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Introduccion

En esta tesis expondremos tres problemas del andlisis funcional con la particularidad de que para
resolverlos se usan técnicas de caracter combinatorio. En sus demostraciones aparece la necesidad
de estudiar teoremas cuyos enunciados plantean dicotomias donde obtenemos conjuntos (o sub-
espacios) que poseen cierta propiedad o una totalmente opuesta. Es ahi donde jugard un rol decisi-
vo el enfoque combinatorio que nos permitira probar dichas dicotomias usando herramientas de la
llamada teoria de Ramsey. Esta rama de la matemdtica, que debe su nombre a Frank P. Ramsey,
generaliza el principio del palomar, el cual establece que no puede existir una aplicacién inyectiva
entre un conjunto de m elementos y otro de n elementos, si m > n. Suele plantear preguntas del
tipo “qué tan grande debe ser cierta estructura para que tenga cierta propiedad”; los resultados de
esta teoria suelen enunciarse como un problema de coloreo y muchos de sus argumentos dependen
de un razonamiento diagonal. Estas caracteristicas seran evidentes en los teoremas de Ramsey que
estudiemos.

Lo primero que haremos es desarrollar la teoria necesaria para poder abordar los problemas a
resolver; esto lo haremos en el Capitulo 1.

En el segundo capitulo el objetivo serd demostrar dos resultados clasicos usando un mismo
teorema de la teoria de Ramsey. La primera seccion estd dedicada a dicha teoria: ahondaremos en
las caracteristicas generales nombradas anteriormente y demostraremos nuestro primer resultado
de tipo Ramsey. En las secciones siguientes, plantearemos dos problemas y los resolveremos usando
este resultado. El primero es el Teorema ¢; de Rosenthal [R] que afirma que, dado un espacio de
Banach de dimensién infinita, éste contiene a £ o bien tiene la propiedad de que toda sucesién
acotada tiene una subsucesién débil Cauchy. Recordaremos este concepto y veremos que £1 no tiene
dicha propiedad mientras que, por otro lado, los espacios reflexivos si. De esta manera, como los
subespacios de espacios reflexivos, son también reflexivos (y ¢1 no lo es), el enunciado del teorema
sugiere que estamos en la presencia de una dicotomia como las antes mencionadas.

El segundo problema que estudiaremos en este trabajo es cémo generalizar el lema de Riesz (el
cual nos permite obtener una sucesién de normalizada cuyos elementos disten “casi” uno) en un teo-
rema de separacién més fuerte, el Teorema de Elton-Odell [EO]. Especificamente, dado un espacio
de Banach X, buscaremos una sucesién (), en la esfera de radio 1 tal que sup,,_,, |[zn —Zm[| > 1.
Como paso previo, veremos esto ultimo en X = ¢y y luego lo generalizaremos al caso en que el
espacio contengan una copia de cy. Para demostrar el caso restante, usaremos el teorema de Ramsey
para obtener una dicotomia similar a la que aparecié en Teorema de Rosenthal, pero ahora donde
el espacio distinguido sea cg.

En el Ultimo capitulo, analizaremos el llamado “Problema de los espacios homogéneos”, plantea-
do por Banach en 1932. Un resultado de Lindenstrauss y Tzafriri [LT] establece que si todo sub-
espacio de un espacio de Banach es complementado, entonces dicho espacio debe ser isomorfo a un
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espacio de Hilbert. El problema que nosotros estudiaremos aparece si se consideran isomorfismos
en vez de proyecciones: se plantea la pregunta de si £o es el inico espacio isomorfo a todos sus
subespacios cerrados de dimensién infinita. Para estudiar este tipo de espacios (que llamaremos
homogéneos) logicamente serd de mucha utilidad mirar sus subespacios; buscaremos, por ejemplo,
bases incondicionales y subespacios hereditariamente indescomponibles. Veremos que estos concep-
tos y el de homogeneidad estdan intrinsicamente relacionados. Un espacio arbitrario deberd contener
un subespacio hereditariamente indescomponible o una base incondicional; sin embargo, un espacio
homogéneo no podra ser hereditariamente indescomponible. Entonces, relacionar ¢5 y el concepto
de bases incondicionales nos permitird cerrar el razonamiento.

La solucién a este problema es el resultado de la combinacién de dos trabajos independientes,
[G1] y [K T-J]. Nosotros nos concentraremos en el primero, donde el autor trabaja con ciertas
dicotomias cuyas demostraciones requieren de herramientas de la teoria de Ramsey, en este caso,
distintas a las usadas en el capitulo anterior.



Capitulo 1

Preliminares

A lo largo de este trabajo, los espacios de Banach que consideremos seran de dimensién infinita,
a no ser que se aclare lo contrario. Los resultados que veremos valen tanto sobre R como sobre C
(variando, quizés, alguna constante), haciendo algunos cambios en las demostraciones. Por como-
didad, consideraremos espacios reales y, eventualmente, en alguna demostracién veremos cémo se
puede adaptar el razonamiento al caso complejo.

Antes de comenzar serd conveniente aclarar la notacién que usaremos. Dado un espacio de
Banach X, X’ serd su espacio dual, X” el doble dual, y Bx y Sx seran la bola y la esfera unitaria,
respectivamente. Dado x € X, & representard al elemento del doble dual definido por &(z') = /()
para cada 2’ € X’. Ademds, siempre y cuando haya un sélo espacio involucrado y no se preste a
confusién, la norma de dicho espacio serd notada || - ||. Apareceran algunos de los espacios més
clésicos, los cudles seran notados de la manera usual. Ya vimos en la introduccién el rol importante
que tendran

0 =A{(an)n CR: Z lan| < oo}

co = {(an)n CR:lima, =0}

en los dos primeros teoremas, y
ly = {(an)n CR: Z lan|* < oo}
n

en el problema de los espacios homogéneos. Ademas, notaremos
coo = {(an)n C R:a, # 0 para finitos n}.

En todos estos ejemplos, e,, denotard, como es de esperarse, al vector cuyas coordenadas son todas
nulas salvo la n-ésima, que es 1.

Por tltimo, recordemos algunas definiciones. Dada una sucesién (x,), y un vector z en un
. . . 1 w .y
espacio de Banach X, diremos que (z,,), tiende débil a x, y notaremos x,, — z, si ’(z,,) — = para
toda 2/ € X’. Dada una susecioén (z},), y una una funcional 2’ en X’ diremos que (z},),, tiende débil
/] Wk / . A~ A~
estrella a ', y notaremos z;, — 2', si 2}, (z) — a/(x) para todo z € X, esto es, Z(x}) — z(2').
Otra nocién de convergencia no tan comun es la siguiente: (z,), C X es débil Cauchy si para cada
2’ € X' la sucesioén escalar (2/(z,)), tiene limite. La definicién es muy similar a la de convergencia

débil. Sin embargo, no son conceptos equivalentes; la diferencia reside en si el limite de la sucesién

4
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(' (2))n depende o no de la funcional 2/. Claramente, la condicién de ser w-convergente es méas
fuerte que la de w Cauchy convergente. Retomaremos esto en el Capitulo 2.

1.1. Bases de Schauder

Definicién 1.1.1. Dado un espacio de Banach X, diremos que (e,), C X es una base de Schauder

o
de X si para todo x € X existen tnicos (z,), € R tal que = = Z Tnen.

n=1

Nota 1. El orden de los elementos de una base es importante. Veremos esto en la seccién de bases
incondicionales.

Observemos que podemos definir las siguientes funciones lineales: e}, : X — R el (z) = xp,
N

Pv:X = X,Py=) ¢,

n=1

Teorema 1.1.2. Las funciones coordenadas €}, y las proyecciones Py definidas anteriormente son
continuas.

Demostracion. Vamos a definir una nueva norma en X: |||z||| = sup{||Pn(z)|| : N € N}, donde
|| - || es la norma original. Observemos que el supremo estd bien definido ya que como la serie
> oo en(x)en converge (a x), en particular las sumas parciales estan acotadas. Que sea una norma
se deduce de las propiedades del supremo y del hecho que || - || lo sea.

Veamos que las || - || y ||| - ||| normas son equivalentes. Por un lado, ||z|| = ||>°07, €}, (z)en]| =

limy 00 HZle el (z)en|| < |||z]||. Para probar que son equivalentes entonces, por el teorema de

la aplicacién inversa, basta probar que (X, ||| - |||) es un espacio de Banach. Supongamos entonces
que (zn)n C (X, ||| - ||]) es una sucesién de Cauchy. Por la desigualdad anterior, tenemos que (x,),

también es de Cauchy con la norma original y, por lo tanto, existe z € X tal que z,— x. Nuestro
objetivo serd probar que también converge a x con ||| - ||.

Observemos que ||Pn(7y) — Py (zm)|| < ||[zn — 2ml]|, luego, para cada N € N, PN(%)M> yN
converge en [e1, - - ,en]. Pero las funcionales € : [e1,- - ,en] — R son continuas, entonces para
todo 1 < j < N tenemos

eg»(:vn) = €;(PN(xn))7> 6;'(yN) = aj,

N
[I-1]
y entonces yy = Z aje;. Veamos que yy——x.

J=1

Dado ¢ > 0, tomamos n tal que |||z, — z,||| < £/3 para todo m > n, y Ny tal que ||Pn(zs) —
Zn|| < €/3 para todo N > Ny . Observemos que asi ||Py(xm) — Py (zn)|| < |||lzm — znll| < /3y
también ||z, — .|| < /3. Entonces, para todo N > Ny

lyn —2ll < lyny = P (zn)[| + [[Py(2n) = 2nll + |2 — 2]

= h;%nHPN(xm) — Pn ()| + || Py (2n) — 20| +11;7I1n|‘xn_$m”
< e&.
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[e.e]
Tenemos entonces que x = Zajej en || - || y, por escritura unica, Py(z) = yn.
j=1

Ahora si, veamos que |||z, — z||| — 0. Dado € > 0, sea ng tal que |||z, — z||| < € para todo
n, m > ng. Luego

|lzn — ||| = S%p\IPN(wn)—PN(w)II
= sup||Pn(zn) — ynl||
N

= sup lim||Py(zn) — Py (2m)]|
N m

IN

lim|[[zy — zml]|
m
< e
Probamos entonces que las normas son equivalentes y que, por lo tanto, existe K > 0 tal que
[llz|]] < Kllz||] V = € X. Luego, ||Pn(x)|] < Kllz|| ¥V z € X, es decir, los operadores Py son
continuos. Por ultimo, las funciones coordenadas son continuas:
_ IPn(z) = Pya(z)l] _ 2K

lleall — llenll

leh ()] [|]- (1.1)

O]

Corolario 1.1.3. Las proyecciones Py estdn uniformemente acotadas.

Demostracion. En la demostracién anterior, se probé que ||Py(z)|| < K||z|| V = € X; equivalente-
mente, ||Py|| < K para todo N. O

Definicién 1.1.4. Dada (e, ), una base de Schauder de un espacio de Banach X, K = sup || Py/]
N

se llama la constante de la base. En el caso en que K = 1, decimos que la base es mondtona.

Observacién 1.1.5. Dada (e,), una base, y definiendo una norma auxiliar como antes, se tiene

que (en)n es mondétona en (X, ||| -[[|). En efecto, usando que Py o Py = Pymin,ary e tiene que
1125 (@[] = sup [[Par (P ()] = sup || Par ()] = [[[2]]]-

Entonces podemos, y muchas veces convendra, suponer que la base dada es monétona. Ademas,
si la base era normalizada con la norma original, también lo sera con la nueva norma:

[llex|ll = SllepHPN(ek)H = [lex]| = 1.

2K
. . . . . . ‘ ‘en I ‘ ’ . ,
normalizada o seminormalizada, esto es, acotada superior e inferiormente, las funcionales e, estaran

uniformemente acotadas.

Observacién 1.1.6. Notemos que de (1.1) se sigue que ||e],|| < En particular, si la base es
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1.2. Sucesiones Basicas

Definicién 1.2.1. Una sucesién (e,), C X se llama sucesion bdsica si es una base (de Schauder)
para el espacio [(ex)x].

Teorema 1.2.2. Si (ey)n es una sucesion de elementos no nulos, son equivalentes:
(1) (en)n es una sucesion bdsica;

(2) 3IK>0/VYay, - ,apy €ERY N <M se tiene que

N M
D> axe D> axe
k=1 k=1

<K

Demostracion. (1) = (2) Consideremos K la constante de la sucesion basica (pensdndola como
base del espacio generado). Si z = Z]szl arey, entonces

N
E arer
k=1

= [[Pxn (@) < K|z[| = K

M
E arer
k=1

(2) = (1) Dado = € [(en)n], queremos ver que existen tnicos escalares (a,)n tal que z = aney,.
Veamos primero la unicidad. Si 0 = ) ape,, miramos la desigualdad de (2) para N = 1,2,---
y M suficientemente grande:

M
g ann

n=1

1| [|z1]] = [Jarer|] < K

—0 = a; =0,
M

<K

|az] |22 = —0 = az = 0.
M

2 M
§ ;€4 5 Gn€n
i=1 n=1

Inductivamente, se concluye que a; = 0 para todo i.

Veamos ahora la existencia de los escalares.
Sean Py : [(en)n] — [(en)n], Pn(>_ anen) = Zﬁlzl apen. La hipétesis asegura que ||Py|| < K
para todo N. Por continuidad uniforme Py se extiende a [(e),]. De la misma manera, tenemos
las funciones coordenadas e}, : [(en)n] — R. Ademds, como para todo x € [(e),] se tiene que
el (r)en, = Py(z) — Py—1(x), por densidad, también vale en [(ey),].
Dado x € X, veamos que x = Y e} (x)e,. Dado € > 0, tomamos y € [(e,)n] tal que ||y —z|| < e, Ny
tal que Py(y) = y para todo N > Ny. Entonces para tales N tenemos:

lz = Pn(@)l| <l =yll+[ly = Pn@)ll + [[Pn(y) — Pn ()]
< A+ EK)|lz —yll+ly = Pn (@)l
< (14 K)e.

O]

Una pregunta razonable seria: jtodo espacio de Banach separable tiene una base? Per Enflo
resolvié este problema en 1973, exhibiendo un contraejemplo. Sin embargo, si es cierto que todo
espacio tiene un subespacio con base.
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Lema 1.2.3 (Mazur). Sea X un espacio de Banach de dimension infinita, F C X subespacio de
dimension finita. Dado 0 < & < 1, existe x € X \ F tal que ||y|| < (1+¢e)|ly—Az||Vy € F, VX e€R.

Demostracion. Como la esfera Sp es compacta, podemos tomar una &/2-red, {y1, - ,yn}, con
v, € X', ||lyi|| = 1 tal que y,.(yx) = 1. Como Ker(y,) es un subespacio de codimensién 1 para cada
k, podemos tomar x € (;_, Ker(y;), ||lz|| = 1.

Siy € Sp, existe [ tal que ||y — yi|| < €/2, y se tiene:

1 1E1
—Xzl| =|ly — —Az|| > x|l —¢/2> ly(yy — Ax)| —¢/2=1—¢/2 > = .
ly = Azll = lly =y + v — Azf| = |lys — Azl| — /2 = |y (e — Az)| — ¢/ 22 =1+,
Luego, [lyl| < (1 +¢)lly — Aal.
Si y € F es arbitrario, no nulo, como lo anterior vale para todo A, tenemos que
A
il = 0+l - el
1yl yll Iyl
y entonces
lyll < (1 +e)lly — Axl].
Esto concluye la demostracién; observemos que, ademds, pudimos tomar ||z|| = 1.
O

Teorema 1.2.4. Sea X un espacio de Banach de dimension infinita. Entonces, dado € > 0 existe
una sucesion basica con constante a lo sumo 1+ €.

Demostracion. Sean €, > 0 tal que [[(1+¢&,) <1+ ¢ (esto ocurre por ejemplo si tomamos In(1 +

€n) < 111(21%5)) Tomemos 1 € Sy cualquiera, y llamemos F; = [x1]. Por el lema anterior, existe zo €

Sx \Fi tal que |ly|| < (14¢1)||y+Az2|| para todo y € F; y todo lambda. Repetimos el procedimiento.

Supongamos construidos x1, - ,Tp—1,Fn_1 = [mi]?:_f. Aplicando el lema nuevamente, tomamos
xn € Sx \ F—1 tal que ||y|| < (1 +en—1)||y + Az, || para todo y € F,,—1, y todo A. Asi, obtenemos
(zn)n C Sx; veamos que es una sucesién basica. Si N < M, ay,--- ,ap € R, entonces

N N A
"Zan$n“ < (1+€N)HZanl'n+a(N+1)I’(N+1)‘)
n=1 n=1

——
eFn
N+1
< (I4en)d+ €N+1)H Dty + a(v42)T(N12) H
n=1

M
< (ITten)d+ens) - (1+ aM)H S anan
n=1

IN

M
(1 + 5)” Z AnTn
n=1

Por el Teorema 1.2.2, concluimos que (), es una sucesién basica con constante a lo sumo 14&. [

Usando este resultado e ideas similares a las usadas en la demostracién, se puede probar el
siguiente teorema de Bessaga-Pelczynski [D, pagina 42] :
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Teorema 1.2.5. Toda sucesion débil nula en un espacio de Banach X admite una subsucesion que
es sucesion bdsica.

En las préximas secciones veremos otras versiones méas fuertes del principio de seleccién de
Bessaga-Pelczynski.

Definicién 1.2.6. Sea (ey), una base de X. Dados p1 < ¢1 < p2 < --- numeros naturales y
(aj);) C R, podemos definir u,, = ajej no nulos. Decimos que (uy)y €s una sucesion bdsica
en bloque de (ep)n.

Qn
J=DPn

Observacién 1.2.7. Una sucesién basica en bloque es, efectivamente, una sucesién basica. Mas
aun, si K es la constante de la base de X, la constante de (uy, ), es a lo sumo K.

Demostracion. Usando nuevamente el Teorema 1.2.2, tomemos N < M,

N N qn N qn M  gn M
anun = an< Z ajej> = Z Z bpaje;l| < K Z Z bpaje;l| = K anun
n=1 n=1 J=Dn n=1 j=pn n=1 j=pn n=1

O]

Notacién 1.2.8. Dados (uy), como en la definicién de sucesién basica en bloque, escribiremos
uy < ug < ---.

1.3. Equivalencia de Sucesiones Basicas

Dada una base (ep), de un espacio de Banach X (andlogamente, una sucesién bdsica), un
elemento z € X (o en el subespacio generado por dicha sucesién) queda determinado por sus
coordenadas (e),(z)),. Pero no toda sucesién (a,),, determina un elemento del espacio. Esto motiva
la siguiente definicién.

Definicién 1.3.1. Dos bases (o sucesiones basicas) (zp)n y (Yn)n de espacios de Banach X e Y
respectivamente, se dicen equivalentes si dada una sucesién de escalares (ap)n,

o0 (o]
E anTy converge en X & E anyn converge en Y.

n=1 n=1
Teorema 1.3.2. Dadas (xy)n base de X, (yn)n base de Y, las siguientes afirmaciones son equiva-
lentes:
(1) (xn)n € (Yn)n son bases equivalentes;

(2) emiste un isomorfismo T : X —'Y que verifica T(xy) = yn;

(3) existen Cy,Co > 0 tal que ¥V N, Yai,--- ,an,

N N
Cr(D anyi|| < || ara|| < Co
k=1 k=1

N
S
k=1
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Demostracion. (1) = (2) Por hipétesis, podemos definir T'(} ", anxn) = ), anyn siempre que
Yooy an®y converja en X; es claro que se cumple que T'(xy,) = ypn. Ademds, la condicién reciproca
en la definicién de sucesiones equivalentes, asegura que 71" sea biyectivo. Veamos que es continuo
usando el teorema de gréfico cerrado: si z, — z en X, y T(z,) — y en Y, queremos ver que

T(z)=y.

v (SR y) = ekl o)
v (S5 ()T (@) = k(T () — (o).

Luego, =} (z) = y;.(y) para todo k, y entonces: T'(z) = >, 1.(2)yr = > ¥ (W) Yk = -
(2) = (3) Como T y T~! son continuas, basta tomar: C; = (||T||)~t, Cy = ||T-1]].

(3) = (1) Dada (ay, )y sucesién de escalares, entonces por hipétesis, para todo M < N, tenemos

que:
Z ALYk Z gLk Z ALYk

Luego, las series tienen el mismo comportamiento. O

< (9

Observacién 1.3.3. Supongamos que (z,), es una base de X, y sea (yn), C Y una sucesién de
elementos no nulos, tales que se verifica la condicién del punto (3) (equivalentemente, del punto (2))
del teorema anterior. Entonces (yy,), es una sucesién bésica, y por lo tanto, equivalente a (z,,).

N M
Demostracion. Dados N < M, buscamos una constante C tal que: Zakyk <’ Zakyk . Si
k=1 k=1
K es la constante de la base (), entonces:
M
> awyr
k=1
O

El siguiente lema serd de utilidad para luego demostrar el principio de seleccién de Bessaga-
Pelczynski.

Teorema 1.3.4. Sea (), una sucesion bdsica con constante a lo sumo K, (yn)n tal que

Han

entonces (Tn)n € (Yn)n Son sucesiones equivalentes.

Demostracion. Para cada x € X definimos T'(z) = + Y -~ | z,(x)(yn — ). Observemos que T
esta bien definido pues la serie converge absolutamente. Recordemos que por la Observacién 1.1.6

|zn|| < 2K; de esta manera, T es un operador acotado:

tenemos que Han ‘
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o
1T < 14+ 11l lyn — all
n=1
— |[yn — @0
< 142K n_n
; [l
< 2

Ademas,
In — Y
T 1 < 3l — ] < 2K 30 220y,
n n

n

de donde sigue que T' es inversible. Por tltimo, es facil ver que T'(z,,) = ym para todo m € N.
Luego, las sucesiones son equivalentes.

O
Teorema 1.3.5 (Principio de seleccién de Bessaga-Pelczynski). Sea (e,), una base de X con
constante K, y (€),)n sus funciones coordenadas. Sea (yx)r C X tal que inf ||yg|| > 0 y €. (yn) —>0

para todo k. Entonces, (yr)r tiene una subsucesion bdsica equivalente a alguna sucesion baszca en
bloque de los (en ).

Demostracion. Llamemos o =inf||y,|| > 0, y tomemos 0 < § < %
Tomemos n; = 1, rg = 0. Entonces existe 1 € N tal que

o0

Z e (Yny )en

n=r1+1

ad

Hym - P7“1(yn1)‘| = < K

Como || P, (yn)||—0, existe ny > ny tal que [|Pr (yn,)|| < 02‘—‘;{2. Tomamos 7, > r; tal que
n

Hyng - PTQ(yTLQ)H < %

Iterando, obtenemos una subsucesién (yy, )r y una sucesién creciente de nimeros naturales
(ri)k, con 1, = 0, tales que:

adk adk
”PTk 1(ynk)|’< 2K y Hynk_PT’k(ynk)H<ﬁ’

Consideremos zi, = Py, (yn,) — Pry._, (Yn,)- Como (1)) es una sucesién bésica en bloque de la base
(en)n resulta una sucesién bésica con constante a lo sumo K. Notemos que, para cada k, tenemos

k
e = @rll < Mlyne = Pry Wni) 1]+ 1Py ()] < %
y
yne = 2ll 2 [yl = llal] = o = [l
Asi, . .
2k >a—% (1-2) za<1—f‘5{> > a(1 - §).
Entonces,

H:Ck ynkH ad® 2 k 20
2K E 2 E = E - = )
||zx|| < a(l=¢6) 1-=9¢ 0 (1—10)2 <8/9
k=1 k=1

Por el Teorema 1.3.47 (Yn )k ¥ (Tk)r son sucesiones equivalentes. O
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Presentamos como corolario una reformulacién del Corolario 7 de [D, pagina 45| que sirve de
criterio para determinar si un espacio de Banach contiene o no una copia de cy,

Teorema 1.3.6. Sea (x,), una sucesion bdsica en un espacio de Banach X con inf ||z,|| > 0. Si
existe una constante C' > 0 tal que para todo F' C N subconjunto finito y para cada eleccion de
5ignos (en)ner se tiene que ||, cpentn|| < C , entonces (xn), es equivalente a la base candnica
de cy.

1.4. Condicionalidad e Incondicionalidad

1.4.1. Convergencia de Series

Definicién 1.4.1. Dada (z,), una sucesién en un espacio de Banach X, la serie > 7, x, se dice
incondicionalmente convergente si Y o, To(n) converge para toda permutacion o € Sy.

Sabemos que en el caso de series reales, convergencia incondicional es equivalente a conver-
gencia absoluta y, en ese caso, cualquier reordenamiento converge a lo mismo. En el caso de un
espacio de Banach arbitrario, convergencia absoluta implica convergencia incondicional, pero no
necesariamente vale la reciproca.

Observacién 1.4.2. Dada una serie > -, x, incondicionalmente convergente, entonces todo re-
ordenamiento converge al mismo elemento.

Demostracion. Llamemos x = Y2 | x,. Dada o € Sy, llamemos y = Y| (). Para ver que
x =y tomamos ' € X' y como 2/(z) es una serie incondicionalmente convergente en R

d(@) = 2 (wn) =Y 4 (Xo@m) = 2 ().
n=1 n=1
Luego, x = y. ]

o o s . fe'e) . . . .. . o0 /
Definicién 1.4.3. Una serie )~ | x,, se dice w-incondicionalmente convergente si ) 7" | ' (To(y))
converge para toda permutacién o € Sy, para todo @’ € X'. Equivalentemente, si > o, |2/(zy,)]
converge.

Observacion 1.4.4. Una serie incondicionalmente convergente es w-incondicionalmente conver-
gente.

Proposicién 1.4.5. Dada una serie y .- | x, en un espacio de Banach X, las siguientes afirma-

ciones son equivalentes:
1) la serie Y >, x, converge incondicionalmente;

2

toda subserie Z(;il Tp; converge incondicionalmente;

4
5

(1)

(2)

(8) toda subserie 3 72, xn; converge;

(4) existe un operador compacto T : co — X tal que T'(e,) =z, ¥V n € N;
()

la serie Y o0 | anxy converge para todo (an)n € loo-
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Demostracion. (1) = (2) Supongamos que existe una subserie Zj Tp; que no converge o, equi-
valentemente, una subserie cuya sucesién de sumas parciales no es de Cauchy. Luego existe ¢ >

qj : :
0,p1 < 1 < pa < --- € N tal que H Fp; xnkH > e. Si {y1,y2,---} es el conjunto de los
términos de (x,), que no figuran en ningtin bloque {z,.,--- , x4, }, entonces para el reordenamiento
Tpis s Zg, Y1, Tpay " » Tgo, Y2, -+ - la serie no converge, lo cual es una contradiccion.

Probamos entonces que dicha subserie converge. Veamos que, ademas, converge incondicional-
mente: ) @, converge V o € Sy. En efecto, o induce una permutacién en {ni,ns,- -}, la cual
podemos “extender” a N:

5(n) = () n = ny para algin k
n si no.

Entonces, . TF(n) converge (por hipétesis) y converge incondicionalmente. Luego, por lo que
acabamos de probar, su subserie ), T (ny) = Dok T, converge.

(2) = (3) es automadtica.

(3) = (1) Supongamos que existe o € Sy tal que ) 7, (,) no converge. Entonces existen ¢ > 0y

bloques finitos A; = {p;, -+ ,q¢;}, @ < pr+1, tal que HZ%A]_ To(n)|| > €. Llamemos I; = o(A;) (con

el orden natural). Eliminando algunos I; si fuera necesario, podemos suponer méax [; < min /1.
Asi, la subserie de los términos k € | ; Ij no converge.

(1) = (4) Definimos T : coo — X, T((an)n) = > oo

n=1
e X'
e’}
| (X an)
n=1

Luego, por la Observacién 1.4.4, el conjunto {2’ (307 | anxy) : ||a]le, < 1} es acotado, y por un
corolario del principio de acotacién uniforme, {d 77 | any : ||al|cy, < 1} es acotado (en X). Esto
prueba que T es continuo y, por densidad, T" se extiende de manera continua a cy. Veamos que el
operador T' : ¢¢g — X es compacto, probando que se aproxima por operadores de rango finito.

anZyn. Veamos que T es continuo: sea

oo
| < lallo > I (@)l
n=1

Especificamente, veamos que T M> T, donde Txn((an)n) = ZN anxy. Para eso, dado ¢ > 0,

n=1
asumamos que vale lo siguiente:

dnog /V F C{n>ng} finito,

<e/2. (1.2)

>
neF

Dado F C {n > ng} finito y 2/ € X' ||2/|| < 1, lamamos Fy = {n € F : 2/(z,) > 0} y
F_={n¢€ F:a'(x,) <0}. Como también son subconjuntos finitos, por (1.2) tenemos

e/2 > Hngl; Tn Zx'( ZF: a:n>

ner4

g/2 > H Z Tnll > —a:’( Z xn>

neF_ neF_

Dol (@)l =Y @)+ Y —al(w) <,

nekl neky nek_

De esta manera
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y entonces
M
/(T (a) = Tar(@))| = | Y ana/(z)| < |lalloc ¢ paratodo M > N >ng, 2’ € By,
n=N-+1

y equivalentemente,
|Tn — Tl < e para todo M > N > ny.

Luego, T converge y debe ser Ty M) T.

Probemos entonces que efectivamente vale (1.2). Supongamos que no se cumple y sea € > 0 tal
que para todo n € N existe F,, C {n+1,n+2,---} finito tal que szan :E]H > €. Veamos que no

puede ocurrir que la serie converja incondicionalmente. Consideramos:
ny = 1; Ay = Fiy;

ng = max Fy,; By = {n1 + L;na} \ A1; Ae = F,;
n3 = max Fy,; By = {na + 1;n3} \ Ag; As = F,.;

Observemos que AxUBy = {nx+1, -+ ,ngs1}. Tomamos o € Sy tal que o({ng+1, -+ ,ngy1}) =
{ng+1,--- ,ngi1} y tal que max(o(Ag)) < min(o(Byg)) para todo k. Es decir, o(Ax) es un sub-
conjunto ordenado de {ny + 1,--+ ,ngy1}. Entonces,

| 5 ol =l S o= 5 =l 2
]EO’(Ak) jeAk jank
Por lo tanto, la serie > jeN To-1(j) 1O puede ser convergente.

(4) = (5) Sea (an)n € loo, lamamos Sy = Zgzl anen; Tn = T(Sy) = Zgzl anTy. Como los
operadores compactos mandan sucesiones débil Cauchy en sucesiones de Cauchy (en norma), basta
ver que (Sy)n es débil Cauchy. Tomemos entonces ¢ € ¢1 = ¢, (es decir Y |p(ey)| < 00) y veamos
que la serie ¢(Sn) converge absolutamente:

N N
D and(en)] < llalloo Y [d(en)] < llallolldle,
n=1 n=1

(5) = (2) Si queremos ver que la subserie ), z,, converge, consideramos la sucesién de fo
definida por a; = 1 si j € {nx}y y a; = 0 en caso contrario. Entonces » ) zn, = >;a;z;, que

sabemos que converge.
O

1.4.2. Bases incondicionales

Definicién 1.4.6. Una base (e,)n, de un espacio de Banach X se dice incondicional si (€s(n))n
es una base para toda permutacién o € Sy. Equivalentemente, cada vez que la serie Y 7 | anep
converge, lo hace incondicionalmente.

Nota 2. La base de Fourier de L,[0, 1], {e?™™'},c7 es una base (de Schauder) pero, en general, no
es base incondicional. De hecho, vale que es base incondicional si y sélo si p = 2 [W, pagina 62].
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Proposicién 1.4.7. Dada una base (z,), de un espacio de Banach X, son equivalentes:

(1) (xpn)n es incondicional;

(2) existe una constante K> 1 tal que para todo N, si ay,--- ,an,b1, -+ ,by son escalares tales
que |an| < |by| para todon =1,--- N, entonces se tiene:
N N
Z anZn|l < K Z bpxn
n=1 n=1

Demostracion. (1) = (2) Para cada t = (t,)n € By, por la Proposicién 1.4.5, podemos definir
T, : X = X, T, (O cnxn) = Y tncnxy. Observemos que T; es un operador continuo, por ser limite
puntual de los operadores continuos

0o N
TtN (Z cnxn> = Ztncn:nn
n=1

n=1

(TN es continuo por ser composicién de operadores continuos: la proyeccién N-ésima, y un operador
entre espacios de dimensién finita):

o] N N
g CnLy — g CnTy F— E thCnTy,.
n=1 n=1 n=1

Veamos ahora que las normas de T} estdn uniformemente acotadas. Fijemos = = > ° | ¢z, (con-
verge incondicionalmente) y consideremos S : ¢g — X dado por S(e,) = ¢,x,. como S es continuo

(més aun, es compacto), existe K, tal que ||S(t)|| < K, para todo t € ¢cgp, ||t|| < 1. Es decir:

N
E tpCnTn
n=1

< K, para todo N, para todo ||t||ec <1

y por lo tanto,

< K, para todo ||t]|e < 1.

[e's)
L@ = |3 tucn
n=1

Entonces, por el principio de acotacién uniforme, existe una constante K tal que ||T;|| < K para
todo t € By, y luego:

0o 0o
E tncnxn|| < K § CnTn
n=1 n=1

Observemos que tomando t, = 1 para todo n se concluye que K > 1. Por dltimo, veamos que
de esta desigualdad se deduce la que queremos probar. Como |an| < |by|, si llamamos t, = §* si

bn, # 0,t, = 0 si b, = 0, tenemos que |t,| < 1. Tomando ¢, = by, tenemos a,, = t,b, y entonces:

(o) o
5 anTy E by
n=1 n=1

(2) = (1) Dada ) anx;, serie convergente, queremos ver que converge incondicionalmente. Equiva-
lentemente, queremos ver que toda subserie ) . an, z,, converge. Dado ¢ > 0, como la serie original
converge, existe N € N tal que para todo m > N, L > 1 se tiene:

<K

m—+L

E anZTn

n=m-+1

<=
K
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Veamos que para todo N < nj < --- < ng4; tenemos

k+1 N1
Z ;T || < K Z a;x;|| - (1.3)
j=k+1 Jj=ng+1

Dado que ng4; = ng + L para algin L > 1 el término de la derecha es a lo sumo ¢, esto terminaria
la demostracion.

Observemos que el soporte de la suma del lado izquierdo es {ngy1,ngr2, - ,nk1} y el del lado
derecho: {nip+1,nk+2, - ,ng1} D {nk+1,Mkt2, - , Nkt }. Entonces, podemos escribir (1.3) como
en la hipdtesis: ‘Zgil arn|| < K HZle ngn‘ , con |a),| < |b)|, tomando:

N = ngyy;

an, =b, =0V n<ng+1;

a% =0Vne {le +1,ng+2,--- ,nkH} \ {nk+1,nk+2, s 7nk+l};

b, = an ¥V npgp1r <n < ngyy;

ay, = ap ¥ 1 € {njg1, Niga, -+, Nyt }5 ete.

O

Definicién 1.4.8. Si (e,), es una base incondicional de un espacio de Banach X, definimos la
constante de incondicionalidad de la base, x(ey), a la menor constante K para la cual se verifica la
condicion (2) de la proposicién. Diremos que (ey,), es K-incondicional si K > x(ey).

Observacion 1.4.9. Revisando la demostracién, vemos que, equivalentemente, (ey, ), es K-incondi-

N N
sélamente el caso en que t1,--- ,ty es cualquier eleccién de signos.

cional si para toda sucesion |t,| < 1. Mds aun, basta considerar

Demostracion. Tomemos |t,| < 1. Existe 2’ € By tal que

N N N
Z tncnenll = o (Z tncnen> = Z tncne (en)
n=1 n=1 n=1

N
= Z tnenencne (en) para e, = sg(cpe’(en))
— %/_/
n=1 >0
N N
< sup  |twen] ancne’(en) <z Z&ncnen
l=n<N n=1 n=1
N N
< Z EnCnen|| < K Z Cné€n
n=1 n=1

El concepto de K-incondicionalidad se puede extender a bases en bloques.

Definicién 1.4.10. Fijada una base en un espacio de Banach X, dada (y;, ), una base en bloque, di-
remos que es K-incondicional si dados escalares ¢y, --- ,cy y cualquier eleccién de signos €1, -+ ,en
se tiene que HZle encnn|| < K Hzgzl CnlYn
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Definicion 1.4.11. Diremos que una sucesion y; < --- < yy es K-condicional si cumple que
N N
HZn:l Yn > K HEn:l(_l)nyn

Observacion 1.4.12. Tenemos entonces que una base en bloque en K-incondicional si y sélo si
genera un subespacio que no contiene sucesiones en bloque finitas K-condicionales.

1.5. Cotipo

Definicién 1.5.1. Llamaremos funciones Rademacher a las funciones definidas en el intervalo [0; 1]
por 7;(t) = sg(sen(2mjt)), j € No.

Observacion 1.5.2. Valen las siguientes propiedades:
(1) |rj(®)] =1V te[0:1], Vj.

@2) [y ri)rt)dt = 5.

Definicion 1.5.3. Para 2 < g < 0o, diremos que un espacio de Banach X tiene cotipo Rademacher
q (o cotipo q) si para algin 1 < r < oo existe una constante C' tal que para toda eleccién de
elementos de X, x1, -+, z,, se tiene

1/q T 1/r

n 11| n
Slzle|  <c /O S || dt)| (1.4)
j=1 j=1

y, en el caso de ¢ = o0

r 1/r

11l n n
A < C (x|l dt =C i(t)x,;
méx ol <c{ [ 3.yt > (s

Lq[051]

Se puede probar que si X tiene cotipo ¢, entonces tiene cotipo ¢’ para ¢ < ¢’, y que todo espacio
de Banach X tiene cotipo co. Serdn interesante entonces los espacios con cotipo no trivial. Dentro
de los espacios de Banach clésicos, Ly(u) tiene cotipo ¢ = max{2;p}.

Nosotros no necesitaremos ahondar en la definicién y las propiedades basicas del cotipo; se puede
encontrar mas informacion sobre el tema, como también las demostraciones de las propiedades
anteriores, en [AK, 137-142].



Capitulo 2

Dos resultados clasicos

En este capitulo presentaremos dos problemas clasicos del andlisis funcional cuyas demostra-
ciones requieren de herramientas de la teoria de Ramsey.

El primero de ellos, el Teorema ¢; de Rosenthal (1974), da una condicién necesaria y suficiente
para que {71 sea isomorfo a un subespacio de un espacio de Banach X. Especificamente, afirma
que un espacio de Banach X o bien contiene a £, o bien tiene la propiedad de que toda sucesién
acotada contiene una subsucesion débil Cauchy. Al comienzo del Capitulo 1 definimos este concepto
y notamos que w-convergencia es mas fuerte que la convergencia débil Cauchy; veamos esto en el
siguiente ejemplo.

Ejemplo 1. Consideremos en X = ¢q la siguiente sucesién: z,, = e; +- - - +e,. Es claro que (zy,),, es
una sucesién débil Cauchy; en efecto, para cada @’ = (an), € ¢, = {1 se tiene que z’(x,) = > 1 a;
converge (absolutamente). Sin embargo, si y = (1,1,---), tenemos que fﬁw—*>y en lo, es decir
2’ (x,) = 2/ (y) para todo 2’ € X', pero y ¢ co.

Sin embargo, existen espacios donde ambas nociones de convergencia son equivalentes; son
ejemplos de esto, como veremos en la siguiente proposicién, los espacios donde toda sucesién w-
convergente sea convergente (en norma), esto es, los espacios con la propiedad de Schur. Sin ir més
lejos, ¢; tiene dicha propiedad [D, pégina 85].

Proposicion 2.0.4. Si X es un espacio de Banach con la propiedad de Schur, entonces toda
sucesion débil Cauchy es débil convergente, mds ain, es convergente (en norma,).

Demostracion. Supongamos (x,), es una sucesién débil Cauchy. Dadas dos sucesiones estricta-
mente crecientes de nimeros enteros (ng)r y (mg)r, por la hipdtesis, se tiene que (zn, — Zm, )k
converge débilmente a 0 pero entonces, como X tiene la propiedad de Schur, converge en norma.
Luego, la sucesién (x,,), es de Cauchy y por lo tanto converge. O

Esto nos servira para verificar la condicién del teorema de Rosenthal en el caso X = ¢y; si con-
sideramos la base candnica, es un ejemplo de una sucesién acotada que no tiene ninguna subsucesién
débil Cauchy; esto vale pues no tiene ninguna subsucesién débil convergente y ambas nociones de
convergencia son equivalentes.

El segundo problema que estudiaremos es un problema de separacién que, en algiin sentido
mejora el siguiente resultado clasico del anélisis funcional.
Lema 2.0.5 (Riesz). Sea X un espacio normado de dimension infinita, Y C X un subespacio
cerrado propio y 0 < 0 < 1, entonces existe xg € Sx tal que ||xg — y|| > 0 para todo y € Y.

18
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Observacion 2.0.6. Si Y es un subespacio de dimensién finita, se puede tomar z; € Sx tal que
||y —z1|| > 1 para todo y € Y. En efecto, si zp € X \ Y, como dim(Y') < oo, podemos tomar yy € Y’
tal que d = d(xo; F') = ||zo — yol|. Si entonces consideramos x; = %, para todo y € Y tenemos

— d,
que [Joy — y|| = Heo=tutdwll >

Esta observacion nos sirve para probar la siguiente “mejora” del lema de Riesz.

Corolario 2.0.7. Si X es un espacio normado de dimensidon infinita, entonces existe (zy)n € Sx
tal que ||z, — xm|| > 1 para todo n # m.

Demostracion. Tomamos x1 € Sy y consideramos el subespacio Y1 = (x1). Por la observacién
anterior, existe xo9 € Sx tal que ||z} — x2|| > 1. Sea ahora Yo = (x1,x2), nuevamente, existe
x3 € Sx tal que ||lzg — x;|| > 1 para ¢ = 1,2. Repitiendo este proceso, obtenemos la sucesién

buscada.
O

Mas aun, se puede lograr un mayor estricto en el enunciado anterior. Es decir:

Proposicién 2.0.8. Si X es un espacio normado de dimension infinita, entonces existe (xy)n € Sx
tal que ||z, — xm|| > 1 para todo n # m.

Demostracién. Procedemos por induccién. Sea x1 € Sx y ) € Sxs tal que zj(z1) = 1.
Supongamos elegidos k elementos linealmente independientes de Sx/, @, -,z y k elementos de
Sx, T1,...,z tales que ||z, — zm|| > 1 para todo 1 < n,m < k, con z},(x,) = 1. Elegimos y € X
tal que 2 (y), - -, ¥4 (y) < 0y = € (i, ker(z}) no nulo, y sea K tal que ||y|| < |Jy+ Kz||. Entonces,
si tomamos cualquier combinacién lineal no trivial Zle a;x, tenemos que

k k
S adily+ Ka)| = | ai(y)
i=1 i=1
k
< 1D a1yl
i=1
k
< Zaix; lly + Kz||.
i=1
Sea rpi1 = % Y Ty € Sx tal que z)_(zry1) = 1. Entonces, por lo anterior, debe ser
Ty ¢ (@), -+, x7,). Por dltimo, sea 1 < n < k se tiene

k1 = zall 2 g (@rn = 2a)| = fa (wr41) — 2 ()| = 1= 2 (@rpa) [ > 1.
N—_——

<0
O
Vale la pena recalcar la simplicidad del argumento anterior, donde el tinico resultado previo que

se utiliza es el Teorema de Hahn Banach. Sin embargo, aunque para cada n y m valga la desigualdad
estricta, podria ocurrir que inf,, 4y, ||z, — || = 1.
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Observacién 2.0.9. Consideremos el caso X = ¢g.
Tomemos xj = Zle €; — €x+1 ¥ M > m, entonces

n
l|Zn, — Tml|co = Z € — €eni1 + 2emi1|| =2

i=n+2 o

Es decir, en el ejemplo anterior probamos algo todavia maés fuerte que lo afirmado por la
proposicién. Surge entonces la pregunta de si éste sera un hecho general, es decir, si valdra que para
cualquier espacio de Banach arbitrario podemos encontrar una sucesiéon normalizada tal que dos
términos cualesquiera disten en mas de 1 “maés algo”. Inspirados en el ejemplo y en la escritura de
la sucesion elegida, veremos primero que en el caso de los espacios que contengan copias de ¢ esto
sera posible. De hecho, con el Teorema de Elton-Odell demostraremos que esto ocurre en todo espa-
cio de Banach. Para el caso restante, asi como la teoria de Ramsey sirve para probar una condicién
necesaria y suficiente para que un espacio contenga una copia de £1, ahora nos servira para probar
una condicién suficiente para que un espacio contenga una copia de cg.

2.1. Teoria de Ramsey

La llamada teoria de Ramsey surge en 1930, cuando F. P. Ramsey publica su articulo “On
a problem of formal logic”. Para enunciar el primer teorema de Ramsey, serd necesario primero
introducir algunos conceptos. Dado un conjunto X, notaremos por Fi(X) al conjunto de los sub-
conjuntos de X de cardinal k. Una r-coloracion de un conjunto A serd una funciéon A — {1,--- ,r};
si un conjunto A tiene una r-coloracién y B C A, entonces diremos que B es monocromdtico si la
imagen de B es constante. Ahora si, el teorema de Ramsey es el siguiente:

Teorema 2.1.1. Sean k y r nimeros naturales. Entonces para cada r-coloracion de F(N) existe
un subcongunto X de N tal que Fp(X) es monocromdtico.

Asi, se suele decir que un teorema pertenece a la teoria de Ramsey, o que es un teorema de
Ramsey, si es de la forma: dado un coloreo (finito) de algin objeto matematico, entonces existe
un subobjeto de cierto tipo que es monocromatico. Si bien los teoremas de Ramsey que nosotros
estudiemos no estaran enunciados en términos de colores, trataremos de mostrar la analogia.

El teorema de Ramsey que demostraremos en esta seccién es el Teorema de Nash-Williams que,
de alguna manera, concierne a las coloraciones de Py (N), el conjunto de los subconjuntos infinitos
de N. Motivados por el teorema original de Ramsey, uno esperaria que, dada una r-coloracién de
Poo(N), exista un subconjunto infinito de N, X, tal que Poo(X) sea monocromatico. Sin embargo,
esto no ocurre. Una manera de verlo es considerar en Py (N) la relacién de equivalencia definida por:
A ~ B siy sélo si su diferencia simétrica es finita. Luego, defimos una 2-coloracién: A serd rojo o
azul dependiendo de si la diferencia simétrica entre A y el representante de su clase de equivalencia
tiene una cantidad par o impar de elementos, respectivamente. Asi, si A es un conjunto y A un
representante de su clase de equivalencia, tomando n € X\ AUA, los conjuntos A y AU{n} tendrén
distinto color.

Entonces, si bien no podremos generalizar el teorema anterior a subconjuntos infinitos, podremos
utilizar herramientas de la teoria de Ramsey para demostrar el llamado Teorema de Nash-Williams.
Para eso, primero introduciremos otras definiciones y notaciones.

Antes de continuar, introduciremos algunas otras notaciones y definiciones.
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» P(N) denotard al conjunto de partes de N.
= F(N) =PN)\ Poo(N).
» Dada f: F,(N) — R una funcién y M € Py (N), escribiremos

Ii A) =
aciyy T4 =«

siVe>03NeNtalqueV Ae F,(M),ACI[N,+00) se tiene que |f(A) — a| < e.

Veamos ahora el primer resultado de tipo Ramsey; si bien no lo usaremos posteriormente, es
un resultado que podemos probar simplemente usando las definiciones anteriores y cuyo enunciado
es muy similar a otro que si necesitaremos, pero para el cual necesitamos mas herramientas.

Teorema 2.1.2. (1) Supongamos f : Fr(N) — R una funcion acotada, entonces existe M €
Poo(N) para el cual existe limacx, (ary f(A).

(2) Si AcC Fr(N) entonces existe M € Poo(N) tal que Fr(M) C A o Fr(M)NA=0.

Demostracion. Veamos primero que (2) se deduce de (1). Definiendo f(A) = x4(A), por (1) existe
M € Py (N) para el cual existe limgc 7, (ar) f(A). De la definicién de limite se deduce que hay dos
opciones:

s (a=0) f(A) =0V Ae F.(M). En este caso F,.(M)N A= .
» (a=1) f(A)=1 VY Ae F(M). En este caso F,(M) C A.

Probemos (1) por induccién en r. Veamos que para todo r vale:

dado M’ € Poo(N) y f: Fr(N) — R acotada, 3 M € Poo(M') tal que existe Aelfi‘H%M) f(A).
Para r = 1, tenemos f : F1(N) — R, M’ € Po(N). El conjunto {f({n}) : n € N} es acotado. En
particular, la sucesion (ay)necpr definida por a, = f({n}) es acotada, luego tiene una subsucesién
convergente, es decir, existe {ny}r € Poo(M’) creciente tal que (an,)r es convergente. Sea a su
limite, dado un € > 0 existe ko € N tal que para todo k > kg |an, —a| < €. Veamos que sirve tomar
M = {{n1},{n2},---}. Sea € > 0, tomamos N = ny,; entonces para todo {ny} € F1(M),nr > N
se tiene que k > kg y, por lo tanto, |f({ni}) — a| <e.

Observemos que este caso se puede reescribir (con cierto abuso de notacién) de la siguiente
manera: dados M’ € Poo(N) v f: N — R una funcién acotada, entonces existe M € Py (M) tal
que existe lim,eps f(n).

Sea ahora r > 2 y supongamos la afirmacién cierta para r — 1. Notaremos f({m1,--- ,my}) =
f(ma,--- ,my) siempre que m; # m; para todo i # j. Tomemos mi, - ,m,}_l € N todos distintos,
entonces, como f(m%, ,m}_l,-) : N — R es una funcién acotada, por el caso r = 1 (para
M’ = N) existe I} € Pso(N) tal que existe el limite lim,,, c7, f(mi,- -, ml |,m;) =a.

Tomemos m%, - ,m%_l € N distintos, como la funcién f(m%, e ,m%_l, ) : N — R es acotada,
por el caso r = 1 existe Iy € Pu(I1) tal que existe limy, ez, f(m?,--- ,m2_;,m;) = as.

Razonando de la misma manera, dados m:f, e ,mfﬁ_l € N distintos, existe I3 C Is subconjunto
infinito tal que lim,, ez, f(m3,--- ,m3_;,m,) = as.

Veamos ahora que existe M; € Py (N) tal que para cada elecciéon myq,--- ,m,—1 € N distintos
existe

im f(ma,---,my) = lm f({mi, - ,m}).

myEM; my€M
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Para entender como hay que tomar M, construidos I1 D Iy D -- -, veamos el caso 7 = 2; buscamos
M tal que para todo n € N exista el limite lim,,crr, f(n, m). Por lo anterior:

paran=1 3 CN tal qued lim f(1,m),
mel

paran=2 3JI,Cl; tal que 3 11’1111 f(2,m),

melz
paran =4k I I CIy_1 tal queJ lim f(k,m).
mely

Tomemos M; = |J;—;{k-ésimo elemento de I} y veamos que sirve: dado n € N, sabemos que exis-
te limy,er, f(n,m) = ay luego, dado € > 0, existe N € N tal que para todo m € I,, N [N, 00) vale
|f(n,m) — ay| < e. Sea N’ = max{N;n-ésimo elemento de I,} y m € M; N[N’;+00), como m es
mayor que el n-ésimo elemento de I, entonces m debe ser el j-ésimo elemento de I; para algin
Jj >mn, luego m € I; C I, y, por lo tanto, m € I, N [N, +00) y |f(n,m) —ay| < e.

n

Sir > 2, tomamos una biyeccién o : N — I\ y escribamos o(n) = (m},--- ,m"

"_,). Entonces

paran=1 3 I; CN tal que 3 h’mI flo(1),my),
mrely

paran=2 3L Cl; talqued lim f(o(2),m,),

my€l2

paran=%k 3 I, CIy_1 talqued lim f(o(k),m,).
mprEl},

Tomemos M; = |J,—,{k-ésimo elemento de I} y veamos que sirve: dado n € N, sabemos que
existe limy,,.cz, f(o(n),m;) = a, luego, dado € > 0, existe N € N tal que para todo m, € I,,N[N, c0)
vale |f(o(n),m;) — an| < e. Sea N’ = max{N;n-ésimo elemento de I,,} y m, € My N [N';+00),
como m, es mayor que el n-ésimo elemento de I,,, entonces m, debe ser el j-ésimo elemento de
I para algin j > n, luego m, € I; C I, y, por lo tanto, m, € I, N[N, +o0) y | f(o(n), m,)—ay,| < e.

Tenemos entonces M € P (N) tal que para cada eleccién mq,--- ,m,—1 € N distintos existe
lim mi, -+ ,my) = lim M, My }).
i e mg) = Y f({maem))

Observemos que dicho limite no depende del orden de los m; (pues f es una funcién evaluada en
conjuntos). Llamemos

lim f(m17 o 7m7“) = g(m17 T )mT—l) == g({m17 e 7mr—l})'
my€M;
Luego, g :F,-1(N)—R es una funcién acotada. Por hipétesis inductiva, existe My € Poo (M) tal
que, para algiin a € R se tiene
lim B)=a.
BeF,_1(Ma2) f( )

Ademés, dados € > 0y B € F,_1(M3) existe N = N(e, B) (que podemos tomar mayor o igual
que max B) tal que para todon > N,n € M se tiene |f(BU{n}) —g(B)| < €, y esto sigue valiendo
para n € Ms. Notar que tales n no pertenecen a B.
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A continuacién construiremos el subconjunto M a tomar. Elegimos r — 1 elementos cualesquiera
de My: my < mg < -+ < my_1. Supongamos elegidos n elementos, m; < --- < m, paran >r — 1,
elegimos my11 > m, tal que

¢ -n
M1 > Be{mmﬁ}imn} N(2™",B).

Finalmente, tomamos M = {m;}; subconjunto de M. Veamos que sirve, es decir, veamos que
existe lim 4c 7, (ar) f(A).

Dado € > 0, como limper, | (m,) 9(B) = a, existe n € N tal que para todo B C [my, +00),
B e Fr_1(M) (C Fro1(Mz)), se tiene |g(B)—a| < £/2 y podemos suponer n suficientemente grande
para asegurar que 27" < /2. Tomamos N = m,,; dado A € F,.(M), A C [N, +00), llamamos my,
al maximo de Ay B := A\ {my} € F,_1(M). Entonces, como my, € My y my > N(2-*=D B),
vale que |f(A) — g(B)| < 21, Luego,

[f(A) —al < [f(A) —g(B)|+[9(B) —af <e.

Es decir, lim f(A) = . O
AeF (M)

Nuestro objetivo en esta seccién es generalizar el punto (2) del Teorema 2.1.2 en el siguiente
sentido: queremos ver qué condiciones hay que pedirle a un subconjunto V C P (N) para que que
exista M € Ps(N) que verifique que Poo(M) C V 0 Poo(M) NV = (. Siguiendo el espiritu de
los primeros teoremas de Ramsey, esto se puede interpretar como un problema de coloreo: si los
numeros naturales representan bolitas distinguibles que pintamos de azul si pertenecen a V y de
rojo sino, entonces lo que queremos ver es cuando es posible elegir infinitas bolitas que sean o todas
rojas o todas azules.

Definicién 2.1.3. Si un conjunto V C Puo(N) verifica la dicotomia anterior, diremos que tiene la
propiedad de Ramsey o que es un conjunto de Ramsey.

Sin embargo, resultard mas ficil estudiar una propiedad maés fuerte. Para eso, dados A €
F(N), E € Px(N), definimos el conjunto

Poo(A,E)={B € Px(AUE): AC B}.
Observacion 2.1.4. Valen la siguientes propiedades:
s Po(0, E) = P (E).
" Si Ay C Ay C E= Pu(As, E) C Poo(Ar, E).
» Si B} C By = Poo(A, E1) C Poo(A, Es).

Definicién 2.1.5. Diremos que V C Ps(N) es completamente Ramsey si dados A € F(N) y
E € Ps(N) vale alguna de las siguientes afirmaciones:

(i) 3 M € Pos(E) | Poo(A, M) C V.
(ii) 3 M € Poo(E) | PoolA,M)NYV = 0.
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Observacién 2.1.6. Para A = () y = N, esta dicotomia es justamente la propiedad de Ramsey.
Observacion 2.1.7. Si V es completamente Ramsey, entonces también lo es V°.

Esta condiciéon que buscamos serd una propiedad de cardcter topolégico; estudiemos entonces
dos posibles topologias en Py (N).

Sea A = {0,1}" el conjunto de Cantor, podemos identificar

PN — A
A — xa.

Consideramos en A la topologia inducida por la distancia:

o~ 197 — 33|
d(51,52) = ZT
k=1

Asi, Ps(N) hereda una topologia métrica, que llamaremos topologia de Cantor y que notaremos
7o Especificamente, la distancia en P (N) es

d(A1, Ag) = i ‘XAl(k)Q_kah (k)”
k=1

y una base para la topologia son los entornos B(A,e) = {B € Py (N) : d(A, B) < ¢}, variando
A€ Po(N)ye>D0.

También trabajaremos con otra topologia en P (N), la topologia de Ellentuck, que notaremos
TE.

Definicién 2.1.8. Topologia de Ellentuck en Ps(N)
Diremos que U C Poo(N) es un abierto-Ellentuck si para todo E € U existe A C E subconjunto
finito tal que P (A4, F) C U.

Observacion 2.1.9. Esto define una topologia.
s (), P (N) € 75 trivialmente.

s U, Us €ETE=UINU € TR
Claramente U1 NUy C U; C Px(N). Por otro lado, dado E € U1 NU2, como para cada
i=1,2, E€lU;, 3 A; C Etal que Po(A;, E) CU;. Sea A = A1 U Ay C E subconjunto finito,
luego Poo(A, E) C Poo(A;, E) CU;, y entonces Poo (A, E) C U1 NU5.

s Uy emp = U ,Ua €TE
Como U, € Poo(N) para todo a, también la unién pertenece a P (N). Por otro lado, dado
E € U, existe ag tal que E € Uy, v, como Uy, € T, existe A,, C E subconjunto finito
tal que Poo(Aag, F) CUay € U, Ua-

Observacion 2.1.10. Los conjuntos P (A, E) son una base para la topologia, variando A € F(N)
y E € Poo(N) (no es necesario pedir A C E ya que siempre A C E' = AUE).
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Proposicion 2.1.11. La topologia de Ellentuck es mds fina que la topologia de Cantor, es decir,
los conjuntos abiertos para la topologia de Cantor son también abiertos Ellentuck.

Demostracion. Basta ver que los entornos bésicos pertenecen a 7g: dado U = B(A,e) y B € U,
buscamos un subconjunto finito F' C B tal que Poo(F, B) C U. Como B € U, tenemos que

> k) — vp(k
kz Ixa( )ZkXB( )l S<e
=1

Necesitamos F finito tal que para cada E € Py (F, B) valga

> k) — xe(k
kZ\XA( )2kXE( )l ce
=1

Observemos que

k) — gk 1 1 1 1
§:|XA()2kXE()|::§:2k+_§:2k5;§:2k+_§:2k.

A\E E\A A\E B\A

No vamos a poder lograr A\ E'= A\ B en general, pero si si intersecamos con un conjunto finito:

(A\E) N {1, ko} = (A\ B) N {1, , ko}
& (AN{L- kP)\E = (AN{L- - ko})\ B
& (B\E)NAN{L--,k} = (BNAN{L-- k})\E=0

& BnAN{L,--- ko} C E.

Tomamos ko € N tal que >, 2% <e—0yF=BnNAN{l,---,ko} y entonces tenemos:

> k) — xp(k k k) — xu(k
; Ixa( )QkXE( ) Z xalk) —xp(®)| Z Ixa( )2kXE( )|

k>ko

Z‘XA XB +Z*<5+6—5—8

k>ko

IN

O]

Enunciemos y demostremos ahora el Teorema de Nash-Williams (1965) que generaliza el teorema
al inicio de esta seccion.

Teorema 2.1.12 (Nash-Williams). Todo abierto Ellentuck es completamente Ramsey.

Demostracion. Primero, introduzcamos algunas definiciones. Si A € F(N) y E € Py (N), diremos
que (A, E) es un par. Dado U € 7, un par (A, E) se dice bueno (para U) si existe M € Poo(E) tal
que Poo(A, M) C U. En caso contrario, diremos que es un par malo. Observemos lo siguiente:

» Si (A, E) es un par malo y F' € Py (E), entonces (A, F') también es un par malo.

» Si E,F € Py(N) son tales que la diferencia simétrica EAF es finita, entonces (A, F) y (A4, F)
son o los dos buenos o los dos malos. Esto se deduce de lo siguiente: si M € Py (F'), entonces
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\J\{/ =MN(FNE) U MN(F\E).

infinito =MNE finito

Luego debe ser M N E infinito. Con el mismo razonamiento, si M € Poo(E) entonces M N F
es infinito. De esto sigue que si (A, F') es bueno, existe M € Py (F) tal que Poo(A, M) C U
y, entonces M NE € Pyo(E) y Poo(A, M NE) C Poo(A, M) C U, es decir, (A, E) es bueno.
Andlogamente, si (A, E) es bueno, también lo es (A, F).

Ahora si, para demostrar el teorema, dados A € F(N), E € P (N) queremos ver que U cumple
alguna de las condiciones de la definicién de completamente Ramsey. Es claro que si (A, F) es bueno
entonces se cumple (i). Probemos que si (A, F) es un par malo vale (ii). Lo haremos en tres pasos
y sblo usaremos la hipétesis (U € 7) en el dltimo.

Paso 1. Sean (A;)72, conjuntos finitos, E € P(N) tal que (A;, E) es malo para todo1 < j < m,
entonces existe n € E\ /L, Aj y F € Poo(E) tal que (A; U{n}, F) es malo para todo j.

Supongamos que esto es falso. Entonces si tomamos ny € E '\ UT:1 y E1 € Po(E) se tiene que
(Apay U{ni}, M) es bueno para algiin 1 < p(1) < m y, por lo tanto, existe M € P (F1) tal que
Poo(Apy U{n1}, M) CU. Cambiando E; por M tenemos

ny € F \ U;n:l Aj, FE € POO(E), POO(Ap(l) U {nl},El) cu.

Como Ey C E,(A;, E1) es malo para todo j. Si existiera n € Ey \ UJL; Aj vy F' € Poo(E1) tal que
. . ’ m
j ) ) = j oo ’
(Aj U {n}, F) es malo para todo j, en particular serfa n € E\ |J;L; A4j y F' € Poo(E), lo cual es
una contradiccién. Entonces tomamos ng € E7 \ U;"Zl Aj, By € Pso(En) tal que ng > ny y vale que
A oy U{ns}, E) es bueno para algin 1 < p(2) < m y, por lo tanto existe M € Py (FE>) tal que
p(2)
Poo(Ap2) U{n2}, M) CU. Cambiando E; por M tenemos

ng € B\ U;n:1 Aj, E; € Po(E1), POO(Ap(2) U{na}, E2) CU.

Inductivamente, construimos una sucesién creciente (ny);>,; C E, una sucesién decreciente de
subconjuntos infinitos (Ex)?°, con Ey = E, y una sucesién (p(k))32,,1 < p(k) < m tales que

ng € Fr_1q \ U;nzl Aj, POO(Ap(k:) @) {’I’Lk},Ek) cU VEkeN.

Observar que n; € B, V j > k.

Existe 1<p<m tal que {k : p(k) = p} es infinito. Tomamos M={n; : p(k) = p} € Px(F),
veamos que Po(Ap, M) C U (contradiciendo el hecho de que (A, E) sea malo). Dado G
Poo(Ap, M), tomamos k el menor entero tal que n; € G. Luego tenemos que 4, C Gy G
Poo(Ap U {ni} UE}) y entonces G € Poo(Ap U {ny}, Ex) C U; es decir, probamos que G € U.

S
S

Paso 2. Si (A,E) es malo, entonces existe M € Px(E) tal que (B,M) es malo para todo
conjunto finito AC B C AUM.

Sea Fy = E, como (A, Ey) es malo, por el paso 1, existe n; € Ey \ Ay E1 € Px(Ep) tal que
(AU {n1}, E1) es malo. Pero como Poo(AU{n1}, M) C Poo(A, M)V M € Ps(E1), no puede ser
(A, E1) bueno. Entonces concluimos que (B, E1) es malo para todo subconjunto A C B C AU{n}.
Supongamos elegidos conjuntos infinitos Ey D E1 D -+ D Ej, enteros n; < ng < -+ < ng con
n; € Fj_ tales que (B, Ej) es malo para todo A C B C AU{ny,---,n;}. Entonces, por el paso 1,
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para {A4;}7L,={B: AC B C AU{ny,--- ,ni}} existe un entero nyi1 € Eg, ng41 > ny y un subcon-
junto infinito Ey41 C Ej tal que (BU{ng11}, Exy1) es malo para todo A C B C AU{ny, - ,ni}.
Falta ver que M = {ny}; cumple lo pedido. Tomemos entonces A C B C AU M un conjunto
finito y k el mayor ntmero entero tal que nj € B, luego B C AU {ny, -+ ,ni}, y sabemos que
(B, E)) es malo; como M C E, U {ny,--- ,ng} (y observar que n; € Ey V j > k) se tiene que
ExAM C {ny,--- ,ni} y por lo tanto la diferencia simétrica es un conjunto finito y, por una ob-
servacion anterior, concluimos que (B, M) es malo para U.

Paso 3. Probemos el Teorema de Nash- Williams.

Recordemos que U € 7 y supongamos que (A, F) es malo para U. Por el paso 2, existe
M € P (FE) tal que (B, M) es malo para todo conjunto finito A C B C AU M. Queremos ver que
Poo(A, M) NU = . Supongamos que no: existe G € P (A, M) NU. Como U es abierto-Ellentuck,
existe B C G subconjunto finito tal que Pso(B,G) C U. Observemos que como G € Py (A4, M)
tenemos que A C G, entonces AU B C G y es finito; ademds, Poo(A U B,G) C Pxo(B,G) C U.
Luego, cambiando B por AU B de ser necesario, podemos suponer que A C B y entonces (B, M)
es bueno, llegando asi a un absurdo. O

De este teorema y de la Observacion 2.1.7 se deduce automéaticamente el siguiente corolario.

Corolario 2.1.13. Los conjuntos cerrados-Ellentuck son completamente Ramsey. En particular,
los cerrados-Cantor son completamente Ramsey.

En general, este resultado va a ser suficiente; sin embargo en ocasiones usaremos un hecho mas
fuerte, el siguiente teorema de Galvin y Prikry [GP]:

Teorema 2.1.14. Sea V un subconjunto de Poo(N) Boreliano para la topologia de Ellentuck, en-
tonces V es completamente Ramsey.

2.2. El Teorema ¢/; de Rosenthal

Recordemos que la pregunta que queriamos resolver es cuando, dada una sucesién acotada en
un espacio de Banach X, es posible extraer una subsucesion débil Cauchy. Si X es reflexivo, la
bola unitaria es débil compacta luego, por el teorema de Eberlein-Smulian, secuencialmente débil
compacta; es decir, siempre se puede extraer un sucesén débil Cauchy. Pero esto no es cierto en
otros espacios, por ejemplo en £1, como vimos al comienzo del capitulo. Esto no es casual; Rosenthal
probé que esencialmente ¢1 es el tinico contraejemplo.

Para la demostracién usaremos el siguiente resultado de sucesiones basicas de [AK, Theorem
1.5.6]

Teorema 2.2.1. Sea S un conjunto acotado tal que 0 ¢ gll’H. Son equivalentes:
(1) S no tiene sucesiones bdsicas,

(2) S es débil compacto y no contiene al 0.
Ahora si, demostremos el Teorema ¢; de Rosenthal.

Teorema 2.2.2. Sea (zy,)nen una sucesion seminormalizada en un espacio de Banach de dimension
infinita X. Entonces ocurre alguna de las siguientes afirmaciones:
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(a) (xn)n tiene una sucesion débil Cauchy o

(b) (xn)n tiene una subsucesion bdsica equivalente a la base candnica de {;.

Demostracion. Supongamos que no vale lo afirmado en (a). Consideremos S = {z,},, entonces
no contiene sucesiones débil convergentes. Luego, por Eberlein-Smulian, 5* no es débil com-
pacto y entonces, por el Teorema 2.2.1 concluimos que S debe tener una sucesién bésica y en-
tonces podemos obtener una subsucesién bésica de (z,,),. En efecto, sin pérdida de generali-
dad, podemos asumir que (azg(n))n es sucesién bésica para alguna permutacién o; basta tomar
ny = o(1),nk41 = min{o(n) > ni}. Asumamos directamente que (z,), es una sucesién bésica,
y supongamos también ||x,|| < 1. Ahora necesitamos encontrar una subsucesién equivalente a la
base candnica de ¢;. Para esto es que usaremos las herramientas vistas de la teoria de Ramsey.

Dado M € P, (N), para medir que tan lejos estd (x,)nenr de ser débil Cauchy, definimos

osc(M)= sup lim  sup |2/ (z) —2'(zn)].
2| <1F700 > &
m,n € M

Observar que si F' es un conjunto finito, entonces osc(M) = osc(M U F).

= Afirmamos: existe M € Puo(N) tal que V M € Pog(M), 05¢(M) = osc(M) > 0.

Usaremos un razonamiento diagonal. Sean N = My D M; D My D --- tales que para todo
k > 1 tenemos .

osc(My) < inf osc(M') + —.

(M) M'€Poo(Mp,_1) (M) k

Definimos M = Jcy{k-ésimo elemento de Mj.}. Tenemos que M C My; llamemos Fy = ().
Si Fy = {primer elemento de M}, entonces M C My U Fy. En general, si consideramos los
conjuntos finitos Fj = (J]_, {k-ésimo elemento de My}, tenemos que M C My U Fy.
Dado M € P (M), es claro que osc(M) > osc(M). Por otro lado, de la observacién se deduce
que osc(M) < osc(My U Fy) = osc(My) ¥V k > 1. Observemos ademas que

inf osc(M') < osc(Mﬂ My_1) = OSC(M).
M'€Poo (Mp—1)

(La tltima igualdad vale pues la diferencia es un conjunto finito). Asi

1
osc(M) < osc(My) < osc(M) + % vV k>1.

Entonces osc(M) < osc(M) y luego osc(M) = osc(M). Notar que osc(M) > 0 pues (Zp)nenm
no es débil Cauchy.

» Observemos que, dado M € Py (N)

osc(M
LS sup lim sup |2'(x,)| = sup limsup|z’(z,)].
2 [EAES Ky lo/||<1 neM
neM

Tomamos |[v/|] <1 tal que imsup,,¢cps [0/ (zp)| > %(M) y M’ € Poo(M) tal que (v (2n))nem

converge. Si 0 = limy,cpp v/ (24,), luego |0] > %(M).
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Entonces por simplicidad, podemos suponer directamente que para todo M € P (N) se tiene
que osc(M) = osc(N) > 46, para algin § > 0 y que existen ||u/|| < 1,|0] > 4—; > ¢ tal que

limy, 00 v/ (2) = 0.

Sea C=1+81+52yV C Pux(N) el conjunto formado por los M = {m;}72, (ordenados de
forma creciente) tal que existe 2’ € X' con |[2/|| < C'y 2/(#m,) = (—=1)7 V j.

= )V es cerrado para la topologia de Cantor.
Tomamos (M), C V tal que M, 4 M y queremos ver que M € V. Si escribimos M, =
{m?}j, M = {m;}; tenemos que existen funcionales z;, € X', ||a;|| < C tal que a7, (xmn) =
(—1)7 V j. Ademads vale

Z XM, (K) — xa(F)| 0.
2k n
=1

Como {||2'|| < C'} es w*-compacto, {x, },, tiene un punto de acumulacién, z’. Luego ||2/|| < C
y & () = (-1
Veamos que #'(zy,;) = (—1). Dado N € N, SV |XM”(k)2;XM(k)‘ —0 luego, si e > 0 es tal

Ixaty (B)—xar (K)|
2k

que 2Ve < 1 existe ny tal que para todo n > ny 22\7:1 | < €, en particular

X, (K) — X (F)]
2k

<e V1<k<N,n>npy
y entonces para todo 1 < k < N,n > ny tenemos
Ixaz, (k) — xar (k)| < e2F <2V <1
X, (k) = xn (k).

Por ende, para N = my y n > ny tenemos xas, (m1) = xam(m1) = 1 y luego my € M,.
Supongamos mj' € M, tal que m} ; = m1, como m} <my = N, 1 = xu, (m7) = xp(m7)

= m; € M, pero m; era el primer elemento de M,
= no existe tal mj’, es decir, m; = m7,

= & (@m) = 2/ (Emg) = (1)

Ahora para N = my existe n,,, que, sin pérdida de generalidad, podemos suponer n,,, > 1y, ,
tal que si n > ny tengamos xas, (me2) = xm(me) = 1 y entonces ma € M,,. Supongamos
mg € M, tal que mj ; = ma, como my <mz =N, 1 = xar,(m}') = xam(mj)

= mj € M,ym} < ma
mi = my
() = @ (2my) = (1)

debe ser ¢ impar

R

= 2(zp,) = xl(l‘mzrt+1) =1=(-1)%

Observar que, como n > Ny, > Ny, , tenemos que m;' = my = mY, es decir, ¢ = 1 y entonces
mo = msy.
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Para N = m3 y n > ny (y supongamos ademas nm,, > Nm,), en particular tenemos

X, (m3) = xm(ms) = 1y entonces mg € My,. Supongamos m;" € M, tal que mj,; = mg,
como m <mg =N, 1= xn, (m) = xm(mj)

= m; € M,ymj < ms3
= m?e{ml,mg}

Pero como n > n,,,, vimos que m; = mY', ma = my, luego el término inmediatamente anterior
amg=mj, | es m = my.

= (=1)? =2 (@my) = @' (@pp) = (—-1)°
= debe ser i par

= 1'(xp,) = x’(ajmyﬂ) = —1=(-1)

Es claro c6mo, iterando este razonamiento, probamos que () = (—1)7, probando que V
es cerrado para la topologia de Cantor y entonces también es cerrado para la topologia de

Ellentuck, luego, por el Corolario 2.1.13 es completametne Ramsey.

» Dado M € P (N), veamos que existe M’ € Poo (M) N V.
Como osc(M) = 44, luego existe 3y’ € Bx: tal que

lim sup |y (zn) — ¥ (xm)] > 20.
k—o0 m,n >k
m,n € M

En particular , (y/(m))mem no converge y existe M’ = {m;}; € Poo(M) vy |a|,|5] < 1 tal
que Y (Tmy;) = @,y (Tmy,_,) = B con |a— B > 20. Llamemos

o = 2 Y — a+p o
a—p" fla-p)
Se tiene que
1 a+pB| 14671 _
o < ‘2+ < <5467
Wl < =g 2+ 5 ;
Ademas,
—a —0
2 " a+pB " 2a a+ 3

U/(mej) _ ﬂy/(xmzj) _mu/(.fmzj) — o —,B - o B =1.

—B —0
2 " a+p 28 a+pB

/ / /
V' (Trmg;_y) = ﬂy (Tmz;-1) —mu (Tmy; 1) — a—8 T o 3

= 1.

Sea ¢j = v'(zm;) — (—1)’, como tiende a cero, tomando una subsucesién si fuera necesario,

podemos suponer |c;| suficientemente chico. Como (z,,), es una sucesion basica acotada, si
2

x} € X' son las funciones coordenadas (luego ||z} || < ﬁ, donde K es la constante de la

| < B V n. Supongamos entonces |c;j| < 277B !y

nl
n

o0
I ok
=0 E CjTy;-
j=1

base), existe una constante tal que ||z
consideremos
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Tenemos .
2] <67 4672+ ) felB< o 402 +1=C.
j=1
Ademids )
=5y
L —— .
2 (am) = (@) = 3 (V(@m,) = (1Y) 2, () = (~1)"
j=1
Luego M’ € V.

Entonces no existe M tal que Poo(M)NV = (). Luego, como V es completamente Ramsey, existe
M tal que Poo (M) C V.

Sea M = {m;}; (ordenado de forma creciente), veamos que la sucesion (my;); tiene la propiedad
de que para toda eleccién de signos (g;); existe ' € X', [|2|| < C, 2/ (xy,,) = €;. Buscamos (2, );
tal que (Tm,;); C (Tn;)j C (Tm;); (donde la inclusién es en el sentido de subsucesién) de manera
conveniente. Para una tal subsucesién, por definicién de V, existe ||2/|| < C tal que @/(2n;) = (—1)7;
necesitamos que si Tp,, = ,; valga g; = (—=1)7.

> Siep = 1, tomamos ny = my,ny = ma. Luego, Tm,, = Tp, y €1 = 1 = (=1)2.
> Sie; = —1, tomamos ny = my. Luego, Tp,, = Tn, y €1 = —1 = (=1)1.
> En este caso, si €2 = 1, tomamos ny = myg = ma.2. LU€gO, Tyny, = Tpn, ¥y 2 = 1 = (—1)%.
> Si en cambio €9 = —1, tomamos ng = m3,n3 = M4 = Mmao.g. Luego, Tp,, = Tny ¥
g9 = —1=(—1)3.

Siguiendo con este razonamiento, nos construimos la sucesiéon (xn;); apropiada.

Por dlitmo, veamos que la sucesion (z,, ; )j es equivalente a la base candnica de ¢, probando
asi el teorema.

= Caso real:
Dada (a;); C R, tomamos ¢; = sg(a;) y ' € X’ que cumpla lo anterior, luego

n 2 n 1 n 1 n
Dy || = 5 | D ammy | =5 | D_aiselay) | =5 lajl
j=1 j=1 j=1 j=1

Luego ($m2j)j = (en)n

= Caso Complejo:
Dada (a;); C C, tomamos €; = sg(Re(a;)) y ' € X' que cumpla lo anterior, razonando como

antes tenemos:
n

. 1
Zajwmw > GZ‘Re(aj)"
j=1

Jj=1

De la misma manera,

n 1 n
Z ATy, || = ol Z |[Im(ay)|.
j=1 j=1
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Entonces
n 2 n
Zajxmzj > EZ|GJ|
Jj=1 Jj=1

Luego (mej)j = (en)n
O

Corolario 2.2.3. Un espacio de Banach X cumple que cada sucesion acotada tiene un sucesion
débil Cauchy st y solo st X no contiene una copia de £1.

2.3. El teorema de separacion de Elton-Odell

Al comienzo del capitulo, inspirados en el lema de Riesz y en un ejemplo en ¢y, nos planteamos
el problema de encontrar una sucesion normalizada cuyos términos disten “lo suficiente”. Formal-
mente, nuestro objetivo sera probar el siguiente teorema de Elton-Odell.

Teorema 2.3.1 (Elton-Odell). Para cada espacio de Banach X de dimensidn infinita, existene > 0
y una sucesion (Ty)n, C Sx tales que ||z, — xm|| > 1+ € para todo n # m.

Vimos en el ejemplo que el teorema vale para ¢y con € = 1. Para generalizar este hecho, consi-
deremos primero el siguiente resultado.

Teorema 2.3.2 (R. C. James). Si un espacio de Banach X contiene un subespacio isomorfo a cy,
entonces para cada § > 0 existe una sucesion (uy), C Bx tal que

(1 —=9)sup|a;| < HZaZuZH < sup |a|

se satisface para cada (a;); € co.

Demostracion. Si (zy,), es una sucesién bésica normalizada en X equivalente a la base canénica de
cp, existen constantes n y M tales que para toda sucesién (a,), € co se tiene

msup |ay| < Zanxn M sup |ay|.
n n n
Consideremos la siguiente sucesién de ntimeros reales:
K, =sup{||>_, aizi|| : ||al|le, = 1,a € cpo,a1 = -+ = ap—1 = 0}.

(K,)n es una sucesion decreciente y acotada, m < K,, < M,y por lo tanto tiene limite: lim,, K,, = K
para algin m < K < M.

Fijemos 0 < < 1 < # a determinar y tomemos p; € N tal que K < K,,, < 'K, y escalares
1 1 1 -1 1 1 1
pys Ay 4157 50y, 1 tales que HZfipl a;zil| > K y [|(0,0,-+ ,a,,-,a,,1,0,0,-- )]s, = 1.

; 2 2 2 p3—1 2 .
Ahora consideramos Kp, y tomamos escalares ag,, a;, 41, ,ap,_; tales que || 312 Caizi|| > Ky

(0,0, -- 7%2927 e ,a§3_1, 0,0, )|, = 1. Iterando este proceso, para cada n obtenemos escalares
n n n n —_ 3
Aps Q15" 1 Gy 1 CON 11(0,0,- -+ ,ap - 0,0,--)|le, = 1 y tales que, si llamamos

Yn = Zipi;ji_l alx;, tenemos ||y, || > K > 0K.

n
’ apn+1717
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Observemos que para cada sucesiéon b € ¢y de norma 1, existe j tal que |bj| = 1 e ¢ tal que
lal| = 1, entonces para cada N > j y ciertos a; (alguno de médulo 1) se tiene que

pNy1—1

= Z a;x;|| < Ky, .

i=p1

iYi

Luego, para toda sucesion b € ¢g vale que

Z biy;

1=1

<Kplsup|b|<9Ksup|b|.

Ahora estamos en condiciones de definir la sucesiéon buscada; consideremos u, = H?i—}‘(. Por lo ante-
rior, la sucesién cumple || a;u;|| < sup |a;|. Falta verificar que cumple la otra desigualdad. Para
eso, sean ap,- - ,ay, escalares tales que sup; |a;| = 1 y k tal que |agx| = 1, escribimos w = agyx +
Z#k a;y;; entonces

20K < 2llykl| = [[2akykll = |lw+ aryr — Y aiyil]
iZh

lwl] + llawyr — > awyill
itk

IN

< lwl| + 0K sup |a;| = [[w]| + 0K,
i
luego ||w|| > (20 — 0")K y
20 9’
i 0’K
De esta manera,
‘ U sup la;|.
Basta tomar entonces 6 y ¢ tales que 2 >1-9.

O]

De esta manera, podemos probar el Teorema de Elton-Odell para espacios que contengan copias
de ¢p. En efecto, fijemos § > 0 a determinar, y (u,), C Bx como en el teorema de James, y llamemos
Yp = Zle u; — Ug11, de manera similar a lo hecho anteriormente en el ejemplo de ¢y. Observemos

que 1 —§ < ||yk|| < 1; ahora tomemos xj = sz/—:n y veamos que sirven. Para esto, basta observar
que si escribimos x, — x,, = Y, a;u;, las coordenadas de la sucesién (a;); € coo cumplen que a; = 0,
lail = |lyall™Y, lai] = Nlymll™t o lail = | [lynll™ £ ||ym|| 7], ¥ como en particular el coeficiente
am+1 = |[ynl| ™t + ||ym||~! entonces sup |a;| > 2 y tenemos que

|2 — 2l = Zazuz (1+6)2.

De esta manera, querriamos que 2(1—49) = 1+¢, o equivalentemente, ¢ = 1—2¢; basta fijar entonces
0 tal que 1 — 20 > 0 y tomar dicho e.
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Faltaria entonces demostrar el Teorema de Elton-Odell en el caso de espacios que no contengan
copias de cg. Para ello, estudiaremos ciertos resultados con el objetivo de establecer un criterio
para determinar la presencia o no de cy. Es en las demostraciones de estos hechos que juega un rol
importante los teoremas de Ramsey estudiados al comienzo de este capitulo.

Lema 2.3.3. Sea (), una sucesion en un espacio de Banach X. Entonces para cada K € N el
conjunto definido por

By = {M = (my)i € Poo(N) : sup|[| > @, || < K}
"=l

es cerrado para la topologia de Ellentuck.

Demostracion. Equivalentemente, probaremos que el conjunto U = P (N) \ Bx es abierto. Dado
E = {m;}; € U, existe n € N tal que || Y 1" | Zm,|| > K y el conjunto U = Poo({m;}_1; E) es un
entorno bésico de E de la topologia de Ellentuck. Por otro lado, si L = {l;}; € U, tenemos que

n n
1Dl =11 emll > K,
i=1 i=1

de donde sigue que £ € U C U. O
Para el préximo lema, necesitamos introducir una nueva definicién.

Definicién 2.3.4. Una sucesién bésica (zy,), de dice bimondtona si para cada n y cada sucesién
de escalares (an), tal que la serie ) a,x, converge, se tiene que

n [e.e] oo
max E a;T; E a;T; < E a;T;
i=1 =1

i=n+1
Recordemos que, dada una sucesién bésica, se podia definir una norma en [x,] equivalente a la
orginal para la cual la sucesién era monétona. De manera analoga, si definimos

i

[e.e] n o
g a;Ti||| = sup E AT || 5 E ATl s
i=1 " i=1 i=n+1
obtenemos una norma equivalente y (), resulta bimonétona; también ahora, si ||z,|| = 1 se tiene

que |[[|zn[|| = 1.

Lema 2.3.5. Sea (x), una sucesion basica bimondtona en un espacio de Banach X y para cada
K > 0 definimos Bg como antes. Supongamos que M € P (N) satisface que

Poo(M) C | ) Bxk.
K>0

Entonces existe M' € Poo(M) y Kpr > 0 tal que

POO(M/) C BKM-
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Demostracion. Por el Lema 2.3.3 el conjunto B; es cerrado y, por lo tanto, completamente Ramsey
por el Corolario 2.1.13. Luego existe M; € Pso(M) para el cual

POO(M1) C By 0o POO(Ml) NnB = 0.

Si ocurriera lo primero, quedaria probado el lema. Si en cambio estamos en la segunda situacion,
repetimos el razonamiento anterior para Bs: existe Ma € P (M) para el cual

POO(M2) C By o POO(MQ) N By =0.

Iteranando este procedimiento, o encontramos My, € Poo(My,—1) para el cual Py (My,) C B,
(terminando asi la demostracién), u obtenemos una sucesién (M, ), C P (N) que satisface

Mpi1 € Po(My) vy Poo(My)N B, =0.

Veamos que esto tltimo no puede suceder. Tomamos ahora la subsucesién de (z,), determinada
por una eleccién de subindices (kn)n € Poo(N) que verifique que (ky)n>j € Poo(M;) para cada j;
luego usando para cada j la definicién de B; y la bimonotonia de (xy,);>; tenemos que

n
>
=1

n
j <sup Tk, || < sup

Se sigue que

= 00,

n
>,
i=1

contradiciendo el hecho de que (ky)n € Poo(M) C Ug Bk

sup
n

O

El siguiente lema es el paso previo al criterio que buscamos para determinar la presencia o no
de ¢y en un espacio de Banach.

Lema 2.3.6 (W. B. Johnson). Sea (x,,), una sucesion seminormalizada (es decir, acotada superior
e inferiormente) en un espacio de Banach X, tal que cada subsucesion admite una subsucesion que
verifica que sup, || Y i, yil| < oo. Entonces (zy)n admite una subsucesidn equivalente a la base
canonica de cg.

Demostracion. Como vamos a apelar al principio de selecciéon de Bessaga-Pelczynski, sera conve-
niente ver primero que la sucesion (z,,), debe ser débil nula. Si esto no fuera asi, existirfa 2’ € Sy~
y € > 0 tal que |2/(z,,)| > ¢ para infinitos n. En el caso que X sea un espacio de Banach sobre R,
esto quiere decir 2/(z,,) > £ 0o —a/(x,,) > € para infinitos n, M = (m;); € Pso(N); sin pérdida de
generalidad podemos asumir que z'(xy,,) > € para cada i. Por hip6tesis, para algin (k;); € Poo(M)
podemos concluir que

< 00

n n n
ne <z’ g T | < g Th, E Th;
i=1 i=1 i=1

para todo n, lo cual constituye una contradiccién. Si, en cambio, X es un espacio de Banach
complejo, entonces |Re(2’(x,))| o |[Im(2'(x,,))| sea mayor que €/2 para todo infinitos n; supongamos

< sup
n
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lo primero, entonces, cambiando ' por —z’ si fuera necesario, como antes podemos suponer que
Re(a/(zpm,)) > €/2 para algin M = (m;); € P(N) obteniendo una contradiccién andloga:

ne < Re 2’ (Zn: xkl> < Zn:afkl Zn:;l:kl
i=1 i=1

i=1
Por el Teorema 1.2.5, podemos asumir que (z,), es una sucesién basica seminormalizada, bi-
monotona y débil nula, ya que la propiedad que tienen las subsucesiones en la hipétesis del teorema
v la existencia de una subsucesion equivalente a la base candnica de cy se preservan si se cambia la
norma por una equivalente.

< sup < 0.
n

Por el Lema 2.3.3, |, Bx es un boreliano de P (N) para la topologia de Ellentuck, por ser unién
numerable de cerrados, entonces, por el Teorema 2.1.14 se sigue que es completamente Ramsey y
por lo tanto existe M € P (N) tal que

Poo(M)C| Bk o Pu(M)n| Bk =9.
K K

Sin embargo podemos descartar la segunda situacion; si existiera tal M € P (N), por hipdtesis
tendriamos M’ € Poo(M), M' = {m;}; tal que || >, xm,|| < o0, es decir, M' € Bi para algin K.
De esta manera, existe M € Py (N) tal que

Poo(M) C | Bk
K

Estamos ahora en condiciones de usar el Lema 2.3.5: existe M’ = {m]} € Poo(M) y K’ > 0 tales
que
POO(M/) C Bg.

Es decir, toda subsucesién (2,,), de (2 )n verifica que

n

>

k=1

sup <K',

n

de donde se sigue que para cada F' € F(N) y para cada eleccién de signos (¢, )ncr tenemos que

> ek

keF

< 2K’

y por lo tanto probamos que (x,, ), satisface el criterio de Bessaga-Pelczynski de equivalencia a la
base candnica de ¢y (Teorema 1.3.6).
O

Finalmente, el resultado que necesitamos para asegurar la presencia de ¢y es el siguiente.

Lema 2.3.7. Sea (z,,)n una sucesion basica normalizada en un espacio de Banach X. Supongamos
que cada subsucesion de (), contiene una subsucesion (yn)n tal que

n

> (=D

=1

sup < 0.

n

Entonces el espacio [z,] contiene una copia de cy.
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La demostracion sera muy similar a lo hecho en el lema anterior, pero necesitaremos versiones
alternativas de los Lemas 2.3.3 y 2.3.5, que se pueden demostrar de manera analoga.

Lema 2.3.3’ Sea (x,), una sucesion en un espacio de Banach X. Entonces para cada K € N
el conjunto definido por

A = {M = (m3); € Poo(N) : sup || > (=)', || < K}
=1
es cerrado para la topologia de Ellentuck.

Lema 2.3.5° Sea (zy,), una sucesion basia bimondtona en un espacio de Banach X y para cada
K > 0 definimos Ag como antes. Supongamos que M € Pso(N) satisface que

Poo(M) C U Ag.
K>0

Entonces existe M' € Poo(M) y Kpr > 0 tal que
POO(M/) C »AKM-

Ahora si, demostremos el Lema 2.3.7.

Demostracion. Podemos suponer que (z,), es una sucesién béasica bimondétona normalizada, ya
que si no, renormalizamos m

Por el Lema 2.3.3", |J, Ak es un conjunto §, de Ps(N) entonces, por el Teorema 2.1.14 se sigue
que es completamente Ramsey y por lo tanto existe M € Py (N) tal que

Poo(M) C|JAk o Po(M)n|JAx =0.
K K

Sin embargo podemos descartar la segunda situacion; si existiera tal M € P (N), por hipétesis
tendriamos M’ € Poo (M), M’ = {m;}; tal que || >_;(—1)"zm,|| < oo, es decir, M’ € Ak para algin
K. De esta manera, existe M € Py (N) tal que

Poo(M) C | J Ak
K

Ahora por el Lema 2.3.5’, sin pérdida de generalidad podemos suponer que existe K’ > 0 tal que
Poo(M) C Agr.

Es decir, si M = (my,)n, toda subsucesién (zy), de (z,, ), verifica que

n

> (=1

k=1

sup <K'

n

Llamamos ahora y, = Tm,, — Tmy,,,, entonces para cada L = (I;); € Poo(M) tenemos que
n

D

k=1

es decir, (yn)n satisface las hipdtesis del Lema 2.3.6 y por lo tanto tiene una subsucesién equivalente
a la base canénica de ¢y, de donde sigue que [z,] contiene una copia de cy.

< 090,

sup
n

O
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Ahora estamos en condiciones de probar el Teorema de Elton-Odell.

Demostracion. Reproduciendo lo hecho en la demostracién del Teorema 1.2.4 obtenemos una suce-
sién bésica normalizada (z,,), que satisface la siguiente condicién para cada n < m:

n m
E ;g E ;T
i=1 =1

Podemos suponer que (), es una base de X. Recordemos que si X contiene una copia de ¢y, con
el Teorema de James y la observacién que hicimos a continuacién, terminariamos la demostracién.
Supongamos ahora el caso en que X no contiene copias de cgy; entonces por el Lema 2.3.7 debe
existir (pasando a subsucesiones si fuera necesario) una sucesién creciente de nimeros naturales
(mp)n tal que

< (142077

n

Z(_l)ixmi

i=1

sup = 00. (2.1)

n

Tomemos « un punto limite de la sucesion (||z, — Zni1 + Tna2|| n, 1 < ™! < 3.
Antes de seguir, fijemos cierta notacién. Supongamos d > 0. Vamos a decir que un vector b € X es
un d-bloque de (zy,),, o simplemente, d-bloque, si ||b]| =1 y b es de la forma

l

b= B Z(_l)“_lxmm

i=1
donde my < mg < -+ < my, |a/f — 1| <yl >3 es un nimero impar. Copiando la notacién de
sucesiones en bloque, vamos a escribir n < b; < by < --- < by (donde b; son J-bloques) si existen

nimeros naturales n < p; < p2 < --- < pi4+1 tales que

Pi+1

bi = E CLjIEj,

Jj=pi+1
Observemos que nuestra eleccién de « asegura, dado § > 0 y n € N, la existencia de un §-bloque
b > n. En efecto, existe m > n + 2 tal que | ||2m — Tmi1 + Zma2|| ™t — a| < J. Entonces, si

b= BTm — Tmi1 + Tmio tomamos = ||Tm — Tmi1 + Tmao|| ! y entonces como 1 < 8 < 3
la—pl ¢
la/B— 1| = < — <.
B B

Ahora, consideremos la siguiente situacién: para cada § > 0 y para cada n € N, existen §-
bloques n < by < --- < by tales que si b es un §-bloque con b > by, entonces existe 1 < i < k tal
que [|b—b;|]| <140.

Vamos a querer ver que esto no ocurre, pues, en tal caso, existe € > 0 y ng € N tal que para
toda eleccion de e-bloques ng < by < - -+ < by, existe otro bloque b > by, tal que ||b—b;|| > 1+¢ para
todo 7, y ahora nos podemos constuir la sucesion cuya existencia afirma el teorema de Elton-Odell:
(Yn)n C Sx con ||y, — ym|| > 1 + € siempre que n # m. Lo hacemos a partir de los siguientes
e-bloques:

Y1r = Tng+1,

Y2 > 1 tal que ||y2 — y1|| > 1 + ¢,

ys > Yo tal que ||lys —yil| > 1+¢e para i <3,
ya > Y3 tal que |lysa —yil| > 1+¢ para i <4, etc.
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Entonces, con el objetivo de llegar a una contradiccién, suponemos que si se verifica lo anterior,
y lo aplicamos para 6; = 2077, j € Ny, y elegimos d;-bloques, b},1 < i < k; tales que

by < by <---<bp <bf<b3<-b, <

y tales que si b es un J;-bloque, b > bi:]» entonces existe 1 <4 < k; con ||b — sz <1+ 9;.

Observemqs que si lqgramos elegir bznj € {b]1 < ... < b,ih}, binj = ﬁnj Zk(—l)kﬂxnk tales que
si llamamos dﬁnj = ib]mj tengamos
J
n
sup (> (=1)d), || < o0, (2.2)
" k=1

entonces tendriamos un absurdo, ya que, por la imparidad de la “longitud” de los &, ;> obtendriamos
un desarrollo como el de (2.1) (es decir, con los signos alternados), pero acotado, concluyendo asi la
demostracién.

Esto lo veremos en dos pasos: primero para n fijo, y luego, usando un procedimiento diagonal.

I. = Tomamos 1 < i3 < kg cualquiera. En particular, como d2 < 41, b;, es un é; bloque y
verifica que b b1 luego, por nuestra suposicién, existe 1 < i1 < ky tal que Hbfz—b}l || <

1+ 61, Deﬁnlendo dzll,alf2 como antes, tenemos que

I(dj, — d?_5) — (0%, = b3)|| < Wi—@u+nﬁ-wﬂ|

Z\lbzll\l! — 1]+ |[b, | |y — 1] < 81+ 62 < 261

1 2
B, Bi,

Notaremos 3 al vector que se obtiene a partir de y, restandole el iltimo término no nulo
de z; en general, el vector 7@ se obtiene truncéndole a y los dltimos ¢ términos .
Entonces

[dE — @2 || < (14+207Y)|d} — d2 || < (14207 1)(1+361) < 1+ 60 = 2.

Luego, ||d} || <2(1+2071) < 3.
= Copiemos el razonamiento anterior, pero ahora partiendo de los d4-bloques, y eligiendo

algin 1 < iy < k4. En particular b4 > b , yesun d3-bloque, entonces existe 1 < i3 < k3
tal que [|b7, — by || <1+ 3.

Como antes
(d}, — di—y) — (b, — i)l < ||d2, —53H+Hd4 —b4H
|16, I = = — 1]+ [|bj, e T — 1] <93+ 04 < 263,

13 14

y entonces ||}, —d} || <1+ 383y
|d3, — i || < (1+2073)]|d2, — dl,|| < (14207%)(1 + 303) < 1+ ds.
Ademés, siendo | ||d3 || — 1| < 03 tenemos

I s

d3_d4
I H—1+203—1+203—

1—ds.
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Si llamamos z; = d?s — d?* , entonces Hz—lu es un do-bloque. En efecto, podemos escribir

247
21 = ad  (=1)* 1z, | entonces = B2k(= 1)+, , donde B = ey §-—1=

[|21]| — 1 estd acotado por (1 —d2) — 1= —d2 y (1+d2) — 1 = da.

Entonces, como z; > by,, existe 1 < iy < kg tal que Hb HZ I | <1462y
- z z
—1)idd — (2 — < |2 = B3|+ ||dB —dk —
z::( ) i (22 ||ZIH) = H ||+ i3 g ||21H
z1
o2 + (|21 — || = 02 + | [[z1]] = 1| < 262.
||21]|
Entonces HZ?ZQ(—I)‘ ZJ =1+302y
) .
Z Jd” 142072 Z adﬂ (1+207%)(1 4+ 302) <1+ ;.

2
Ahora llamamos zy = Z?ZQ(—l)Jdgj . Como 1 — 61 < ||22]] <1+ 6y, ﬁ es un 6i-
bloque “mayor” que bll, entonces existe 1 < 41 < ky tal que Hb HZ I | <1401y
tenemos que

— ()
4 4
il - o — 2| <l k| N
Z (11 HZQH) = H + Z( ) ij HZQH
=1 Jj=2
z
01 + 2H:51+| ||2’2||—1||<251.
|22
Luego

)
4
Z )i+t §(1+20*1)Z Ditldl |l < (14207 1)(1+361) < 1469 = 2.

De esta manera, Z?Zl(—l)j+1dgj H <(1+2072)2<3.

= En general, partimos de los d9,-bloques, y repitiendo el razonamiento anterior, obtenemos
una n-tupla (dj,,--- ,d}) tal que HZ?ZI(—l)J“dgj H < 3.

II. Notemos que en lo que hicimos en el paso anterior, la n-tupla que obtuvimos depende de
n; para recalcar esto en nuestra notacién, notamos a dicha tupla de la siguiente manera:
(d}l(n), e 7d?n(n)), con 1 <ij(n) < k; para todo j y todo n y tal que

n

j+1 77
Yo <3,

Jj=1
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Como 1 < i1(n) < k; para todo n, existe 1 < iy < kj tal que 41(n) = 41 para infinitos valores
de n; lamamos N1 = {n € N:i1(n) = i1} C Po(N).

Como 1 < iy(n) < kg para todo n € Ny, existe 1 < ig < ko tal que i2(n) = i9 para infinitos
valores de n € Ny; llamamos Ny = {n € Nj :ia(n) =iz} C Poo(Ny).

De esta manera, nos construimos una sucesién de nimeros enteros (i;); y una sucesion de-
creciente de conjuntos encajados (N;); C Px(N), tal que para todo k € N,j < k vale que
ij(n) = i; para todo n € Nj.

Llamemos ny al k-ésimo elemento de Nj y veamos que la sucesion (dfk(nk))k cumple (2.2),
llegando asf al la contradiccién que necesitamos para concluir la demostracién. Como siempre
que j < k vale que nj,n; € Nj, y luego ij(n;) = i;(ny) = i;, tenemos que

k g Nk

i1 g —k +1 79 +1 0
Z | < 04 207) Z;(_w By <2 Z;(—l)f Gy || =&
j=1 <2 Jj= =

llegando asi a la contradiccion buscada.

O

Concluimos asi el segundo capitulo, habiendo no sélo demostrado dos resultados importantes
del andlisis funcional, sino también, habiendo incursionado en la teoria de Ramsey. En el proximo
capitulo, seguiremos ahondando en esta rama de la matemaética. Si bien probaremos otro teorema
de tipo Ramsey, sera evidente que los argumentos y las técnicas usadas son similares.



Capitulo 3

El problema de los espacios
homogéneos

Diremos que un espacio de Banach de dimension infinita X es homogéneo si tiene la propiedad de
ser isomorfo a todos sus subespacios de dimensién infinita. Notemos que, en tal caso, dicho espacio
debe ser separable pues, en particular, si {x1,z2,---} es un conjunto linealmente independiente en
X, se tiene X « [r1,x2,---]. Un ejemplo de un espacio con dicha propiedad es f3. Surge entonces
la pregunta de si habré otros ejemplos; éste es el llamado “Problema de los espacios homogéneos”.
Combinando dos resultados interesantes en si mismos, uno de Komorowski y Tomczac-Jaegermann,
publicado en 1995, y otro de Gowers, publicado en 2002, responderemos esta pregunta y probaremos
el siguiente teorema.

Teorema 3.0.8. Todo espacio de Banach homogéneo de dimension infinita es isomorfo a un espacio
de Hilbert separable.

No demostraremos los resultados de [K T-J]| sino que nos enfocaremos en el articulo de Gow-
ers, en el cual se utilizan herramientas de la teoria de Ramsey. Siguiendo los pasos de Gowers, lo
primero que haremos entonces, es explicar cémo el problema antes mencionado puede reducirse a
una pregunta de cardcter mas combinatorio.

Enunciemos primero los resultados que usaremos, y veamos cémo a partir de éstos, concatenados,
se resuelve el problema de los espacios homogéneos.
El resultado de Komorowski y Tomczak-Jaegermann (1993) que usaremos es el siguiente [K T-J].

Teorema 3.0.9. Sea X un espacio de Banach con cotipo q para algin q < oo. Entonces X tiene
un subespacio sin base incondicional o X tiene un subespacio isomorfo a ls.

Recordemos que al final del capitulo 1 se defini6 lo que quiere decir que un espacio tenga cotipo g;
de todos modos, en este trabajo no le prestaremos especial atencién a este concepto, serd suficiente
con tener presente que se puede probar que los espacios homogéneos cumplen la propiedad de cotipo
del teorema. De hecho, el Teorema 1.2.4 afirma que todo espacio de Banach tiene un subespacio
con base; para un espacio homogéneo, esto significa que todos sus subespacios tienen base. Por otro
lado, Szankowski probé [S] que si ¢ > 2 todo espacio de Banach que no tenga cotipo ¢, debe tener
un subespacio sin base. Luego, dicho espacio no puede ser homogéneo. Asi obtenemos el siguiente
corolario del Teorema 3.0.9.

Corolario 3.0.10. Sea X un espacio de Banach homogéneo. Entonces X es isomorfo a £o 0 X no
tiene ninguna base incondicional.

42
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Notemos que en el segundo caso, ningin subespacio de X tiene base incondicional. Este resul-
tado implica entonces una propiedad muy fuerte de los espacios homogéneos no isomorfos a £s; de
hecho, no es nada obvia la existencia de espacios de Banach tal que ninguno de sus subespacios
tenga una base incondicional. La existencia de tales espacios fue un problema abierto por muchos
anos hasta 1991, cuando aparecieron contraejemplos [GM]. Sin embargo, dichos contraejemplos no
cumplian la propiedad de ser homogéneos; de hecho, la mayoria cumplia una propiedad préactica-
mente opuesta. Diremos que un espacio de Banach X es descomponible si se puede escribir como
suma directa de dos subespacios complementados. De lo contrario, X se dice indescomponible; es
hereditariamente indescomponible si todos sus subespacios son indescomponibles. Posteriormente
diremos mas acerca de espacios hereditariamente indescomponibles; por el momento, simplemente
citaremos los siguientes resultados de [GM].

Teorema 3.0.11. Un espacio de Banach hereditariamente indescomponible no es isomorfo a
ningun subespacio propio.

Corolario 3.0.12. Un espacio de Banach hereditariamente indescomponible no es homogéneo.
Podemos ahora enunciar nuestra primera dicotomia.

Teorema 3.0.13. Sea X un espacio de Banach, entonces tiene un subespacio W que es hereditaria-
mente indescomponible o que tiene una base incondicional.

Notemos que esto es realmente una dicotomia ya que una base incondicional permite descompo-
ner a W de no numerables formas. Demostraremos este teorema al final del capitulo, pero para
ello, necesitaremos resultados de tipo Ramsey distintos a los utilizados en el capitulo 2.

Notemos también que este 1ltimo teorema combinado con los corolarios anteriores resuelven el
problema de los espacios homogéneos: supongamos que X es homogéneo; si no fuera isomorfo a £» no
tendria ninguna base incondicional, por lo tanto deberia contener un subespacio hereditariamente
indescomponible lo cual implicaria, por homogeneidad, que X es hereditariamente indescomponible,
lo cual contradice el Corolario 3.0.12.

Como por Mazur todo espacio tiene un subespacio con base, en particular, todo espacio ho-
mogéneo tiene base. Entonces, a partir de ahora, dado un espacio de Banach supondremos que éste
tiene base (ey)n, y asumiremos que ésta es mondtona normalizada.

3.1. Resultados preliminares

Serd conveniente tener presente el siguiente hecho algebraico que luego usaremos en la de-
mostracién del préximo resultado.

Lema 3.1.1. Sea X un espacio de Banach, F' C X un espacio vectorial de dimension infinita y
S C X un subespacio de codimensidn finita, entonces F' NS # {0}.

Demostracion. Supongamos Y subespacio de dimensiéon N tal que S +Y = X. Tomamos N+1
elementos linealmente independiente de F| fi, ..., fv+1 y sean x; € Sy y; € Y tales que f; = x; + ;.
Como dim(Y)=N, existen escalares a; no todos nulos tal que Ef\i J{I a;y; = 0. De esta manera,

Ef\i J{I aifi = le\i 4{1 a;z; es un elemento no nulo de £ N S (pues los f; los tomamos linealmente
independientes). O
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En virtud de demostrar el Teorema 3.0.13, consideremos los siguientes lemas que relacionan los
conceptos de bases incondicionales y espacios hereditariamente idescomponibles.
Lema 3.1.2. Sea X un espacio de Banach. Son equivalentes:
(1) X no tiene subespacios con bases incondicionales;

(2) Para cada'Y subespacio en bloque de X y para cada nimero real C, existe una sucesion de
vectores de Y y; <yz < ... <y tales que

n
Z Yi
i=1

n

> (=D

i=1

> C

Demostracion. (1) = (2) Supongamos que no vale (2): existe un subespacio en bloque Y C X y
una constante C' tal que para toda sucesién 1 < xy < .. <z, enY se tiene que

n
i
i=1

n

> (1)

i=1

<C

Observemos que C' > 1
Sea (yn)n una base en bloque de Y, veamos que es una base C-incondicional, contradiciendo

nuestra hipdtesis. Tenemos que ver que, dados escalares ay, ..., a,, vy cualquier eleccién de signos
€1,y... , Epn vale:

<C

n n
E €iaiY; E a;Y;
i=1 i=1

Sin pérdida de generalidad, podemos suponer que £; = 1. Definimos

ni—1

xIr = Z a;Y;s N1 = min{i 2 1: g = —1};
=1

no—1
To = E a;yi; ngo =min{i >ny: g =1}

1=n1
Inductivamente, si nj;; = min{i > ny : g = (—1)¥1}, entonces:

’nk+1—1

Tp41 = § a;Yi-

i:nk

Asi, como la sucesién (y,), es una sucesién en bloque, también lo es la sucesién (zy,),, y por
ser x; € Y, tenemos:

n

Z(_l)i—i-lxi
=1
n
> aiy;
i=1

= Hl’l—l'Q—i-...H =

n
g Eia3Yq
i=1

n

Z(_l)iJeri

i=1

<C =C
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Es decir, (yn)n es C-incondicional, contradiciendo la hip6tesis de (1).

(2) = (1) Supongamos Z C X con base incondicional (zy,)n, que podemos suponer normalizada.
En efecto, si x(z,) es la constante de incondicionalidad, esto es, para todo a; € R, para toda ¢y,
eleccion de signos:

N N
Z Entnin|| < X(Zn) Z tnzn|
n=1 n=1
entonces
ol P Ny Yt
Zentn = = Zeninzn < X(zn) Z = Znll s
= |zl = |zl = ||znl|

y luego ( n )n también es una base incondicional.

Queremos un subespacio Y C X y una constante C' > 0 donde no valga lo afirmado en (2). Por
el Lema 3.1.1 podemos considerar la siguiente sucesion (wp,)y:

w1 = 21;
wy € [zt k>2]Nek: k> 2 wo =Y 12, a;z;,
w3 € [z k> ro]Neptk>rol; w3 =212 a5z,

wq € [z 1 k> r3]Nlex : k>3], ete.

Iteramos el procedimiento, de manera que w; < ws < ... es una base en bloque de la sucesion (2, ),
v la normalizamos de ser necesario.

Observemos ademdés que e;- (wp) —n 0 para todo j. Estamos entonces bajo las hipétesis del
Teorema 1.3.5 de Bessaga-Petcynski, y luego (wy), tiene una subsucesion (wy, )i que es sucesién
bésica equivalente a una sucesién en bloque de los (ey)n, (zx)r. Tomamos Y = [zy],.

Sean y; < y2 < ... < y, vectores en Y. Veamos primero que (y;);"; también es una sucesién
bésica en bloque con respecto a (zy):

Como (zx)r es una sucesién bésica en bloque con respecto a la base de X, podemos escribir
T Z;’ipk ajej con pp < g1 < p2 < g2 < ...

Por otro lado, y1 = > poqbizr = D opey Zgipk blaje;, debe tener soporte (en (ey),) finito,
y podemos suponer N; < k < M. Por la misma razén, yo = > oo, bimk tiene soporte finito,
Ny < k < Mj. Veamos que vale M; < Na. En efecto, esto vale pues, sop(vi) C {pn,;.--;qn,} ¥, al
ser y; < y2, se tiene qpr, < pn,. Repitiendo este razonamiento, se prueba lo afirmado.

i

Escribimos entonces: y; = jep, @5 con p1 < q1 < p2 < g2 < ... < Pp < n- Recordemos que

las sucesiones (wy, ) y (Tx)r son equivalentes, entonces existen constantes A y B tales que

A ijwnj < ijwj <B ijwnj ,
J J J

y que (zn ), es una sucesion basica incondicional, por lo tanto (wy ), ¥ (wp,); también son sucesiones
bésicas incondicionales con constante de incondicionalidad x(zy). Luego:
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n

SR SIS

n
Z Yi
i=1

=1 =1 J=pi
n q; n qi
< B (=)D (—Diajwn,|| < B x(z) | D (1)) ajwn,
=1 J=pi =1 J=Dpi
n qi n
< ATB x(z) Do (DY agag|| = ATB x(z) | D (1)
i=1 Jj=pi i=1

Tomando C = A™!'B x(z,) contradecimos lo afirmado en (2).
O

Recordemos que del Teorema 3.0.13 se seguia que un espacio de Banach debe tener un sube-
spacio que sea hereditariamente indescomponible o que admita base incondiconal. Recién vimos
un hecho equivalente a que no ocurra lo segundo, en términos de subespacios en bloque. A contin-
uacién, enunciaremos un resultado de [GM] que establece una equivalencia de la misma naturaleza,
esta vez, a ser hereditariamente indescomponible. Omitiremos su demostracion ya que ésta sigue
las mismas lineas que la anterior.

Lema 3.1.3. Sea X un espacio de Banach. Son equivalentes:
(1) X es hereditariamente indescomponible.

(2) Para cada par de espacios en bloque Y, Z de X y para cada nimero real C, existe una sucesion
de vectores y1 < 21 < Y2 < ... <ynp < zn tal quey; €Y, z; € Z y tal que

n

> (i + )

=1

n

> (i — )

=1

> C

Observacién 3.1.4. La condicién (2) es equivalente a

(27) Para cada par de espacios en bloque Y, Z de X y para cada nimero real C, existe una sucesion
de vectores y1 < z1 < yo < ... < Yn Yy un vector zn con z, = 0 o z, > y, tales que
yi €Y, z; € Z y tales que

n

> i+ )

=1

n

> (yi— )

=1

> C

Demostracion. Fijada la constante C' y espacios en bloque Y, Z de X, supongamos una sucesion
1 <z2z1<ys < ... <yptalquey; €Y, 2z € Z con

n—1

Z(yi —2i) + YUn

i=1

n—1

> Wi+ ) + yn

i=1

> C
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Buscamos z, > y, en Z que cumpla (2). Como Z es un espacio en bloque, sin pérdida de generalidad,
podemos suponer e, € Z para algin k > sup(sop(y,)); consideremos z, = e con ¢ > 0 a
determinar. Teniendo en cuenta que la base es mondtona, entonces

n n—1 n—1 n—1
M wi+z)|| = (D Witz tua|> C D wi—z)+un||> C DW= 2)+ya|+6,
i=1 i=1 i=1 =1
para algin § > 0 suficientemente chico. Como
n—1 n—1
C Z;(yz‘ = zi) +yn — e —C Z;(yz‘ — zi) t Ynl|
1= 1=

existe € > 0 tal que C HZ?;ll(yz‘ —2zi) + yn — eekH <C Hz?z_ll(yi —zi) +yn|| +9.

O]

Notemos que si tomamos Y = Z en la condicién (2) del lema anterior, entonces recuperamos
la condicién (2) del Lema 3.1.2 (reemplazando n por 2n). Esto sugiere una manera de probar el
Teorema 3.0.13: si X no tiene subespacios con bases incondicionales, esto es (por el Lema 3.1.2),
para cada C' sus subespacios en bloque contienen una base C-condicional, la idea es encontrar
un subespacio en bloque que tenga la propiedad de que dados dos subespacios en bloque y dada
cualquier C, contiene una sucesién C-condicional con sus términos pares en un subespacio y los
impares en el otro. Por el Lema 3.1.3, este subespacio resulta ser hereditariamente indescomponible.

3.2. Otro teorema de Ramsey

En esta seccién expondremos los resultado de Ramsey que necesitamos. Para ello, es necesario
introducir definiciones y notaciones nuevas.

Dado X un espacio de Banach (con una base dada), definimos }_, = > ;(X) al conjunto de las
sucesiones de finitos vectores no nulos y de norma a lo sumo 1 tales que 1 < 9 < -+ < x,. Fijado
un subconjunto o C ) 12 consideramos el siguiente juego de dos jugadores a quienes llamaremos
S y P. Comienza S eligiendo X; C X un subespacio en bloque, y P elije un elemento 1 € Xj.
En general, en la enésima jugada, el jugador S elije X,, C X un subespacio en bloque y P elije z,
un vector en X, de norma a lo sumo 1. P gana si en algin momento logra construir una sucesién

(z1,--+ ,xn) € 0; S gana si el juego es infinito.

Una estrategia para P es una funcién ¢ tal que para cada sucesién basica en bloque finita
(z1,--+ ,2pn) y para cada subespacio Y C X devuelve un vector z = ¢(z1, -+, zp; Y) € Y.
Decimos que ¢ es una estrategia ganadora para P si dada cualquier sucesién de subespacios de
X, X1, Xo,- -, existe n tal que la sucesién (x1, - ,x,) definida inductivamente por z1 = ¢(0; X1)
Y X1 = ¢(x1, -+ ,xp; Xpo1) estd en o.

Si A = (61,02, ) es una sucesién de escalares positivos, definimos la expansion de o:

on={(r1,+wn) €5y 3 (i 9m) € o llyi — il < 6 para todo i}

También definimos
o_a = (((0))a

={@i- @) € Wi wa) € gl — will < 6 para todo i = (g, yn) €0}
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Observacién 3.2.1. (c_a)a C o C (oa)-a

Demostracion. Probemos la primera inclusién. Tomemos (y1,--- ,yn) € (0-aA)a. Entonces existe
(1, , ) € o_a tal que ||z; — y;|| < J; para todo 4, lo cual implica que (y1,--- ,yn) € 0, como
querfamos ver. Para la otra inclusién, dado (y1,--- ,yn) € o, tomamos (z1, - ,zy) € Zf tal que
[ly: — x;|| < d; para todo i, y queremos ver que (z1,--- ,x,) € oa; en efecto, esto vale por definicién
de oa. ]

A continuacién, introduciremos mas notacién. Si A = (y1,- -+ ,Ym), ¥ C X es un subespacio y
o € )y, entonces tenemos:

» [A4;Y] = {(zn)gzl €Y ,1Z4i=yiVi<nz €Y Vm<i< N}. Si A = (), escribiremos [Y].

» 0[A;Y] = {($n)iv:1 (Y, Ymy T, ,2N) € [AY] ﬂa}.

Asi, cuando decimos que P tiene una estrategia ganadora para el juego o[A4; Y], sobreentendemos
que las jugadas de S son subespacios de Y.

Enunciemos ahora el teorema de Ramsey que nos permitird demostrar la dicotomia planteada
en el Teorema 3.0.13; la demostracion quedara pendiente hasta la préxima seccién.

Teorema 3.2.2. Sea X un espacio de Banach, o C Zf y sea A una sucesion de nimeros positivos.
Entonces X tiene un subespacio Y tal que o[Y] =0 o P tiene una estrategia ganadora para el juego
oalY].

Decimos que el resultado anterior es un teorema de Ramsey por dos razones. La primera es que
la demostracién usa varios argumentos ya existentes en la teoria de Ramsey. Ademads, incluso la
afirmacion del teorema tiene el cardcter de los teoremas de Ramsey que ya vimos en el capitulo
anterior: si pensamos que las sucesiones en ¢ son azules, y las que no estan en o, rojas, entonces
el teorema nos da un subespacio tal que todas sus sucesiones en bloque (finitas) son rojas o hay
tantas perturbaciones de las sucesiones azules que P tiene una estrategia ganadora para obtener
una de ellas.

Para demostrar el teorema anterior, necesitaremos introducir mas notacién y lemas previos.

» Un *-par es un par (A, Z) donde A = (z1, -+ ,x,) € Zf, Z es un subespacio en bloque de
dimensién infinita y A < Z, esto es, x,, < z para todo z € Z.

» Si A= (,02,---),A=(x1,--,2n), B = (y1, -+ ,yn) son sucesiones en bloque del mismo
tamano, diremos que d(A, B) < A si d(x;,y;) < J; para todo 1.

= Dado un subconjunto C de Zf, una A-red de C es una coleccion Ay, .-+, Ay € C tal que
para cada A € C existe A; de la misma longitud que A tal que d(A4, 4;) < A.

» Sillesun conjunto de x-pares, escribimos ITan = {(4, Z) * -pares : 3 (B, Z) € I1,d(A, B) < A}.
» Diremos que A < A’ si §; < §, para todo i; observemos que, en tal caso, (IT)ar C (IT)A.

» Por dltimo, si 1 < -+ < x,, notaremos (z1,--- ,2,) al subespacio generado por 1, - ,Tp;
asi, dada (1, -+ ,2,) € Ef, escribiremos Zf(xl, -+, xp) al conjunto formado por las suce-

ciones (y1,- -+ ,yk) € D tales que y; € (z1,- -+, ap).
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Observacion 3.2.3. Si |[yi|| <1, > ¢(y1, -+ ,yn) C >_; admite una A-red.

Demostracion. Haremos la demostracién para los casos n = 1,2; con el mismo razonamiento se
puede probar el caso general.

El caso maés sencillo seria para n = 1. Consideramos entonces » f(y) y buscamos una colecciéon
(Ai)i € > 4(y) tal que para todo A € > (y) exista i tal que d(A, 4;) < A. Observemos que la
Unica opcién es A = ay, A; = a;y. Como

d(A, Al) < A& ‘O&i — Oé| < 51.

Como se puede cubrir [—1; 1] con finitos subintervalos de longitud menor que ¢;, basta elegir «;
como los centros de dichos intervalos.
El siguiente caso serfa una A-red de ) f(yl,yg). Observemos que, para A € > f(yl,yg), hay

dos opciones posibles: A = (w),w = 2]2.:1 ajyj 0 A= (wi,ws), w1 < wy. En la primera situacién,
bu‘scamos A; = (Z?Zl ajy;) de la misma longitud tal que d(4, 4;) < A. Basta pedir |aj —a;| < %1,
asi

2 2
D (e —apyi| <D lak— ay] < 6.
j=1 j=1

Cubrimos [—1; 1] con finitos intervalos de longitud menor que %1, y consideremos g, -+ , N Sus

centros.

En la segunda situacién, para que wy < ws, siendo vectores no nulos, debe ser w; = a;y;; buscamos
— (i oy i i i o : :

Ai' = (wj,ws) con wj = ajy; tales que |[w; —w;|| < §; para j = 1,2. Esto ocurre por ejemplo si

la% — aj| < ;. Para j = 1,2, cubrimos el [~1;1] con finitos subintervalos de longitud menor que

. N;
d;, y considermaos 04]1, s
La coleccién que tomamos es la formada por los A; determinados en ambas situaciones.

O]

Para concluir esta seccion, demostremos el siguiente lema y veamos algunas consecuencias que
nos seran de utilidad méas adelante.

Lema 3.2.4. Dados A1 > Ay > -+ una sucesion de sucesiones de términos positivos, y Iy, s, - - -
sucesion de conjuntos de x-pares tales que se verifican las siguientes condiciones:

(1) Para cada *-par (A, Z) y para cada n existe Z' C Z tal que (A, Z') € 11,,;
(2) Si(A,Z)ell, yZ CZ entonces (A, Z") € 11,.

Entonces, existe un subespacio Y C X tal que (A, Z) € (Il,)a,, para cada par (A, Z) tal que A sea
de longitud por lo menos n y ambos A y Z sean subconjuntos de Y .

Demostracion. Construimos una base en bloque (y;); y una sucesion de subespacios en bloque (Y;);
q1

inductivamente. Primero tomamos Yy = X, y1 € Y tal que y; € > £3 Supongamos Z i€
1=p1
Sea Al,--- AL una Aj-red de >_¢(y1), donde N = N;. Como (Al [ex : k > q1]) es un x-par,
por la propiedad (1), existe Vi, C [eg : k > q1] tal que (A1, V};) € ;. Tteramos este razonamiento:
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(A%, Vlll) es un * -par = 3 V211 - Vlll / (A%,VQIJ) e Iy,

(A%’ ‘/2];1) €S un * —pal“ = El ‘/3];1 C ‘/2];1 / (Ag;,‘/g];l) E Hl,
(A}V, V]%,_Ll) es un x-par = 3 V]\lﬂ1 C V]\l,_L1 / (A}V, V]%,J) e I1;.

Asi, tenemos X =Yy DV}, DV, o - D V]%,J con (Aj,V;}}) € II; para todo 1 < i < N.
a2

Llamamos Y] = V]\lm, y tomamos yy € Y7 tal que (y1,y2) € Zf. Supongamos ys = Z Aie; con
i=p2
P2 > q1.
Sea A%,---, A% una Ag-red de >_¢(y1,92), donde N = Ny. Repetimos el razonamiento hecho
anteriormente.

(A2 [er : k> 2] N Y1) es un * -par = 3 V121 Y/ (A%,Vl%l) e Iy,

(A2, V) es un -par = 3V CVE /(A7 V) e T,
(A%, ‘/'122) es un * -par = 3 Vfl C Vf2 / (A%, V122) e I1q,
(A3,V31) es un * -par = 3 Viy C V5 [ (A3, V5) € I,
(A§7V22,2) €8 un * -par = 3 V32,1 - V22,2 / (A3, V321) € IL,
(A3, Vg,) es un * -par = 3AVEH C Vi /(AR V) €1l
(A%, Vf,fm) es un * -par :> 3 V]%J C VI%’*M / (A%V,V]\Q,,l) e I,
(A%, V1\27,1) es un * -par = 3 V]\2,72 C V]\QL1 / (4%, VJ%’Q) € Ils.
Asi, tenemos una sucesiéon Y7 D V121 > V122 > V2271 > V2%2 D V321 DD VJ\ZM D V1\2,72 con
(A?,Vi?j) € II; para todo 1 <i < N,1 < j < 2. Llamamos Y = V]\%Q.

Supongamos elegidos X = Yy D Y1 D -+ D Yn1, 1, ,¥Yn—1 tal que y; € Y;_ para todo
1 <i<n—1. Tomamos y, € Y,—1 tal que (y1, - ,yn) € >}

Sea AT,--- , A%, una A,-red de Zf(yl, -+ ,Ypn), donde N = N,,. Como antes, nos construimos
una sucesién de subespacios
Yoo1r DV DV D DV, DV D Vs Do DV, D DV D DV,

con (A, V) eIl paratodo1 <i<N,1<j<n.

RIS

Llamamos Y,, = V](}’n.

Observemos que para cada k € N, si Z C Y, es un subespacio en bloque de dimensién in-
finita, en particular se tiene que Z C Yy C Vzkj y entonces, por la propiedad (2), (A¥,Z) € II;
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para todo 1 < i < N, 1 < j < k. Como (Af)fvz’“l es una Ag-red de Zf(y1,~- ,Yk), para cada
A€ i(yr, - k), existe i tal que d(A, AF) < Aj. Tomando B = A¥ tenemos que d(A, B) < Ay
y (B, Z) € 1I;, es decir, (A, Z) € (IIj)a,-

Tomemos Y = (y1, 2, - ). Veamos que sirve: dado n, (A, Z) #-par en Y tal que la longitud de

A es al menos n,Z C Y subespacio en bloque, queremos ver que (4, Z) € (II,)a, . Sea k > n tal

que A€ > ¢(y1,- -, yk), y luego Z C (yk+41,- ) C Yj; por lo observado anteriormente se concluye

que (A, Z) € (II;), paratodo j < k. En particular, (4, Z) € (Il,)a, ¥y, al ser Ay, < A, obtenemos
(A,Z) € (II,) A, como queriamos.

O

A menudo usaremos ciertos casos particulares del Lema 3.2.4 por lo cual va a ser conveniente
enunciarlos por separado. Vamos a definir un singleton *-par como un par (x,7) donde z es un
vector no nulo de norma menor o igual que 1, Z un subespacio en bloque y z < z para todo z € Z;
en otras palabras, es un *-par (A, Z) donde A es un conjunto de un elemento. Dado II un conjunto
de singleton *-pares, 6 > 0, escribiremos Il para referirnos al conjunto de x-pares (z, Z) para los
cuales existe z’ tal que d(z,2") <0, (2/,Z) € 1L

Corolario 3.2.5. Sea § > 0,11 un conjunto de singleton x-pares tales que
i. Para cada *-par (y, Z) existe Z' C Z tal que (y,Z') € 11;
. Si(y,Z)ell y Z' C Z entonces (y,Z') € 1L
Entonces, existe un subespacioY C X tal que (y, Z) € s para cada par (y, Z) tal quey € Y, Z C Y.

Demostracion. Apliquemos el Lema 3.2.4 para A; = (4,1, 1, - - ) para todo 7, IT; el conjunto formado
por los *-pares de II y aquellos que no son singleton y, para ¢ > 1,1I; es el conjunto de todos los
x-pares. Es facil verificar que las propiedades (i), (ii) implican que estos conjuntos cumplen las
propiedades (1) y (2) del lema. Entonces, existe Y C X tal que (4, Z) € (II,)a, para todo (A4, Z)
en Y, con A de longitud a lo sumo n. En particular, (y, Z) € (II;)a, para todo y € Y y para todo
subespacio en bloque Z C Y. Luego, existe (v, Z) € II; (¥ € II) tal que ||y — y|| < J, esto es,
(y, Z) e I;.

O

Corolario 3.2.6. Dados A1 > Ay > --- y1li,1ls,--- en las condiciones del Lema 3.2.4, y supon-
gamos que ademds verifican la siguiente condicion:

3. st (A, Z) € II,, entonces A tiene longitud n.

Entonces, existe un subespacio Y C X tal que (A, Z) € (Il,)a, para cada par (A, Z) tal que A sea
de longitud n y ambos A y Z sean subconjuntos de Y.

Demostracién. Apliquemos el Lema 3.2.4 a I/, = {(A, Z) : long(A) # n} UII,. Observemos que
la propiedad (3) asegura que esta unién sea disjunta. Es fécil ver que las propiedades (1) y (2) del
lema siguen valiendo para II/,. Entonces, existe Y C X tal que (A, Z) € (II)a, para todo (A, Z)
en Y con A de longitud a lo sumo n. En particular, si la longitud de A es exactamente n; queremos
ver que, en ese caso, (A4,7) € (II,)a, - Sabemos que existe B de la misma longitud de A tal que
d(A,B) < A,, (B, Z) €11, pero, por ser de longitud n, debe ser (B, Z) € II,,.
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3.3. Demostracion del teorema de Ramsey

En esta seccién probaremos la dicotomia planteada en el Teorema 3.2.2 y mostraremos cémo éste
implica el Teorema 3.0.13. Esto completaria la solucién al problema de los espacios homogéneos.
Antes de seguir con el proximo resultado, introduciremos algunos nuevos conceptos.

Definicién 3.3.1. Dados Y C X subespacio en bloque, o € Zf(X), diremos que:
= g es grande para Y sitodo Z C Y subespacio en bloque tiene una sucesién en o.

» 0 es estratégicamente grande para Y si P tiene una estrategia ganadora para el juego o[Y]
(recordemos que esto queria decir que las movidas de S son subespacios de Y').

Ma3s en general,
Definicién 3.3.2. Dados Y C X subespacio en bloque, o € 3~ (X), (4,Y) un *-par, diremos que:

» 0 es grande para [A; Y] sitodo Z C Y subespacio en bloque tiene una sucesiéon B € > 5 tal
que (A, B) € 0.

» 0 es estratégicamente grande para [A;Y] si P tiene una estrategia ganadora para el juego
olA;Y].

Observacion 3.3.3. o es grande para [A;Y] < o[A;Y] es grande para Y.

Demostracion. =) Dado Z C Y subespacio en bloque, buscamos una sucesién de elementos de Z,
en o[A;Y]. Por hipétesis, sabemos que existe B = (21, ,zn) € > tal que (4, B) € 0. Como
(A, z1, - ,2zn) € [A4;Y] N o, se tiene justamente que (z1, - ,2,) € 0[A4;Y].

<) Dado Z C Y subespacio en bloque, buscamos una tira de elementos de Z,B € h; tal que
(A, B) € 0. Sabemos que existe B € ) tal que B € 0[A; Y], esto es, (A, B) € 0.

La misma equivalencia vale para “estratégicamente grande”.

Teorema 3.3.4. Sea X un espacio de Banach con una base mondtona normalizada dada, y sean
O = (0,)52, y A = (8,)22, sucesiones de nimeros positivos tales que 2 ;2\ §; < 0y, para todo N.
Si o_g es grande para X, entonces X tiene un subespacio en bloque Y tal que oop es estratégica-
mente grande para Y.

Demostracion. Supogamos que o C Zf es un conjunto para el cual es resultado es falso. Por

hipétesis, 0_g es grande para X; en particular, como 0_g C 0,0 es grande para X. Por otro lado,

tenemos que o9a no es estratégicamente grande para ningin subespacio en bloque de X.
Consideremos

p=A(x1, - mn) €E0ryr < - <y (Yroo L yk) S (@1 an) = (Y1, uk) E 0}

Se tiene que p sigue siendo grande para X; en efecto, dado Z C X un subespacio en bloque,
sabemos que Z contiene sucesiones finitas de o, entonces tomamos (z1,- - ,2z,) € o de longitud
minima. Observemos que si n = 1, (z1) € p trivialmente, ya que no existen subespacios en bloque
contenidos estrictamente en (z1). Para n > 1, si fuera (21, - ,2,) ¢ p, existiria y; < -+ < y; tal
que (Y1, - ,Yk) S (21, , zn) (luego, necesariamente k < n) con (y1,--- ,yx) € o, lo cual no puede
ser ya que habiamos elegido un elemento de longitud minima. Ademas, psa no es estratégicamente
grande para ningtn subespacio de X, pues poa C 09a.
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Para cadan > 0sean A, = (d1,- -+ ,0,,0,0,--+), )y = 2A—A,, = (01, , 0, 20541, 20542, ).
Ahora construiremos dos sucesiones: x1,xs2, - de elementos de X y X = Xy D X1 D Xo D ---
sucesion de subespacios en bloque, con las siguientes propiedades:

(1) Tn € Xn_1;
(2) pa, es grande para [z1, -, Zn; Xy);
(3) pr, no es estratégicamente grande para ningin [x1,--- ,2z,; Z] con Z C X.

Comenzamos eligiendo Xy = X, que cumple las propiedades (2) y (3). Supongamos que no
existen 1 € Xy, X1 C Xo que cumplan las propiedades. Entonces, para todo x € Xy para todo
Y C Xy subespacio en bloque, existe Z C Y que cumple alguna de las siguientes propiedades:

a. pa, N[x; 2] =0, 0
b. pr, es estratégicamente grande para [z; Z].

Consideremos IT el conjunto de dichos singleton *-pares, (z,7), y llamemos § = d;. Veamos que
estamos en las condiciones del Corolario 3.2.5. II cumple la propiedad (i) por definicién: dado
(z,Y) x-par, existe un subespacio en bloque Z C Y tal que (x,Z) verifica la condicién (a) o la
condicion (b), luego, (z,Z) € II. Veamos la propiedad (ii): si (z,Z) € I, Z’ C Z. Si (z, Z) cumplia
la condicién (a), entonces también la cumple (z, Z') pues pa, N[x; Z'] C pa, N[z; Z]. Si en cambio,
(z, Z) cumplia la condicién (b), P tiene estrategia ganadora en el juego o[z; Z|; en particular, si
las movidas de S son subespacios de Z’, son subespacios de Z y por lo tanto, P tiene estrategia
ganadora en el juego o[z; Z']. Entonces, por el corolario, existe Y C Xy tal que (y, Z) € Il5, para
todo y € Y y para todo Z C Y. Entonces, dado y € Y, Z C Y, sea (x,Z) € Il con ||z — y|| < 41,
hay dos opciones:

» (z,Z) cumple (a): en este caso, pa, N [y; Z] = 0 pues, si exisitiera (y,z2, - ,2n) € pa, = P,
como ||z — y|| < 41, se tendria que (x, 22, -+, 2,) € pa, N [z; Z].

» (2,Z) cumple (b): veamos que pr, es estratégicamente grande para [y; Z]. Como P tiene
estrategia ganadora para el juego pr, [x; Z], basta ver que pr, [z; Z] C pr,|y; Z] = paaly; Z]. Si

(@, 22, ,2m) € pr, entonces existe (', 25, -+ ,2},) € p con ||z —2'|| < b1 y ||z — 2}|| <26
para todo 2 < i < m, luego tenemos que |[z" — y|| < [|z" — z|[ + ||z — y|| < 251 y por lo tanto
(.%2'17' o 72771) S P2A-

En particular, lo anterior vale para y € Y,Z = {z € Y : y < z}. Observemos que el conjunto
de los y que cumplen pa, N [y; Z] = () no puede contener un subespacio Z’' de Z. Sino, por (2)
tenemos pa, N [Z'] # 0y, por lo tanto, existirfa y1,--- ,ym € Z’ tal que (y1, -+ ,Ym) € pa, =P Y,
entonces, pN[y1; Z'] # 0, pero esto no es cierto para los elementos y; de Z’. Entonces, dado Z’ C Z,
necesariamente contiene algun y € Z tal que pr, es estratégicamente grande para [y; Z], luego, el
conjunto de los y que tienen dicha propiedad es grande para Y. Pero esto le proporciona a P una
estrategia ganadora para el juego pr,[Z] contradiciendo (3).

Supongamos que tenemos x1, - ,Zn y X1 O X9 D +-- D X, que cumplen lo pedido; si no existieran
Tpt1 Y Xn+1 apropiados, entonces, para todo z € X,,, Y C X, subespacio en bloque, existe Z C Y
que cumple alguna de las siguientes propiedades:

. PAL N [33’1,' v ,$n,$;Z] = ®7 o

b. pr,., es estratégicamente grande para [z1,- - , 2y, 2; Z].
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Consideremos II el conjunto de dichos singleton *-pares, (z, Z), y llamemos § = d,,1. Como antes,
estamos en las condiciones del Corolario 3.2.5, entonces existe un subespacio en bloque Y C X,
tal que (y,Z) € Ils,,, para todo y € Y y para todo Z C Y. Entonces, dado y € Y, Z C Y, sea
(x,Z) € II con ||z — y|| < 0p+1. Entonces hay dos opciones:

» (x,Z) cumple (a): en este caso se tiene que pa, N [z1, -, Tn,y; Z] = 0 pues, si existiera
(X1, Tn, Yy 21,7+ Zm) € PA,, entonces tendriamos (24, -+, 20,y 2}, ,2),) € p con
[l — @i|] < 04, |ly" —yll <0, |]z; — zil| <0, es decir, (1, ,20,y,21,-++ ,2m) € p y por lo
tanto, como ||z — y|| < p41, se tendria que (z, 21, -, 2,) € pa,,, N [@1, - Tp, 23 Z].

» (z,Z) cumple (b): veamos que pr, es estratégicamente grande para [z, ,Zn,y; Z].

Como P tiene estrategia ganadora para el juego pr,,,[71, - ,Zn, x; Z], es suficiente ver que
Pir 1, s T, 23 Z] C prylat, - @,y Z). St (21, , @, @, 21,7+, 2m) € pr,,, entonces
existen ||z; — z}|| < 0;, || — 2| < Sy, ||z — 2| < 20,44 para todo 1 < i < m tal que
(xllv e 7134171'/72/17 T ?Z;n) € p luego HZC/ - yH < Hx, - ZL‘H + HZL’ - yH < 25n+1 y por lo tanto
(T4, %0, Yy 2157, Zm) € Pr,,-

En particular, lo anterior vale para y € Y, Z = {z € Y : y < z}. Observemos que el conjun-
to de los y que cumplen pa, N [x1, - ,Zn,y; Z] = 0 no puede contener un subespacio Z' de Z.
Sino, por (2) tenemos pa, N [z1, -, Tn; Z'] # 0y, por lo tanto, existiria y1,--- ,ym € Z’ tal que
(T1,- s Tny Y1y Ym) € PA, Y, entonces, p, N [x1, -+, 2y, y1; 2’| # 0, pero esto no es cierto para
los elementos y; de Z’. Entonces, dado Z’ C Z, necesariamente contiene algin y € Z tal que
pr, es estratégicamente grande para [z1,- -+, Zn,y; Z], luego, el conjunto de los y que tienen dicha
propiedad es grande para Y. Pero esto le proporciona a P una estrategia ganadora para el juego
pr, 1, -, xpn; Z] contradiciendo (3).

Consideremos el subespacio Y = [(zy,)n] vy veamos que Y N o_g = 0, lo cual contradice el
hecho de que o_g sea grande para X. Tomemos entonces (yi,--,yx) € Zf(xl,--- ,Tp) para
algin n. Como (X,41,Tni2,--+) €s un subespacio en bloque de X,,, por la condicién (2), existe
()41, %) C (Tpg1, Tpyo, - - - ) sucesion finita tal que (21, -+, Zn, T} 41, 5 27,) € PA,, €s decir
que existe (xllv ax;w'_l‘;z-‘rl?“' 7'7};71) con H$2 - ${L|| <6 Vi<n, (wlla 7x;17x{rz+1_7"' 7$;71) € p.
Si escribimos y; = gjzpj oz, 1 <pr < q <+ < q < n, definimos y} = ;-b:pj a;x;. Como
(Wi, sy S (@, -+, 2},), por definicién de p tenemos que (yi,--- ,y;) ¢ o. Pero

45

q; o]
gy =il < 3 ol [l — 2l <23 6 <26 < 6.
i=j

1=p; 1=p;

(Aqui estamos usando que p; > j y que, como la base (ey,), es monétona normalizada, y ||y;|| < 1,
se tiene que |ej(y;)| < 2 para cada j,1). Esto significa que (y1,---,yx) ¢ 0_e, como habiamos
afirmado. O

Ahora con el resultado anterior podemos probar el Teorema 3.2.2. Recordemos el enunciado.

Teorema 3.2.2 Sea X un espacio de Banach, o C Zf y sea A una sucesién de numeros positivos.
Entonces X tiene un subespacio Y tal que o[Y] =0 o P tiene una estrategia ganadora para el juego
oalY].

Demostracién. Supongamos que no existe Y tal que o[Y] = (), entonces, o es grande para X.
Llamemos 7 = 0 /2,0 = A /2, entonces tenemos que 7_g es grande para X, pues por la observacién
21,0 C (00)-0 =T-0. Si A es tal que 2>_7° 6/ < dn/2, entonces, por el Teorema 3.3.4 (para
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7,A’,0), existe Y C X subespacio en bloque tal que 1o/ es estratégicamente grande para Y.
Como 26, < §;/2 = 6;, tenemos que Tonr C To. Si vemos que 79 C oa, probarfamos entonces
que oa es estratégicamente grande para Y y que, por lo tanto, P tiene estrategia ganadora para el

juego oA Y], como querfamos probar. Veamos entonces esa inclusién: dado (x1,- -+ ,x,) € To, existe
(Y1, - yyn) €T = 0oays con |[x; —y;|| < §;/2. Luego existe (y,--- ,y,) € o tal que ||y; —y;]| < d:/2.
Asi, tenemos ||x; — yi|| < d; y por lo tanto (z1,--- ,xy) € oA. O

Al comienzo de este capitulo definimos los espacios hereditariamente indescomponibles. Antes
de continuar, vamos a introducir un concepto estrechamente relacionado.

Definiciéon 3.3.5. Un espacio de Banach X se dice C-hereditariamente indescomponible si para
todo par de subespacio en bloque Y y Z existen vectores y € Y,z € Z con soporte finito tales que
ly + =l| > Clly — z]|.

Observacion 3.3.6. La condicién para que un espacio sea C-hereditariamente indescomponible
es equivalente a la condicién (2) del Lema 3.1.3 para ese mismo valor de C.

Demostracion. Asumamos primero que X cumple la condicién (2) del lema: para cualquier par de
subespacios en bloque de X, Y y Z, existen y; < 21 < -+ < yn < 2n, ¥; € Y,2; € Z tal que
1> (yi + z)|| > C1>i,(yi — z)||. Llamando y = Y yy; € Y, 2= >"" | z; € Z, tenemos que
lly + z|| > C||ly — z||. Es decir, X es C-hereditariamente indescomponible.

Reciprocamente, supongamos ahora que X es C-hereditariamente indescomponible y tomemos
Y y Z subespacios en bloque. Definimos Y/ C Y,Z’ C Z subepsacios en bloque de la siguiente
manera:

q1
yreY Nler, ex,--], ) = Z%‘ei;
1=p1

q2
/ / .
A € ZN [egi1, eqiz ] 2= Y e
i=p2

q3
/ /
Y € Yyn [e(IQ+17 €go+25 " '}7 Yo = Z Q€4

1=p3

Asf obtenemos (i//,)n, (2,)n sucesiones en bloque y definimos: Y’ = [y/], Z’ = [2/]. Como estamos
suponiendo que X es C-hereditariamente indescomponible, existen y = > ae; €Y', 2 => bie; €
Z' con soporte finito tales que ||y + z|| > C||y — z||. Por ¢cémo fueron construidos Y’y Z’ tenemos
que los soportes de y y z son disjuntos. Sin pérdida de generalidad, podemos suponer que vale que
inf(sop(y)) < inf(sop(z)). Sean:

I = {i € sop(y) : i <inf(sop(2))},

Ji={j € sop(z) : j <inf(sop(y)\ 1)},

I = {i € sop(y) \ I + i <inf(sop(y)\ J1)},
Jo ={j € sop(z) \ J1: j <inf(sop(y)\ I2)},

Tomamos entonces y, = Eielk ae;, zL = EjeJk bjej; cumplen que y; < 21 < -+ < Y < 2p
para algiin n (notemos que estamos asumiendo que la sucesién termina con un elemento de Z’; esto
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es posible por la Observacién 3.1.4) y:

n

>k + 2)

k=1

n

> ok — )

k=1

=lly+2l[>Clly-=l[=C

O]

Asi, X es hereditariamente indescomponible si y sélo si es C-hereditariamente indescomponible
para todo C.

El siguiente resultado nos brinda la relaciéon entre bases incondicionales y subespacios heredi-
tariamente indescomponibles que necesitaremos para demostrar el teorema final.

Corolario 3.3.7. Sea X un espacio de Banach, entonces X contiene una sucesion basica en bloque
C-incondicional o para todo € > 0 tiene un subespacio en bloque que es (C' — €)-hereditariamente
indescomponible.

Demostracion. Supongamos que X no contiene ninguna sucesién bésica en bloque C-incondicional.

Consideremos o = {(z1, -+ ,@,) € 3 ;¢ sucesiones C-condicionales con ||z;|[ = 1 para algin i}.
Observemos que o es grande para X: si Y C X subespacio en bloque, como X no tiene sucesiones
bésicas en bloque C-incondicionales, Y contiene una sucesién en bloque (y1, -+ , y,) C'—condicional;

dividiendo por méx ||y;|| obtenemos un elemento de o.

Dado A > 0, por el Teorema 3.2.2, existe W C X subespacio en bloque tal que P tiene estrategia
ganadora en el juego oa[Y] (no puede ser o[WW] = 0 pues o es grande). Dado € > 0, tomamos
n > 0 a determinar y A tal que ) :°, & = 7. Veamos que el espacio W correspondiente a este
A es (C — g)-hereditariamente indescomponible. Dados Y, Z C W subespacios en bloque, por la
observacién, basta encontrar y; < 21 < -+ < yp < zn, ¥ €Y, z; € Z tales que

n

> i+ z)

=1

n

> (i — )

i=1

> (C —¢)

Consideremos la siguiente estrategia para S: elegir los subespacios alternadando entre YV y Z:
Xon—1 =Y, X9, = Z. Pero como o es estrategicamente grande para W, P puede vencer la estrate-

gia de S, es decir, existen y; < 21 < -+ < yp < zn, Yi €Y, z; € Z tal que (y1,21,"** ,Yn, 2n) € OA.
Observemos nuevamente que podemos asumir que P gana en una movida par.
Existen entonces (y), 21, ,Yp, 2,) € o tal que ||y} —vil| < d2i—1, ||} — zi|| < d2; Vi < n. Tenemos

entonces las siguientes desigualdades:

= Si (xlv T ,l‘n) € o, HZZ;l xl” > 1/2
Sea k tal que ||zg|| = 1, usando (dos veces) que la base es monétona, tenemos que

n n k—1 n k—1 n
=l < [ =[S D] < 3 ¢ [ <23
i=k =1 =1 =1 1=1 =1
En particular, |0 (vl — 20)|| > 1/2.
n n
o DS+ || > S - 2| pues (4,2 € o,
i=1 =1




CAPITULO 3. EL PROBLEMA DE LOS ESPACIOS HOMOGENEOS o7

n

D i+ 2)

=1

n

Z(?/z + z;)

=1

A
7
<
ST
|
5
~
+
—
N
U
|
R
~

n

2n
<IDwi—w)| + (DG =z <D o6 <,
=1 =1 =1
n n n
D= = D D= =) <D ) + (2 — =) <
=1 =1 =1
Entonces,
n n
itz = D Wi+ -n
=1 =1
n
> C Z(yé—zz‘)‘—n
i—1

n

Z(yi — %)

1=1

20(

> (i — =)

i=1

)

—n(C+1).

= C

Basta ver que —n(C +1) > —¢||>_7" (i — 2i)|| o, equivalentemente,

n

Z(?/i — %)

=1

n(C+1) <
€

Tomamos 1 tal que 77((10_ 2717))2 < g, y entonces:

n

> (i —2)

=1

n

Z(yi — %)

i=1

=

Ahora estamos en condiciones de probar el Teorema 3.0.13.

Teorema 3.0.13 Sea X un espacio de Banach, entonces tiene un subespacio W que es hereditaria-
mente indescomponible o que tiene una base incondicional.

Demostracion. Supongamos que ninguin subespacio tiene base incondicional, entonces, por el Lema
3.1.2 para cada C, cada subespacio en bloque de X contiene una sucesién basica en bloque C-
condicional. Usando el Corolario 3.3.7 reiteradamente, para ¢ = 1, tenemos:

C=2: 3 Wi C X 1-hereditariamente indescomponible,
C=3: 4 Wy C W 2-hereditariamente indescomponible, etc.

Asi obtenemos W7 D Wy D - - - subespacios en bloque, con W, n-hereditariamente indescomponible.
Tomamos w,, € W, tal que (wy), es una sucesién basica en bloque y consideramos W = (wy,);
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veamos que es hereditariamente indescomponible. Dados Y, Z C W subespacios en bloque, y C una
constante, tomamos n > C. Observemos que Y NW,, y ZNW,, son subespacios de dimensién infinita.
En efecto, si Y = (y1,y2, ), ¥i = ?i:pi a;w;, si k es tal que pr > n, entonces y; € W, para todo
i > k. Como W, es n-hereditariamente indescomponible, para todo par de subespacios en bloque
de dimensién infinita Y C Y NW,,,Z' C ZNW, existen y; < 21 < -+ < yp < 2, y; €Y', 2z, € Z'

tal que
k

> i+ )

i=1

k

> (i — )

i=1

k

> (i — )

i=1

>n >C

Luego, como C era arbitraria, por el Lema 3.1.3 concluimos que W es hereditariamente indescom-
ponible. O
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