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Capitulo 1

Introduccion

El objetivo de este trabajo es estudiar el espectro del algebra de funciones analiticas y
acotadas en la bola de un espacio de Banach. La descripcién de este espectro para el caso
unidimensional (es decir, para el algebra H* = H>(A) de funciones analiticas y acotadas
en el disco unidad complejo A) es ya clasica, y estd desarrollada, por ejemplo, en el libro
“Banach spaces of analytic functions”de Hoffman [14]. Recordemos que el espectro M(H>)
es el conjunto formado por los funcionales lineales, multiplicativos y no nulos sobre H*. Para
describir este conjunto se define una proyeccién = : M(H*) — C, cuya imagen resulta la
clausura A del disco unidad. Entonces, una parte fundamental de la descripcién del espectro
consiste en caracterizar las fibras que resultan de esta proyeccién, es decir, analizar 7=1(\) para
A € A. Se demuestra que la fibra de cada A en el interior del disco tiene un solo elemento (o
sea, T es inyectiva sobre m71(A)). En cambio, si A esté en el borde del disco, resulta que la fibra
71 ({\}) tiene cardinal mayor a c. Como consecuencia, tenemos que M(H>) est formado por

una copia de A y un borde complicado.

Este trabajo se trata de hacer un andlisis similar pero en el caso que el dominio sea un
espacio de Banach de dimensién infinita. Esta basado en el articulo “Spectra of algebras of

analytic functions on a Banach space” de Aron, Cole y Gamelin [1].

En lo que sigue, X serd un espacio de Banach complejo, y B denotara la bola unidad
abierta de X. Nuestro objetivo es entonces estudiar el algebra uniforme H*(B) formado por
las funciones analiticas sobre B que son acotadas. Particularmente, nos interesa estudiar su

espectro M, formado por los funcionales lineales, multiplicativos y no nulos sobre H*(B).
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6 Capitulo 1. Introduccién

Definiremos una proyeccién natural 7 : M — X** dada por 7(¢) = ¢|x+, cuya imagen
queda incluida en B**, la bola unidad cerrada de X**. Veremos que las fibras 7= 1({z}) tienen
cardinal mayor a c para todo z € B** (de hecho, contienen a una copia de 3N \ N, donde 3N
es la compactificaciéon de Stone-C'ech de los naturales). Esto marca una notable diferencia con
lo que ocurre para X = C donde, como comentamos anteriormente, las fibras sobre los puntos
interiores tienen un solo elemento. Sin embargo, un replanteo de la situaciéon nos mostrara cual
es la analogia del resultado para espacios de Banach con el de una variable (ver el parrafo al

final de esta Introduccién)

Para obtener propiedades del dlgebra H*(B) y de su espectro M, estudiaremos el algebra de
Fréchet H,(X) formada por las funciones enteras que son acotadas sobre subconjuntos acotados
de X, con la topologia de la convergencia uniforme sobre acotados. Y también estudiaremos su
espectro M, que consiste en los funcionales lineales, continuos, multiplicativos y no nulos sobre
Hy(X) (notemos que para algebras de Banach como H*(B), la continuidad es automaética).

Veremos que M, tiene muchas estructuras analiticas, por ejemplo veremos que M}, es unién
de copias del plano complejo. Definiremos una funcién radio R en M, con la propiedad de que
el subconjunto {¢ € M, : R(yp) < 1} se identifica con el espectro del algebra H>2(B) de las
funciones analiticas sobre B que son acotadas y uniformemente continuas.

Vamos a definir una operacién de convolucién ¢ x 6, para ¢,0 € H,(X)*, que restringida
a My, nos da para M, una estructura de semigrupo con identidad. Via la identificacion de X
dentro de M, dada por la aplicacién = — ¢, (el morfismo evaluacién), veremos que la suma
en X se traduce en la convolucién en My, es decir, 0,4, = 0, * §, para todo z,y € X, por
lo que podemos pensar a X como un subgrupo del semigrupo, donde dy es la identidad, que
estd incluido en el centro del semigrupo.

Ademéds, las funciones de H,(X) se extienden naturalmente a funciones en Hy(X*™) [2] y
que esta extensién da un isomorfismo entre H,(X) y una subdlgebra cerrada de Hy(X**). Luego
podemos, en particular, definir las evaluaciones en puntos de X**, es decir, tenemos definido
0, para z € X*. Veremos que para un ¢ € M, fijo, la aplicacién z — 9, * ¢ con z € X**,
define una trayectoria que pasa por ¢ donde las funciones de H,(X) resultan analiticas sobre
ellas, es decir, para cada f € Hy(X), la funcién z — ¢, * ¢(f) es analitica. Podemos pensar
entonces que dichas trayectorias son parametrizaciones de X** dentro de M,. Luego M, es una

unién de copias analiticas de X**. Veremos que el producto de convolucién entre evaluaciones



en puntos de X** no es necesariamente conmutativa y estudiaremos condiciones que aseguren
esta conmutatividad. Probaremos que 6, * 6, = ¢, * §,, para todo z,w € X** es equivalente a
que toda forma bilineal, continua y simétrica en X se extiende a una forma bilineal, continua y
simétrica débil-* continua en cada variable en X**. Y esta propiedad, a su vez, es equivalente a
que todo operador lineal, simétrico y continuo de X en X* es débil compacto. Veremos que bajo
estas condiciones, el espectro M, se puede identificar con el conjunto X** x 7=1({0}), donde las
funciones de Hy(X) resultan analiticas sobre cada direccién X** x {z}, con z € #—1({0}) fijo.
Ademas, las trayectorias z — 0, * ¢ con z € X** resultan disjuntas, por lo que M, resulta una

variedad analitica que es una unién disjunta de copias de X**.

Finalmente, veremos cémo el espectro M, nos da informacién sobre el espectro M de
H>(B), a partir de un resultado que puede verse como andlogo al caso de una variable.
Definiendo una proyeccién natural de M en M,, podemos ver que M se proyecta sobre
{¢ € My : R(p) < 1}, y que es inyectiva sobre {¢ € M, : R(p) < 1}. Teniendo en cuenta
que para X = C se tiene Hy(X) = H(C) y M, = C, y que la funcién radio de M, coin-
cide con el médulo de C, podemos concluir que {¢ € M, : R(p) < 1} coincide con A y
{o € My : R(¢) < 1} con A. Como consecuencia, el caso clasico de una variable mencionado

al comienzo queda enmarcado en el resultado general para espacios de Banach.






Capitulo 2

El espectro de H*(A)

Para introducir el problema que queremos estudiar, veamos primero un problema similar
sobre el algebra H*(A) formado por las funciones analiticas acotadas sobre el disco unidad del
plano complejo. Vamos a analizar el espectro de H*(A) formado por los morfismos de algebras
no nulos de H*(A) en C, que llamaremos M(H>).

La mayor parte de los resultados de esta seccién aparecen en los libros de Gamelin [10] y
de Hoffman [14].

Si consideramos H>°(A) con la norma || f|| = sup | f(z)|, entonces H>*(A) resulta un algebra
|z|<1
de Banach conmutativa con unidad. Luego, hay una biyeccién entre M(H>) y el conjunto de

ideales maximales de H*(A), que viene dada por ¢ —— Ker(p). Veamos que ademds cada
¢ € M(H™) es continua y cumple que |¢o(f)| < ||f|| para toda f € H®(A). Si suponemos
que no se cumple esta propiedad, existe f € H*®(A) tal que |¢(f)| > || f]|. Luego ||#|| <ly

entonces 1 — —L es inversible, y como ¢ es multiplicativa y no nula tenemos que (1) =1, por

e(f)
lo que (1 — #) # 0. Luego, 1 = ¢(1) # @(ﬁ) = 1 que resulta una contradiccion.
Ahora bien, como ¢(1) = 1 se deduce en particular que [|¢|| = 1 (tomando a ¢ € M(H>) C
H>(A)*) . Entonces M(H) esté contenido en la esfera unidad de H>(A)*, que es compacta

para la topologia débil-x.

Proposicién 2.1. M(H®) es cerrado para la topologia débil-x.

Demostracion. Basta ver que dada T : H*(A) — C continua que pertenece a la clausura débil-

x de M(H®), resulta que T" es multiplicativa y no nula. Ahora bien, como toda ¢ € M(H>)

9



10 Capitulo 2. El espectro de H>*(A)

es no nula y cumplen que ¢(1) = 1, entonces T' también cumple que T'(1) = 1, por lo que
es no nula. Veamos ahora que T es multiplicativa, dado ¢ > 0y dados f,g € H®(A), existe
© € M(H>) tal que

lp(f) =T(f)l <e

p(g) —T(g)l <e

lp(fg) —T(fg)| <e.

Luego

T(f9) =T(NTI < |T(f9) —e(fol + le(elg) — (T () + [o(F)T(g) = T(/)T(9)]
< e+ele(Nl +elT(9) <@+ 1+ llgl)-

Por lo que resulta que T € M(H>). O

Podemos concluir entonces que el espectro M(H) es compacto para la topologia débil-x.

A cada elemento f € H®(A) le podemos asociar una funcién f : M(H*) — C continua
dada por f (¢) = ¢(f) que resulta continua por definicién de la topologia débil-x. Si llamamos
H> = {f: f e H®(A)}, entonces la aplicacién f — f es una representacién de H®(A) en
H> que se llama la representacién de Gelfand.

Los morfismos més simples que podemos encontrar en M(H>) son las evaluaciones en

puntos de A que llamaremos J, para A € A,

Sin embargo hay otros morfismos que no son las evaluaciones, por ejemplo si consideramos el
conjunto [ = {f € H*(A) : f(A) — 0 con A — 1 sobre el eje positivo de las x}, constituye un
ideal propio de H*(A) por lo que estd incluido en un ideal maximal J de H*(A). Esto es,
existe ¢ € M(H®>) tal que ¢(f) = 0 para toda f € I. Pero ¢ no es la evaluacion en algin A
pues no hay ningtin A donde se anulen todas las f que pertenecen a I.

Las evaluaciones muestran que la representacion de Gelfand es biyectiva, en efecto, clara-
mente es sobreyectiva y si f = 0, entonces f((S,\) = f(A\) = 0 para todo A € A. Por lo que
f = 0. Ademas la representacion resulta una isometria:

Ifle="suw |f(p)l= sup |o() <,

PEM(H>) PEM(H>)
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1Flloo > sup [F@)] = sup [fFN)] = 1]

IAl<1
Luego H*®(A\) es isométricamente isomorfo a H>.
Ademds, hay un funcién continua natural que podemos definir, 7 : M(H*) — C dada por
7(p) = @(id), o sea m = id. Y lo notamos m(¢) = ().

Teorema 2.2. La funcion m es continua de M(H™) en el disco cerrado unidad. Ademds sobre

el disco abierto /\, T es biyectiva y m*

A de M(H™).

es un homeomorfismo entre /N y un subconjunto abierto

Demostracion. Como notamos anteriormente, m = id por lo que es continua. Dado A € A,
m(dx) = A, por lo que A C Im(w). Como M(H>) es compacto (Proposicién 2.1), entonces
Im(7) también lo es y cumple que A C Im(7) C A, luego Im(w) = A.

Veamos ahora que 7 : 7 1(A) — A es homeomorfismo. Sea A € A y sea ¢ tal que 7(p) = A

y tomemos f € H®(A) tal que f(\) =0, entonces f = (z — \)g y ademds

o(f) = w((z = A)g) = e(z = Nelg) = (v(2) —e(\)p(g) = (T(p) — Nw(g) = 0.

Luego Ker(dy) C Ker(p), por lo que Ker(d,) = Ker(y) y como dx(1) = ¢(1) = 1 resulta que

¢ = 0. Por lo tanto es una biyeccién y 7 : 77 1(A) — A es homeomorfismo. O

La aplicacién 7 es una proyecciéon de M(H>) en A, por lo que vimos en el teorema anterior
podemos pensar a A homeomorficamente incluido en M(H*) via A — 0,. Para terminar de

analizar todo el espectro falta ver las preimagenes de los elementos del borde del disco unidad.

Definicién 2.3. Sea a € C con |a| = 1, llamamos la fibra de M(H®) sobre o a

My =7 a)={p € M(H®): p(z) = a}.

La fibra M, es un subconjunto cerrado de M(H>) y estd formada por los morfismos de

H*>(A) que se parecen a la evaluacién en a.

Teorema 2.4. Sea f € H®(A) y sea o un punto del circulo unidad. Sea {\,} una sucesion
de elementos del disco abierto unidad que tiende a «. Supongamos que existe lim f(\,) = &,
entonces existe ¢ € M, tal que o(f) = €.

FEsto es limdy, (f) = o(f).
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Demostracion. Considero J = {g € H>®(A) : limg(A\,) = 0}, es un ideal propio de H>*(A),
entonces J estd incluido en un ideal maximal M. Luego existe ¢ € M(H®) tal que p(g) =0
para toda g € J. Pero si consideramos ¢g; = z—a y go = f—¢&, tenemos que g, g2 € J. Entonces
o(g1) = ¢o(z) —(a) = m(p) —a = 0 por lo que m(p) = a y ¢ pertenece a M,. Y por otro lado
©(g2) = o(f) — & =0 por lo que ¢(f) = £ como queriamos. O

Teorema 2.5. La funcion f es constante sobre la fibra M, st y solo si f se puede extender

continuamente a A U {a}.

Demostracién. Supongamos que f es constante sobre M., o sea, existe & tal que f(go) =p(f) =
¢ para todo ¢ € M,,. Por el Teorema 2.4 tenemos que dado A\, — «, si existe el limite de f(\,)
y es igual a a, entonces existe p € M, tal que ¢(f) = a. Pero tenemos que ¢(f) = ¢ para todo
» € Mg, por lo que lim f(\,) = £. Luego si existe el limite de f(\,) debe ser necesariamente
&. Ahora bien, veamos que dado A, — «, existe dicho limite. Supongamos que no, o sea, existe
e > 0 tal que |f(\,) —&| > ¢ para infinitos n, y tomemos la subsucesién { f(\,, )} formada por
dichos elementos. Como f € H®(A), {f(Ang)} C C esta acotada, luego tiene una subsucesién
convergente { f (/\nkj)} que no tiende a £ lo que resulta una contradiccién.

Supongamos ahora que f se puede extender continuamente a A U {a}, entonces hay un
valor complejo £ tal que lim f(\,) = & para toda sucesién {\,} C A que tiende a «. Veamos
que f es constante sobre M, y vale £&. Podemos suponer que & = 0 pues si no, tomamos la
funcién f — &. Sea h(A) = 1(1 + aX), luego h(a) = 1y |h| < 1 en cualquier otro punto del
disco cerrado. Probemos que (1 — h™)f converge uniformemente a f. Dado € > 0, tomo 6 > 0
tal que |f(A)] < €/2 si |A — a] < 4, existe tal § porque f es continua en oy f(a) = 0. Para
A —«a| = 6, vale que |h(\)] < 1—mn, conn > 0 pues {\ € A :|X—a| > §} es compacto.

£

Entonces existe ng tal que |h"(\)| < ST
entonces |(1 — A" (A))f(A) — fFN)] = [R"(N) fF(N)] < |f(N)| < €/2, esto vale para todo n € N. Si
A — | = 6, entonces |h™(A)f(N)| < ST | fIl = €/2 para todo n > ny.

Luego dado ¢ € M, tenemos que ¢(h) = 1. Por lo tanto, o((1 — h™)f) = 0y como ¢ es

para todo n > ng. Por lo tanto, si |A — a| < 4,

continua, ¢(f) = 0. Luego f es identicamente 0 sobre M,. ]

Més aun, vale el siguiente resultado, cuya demostracién puede verse en [14, p.162]
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Teorema 2.6. Sea f € H®(A), y sea a un punto del circulo unidad. Si existe p € M, tal que
©(f) =0, entonces existe una sucesion {\,} C A tal que lim \,, = a y lim f(\,,) = 0.

Corolario 2.7. Si f € H®(A) y « pertenece al circulo unidad, entonces la imagen de f sobre
la fibra M, esta compuesta por todos lo numeros complejos & para los cuales existe una sucesion
en el disco unidad {\,} conlim A, =« y lim f(A\,) = &.

Ejemplo 2.8. En este ejemplo veremos que # (M) > ¢ (en realidad vale que es mayor estricto,

ver Observacién 2.9).

z i_ 1) Observemos que la funcién g(z) = z i_ 1 manda
A en el conjunto {w € C : Re(w) < 0} y en particular manda A en {Re(w) < 0} y manda
el borde de A en {Re(w) = 0}. Ahora bien, si Re(w) < 0, entonces | exp(w)| < 1, por lo que
f € H®(A) y ademds vale que f(A) C A.

Sea A € A. Si [A| < 1, A = pexp(ifl) con p < 1, luego A\ = exp(—a + 0i) = exp(—a +
(0 + 2km)i). Tomamos wy, = —a + (0 + 2kmw)i. Si |A| = 1, A = exp(if). Si consideramos

Ar = exp(—1/k+ (0 + 2km)i), vale que Ay, — A. Tomamos en este caso wy = —1/k + (6 + 2kn)i.

Consideremos la funcién f(z) = exp(

En ambos casos wy, € {Re(w) < 0}, entonces tomamos z, = g '(wy), como w;, — 00,
tenemos que z; — 1y ademds vale que f(z;) = exp(wy) = A\ — A. Luego, por el Teorema 2.4,
dado A € A, existe ¢ € M; tal que ¢(f) = A. Y asf obtuvimos una copia de A dentro de la
fibra My, por lo tanto #(M;) > c.

Observacién 2.9. Usando un resultado de Carleson y Newman sobre existencia de sucesiones
interpolantes para H>®(A) (ver [14, p.204]), podemos probar que efectivamente dado A con
|A| = 1, vale que M, tiene cardinal mayor que c. Sea {\,} una sucesién interpolante para
H*>(A), esto es, dado a € €, existe f € H®(A) tal que f(\,) = a,, tal que A, — A
Consideremos la aplicacién I : H*®(A) — (> definida por f —— {f(A\,)}n. Esta aplicacion
es un morfismo de &lgebras (es multiplicativa) suryectivo. Tomemos, ahora, la aplicacién dual
asociada I* : ({*°)* — (H*(A))*. Como I es multiplicativa, podemos restringir I* a M ({*)
y resulta que I* : M({>*) — M(H°) dada por ¢ — ¢ o I estd bien definida y es inyectiva.
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Ahora bien, M(£>°) = M(Cy(N)) coincide con SN [16, Theorem 2.4.12], donde N denota
la compactificacién de Stone-Cech de N y Cy(N) denota el algebra de funciones continuas y

acotadas sobre los naturales. Luego si m € N C N,

r(m)(f) = m(I(f)) = m({f(An)}n) = F(Am),

luego I*(m) = 9,,,. Por otro lado, si n € SN\ N, existe una red (n,), C N tal que n, — 7.

Entonces n(a) = lim a,, para todo a € £*° y por lo tanto

) (f) =0 f) =n({fAn)}n) = lm f(An,).

Entonces I*(n)(z) = lim z(\,,) = lim \,, = A, por lo que resulta que w(/*(n)) = A. Luego,
I*(n) € 7~ 1()\) para todon € BN\N y como I* es inyectiva, podemos concluir que M contiene

una copia de SN\ N cuyo cardinal es mayor que c.

Vimos en el Teorema 2.2 que hay un homeomorfismo entre A y A C M(H®>), por lo que A
es un subconjunto abierto de M(H*). Una pregunta que surge es si A es denso en M(H>),

0 sea, nos preguntamos si toda ¢ € M(H>) es limite de una red {0, }x.

Teorema 2.10. A es denso en M(H®) siy sdlo si se cumple la siguiente condicion:
Si fi,..., fn € HX(A) tales que [fr(AN)| + -+ [fu(A)] = n > 0, con |A| < 1, entonces
existen gi,...,gn, € H®(A) tales que fig1 + -+ + fogn = 1.

Demostracion. Supongamos que existe ¢g € M(H) que no estéd en la clausura de A, luego
existen fi,...,f, € H*(A) y n > 0 tales que ¢o(f;) = 0 para 1 < i < n y ademés el entorno
de o dado por {p € M(H™) : |o(f;)| <mn, i =1,...,n} no intersecta a A. Luego, vale en
particular que dado A € A, 6,(f;) = n para algin 1 < i < n por lo que |fi|+ -+ |fu]l =7
sobre A. Pero fi1,..., fn € Ker(p) que es un ideal propio de H*(A) por lo que 1 no pertenece
a dicho ideal, o sea, no existen g1, ..., g, € H*(A) tales que fig1 + -+ fogn = L.
Reciprocamente, sean fi,..., f, € H®(A) tales que |fi(A)|+ -+ |f.(A)| = n para todo
A € Ay tales que no existen gy, . .., g, € H®(A) con fig1+- -+ fng, = 1. Entonces fi, ..., fu
estdn incluidos en un ideal propio de H>*(A) y luego estan incluidos en un ideal maximal
de H*(A). Esto es, existe ¢g € M(H™) tal que ¢o(f;) = 0 para todo 1 < ¢ < n, luego si
consideramos el entorno de ¢ definido por {¢p € M(H™) : |¢o(fi)] <n, i = 1,...,n}, este

entorno no intersecta a A por lo que ¢y no pertenece a la clausura de A. O
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El conjunto M(H>) \ A fue llamada la Corona por Newman en 1959 [21], el Teorema de
la Corona dice que la Corona es vacia. O sea, A es denso en M(H®) para la topologia débil-x.
Newman mostré que el Teorema de la Corona podia reducirse a un problema de interpolacién,

que finalmente fue probado por Carleson en 1962 [5].

Teorema 2.11 (Teorema de la Corona). Toda ¢ € M(H™) es limite de una red {0y} en con
ACA.

En 1979 Wolff di6 una demostracién simplificada (no publicada) del Teorema de la Corona,
descripta en [17] y en [12].

Cole mostrd que este resultado no puede extenderse a toda superficie de Riemann abierta
[11].

Todavia quedan abiertas versiones del problema de la corona para dominios de dimension

m4s grande (por ejemplo para la bola unidad de C?).






Capitulo 3

Funciones Analiticas en espacios de

Banach

En esta seccion vamos a estudiar primero las formas multilineales sobre espacios de Banach,
que nos serviran para poder definir los polinomios, que a su vez usaremos para definir las
funciones analiticas como series de potencias. Por iltimo vamos a realizar un resumen de
definiciones y resultados que necesitaremos a lo largo del trabajo. Referencias bésicas sobre

estos temas son los libros de Mujica [19] y Dineen [9] o las notas de Gamelin [13].

En lo que sigue X representara un espacio de Banach sobre C.

3.1. Formas multilineales y polinomios

Definicién 3.1. Para cada m € N notaremos como L,(™X) al espacio vectorial de las formas
m-lineales A : X™ — C y notaremos como L(™X) al subespacio formado por las formas

continuas de L,("X). Para cada A € L,(™X) definimos
1Al = sup{| Az, ..., )| : méx [l < 1}

En el caso que m = 1, notaremos L,(*X) = X*.

17
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Proposicién 3.2. Dada A € L,("™X). A es continua si y sdlo si ||A|| < oc.

Demostracion. Si la norma de A no es acotada, existe una sucesion (zf, 25 ... z) en X™
K
T 1
tal que max [|2¥]| < 1y |A(af,...,25)] > k™ para todo k € N. Luego max H?JH < 7Y
ok ] zk ’
|A(?1, cee ?m)| > 1 para todo k € N, por lo que A no es continua en 0.
Reciprocamente, sean a = (aq,...,a,) € X™yx = (21,...,2,) € X™ tales que max ||a;|| <
J
¢ y méax ||z;|| < c. Entonces
J
m
A1, o ) = Alar, )] = D [A(1, s @jo1, T, o Tn) — A, 05, T, o )]
j=1
m
< Z |A(CL1, ceey @j—1,05 — X5, Ljg1y - - - ,ZEm)|
j=1
< IAlle™ 2y — ayl-

j=1

Luego si méx ||z; — a;|| < 6, entonces
J
m
A, o) = Alar, . an)] < S AN ey — a] < C6,
j=1

por lo que A es continua. O
Proposicién 3.3. (L("X), ]| - ||) es un espacio de Banach.
Demostracion. Es claro que || - || es una norma. Veamos que es completo, sea {A;} una sucesion

de Cauchy en £(™X). Entonces para cada x = (z1,...,z,) € X™ tenemos que
|4, (2) = Ar(@)] < [1A; = Arllllzall - [l

por lo que {A;(x)} es una sucesién de Cauchy en C, que es completo, luego la sucesién converge.

Definimos A como

Ax) = h’jm Aj(z).

A es m-lineal y como {A;} es una sucesién de Cauchy en L£("X) vale que existe ¢ > 0 tal
que ||A;|| < ¢ para todo j € N, luego ||A]| < ¢ por lo que resulta que A es continua y ademéds

|A— Aj|| = 0 como querfamos. O
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Definicién 3.4. Para cada m € N notaremos con L°("X) al subespacio de L("X) formado

por todas las formas simétricas. Esto es A € L5("X) si
A(JJU(U, . ,Ig(m)) = A(l’l, Ce ,xm)

para todo x4, ..., Ty, € X y para todo o € S,,, donde S, denota al grupo de permutaciones del

conjunto {1,...,m}.

Proposicién 3.5. Dada A € L("X), sea A® definida por

s 1
A (331, P ,l’m) = % Z A(l'g(l), Ce ,xo(m)).
’ O'GSm
Entonces la aplicacion de L(™X) en L5("X) dada por A — A® es una proyeccion continua con

1A} < flA]-

Demostracion. Observemos primero que efectivamente A® es simétrica, sea 7 € S,,,

s 1
A ($T(1)) e 7IT(m)) - % Z A(xra(l)u oo 7x7'0(m))
’ O'ESm
1
= Z AZp1)s -+ Tpm))
pPESm
= As(xh : 7xm)

Es una proyeccién pues dado A € L£3(™X), A* = Ay ademds dado = = (z1,...,2,) con

mx 2, < 1,

5 1
A@] < o 3 A2,

’ a’GSm

1
< = 3 A=Al

’ O’GSm

Luego || A%|| < ||A]| y por lo tanto es una proyeccién continua. O
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Definicién 3.6. Sea A € L£5(™X). Entonces dados (z1,...,x,) € X" ya = (aq,...,a,) € N}

con |a| = m, definimos

a1 an
Azt oxom = ATy, .o X1y Ty ey Tp)

donde x; aparece o; veces con 1 < j < n.

Teorema 3.7. (Formula de Leibniz). Sea A € L°(™X). Entonces dados x4, ..., x, € X tenemos

que

n

m/!
Ay + -+ ax,)" = Z JAx‘f“ cLxom

|al=m

donde o = (g, . .., o) € Np.

Corolario 3.8. Sea A € L°("X). Entonces para todo x,y € X tenemos la formula del binomio

de Newton .
m .
Alz +y)" = (,)Axm]yj.
( =y j

J=0

Teorema 3.9. (Formula de Polarizacion). Sea A € L5("X). Entonces para todo xy, ..., T, € X

tenemos que

1
Alxy, .. xp) = o Z £1...emA(xg+ 121+ -+ emTm)™.
: gj==%1

Definicién 3.10. Decimos que la aplicacion P : X — C es un polinomio m-homogéneo con-
tinuo si existe A € L(™X) tal que P(x) = Az™ para todo x € X. Notaremos con P,,(X) al

espacio vectorial de todos los polinomios m-homogéneos continuos. Dado P € P,,(X) tenemos

I1P|| = sup [P(z)].

fl=ll<1

Teorema 3.11. Para cada A € L("X) sea A € Pp(X) definida por A(zx) = Az™ para todo
x € X. Entonces:
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(a) La aplicacion A — A induce un isomorfismo de espacios vectoriales entre L°("X) y
P (X).

(b) Vale que
o m™ .
4l < 14l < 214y

para toda A € L(MX).

Demostracion.

(a) Dado P € P, (X), existe A € L(™X) tal que P = A. Entonces P = A = A*, por lo
que la aplicacién es epimorfismo. Para ver que es monomorfismo, sea A € £(™X) usando la
Férmula de Polarizacién 3.9 con xg = 0 tenemos que si Ay, Ay € L5(™X) con A; # A,, existe
x € X tal que Ayx™ # Asz™ por lo que A #+ A,

(b) Sea x € X con ||z|| < 1, entonces |A(z)| = |Az™| < ||A]], por lo que ||A]| < ||A]|. Sean
ahora, zy,...,7, € X con mjax ||lz;|| < 1, entonces usando la Férmula de Polarizacién 3.9 con

zo = 0 tenemos que

1
|A(z1,. .., 2] g ler. . em||A(e1mr + -+ - + Eman)™|
ej=%1

N

1
= — Z leq .. €m||A 121 + -+ EmTim)|

|
ml2m Sy
m™ || All m™
“Tom d et eml = il
Ej::l:l
Luego [|A]| < 27| A]l. O

La féormula de polarizacién permite recuperar la forma m-lineal asociada a un polinomio
m-homogéneo dado.
Corolario 3.12.
(a) Un polinomio P m-homogéneo es continuo si y solo si || P|| < co.
() (Pm(X);]l - ) es un espacio de Banach.

(¢) La aplicacion A — A induce un isomorfismo topoldgico entre £5("X) y Pp(X).
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El siguiente Teorema extiende el Principio de Acotacién Uniforme a polinomios homogéneos.

Antes veamos un Lema previo.

Lema 3.13. Sea U C X abierto y sea {f;} una familia de funciones continuas de U en C. Si
la familia {f;} es puntualmente acotada sobre U entonces existe un abierto V- C U donde la

famila {f;} es uniformemente acotada.

Demostracion. Consideremos los conjuntos A, = {z € U : || fi(z)| < n paratodoi } para

cada n € N. Entonces U = U A, v cada A, es cerrado, luego por el Lema de Baire, algin

neN
A, tiene interior no vacio. Por lo tanto la familia {f;} es uniformemente acotada en el abierto

V= A°. o

Teorema 3.14. Un subconjunto de Pp,(X) es acotado en norma si y sdlo si es puntualmente

acotado.

Demostracion. Sea {P;} C P,,(X) puntualmente acotado. Por el Lema anterior, la familia { P, }
es uniformemente acotada en la bola B(a;r) por ¢, luego usando la férmula de polarizacién
(Teorema 3.9) para A;, con P, = A; y tomando zg = a y #; = --- = &, € B(0,7/m) tenemos

que la familia {P;} es acotada uniformemente por em™ /m! sobre la bola B(0;r). O]

Definicién 3.15. Diremos que la aplicacion P : X — C es un polinomio continuo de grado a

lo sumo m si lo podemos representar como una suma
P=FP+P +---+P,

donde P; € Pj(X). Notamos con P(X) al espacio vectorial de todos los polinomios.

Observacion 3.16. P(X) es la suma directa algebraica de los subespacios Py, (X) con m € Ny.
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Definicién 3.17. Decimos que P € P(X) es un polinomio de tipo finito m-homogéneo sobre
N

X si es de la forma P(x) = ZaiLi(x)m, con L; € X*. Notaremos con P! (X) al conjunto de
i=1
los polinomios de tipo finito m-homogéneos.

Un polinomio de tipo finito es una combinacion lineal finita de polinomios homogéneos de

tipo finito. Notaremos con PY(X) al conjunto de los polinomios de tipo finito.

Observacion 3.18. El conjunto de los polinomios de tipo finito sobre X son el dalgebra generada

por X*.

Observacién 3.19. En el caso que el espacio X sea de dimension finita, todo polinomio es de
tipo finito. Sin embargo esto no es valido para espacios de dimension infinita. El Teorema de

Littlewood -Bogdanowicz -Pelczynski (ver [3, 23]) dice que todo polinomio m-homogéneo sobre

¢o se puede aproximar uniformemente por polinomios de tipo finito, es decir, Py, (co) = Pin(co).
En general, en espacios de Banach de dimensién infinita, existen polinomios homogéneos
que no se pueden aproximar por polinomios de tipo finito. Por ejemplo si X = ¢2, el polinomio

P(z) = Zx? es un polinomio 2-homogéneo en ¢ que no es aproximable por polinomios de
jEN
tipo finito.

3.2. Funciones analiticas

En esta seccién vamos a definir funciones analiticas en espacios de Banach. Para ello veamos

antes la nocién de series de potencias de polinomios homogéneos.

Definicién 3.20. Una serie de potencias de X en C centrada en a € X es una serie de la
forma Z P, (x —a), donde P,, € P,,(X) para todo m € Ny.

meNy
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Observemos que también podemos escribir la serie de pontencias Z P,(x — a) como
meENy
Z A, (z —a)™, donde A, € L5(X) con A, = Pp,.

meENy

Proposicién 3.21. Sea Z P(z—a) de X en C. Si existe r > 0 tal que Z P.(x—a)=0
meENy meNg
para todo x € B(a;r), entonces P, = 0 para todo m € Ny.

Demostracion. Dado = € B( r), lamo y = x —a € B(0;r), como y = HyHHz—”, entonces

Z Pu(x —a) = Z Py Z lyl|™ P ( ) donde ||y|| < r. Luego llamando ¢, a

meNg meNg meNg H ||

Pm(ﬁ) y A a ||y||, basta probar que dada una sucesion {c,,} en C, si Z cmA™ = 0 para todo
meENy

A € C con |\| < r, entonces ¢,, = 0 para todo m € Ny.

En efecto, por inducciéon en m. Para m = 0, tomando A = 0 sale que ¢y = 0. Supongamos

entonces que ¢, = --- = ¢, = 0 y veamos que ¢,,41 = 0. Como Z cmr' converge, existe
meENy
C > 0 tal que |¢,|r™ < C para todo m € Ny y como ¢g = - -+ = ¢, = 0 tenemos que
— j—m—1
Cm+1 = — Z Cj)\
j=>m+2

para 0 < |A| < 7. Entonces para 0 < |\| < /2 tenemos que

. i—m—2
lensall <M D2 € (5) 7 = 2o

Jjzm+2

Luego tomando A — 0 tenemos que ¢,,11 = 0. O]
Estamos en condiciones, entonces, de definir las funciones analiticas en espacios de Banach.

Definicién 3.22. Sea U C X abierto. Decimos que la funcion f: U — C es analitica si para

cada a € U eziste una bola B(a;r) C U y una sucesion de polinomios P, € P, (X) tal que

donde la convergencia es uniforme para cada x € B(a;r). Notaremos con H(U) al espacio

vectorial formado por todas las funciones analiticas de U en C.
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Observacion 3.23. Como consecuencia de la Proposicion 3.21 podemos concluir que la suce-
sion de los {P,,} de la definicion anterior quedan univocamente determinados por f y por a.
Notaremos P,, = P™ f(a) para todo m € Ny. La serie Z P™f(a)(z — a) se llama la serie de

meENy

Taylor de f en a.

Ejemplo 3.24. Como primer ejemplo, veamos que los polinomios definidos anteriormente son

efectivamente funciones analiticas, o sea, P(X) C H(X)

Demostracion. Basta ver que cada P € P,,(X) pertenece a H(X). Sea A € L5("X) tal que

P = A, dados a,z € X, por la Férmula de Newton 3.8 tenemos que

P(z) = A2™ = A(x —a+a)" = i (m> Aa™ I (z — a)l.

=0 \J

Luego P pertenece a H(X) y ademas

PIP(a)(t) = (m) Aa™ I para j < m
J

P’P(a)(t) =0 para j > m.

]

Veamos ahora algunos resultados conocidos para funciones analiticas en C que son vali-
dos también para las funciones analiticas sobre espacios de Banach. Demostraremos aquellos

resultados que usaremos a lo largo del trabajo.
Lema 3.25. Sea U C X abierto, y sea f € H(U). Entonces:
(a) f es continua.
(b) f es localmente acotada.
(¢) Dados a € U, b € X, la funcion X — f(a + Ab) es analitica sobre el conjunto abierto

{AeC:(a+ ) eU}.

Principio de identidad.



26 Capitulo 3. Funciones Analiticas en espacios de Banach

Proposicién 3.26. Sea U C X abierto y conexo, y sea f € H(U). Si f es idénticamente cero

en un conjunto abierto no vacio V-C U, entonces [ es idénticamente cero en U.

Principio de la Aplicacion Abierta.

Proposicién 3.27. Sea U C X abierto y conexo, y sea f € H(U). Si f es no constante en U,

entonces f(V) es un subconjunto abierto de C para todo subconjunto abierto V C U.

Principio del Maximo.

Proposicién 3.28. Sea U C X abierto y conexo, y sea f € H(U). Si existe a € U tal que
|f(z)| < |f(a)| para todo x € U, entonces f es constante.

Teorema de Liouville.

Proposicién 3.29. Si f € H(X) es acotada en X, entonces f es constante en X.

Veamos ahora las extensiones de las fémulas integrales de Cauchy para funciones analiticas

sobre espacios de Banach.

Teorema 3.30. Sea U C X abierto y conexo, y sea f € H(U). Seana € U, t € X yr >0
tal que a + Ct € U para todo ¢ € AN(0;7). Entonces para cada X € /\(0;7) tenemos la formula
integral de Cauchy

1 fla+Ct)

Demostracion. Por el Lema 3.25, la funcién ¢(¢) = f(a + (t) es analitica en un entorno del
disco cerrado A(0; 7). Usando la férmula integral de Cauchy para funciones analiticas sobre C
tenemos que

fla+At) =g(A) =

omi

1 9(¢) 1 fla+ct)
— | la=— [
/<|=TC—AC el

para todo A € A(o;7). O
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Corolario 3.31. Sea U C X abierto y conexo, y sea f € H(U). Seana € U, t € X yr >0 tal
que a+(t € U para todo ¢ € A(0;7). Entonces para cada X € A(0;7) tenemos el desarrollo en

serie de la forma

fla+ At) Z e A"

meENp

donde

1 At
Cm = . f(anj;—l )dC
270 Jig=r - €

FEsta serie converge absoluta y uniformemente para [N < s con 0 < s <.

Demostracion. Consideremos A con |A| < || = r. Entonces

f(a+gt) fla+¢t)/¢C " a—l—Ct
C_)\ 1_)\/< Z)\ Cm+1 ’

meNy
y como f es acotada sobre el conjunto acotado {a + (t : [(| = r}, tenemos que la serie converge
absoluta y uniformemente para || = r y |A] < s < r. Luego podemos integrar término a
término y obtenemos

1 fla+¢t) m fla+¢t)
Jla+At) = 2mi cl=r C—A o = Z)\ 2m |T,de’

donde la ultima serie converge absoluta y uniformemente para |[A| < s con 0 < s < 7. O

Corolario 3.32. Sea U C X abierto y conexo, y sea f € H(U). Seana € U, t € X yr > 0 tal
que a + (t € U para todo ¢ € /A(0;7). Entonces para cada m € Ny tenemos la formula

1 fla+Ct)

me(a)(t) = % Cler (mt

g dG.
Demostracion. Como f es analitica tiene un desarrollo en serie de Taylor en a de la forma
fla+ M) =Y P"fla)(M) = > X"P"f(a)
meNp meNp
luego por unicidad de desarrolo, tenemos por Corolario 3.31 que

O et

P =5 | Sgmdc
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Corolario 3.33. Sea U C X abierto y conexo, y sea f € H(U). Seana € U, t € X yr >0 tal

que a + (t € U para todo ¢ € A(0;7). Entonces para cada m € Ny tenemos la inecuacion

[P fa)(t)] <" sup [f(a+ (D).

I¢l=r
Demostracion. Por Corolario 3.32 tenemos que
1 |f(a+ ()] 1 _
pP™ ) < — d¢ < t a¢=r—" t)|.
PO g [ RS g s St (] [ = s (o o)

[]

Corolario 3.34. Si P € P,,(X), entonces dados a,t € X tenemos la formula integral

1 P(a+(t)
P(t) = 5 - Wd{.

Corolario 3.35. Sea P € P,,(X). Si P estd acotado por ¢ en la bola abierta B(a,r), entonces

P también esta acotado por c en la bola abierta B(0,r).

Obsevemos que este corolario da una cota mejor a la dada en la demostracién del Teorema
3.14.

Definicién 3.36. Llamaremos polidisco en C™ a un producto de discos. El polidisco abierto
de centro a = (ay,...,a,) y radio r = (ry,...,r,) lo vamos a notar A"(a,r). Y al polidisco

cerrado lo notaremos A™(a,r). Es decir:
Aa,r)={2€C":|z; —aj| <rj paral < j < n},

A"a,r)={2€C": |z; —a;| <rj para1 < j < n}.

Sia=1(0,...,0) yr=(1,...,1), escribiremos A™(0,1) = A™ y A™0,1) = A",

Lamaremos 0y/A™(a,1) al conjunto incluido en la frontera OA™(a,r) de A"™(a,r) dado por

A" (a,r) ={z € C":|z; —aj| =r; para 1 < j < n}.
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Teorema 3.37. Sea U C X abierto, y sea f € H(U). Sean ty,...,t, € X, ri,...,7, >0y
a € U tales que a-+City+ - -+Cutn € U para todo ¢ € A™(0, 7). Entonces para cada A € A™(0, 1),

tenemos la formula integral de Cauchy

(271.2)” Bo A™(0,r) (Cl - )\n) R (Cn - An)

Demostracion. Como A™(0,7) es compacto, entonces podemos tomar Ry > ry,..., R, > 7,

tales que a + (1t; + -+ + (it € U para todo ¢ € A™(0,R). Ahora bien, si consideramos

f(a+)\1t1 + a)\ntn) =

¢y ... d¢,

la funcién ¢((y,...,¢) = fla+ Gty + -+ - + (uty), resulta analitica en cada variable. Luego
aplicando la férmula integral de Cauchy (Teorema 3.30) en cada variable, tenemos que

o 1 d¢ dgs fla+ Gty + ... Cutn)
f(a‘f’Altl“'_ +)\ntn) - (277'2)” /§1|:r1 Cl N )\1 /|<'2|:7.2 €2 _ )\2 .. -/;n:Tn Cn — )\n an

fla+ Gt 4 -+ Gat)
(Cl - Al)(gn - /\n)

en el conjunto compacto dyA"(0, ), entonces por el Teorema de Fubini podemos reemplazar la

para todo A € A"(0,r). Como la funcién h((y,...,¢,) = es continua

integral iterada por la integral multiple. O

Corolario 3.38. Sea U C X abierto, y sea f € H(U). Sean ty,...,t, € X, r,...,7» >0y
a € U tales que a+Cit1+- - -+Cutn € U para todo ¢ € A™(0, 7). Entonces para cada A € A™(0, 1),

tenemos el siguiente desarrollo en serie

Flat Mty +- 4 Aty) = ) cadft . AL

donde ¢, =

1 / fla+ Gty + -+ Gty)
30&"(0,7‘)

(271-1')71 a1+1 o an—H

¢y ... dG,.
1

Esta serie converge absoluta y uniformemente para X € A™(0,s), donde 0 < s; < r; para

todo j.

Demostracion. Si |A\;| < |(;] = rj para 1 < j < n, entonces podemos escribir (haciendo lo

mismo que hicimos en la demostracién del Corolario 3.31)

fla+ Mty +Mty) o ey flat+ Gty 4+ Gaty)
(G = A1) (G = An) Z)\l o C?1+1~~Cﬁén+l

donde esta serie multiple converge absoluta y uniformemente para |(;| = r; y |\;| < s; < rj.

«

Luego podemos integrar término a término y obtenemos lo que queriamos. O]
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3.2.1. Funciones G-Analiticas

Definicién 3.39. Sea U C X abierto. Decimos que la funcion f : U — C es G-analitica si
para todo a € U y b € X la aplicacion X\ — f(a + A\b) es analitica sobre el conjunto abierto
{N» € C:a+ M € U}. Notaremos con Ha(U) al espacio vectorial formado por todas las

funciones G-analiticas de U en C.

Ejemplo 3.40. P(X) C Ha(X). Pues P(a + A\b) es un polinomio en la variable \ para todo
a,be X.

Definicién 3.41. Decimos que un subconjunto A C X que contiene al origen es balanceado si
para todo v € A y ¢ € A\, vale que (x € A. Si a € A, decimos que A es a-balanceado si el

conjunto A — a es balanceado.

Teorema 3.42. Sea U un subconjunto abierto, a-balanceado de X, y sea f € H(U). Entonces la
serie de Taylor de f en a converge a f uniformemente sobre algin entorno de cada subconjunto

compacto de U.

Demostracion. Sea K C U compacto. Entonces el conjunto A = {a+((r—a) :z € K, ( € A}
estd incluido en U y ademads f esta acotada sobre A. Como A es compacto, podemos hallar
7> 1y un entorno V de K en U tal que el conjunto B = {a+((z —a):x €V, ( € A(0;7)}
esta contenido en U y ademas f esta acotada sobre B también. Luego podemos escribir
f(a—i—(ac—a fla+{(z —a))
¢ — Z (mt

y la serie converge absoluta y uniformemente para x € V' y || = r. Luego por el Teorema 3.30

meENy

tenemos que

1 fla+{(r—a)) fla+{(z —a))
(@) DY .

2710 Ji¢|=r (—1 = ¢l

Luego por el Corolario 3.32 tenemos que
= > P"f(a)(z—a)
meENy

y la serie converge absoluta y uniformemente para x € V. O
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Teorema 3.43. (Lema de Schwarz). Sea U = B(a;r) C X y sea f € H(U). Si |f(z)| < ¢
para todo x € B(a;r) y ademds existe m € N tal que P? f(a) = 0 para todo j < m. Entonces
|f(z)] < c(”z%'”)m para todo x € B(a;r).

Demostracion. Sea x € B(a;r) con x # a 'y sea g la funcién de una variable compleja definida

por

gA) =A"fla+ XNz —a)) para0 <|A < T

9(0) = P™ f(a)(z — a).

Ahora bien, por el Teorema 3.42 la serie de Taylor de f en a converge puntualmente a f sobre

)

[z = all

la bola B(a;r). Luego podemos escribir a g como sigue
g(N) =D _ NP f(a)(z —a)
j=m

con A € A(0; IIxTTtH) y ademds g es analitica en dicho disco. Tomemos s tal que ||z —al| < s <,

como | f| < ¢ sobre la bola B(a;r), tenemos que

g < e (M>m

S

para [A| = s/||x — a|| y luego por el Principio de Maximo (para funciones complejas) también

vale para |A\| < —%. Entonces aplicando la inecuacién para A = 1 tenemos que
[le—al

ol <e (=)

S

Por 1ltimo, tomando s — r obtenemos lo que queriamos. O

Observacion 3.44. Las extensiones del Principio de Identidad, el Principio de la Aplicacién
Abierta, el Principio del Maximo, el Teorema de Liouville y el Lema de Schwarz a funciones

analiticas sobre espacios de Banach son también validos para las funciones G-analiticas.

Observacién 3.45. Si miramos las demostraciones del Teorema 3.30 y el Corolario 3.31 no-
tamos que son también validos si nos restringimos a las funciones G-analiticas. De la misma
forma son validos el Teorema 3.37 y el Corolario 3.38 para funciones G-analiticas que resultan

continuas cuando se restringen a subespacios de dimensién finita.
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Proposicién 3.46. Sea U C X abierto, y sea f € He(U). Entonces f es continua si y sdlo si

f es localmente acotada.

Demostracion. Sea f : U — C G-analitica y localmente acotada. Dado a € U tomamos r > 0
y ¢ > 0 tales que |f(x)| < ¢ para todo x € B(a;r). Aplicando el Lema de Schwarz (Teorema

3.43) para funciones G-analiticas a la funcién f(z) — f(a) tenemos que

|l = all

[f(z) = fla)] < 2¢

r

para todo x € B(a;r) por lo que f es continua en a. ]

El siguiente teorema da una caracterizacion de las funciones analiticas y ademés da una

herramienta para probar que una funcién dada es analitica.

Teorema 3.47. Sea U C X abierto. Entonces para cada funcion f : U — C las siguientes

condiciones son equivalentes:
(1) f es analitica.
(2) f es continua y G-analitica.
(3) f es localmente acotada y G-analitica.
(4) f es continua y f|lunm es analitica para todo subespacio M de X de dimension finita.

Demostracion. (1) = (2): Es claro.

(2) < (3): Ya lo probamos (Proopsicion 3.46).

(2) = (4): Sea f : X — C una funcién G-analitica y continua, y sea M C X un subespacio de
dimensién finita con base {ey,...,e,}. Entonces por la Observacién 3.45 tenemos el desarrollo

en serie de la forma

fla+ e+ -+ A\pep) = an)\?l...)\g"

donde la serie multiple converge absoluta y uniformemente sobre A™(0,7) para algtin r > 0. Si
definimos P,, € P,,,(M) como

Pr(Aer 4+ 4 Anen) = 3 oAt A

«
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entonces conseguimos el desarrollo en serie de Taylor para f|yny que converge uniformemente
en A"(0,7).

Luego flynwm es analitica para todo subespacio M de X de dimensién finita.

(4) = (1): Sea B(a,r) C U. Si M C X es un subespacio de dimensién finita que contiene
a a, entonces por hipétesis tenemos que f|ynps es analitica. Luego por el Teorema 3.42 f|ynn
tiene desarrollo en serie de taylor

fl@)="Y_ Pl(z—a)

meNy
para todo x € M N B(a,r) y donde PM € P,,(M).

Consideremos ahora M y N dos subespacios de X de dimension finita que contienen a a,
luego por la unicidad del desarrollo en serie de Taylor, tenemos que P (t) = PN (t) para todo
t € M NN y para todo m € Ny. Sea P, : X — C definido por P,,(t) = PX(t) donde M es un
subespacio de X de dimensién finita que contiene a a y a t. Entonces P,, € P,,(X) y ademés
f(x) = Z P,.(z — a) para todo x € B(a,r).

meENy _
Ahora bien, como f es continua, existe B(a,s) C B(a,r) tal que |f(x)| < ¢ para todo

z € B(a,s). Luego, dado t € X con ||t|| < 1, sea M un subespacio de X de dimensién finita
que contiene a a y a t. Entonces por la férmula integral de Cauchy (Corolario 3.32) tenemos

que

1 fla+(t)
P (t) = PM()= — CAA S 277
por lo que [|P,|| < ¢s™™. Luego cada P, es continuo y resulta que f es analitica. O

3.3. El espacio Hy(X).

Si X es un espacio de Banach de dimension infinita, el espacio H(X) de todas las funciones
analiticas sobre X no es un espacio metrizable. Una manera de generalizar a dimensién infinita
el espacio H(C") de manera de obener un espacio métrico es considerar a las funciones analiticas
en X que son acotadas en subconjutos acotados de X. Vamos a comenzar recordando algunas

nociones basicas sobre espacios vectoriales topologicos.
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Definicién 3.48. Sean E un C espacio vectorial y T una topologia en E. Decimos que (E,T)
es un espacio vectorial topoldgico si las aplicaciones naturales

E x E — FE dada por (z,y) — x + v,

C x E — E dada por (\,x) — Az

son continuas.

Definicién 3.49. Decimos que una aplicacion p : E — R, es una seminorma sobre E si

verifica:
i) p(Ax) = |A|p(x), para todo X\ € C y para todo x € E,

ii) p(z +vy) < p(z) + p(y), para todo x,y € E.

Sea P = {p;}ics una familia de seminormas sobre F tal que para todo subconjunto finito

J C I, vale que supp; € P (una familia P con esta propiedad se llama estable por envolvente
jeJ

superior finita). Y definimos una topologia 7 en E cuya base estd dada por los subconjuntos U

de E que verifican la propiedad
VeeU, diel, Ir>0tal que {y € E:pj(x —y)<r} CU.

Observemos que si la familia de seminormas es creciente, entonces es estable por envolvente
superior finita.
(E, T) asi definido es un espacio vectorial topolégico. Dichos espacios vectoriales topolégicos

se llaman localmente convexos.

Definicién 3.50. Decimos que una familia P de seminormas sobre E es separante si se verifica
que

(p(z) =0VpeP)=a=0.

Proposicion 3.51. Sea E un espacio vectorial topoldgico localmente convexo cuya topologia
viene definida por una familia separante de seminormas P = {p;}icr estable por envolvente
superior finita. Entonces, una sucesion {x,}, C E tiende a 0 si y solo si p;(x,) tiende a 0 para

todo 1 € I.
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En el caso que tengamos un espacio vectorial topolégico localmente convexo donde la familia

de seminormas es creciente y separante, si consideramos la distancia dada por

d T,Y)= o )
(z.9) neNQ”l—I—pn(x—y)
esta distancia define la topologia y ademas cumple que es invariante por traslaciones. Diremos

entonces que E es un espacio vectorial topoldgico localmente convexo metrizable.

Definicién 3.52. Decimos que E es un espacio de Fréchet si es un espacio vectorial topologico

localmente convexo metrizable completo.

Definicién 3.53. Definimos el espacio Hy(X) como el espacio de las funciones analiticas sobre

X que son acotadas sobre subconjuntos acotados de X.

Consideramos en H,(X) la familia creciente de seminormas A = {p,},>¢ definidas por

pr(f) = sup |f(z)| para r > 0y po(f) = |f(0)]. Observemos que p, es una norma en Hy(X)

llzll<r

que notaremos p,(f) = || f|l, por lo que la familia es separante.
Luego (Hy(X), A) es un espacio de Fréchet y la topologia viene dada por f, — f siy sélo si
Il fo — fl|» tiende a 0 para todo r > 0. Esta topologia se llama la topologia de la convergencia

uniforme sobre acotados.

Ejemplo 3.54. Veamos un ejemplo de una funcién analitica pero que no es acotada sobre

acotados. Tomemos X = ¢y 6 ¢ y definimos f(z) = Z:L‘Z Para probar que f es analitica,

neN
por el Teorema 3.47, basta ver que f es G-analitica y localmente acotada. Veamos que f es

G-analitica, o sea que f(z+ \y) = Z(xn + Ay,)" es analitica en A en algin entorno del 0 para

neN
todo x,y € X. Luego tenemos que ver que la serie converge uniformemente en || < ¢ para

todo |ly|| < 1. Ahora bien,

flx+Xy) = Z(xn + Ayn)" = Z <Z) D T Z a; N

neN neN k=0 7=0
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o0

. n i . , , .

donde ag = Z T, y para j > 0, a; = Z ( )x” Jy? . Como z,, — 0, si tomamos raiz n-ésima
neN n=j J

al término general de la serie de a;, tiende a 0. Por lo que f(x + Ay) es una serie de potencias

en A. Ahora bien, si analizamos la serie g (T + Ay,)", tomando raiz n-ésima tenemos que
neN

[0 + Ayn| < [n] + [Mlyn] < lan] +lynl — 0.

Luego la serie converge uniformemente para [\ < e
Veamos ahora que f es localmente acotada. Supongamos que ||z|| < C, en particular vale

que |z,| < C para todon € Ny ademés existe ng tal que |x,| < 1/2 para todo n > ng. Entonces

no—1

@) < ) lwal" < Z || + Z |z
neN n=ng
no—1
< i Cc" + Z (1/2)"
n=ng

Luego tenemos que f es analitica sobre X pero si consideramos x* = 2¢;, 2* € B(0, 3) para

todo k € Ny f(z*) = 2*. Por lo que f no es acotada sobre acotados.

El Teorema de Josefson-Nissenzweig [15, 22] dice que si X es un espacio de Banach de

. . . . ., w*
dimensién infinita, entonces existe una sucesién (v,), C Sx- tal que v, — 0. Como conse-
cuencia, haciendo un razonamiento andlogo al del ejemplo anterior, se obtiene que la funcién

f(x) =3, v(x)" no es acotada en acotados. Es decir, vale en general que en todo espacio de
Banach X de diemnsion infinita existe f € H(X) \ Hy(X).

Si P € P,,(X), entonces P es acotado sobre subconjuntos acotados de X, luego P,,(X) C
Hy(X). Si consideramos en P,,(X) la norma de la convergencia uniforme sobre la bola unidad,

o sea, ||P|| = ||P|l1 = sup|P(x)|, resulta que (P, (X),|| - |) es completo. Ademéds por ser
€B

homogéneos tenemos que si P € P,,(X), entonces ||P||, = r™||P|| con r > 0. Luego la topologia
de la norma en P,,(X) coincide con la topologia inducida como subespacio de Hy(X).
Cada f € Hy(X) tiene un desarrollo en serie de Taylor

f:: j{: fma

meENy

donde f,,, € P, (X).
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La siguiente proposicién da una caracterizacion de las funciones de Hy(X), como las fun-
ciones analiticas en X tales que su desarrollo en serie de Taylor tiene radio de convergencia

uniforme infinito.
Proposicién 3.55. Hy(X) = {f € H(X) : |P"f(0)||"/™ — 0}.
Demostracion. Sea f € Hy(X), entonces f(x) = Z P™f(0)(z) donde la serie converge pun-

meNy
tualmente en X. Por Corolario 3.33, tenemos que dado z € X con ||z]| < 1,

[P f(O)(2)] < — sup [ f(8x)| < ==,
" lgl=r "
para todo r > 0. Entonces [|[P™f(0)] < Hf”T Luego tomando raiz m-ésima tenemos que
Tm

1/m
|P™£(0)]|M™ < m, y tomando limite obtenemos que
r

1/m

T ]_
lim || P™ f(0)]|Y/™ < ti W -,
m m T r

ya que f es acotada en rB. Como esto vale cualquiera sea el r > 0, podemos concluir que
[P f(0)][/™ — 0.
Reciprocamente, sea f € H(X) con |[P™f(0)|['/™ — 0. Sea x € rB, entonces

[f@)] < Y [P F0)()]

meENy
Xz

< 3P AO) ()]

P ]

< 3P O] < .

meENy

]

La ultima parte de la demostracién anterior muestra que la serie de Taylor de una funcién
de Hy(X) converge uniformemente sobre subconjuntos acotados de X, o sea, la serie converge
en H, b(X)

Corolario 3.56. Los polinomios son densos en Hy(X).



38 Capitulo 3. Funciones Analiticas en espacios de Banach

Proposicién 3.57. Toda f € Hy(X) es uniformemente continua sobre acotados de X.

Demostracion. Sea f € Hy(X), f tiene desarrollo en serie de Taylor f(z Z fm(zx), donde

meENy
fm € Pn(X), vy sea A, la forma m-lineal simétrica asociada a f,,. Sean z,y € rB, entonces

tenemos

|f(z) <) fm(@) = fnw)l.

meENy

Ahora bien,
() = fn ()| < ™7 H| Al — .

Para ilustrarlo hagamos la cuenta para el caso de f3

| f3(x) — f3(y)]

|A3($, x, I) - A3(y7 Y, y)|

< |As(z,z,x) — As(z, @, y) | + |As(z, 2, y) — As(z, g, )|
+[As(z,y,y) — As(y,y,v)]

= [As(z,z,2 —y)| + [As(z, 2 — y,y)| + [As(z — v, y,9)]

< N Aslllizlllz =yl + [ Aslzylllz =yl + 1 Asly 1z =yl

< 32| Al — yll.

Entonces tenemos que

f@) = F@) < D 1m@) = fu@)] < ) mr™ Az =yl < Clle =y

meNy me&Ny

pues (mr™ Y™ — ry ||An|Ym < (%Hfm”)l/m — 0. Luego f es uniformemente continua
sobre acotados de X. O

Del Teorema de Littlewood-Bogdanowicz [3] -Pelczynski [23], se deduce la siguiente proposi-

cién.

Proposicién 3.58. Hy(cy) = { dlgebra cerrada generada por ¢}y } = Pf(co).
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3.3.1. Extension de Aron-Berner

Vimos en el Teorema 3.11 que hay un isomorfismo 7' : P,,(X) — L£°("X) dado por:
P — P donde P(z) = Pz™. Vamos a extender un polinomio m-homogéneo sobre X, P, a
AB(P) € P,,(X**) de la siguiente manera:

Tomamos P y dado z € X**, por Teorema de Goldstine, existe una red {y,} € X acotada
tal que y, tiende débil-x a z, por lo que podemos extender la ultima coordenada a X** como

sigue

P(xy,x9,...,2) =m P(zy, 20, ..., ya).

Ahora hacemos de la misma forma con cada una de las coordenadas y obtenemos

]5(21,22,...,2,71) =lm...limPWa,,- - Yo, )

a1 QAm

Esta extensiéon depende del orden en que se extienden las variables, pero cuando evaluamos
en la diagonal, I-;’(z, ..., Z), gracias a la simetria de P, el resultado no depende del orden en
que se hizo la extensién. Definimos entonces AB(P)(z) = ]5(2, ..., z), claramente verifica que
AB(P)(z) = P(x) para todo = € X. Esta extension se llama la extensién de Aron-Berner [2] y
resulta una isometria, o sea ||P||,g = ||[AB(P)||,p+, [7]. Mas atn en [7] probaron la siguiente
generalizacién del teorema de Goldstine: dado z € B**, existe una red (y,)o C B tal que para

todo polinomio P en X (no necesariamente homogéneo) vale que P(y,) — AB(P)(z).

Ahora bien, dada f € H,(X), se puede extender canénicamente a una funcién analitica
f € Hy(X*) y la extensién viene dada como sigue
f € Hy(X), tiene desarrollo en serie de Taylor f = Z fm donde f,, € P,,. Definimos
m

AB : Hy(X) — Hy(X*) como AB(f) = >  AB(fm).
Notacién: AB(f) = f
Proposicion 3.59. La extension AB es continua y multiplicativa

Demostracion. Veamos primero que la aplicacion f —— f es continua. Para esto, vamos a
considerar el espacio H,(X) dotado de otra familia de seminormas {¢,},cr, definidas por

¢ (f) = Z r™[|P" f(0)]|. Observemos que por la Proposicién 3.55 los ¢, estan bien definidos.
neNy
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Veamos ahora que (Hy(X), {|| - |- }rer,) = (Ho(X),{¢ }rer, ), 0 sea, que las familias de semi-
normas {|| - ||} v {¢-} definen la misma topologia para H,(X). Sea, entonces, fy — 0 para la
topologia dada por la familia {|| - ||}, o sea, || fx|l. — 0 para todo r > 0. Veamos que f — 0
para la topologia dada por la familia {¢,}, esto es, ¢s(fx) — 0 para todo s > 0. Dado s > 0,

tomemos r > s entonces

a(fe) = D " IP O] =D (s/r)"r"|P" fi(0)]

neNg n€Ng
= > (/)" 1P fel )l < ISl D (s/r)™ = Cll fillr — 0.
neNp neNg

Reciprocamente supongamos que fr — 0 para la topologia dada por la familia {g,}, entonces

il = 1Y PRI < Y IP Ol = Y " IP fu(O)]] = @ (fir) — O,

neNg neNg n€Np

para todo r > 0. Luego ambas familias de seminormas definen la misma topologia para H,.
Ahora bien, sea fr — 0 en H,(X) y veamos que fr — 0en Hy(X**). Como ||P||,p = ||P\|TB**

para todo polinomio P, tenemos que

a(Fe) = 3 NP O lepee = 3 1P FO) s = :(fi) = 0,
neNy neNy
para todo r > 0. Por lo que resulta que la aplicaciéon f — f es continua.

Veamos por udltimo que la aplicacién f —— f es multiplicativa. Para esto, basta ver que
dados f € Hy(X) y z € B* existe una red {z.}, C B tal que f(z) = lim f(x4) pues como
tomar limite es multiplicativo, resulta que la aplicacién también lo es. Par‘; esto, vamos a usar
que dado z € B**, existe una red {z,}o C B tal que P(z,) — P(z) para todo polinomio
P € P(X) [7]. Ahora bien,

/() = f(za)| < 1f(2) = P(2)]| + |P(2) = P(za)] + | P(za) = f(wa)],

para todo polinomio P € P(X). Entonces, como los sumas parciales de la serie de Taylor de f
convergen a f uniformemente sobre acotados, podemos tomar un polinomio P de manera tal
que [|[P — fllip < €/3 y tal que Hf — IsHlB** < €/3 ya que la aplicacién es continua. Luego
tenemos que |f(z) — P(2)] < &/3 y |P(za) — f(24)| < £/3 para todo « pues {z,} C B ademds
existe ayg tal que |P(z) — P(x,)| < £/3 para todo a > ag. Luego | f(z) — f(2.)| < € para todo

o = Q. O
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Vamos a estudiar también el espacio H;(X) dotado con la topologia débil-#, esto es, dado
{pa} C H(X), decimos que ¢, — ¢ si pa(f) — ©(f) para toda f € Hy(X). Y en especial
estudiaremos un subconjunto particular de H;(X) que se llama el espectro de H,(X) que lo
notaremos M, (X) y consiste en los morfismos continuos multipilicativos y no nulos de Hy(X)
en C, con la topologia inducida por H; (X).

Un funcional ¢ € H;(X) es continuo respecto a la topologia de la convergencia uniforme en
rB siy solo si existe C' > 0 tal que |o(f)| < C||f|l- para toda f € Hy(X).

Observacién 3.60. Dado ¢ € H;(X), vale que ¢ es continua respecto de la topologia de la
convergencia uniforme para alguna bola rB. O sea, existen C' > 0 y r > 0 tales que para toda

f € Hy(X) se verifica |p(f)| < C|| f]]






Capitulo 4

El espectro de H,

4.1. La Funcion Radio en M,

A partir de esta seccién vamos a llamar H, a H,(X) , H; a Hf(X) y M, a My(X), salvo

donde sea necesario aclarar sobre qué espacio estamos trabajando.
Definicién 4.1. Sea ¢ € Hy definimos la funcion radio como

R(p) = inf{r > 0: ¢ es continua respecto a la topologia de la convergencia uniforme en rB}

inf{r >0: 3C >0, con|o(f)| < C|f|. para toda f € Hy}.

Observacion 4.2. Como consecuencia de la Observacion 3.60, la funcion radio estd bien defini-

da y ademds: 0 < R(p) < 0.

Llamaremos 6, al morfismo evaluaciéon en x € X. O sea, 6,(f) = f(x) para f € H,

Observemos que d, pertenece a H; para todo x € X, es mds, J, pertenece a M.

Lema 4.3. Sea p € M,, entonces
[o(N < llre) YV € Hs.

Ademdas R(p) =0 si y solo si ¢ = dp.
43
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Demostracion. Como ¢ es continua, existen r > 0y C' > 0 tal que |¢o(f)| < C||f||», luego, como
¢ es multiplicativa, tenemos que |p(f™)| = (/)| < C|f"]l» = C||f||?. Por lo que tomando
raiz n-ésima obtenemos que |o(f)] < CY"||f||, y haciendo tender a n a infinito se deduce
entonces que |o(f)| < ||f]|- para toda f € H,. Como no depende de C, esto vale para todo
r > R(p).

Ahora bien, como toda f € H, es uniformemente continua sobre acotados de X (Proposicién
3.57), la norma de f en rB depende continuamente de r. Luego tomando limite de r tendiendo
a R(y) tenemos que |¢(f)| < || fllr() para toda f € H, como querfamos.

Por dltimo, si R(¢) = 0, entonces |p(f)| < ||f|- para todo r > 0 y para toda f € Hy,
luego tomando r — 0, tenemos que |¢(f)| < |f(0)| para toda f € H,. En particular vale

para la funcién f — £(0), o sea, [o(f — FO)] < |(f — FO)(O)] = I£(0) — £(0)] = 0, luego
= ¢(f = £(0)) = () = o(f(0)) = (f) = [(0)p(1) = ¢ (f) = f(0), por lo que ¢ = do.

Reciprocamente, si ¢ = dg, tenemos que |do(f)| = |f(0)| < || f|» para todo r > 0 y para

toda f € Hy, luego R(dg) = 0. O

Ejemplo 4.4. R(J,) = ||z|| para todo x € X.

Demostracion. Veamos primero que R(d,) < ||zl

0(F) = |f(@)] < sup{[f(y)] : ¥ € Bjajj+e} = [[fllja)+= Para todo £ > 0.

Luego [0,(f)| < || fllj=) para toda f € Hy con lo que R(0,) < ||z||.
Veamos ahora que R(d,) > ||z|
Dado r < ||z||, por el teorema de separacién de convexos de Hahn-Banach, tenemos que
existe L € X* C Hy tal que |L| < 1enrBy |L(z)| > 1 osea que |6,(L)] = |L(z)] > 1 por lo
que no se cumple que |0,(L)| < || L]|,. Luego R(6,) = ||z]|. O

Lema 4.5. Dado r > 0 el conjunto {¢ € M, : R(p) < r} es compacto en M,. Ademds, la

funcion radio R es una funcion semicontinua inferiormente en M.

Demostracion. Consideremos el espacio Y = (Hy, || - ||»), resulta que Y es un espacio normado.
Llamemos A ={p € M, : R(p) <r}={p € M, :|o(f)| <|fl|l; para toda f € Hy}, A C By~
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que es débil-x compacto por el Teorema de Alaoglu, por lo que basta ver que A es débil-x
cerrado. Sea {p,} C A tal que ¢, tiende débil-x a ¢, esto es, @, (f) — ¢(f) para toda f € H,y,.
Como [pa(f)] < [|If]l» para todo a, entonces |o(f)| < [[f|l;. Ademés pa(f.9) — ¢(f.g) y por

otro lado ¢u(f.9) = ¢a(f)valg) — ©(f)p(g) por lo que p(f.9) = ©(f)p(g). Luego p € A. La
funcién radio R es una funcién semicontinua inferiormente si los conjuntos {¢ € M, : R(y) > r}

son abiertos para todo r € R que se verifica trivialmente. O

Vimos que cada f € H, tiene su desarrollo en serie de Taylor (que converge en H)

f = Z fma
m=0

donde f,,, € P,,,. Como ¢ € Hy es continua, tenemos que

o(f) =D e(fm).

m=0

Llamamos ¢,, a la restriccién de ¢ sobre P,,. Luego ¢,, es continua y su norma en P,, viene
dada por
[oml| = sup{le(P)| : P € Py || P[] <1}

Veamos ahora un resultado importante que relaciona la funcién radio con las normas de las

Pm-

Teorema 4.6. Sea p € H. La funcion radio viene dada por

R(p) = lim sup o'
Demostracion. Sea 0 < t < limsup ||@n||"™. Si suponemos que |9(Pp)| = |@m(Pn)| <t
para todo ||P,| = 1 y para todo m > myg, entonces ||p,| < t™ para todo m > mg por
lo que ||m|/Y™ < t para todo m > mg y por lo tanto limsup |[om||"/™ < t que resulta
una contradiccién. Luego existe una subsucesion {m;} en yn}Djooe P, tal que ||Pj|| = 1y
|o(Py)] > 2.

Ahora bien, sea 0 < r < t, tenemos que

|1Pj]l = sup {|P;(z)[} = sup{|P;(rz)[} = r™ || P[] = r"™.
zE€rB r€B
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Luego |¢(P;)| > (£)™||Pj||, y como (£)™ — oo no existe C' > 0 tal que [p(P)| < C|P]|, con

P € P C H, por lo que ¢ no es continua respecto a la topologia de la convergencia uniforme en

rB. Entonces R(p) < r para todo 0 < r < t, luego R() < t para todo 0 < t < limsup ||@,.||*/™.
Por lo tanto lim sup ||, ||Y/™ < R(y).
Para ver la otra desigualdad, sea s > limsup ||y, ||Y/™, entonces existe myg tal que para todo

m—0o0

m = mo, ||eml < s™ lo que indica que existe ¢ > 1 tal que ||p.,|| < ¢s™ para todo m > 0. Sea
r > sysea f € Hy, [ tiene su desarrollo en serie de Taylor y vale que 7™ || f |l = || fnllr < || f]] -
Luego o (fu)l = 10m ()| < l@mllllfinll < c(2)7[| £l pries o es continua en (P*, | - | que es
un espacio de Banach.
Por lo tanto tenemos que |[o(f)] < c(>_,,(2)™)|| f]l--
Observemos que como f < 1 la suma converge y por lo tanto ¢ resulta continua respecto a
la topologia de la convergencia uniforme en rB. Entonces R(¢) < r para todo r > s, luego

R(yp) < s para todo s > limsup ||, [|Y/™. Por lo tanto R(p) = limsup |[¢@m||"™. O

m—00 m—0o0

Teorema 4.7. Sea ¢,,, € Py, tal que la norma de ¢, en Py, satisface

m

lomll < es™  para todom >0

para algin c,s > 0.

Entonces existe una unica ¢ € Hy cuya restriccion a Py, s o, para todo m = 0.

Demostracion. En la demostracién del teorema anterior vimos que si [|¢n,|| < ¢s™ entonces
para todo r > s, Zg@m(fm) converge. Si definimos ¢(f) = ngm(fm) entonces p € Hy y

m m
resulta continua respecto a la topologia de la convergencia uniforme en rB pues

(NI < eQ_(s/)™If e < CULS

m

Claramente ¢|p,, = @m. O

1/m l/m.

Observacion 4.8. En el caso que ¢ € My, R(p) = limsup ||on||

m—00

= sup [[om||
m2=1
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Demostracion. Como ¢ es multiplicativa y P, Pi C Prik, tenemos que ||@ml|||¢rl < |omtrl-

De hecho, para todo P,, € P,,, Pr € Py se tiene que

| om(Po)llok(Pe)l =l (Pn)@(Pr)l = [0( P Pe)| = [0m ek (Prn B )|
< Nlemrrll1Bm Pell = Nlomie 1 5m 1| Pl

Ahora bien, para que el limite superior coincida con el supremo basta ver que dado ¢, existe

[ 2/ = (lemlllom D™ < llzml|*™, uego para

< |lpam|[*/?™ Por lo que podemos concluir que

n > m tal que ||@m < lenll*™. Como ||@m|

cada m € N, [ ||'/™

1/m 1/m

R(p) = limsup ||y, ||

m—00

= sup ||©m||
m>1

4.2. Fibrado de M, sobre X**

Consideremos a M, con la topologia inducida por la topologia o(H;, Hy) en H; y a X** con
la topologia débil-*. Se puede definir una proyeccién 7 : M, — X** dada por w(p) = ¢ la

restriccion de ¢ sobre X* = P;.

Observaciéon 4.9. Podriamos definir m : Hf — X** y luego restringirla a M.

Observaciéon 4.10. La proyeccion 7 es continua.

Demostracion. Veamos que si ¢, — ¢ en H; entonces m(¢,) — 7(¢) en X**. Notemos que
wo — @ en Hy siy sélosi go(f) — @(f) para toda f € H, y que z, — z en X** si y sélo si
2a(7) — z(7y) para todo v € X*. Ahora bien, dado v € X* C H,, tenemos que

T(9a)(7) = wal¥) = ©(v) = 7(©)(7)
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Definicién 4.11. Dado z € X**, llamamos ¢, a la evaluacion en z de f, donde f es la extension
de f € Hy(X) a X**. O sea

Observemos que si z € X esta definicién coincide con la que ya tenfamos.

Lema 4.12. R(0,) = ||z]| para todo z € X**

Demostracion. Se muestra en [7] que dado z € X**, existe unared {z,} en X tal que ||z.| < [|z]|
y P(z4) — P(z) para todo polinomio analitico P en X. Como los polinomios analiticos son
densos en Hy, y la red estd acotada uniformemente, también vale que f(z,) — f (z) para toda

f € H, pues tomando P suficientemente cerca de f, tenemos que
|f(@a) = F(2)] < |f(wa) = Plxa)| + |P(za) = P(2)| +|P(2) = f(2)| <&

Observemos que en el primer término de la desigualdad es donde usamos que la red es aco-
tada, cuestién que se necesita debido a que los desarrollos en serie de Taylor de f convergen
uniformemente sobre conjuntos acotados.

En particular la evaluacién ¢, tiende a 0, en M. Luego

[0:(f)| = 1m [0, (f)] < Tosup || F res..,) = Wsup ||l < 171

Luego R(6,) < ||z||, para ver la otra desigualdad, observemos que ¢,

x+ = 7(0,) = z (ver Lema
4.13) luego por la Observacién 4.8 R(p) = ||z||. O

Lema 4.13. Dada ¢ € M, vale que

Im (@)l < R(e)-

Ademds 7(8,) = z para todo z € X**.

Demostracion. Como ¢ € My, entonces por la Observacién 4.8 vale que R(p) = sup ||@m||*/™
m>=1

v 7(p) = 1, luego ||m(¢)|| < R(p). Ademds, dado v € X*, J(y) € X*** C H,(X**) entonces
3.(7) =4(z) = J(7)(2) = z(v). Luego, 7(d,) () = d.|x~(7) = d.(v) = z(7), entonces w(4,) = z,

z € X** y ademas 7 es sobreyectiva. O
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Una pregunta que surge a partir de este resultado es cuando 7 es biyectiva, en dicho caso
M, coincidira con X**. Veamos un caso donde vale, otro donde no y un criterio para decidir si

7 es biyectiva.

Teorema 4.14. Si el dlgebra de los polinomios de tipo finito es densa en Hy, entonces vale que
7 My, — X** es biyectiva y manda cada conjunto {@ € M, : R(p) < r} homeomorficamente

a la bola cerrada {z € X** : ||z|| < r} con la topologia débil-x.

Demostracion. Ya vimos que 7 es sobreyectiva, veamos entonces que 7 es inyectiva.

x+(7) = 7(@)(7) = A(7(v)) = Ox)(7), para todo

Observemos primero que ¢(v7) = ¢
p e M,yye X"

Ahora bien, si P, es un polinomio k-homogéneo de tipo finito, P, = Z%k con v; € X*,
entonces ¢(P) = ¥, 03" ]

Como los polinomios de tipo finito son densos en Hj, y quedan determinados por los v; € X*,
y ademds vale que (v) = dx(,)(7) para todo v € X*, entonces tenemos que ¢(f) = dr(y)(f)
para todo f € Hj. Luego ¢ = dx(y).

O sea: si () = T(V) = Or(p) = Onw) = ¥ = V.

Por tltimo veamos que {¢ € My : R(p) <7} - {z € X** : |z|| < r} es homeomorfismo.
Sea ¢ tal que R(p) < r, entonces ||7(¢)|| < R(p) < 7. Reciprocamente, sea z tal que ||z|| <
entonces z = w(d,) y R(d,) = ||z]| < r

Ahora bien, 7 es continua y dado C' C {¢ € M, : R(y¢) < r} cerrado, como tenemos que
{p € M, : R(p) < r} es compacto, entonces C' es compacto también por lo que resulta que
m(C) C {z € X* : ||z]| < r} es compacto, en particular es cerrado, por lo que 7 es cerrada.

Luego es un homeomorfismo. O

Ejemplo 4.15. Consideremos ¢, el espacio de sucesiones que tienden a 0. Por el teorema de
Littlewood-Bogdanowicz [3]-Pelczynski [23] toda forma m-lineal en ¢y se puede aproximar por
polinomios de tipo finito en las funciones coordenadas de c¢y. Luego podemos usar el teorema
anterior en este caso y concluimos que toda ¢ € M;(co) viene de algin z € €. Luego M;(co)
coincide como conjunto con £*° y la topologia de M;(cy) cincide con la topologia débil-x de >

en cada conjunto acotado.
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Ejemplo 4.16. Un ejemplo donde 7 : M, — X** no resulta biyectiva es considerando X = (P
con 1 < p < o0.

Sea {e1, ez . .. } la base candnica de (7, y sea ¢; = d,; € M,(£7) la evaluacién en e;. Entonces
tenemos que R(¢;) = ||e;|| = 1, luego {¢;} estd incluido en un subconjunto compacto de M, (¢P),
pues {¢;} C {p € My(¢?) : R(p) < 1} = 7 {2z € X** : ||z|| < 1} que es compacto, por lo que
{0} # 0. Ademés, existe una subred {¢;,} convergente; digamos ¢;, — ¢, con ¢ € M;. Como

{e;} tiende débil a 0, tenemos que

m(9)(7) = o(v) = lim ¢;, (7) = lim~(e;,) = 0.

Luego m(¢) = 0 para toda ¢ punto de acumulacién de {¢;}.
Por 1ltimo, dado o € £°°, tomemos m > p y definimos P € P,,(¢?) como
x) = Z ol
jEN
con x € (P. Observemos que el hecho de que m > p hace que efectivamente P pertenezca a
P (fP). Entonces ¢,;(P) = P(ej) = a;, luego {¢;} es una sucesién interpolante para Hy((P).
Entonces tenemos que 7~!(0) contiene una copia de AN \ N, donde N es la compactificacién

de Stone-Clech de N (ver Observacién 2.9), cuyo cardinal es mayor que c.

Teorema 4.17 (Criterio). Sea Y isomorfo a un subespacio de X que es complementado.

Simy s My(Y) — Y** no es biyectiva, entonces: m: My(X) — X** no es biyectiva.

Demostracion. Para una mejor comprension, voy a llamar 5, a la evaluacion sobre funciones
de Hy(Y) y 0, a la evaluacién sobre funciones de Hy(X).

Como Y es isomorfo a un subespacio complementado de X, tenemos una proyecciéon @) :
X — Y y inclusién i : Y — X, como 7 no es biyectiva, existen 01,0, € M,(Y) tales que
01 # 0y y m(61) = m(fy) = z € Y**. Luego como m1(d.) = z, vale que existen § € M,(Y) y
z € Y* tales que 0 # 0. y m1(0) = z.

Sea g € H,(Y) tal que 6(g) # 0.(g), entonces la funcién definida por G = g o Q pertenece
a Hy(X). Sea ahora ¢ € My(X) definida por ¢(h) = 0(h o i) para h € Hy(X), vale que, dado
v € X* oy ) = 0(yoi) = 0d,(yoi) pues yoi € Y*. Ademés, por unicidad de la extension,
0.(yoi) = (’y 0i)(z) =A(i(z)) = 0,(v) para todo z € Y** donde la primera extensién es sobre
Y** y la segunda sobre X**, luego 7(¢) = m(0,). Pero ¢(G) = 0(Goi) =60(go Q oi) =0(g) #

9.(9) = 6,(G oi) =d,(G) por lo que ¢ # 0,. Por lo tanto 7 no es biyectiva. O
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4.3. Topologia de M,

En esta seccion definiremos una nueva topologia para H,, que resultard mas fina que la

definida en la Seccién 3.3. También veremos una version débil del Teorema de la Corona.

Definicién 4.18. Liamamos la topologia Hy, de X a la menor topologia en X que hace continuas
alas f € Hy(X).

Los siguientes resultados muestran que la topologia H, de X tiene mas abiertos que la

topologia débil de X.

Lema 4.19. Si P € P,, es acotado en un entorno débil de 0, entonces P es un polinomio de

tipo finito.

Demostracién. Supongamos que |P(z)| < M para todo z € V donde V' es un entorno débil de
0,V={reX:|L(x)<lcnl<i<NylL, € X"}

Observemos primero que si L;(z) = L;(y) para todo 1 < i < N entonces P(z) = P(y). En
efecto, podemos elegir k& de manera que |L1(W)\ = |Li(¥)| < 1 para todo A € C, luego
|P(W)| < M para todo A\ € C, en consecuencia P(x + A(z — y)) es un polinomio en A
acotado, por lo que P(z+ A(z —vy)) es constante. En particular tomando A = 0y A = 1 tenemos
que P(z) = P(y).

Cosideremos ahora T : X — CV dada por & — (Ly(),..., Ly(2)). El operador T es
lineal y Im(T) C CV es un subespacio. Definamos ahora ¢ : Im(T) — C como ¢(z) = P(z)
donde Tx = z, q estd bien definida por lo observado anteriormente y resulta un polinomio
m-homogéneo pues q(Az) = P(Ax) = X" P(x) = N"q(z). Tomemos, por ultimo, la proyeccién
7 : CN — Im(T), entonces tenemos que g o7 : C¥ — C es un polinomio en N variables

complejas m-homogéneo. Luego ¢ o m(z1,...,2y) = Z Qiy - -G, 2 - - 2, . Entonces
1<i1 oonsim <N
P(z) = q(Tx) = qon(Li(x),...,Ly(x)) = Z @iy - .. a;, Ly (x) ... L;, (x) que es un
1<t oonyim <N
polinomio de tipo finito. O
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Teorema 4.20. 57 X tiene dimension infinita, entonces la topologia Hy, de X tiene mds abiertos

que la topologia débil de X

Demostracion. Como X tiene dimensién infinita, existe una sucesion bésica {e;},en (ver [8,
Corollary V.S]) Notemos por 7]- a los funcionales coordenadas extendidos a todo X por Hahn-

Banach. Sea f(x 25]% con (¢;) rapidamente decreciente a 0. Entonces f es acotada

JEN
en acotados, por lo que f € H, y es continua en 0 para la topologia H, de X. Pero no es un

polinomio de tipo finito. Para ver esto, consideremos para cada polinomio P € P, la forma
bilineal simétrica asociada F'y definimos el operador Tp : X — X* como Tp(z)(y) = F(z,y).
Ahora bien, probemos que si P es de tipo finito, entonces resulta que Tp es un operador de

rango finito, es decir que la dimensién de la imagen de Tp es finita. Como P € Py es de tipo
finito, entonces es de la forma P(x 292 , donde 0; € X*. Luego Tp(z Z 6,(

por lo que Tp es de rango finito ya que la 1magen esta incluida en el subespacio de X* generado

por {0y,...,60y}. Por dltimo veamos que para f(x Zéﬂj € P, vale que T, que queda
jeN
definido por T(x Z £;7;(x)v;, no es un operador de rango finito. De hecho si evaluamos

JjeN
en cada e;, tenemos que T¥(e;) = €;7;, por lo que v; € Im(T}) para todo j € N.

Luego por el lema anterior, f no es continua para la topologia débil de X. O]

La clausura débil de la esfera unidad en un espacio de Banach es la bola unidad. Vale el

mismo resultado para la clausura en la topologia Hp.

Teorema 4.21. Si X tiene dimension infinita, entonces: La clausura de la esfera unidad S de

X en la topologia H, incluye a la bola unidad cerrada B** de X**.

Demostracion. Como vimos anteriormente (ver demostracién de la Proposicién 3.59), dado
2 € B* existe una red {z,} C B tal que f(z) = lim f(z,) por lo que B es denso en B** para
la topologia H,. Luego basta ver que S es denso eg B para la topologia Hy. Sea z € B y sean
fi,-.., fn € Hy, basta encontar un x € S tal que fj(x) = f;(z) para 1 < j < N. Para esto,
consideremos Y C X un subespacio cualquiera de dimension N + 1 que contenga a z y sea
V' una componente irreducible de la variedad dada por {y € Y : f;(y) = f;(2), 1 < j < N}

que contiene a z. Como la variedad estd definida por N funciones e Y tiene dimension N + 1,
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entonces V' tiene dimension positiva. Luego por el Principio del Méaximo tenemos que V' no
estd acotada y como BNV # (), entonces tenemos también que V NS # 0 por lo que podemos

tomar z € S en esa interseccion. O

El siguiente teorema muestra que X con la topologia Hj, no necesariamente es un espacio

vectorial topolégico.

Teorema 4.22. Sea X un espacio de Hilbert de dimension infinita. Entonces la operacion de

suma (z,y) — x + y restringida a B X B no es continua respecto a la topologia Hy.

Demostracion. Como X es Hilbert, podemos pensar a X como L2. Notemos con 7 al conjugado
complejo de . Por el Teorema 4.21 existe una red {z,} C X tal que ||z,|| =1y z, — 0 en la
topologia H,. Entonces también vale que T, — 0 en la topologia H,. Pero si consideramos la

funcién f(z) = [ 2*dz, vale que f € Py y cumple que

faa +Ta) = flza) + (@) + 2l|zal* — 2.

Luego z, + Z, no tiende a 0 en la topologia H,,. O

El problema de la Corona para H, consiste en determinar cuando X es denso en M,. En el
caso que M, = X** el Teorema de aproximacién de Davie-Gamelin [7] muestra que X es denso
en M,. No sabemos qué sucede en el caso que M, sea mas grande que X**. Sin embargo, la
idea usada en la demostracion del Teorema 4.21, nos permite probar que X es denso en M, en

la topologia débil determinada por los polinomios analiticos.

Para probar la densidad, necesitaremos usar el hecho de que la clausura de la imagen de un
polinomio F' sobre un espacio vectorial complejo Y de dimension finita en C" es una variedad
algebraica en C". En este caso vale que la clausura de F'(Y') es una variedad irreducible. Veremos

una versién para Y de dimensién infinita.

Lema 4.23. Sea Y un espacio vectorial complejo. Sea F' = (fi,..., fn) una funcion de'Y en
C" tal que la restriccion de cada f; a cualquier subespacio de Y de dimension finita es un

polinomio. Entonces la clausura de la imagen de F' es una variedad algebraica.
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Demostracion. Sea Yy un subespacio de dimensién finita de Y, entonces F(Yp) es una variedad

algebraica irreducible en C", digamos de dimensién k. Podemos suponer (si no agregamos mas

elementos) que tomamos Y, de manera que la dimensién k de F(Y)) es méxima. Luego si Y] es

un subespacio de dimensién finita de Y tal que Y; D Y, entonces F'(Y;) también es una variedad

algebraica irreducible de dimensién k que contiene a F'(Y}), por lo que F(Yy) = F(Y;). Luego
F(Yy) = F(Y). O

Teorema 4.24. Sea Y un espacio vectorial complejo. Sea A un dlgebra de funciones en'Y tal
que la restriccion de cada f € A a un subespacio de dimension finita de Y es un polinomio
analitico. Sea I un ideal propio de A. Entonces existe una red {y,} CY tal que f(yo) — 0 para
toda f € 1.

Demostracion. Supongamos que no existe tal red. Entonces existen f1,..., f, € I tales que

max |fi(y)] = 1, para todo y € Y.

1<i<n
Consideremos F' = (fy,..., f,) la funcién de Y en C" y sea V la clausura de la imagen de
F. Entonces V' es una variedad algebraica que no contiene a 0. Luego existe un polinomio
p en C" tal que p = 0 sobre V' y p(0) = 1. Como el polinomio p junto con las funciones
coordenadas z1, ..., 2, no tienen ceros comunes, entonces del Nullstellensatz (ver [6, Theorem
4.1]) deducimos que el ideal generado por ellos en el anillo de polinomios en C™ no es propio.

Luego existen polinomios qg, q1, - - ., ¢, en C" tales que

pgo+21q1+ -+ 20qn =1 en C,

entonces

21+ -+ Zgn =1 en V.
Luego si tomamos ¢, ...,9, € A, las composiciones de ¢y, ..., q, con F, resulta entonces que
fig1+ -+ fugn = 1 y el ideal I no es propio. ]

Como consecuecia de este tltimo Teorema, conseguimos una version débil del Teorema de

la Corona.

Corolario 4.25. Sea ¢ un morfismo cualquiera de H, en C. Entonces existe una red {x,} C X

tal que f(xq) — ¢(f) para todo polinomio analitico f en X.
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4.4. Accién de operadores en M,

En esta seccién definiremos una acciéon sobre H; que nos permitird conocer aspectos topolégi-
cos del espectro M. Veremos, por ejemplo, que M, esta formado por copias del plano complejo

que pasan por .

Definicién 4.26. Consideremos el espacio B(X) de los operadores lineales acotados de X.
FEstos operadores actian sobre H, por composicion, es decir, dados f € H, y T € B(X),

f-T = foT € H,. Esta accion induce otra accion sobre H;, dada por T € B(X) como

(Arp)(f) =@(foT) con f € Hyy p € Hy.

Observacién 4.27.

Asr = AsAr para todo S, T € B(X)

pues dados p € H} y f € Hy,

(Asre)(f) = @(f o (ST)) = ¢((f 0 5) o T) = (Arep)(f © §) = As(Arp)(f).

Luego Ast = AgAr.

Veamos algunos resultados mas.

Lema 4.28. R(Arp) < ||T||R(p), para todo ¢ € Hy y T € B(X).

Demostracidn. Sabemos por el Teorema 4.6 que R(p) = limsup ||@,[|*™.

m—00

Luego R(Arp) = limsup || (Ar@),.||*™. Ahora bien, dado Py, € P,,, como también vale que

P, oT € P,, tenemos que
(Ar@)m(Prm) = (A1) (Prn) = ¢(Pn o T) = om(Pr o T) = (Arpm)(Pn)-
Luego (Ar¢)m = Aryom v ademds vale que

[P o T} < [T | P,
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pues dado = € B, [ P(Ta)]| = | P71 = ITI" | Pl DI < T Pl
Por ultimo, dado P,, € P,,,

(A (Prn)| = [Arpm (P = [om (P 0 T)| < lmll 1 B 0 TN < lom T ™[ P

Luego, |Azgm| < 7™ [|mll. Entonces [[(Ax@)m[I'™ < 1T [lem]l*™.
En consecuencia tomando limite superior, tenemos que R(Ary) < ||T||R(¢) como queriamos.
0

Lema 4.29. n(Arp) =T (7(p)) para todos ¢ € Hf y T € B(X).

Demostracion. Si L € X*, entonces LoT = T*L, luego dada v € X*, como yoT € X* tenemos

que

m(Arp)(7) = (Arp)(v) = @(yoT) = (@) (yoT) = m(p)(T"(7)) = (7()oT™)(7) = (T"7(¥))(7)-

Por lo tanto, m(Arp) = T**(7w(p)). O

Este resultado muestra en particular que la fibra 771(0) es invariante por la accién de B(X)

pues si ¢ € 7 1(0), 7(¢) = 0 y en consecuencia T**(7(¢)) = 7(Arp) = 0, o sea Arp € 7 1(0).

Lema 4.30. Para cada ¢ € Hf y f € Hy fijos, la aplicacion T — (Arp)(f) es analitica sobre
B(X).

Demostracion. Por Teorema 3.47 basta ver que (Aran@)(f) es analitica en A para todo
T1,T, € B(X) y que la aplicacién es localmente acotada o sea, que existen € > 0y M > 0 tales
que |[Aro(f)| < M para todo T' € B(X) con |T|| < N

Veamos primero que es analitica en A:
At () = Aryion@( D ) = D Ao o(fn) = Y @(fm o (Tr + ATh)).
meNy meENy meNp
Observemos que para cada m € Ny, ¢(f, o (11 + AT»)) es un polinomio en A, pues

m

i( )fm ((Ty)™ ", (A Tpa)* Z( )fm ((Tyx)™*, (Tyx)") AP,

=0
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donde f,((Tyx)™ %, (Tyx)*) es la forma multilineal fo,(Tix1, ... TiZm—is ToZm—tsts - - - » ToTm)

evaluada en la diagonal, por lo que existe Q,, € P,, tal que Qu(z) = fr((T1z)™ ", (Tox)*).
" (m = (m

Luego f, o (11 + \T3) = Z (k‘)Qm/\k y entonces @(fp, o (Th + \T)) = Z (k)(p(Qm)/\k

k=0 k=0
resulta un polinomio en .

Luego basta ver que la serie converge uniformemente si |A| < C. Como

[p(fm o (T1 + AT2))] Dl fim o (T1 + AT2) || r(p)+=

D(R(¢) + &)™ || fm o (T1 + AT3)||

D(R(p) +&)" || fml I T2 + AT

D(R(¢) + &)™ || fml [T + [AT2]))™
(

D((R(¢) + &) (ITa]l + CIT2D)™ (| finl-

INCININ NN

Entonces Y [o(fm o (T1 + AT2))| < Y C((R(p) + )(IT1]l + CIIT2I))" || fml| ¥ como vale

meENg meNg

que DY™(R(p) + &)(||T1|| + CTa ||| fll™™ — 0, la serie converge uniformemente para todo
A < C.
Para ver que es localmente acotada usamos la misma cuenta tomando T = T} + N1y y

suponiendo que ||T'|| < NV, resulta que

Aro(H)I < Y ITIERE) + )™ fall < Y (N(R(9) + )| full < M

m&ENp meENg

por la misma razon que antes. O

Vamos a considerar, ahora, la familia de operadores &I, donde I es la identidad de X y

¢eC.

Definicién 4.31. Vamos a llamar ¢ a A¢rp. O sea si f € Hy se desarrolla como f = Z fm,

entonces

() =€ fm)-

En particular vale que la restriccién de ¢ a P, coincide con £™p,,.
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Lema 4.32. Sea ¢ € Hy fijo. Entonces:

(1) La aplicacion C — H} que manda & — ¢* es entera. O sea, & — ©5(f) es entera para

toda f € Hy.
(2) o' = .
(3) (,00:50.

(4) (%) = &n(g) para todo & € C.
(5) Si P € P,,, entonces p5(P) = ™(P).

(6) R(¢*) = |¢|R(p) para todo & € C.

Demostracion.

(1) Vale pues ¢*(f) = Z£m<p(fm) es entera, ya que

m

lim sup €7@ (f) '™ < tmsup €]l om [V | fnl ™ < [€]R () limsup || fnl| = 0.

(2) ©'(f) =D _¢(fm) = ¢(f) para toda f € H,.
(3) @(f) =D 0" fm) = ¢(fo) = fo = f(0).
(4) 7)) = 7D Mpm) = L1 = Em(e).

(5) Sea P € P, ¢*(P) = 32, £"¢m(P) = {"pm(P) = £™p(P).

(6) Observemos que (¢*);n = &™@m, entonces [|(o°)m[|™ = (1&]"m) ™ = [€][lm||/™, luego

tomando limite superior tenemos que R(¢%) = |£|R(¢) para todo & € C.
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Observacién 4.33. Notemos primero que las tranformaciones Ar dejan M, invariante. Pues

st tomamos p € My y f,g € Hy, tenemos que

Arp(f.g) = o((f9)oT)=@((foT).(goT))=@(foT)p(goT) = Arp(f)Are(g).

Luego Ao € M,. En particular, para ¢ € M, la correspondencia & — 5 es una funcién
analitica de C en Hy, cuya imagen estd incluida en My y pasa por ¢ y por d.

Sim(p) #0, la parte (4) del Lema 4.32 muestra que la correspondencia es inyectiva, pues si
@t = " entonces Em(p) = m(¢%) = w(P") = (@) y como w(p) # 0 resulta que & = 1. Luego
la imagen de la aplicacion contiene una copia de C dentro de M, que pasa por ¢ y por el origen
0g-

En el caso que la aplicacién & — ¢ no sea inyectiva, se puede reparametrizar, y encontrar

también una copia de C que pasa por ¢ y por el origen d; como muestra el siguiente teorema.

Teorema 4.34. Toda ¢ € M, estd incluida en una copia de C dentro de M, que pasa por el

origen dg.

Demostracion. Consideremos el conjunto A = {k € N : existe P € Py, tal que ¢(P) # 0}.
Como ¢ es multiplicativa, A resulta un semigrupo. Sea m el maximo comun divisor de A y
veamos que ¢¢ = ¢ si y s6lo si € = un con i raiz m-ésima de la unidad.

Supongamos primero que ¢* = @7 y sea n € A, o sea existe P € P, tal que ¢(P) # 0.
Entonces por parte (5) del Lema 4.32, £"p(P) = ¢%(P) = ¢"(P) = n"¢(P) y como p(P) # 0
resulta que ™ = 1™, y esto vale para todo n € A. Ahora bien, si £" = 7" para todon € A (como
numeros complejos) entonces para todo r € Z vale que " = n™", por lo tanto dados n, k € A

rntsk para todo 1, s € Z, luego €™ = n™, o sea, £ = un con p raiz m-ésima de

vale que ™Mk = p
la unidad. Reciprocamente, si £ = pun, entonces p* = >, ¥y = me EFop, = me nF e = ¢"
pues para que exista P con ¢(P) # 0 para P un polinomio k-homogéneo, tiene que pasar que
m|k.

Entonces la aplicacién que manda p — ¢ donde £™ = p estd bien definida pues si ™ = n™
entonces ¢¢ = "y, ademds, resulta inyectiva y analitica. Por lo tanto la imagen de la aplicacién

contiene una copia de la recta compleja dentro de M, que pasa por ¢ y por el origen dy. O
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4.5. La operacion Convolucién

En esta seccién definiremos una operacién dentro de Hf, a la que llamaremos convolucion.
Veremos que podemos restringir esta operacion al espectro de Hj, y esto nos permitira darle
una estructura de semigrupo a M,. Y, bajo cierta condicién que estudiaremos en las secciones

4.6 y 4.7, veremos que M, estd formada por copias analiticas y disjuntas de X**.

Definicién 4.35. Dado x € X, definimos el operador de traslacion T, en Hy, como

(Tof)(y) = f(x+y), [fe€H,.

Observacion 4.36. T, f es analitica en X y es acotada sobre subconjuntos acotados de X,
luego T, f € Hy.

Observacién 4.37. 5i (Q es un polinomio analitico en X, entonces tenemos que
T,.Q = @ + polinomios de menor orden.
En el caso particular que L € X* tenemos que
T,L =L+ L(x)

pues T, L(y) = L(x +y) = L(y) + L(x).

Observaciéon 4.38. Una estimacion para la norma de T, f en la bola rB viene dada por

T fllr < At

pues
I Tefllr = sup |Tof(y)| = sup |[fz+y)l < sup  [f)] = [fllr+pan-

lyll<r lyll<r lyll<r+ ||l
Luego, cada T, : H, — Hy es un operador continuo. Y, como ademds las funciones de H,
son uniformemente continuas sobre subconjuntos acotados de X, los elementos T, f en H, se
mueven continuamente con x en la topologia de le convergencia uniforme en H,, es decir, la

aplicacion (X, || - ||) — Hy dada por x —— T, f es continua.
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Ejemplo 4.39. La accion que manda x — T, f no es necesariamente continua respecto de la
topologia débil de X. Tomemos por ejemplo X = (% y sea {ey,ea,...} la base candnica de (2.
Definimos P(x) =Y a7 conx =y xje; € £°.

Como e, tiende débil a 0, si la accion fuera continua deberia ser que P(x + e,) tiende a
P(x), pero P(x 4 e,) = > (x5 + (en);)* = Do(25 + 2x5(en); + ((en);)?) = P(x) + 2, + 1 tiende
a P(z) + 1.

Definicién 4.40. La accion dual de los T, produce un grupo de operadores lineales inversibles
Sy Hy — Hy definidos por

(Seo)(f) =w(Tof), z€X, fe€H, € H,.

Como T, f varia continuamente en x considerando la topologia inducida por la norma en X,
entonces para cada ¢ € Hy fijo, los S,¢ también lo cumplen. Ademas, S, deja M, invariante,
o0 sea

Se(My) = M, = € X,

pues dados ¢ € My v f,g € Hp, tenemos que

Sep(f-9) = (Ta(f.9)) = ¢(Taf Tog) = (T f)o(Tog) = Suo(f)Sz0(9)-
Proposicién 4.41. Dados x € X y z € X**, vale que
Sxéz - 6:r+z-

Demostracion. Veamos primero que S;0, = 0,4+, para todo z,y € X. Sea f € H,, entonces
Se0y(f) = 6,(T:f) =T f(y) = f(x +y) = ury ()

Ahora bien, para ver que S;0, = 0,,, con x € X y z € X** basta ver que coinciden sobre
los espacios P,,, m > 1. Sea entonces P € P,,, consideremos F' la forma multilineal simétrica
sobre X asociada, y sea F' la forma multilineal sobre X** obtenida extendiendo F mediante la
continuidad débil-*, una variable a la vez, de la tltima a la primera. Luego si extendemos de

la misma manera a la m-forma en X

(T1,. oy Tm) — Fz+x1,...,x 4+ )
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a X** obtenemos F(:c + 21,0, T+ Zy), PUeS

lim Iim F(x+Yay, - T+Ya,,) = lim M F(Yays s Yoy, ) = Fa+21, ...,

Yo —21 Yam —2Zm Yo —T+21 Yo =T +2m

Restringiendo a la diagonal obtenemos

ﬁ(z) =Fz+z...,042) =P+2),
pues T, P(y) = P(x +y) = F(x + y)™ Z ( ) y™*), entonces
k=0
T,P(z) = (y lim ... lim > ( ) T Yapars - s Yom))|2
a) % am " 2m
k=0
= Y () Fut e = e

k=0

Luego tenemos que

%
NG
X
I

N
o
3
I

o3,
!
@
“U>

(':C + Z) - 5a:+z( )

Proposicion 4.42. Dados x € X y p € Hy se tiene:

R(Szp) < R(p) + ||

Demostracion. Dado € > 0, existe C' > 0 tal que

p(9)] <

Cllgllr)+e: 9 € Hi.

Entonces dada f € H, tenemos que

|(S20) (N = (T f)| < ClI T fll R+

< O f1l Ry +ile] +e-

Luego R(S.p) < R(p) + ||=||.

T+2zpm).
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Proposicién 4.43. Dados x € X y p € Hy se tiene:

T(Sap) =z + 7w(p).

Demostracion. Como consecuencia de la Observacion 4.37 tenemos que dado L € X*,
(Se0)(L) = ¢(T:L) = ¢(L(x) + L) = L(x) + ¢(L) = L(z) + m(¢)(L) = (z + m(p))(L).
Luego, 7(Szp) = x + 7(yp) O

Este resultado muestra que para cada ¢ € H fijo, la accién x — S, ¢ es inyectiva. Pues si

Szp = Sy entonces x + m(p) = w(Syp) = 7(Syp) =y + 7(p), luego x = y. Por lo cudl esta

accién de X en H; tiene el efecto de partir H; en drbitas, donde cada una es una copia de X.

El siguiente teorema muestra que la extensién natural de f € H, a H}, dada por f,
pertenece a Hj, sobre cada una de las érbitas. Podemos pensar asi que {S,(¢) : * € X} es

una parametrizaciéon de X adentro de Hj.

Teorema 4.44. Dados p € Hy fijo y f € Hy, la funcion

v = (Sep)(f) = p(Taf), zeX

pertenece a Hy.

Demostracion. En 4.42 vimos que |(Sy¢)(f)] < O f|| r@p)+e+|=|- Entonces

|(Sz) ()] < Cllfllr@e)+e+r, Para todo [l < 7.

Luego, (S.¢)(f) es acotada sobre subconjuntos acotados de X.

Para ver que la funcién es analitica, tenemos que ver que (S,¢)(f) = ¢(T.f) depende
analiticamente de z. Como toda f € H, mirada sobre los acotados de X es limite uniforme
de polinomios, basta ver que ¢(T,P) depende analiticamente de = para todo P € P, pues si

P,, — f uniformemente sobre acotados, entonces dado x € sB, tenemos que

o (TaPm) — (T f)| = |e(Te(Pn — )| < ClTe(Prn — f)llr
= Csup (P — )z +y)| < Cl[Pn = fllrss =0,

lyll<r
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luego (T, Py) — ¢(T,.f) uniformemente sobre acotados.

Sea entonces P € P,, y consideremos su forma m-lineal simétrica asociada F'. Entonces
(TeP)(y) =Pz +y)=Flz+y,...,x+y)

es una suma de términos de la forma F(z,...,z,y,...,y) por ser multilineal y simétrica. Si

¢ € Hj opera sobre funciones que dependen de la variable y, entonces

xla-"wrk:H@(F(xh'"axkayw")y))

es una forma k-lineal simétrica y continua sobre X, luego su restricciéon a la diagonal

mHSO(F<x7"'7I7y7"‘Jy))

es analitica sobre X. Por ltimo como (7, P) es suma de dichas funciones, resulta que depende

analiticamente de z. 0

El Teorema 4.44 nos permite extender la acciéon de X en H; a una convolucién de todo H}

en si mismo, como sigue.

Definicién 4.45. Dados ¢,0 € Hy, definimos la convolucion ¢ x 0 € Hy como

(p+0)(f) = w(0(T:[)), | € Hy;

donde identificamos 6(T,f) con la funcion x — 0(T,f) € H,y,.

Si tomamos la funcion auziliar g definida por

g9(x) = 0(Tf) = (S:0)(f), = €X,

por el Teorema 4.44, g € H, y entonces ¢ *x 0 viene dada por

(p*0)(f) = ¢(g)

Los siguientes lemas extienden lo hecho para la accion de X en H; a la convolucion.

Lema 4.46. Si ¢,0 € H, entonces px0 € Hy y

R(¢ *0) < R(p) + R(0).
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Demostracion. Dado € > 0, existen C, D > 0 tales que

(NI < Cllflr@yves [ EHy y
0()] < D fllr@y+e: [ € Hs.
Sea f € Hy, y tomemos g € H, su funcion auxiliar como en la Definicion 4.45. Entonces
l9(x)| = |0(T. )] < DI T fllro)y+e < DIfIRO)+ 2] +e-
Luego como ||gl[jey = sup{lg(y)] - [yl < llzll} < DIIfl[r@)+)al+e, tenemos que

19llro)+e < DI fllro)+R0)+2¢

y, entonces,
(e 0)(N) = le@)l < Cligllre)+e < CDISflro)+RE) 422

Luego
R(p*0) < R(p) + R(0) + 2¢, para todo £ > 0.

Por lo tanto
R(p+0) < R(p) + R(0).

]

El siguiente Lema muestra que los elementos de X y los de H} conmutan bajo la convolucion.
Lema 4.47. Si 0 € H ey € X, entonces
dyx0 =0x06,=25,0.

En particular,
dox0=0x%xéy=0, 0ecH,.

Demostracion. Sea f € Hy,. Entonces

(6, 0)(f) = d,(9) = g(v),

donde g(z) = 0(T,f) es la funcién auxiliar. Luego

(0y % 0)(f) = g(y) = O(T,,f) = (S,0)(f)-
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Por otro lado,
(6 6,)(f) = 0(9)
donde §(x) = 6,(1.f) =T, f(y) = f(x +y) =T, f(x) es la funcién auxiliar. Luego
(0 0,)(f) = 0(9) = 0(T,,f) = (S,0)(f)-

Por lo tanto d, x 8 = 0 % 6, = S,0.
En particular, como vale que (Sof)(f) = 0(Tof) = 6(f), podemos concluir entonces que
60*0:0*502500:9 O

Lema 4.48. La operacion de convolucion es asociativa, o sea

e*x (0x1) = (px0)*x1, para todo ¢,0,1 € Hy.
Demostracion.
(o (0% ))(f) = (0 V)T, f)) = p(O((T:T,f))),
donde ¢ actia sobre funciones de y y 8 sobre funciones de x. Por otro lado

((x0) x)(f) = (e O (WV(Tof) = (O(Ty (T2 f)))-

Ahora bien T,(T, f) = T,9(z), donde g(x) = (1, f), entonces

T(Tef) = Tyg(w) = g(x +y) = V(Toyy f) = V(TT,f).

Luego
px (0% 1) = (px0)* 1.

El desarrollo de cada f € H, en serie de Taylor nos da una descomposiciéon de Hj, en una

suma directa donde las combinaciones lineales pueden ser infinitas
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Hay una descomposicion similar para M},

oo
* *
H; = PP,

m=0

donde llamamos P}, al subespacio de H} que anula todo P € P para k # m. Luego, por
ejemplo, P; = C es el subespacio de dimensién uno generado por dy y Py = X**. Para ¢ € Hy,
llamamos ,, a la restriccion de ¢ sobre P,,, si definimos ¢,, como 0 sobre P con k # m,

entonces ¢, pertenece a H;. Con esta definicién de ¢, tenemos, por ejemplo, que ¢y = ¢(1)dy

pues ©o(f) = @o(>,, fm) = wo(fo) = ©o(do(f)) = @o(1)do(f)-

Teorema 4.49. Sean ¢ € P} y 0 € Py. Entonces ¢ = 0 pertenece a Pr,.

Ademds, si P € Pjyy y F' es la forma (j + k)-lineal simétrica asociada, entonces

U+E)! o

(P 0)(P) = =i (O (F (2, 2.y, ,y)),

donde x aparece j veces e y aparece k veces y donde @ opera sobre funciones que dependen de

la variable x y 6 sobre funciones que dependen de la variable y.

Demostracion. Seam > 0y sea P € P, con F la forma m-lineal simétrica asociada. Entonces

m

(TP)y) = Fle+y,....v+y) =) -

= il(m —i)!

m)
F(z,...,x,y,...,y),

1=

donde x aparece i veces e y aparece m — i veces en el sumando i-ésimo. Entonces 6% aplicada

al sumando -ésimo es cero salvo cuando m — ¢ = k. Luego

|
m: Q(y)(F(xy...,IE,y,'”7y))?

PP =

donde x aparece m—k veces e y aparece k veces. Si aplicamos ahora ¢®), da cero como resultado
salvo que m — k = j. Luego ¢ % § = 0 sobre P,, para m # j + k, por lo tanto ¢ * § pertenece a

Py En el caso donde m = j + k obtenemos la férmula

W (9(y)(F(x7’x7y77y)))

(p*0)(P) =
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Si consideramos los desarrollos de ¢, 6 € H; tenemos ¢ = > , op y 0 =) ; 05, entonces la

proyeccién sobre P, de la convolucién ¢ * 6 viene dada por Z Y * 0. Luego tenemos el

k=0
siguiente corolario.

Corolario 4.50. Sean ¢,0,v € H. Entonces ¢ x 0 =1 si y sélo si las proyecciones sobre P,

satisfacen

Z@k*emfk = Upm, m =0.
k=0

Observemos que, por el Lema 4.47, el término que involucra a ¢, en la m-ésima ecuacion

es
©m * 0y = 0(1) o, * 0p = 0(1)pp.

Luego si 0(1) # 0, podemos usar este sistema de ecuaciones para escribir cada ¢, en funcién
de 0y 9.

Corolario 4.51. Sean 0,1 € H; fijos con 6(1) # 0. Entonces la ecuacion ¢ x 0 = tiene a lo
sumo una solucion ¢ € Hy. En el caso que tenga dicha solucion ¢, sus proyecciones @, sobre

P quedan determinadas recursivamente por las siguientes ecuaciones

m—1

k=0

Observacion 4.52. De la misma forma, si tomamos ¢, € H; fijos, con ¢(1) # 0, la ecuacion
pxf = 1) tiene a lo sumo una solucién 6 € Hy, que puede ser obtenida resolviendo recursivamente
el sistema lineal asociado para cada 6,,.

Veamos ahora qué conclusiones podemos sacar si nos restringimos a M,,.

Lema 4.53. Sean ¢,0 € M,, entonces

(o x0) =m(p) + 7(0).
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Demostracion. Sea L € X*. Entonces la funciéon auxiliar asociada a f = L viene dada por
g(x) =0(T,L) =0(L(x)+ L) = L(z) + 0(L) = L(z) + m(0)(L). Luego,

(px0)(L) = p(g) = p(L) + @(m(0)(L)) = m(@)(L) + m(6)(L).
Por lo tanto

(o x0) =m(p) + m(0).

O
Teorema 4.54. St ¢, 0 € M, entonces ¢ * 0 pertenece a M.
Demostracion. Sean f,h € Hy, entonces
(ex0)(f.h) = @O(To(f.h) = @O(Tof T:h)) = @(O(T5f).0(T3h))
= @(O(T21)p(0(T:h)) = (0 + 0)(f) (@ * 0)(h).
Luego ¢ * 6 pertenece a M,. O

Luego la operacién de convolucién hace de M, un semigrupo, donde dy es la identidad.
Ademas como

Op ¥ 0y = Oy, 2,y €X,

podemos pensar al espacio X como subgrupo del semigrupo y como vimos en el Lema 4.47
0z %0 = 0 %6, para todo 0 € M,, concluimos que X queda incluido en el centro del semigrupo.

En general hay elementos del semigrupo que no tienen inverso, por lo que el semigrupo no
es un grupo.

Ahora vamos a estudiar los morfismos 9§, con z € X**. Vimos en el Lema 4.13 que
(0,)1 =z € X™.
Queremos ahora identificar sus otros componentes.

Lema 4.55. Sean zy,...,2, € X** y sea P € P,,, tomemos F la forma m-lineal simétrica
asociada F la extension de F a X** que se obtiene extendiendo por continuidad respecto a la
topologia débil-x, una variable por vez, de la ultima a la primera. Entonces

A~

(z1 %+ % 2)(P) = mIF(21,..., 2m).
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Demostracion. Para probar este resultado, hagamos induccién sobre m.
m = 1: z(P) = 6,(P) = F(z).

Supongamos entonces que vale para m — 1 y consideremos la funcién auxiliar g como
g(x) = (za% % 20)(ToP) = (22 % - % 2)(F(z +y,...,x +7y)).

Desarrollando la expresiéon de F' y usando que 23 * -+« * 2, € P’ | anula todos los términos

salvo los m términos que son (m — 1)-homogéneos en y, tenemos que

glx) =m(zg % 2)(F(z,9,...,v)).

Llamemos Fg(ya, ..., Ym) = F (2,92, ...,Ym), que es una forma (m — 1)-lineal para cada x fijo.

Por hipoétesis inductiva obtenemos

g(x) =m(m — 1) Fg(2, ..., 2m).
Ahora bien, si consideramos F la extensién de F a X** por unicidad de la extension tenemos

que F(;E, 204y Zm) = ﬁQ(zQ, ..., 2zm) para cada x € X. Por lo tanto tenemos que

~

g(x) =mlF(x,2z0,...,2m).

Luego

A

(zp % % 2)(P) = 21(9) = m!F(21,...,2m)-

En particular tenemos para P € P, que

. . 1
0.(P)=P(z)=F(z,...,2) = —'(z**z)(P)
m!
Esto nos da una expresion para la proyeccién de ¢, sobre P :

1
(02)m = L R (m veces).

Vamos a notar z * --- % 2 m veces como z*™. Con esta notacién z*° = §,. Luego tenemos la

siguiente féormula
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O, dicho de otra forma,

0, = exp(xz), ze€ X™.

Estudiemos ahora la conmutatividad de los 9., para elementos de X'**.
Teorema 4.56. Dados z,w € X** fijos. Son equivalentes:
(1) zxw=wx z,
(2) 0, % Oy = Oy * 0,
(3) 0rpp = O % Oy

Demostracion. Tenemos que 6, * &y, = > %z*ﬂ * Y, mw*™. Entonces

(6z*5w)2: ;QZ]'—U}MZE(Z*Z—F2Z*W+U}*U}),
] =
analogamente
1
(5w*(5z)2:§(z*z+2w*z+w*w),
y ademas

1 1
((5Z+w)2:§(z+w)*(z+w):§(z*z+z*w+w*z+w*w),

pues dado P € P,

%((z+w)*(z+w))(P) = 2!F(z+w,z+w)
F(z,2) 4+ F(z,w) + F(w, 2) + F(w,w))

(2% 2)(P) + (2 x w)(P) + (w* 2)(P) + (w * w)(P)),

I
N =T N

donde F' es la extensién sobre X** de F', la forma bilineal simétrica asociada a P.
Ahora bien, si vale (2) o vale (3), entonces vale (1). Reciprocamente si vale (1), claramente

vale (2) y como vale también que

Z*jw*k 2+ w *m
(62 * 5w)m - Z - ( ) - (dz—l—w)m

i T m!

se deduce entonces que (3) es cierto. O
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Podemos concluir entonces, que en general z*w # wxz. Por ejemplo si X = ¢! (ver Teorema
4.64 y Ejemplo 4.66).

Por otro lado, podemos pensar en una accién de X** sobre M, que consiste en hacer con-
volucién con d,. Esto lo podemos usar para ver que cada punto de M, esta incluido en una

copia de X**, como muestra el siguiente teorema.

Teorema 4.57. Sea 6 € M, fijo. Entonces la correspondencia de X** en M, dada por z — §,%0
es inyectiva y continua respecto de la topologia de la norma en X**. Ademadas, si f € Hy, la
funcion x — O(T,f) pertenece a Hy(X) y su extension candnica sobre X** viene dada por la
funcion z — (5, x 0)(f) que pertenece a Hy(X*™).

Demostracion. Por Lema 4.53 tenemos que 7(0, * 0) = 7w(d,) + 7(0) = z + ©(0), luego la
correspondencia es inyectiva. Veamos ahora que la aplicacion z +— ¢, * 6 es continua. Sea
z € X* ysea {z,} C X** tal que 2z, — z, queremos ver 6, *x 0 — J, * 0 en M,, o sea, que
0., x0(f)—0,%0(f)| — 0 para toda f € H,. Ahora bien, dado f € Hj,, consideremos la funcién
auxiliar g € H, dada por g(z) = 6(h) donde h(x) =T, f, luego

102 % 0(f) = 02 % 0(f)] = [0:0.(9) = 9:(9)] = [9(2a) — 9(2)] — 0,

pues ¢ es continua (Proposicién 3.59).

Sabemos, por el Teorema 4.44, que la funcién = — 0(T,. f) pertenece a Hy(X) y, por definicién
de ¢, la extensién canénica a X** viene dada por z — 6,(0(T.f)) = (0, * 0)(f), luego la
aplicacion z — (6, * 0) pertenece a Hy(X**). O

Vamos a llamar al conjunto {6, x 6 : z € X**}, la trayectoria determinada por 6 en M,.
En el caso que 9, * 0, = 9,4, para todo z,w € X** vale que dos trayectorias coinciden o son
disjuntas pues si 0., * 0 = 0y, * @, entonces 6 = dy,—y, * ©, luego 6, ¥ 0 = 0,4 yy—w, * ©, POr
lo que las trayectorias coinciden. Esto nos dice que las trayectorias forman una foliacion de M,
formada por copias de X** donde en cada una de las hojas las funciones de Hj, son analiticas.
O sea, se puede pensar que {J, 0 : z € X**} es una parametrizacién de X** dentro de M,.

En el caso donde existen wy, wy € X** tales que = 0y, %Oy 7 Sy 1105, COMO 7(0) = wq 4w,
entonces 0 no es ninguno de los J,. O sea, 6 no pertenece a la trayectoria determinada por dy.
Sin embargo las trayectorias de dg y 6 no son disjuntas pues 0y, = 0_qy, * 0 = 0y, * dg. Por lo

que 9, pertenece a copias analiticas de X** que estan orientadas en distintas direcciones.
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4.6. Continuidad débil-* en cada variable de formas mul-

tilineales

Dado F' una forma m-lineal en X, vimos que la podemos extender a una tinica forma m-lineal
F en X** con la siguiente prepiedad:

para cada 1 < j <m, y dados z1,...,2,-1 € X ¥y 2j41,..., 2, € X* fijos, la funcién

z— F(xl,...,xj_l,z,zj+1,...,zm),

con z € X**, es débil-x continua. Y para obtener F', extendemos por continuidad débil-x, una
variable a la vez, desde la ultima a la primera. Observamos anteriormente que esta extension
depende del orden en que se extienden las variables, la pregunta que queremos responder en
este capitulo es: jcuando se llega a la misma extension F extendiendo las variables en otro
orden? Esta pregunta es equivalente a preguntarse cuéndo la extension F es débil-x continua
en cada variable.

Observemos que si existiera alguna extensién débil-* continua en cada variable de F' a X**,

entonces la extension es unica.

Proposiciéon 4.58. Toda forma m-lineal continua en X se extiende a una forma m-lineal débil-
x continua en cada variable sobre X** para todo m € N si y solo si toda forma bilineal continua

en X se extiende a una forma bilineal débil-x continua en cada variable sobre X**.

Demostracion. Supongamos que toda forma bilineal en X se extiende a una forma bilineal
débil-* continua en cada variable sobre X**. Consideremos la extension de una forma m-lineal
obtenida extendiendo una variable por vez, en algin orden. La hipdtesis dice que si cambiamos
el orden de dos variables consecutivas en la extension, obtenemos la misma extensiéon. Por lo
que podemos cambiar el orden de las variables consecutivas en la extension sucesivas veces y
llegar a cualquier orden de las variables y siempre obtenemos la misma extension. Luego es

débil-* continua en cada variable. O

Un operador lineal T' de X en X* determina una forma bilineal F' en X mediante la formula

F(z,y) =Ty(x) = (x,Ty), =zyecX
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Observacién 4.59. Toda forma bilineal ' : X x X — C proviene de un operador lineal

T:X — X* y la correspondencia T — F es un isomorfismo isométrico. Pues

|T|| = sup ||Ty|| = sup sup |Ty(z)| = sup sup |F(z,y)| = ||F|.
lyl=1 lyl=1 =1 lyll=1 [|z]|=1

Sea [ la extension de la forma bilineal simétrica F'(z,y) a X** que se obtiene extendiendo
por continuidad débil-x primero respecto de z y luego respecto de y, y sea Fy la extension de
la forma bilineal F(z,y) a X** que se obtiene extendiendo por continuidad débil-* primero
respecto de y y luego respecto de x. Entonces tenemos que Fi(z,w) = Fy(w, z), con z,w € X,
pues Fi(z,w) = lim lim F(x4,y,) = lim lim F(ya,za) = Fa(w, 2).

Ya—W Ta—2 Ya—W To—2

Nuestro objetivo es ver cudando F) coincide con Fj, consideremos entonces los operadores

lineales de X** en X*** corespondientes a F} y a Fy y veamos si coinciden. Para esto, notemos

con J la inclusion canénica de X en X** y con J* la correspondiente proyeccién de X*** en X*.

Lema 4.60. Supongamos que la forma bilineal continua F' en X se corresponde con el operador
lineal de X en X*, T, y sean I\ y F5 las extensiones de F' a X** como antes. Entonces los

operadores lineales de X** en X*** correspondientes a Fy y a Fs estan determinados por
Fi(z,w) = (z, T"w), zweX"™,
F(z,w) = (z, J'Tw), zwe X",
donde J* es la proyeccion canonica de X*** en X*.

Demostracion. Para ver la primera igualdad, basta ver que para cada y € X, la aplicacion
dada por z +— (z, T**y) resulta débil-* continua en X** y que para cada z € X**, la aplicacién

w — (z, T**w) es débil-x continua en X**. Ahora bien,
(2, Ty =T"y(2) = y(T*z) = T*2(y) = 2(Ty) = (Ty, 2),

con Ty € X*, o sea, la aplicacién manda z en z(Ty) por lo que es débil-x continua en X**. Por
otro lado,

(z, T™w) = T"w(z) = w(T"z2) = (T"z,w),

con T*z € X*, por lo que la aplicacion resulta débil-x continua en X**.
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Procedemos de la misma manera para probar la segunda igualdad. Dado x € X, la aplicaciéon
w = (z, S Tw) = J'T"w(z) = 2(J"T"w) = T"w(z) = w(T"z) = (T"z,w)
es débil-*x continua en X** pues 7"z € X*. Por ultimo, dado w € X**, la aplicacion
2 (z, J* T w)

es débil-* continua en X** pues J*T**w € X*. O

Lema 4.61. Sea F' una forma bilineal continua y simétrica en X, con las respectivas extensiones

Fy y F;y del Lema 4.60, y sea P el polinomio 2-homogéneo en X asociado a F'. Entonces
Oorw(P) = (0, % 0y)(P) + Fi(z,w) — F3(z,w), z,we X™,
Demostracion. Sean x,y € X,

(T,P)(y) = P(x+y)=F(z+yz+y)
= F(x,x)+ F(y,y) + F(z,y) + F(y,x)
= P(x)+ P(y) +2F(2,y).

Luego la funcién auxiliar g como en la Definicién 4.45 viene dada por
g(z) = 6,(T,P) = P(x) + P(w) + 2F5(z, w).

Luego

(8, % 0,)(P) = 8.(g) = P(2) + P(w) + 2F3(z, w).

Por otro lado,

A

0orw(P) = Plz+w)=F(z+w,z+w)
= Fi(z2)+ Fi(w,w)+ Fi(z,w) + Fi(w, 2)
= P(2) 4 P(w) 4+ Fy(z,w) + Fy(z,w).

Con lo que se deduce lo que queriamos. O
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Definicién 4.62. Decimos que un operador continuo T : X — X* es simétrico si para todo

x,y € X vale que
{x,Ty) = (y, Tx).

Luego los operadores simétricos son lo que se corresponden con las formas bilineales simétri-

cas.

Enunciaremos un resultado que puede verse en [24, Prop 1.2] que nos sera 1til para demostrar

el siguiente teorema.

Proposicion 4.63. Sea F' una forma bilineal simétrica continua. Consideremos Fy la extension

del Lema 4.60. Entonces las siguientes condiciones son equivalentes:
(1) Fy es simétrica.
(2) Fy es débil-+ continua en cada variable sobre X**.

(8) El operador asociado a F, T : X — X* es débil compacto.

Teorema 4.64. Las siguientes propiedades son equivalentes.

(1) Cada forma m-lineal continua y simétrica en X se extiende por débil-+ continuidad en

cada variable a una forma m-lineal continua y simétrica en X**, para todo m € N.

(2) Toda forma bilineal continua y simétrica en X se extiende por débil-+ continuidad en cada

variable a una forma bilineal continua y simétrica en X**.
(8) Todo operador continuo y simétrico de X en X* es débil compacto.
(4) Dado z € X**, el operador de traslacion T, en Hy(X*™) deja Hy(X) invariante.

(5) Dado z € X**| el operador de traslacion T, en Hy(X**) deja invariante al espacio de los
polinomios cuadrdticos en X, Py(X) + P1(X) + P2(X).

(6) 0,10(P) = (0, % 6y)(P) para todo z,w € X** y para todo P polinimio cuadrdtico en X.

(7) 64w = 0, % 0y para todo z,w € X**.
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(8) 0, % 6y = Oy % 0, para todo z,w € X**.
(9) z*w =wx* z para todo z,w € X**.

Demostracion. La equivalencia de (1), (2) y (3) sale de la Proposicién 4.58 y de la Proposicion
4.63.

La equivalencia de (7), (8) y (9) ya la probamos en el Teorema 4.56.

(3) & (5): Sea P € Py(X), tiene asociado una forma bilineal simétrica, que a su vez se

corresponde con un operador lineal 7" : X — X* dado por
P(z) = (z,Tz), z€X,

La extensiéon canoénica P de P a X** viene dada por

~

P=(w,T"w), weX"™,
por el Lema 4.60. Luego, dado z € X** fijo,
T.(P)(w) = P(w+ z) = P(w) + (w, T*2) + (z, T w) + (z, T*2).

Ahora bien, Is(w) € Po(X), y (2, T*2) € Py(X), pues z estd fijo y como Tz € X*, tenemos
que (z, T*w) = (T*z,w) € X* = Py(X). Luego el polinomio w — P(w + z) es la extensién
canénica de un polinomio en X si y sélo si el funcional lineal w +— (w, T**z) pertenece a X*, o
sea, si T**z pertenece a X*. Y esto ocurre para todo z € X** si y solo si T' es débil compacto.

(4) = (5) es trivial.

(5) = (4): Sea P € P,(X), y sea P la extensién canénica de P a X**, como (5) y (1)
son equivalentes, P es la restriccion a la diagonal de una forma m-lineal simétrica y débil-x
continua en cada variable F' sobre X**. Usando la linealidad y la simetria, tenemos que, si

fijamos z € X**

T.(P)(w) = P(w+ 2)
(



78 Capitulo 4. El espectro de H,

es una suma de términos de la forma F'(w, ..., w,z,..., z). Donde cada uno de los sumandos es
la restriccion a la diagonal de una forma k-lineal simétrica y débil-* continua en cada variable
sobre X**

(wl,...,wk)—>F(w1,...,wk,z,...,z).

Luego cada uno de los sumandos es la extensién canénica a X** de un polinomio en Py (X),
por lo que T, deja invariante a P(X) para z € X**. Tomando limite uniforme tenemos que T,
deja invariante a Hy(X).

(6) < (2): Por el Lema 4.61, tenemos que vale (6) si y sélo si las extensiones Fy y Fj
coinciden para toda forma bilineal continua y simétrica F' en X y esto vale si y sélo si vale (2)

(7) = (6) es trivial.

(1) = (7): Sea P € P,,(X) y sea F' su correspondiente forma m-lineal es débil-+ continua

en cada variable sobre X**. Entonces

(G40)(P) = P(z+w)
(

donde en el k-ésimo sumando aparece k veces la variable z y (m — k) veces la variable w.

Calculemos ahora (9, * d,,)(P), sea g la funcién auxiliar

g9(x) = 0u(TaP)

Il
[=7)
S
—~
=
8
_l_
s
8
-+
S

Como F es débil-x continua en cada variable, entonces la extension canodnica a X** de los
polinomios k-homogéneos en la variable x de cada sumando se obtiene reemplazando x por z,
entonces 0,4, (P) = (d, * 6,)(P) para todo P € P, y para todo m € Ny, luego vale también
para toda f € Hy(X). O

Definicién 4.65. Un espacio X que cumple con alguna de las condiciones del Teorema 4.6

se llama simétricamente reqular.
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Una familia de espacios de Banach no reflexivos que son simétricamente regulares son los

espacios C'(K), donde K es compacto.

Ejemplo 4.66. Si tomamos X = ¢! es un espacio que no es simétricamente regular. Veamos
j lod f bilineal simétri & ti tension débil- ti
un ejemplo de una forma bilineal simétrica en " que no tiene una extension débil-x continua

en cada variable a (£!)**. Definimos la forma bilineal simétrica B como

B(z,y) = Z Z Ty + Z Z TjYk-

7 par 1<k<j k par 1<j<k
Una forma de ver que B no se puede extender por continuidad débil-* en cada variable es
calcular el operador T de ¢! en ¢*° asociado a B y ver que T no es débil compacto. En efecto,
si calculamos T' obtenemos que

1, sikesimpary k < 2m;

Tes ) = B(eam, er) =
(Team) (€2m, €) {O, si k es impar y k > 2m.

Entonces, si {Tes,} tuviera una subred débil convergente, el limite a deberia tener sus coor-
denadas impares iguales a 1. Ahora bien, si definimos un funcional lineal sobre el subespacio
S = {x € {>° : 29,41 tiene limite} como ¢(x) = lim xq, 41 y lo extendemos a (>, tenemos que
©(Teyy,) = 0 para todo m € N por lo que ¢ evaluado en la subred vale siempre 0, pero ¢(a) = 1.

Luego {Tes,,} no es débil precompacto en £>°.

4.7. Accién de X** en M,

En esta Seccién veremos que si X es un espacio simétricamente regular, podemos extender

la nocién de accién de X sobre M, estudiada en la Seccién 4.4 a X**.

Supongamos que X es un espacio simétricamente regular, o sea, dado z € X**, el operador
de traslacién T, : Hy(X*) — H,(X**) deja a Hy(X) invariante. Entonces nos podemos re-
stringir este operador al espacio Hy(X) y definir el operador 77 = T |y, x) : Hy(X) — Hy(X).

Consideremos ahora su aplicacion dual S, : Hf(X) — H;(X) y la restringimos a M, o sea

Sip(f) = e(T2f),
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para f € Hy(X), ¢ € My, z € X**.
La correspondencia z +— S’ es una representacién de X** como un grupo de homeomorfismos
sobre M,. Ademas, podemos extender los resultados de la Seccion 4.5 para .S, a este contexto.

O sea, tenemos que dados ¢ € M, y z € X**,
R(S%p) < R(p) + [|2]]-

También vale que para z,w € X**,
Sééw - 5z+w7

¥y que
m(Slp) =z + ().

Luego como X es simétricamente regular tenemos que S.d,, = 6, * J,, para todo z, w € X**.

Teniendo en cuenta las dos identidades S.d,, = 6,4, = 9. * 0, podemos definir dos repre-
sentaciones de M, como el conjunto 7~1(0) x X**. Una de ellas viene dada por la correspondencia
de 771(0) x X** en M, dada por

(¢, 2) v SLa,

donde 1) € 771(0), 2 € X**. Esta correspondencia es biyectiva y su inversa viene dada por
Y= (S/—w(ga)%ﬂ(so))-
En efecto,

¥ — (Slfﬂ(@)%ﬂ(@)) - S;(¢)Siﬂ(¢)(p =¥

La otra representacion de M, como el conjunto 7—1(0) x X** viene dada por la correspondencia
(0,2) — 3§, %0,
donde 6 € 771(0), z € X**. En este caso la inversa viene dada por

2 (5771'(90) *Q, 77-(90))
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Cada una de estas representaciones tiene la propiedad de que la restriccién de una f € Hy(X)
a cualquiera de las X**-érbitas pertenece a Hy(X). No sabemos cudndo esas estructuras en las

érbitas son las mismas, o sea, si SL0 = J, % 0 para todo § € My(X), z € X**.

Vimos en la Seccién 4.4 que B(X) induce una accién sobre Hy. El siguiente lema muestra

que si X es simétricamente regular, entonces 5(X*) también induce una accién sobre H,.

Lema 4.67. Sea X un espacio simétricamente reqular. Si T € B(X*), entonces el operador de

composicion f — foT* sobre Hy(X*) deja a Hy(X) invariante.

Demostracion. Queremos ver que dada f € H,(X), vale que f oT* es la extension a X** de
alguna funcién de H,(X). Como la aplicacién f — f es continua (Proposicién 3.59) basta ver
que esta propiedad se cumple para polinomios homogéneos. Sea entonces f € P,,(X) y sea
fe P (X**) su extensién. Consideremos F' la forma m-lineal simétrica sobre X** asociada
a f . Entonces tenemos que f oT* € Pp(X*™) es el polinomio asociado a la forma m-lineal
simétrica F'o T*, donde F o T*(z1,...,xy) = F(T*(z1),...,T*(xy)). Ahora bien, como T™* es
el operador adjunto de T', entonces es w* — w* continuo, luego F' o T™ es débil-x continua en
cada variable, ya que F' lo es. Luego, si P € P,,(X) es el polinomio asociado a la forma m-lineal

simétrica (FoT*)|x, entonces P es el polinomio asociado a FoT*. Por lo tanto, P = foT*. [

Observacion 4.68. También vale el reciproco del lema anterior: si S € B(X**) cumple que el
operador de composicién f — foS en Hy(X*) deja a Hy(X) invariante, entonces S = T* para
un operador T € B(X*).

De hecho, v € X* entonces yo0 .S € X*** C H,(X**) es extensién canénica, por lo que yo S
es débil-x continuo. Como esto es cierto para todo v € X*, tenemos que S es w* —w* continuo.
Luego, existe T' € B(X*) tal que S = T".

Observacién 4.69. Si X e Y son simétricamente requlares y T € B(X*,Y*). Entonces
el operador de composicion V : Hy(X*™) — Hy(Y*™) dado por W(f) = foT* cumple que
V(H,(X)) C Hy(Y).

Como consecuencia de esta observacion se puede obtener el siguiente resultado de Lassalle-
Zalduendo [18] (ver también [4]).
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Teorema 4.70. Si X eY son simétricamente requlares y X* es isomorfo a Y*, entonces Hy(X)
es isomorfo a Hy(Y). Mds ain, P,,(X) es isomorfo a Pn(Y) para todo m € N.

Demostracion. Sea T : X* — Y™ un isomorfismo. Entonces el operador de composicion ¥
es un isomorfismo y su inverso viene dado por ¥~!(g) = g o (T~!)*. Como ademés, por la
observacién anterior tenemos que W(H,(X)) C Hy(Y), resulta que V|g,x) : Hy(X) — Hy(Y)
es un isomorfismo. Mas atun, como ¥ es un operador de composicién con un operador lineal,
resulta que V|p, (x) : Pm(X) — P, (Y) también es un isomorfismo. Pues si P € P, (X), vale
que PoT* es m-homogéneo y, ademas, si consideramos F' la forma m-lineal sobre X asociada

a P, se tiene que F oT* es una forma m-lineal sobre Y** que evaluada en la diagonal da como
resultado W(P), por lo que ¥(P) € P, (Y). O



Capitulo 5

El espectro de H*°(B)

Vamos a estudiar ahora el dlgebra de Banach H*°(B) formado por las funciones analiticas
acotadas sobre la bola unidad abierta B del espacio de Banach X, donde la norma definida
viene dada por || f|| = sup |f(z)|. Notamos con M al espectro de H*(B), que es el conjunto
de morfismos de élgeblgf;,B no nulos, de H*(B) en C. Observemos que dado f € Hy(X), la
restricciéon de f a la bola B es una funcién que pertenece a H(B) pues es analitica y acotada.
Podemos pensar asi que H,(X) esta incluido en H*(B) pues si f,g € Hy(X) cumplen que f
restringida a B es igual a g restringida a B, entonces por el principio de identidad tenemos que

f = g. Luego hay una proyeccién natural
p: M — My,

definida por p(1)) es la restriccién de » € M a M,. Entonces la restricciéon de » € M a X* es
el funcional lineal 7(p(¢)) : X* — C. Extendemos, también, la definicién de la funcién radio R
a1 € M como R(¢) es el infimo r, 0 < r < 1, tal que ¢ es continua respecto a la topologia de

la convergencia uniforme sobre rB. Esto es,

R(¢) = {0 <r < 1:[op(f)] < || f[lr para toda f € H*(B)}.

Teorema 5.1. La imagen de la proyeccion p : M — M, es el conjunto
p(M) ={p € My: R(p) < 1}.

83



84 Capitulo 5. El espectro de H>(B)

Ademds, la proyeccion p establece un biyeccion entre el conjunto formado por los v € M que

satisfacen R(vY) < 1 y el conjunto de los ¢ € M, que satisfacen R(p) < 1.

Demostracion. Observemos primero que si ) € M cumple que |[¢(f)| < || f||, para toda funcién
f € H*®(B), entonces la desigualdad vale en particular para toda f € Hj,. Luego tenemos que
R(p(¢)) < R(¥) < 1 para toda ¢ € M, por lo que p(M) C {p € My : R(p) < 1}.

Veamos ahora que p define una biyeccién entre el conjunto {tp € M : R(¢) < 1} y el
conjunto {¢ € M, : R(p) < 1}.

Por la observacién anterior, tenemos que p({tV € M : R(¢) < 1}) C {p € M, : R(p) < 1}.
Sea, entonces, ¢ € M, tal que R(p) < 1. Entonces, en particular, ¢ es continua respecto a la
topologia de la convergencia uniforme sobre R(¢)B. Ahora bien, cada f € H*®(B) es limite

uniforme sobre r B, para cualquier 0 < r < 1, de las sumas parciales de su desarrollo en serie de

N N
Taylor, o sea, Z fn — f uniformemente sobre r B. En particular vale que || f —Z Jallrie) — 0.
n=0 n=0
N
Entonces {go(z fn)} C C es una sucesién de Cauchy, pues
n=0
N M M M
(> ) = fl=1le( D fl < D fallrg) =0
n=0 n=0 n=N-+1 n=N+1
N
Luego ¢ determina univocamente 1» € M definida por ¢(f) = A}lm gp(z fn). Ademés se
o n=0

cumple que

N—oo

N
[W(f)] = lim |p( an < ]\}1_{1100” ZoanR(w) = || fllr)

Por lo que R(v) < R(y) y ya habiamos visto que R(p) < R(%). Luego R(v) = R(p) y p define
una biyeccién entre el conjunto {¢) € M : R(¢) < 1} y el conjunto {¢ € M, : R(p) < 1}.

Por ultimo veamos que efectivamente la imagen de la aplicacion p coincide con el conjunto
{p € My : R(¢) < 1}. Sea p € M, tal que R(¢) = 1. Entonces consideremos para || < 1 el
morfismo ¢* € M, definido en la Seccién 4.4. Como R(¢%) = |£|R(p) = |£| < 1, por lo visto a
lo largo de esta demostracién, ¢ se extiende a un morfismo en M. Si 9 esta en la clausura en
M de las extensiones de los ¢* con &€ — 1y |€] < 1, entonces p(¢)) = ¢, por lo que ¢ pertenece

a la imagen de p. O
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Como consecuencia de este tltimo Teorema, podemos identificar el conjunto de los ¢ € M,

que satisfacen R(¢) < 1 con el correspondiente subconjunto de M.

Teorema 5.2. El conjunto {¢p € M : R(p) < 1} es union de discos analiticos que pasan por
el origen 0y de M.

Demostracion. Teniendo en cuenta la identificacién mencionada, dado ¢ € M, consideramos la
recta analitica en M, que pasa por ¢ con R(¢) < 1 dada por la aplicacién & — ¢, Observemos
que como R(¢%) = |£|R(y), entonces ¢* € M para [£] < 1/R(p).

Ademas cada funcién f € H*(B) es limite uniforme de funciones en H, sobre cualquier

conjunto {¢ : R(p) < r}, con 0 < r < 1, pues

N N
m=0 m=0
N
para toda ¢ tal que R(y) < r. Entonces si || < ¢ < 1/R(p), como Z fm — f uniformemente
N m=0
en {p° : |€] < ¢} C {o: R(p) < 1}, vale que gpg(z fm) converge uniformemente a %(f)
m=0

en |€| < ¢, luego la aplicacién € — ¢%(f) es analitica en |£| < ¢. Como esto vale para todo
c < 1/R(¢p), entonces la aplicacién & — ¢*(f) es analitica en || < 1/R(p).

Luego cada ¢ € M esta incluido en un disco analitico que pasa por el origen Jg. O]

Claramente 0 < R < 1y vale que R(y) = 0 si y sblo si ¢ = dy. Al igual que en la Seccién
4.1, R es semicontinua inferiormente sobre M. Sin embargo, no es valida en general la férmula
del Teorema 4.6 para ¢ € M. Mas adelante veremos un ejemplo para X = ¢y, donde existe

v € M tal que R(p) =1, pero ¢ = 0 sobre P,, para todo m € N. (Ver Ejemplo 5.9).

Se prueba en [7] que toda f € H*(B) se extiende canénicamente a f € H*(B**), donde la
correspondencia f — f es un isomorfismo isométrico entre H*°(B) y una subalgebra cerrada de
H>(B**). La extensién es isométrica sobre toda bola rB con 0 < r < 1, o sea, || f|l,z = || f|lr5-
para toda f € H*(B). Observemos que en el caso que f € H,, entonces f conincide con la

extensiéon definida en la Seccién 4.2.
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De la misma forma que en la Seccion 4.2, definimos la evaluacién en z € B** como

para f € H®(B). Ademds J, coincide con la definida anteriormente via la identificacién del
conjunto {¢ € M, : R(p) < 1} con el correspondiente subconjunto de M, luego por el Lema
4.12 tenemos que R(d,) = ||z|| < 1 para z € B**.

Definicién 5.3. Decimos que una funcion g € H*°(B*™) es candnica si cumple que g = f para

alguna f € H*®(B). En este caso, se cumple que [ = g|p.

Observacion 5.4. La restriccion a B** de un funcional débil-+ continuo sobre X** es una
funcion canonica. Polinomios finitos en funciones candnicas es canonica. Limite uniforme sobre

B** de funciones candnicas es canonica.

Lema 5.5. Sea g € H>®(B*) una funcion candnica, sea D C C que contiene a g(B**) y sea

h € H*(D). Entonces la composicion ho g € H®(B**) es candnica.

Demostracion. Sea Ay un disco incuido en D que contiene a g(0). Tomamos r > 0 suficiente-
mente chico tal que g(rB**) C 4. Entonces como h es limite uniforme de polinomios sobre
acotados, h o g es limite uniforme sobre rB** de polinomios en g. Como los polinomios en g
son candnicos sobre rB** entonces h o g es candnica sobre rB**. Ahora bien, tenemos que

hog(z)=h om(z), para z € 7B**. Veamos que ho g(z) = h/og\|B(z), con z € rB**.

hogl.g(z Zthog )(z), para x € rB,
meENy

hoglp(z Zthog )(z), para x € B.
meENy

Luego sus extensiones vienen dadas por

ho g|7,B Z Pm 0)(z), para z € rB™,

meENy

= > Prhog)(0)(z), para z € B,

meENy
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pero los polinomios, y en consecuencia sus extensiones, son los mismos. Luego coinciden sobre
rB**.
Como hog € H*(B*"), tenemos que hog|p € H*(B) y entonces h o g|p € H*(B**). Luego

ho g coincide con h o g|p sobre rB** y por el principio de identidad, resulta que hog = h o g|p.

Por lo que h o g es canonica. O]

Definicién 5.6. Sea la sucesion {z;}jen C B**. Decimos que es una sucesion interpolante para
H>(B) si dado o € £, existe f € H*®(B) tal que f(z]) =y, para 1 < j < 00.

Teorema 5.7. Si {z;} es una sucesion incluida en B* tal que ||z;|| — 1. Entonces {z;} tiene

una subsucesion que es interpolante para H*(B).

Demostracion. Sea 0 < r; < 1 tal que r; — 1. Vale que para una subsucesién de {z;}, que
volveremos a llamar {z;} por comodidad, existen L; € X* tales que ||L;|| <1y 0 < L;j(z;) — 1
répidamente. Como || L;|| < 1, dado z € r; B**, vale que |L;(2)?| < 7"; Consideramos ahora la
funcién conforme ¢ que mandan el disco unidad abierto al conjunto {Re(w) > 0} dada por

1 1
o(w) = 1—1—_w’ y definimos ¢; como ¢; = ggb. La funcién ¢ cumple que si |w| < J, entonces
—w

2w 20
1] = < .
6(w) — 1] = |22 | < 2 < 35

: 39
Luego tenemos que si |w| < d, entonces |¢;(w)| < 5 Podemos suponer que r; — 1 de manera

tal que 7’5: < 1/3, luego si z € r;B**, entonces

6L < 57

pues |L;(2)7] < 7“;: < 1/3 = §. Ademds como ¢; manda el 1 a oo y L;j(z;) — 1 rdpidamente
podemos suponer que Re(¢;(Li(z;)7)) > j.
Ahora bien, definimos f; = ¢, OL;. Luego se cumple que | f;| < 1/27 sobre r; B** y definimos

Jm COMO
St a1

At A fat 1
Entonces, como Re(f;) > 0 sobre B** tenemos que |g,,| < 1 sobre rB*™ para 0 < r < 1y

m

ademds como |f;| < 1/27, entonces g, converge uniformemente sobre rB**, para 0 < r < 1, a
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una funcién g € H*(B*"). Como |g,,(z;)| < 1 para todo m € N, entonces |g(z;)| < 1 para todo
j € N, ademas g(z;) — 1 pues si m > j, como Re(f;) > 0y Re(f;(z;)) > j, entonces

2 <1
zi) ot fn(z) +1) g7

|9m(2j) -1 = fa(

luego |g(z;) — 1| < 1 — 0. Entonces como L;, f; ¥ g; son funciones canodnicas y como g
es limite uniforme de g; sobre cualquier bola rB** con 0 < r < 1 resulta que g también es
canoénica. Ahora bien, como ¢(z;) — 1, entonces existe una subsucesién {g(z;,)} interpolante
para H®(A) [14, p.204]. O sea, existe h € H>®(A) tal que h(g(z;,)) = oy, luego componiendo
g con h, tenemos por el Lema 5.5 que ho g € H®(B*") es candnica y ademds la subsucesién

{%j.} es interpolante para H*(B). O

Si X es un espacio de Banach de dimensién finita, vale que toda sucesién interpolante {z;}
para H>°(B) cumple que ||z;|| — 1. Esto también ocurre para algunos espacios de dimensién
infinita, como por ejemplo ¢y. Sin embargo, también hay casos donde existen sucesiones in-
terpolantes {x;} para H*(B) que satisfacen que ||z;|| < r < 1. Por ejemplo, si X = (7 con
1 < p < o0. Si la sucesién de numeros complejos {A;} satisfacen que |\;| < 1y que inf |A;| > 0,
entonces la sucesién {\;e;} es interpolante para H*(B). En efecto, si N > p, y a € £, la

funcién F(z) = Z %ZN con z € (P pertenece a H>*(B) y cumple que F()je;) = a.
jeN 7

De la misma forma que en el caso de M,, podemos definir una proyecciéon natural de M
en X** dada por la restriccion de las morfismos de M a X*. Es decir, la proyeccion de la que
hablamos es m o p, pero la notaremos con 7. Luego m(1)) € X** es la restriccién de ¢ € M a
X*. De la misma forma que antes, se puede ver que la imagen de 7 esta incluida en la bola
unidad cerrada B** de X**.

Se cumple también que 7(d,) = z para todo z € B**. Ademds 7 es continua de M en X**
con la topologia débil-. Luego, como 7(M) es débil-+ compacto y B** C (M), tenemos que
(M) = B*.

Llamamos M, a la fibra de M sobre z € B**. O sea, M, = n~'({z}) para z € B**. Luego

las fibras M, forman una particiéon de M formada por subconjuntos disjuntos y compactos.
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Si X es de dimensién finita, lo esperado es que M., esté formado por el morfismo evaluacion
0, Unicamente para z € B, al igual que lo visto en la seccién 2 para cuando la dimension de X

es igual a 1. La situacion cambia totalmente en el caso que X tenga dimensién infinita.

Teorema 5.8. Sea X un espacio de Banach de dimension infinita. Entonces la fibra M, de
M sobre cualquier z € B* es infinita. Es mds, contiene una copia de BN\ N, donde SN es la

compactificacion de Stone-C'ech de los naturales.

Demostracion. Sea {z;} C B** una sucesién que converge débil-x a z y tal que ||z;|| — 1. La
existencia de tal sucesién es trivial si [|z]] = 1, pues tomamos z; = r;z, donde {r;} C Ry
tiende creciendo a 1. En el caso donde ||z|| < 1, la existencia de la sucesién es consecuencia
del Teorema de Josefson-Nissenzwieg [15], [22], extendida en [8, p. 223]. Pasando por una
subsucesion, podemos suponer también por el Teorema 5.7 que {z; } es una sucesién interpolante
para H*(B). Luego si definimos la aplicacién I : H*(B) — (> dada por f — {f(z)};
es un morfismo de algebras y es sobreyectiva. Entonces si consideramos su aplicacion dual
asociada I* : ({>*)* — (H>(B))* y la restringimos a M(¢*°) (se puede restringir gracias a
que I es multiplicativa) tenemos que I*|pqe) @ M({*) — M(H*™(B)) esta definida por
¢ — @ oI y resulta inyectiva. Ahora bien, M({>*) = M(Cy(N)) (donde Cy(N) denota el
algebra de funciones continuas y acotadas sobre los naturales) coincide con SN [16, Theorem
2.4.12], la compactificacién de Stone-Cech de los naturales.

Entonces si m € N, tenemos que

I (m)(f) = m({f(z)};) = [ (zm) = 82, (f),

luego I*(m) =4, .
Sin € BN\N, entonces existe una red {n,} C N tal que n, — n, y vale que n(\) = lim, A,
para todo A € £, Tuego I*(n)(f) = n(If) = n({f(z)};) = lim, f(z,,). Entonces tenemos que

m((m)(v) = () (y) = lmA(z,) = lm z,, () = 2(7),

por lo que w(I*(n)) = z.
Entonces I*(n) € M, para todon € SN\N y como I* es inyectiva tenemos que M, contiene

una copia de BN\ N para todo z € B**, cuyo cardinal es mayor que c. O

Sea p € M, en la seccién anterior vimos que podemos definir ¢* € M, si R(p) < 1y
€] < 1/R(p). Podemos también definir ¢ para R(p) = 1y |£| < 1, al igual que en la seccién
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4.4, como la accién dual inducida por el operador de compisicion asociado a 1. Es decir, dado
f € H*®(B) tenemos que ¢*(f) = ¢(f o &I). En el caso que |£] < 1, si Z fm es la serie

meENy
N
de taylor de f, entonces Z €™ fn converge uniformemente sobre B a una funcién de H*(B),
m=0

luego
() = 3 € (f).
meN

En particular vale que 7(p%) = () para todo [£] < 1, pues

(%) (1) = ¢*(7) = (v 0 &I) = Ep(7) = Em(p) (7)

para todo v € X*. Luego, al igual que antes, tenemos que si 7w(p) # 0, entonces la correspon-
dencia £ — %, con |£] < 1, introduce un disco analitico dentro de M que contiene a d. Sin
embargo, no es necesariamente verdad que ¢ esté en la clausura del disco analitico. Es mas,
puede ocurrir que ¢® = §y para todo |£] < 1, pero ¢ # &. Veamos a continuacién un ejemplo
de este hecho.

Ejemplo 5.9. Sea X = ¢y. Vimos en el Ejemplo 4.15 que My(cy) = X** = . En este caso, el
subconjunto {R < 1} de M coincide con la bola unidad B** de ¢*°. Luego por el Teorema 5.8,
tenemos que existe ¢ € M, tal que ¢ # dy. Ademés como Hp(co) es el dlgebra cerrada generada

por X* = ¢, tenemos que ¢ = 0 sobre P, para todo m € N. Luego, como ¢*(f) = Z E"o(fm)
meENy
para todo |€| < 1, entonces deducimos que ¢ = §y para todo |¢] < 1.

En particular, ¢ no estd en la clausura de la imagen de la aplicacién & — ¢, con |¢] < 1.
Notemos también que en este caso no funciona la féormula 4.6 para ¢, pues R(p) = 1 pero

|om|l = 0 para todo m € N.

Consideremos ahora H°(B) el dlgebra de las funciones analiticas y acotadas sobre B que
son uniformemente continuas. Luego tenemos que H2°(B) es una subélgebra cerrada de H>°(B)
que contiene a Hy(X).

En el Teorema 5.1 vimos que hay una proyeccién natural de M en M, sobre el conjunto
{R < 1}, que es inyectiva sobre {R < 1}. La demostracién sigue valiendo si reemplazamos
H>(B) por cualquier dlgebra uniforme H tal que HX(B) C H C H*(B). Cada ¢ € M,, con
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R(p) < 1, se extiende de manera tinica a un morfismo en el espectro My de H, luego podemos

identificar a {R < 1} con un subconjunto de My.

Queremos, ahora, caracterizar el algebra H:o(B). Para esto, dada f € H °(B), llamamos
k

Sk(f) = ij Y definimos

J=0
n

1
] Sk(f),

k=0

on(f) =

los 0, se llaman las medidas de Cesaro de f.

Lema 5.10. Toda f € H(B) es limite uniforme sobre B de funciones de H,y.

Demostracion. Sea f € Ho(B), consideremos las medidas de Cesaro de f, 0,,. Observemos que
on(f) € Hy y veamos que o,(f) converge uniformemente a f en B.

Sean x € B y r < 1, entonces

lon(£) (@) = f(2)] < lon(f)(@) = on(f)(ro) + [on(f) (rz) = flro)| + [f(re) — f(2)].

Ahora bien, sabemos que S, (f) converge uniformemente a f en rB para todo 0 < r < 1, o sea,

dado n > 0, existe ky tal que
|Zf] re) = f(ra)l <n

para todo x € B y para todo k > ko Veamos que o, (f) también converge uniformemente a f
en rB. En efecto, sea 0 < r < 1y dado £ > 0, tomamos 1 < £/4, entonces si n > ko, tenemos

que

|on () (r) = frz)] = (re) = (n+1)f(rz))l

kO_]O
- nH\ZZfJ ra) = f(ra))|
kO_]O
1
< —k
n+1|§;fgm fra) + ——(n = ko)
K
< ——+n<g/3

n+1
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para todo x € B y para todo n = ny.
O sea, tenemos que |o,(f)(rz) — f(rz)| < /3 para todo x € By para todo n > ng con

0 <r < 1. Ademads, como f € H22(B), tenemos que el tercer sumando cumple que

[f(re) — f(2)] <¢/3

para todo x € B para todo r tal que ro < r < 1.

Por ultimo, para acotar el primer sumando, consideremos la funcién g(z) = f(x) — f(rz),
que pertenece a HS(B). Entonces, 0,(9)(z) = o,(f)(z) — 0,(f)(rz) y por un resultado de
[20][Proposicién 5.2 (c)], tenemos que ||o,(g)|| < [|g|. Luego tomando r tal que ro < r < 1,

vale que

|on(f) (@) = on(f)(re)| = |on(g) (@) < llgll = sup |[f(ra) — f(x)] <&/3.

Por lo tanto, |o,(f)(x) — f(z)| < € para todo x € B y para todo n > ny. O

Teorema 5.11. El espectro de H22(B) estd identificado con el conjunto {¢ € M, : R(p) < 1}.

Demostracion. Como observamos anteriormente, H, C H2(B), por lo que podemos definir una
aplicacion del espectro de H2(B) en el conjunto {¢ € M, : R(p) < 1} definida por ¢ — ¢|g, .
Esta aplicacién resulta inyectiva pues si |y, = ¢|m,, entonces por el Lema 5.10, tenemos que
¥ = ¢. Ademds, dado ¢ € M, tal que R(p) < 1, tenemos que |p(f)| < |/ f|lz. Entonces
¢ : Hy — C es lineal y continua (con las funciones de H, restringidas a B). Luego, como H,
es denso en H2°(B) (Lema 5.10), ¢ se extiende a ¢ : H 2(B) — C y vale que ¢|g, = ¢, por lo

que la aplicacion es sobreyectiva. O

Teorema 5.12. Sea H un dlgebra uniforme tal que HS(B) C H C H™(B). Entonces la

proyeccion natural de My en My, sobre {R < 1} es una biyeccion si y sélo si H = H(B).

Demostracion. Ya vimos en el Teorema 5.11 que si H = H%(B), entonces la proyeccién natural
de My en M, sobre {R < 1} es una biyeccion.
Supongamos ahora que H # HZ(B), luego existe f € H que no es uniformemente continua

sobre B. O sea, existe ¢ > 0 y existen sucesiones {z,}, {y,} en B tales que ||z, — yn|| — 0



93

v |f(zn) — f(yn)| = € para todo n € N. Ahora bien, tenemos identificado cada x € B con
d, € {R < 1} C M,. Entonces como {R < 1} es compacto en M, existe una sub red {x,, }
que converge en M, a alguna ¢ tal que R(y) < 1. Como ademés ||z, — y,|| — 0, resulta que
también la subred {y,, }o converge en M, a ¢.

Por otro lado, como |f(z,,) — f(yn,)| = €, tenemos que {x,_ } v {y,,} tienen puntos de
acumulacién 0 y ¢ en My tales que f(0) # f(0'). Ademds vale que 0|g, = ¢'|y, = ¢, entonces
por el Lema 5.10, tenemos que 6 = 0" en H2(B). Por lo que la proyeccién natural no resulta

inyectiva. [

Este resultado muestra que el dlgebra H2°(B) queda caracterizada por su espectro, es decir,
si H es estrictamente mas grande que H2°(B), entonces My es estrictamente mas grande que
el espectro de H(B).
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