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Introducción

En esta tesis expondremos tres problemas del análisis funcional con la particularidad de que para
resolverlos se usan técnicas de carácter combinatorio. En sus demostraciones aparece la necesidad
de estudiar teoremas cuyos enunciados plantean dicotomı́as donde obtenemos conjuntos (o sub-
espacios) que poseen cierta propiedad o una totalmente opuesta. Es ah́ı donde jugará un rol decisi-
vo el enfoque combinatorio que nos permitirá probar dichas dicotomı́as usando herramientas de la
llamada teoŕıa de Ramsey. Esta rama de la matemática, que debe su nombre a Frank P. Ramsey,
generaliza el principio del palomar, el cual establece que no puede existir una aplicación inyectiva
entre un conjunto de m elementos y otro de n elementos, si m > n. Suele plantear preguntas del
tipo “qué tan grande debe ser cierta estructura para que tenga cierta propiedad”; los resultados de
esta teoŕıa suelen enunciarse como un problema de coloreo y muchos de sus argumentos dependen
de un razonamiento diagonal. Estas caracteŕısticas serán evidentes en los teoremas de Ramsey que
estudiemos.

Lo primero que haremos es desarrollar la teoŕıa necesaria para poder abordar los problemas a
resolver; esto lo haremos en el Caṕıtulo 1.

En el segundo caṕıtulo el objetivo será demostrar dos resultados clásicos usando un mismo
teorema de la teoŕıa de Ramsey. La primera sección está dedicada a dicha teoŕıa: ahondaremos en
las caracteŕısticas generales nombradas anteriormente y demostraremos nuestro primer resultado
de tipo Ramsey. En las secciones siguientes, plantearemos dos problemas y los resolveremos usando
este resultado. El primero es el Teorema ℓ1 de Rosenthal [R] que afirma que, dado un espacio de
Banach de dimensión infinita, éste contiene a ℓ1 o bien tiene la propiedad de que toda sucesión
acotada tiene una subsucesión débil Cauchy. Recordaremos este concepto y veremos que ℓ1 no tiene
dicha propiedad mientras que, por otro lado, los espacios reflexivos śı. De esta manera, como los
subespacios de espacios reflexivos, son también reflexivos (y ℓ1 no lo es), el enunciado del teorema
sugiere que estamos en la presencia de una dicotomı́a como las antes mencionadas.

El segundo problema que estudiaremos en este trabajo es cómo generalizar el lema de Riesz (el
cual nos permite obtener una sucesión de normalizada cuyos elementos disten “casi” uno) en un teo-
rema de separación más fuerte, el Teorema de Elton-Odell [EO]. Espećıficamente, dado un espacio
de Banach X, buscaremos una sucesión (xn)n en la esfera de radio 1 tal que supn 6=m ||xn−xm|| > 1.
Como paso previo, veremos esto último en X = c0 y luego lo generalizaremos al caso en que el
espacio contengan una copia de c0. Para demostrar el caso restante, usaremos el teorema de Ramsey
para obtener una dicotomı́a similar a la que apareció en Teorema de Rosenthal, pero ahora donde
el espacio distinguido sea c0.

En el último caṕıtulo, analizaremos el llamado “Problema de los espacios homogéneos”, plantea-
do por Banach en 1932. Un resultado de Lindenstrauss y Tzafriri [LT] establece que si todo sub-
espacio de un espacio de Banach es complementado, entonces dicho espacio debe ser isomorfo a un
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espacio de Hilbert. El problema que nosotros estudiaremos aparece si se consideran isomorfismos
en vez de proyecciones: se plantea la pregunta de si ℓ2 es el único espacio isomorfo a todos sus
subespacios cerrados de dimensión infinita. Para estudiar este tipo de espacios (que llamaremos
homogéneos) lógicamente será de mucha utilidad mirar sus subespacios; buscaremos, por ejemplo,
bases incondicionales y subespacios hereditariamente indescomponibles. Veremos que estos concep-
tos y el de homogeneidad están intŕınsicamente relacionados. Un espacio arbitrario deberá contener
un subespacio hereditariamente indescomponible o una base incondicional; sin embargo, un espacio
homogéneo no podrá ser hereditariamente indescomponible. Entonces, relacionar ℓ2 y el concepto
de bases incondicionales nos permitirá cerrar el razonamiento.

La solución a este problema es el resultado de la combinación de dos trabajos independientes,
[G1] y [K T-J]. Nosotros nos concentraremos en el primero, donde el autor trabaja con ciertas
dicotomı́as cuyas demostraciones requieren de herramientas de la teoŕıa de Ramsey, en este caso,
distintas a las usadas en el caṕıtulo anterior.



Caṕıtulo 1

Preliminares

A lo largo de este trabajo, los espacios de Banach que consideremos serán de dimensión infinita,
a no ser que se aclare lo contrario. Los resultados que veremos valen tanto sobre R como sobre C

(variando, quizás, alguna constante), haciendo algunos cambios en las demostraciones. Por como-
didad, consideraremos espacios reales y, eventualmente, en alguna demostración veremos cómo se
puede adaptar el razonamiento al caso complejo.

Antes de comenzar será conveniente aclarar la notación que usaremos. Dado un espacio de
Banach X, X ′ será su espacio dual, X ′′ el doble dual, y BX y SX serán la bola y la esfera unitaria,
respectivamente. Dado x ∈ X, x̂ representará al elemento del doble dual definido por x̂(x′) = x′(x)
para cada x′ ∈ X ′. Además, siempre y cuando haya un sólo espacio involucrado y no se preste a
confusión, la norma de dicho espacio será notada || · ||. Aparecerán algunos de los espacios más
clásicos, los cuáles serán notados de la manera usual. Ya vimos en la introducción el rol importante
que tendrán

ℓ1 = {(an)n ⊂ R :
∑

n

|an| < ∞}

y
c0 = {(an)n ⊂ R : ĺım

n
an = 0}

en los dos primeros teoremas, y

ℓ2 = {(an)n ⊂ R :
∑

n

|an|
2 < ∞}

en el problema de los espacios homogéneos. Además, notaremos

c00 = {(an)n ⊂ R : an 6= 0 para finitos n}.

En todos estos ejemplos, en denotará, como es de esperarse, al vector cuyas coordenadas son todas
nulas salvo la n-ésima, que es 1.

Por último, recordemos algunas definiciones. Dada una sucesión (xn)n y un vector x en un
espacio de Banach X, diremos que (xn)n tiende débil a x, y notaremos xn

w
−→x, si x′(xn) → x para

toda x′ ∈ X ′. Dada una suseción (x′n)n y una una funcional x′ en X ′ diremos que (x′n)n tiende débil

estrella a x′, y notaremos x′n
w∗
−→x′, si x′n(x) → x′(x) para todo x ∈ X, esto es, x̂(x′n) → x̂(x′).

Otra noción de convergencia no tan común es la siguiente: (xn)n ⊂ X es débil Cauchy si para cada
x′ ∈ X ′ la sucesión escalar (x′(xn))n tiene ĺımite. La definición es muy similar a la de convergencia
débil. Sin embargo, no son conceptos equivalentes; la diferencia reside en si el ĺımite de la sucesión

4
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(x′(xn))n depende o no de la funcional x′. Claramente, la condición de ser w-convergente es más
fuerte que la de w Cauchy convergente. Retomaremos esto en el Caṕıtulo 2.

1.1. Bases de Schauder

Definición 1.1.1. Dado un espacio de Banach X, diremos que (en)n ⊂ X es una base de Schauder

de X si para todo x ∈ X existen únicos (xn)n ∈ R tal que x =
∞∑

n=1

xnen.

Nota 1. El orden de los elementos de una base es importante. Veremos esto en la sección de bases
incondicionales.

Observemos que podemos definir las siguientes funciones lineales: e′n : X → R, e′n(x) = xn,

PN : X → X,Pn =

N∑

n=1

e′n.

Teorema 1.1.2. Las funciones coordenadas e′n y las proyecciones PN definidas anteriormente son
continuas.

Demostración. Vamos a definir una nueva norma en X: |||x||| = sup{||PN (x)|| : N ∈ N}, donde
|| · || es la norma original. Observemos que el supremo está bien definido ya que como la serie∑∞

n=1 e
′
n(x)en converge (a x), en particular las sumas parciales están acotadas. Que sea una norma

se deduce de las propiedades del supremo y del hecho que || · || lo sea.

Veamos que las || · || y ||| · ||| normas son equivalentes. Por un lado, ||x|| = ‖
∑∞

n=1 e
′
n(x)en‖ =

ĺımN→∞

∥∥∥
∑N

n=1 e
′
n(x)en

∥∥∥ ≤ |||x|||. Para probar que son equivalentes entonces, por el teorema de

la aplicación inversa, basta probar que (X, ||| · |||) es un espacio de Banach. Supongamos entonces
que (xn)n ⊂ (X, ||| · |||) es una sucesión de Cauchy. Por la desigualdad anterior, tenemos que (xn)n

también es de Cauchy con la norma original y, por lo tanto, existe x ∈ X tal que xn
||·||
−→ x. Nuestro

objetivo será probar que también converge a x con ||| · |||.

Observemos que ||PN (xn)− PN (xm)|| ≤ |||xn − xm|||, luego, para cada N ∈ N, PN (xn)
||·||
−→ yN

converge en [e1, · · · , eN ]. Pero las funcionales e′j : [e1, · · · , eN ] −→ R son continuas, entonces para
todo 1 ≤ j ≤ N tenemos

e′j(xn) = e′j(PN (xn))−→
n

e′j(yN ) := aj ,

y entonces yN =
N∑

j=1

ajej . Veamos que yN
||·||
−→x.

Dado ε > 0, tomamos n tal que |||xm − xn||| < ε/3 para todo m ≥ n, y N0 tal que ||PN (xn)−
xn|| < ε/3 para todo N ≥ N0 . Observemos que aśı ||PN (xm) − PN (xn)|| ≤ |||xm − xn||| < ε/3 y
también ||xn − xm|| < ε/3. Entonces, para todo N ≥ N0

||yN − x|| ≤ ||yN − PN (xn)||+ ||PN (xn)− xn||+ ||xn − x||

= ĺım
m

||PN (xm)− PN (xn)||+ ||PN (xn)− xn||+ ĺım
m

||xn − xm||

< ε.
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Tenemos entonces que x =
∞∑

j=1

ajej en || · || y, por escritura única, PN (x) = yN .

Ahora śı, veamos que |||xn − x||| −→ 0. Dado ε > 0, sea n0 tal que |||xn − xm||| < ε para todo
n,m ≥ n0. Luego

|||xn − x||| = sup
N

||PN (xn)− PN (x)||

= sup
N

||PN (xn)− yN ||

= sup
N

ĺım
m

||PN (xn)− PN (xm)||

≤ ĺım
m

|||xn − xm|||

≤ ε.

Probamos entonces que las normas son equivalentes y que, por lo tanto, existe K > 0 tal que
|||x||| ≤ K||x|| ∀ x ∈ X. Luego, ||PN (x)|| ≤ K||x|| ∀ x ∈ X, es decir, los operadores PN son
continuos. Por último, las funciones coordenadas son continuas:

|e′n(x)| =
||PN (x)− PN−1(x)||

||en||
≤

2K

||en||
||x||. (1.1)

Corolario 1.1.3. Las proyecciones PN están uniformemente acotadas.

Demostración. En la demostración anterior, se probó que ||PN (x)|| ≤ K||x|| ∀ x ∈ X; equivalente-
mente, ||PN || ≤ K para todo N .

Definición 1.1.4. Dada (en)n una base de Schauder de un espacio de Banach X, K = sup
N

||PN ||

se llama la constante de la base. En el caso en que K = 1, decimos que la base es monótona.

Observación 1.1.5. Dada (en)n una base, y definiendo una norma auxiliar como antes, se tiene
que (en)n es monótona en (X, ||| · |||). En efecto, usando que PM ◦ PN = Pmı́n{N,M} se tiene que

|||PN (x)||| = sup
M

||PM (PN (x))|| = sup
M

||PM (x)|| = |||x|||.

Entonces podemos, y muchas veces convendrá, suponer que la base dada es monótona. Además,
si la base era normalizada con la norma original, también lo será con la nueva norma:

|||ek||| = sup
N

||PN (ek)|| = ||ek|| = 1.

Observación 1.1.6. Notemos que de (1.1) se sigue que ||e′n|| ≤
2K
||en||

. En particular, si la base es

normalizada o seminormalizada, esto es, acotada superior e inferiormente, las funcionales e′n estarán
uniformemente acotadas.
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1.2. Sucesiones Básicas

Definición 1.2.1. Una sucesión (en)n ⊂ X se llama sucesión básica si es una base (de Schauder)
para el espacio [(ek)k].

Teorema 1.2.2. Si (en)n es una sucesión de elementos no nulos, son equivalentes:

(1) (en)n es una sucesión básica;

(2) ∃ K > 0 / ∀ a1, · · · , aM ∈ R, ∀ N < M se tiene que

∥∥∥∥∥
N∑

k=1

akek

∥∥∥∥∥ ≤ K

∥∥∥∥∥
M∑

k=1

akek

∥∥∥∥∥ .

Demostración. (1) ⇒ (2) Consideremos K la constante de la sucesión básica (pensándola como
base del espacio generado). Si x =

∑M
k=1 akek, entonces

∥∥∥∥∥
N∑

k=1

akek

∥∥∥∥∥ = ||PN (x)|| ≤ K||x|| = K

∥∥∥∥∥
M∑

k=1

akek

∥∥∥∥∥ .

(2) ⇒ (1) Dado x ∈ [(en)n], queremos ver que existen únicos escalares (an)n tal que x =
∑

anen.
Veamos primero la unicidad. Si 0 =

∑
anen, miramos la desigualdad de (2) para N = 1, 2, · · ·

y M suficientemente grande:

|a1| ||x1|| = ||a1e1|| ≤ K

∥∥∥∥∥
M∑

n=1

anen

∥∥∥∥∥−→M 0 ⇒ a1 = 0,

|a2| ||x2|| =

∥∥∥∥∥
2∑

i=1

aiei

∥∥∥∥∥ ≤ K

∥∥∥∥∥
M∑

n=1

anen

∥∥∥∥∥−→M 0 ⇒ a2 = 0.

Inductivamente, se concluye que ai = 0 para todo i.

Veamos ahora la existencia de los escalares.
Sean PN : [(en)n] −→ [(en)n], PN (

∑
anen) =

∑N
n=1 anen. La hipótesis asegura que ||PN || ≤ K

para todo N . Por continuidad uniforme PN se extiende a [(en)n]. De la misma manera, tenemos
las funciones coordenadas e′n : [(en)n] −→ R. Además, como para todo x ∈ [(en)n] se tiene que
e′n(x)en = Pn(x)− Pn−1(x), por densidad, también vale en [(en)n].
Dado x ∈ X, veamos que x =

∑
e′n(x)en. Dado ε > 0, tomamos y ∈ [(en)n] tal que ||y−x|| < ε, N0

tal que PN (y) = y para todo N ≥ N0. Entonces para tales N tenemos:

||x− PN (x)|| ≤ ||x− y||+ ||y − PN (y)||+ ||PN (y)− PN (x)||

≤ (1 +K)||x− y||+ ||y − PN (y)||

< (1 +K)ε.

Una pregunta razonable seŕıa: ¿todo espacio de Banach separable tiene una base? Per Enflo
resolvió este problema en 1973, exhibiendo un contraejemplo. Sin embargo, śı es cierto que todo
espacio tiene un subespacio con base.
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Lema 1.2.3 (Mazur). Sea X un espacio de Banach de dimensión infinita, F ⊂ X subespacio de
dimensión finita. Dado 0 < ε ≤ 1, existe x ∈ X \F tal que ||y|| ≤ (1+ε)||y−λx|| ∀ y ∈ F, ∀ λ ∈ R.

Demostración. Como la esfera SF es compacta, podemos tomar una ε/2-red, {y1, · · · , yn}, con
y′k ∈ X ′, ||y′k|| = 1 tal que y′k(yk) = 1. Como Ker(y′k) es un subespacio de codimensión 1 para cada
k, podemos tomar x ∈

⋂n
k=1Ker(y′k), ||x|| = 1.

Si y ∈ SF , existe l tal que ||y − yl|| < ε/2, y se tiene:

||y − λx|| = ||y − yl + yl − λx|| ≥ ||yl − λx|| − ε/2 ≥ |y′l(yl − λx)| − ε/2 = 1− ε/2 ≥
1

1 + ε
=

||y||

1 + ε
.

Luego, ||y|| ≤ (1 + ε)||y − λx||.

Si y ∈ F es arbitrario, no nulo, como lo anterior vale para todo λ, tenemos que
∥∥∥∥

y

||y||

∥∥∥∥ ≤ (1 + ε)

∥∥∥∥
y

||y||
−

λ

||y||
x

∥∥∥∥ ,

y entonces
||y|| ≤ (1 + ε)||y − λx||.

Esto concluye la demostración; observemos que, además, pudimos tomar ||x|| = 1.

Teorema 1.2.4. Sea X un espacio de Banach de dimensión infinita. Entonces, dado ε > 0 existe
una sucesión básica con constante a lo sumo 1 + ε.

Demostración. Sean εn > 0 tal que
∏
(1 + εn) ≤ 1 + ε (esto ocurre por ejemplo si tomamos ln(1 +

εn) ≤
ln(1+ε)

2n ). Tomemos x1 ∈ SX cualquiera, y llamemos F1 = [x1]. Por el lema anterior, existe x2 ∈
SX\F1 tal que ||y|| ≤ (1+ε1)||y+λx2|| para todo y ∈ F1 y todo lambda. Repetimos el procedimiento.
Supongamos construidos x1, · · · , xn−1, Fn−1 = [xi]

n−1
i=1 . Aplicando el lema nuevamente, tomamos

xn ∈ SX \ Fn−1 tal que ||y|| ≤ (1 + εn−1)||y + λxn|| para todo y ∈ Fn−1, y todo λ. Aśı, obtenemos
(xn)n ⊂ SX ; veamos que es una sucesión básica. Si N < M, a1, · · · , aM ∈ R, entonces

∥∥∥
N∑

n=1

anxn

︸ ︷︷ ︸
∈FN

∥∥∥ ≤ (1 + εN )
∥∥∥

N∑

n=1

anxn +

λ︷ ︸︸ ︷
a(N+1) x(N+1)

∥∥∥

≤ (1 + εN )(1 + εN+1)
∥∥∥
N+1∑

n=1

anxn + a(N+2)x(N+2)

∥∥∥

...

≤ (1 + εN )(1 + εN+1) · · · (1 + εM )
∥∥∥

M∑

n=1

anxn

∥∥∥

≤ (1 + ε)
∥∥∥

M∑

n=1

anxn

∥∥∥.

Por el Teorema 1.2.2, concluimos que (xn)n es una sucesión básica con constante a lo sumo 1+ε.

Usando este resultado e ideas similares a las usadas en la demostración, se puede probar el
siguiente teorema de Bessaga-Pelczynski [D, página 42] :
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Teorema 1.2.5. Toda sucesión débil nula en un espacio de Banach X admite una subsucesión que
es sucesión básica.

En las próximas secciones veremos otras versiones más fuertes del principio de selección de
Bessaga-Pelczynski.

Definición 1.2.6. Sea (en)n una base de X. Dados p1 < q1 < p2 < · · · números naturales y
(aj)j) ⊂ R, podemos definir un =

∑qn
j=pn

ajej no nulos. Decimos que (un)n es una sucesión básica
en bloque de (en)n.

Observación 1.2.7. Una sucesión básica en bloque es, efectivamente, una sucesión básica. Más
aun, si K es la constante de la base de X, la constante de (un)n es a lo sumo K.

Demostración. Usando nuevamente el Teorema 1.2.2, tomemos N < M ,

∥∥∥∥∥
N∑

n=1

bnun

∥∥∥∥∥ =

∥∥∥∥∥∥

N∑

n=1

bn

( qn∑

j=pn

ajej

)
∥∥∥∥∥∥
=

∥∥∥∥∥∥

N∑

n=1

qn∑

j=pn

bnajej

∥∥∥∥∥∥
≤ K

∥∥∥∥∥∥

M∑

n=1

qn∑

j=pn

bnajej

∥∥∥∥∥∥
= K

∥∥∥∥∥
M∑

n=1

bnun

∥∥∥∥∥ .

Notación 1.2.8. Dados (un)n como en la definición de sucesión básica en bloque, escribiremos
u1 < u2 < · · · .

1.3. Equivalencia de Sucesiones Básicas

Dada una base (en)n de un espacio de Banach X (análogamente, una sucesión básica), un
elemento x ∈ X (o en el subespacio generado por dicha sucesión) queda determinado por sus
coordenadas (e′n(x))n. Pero no toda sucesión (an)n determina un elemento del espacio. Esto motiva
la siguiente definición.

Definición 1.3.1. Dos bases (o sucesiones básicas) (xn)n y (yn)n de espacios de Banach X e Y
respectivamente, se dicen equivalentes si dada una sucesión de escalares (an)n,

∞∑

n=1

anxn converge en X ⇔
∞∑

n=1

anyn converge en Y .

Teorema 1.3.2. Dadas (xn)n base de X, (yn)n base de Y, las siguientes afirmaciones son equiva-
lentes:

(1) (xn)n e (yn)n son bases equivalentes;

(2) existe un isomorfismo T : X → Y que verifica T (xn) = yn;

(3) existen C1, C2 > 0 tal que ∀ N, ∀a1, · · · , aN ,

C1

∥∥∥∥∥
N∑

k=1

akyk

∥∥∥∥∥ ≤

∥∥∥∥∥
N∑

k=1

akxk

∥∥∥∥∥ ≤ C2

∥∥∥∥∥
N∑

k=1

akyk

∥∥∥∥∥.
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Demostración. (1) ⇒ (2) Por hipótesis, podemos definir T (
∑

n anxn) =
∑

n anyn siempre que∑∞
n=1 anxn converja en X; es claro que se cumple que T (xn) = yn. Además, la condición rećıproca

en la definición de sucesiones equivalentes, asegura que T sea biyectivo. Veamos que es continuo
usando el teorema de gráfico cerrado: si zn → z en X, y T (zn) → y en Y , queremos ver que
T (z) = y.

y′k

(∑∞
j=1 x

′
j(zn)yj

)
= x′k(zn)−→n

x′k(z)

q

y′k

(∑∞
j=1 x

′
j(zn)T (xj)

)
= y′k(T (zn))−→n

y′k(y).

Luego, x′k(z) = y′k(y) para todo k, y entonces: T (z) =
∑

k x
′
k(z)yk =

∑
k y

′
k(y)yk = y.

(2) ⇒ (3) Como T y T−1 son continuas, basta tomar: C1 = (||T ||)−1, C2 = ||T−1||.

(3) ⇒ (1) Dada (an)n sucesión de escalares, entonces por hipótesis, para todo M < N , tenemos
que:

C1

∥∥∥∥∥
N∑

k=M

akyk

∥∥∥∥∥ ≤

∥∥∥∥∥
N∑

k=M

akxk

∥∥∥∥∥ ≤ C2

∥∥∥∥∥
N∑

k=M

akyk

∥∥∥∥∥.

Luego, las series tienen el mismo comportamiento.

Observación 1.3.3. Supongamos que (xn)n es una base de X, y sea (yn)n ⊂ Y una sucesión de
elementos no nulos, tales que se verifica la condición del punto (3) (equivalentemente, del punto (2))
del teorema anterior. Entonces (yn)n es una sucesión básica, y por lo tanto, equivalente a (xn)n.

Demostración. Dados N < M , buscamos una constante C tal que:

∥∥∥∥∥
N∑

k=1

akyk

∥∥∥∥∥ ≤ C

∥∥∥∥∥
M∑

k=1

akyk

∥∥∥∥∥. Si

K es la constante de la base (xn)n, entonces:

∥∥∥∥∥
N∑

k=1

akyk

∥∥∥∥∥ ≤
1

C1

∥∥∥∥∥
N∑

k=1

akxk

∥∥∥∥∥ ≤
K

C1

∥∥∥∥∥
M∑

k=1

akxk

∥∥∥∥∥ ≤
KC2

C1

∥∥∥∥∥
M∑

k=1

akyk

∥∥∥∥∥ .

El siguiente lema será de utilidad para luego demostrar el principio de selección de Bessaga-
Pelczynski.

Teorema 1.3.4. Sea (xn)n una sucesión básica con constante a lo sumo K, (yn)n tal que

2K

∞∑

n=1

||xn − yn||

||xn||
< 1,

entonces (xn)n e (yn)n son sucesiones equivalentes.

Demostración. Para cada x ∈ X definimos T (x) = x +
∑∞

n=1 x
′
n(x)(yn − xn). Observemos que T

está bien definido pues la serie converge absolutamente. Recordemos que por la Observación 1.1.6
tenemos que ||x′n|| ||xn|| ≤ 2K; de esta manera, T es un operador acotado:
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||T || ≤ 1 +
∞∑

n=1

||x′n|| ||yn − xn||

≤ 1 + 2K

∞∑

n=1

||yn − xn||

||xn||

< 2.

Además,

||T − I|| ≤
∑

n

||x′n|| ||yn − xn|| ≤ 2K
∑

n

xn − yn
xn

< 1,

de donde sigue que T es inversible. Por último, es fácil ver que T (xm) = ym para todo m ∈ N.
Luego, las sucesiones son equivalentes.

Teorema 1.3.5 (Principio de selección de Bessaga-Pelczynski). Sea (en)n una base de X con
constante K, y (e′n)n sus funciones coordenadas. Sea (yk)k ⊂ X tal que ı́nf ||yk|| > 0 y e′k(yn)−→n

0

para todo k. Entonces, (yk)k tiene una subsucesión básica equivalente a alguna sucesión básica en
bloque de los (en)n.

Demostración. Llamemos α =inf||yn|| > 0, y tomemos 0 < δ < 1
4 .

Tomemos n1 = 1, r0 = 0. Entonces existe r1 ∈ N tal que

||yn1 − Pr1(yn1)|| =

∥∥∥∥∥
∞∑

n=r1+1

e′n(yn1)en

∥∥∥∥∥ <
αδ

2K
.

Como ||Pr1(yn)||−→n
0, existe n2 > n1 tal que ||Pr1(yn2)|| < αδ2

2K . Tomamos r2 > r1 tal que

||yn2 − Pr2(yn2)|| <
αδ3

2K .

Iterando, obtenemos una subsucesión (ynk
)k y una sucesión creciente de números naturales

(rk)k, con rk = 0, tales que:

||Prk−1
(ynk

)|| <
αδk

2K
y ||ynk

− Prk(ynk
)|| <

αδk

2K
.

Consideremos xk = Prk(ynk
)−Prk−1

(ynk
). Como (xk)k es una sucesión básica en bloque de la base

(en)n resulta una sucesión básica con constante a lo sumo K. Notemos que, para cada k, tenemos

||ynk
− xk|| ≤ ||ynk

− Prk(ynk
)||+ ||Prk−1

(ynk
)|| <

αδk

K
,

y
||ynk

− xk|| ≥ ||ynk
|| − ||xk|| ≥ α− ||xk||.

Aśı,

||xk|| > α−
αδk

K
= α

(
1−

δk

K

)
≥ α

(
1−

δ

K

)
≥ α(1− δ).

Entonces,

2K
∞∑

k=1

||xk − ynk
||

||xk||
< 2

∞∑

k=1

αδk

α(1− δ)
=

2

1− δ

∞∑

k=1

δk =
2δ

(1− δ)2
< 8/9.

Por el Teorema 1.3.4, (ynk
)k y (xk)k son sucesiones equivalentes.
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Presentamos como corolario una reformulación del Corolario 7 de [D, página 45] que sirve de
criterio para determinar si un espacio de Banach contiene o no una copia de c0,

Teorema 1.3.6. Sea (xn)n una sucesión básica en un espacio de Banach X con ı́nf ||xn|| > 0. Si
existe una constante C > 0 tal que para todo F ⊂ N subconjunto finito y para cada elección de
signos (εn)n∈F se tiene que ||

∑
n∈F εnxn|| ≤ C , entonces (xn)n es equivalente a la base canónica

de c0.

1.4. Condicionalidad e Incondicionalidad

1.4.1. Convergencia de Series

Definición 1.4.1. Dada (xn)n una sucesión en un espacio de Banach X, la serie
∑∞

n=1 xn se dice
incondicionalmente convergente si

∑∞
n=1 xσ(n) converge para toda permutación σ ∈ SN.

Sabemos que en el caso de series reales, convergencia incondicional es equivalente a conver-
gencia absoluta y, en ese caso, cualquier reordenamiento converge a lo mismo. En el caso de un
espacio de Banach arbitrario, convergencia absoluta implica convergencia incondicional, pero no
necesariamente vale la rećıproca.

Observación 1.4.2. Dada una serie
∑∞

n=1 xn incondicionalmente convergente, entonces todo re-
ordenamiento converge al mismo elemento.

Demostración. Llamemos x =
∑∞

n=1 xn. Dada σ ∈ SN, llamemos y =
∑∞

n=1 xσ(n). Para ver que
x = y tomamos x′ ∈ X ′ y como x′(x) es una serie incondicionalmente convergente en R

x′(x) =
∞∑

n=1

x′(xn) =
∞∑

n=1

x′(xσ(n)) = x′(y).

Luego, x = y.

Definición 1.4.3. Una serie
∑∞

n=1 xn se dice w-incondicionalmente convergente si
∑∞

n=1 x
′(xσ(n))

converge para toda permutación σ ∈ SN, para todo x′ ∈ X ′. Equivalentemente, si
∑∞

n=1 |x
′(xn)|

converge.

Observación 1.4.4. Una serie incondicionalmente convergente es w-incondicionalmente conver-
gente.

Proposición 1.4.5. Dada una serie
∑∞

n=1 xn en un espacio de Banach X, las siguientes afirma-
ciones son equivalentes:

(1) la serie
∑∞

n=1 xn converge incondicionalmente;

(2) toda subserie
∑∞

j=1 xnj
converge incondicionalmente;

(3) toda subserie
∑∞

j=1 xnj
converge;

(4) existe un operador compacto T : c0 −→ X tal que T (en) = xn ∀ n ∈ N;

(5) la serie
∑∞

n=1 anxn converge para todo (an)n ∈ ℓ∞.
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Demostración. (1) ⇒ (2) Supongamos que existe una subserie
∑

j xnj
que no converge o, equi-

valentemente, una subserie cuya sucesión de sumas parciales no es de Cauchy. Luego existe ε >

0, p1 < q1 < p2 < · · · ∈ N tal que
∥∥∥
∑qj

k=pj
xnk

∥∥∥ > ε. Si {y1, y2, · · · } es el conjunto de los

términos de (xn)n que no figuran en ningún bloque {xpj , · · · , xqj}, entonces para el reordenamiento
xp1 , · · · , xq1 , y1, xp2 , · · · , xq2 , y2, · · · la serie no converge, lo cual es una contradicción.

Probamos entonces que dicha subserie converge. Veamos que, además, converge incondicional-
mente:

∑
k xnσ(k)

converge ∀ σ ∈ SN. En efecto, σ induce una permutación en {n1, n2, · · · }, la cual
podemos “extender” a N:

σ̃(n) =

{
nσ(k) n = nk para algún k

n si no.

Entonces,
∑

n xσ̃(n) converge (por hipótesis) y converge incondicionalmente. Luego, por lo que
acabamos de probar, su subserie

∑
k xσ̃(nk) =

∑
k xnσ(k)

converge.

(2) ⇒ (3) es automática.

(3) ⇒ (1) Supongamos que existe σ ∈ SN tal que
∑

n xσ(n) no converge. Entonces existen ε > 0 y

bloques finitos ∆j = {pj , · · · , qj}, qk < pk+1, tal que
∥∥∥
∑

n∈∆j
xσ(n)

∥∥∥ > ε. Llamemos Ij = σ(∆j) (con

el orden natural). Eliminando algunos Ij si fuera necesario, podemos suponer máx Ij < mı́n Ij+1.
Aśı, la subserie de los términos k ∈

⋃
j Ij no converge.

(1) ⇒ (4) Definimos T : c00 −→ X,T ((an)n) =
∑∞

n=1 anxn. Veamos que T es continuo: sea
x′ ∈ X ′

∥∥∥x′
( ∞∑

n=1

anxn

)∥∥∥ ≤ ||a||∞

∞∑

n=1

|x′(xn)|.

Luego, por la Observación 1.4.4, el conjunto {x′(
∑∞

n=1 anxn) : ||a||c00 ≤ 1} es acotado, y por un
corolario del principio de acotación uniforme, {

∑∞
n=1 anxn : ||a||c00 ≤ 1} es acotado (en X). Esto

prueba que T es continuo y, por densidad, T se extiende de manera continua a c0. Veamos que el
operador T : c0 −→ X es compacto, probando que se aproxima por operadores de rango finito.

Espećıficamente, veamos que TN
||·||
−→ T , donde TN ((an)n) =

∑N
n=1 anxn. Para eso, dado ε > 0,

asumamos que vale lo siguiente:

∃ n0 / ∀ F ⊂ {n > n0} finito,
∥∥∥
∑

n∈F

xn

∥∥∥ < ε/2. (1.2)

Dado F ⊂ {n > n0} finito y x′ ∈ X ′, ||x′|| ≤ 1, llamamos F+ = {n ∈ F : x′(xn) > 0} y
F− = {n ∈ F : x′(xn) < 0}. Como también son subconjuntos finitos, por (1.2) tenemos

ε/2 >
∥∥∥
∑

n∈F+

xn

∥∥∥ ≥ x′
( ∑

n∈F+

xn

)

y

ε/2 >
∥∥∥
∑

n∈F−

xn

∥∥∥ ≥ −x′
( ∑

n∈F−

xn

)
.

De esta manera ∑

n∈F

|x′(xn)| =
∑

n∈F+

x′(xn) +
∑

n∈F−

−x′(xn) < ε,
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y entonces

|x′(TN (a)− TM (a))| =

∣∣∣∣∣
M∑

n=N+1

anx
′(xn)

∣∣∣∣∣ ≤ ||a||∞ ε para todo M > N ≥ n0, x
′ ∈ BX′ ,

y equivalentemente,
||TN − TM || ≤ ε para todo M > N ≥ n0.

Luego, TN converge y debe ser TN
||·||
−→ T .

Probemos entonces que efectivamente vale (1.2). Supongamos que no se cumple y sea ε > 0 tal

que para todo n ∈ N existe Fn ⊂ {n+ 1, n+ 2, · · · } finito tal que
∥∥∥
∑

j∈Fn
xj

∥∥∥ ≥ ε. Veamos que no

puede ocurrir que la serie converja incondicionalmente. Consideramos:

n1 = 1;A1 = Fn1 ;

n2 = máxFn1 ;B1 = {n1 + 1;n2} \A1;A2 = Fn2 ;

n3 = máxFn2 ;B2 = {n2 + 1;n3} \A2;A3 = Fn3 ;

...

Observemos que Ak∪Bk = {nk+1, · · · , nk+1}. Tomamos σ ∈ SN tal que σ({nk+1, · · · , nk+1}) =
{nk + 1, · · · , nk+1} y tal que máx(σ(Ak)) ≤ mı́n(σ(Bk)) para todo k. Es decir, σ(Ak) es un sub-
conjunto ordenado de {nk + 1, · · · , nk+1}. Entonces,

∥∥∥
∑

j∈σ(Ak)

xσ−1(j)

∥∥∥ =
∥∥∥
∑

j∈Ak

xj

∥∥∥ =
∥∥∥
∑

j∈Fnk

xj

∥∥∥ ≥ ε.

Por lo tanto, la serie
∑

j∈N xσ−1(j) no puede ser convergente.

(4) ⇒ (5) Sea (an)n ∈ ℓ∞, llamamos SN =
∑N

n=1 anen;TN = T (SN ) =
∑N

n=1 anxn. Como los
operadores compactos mandan sucesiones débil Cauchy en sucesiones de Cauchy (en norma), basta
ver que (SN )N es débil Cauchy. Tomemos entonces φ ∈ ℓ1 = c′0 (es decir

∑
|φ(en)| < ∞) y veamos

que la serie φ(SN ) converge absolutamente:

N∑

n=1

|anφ(en)| ≤ ||a||∞

N∑

n=1

|φ(en)| ≤ ||a||∞||φ||ℓ1 .

(5) ⇒ (2) Si queremos ver que la subserie
∑

k xnk
converge, consideramos la sucesión de ℓ∞

definida por aj = 1 si j ∈ {nk}k y aj = 0 en caso contrario. Entonces
∑

k xnk
=
∑

j ajxj , que
sabemos que converge.

1.4.2. Bases incondicionales

Definición 1.4.6. Una base (en)n de un espacio de Banach X se dice incondicional si (eσ(n))n
es una base para toda permutación σ ∈ SN. Equivalentemente, cada vez que la serie

∑∞
n=1 anen

converge, lo hace incondicionalmente.

Nota 2. La base de Fourier de Lp[0, 1], {e
2πint}n∈Z es una base (de Schauder) pero, en general, no

es base incondicional. De hecho, vale que es base incondicional si y sólo si p = 2 [W, página 62].
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Proposición 1.4.7. Dada una base (xn)n de un espacio de Banach X, son equivalentes:

(1) (xn)n es incondicional;

(2) existe una constante K≥ 1 tal que para todo N, si a1, · · · , aN , b1, · · · , bN son escalares tales
que |an| ≤ |bn| para todo n = 1, · · · , N , entonces se tiene:

∥∥∥∥∥
N∑

n=1

anxn

∥∥∥∥∥ ≤ K

∥∥∥∥∥
N∑

n=1

bnxn

∥∥∥∥∥ .

Demostración. (1) ⇒ (2) Para cada t = (tn)n ∈ Bℓ∞ , por la Proposición 1.4.5, podemos definir
Tt : X → X,Tt (

∑
cnxn) =

∑
tncnxn. Observemos que Tt es un operador continuo, por ser ĺımite

puntual de los operadores continuos

TN
t

(
∞∑

n=1

cnxn

)
:=

N∑

n=1

tncnxn

(TN
t es continuo por ser composición de operadores continuos: la proyección N-ésima, y un operador

entre espacios de dimensión finita):

∞∑

n=1

cnxn 7−→
N∑

n=1

cnxn 7−→
N∑

n=1

tncnxn.

Veamos ahora que las normas de Tt están uniformemente acotadas. Fijemos x =
∑∞

n=1 cnxn (con-
verge incondicionalmente) y consideremos S : c0 → X dado por S(en) = cnxn. como S es continuo
(más aun, es compacto), existe Kx tal que ||S(t)|| ≤ Kx para todo t ∈ c00, ||t|| ≤ 1. Es decir:

∥∥∥∥∥
N∑

n=1

tncnxn

∥∥∥∥∥ ≤ Kx para todo N, para todo ||t||∞ ≤ 1

y por lo tanto,

||Tt(x)|| =

∥∥∥∥∥
∞∑

n=1

tncnxn

∥∥∥∥∥ ≤ Kx para todo ||t||∞ ≤ 1.

Entonces, por el principio de acotación uniforme, existe una constante K tal que ||Tt|| ≤ K para
todo t ∈ Bℓ∞ , y luego: ∥∥∥∥∥

∞∑

n=1

tncnxn

∥∥∥∥∥ ≤ K

∥∥∥∥∥
∞∑

n=1

cnxn

∥∥∥∥∥ .

Observemos que tomando tn = 1 para todo n se concluye que K ≥ 1. Por último, veamos que
de esta desigualdad se deduce la que queremos probar. Como |an| ≤ |bn|, si llamamos tn = an

bn
si

bn 6= 0, tn = 0 si bn = 0, tenemos que |tn| ≤ 1. Tomando cn = bn, tenemos an = tnbn y entonces:
∥∥∥∥∥

∞∑

n=1

anxn

∥∥∥∥∥ ≤ K

∥∥∥∥∥
∞∑

n=1

bnxn

∥∥∥∥∥ .

(2) ⇒ (1) Dada
∑

anxn serie convergente, queremos ver que converge incondicionalmente. Equiva-
lentemente, queremos ver que toda subserie

∑
k ank

xnk
converge. Dado ε > 0, como la serie original

converge, existe N ∈ N tal que para todo m ≥ N,L ≥ 1 se tiene:
∥∥∥∥∥

m+L∑

n=m+1

anxn

∥∥∥∥∥ <
ε

K
.
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Veamos que para todo N ≤ nk < · · · < nk+l tenemos

∥∥∥∥∥∥

k+l∑

j=k+1

anj
xnj

∥∥∥∥∥∥
≤ K

∥∥∥∥∥∥

nk+l∑

j=nk+1

ajxj

∥∥∥∥∥∥
. (1.3)

Dado que nk+l = nk +L para algún L ≥ 1 el término de la derecha es a lo sumo ε, esto terminaŕıa
la demostración.
Observemos que el soporte de la suma del lado izquierdo es {nk+1, nk+2, · · · , nk+l} y el del lado
derecho: {nk+1, nk+2, · · · , nk+l} ⊃ {nk+1, nk+2, · · · , nk+l}. Entonces, podemos escribir (1.3) como

en la hipótesis:
∥∥∥
∑N

n=1 a
′
nxn

∥∥∥ ≤ K
∥∥∥
∑N

n=1 b
′
nxn

∥∥∥, con |a′n| ≤ |b′n|, tomando:

N = nk+l;
a′n = b′n = 0 ∀ n ≤ nk + 1;
a′n = 0 ∀ n ∈ {nk + 1, nk + 2, · · · , nk+l} \ {nk+1, nk+2, · · · , nk+l};
b′n = an ∀ nk+1 ≤ n ≤ nk+l;
a′n = an ∀ n ∈ {nk+1, nk+2, · · · , nk+l}; etc.

Definición 1.4.8. Si (en)n es una base incondicional de un espacio de Banach X, definimos la
constante de incondicionalidad de la base, χ(en), a la menor constante K para la cual se verifica la
condición (2) de la proposición. Diremos que (en)n es K-incondicional si K ≥ χ(en).

Observación 1.4.9. Revisando la demostración, vemos que, equivalentemente, (en)n esK-incondi-

cional si
∥∥∥
∑N

n=1 tncnen

∥∥∥ ≤ K
∥∥∥
∑N

n=1 cnen

∥∥∥ para toda sucesión |tn| ≤ 1. Más aun, basta considerar

sólamente el caso en que t1, · · · , tN es cualquier elección de signos.

Demostración. Tomemos |tn| ≤ 1. Existe x′ ∈ BX′ tal que

∥∥∥∥∥
N∑

n=1

tncnen

∥∥∥∥∥ = x′

(
N∑

n=1

tncnen

)
=

N∑

n=1

tncne
′(en)

=

N∑

n=1

tnεn εncne
′(en)︸ ︷︷ ︸

≥0

para εn = sg(cne
′(en))

≤ sup
1≤n≤N

|tnεn|
N∑

n=1

εncne
′(en) ≤ x′

(
N∑

n=1

εncnen

)

≤

∥∥∥∥∥
N∑

n=1

εncnen

∥∥∥∥∥ ≤ K

∥∥∥∥∥
N∑

n=1

cnen

∥∥∥∥∥ .

El concepto de K-incondicionalidad se puede extender a bases en bloques.

Definición 1.4.10. Fijada una base en un espacio de Banach X, dada (yn)n una base en bloque, di-
remos que es K-incondicional si dados escalares c1, · · · , cN y cualquier elección de signos ε1, · · · , εN

se tiene que
∥∥∥
∑N

n=1 εncnyn

∥∥∥ ≤ K
∥∥∥
∑N

n=1 cnyn

∥∥∥.
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Definición 1.4.11. Diremos que una sucesión y1 < · · · < yN es K-condicional si cumple que∥∥∥
∑N

n=1 yn

∥∥∥ > K
∥∥∥
∑N

n=1(−1)nyn

∥∥∥.

Observación 1.4.12. Tenemos entonces que una base en bloque en K-incondicional si y sólo si
genera un subespacio que no contiene sucesiones en bloque finitas K-condicionales.

1.5. Cotipo

Definición 1.5.1. Llamaremos funciones Rademacher a las funciones definidas en el intervalo [0; 1]
por rj(t) = sg(sen(2πjt)), j ∈ N0.

Observación 1.5.2. Valen las siguientes propiedades:

(1) |rj(t)| = 1 ∀ t ∈ [0; 1], ∀ j.

(2)
∫ 1
0 rj(t)rk(t)dt = δjk.

Definición 1.5.3. Para 2 ≤ q ≤ ∞, diremos que un espacio de Banach X tiene cotipo Rademacher
q (o cotipo q) si para algún 1 ≤ r < ∞ existe una constante C tal que para toda elección de
elementos de X, x1, · · · , xn, se tiene




n∑

j=1

||xj ||
q




1/q

≤ C



∫ 1

0

∥∥∥∥∥∥

n∑

j=1

rj(t)xj

∥∥∥∥∥∥

r

dt




1/r

, (1.4)

y, en el caso de q = ∞

máx
1≤j≤n

||xj || ≤ C



∫ 1

0

∥∥∥∥∥∥

n∑

j=1

rj(t)xj

∥∥∥∥∥∥

r

dt




1/r

= C

∥∥∥∥∥∥



∥∥∥∥∥∥

n∑

j=1

rj(t)xj

∥∥∥∥∥∥



∥∥∥∥∥∥
Lq [0;1]

.

Se puede probar que si X tiene cotipo q, entonces tiene cotipo q′ para q < q′, y que todo espacio
de Banach X tiene cotipo ∞. Serán interesante entonces los espacios con cotipo no trivial. Dentro
de los espacios de Banach clásicos, Lp(µ) tiene cotipo q = máx{2; p}.
Nosotros no necesitaremos ahondar en la definición y las propiedades básicas del cotipo; se puede
encontrar más información sobre el tema, como también las demostraciones de las propiedades
anteriores, en [AK, 137-142].



Caṕıtulo 2

Dos resultados clásicos

En este caṕıtulo presentaremos dos problemas clásicos del análisis funcional cuyas demostra-
ciones requieren de herramientas de la teoŕıa de Ramsey.

El primero de ellos, el Teorema ℓ1 de Rosenthal (1974), da una condición necesaria y suficiente
para que ℓ1 sea isomorfo a un subespacio de un espacio de Banach X. Espećıficamente, afirma
que un espacio de Banach X o bien contiene a ℓ1, o bien tiene la propiedad de que toda sucesión
acotada contiene una subsucesión débil Cauchy. Al comienzo del Caṕıtulo 1 definimos este concepto
y notamos que w-convergencia es más fuerte que la convergencia débil Cauchy; veamos esto en el
siguiente ejemplo.

Ejemplo 1. Consideremos en X = c0 la siguiente sucesión: xn = e1+ · · ·+en. Es claro que (xn)n es
una sucesión débil Cauchy; en efecto, para cada x′ = (an)n ∈ c′0 = ℓ1 se tiene que x′(xn) =

∑n
i=1 ai

converge (absolutamente). Sin embargo, si y = (1, 1, · · · ), tenemos que x̂n
w∗

−→ y en ℓ∞, es decir
x′(xn) → x′(y) para todo x′ ∈ X ′, pero y /∈ c0.

Sin embargo, existen espacios donde ambas nociones de convergencia son equivalentes; son
ejemplos de esto, como veremos en la siguiente proposición, los espacios donde toda sucesión w-
convergente sea convergente (en norma), esto es, los espacios con la propiedad de Schur. Sin ir más
lejos, ℓ1 tiene dicha propiedad [D, página 85].

Proposición 2.0.4. Si X es un espacio de Banach con la propiedad de Schur, entonces toda
sucesión débil Cauchy es débil convergente, más aún, es convergente (en norma).

Demostración. Supongamos (xn)n es una sucesión débil Cauchy. Dadas dos sucesiones estricta-
mente crecientes de números enteros (nk)k y (mk)k, por la hipótesis, se tiene que (xnk

− xmk
)k

converge débilmente a 0 pero entonces, como X tiene la propiedad de Schur, converge en norma.
Luego, la sucesión (xn)n es de Cauchy y por lo tanto converge.

Esto nos servirá para verificar la condición del teorema de Rosenthal en el caso X = ℓ1; si con-
sideramos la base canónica, es un ejemplo de una sucesión acotada que no tiene ninguna subsucesión
débil Cauchy; esto vale pues no tiene ninguna subsucesión débil convergente y ambas nociones de
convergencia son equivalentes.

El segundo problema que estudiaremos es un problema de separación que, en algún sentido
mejora el siguiente resultado clásico del análisis funcional.

Lema 2.0.5 (Riesz). Sea X un espacio normado de dimensión infinita, Y ( X un subespacio
cerrado propio y 0 < θ < 1, entonces existe xθ ∈ SX tal que ||xθ − y|| > θ para todo y ∈ Y .

18
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Observación 2.0.6. Si Y es un subespacio de dimensión finita, se puede tomar x1 ∈ SX tal que
||y−x1|| ≥ 1 para todo y ∈ Y . En efecto, si x0 ∈ X \Y , como dim(Y ) < ∞, podemos tomar y0 ∈ Y
tal que d = d(x0;F ) = ||x0−y0||. Si entonces consideramos x1 =

x0−y0
||x0−y0||

, para todo y ∈ Y tenemos

que ||x1 − y|| = ||x0−(y0+dy)||
d ≥ 1.

Esta observación nos sirve para probar la siguiente “mejora” del lema de Riesz.

Corolario 2.0.7. Si X es un espacio normado de dimensión infinita, entonces existe (xn)n ∈ SX

tal que ||xn − xm|| ≥ 1 para todo n 6= m.

Demostración. Tomamos x1 ∈ SX y consideramos el subespacio Y1 = 〈x1〉. Por la observación
anterior, existe x2 ∈ SX tal que ||x1 − x2|| ≥ 1. Sea ahora Y2 = 〈x1, x2〉, nuevamente, existe
x3 ∈ SX tal que ||x3 − xi|| ≥ 1 para i = 1, 2. Repitiendo este proceso, obtenemos la sucesión
buscada.

Más aun, se puede lograr un mayor estricto en el enunciado anterior. Es decir:

Proposición 2.0.8. Si X es un espacio normado de dimensión infinita, entonces existe (xn)n ∈ SX

tal que ||xn − xm|| > 1 para todo n 6= m.

Demostración. Procedemos por inducción. Sea x1 ∈ SX y x′1 ∈ SX′ tal que x′1(x1) = 1.
Supongamos elegidos k elementos linealmente independientes de SX′ , x′1, · · · , x

′
k y k elementos de

SX , x1, . . . , xk tales que ||xn − xm|| > 1 para todo 1 ≤ n,m ≤ k, con x′n(xn) = 1. Elegimos y ∈ X
tal que x′1(y), · · · , x

′
k(y) < 0 y x ∈

⋂k
i=1 ker(x

′
i) no nulo, y sea K tal que ||y|| < ||y+Kx||. Entonces,

si tomamos cualquier combinación lineal no trivial
∑k

i=1 aix
′
i tenemos que

∣∣∣∣∣
k∑

i=1

aix
′
i(y +Kx)

∣∣∣∣∣ =

∣∣∣∣∣
k∑

i=1

aix
′
i(y)

∣∣∣∣∣

≤

∥∥∥∥∥
k∑

i=1

aix
′
i

∥∥∥∥∥ ||y||

<

∥∥∥∥∥
k∑

i=1

aix
′
i

∥∥∥∥∥ ||y +Kx||.

Sea xk+1 = y+Kx
||y+Kx|| y x′k+1 ∈ SX′ tal que x′k+1(xk+1) = 1. Entonces, por lo anterior, debe ser

x′k+1 /∈ 〈x′1, · · · , x
′
k〉. Por último, sea 1 ≤ n ≤ k se tiene

||xk+1 − xn|| ≥ |x′n(xk+1 − xn)| = |x′n(xk+1)− x′n(xn)| = |1− x′n(xk+1)︸ ︷︷ ︸
<0

| > 1.

Vale la pena recalcar la simplicidad del argumento anterior, donde el único resultado previo que
se utiliza es el Teorema de Hahn Banach. Sin embargo, aunque para cada n y m valga la desigualdad
estricta, podŕıa ocurrir que ı́nfn 6=m ||xn − xm|| = 1.
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Observación 2.0.9. Consideremos el caso X = c0.
Tomemos xk =

∑k
i=1 ei − ek+1 y n > m, entonces

||xn − xm||c0 =

∥∥∥∥∥
n∑

i=n+2

ei − en+1 + 2em+1

∥∥∥∥∥
c0

= 2.

Es decir, en el ejemplo anterior probamos algo todav́ıa más fuerte que lo afirmado por la
proposición. Surge entonces la pregunta de si éste será un hecho general, es decir, si valdrá que para
cualquier espacio de Banach arbitrario podemos encontrar una sucesión normalizada tal que dos
términos cualesquiera disten en más de 1 “más algo”. Inspirados en el ejemplo y en la escritura de
la sucesión elegida, veremos primero que en el caso de los espacios que contengan copias de c0 esto
será posible. De hecho, con el Teorema de Elton-Odell demostraremos que esto ocurre en todo espa-
cio de Banach. Para el caso restante, aśı como la teoŕıa de Ramsey sirve para probar una condición
necesaria y suficiente para que un espacio contenga una copia de ℓ1, ahora nos servirá para probar
una condición suficiente para que un espacio contenga una copia de c0.

2.1. Teoŕıa de Ramsey

La llamada teoŕıa de Ramsey surge en 1930, cuando F. P. Ramsey publica su art́ıculo “On
a problem of formal logic”. Para enunciar el primer teorema de Ramsey, será necesario primero
introducir algunos conceptos. Dado un conjunto X, notaremos por Fk(X) al conjunto de los sub-
conjuntos de X de cardinal k. Una r-coloración de un conjunto A será una función A → {1, · · · , r};
si un conjunto A tiene una r-coloración y B ⊂ A, entonces diremos que B es monocromático si la
imagen de B es constante. Ahora śı, el teorema de Ramsey es el siguiente:

Teorema 2.1.1. Sean k y r números naturales. Entonces para cada r-coloración de Fk(N) existe
un subconjunto X de N tal que Fk(X) es monocromático.

Aśı, se suele decir que un teorema pertenece a la teoŕıa de Ramsey, o que es un teorema de
Ramsey, si es de la forma: dado un coloreo (finito) de algún objeto matemático, entonces existe
un subobjeto de cierto tipo que es monocromático. Si bien los teoremas de Ramsey que nosotros
estudiemos no estarán enunciados en términos de colores, trataremos de mostrar la analoǵıa.

El teorema de Ramsey que demostraremos en esta sección es el Teorema de Nash-Williams que,
de alguna manera, concierne a las coloraciones de P∞(N), el conjunto de los subconjuntos infinitos
de N. Motivados por el teorema original de Ramsey, uno esperaŕıa que, dada una r-coloración de
P∞(N), exista un subconjunto infinito de N, X, tal que P∞(X) sea monocromático. Sin embargo,
esto no ocurre. Una manera de verlo es considerar en P∞(N) la relación de equivalencia definida por:
A ∼ B si y sólo si su diferencia simétrica es finita. Luego, defimos una 2-coloración: A será rojo o
azul dependiendo de si la diferencia simétrica entre A y el representante de su clase de equivalencia
tiene una cantidad par o impar de elementos, respectivamente. Aśı, si A es un conjunto y A un
representante de su clase de equivalencia, tomando n ∈ X \A∪A, los conjuntos A y A∪{n} tendrán
distinto color.

Entonces, si bien no podremos generalizar el teorema anterior a subconjuntos infinitos, podremos
utilizar herramientas de la teoŕıa de Ramsey para demostrar el llamado Teorema de Nash-Williams.
Para eso, primero introduciremos otras definiciones y notaciones.

Antes de continuar, introduciremos algunas otras notaciones y definiciones.
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P(N) denotará al conjunto de partes de N.

F(N) = P(N) \ P∞(N).

Dada f : Fr(N) −→ R una función y M ∈ P∞(N), escribiremos

ĺım
A∈Fr(M)

f(A) = α

si ∀ ε > 0 ∃ N ∈ N tal que ∀ A ∈ Fr(M), A ⊂ [N,+∞) se tiene que |f(A)− α| < ε.

Veamos ahora el primer resultado de tipo Ramsey; si bien no lo usaremos posteriormente, es
un resultado que podemos probar simplemente usando las definiciones anteriores y cuyo enunciado
es muy similar a otro que śı necesitaremos, pero para el cual necesitamos más herramientas.

Teorema 2.1.2. (1) Supongamos f : Fr(N) −→ R una función acotada, entonces existe M ∈
P∞(N) para el cual existe ĺımA∈Fr(M) f(A).

(2) Si A ⊂ Fr(N) entonces existe M ∈ P∞(N) tal que Fr(M) ⊂ A o Fr(M) ∩ A = ∅.

Demostración. Veamos primero que (2) se deduce de (1). Definiendo f(A) = χA(A), por (1) existe
M ∈ P∞(N) para el cual existe ĺımA∈Fr(M) f(A). De la definición de ĺımite se deduce que hay dos
opciones:

(α = 0) f(A) = 0 ∀ A ∈ Fr(M). En este caso Fr(M) ∩ A = ∅.

(α = 1) f(A) = 1 ∀ A ∈ Fr(M). En este caso Fr(M) ⊂ A.

Probemos (1) por inducción en r. Veamos que para todo r vale:

dado M ′ ∈ P∞(N) y f : Fr(N) −→ R acotada, ∃ M ∈ P∞(M ′) tal que existe ĺım
A∈Fr(M)

f(A).

Para r = 1, tenemos f : F1(N) −→ R,M ′ ∈ P∞(N). El conjunto {f({n}) : n ∈ N} es acotado. En
particular, la sucesión (an)n∈M ′ definida por an = f({n}) es acotada, luego tiene una subsucesión
convergente, es decir, existe {nk}k ∈ P∞(M ′) creciente tal que (ank

)k es convergente. Sea α su
ĺımite, dado un ε > 0 existe k0 ∈ N tal que para todo k ≥ k0 |ank

−α| < ε. Veamos que sirve tomar
M = {{n1}, {n2}, · · · }. Sea ε > 0, tomamos N = nk0 ; entonces para todo {nk} ∈ F1(M), nk ≥ N
se tiene que k ≥ k0 y, por lo tanto, |f({nk})− α| < ε.

Observemos que este caso se puede reescribir (con cierto abuso de notación) de la siguiente
manera: dados M ′ ∈ P∞(N) y f : N −→ R una función acotada, entonces existe M ∈ P∞(M ′) tal
que existe ĺımn∈M f(n).

Sea ahora r ≥ 2 y supongamos la afirmación cierta para r − 1. Notaremos f({m1, · · · ,mk}) =
f(m1, · · · ,mk) siempre que mi 6= mj para todo i 6= j. Tomemos m1

1, · · · ,m
1
r−1 ∈ N todos distintos,

entonces, como f(m1
1, · · · ,m

1
r−1, ·) : N −→ R es una función acotada, por el caso r = 1 (para

M ′ = N) existe I1 ∈ P∞(N) tal que existe el ĺımite ĺımmr∈I1 f(m
1
1, · · · ,m

1
r−1,mr) = α1.

Tomemos m2
1, · · · ,m

2
r−1 ∈ N distintos, como la función f(m2

1, · · · ,m
2
r−1, ·) : N −→ R es acotada,

por el caso r = 1 existe I2 ∈ P∞(I1) tal que existe ĺımmr∈I2 f(m
2
1, · · · ,m

2
r−1,mr) = α2.

Razonando de la misma manera, dados m3
1, · · · ,m

3
r−1 ∈ N distintos, existe I3 ⊂ I2 subconjunto

infinito tal que ĺımmr∈I3 f(m
3
1, · · · ,m

3
r−1,mr) = α3.

Veamos ahora que existe M1 ∈ P∞(N) tal que para cada elección m1, · · · ,mr−1 ∈ N distintos
existe

ĺım
mr∈M1

f(m1, · · · ,mr) = ĺım
mr∈M1

f({m1, · · · ,mr}).
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Para entender cómo hay que tomar M1, construidos I1 ⊃ I2 ⊃ · · · , veamos el caso r = 2; buscamos
M1 tal que para todo n ∈ N exista el ĺımite ĺımm∈M1 f(n,m). Por lo anterior:

para n = 1 ∃ I1 ⊂ N tal que ∃ ĺım
m∈I1

f(1,m),

para n = 2 ∃ I2 ⊂ I1 tal que ∃ ĺım
m∈I2

f(2,m),

...
para n = k ∃ Ik ⊂ Ik−1 tal que ∃ ĺım

m∈Ik
f(k,m).

Tomemos M1 =
⋃∞

k=1{k-ésimo elemento de Ik} y veamos que sirve: dado n ∈ N, sabemos que exis-
te ĺımm∈In f(n,m) = αn luego, dado ε > 0, existe N ∈ N tal que para todo m ∈ In ∩ [N,∞) vale
|f(n,m) − αn| < ε. Sea N ′ = máx{N ;n-ésimo elemento de In} y m ∈ M1 ∩ [N ′; +∞), como m es
mayor que el n-ésimo elemento de In, entonces m debe ser el j-ésimo elemento de Ij para algún
j ≥ n, luego m ∈ Ij ⊂ In y, por lo tanto, m ∈ In ∩ [N,+∞) y |f(n,m)− αn| < ε.

Si r ≥ 2, tomamos una biyección σ : N −→ Nr−1 y escribamos σ(n) = (mn
1 , · · · ,m

n
r−1). Entonces

para n = 1 ∃ I1 ⊂ N tal que ∃ ĺım
mr∈I1

f(σ(1),mr),

para n = 2 ∃ I2 ⊂ I1 tal que ∃ ĺım
mr∈I2

f(σ(2),mr),

...
para n = k ∃ Ik ⊂ Ik−1 tal que ∃ ĺım

mr∈Ik
f(σ(k),mr).

Tomemos M1 =
⋃∞

k=1{k-ésimo elemento de Ik} y veamos que sirve: dado n ∈ N, sabemos que
existe ĺımmr∈In f(σ(n),mr) = αn luego, dado ε > 0, existeN ∈ N tal que para todomr ∈ In∩[N,∞)
vale |f(σ(n),mr) − αn| < ε. Sea N ′ = máx{N ;n-ésimo elemento de In} y mr ∈ M1 ∩ [N ′; +∞),
como mr es mayor que el n-ésimo elemento de In, entonces mr debe ser el j-ésimo elemento de
Ij para algún j ≥ n, luego mr ∈ Ij ⊂ In y, por lo tanto, mr ∈ In∩[N,+∞) y |f(σ(n),mr)−αn| < ε.

Tenemos entonces M1 ∈ P∞(N) tal que para cada elección m1, · · · ,mr−1 ∈ N distintos existe

ĺım
mr∈M1

f(m1, · · · ,mr) = ĺım
mr∈M1

f({m1, · · · ,mr}).

Observemos que dicho ĺımite no depende del orden de los mi (pues f es una función evaluada en
conjuntos). Llamemos

ĺım
mr∈M1

f(m1, · · · ,mr) = g(m1, · · · ,mr−1) = g({m1, · · · ,mr−1}).

Luego, g :Fr−1(N)−→R es una función acotada. Por hipótesis inductiva, existe M2 ∈ P∞(M1) tal
que, para algún α ∈ R se tiene

ĺım
B∈Fr−1(M2)

f(B) = α.

Además, dados ε > 0 y B ∈ Fr−1(M2) existe N = N(ε,B) (que podemos tomar mayor o igual
que máxB) tal que para todo n ≥ N,n ∈ M se tiene |f(B ∪{n})− g(B)| < ε, y esto sigue valiendo
para n ∈ M2. Notar que tales n no pertenecen a B.
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A continuación construiremos el subconjunto M a tomar. Elegimos r−1 elementos cualesquiera
de M2: m1 < m2 < · · · < mr−1. Supongamos elegidos n elementos, m1 < · · · < mn para n ≥ r − 1,
elegimos mn+1 > mn tal que

mn+1 > máx
B∈{m1,··· ,mn}

N(2−n, B).

Finalmente, tomamos M = {mj}j subconjunto de M2. Veamos que sirve, es decir, veamos que
existe ĺımA∈Fr(M) f(A).

Dado ε > 0, como ĺımB∈Fr−1(M2) g(B) = α, existe n ∈ N tal que para todo B ⊂ [mn,+∞),
B ∈ Fr−1(M) (⊂ Fr−1(M2)), se tiene |g(B)−α| < ε/2 y podemos suponer n suficientemente grande
para asegurar que 2−n < ε/2. Tomamos N = mn; dado A ∈ Fr(M), A ⊂ [N,+∞), llamamos mk

al máximo de A y B := A \ {mk} ∈ Fr−1(M). Entonces, como mk ∈ M2 y mk ≥ N(2−(k−1), B),
vale que |f(A)− g(B)| < 2k−1. Luego,

|f(A)− α| ≤ |f(A)− g(B)|+ |g(B)− α| < ε.

Es decir, ĺım
A∈Fr(M)

f(A) = α.

Nuestro objetivo en esta sección es generalizar el punto (2) del Teorema 2.1.2 en el siguiente
sentido: queremos ver qué condiciones hay que pedirle a un subconjunto V ⊂ P∞(N) para que que
exista M ∈ P∞(N) que verifique que P∞(M) ⊂ V o P∞(M) ∩ V = ∅. Siguiendo el esṕıritu de
los primeros teoremas de Ramsey, esto se puede interpretar como un problema de coloreo: si los
números naturales representan bolitas distinguibles que pintamos de azul si pertenecen a V y de
rojo sino, entonces lo que queremos ver es cuándo es posible elegir infinitas bolitas que sean o todas
rojas o todas azules.

Definición 2.1.3. Si un conjunto V ⊂ P∞(N) verifica la dicotomı́a anterior, diremos que tiene la
propiedad de Ramsey o que es un conjunto de Ramsey.

Sin embargo, resultará más fácil estudiar una propiedad más fuerte. Para eso, dados A ∈
F(N), E ∈ P∞(N), definimos el conjunto

P∞(A,E) = {B ∈ P∞(A ∪ E) : A ⊂ B}.

Observación 2.1.4. Valen la siguientes propiedades:

P∞(∅, E) = P∞(E).

Si A1 ⊂ A2 ⊂ E ⇒ P∞(A2, E) ⊂ P∞(A1, E).

Si E1 ⊂ E2 ⇒ P∞(A,E1) ⊂ P∞(A,E2).

Definición 2.1.5. Diremos que V ⊂ P∞(N) es completamente Ramsey si dados A ∈ F(N) y
E ∈ P∞(N) vale alguna de las siguientes afirmaciones:

(i) ∃ M ∈ P∞(E) / P∞(A,M) ⊂ V.

(ii) ∃ M ∈ P∞(E) / P∞(A,M) ∩ V = ∅.
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Observación 2.1.6. Para A = ∅ y E = N, esta dicotomı́a es justamente la propiedad de Ramsey.

Observación 2.1.7. Si V es completamente Ramsey, entonces también lo es Vc.

Esta condición que buscamos será una propiedad de carácter topológico; estudiemos entonces
dos posibles topoloǵıas en P∞(N).

Sea ∆ = {0, 1}N el conjunto de Cantor, podemos identificar

P(N) −→ ∆
A 7−→ χA.

Consideramos en ∆ la topoloǵıa inducida por la distancia:

d(δ1, δ2) =

∞∑

k=1

|δk1 − δk2 |

2k
.

Aśı, P∞(N) hereda una topoloǵıa métrica, que llamaremos topoloǵıa de Cantor y que notaremos
τC . Espećıficamente, la distancia en P∞(N) es

d(A1, A2) =
∞∑

k=1

|χA1(k)− χA2(k)|

2k
,

y una base para la topoloǵıa son los entornos B(A, ε) = {B ∈ P∞(N) : d(A,B) < ε}, variando
A ∈ P∞(N) y ε > 0.

También trabajaremos con otra topoloǵıa en P∞(N), la topoloǵıa de Ellentuck, que notaremos
τE .

Definición 2.1.8. Topoloǵıa de Ellentuck en P∞(N)
Diremos que U ⊂ P∞(N) es un abierto-Ellentuck si para todo E ∈ U existe A ⊂ E subconjunto
finito tal que P∞(A,E) ⊂ U .

Observación 2.1.9. Esto define una topoloǵıa.

∅,P∞(N) ∈ τE trivialmente.

U1,U2 ∈ τE ⇒ U1 ∩U2 ∈ τE .
Claramente U1 ∩U2 ⊂ U i ⊂ P∞(N). Por otro lado, dado E ∈ U1 ∩U2, como para cada
i = 1, 2, E ∈ U i, ∃ Ai ⊂ E tal que P∞(Ai, E) ⊂ U i. Sea A = A1∪A2 ⊂ E subconjunto finito,
luego P∞(A,E) ⊂ P∞(Ai, E) ⊂ U i, y entonces P∞(A,E) ⊂ U1 ∩U2.

Uα ∈ τE ⇒
⋃

α Uα ∈ τE
Como Uα ∈ P∞(N) para todo α, también la unión pertenece a P∞(N). Por otro lado, dado
E ∈

⋃
Uα, existe α0 tal que E ∈ Uα0 y, como Uα0 ∈ τE , existe Aα0 ⊂ E subconjunto finito

tal que P∞(Aα0 , E) ⊂ Uα0 ⊂
⋃

α Uα.

Observación 2.1.10. Los conjuntos P∞(A,E) son una base para la topoloǵıa, variando A ∈ F(N)
y E ∈ P∞(N) (no es necesario pedir A ⊂ E ya que siempre A ⊂ E′ = A ∪ E).
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Proposición 2.1.11. La topoloǵıa de Ellentuck es más fina que la topoloǵıa de Cantor, es decir,
los conjuntos abiertos para la topoloǵıa de Cantor son también abiertos Ellentuck.

Demostración. Basta ver que los entornos básicos pertenecen a τE : dado U = B(A, ε) y B ∈ U ,
buscamos un subconjunto finito F ⊂ B tal que P∞(F,B) ⊂ U . Como B ∈ U , tenemos que

∞∑

k=1

|χA(k)− χB(k)|

2k
= δ < ε.

Necesitamos F finito tal que para cada E ∈ P∞(F,B) valga

∞∑

k=1

|χA(k)− χE(k)|

2k
< ε.

Observemos que

∑ |χA(k)− χE(k)|

2k
=
∑

A\E

1

2k
+
∑

E\A

1

2k
≤
∑

A\E

1

2k
+
∑

B\A

1

2k
.

No vamos a poder lograr A \E = A \B en general, pero śı si intersecamos con un conjunto finito:

(A \ E) ∩ {1, · · · , k0} = (A \B) ∩ {1, · · · , k0}
⇔ (A ∩ {1, · · · , k0}) \ E = (A ∩ {1, · · · , k0}) \B
⇔ (B \ E) ∩A ∩ {1, · · · , k0} = (B ∩A ∩ {1, · · · , k0}) \ E = ∅
⇔ B ∩A ∩ {1, · · · , k0} ⊂ E.

Tomamos k0 ∈ N tal que
∑

k>k0
1
2k

< ε− δ y F = B ∩A ∩ {1, · · · , k0} y entonces tenemos:

∞∑

k=1

|χA(k)− χE(k)|

2k
=

k0∑

k=1

|χA(k)− χE(k)|

2k
+
∑

k>k0

|χA(k)− χE(k)|

2k

≤
k0∑

k=1

|χA(k)− χB(k)|

2k
+
∑

k>k0

1

2k
< δ + ε− δ = ε.

Enunciemos y demostremos ahora el Teorema de Nash-Williams (1965) que generaliza el teorema
al inicio de esta sección.

Teorema 2.1.12 (Nash-Williams). Todo abierto Ellentuck es completamente Ramsey.

Demostración. Primero, introduzcamos algunas definiciones. Si A ∈ F(N) y E ∈ P∞(N), diremos
que (A,E) es un par. Dado U ∈ τE , un par (A,E) se dice bueno (para U) si existe M ∈ P∞(E) tal
que P∞(A,M) ⊂ U . En caso contrario, diremos que es un par malo. Observemos lo siguiente:

Si (A,E) es un par malo y F ∈ P∞(E), entonces (A,F ) también es un par malo.

Si E,F ∈ P∞(N) son tales que la diferencia simétrica E∆F es finita, entonces (A,F ) y (A,E)
son o los dos buenos o los dos malos. Esto se deduce de lo siguiente: si M ∈ P∞(F ), entonces
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M︸︷︷︸
infinito

= M ∩ (F ∩ E)︸ ︷︷ ︸
=M∩E

∪ M ∩ (F \ E)︸ ︷︷ ︸
finito

.

Luego debe ser M ∩E infinito. Con el mismo razonamiento, si M ∈ P∞(E) entonces M ∩ F
es infinito. De esto sigue que si (A,F ) es bueno, existe M ∈ P∞(F ) tal que P∞(A,M) ⊂ U
y, entonces M ∩ E ∈ P∞(E) y P∞(A,M ∩ E) ⊂ P∞(A,M) ⊂ U , es decir, (A,E) es bueno.
Análogamente, si (A,E) es bueno, también lo es (A,F ).

Ahora śı, para demostrar el teorema, dados A ∈ F(N), E ∈ P∞(N) queremos ver que U cumple
alguna de las condiciones de la definición de completamente Ramsey. Es claro que si (A,E) es bueno
entonces se cumple (i). Probemos que si (A,E) es un par malo vale (ii). Lo haremos en tres pasos
y sólo usaremos la hipótesis (U ∈ τE) en el último.

Paso 1. Sean (Aj)
m
j=1 conjuntos finitos, E ∈ P∞(N) tal que (Aj , E) es malo para todo 1 ≤ j ≤ m,

entonces existe n ∈ E \
⋃m

j=1Aj y F ∈ P∞(E) tal que (Aj ∪ {n}, F ) es malo para todo j.
Supongamos que esto es falso. Entonces si tomamos n1 ∈ E \

⋃m
j=1 y E1 ∈ P∞(E) se tiene que

(Ap(1) ∪ {n1},M) es bueno para algún 1 ≤ p(1) ≤ m y, por lo tanto, existe M ∈ P∞(E1) tal que
P∞(Ap(1) ∪ {n1},M) ⊂ U . Cambiando E1 por M tenemos

n1 ∈ E \
⋃m

j=1Aj , E1 ∈ P∞(E), P∞(Ap(1) ∪ {n1}, E1) ⊂ U .

Como E1 ⊂ E, (Aj , E1) es malo para todo j. Si existiera n ∈ E1 \
⋃m

j=1Aj y F ∈ P∞(E1) tal que
(Aj ∪ {n}, F ) es malo para todo j, en particular seŕıa n ∈ E \

⋃m
j=1Aj y F ∈ P∞(E), lo cual es

una contradicción. Entonces tomamos n2 ∈ E1 \
⋃m

j=1Aj , E2 ∈ P∞(E1) tal que n2 > n1 y vale que
(Ap(2) ∪ {n2}, E2) es bueno para algún 1 ≤ p(2) ≤ m y, por lo tanto existe M ∈ P∞(E2) tal que
P∞(Ap(2) ∪ {n2},M) ⊂ U . Cambiando E2 por M tenemos

n2 ∈ E1 \
⋃m

j=1Aj , E2 ∈ P∞(E1), P∞(Ap(2) ∪ {n2}, E2) ⊂ U .

Inductivamente, construimos una sucesión creciente (nk)
∞
k=1 ⊂ E, una sucesión decreciente de

subconjuntos infinitos (Ek)
∞
k=0 con E0 = E, y una sucesión (p(k))∞k=1, 1 ≤ p(k) ≤ m tales que

nk ∈ Ek−1 \
⋃m

j=1Aj , P∞(Ap(k) ∪ {nk}, Ek) ⊂ U ∀ k ∈ N.

Observar que nj ∈ Ek ∀ j > k.

Existe 1≤p≤m tal que {k : p(k) = p} es infinito. Tomamos M={nk : p(k) = p} ∈ P∞(E),
veamos que P∞(Ap,M) ⊂ U (contradiciendo el hecho de que (Ap, E) sea malo). Dado G ∈
P∞(Ap,M), tomamos k el menor entero tal que nk ∈ G. Luego tenemos que Ap ⊂ G y G ∈
P∞(Ap ∪ {nk} ∪ Ek) y entonces G ∈ P∞(Ap ∪ {nk}, Ek) ⊂ U ; es decir, probamos que G ∈ U .

Paso 2. Si (A,E) es malo, entonces existe M ∈ P∞(E) tal que (B,M) es malo para todo
conjunto finito A ⊂ B ⊂ A ∪M .

Sea E0 = E, como (A,E0) es malo, por el paso 1, existe n1 ∈ E0 \ A y E1 ∈ P∞(E0) tal que
(A ∪ {n1}, E1) es malo. Pero como P∞(A ∪ {n1},M) ⊂ P∞(A,M) ∀ M ∈ P∞(E1), no puede ser
(A,E1) bueno. Entonces concluimos que (B,E1) es malo para todo subconjunto A ⊂ B ⊂ A∪{n1}.
Supongamos elegidos conjuntos infinitos E0 ⊃ E1 ⊃ · · · ⊃ Ek, enteros n1 < n2 < · · · < nk con
nj ∈ Ej−1 tales que (B,Ej) es malo para todo A ⊂ B ⊂ A∪ {n1, · · · , nj}. Entonces, por el paso 1,
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para {Aj}
m
j=1={B : A ⊂ B ⊂ A∪{n1, · · · , nk}} existe un entero nk+1 ∈ Ek, nk+1 > nk y un subcon-

junto infinito Ek+1 ⊂ Ek tal que (B ∪ {nk+1}, Ek+1) es malo para todo A ⊂ B ⊂ A∪ {n1, · · · , nk}.
Falta ver que M = {nk}k cumple lo pedido. Tomemos entonces A ⊂ B ⊂ A ∪ M un conjunto
finito y k el mayor número entero tal que nk ∈ B, luego B ⊂ A ∪ {n1, · · · , nk}, y sabemos que
(B,Ek) es malo; como M ⊂ Ek ∪ {n1, · · · , nk} (y observar que nj ∈ Ek ∀ j > k) se tiene que
Ek∆M ⊂ {n1, · · · , nk} y por lo tanto la diferencia simétrica es un conjunto finito y, por una ob-
servación anterior, concluimos que (B,M) es malo para U .

Paso 3. Probemos el Teorema de Nash-Williams.
Recordemos que U ∈ τE y supongamos que (A,E) es malo para U . Por el paso 2, existe

M ∈ P∞(E) tal que (B,M) es malo para todo conjunto finito A ⊂ B ⊂ A∪M . Queremos ver que
P∞(A,M) ∩ U = ∅. Supongamos que no: existe G ∈ P∞(A,M) ∩ U . Como U es abierto-Ellentuck,
existe B ⊂ G subconjunto finito tal que P∞(B,G) ⊂ U . Observemos que como G ∈ P∞(A,M)
tenemos que A ⊂ G, entonces A ∪ B ⊂ G y es finito; además, P∞(A ∪ B,G) ⊂ P∞(B,G) ⊂ U .
Luego, cambiando B por A ∪ B de ser necesario, podemos suponer que A ⊂ B y entonces (B,M)
es bueno, llegando aśı a un absurdo.

De este teorema y de la Observación 2.1.7 se deduce automáticamente el siguiente corolario.

Corolario 2.1.13. Los conjuntos cerrados-Ellentuck son completamente Ramsey. En particular,
los cerrados-Cantor son completamente Ramsey.

En general, este resultado va a ser suficiente; sin embargo en ocasiones usaremos un hecho más
fuerte, el siguiente teorema de Galvin y Prikry [GP]:

Teorema 2.1.14. Sea V un subconjunto de P∞(N) Boreliano para la topoloǵıa de Ellentuck, en-
tonces V es completamente Ramsey.

2.2. El Teorema ℓ1 de Rosenthal

Recordemos que la pregunta que queŕıamos resolver es cuándo, dada una sucesión acotada en
un espacio de Banach X, es posible extraer una subsucesión débil Cauchy. Si X es reflexivo, la
bola unitaria es débil compacta luego, por el teorema de Eberlein-Šmulian, secuencialmente débil
compacta; es decir, siempre se puede extraer un sucesón débil Cauchy. Pero esto no es cierto en
otros espacios, por ejemplo en ℓ1, como vimos al comienzo del caṕıtulo. Esto no es casual; Rosenthal
probó que esencialmente ℓ1 es el único contraejemplo.

Para la demostración usaremos el siguiente resultado de sucesiones básicas de [AK, Theorem
1.5.6]

Teorema 2.2.1. Sea S un conjunto acotado tal que 0 /∈ S
‖·‖

. Son equivalentes:

(1) S no tiene sucesiones básicas,

(2) S
w
es débil compacto y no contiene al 0.

Ahora śı, demostremos el Teorema ℓ1 de Rosenthal.

Teorema 2.2.2. Sea (xn)n∈N una sucesión seminormalizada en un espacio de Banach de dimensión
infinita X. Entonces ocurre alguna de las siguientes afirmaciones:
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(a) (xn)n tiene una sucesión débil Cauchy o

(b) (xn)n tiene una subsucesión básica equivalente a la base canónica de ℓ1.

Demostración. Supongamos que no vale lo afirmado en (a). Consideremos S = {xn}n, entonces
no contiene sucesiones débil convergentes. Luego, por Eberlein-Šmulian, S

w
no es débil com-

pacto y entonces, por el Teorema 2.2.1 concluimos que S debe tener una sucesión básica y en-
tonces podemos obtener una subsucesión básica de (xn)n. En efecto, sin pérdida de generali-
dad, podemos asumir que (xσ(n))n es sucesión básica para alguna permutación σ; basta tomar
n1 = σ(1), nk+1 = mı́n{σ(n) > nk}. Asumamos directamente que (xn)n es una sucesión básica,
y supongamos también ||xn|| ≤ 1. Ahora necesitamos encontrar una subsucesión equivalente a la
base canónica de ℓ1. Para esto es que usaremos las herramientas vistas de la teoŕıa de Ramsey.

Dado M ∈ P∞(N), para medir que tan lejos está (xn)n∈M de ser débil Cauchy, definimos

osc(M) = sup
||x′||≤1

ĺım
k→∞

sup
m,n > k
m,n ∈ M

|x′(xm)− x′(xn)|.

Observar que si F es un conjunto finito, entonces osc(M) = osc(M ∪ F ).

Afirmamos: existe M ∈ P∞(N) tal que ∀ M̃ ∈ P∞(M), osc(M̃) = osc(M) > 0.
Usaremos un razonamiento diagonal. Sean N = M0 ⊃ M1 ⊃ M2 ⊃ · · · tales que para todo
k ≥ 1 tenemos

osc(Mk) < ı́nf
M ′∈P∞(Mk−1)

osc(M ′) +
1

k
.

Definimos M =
⋃

k∈N{k-ésimo elemento de Mk}. Tenemos que M ⊂ M1; llamemos F1 = ∅.
Si F2 = {primer elemento de M1}, entonces M ⊂ M2 ∪ F2. En general, si consideramos los
conjuntos finitos Fj =

⋃j
k=1{k-ésimo elemento de Mk}, tenemos que M ⊂ Mk ∪ Fk.

Dado M̃ ∈ P∞(M), es claro que osc(M) ≥ osc(M̃). Por otro lado, de la observación se deduce
que osc(M) ≤ osc(Mk ∪ Fk) = osc(Mk) ∀ k ≥ 1. Observemos además que

ı́nf
M ′∈P∞(Mk−1)

osc(M ′) ≤ osc(M̃ ∩Mk−1) = osc(M̃).

(La última igualdad vale pues la diferencia es un conjunto finito). Aśı

osc(M) ≤ osc(Mk) ≤ osc(M̃) +
1

k
∀ k ≥ 1.

Entonces osc(M) ≤ osc(M̃) y luego osc(M) = osc(M̃). Notar que osc(M) > 0 pues (xn)n∈M
no es débil Cauchy.

Observemos que, dado M ∈ P∞(N)

osc(M)

2
≤ sup

||x′||≤1
ĺım
k→∞

sup
n > k
n ∈ M

|x′(xn)| = sup
||x′||≤1

ĺım sup
n∈M

|x′(xn)|.

Tomamos ||u′|| ≤ 1 tal que ĺım supn∈M |u′(xn)| ≥
osc(M)

3 y M ′ ∈ P∞(M) tal que (u′(xn))n∈M ′

converge. Si θ = ĺımn∈M ′ u′(xn), luego |θ| ≥ osc(M)
3 .
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Entonces por simplicidad, podemos suponer directamente que para todo M ∈ P∞(N) se tiene
que osc(M) = osc(N) > 4δ, para algún δ > 0 y que existen ||u′|| ≤ 1, |θ| ≥ 4δ

3 > δ tal que
ĺımn→∞ u′(xn) = θ.

Sea C = 1+ δ−1 + δ−2 y V ⊂ P∞(N) el conjunto formado por los M = {mj}
∞
j=1 (ordenados de

forma creciente) tal que existe x′ ∈ X ′ con ||x′|| ≤ C y x′(xmj
) = (−1)j ∀ j.

V es cerrado para la topoloǵıa de Cantor.

Tomamos (Mn)n ⊂ V tal que Mn
d
→ M y queremos ver que M ∈ V . Si escribimos Mn =

{mn
j }j ,M = {mj}j tenemos que existen funcionales x′n ∈ X ′, ||x′n|| ≤ C tal que x′m(xmn

j
) =

(−1)j ∀ j. Además vale
∞∑

k=1

|χMn(k)− χM (k)|

2k
−→
n

0.

Como {||x′|| ≤ C} es w∗-compacto, {x′n}n tiene un punto de acumulación, x′. Luego ||x′|| ≤ C
y x′(xmn

j
) = (−1)j .

Veamos que x′(xmj
) = (−1)j . Dado N ∈ N,

∑N
k=1

|χMn (k)−χM (k)|

2k
−→
n

0 luego, si ε > 0 es tal

que 2Nε < 1 existe nN tal que para todo n ≥ nN
∑N

k=1
|χMn (k)−χM (k)|

2k
< ε, en particular

|χMn(k)− χM (k)|

2k
< ε ∀ 1 ≤ k ≤ N,n ≥ nN

y entonces para todo 1 ≤ k ≤ N,n ≥ nN tenemos

|χMn(k)− χM (k)| < ε2k < ε2N < 1

χMn(k) = χM (k).

Por ende, para N = m1 y n ≥ nN tenemos χMn(m1) = χM (m1) = 1 y luego m1 ∈ Mn.
Supongamos mn

i ∈ Mn tal que mn
i+1 = m1, como mn

i < m1 = N , 1 = χMn(m
n
i ) = χM (mn

i )

⇒ mn
i ∈ M, pero m1 era el primer elemento de M,

⇒ no existe tal mn
i , es decir, m1 = mn

1 ,

⇒ x′(xm1) = x′(xmn
1
) = (−1)1.

Ahora para N = m2 existe nm2 que, sin pérdida de generalidad, podemos suponer nm2 > nm1 ,
tal que si n ≥ nN tengamos χMn(m2) = χM (m2) = 1 y entonces m2 ∈ Mn. Supongamos
mn

i ∈ Mn tal que mn
i+1 = m2, como mn

i < m2 = N , 1 = χMn(m
n
i ) = χM (mn

i )

⇒ mn
i ∈ M, ymn

i < m2

⇒ mn
i = m1

⇒ x′(xm1) = x′(xmn
1
) = (−1)1

⇒ debe ser i impar

⇒ x′(xm2) = x′(xmn
i+1

) = 1 = (−1)2.

Observar que, como n ≥ nm2 ≥ nm1 , tenemos que mn
i = m1 = mn

1 , es decir, i = 1 y entonces
m2 = mn

2 .
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Para N = m3 y n ≥ nN (y supongamos además nm3 > nm3), en particular tenemos
χMn(m3) = χM (m3) = 1 y entonces m3 ∈ Mn. Supongamos mn

i ∈ Mn tal que mn
i+1 = m3,

como mn
i < m3 = N , 1 = χMn(m

n
i ) = χM (mn

i )

⇒ mn
i ∈ M, ymn

i < m3

⇒ mn
i ∈ {m1,m2}

Pero como n ≥ nm2 , vimos que m1 = mn
1 ,m2 = mn

2 , luego el término inmediatamente anterior
a m3 = mn

i+1 es mn
i = m2.

⇒ (−1)2 = x′(xm2) = x′(xmn
i
) = (−1)i

⇒ debe ser i par

⇒ x′(xm3) = x′(xmn
i+1

) = −1 = (−1)3.

Es claro cómo, iterando este razonamiento, probamos que x′(xmj
) = (−1)j , probando que V

es cerrado para la topoloǵıa de Cantor y entonces también es cerrado para la topoloǵıa de
Ellentuck, luego, por el Corolario 2.1.13 es completametne Ramsey.

Dado M ∈ P∞(N), veamos que existe M ′ ∈ P∞(M) ∩ V .
Como osc(M) = 4δ, luego existe y′ ∈ BX′ tal que

ĺım
k→∞

sup
m,n > k
m,n ∈ M

|y′(xn)− y′(xm)| ≥ 2δ.

En particular , (y′(xm))m∈M no converge y existe M ′ = {mj}j ∈ P∞(M) y |α|, |β| ≤ 1 tal
que y′(xm2j ) → α, y′(xm2j−1) → β con |α− β| ≥ 2δ. Llamemos

v′ =
2

α− β
y′ −

α+ β

θ(α− β)
u′.

Se tiene que

||v′|| ≤
1

|α− β|

∣∣∣∣2 +
α+ β

θ

∣∣∣∣ ≤
1 + θ−1

δ
≤ δ−1 + δ−2.

Además,

v′(xm2j ) =
2

α− β

→α︷ ︸︸ ︷
y′(xm2j )−

α+ β

θ(α− β)

→θ︷ ︸︸ ︷
u′(xm2j ) −→

2α

α− β
−

α+ β

α− β
= 1.

v′(xm2j−1) =
2

α− β

→β︷ ︸︸ ︷
y′(xm2j−1)−

α+ β

θ(α− β)

→θ︷ ︸︸ ︷
u′(xm2j−1) −→

2β

α− β
−

α+ β

α− β
= −1.

Sea cj = v′(xmj
) − (−1)j , como tiende a cero, tomando una subsucesión si fuera necesario,

podemos suponer |cj | suficientemente chico. Como (xn)n es una sucesión básica acotada, si
x∗n ∈ X ′ son las funciones coordenadas (luego ||x∗n|| ≤

2K
||xn||

, donde K es la constante de la

base), existe una constante tal que ||x∗n|| ≤ B ∀ n. Supongamos entonces |cj | ≤ 2−jB−1 y
consideremos

x′ = v′ −
∞∑

j=1

cjx
∗
mj

.
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Tenemos

||x′|| ≤ δ−1 + δ−2 +
∞∑

j=1

|cj |B ≤ δ−1 + δ−2 + 1 = C.

Además

x′(xmi
) = v′(xmi

)−
∞∑

j=1

(
v′(xmi

)− (−1)j
)

=δij︷ ︸︸ ︷
x∗mj

(xmi
) = (−1)i.

Luego M ′ ∈ V.

Entonces no existe M tal que P∞(M)∩V = ∅. Luego, como V es completamente Ramsey, existe
M tal que P∞(M) ⊂ V.

SeaM = {mj}j (ordenado de forma creciente), veamos que la sucesión (m2j)j tiene la propiedad
de que para toda elección de signos (εj)j existe x′ ∈ X ′, ||x′|| ≤ C, x′(xm2j ) = εj . Buscamos (xnj

)j
tal que (xm2j )j ⊂ (xnj

)j ⊂ (xmj
)j (donde la inclusión es en el sentido de subsucesión) de manera

conveniente. Para una tal subsucesión, por definición de V, existe ||x′|| ≤ C tal que x′(xnj
) = (−1)j ;

necesitamos que si xm2i = xnj
valga εi = (−1)j .

⊲ Si ε1 = 1, tomamos n1 = m1, n2 = m2. Luego, xm2·1 = xn2 y ε1 = 1 = (−1)2.

⊲ Si ε1 = −1, tomamos n1 = m2. Luego, xm2·1 = xn1 y ε1 = −1 = (−1)1.

⊲ En este caso, si ε2 = 1, tomamos n2 = m4 = m2·2. Luego, xm2·2 = xn2 y ε2 = 1 = (−1)2.

⊲ Si en cambio ε2 = −1, tomamos n2 = m3, n3 = m4 = m2·2. Luego, xm2·2 = xn3 y
ε2 = −1 = (−1)3.

Siguiendo con este razonamiento, nos construimos la sucesión (xnj
)j apropiada.

Por úlitmo, veamos que la sucesión (xm2j )j es equivalente a la base canónica de ℓ1, probando
aśı el teorema.

Caso real:
Dada (aj)j ⊂ R, tomamos εj = sg(aj) y x′ ∈ X ′ que cumpla lo anterior, luego

∥∥∥∥∥∥

n∑

j=1

ajxm2j

∥∥∥∥∥∥
≥

x′

C




n∑

j=1

ajxm2j


 =

1

C




n∑

j=1

ajsg(aj)


 =

1

C

n∑

j=1

|aj |.

Luego (xm2j )j ≍ (en)n.

Caso Complejo:
Dada (aj)j ⊂ C, tomamos εj = sg(Re(aj)) y x′ ∈ X ′ que cumpla lo anterior, razonando como
antes tenemos: ∥∥∥∥∥∥

n∑

j=1

ajxm2j

∥∥∥∥∥∥
≥

1

C

n∑

j=1

|Re(aj)|.

De la misma manera, ∥∥∥∥∥∥

n∑

j=1

ajxm2j

∥∥∥∥∥∥
≥

1

C

n∑

j=1

|Im(aj)|.
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Entonces ∥∥∥∥∥∥

n∑

j=1

ajxm2j

∥∥∥∥∥∥
≥

2

C

n∑

j=1

|aj |.

Luego (xm2j )j ≍ (en)n.

Corolario 2.2.3. Un espacio de Banach X cumple que cada sucesión acotada tiene un sucesión
débil Cauchy si y sólo si X no contiene una copia de ℓ1.

2.3. El teorema de separación de Elton-Odell

Al comienzo del caṕıtulo, inspirados en el lema de Riesz y en un ejemplo en c0, nos planteamos
el problema de encontrar una sucesión normalizada cuyos términos disten “lo suficiente”. Formal-
mente, nuestro objetivo será probar el siguiente teorema de Elton-Odell.

Teorema 2.3.1 (Elton-Odell). Para cada espacio de Banach X de dimensión infinita, existen ε > 0
y una sucesión (xn)n ⊂ SX tales que ||xn − xm|| ≥ 1 + ε para todo n 6= m.

Vimos en el ejemplo que el teorema vale para c0 con ε = 1. Para generalizar este hecho, consi-
deremos primero el siguiente resultado.

Teorema 2.3.2 (R. C. James). Si un espacio de Banach X contiene un subespacio isomorfo a c0,
entonces para cada δ > 0 existe una sucesión (un)n ⊂ BX tal que

(1− δ) sup |ai| ≤ ||
∑

aiui|| ≤ sup |ai|

se satisface para cada (ai)i ∈ c0.

Demostración. Si (xn)n es una sucesión básica normalizada en X equivalente a la base canónica de
c0, existen constantes n y M tales que para toda sucesión (an)n ∈ c0 se tiene

m sup
n

|an| ≤

∥∥∥∥∥
∑

n

anxn

∥∥∥∥∥M sup
n

|an|.

Consideremos la siguiente sucesión de números reales:

Kn = sup{||
∑

i aixi|| : ||a||c0 = 1, a ∈ c00, a1 = · · · = an−1 = 0}.

(Kn)n es una sucesión decreciente y acotada,m ≤ Kn ≤ M , y por lo tanto tiene ĺımite: ĺımnKn = K
para algún m ≤ K ≤ M .

Fijemos 0 < θ < 1 < θ′ a determinar y tomemos p1 ∈ N tal que K < Kp1 < θ′K, y escalares

a1p1 , a
1
p1+1, · · · , a

1
p2−1 tales que ||

∑p2−1
i=p1

a1ixi|| ≥ K y ||(0, 0, · · · , a1p1 , · · · , a
1
p2−1, 0, 0, · · · )||c0 = 1.

Ahora consideramos Kp2 y tomamos escalares a2p2 , a
2
p2+1, · · · , a

2
p3−1 tales que ||

∑p3−1
i=p2

a2ixi|| ≥ K y

||(0, 0, · · · , a2p2 , · · · , a
2
p3−1, 0, 0, · · · )||c0 = 1. Iterando este proceso, para cada n obtenemos escalares

anpn , a
n
pn+1, · · · , a

n
pn+1−1 con ||(0, 0, · · · , anpn , · · · , a

n
pn+1−1, 0, 0, · · · )||c0 = 1 y tales que, si llamamos

yn =
∑pn+1−1

i=pn
ani xi, tenemos ||yn|| > K > θK.



CAPÍTULO 2. DOS RESULTADOS CLÁSICOS 33

Observemos que para cada sucesión b ∈ c0 de norma 1, existe j tal que |bj | = 1 e i tal que

|aji | = 1, entonces para cada N ≥ j y ciertos ai (alguno de módulo 1) se tiene que

∥∥∥∥∥
N∑

i=1

biyi

∥∥∥∥∥ =

∥∥∥∥∥∥

pN+1−1∑

i=p1

aixi

∥∥∥∥∥∥
≤ Kp1 .

Luego, para toda sucesión b ∈ c0 vale que
∥∥∥∥∥

∞∑

i=1

biyi

∥∥∥∥∥ ≤ Kp1 sup
i

|bi| < θ′K sup
i

|bi|.

Ahora estamos en condiciones de definir la sucesión buscada; consideremos un = yn
θ′K . Por lo ante-

rior, la sucesión cumple ||
∑

aiui|| ≤ sup |ai|. Falta verificar que cumple la otra desigualdad. Para
eso, sean a1, · · · , an escalares tales que supi |ai| = 1 y k tal que |ak| = 1, escribimos w = akyk +∑

i 6=k aiyi; entonces

2θK < 2||yk|| = ||2akyk|| = ||w + akyk −
∑

i 6=k

aiyi||

≤ ||w||+ ||akyk −
∑

i 6=k

aiyi||

≤ ||w||+ θ′K sup
i

|ai| = ||w||+ θ′K,

luego ||w|| > (2θ − θ′)K y

∥∥∥∥∥
n∑

i=1

aiui

∥∥∥∥∥ =
1

θ′K

∥∥∥∥∥
n∑

i=1

aiyi

∥∥∥∥∥ >
2θ − θ′

θ′
.

De esta manera, ∥∥∥∥∥
∑

i

aiui

∥∥∥∥∥ >
2θ − θ′

θ′
sup
i

|ai|.

Basta tomar entonces θ y θ′ tales que 2θ−θ′

θ′ > 1− δ.

De esta manera, podemos probar el Teorema de Elton-Odell para espacios que contengan copias
de c0. En efecto, fijemos δ > 0 a determinar, y (un)n ⊂ BX como en el teorema de James, y llamemos
yk =

∑k
i=1 ui − uk+1, de manera similar a lo hecho anteriormente en el ejemplo de c0. Observemos

que 1 − δ ≤ ||yk|| ≤ 1; ahora tomemos xk = yk
||yk||

y veamos que sirven. Para esto, basta observar

que si escribimos xn−xm =
∑

i aiui, las coordenadas de la sucesión (ai)i ∈ c00 cumplen que ai = 0,
|ai| = ||yn||

−1, |ai| = ||ym||−1 o |ai| = | ||yn||
−1 ± ||ym||−1|, y como en particular el coeficiente

am+1 = ||yn||
−1 + ||ym||−1 entonces sup |ai| ≥ 2 y tenemos que

||xn − xm|| =

∥∥∥∥∥
∑

i

aiui

∥∥∥∥∥ ≥ (1 + δ)2.

De esta manera, querŕıamos que 2(1−δ) = 1+ε, o equivalentemente, ε = 1−2δ; basta fijar entonces
δ tal que 1− 2δ > 0 y tomar dicho ε.
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Faltaŕıa entonces demostrar el Teorema de Elton-Odell en el caso de espacios que no contengan
copias de c0. Para ello, estudiaremos ciertos resultados con el objetivo de establecer un criterio
para determinar la presencia o no de c0. Es en las demostraciones de estos hechos que juega un rol
importante los teoremas de Ramsey estudiados al comienzo de este caṕıtulo.

Lema 2.3.3. Sea (xn)n una sucesión en un espacio de Banach X. Entonces para cada K ∈ N el
conjunto definido por

BK = {M = (mi)i ∈ P∞(N) : sup
n

||
n∑

i=1

xmi
|| ≤ K}

es cerrado para la topoloǵıa de Ellentuck.

Demostración. Equivalentemente, probaremos que el conjunto U = P∞(N) \ BK es abierto. Dado
E = {mi}i ∈ U , existe n ∈ N tal que ||

∑n
i=1 xmi

|| > K y el conjunto U = P∞({mi}
n
i=1;E) es un

entorno básico de E de la topoloǵıa de Ellentuck. Por otro lado, si L = {li}i ∈ U , tenemos que

||
n∑

i=1

xli || = ||
n∑

i=1

xmi
|| > K,

de donde sigue que E ∈ U ⊂ U .

Para el próximo lema, necesitamos introducir una nueva definición.

Definición 2.3.4. Una sucesión básica (xn)n de dice bimonótona si para cada n y cada sucesión
de escalares (an)n tal que la serie

∑
n anxn converge, se tiene que

máx

{∥∥∥∥∥
n∑

i=1

aixi

∥∥∥∥∥ ;
∥∥∥∥∥

∞∑

i=n+1

aixi

∥∥∥∥∥

}
≤

∥∥∥∥∥
∞∑

i=1

aixi

∥∥∥∥∥ .

Recordemos que, dada una sucesión básica, se pod́ıa definir una norma en [xn] equivalente a la
orginal para la cual la sucesión era monótona. De manera análoga, si definimos

∥∥∥∥∥

∣∣∣∣∣
∞∑

i=1

aixi

∣∣∣∣∣

∥∥∥∥∥ = sup
n

{∥∥∥∥∥
n∑

i=1

aixi

∥∥∥∥∥ ;
∥∥∥∥∥

∞∑

i=n+1

aixi

∥∥∥∥∥

}
,

obtenemos una norma equivalente y (xn)n resulta bimonótona; también ahora, si ||xn|| = 1 se tiene
que |||xn||| = 1.

Lema 2.3.5. Sea (xn)n una sucesión básica bimonótona en un espacio de Banach X y para cada
K > 0 definimos BK como antes. Supongamos que M ∈ P∞(N) satisface que

P∞(M) ⊂
⋃

K>0

BK .

Entonces existe M ′ ∈ P∞(M) y KM > 0 tal que

P∞(M ′) ⊂ BKM
.
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Demostración. Por el Lema 2.3.3 el conjunto B1 es cerrado y, por lo tanto, completamente Ramsey
por el Corolario 2.1.13. Luego existe M1 ∈ P∞(M) para el cual

P∞(M1) ⊂ B1 o P∞(M1) ∩ B1 = ∅.

Si ocurriera lo primero, quedaŕıa probado el lema. Si en cambio estamos en la segunda situación,
repetimos el razonamiento anterior para B2: existe M2 ∈ P∞(M1) para el cual

P∞(M2) ⊂ B2 o P∞(M2) ∩ B2 = ∅.

Iteranando este procedimiento, o encontramos Mk0 ∈ P∞(Mk0−1) para el cual P∞(Mk0) ⊂ Bk0

(terminando aśı la demostración), u obtenemos una sucesión (Mn)n ⊂ P∞(N) que satisface

Mn+1 ∈ P∞(Mn) y P∞(Mn) ∩ Bn = ∅.

Veamos que esto último no puede suceder. Tomamos ahora la subsucesión de (xn)n determinada
por una elección de sub́ındices (kn)n ∈ P∞(N) que verifique que (kn)n≥j ∈ P∞(Mj) para cada j;
luego usando para cada j la definición de Bj y la bimonotońıa de (xki)i≥j tenemos que

j < sup
n

∥∥∥∥∥∥

n∑

i=j

xki

∥∥∥∥∥∥
≤ sup

n

∥∥∥∥∥
n∑

i=1

xki

∥∥∥∥∥ .

Se sigue que

sup
n

∥∥∥∥∥
n∑

i=1

xki

∥∥∥∥∥ = ∞,

contradiciendo el hecho de que (kn)n ∈ P∞(M) ⊂
⋃

K BK .

El siguiente lema es el paso previo al criterio que buscamos para determinar la presencia o no
de c0 en un espacio de Banach.

Lema 2.3.6 (W. B. Johnson). Sea (xn)n una sucesión seminormalizada (es decir, acotada superior
e inferiormente) en un espacio de Banach X, tal que cada subsucesión admite una subsucesión que
verifica que supn ||

∑n
i=1 yi|| < ∞. Entonces (xn)n admite una subsucesión equivalente a la base

canónica de c0.

Demostración. Como vamos a apelar al principio de selección de Bessaga-Pelczynski, será conve-
niente ver primero que la sucesión (xn)n debe ser débil nula. Si esto no fuera aśı, existiŕıa x′ ∈ SX∗

y ε > 0 tal que |x′(xn)| > ε para infinitos n. En el caso que X sea un espacio de Banach sobre R,
esto quiere decir x′(xn) > ε o −x′(xn) > ε para infinitos n, M = (mi)i ∈ P∞(N); sin pérdida de
generalidad podemos asumir que x′(xmi

) > ε para cada i. Por hipótesis, para algún (ki)i ∈ P∞(M)
podemos concluir que

nε ≤ x′

(
n∑

i=1

xki

)
≤

∥∥∥∥∥
n∑

i=1

xki

∥∥∥∥∥ ≤ sup
n

∥∥∥∥∥
n∑

i=1

xki

∥∥∥∥∥ < ∞

para todo n, lo cual constituye una contradicción. Si, en cambio, X es un espacio de Banach
complejo, entonces |Re(x′(xn))| o |Im(x′(xn))| sea mayor que ε/2 para todo infinitos n; supongamos
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lo primero, entonces, cambiando x′ por −x′ si fuera necesario, como antes podemos suponer que
Re(x′(xmi

)) > ε/2 para algún M = (mi)i ∈ P∞(N) obteniendo una contradicción análoga:

nε ≤ Re x′

(
n∑

i=1

xki

)
≤

∥∥∥∥∥
n∑

i=1

xki

∥∥∥∥∥ ≤ sup
n

∥∥∥∥∥
n∑

i=1

xki

∥∥∥∥∥ < ∞.

Por el Teorema 1.2.5, podemos asumir que (xn)n es una sucesión básica seminormalizada, bi-
monótona y débil nula, ya que la propiedad que tienen las subsucesiones en la hipótesis del teorema
y la existencia de una subsucesión equivalente a la base canónica de c0 se preservan si se cambia la
norma por una equivalente.

Por el Lema 2.3.3,
⋃

K BK es un boreliano de P∞(N) para la topoloǵıa de Ellentuck, por ser unión
numerable de cerrados, entonces, por el Teorema 2.1.14 se sigue que es completamente Ramsey y
por lo tanto existe M ∈ P∞(N) tal que

P∞(M) ⊂
⋃

K

BK o P∞(M) ∩
⋃

K

BK = ∅.

Sin embargo podemos descartar la segunda situación; si existiera tal M ∈ P∞(N), por hipótesis
tendŕıamos M ′ ∈ P∞(M),M ′ = {mi}i tal que ||

∑
i xmi

|| < ∞, es decir, M ′ ∈ BK para algún K.
De esta manera, existe M ∈ P∞(N) tal que

P∞(M) ⊂
⋃

K

BK .

Estamos ahora en condiciones de usar el Lema 2.3.5: existe M ′ = {m′
i} ∈ P∞(M) y K ′ > 0 tales

que
P∞(M ′) ⊂ BK′ .

Es decir, toda subsucesión (zn)n de (xm′

n
)n verifica que

sup
n

∥∥∥∥∥
n∑

k=1

zk

∥∥∥∥∥ ≤ K ′,

de donde se sigue que para cada F ∈ F(N) y para cada elección de signos (εn)n∈F tenemos que
∥∥∥∥∥
∑

k∈F

εkxm′

k

∥∥∥∥∥ ≤ 2K ′,

y por lo tanto probamos que (xm′

n
)n satisface el criterio de Bessaga-Pelczynski de equivalencia a la

base canónica de c0 (Teorema 1.3.6).

Finalmente, el resultado que necesitamos para asegurar la presencia de c0 es el siguiente.

Lema 2.3.7. Sea (xn)n una sucesión básica normalizada en un espacio de Banach X. Supongamos
que cada subsucesión de (xn)n contiene una subsucesión (yn)n tal que

sup
n

∥∥∥∥∥
n∑

i=1

(−1)iyi

∥∥∥∥∥ < ∞.

Entonces el espacio [xn] contiene una copia de c0.
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La demostración será muy similar a lo hecho en el lema anterior, pero necesitaremos versiones
alternativas de los Lemas 2.3.3 y 2.3.5, que se pueden demostrar de manera análoga.

Lema 2.3.3’ Sea (xn)n una sucesión en un espacio de Banach X. Entonces para cada K ∈ N

el conjunto definido por

AK = {M = (mi)i ∈ P∞(N) : sup
n

||
n∑

i=1

(−1)ixmi
|| ≤ K}

es cerrado para la topoloǵıa de Ellentuck.

Lema 2.3.5’ Sea (xn)n una sucesión básia bimonótona en un espacio de Banach X y para cada
K > 0 definimos AK como antes. Supongamos que M ∈ P∞(N) satisface que

P∞(M) ⊂
⋃

K>0

AK .

Entonces existe M ′ ∈ P∞(M) y KM > 0 tal que

P∞(M ′) ⊂ AKM
.

Ahora śı, demostremos el Lema 2.3.7.

Demostración. Podemos suponer que (xn)n es una sucesión básica bimonótona normalizada, ya
que si no, renormalizamos [xn].
Por el Lema 2.3.3’,

⋃
K AK es un conjunto Fσ de P∞(N) entonces, por el Teorema 2.1.14 se sigue

que es completamente Ramsey y por lo tanto existe M ∈ P∞(N) tal que

P∞(M) ⊂
⋃

K

AK o P∞(M) ∩
⋃

K

AK = ∅.

Sin embargo podemos descartar la segunda situación; si existiera tal M ∈ P∞(N), por hipótesis
tendŕıamos M ′ ∈ P∞(M),M ′ = {mi}i tal que ||

∑
i(−1)ixmi

|| < ∞, es decir, M ′ ∈ AK para algún
K. De esta manera, existe M ∈ P∞(N) tal que

P∞(M) ⊂
⋃

K

AK .

Ahora por el Lema 2.3.5’, sin pérdida de generalidad podemos suponer que existe K ′ > 0 tal que

P∞(M) ⊂ AK′ .

Es decir, si M = (mn)n, toda subsucesión (zn)n de (xmn)n verifica que

sup
n

∥∥∥∥∥
n∑

k=1

(−1)izk

∥∥∥∥∥ ≤ K ′.

Llamamos ahora yn = xm2n − xm2n+1 , entonces para cada L = (li)i ∈ P∞(M) tenemos que

sup
n

∥∥∥∥∥
n∑

k=1

ylk

∥∥∥∥∥ ≤ ∞,

es decir, (yn)n satisface las hipótesis del Lema 2.3.6 y por lo tanto tiene una subsucesión equivalente
a la base canónica de c0, de donde sigue que [xn] contiene una copia de c0.
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Ahora estamos en condiciones de probar el Teorema de Elton-Odell.

Demostración. Reproduciendo lo hecho en la demostración del Teorema 1.2.4 obtenemos una suce-
sión básica normalizada (xn)n que satisface la siguiente condición para cada n ≤ m:

∥∥∥∥∥
n∑

i=1

aixi

∥∥∥∥∥ ≤ (1 + 20−n)

∥∥∥∥∥
m∑

i=1

aixi

∥∥∥∥∥ .

Podemos suponer que (xn)n es una base de X. Recordemos que si X contiene una copia de c0, con
el Teorema de James y la observación que hicimos a continuación, terminaŕıamos la demostración.
Supongamos ahora el caso en que X no contiene copias de c0; entonces por el Lema 2.3.7 debe
existir (pasando a subsucesiones si fuera necesario) una sucesión creciente de números naturales
(mn)n tal que

sup
n

∥∥∥∥∥
n∑

i=1

(−1)ixmi

∥∥∥∥∥ = ∞. (2.1)

Tomemos α un punto ĺımite de la sucesión (||xn − xn+1 + xn+2||
−1)n, 1 ≤ α−1 ≤ 3.

Antes de seguir, fijemos cierta notación. Supongamos δ > 0. Vamos a decir que un vector b ∈ X es
un δ-bloque de (xn)n, o simplemente, δ-bloque, si ||b|| = 1 y b es de la forma

b = β

l∑

i=1

(−1)i+1xmi
,

donde m1 < m2 < · · · < ml, |α/β − 1| < δ y l ≥ 3 es un número impar. Copiando la notación de
sucesiones en bloque, vamos a escribir n < b1 < b2 < · · · < bk (donde bi son δ-bloques) si existen
números naturales n < p1 < p2 < · · · < pk+1 tales que

bi =

pi+1∑

j=pi+1

ajxj ,

Observemos que nuestra elección de α asegura, dado δ > 0 y n ∈ N, la existencia de un δ-bloque
b > n. En efecto, existe m ≥ n + 2 tal que | ||xm − xm+1 + xm+2||

−1 − α| < δ. Entonces, si
b = βxm − xm+1 + xm+2 tomamos β = ||xm − xm+1 + xm+2||

−1 y entonces como 1 ≤ β ≤ 3

|α/β − 1| =
|α− β|

β
<

δ

β
< δ.

Ahora, consideremos la siguiente situación: para cada δ > 0 y para cada n ∈ N, existen δ-
bloques n < b1 < · · · < bk tales que si b es un δ-bloque con b > bk, entonces existe 1 ≤ i ≤ k tal
que ||b− bi|| ≤ 1 + δ.

Vamos a querer ver que esto no ocurre, pues, en tal caso, existe ε > 0 y n0 ∈ N tal que para
toda elección de ε-bloques n0 < b1 < · · · < bk existe otro bloque b > bk tal que ||b−bi|| > 1+ε para
todo i, y ahora nos podemos constuir la sucesión cuya existencia afirma el teorema de Elton-Odell:
(yn)n ⊂ SX con ||yn − ym|| > 1 + ε siempre que n 6= m. Lo hacemos a partir de los siguientes
ε-bloques:

y1 = xn0+1,
y2 > y1 tal que ||y2 − y1|| > 1 + ε,
y3 > y2 tal que ||y3 − yi|| > 1 + ε para i < 3,
y4 > y3 tal que ||y4 − yi|| > 1 + ε para i < 4, etc.
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Entonces, con el objetivo de llegar a una contradicción, suponemos que śı se verifica lo anterior,
y lo aplicamos para δj = 20−j , j ∈ N0, y elegimos δj-bloques, b

j
i , 1 ≤ i ≤ kj tales que

b11 < b12 < · · · < b1k1 < b21 < b22 < · · · b2k2 < · · ·

y tales que si b es un δj-bloque, b > bjkj , entonces existe 1 ≤ i ≤ kj con ||b− bji || ≤ 1 + δj .

Observemos que si logramos elegir bjmj ∈ {bj1 < . . . < bjkh}, b
j
mj = βj

mj

∑
k(−1)k+1xnk

tales que

si llamamos djmj =
α

βj
mj

bjmj tengamos

sup
n

∥∥∥∥∥
n∑

k=1

(−1)jdjmj

∥∥∥∥∥ < ∞, (2.2)

entonces tendŕıamos un absurdo, ya que, por la imparidad de la “longitud” de los djmj , obtendŕıamos
un desarrollo como el de (2.1) (es decir, con los signos alternados), pero acotado, concluyendo aśı la
demostración.

Esto lo veremos en dos pasos: primero para n fijo, y luego, usando un procedimiento diagonal.

I. Tomamos 1 ≤ i2 ≤ k2 cualquiera. En particular, como δ2 < δ1, bi2 es un δ1 bloque y
verifica que b2i2 < b1k1 luego, por nuestra suposición, existe 1 ≤ i1 ≤ k1 tal que ||b

2
i2
−b1i1 || ≤

1 + δ1. Definiendo d1i1 , d
2
i2

como antes, tenemos que

||(d1i1 − d2i−2)− (b2i2 − b2i2)|| ≤ ||d1i1 − b1i1 ||+ ||d2i2 − b2i2 ||

= ||b1i1 || |
α

β1
i1

− 1|+ ||b2i2 || |
α

β2
i2

− 1| < δ1 + δ2 < 2δ1.

Notaremos y al vector que se obtiene a partir de y, restándole el último término no nulo
de xk; en general, el vector y(q) se obtiene truncándole a y los últimos q términos xk.
Entonces

||d1i1 − d2i2 || ≤ (1 + 20−1)||d1i1 − d2i2 || < (1 + 20−1)(1 + 3δ1) < 1 + δ0 = 2.

Luego, ||d1i1 || ≤ 2(1 + 20−1) < 3.

Copiemos el razonamiento anterior, pero ahora partiendo de los δ4-bloques, y eligiendo
algún 1 ≤ i4 ≤ k4. En particular b4i4 > b3k3 y es un δ3-bloque, entonces existe 1 ≤ i3 ≤ k3
tal que ||b3i3 − b4i4 || ≤ 1 + δ3.

Como antes

||(d3i3 − d4i−4)− (b3i3 − b4i4)|| ≤ ||d3i3 − b3i3 ||+ ||d4i4 − b4i4 ||

= ||b3i3 || |
α

β3
i3

− 1|+ ||b4i4 || |
α

β4
i4

− 1| < δ3 + δ4 < 2δ3,

y entonces ||d3i3 − d4i4 || < 1 + 3δ3 y

||d3i3 − d4i4 || < (1 + 20−3)||d3i3 − d4i4 || < (1 + 20−3)(1 + 3δ3) < 1 + δ2.

Además, siendo | ||d3i3 || − 1| < δ3 tenemos

||d3i3 − d4i4 || ≥
||d3i3 ||

1 + 20−3
≥

1− δ3
1 + 20−3

≥ 1− δ2.
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Si llamamos z1 = d3i3 − d4i4 , entonces
z1

||z1||
es un δ2-bloque. En efecto, podemos escribir

z1 = α
∑

k(−1)k+1xnk
, entonces z1

||z1||
= β

∑
k(−1)k+1xnk

, donde β = α
||z1||

, y α
β − 1 =

||z1|| − 1 está acotado por (1− δ2)− 1 = −δ2 y (1 + δ2)− 1 = δ2.

Entonces, como z1 > bk2 , existe 1 ≤ i2 ≤ k2 tal que ||b2i2 −
z1

||z1||
|| ≤ 1 + δ2 y

∥∥∥∥∥∥

4∑

j=2

(−1)jdjij − (b2i2 −
z1

||z1||
)

∥∥∥∥∥∥
≤ ||d2i2 − b2i2 ||+

∥∥∥∥d3i3 − d4i4 −
z1

||z1||

∥∥∥∥

= δ2 +

∥∥∥∥z1 −
z1

||z1||

∥∥∥∥ = δ2 + | ||z1|| − 1|| < 2δ2.

Entonces
∥∥∥
∑4

j=2(−1)jdjij

∥∥∥ ≤ 2δ2 + 1 + δ2 = 1 + 3δ2 y

∥∥∥∥∥∥∥

4∑

j=2

(−1)jdjij

(2)
∥∥∥∥∥∥∥
≤ (1 + 20−2)

∥∥∥∥∥∥

4∑

j=2

(−1)jdjij

∥∥∥∥∥∥
≤ (1 + 20−2)(1 + 3δ2) < 1 + δ1.

Ahora llamamos z2 =
∑4

j=2(−1)jdjij

(2)
. Como 1 − δ1 ≤ ||z2|| ≤ 1 + δ1,

z2
||z2||

es un δ1-

bloque “mayor” que b1k1 , entonces existe 1 ≤ i1 ≤ k1 tal que ||b1i1 − z2
||z2||

|| ≤ 1 + δ1 y
tenemos que

∥∥∥∥∥∥∥

4∑

j=1

(−1)j+1djij

(2)

− (b1i1 −
z2

||z2||
)

∥∥∥∥∥∥∥
≤ ||d1i1 − b1i1 ||+

∥∥∥∥∥∥

4∑

j=2

(−1)jdjij −
z2

||z2||

∥∥∥∥∥∥

= δ1 +

∥∥∥∥z2 −
z2

||z2||

∥∥∥∥ = δ1 + | ||z2|| − 1|| < 2δ1.

Luego,

∥∥∥∥∥∥∥

4∑

j=1

(−1)j+1djij

(3)
∥∥∥∥∥∥∥
≤ (1 + 20−1)

∥∥∥∥∥∥∥

4∑

j=1

(−1)j+1djij

(2)
∥∥∥∥∥∥∥
≤ (1 + 20−1)(1 + 3δ1) < 1 + δ0 = 2.

De esta manera,
∥∥∥
∑2

j=1(−1)j+1djij

∥∥∥ ≤ (1 + 20−2)2 < 3.

En general, partimos de los δ2n-bloques, y repitiendo el razonamiento anterior, obtenemos

una n-tupla (d1i1 , · · · , d
n
in
) tal que

∥∥∥
∑n

j=1(−1)j+1djij

∥∥∥ ≤ 3.

II. Notemos que en lo que hicimos en el paso anterior, la n-tupla que obtuvimos depende de
n; para recalcar esto en nuestra notación, notamos a dicha tupla de la siguiente manera:
(d1i1(n), · · · , d

n
in(n)

), con 1 ≤ ij(n) ≤ kj para todo j y todo n y tal que

∥∥∥∥∥∥

n∑

j=1

(−1)j+1djij(n)

∥∥∥∥∥∥
≤ 3.
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Como 1 ≤ i1(n) ≤ k1 para todo n, existe 1 ≤ i1 ≤ k1 tal que i1(n) = i1 para infinitos valores
de n; llamamos N1 = {n ∈ N : i1(n) = i1} ⊂ P∞(N).

Como 1 ≤ i2(n) ≤ k2 para todo n ∈ N1, existe 1 ≤ i2 ≤ k2 tal que i2(n) = i2 para infinitos
valores de n ∈ N1; llamamos N2 = {n ∈ N1 : i2(n) = i2} ⊂ P∞(N1).

De esta manera, nos construimos una sucesión de números enteros (ij)j y una sucesión de-
creciente de conjuntos encajados (Nj)j ⊂ P∞(N), tal que para todo k ∈ N, j ≤ k vale que
ij(n) = ij para todo n ∈ Nk.
Llamemos nk al k-ésimo elemento de Nk y veamos que la sucesión (dkik(nk)

)k cumple (2.2),
llegando aśı al la contradicción que necesitamos para concluir la demostración. Como siempre
que j ≤ k vale que nj , nk ∈ Nj , y luego ij(nj) = ij(nk) = ij , tenemos que

∥∥∥∥∥∥

k∑

j=1

(−1)j+1djij(nj)

∥∥∥∥∥∥
≤ (1 + 20−k)︸ ︷︷ ︸

≤2

∥∥∥∥∥∥

nk∑

j=1

(−1)j+1djij(nj)

∥∥∥∥∥∥
≤ 2

∥∥∥∥∥∥

nk∑

j=1

(−1)j+1djij(nk)

∥∥∥∥∥∥
≤ 6,

llegando aśı a la contradicción buscada.

Concluimos aśı el segundo caṕıtulo, habiendo no sólo demostrado dos resultados importantes
del análisis funcional, sino también, habiendo incursionado en la teoŕıa de Ramsey. En el próximo
caṕıtulo, seguiremos ahondando en esta rama de la matemática. Si bien probaremos otro teorema
de tipo Ramsey, será evidente que los argumentos y las técnicas usadas son similares.



Caṕıtulo 3

El problema de los espacios

homogéneos

Diremos que un espacio de Banach de dimensión infinitaX es homogéneo si tiene la propiedad de
ser isomorfo a todos sus subespacios de dimensión infinita. Notemos que, en tal caso, dicho espacio
debe ser separable pues, en particular, si {x1, x2, · · · } es un conjunto linealmente independiente en
X, se tiene X ⋍ [x1, x2, · · · ]. Un ejemplo de un espacio con dicha propiedad es ℓ2. Surge entonces
la pregunta de si habrá otros ejemplos; éste es el llamado “Problema de los espacios homogéneos”.
Combinando dos resultados interesantes en śı mismos, uno de Komorowski y Tomczac-Jaegermann,
publicado en 1995, y otro de Gowers, publicado en 2002, responderemos esta pregunta y probaremos
el siguiente teorema.

Teorema 3.0.8. Todo espacio de Banach homogéneo de dimensión infinita es isomorfo a un espacio
de Hilbert separable.

No demostraremos los resultados de [K T-J] sino que nos enfocaremos en el art́ıculo de Gow-
ers, en el cual se utilizan herramientas de la teoŕıa de Ramsey. Siguiendo los pasos de Gowers, lo
primero que haremos entonces, es explicar cómo el problema antes mencionado puede reducirse a
una pregunta de carácter más combinatorio.

Enunciemos primero los resultados que usaremos, y veamos cómo a partir de éstos, concatenados,
se resuelve el problema de los espacios homogéneos.
El resultado de Komorowski y Tomczak-Jaegermann (1993) que usaremos es el siguiente [K T-J].

Teorema 3.0.9. Sea X un espacio de Banach con cotipo q para algún q < ∞. Entonces X tiene
un subespacio sin base incondicional o X tiene un subespacio isomorfo a ℓ2.

Recordemos que al final del caṕıtulo 1 se definió lo que quiere decir que un espacio tenga cotipo q;
de todos modos, en este trabajo no le prestaremos especial atención a este concepto, será suficiente
con tener presente que se puede probar que los espacios homogéneos cumplen la propiedad de cotipo
del teorema. De hecho, el Teorema 1.2.4 afirma que todo espacio de Banach tiene un subespacio
con base; para un espacio homogéneo, esto significa que todos sus subespacios tienen base. Por otro
lado, Szankowski probó [S] que si q > 2 todo espacio de Banach que no tenga cotipo q, debe tener
un subespacio sin base. Luego, dicho espacio no puede ser homogéneo. Aśı obtenemos el siguiente
corolario del Teorema 3.0.9.

Corolario 3.0.10. Sea X un espacio de Banach homogéneo. Entonces X es isomorfo a ℓ2 o X no
tiene ninguna base incondicional.

42
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Notemos que en el segundo caso, ningún subespacio de X tiene base incondicional. Este resul-
tado implica entonces una propiedad muy fuerte de los espacios homogéneos no isomorfos a ℓ2; de
hecho, no es nada obvia la existencia de espacios de Banach tal que ninguno de sus subespacios
tenga una base incondicional. La existencia de tales espacios fue un problema abierto por muchos
años hasta 1991, cuando aparecieron contraejemplos [GM]. Sin embargo, dichos contraejemplos no
cumpĺıan la propiedad de ser homogéneos; de hecho, la mayoŕıa cumpĺıa una propiedad práctica-
mente opuesta. Diremos que un espacio de Banach X es descomponible si se puede escribir como
suma directa de dos subespacios complementados. De lo contrario, X se dice indescomponible; es
hereditariamente indescomponible si todos sus subespacios son indescomponibles. Posteriormente
diremos más acerca de espacios hereditariamente indescomponibles; por el momento, simplemente
citaremos los siguientes resultados de [GM].

Teorema 3.0.11. Un espacio de Banach hereditariamente indescomponible no es isomorfo a
ningún subespacio propio.

Corolario 3.0.12. Un espacio de Banach hereditariamente indescomponible no es homogéneo.

Podemos ahora enunciar nuestra primera dicotomı́a.

Teorema 3.0.13. Sea X un espacio de Banach, entonces tiene un subespacio W que es hereditaria-
mente indescomponible o que tiene una base incondicional.

Notemos que esto es realmente una dicotomı́a ya que una base incondicional permite descompo-
ner a W de no numerables formas. Demostraremos este teorema al final del cáṕıtulo, pero para
ello, necesitaremos resultados de tipo Ramsey distintos a los utilizados en el caṕıtulo 2.

Notemos también que este último teorema combinado con los corolarios anteriores resuelven el
problema de los espacios homogéneos: supongamos queX es homogéneo; si no fuera isomorfo a ℓ2 no
tendŕıa ninguna base incondicional, por lo tanto debeŕıa contener un subespacio hereditariamente
indescomponible lo cual implicaŕıa, por homogeneidad, queX es hereditariamente indescomponible,
lo cual contradice el Corolario 3.0.12.

Como por Mazur todo espacio tiene un subespacio con base, en particular, todo espacio ho-
mogéneo tiene base. Entonces, a partir de ahora, dado un espacio de Banach supondremos que éste
tiene base (en)n, y asumiremos que ésta es monótona normalizada.

3.1. Resultados preliminares

Será conveniente tener presente el siguiente hecho algebraico que luego usaremos en la de-
mostración del próximo resultado.

Lema 3.1.1. Sea X un espacio de Banach, F ⊂ X un espacio vectorial de dimensión infinita y
S ⊂ X un subespacio de codimensión finita, entonces F ∩ S 6= {0}.

Demostración. Supongamos Y subespacio de dimensión N tal que S + Y = X. Tomamos N+1
elementos linealmente independiente de F, f1, ..., fN+1 y sean xi ∈ S y yi ∈ Y tales que fi = xi+yi.
Como dim(Y )=N , existen escalares ai no todos nulos tal que

∑N+1
i=1 aiyi = 0. De esta manera,∑N+1

i=1 aifi =
∑N+1

i=1 aixi es un elemento no nulo de F ∩ S (pues los fi los tomamos linealmente
independientes).
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En virtud de demostrar el Teorema 3.0.13, consideremos los siguientes lemas que relacionan los
conceptos de bases incondicionales y espacios hereditariamente idescomponibles.

Lema 3.1.2. Sea X un espacio de Banach. Son equivalentes:

(1) X no tiene subespacios con bases incondicionales;

(2) Para cada Y subespacio en bloque de X y para cada número real C, existe una sucesión de
vectores de Y y1 < y2 < ... < yn tales que

∥∥∥∥∥
n∑

i=1

yi

∥∥∥∥∥ > C

∥∥∥∥∥
n∑

i=1

(−1)iyi

∥∥∥∥∥ .

Demostración. (1) ⇒ (2) Supongamos que no vale (2): existe un subespacio en bloque Y ⊂ X y
una constante C tal que para toda sucesión x1 < x2 < ... < xn en Y se tiene que

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤ C

∥∥∥∥∥
n∑

i=1

(−1)ixi

∥∥∥∥∥ .

Observemos que C ≥ 1

Sea (yn)n una base en bloque de Y , veamos que es una base C-incondicional, contradiciendo
nuestra hipótesis. Tenemos que ver que, dados escalares a1, ..., an, y cualquier elección de signos
ε1, ... , εn vale:

∥∥∥∥∥
n∑

i=1

εiaiyi

∥∥∥∥∥ ≤ C

∥∥∥∥∥
n∑

i=1

aiyi

∥∥∥∥∥ .

Sin pérdida de generalidad, podemos suponer que ε1 = 1. Definimos

x1 =

n1−1∑

i=1

aiyi; n1 = mı́n{i ≥ 1 : εi = −1};

x2 =

n2−1∑

i=n1

aiyi; n2 = mı́n{i ≥ n1 : εi = 1};

Inductivamente, si nk+1 = mı́n{i ≥ nk : εi = (−1)k+1}, entonces:

xk+1 =

nk+1−1∑

i=nk

aiyi.

Aśı, como la sucesión (yn)n es una sucesión en bloque, también lo es la sucesión (xn)n, y por
ser xi ∈ Y , tenemos:

∥∥∥∥∥
n∑

i=1

εiaiyi

∥∥∥∥∥ = ‖x1 − x2 + ...‖ =

∥∥∥∥∥
n∑

i=1

(−1)i+1xi

∥∥∥∥∥

≤ C

∥∥∥∥∥
n∑

i=1

(−1)i+2xi

∥∥∥∥∥ = C

∥∥∥∥∥
n∑

i=1

aiyi

∥∥∥∥∥ .
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Es decir, (yn)n es C-incondicional, contradiciendo la hipótesis de (1).

(2) ⇒ (1) Supongamos Z ⊂ X con base incondicional (zn)n, que podemos suponer normalizada.
En efecto, si χ(zn) es la constante de incondicionalidad, esto es, para todo aj ∈ R, para toda εn
elección de signos: ∥∥∥∥∥

N∑

n=1

εntnzn

∥∥∥∥∥ ≤ χ(zn)

∥∥∥∥∥
N∑

n=1

tnzn

∥∥∥∥∥ ,

entonces ∥∥∥∥∥
N∑

n=1

εntn
zn

||zn||

∥∥∥∥∥ =

∥∥∥∥∥
N∑

n=1

εn
tn

||zn||
zn

∥∥∥∥∥ ≤ χ(zn)

∥∥∥∥∥
N∑

n=1

tn
||zn||

zn

∥∥∥∥∥ ,

y luego
(

zn
||zn||

)
n
también es una base incondicional.

Queremos un subespacio Y ⊂ X y una constante C > 0 donde no valga lo afirmado en (2). Por
el Lema 3.1.1 podemos considerar la siguiente sucesión (wn)n:

w1 = z1;

w2 ∈ [zk : k ≥ 2] ∩ [ek : k ≥ 2]; w2 =
∑r2

i=1 ajzj ,

w3 ∈ [zk : k > r2] ∩ [ek : k > r2]; w3 =
∑r3

i=r2+1 ajzj ,

w4 ∈ [zk : k > r3] ∩ [ek : k > r3], etc.

Iteramos el procedimiento, de manera que w1 < w2 < ... es una base en bloque de la sucesión (zn)n,
y la normalizamos de ser necesario.

Observemos además que e′j(wn) →n 0 para todo j. Estamos entonces bajo las hipótesis del
Teorema 1.3.5 de Bessaga-Petcynski, y luego (wn)n tiene una subsucesión (wnk

)k que es sucesión
básica equivalente a una sucesión en bloque de los (en)n, (xk)k. Tomamos Y = [xk]k.

Sean y1 < y2 < ... < yn vectores en Y . Veamos primero que (yi)
n
i=1 también es una sucesión

básica en bloque con respecto a (xk)k:
Como (xk)k es una sucesión básica en bloque con respecto a la base de X, podemos escribir

xk =
∑qk

i=pk
ajej con p1 < q1 < p2 < q2 < ...

Por otro lado, y1 =
∑∞

k=1 b
1
kxk =

∑∞
k=1

∑qk
i=pk

b1kajej , debe tener soporte (en (en)n) finito,

y podemos suponer N1 ≤ k ≤ M1. Por la misma razón, y2 =
∑∞

k=1 b
2
kxk tiene soporte finito,

N2 ≤ k ≤ M2. Veamos que vale M1 < N2. En efecto, esto vale pues, sop(yi) ⊂ {pNi
; ...; qMi

} y, al
ser y1 < y2, se tiene qM1 < pN2 . Repitiendo este razonamiento, se prueba lo afirmado.

Escribimos entonces: yi =
∑qi

j=pi
ajxj con p1 < q1 < p2 < q2 < ... < pn < qn. Recordemos que

las sucesiones (wnk
)k y (xk)k son equivalentes, entonces existen constantes A y B tales que

A

∥∥∥∥∥∥
∑

j

bjwnj

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑

j

bjxj

∥∥∥∥∥∥
≤ B

∥∥∥∥∥∥
∑

j

bjwnj

∥∥∥∥∥∥
,

y que (zn)n es una sucesión básica incondicional, por lo tanto (wn)n y (wnj
)j también son sucesiones

básicas incondicionales con constante de incondicionalidad χ(zn). Luego:
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∥∥∥∥∥
n∑

i=1

yi

∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

(−1)i(−1)iyi

∥∥∥∥∥ =

∥∥∥∥∥∥

n∑

i=1

(−1)i(−1)i
qi∑

j=pi

ajxj

∥∥∥∥∥∥

≤ B

∥∥∥∥∥∥

n∑

i=1

(−1)i
qi∑

j=pi

(−1)iajwnj

∥∥∥∥∥∥
≤ B χ(zn)

∥∥∥∥∥∥

n∑

i=1

(−1)i
qi∑

j=pi

ajwnj

∥∥∥∥∥∥

≤ A−1B χ(zn)

∥∥∥∥∥∥

n∑

i=1

(−1)i
qi∑

j=pi

ajxj

∥∥∥∥∥∥
= A−1B χ(zn)

∥∥∥∥∥
n∑

i=1

(−1)iyi

∥∥∥∥∥ .

Tomando C = A−1B χ(zn) contradecimos lo afirmado en (2).

Recordemos que del Teorema 3.0.13 se segúıa que un espacio de Banach debe tener un sube-
spacio que sea hereditariamente indescomponible o que admita base incondiconal. Recién vimos
un hecho equivalente a que no ocurra lo segundo, en términos de subespacios en bloque. A contin-
uación, enunciaremos un resultado de [GM] que establece una equivalencia de la misma naturaleza,
esta vez, a ser hereditariamente indescomponible. Omitiremos su demostración ya que ésta sigue
las mismas ĺıneas que la anterior.

Lema 3.1.3. Sea X un espacio de Banach. Son equivalentes:

(1) X es hereditariamente indescomponible.

(2) Para cada par de espacios en bloque Y, Z de X y para cada número real C, existe una sucesión
de vectores y1 < z1 < y2 < ... < yn < zn tal que yi ∈ Y, zi ∈ Z y tal que

∥∥∥∥∥
n∑

i=1

(yi + zi)

∥∥∥∥∥ > C

∥∥∥∥∥
n∑

i=1

(yi − zi)

∥∥∥∥∥ .

Observación 3.1.4. La condición (2) es equivalente a

(2’ ) Para cada par de espacios en bloque Y, Z de X y para cada número real C, existe una sucesión
de vectores y1 < z1 < y2 < ... < yn y un vector zn con zn = 0 o zn > yn tales que
yi ∈ Y, zi ∈ Z y tales que

∥∥∥∥∥
n∑

i=1

(yi + zi)

∥∥∥∥∥ > C

∥∥∥∥∥
n∑

i=1

(yi − zi)

∥∥∥∥∥ .

Demostración. Fijada la constante C y espacios en bloque Y, Z de X, supongamos una sucesión
y1 < z1 < y2 < ... < yn tal que yi ∈ Y, zi ∈ Z con

∥∥∥∥∥
n−1∑

i=1

(yi + zi) + yn

∥∥∥∥∥ > C

∥∥∥∥∥
n−1∑

i=1

(yi − zi) + yn

∥∥∥∥∥ .
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Buscamos zn > yn en Z que cumpla (2). Como Z es un espacio en bloque, sin pérdida de generalidad,
podemos suponer ek ∈ Z para algún k > sup(sop(yn)); consideremos zn = εek con ε > 0 a
determinar. Teniendo en cuenta que la base es monótona, entonces
∥∥∥∥∥

n∑

i=1

(yi + zi)

∥∥∥∥∥ ≥

∥∥∥∥∥
n−1∑

i=1

(yi + zi) + yn

∥∥∥∥∥ > C

∥∥∥∥∥
n−1∑

i=1

(yi − zi) + yn

∥∥∥∥∥ > C

∥∥∥∥∥
n−1∑

i=1

(yi − zi) + yn

∥∥∥∥∥+ δ,

para algún δ > 0 suficientemente chico. Como

C

∥∥∥∥∥
n−1∑

i=1

(yi − zi) + yn − εek

∥∥∥∥∥−→ε→0
C

∥∥∥∥∥
n−1∑

i=1

(yi − zi) + yn

∥∥∥∥∥ ,

existe ε > 0 tal que C
∥∥∥
∑n−1

i=1 (yi − zi) + yn − εek

∥∥∥ < C
∥∥∥
∑n−1

i=1 (yi − zi) + yn

∥∥∥+ δ.

Notemos que si tomamos Y = Z en la condición (2) del lema anterior, entonces recuperamos
la condición (2) del Lema 3.1.2 (reemplazando n por 2n). Esto sugiere una manera de probar el
Teorema 3.0.13: si X no tiene subespacios con bases incondicionales, esto es (por el Lema 3.1.2),
para cada C sus subespacios en bloque contienen una base C-condicional, la idea es encontrar
un subespacio en bloque que tenga la propiedad de que dados dos subespacios en bloque y dada
cualquier C, contiene una sucesión C-condicional con sus términos pares en un subespacio y los
impares en el otro. Por el Lema 3.1.3, este subespacio resulta ser hereditariamente indescomponible.

3.2. Otro teorema de Ramsey

En esta sección expondremos los resultado de Ramsey que necesitamos. Para ello, es necesario
introducir definiciones y notaciones nuevas.

Dado X un espacio de Banach (con una base dada), definimos
∑

f =
∑

f (X) al conjunto de las
sucesiones de finitos vectores no nulos y de norma a lo sumo 1 tales que x1 < x2 < · · · < xn. Fijado
un subconjunto σ ⊂

∑
f , consideramos el siguiente juego de dos jugadores a quienes llamaremos

S y P . Comienza S eligiendo X1 ⊂ X un subespacio en bloque, y P elije un elemento x1 ∈ X1.
En general, en la enésima jugada, el jugador S elije Xn ⊂ X un subespacio en bloque y P elije xn
un vector en Xn de norma a lo sumo 1. P gana si en algún momento logra construir una sucesión
(x1, · · · , xn) ∈ σ; S gana si el juego es infinito.

Una estrategia para P es una función φ tal que para cada sucesión básica en bloque finita
(x1, · · · , xn) y para cada subespacio Y ⊂ X devuelve un vector x = φ(x1, · · · , xn; Y ) ∈ Y .
Decimos que φ es una estrategia ganadora para P si dada cualquier sucesión de subespacios de
X,X1, X2, · · · , existe n tal que la sucesión (x1, · · · , xn) definida inductivamente por x1 = φ(∅;X1)
y xk+1 = φ(x1, · · · , xk;Xk+1) está en σ.

Si ∆ = (δ1, δ2, · · · ) es una sucesión de escalares positivos, definimos la expansión de σ:

σ∆ =
{
(x1, · · · , xn) ∈

∑
f : ∃ (y1, · · · , yn) ∈ σ, ||yi − xi|| ≤ δi para todo i

}
.

También definimos
σ−∆ = (((σ)c)c∆

=
{
(x1, · · · , xn) ∈

∑
f : (y1, · · · , yn) ∈

∑
f , ||yi − xi|| ≤ δi para todo i ⇒ (y1, · · · , yn) ∈ σ

}
.
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Observación 3.2.1. (σ−∆)∆ ⊂ σ ⊂ (σ∆)−∆

Demostración. Probemos la primera inclusión. Tomemos (y1, · · · , yn) ∈ (σ−∆)∆. Entonces existe
(x1, · · · , xn) ∈ σ−∆ tal que ||xi − yi|| ≤ δi para todo i, lo cual implica que (y1, · · · , yn) ∈ σ, como
queŕıamos ver. Para la otra inclusión, dado (y1, · · · , yn) ∈ σ, tomamos (x1, · · · , xn) ∈

∑
f tal que

||yi−xi|| ≤ δi para todo i, y queremos ver que (x1, · · · , xn) ∈ σ∆; en efecto, esto vale por definición
de σ∆.

A continuación, introduciremos más notación. Si A = (y1, · · · , ym), Y ⊂ X es un subespacio y
σ ∈

∑
f , entonces tenemos:

[A;Y ] =
{
(zn)

N
n=1 ∈

∑
f : zi = yi ∀ i ≤ n, zi ∈ Y ∀ m < i ≤ N

}
. Si A = ∅, escribiremos [Y ].

σ[A;Y ] =
{
(xn)

N
n=1 : (y1, · · · , ym, x1, · · · , xN ) ∈ [A;Y ] ∩ σ

}
.

Aśı, cuando decimos que P tiene una estrategia ganadora para el juego σ[A;Y ], sobreentendemos
que las jugadas de S son subespacios de Y .

Enunciemos ahora el teorema de Ramsey que nos permitirá demostrar la dicotomı́a planteada
en el Teorema 3.0.13; la demostración quedará pendiente hasta la próxima sección.

Teorema 3.2.2. Sea X un espacio de Banach, σ ⊂
∑

f y sea ∆ una sucesión de números positivos.
Entonces X tiene un subespacio Y tal que σ[Y ] = ∅ o P tiene una estrategia ganadora para el juego
σ∆[Y ].

Decimos que el resultado anterior es un teorema de Ramsey por dos razones. La primera es que
la demostración usa varios argumentos ya existentes en la teoŕıa de Ramsey. Además, incluso la
afirmación del teorema tiene el carácter de los teoremas de Ramsey que ya vimos en el caṕıtulo
anterior: si pensamos que las sucesiones en σ son azules, y las que no están en σ, rojas, entonces
el teorema nos da un subespacio tal que todas sus sucesiones en bloque (finitas) son rojas o hay
tantas perturbaciones de las sucesiones azules que P tiene una estrategia ganadora para obtener
una de ellas.

Para demostrar el teorema anterior, necesitaremos introducir más notación y lemas previos.

Un ∗-par es un par (A,Z) donde A = (x1, · · · , xn) ∈
∑

f , Z es un subespacio en bloque de
dimensión infinita y A < Z, esto es, xn < z para todo z ∈ Z.

Si ∆ = (δ1, δ2, · · · ), A = (x1, · · · , xn), B = (y1, · · · , yn) son sucesiones en bloque del mismo
tamaño, diremos que d(A,B) ≤ ∆ si d(xi, yi) ≤ δi para todo i.

Dado un subconjunto C de
∑

f , una ∆-red de C es una colección A1, · · · , AN ∈ C tal que
para cada A ∈ C existe Ai de la misma longitud que A tal que d(A,Ai) ≤ ∆.

Si Π es un conjunto de ∗-pares, escribimos Π∆ = {(A,Z) ∗ -pares : ∃ (B,Z) ∈ Π, d(A,B) ≤ ∆}.

Diremos que ∆ ≤ ∆′ si δi ≤ δ′i para todo i; observemos que, en tal caso, (Π)∆′ ⊂ (Π)∆.

Por último, si x1 < · · · < xn, notaremos 〈x1, · · · , xn〉 al subespacio generado por x1, · · · , xn;
aśı, dada (x1, · · · , xn) ∈

∑
f , escribiremos

∑
f (x1, · · · , xn) al conjunto formado por las suce-

ciones (y1, · · · , yk) ∈
∑

f tales que yi ∈ 〈x1, · · · , xn〉.
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Observación 3.2.3. Si ||yi|| ≤ 1,
∑

f (y1, · · · , yn) ⊂
∑

f admite una ∆-red.

Demostración. Haremos la demostración para los casos n = 1, 2; con el mismo razonamiento se
puede probar el caso general.

El caso más sencillo seŕıa para n = 1. Consideramos entonces
∑

f (y) y buscamos una colección
(Ai)i ∈

∑
f (y) tal que para todo A ∈

∑
f (y) exista i tal que d(A,Ai) ≤ ∆. Observemos que la

única opción es A = αy,Ai = αiy. Como

d(A,Ai) ≤ ∆ ⇔ |αi − α| ≤ δ1.

Como se puede cubrir [−1; 1] con finitos subintervalos de longitud menor que δ1, basta elegir αi

como los centros de dichos intervalos.
El siguiente caso seŕıa una ∆-red de

∑
f (y1, y2). Observemos que, para A ∈

∑
f (y1, y2), hay

dos opciones posibles: A = (w), w =
∑2

j=1 αjyj o A = (w1, w2), w1 < w2. En la primera situación,

buscamos Ai = (
∑2

j=1 α
i
jyj) de la misma longitud tal que d(A,Ai) ≤ ∆. Basta pedir |αi

j−αj | ≤
δ1
2 ,

asi

∥∥∥∥∥∥

2∑

j=1

(αi
j − αj)yj

∥∥∥∥∥∥
≤

2∑

j=1

|αi
j − αj | ≤ δ1.

Cubrimos [−1; 1] con finitos intervalos de longitud menor que δ1
2 , y consideremos α1, · · · , αN sus

centros.
En la segunda situación, para que w1 < w2, siendo vectores no nulos, debe ser wj = αjyj ; buscamos
Ai = (wi

1, w
i
2) con wi

j = αi
jyj tales que ||wi

j − wj || ≤ δj para j = 1, 2. Esto ocurre por ejemplo si

|αi
j − αj | ≤ δj . Para j = 1, 2, cubrimos el [−1; 1] con finitos subintervalos de longitud menor que

δj , y considermaos α1
j , · · · , α

Nj

j .
La colección que tomamos es la formada por los Ai determinados en ambas situaciones.

Para concluir esta sección, demostremos el siguiente lema y veamos algunas consecuencias que
nos serán de utilidad más adelante.

Lema 3.2.4. Dados ∆1 ≥ ∆2 ≥ · · · una sucesión de sucesiones de términos positivos, y Π1,Π2, · · ·
sucesión de conjuntos de ∗-pares tales que se verifican las siguientes condiciones:

(1) Para cada ∗-par (A,Z) y para cada n existe Z ′ ⊂ Z tal que (A,Z ′) ∈ Πn;

(2) Si (A,Z) ∈ Πn y Z ′ ⊂ Z entonces (A,Z ′) ∈ Πn.

Entonces, existe un subespacio Y ⊂ X tal que (A,Z) ∈ (Πn)∆n para cada par (A,Z) tal que A sea
de longitud por lo menos n y ambos A y Z sean subconjuntos de Y .

Demostración. Construimos una base en bloque (yi)i y una sucesion de subespacios en bloque (Yi)i

inductivamente. Primero tomamos Y0 = X, y1 ∈ Y0 tal que y1 ∈
∑

f ; supongamos

q1∑

i=p1

λiei.

Sea A1
1, · · · , A

1
N una ∆1-red de

∑
f (y1), donde N = N1. Como (A1

1, [ek : k > q1]) es un ∗-par,

por la propiedad (1), existe V 1
1,1 ⊂ [ek : k > q1] tal que (A

1
1, V

1
1,1) ∈ Π1. Iteramos este razonamiento:
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(A1
2, V

1
1,1) es un ∗ -par ⇒ ∃ V 1

2,1 ⊂ V 1
1,1 / (A1

2, V
1
2,1) ∈ Π1,

(A1
3, V

1
2,1) es un ∗ -par ⇒ ∃ V 1

3,1 ⊂ V 1
2,1 / (A1

3, V
1
3,1) ∈ Π1,

...
(A1

N , V 1
N−1,1) es un ∗ -par ⇒ ∃ V 1

N,1 ⊂ V 1
N−1,1 / (A1

N , V 1
N,1) ∈ Π1.

Aśı, tenemos X = Y0 ⊃ V 1
1,1 ⊃ V 1

2,1 ⊃ · · · ⊃ V 1
N,1 con (A1

i , V
1
i,1) ∈ Π1 para todo 1 ≤ i ≤ N .

Llamamos Y1 = V 1
N,1, y tomamos y2 ∈ Y1 tal que (y1, y2) ∈

∑
f . Supongamos y2 =

q2∑

i=p2

λiei con

p2 > q1.
Sea A2

1, · · · , A
2
N una ∆2-red de

∑
f (y1, y2), donde N = N2. Repetimos el razonamiento hecho

anteriormente.

(A2
1, [ek : k > q2] ∩ Y1) es un ∗ -par ⇒ ∃ V 2

1,1 ⊂ Y1 / (A2
1, V

2
1,1) ∈ Π1,

(A2
1, V

2
1,1) es un ∗ -par ⇒ ∃ V 2

1,2 ⊂ V 2
1,1 / (A2

1, V
2
1,2) ∈ Π2,

(A2
2, V

2
1,2) es un ∗ -par ⇒ ∃ V 2

2,1 ⊂ V 2
1,2 / (A2

2, V
2
1,2) ∈ Π1,

(A2
2, V

2
2,1) es un ∗ -par ⇒ ∃ V 2

2,2 ⊂ V 2
2,1 / (A2

2, V
2
2,2) ∈ Π2,

(A2
3, V

2
2,2) es un ∗ -par ⇒ ∃ V 2

3,1 ⊂ V 2
2,2 / (A2

3, V
2
3,1) ∈ Π1,

(A2
3, V

2
3,1) es un ∗ -par ⇒ ∃ V 2

3,2 ⊂ V 2
3,1 / (A2

3, V
2
3,2) ∈ Π2,

...
(A2

N , V 2
N−1,2) es un ∗ -par ⇒ ∃ V 2

N,1 ⊂ V 2
N−1,2 / (A2

N , V 2
N,1) ∈ Π1,

(A2
N , V 2

N,1) es un ∗ -par ⇒ ∃ V 2
N,2 ⊂ V 2

N,1 / (A2
N , V 2

N,2) ∈ Π2.

Aśı, tenemos una sucesión Y1 ⊃ V 2
1,1 ⊃ V 2

1,2 ⊃ V 2
2,1 ⊃ V 2

2,2 ⊃ V 2
3,1 ⊃ · · · ⊃ V 2

N,1 ⊃ V 2
N,2 con

(A2
i , V

2
i,j) ∈ Πj para todo 1 ≤ i ≤ N, 1 ≤ j ≤ 2. Llamamos Y2 = V 2

N,2.

Supongamos elegidos X = Y0 ⊃ Y1 ⊃ · · · ⊃ Yn−1, y1, · · · , yn−1 tal que yi ∈ Yi−1 para todo
1 ≤ i ≤ n− 1. Tomamos yn ∈ Yn−1 tal que (y1, · · · , yn) ∈

∑
f .

Sea An
1 , · · · , A

n
N una ∆n-red de

∑
f (y1, · · · , yn), donde N = Nn. Como antes, nos construimos

una sucesión de subespacios

Yn−1 ⊃ V n
1,1 ⊃ V n

1,2 ⊃ · · · ⊃ V n
1,n ⊃ V n

2,1 ⊃ V n
2,2 ⊃ · · · ⊃ V n

2,n ⊃ · · · ⊃ V n
N,1 ⊃ · · · ⊃ V n

N,n,

con (An
i , V

n
i,j) ∈ Πj para todo 1 ≤ i ≤ N, 1 ≤ j ≤ n.

Llamamos Yn = V n
N,n.

Observemos que para cada k ∈ N, si Z ⊂ Yk es un subespacio en bloque de dimensión in-
finita, en particular se tiene que Z ⊂ Yk ⊂ V k

i,j y entonces, por la propiedad (2), (Ak
i , Z) ∈ Πj
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para todo 1 ≤ i ≤ N , 1 ≤ j ≤ k. Como (Ak
i )

Nk

i=1 es una ∆k-red de
∑

f (y1, · · · , yk), para cada

A ∈
∑

f (y1, · · · , yk), existe i tal que d(A,Ak
i ) ≤ ∆k. Tomando B = Ak

i tenemos que d(A,B) ≤ ∆k

y (B,Z) ∈ Πj , es decir, (A,Z) ∈ (Πj)∆k
.

Tomemos Y = 〈y1, y2, · · · 〉. Veamos que sirve: dado n, (A,Z) ∗-par en Y tal que la longitud de
A es al menos n,Z ⊂ Y subespacio en bloque, queremos ver que (A,Z) ∈ (Πn)∆n . Sea k ≥ n tal
que A ∈

∑
f (y1, · · · , yk), y luego Z ⊂ 〈yk+1, · · · 〉 ⊂ Yk; por lo observado anteriormente se concluye

que (A,Z) ∈ (Πj)∆k
para todo j ≤ k. En particular, (A,Z) ∈ (Πn)∆k

y, al ser ∆k ≤ ∆n, obtenemos
(A,Z) ∈ (Πn)∆n como queŕıamos.

A menudo usaremos ciertos casos particulares del Lema 3.2.4 por lo cual va a ser conveniente
enunciarlos por separado. Vamos a definir un singleton ∗-par como un par (x, Z) donde x es un
vector no nulo de norma menor o igual que 1, Z un subespacio en bloque y x < z para todo z ∈ Z;
en otras palabras, es un ∗-par (A,Z) donde A es un conjunto de un elemento. Dado Π un conjunto
de singleton ∗-pares, δ > 0, escribiremos Πδ para referirnos al conjunto de ∗-pares (x, Z) para los
cuales existe x′ tal que d(x, x′) ≤ δ, (x′, Z) ∈ Π.

Corolario 3.2.5. Sea δ > 0,Π un conjunto de singleton ∗-pares tales que

i. Para cada ∗-par (y, Z) existe Z ′ ⊂ Z tal que (y, Z ′) ∈ Π;

ii. Si (y, Z) ∈ Π y Z ′ ⊂ Z entonces (y, Z ′) ∈ Π.

Entonces, existe un subespacio Y ⊂ X tal que (y, Z) ∈ Πδ para cada par (y, Z) tal que y ∈ Y, Z ⊂ Y .

Demostración. Apliquemos el Lema 3.2.4 para ∆i = (δ, 1, 1, · · · ) para todo i,Π1 el conjunto formado
por los ∗-pares de Π y aquellos que no son singleton y, para i > 1,Πi es el conjunto de todos los
∗-pares. Es fácil verificar que las propiedades (i), (ii) implican que estos conjuntos cumplen las
propiedades (1) y (2) del lema. Entonces, existe Y ⊂ X tal que (A,Z) ∈ (Πn)∆n para todo (A,Z)
en Y , con A de longitud a lo sumo n. En particular, (y, Z) ∈ (Π1)∆1 para todo y ∈ Y y para todo
subespacio en bloque Z ⊂ Y . Luego, existe (y′, Z) ∈ Π1 (y′ ∈ Π) tal que ||y′ − y|| < δ, esto es,
(y, Z) ∈ Πδ.

Corolario 3.2.6. Dados ∆1 ≥ ∆2 ≥ · · · y Π1,Π2, · · · en las condiciones del Lema 3.2.4, y supon-
gamos que además verifican la siguiente condición:

3. si (A,Z) ∈ Πn entonces A tiene longitud n.

Entonces, existe un subespacio Y ⊂ X tal que (A,Z) ∈ (Πn)∆n para cada par (A,Z) tal que A sea
de longitud n y ambos A y Z sean subconjuntos de Y .

Demostración. Apliquemos el Lema 3.2.4 a Π′
n = {(A,Z) : long(A) 6= n} ∪ Πn. Observemos que

la propiedad (3) asegura que esta unión sea disjunta. Es fácil ver que las propiedades (1) y (2) del
lema siguen valiendo para Π′

n. Entonces, existe Y ⊂ X tal que (A,Z) ∈ (Π′
n)∆n para todo (A,Z)

en Y con A de longitud a lo sumo n. En particular, si la longitud de A es exactamente n; queremos
ver que, en ese caso, (A,Z) ∈ (Πn)∆n . Sabemos que existe B de la misma longitud de A tal que
d(A,B) ≤ ∆n, (B,Z) ∈ Π′

n pero, por ser de longitud n, debe ser (B,Z) ∈ Πn.
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3.3. Demostración del teorema de Ramsey

En esta sección probaremos la dicotomı́a planteada en el Teorema 3.2.2 y mostraremos cómo éste
implica el Teorema 3.0.13. Esto completaŕıa la solución al problema de los espacios homogéneos.
Antes de seguir con el próximo resultado, introduciremos algunos nuevos conceptos.

Definición 3.3.1. Dados Y ⊂ X subespacio en bloque, σ ∈
∑

f (X), diremos que:

σ es grande para Y si todo Z ⊂ Y subespacio en bloque tiene una sucesión en σ.

σ es estratégicamente grande para Y si P tiene una estrategia ganadora para el juego σ[Y ]
(recordemos que esto queŕıa decir que las movidas de S son subespacios de Y ).

Más en general,

Definición 3.3.2. Dados Y ⊂ X subespacio en bloque, σ ∈
∑

f (X), (A, Y ) un ∗-par, diremos que:

σ es grande para [A; Y] si todo Z ⊂ Y subespacio en bloque tiene una sucesión B ∈
∑

f tal
que (A,B) ∈ σ.

σ es estratégicamente grande para [A;Y] si P tiene una estrategia ganadora para el juego
σ[A;Y ].

Observación 3.3.3. σ es grande para [A;Y ] ⇔ σ[A;Y ] es grande para Y .

Demostración. ⇒) Dado Z ⊂ Y subespacio en bloque, buscamos una sucesión de elementos de Z,
en σ[A;Y ]. Por hipótesis, sabemos que existe B = (z1, · · · , zn) ∈

∑
f tal que (A,B) ∈ σ. Como

(A, z1, · · · , zn) ∈ [A;Y ] ∩ σ, se tiene justamente que (z1, · · · , zn) ∈ σ[A;Y ].
⇐) Dado Z ⊂ Y subespacio en bloque, buscamos una tira de elementos de Z,B ∈

∑
f tal que

(A,B) ∈ σ. Sabemos que existe B ∈
∑

f tal que B ∈ σ[A;Y ], esto es, (A,B) ∈ σ.

La misma equivalencia vale para “estratégicamente grande”.

Teorema 3.3.4. Sea X un espacio de Banach con una base monótona normalizada dada, y sean
Θ = (θn)

∞
n=1 y ∆ = (δn)

∞
n=1 sucesiones de números positivos tales que 2

∑∞
i=N δi ≤ θn para todo N .

Si σ−Θ es grande para X, entonces X tiene un subespacio en bloque Y tal que σ2∆ es estratégica-
mente grande para Y.

Demostración. Supogamos que σ ⊂
∑

f es un conjunto para el cual es resultado es falso. Por
hipótesis, σ−Θ es grande para X; en particular, como σ−Θ ⊂ σ, σ es grande para X. Por otro lado,
tenemos que σ2∆ no es estratégicamente grande para ningún subespacio en bloque de X.

Consideremos

ρ = {(x1, · · · , xn) ∈ σ : y1 < · · · < yk, 〈y1, · · · , yk〉 ( 〈x1, · · · , xn〉 ⇒ (y1, · · · , yk) /∈ σ}.

Se tiene que ρ sigue siendo grande para X; en efecto, dado Z ⊂ X un subespacio en bloque,
sabemos que Z contiene sucesiones finitas de σ, entonces tomamos (z1, · · · , zn) ∈ σ de longitud
mı́nima. Observemos que si n = 1, (z1) ∈ ρ trivialmente, ya que no existen subespacios en bloque
contenidos estrictamente en 〈z1〉. Para n > 1, si fuera (z1, · · · , zn) /∈ ρ, existiŕıa y1 < · · · < yk tal
que 〈y1, · · · , yk〉 ( 〈z1, · · · , zn〉 (luego, necesariamente k < n) con (y1, · · · , yk) ∈ σ, lo cual no puede
ser ya que hab́ıamos elegido un elemento de longitud mı́nima. Además, ρ2∆ no es estratégicamente
grande para ningún subespacio de X, pues ρ2∆ ⊂ σ2∆.
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Para cada n ≥ 0 sean ∆n = (δ1, · · · , δn, 0, 0, · · · ),Γn = 2∆−∆n = (δ1, · · · , δn, 2δn+1, 2δn+2, · · · ).
Ahora construiremos dos sucesiones: x1, x2, · · · de elementos de X y X = X0 ⊃ X1 ⊃ X2 ⊃ · · ·
sucesión de subespacios en bloque, con las siguientes propiedades:

(1) xn ∈ Xn−1;

(2) ρ∆n es grande para [x1, · · · , xn;Xn];

(3) ρΓn no es estratégicamente grande para ningún [x1, · · · , xn;Z] con Z ⊂ X.

Comenzamos eligiendo X0 = X, que cumple las propiedades (2) y (3). Supongamos que no
existen x1 ∈ X0, X1 ⊂ X0 que cumplan las propiedades. Entonces, para todo x ∈ X0 para todo
Y ⊂ X0 subespacio en bloque, existe Z ⊂ Y que cumple alguna de las siguientes propiedades:

a. ρ∆1 ∩ [x;Z] = ∅, o

b. ρΓ1 es estratégicamente grande para [x;Z].

Consideremos Π el conjunto de dichos singleton ∗-pares, (x, Z), y llamemos δ = δ1. Veamos que
estamos en las condiciones del Corolario 3.2.5. Π cumple la propiedad (i) por definición: dado
(x, Y ) ∗-par, existe un subespacio en bloque Z ⊂ Y tal que (x, Z) verifica la condición (a) o la
condicion (b), luego, (x, Z) ∈ Π. Veamos la propiedad (ii): si (x, Z) ∈ Π, Z ′ ⊂ Z. Si (x, Z) cumpĺıa
la condición (a), entonces también la cumple (x, Z ′) pues ρ∆1 ∩ [x;Z ′] ⊂ ρ∆1 ∩ [x;Z]. Si en cambio,
(x, Z) cumpĺıa la condición (b), P tiene estrategia ganadora en el juego σ[x;Z]; en particular, si
las movidas de S son subespacios de Z ′, son subespacios de Z y por lo tanto, P tiene estrategia
ganadora en el juego σ[x;Z ′]. Entonces, por el corolario, existe Y ⊂ X0 tal que (y, Z) ∈ Πδ1 para
todo y ∈ Y y para todo Z ⊂ Y . Entonces, dado y ∈ Y, Z ⊂ Y , sea (x, Z) ∈ Π con ||x − y|| ≤ δ1,
hay dos opciones:

(x, Z) cumple (a): en este caso, ρ∆0 ∩ [y;Z] = ∅ pues, si exisitiera (y, z2, · · · , zn) ∈ ρ∆0 = ρ,
como ||x− y|| ≤ δ1, se tendŕıa que (x, z2, · · · , zn) ∈ ρ∆1 ∩ [x;Z].

(x, Z) cumple (b): veamos que ρΓ0 es estratégicamente grande para [y;Z]. Como P tiene
estrategia ganadora para el juego ρΓ1 [x;Z], basta ver que ρΓ1 [x;Z] ⊂ ρΓ0 [y;Z] = ρ2∆[y;Z]. Si
(x, z2, · · · , zm) ∈ ρΓ1 entonces existe (x′, z′2, · · · , z

′
m) ∈ ρ con ||x− x′|| ≤ δ1 y ||zi − z′i|| ≤ 2δ1

para todo 2 ≤ i ≤ m, luego tenemos que ||x′ − y|| ≤ ||x′ − x||+ ||x− y|| ≤ 2δ1 y por lo tanto
(y, z1, · · · , zm) ∈ ρ2∆.

En particular, lo anterior vale para y ∈ Y, Z = {z ∈ Y : y < z}. Observemos que el conjunto
de los y que cumplen ρ∆0 ∩ [y;Z] = ∅ no puede contener un subespacio Z ′ de Z. Sino, por (2)
tenemos ρ∆0 ∩ [Z ′] 6= ∅ y, por lo tanto, existiŕıa y1, · · · , ym ∈ Z ′ tal que (y1, · · · , ym) ∈ ρ∆0 = ρ y,
entonces, ρ∩ [y1;Z

′] 6= ∅, pero esto no es cierto para los elementos y1 de Z
′. Entonces, dado Z ′ ⊂ Z,

necesariamente contiene algún y ∈ Z tal que ρΓ0 es estratégicamente grande para [y;Z], luego, el
conjunto de los y que tienen dicha propiedad es grande para Y . Pero esto le proporciona a P una
estrategia ganadora para el juego ρΓ0 [Z] contradiciendo (3).
Supongamos que tenemos x1, · · · , xn y X1 ⊃ X2 ⊃ · · · ⊃ Xn que cumplen lo pedido; si no existieran
xn+1 y Xn+1 apropiados, entonces, para todo x ∈ Xn, Y ⊂ Xn subespacio en bloque, existe Z ⊂ Y
que cumple alguna de las siguientes propiedades:

a. ρ∆n+1 ∩ [x1, · · · , xn, x;Z] = ∅, o

b. ρΓn+1 es estratégicamente grande para [x1, · · · , xn, x;Z].
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Consideremos Π el conjunto de dichos singleton ∗-pares, (x, Z), y llamemos δ = δn+1. Como antes,
estamos en las condiciones del Corolario 3.2.5, entonces existe un subespacio en bloque Y ⊂ Xn

tal que (y, Z) ∈ Πδn+1 para todo y ∈ Y y para todo Z ⊂ Y . Entonces, dado y ∈ Y, Z ⊂ Y , sea
(x, Z) ∈ Π con ||x− y|| ≤ δn+1. Entonces hay dos opciones:

(x, Z) cumple (a): en este caso se tiene que ρ∆n ∩ [x1, · · · , xn, y;Z] = ∅ pues, si existiera
(x1, · · · , xn, y, z1, · · · , zm) ∈ ρ∆n , entonces tendŕıamos (x′1, · · · , x

′
n, y

′, z′1, · · · , z
′
m) ∈ ρ con

||xi − x′i|| ≤ δi, ||y′ − y|| ≤ 0, ||z′i − zi|| ≤ 0, es decir, (x′1, · · · , x
′
n, y, z1, · · · , zm) ∈ ρ y por lo

tanto, como ||x− y|| ≤ δn+1, se tendŕıa que (x, z1, · · · , zn) ∈ ρ∆n+1 ∩ [x1, · · · , xn, x;Z].

(x, Z) cumple (b): veamos que ρΓn es estratégicamente grande para [x1, · · · , xn, y;Z].
Como P tiene estrategia ganadora para el juego ρΓn+1 [x1, · · · , xn, x;Z], es suficiente ver que
ρΓn+1 [x1, · · · , xn, x;Z] ⊂ ρΓn [x1, · · · , xn, y;Z]. Si (x1, · · · , xn, x, z1, · · · , zm) ∈ ρΓn+1 entonces
existen ||xi − x′i|| ≤ δi, ||x − x′|| ≤ δn+1, ||zi − z′i|| ≤ 2δn+i para todo 1 ≤ i ≤ m tal que
(x′1, · · · , x

′
n, x

′, z′1, · · · , z
′
m) ∈ ρ, luego ||x′ − y|| ≤ ||x′ − x|| + ||x − y|| ≤ 2δn+1 y por lo tanto

(x1, · · · , xn, y, z1, · · · , zm) ∈ ρΓn .

En particular, lo anterior vale para y ∈ Y, Z = {z ∈ Y : y < z}. Observemos que el conjun-
to de los y que cumplen ρ∆n ∩ [x1, · · · , xn, y;Z] = ∅ no puede contener un subespacio Z ′ de Z.
Sino, por (2) tenemos ρ∆n ∩ [x1, · · · , xn;Z

′] 6= ∅ y, por lo tanto, existiŕıa y1, · · · , ym ∈ Z ′ tal que
(x1, · · · , xn, y1, · · · , ym) ∈ ρ∆n y, entonces, ρn ∩ [x1, · · · , xn, y1;Z

′] 6= ∅, pero esto no es cierto para
los elementos y1 de Z ′. Entonces, dado Z ′ ⊂ Z, necesariamente contiene algún y ∈ Z tal que
ρΓn es estratégicamente grande para [x1, · · · , xn, y;Z], luego, el conjunto de los y que tienen dicha
propiedad es grande para Y . Pero esto le proporciona a P una estrategia ganadora para el juego
ρΓn [x1, · · · , xn;Z] contradiciendo (3).

Consideremos el subespacio Y = [(xn)n] y veamos que Y ∩ σ−Θ = ∅, lo cual contradice el
hecho de que σ−Θ sea grande para X. Tomemos entonces (y1, · · · , yk) ∈

∑
f (x1, · · · , xn) para

algún n. Como 〈xn+1, xn+2, · · · 〉 es un subespacio en bloque de Xn, por la condición (2), existe
(x′n+1, · · · , x

′
m) ⊂ 〈xn+1, xn+2, · · · 〉 sucesión finita tal que (x1, · · · , xn, x

′
n+1, · · · , x

′
m) ∈ ρ∆n , es decir

que existe (x′1, · · · , x
′
n, x

′
n+1, · · · , x

′
m) con ||xi − x′i|| ≤ δi ∀ i ≤ n, (x′1, · · · , x

′
n, x

′
n+1, · · · , x

′
m) ∈ ρ.

Si escribimos yj =
∑qj

i=pj
αixi, 1 ≤ p1 < q1 < · · · < qk ≤ n, definimos y′j =

∑qj
i=pj

αix
′
i. Como

〈y′1, · · · , y
′
k〉 ( 〈x′1, · · · , x

′
m〉, por definición de ρ tenemos que (y′1, · · · , y

′
k) /∈ σ. Pero

||yj − y′j || ≤

qj∑

i=pj

|αi| ||xi − x′i|| ≤ 2

qj∑

i=pj

δi ≤ 2
∞∑

i=j

δi ≤ θi.

(Aqúı estamos usando que pj ≥ j y que, como la base (en)n es monótona normalizada, y ||yj || ≤ 1,
se tiene que |e′l(yj)| ≤ 2 para cada j, l). Esto significa que (y1, · · · , yk) /∈ σ−Θ, como hab́ıamos
afirmado.

Ahora con el resultado anterior podemos probar el Teorema 3.2.2. Recordemos el enunciado.

Teorema 3.2.2 Sea X un espacio de Banach, σ ⊂
∑

f y sea ∆ una sucesión de números positivos.
Entonces X tiene un subespacio Y tal que σ[Y ] = ∅ o P tiene una estrategia ganadora para el juego
σ∆[Y ].

Demostración. Supongamos que no existe Y tal que σ[Y ] = ∅, entonces, σ es grande para X.
Llamemos τ = σ∆/2,Θ = ∆/2, entonces tenemos que τ−Θ es grande para X, pues por la observación
2.1 , σ ⊂ (σΘ)−Θ = τ−Θ. Si ∆

′ es tal que 2
∑∞

i=N δ′i ≤ δN/2, entonces, por el Teorema 3.3.4 (para
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τ,∆′,Θ), existe Y ⊂ X subespacio en bloque tal que τ2∆′ es estratégicamente grande para Y .
Como 2δ′i ≤ δi/2 = θi, tenemos que τ2∆′ ⊂ τΘ. Si vemos que τΘ ⊂ σ∆, probaŕıamos entonces
que σ∆ es estratégicamente grande para Y y que, por lo tanto, P tiene estrategia ganadora para el
juego σ∆[Y ], como queŕıamos probar. Veamos entonces esa inclusión: dado (x1, · · · , xn) ∈ τΘ, existe
(y1, · · · , yn) ∈ τ = σ∆/2 con ||xi−yi|| ≤ δi/2. Luego existe (y′1, · · · , y

′
n) ∈ σ tal que ||yi−y′i|| ≤ δi/2.

Aśı, tenemos ||xi − y′i|| ≤ δi y por lo tanto (x1, · · · , xn) ∈ σ∆.

Al comienzo de este caṕıtulo definimos los espacios hereditariamente indescomponibles. Antes
de continuar, vamos a introducir un concepto estrechamente relacionado.

Definición 3.3.5. Un espacio de Banach X se dice C-hereditariamente indescomponible si para
todo par de subespacio en bloque Y y Z existen vectores y ∈ Y, z ∈ Z con soporte finito tales que
||y + z|| > C||y − z||.

Observación 3.3.6. La condición para que un espacio sea C-hereditariamente indescomponible
es equivalente a la condición (2) del Lema 3.1.3 para ese mismo valor de C.

Demostración. Asumamos primero que X cumple la condición (2) del lema: para cualquier par de
subespacios en bloque de X, Y y Z, existen y1 < z1 < · · · < yn < zn, yi ∈ Y, zi ∈ Z tal que
‖
∑n

i=1(yi + zi)‖ > C ‖
∑n

i=1(yi − zi)‖. Llamando y =
∑n

i=1 yi ∈ Y, z =
∑n

i=1 zi ∈ Z, tenemos que
||y + z|| > C||y − z||. Es decir, X es C-hereditariamente indescomponible.

Rećıprocamente, supongamos ahora que X es C-hereditariamente indescomponible y tomemos
Y y Z subespacios en bloque. Definimos Y ′ ⊂ Y, Z ′ ⊂ Z subepsacios en bloque de la siguiente
manera:

y′1 ∈ Y ∩ [e1, e2, · · · ], y′1 =

q1∑

i=p1

αiei;

z′1 ∈ Z ∩ [eq1+1, eq1+2, · · · ], z′1 =

q2∑

i=p2

αiei;

y′1 ∈ Y ∩ [eq2+1, eq2+2, · · · ], y′2 =

q3∑

i=p3

αiei.

Aśı obtenemos (y′n)n, (z′n)n sucesiones en bloque y definimos: Y ′ = [y′n], Z ′ = [z′n]. Como estamos
suponiendo que X es C-hereditariamente indescomponible, existen y =

∑
aiei ∈ Y ′, z =

∑
biei ∈

Z ′ con soporte finito tales que ||y + z|| > C||y − z||. Por cómo fueron construidos Y ′ y Z ′ tenemos
que los soportes de y y z son disjuntos. Sin pérdida de generalidad, podemos suponer que vale que
ı́nf(sop(y)) < ı́nf(sop(z)). Sean:

I1 = {i ∈ sop(y) : i < ı́nf (sop(z))} ,

J1 = {j ∈ sop(z) : j < ı́nf(sop(y) \ I1)} ,

I2 = {i ∈ sop(y) \ I1 : i < ı́nf (sop(y) \ J1)} ,

J2 = {j ∈ sop(z) \ J1 : j < ı́nf(sop(y) \ I2)} ,

...

Tomamos entonces yk =
∑

i∈Ik
aiei, zk =

∑
j∈Jk

bjej ; cumplen que y1 < z1 < · · · < yn < zn
para algún n (notemos que estamos asumiendo que la sucesión termina con un elemento de Z ′; esto
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es posible por la Observación 3.1.4) y:

∥∥∥∥∥
n∑

k=1

(yk + zk)

∥∥∥∥∥ = ||y + z|| > C||y − z|| = C

∥∥∥∥∥
n∑

k=1

(yk − zk)

∥∥∥∥∥ .

Aśı, X es hereditariamente indescomponible si y sólo si es C-hereditariamente indescomponible
para todo C.

El siguiente resultado nos brinda la relación entre bases incondicionales y subespacios heredi-
tariamente indescomponibles que necesitaremos para demostrar el teorema final.

Corolario 3.3.7. Sea X un espacio de Banach, entonces X contiene una sucesión básica en bloque
C-incondicional o para todo ε > 0 tiene un subespacio en bloque que es (C − ε)-hereditariamente
indescomponible.

Demostración. Supongamos que X no contiene ninguna sucesión básica en bloque C-incondicional.
Consideremos σ = {(x1, · · · , xn) ∈

∑
f : sucesiones C -condicionales con ||xi|| = 1 para algún i}.

Observemos que σ es grande para X: si Y ⊂ X subespacio en bloque, como X no tiene sucesiones
básicas en bloque C-incondicionales, Y contiene una sucesión en bloque (y1, · · · , yn) C−condicional;
dividiendo por máx ||yi|| obtenemos un elemento de σ.
Dado ∆ ≥ 0, por el Teorema 3.2.2, existe W ⊂ X subespacio en bloque tal que P tiene estrategia
ganadora en el juego σ∆[Y ] (no puede ser σ[W ] = ∅ pues σ es grande). Dado ε > 0, tomamos
η > 0 a determinar y ∆ tal que

∑∞
i=1 δi = η. Veamos que el espacio W correspondiente a este

∆ es (C − ε)-hereditariamente indescomponible. Dados Y, Z ⊂ W subespacios en bloque, por la
observación, basta encontrar y1 < z1 < · · · < yn < zn, yi ∈ Y, zi ∈ Z tales que

∥∥∥∥∥
n∑

i=1

(yi + zi)

∥∥∥∥∥ > (C − ε)

∥∥∥∥∥
n∑

i=1

(yi − zi)

∥∥∥∥∥ .

Consideremos la siguiente estrategia para S: elegir los subespacios alternadando entre Y y Z:
X2n−1 = Y, X2n = Z. Pero como σ∆ es estrategicamente grande para W , P puede vencer la estrate-
gia de S, es decir, existen y1 < z1 < · · · < yn < zn, yi ∈ Y, zi ∈ Z tal que (y1, z1, · · · , yn, zn) ∈ σ∆.
Observemos nuevamente que podemos asumir que P gana en una movida par.
Existen entonces (y′1, z

′
1, · · · , y

′
n, z

′
n) ∈ σ tal que ||y′i− yi|| ≤ δ2i−1, ||z

′
i− zi|| ≤ δ2i ∀ i ≤ n. Tenemos

entonces las siguientes desigualdades:

Si (x1, · · · , xn) ∈ σ, ‖
∑n

i=1 xi‖ ≥ 1/2.
Sea k tal que ||xk|| = 1, usando (dos veces) que la base es monótona, tenemos que

1 = ||xk|| ≤

∥∥∥∥∥
n∑

i=k

xi

∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

xi −
k−1∑

i=1

xi

∥∥∥∥∥ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
∥∥∥∥∥
k−1∑

i=1

xi

∥∥∥∥∥ ≤ 2

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .

En particular, ‖
∑n

i=1(y
′
i − z′i)‖ ≥ 1/2.

∥∥∥∥∥
n∑

i=1

(y′i + z′i)

∥∥∥∥∥ > C

∥∥∥∥∥
n∑

i=1

(y′i − z′i)

∥∥∥∥∥ pues (y′1, · · · , z
′
n) ∈ σ,
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∥∥∥∥∥
n∑

i=1

(y′i + z′i)

∥∥∥∥∥−
∥∥∥∥∥

n∑

i=1

(yi + zi)

∥∥∥∥∥ ≤

∥∥∥∥∥
n∑

i=1

(y′i − yi) + (z′i − zi)

∥∥∥∥∥

≤

∥∥∥∥∥
n∑

i=1

(y′i − yi)

∥∥∥∥∥+
∥∥∥∥∥

n∑

i=1

(z′i − zi)

∥∥∥∥∥ ≤
2n∑

i=1

δi ≤ η,

∣∣∣∣∣

∥∥∥∥∥
n∑

i=1

(y′i − z′i)

∥∥∥∥∥−
∥∥∥∥∥

n∑

i=1

(yi − zi)

∥∥∥∥∥

∣∣∣∣∣ ≤
∥∥∥∥∥

n∑

i=1

(y′i − yi) + (z′i − zi)

∥∥∥∥∥ ≤ η.

Entonces,

∥∥∥∥∥
n∑

i=1

(yi + zi)

∥∥∥∥∥ ≥

∥∥∥∥∥
n∑

i=1

(y′i + z′i)

∥∥∥∥∥− η

> C

∥∥∥∥∥
n∑

i=1

(y′i − z′i)

∥∥∥∥∥− η

≥ C

(∥∥∥∥∥
n∑

i=1

(yi − zi)

∥∥∥∥∥− η

)
− η

= C

∥∥∥∥∥
n∑

i=1

(yi − zi)

∥∥∥∥∥− η(C + 1).

Basta ver que −η(C + 1) ≥ −ε ‖
∑n

i=1(yi − zi)‖ o, equivalentemente,

η(C + 1)

ε
≤

∥∥∥∥∥
n∑

i=1

(yi − zi)

∥∥∥∥∥ .

Tomamos η tal que η(C+1)2
(1−2η) ≤ ε, y entonces:

η(C + 1)

ε
≤

1

2
− η ≤

∥∥∥∥∥
n∑

i=1

(y′i − z′i)

∥∥∥∥∥− η ≤

∥∥∥∥∥
n∑

i=1

(yi − zi)

∥∥∥∥∥ .

Ahora estamos en condiciones de probar el Teorema 3.0.13.

Teorema 3.0.13 Sea X un espacio de Banach, entonces tiene un subespacio W que es hereditaria-
mente indescomponible o que tiene una base incondicional.

Demostración. Supongamos que ningún subespacio tiene base incondicional, entonces, por el Lema
3.1.2 para cada C, cada subespacio en bloque de X contiene una sucesión básica en bloque C-
condicional. Usando el Corolario 3.3.7 reiteradamente, para ε = 1, tenemos:

C = 2 : ∃ W1 ⊂ X 1-hereditariamente indescomponible,
C = 3 : ∃ W2 ⊂ W1 2-hereditariamente indescomponible, etc.

Aśı obtenemosW1 ⊃ W2 ⊃ · · · subespacios en bloque, conWn n-hereditariamente indescomponible.
Tomamos wn ∈ Wn tal que (wn)n es una sucesión básica en bloque y consideramos W = 〈wn〉;
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veamos que es hereditariamente indescomponible. Dados Y, Z ⊂ W subespacios en bloque, y C una
constante, tomamos n ≥ C. Observemos que Y ∩Wn y Z∩Wn son subespacios de dimensión infinita.
En efecto, si Y = 〈y1, y2, · · · 〉, yi =

∑qi
j=pi

αiwi, si k es tal que pk > n, entonces yi ∈ Wn para todo
i ≥ k. Como Wn es n-hereditariamente indescomponible, para todo par de subespacios en bloque
de dimensión infinita Y ′ ⊂ Y ∩Wn, Z

′ ⊂ Z ∩Wn existen y1 < z1 < · · · < yk < zk, yi ∈ Y ′, zi ∈ Z ′

tal que ∥∥∥∥∥
k∑

i=1

(yi + zi)

∥∥∥∥∥ > n

∥∥∥∥∥
k∑

i=1

(yi − zi)

∥∥∥∥∥ ≥ C

∥∥∥∥∥
k∑

i=1

(yi − zi)

∥∥∥∥∥ .

Luego, como C era arbitraria, por el Lema 3.1.3 concluimos que W es hereditariamente indescom-
ponible.
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