\omega_1 - \omega_2}} \right) \times \quad (4.23)$$

4.2 Cálculo de la Funcional $W_1 * W_2$

Cualquier propagador de Wheeler está dado por (3.55) donde el camino de Wheeler Γ_W tiene la forma general (cf. (3.56), (3.58))

$$\Gamma_W = R + \eta_\omega (C_{-\omega} - C_\omega) \tag{1.21}$$

Por lo tanto, la convolución de dos funcionales de Wheeler está dada por (4.12) donde Γ_1 y Γ_2 tienen ambos la forma (4.24). De (4.5), podemos obtener a $W_1 * W_2$ como una superposición de los cuatro casos (cf. (4.24))

a) $\Gamma_1 = R$, $\Gamma_2 = R$ b) $\Gamma_1 = R$, $\Gamma_2 = \eta_{\omega_2}(C_{-\omega_2} - C_{\omega_2})$ c) $\Gamma_1 = \eta_{\omega_1}(C_{-\omega_1} - C_{\omega_1})$, $\Gamma_2 = R$ d) $\Gamma_1 = \eta_{\omega_1}(C_{-\omega_1} - C_{\omega_1})$, $\Gamma_2 = \eta_{\omega_2}(C_{-\omega_2} - C_{\omega_2})$

Todos estos casos pueden obtenerse de las fórmulas (4.13) a (4.16). Un exámen cuidadoso de I_{12} muestra que los únicos caminos que resultan son lazos que rodean a los cuatro polos. Tomemos por ejemplo el término con $(k_0 - \omega_1 - \omega_2)^{-1}$. Calculemos entonces el camino Γ sobre el cual hay que integrar a k_0 en la expresión del I_{12} total (los distintos factores que aparezcan los iremos absorbiendo en los caminos).

La contribución a Γ , proveniente de a), al camino sobre el cual hay que integrar a k_0 en I_{12} se obtiene del primer término en (4.13):

 $\Gamma_n = (\eta_{\omega_1} + \eta_{\omega_2})R$

Similarmente, agregando los pesos que aparecen al camino de integración, obtenemos de (1.14):

$$\Gamma_{b} = -\eta_{\omega_{2}}(\frac{1}{2} + \eta_{\omega_{1}})B_{\omega_{2}} - \eta_{\omega_{2}}(\frac{1}{2} - \eta_{\omega_{1}})A_{\omega_{2}}$$

 $\Gamma_{c} = -\eta_{\omega_{1}}(\frac{1}{2} + \eta_{\omega_{2}})B_{\omega_{1}} - \eta_{\omega_{1}}(\frac{1}{2} - \eta_{\omega_{2}})A_{\omega_{1}}$

Finalmente, obtenemos que la contribución al camino proveniente de d) resulta (cf. (4.15)):

 $\Gamma_d = \eta_{\omega_1} \eta_{\omega_2} C_{\omega_1 + \omega_2}$

La contribución total es $\Gamma = \Gamma_a + \Gamma_b + \Gamma_c + \Gamma_d$. Notamos primero que $(k_0 - \omega_1 - \omega_2)^{-1}$ es analítica en una franja que contiene a ω_1 , de modo que $B_{\omega_1} - A_{\omega_1}$ es equivalente a cero. (recordamos que A_z (resp. B_z) corre paralelo a R justo sobre z (resp. debajo de z)). Análogamente, $B_{\omega_2} - A_{\omega_2} \approx 0$.

Tenemos entonces $\Gamma = (\eta_{\omega_1} + \eta_{\omega_2})R - \eta_{\omega_1}B_{\omega_1} - \eta_{\omega_2}B_{\omega_2} + \eta_{\omega_1}\eta_{\omega_2}C_{\omega_1+\omega_2}$. Ahora bien, si $\eta_{\omega_1} = \eta_{\omega_2}$, entonces el punto $\omega_1 + \omega_2$ queda fuera de la franja determinada por R y B_{ω_1} , asi también como de la franja determinada por R y B_{ω_2} . Por lo tanto, resulta $B_{\omega_1} \approx R$, $B_{\omega_2} \approx R$ y $\Gamma = \frac{1}{4}C_{\omega_1+\omega_2}$. En cambio, si $\eta_{\omega_1} = -\eta_{\omega_2}$, entonces $\Gamma = \eta_{\omega_1}(B_{\omega_2} - B_{\omega_1}) - \frac{1}{4}C_{\omega_1+\omega_2}$. Pero entonces $\omega_1 + \omega_2$ queda necesariamente situado en la franja determinada por B_{ω_1} y B_{ω_2} , con lo cual $\eta_{\omega_1}(B_{\omega_2} - B_{\omega_1})$ puede reducirse a un lazo (con peso $\frac{1}{2}$) que rodea a $\omega_1 + \omega_2$ en sentido positivo, obteniéndose nuevamente $\Gamma = \frac{1}{2}C_{\omega_1+\omega_2} - \frac{1}{4}C_{\omega_1+\omega_2} = \frac{1}{4}C_{\omega_1+\omega_2}$.

El resto de los polos pueden tratarse del mismo modo, obteniéndo finalmente:

$$4I_{12} = \left[\frac{1}{k_0 - \omega_1 - \omega_2}\right]_{C_{\omega_1 + \omega_2}} + \left[\frac{1}{k_0 + \omega_1 + \omega_2}\right]_{C_{-\omega_1 - \omega_2}} - \left[\frac{1}{k_0 - \omega_1 + \omega_2}\right]_{C_{\omega_1 - \omega_2}} - \left[\frac{1}{k_0 + \omega_1 - \omega_2}\right]_{C_{\omega_2 - \omega_1}}$$
(4.25)

Este resultado se puede escribir usando la funcional vista en (3.65):

$$D = \int d\vec{q} \frac{1}{2\omega} [\delta_{\omega} + \delta_{-\omega}]$$

= $\frac{1}{2\pi i} \int d\vec{q} \int_{C_{\omega} - C_{-\omega}} dq_0 \frac{1}{q_0^2 - \omega^2} \times$ (4.26)

que para el caso de masas reales (con la notación usual en término de funciones δ)

toma la forma

$$D = \int d\vec{q} \int dq_0 \,\delta(q_0^2 - \omega^2) \times \tag{1.27}$$

Si aplicamos (4.15) y (4.16) obtenemos para la convolución de dos funcionales de tipo D (salvo un factor $-\pi^2$, la expresión de I_{12} dada en (4.25) pero con todos los términos con signo positivo. Por lo tanto, la parte de la funcional $W_1 * W_2$ asociada a la integración sobre los lazos que rodean a $\pm(\omega_1 + \omega_2)$ opera como $-\pi^2 D_1 * D_2$, mientras que la parte asociada con los polos $\pm(\omega_1 - \omega_2)$ opera como $\pi^2 D_1 * D_2$.

4.3 Cálculo de la Auto-energía

El propagador para el campo ϕ está dado por (3.41), y puede ser representado por la funcional

$$G\{\varphi\} = \alpha F\{\varphi\} + \beta W\{\varphi\} + \overline{\beta W}\{\varphi\}$$
(1.28)

La convolución de G consigo misma da lugar a seis términos diferentes

$$G * G = \alpha^{2} F * F + 2\alpha\beta F * W + 2\alpha\overline{\beta} F * \overline{W} + \beta^{2} W * W + \overline{\beta}^{2} \overline{W} * \overline{W} + 2\beta\overline{\beta} W * \overline{W}$$
(4.29)

La contribución del primer término en el miembro de la derecha está dado por (1.19).

Cuando consideramos un proceso de dispersión con partículas entrantes reales, la energía es real y positiva. La contribución en la capa de masa es real sólo para el primer término y último término de (4.29). Este último término en particular es el importante para unitariedad, pues un par $\mu\overline{\mu}$ en la capa de masa podría conservar la energía-momento entrante. Sin embargo, tal contribución violaría unitariedad, debido a que los modos complejos han sido suprimidos de los estados asintóticos. Veamos entonces cual es la contribución del "gráfico importante" $W * \overline{W}$ a la auto-energía de una partícula física.

Ahora podemos volver a (4.12) y hacer la integración sobre $d\vec{q}$. Teniendo en cuenta (4.9), vemos que podemos integrar sobre los ángulos de \vec{q}_T (\vec{q}_T , $\vec{k} = 0$), quedando

$$\int \frac{d\vec{q}}{4\omega_1\omega_2} I_{12} = \frac{\pi^{\frac{\nu-2}{2}}}{\Gamma(\frac{\nu-2}{2})} \int_{-\infty}^{+\infty} dq_L \int_0^\infty dq_T^2 \frac{(q_T^2)^{\frac{\nu-3}{2}}}{4\omega_1\omega_2} I_{12}$$
(4.30)

donde ahora $\omega_1^2 = q_T^2 + (q_L - k)^2 + \mu_1^2$, $\omega_2^2 = q_T^2 + q_L^2 + \mu_2^2$. En (4.30), para cada valor de q_L , q_T tenemos polos en $\pm \omega_1(q_L, q_T) \pm \omega_2(q_L, q_T)$, cuyos residuos tienen un peso $\frac{q_L^{p-1}}{4\omega_1\omega_2}$. Analicemos la contribución del polo en $\Omega = \omega_1 + \omega_2$ cuando $\mu_1 = \mu |y| \mu_2 = \overline{\mu}$. Para $q_L = \frac{k}{2}$, Ω es un número real ($\omega_2 = \overline{\omega}_1$) que va de $\mathcal{R}cal\{(k^2 + 4m^2)^{\frac{1}{2}}\}$ hasta ∞ $(0 \leq q_T \leq \infty)$. Para cualquier otro valor de q_L , Ω es complejo con $\mathcal{I}m \ \Omega > 0$ (resp. $\mathcal{I}m \ \Omega < 0$) cuando $\frac{k}{2} < q_L < \infty$ (resp. $-\infty < q_L < \frac{k}{2}$). La parte imaginaria de ω^2 $(= \mathcal{I}m \ \mu^2)$ es una constante, mientras que la parte real crece linealmente con q_T^2 . Por esta razón $\mathcal{I}m \ \omega$ crece e $\mathcal{I}m \ \overline{\omega}$ decrece a medida que q_T^2 crece de cero a infinito. Esto significa que $\Omega(q_L, q_T)$ tiene una parte imaginaria acotada y está contenida en una región en forma de pez (ver ref. [12]) a la que llamaremos simplemente "pez".

Es interesante comparar la influencia de los polos $\Omega = \omega_1 + \omega_2$, en (4.30) y (4.17). Hay dos diferencias fundamentales. La primer diferencia es que la funcional (4.17) está asociada con una integración sobre k_0 a lo largo de un camino de Feynman. E (1.30), la funcional implica una integración sobre los lazos $C_{\omega_1+\omega_2}$. Mientras que en (1.17) la integración sobre k_0 toma la contribución de todos los polos (cf. (4.18)); en (4.30) la integración toma sólo la contribución de los residuos correspondientes. Más aún, la convolución de dos funcionales de Wheeler es similar a la funcional discontinuidad (4.23) (comparar con (4.25)) pues en ambas funcionales I_{12} sólo involucra a integraciones sobre lazos. El segundo punto para ser destacado es que mientras en (4.17) las masas son reales y Ω se encuentra en el eje real para cualquier valor real de \vec{q} ; en (4.30) las masas son complejas y Ω ocupa la región "pez" descrita anteriormente, sobre la cual q_L , q_T son coordenadas generales. Pueden elegirse otras coordenadas. Por ejemplo las componentes real e imaginaria de $\Omega = k_0$. Para estas coordenadas. la parte de la funcional $W * \overline{W}$ que viene de los residuos en $\omega_1 + \omega_2$ es (cf. (1.12) y (4.30))

$$\int dk_0 \int d\vec{k} 2\pi i \int \frac{d\vec{q}}{16\omega_1\omega_2} \left[\frac{1}{k_0 - \omega_1 - \omega_2} \right]_{C_{\omega_1 + \omega_2}} \varphi(k_0, \vec{k})$$
(4.31)
$$= (2\pi i)^2 \int d\vec{k} \int \frac{d\vec{q}}{16\omega_1\omega_2} \varphi(\omega_1 + \omega_2, \vec{k})$$

$$= -\pi^2 \frac{\pi^{\frac{\nu-2}{2}}}{\Gamma(\frac{\nu-2}{2})} \int d\vec{k} \int_{P_{cz}} dk_0 \frac{(q_1^2)^{\frac{\nu-3}{2}}}{4\omega_1\omega_2} \mathcal{J}\varphi(k_0, \vec{k})$$
(4.32)

donde \mathcal{J} es el jacobiano de la transformación y q_L , q_T se expresan como funciones de $\mathcal{R}ek_0$ e $\mathcal{I}m\ k_0$. En (4.32), dk_0 es un elemento de superficie sobre el plano complejo k_0 y la integración es sobre el pez.

Hemos visto que en (4.18) el corte físico en $\Sigma(p)$ es producido por la acumulación de polos que conservan la energía-momento real entrante p_0, \vec{p} . Estos eventos posibles están dados por las funciones δ presentes en la discontinuidad (4.20) y su acumulación lleva a la amplitud finita (4.21). Equivalentemente, en la funcional discontinuidad (1.23), todos los valores de \vec{q} están relacionados con funcionales δ reales, dando lugar a una discontinuidad finita en el corte (cf. (4.21)). Por el otro lado, en (4.31), los valores \vec{q} que producen un valor $\omega_1 + \omega_2$ real (una funcional δ real) tienen medida cero cuando se compara con el espacio de todos los \vec{q} . Esto es debido a que estos valores deben satisfacer la condición adicional $\mathcal{I}m \omega_1 + \mathcal{I}m \omega_2 = 0$.

Correspondientemente, en (4.32) tenemos para k_0 una integral de superficie de los residuos en los polos $\omega_1 + \omega_2$. Como estos "eventos" están dispersados sobre el pez, tenemos que su peso también está dispersado sobre esta región. Por lo tanto, teniendo en cuenta que el eje real p_0 tiene medida cero cuando se lo compara con una superficie (ver [35]), no hay contribución de (4.32) a la auto-energía de una partícula física. La misma situación ocurre para el resto de los términos en (4.25) y para W * W, $\overline{W} * \overline{W}$.

Para completar este cálculo de la auto-energía precisamos la convolución de una funcional de Feynman con una funcional de Wheeler. Para calcular F * W tomamos

nuevamente (4.5) y (4.12) pero ahora con $\Gamma_1 = R$ y $\Gamma_2 = R + \frac{1}{2}(C_{-\omega} - C_{\omega})$ (cf. (3.56)). Con (4.13), (4.14) y $\omega_1 = \omega_m$, $\omega_2 = \omega$ obtenemos $(\eta_{\omega_1} = \eta_{\omega_2} = -\frac{1}{2})$

$$I_{12} = [I_{FW}]_R + functionales \ \delta \ complete jas \tag{4.33}$$

donde

$$I_{FW} = -\frac{\omega_m(\vec{p} - \vec{q}) + \omega(\vec{q})}{p_0^2 - (\omega_m(\vec{p} - \vec{q}) + \omega(\vec{q}))^2} + \frac{\omega_m(\vec{p} - \vec{q}) - \omega(\vec{q})}{p_0^2 - (\omega_m(\vec{p} - \vec{q}) - \omega(\vec{q}))^2}$$
(4.31)

En (4.34), ω_m puede tomarse real (sin el agregado $-i\epsilon$ a la masa) pues, siendo ω compleja, no aparecen singularidades en el límite $\epsilon \to 0$. Similarmente, obtenemos para $F * \overline{W}$

$$I_{12} = [\overline{I}_{FW}]_R + functionales \ \delta \ complete jas \tag{4.35}$$

Por lo tanto, de (4.12) y (4.17), la contribución de (4.29) a la auto-energía de una partícula física con energía-momento p_0, \vec{p} es

$$\int d\vec{q} \frac{i\pi\alpha}{\omega_m(\vec{p}-\vec{q})} \left[-\frac{\alpha}{\omega_m(\vec{q})} \frac{\omega_m(\vec{p}-\vec{q}) + \omega_m(\vec{q})}{p_0^2 - (\omega_m(\vec{p}-\vec{q}) + \omega_m(\vec{q}))^2} + \frac{\beta}{\omega(\vec{q})} I_{FW} + \frac{\overline{\beta}}{\overline{\omega(q)}} \overline{I}_{FW} \right]$$
(1.36)

Como el segundo y tercer término en el corchete de (4.36) son complejos conjugados, su parte absortiva $\mathcal{Im}i(4.36)$ no involucra a los parámetros complejos μ , $\overline{\mu}$. Por lo tanto, la auto-energía es consistente con unitariedad y compatible con la eliminación de los modos complejos del espacio asintótico.

En resúmen, en este capítulo desarrollamos el cálculo del producto de convolución de dos funcionales analíticas en general. Aplicando estos métodos obtuvimos la convolución de dos funcionales de Feynman, dos funcionales de Wheeler y los productos de convolución cruzados. El camino asociado al producto F * F es también un camino de Feynman, pues esquiva por debajo a los polos con parte real negativa y esquiva por arriba a los polos con parte real positiva. El camino asociado a la convolución de dos funcionales de Wheeler se reduce a una integración sobre lazos que rodean

CAPITULO 4. UNITARIEDAD PERTURBATIVA

a los distintos polos (funcionales delta). Evaluamos entonces la auto-energía total a segundo orden, correspondiente a una interacción $\lambda \phi^3$, encontrando que su parte absortiva sólo se debe básicamente a la masa real; y es la sección eficaz total de desintegración (a primer orden) en dos partículas de masa m. En concecuencia, en el orden considerado, los estados de partícula son los únicos que deben incluirse en el espacio asintótico, en acuerdo con el requerimiento físico de la eliminación de los modos complejos de este espacio.

Capítulo 5

Propiedades de la Auto-energía

En este capítulo estudiaremos la invariancia de Lorentz y el comportamiento ultravioleta de la auto-energía. También mostraremos en la tercer sección que si bien el vacío no es aniquilado, como es habitual, por ninguno de los operadores b, c o sus adjuntos, sin embargo siguen valiendo las reglas de Wick en el orden de perturbaciones considerado. Es decir que el valor de expectación del producto cronológico de cuatro operadores de campo se puede escribir, como es usual, en término de las contracciones de dos operadores (propagadores de Wheeler).

5.1 Invariancia de Lorentz

En el capítulo 2 hemos construido el hamiltoniano (2.22) usando la simetría del sistema ante traslaciones temporales. De manera similar, usando el teorema de Nöether, se pueden construir los generadores de traslaciones espaciales para formar el P_{μ} y los generadores de rotaciones y "boosts" $M_{\mu\nu}$.

En el capítulo 3 usando la expresión de H en términos del campo ϕ obtuvinos, a nivel cuántico, las reglas de comutación que deben obedecer los campos componentes

 a_k , b_k y c_k de forma tal que II genere las traslaciones temporales del sistema. Usando este álgebra de operadores y la expresión de los generadores en términos de a_k , b_k y c_k se puede demostrar que se satisface el álgebra de Poincaré (ver [28] y también [29]):

$$[P_{\mu}, P_{\nu}] = 0$$

$$[M_{\mu\nu}, P_{\rho}] = i(\eta_{\mu\rho}P_{\nu} - \eta_{\nu\rho}P_{\mu}$$
(5.1)

$$[M_{\mu\nu}, M_{\rho\sigma}] = i(\eta_{\mu\rho}M_{\nu\sigma} - \eta_{\mu\sigma}M_{\nu\rho} + \eta_{\nu\sigma}M_{\mu\rho} - \eta_{\nu\rho}M_{\mu\sigma})$$
(5.2)

Por lo tanto, la teoría para los campos cuánticos con parámetros complejos de masa es una teoría relativista. Sin embargo, es claro que la teoría cuántica no termina en el álgebra de connutadores. La elección de las propiedades del vacío determina los propagadores de la teoría y de allí las amplitudes de probabilidad para los distintos procesos. Para que la teoría sea efectivamente invariante de Lorentz (es decir que las amplitudes de probabilidad lo sean), el vacío debe ser invariante de Lorentz. La cuantificación natural de los campos con parámetros complejos de masas nos llevó a definir el vacío vía la propiedad $P_{\mu}|0\rangle = 0$. Si tenemos una teoría relativista (es decir, que satisface el álgebra de Poincaré) y $|0\rangle$ es el único vector que satisface

$$P_{\mu}|0\rangle = 0 \tag{5.3}$$

se puede ver entonces que $M_{\mu\nu}|0\rangle = 0$, y por lo tanto $|0\rangle$ será el único estado invariante de Lorentz (ver referencia [26]). En efecto, aplicando ambos miembros en (5.1) a $|0\rangle$ resulta:

$$P_{\rho}M_{\mu\nu}|0\rangle=0$$

y como por hipótesis $|0\rangle$ es (salvo un factor) el único vector que satisface (5.3) resulta $M_{\mu\nu}|0\rangle = m_{\mu\nu}|0\rangle$, donde los $m_{\mu\nu}$ son antisimétricos (en particular $m_{\mu\mu} = 0$). Aplicando ahora ambos miembros de (5.2) a $|0\rangle$ se obtiene:

$$0 = \eta_{\mu\rho}m_{\nu\sigma} - \eta_{\mu\sigma}m_{\nu\rho} + \eta_{\nu\sigma}m_{\mu\rho} - \eta_{\nu\rho}m_{\mu\sigma}$$
(5.4)

y usando para μ , ν y σ valores distintos entre si, y $\rho = \nu$ resulta $m_{\nu\sigma} = 0$. Entonces, se obtiene finalmente $M_{\mu\nu}|0\rangle = 0$.

El vacío para el sistema (3.2) se puede escribir como el producto de los vacíos para los distintos modos \vec{k} . A su vez, en el sector complejo, el requerimiento de energía y momento nulo lleva a una única solución $(f^{(0)} = (z\bar{z})^{-\frac{1}{2}})$ que representa al vacío en cada modo (ver (3.24)). Por lo tanto podemos aplicar el argumento anterior para obtener que nuestra definición lleva a un vacío invariante de Lorentz para el sistema (3.2).

Es interesante comprobar la invariancia de Lorentz a nivel de las amplitudes de dispersión, donde intervienen partículas asintóticas con p_0, \vec{p} observables (es decir reales).

Consideremos la auto-energía dada en (4.36). Notamos primero que las integrales involucradas tienen la forma:

$$J_{\pm} = J_{12} \pm J_{21} \qquad \qquad J_{mn} = \int \frac{d\vec{q}}{\omega_m(\vec{q})} \frac{1}{D_{mn}} \qquad (m, n = 1, 2 \ m \neq n)$$

donde hemos llamado

$$D_{mn} = p_0^2 - (\omega_m(\vec{q}) \pm \omega_n(\vec{p} - \vec{q}))^2$$

Tomando la derivada respecto a p_0 obtenemos

$$\frac{\partial J_{\pm}}{\partial p_0} = -2p_0 \left(\int \frac{d\vec{q}}{\omega_1(\vec{q})} \frac{1}{D_{12}^2} \pm \int \frac{d\vec{q}}{\omega_2(\vec{q})} \frac{1}{D_{21}^2} \right)$$
(5.5)

Mientras que para la derivada de J_{12} respecto a p_i resulta

$$\frac{\partial J_{12}}{\partial p_i} = 2 \int \frac{d\vec{q}}{\omega_1(\vec{q})} \frac{p_i - q_i}{D_{12}^2} \frac{\omega_2(\vec{p} - \vec{q}) \pm \omega_1(\vec{q})}{\omega_2(\vec{p} - \vec{q})}$$

$$= 2 \int \frac{d\vec{q}}{\omega_1(\vec{q})} \frac{p_i - q_i}{D_{12}^2} \pm 2 \int \frac{d\vec{q}}{\omega_2(\vec{p} - \vec{q})} \frac{p_i - q_i}{D_{12}^2}$$

$$= 2 \int \frac{d\vec{q}}{\omega_1(\vec{q})} \frac{p_i - q_i}{D_{12}^2} \pm 2 \int \frac{d\vec{q}}{\omega_2(\vec{q})} \frac{q_i}{D_{21}^2}$$

con lo cual

$$\frac{\partial J_{\pm}}{\partial p_i} = 2p_i \left(\int \frac{d\vec{q}}{\omega_1(\vec{q})} \frac{1}{D_{12}^2} \pm \int \frac{d\vec{q}}{\omega_2(\vec{q})} \frac{1}{D_{21}^2} \right)$$
(5.6)

Entonces, de (5.5) y (5.6) obtenemos

$$p_0 \frac{\partial J_{\pm}}{\partial p_i} + p_i \frac{\partial J_{\pm}}{\partial p_0} = 0 \text{ and } p_i \frac{\partial J_{\pm}}{\partial p_j} - p_j \frac{\partial J_{\pm}}{\partial p_i} = 0$$

Estas ecuaciones implican que J_{\pm} es sólo una función de $p^2 = p_0^2 - \vec{p}^2$.

5.2 Comportamiento Ultravioleta

En esta sección estudiaremos el comportamiento ultravioleta de la auto-energía. Teniendo en cuenta que el sistema (3.2) es de orden superior, es de esperar, en principio. una mejora respecto del comportamiento ultravioleta para una teoría escalar de segundo orden. Al ser la teoría de orden superior tenemos por ejemplo, que la función de Green particular para la ecuación (3.1) asociada en el sector de los modos complejos con las funciones G(q) y $\overline{G}(q)$ (cf. (3.45)) se comporta en el régimen ultravioleta como q^{-6} . Por lo tanto, el orden superior mejora el comportamiento usual de la teoría. Sin embargo, los propagadores de la teoría son los de Wheeler W y \overline{W} los cuales difieren de las funcionales G y \overline{G} en funcionales δ (cf. (3.64), (3.65) y (3.66)). A diferencia del orden superior de la teoría, la presencia de estas δ tiende a desmejorar el comportamiento ultravioleta (ver [25]). Para los cálculos con propagadores de Wheeler el contaje de potencias no se puede realizar directamente como en el caso usual con propagadores de Feynman. En el caso usual, se puede hacer una rotación de Wick con lo cual queda claro cual es la contribución de cada propagador al comportamiento ultravioleta de un diagrama. En cambio, esto no es posible cuando hay propagadores de Wheeler pues los caminos de Wheeler no pueden rotarse sin pasar sobre los polos. Estudiaremos entonces el diagrama de auto-energía, calculado en (4.36), de manera directa.

Vimos en la sección anterior que la auto-energía calculada para el sistema (3.2) es invariante de Lorentz (es decir, sólo función de $p_0^2 - \vec{p}^2$). Por lo tanto, podemos tomar en (1.36) $\vec{p} = \vec{0}$ y hacer la substitución $p_0^2 \rightarrow p^2 (= p_0^2 - \vec{p}^2)$ con lo cual obtenemos que la auto-energía total está dada por

$$\int d\vec{q} \frac{i\pi\alpha}{\omega_m(q)} \left[-\frac{\alpha}{\omega_m(q)} \frac{2\omega_m(q)}{p^2 - 4\omega_m^2(q)} + \frac{\beta}{\omega(q)} I_{FW} + \frac{\overline{\beta}}{\overline{\omega}(q)} \overline{I}_{FW} \right]$$
(5.7)

$$I_{FW} = -\frac{(\omega_m(q) + \omega(q))}{p_0^2 - (\omega_m(q) + \omega(q))^2} + \frac{(\omega_m(q) - \omega(q))}{p_0^2 - (\omega_m(q) - \omega(q))^2}$$
(5.8)

donde hemos llamado $q^2 = \vec{q}^{\ 2}$.

Veamos ahora que los modos complejos actúan como reguladores de la autoenergía. El comportamiento dominante para valores grandes de q puede encontrarse si notamos que, cuando $q \to \infty$, $\omega_m \to \omega \to \overline{\omega} \to q$, y

$$\omega_m - \omega \rightarrow \frac{m^2 - \mu^2}{2q}$$
 $I_{FW} \rightarrow \frac{1}{2q} + \frac{m^2 - \mu^2}{2qp^2}$

Entonces, el integrando en (4.36) tiende a:

$$\frac{i\pi\alpha}{q^2} \left[\frac{\alpha}{2q} + \frac{\beta}{2q} \left(1 + \frac{m^2 - \mu^2}{p^2} \right) + \frac{\overline{\beta}}{2q} \left(1 + \frac{m^2 - \overline{\mu}^2}{p^2} \right) \right] =$$
$$= \frac{i\pi\alpha}{2q^3} \left[\alpha + \beta + \overline{\beta} + \frac{1}{2p^2} \left(\beta (m^2 - \mu^2) + \overline{\beta} (m^2 - \overline{\mu}^2) \right) \right]$$

Recordando que $\alpha^{-1} = (\mu^2 - m^2)(\overline{\mu}^2 - m^2)$ y $\beta^{-1} = (m^2 - \mu^2)(\overline{\mu}^2 - \mu^2)$ obtenemos que

$$\beta + \overline{\beta} = \frac{1}{(m^2 - \mu^2)(\overline{\mu}^2 - \mu^2)} + \frac{1}{(m^2 - \overline{\mu}^2)(\mu^2 - \overline{\mu}^2)}$$
$$= \frac{1}{(\overline{\mu}^2 - \mu^2)} \left[\frac{1}{(m^2 - \mu^2)} - \frac{1}{(m^2 - \overline{\mu}^2)} - \frac{1}{(m^2 - \overline{\mu}^2)} - \frac{1}{(\mu^2 - \overline{\mu}^2)} \right]$$
$$= \frac{-1}{(\mu^2 - m^2)(\overline{\mu}^2 - m^2)}$$
(5.9)

con lo cual resulta $\alpha + \beta + \overline{\beta} = 0$. También vemos que $\beta(m^2 - \mu^2) + \overline{\beta}(m^2 - \overline{\mu}^2) = 0$. Por lo tanto, el integrando tiende a cero más rápido que q^{-3} . Entonces, para $\nu = 4$, si bien cada uno de los términos en (5.7) llevan a integrales logarítmicamente divergentes (como es usual), la auto-energía total (5.7) es convergente.

5.3 El Valor de Expectación del Producto de Cua-

tro Operadores

Uno de los términos del cálculo perturvativo de la matriz S a segundo orden para la dispersión hacia adelante ($\langle p[S_2|p\rangle)$, se obtiene de

$$\int d^{\nu}x \int d^{\nu}y \; e^{ip(x-y)} \langle 0|T\{\phi_{\mu}(x)\phi_{\mu}^{*}(x)\phi_{\mu}(y)\phi_{\mu}^{*}(y)\}|0\rangle \tag{5.10}$$

donde los campos $\phi_{\mu}(x)$ y $\phi_{\mu}^{*}(x)$ commutan pues los grados de libertad en ϕ_{μ} se representan por $z, -i\frac{d}{dz}$ mientras que en ϕ_{μ}^{*} se representan por $\overline{z}, -i\frac{d}{d\overline{z}}$. Teniendo en cuenta que el vacío se factoriza en cada grado de libertad \vec{k} y cada grado \vec{k} se factoriza z, \overline{z} (pues $f^{(0)} = z^{-\frac{1}{2}}\overline{z}^{-\frac{1}{2}}$) tenemos que

$$\langle 0|T\{\phi_{\mu}(x)\phi_{\mu}^{*}(x)\phi_{\mu}(y)\phi_{\mu}^{*}(y)\}|0\rangle =$$

$$\theta_{xy}\langle 0|\phi_{\mu}(x)\phi_{\mu}(y)\phi_{\mu}^{*}(x)\phi_{\mu}^{*}(y)|0\rangle +$$

$$\theta_{yx}\langle 0|\phi_{\mu}(y)\phi_{\mu}(x)\phi_{\mu}^{*}(y)\phi_{\mu}^{*}(x)|0\rangle$$
(5.11)

sulta igual a

$$\theta_{xy} \langle 0 | \phi_{\mu}(x) \phi_{\mu}(y) | 0 \rangle \langle 0 | \phi_{\mu}^{*}(x) \phi_{\mu}^{*}(y) | 0 \rangle +$$

$$\theta_{yx} \langle 0 | \phi_{\mu}(y) \phi_{\mu}(x) | 0 \rangle \langle 0 | \phi_{\mu}^{*}(y) \phi_{\mu}^{*}(x) | 0 \rangle$$

$$= (\theta_{xy} \langle 0 | \phi_{\mu}(x) \phi_{\mu}(y) | 0 \rangle + \theta_{yx} \langle 0 | \phi_{\mu}(y) \phi_{\mu}(x) | 0 \rangle) \times$$

$$(\theta_{xy} \langle 0 | \phi_{\mu}^{*}(x) \phi_{\mu}^{*}(y) | 0 \rangle + \theta_{yx} \langle 0 | \phi_{\mu}^{*}(y) \phi_{\mu}^{*}(x) | 0 \rangle)$$

$$= W(x - y) \overline{W}(x - y) \qquad (5.12)$$

Por lo tanto la contribución de (5.10) se obtiene de $W * \overline{W}$.

Ahora consideremos el término

$$\int d^{\nu}x \int d^{\nu}y e^{ip(x-y)} \langle 0|T\{\phi_{\mu}(x)\phi_{\mu}(x)\phi_{\mu}(y)\phi_{\mu}(y)\}|0\rangle$$
(5.13)

Es fácil ver que es suficiente mostrar que se verifica

$$\langle 0 | \phi_{\mu}(x_{1}) \phi_{\mu}(x_{2}) \phi_{\mu}(x_{3}) \phi_{\mu}(x_{4}) | 0 \rangle =$$

$$\langle 0 | \phi_{\mu}(x_{1}) \phi_{\mu}(x_{2}) | 0 \rangle \langle 0 | \phi_{\mu}(x_{3}) \phi_{\mu}(x_{4}) | 0 \rangle +$$

$$\langle 0 | \phi_{\mu}(x_{1}) \phi_{\mu}(x_{3}) | 0 \rangle \langle 0 | \phi_{\mu}(x_{2}) \phi_{\mu}(x_{4}) | 0 \rangle +$$

$$\langle 0 | \phi_{\mu}(x_{1}) \phi_{\mu}(x_{4}) | 0 \rangle \langle 0 | \phi_{\mu}(x_{2}) \phi_{\mu}(x_{3}) | 0 \rangle +$$

$$\langle 5.15 \rangle$$

para que sean válidas las reglas de Wick (donde en (5.15) en cada valor de expectación aparece el orden cronológico). En particular de las reglas de Wick obtendríamos

$$\langle 0|T\{\phi_{\mu}(x)\phi_{\mu}(x)\phi_{\mu}(y)\phi_{\mu}(y)\}|0\rangle = 2W(x-y)W(x-y)$$
(5.16)

pues los términos correspondientes a los "tadpoles", que en la cuantificación habitual se van al tomar orden normal en la interacción, en este caso (en el cual no hay orden normal pues ni $b|0\rangle = 0$, ni $c|0\rangle = 0$) se van pues W(0) = 0 (cf. (3.39)).

Veamos entonces la validez de (5.15). El campo ϕ_{μ} en término de los operadores b_k y c_k redefinidos (ver (3.11)), toma la forma

$$\phi_{\mu}(x) = \int \frac{d\vec{k}}{2\omega} e^{i\vec{k}\cdot\vec{r}} (b_k e^{i\omega t} - i\beta\omega c_{-k}e^{-i\omega t})$$
(5.17)

donde

$$[c_k, b_{k'}] = i\delta(k - k')$$
 (5.18)

Con esta expresión obtenemos el valor de expectación (5.14) en término de los valores de expectación de vacío de cuatro operadores de tipo b o tipo c. Recordando que para cada grado de libertad \vec{k} estos operadores se representan según

$$b_k \to -i\frac{d}{dz}$$
 $c_k \to z$ (5.19)

resulta de (3.27) que los únicos valores de expectación no nulos son aquellos donde intervienen dos operadores de tipo b y dos de tipo c. Obtenemos entonces

$$\langle 0 | \phi_{\mu}(x_{1}) \phi_{\mu}(x_{2}) \phi_{\mu}(x_{3}) \phi_{\mu}(x_{4}) | 0 \rangle = -\beta^{2} \int \frac{d\vec{k_{1}}}{2\omega_{1}} \frac{d\vec{k_{2}}}{2\omega_{2}} \frac{d\vec{k_{3}}}{2\omega_{3}} \frac{d\vec{k_{4}}}{2\omega_{4}} e^{i\vec{k_{1}}\cdot\vec{r_{1}}} e^{i\vec{k_{2}}\cdot\vec{r_{2}}} e^{i\vec{k_{3}}\cdot\vec{r_{3}}} e^{i\vec{k_{4}}\cdot\vec{r_{4}}} \times [\omega_{3}\omega_{4}e^{i\omega_{1}t_{1}+i\omega_{2}t_{2}-i\omega_{3}t_{3}-i\omega_{4}t_{4}} \langle 0 | b_{k_{1}}b_{k_{2}}c_{-k_{3}}c_{-k_{4}} | 0 \rangle + \omega_{2}\omega_{4}e^{i\omega_{1}t_{1}-i\omega_{2}t_{2}+i\omega_{3}t_{3}-i\omega_{4}t_{4}} \langle 0 | b_{k_{1}}c_{-k_{2}}b_{k_{3}}c_{-k_{4}} | 0 \rangle + \dots]$$
(5.20)

Donde los restantes cuatro términos, siguen el mismo patrón. A diferencia del caso usual, donde a y a^* ocupan el lugar de b y c, en este caso los seis términos son no milos (pues ni b ni c aniquilan al vacío). Calculemos por ejemplo el valor de expectación

$$\langle 0|b_{k_1}b_{k_2}c_{-k_3}c_{-k_4}|0\rangle \tag{5.21}$$

Para ello discretizaremos al espacio de los \vec{k} en pequeñas celdas V_i de volúmen δV centradas en valores \vec{k}_i . Definimos

$$b_i = \frac{1}{\delta V} \int_{V_i} d\vec{k} \ b_k \qquad \qquad c_i = \frac{1}{\delta V} \int_{V_i} d\vec{k} \ c_k \qquad (5.22)$$

Integrando en ambos miembros de (5.18) obtenemos

$$[c_i, b_j] = \frac{1}{\delta V} i\delta_{ij}$$
(5.23)

Cuando $\delta V \to 0$ los operadores en (5.22) tienden a los b_k y c_k , y el miembro izquierdo en (5.23) tiende a la δ de Dirac.

De (5.23) tenemos que la representación para los b_i y c_i es

$$b_k \to -i\frac{d}{dz}$$
 $c_k \to \frac{1}{\delta V}z$ (5.24)

El vacío es el producto de los vacíos para cada grado discretizado:

$$|0\rangle = \prod_{s} |0\rangle_{s} \tag{5.25}$$

Calculemos entonces $\langle 0|b_ib_jc_kc_l|0\rangle$:

$$c_l|0\rangle = c_l \prod_s |0\rangle_s = \prod_{s \neq l} |0\rangle_s c_l|0\rangle_l$$
(5.26)

Aplicando c_k en (5.26) resulta:

$$c_{k}c_{l}|0\rangle = c_{k}\left(\prod_{s\neq l}|0\rangle_{s}c_{l}|0\rangle_{l}\right)$$
$$= \delta_{kl}\prod_{s\neq l}|0\rangle_{s}c_{l}c_{l}|0\rangle_{l} + (1-\delta_{kl})\prod_{s\neq l,s\neq k}|0\rangle_{s}c_{l}|0\rangle_{l}c_{k}|0\rangle_{k}$$
(5.27)

Lucgo, aplicando b_j en (5.27) obtenemos:

$$b_{j}c_{k}c_{l}|0\rangle = \delta_{kl} \left(\delta_{jl} \prod_{s \neq l} |0\rangle_{s} b_{l}c_{l}c_{l}|0\rangle_{l} + (1 - \delta_{jl}) \prod_{s \neq l, s \neq j} |0\rangle_{s} c_{l}c_{l}|0\rangle_{l} b_{j}|0\rangle_{j} + (1 - \delta_{kl})(\delta_{jl} \prod_{s \neq l, s \neq k} |0\rangle_{s} b_{l}c_{l}|0\rangle_{l} c_{k}|0\rangle_{k} + \delta_{jk} \prod_{s \neq l, s \neq k} |0\rangle_{s} c_{l}|0\rangle_{l} b_{k}c_{k}|0\rangle_{k} + (1 - \delta_{jl})(1 - \delta_{kj}) \prod_{s \neq l, s \neq k, s \neq j} |0\rangle_{s} c_{l}|0\rangle_{l} c_{k}|0\rangle_{k} b_{j}|0\rangle_{j} \right)$$
(5.28)

Ahora proyectamos (5.28) con $(0|b_i$, siendo los únicos términos no nulos aquellos que tienen en cada grado tantos b como c:

$$\langle 0|b_i b_j c_k c_l |0\rangle = \delta_{il} \,\delta_{kl} \,\delta_{jl} \langle 0| \prod_{s \neq l} |0\rangle_s \,b_l b_l c_l c_l |0\rangle_l + (1 - \delta_{kl}) \delta_{jl} \,\delta_{ki} \langle 0| \prod_{s \neq l, s \neq k} |0\rangle_s \,b_l c_l |0\rangle_l \,b_k c_k |0\rangle_k + (1 - \delta_{kl}) \delta_{jk} \,\delta_{li} \langle 0| \prod_{s \neq l, s \neq k} |0\rangle_s \,b_l c_l |0\rangle_l \,b_k c_k |0\rangle_k$$

$$(5.29)$$

Usando (5.24) y que el vacío en cada grado está representado por $(z_i \overline{z}_i)^{-\frac{1}{2}}$ obtenemos

$$b_l c_l |0\rangle_l = -i \frac{1}{2} \frac{1}{\delta V} |0\rangle_l \qquad b_l b_l c_l c_l |0\rangle_l = (-i)^2 \frac{1}{\delta V^2} \frac{3}{4} |0\rangle_l \qquad (5.30)$$
con lo cual, resulta:

$$\langle 0|b_{i}b_{j}c_{k}c_{l}|0\rangle = (-i)^{2} \frac{1}{\delta V^{2}} \frac{3}{4} \delta_{il} \,\delta_{kl} \,\delta_{jl} \,\langle 0|0\rangle + (-i)^{2} \frac{1}{\delta V^{2}} \frac{1}{4} [(1 - \delta_{kl})\delta_{jl} \,\delta_{ki} + (1 - \delta_{kl})\delta_{jk} \,\delta_{li}] \langle 0|0\rangle = (-i)^{2} \frac{1}{\delta V^{2}} \frac{1}{4} \delta_{il} \,\delta_{kl} \,\delta_{jl} \langle 0|0\rangle + (-i)^{2} \frac{1}{\delta V^{2}} \frac{1}{4} [\delta_{jl} \,\delta_{ki} + \delta_{jk} \,\delta_{li}] \langle 0|0\rangle = \langle 0|b_{i}c_{k}|0\rangle \langle 0|b_{j}c_{l}|0\rangle + \langle 0|b_{j}c_{k}|0\rangle \langle 0|b_{i}c_{l}|0\rangle + \delta V(-i)^{2} \frac{1}{\delta V^{3}} \frac{1}{4} \delta_{il} \,\delta_{kl} \,\delta_{jl}$$
(5.31)

Entonces cuando tomamos el límite $\delta V \to 0$, los operadores b_i , c_i tienden a b_k , c_k , respectivamente; y el tercer término en (5.31) tiende al producto de tres funciones δ de Dirac multiplicadas por δV lo cual tiende a cero. Por lo tanto, obtenemos

$$\langle 0|b_{k_1}b_{k_2}c_{k_3}c_{k_4}|0\rangle = \langle 0|b_{k_1}c_{k_3}|0\rangle\langle 0|b_{k_2}c_{k_4}|0\rangle + \langle 0|b_{k_2}c_{k_3}|0\rangle\langle 0|b_{k_1}c_{k_4}|0\rangle$$
(5.32)

A partir de esta relación se obtiene fácilmente que el valor de expectación de vacío de cualquier producto de cuatro operadores b y c se reduce, como es usual, en término de los valores de expectación de pares de operadores (donde estos pares se ordenan por orden de aparición). Usando (5.32), se obtiene que el primer término de (5.20) es ignal a:

$$\langle 0 | \phi^{b}_{\mu}(x_{1}) \phi^{c}_{\mu}(x_{3}) | 0 \rangle \langle 0 | \phi^{b}_{\mu}(x_{2}) \phi^{c}_{\mu}(x_{4}) | 0 \rangle + \\ \langle 0 | \phi^{b}_{\mu}(x_{1}) \phi^{c}_{\mu}(x_{4}) | 0 \rangle \langle 0 | \phi^{b}_{\mu}(x_{2}) \phi^{c}_{\mu}(x_{3}) | 0 \rangle$$
(5.33)

donde ϕ^b_{μ} y ϕ^c_{μ} son los términos de ϕ_{μ} que contienen a los b_k y los c_k respectivamente. Un cálculo directo muestra que los términos (5.33) más los restantes (diez) términos similares que se obtienen de (5.20), llevan a la verificación de la relación (5.15) y por lo tanto, a segundo orden, las reglas de Wick son válidas.

Conclusiones

llemos visto que las teorías de campo de orden superior llevan naturalmente a la existencia de modos complejos, es decir, grados de libertad asociados a pares de parámetros de masa complejos conjugados. Por ejemplo, en el capítulo 1, esto ocurre cuando se extiende el modelo de Wess-Zumino a dimensión superior, manteniendo la supersimetría de la teoría. También las teorías de campo de métrica indefinida (en particular las teorías de orden superior con masas reales, cf. (2.24)) llevan, bajo ciertas condiciones sobre las escalas de masa, a la existencia de modos complejos (ver sección 1.1).

Siguiendo entonces métodos propios de la teoría cuántica de campos, estudiamos la posibilidad física de tales modelos. Considerando el caso de un campo escalar real con un modo de masa m y un modo complejo utilizamos métodos variacionales para obtener el hamiltoniano clásico del sistema (magnitud conservada por la simetría ante traslaciones temporales). Por métodos cuánticos nos referimos a la construcción de una teoría donde las distintas magnitudes clásicas pasan a ser operadores, y que exhibe a nivel del algebra de connutadores las mismas simetrías de la teoría clásica; en particular, el operador hamiltoniano debe generar las traslaciones temporales.

De esta manera obtuvimos el álgebra de conmutadores para los operadores a_k , b_k y c_k . Es claro que el sector para el campo de masa m es el usual. Los operadores a_k asociados a este modo aniquilan partículas de masa m (en particular $a_k|0\rangle = 0$):

Conclusiones

los operadores a_k^* crean del vacío cuantos del campo. Como concecuencia de estas propiedades los propagadores correspondientes son los de Feynman.

Los operadores b_k y c_k , contrariamente a lo que sucede con los a_k , connutan con sus respectivos adjuntos; siendo los únicos conmutadores no triviales aquellos entre b_k y c_k . Por lo tanto, la representación para los modos complejos no puede ser holomorfa (como es el caso de los modos reales) sino que es de la forma $b \rightarrow b$ $-i\frac{d}{dz}$, $c \rightarrow z$ y sus respectivos adjuntos con respecto al producto interno $\int dz d\bar{z} f \bar{g}$. Esta representación es similar a la de los operadores canónicos de posición e impulso. De esta manera quedan definidas las propiedades cúanticas de la teoría; se puede representar al operador P_{μ} para cada grado de libertad \vec{k} (cf. (3.20)), obteniéndose el vacío 0 (energía-momento cero) como el único estado invariante de Lorentz. Este vacío (representado en cada grado \vec{k} por $(z\overline{z})^{-\frac{1}{2}}$) tiene la particularidad de no ser aniquilado por ninguno de los operadores b, c, b* y c*. Además, en el sector complejo, no existe ningún estado de partícula. En particular, no hay lo que llamaríamos el estado de un "complexon", con la propiedad $P_{\mu}P^{\mu}|l\rangle = \mu^{2}|l\rangle$. Contrariamente, el hamiltoniano es hermítico y posee un espectro real y continuo extendiéndose de $-\infty$ a $+\infty$. Es por esta razón que debemos hablar de campos con parámetros complejos de masa y no de partículas de masa compleja.

Examinamos así lagrangianos particulares de orden superior, encontrando que los modos complejos pueden ser tratados consistentemente, como se muestra en el capítulo 3.

A partir de la representación de los modos complejos fue posible calcular los distintos valores medios del producto de campos en el vacío. Obtuvimos, en particular, que los propagadores para los modos complejos resultan mitad avanzados y mitad retardados ("propagadores de Wheeler").

La aparición de este tipo de propagadores es un indicio de que los modos complejos podrán eliminarse consistentemente del espacio asintótico manteniendo la unitariedad en el sector de partículas. Wheeler y Feynman usaron funciones de Green mitad retardadas y mitad avanzadas para describir la radiación clásica en un absorvente completo. Ellos formularon, con este tipo de funciones para el campo electromagnético, un principio variacional para la dinámica (clásica) de los electrones en el cual sólo intervienen las coordenadas de estos. El absorvente estaría constituido por los mismos electrones. El campo electromagnético aparece en una acción no local a través de las funciones de Green entre las distintas coordenadas de las partículas. Justamente las funciones de Green son las que representan en teoría de campos a los "estados" virtuales. Correspondientemente, si uno considerase la parte clásica de una teoría cuántica (el nivel árbol) cuyos propagadores son mitad avanzados y mitad retardados, estas propiedades se manifiestan en el hecho de que la parte absortiva de estos propagadores es nula, y en concecuencia podríamos eliminar (a nivel árbol) a los modos respectivos del espacio asintótico.

En nuestro caso, vemos que junto con la necesidad de eliminar a los modos complejos del espacio asintótico (requerimiento físico), el tratamiento natural que seguimos lleva a propagadores de Wheeler para estos modos.

Con el fin de calcular los distintos diagramas, es necesario trabajar con las antitransformadas de Fourier de las distintas funciones de Green. El marco natural para estas anti-transformadas es el de las funcionales analíticas. Es por ello que estudiamos funcionales en las que el camino de integración en el plano complejo de la energía evitan de diversas maneras a los polos que aparecen ligados con la anulación de los denominadores. Estos caminos son equivalentes, en general, a una integración sobre el eje real más una integración sobre lazos (con pesos apropiados) alrededor de los polos.

Cada una de las funcionales de Green que necesitamos, a saber: la de Feynman, la retardada, la avanzada, la de Wheeler; están asociadas con un dado camino de integración. Estudiamos entonces las convoluciones entre ellas, lo cual puede hacerse con el tratamiento general de convoluciones de funcionales analíticas desarrollado en el capítulo 4. Consideramos en particular la convolución de propagadores de Feynman y de propagadores de Wheeler, como también las convoluciones "cruzadas" de funcionales de Feynman con funcionales de Wheeler.

Realizamos entonces, en una teoría $\lambda \phi^3$, el estudio de la auto-energía. Por medio del cálculo de convoluciones fue posible mostrar que la auto-energía total tiene una parte absortiva que sólo se debe a la masa real. De esta manera queda demostrado (a un lazo) que la eliminación de los modos complejos del espacio asintótico es compatible con la unitariedad de la teoría; estos modos pueden sólo manifestarse a través de los e. tados virtuales (efectos del propagador modificado). Más aún, vimos explícitamente que estos grados actúan como reguladores pues la auto-energía total es menos divergente que la auto-energia debida a la masa real sola. En particular en cuatro dimensiones, la auto-energía es finita.

Además, teniendo en cuenta que la teoría es relativista y que el vacío es invariante de Lorentz, las amplitudes que se calculen deberán ser invariantes de Lorentz, lo cual verificamos para el diagrama de auto-energía.

Notamos también que la auto-energía se obtiene de las reglas usuales de Wick. Los "tadpoles" que en el caso usual se pueden eliminar tomando orden normal en la interacción, en nuestro caso (en el cual no existe el orden normal) se van directamente pues el propagador de Wheeler tiene la propiedad W(0) = 0.

Vemos por lo tanto que, al orden considerado, a diferencia de las recetas de matriz S de Lee-Wick, el tratamiento realizado implementa el objetivo de regularizar la autoenergía por medio de campos fundamentales, siendo válido el esquema usual de la teoría cuántica de campos.

Bibliografía

- [1] T. D. Lee and G. C. Wick, Nucl. Phys. B9 (1969) 209
- [2] D. G. Boulware, en Bryce DeWitt Festschrift, Ed. S. Christensen (Adam Hilgar, Ltd)
- [3] D. Boulware and D. G. Gross, Nucl. Phys. **B233** (1984) 1
- [4] G. t'llooft and M. Veltman, Ann. Inst. Poincaré, 20 (1974) 69
- [5] R. Utiyama and B. S. DeWitt, J. Math. Phys., 3 (1962) 608
- [6] K. S. Stelle, Phys. Rev. D16 (1977) 953
- [7] C. G. Bollini and L. E. Oxman, en J. J. Giambiagi Festschrift, Ed. II. Falomir et al. (World Scientific, 1990) p. 55
- [8] R. E. Cutkosky, P. V. Landshoff, D. Olive and J. C. Polkinghorne, Nucl. Phys. B12 (1969) 281
- [9] T. D. Lee and G. C. Wick, Phys. Rev. **D2** (1970) 1033
- [10] N. Nakanishi, Supplement of the Progress of Theoretical Physics, 51 (1972)
- [11] N. Nakanishi, Phys. Rev. D3 (1971) 811

- [12] A. M. Gleeson, R. J. Moore, H. Rechenberg and E. C. G. Sudarshan, Phys. Rev. D4 (1971) 2242
- [13] C. G. Bollini and J. J. Giambiagi, Phys. Rev. D32 (1985) 3316
- [14] E. Cartan, "Leçons sur la Theorie des Spineurs" (Hermann, 1938)
- [15] R. Brauer and H. Weyl, "Spinors in n Dimensions", Am. Jour. of Math. 57 (1935) 425
- [16] M. Sohnius, "Introducing Supersymmetry", Phys. Rep. 128 (1985)
- [17] C. G. Bollini and J. J. Giambiagi ,"On Tachyon Quantization", en J. Tiomno Festschrift, (World Scientific, 1992)
- [18] D. G. Barci, C. G. Bollini and M. Rocca, preprint, "Tachyons and Higher Order Equations" Lab. Física Teórica, U.N.L.P. (1990)
- [19] D. G. Barci, C. G. Bollini and M. Rocca, preprint, "The Tachyon Propagator" Lab. Física Teórica, U.N.L.P. (1990)
- [20] E. C. G. Sudarshan, C. B. Chiu and V. Gorini, Phys. Rev. D18 (1978) 2914
- [21] C. G. Bollini and L. E. Oxman, "Propagator for Complex Mass Fields", Por publicarse en Int. J. Mod. Phys. A, V. 7, No. 27
- [22] J. A. Wheeler and R. P. Feynman, Rev. of Mod. Phys. 17 (1945) 157
- [23] J. A. Wheeler and R. P. Feynman, Rev. of Mod. Phys. 21 (1949) 425
- [24] C. G. Bollini and L. E. Oxman , "Unitarity and Complex Mass Fields" Por publicarse en Int. J. Mod. Phys. A
- [25] D. G. Barci, Tesis doctoral Universidad Nacional de La Plata (1991)

- [26] M. Rocca, Tesis doctoral Universidad Nacional de La Plata (1992)
- [27] C. G. Bollini and J. J. Giambiagi, Rev. Bras. de Fisica 17 (1987) 14
- [28] N. Nakanishi, Phys. Rev. D5 (1972) 1968
- [29] N. Nakanishi, Phys. Rev. D3 (1971) 3235
- [30] L. D. Faddeev and A. A. Slavnov, "Gauge Fields: Introduction to Quantum Theory" (Addison-Wesley, 1990)
- [31] P. A. M. Dirac, Proc. Roy. Soc. London A167 (1938) 148
- [32] I. M. Gelfand , G. E. Shilov , "Generalized functions", Volume I , Academic Press (1964)
- [33] N. Nakanishi, Prog. Theor. Phys. 19 (1958) 607
- [34] I. S. Gradshteyn, I. M. Ryzhik: Table of Integrals, Series and Products (Academic Press, 1965)
- [35] T. D. Lee, Quanta: Essays en Theoretical Physics Dedicated to Gregor Wentzel (Univ. of Chicago Press, 1970) p. 260
- [36] E. C. G. Sudarshan, Fields and Quanta 2 (1971) 175
- [37] S. Coleman, en Subnuclear phenomena, ed. A. Zichichi (Academic Press, New York, 1970) p. 282

Agradecimientos

Agradezco

A mi maestro, Carlos Bollini

 Λ Daniel Barci y Mario Rocca con quienes discutí muchas de las ideas de esta tesis

A mis padres que siempre me alentaron

 Λ mi hermano Luis que una vez me pasó, entre otros, "El Inquieto Universo"

A mi hermano "práctico" Sergio

A los amigos de aventuras, de Buenos Aires y de La Plata

Desco también agradecer al Conicet por haberme otorgado una beca doctoral en el marco de la cual realicé este trabajo