BIBLIOTECA CENTRAL LUIS F LELOIR BIBLIOTECA CENTRAL LUIS FACULTAD DE CIENCIAS EXACTAS Y NATURALES UBA

Tesis de Posgrado

Santa María, Guillermo Esteban

1992

Tesis presentada para obtener el grado de Doctor en Ciencias Biológicas de la Universidad de Buenos Aires

Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente.

This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source.

Cita tipo APA:

Santa María, Guillermo Esteban. (1992). Regulación de la absorción de ZN en plantas de trigo. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_2518_SantaMaria.pdf

Cita tipo Chicago:

Santa María, Guillermo Esteban. "Regulación de la absorción de ZN en plantas de trigo". Tesis de Doctor. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 1992. http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_2518_SantaMaria.pdf

UBA Universidad de Buenos Aires

Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293

REGULACION DE LA ABSORCION DE ZN EN PLANTAS DE TRIGO

GUILLERMO E. SANTA MARIA

D. COGLIAM

REGULACION DE LA ABSORCION DE ZN EN PLANTAS DE TRIGO

TESIS PRESENTADA PARA OPTAR AL TITULO DE DOCTOR EN CIENCIAS BIOLOGICAS

Autor: Guillermo E. Santa María Director: Daniel H. Cogliatti Consejera de estudios: Marta B. Collantes

FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES 1992

Tesis 2518 ej.2

Tesis realizada en el Centro de Ecofisiología Vegetal (CEVEG). CONICET. El autor ha recibido, además, apoyo parcial de la Universidad Nacional de Luján. El demérito de los falsos problemas es promover soluciones que son falsas también. A Plinio no le basta con obser var que los dragones atacan en verano a los elefantes; sino que aventura la hipótesis de que lo hacen para beberles la sangre que, como nadie ignora, es muy fría.

> Jorge Luís Borges (Otras Inquisiciones)

INDICE

AGRADECIMIENTOS	i
ABREVIATURAS	ii
RESUMEN	iv
ABSTRACT	v
INTRODUCCION	1
MATERIALES Y METODOS	27
CAPITULO I (Flujos vectoriales y compartimenta	ación del Zn
en las raíces)	54
CAPITULO II (Regulación de la absorción de Zn:	Efectos del
nivel de suministro de Zn)	87
CAPITULO III (Efectos del nivel de suministro	de Zn sobre
el crecimiento)	122
CAPITULO IV (Regulación de la absorción de Zn:	Efectos del
nivel de suministro de fósforo)	151
CAPITULO V (Discusión General y Conclusiones)	175
APENDICE I (Comparación de métodos de estimaci	ón de los
parámetros Vmax y Km)	185
APENDICE II (Efecto de las perturbaciones sobre	e la esti-
mación del influjo)	204
APENDICE III (Nutrición en condiciones de estado)
estacionario)	216
BIBL IOGRA FIA CITADA	228
INDICES A: DE TABLAS Y FIGURAS	250
B: DE MATERIAS	256

AGRADECIMIENTOS

Este apartado suele revestir en casi todos los trabajos de tesis cierto grado de solemnidad y formalidad que -en lineas generales- no comparto o no me sale. Veráns mi intención fue eludirlo mas no lo he logrado, El pobre desenseno de mis convicciones se debe al peso de otra desdettable. tampoco La convicción ausencia de agradecimientos podría, en algunos espíritus sensibles, ser interpretada fácil y acaso acertadamente como un "no le debo nada a nadie". Nada es tan cierto y a la vez tan falso como esta afirmación. Esta tesis, sin embargo, le debe -objetiva y subjetivamente- mucho a mucha gente y sería injusto no recomocer aguí esa deuda.

Mis acreedores de gracias son, pues: Daniel Cogliatti, Claudio Rodgers, Jorge Cardozo, María Crístina Pomar, Vilma Manfreda, Luís Jaireldín, Irene Kleiman, Daniel Rodriguez, Giuliano Tito, Jorge Galván, María Raquel Guitman, Marta Collamtes -consejera de estudios-, Norma Martinez, Susana Laguma y Osvaldo Caso; todos ellos del CEVEG. De la Universidad Nacional de Luján: María Lina Gugliada y las sucesivas camadas de alumnos, entre los que quiero destacar a Damiel Higa. Mis profesores de post-grado. Mi familia, mis amigos. Y la lista continua sin agotarse en estos pocos nombres.

Nas formalmente gracias

Guillermo

ABREVIATURAS

A	Area foliar
c	Concentración
CRA	Contenido relativo de agua
DNP	2-4 para dinitro fenol
E	Eflujo
EAL	Espacio Aparentemente Libre
EDTA	Acido Etilendiamino tetra acético
Ee	Potencial de membrana esperado
EIR	Espacio Interno Radical
ELA	Espacio Libre Acuoso
ELD	Espacio Libre Donnan
н	Permeabilidad
I	Influjo
Jn	Flujo neto
Ĺ	Longitud
LAR	Cociente de área foliar
NAR	Tasa de asimilación neta
NMR	Resonancia Magnética Nuclear
PD	Potencial de membrana observado
3	Contenido de un dado nutriente

RGR	Tasa de crecimiento relativo
s	Actividad específica
SAR	Tasa específica de absorción
SRA	Tasa específica de acumulación en raíz
SST	Tasa específica de translocación
W	Peso seco

Subindices

e	externa
i	interna
0	Valor inicial de un parámetro
r	raíz
5	vástago
t	total

Nota: A lo largo de este trabajo se ha procurado emplear las unidades del Sistema Internacional de Unidades, Excepto error a omisión han sido éstas las empleadas. En algunos gráficos por razones de conveniencia se ha empleado la abreviatura uM (microMolar) en reemplazo de la moderna nomenclatura.

RESUMEN

La nutrición de Zn por las plantas fanerógamas enfrenta dos condiciones extremas: aquella causada por la elevada disponibilidad del metal en la solución del suelo y la deficiencia inducida por el agregado de fertilizantes fosforados. Hasta el presente no existe un sólido cuerpo de conocimiento referido a la regulación de la absorción de Zn por las raíces en ambas condiciones. En el presente trabajo se ha examinado, en plantas de trigo, el efecto de la concentración externa de Zn y de P sobre el crecimiento y los flujos vectoriales de Zn (Înflujo y Eflujo) así como sobre el transporte de este catión desde la raíz al vástago. Los resultados obtenidos sugieren que en un amplio rango de suministro de Zn la adquisición de este micronutriente puede ser asimilada -desde punto de vista un estrictamente cinético- a la que exhiben los sistemas de bombeo y pérdida; aún cuando es posible que la entrada de Zn al espacio interno radical sea pasiva y la salida activa; no existiendo -además- evidencias de un control alostérico sobre el influjo. Este último, sin embargo, parece estar modulado por el nivel de fósforo en las raíces, el que además modificaria la contribución relativa del eflujo al flujo neto. A lo largo de este trabajo, por otro lado, se ha recogido evidencia de que el desplazamiento radial de Zn ocurriría preferentemente via simplasto.

El conjunto de la información disponible conduce a sospechar que en diversas especies, y en elevados niveles de suministro del metal, el eflujo de Zn actuaría como un Mecanismo de detoxificación; capaz de retardar y/ó atenuar pero no de impedir la aparición de síntomas de toxicidad; los cuales se manifiestan tanto en la disminución de la producción de materia seca COMO en cambios la en distribución de asimilados, el patrón de crecimiento de las raices y la economia de agua de las plantas.

INTRODUCCION

INTRODUCCION

Es conocido que los vegetales requieren para su normal desarrollo un adecuado suministro de ciertos elementos químicos, los llamados elementos esenciales o nutrientes; los cuales -con la sola excepción del carbono y oxígeno- son incorporados principalmente por el sistema radical. En los últimos años diversos estudios han mostrado que el zinc (Zn^{2+}) presenta una gran versatilidad de funciones desempeñando un rol central en el metabolismo celular de plantas, animales y microorganismos. Las causas y consecuencias de esta diversidad de funciones han sido evaluadas en forma detallada por Williams (1984). En líneas generales puede afirmarse que este catión es un componente de enzimas o un cofactor funcional, estructural o regulatorio de las mismas (Marschner, 1986). En los vegetales superiores se han identificado al menos cuatro enzimas en las que el Zn actúa como componente: la carbónico anhidrasa (Price et al, 1972), la superóxido dismutasa (Vaugham & De Cock, 1982), la alcohol deshidrogenasa (Vallee & Wacker, 1970) y la RNA polimerasa. Entre las enzimas activadas

este metal cabe destacar a la fructosa por 1 - 6difosfatasa, la fosfoenolpirúvico carboxilasa la Y sintetasa. Por otro lado el Zn parece glutamina desempeñar un rol importante, pero aún no del todo entendido, en la regulación de la permeabilidad de membranas (Cakmak & Marschner, 1988 a y b) la estabilización de ribosomas (Obata & Umebayashi, 1988: Kitagishi et al, 1987) y la síntesis de auxinas (Takaki & Arita, 1986) y de giberelinas (Suge et al, 1986).

Como es obvio, en relación a lo antedicho, la ausencia o inmovilización del Zn en el medio en el que crecen las plantas deriva en la aparición de síntomas de deficiencia; los cuales varían según la especie o variedad considerada. Por lo común la aparición de síntomas ocurre cuando la concentración del metal en los tejidos desciende por debajo de las 20 ppm en peso seco; si bien este valor umbral es variable (Benton Jones, 1972). En contrapartida cuando la disponibilidad de Zn en el suelo es elevada las plantas son capaces de acumularlo hasta alcanzar niveles incompatibles con una actividad metabólica. Mientras que saludable la deficiencia de Zn es frecuente en zonas de suelos calcáreos, los síntomas de toxicidad se observan en zonas de gran actividad industrial o en la proximidad de minas (Baker, 1987).

Es difícil estimar la magnitud del área productiva o potencialmente productiva afectada por uno u otro problema. Esto es así por varios motivos, el primero de los cuales consiste -como ya se ha señalado- en la variedad intra e interespecífica de la respuesta de las plantas a una dada condición de suministro de Zn. Un segundo motivo es que, en tanto existen métodos de diagnóstico confiables para detectar deficiencias (Dell & Wilson, 1985), los métodos empleados para determinar a campo los síntomas de toxicidad suelen ser engorrosos y precisión. Una tercera razón, faltos de no menos importante, es en nuestro país la ausencia de cartas de suelo y vegetación con el detalle requerido para estudiar fenómenos apariencia, que, en son Un último principalmente locales. factor es la interacción entre los fertilizantes fosforados y el cinc. Se ha informado en forma reiterada que la adición de fósforo a suelos de alto pH suele aparejar síntomas de deficiencia de Zn en los cultivos (Singh et al, 1986; Wagar et al, 1986; Verma & Minhas, 1987).

Cabe añadir que a diferencia de lo que ocurre con algunos macronutrientes no existen, hasta donde alcanza nuestro conocimiento, trabajos que informen acerca del efecto de la deficiencia de Zn sobre variables relevantes a nivel de cultivo, como la eficiencia en el

uso de la radiación, la eficiencia en el uso de agua o la partición de asimilados. Aún a nivel de planta entera la información, вi bien existente. es escasa У fragmentaria. En apariencia la deficiencia de Zn trae aparejado un descenso en el contenido de clorofila en de la conductividad estomática las hojas. la V disminución de la incorporación neta de carbono en forma no directamente asociada a la caída de la conductividad estomática (Hu & Sparks, 1991). El escaso conocimiento referido a estos niveles exhibe un abierto contraste con el sólido bagaje que poseemos sobre los efectos del Zn a nivel celular y molecular (Narender Reddy et al, 1990; Van Assche et al, 1990; Steffens, 1990).

Tanto el fenómeno de toxicidad como la deficiencia inducida por el fósforo plantean problemas de interés práctico y teórico para los fisiólogos. En el primer caso una fuente de interés radica en la aparente incapacidad de las raíces para controlar el ingreso de este catión al espacio interno radical. Tal observación parece contradecir, zi menos en superficie, la idea de que la adquisición de nutrientes por las plantas es un proceso finamente regulado (Clarkson, 1985). En el seguido, el desconocimiento de los niveles y mecanismos involucrados en la interacción ha conducido a postular una notoria complejidad al fenómeno (Robson et al, 1983), complejidad que lo vuelve en extremo interesante.

El objetivo central de este trabajo ha sido estudiar los mecanismos que regulan la adquisición de Zn en plantas de trigo, particularmente en relación al nivel de suministro de fósforo y de cinc.

ABSORCION Y UTILIZACION DEL ZINC

El acceso del Zn al espacio interno radical, así como su translocación a la parte aérea, es el resultado de una serie de fenómenos encadenados: el movimiento del Zn en el suelo hacia las raíces, su circulación a través de las paredes y espacios intercelulares de las mismas y, finalmente, el pasaje a través de la membrana plasmática de las células del parénquima cortical. Nosotros nos referiremos principalmente a este tercer eslabón de la serie; sin embargo el enfoque experimental propiciado obliga a considerar ciertas propiedades significativas de los eslabones precedentes. Movimiento del Zn en el suelo

El movimiento del Zn hacia las raíces ocurre a través de dos flujos que interactúan entre si: el flujo difusional -aquel que ocurre desde zonas de alto potencial guímico a otras de potencial menor- y el flujo masal o convectivo, el cual es debido al flujo de agua por transpiración. Conociendo la concentración de Zn en la solución del suelo, así como el volumen de agua transpirado por las plantas, es posible efectuar una estimación de la cantidad de Zn movilizada desde el suelo a la planta a través del flujo masal. La evidencia obtenida a través de este procedimiento como a través de técnicas autorradiográficas (Wilkinson et al. 1972) sugiere que, al igual que ocurre con el fósforo, la principal fuente de Zn para las raices proviene del camino difusional. La magnitud de éste, sin embargo, puede ser afectada tanto por el flujo convectivo -a través de un cambio en la concentración de Zn en las la raíz- como por adyacencias de la presencia de microorganismos capaces de movilizar o inmovilizar cegún el caso- el Zn. Las asociaciones micorrízicas responsables de acrecentar la movilización del fósforo pueden, por añadidura, aumentar o disminuir la absorción

de Zn por la raíz. En tanto que las micorrizas vesículoarbusculares producen un aumento en la absorción (Pacovsky , 1986) las ericoides la disminuyen (Bradley et al, 1982); pudiendo atenuar en este último caso los efectos tóxicos del metal pesado.

Es conocido por otro lado que la constante de difusión de una especie química depende de la temperatura del suelo, el pH y de la naturaleza de las especies iónicas en que participa (Lindsay, 1972). La solubilidad del Zn disminuye al aumentar el pH y, acorde con ésto, solo en los suelos calcáreos o de alto pH se observa una cobertura vegetal deficiente en este micronutriente (Lucas & Knezek, 1972). En particular debe considerarse la solubilidad del fosfato de zinc, la cual si bien disminuye al aumentar el pH, se mantiene en valores altos. Esta evidencia sugiere que no sería la solubilidad del fosfato de zinc en el suelo la causa de la deficiencia fósforo inducida (Olsen, 1972).

Movimiento a través de la pared celular

El ingreso de Zn desde la solución del suelo al espacio interno radical (E.I.R.) involucra su pasaje a

8

través del apoplasto, el cual -desde un punto de vista cinético- puede ser asimilado al Espacio Aparentemente Libre (E.A.L.). El E.A.L. ha sido concebido, comunmente, como constituído por dos compartimentos: el Espacio (E.L.A.) y el Espacio Libre Libre Acuoso Donnan (E.L.D.). El primero de ellos es asignado a aquellas regiones del cortex en que la concentración de la solución sería igual a la de la solución que baña el sistema radical. El Espacio Libre Donnan, en tanto. comprendería aquellas zonas en que las cargas aniónicas fijas, no difusibles, ejercen su acción. Sin embargo este modelo conceptual, tal como ha sido apuntado por Sentenac (1991), tropieza Grignon & con ciertas dificultades. En particular tal distinción descansa sobre el postulado de que el campo eléctrico determinado por las cargas fijas es constante e independiente de las condiciones prevalecientes en el medio y en su interior; a la vez que se asienta en la supuesta existencia de una clara frontera entre uno y otro compartimento. La caída **de** la fuerza del campo electrostático, sin embargo, no es abrupta y depende de la concentración de las cargas ionizadas, del pH, de la presencia de iones capaces de enmascarar las cargas; así como de la fuerza iónica del medio (Grignon & Sentenac, 1991). Dado que las paredes celulares se comportan como un polianión,

merced a la presencia de grupos carboxílicos libres (Haynes, 1980), es lícito esperar que parte del Zn2+ incorporado a las raices se encuentre confinado en este compartimento. La magnitud de la fracción de Zn enlazada a las paredes celulares ha sido estimada -en niveles relativamente bajos de concentración externa de este cation- a través de la técnica de desorción (Schmid et al. 1965; Chaudry & Loneragan, 1972; Homma & Hirata. 1984). Sin embargo esta técnica no permite discriminar, a priori, la presencia de una fracción enlazada a la pared en forma irreversible. La evidencia experimental recogida, a través de la metodología de centrifugación diferencial, ha mostrado que aún trás el lavado del E.A.L. una parte considerable del Zn presente en las raíces permanece localizado en las paredes celulares (Peterson, 1969; Turner, 1970). Lineham (1984), trabajando en trigo y comparando la adsorción del Zn en raíces muertas y discos de celulosa ha postulado la existencia de sitios de enlace específicos para este metal. Existe, no obstante, un considerable margen de duda respecto de la bondad de estas técnicas para evaluar el fenómeno postulado. En términos conceptuales no resulta difícil imaginar la presencia, en la pared celular, de diferentes sitios de intercambio con distinta afinidad por los iones, dependendiendo de la carga, radio iónico y estado de hidratación de estos últimos. La postulación de sitios de enlace específicos del Zn en la red fija de cargas negativas encuentra su más firme sustento experimental en los distintos valores de selectividad hallados para este catión durante los intercambios triangulares entre el Ca, el Zn y el Cu; siendo la afinidad del Zn por los sitios de intercambio menor a la del cobre pero superior a la del calcio (Van Cutsem & Gillet, 1982). En apoyo de esta hipótesis cabe añadir que existen para otros cationes, entre ellos el cobre y el calcio, evidencias claras de la existencia de sitios específicos de fijación (Kloareg et al, 1987).

La literatura especializada exhibe cierta discusión acerca de si la fijación de los cationes a tales sitios específicos provoca una disminución de la concentración efectiva de éstos en las adyacencias del plasmalema. En interesante trabajo Sentenac & Grignon (1981) han un examinado las consecuencias teóricas de la interacción entre los cationes y las cargas aniónicas fijas, ya sea que se atienda o no a la heterogeneidad espacial de los sitios de intercambio. Estos autores han concluído que las paredes celulares se encuentran en un estado estacionario no demasiado alejado del equilibrio 10 el potencial tanto, termodinámico У, por electroquímico de los iones en la solución intersticial no resultaría afectado; máxime si existe una reposición continua del nutriente. La presencia de Zn ligado en forma reversible a la pared celular permitiría que ésta actue como reservorio del metal, desde el cual éste puede ser movilizado cuando aumenta la demanda o cuando su disponibilidad en el medio disminuye.

Adicionalmente, y en forma ligada al objetivo de nuestro trabajo, la existencia del apoplasto entre la solución externa y el plasmalema contribuye a la presencia de una zona donde las interacciones entre la fase líquida y la fase sólida promueven la aparición de una extensa capa límite cuyo grosor oscila-dependiendo del organismo considerado- entre 10 y 1000 um. Desde un punto de vista formal la aparición de sucesivas capas límites puede ser considerada como una resistencia adicional dispuesta en serie con el plasmalema. La magnitud de tal resistencia es de similar magnitud a la ejercida por la membrana plasmática; pudiendo enmascarar los procesos de transporte al nivel de esta última. La existencia de tal capa debe, por lo tanto, ser tenida en cuenta durante la interpretación de las propiedades cinéticas a nivel del plasmalema.

Pasaje a través del plasmalema

La entrada neta de Zn al espacio interno radical es la resultante de la actividad de dos flujos que operan en igual dirección pero con sentido opuesto; un flujo de entrada -o influjo- y un flujo de salida-o eflujo. Estos dos flujos, cuya presencia y magnitud es delatada a través del uso de trazadores, han sido designados historicamente como flujos direccionales, siendo mas apropiada para ellos la denominación de flujos vectoriales. A partir de la década del 50, cuando se generalizó el empleo de isótopos radioactivos como trazadores, y hasta fines de los años 70, la atención de la correspondiente comunidad científica se focalizó en la caracterización de los sistemas de transporte de nutrientes hacia el interior de los tejidos. Acorde con tendencia se recogieron esta numerosos testimonios respecto de la dependencia metabólica del influjo de Zn hacia el espacio interno radical. Si bien existen reportes en sentido contrario (Rathore et al, 1970) la entrada de Zn suele ser disminuída y aún anulada por metabólicos, inhibidores anaerobiosis ο bajas temperaturas (Schmid et al, 1965; Bowen, 1969; Giordano et al, 1974; Budd, 1988). Por otro lado las isotermas de

13

influjo han mostrado el comportamiento típico de los procesos mediados, lo cual sugiere la existencia de un sistema de transporte específico, el que puede ser inhibido por el calcio, el magnesio (Chaudhry & Loneragan, 1972) y el cobre (Bowen, 1969). Es sin embargo dificil evaluar el número de mecanismos o sistemas de transporte presentes ya que se han descrito cinéticas monofásicas (Bowen, 1986), bifásicas (Homma & Hirata, 1984, Budd, 1988) y multifásicas (Veltrup, 1978). La localización y naturaleza de tales sistemas o mecanismos ha sido objeto de una larga controversia sin que se halla arribado aún a un nuevo paradigma (Kochian & Lucas, 1982 b; Sabater, 1982; Borstlap, 1983; Nissen, 1987).

La dependencia metabólica del influjo de Zn, así como la cinética observada, han sugerido que este flujo vectorial sería de naturaleza activa. Esta sugerencia dista de haber sido contrastada según criterios mas exigentes como los empleados por Macklon et al (1987) para el transporte de cobalto. Por otro lado evidencia recogida por Kennedy & Gonsalves (1987), en segmentos de raíz de maíz, apunta la necesidad de considerar los siveles de suministro de Zn y de otros cationes para evaluar la naturaleza termodinámica de este transporte. Estos autores han observado en raíces de maíz que la entrada de Zn, en ausencia de Mg, es acompañada por una reducción del flujo de protones y por la depolarización de la membrana. En presencia de magnesio, contrariamente, ocurre una hiperpolarización de la misma. Estos resultados aparte de llamar a la cautela, sugieren que en presencia de Mg, y para plantas cultivadas solo en Ca^{2+} "low salt plants", el Zn sería capaz de estimular la actividad ATPásica.

Es necesario aclarar aquí que la mayor parte de los experimentos realizados por los autores citados se han efectuado en altos niveles de suministro de Zn. Si bien el rango que abarcan, de 2 a 1000 uM, es extenso éste excede el de las concentraciones alcanzadas en suelos no poluídos. Por lo tanto la información hoy disponible se refiere a niveles situados por arriba de la concentración crítica no siendo extrapolables a niveles subóptimos o francamente deficientes.

En años recientes el interés de muchos autores se ha desplazado hacia el conocimiento de los mecanismos que regulan la absorción neta de iones. Los diversos mecanismos propuestos radican, en última instancia, en postular algún tipo de modulación sobre el influjo, el eflujo o sobre ambos flujos vectoriales. Los factores capaces de disparar o intervenir directamente en la modulación son variados: temperatura (Cooper, 1986; Hommels et al, 1990), nivel de suministro de las especies iónicas presentes en la solución de cultivo (Cramer et al, 1987; Clarkson et al, 1989), presión parcial de oxígeno, disponibilidad de carbohidratos por las raices, tasa de crecimiento de los distintos órganos del cormo (Rodgers & Barneix, 1987) o bien ritmos circadianos o de distinto período (Claassen & Barber, 1974; Cooper, 1986; Macklon, 1987); si bien solo en contados casos se ha superado el nivel descriptivo para la acción reguladora de estos factores. Uno de los factores que ha recibido mayor atención y en el que se han obtenido los mayores éxitos es el efecto del nivel de suministro de un elemento sobre la magnitud de su influjo.

Cram (1973: 1976) estudiando la absorción de nitrato, a través de un análogo radioactivo, ha postulado la existencia de un sistema de detección de la concentración de esta especie química en la raíz. Tal sistema a la par de detectar el nivel endógeno de nitrato sería capaz de emitir algún tipo de señal que module el sistema de transporte a través de un cambio en las constantes Vmax y Km que lo caracterizan. Glass (1376) sobre la pase de trabajos efectuados en raíces de cebada ha avanzado la idea de que el sistema de transporte de K sería objeto de un control alostérico

16

negativo por la concentración citoplasmática de este catión monovalente. En apoyo de esta hipótesis se ha realizado un sólido trabajo experimental que ha sido revisado recientemente por Jensén (1987). Otros trabajos han sugerido que también el influjo de fósforo estaría modulado por su concentración en citoplasma. Tal modulación se ejercería sobre la capacidad de carga del sistema de transporte, sobre su afinidad o sobre ambos (Cogliatti & Clarkson, 1983; Jungk et al, 1990). Resultados recientes obtenidos por Lee et al. (1990) han mostrado, mediante el uso de NMR, que durante el desarrollo de la deficiencia de fósforo en maíz la concentración citoplasmática permanece en un nivel constante; aún cuando el desarrollo de la deficiencia promueve modificaciones sobre el valor de Vmax y -6- de Km (Clarkson & Scatergood, 1982; Cogliatti & Clarkson, 1983). Este hallazgo conduce a sospechar un sistema de señales mas sutil que el postulado por el modelo de control alostérico negativo.

Los efectos de la modulación via influjo sobre la absorción neta, cualquiera sea el mecanismo implicado, parecen disminuir a medida que aumenta el nivel de suministro. Tanto para el nitrato (Deanne Draumond & Glass, 1983), el amonio (Morgan et al, 1989; Causin & Barneix, NP) o el fósforo (Elliot et al, 1984) la

magnitud absoluta del eflujo aumenta a medida que aumenta la concentración externa , aunque este aumento del valor absoluto no siempre es acompañado por un aumento de su importancia relativa. En ciertos casos, sin embargo, el cociente eflujo:influjo aumenta al aumentar la concentración externa; particularmente en condiciones de suministro no limitantes del crecimiento (Cogliatti & Santa María, 1990). La contribución del eflujo a la absorción neta así como el gasto energético acoplado a la salida no pueden ser desdeñados en niveles de alto suministro como aquellos en que las plantas desarrollan síntomas de toxicidad. Así en altos niveles de suministro de calcio se ha observado que el eflujo de este catión desde las raíces de trigo es contra del gradiente de potencial mantenido en electroquímico (Beengtson & Jensén, 1982).

Para los micronutrientes en general y para el Za en particular se desconoce la contribución relativa del eflujo al flujo neto. En bacterias Bucheder & Broda (1974) han hallado que el eflujo de Zn es de igual magnitud que el influjo, en tanto que en el hongo *Candida utilis* (Failla et al, 1976) se ha observado que

fluja calida representa una pequeña fracción del flujo de entrada, situación que cambia en forma drástica cuando se altera la estabilidad de la membrana

plasmática. En plantas superiores 8e carece de mediciones directas del eflujo de Zn, aunque la evolución de la incorporación de Zn radioactivo en raices de cebada y sorgo (Schmid et al, 1965; Ramanni & Kannan, 1985 a) sugiere que el flujo de salida constituiria un importante porcentaje del influjo. De modo se desconocen los posibles igual efectos regulatorios de la concentración endógena de Zn sobre la magnitud del influjo.

Distribución y compartimentacion del Zn

Una vez que el Zn ha sido incorporado al espacio interno radical se distribuye entre los distintos compartimentos internos de la raíz y el vástago. Aunque es escasa la información atinente a la compartimentación de este metal en las raíces pareciera que la misma difiere notoriamente entre los genotipos tolerantes al elevado suministro de Zn y los no tolerantes. Brookes et АÌ (1981)han observado que la concentración citoplasmática de Zn en raíces de Deschampsia caespitosa aumenta en los clones no-tolerantes al aumentar el nivel de suministro, en tanto que la de vacuola permanece

constante. Por el contrario en los clones Zn-tolerantes la concentración en vacuola aumenta mientras que la de citoplasma permanece constante. El aumento de **1a** concentración de Zn en el citoplasma tiene varias consecuencias que es preciso examinar. Por un lado dicho aumento promueve la extrusión de protones (Cocucci & Morgutti, 1987). Por otro el ascenso de la concentración endógena de Zn es capaz de interferir con la actividad de numerosos enzimas (Van Assche et al, 1990); a la vez que ocasionaría el desplazamiento de otros cationes de sus ligandos específicos en forma concomitante con un incremento de las formas Zn-ligadas. Es posible también que el aumento induzca, al igual que ocurre · a el cobre (Obata & Umebayashi, 1986), la sintesis de metalotioninas; un grupo de proteínas de bajo peso molecular capaces de enlazar metales pesados y que -por consiguiente- podrían atenuar su toxicidad. Reportes recientes tienden a confirmar esta posibilidad (Narender Reddy et al, 1990).

Otro mecanismo de detoxificación, probablemente relacionado con el ascenso de la concentración de Zn en el citoplasma, es la formación de estructuras cristalinas ricas en el metal (Harada et al, 1986). Van Steveninck y sus colaboradores (1987 a y b) han señalado, sobre la base del microanálisis de rayos X, la posibilidad de que dichos cristales correspondieran al fitato.

El aumento de la concentración de Zn en las raices suele estar asociado con un aumento en la concentración de éste en el vástago. Los pocos trabajos efectuados sugieren que la translocación de Zn depende de la actividad metabólica y que el desplazamiento radial desde el cortex hacia la médula- podría estar limitado a nivel de la endodermis (Chino & Baba, 1981; Denny & Wilkins, 1987 b). Esta información sumada al conocimiento de que este catión se desplaza por el xilema en la forma de Zn-citrato y, en menor grado, de Zn-malato (Tiffin, 1967; White et al, 1981 a, b y c) conduce a la idea de que el acceso del Zn al tejido conductor ocurriría a través del simplasto. Faltan, sin embargo, experimentos concluyentes que permitan confirmar o rechazar esta hipótesis.

Se ha sugerido que, ya en la parte aérea de las plantas, la fracción fisiologicamente activa está constituída -fundamentalmente- por compuestos de bajo peso molecular, los que al degradarse permitirían la transferencia del Zn hacia las macromoléculas que activa o de las que forma parte (Walker & Welch, 1987). Una parte del Zn que arriba al vástago recircula hacia la raíz o hacia órganos jóvenes en formación (Ramanni & Kannan, 1985 b); siendo en apariencia considerable la fracción que recircula hacia la raíz (Loneragan et al, 1989). Hasta donde alcanza nuestro conocimiento se ha realizado un solo estudio tendiente a aclarar la forma química en que el Zn se desplaza por floema. Dicho trabajo, realizado en plantas de ricino, mostró que el Zn se mueve ligado a compuestos orgánicos de bajo peso molecular y que, presumiblemente, contienen fósforo en su estructura (Van Goor & Wiersma, 1976).

Interacción Fósforo-Zinc

Como ya se ha señalado el agregado de fertilizantes fosforados a suelos con alto pH suele dar lugar a la aparición de síntomas de deficiencia de Zn. Estos sintomas son parecidos a aquellos que se obtienen en el mismo cultivo como resultado de la toxicidad al fósforo (Loneragan et al, 1982). Se han postulado distintos niveles en los que la interacción entre el fósforo y el cinc podría ocurrir. El primero de ellos es a nivel del suelo, merced a la precipitación del Zn en la forma de de cinc, disminuyendo de fosfato este modo la concentración efectiva del catión en la solución del

suelo. La información accesible muestra, sin embargo, que la mas importante interacción entre ambos nutrientes ocurre en la planta, ya sea a nivel de la absorción, de la translocación o de la utilización del metal.

Tal información es, empero, contradictoria. Así la adición de fósforo puede provocar un descenso en la absorción de Zn (Paulsen & Rotini, 1968), no afectarla (Ragab, 1980), o afectarla solo ligeramente (Cakmak & Marachner, 1986). Mas aún el orden en que se agregan el P y el Zn puede ocasionar distintas respuestas (Burleson & Page, 1967). En un trabajo reciente Cogliatti et al (1991) han observado en *Gaudinia fragilis* que el aumento del suministro de fósforo provoca una disminución del influjo de Zn; proceso que involucraría, aparentemente, el efecto de la concentración citoplasmática del anión sobre el sistema de transporte de Zn. Este modelo como es notorio no alcanza a explicar el amplio abanico de respuestas de la absorción de Zn frente al suministro de P.

En el mismo trabajo los autores han observado que el porcentaje de Zn translocado al vástago, respecto del total absorbido, es independiente de la concentración externa de P. En oposición a este resultado en una larga serie de trabajos Cakmak & Marschner (1986, 1987) y Marschner & Cakmak (1987) han hallado, en algodón, que el aumento del nivel de fósforo no afecta notoriamente la absorción pero sí la translocación de Zn. La disminución de esta última se debería a un descenso en la fracción Zn-soluble de la raíz (Cakmak & Marschner, 1987). Es posible que tal descenso, capaz de afectar la translocación, pueda ser homologado a un descenso en la fracción fisiologicamente activa.

Estos efectos pueden ser parcial o totalmente enmascarados por el crecimiento (Adams, 1980; Robson, 1983) o también por la presencia de otros iones en el medio. Así la presencia de calcio en el medio tiende a acentuar los sintomas de la deficiencia de Zn-fósforo inducida (Warnock et al, 1970); en tanto que -en las dicotiledoneas- la presencia de silicio atempera la misma (Marschner et al, 1990). En apariencia este último efecto se debe a que el silicio previene la excesiva acumulación de fósforo en las hojas (Miyake & Takahashi, 1985). Esta afirmación tiende a sugerir que el factor primario en la interacción P-Zn debe ser atribuído al desarrollo de la toxicidad al fósforo; sin embargo trabajos recientes (Teng & Timmer, 1990 a y b; Timmer & Teng. 1990) sugieren que estos efectos BON independientes.

OBJETIVOS

Tras la breve revisión practicada surge que la nutrición de Zn de las plantas superiores es un proceso globalmente poco explorado, con lagunas en cada uno de los procesos parciales. Es extraño que en tanto existe una abundante bibliografia referida a la variabilidad intra e interespecífica en la resistencia a altos niveles de suministro de Zn (Woolhouse, 1983; Baker, 1987) se desconozcan casi por entero los mocanismos involucrados en la absorción de este micronutrasnte; así como la forma en que ésta es regulada. La importancia de tal conocimiento es clave para una mejor comprensión de los fenómenos de deficiencia de Zn inducida por el fósforo y -particularmente- de toxicidad; ya que una de las formas en que, al menos teóricamente, las plantas podrían evitar la aparición de síntomas de toxicidad es a través de la exclusión del Zn del espacio interno radical (Taylor, 1987).

El objetivo principal de este trabajo ha sido estudiar la contribución de los flujos vectoriales al flujo neto de Zn, en plantas de trigo, en condiciones de variado suministro del metal (Capítulos I y II). Adicionalmente se ha explorado el efecto del nivel de

suministro de fósforo sobre la absorción y translocación del catión (Capítulo IV); así como los efectos del alto nivel exógeno de Zn sobre el crecimiento y desarrollo de las plantas (Capítulo III). La aparición de ciertos planteados por la metodología problemas empleada impulsó, finalmente, al estudio de tales dificultades tanto desde un punto de vista experimental como teórico. Dada la evidente dificultad -e inconveniencia- de intentar separar el conocimiento obtenido de la forma en que este ha sido adquirido; hemos creido conveniente dejar constancia de nuestras dudas y cavilaciones en los apendices añadidos al presente trabajo (Apéndices I, II y III).

* * *

MATERIALES Y METODOS
MATERIALES Y METODOS

MATERIAL VEGETAL

La especie empleada en todos los experimentos realizados, excepto uno, fue el trigo (*Triticum aestivum*) variedad "Klein Atalaya". En algunos ensayos se emplearon, con propósitos comparativos, las variedades Chaqueña INTA, Las Rosas INTA, Norkin Irupé, Trigomax 200 y la variedad Buck Candisur correspondiente esta última a la especie *Triticum durum*. Las semillas fueron gentilmente cedidas por la, ahora 'stente, Red de ensayos territoriales del Ministerio de Agricultura de la Nación. En uno de los ensayos realizados se empleó con fines comparativos girasol (Helianthus annus) HA89.

CULTIVO DE LAS PLANTAS

Para cada experimento las semillas fueron tratadas durante cinco minutos con agua oxigenada 10 % (V:V). Trás este tratamiento se procedió a someterlas a condiciones que aseguraran la imbibición; así como una

adecuada aireación. Con este propósito se colocaron las semillas en recipientes de vidrio que contenían agua destilada en la que se hizo burbujear aire durante seis horas. Las semillas fueron, luego, puestas en oscuridad durante 48 horas sobre papel de filtro húmedo. Cuando el porcentaje de germinación, al cabo de este período, superó el 70 % se siguió adelante con el cultivo de las plántulas. Tras la emergencia del coleoptile ве seleccionaron aquellas que contaban, al menos, con tres raices de mas de 0.5 cm y menos de 1.5 cm de longitud, descartandose el resto del material. Las plántulas seleccionadas fueron colocadas sobre una malla de plástico a través de la cual las raíces quedaron en contacto con una solución que contenía Ca SO₄ 0.5 mol m-3.

Al alcanzar las jóvenes plantas la total expansión de la primer hoja fueron transferidas a tanques de plástico de 40 litros de capacidad sobre los cuales se hallaba montada una plancha de plástico con 60 orificios de 1.7 cm de diámetro (Figura 1, pag. 30). Todo el material empleado en el cultivo de las plantas fue repetidamente lavado con agua destilada con el objeto de disminuir los riesgos de contaminación con fuentes de Zn FIGURA 1: Fotografía del sistema empleado para el cultivo de las plantas¹

* Agradezco al Ing. C.O. Rodgers el haber cedido gentilmente esta fotografía.

no deseadas; siendo particularmente eficáz el uso de material plástico con este fin (Moraghan, 1985). En cada orificio se colocó una cesta, en la cual -sujeto por una banda de gomaespuma- se introdujo un grupo de tres plantas; de modo tal que las raices quedaran en contacto con la solución nutritiva contenida en el tanque. A efectos de proporcionar una buena aireación a las raices se montó un sistema de aireación como el mostrado en la Figura 1.

CONDICIONES AMBIENTALES

La densidad del flujo de fotones al nivel de las plantas osciló entre 160 y 180 umol.m².seg⁻¹ de radiación activa en la fotosíntesis, bajo un fotoperíodo de 16 horas. La iluminación fue provista por lámparas Phillips HPLN de 400 watt y lámparas incandescentes de 75 watt.

En los primeros estadios del desarrollo no hubo un significativo efecto de sombreo por la cobertura vegetal, el que se hizo evidente a partir del día 18 despues de la germinación. Por esta razón los experimentos se realizaron entre los días 12 y 23 desde la germinación. Si bien esto implica cierto efecto del sombreo en las cosechas tardias, la elección practicada resulta una solución de compromiso entre la estabilización de los efectos nutricionales y la energía radiante interceptada. Solo excepcionalmente se realizaron experimentos mas allá del día 23; en tales casos se redujo tres veces el número de plantas.

La temperatura en la cámara de cultivo se mantuvo en 20 ± 2 °C. La humedad relativa en la misma osciló alrededor del 60 %.

SUMINISTRO DE NUTRIENTES

Hasta el día ocho despues de la germinación la solución nutritiva estuvo compuesta unicamente por $CaSO_4$ 0.5 mol m⁻³. Esta solución fue luego reemplazada por otra completa cuya composición puede observarse en la Tabla 1 (pag. 33).

La concentración de fósforo, suministrado bajo la forma de H₂KPO₄, fue -excepto cuando se indica lo contrario- 1 mol m⁻³. En aquellos experimentos en que se emplearon diferentes condiciones de suministro de P, el K+ fue balanceado mediante el agregado de K₂SO₄ ya que se ha observado que este catión puede interactuar con la TABLA 1: Composición de la solución de cultivo empleada en los ensayos.

K NO3	5.0	mol m-3
Na NO3	2.0	mol m-3
Ca (NO3)2	1.5	mol m-3
Mg SO₄	1.5	mol m-3
Fe EDTA	9.22	mmol m-3
K Cl	50.00	mmol m-3
Нз ВОз	25.00	mmol m-3
Mn SO4	2.00	mmol m ⁻³
Cu SO4	0.50	mmol m ⁻³
(NH4)8 M07024	0.50	mmol m-3

pH 6.0 ± 0.2

Nota: La concentración de Zn, excepto cuando se indica lo contrario fue de 2 mmol m⁻³, en tanto que la de fósforo fue -dependiendo del experimento- de 1.0 mol m⁻³. (Ver pag. 32 y 34) absorción de Zn²⁺ (Cogliatti et al, 1991). En tales experimentos, por consiguiente, la especie química no balanceada fue el ión SO_4^{2-} .

La concentración de Zn en la solución de cultivo de la naturaleza У objetivo dependió de cada experimento. Así todos los experimentos correspondientes Capitulo I fueron efectuados en el ni el de al suministro 2 mmol.m⁻³. En los experimentos informacos en los Capítulos II y III los niveles de Zn durante el cultivo de las plantas fueron 0.5; 10; 100 y 1000 mmol m-3 6 -tambien respecto del cápitulo II- en los niveles 0.2; 2 y 20 mmol m^{-3} ; en tanto que los del Capítulo IV se efectuaron en el nivel 4 mmol m^{-3} .

Dado que durante el cultivo de las plantas éstas incorporan nutrientes desde la solución de cultivo, se produce una disminución en la concentración de éstos en la misma. Por este motivo se efectuó el reemplazo de la solución externa de acuerdo a dos criterios; el primero de ellos fue fijar un período máximo de reposición, el cual se determinó estimando la máxima demanda provocada por el crecimiento. El segundo criterio consistió en la medición de la concentración de fósforo y de cinc en la solución de cultivo: cuando cualquiera de ambas disminuyó por debajo del 90 % de la concentración inicial se procedió a cambiar la solución en todos los tratamientos.

El pH de la solución de cultivo fue mantenido en 6 0.2. El control de esta variable se efectuó, al menos, con frecuencia diaria . Frecuencias de control y ajuste mayores fueron empleadas en las fases mas avanzadas del desarrollo y cuando se emplearon elevados niveles de suministro de Zn.

MEDICION DE PARAMETROS DE CRECIMIENTO

MEDICION DE PARAMETROS DIRECTOS

En forma rutinaria, para toda la serie de experimentos aquí informada, el material vegetal fue cosechado, separado en parte aérea y raíz, secado a 70 °C y pesado con una balanza de precisión. Excepto en los experimentos correspondientes a los capítulos II y III las unidades observacionales estuvieron constituídas por los grupos de tres plantas contenidos en cada cesta. En los experimentos especialmente diseñados para estudiar el efecto del nivel de suministro de Zn sobre el crecimiento, el material vegetal fue separado en raíz, lámina y vaina; tomandose el peso fresco de cada uno de estos órganos. El área foliar se midió mediante el empleo de un medidor de área foliar Licor 3050 A. En la parte aérea se midió, también, la longitud de cada hoja, así como la longitud de las vaínas.

Las raíces de cada planta fueron separadas, de acuerdo a su origen, en seminales y nodales. Para cada uno de los ejes principales de ambos grupos se midić con una regla milimetrada, la longitud desde el ápice hasta la base; así como la distancia al ápice en que aparecen las raíces laterales de primer orden. En cada eje se midió, además, el número de raíces de este orden.

A través del método de Tennant (1976) se estimó la longitud total de la raíz y la de los ejes principales. El método empleado se basa en la correspondencia entre el número de intersecciones de la raíz con las líneas de un plano cuadriculado cuyo tamaño es previamente fijado. La longitud total de la raíz fue estimada a través de la determinación del número intersecciones; total de luego el número midiendose de intersecciones correspondiente a los ejes principales de modo tal que la diferencia entre la longitud total y la de los ejes principales estima la longitud correspondiente a la totalidad de los ejes laterales de primer orden.

Con el propósito de contrastar la exactitud del método de Tennant (1976) se compararon, para los ejes principales, las mediciones efectuadas con regla con aquellas obtenidas a través del procedimiento de intersección. Las diferencias entre una y otra aproximación no superaron, en promedio, el 2 %; no observandose errores sistemáticos de un método respecto del otro.

DERIVACION DE PARAMETROS DE CRECIMIENTO

A partir de las mediciones directas de crecimiento se estimó la magnitud de los parámetros de crecimiento derivados (Hunt, 1982). El enfoque empleado para el cálculo de las constantes de crecimiento relativo fue funcional 1986), ajustándose (Cooper, los datos provenientes de distintas cosechas a una función Si bien este método padece de ciertas apropiada. objeciones que dificultan la comparación de datos provenientes de distintos tratamientos (Poorter, 1991), fue considerado de acuerdo a la naturaleza y forma de

colección de los mismos como aquel que permitía una mejor aproximación al fenómeno estudiado.

Por definición la tasa de crecimiento relativo -Gde un parámetro -X- como, por ejemplo, el peso seco total o el area foliar; es:

$$G = \frac{1 dX}{X dt}$$
(1)

Donde X es el parámetro bajo estudio. La integración de esta expresión brinda:

$$\ln X = \ln K + G.t \tag{2}$$

La tasa de crecimiento relativo (G) puede ser luego calculada como la pendiente del gráfico del $\ln X$ en función del tiempo; donde K es la ordenada al origen.

Nota: En el presente trabajo la tasa de crecimiento relativo del peso seco total ha sido designada como RGR. La abreviatura G ha sido empleada para mostrar la forma de cálculo de cualquier tasa de crecimiento relativo, una de las cuales es RGR. Otro parámetro derivado que ha sido empleado en este trabajo es la tasa de asimilación neta (NAR), la cual es definida como:

$$NAR = 1 dW$$
(3)
A dt

La integración de esta expresión requiere suponer una dada relación entre A y W (Kvet et al, 1971). En todos los experimentos realizados se observó que tal relación era lineal, por lo que -para estimaciones del valor medio a lo largo de todo el intervalo se empleó la siguiente aproximación:

NAR=
$$W_{\Omega}$$
 RGR_W (e^(RGR_W-RGR_A).t - 1)
(RGR_W-RGR_A) Ao .t (4)

Donde RGR_W es la tasa de crecimiento relativo de planta entera y RGRA la de area foliar. En tanto que cuando interesó conocer el valor medio de NAR en el intervalo que media entre dos cosechas sucesivas se empleó el método clásico a través del uso de la siguiente ecuación (Kvet et al, 1971):

$$NAR = \frac{W_{f} - W_{o}}{A_{f} - A_{o}} \qquad (1n A_{f} - 1n A_{o}) \qquad (5)$$

Respecto de algunos parámetros, como la longitud total de la raíz o la de los ejes de distinto orden, interesó conocer el valor medio de los mismos durante el período de tratamiento. Los valores medios del parámetro *i* fueron estimados según la siguiente expresión:

$$i = \frac{j_0}{G_{1.} t} . (e^{G_{1.} t} - 1)$$
(6)
G_{1.} t

Donde G₁ es la tasa de crecimiento relativo del parámetro considerado.

DESARROLLO DE LAS PLANTAS

Simultáneamente a la medición de los parámetros primarios de crecimiento se midió el número de hojas presentes en cada eje caulinar. El número de hojas fue relacionado en forma lineal con el tiempo térmico en el meristema del vástago. Dado que no fue posible efectuar mediciones directas de la temperatura en aquel, se asumió que la misma era igual a la temperatura ambiental. En condiciones de temperatura constante, como las aquí empleadas, las hojas aparecen a intervalos de tiempo regulares. La pendiente de la recta obtenida es, de acuerdo con Ritchie y NeSmith (1991), el filocrono.

El número de hojas considerado fue aquel que resulta del número de hojas visibles. Este procedimiento tiende a subestimar el número real de hojas (Milthorpe & Moorby, 1975) pero resulta una buena aproximación para los objetivos del presente trabajo. El número de hojas visibles fue estimado mediante el siguiente procedimiento: al número de hojas expandidas se le sumó la fracción que resulta de practicar el cociente entre el tamaño de la hoja mas joven respecto de la última hoja anterior.

En las fases de desarrollo comprendidas en estos experimentos no se observó la aparición de macollos.

MEDICION DE PARAMETROS NUTRICIONALES

MEDICION DEL CONTENIDO DE NUTRIENTES

Una vez efectuadas las mediciones de los parámetros directos de crecimiento, el material vegetal ya secado y pesado fue digerido en mezcla nítrico perclórico: sulfúrico (10:4:1 V/V) hasta que la muestra alcanzó a ser translúcida y con un volumen inferior a 0.5 ml. Los digestos fueron llevados a un volumen apropiado para la lectura de la concentración de fósforo y de zinc.

A partir de la medición de la concentración de ambos nutrientes en los digestos, se estimó el contenido de P y de Zn en los distintos órganos del cormo.

DERIVACION DE PARAMETROS NUTRICIONALES

De acuerdo con Wiliams (1948) puede definirse la tasa específica de absorción (SAR) de un nutriente como:

$$\mathsf{BAR} = \frac{dQr}{dt} \cdot \underline{1} \tag{7}$$

Donde $Q_{\mathbf{r}}$ es el contenido total del nutriente en la planta y $W_{\mathbf{r}}$ el peso seco de la raíz. A partir de esta definición es posible estimar la SAR de varias maneras:

$$BAR = \frac{dQT}{dt} \cdot \frac{1}{W_{rr}}$$

Es decir partiendo de la misma definición o a través de:

$$BAR = \frac{d(lnQr)}{dt} \cdot 1$$
(8)
$$dt \qquad W_r$$

El uso de una u otra expresión depende de los objetivos perseguidos. Así el empleo de la expresión (7) permite calcular la SAR en el intervalo que media entre dos cosechas sucesivas; en tanto que la expresión (8) permite estimar el valor medio para una serie de datos provenientes de varias cosechas.

En el presente trabajo la tasa específica de absorción se descompuso en dos tasas: la de commulación en la raiz (SRA) y la de translocación al vástago (SSI); cuya sumatoria rinde -al menos en términos teóricos- la SAR. Siendo:

$$BRA = dQr \cdot 1 \qquad (9)$$

$$dt \qquad W_r$$

$$BBT = dQe \cdot 1 \qquad (10)$$

$$dt \qquad W_r$$

У

Donde los subindices r y s indican raíz y vástago, respectivamente.

El estudio de la variación del flujo neto a partir de las expresiones precedentes asume que el área a través de la cual ocurre el flujo neto hacia las raíces está relacionada en forma lineal e invariable con el peso seco de la misma. Esta suposición necesita ser contrastada cuando se emplean tratamientos capaces de afectar el crecimiento en longitud, pero no el crecimiento en peso seco o viceversa. En ciertos experimentos se compararon las estimaciones efectuadas sobre la base del peso seco con aquellas expresadas por unidad de longitud de la raíz. En éste último caso la SAR queda definida por:

$$BAR = \frac{dQr}{L}$$
(11)
$$L dt Lr$$

Donde Lr es la longitud total de la raíz.

USO DE ISOTOPOS PARA LA ESTIMACION DE FLUJOS

ESTIMACION DEL INFLUJO DE ZN

La estimación del influjo de Zn²⁺ hacia el espacio interno radical 8e efectuó en dos condiciones excluyentes: en situación de estado "cuasi estacionario" 6 -dependiendo del experimento- durante la ruptura del mismo (Ver Apéndice III). Para las estimaciones en condiciones de estado "cuasi estacionario" se emplearon plantas que habían recibido, al menos, un tratamiento previo de siete dias en iguales condiciones de suministro de nutrientes que aquella en la que **Be** efectuó el experimento. Las plantas así cultivadas fueron puestas en contacto con una solución nutritiva de igual composición que la de cultivo pero en la que se había adicionado ⁶⁵Zn. La actividad específica varió según el tratamiento y experimento considerado entre 37 KBq 65Zn.umol-1Zn y 296 KBq 65Zn. umol-1Zn. Trás veinte minutos de permanencia en la solución radioactiva. sometida a intenso burbujeo para atenuar la formación de capas limites, las plantas fueron transferidas durante otros 20 minutos a una solución de igual composición pero libre del trazador, con el proposito de remover el ⁶⁵Zn presente en el Espacio Aparentemente Libre. **E**1 material vegetal fue cosechado, secado, pesado У digerido como se ha detallado previamente. Los digestos fueron llevados a un volumen final de 10 ml en los que se determinó la emisión de rayos gamma.

Las mediciones fuera de estado "cuasi estacionario" se efectuaron con dos propósitos distintos a) Estimar los parámetros Vmax y Km que caracterizan las isotermas de influjo 6 b) Estudiar el efecto, a lo largo del tiempo, del cambio en el nivel de suministro de P 6 Zn sobre el influjo del catión. En este último caso fue la nueva concentración de P ó de Zn la empleada durante los de carga y lavado del trazador. En periodos las isotermas de influjo, en las que se estima el influjo en un amplio rango de concentraciones externas, la concentración de Zn durante el período de lavado fue la misma que aquella empleada durante el cultivo de las Este procedimiento permite minimizar plantas. las perturbaciones sobre el sistema y evitar la introducción de nuevas incógnitas (Jensén, 1987).

Un aspecto importante a tener en cuenta durante la realización de este tipo de experimentos es el posible cambio en la concentración en la solución empleada para la carga del trazador o en la de lavado, debido al arrastre de solución desde el recipiente precedente. Para evitar este efecto indeseado antes del período de carga y de lavado se sumergieron las raíces durante 15 segundos en un recipiente con agua destilada.

ESTIMACION DEL EFLUJO DE ZN

La estimación del eflujo se realizó mediante dos procedimientos básicos. El primero de ellos consistió en calcular el mismo como la diferencia entre el influjo y la tasa específica de absorción. Este procedimiento es particularmente eficáz en condiciones alejadas del estado estacionario cuando las medidas directas del eflujo no son posibles (Walker & Pitman, 1976).

El segundo procedimiento consistió en cultivar las plantas en condiciones de estado "cuasi estacionario" en del trazador en la solución de cultivo presencia (Actividad específica 74 KBq 65Zn.umol-1Zn). Cuando las plantas se encontraron homogeneamente marcadas -todos compartimentos presentaban igual actividad 105 específica que la de la solución de cultivo- las mismas se transfiriercn a una solución libre del marcador. Dado que al eluir el trazador hacia la solución externa ésta incrementa su actividad específica y que -por lo tantopodría verificarse el reingreso de aquel, es menester renovar la solución externa a distintos intervalos de tiempo desde el inicio del experimento. Las soluciones recogidas a distintos intervalos de tiempo, y cuyo volumen fue medido, se concentraron a un volumen final

de 10 ml; midiéndose en las mismas la emisión de radiación. El procedimiento seguido, a partir de estos datos, para estimar el eflujo desde el espacio interno radical es comentado detalladamente en el capitulo I.

ESTIMACION DEL FLUJO NETO INSTANTANEO DE ZN

Por definición la SAR es una tasa instantánea pero su estimación involucra -para ser precisa- una distancia entre cosechas no inferior a las 48 horas al cabo de las cuales puede verificarse un crecimiento significativo del contenido de Zn en las plantas. En ciertos casos interesó conocer la magnitud del flujo neto de Zn en períodos de tiempo mucho menores. Estas mediciones más próximas a las instantaneas se efectuaron a través del seguimiento de la desaparición de Zn en el medio de cultivo.

Este procedimiento se basa en que en pequeños volumenes de solución y con una gran densidad de raíces, absorben rapidamente el nutriente éstas У -por éste disminuye consiguiente-8u concentración. Paralelamente las raices absorben agua, disminuyendo el volumen de la solución. Si se mide la concentración del nutriente a distintos intervalos de tiempo у,

se registra en forma simultánea la variación de volumen, es posible estimar la cantidad de nutriente incorporado por las raíces, la cual será igual a la diferencia entre el contenido inicial y final de aguel en la solución externa.

Con tal fin se estandarizó un método de medición que consistió en colocar plantas en recipientes de 50 mL de capacidad con una densidad de raíces de 30 g (Peso Fresco). L⁻¹ de solución, recolectando en periodos no inferiores a 10 ni superiores a 60 minutos muestras de la solución de absorción. Dado que no fue posible efectuar un seguimiento fino del volumen de la solución se midió el mismo al inicio y al final del experimento asumiendose que la disminución del volumen de solución

Esta manera de medir el flujo neto choca, sin algunas limitaciones que es preciso con embargo, La primera de ellas ве refiere las señalar. а concentraciones de Zn capaces de ser medidas por métodos espectrofotometria. Este inconveniente pudo de ser mediante el uso de 65Zn en plantas salvado homogeneamente marcadas, midiendose la desaparición del isótopo radioáctivo en una solución de igual actividad específica que la empleada durante la marcación del. material vegetal.

La segunda limitación proviene de que es necesario un decaimiento no inferior al 10% en la concentración de la solución de absorción para obtener datos confiables. Cuando se trabajó con niveles de elevado suministro de Zn este problema no pudo ser salvado.

MEDICION DE LA TRANSPIRACION

El método precedente fue empleado como base para la medición de la transpiración; la cual fue estimada a través de la pérdida de volumen en la solución de cultivo durante un período de dos horas. El volumen de agua transpirada fue referido a la superficie foliar.

USO DE INHIBIDORES METABOLICOS

En algunos ensayos se estimó el influjo de Zn y el porcentaje de 65Zn translocado al vástago en presencia de inhibidores metabólicos o condiciones ambientales potencialmente capaces de influir sobre la magnitud de los mismos, como la temperatura. Con este fin se empleó 2-4 Dinitrofenol (DNP) en concentración 0.5 10⁻⁴ M y azida sódica (NaNa) 10⁻⁴ M. En el caso del DNP y debido a su baja solubilidad en fase acuosa se lo disolvió previamente- en etanol; por lo que la misma cantidad de este solvente fue agregada a 'a solución control. Trás el agregado de DNP a la solución nutritiva el pH de la misma disminuye y fue necesario reajustar el mismo. El pretratamiento con DNP, NAN3 o bajas temperaturas (4°C) fue -en los experimentos informados- de una hora de duración.

DETERMINACIONES QUIMICAS

Determinación del fósforo: La concentración de fósforo en la solución de cultivo fue estimada mediante la determinación de la formación del complejo fosfo-vanadomolíbdico en medio reductor (ácido ascórbico), según ha sido informado por Murphy & Ryley (1962). En las muestras vegetales el fósforo se determinó mediante el método del amarillo vanado-molíbdico (Jackson, 1964).

Determinación del Zinc: La determinación de Zn, tanto en los digestos como en la solución de cultivo, se efectuó por espectrofotometría de absorción atómica mediante el empleo de un equipo Zeis. Determinación de clorofila: Muestras de parte aérea de 250 mg de peso fresco se almacenaron en bolsas de plástico y fueron mantenidas, en oscuridad, a una temperatura de -70 °C hasta el momento de determinar en las mismas el contenido de clorofila mediante el método de Arnon (1949).

Determinación de ⁶⁵Zn: La emisión de radiación gamma proveniente del isótopo radioactvo del Zn fue leida en un espectrómetro de cristal de pozo Beckman Autogamma 300.

METODOS ESTADISTICOS

La comparación de datos provenientes de distintos tratamientos se efectuó a través del test t de Student; empleandose un nivel de significancia del 5 %. En el caso de las curvas obtenidas; estas fueron ajustadas dependiendo de la ecuación de ajuste- a través del método de minimos cuadrados o -cuando la transformación lineal de los datos no fue posible- a traves del método simplex, el cual minimiza la suma de cuadrados residuales (Nelder & Mead, 1965). El cálculo de los intervalos de confianza de los parámetros característicos de cada una de las ecuaciones de ajuste no linearizables fue realizado usando un programa que varia el valor de cada parámetro hasta que la suma de cuadrados residuales aumenta en forma significativa (Barrow & Campbell, 1972; Barrow & Mendoza, 1990).

El enfoque sostenido a lo largo de este trabajo evitó expresa y conscientemente igualar el grado de verdad y/ó corraboración de las hipótesis vértidas con probabilidad; por lo que el empleo 8u de las estadísticas antes herramientas mencionadas 8e circunscribió al mínimo; operando con las mismas como ayuda del sentido común y no como sustituto de éste. En lineas generales tales herramientas fueron empleadas para el ajuste de ecuaciones, mas que para efectuar comparaciones. Este criterio supone cierto grado de arbitrariedad en la contrastación de hipótesis toda vez "sentido común" es. el en todos los casos. aue eminentemente subjetivo. No obstante no existen razones epistemológicas de peso para igualar el grado de verdad o corraboración de una hipótesis con su probabilidad (Bunge, 1975). El enfoque agui adoptado así como otros alternativos ha sido objeto de un áspero debate al que nos remitimos (Ej: Popper, 1985; Bunge, 1975).

CAPITULO 1

FLUJOS VECTORIALES Y COMPARTIMENTACION DEL ZN

FLUJOS VECTORIALES Y COMPARTIMENTACION DEL ZN EN LAS RAICES

INTRODUCCION

de Una las tareas que deben plantearse para dilucidar la contribución del eflujo e influjo al flujo hacia el espacio interno radical, neto de Zn en condiciones de variado suministro del metal, es el estudio detallado de los procesos de absorción y pérdida de Zn una dada concentración externa. en Este conocimiento persigue la obtención de una base firme que los interpretar resultados obtenidos permita en distintas condiciones de cultivo de las plantas, cuando es dificil efectuar simultaneamente -para cada una de condiciones- experimentos detallados. tales La concentración elegida para alcanzar este objetivo fue de 2 mmol m^{-3} , la cual ha sido comunmente empleada en los experimentos realizados en hidroponia (Hewitt, 1966). El uso de tal concentración permite, pues, comparar los resultados obtenidos con aquellos hallados por otros autores.

RESULTADOS Y DISCUSION

1- SEGUIMIENTO DE LA INCORPORACION DE 65ZN

El primer experimento aquí informado consistió en seguir la absorción de ⁶⁵Zn a lo largo del tiempo. Cuando las plantas de trigo fueron puestas en entacto con el trazador, la tasa inicial de absorción de 65Zn fue alta y permaneció aproximadamente constante durante la primera hora (Figura 2, pag. 58); a partir de entonces y hasta 8 horas mas tarde la tasa de absorción disminuyó marcadamente, del trazador haciendose la finalización del constante antes de período experimental.

Si la tasa de absorción neta de Zn se mantiene constante a lo largo del experimento, los cambios en la tasa de absorción de ⁶⁵Zn reflejan la existencia de un importante componente del eflujo en el flujo neto. Asumiendo que la SAR Zn fue constante, la pendiente de la absorción de ⁶⁵Zn durante la primer hora estima el influjo de Zn^{2+} ya que el eflujo del trazador es despreciable debido a la baja actividad específica interna (Cram, 1969). El hallazgo de esta fase concuerda con los resultados obtenidos por Bowen (1969) y Homma & Hirata (1984) quienes en caña de azucar y arroz encontraron para cortos tiempos de exposición al trazador, una relación lineal entre el ⁶⁵Zn absorbido y el tiempo.

Al aumentar la longitud del período en que las raices estuvieron en contacto con el trazador, aumenta actividad específica interna la y -de forma concomitante- aumenta la importancia del eflujo de ⁶⁵Zn. La tasa de acumulación del Zn radioactivo en la planta es, consecuentemente, el resultado del balance entre el influjo y el eflujo de ⁶⁵Zn y se aproxima, en forma asintótica, a la tasa "real" de absorción neta a medida que la actividad específica interna se aproxima a la del medio de absorción. Esta segunda fase lineal puede ser observada en la Figura 2 (pag. 58).

El eflujo de Zn fue estimado, siguiendo el razonamiento anterior, como la diferencia entre la tasa inicial de absorción del trazador y la tasa observada durante la segunda fase lineal (Tabla 2, pag. 60). Esta estimación brinda una estimación del eflujo que representa, aproximadamente, el 85 % del influjo de Zn. Es importante notar que este procedimiento de cálculo tiende a subestimar el valor "real" del eflujo ya que la

57

<u>FIGURA 2</u>: Evolución de la incorporación de ⁶⁵Zn en planta entera y su acumulación en la raíz. El área sombreada corresponde al trazador transportado al vástago. Resultados promedio de cinco repeticiones con su error estandard.

actividad específica interna, al final del período experimental, es inferior aún a la actividad específica de la solución de carga.

La curva de acumulación de 65Zn en la raiz recuerda 'estrechamente a aquella obtenida para la absorción, siendo la diferencia entre una y otra el Zn radioactivo translocado al vástago (Figura 2). El Zn radioactivo transportado al vástago se incrementa inicialmente en forma exponencial hasta las seis horas, siguiendo una relación aproximadamente lineal con el luegotiempo. La tasa de acumulación neta en la parte aerea puede ser estimada como la diferencia entre las pendientes de la segunda fase lineal de la absorción de ⁶⁵Zn y la de acumulación de éste en la raíz (Tabla 2). Este cálculo permite estimar que del total de Zn absorbido por la planta el 53.8 % es translocado al vástago.

2- SEGUIMIENTO DEL EFLUJO DE 66ZN

La tasa de eflujo de ⁶⁵Zn desde las raíces de las plantas puede ser estimada tambien mediante la realización de experimentos de lavado fraccionado <u>TABLA 2</u>: Flujos de Zn estimados a partir de los resultados de la Figura 2. Valores expresados en umol g^{-1} (Peso Seco Raíz) h^{-1} .

	Valor Estimado	Porcentaje del influjo	Porcentaje del flujo neto
Influjo	0.833	100	_
Eflujo	0.703	84.39	_
Flujo neto	0.130	15.60	100 [.]
Acumulación neta en raíz	0.060	7.20	46.2
Acumulación neta en vástago	0.070	8.40	53.8

(Walker & Pitman, 1976). Dicha tasa fue calculada del siguiente: el Zn radioactivo eluído en cada modo intervalo de tiempo fue dividido por la duración de dicho intervalo. Esta tasa fue luego ajustada a una función triple exponencial; ya que este modelo a la par de brindar un buen ajuste de los datos proporciona un sólido cuerpo teórico de interpretación. El gráfico del logaritmo natural de la tasa de eflujo en función del tiempo mostró una fase lineal de salida lenta dominante a partir de las tres horas (Figura 3 A, pag. 62). La extrapolación a tiempo cero de esta fase lenta y la sustracción de la misma a los valores encontrados por arriba de ella, reveló la presencia de una segunda fase de intercambio (Figura 3 B). Este procedimiento fue repetido para hallar la fase de salida rápida (Figura 3 C).

El ⁶⁵Zn eluído durante los primeros 30 minutos de lavado, con un tiempo medio de intercambio isotópico de 4 minutos (Tabla 3,pag. 66) fue asignado al Espacio Aparentemente Libre. La segunda fase, cuyo T¹/2 fue de 36 minutos, liberó ⁶⁵Zn al medio externo durante un período de -aproximadamente- tres horas; en tanto que la fase III liberó ⁶⁵Zn con un T¹/2 de 32.8 horas (Tabla 3). Aceptando que el ⁶⁵Zn eluído en las fases II y III corresponde al espacio interno, la tasa total de salida FIGURA 3: Evolución del eflujo de 65 Zn. A: Eflujo total (r² para la regresión lineal=0.61). B: Primera y segunda fases trás la sustracción de la tercera (r²=0.96). C: Primera fase tras restar la segunda (r²=0.98). Resultados promedio de cinco repeticiones con el error standard.

62

de Zn desde el mismo puede ser -si los compartimentos cinéticos se hallan dispuestos en paralelo- estimada como la suma de las tasas de salida de las fases II y III a tiempo cero. Tal estimación arroja un valor de 0.54 umol Zn.g⁻¹(Peso Seco Raíz), el cual representa el 65 % del influjo estimado en el primer experimento (tabla 2).

alto eflujo de Zn sugerido en el primer **E**1 experimento y confirmado ahora por medición directa permite explicar la cinética de absorción de 65Zn observada por otros autores (Schmid et al, 1965; Ramanni & Kannan, 1985). Por otro lado el alto valor del eflujo de Zn sugiere que este podría desempeñar algún rol en ' regulación de la absorción neta de Zn; sobre todo вi consideramos que la concentración en la solución de cultivo (2 mmol m⁻³) excede aquella comunmente los suelos. Es posible que en tal encontrada en condición, cuando el influjo de Zn²⁺ es elevado, el eflujo pueda operar como un mecanismo de detoxificación.

Los resultados del experimento de lavado ser empleados para estudiar fraccionado pueden, además, la compartimentación del Zn en las raíces **E1** procedimiento básico consiste (Mac Robbie, 1973) en graficar el contenido remanente del trazador en la raíz

63
en función del tiempo, resolviendo la curva a la que se ajustan los datos.

La cantidad de 65Zn contenida en el tejido en cada momento fue calculada por la adición secuencial del ⁶⁵Zn eluído a la solución externa y la de aquel transportado cada intervalo al vástago en de tiempo а la radioactividad presente en la raíz al finalizar el experimento. Debido a la alta radioactividad presente en la parte aérea fue imposible efectuar una medida directa la cantidad de ⁶⁵Zn transportada al vástago en cada de intervalo de tiempo. Sin embargo puede efectuarse una estimación del ⁶⁵Zn transportado a partir de los datos del experimento de seguimiento de la absorción del trazador (Figura 2). Para ello hemos asumido que la de Zn radioactivo transportado al cantidad vástago durante cada intervalo del experimento de lavado fue igual a la cantidad de Zn no radioactivo translocado durante el mismo período de tiempo en el experimento de absorción. Este último valor fue calculado la como diferencia entre la totalidad del Zn transportado al vástago y la correspondiente cantidad de radioactivo. La tasa del Zn total transportado a la parte aérea fue 0.07 umol.g⁻¹(Peso Seco Raiz).h⁻¹.

FIGURA 4: Evolución del contenido de ^{65}Zn remanente en la raiz. A: Contenido total (r²=0.99). B: Primera y segunda fases tras la sustracción de la tercera (r²=0.99). C: Primera fase despues de sustraer la segunda (r²=0.98). Resultados promedio de cinco réplicas.

<u>TABLA 3</u>: Contenido y tasa de salida de Zn desde los distintos compartimentos calculados a partir del experimento de lavado y análisis químico.

COMPARTIMENTO

	I	II	III	Raiz	Vástago
Contenido (umol g ⁻¹)	0.84	0.42	3.97	_	_
Eflujo (umol g ⁻¹ h ⁻¹)	13.52	0.516	0.026	-	-
Tiempo medio para contenido (hs)	0.08	0.55	134.33	-	-
Tiempo medio para Eflujo	0.06	0.60	32.78	-	-
Concentración de Zinc (umol g ⁻¹)	-	-	-	5.23	2.54

forma similar a la de la curva de eflujo, se En ajustaron los datos de contenido a un modelo triple (Figura 4, pag. 65), resolviendose la exponencial contribución de cada compartimento usando el método previamente descrito. La extrapolación a tiempo cero de fase brinda el contenido cada inicial de cada El contenido de compartimento. eeZn en los compartimentos aparentes I, II y III representó respectivamente- el 16 ; 8 y 76 % del contenido total de Zn en la raíz (Tabla 3).

E1 compartimento I, asignado al Espacio Aparentemente Libre, parece contener una importante fracción del Zn presente en las raíces de trigo. Si asignamos al Espacio Libre un volumen del 8 al 14 % del total del tejido (Beengtson & Jensén, 1982; Ingelsten & 1961) la concentración del metal en éste Hymlo, compartimento estaría entre 0.53 y 0.30 mM. Tan alta concentración sugiere una alta adsorción del Zn en el Espacio Libre Donnan. Para otros cationes divalentes, en particular el Ca²⁺, se ha postulado que su adsorción en el apoplasto no puede ser totalmente eliminada mediante la técnica de lavado fraccionado (Bengtsson & Jensén, 1982; Cramer et al, 1987) ya que podria existir una fuerte adsorción en la superficie de las membranas (Lynch & Lauchli, 1988). En el presente trabajo no se

han efectuado estudios tendientes a aclarar si este efecto puede presentarse también para el Zn; esta observación obliga a un análisis cuidadoso de los datos obtenidos.

Usualmente las fases II y III son asignadas al citoplasma y la vacuola, respectivamente. De acuerdo a la similitud de las constantes de intercambio isotópico del eflujo de ⁶⁵Zn y de contenido del trazador (Tabla 3) puede afirmarse que el compartimento aparente II y la fase II corresponden a un único compartimento (Cheessman, 1986) y es probable que el mismo corresponda al citoplasma.

De modo opuesto la constante de intercambio isotópico de la fase III, para la tasa de salida, es francamente distinta a la constante de intercambio hallada para el decaimiento del contenido remanente de ⁶⁵Zn del compartimento aparente III. El componente final de intercambio no ha podido -por tanto- ser resuelto (Cram & Laties, 1974).

Esta discordancia sugiere que la última fase podría ser el resultado de mas de un compartimento químico. Así Starks & Johnson (1985) han hallado que formas orgánicas de Zn de baja velocidad de recambio pueden estar presentes junto al Zn^{2+} ; pudiendo -además- valer aquí lo afirmado anteriormente para el calcio.

Por otro lado diferentes compartimentos físicos pueden contribuir al eflujo de Zn durante esta fase. Es posible que el Espacio Libre de la estela y las vacuolas los compartimentos involucrados. Chino & Baba sean (1981) han observado en plantas de arroz que existe una barrera entre la endodermis y el periciclo para el acceso radial del Zn a la médula. En forma similar la endodermis podría restringir el eflujo desde el Espacio Libre de la estela al cortex. Se ha observado tambien que las paredes celulares de los vasos xilemáticos, ricos en extremos carboxílicos cargados, estaban saturados de cationes (Van de Geijn & Petit, 1979). Mas Turner (1970) encontró que las paredes celulares de aún las raices de Agrostis tenuis retenían una importante proporción del Zn²⁺ no intercambiable. Como no existe una barrera para la libre difusión del Zn dentro del apoplasto de la estela, tal adsorción podría ocurrir no solo en los vasos xilemáticos sino en todas las paredes de las células de la médula. El ⁶⁵Zn proveniente del apoplasto de la estela debe atravesar dos membranas para alcanzar la solución externa, de modo similar que aquel que proviene de la vacuola. Esto podría explicar 1a probable confusión de ambos compartimentos en una sola fase de elución. Recientemente Klemendtsson & Petersson (1990) han sostenido, respecto del Rb+, una hipótesis

similar a la aquí vertida; tanto en uno como en otro caso es necesario un trabajo experimental adicional con técnicas mas poderosas que las hasta ahora comunmente empleadas para contrastar de un modo adecuado la misma.

3- POSIBLE NATURALEZA TERMODINAMICA DE LOS FLUJOS VECTORIALES

El estudio del flujo neto de Zn requiere por un lado estimar la magnitud del influjo y eflujo de este Tal estudio, cuando es acompañado por catión. la elucidación de la compartimentación en la raíz, puede para efectuar servir una correcta caracterización termodinámica de cada uno de los flujos vectoriales. Dado que en el presente trabajo no fue posible efectuar mediciones de la diferencia de potencial entre uno y membrana(PD), otro lado de la 8e intentó una aproximación preliminar a éste problema empleando los datos del PD obtenidos por otros autores en plantas de trigo cultivadas en condiciones similares a las aquí empleadas

Asumiendo que el contenido de Zn²⁺ en el compartimento II corresponde al contenido de Zn en el citoplasma y que el volumen ocupado por éste constituye -aproximadamente- el 5% del volumen total de la raíz. es posible estimar la concentración del metal en el citoplasma. En nuestro CABO la estimación de 1a concentración de Zn arroja un valor de 581.75 mmol m^{-3} .

Partiendo de estos datos es posible estimar la magnitud de la diferencia de potencial eléctrico esperada a través del plasmalema en condiciones de equilibrio termodinámico. El potencial esperado (E.) usando la ecuación de Ussing Theorell (Nobel, 1974), arrojó un valor -en las condiciones empleadas- de -69.61 mv. Este valor es muy inferior al del potencial de membrana que ha sido medido en raíces de trigo cultivadas en soluciones de similar fuerza iónica (Thornton & Macklon, 1985 a y b); el cual fue de -108 mv. Esta diferencia entre el potencial esperado y el medido sugiere que el eflujo de Zn sería de naturaleza activa. Si bien, dado que no se midió aquí el potencial de membrana, cabe cierto margen de duda sobre la validez de esta sugerencia; algunos hechos tienden a apoyarla; sobre todo si consideramos -previamente- que el uso de la ecuación de Ussing Theorell requiere estimar la actividad del ión en el EIR y en el espacio externo. El primero de ellos es que, dada la alta fuerza iónica en el medio interno, el coeficiente de actividad

en el EIR seria menor que 1. Por otro lado el cálculo efectuado supone que el contenido del compartimento cinético II está constituído solo por Zn²⁺: siendo posible -sin embargo- que diferentes especies químicas contribuyeran directa o indirectamente a la saliga del del catión. Esta situación posible. aunque no contrastada, se verificaría si a) dos o mas especies químicas eluyen simultaneamente del compartimento II 6 b) si aún eluyendo solo el Zn²⁺ éste proviniera de un pool de rápido intercambio de Zn ligado. En tercer término el volumen citoplasmático oscila entre el 5 y el 10% del volumen radical. La elección del 5% como valor representativo tiende a sobrestimar la concentración de Zn en el EIR. Estos tres factores conducen, tanto en aislada forma COLO en forma conjunta, a una sobrestimación de la actividad interna del Zn y -por lo tanto- a la obtención de un potencial esperado de mayor valor absoluto. Por consiguiente considerando que se ha elegido como criterio de falsación de la hipótesis de que el eflujo es activo la conjunción de aquellas situaciones mas adversas a la misma, la diferencia entre el potencial de membrana esperado y el observado conduce a sospechar que el eflujo de Zn desde el EIR no sería un proceso pasivo. Por otro lado para otros cationes divalentes como el Ca²⁺ ó el Co²⁺ (Macklon et al, 1987,

72

1990; Macklon, 1975) se ha observado la operatividad de sistemas capaces de extruir activamente a los mismos del citoplasma tanto hacia el medio externo como hacia la vacuola. Es posible que el Zn se comporte de un modo similar al de otros cationes que portan igual carga y cuya alta concentración en los tejidos puede dar origen a efectos deletéreos.

4- CINETICA DEL INFLUJO DE ZN

Una correcta caracterización de los flujos vectoriales de Zn no puede prescindir de evaluar la cinética seguida por el influjo respecto de la concentración externa. En el presente trabajo 8e pretendió evaluar por un lado los métodos empleados para estimar los parámetros Vmex y Km que caracterizan los sistemas de transporte. Por razones que se analizarán posteriormente (Apendice I) la técnica aguí empleada fue medir, en un amplio rango de concentraciones, la incorporación de ⁶⁵Zn. Los resultados obtenidos muestran de modo concordante con la bibliografía previa que la cinética del influjo de Zn²⁺ puede ser adecuadamente descrita a través de una curva de saturación (Figura 5;

FIGURA 5: Isoterma de incorporación de ⁶⁵Zn al espacio interno radical. Valores promedio de cinco repeticiones.

pag.74); valores de Vmax cuyos У Km fueron, 11.15 umol g⁻¹(Peso Seco Raiz) h⁻¹ y respectivamente, 22.08 mmol m^{-3} . No se encontraron evidencias de la existencia de dos o mas mecanismos actuando en dia intos rangos de concentraciones o de un único mecanismo contraposición con 10 multifásico; en hallado en especies como el arroz -en el primer caso- 6 la cebada. en el segundo (Homma & Hirata, 1984; Veltrup, 1978). Una posible causa de esta aparente discrepancia puede ser el estrecho rango de concentraciones estudiadas; así como el bajo número de puntos empleado. Es posible, вin embargo, que existan razones mas profundas para explicar la misma. Chaudhry & Loneragan (1972 a y b) trabajando tambien en trigo encontraron, al igual que en este trabajo, la presencia de un solo mecanismo y a través de un extenso trabajo experimental mostraron claramente que de existir en esta especie dos mecanismos de transporte, ambos deberían comportarse de un modo similar ante el pH, la temperatura y el agregado de cationes divalentes.

Algunos resultados exhibidos en esta tesis (Cap II) así como datos no mostrados sugieren que por encima de 100 mmol m⁻³ el influjo de Zn sería mayor que el esperado por la extrapolación de este único mecanismo. Esta anomalía podría ser explicada por la posible hiperpolarización de la membrana en muy altos niveles del catión (Kennedey & Goncalves, 1987).

5- PULSO Y SEGUIMIENTO DE 65Zn

se ha apuntado en la Introducción se desconoce Como el desplazamiento radial del Zn desde el cortex hasta вi la médula de las raíces ocurre principalmente por el apoplasto o por el simplasto. Uno de los aspectos llamativos del seguimiento de la incorporación de 65Zn y su comparación con las curvas de elución (Figuras 2 y 3) la aparente similitud de los tiempos de ascenso de la **e**8 actividad específica de ⁶⁵Zn en el compartimento II de la raiz y en el vástago; si bien en este último parece ocurrir con cierto retraso. Esta evidencia -si bien no basta empero para postular que el sugestivadesplazamiento radial del Zn desde la epidermis hacia el xilema ocurre a través del simplasto. Con el objeto de esta hipótesis se realizaron dos tipos de evaluar experimentos: a) aquellos en los que se aplicó un breve pulso de 15 minutos de duración de ⁶⁵Zn a las raíces y se efectuó el seguimiento del trazador eluído hacia el medio, el remanente en raíz y el transportado al

vástago; y b) otro en el que se evaluó la translocación del trazador -trás seis horas de carga del mismoen condiciones inhibitorias de la actividad metabólica. Los resultados obtenidos mediante el primer tipo de experimento muestran (Figura 6, pag. 78) que trás la aplicación del pulso ocurrió inicialmente una rápida salida del trazador desde las raíces; la cual fue acompañada por la consecuente caída de la actividad específica interna del trazador. La disminución del del trazador en la raíz no es solo contenido la resultante de su salida hacia el medio externo, sino tambien del transporte del mismo al vástago (Figura 6). llamativo que la cuasi estabilización del Zn-eluído Es ocurra al mismo tiempo que la estabilización del Znremanente en raíz.

Es interesante aquí especular respecto del destino seguido por el Zn incorporado a la raíz durante el pulso. Las hipótesis alternativas: desplazamiento vía simplasto versus desplzamiento vía apoplasto, involucran -en términos teóricos (Scott Russell & Clarkson, 1976; Van Iren & Van der Slujs, 1980)- una secuencia ordenada de pasos. Intentaremos analizar la consistencia de los datos obtenidos a través de los experimentos realizados con cada una de tales secuencias. El esquema más simple FIGURA 6: Evolución del ⁶⁵Zn presente en cada compartimento (solución externa y raíz) respecto del presente trás aplicar un pulso de c5Zn de 20 minutos de duración.

desplazamiento vía simplasto de involucra. secuencialmente al apoplasto cortical, el simplasto, el apoplasto medular, el xilema y finalmente la parte El desplazamiento vía apoplasto, en tanto, aérea. involucra a las zonas jóvenes de la raíz donde la endodermis no se ha suberificado y donde -por lo tantoposible postular la existencia de un continum ев apoplasto cortical - apoplasto medular - xilema. E1 esquema propuesto para el desplazamiento a través del simplasto daría cuenta de los datos obtenidos del modo siguiente: inicialmente el Zn entraría a la raíz atravesando las paredes y espacios intercelulares del cortex; siendo el período de duración del pulso aplicado suficiente como para provocar un intercambio significativo del Zn presente en este compartimento (Tabla 3). Sin embargo simultaneamente se produce la carga del simplasto, en el que la actividad específica del trazador alcanzaría -de acuerdo a cálculos basados constante de intercambio la isotópico en del Compartimento II (Tabla 3)- al 25 % de la actividad específica externa. Al cesar el suministro del trazador ocurriria una rápida elución desde el E.A.L. (Figura 6); acompañada por la pérdida desde el citoplasma. Este perdería no solo hacia el E.A.L. sino también hacia la cilindro central cuya carga vacuola y el sería

relativamente rápida, confinando una importante parte del ⁶⁵Zn en el apoplasto medular; el cual a su vez lo cedería a la corriente transpiratoria, a través de la cual el ⁶⁵Zn absorbido alcanzaría el vástago. La lenta salida posterior del 652n estaria relacionada con la vectorialidad del camino seguido ya que el compartimento III (de velocidad de salida mas lenta) -probablemente asignable a dos compartimentos- tendería a retener el 657n. Es preciso considerar ahora la hipótesis alternativa; la de que la vía de desplazamiento del Zn sería el apoplasto. A ésta idea se opone que el Zn retenido en el E.A.L. tiene un rápido tiempo de intercambio (Tabla 3), transcurrido el cual no debería observarse un ascenso del contenido de ⁶⁵Zn en el vástago. Los datos de la Figura 6 muestran que aún después de que el E.A.L. ha cedido el trazador a la solución externa, el porcentaje de ⁶⁵Zn en el vástago continuó ascendiendo.

A partir de las cuatro horas, trás la aplicación del pulso, la actividad específica del citoplasma pasa a depender de la tasa de salida de ⁶⁵Zn del compartimento III. La acumulación de ⁶⁵Zn en el vástago depende principalmente entonces, y de modo consistente con la hipótesis del desplazamiento vía simplasto, del flujo vectorial establecido entre la vacuola, el citoplasma y TABLA 4: Efecto del 2-4 DNP (10^{-4} M), del NaNa (10^{-4} M), del cobre (50 uM) y de bajas temperaturas (4 °C) sobre el porcentaje de ⁶⁵Zn transportado al vástago trás seis horas de absorción del trazador. Los tratamientos marcados con asterisco muestran diferencias significativas con el control (P>0.95).

Tratamiento % ⁶⁵Zn translocado

Control	25.38	±	2.83	
2-4 DNP	10.38	±	0.43	*
NaNa	6.53	±	1.50	*
Cu ²⁺ 50 uM	16.52	±	0.94	*
Baja Temperatura	16.44	±	2.96	

el xilema. Cabe la posibilidad de que el volcado a este último presente -al igual que el eflujo- una componente activa.

En este trabajo hemos evaluado en forma preliminar si el transporte de Zn hacia el xilema es dependiente de la actividad metabólica. Con este fín se observó el efecto de los inhibidores metabólicos 2-4 DNP y NaNa. así como el de bajas temperaturas y el cobre -ión que compite con el Zn a nivel de su absorción (Chaudhry & Loneragan, 1972, a)- sobre la translocación de 65Zn Los resultados obtenidos muestran que mientras que el porcentaje de 65Zn transportado al vástago -respecto del absorbido- fue del 25.4 % en las plantas control, tanto el 2-4 DNP como el NaNa causaban una clara disminución: siendo esta menor en el caso de los tratamientos con cobre ó bajas temperaturas (Tabla 4; pag 81). Estos encuentran en concordancia resultados ве con los mostrados en plantas de arroz por Chino & Baba (1981) quienes hallaron que la translocación de este metal era bajas temperaturas. inhibida por La dependencia metabólica de proceso fisiológico -como un 8e ha apuntado reiteradamente (Ej. Bowling 1976)- no es condición suficiente para asignar al mismo una naturaleza activa; pero si sugiere la posibilidad de la misma. Al tratarse el Zn de un ión portador de cargas

82

positivas, la posible depolarización de la membrana debida al DNP- entre el xilema y el simplasto conduciría, de ser el volcado pasivo, a un aumento del transporte al tallo. Los resultados muestran el efecto contrario; explicable a través del efecto del L. ? y el NaNa sobre la actividad ATPásica.

FLUJOS DE ZN EN GIRASOL

Si bien el objeto de esta tesis no es estudiar la variabilidad inter e intraespecífica de los flujos de Zn: es lícito plantearse aquí si la elevada contribución del eflujo en determinar la magnitud del flujo neto es especie estudiada la privativa de o si, por el contrario, se trata de una característica extensiva a otros taxones. Es conocido que la nutrición mineral difiere entre especies o aún taxones de mayor jerarquia (Mengel & Kirkby, 1978). En el presente trabajo hemos examinado -en forma preliminar- la contribución del influjo y eflujo al flujo neto de Zn en una especie dicotiledonea, el girasol. En esta especie la evolución de la incorporación de ⁸⁵Zn al espacio interno radical exhibió un patrón (Figura 7; pag. 84) que recuerda

FIGURA 7: Evolución de la incorporación de ⁶⁵Zn en girasol. Resultados promedio de cinco repeticiones.

estrechamente al previamente observado en trigo (Figura 2). Un análisis similar al efectuado para este último, puso de manifiesto que el influjo de Zn ascendió a 0.705 umol g^{-1} (P.S. Raiz) h^{-1} ; en tanto que la tasa de absorción neta -estimada como la pendiente de la recta final- solo alcanzó los 0.060 umol g⁻¹ (P.S.Raíz)h⁻¹. El eflujo estimado como diferencia fue de 0.645 umol g^{-1} (P.S.Raiz) h⁻¹; por lo que el cociente eflujo:influjo alcanzó, en el nivel de suministro empleado, a 0.915. El porcentaje del eflujo respecto del influjo elevado observado primero en trigo y luego en girasol sugiere que en niveles de suministro relativamente elevados el eflujo actuaría -tanto en mono como en dicotiledoneascomo un mecanismo eventualmente capaz de prevenir el ascenso de la concentración interna del metal y por ende la aparición de síntomas de toxicidad. Esta sugerencia, obstante, requiere a la vez de un trabajo mas no riguroso en cada especie para dilucidar si el eflujo mecanismo de detoxificación, realmente como actua especies vegetales el número de bajo ampliar La primera línea fue la seguida para el observación. el trabajo ulterior (Capitulo II). en trigo Lamentablemente no abundan en la literatura ejemplos de experimentos de seguimiento de la incorporación de 65Zn lo suficientemente largos como para estimar la tasa de

absorción neta; siendo en otros casos demasiado amplio el lapso de tiempo que media entre el inicio de la absorción del trazador y la primera cosecha del material vegetal como para estimar de un modo aceptable el influjo. Los únicos experimentos ofrecidos por la literatura previa que salvan ambos inconvenientes han sido realizados en plantas de sorgo en el nivel 50 uM (Ramani & Kannan, 1985) y cuya reinterpretación -para los cinco cultivares testeados- muestra que el cociente eflujo:influjo fue de 0.703 ± 0.005. En Gaudinia fragilis, graminea introducida en la Depresión del Río Salado, se ha observado recientemente y en concordancia con lo observado en trigo, girasol y sorgo que el eflujo representa un elevado porcentaje del influjo (Cogliatti et al, 1991).

* * *

CAPITULO 2

REGULACION DE LA ABSORCION DE Zn (EFECTOS DEL NIVEL DE SUMINISTRO DE Zn)

<u>REGULACION DE LA ABSORCION DE ZINC</u> (EFECTOS DEL NIVEL DE SUMINISTRO DE Zn)

INTRODUCCION

Los cationes divalentes, entre ellos el Zn²⁺, cumplen una gran variedad de funciones en el metabolismo de los vegetales superiores. Como ha sido señalado recientemente por Clarkson & Luttge (1989) dos factores desempeñan un rol relevante en la regulación de su concentración en las células: la diferencia de potencial eléctrico a través de la membrana, la que favorece una alta acumulación aún a partir de soluciones muy diluídas y -a la par- la baja solubilidad de los fosfatos de los cationes divalentes al pH del citoplasma. Esta doble condición cobra mayor importancia cuando la disponibilidad de los mismos es elevada. En el caso del Zn²⁺, objeto de este estudio, existe una amplia bibliografía que informa acerca de la aparición de síntomas de toxicidad cuando su concentración en el medio que baña las raíces es alta (Baker, 1987; Woolhouse, 1983). La aparición de tales síntomas afecta con mayor intensidad a aquellas especies o clones no

resistentes (Denny & Wilkins, 1987 a). La resistencia al estrés provocado por la elevada disponibilidad de Zn puede ser mediada a través de algún mecanismo de extrusión del Zn de los compartimentos donde éste ejerce su actividad fisiológica (Taylor, 1987) o bien a través de algún mecanismo de tolerancia "sensu estricto". Es, no obstante, un hecho observado en diversas especies que la concentración total de Zn en los tejidos no difiere notoriamente entre uno y otro tipo de clones (Denny & Wilkins, 1987a). Brookes et al (1981) han observado en raices de Deschampsia caespitosa que la partición del Zn entre vacuola y citoplasma difiere marcadamente entre los clones resistentes y no resistentes al aumentar el nivel de suministro. El aumento de la concentración interna de Zn observado tanto en los clones tolerantes como en los no tolerantes sugiere que la regulación de la entrada neta de Zn²⁺ al nivel del plasmalema es pobre. Recientemente se ha sugerido que, en plantas de trigo, el eflujo podría desempeñar un rol crucial en la regulación de la incorporación de este nutriente (Santa María & Cogliatti, 1988). Tal sugerencia no ha sido avalada, hasta el presente, por estudios acerca de la contribución del influjo y eflujo al flujo neto en plantas cultivadas en distintos niveles de suministro del metal. El principal objetivo de esta sección ha sido

estudiar este aspecto de la nutrición de Zn en plantas de trigo.

RESULTADOS

1- EXPERIMENTOS CON NIVEL DE SUMINISTRO CONSTANTE

Cuando se cultivaron las plantas en niveles de suministro comprendidos entre $0.2 y 20 mmol m^{-3}$ la concentración de Zn, tanto en vástago como en raíz. ascendió a medida que aumentó el nivel de suministro empleado durante el cultivo de las plantas (Tabla 5; pag. 91); sin embargo la partición del metal entre parte aerea y raíz disminuyó al aumentar la concentración en la solución de cultivo (Tabla 5). Este ascenso de la concentración de Zn se debió, principalmente, al aumento de la tasa de absorción neta ya que el crecimiento -en estos niveles de bajo suministro del catión- no resultó afectado. Cuando el rango de niveles empleados se expandió desde 0.5 a 1000 mmol m^{-3} se observó un aumento de la concentración de Zn (Tabla 5) acompañado, en los niveles mas elevados, por un decaimiento de la tasa de crecimiento relativo de planta entera y/ó una disminución de la relación vástago: raíz (Tabla 6; pag.

<u>TABLA</u>5: Concentración de Zn en vástago y raíz, y partición entre uno y otro órgano en plantas de trigo cultivadas en distintos niveles del metal. Resultados promedio de 4 repeticiones para el primer experimento y de 5 para el segundo. Los resultados -entre tratamientos- marcados con igual letra no mostraron diferencias significativas (P<0.05).

Nivel de su- ministro mmol m ⁻³	[] raíz umol g ⁻¹ (M	[] vástago ateria Seca)	Partición
	EX	PERIMENTO I	
0.2	0.75 <u>±</u> 0.02 a	0.103 <u>±</u> 0.006	a 1.16
2.0	8.48 <u>±</u> 0.32 b	1.300 <u>±</u> 0.09	b 0.85
20	95.28 <u>±</u> 2.47 c	5.047 <u>±</u> 0.49	c 0.26
	EX	PERIMENTO II	
0.5	3.47 <u>±</u> 0.34 d	1.542 <u>+</u> 0.09	d 1.63
10	42.33 <u>±</u> 2.47 e	5.091 <u>±</u> 0.54	e 0.46
100	177.57 <u>±</u> 10.53 f	14.831 <u>±</u> 0.45	f 0.21
1000	958.11 <u>±</u> 71.79 g	41.926 <u>±</u> 1.93	g 0 09

TABLA 6: Valores de RGR en planta entera obtenidos para plantas de trigo cultivadas en un amplio rango de concentraciones externas. Los valores de RGR fueron obtenidos por regresión a partir de los datos para todo el período en que se suministró Zn. Los valores de relación vástago:raíz corresponden a la última cosecha y resultan del promedio de cinco repeticiones, con su correspondiente error standard.

Nivel mmol m ⁻³	RGR	r ²	Vástago:Raíz
0.5	0.0938	0.9472	3.651 <u>±</u> 0.073
10	0.1027	0.9985	3.887 <u>±</u> 0.191
100	0.1043	0.9817	2.498 <u>±</u> 0.041
1000	0.0813	0.8937	2.188 <u>+</u> 0.060

92)

La tasa de absorción neta, ya fuera ésta medida por desaparición del metal en la solución de cultivo (rango 0.2 /20 mmol m⁻³) o a través del seguimiento del contenido de Zn -en planta- en cosechas sucesivas (rango $0.5/1000 \text{ mmol m}^{-3}$, se incrementó a medida que aumentó el nivel de suministro (Tabla 7, pag. 94). En primera instancia tal aumento parece ligado al notorio aumento del influjo al espacio interno radical (Tabla 7). Dado que el eflujo es la diferencia entre el influjo y el flujo neto, es posible efectuar una estimación grosera de su magnitud partiendo de la medición de estos últimos. El eflujo de Zn, así medido, aumentó en ambos experimentos al aumentar el nivel de suministro del metal; a la vez que se observó una clara tendencia al aumento del cociente entre el flujo de salida y el de entrada (Tabla 7).

Dado que la metodología de estimación del influjo y del eflujo adolesce de ciertos errores (Ver Apendices I y II); trás el período de absorción del trazador se efectuó, en el primero de ambos experimentos, el lavado fraccionado de las raices. Esta técnica puso en evidencia que la velocidad de salida del trazador siguió un comportamiento doble exponencial (Figura 8;pag. 95). La extrapolación a tiempo cero de la recta <u>TABLA 7</u>: Valores de Influjo, Eflujo y Tasa Específica de absorción de Zn (SARZn), obtenidos -para el rango 0.5/1000 mmol m⁻³- en la última cosecha del material vegetal. Valores expresados en umol g^{-1} (Peso Seco Raíz) h⁻¹. Ver texto para la forma de cálculo de la SAR Zn en cada experimento.

Nivel de su- ministro (mmol m ⁻³)	Influjo	Eflujo	SARZn	Eflujo: influjo
		EXPERIMENT	I OI	
0.2	0.06	0.02	0.04	0.34
2.0	0.49	0.19	0.30	0.39
20	5.40	2.83	2.57	0.52
		EXPERIMENT	II OT	
0.5	0.253	0.184	0.068	0.729
10	1.747	1.303	0.444	0.746
100	11.030	9.396	1.634	0.852
1000	300.43	298.910	1.521*	0.995

*Nota: Los valores de la tasa específica de absorción de Zn fueron en este nivel altamente dependientes de la duración del suministro; oscilando entre 10.85 y 1.52 umol g^{-1} (Peso Seco Raíz) h^{-1} . Ver Texto, mas adelante. <u>FIGURA 8</u>: Evolución de la tasa de salida de ⁶⁵Zn desde las raices en distintos niveles de suministro del metal trás un corto período de carga del trazador a las mismas. Cada punto corresponde al resultado promedio de cuatro repeticiones.

obtenida en la representación semilogarítmica para la fase de salida mas lenta estima la velocidad de salida del trazador desde el espacio interno al iniciarse el lavado, en tanto que la pendiente es un estimador de la constante de intercambio isotópico entre tal compartimento y el medio externo. Se observa (Tabla 8; pag.97) que la velocidad inicial de salida de ⁶⁵Zn ascendió en forma aproximadamente proporcional al aumento de la concentración externa mientras que el tiempo medio de intercambio isotópico fue similar en los tres tratamientos, si bien exhibió una ligera tendencia a disminuir a medida que aumentó el nivel de suministro de Zn.

Los datos precedentes pueden ser empleados para hacer una estimación mas sólida del influjo de Zn al espacio interno radical al permitir una estimación de la cantidad de ⁶⁵Zn eluída desde el espacio interno durante un período estandard de lavado del trazador. Sumando ésta cantidad al contenido de trazador presente en la raíz al finalizar el lavado es posible obtener una estimación del contenido total de trazador incorporado durante el período de carga. Tal procedimiento permitió estimar que, durante un lavado de duración estandard de 20 minutos, se produce -en los niveles estudiados- una salida cercana al 30 % del ⁶⁵Zn incorporado durante el <u>TABLA 8</u>: Parámetros cinéticos de la elución de ⁶⁵Zn en plantas marcadas con el radioisótopo durante 20 minutos; en distintos niveles de suministro de Zn²⁺.

Concentración externa mmol m ⁻³	Velocidad inicial de salida umol g ⁻¹ h ⁻¹	Tiempo Medio min ⁻¹	
0.2	0.02	29.5	
2.0	0.29	28.9	
20	2.99	26.1	

período de carga. Los valores de influjo referidos a los niveles de suministro 0.2, 2 y 20 mmol m⁻³ (Tabla 7) del primer experimento han sido corregidos a través de este método.

2- EFECTOS DEL CAMBIO EN EL NIVEL DE SUMINISTRO

Cuando las plantas cultivadas en el nivel de suministro 2 mmol m⁻³ fueron transferidas a una solución 5 mmol m⁻³ de Zn²⁺, se observó que la tasa de absorción neta alcanzó un alto valor inicial -seis veces mayor que en 2 mmol m⁻³- decayendo luego en forma exponencial (Figura 9;pag. 99). Cuando el pasaje se efectuó desde 2 a 0.2 mmol m⁻³ el flujo neto hacia las raíces fue negativo; aumentando en forma exponencial sin alcanzar dentro del período de seguimiento- un valor positivo (Figura 9).

Dado que parte del comportamiento del flujo neto puede ser parcialmente atribuído a la carga o descarga del Espacio Aparentemente Libre, se juzgó conveniente estimar la contribución de este compartimento (Figura 10, pag 100). <u>FIGURA 9</u>: Evolución de la tasa de absorción neta de Zn (medida por desaparición del catión en la solución) trás el pasaje del nivel de suministro 2 mmol m⁻³ a los niveles 0.2 y 5 mmol m⁻³. Resultados promedio de cuatro repeticiones.

0.2 uM - E- 2 uM

:
FIGURA 10: Evolución de la velocidad de salida de $e_{5}Z_{n}$ en plantas cultivadas en 2 mmol m⁻³ y transferidas a los niveles 0.2 y 5 mmol m⁻³ trás un período de carga del trazador de 20 minutos en la nueva condición de cultivo. Se muestran los valores hallados una hora despues de la transferencia.

Sobre la base del supuesto de que las constantes de transferencia del EAL no resultan afectadas por el cambio de concentración externa (Ver Apéndice II);el procedimiento seguido consistió en estimar -a través de un experimento de lavado fraccionado antecedido por un período de carga de 20 minutos- la cantidad total de Zn retenida en el Espacio Libre en las plantas sometidas al cambio y en las plantas control (Figura 10, pag.100). La diferencia entre el contenido de Zn en el Espacio Libre entre una y otra condición estima la cantidad de Zn ganada o perdida por el E.A.L. Asumiendo que la constante de intercambio isotópico entre el EAL y la solución externa, en el tratamiento control, es similar a la de carga o descarga de Zn en el EAL durante el cambio de concentración, puede calcularse facilmente el flujo neto atribuible en cada instante al E.A.L. Tal contribución no modifica de manera significativa el patrón de comportamiento del flujo neto mostrado en la Puede asimilarse, por consiguiente, Figura 9. el comportamiento del flujo neto al espacio interno radical al descrito por el flujo neto hacia la totalidad del sistema [Espacio Interno + Espacio Aparentemente Libre].

El influjo de Zn²⁺, medido a la hora y a las dos horas de realizado el cambio de concentración, fue <u>TABLA</u>9: Efecto del cambio de concentración extorna sobre la tasa de influjo medida a la hora y dos horas de transferir las plantas cultivadas en 2 mmol m⁻³ a los niveles 0.2 y 5 mmol m⁻³. Resultados promedio de tres repeticiones expresados en umol g^{-1} (Peso Seco Raíz)h⁻¹.

Tratamiento	Tiempo desde la 60 min.	a transferencia 120 min.
2 - 0.2	0.246	0.206
2 - 2	1.307	1.534
2 - 5	3.280	3.120

constante y mayor en 5 que en 2 mmol m⁻³; siendo constante y menor en 0.2 mmol m⁻³ que en el control (Tabla 9;pag. 102). El hecho de que los cambios en el flujo neto hacia el espacio interno radical se encuentren acompañados por la constancia del influjo a la nueva concentración sugiere que la variación del primero se debe, exclusivamente, a la variación del eflujo.

Es conveniente destacar, sin embargo, que en el espacio de tiempo que media entre el momento de cambio y la primera medición del influjo, éste podría ser modulado por los cambios en la concentración del catión en el espacio interno. Con el propósito de dilucidar la ocurrencia de tal tipo de modulación se realizó un experimento adicional en el que se midió el influjo a distintos tiempos cuando plantas cultivadas en el nivel 0.2 fueron transferidas al nivel 2 mmol m^{-3} . En este caso (Tabla 10; pag. 104) se observó que el influjo de Zn permaneció constante y en un valor similar al de las plantas cultivadas en el nivel 2 mmol m⁻³. En este nuevamente los experimento importantes cambios observados en la tasa de absorción neta (Figura 11; pag. 105) deben ser atribuídos, exclusivamente, a los cambios sufridos por el eflujo.

<u>Tabla 10</u>: Influjo de Zn al espacio interno radical en plantas cultivadas en el nivel 0.2 mmol m^{-3} y transferidas al nivel 2 mmol m^{-3} . Resultados promedio de cuatro repeticiones con el error estandard. Valores expresados en umol g^{-1} (Peso Seco Raíz) h^{-1} .

Tiempo desde la transferencia (hs)	0.2 - 2.0	2.0 -2.0
0	0.45 <u>±</u> 0.03	0.45 ± 0.02
1	0.30 <u>±</u> 0.02	0.35 <u>±</u> 0.02
2	0.56 <u>±</u> 0.03	0.53 <u>+</u> 0.06
24	0.37 <u>±</u> 0.03	0.50 <u>±</u> 0.04

<u>FIGURA 11</u>: Evolución de la tasa de absorción neta de Zn en plantas cultivadas en 0.2 y transferidas a 2 mmolm⁻³, desde el cambio en el nivel de suministro. Los círculos cerrados corresponden a las plantas cultivadas todo el tiempo en 2 mmol m⁻³. Valores promedio de cuatro repeticiones con el error estandard

3- EFECTOS DEL CRECIMIENTO

Un aspecto que llamó la atención en esta serie de ensayos es que la absorción neta de Zn en condiciones de suministro constante sufrió cambios manifiestos durante el desarrollo de las plantas (Figura 12,pag. 107). En el rango de suministro comprendido entre 0.5 y 100 mmol m⁻³ la tasa de absorción neta aumentó al avanzar las plantas en su desarrollo; mientras que en el nivel 1000 mmol m⁻³ la misma disminuyó de manera pronunciada (Figura 12). El influjo, en tanto, ascendió notoriamente en los niveles 0.5, 10 y 100 mmol m⁻³; mientras que en el nivel 1000 mmol m⁻³ exhibió un comportamiento errático (Figura 13;pag. 108).

Estos cambios en la tasa de absorción neta no fueron compensados por cambios en la tasa de crecimiento relativo y -por lo tanto- la concentración de Zn tanto en la raíz como en el vástago aumentó a medida que las plantas avanzaron en su desarrollo (Figura 14; pag. 109).

DISCUSION

El ascenso de la concentración de Zn en los tejidos vegetales a medida que aumenta el nivel de suministro ha <u>FIGURA 1</u>2: Evolución de la tasa de absorción neta en plantas cultivadas en distintos niveles de suministro de Zn. Resultados promedio de cinco repeticiones.

<u>FIGURA 13</u>: Evolución del influjo en plantas cultivadas en distintos niveles de Zn. Resultados promedio de cinco repeticiones. Notese el uso de distinta escala para el nivel 1000 mmol m⁻³.

FIGURA 14: Evolución de la tasa de cambio relativo de la concentración de Zn en planta entera $(dct/dt . ct^{-1})$. Desde un punto de vista teórico dicha tasa debe ser cero para considerar al sistema en situación de "steady-state" (Apéndice III).

sido un fenómeno ampliamente observado (Baker, 1987). Los resultados obtenidos en trigo (Tabla 5) no escapan a este aserto general; a la par de mostrar que dicho ascenso debe ser atribuído en forma inequívoca al ascenso de la tasa de absorción neta (Tabla 7).

El aumento del flujo neto de Zn hacia las raíces responde al aumento del influjo (Tabla 7) si bien se encuentra parcialmente balanceado por un aumento del eflujo, cuya participación en el flujo neto aumenta proporcionalmente mas que la del flujo de entrada (Tabla 6). El ascenso del cociente eflujo/influjo sugiere que el primero de ambos flujos vectoriales operaría como un mecanismo de detoxificación. Asignar tal rol al eflujo equivale a suponer que el mismo actua activamente en la regulación del flujo neto. Dilucidar esta cuestión exige, inevitablemente, resolver la compartimentación Zn en raíces y evaluar la del las naturaleza termodinámica del eflujo. En plantas de trigo cultivadas en el nivel 2 mmol m⁻³ (Santa María & Cogliatti, 1988) se ha estimado que la concentración de Zn en citoplasma arroja un valor próximo a 580 mmol m⁻³. Como ya se ha apuntado en tales condiciones el potencial esperado se encuentra muy por debajo de los valores de potencial de membrana medidos por otros autores en plantas de trigo (Thornton & Macklon, 1985 a y b); lo cual sugiere que,

al menos en el nivel de suministro 2 mmol m⁻³, el eflujo de Zn seria de naturaleza activa. Cabe considerar aquí si esta apreciación es generalizable a otros niveles de suministro.

En el presente trabajo no se ha intentado una exploración exhaustiva de la compartimentación del 'n en distintos niveles de suministro pero se ha procurado una estimación de la misma empleando un método alternativo al del análisis compartimental clásico. Este método se basa en experimentos en los que se practicó un período de corta exposición al trazador seguido por el lavado fraccionado de las raíces. Este tipo de aproximación, empleado anteriormente para el NO3- (Deanne Draumond & Glass, 1983), asume que durante un período de carga de corta duración la actividad específica de la vacuola -u otros compartimentos dispuestos en paralelo con la misma (Klemedtsson & Pettersson, 1990)- permanece en valores muy bajos. En el presente caso esta suposición ве encuentra avalada por el largo tiempo medio requerido para el intercambio isotópico de los compartimentos de salida mas lenta (Santa María & Cogliatti, 1988). En tales condiciones la elución del trazador ocurre principalmente desde el citoplasma У el Espacio Aparentemente Libre. Asimilando el intercambio entre el citoplasma y la solución externa a aquel que ocurre en

un sistema constituído por dos compartimentos, es posible concluir sobre bases teóricas (Walker & Pitman, 1976) que la constante de intercambio isotópico resulta del cociente entre la tasa de influjo y el contenido del ión en el compartimento interno. Conocida la tasa de influjo a partir de experimentos de absorción del trazador (Tabla 7) y la constante de intercambio isotópico a partir de experimentos de lavado fraccionado (Figura 8) es posible obtener un parámetro que estime el conjonido de Zn en el compartimento interno. Tal procedimiento conduce a asignar al citoplasma un contenido de 0.04, 0.35 y 3.39 umol Zn g^{-1} (Peso Seco Raíz) para los niveles 0.2, 2 y 20 mmol m⁻³, respectivamente. Si bien los resultados obtenidos mediante este tipo de técnica, al igual que ocurre con un análisis compartimental mas formal, arrojan cierto grado de incertidumbre (Chesseman, 1986); en todos los casos los potenciales esperados - -86.1, -82,6 y -78.5 mV para 0.2, 2 y 20 mmol m^{-3} , respectivamente- son menores a los observados comunmente en plantas de trigo cultivadas en soluciones de similar fuerza iónica (-108 mV. Thornton & Macklon, 1985). Es posible por tanto que eflujo de Zn actue como un mecanismo el de detoxificación de importancia creciente al ascender el nivel de suministro y que la extrusión del Zn ocurra en

forma activa, al igual que ocurre con el calcio (Macklon, 1975) Es notorio, sin embargo, que la capacidad de tal sistema de detoxificación, en altos niveles de suministro, no alcanza a impedir la acumulación del metal en niveles endógenos incompatibles con un normal funcionamiento metabólico (Capítulo III).

La discusión precedente ha omitido toda consideración respecto del influjo. En diversas especies se ha observado que el flujo de entrada de Zn²⁺ es mediado por uno o mas sistemas de transporte (Schmidt et al, 1965; Homma & Hirata, 1984; Veltrup, 1978). En trigo tanto en el presente trabajo como en trabajos previos (Chaudry & Loneragan, 1972 a y b) se han descrito cinéticas de influjo típicas de los procesos mediados.

Para otros iones existe una abundante bibliografía que informa acerca de la modulación de los sistemas de transporte por la concentración de los mismos en la raíz (Hommels et al, 1990; Jungk et al, 1990). Uno de los aspectos evaluados en el presente trabajo la ев operatividad de un mecanismo de regulación de tal naturaleza en los niveles de suministro estudiados. Un curso de acción para efectuar tal evaluación ев el cambio drástico del nivel de suministro, estimando la magnitud del influjo durante el mismo (Cogliatti & Clarkson, 1983; Ortega & Rodriguez Navarro, 1986). La

constancia del influjo de Zn²⁺ trás efectuar el cambio (Tabla 9) ; en tanto ocurren importantes cambica en el flujo neto hacia el espacio interno radical (Figuras 9 y 11) y por lo tanto en la concentración del catión en el mismo, sugiere que -en los niveles de Zn comprendidos entre 0.2 y 5 mmol m⁻³ la modulación del influjo por la concentración interna es pobre o inexistente. Eв conveniente analizar aquí que la interpretación de los datos obtenidos a través de la técnica de cambio del nivel de suministro descansa en la suposición de la similitud de las constantes de transferencia entre los distintos compartimentos de la raíz. El efecto de las perturbaciones sobre la estimación del influjo, aún empleando tiempos cortos de exposición al trazador, no puede ser despreciado ya que puede inducir a errores significativos (Cogliatti & Santa María, 1990). La similitud del tiempo medio de intercambio isotópico observada en condiciones de suministro constante -cuasi "steady-state"- para los niveles 0.2, 2 y 20 mmol m⁻³ (Tabla 8), sugiere que en tal rango de niveles de suministro la ruptura de la condición de "steady-state" no implica perturbaciones significativas que invaliden el proceso de medición empleado (Jacquez, 1986; Apéndice II).

Los resultados obtenidos sugieren que en altos niveles de suministro del metal el influjo no sería objeto de un sistema de regulación alostérica como el propuesto para el K+ (Glass, 1976). Es posible, no obstante, siguiendo la linea de razonamiento de Lee (1984) que de existir un sistema de control alostérico negativo la capacidad regulatoria del mismo se encuentre saturada dado los altos niveles de suministro de Zn empleados en estos experimentos.

El hecho de que, en los experimentos en que se cambió drasticamente el nivel de suministro, la tasa de absorción neta de Zn hacia el espacio interno radical varie en tanto el influjo adquiere un nuevo valor constante (Tablas 9 y 10) señala que el comportamiento del flujo neto se asemeja, en términos cinéticos, a aquel que describen los sistemas de bombeo activo y pérdida pasiva (Cram, 1976); si bien en este caso la evidencia disponible sugiere que la entrada de Zn2+ es pasiva, en tanto que el eflujo sería activo. Tal contradecir, en evidencia parece apariencia. la observación de que el influjo de Zn^{2+} es deprimido por inhibidores metabólicos el 2-4 dinitrofenol COMO (Schmidt et al, 1965; Bowen, 1969). Sin embargo como han señalado Clarkson & Lutge (1989) la asignación al naturaleza pasiva entra influjo de una no

necesariamente- en contradicción con tales reportes, toda vez que tales condiciones inhibitorias implican una depolarización de la membrana (Bowling & Dunlop, 1978).

EFECTOS DEL CRECIMIENTO

La discusión anterior parece sugerir que el influjo de Zn²⁺ al espacio interno radical es objeto de una regulación nula por parte de las plantas. Tal sugerencia choca inmediatamente con el hecho de que tanto la tasa de absorción neta como el influjo de Zn no permanecen invariables a lo largo del período de suministro constante empleado (Figuras 12 y 13). Este tipo de fenómeno es pasible de distintas interpretaciones. La primera de ellas es que a lo largo de los experimentos en condiciones de suministro constante las plantas no han alcanzado una condición de "cuasi steady-state" respecto de la concentración externa de Zn (Figura 14). La validez de esta afirmación es inmediata; no es claro -sin embargo- si el alejamiento de tal condición se debe a un corto periodo de cultivo en condiciones constantes bien ві ве debe a un fenómeno de naturaleza ο fisiológica. Al primer tipo de observación se oponen dos fenómenos. El primero de ellos es que el período de fue 10 suficientemente prolongado; suministro

aproximadamente cinco veces la constante de intercambio isotópico para la fase de velocidad de salida mas lenta (Santa María & Cogliatti, 1988). El segundo es que cuando se efectuó el seguimiento de la evolución de la tasa de absorción neta trás el cambio del niver de suministro, ésta se ajustó rapidamente a la del nuevo nivel (Figura 11). La explicación de tal tipo de parece deberse, por lo tanto, fenómeno a alguna propiedad fisiológica mas que a un error introducido por el observador. En el presente trabajo se halló evidencia de que la demanda originada por el crecimiento y/o el cambio en la funcionalidad de el sistema radical podrían ser responsables de lo observado.

Por un lado se observó que existia una clara correlación, para cada nivel de suministro, entre la tasa de absorción neta y la relación vástago:raíz (Figura 15; pag. 118). Este hallazgo sugiere un cierto efecto de la demanda originada por el crecimiento; pero -paralelamente- que tal efecto sería secundario respecto del efecto del nivel de suministro. Sin embargo no se logró establecer una clara correlación positiva entre el influjo y la relación vástago:raíz; no pudiendo por lo tanto establecerse la forma de asociación entre uno y -otro fenómeno. <u>FIGURA 15</u>: Relación entre la relación vástago:raíz y la tasa específica de absorción de Zn en distintos niveles de suministro del metal. Notese el uso de distintas escalas para cada nivel de suministro.

-01-10 UM

-m- 0.5 uM

Es probable, por otro lado, que el aumento del influjo se relacione con el patrón de desarrollo y crecimiento de las raíces. A medida que las plantas avanzan en su desarrollo la proporción de la longitud total ocupada por las raíces seminales disminuye a expensas del aumento de aquella ocupada por los ejes laterales de primer orden; siendo despreciable -en el intervalo bajo estudio- la contribución de las raíces nodales. Tal cambio produciría un aumento en la relación entre la superficie a través de la que se verifica el flujo y el peso seco, un estimador de aquella. Esto conduciría a que el flujo, aún si por unidad de superficie fuera constante e igual para los distintos elementos del sistema radical, se incrementaría en forma al вer expresado unidad aparente por de рево. Superpuesto a este fenómeno existen evidencias para otros nutrientes de que la eficiencia de absorción difiere entre los distintos elementos del sistema radical y aún a lo largo de un mismo elemento (Clarkson et al, 1978). En el presente trabajo no se efectuó una comparación de la eficiencia de absorción por distintos elementos; pero si se evaluó la magnitud del influjo de Zn²⁺ a lo largo de los ejes seminales en el nivel de suministro 2 mmol m⁻³; el cual aumentó desde el ápice hacia la base, alcanzando un máximo a los 14 cm del

<u>FIGURA 16</u>: Influjo de Zn^{2+} a lo largo de las raices seminales de trigo (Ejes principales).

Bron Emm\ S-01.lomn obidroedA nZ68

primero (Figura 16;pag.120). Tal aumento podría ser, al menos parcialmente, el responsable del aumento del influjo observado a lo largo del tiempo. No es ocioso destacar aquí que la invocada demanda originada por el crecimiento, cuya operatividad contrasta con los ltos niveles de suministro empleados -algunos de ellos francamente tóxicos-, sea tal vez solo una relación debida a un efecto de la relación tallo:raíz sobre el patrón de desarrollo y crecimiento de las raíces; y de éste sobre el influjo.

* * *

CAPITULO 3

EFECTO DEL NIVEL DE SUMINISTRO DE Zo SOBRE EL DESARROLLO Y CRECIMIENTO

KFECTO DEL NIVEL DE SUMINISTRO DE ZN SOBRE EL DESARROLLO Y CRECIMIENTO DE PLANTAS DE TRIGO

INTRODUCCION

El crecimiento de las plantas es la resultante del combinado de numerosos factores endógenos y efecto exógenos, uno de los cuales es el nivel de suministro de nutrientes en la solución que baña las raices (Ingestead & Agreen, 1988). A la vez que la nutrición puede afectar el crecimiento, éste es capaz de influenciar la magnitud del flujo neto de los elementos esenciales hacia el espacio interno radical, existiendo un fino equilibrio entre uno y otro fenómeno (Clarkson, 1985). En el capítulo anterior se ha mostrado que existe una clara correlación entre el crecimiento y la absorción de Zn, así como sobre la partición de este catión entre el vástago y la raíz. Este efecto -aunque importanteaparece como subordinado a aquel ejercido por el propio nivel de suministro del metal. Un resultado de esta doble influencia, crecimiento y nivel de suministro, es que a medida que asciende la disponibilidad de Zn en el medio externo este ión es acumulado en los tejidos, ya

en forma de Zn²⁺ ora en formas ligadas, hasta alcanzar elevadas concentraciones, particularmente en la raíz.

La alta acumulación de Zn puede provocar efectos deletéreos sobre el crecimiento de las plantas de trigo. Usualmente la toxicidad de este metal en los vegetales superiores ha sido asociada a la aparición de dos sintomas claves: la restricción de la elongación de las raices y la aparición de una fuerte clorosis en la lámina de las hojas. El primero de estos síntomas ha sido referido a un efecto sobre la elongación celular, tanto que el segundo ha sido vinculado a una en deficiencia de hierro (Baker, 1987). Es poco conocido, no obstante, el efecto del elevado suministro de Zn sobre el desarrollo y crecimiento a nivel de planta entera, y de modo singular sobre la partición de asimilados y el crecimiento de los distintos componentes del sistema radical. El objetivo del presente capítulo ha sido estudiar estos aspectos de la nutrición de Zn en plantas de trigo.

RESULTADOS

1- Desarrollo de las plantas

Figura 17: Efecto del nivel de suministro de Zn sobre el número de hojas en expansión. Resultados promedio de cinco repeticiones para cada nivel.

Una de las preguntas que este trabajo intentó contestar es si el alto suministro de Zn es capaz no de afectar el crecimiento sino también solo e] desarrollo de las plantas. En etapas tempranas del desarrollo este puede ser cuantificado mediante el estudio del tiempo térmico que media entre la aparición de dos hojas consecutivas. La Figura 17 (pag. 125) muestra que en dos tratamientos seleccionados, 10 y 1000 mmol m⁻³, en los que se efectuó un detallado seguimiento del número de hojas, éstas aparecieron a intervalos regulares, sin hallarse diferencias significativas en el filocrono entre uno y otro tratamiento ya que éste fue de 119.3 °Cd y 123.4 °Cd para 10 y 1000 mmol m^{-3} , respectivamente. La similitud de los valores del filocrono hallados en ambos tratamientos sugiere que durante el lapso experimental aguí informado el alto nivel de Zn no afecta significativamente el desarrollo de las plantas y que, por lo tanto, no es preciso efectuar distinciones entre la edad cronológica y la fisiológica.

Es conveniente mencionar, sin embargo, que cuando el experimento se prolongó mas allá del día 30 despues de la germinación no aparecieron nuevas hojas en el nivel 1000 mmol m⁻³.

2- Crecimiento del área foliar

El crecimiento del área foliar es el resultado del ritmo de aparición de nuevas hojas y de la expansión de las mismas. Los resultados anteriores (Figura 17) muestran que, en estadios tempranos de desarrollo, no hay un efecto del nivel de Zn sobre la aparición de nuevas hojas. Sin embargo se observó que el área foliar total (Figura 18, pag. 128) disminuyó a medida que aumentó el nivel de suministro de Zn.

Las diferencias halladas en el área foliar total entre uno y otro tratamiento se hicieron evidentes recién a los trece días de iniciado el suministro de Zn, 20 despues de la germinación (Figura 18). Los efectos sobre la longitud total de las hojas se manifestaron mas tempranamente, a los 8 días de iniciado el tratamiento (Figuras 19 y 20; pags. 130 y 131).

Los efectos del nivel de suministro sobre cada una de las hojas dependieron del grado de desarrollo alcanzado por ellas antes del inicio del tratamiento y de la duración del mismo. Así la hoja 1, que había alcanzado el 75 % de su tamaño final al iniciarse el suministro de Zn, no fue afectada ni en su longitud final ni en su tasa de expansión (Figura 19); Figura 18: Efecto del nivel de suministro de Zn sobre el crecimiento del área foliar. Resultados promedio de cinco repeticiones.

mientras que la hoja 2 y siguientes alcanzaron un tamaño final menor en 1000 que en 10 mmol m^{-3} ; siendo la disminución porcentual tanto mas pronunciada cuanto mas alejada del inicio del tratamiento ocurrió la aparición de la hoja.

Si bien en estos experimentos no se midió directamente el ancho de las hojas, éste puede ser calculado aproximando el área foliar (A) a un rectángulo cuya área (A) resulta del producto entre la longitud (L) y el ancho (M). Un procedimiento posible para estimar la contribución del ancho al aumento de área foliar en cada tratamiento consiste en derivar el área respecto del tiempo, de modo que:

$$\mathbf{A} = \mathbf{L} \star \mathbf{M}$$

У

```
\frac{dA}{dt} = \frac{dL}{dt} M + \frac{dM}{dt} L
```

por lo que al dividir ambos miembros por el área foliar obtenemos:

$$\frac{dA 1}{dt A} = \frac{dL 1}{dt A} + \frac{dM 1}{dt M}$$

Figura 19: Evolución de la longitud de las hojas 1 y 2 en los niveles de suministro de Zn^{2+} 10 y 1000 mmol m⁻³. Resultados promedio de cinco repeticiones.

Figura 20: Evolución de la longitud de las hojas 3, 4 y 5 en los niveles de suministro de Zn^{2+} 10 y 1000 mmol m⁻³. Resultados promedio de cinco repeticiones.

Expresión, ésta última, que equivale a afirmar que la tasa de crecimiento relativo del área foliar es igual a la suma de las tasas de crecimiento relativo en ancho y en longitud. Estimadas las tasas de crecimiento relativo para A y L, es posible despejar -para cada tratamiento- la correspondiente a M. Los resultados obtenidos muestran que el crecimiento relativo en ancho en 1000, respecto de 10 mmol m⁻³, es del 82,5 %, en tanto que en longitud es del 83,6 %. Este resultado muestra que el alto suministro de Zn afecta de modo similar el ancho y la longitud total de las hojas y que la caida del área foliar en 1000 respecto de 10 mmol m⁻³ se debe a un efecto sobre ambos parámetros y no sobre uno solo de ellos.

Los efectos sobre las hojas no se limitan solo a un cambio en el crecimiento del área foliar sino también (Tabla 11, pag. 133) a un cambio en la concentración de clorofila en las mismas, la cual disminuyó notoriamente al aumentar el nivel de suministro de Zn .

3- Peso seco y partición de asimilados

De los cuatro niveles de Zn empleados solo el mas

Tabla 11: Efecto del nivel de suministro de Zn sobre la concentración de clorofila en hoja. Resultados con distinta letra difieren en forma significativa a nivel 0.05.

Nivel de suministro	Concentración de	
mmol m ⁻³	mg. g ⁻¹ Peso Fresco	
0.5	2.10 ± 0.07 a	
10	1.67 ± 0.36 b	
100	0.84 = 0.03 c	
1000	0.61 ± 0.07 d	

alto, 1000 mmol m⁻³, fue limitante del crecimiento en peso seco total. Sin embargo la acumulación de materia seca fue, en la raíz, similar en 10 y 1000 mmol m⁻³ (Tabla 12, pag. 135); no así en el vástago la cual disminuyó al aumentar la concentración externa del metal (Tabla 12). Acorde con esto la relación vástago:raíz disminuyó al aumentar el nivel de suministro.

Este cambio en la partición de materia seca entre uno y otro órgano no fue acompañado por cambios en la distribución de asimilados entre las vainas y las láminas; siendo además -en la última cosecha- similar el área foliar específica en ambos tratamientos. El cociente de área foliar (Area foliar: Peso seco total), en tanto, disminuyó al aumentar el nivel de suministro de Zn de 344.68 a 271.38 cm² g⁻¹ en 10 y 1000 mmol m⁻³, respectivamente. Tal disminución indica que 16 acumulación de materia seca fue menos sensible al alto suministro de Zn que la expansión de las hojas.

El cálculo de la tasa de asimilación neta en los niveles 10 y 1000 mmol m⁻³ -para todo el período experimental- muestra que la misma fue similar en ambos tratamientos: 0.547 y 0.535 mg.cm⁻².d⁻¹, respectivamente; mientras que la tasa de crecimiento relativo del peso seco total fue, en el mismo período,

TABLA 12

PARAMETROS DE CRECIMIENTO DERIVADOS EN DOS NIVELES DE Zn Valores de Peso Seco Inicial -en mg- (al inicio del tratamiento con Zn) y de Tasa de Crecimiento Relativo en días⁻¹- para planta entera, raíz y vástago, obtenidos por regresión.

		10	1000
PLANTA	Wo	6.749	7.696
ENTERA	RGR	0.1093	0.0914
	r ²	0.9457	0.9294
RAIZ	Wo	2.652	2.475
	RGR	0.0917	0.0907
	r ²	0.9198	0.9796
PARTE	Wa	4.209	5.181
AEREA	RGR	0.1166	0.0921
	r ²	0.9388	0.8939
de 0.109 y 0.091 d⁻¹ para 10 y 1000 m lo m⁻³, respectivamente. Esta caída en la tasa de crecimiento relativo, próxima al 10 %, es debida -de acuerdo a los valores ya mencionados de NAR y LAR- a la disminución en el cociente de área foliar.

4- Desarrollo de las raíces

Al igual que ocurre con el crecimiento de parte aérea el de raíz depende del número de elementos y la elongación de cada uno de ellos. El número de raíces seminales -el cual está determinado geneticamente- no varió como resultado del tratamiento con distintos niveles de suministro de Zn; permaneciendo contante entre el día 7 y el 27, después de la germinación en 5 ejes; no registrándose, como en otras situaciones de estrés, la pérdida de funcionalidad de los mismos. E1 parámetro aquí empleado para evaluar la funcionalidad fue la capacidad de los ejes seminales de continuar produciendo ejes laterales de primer orden. La aparición de ejes nodales, en tanto, comenzó en ambos tratamientos en el día 15 después de germinación y ocurrió, hasta el fin del experimento, a una tasa constante de 0.17 y 0.14 ejes d^{-1} en 10 y 1000 mmol m⁻³. El número de raíces laterales de primer orden aumentó en forma exponencial

Figura 21: Efecto del nivel de suministro de Zn sobre el número de raíces laterales de ler. orden. Resultados promedio de cinco repeticiones.

137

en ambos tratamientos, siendo en las primeras cosechas ligeramente superior en 1000 mmol m^{-3} y ,luego del día 20 trás la germinación, superior en 10 uM (Figura 21, pag. 137).

La longitud total de la raíz (ejes principales + ejes laterales de primer orden) fue, considerando todo el intervalo experimental, inferior en Zn 1000 mmol m-3 que en 10 mmol m^{-3} (Fig. 22, pag. 140); pese a lo cual el ajuste de los datos no permitió observar diferencias significativas en las tasas de elongación relativa entre ambos tratamientos (Tabla 13, pag. 139). Por el contrario la de los ejes principales fue un 36 % menor en las plantas tratadas con la mayor concentración del metal (tabla 13); siendo la de los ejes laterales de primer orden igual en los dos tratamientos (tabla 13). Una consecuencia de la restricción en la elongación de los ejes principales fue que la distancia al ápice del eje principal en que aparecieron los ejes laterales fue considerablemente menor en el alto nivel de suministro de Zn²⁺; siendo en el mismo de 2.75 cm desde el ápice contra 6.12 cm en el nivel 10 mmol m^{-3} . Finalmente la densidad de raíces laterales de primer orden sobre los 20 ejes seminales fue hasta el día desde lagerminación, superior en 1000 mmol m⁻³ que en 10 mmol m⁻³ (Figura 23, pag. 141).

TABLA 13

KFECTO DEL NIVEL DE SUMINISTRO DE ZA SOBRE EL CRECIMIENTO DE LAS RAICES. Efectos sobre las tasas relativas de elongación de los ejes seminales y laterales de primer orden y del número de raíces laterales de primer orden.(Valores expresados en días -¹, resultan de la recta de regresión obtenida para todo el intervalo experimental empleado).

	10 uM	1000 uM
Tasa de Crec. Relativo To- tal (Seminales + Laterales)	0.16077	0.15103
Tasa de Crec. Relativo Ejes Seminales	0.07586	0.04870
Tasa de Crec. Relativo Ejes Laterales 1er orden	0.16225	0.16187
Tasa Relativa de Aparición de ejes laterales 1er orden	0.19741	0.12963

Figura 22: Evolución de la longitud de los ejes principales y de los laterales de primer orden en dos niveles de Zn, 10 y 1000 mmol m⁻³. Resultados promedio de cinco repeticiones.

Figura 23: Evolución de la densidad de ejes laterales sobre los ejes principales en dos niveles de suministro de Zn, 10 y 1000 mmol m⁻³. Resultados promedio de cinco repeticiones.

5- Relación Peso fresco: Peso seco y tasa de transpiración

Una de las primeras consecuencias observadas trás iniciar el suministro de Zn fue que la relación peso fresco:peso seco, raiz, fue en notoria У significativamente menor en el nivel 1000 que en 10 mmol m⁻³. En el vástago, en tanto, los efectos del alto nivel de suministro de Zn sobre este cociente recién se manifestaron claramente a los diez días de iniciado el tratamiento; siguiendo un comportamiento similar para vaína y lámina (Tabla 14, pag. 143).

La tasa de transpiración, expresada por unidad de área foliar, fue similar en los niveles 0.5, 10 y 100 mmol m⁻³ ascendiendo a aproximadamente el doble en el nivel 1000 mmol m⁻³ (Tabla 14 bis, pag. 143).

DISCUSION

Si consideramos los efectos tóxicos del Zn ligados unicamente a la caída en la producción de materia seca, los niveles de suministro 0.5, 10 y 100 mmol m⁻³ pueden ser reconocidos como óptimos o supraóptimos. Sin embargo

<u>TABLA 14:</u>

KFECTO DEL NIVEL DE SUMINISTRO DE ZA SOBRE LA RELACION PESO FRESCO:PESO SECO. En parte aérea (vaína + lámina), en lámina (datos tomados a partir del día 15 despues de germinación) y en raíz. El asterisco indica la existencia de diferencias significativas con un nivel de significancia del 5%.

Día	•	Raiz	Parte	Aérea	Lán	ina
(D.G	.) 10	1000	10	1000	10	1000
10	12.84	9.94*	9.69	9.73	-	-
13	14.40	12.75*	10.98	10.26	-	_
15	14.14	11.07*	11.91	10.37	-	-
17	11.46	12.35	11.62	10.21*	10.98	10.36
20	14.43	11.41*	12.06	10.43*	11.38	9.87*
23	14.16	12.13*	13.89	9.80*	13.04	9.47*
27	15.48	13.00*	11.88	9.74*	10.97	9.29*

<u>Tabla 14 (bis)</u>: Efecto del nivel de suministro de Zn sobre la tasa de transpiración. Valores expresados en nL $cm^{-2} h^{-1}$. Resultados promedio de cuatro repeticiones con el error standard.

Nivel de Suministro (mmol m⁻³) 0.5 10 100 1000 Tasa de 41.86±14.73 39.06±1.82 37.11±2.31 76.23±11.06 Transpiración

otros criterios como el área foliar por hoja expandida o la concentración de clorofila señalan que aquel es un criterio insuficiente y poco sensible acorde A 108 señalado por Baker (1987). El decaimiento en la producción de materia seca, claramente visible en el nivel de suministro 1000 uM (Tabla 1), fue antecedido en inferiores 108 niveles por otros sintomas. manifestándose en forma temprana solo cuando la acumulación del metal en los tejidos fue excesivamente alta (Ver Tabla 5, Capítulo II)

El decaimiento en la producción de materia seca no primera instancia, ligado a parece, en una menor eficiencia fotosintética ya que la tasa de asimilación neta fue similar en ambos tratamientos. Este hallazgo parece -en una primera aproximación- contradecir los reportes que indican que uno de los efectos primarios de la toxicidad del Zn es la caída en la capacidad del sistema de transporte de electrones en los cloroplastos (Veeranjaneyulu & Daas, 1982). Debe tenerse en cuenta, sin embargo, que la tasa de asimilación neta es un parámetro complejo que pondera no solo las ganancias debidas a la fotosíntesis sino también las pérdidas producidas por la respiración de los distintos órganos; así como la distribución de biomasa entre los órganos y la inversión de biomasa en cada unidad de área capaz de

realizar fotosíntesis (Porter, 1991). La disminución del cociente de área foliar, en el nivel 1000 mmol m-3, sugiere que en éste el aporte relativo de los tejicos no fotosintéticos a la biomasa total es mayor y que comparativamente- serían mayores las pérdidas debidas a la respiración por unidad de área foliar. Por lo tanto la similitud del NAR entre uno y otro nivel indica -al menos- que la eficiencia en la incorporación neta de carbono no disminuyó en el tratamiento objeto de estrés. Tal mantenimiento muestra -adicionalmente- que la caída en la tasa relativa de producción de materia seca debe ser atribuída -principalmente- a un cambio en el destino de los asimilados.

Es un fenómeno frecuente en aquellas situaciones en que el estrés es ejercido -primariamente- a nivel de la raiz, como el provocado por la impedancia del suelo (Masle & Passioura, 1987) o el déficit hídrico (Morgan & Condon, 1986), que el crecimiento del vástago se vea mas afectado que el de raiz. El estrés provocado por el alto suministro de Zn no escapa a este patrón (Tabla 12). Sin embargo los efectos sobre el crecimiento del vástago no fueron, en ningún caso, significativos antes de los ocho días de iniciado el suministro de Zn²⁺, en tanto que los efectos sobre la elongación de los ejes seminales o el peso fresco de la raíz se observaron en la primera

cosecha (Figura 22 y Tabla 14), tres días después de iniciado el suministro del metal. La fecha de aparición de los efectos del alto suministro de Zn sobre la raíz. vaína o lámina coincidió, excepto para la longitud total de las hojas, con la disminución del cociente peso fresco:peso seco. La disminución de este cociente puede ser explicada por varios caminos; por ejemplo que la misma sea el resultado de un probable cambio en el tamaño celular. Es posible también que el cociente Peso fresco : Peso seco diminuya debido a una disminución del contenido relativo de agua (CRA) en los tejidos; tal podría ser una de las causas disminución de la restricción del crecimiento. Esta última sugerencia puede, en una primera aproximación, aparecer reñida con que los efectos deletéreos sobre la longitud total de las hojas ocurran antes de que disminuya el cociente peso fresco: peso seco ya que es conocido que una de las primeras manifestaciones de la pérdida de turgencia es la restricción en la elongación foliar (Cramer & Bowman, 1991). La forma primitiva de estimar el estado hídrico los tejidos, a través del cociente peso fresco:peso de seco. podría ser responsable de esta aparente contradicción. Por otro lado el ascenso de la transpiración en el mas alto nivel de Zn empleado sugiere, a la vez que un descenso en la eficiencia en el

uso de agua, un efecto sobre la conductancia estomática. Es dificil discernir con los datos aquí recogidos si el efecto primario del estrés debido al alto nivel de suministro de Zn se debe a una disminución del turgor ó si esta es una consecuencia de una modificación de la extensibilidad de la pared celular.

La restricción del crecimiento, tanto en raíz como en vástago, podría estar asociada -además- a otros efectos no relacionados con la expansión celular. De hecho es sorprendente el distinto efecto que ejerce el nivel de suministro de Zn sobre los ejes seminales y los laterales. En tanto que el crecimiento de los ejes severamente seminales principales 8e encuentra restringido, el de los laterales (Tablas 13 y 15) no resulta afectado -en forma significativa- dentro del intervalo experimental empleado (Figura 22). La distinta respuesta de crecimiento entre uno y otro tipo de eje podría estar reflejando una distinta sensibilidad ante el alto suministro del metal; pero -también- que el balance hormonal ha sido alterado. Es preciso distinguir efecto del nivel de suministro del metal sobre aguí el la aparición de ejes laterales de primer orden y la tasa de elongación de éstos y de los ejes seminales. El distinto efecto sobre uno y otro fenómeno (Figuras 21 y 22) determina que la densidad de ejes laterales de

primer orden sobre los ejes principales sea inicialmente significativamente mayor en el nivel de alto suministro de Zn (Figura 23). Este fenómeno ha sido observado recientemente por Davies et al (1991) en Festuca rubra L., quienes han postulado que la proliferación inicial laterales de primer orden se debería a de ejes la depresión de la actividad mitótica en los ápices de las primarias. Tal raíces depresión traería como consecuencia una reducción en la producción de sustancias inhibidoras del desarrollo de los primordios de los ejes laterales de primer orden. No son claras sin embargo- las causas que determinan la distinta respuesta de los meristemas de los ejes laterales de primer orden respecto de los ejes seminales.

Finalmente es conveniente considerar que siendo el eflujo de Zn probablemente activo (Santa María & 1988; Santa María & Cogliatti, N.P.) Cogliatti, las raices podrían emplear una importante parte de las reservas de carbohidratos en la extrusión del Zn hacia el medio externo o hacia las vacuolas. Esto debería reflejarse en un mayor costo de mantenimiento y -por lo tanto- en una menor disponibilidad de energía para el Tal costo podría ser importante crecimiento. вi consideramos que de acuerdo a lo observado por Kennedy & Goncalves (1987) en raices de plantas de maiz cultivadas en altos niveles de suministro (1000 uM) ocurre una hiperpolarización de la membrana, generando un alto gradiente en contra del eflujo de Zn. En trigo en tales condiciones -sin embargo- la contribución del eflujo al flujo neto aumenta; indicando que tal efecto, si es que también ocurre en plantas de trigo cultivadas en las condiciones empleadas en este trabajo, no impide la salida del metal; aunque aumentaría el costo energético de la extrusión.

Es posible que los tres fenómenos postulados para explicar la disminución del crecimiento: efecto del Zn sobre el estado hídrico, sobre el balance hormonal y sobre la relación entre costos de mantenimiento y de crecimiento; ejerzan una acción conjunta que requiere un estudio mas profundo.

* * *

149

TABLA 15

Valores Finales de Algunos Parámetros en los niveles 10 y 1000 mmol m⁻³. El asterisco indica diferencias significativas en el nivel de 5%.

Parámetro	10 mmol m ⁻³	1000 mmol ^m	-3
Peso Fresco Parte Aérea	1.028	0.529	*
(gr) Peso Fresco Lámina (gr)	0.720	0.382	*
Peso Fresco Vaina (gr)	0.308	0.147	*
Longitud Vaina (cm)	7.82	5.28	*
Area Foliar (cm ²)	38.22	21.85	*
Longitud Total Hojas (cm)	91.52	65.24	*
Ancho Hojas (cm)	0.417	0.327	*
Espesor Hoja (cm)	0.01874	0.01743	
Peso Fresco Raiz (gr)	0.395	0.363	
Long. Total Raiz (cm)	515.7	394.7	
Long. Ejes Seminales (cm)	107.4	62.8	*
Long. Ejes Laterales (cm) 4	108.3	331.8	
Long. Media Ejes Laterales	1.39	1.90	
Número Raíces Laterales 2	292.0	175.0	*
Diámetro Raiz (cm)	0.01557	0.01733	*
Distancia al ápice de apa- rición de laterales (cm)	6.12	2.75	*

CAPITULO 4

REGULACION DE LA ABSORCION DE Zn: EFECTOS DEL NIVEL DE SUMINISTRO DE FOSFORO

KFECTOS DEL NIVEL DE SUMINISTRO DE FOSFORO SOBRE LOS

INTRODUCCION

La absorción de un nutriente por las raíces de las plantas es modulada tanto por factores exógenos como por factores endógenos, entre los que se cuentan la tasa de crecimiento de los distintos órganos, el nivel del elemento en los tejidos así como la disponibilidad propia y la de otros nutrientes en el medio de cultivo. La interacción entre los elementos esenciales puede nivel de los ocurrir a procesos de absorción, translocación al vástago o utilización. Es dificil, por lo común, discriminar estos niveles de interacción sobre todo cuando los cambios inducidos sobre la tasa de crecimiento provocan efectos de dilución. En 108 capítulos anteriores se ha estudiado la contribución de los flujos vectoriales de Zn al flujo neto de este cation divalente en referencia al nivel de suministro de Zn así como el efecto del nivel de suministro del catión sobre el desarrollo y crecimiento de las plantas. En este capítulo el objetivo perseguido ha sido evaluar el efecto del nivel de suministro de fósforo sobre el influjo, el eflujo y la translocación de Zn. Tal como se

ha apuntado en la Introducción (pags. 22-25) existe una notable controversia respecto de la naturaleza y sentido de esta interacción.

RESULTADOS Y DISCUSION

Cuando las plantas de trigo fueron cultivadas desde la germinación en diferentes concentraciones externas de fósforo -0.05 y 5 mol m⁻³- y en el nivel 4 mmol m⁻³ de Zn, se observó que el alto suministro de P provocó un aumento de la concentración de Zn tanto en vástago como en raiz (Tabla 16, pag. 154). Tales diferencias en la concentración del metal no se debieron a un efecto del crecimiento ya que las tasas de crecimiento relativo de parte aérea y de raíz no exhibieron diferencias significativas en los dos niveles de fósforo empleados; si bien la relación vástago:raíz fue mayor en el nivel 5 mol m⁻³ que en el nivel 0.05 mol m⁻³ de fosfato (Tabla 17, pag. 155).

Estos resultados sugieren claramente que la respuesta positiva de la concentración de Zn al elevado nivel de suministro de fósforo se debió, de modo TABLA 16: Efecto del nivel de suministro de P so re la concentración de Zn y P en vástago y raíz. Resultados promedio de cinco repeticiones con el E.S; los que se hallan marcados con la misma letra -entre tratamientosno difieren significativamente (P<0.05).

Nivel de suministro		Concentración umol g ⁻¹ (peso Seco)		
		Zn	Р	
Vástago	0.05	0.808 <u>+</u> 0.031 a	236.73± 12.61 a	
	5.00	3.704 <u>+</u> 0.086 b	386.23<u>+</u> 11. 61 b	
Raiz	0.05	2.344 <u>+</u> 0.184 a	302.14 <u>+</u> 9.70 a	
	5.00	12.559± 0.409 ъ	406.11 <u>+</u> 8.86 ъ	

TABLA 17: Efecto del nivel de suministro de fósforo sobre los parámetros de crecimiento de plantas de trigo. Resultados obtenidos por regresión. Para cada columna los elementos con la misma letra no difieren significativamente (P<0.05).

	Ni vel de Bum inistr o	Wo (mg pl-1)	RGR (d-1)
Planta	0.05	60.15 a	0.1156 a
Entera	5.00	59.69 a	0.1285 a
YI Contraction	0.05	43.21 a	0.1308 a
Vastago	5.00	4 4 5 4 a	0.1462 a
\mathcal{D}_{2} (σ	0.05	16.91 a	0.0698 a
Na12	5.00	15.26 a	0.0 6 20 a
Relación	0.05	2.9	9 ± 0.04 a
Vástago:Raíz	5.00	3.5	5±0.10 b

primario, a un efecto del anión sobre la absorción de Zn por las raices. En apoyo de esta afirmación la SAR Zn fue ocho veces mayor en 5 que en 0.05 mol m⁻³ de fosfato (Tabla 18, pag. 157).

Dado que estos resultados sugieren cierto grado de anomalia respecto al sentido en que frecuentemente opera esta interacción (Robson & Pitman, 1983), en un ensayo postarior as observó el efecto del nivel de suministro de fósforo sobre la concentración de Zn en seis variedades de trigo, cinco de las cuales corresponden a la especie Triticum aestivum y la restante a la especie Triticum durum. Mas alla de las diferencias observadas entre la variedad de Triticum durum (Buck Candisur) respecto de algunas de aquellas pertenecientes a T. aestivum, la respuesta general de la concentración de Zn ante los distintos niveles de fósforo fue la misma que la observada previamente en el cultivar Klein Atalaya (Tabla 19, pag. 158). Dado que no hubo un efecto significativo del nivel de suministro de fósforo sobre el crecimiento en ninguna de las variedades estudiadas, la alta concentración de Zn asociada al alto nivel de suministro de fósforo debe ser atribuída -para todos los genotipos- a una mayor tasa específica de absorción de Zn. Estos resultados sugieren que la relación positiva entre la absorción de Zn y el nivel de suministro de P

<u>TABLA 18</u>: Tasa específica de absorción (SAR ZN), de translocación (SST ZN), Influjo (I), Eflujo (E) y cociente Eflujo:Influjo (E:I), en plantas cultivadas en 0.05 y 5.00 mol m⁻³ de KH₂PO₄. Valores expresados en umol g^{-1} (Peso Seco Raiz) h⁻¹. Los valores de SST están expresados nmol g^{-1} h⁻¹.

Nivel sumini <u>tro de</u>	de I .s- .P	SAR	E	E:I	SST
0.05	0.143 <u>+</u> 0.012	0.0198	0.1232	0.861	9.86
5.00	0.425±0.081	0.1659	0.2591	0.609	107.70

TABLA 19: Efecto del nivel de suministro de fósforo sobre la concentración de Zn en seis variedades de trigo. Resultados promedio de cinco repeticiones con el error estandard.

Nivel de suministro	0.05 mol m ⁻³	5 mol m-3
Variedad	Concentración	Zn en Raíz
Chaqueña INTA Norkin Irupé Las Rosas INTA Trigal 800 Klein Atalaya Buck Candisur	$\begin{array}{r} 4.54 \pm 0.24 \\ 4.51 \pm 0.21 \\ 3.78 \pm 0.27 \\ 6.20 \pm 1.12 \\ 4.53 \pm 0.28 \\ 7.54 \pm 0.60 \end{array}$	$\begin{array}{r}9.07 \pm 0.82\\9.62 \pm 1.20\\9.05 \pm 0.83\\10.69 \pm 0.59\\8.86 \pm 0.84\\13.00 \pm 1.72\end{array}$
	Concentración	Zn Vástago

Chaqueña INTA	1.96 <u>+</u> 0.20	2.44 ± 0.16
Norkin Irupé	1.46 ± 0.10	2.35 ± 0.25
Las Rosas INTA	1.53 ± 0.06	2.09 ± 0.14
Trigal 800	1.44 <u>+</u> 0.13	2.09 ± 0.18
Klein Atalaya	1.55 ± 0.21	2.64 ± 0.19
Buck Candisur	1.68 ± 0.22	1.85 ± 0.08

puede ser generalizada para cualquier planta de trigo cultivada en condiciones similares a las aquí empleadas.

Esta interacción positiva hallada en condiciones de contrasta con hidropónico 108 resultados cultivo obtenidos por Verma & Minhas (1987) en maíz y en trigo en condiciones de campo- en los que la concentración de Zn en grano y en paja disminuyó al aumentar la dósis de fosfato aplicada al suelo. Singh et al (1986) hallaron, también en trigo, que cuando la fuente de Zn era ZnSO4 la concentración de este catión era independiente de la dósis de Paplicada en aquel estadío del desarrollo en que el primer nudo del tallo era visible en la base del vástago; mientras que cuando la lámina de la última hoja se había expandido la concentración de Zn disminuía al aumentar la dósis de Paplicada. Es posible que parte de las diferencias observadas en nuestros ensayos respecto los realizados en condiciones de de campo puedan a una distinta respuesta al atribuírse nivel de suministro de P lo largo del ciclo fenológico. Un segundo factor que podría explicar este comportamiento en apariencia anómalo es que muchas veces la deficiencia de Zn ocurre en niveles de suministro de fósforo capaces de provocar toxicidad (Loneragan et al, 1982). Los niveles de P utilizados en este estudio han mostrado

previamente no ser restrictivos del crecimiento (Cogliatti & Santa María, 1990).

Debe observarse, asimismo, que la controversia entre nuestros resultados y los de la literatura especializada no se circunscriben al proceso de absorción, sino tambien al de translocación al vástago. En Gaudinia fragilis (Cogliatti et al, 1991) se ha encontrado que el transporte de 65Zn a la parte aérea fue menor en plantas cultivadas en 10 mol m⁻³ de H₂KPO₄ que en aquellas cultivadas en 0.1 mol m⁻³ del anión. En el mismo trabajo se encontró que la partición entre vástago y raíz del ⁶⁵Zn absorbido era similar en ambas condiciones de suministro de fósforo. Cakmak & Marschner (1986) encontraron en algodón que la partición disminuía a medida que aumentaba el nivel de suministro de P. Nuestro trabajo pone en evidencia un patrón opuesto a aquel observado por los autores recién citados. La tasa específica de translocación de Zn fue diez veces mayor en el nivel de alto suministro de fósforo que en el menor (Tabla 18); siendo la partición del metal entre vástago y raíz ligeramente superior en el nivel de alto suministro de P (Tabla 18).

La diferencia hallada en la SAR Zn entre ambos niveles de fósforo puede resultar del efecto -directo o indirecto- del nivel de suministro del anión sobre el

influjo, el eflujo o sobre ambos flujos. Los resultados obtenidos muestran que el influjo de Zn²⁺ al espacio interno radical aumentó al aumentar el n'vel de suministro de P (Tabla 18). El eflujo de Zn, estimado como diferencia entre el influjo y la tasa específica de absorción neta, mostró también aumentar al aumentar el nivel de suministro de fósforo (Tabla 18). En tanto que el incremento del influjo de Zn, entre la menor y la mayor concentración de P, fue de aproximadamente tres veces, el del eflujo fue solo de dos. Como resultado del aumento diferencial del influjo respecto del eflujo el cociente eflujo:influjo fue menor en el nivel 5 mol m⁻³ que en el nivel 0.05 mol m⁻³ de suministro de P. Este incremento del influjo puede ser atribuído a : 1) que distintos niveles de suministro de P provocarían diferentes diferencias de potencial de membrana o cambios en la permeabilidad del Zn y/6 2) la existencia de un componente activo del influjo del metal.

El efecto del fósforo sobre el potencial de membrana ha sido explorado por Bowling & Dunlop (1978) quienes encontraron en trébol subterraneo que la entrada de fósforo es mediada por una bomba electrogénica. Nosotros hemos observado en plantas de trigo que el influjo de fósforo es veinte veces mayor en plantas cultivadas en 5 que en aquellas cultivadas en 0.05 mol m^{-3} de fosfato (Cogliatti & Santa María, 1990). Tal incremento en el influjo de P podría producir cambios en el PD si una bomba electrogénica similar a la hallada en trébol subterraneo fuera operativa en esta graminea. El probable ascenso del potencial de membrana tendería a aumentar el influjo de Zn debido a una mayor diferencia en el potencial electroquímico de este catión entre ambos lados del plasmalema.

La evidencia recogida en el Capítulo I señala que el influjo de Zn sería un fenómeno mediado de naturaleza pasiva, en tanto que el eflujo sería un proceso activo. Sin embargo se desconoce si esta situación puede ser extendida cuando varía el nivel de suministro de P, no pudiendo descartarse a priori que un componente activo del influjo esté presente en el alto nivel de suministro de P.

Los resultados hasta aquí informados se refieren a mediciones tomadas una vez que las plantas han alcanzado cierto grado de homeostasia respecto del nivel de P en la solución de cultivo. Un aspecto importante es explorar la evolución del influjo de Zn ante el cambio de suministro de fósforo. Con este propósito se efectuó un experimento en el que plantas cultivadas en 5 mol m⁻³ fueron transferidas a 0.05 mol m⁻³ y viceversa. Nuevamente no se observaron cambios en el crecimiento

como resultado del cambio en el régimen de suministro de fósforo; pero вí un marcado efecto sobre la concentración de Zn tanto en vástago como en raíz. Siete días despues del cambio, desde bajo a alto nivel de suministro, la concentración de Zn en raíz aumentó dos veces y media (Figura 24, pag. 164); observandose el comportamiento opuesto para las plantas cultivadas en 5 mol m^{-3} y transferidas a 0.05 mol m^{-3} de P (Figura 24).El mismo patrón de comportamiento fue observado para la concentración del metal en el vástago; si bien en este órgano el efecto fue mas lento y menos marcado (Figura 25, pag. 165). Estos cambios en la concentración de Zn, no acompañados por cambios en la tasa de crecimiento, reflejan un cambio similar en las tasas especificas de absorción y translocación de Zn.

El influjo de Zn²⁺ cambió rapidamente despues de transferir las plantas a la nueva condición de suministro de fósforo; disminuyendo en forma exponencial cuando el cambio se practicó desde la concentración y aumentando -en forma también mayor a la menor; exponencial- cuando el cambio se efectuó desde el nivel 0.05 a 5 mol m⁻³ (Figura 26, pag. 168). El efecto del nivel de fósforo fue estadísticamente nuevo significativo recién después de las tres horas de

FIGURA 24: Efecto del cambio de suministro de fósforo sobre la evolución de la concentración de Zn en raíz. Valores expresados como porcentaje de la concentración observada para cada medición en el nivel de suministro constante 5.00 mol m⁻³.

FIGURA 25: Efecto del cambio en el nivel de suministro de fósforo sobre la evolución de la concentración de Zn en el vástago. Valores expresados como porcentaje de lo observado en el nivel 5 mol m⁻³.

realizada la transferencia. La concentración de fósforo en las plantas (Figuras 27 y 28, pags. 169 y 170), por otro lado, siguió - despues del cambio de suministro similar al comportamiento seguido un por la concentración de Zn (Figuras 24 y 25). La concordancia entre la evolución de la concentración de fósforo y el influjo de Zn tienta a sugerir un papel regulatorio de la concentración endógena de P sobre el influjo del metal. Es preciso observar, sin embargo, que la tasa de cambio del influjo de Zn es mayor que la de la concentración total de fósforo en la raíz (Figuras 26 y Por otro lado es posible que 27). no 8ea la concentración total de P en la raíz sino una fracción de la misma -como el fósforo inorgánico presente en el citoplasma- la que desempeñe el posible rol regulatorio.

Una consecuencia del aumento del influjo de Zn, en tanto desciende el cociente eflujo:influjo es que al ascender el nivel de suministro de P se produce un aumento del flujo neto de Zn y -por lo tanto- un ascenso de la concentración del metal en la raíz. El ascenso de la concentración total de Zn en la raíz parece haber sido acompañado en esta serie de experimentos por un aumento en la fracción de Zn exportable al vástago. Cackmak & Marschner (1987) observaron en algodón que tanto la fracción de Zn-soluble en la raíz como la

translocación del catión al vástago disminuían al aumentar el nivel de suministro de P, postulando una relación causal entre ambos fenómenos. En 108 experimentos aguí informados la translocación de Zn al vástago fue, como ya se señaló, diez veces mayor en 5 que en 0.05 mol m⁻³ (Tabla 18). Si el Zn translocado al vástago proviene del mismo pool que el implicado en el eflujo, es posible que la actividad del Zn²⁺ en tal pool sea proporcional a la concentración total de Zn en la raíz, ya que ésta aumentó -aproximadamente- el mismo orden de magnitud en que aumentó la translocación (Tabla 18). Adicionalmente la información disponible sugiere el desplazamiento radial del Zn que ocurre, preferentemente, vía simplasto (Capítulo I).

EFECTO DEL NIVEL DE SUMINISTRO DE ZN SOBRE LA ABSORCION DE P

Los resultados recien descritos muestran el efecto del nivel de suministro de P sobre la absorción de Zn. Es importante considerar que muchas interacciones exhiben un caracter recíproco (Robson & Pitman, 1983). FIGURA 26: Efecto del cambio en el nivel de suministro de fósforo sobre el influjo de Zn.

FIGURA 27: Efecto del cambio de suministro de P sobre la evolución de la concentración de P en raíz. Resultados expresados como porcentaje del valor observado en el nivel de suministro constante 5 mol m^{-3} .

FIGURA 28: Efecto del cambio de suministro de P sobre la concentración del anión en el vástago. Resultados expresados como porcentaje del valor observado en el nivel de suministro constante 5 mol m⁻³.

En el caso de la interacción P-Zn existen reportes que indican que en bajos niveles de suministro de Zn ocurre un notorio aumento en la absorción de P (Cakmak & Marschner, 1986; Webb & Loneragan, 1988 y 1990). En el presente trabajo hemos examinado los efectos de la nutrición de Zn en niveles de suministro que cubren el rango que va desde el óptimo hasta aquel en que aparecen sintomas de toxicidad, desde 0.5 hasta 1000 mmol m-3 de Zn (Capítulo III); siendo el nivel de fósforo empleado 1 mol m⁻³. En las dos concentraciones mas altas de Zn se observó previamente (Capítulo III) un efecto deletéreo sobre el crecimiento del metal de las plantas: ascendiendo en dicho rango la concentración endógena de Zn en forma casi proporcional al nivel de suministro del catión divalente. La concentración de P en la raíz aumentó en forma pronunciada al aumentar el nivel de suministro de Zn; mientras que la del vástago tambien lo hizo si bien en forma menos marcada (Figura 29, pag. 172). Como regultado de esto la partición de P entre raíz cayó notoriamente parte aérea У en las concentraciones mas altas de Zn (Tabla 20, pag. 173). Solo en el nivel mas alto de suministro de Zn la tasa específica de absorción de P fue mayor que la hallada en. niveles inferiores (Tabla 20).
FIGURA 29: Efecto del nivel de suministro de Zn sobre A: la concentración de P en vástago y B: en raíz. Resultados promedio de cinco repeticiones con su error estandard.

TABLA 20: Efecto del nivel de suministro de Zn sobre la tasa de absorción neta de P (SAR P), la tasa de translocación del anión (SST P) y el cociente Tasa de translocación:tasa de acumulación (T:A). Valores medios obtenidos a partir de la regresión del contenido de P en cada órgano y del peso seco de la raíz.

Nivel de suministro de Zn (mmol m ⁻³)	SAR P	SST P	T:A
0.05	102.51	78.86	3.33
10	137.12	104.59	3.18
100	156.82	98.59	1.76
1000	210.69	95.44	0.83

La absorción neta de P, en las plantas de trigo, es un proceso altamente regulado. En los niveles de suministro de P considerados en este trabajo tal regulación es debida principalmente al eflujo (Cog iatti & Santa Maria, 1990). La misma, en apariencia, parecería no ser operativa en altos niveles de suministro de Zn (Tabla 20). En condiciones de elevado suministro de Zn el ascenso de la concentración interna de P; así como de la tasa específica de absorción del anión parecen indicar que las plantas han escapado de la acción reguladora visible en las plantas libres de estrés. Es probable que estos resultados 8e deban. al menos la parcialmente, a que concentración del pool regulatorio del eflujo e influjo de P no siga el mismo patrón que la concentración total de P en raíz. En apoyo de esta idea Van Steveninck (1987 a y b) halló en las de Deschampsia flexuosa raíces que las plantas altos niveles de cultivadas en suministro de Zn mostraban una importante fracción del Zn presente en las combinada con compuestos ricos raices en fósforo. Resultados similares han sido hallados por Harada et al (1986) en Euglena gracilis y por Denny & Wilkins (1987,b) en especies del genero Betula.

174

* * :

<u>DISCUSION_GENERAL</u> <u>Y_CONCLUSIONES</u>

DISCUSION GENERAL

Como ya se apuntó en la Introducción el origen de esta tesis debe buscarse en la contradicción existente idea, ampliamente extendida, entre la de que 108 vegetales superiores son capaces de regular **8**น composición elemental y la observación de que al aumentar el nivel de suministro de Zn asciende la concentración de éste en los tejidos (Baker, 1987: Woolhouse, 1983). Tal contradicción ha sido ampliamente documentada a lo largo de este trabajo, particularmente en el Capítulo II. El ascenso de la concentración de Zn en el espacio interno radical (E.I.R.) ha sido atribuído aqui al ascenso de la tasa específica de absorción (SAR Zn). El aumento de esta última, a la vez, parece deberse B un aumento de la diferencia de potencial electroquímico a través del plasmalema***, el que favorecería el aumento del influjo al ascender el nivel de suministro. De acuerdo a lo discutido en el Capítulo

***: O, a nivel fenomenológico, con el conjunto de resistencias dispuestas en serie con la misma y no distinguibles de ella en experimentos cinéticos

I el flujo de entrada al E.I.R. aumentaria en forma pasiva; este proceso podría verse facilitado -además- en altos niveles de Zn por la posible hiperpolarización de la mebrana (Kennedy & Goncalves, 1987). La resultante de fenómenos debe conducir, inevitablemente. estos al ascenso de la concentración de Zn en el E.I.R. a menos que las raices sean capaces de excluir el metal del mismo. El hecho de que el cociente eflujo:influjo cobre mayor importancia a medida que asciende el nivel de suministro, indica que el eflujo actuaría como mecanismo de exclusión: siendo éste probablemente de naturaleza activa (Capitulos I y II). Si bien y de acuerdo a esta evidencia las plantas de trigo parecen poseer mecanismos de exclusión de Zn del espacio interno, la eficiencia de los mismos parece muy limitada -en los altos niveles de suministro aquí considerados- sin lograr impedir el ascenso de la concentración interna a niveles tóxicos (Capitulo III).

Es difícil, sin embargo, discutir los resultados aquí obtenidos en términos de la eficiencia de exclusión. En primer término porque desde un punto de vista razonable todo mecanismo fisiológico de regulación opera dentro de un rango definido de valores de entrada (O Neil et al, 1986), por lo que cabria esperar que la sistema del de comportarse capacidad en forma

homeostática u homorreica respecto del nivel de suministro cese mas allá de los propios límites del mecanismo de regulación. El rango de suministro aquí empleado, considerablemente superior a aquel observable en suelos no poluídos (Barrow, 1987), podría haber superado holgadamente la probable capacidad de tal sistema. Es probable, adicionalmente, que el eflujo de Zn sea -como ocurre con el influjo de K+ (Kochian & Lucas, 1982)- la resultante de dos componentes: una de ellas pasiva y otra activa, variando la importancie relativa de las mismas al variar el nivel de suministro. Es probable también que en muy bajos niveles de suministro de Zn el influjo sea objeto de alguna clase de regulación por parte de las raices. Lamentablemente no parece existir en la bibliografía presente, ni tampoco surge del presente trabajo, evidencia que la ocurrencia de uno o ambos procesos; respalde mostrando ser la concentración interna de Zn en las raíces de trigo, en el rango de suministro que abarca desde el nivel óptimo al tóxico, altamente dependiente del nivel de suministro (Capitulo II).

En segundo lugar el concepto de eficiencia requiere, para que cobre sentido y sea posible decidir su magnitud e importancia relativa, de la confrontación de especies, clones o variedades cuya respuesta al elevado suministro de Zn sea cuali o cuantitativamente distinta.

En tercer término el ascenso relativo del eflujo de Zn al ascender el nivel de suministro podria 55 a la resultante de un mecanismo no seleccionado a lo largo de la evolución de la especie.

A1 respecto cabe considerar que no existen antecedentes en la literatura científica acerca de la resistencia al estrés por metales pesados en la variedad de trigo empleada. Es dificil imaginar -acorde a la aparente generalidad de la contribución del eflujo al flujo neto en distintas especies (Capítulo I)la existencia de un mecanismo de exclusión ocioso, no operativo en las condiciones usuales de cultivo de las plantas. Este planteo conduce, casi inevitablemente, a la inversión de la pregunta inicial. Dado que, aunque pobremente, las plantas de trigo parecen poseer mecanismos activos de exclusión de Zn: ¿Cómo es posible la existencia de tal mecanismo, sin el concurso de selección en tal sentido?. ¿ Se trata realmente de un mecanismo de exclusión seleccionado o se trata de una exaptación, es decir una característica con valor adaptativo pero seleccionada bajo la presión de un factor distinto que la elevada disponibilidad de metales en la solución del suelo (Coughenour, 1985) ?. ¿Es tal

sistema específico para el Zn, o por el contrario se trata de un sistema poco selectivo, capaz de operar en forma generalizada para uno o mas cationes divalentes?. La contestación de estas preguntas descansa en gran medida en el conocimiento de los mecanismos involucados en la absorción del Zn y -también- en la translocación de éste hacia el vástago. El descenso de la partición del metal entre parte aérea y raíz a medida que asciende el nivel de suministro (Capítulo II) sugiere que también existiría un mecanismo de exclusión capaz de atemperar la toxicidad a nivel del vástago (Capítulo III).

En última instancia satisfacer estos interrogantes implica postular un modelo contrastable, mecanistico, referido a la modulación del influjo y el eflujo de Zn. Dicho modelo una vez formulado podría permitir comparar estrategias de exclusión entre líneas, especies o taxones mas elevados respecto de sus parámetros mas importantes. Creemos que la principal contribución de este trabajo es el haber brindado algunos elementos que permitan esbozar tal modelo conceptual. Este debe, pues, tener en cuenta y ser consistente con las siguientes observaciones experimentales:

1) En condiciones de alto suministro de Zn el aporte del eflujo a la tasa de absorción neta no puede ser despreciado. La contribución relativa del eflujo al flujo neto, por otra parte, asciende al aumentar el nivel de suministro. Esto sugiere que el sistema de pérdida del catión desde el espacio interno radical dependería, acorde a lo discutido en el Capítulo II, del ascenso de la concentración de Zn en el citoplasma.

2) Considerando extrapolables a las condiciones aquí empleadas los resultados obtenidos por Thornton & Macklon (1985 a y b) para el potencial de membrana de plantas de trigo, el criterio de Ussing Theorell sugiere que -en los niveles de suministro empleados- el eflujo de Zn sería de naturaleza activa.

3) El influjo de Zn al espacio interno radical, en el rango 0.2 -100 uM, describe la cinética típica de los procesos mediados; pudiendo ser explicada la misma a través de un solo mecanismo (Chaudrhry & Loneragan 1971, 1972; Cap. I, Apéndice I). En dicho rango no existen evidencias de que la concentración de Zn en raíz ejerza un rol regulatorio sobre tal sistema de transporte; es posible, sin embargo, que un mecanismo de represión sea operativo en niveles de suministro inferiores a los usados.

4) Tal sistema de transporte seria eminentemente pasivo (Capítulos I y II) y susceptible de ser afectado por el pH (Bowen, 1969), la concentración de cobre, magnesio y calcio (Chaudhry & Loneragan, 1971,1972) y por el nivel de suministro de P (Capítulo IV).

5) En plantas de maiz el ascenso de la concentración externa de Zn y -por lo tanto de la interna- promueve la extrusión de protones (Cocucci & Morgutti, 1987. En trigo si bien no fue posible cuantificar adecuadamente el flujo de protones en distintas condiciones de suministro de Zn, se observó que al ascender éste diminuia el pH de la solución en que se cultivaron las plantas (dato no mostrado). En ambos casos se ignora la forma en que el flujo de Zn modularía el flujo de protones.

6) El ascenso de la concentración externa de fósforo en el medio de cultivo deriva en un estimulo del influjo de Zn; así como en una disminución relativa del cociente eflujo:influjo (Capitulo IV). Es posible que el ascenso del influjo, en tales condiciones, se deba a un efecto regulatorio de la concentración citoplasmática de fósforo sobre el sistema de transporte de Zn (Capítulo IV).

7) En plantas de trigo el aumento del nivel de suministro de P -en niveles de P no limitantes del crecimiento- provoca una lígera inhibición del sistema de transporte de P; pero a la par produce un marcado incremento relativo del eflujo del anión (Cogliatti & Santa María, 1990).

8) El aumento del nivel de suministro de Zn a niveles supraóptimos o tóxicos (Capítulo III) acarrea un ascenso del flujo neto de fósforo (Capítulo IV), así como una distinta partición de éste entre vástago y raíz. Se ignora si tal efecto ocurre via influjo, vía eflujo o a través de un efecto sobre ambos flujos vectoriales. Es posible adicionalmente que parte del fósforo incorporado en estas condiciones a la raíz se encuentre ligado al Zn (Van Steveninck et al, 1987 a y b).

9) Tanto los experimentos de pulso y seguimiento de ⁶⁵Zn como el efecto de los inhibidores metabólicos (NaN3, 2-4 DNP y bajas temperaturas) sugieren que el acceso del Zn al cilindro central de la raíz ocurriría, fundamentalmente, via simplasto (Capítulo I). El efecto del nivel de suministro de P y Zn sobre la translocación de Zn tiende a dar apoyo adicional a esta idea.

10) El transporte de Zn en el xilema ocurriría en la forma de Zn-citrato o Zn-malato (White el al, 1981) siendo éstas las formas en que arriba el catión al vástago. Se ignora si la formación de estos compuestos ocurre a nivel del exudado xilemático, o si bien son transferidos al xilema ya acomplejados.

información no basta, sin embargo, Esta para postular un modelo acabado de la absorción de Zn. Dos lagunas se hacen evidentes: a) La ausencia de datos referidos al efecto del pH sobre el influjo y el eflujo del catión; así como del nivel de suministro de éste sobre el flujo de protones y el potencial de memb ana y b) El pobre conocimiento de que disponemos respecto de las interacciones a nivel de apoplasto; aspecto que se vuelve particularmente critico al encarar los efectos del pH o especies iónicas que portan cargas positivas (Grignon & Sentenac. 1991). Adicionalmente las correlaciones entre la SAR Zn y el crecimiento, parecen merecer un tratamiento mas detenido que permita superar el umbral descriptivo y arribar a un nivel realmente explicativo. Los intentos realizados para otros iones sobre este tema distan aún de ser satisfactorios (Cooper, 1986; Drew et al, 1990).

* * *

APENDICE I

COMPARACION DE METODOS DE ESTIMACION DE LOS PARAMETROS Vmax Y Km

COMPARACION DE METODOS DE ESTIMACION DE LOS PARAMETROS

INTRODUCCION

La entrada de un ión a las raíces de los vegetales superiores guarda una estrecha relación con 1a concentración externa del mismo. El estudio de tal relación ha sido emprendido empleando dos metodologías diferentes, una de las cuales (Epstein, 1976) consiste en la medición de la absorción de un isótopo o análogo radioactivo, emparentado por sus propiedades guímicas y físicas al elemento estudiado, en un amplio rango de concentraciones externas. Este método ampliamente difundido requiere gran trabajo experimental y se encuentra limitado a aquellos nutrientes que presentan isótopos convenientes para ธน uso en estudios fisiológicos.

Un método alternativo, que permite salvar estos inconvenientes, es el diseñado por Claassen & Barber (1974) el cual radica en estudiar la desaparición del ión en la solución de cultivo y ajustar, luego, la tasa de absorción neta (A_n) a la siguiente expresión:

$$A_n = [(V_{max} * c_e) / (K_m + c_e)] - E$$
 (12)

donde Vmax es el valor máximo del influjo, Km la concentración a la que se alcanza la mitad de dicho valor, co la concentración externa y E el eflujo. En el trabajo original Claassen & Barber asumieron que el eflujo es constante e independiente de la concentración externa; asunción ampliamente aceptada en trabajos posteriores, llegándose en ciertos casos a asumir que el eflujo es inexistente.

La correspondencia entre el influjo de Zn²⁺ y la concentración externa ha sido objeto de estudio empleando tanto la metodología de incorporación de ⁶⁵Zn (Bowen, 1969; 1986; Veltrup, 1978; Homma & Hirata, 1984; Ramani & Kannan, 1985) como por desaparición en el medio de cultivo (Mullins & Sommers, 1986); coincidiendo ambas en mostrar una relación hiperbólica típica de los procesos mediados.

Pese al amplio uso que han merecido ambas metodologias no se han realizado, hasta donde alcanza nuestro conocimiento, estudios comparativos entre una y otra que muestren su concordancia o discordancia. En este apéndice hemos intentado dilucidar si la estimación de los parámetros cinéticos del influjo de Zn^{2+} se encuentra influida por la metodología empleada.

RESULTADOS

DESAPARICION DE Zn EN EL MEDIO DE CULTIVO

En la Figura 30a (pag. 189) se observa un rápido decaimiento lineal del contenido de Zn en la solución de absorción seguido por un descenso no lineal, hasta alcanzar un valor constante a partir de las cinco horas. La derivada de la curva obtenida -dividida por el peso del sistema radical- estima la tasa de absorción neta por la raíz, la cual fue graficada en función de la concentración externa (Figura 30 b). Se observa que esta última curva describe un comportamiento hiperbólico alcanzando un valor constante para las concentraciones mas altas. La estrapolación de la misma hasta cortar el eje de las ordenadas permite estimar el eflujo del catión. El ajuste de los datos obtenidos a la expresión (13) arrojó los siguientes valores: FIGURA 30: A:Evolución del contenido de Zn en la solución de absorción. Resultados promedio de cuatro repeticiones con el error standard; B: Relación entre la tasa de absorción neta y la concentración externa.

 $V_{max} = 1.39 \text{ umol } g^{-1}(\text{Peso Seco Raiz}) h^{-1}$ $K_m = 1.94 \text{ mmol } m^{-3}$ $y = 0.10 \text{ umol } g^{-1}(\text{Peso Seco Raiz}) h^{-1}$

ABSORCION DE 65Zn EN FUNCION DEL TIEMPO

A efectos de evaluar el tiempo óptimo para **1a** determinación del influjo de Zn2+ **8e** estudió la absorción del trazador en función del tiempo, la cual mostró - en el período bajo observación- una respuesta no lineal (Figura 31, pag. 191). Sin embargo la desviación de la linearidad se hace acusada recién por arriba de los veinte minutos, por lo que en experimentos ulteriores tal período de tiempo fue el empleado para estimar el influjo.

RELACION ENTRE EL INFLUJO Y LA CONCENTRACION EXTERNA

Dado que el objetivo de este trabajo es comparar dos metodologías es obvio que la validez del trabajo a efectuar proviene de la similitud de condiciones ambientales y del material vegetal utilizado. Por

190

FIGURA 31: Evolución de la incorporación de 65Zn en función del tiempo. Resultados promedio de cinco repeticiones con el error estandard.

consiguiente en forma simultánea a la realización del experimento de desaparición de Zn de la solución de cultivo se observó la incorporación de ⁶⁵Zn al espacio interno radical en un amplio rango de concentraciones externas. La curva hallada (Figura 32 B, PAG. 193) fue ajustada a la expresión de Michaelis Menten a través del procedimiento de la doble reciproca, obteniendose los siguientes parámetros:

> $V_{max} = 8.68 \text{ umol } g^{-1}(\text{Peso Seco Raiz}) h^{-1}$ Km = 19.68 mmol m⁻³

Dado que el rango de concentraciones muestreadas está por debajo del valor de Km no se alcanzaron valores próximos al de V_{max} . Por consiguiente el experimento fue repetido en un rango mas amplio de concentraciones externas. La curva obtenida (Figura 32 A) confirma la presencia de un solo mecanismo, siendo similares los valores de Vmax y Km obtenidos en el rango amplio a aquellos obtenidos en el rango restringido. En este los valores de Vmax Km experimento У fueron, respectivamente, 11.15 umol g^{-1} (Peso Seco Raiz) h^{-1} y 22.08 mmol m^{-3} .

FIGURA 32: Influjo de Zn, estimado por incorporación de ⁶⁵Zn, al Espacio Interno Radical. B: Rango restrin_ido; A: Rango amplio.

1

En vista de que la tasa de salida de Zn desde las raíces, estimada como diferencia entre el influjo y la tasa de absorción neta a tiempo cero, alcanza un valor de 0.36 umol g^{-1} (peso Seco Raiz) h^{-1} ; el cual representa un 43 % del influjo al espacio interno radical, cabe la posibilidad que durante el lavado de las raíces ocurra una importante salida del trazador desde este último. Para cuantificar la magnitud de este posible error, así su relación con la concentración externa, se como realizó una isoterma de influjo de una hora de duración seguida por un lavado fraccionado de las raíces. En la Figura 33 (pag. 195) se muestra la evolución del contenido remanente de trazador en la raíz durante el lavado de la misma trás la absorción de éste en ocho niveles externos del catión. Se observa que para cada una de las concentraciones estudiadas la curva puede ser función doble ajustada 8 una exponencial. La extrapolación a tiempo cero de la recta correspondiente a la fase de salida mas lenta brinda una estimación del contenido de ⁶⁵Zn en el espacio interno de la raíz al finalizar el período de carga del trazador. La pérdida de éste desde el EIR durante un lavado de duración standard -20 minutos- alcanza una magnitud no inferior para cualquiera de las concentraciones al 28 %

FIGURA 33: Evolución del contenido remanente de ⁵Zn en la raíz -durante el lavado- trás la carga del trazador en distintas concentraciones esxternas del catión.

empleadas; introduciendo, por lo tanto, un importante error en la estimación del influjo.

Es posible, finalmente, calcular el contenido de Zn presente en el Espacio Aparentemente Libre (EAL) como la diferencia entre el contenido total del trazador en la raíz y el contenido en el EIR al inicio del lavado. El Zn retenido en el EAl, calculado por este procedimiento, muestra ser función lineal de la concentración externa en el rango de concentraciones estudiadas (Figura 34, pag. 197).

DISCUSION

Existe una amplia bibliografía sobre la dependencia del influjo de Zn respecto de la concentración externa, habiéndose descrito cinéticas monofásicas, bifásicas y multifásicas (Bowen, 1986; Homma & Hirata, 1984; Veltrup, 1978; respectivamente). En este trabajo hemos hallado, a través del empleo de ambas metodologías, la presencia de un solo mecanismo de absorción (Figuras 30 y 32). Tal como se ha señalado previamente (Capítulo I) y a la luz del extenso trabajo de Chaudhry & Loneragan (1972) existen razones de peso para sospechar que, en trigo, este mecanismo no puede ser descrito, al menos FIGURA 34: Contenido de ⁶⁵Zn en el Espacio Aparentemente Libre, estimado a partir de los datos de la Figura 33.

facilmente, a través de una cinética bifásica o multifásica.

Es evidente, no obstante, que la comparación de los valores de Vmax y Km obtenidos a través de una y otra metodología arrojan una notoria discrepancia (Figuras 30 y 32); toda vez que los valores de estos parámetros estimados por la metodología de desaparición de Zn en el medio de cultivo son considerablemente inferiores a los obtenidos a través de la incorporación de ⁶⁶Zn. Es posible discutir estas diferencias sobre la base del tipo y magnitud del error cometido mediante una y otra aproximación.

Uno de los supuestos sobre los que descansa el método de Claassen & Barber (1974) es que durante la realización de experimentos de desaparición de un ión en el medio externo no ocurre, en forma simultánea. un cambio drástico en la concentración interna del ión Considerando la situación extrema estudiado. -muy distinta de la observada para el Zn a lo largo de este trabajo- en que el influjo sea función lineal de la concentración externa y que no existan aportes de la vacuola o del EAL al citoplasma, es relativamente sencillo estudiar en forma teórica el fenómeno de desaparición de un ión en la solución de absorción. la base de tal desarrollo (Santa María & Sobre

Cogliatti, NP) y partiendo de datos obtenidos para plantas de trigo cultivadas en iguales condiciones que las aquí empleadas (Santa María & Cogliatti, 1988) se desprende que la máxima variación esperada de 18 concentración citoplasmática, no excedería en 108 tiempos experimentales usuales, el 5 %. Si volvemos a la situación mas real en que el influjo no sigue un patrón lineal (Figura 32) y cuando existen aportes de **1a** vacuola u otros compartimentos, es claro que **1a** concentración de Zn en citoplasma no disminuye significativamente.

Debe considerarse aquí que una de las posibles fuentes de error en la metodología de desaparición es la perdida del ión desde el EAL. Dado que en este tipo de la entrada neta de Zn experimentos es estimada directamente, midiendo la concentración del metal en la solución externa, no es posible conocer las fuentes de donde proviene el Zn incorporado al EIR. El cuasi equilibrio finalmente alcanzado (Figura 30 A) se refiere no solo a aquel establecido entre la solución interna y el espacio interno, sino también a aquel establecido entre estos dos y el EAL; el cual -si aceptamos que el KAL y el EIR se encuentran dispuestos en serie- actua como una fuente adicional de Zn. La estimación del contenido de Zn en el EAL, practicada a través de la

técnica de lavado fraccionado, permite una aproximación a éste fenómeno. Existe una notable diferencia en el contenido de Zn en el KAL entre la concentración externa a la cual se inicia el experimento y la concentración a la que concluye (Figura 34); tal diferencia de contenido debe ser sumada a lo que absorbió en forma neta el EIR. Por consiguiente durante la realización de experimentos de desaparición se verificaría un flujo neto de Zn desde el KAL hacia el EIR, el cual contribuiría, a su vez, a la constancia mantener de la concentración citoplasmática.

La constancia de la concentración citoplasmática acarrea dos consecuencias importantes: primero que el eflujo puede ser considerado constante durante el período experimental y, segundo, que pueden descartarse potenciales efectos regulatorios sobre el influjo debidos a un control alostérico negativo (Siddiqui & Glass, 1982).

A nuestro entender el problema mas grave que se presenta durante la realización de experimentos de desaparición es el cambio en la composición en la solución de absorción, ya que simultaneamente a la desaparición del Zn se produce la de otras especies químicas a su propia tasa. Como resultado de este fenómeno podría ocurrir un cambio en la relación entre los distintos elementos dando lugar a nuevos efectos antagónicos o sinérgicos tanto a nivel del Espacio Aparentemente Libre como en el pasaje a través del plasmalema. En plantas superiores se han observado interacciones con el P (Robson, 1983), el cobre (Schmid et al, 1965; Bowen, 1969), los metales alcalinoterreos (Schmidt et al, 1965) y el pH (Bowen, 1969). En el trigo, en particular, se han descrito interacciones negativas con el Ca²⁺, el Mg²⁺, el pH (Chaudhry & Loneragan, 1971, 1972) y positivas con el P (Capitulo IV).

Es posible, por lo tanto, que el cambio en la composición relativa de la solución de cultivo modifique la contribución relativa del influjo y el eflujo a la absorción neta. La posible modificación del influjo y/ó el eflujo explicaría la aparición de un "plateau" aparente no observable cuando se estiman los parámetros cinéticos por incorporación de ⁶⁵Zn.

En lo que concierne al tipo de errores cometidos en la metodología tradicional, el seguimiento de la incorporación de ⁶⁵Zn en función del tiempo sugiere la existencia de un rápido intercambio isotópico entre la solución externa y el EIR (Figura 31). La existencia de tal intercambio introduce (Cram, 1969) una subestimación que puede ser minimizada a medida que disminuye el

período de carga del trazador. La Figura 33 muestra que no es esta la única fuente de error; ya que la elución del trazador desde el EIR, en un lavado de duración standard, dista de ser despreciable. A estos dos errores debe agregarse el retardo en la aparición del trazador en el plasmalema, ya que el Zn presenta -en relación con otros ionesun alto tiempo medio de intercambio isotópico (Santa María & Cogliatti, 1988; Capítulo II). Este fenómeno ha sido analizado en forma teórica por Walker & Pitman (1976) У **B**U efecto puede **Ber** considerable.

Pese ambas metodologias a que introducen importantes errores de estimación; existen diferencias en cuanto al tipo de error cometido. La metodología de Epstein (1976) incurre en errores de tipo conocido fáciles de cuantificar aunque no siempre por **e**1 observador (Jensén, 1987). En esta metodología, excepto en situaciones excepcionales, el efecto de la ruptura del estado cuasi estacionario sobre el proceso de pude generalmente, considerado medición ser, despreciable (Jaquez, 1986). La metodología introducida por Claassen & Barber (1974), por el contrario, se basa en el alejamiento gradual de la condición de cuasi estado estacionario, volviendo dificilmente comparables las mediciones efectuadas al inicio del experimento con

las realizadas en etapas tardías. Es probable no obstante que el uso de este método sea el que mejor se aproxima a las condiciones naturales en las que los cambios en el nivel de suministro no son tán drásticos como los usualmente empleados par poner de manifiesto los mecanismos de transporte.

* * *

APENDICE II

EFECTO DE LAS PERTURBACIONES SOBRE LA ESTIMACION DEL INFLUJO

KFECTO DE LAS PERTURBACIONES SOBRE LA ESTIMACION DEL INFLUJO

INTRODUCCION

La estimación de los flujos vectoriales requiere, de acuerdo a ciertos desarrollos teóricos (Mac Robbie. 1973; Zierler, 1981, Walker & Pitman, 1976), suponer el sistema bajo estudio en situación de estado estacionario o cuasi-estacionario (ver Apéndice III). Sin embargo en muchos escenarios experimentales interesa conocer la magnitud de los mismos en situaciones que perturban el sistema de modo tal que éste escapa de la condición postulada. Como obvio la introducción **es** de perturbaciones puede modificar la magnitud de los flujos vectoriales ya sea en forma directa -a través de un cambio en la tasa de acceso a los sitios de transporteo indirecta a través de la modulación de los sistemas de transporte u otras propiedades de la barrera entre el EIR y el medio que baña las raíces. La introducción de perturbaciones y sus consecuencias sobre el proceso de medición de los flujos ha sido examinada en términos teóricos por Jaquez (1986). El objetivo del presente

Apéndice ha sido examinar, también en forma teórica, el efecto de la perturbación ejercida por el cambio de suministro sobre la estimación del influjo en sistemas cuyo comportamiento cinético puede ser adscripto al de los de bombeo y perdida. No es inutil advertir que, para el caso del Zn, tal descripción tiene sentido solo desde un punto de vista cinético pero no en términos termodinémicos (Cap I, Cap. II, Discusión).

Desarrollo

Acorde al objetivo recién señalado se ha asumido en forma preliminar que el cambio de concentración externa es "percibido" en forma instantanea por los sitios de transporte. Esta aproximación si. bien dista de corresponder a la realidad, ya que omite la existencia del EAL como resistencia adicional al flujo, constituye una aproximación tentativa para evaluar la naturaleza y del tipo de error cometido. La misma, por otro magnitud lado, presenta la gran ventaja de que las ecuaciones diferenciales resultantes de tal desarrollo tienensolución analítica.

Al cambiar la concentración externa desde un valor co al valor on y admitiendo que la misma es detectada instantáneamente por el sistema de transporte, el influjo del ión j pasará también en forma instantánea desde el valor Io al valor In. Al tratarse de un sistema pasible de ser descrito como de bombeo y perdida, el sistema de transporte -a la vez- no será objeto de regulacion por la variación de la concentración interna (c1). El efecto de esta última se limita, pues, a modular el eflujo (E) a través de la siguiente expresión:

$$\mathbf{E} = \mathbf{H} * \mathbf{c}_{\mathbf{1}} \tag{13}$$

Donde H es una constante de proporcionalidad que puede ser asimilada a la permeabilidad. Luego la tasa de absorción neta (J_n) queda dada, para la nueva condición de suministro por:

$$J_n = I_n - H * c_1 \qquad (14)$$

A la vez (ver Apéndice III) para un sistema unicompartimentado vale que:
$$J_{n} = \frac{dc_{1}}{dt} + RGR * c_{1}$$
(15)

Combinando las dos últimas expresiones obtenemos:

$$\frac{dci}{dt} + (RGR + H) * c_i = I_n$$
(16)

Ecuación diferencial de primer orden cuya solución elemental es, admitiendo que la nueva concentración no afecta el valor de RGR y de H:

$$(RGR+H) t$$
 $(RGR+H) t$
 $c_1 = [I_n/(RGR+H)] * [1 - e^-] + c_0 * e^-$
(17)

Donde co es la concentración del ión j en el interior del sistema antes del cambio de suministro. Una asunción no expresada y requerida para efectuar la integración precedente es que no se verifican cambios en la relación área : volumen y -adicionalmente- que no existen efectos sobre el potencial de membrana.

Cuando en un sistema de este tipo se introduce un isótopo radioactivo con el fin de estimar el influjo a la nueva concentración, la actividad específica interna (s1) queda dada por:

$$ds_{1}/dt = (dQ^{*}/dt)/Q_{1} - (dQ_{1}/dt) \cdot (Q^{*}/Q_{1}^{2})$$
(18)

Donde Q* es el contenido del trazador en el espacio interno y Q₁ es el contenido del ión j en el mismo compartimento. A la vez la tasa de absorción neta del trazador (J^*) puede ser escrita como:

$$J^* = I_n \cdot s_0 - H \cdot c_1 \cdot s_1$$
 (19)

Donde so es la actividad específica externa, a la cual se supone constante toda vez que su constancia depende de la pericia del observador.

Combinando las ecuaciones (17), (18) y (19), obtenemos:

$$ds_{1}/dt = \frac{I_{n} (B_{e} - B_{1})}{-(RGR+H)t} - (RGR+H)t$$

$$[I_{n}/(RGR+H)] [1-e] + Q_{o} e$$
(20)

Ecuación diferencial cuya solución es:

$$-(RGR+H)t - \ln [(e + M)/(1+M)]$$

B1 = B0 [1 - e] (21)

Con M= [(RGR+H). Q_0/I_n] - 1

209

La ecuación 21, como las anteriores incluye la condición estacionaria como un caso particular en el que M es igual a cero. En la Figura 35 (pag. 211) puede observarse que la evolución de la actividad específica interna es función del influjo, determinando la magnitud del mismo una familia de curvas, sumamente distintas. Luego el tiempo medio de intercambio isotópico $(T_{1/2})$, es decir aquel requerido para que la actividad específica interna alcance un valor igual al de la mitad de la actividad específica externa es función del influjo y -por lo tanto- de la concentración externa.

$$T_{1/2} = ln (2+M)$$

(RGR+H) (22)

La dependencia del T_{1/2} respecto de la concentración externa es mostrada en la Figura 36 (pag. 212).

Cabria esperar, según lo antedicho, que la estimación del influjo sea función de su propia magnitud; cayendo así en una incertidumbre difícil de superar. Sin embargo es posible demostrar que el

Figura 36: Efecto del Influjo de j durante el período de carga sobre el T1/2 de la actividad específica interna

contenido del trazador en el compartimento interno puede ser, partiendo tambien del desarrollo anterior, expresado como:

$$Q^* = \underbrace{Be In}_{(RGR+H)} (1-e)$$
(23)
(RGR+H)

Esta última ecuación muestra que la estimación del influjo, cuando un sistema de bombeo y pérdida es operativo, no depende de la concentración externa; siendo por lo tanto legitimo el proceso de medición. Es decir las desviaciones o errores en la estimación del influjo son de igual magnitud porcentual para todas las concentraciones externas. De igual modo es posible demostrar que el tiempo medio de intercambio del trazador -no el de la actividad especifica interna- es el mismo para todas las concentraciones externas. Razonamientos similares al aquí empleado muestran que el lavado, cuando es efectuado en una sola condición (igual concentración externa de lavado trás distintos regimenes de carga), tampoco debe afectar la estimación del influjo.

Los desarrollos anteriores así como las conclusiones de ellos extraídas no deben conducir, sin embargo, a suponer que el proceso de medición efectuado en el Capítulo II y en el Apéndice I se encuentra totalmente validado. En particular es conveniente recordar que el sistema bajo estudio es mucho mas complejo que el del modelo de intercambio aqui postulado.

Esto es así por las siguientes razones:

1) El intercambio de Zn entre el medio externo y el EIR se encuentra mediado por el Espacio Aparentemente Libre, el cual puede retardar el acceso del catión al plasmalema (Pitman, 1971)

2) El desarrollo previo adscribe el intercambio de Zn entre el EIR y el medio externo al de los sistemas de bombeo y pérdida entre dos compartimentos (interno y externo). En la realidad mas de un compartimento del EIR podría intercambiar con el medio externo; o aún cuando ésto no ocurriese se ha ignorado deliberadamente la existencia de compartimentos mas internos dispuestos en serie con el compartimento II (Capítulo I) y que podrían afectar los flujos al nivel de este último. Por otro lado la evidencia recogida muestra que la naturaleza termodinámica del influjo y del eflujo es contraria a la de los sistemas de bombeo y pérdida. En particular pudiera ser que el valor de H fuera una variable dependiente del "status" interno de Zn 6 que el eflujo estuviera mediado por un sistema de transportadores susceptible de algún tipo de regulación que no hemos logrado entreveer.

* * *

APENDICE III

NUTRICION EN CONDICIONES DE ESTADO ESTACIONARIO

NUTRICION KN CONDICIONES DE ESTADO ESTACIONARIO

A lo largo de este trabajo se ha hecho mención, con frecuencia, al concepto de estado estacionario; ya para justificar el empleo de una técnica de medición o regla de extracción de datos (Materiales y Métodos, Capítulo I). ya para efectuar inferencias a través de la postulación de esta condición (Cap. I y Cap. II). En otros casos (Capítulo II: Efectos del crecimiento) se ha discutido si. en las condiciones de cultivo empleadas, era pertinente afirmar que el sistema se encontraba o no tal estado. Tan amplio uso de este concepto en recomienda la conveniencia de analizar el mismo. Desde formal punto de vista (Nobel, 1974) puede un que una dada especie química (j) se considerarse encuentra en estado estacionario en el sistema i si se satisface que:

$$\frac{d u^{1}}{d t} = 0$$
(24)

Donde $u^{1}j$ es el potencial electroquímico de la especie j en el interior de *i* y t es el tiempo. En la práctica para un amplio abánico de situaciones experimentales y niveles de estudio es difícil -y a veces irrelevante- estimar tal potencial; por lo cual se ha convenido en aceptar la condición:

$$\frac{d c^4}{d t} = 0 \tag{25}$$

como condición suficiente para postular el estado estacionario de la especie j en el interior del sistema; $c^{1}j$ es, en este caso la concentración de j en *i*.

El objetivo de este apéndice es estudiar sobre bases teóricas la dependencia de la condición de estado estacionario del crecimiento de las plantas y de la tasa específica de absorción (SAR); así como la relación entre estas dos últimas variables.

DESARROLLO

Sean cr y Qr la concentración y el contenido de j en planta entera y Wr el peso seco total de la misma. Por definición:

$$c_{T} = Q_{T} / W_{T}$$
 (26)

Luego:

$$dQ_T/dt = (dc_T/dt) \cdot W_T + (dW_T/dt) \cdot c_T$$
 (27)

Al dividir ambos miembros de esta última por Qr obtenemos:

$$dQ_T/dt \cdot 1/Q_T = dc_T/dt \cdot 1/c_T + dW_T/dt \cdot 1/W_T \quad (28)$$

El término situado a la izquierda de la igualdad ha sido denominado tasa relativa de acumulación (RAR), en tanto que dWr/dt.1/Wr es la tasa de crecimiento relativo de planta entera (RGR) y el término restante es la tasa relativa de cambio de concentración (RCR). Es de notar que el nutriente j se encontrará en condiciones de estado estacionario solo cuando RCR=0; siendo en tal CASO -por lo tanto-RAR=RGR. En nuestro trabajo (Capítulo II), como en otras condiciones de suministro óptimo (Manfreda & Cogliatti, 1990) ó supraóptimo, RCR fue distinto de cero en el lapso que medió entre dos cosechas sucesivas del material vegetal. En niveles de suministro subóptimos, en tanto, Agren (1985) ha mostrado en forma teórica y partiendo de una sólida base observacional que las plantas tienden necesariamente a alacanzar la condición de estado estacionario, respecto de su concentración. Este distinto comportamiento de la concentración interna según sea el nivel de suministro merece especial atención tanto durante la labor experimental, como en la interpretación de fenómenos

fisiológioos. Como es obvio el mantenimiento de este estado cobra sentido solo dentro de una escala temporal de observación definida y no puede ser extrapolado o postulado fuera de la misma en forma licita. En particular la variación de RCR en el lapso que media entre dos cosechas, sugiere que -en niveles de suministro óptimos, supraóptimos o tóxicos (Cap II)- el estado estacionario solo puede postularse en breves períodos de tiempo.

FLUJOS EN ESTADO ESTACIONARIO

La condición de estado estacionario tal como antes ha sido definida implica que el flujo neto de la especie j es nulo; es decir el influjo es igualado por el eflujo (Nobel, 1974). Sin embargo durante el crecimiento de las plantas se verifica un flujo neto hacia las mismas. Cuando es posible aceptar -siempre dentro de una ventana temporal definida- que el flujo neto y la concentración interna de j permanecen constantes se dice que el sistema se encuentra, respecto de j, en estado cuasi estacionario. En esta condición las estimaciones de los flujos vectoriales, así como las técnicas empleadas para resolver la compartimentación de j en los tejidos, pueden ser parcialmente validadas (Walker & Pitman, 1976). No obstante, y como es posible apreciar a partir del desarrollo ulterior, no toda forma de crecimiento es consistente con que el flujo neto de j sea constante a lo largo del tiempo.

Partiendo de la expresión (28) es fácil ver que la SAR (dQr/dt . $1/W_r$):

$$\frac{dQT}{dt} \cdot \frac{1}{W_{r}} = \frac{dCT}{W_{r}} \cdot \frac{WT}{W_{r}} + \frac{dWT}{W_{r}} \cdot \frac{1}{W_{r}} \cdot \frac{WT}{W_{r}} \cdot CT$$

$$\delta = \frac{WT}{dt} \cdot \frac{dQT}{dt} + \frac{dWT}{W_{r}} \cdot \frac{1}{W_{r}} \cdot CT$$

$$= \frac{Wr}{dcr} + \frac{dWr}{dt} \cdot \mathbf{1} \cdot \mathbf{cr})$$

$$W_r \quad dt \quad dt \quad W_T \qquad (29)$$

Luego suponiendo que la concentración de la especie j se encuentra en estado estacionario (dcr/dt = 0), se desprende que:

$$SAR_{j} = \frac{W_{T}}{W_{T}} RGR . CT$$
(30)

Esta última expresión muestra que el flujo neto de j por unidad de peso de raíz se encontrará en condiciones de estado estacionario (d(SAR)/dt = 0) si W_T/W_T y RGR permanecen constantes a lo largo del tiempo o si el producto entre una y otra variable se mantiene constante en la correspondiente escala temporal. Estas condiciones rara vez son satisfechas a lo largo de la ontogenia (Kvet et al, 1971) o aún en estadios restringidos de la misma, por lo que también rara vez podrá considerarse la SAR_J en condiciones de estado estacionario. Mas aún de acuerdo a la expresión 30 el mantenimiento de la concentración interna en un valor constante puede "requerir" la variación en el tiempo de SAR_J.

ciertas situaciones En experimentales las variaciones de la SAR_J a lo largo del tiempo pueden ser despreciables respecto de la magnitud de los flujos medidos. En líneas generales puede afirmarse que en períodos de tiempo reducidos, de el orden de minutos y aún de horas, las estimaciones de los flujos vectoriales de Zn no serian significativamente afectadas (Ej. Fig. 9, pag. 99). Cuando los procesos de medición requieren tiempos mayores -como en algunos de los mostrados en el primer capítulo- es necesario verificar que tanto la SAR Zn como la concentración del catión en vástago y raíz permanecieran constantes. Uno de los caminos comunmente seguidos para alcanzar este propósito es anteceder las mediciones por un prolongado período en que todas las variables ambientales (incluyendo la densidad del flujo de fotones) son mantenidas en un nivel fijo (Macklon & Sim, 1987). Este procedimiento evita los efectos de los ritmos circadianos tanto sobre los flujos (Claassen & Barber, 1974) como sobre la partición de asimilados. Tal proceder, como es obvio, paga el precio del alejamiento de las condiciones "normales" de cultivo de las plantas.

La expresión (29), por otro lado, puede ser descompuesta de diversas formas. La mas inmediata de las mismas es la siguiente:

$$SAR = \frac{W_T}{W_T} \left(\frac{dc_T}{dt} + NAR \cdot LAR \cdot c_T \right)$$
(31)
$$W_T dt$$

Expresión que vincula la eficiencia en la absorción de nutrientes con la eficiencia fotosintética y el cociente de area foliar. Otra forma de descomposición de (29) es considerar la SAR como la sumatoria del flujo neto a la raíz y al vástago. La resultante de tal procedimiento es la expresión (32); la cual muestra las posibles fuentes de variación, en parte aérea y raíz, de la SAR_j.

Es claro a partir de esta relación que admitiendo la constancia de las concentraciones de j en vástago y

raíz, las principales fuentes de variación de SAR, son las variaciones en las tasas de crecimiento relativo de parte aérea y raíz, así como de la resultante de éstas: la variación de la relación vástago: raíz. No extraña. entonces, la fuerte asociación hallada entre la SARZn y la relación vástago: raíz en el Capítulo II. Si bien las ecuaciónes (31) y (32) muestran una vinculación formal entre la SAR, y los distintos parámetros de crecimiento (NAR, LAR, RGRr, RGRr) tal asociación lógica -derivada de las mismas definiciones- no implica necesariamente una valoración de la importancia relativa de cada uno de aquellos, ni conduce tampoco a considerar a la misma como una explicación en términos mecanísticos. De hecho profunda interdependencia existe una entre los parámetros de crecimiento los У parámetros Poner de manifiesto nutricionales. algunas características de la misma es el objeto del siguiente apartado.

ESTADO ESTACIONARIO Y PRODUCTIVIDAD

Partiendo de la ecuacion (29) es posible obtener una expresión que vincule el RGR con la tasa específica de absorción:

$$RGR = SAR_{j} \cdot f_{r} \cdot c_{T} + RCR \cdot f_{r}$$
(33)

Donde $f_r = W_r/W_T$; es decir la fracción de asimilados en la raiz respecto del total en planta entera. Esta fracción -como es obvio- depende, entre otros factores, del estado nutricional de la planta: f_r es una función de cr. Sea g(cr) tal función. Por otro lado SAR; depende -fundamentalmente y considerando despreciables los efectos regulatorios endógenos- del nivel de suministro. Luego en condiciones de estado cuasi estacionario:

$$RGR = \left(\frac{V_{max}}{K_m}, \frac{C_m}{C_m} - E \right), g(C_T), C_T$$

$$K_m + C_{\odot}$$
(34)

Donde Vmax, Km y E son los parámetros cinéticos aparentes (es decir los que resultan del conjunto de serie hasta alcanzar el resistencias en espacio interno). Si, además, se conoce la forma de la función g(cr) es posible en el rango subóptimo (donde puede aceptarse que dcr/dt = 0) estimar la tasa de crecimiento relativo de planta entera. Debe notarse, sin embargo, que -como ocurre a lo largo de la ontogenia y en condiciones naturales donde el nivel de suministro no es constante a lo largo del tiempo- todo intento de predicción fina del RGR (o de la partición de asimilados) requiere la aceptación de la condición de estado no estacionario como punto de partida.

Recientemente Hilbert (1990) en un interesante trabajo ha intentado, sobre la base de la hipótesis de maximización del RGR, relacionar la hipótesis de equilibrio funcional con la absorción y utilización de nitrógeno. Su análisis descansa en tres hipótesis de partida: 1) Que las plantas tienden a optimizar el RGR; 2) las plantas permanecen Que en una condición ininterrumpida de estado cuasi estacionario y 3) que las concentraciones efectivas de nitrógeno en parte aérea y raiz son iguales. Respecto de la primera de estas hipótesis cabe señalar que en un amplio trabajo experimental y teórico Poorter (1991) ha mostrado que la optimización del RGR suele ser la resultante de la optimización de la distribución de asimilados: tal optimización es -desde luego- dependiente del nivel de suministro. Respecto de la segunda y en concordancia con lo antes señalado puede considerarse en ciertos casos -y para el nitrógeno en condiciones de suministro subóptimo en particular- que las plantas tienden a alcanzar una situación de estado cuasi estacionario. Tal situación no puede hacerse extensiva si consideramos los cambios debidos al desarrollo. En tercer término no existen, a

priori, razones para suponer la igualdad de las concentraciones de un nutriente en vástago y raíz. Este tipo de objeciones pueden ser extendidas a gran parte del extenso trabajo experimental y teórico de Ingestead & Agren (Ej. 1988).

Pese a estas objeciones el trabajo desarrollado por Hilbert (1991) muestra que aún en el mas simple de los casos que puedan postularse la concentración óptima de nitrógeno no es un parámetro independiente del nivel de parcialmente dependiente suministro, sino de **é**1. Lamentablemente este tipo de aproximación 8e ha realizado solo para algunos macronutrientes У en condiciones de suministro deficiente. Una linea de trabajo de gran interés sería intentar la misma en condiciones de toxicidad, cuando el estrés es provocado por el alto suministro de metales pesados (Foy et al, 1978) ó la elevada disponibilidad salina.

* * *

BIBLIOGRAFIA CITADA

BIBLIOGRAFIA CITADA

- Adams F. 1980. Interactions of phosphorus with other elements in soils and in plants. En The role of phosphorus in agriculture. Fublicado por Amer. Soc. of Agr., Crop Sci. Soc.of Am. & Soil Sci. Soc. of Am., Madison, Wisconsin, USA. 655-676.

- Agren G.I. 1985. Theory for growth of plants derived from the nitrogen productivity concept. Fhysiol. Flant. 64: 17-28.

- Ambler J.E., J.C. Brown, and H.G. Gauch. 1970. Effect of zinc on translocation of iron in soybean plants. Flant Physiol. 46: 320-323.

 Arnon D.I. 1949. Copper enzymes in chloroplast polyphenoloxydases in *Beta vulgaris*. Flant Physiol. 24: 1-15.

-- Baker A.J.M. 1987. Metal Tolerance. New Phytol. 106: 93-111.

- Barrow N.J & N.A. Campbell. 1972. Methods of measuring the residual value of fertilizers. Aust. J. Exp. Agric. Anim. Husb. 12: 502-510.

- **Barrow N.J. & R.E. Mendoza.** 1990. Equations for describing sigmoid yield responses and their application to some phosphates responses by lupins and by subterranean clover. Fertilizer research 22: 181-188.

- **Barrow N.J.** 1987. Reactions with variable-charge soils. Martinus Nijhoff Fublishers. Dordrecht Boston-Lancaster.

- Bengtsson B. & P. Jensén. 1982. Uptake of calcium in wheat and cucumber roots. Physiol. Plant. 55: 273-278.

- **Benton Jones J.** 1972. Plant tissue analysis for micronutrients. En Micronutrients in Agriculture. J.J. Mortvedt (Ed). Madison, Wisconsin

- Borstlap A.C. 1983. The use of model-fitting in the interpretation of "dual" isotherms. Plant Cell & Environm. 6: 407-416.

- **Bowen J.E.** 1969. Absorption of copper, zinc and manganese by sugarcane leaf tissue. Flant Physiol. 44: 255-261.

- Bowen J.E. 1986. Kinetics of zinc uptake by two rice cultivars. Flant & Soil 94: 99-107.

- Bowling D.J.F. 1976. Uptake of ions by plant roots. Halsted Fress. Londres.

- Bowling D.J.F. & J. Dunlop. 1978. Uptake of phosphate by white clover. J. Exp. Bot. 29(12): 1139-1146.

- Bradley R., A.J. Burt & D.J. Read. 1982 . The biology of mycorrhiza in the Ericaceae. VII. The role of infection in heavy metal resistance. New Phytol. 91: 197-209.

- Brookes A., J.C. Collins & D.A. Thurman. 1981. The mechanism of zinc tolerance in grasses. J. Plant Nutr. 3:695-705.

- Bucheder F. & E. Broda. 1974. Energy-dependent zinc transport by *Escherichia coli*. Eur.J. Riochem. 45: 555-559.

- Budd K. 1988. A high-affinity system for the transport of zinc in *Neurospora vasinfecta*. Exp. Mycol. 12: 195-202.

- Bunge M. 1975. Epistemología. Ed. Ariel, México.

- Burleson C.A. & N.R. Page. 1967. Phosphorus and zinc interactions in flax. Soil Sci. Soc. Amer. Proc. 31: 510-513. - Cakmak I. & H. Marschner. 1986. Mechanism of phosphorus induced zinc deficiency in cotton. I. Zinc deficiency enhanced uptake rate of phosphorus. Physiol. Plant. 68: 483-490.

- Cakmak I. & H. Marschner. 1987. Mechanism of phosphorus induced zinc deficiency in cotton. III. Changes in physiological availability of zinc in plants. Fhysiol. Flant. 70:13-20.

- Cakmak I. & H. Marschner. 1988 a. Increase in membrane permeability and exudation in roots of zinc deficient plants. J. Flant Physiol. 132: 356-361.

- Cakmak I. & H. Marschner. 1988 b. Zinc-dependent changes in ESR signals, NADFH oxidase and plasma membrane permeability in cotton roots. Physiol. Plant. 73: 182-186.

- Claassen N. & S.A. Barber. 1974. A method for characterizing the relation between nutrient concentration and flux into roots of intact plants. Plant Physiol. 54: 564-568.

- Clarkson D.T. & C.B. Scatergood. 1982. Growth and phosphate transport in barley and tomato plants during the development and recovery from phosphate stress. J. Exp. Bot. 33: 865-875.

- Clarkson D.T. & J. Sanderson. 1978. Sites of absorption and translocation of iron in barley roots. Plant Physiol. 61: 731-736.

- Clarkson D.T. & U. Luttge. 1989. Mineral Nutrition: Divalent cations, transport and compartmentation. Progress in Botany 51: 93-112.

- **Clarkson D.T.** 1985. Factors affecting mineral nutrient acquisition by plants. Ann. Rev. Plant Physiol. 36: 77-115. **Clarkson D.T., L.R. Saker & J.V. Purves.** 1989. Depression of nitrate and ammonium transport in barley plants with diminished sulphate status. Evidence of Coregulation of nitrogen and sulphate intake. J. Exp. Bot. 40 (218): 953-963.

- **Cocucci S.M. & S. Morgutti.** 1987. Stimulation of proton extrusion by K⁺ and divalent cations (Ni⁺⁺, Ca⁺⁺, Zn⁺⁺) in maize roots segments. Physiol. Plant. 68: 497-501.

- Cogliatti D.H. & D.T. Clarkson. 1983. Physiological changes in, and phosphate uptake by potato plants during development of, and recovery from phosphate deficiency. Physiol. Plant. 58: 287-294. 1983.

- Cogliatti D.H. & G.E. Santa Maria. 1990. Influx and efflux of phosphorus in roots of wheat plants in nongrowth-limiting concentrations of phosphorus. J. Exp. Bot. 41: 601-607.

- Cogliatti D.H., N. Alcocer & G.E. Santa Maria. 1991. Effect of P concentration on ^{AB}Zn uptake in *Gaudinia fragilis*. J. Plant Nutr. 14 (5): 443-452.

- Cooper H.D. 1986. Uptake, assimilation and circulation of nitrogen compounds in cereals. Ph. D. Thes Universidad de Oxford.

- **Coughenour M.B.** 1985. Graminoid responses to grazing by large herbivores: Adaptations, exaptations and interacting processes. Ann. Mo. Bot. Gar. 72: 852-863.

- **Cram W.J. & G.G. Laties.** 1974. The kinetics of bicarbonate and malate exchange in carrot and barley root cells. J. Exp. Bot. 25: 11-27.

- **Cram W.J.** 1969. Short term influx as a measure of influx across plasmalemma. Flant Fhysiol. 44: 1013-1015.

- **Cram W.J.** 1973. Internal factors regulating nitrate and chloride influx in plant cells. J. Exp. Bot. 24: 328-341.

- **Cram W.J.** 1976. Negative feedback regulation of transport in cells. The maintenance of turgor, volume and nutrient supply. En Encyclopedia of Plant Physiology V2, pt A. U. Luttge & M.G. Pitman (Eds.) Springer--Verlag, Berlin.

- Cramer G.R. & D.C. Bowman. 1991. Short-term leaf elongation kinetics of maize in response to salinity are independent of the root. Flant Physiol. 95: 965-967.

- Cramer G.R., J.Lynch, A. Lauchli & E. Epstein. 1987. Influx of Na⁺, K⁺ and Ca²⁺ into roots of salt-stressed cotton seedlings. Effects of suplemental Ca²⁺. Plant Physiol. 83:510-516.

Chaudhry F.M. & J.F. Loneragan. 1972 a. Zinc absorption by wheat seedlings. II. Inhibition by hidrogen ions and by micronutrient cations. Soil Sci. Soc. Amer. Proc., 35: 327.

Chaudhry F.M. & J.F. Loneragan. 1972 B. Zinc absorption by wheat seedlings and the nature of its inhibition by alkaline earth cations. J. Exp. Bot. 23(75): 552-560.

- Cheeseman J.M. 1986. Compartmental efflux analysis: An evaluation of the technique and its limitations. Flant Physiol. 80 (4): 1006-1011.

Chino M. & A. Baba. 1981. The effects of some environmental factors on the partitioning of zinc and cadmiun between roots and tops of rice plants. J. Plant Nutr. 3: 203-214.

- Davies M.S., D. Francis & J.D. Thomas. 1991. Rapidity of cellular changes induced by zinc in a zinc tolerant and non tolerant cultivar of *Festuca rubra* L. New Fhytol. 117: 103-108.

- Deanne Draumond C. & A.D.M. Glass. 1983. Short-term studies of nitrate uptake into barley plants using ion-specific electrodes and 36ClO₃-. I. Control of net uptake by NO₃- efflux. Flant Fhysiol. 73: 100-104.

- Dell B. & S.A. Wilson. 1985. Effect of zinc supply on growth of three species of Eucalyptus seedlings and wheat. Flant and Soil 88: 377-384.

- Denny H.J. & D. A. Wilkins. 1987 a. Zinc tolerance in Betula spp. I. Effect of external concentration of zinc on growth and uptake. New Phytol. 106: 517-524.

- Denny H.J. & D.A. Wilkins. 1987 b. Zinc tolerance in Betula spp. II. Microanalytical studies of zinc uptake into root tissues. New Phytol 106:525-534.

- Drew M.C., J. Webb & L.R. Saker. 1990. Regulation of K+ uptake and transport to the xylem in barley roots; K+ distribution determined by electron probe X-ray microanalysis of frozen-hydrated cells. J. Exp. Bot. 41: 815-825.

- Elliot G.C., J. Lynch & A. Lauchli. 1984. Influx and efflux of F in roots of intact maize plants. Doublelabeling with ³²F and ³¹F. Flant Physiol. 76: 336-341.

- Epstein E. 1976. Kinetics of ion transport and the carrier concept. En Encyclopedia of Plant Physiology. New Series V 2. Ft. U. Luttge & M.G. Pitman (Eds.). Springer-Verlag.

Failla M.L., C.D. Benedict & E.D. Weinberg. 1976. Accumulation and storage of Zn²⁺ by *Candida utilis.* J. Gen. Microbiol. 94: 23-26. - Foy C.D., R.L. Chaney & M.C. White. 1978. The physiology of metal toxicity in plants. Ann. Rev. Plant Physiol. 29: 511-566.

- Giordano P.M., J.C. Nogle & J.J. Morvedt. 1974. Zinc uptake by rice as affected by metabolic inhibitors and competing cations. Flant & Soil 41: 637-646.

- **Glass A.** 1976. Regulation of potassium absorption in barley roots. An allosteric model. Plant Physiol. 58: 33-37.

- Grignon C. & H. Sentenac. 1991. pH and ionic conditions in the apoplast. Ann. Rev Plant Physiol. 42: 103-128.

- Harada M., A. Okubo, K. Shibata, S. Yamazaki & S. Toda. 1986. Distribution of Zinc in Euglena gracilis wild and mutant cells cultured in zinc enriched medium as proved by X-ray mycroanalysis. Agric. Biol. Chem 50 (4): 1081-1084.

- Haynes R.J. 1980. Ion exchange properties of roots and ionic interactions within the root apoplasm: their role in ion accumulation by plants. The Botanical Review 46: 75-99.

-- Hewitt E.J. 1966. Sand and water culture methods used in the study of plant nutrition. Commonwealth Agricultural Bureaux. Inglaterra.

- Hilbert D.W. 1990. Optimization of plant root:shoot ratios and internal nitrogen concentration. Annals of Botany 66: 91-99.

Homma Y. & H. Hirata. 1984. Kinetics of cadmiun and zinc absorption by rice seedling roots. Soil Sci. Plant Nutr. 30 (4): 527-532.

- Hommels C.H., T.A.W. Saat & P.J.C. Kuiper. 1990. Characterization of the high affinity $K^+(Rb^+)$ - uptake

system in roots of intact *Taraxacum* microespecies: comparison of 12 microespecies in relation to their mineral ecology. New Fhytol. 114: 695-701.

- Hu H. & D. Sparks. 1991. Zinc deficiency inhibits chlorophyll synthesis and gas exchange in "Stuart" pecan. HortScience 26 (3): 267-268.

- Hunt R. 1982. Plant growth curves - the functional approach to plant growth analysis. Arnold.

- Ingelsten B. & B. Hymlo. 1961. Apparent free space and surface film determined by a centrifugation method. Fhysiol. Plant. 14: 157-170.

- Ingestead T. & G.I. Agreen. 1988. Nutrient uptake and allocation at steady-state nutrition. Physiol. Plant. 72: 450-459.

- Jackson M.B., M.C. Drew & S. Giffard. 1981. Effects of applyng ethylene to the root system of Zea mays on growth and nutrient concentration in relation to flooding tolerance. Physiol. Plant. 52: 23-28.

Jackson M. L. 1964. Análisis químico de suelos. Ediciones Omega. Barcelona.

- Jacquez J.A. 1986. Application of tracers to the study of membrane transport processes. En Physiology of Membrane Disorders. T.E. Andreoli, J.F. Hoffman, D.D. Fanestil & S.G. Schultz (Eds). Flenum Medical Book Company. New York-London.

- Jensén P.,L.Erdei & I.M. Moller. 1987.K⁺ uptake in plant roots: Experimental approach and influx models. Physiol. Plant. 70: 743-748.

- Jungk A., C.J. Asher, D.G. Edwards & D. Meyer. 1990. Influence of phosphate status on phosphate uptake kinetics of maize (*Zea mays*) and soybean (*Glicine max*). En Flant Nutrition physiology and applications. M.L. van Beusichen (Ed).

- Karataglis S. 1985. Effects of Na₂EDTA, nitrogen and zinc on Anthoxanthum odoratum L. Angew Botanik 59: 425-432.

- Kennedy C.D. & F.A.N. Gonsalves. 1987. The action of divalent zinc, cadmiun, mercury, copper and lead on the trans-root potential and H⁺ efflux of excised roots. J Exp. Bot. 38: 800-817.

- Kitagishi K. & H. Obata. 1986. Effects of zinc deficiency on the nitrogen metabolism of meristematic tissues of rice plants with reference to protein synthesis. Soil Sci. Flant Nutr. 32(3):397-405.

- Kitagishi K., H. Obata & T. Kondo. 1987. Effects of zinc deficiency on 80 S ribosome content of meristematic tissues of rice plant. Soil Sci. Plant Nutr. 33(3): 423-429.

Klemedtsson A.K. & S. Petterson. 1990. Compartmental analysis of Rb⁺ efflux from roots of intact high-salt barley plants. Physiol. Flant. 80: 126-132.

- Kloareg B., M. Demarty & S. Mabeau. 1987. Ion-exchange properties of isolated cell walls of brown algae: The intersticial solution. J. Exp. Bot. 38: 1652-1662.

- Kochian L.V. & W.J. Lucas. 1982 a.Potassium transport in corn roots. I. Resolution of kinetics into a saturable and linear component. Plant Physiol. 70: 1723-1731.

-- Kochian L.V. & W.J. Lucas. 1982 b. A re-evaluation of the carrier-kinetic approach to ion transport in roots of higher plants. What s New in Flant Physiol. 13(12): 45-48. - Kvet J., J,P. Ondok, J. Necas & P.G. Jarvis. 1971. Methods of growth analysis. En Plant Photosynthetic Production. Sesták Z., J. Catsky & P.G. Jarvis (Eds). Junk N.V. Publishers. The Hague.

- Lee R. B. 1982. Selectivity and kinetics of ion uptake⁷ by barley plants following nutrient deficiency. Ann. Bot. 50: 429-449.

- Lee R.B., R.G. Ratcliffe & T.E. Southon. 1990. ³¹P NMR measurements of the cytoplasmic and vacuolar Pi content of mature maize roots: relationships with phosphorus status and phosphate fluxes. J. Exp. Bot. 41 (230): 1063-1078.

Lindsay W.L. 1972. Inorganic phase equilibria of micronutrients in soils. En Micronutrients in Agriculture. J.J. Mortvedt (Ed.). Madison, Wisconsin.

Lineham D.J. 1984. Micronutrient cation sorption by roots and uptake by plants. J. Exp. Bot. 35: 1571-1574.

Loneragan J.F., D.L. Grunes, R.M. Welch, E.A. Aduayi, A. Tengah, V.A. Lazar & E.E. Cary. 1982. Phosphorus accumulation and toxicity in leaves in relation to zinc supply. Soil Sci. Soc. Amer. J. 46: 345-352.

- Loneragan J.F., G.J. Kirk & M.J. Webb. 1989. Translocation and function of zinc in roots. J. Plant Nutr. 10 (9-16): 1247-1254.

- Lucas R.E. & B.D. Knezek. 1972. Climatic and soil conditions promoting micronutrient deficiencies in plants. En Micronutrients in Agriculture. J.J. Morvedt (Ed.). Madison, Wisconsin.

Lynch J. & A. Lauchli. 1988. Salinity affects intracellular calcium in corn roots protoplasts. Plant Physiol. 87: 351-356. - Mac Robbie E.A.C. 1971. Fluxes and compartmentation in plant cells. Ann.Rev. Plant Physiol. V 21: 75-96.

- Macklon A.E.S. & A. Sim. 1987. Cellular cobalt fluxes in roots and transport to the shoots of wheat seedlings. J. Exp. Bot. 38: 1663-1677.

Macklon A.E.S. 1975. Cortical cell fluxes and transport to the stele in excised root segments of Allium cepa L. II. Calcium. Planta 122: 131-141.

-- Macklon A.E.S. & A. Sim. 1990. Cortical cell fluxes of cobalt in roots and transport to the shoots of ryegrass seedlings. Physiol. Flant. 80: 409-416.

- Manfreda V.T. & D.H. Cogliatti. 1990. Diferencias varietales en la absorción y utlización de P en plántulas de trigo. Actas del II Congreso Nacional de trigo II: 37-47.

- Marschner H & I. Cakmak. 1986.Mechanism of phosphorus induced zinc deficiency in cotton. II. Evidence for impaired shoot control of phosphorus uptake and translocation under zinc deficiency. Physiol. Plant. 68: 491-496.

- Marschner H. 1986. Mineral Nutrition of higher plants. Academic Fress.

- Marschner H., H. Oberle, I. Cakmak & V. Romheld. 1990. Growth enhacement by silicon in cucumber (*Cucumis* sativus) plants depends on imbalance in phosphorus and zinc supply. Flant nutrition- physiology and applications. M.L. van Beusichem (Ed.). Kluwer Academic Fublishers.

- Massle J. & J.B. Passioura. 1987. The effect of soil strength on the growth of young wheat plants. Aust. J. Plant Physiol. 14: 643-656.

- Mengel K. & E.A. Kirkby. 1978. Principles of Plant Nutrition. International Potash Institute. Berne, Switzerland. 593 pags.

- Milthorpe F.L. & J. Moorby. 1974. An introduction to crop physiology. Cambridge University Press.

-- Miyake Y. & E. Takahashi. 1985. Effect of silicon on the growth of soybean plants in a solution culture. Soil Sci. Plant Nutr. 31: 625-636.

1985. Flant Moraghan J.T. tissue testing for micronutrient deficiencies and toxicities. Fertilizer Vol 7 (201 - 219). F.L.G. Vlek (Ed)Research. Micronutrients in tropical foos.

- Morgan J.M. & A.G. Condon. 1986. Water use, grain yield and osmoregulation in wheat. Aust. J. Plant Physiol. 13:523-532.

- Morgan M.A. & W.A. Jackson. 1989. Reciprocal ammonium transport into and out of plant roots: modifications by plant nitrogen status and elevated root ammonium concentration. J. Exp. Bot. 40: 207-214.

-- Mullins G.L. & L.E. Sommers. 1986. Cadmiun and zinc influx characteristics by intact corn (*Zea mays L.*) seedlings. Flant & Soil 96: 153-164.

Murphy J. & J.P. Ryley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27:31-36.

- Narender Reddy G. 1990. Heavy metal-binding proteins/peptides: Occurrence, structure, synthesis and functions. A review. Environm. & Exp. Bot. 30: 251-264.

- Nelder J.A. & R. Mead. 1965. A simplex method for function minimisation. Comput. J. 7:308-313.

 Nissen P. 1987. Multiple or multiphasic uptake mechanisms in plants ?. Flant Cell & Environm.10: 475-485.

- Nobel P.S. 1974. Introduction to biophysical plant physiology. W.H. Freeman & Co. San Francisco.

- Obata H. & M. Umebayashi. 1986. Characterization of cadmiun-binding complexes from the roots of cadmiun treated rice plant. Soil Sci. Plant Nutr. 32: 461-467.

- Obata H. & M. Umebayashi. 1988. Effect of zinc deficiency on protein synthesis in cultured tobacco plant cells. Soil Sci. Flant Nutr. 34: 351-357.

- Olsen S.R. 1972. Micronutrients interactions. En Micronutrients in Agriculture. J.J. Morvedt (Ed). Madison, Wisconsin.

- O Neil R.V., D.L. De Angelis, J.B. Waide & T.F.H. Allen. 1986. A hierarchical concept of ecosystems. Friceton University Fress. Frinceton, New Jersey.

- Ortega M.D. & A. Rodriguez Navarro. 1986. Sodium ion transport in *Neurospora crassa*. Physiol. Plant. 66: 705-711.

- Pacovsky R.S. 1986. Micronutrient uptake and distribution in mycorrhizal of phosphorus-fertlized soybeans. Plant & Soil 95: 379-388.

- Paivoke A. 1983. The short-term effects of zinc on the growth, anatomy and acid phosphatase activity of pea seedlings. Ann. Bot. Fennici 20: 197-203.

- Paulsen G.M. & O.A. Rotini. 1968. Phosphorus-zinc interaction in two soybean varietes differing in sensitivity to phosphorus nutrition. Soil Sci. Soc. Amer. Froc. 32: 73-76. - **Peterson P.J.** 1969. The distribution of Zinc-65 in *Agrostis tenuis* Sibth. and *A. stolonifera* L. tissues. J. Exp. Bot. 20: 863-875.

- Pitman M.G., U. Luttge, D. Kramer & Erika Ball. 1974. Free Space characteristics of barley leaf slices. Aust. J. Flant Physiol. 1: 65-75.

-- Popper K. 1985. Realismo y el objetivo de la Ciencia. (Fost Scriptum a la Lógica de la Investigación científica Vol. I). Ed Tecnos, Madrid. (Título del original en inglés: Realism and the aim of science. From the Postcript to the logic of Scientific Discovery, Edited by W.W. Bartley III, 1982).

- **Poorter H.** 1991. Interespecific variation in the relative growth rate of plants. The underlying mechanisms. Ph. D. Thesis. Universidad de Utrecht.

Price C.A., H.E. Clark & E.A. Funkhouser. 1972. Function of micronutrients in plants. En Micronutrients in Agriculture. J.J. Mortvedt (Ed). Madison, Wisconsin.

- **Ragab S.M.** 1980. Phosphorus effects on zinc translocation in maize. Commun. in soil Sci. and Plant Analysis 11 (11): 1105-1127.

- Ramani S. & S. Kannan. 1985 b. Studies on translocation of zinc in bean plants: Evidence for retranslocation during new growth. J. Plant Physiol. 121: 313-318.

- Ramani S. & S. Kannan. 1985 a. An examination of zinc uptake patterns by cultivars of sorghum and maize: Differences amongst hybrids and their parents. J. Plant Nutr. 8: 1199-1210.

- Rathore V.S., S.H. Wittwer, W.H. Jyung, Y.P.S. Bajaj & M.W. Adams. 1970. Mechanism of zinc uptake in bean

(*Phaseolus vulgaris*) tissues. Physiol Plant. 23: 908-919.

- Ritchie J.T. & D.S. Ne Smith. 1991. Temperature and crop development. En Modeling plant and soil systems. John Hanks & J.T. Ritchie (Eds.). Am. Soc. Agr. Madison, Wisconsin, USA.

- Robson A.D. & M.G. Pitman. 1983. Interactions between nutrients in higher plants. En Encyclopedia of Flant Fhysiology, Vol 15, Pt A. Lauchli A. & R.L. Bielesk (Eds). Springer-Verlag, Berlin.

- Rodger's C.O. & A.J. Barneix. 1988. Cultivar differences in the rate of nitrate uptake by intact wheat plants as related to growth rate. Physiol. Plant. 72: 121-126.

- Sabater B. 1982. A mechanism for multiphasic uptake of solutes in plants. Physiol. Plant. 55:121-128.

- Santa María G.E. & D.H. Cogliatti. 1988. Bidirectional zinc fluxes and compartmentation in wheat seedling roots. J. Plant Physiol. 132: 312-315.

-- Schmid W.E., H.P. Haag & E. Epstein. 1965. Absorption of zinc by excised barley roots. Physiol. Plant. 18: 860-868.

-- Scott-Russell R. & D.T. Clarkson. 1976. Ion transport in root systems. Perspectives in Experimental Botany 2: 401-411.

-- Sentenac H. & Grignon C. 1981. A model for predicting ionic equilibrium concentrations in cell walls. Plant Physiol. 68: 415-419.

Singh J.P., R.E. Karamanos & J.W.B. Stewart. 1986. Phosphorus induced zinc deficiency in wheat on residual phosphorus plots. Agron. Journal 78: 668-675.
- Smirnoff N. & G.R. Stewart. 1987. Glutamine synthetase and ammonium assimilation in roots of zinc-tolerant and non-tolerant clones of *Deschampsia* cespitosa (L.) Beauv. and *Anthoxanthum odoratum* L. New Fhytol. 107: 659-670.

- Starks T.L. & P.E. Johnson. 1985. Techniques for intrinsically labelling wheat with ^{co}Zn. J. Agric. Food. Chem. 33: 691-698.

- Steffens J.C. 1990. The heavy metal binding peptides of Plants. Ann. Rev. Plant Physiol. 41: 553-575.

- Suge H., H. Takahashi, S. Arita & H. Takaki. 1986. Gibberellin relationships in zinc-deficient plants. Flant Cell Physiol 27 (6): 1005-1012.

Takaki H. & S. Arita. 1986. Tryptamine in zincdeficient barley. Soil Sci. Plant Nutr. 32 (3): 433-442.
Taylor G.J. 1987. Exclusion of metals from the symplasm: A possible mechanism of metal tolerance in higher plants. J. Plant Nutr. 10 (9-16): 1213-1222.

Teng Y. & V.R. Timmer. 1990 a. Phosphorus-induced micronutrients disorders in hybrid poplar. I. Freliminary diagnosis. Plant & Soil 126:19-29.

- Teng Y. & Y.R. Timmer. 1990 b. Phosphorus-induced micronutrients disorders in hybrid poplar. III. Prevention and correction in nursery culture. Plant & Soil 126: 41-51.

- Tennant D. 1976. Root growth of wheat. I. Early patterns of multiplication and extension of wheat roots including effects of levels of nitrogen, phosphorus and potassium. Aust. J. Agric. Res. 27: 183-196.

- Thornton B. & A.E.S. Macklon. 1985 a. Effects of some aminoacids analogues on the uptake and transport of K^+ and Ca⁺⁺ in wheat and mung bean seedlings. I. Cortical cell fluxes and transport to the stele in excised root

segments, as affected by p-fluorophenylalanine. J. Exp. Bot. 36: 919-929.

- Thornton B. & A.E.S. Macklon. 1985 b. Effects of some aminoacids analogues on the uptake and transport of K⁺ and Ca⁺⁺ in wheat and mung bean seedlings. II. Uptake and translocation in whole seedling plants. J. Exp. Bot. 36: 930-936.

Tiffin L.O. 1967. Translocation of manganese, iron, cobalt and zinc in tomato. Plant Physiol. 42: 1427-1432. - Timmer V.R. & Y. Teng. 1990. Phosphorus-induced micronutrients disorders in hybrid poplar. II. Responses to zinc and copper in greenhouse culture. Flant & Soil 126:31-39.

- Turner R.G. 1970. The subcellular distribution of zinc and copper within the roots of metal-tolerant clones of *Agrostis tenuis* Sibth. New Phytol. 69: 725-731.

- Vallee B.L. & W.E.C. Wacker. 1970. Metalloproteins. En The Proteins Vol 5. H. Neurath (Ed). Academic Press, New York.

- Van Assche F. & H. Clijsters. 1990. Effects of metals on enzyme activity in plants. Plant Cell & Environ. 13: 195-206.

-- Van Cutsem P. & C. Gillet. 1982. Activity coefficients and selectivity values of Cu^{2+} , Zn^{2+} and Ca^{2+} ions adsorbed in the *Nitella flexilis* L. cell wall during triangular ion exchanges. J. Exp. Bot. 33: 847-853.

- Van de Geijn S.C. & C.M. Petit. 1979. Transport of divalent cations. Cation exchange capacity of intact xylem vessels. Flant Fhysiol. 64: 954-958.

Van Goor B.J. & D. Wiersma. 1976. Chemical forms of manganese and zinc in phloem exudates. Physiol. Plant. 36: 213-216.

- Van Iren F. & P.B. Van der Slujs. 1980. Symplasmic and apoplasmic radial ion transport in plant roots. Planta 148: 130-137.

- Van Steveninck R.F.M., M.E. Van Steveninck, D.R. Fernando, D.L. Godbold, W.J. Horst & H. Marschner. 1987 a. Identification of zinc-containing globules in roots of a zinc-tolerant ecotype of *Deschampsia caespitosa*. J. Flant Nutr. 10 (9-16): 1239-1246.

Van Steveninck R.F., M.E. Van Steveninck, D.R. Fernando, W.J. Horst & H. Marschner. 1987 b. Deposition phytate in globular bodies in of zinc roots of *Deschampsia* caespitosa ecotypes; а detoxification mechanism ?. J. Flant Physiol 131:247-257.

- Vaugham D., P.C. De Cock & B.G. Ord. 1982. The nature and localization of superoxide dismutase in fronds of *Lemma gibba* L. and the effect of copper and zinc deficiency on its activity. Physiol. Plant. 54: 253-257. - Veeranjaneyulu K. & V.S.R. Das. 1982. Intrachloroplast localization of ^{AB}Zn and ^{AB}Ni in a Zn-tolerant plant, Ocimum basilicum Benth. J. Exp. Bot. 33: 1161-1165.

- Veltrup W. 1978. Characteristics of zinc uptake by barley roots. Physiol. Plant. 42: 190-194.

-- Verma T.S. & R.S. Minhas. 1987. Zinc and phosphorus interaction in a wheat-maize cropping system. Fertilizer Research 13: 77-86.

- Wagar B.I., J.W.B. Stewart & J.L. Henry. 1986. Comparison of single broadcast and small annual seedplaced phosphorus treatments on yield and phosphorus and zinc contents of wheat on chernozemic soils. Can. J. Soil Sci. 66: 237-248. - Walker C.D. & R.M. Welch. 1987. Low molecular weight complexes of zinc and other trace metals in lettuce leaf. J. Agric. & Food Chem. 35: 721-727.

- Walker N.A. & M.G. Pitman. 1976. Measurement of fluxes across membranes. En U. Luttge & M.G. Pitman (Eds.). Encyclopedia of Flant Fhysiology, Vol 2, pt A, 93-126. Springer-Verlag, Berlin.

- Warnock R.E. 1970. Micronutrient uptake and mobility within corn plants (Zea mays) in relation to phosphorusinduced zinc deficiency. Soil Sci. Soc. Amer. Proc. 34: 765-769.

- Webb M.J. & J.F. Loneragan. 1988. Effect of zinc deficiency on growth, phosphorus concentration and phosphorus toxicity of wheat plants. Soil Sci. Soc. Amer J. 52 (6): 1676-1680.

- Webb M.J. & J.F. Loneragan. 1990. Zinc translocation to wheat roots and its implications for a phosphorus/zinc interaction in wheat plants. J. Flant Nutr. 13(12): 1499-1512.

- White M.C., A. Morris Decker & R.L. Chaney. 1981 a. Metal complexation of tomato and soybean stem exudate I.Plant Physiol 69: 292-300.

- White M.C., A. Morris Decker & R.L. Chaney. 1981 b. Metal complexation of tomato and soybean stem exudate II. Plant Physiol 69: 301-310.

White M.C., A. Morris Decker & R.L. Chaney. 1981 c. Metal complexation of tomato and soybean stem exudate III. Flant Physiol 69: 311-315.

Wilkinson H.F. 1972. Movement of micronutrients to plant roots. En Micronutrients in Agriculture. J.J. Morvedt (Ed). Madison, Wisconsin. Williams R.F. 1948. The effects of phosphorus on the rates of intake of phospohorus and nitrogen and upon certain aspects of phosphorus metabolism in gramineous plants. Aust.J. Agric. Res. (B) 1: 333-361.

-- Williams R.J.P. 1984. Zinc: What is it role in biology. Endeavour 8:65-70.

- Woolhouse H. W. 1983. Toxicity and tolerance in the response of plants to metals. En O.L. Lange, P.S. Nobel. C.B. Osmond & H. Ziegler (Eds.). Encyclopedia of Plant Physiology, Vol 12, pt C. Springer-Verlag, Berlin.

- Wu L. & J. Antonovics. 1975. Zinc and copper uptake by *Agrostis stolinifera*, tolerant to both zinc and copper. New Phytol. 75: 231-237.

- Zierler K. 1981. A critique of compartmental analysis. Ann. Rev. Biophys. Bioeng. 10: 531-562.

* * *

INDICES

INDICE DE TABLAS Y FIGURAS

TABLAS:

1. Composición de la solución de cultivo	
empleada en los ensayos	
2. Flujos de Zn en el nivel 2 mmol m ^{-s}	60
3. Contenido y tasa de salida de Zn desde	
los distintos compartimentos de la raíz	66
4. Efecto del 2-4 DNF, NaN $_3$, cobre y bajas	
temperaturas sobre el % de 🍣Zn transpor-	
tado al vástago	81
5. Concentración de Zn en vástago y raíz de	
plantas cultivadas en distintos niveles d	e Zn 91.
6. Valores de RGR de planta entera de planta	5
cultivadas en distintos niveles de Zn	92.
7. Influjo, Eflujo y SAR Zn en plantas culti	
vadas en distintos niveles de Zn	94
8. Parámetros cinéticos de la elución de 🍣Z	n
en plantas cultivadas en distintos nívele	97°
de Zn	97
9. Efecto del cambio de concentración extern	a
sobre el influjo	102
10. Influjo de Zn trás el cambio de concentra	
ción desde el ni∨el 0.2 a 2 mmol m ⁻³	104
11. Efecto del nivel de suministro de Zn sobr	E9

la concentración de clorofila	133
12. Parámetros de crecimiento derivados en dos	
niveles de suministro de Zn (10 y 1000)	135
13. Efecto del nivel de suministro de Zn sobre	
el crecimiento de las r <mark>aíce</mark> s	139
14. Efecto del nivel de suministro de Zn sobre	
la relación Peso fresco: Peso seco	143
14. Bis. Efecto del nivel de suministro de Zn	
sobre la tasa de transpiración	143
15. Valores finales del efecto del nivel de su	
ministro de Zn sobre algunos parámetros de	
crecimiento	150
16. Efecto del nivel de suministro de fósforo	
sobre la concentración de Zn y P en vástago	
y raiz	154
17. Efecto del nivel de suministro de fósforo	
sobre los parámetros de crecimiento	155
18. Efecto del nivel de suministro de fósforo	
sobre la SAR Zn, SST Zn, Influjo y Eflujo	
de Zn	157
19. Efecto del nivel de suministro de fósforo	
sobre la concentración de Zn en vástago y	
y raíz en distintas variedades de trigo	158
20. Efecto del nivel de suministro de Zn sobre	
la SAR F y la SST F	173

FIGURAS:

1. Fotografía del sistema empleado para el cultivo	D
de las plantas	30
2. Evolución de la incorporación de 🏧 Zn	58
3. Evolución de la tasa de salida de 🍣Zn	62
4. Evolución del contenido de 崎Zn remanente	
en la raíz	65
5. Isoterma de incorporación de 🏧Zn al EIR	74
6. Fulso y seguimiento de 🍳 Tn	78
7. Evolución de la incorporación de 🏧 Zn	
en girasol	84
8. Evolución de la tasa de salida de 🍳 In desde	
las raices en plantas cultivadas en distintos	
niveles de Zn	95
9. Evolución de la tasa de absorción neta de Zn	
trás el cambio de concentración (2 a 0.2 y	
5 mmcl m ⁻³)	99
10. Evolución de la velocidad de salida de 🍣Zn	
en plantas cultivadas en 2 y transferidas a	
0.2 y 5 mmol m ⁻³ de Zn	100
11. Evolución de la tasa de absorción neta de Zn	
en plantas cultivadas en 0.2 y transferidas a	
2 mmol m ⁻³ de Zn.	105

12.	. Evolución de la tasa de absorción neta de Zn	
	en plantas cultivadas en distintos niveles	
	de Zn	107
13.	Evolución del influjo de Zn en plantas cul-	
	tivadas en distintos niveles de Zn	108
14.	Evolución de la tasa de cambio relativo de	
	concentración -en planta entera- en distin-	
	tos niveles de suministro de Zn	109
15.	Correspondencia entre la relación vástago :	
	raíz y la SAR Zn	118
16.	Influjo de Zn a lo largo de las raíces se-	
	minales de trigo (Ejes principales)	120
17.	Efecto del nivel de suministro de Zn sobre	
	el número de hojas en expansión	125
18.	Efecto del nivel de suministro de Zn sobre	
	el crecimiento del area foliar	128
19.	Evolución de la longitud de las hojas en dos	
	niveles de suministro de Zn (hojas 1 y 2)	130
20.	Evolución de la longitud de las hojas en dos	
	niveles de suministro de Zn (hojas 3, 4 y 5)	131
21.	Efecto del nivel de suministro de Zn sobre	
	el número de raíces laterales de primer orden	137
22.	Evolución de la longitud de los ejes prin-	
	cipales y de los laterales de ler. orden en	
	dos niveles de Zn (10 y 1000 mmol m ⁻³)	140

23. Evolución de la densidad de ejes laterales

	en dos niveles de suministro de Zn	141
24.	Efecto del cambio de suministro de fósforo	
	sobre la evolución de la concentración de	
	Zn en raíz	164
25.	Efecto del cambio de suministro de fósforo	
	sobre la evolución de la concentración de	
	Zn en parte aerea	165
26.	Æfecto del cambio de suministro de fósforo	
	sobre la evolución del influjo de Zn	168
27.	Efecto del cambio de suministro de fósforo	
	sobre la evolución de la concentración de	
	fósforo en raíz	169
28.	Efecto del cambio de suministro de fósforo	
	sobre la evolución de la concentración de	
	fósforo en parte aerea	170
29.	Efecto del nivel de suministro de Zn sobre	
	la concentración de fósforo en vástago y raíz	172
30.	Evolución del contenido de Zn en la solución	
	de absorción y relación entre la tasa de ab-	
	sorción neta y la concentración externa	189
31.	Evolución de la incorporación de 🏧 Zn.	
	Tiempos cortos	191
32.	Influjo de Zn, estimado por incorporación	
	de ⇔¤Zn, al EIR (Rango restringido y rango	

amplio)

33.	Evolución del contenido de 🍣Zn remanente	
	en la raíz tras la carga del trazador en	
	distintas concentraciones externas	195
34.	Contenido de ^{es} Zn en el Espacio Aparente-	
	mente Libre, estimado a partir de los datos	
	de la Figura 33	197
35.	Evolución de la actividad específica interna	
	de un trazador al emplear distintas concentra-	-
	ciones de carga	211
36.	Dependencia del Tiempo medio de la actividad	
	específica interna respecto del influjo	212

* * *

193

INDICE

AG	RADECIMIENTOS	i
AB	REVIATURAS	ii
RE	SUMEN	iν
AB	STRACT	v
1.	INTRODUCCION	
	Introducción	2
	Absorción y utilización del Zinc	ర
	Movimiento del Zn en el suelo	7
	Movimiento a través de la pared celular	8
	Fasaje a través del plasmalema	13
	Distribución y compartimentación del Zn	19
	Interacción fósforo-zinc	22
	Objetivos	25
2.	MATERIALES Y METODOS	
	Material Vegetal	28
	Cultivo de las plantas	28
	Condiciones ambientales	31
	Suministro de nutrientes	32
	Medición de parámetros de crecimiento	35
	Medición de parámetros directos	35
	Derivación de parámetros de crecimiento	37
	Desarrollo de las plantas	40
	Medición de parámetros nutricionales	41
	Medición del contenido de nutrientes —	41

Derivación de parámetros nutricionales	42
2. MATERIALES Y METODOS (continuación)	
Uso de isótopos para la estimación de flujos	44
Estimación del influjo de Zn	44
Estimación del eflujo de Zn	47
Estimación del flujo neto instantaneo de Z	n 48
Medición de la transpiración	50
Uso de inhibidores metabólicos	50
Determinaciones químicas	51
Determinación del fósforo	51
Determinación del zinc	51
Determinación de clorofila	52
Determinación de 🍣Zn	52
Métodos estadísticos	52
3. CAPITULO I	
(FLUJOS VECTORIALES Y COMPARTIMENTACION DEL	
Zn EN LAS RAICES)	
Introducción	55
Resultados y Discusión	56
Segumiento de la incorporación de 🍳 Zn	56
Seguimiento del eflujo de 🍳 Zn	59
Posible naturaleza termodinámica de los	
flujos vectoriales	70 ⁻
Cinética del influjo de Zn	73

Pulso y seguimiento de 🏧 76

	Flujos de Zn en girasol	83
4.	CAPITULO II	
	(REGULACION DE LA ABSORCION DE Zn: EFECTOS	
	DEL NIVEL DE SUMINISTRO DE Zn)	
	Introducción	88
	Resultados	90
	Experimentos con nivel de suministro	
	constante	90
	Efectos del cambio en el nivel de	
	suministro	9 8
	Efectos del crecimiento	106
	Discusión	106
	Efectos del crecimiento	116
5.	CAPITULO III	
	(EFECTOS DEL NIVEL DE SUMINISTRO DE Zn	
	SOBRE EL CRECIMIENTO)	
	Introducción	123
	Resultados	124
	Desarrollo de las plantas	124
	Crecimiento del area foliar	127
	Peso seco y partición de asimilados	132
	Desarrollo de las raíces	136
	Relación Peso fresco:Peso Seco y	
	Tasa de transpiración	142
	Discusión	142

6. CAPITULD IV

	(REGULACION DE LA ABSORCION DE Zn: EFECTOS	
	DEL NIVEL DE SUMINISTRO DE FOSFORO)	
	Introducción	152
	Resultados y Discusión	153
	Efecto del nivel de suministro de Zn	
	sobre la absorción de fósforo	167
7.	CAPITULO V	
	(DISCUSION GENERAL Y CONCLUSIONES)	176
8.	APENDICE I	
	(COMPARACION DE METODOS DE ESTIMACION DE LOS	
	PARAMETROS Vmax Y Km)	
	Introducción	186
	Resultados	188
	Desaparición de Zn en el medio de cul-	
	tivo	188
	Absorción de 🍣Zn en función del tiempo	190
	Relación entre el influjo y la concen-	
	tración externa	190
	Discusión	196
9.	APENDICE II	
	(PERTURBACIONES Y MEDICION DE FLUJOS	
	VECTORIALES).	

Desarrollo

10. APENDICE III

(NUTRICION EN CONDICIONES DE ESTADO ESTACIONARIO)

Introducción	217
Desarrollo	218
Flujos en <mark>estado estacionario</mark>	220
Estado estacionario y productividad	224
11. BIBLIOGRAFIA CITADA	228
12. INDICE DE TABLAS	250
13. INDICE DE FIGURAS	252
14. INDICE	256

D.H. Coglistti

G.E. Santa Maria

206