BIBLIOTECA CENTRAL LUIS F LELOIR BIBLIOTECA CENTRAL LELOIR FACULTAD DE CIENCTAS EXACTAS Y NATURALES UBA

Tesis de Posgrado

Aplicación de los métodos directos de asignación de fases a la resolución de dos estructuras no centrosimétricas

Baggio, Ricardo F.

1975

Tesis presentada para obtener el grado de Doctor en Ciencias Físicas de la Universidad de Buenos Aires

Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente.

This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source.

Cita tipo APA:

Baggio, Ricardo F. (1975). Aplicación de los métodos directos de asignación de fases a la resolución de dos estructuras no centrosimétricas. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.

http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_1489_Baggio.pdf

Cita tipo Chicago:

Baggio, Ricardo F.. "Aplicación de los métodos directos de asignación de fases a la resolución de dos estructuras no centrosimétricas". Tesis de Doctor. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 1975.

http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_1489_Baggio.pdf

UBA Universidad de Buenos Aires

UNIVERSIDAD DE BUENOS AIRES

FACULTAD DE CIENCIAS EXACTAS Y NATURALES

APLICACION DE LOS METODOS DIRECTOS DE ASIGNACION DE FASES À LA RESOLUCION DE DOS ESTRUCTURAS NO GENTROSIMETRICAS

Ricardo F. Baggio

TESIS PRESENTADA PARA OPTAR AL TITULO DE

DOCTOR EN FISICA

DIRIGIDA POR

Sergic Baggio

1975

Reg. No Kyng

A mis padres A mi esposa A mis hijos

AGRADECIMIENTOS

A LAS INSTITUCIONES

Al Instituto Nacional de Farmacología y Bromatología, pues este trabajo se inició bajo le vigencia de una de sus becas.

Al Consejo Nacional de Investigaciones Científicas y Técnicas, que financió parte de este trabajo con uno de sus subsidios.

La parte experimental de esta Tesis se realizó en los Departementos de Físico-Química de la Facultad de Farmacia y Bioquímica, U.N.B.A., de Físico-Química de la Facultad de Ciencias Exactas y Naturales, U.N.B.A., y de Radiaciones Atómicas y Moleculares, División Cristelografía y Físico-Química de Sólidos, C.N.E.A.

A su personal y autoridados, mi reconocimiento.

Los programas se procesaron en el Centro de Cómputos en Salud, a través de la Facultad de Farmacia y Bioquímica, y en el Centro Unico de Procesamiento Electrónico de Datos (C.U.P.E.D.), del Ministerio de Bienestar Social, a través de la Comisión Nacional de Energía Atómica, entidades a las que agradazco su decisiva colaboración.

A LAS PERSONAS

Al Dr Sergio Baggio, director de este trabajo, hermano y amigo.

A los Drs E. Rúveda y D. Mascaretti , y Lic. E. Tosti, por el tiempo gentilmente dedicado a discusiones y comentarios.

A mis compañeros del Laboratorio de Cristalografia de la C.N.E.A., por su cordiel apoyo. A todos aquellos de quienes necesitê alguna vez ayuda, y no vacilaron en dármela.

INDICE

Objeto de este trabajo1
Introducción2 - 11
Resolución del problema de læs fases12 - 16
Definición del origen
Parte experimental
Resolución de la estructura
Refinamiento de los modelos obtenidos
Consideraciones finales
Apéndice A : Cálculo de J
Apéndice B : Célculo de V(🛛)
Apéndics C : Progrema PROVI2
Apéndice D : Programa BUSCA HIDROGENOS54/1 - 54/4
Apéndice E : Programa Principal de Absorción53/1 - 35/2
Subrutina SETHA
Apéndice F : Lista de factores de estructure
da Papavarine
Apéndice G : Lista de factores de estructura
de Quebrachamina
Indice de programas utilizados
Referencias

OBJETO DE ESTE TRABAJO

Hasta hace pocos años, la resolución de estructuras de mediana complejidad (20 a 40 átomos por unidad asimétrica), sin átomo pesado, cristalizadas en grupos espaciales no-centrosimétricos, era prácticamente imposible.

El posterior desarrollo de la teoría de los 'metodos directos de asignación de fases' por Cochran, Zachariasen, Sayre, Karle, Hauptman, Woolfson, etc., ^(1,...,25), logró que se pudieran estudiar con éxito no pocas moléculas de aquel tipo, aunque muchas otras se resistieron al análisis por las distintas implementaciones semi-empíricas del método.

Cada nueva estructura resuelta aportó algún tipo de información sobre las bondades y falencias de este enfoque del 'problema de les fases', mostrando, en general, que ciertos grupos espaciales eran dóciles al estudio (Por ejemplo el $P2_{1}2_{1}2_{1}$), con un alto porcentaje de éxitos en las investigaciones encaradas, mientras que otros (como el $P2_{1}$), solian llevar a situaciones sin salida.

De allí que se considerara doblemente interesante el estudio por métodos directos de dos estructuras no-centrosimétricas, cristalizadas en grupos espaciales no usuales: la Papaverina ($C_{20}H_{21}NO_4$, grupo espacial Pna2₁), y la Quebrachamina ($C_{19}H_{26}N_2$, grupo espacial P2₁). Por un lado se contaría con más información sobre la utilización de este formalismo para la solución de problemas estructurales, y paralelamente se conocería la estructura tridimensional de estos alcaloides, de los que solo existían, hasta el presente, datos por vía química. Cuando un frente de ondas electromagnéticas incide sobre una cierta distribución electrónica $f(\underline{x})$, cada carga elemental $f(\underline{x})$ dV ectúa como centro dispersor, generando una onda esférica que se propaga en todas direcciones. La distribución de amplitudes dispersadas, resultado de la interferencia de esas ondas secundarias, viene dada por

$$A(\underline{s}) = K \int \int (\underline{x}) \exp(-2\pi i \underline{s} \cdot \underline{x}) dV_{\mathbf{x}}$$
(1)

donds $\mathbf{s} = \frac{\underline{\mathbf{S}} - \underline{\mathbf{S}}_0}{\lambda}$

- S : vector unitario en la dirección de observación.
- So : vector unitario en la dirección de incidencia.
 - λ : longitud de onde de la radiación.

K es un factor que mide la eficiencia de la conversión de radiación incidente en dispersada. Si se toma cumo unidad de éstas, la dispersada por un electrón clásico, en el origen, K vale l, y $\int (x) es$ simplemente el producto $\int (x) \int (x) dx$.

En este caso, A(\underline{s})es la transformada de Fourier de $f(\underline{\times})$, y \underline{s} representa el vector posición en el espacio transformado, o recíproco.

De acuerdo a esto, el análisis de las amplitudes difractadas por un cristal, se reduce a calcular la transformada de Fourier de la densidad electrónica en su interior, $\beta_c(\underline{x})$.

Densidad electrónica dentro del cristal.

La distribución de materia dentro de un sólido cristalino queda definida cuando se den los tres vactores <u>a</u>, <u>b</u>, y <u>c</u>, con cuyas translaciones se construye la red; el contenido de una celda unitaria, definida por esas tres aristas, y un factor de forme del cristal, que determine su contorno.

Los tres vectores de translación <u>a</u> , <u>b</u> , y <u>c</u> , definen una red infinita, tridimensional, sxpresable matemáticemente por

$$Z(\underline{x}) = \sum_{p} \sum_{q} \sum_{r} \delta(\underline{x} - \underline{x}_{pqr})$$
(2)

con

 δ : la delta de Dirac, y x : p <u>a</u> + q <u>b</u> + r <u>c</u> Siendo p , q , y r , enteros, x_{pgr} es un nodo cualquiera de la red. La expresión (2) represente un arreglo infinito de funciones δ , centradas en esos nodos.

El carácter finito del cristal queda definido por una función de forma, \bigcirc (\underline{x}), que vale 1 dentro del cristal y O fuera del mismo. Con ello, la red sobre la que está edificado el cristal viens dada por

> W(x) = Z(x). O(x)(3)

Si sobre este esqueleto se quiere montar ahora la densidad electrónica de la celda unitaria, $\beta_u(x)$, de modo de obtener la densidad periódica del cristal $\beta_c(x)$, solo resta convolucionar $\beta_u(x)$ con W(x) para tener

$$\beta_{c}(\underline{x}) = \beta_{u}(\underline{x}) + \Psi(\underline{x}) = \beta_{u}(\underline{x}) + (Z(\underline{x}) = G(\underline{x})) \quad (a)$$

Para encontrar la distribución de amplitudes difractadas por un cristal será necesario hallar la transformada de Fourier de esta expresión y para ello, la de cada uno de los términos que intervienen en ella: $f_u(\underline{x})$, $Z(\underline{x})$ y \bigcirc (\underline{x})

En lo que sigue, representaremos el cálculo de la transformada de Fourier por el operador fi].

a) Cálculo de F(\underline{s}) = $\int_{\mathbf{T}} \int_{\mathbf{u}} (\underline{x}) d\mathbf{r}$

$$F(s) = \iint u(\underline{x}) \exp(-2\pi i\underline{s}.\underline{x}) dV_{x}$$
(5)

Con razonable aproximación puede supenerse

$$\beta_{u}(\underline{x}) = \sum_{i=1}^{N} \beta_{i}(\underline{x} - \underline{x}_{i})$$
(6)

donde $i(\underline{x})$ es la densidad electrónica debida al átomo iésimo, centrado en $\underline{x_i}$ Con ello

$$F(s) = \sum_{i=1}^{N} \exp(-2\pi i \underline{s} \cdot \underline{x}_{i}) \int_{1}^{0} (\underline{x}') \exp(-2\pi i \underline{s} \cdot \underline{x}') dV_{x'}$$
$$= \sum_{i=1}^{N} \exp(-2\pi i \underline{s} \cdot \underline{x}_{i}) \cdot f_{i}(s) \qquad (7)$$

1

donde

<u>×' = × - ×</u>,

Al término f(s) se lo conoce como "factor de dispersión atómico", y se lo encuentra tabulado en la bibliografía, como función de s para distintas especies atómicas, con distinto grado de ionicidad. (26,27,28)

b)
$$Z(\underline{a}) = \int [Z(\underline{x})]$$

 $Z(\underline{a}) = \int Z(\underline{x}) \cdot \exp(-2\pi i \underline{a} \cdot \underline{x}) dV_{\underline{x}}$
(9)

Reemplazando Z(\underline{x}) y manipulando algebraicamente resulta

$$\widetilde{\mathcal{L}}(\underline{s}) = \int \left(\sum_{p \in q} \sum_{r} \left(\delta(\underline{x} - \underline{x}_{pqr}) \cdot \exp(-2\pi \underline{i}\underline{s} \cdot \underline{x}) \right) \right) dV_{x}$$
(9)

$$\sum_{p q} \sum_{\mathbf{r}} \exp(-2\pi \mathbf{i} \mathbf{s} \cdot \mathbf{x}_{pqr})$$
(10)

$$= \lim_{N \to \infty} \frac{3}{||} \left[\sum_{\substack{j=1 \\ j = -N}}^{N} \exp(-2\pi \underline{i} p_{j} \underline{s} \cdot \underline{a}_{j}) \right]$$
(11)

$$\frac{3}{||} \lim_{j=1} (sen 2\pi N\underline{s}.\underline{a}_{j} / sen 2\pi \underline{s}.\underline{a}_{j})$$
(12)

Cada uno de estos limites puede panerse, a menos de un factor, como una suma de distribuciones δ ⁽³⁰⁾, centradas en posiciones s_{hj} tales que $\underline{s}_{hj} \cdot \underline{a}_{j} = h_{j}$ (entero); $Z(\underline{s}) = K \frac{1}{j=1} \sum_{h_{i}=-\infty}^{\infty} (\underline{s} - \underline{s}_{hj}) = K \frac{\sum \sum h_{k}}{h_{k}} \delta$ ($\underline{s} - \underline{s}_{hkL}$) ⁽¹³⁾

dondes verifica las condiciones impuestas a los suj

Para calcular K , integremos eg un entorno de <u>Shk</u>L , las expresiones equivalentes $K \ge \sum_{h,k,l} (g-g_{hkL}) = \frac{1}{N+\infty} (sen(2\pi Ng g_{l})) sen(2\pi g_{l})$ La primera integral es inmediata

$$\begin{array}{c} \kappa \geq \sum \delta(\underline{s} - \underline{s}_{h_{k}k_{1}}) dV = K \\ V \leq h_{k}k_{1} \\ Shk_{1} \\ \end{array} \right) dV = K$$

$$\begin{array}{c} (14) \\ \end{array}$$

Para integrar la segunda expresión, conviene utilizar las variables definidas por $s_j = \underline{s}, \underline{a}_j$. Con esto , la expresión se reduce a

$$\frac{3}{||} (\text{sen } (2\pi Ns_j)/\text{ sen } (2\pi s_j)) \ \text{J d}^3 s_j.$$

$$J \ \text{, el jacobiano de la transformación, vale } \sqrt{-1}.(Apéndice A)$$
Igualando (14) y (15), resulta K = 1/V , y

donde

 $\widetilde{\mathcal{L}}(\underline{s}) = (1/V) \sum_{h \neq 1} \sum_{k \neq 1} \delta(\underline{s} - \underline{s}_{hkL})$ (16)

Red Reciproca.

Si referimos los vectores \underline{s} e une terma \underline{a}^* , \underline{b}^* , y \underline{c}^* , de modo que $\underline{s} = t\underline{a}^* + q\underline{b}^* + v\underline{c}^*$, las condiciones impuestes sobre \underline{s}_{hkl} se reducen al siguiente sistema de ecuaciones

$$t(\underline{a},\underline{a}^{*}) + q(\underline{a},\underline{b}^{*}) + v(\underline{a},\underline{c}^{*}) = h$$

$$t(\underline{b},\underline{a}^{*}) + q(\underline{b},\underline{b}^{*}) + v(\underline{b},\underline{c}^{*}) = k$$

$$t(\underline{c},\underline{a}^{*}) + q(\underline{c},\underline{b}^{*}) + v(\underline{c},\underline{c}^{*}) = L$$
(17)

h , k , L ,: enteros.

Se puede elegir la terna \underline{a}^* , \underline{b}^* , \underline{c}^* , de modo de simplificar el sistema. En efecto: si se exige que la matriz de los productos escalares sea la matriz identidad, resulta t = h , q = k , v = L , y los \underline{a}_1^* , definidos por

Entonces, el conjunto de los $\underline{s}_{h\in L}$ definen una red de purámetros \underline{a}_{i}^{*} , (i=1,3), conocida como red reciproca, cuyas propiedades, (algunas de las cuales mencionaremos aquí) son básicas para la descripción del proceso de

-5-

difracción.

1)
$$\frac{\underline{b} \times \underline{c}}{\underline{a}} = \frac{\underline{b} \times \underline{c}}{V} ; \underline{b} = \frac{\underline{c} \times \underline{a}}{V} ; \underline{c} = \frac{\underline{a} \times \underline{b}}{V}$$
(19)

En efecto, estas expresiones varifican $\underline{a}_1 \cdot \underline{a}_j = \delta$ ij

2)

 $v^{*} = v^{-1}$ $con \ V = (\underline{abc}) \qquad y \qquad V^{*} = (\underline{a} \ \underline{b} \ \underline{c}) \qquad (20)$ $v^{*} = (\underline{a} \ \underline{b} \ \underline{c}) \qquad (\underline{abc}) \qquad (\underline{c} \times \underline{a}) \qquad (\underline{c} \times \underline{a} \times \underline{a}) \qquad (\underline{c} \times \underline{a} \times \underline{a} \times \underline{a} \qquad (\underline{c} \times \underline{a} \times \underline{a} \times \underline{a} \times \underline{a}) \qquad (\underline{c} \times \underline{a} \times \underline{a} \times \underline{a} \times \underline{a} \end{matrix}) \qquad (\underline{c} \times \underline{a} \qquad (\underline{c} \times \underline{a} \times \underline{a}$

Desarrollando el triple producto vectorial, y eliminando términos, se llega a

3) <u>s</u> = k<u>r</u> * k<u>h</u> * <u>Lo</u> eo normal al plone eristalográfice de indices de Miller (h,k,l) , y su norma es la inversa del espaciado.

El plano (h,k,l) es el que corta a los ejes cristalográficos en

 $\frac{\underline{\alpha}}{\underline{\nu}_1} = \frac{\underline{b}}{\underline{h}}; \quad \underline{\nu}_2 = \frac{\underline{b}}{\underline{k}}; \quad \underline{\nu}_3 = \frac{\underline{c}}{\underline{L}}$ La normal al plano viene dada por

$$\underline{\mathbf{n}} \quad \bullet \quad \left(\begin{array}{c} \underline{\mathbf{v}}_2 - \underline{\mathbf{v}}_1 \end{array} \right) \times \left(\begin{array}{c} \underline{\mathbf{v}}_3 - \underline{\mathbf{v}}_1 \end{array} \right)$$

Desarrollando

$$\underline{\mathbf{n}} = \frac{\mathbf{V}}{\mathbf{h}\mathbf{k}\mathbf{L}} \cdot \left(\mathbf{h}\underline{\mathbf{a}}^{*} + \mathbf{k}\underline{\mathbf{b}}^{*} + \mathbf{I}\underline{\mathbf{c}}^{*}\right)$$

Por otro lado, la distancia interplanar será

$$d_{hkL} = \underline{v}_{l} \cdot \underline{\underline{v}}_{l} = \underline{v}_{l} \cdot \frac{\underline{v}_{l}}{|\underline{s}_{hkL}|} \cdot \frac{\underline{s}_{hkL}}{|\underline{s}_{hkL}|} = \frac{1}{|\underline{s}_{hkL}|}$$
(21)

4) Ley de Bragg.

Por lo demostrado en 3), $\frac{S}{h}$ kL= $\lambda^{-1}(S-S_0)$ es normal al plano (h,k,L) En ese caso, $\theta_1 = \theta_2$ (Figura I). Esta es la condición de reflexión especular.

por le que

$$2 d_{hkL} sen \theta = \lambda$$
 (22)

Figura I.

c)
$$\sum_{i}^{\prime} (\underline{s}) = \int_{i}^{\rho} [\sigma(\underline{x})]$$

$$\geq_{i}^{j}\left(\underline{s}\right) = \int \overline{\Box}\left(\underline{x}\right) \exp\left(-2\pi \mathbf{i} \underline{s}, \underline{x}\right) dV_{\mathbf{x}}$$
(23)

Obviemente, una forma explicita pera $\sum_{i}^{\prime} (\underline{s})$ es posible sólo si se conoce en detalle la forma del cristal, \bigcirc (\underline{x}). Sin embargo existen ciertas propiedades generales para $\sum_{i}^{\prime} (\underline{s})$ que sólo dependen del tamaño medio del cristal, independientemente de su forma.

Definamos por V($\underline{\times}$) a la expresión

$$V(\underline{x}) = \int \Box (\underline{u}) \cdot \Box (\underline{x}+\underline{u}) d\underline{u}^{3}$$
Llemando $\Box'(\underline{x}) a \Box (-\underline{x}), y \underline{x}+\underline{u}=\underline{x}^{\prime}, resulta$
(24)

$$V(\underline{x}) = \int \bigcirc (\underline{x}^{*}), \quad \bigcirc^{*} (\underline{x} - \underline{x}^{*})$$
$$= \bigcirc (\underline{x}) * \quad \bigcirc^{*} (\underline{x})$$
$$= \bigcirc (\underline{x}) * \quad \bigcirc^{*} (-\underline{x}) \qquad (25)$$

donde * indica, como es habitual, el producto de convolución. Hallando la transformada de Fourier de $V(\times)$, resulta

$$\mathcal{F}[v(\underline{x})] = \mathcal{F}[\Box(\underline{x})] \cdot \mathcal{F}[\Box(-\underline{x})] = \mathcal{F}(\underline{s}) \cdot \mathcal{F}(\underline{s}) = \mathcal{F}(\underline{s})^2 (\underline{s})$$
es decir

$$V(\underline{x}) = \int \left| \sum (\underline{3}) \right|^{2} \exp\left(-2\pi \mathbf{i} \underline{\mathbf{s}} \cdot \underline{x}\right) dV_{\mathbf{s}}$$
(27)

Para

$$\frac{x}{v} = 0 \qquad \forall (0) = \int \left| \sum_{i=1}^{n} \left(\underline{s}_{i} \right) \right|^{2} dV_{s} = 0 \qquad (28)$$

: volumen døl cristal.

Por otro lado
$$\sum_{i}^{I}(\underline{s}) = \int \mathcal{O}(\underline{x}) \exp(-2\pi i \underline{s} \cdot \underline{x}) dV_{\mathbf{x}}$$
 (29)

$$\operatorname{con} \underline{s} = 0 \qquad \sum_{i}^{i} (0) = \int \operatorname{con} (\underline{x}) \, dV_{\underline{x}} = U \qquad (30)$$

y por lo tanto
$$\left|\sum_{i=1}^{2} \left(0\right)\right|^{2} = \mathbf{U}^{2}$$
 (31)

Si reemplazamos ahora la función decreciente $\left|\sum_{i}^{7} (s)\right|^{2}$ por una constante igual a su valor en el origen, en un cierto volumen w tal que el producto $\left| \sum_{i=1}^{n} (0) \right|^2$. w saa iguel a la integral (28), se tendrá en w una estimación del ancho madio de \geq (\underline{s}) en el espacio reciproco.

Iguelando embas expresiones

$$\sum_{k=1}^{-1} (0)^{2} \cdot w = U^{2} \cdot w = U$$

$$de \ donde \quad w = U^{-1} \qquad (32)$$
Comparando con el volumen de una celda recíproca $V^{*} = V^{-1}$,
$$U = N \cdot V = N(V^{*})^{-1}$$

: número de celdas en el cristal. Ν

Por lo tanto
$$w = V^* / N.$$
 (33)

Con estos elementos puede calcularse cual será la distribución de amplitudes difractadas por un cristal finito.

De acuerdo a (1)
A(
$$\underline{s}$$
) = $\int \left[\int_{c} (\underline{x}) \right] = \int \left[\int_{u} (\underline{x})^{*} (z(\underline{x}) \cdot \Box(\underline{x})) \right]$
Por las propiedades de los operadores $\int \left[\int y^{*} \right]^{*}$,

$$A(\underline{B}) = F(\underline{S}) \cdot (\mathcal{Z}(\underline{S}) * \geq (\underline{B})) \quad (34)$$

- $F(\underline{s}) \cdot R(\underline{s})$ (35)

-8-

Analicemos en detalle el término $R(\underline{s})$

$$\Pi(\underline{s}) = \left(\sum \sum \sum \sum (\underline{s}) * \delta(\underline{s} - \underline{s}_{h \times L})\right) \cdot \sqrt{-1}$$
(36)

$$= (1/V) \sum_{h \in \mathbf{L}} \sum_{\mathbf{L}} (\underline{\mathbf{s}} - \underline{\mathbf{s}}_{hkL})$$
(37)

La representación de R(\underline{s}) en el espacio reciproco será un conjunto de funciones $\sum_{i=1}^{n} (\underline{s}_{i})$ centradas en cada nodo de la red reciproca, y de ancho medio $\sqrt[n]{N}$. A medida que N aumenta, la zona no nula de $\sum_{i=1}^{n} (\underline{s}_{i})$ se contras, y para un cristal de dimensiones usuales (aproximadamente .01 mm³, del orden de 10²⁰ celdas unitarias) R(\underline{s}) se esemejará a una distribución de deltas de Dirac.

Introduzcamos ahora el término faltante $F(\underline{s})$. Puesto que simplemente multiplica a $R(\underline{s})$, en la expresión de la amplitud difractada, su efecto neto, y por lo tanto el de la distribución de materia dentro de la celda unitaria, será modificar el valor de esa función de emplitud $R(\underline{s})$ en que está inmerso cada nodo. Eso define una red recíproca pesada, cuya exploración y registro. sistemáticos son el objetivo fundamental de un montaje experimental de difracción.

En tales experiencias, lo que se registra es la intensidad total difractada alrededor de cada nodo. Matemáticamente esto corresponde a

$$I = \int_{Nodo} F(\underline{s})^2 \cdot R(\underline{s})^2 \, dV_{\underline{s}}$$
(38)

En la zona donde R(\underline{s}) es no nula, F(\underline{s}) es prácticemente constante, e iguala F(\underline{s}) , con lo que

$$I = \frac{F_{hkL}^{2}}{(v)^{2}} \int_{Nodo} \left| \sum_{k=1}^{\infty} \left(\underline{s} - \underline{s}_{hkL} \right) \right|^{2} dV_{s}$$
(39)

Pero esta última integral vale U=N.V , con lo que

$$I = \frac{F_{hkL}^2 \cdot N}{V}$$
(40)

-9-

Resumiendo: la intensidad integral alrededor de cada nodo de la red recíproca es proporcional al cuadrado del factor de estructura, calculado en ese nodo.

F, , como llamaremos de ahora en más a este valor de F(3); hkL admite un desarrollo de Fourier del tipo

$$F_{hkL} = \int_{x}^{0} (X,Y,Z) \exp(-2\pi i (hX+kY+LZ)) dV_{X}$$
(41)

 $\underline{x} = X\underline{a} + Y\underline{b} + Z\underline{c}$, $\underline{s} = h\underline{a} + k\underline{b} + L\underline{c}$

donda χ , γ , y , z , son coordenadas fraccionarias con rango de variación entre 0 y 1.

Por otro lado, siendo $\int (X,Y,Z)$ periódica, puede ponerse como una suma de Fourier, del tipo

$$\int (X_*Y_*Z) = \sum \sum_{p \neq r} \sum_{p \neq r} A_{pqr} \exp\{2\pi i (pX + qr + rZ)\}$$
(42)

Reemplazando en (41), y recordando que dV = V dXdYdZ,

$$F_{hkl} = V \sum_{p \in \mathbf{r}} \sum_{p \in \mathbf{r}} A_{pqr} \int \exp 2\pi \mathbf{i}(\mathbf{p}-\mathbf{h}) X \int \exp 2\pi \mathbf{i}(\mathbf{q}-\mathbf{k}) Y \int \exp 2\pi \mathbf{i}(\mathbf{r}-\mathbf{l}) dX dY dZ$$
(43)

Cada una de estas integrales define una delta de Kronecker

$$F_{hkL} = V A_{pqr} \int_{ph} \int_{qk} \int_{rL} = V A_{hkL}$$
(44)

con lo que

$$\int (X,Y,Z) = (1/V) \sum \sum \sum \int \int hkL \exp(-2\pi i (hX+kY+LZ))$$
(45)

El problema de determiner la setructura cristalina, o el equivalente de hallar $\int_{U}^{(\infty)} (\infty)^{(\infty)}$ en la celda unitaria, quedaría completamente resuelto de una manera rigurosa y totalmente general si se pudiera determinar F_{hkL} para todos los nodos de la red reciproca. Sin embargo, el análisis anterior muestra que los observables físicos por difracción son los módulos de F_{hkL} . La información de la fase de cada coeficiente de Fourier, en cambio, se pierde en el proceso de detección de intensidades, y su regeneración a través de los observables medidos, constituye el problema crucial de una determinación de estructuras.

(\$): La expresión dada para $f_{i}(s)$ en (7), y todas las expresiones subsiguientes definidas en función de ella, (F(s), ecuación (7); f(x)), ecuación (45)) son válidas para átomos en reposo. Para dar cuenta del movimiento debido a la agitación térmica, y su efecto en $f_{i}(s)$, es necesario introducir un factor de temperatura $e^{-M_{1}}$, con lo que $f_{i}(s) = f_{i}(s) \cdot e^{-M_{1}}$. En el modelo más rudimentario (agitación isotrópica), $M_{1} = \frac{1}{\alpha} B_{1} \cdot |\underline{s}|^{2}$, y el efecto queda descripto por un solo parámetro por átomo interviniente. Una descripción más complete, en cambio, requiere de un "tensor de vibración", $\beta_{i}k\ell$, con 6 parámetros independientes, con el cual la expresión para M₁ pasa a ser $M_{1} = \frac{3}{k^{-1}} \int_{i}^{3} k\ell \ \frac{1}{k} \cdot \frac{1}{k} \cdot \frac{1}{k} \cdot \frac{1}{k} = \beta_{i}\ell k$

RESOLUCION DEL PROBLEMA DE LAS FASES

Las primeras relacionas entre factores de estructura que permitieron encarar la resolución directa del probleme de las fases, datan de 1948, y se deben a Harker y Kasper⁽⁸⁾. Estas relaciones, aplicables a estructures controsimétricas sencillas, se derivaron a partir del carácter no negativo de la densidad electrônica. Posteriormente, Karle y Hauptman⁽¹²⁾, en 1950, a partir de las mismas hipótesis derivaron un conjunto completo de inecuaciones de complejidad creciente. Las tres primeras son

$$F_{000} \ge 0$$
 (46)

$$F_{000} \gg F_{h<1}$$
 (47)

$$\begin{bmatrix} F_{\underline{0}}^{-1} \end{bmatrix} \begin{vmatrix} F_{\underline{0}} & F_{\underline{1}} \\ F_{\underline{0}} & \underline{h}_{1} \\ F_{\underline{1}} & F_{\underline{0}} \end{vmatrix} \begin{vmatrix} F_{\underline{0}} & F_{\underline{1}} \\ F_{\underline{1}} & F_{\underline{0}} \end{vmatrix} \begin{vmatrix} F_{\underline{1}} & F_{\underline{1}} \\ F_{\underline{1}} & F_{\underline{1}} \\ F_{\underline{1}} & F_{\underline{1}} \end{vmatrix} \begin{vmatrix} F_{\underline{1}} & F_{\underline{1}} \\ F_{\underline{1}} & F_{\underline{1}} \\ F_{\underline{1}} & F_{\underline{1}} \end{vmatrix} \begin{vmatrix} F_{\underline{1}} & F_{\underline{1}} \\ F_{\underline{1}} & F_{\underline{1}} \\ F_{\underline{1}} & F_{\underline{1}} \end{vmatrix} = \begin{pmatrix} F_{\underline{1}} & F_{\underline{1}} \\ F_{\underline{1}} & F_{\underline{1}} \\ F_{\underline{1}} & F_{\underline{1}} \end{vmatrix} = \begin{pmatrix} F_{\underline{1}} & F_{\underline{1}} \\ F_{\underline{1}} & F_{\underline{1}} \\ F_{\underline{1}} & F_{\underline{1}} \end{vmatrix} = \begin{pmatrix} F_{\underline{1}} & F_{\underline{1}} \\ F_{\underline{1}} & F_{\underline{1}} \\ F_{\underline{1}} & F_{\underline{1}} \\ F_{\underline{1}} & F_{\underline{1}} \end{vmatrix} = \begin{pmatrix} F_{\underline{1}} & F_{\underline{1}} \\ F_{\underline{1}} & F_{\underline{1}}$$

Las desigualdades (46) y (47) establecen que F_{000} es no negativo, y mayor o igual que el módulo de cualquier otro factor de estructura. Esto resulte obvio a partir de la definición de F_{Hel} .

La tercera, en cambio, aporta un interesante punto de partida para la determinación de fases en estructuras sencillas tento centrosimétricas como acéntricas. En efecto, (46) puede ponerse como

$$\left| \begin{array}{c} F_{\underline{h}} - d(\underline{h},\underline{k}) \right| \leqslant r(\underline{h},\underline{k}) \tag{49}$$

donde $\underline{h} = \underline{h}_1 + \underline{h}_2$, $\underline{k} = \underline{h}_2$.

$$d(\underline{h},\underline{k}) = F_{\underline{0}}^{-1} \cdot \begin{bmatrix} F_{\underline{h}-\underline{k}} \cdot F_{\underline{k}} \end{bmatrix}$$
(50)

$$y \mathbf{r}(\underline{\mathbf{h}},\underline{\mathbf{k}}) = \begin{vmatrix} F_{\underline{\mathbf{n}}} & F_{\underline{\mathbf{h}}} \\ F_{\underline{\mathbf{n}}} & F_{\underline{\mathbf{n}}} \end{vmatrix}^{\frac{1}{2}} \cdot \begin{vmatrix} F_{\underline{\mathbf{n}}} & F_{\underline{\mathbf{n}}} \\ F_{\underline{\mathbf{n}}} & F_{\underline{\mathbf{n}}} \end{vmatrix}^{\frac{1}{2}} \cdot \begin{bmatrix} F_{\underline{\mathbf{n}}} \\ F_{\underline{\mathbf{n}}} \\ F_{\underline{\mathbf{n}}} & F_{\underline{\mathbf{n}}} \end{vmatrix}^{\frac{1}{2}} \cdot \begin{bmatrix} F_{\underline{\mathbf{n}}} \\ F_{\underline{\mathbf{n}}} \end{bmatrix}^{\frac{1}{2}} \cdot \begin{bmatrix} F_{\underline{\mathbf{n}}} \end{bmatrix}^{\frac{1}{2}} \cdot \begin{bmatrix}$$

Interpretada en el plano complejo, (49) implica que $F_{\underline{h}}$ está limitado a un círculo de radio $r(\underline{h},\underline{k})$ y centro en $d(\underline{h},\underline{k})$. Conocido su módul

Figura II.

zona de intersección se reducirá entonces a la zona donde se encuentran los centro $d(\underline{h},\underline{k})$, y se podrá poner, con buena aproximación,

$$\theta_{\underline{h}} \simeq \langle \theta_{\underline{h}+\underline{k}} + \theta_{\underline{k}} \rangle_{k}$$
(53)

Esta fórmula, conocida como relación Σ_2 , fue generada independientemente por Sayre⁽¹⁸⁾, y es el germen del desarrollo de los métodos directos para estructuras no centresimétricas.

En 1955 Cochran⁽³⁾ secaró el estudio de la distribución de probabilidad para $\theta_{\underline{h}}$, dado un par $\theta_{\underline{h}-\underline{k}}$ y $\theta_{\underline{k}}$, llegando a

$$P_{\underline{k}}(\underline{B}_{\underline{h}}) \simeq \left[2 \pi I_{0}(\kappa)\right]^{-1} \exp(\kappa \cos \psi)$$
(54)

donde

$$\Psi = \theta_{\underline{h}} - \theta_{\underline{h-k}} - \theta_{\underline{k}}$$
(55)

I (K): función de Bessel de orden D. N N

$$\kappa = \kappa(\underline{h},\underline{k}) = 2 \left(\sum_{i=1}^{n} z_i^{3} \right) \left(\sum_{i=1}^{n} z_i^{2} \right)^{-3/2} \left| \underline{E}_{\underline{h}} \cdot \underline{E}_{\underline{h}} \cdot \underline{E}_{\underline{h}} \right|$$
 (56)

Los E son los factores de estructura normalizados, definidos por

$$\mathbf{E}_{\underline{\mathbf{h}}} = \mathbf{F}_{\underline{\mathbf{h}}} / \langle \mathbf{F}_{\underline{\mathbf{k}}} \rangle$$

donds el valor madio se toma sebre todas las reflexiones de <u>s</u> semejante.

Es evidente que (54) tiene un máximo cuando $\theta = \theta + \theta$, o sea Ψ =0, y que cuanto más grande sean los E involucrados, tento más eguda será la curva.

A partir de esta distribución, puede obtenerse la distribución conjunta debida a varios pares θ_{h-k} , por simple producto de probabilidades.

$$P(\theta_{\underline{h}}) \simeq \prod_{\underline{k}} P(\theta_{\underline{h}}) = A \exp \sum_{\underline{k}} K(\underline{h},\underline{k}) \cos \Psi$$
(57)

donde A es una constante de normalización, y nuevemente la suma sobre <u>k</u> involucra ablo los términos con los mayores E .

El mâximo de esta nueva P(Θ) se obtiene, como es usual, derivando respecto de Θ .

$$\frac{d P(\theta_{\underline{h}})}{d \theta_{\underline{h}}} = -A \exp\left[\sum_{\underline{k}} K(\underline{h},\underline{k}) \cos \Psi\right] \cdot \sum_{\underline{k}} K(\underline{h},\underline{k}) \sin \Psi = 0$$
(58)
De alli resulta

$$\sum_{k} E_{k} \cdot E_{k} \cdot E_{k} \cdot E_{k} = 0$$

$$(59)$$

Desarrollando el sen arphi

$$\operatorname{sen} \theta_{\underline{k}} \cdot \underbrace{\geq}_{\underline{k}} \left| \begin{array}{c} \mathsf{E} & \mathsf{E} \\ \underline{k} & \underline{h} - \underline{k} \end{array} \right| \cos(\theta_{\underline{k}} + \theta_{\underline{h} - \underline{k}}) - \cos \theta_{\underline{k}} \cdot \underbrace{\geq}_{\underline{k}} \left| \begin{array}{c} \mathsf{E} & \mathsf{E} \\ \underline{k} & \underline{h} - \underline{k} \end{array} \right| \operatorname{sen}(\theta_{\underline{k}} + \theta_{\underline{h} - \underline{k}}) = 0$$

y reordenando términos, se llega a la "fórmula de la tangente " :

$$tg \theta_{h} = \frac{\sum_{k} \left| E_{\underline{k}} \cdot E_{\underline{h} - \underline{k}} \right| \operatorname{sen} \left(\theta_{\underline{k}} + \theta_{\underline{h} - \underline{k}} \right)}{\sum_{\underline{k}} \left| E_{\underline{k}} \cdot E_{\underline{h} - \underline{k}} \right| \cos \left(\theta_{\underline{k}} + \theta_{\underline{h} - \underline{k}} \right)}$$

$$(60)$$

A la luz de estos resultados, (51) puede ponerse como

$$P(\theta_{\underline{h}}) = \left[2\pi I_{0}(\alpha)\right]^{-1} \exp \alpha \left(\cos\left(\theta_{\underline{h}} - \beta\right)\right)$$

$$\sum_{k}^{con} \alpha' = \left(\sum_{k}^{con} \kappa(\underline{h}, \underline{k}) \cos(\theta_{k} + \theta_{k})\right)^{2} + \left(\sum_{k}^{con} \kappa(\underline{h}, \underline{k}) \sin(\theta_{k} + \theta_{k})\right)^{2}$$
(61)

$$\beta = tg^{-1} \left[\left(\sum_{\underline{k}} K(\underline{h},\underline{k}) \operatorname{sen}(\theta_{\underline{k}} + \theta_{\underline{h}-\underline{k}}) \right) / \left(\sum_{\underline{k}} K(\underline{h},\underline{k}) \cos(\theta_{\underline{k}} + \theta_{\underline{h}-\underline{k}}) \right) \right]$$

Le confiebilided de la fórmula (60) para le determinación de fases vendrá dada por un estudio de la varianza V de θ .

$$v = \left\langle \left(\begin{array}{c} \theta_{\underline{h}} & - & \theta_{\underline{h}} \end{array} \right)^2 \right\rangle = \left\langle \begin{array}{c} \theta_{\underline{h}} \end{array} \right\rangle^2 - \left\langle \begin{array}{c} \theta_{\underline{h}} \end{array} \right\rangle^2 \left\langle \begin{array}{c} (63) \end{array} \right\rangle$$

El cálculo se realiza desarrollando $P(\theta_{\underline{h}})$ en serie de funciones de Bessel (Apéndice B). El resultado final $V(\propto)$ está graficado en la figura III. Es de notar que valores de \propto mayores que 4.5 dan una varianza menor que 1/4 (del orden de 15°²), por lo que las reflexiones generadas con estas

las reflexiones generadas con estas características serán relativamente confiables. Esto define en forma natural un criterio de selectividad en la generación de fases. Sin embargo, el valor de α dado por (61) depende de los valores de las fases ya generados por la relación \geq_2 o por la fórmula de la tangente, por lo que el criterio de selectividad se reduciría a un criterio "a posteriori". Para salvar esta dificultad. Germain et al. (31) estudiaron el valor esperado para $\alpha_{\underline{h}}^2$, $\langle \alpha_{\underline{h}}^2 \rangle$, llegando a

$$\left\langle \alpha \stackrel{2}{\underline{h}} \right\rangle = \sum_{h'} K(h,h')^{2} + \sum_{h'} \sum_{h''} K(h,h'') K(h,h''') \widetilde{\mathcal{V}}[K(h,h'']] (64)$$

donde $\mathcal{V}(K) = I_1(K) / I_n(K)$, I_1 :function de Bessel de orden 1. Esta expresión sólo depende de los módulos de los E's , por lo

que puede usarse como medida"a priori" de la bondad de una relación \sum_2

La aplicación de estos resultados a la determinación de fases de un conjunto de E's conocidos es relativamente obvia; con un conjunto inicial de fases asignadas, se generan las de las reflexiones vinculadas con éstas por la \sum_{2} , <u>h</u> = <u>k</u> + (<u>h-k</u>), con una medida de la confiabilidad de relación esa determinación dada "a priori" por la varianza $\vee(\propto)$, o más directamente, por \measuredangle mismo. Incorporando las nuevas reflexiones generadas el conjunto de partida, se reinicia el ciclo, hasta que las fases de todos los factores de estructura disponibles hayan sido generadas.

DEFINICION DE ORIGEN

Si se supone que existe un origen absoluto en la celda, referido al cual los factores de estructura tienen la expresión

$$(F_{\underline{h}}) = \sum_{j=1}^{N} f_{j} \exp \left(2\pi i \left(\underline{h} \cdot \underline{r}_{j}\right)\right), \qquad (65)$$

desplazando aquél en un vector <u>R</u>, éstos cambiarán a

N

$$(F_{\underline{h}})_{\underline{R}} = \sum_{j=1}^{\infty} f_{j} \exp \left(2\pi \underline{i} \left(\underline{h}, \left(\underline{r}_{j} - \underline{R} \right) \right) \right) = (F_{\underline{h}})_{\underline{0}} \exp \underline{i} \underline{A} \theta (66)$$

$$(67)$$

Δ0 - 27 <u>h</u>. <u>R</u>

El efecto neto del cambio de origen es modificar la fase absoluta de los factores de estructura, en un valor $2\pi h.R$ y dejando sus médulos invariantes. Razonando en forma inversa, asignar fases arbitrarias a un grupo selecto de tales factores de estructura, corresponderá a determinar un cierto origen de referencia, distinto del absoluto, pero igualmente válido para la descripción de la estructura.

Analicemos el caso más simple, grupo espacial Pl, donde no existen restricciones de ningún tipo para \underline{B} excepto la obvia de que se halle dentro de la celda unitaria.

Llememos $\theta_0(\underline{h})$ a las fases referidas a ese supuesto origen absoluto, y sea $\underline{h}_1 = (h_y, k_y, l_j)$ un factor de estructura al que se la asigna la fase arbitraria $\theta(\underline{h}_1)$.

De acuerdo a (67) valdrá

$$2\pi \underline{h}_{1} \cdot \underline{R} = \Theta(\underline{h}_{1}) - \Theta_{0}(\underline{h}_{1})$$
(68)

para algún cierto vector <u>R</u>

Θ

Esta restricción sobre \underline{R} no le determina univocamente, por lo que pueden aún elegirse a voluntad las fases de otros dos factores de estructura,

$$(\underline{h}_{2}) \quad y \quad \theta \quad (\underline{h}_{3}) \quad , \text{ con lo que}$$

$$h_{1}^{R} + k_{1}^{R} \neq L_{1}^{R} \stackrel{i}{=} \stackrel{\varphi}{1}_{1}$$

$$h_{2}^{R} + k_{2}^{R} + L_{2}^{R} \stackrel{i}{=} \stackrel{\varphi}{2}_{2}$$

$$h_{3}^{R} + k_{3}^{R} + L_{3}^{R} \stackrel{i}{=} \stackrel{\varphi}{2}_{3}$$

$$(69)$$

$$\psi_{1} = \left[\theta \quad (\underline{h}_{1}) - \theta_{0} \quad (\underline{h}_{1})\right] / 2\pi.$$

Como los términos de la derecha son fases, medidas en ciclos ($0\leqslant\Psi\leqslant$ 1), las igualdades deben ser entendidas como congruencia,módulo l razón por la cual se ha introducido el símbolo : .

Si los índices de las reflexiones elegidas son tales que la matriz resulte no singular, el sistema tendrá solución cualesquiera sean los valores θ (<u>h</u>) tomados (ya que no existe restricción alguna sobre <u>R</u>)

Resumiendo: para este grupo, la elección de las fases de tres reflexiones generales podrá hacerse arbitrariamente, y su efecto será solamente determinar ol origan desde el cual se describirá la estructura.

Para los grupos espaciales con otros elementos de simetría, existen limitaciones para la elección de los posibles orígenes, precisamente impuestas por esos elementos de simetría.

Aquí analizaremos en detalle sólo dos grupos (aquellos con los que trataremos en el presente trabajo). El tratamiento general de este problema fue desarrollado por Karle y Hauptman $\binom{11}{}$.

1) Grupo P21:

Restricciones para la elección de origen(26)x : $0,\frac{1}{2}$ y : sin restricciones.y : sin restricciones.2 : $0,\frac{1}{2}$ (70)Posiciones equivalentes con esos origenes:(x, y, z) $(\overline{x}, \frac{1}{2}, y, \overline{z})$ (71)

Descripto desde un origen permitido, el factos de estructura tiene la forma

$$F\left(\underline{h}\right) = \sum_{j=1}^{N} f_{j} \exp\left(2\pi i \underline{h} \cdot \underline{r}_{j}\right) =$$

$$= \sum_{j=1}^{N} f_{j} \left(\exp\left(2\pi i \underline{h} \cdot \underline{r}_{j}\right) + \exp\left(2\pi i \underline{h} \cdot \underline{r}_{j}^{*}\right)\right)$$
(72)

donde se han separado los sumandos correspondientes a posiciones equivalentes (\underline{r}_j^* es la posición equivalente, por simetria, de \underline{r}_j). Desarrollando, extreyendo factores comunes y egrupando, quede

$$F(\underline{h}) = 2 \sum_{j=1}^{N/2} f_{j} \cos(2\pi \cdot (hx + Lz + \frac{k}{4})) \cdot \exp(2\pi i (ky - \frac{k}{4}))$$
(73)

Analizando esta expresión se ve que las reflexiones con

h = L = D, k = 2n+1 , tienen factor de estructura sistemáticamente nulo. Estas son las extinciones eistemáticas del grupo espacial.

Además, las reflexiones con k = 0 factores de estructura reales, con fase 0 6 π . A éstas las llamaremos reflexiones con fases especiales, o simplemente reflexiones especiales, del grupo especial. Una característica útil de estas reflexiones es que las fases φ_i definidas en (69), necesariamente valen 0 6 $\frac{1}{2}$, por ser $(1/2\pi)$) de la diferencia entre dos fases restringidas a valores 0 6 π .

En lo que sigue, nos encontraremos a menudo con parámetros limitados a valores 0 ó $\frac{1}{2}$, por lo que convendrá identificarlos de alguna manera. Lo haremos con un asterisco como supraíndice; según esto, los φ_i correspondientes a reflexiones especieles, se escribirán como φ_i^* . (74)

Flanteemos ahora el sistema de ecuaciones (69) para este caso.

$$h_{1}x^{*} + k_{1}y + L_{1}z^{*} = \psi_{1}$$

$$h_{2}x^{*} + k_{2}y + L_{2}z^{*} = \psi_{2}$$
(73a)
(75b)

$$h_{3}x^{*} + k_{3}y + L_{3}z^{*} = \psi_{3}^{2}$$
 (79c)

Las condiciones a imponer sobre los índices h para que el sistema _____i sea resoluble son más restrictivos que en el caso del grupo Pl.

Para verlo basta sumar las tres ecuaciones (75).

(h₁+h₂+h₃).x^{*} + (k₁+k₂+k₃).y + (L₁+L₂+L₃).z^{*} = (Ψ₁+Ψ₂+Ψ₃) Si los paréntesis que multiplican a x^{*} y z^{*} son pares, estos términos son idénticamente congruentes con cero. Lo mismo ocurre con el término en y si el paréntesis respectivo es nulo, por lo que sôlo en el caso que la suma de paridades sea distinta do (pOp), el sistema es no singular. Tampoco podrá slegiras una reflexión del tipo (pOp) para asignarle que fase arbitraria, ya para allas

$$\underline{\mathbf{h}} \cdot \underline{\mathbf{R}} = (2\pi)^{-1} \Delta \Theta = 0 \tag{76}$$

Esto implica que estas fases son invariantes ante translaciones de origen y, por lo tanto, no le son asignables valores arbitrarios $\theta(\underline{h}_i)$.

Analizaremos ahora que valores pueden asignarse a las fases $\theta(\underline{h}, \underline{h})$.

El hecho de que exista una variable sobre la que no hay restricciones, (la coordenada y), asegura que se puede elegir el valor de una fase general (k \neq 0) E(\underline{h}_1), pues esto corresponde simplemente a fijar un valor de y entre los infinitos posibles en la celda. Con esto, el valor de φ_1 también será arbitrario, aunque en el rango $0\leqslant\varphi_1\leqslant 1$.

Las dos ecuaciones restantes (correspondientes a la 2º y 3º reflexiones e esignar) quedan de la forma

$$h_2 x^* + I_2 z^* = \Psi_2 - k_2 y$$
 (77a)

 $h_{3}x^{*} + L_{3}z^{*} = \Psi_{3} - k_{3}y \qquad (77b)$ Siendo los'h' y 'L' enteros, y x^{*} y z^{*}, restringidos, los términos de la izquierda son congruentes con 0 ó ½. Para que el sistema sea resoluble, deberán también serlo los términos de la derecha.

Esto último no es trivial con fases generales, pues $\Theta_0(\underline{h}_i)$ es desconocido a priori. Solamente por azar podrá elegirse $\Theta(\underline{h}_i)$ adecuadamente, de modo de satisfacer aquella condición.

Sin embargo, la situación se simplifica si se toman, para las ecuaciones (77) reflexiones con fases especiales(del tipo (HOL)).

En efecto, en este caso $k_{i} = 0$, y los φ_{i} valen 0 6 $\frac{1}{2}$, independientemente de la elección arbitraria (dentro de los dos valores posibles) que se haga para $\theta(\underline{h}_{i})$. En este caso, (77a) y (77b) se reducen a

$$h_{2}x^{*} + L_{2}z^{*} = \Psi_{2}^{*}$$
(78a)
$$h_{3}x^{*} + L_{3}z^{*} = \Psi_{3}^{*}$$
(78b)

Ahora sí, cualesquiera sean los (h,0,L) elegidos (que verifiquen la condición de compatibilidad : h y l no simultáneamente pares), existirán valores de $x^* y z^*$ que resuelvan el sistema, o lo que es equivalente, se tendrá el origen de la celda univocamente definido.

2) Grupo Pna2,:

Restricciones para la elección de origen $x : 0, \frac{1}{2}$ $y : 0, \frac{1}{2}$ $y : 0, \frac{1}{2}$ Posicionas equivalentes, con esce orígenes(x, y, z) (80) $(\overline{x}, \overline{y}, \frac{1}{2}+z)$ $(\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}+z)$ $(\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}+z)$ $(\frac{1}{2}+x, \frac{1}{2}-y, z)$

Descripto desde un origen permitido, y por un manipuleo semejante al del caso anterior, el factor de estructura tiene le forma

$$F(\underline{h}) = 4. \sum_{j=1}^{N/4} f_{j} \exp\left(2\pi i \left(1z + \frac{\underline{L}}{4}\right)\right) \cdot \cos\left(hx - \frac{\underline{h+k+L}}{4}\right) \cdot \cos\left(ky - \frac{\underline{h+k}}{4}\right)$$
(81)

Analizando la expresión de F(h) dada en (81), se ve que es nula con

$$h = 0; k + L = 2n+1.$$

$$k = 0; h = 2n+1.$$

$$h = k = 0; L = 2n+1.$$

$$h = L = 0; k = 2n+1.$$

$$k = L = 0; h = 2n+1.$$

lo que define las extinsiones sistemáticas.

Además, cuando L = 0, los factores de estructura resultan reales, con fases 0 6 π . Estas son las reflexiones con fases especiales del grupo. Una simple inspección de las restricciones impuestas a los posibles origenes en el grupo $P \cap a_{l}^{2}$, muestra que son totalmente equivalentes a las del $P2_{1}$, con el simple cambio de y por z.

Por lo tanto veldrán, con la salvedad mencionada, las mismas conclusiones, a saber:

- a) Les reflexiones que definan el origen deben tener suma de paridades distintas de (pp0).
- b) Ninguna de ellas puede ser del tipo (ppO).
- c) Se podrá fijar arbitrariamente el valor de una fase general ($L \neq 0$), con lo que se fijará la coordenada z del origen. Las dos restentes deberán ser reflexiones con fases ospeciales (L=0) a las que so les daré valores 0 6 π .

En los grupos espaciales no-centrosimétricos queda aún un grado extra de libertad. Corresponde al hecho que, descripta la estructura desde dos sistemas de referencia no superponibles, (como podrían serlo una terna derecha y una izquierde), los factores de estructura resultan, en principio, iguales aunque con fases opuestas. Esto se desprende de la ecuación (65), cambiendo

 $\begin{array}{cccc} \underline{r}_{j} & \overset{\text{por}}{-\underline{r}_{j}} & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & &$

Esto último no tiene mayor importancia cuando el grupo espacial contiene elementos de simetría que permitan la coexistencia de formas enantiomorfas de una misma molécula, pues en este caso cristaliza el racemato, y no tiene sentido hablar de estructura absoluta, ya que estarán presentes ambas. Este os el caso de la gran mayoría de las moléculas orgánicas que en solución carecen de actividad óptica (Papaverina).

En cambio, las especies formadas por uno solo de los enantiómeros (reconocibles por su ectividad óptica) deberán cristalizar en grupos especiales que imposibilitan la presencia del recemato. Estos son aquellos grupos sin planos de simetría, como el Pl, P2, $P2_12_12_1$. (Quebrachamine)

En este caso, la restricción arbitraria en el rengo de una fase a un par de cuadrantes, puede llevar a obtener la satructura descripta desde una terna inversa, o lo que es equivalente, a la enantiomorfa de la vardadera.

Con datos de intensidades completos, de muy alte precisión, y preferentemente con un átomo pesado en la estructura, puede establecerse en la etapa de refinamiento del modelo, si se ha obtenido el enantiomorfo correcto. o su imagen especular. Las condiciones necesarias, sin embargo, son raramente alcanzables con métodos fotográficos.

Diegrama de convergencia y factores de mérito.

Se han visto ya las limitaciones sobre los índices y las fases de las reflexiones que definan al origen, y el sistema de referencia. Sin embargo, entre las muchas que verifican las condiciones impuestas, hay ciertas conjuntos de reflexiones iniciales que por eplicación de la fórmula de la tangente llevan a la resolución de la estructura, mientras que otros generan soluciones espúreas. La razón de esto último debe buscerse en las primeres atapas del proceso de generación. Allí, la fórmula de la tengente es menos poderosa, y una relación \sum_{2} débil, que genere una fase incorrecta, puede propagarse rápidamente, felseando todos los resultados. Resulta entonces de suma importancia que las primeras vinculaciones entre fases sean de la máxima confiabilidad. Ya hemos visto que una medida a priori de esta confiabilidad la daba el pará-, definido a traves de las funciones de Bessel $I_{n}(K) \in I_{n}(K)$ о́с metro Utilizando este concepto, Germain, Main y Woolfson⁽³¹⁾, desarrollaron una sistemática para la obtención de las reflexiones más confiables para el conjunto inicial. El procedimiento es conceptualmente sencillo: dado el conjunto de reflexiones de mayor E, que serán las conectadas por los tripletes de mayor K(h,h'), se supone a cada una generada por todas las que con ella verifican la relación

 \sum_{2} , y a partir de esto se calcula el $\left< \alpha_{h}^{2} \right>$ asociado, por medio de (64).

El mínimo de estos valores señala la reflexión más débilmente conecteda, por lo que es retirada del conjunto. Con las restantes se repite el proceso.

Obviemente, éste converge hacia las reflexiones de mejor interacción

mutua.

Sin embargo, el proceso de selección debe hacerse cautelosemente, considerando, antes de eliminar una reflexión, si las restantes son adecuadas para definir origen y sistema de referencia. Caso contrario, se elimina la inmediatamente siguiente, y se conserva aquella para tener el origen correctamente definido. Este algoritmo ha sido sistematizado en un programa en FORTRAN IV, CONVERGE, gentilmente cadido por los autores del método.⁽³¹⁾

La experiencia indica que 3 reflexiones (las que arbitrariamente pueden elegirse para fijar origen) es un número exiguo para el conjunto inicial, y con ellas el método de la tangente rara vez converge a la solución correcta. Es necesario entonces incrementar el número de fases de partida.

Una forma es recurrir a ciertas reflexiones especiales, a las que relaciones del tipo de las de Harker y Kasper⁽⁸⁾ pueden asignar fases con una probabilidad muy alta. Sin embargo, la existencia de teles fases no es usual, y depende de la particular distribución de factores de estructura.

La segunda fuente, y más corriente en la implementación del método, consiste en tomàr del diagrama de convergencia, las dos o tres reflexiones inmediatamente siguientes e los que definen origen, y asignarles fases que cubran razonablemente todas las posibilidades. Cada valor asignado define un nuevo conjunto de partida que, a través del algoritmo de la tangente generará una estructura (real o espúrea). El problema radica en saber, con un mínimo de esfuerzo computacional, cual de éstas es la correcta. Para dar criterios de plausibilidad en este sentido, se han desarrollado varios factores de mérito, que, en mayor o menor grado, facilitan la tarea.

Del análisis precedente se desprende que un factor de mérito utilizable sería $Z = \sum_{h=1}^{\infty} \alpha_{h}^{2}$. Obviemente, un valor alto de Z implicaría fases mejor determinadas que para otro Z menor. Para darle a este cosficiente un sentido absoluto, se lo suele referir al valor que darían e Z los $\left\langle \alpha \right\rangle = \sum_{h=1}^{2} \alpha_{h}^{2}$ esperados, y los $\left\langle \alpha \right\rangle = \sum_{h=1}^{2} \alpha_{h}^{2}$ correspondientes a fases elegidas al azar, por medio de la relación

 $Z - Z_{azar}$ ABSFOM = $\frac{Z - Z_{azar}}{Z_{osp} - Z_{azar}}$ (83)
Sa ve da aquí que para fases mal conectadas (poca consistencia

interna) $Z \simeq Z_{azar}$ y por lo tanto ABSFOM $\simeq 0$. Para fases con Z cercano al

-21-

teórico, en cembio, ABSFOM \simeq l .

Los rangos da aplicabilidad de estos factores son aún una cosa espinosa, pero en general hay consenso en aceptar como muy poco probable que estructuras correctas den factores menores que 0.8, por ejemplo. En este sentido permitiría desechar los peores conjuntos de fases, reduciendo el número final a analizar.

El segundo factor de mérito, descripto por primera vez por Cochran y Douglas⁽⁴⁾, se define como

$$\Psi_{0} = \sum_{\underline{h}} \left(\sum_{\underline{h}^{*}} E_{\underline{h}^{*}} E_{\underline{h}-\underline{h}^{*}} \right)$$
(84)

Los términos de la sumatoria interna (\underline{h}^{\bullet} y $\underline{h}_{-}\underline{h}^{\bullet}$) son aquellos con fases conocidas, y los externos (\underline{h}) son aquellos con factores de estructura normalizados cercano a cerc.

Si la relación \sum_{2} sa correcta, cada suma interior deberá representar el valor $E_{\underline{h}}$ (del orden de cero), por lo que la suma exterior deberá ser un valor pequaño.

El tercer factor de mérito, R , es un residuo cristalogfafico, o factor de discrepancia para la ecuación

$$E_{\underline{h}} = C \left\langle E_{\underline{h}}, E_{\underline{h}-\underline{h}} \right\rangle \underline{h}$$
(85)

donde C es un factor de escala definido por

$$C = \frac{\sum_{h} |E_{h}|}{\sum_{\underline{h}} |\langle E_{\underline{h}}, E_{\underline{h}}, \underline{h} \rangle}$$
(86)

Obviamente, A debe ser mínimo para el conjunto correcto de fases.

La experiencia indica que los factores de mérito deben usarse en el sentido de descalificar los conjuntos de fases menos favorables. Sin embargo, y a falta de un criterio mejor, se los suele utilizar para establecer un orden de méritos entre los restantes. Se comienza entonces el análisis sistemático de éstos con el estudio de los mapes de densidad electrónica de los mejor calificados, y se va bajando en el orden de méritos hasta hallar un modelo plausible para la estructura.

Esta última etapa es eminentemente de ensayo y error, y obviamente representa el punto flojo del método, donde la expariencia personal previa en el Buscando molóculas que se adeptaran al plan de trabajos previsto , (estructuras no-controcimétricas, preferentemente sin átomo pesado), se encarô el análisis cristalográfico de una serie de alcaloides. El resultado de estos estudios previos se resume a continuación.

Narceina (C23H27NO8.3H20)

Base libre triclínica. Por reclistelización de solución acuesa se obtuvieron ramilletes de cristales muy finos, en forma de agujas, desarrollades a partir de un núcleo central. Fue imposible hacer crecer cristales de tamaño adecuado para difracción, por lo que se encaró la obtención de derivados. De ellos, solo el clor-hidrato cristalizó razonablemente, de una solucion de ClH(aq) dando prismas amarillos, bien desarrollados, pertenecientes al sistema triclínico.

Como se pretendían grupos espaciales con elementos de simetría translacionales, se prefiriô, de momento, dejarlos de lado.

Narcotina (C22H23NO7)

A pesar de dar buenos cristales por reoristalización de solución acuosa, los detos cristalográficos previos indicaron la presencia de dos moléculas en la unidad asimétrica. Desde el punto de vista estructural, esto corresponde a la resolución de una molécula doblemente compleja (60 átemos distintos de hidrógene) en el límite de las posibilidades actuales de los métodos directos.

Frangulanina (C2H44N404) y Armepavina (C1H23N03)

Sólo se pudieron obtener cristales de sus derivados iodados, en la forma de iodo-metilatos.

Papaverina (C_H_NO_4)

Se obtuvieron excelentes cristales por recristalización en agua, con una molécula por unidad asimétrica. Se encontraron discrepancias con la asignación previa de grupo espacial informada en la literatura.

Quebrachamina (C H₂₆ N₂)

A partir de une solución saturada, con metanol como solvente, se tuvieron cristales razonables. Medidas de densidad indicaron la presencia de una sola mólecula independiente,

A la luz de estos resultados, se decidió encarar el estudio estructural por difracción de rayos x, de estos dos últimos compuestos.

Obtención de cristales y datos cristalográficos previos.

Papaverina

Peso Molecular: 339.38 Composición: C 70.78 % H 6.24 % N 4.13 % O 10.05 % Punto de fusión: 147°C

Se la encuentra naturalmente en el opio, de cuyas aguas madres fue aislada en 1848. La síntesis, debida a Pictet et al.⁽³⁸⁾ data de 1909, y

Figura IV. Papaverina.

la estructura química, obtenida por métodos de degradación oxidativa, por la escuela de Goldschmidt⁽³³⁾ se muestra en la figura IV. Para este trabajo se utilizó la droga de que se dispone comercialmente, y previa purificación por recristalización rápida, se encaró la obtención de cristales aptos para un estudio por difracción.

Se usó como solvente agua, y por evaporación lenta de una solución saturada se consiguieron cristales grandes, incoloros, con forma de aguja.

La gran mayoría presentaba imperfecciones más o menos serias, en especial cavidades con oclusiones de aguas medres, por lo que fue necesario hacer una selección bajo microscopio. Se separaron aquellos que presentaban nítidas direcciones de extinción al ser vistos con luz polarizada. De estos últimos, los más pequeños se utilizaron pera medir la densidad del compuesto, por el método de flotación , en una solución de CO_2K_2 .

Se tuvo especial cuidado en centrifugar la muestra por un lapso prudencial, de modo de poder asegurar que la densidad del compuesto coincidiera con la de la solución con la que se lo contrastaba.

Las mediciones se efectuaron en un picnómetro de 10 ml, calibrado al efecto con tras líquidos diferentes (pureza P.A.), resultando

$$Dm = 1.30(1) g/cm^3$$
, $T = 23°C$

La dispersión de las distintas medidas efectuadas fue menor que 0.005 g/cm^3 .

Este valor de la densidad compara astisfactoriamente con el valor calculado teóricumente, a partir de los datos de celda y poso molecular.

$$Dx = 1.299 \text{ g/cm}^3$$

Tan buen acuerdo sugería la ausencia de moléculas de solvente de cristalización, lo que fue confirmado por los resultados finales.

Los datos preliminares de celda y grupo espacial se obtuvieron con una cámara Weissenberg integradora, marca Nonius, y una cámara de Precesión, también Nonius. Con la primera se tomaron diagramas de oscilación y secciones de Weissenberg a lo largo del eje de la aguja (eje <u>c</u> según nuestra posterior asignación).

La simetría de las intensidades difractadas correspondía al sistema ortorrómbico, y las extinciones sistemáticas observadas

> Nivel 0 (0k0) : k = 2n+1; (h00) : h = 2n+1Nivel 1 (0k1) : k = 2n ; (h01) : h = 2n+1Nivel 2 (0k2) : k = 2n+1 : (h02) : h = 2n+1

pueden resumirse como

(0kL) : k + L = 2n+1(h0L) : h = 2n

Estas ausencias, si bien no definen univocamente un grupo espacial, limita las posibilidades a 2 de los 59 grupos ortorrómbicos posibles: 1) Pna2₁ (Nº 33), no-centrosimétrico, de 4 posiciones equivalentes por celda. 2) Pnma (Nº 62), centrosimétrico, de 8 posiciones por celda.

La medición de densidades ya había confirmado la presencia de 4 molóculas en la celda unidad, por lo que el grupo centrosimátrico resultaba posible solemente si la molácula ocupaba posiciones especiales, que redujeran la multiplicidad de 8 a 4.

Sólo había dos formas en que esto pudiera ocurrir:

a) Que la molécula tuviera un centro de simetría que coincidiera con uno del grupo espacial (Imposible, si la información estructural obtenida hasta ese momento por métodos degradativos fuera correcta)

b) Que la molécula fuese totalmente plana, y contenida en uno de los planos de simetría del grupo especial. Si bien no existía ningún impedimento a priori, pues los anillos de que está compuesta la molécula debían ser planos, la hipótesis resultaba improbable, fundamentalmente por razones de empaquetamiento.

Por todo ello se tomó como grupo espacial más probable el Pna2₁. Esta hipótesis fue posteriormente confirmada por la distribución estadística de los factores de estructura normalizados, y en última instancia, por la resolución de la estructura.

La medición de datos de celda se hizo sobre diagramas de Precesión, tomados con el mismo cristal que después se utilizaria para la recolección de datos de intensidades. La radiación usada fue Cu (K \propto), (λ =1.54178 Å), filtrada con Ni.

De la sección hOL , los parámetros reciprocos obtenidos fueron

De la sección OkL, resultó
con una dispersión promedio de 1 en 1000.

Estos datos permitieron calcular la celda definitiva como

a = 29.50(3) Å b = 9.36(2) Å c = 6.28(1) Å V = 1735.7(6) Å³ Dm = 1.30(1) g/cm³ Dx = 1.299 g/cm³

Cabe destacar que el estudio cristalográfico preliminar había sido anteriormente realizado por van Hulle et al.⁽³⁴⁾. Sin embargo, el grupo espacial que asignaron ($P2_12_2$) es incompatible con las extinciones sistemáticas halladas en este trabajo.

En todos los casos, los parémetros de celda informados discrepan con los aquí presentados en más de 5 desviaciones standard.

ý

Quebrachamina

Peso Molecular: 282.41 Composición: C 80.80 % H 9.28 % N 9.92 % Punto de fusión: 145-147°C

Figura V. Quebrachamina.

Se la encuentra naturalmente en el quebracho blanco (Aspidosperma) y de allí fue eislada por Hesse en $1862^{(36)}$. La estructura química (Figura V) hallada por métodos degradativos por Witkop⁽³⁷⁾ data de 1957, y la síntesis da (33) la forma dl (ópticamente no activa), fue hecha por Stork y Dolfini, on 1953.

-31-

El material utilizado en este trabajo fue extraído de la corteza de Aspidosperma, y cedido gentilmente por el Dr E. Ruveda.

Se obtuvieron cristales apropiados por evaporación lenta de una solución saturada con metanol como solvente. El análisis óptico no mostró anomalías en las agujas incoloras así formadas.

Las medidas de densidad se realizaron por el método ya descripto, resultando

$$Dm = 1.114(5) g/cm^3$$
, $T = 21°C$

El valor calculado, suponiendo dos moléculas en la celda unitaria,

está en excelente acuerdo con aquél.

Los diagrames previos de difracción mostraron una simetría monoclínica, con eje único a lo largo de la dirección de la aguja.

La actividad óptica del compuesto en solución, exigía un grupo espacial que permitiera la existencia de sólo uno de los dos enantiómeros posibles. Esto, unido a que las únicas extinciones sistemáticas registradas fueron las reflexiones del tipo

$$(0k0)$$
 : $k = 2n+1$,

permitió asignar con toda seguridad el grupo espacial como P2₁, no-centrosimétrico, de dos posiciones equivalentes en la celda.

Los parémetros de red se obtuvieron de diagramas de Precesión, tomados con radiación de Mo (K $_{\infty}$), (λ = 0.7107 Å), filtrada con Zr.

Los ejes reciprocos obtenidos fueron

Sección hkO

* b	101	0.1410	0-1 A
* 8	-	0.0665	•_1 ∧

La dispersión estimada fue de 1 en 1000.

El ángulo β se midió como diferencia de las lecturas del dial de la cámara de Precasión, correspondientes al contrado de las secciones OKL y HKO. Resultó *

J

Con estos parámetros, los valores directos correspondientes resultaron

• 15.01(2) Å
b 7.10(1) Å
c 8.25(1) Å

$$\beta$$
 105.75(10) •
V 846.2(4) Å³
Dm 1.114(5) g/cm³
Dx 1.105 g/cm³

Obtención y medida de los diagramas de intensidades

Los diagramas de intensidades se obtuvieron en todos los casos, en cámaras de Weissenberg, con los métodos de equi-inclinación y técnica de película múltiple⁽³⁹⁾.

La polícula utilizada fue la Strukturix D10, de Agfa-Gevaert, cuyo bajo coeficiente de absorción para la radiación usada (Cu K $_{\rm CL}$), hizo necesario, en algunos casos, la utilización de hasta 8 placas simultáneamente (Papaverina, niveles 0 , l y 2). En esas condiciones se pudo registrar todo el rango de intensidades (con una relación de 1000 a l entre la más intensa y la más débil) sin inconvenientes.

Para correlacionar los datos tomados en distintos niveles de Weissenberg se tomaron, con los mismos cristales utilizados previemente, y en câmara de Precesión, niveles cruzados integrados, con radiación de Mo K \propto . No pudiéndoss utilizar aquí la técnica de película múltiple, por un problema de focalización de la câmara, se tomaron, para cada nivel, diagramas con exposiciones progresivas (con una relación entre tiempos de 4 : 1 entre placas consecutivas, para permitir una cómoda correlación entre películas, al medir con densitómetro).

En los casos donde se usó película múltiple, las placas de cada nivel se revelaron simultaneamente, en cubetas verticales diseñadas y construídas al efecto.

Se respetaron escrupulosamente las condiciones de trabajo propuestas por el fabricante de las drogas empleadas:

Revelado 5 minutos (Revelador D.19b, de Kodak) Fijado 15 minutos (Fijador F.5, de Kodak) Lavado final 60 minutos T: 20 ± 0.5 °C.

Con esto se aseguró que la zona lineal de la curva de respuesta de la película se hallara, en todos los casos, entre los valores previstos de ennegrecimiento de la placa.

Los detalles particulares de la recolección de datos de cada compuesto se dan a continuación.

Pepaverina

Los puntos netos, bien definidos de los diagramas previos, sugirieron la posibilidad de hacer medidas de intensidades en placas no integradas, por comparación visual directa con una escala calibrada . Para ello se tomaron 7 niveles perpendiculares al eje <u>c</u> (HKO hasta HK6), no integrados, con un régimen de trabajo en el tubo de rayos x de 35 Kv, 20 mA, constante a lo largo de la experiencia.

La exposición de los primeros 5 niveles (HKO hasta HK4) fue de 96 horas cada uno, reduciéndose después en los dos restantes a 66 y 45 horas, respectivamente, para explorar la red recíproca hasta valores de sen θ / λ , comparables entre niveles.

La medición de intensidades se realizó, como estaba previsto, por comparación visual con una escala calibrada de 15 puntos preparada al efecto, con el mismo cristal utilizado en la toma de datos. Para construirla se utilizó película AA, de Kodak, de muy bajo fondo, y la progresión pritmética de intensidades se logró controlando cronométricamente las exposiciones en la relación natural 1 : 2 : 3 : ... : 15.

El criteric seguido para la recolección de dates fue el de medir en cada placa todos los puntos de intensidad comparable a los de la escala, aprovechando la consiguiente superposición entre places consecutivas para optimizar el cálculo del factor entre placas.

Este cálculo, así como la posterior conversión de los datos a placa única, se realizó con un programa en FORTRAN IV, PROVI2, preparado para ese fin.(Apéndice C)

Se midieron en total 1319 reflexiones independientes de intensidad no nula (70 % del total de puntos accesibles con radiación de Cu K $_{\rm CX}$), que a su vez generaron por simetría un total de 4610.

Quebrachamina

Aquí, el aspecta de las reflexiones no integradas, era mucho más difuso que en el caso de Papaverina, debido quizá a un mayor efecto mosaico en el cristal. Por ello se prefirió tomar diagramas integrados, en las dos dimensiones permitidas por la cámara. Se registraron en total 6 niveles, normales al eje <u>b</u>, con exposiciones de 120 horas cada uno, a un régimen de trabajo similar al del caso anterior.

La medición de intensidades se realizó con un microdensitómetro manual, del tipo del descripto por Smit y Wibenga^(4D), con una lectura del máximo y dos del fondo, para cada punto.

A partir de esas lecturas de transmisión, la intensidad se obtuvo por la relación

Para esta época se tuvo acceso a una calculadora de escritorio Hewlett-Packard, modelo 9100, programable, por lo que los cálculos implícitos en la fórmula (87), así como los programados en PROVI2, se efectuaron menualmente. Se midieron en total 1244 reflexiones independientes (aproximadamente el 65 % del total accesible con Cu K $_{\rm CK}$), de las cuales 128 se consideraron no observadas, y se les asignó factor de estructura nulo.

A los datos así obtenidos, se les efectuaron les correcciones geométrices usuales, por los efectos de polarización de la radiación dispersada (factor de polarización), y por la reducción a tiempo unitario de los distintos tiempos en que los nodos de la red recíproca permanecen en posición de reflexión (factor de Lorentz). Ambas correcciones se realizaron con programas standard con que se contaba en el laboratorio.

Para Papaverina, además, se consideró de interés ensayar una corrección por absorción de la muestra. Esta corrección, que da cuenta de la atenuación de los haces directo y difractados al atravesar el cristal, depende críticamente de la geometría del mismo, por lo que hubo que determinar ésta bajo microscopio. Las medidas se hicieron con un ocular calibrado, y para la determinación de ángulos se utilizó un goniómetro de dos limbos. El modelo final

$$\frac{\mathcal{M}}{\rho} = \sum_{i} \left[\frac{\mathcal{M}}{\rho}\right]_{i} \cdot \mathbf{n}_{i} \qquad (88)$$

donde n_i es la fracción molar del elemento iésimo, y $\left[\frac{M}{g}\right]_i$ es su coeficiente de absorción lineal para la radiación usada. Con esto, $\left[\frac{M}{g}\right] = 5.72 \text{ cm}^2/\text{g}$. Con Dm = 1.30 g/cm³, resultó $M = 7.43 \text{ cm}^2$ Para poder efectuar la corrección se debió NBS : General Absorption Program) a las

Figura VI. Cristal de Papaverina

(medidas en mm.)

adaptar un programa existente (GNABS : General Absorption Program) a las condiciones de este trabajo (equi-inclinación). Para ello se modificó el programa principal, y se agroçó una subrutina (SETHA : Apéndice E). Ambas partes fueror exhaustivamente probadas entes de su utilización.

Corregidos por este efecto los datos de intensidades, las diferencias mostraron ser, en todos los casos, inferiores el 8 % .

Un análisia del esfuerzo invertido y la mejora en los resultados obtenidos en Papaverina, indujeron a desestimar esta corrección para Guebrachamina, donde las correcciones hubieran sido, se estimó, aún menores $\left(\left[\frac{\mathcal{M}}{\rho}\right]:4.42 \text{ cm}^2/\text{g}; \mathcal{M} = 5.01 \text{ cm}^{-1}\right).$

Una vez corregidos los datos de intensidades, se llevaron los distintos niveles a escala única, comparando reflexiones equivalentes medidas en niveles cruzados y haciendo un ajuste por cuadrados mínimos de las diferencias (Hamilton, Rolletty Sparks $\binom{41}{2}$.

Esto permitió hacer una estimación de los errorescon que se determinaron las intensidades. Para ambos compuestos, la desviación media fue del orden del 10 %, con lo que se tiene, para los factores de estructuras derivados de aquéllas, una incerteza promedio del 5 %.

Por último, y utilizando el mátodo da Wilson ⁽⁴²⁾, sa calculó el factor de temperatura promediode cada estructura, así como el factor que llevara los datos a escela epsoluta.

Para ello se hizo un ajuste por cuadrados mínimos de la relación

$$E = \log \left(\frac{\sum_{m \propto \sum_{n \neq 2}}^{H} N}{\sum_{m \mid Fo \mid 2}^{H} q} \right)^{q} = A_{0} + A_{1} \left(\frac{\sum_{s \in n}^{2} B}{s \in n \mid B} \right)^{q}$$
(89)

El promedio se toma sobre volúmenes iguales en la red recíproca.

R :Nº de reflexiones en cada tramo.

m : multiplicidad de cada reflexión.

 α : factor que da cuenta de las ausencias sistemáticas.

n : N° de átomos de una dada especie atómica (caracterizada por f(s))

N : Nº de distintas especies atómicas.

En esas condiciones, el factor de vibración térmica promedio viene dedo por $B = \frac{A_1 \cdot \lambda^2}{2}$, y el factor de escala, como $K = \exp(A_0/2)$

Los resultados obtenidos, esí como los valores hallados pere B y K se encuentran en las Figuras VII y VIII.

ω

Con estos parámetros se calcularon los factores de estructura normalizados, por medio de la relación

$$E_{\underline{h}} = \left[\frac{\kappa}{\alpha \sum nf^{2}(s)}\right]^{\frac{1}{2}} \cdot F_{\underline{h}}$$
(50)

La teoría predice, para estos factores de estructura, una distribución estadística independiente de la complejidad de la estructura, y dependiente solemente del carácter de centrosimétrica o acéntrica de ésta.⁽⁴³⁾

En la Tebla I se encuentran tabulados los valores teóricos, así como los experimentales correspondientes a Papaverina y Quebrachamina. El acuerdo con los parámetros correspondientes a una estructura no-centrosimétrica, es muy bueno.

Parémetro	Te órico (Cent.)	Ts ćrico (No C ent.)	Experimental (Papaverina)	Experimentel (Quebracham.)
E	0.798	0.896	0,883	0.893
Е ²	1.000	1.000	0.989	U .968
5 ² ~1	0,968	0.736	0,723	0.659
E >3	0.27%	0.01%	0.15%	0.09%
E >2.5	1.24%	0.19%	0.45%	0.26%
E >2	4.55%	1.83%	1.72%	1.46%
E >1.8	7.19%	3.92%	3.81%	3.00%
E)1.6	10.96%	7.73%	6.88%	6.25%
E 31.4	16.15%	14.05%	13.23%	11.92%
E >1.2	23.01%	23.69%	23.35%	19.47%
E))1.0	31.73%	36,79%	35.43%	33.70%

Tabla I. Valores madios y distribución de los factores de estructura normalizados,

Los factores de estructura resultantes se ordenaron de acuerdo a los valores de E obtenidos, y con las 200 reflexiones de mayor E, se encaró la resolución de cada una de las estructuras.

Como paso previo al diagreme de convergencia, se hallaron todas las relaciones \sum en que entraba cada reflexión, clasificándolas de acuerdo al número y confiabilidad (a priori) de éstas.

-30-

Con estos resultados se establecteron los diagrames de convergencia, por medio dol programa CONVERCE, con lo que se estuvo en condiciones de definir los conjuntos de fases iniciales para la aplicación de la fórmula do la tangente.

;

;;;

!

Papaverina:

En el grupo espaciel Pna2, conviene fijar origen con una reflexión general y dos especiales. Esto pudo hacerse sin ninguna dificultad a partir del diagrama de convergencia producido por CONVERGE.

					Las reflexiones elegidas y las fases
Н	к	L	ε	Fase	asignadas se muestran en la Tabla II.
23	8	1	1.83	00	Además, las dos siguientes de mejor
21	5	0	2.02	ပ	interacción, y que se incluyeron en el
20	7	0	2.88	0°	conjunto inicial, fueron las reflexiones

Tabla II. PAPAVERINA. (Def. de origen)

A la primera, especial, (que no podía elegirse para definir origen por ser del

a = (22, 6, 0) y b = (22, 1, 3)

tipo invariante (ppO)), se le asignaron valores O y π ; mientras que a la segunda, general, los valores $\pi/4$ y 3 $\pi/4$. Esto último corresponde a definir el sistema de referencia, pues restringe el valor de una fase general al intervalo $C \leq 6 \leq \pi^{-\binom{n}{2}}$.

Con cada una de las 4 combinaciones posibles de fases iniciales, y aplicando la fórmula de la tangente implementada en el programa FASTAN⁽³¹⁾, se generaron las fases del resto de las reflexiones de alto E. Cada una de estas determinaciones estuvo caracterizada por los factores de mérito descriptos anteriormente. El conjunto inicial con a = \overline{n} , y b = $3\overline{n}/4$, dió la mejor consistencia interna (máximo ABSFOM, mínimo $\frac{V_0}{0}$), y fue el primero en analizarse por medio de una síntesis de Fourier con las fases obtenidas para las 198 reflexiones de más alto E.

El mapa obtenido fue singularmente limpio, y entre los primeros 30 picos aparecieron 25 adecuadamente conectados a distencias de enlace, que se asignaron a otros tentos (la totalidad) átomos distintos de hidrógeno.

(\$) : Con los valores asignados a las fases de partida, necesariamente alguna, entre todas las combinaciones posibles, se aproximará al conjunto correcto con un error monor que $\pi/3$, lo que usualmente es suficiente para que el método converja. De ellos, 24 regultaron a la postra correctos, mientrs que el vigésimoquinto, asignado a un carbono terminal, mostró ser un pico espúreo, siendo corregido en las primeras ctapas del refinamiento.

Quebrachemina:

También en este grupo espacial, la definición de origen se facilita con la elección de una reflexión general y dos especiales.

De las obtenidas en el diagrama de convergencia, se seleccionaron la (2, 0, 3); la $(11, 0, \overline{3})$ y la (6, 1, 5), a las que se les asignú arbitrariamente fases cero.(Tabla III)

						La experiencia previa que se tenía con
н	l	κ	L	٤	Faso	el grupo P2 indicaba que era necesario l
2	!	0	3	2,47	٥°	un conjunto fuerte de partida para generar
11		0	3	2,43	0°	las fases correctas. Por ello se incluyeron
6	l.	1	5	1.84	0°	3 raflexiones adicionales en el grupo ini-
						cial: dos generales , a = (10, 4, 2) y
Tabla	III.	QUE	BRACH	IAMINA.	(Def. :	ie Orig.)b = (2 , 1, 2) , y una espocial,
						c = (13, 0, 0).

Las fases esignadas fueron

Para a : $\frac{+}{77} / 4$; $\frac{+}{7} 3 \frac{7}{4}$ Para b : $\frac{77}{4} / 4$; $3 \frac{77}{4}$ Para c : 0 ; $\frac{77}{7}$

La restricción de que b se halle en el 1º 6 2º cuadrante, corresponde, en este grupo espacial, a definir enantiomorfo.

Los 16 conjuntos de fases generaron, por el elgoritmo de la tengente, otros tentos conjuntos de fases que se analizaron de acuerdo a los factores de mérito característicos. Se notó, como tendencia general, que los parámetros ABSFOM y V_0 eran consistentes entre sí, mientras que el residuo R discrepaba en cuento a la calificación de un dado conjunto. Así, grupos de fases con ABSFOM alto y V_0 pequeño, que por esto deberían ser supuestamente fiables, llevaban asociados un residuo R alte que, segun lo viste anteriormento, caracterizaría a los conjuntos menos faverables.

Se tuvo entonces una segregación natural en dos grupos : los confiablos por el criterio de la consistencia interna, y los que lo cran por el del residuo R .

Se comenzó el enflicis sistemático del 1º grupo con las síntesie de Fourier de sus do: conjuntos mejor caracterizados. En ninguna de ellas pudo reconocerse parte alguna de la molécula, por lo que se prefirió pasar al 2º grupo.

La primara síntesia de Fourier realizada, con las 200 reflexiones de mayor E (correspondiente al conjunto generado por $a = 3\pi/4$, $b = \pi/4$, y c = 0) mostró entre los primaros picos, buena parte de la estructura, donde eran fácilmente reconocibles los grupos plenos (el anillo bencénico y el pirrol). El resto se obtuvo por sucesivas síntesis de Fourier. Posteriormente, se comprobó que los picos faltantes también estaben en la Fourier original, aunque con intensidades mucho menores, y confundidos con el fondo.

REFINAMIENTO DE LOS MODELOS OBTENIDOS

Los parémetros obtenidos en las síntesis de Fourier. conjuntamente con los factores de temperatura isotrópicos y factores de escale, fueron refinados por el método de cuedrados mínimos, matriz completa, hasta convergencia ^(S). En las primeras etapas se utilizaron factores de peso weight unitarios, con los cuales los factores de discrepancia

$$R = \frac{\left[\left| F_{o} \right| - \left| F_{c} \right| \right]^{2}}{\frac{1}{F_{o}^{2}}}$$

obtenidos fueron R = 11.9 para Papaverina y R = 10.8 para Quebrachamina. Tratándose en ambos casos de grupos espaciales donde una coordenada no quada fija por simetría, (z para el Pna2, ; y para el P2,) se mantuvo sin refinar la correspondiente coordenada de un átomo relativamente pesado, de modo de evitar el problema de origen flotante, y por consiguiente, de singularidades

Estos étomos fueron O(1) en Papaverina y N(1) en Quebrachamina.

(\$):

២ព

El mátodo consiste en minimizar la función $R = \sum_{h} \sum_{k} \sum_{w} \left[\left| F_{o} \right| - \left| F_{c} \right| \right]^{2}$ donde F_{o} :factor de estructura medido.

F_C :factor de estructura calculado con los parámetros w factor de peso.

Es sabido que si R es función lineal de los parámetros a refinar, el problema se reduce a resolver un sistema de ecuaciones lineales, de orden n (n : número de parámetros). Obviemente, F_C, y por lo tanto R , no verifica estas condiciones, pero si el modelo propuesto está rezonablemente cerca de la estructura correcta, tendrá sentido hacer una linealización, con un desarrollo a primer orden en los Pi

$$R = R_{D} + \sum_{i=1}^{n} \left[\frac{\partial R}{\partial P_{i}} \right]_{0} \Delta P_{i} + \cdots$$

con lo que R pasa a ser función lineal de los P_{i} y el método (ya no más exacto), se transforma en un método iterativo, por aproximaciones sucesivas.

El refinamiento se prosiguió con factores de temperatura anisotrópicos, de la forma $\sum_{i} \sum_{j} h_{i}h_{j} \beta_{ij}$, pero proviamente, y para evitar la interacción de éstos con los factores de escala individuales de cada nivel, ⁽⁴⁴⁾ se llevaron los datos a escala única y se siguió rafinando con un único factor de escala; general. Además se cambió el esquema de pesos por uno dependiente tanto de F como de sen θ/λ , que fue variado de ciclo en ciclo de modo de mantener el valor medio de R^{*} constante, en rangos de |F| y sen θ/λ .⁽⁴⁴⁾

En las últimas etapas del proceso, estos fueron

Papaverina: $\bigcirc 2 = 1/w = (2. + 0.27 F^2) \cdot (0.5 - 0.5 s^2)$

Quebrachamina: $2 = 1/w = (0.48 + 0.38 F - 0.03 F^2) . (0.84 - 0.95 s^2) / (1.05 - exp(-1.5 s^2))$ con s = (sen θ/λ)

Por último, sa introdujeron en el cálculo de factores de estructura, los átomos de hidrógeno que estuvieran univocamente determinados por la distribución de los restantes átomos (9 en Papaverina, 19 en Quebrachamina).

Para calcular las posiciones más probables de aquellos, se desarrolló un programa en FURTRAN IV (BUSCAH : Apéndice D). Las distancias C-H y N-H se tomaron como 1.07 y 1.02 Å, respectivamente.

Con esta inclusión, el factor de discrepancia final fue R = 10.1para Papaverina y R = 9.7 para Quebrachamina.

A esta altura se realizaron sendas síntesis de Fourier de Diferencias, incluyendo solamente reflexiones con sen $\theta/\lambda \leq 0.35$, para que los átomos de hidrógeno tuvieran cierto peso. (Para sen $\theta/\lambda > 0.35$, el factor de dispersión de H es prácticamente nulo.)

No se observaron picos mayoras que 0.3 e/A^3 , por lo que resultó evidente que los modelos eran correctos, y que ninguna molécula de solvente de cristelización había sido desestimada.

Además, en el mapa de Papaverina, 6 picos de los más altos pudieron asignarse a átomos de H correspondientes a los grupos metoxilos (-OCH₃) terminales. Los datos numéricos obtenidos a partir de los modelos refinados, (coordenadas atômicas finales, y distenciar y éngulos interatômicos) se presentan en las Tablas IV, V, y VI para Papaverina, y VII, VIII, y IX para Quebrachamina.

Los detalles particulares de cada estructura, y la discusión de los resultados, se dan a continuación.

Papaverina:

Los valores medios para los distintos tipos de enlace están en excelente ecuerdo con los valores medios medidos en otras estructuras similares⁽³⁵⁾ (Tabla X). Los ángulos plenos en los enillos, esí como el del grupo metileno que los conecte son los esperados, dentro de la desviación atandard del cálculo.

Los grupos isoquinolínico y verátrico son plenarss, y ningún átomo se aparta en mús de 3 desviaciones standard, del pleno medio calculado por cuadrados mínimos. Las ecuaciones de estos planos, así como las desviaciones, se informan en la Tabla XI.

Confirmando lo discutido previemente, a peser de estar formada por grupos planos, la molécula dista mucho de serlo. En efecto, el éngulo dinédrico determinado por los planos medios es de 80.5º, es decir son casi normales.

Esto se debe a que el carácter plano de la molécula está impedido estéricamente por la interacción entre átomos de hidrógeno. Para minimizar este efecto, la molécula adopta una conformación tel que el plano determinado por las uniones C(8) = C(20) y U(8) = C(9) forma un ángulo dihédrico de 67.3° con el grupo isoquinolínico, y de 62.3° con el grupo verátrico.

Esta disposición puede verse claramente en las figuras IXa, donde se muestra una proyección de la molécula a lo largo del eje <u>c</u>, junto con la numeración usada para los átomos en este trabajo, y IXb, donde se ha proyectado la molécula sobre el plano medio del grupo isoquinolínico.

Las interacciones entre moléculas son tipicas interacciones de van der Waals, pues en todos los casos las distancias entre átomos de distintas moléculas son mayores que la suma de los respectivos radios de van der Waals. La menor de esas distancias de 3.29 Å, entre un C(3) y un O(2), cuyos radios aceptados (45)son 1.8 y 1.4 Å, respectivamente. Table IV. PAPAVERINA : Coordenadas atômicas fraccionarias (x10⁴) y fectores de temperatura anisotrópicos (x10⁴) ^(\$) para átomos distintos de hidrógeno. Entre paréntesis, les desvieciones stendard, en unidadem de la ditima cifra significativa informada.

B_23	15(22)	-8(18)	-16(20)	S(18)	12(23)	42(It)20	-62(33)	- 7(32)	-35(32)	-35(20)	33(24)	-23(23)	-45(24)	2(23)	20(28)	-10(27)	23(27)	23(28)	- 33(25)	17(29)	2(30)	-33(25)	12(26)	35(28)	- 7(28)
B ₁₃	-20(B)	7(7)	6(7)	10(6)	- 1(8)	10(12)	7(12)	5(10)	18(10)	- 5(9)	B(B)	B(B)	6(8)	-17(7)	-12(10)	(01)8	- 1 (8)	16(8)	B(7)	12(8)	- 2(8)	10(7)	1(7)	4(9)	-14(8)
B ₁₂	5(5)	0(4)	2(4)	10(4)	- 4(5)	-11(8)	0(a)	-16(8)	- 2(7)	- 6(5)	0(S)	-14(5)	0(S)	- 2(5)	- 6(6)	-17(6)	8(5)	0(S)	- 4(5)	-10(5)	- 1(5)	5(5)	9(5)	- 2(5)	4(5)
в ₃₃	379(35)	255(33)	212(34)	202(30)	273(45)	207(69)	4CS(65)	183(47)	217(52)	231(48)	169(43)	203(24)	2C5(40)	2C3(38)	266(53)	152(52)	219(46)	115(47)	159(41)	112(42)	222(49)	123(36)	150(43)	129(41)	252(48)
B22	136(13)	(21)221	(11)021	66(10)	87(14)	167(21)	215(22)	181(23)	1 15(19)	129(16)	59(15)	113(15)	125(15)	62(13)	(61)111	174(17)	55(13)	126(9)	(71)9LL	112(17)	54(17)	100(17)	62(14)	121(20)	97(16)
B ₁₁	12(1)	9(1)	11(1)	9(1)	(ד)טד	17(2)	11(2)	17(2)	15(2)	10(2)	10(1) 01	12(1)	(1)01	12(1)	13(2)	13(2)	7(1)	5(1)	7(1)	9(1)	7(1)	5(1)	5(1)	7(1)	6(1)
z/c	(0)0001-	1739(12)	1623(11)	-1774(13)	- 837(15)	-2445(22)	3201(24)	3323(15)	-3642(20)	1917(15)	443(15)	526(16)	2249(16)	2161(15)	3649(18)	3533(18)	-2551(18)	-3143(16)	- 143(15)	-2476(17)	-1265(17)	540(15)	1131(15)	-1947(17)	330(16)
у/b	1670(6)	3010(6)	8944 (6)	5924(5)	335v(2)	(11)0C8	1407(12)	8483(10)	10501 (10)	3135(8)	2442(8)	2548(8)	3 489(B)	3370(7)	4026(9)	3970(9)	3656(8)	5285(7)	5671(9)	7649(9)	8521(8)	7999(8)	6594(8)	6202(9)	4180(9)
x/a	4575(2) 2000(2)	5262(2)	3775(2)	3334(2)	297ī (2)	4524(3)	545(4)	4040(4)	3169(3)	4310(3)	4533(2)	4076(2)	3352(3)	3354(2)	4131(3)	4604(3)	2650(3)	2691(2)	3189(2)	3021(2)	3297(3)	3511(2)	3454(2)	2961(3)	3127(2)
Atomo	c(1)	0(<i>2</i>)	0(3)	C(4)	z	C(1)	に(ゞ)	c(3)	C(4)	c(s)	ເ(ອ)	C(7)	C(3)	C(9)	c(10)	C(11)	C(12)	C(13)	C(14)	c(15)	C(16)	C(17)	C(18)	C(19)	c(20)

-45#-

(3): El factor de temperatura anisotrópico está derinido como $\exp(-(B_{11}h^2 + B_{22}k^2 + B_{33}L^2 + 2B_{12}hk + 2B_{13}hI_4 - 2B_{23}kL))$

(Entre paréntesis se consigna el átomo al cual va unido cada uno de ellos.)

Atomo	×/a	у/Ь	z/c
ні(с(8))	321	243	242
н2(С(8))	326	411	364
н(с(7))	388	202	- 65
н(С(10))	397	461	493
н(с(11))	481	454	470
н(С(12))	245	319	-350
H(C(13))	251	565	-452
H(C(15))	285	823	-305
H(C(18))	335	575	200
H1(C(1))	430	11	-159
H2(C(1))	475	21	-042
H1(C(3))	427	765	279
H2(C(3))	424	938	393
H1(C(4))	287	988	-405
H2(C(4))	340	1047	-498

Tabla VI. PAPAVERINA : Distancias y ángulos interatómicos. (Entre paréntesis, las desvieciones standard, en términos de la última cifra significativa.)

```
a) Distancias. ( En Å )
```

0(1)	-C(1)	1.411(13)	0(2)	- C(2)	1.389(15)	0(2)	-C(5)	1,344(9)
0(3)	- C(3)	1.391(14)	0(3)	-C(17)	1.361(13)	0(4)	-C(4)	1.439(15)
0(4)	-C(15)	1.373(13)	C(5)	-C(6)	1.395(12)	C(5)	-C(11)	1.418(13)
C(6)	-C(7)	1.354(18)	C(7)	-C(9)	1.495(12)	C(8)	_ C(9)	1.487(10)
C(8)	-0(20)	1.520(16)	C(9)	-0(10)	1.38 <u>6(13</u>)	C(12)	-0(13)	1,355(16)
C(13)	-C(19)	1.391(16)	C(14)	-C(20)	1.439(16)	C(15)	-C(16)	1.374(16)
C(16)	-0(17)	1.397(18)	C(17)	-C(18)	1.377(16)	C(18)	-C(14)	1.413(16)
C(19)	-C(14)	1.402(18)	C(19)	-C(15)	1.406(16)	N	-C(12)	1.354(7)
N	-C(20)	1.323(15)						

b) Angulos. (En grados)

C(1)	-0(1)	- C(6)	118.7(7)	C(2)	-0(2)	- C(5)	120.2(8)
C(3)	-0(3)	-C(17)	120,3(8)	C(4)	-0(4)	-C(16)	117.3(9)
C(12)	N	-c(20)	117.6(1.0)	0(2)	-C(4)	-c(a)	119.1(7)
0(2)	- C(5)	-C(11)	122.3(8)	C(6)	- C(5)	-C(11)	118.6(8)
0(1)	-C(6)	-C(5)	112.5(7)	0(1)	-0(6)	-C(?)	126.1(7)
C(5)	- C(6)	-C(7)	121.4(8)	C(6)	- C(7)	- C(9)	121.6(8)
C(9)	-C(8)	-C(20)	115.9(8)	C(7)	- C(9)	-C(8)	121.4(7)
C(7)	C(9)	-C(10)	116.7(7)	C(8)	-C(9)	-C(10)	122.0(7)
C(9)	-C(10)	-C(11)	122.5(8)	C(5)	-C(11)	-C(10)	119.1(8)
N	-C(12)	-C(13)	124.5(1.1)	C(12)	-C(13)	-C(19)	118.8(1.1)
C(13)	-C(19)	-C(15)	122.6(1.1)	C(13)	-C(19)	-C(14)	119.4(1.1)
C(15)	-C(19)	-C(14)	118.0(1.1)	0(4)	-C(16)	-C(15)	124.9(1.0)
0(4)	-C(16)	-C(17)	115.7(1.0)	C(15)	-C(16)	-C(17)	120.4(1.1)
0(3)	-0(17)	-C(16)	116.2(1.1)	0(3)	-0(17)	-C(10)	123.8(1.8)
C(16)	-C(17)	-C(18)	120.0(1.1)	C(17)	-C(18)	-C(14)	113.9(1.1)
C(19)	-C(14)	-C(18)	120.3(1.1)	C(19)	(41)ئ-	-C(20)	116.6(1.0)
C(18)	-C(14)	-C(20)	123.1(1.1)	N	-C(20)	- C(8)	115.5(1.0)
N	-C(20)	-C(14)	123.1(1.1)	c(8)	-C(20)	-C(14)	121.4(1.1)

Tabla VII. QUEBRACHAMINA : Coordenadas atômicas fraccionarias (×10⁴) y factores de temperatura anisotrópicos (×10⁴) ^(\$).

pare átomos distintos de hidrógeno. Entre peréntesis, las desvieciones stendard, en unidades de la última cifra significativa informada.

B ₂₃	13(10)	-1 4(13)	9(15)	e (15)	12(20)	3(14)	-37(1.7) -37	13(15)	20(16)	-47(17)	16(17)	- 4(17)	17(15)	-14(12)	23(19)	17(15)	0(19)	6(24)	12(14)	- 3(18)	-27(14)	³ k 1))
в ₁₃	26(5)	28(6)	30(9) 30	40(7)	35(B)	37(7)	36(7)	55(7)	20(7)	55(8)	37(7)	46(B)	22(5)	36(6)	(2)62	18(6)	34(7)	21(9)	19(6)	4(8)	35(6)	28 ₁₃ h L +2B ₂ ,
B ₁₂	12(11)	3(17)	11(14)	17(14)	- 2(15)	0(14)	-29(15)	41(15)	6(18)	-10(16)	- 5(1B)	23(16)	B(15)	7(14)	6(17)	9(14)	10(16)	-26(29)	16(14)	5(20)	8(15)	2+28 ₁₂ tk+5
в 33	113(8)	137(10)	(11)081	142(11)	104(14)	134(11)	161.(12)	160(13)	(11)811	145(12)	122(11)	200(13)	(דו)סטד	(6)6II	162(13)	(01)811	176(13)	146(13)	128(10)	108(11)	159(11)	925 ^{k 2+B} 33 ^I
8 ₂₂	70(27)	131(33)	30(33)	30(36)	154(46)	B4(36)	220(42)	75(40)	165(49)	163(43)	148(a2)	23(39)	165(33)	42(34)	172(47)	155(39)	192(47)	416(75)	109(36)	334(53)	26(35)	xp(-(B ₁₁ h ² +t
B ₁₁	34(4)	35(5)	36(5)	34(5)	37(5)	37(5)	35(S)	35(5)	42(5)	46(6)	50(6)	45(6)	34(5)	37(5)	45(5)	34(4)	35(5)	87(9)	33(4)	52(6)	41(5)	ຳຊື່ອ como: ອ
z/c	1481(7)	675(8)	2133(9)	177(9)	3033(12)	2539(9)	- 267(10)	2439(10)	4553(10)	-1343(10)	4025(9)	2244(11)	4453(9)	1340(8)	1637(10)	-1144 (9)	- 202(11)	4011(12)	-1007(9)	-2978(9)	1394(10)	ipico está dafin
у/b	(0)TTO2	5687(13)	6700(13)	6843(14)	6231(16)	8121(14)	7121(15)	5 839(16)	8785(15)	61 89(16)	9236(16)	8780(14)	7301(15)	8260(12)	3875(16)	5265(14)	3824(17)	3715(24)	4607(13)	5473(19)	9596(12)	aratura anisotrf
×/a	2090(4)	4752(4)	5312(6)	3317(5)	els9(s)	4CJ1(5)	1532(5)	1590(G)	60 73 (G)	3211(6)	5133(6)	2434(6)	6576(5)	3924(5)	1 430(6)	1544(5)	1077(5)	749(9)	2531(5)	582(7)	3157(5)	factor de tempe
Atomo	(T)N	N(2)	с(т) С	c(2)	c(3)	C(4)	c(5)	c(e)	c(7)	C(8)	c(อ)	C(10)	c(11)	C(12)	C(13)	C(14)	c(15)	C(16)	c(17)	C(18)	C(19)	(\$): EI

-45%-

Tabla VIII. CUEBRACHAMINA : Posisionas calculadas para algunos átomos de hidrógeno, (x10³)

(Entre paréntesis, se consigna el átomo al cual va unido cada uno de ellos.)

Atomo	×/a	у/ъ	z/c
н(с(э))	48C	40	443
H(C(7))	635	957	609
н(с(11))	721	707	518
н(с(з))	651	512	266
H(N)	490	474	5
н1(С(8))	349	566	-228
н2(С(в))	287	745	-186
H1(C(17))	279	402	22
H2(C(17))	25 2	349	-192
H1(C(19))	342	1095	207
H2(C(19))	237	1001	11
H1(C(10))	193	983	209
H2(C(10))	27 3	856	356
H1(C(5))	173	821	- 98
H2(C(5))	91	745	- 24
H1(C(6))	93	650	225
H2(C(6))	189	580	374
H1(C(13))	209	323	193
H2(C(13))	110	307	233
H1(C(15))	112	241	- 63
H2(C(15))	44	42	- 45
H1(_C(18))	128	638	-368
H2(C(18))	42	614	-290

Tabla IX. QUEBRACHAMINA : Distancias y ángulos interatómicos.

(Entra paréntesis, las desviaciones standard, en términos de la última cifra significativa.)

```
a) Distancias. ( En Å )
```

N(1)	_ C(5)	1,455(10)	N(l)	-0(6)	1,455(11)	N(1)	-C(10)	1.448(10)
N(2)	-C(l)	1.392(10)	N(2)	-C(2)	1.388(12)	C(1)	- C(3)	1.384(13)
C(1)	- C(4)	1.383(13)	C(2)	C(8)	1.481(12)	C(2)	-C(12)	1.385(12)
C(3)	-C(11)	1.364(13)	C(4)	-C(9)	1.405(12)	C(4)	-C(12)	1.442(11)
C(5)	-C(14)	1.505(14)	C(S)	0(13)	1.556(10)	C(7)	-C(9)	1.393(12)
C(7)	-C(11)	1.404(14)	C(8)	-C(17)	1,571(14)	C(10)	C(19)	1.535(12)
C (12)	-C(19)	1.500(12)	C(13)	-C(15)	1.511(12)	C(14)	-C(15)	1.560(13)
C(14)	-C(17)	1.557(12)	C(14)	-C(18)	1.526(11)	C(16)	-C(18)	1.458(19)

b) Angulos (En grados)

C(5)	-!i(1)	-0(6)	109.6(ê)
C(6)	-N(l)	-C(10)	115.6(6)
N(S)	-C(1)	- C(3)	131.2(8)
C(3)	-C(1)	- C(4)	121.6(8)
N(2)	- C(2)	-C(12)	163 .3(7)
C(1)	- C(3)	-C(11)	118.3(9)
C(1)	-C(4)	-C(12)	103.4(7)
N(1)	-C(5)	-C(14)	110.6(7)
C(9)	- C(7)	-C(11)	121.7(9)
C(4)	-C(9)	-C(7)	116.5(8)
C(3)	-C(11)	-C(7)	120.8(9)
C(2)	-C(12)	-C(19)	127.8(7)
C(6)	- C(13)	-C(15)	113.9(8)
C(5)	-0(14)	-C(17)	111.4(7)
C(15)	-C(14)	-C(17)	109.0(7)
C(17)	-C(14)	-C(18)	111.4(7)
C(B)	-C(17)	-C(14)	114.8(7)
C(10)	-C(19)	-C(12)	113.7(7)

C(5)	-!v(1)	-0(10)	115.6(6)
C(1)	-N(2)	-C(2)	109.7(7)
N(2)	-C(1)	-C(4)	107.0(7)
N(2)	-C(2)	-C(8)	118.4(8)
C(8)	-C(2)	-C(12)	133.2(8)
C(1)	-C(4)	-C(9)	120.9(8)
C(9)	-C(4)	-C(12)	130.5(8)
N(1)	-C(6)	-C(13)	107.6(7)
C(2)	- C(8)	-C(17)	114.7(8)
N(1)	-C(10)	-C(19)	111.1(7)
C(2)	-C(12)	-C(4)	106.5(7)
C(4)	-C(12)	- C(19)	125.6(7)
C(5)	-C(14)	-C(15)	105.6(7)
C(5)	-C(14)	-C(18)	108.5(7)
C(15)	-C(14)	-C(18)	110.8(7)
C(13)	-C(15)	-C(14)	112.9(8)
C(14)	-C(18)	-C(16)	117.7(9)

Tabla X. PAPAVERINA : Valores medios pera los distintos tipos de enlace. (En A)

Pap averina	R e î. (35)
1.397(15)	1.395(3)
1.503 (17)	1,53(1)
1.338 (16)	1.352(5)
1.359 (12)	1.36(1)
1,407(15)	1.43(1)
	Papaverina 1.397(15) 1.503(17) 1.338(16) 1.359(12) 1.407(15)

Tabla XI. PAPAVERINA : Ecuaciones de los planos medios, y apartamientos de los átomos de los grupos planos respecto de aquellos (En $\stackrel{o}{A}$).

Plano 1:

 $0.0304 \times + 0.8045 \times - 0.5931 z = 2.0765$

determinado por

C(5), C(6), C(7), C(8), C(9), C(10), C(11), O(1) y O(2).

C(5)	:	0,001(8)	C(10)	: -0.034(10)
C(6)	:	0.004(8)	C(11)	: 0.609(9)
C(7)	:	0.008(8)	0(1)	: -0.010(5)
C(8)	:	0.013(8)	0(2)	: 0.014(6)
C(9)	:	0.001(7)	C(1)	: -0.134(6)
			C(2)	: 0.095(8)

Plano 2:

 $0.7912 \times - 0.2411 \times - 0.5621 z = 6.2207$

determinado por

```
N, C(12), C(13), C(14), C(15), C(16), C(17), C(18), C(19), C(20), C(8), O(3) y O(4)
```

N	: 0.025(9)	C(18)	: 0.046(11)
C(12)	: -0.009(11)	C(19)	: -0.022(11)
C(13)	: -0.023(11)	C(20)	: 0.018(10)
C(14)	: -0.007(11)	C(8)	: 0.021(8)
C(15)	: -0.022(11)	0(3)	: -0.002(6)
C(16)	: 0.005(12)	0(4)	: -0.054(4)
C(17)	: -0.022(11)	C(3)	: 0,120(9)
		C(5)	: 0.092(7)

Figura IXa. PAPAVERINA : Preyección de la melécula a lo large del eje \underline{c} . mostrando la numeración usada para los átomos.

Figura IXb. PAPAVERINA : Pruyección de la molécula sobre el plano medio definido por el grupo isoquinolínico.

En las figuras X y XI se muestran sendas proyecciones esquemáticas de la celca uniteria, a lo lergo de los ejes <u>b</u> y <u>c</u>, respectivamente, mostrendo el empaquetamiento molecular. En el Apéndice F se da una lista de las reflexiones medidas, juntamente con los factores de estructura calculados con el modelo refinado, y las fases correspondientes.

Quebrachamina:

Tembién aquí los valores medios de distancias y ángulos interatómicos obtenidos promediando uniones equivalentes, son normales (Tabla XII). Las desviaciones respecto de los valores usualmente aceptados son no significativas (menores que tres desviaciones standard) así como tampoco lo son las de los átomos del grupo indólico respecte del plano medio respectivo, calculado por cuadrados minimos (Tabla XIII). El enillo piperidínico presenta una conformación normal, tipo silla.

La figura XII muestra una proyección de la celda uniteria a lo largo del eje <u>b</u>, donde se muestra la numeración usada.

Una característica interesante de la molécula es que presenta un anillo de 11 átomos, 10 de los cuales son carbonos y el restante, nitrógeno (N(1)).

Alrededor de las distintas configuraciones posibles de este anillo, (o de anillos semejantes en alcaloides estrechamente relacionados con Quebrachamina) se tejieron distintas hipótesis, fundamentalmente a través de estudios conformacionales y cinéticos.

Así Mokry et al, estudiando la cinética de iodometilación ^(\$) de Vincaminorina (figura XIII) y Vincaminoreina (figura XIV), dos alcaloides que difieren de Quebrachamina sólo en algunos sustituyentes, hallaron velocidades de reacción muy bajas, que hicieron pensar en un impedimento estérico para la

(\$):

La reacción de indometilación de un nitrógeno terciario puede esquematizarse como sigue:

$$\begin{array}{c} & B \\ I \\ R^{\bullet} - N \stackrel{\bullet}{\bullet} + ICH_{3} \longrightarrow \begin{bmatrix} & H \\ I \\ R^{\bullet} - N - CH_{3} \\ I \\ R^{\bullet} + \end{bmatrix} (+) \quad (-)$$

Tabla XII. QUEBRACHAMENA : Valores medios para los distintos tipos de enlace ($\stackrel{\circ}{A}$).

Enlace Quebrachamine	Bef. (35)
$C(sp^{3})-C(sp^{3})$ 1.535(9)	1.541(3)
$C(sp^2)-C(sp^2)$ 1.389(8)	1.395(3)
$C(sp^2)-N(sp^2)$ 1.390(11)	1.352(5)
C(sp ³)-N(sp ³) 1.453(10)	1.472(5)
C(sp ²)-C(sp ³) 1.491(11)	1.53(1)

Tabla XIII. QUEBRACHAMINA : Ecuación del plano medio, y apartamientos de los átomos del grupo plano respecto de aquél (En $\overset{\circ}{A}$)

Plano

 $0.5412 \times + 0.6401 \times - 0.5453 \times = 6.1736$

determinado por

N(2), C(1), C(2), C(3), C(4), C(7), C(8), C(9), C(11), C(12), y C(19).

N(2)	: -0.012(8)	C(1)	: 0.004(8)
c(5)	: 0.023(9)	С(З)	: -0.001(10)
C(4)	: -0.024(9)	C(7)	: 0.008(10)
C(8)	: -0.063(10)	C(9)	: 0.003(9)
c(11)	: -0.004(9)	C(12)	: 0.025(8)
C(19)	: -0.015(8)		

Figura XI, PAPAVERINA : Proyección de la celda a lo largo del eje <u>o</u> .

Figura X. PAPAVERINA : Proyección de la celda a lo largo del eje \underline{b} .

1

Figura XII. QUEBRACHAMINA : Proyección de la celda unitaria a lo lorgo del eje <u>b</u>, mostrando la numeración usada para los átomos.

Figura XIII. Vincaminorina.

Figura XIV. Vincaminoreina.

aproximación del grupo metilo al par de slectrones no compartidos del nitrógeno (46).

Esta hipótesis fue totalmente confirmada por los resultados del presente trabajo: el átomo N(l) está ubicado en Quebrachamina de menera tal que el par de electrones apunta hacia el interior del ciclo, siendo apantellado por el puente indólico ($C(8) \ y \ C(17)$) y justificando que sólo en condiciones muy severas de reacción, que alteren la conformación normal de la molécula, pueda el grupo metilo acceder a ellos, y formar el iodometilato.

Por otro lado, existen alcaloides estrechamente vinculados con Quebrachamina que en condiciones muy suaves reaccionan con ioduro de metilo para dar el derivado iodado. Uno de ellos es la Cleavamina (figura XV), cuya estructura en la forma de iodometilato, se conoce desde hace tiempo⁽⁴⁷⁾.

Si se comparan ambas estructuras (Quebrachamina, figura XVI, y Iodometilato de Cleavamina, figura XVII), proyectadas sobre el grupo indólico, resulta evidente la distinta geometria alrededor del átomo de nitrógeno: mientras en Quebrachamina el par de electrones apunta hacia una zona fuertemente protegida por otros átomos del ciclo, en el iodometilato de Cleavamina el grupo metilo apunta hacia afuera. Esto puede indicar que, o bien la base libre tiene una estructure distinta a la de Quebrachamina, con el par de electrones no compartidos del nitrógeno terciario dirigidos hacia afuera (lo que explicaría la facilidad de la metilación), o bien en Cleavamina el ciclo es mucho menos rígido y puede cambiar fácilmente de conformación. Cualquiera sea la respuesta, el doble enlace en el anillo tetrahidro-piridínico debe juger un rol importante.

El empaquetamiento molecular está determinado en Quebrachamina, por interacciones del tipo van der Weals, no habiendo contactos intermoleculares menores que 3.5 Å.

En el Apéndice G se informan las reflexiones medida Junto con los factores de estructura observados se presentan los calculados usando el modelo final, y las correspondientes fases.

Figura XV. Cleavamina .

Figura XVI. QUEBRACHAMINA : Proyección de le molécula sobre el plano medio definido por el grupo indólico.

Figura XVII. CLEAVAMINA (Iodo-matilato) : Proyección de la molécula sobre el plano medio definido por el grupo indólico.

CONSIDERACIONES FINALES

Desde el punto de vista estructural, el presente trabajo permitió conocer en detalle las características geométricas de los alcaloides propuestos.

En Papaverina, compuesto farmacológicamente muy estudiado por sus propiedades antiespasmolíticas, el conocimiento del ángulo dihédrico entre los grupos isoquinolínico y verátrico, así como su orientación relativa, terminó de describir exhaustivamente la molécula. Se confirmó el carácter estrictamente planar de los ciclos componentes. Las distancias y ángulos interatómicos nallados son los normales en este tipo de compuestos.

La Quebrachamina es una molécula más complicada, y con mayor número de variables desde el punto de vista estructural. Es la primera base libre del grupo de las Aspidospermas que se estudia por difracción, y los resultados obtenidos permitieron extraer interesantes conclusiones sobre el ciclo de 11 átomos presente en esta familia de compuestos.

La conformación hallada para aquel presenta importantes diferencias con su similar en Cleavamina, estudiada en forma de iodometilato. Sin embargo, la presencia de un metilo adicional cobre el nitrógeno terciario del ciclo de ésta última, podría ser la causa de la diferencia de conformación observada.

Los datos estructurales obtenidos están en un todo de acuerdo con los datos cinéticos y permite justificar plenamente la dificultad observada en la iodometilación de Quebrachamina.

Desde el punto de vista de la aplicación de los métodos directos con esta implementación, los resultados obtenidos no son nuevos ni sorprendentes. Es más, confirman conclusiones obtenidas por diversos autores en otros varios trabajos previos de estructuras, en relación a que el método conduce a la solución correcta en la mayoría de los casos, pero la búsqueda de ésta entre las muchas generadas, no es tarea fácil ni económica.

Entre otras cosas, se volvió a observar que en el grupo espacial P2 las soluciones espúreas consisten de distintos fragmentos desplazados de la molécula, pero correspondientes a los dos enantiomorfos.

-19--

Evidentemente, esto corresponde a no haber discriminado adecuadamente uno de ellos en las primeras etapas del refinamiento de fases. En efecto, el único método para hacerlo es el ya mencionado de restringir la fase de una reflexion general al rango $0 \leq \theta \leq \pi$. Sin embargo, si la reflexión elegida tiene, con el modelo propuesto, fase cercana a 0 o π , la fase correspondiente al enantiomorfo ($\theta^* = -\theta$) coincidirá prácticamente con aquella, por lo que la discriminación buscada será ilusoria.

En este sentido, es significativo que el conjunto correcto de fases en Quebrachamina discriminara enantiomorfo con la reflexión (2,1, $\overline{2}$), cuya fase final, una vez refinado el modelo es de 92º (Prácticamente el máximo alejamiento que se puede tener entre 0 y π .)

Es de notar que para este grupo, el factor de mérito más discriminativo fue el residuo R, definido por Karle y Hauptman⁽¹³⁾.

En lo que respecta al grupo espacial $Pna2_1$, pfacticamente no hubo tropiezos en la resolución de la estructura. Los factores de mérito mostraron ser consistentes entre sí, y la definición de sistema de referencia se hizo sin problemas con una fase cercana a \mathcal{T} ((22, 1, 3), $\theta = 159^{\circ}$).

De todo esto resulta claro que los factores de mérito descriptos son mucho menos independientes de la estructura y del grupo espacial que lo que sería deseable para su uso sistemático como discriminadores.

Parece natural, entonces, creer que la evolución normal del método será en el sentido de perfeccionar aquéllos, y aun desarrollar otros nuevos, para obviar esa dificultad.
APENDICE A

Para integrar las expresiones equivalentes

$$\begin{array}{c} \mathsf{K} \underbrace{\geq \geq}_{h \ k \ L} & \begin{pmatrix} \underline{s} - \underline{s}_{hkL} \end{pmatrix} & \mathsf{y} & \lim_{N \to \infty} & \frac{3}{1 = 1} \left[(\operatorname{sen} \ 2\pi N \ \underline{s} \cdot \underline{a}_{1}) / (\operatorname{sen} \ 2\pi \ \underline{s} \cdot \underline{a}_{1}) \right] \\ \text{elijamos para el espacio S una terna paralela a los } \underline{a}_{1} & \mathsf{de modo que las variables sean} & \underline{s} \cdot \underline{\hat{a}}_{1} & \mathsf{y} \ el elemento de volumen} & \mathsf{dV}_{g} = (\ \underline{\hat{a}} \ \underline{\hat{b}} \ \underline{\hat{c}} \)^{-1} \mathsf{ds}_{1} \mathsf{ds}_{2} \mathsf{ds}_{3} \\ \text{donde } \ \underline{\hat{a}} & , \ \underline{\hat{b}} & , \ y \ \underline{\hat{c}} & \text{representan los vectores unitarios en las direcciones de los ejes y} & (\ \underline{\hat{a}} \ \underline{\hat{b}} \ \underline{\hat{c}} \) & , \text{su producto mixto.} \end{array}$$

Integrando la suma da deltas,quoda

$$K \int \sum_{h} \sum_{k} \sum_{l} \delta(\underline{s} - \underline{s}_{hkl}) dV_{s} = K$$

La integral de la expresión de la derecha da, en cambio,

$$\lim_{N \to \infty} \int_{i=1}^{3} (\operatorname{sen} 2\pi N \underline{s}, \underline{a}_{i})/(\operatorname{sen} 2\pi \underline{s}, \underline{a}_{i}) dV_{s} =$$

$$\lim_{N \to \infty} \int_{i=1}^{3} (\operatorname{sen} 2\pi N |\underline{a}_{i}| s_{i})/(\operatorname{sen} 2\pi |\underline{a}_{i}| s_{i}) \frac{d^{3}s_{i}}{(\underline{a} \underline{b} \underline{c})} s_{i}^{\underline{a}_{i}} = \underline{s}, \underline{a}_{i}^{\underline{a}_{i}}$$

$$\lim_{N \to \infty} \int_{i=1}^{3} (\operatorname{sen} 2\pi N s'_{i})/(\operatorname{sen} 2\pi s'_{i}) \frac{d^{3}s_{i}}{|\underline{a}||\underline{b}||\underline{c}|(\underline{a} \underline{b} \underline{c})} V$$

de donde el Jacobiano de la transformación de coordenadas vale J = 1/V

-51--

A partir de la expresión

$$\begin{split} \mathsf{P}(\mathsf{B}_{\underline{h}}) &= \left[2\pi I_{0}(\alpha)\right]^{-1} \exp\left[\alpha\left(\cos\left(\mathsf{B}_{\underline{h}}-\beta\right)\right)\right] \\ \text{se pretende hallar la varianza definida como } \mathbf{v} &= \left\langle\left(\mathsf{B}_{\underline{h}}-\left\langle\mathsf{B}_{\underline{h}}\right\rangle\right)^{2}\right\rangle = \left\langle\mathsf{B}_{\underline{h}}^{2} \times \left\langle\mathsf{B}_{\underline{h}}\right\rangle^{2} \\ \text{Analicemos en primer lugar} \\ &\quad \left\langle\mathsf{B}_{\underline{h}}^{2}\right\rangle = \left[2\pi I_{0}(\alpha)\right]^{-1} \int_{\beta-\pi}^{\beta+\pi} \mathsf{B}_{\underline{h}}^{2} \exp\left[\alpha\left(\cos\left(\mathsf{B}_{\underline{h}}-\beta\right)\right) d\mathsf{B}_{\underline{h}}\right] \\ \text{con } \mathbf{x} &= \mathsf{B}_{\mathbf{h}}-\beta \text{ , queda} \\ &\quad \left\langle\mathsf{B}_{\underline{h}}^{2}\right\rangle = \left[2\pi I_{0}(\alpha)\right]^{-1} \int_{-\pi}^{\pi} (\mathbf{x}+\beta)^{2} \exp\left(\alpha\left(\cos\mathbf{x}\right)d\mathbf{x}\right) \\ \text{Desarrollando el cuadrado, y teniendo en cuenta que } \beta = \left\langle\mathsf{B}_{\underline{h}}\right\rangle \\ &\quad \left\langle\mathsf{B}_{\underline{h}}^{2}\right\rangle = \left[2\pi I_{0}(\alpha)\right]^{-1} \left[\int_{-\pi}^{\pi} \exp(\alpha\left(\cos\mathbf{x}\right)d\mathbf{x} + 2\left\langle\mathsf{B}_{\underline{h}}\right\rangle\int_{-\pi}^{\pi} \exp(\alpha\left(\cos\mathbf{x}\right)d\mathbf{x} + \left\langle\mathsf{B}_{\underline{h}}\right\rangle^{2} \\ &\quad \left(\sup_{\pi}(\alpha\left(\cos\mathbf{x}\right)d\mathbf{x}\right)\right)^{-1} \left[\int_{-\pi}^{\pi} \exp(\alpha\left(\cos\mathbf{x}\right)d\mathbf{x} + 2\left\langle\mathsf{B}_{\underline{h}}\right\rangle\int_{-\pi}^{\pi} \exp(\alpha\left(\cos\mathbf{x}\right)d\mathbf{x} + \left\langle\mathsf{B}_{\underline{h}}\right\rangle^{2} \\ &\quad \left(\sup_{\pi}(\alpha\left(\cos\mathbf{x}\right)d\mathbf{x}\right)\right)^{-1} \left[\int_{-\pi}^{\pi} \exp(\alpha\left(\cos\mathbf{x}\right)d\mathbf{x} + 2\left\langle\mathsf{B}_{\underline{h}}\right\rangle\int_{-\pi}^{\pi} \exp(\alpha\left(\cos\mathbf{x}\right)d\mathbf{x} + \left\langle\mathsf{B}_{\underline{h}}\right\rangle^{2} \\ &\quad \left(\sup_{\pi}(\alpha\left(\cos\mathbf{x}\right)d\mathbf{x}\right)\right)^{-1} \left[\int_{-\pi}^{\pi} \exp(\alpha\left(\cos\mathbf{x}\right)d\mathbf{x} + 2\left\langle\mathsf{B}_{\underline{h}}\right\rangle\int_{-\pi}^{\pi} \exp(\alpha\left(\cos\mathbf{x}\right)d\mathbf{x} + \left\langle\mathsf{B}_{\underline{h}}\right\rangle^{2} \\ &\quad \left(\sup_{\pi}(\alpha\left(\cos\mathbf{x}\right)d\mathbf{x}\right)\right)^{-1} \right] \\ &\quad \left(\operatorname{B}_{\mathbf{h}}^{2}\right)^{2} = \left[2\pi I_{0}(\alpha\right)^{-1} \int_{-\pi}^{\pi} \exp(\alpha\left(\cos\mathbf{x}\right)d\mathbf{x} + \left\langle\mathsf{B}_{\underline{h}}\right\rangle^{2} \\ &\quad \left(\operatorname{B}_{\mathbf{h}}^{2}\right)^{2} = \left[\operatorname{B}_{\mathbf{h}}^{2}\right)^{2} = \left[2\pi I_{0}(\alpha\left(\cos\mathbf{x}\right)d\mathbf{x} + \left\langle\mathsf{B}_{\underline{h}}\right\rangle^{2} \\ &\quad \left(\operatorname{B}_{\mathbf{h}}^{2}\right)^{2} = \left[\operatorname{B}_{\mathbf{h}}^{2}\right)^{2} = \left[\operatorname{B}_{\mathbf{h}}^{2}\right]^{2} \\ &\quad \left(\operatorname{B}_{\mathbf{h}}^{2}\right)^{2} = \left[\operatorname{B}_{\mathbf{h}}^{2}\right]^{2} = \left[\operatorname{B}_{\mathbf{h}}^{2}\right]^{2} \\ &\quad \left(\operatorname{B}_{\mathbf{h}}^{2}\right)^{2} \\ &\quad \left$$

como una serie deltipo

$$e \times p(\ \alpha \ \cos \times) = I_0(\alpha) + 2 \sum_{n=1}^{\infty} I_{2n}(\alpha) \cos 2nx + 2 \sum_{n=0}^{\infty} I(\alpha) \cos(2n+1)x$$

Integrando término a término, resulta para la varianza un desarrollo en serie que converge rápidamente para valores usuales de \propto :

$$v = \frac{\pi^2}{3} + I_0 (\alpha)^{-1} \cdot \begin{bmatrix} \infty \\ \sum_{n=1}^{\infty} \frac{I_{2n}(\alpha)}{n^2} + 4 & \sum_{n=0}^{\infty} \frac{I_{2n+1}(\alpha)}{(2n+1)^2} \end{bmatrix}$$

APENDICE C

Programa PROVI2 (En FORTRAN IV)

Celcula el mejor factor entre placas, para un máximo de 7 películas, tomadas en geometría Weissenberg.

Repite este cálculo para todos los niveles, y promedia todos los resultados ajustando por cuadrados mínimos la relación lineal

$$F_j = \frac{F_0}{\cos u_j}$$

donde u es el ángulo de equi-inclinación.

Con esto define los nuevos factores entre placas F_j , y lleva todos los datos a primera placa, con una estimación de los errores cometidos.

La entrada consiste en las intensidades leidas y las placas correspondientes. La salida, en tarjetas perforadas o cinta magnética, es compatible con la entrada del programa L.P.; cada registro contiene los índices de la reflexión, junto con la intensidad corregida.

Sigue un listado del programa.

 			
I			
	Č	··	
	С	PROVID	
	C		
	C PF	POGREMA PZES PEGMEEN	AR INTENSIDADES MEDIDAS VISUALMENTE
	U 1.1	THE FORE THE POOL. THE	(300) JI (300) TAPE
		FUEL F(200, 14), F/C	T(13), INTENS(14), VEC TOR (300), Y(10), X(10), CONT (10)
		*). ^NG[10), 015P(10),	, FCTOR (10), DELTY(10)
	700	- FUENAT (212)	OUTPT TO TO UNCH
		RÉWIND TYPE	· ·
		IE (ICUTET.M.43) -	REWIND IOUTPT
		4AD=2.14150/180.	
		SEAD (3,701) [ANG((), [=1,1C)
	70] ``05	900MAT (1096.2) 2000 (4.071 TEVEL	
	27	EURMAT (12)	
		WRITE (TADE) TLEVEL	
	35	1) (10 0 V PC + 1) (2,9) 11 FV = 1 FV FC + 1	8.95
		8=A	
	1	N=5)+1	
	100	- FORMAT (272.1X.1454	5.0)
		WETTE (TEPE) TH(M),	, IK(N), IL(N), (F(N, J), J=1, 14)
		15 (TH(N).FC.74) G	
	2	CONTINUE	-
		N = 2i - 1	
		C (10) T = ().	
		DO 3 K=1.N	
		$\frac{100}{100} 3 J=1.12$	
		IF (F(K,J+2).FC.(.)) GO TO 3
		COUNT=COUNT+1.	
		VECTORIT DEFIK.ID/FT	(X+J+2)
		FACTOS= FICTOS+VECTO	
	3	CONTINUE ENCLOSE ENCLOSE (COUNT	T
		Y(TL =V) = = ∧ ∩ TC 8	
		CONT(TURV)=COUNT	
		DISPECED.	5(11,EV)#RA()))
		DO 222 J=1.1	
	222		FACTOR - VECTOR (J))
		012b(](LEA)=U12bEr#]	100.
		GO TO OS	
	ЧŖ	13N FINDE 1397 18=0 .	
		ARAJ=0.	
		- DO 300 J=1,115V - MORTR=MORTR+CONT(1)) × Y (,1)
		<u>AP(J=/⊬/J+((NT(J)×X)</u>	(j)
	300	C 281 1.011	

. . . .

_-- _--

A=/8818/	3^J
CAUX=0.	
nº 301 J:	I.I.FV
FCTUR(J)	
	(ADELTY(I)*CONT(I)
	*100./AFFT8
WEITELA,	0000) 4, CAUX, TLEV
1000 FORMAT (7, 1 PAFA UNA RELACION FUNCIONAL Y = A + X , CONDE Y ES
<u> </u>	ENTRE PLACAS, Y X LA INVERSA DE COS (MU), A=*, F10.
5,/,10/10	ULADA PER CUAD. MINIMOS CON UNA DISP.=,FIU.D, *(PURCENTU
	$\frac{1}{100} + \frac{1}{100} + \frac{1}$
21 55AO(TAP)	
	(+1) co,oq,ç3
03 WEITE (6.	124) ILFVEL
124 FORMAT (H1, 1X, 1 NIVEL 1,12)
	TY(ILEV)*100 /ECIOP(ILEV)
	10(1) Y(1) EV) + DISP(ILEV) + ECTOR(ILEV) + DAUX2 + CCNT(ILEV)
1001 FORMAT (//, *FACTOR PROMEDID DEL NIVEL
*	*CISPERSION DEL PROMEDIO
<u>+</u>	FACTOR POR CUAD. MINIMOS
*	IDIFFRENCIA PORCENTUAL
	INDMARIDE PARES DE PUNIUS
$F^{(1)} = F^{(1)} = F^{(1)}$	1747 FACTOR*#(1J-1)/2)
J12=(J+1	12
WEITE LA	626) J12, FACT(J)
424 FORMAT (//, $1X$, * FACTOR ENTRE PLACA (1) Y PLACA (*, $I2$, *) = *,
<u>+ = 10.3</u>	
	1011
101 FORMAT (A	1017 1/. I H K I TPROM TALEAL DISPL TALEA2 DISP2 PLAC
<u>*A</u> 1 PI	ACA 2 PLACA 3 PLACA 4 PLACA 5 PLACA 6 PLAC
×∆ 7 °•///)
<u>N=0</u>	
1003 N=N+1	NON THREE TREES TO AN A COLOR IN 1-1 164
60 TR 100	3
1004 CONTINUE	
<u>N=N-1</u>	
D(1 - 5 - K = 1)	Nj
$\frac{\text{COUNT}_{1=0}}{\text{COUNT}_{2=0}}$	
ACUM2=0.	
F78501=0.	
F() BS Q 2= 0 .	
<u> </u>	
	(1)=0.
IF (F(K.J).FQ.C.) GO TO 7
COUNT1=C	UNT1+1.
TNTENS(J)	$=F(K,J) \neq FACT(J)$
ACUMIENCI. 7 telete	MITTNIUNSTJJ T11.50.0.1 GO TO A
/ I* U****	

	TNTENS(J+1)=F(K,J+1)*FACT(J)
	$\Delta CUM2 = 2 CUM2 + INTENS(J+1)$
6	
	T=(COUNT2.5C.0.) COUNT2=1.
	FORSQ1 = 2 CUM 1 ZCOUNT1
	FORSQ2=ACUM27UUN12
	DTSP1=0.
	DTSP 2= 0.
<u> </u>	$\frac{10}{15} + \frac{3}{10} + \frac{1}{10} + \frac{1}{10}$
	DTSP1=DTSP1+ABS(FDBSQ1-INTENS(J))
ċ	IF(F(K,J+1),FQ.0.) GO TO 8
	DISP2=DISP2+ABS(FOBS02-INTENS(J+1))
n	DISP1=DISP1*10C./(COUNTI)
	DISP2=DISP2*10C./(COUNT2)
	15(FORSQ1.NF.O.) DISP1=DISP1/FORSQ1
	WPITE (6,111) IH(K), IK(K), IL(K), FOBSQ, FOBSQ1, DISP1, FCBSQ2, DISP2, (I
	*NTENS[J], J=1, J4)
111	FIPMAT (1X, 213, 5(1X, F5, 0), 5X, 7(1X, 2F5, 0))
113	WRITE (IGUTPT,112) IH(K),JK(K),JL(K),FOBSQ
112	FORMAT (313, F]).2)
۲	TELEPHICH NEAD WRITE (INUIPIATZ) MARKAMARKAMARKAFEPSE
	GD TO P1
	IF (JOUTPT.NE.23) REWIND TOUTPT
	END
·	

.

_

APENDICE D

Programa BUSCAH (En FORTRAN IV)

Calcula las posiciones más probables para el, o los átomos de hidrógeno, unidos a un dado átomo de coordinación tetrahédrica (ep^3), o planar (sp^2), en celda ortogonal o monoclínica.

Los datos de entrada son los datos de celda, las coordenadas del átomo central, y las de los átomos vecinos a él coordinados.

La salida consiste en las coordenadas fraccionarias más probables para el, o los átomos de hidrógeno unidos al átomo central, en tarjetas perforadas compatibles con la entrada del programa SFLSQ.

Sigue un listado del programa.

C BUSCAH C PPOGRAMA BUSCA F, SOBRE CARBOND, EN CELDA OR TOGONAL O, MCNOCLINICA C PPOGRAMA BUSCA F, SOBRE CARBOND, EN CELDA OR TOGONAL O, MCNOCLINICA C PPOGRAMA BUSCA F, SOBRE CARBOND, EN CELDA OR TOGONAL O, MCNOCLINICA C SEGUENCIA DE FATOS LEIDOS C CFUCI J, LEI, ALY, 3E7, 3) LADOS DE CELDA C ELTO (7X, 57, 2) ANGULO MONCLINICO C INDEX=C HIARIDIZACION SP3.FETRAEDFICA, 3 (TFFS) H (FCTACION C INDEX=C HIARIDIZACION SP3.FETRAEDFICA, 3 (TFFS) H (FCTACION C INDEX=C HIARIDIZACION SP2.PLANAR, 2H COPLANARES C INDEX=C HIARIDIZACION SP2.PLANAR, 2H COPLANARES C INDEX=C HIARIDIZACION SP3.FETRAEDFICA, 1(UNO) H C INDEX=C HIARIDIZACION SP3.FETRAEDFICA, 1(UNO) H C INDEX=C HIARIDIZACION SP3.FETRAEDFICA, 2(DOS) H C INDEX=C HIARIDIZACION SP3.FETRAEDFICAL (LADEX=C) C HIARIDIZACION (FETRICIC) (LINICAL) (LINICAL) (LINICAL) (LINICAL) (LINICAL) REAL MUSCH (LINICAL) (LINICAL) (LINICAL) (LINICAL) READ(PP. 100) A RETA HEAD(PP. 100) A RETA HEAD(PP. 100) A RETA C HIERDEX FOR 100 NOFX.FISTH 200 FROMATICZ (LINICAL) SP1.FISTH 200 FROMATICZ (LINICAL) SP1.FISTH 200 FROMATICZ (LINICAL) SP1.FISTH 200 FROMATICZ (LINICAL) SP1.FISTH 200 FROMATICZ (LINICAL) SP1.FISTH 201 FIELDEX FOR 100 A RETA(FIRE) (LODINA READ(PP. 100) A RETA(FIRE) (LODINA READ(PP. 100) A RETA(
C BUSCAM C BUSCAM C PERGPAMA BUSCA F .SUBRE CARBOND, EN CELDA OR IOGONAL O MENOCLINICA C C SECJENCIA DE FATOS LEIDOS C CELOLIA DE FATOS LEIDOS C LADOS DE CELDA C BUSCAL HIGEIDIZACION SP2.FETAEDEICA. 3(TPES) H (FETACION C LADEX=1 HIGEIDIZACION SP2.FETAEDEICA. 3(TPES) H (FETACION C LADEX=1 HIGEIDIZACION SP3.FETAEDEICA. 1000S) H C TODEX=1 HIGEIDIZACION SP3.FETAEDEICA.1(UNO) H C TODEX=1 HIGEIDIZACION SP3.FETAEDEICA.1(UNO) H C TODEX=1 HIGEIDIZACION SP3.FETAEDEICA.1(UNO) H C TODEX=1 HIGEIDIZACION SP3.FETAEDEICA.1(UNO) H C TODEX=1 TERMA EL CALCULD C MIDIA=3 (7X, 5F7.3) COORD. ATOMO LETERAL C CIIIA=3 (7X, 5F7.3) COORD. ATOMO LETERAL C CIIIA=3 (7X, 5F7.3) COORD. ATOMO LETERAL C CIIIA=3 (7X, 5F7.3) COORD. ATOMO LATERAL C CIIIA=1-3 (7X, 5F7.2) COORD. ATOMO LATERAL C TI PEGGESAA ACEPTA LAS COORDENACAS OUF PERFORA EL SELS C DIMENSIONE VI(2)+V2(2)+V2(2)+V12)+V12)+CED(3) COMMON 4(2), A(2), D(2)+H1(2)+H1(2)+H0(2)-H0(2)- COMMON 4(2), A(2), D(2)+V2(2)+V12)+V12) DIMENSIONE VI(2)+V2(2)+V2(2)+V12) METEGE 2C, PE, WP E 2=5 WE=A WE=A N=24 BEAG. I TEL I DIMENSION 2(1) RETA N=24 BEAG. I TEL I DIMENSION 2(1) RETA N=24 BEAG. I TELEX, EC, (-1) (CLUII), 1=1, 3) AND 0 AND		
L PENGRAMA RUSCA F., SUBRE CARBOND, EN CELDA OR TOGONAL O MENOCLINICA C PENGRAMA RUSCA F., SUBRE CARBOND, EN CELDA OR TOGONAL O MENOCLINICA C SIGUENCIA DE FATOS (ELDOS C CINCT, T=1, 3(7X, 357, 3) LADOS DE CELDA C RUSCA (12), OTSTHEFO, 5) NUDICADOR DEL CALCULC, SEGUN SIGUE C INDEX=4. HIGH 10(ZACION SP3, TETRAEDFICA, 1(UND) H C INDEX=4. HIGH 10(ZACION SP3, TETRAEDFICA, 1(UND) H C INDEX=5. HIGH 10(ZACION SP3, TETRAEDFICA, 1(UND) H C INDEX=6. HIGH 10(ZACION SP3, TETRAEDFICA, 1(UND) H C INDEX=7. INTERVENCE (1000) AND (ATERAL C (11), 1=1,3 (7X, 357,3). COORD, ATOMO LATERAL C (11), 1=1,3 (7X, 357,3). COORD, ATOMO LATERAL C (11), 1=1,3 (7X, 357,3). COORD, ATOMO LATERAL C (11), 1=1,3 (7X, 357,3). C DIMENSION, 44(3). DIMENSION, 44(3). DIMEN	C	
C PPGGP AMA AUS(A + .\$CORRE CARBOND, EN CELDA OR TOGONAL O MENDELINICA C STELIENCIA DE FATOS LEIDOS C STELIENCIA DE FATOS LEIDOS C C C C C FIGUENCIA DE FATOS LEIDOS C C C C C FIGUENCIA DE FATOS LEIDOS C C C FIGUENCIA C C FIGUENCIA ANGULO MONOCLINICO C TANES HERCIDIZACION SP2.PLANAR, 2H COPLANARES C INDEX=1 HERCIDIZACION SP2.PLANAR, 2H COPLANARES C INDEX=1 TEPACIDAL TERACION SP2.PLANAR, 2H COPLANARES C INDEX=1 TEPACIDIZACION SP2.TETRACOPICA.20003 H C INDEX=1 TEPACIDAL ACLON C TOLACION SP2.TETRACOPICA.2003 H C CORDA ATOMO LATERAL C CORDA ATOMO LATERAL C CORDA ATOMO LATERAL C CORDA ATOMO LATERAL C COLLOLO C C CORDA ATOMO LATERAL COLLOLO C C CORDA ATOMO LATERAL <tr< td=""><td><u>.</u> r</td><td>BUSCAH</td></tr<>	<u>.</u> r	BUSCAH
C C C C STGIENCIA DE FATOS (ELDOS C CELTA(I), ELL, ACTA, 367, 3) LADOS DE CELDA C SETA (TX, 57, 7) ANDULD MONTCLINICO C INDEX (I), INTERFIN, 5) INDICADOR DEL CALCULC, SEGUN STGUE C INDEX (I), INTERFIN, 5) INDICADOR DEL CALCULC, SEGUN STGUE C INDEX (I), INTERFIN, 5) C INDEX (I), I, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	č	PROGRAMA BUSCA + , SOBRE CARBOND, EN CELDA ORTOGONAL O MENOCLINICA
C SECUENCIA DE CATOS LEIDOS C SECUENCIA DE CATOS LEIDOS C CFLOT(13,1=1,3(7X,357,3) LADOS DE CELDA C BETS (7X,57,2) ANGULO MONOCLINICO C INDEX=1, (12,015H1E10,5) INDICADOR DEL CALCULC,SEGUN SIGUE C INDEX=2 HIREIDIZACION SP3,TETRAEDFICA, 3(TFFS) H (FCTACION C LINEX=3 HIREIDIZACION SP2,PLANAR, 2H COPLANARES C INDEX=2 HIREIDIZACION SP2,PLANAR, 2H COPLANARES C INDEX=3 HIREIDIZACION SP2,PLANAR, 2H COPLANARES C INDEX=3 HIREIDIZACION SP2,TETRAEDFICA,1(UNO) H C INDEX=0 HIREIDIZACION SP3,TETRAEDFICA,1(UNO) H C INDEX=0 HIREIDIZACION SP3,TETRAEDFICA,1(UNO) H C INDEX=0 HIREIDIZACION SP3,TETRAEDFICA,2(DOS) H C INDEX=0 HIREIDIZACION SP3,TETRAEDFICA,2(DOS) H C INDEX=1 TFRMINA EL CALCUD C M(1),1=1,3 (7X,357,2) COORO, ATOMO LATERAL C O(1),1=1,3 (7X,357,2) COORO, ATOMO LATERAL C O(1),1=1,3 (7X,357,2) COORO, ATOMO LATERAL C O(1),1=1,3 (7X,357,2) COORO, ATOMO LATERAL C D(1),1=1,3 (7X,357,2) COORO, ATOMO LATERAL C DIMENSION V(2),V2(3),V3(2),X12),V12),H1(2),H2(3),H8(24,3),H8TAL DIMENSION V(2) REAL V01,V2,V01,V2,V01,V2,V01,V2,V01,V2,V01,V2,V01,V2,V01,V2,V01,V2,V01,V2,V01,V2,V01,V2,V01,V2,V01,V2,V01,V2,V01,V2,V01,V2,V01,V2,V0	C	
C STELFACTA OF FAINS (FIDOS C CFLN(1), 1=1, 3(7X, 957, 3) LADOS DE CELDA C FLN(1), 1=1, 3(7X, 957, 3) INDICADOR DEL CALCULC, SEGUN STGUE C NNPKX (17), 0(STH(F)A, 5) INDICADOR DEL CALCULC, SEGUN STGUE C INDEX (17), 0(STH(F)A, 5) INDICADOR DEL CALCULC, SEGUN STGUE C INDEX (17), 0(STH(F)A, 5) INDICADOR DEL CALCULC, SEGUN STGUE C INDEX (17), 0(STH(F)A, 5) INDICADOR DEL CALCULC, SEGUN STGUE C INDEX (17), 0(STH(F)A, 5) INDICADOR DEL CALCULC, SEGUN STGUE C INDEX (17), 0(STH(F)A, 5) INDICADOR DEL CALCULO, 10(ST, 7), 7) INDICADOR SP3, 7ETRAEDRICA, 10NO) H C INDEX (17), 0(STH(F)A, 5) COORD, ATOMO CATERAL C INDEX (17), 0(STH(F)A, 5) COORD, ATOMO CATERAL C INDEX (17), 15, 3(TX, 357, 2) COORD, ATOMO CATERAL C (11), 1=1, 3(TX, 557, 2) COORD, ATOMO CATERAL C (11), 1=1, 3(TX, 557, 2) COORD, ATOMO CATERAL C (11), 1=1, 3(TX, 557, 2) COORD, ATOMO CATERAL C (11), 10, 1, 1=1, 2) THONO CATERAL C (11), 10, 1, 1=1, 1=1, 2) THONO CA C (11), 10, 1, 1=1,	<u> </u>	
L C (FLO(1), 1=1, 3(7X, 3=7, 3) ANGULO MONDCLIMICO C HOPK:ef, (7X, 67, 2) ANGULO MONDCLIMICO C HOPK:ef, (17), 015TH(FLO, 5) THO[CADDR DEL CALCULC.SEGUN SIGUE C HOPK:ef, HIREIDIZACION SP3.TETRAEDFICA. 3(TPFS) H (FCTACION C HOPK:ef, HIREIDIZACION SP3.TETRAEDFICA. 1(UNO) H C HOPK:ef, HIREIDIZACION SP3.TETRAEDFICA. 1(UNO) H C HOPK:ef, HIREIDIZACION SP3.TETRAEDFICA. 2(DOS) H C HIREIN: (N, 17, 197, 2) C CORROL ATOMO (ATERAL C D(1):=1:3 (TX, 3F7.3) C HORON (A'2), H(2):(J):V(2):V(2):V(2):V(2):CID(3) D HMENSION V(2):V(2):V(2):V(2):V(2):V(2):CID(3) D HMENSION V(2):V(2):V(2):V(2):V(2):V(2):CID(3) D HMENSION V(2):V(2):V(2):V(2):V(2):V(2):CID(3) D HMENSION V(2):V(2):V(2):V(2):V(2):V(2):CID(3) D HMENSION V(2):V(2):V(2):V(2):V(2):V(2):V(2):V(2):	C	SECUENCIA DE LATOS LEIDOS
C PFT5 (7X, F7.2) ANGULO MONOCLINICO C INDFX (12), DISTH(F)0, S) INDICADOR DEL CALCULE, SEGUN SIGUE C INDFX (12), DISTH(F)0, S) INDICADOR DEL CALCULE, SEGUN SIGUE C LIAFF) INDICADOR DEL CALCULE, SEGUN SIGUE C LIAFF) INDICADOR DEL CALCULE, SEGUN SIGUE C LIAFF) LIAFF) INDICADOR DEL CALCULE, SEGUN SIGUE C INDFX=2 HIBFIDIZACION SP2,PLANAR, 2H COPLANARES INDICADOR DEL CALCULO C INDFX=2 HIBFIDIZACION SP2,TETRAEDPICA.1(UNO) H INDICADOR DEL CALCULO C INDFX=1 INFERNIN, EL CALCULO INDICADOR DEL CALCUDO INDICADOR DEL CALCULO C INDFX=1 INFERNIN, EL CALCULO INDICADOR DEL CALCUDO INDICADOR DEL CALCUDO C NILIEI, TAL, TALE, TALE, TALE, ALANCHUNO INTERAL INDICADOR DEL CALCULO C III=1, TALE, TALE, TALE, TALE, ALANCHUNO INTERAL INDICADOR DEL CALCUDO C III=1, TALE, TALE, TALE, TALE, ALANCHUNO INDICADOR DEL CALCUDO INDICADOR DEL CALCUDO C III=1, TALE, TALE	<u> </u>	(ELD(T), T=1, 3(7X, 3E7, 3))
C INDEX [12], DISTH(FIG.5) INDICADOR DEL CALCULC, SEGUN SIGUE C INDEX=4 HIBEIDIZACION SP3, TETRAEDPICA, 3(TPES) H (FCTACION C INDEX=3 HIBEIDIZACION SP3, TETRAEDPICA, 3(TPES) H (FCTACION C INDEX=2 HIBEIDIZACION SP3, TETRAEDPICA, 1(NNO) H C INDEX=1 HIBEIDIZACION SP3, TETRAEDPICA, 2(DOS) H C INDEX=1 HIBEIDIZACION SP3, TETRAEDPICA, 2(DOS) H C INDEX=1 (7x, 95%, 3) FORMEDICA, 2(DOS) H C INDEX=1 (7x, 95%, 2) COORD. ATOMO LATERAL C C(1), T=1, 3 (7x, 95%, 2) COORD. ATOMO LATERAL C INDEX=1 (2) (7x, 95%, 2) COORD. ATOMO LATERAL C INDEX=1 (2) (2), 12(3), 12(Č	BFTS (7X, 57, 7) ANGULO MONOCLINICO
C INDEX=4. HIGHDIZACION SP3, TETRAEDFICA. 3(TRES) H (FCTACION C INDEX=3 HIGHDIZACION SP2, PLANAR, 2H COPLANARES C INDEX=1 HIGHDIZACION SP2, PLANAR, 2H COPLANARES C INDEX=2 HIGHDIZACION SP2, PLANAR, 2H COPLANARES C INDEX=1 HIGHDIZACION SP3, TETRAEDFICA, LUND) H C INDEX=1 INDEX C INDEX=1 HIGHDIZACION SP3, TETRAEDFICA, LUND) H C INDEX=1 IFEMINARIA C INDEX INDEX C INDEX INDEX C G(1), I=1, 3 INDEX C G(1), I=1, 3 INDEX C DIMENSION VI(3), V2(3), V2(3)	C.	INDEX (12), DISTH(F10.5) INDICADOR DEL CALCULO, SEGUN SIGUE
C LIAPF) C INDEX=3 HIGEIDIZACION SP2,PLANAR, 2H COPLANARES C INDEX=2 HIGEIDIZACION SP2,PLANAR,1 H C TEDEX=1 HIGEIDIZACION SP3.TETRAEDPICA.2(DOS) H C NDEX=0 FIGEIDIZACION SP3.TETRAEDPICA.2(DOS) H C NDEX=-1 TERMINA FL CALCULO C (1) I=1,3 (7X, 2F7,3) COORD. ATOMO LATERAL C (1) I=1,3 (7X, 2F7,2) COORD. ATOMO LATERAL C (1) I=1,1 (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	<u> </u>	INDEX=4 HIBPIDIZACION SP3.TETRAEDFICA, 3(TRES) H (ROTACION
C 10/174/23 F16*10/24(10N 572,FLANAR, 2F CUPLANARS) C 10/074/23 F16*10/24(10N 572,FLANAR, 1F CUPLANARS) C 10/074/21 F14210/24(10N 572,FLANAR, 1F CUPLANARS) C (11) 1=1,3 (7X, 377,31 COORD. ATOMO CENTRAL C (11) 1=1,3 (7X, 377,32 COORD. ATOMO LATERAL C (11) 1=1,3 (7X, 377,31 COORD. ATOMO LATERAL C (11) 1=1,3 (7X, 377,31 COORD. ATOMO LATERAL C (12) 0 CHMON (N (2), N (2), V (2), V (2), V (2), V (2), C E LO (3) C (11) 1=1,3 (7X, 377,31 COORD. ATOMO LATERAL C (11) 1=1,3 (7X, 777,31 COORD. ATOMO LATERAL C (11) 1=1,4 (11) 1=1,3 (11) 1=1	C.	LIBRE) INDEX 10 LIBREDIZACION CD2 OLANAD 24 CODIANADES
L (H) (A) (H) (H) (H) (H) (H) (H) (H) (H) (H) (H	<u> </u>	INDEX=2 HIGGIDIZACION SP2,PLANAR, 2H CUPLANARES
C HIDFX=0 FIRENINA_EL_CALCULO C HUDFX=-L FFRMINA_EL_CALCULO C ATDMO LATERAL (7x, 957, 3) C OCORD. ATOMO LATERAL C ATDMO LATERAL C ATDMO LATERAL C OTDAL FLAT C CORD. ATOMO LATERAL C OTDAL FLAT DIAL FLAT OTDAL FLA	Č	TABLEX = 1 HIBETOTZACION SP3.TETRAEDRICA.1 (UNO) H
C INPER-1 TERMINA FL CALCULO C 4(1) I=1.3 (7X,3F7.2) COORD. ATOMO CENTRAL C (1),I=1.3 (7X,3F7.2) COORD. ATOMO LATERAL C (I),I=1.3 (7X,3F7.2) COORDENALAS QUE PERFORA EL SELS C (I),I=1.3 (7X,4F7.2) COORDENALAS QUE PERFORA EL SELS C (I),I=1.3 (7X,4F7.3) READ(PP.100)/(FLD(1),I=1.2) WE (24,3),BETA DIMENSION Z(2) REAL REAC PE=7 N=72 N=72 N=72 N=74 N=74 NETTE (WF.100)/(FLD(1),I=1.2) WE IF (WF.100)/(FLD(1),I=1.3) READ(PP.100)/(FLD(1),I=1.3) READ(PP.100)/(FLD(1),I=1.3) READ(PP.100)/(FLD(1),I=1.3) READ(PP.100)/(FLD(1),I=1.3) READ(PP.100)/(FLD(1),I=1.3) REAC D (I)	Ċ	INDEX=0 HIBRIDIZACION SP3, TETRAEDRICA, 2 (DOS) H
C *(1) I=1.3 (7x, 9F.3) COORD. ATOMO CENTRAL C +(1) I=1.3 (7x, 9F.3) COORD. ATOMO LATERAL C (1) I=1.3 (7x, 9F.3) COORD. ATOMO LATERAL C (1) I=1.3 (7x, 9F.3) COORD. ATOMO LATERAL C OID. ATOMO LATERAL (INDEX=1) C C I PEGGRAMA ACEPTA LAS COORDENACAS QUE PERFORA EL SELS C DIMENSION V(2), V(2), V2(2), V3(2), X(2), Y(3), CELD(3) COMMON A(2), R(2), C(2), D(2), H1(2), H2(3), WB (24,3), 9F.TA DIMENSION V(2), V3(3), H1(2), H2(3), WB (24,3), 9F.TA DIMENSION V(2), H2(3), H1(2), H2(3), WB (24,3), 9F.TA PRESSON, H1(2), H1(2	<u> </u>	INDEX=-1 TERMINA EL CALCULO
C (1), 1=1,3 (7X, 357,3) COORD. ATOMO LATERAL C (1), 1=1,3 (7X, 357,3) COORD. ATOMO LATERAL C D(1), 1=1,3 (7X, 457,3) COORD. ATOMO LATERAL C D(1), 1=1,1 (1), 1=1,2 (1)	С	(I) I=1,3 (7X,3F7.3) COORD. ATOMO CENTRAL
C ((1), 1=1.3 (7X, 2F7.2) COORD. ATOMO LATERAL (INDEX=1) C (1), 1=1.3 (7X, 2F7.2) COORD. ATOMO LATERAL (INDEX=1) C (0) (0) (1), 1(2), 2(3), (1), (1), (1), (1), (1), (1), (1), (1	<u>_c</u>	B(T), T=1,3 (7X, 3F7.3) COORD. A TOMO LATERAL
C 01.11.1.1.2.1.1.2.1.1.2.1.2.2.2.2.2.2.2.	C C	D(T) = 1 = 3 (7X + 2E7 + 3) COORD = ATOMO CATERAL
C FL PEGGRAMA ACEPTA LAS COORDENACAS QUE PERFORA EL SELS C DIMENSION V1(2),V2(2),V2(2),X(2),Y(3),CELD(3) COMMON A(2),R(2),C(3),D(3),H1(2),H2(3),NB(24,3),BETA DIMENSION V4(2) OIMENSION V4(2) REAL MV1.MV2.MV3.MX,MY.MZ INTEGED DE,PE,W3 E255 WFEA PRE7 N=24 BB=4. II=1 READ(PP.100)(CELD(1),I=1,3) READ(PP.100)RETA WRITE (WF,1C0) (CELD(1),I=1,3) READ(RR,100) RETA 100 FORMAT (7X,FF7.3) AA=0.0 AB=0.0 IBFTA=1 IE(BFTA.FD.0.0.0PP.BETA.FQ.5C.C) IBETA=0 BETA=HTA*2.14155 /IR0. WEITE(WR.32) IA READ(P2.100)RTA ISTH=1.07 IE(DISTH.LT.0.1) DISTH=1.07 IF (INDEX.FC.1) CALL EXIT READ(P2.100)R ISTH=1.07 IF (INDEX.FC.1) CALL EXIT READ(P2.100)R ISTH=1.07 IF (INDEX.FC.1) CALL EXIT READ(P2.100)R ISTH=1.07 IF (INDEX.FC.1) CALL EXIT READ(P2.100)R ISTH=1.07 IF (INDEX.FC.1) CALL EXIT READ(P2.100)R ISTH=(A*,200)INDEX.DISTH WEITE (A*,200) INDEX.DISTH WEITE (A*,200) INDEX.DISTH	Č	
C DIMENSION V1(2), V2(3), V3(3), X(3), Y(3), CELD(3) COMMON A(3), R(3), C(3), D(3), H1(3), H2(3), WB(24,3), BETA DIMENSION Z(3) REAL M01: MV2.MV3.MX, MY, MZ THTEGRE 20, PE, W2 E2=5 WEEA PE=7 N=24 BB=4. II=1 READ(PP.100)(CELD(1), I=1,3) READ(RP.100) RETA WFITE(WF,100) RETA WFITE(WF,100) RETA METTE(WF,100) RETA IO FORMAT(7X, FF7.3) &A=0.0 AB=0.0 IBFTA=1 IF(BFTA:E0.0.0.0P.BETA.E0.SC.C) IBETA=0 RETA:ENTA*3,1415C /1E0. METTE(WF,32) IA READ(CE.J) CALL EXIT READ(CE.J) OINTH=1.07 IF (NOC: FC.(-1)) CALL EXIT READ(CE.J) CALL	<u>C</u>	FL PROGRAMA ACEPTA LAS COORDENADAS QUE PERFORA EL SELS
DIMENSION V(2), V2(3), V2(3), V2(3), V(2), V(3), CELD(3) COMMON V(2), R(2), C(1), D(3), H1(3), H2(3), WB (24,3), BF TA DIMENSION V(2), W3, MX, MY, MZ INFECTE DE, PE, W2 F2=5 WE=6, PE=7 N=24 BB=4. II=1 READ(PP, 100)(CFLD(I), I=1,3) WEITE (WF, 100) BETA WEITE (WF, 100) BETA WEITE (WF, 100) BETA WEITE (WF, 100) BETA WEITE (WF, 100) BETA DO FORMAT (7X, FF7.3) A = 0.0 AB=0.0 IBFTA=1 IF(BFTA, FD.0, 0, OP, BETA, EQ, SC.C) IBETA=0 BFTA=BFTA=3, 1415C / 180. WEITE(WF, 32) I = READ(FF, 100) N DETA 200 FORMAT(12, F10, 5) I = (INFX, FG, -1)) CALL EXIT READ(FF, 100) A READ(FF, 100) A READ(FF, 100) A READ(FF, 100) A IF(INFX, FG, -1)) CALL EXIT READ(FF, 100) A READ(FF, 100) A IF(INFX, FG, -1) STH 200 FORMAT(12, F10, 5) I = (INFX, FG, -1) CALL EXIT READ(FF, 100) A READ(FF, 100) A REATE (WF, 100) A READ(FF, 100) A READ(FF, 100) A REATE (WF, 100) A READ(FF, 100) A REATE (WF, 100) A REATE (W	С	
CUMPNE 11 - 1, -1, -1, -1, -1, -1, -1, -1, -1,		DIMENSION V1(3), V2(3), V3(3), X(3), Y(3), CELD(3)
DIMENSION Z(3) REAL MV1.MV2.MV3.MX.MY.MZ INTEGRE BG.PF.WR G2=G WF=A PK=7 N=24 BB=4. II=1 READ(PP.100)(CFLD(I).I=1.3) WRITE(WF.100) RETA WRITE(WF.100) RETA 100 FDRMAT (7X.FF7.3) AA=0.0 AB=0.0 IBFTA=1 IE(BFTA.EQ.0.0.0P.BETA.EQ.SC.C) IBFTA=0 RETA=BFTA*3.14155 /1R0. WRITE(WR.32) 1R READ(F*.200) INDEX.DISTH 200 FDRMAT(I2.SI0.5) I=(DISTHLT.0.1) DISTH=1.C7 IF (INDEX.EC.1) CALL EXIT READ(F*.100) R F5AD(F*.100) R F5AD(F*.100) R IF(INDEX.IT.4) SEAD(RR.10C) C I= (INDEX.SC.1) F5AD (RR.10C) C WRITE(WR.1T.4) WFITE(WR.1CC) C		UPMMUN ALAJAKEALAJUESTAUESTAUESTAHILESTAHZESTANDIZEAJADEIA DIMENSION WATAT
RFAL MV1.MV2.MV3.MX, MY, MZ INTFGF8 26.PF, WR F2=5 WF=A PR=7 N=24 BB=4. II=1 RFAD(PP.100)(CFLD(I),I=1.3) WRITF (WF.1CO) (CFLD(I),I=1.3) READ(PP.100) RFTA WRITF (WF.1CO) RFTA WFITF(WP.100) RFTA WFITF(WP.100) RFTA WFITF(WP.100) RFTA MFTTF(WP.100) RFTA MFTF(WP.100) RFTA MFTA=1 IO FORMAT(TX, FF.3) MFTA=1 IF(NFTA=1.F0.0) IF(NFTA=1.F0.1) MFTF(WP.100) A RFAD(FF.100) A RFAD(FF.100) A RFAD(FF.100) A RFAD(FF.100) A IF(INDFX.FG.1) FEAD (RF.10C) C IF(INDFX.4T.4) FEAD (RF.10C) C IF(INDFX.4T.4) FEAD (RF.10C) C IF(INDFX.4T.4) WFITF(WR.1CC) C <td></td> <td>DIMENSION Z(3)</td>		DIMENSION Z(3)
<pre>INTEGRE PR, PF, WP EP=5 KP=5 WF=A PR=7 N=24 BB=4. IT=1 RFAD(PP.100)(CFLD(I),I=1,3) WRITE (WF,100) RFLA WRITE(WP.100) RFLA WFITE(WP.100) RFLA WFITE(WP.100) RFLA WFITE(WP.100) RFLA WFITE(WP.100) RFLA IOD FORMAT (7X, AF7.3) AA=0.0 AB=0.0 IBFTA=1 IF(BFTA=FD.0.0.0.0P.BETA=E0.5C.C) IBFTA=0 RFTA=RFLA=3.14155 /180. WRITE(WR.32) IA READ(PE.200) INDEX.DISTH 200 FORMAT(I2.5I0.5) I=(DISTH=LT.0.1) DISTH=1.07 IF (INDEX.FG.(-I)) CALL EXIT READ(FL.100) R IE(INDEX.FG.1) FAD(RR.10C) C IE (INDEX.FG.1) FAD(RR.10C) C WRITE (WP.100) A WRITE (WP.100) C </pre>		REAL MV1. MV2. MV3. MX, MY, MZ
<pre>KD=5 WF=6 PK=7 N=24 BB=4. II=1 RFAD(PP.100)(CFLD(I),I=1.3) WRITF (WP.100) RFIA WFITF(WP.100) RFIA WFITF(WP.100) RFIA MFITF(WP.100) RFIA MFITF(WP.100) RFIA MFITF(WP.100) RFIA MFITF(WP.100) RFIA MFITF(WP.33) AA=0.0 IBFTA=1 IF(BFTA.FD.0.0.0P.BETA.E0.S0.C) IBFTA=0 RFIA=8FTA=3.1415C /180. WEITF(WP.33) IR READ(FTA.FD.F) IF(DISTH.LT.0.1) DISTH 200 FOPMAT(I2.FI0.f) I=(DISTH.LT.0.1) DISTH=1.C7 IF (INOFX.FC.f) FAD(RP.10C) C I=(INOFX.IT.4) FAD(RP.10C) C I=(INOFX.IT.4) FAD(RP.10C) C I=(INOFX.IT.4) FAD(RP.10C) C I=(INOFX.IT.4) FAD(RP.10C) C WRITF (WP.100) A WPITF (WP.100) A WPITF (WP.100) A</pre>		INTEGER PR. PF. WR
WF = A PR = 7 N= 24 BB=4. II=1 RFAD(PP.100)(CFLD(I).I=1.3) WFITF(WF.100) BFTA WFITF(WP.100) BFTA WFITF(WP.100) BFTA WFITF(WP.100) BFTA WFITF(WP.100) BFTA WFITF(WP.100) BFTA MFITE(WP.100) BFTA WFITF(WP.100) BFTA MFITE(WP.100) INDEX.DISTH 200 FORMAT(I2.FID.F) If (INCEX.FC.(-1)) DISTH=1.C7 IF (INCEX.FC.(-1)) DISTH=1.C7 IF (INCEX.FC.(-1)) DISTH=1.C7 IF (INCEX.FC.(-1)) CALL EXIT READ(FP.100) A READ(FP.100) A READ(FP.100) A READ(FP.100) A READ(FP.100) A WRITE (WP.100) A		
N=24 BB=4. II=1 RFAD(PP.100)(CFLD(I),I=1,3) WRITF (WP.100) RETA WRITF (WP.100) RETA WFITF(WP.100) RETA MFITF(WP.100) RETA MFITE(WP.100) RETA READ(PP.100) RETA MFITE(WP.100) RETA MFITE(WR.32) RETA=1 IF(BFTA=1) IF(INFX.01) IF(INFX.01		
BB=4. II=1 RFAD(RP.100)(CFLD(I),I=1,3) WRITF (WP.100) RETA WRITF(WP.100) RETA WFITF(WP.100) RETA WFITF(WP.100) RETA 00 FORMAT (7X, AF7.3) AA=0.0 AB=0.0 IBFTA=1 IFIBFTA.FD.0.0.0P.BETA.FQ.5C.C) IBFTA=0 RETA=84.TA*3.1415C /180. WFITF(WR.32) 1A READ(PE.200) INDEX.DISTH 200 FORMAT(12.F10.5) IF(DISTH.LT.0.1) DISTH=1.07 IF (INDEX.FG.(-1)) CALL EXIT READ(PE.100) A READ(FE.100) A WRITE (WP.200) INDEX.DISTH WRITE (WP.100) A IF(INDEX.FG.1) FEAD (RR.10C) C IF (INDEX.FG.1) FEAD (RR.10C) C IF (INDEX.IT.4) WEITE(WR.10C) C IF (INDEX.IT.4) WEITE(WR.10C) C	-	N=24
1I=1 READ(RP,100)(CFLD(I),I=1,3) WRITF (WF,100) RETA WRITE(WF,100) RETA WRITE(WF,100) RETA WRITE(WF,100) RETA WRITE(WF,100) RETA 100 FORMAT (7x, AF7.3) AA=0.0 AB=0.0 IBFTA=1 IF(BFTA-FD.0.0.0PR.BETA.FQ.50.C) IBFTA=0 RETA=BFTA-SD.0.0.0PR.BETA.FQ.50.C) IBFTA=0 RETA=1 IF(BFTA-FD.1.0.10.0PR.BETA.FQ.50.C) IBFTA=0 RETA=2.0.0.0.0PR.BETA.FQ.50.C) IBFTA=0 RETA=3.14150 /180. WRITE(WR,32) 10 RETA=1 IF(BFTA-FD.0.0.0PR.BETA.FQ.50.C) IBFTA=0 RETA=2.0.0.0.0PR.BETA.FQ.50.C) IBFTA=0 RETA=3.14150 /180. WRITE(WR,32) 11 R READ(FD.2.00.0PR.BETA.FQ.50.C) IBFTA=0 RETA=2.0.00.1NDFX.DISTH 20 FORMAT(12.F10.0) A READ(FD.100.0PR.FC.DISTH WRITE (WP.100.0PR.FC.DISTH WRITE (WP.100.0PR.		BB=4 .
RFAD(PP.100)(CFLD(1),I=1,3) * WRITF (WP.100) BETA WFITE(WP.100) BETA WFITE(WP.100) BETA 100 FORMAT (7X, AF7.3) AA=0.0 AB=0.0 IBFTA=1 IF(BFTA-FD.0.0.0.0P.BETA_EQ.SC.C) IBFTA=0 RFTA=8 IF(BFTA-FD.0.0.0.0P.BETA_EQ.SC.C) IBFTA=0 RFTA=9 IF(BFTA-FD.0.0.0.0P.BETA_EQ.SC.C) IBFTA=0 RFTA=9 IF(BFTA-FD.0.0.0.0P.BETA_EQ.SC.C) IBFTA=0 RFTA=9 IF(BFTA-FD.0.0.0.0P.BETA_EQ.SC.C) IBFTA=0 RFTA=9 IF(INF: A-FD.0.0.0.0P.BETA_EQ.SC.C) IBFTA=0 RFTA=9 NRITE(WR.32) RFTA=9 IF(INF: A-FD.0.0.0.0P.BETA_EQ.SC.C) IBFTA=0 RFTA=9 NRITE(WR.32) IF(INF:		1 I = 1
WRITE (WP.100) (CFL)(1),1=1,3) READ(RR,100) RETA WFITE(WP.100) RETA 100 FORMAT (7X, AF7.3) AA=0.0 AB=0.0 IBFTA=1 IF(BFTA.FD.0.0.0.0P.BETA.EQ.SC.C) IBFTA=0 RETA=BFTA=3.14155 /180. WEITE(WR.32) 19 READ(F2.200) INDEX.DISTH 200 FORMAT(12,F10.5) I=(DISTH.LT.0.1) DISTH=1.C7 IF(JNCEX.FC.(-1)) CALL EXIT READ(F2.100) A READ(F2.100) A READ(F2.100) B If(INDEX.FC.1) FEAD (RR,1CC) C WRITE (WP.100) A WRITE (WP.100) A WRITE (WP.100) B IF(INDEX.FC.1) FEAD (RR,1CC) C		RFAD(RP, 100)(CFLD(1), I=1,3)
WFITE(WP.100) BETA 100 FORMAT (7X, AF7.3) AA=0.0 AB=0.0 IBFTA=1 IF(BFTA.ED.0.0.0P.BETA.EQ.SC.C) IBETA=0 RETA=BETA*ED.14154 /180. WFITE(WR.33) 18 READ(P2.200) INDFX.DISTH 200 FORMAT(12.F10.F) If(INDFX.FG.(-1)) CALL EXIT READ(P2.100) B IF(INDFX.FC.1) FEAD (RR.10C) C IF (INDFX.FC.1) FEAD (RR.10C) D WRITE (WP.100) A WRITE (WP.100) A WRITE (WP.100) A WPITE (WP.100) A WPITE (WP.100) A WPITE (WP.100) A WPITE (WP.100) B IF(INDFX.IT.4) WFITE(WR.10C) C		WRITE (WE,100) (CELU(I),1=1,3) PEAD(DD 100) PETA
100 FORMAT (7X, AF7.3) AA=0.0 AB=0.0 IBFTA=1 IF(BETA.EQ.0.0.0.0P.BETA.EQ.SC.C) IBETA=0 RFTA=BFTA*3.14155 /180. wFITE(wR.32) 18 READ(02.200) INDEX.DISTH 200 FORMAT(12.E10.5) IF(DISTH.LT.0.1) DISTH=1.C7 IF(INDEX.FG.(-1)) CALL EXIT READ(01.100) A READ(01.100) A READ(01.100) B IF(INDEX.IT.4) 2FAD(RR.10C) C IF (INDEX.EC.1) 0.0 B IF(INDEX.EC.1) 0.0 A WRITE (WR.200) B IF(INDEX.IT.4) WFITE(WR.1CC) C		WEITE(WP.100) BETC
ΔΔ=0.0 ΔB=0.0 IBFTΔ=1 IF(BFTΔ.FQ.0.0.0.0P.BETΔ.EQ.SC.C) IBETΔ=0 BFTΔ=BFTΔ=3.14155 /180. WEITE(WR.32) 18 RFΔD(CF.200) INDFX.DISTH 200 FDRMΔT(12.F10.f) IF(DISTH.LT.0.1) DISTH=1.C7 IF(INDFX.FG.(-1)) CALL EXIT RFΔD(CF.100) Δ RFΔD(CF.100) Δ RFΔD(FF.100) Δ RFΔD(FF.100) Δ WRITE(WP.200) INDEX.DISTH WRITE(WP.200) INDEX.DISTH WRITE(WP.100) Δ WPITE(WP.100) Δ WPITE(WP.100) B IF(INDEX.IT.4) WFITE(WR.1CC) C	_1	00 FORMAT (7X.6F7.3)
ΔB=0.0 IBFT Δ=1 IF(BET Δ.FQ.O.O.OP.BETA.EQ.SC.C) IBETA=0 RET Δ=BFTΔ~3.1415 RET Δ=BFTΔ~3.1415 WE IT F(WR.33) 18 READ(P=.200) INDFX.DISTH 200 FORMAT(12.F10.F) I=(DIST H_LT.O.1) DISTH=1.C7 IF (INOFX.FG.(-1)) CALL EXIT READ(P=.100) A READ(P=.100) B IF(INDFX.IT.4) PEAD (RR.10C) C I=(INDFX.FG.1) PEAD (RR.10C) D WRITE (WP.200) INDEX.DISTH WRITE (WP.100) A WRITE (WP.100) A READ(FP.100) B IF(INDFX.IT.4) PEAD (RR.10C) C IF (INDFX.FG.1) PEAD (RR.10C) C IF (INDFX.IT.4) WFITE(WR.1CC) C		A ≤ 0 • 0
IBFLA=1 IF(BFTA.FD.O.O.O.P.BEIA.EQ.SC.C) IBFTA=0 BFTA=BFTA*3.14155 /180. WEITE(WR.33) 18 RFAD(PF.200) INDFX.DISTH 200 FORMAT(12.F10.F) I=(DISTH.LT.O.1) DISTH=1.C7 IF (INDFX.FC.(-1)) CALL EXIT READ(FF.100) A RFAD(FF.100) B IF(INDFX.IT.4) 2FAD(RR.10C) C I= (INDFX.FC.1) FEAD (RR.1CC) D WRITE (WP.200) INDEX.DISTH WRITE (WP.100) A WRITE (WP.100) A WRITE (WP.100) A WRITE (WP.100) B IF(INDFX.IT.4) WFITE(WR.1CC) C		<u> </u>
IP(DP(1,P0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		18F1A=1 Telesta do or reta eo co or treta-o
WRITE(WR, 33) 18 RFAD(PF, 200) INDFX,DISTH 200 FDRMAT(I2,FI0.F) IF(DISTHLT.0.1) DISTH=1.C7 IF(INDFX.FQ.(-1)) CALL EXIT RFAD(FF, 100) A RFAD(FF, 100) B IF(INDFX.IT.4) 2FAD(RR,10C) C IF(INDFX.FQ.1) FEAD (RR,10C) D WRITE(WR,200) INDEX.DISTH WRITE(WR,100) A WRITE(WR,100) A IF(INDFX.IT.4) WFITE(WR,10C) C		<u></u>
1A RFAD(PF+200) INDFX+DISTH 200 FORMAT(12+F10.F) 1F(DISTH+LT.0.1) DISTH=1.C7 1F(INDFX+FQ+(-1)) CALL EXIT READ(PF+100) A READ(FF+100) B IF(INDFX+IT.4) PFAD(RR+10C) C IF(INDFX+FQ-1) FEAD (RR+1CC) D WRITE (WP+200) INDEX+DISTH WRITE (WP+100) A WPITE (WP+100) B IF(INDEX+IT.4) WFITE(WR+1CC) C		WRITE(WR.37)
200 FORMAT(12, F10. F) I=(DISTH.LT.0.1) DISTH=1.C7 IF (INDEX.FQ.(-1)) CALL EXIT READ(FF.100) A READ(FF.100) B I=(INDEX.IT.4) PEAD(RR.10C) C I= (INDEX.EQ.1) FEAD (RR.1CC) D WRITE (WR.200) INDEX.DISTH WRITE (WR.100) A WRITE (WR.100) B I=(INDEX.IT.4) WFITE(WR.1CC) C	1	R READ(PF+200) INDEX+DISTH
I=(DISTH.LT.0.1) DISTH=1.C7 IF (INDEX.FG.(-1)) CALL EXIT READ(FF.100) A READ(FF.100) B I=(INDEX.LT.4) PEAD(RR.10C) C I=(INDEX.EG.1) PEAD (RR.1CC) D WRITE (WR.200) INDEX.DISTH WRITE (WR.100) A WRITE (WR.100) B IF(INDEX.LT.4) WFITE(WR.1CC) C	2	00 FORMAT(12, F10, F)
IF (INDEX.FG.(-I)) CALL EXIT READ(FF.100) A READ(FF.100) B IF(INDEX.IT.4) PEAD(RR.10C) C IF (INDEX.FG.1) PEAD (RR.1CC) D WRITE (WR.200) INDEX.DISTH WRITE (WR.100) A WRITE (WR.100) B IF(INDEX.IT.4) WFITE(WR.1CC) C		IF(DISTH.LT.O.1) DISTH=1.C7
READ(FR.100) B IF(INDFX.(T.4) 2EAD(RR.10C) C IF (INDEX.EG.1) EEAD (RR.1CC) D WRITE (WR.200) INDEX.DISTH WRITE (WR.100) A WRITE (WR.100) B IF(INDEX.1T.4) WRITE(WR.1CC) C		$\frac{1}{2} = \frac{1}{2} $
IE(INDEX.(T.4) 2EAD(RR,10C) C IE (INDEX.EQ.1) EEAD (RR,1CC) D WRITE (WR,200) INDEX.DISTH WRITE (WR,100) A WRITE (WR,100) B IE(INDEX.(T.4) WRITE(WR,1CC) C		READ(FR.100) B
IF (INDEX.EQ.1) READ (RR,1CC) D WRITE (WR.200) INDEX.DISTH WRITE (WR.100) A WRITE (WR.100) B IF(INDEX.IT.A) WRITE(WR.100) C		IF(INDFX.LT.4) 2FAD(RR,10C) C
WRITE (W9,200) INDEX,DISTH WRITE (W9,100) A WRITE (W8,100) B IE(INDEX,11,4) WRITE(W8,100) C		TE (INDEX.EQ.1) READ (RR,1CC) D
WRITE (WR, 100) A WRITE (WR, 100) B IE(INDEX.(I.T.A) WEITE(WR, 100) C		WRITE (WR 100) INDEX.DISTH
IF(INDEX.LT.4) WEITE(WR,100) C		WRITE (WR.100) B
		IF(INDEX.IT.A) WEITE(WR.100) C

• •

.....

.

	1
	TE TINDEX FRONT WRITELWRYJUDE LE Write Iwr 231
31	FIIRMOT(//)
	DO = 10 = 1 + 2
	λ(I)=λ(I)≠CFLD(I)
	$IF (IBFTA \cdot FQ \cdot 1) \land (I) = AOR TOG(I \cdot A(J) \cdot A(I))$
	5(1)=5(1)=(1)(1) TS (TRET/ 50 1) - 4(T)=400T0C(T 8(T) 8(T))
	$\frac{1}{F(1N) = X \cdot I \cdot A \cdot C(1) = C(1) + CF(D(1))$
	T= { IBCT0.50.1.ANO.INDEX.LT.4} C(I)=AORTOG(I,C(I),C(I))
	1 (IND-X.FC.I) P(I)=D(I)*CELD(I)
	<pre>IF (IBEIA.FQ.1.AND.INDEX.EQ.1) D(I)=ADPTOG(I,D(I),D(1))</pre>
	V = [+] = A = [+] - P = [+] = A = A = A = A = A = A = A = A = A =
	$\frac{1}{15} \frac{1}{15} \frac$
10	
	MV1=\$0°*(V1(1)**2+V1(2)**2+V1(3)**2)
	IF(INDEX.FO.4) GO TO 27
	MV 2= SOFT (V2(1) + H2+V2(2) + H2+V2(2) + + 2)
	1- (NO-X.(Q.1) ((U.1)) 20
	$V_1(T) = V_1(T) / M_V_1$
	V?(T)=V?(T)/MV7
	X(I)=VI(I)+V2(I)
11	CONTINUE
	MX = SQRT (X(1)) ** 2 + X(2) ** 2 + X(3) ** 2)
	(13)=X + 0 + 2 00 30 24
	Y(2) = V1(3) = V2(1) - V1(1) = V2(2)
	Y(3) = V1(1) * V2(2) - V1(2) * V2(1)
	$MY = SQ(^{+}(Y(1))) \approx 2 + Y(2) \approx 2 + Y(3) = 2$
	JF (INDEX. C.3) GOTA 5C1
	UNDALE=VIUJ/#V/UJ)+VIU2/#V2U2/#VIUD/#V2UD/ SELS=SAST(1 =CASALE##2)
	AL FASATANZUSELS.COSALED
	COSALE=COS(ALEA/2.)
	DISC=COS/LF##2+3.
·····	COSBET = - COSALE+SQRT(DISC)
	COSBET=COSBET/4. SENRET-SOPT(1, _COSRET##2)
	> >
	FY=DISTH*SENBET
	Ŋ;] [2 [=], ?
	X(T)=X(T)*PX/MX
	Y(})=Y(})¥∀Y/MY H1/T)=>(T)_XY(T)_XV(T)
	$H_2(Y) = h(Y) + X(Y) - Y(Y)$
	TF (IBFT/.EQ.1) +)(I)=AMCNOC(I,H1(I),H1(1))
	IE (13714.20.1) H2(I) =AMONOCII,H2(I),H2(I))
12	
500	
	H1(I)=H1(I)/CFLD(I)
	+2(1)=+2(1)/(1)
800	CONTINUE
.30	F7R4(T(12,5X,4F7,4)
	WKIIHLME+30111+H1+85 WRTTZ(WE-30)11+H1-88
23	WPITE(PE, 30)TI+E2.BB
	WRITE(WP, 30) II, H2, BB

.

	WPITE (WR.22)
33	FIRMAT (/////)
	C) TO 18
501	CONTINUE
	7(1) = V(2) + V(3) + V(2)
	$\frac{7(2) \pm \sqrt{12} + \sqrt{12} + \sqrt{12} + \sqrt{12}}{2}$
	/ () / = V / () / ~ (/) - V / (/) = V () / = Y (
	$\frac{1}{1} = \frac{1}{1} = \frac{1}$
	$H_1(T) = 1(T) + V_1(T) \neq 0.50 + 7(T) = 0.866 + 0.5TH / M7$
<u> </u>	$H^{2}(T) = (T) + V1(T) + 01STH + 0.50 - Z(T) + 0.866 + DTSTH / MZ$
	IE(IETA.TQ.1) H1(I)=AMGNOC(I,H1(I),H1(1))
	IF(IBCT/.FQ.1) H2(I) = AMONOC(I, H2(I), H2(1))
502	CONTINUE
	GOTO 500
20	<u>4V3=50+7(V7(1)**2+V3(2)**2+V3(3)**2)</u>
21	101 Z1 (=143
	(1) - (1
	DO 22 I = 1.3
	X(J)=X(J)*DJSTH/MX
	$H_2(I) = h(I) + x(I)$
	IS (IBFIA.FQ.1) H2(I)=AMONOC(I.H2(I),H2(1))
22	CONTINIE
	P) 301 1=1,7
0.01	
24	CONTINUE
	D: 25 I=1+3
	H2(I)=\(I)+(X(I)*DISTH)/MX
	IF (18 = 1 A . (G. 1) H2(I) = AMONOC (I + H2(I) + H2(I))
25	CONTINUE
902	EZ(1)=EZ(1),Z(EU)(1) CONTINUE
<u> </u>	
27	CONTINUE
	0 700 J=1. ?
	V1(I)=V1(I)/MV1
700	$W \land (I) = .233 \neq 0 IST + *V1(I)$
	IF(V1(3), NE.0.) GO TO 701
	1F(V1(2).NF.0.) GP TU 702
701	
1 ' 1	x(2) = 1.
	X(3) = -(V1(1) + V1(2))/V1(3)
	<u>CO TO 704</u>
702	X(1)=).
	$\frac{\chi(2) = -(\sqrt{1}(1) + \sqrt{1}(2))}{\sqrt{1}(2)}$
	X(3) = 1.
702	(1) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3
705	$X(1) = (V_1(2) + V_1(1))$ X(2) = 1
	X(3) = 1.
7.04	MX=SQRT(X(1)**2+X(2)**2+X(3)**2)
	X(1)=X(1)/MX
	X(2) = X(2) / 4X
	X (3) = X (3) / M X
	<u> </u>

_	
	$Y(2) = V_1(3) = X_1(1) + V_1(1) + X_1(3)$
	XN=M
	$\Gamma(1, 70) = 1 \cdot N$
<u> </u>	X.1=J
	DB 705 J=1+3
	AL FS=(XJ*6.28318)/XN
	$WB(J+I) = .442C \pm DISTH \pm (X(I) \pm COS(ALFA) + Y(I) \pm SIN(ALFA))$
705	WH(J,J)=WH(J,J)+Wh([])+A([]) TE (TEETA DO I) wh(L I)-AMONOC(I WD(L IN NO(L IN))
	00 803 J=1-N
	$D_{1} = 30^{-1}$
	WA(J. 1)=WF(J. 1)7(FLD(T)
803	CONTINUE
	01 706 J=1.N
706	WPJTF(xP,30) II,(WB(J,I),I=1,3),BB
	FUNCTION ADETAG(I.X.AA)
	CIMMON 4(3), B(2), C(3), D(3), H1(3), H2(3), WB(24,3), BFTA
	GD TO (10,20,30),T
.	LIRTEGEX SIN(BETA)
27	
20	
30	ADETOC=X+AAZ TANTEETAN
	RETURN
	EN Ô
	FUNCTION AMENOC(J+X+AB)
	COMMEN 7(3), P(2), C(3), D(3), H1(3), H2(3), WB(24,3), BETA
	62 TC (10, 20, 30), I
1.1	AMENDERX/SIN(BEEA) BETHEN
, ,	PETURN
30	
	R FTURN
	FND
<u></u>	

APENDICE E

Programa Principal de Absorción y Subrutina SETHA (En FORTRAN IV)

El programa principal les datos y controla las rutinas ABSAP1, ABSRP2 y SETHA. Maneja la información devuelta por ellas, e imprima y perfora, o graba, los resultados finales.

La entrada consiste en parámetros de celda, información sobre la posición inicial del cristal, y la matriz de conversión entre los ejes usados en la experiencia, y los índices internos del subprograma SETHA. También les las reflexiones a corregir, con sus índices de Miller y factor de estructure medido.

La salida, por impresora y perforadora o cinta, es compatible con el programa DATA REDUCTION; cada registro contiene los índices de cada reflexión y el factor de estructura corregido.

La subrutina SETHA, llamada por el programa principal una vez por cada reflexión a corregir, calcula el ángulo que debe girar el cristal a partir de la posición inicial φ_0 , para que el nodo (H,K,L) de la red recíproca cruce la esfera de Ewald y por lo tanto, esté en posición de reflexión.

Sigue un listado de ambos programas.

С	
<u> </u>	
C	PROGRAMA GENERAL DE ABSORCION PARA FOTOGRAFIAS IOMADAS EN
<u> </u>	GEUMETETA WEISSENBERG.
C C	
<u> </u>	COMMON/BICCK/ITER.INDSIN.SINTH
	INTEGEP FR.WG
	COMMON/INCUT/ PR.WR
	COMMON/Y/IFOUIN
	COMMENZXINT
_ .	COMMON/FIC/ANGC
	RFAL = M(3,3)
	DIMENSION ANGCI 25)
	TT FF = 0
	PR=5
	WF=6
	<u>CMFG1=0.</u>
	CMEG2=0.
	UPSILZEU. READ (00.10) TITLE
	WPITE (WE.11) TITLE
10	$F \cap P M \Delta T = (2084)$
11	FARMAT (1H1,2014)
	FEAD(FF, 12)((M(I,J), I=1,3), J=1,3)
12	FORMAT (16FF.0)
100	$\frac{WRTTF(wP, 127)}{WRTTF(wP, 127)} [(M(I,J), I=], 3), J=1, 3]$
120	- F18MAT(18, *M(1+1)=*+F5+1+*M(2+1)=*+F0+1+*M(0+1)=*+F0+1+*U(1+2)
	*!M(3.3)=!.55.1)
	READ (FE, 13) AAST, BAST, CAST
13	FUPMAT (3F10.5)
	WRITE(WP, 13C) AAST, BAST, CAST
130	FORMAT(]H . '00ST=',FIC.7,'BAST=',F10.7,'CAST=',F10.7)
14	EDDMAT (2510 5)
14	WRITE(WELIKO) ALEALBETALGAMA
140	FORMAT(1H . *ALFA=*.F1C.5.*BETA=*.F10.5.*GAMA=*.F10.5)
-	READ(FR.15) XIUNO, FICERO, OND
15	FARMAT (2F10.F)
	WRITE(WR, 150) XIUND, FICERO, OND
150	FORMAL(IH + *X!UND=*,FIC.5, *FICERO=*,FI0.5,*OND=*,F10.5) BEAD(00 1/1) TO TH
141	ENEMAT (312)
1 1	READ (PR, AA) (FSC(T), T=1, TS)
33	FORMAT (1555.2)
	CALL ABSPP1
	WRITE (WR, 897)
897	EDEMAT(H K L INT. OBS. INT. CCRF.
1002	
1007	IF $(1500 \text{IN} \cdot \text{CT} \cdot \text{N})$ GO TO 10C6
	XEQUIN= IFQUIN-1
1005	READ (75,0) KLY

	XT=XTUND*XFQUTN
	CNU= ANGC(TEQUIN)
60	CONTINUE
103	$\frac{1}{1} = \frac{1}{1} = \frac{1}$
	IF(IF.LT.99) GOTO2000
	WPITE(IW,1)7) IF,IK, TL,SINTH,YNTENS,LX COTO 1005
2000	TF (LX+F0+0) LX=1
	YNTENS=YNTENS*XEACT
· · · · · · · · · · · · · · · · · · ·	CALL SETHA (TH. TK. IL, AAST. BAST. CAST. ALFA, BETA, GAMA, M, CNU, XI, CND, FI
·	*(FR0, OMF61, OMF62, UPSIL1, UPSIL2) TF [kFY] 1002, 1001, 1000
1000	PHJ=DMFG1
1001	PHI=CMFG2
	UPSIL=UPSIL 2
1003	CONTINUE TE (PHI-GI-E-29318) PHI-E-28318
	CALL / RSEP2(UPSIL, PHI, SINTH, TRNS)
<u></u>	TPNS=SORT(TPNS)
	$FACTOR = 180 \cdot 12 \cdot 1415927$
	WRITE(AF, 97) IF, TK, IL, YNTENS, YCORR, TRNS, PHI, UPSIL
97	FURMAT(FX, 315, 5(FX, FIC.4))
117	WRITE(!W,137) TH,IK,IL;SINIH,YCORR,LX FORMAT (275,F15,F15,F34,72)
1006	CALL FXIT
· <u> </u>	
	· · · · · · · · · · · · · · · · · · ·
<u> </u>	

	•
<u> </u>	
Ċ	
0 C	SUBPUTINA SETHA. CALCULA EL ANGULO QUE DEBE GIRAR EL CRISTAL PARI QUE LA REFLEXION (HKL) CRUCE LA ESFERA DE EWALD.
Ċ	
<u> </u>	AND CHT THE CETTA ATH THE AAST DAST CAST ALEA BETA CANA NOT NILY
	COND. FTC FRG. OMEGI.OMEG2.UPSIL1.UPSIL2)
C	
<u> </u>	ESTE PROGRAMA CAUCULA EL ANGULO QUE DEBE GIRAR EL CPISTAL PARA DUE
C	PERFIT TO STREET ION HAL
Ċ	LOS FUES PEOPIES DEL PROGRAMA SON LOS SIGUIENTES
<u>(</u>	FL FJE & FS LA PEIMERA RECTA DE LA FOTO
<u> </u>	EL EJE C ES LA SEGUNDA RECTA DE LA FOTO
C	FL FJF H SZEF FIL PLAND UF LA FUTU
<u> </u>	LA MATRIZ M TRANSFORMA LOS INDICES REALES EN LOS DEL FROGRAMA
<u> </u>	<u>M*(HKL)=(H*K*L*)</u>
<u> </u>	DONDE (HKL) SON LOS INDICES REALES DE UN PUNTO Y (H'K'L') LOS QUE L
C	CORRESPONDEN SEGUN LOS EJES DEL PROGRAMA
<u>. (</u>	
č	•
	THTEGEE ER.WE
	COMMENTINUT FP, WR
	REAL 4(3+3)
	REAL MODUL(24)
_	
	LOGICAL X(6)
	$\frac{1001001}{10000000000000000000000000000$
	IF (ITER.GT.O) GO TO 791
	1TFR=ITFR+1
	$C = C \Delta ST + (ND)$
	BA1=M(1+1)*A+M(1+2)*B+M(1+3)*C
	$\frac{BA2=M(2,1)>A+M(2,2)*B+M(2,3)*C}{DA2=M(2,2)*B+M(2,3)*C}$
	A1=ABS(BA1)
	12=1BS(P12)
	<u> 43=ABS(B43)</u>
	△//=M(/,/)∀/*+M(/,///¥/*+M(/,//)∀/*/* ∧/T=M(/,/)*/*+M(/,//)*/*+M(//*/)*/*/*
	D3T=M(3,1)"].+M(2,2)*2.+M(3,3)*3.
	<u>7(1)=(1,,2,)</u>
	((/) = -/(1) 7(3) = (2 + 1)
	Z(4) = -7(3)
,	2(5) = (1, 3, 3)
	2(5)==2(5) 2(7)=(3,.1,)
	7(8)=-7(7)
	7(?)=(2.,3.)

······

-

- - -

	·
· · · · · · · · · · · · · · · · · · ·	7/10/=-7/9/
	7(31) = (3, 2)
	7(12)=-7(1))
	Z(13)=(-12.)
	7(14) = -7(12) $7(15) = (2 \cdot - 1 \cdot)$
	2(16)=-7(15)
	7(17)=(-12.)
	2(13) = -7(17) 7(19) = (3 + -1)
·	7(20)=-7(19)
	7(21)=(-3.,7.)
	7(22) = -7(21) 7(22) = 12 - 2
	$7(2^{2})=-7(2^{3})$
, ,	ZZ = CMP(X(A)T, A2T)
<u></u>	$K(\mathbf{N}\mathbf{T} = -1)$
,	$\frac{1}{1} \frac{1}{1} = 1 \cdot 24$
	Y(T) = 77 - 7(T)
121	CONTINUE
	001 122 1=1.6 X[]]=[[00]DDD[[4*1-2]][[0.5]][R.(00]DD[[4*1-2]][L][0.5]]][UR.((00)DD[[4
	1#1-1).LT.0.5).PR.(MODUL(4#1).LT.0.5))
122	CONTINUE
; 	X = X = X = X = X = X = X = X = X = X =
	X2=X(7) X3=X(3)
	X4=X(4)
	X5=X(5) X6=X76)
	IF (K001T) 1.2,3
J	JE (X1) COMPSTEGAMA
	TE (X2) GAMAST=RETA
	IF(X4) GAMAST=18CGAMA
	JF (X5) GAMAST=190BETA
	TF (X6) GAMAST=190ALFA
	KONT=0
	GO TO 4
2	IF (X1) BETAST=GAMA
	IF (X3) BETAST=ALFA
	IF (X6)BFTAST =1POALFA
	IF (X5)HFTAST =180BETA
	$77 = CMPL \times (A1T, A2T)$
· ·- ·	K(.NT = 1
7	$\frac{1}{1} \left(\frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} \right)$
· ·	TE (X3) ALEAST = ALEA
	TE(X4) ALEAST=JECGAMA
	TE (XA)NEESSE ELAU-TOUTA TE (XA)NEESST ETRO-ALEA
	TRANS=3.14159/180.
<u> </u>	
	UAZX=UISLIKANSZGEMASTJ CA3X=CAS(TRANSZBETAST)

C^1Y=0
$\frac{C^{3}Y = SIN(TRANS*BFTAST)}{CA2Y = CA2Y + CA2Y + CA2Y + CA2Y}$
CA=COS(TPANS#ALFA)
CB=COS(TRINS*BETA)
$CC = COS(TEANS \neq GAMA)$
XK=IK 281 XH=IH
XL=1L
<u>[]=M[],])*X++M[],2)*XK+M(],3)*XL</u>
1,2=M(2,3)*XH+M(2,2)*XK+M(2,3)*XL 3=M(3,1)*XH+M(3,2)*XK+M(3,3)*XL
67 DAST=SIGMA(TH, IL, AAST, BAST, CAST, CA, CB, CC (CND)
RSIGMA=SQRT(DAST)
SINTH=3SJGMA/2.
APGUM1=D/(2.*CNU)
XTX=SQPT(14PGUM1**2)
<u> TIT=ARGUM1/XIX</u> W1=ATAN(TTT)
$W_2 = 3.14159 - W_1$
F1STY=1.2*42*C42Y+L 3*A3*CA3Y
<u>DASTX=1 1+41+L 2+A2+(A2X+L3+A2+CA3X</u>
ETHNO-TRANSFETCERO
MFG1=W1+FI+FTUNG
E OMEG2=W2+FT+FTUNG
UPSTET=2.**W] UPSTE2=-UPSTE1
333 RETURN
<u> </u>
FUNCTION SIGMA(J+K+L+A+B+C+CA+CC+AMDA) C FUNCTION OUT CALCULA P PECTR, DEPENDIENTE DE LANDA
Y=K
STGMA=X X X X X X X X X X X X X X X X X X X
SIGMA=SIGMA*(AMDA**2)
RETURN

APENDICE F

,

Lista de factores de estructura de Papaverina

Para cada reflexión se informan los índices de Miller (H,K,L), el factor de estructura observado (Fo), el factor de estructura calculado con el modelo final (Fc), y las fases correspondientes. FACTORES DE ESTRUCTURA DE PAPAVERINA

····

_ . _ . . .

20 21 4

PAGINA 1

н	к	L	10 +F0	-10+FC-	FASE	Ħ	• K .•	Ł	10 +F 0	10*FC	FASE
6	0 -	0	782 -	864			<u> </u>	0-			-180 -
8	Ō	0	634	6 38	180.	5	2	0	497	458	180.
10	Ō	Ō	74	80-		7		0	800	767	180.
12	0	0	103	81	180.	8	2	0	177	187	180.
14	ō	0	6.36	···· 585 -		· ·	2	Ō	157	200	180.
16	0	0	404	493	180.	10	2	Ō	189	203	180,
	o _	0			0		<u> </u>	-0			-360-
20	0	Ō	93	95	180.	12	2	Ō	26.8	296	360.
22	Ō	0	93	1.21-	180		2	Đ.	173	162	360.
28	Ō	Ō	293	277	180.	14	2	Ō	83	84	180.
30	0	0	95	- 85			2	0	303	304	350.
34	Ō	Ō	107	97	360.	17	2	Ō	125	140	180.
	0	0			180.			0		219	3-00-
1	1	0	162	1 27	0.	19	2	0	112	117	Û.
2	ī	Ō	102	68	180	20	2	- 0	154	149	180.
- 4	ī	0	686	716	360.	21	2	Ō	120	148	180.
5	Ĩ	0	461	527			- 2-	· Đ		207	3602
6	1	Ō	432	450	0.	23	2	Ō	86	106	180.
7							<u></u>		78		-360.
8	ī	Ŭ	160	171	180.	26	2	Õ	125	132	360.
9	Ĩ	Ō	308	-348	- 360 -		2	0	70	81	360.
10	ī	Ō	229	251	360.	30	2	Ō	46	52	0.
11	ĩ	0	119	120-	180				51	55	360
12	ī	Ō	236	249	360.	33	2	Ō	91	46	360.
	<u>1</u>			1.95	- 360	t	<u></u>	-0	- 448		-180.
15	ī	Ċ	77	63	180	2	3	Ō	35	38	180.
16	ī	Ō	219	193	180	3		Õ	237	237	360.
17	ī	Ō	38	23	180.	4	3	ō	96	91	180.
18	1	Ŭ	64				<u></u>	0 -	339	398	1804
19	ĩ	Ō	129	144	180.	6	3	ŏ	427	461	360.
	<u>-</u>		183					<u>`</u>	176		360.
22	1	Ō	89	78	180.	9	3	Ō	207	238	360.
23	ī	0	89	67	-180			Ð	55	57	180.
24	ī	Ō	145	175	360.	11	3	Ō	121	120	360.
27	1	Ō	70	65		12	<u>3</u> .	Ō	75	65	360.
28	ĩ	0	57	63	360	14	3	0	92	74	360.
	<u>i</u> -				-360 -						-360.
31	ī	Ō	37	36	180.	16	3	Ō	10 2	90	360.
33	ī	Ð	33	-29	360 .	17	3	Ū	119	11 7	360.
36	ī	Ō	100	9 6	180.	18	3	Ō	35	42	180.
0	2	0	552	452	180.		3	0	220	246	180.
1	2	0	769	789	360.	20	3	0	177	194	180.
	2	0	- 783-	- 749			3	0-	- 193	215-	-360 1
3	2	0	1 99	2 2 3	0.	22	3	0	75	83	360.

										PAGI	NA 2
н	К	L	10*F0	10*FC	FASE	н	ĸ	L	10*FC	10*FC	FASE
24	3	С	1 39	146	180.	22	5	Û	50	62	0.
25	3	- O	101	108	180.		5-	0		140 -	- 36 0 i
26	3	0	82	80	180.	25	5	0	69	83	180 .
27	3	•0	-57				5	0-	67		
28	3	0	56	59	360.	27	5	0	42	39	180.
		0 _			180			0	157	177	1804
1	4	0	251	41)	360-		6	Ő	41	- 43	- 180.
4	4	õ	96	94	360	5	6	ŏ	97	92	180.
5	4	0-	207	246-	- 360			Ð	281	304	360
6	4	Ō	67	63	0.	7	6	0	43	36	360.
7	- 4	0	50	- 44		8	6				- 360 .
8	4	0	7 8	97	180.	9	6	0	100	96	130.
9	4	0	306	2 98		- 10		0	115	109	180.
10	4	0	56	52	180.	11	6	0	37	29	180.
11	4	0	61	96	360 -	12	6	0	179	- 16 -2-	Ð,
12	4	0	175	169	360.	13	6	0	193	213	180.
			<u> </u>		-360			0		- 132	• ••
14	4	0	74	79	360.	15	6	0	162	160	0,
15	4	0	96	76	- 360 .	-16	6	0	236	288	- 1 80 (
16	4	0	64	65	180.	17	6	0	40	40	360.
17	4	0	130	118			6	0	204	190	. U
18	4	0	85	85	180.	19	0	0	118	124	180,
	4				-100-	20		U		256	-1001
20	4	0	00 49	0 0 42	190	21	0 6	0	24 3	235	190
21	4	0	40 50	42 20	360	27	6	0	26	20	180 180
22	4	õ	92			25		0 -0		.41.	186.
24	4	õ	88	101	180	26	6	õ	88	83	180.
		Õ	87-		-180		7	ŏ		63-	
26	4	õ	40	42	360.	2	7	Ō	52	51	180.
27	4	Ū	55	46	-360-		7	0	-64	60	180
29	4	0	101	9 3	180.	4	7	0	153	146	180.
31	4	0	61	- 60 -	180 -	5	7	···· ··	46	52	180.
33	4	0	47	52	360.	6	7	0	46	52	180.
34		0				<u> </u>	7.	0	72		-180 1
35	4	0	33	35	180.	8	7	0	69	68	180.
2	5	C	173	188	- 360.	9	7	0	61	-44	Ű.
3	5	0	331	3 63	360.	10	7	0	122	133	360.
4	5	0	211	2-33	- 360 -			0	221	234	1801
5	5	0	201	196	180.	12	7	0	164	201	360.
	> -	0	<u>-91</u>		- 180			0-	215	- 227	180 1
1	2	0	140	149 70	360.	15	7	0	135	121	360.
8	2 5	0	2C 207	-18	340	······································		· 0	175	120	- 360a
7	5	0	291	222	180	10	-7		127	120	30U.
10	5	0	177	168	180.		7	0 -	222	232	360
	<u>`</u>			<u> </u>	<u> 180 </u>		7		<u> </u>	<u> </u>	-360-
14	5	0	103	90	180.	22	7	õ	80	59	180.
16	5	č	101	113	180-	2.3	· - · - - 7 -		- 4 8	54	180-
17	5	õ	85	86	0.	25	7	ō	98	97	360
18	5	0	160	188-	- 180		· ·7	0 -	57	55	180.
19	5	0	40	37	180 .	0	8	0	56	64	360.
20	5 _	0-		1 18	- 180 - -		8	0-		71	-180 .
21	5	C	205	199	180.	2	8	0	63	63	130.

											PAGI	
	н	κ	L	10*FO	10* FC	FASE	н	K	L	10 * F0	10 * FC	FASE
	4	8	0	80	80	180.	20	1	1	89	87	285.
	5	8	0	40	40	- 180 .	21	1	1	42	54	340
	6	8	Ú	133	136	180.	22	1	1	127	113	357.
	7	8	6	40	- 32-	······• 0·•·	23	·1	1	16 6	173	233
	8	8	0	49	48	180.	24	1	1	69	70	216.
<u></u>			0			-180.						521
	10	ช ค	0	49	49	180.	20	1	1	130	130	292
	10	р С	0	44	110	180	21	1	1	21	70	220
	18	8	n n	1.01	· 7-1-		~		.▲ 		1-1-9	306.
	19	8	0	102	90	360	30	ī	ī	82	60	181.
		<u>8</u>	0			-360 -		i		78		-119 .
	21	8	Ō	45	43	360.	32	1	ī	90	79	. د
	23	8	Ō	78	77-	-180.	33	1	ł	80	86	329
	24	8	G	144	137	360.	34	1	1	60	56	266.
	25	8	0	118	1- 10-			1	1	93	68	191
	27	8	0	9 5	106	180.	36	1	1	76	101	161.
		9	0	57		180.	2	-2-			584	133
	3	9	0	162	1 7 6	360.	3	2	1	482	563	241
	4	9	0	80	82-	360	4 -	2	1	321	322	58.
	6	9	0	100	72	180.	5	2	1	249	255	53.
	T I	9	0	102	101		6	2	···-1	232	234	401
		0	1	1271	1002	40.	7	2	1	125	117	94.
		0	1	500	173	201.		_ <u>_</u>	1	150	14	112
	12	0	1	197	175	351-	10	- <u>-</u>	1	267	241	- 112 (- 42
	14	ñ	1	109	69	130	11	2	1	54	50	262
	18	ŏ	ī	114	82	139			ī	298	290	337.
	20	Õ	ī	174	184	269.	13	2	ī	411	499	355
	- 22	0	<u> </u>		96	216.		<u> </u>	-1	288	317	-151
	24	0	1	82	60	330.	15	2	1	136	119	60 .
	28	0	1	220	214	339 . -			1	305	287	6.
	32	0	1	139	1 16	105.	17	2	1	156	150	65.
	34	0	1	145	146	334 .	18	2	1	197	183	270.
	36	0	1	43	_59	112.	19	2	1	68	61	342
	0-		1	1096	- 759-	156.		-2	<u>_</u> 1		- 58	185
	1	1	1	331	212	297.	21	2	1	130	125	310
	2	1	L N	700	777	25	22	2	· · T 1	- IU4 70	57	1430
	5	1	1	657	642			<u>د</u>	ء 14	-74	- 71	135
	5	1	1	533	542	156.	20	2	1	81	82	24.
·····			`		<u>518</u> -					79		• ۲ ۲ - ۱۹۴
	7	ī	ī	1027	936	341.	29	2	ī	84	87	7.
	8	ĩ	Ĩ	383	444		·····	- 3 -	-	671	800	295
	9	1	1	487	554	89.	1	3	1	194	171	47.
	10	1	ł	431	459	-115.	2	3	ł		335	285.
	11	1	1	257	287	195.	3	3	1	153	163	268.
	-12		-1	235	227	289.	4		1			- 57.
	13	1	L	365	394	14.	5	3	1	156	127	9.
	14	1	1	284	264	- 33 0 - -	6	3 -		78	45	60.
	15	1	1	183	169	.08	7	3	1	267	263	268.
	10	1	i 1	171	1/1-	212			1 1	238	233	44. 357
	11		۱ د		117	212.		د 	1 1	<u> </u>	201	د ۲۵۵ د <u>د ب</u>
	19	1	1	59	50	105.	11	3	1	97	94	260
								— ·· ·				

------_ .__ ._

PAGINA 3

				· -							
	н	к	L 1C*FO	10*FC	FASE	н	К	ι	10 ₩F 0	10*FC	FASE
]	12	3	1 229	2 00	164.	4	5	1	156	159	222
]]	13	3	1 2 92	2 96 -		5			- 27 3		- 201
1	L4	3	1 240	2 38	119.	6	5	1	L 20 7	196	316.
1	15	3	1 112	··- 95	92	7	5			274	111
1	L6	3	1 132	139	32.	8	5]	135	131	206
	17	_ 	1	<u> </u>	-261.	9	5-]	54	56	73 1
]	18	3	1 79	65	194.	10	5]	199	211	244
	19	3	1 154	142	180 •		5]	110	82	302
	20	3	1 68	65	133.	12	5	1	L 40	33	94.
	21	3	1 130	129-	83	1-3	5	-]	L 87	90	94°e
	22	3	1 89	89	263.	14	5	1	. 115	90	1/3
	<u>.</u>				-211-				- 118		- 371
4	24	3		144	242.		2	1		90	- 3/e 10
	22	<i>5</i>	1 /9	+ 2 - 75		10	-		192 ISA	140	100
	<u>/0</u>	2	1 00	17	04 • 14 0	19	7 5	1	L 124	141	114
2	£Γ >Ω	2	1 60	76	156	20	5	1	126	152	1107
	10	3			174	22	ر ج	1		172	126
	1	5	1 183	1 95	340.1	22	5	1	91	98	133.
	2	4	1 274	431		. 24	. <u>.</u> .	1	86	8.8	37
	3	4	1 351	360	7.	25	5	1	121	110	27e
	4	4	1 379	407		-26	5	-1	- 94	75	132
	5	4	1 95	58	219.	27	5	1	74	61	340
	6-	<u>.</u>	-1310	341		28	<u>5</u> _		10 8	<u> </u>	302
	7	4	1 336	341	9.	29	5	1	86	71	180
	8	4	1 151	124	153.	32	5		- 51	50	189
	9	4	1 148	13 2	356.	1	6	1	115	115	82.
1	0	4	1 159	152			6]		-78-	211
1	1	4	1 69	43	35.	3	6	1	127	118	1 78
	2	-4-	<u>1-1-152</u>			4			97	 97-	-121
1	13	4	1 80	73	295.	5	6]	l 174	174	160
1	.4	4	1 148	- 1 38 -	223 •	6	6		6 3	66	206
1	. 5	4	1 170	149	169.	7	6]	L 84	63	184
1	.6	4	1 74	- 57		8	6	·· - ·]		159	244
1	.7	4	1 128	136	134.	9	6	1	. 47	33	217
	8	4	<u> </u>					}			-276
1	.9	4	1 66	68	216.	11	6]	68	45	306.
2	20	4	1 116	134		12		· · · · · ·			- 750
2	1	4	1 134	155	158.	13	6]	L 140	145	154
2	2	4	1 67	13					104	101	240
4	: 3	4	1 208	189	204.	15	0	1	. 152	122	345
		4		<u>14</u> 0- 04			0	1	120	14.2	200
2	.)) (4	1 87	94 45	100.	17	0	1	130	142	2490
2	.0	4	1 79	64	197	10		1	161	166	201
2	 	4	1 75		198	20		1	101	176	יי דדכ
2	9	4	1 81	67	264.	21	6	1	<u>د،</u>	55	91
7			-1 - 97	02	254						
2	31	4	1 79	76	98-	23	6	1	104	96	319
2	2	4	1 76	.0 69	205	24	6	1	- 101	-98	130.
3	13	4	1 43	31	262.	25	6	1	113	98	359
-	G	5	1 80	-47-	-161			3	39		167
	1	5	1 233	2 54	24.	28	6	ī	. 36	37	51.
	2	-5	-1-131	<u> </u>		0	7		53		-14-
	3	5	1 145	1 14	217.	1	7	1	61	67	3c.

.

											•	
	ч	К	L	1C#F0	10*FC	FASE	н	К	L	10 * F G	10 * FC	FASE
	2	7	1	43	39	93.	10	9	1	55	57	340.
	3	7	1	93	94	304.	11		- 1	44	41	198.
	4	7	1	118	126	91.	1	10	1	43	47	12.
	5	7	1	213	227-	199.		· · · 1 - 0 -	1 .	70	66	87.
	6	7	1	70	66	298 •	6	10	1	72	67	70.
	7	7-	- 1	139	148	52 .	7	10		- 46		. ذه.
	8	7	1	234	270	155.	11	10	1	27	33	44.
		(1	168	-193-		12	- 10-	1	37	41	1/.
	10	7	1	138	142	40.	13	10	1	50	41	1294
	12	, ,	1	123	112	100.	··· [4	10	·· I	17	11	1701
			1	110		205.	15	10	1	54 54	40	• 200 <u>سندند</u>
	14	, 7	1	74	74	34.	10	11	1	83	50	274.
	15	7	ī	137	1 24		2	11	-+-	55	40	225.
	16	7	ī	62	63	206.	3	11	ī	63	55	36.
	17	7	ī	110	1 02 -	-131-	4	· · · · · · · · ·	-1	34	39	175
	18	7	1	112	122	188.	5	11	1	24	29	332.
		-7-	-1	136	140-		2	0	-2			-27:
	20	7	1	182	193	326.	4	0	2	275	238	221,
	21	7	1	99	65	279.		0	2	211	185	60,
	22	7	1	99	9 0	292.	8	0	2	5 9 3	576	110.
	23	7	1	110	119	158.	10	0	2	207	180	- 307
	24	7	1	53	67	27.	12	0	2	127	185	318.
	20	- T	<u> </u>			227.	14	.	-2		-105	- 3227
	21	7	1	20	20 47	233.	10	0	2	211	217	111
	20	Ŕ	1	50		221.	20	0	2	115	03	200.
	2	8	ì	46	51	221-		···· 0	- 2	226	220	- J2/ - 5 -
	3	8	1	33	23	247.	24	ŏ	2	196	220	247.
		8	i-			327.		Ò-			-212	105.
	5	8	1	57	38	115.	28	0	2	253	213	350.
	7	8	1	128	117	298.		0	2	218	203	200.
	9	8	1	88	96	183.	32	0	2	175	148	32.
	12	8	1	74	53	9.	34	0-		4 Ž	38	158.
	14	8	1	33	34	169.	36	0	2	71	83	232.
		··· ·8 —		- 32		-303 -	1	<u> </u>	- 2	120-		1.
	16	8	1	90	59	113.	2	1	2	163	155	344.
	18		1	105	70	101	5	1	2	213	176	267
	19	8	ì	30	37	37.5				174	+++++++++++++++++++++++++++++++++++++++	
	20	8	i	65	56	181.	6	ī	2	453	414	353.
				63-		-222-	7	<u>i</u>		- 313		R
	22	8	1	76	69	163.	8	1	2	401	400	22.
	23	9	1	125	120	-49-	· • · · · · · · · · · · · · · · · · · ·	1	2	313-	325	205.
	24	8	1	67	62	348.	10	1	2	467	529	277.
	26	8	1	74	- 68	240.	11	1-	2	- 290 -		15.
	0	9	1	117	9 0	159.	12	1	2	235	236	19.
<u> </u>	<u>+</u>				- 153-	120.		<u>t</u>	- 2	337	377-	124.
	2	9	I ,	119	105	24 •	14	1	2	252	258	212.
	4 5	7 0	1	52 45	フガ よ1	717. 790	12	1	2	320	521 304	200.
	ر ۸	9	1	09 08	61	2070	17	1		56 I 46	504	
	7	, 9	1	32	47	58-	18	1	2	15.3	138	164-
		_ <u>_</u>	<u>-</u> -							-79		-1851
	9	9	1	78	9 2	187.	21	1	2	114	90	294.

- ----

_ . _ . _ . _ . _

.

PAGINA	6
	·

- ----

				-	· ···· ·· ···							·
I	н	к	L	10*FO	10 * FC	FASE	н	к	L	10*F0	10*FC	FASE
	22	1	2	101	80	98.	10	3	2	194	185	286.
	23	1	-2-	1-88 -	1 99 -	-304			- 2	-31 1	-310	271-
	24	1	2	165	153	76.	12	3	2	106	81	116.
	25	1	2	- 68	- 5 8-	-201 -		3		127	445	104.
	26	1	2	118	100	64 •	14	3	2	35	30	198.
	-27					-334			-2	<u> </u>		123
	28	1	2	106	89	215.	16	3	2	185	154	16.
	29	1	2	65	49.		17	3	2	87	71	846
	30	1	2	103	83	134.	18	6	2	15	76	38.
	31	1	2	88	68	78	19	- · · 3 .	2	18.3	173	87.
	22	1	2	19	(5	13.	20	2	2	150	133	33. 1 7 V
	-33-	<u>+</u> -	<u> </u>			- 311 .	- 21	 	~		194 76	- <u>195</u>
	24	1	<u>د</u>	04	00	2020	22	כ כ	2	170	15	176
	30	1	2	· 101	··· ··· ······························		· 23	--	2	27	100	212
	1	2	2	241	214	247.	24	2	2	110	104	614
	1	2	2	201	242-	242	27	2	- <u> </u>	140	124	244
	2	2	2	120	127	203.	20	2	2	40	12 4	2420
		2	<u>-</u> 2	239	222	-1054	20		2	32		143
	ч 5	2	2	210	221	262.	21	2	2	34		181
	6	2	2	312	277	328.	51	4	2	423	44	51
	7	2	2	254	289	220.	ĩ	4	2	25	23	343
	8	2	2	144	101	176.	2	4	2	225	263	47.
	q				202_	125	`_ _		2	<u></u>	125	- 218-
	10	2	2	448	431	33.	4	4	2	347	343	111
	11	2	2	291	2 68	86-	5	4	2	168	133	3007
	12	2	2	162	149	257.	6	. 4	2	318	328	217.
	13	2	2	381	375	210	7	4	2		51	290
	14	2	2	168	139	176.	8	4	2	222	250	291.
	-15-	2	2	- 182		-289		4	_2	95	94	-247
	16	2	2	281	305	46.	10	4	2	162	147	124,
	17	2	2	253	2 63			4		- 131	113	20.
	18	2	2	168	151	165.	12	4	2	103	90	212.
	19	2	2	213	2 36	- 143			2	161	130	296
	20	2	2	169	144	226.	14	4	2	88	102	224.
	-21-		2		<u> </u>				-2-		76	- 196 -
	22	2	2	125	130	140.	16	4	2	153	165	258.
	23	2	2.	74	56	· · · 20 • · ·	17		2	77	74	-281
	24	2	2	94	84	212.	18	4	2	121	132'	318.
	25	2	2	43	- 38 -	- 282 .	19	4	- 2	30	· 3 2	4.
	26	2	2	43	39	225.	20	4	2	89	79	27.
	-27-			47-	- 53 -	-148			-2-	57-		÷-
	28	2	2	36	48	48.	22	4	2	152	153	65.
	29	2	2	40	47	329.	· · · · · · · · · · · · · · · · · · ·	4.	2	65	- 74 -	280.
	31	2	2	36	46	231.	24	4	2	80	81	7.
	33	2	2	66 -	50 ·	288 -	26	4	2	122	114	257.
	1	3	2	49 0	523	329.	27	4	2	108	92	330.
		3	-2-	_ 184 _	<u> </u>	217.		4	-2	37		- 189 ,
	3	3	2	281	260	261.	30	4	2	24	23	110.
	4	3	2	463	458	242.	31	4-	2	27	-2.9	- 3 30.
	5	5	2	195	2.08	529.	32	4	2	61	14	236.
	6	3	2			- +>+	····		2	440	472	112.
	(5	2	404	408	510.	2	2 _	2	100	114	21.
	- 7	- 5 - 2	- E	140	1.01	174			<u>-</u> 2	70 & /,		- 197 1 263
	7	2	2	102	171	T (4 •	4	2	2	04	01	2470

					PAGI	NA	7
		•• -			•		-
EASE	н	к	1	10 % E 0	10#EC	FΔ	SE

н	К	L	10 *F 0	10 * FC	FASE	F	i K	L	10 4F 0	10#FC	FASE
 6	5	2	121	114	119.	4	7	2	29	38	79.
7	5	2	197	202	147 •	- 5	- 7	- 2	10 1	73	193.
8	5	2	89	93	91.	6	7	2	146	153	293.
9	5	2	52	31-	57		7	2	154	159	45 -
10	5	2	68	48	67.	8	7	2	21	23	145.
 					-303.		7				270.
12	5	2	48	46	86.	10) 7	2	18	91	304.
13	5	2	153	158-			; - f	2	91	100	134.
14	5	2	86		• C	12		2	143	144	- 147.
17	2	2	147	197-	120	13	/	2	171	120	יי הככי הככי
 10 17	ر 	- 2	121	121	120.	16	, , 7	2	140	132	•ددو ــد≍د
10	5	2	71		2546	15	7	2	112	130	2370
10	5	۲ د	111	1 25	222.	1.7) 	2	112	114	- 2000
20	5	2	21	24	260	19	7	2	116	117	47
20	5	2	103		200.	10) /) 7	2	110 50	71	41
21	5	2	102	105	215.	21	, 1 7	2	27	20	150
 	5							<u>2</u> .			1074
25	5	2	120	116	22	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		2	14.6	167	2721
26	5	2	120				, U	2	140	161	265
20	5	2	114	106	227	2	. 0	2	203	215	207
28	Ś	2	76	-76			. 0 ⊢– 9	2	197	131	3 6(1)
29	5	2	91	90	331	4	, С . А	2	30	29	12.
 - 30 -					-217.		8			<u> </u>	
31	5	2	51	45	31.	6	. 8	2	150	155	237.
0	6	2	249	262	- 274	7	,	· · · · · · · · · · · · · · · · · · ·	- 53	59	168.
ĩ	6	2	107	117	315		8	2	68	75	40.
2	ĕ	2	79	62	135	9	-8	2	· 43	41	- 112.
3	6	2	99	57	57.	10	8	2	43	40	100.
 	6	-2			-12.		. ě	<u> </u>			76.
5	6	2	47	43	274.	12	8	2	52	58	244.
6	6	2	86	- 90 -	206	13	- 8	2	95	78	164.
7	6	2	125	123	194.	16	8	2	40	47	155.
8	6	2	76	78	50.		L	2	48	49	57.
9	6	2	171	150	350.	19	8	2	37	33	268.
 		2-		71	-254		- 8	2		- 42	-209.
11	6	2	112	109	240.	22	8	2	38	49	72.
12	6	2	145	152	172.	-1	· 9	2	118	94	289.
13	6	2	9 8	83	50.	2	. 9	2	153	139	6Ü.
14	6	2	157	171		- 4		2	59	- 54	43.
15	6	2	88	9 8	61.	5	9	2	89	87	134.
 -17-		-2-	- 79		220.		9		- 59		5 a
18	6	2	82	84	227.	7	' 9	2	106	99	324.
19	6	2	53	-69	-287	8	9	2	29	31	101.
20	6	2	53	49	31.	10	9	2	40	36	284.
21	6	2	52	-60 -	176.			2	40	40	320
22	6	2	46	43	204.	12	9	2	27	35	135.
 -23-	-6-	-2-		25							-147.
24	6	2	59	41	318.	18	9	2	89	84	223.
25	6	2	65		1.50.	0	10	· 2	63	6 f	199.
26	6	2	114	106	80.	2	10	2	65	37	- 105
27	07	4	4Z	4/-	105	4 7	10	2	80 24	10	- 141. Sa
 		۲ 	112	105	103.	o حـــــ		2	20		•نے <u>ددر ا</u>
 2	7	2	210	2 94	202		10	2	<u> </u>	- 5 ()	
5	•	۲	~1~	664	67J0		10	۷	TT	50	<i>,</i> U •

•• ----•

						PAG1	NA {
FC	FASE	н	К	L	10 * F O	10 * FC	FASE

- ---

	н	К	L	10 *F O	10 * FC	FASE	н	K	L	10 * F 0	10 * FC	FASE
}	9	10	2	24	37	286.	3	2	3	241	216	147
	12	10	- 2	32		279.	4	2		227		77
	13	10	2	67	65	306.	5	2	3	116	80	287
	4	11	2	57	50	-238	6	2	3	178		292
	5	11	2	61	44	76.	7	2	3	330	330	269
	6	-11-		40-		 163		- 2-				- 66
	2	0	3	181	2 29	16.	9	2	3	133	126	238.
	4	0	3	250	2.71-		- 10 -	- 2	3	168	-146	124
	6	0	3	375	403	285.	11	2	3	64	72	190
	8	0	3	254	2.50	109.	- 12-	2	3	97	82	283.
	10	0	5	131	128	139.	13	2	د	115	84	92.
			و			-212-				<u> </u>		541
•	14	0	د	150	123	234.	15	2	2	108	0) 74	81.
1	10	0	ر د	202	30-	139.	· · · · · · · · · · · · · · · · · · ·	2	و د	14	····+0··	- 142 e 27
	10	0	2	203	211	17/.	17	2	د	240	271	2140
	20	0	د د	420	> 54		10	2	ر د		210	5020 27
	22	0	כ נ	200	240	341. 234	17	2	כ ר	200	510	210
	24 24	0	-5-			- <u></u>						
	20	0	2	154	210	222	21	2	<u>כ</u> ג	112	200	204
	20	Õ	2	55	101	192	22	2	<i>ב</i> ב	713 713	70	2040
	36	0	2	27	-+0 71	209	23	2	2	65	62	21
		1	<i>ב</i> ג	287	363	12	23	2	2	64	52	101
	i	1	2.	226	226	290	20	2	2	PU A Q		161
		<u>-</u>	<u></u>	276	259	227.	28	2	 7		55	241
	2	1	2	144	127	186	20	2	2	. 447	417	118
	4	1	ר ג	184	172	268.	1	2	2	326	292	291
	5	1	ž	156	1.29.	41				- 16.1.	111	30.
	6	ī	2	400	426	341	3	3	3	74	69	194
		i	<u>3</u> .	<u> 144 </u>	123					134		-201
	5	ŀ	3	288	278	295	5	3	3	175	157	121.
	9	ī	3	143	1-18	256		3	3	208		-118
	10	1	3	184	147	322.	7	3	3	102	110	162
	11	1	3	111	80	72.		-3	3	61		10
	12	1	3	178	158	212.	9	3	3	101	103	154.
· · · · · · · · · · · · · · · · · ·	13			229	2 00 -	-314			3			- 27
	14	1	3	177	152	12.	11	3	3	215	187	67.
	15	1	3	112-	86	59.	- 12				135	281.
	16	1	3	1 7 6	180	125.	13	3	3	136	151	168.
	17	1	3	108	88 -		1.4	3	3-	28		3234
	18	1	3	112	103	120.	15	3	3	105	89	245.
		<u>l</u>	-3-		- 93 -	-254		3-		67		<u>150</u>
	20	1	3	125	125	87.	17	3	3	138	148	105.
	21	1	3	192	2.07	- 110-			3.	136 -	126	304
	22	1	3	283	319	158.	19	3	3	32	29	340.
	23	1	3	78	· 61	20 . -	20-	3	·· - 3 ·	56		266.
	24	1	3	177	178	111.	21	3	3	146	162	280.
	25	_ <u>l</u>	-3-	- 56		153		<u> </u>	-3	- 98		-256.
	26	1	3	51	42	75.	23	3	3	57	48	263.
	27	1	3	59	6 8	296.	24		···· .	- 56	66	20.
	28	1	3	30	31	261.	26	3	3	49	66	155
	29	1	و	/1	62	-158	27	j 	-3-			200°
	30	1	ر د	57 24	22	70/•	28	2	5	40	3U 71	288.
			 2		125	120		999991911911 -	9 2	121	102	124
	۷	۲	2	191	-	TTA .	-	-	3	161	102	• در ـ

• · · ·

· ··-- · · · ·····

	н	к	L	1C*F0	10* FC	FASE	н	к	L	10 * F 0	1 C*F C	FASE
	2	4	3	181	1 99	317.	7	6	3	114	127	118.
	3	4	3	296	346-	49.	8	- 6	3	145	184	56
	ž	4	3	62	37	185.	9	6	3	69	104	7.
	5	4	3	111	105	138.	1 -0	6	3	181	183	242.
	6	4	3	36	41	283.	11	6	3	94	84	197.
	7-	4		58					- 3-		-151	151-
	3	4	3	98	44	7.	13	6	3	46	49	6 j .
	10	4	3	178	177-		-14	6.	3	74	71	8 3 (
	11	4	3	105	97	176.	15	6	3	66	86	120,
	12	4	3	121	108.		16	6	3	74	77	287.
	13	4	3	91	82	2 73 .	17	6	3	57	66	53.
			-3	— 131	-1-24-			-6-	3-			-141
1	15	4	3	62	64	325.	21	6	3	43	38	286.
	16	4	3	55	32	83.	22	6	3	30	31	345
	17	4	3	105	119	229 •	23	6	3	29	30	62.
	18	4	3	94	85	233 -	24	-6	3	27	36	145
	20	4	3	82	111	317.	25	6	3	26	35	100.
	-21-		-3-	- 115	-116-				-3			-1031
	23	4	3	39	51	204.	0	(6	321	412	317.
	25	4	5	31	25-	121.	1-	<u>[</u>	5	32	34	, CC
	26	4	ز	52	45	295.	2	1	د	105	108	201
	28	4	و	/1	- イン	144.	e	<u></u>	5	14	61	85.
	0	5	ز ح	230	263	169.	4	<u>'</u>	3	32	30	- 3140
	1		<u> </u>	103	175	104.				00		17
	2	う 	2	170	175	138.	0 7		2	40	00	111
	2	2	3	101	164	02.	1	1	2	()	04	371
	4	5	5	15	69 70	301.	8	-	3	00	10	، 10 د
	2	ר ב	- -	20	20	501.	7	7	2		70	2130
	0		2	28	28	242 .	10	r 	د د	00 105	70	2200
	-	- - -	5	101		1210	11	7		105		- 107
	٥ ۵	5	ີ ລ	40	45	121.	12	7	2	105	70	111
	10	5	כ ג	1.04	112	990.	14	7	2	0	114	1210
	10	5	2	104	74	04.	10	7	2	122 57	110	7.
	12	5	2	54	47	71 •	11	7	כ ג	63	2 7 5 1	120
	12	ر ج					<u>10</u>					
	14	5	2	40 60	76	222	17	7	2	/.0	22	2270
	15	5	2	103	10	240	22	, ,	2	47	20	357
	16	5	י <u>ר</u> ג	105	136	270 •	2	8	2	130	125	
	10	5	ר ג	62	100		2	8	3	190	205	1.55
	18	5	2	66	67	236.	5	8	2	190	165	27.
				57 -			- 5	A				2120
	20	5		33	43	132.	5	8	3	122	94	272 9
	21	5	ă	56	72	252	7	Å	3	46	36	112
	22	5	2	55	49	2.	8	8	2	89	99	140.
	23	5	ă	66	-51		10	Ă	4	++4	89	305.
	27	5	3	58	56	127.	11	8	ž	44	41	281
·····		<u>_</u>						<u></u>				
	30	5	2	66	87	343.	13	8	2	53	55	334
	1	6	3	119	1-57	253	15	8		72	61	124
	2	6	ž	269	297	132	0	9	3	93	82	81
	3	6	3	174	195	335.	Ĩ	9	3	82	81	295
	4	6	3	102	92	235.	2	9	3	75	75	141
~	5	6	-3		176	-256	<u>j</u>		- <u>-</u>			- 255
	6	6	3	214	226	149.	5	9	3	80	70	36
			-									

_

.....

_....

									· -				
	н	к	L	10*FD	10*FC	FASE		н	к	L	10年日	10*FC	FASE
	6	9	3	113	86	78.		13	2	4	202	211	73.
	7	9	3	1.08	89	- 165 .	<u></u>	14			53	48	250
	8	9	3	41	50	219.		15	2	4	88	80	39.
	ç	9	3	50	- 43-		-	-1-6	2	4	5ł	444	227
	13	9	3	57	37	250.		17	2	4	58	63	23.
				58	 50	- 323-		-19-		-4-	<u> </u>		- 290 1
	4	0	4	262	2 7 8	286.		20	2	4	90	116	242.
	6	0	4	77	73	-214 -		21	-2	4	161	162	3120
	હ	0	4	377	385	256.		22	2	4	172		2120
	16	C	4	158	133-	284		-23	2	4	77	117	101
	12	C O	4	174	159	11/.		24	2	4	14	163	2020
		- 0						- 29 -	-2				
	10	0	4	190	214	242.		20	2	4	42	50	2210
	10	0	4	42 266	- 36 - 244	75		- 2.1	2	4	54	66	176
	20		4	120	127	56		27 1	2		70	7.2-	105
	26	0	4	123	104	135		2	3	4	45	44	30
	26	o			<u> </u>	25			<u> </u>			64	
	1	ĩ	4	78	71	322		4	3	4	169	143	231
	2	ī	4	204	184	-327		5.	3	4	63	-66	344
	2	i	4	330	312	161.		6	3	4	135	107	250
	4	1	4	203	201	81.		7	3	4	84	81	142
	5	ī	4	159	1 55	337.		8	3	4	58	50	136
	6		4			-177.				4	132	138	134
	7	1	4	116	96	322.		10	3	4	114	95	29.
	8	1	4	118	9 8	5.		11	3	4	75	63	123
	9	1	4	47	41	13.		12	3	4	70	87	197.
	11	1	4	182	- 1 66	- 7.		13	3	.4	50	51	291
	12	1	4	105	107	155.		14	3	4	72	75	215
<u> </u>	13	-1-			<u> </u>	- 253 -		-15-			68	_90 -	- 346
	14	1	4	99	97	313.		17	3	4	108	129	21%
	15	1	4	174	196	- 1 04 .		18	. 3.	- 4-		129	75
	16	1	4	204	237	206.		19	3	4	38	40	358.
	17	1	4	167	1.63	355-		20	3	4	77	66	326
	18	1	4	63	59	66.		21	3	4	103	92	332
		···			<u>138</u> -	- 200 -		-22		-4	85		÷.
	20	1	4	162	192	289.		24	3	4	89		197
	21	1	4	0	101	1.30-		~~2.9		- +	0 0	- O f	2 f 1 d
	22	1	4	02	D2 40	209.		20	2	4	18	74	308 a
	23	1	4 /	40 27	45 20	116		21		- 4	61	F 4	- 240 07
	24	1	4	51	57 	145	_	20	5	4	160		91
	<u>_</u>	2	 			164		-		4	160	110	125
	1	2	4	100		275		2			107	110 97	1230
	2	2	4	83	כט ד 7 ז	53.		2	4	4	200	214	213
	2	2	4	161	1.32	- 165-	· - • _	4	- 4-	4	156	192	-250
	4	2	4	131	136	49		6	4	4	68	68	89.
		2	_4	69		- 143.				_4			-149
	6	2	4	226	2 26	83.		8	4	4	95	87	122
	7	2	4	131	99	69.		9	4	4	150	155	218
	8	2	4	51	47	7.		10	4	4	83	65	307
	ò	2	4	156	130	3			. 4.	4	25	25	182
	10	2	4	68	63	141.		12	4	4	52	58	138.
		-2-	- 4		78	- 258 -		13	4	-4			-187
	12	2	4	23	26	347.		15	4	4	66	73	248,

.

PACINA 1

				· ·							
н	к	L	10*F0	10*FC	FASE	н	к	L	10*FC	10*FC	FASI
16	4	4	61	64	210.	18	7	4	86	 8 G	153
18	4	4	72	85	129.		8	4	136	148	86
19	4	4	77	82	81.	3	8	4	102	د 10	349
20	4	4	42	46-	327 .	4	8	4	69	80	40
23	4	4	53	53	27.	5	8	4	36	30	127
 24					- 44 .	6-			36		-151
1	5	4	226	253	278.	7	8	4	54	49	283
2	5	4	253	285	- 131 .	8	8	4	43	47	274
3	5	4	183	192	38.	9	8	4	61	52	1 0
4	5	4	178	- 205 -	10.	-10	8 8 1	- 4	49	43	71
5	5	4	149	140	231.	1	9	4	57	52	150
 	- 5-		- 139	<u></u>	-68 -		0-	5-	- - 118 -		-290
· 7	5	4	58	64	265.	4	0	5	136	135	139.
8	5	4	76	75 -	240.	6	0	5	40	26	9 0-
9	5	4	63	57	196.	8	0	5	209	206	357
10	5	4	116	144-		··· 10	0	5	197	194	135
11	5	4	67	71	87.	12	0	5	86	103	272
	<u>-</u>				-131.		0	-5	174	- 199	67
14	> F	4	61	57	116.	16	0	5	18	59	144
15	5	4	22	5 7	152.	18	0	5	49	42	257
10		4	91	7 3	330.	20	0	2	49	57	330
10	2 5	4	יסס כ ר	01°	220		I 1	7	70	105	117
 _	5			7	230.	î	1		70	23	100
21	5	4	51	447 50	105	- 2	- T		- 87	74 01	————————————————————————————————————
21	5	4	76		102.	5	1 	2 5	115	70	330
25	5		67	68	43. 40	•• 5	1	5	100	40	5 50
24	6	4	203	210	770 716::	5	⊥ 	- 5 - 5	97 97	-75	۲ ۲
1	6	4	159	171	78.	7	1	5	120	118	220.
 	··	- 4-		107				-5			
3	6	4	76	61	352	9	ī	5	133	97	86.
4	6	4	139	-160	238.	10	ī	5-	159	168	203
5	6	4	64	60	255.	11	ī	5	151	149	322
6	6	4	107	104	153-	12	ī	5	113	107	83,
7	6	4	65	53	39.	13	ī	5	94	102	221
 	6				7		-1-	-5-		108 -	. 11t -
10	6	4	84	88	276.	15	1	5	96	98	147
11	6	4	73	76	355.	16	1	5	85	102	207
12	6	4	77	74	9 9 .	17	1	5	76	85	298.
13	6	4	47	41	293 -	20	1	5	49	52	195
14	6	4	57	4 8	7 2 •	21	1	5	28	27	351
 	- 6 -				72	1		-5		-144	4 8 ,
20	6	4	41	40	144.	2	2	5	128	135	241,
1	7	4	54	60 .		. 3		··· 5	150	132	37,
2	7	4	156	170	274.	4	2	5	225	225	160.
Э	7	4	131	109	80.	5-	2	5	87	75	223,
4	7	4	47	49	290 •	6	2	5	59	47	323.
 	7			43	124 .	7		-5-		222	12+
6	7	4	66	51	131.	8	2	5	125	120	231
8	7	4	66	48	288	9	Z	5	163	181	10
10	1	4	38	49	211.	10	2	ל ד	123	99	120
11	1	4	64 5 - 1	-f0	200 .	··· I · I 1 2	2	ר ב	×1	€ 0 ∠ 7	2004
12	ן ב	4)/ 75		200.		2			04 	، د U و ب عد
 12		4		20	2	14	2	- 5-	41	- 	221
10	1	-4	24	27	J.	14	۲.	ر	70	J U	4621

......

PAGINA 12

											140.	
	н	к	L	10*F0	10 * FC	FASE	н	κ	L	10 *F0	10*FC	FASI
	15	2	5	69	81	262.	17	5	5	38	38	263
	16	2.	5	· · · 49	55	- 326 .		5	5	65	-65	- 313
	17	2	5	28	39	194.	19	5	5	51	46	243
	18	2	2 5	70-					7		 	156
	<u>_</u>	2	5	10	90	224 •	2		ر ج			1.00.
	ĩ	3	5	119	127	104	4	6	5	58	68	223
	2	3	5	102	79-	342	· · · 5	6	5	112	106	31
	3	3	5	133	112	149.	6	6	5	87	76	92
	4	3	5	131	123		· · ·· · · · · •	6	5	70	72	347
	5	3	5	54	34	357.	9	6	5	70	52	121
	6	3	5	<u>159</u>	<u> </u>	- 197. -			5-			-335
	/ 0	3	י 5	50	<u> 38</u> 02	107	11	67	2	49	100	- 332- 55
	o Q	<i>כ</i> ג		53 53	50	- 1031		+	9 5	73	100	- 29. - 21.2
	10	3	5	47.	29 64	190 -		h	5	36	47	1.75
	11	3	5	67	69	158.	6	õ	6	40	47	308
			<u>,</u>	52		-112-	8	Ō	6-		49	
	13	3	5	106	1 30	115.	10	Ō	6	35	38	304
	15	3	5	71	75	-357	12	0.0	6	46	41	49
	16	3	5	112	95	193.	14	0	6	120	123	224
	1	4	5	127	109	- 276 🖬	16	·· 0	6	48	59	294
	2	4	5	124	152	6.	1	1	6	64	66	67
		4			<u>-131</u>					<u>135</u>		127
	4 5	4	ン ち	147	1 39	11+ 225	5	1	0 4	109	110	350
	6	4	5	75 27	25	122	· ·	1	о 6	86	81	1.54
	7	4	5	134	147	-304-	·····	.1			66	111
	8	4	5	86	83	260.	7	ī	6	85	77	202
•	9	4	5			108.	8		6	49		329
	10	4	5	90	97	30.	9	ì	6	49	40	143
	11	4	5	57	- 55	-231-		1	6-	-70-	79	- 157
	12	4	5	41	50	158.	12	1	6	66	83	107
	13	4	5	107	106	34 .	13	···· 1 ·		55	63	198
	14	4	ン 5	122	122	321.	15	1	0	40	51 62	2890
	16	4		57	51	184.	0	2	6	247	230	320
	18	4	5	74 -	64 -	-150	1	2	-6	215	202	108
	20	4	5	80	83	195.	2	2	6	166	157	201
	21	4	5	68	65 -	-100 .	-3		6	156	- 162	13.
	0	5	5	133	124	202.	4	2	6	78	76	136
		5	5-	119		112.	5			96-		267
	2	5	5	28	33	356.	6	2	6	96	96	311
	3	5	5	63	71	237		2	-6	127	-114-	- 107
	4	2 5	2 5	129	120	114.	8	2	6	00 71) (1020
	5	5	5	120 70	1 47 ** 85	250.		2	6	11	64	5100
	7	<u>_</u>	<u> </u>	64	76_	-115-				<u>48</u> -	43	79
	8	5	5	129	133	355.	1	3	6	41	46	178
	9	5	5	87	79	247.	2	3		100		158
	10	5	5	71	5 5	158.	3	3	6	128	132	228
	12	5	5	112	105	284 .		. 3.	6	112	-11-5	325
	13	5	5	82	7 2	353.	5	3	6	91	97	135
		- <u>-5</u>	_5		- 74-	<u>-62.</u>	7		6-			-172
	10	5	2	48	49	191.	9	3	6	106	111	319.

											PACI	NA 13
н	к	L	10*F0	10*FC	FASE		H	К	L	10 #F 0	10#FC	FASE
 13 14	3	6	76 46	79 49	66 • 		8	4	6	49 113	40 102	194 2844
1 2	4 4	0 6	31 45-	- 50-	295• 	1 1 1	1	4 4 -	6	92 46		-60
 3	4	6	55	55	330.	1	2	4	6	64	84	325.
 5	4	6	75	70	87.	Ľ	1	7	6	77	71	184.
6	4	6	65	-74-	- 306 -		3	7	6	77	-74	347; 222
1	4	o	51				0		U	14	07	~~~~
 					······							
								-				
						· · · · ·		-				
				·····								
 										_		
				. .								
				-								
									-			
 					·····						<u> </u>	
 					·····							
				<u> </u>								
					···			·····				
										-		
 									<u> </u>			

.....

APENDICE G

Lista de factores de estructura de Quebrachamina

Para cada reflexión se informan los índices de Miller (H,K,L), el factor de estructura observado (Fo), el factor de estructura calculado con el modelo final (Fc), y las fases correspondientes. -FACTORES-DE-ESTRUCTURA DE QUEBRACHAMINA

19 26 2 _ _ _ _ _ _____

PAGINA 1

	н	κ	L	10*F0	10*FC_	FASE	Н	K	F	-10*F0	10*FC	FASE
<u> </u>	1		-9	38		0.	6	0 .	5	73		180.
	2	0	-9	56	59	180.	7	Ō	-5	0	21	0.
	3	0	-9	51	47					. <u>118</u> .	107	0.
	4	0	-9	40	38	180.	10	0	-5	128	125	180.
	5	0	-9	48	41	0.		••••••	-5	0	10	180.
	6	0	-9	44	30	0.	12	0	-5	58	59	180.
	-10	0	-9	<u>91</u> _			14		=5	47		0+-
	11	0	-9	57	59	0.	1	0	-4	229	222	180.
	1	0	-8	0	15	.	2				. 10.3	180.
	2	0	-8	93	92	180.	3	0	-4	0	38	180.
	3	0	-8	29	30	180-		- 0		. .	69 .	180.
	4	0	-8	74	81	180.	5	0	-4	149	155	0.
	5	0		29	24	-0-	6	0	-4	161_	149	180.
	6	0	-8	54	48	0.	7	0	-4	212	226	0.
	7	0	-8	50	41	•••		0.		Q	11	180.
	9	0	-8	45	47	180.	10	0	-4	103	104	180.
	10	0	-8	44	33	· · · · •	11	···· Q			125	0.
	11	0	-e	0	30	180.	12	0	-4	44	41	180.
	· - <u>+</u>		{ 7			-0. -	<u>1</u> 3	0				100
	2	0	-7	29	50	100.	14	0	-4	142	137	180.
	5 1.	0	-7	111	¥ 112		+				22	100.
	م ج	0	-1	51	47	100 •	2	Ň	-3	0	23	180
	6	ñ	-7	36	21		د	0		125	125	180.
	7	ň	-7	0	15	190.	5	ň	-3	0	53	180
	 Q	ñ	-7	0	15	0.	6	0	-3			180
	10	õ	-7	85	89	0		ŏ	-1	. 43	53	180.
	11	ŏ	-7	66	65	180.	8	0	-3	63	69	0.
	1	ō	-6	101	90	0.		<u> </u>	3.	163	173	180.
	2	Ō	-6	136	120	180.	10	Ō	-3	49	38	0.
		<u> </u>	-6		78	0.		0	-3	268_		
	4	0	-6	135	128	180.	12	0	-3	0	13	180.
	5	0	-6	77	77		13		3.	100	10.1	180.
	6	0	-6	47	37	180.	14	0	-3	0	δ	180.
	7	0	-6	0	0.				-3	36	32	0.
	9	0	-6	57	59	0.	1	0	-2	166	137	0.
	<u> </u>	. _	-6	123_	129	0 •_	2	0	-2	0	2	_180.
	11	0	-6	134	1 34	180.	3	0	-2	419	452	0.
	12	0	-6	66	59	180.	4	0 .	. 2 .	234	238	180.
	1	0	-5	0	29	180.	5	0	-2	0	26	0.
	2	0	-5	33	38	• • • • • •	6	·0 ·	-2	110	107	v.
	3	0	-5	140	131	180.	7	0	-2	0	16	0.
	4		-5			0	8	0	-2	108		180-
	5	0	-5	0	21	0.	9	0	-2	98	94	180 .

1	н	κ	L	10 * F0	10*FC	FASE	н	к	L	10*F0	10*FC	FASE
	10	0	-2	0	17	0.	0	0	2	0	24	180.
	11	Ō	-2	121	131			<u>0</u>	-2	246	254	180.
	12	0	-2	0	81	180.	2	0	2	178	183	0.
	13	0	-2	39	47		3		2			180.
	14	0	-2	29	36	180.	4	0	2	116	112	180.
	<u>15</u>	0		55			5		-2	0	3-	0.
	16	0	-2	0	4	0.	6	0	2	146	151	180.
	1	0	-1	2.26	-220-	100		0	2	121	121	U •
	2	0	-1	223	171	100.	0	0	2	121	131	0.
	- S - A	õ	-1 -1	302	345	180.	10	0	2	63	56	0.
		0			50	180		`	_2	99	<u> </u>	<u>-180.</u>
	6	ŏ	-1	135	137	0.	12	ō	2	54	54	0.
	7	0	-1	202	240			Ð	3	192	183	180.
	8	0	-1	97	104	0.	1	0	3	338	344	0.
	9	0	-1	48	24	1 80 . –		• • • • • • • • • • • • • • • • • • • •		-441	499	0.
	10	0	-1	43	37	0.	3	0	3	127	118	180.
	-11	0-	-1-		- 42-	180-		-0	-3	0	- 36-	-180.
	12	0	-1	59	78	180.	5	0	3	135	143	180.
	13	0	-1	63	-67	• • • • • • • • •	····	0-	3	139	143	180.
	14	0	-1	0	67	180.	1	0	3	0	4	0.
	15	0	-1	0	10	190	8	()	`	18	44	U •
	10	0	-1 	0	275	180		0	د د	45	42	
	2	ŏ	ŏ	0	123	180.	11	0	3	55	57	180.
	3	Ō	Ō	343	412	-180		- 0 -	. 4	0	9	0.
	4	Ō	Ō	268	308	180.	ī	Ō	4	148	131	0.
	5	0	0	213	227	180 -	2	··· • • •	4	305	322	0.
	6	0	0	171	174	0.	3	0	4	79	83	180.
	7	0	0-	142-	-133-	180.		•••	-4-	65		180.
	3	0	0	209	219	0.	5	0	4	79	77	180.
	9	0	0	137	135	1 80 . –	6	· - 0	-4	0	- 2	0.
	10	0	0	24	19	0.	7	0	4	91	107	180.
	11	0	0	62	54	180.			•• 4	133	143	0.
	12	0	0	4/	44	0.	9	0	4	40	40	180.
	14	0	0	103	1 00	180		v				0
	15	õ	ő	60	52		1			107	111	0.
	16	õ	õ	63	66	180.	2	õ	5	77	69	ປ.
	17	0	Ō	55	. 48	180		Õ	. 5	83	69	180.
	0	ō	ī	0	612	0.	- 4	Ō	5	60	60	0
	-	-0-			7-	-180-	5-	0	-5			-180
	2	0	1	308	344	180.	6	0	5	64	65	0.
	3	0	1	0	33	- 180	7	• • • • • • • • • • • • •	5	0	.2.1	180.
	4	0	1	237	253	0.	8	0	5	36	32	180.
	5	0	1	0		180	0	-0-	- 6	θ	-1	0.
	6	0	L N	0	3	0.	1	0	6	19	24	180.
	-	0	1			190		_0_	-0-			-180-
	O Q	0	1	06	25 	180.		0	0 4	77	01 041	180
	10	ŏ	1	40	43	180 -		õ	6	108	115	100• 0.
	11	ō	ī	75	69	180.		ф		-55	41	180-
	12	0	ī	61	55	0.	7	ō	6	55	54	0.
	- 13	-0-		72		0	88	-0	6	0-		-180
	14	0	1	29	31	180.	0	0	7	89	94	Ü.

.

· -· · -----

- --- -----

____ ___

 н	к	L	10*F0	10*FC	FASE	Н	К	L	10*F0	10 *FC	FASE	
1	0	7	21	31	0.	2	1	-5	160	143	175.	
2	0	1	47.			3	-	-5	- 46	-46	220-	•
3	0	7	62	54	0.	4	1	-5	65	55	233.	
4	0	1	58	54				=5	96	4.8.	11.	
5	0	-	49	31	180.	6	1	-5		63	64.	
 	Q		26_	- 22	180 .		<u> </u>		<u> </u>	-115	169.	-
8	0	I 0	35	31	180.	8	1	-5	107	107	327.	
0	0	8	14	70	O•				28	20	149.	
1	0	b	44	36	180.	10	1	-5	11	/1	10.	
1	1	-9	35	34				-5	65	82	248.	
2	1	-9	18	20	311.	12	1	-5	66	67	143.	
 3		-9	18_	16		13	<u> </u>	-=5	<u> </u>		106-	-
5	1	-9	61	62	148.	14	1	-5	101	100	334.	
6	I.	-9	45	- 44			- 1	-5	0	39	172.	
7	1	-9	31	24	181.	1	1	-4	159	147	262.	
8	1	-9	55	- 54 -	-329-				145	141	57.	
10	1	-9	52	57	219.	3	1	-4	69	57	269.	
 ·····		9_	59	<u>-61</u>	101.		1		40	47_		-
1	1	-8	59	55	342.	5	1	-4	139	133	74.	
2	1	-8	11	78	236					4.6.	201.	
3	1	-8	0	8	45.	7	1	-4	56	48	182.	
5	1	-8	133	136	121.		1	-4	82	77	273.	
6	1	-8	68	79	312.	9	1	-4	173	175	21.	
 		<u>-8</u> .	79			10	1	-4	137_	125	174.	_
8	1	-8	0	19	301.	11	1	-4	105	115	220.	
9	1	-8	41	32	322		1	-4	-50	.39	265.	
10	1	-8	101	98	204.	13	1	-4	42	36	69.	
11	1	-8	27	30	81		-1	-4.		8.3	304.	
1	1	-7	92	89	320.	15	1	-4	77	79	40.	
 ··· 2	-1-	_=7	82	80	_257	16	-1	-4		73_	160.	-
3	1	-7	64	56	189.	17	1	-4	78	73	·65 •	
5	1	-7	4 8	- 4 4	204 .		1	-3	- 54	44	223.	
6	1	-7	76	69	28.	2	1	-3	57	53	143.	
7	1	-7	37	31	.336		1	-3	72	74	255.	
8	1	-7	85	74	74.	4	1	-3	0	8	50.	
 9	1	-7-		102	197	5	1	-3	96	95_	226.	_
10	1	-7	69	64	231.	6	1	-3	0	15	104.	
11	1	-7	64	-58	359		- 1	-3-	156	162	328.	
13	1	-7	51	53	36.	8	1	-3	154	168	54.	
15	1	-7	48	40	135.	9	-1	-3_	139	139	58.	
1	1	-6	0	19	299.	10	1	-3	144	147	162.	
 2	1	-6	78	67	185	11	1	-3	68_	71	202-	-
3	1	-6	34	24	302.	12	1	-3	72	75	252.	
4	1	-6	44	35	-211		- 1	-3.	128	130	308.	
5	1	-6	100	101	351.	14	1	-3	0	25	111.	
6	1	-6	89	90 -	7	15	1	-3	····· 0	27	58.	
7	1	-6	107	107	97 .	16	1	-3	43	34	77.	
 8		-6	36	31	254	<u>l</u>	L	-2			238	
9	1	-6	100	97	162.	2	1	-2	589	65 0	92.	
10	1	-6	72	68	301 .	3	1	-2	- 401	465	292.	
11	1	-6	57	52	254.	4	1	-2	310	353	146.	
13	1	-6	79	83-	118.	5	- 1		294	330	231.	
14	1	-6	56	60	315.	6	1	-2	150	151	351.	
 15		-6	Q			7	1	-2		88	-131-	-
1	1	-5	113	91	343.	8	1	-2	93	105	51.	

_ . . _ _

- - - ----

.. ...

. - -----

н	к	L	10*FÜ	10 * FC	FASE	Н	К	L	10*F0	10 * FC	FASE
9	1	-2	107	102	272.	15	1	1	48	48	339.
10	1	-2	163	186	- 140 .			1	35	35	34.
11	1	-2	57	59	278.	0	1	2	91	79	85.
12	1	-2	27	19 -	62.	k	1	2	- 246	237	220.
13	1	-2	87	88	248.	2	1	2	120	113	258.
	1-		<u> </u>		- 48 •		-1-	_2		<u> </u>	96 .
15	1	-2	58	57	120.	4	1	2	62	40	241.
16	1	-2	66	61	-313	5	- l	- 2	75	65	329.
1	1	-1	582	757	344.	6	1	2	104	117	181.
2	1	-1	391	429	187.	7		- 2	· ··· 1 11	126	90.
3	1	-1	311	359	344.	8	1	2	103	107	18.
4				-268	-186	9	-1-	2-			305
5	1	-1	270	331	126.	10	1	2	19	33	25.
6	1	-1	248	302	46	11	- 1		-88	91	276.
7	1	-1	190	224	6.	12	1	2	106	112	136.
8	1	-1	91	73	-193	13		2-	37	34	212.
9	1	-1	152	174	287.	0	1	3	222	220	77.
-10				98 _	<u>198 -</u>	ì	-1-	-3-	94	<u>59</u>	- 93.
11	1	-1	63	67	85.	2	1	3	93	88	284.
12	1	-1	106	113	225	3	<u>1</u>			216 -	336.
13	1	-1	0	5	129.	4	1	3	179	178	233.
14	1	-1	63	- 59	56		-1-	- 3-	104		-248 .
15	· 1	-1	Õ	13	195.	6	Ĩ	3	153	155	139.
<u>16</u> -	<u> </u>		74-		-337			_ <u>_</u>		72	-126-
1	1	ō	0	487	297.	8	ī	3	83	85	63.
2	ī	0	436	541	277		. <u>1</u>				345.
3	1	Ō	309	349	240	10	ī	3	42	37	274.
4	1	0	226	257	155		- 1	3-			240.
5	1	0	56	66	96.	12	1	3	30	27	164.
6-		0	139-	- 153-	75		-1			- 72	193.
7	1	0	63	66	8.	1	1	4	232	226	112.
8	1	0	79	77	345	2	1.		141-	136	353.
9.	1	0	87	76	235.	3	1	4	154	144	280.
10	1	0	49	59	82 .	4	. 1	4-	105	90	250.
11	1	Ō	38	40	34.	5	1	4	71	62	66.
	1	0	95		-160	6				- 77	225.
13	1	Û	61	60	299.	7	1	4	109	104	68.
14	1	0	0	16	0.	- 8 -	-1	- 4	66	69	333.
15	1	U	52	50	287.	9	1	4	91	89	78.
16	1	0	0	15	350 ∎	10	· 1 ·		37	38	245.
0	1	1	472	583	29.	11	1	4	57	52	207.
l		1-		153	-299		-1	4-	- 29		176.
2	1	1	249	3 00	230.	0	1	5	114	109	324.
3	1	1	201	205	82.	l ·		5	122	116	117.
4	1	1	181	201	66 .	2	1	5	0	14	73.
5	1	1	141	163	251		· 1	5-	43	88	242.
6	1	1	114	109	357.	4	1	5	0	15	173.
7-	1	1			-198		-1-	-5-		- 132	-154
8	1	1	92	86	352 .	6	1	5	127	126	327.
9	1	1	57	- 6 2	234	7	- 1	- 5	· 6 8	71	208.
10	1	1	37	33	126.	8	1	5	96	87	17.
11	1	1	34	33	·- 1	9	· 1 -···	5	30	26	69.
12	1	1	122	128	153.	0	1	6	95	92	267.
13			54		338 .	l	-1		41	42	- 48 •
14	1	1	48	49	225.	2	1	6	51	44	1.

...

.

_....

.

	Н	к	L	10*F0	10*FC	FASE	н	К	L	10*F0	10*FC	FASE
	3	1	6	υ	39	190.	6	2	-6	55	46	249.
	4	1	6	63	59	21	7_				· · · 8 -9-	- 258.
	5	1	6	71	74	132.	8	2	-6	0	10	229.
	6	ļ	6	43	36		·		=6	· · · · 93	85	344.
	0	1	(88	83	249.	10	2	-6	35	35	171.
	···	1					11			65_	57	
	2	1	7	80	13 70	232.	12	2	-6	50	52	238.
	4	ī	, 7	61	60	210	·····	· 4 -		40	30	122.
	5	ī	7	29	24.	0	16	2	-6	<u>4</u> 2	52	52.
	ō	1	8	20	26	80.	1	2	-5	50	45	340.
·····				57		321	2		<u> </u>	<u>88</u> .		- 226
	2	1	8	57	50	104.	3	2	-5	156	149	83.
	0	1	9	17	-21	-25-	4-		-5	52	37	168.
	1	2	-9	31	32	336.	5	2	-5	46	33	161.
	2	2	-9	- 46	51	101			-5	92	85	319.
	3	2	-9	23	26	177.	7	2	-5	59	64	108.
	-4	- 2-	9	61	68			2	-=5		71	108.
	5	2	-9	23	20	258.	9	2	-5	76	67	304.
	6	2	-9	64	69	1.21 +	<u>10</u>		-5	39	35	355.
	1	2	-9	40	43	310.	11	2	-5	49	39	171.
		2	-9	40	45	264	<u>12</u>		-5	81	81	254.
	11	2	-9	49	50	187.	13	2	-5		83	136.
		<u>4</u>	6 6									
	2	2	-0 -0	21	47	221.	10	2	-7	39	38	11.
	5	2	-0 -9	0	∦ ⊥ 21	202	10 17	2		31	31	3. 222
		2	-8	75	70	303. 117	17	2	-9	50 60	30	636
	6	2	-8	50	54	76	2	2	-4	47		
		2	_ 8	39		70	3		-4	55	44	276-
	3	2	-8	120	119	290	4	2	-4	158	155	225.
	9	2	-8	19	28	43		2.	-4	152	142	19.
	10	2	-8	57	65	241.	6	2	-4	112	107	226.
	11	2	-8	71	71	172.		.2	-4	101	94	106.
	12	2	-8	51	57	47.	8	2	-4	34	32	226.
	- 14 -		-8	36		22	9	2	-4	51		305.
	1	2	-7	63	60	3.	10	2	-4	69	61	332.
	2	2	-7	130	127	277	11	- 2	.=4	77	71	12.
	3	2	-7	69	58	90.	12	2	-4	71	77	189.
	4	2	-7	29	32	244	13	· · <u>- 2</u> · ·		123	129	125.
	5	2	-7	129	128	129.	14	2	-4	29	31	336.
		-2-	-(<u>58</u>		- 436	L S		-4	0_	L U	
	1	2	-1	61	12	333. 722	10	2	-4	U	10	213.
	ð O	2	-1	100	57 70	2 /0	· ··· · ···· · ··· · ··· · · ··· · · · ·	⊾د د		U ca	7 O 1 Ø	200
	۲ ۱۵	2	-1	100	71 60	347. 1 25	1	2	-2	20 20	7 D	200+
	11	2	-1	54 66	20	127		····· <u>4</u> ·····	-2	3U 150	20	6610 85
	12	2	-7	77		127.0	4	<u> </u>	-2		31.9	
	12	2	-7		36	29		 2	-7	426	496	95
	14	2	-7	39	41	222 -	<i>у</i> Б	2	- <u>-</u> -	177	159	233-
		2	-6	79	63	30	7	2	-3	91	78	152.
	2	2	-6	133	132	338		2	-3	139	130	204.
	3	2	-6	155	156	66 •	9	2	-3	71	79	318.
			6_	171	168	122.	10 .		-3	148	150	305.
	5	2	-6	85	7 9	242.	11	2	-3	99	101	52.

	н	κ	L	10#F()	10*FC	FASE	н	К	L	10*F0	10 * FC	FASE
	12	2	-3	47	47	231.	15	2	0	40	43	171.
	13	2	-3	142	1 55	110.	16	- 2	Ō	48	47	312.
	14	2	-3	90	89	263.	0	2	1	178	161	82.
	15	2	-3	45	- 44	-24	}	··· · 2·	-1	48	46	344.
	16	2	-3	54	46	209.	2	2	1	52	32	240.
	-14	2 2						-2-	-		<u> </u>	
	2	2	-2	293	322	211.	4	2	1	107	97	78.
	<u>د</u>	2	-2	142	174	246		~ <u>~</u>	1	122	10	202.
	4	2	-2	369	409	- 18		۲ ۲۰۰۰ ۲۰۰۰	1	114	110	234
	5	2	-2	92	86	112.	8	2	ī	51	55	216.
·····	-6	2		- 233		-146+	9	-2	<u> </u>	52	42	-351
	7	2	-2	91	84	300.	10	2	1	85	91	166.
	8	2	-2	44	44	227	1-1	2	ł	42	40	356.
	9	2	-2	46	18	115.	12	2	1	68	68	310.
	10	2	-2	94	92	283.		2	1	-79	79	102.
	11	2	-2	44	50	357.	14	2	1	35	29	128.
	12	<u>-</u>				-120-	Q		-2-			
	13	2	-2	19	30	292.		2	2	20	19	111.
	15	2	- <u>r</u>	0	27	46	3	2	2	120	166	330.
	16	2	-2	34	-26-	.222			2	253	260	53.
	17	2	-2	58	4 8	7.	5	2	2	110	94	217.
	1 8	- 2 -	2-	46		-221		-2	-2			-354
	1	2	-1	477	443	257.	7	2	2	130	135	140.
	2	2	-1	398	436	118		2 -	2	71	75	- 47
	3	2	-1	196	2 Ú J	304.	9	2	2	25	29	282.
	4	2	-1	155	160	-9		- 2	- 2	- 50-	50	- 312. -
	5	2	-1	234	237	161.	11	2	2	82	81	249.
			1-	<u> </u>	132-	- 8/8-	- 12	-2-	2			24/0-
	4	2	-1	134	133	242.	13	2	2	55 40.	32	141.
	Q Q	2	-1	148	156	289.	0	2	3	140	126	81.
	10	2	-1	79	66	164		2	3-	- 148	129	271.
	11	2	-1	70	70	242 •	2	2	3	68	72	350.
	- 12	-2-	1-	79-	73	- 55 -	<u>3</u>	-2-	-3-			-203
	13	2	-1	4 8	51	148.	4	2	3	97	96	250.
	14	2	-1	20	21	2 95 .	5	2	3	8 6	7 9	303.
	15	2	-1	81	78	101.	6	2	3	16	25	233.
	16	2	-1	4 4	43	279		-2	3	125	139	155.
	0	2	0	0	33	298 •	8	2	3	189	204	202
	1	2	— U			317.	10	2	-3-		74	
	2	2	0	0	42	220	11	-2		70	77	286.
		2	0	122	121	310.	12	2	3	54	40	157.
	5	2	Ő	184	208	-159	1.3 -	2	3	- 44	41	156.
	6	2	õ	207	232	85.	0	2	4	139	140	163.
			-0-			349	t	-2	-4-			-346
	3	2	0	164	102	270.	2	2	4	105	93	121.
	9	2	0	32	31	103	- 3	2	4	60	49	13.
	10	2	0	45	42	212.	4	2	. 4	58	56	346.
	11	2	0	26	32	80 •	5	2	4	51	56	545. 120
	12	2	0	69	70 24	541.	0	2	4	112	101	130.
	•±-5	2	0 -	—— —40 — २६	30 - 26	152	A	2	4	<u> </u>	40	168-
	14	2	0	22	20	►JC •	.	د	-	40	τv	1000

· -----

.

_

											-
 н	к	L	10*FU	10#FC	FASE	н	κ	L	10 *F0	10 * FC	FASE
9	2	4	98	97	291.	3	3	-7	65	72	256.
10	2	4	66	- 57	323.	4_	3	7		90	.
12	2	4	33	26	114.	5	3	-7	56	55	164.
Û	2	5	134	127	214				25	19	317.
1	2	5	173	171	233.	7	3	-7	102	101	98.
 -2-	<u>2</u>	5	0		106-	8		7	64	54	-296
3	2	5	62	47	295.	9	3	-7	71	59	176.
4	2	5	92	84	346	10	3-	-7	19	25	330.
5	2	5	156	143	71.	11	3	-7	38	40	178.
6	2	5	35	26	116.	12		-7	51	59	14.
7	2	5	50	47	141.	1	3	-6	200	196	117.
	2	5	41		_258	2	3				_247
9	2	5	28	21	241.	3	3	-6	37	38	311.
0	2	6	79	62	178.	4	- 3.	-6	97	100	319.
1	2	6	99	77	226.	5	3	-6	113	125	353.
2	2	6	66	54	147 -	. 6. 1	3 -1	-6	60	69	195.
3	2	6	75	65	288.	7	3	-6	59	52	14.
4	-2-	6					3	6	58	45	-186
5	2	6	56	56	148.	9	3	-6	54	84	133.
6	2	6	35	30	322 .	10		-6	54	49	301.
7	2	6	39	33	285.	11	3	-6	25	33	70.
C	2	7	0	22	177-		3	-6	20	18	244.
1	2	7	50	40	112.	1	3	-5	163	155	119.
2		7.			295.	2	3	5	64-	62_	161.
3	2	7	64	52	79.	3	3	-5	79	66	335.
4	2	7	19	25	298 -	4	3	-5	56	52	114.
5	2	7	42	48	137.	5	3	-5	80	73	276.
6	2	7	36	33	306.	6		-5	129	99	41.
0	2	8	42	45	268.	7	3	-5	161	157	219.
1	-2	8	53	48		8	3	-=5-		73_	60
2	2	8	68	65	227.	9	3	-5	40	36	36.
3	2	દ	42	39	346 -	10	-3	-5	71	60	302.
6	2	8	28	34	24.	11	3	-5	20	25	274.
0	2	9	26	26	97.	1.2	. 3.	-5	25	25	344.
1	2	9	20	16	320.	1	3	-4	73	68	14.
	2	_9_	35	36	183			-4	109	101	360
2	3	-9	10	20	55 .	3	3	-4	63	57	176.
3	3	-9	10	14	323 .		3	-4	16	19	227.
4	3	-9	24	29	32.	5	3	-4	142	141	291.
5	3	-9	26	31	229 .	-6	.3	-4.	175	178	103.
7	3	-9	25	24	176.	7	3	-4	151	157	270.
	3_	-9	29	31	63		3	-4	144		112-
9	3	-9	31	38	282.	9	3	-4	87	79	59.
11	3	-9	30	32	137.	10	3	-4	63	56	281.
2	3	-8	0	14	157.	11	3	-4	53	56	205.
3	3	-6	30	32	187	12	.3.	-4	45	52	341.
4	3	-8	42	40	59.	13	3	-4	29	24	195.
- 5	3		57				3_	3	.29		63
6	3	-8	51	51	135.	2	3	-3	155	146	143.
7	3	-8	29	29	5.	3	3	-3	159	138	60.
8	3	-8	58	63	348.	4	3	-3	291	290	215.
9	3	-8	49	47	256.		3	-3	257	222	5.
11	3	-8	49	62	149.	6	3	-3	117	100	307.
12		-8	31		115.	7		3	74	60	-289
2	3	-7	61	5 >	200•	8	3	-3	23	26	124.

._...

· -- ·· · **---**-

- - -

.....

. .____

											PAG	
	Н	К	L	16*F0	10*FC	FASE	н	к	L	10#F0	10 * FC	FASE
	9	3	-3	79	7 8	86.	10	3	1	76	78	155.
	10	3	-3	57	65	190.	·	3	1	79	82	40.
	11	3	-3	19	14	14.	12	3	1	63	59	208.
	12	3	-3	65	57	302 -	13-	···· 3	1	41	47	11.
	13	3	-3	59	64	113.	14	3	1	∠8	27	165.
	· · · }	3	2-		<u>105</u> -	177			1			-156-
	2	3	-2	134	135	184.	0	3	2	119	133	104.
	3	3	-2	365	348	109-	· · · · · · · · · · · · · · · · ·	3	2	258	230	130.
	4	3	-2	192	182	251.	2	3	2	206	201	226.
	5	3	-2	127	119	45 -		3-	- 2	61	43	79.
	6	3	-2	106	90	311.	4	3	2	66	55	19.
		-			- 121	- 315 -		3	2-			-160.
	<u>ა</u>	3	-2	120	107	160.	6	3	2	21	18	150.
	9	3	-2	66	58	109-	7		2	118	105	333.
	10	3	-2	67	61	298.	8	3	2	68	61	233.
	11	2	-2	89	90	· 90		3	2	76	70	43.
	12	5	-2	86	73	256 .	10	3	2	87	9 8	255.
	· 13	_		0		-101-		- 3	-2	76	— 68	
	1	3	-1	21	59	119.	12	3	2	43	51	298.
	2	3	-1	1/1	1.36	163	~ 13	3	2	65	65	134.
	2	2	-1	99	121	51.	14	3	2	59	61	155.
	4 E	3	-1	120	1.38	142.		3	3	65	64	32.
	2	2	-1	100	144	307.	1	3	3	152	130	203.
			- -1			-210				-225-	- 220	<u> </u>
	(2	-1	100	90	23.	3	3	3	114	99	158.
	e	2	-1	93	91	192 ***	4	3	3	90	62	71.
	9	2	-1	112	93	322 •	5	3	3	63	56	162.
	10	2	-1	60	60	120.		- 5	5	• 0	10	29.
	12	2	-1	1.06	40	10.	1	5	2	60	10	209.
	12	2	-1	100		207						114
	15	נ ג	-1	72	20 20	203.	9	2	2	47	40	
	2	2	0	86	1 1 0	726-		2	3		27	210
	2	2	0	127	112	170		2	5	101	90 94	260
	4	2	0	140	166	24	0	2	4	74	40	151
				151-	1.26	250		2				<u></u>
	6	2	0	132	108	152	2	2	4	176	150	115
	7	2	õ	196	153	11.	5	2	7	126	130	234
	8	3	õ	89	76	156.		2	4	94	86	333.
	Ģ	7	õ	161	151	264 -		- -	4	78	84	338-
	10	3	õ	115	117	58 -	7	Ă	4	88	99	260-
		<u>3</u>	- 0 -	72		173			_4	<u> </u>	128	<u> </u>
	12	3	õ	0	19	338	9	3	4	29	24	333.
	13	3	ō	61	57	309	10			35	43	191.
	14	3	ō	0	14	75.	11	3	4	19	21	182.
	0	à	1	144	-150	- 59	O	.	- 5	-148	109	337.
	ĭ	3	ī	183	1 98	134.	ĩ	3	5	37	29	51.
	-2		1	- 168	- 173 -	-202	2	<u>3</u>	<u> </u>			-130
	3	3	1	94	108	291	3	3	5	196	195	144 .
	4	3	ī	82	67	351-	····· 4	3	5-	44	38	241.
	5	3	1	117	98	316.	5	3	5	32	33	328.
	6	3	ī	81	71	1:59 -	····· 6	3	5	63	74	348.
	7	3	1	116	100	30.	7	3	5	52	54	247.
_	8				61	275		-3-	-5-			-45
	5	3	1	58	54	183.	0	3	6	114	109	344.

. . .

· · ----

_....

_ _ _

. ____

PAGINA 9

										1 4 0 1	
н	ĸ	L	10 * F0	10 ¥ FC	FASE	н	к	L	10 *F0	10+FC	FASE
1	3	6	38	39	195.	5	4	-5	90	86	10.
2	3	6	63	61	103 •	6	_4	5	117	11-2-	- 274
3	3	6	63	73	177.	7	4	-5	157	165	113.
4 5	2	0	52	44	335		4	=5	116	11-9	290.
 5	כ ר	6	20	13	>> •	9	4	-5	109	97	112.
0		7	Q		141	1 0		<u>_</u>	50	46	-306-
ĩ	3	7	0		209.	12	4	-5	26	18	30. 224
` 2	3	7	50	41	118.	13	4	-5	39		250.
3	3	7	24	17.	273	1	_4	-4	42	42	63.
4	3	7	35	33	356.	2	4	-4	24	26	351.
 	3-	7-	22	23	129	3	4		128		-289
6	3	7	27	23	287.	4	4	-4	101	108	83.
1	3	8	0	22		5	-4-	-4	121	135	208.
2	3	8	38	46	314.	6	4	-4	124	112	29.
٤	3	8	30	30	135	7	4	-4	96	85	204.
4	2	6 6	10	18	106.	8	4	-4	0	25	. ذ 22
 1		0		 54	369	10	- 14			6-3	
1	4	-8	45	51	312	10	4	-4	37 45	24	30. 205
- 3	4	-8	42	44	181.	12	4	-4	41	30	13.
4	4	-8	46	. 45	339	13	4	-4	64	63	243-
6	4	-8	30	20	27.	14	4	-4	62	53	28.
. . .			40	32	131.		4	-3	25		- 46 -
10	4	-8	37	36	259.	2	4	-3	82	92	309.
1	4	-7	19	28	256		4	-3 .	59	58	212.
2	4	-7	40	46	91.	4	4	-3	161	161	74.
3	4	-7	34	31	193-		- 4	-3	- 64	-51	327.
4 E	4	-/	28	24	95.	6	4	-3	0	32	81.
6		 + ·· 7	ev 20		205		- 4 //			<u>131</u> 79	240
7	4	-7	69		149	Q	4	-3.	130	153	1.26
8	4	-7	51	43	41.	10	4	-3	0	11	347.
9	4	-7	42	-35	289		. 4	-3	-53	55	168.
10	4	-7	41	40	136.	12	4	-3	35	30	12.
 -11-1		_=7_		25	303.	13	4		<u> </u>	49	345
12	4	-7	44	40	69.	14	4	-3	0	13	321.
13	4	-7	35	-36	293.	1	-4	-2		- 72 -	237.
1	4	-6	35	26	94.	2	4	-2	173	177	188.
2	4	-6	82	82	-58-	3	-4	-2	-120		142.
3	4	-0 -4	58 75	48 73	87. 7	4 L	4	-2	140	10U	40. 03
 ۰۰۰۰ ۳ ۰۰۰ ۴	- 🏎 &	0			215	J 	4			 64	
, Б	4	-6	107	117	269		4	-2	139	147	312-
7	4	-6	94	96	110	8	4	-2	61	61	209
	4	-6	57	65	216 -	. 9	4	-2	145	163	136.
9	4	-6	35	36	58.	10	4	-2	65	62	252.
 	4		35		210.		.4	2	Q	14	
11	4	-6	39	29	94.	12	4	-2	72	81	340.
12	4	-6	46	47	354.		. 4	-2		3.8	27.
13	4	-6	44	40	272.	14	4	-2	0	8	110.
1	4	-5	182	1.41	1.54		• 4 - 1:	<u>⊸1</u>	100	144	23 0.
2	4 4	-2	89 110	8U 127	220 • 28	2	4	-1 -1	127	140	43. 100.
 	4				194 -	3	4	<u>1</u>	<u></u>	97	312.
T	-7		10	,	17 4 0	Ŧ	Ŧ	+	· ·	<i>,</i> .	J . L .

- -----

· · -• •

- -- ----

PAGINA 10

	н	к	L	1C#F0	1C * FC	FASE	н	K	L	10*F0	10*FC	FASE
	5		-1	102	96	19.	i	4	3	42	41	152.
	6	4	-1	0	14	- 269 -	2	4	3	52	50	196.
	7	4	-1	71	66	8.	3	4	3	0	28	282.
	8	4	-1	61	61	- 180.	4		- 3	81	85	133.
	9	4	-1	170	191	145.	5	4	3	90	90	269.
<u> </u>			1-	109	<u>108</u> -	-271		4-		0-		7 2+
	11	4	-1	6 8	80	30 .	7	4	3	59	50	11.
	12	4	-1	40	- 43 -	- 267	8	4	3	40	35	298.
	13	4	-1	4 6	47	58.	9	4	3	50	52	66.
	14	4	-1	0	31				-3	41	40	163.
	0	4	0	0	248	206 •	11	4	3	4 ئ 7 ح	26	134.
	<u>+</u>	— 4 –	-	120		20.						-275-
	2	4	0	130	1 52	129.	0	4	4	14	02	107.
		4	0	74	01 65	208	<u>I</u>	· · •	· •	90	21	172.
	5	4	ő	32	29	270	2			62	26	26
	6	4	ň	71	63	6.	4	4	4	105	105	101
		_4	Õ			24				<u>58</u> _	68-	-283-
	8	4	ō	73	74	170.	6	4	4	40	29	93.
	9	4	Ō	52	57	322	·······	4	4	54	53	294.
	10	4	Ō	33	36	165 ·	8	4	4	61	52	211.
	11	4	0	28	22	70.			5	126	117	248.
	12	4	0	41	29	36.	1	4	5	0	19	266.
	13-	4	0		47	182.	2		<u>_</u>		-121	259.
	14	4	C	52	54	360.	3	4	5	78	84	78.
	0	4	1	54	64	280.	4		5.	54	-51	95.
	1	4	1	102	104	326 •	5	4	5	50	43	31.
	2	4	1	176	2-0-3-	-64 -	7	4	. 5.		72	292.
	3	4	1	99	108	234.	8	4	5	33	32	146.
	·4	-4-	-1-	- 118	<u> </u>	121-				- 67 -		- 262 -
	5	4	1	117	119	300.	1	4	6	35	35	318.
	6	4	1	120	1-28	122.	2	4	-6	61 -	56	253.
	7	4	1	69	63	251.	3	4	6	65	68	147.
	8	4	1	54	59	19.	····· 4·	4	- 6	56	52	26.
	9	4	1	102	106	262.	5	4	6	0	21	197.
	10		1-	67	77	- 92				-47	45-	-267.
	11	4	1	67	70	193.	8	4	6	33	33	108.
	12	4	1	50	40	84	0	4	- 7.	44	36	330.
	13	4	1	12	12	310.	I.	4		33	30	147.
	14	4	1	33	31	- 76		4	· +	- 39-	3f	326.
	0	4	2	128	100	501.	2	4	1	20	17	70 .
	·±	······································	·			110			0-	<u> </u>		126
	2	4	2	5 7	37 80	210	1		-0 -0	20	34 22	270
	3 (4 /	2	105	112	129	7	5	Q.	22	25	208
	4	4	2	70	115	204	9 .	5	_0 _0	22	22	270
		4	2	11 6 2	- 13		UU	5	7	- 23 45	62	351.
				<u> </u>	<u>75</u>	116	2	ر <u>ح</u>				212
	ידי ג	4	2	90- 80	99	320-	<u> </u>	5	-7	46	59	44
	U Q	4	2	57 56	×2	10-		ر ج	_7.	- 1 0 -Ω	20	210-
	10	4	2	139	145	167	8	5	-7	ŏ	29	12-
	11	4	2	<i>ر د</i> -	23	148	10	.5.	7	62	64	45.
	12	4	2	49	41	262	11	5	-7	38	46	230.
	-13 -			47			l	5_		45	45-	292.
	0	4	3	36	32	76.	2	5	-6	50	58	140.
	-	-	-				-		-		-	

- -- -- -- -- -- --

_____ -----

	н	К	L	10#FU	10*FC	FASE	н	κ	L	10*FU	10*FC	FASE
	3	5	-0	20	26	312.	9	5	-2	55	53	134.
	4	5	-6	54	59	43	10	_5_	-2	77	77	83.
	5	5	-6	35	32	219.	11	5	-2	41	31	96.
	6	5	-6	61	49	- 266+	<u>12</u>	5		0	- <u>2</u> .1	-1-27.
	7	5	-6	66	60	251.	13	5	-2	0	31	268.
•••• • = - ••••••		5				-112	14	<u> </u>		0	24	
	9	2 E	-6	98	94	319.	1	2	-1	48	54	242.
	10	2 5	-0	24	12			-) E	1	114	122	331.
	11	2 5	-6	00	30 10	209.	3	2	-1	134	14	12/.
	2	5	-9	64		- - 210 - 70			······································	↓ 34 25	141	7/. 127
	2	5	-5	89	24	111_	5	- 5	-1	173	200	221
	4	5	-5	83		299	7	5	-1	93	88	333.
	5	5	-5	29	- 17	108		. 5_	1	85	80	275.
	6	5	-5	104	105	256.	9	5	-1	79	85	91.
	7	5	-5	58	57		10		1	40	38	51.
	8	5	-5	29	31	152.	11	5	-1	29	35	57.
	9	-5-	-5		32	- 25 -	12	_5_	-=1	29	25	-165
	10	5	-5	28	27	310.	13	5	-1	28	31	313.
	11	5	-5	48	44	188 .	14	5	. =1	0	20	201.
	12	5	-5	43	37	55.	1	5	0	19	19	33.
	1	5	-4	82	79	-77	<u> </u>	5	0	9 9	107	332.
	2	5	-4	64	58	115.	3	5	0	134	157	57.
						- 21			0			-109-
	4 5	5	-4	153	104	221.	5	2	0	12	59	
	5	ך ב	-4	54	52	212		- 32- 5	<u> </u>	· · ±20	124	240.
	7	5		94	1.08	112.	1 8	5	0	122 67	<u> </u>	273
	7 8	5	-4	54	51	271.	Q	5	0	20	42	126.
		_ 5_	4	0	19	18	10			40	<u> </u>	240
	10	5	-4	0	7	201	11	5	ō	41	50	67.
	11	5	-4	Ō	- 16	22-		5			44	245.
	12	5	-4	45	42	79.	13	5	0	62	64	108.
	1	5	-3	104	102	340 .	14	. 5		59-	. 58	315.
	2	5	-3	121	131	83.	0	5	1	61	59	152.
	3	5_	-3	104		271-	······································	5		72	66	290
	4	5	-3	90	81	210.	2	5	1	43	45	112.
	5	5	-3	124	117		3	5	···· ·	48		31.1.
	6	5	-3	44	33	64.	4	5	1	36	35	306.
	(2	- <u>-</u>	52	100	~~~	····· ···)	···· 〉	·· 🚣	· · · · / ·	4. 3 2.2	102+ 204
	с 9	2 5	-2	127	120	240.	0 7	7 5	1	50	143	220.
	10		 	<u></u> 61	 60				1	77	 8.8	180
	10	5	-3	0	19	182		5.	1		94	301.
	12	5	-3	6)	73	70.	10	5	1	0	7	341.
	13	5	-3	40	43	291	—	5	1.		44	151.
	14	5	-3	32	42	337.	12	5	ī	28	28	55.
	<u>1</u>	5.	-2	70		-157	13_	5_		42		123
	2	5	-2	134	1 33	317.	0	5	2	62	52	55.
	3	5	-2	89	89	176.	····· ································	5	2		14	272.
	4	5	-2	94	95	102.	2	5	2	33	35	124.
	5	5	-2	130	129	- 54	3		2	76-	76	297.
	6	5	-2	0	15	10.	4	5	2	45	30	62.
	7	_5	2-	115	<u> 119 </u>	<u>-257</u>	5	5		<u> </u>	33	-167.
	8	5	-2	101	116	294 •	6	5	2	62	62	99.

• -----

.....

.....

										FAGI	MA 12
н	к	L	10 * F0	10 * FC	FASE	н	К	L	10*F0	10 * FC	FASE
7	5	2	U	24	218.	6	5	4	0	31	147.
8	5	2	-0-	- 25 -		7	-5-	-4	29.	33	218.
9	5	2	71	72	284.	8	5	- 4	28	17	282.
10	5	2	29	-21	327.	10	5		35	31	213.
12	5	2	55	59	88.	0	5	5	35	34	148.
••••••••••••••••••••••••••••••••••••••	5	- 3		<u> </u>	350 .	<u> </u>	-5	5-	0		-245
1	5	3	81	81	216.	2	5	5	62	60	60.
2	5	3	75	82			5	5	54	59	251.
3	5	3	96	85	282.	4	5	5	46	52	109.
4	5	3	110	102	14.	5	5	5	- 45	56	349.
5	5	3	106	103	128.	6	5	5	27	26	140.
			49		- 315		->	->		_	288.
1	2	2	83	80	172.	8	2	2	30	35	283.
0	2 5	2	40	- 41	2130			0		45	222.
7	5	2 2	20	33 14	224.	⊥	2 E	0 4	47	42	20.
12	5	2	ل 42	49	54	2	5	- -	39	41	200
			103_		105	6	ر 			41	115
1	5	4	62	61	264		5	6	36	32	334.
2	5	4	84	70-					33	32	125.
3	5	4	49	48	279.	7	5	6	26	30	255
- 4	5	4	45	42-		2	<u> </u>	-7-		43-	348.
5	5	4	0	17	354.	5	5	7	30	16	276.
									·	<u>_</u>	
										• •	
							·				
									-		

PROVI2

Baggio,R.F. (Cálculo de factor entre placas, ajuste por cuadrados minimos, y reducción de datos a lº placa.)

LORENTZ-POLARIZACION

```
Baggio,S. y Amzel,M. ( Corrección de datos de Weissenberg y Precesión por el factor de Lorentz y Polarización.)
```

GNABS

Prewitt, Ch. y Burnhem, Ch. (Programe original) Baggio, R.F. (Adaptación) (Corrección de datos fotográficos tomados en geometría Weissenberg, por efecto de absorción de la muestra.)

DATA REDUCTION, DP I, y DP II.

Pippy, M.E. y Ahmed, F.R. (Programas originalss) Baggio, R.F. (Adaptación) (Cálculo de Factores de Estructura Normalizados, y su distribución estadística.)

MULTAN

Germain, G., Main, P. y Woolfson, M.M. (Cuerpo de programas para Mátodos Directos, compuesto por los sub-programas SIGMA), CONVERGE y FASTAN.)

FORDAP

Zalkin, A. y Foxman, B. (Sintesis de Fourier Tridimensional)

SFLS05

Prewitt, Ch y Foxman, B. (Refinamiento por cuadrados mínimos, matriz completa.)

SCAN OF BONDS AND ANGLES Pippy.M.E. y Atmed.F.R. (Cálculo de distancias y éngulos interatémicos.) Pippy,M.E. y Ahmed,F.R. (Cálculo de la ecuación del plano medio definido por un grupo de Atomos.)

BUSCA HIDROGENOS

Baggio,R.F. (Cálculo de las posiciones de átomos de hidrógeno, determinadas por simetría.)

PEFERENCISAS

(Birmingham: Kynoch Press.).

(27) ONDMER, D.T., & WALER, J.J., (1984). Asta Umyora, [18], (28) JASES, R.W., (1948). "The optical principles of the difinition of x-rays." (Londros: G.Ball G sons.) (29) DAUBEN, C.H., & TEMPLETON, D.H., (1985), Acto Doyat., 8 , 841-4. (30) MESSIAH, A., (1959). "Maconique Quantique", Apéndice A. : (Paris: Dunod.) (31) GERMAIN, G., MAIN, P., G WOOLFSON, M.M., (1970). Acta Cryst., <u>926</u>, 274-25. (32) PICTET, & GAMES, (1909). Comp. Rend. 149, 210. (33) MANSKE, R.H.F., (editor), (1954). "The alkoloide." (Nueva York: Academic Freese) (34) van HULLE, A., AKELINDKX, A., & CORFYREN, V., (1988). Apple Oryst., (35) CHEMICAL SCOTERY OPEDIAL PUBLICATED AND IN (2050). (Londras: Chamical Society.) (36) HEOSE, (1892). Ann. 232 , 249. (37) WYKOP, B., (1997). J. An. Chess. Soc., 22, 74400. (33) STORK, G., & DOLFINI, J.E., (1983). J. Am. Chart. Soc., <u>65</u>, 2072. (39) BUERGER, M.J., (1960). "Crystal structure analysis." (Nueva York: john Wiloy G sons.) (40) SUITS, D.W., & WIEEMSA, E.H., (1953). J. Sci. Inst., <u>41</u>, 2074. (41) HAMILTON, W.C., ROLLET, J.S., & SPASKS, B.A., (1905). Acta Cryst., 18, 129-30. (42) WE SON, A. J. C., (1942). Noture, 200 152. (43) H/WIC,F., (1986). Acta Cryst., /1 , 002. (44) CRUICKSHANK, D.W.J., (1964). "The equations of structure refinement (Glasgow.) (45) KITAIGORODEKII, A.I., (1861). "Organia orystelle orrophyl (Nuova York: Canaultania (a.) (46) MCKBY, J., KOMPIS, I., EMARAN, M., C. EMARCH, M. C. (2004). data. C. Ind., <u>48</u>, 1988-89 (47) CAMERMONTAN., G TROTTER, J., (1986), Adda Gryate, 12, 194-94.