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3. Funciones Anaĺıticas en espacios de Banach 17

3.1. Formas multilineales y polinomios . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2. Funciones anaĺıticas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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Caṕıtulo 1

Introducción

El objetivo de este trabajo es estudiar el espectro del álgebra de funciones anaĺıticas y

acotadas en la bola de un espacio de Banach. La descripción de este espectro para el caso

unidimensional (es decir, para el álgebra H∞ = H∞(△) de funciones anaĺıticas y acotadas

en el disco unidad complejo △) es ya clásica, y está desarrollada, por ejemplo, en el libro

“Banach spaces of analytic functions”de Hoffman [14]. Recordemos que el espectro M(H∞)

es el conjunto formado por los funcionales lineales, multiplicativos y no nulos sobre H∞. Para

describir este conjunto se define una proyección π : M(H∞) → C, cuya imagen resulta la

clausura △̄ del disco unidad. Entonces, una parte fundamental de la descripción del espectro

consiste en caracterizar las fibras que resultan de esta proyección, es decir, analizar π−1(λ) para

λ ∈ △̄. Se demuestra que la fibra de cada λ en el interior del disco tiene un solo elemento (o

sea, π es inyectiva sobre π−1(△)). En cambio, si λ está en el borde del disco, resulta que la fibra

π−1({λ}) tiene cardinal mayor a c. Como consecuencia, tenemos que M(H∞) está formado por

una copia de △ y un borde complicado.

Este trabajo se trata de hacer un análisis similar pero en el caso que el dominio sea un

espacio de Banach de dimensión infinita. Está basado en el art́ıculo “Spectra of algebras of

analytic functions on a Banach space” de Aron, Cole y Gamelin [1].

En lo que sigue, X será un espacio de Banach complejo, y B denotará la bola unidad

abierta de X. Nuestro objetivo es entonces estudiar el álgebra uniforme H∞(B) formado por

las funciones anaĺıticas sobre B que son acotadas. Particularmente, nos interesa estudiar su

espectro M, formado por los funcionales lineales, multiplicativos y no nulos sobre H∞(B).
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6 Caṕıtulo 1. Introducción

Definiremos una proyección natural π : M → X∗∗ dada por π(ϕ) = ϕ|X∗ , cuya imagen

queda incluida en B̄∗∗, la bola unidad cerrada de X∗∗. Veremos que las fibras π−1({z}) tienen

cardinal mayor a c para todo z ∈ B̄∗∗ (de hecho, contienen a una copia de βN \ N, donde βN

es la compactificación de Stone-Čech de los naturales). Esto marca una notable diferencia con

lo que ocurre para X = C donde, como comentamos anteriormente, las fibras sobre los puntos

interiores tienen un solo elemento. Sin embargo, un replanteo de la situación nos mostrará cuál

es la analoǵıa del resultado para espacios de Banach con el de una variable (ver el párrafo al

final de esta Introducción)

Para obtener propiedades del álgebraH∞(B) y de su espectro M, estudiaremos el álgebra de

Fréchet Hb(X) formada por las funciones enteras que son acotadas sobre subconjuntos acotados

de X, con la topoloǵıa de la convergencia uniforme sobre acotados. Y también estudiaremos su

espectro Mb, que consiste en los funcionales lineales, continuos, multiplicativos y no nulos sobre

Hb(X) (notemos que para álgebras de Banach como H∞(B), la continuidad es automática).

Veremos que Mb tiene muchas estructuras anaĺıticas, por ejemplo veremos que Mb es unión

de copias del plano complejo. Definiremos una función radio R en Mb con la propiedad de que

el subconjunto {ϕ ∈ Mb : R(ϕ) 6 1} se identifica con el espectro del álgebra H∞
uc(B) de las

funciones anaĺıticas sobre B que son acotadas y uniformemente continuas.

Vamos a definir una operación de convolución ϕ ∗ θ, para ϕ, θ ∈ Hb(X)∗, que restringida

a Mb, nos da para Mb una estructura de semigrupo con identidad. Vı́a la identificación de X

dentro de Mb dada por la aplicación x → δx (el morfismo evaluación), veremos que la suma

en X se traduce en la convolución en Mb, es decir, δx+y = δx ∗ δy para todo x, y ∈ X, por

lo que podemos pensar a X como un subgrupo del semigrupo, donde δ0 es la identidad, que

está incluido en el centro del semigrupo.

Además, las funciones de Hb(X) se extienden naturalmente a funciones en Hb(X
∗∗) [2] y

que esta extensión da un isomorfismo entre Hb(X) y una subálgebra cerrada de Hb(X
∗∗). Luego

podemos, en particular, definir las evaluaciones en puntos de X∗∗, es decir, tenemos definido

δz para z ∈ X∗∗. Veremos que para un ϕ ∈ Mb fijo, la aplicación z → δz ∗ ϕ con z ∈ X∗∗,

define una trayectoria que pasa por ϕ donde las funciones de Hb(X) resultan anaĺıticas sobre

ellas, es decir, para cada f ∈ Hb(X), la función z → δz ∗ ϕ(f) es anaĺıtica. Podemos pensar

entonces que dichas trayectorias son parametrizaciones de X∗∗ dentro de Mb. Luego Mb es una

unión de copias anaĺıticas de X∗∗. Veremos que el producto de convolución entre evaluaciones
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en puntos de X∗∗ no es necesariamente conmutativa y estudiaremos condiciones que aseguren

esta conmutatividad. Probaremos que δw ∗ δz = δz ∗ δw para todo z, w ∈ X∗∗ es equivalente a

que toda forma bilineal, continua y simétrica en X se extiende a una forma bilineal, continua y

simétrica débil-∗ continua en cada variable en X∗∗. Y esta propiedad, a su vez, es equivalente a

que todo operador lineal, simétrico y continuo de X en X∗ es débil compacto. Veremos que bajo

estas condiciones, el espectro Mb se puede identificar con el conjunto X∗∗×π−1({0}), donde las

funciones de Hb(X) resultan anaĺıticas sobre cada dirección X∗∗ × {z}, con z ∈ π−1({0}) fijo.

Además, las trayectorias z → δz ∗ ϕ con z ∈ X∗∗ resultan disjuntas, por lo que Mb resulta una

variedad anaĺıtica que es una unión disjunta de copias de X∗∗.

Finalmente, veremos cómo el espectro Mb nos da información sobre el espectro M de

H∞(B), a partir de un resultado que puede verse como análogo al caso de una variable.

Definiendo una proyección natural de M en Mb, podemos ver que M se proyecta sobre

{ϕ ∈ Mb : R(ϕ) 6 1}, y que es inyectiva sobre {ϕ ∈ Mb : R(ϕ) < 1}. Teniendo en cuenta

que para X = C se tiene Hb(X) = H(C) y Mb = C, y que la función radio de Mb coin-

cide con el módulo de C, podemos concluir que {ϕ ∈ Mb : R(ϕ) 6 1} coincide con △̄ y

{ϕ ∈ Mb : R(ϕ) < 1} con △. Como consecuencia, el caso clásico de una variable mencionado

al comienzo queda enmarcado en el resultado general para espacios de Banach.





Caṕıtulo 2

El espectro de H∞(△)

Para introducir el problema que queremos estudiar, veamos primero un problema similar

sobre el álgebra H∞(△) formado por las funciones anaĺıticas acotadas sobre el disco unidad del

plano complejo. Vamos a analizar el espectro de H∞(△) formado por los morfismos de álgebras

no nulos de H∞(△) en C, que llamaremos M(H∞).

La mayor parte de los resultados de esta sección aparecen en los libros de Gamelin [10] y

de Hoffman [14].

Si consideramos H∞(△) con la norma ‖f‖ = sup
|z|<1

|f(z)|, entonces H∞(△) resulta un álgebra

de Banach conmutativa con unidad. Luego, hay una biyección entre M(H∞) y el conjunto de

ideales maximales de H∞(△), que viene dada por ϕ 7−→ Ker(ϕ). Veamos que además cada

ϕ ∈ M(H∞) es continua y cumple que |ϕ(f)| 6 ‖f‖ para toda f ∈ H∞(△). Si suponemos

que no se cumple esta propiedad, existe f ∈ H∞(△) tal que |ϕ(f)| > ‖f‖. Luego ‖ f
ϕ(f)

‖ < 1 y

entonces 1− f
ϕ(f)

es inversible, y como ϕ es multiplicativa y no nula tenemos que ϕ(1) = 1, por

lo que ϕ(1 − f
ϕ(f)

) 6= 0. Luego, 1 = ϕ(1) 6= ϕ( f
ϕ(f)

) = 1 que resulta una contradicción.

Ahora bien, como ϕ(1) = 1 se deduce en particular que ‖ϕ‖ = 1 (tomando a ϕ ∈ M(H∞) ⊂

H∞(△)∗) . Entonces M(H∞) está contenido en la esfera unidad de H∞(△)∗, que es compacta

para la topoloǵıa débil-∗.

Proposición 2.1. M(H∞) es cerrado para la topoloǵıa débil-∗.

Demostración. Basta ver que dada T : H∞(△) → C continua que pertenece a la clausura débil-

∗ de M(H∞), resulta que T es multiplicativa y no nula. Ahora bien, como toda ϕ ∈ M(H∞)

9
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es no nula y cumplen que ϕ(1) = 1, entonces T también cumple que T (1) = 1, por lo que

es no nula. Veamos ahora que T es multiplicativa, dado ε > 0 y dados f, g ∈ H∞(△), existe

ϕ ∈ M(H∞) tal que

|ϕ(f) − T (f)| < ε

|ϕ(g) − T (g)| < ε

|ϕ(fg) − T (fg)| < ε.

Luego

|T (fg) − T (f)T (g)| 6 |T (fg) − ϕ(fg)| + |ϕ(f)ϕ(g) − ϕ(f)T (g)| + |ϕ(f)T (g) − T (f)T (g)|

< ε+ ε|ϕ(f)| + ε|T (g)| < ε(1 + ‖f‖ + ‖g‖).

Por lo que resulta que T ∈ M(H∞).

Podemos concluir entonces que el espectro M(H∞) es compacto para la topoloǵıa débil-∗.

A cada elemento f ∈ H∞(△) le podemos asociar una función f̂ : M(H∞) → C continua

dada por f̂(ϕ) = ϕ(f) que resulta continua por definición de la topoloǵıa débil-∗. Si llamamos

Ĥ∞ = {f̂ : f ∈ H∞(△)}, entonces la aplicación f 7−→ f̂ es una representación de H∞(△) en

Ĥ∞ que se llama la representación de Gelfand.

Los morfismos más simples que podemos encontrar en M(H∞) son las evaluaciones en

puntos de △ que llamaremos δλ para λ ∈ △,

δλ(f) = f(λ).

Sin embargo hay otros morfismos que no son las evaluaciones, por ejemplo si consideramos el

conjunto I = {f ∈ H∞(△) : f(λ) → 0 con λ→ 1 sobre el eje positivo de las x}, constituye un

ideal propio de H∞(△) por lo que está incluido en un ideal maximal J de H∞(△). Esto es,

existe ϕ ∈ M(H∞) tal que ϕ(f) = 0 para toda f ∈ I. Pero ϕ no es la evaluaćıon en algún λ

pues no hay ningún λ donde se anulen todas las f que pertenecen a I.

Las evaluaciones muestran que la representación de Gelfand es biyectiva, en efecto, clara-

mente es sobreyectiva y si f̂ = 0, entonces f̂(δλ) = f(λ) = 0 para todo λ ∈ △. Por lo que

f = 0. Además la representación resulta una isometŕıa:

‖f̂‖∞ = sup
ϕ∈M(H∞)

|f̂(ϕ)| = sup
ϕ∈M(H∞)

|ϕ(f)| 6 ‖f‖,
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‖f̂‖∞ > sup
|λ|<1

|f̂(δλ)| = sup
|λ|<1

|f(λ)| = ‖f‖.

Luego H∞(△) es isométricamente isomorfo a Ĥ∞.

Además, hay un función continua natural que podemos definir, π : M(H∞) → C dada por

π(ϕ) = ϕ(id), o sea π = îd. Y lo notamos π(ϕ) = ϕ(z).

Teorema 2.2. La función π es continua de M(H∞) en el disco cerrado unidad. Además sobre

el disco abierto △, π es biyectiva y π−1 es un homeomorfismo entre △ y un subconjunto abierto

△̃ de M(H∞).

Demostración. Como notamos anteriormente, π = îd por lo que es continua. Dado λ ∈ △,

π(δλ) = λ, por lo que △ ⊂ Im(π). Como M(H∞) es compacto (Proposición 2.1), entonces

Im(π) también lo es y cumple que △ ⊂ Im(π) ⊂ △, luego Im(π) = △.

Veamos ahora que π : π−1(△) → △ es homeomorfismo. Sea λ ∈ △ y sea ϕ tal que π(ϕ) = λ

y tomemos f ∈ H∞(△) tal que f(λ) = 0, entonces f = (z − λ)g y además

ϕ(f) = ϕ((z − λ)g) = ϕ(z − λ)ϕ(g) = (ϕ(z) − ϕ(λ))ϕ(g) = (π(ϕ) − λ)ϕ(g) = 0.

Luego Ker(δλ) ⊂ Ker(ϕ), por lo que Ker(δλ) = Ker(ϕ) y como δλ(1) = ϕ(1) = 1 resulta que

ϕ = δλ. Por lo tanto es una biyección y π : π−1(△) → △ es homeomorfismo.

La aplicación π es una proyección de M(H∞) en △, por lo que vimos en el teorema anterior

podemos pensar a △ homeomórficamente incluido en M(H∞) v́ıa λ → δλ. Para terminar de

analizar todo el espectro falta ver las preimágenes de los elementos del borde del disco unidad.

Definición 2.3. Sea α ∈ C con |α| = 1, llamamos la fibra de M(H∞) sobre α a

Mα = π−1(α) = {φ ∈ M(H∞) : ϕ(z) = α}.

La fibra Mα es un subconjunto cerrado de M(H∞) y está formada por los morfismos de

H∞(△) que se parecen a la evaluación en α.

Teorema 2.4. Sea f ∈ H∞(△) y sea α un punto del ćırculo unidad. Sea {λn} una sucesión

de elementos del disco abierto unidad que tiende a α. Supongamos que existe ĺım f(λn) = ξ,

entonces existe ϕ ∈ Mα tal que ϕ(f) = ξ.

Esto es ĺım δλn
(f) = ϕ(f).
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Demostración. Considero J = {g ∈ H∞(△) : ĺım g(λn) = 0}, es un ideal propio de H∞(△),

entonces J está incluido en un ideal maximal M . Luego existe ϕ ∈ M(H∞) tal que ϕ(g) = 0

para toda g ∈ J . Pero si consideramos g1 = z−α y g2 = f−ξ, tenemos que g1, g2 ∈ J . Entonces

ϕ(g1) = ϕ(z)−ϕ(α) = π(ϕ)−α = 0 por lo que π(ϕ) = α y ϕ pertenece a Mα. Y por otro lado

ϕ(g2) = ϕ(f) − ξ = 0 por lo que ϕ(f) = ξ como queŕıamos.

Teorema 2.5. La función f̂ es constante sobre la fibra Mα si y solo si f se puede extender

continuamente a △∪ {α}.

Demostración. Supongamos que f̂ es constante sobre Mα, o sea, existe ξ tal que f̂(ϕ) = ϕ(f) =

ξ para todo ϕ ∈ Mα. Por el Teorema 2.4 tenemos que dado λn → α, si existe el ĺımite de f(λn)

y es igual a a, entonces existe ϕ ∈ Mα tal que ϕ(f) = a. Pero tenemos que ϕ(f) = ξ para todo

ϕ ∈ Mα, por lo que ĺım f(λn) = ξ. Luego si existe el ĺımite de f(λn) debe ser necesariamente

ξ. Ahora bien, veamos que dado λn → α, existe dicho ĺımite. Supongamos que no, o sea, existe

ε > 0 tal que |f(λn)− ξ| > ε para infinitos n, y tomemos la subsucesión {f(λnk
)} formada por

dichos elementos. Como f ∈ H∞(△), {f(λnk)} ⊂ C esta acotada, luego tiene una subsucesión

convergente {f(λnkj
)} que no tiende a ξ lo que resulta una contradicción.

Supongamos ahora que f se puede extender continuamente a △ ∪ {α}, entonces hay un

valor complejo ξ tal que ĺım f(λn) = ξ para toda sucesión {λn} ⊂ △ que tiende a α. Veamos

que f̂ es constante sobre Mα y vale ξ. Podemos suponer que ξ = 0 pues si no, tomamos la

función f − ξ. Sea h(λ) = 1
2
(1 + ᾱλ), luego h(α) = 1 y |h| < 1 en cualquier otro punto del

disco cerrado. Probemos que (1 − hn)f converge uniformemente a f . Dado ε > 0, tomo δ > 0

tal que |f(λ)| < ε/2 si |λ − α| < δ, existe tal δ porque f es continua en α y f(α) = 0. Para

|λ − α| > δ, vale que |h(λ)| < 1 − η, con η > 0 pues {λ ∈ △ : |λ − α| > δ} es compacto.

Entonces existe n0 tal que |hn(λ)| < ε
2‖f‖

para todo n > n0. Por lo tanto, si |λ − α| < δ,

entonces |(1 − hn(λ))f(λ) − f(λ)| = |hn(λ)f(λ)| 6 |f(λ)| < ε/2, esto vale para todo n ∈ N. Si

|λ− α| > δ, entonces |hn(λ)f(λ)| 6
ε

2‖f‖
‖f‖ = ε/2 para todo n > n0.

Luego dado ϕ ∈ Mα, tenemos que ϕ(h) = 1. Por lo tanto, ϕ((1 − hn)f) = 0 y como ϕ es

continua, ϕ(f) = 0. Luego f̂ es identicamente 0 sobre Mα.

Más aún, vale el siguiente resultado, cuya demostración puede verse en [14, p.162]
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Teorema 2.6. Sea f ∈ H∞(△), y sea α un punto del ćırculo unidad. Si existe ϕ ∈ Mα tal que

ϕ(f) = 0, entonces existe una sucesión {λn} ⊂ △ tal que ĺımλn = α y ĺım f(λn) = 0.

Corolario 2.7. Si f ∈ H∞(△) y α pertenece al ćırculo unidad, entonces la imagen de f̂ sobre

la fibra Mα esta compuesta por todos lo números complejos ξ para los cuales existe una sucesión

en el disco unidad {λn} con ĺımλn = α y ĺım f(λn) = ξ.

Ejemplo 2.8. En este ejemplo veremos que #(M1) > c (en realidad vale que es mayor estricto,

ver Observación 2.9).

Consideremos la función f(z) = exp(
z + 1

z − 1
). Observemos que la función g(z) =

z + 1

z − 1
manda

△ en el conjunto {w ∈ C : Re(w) 6 0} y en particular manda △ en {Re(w) < 0} y manda

el borde de △ en {Re(w) = 0}. Ahora bien, si Re(w) 6 0, entonces | exp(w)| 6 1, por lo que

f ∈ H∞(△) y además vale que f(△) ⊂ △.

Sea λ ∈ △. Si |λ| < 1, λ = ρ exp(iθ) con ρ < 1, luego λ = exp(−a + θi) = exp(−a +

(θ + 2kπ)i). Tomamos wk = −a + (θ + 2kπ)i. Si |λ| = 1, λ = exp(iθ). Si consideramos

λk = exp(−1/k+(θ+2kπ)i), vale que λk → λ. Tomamos en este caso wk = −1/k+(θ+2kπ)i.

En ambos casos wk ∈ {Re(w) 6 0}, entonces tomamos zk = g−1(wk), como wk → ∞,

tenemos que zk → 1 y además vale que f(zk) = exp(wk) = λk → λ. Luego, por el Teorema 2.4,

dado λ ∈ △, existe ϕ ∈ M1 tal que ϕ(f) = λ. Y aśı obtuvimos una copia de △ dentro de la

fibra M1, por lo tanto #(M1) > c.

Observación 2.9. Usando un resultado de Carleson y Newman sobre existencia de sucesiones

interpolantes para H∞(△) (ver [14, p.204]), podemos probar que efectivamente dado λ con

|λ| = 1, vale que Mλ tiene cardinal mayor que c. Sea {λn} una sucesión interpolante para

H∞(△), esto es, dado a ∈ ℓ∞, existe f ∈ H∞(△) tal que f(λn) = an, tal que λn → λ.

Consideremos la aplicación I : H∞(△) −→ ℓ∞ definida por f 7−→ {f(λn)}n. Esta aplicación

es un morfismo de álgebras (es multiplicativa) suryectivo. Tomemos, ahora, la aplicación dual

asociada I∗ : (ℓ∞)∗ −→ (H∞(△))∗. Como I es multiplicativa, podemos restringir I∗ a M(ℓ∞)

y resulta que I∗ : M(ℓ∞) −→ M(H∞) dada por ϕ 7−→ ϕ ◦ I está bien definida y es inyectiva.
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Ahora bien, M(ℓ∞) = M(Cb(N)) coincide con βN [16, Theorem 2.4.12], donde βN denota

la compactificación de Stone-Čech de N y Cb(N) denota el álgebra de funciones continuas y

acotadas sobre los naturales. Luego si m ∈ N ⊂ βN,

I∗(m)(f) = m(I(f)) = m({f(λn)}n) = f(λm),

luego I∗(m) = δλm
. Por otro lado, si η ∈ βN \ N, existe una red (nα)α ⊂ N tal que nα → η.

Entonces η(a) = ĺım anα
para todo a ∈ ℓ∞ y por lo tanto

I∗(η)(f) = η(If) = η({f(λn)}n) = ĺım f(λnα
).

Entonces I∗(η)(z) = ĺım z(λnα
) = ĺımλnα

= λ, por lo que resulta que π(I∗(η)) = λ. Luego,

I∗(η) ∈ π−1(λ) para todo η ∈ βN\N y como I∗ es inyectiva, podemos concluir que Mλ contiene

una copia de βN \ N cuyo cardinal es mayor que c.

Vimos en el Teorema 2.2 que hay un homeomorfismo entre △ y △̃ ⊂ M(H∞), por lo que △̃

es un subconjunto abierto de M(H∞). Una pregunta que surge es si △̃ es denso en M(H∞),

o sea, nos preguntamos si toda ϕ ∈ M(H∞) es ĺımite de una red {δλ}λ.

Teorema 2.10. △̃ es denso en M(H∞) si y sólo si se cumple la siguiente condición:

Si f1, . . . , fn ∈ H∞(△) tales que |f1(λ)| + · · · + |fn(λ)| > η > 0, con |λ| < 1, entonces

existen g1, . . . , gn ∈ H∞(△) tales que f1g1 + · · · + fngn = 1.

Demostración. Supongamos que existe ϕ0 ∈ M(H∞) que no está en la clausura de △̃, luego

existen f1, . . . , fn ∈ H∞(△) y η > 0 tales que ϕ0(fi) = 0 para 1 6 i 6 n y además el entorno

de ϕ0 dado por {ϕ ∈ M(H∞) : |ϕ(fi)| < η, i = 1, . . . , n} no intersecta a △̃. Luego, vale en

particular que dado λ ∈ △, δλ(fi) > η para algún 1 6 i 6 n por lo que |f1| + · · · + |fn| > η

sobre △. Pero f1, . . . , fn ∈ Ker(ϕ0) que es un ideal propio de H∞(△) por lo que 1 no pertenece

a dicho ideal, o sea, no existen g1, . . . , gn ∈ H∞(△) tales que f1g1 + · · · + fngn = 1.

Rećıprocamente, sean f1, . . . , fn ∈ H∞(△) tales que |f1(λ)| + · · · + |fn(λ)| > η para todo

λ ∈ △ y tales que no existen g1, . . . , gm ∈ H∞(△) con f1g1 + · · ·+fngn = 1. Entonces f1, . . . , fn

están incluidos en un ideal propio de H∞(△) y luego están incluidos en un ideal maximal

de H∞(△). Esto es, existe ϕ0 ∈ M(H∞) tal que ϕ0(fi) = 0 para todo 1 6 i 6 n, luego si

consideramos el entorno de ϕ0 definido por {ϕ ∈ M(H∞) : |ϕ(fi)| < η, i = 1, . . . , n}, este

entorno no intersecta a △̃ por lo que ϕ0 no pertenece a la clausura de △̃.
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El conjunto M(H∞) \ △̃ fue llamada la Corona por Newman en 1959 [21], el Teorema de

la Corona dice que la Corona es vaćıa. O sea, △̃ es denso en M(H∞) para la topoloǵıa débil-∗.

Newman mostró que el Teorema de la Corona pod́ıa reducirse a un problema de interpolación,

que finalmente fue probado por Carleson en 1962 [5].

Teorema 2.11 (Teorema de la Corona). Toda ϕ ∈ M(H∞) es ĺımite de una red {δλ}λ∈Λ con

Λ ⊂ △.

En 1979 Wolff dió una demostración simplificada (no publicada) del Teorema de la Corona,

descripta en [17] y en [12].

Cole mostró que este resultado no puede extenderse a toda superficie de Riemann abierta

[11].

Todav́ıa quedan abiertas versiones del problema de la corona para dominios de dimensión

más grande (por ejemplo para la bola unidad de C2).





Caṕıtulo 3

Funciones Anaĺıticas en espacios de

Banach

En esta sección vamos a estudiar primero las formas multilineales sobre espacios de Banach,

que nos servirán para poder definir los polinomios, que a su vez usaremos para definir las

funciones anaĺıticas como series de potencias. Por último vamos a realizar un resumen de

definiciones y resultados que necesitaremos a lo largo del trabajo. Referencias básicas sobre

estos temas son los libros de Mujica [19] y Dineen [9] o las notas de Gamelin [13].

En lo que sigue X representará un espacio de Banach sobre C.

3.1. Formas multilineales y polinomios

Definición 3.1. Para cada m ∈ N notaremos como La(
mX) al espacio vectorial de las formas

m-lineales A : Xm −→ C y notaremos como L(mX) al subespacio formado por las formas

continuas de La(
mX). Para cada A ∈ La(

mX) definimos

‖A‖ = sup{|A(x1, . . . , xm)| : máx
j

‖xj‖ 6 1}.

En el caso que m = 1, notaremos La(
1X) = X∗.

17
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Proposición 3.2. Dada A ∈ La(
mX). A es continua si y sólo si ‖A‖ <∞.

Demostración. Si la norma de A no es acotada, existe una sucesión (xk1, x
k
2, . . . , x

k
m) en Xm

tal que máx
j

‖xkj‖ 6 1 y |A(xk1, . . . , x
k
m)| > km para todo k ∈ N. Luego máx

j
‖
xkj
k
‖ 6

1

k
y

|A(
xk1
k
, . . . ,

xkm
k

)| > 1 para todo k ∈ N, por lo que A no es continua en 0.

Rećıprocamente, sean a = (a1, . . . , am) ∈ Xm y x = (x1, . . . , xm) ∈ Xm tales que máx
j

‖aj‖ 6

c y máx
j

‖xj‖ 6 c. Entonces

|A(x1, ..., xm) − A(a1, ..., am)| = |
m∑

j=1

[A(a1, ..., aj−1, xj, ..., xm) − A(a1, ..., aj, xj+1, ..., xm)]|

6

m∑

j=1

|A(a1, . . . , aj−1, aj − xj, xj+1, . . . , xm)|

6

m∑

j=1

‖A‖cm−1‖xj − aj‖.

Luego si máx
j

‖xj − aj‖ < δ, entonces

|A(x1, . . . , xm) − A(a1, . . . , am)| 6

m∑

j=1

‖A‖cm−1‖xj − aj‖ < Cδ,

por lo que A es continua.

Proposición 3.3. (L(mX), ‖ · ‖) es un espacio de Banach.

Demostración. Es claro que ‖ ·‖ es una norma. Veamos que es completo, sea {Aj} una sucesión

de Cauchy en L(mX). Entonces para cada x = (x1, . . . , xm) ∈ Xm tenemos que

|Aj(x) − Ak(x)| 6 ‖Aj − Ak‖‖x1‖ . . . ‖xm‖

por lo que {Aj(x)} es una sucesión de Cauchy en C, que es completo, luego la sucesión converge.

Definimos A como

A(x) = ĺım
j
Aj(x).

A es m-lineal y como {Aj} es una sucesión de Cauchy en L(mX) vale que existe c > 0 tal

que ‖Aj‖ 6 c para todo j ∈ N, luego ‖A‖ 6 c por lo que resulta que A es continua y además

‖A− Aj‖ → 0 como queŕıamos.



3.1. Formas multilineales y polinomios 19

Definición 3.4. Para cada m ∈ N notaremos con Ls(mX) al subespacio de L(mX) formado

por todas las formas simétricas. Esto es A ∈ Ls(mX) si

A(xσ(1), . . . , xσ(m)) = A(x1, . . . , xm)

para todo x1, . . . , xm ∈ X y para todo σ ∈ Sm, donde Sm denota al grupo de permutaciones del

conjunto {1, . . . ,m}.

Proposición 3.5. Dada A ∈ L(mX), sea As definida por

As(x1, . . . , xm) =
1

m!

∑

σ∈Sm

A(xσ(1), . . . , xσ(m)).

Entonces la aplicación de L(mX) en Ls(mX) dada por A→ As es una proyección continua con

‖As‖ 6 ‖A‖.

Demostración. Observemos primero que efectivamente As es simétrica, sea τ ∈ Sm,

As(xτ(1), . . . , xτ(m)) =
1

m!

∑

σ∈Sm

A(xτσ(1), . . . , xτσ(m))

=
1

m!

∑

ρ∈Sm

A(xρ(1), . . . , xρ(m))

= As(x1, . . . , xm).

Es una proyección pues dado A ∈ Ls(mX), As = A y además dado x = (x1, . . . , xm) con

máx
j

‖xj‖ 6 1,

|As(x)| 6
1

m!

∑

σ∈Sm

|A(xσ(1), . . . , xσm
)|

6
1

m!

∑

σ∈Sm

‖A‖ = ‖A‖.

Luego ‖As‖ 6 ‖A‖ y por lo tanto es una proyección continua.
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Definición 3.6. Sea A ∈ Ls(mX). Entonces dados (x1, . . . , xn) ∈ Xn y α = (α1, . . . , αn) ∈ Nn
0

con |α| = m, definimos

Axα1

1 . . . xαn

n = A(x1, . . . , x1, . . . , xn, . . . , xn)

donde xj aparece αj veces con 1 6 j 6 n.

Teorema 3.7. (Fórmula de Leibniz). Sea A ∈ Ls(mX). Entonces dados x1, . . . , xn ∈ X tenemos

que

A(x1 + · · · + xn)
m =

∑

|α|=m

m!

α!
Axα1

1 . . . xαn

n

donde α = (α1, . . . , αn) ∈ Nn
0 .

Corolario 3.8. Sea A ∈ Ls(mX). Entonces para todo x, y ∈ X tenemos la fórmula del binomio

de Newton

A(x+ y)m =
m∑

j=0

(
m

j

)
Axm−jyj.

Teorema 3.9. (Fórmula de Polarización). Sea A ∈ Ls(mX). Entonces para todo x0, ..., xm ∈ X

tenemos que

A(x1, . . . , xm) =
1

m!2m

∑

εj=±1

ε1 . . . εmA(x0 + ε1x1 + · · · + εmxm)m.

Definición 3.10. Decimos que la aplicación P : X → C es un polinomio m-homogéneo con-

tinuo si existe A ∈ L(mX) tal que P (x) = Axm para todo x ∈ X. Notaremos con Pm(X) al

espacio vectorial de todos los polinomios m-homogéneos continuos. Dado P ∈ Pm(X) tenemos

‖P‖ = sup
‖x‖61

|P (x)|.

Teorema 3.11. Para cada A ∈ L(mX) sea Â ∈ Pm(X) definida por Â(x) = Axm para todo

x ∈ X. Entonces:
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(a) La aplicación A → Â induce un isomorfismo de espacios vectoriales entre Ls(mX) y

Pm(X).

(b) Vale que

‖Â‖ 6 ‖A‖ 6
mm

m!
‖Â‖

para toda A ∈ L(mX).

Demostración.

(a) Dado P ∈ Pm(X), existe A ∈ L(mX) tal que P = Â. Entonces P = Â = Âs, por lo

que la aplicación es epimorfismo. Para ver que es monomorfismo, sea A ∈ L(mX) usando la

Fórmula de Polarización 3.9 con x0 = 0 tenemos que si A1, A2 ∈ Ls(mX) con A1 6= A2, existe

x ∈ X tal que A1x
m 6= A2x

m por lo que Â1 6= Â2

(b) Sea x ∈ X con ‖x‖ 6 1, entonces |Â(x)| = |Axm| 6 ‖A‖, por lo que ‖Â‖ 6 ‖A‖. Sean

ahora, x1, . . . , xm ∈ X con máx
j

‖xj‖ 6 1, entonces usando la Fórmula de Polarización 3.9 con

x0 = 0 tenemos que

|A(x1, . . . , xm)| 6
1

m!2m

∑

εj=±1

|ε1 . . . εm||A(ε1x1 + · · · + εmxm)m|

=
1

m!2m

∑

εj=±1

|ε1 . . . εm||Â(ε1x1 + · · · + εmxm)|

6
mm‖Â‖

m!2m

∑

εj=±1

|ε1 . . . εm| =
mm

m!
‖Â‖.

Luego ‖A‖ 6
mm

m!
‖Â‖.

La fórmula de polarización permite recuperar la forma m-lineal asociada a un polinomio

m-homogéneo dado.

Corolario 3.12.

(a) Un polinomio P m-homogéneo es continuo si y sólo si ‖P‖ <∞.

(b) (Pm(X); ‖ · ‖) es un espacio de Banach.

(c) La aplicación A→ Â induce un isomorfismo topológico entre Ls(mX) y Pm(X).
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El siguiente Teorema extiende el Principio de Acotación Uniforme a polinomios homogéneos.

Antes veamos un Lema previo.

Lema 3.13. Sea U ⊂ X abierto y sea {fi} una familia de funciones continuas de U en C. Si

la familia {fi} es puntualmente acotada sobre U entonces existe un abierto V ⊂ U donde la

famila {fi} es uniformemente acotada.

Demostración. Consideremos los conjuntos An = {x ∈ U : ‖fi(x)‖ 6 n para todo i } para

cada n ∈ N. Entonces U =
⋃

n∈N

An y cada An es cerrado, luego por el Lema de Baire, algún

An tiene interior no vaćıo. Por lo tanto la familia {fi} es uniformemente acotada en el abierto

V = A◦
n.

Teorema 3.14. Un subconjunto de Pm(X) es acotado en norma si y sólo si es puntualmente

acotado.

Demostración. Sea {Pi} ⊂ Pm(X) puntualmente acotado. Por el Lema anterior, la familia {Pi}

es uniformemente acotada en la bola B(a; r) por c, luego usando la fórmula de polarización

(Teorema 3.9) para Ai, con Pi = Âi y tomando x0 = a y x1 = · · · = xm ∈ B(0, r/m) tenemos

que la familia {Pi} es acotada uniformemente por cmm/m! sobre la bola B(0; r).

Definición 3.15. Diremos que la aplicación P : X → C es un polinomio continuo de grado a

lo sumo m si lo podemos representar como una suma

P = P0 + P1 + · · · + Pm

donde Pj ∈ Pj(X). Notamos con P(X) al espacio vectorial de todos los polinomios.

Observación 3.16. P(X) es la suma directa algebraica de los subespacios Pm(X) con m ∈ N0.
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Definición 3.17. Decimos que P ∈ P(X) es un polinomio de tipo finito m-homogéneo sobre

X si es de la forma P (x) =
N∑

i=1

aiLi(x)
m, con Li ∈ X∗. Notaremos con Pf

m(X) al conjunto de

los polinomios de tipo finito m-homogéneos.

Un polinomio de tipo finito es una combinación lineal finita de polinomios homogéneos de

tipo finito. Notaremos con Pf (X) al conjunto de los polinomios de tipo finito.

Observación 3.18. El conjunto de los polinomios de tipo finito sobre X son el álgebra generada

por X∗.

Observación 3.19. En el caso que el espacio X sea de dimensión finita, todo polinomio es de

tipo finito. Sin embargo esto no es válido para espacios de dimensión infinita. El Teorema de

Littlewood -Bogdanowicz -Pelczynski (ver [3, 23]) dice que todo polinomio m-homogéneo sobre

c0 se puede aproximar uniformemente por polinomios de tipo finito, es decir, Pm(c0) = Pf
m(c0).

En general, en espacios de Banach de dimensión infinita, existen polinomios homogéneos

que no se pueden aproximar por polinomios de tipo finito. Por ejemplo si X = ℓ2, el polinomio

P (x) =
∑

j∈N

x2
j es un polinomio 2-homogéneo en ℓ2 que no es aproximable por polinomios de

tipo finito.

3.2. Funciones anaĺıticas

En esta sección vamos a definir funciones anaĺıticas en espacios de Banach. Para ello veamos

antes la noción de series de potencias de polinomios homogéneos.

Definición 3.20. Una serie de potencias de X en C centrada en a ∈ X es una serie de la

forma
∑

m∈N0

Pm(x− a), donde Pm ∈ Pm(X) para todo m ∈ N0.
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Observemos que también podemos escribir la serie de pontencias
∑

m∈N0

Pm(x − a) como

∑

m∈N0

Am(x− a)m, donde Am ∈ Ls(X) con Âm = Pm.

Proposición 3.21. Sea
∑

m∈N0

Pm(x− a) de X en C. Si existe r > 0 tal que
∑

m∈N0

Pm(x− a) = 0

para todo x ∈ B(a; r), entonces Pm = 0 para todo m ∈ N0.

Demostración. Dado x ∈ B(a, r), llamo y = x − a ∈ B(0; r), como y = ‖y‖ y
‖y‖

, entonces∑

m∈N0

Pm(x − a) =
∑

m∈N0

Pm(y) =
∑

m∈N0

‖y‖mPm(
y

‖y‖
), donde ‖y‖ 6 r. Luego llamando cm a

Pm( y
‖y‖

) y λ a ‖y‖, basta probar que dada una sucesión {cm} en C, si
∑

m∈N0

cmλ
m = 0 para todo

λ ∈ C con |λ| 6 r, entonces cm = 0 para todo m ∈ N0.

En efecto, por inducción en m. Para m = 0, tomando λ = 0 sale que c0 = 0. Supongamos

entonces que co = · · · = cm = 0 y veamos que cm+1 = 0. Como
∑

m∈N0

cmr
m converge, existe

C > 0 tal que |cm|r
m 6 C para todo m ∈ N0 y como c0 = · · · = cm = 0 tenemos que

cm+1 = −
∑

j>m+2

cjλ
j−m−1

para 0 < |λ| 6 r. Entonces para 0 < |λ| 6 r/2 tenemos que

‖cm+1‖ 6 |λ|
∑

j>m+2

Cr−j
(r

2

)j−m−2

= 2|λ|Cr−m−2.

Luego tomando λ→ 0 tenemos que cm+1 = 0.

Estamos en condiciones, entonces, de definir las funciones anaĺıticas en espacios de Banach.

Definición 3.22. Sea U ⊂ X abierto. Decimos que la función f : U → C es anaĺıtica si para

cada a ∈ U existe una bola B(a; r) ⊂ U y una sucesión de polinomios Pm ∈ Pm(X) tal que

f(x) =
∑

m∈N0

Pm(x− a)

donde la convergencia es uniforme para cada x ∈ B(a; r). Notaremos con H(U) al espacio

vectorial formado por todas las funciones anaĺıticas de U en C.
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Observación 3.23. Como consecuencia de la Proposición 3.21 podemos concluir que la suce-

sión de los {Pm} de la definición anterior quedan uńıvocamente determinados por f y por a.

Notaremos Pm = Pmf(a) para todo m ∈ N0. La serie
∑

m∈N0

Pmf(a)(x− a) se llama la serie de

Taylor de f en a.

Ejemplo 3.24. Como primer ejemplo, veamos que los polinomios definidos anteriormente son

efectivamente funciones anaĺıticas, o sea, P(X) ⊂ H(X)

Demostración. Basta ver que cada P ∈ Pm(X) pertenece a H(X). Sea A ∈ Ls(mX) tal que

P = Â, dados a, x ∈ X, por la Fórmula de Newton 3.8 tenemos que

P (x) = Axm = A(x− a+ a)m =
m∑

j=0

(
m

j

)
Aam−j(x− a)j.

Luego P pertenece a H(X) y además

P jP (a)(t) =

(
m

j

)
Aam−jtj para j 6 m

P jP (a)(t) = 0 para j > m.

Veamos ahora algunos resultados conocidos para funciones anaĺıticas en C que son váli-

dos también para las funciones anaĺıticas sobre espacios de Banach. Demostraremos aquellos

resultados que usaremos a lo largo del trabajo.

Lema 3.25. Sea U ⊂ X abierto, y sea f ∈ H(U). Entonces:

(a) f es continua.

(b) f es localmente acotada.

(c) Dados a ∈ U , b ∈ X, la función λ → f(a + λb) es anaĺıtica sobre el conjunto abierto

{λ ∈ C : (a+ λb) ∈ U}.

Principio de identidad.
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Proposición 3.26. Sea U ⊂ X abierto y conexo, y sea f ∈ H(U). Si f es idénticamente cero

en un conjunto abierto no vaćıo V ⊂ U , entonces f es idénticamente cero en U .

Principio de la Aplicación Abierta.

Proposición 3.27. Sea U ⊂ X abierto y conexo, y sea f ∈ H(U). Si f es no constante en U ,

entonces f(V ) es un subconjunto abierto de C para todo subconjunto abierto V ⊂ U .

Principio del Máximo.

Proposición 3.28. Sea U ⊂ X abierto y conexo, y sea f ∈ H(U). Si existe a ∈ U tal que

|f(x)| 6 |f(a)| para todo x ∈ U , entonces f es constante.

Teorema de Liouville.

Proposición 3.29. Si f ∈ H(X) es acotada en X, entonces f es constante en X.

Veamos ahora las extensiones de las fómulas integrales de Cauchy para funciones anaĺıticas

sobre espacios de Banach.

Teorema 3.30. Sea U ⊂ X abierto y conexo, y sea f ∈ H(U). Sean a ∈ U , t ∈ X y r > 0

tal que a + ζt ∈ U para todo ζ ∈ △(0; r). Entonces para cada λ ∈ △(0; r) tenemos la fórmula

integral de Cauchy

f(a+ λt) =
1

2πi

∫

|ζ|=r

f(a+ ζt)

ζ − λ
dζ.

Demostración. Por el Lema 3.25, la función g(ζ) = f(a + ζt) es anaĺıtica en un entorno del

disco cerrado △(0; r). Usando la fórmula integral de Cauchy para funciones anaĺıticas sobre C

tenemos que

f(a+ λt) = g(λ) =
1

2πi

∫

|ζ|=r

g(ζ)

ζ − λ
dζ =

1

2πi

∫

|ζ|=r

f(a+ ζt)

ζ − λ
dζ

para todo λ ∈ △(o; r).
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Corolario 3.31. Sea U ⊂ X abierto y conexo, y sea f ∈ H(U). Sean a ∈ U , t ∈ X y r > 0 tal

que a+ ζt ∈ U para todo ζ ∈ △(0; r). Entonces para cada λ ∈ △(0; r) tenemos el desarrollo en

serie de la forma

f(a+ λt) =
∑

m∈N0

cmλ
m

donde

cm =
1

2πi

∫

|ζ|=r

f(a+ λt)

ζm+1
dζ.

Esta serie converge absoluta y uniformemente para |λ| 6 s con 0 6 s < r.

Demostración. Consideremos λ con |λ| < |ζ| = r. Entonces

f(a+ ζt)

ζ − λ
=
f(a+ ζt)/ζ

1 − λ/ζ
=

∑

m∈N0

λm
f(a+ ζt)

ζm+1
,

y como f es acotada sobre el conjunto acotado {a+ ζt : |ζ| = r}, tenemos que la serie converge

absoluta y uniformemente para |ζ| = r y |λ| 6 s < r. Luego podemos integrar término a

término y obtenemos

f(a+ λt) =
1

2πi

∫

|ζ|=r

f(a+ ζt)

ζ − λ
dζ =

∑

m∈N0

λm
1

2πi

∫

|ζ|=r

f(a+ ζt)

ζm+1
dζ,

donde la última serie converge absoluta y uniformemente para |λ| 6 s con 0 6 s < r.

Corolario 3.32. Sea U ⊂ X abierto y conexo, y sea f ∈ H(U). Sean a ∈ U , t ∈ X y r > 0 tal

que a+ ζt ∈ U para todo ζ ∈ △(0; r). Entonces para cada m ∈ N0 tenemos la fórmula

Pmf(a)(t) =
1

2πi

∫

|ζ|=r

f(a+ ζt)

ζm+1
dζ.

Demostración. Como f es anaĺıtica tiene un desarrollo en serie de Taylor en a de la forma

f(a+ λt) =
∑

m∈N0

Pmf(a)(λt) =
∑

m∈N0

λmPmf(a)(t),

luego por unicidad de desarrolo, tenemos por Corolario 3.31 que

Pmf(a)(t) =
1

2πi

∫

|ζ|=r

f(a+ ζt)

ζm+1
dζ.
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Corolario 3.33. Sea U ⊂ X abierto y conexo, y sea f ∈ H(U). Sean a ∈ U , t ∈ X y r > 0 tal

que a+ ζt ∈ U para todo ζ ∈ △(0; r). Entonces para cada m ∈ N0 tenemos la inecuación

|Pmf(a)(t)| 6 r−m sup
|ζ|=r

|f(a+ ζt)|.

Demostración. Por Corolario 3.32 tenemos que

|Pmf(a)(t)| 6
1

2π

∫

|ζ|=r

|f(a+ ζt)|

|ζ|m+1
dζ 6

1

2πrm+1
sup
|ζ|=r

|f(a+ ζt)|

∫

|ζ|=r

dζ = r−m sup
|ζ|=r

|f(a+ ζt)|.

Corolario 3.34. Si P ∈ Pm(X), entonces dados a, t ∈ X tenemos la fórmula integral

P (t) =
1

2πi

∫

|ζ|=r

P (a+ ζt)

ζm+1
dζ.

Corolario 3.35. Sea P ∈ Pm(X). Si P está acotado por c en la bola abierta B(a, r), entonces

P también esta acotado por c en la bola abierta B(0, r).

Obsevemos que este corolario da una cota mejor a la dada en la demostración del Teorema

3.14.

Definición 3.36. Llamaremos polidisco en Cn a un producto de discos. El polidisco abierto

de centro a = (a1, . . . , an) y radio r = (r1, . . . , rn) lo vamos a notar △n(a, r). Y al polidisco

cerrado lo notaremos △̄n(a, r). Es decir:

△n(a, r) = {z ∈ C
n : |zj − aj| < rj para 1 6 j 6 n},

△̄n(a, r) = {z ∈ C
n : |zj − aj| 6 rj para 1 6 j 6 n}.

Si a = (0, . . . , 0) y r = (1, . . . , 1), escribiremos △n(0, 1) = △n y △̄n(0, 1) = △̄n.

Lamaremos ∂0△
n(a, r) al conjunto incluido en la frontera ∂△n(a, r) de △n(a, r) dado por

∂0△
n(a, r) = {z ∈ C

n : |zj − aj| = rj para 1 6 j 6 n}.
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Teorema 3.37. Sea U ⊂ X abierto, y sea f ∈ H(U). Sean t1, . . . , tn ∈ X, r1, . . . , rn > 0 y

a ∈ U tales que a+ζ1t1+· · ·+ζntn ∈ U para todo ζ ∈ △̄n(0, r). Entonces para cada λ ∈ △n(0, r),

tenemos la fórmula integral de Cauchy

f(a+ λ1t1 + . . . , λntn) =
1

(2πi)n

∫

∂0△n(0,r)

f(a+ ζ1t1 + · · · + ζntn)

(ζ1 − λn) . . . (ζn − λn)
dζ1 . . . dζn

Demostración. Como △̄n(0, r) es compacto, entonces podemos tomar R1 > r1, . . . , Rn > rn

tales que a + ζ1t1 + · · · + ζntn ∈ U para todo ζ ∈ △n(0, R). Ahora bien, si consideramos

la función g(ζ1, . . . , ζn) = f(a + ζ1t1 + · · · + ζntn), resulta anaĺıtica en cada variable. Luego

aplicando la fórmula integral de Cauchy (Teorema 3.30) en cada variable, tenemos que

f(a+λ1t1+· · ·+λntn) =
1

(2πi)n

∫

|ζ1|=r1

dζ1
ζ1 − λ1

∫

|ζ2|=r2

dζ2
ζ2 − λ2

. . .

∫

|ζn|=rn

f(a+ ζ1t1 + . . . ζntn)

ζn − λn
dζn

para todo λ ∈ △n(0, r). Como la función h(ζ1, . . . , ζn) =
f(a+ ζ1t1 + · · · + ζntn)

(ζ1 − λ1) . . . (ζn − λn)
es continua

en el conjunto compacto ∂0△
n(0, r), entonces por el Teorema de Fubini podemos reemplazar la

integral iterada por la integral múltiple.

Corolario 3.38. Sea U ⊂ X abierto, y sea f ∈ H(U). Sean t1, . . . , tn ∈ X, r1, . . . , rn > 0 y

a ∈ U tales que a+ζ1t1+· · ·+ζntn ∈ U para todo ζ ∈ △̄n(0, r). Entonces para cada λ ∈ △n(0, r),

tenemos el siguiente desarrollo en serie

f(a+ λ1t1 + · · · + λntn) =
∑

α

cαλ
α1

1 . . . λαn

n

donde cα =
1

(2πi)n

∫

∂0△n(0,r)

f(a+ ζ1t1 + · · · + ζntn)

ζα1+1
1 . . . ζαn+1

n

dζ1 . . . dζn.

Esta serie converge absoluta y uniformemente para λ ∈ △̄n(0, s), donde 0 6 sj < rj para

todo j.

Demostración. Si |λj| < |ζj| = rj para 1 6 j 6 n, entonces podemos escribir (haciendo lo

mismo que hicimos en la demostración del Corolario 3.31)

f(a+ λ1t+ · · · + λntn)

(ζ1 − λ1) . . . (ζn − λn)
=

∑

α

λα1

1 . . . λαn

n

f(a+ ζ1t1 + · · · + ζntn)

ζα1+1
1 . . . ζαn+1

n

donde esta serie múltiple converge absoluta y uniformemente para |ζj| = rj y |λj| 6 sj < rj.

Luego podemos integrar término a término y obtenemos lo que queŕıamos.
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3.2.1. Funciones G-Anaĺıticas

Definición 3.39. Sea U ⊂ X abierto. Decimos que la función f : U → C es G-anaĺıtica si

para todo a ∈ U y b ∈ X la aplicación λ → f(a + λb) es anaĺıtica sobre el conjunto abierto

{λ ∈ C : a + λb ∈ U}. Notaremos con HG(U) al espacio vectorial formado por todas las

funciones G-anaĺıticas de U en C.

Ejemplo 3.40. P(X) ⊂ HG(X). Pues P (a + λb) es un polinomio en la variable λ para todo

a, b ∈ X.

Definición 3.41. Decimos que un subconjunto A ⊂ X que contiene al origen es balanceado si

para todo x ∈ A y ζ ∈ △, vale que ζx ∈ A. Si a ∈ A, decimos que A es a-balanceado si el

conjunto A− a es balanceado.

Teorema 3.42. Sea U un subconjunto abierto, a-balanceado de X, y sea f ∈ H(U). Entonces la

serie de Taylor de f en a converge a f uniformemente sobre algún entorno de cada subconjunto

compacto de U .

Demostración. Sea K ⊂ U compacto. Entonces el conjunto A = {a+ ζ(x−a) : x ∈ K, ζ ∈ △}

está incluido en U y además f está acotada sobre A. Como A es compacto, podemos hallar

r > 1 y un entorno V de K en U tal que el conjunto B = {a + ζ(x− a) : x ∈ V, ζ ∈ △(0; r)}

esta contenido en U y además f está acotada sobre B también. Luego podemos escribir

f(a+ ζ(x− a))

ζ − 1
=

∑

m∈N0

f(a+ ζ(x− a))

ζm+1

y la serie converge absoluta y uniformemente para x ∈ V y |ζ| = r. Luego por el Teorema 3.30

tenemos que

f(x) =
1

2πi

∫

|ζ|=r

f(a+ ζ(x− a))

ζ − 1
=

1

2πi

∫

|ζ|=r

∑

m∈N0

f(a+ ζ(x− a))

ζm+1
.

Luego por el Corolario 3.32 tenemos que

f(x) =
∑

m∈N0

Pmf(a)(x− a)

y la serie converge absoluta y uniformemente para x ∈ V .
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Teorema 3.43. (Lema de Schwarz). Sea U = B(a; r) ⊂ X y sea f ∈ H(U). Si |f(x)| 6 c

para todo x ∈ B(a; r) y además existe m ∈ N tal que P jf(a) = 0 para todo j < m. Entonces

|f(x)| 6 c(‖x−a‖
r

)m para todo x ∈ B(a; r).

Demostración. Sea x ∈ B(a; r) con x 6= a y sea g la función de una variable compleja definida

por

g(λ) = λ−mf(a+ λ(x− a)) para 0 < |λ| <
r

‖x− a‖
,

g(0) = Pmf(a)(x− a).

Ahora bien, por el Teorema 3.42 la serie de Taylor de f en a converge puntualmente a f sobre

la bola B(a; r). Luego podemos escribir a g como sigue

g(λ) =
∞∑

j=m

λj−mP jf(a)(x− a)

con λ ∈ △(0; r
‖x−a‖

) y además g es anaĺıtica en dicho disco. Tomemos s tal que ‖x−a‖ < s < r,

como |f | < c sobre la bola B(a; r), tenemos que

|g(λ)| 6 c

(
‖x− a‖

s

)m

para |λ| = s/‖x − a‖ y luego por el Principio de Máximo (para funciones complejas) también

vale para |λ| 6
s

‖x−a‖
. Entonces aplicando la inecuación para λ = 1 tenemos que

|f(x)| 6 c

(
‖x− a‖

s

)m

.

Por último, tomando s→ r obtenemos lo que queŕıamos.

Observación 3.44. Las extensiones del Principio de Identidad, el Principio de la Aplicación

Abierta, el Principio del Máximo, el Teorema de Liouville y el Lema de Schwarz a funciones

anaĺıticas sobre espacios de Banach son también válidos para las funciones G-anaĺıticas.

Observación 3.45. Si miramos las demostraciones del Teorema 3.30 y el Corolario 3.31 no-

tamos que son también válidos si nos restringimos a las funciones G-anaĺıticas. De la misma

forma son válidos el Teorema 3.37 y el Corolario 3.38 para funciones G-anaĺıticas que resultan

continuas cuando se restringen a subespacios de dimensión finita.



32 Caṕıtulo 3. Funciones Anaĺıticas en espacios de Banach

Proposición 3.46. Sea U ⊂ X abierto, y sea f ∈ HG(U). Entonces f es continua si y sólo si

f es localmente acotada.

Demostración. Sea f : U → C G-anaĺıtica y localmente acotada. Dado a ∈ U tomamos r > 0

y c > 0 tales que |f(x)| 6 c para todo x ∈ B(a; r). Aplicando el Lema de Schwarz (Teorema

3.43) para funciones G-anaĺıticas a la función f(x) − f(a) tenemos que

|f(x) − f(a)| 6 2c
‖x− a‖

r

para todo x ∈ B(a; r) por lo que f es continua en a.

El siguiente teorema da una caracterización de las funciones anaĺıticas y además da una

herramienta para probar que una función dada es anaĺıtica.

Teorema 3.47. Sea U ⊂ X abierto. Entonces para cada función f : U → C las siguientes

condiciones son equivalentes:

(1) f es anaĺıtica.

(2) f es continua y G-anaĺıtica.

(3) f es localmente acotada y G-anaĺıtica.

(4) f es continua y f |U∩M es anaĺıtica para todo subespacio M de X de dimensión finita.

Demostración. (1) ⇒ (2): Es claro.

(2) ⇔ (3): Ya lo probamos (Proopsición 3.46).

(2) ⇒ (4): Sea f : X → C una funciónG-anaĺıtica y continua, y seaM ⊂ X un subespacio de

dimensión finita con base {e1, . . . , en}. Entonces por la Observación 3.45 tenemos el desarrollo

en serie de la forma

f(a+ λ1e1 + · · · + λnen) =
∑

α

cαλ
α1

1 . . . λαn

n

donde la serie múltiple converge absoluta y uniformemente sobre △n(0, r) para algún r > 0. Si

definimos Pm ∈ Pm(M) como

Pm(λ1e1 + · · · + λnen) =
∑

α

cαλ
α1

1 . . . λαn

n ,
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entonces conseguimos el desarrollo en serie de Taylor para f |U∩M que converge uniformemente

en △n(0, r).

Luego f |U∩M es anaĺıtica para todo subespacio M de X de dimensión finita.

(4) ⇒ (1): Sea B(a, r) ⊂ U . Si M ⊂ X es un subespacio de dimensión finita que contiene

a a, entonces por hipótesis tenemos que f |U∩M es anaĺıtica. Luego por el Teorema 3.42 f |U∩M

tiene desarrollo en serie de taylor

f(x) =
∑

m∈N0

PM
m (x− a)

para todo x ∈M ∩B(a, r) y donde PM
m ∈ Pm(M).

Consideremos ahora M y N dos subespacios de X de dimensión finita que contienen a a,

luego por la unicidad del desarrollo en serie de Taylor, tenemos que PM
m (t) = PN

m (t) para todo

t ∈ M ∩N y para todo m ∈ N0. Sea Pm : X → C definido por Pm(t) = PM
m (t) donde M es un

subespacio de X de dimensión finita que contiene a a y a t. Entonces Pm ∈ Pm(X) y además

f(x) =
∑

m∈N0

Pm(x− a) para todo x ∈ B(a, r).

Ahora bien, como f es continua, existe B̄(a, s) ⊂ B(a, r) tal que |f(x)| 6 c para todo

x ∈ B̄(a, s). Luego, dado t ∈ X con ‖t‖ 6 1, sea M un subespacio de X de dimensión finita

que contiene a a y a t. Entonces por la fórmula integral de Cauchy (Corolario 3.32) tenemos

que

Pm(t) = PM
m (t) =

1

2πi

∫

|ζ|=s

f(a+ ζt)

ζm+1
dζ,

por lo que ‖Pm‖ 6 cs−m. Luego cada Pm es continuo y resulta que f es anaĺıtica.

3.3. El espacio Hb(X).

Si X es un espacio de Banach de dimensión infinita, el espacio H(X) de todas las funciones

anaĺıticas sobre X no es un espacio metrizable. Una manera de generalizar a dimensión infinita

el espacioH(Cn) de manera de obener un espacio métrico es considerar a las funciones anaĺıticas

en X que son acotadas en subconjutos acotados de X. Vamos a comenzar recordando algunas

nociones básicas sobre espacios vectoriales topológicos.
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Definición 3.48. Sean E un C espacio vectorial y τ una topoloǵıa en E. Decimos que (E, τ)

es un espacio vectorial topológico si las aplicaciones naturales

E × E → E dada por (x, y) 7−→ x+ y,

C × E → E dada por (λ, x) 7−→ λx

son continuas.

Definición 3.49. Decimos que una aplicación p : E → R+ es una seminorma sobre E si

verifica:

i) p(λx) = |λ|p(x), para todo λ ∈ C y para todo x ∈ E,

ii) p(x+ y) 6 p(x) + p(y), para todo x, y ∈ E.

Sea P = {pi}i∈I una familia de seminormas sobre E tal que para todo subconjunto finito

J ⊂ I, vale que sup
j∈J

pj ∈ P (una familia P con esta propiedad se llama estable por envolvente

superior finita). Y definimos una topoloǵıa τ en E cuya base está dada por los subconjuntos U

de E que verifican la propiedad

∀x ∈ U, ∃i ∈ I, ∃r > 0 tal que {y ∈ E : pi(x− y) < r} ⊂ U.

Observemos que si la familia de seminormas es creciente, entonces es estable por envolvente

superior finita.

(E, τ) asi definido es un espacio vectorial topológico. Dichos espacios vectoriales topológicos

se llaman localmente convexos.

Definición 3.50. Decimos que una familia P de seminormas sobre E es separante si se verifica

que

(p(x) = 0 ∀p ∈ P) ⇒ x = 0.

Proposición 3.51. Sea E un espacio vectorial topológico localmente convexo cuya topoloǵıa

viene definida por una familia separante de seminormas P = {pi}i∈I estable por envolvente

superior finita. Entonces, una sucesión {xn}n ⊂ E tiende a 0 si y solo si pi(xn) tiende a 0 para

todo i ∈ I.
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En el caso que tengamos un espacio vectorial topológico localmente convexo donde la familia

de seminormas es creciente y separante, si consideramos la distancia dada por

d(x, y) =
∑

n∈N

1

2n
pn(x− y)

1 + pn(x− y)
,

esta distancia define la topoloǵıa y además cumple que es invariante por traslaciones. Diremos

entonces que E es un espacio vectorial topológico localmente convexo metrizable.

Definición 3.52. Decimos que E es un espacio de Fréchet si es un espacio vectorial topológico

localmente convexo metrizable completo.

Definición 3.53. Definimos el espacio Hb(X) como el espacio de las funciones anaĺıticas sobre

X que son acotadas sobre subconjuntos acotados de X.

Consideramos en Hb(X) la familia creciente de seminormas Λ = {pr}r>0 definidas por

pr(f) = sup
‖x‖6r

|f(x)| para r > 0 y p0(f) = |f(0)|. Observemos que pr es una norma en Hb(X)

que notaremos pr(f) = ‖f‖r, por lo que la familia es separante.

Luego (Hb(X),Λ) es un espacio de Fréchet y la topoloǵıa viene dada por fα → f si y sólo si

‖fα − f‖r tiende a 0 para todo r > 0. Esta topoloǵıa se llama la topoloǵıa de la convergencia

uniforme sobre acotados.

Ejemplo 3.54. Veamos un ejemplo de una función anaĺıtica pero que no es acotada sobre

acotados. Tomemos X = c0 ó ℓp y definimos f(x) =
∑

n∈N

xnn. Para probar que f es anaĺıtica,

por el Teorema 3.47, basta ver que f es G-anaĺıtica y localmente acotada. Veamos que f es

G-anaĺıtica, o sea que f(x+λy) =
∑

n∈N

(xn+λyn)
n es anaĺıtica en λ en algún entorno del 0 para

todo x, y ∈ X. Luego tenemos que ver que la serie converge uniformemente en |λ| < ε para

todo ‖y‖ 6 1. Ahora bien,

f(x+ λy) =
∑

n∈N

(xn + λyn)
n =

∑

n∈N

n∑

k=0

(
n

k

)
xn−kn λkykn =

∞∑

j=0

ajλ
j
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donde a0 =
∑

n∈N

xn y para j > 0, aj =
∞∑

n=j

(
n

j

)
xn−jn yjn. Como xn → 0, si tomamos ráız n-ésima

al término general de la serie de aj, tiende a 0. Por lo que f(x+ λy) es una serie de potencias

en λ. Ahora bien, si analizamos la serie
∑

n∈N

(xn + λyn)
n, tomando ráız n-ésima tenemos que

|xn + λyn| 6 |xn| + |λ||yn| 6 |xn| + ε|yn| → 0.

Luego la serie converge uniformemente para |λ| 6 ε.

Veamos ahora que f es localmente acotada. Supongamos que ‖x‖ 6 C, en particular vale

que |xn| 6 C para todo n ∈ N y además existe n0 tal que |xn| 6 1/2 para todo n > n0. Entonces

|f(x)| 6
∑

n∈N

|xn|
n

6

n0−1∑

n=1

|xn|
n +

∞∑

n=n0

|xn|
n

6

n0−1∑

n=1

Cn +
∞∑

n=n0

(1/2)n 6 K

Luego tenemos que f es anaĺıtica sobre X pero si consideramos xk = 2ek, x
k ∈ B(0, 3) para

todo k ∈ N y f(xk) = 2k. Por lo que f no es acotada sobre acotados.

El Teorema de Josefson-Nissenzweig [15, 22] dice que si X es un espacio de Banach de

dimensión infinita, entonces existe una sucesión (γn)n ⊂ SX∗ tal que γn
w∗

→ 0. Como conse-

cuencia, haciendo un razonamiento análogo al del ejemplo anterior, se obtiene que la función

f(x) =
∑

n γ(x)
n no es acotada en acotados. Es decir, vale en general que en todo espacio de

Banach X de diemnsión infinita existe f ∈ H(X) \Hb(X).

Si P ∈ Pm(X), entonces P es acotado sobre subconjuntos acotados de X, luego Pm(X) ⊂

Hb(X). Si consideramos en Pm(X) la norma de la convergencia uniforme sobre la bola unidad,

o sea, ‖P‖ = ‖P‖1 = sup
x∈B

|P (x)|, resulta que (Pm(X), ‖ · ‖) es completo. Además por ser

homogéneos tenemos que si P ∈ Pm(X), entonces ‖P‖r = rm‖P‖ con r > 0. Luego la topoloǵıa

de la norma en Pm(X) coincide con la topoloǵıa inducida como subespacio de Hb(X).

Cada f ∈ Hb(X) tiene un desarrollo en serie de Taylor

f =
∑

m∈N0

fm,

donde fm ∈ Pm(X).
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La siguiente proposición da una caracterización de las funciones de Hb(X), como las fun-

ciones anaĺıticas en X tales que su desarrollo en serie de Taylor tiene radio de convergencia

uniforme infinito.

Proposición 3.55. Hb(X) = {f ∈ H(X) : ‖Pmf(0)‖1/m → 0}.

Demostración. Sea f ∈ Hb(X), entonces f(x) =
∑

m∈N0

Pmf(0)(x) donde la serie converge pun-

tualmente en X. Por Corolario 3.33, tenemos que dado x ∈ X con ‖x‖ 6 1,

|Pmf(0)(x)| 6
1

rm
sup
|ξ|=r

|f(ξx)| 6
‖f‖r
rm

,

para todo r > 0. Entonces ‖Pmf(0)‖ 6
‖f‖r
rm

. Luego tomando ráız m-ésima tenemos que

‖Pmf(0)‖1/m
6

‖f‖
1/m
r

r
, y tomando ĺımite obtenemos que

ĺım
m

‖Pmf(0)‖1/m
6 ĺım

m

‖f‖
1/m
r

r
=

1

r
,

ya que f es acotada en rB. Como esto vale cualquiera sea el r > 0, podemos concluir que

‖Pmf(0)‖1/m → 0.

Rećıprocamente, sea f ∈ H(X) con ‖Pmf(0)‖1/m → 0. Sea x ∈ rB, entonces

|f(x)| 6
∑

m∈N0

|Pmf(0)(x)|

6
∑

m∈N0

rm|Pmf(0)(
x

‖x‖
)|

6
∑

m∈N0

rm‖Pmf(0)‖ <∞.

La última parte de la demostración anterior muestra que la serie de Taylor de una función

de Hb(X) converge uniformemente sobre subconjuntos acotados de X, o sea, la serie converge

en Hb(X).

Corolario 3.56. Los polinomios son densos en Hb(X).
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Proposición 3.57. Toda f ∈ Hb(X) es uniformemente continua sobre acotados de X.

Demostración. Sea f ∈ Hb(X), f tiene desarrollo en serie de Taylor f(x) =
∑

m∈N0

fm(x), donde

fm ∈ Pm(X), y sea Am la forma m-lineal simétrica asociada a fm. Sean x, y ∈ rB, entonces

tenemos

|f(x) − f(y)| 6
∑

m∈N0

|fm(x) − fm(y)|.

Ahora bien,

|fm(x) − fm(y)| 6 mrm−1‖Am‖‖x− y‖.

Para ilustrarlo hagamos la cuenta para el caso de f3

|f3(x) − f3(y)| = |A3(x, x, x) − A3(y, y, y)|

6 |A3(x, x, x) − A3(x, x, y)| + |A3(x, x, y) − A3(x, y, y)|

+|A3(x, y, y) − A3(y, y, y)|

= |A3(x, x, x− y)| + |A3(x, x− y, y)| + |A3(x− y, y, y)|

6 ‖A3‖‖x‖
2‖x− y‖ + ‖A3‖‖x‖‖y‖‖x− y‖ + ‖A3‖‖y‖

2‖x− y‖

6 3r2‖A3‖‖x− y‖.

Entonces tenemos que

|f(x) − f(y)| 6
∑

m∈N0

|fm(x) − fm(y)| 6 (
∑

m∈N0

mrm−1‖Am‖)‖x− y‖ < C‖x− y‖

pues (mrm−1)1/m → r y ‖Am‖
1/m 6 (m

m

m!
‖fm‖)

1/m → 0. Luego f es uniformemente continua

sobre acotados de X.

Del Teorema de Littlewood-Bogdanowicz [3] -Pelczynski [23], se deduce la siguiente proposi-

ción.

Proposición 3.58. Hb(c0) = { álgebra cerrada generada por c∗0 } = Pf (c0).
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3.3.1. Extensión de Aron-Berner

Vimos en el Teorema 3.11 que hay un isomorfismo T : Pm(X) −→ Ls(mX) dado por:

P 7−→ P̌ donde P (x) = P̌ xm. Vamos a extender un polinomio m-homogéneo sobre X, P , a

AB(P ) ∈ Pm(X∗∗) de la siguiente manera:

Tomamos P̌ y dado z ∈ X∗∗, por Teorema de Goldstine, existe una red {yα} ⊂ X acotada

tal que yα tiende débil-∗ a z, por lo que podemos extender la última coordenada a X∗∗ como

sigue
˜̌P (x1, x2, . . . , z) = ĺım

α
P̌ (x1, x2, . . . , yα).

Ahora hacemos de la misma forma con cada una de las coordenadas y obtenemos

˜̌P (z1, z2, . . . , zm) = ĺım
α1

. . . ĺım
αm

P̌ (yα1
, . . . , yαm

)

Esta extensión depende del orden en que se extienden las variables, pero cuando evaluamos

en la diagonal, ˜̌P (z, . . . , z), gracias a la simetŕıa de P̌ , el resultado no depende del orden en

que se hizo la extensión. Definimos entonces AB(P )(z) = ˜̌P (z, . . . , z), claramente verifica que

AB(P )(x) = P (x) para todo x ∈ X. Esta extensión se llama la extensión de Aron-Berner [2] y

resulta una isometŕıa, o sea ‖P‖rB = ‖AB(P )‖rB∗∗ , [7]. Más aún en [7] probaron la siguiente

generalización del teorema de Goldstine: dado z ∈ B∗∗, existe una red (yα)α ⊂ B tal que para

todo polinomio P en X (no necesariamente homogéneo) vale que P (yα) → AB(P )(z).

Ahora bien, dada f ∈ Hb(X), se puede extender canónicamente a una función anaĺıtica

f̂ ∈ Hb(X
∗∗) y la extensión viene dada como sigue

f ∈ Hb(X), tiene desarrollo en serie de Taylor f =
∑

m

fm donde fm ∈ Pm. Definimos

ÂB : Hb(X) −→ Hb(X
∗∗) como ÂB(f) =

∑

m

AB(fm).

Notación: ÂB(f) = f̂

Proposición 3.59. La extensión ÂB es continua y multiplicativa

Demostración. Veamos primero que la aplicación f 7−→ f̂ es continua. Para esto, vamos a

considerar el espacio Hb(X) dotado de otra familia de seminormas {qr}r∈R+
definidas por

qr(f) =
∑

n∈N0

rn‖P nf(0)‖. Observemos que por la Proposición 3.55 los qr estan bien definidos.
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Veamos ahora que (Hb(X), {‖ · ‖r}r∈R+
) = (Hb(X), {qr}r∈R+

), o sea, que las familias de semi-

normas {‖ · ‖r} y {qr} definen la misma topoloǵıa para Hb(X). Sea, entonces, fk → 0 para la

topoloǵıa dada por la familia {‖ · ‖r}, o sea, ‖fk‖r → 0 para todo r > 0. Veamos que fk → 0

para la topoloǵıa dada por la familia {qr}, esto es, qs(fk) → 0 para todo s > 0. Dado s > 0,

tomemos r > s entonces

qs(fk) =
∑

n∈N0

sn‖P nfk(0)‖ =
∑

n∈N0

(s/r)nrn‖P nfk(0)‖

=
∑

n∈N0

(s/r)n‖P nfk(0)‖r 6 ‖fk‖r
∑

n∈N0

(s/r)n = C‖fk‖r → 0.

Rećıprocamente supongamos que fk → 0 para la topoloǵıa dada por la familia {qr}, entonces

‖fk‖r = ‖
∑

n∈N0

P nfk(0)‖ 6
∑

n∈N0

‖P nfk(0)‖r =
∑

n∈N0

rn‖P nfk(0)‖ = qr(fk) → 0,

para todo r > 0. Luego ambas familias de seminormas definen la misma topoloǵıa para Hb.

Ahora bien, sea fk → 0 en Hb(X) y veamos que f̂k → 0 en Hb(X
∗∗). Como ‖P‖rB = ‖P̂‖rB∗∗

para todo polinomio P , tenemos que

qr(f̂k) =
∑

n∈N0

‖P̂ nfk(0)‖rB∗∗ =
∑

n∈N0

‖P nf(0)‖rB = qr(fk) → 0,

para todo r > 0. Por lo que resulta que la aplicación f 7−→ f̂ es continua.

Veamos por último que la aplicación f 7−→ f̂ es multiplicativa. Para esto, basta ver que

dados f ∈ Hb(X) y z ∈ B∗∗ existe una red {xα}α ⊂ B tal que f̂(z) = ĺım
α
f(xα) pues como

tomar ĺımite es multiplicativo, resulta que la aplicación también lo es. Para esto, vamos a usar

que dado z ∈ B∗∗, existe una red {xα}α ⊂ B tal que P (xα) → P̂ (z) para todo polinomio

P ∈ P(X) [7]. Ahora bien,

|f̂(z) − f(xα)| 6 |f̂(z) − P̂ (z)| + |P̂ (z) − P (xα)| + |P (xα) − f(xα)|,

para todo polinomio P ∈ P(X). Entonces, como los sumas parciales de la serie de Taylor de f

convergen a f uniformemente sobre acotados, podemos tomar un polinomio P de manera tal

que ‖P − f‖1B < ε/3 y tal que ‖f̂ − P̂‖1B∗∗ < ε/3 ya que la aplicación es continua. Luego

tenemos que |f̂(z) − P̂ (z)| < ε/3 y |P (xα) − f(xα)| < ε/3 para todo α pues {xα} ⊂ B además

existe α0 tal que |P̂ (z) − P (xα)| < ε/3 para todo α > α0. Luego |f̂(z) − f(xα)| < ε para todo

α > α0.
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Vamos a estudiar también el espacio H∗
b (X) dotado con la topoloǵıa débil-∗, esto es, dado

{ϕα} ⊂ H∗
b (X), decimos que ϕα → ϕ si ϕα(f) → ϕ(f) para toda f ∈ Hb(X). Y en especial

estudiaremos un subconjunto particular de H∗
b (X) que se llama el espectro de Hb(X) que lo

notaremos Mb(X) y consiste en los morfismos continuos multipilicativos y no nulos de Hb(X)

en C, con la topoloǵıa inducida por H∗
b (X).

Un funcional ϕ ∈ H∗
b (X) es continuo respecto a la topoloǵıa de la convergencia uniforme en

rB si y sólo si existe C > 0 tal que |ϕ(f)| 6 C‖f‖r para toda f ∈ Hb(X).

Observación 3.60. Dado ϕ ∈ H∗
b (X), vale que ϕ es continua respecto de la topoloǵıa de la

convergencia uniforme para alguna bola rB. O sea, existen C > 0 y r > 0 tales que para toda

f ∈ Hb(X) se verifica |ϕ(f)| 6 C‖f‖r.





Caṕıtulo 4

El espectro de Hb

4.1. La Función Radio en Mb

A partir de esta sección vamos a llamar Hb a Hb(X) , H∗
b a H∗

b (X) y Mb a Mb(X), salvo

donde sea necesario aclarar sobre qué espacio estamos trabajando.

Definición 4.1. Sea ϕ ∈ H∗
b definimos la función radio como

R(ϕ) := ı́nf{r > 0 : ϕ es continua respecto a la topoloǵıa de la convergencia uniforme en rB}

= ı́nf{r > 0 : ∃C > 0, con |ϕ(f)| 6 C‖f‖r para toda f ∈ Hb}.

Observación 4.2. Como consecuencia de la Observación 3.60, la función radio está bien defini-

da y además: 0 6 R(ϕ) <∞.

Llamaremos δx al morfismo evaluación en x ∈ X. O sea, δx(f) = f(x) para f ∈ Hb.

Observemos que δx pertenece a H∗
b para todo x ∈ X, es más, δx pertenece a Mb.

Lema 4.3. Sea ϕ ∈Mb, entonces

|ϕ(f)| 6 ‖f‖R(ϕ) ∀f ∈ Hb.

Además R(ϕ) = 0 si y sólo si ϕ = δ0.

43
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Demostración. Como ϕ es continua, existen r > 0 y C > 0 tal que |ϕ(f)| 6 C‖f‖r, luego, como

ϕ es multiplicativa, tenemos que |ϕ(fn)| = |ϕ(f)|n 6 C‖fn‖r = C‖f‖nr . Por lo que tomando

ráız n-ésima obtenemos que |ϕ(f)| 6 C1/n‖f‖r y haciendo tender a n a infinito se deduce

entonces que |ϕ(f)| 6 ‖f‖r para toda f ∈ Hb. Como no depende de C, esto vale para todo

r > R(ϕ).

Ahora bien, como toda f ∈ Hb es uniformemente continua sobre acotados de X (Proposición

3.57), la norma de f en rB depende continuamente de r. Luego tomando ĺımite de r tendiendo

a R(ϕ) tenemos que |ϕ(f)| 6 ‖f‖R(ϕ) para toda f ∈ Hb como queŕıamos.

Por último, si R(ϕ) = 0, entonces |ϕ(f)| 6 ‖f‖r para todo r > 0 y para toda f ∈ Hb,

luego tomando r → 0, tenemos que |ϕ(f)| 6 |f(0)| para toda f ∈ Hb. En particular vale

para la función f − f(0), o sea, |ϕ(f − f(0))| 6 |(f − f(0))(0)| = |f(0) − f(0)| = 0, luego

0 = ϕ(f − f(0)) = ϕ(f) − ϕ(f(0)) = ϕ(f) − f(0)ϕ(1) = ϕ(f) − f(0), por lo que ϕ = δ0.

Rećıprocamente, si ϕ = δ0, tenemos que |δ0(f)| = |f(0)| 6 ‖f‖r para todo r > 0 y para

toda f ∈ Hb, luego R(δ0) = 0.

Ejemplo 4.4. R(δx) = ‖x‖ para todo x ∈ X.

Demostración. Veamos primero que R(δx) 6 ‖x‖

|δx(f)| = |f(x)| 6 sup{|f(y)| : y ∈ B‖x‖+ε} = ‖f‖‖x‖+ε para todo ε > 0.

Luego |δx(f)| 6 ‖f‖‖x‖ para toda f ∈ Hb con lo que R(δx) 6 ‖x‖.

Veamos ahora que R(δx) > ‖x‖

Dado r < ‖x‖, por el teorema de separación de convexos de Hahn-Banach, tenemos que

existe L ∈ X∗ ⊆ Hb tal que |L| 6 1 en rB y |L(x)| > 1 o sea que |δx(L)| = |L(x)| > 1 por lo

que no se cumple que |δx(L)| 6 ‖L‖r. Luego R(δx) > ‖x‖.

Lema 4.5. Dado r > 0 el conjunto {ϕ ∈ Mb : R(ϕ) 6 r} es compacto en Mb. Además, la

función radio R es una función semicontinua inferiormente en Mb.

Demostración. Consideremos el espacio Y = (Hb, ‖ · ‖r), resulta que Y es un espacio normado.

Llamemos A = {ϕ ∈Mb : R(ϕ) 6 r} = {ϕ ∈Mb : |ϕ(f)| 6 ‖f‖r para toda f ∈ Hb}, A ⊂ BY∗
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que es débil-∗ compacto por el Teorema de Alaoglu, por lo que basta ver que A es débil-∗

cerrado. Sea {ϕα} ⊂ A tal que ϕα tiende débil-∗ a ϕ, esto es, ϕα(f) → ϕ(f) para toda f ∈ Hb.

Como |ϕα(f)| 6 ‖f‖r para todo α, entonces |ϕ(f)| 6 ‖f‖r. Además ϕα(f.g) → ϕ(f.g) y por

otro lado ϕα(f.g) = ϕα(f)ϕα(g) → ϕ(f)ϕ(g) por lo que ϕ(f.g) = ϕ(f)ϕ(g). Luego ϕ ∈ A. La

función radio R es una función semicontinua inferiormente si los conjuntos {ϕ ∈Mb : R(ϕ) > r}

son abiertos para todo r ∈ R que se verifica trivialmente.

Vimos que cada f ∈ Hb tiene su desarrollo en serie de Taylor (que converge en Hb)

f =
∞∑

m=0

fm,

donde fm ∈ Pm. Como ϕ ∈ H∗
b es continua, tenemos que

ϕ(f) =
∞∑

m=0

ϕ(fm).

Llamamos ϕm a la restricción de ϕ sobre Pm. Luego ϕm es continua y su norma en Pm viene

dada por

‖ϕm‖ = sup{|ϕ(P )| : P ∈ Pm y ‖P‖ 6 1}.

Veamos ahora un resultado importante que relaciona la función radio con las normas de las

ϕm.

Teorema 4.6. Sea ϕ ∈ H∗
b . La función radio viene dada por

R(ϕ) = ĺım sup
m→∞

‖ϕm‖
1/m.

Demostración. Sea 0 < t < ĺım sup
m→∞

‖ϕm‖
1/m. Si suponemos que |ϕ(Pm)| = |ϕm(Pm)| 6 tm

para todo ‖Pm‖ = 1 y para todo m > m0, entonces ‖ϕm‖ 6 tm para todo m > m0 por

lo que ‖ϕm‖
1/m 6 t para todo m > m0 y por lo tanto ĺım sup

m→∞
‖ϕm‖

1/m
6 t que resulta

una contradicción. Luego existe una subsucesión {mj}j∈N y Pj ∈ Pmj
tal que ‖Pj‖ = 1 y

|ϕ(Pj)| > tmj .

Ahora bien, sea 0 < r < t, tenemos que

‖Pj‖r = sup
x∈rB

{|Pj(x)|} = sup
x∈B

{|Pj(rx)|} = rmj‖Pj‖ = rmj .
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Luego |ϕ(Pj)| > ( t
r
)mj‖Pj‖r y como ( t

r
)mj → ∞ no existe C > 0 tal que |ϕ(P )| 6 C‖P‖r con

P ∈ P ⊆ Hb por lo que ϕ no es continua respecto a la topoloǵıa de la convergencia uniforme en

rB. Entonces R(ϕ) 6 r para todo 0 < r < t, luego R(ϕ) 6 t para todo 0 < t < ĺım sup
m→∞

‖ϕm‖
1/m.

Por lo tanto ĺım sup
m→∞

‖ϕm‖
1/m

6 R(ϕ).

Para ver la otra desigualdad, sea s > ĺım sup
m→∞

‖ϕm‖
1/m, entonces existe m0 tal que para todo

m > m0, ‖ϕm‖ 6 sm lo que indica que existe c > 1 tal que ‖ϕm‖ 6 csm para todo m > 0. Sea

r > s y sea f ∈ Hb, f tiene su desarrollo en serie de Taylor y vale que rm‖fm‖ = ‖fm‖r 6 ‖f‖r.

Luego |ϕ(fm)| = |ϕm(fm)| 6 ‖ϕm‖‖fm‖ 6 c( s
r
)m‖f‖r pues ϕm es continua en (P∗, ‖ · ‖) que es

un espacio de Banach.

Por lo tanto tenemos que |ϕ(f)| 6 c(
∑

m( s
r
)m)‖f‖r.

Observemos que como s
r
< 1 la suma converge y por lo tanto ϕ resulta continua respecto a

la topoloǵıa de la convergencia uniforme en rB. Entonces R(ϕ) 6 r para todo r > s, luego

R(ϕ) 6 s para todo s > ĺım sup
m→∞

‖ϕm‖
1/m. Por lo tanto R(ϕ) > ĺım sup

m→∞
‖ϕm‖

1/m.

Teorema 4.7. Sea ϕm ∈ P∗
m tal que la norma de ϕm en P∗

m satisface

‖ϕm‖ 6 csm para todo m > 0

para algún c, s > 0.

Entonces existe una única ϕ ∈ H∗
b cuya restricción a Pm es ϕm, para todo m > 0.

Demostración. En la demostración del teorema anterior vimos que si ‖ϕm‖ 6 csm entonces

para todo r > s,
∑

m

ϕm(fm) converge. Si definimos ϕ(f) =
∑

m

ϕm(fm) entonces ϕ ∈ H∗
b y

resulta continua respecto a la topoloǵıa de la convergencia uniforme en rB pues

|ϕ(f)| 6 c(
∑

m

(s/r)m)‖f‖r 6 C‖f‖r.

Claramente ϕ|Pm
= ϕm.

Observación 4.8. En el caso que ϕ ∈Mb, R(ϕ) = ĺım sup
m→∞

‖ϕm‖
1/m = sup

m>1
‖ϕm‖

1/m.
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Demostración. Como ϕ es multiplicativa y PmPk ⊆ Pm+k, tenemos que ‖ϕm‖‖ϕk‖ 6 ‖ϕm+k‖.

De hecho, para todo Pm ∈ Pm, Pk ∈ Pk se tiene que

|ϕm(Pm)||ϕk(Pk)| = |ϕ(Pm)ϕ(Pk)| = |ϕ(PmPk)| = |ϕm+k(PmPk)|

6 ‖ϕm+k‖‖PmPk‖ = ‖ϕm+k‖‖Pm‖‖Pk‖.

Ahora bien, para que el ĺımite superior coincida con el supremo basta ver que dado ϕm existe

n > m tal que ‖ϕm‖
1/m 6 ‖ϕn‖

1/n. Como ‖ϕm‖
2/m = (‖ϕm‖‖ϕm‖)

1/m 6 ‖ϕ2m‖
1/m, luego para

cada m ∈ N, ‖ϕm‖
1/m 6 ‖ϕ2m‖

1/2m.Por lo que podemos concluir que

R(ϕ) = ĺım sup
m→∞

‖ϕm‖
1/m = sup

m>1
‖ϕm‖

1/m.

4.2. Fibrado de Mb sobre X∗∗

Consideremos a Mb con la topoloǵıa inducida por la topoloǵıa σ(H∗
b , Hb) en H∗

b y a X∗∗ con

la topoloǵıa débil-∗. Se puede definir una proyección π : Mb −→ X∗∗ dada por π(ϕ) = ϕ1 la

restricción de ϕ sobre X∗ = P1.

Observación 4.9. Podŕıamos definir π : H∗
b −→ X∗∗ y luego restringirla a Mb.

Observación 4.10. La proyección π es continua.

Demostración. Veamos que si ϕα → ϕ en H∗
b entonces π(ϕα) → π(ϕ) en X∗∗. Notemos que

ϕα → ϕ en H∗
b si y sólo si ϕα(f) → ϕ(f) para toda f ∈ Hb y que zα → z en X∗∗ si y sólo si

zα(γ) → z(γ) para todo γ ∈ X∗. Ahora bien, dado γ ∈ X∗ ⊂ Hb, tenemos que

π(ϕα)(γ) = ϕα(γ) → ϕ(γ) = π(ϕ)(γ)

.
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Definición 4.11. Dado z ∈ X∗∗, llamamos δz a la evaluación en z de f̂ , donde f̂ es la extensión

de f ∈ Hb(X) a X∗∗. O sea

δz(f) = f̂(z)

Observemos que si z ∈ X esta definición coincide con la que ya teńıamos.

Lema 4.12. R(δz) = ‖z‖ para todo z ∈ X∗∗

Demostración. Se muestra en [7] que dado z ∈ X∗∗, existe una red {xα} en X tal que ‖xα‖ 6 ‖z‖

y P (xα) → P̂ (z) para todo polinomio anaĺıtico P en X. Como los polinomios anaĺıticos son

densos en Hb y la red está acotada uniformemente, también vale que f(xα) → f̂(z) para toda

f ∈ Hb pues tomando P suficientemente cerca de f , tenemos que

|f(xα) − f̂(z)| 6 |f(xα) − P (xα)| + |P (xα) − P̂ (z)| + |P̂ (z) − f̂(z)| < ε.

Observemos que en el primer término de la desigualdad es donde usamos que la red es aco-

tada, cuestión que se necesita debido a que los desarrollos en serie de Taylor de f convergen

uniformemente sobre conjuntos acotados.

En particular la evaluación δxα
tiende a δz en Mb. Luego

|δz(f)| = ĺım
α

|δxα
(f)| 6 ĺım sup

α
‖f‖R(δxα ) = ĺım sup

α
‖f‖‖xα‖ 6 ‖f‖‖z‖

Luego R(δz) 6 ‖z‖, para ver la otra desigualdad, observemos que δz|X∗ = π(δz) = z (ver Lema

4.13) luego por la Observación 4.8 R(ϕ) > ‖z‖.

Lema 4.13. Dada ϕ ∈Mb vale que

‖π(ϕ)‖ 6 R(ϕ).

Además π(δz) = z para todo z ∈ X∗∗.

Demostración. Como ϕ ∈ Mb, entonces por la Observación 4.8 vale que R(ϕ) = sup
m>1

‖ϕm‖
1/m

y π(ϕ) = ϕ1, luego ‖π(ϕ)‖ 6 R(ϕ). Además, dado γ ∈ X∗, J(γ) ∈ X∗∗∗ ⊂ Hb(X
∗∗) entonces

δz(γ) = γ̂(z) = J(γ)(z) = z(γ). Luego, π(δz)(γ) = δz|X∗(γ) = δz(γ) = z(γ), entonces π(δz) = z,

z ∈ X∗∗ y además π es sobreyectiva.
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Una pregunta que surge a partir de este resultado es cuándo π es biyectiva, en dicho caso

Mb coincidirá con X∗∗. Veamos un caso donde vale, otro donde no y un criterio para decidir si

π es biyectiva.

Teorema 4.14. Si el álgebra de los polinomios de tipo finito es densa en Hb, entonces vale que

π : Mb −→ X∗∗ es biyectiva y manda cada conjunto {ϕ ∈ Mb : R(ϕ) 6 r} homeomorficamente

a la bola cerrada {z ∈ X∗∗ : ‖z‖ 6 r} con la topoloǵıa débil-∗.

Demostración. Ya vimos que π es sobreyectiva, veamos entonces que π es inyectiva.

Observemos primero que ϕ(γ) = ϕ|X∗(γ) = π(ϕ)(γ) = γ̂(π(ϕ)) = δπ(ϕ)(γ), para todo

ϕ ∈Mb y γ ∈ X∗.

Ahora bien, si Pk es un polinomio k-homogéneo de tipo finito, Pk =
∑

j

γkj con γj ∈ X∗,

entonces ϕ(Pk) =
∑

j ϕ(γj)
k.

Como los polinomios de tipo finito son densos en Hb y quedan determinados por los γj ∈ X∗,

y además vale que ϕ(γ) = δπ(ϕ)(γ) para todo γ ∈ X∗, entonces tenemos que ϕ(f) = δπ(ϕ)(f)

para todo f ∈ Hb. Luego ϕ = δπ(ϕ).

O sea: si π(ϕ) = π(ψ) ⇒ δπ(ϕ) = δπ(ψ) ⇒ ϕ = ψ.

Por último veamos que {ϕ ∈ Mb : R(ϕ) 6 r}
π

−→ {z ∈ X∗∗ : ‖z‖ 6 r} es homeomorfismo.

Sea ϕ tal que R(ϕ) 6 r, entonces ‖π(ϕ)‖ 6 R(ϕ) 6 r. Rećıprocamente, sea z tal que ‖z‖ 6 r

entonces z = π(δz) y R(δz) = ‖z‖ 6 r.

Ahora bien, π es continua y dado C ⊂ {ϕ ∈ Mb : R(ϕ) 6 r} cerrado, como tenemos que

{ϕ ∈ Mb : R(ϕ) 6 r} es compacto, entonces C es compacto también por lo que resulta que

π(C) ⊂ {z ∈ X∗∗ : ‖z‖ 6 r} es compacto, en particular es cerrado, por lo que π es cerrada.

Luego es un homeomorfismo.

Ejemplo 4.15. Consideremos c0 el espacio de sucesiones que tienden a 0. Por el teorema de

Littlewood-Bogdanowicz [3]-Pelczynski [23] toda forma m-lineal en c0 se puede aproximar por

polinomios de tipo finito en las funciones coordenadas de c0. Luego podemos usar el teorema

anterior en este caso y concluimos que toda ϕ ∈ Mb(c0) viene de algún z ∈ ℓ∞. Luego Mb(c0)

coincide como conjunto con ℓ∞ y la topoloǵıa de Mb(c0) cincide con la topoloǵıa débil-∗ de ℓ∞

en cada conjunto acotado.
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Ejemplo 4.16. Un ejemplo donde π : Mb −→ X∗∗ no resulta biyectiva es considerando X = ℓp

con 1 < p <∞.

Sea {e1, e2 . . . } la base canónica de ℓp, y sea φj = δej
∈Mb(ℓ

p) la evaluación en ej. Entonces

tenemos que R(φj) = ‖ej‖ = 1, luego {φj} está incluido en un subconjunto compacto de Mb(ℓ
p),

pues {φj} ⊂ {ϕ ∈ Mb(ℓ
p) : R(ϕ) 6 1} = π−1{z ∈ X∗∗ : ‖z‖ 6 1} que es compacto, por lo que

{φj} 6= ∅. Además, existe una subred {φjα} convergente; digamos φjα → φ, con φ ∈Mb. Como

{ej} tiende débil a 0, tenemos que

π(φ)(γ) = φ(γ) = ĺım
α
φjα(γ) = ĺım

α
γ(ejα) = 0.

Luego π(φ) = 0 para toda φ punto de acumulación de {φj}.

Por último, dado α ∈ ℓ∞, tomemos m > p y definimos P ∈ Pm(ℓp) como

P (x) =
∑

j∈N

αjx
m
j ,

con x ∈ ℓp. Observemos que el hecho de que m > p hace que efectivamente P pertenezca a

Pm(ℓp). Entonces φj(P ) = P (ej) = αj, luego {φj} es una sucesión interpolante para Hb(ℓ
p).

Entonces tenemos que π−1(0) contiene una copia de βN \ N, donde βN es la compactificación

de Stone-Čech de N (ver Observación 2.9), cuyo cardinal es mayor que c.

Teorema 4.17 (Criterio). Sea Y isomorfo a un subespacio de X que es complementado.

Si π1 : Mb(Y) −→ Y∗∗ no es biyectiva, entonces: π : Mb(X) −→ X∗∗ no es biyectiva.

Demostración. Para una mejor comprensión, voy a llamar δ̃z a la evaluaćıon sobre funciones

de Hb(Y) y δz a la evaluación sobre funciones de Hb(X).

Como Y es isomorfo a un subespacio complementado de X, tenemos una proyección Q :

X −→ Y y inclusión i : Y −→ X, como π1 no es biyectiva, existen θ1, θ2 ∈ Mb(Y) tales que

θ1 6= θ2 y π1(θ1) = π1(θ2) = z ∈ Y∗∗. Luego como π1(δ̃z) = z, vale que existen θ ∈ Mb(Y) y

z ∈ Y∗∗ tales que θ 6= δ̃z y π1(θ) = z.

Sea g ∈ Hb(Y) tal que θ(g) 6= δ̃z(g), entonces la función definida por G = g ◦ Q pertenece

a Hb(X). Sea ahora ϕ ∈ Mb(X) definida por ϕ(h) = θ(h ◦ i) para h ∈ Hb(X), vale que, dado

γ ∈ X∗, ϕ(γ) = θ(γ ◦ i) = δ̃z(γ ◦ i) pues γ ◦ i ∈ Y∗. Además, por unicidad de la extensión,

δ̃z(γ ◦ i) = ˆ(γ ◦ i)(z) = γ̂(i(z)) = δz(γ) para todo z ∈ Y∗∗ donde la primera extensión es sobre

Y∗∗ y la segunda sobre X∗∗, luego π(ϕ) = π(δz). Pero ϕ(G) = θ(G ◦ i) = θ(g ◦Q ◦ i) = θ(g) 6=

δ̃z(g) = δ̃z(G ◦ i) = δz(G) por lo que ϕ 6= δz. Por lo tanto π no es biyectiva.



4.3. Topoloǵıa de Mb 51

4.3. Topoloǵıa de Mb

En esta sección definiremos una nueva topoloǵıa para Hb, que resultará más fina que la

definida en la Sección 3.3. También veremos una versión débil del Teorema de la Corona.

Definición 4.18. Llamamos la topoloǵıa Hb de X a la menor topoloǵıa en X que hace continuas

a las f ∈ Hb(X).

Los siguientes resultados muestran que la topoloǵıa Hb de X tiene más abiertos que la

topoloǵıa débil de X.

Lema 4.19. Si P ∈ Pm es acotado en un entorno débil de 0, entonces P es un polinomio de

tipo finito.

Demostración. Supongamos que |P (x)| 6 M para todo x ∈ V donde V es un entorno débil de

0, V = {x ∈ X : |Li(x)| < 1 con 1 6 i 6 N y Li ∈ X∗}.

Observemos primero que si Li(x) = Li(y) para todo 1 6 i 6 N entonces P (x) = P (y). En

efecto, podemos elegir k de manera que |Li(
x+λ(x−y)

k
)| = |Li(

x
k
)| < 1 para todo λ ∈ C, luego

|P (x+λ(x−y)
k

)| < M para todo λ ∈ C, en consecuencia P (x + λ(x − y)) es un polinomio en λ

acotado, por lo que P (x+λ(x−y)) es constante. En particular tomando λ = 0 y λ = 1 tenemos

que P (x) = P (y).

Cosideremos ahora T : X −→ CN dada por x 7−→ (L1(x), . . . , LN(x)). El operador T es

lineal y Im(T ) ⊂ CN es un subespacio. Definamos ahora q : Im(T ) −→ C como q(z) = P (x)

donde Tx = z, q está bien definida por lo observado anteriormente y resulta un polinomio

m-homogéneo pues q(λz) = P (λx) = λmP (x) = λmq(z). Tomemos, por último, la proyección

π : CN −→ Im(T ), entonces tenemos que q ◦ π : CN −→ C es un polinomio en N variables

complejas m-homogéneo. Luego q ◦ π(z1, . . . , zN) =
∑

16i1,...,im6N

ai1 . . . aimzi1 . . . zim . Entonces

P (x) = q(Tx) = q ◦ π(L1(x), . . . , LN(x)) =
∑

16i1,...,im6N

ai1 . . . aimLi1(x) . . . Lim(x) que es un

polinomio de tipo finito.
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Teorema 4.20. Si X tiene dimensión infinita, entonces la topoloǵıa Hb de X tiene más abiertos

que la topoloǵıa débil de X

Demostración. Como X tiene dimensión infinita, existe una sucesión básica {ej}j∈N (ver [8,

Corollary V.3]). Notemos por γj a los funcionales coordenadas extendidos a todo X por Hahn-

Banach. Sea f(x) =
∑

j∈N

εjγ
2
j (x) con (εj) rápidamente decreciente a 0. Entonces f es acotada

en acotados, por lo que f ∈ Hb y es continua en 0 para la topoloǵıa Hb de X. Pero no es un

polinomio de tipo finito. Para ver esto, consideremos para cada polinomio P ∈ P2 la forma

bilineal simétrica asociada F y definimos el operador TP : X → X∗ como TP (x)(y) = F (x, y).

Ahora bien, probemos que si P es de tipo finito, entonces resulta que TP es un operador de

rango finito, es decir que la dimensión de la imagen de TP es finita. Como P ∈ P2 es de tipo

finito, entonces es de la forma P (x) =
M∑

j=1

θ2
j (x), donde θj ∈ X∗. Luego TP (x) =

M∑

j=1

θj(x)θj,

por lo que TP es de rango finito ya que la imagen esta incluida en el subespacio de X∗ generado

por {θ1, . . . , θM}. Por último veamos que para f(x) =
∑

j∈N

εjγ
2
j (x) ∈ P2 vale que Tf , que queda

definido por Tf (x) =
∑

j∈N

εjγj(x)γj, no es un operador de rango finito. De hecho si evaluamos

en cada ej, tenemos que Tf (ej) = εjγj, por lo que γj ∈ Im(Tf ) para todo j ∈ N.

Luego por el lema anterior, f no es continua para la topoloǵıa débil de X.

La clausura débil de la esfera unidad en un espacio de Banach es la bola unidad. Vale el

mismo resultado para la clausura en la topoloǵıa Hb.

Teorema 4.21. Si X tiene dimensión infinita, entonces: La clausura de la esfera unidad S de

X en la topoloǵıa Hb incluye a la bola unidad cerrada B∗∗ de X∗∗.

Demostración. Como vimos anteriormente (ver demostración de la Proposición 3.59), dado

z ∈ B∗∗ existe una red {xα} ⊂ B tal que f̂(z) = ĺım
α
f(xα) por lo que B es denso en B∗∗ para

la topoloǵıa Hb. Luego basta ver que S es denso en B para la topoloǵıa Hb. Sea z ∈ B y sean

f1, . . . , fN ∈ Hb, basta encontar un x ∈ S tal que fj(x) = fj(z) para 1 6 j 6 N . Para esto,

consideremos Y ⊂ X un subespacio cualquiera de dimensión N + 1 que contenga a z y sea

V una componente irreducible de la variedad dada por {y ∈ Y : fj(y) = fj(z), 1 6 j 6 N}

que contiene a z. Como la variedad está definida por N funciones e Y tiene dimensión N + 1,
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entonces V tiene dimensión positiva. Luego por el Principio del Máximo tenemos que V no

está acotada y como B ∩ V 6= ∅, entonces tenemos también que V ∩ S 6= ∅ por lo que podemos

tomar x ∈ S en esa intersección.

El siguiente teorema muestra que X con la topoloǵıa Hb no necesariamente es un espacio

vectorial topológico.

Teorema 4.22. Sea X un espacio de Hilbert de dimensión infinita. Entonces la operación de

suma (x, y) 7−→ x+ y restringida a B ×B no es continua respecto a la topoloǵıa Hb.

Demostración. Como X es Hilbert, podemos pensar a X como L2. Notemos con x al conjugado

complejo de x. Por el Teorema 4.21 existe una red {xα} ⊂ X tal que ‖xα‖ = 1 y xα → 0 en la

topoloǵıa Hb. Entonces también vale que xα → 0 en la topoloǵıa Hb. Pero si consideramos la

función f(x) =
∫
x2dx, vale que f ∈ P2 y cumple que

f(xα + xα) = f(xα) + f(xα) + 2‖xα‖
2 → 2.

Luego xα + xα no tiende a 0 en la topoloǵıa Hb.

El problema de la Corona para Hb consiste en determinar cuándo X es denso en Mb. En el

caso que Mb = X∗∗, el Teorema de aproximación de Davie-Gamelin [7] muestra que X es denso

en Mb. No sabemos qué sucede en el caso que Mb sea mas grande que X∗∗. Sin embargo, la

idea usada en la demostración del Teorema 4.21, nos permite probar que X es denso en Mb en

la topoloǵıa débil determinada por los polinomios anaĺıticos.

Para probar la densidad, necesitaremos usar el hecho de que la clausura de la imagen de un

polinomio F sobre un espacio vectorial complejo Y de dimensión finita en Cn es una variedad

algebraica en Cn. En este caso vale que la clausura de F (Y ) es una variedad irreducible. Veremos

una versión para Y de dimensión infinita.

Lema 4.23. Sea Y un espacio vectorial complejo. Sea F = (f1, . . . , fn) una función de Y en

Cn tal que la restricción de cada fj a cualquier subespacio de Y de dimensión finita es un

polinomio. Entonces la clausura de la imagen de F es una variedad algebraica.
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Demostración. Sea Y0 un subespacio de dimensión finita de Y , entonces F (Y0) es una variedad

algebraica irreducible en Cn, digamos de dimensión k. Podemos suponer (si no agregamos más

elementos) que tomamos Y0 de manera que la dimensión k de F (Y0) es máxima. Luego si Y1 es

un subespacio de dimensión finita de Y tal que Y1 ⊇ Y0, entonces F (Y1) también es una variedad

algebraica irreducible de dimensión k que contiene a F (Y0), por lo que F (Y0) = F (Y1). Luego

F (Y0) = F (Y ).

Teorema 4.24. Sea Y un espacio vectorial complejo. Sea A un álgebra de funciones en Y tal

que la restricción de cada f ∈ A a un subespacio de dimensión finita de Y es un polinomio

anaĺıtico. Sea I un ideal propio de A. Entonces existe una red {yα} ⊂ Y tal que f(yα) → 0 para

toda f ∈ I.

Demostración. Supongamos que no existe tal red. Entonces existen f1, . . . , fn ∈ I tales que

máx
16i6n

|fi(y)| > 1, para todo y ∈ Y.

Consideremos F = (f1, . . . , fn) la función de Y en Cn y sea V la clausura de la imagen de

F . Entonces V es una variedad algebraica que no contiene a 0. Luego existe un polinomio

p en Cn tal que p = 0 sobre V y p(0) = 1. Como el polinomio p junto con las funciones

coordenadas z1, . . . , zn no tienen ceros comunes, entonces del Nullstellensatz (ver [6, Theorem

4.1]) deducimos que el ideal generado por ellos en el anillo de polinomios en Cn no es propio.

Luego existen polinomios q0, q1, . . . , qn en Cn tales que

pq0 + z1q1 + · · · + znqn = 1 en C
n,

entonces

z1q1 + · · · + znqn = 1 en V.

Luego si tomamos g1, . . . , gn ∈ A, las composiciones de q1, . . . , qn con F , resulta entonces que

f1g1 + · · · + fngn = 1 y el ideal I no es propio.

Como consecuecia de este último Teorema, conseguimos una versión débil del Teorema de

la Corona.

Corolario 4.25. Sea φ un morfismo cualquiera de Hb en C. Entonces existe una red {xα} ⊂ X

tal que f(xα) → φ(f) para todo polinomio anaĺıtico f en X.
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4.4. Acción de operadores en Mb

En esta sección definiremos una acción sobreH∗
b que nos permitirá conocer aspectos topológi-

cos del espectro Mb. Veremos, por ejemplo, que Mb está formado por copias del plano complejo

que pasan por δ0.

Definición 4.26. Consideremos el espacio B(X) de los operadores lineales acotados de X.

Estos operadores actúan sobre Hb por composición, es decir, dados f ∈ Hb y T ∈ B(X),

f · T = f ◦ T ∈ Hb. Esta acción induce otra acción sobre H∗
b , dada por T ∈ B(X) como

(ΛTϕ)(f) = ϕ(f ◦ T ) con f ∈ Hb y ϕ ∈ H∗
b .

Observación 4.27.

ΛST = ΛSΛT para todo S, T ∈ B(X)

pues dados ϕ ∈ H∗
b y f ∈ Hb,

(ΛSTϕ)(f) = ϕ(f ◦ (ST )) = ϕ((f ◦ S) ◦ T ) = (ΛTϕ)(f ◦ S) = ΛS(ΛTϕ)(f).

Luego ΛST = ΛSΛT .

Veamos algunos resultados más.

Lema 4.28. R(ΛTϕ) 6 ‖T‖R(ϕ), para todo ϕ ∈ H∗
b y T ∈ B(X).

Demostración. Sabemos por el Teorema 4.6 que R(ϕ) = ĺım sup
m→∞

‖ϕm‖
1/m.

Luego R(ΛTϕ) = ĺım sup
m→∞

‖(ΛTϕ)m‖
1/m. Ahora bien, dado Pm ∈ Pm, como también vale que

Pm ◦ T ∈ Pm tenemos que

(ΛTϕ)m(Pm) = (ΛTϕ)(Pm) = ϕ(Pm ◦ T ) = ϕm(Pm ◦ T ) = (ΛTϕm)(Pm).

Luego (ΛTϕ)m = ΛTϕm y además vale que

‖Pm ◦ T‖ 6 ‖T‖m‖Pm‖,
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pues dado x ∈ B, ‖Pm(Tx)‖ = ‖Pm(‖T‖ Tx
‖T‖

)‖ = ‖T‖m‖Pm( Tx
‖T‖

)‖ 6 ‖T‖m‖Pm‖.

Por último, dado Pm ∈ Pm,

|(ΛTϕ)m(Pm)| = |ΛTϕm(Pm)| = |ϕm(Pm ◦ T )| 6 ‖ϕm‖‖Pm ◦ T‖ 6 ‖ϕm‖‖T‖
m‖Pm‖.

Luego, ‖ΛTϕm‖ 6 ‖T‖m‖ϕm‖. Entonces ‖(ΛTϕ)m‖
1/m 6 ‖T‖‖ϕm‖

1/m.

En consecuencia tomando ĺımite superior, tenemos queR(ΛTϕ) 6 ‖T‖R(ϕ) como queŕıamos.

Lema 4.29. π(ΛTϕ) = T ∗∗(π(ϕ)) para todos ϕ ∈ H∗
b y T ∈ B(X).

Demostración. Si L ∈ X∗, entonces L◦T = T ∗L, luego dada γ ∈ X∗, como γ ◦T ∈ X∗ tenemos

que

π(ΛTϕ)(γ) = (ΛTϕ)(γ) = ϕ(γ◦T ) = π(ϕ)(γ◦T ) = π(ϕ)(T ∗(γ)) = (π(ϕ)◦T ∗)(γ) = (T ∗∗π(ϕ))(γ).

Por lo tanto, π(ΛTϕ) = T ∗∗(π(ϕ)).

Este resultado muestra en particular que la fibra π−1(0) es invariante por la acción de B(X)

pues si ϕ ∈ π−1(0), π(ϕ) = 0 y en consecuencia T ∗∗(π(ϕ)) = π(ΛTϕ) = 0, o sea ΛTϕ ∈ π−1(0).

Lema 4.30. Para cada ϕ ∈ H∗
b y f ∈ Hb fijos, la aplicación T 7−→ (ΛTϕ)(f) es anaĺıtica sobre

B(X).

Demostración. Por Teorema 3.47 basta ver que (ΛT1+λT2
ϕ)(f) es anaĺıtica en λ para todo

T1, T2 ∈ B(X) y que la aplicación es localmente acotada o sea, que existen ε > 0 y M > 0 tales

que |ΛTϕ(f)| < M para todo T ∈ B(X) con ‖T‖ 6 N .

Veamos primero que es anaĺıtica en λ:

ΛT1+λT2
ϕ(f) = ΛT1+λT2

ϕ(
∑

m∈N0

fm) =
∑

m∈N0

ΛT1+λT2
ϕ(fm) =

∑

m∈N0

ϕ(fm ◦ (T1 + λT2)).

Observemos que para cada m ∈ N0, ϕ(fm ◦ (T1 + λT2)) es un polinomio en λ, pues

fm ◦ (T1 + λT2)(x) = fm(T1x+ λT2x) = f̌m(T1x+ λT2x)
m

=
m∑

k=0

(
m

k

)
f̌m((T1x)

m−k, (λT2x)
k) =

m∑

k=0

(
m

k

)
f̌m((T1x)

m−k, (T2x)
k)λk,
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donde f̌m((T1x)
m−k, (T2x)

k) es la forma multilineal f̌m(T1x1, . . . , T1xm−k, T2xm−k+1, . . . , T2xm)

evaluada en la diagonal, por lo que existe Qm ∈ Pm tal que Qm(x) = f̌m((T1x)
m−k, (T2x)

k).

Luego fm ◦ (T1 + λT2) =
m∑

k=0

(
m

k

)
Qmλ

k y entonces ϕ(fm ◦ (T1 + λT2)) =
m∑

k=0

(
m

k

)
ϕ(Qm)λk

resulta un polinomio en λ.

Luego basta ver que la serie converge uniformemente si |λ| 6 C. Como

|ϕ(fm ◦ (T1 + λT2))| 6 D‖fm ◦ (T1 + λT2)‖R(ϕ)+ε

6 D(R(ϕ) + ε)m‖fm ◦ (T1 + λT2)‖

6 D(R(ϕ) + ε)m‖fm‖‖T1 + λT2‖
m

6 D(R(ϕ) + ε)m‖fm‖(‖T1‖ + |λ|‖T2‖)
m

6 D((R(ϕ) + ε)(‖T1‖ + C‖T2‖))
m‖fm‖.

Entonces
∑

m∈N0

|ϕ(fm ◦ (T1 + λT2))| 6
∑

m∈N0

C((R(ϕ) + ε)(‖T1‖ + C‖T2‖))
m‖fm‖ y como vale

que D1/m(R(ϕ) + ε)(‖T1‖ + C‖T2‖)‖fm‖
1/m → 0, la serie converge uniformemente para todo

|λ| 6 C.

Para ver que es localmente acotada usamos la misma cuenta tomando T = T1 + λT2 y

suponiendo que ‖T‖ 6 N , resulta que

|ΛTϕ(f)| 6
∑

m∈N0

(‖T‖(R(ϕ) + ε))m‖fn‖ 6
∑

m∈N0

(N(R(ϕ) + ε))m‖fn‖ < M

por la misma razón que antes.

Vamos a considerar, ahora, la familia de operadores ξI, donde I es la identidad de X y

ξ ∈ C.

Definición 4.31. Vamos a llamar ϕξ a ΛξIϕ. O sea si f ∈ Hb se desarrolla como f =
∑

m

fm,

entonces

ϕξ(f) =
∑

m

ξmϕ(fm).

En particular vale que la restricción de ϕξ a Pm coincide con ξmϕm.
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Lema 4.32. Sea ϕ ∈ H∗
b fijo. Entonces:

(1) La aplicación C −→ H∗
b que manda ξ 7−→ ϕξ es entera. O sea, ξ 7−→ ϕξ(f) es entera para

toda f ∈ Hb.

(2) ϕ1 = ϕ.

(3) ϕ0 = δ0.

(4) π(ϕξ) = ξπ(ϕ) para todo ξ ∈ C.

(5) Si P ∈ Pm, entonces ϕξ(P ) = ξm(P ).

(6) R(ϕξ) = |ξ|R(ϕ) para todo ξ ∈ C.

Demostración.

(1) Vale pues ϕξ(f) =
∑

m

ξmϕ(fm) es entera, ya que

ĺım sup
m

|ξmϕ(fm)|1/m 6 ĺım sup
m

|ξ|‖ϕm‖
1/m‖fm‖

1/m
6 |ξ|R(ϕ) ĺım sup

m
‖fm‖ = 0.

(2) ϕ1(f) =
∑

m

ϕ(fm) = ϕ(f) para toda f ∈ Hb.

(3) ϕ0(f) =
∑

m

0mϕ(fm) = ϕ(f0) = f0 = f(0).

(4) π(ϕξ) = π(
∑

m

ξmϕm) = ξϕ1 = ξπ(ϕ).

(5) Sea P ∈ Pm, ϕξ(P ) =
∑

m ξ
mϕm(P ) = ξmϕm(P ) = ξmϕ(P ).

(6) Observemos que (ϕξ)m = ξmϕm, entonces ‖(ϕξ)m‖
1/m = (|ξ|mϕm)1/m = |ξ|‖ϕm‖

1/m, luego

tomando ĺımite superior tenemos que R(ϕξ) = |ξ|R(ϕ) para todo ξ ∈ C.
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Observación 4.33. Notemos primero que las tranformaciones ΛT dejan Mb invariante. Pues

si tomamos ϕ ∈Mb y f, g ∈ Hb, tenemos que

ΛTϕ(f.g) = ϕ((f.g) ◦ T ) = ϕ((f ◦ T ).(g ◦ T )) = ϕ(f ◦ T )ϕ(g ◦ T ) = ΛTϕ(f)ΛTϕ(g).

Luego ΛTϕ ∈ Mb. En particular, para ϕ ∈ Mb la correspondencia ξ 7−→ ϕξ es una función

anaĺıtica de C en H∗
b , cuya imagen está incluida en Mb y pasa por ϕ y por δ0.

Si π(ϕ) 6= 0, la parte (4) del Lema 4.32 muestra que la correspondencia es inyectiva, pues si

ϕξ = ϕη entonces ξπ(ϕ) = π(ϕξ) = π(ϕη) = ηπ(ϕ) y como π(ϕ) 6= 0 resulta que ξ = η. Luego

la imagen de la aplicación contiene una copia de C dentro de Mb que pasa por ϕ y por el origen

δ0.

En el caso que la aplicación ξ 7−→ ϕξ no sea inyectiva, se puede reparametrizar, y encontrar

también una copia de C que pasa por ϕ y por el origen δ0 como muestra el siguiente teorema.

Teorema 4.34. Toda ϕ ∈ Mb está incluida en una copia de C dentro de Mb que pasa por el

origen δ0.

Demostración. Consideremos el conjunto A = {k ∈ N : existe P ∈ Pk tal que ϕ(P ) 6= 0}.

Como ϕ es multiplicativa, A resulta un semigrupo. Sea m el máximo común divisor de A y

veamos que ϕξ = ϕη si y sólo si ξ = µη con µ ráız m-ésima de la unidad.

Supongamos primero que ϕξ = ϕη y sea n ∈ A, o sea existe P ∈ Pn tal que ϕ(P ) 6= 0.

Entonces por parte (5) del Lema 4.32, ξnϕ(P ) = ϕξ(P ) = ϕη(P ) = ηnϕ(P ) y como ϕ(P ) 6= 0

resulta que ξn = ηn, y esto vale para todo n ∈ A. Ahora bien, si ξn = ηn para todo n ∈ A (como

números complejos) entonces para todo r ∈ Z vale que ξnr = ηnr, por lo tanto dados n, k ∈ A

vale que ξrn+sk = ηrn+sk para todo r, s ∈ Z, luego ξm = ηm, o sea, ξ = µη con µ ráız m-ésima de

la unidad. Rećıprocamente, si ξ = µη, entonces ϕξ =
∑

k ξ
kϕk =

∑
m|k ξ

kϕk =
∑

m|k η
kϕk = ϕη

pues para que exista P con ϕ(P ) 6= 0 para P un polinomio k-homogéneo, tiene que pasar que

m|k.

Entonces la aplicación que manda ρ→ ϕξ donde ξm = ρ está bien definida pues si ξm = ηm

entonces ϕξ = ϕη y, además, resulta inyectiva y anaĺıtica. Por lo tanto la imagen de la aplicación

contiene una copia de la recta compleja dentro de Mb que pasa por ϕ y por el origen δ0.
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4.5. La operación Convolución

En esta sección definiremos una operación dentro de H∗
b , a la que llamaremos convolución.

Veremos que podemos restringir esta operación al espectro de Hb y esto nos permitirá darle

una estructura de semigrupo a Mb. Y, bajo cierta condición que estudiaremos en las secciones

4.6 y 4.7, veremos que Mb está formada por copias anaĺıticas y disjuntas de X∗∗.

Definición 4.35. Dado x ∈ X, definimos el operador de traslación Tx en Hb como

(Txf)(y) = f(x+ y), f ∈ Hb.

Observación 4.36. Txf es anaĺıtica en X y es acotada sobre subconjuntos acotados de X,

luego Txf ∈ Hb.

Observación 4.37. Si Q es un polinomio anaĺıtico en X, entonces tenemos que

TxQ = Q+ polinomios de menor orden.

En el caso particular que L ∈ X∗ tenemos que

TxL = L+ L(x)

pues TxL(y) = L(x+ y) = L(y) + L(x).

Observación 4.38. Una estimación para la norma de Txf en la bola rB viene dada por

‖Txf‖r 6 ‖f‖r+‖x‖

pues

‖Txf‖r = sup
‖y‖6r

|Txf(y)| = sup
‖y‖6r

|f(x+ y)| 6 sup
‖y‖6r+‖x‖

|f(y)| = ‖f‖r+‖x‖.

Luego, cada Tx : Hb −→ Hb es un operador continuo. Y, como además las funciones de Hb

son uniformemente continuas sobre subconjuntos acotados de X, los elementos Txf en Hb se

mueven continuamente con x en la topoloǵıa de le convergencia uniforme en Hb, es decir, la

aplicación (X, ‖ · ‖) → Hb dada por x 7−→ Txf es continua.
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Ejemplo 4.39. La acción que manda x → Txf no es necesariamente continua respecto de la

topoloǵıa débil de X. Tomemos por ejemplo X = ℓ2 y sea {e1, e2, . . . } la base canónica de ℓ2.

Definimos P (x) =
∑
x2
j con x =

∑
xjej ∈ ℓ2.

Como en tiende débil a 0, si la acción fuera continua debeŕıa ser que P (x + en) tiende a

P (x), pero P (x+ en) =
∑

(xj + (en)j)
2 =

∑
(x2

j + 2xj(en)j + ((en)j)
2) = P (x) + 2xn + 1 tiende

a P (x) + 1.

Definición 4.40. La acción dual de los Tx produce un grupo de operadores lineales inversibles

Sx : H∗
b −→ H∗

b definidos por

(Sxϕ)(f) = ϕ(Txf), x ∈ X, f ∈ Hb, ϕ ∈ H∗
b .

Como Txf vaŕıa continuamente en x considerando la topoloǵıa inducida por la norma en X,

entonces para cada ϕ ∈ H∗
b fijo, los Sxϕ también lo cumplen. Además, Sx deja Mb invariante,

o sea

Sx(Mb) = Mb, x ∈ X,

pues dados ϕ ∈Mb y f, g ∈ Hb, tenemos que

Sxϕ(f.g) = ϕ(Tx(f.g)) = ϕ(Txf.Txg) = ϕ(Txf)ϕ(Txg) = Sxϕ(f)Sxϕ(g).

Proposición 4.41. Dados x ∈ X y z ∈ X∗∗, vale que

Sxδz = δx+z.

Demostración. Veamos primero que Sxδy = δx+y para todo x, y ∈ X. Sea f ∈ Hb, entonces

Sxδy(f) = δy(Txf) = Txf(y) = f(x+ y) = δx+y(f).

Ahora bien, para ver que Sxδz = δx+z con x ∈ X y z ∈ X∗∗ basta ver que coinciden sobre

los espacios Pm, m > 1. Sea entonces P ∈ Pm, consideremos F la forma multilineal simétrica

sobre X asociada, y sea F̂ la forma multilineal sobre X∗∗ obtenida extendiendo F mediante la

continuidad débil-∗, una variable a la vez, de la última a la primera. Luego si extendemos de

la misma manera a la m-forma en X

(x1, . . . , xm) 7→ F (x+ x1, . . . , x+ xm)
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a X∗∗ obtenemos F̂ (x+ z1, . . . , x+ zm), pues

ĺım
yα1

→z1
... ĺım

yαm→zm

F (x+yα1
, ..., x+yαm

) = ĺım
yα1

→x+z1
... ĺım

yαm→x+zm

F (yα1
, ..., yαm

) = F̂ (x+z1, ..., x+zm).

Restringiendo a la diagonal obtenemos

T̂xP (z) = F̂ (x+ z, . . . , x+ z) = P̂ (x+ z),

pues TxP (y) = P (x+ y) = F (x+ y)m =
m∑

k=0

(
m

k

)
F (xk, ym−k), entonces

T̂xP (z) = ( ĺım
yα1

→z1
. . . ĺım

yαm→zm

m∑

k=0

(
m

k

)
F (xk, yαk+1

, . . . , yαm
))|z

=
m∑

k=0

(
m

k

)
F̂ (xk, zm−k) = F̂ (x+ z)m.

Luego tenemos que

Sxδz(P ) = δz(TxP ) = ˆTxP (z) = P̂ (x+ z) = δx+z(P ).

Proposición 4.42. Dados x ∈ X y ϕ ∈ H∗
b se tiene:

R(Sxϕ) 6 R(ϕ) + ‖x‖.

Demostración. Dado ε > 0, existe C > 0 tal que

|ϕ(g)| 6 C‖g‖R(ϕ)+ε, g ∈ Hb.

Entonces dada f ∈ Hb tenemos que

|(Sxϕ)(f)| = |ϕ(Txf)| 6 C‖Txf‖R(ϕ)+ε 6 C‖f‖R(ϕ)+‖x‖+ε.

Luego R(Sxϕ) 6 R(ϕ) + ‖x‖.
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Proposición 4.43. Dados x ∈ X y ϕ ∈ H∗
b se tiene:

π(Sxϕ) = x+ π(ϕ).

Demostración. Como consecuencia de la Observación 4.37 tenemos que dado L ∈ X∗,

(Sxϕ)(L) = ϕ(TxL) = ϕ(L(x) + L) = L(x) + ϕ(L) = L(x) + π(ϕ)(L) = (x+ π(ϕ))(L).

Luego, π(Sxϕ) = x+ π(ϕ)

Este resultado muestra que para cada ϕ ∈ H∗
b fijo, la acción x 7→ Sxϕ es inyectiva. Pues si

Sxϕ = Syϕ entonces x + π(ϕ) = π(Sxϕ) = π(Syϕ) = y + π(ϕ), luego x = y. Por lo cuál esta

acción de X en H∗
b tiene el efecto de partir H∗

b en órbitas, donde cada una es una copia de X.

El siguiente teorema muestra que la extensión natural de f ∈ Hb a H∗
b , dada por f̂ ,

pertenece a Hb sobre cada una de las órbitas. Podemos pensar aśı que {Sx(ϕ) : x ∈ X} es

una parametrización de X adentro de H∗
b .

Teorema 4.44. Dados ϕ ∈ H∗
b fijo y f ∈ Hb, la función

x 7→ (Sxϕ)(f) = ϕ(Txf), x ∈ X

pertenece a Hb.

Demostración. En 4.42 vimos que |(Sxϕ)(f)| 6 C‖f‖R(ϕ)+ε+‖x‖. Entonces

|(Sxϕ)(f)| 6 C‖f‖R(ϕ)+ε+r, para todo ‖x‖ 6 r.

Luego, (Sxϕ)(f) es acotada sobre subconjuntos acotados de X.

Para ver que la función es anaĺıtica, tenemos que ver que (Sxϕ)(f) = ϕ(Txf) depende

anaĺıticamente de x. Como toda f ∈ Hb mirada sobre los acotados de X es ĺımite uniforme

de polinomios, basta ver que ϕ(TxP ) depende anaĺıticamente de x para todo P ∈ Pm pues si

Pm → f uniformemente sobre acotados, entonces dado x ∈ sB, tenemos que

|ϕ(TxPm) − ϕ(Txf)| = |ϕ(Tx(Pm − f))| 6 C‖Tx(Pm − f)‖r

= C sup
‖y‖6r

|(Pm − f)(x+ y)| 6 C‖Pm − f‖r+s → 0,
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luego ϕ(TxPm) → ϕ(Txf) uniformemente sobre acotados.

Sea entonces P ∈ Pm y consideremos su forma m-lineal simétrica asociada F . Entonces

(TxP )(y) = P (x+ y) = F (x+ y, . . . , x+ y)

es una suma de términos de la forma F (x, . . . , x, y, . . . , y) por ser multilineal y simétrica. Si

ϕ ∈ H∗
b opera sobre funciones que dependen de la variable y, entonces

x1, . . . , xk 7→ ϕ(F (x1, . . . , xk, y, . . . , y))

es una forma k-lineal simétrica y continua sobre X, luego su restricción a la diagonal

x 7→ ϕ(F (x, . . . , x, y, . . . , y))

es anaĺıtica sobre X. Por último como ϕ(TxP ) es suma de dichas funciones, resulta que depende

anaĺıticamente de x.

El Teorema 4.44 nos permite extender la acción de X en H∗
b a una convolución de todo H∗

b

en śı mismo, como sigue.

Definición 4.45. Dados ϕ, θ ∈ H∗
b , definimos la convolución ϕ ∗ θ ∈ H∗

b como

(ϕ ∗ θ)(f) = ϕ(θ(Txf)), f ∈ Hb;

donde identificamos θ(Txf) con la función x 7→ θ(Txf) ∈ Hb.

Si tomamos la función auxiliar g definida por

g(x) = θ(Txf) = (Sxθ)(f), x ∈ X,

por el Teorema 4.44, g ∈ Hb y entonces ϕ ∗ θ viene dada por

(ϕ ∗ θ)(f) = ϕ(g).

Los siguientes lemas extienden lo hecho para la acción de X en H∗
b a la convolución.

Lema 4.46. Si ϕ, θ ∈ H∗
b , entonces ϕ ∗ θ ∈ H∗

b y

R(ϕ ∗ θ) 6 R(ϕ) +R(θ).
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Demostración. Dado ε > 0, existen C,D > 0 tales que

|ϕ(f)| 6 C‖f‖R(ϕ)+ε, f ∈ Hb y

|θ(f)| 6 D‖f‖R(θ)+ε, f ∈ Hb.

Sea f ∈ Hb y tomemos g ∈ Hb su función auxiliar como en la Definición 4.45. Entonces

|g(x)| = |θ(Txf)| 6 D‖Txf‖R(θ)+ε 6 D‖f‖R(θ)+‖x‖+ε.

Luego como ‖g‖‖x‖ = sup{|g(y)| : ‖y‖ 6 ‖x‖} 6 D‖f‖R(θ)+‖x‖+ε, tenemos que

‖g‖R(ϕ)+ε 6 D‖f‖R(ϕ)+R(θ)+2ε

y, entonces,

|(ϕ ∗ θ)(f)| = |ϕ(g)| 6 C‖g‖R(ϕ)+ε 6 CD‖f‖R(ϕ)+R(θ)+2ε.

Luego

R(ϕ ∗ θ) 6 R(ϕ) +R(θ) + 2ε, para todo ε > 0.

Por lo tanto

R(ϕ ∗ θ) 6 R(ϕ) +R(θ).

El siguiente Lema muestra que los elementos de X y los deH∗
b conmutan bajo la convolución.

Lema 4.47. Si θ ∈ H∗
b e y ∈ X, entonces

δy ∗ θ = θ ∗ δy = Syθ.

En particular,

δ0 ∗ θ = θ ∗ δ0 = θ, θ ∈ H∗
b .

Demostración. Sea f ∈ Hb. Entonces

(δy ∗ θ)(f) = δy(g) = g(y),

donde g(x) = θ(Txf) es la función auxiliar. Luego

(δy ∗ θ)(f) = g(y) = θ(Tyf) = (Syθ)(f).
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Por otro lado,

(θ ∗ δy)(f) = θ(g̃)

donde g̃(x) = δy(Txf) = Txf(y) = f(x+ y) = Tyf(x) es la función auxiliar. Luego

(θ ∗ δy)(f) = θ(g̃) = θ(Tyf) = (Syθ)(f).

Por lo tanto δy ∗ θ = θ ∗ δy = Syθ.

En particular, como vale que (S0θ)(f) = θ(T0f) = θ(f), podemos concluir entonces que

δ0 ∗ θ = θ ∗ δ0 = S0θ = θ.

Lema 4.48. La operación de convolución es asociativa, o sea

ϕ ∗ (θ ∗ ψ) = (ϕ ∗ θ) ∗ ψ, para todo ϕ, θ, ψ ∈ H∗
b .

Demostración.

(ϕ ∗ (θ ∗ ψ))(f) = ϕ((θ ∗ ψ)(Tyf)) = ϕ(θ(ψ(TxTyf))),

donde ϕ actúa sobre funciones de y y θ sobre funciones de x. Por otro lado

((ϕ ∗ θ) ∗ ψ)(f) = (ϕ ∗ θ)(ψ(Txf)) = ϕ(θ(Tyψ(Txf))).

Ahora bien Tyψ(Txf) = Tyg(x), donde g(x) = ψ(Txf), entonces

Tyψ(Txf) = Tyg(x) = g(x+ y) = ψ(Tx+yf) = ψ(TxTyf).

Luego

ϕ ∗ (θ ∗ ψ) = (ϕ ∗ θ) ∗ ψ.

El desarrollo de cada f ∈ Hb en serie de Taylor nos da una descomposición de Hb en una

suma directa donde las combinaciones lineales pueden ser infinitas

Hb
∼=

∞⊕

m=0

Pm.
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Hay una descomposición similar para H∗
b ,

H∗
b
∼=

∞⊕

m=0

P∗
m,

donde llamamos P∗
m al subespacio de H∗

b que anula todo P ∈ Pk para k 6= m. Luego, por

ejemplo, P∗
0
∼= C es el subespacio de dimensión uno generado por δ0 y P∗

1
∼= X∗∗. Para ϕ ∈ H∗

b ,

llamamos ϕm a la restricción de ϕ sobre Pm, si definimos ϕm como 0 sobre Pk con k 6= m,

entonces ϕm pertenece a H∗
b . Con esta definición de ϕm tenemos, por ejemplo, que ϕ0 = ϕ(1)δ0

pues ϕ0(f) = ϕ0(
∑

m fm) = ϕ0(f0) = ϕ0(δ0(f)) = ϕ0(1)δ0(f).

Teorema 4.49. Sean ϕ ∈ P∗
j y θ ∈ P∗

k . Entonces ϕ ∗ θ pertenece a P∗
j+k.

Además, si P ∈ Pj+k y F es la forma (j + k)-lineal simétrica asociada, entonces

(ϕ ∗ θ)(P ) =
(j + k)!

j!k!
ϕ(x)(θ(y)(F (x, . . . , x, y, . . . , y))),

donde x aparece j veces e y aparece k veces y donde ϕ opera sobre funciones que dependen de

la variable x y θ sobre funciones que dependen de la variable y.

Demostración. Sea m > 0 y sea P ∈ Pm con F la forma m-lineal simétrica asociada. Entonces

(TxP )(y) = F (x+ y, . . . , x+ y) =
m∑

i=0

m!

i!(m− i)!
F (x, . . . , x, y, . . . , y),

donde x aparece i veces e y aparece m− i veces en el sumando i-ésimo. Entonces θ(y) aplicada

al sumando i-ésimo es cero salvo cuando m− i = k. Luego

θ(y)(TxP ) =
m!

(m− k)!k!
θ(y)(F (x, . . . , x, y, . . . , y)),

donde x aparece m−k veces e y aparece k veces. Si aplicamos ahora ϕ(x), da cero como resultado

salvo que m− k = j. Luego ϕ ∗ θ = 0 sobre Pm para m 6= j + k, por lo tanto ϕ ∗ θ pertenece a

P∗
j+k. En el caso donde m = j + k obtenemos la fórmula

(ϕ ∗ θ)(P ) =
(j + k)!

j!k!
ϕ(x)(θ(y)(F (x, . . . , x, y, . . . , y))).
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Si consideramos los desarrollos de ϕ, θ ∈ H∗
b tenemos ϕ =

∑
k ϕk y θ =

∑
j θj, entonces la

proyección sobre P∗
m de la convolución ϕ ∗ θ viene dada por

m∑

k=0

ϕk ∗ θm−k. Luego tenemos el

siguiente corolario.

Corolario 4.50. Sean ϕ, θ, ψ ∈ H∗
b . Entonces ϕ ∗ θ = ψ si y sólo si las proyecciones sobre P∗

m

satisfacen
m∑

k=0

ϕk ∗ θm−k = ψm, m > 0.

Observemos que, por el Lema 4.47, el término que involucra a ϕm en la m-ésima ecuación

es

ϕm ∗ θ0 = θ(1)ϕm ∗ δ0 = θ(1)ϕm.

Luego si θ(1) 6= 0, podemos usar este sistema de ecuaciones para escribir cada ϕm en función

de θ y ψ.

Corolario 4.51. Sean θ, ψ ∈ H∗
b fijos con θ(1) 6= 0. Entonces la ecuación ϕ ∗ θ = ψ tiene a lo

sumo una solución ϕ ∈ H∗
b . En el caso que tenga dicha solución ϕ, sus proyecciones ϕm sobre

P∗
m quedan determinadas recursivamente por las siguientes ecuaciones

θ(1)ϕm +
m−1∑

k=0

ϕk ∗ θm−k = ψm, m > 0.

Observación 4.52. De la misma forma, si tomamos ϕ, ψ ∈ H∗
b fijos, con ϕ(1) 6= 0, la ecuación

ϕ∗θ = ψ tiene a lo sumo una solución θ ∈ H∗
b , que puede ser obtenida resolviendo recursivamente

el sistema lineal asociado para cada θm.

Veamos ahora qué conclusiones podemos sacar si nos restringimos a Mb.

Lema 4.53. Sean ϕ, θ ∈Mb, entonces

π(ϕ ∗ θ) = π(ϕ) + π(θ).
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Demostración. Sea L ∈ X∗. Entonces la función auxiliar asociada a f = L viene dada por

g(x) = θ(TxL) = θ(L(x) + L) = L(x) + θ(L) = L(x) + π(θ)(L). Luego,

(ϕ ∗ θ)(L) = ϕ(g) = ϕ(L) + ϕ(π(θ)(L)) = π(ϕ)(L) + π(θ)(L).

Por lo tanto

π(ϕ ∗ θ) = π(ϕ) + π(θ).

Teorema 4.54. Si ϕ, θ ∈Mb entonces ϕ ∗ θ pertenece a Mb.

Demostración. Sean f, h ∈ Hb, entonces

(ϕ ∗ θ)(f.h) = ϕ(θ(Tx(f.h))) = ϕ(θ(Txf.Txh)) = ϕ(θ(Txf).θ(Txh))

= ϕ(θ(Txf))ϕ(θ(Txh)) = (ϕ ∗ θ)(f)(ϕ ∗ θ)(h).

Luego ϕ ∗ θ pertenece a Mb.

Luego la operación de convolución hace de Mb un semigrupo, donde δ0 es la identidad.

Además como

δx ∗ δy = δx+y, x, y ∈ X,

podemos pensar al espacio X como subgrupo del semigrupo y como vimos en el Lema 4.47

δx ∗ θ = θ ∗ δx para todo θ ∈Mb, concluimos que X queda incluido en el centro del semigrupo.

En general hay elementos del semigrupo que no tienen inverso, por lo que el semigrupo no

es un grupo.

Ahora vamos a estudiar los morfismos δz con z ∈ X∗∗. Vimos en el Lema 4.13 que

(δz)1 = z ∈ X∗∗.

Queremos ahora identificar sus otros componentes.

Lema 4.55. Sean z1, . . . , zm ∈ X∗∗ y sea P ∈ Pm, tomemos F la forma m-lineal simétrica

asociada y F̂ la extensión de F a X∗∗ que se obtiene extendiendo por continuidad respecto a la

topoloǵıa débil-∗, una variable por vez, de la última a la primera. Entonces

(z1 ∗ · · · ∗ zm)(P ) = m!F̂ (z1, . . . , zm).
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Demostración. Para probar este resultado, hagamos inducción sobre m.

m = 1: z(P ) = δz(P ) = F̂ (z).

Supongamos entonces que vale para m− 1 y consideremos la función auxiliar g como

g(x) = (z2 ∗ · · · ∗ zm)(TxP ) = (z2 ∗ · · · ∗ zm)(F (x+ y, . . . , x+ y)).

Desarrollando la expresión de F y usando que z2 ∗ · · · ∗ zm ∈ P∗
m−1 anula todos los términos

salvo los m términos que son (m− 1)-homogéneos en y, tenemos que

g(x) = m(z2 ∗ · · · ∗ zm)(F (x, y, . . . , y)).

Llamemos FQ(y2, . . . , ym) = F (x, y2, . . . , ym), que es una forma (m− 1)-lineal para cada x fijo.

Por hipótesis inductiva obtenemos

g(x) = m(m− 1)!F̂Q(z2, . . . , zm).

Ahora bien, si consideramos F̂ la extensión de F a X∗∗, por unicidad de la extensión tenemos

que F̂ (x, z2, . . . , zm) = F̂Q(z2, . . . , zm) para cada x ∈ X. Por lo tanto tenemos que

g(x) = m!F̂ (x, z2, . . . , zm).

Luego

(z1 ∗ · · · ∗ zm)(P ) = z1(g) = m!F̂ (z1, . . . , zm).

En particular tenemos para P ∈ Pm que

δz(P ) = P̂ (z) = F̂ (z, . . . , z) =
1

m!
(z ∗ · · · ∗ z)(P ).

Esto nos da una expresión para la proyección de δz sobre P∗
m:

(δz)m =
1

m!
z ∗ · · · ∗ z (m veces).

Vamos a notar z ∗ · · · ∗ z m veces como z∗m. Con esta notación z∗0 = δ0. Luego tenemos la

siguiente fórmula

δz =
∞∑

m=0

1

m!
z∗m, z ∈ X.
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O, dicho de otra forma,

δz = exp(∗z), z ∈ X∗∗.

Estudiemos ahora la conmutatividad de los δz, para elementos de X ∗∗.

Teorema 4.56. Dados z, w ∈ X∗∗ fijos. Son equivalentes:

(1) z ∗ w = w ∗ z,

(2) δz ∗ δw = δw ∗ δz,

(3) δz+w = δz ∗ δw.

Demostración. Tenemos que δz ∗ δw =
∑

j
1
j!
z∗j ∗

∑
k

1
k!
w∗k. Entonces

(δz ∗ δw)2 =
∑

j+k=2

z∗jw∗k

j!k!
=

1

2
(z ∗ z + 2z ∗ w + w ∗ w),

análogamente

(δw ∗ δz)2 =
1

2
(z ∗ z + 2w ∗ z + w ∗ w),

y además

(δz+w)2 =
1

2
(z + w) ∗ (z + w) =

1

2
(z ∗ z + z ∗ w + w ∗ z + w ∗ w),

pues dado P ∈ P2,

1

2
((z + w) ∗ (z + w))(P ) =

1

2
2!F̂ (z + w, z + w)

= (F̂ (z, z) + F̂ (z, w) + F̂ (w, z) + F̂ (w,w))

=
1

2
((z ∗ z)(P ) + (z ∗ w)(P ) + (w ∗ z)(P ) + (w ∗ w)(P )),

donde F̂ es la extensión sobre X∗∗ de F , la forma bilineal simétrica asociada a P .

Ahora bien, si vale (2) o vale (3), entonces vale (1). Rećıprocamente si vale (1), claramente

vale (2) y como vale también que

(δz ∗ δw)m =
∑

j+k=m

z∗jw∗k

j!k!
=

(z + w)∗m

m!
= (δz+w)m

se deduce entonces que (3) es cierto.
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Podemos concluir entonces, que en general z∗w 6= w∗z. Por ejemplo si X = ℓ1 (ver Teorema

4.64 y Ejemplo 4.66).

Por otro lado, podemos pensar en una acción de X∗∗ sobre Mb que consiste en hacer con-

volución con δz. Esto lo podemos usar para ver que cada punto de Mb esta incluido en una

copia de X∗∗, como muestra el siguiente teorema.

Teorema 4.57. Sea θ ∈Mb fijo. Entonces la correspondencia de X∗∗ en Mb dada por z → δz∗θ

es inyectiva y continua respecto de la topoloǵıa de la norma en X∗∗. Además, si f ∈ Hb, la

función x 7→ θ(Txf) pertenece a Hb(X) y su extensión canónica sobre X∗∗ viene dada por la

función z 7→ (δz ∗ θ)(f) que pertenece a Hb(X
∗∗).

Demostración. Por Lema 4.53 tenemos que π(δz ∗ θ) = π(δz) + π(θ) = z + π(θ), luego la

correspondencia es inyectiva. Veamos ahora que la aplicación z 7→ δz ∗ θ es continua. Sea

z ∈ X∗∗ y sea {zα} ⊂ X∗∗ tal que zα → z, queremos ver δzα
∗ θ → δz ∗ θ en Mb, o sea, que

|δzα
∗θ(f)−δz ∗θ(f)| → 0 para toda f ∈ Hb. Ahora bien, dado f ∈ Hb, consideremos la función

auxiliar g ∈ Hb dada por g(x) = θ(h) donde h(x) = Txf , luego

|δzα
∗ θ(f) − δz ∗ θ(f)| = |δzα

(g) − δz(g)| = |ĝ(zα) − ĝ(z)| → 0,

pues ĝ es continua (Proposición 3.59).

Sabemos, por el Teorema 4.44, que la función x 7→ θ(Txf) pertenece aHb(X) y, por definición

de δz, la extensión canónica a X∗∗ viene dada por z 7→ δz(θ(Txf)) = (δz ∗ θ)(f), luego la

aplicación z 7→ (δz ∗ θ) pertenece a Hb(X
∗∗).

Vamos a llamar al conjunto {δz ∗ θ : z ∈ X∗∗}, la trayectoria determinada por θ en Mb.

En el caso que δz ∗ δw = δz+w para todo z, w ∈ X∗∗ vale que dos trayectorias coinciden o son

disjuntas pues si δw1
∗ θ = δw2

∗ ϕ, entonces θ = δw2−w1
∗ ϕ, luego δz ∗ θ = δz+w2−w1

∗ ϕ, por

lo que las trayectorias coinciden. Esto nos dice que las trayectorias forman una foliación de Mb

formada por copias de X∗∗ donde en cada una de las hojas las funciones de Hb son anaĺıticas.

O sea, se puede pensar que {δz ∗ θ : z ∈ X∗∗} es una parametrización de X∗∗ dentro de Mb.

En el caso donde existen w1, w2 ∈ X∗∗ tales que θ = δw1
∗δw2

6= δw1+w2
, como π(θ) = w1+w2,

entonces θ no es ninguno de los δz. O sea, θ no pertenece a la trayectoria determinada por δ0.

Sin embargo las trayectorias de δ0 y θ no son disjuntas pues δw2
= δ−w1

∗ θ = δw2
∗ δ0. Por lo

que δw2
pertenece a copias anaĺıticas de X∗∗ que estan orientadas en distintas direcciones.
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4.6. Continuidad débil-∗ en cada variable de formas mul-

tilineales

Dado F una formam-lineal en X, vimos que la podemos extender a una única formam-lineal

F̂ en X∗∗ con la siguiente prepiedad:

para cada 1 6 j 6 m, y dados x1, . . . , xj−1 ∈ X y zj+1, . . . , zm ∈ X∗∗ fijos, la función

z → F̂ (x1, . . . , xj−1, z, zj+1, . . . , zm),

con z ∈ X∗∗, es débil-∗ continua. Y para obtener F̂ , extendemos por continuidad débil-∗, una

variable a la vez, desde la última a la primera. Observamos anteriormente que esta extensión

depende del orden en que se extienden las variables, la pregunta que queremos responder en

este caṕıtulo es: ¿cuándo se llega a la misma extensión F̂ extendiendo las variables en otro

orden? Esta pregunta es equivalente a preguntarse cuándo la extensión F̂ es débil-∗ continua

en cada variable.

Observemos que si existiera alguna extensión débil-∗ continua en cada variable de F a X∗∗,

entonces la extensión es única.

Proposición 4.58. Toda forma m-lineal continua en X se extiende a una forma m-lineal débil-

∗ continua en cada variable sobre X∗∗ para todo m ∈ N si y sólo si toda forma bilineal continua

en X se extiende a una forma bilineal débil-∗ continua en cada variable sobre X∗∗.

Demostración. Supongamos que toda forma bilineal en X se extiende a una forma bilineal

débil-∗ continua en cada variable sobre X∗∗. Consideremos la extensión de una forma m-lineal

obtenida extendiendo una variable por vez, en algún orden. La hipótesis dice que si cambiamos

el orden de dos variables consecutivas en la extensión, obtenemos la misma extensión. Por lo

que podemos cambiar el orden de las variables consecutivas en la extensión sucesivas veces y

llegar a cualquier orden de las variables y siempre obtenemos la misma extensión. Luego es

débil-∗ continua en cada variable.

Un operador lineal T de X en X∗ determina una forma bilineal F en X mediante la fórmula

F (x, y) = Ty(x) = 〈x, Ty〉, x, y ∈ X.
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Observación 4.59. Toda forma bilineal F : X × X → C proviene de un operador lineal

T : X → X∗ y la correspondencia T → F es un isomorfismo isométrico. Pues

‖T‖ = sup
‖y‖=1

‖Ty‖ = sup
‖y‖=1

sup
‖x‖=1

|Ty(x)| = sup
‖y‖=1

sup
‖x‖=1

|F (x, y)| = ‖F‖.

Sea F1 la extensión de la forma bilineal simétrica F (x, y) a X∗∗ que se obtiene extendiendo

por continuidad débil-∗ primero respecto de x y luego respecto de y, y sea F2 la extensión de

la forma bilineal F (x, y) a X∗∗ que se obtiene extendiendo por continuidad débil-∗ primero

respecto de y y luego respecto de x. Entonces tenemos que F1(z, w) = F2(w, z), con z, w ∈ X∗∗,

pues F1(z, w) = ĺım
yα→w

ĺım
xα→z

F (xα, yα) = ĺım
yα→w

ĺım
xα→z

F (yα, xα) = F2(w, z).

Nuestro objetivo es ver cuándo F1 coincide con F2, consideremos entonces los operadores

lineales de X∗∗ en X∗∗∗ corespondientes a F1 y a F2 y veamos si coinciden. Para esto, notemos

con J la inclusión canónica de X en X∗∗ y con J∗ la correspondiente proyección de X∗∗∗ en X∗.

Lema 4.60. Supongamos que la forma bilineal continua F en X se corresponde con el operador

lineal de X en X∗, T , y sean F1 y F2 las extensiones de F a X∗∗ como antes. Entonces los

operadores lineales de X∗∗ en X∗∗∗ correspondientes a F1 y a F2 estan determinados por

F1(z, w) = 〈z, T ∗∗w〉, z, w ∈ X∗∗,

F2(z, w) = 〈z, J∗T ∗∗w〉, z, w ∈ X∗∗,

donde J∗ es la proyección canónica de X∗∗∗ en X∗.

Demostración. Para ver la primera igualdad, basta ver que para cada y ∈ X, la aplicación

dada por z 7→ 〈z, T ∗∗ŷ〉 resulta débil-∗ continua en X∗∗ y que para cada z ∈ X∗∗, la aplicación

w 7→ 〈z, T ∗∗w〉 es débil-∗ continua en X∗∗. Ahora bien,

〈z, T ∗∗ŷ〉 = T ∗∗ŷ(z) = ŷ(T ∗z) = T ∗z(y) = z(Ty) = 〈Ty, z〉,

con Ty ∈ X∗, o sea, la aplicación manda z en z(Ty) por lo que es débil-∗ continua en X∗∗. Por

otro lado,

〈z, T ∗∗w〉 = T ∗∗w(z) = w(T ∗z) = 〈T ∗z, w〉,

con T ∗z ∈ X∗, por lo que la aplicación resulta débil-∗ continua en X∗∗.



4.6. Continuidad débil-∗ en cada variable de formas multilineales 75

Procedemos de la misma manera para probar la segunda igualdad. Dado x ∈ X, la aplicación

w 7→ 〈x, J∗T ∗∗w〉 = J∗T ∗∗w(x) = x̂(J∗T ∗∗w) = T ∗∗w(x̂) = w(T ∗x̂) = 〈T ∗x̂, w〉

es débil-∗ continua en X∗∗ pues T ∗x̂ ∈ X∗. Por último, dado w ∈ X∗∗, la aplicación

z 7→ 〈z, J∗T ∗∗w〉

es débil-∗ continua en X∗∗ pues J∗T ∗∗w ∈ X∗.

Lema 4.61. Sea F una forma bilineal continua y simétrica en X, con las respectivas extensiones

F1 y F2 del Lema 4.60, y sea P el polinomio 2-homogéneo en X asociado a F . Entonces

δz+w(P ) = (δz ∗ δw)(P ) + F1(z, w) − F2(z, w), z, w ∈ X∗∗.

Demostración. Sean x, y ∈ X,

(TxP )(y) = P (x+ y) = F (x+ y, x+ y)

= F (x, x) + F (y, y) + F (x, y) + F (y, x)

= P (x) + P (y) + 2F (x, y).

Luego la función auxiliar g como en la Definición 4.45 viene dada por

g(x) = δw(TxP ) = P (x) + P̂ (w) + 2F2(x,w).

Luego

(δz ∗ δw)(P ) = δz(g) = P̂ (z) + P̂ (w) + 2F2(z, w).

Por otro lado,

δz+w(P ) = P̂ (z + w) = F1(z + w, z + w)

= F1(z, z) + F1(w,w) + F1(z, w) + F1(w, z)

= P̂ (z) + P̂ (w) + F1(z, w) + F2(z, w).

Con lo que se deduce lo que queŕıamos.
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Definición 4.62. Decimos que un operador continuo T : X → X∗ es simétrico si para todo

x, y ∈ X vale que

〈x, Ty〉 = 〈y, Tx〉.

Luego los operadores simétricos son lo que se corresponden con las formas bilineales simétri-

cas.

Enunciaremos un resultado que puede verse en [24, Prop 1.2] que nos sera útil para demostrar

el siguiente teorema.

Proposición 4.63. Sea F una forma bilineal simétrica continua. Consideremos F1 la extensión

del Lema 4.60. Entonces las siguientes condiciones son equivalentes:

(1) F1 es simétrica.

(2) F1 es débil-∗ continua en cada variable sobre X∗∗.

(3) El operador asociado a F , T : X → X∗ es débil compacto.

Teorema 4.64. Las siguientes propiedades son equivalentes.

(1) Cada forma m-lineal continua y simétrica en X se extiende por débil-∗ continuidad en

cada variable a una forma m-lineal continua y simétrica en X∗∗, para todo m ∈ N.

(2) Toda forma bilineal continua y simétrica en X se extiende por débil-∗ continuidad en cada

variable a una forma bilineal continua y simétrica en X∗∗.

(3) Todo operador continuo y simétrico de X en X∗ es débil compacto.

(4) Dado z ∈ X∗∗, el operador de traslación Tz en Hb(X
∗∗) deja Hb(X) invariante.

(5) Dado z ∈ X∗∗, el operador de traslación Tz en Hb(X
∗∗) deja invariante al espacio de los

polinomios cuadráticos en X, P0(X) + P1(X) + P2(X).

(6) δz+w(P ) = (δz ∗ δw)(P ) para todo z, w ∈ X∗∗ y para todo P polinimio cuadrático en X.

(7) δz+w = δz ∗ δw para todo z, w ∈ X∗∗.
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(8) δz ∗ δw = δw ∗ δz para todo z, w ∈ X∗∗.

(9) z ∗ w = w ∗ z para todo z, w ∈ X∗∗.

Demostración. La equivalencia de (1), (2) y (3) sale de la Proposición 4.58 y de la Proposición

4.63.

La equivalencia de (7), (8) y (9) ya la probamos en el Teorema 4.56.

(3) ⇔ (5): Sea P ∈ P2(X), tiene asociado una forma bilineal simétrica, que a su vez se

corresponde con un operador lineal T : X → X∗ dado por

P (x) = 〈x, Tx〉, x ∈ X,

La extensión canónica P̂ de P a X∗∗ viene dada por

P̂ = 〈w, T ∗∗w〉, w ∈ X∗∗,

por el Lema 4.60. Luego, dado z ∈ X∗∗ fijo,

Tz(P )(w) = P̂ (w + z) = P̂ (w) + 〈w, T ∗∗z〉 + 〈z, T ∗∗w〉 + 〈z, T ∗∗z〉.

Ahora bien, P̂ (w) ∈ P2(X), y 〈z, T ∗∗z〉 ∈ P0(X), pues z está fijo y como T ∗z ∈ X∗, tenemos

que 〈z, T ∗∗w〉 = 〈T ∗z, w〉 ∈ X∗ = P1(X). Luego el polinomio w 7→ P̂ (w + z) es la extensión

canónica de un polinomio en X si y sólo si el funcional lineal w 7→ 〈w, T ∗∗z〉 pertenece a X∗, o

sea, si T ∗∗z pertenece a X∗. Y esto ocurre para todo z ∈ X∗∗ si y sólo si T es débil compacto.

(4) ⇒ (5) es trivial.

(5) ⇒ (4): Sea P ∈ Pm(X), y sea P̂ la extensión canónica de P a X∗∗, como (5) y (1)

son equivalentes, P̂ es la restricción a la diagonal de una forma m-lineal simétrica y débil-∗

continua en cada variable F̂ sobre X∗∗. Usando la linealidad y la simetŕıa, tenemos que, si

fijamos z ∈ X∗∗

Tz(P )(w) = P̂ (w + z)

= F̂ (w + z, . . . , w + z)

=
m∑

k=0

(
m

k

)
F̂ (z, . . . , z, w, . . . , w),
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es una suma de términos de la forma F̂ (w, . . . , w, z, . . . , z). Donde cada uno de los sumandos es

la restricción a la diagonal de una forma k-lineal simétrica y débil-∗ continua en cada variable

sobre X∗∗

(w1, . . . , wk) → F̂ (w1, . . . , wk, z, . . . , z).

Luego cada uno de los sumandos es la extensión canónica a X∗∗ de un polinomio en Pk(X),

por lo que Tz deja invariante a P(X) para z ∈ X∗∗. Tomando ĺımite uniforme tenemos que Tz

deja invariante a Hb(X).

(6) ⇔ (2): Por el Lema 4.61, tenemos que vale (6) si y sólo si las extensiones F1 y F2

coinciden para toda forma bilineal continua y simétrica F en X y esto vale si y sólo si vale (2)

(7) ⇒ (6) es trivial.

(1) ⇒ (7): Sea P ∈ Pm(X) y sea F̂ su correspondiente forma m-lineal es débil-∗ continua

en cada variable sobre X∗∗. Entonces

(δz+w)(P ) = P̂ (z + w)

= F̂ (z + w, . . . , z + w)

=
m∑

k=0

(
m

k

)
F̂ (z, . . . , z, w, . . . , w),

donde en el k-ésimo sumando aparece k veces la variable z y (m − k) veces la variable w.

Calculemos ahora (δz ∗ δw)(P ), sea g la función auxiliar

g(x) = δw(TxP )

= δw(F (x+ y, . . . , x+ y))

=
m∑

k=0

(
m

k

)
F̂ (x, . . . , x, w, . . . , w).

Como F̂ es débil-∗ continua en cada variable, entonces la extensión canónica a X∗∗ de los

polinomios k-homogéneos en la variable x de cada sumando se obtiene reemplazando x por z,

entonces δz+w(P ) = (δz ∗ δw)(P ) para todo P ∈ Pm y para todo m ∈ N0, luego vale también

para toda f ∈ Hb(X).

Definición 4.65. Un espacio X que cumple con alguna de las condiciones del Teorema 4.64

se llama simétricamente regular.
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Una familia de espacios de Banach no reflexivos que son simétricamente regulares son los

espacios C(K), donde K es compacto.

Ejemplo 4.66. Si tomamos X = ℓ1 es un espacio que no es simétricamente regular. Veamos

un ejemplo de una forma bilineal simétrica en ℓ1 que no tiene una extensión débil-∗ continua

en cada variable a (ℓ1)∗∗. Definimos la forma bilineal simétrica B como

B(x, y) =
∑

j par

∑

16k<j

xjyk +
∑

k par

∑

16j<k

xjyk.

Una forma de ver que B no se puede extender por continuidad débil-∗ en cada variable es

calcular el operador T de ℓ1 en ℓ∞ asociado a B y ver que T no es débil compacto. En efecto,

si calculamos T obtenemos que

(Te2m)k = B(e2m, ek) =

{
1, si k es impar y k < 2m;

0, si k es impar y k > 2m.

Entonces, si {Te2m} tuviera una subred débil convergente, el ĺımite a debeŕıa tener sus coor-

denadas impares iguales a 1. Ahora bien, si definimos un funcional lineal sobre el subespacio

S = {x ∈ ℓ∞ : x2n+1 tiene ĺımite} como ϕ(x) = ĺımx2n+1 y lo extendemos a ℓ∞, tenemos que

ϕ(Te2m) = 0 para todo m ∈ N por lo que ϕ evaluado en la subred vale siempre 0, pero ϕ(a) = 1.

Luego {Te2m} no es débil precompacto en ℓ∞.

4.7. Acción de X∗∗ en Mb

En esta Sección veremos que si X es un espacio simétricamente regular, podemos extender

la noción de acción de X sobre Mb estudiada en la Sección 4.4 a X∗∗.

Supongamos que X es un espacio simétricamente regular, o sea, dado z ∈ X∗∗, el operador

de traslación Tz : Hb(X
∗∗) −→ Hb(X

∗∗) deja a Hb(X) invariante. Entonces nos podemos re-

stringir este operador al espacio Hb(X) y definir el operador T ′
z = Tz|Hb(X) : Hb(X) −→ Hb(X).

Consideremos ahora su aplicación dual S ′
z : H∗

b (X) −→ H∗
b (X) y la restringimos a Mb, o sea

S ′
zϕ(f) = ϕ(T ′

zf),
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para f ∈ Hb(X), ϕ ∈Mb, z ∈ X∗∗.

La correspondencia z 7→ S ′
z es una representación de X∗∗ como un grupo de homeomorfismos

sobre Mb. Además, podemos extender los resultados de la Seccion 4.5 para Sx a este contexto.

O sea, tenemos que dados ϕ ∈Mb y z ∈ X∗∗,

R(S ′
zϕ) 6 R(ϕ) + ‖z‖.

También vale que para z, w ∈ X∗∗,

S ′
zδw = δz+w,

y que

π(S ′
zϕ) = z + π(ϕ).

Luego como X es simétricamente regular tenemos que S ′
zδw = δz ∗ δw para todo z, w ∈ X∗∗.

Teniendo en cuenta las dos identidades S ′
zδw = δz+w = δz ∗ δw podemos definir dos repre-

sentaciones deMb como el conjunto π−1(0)×X∗∗. Una de ellas viene dada por la correspondencia

de π−1(0) × X∗∗ en Mb dada por

(ψ, z) 7→ S ′
zψ,

donde ψ ∈ π−1(0), z ∈ X∗∗. Esta correspondencia es biyectiva y su inversa viene dada por

ϕ 7→ (S ′
−π(ϕ)ϕ, π(ϕ)).

En efecto,

(ψ, z) 7→ S ′
zψ 7→ (S ′

−π(S′

zψ)S
′
z, π(S ′

zψ)) = (S ′
−(z+π(ψ))S

′
zψ, z + π(ψ)) = (S ′

−zS
′
zψ, z) = (ψ, z),

ϕ→ (S ′
−π(ϕ)ϕ, π(ϕ)) → S ′

π(ϕ)S
′
−π(ϕ)ϕ = ϕ.

La otra representación de Mb como el conjunto π−1(0)×X∗∗ viene dada por la correspondencia

(θ, z) 7→ δz ∗ θ,

donde θ ∈ π−1(0), z ∈ X∗∗. En este caso la inversa viene dada por

ϕ 7→ (δ−π(ϕ) ∗ ϕ, π(ϕ)).
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Cada una de estas representaciones tiene la propiedad de que la restricción de una f ∈ Hb(X)

a cualquiera de las X∗∗-órbitas pertenece a Hb(X). No sabemos cuándo esas estructuras en las

órbitas son las mismas, o sea, si S ′
zθ = δz ∗ θ para todo θ ∈Mb(X), z ∈ X∗∗.

Vimos en la Sección 4.4 que B(X) induce una acción sobre Hb. El siguiente lema muestra

que si X es simétricamente regular, entonces B(X∗) también induce una acción sobre Hb.

Lema 4.67. Sea X un espacio simétricamente regular. Si T ∈ B(X∗), entonces el operador de

composición f 7→ f̂ ◦ T ∗ sobre Hb(X
∗∗) deja a Hb(X) invariante.

Demostración. Queremos ver que dada f ∈ Hb(X), vale que f̂ ◦ T ∗ es la extensión a X∗∗ de

alguna función de Hb(X). Como la aplicación f 7→ f̂ es continua (Proposición 3.59) basta ver

que esta propiedad se cumple para polinomios homogéneos. Sea entonces f ∈ Pm(X) y sea

f̂ ∈ Pm(X∗∗) su extensión. Consideremos F la forma m-lineal simétrica sobre X∗∗ asociada

a f̂ . Entonces tenemos que f̂ ◦ T ∗ ∈ Pm(X∗∗) es el polinomio asociado a la forma m-lineal

simétrica F ◦ T ∗, donde F ◦ T ∗(x1, . . . , xm) = F (T ∗(x1), . . . , T
∗(xm)). Ahora bien, como T ∗ es

el operador adjunto de T , entonces es w∗ − w∗ continuo, luego F ◦ T ∗ es débil-∗ continua en

cada variable, ya que F lo es. Luego, si P ∈ Pm(X) es el polinomio asociado a la forma m-lineal

simétrica (F ◦T ∗)|X, entonces P̂ es el polinomio asociado a F ◦T ∗. Por lo tanto, P̂ = f̂ ◦T ∗.

Observación 4.68. También vale el rećıproco del lema anterior: si S ∈ B(X∗∗) cumple que el

operador de composición f → f ◦S en Hb(X
∗∗) deja a Hb(X) invariante, entonces S = T ∗ para

un operador T ∈ B(X∗).

De hecho, γ ∈ X∗ entonces γ ◦ S ∈ X∗∗∗ ⊂ Hb(X
∗∗) es extensión canónica, por lo que γ ◦ S

es débil-∗ continuo. Como esto es cierto para todo γ ∈ X∗, tenemos que S es w∗−w∗ continuo.

Luego, existe T ∈ B(X∗) tal que S = T ∗.

Observación 4.69. Si X e Y son simétricamente regulares y T ∈ B(X∗,Y∗). Entonces

el operador de composición Ψ : Hb(X
∗∗) → Hb(Y

∗∗) dado por Ψ(f) = f ◦ T ∗ cumple que

Ψ(Hb(X)) ⊂ Hb(Y).

Como consecuencia de esta observación se puede obtener el siguiente resultado de Lassalle-

Zalduendo [18] (ver también [4]).
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Teorema 4.70. Si X e Y son simétricamente regulares y X∗ es isomorfo a Y∗, entonces Hb(X)

es isomorfo a Hb(Y). Más aún, Pm(X) es isomorfo a Pm(Y) para todo m ∈ N.

Demostración. Sea T : X∗ → Y∗ un isomorfismo. Entonces el operador de composición Ψ

es un isomorfismo y su inverso viene dado por Ψ−1(g) = ĝ ◦ (T−1)∗. Como además, por la

observación anterior tenemos que Ψ(Hb(X)) ⊂ Hb(Y), resulta que Ψ|Hb(X) : Hb(X) → Hb(Y)

es un isomorfismo. Más aún, como Ψ es un operador de composición con un operador lineal,

resulta que Ψ|Pm(X) : Pm(X) → Pm(Y) también es un isomorfismo. Pues si P ∈ Pm(X), vale

que P̂ ◦ T ∗ es m-homogéneo y, además, si consideramos F la forma m-lineal sobre X asociada

a P , se tiene que F̂ ◦ T ∗ es una forma m-lineal sobre Y∗∗ que evaluada en la diagonal da como

resultado Ψ(P ), por lo que Ψ(P ) ∈ Pm(Y).
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El espectro de H∞(B)

Vamos a estudiar ahora el álgebra de Banach H∞(B) formado por las funciones anaĺıticas

acotadas sobre la bola unidad abierta B del espacio de Banach X, donde la norma definida

viene dada por ‖f‖ = sup
x∈B

|f(x)|. Notamos con M al espectro de H∞(B), que es el conjunto

de morfismos de álgebra, no nulos, de H∞(B) en C. Observemos que dado f ∈ Hb(X), la

restricción de f a la bola B es una función que pertenece a H∞(B) pues es anaĺıtica y acotada.

Podemos pensar aśı que Hb(X) esta incluido en H∞(B) pues si f, g ∈ Hb(X) cumplen que f

restringida a B es igual a g restringida a B, entonces por el principio de identidad tenemos que

f = g. Luego hay una proyección natural

ρ : M →Mb,

definida por ρ(ψ) es la restricción de ψ ∈ M a Mb. Entonces la restricción de ψ ∈ M a X∗ es

el funcional lineal π(ρ(ψ)) : X∗ → C. Extendemos, también, la definición de la función radio R

a ψ ∈ M como R(ψ) es el ı́nfimo r, 0 6 r 6 1, tal que ψ es cont́ınua respecto a la topoloǵıa de

la convergencia uniforme sobre rB. Esto es,

R(ψ) = ı́nf{0 6 r 6 1 : |ψ(f)| 6 ‖f‖r para toda f ∈ H∞(B)}.

Teorema 5.1. La imagen de la proyección ρ : M →Mb es el conjunto

ρ(M) = {ϕ ∈Mb : R(ϕ) 6 1}.

83
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Además, la proyección ρ establece un biyección entre el conjunto formado por los ψ ∈ M que

satisfacen R(ψ) < 1 y el conjunto de los ϕ ∈Mb que satisfacen R(ϕ) < 1.

Demostración. Observemos primero que si ψ ∈ M cumple que |ψ(f)| 6 ‖f‖r para toda función

f ∈ H∞(B), entonces la desigualdad vale en particular para toda f ∈ Hb. Luego tenemos que

R(ρ(ψ)) 6 R(ψ) 6 1 para toda ψ ∈ M, por lo que ρ(M) ⊂ {ϕ ∈Mb : R(ϕ) 6 1}.

Veamos ahora que ρ define una biyección entre el conjunto {ψ ∈ M : R(ψ) < 1} y el

conjunto {ϕ ∈Mb : R(ϕ) < 1}.

Por la observación anterior, tenemos que ρ({ψ ∈ M : R(ψ) < 1}) ⊂ {ϕ ∈ Mb : R(ϕ) < 1}.

Sea, entonces, ϕ ∈ Mb tal que R(ϕ) < 1. Entonces, en particular, ϕ es continua respecto a la

topoloǵıa de la convergencia uniforme sobre R(ϕ)B. Ahora bien, cada f ∈ H∞(B) es ĺımite

uniforme sobre rB, para cualquier 0 < r < 1, de las sumas parciales de su desarrollo en serie de

Taylor, o sea,
N∑

n=0

fn → f uniformemente sobre rB. En particular vale que ‖f−
N∑

n=0

fn‖R(ϕ) → 0.

Entonces {ϕ(
N∑

n=0

fn)} ⊂ C es una sucesión de Cauchy, pues

|ϕ(
N∑

n=0

fn) − ϕ(
M∑

n=0

fn)| = |ϕ(
M∑

n=N+1

fn)| 6 ‖
M∑

n=N+1

fn‖R(ϕ) → 0

Luego ϕ determina uńıvocamente ψ ∈ M definida por ψ(f) = ĺım
N→∞

ϕ(
N∑

n=0

fn). Además se

cumple que

|ψ(f)| = ĺım
N→∞

|ϕ(
N∑

n=0

fn)| 6 ĺım
N→∞

‖
N∑

n=0

fn‖R(ϕ) = ‖f‖R(ϕ).

Por lo que R(ψ) 6 R(ϕ) y ya hab́ıamos visto que R(ϕ) 6 R(ψ). Luego R(ψ) = R(ϕ) y ρ define

una biyección entre el conjunto {ψ ∈ M : R(ψ) < 1} y el conjunto {ϕ ∈Mb : R(ϕ) < 1}.

Por último veamos que efectivamente la imagen de la aplicación ρ coincide con el conjunto

{ϕ ∈ Mb : R(ϕ) 6 1}. Sea ϕ ∈ Mb tal que R(ϕ) = 1. Entonces consideremos para |ξ| < 1 el

morfismo ϕξ ∈ Mb definido en la Sección 4.4. Como R(ϕξ) = |ξ|R(ϕ) = |ξ| < 1, por lo visto a

lo largo de esta demostración, ϕξ se extiende a un morfismo en M. Si ψ esta en la clausura en

M de las extensiones de los ϕξ con ξ → 1 y |ξ| < 1, entonces ρ(ψ) = ϕ, por lo que ϕ pertenece

a la imagen de ρ.
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Como consecuencia de este último Teorema, podemos identificar el conjunto de los ϕ ∈Mb

que satisfacen R(ϕ) < 1 con el correspondiente subconjunto de M.

Teorema 5.2. El conjunto {ϕ ∈ M : R(ϕ) < 1} es unión de discos anaĺıticos que pasan por

el origen δ0 de M.

Demostración. Teniendo en cuenta la identificación mencionada, dado ϕ ∈ M, consideramos la

recta anaĺıtica en Mb que pasa por ϕ con R(ϕ) < 1 dada por la aplicación ξ 7→ ϕξ. Observemos

que como R(ϕξ) = |ξ|R(ϕ), entonces ϕξ ∈ M para |ξ| < 1/R(ϕ).

Además cada función f ∈ H∞(B) es ĺımite uniforme de funciones en Hb sobre cualquier

conjunto {ϕ : R(ϕ) 6 r}, con 0 < r < 1, pues

|ϕ(f −
N∑

m=0

fm)| 6 ‖f −
N∑

m=0

fm‖r → 0

para toda ϕ tal que R(ϕ) 6 r. Entonces si |ξ| 6 c < 1/R(ϕ), como
N∑

m=0

fm → f uniformemente

en {ϕξ : |ξ| 6 c} ⊂ {ϕ : R(ϕ) 6 r}, vale que ϕξ(
N∑

m=0

fm) converge uniformemente a ϕξ(f)

en |ξ| 6 c, luego la aplicación ξ 7−→ ϕξ(f) es anaĺıtica en |ξ| 6 c. Como esto vale para todo

c < 1/R(ϕ), entonces la aplicación ξ 7−→ ϕξ(f) es anaĺıtica en |ξ| < 1/R(ϕ).

Luego cada ϕ ∈ M esta incluido en un disco anaĺıtico que pasa por el origen δ0.

Claramente 0 6 R 6 1 y vale que R(ϕ) = 0 si y sólo si ϕ = δ0. Al igual que en la Sección

4.1, R es semicontinua inferiormente sobre M. Sin embargo, no es válida en general la fórmula

del Teorema 4.6 para ϕ ∈ M. Más adelante veremos un ejemplo para X = c0, donde existe

ϕ ∈ M tal que R(ϕ) = 1, pero ϕ = 0 sobre Pm para todo m ∈ N. (Ver Ejemplo 5.9).

Se prueba en [7] que toda f ∈ H∞(B) se extiende canónicamente a f̂ ∈ H∞(B∗∗), donde la

correspondencia f → f̂ es un isomorfismo isométrico entre H∞(B) y una subálgebra cerrada de

H∞(B∗∗). La extensión es isométrica sobre toda bola rB con 0 < r < 1, o sea, ‖f‖rB = ‖f̂‖rB∗∗

para toda f ∈ H∞(B). Observemos que en el caso que f ∈ Hb, entonces f̂ conincide con la

extensión definida en la Sección 4.2.



86 Caṕıtulo 5. El espectro de H∞(B)

De la misma forma que en la Sección 4.2, definimos la evaluación en z ∈ B∗∗ como

δz(f) = f̂(z),

para f ∈ H∞(B). Además δz coincide con la definida anteriormente v́ıa la identificación del

conjunto {ϕ ∈ Mb : R(ϕ) < 1} con el correspondiente subconjunto de M, luego por el Lema

4.12 tenemos que R(δz) = ‖z‖ < 1 para z ∈ B∗∗.

Definición 5.3. Decimos que una función g ∈ H∞(B∗∗) es canónica si cumple que g = f̂ para

alguna f ∈ H∞(B). En este caso, se cumple que f = g|B.

Observación 5.4. La restricción a B∗∗ de un funcional débil-∗ continuo sobre X∗∗ es una

función canónica. Polinomios finitos en funciones canónicas es canónica. Ĺımite uniforme sobre

B∗∗ de funciones canónicas es canónica.

Lema 5.5. Sea g ∈ H∞(B∗∗) una función canónica, sea D ⊂ C que contiene a g(B∗∗) y sea

h ∈ H∞(D). Entonces la composición h ◦ g ∈ H∞(B∗∗) es canónica.

Demostración. Sea △0 un disco incuido en D que contiene a g(0). Tomamos r > 0 suficiente-

mente chico tal que g(rB∗∗) ⊂ △0. Entonces como h es ĺımite uniforme de polinomios sobre

acotados, h ◦ g es ĺımite uniforme sobre rB∗∗ de polinomios en g. Como los polinomios en g

son canónicos sobre rB∗∗, entonces h ◦ g es canónica sobre rB∗∗. Ahora bien, tenemos que

h ◦ g(z) = ̂h ◦ g|rB(z), para z ∈ rB∗∗. Veamos que h ◦ g(z) = ĥ ◦ g|B(z), con z ∈ rB∗∗.

h ◦ g|rB(x) =
∑

m∈N0

Pm(h ◦ g)(0)(x), para x ∈ rB,

h ◦ g|B(x) =
∑

m∈N0

Pm(h ◦ g)(0)(x), para x ∈ B.

Luego sus extensiones vienen dadas por

ĥ ◦ g|rB(z) =
∑

m∈N0

̂Pm(h ◦ g)(0)(z), para z ∈ rB∗∗,

ĥ ◦ g|r(z) =
∑

m∈N0

̂Pm(h ◦ g)(0)(z), para z ∈ B∗∗,
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pero los polinomios, y en consecuencia sus extensiones, son los mismos. Luego coinciden sobre

rB∗∗.

Como h◦g ∈ H∞(B∗∗), tenemos que h◦g|B ∈ H∞(B) y entonces ĥ ◦ g|B ∈ H∞(B∗∗). Luego

h◦ g coincide con ĥ ◦ g|B sobre rB∗∗ y por el principio de identidad, resulta que h◦ g = ĥ ◦ g|B.

Por lo que h ◦ g es canónica.

Definición 5.6. Sea la sucesión {zj}j∈N ⊂ B∗∗. Decimos que es una sucesión interpolante para

H∞(B) si dado α ∈ ℓ∞, existe f ∈ H∞(B) tal que f̂(zj) = αj, para 1 6 j <∞.

Teorema 5.7. Si {zj} es una sucesión incluida en B∗∗ tal que ‖zj‖ → 1. Entonces {zj} tiene

una subsucesión que es interpolante para H∞(B).

Demostración. Sea 0 < rj < 1 tal que rj → 1. Vale que para una subsucesión de {zj}, que

volveremos a llamar {zj} por comodidad, existen Lj ∈ X∗ tales que ‖Lj‖ < 1 y 0 < Lj(zj) → 1

rápidamente. Como ‖Lj‖ < 1, dado z ∈ rjB
∗∗, vale que |Lj(z)

j| < rjj . Consideramos ahora la

función conforme φ que mandan el disco unidad abierto al conjunto {Re(w) > 0} dada por

φ(w) =
1 + w

1 − w
, y definimos φj como φj =

1

2j
φ. La función φ cumple que si |w| 6 δ, entonces

|φ(w) − 1| = |
2w

1 − w
| 6

2δ

1 − δ
< 3δ.

Luego tenemos que si |w| 6 δ, entonces |φj(w)| <
3δ

2j
. Podemos suponer que rj → 1 de manera

tal que rjj < 1/3, luego si z ∈ rjB
∗∗, entonces

|φj(Lj(z)
j)| <

1

2j
,

pues |Lj(z)
j| < rjj < 1/3 = δ. Además como φj manda el 1 a ∞ y Lj(zj) → 1 rápidamente

podemos suponer que Re(φj(Lj(zj)
j)) > j.

Ahora bien, definimos fj = φj ◦L
j
j. Luego se cumple que |fj| < 1/2j sobre rjB

∗∗ y definimos

gm como

gm =
f1 + · · · + fm − 1

f1 + · · · + fm + 1
.

Entonces, como Re(fj) > 0 sobre B∗∗ tenemos que |gm| < 1 sobre rB∗∗ para 0 < r < 1 y

además como |fj| < 1/2j, entonces gm converge uniformemente sobre rB∗∗, para 0 < r < 1, a
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una función g ∈ H∞(B∗∗). Como |gm(zj)| < 1 para todo m ∈ N, entonces |g(zj)| 6 1 para todo

j ∈ N, además g(zj) → 1 pues si m > j, como Re(fj) > 0 y Re(fj(zj)) > j, entonces

|gm(zj) − 1| =
2

|f1(zj) + · · · + fm(zj) + 1|
<

1

j
,

luego |g(zj) − 1| <
1

j
→ 0. Entonces como Ljj, fj y gj son funciones canónicas y como g

es ĺımite uniforme de gj sobre cualquier bola rB∗∗ con 0 < r < 1 resulta que g también es

canónica. Ahora bien, como g(zj) → 1, entonces existe una subsucesión {g(zjk)} interpolante

para H∞(△) [14, p.204]. O sea, existe h ∈ H∞(△) tal que h(g(zjk)) = αk, luego componiendo

g con h, tenemos por el Lema 5.5 que h ◦ g ∈ H∞(B∗∗) es canónica y además la subsucesión

{zjk} es interpolante para H∞(B).

Si X es un espacio de Banach de dimensión finita, vale que toda sucesión interpolante {xj}

para H∞(B) cumple que ‖xj‖ → 1. Esto también ocurre para algunos espacios de dimensión

infinita, como por ejemplo c0. Sin embargo, también hay casos donde existen sucesiones in-

terpolantes {xj} para H∞(B) que satisfacen que ‖xj‖ 6 r < 1. Por ejemplo, si X = ℓp con

1 6 p <∞. Si la sucesión de numeros complejos {λj} satisfacen que |λj| < 1 y que ı́nf |λj| > 0,

entonces la sucesión {λjej} es interpolante para H∞(B). En efecto, si N > p, y α ∈ ℓ∞, la

función F (z) =
∑

j∈N

αj
λNj

zN con z ∈ ℓp pertenece a H∞(B) y cumple que F (λjej) = αj.

De la misma forma que en el caso de Mb, podemos definir una proyección natural de M

en X∗∗ dada por la restricción de las morfismos de M a X∗. Es decir, la proyección de la que

hablamos es π ◦ ρ, pero la notaremos con π. Luego π(ψ) ∈ X∗∗ es la restricción de ψ ∈ M a

X∗. De la misma forma que antes, se puede ver que la imagen de π está incluida en la bola

unidad cerrada B∗∗ de X∗∗.

Se cumple también que π(δz) = z para todo z ∈ B∗∗. Además π es continua de M en X∗∗

con la topoloǵıa débil-∗. Luego, como π(M) es débil-∗ compacto y B∗∗ ⊂ π(M), tenemos que

π(M) = B∗∗.

Llamamos Mz a la fibra de M sobre z ∈ B∗∗. O sea, Mz = π−1({z}) para z ∈ B∗∗. Luego

las fibras Mz forman una partición de M formada por subconjuntos disjuntos y compactos.
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Si X es de dimensión finita, lo esperado es que Mz esté formado por el morfismo evaluación

δz únicamente para z ∈ B, al igual que lo visto en la sección 2 para cuando la dimensión de X

es igual a 1. La situación cambia totalmente en el caso que X tenga dimensión infinita.

Teorema 5.8. Sea X un espacio de Banach de dimensión infinita. Entonces la fibra Mz de

M sobre cualquier z ∈ B∗∗ es infinita. Es más, contiene una copia de βN \ N, donde βN es la

compactificación de Stone-Čech de los naturales.

Demostración. Sea {zj} ⊂ B∗∗ una sucesión que converge débil-∗ a z y tal que ‖zj‖ → 1. La

existencia de tal sucesión es trivial si ‖z‖ = 1, pues tomamos zj = rjz, donde {rj} ⊂ R+

tiende creciendo a 1. En el caso donde ‖z‖ < 1, la existencia de la sucesión es consecuencia

del Teorema de Josefson-Nissenzwieg [15], [22], extendida en [8, p. 223]. Pasando por una

subsucesión, podemos suponer también por el Teorema 5.7 que {zj} es una sucesión interpolante

para H∞(B). Luego si definimos la aplicación I : H∞(B) → ℓ∞ dada por f 7−→ {f̂(zj)}j

es un morfismo de álgebras y es sobreyectiva. Entonces si consideramos su aplicación dual

asociada I∗ : (ℓ∞)∗ → (H∞(B))∗ y la restringimos a M(ℓ∞) (se puede restringir gracias a

que I es multiplicativa) tenemos que I∗|M(ℓ∞) : M(ℓ∞) → M(H∞(B)) está definida por

ϕ 7−→ ϕ ◦ I y resulta inyectiva. Ahora bien, M(ℓ∞) = M(Cb(N)) (donde Cb(N) denota el

álgebra de funciones continuas y acotadas sobre los naturales) coincide con βN [16, Theorem

2.4.12], la compactificación de Stone-Čech de los naturales.

Entonces si m ∈ N, tenemos que

I∗(m)(f) = m({f̂(zj)}j) = f̂(zm) = δzm
(f),

luego I∗(m) = δzm
.

Si η ∈ βN\N, entonces existe una red {nα} ⊂ N tal que nα → η, y vale que η(λ) = ĺımα λnα

para todo λ ∈ ℓ∞, luego I∗(η)(f) = η(If) = η({f̂(zj)}j) = ĺımα f̂(znα
). Entonces tenemos que

π(I∗(η))(γ) = I∗(η)(γ) = ĺım
α
γ̂(znα

) = ĺım
α
znα

(γ) = z(γ),

por lo que π(I∗(η)) = z.

Entonces I∗(η) ∈ Mz para todo η ∈ βN\N y como I∗ es inyectiva tenemos que Mz contiene

una copia de βN \ N para todo z ∈ B∗∗, cuyo cardinal es mayor que c.

Sea ϕ ∈ M, en la sección anterior vimos que podemos definir ϕξ ∈ M, si R(ϕ) < 1 y

|ξ| < 1/R(ϕ). Podemos también definir ϕξ para R(ϕ) = 1 y |ξ| 6 1, al igual que en la sección
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4.4, como la acción dual inducida por el operador de compisición asociado a ξI. Es decir, dado

f ∈ H∞(B) tenemos que ϕξ(f) = ϕ(f ◦ ξI). En el caso que |ξ| < 1, si
∑

m∈N0

fm es la serie

de taylor de f , entonces
N∑

m=0

ξmfm converge uniformemente sobre B a una función de H∞(B),

luego

ϕξ(f) =
∑

m∈N

ξmϕ(fm).

En particular vale que π(ϕξ) = ξπ(ϕ) para todo |ξ| 6 1, pues

π(ϕξ)(γ) = ϕξ(γ) = ϕ(γ ◦ ξI) = ξϕ(γ) = ξπ(ϕ)(γ)

para todo γ ∈ X∗. Luego, al igual que antes, tenemos que si π(ϕ) 6= 0, entonces la correspon-

dencia ξ 7−→ ϕξ, con |ξ| < 1, introduce un disco anaĺıtico dentro de M que contiene a δ0. Sin

embargo, no es necesariamente verdad que ϕ esté en la clausura del disco anaĺıtico. Es más,

puede ocurrir que ϕξ = δ0 para todo |ξ| < 1, pero ϕ 6= δ0. Veamos a continuación un ejemplo

de este hecho.

Ejemplo 5.9. Sea X = c0. Vimos en el Ejemplo 4.15 que Mb(c0) = X∗∗ = ℓ∞. En este caso, el

subconjunto {R < 1} de M coincide con la bola unidad B∗∗ de ℓ∞. Luego por el Teorema 5.8,

tenemos que existe ϕ ∈ M0 tal que ϕ 6= δ0. Además como Hb(c0) es el álgebra cerrada generada

por X∗ = c∗0, tenemos que ϕ = 0 sobre Pm para todom ∈ N. Luego, como ϕξ(f) =
∑

m∈N0

ξmϕ(fm)

para todo |ξ| < 1, entonces deducimos que ϕξ = δ0 para todo |ξ| < 1.

En particular, ϕ no está en la clausura de la imagen de la aplicación ξ 7−→ ϕξ, con |ξ| < 1.

Notemos también que en este caso no funciona la fórmula 4.6 para ϕ, pues R(ϕ) = 1 pero

‖ϕm‖ = 0 para todo m ∈ N.

Consideremos ahora H∞
uc(B) el álgebra de las funciones anaĺıticas y acotadas sobre B que

son uniformemente continuas. Luego tenemos que H∞
uc(B) es una subálgebra cerrada de H∞(B)

que contiene a Hb(X).

En el Teorema 5.1 vimos que hay una proyección natural de M en Mb sobre el conjunto

{R 6 1}, que es inyectiva sobre {R < 1}. La demostración sigue valiendo si reemplazamos

H∞(B) por cualquier álgebra uniforme H tal que H∞
uc(B) ⊂ H ⊂ H∞(B). Cada ϕ ∈ Mb, con
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R(ϕ) < 1, se extiende de manera única a un morfismo en el espectro MH de H, luego podemos

identificar a {R < 1} con un subconjunto de MH .

Queremos, ahora, caracterizar el álgebra H∞
uc(B). Para esto, dada f ∈ H∞

uc(B), llamamos

Sk(f) =
k∑

j=0

fj. Y definimos

σn(f) =
1

n+ 1

n∑

k=0

Sk(f),

los σn se llaman las medidas de Cesàro de f .

Lema 5.10. Toda f ∈ H∞
uc(B) es ĺımite uniforme sobre B de funciones de Hb.

Demostración. Sea f ∈ H∞
uc(B), consideremos las medidas de Cesàro de f , σn. Observemos que

σn(f) ∈ Hb y veamos que σn(f) converge uniformemente a f en B.

Sean x ∈ B y r < 1, entonces

|σn(f)(x) − f(x)| 6 |σn(f)(x) − σn(f)(rx)| + |σn(f)(rx) − f(rx)| + |f(rx) − f(x)|.

Ahora bien, sabemos que Sn(f) converge uniformemente a f en rB para todo 0 < r < 1, o sea,

dado η > 0, existe k0 tal que

|
k∑

j=0

fj(rx) − f(rx)| < η

para todo x ∈ B y para todo k > k0. Veamos que σn(f) también converge uniformemente a f

en rB. En efecto, sea 0 < r < 1 y dado ε > 0, tomamos η < ε/4, entonces si n > k0, tenemos

que

|σn(f)(rx) − f(rx)| = |
1

n+ 1
(
n∑

k=0

k∑

j=0

fj(rx) − (n+ 1)f(rx))|

=
1

n+ 1
|

n∑

k=0

(
k∑

j=0

fj(rx) − f(rx))|

<
1

n+ 1
|
k0∑

k=0

(
k∑

j=0

fj(rx) − f(rx))| +
1

n+ 1
(n− k0)η

6
K

n+ 1
+ η < ε/3
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para todo x ∈ B y para todo n > n0.

O sea, tenemos que |σn(f)(rx) − f(rx)| < ε/3 para todo x ∈ B y para todo n > n0 con

0 < r < 1. Además, como f ∈ H∞
uc(B), tenemos que el tercer sumando cumple que

|f(rx) − f(x)| < ε/3

para todo x ∈ B para todo r tal que r0 < r < 1.

Por último, para acotar el primer sumando, consideremos la función g(x) = f(x) − f(rx),

que pertenece a H∞
uc(B). Entonces, σn(g)(x) = σn(f)(x) − σn(f)(rx) y por un resultado de

[20][Proposición 5.2 (c)], tenemos que ‖σn(g)‖ 6 ‖g‖. Luego tomando r tal que r0 < r < 1,

vale que

|σn(f)(x) − σn(f)(rx)| = |σn(g)(x)| 6 ‖g‖ = sup
x∈B

|f(rx) − f(x)| < ε/3.

Por lo tanto, |σn(f)(x) − f(x)| < ε para todo x ∈ B y para todo n > n0.

Teorema 5.11. El espectro de H∞
uc(B) está identificado con el conjunto {ϕ ∈Mb : R(ϕ) 6 1}.

Demostración. Como observamos anteriormente, Hb ⊂ H∞
uc(B), por lo que podemos definir una

aplicación del espectro de H∞
uc(B) en el conjunto {ϕ ∈Mb : R(ϕ) 6 1} definida por ψ → ψ|Hb

.

Esta aplicación resulta inyectiva pues si ψ|Hb
= φ|Hb

, entonces por el Lema 5.10, tenemos que

ψ = φ. Además, dado ϕ ∈ Mb tal que R(ϕ) 6 1, tenemos que |ϕ(f)| 6 ‖f‖B. Entonces

ϕ : Hb → C es lineal y continua (con las funciones de Hb restringidas a B). Luego, como Hb

es denso en H∞
uc(B) (Lema 5.10), ϕ se extiende a ψ : H∞

uc(B) → C y vale que ψ|Hb
= ϕ, por lo

que la aplicación es sobreyectiva.

Teorema 5.12. Sea H un álgebra uniforme tal que H∞
uc(B) ⊂ H ⊂ H∞(B). Entonces la

proyección natural de MH en Mb sobre {R 6 1} es una biyección si y sólo si H = H∞
uc(B).

Demostración. Ya vimos en el Teorema 5.11 que si H = H∞
uc(B), entonces la proyección natural

de MH en Mb sobre {R 6 1} es una biyección.

Supongamos ahora que H 6= H∞
uc(B), luego existe f ∈ H que no es uniformemente continua

sobre B. O sea, existe ε > 0 y existen sucesiones {xn}, {yn} en B tales que ‖xn − yn‖ → 0
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y |f(xn) − f(yn)| > ε para todo n ∈ N. Ahora bien, tenemos identificado cada x ∈ B con

δx ∈ {R 6 1} ⊂ Mb. Entonces como {R 6 1} es compacto en Mb existe una sub red {xnα
}α

que converge en Mb a alguna ϕ tal que R(ϕ) 6 1. Como además ‖xn − yn‖ → 0, resulta que

también la subred {ynα
}α converge en Mb a ϕ.

Por otro lado, como |f(xnα
) − f(ynα

)| > ε, tenemos que {xnα
} y {ynα

} tienen puntos de

acumulación θ y θ′ en MH tales que f(θ) 6= f(θ′). Además vale que θ|Hb
= θ′|Hb

= ϕ, entonces

por el Lema 5.10, tenemos que θ = θ′ en H∞
uc(B). Por lo que la proyección natural no resulta

inyectiva.

Este resultado muestra que el álgebra H∞
uc(B) queda caracterizada por su espectro, es decir,

si H es estrictamente más grande que H∞
uc(B), entonces MH es estrictamente más grande que

el espectro de H∞
uc(B).
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