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Capitulo 1

Introduccion

En la teoria de valores extremos el interés principal se encuentra en los valores mas
bajos o mas altos de la variable bajo estudio, es decir, el interés estd en los eventos
asociados a la cola de la distribucion. Por ejemplo, en oceanografia es necesario estudiar
el comportamiento de corrientes marinas extremas, en estadistica ambiental es necesario
analizar niveles altos de ozono en determinada region, en climatologia es necesario
conocer el comportamiento de velocidades extremas de huracanes o valores extremos de
temperatura, etc.

Un enfoque al estudio de valores extremos es a partir del analisis de excedentes sobre
umbrales. Es decir, a partir de qué valor, por ejemplo, una temperatura puede considerarse
extrema. Por este motivo, es importante poder dar estimadores consistentes para los
umbrales. Existen diferentes métodos heuristicos y graficos que proponen estimadores
para los umbrales. Elegir adecuadamente el umbral no es una tarea fécil, si el umbral
elegido es bastante alto esto implicara que sélo algunas pocas observaciones se utilicen
para estimar la cola de la distribucién, aumentando asi la varianza de los estimadores.
Diferentes autores han estudiado la influencia de la eleccion del umbral en la estimacion
de los pardmetros de la cola de la distribucién (Smith (1987), Frigessi, et.al. (2003), Coles
y Tawn (1996), Coles y Powell (1996), Davison y Smith (1990) y Coles y Tawn (1994)).

La teoria desarrollada para el estudio de estos conceptos esta intimamente relacionada
con las leyes que rigen el comportamiento asintético del maximo de n variables aleatorias,
apropiadamente reescalado.

En esta tésis desarrollaremos una propuesta de estimacion del umbral a través de
un abordaje semiparamétrico. Para ello asumiremos que existe un umbral a partir del
cual la distribucién excedente pertenece a la familia Pareto generalizada. Es decir el
modelo propuesto asume que la distribuciéon por debajo del umbral pertenece a una
familia con densidades no especificadas mientras que la distribucion por encima del umbral
pertenece a la familia Pareto Generalizada. Para cada valor de u calcularemos una pseudo-
verosimilitud indexada en el umbral, que combina la estimacion no paramétrica de la
densidad para las observaciones menores a u, con la estimacion de maxima verosimilitud



para las observaciones excedentes al umbral. Estimaremos el pardmetro de interés como
el menor valor a partir del cual se maximiza la pseudo-verisimilitud.

Esta tésis esta conformada de la siguiente manera. En el Capitulo 2 estudiaremos la
distribucion asintotica del méaximo, discutiremos la necesidad de rescalamiento, es decir
la correcciéon apropiada respecto a la posicién y escala, y caracterizaremos las posibles
distribuciones limite. Ademéds presentaremos algunos resultados relativos a los dominios
de atraccion de las posibles distribuciones limite.

En el Capitulo 3 daremos una introduccion a la teoria de excesos presentando el marco
tedrico necesario para el desarrollo de nuestra propuesta de estimacion del umbral. Por
otro lado, resumiremos los métodos mencionados en la literatura ( ver Coles (2001)) para
la seleccion del umbral. Finalmente, presentamos nuestra propuesta y desarrollamos un
estudio de simulacién que permite evaluar el comportamiento de la misma.

Respecto de la bibliografia utilizada, los resultados de la seccién 2.3 se basaron
principalmente en los libros de De Haan y Ferreira (2006), y Teugels et al.(2004). La
bibliografia no mencionada a lo largo del texto fue consultada para la elaboracién de esta
tesis.



Capitulo 2

Fundamentos probabilisticos de la
teoria de valores extremos

2.1. Motivacion

Sean Xi,..., X, variables aleatorias independientes e idénticamente distribuidas con
distribucién F'; que asumiremos uniforme en el intervalo [0,1]. Queremos inferir el
comportamiento de la variable suma S,

i=1

Para esto, supongamos que tenemos m muestras aleatorias, cada una de ellas con
cien valores, podemos generar una nueva muestra aleatoria de la variable S,,, es decir

S S2 . .., 5™ como indica el siguiente esquema:
1 1 1 | 1
Xy oo X — S Sy S
p) 2 2 o2 2
XT oo X — Sp i Stoo
m m m m m
X" Xige — Sy, S, Stoo-

Donde S* indica que realizamos la suma de los primeros n valores de la k —ésima muestra,
n

es decir S¥ = ZXZ"’ . Si observamos las columnas derechas de este esquema, tenemos
=1

que el conjunto {S*}™ | es una muestra aleatoria con n fijo (n = 20,40,100). Por

ejemplo, para n = 20, tenemos una m.a de Sy, a saber, {S3,,5%,...,5m} es dicha

muestra aleatoria. De ésta forma, podemos conseguir un histograma de S,,, con n fijo, y

una estimacién de su densidad por niicleos' como en la Figura 2.1.

'En el apéndice se puede encontrar un resumen del estimador no paramétrico de la densidad basado
en nucleos.
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Figura 2.1: Histograma y densidad estimada por niticleos de la variable Sag.

Se realiz6 una simulacion de este procedimiento para los distintos valores de n, con
n = 20,40,100, los resultados se muestran en la Figura 2.2, donde observamos que
a medida que n crece los estimadores de S, se asemejan a campanas, cuya amplitud
On V posicion central pu, es creciente con n. Esto sugiere que si quisieramos hallar el
comportamiento asintético de .S, nos bastard conocer como es p, y o, y realizar la
transformacién
S in

On

Zy =

El “Teorema Central del Limite”(TCL) establece cémo elegir éstos valores y cudl es
la curva de densidad asintética que resulta de aplicar esta transformacion. En efecto,
recordando que nuestra muestra es U(0,1) con E(X) = p = 5y Var(X) = 0% = 3,
tenemos que p, = nu y o, = oy/n. En la Figura 2.3 se observa el efecto de esta
normalizacion, y la buena aproximacion de la distribucion Normal a las variables Z,,.
El TCL puede entenderse como una manera de caracterizar el comportamiento asintotico
de la distribucion de la variable aleatoria S, mediante un cambio de escala y posicién.
Asi como resulta de interés la variable suma S,, podemos interesarnos en la variable

maximo M, definida por:
Mn = méX{Xl, XQ, Xg, ceey Xn}

Para estudiar el comportamiento de M,,, empezaremos haciendo una simulaciéon para
variables i.i.d ~ £(1), con el mismo esquema utilizado anteriormente. Es decir, tenemos
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Figura 2.2: Histogramas y densidades estimadas por nicleos de las variables Sy, S50 y
S100-

m muestras de tamaiio 1000 y vamos tomando M = max{ X}, X5 XF .. XF}

1 1 1 1 1
XT o Xioo — Mo, Mg, Miooo
m m m m m
X7 1000 — 7 150 6007 1000

Calculando estimaciones de densidad para distintos tamanos de muestra, analogos a los
exhibidos en la Figura 2.2. Obtenemos el grafico a) de la Figura 2.4.

La Figura 2.4, hace plausible que las variables M,,, tengan forma definida mediante
reescalamiento, al igual que las variables .S,,. Es decir, continuando con la analogia de S,
quisieramos averiguar si existiran constantes a, > 0, de escala, y b, € R, de posicion,
tales que la transformacion de las variables M tengan una distribucién limite conocida,
a saber:

La Teorfa de los Valores Extremos (TVE) estudia este tipo de problemas. Los primeros
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Figura 2.3: Densidades estimadas por nicleos de las variables Zsy, Z50, v Z100-

autores en abordar este tema fueron Fisher y Tippet (1928). Gumbel (1958) formalizé y
extendié sus ideas. Actualmente esta teoria estd en continuo desarrollo y mantiene un
alto interés. La cantidad de aplicaciones vinculadas a conocer el comportamiento del
maximo de un proceso aleatorio, tiene como consecuencia que la TVE interese no solo a la
comunidad matematica, sino también a especialistas de las méas diversas disciplinas. Para
adelantar el tipo de resultado que se busca, consideremos el siguiente ejemplo conocido.

Lema 2.1.1. Sean X; ~ £(1) i.i.d’s definimos la variable aleatoria M}

Mn_bn

G

M =
con a, =1 y b, =In(n) entonces,
M 2w
donde W es una variable aleatoria cuya densidad es
g(x) = exp{—z — e "}.

Demostracién Lema 2.1.1. Llamemos Fj;- a la funcién de distribucién de la variable
M’y F(z) = 1— e * ala funcién de distribucién correspondiente a £(1). Dado z € R
hallemos Fy:(z). Claramente

Fy(2) = P (M) < z) =P (M, <za,+b,) =P (M, <z+In(n)).
Como se vera en (2.2.2), Fiy, (x) = (F(x))" luego,

Fys(z) = (F(z 4+ In(n)))" = (1 - e_(z+ln(”)))n :



Reescribiendo la parte derecha de la igualdad tenemos que

e *\"
F * - 1 — —e *
Mz (2) < " > meXP( e’),

por lo tanto

M 2w
con Fy(z) = exp(—e*) y cuya funcién densidad de W estd dada por fy(z) =
exp{—z — e~ "}, que es lo que se queria ver.[]

El lema recién probado, sugiere que para valores grandes de n, la distribucién de M

podra ser aproximada por la distribucion de W. La Figura 2.4 da cuenta del reescalamiento
y de la efectividad de este ajuste para varios valores de n.

a) b)
< _| ~
o o
B Mg
B Mygo
B Moo
o | « |
o o
N N
o o
5 - 5 -
o | — o |
o o
I T T T T T I I T T T I
2 4 6 8 10 12 14 -2 0 2 4 6

Figura 2.4: a) Densidades estimadas de Mis9, Mygo, ¥ Migoo b) Densidades estimadas de
Mso, My, v Miggo v su comparacién con g(z) = exp{—x — e *}.

En este caso el conocimiento de la distribucién subyacente (X; ~ &(1)), nos dice
exactamente que constantes a, y b, tomar, y hacia que curva convergen las variables
M con esta normalizacion. Afortunadamente, bajo hipétesis razonables, la TVE es lo
suficientemente general como para prescindir del conocimiento exacto de la distribucion
subyacente, proveyendo resultados de convergencia en distribucién a familias de variables
aleatorias con distribucion conocida. Esta es, quizd, su mayor fortaleza.



2.2. Consideraciones generales y necesidad de
reescalamiento

Sean Xi, Xs,..., variables aleatorias independientes e idénticamente distribuidas
(i.i.d’s) con distribucién F: X; ~ F. Denotaremos con M,, a M, = max{X;,..., X, } al
maximo de las primeras n variables aleatorias. Nos interesa describir el comportamiento
de M, con n — oo, para ello necesitaremos la siguiente definicién.

Definicién 2.2.1. Sea F' una funcion de distribucion acumulada. Se define el punto
derecho final z* como z* = inf{z : F(z) = 1}, donde se adopta la convencién inf () = co

Es importante notar que, cuando z* € R, tenemos que P(X; < z*) = 1. De hecho,
para todo x > x* se satisface que F'(x) = 1 y siendo F' continua a derecha, concluimos
que F(z*) = 1. En tal caso, podemos también garantizar que P(M, < z*) = 1.

Para poder estudiar la distribucién de M,, notemos que

(M, <z} = ﬁ{xi < 1}, (2.2.1)

Bajo las hipotesis mencionadas, de independencia e idéntica distribucién, al tomar
probabilidad a ambos miembros en la ecuacién (2.2.1) se obtiene:

P({M, <z}) = P(ﬁ{Xi§$}> :HP<{X2'§$})

= [Im@ =176 = F@)

Por lo tanto, la funcién de distribucién de M, es
P({M, <z})=(F(x))", (2.2.2)

luego Fuy, () = (F(x))", de modo que para cada z fijo, bastard con analizar el limite de
F(x)™. Observando que F(x) € [0, 1], trivialmente ocurre que

, [0 sl F(x) <
nlggo FM,,L(‘T) = {1 si F(x) =

1
1.

Siguiendo esta idea, puede verse que, cuando z* € R, M, LN x*, es decir,
la convergencia de M, en distribucién es a una funcién de distribucion degenerada
concentrada en x*. Vamos a demostrar que, en realidad, M, converge casi todo punto
a r*, sea o no finito.
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Lema 2.2.1. Sean (X;);>1 i.i.d., con distribucion F': X; ~ F. Sea x* el punto derecho de
F, introducido en la Definicion 2.2.1. Tenemos entonces que
P(M, — z*) = 1.

Demostracién Lema 2.2.1. Notemos que P(X; < z*) = 1, y por consiguiente,
P(M, < z*) = 1, para todo n > 1. Para hacer la demostracién, debemos diferenciar
el caso x* € R del caso x* = oco. Cuando z* € R, tenemos que

{M,, = 2"} = N Upy Nz {| M, — 2| < 1/M}.

Luego, basta verificar que el complemento de {M,, — x*} tiene probabilidad cero. Es decir
queremos ver que cualquiera sea M

P((Mpy Unsng {|1Mn — 2% > 1/M}) = 0. (2.2.3)
Denotemos con A, = {|M,, — 2*| > 1/M}, la ecuacién 2.2.3 es equivalente a que
P(limsup A,) = 0.
Por Borel-Cantelli, bastara probar que >~ | P(A,) < co que se desprende del hecho que
P(A,)=P(M, <z*—1/M) = (F(z* —1/M))".

Por definicién de z*, cualquiera sea M, F(xz* — 1/M) =r < 1, luego

iP(An) = ir” < 00.
n=1 n=1

Si z* = +o00, tenemos que {M,, = +00} = Nk Uy, Nusny {M, > K}, luego veremos que
este conjunto tiene probabilidad 1. Tomando complemento y haciendo un razonamiento
analogo al anterior, alcanzara con estudiar el conjunto

ﬂno Un>n0 {M’n S K} *

Otra vez, por Borel-Canteli, llamamos A, = {M, < K} y queremos ver que
S P(A) = > (F(K))" < oo. Donde al ser K un nimero fijo y z* = oo,

F(K) =r <1 pudiendo escribir > 7 P(A)=>"" r" < 00. [

El Lema precedente muestra que para hacer aproximaciones asintoticas de M,, a una
distribucion G no degenerada, es decir que no esté concentrada en tinico punto, es necesario
realizar algun tipo de transformacion. En vistas de resolver esto se plantea el estadistico

*.
M
M, — b,

Qn

M =
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donde b, € Ry a, > 0, son sucesiones hipotéticas, que hacen que
« D
M, =W, (2.2.4)

con Fiy(z) = G(x) y G(z) una funcién de distribucién no degenerada. La condicién
(2.2.4), es equivalente a que existan a,, b, y una funcién de distribucién no degenerada
G, tal que para cada punto = de continuidad de G se satisfaga

lim (F(apx + b,))" = G(x) . (2.2.5)

n—o0

En adelante, estudiaremos los siguiente dos puntos:

1) Suponiendo la existencia de sucesiones a, y b, adecuadas, hallaremos cuéles son
las posibles distribuciones GG a las que el maximo reescalado puede converger. Este
problema es nombrado por la literatura como el “Problema Limite de Extremos” y
fue resuelto por Fisher y Tippett (1928), y Gnedenko (1943), y més tarde revivido y
perfeccionado por De Haan (1970).

11) Dada una posible distribucién limite GG, determinar cudles son las condiciones que se
deben pedir sobre la distribucion subyacente F' de las variables X; para que existan
an, b, de manera que valga la condicién (2.2.5). En ese caso se dice que F' estd en el
dominio de atraccién de G, y se denota F' € D(G).

2.3. Problema limite de extremos

En esta Seccion se caracterizara a las funciones de distribucion G' que cumplan con
la condicién (2.2.5). Es decir, bajo el supuesto de que el limite (2.2.5) existe para ciertas
sucesiones a, y b, , se tratara de saber como es la funcién G.

Sea z un punto de continuidad de G, y ademds 0 < G(z) < 1. Tomando logaritmo
natural en ambos lados de la igualdad en (2.2.5) tenemos que

lim nln F(a,z +b,) = InG(z). (2.3.1)
n—oo
Por otro lado, sabemos que lim, . F(a,z+0b,) = 1, de lo contrario, como

{F(anx+ by)}re, C [0, 1] compacto, existe a € R tal que, F'(a,, x4+ by,) ——a< 1yen-
—00
tonces, (F'(an, = + by, )" — 0 = G(x) que contradice la hipdtesis de que 0 < G(x) < 1.
—00

In w
Asimismo, usando que h’m1 T 1, haciendo la sustitucién w = F(a,x+b,) y operando
w—1 W —

algebraicamente en la ecuacién (2.3.1) se obtiene

lim n(1 — F(a,z +b,)) = —InG(z). (2.3.2)

n—oo
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Invirtiendo la ecuacion anterior queda

I ! _ ! (2.3.3)
S (1 — Flape + b)) InG(z) "

Este limite puede ser escrito en términos de la funcién inversa a izquierda. Para eso,
debemos recordar su definicién y mencionar algunas de sus principales propiedades.

Definicién 2.3.1 (Inversa a Izquierda). Dada una funcién f no decreciente, se define la
inversa a izquierda de f en y, f< (y), como aquella que cumple

[ (y) = f{z: f(z) > y}.

Observemos que en el caso de que f = F sea una funcién de distribucién, F* (p) =
Q(p), donde @ es usualmente conocido como el p-cuantil asociado a la distribucién F. A
continuacion enunciaremos algunas propiedades de la funcién inversa a izquierda.

Propiedades 2.3.1.

1) [ es no decreciente.

1) Si f es continua, con f(x) =y f(f*(y)) =vy.

La siguiente propiedad, cuya demostraciéon puede verse en De Haan y Ferreira (2006),
establece que la inversa a izquierda, preserva convergencia, en el siguiente sentido:

Propiedades 2.3.2. Sean f, una sucesion de funciones no decrecientes convergiendo
puntualmente a una funcion no decreciente g, para cada punto de continuidad de g, i.e;

lim f,(x) = g(x).
n—o0
Sean [~ y g~ sus respectivas inversas a izquierda, entonces
lim f"(x) = g% ()
n—o0
para cada x, punto de continuidad de g* .

Sean
1 1

Jalw) = n(l = F(a,z +by,))’ 9() = T InG(z)’
aplicando los resultados presentados en 2.3.2 a la ecuacién (2.3.3), obtenemos que para
todo x punto de continuidad de ¢

lim f(x) = ¢ (x). (2.3.4)

n—oo

El proximo objetivo es operar este limite por medio de los “Cuantiles de Cola”,
un concepto clave para el desarrollo de la Teoria de Valores Extremos. El mismo
estd relacionado al comportamiento de los valores cercanos al punto derecho final z*
de la distribucion subyacente F'.
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Definicién 2.3.2 (Cuantil de cola). Dada una funcién de distribucién F, y un valor
x € (1,00) se define el cuantil de cola U(z) = Up(z) como

U(e) = Un(z) = F- (1 - i) | (2.3.5)

Notemos que a medida que x crece, la probabilidad de encontrar un valor mas alto
que U(z) decrece. Por ejemplo si z = 10" entonces P(X > U(x)) = 107". Asi, los valores
que toma U(z), dan una idea de como se comporta la distribucién para aquellos valores
altos que tienen baja probabilidad de ser superados. De esta forma U(z) indica cual es
el comportamiento de la cola. En la Figura 2.5 se observa, a modo de comparacién, los
valores de U para dos distribuciones opuestas, la distribucion Normal y la distribucién
Cauchy. Se ve que U crece muy lentamente, de manera logaritmica, para el caso Normal
(Cola Liviana), mientras que lo hace rapidamente, de manera lineal, para el caso donde
la distribucién es Cauchy (Colas Pesadas).

Cuantil de cola U:Normal

5 S /
S T *—*‘3 | *‘10 |
5 o U(10)u(10°) sU(10"™) 10
Cuantil de cola U:Cauchy
e
== | N NN

. ; U(10) s U0)U(25) 1o

Figura 2.5: Funcién de distribucion acumulada y comportamiento de Cuantiles de Cola.

1

A continuacion probaremos que f;7(x) la funcién inversa de f,(z) = 2= Flaz 7 5))

que definimos anteriormente, puede expresarse en términos de la funcion U. Para = > 0,
tenemos que

Fi(e) = inf{y - fuly) > 2} = inf {y e 2 } |
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1

Llamemos A al conjunto {y : T Flang ) > x}. Utilizaremos la siguiente propiedad, sea

B un conjunto acotado inferiormente B C R, y valoresa >0y g € R
inf{Ba + f} = inf{B}a + 0.
inf{Aa, +b,} — b,

Luego tomando o = a,, > 0y 8 = b, tenemos que [ (z) = Por
an
ultimo observemos que
inf{Aa, +b,} = inf : > n+ bn
e ) = W ey 2 et

inf{Aa, +b,} = inf {{y : > nx} a, + bn}

(1 = F(any + bn))
1

= mf{a,y + by : 0= Flay 7 5.)) > nax}
= mf{w: 1= F(w) > nax}

= inf{w:F(w)Zl—%}

= U(nx)

de esta forma obtenemos la relacién buscada que vincula a la funcion inversa generalizada
de f,, con el cuantil de cola de la distribucion F',

ity = H =

Qp,
A su vez, operando de manera andloga, el término derecho de (2.3.4), puede expresarse
como

(2.3.6)

g« (x) = G (e v) (2.3.7)
para x > 0. Observemos que g () es no decreciente y continua a derecha. Esta propiedad
serd muy util mas adelante.

Definicién 2.3.3. Dada una funciéon de distribucion G, definimos D = Dg : Ryg — R
mediante la formula

D(z) = g* (z) = G (e %) (2.3.8)

siendo G¥ la funcién inversa a izquierda de la distribucion G.

En consecuencia, de (2.3.7), (2.3.6) y (2.3.4) hemos probado que para cada = punto
de continuidad de la funcién D,
lm U(nz) — by,

n—00 Ay,

= D(x). (2.3.9)
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El desarrollo hecho hasta ahora puede resumirse en el siguiente teorema que relaciona
el limite (2.2.5) puesto en términos de F', con el limite (2.3.9) en términos de U.

Teorema 2.3.1. Sean a, > 0 y b, suseciones de niumeros reales y G una funcion de
distribucion acumulada no degenerada. Las siguientes afirmaciones son equivalentes:

1) Para cada x, punto de continuidad de G con 0 < G(z) < 1

lim (F(apz +b,))" = G(x) (2.3.10)

n—o0

11) Para cada x > 0 punto de continuidad de D,

lim 02 =0 D(x) (2.3.11)

n—oo an

En vistas de caracterizar la funcién GG, necesitamos modificar levemente este teorema
de manera de tener funciones de parametro continuo a(t) y b(t) en lugar de sucesiones a,,

y by.

Lema 2.3.1. Sean a, > 0 y b, suseciones de niumeros reales y G una funcion de
distribucion acumulada no degenerada. Las siguientes afirmaciones son equivalentes:

1) Para cada x punto de continuidad de G, con 0 < G(z) < 1

lim (F(apz +b,))" = G(x) (2.3.12)

n—o0

11) Para cada x punto de continuidad de G, con 0 < G(z) <1

lim t(1 — F(a(t)z 4+ b(t))) = —InG(z) (2.3.13)

t—o00
siendo a(t) := ay y b(t) := by (donde [t] es la parte entera de t).

1) Para cada x> 0 punto de continuidad de D

= D(x) (2.3.14)
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Demostracién Lema 2.3.1. I) = II): Previamente se probé la equivalencia entre I)
y la ecuacién (2.3.2), luego bastard ver la equivalencia entre (2.3.2) y II). La misma
se desprende en forma sencilla de la siguiente relaciéon que permite cambiar la variable
discreta n por la continua ¢

~InG(z) = lim n(l = Flayz+b,)) = lim [f](1 = Fla(t)z +b(1)))
= lim 140 = Flaye + b)) = lim ¢(1 = F(a(t)e + b(t))).

IT) = III): Ya probamos que I) es equivalente a la ecuacién (2.3.9), y el hecho que
I) <= II) implica que bastard con ver que (2.3.9) es equivalente a I1]). Para esto, dado
x> 0yt>1, entonces
[t <tz < ([t] + 1)z.

Al ser U no decreciente y a(t) positivo sucede que

U(ltlr) —bt) _ Ultz) —b(t) _ U(([t] +1)z) = b(t)
a(t) a7 a(t) '

Sea ahora 2’ > x, entonces 2’ —x > 0, luego se puede tomar [t] > ¢, > mix{—-*—,1}. Para

(2.3.15)

x .
este valor de ¢ vale que [t] > — , que es equivalente a
-

[t > [tle + 2z = ([t] + 1)z.
Luego
U(([t] + Dz) —b(t) _ U([t]2") — b(t)
a(t) a(t)

Combinando este tltimo resultado con (2.3.15) se obtiene que para cualesquiera = y x’
puntos de continuidad, con 2’ > x

<

U(ltlx) —b(t) _ U([tlz) - b(t)
a(t) - a(t)

Tomando limite en esta tltima expresién y haciendo uso del resultado (2.3.9) tenemos
que

<

Do) — 1 ZUD) B0 _ UG b0 _ U)o

t—o00 a,(t) T t—oo a(t) T t—oo a t)

Como esto vale para todo 2’/ > x, tomando 2’ = x + ¢, se tiene que V € > 0

D(x) < 1im ZWH2) =01

Jim o) < D(z +¢) (2.3.16)
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Por lo tanto, al ser D continua a derecha se obtiene

U([tlz) —

lim b = D(x)

e al)

que es la condicién I17) y a lo que se queria llegar. [J

A continuacién estudiaremos el principal resultado de esta Seccion, la caracterizacién
de la funcién G(z). Para ello, introducimos la familia de valores extremos.

Definicién 2.3.4. Consideremos la funcién
G, (z) = exp{—(1+~x)""7}  para 1+~vyz >0 (2.3.17)

para 7y # 0, mientras que para v = 0, se define Go(x) = exp{—e~*}.
La clase de distribuciones de valores extremos esta dada por

VE ={G,(ax+b):vy€R,a>0,beR}.

El pardametro v de la ecuacién (2.3.17) se denomina indice de valores extremos (IVE).

Teorema 2.3.2 (Fisher y Tippet(1928), Gnedenko(1943)). Sean (X;)i>1 i.i.d., con
distribucion F', supongamos existen a, y b, tal que

méx{X1,...., Xo} — by

M = W (2.3.18)

Qn

con W ~ G. Si G es no degenerada entonces G pertenece a la clase de distribuciones de
valores extremos. Es decir, existen v, a y b tal que

G(z) = G,(axr + ).

Demostracion Teorema 2.3.2. Bajo el supuesto de que existen sucesiones a,, b,
satisfaciendo (2.3.18), por el Teorema 2.3.1, para z > 0 punto de continuidad de la
funcién D definida en (2.3.8), se tiene que

D(x) = lim M

e all)

Supongamos ademds que 1 es punto de continuidad de la funcién D y sea E(x) =
D(x) — D(1). E(x) puede ser expresada como el siguiente limite para los puntos de
continuidad de D

(2.3.19)
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Notemos que

Ultey) — U()  Ultey) — Ulty) alty) | Ulty) — U()
oB  alty) o T awm (2.3.20)

Se afirma que % tiene limite cuando t — oo, para y > 0, punto de continuidad

de D. En efecto, siendo G no degenerada, existe x > 0 punto de continuidad de D con
E(z) # 0, y xy punto de continuidad de D. De la ecuacién (2.3.20), obtenemos que

E(ry) — E(y) .. a(ty)

=1 .
E(x) o afl)

De ésta forma podemos definir, para y punto de continuidad de D la funcién A(y) :=

t
th a((ty)) Notemos que, cualesquiera sean los puntos z, e y de continuidad de D, la
—0o0
funcién A cumple

Az -y) = A(z) - A(y). (2.3.21)
En efecto,
t t) a(t t t
A(zy) = lim alzyt) _ lim alzyt) alty) _ lim a(zyt) lim a(ty) = A(z)A(y).

twoo a(t)  twoo a(ty) a(t)  tooo a(ty) t=oeo alt)

Ademads, puede probarse que si A satisface (2.3.21), necesariamente existe v € R

cumpliendo
Aly) =y. (2.3.22)

Luego, a partir de la ecuacién (2.3.20) tenemos que

E(zy) = E(x)y” + E(y), (2.3.23)
y por simetria también tenemos

E(zy) = E(y)z” + E(z).

Estudiemos primero el caso v = 0. En este caso la ecuacién (2.3.23) se simplifica en
E(zy) = E(x) + E(y) luego para algin A > 0

E(x)=Alnz

para z punto de continuidad de E. Luego las propiedades de monotonia de E y la

continuidad de Inz garantizan que la igualdad se satisfaga para todo xz > 0. Por lo
tanto, D(x) = An(x) + D(1), asi

G (e7V*) = XIn(x) + D(1).
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Luego, tomando z = Aln(z) + D(1) tenemos z = e®**°

anterior obtenemos que

y sustituyendo en la ecuacion

G(2) = exp{—e (@0, (2.3.24)
En el caso v # 0, operando con las ecuaciones obtenidas anteriormente se sigue que
E(x)y"+ E(y) = E(y)a” + E(x)
E(@)(y"-1) = E(y) (2" -1)
E(yo)

, se llega a que
yo —1

E(z) =K (" —1)

fijando y = yo # 1,yg — 1 # 0, y renombrando K =

para todo x > 0, usando nuevamente la monotonia de la funcion F al igual que en el caso
v = 0. Asi, como E(x) = D(z) — D(1) y D(z) = G* (e~'/*) tenemos que
G (e V) (z) = K (27 — 1) + D(1)
tomando h(z) = e 1/*
G (h(x)) = K (27 — 1)+ D(1).

Como z es punto de continuidad de D(-), y la funcién h(t) = e~/* es continua con inversa
continua em t > 0, G* (-) es continua en h(x). Luego aplicando G a ambos miembros se
obtiene:

h(z) =G(K (27 — 1)+ D(1))

e VT = Q(K (27 — 1) + D(1))
Escribiendo

k=Y
v

e VT =@ (% (@7 — 1)+ D(l))

1
Tomando y = — (27 — 1), se tiene que = (yy + 1)'/7. Luego
Y

=G — = OvD _ G (Ky + D(1)).
Esto tltimo implica que, para v # 0, existen constantes a y b cumpliendo
G, (az +b) = exp{—(yz + 1)7"7}. (2.3.25)

Los dos casos que se acaban de probar, (y = 0y v # 0) pueden ser puestos en una
sola familia de funciones, a costa de adoptar la convencion

{(7x + 1);1/7} =e "

v=0
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Asi, hemos probado que existen constantes v, a y b
Glaz+d) = e_(erl)Il/7
donde {A}, = max{0, A}. O
En vistas de hacer una caracterizacién de las funciones para las cuales existe una ley

asintotica para el maximo. Enunciaremos un teorema que resume las propiedades vistas
en esta seccién.

Teorema 2.3.3. Las siguientes sentencias son equivalentes.

1. FExisten a, >0, y b, € R tales que

lm F"(a,2 + b,) = G, (x) = exp (—(1 + yz) /) (2.3.26)

n—o0

para todo x tal que 1 4 yx > 0.
2. Existe una funcion a(t) > 0 tal que para x > 0,

h,m:U(ta:)—U(x): _ a1
o0 a(t) gl

(2.3.27)

donde para v =0 y Dy(z) := log(z).
3. Existe una funcion a(t) > 0 tal que para x > 0,

limt(1— Fla(t)x+U(t))) =1+ 7:5)—1/“1

t—o00

para todo x tal que 1+ ~vx > 0.
Ademdas, (2.3.26) se satisface con b, :=U(n) y a, = a(n).

2.3.1. Enfoque histérico

La parametrizacién dada en el Teorema anterior, se debe a Von Mises (1936) y
Jenkinson (1955). Historicamente se separd segun el signo de «y en tres casos. Cada uno
de ellos correspondiente a una clase de distribuciones. Asimismo observemos que segun el
signo de v la funcién G, tiene dominio diferente.
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» Para v > 0 (Tipo II)

La distribucién de valores extremos se denomina de Tipo I1, que es la clase de Frechet
y estd asociada a la letra ®. Es decir, si la ley de valores extremos de F' converge a
una funcién de distribucién G, con v > 0, entonces existen valoresa >0y b€ R
que cumplen G (az +b) = ®;/,(2) donde ®,(z) se define como

0 siz <0
a(z) = {exp{—z_a} siz > 0.

Mas atin las transformaciones correspondientes entre @, y G, son tomar a = 1/

y luego hacer GA,(Z;I) =d,(2).

» Para v =0 (Tipo I)
En este caso, la distribucién es de Tipo I y estd asociada a la distribucién de Gumbel
A(z). En este caso A(z) := Gy(z) = exp(— exp{—=x}).

» Para v < 0 (Tipo III)

En este caso, la distribucion es de Tipo III y estd asociada a la distribucién de
Weibull U(z).

W, (2) = {eXp<—|z\a> §iz<0

1 siz>0.

Con a > 0 la relacién de G, con ¥, es que ¥, = G_q/0(—a(z —1)).

2.3.2. Dominios de atraccion

En esta seccion se establecerdan condiciones que determinen cuando una funcion de
distribucion F' cumple con la ley asintética del maximo que se traté en la subseccion
anterior.

Lema 2.3.2. Supongamos que existen sucesiones a, > 0, b,, satisfaciendo,

M, — b,
Rl A 1

Qn
con W ~ G, (cx +d) para ¢ > 0 y d € R. Entonces ezisten a,, > 0, b,

M, -V p
—— S W
CI/TL

donde W' ~ G, (x).
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Demostraciéon Lema 2.3.2. La demostracion se sigue facilmente utilizando el Lema de

Slutsky, notando que
Mn - bn D /
c-——+d—=>W =cW +d.
Qp
Luego, la funcién de distribucién de la variable aleatoria W' es G,(2) y ¢ - @ +d=

M,,—b} ; _ Qn ;. /
Tnconan—?ybn—bn—and.m

El lema precedente, indica que las sucesiones a,, y b, no son tinicas y estan asociadas a
los valores de posicion d y escala ¢ que eventualmente toma la funcién G. De esta manera,
se puede pensar que las condiciones que hay que pedir a una funcién de distribucion F
para que exista una ley limite para el maximo, estan dadas, no ya para una familia de
distribuciones G' que incluye corrimientos de posicién y escala, sino para la funciéon G,
estandarizada con c =1y d = 0.

Definicién 2.3.5. Sea F' una funcién de distribucién y v € R, se define que F' esta en el
dominio de atraccion de G, si vale que

lim F" (a0 + b,) = Gy(2) = exp{—(1 +72)/7}.

n—oo

En este caso, se escribira F' € D (G,).

Con el fin de analizar las hipdtesis necesarias sobre la funcién de distribucion F' para
que se satisfaga la ley asintética del méaximo, separararemos el estudio en tres casos
dependiendo del signo de . El signo de este parametro es el primer indicador de las
propiedades de la “cola”de la distribucién. Si v > 0 la funciéon F' tiene cola “pesada’y
¥ = 00; 81y <0, 2% < oo; ysiy = 0 lacola es “liviana”’y z* puede ser finito o
infinito. La mayoria de las funciones de distribucién continuas tipicamente utilizadas en
estadistica estdn en algiin dominio de atraccion. Por ejemplo, las distribuciones Normal
y Exponencial pertenecen a D(Gp); la distribucién uniforme a D(G,) con v < 0; y la
distribucién de Cauchy a v > 0.

En esta tesis s6lo estudiaremos el caso v > 0. Las técnicas utilizadas para este caso,
pueden readaptarse al caso v < 0, pero no para el caso v = 0, este tltimo puede consultarse
en De Haan y Ferreira (2006). Es oportuno aclarar que existen casos de distribuciones que
no estan en ningiin dominio de atraccion, por ejemplo, la distribucién discreta de Poisson
no pertenece a ningiin dominio de atraccion. La Tabla 2.1 resume algunas distribuciones
junto a los dominios de atraccién al que pertenecen.

El caso de Fréchet-Pareto: v > 0

Como primer ejemplo se tomard la funcién de distribucién de Pareto estricta Pa(a),
es decir su funcién de distribucién esta dada por, F(z) =1 — 2 con > 1 donde « se



Distribucién F(x) FeD(G,)

N(/% 02) ® (%) GO
EN) Flz)=1—¢e? Go

B(a,b) N Fr(gc;}rfg)w“_l(l —w)* tdw G_1/a
U(a,b) F(z) =32, x € [a,b] G-
Cauchy (a,b) F(z) = L arctan (23%) + 3 Gy

x (e _ n
IT,| P(x) = [*, 2qndcey (140~ tw?) 02 Gi/n
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Cuadro 2.1: Distribuciones usuales junto a los dominios de atracciéon al que pertenecen.
® es la funcion de distribucién respecto a una variable normal estandar.
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1

o

denomina el indice de Pareto. Para esta distribucién tenemos que U(x) = 27. Con v =
Entonces planteando la condicién sobre los cuantiles de cola, tenemos que

_ Y Y Y
i J) —U@) ) =t 2w -,
T—00 a(x) T—00 a(x) T—00 a(x)

Tomando a(z) = vz obtenemos que

_ v 1
lm U(xt) — U(x) _t .

w00 af) g

Luego si F' ~ Pa(a), entonces F' € D(G,). La ecuacién anterior vale solo para un
caso particular. Pero la cuenta detallada da idea de como relajar las condiciones para
extender este resultado a funciones mas generales que aquellas asociadas a Pa(«). Antes
de comenzar definiremos las funciones de variacién regular.

Definicién 2.3.6. (Funciones de variacién Regular) Una funciéon g: A CR — B C R es
de variacion regular de indice « si

t
lim g(xt)

=t
z—o0 g(x)

Si a = 0, entonces g se dice de variacion lenta, a las funciones de variacién lenta las
notaremos con la letra /.

Asintoticamente, si una funcién g es de variacion regular de pardmetro «, una
amplificacion ¢ en su argumento x, tiene como respuesta una amplificacion en el valor de
la funcién de orden «, es decir, g(xt) ~ g(x)t*. Por ello puede pensarse que las funciones
con a = 0, son insensibles a amplificaciones en el argumento pues vale g(zt) ~ g(x).
Consecuencia de esto es que si a = 0, la funcion g varie muy lentamente, y de alli su
denominaciéon como funcién de variaciéon lenta. Un ejemplo de una funcién de variacion
regular de orden « es ® y un ejemplo de funcién de variacién lenta es log(z).

Proposicién 2.3.1. g(x) es de variacion reqular de pardmetro a < g(x) = x*((x), donde
((x) es de variacion lenta.

Demostracién Proposicién 2.3.1. (=): g(x) es de variacién regular de parametro «,
entonces vale

t
i L) g (2.3.28)
Luego, definimos ¢(z) := %, entonces valen las siguientes dos afirmaciones,

-« glx) = 2°(x)
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» ((z) es de variacién lenta:

(xt)  glat) x®

0w = @ g (2:3.29)
_ Lg(at)
= Fo (2.3.30)

V4
T 0T S VN[0 N
T—00 ﬁ(:p) 1Y z—o00 g(x) to

De ésta forma, los dos items anteriores, concluyen la implicacion en el sentido que se
queria probar.

(«<): Ahora, suponiendo que g(x) = x*¢(x), con ¢(z) de variacién lenta, puede verse
directamente que g es de variacion regular de parametro « aplicando la definicién.

i 9@ _ g ) g )

T—00 9(27) T—00 [L‘aﬁ([[;) T—00 f([)j')

El siguiente teorema impone condiciones de suficiencia sobre F de manera que

F e D(G,).
Teorema 2.3.4. Sea F' una funcion de distribucion, tal que

Up(x) =U(z) = 2"y, (x) (2.3.31)
con vy > 0 y Ly, una funcion de variacion lenta entonces F' € D(G.).

Demostracion Teorema 2.3.4. Para probar el teorema, basta probar que se satisface
la condicién dada en (2.3.27) que se desprende directamente del siguiente hecho

Uxt) — U(x) (xt) "y (xt) — 2V ly ()

o = a(z)
— lim ly(z)x? (ly(at)
- (e )

Sea a(x) = vly(z)x” obtenemos que

_ v 1
lfm U(xt) — U(x) _t

T—00 a(aﬁ‘) ’y

que es lo que queriamos ver.O]

Observacién 2.3.1. La condicion U(x) = x7ly(x) implica que si U(x) es de variacion
reqular de pardmetro v > 0 entonces F' € D(G,).
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En adelante se probara que la condicién suficiente (2.3.31) también es necesaria. Con
esto tendremos que para v > 0 el dominio de atraccion D(G,,) quedard completamente
caracterizado por el comportamiento asintético de las funciones cuantiles de cola Ur de las
distribuciones F' que estan en dicho dominio. Antes de continuar enunciaremos el siguiente
resultado que probaremos mas adelante y utilizaremos en la prueba de que la condicién
suficiente también es necesaria.

Lema 2.3.3. Si F € D(G,), con vy >0, entonces
lfm U(t) = co.

t—o00

Observemos que este lema implica que si v > 0, entonces x* = oo. Ya que por las
definiciones de U y x* es facil ver que

U(t) <z
Teorema 2.3.5. Sea F' € D(G,), cony >0, entonces
Up(x) = 2"y, (x)

Demostracién Teorema 2.3.5. Como F' € D (G,) entonces existe a(t) > 0 tal que

. Uxt)=U() 27 —1

t—00 a(t) a Y
y ademds en (2.3.22) vimos que
a(tr)
t—o00 a(t)

Sea ahora z un numero arbitrario tal que z > 1 para k € N, se tiene que

UMY U UEM) — UG (U(zk) E U(Zkl))l res

U(zF) —U(F1) a(zk) a(zF1) a1y’ (2.3.32)

En el término de la derecha, tomando limite en k, reemplazando z**' por z - zF v que
haciendo la sustitucién ¢t = z¥ ( k — 0o = t — oo, por ser z > 1) tenemos

U(z-2F) —U(2F)

Ulz-t)=U(t) =27-1

Ii =1 =
b U(2%) e U@ y
Analogamente 1imy,_, % = limy_, o % = 2z7. Luego tomando limite en (2.3.32)

obtenemos

U(*) - U(=")
koo U (2F) — U (251)

:Z’y
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Asi, para € > 0 se tiene que existe ko(e) tal que:

(U(zkH) - U(Zk)) — 2 (U(zk) - U(zkfl))
U(zF) — U(zF1)

Entonces,
— (UM —UEY) < (UEM) —UGEY) =2 (U —UE) <e (UGEF) —UER)
Reorganizando los términos
(UER) —UEY) 21 (1—e) < U —UGER) < (UEY) —UEMY) 27(1+¢)
y sumando término a término cada miembro de la desiguadad desde ky hasta N se obtiene
(UEY)=UEP) 27 (1—e) <UENT) = UGER) < (UEY) = UERY) 271 +¢).
Ahora dividiendo por U(z") obtenemos

_U(Zko_l) - . U(ZN—i-l)_U(Zko) _U(Zko—l)
(1 U(zN>> L= <y ~ o) ~ <1 V()

> Z(1+¢). (2.3.33)

Como kg estd fijo, utilizando el resultado del Lema 2.3.3 tenemos U (z) ~ o0V por
—00
U (zko=1)
U(zN) Nooo

lo tanto 0. De este hecho y tomando limite en N en (2.3.33) se obtiene

27(1—¢) < lim ﬂ <zZ'(1+¢)
N UGN
para todo €. Luego
lim (") =2z".

N—oo U(2V)
Un razonamiento inductivo generaliza la ultima expresion para [ € N

i U(ZNH)
Noae U(2N)

= (2.3.34)

Ahora, para > 1 definamos el nimero n(x) € N como aquél que cumple
Zn(ac) < S Zn(x)—i—l‘
Para t,x > 1 se tiene que

Zn(t)zn(a:) <tr< Zn(t)+lzn(m)+1

)
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como U es no decreciente
U (Zn(t)zn(az)) < U(tl’) < U (Zn(t)-i-lzn(x)-f—l)
U (Zn(t)zn(m)) U(tﬂ?) U (Zn(t)Jrlzn(a:)Jrl)

< < 2.3.35
Tomando la parte izquierda de la desigualdad, se tiene que
(Z - ) = (Z - ) (z ) (2.3.36)

U(zn(t)-H) - U (Zn(t)) U (Zn(t)-i-l)
y aplicando (2.3.34) a (2.3.36)
U (zn(t)zn(w))
N T T m(@) =y — (o Ly s Y 2y
tlgglo 0 (0] 2" 2 (M) 27 > a7, (2.3.37)
Donde la ltima desigualdad vale por la definicién de n(z)
O > g = @O > g/ = (MO) > (2/2)7 = (M) > 77

Anélogamente se ve que la parte derecha de (2.3.35) satisface

i U (Zn(t)JrlZn(a:)Jrl)

v 527
Jim e <z, (2.3.38)

De esta forma utilizando (2.3.37) en (2.3.35), tomando limite inferior en ¢ tenemos

Ultx) o T

uft) —

Ultz) >z,
u) —
De la misma manera usando (2.3.38) en (2.3.35),

Ultx)
u(t)

lim inf
t

y cuando z N\, 1 obtenemos

lim inf
t

U(tz) )
U <z

lim sup < 272% = lfimsup
t t

Luego hemos probado que
Ultx)
im
t—oo U (t)
La ecuacién 2.3.39 implica que el cuantil de cola U es de variacion regular de parametro
v, esto segin la propiedad 2.3.1 es equivalente a la existencia de una funcién de variacién
lenta ¢, cumpliendo

=27, (2.3.39)

Ur(z) = 2"ly, () (2.3.40)

Que es lo que se queria ver. O
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Demostracion Lema 2.3.3. En principio observemos que

U(zmr) —U@E™) U -UET
Ulzg) —Ulzrot) U = U(F72)

UZ) U Y =U("™) - U(z™)
Es decir,

U(Zk—i-l) _ U(Zk)
U(F) = U(ZF1)

U(Z') —U(Z7") = Ulz) = U(z"7)

k=ng

(2.3.41)

Luego utilizando (2.3.33) de la demostracién del teorema anterior dado 0 < ¢ < 1 — 27
existe ng tal que para todo k > ng
U(Zk—H) _ U(Zk)
U(zk) —U(zF1)

> (1—¢)2".

Por lo tanto en (2.3.41) si 7 > ng
, A J
U -UET) > UG -UE) [Ja-e2

k=ng

> (U(z)) = UE™1) (1 —e)z7)/ ot

Entonces
Z UGR)-UE) > (Ulzg) —U(z"™) Z((l — g)z)imnotl
UM -U@E™ 1 > (U(zg) _ U(z"o_l)) Z((l _g)z)imetL,

Por la eleccion de € efectuada, (1—¢)z? > 1, entonces al tomar limite en N, la parte derecha
de la ultima ecuacién es oo, por lo tanto también es limy o, U(2") = oo. Finalmente, el
hecho de que U es no decreciente implica que lim; ., U(t) = 0o.J

El teorema anterior establece que las funciones de distribucion F' que estan en el
dominio de atraccién D(G.), con v > 0 son exactamente las mismas funciones cuyos
cuantiles de cola son de variacién regular de parametro . Intuitivamente la condiciéon
F € D(G,), es equivalente a que su funcién Up no crezca arbitrariamente, sino que este
controlada, por una funcién de tipo x”

Es posible, a partir de la caracterizacién en términos de la funcion Up, dar una
caracterizacion en términos de la funcién F.
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Teorema 2.3.6. Sea I una funcion de distribucion acumulada y F =1 — F entonces
F€D(G,) cony>0siysdlosi F(x)=ax""lp(z)

donde {p(x) una funcion de variacion lenta.

El teorema anterior es equivalente a pensar que las variables aleatorias que satisfacen
la ley del maximo para v > 0, son aquellas que tienen una distribucién tal que F, la cola
de la distribucién, cae como 1/, para x suficientemente grande. La demostracién de este
hecho puede consultarse en Teugels et al. (2004).

2.3.3. Una aplicacién del Teorema de Fisher, Tippet y Gne-
denko

En esta seccién mostraremos la importancia del Teorema 2.3.2 estudiado anteriormente
a fin de desarrollar un procedimiento de estimaciéon. Consideremos una muestra aleatoria
de tamano N fijo {Xy,..., Xy} y sea My el maximo de las X; . Estamos interesados
en dar una estimaciéon de P(My < z) asumiendo que F estd en D(G.,), es decir, existen
sucesiones a,, > 0y b, € R tales que

M, —b
lim P(u gz) =G, (cz+d)

n—0o0 a

para ciertos valores de posicion d y escala c.
Este limite brinda una potente idea para estimar P(My < z), una idea informal para
hacerlo es el siguiente hecho,

P(MNgz)—P(MN_bN gz_bN) zGV(c.(Z_bN>+d>.

an an an

El argumento de la parte derecha de la aproximacion, cumple una relacion lineal en z,
que puede ser escrito como onz + uy, que olvidando la dependencia con N podemos
escribirlo de la forma oz 4 u. Asi tenemos que la parte derecha de la aproximacién puede
ser expresada como G, ,,(2) = G, (02 + u). En definitiva

P(My < 2) =~ Gyuo(2)

La funcién G, » se denomina funcién de valores extremos generalizada. Y se concluye
que My puede ser aproximada por una funcién de valores extremos generalizada. Es
importante recalcar que el procedimiento utilizado prescinde del conocimiento de los
valores de escala y posicion ay y by.



Capitulo 3

Funcion de excesos

El tiempo de duracion de un componente electronico puede ser representado por una
variable aleatoria X con distribuciéon F. Para una duracién u, dada en dias, interesa
saber cual es la probabilidad de que el componente electrénico dure y dias mas. Dicha
probabilidad puede ser calculada de la siguiente manera

1-Flu+y)

P(X>u+y|lX >u)= = F )

El término de la derecha esta relacionado con la funcién de distribucién de excesos I,

utilizando la notacién F = 1 — F tenemos,

Fuly) = 1 If(;(::)y)'

Una propiedad conocida es que X ~ E(A) si y sélo si, F,(x) no depende de u, esto
significa que F,(z) = H(x), para alguna funcién H. Las distribuciones que cumplen con
esta propiedad son asociadas al desgaste cero.

En general las funciones de exceso cumplen una ley asintética, para u — oco. La teoria
utilizada para obtenerla esta extremadamente relacionada con las leyes para el maximo
de una muestra aleatoria. Asi, resultados de la teoria de valores extremos se utilizan para
estimaciones de funciones de excesos y viceversa. En la literatura, los primeros trabajos que
dan cuenta de una situacién acabada de esta relacién son de Pickands (1975) y Balkema y
de Haan (1974). Ambos obtuvieron sus resultados independientemente. Pickands traté de
estimar el pardmetro v de la distribucién de valores extremos, para ello desarroll6 las
principales propiedades asintéticas de la funcion de excedencias de una distribucion F'.
Balkema y De Haan estudiaron el problema de caracterizar directamente la funcion de

31
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excedencias por sobre un umbral, para valores altos de wu, desarrollarondo la relacién
existente entre la teorfa de valores extremos y la funcién de excedencias.

En el capitulo anterior se prob6 que el maximo de una muestra converge en distribuciéon
a una funcién en la familia G,(z), con v € R, donde G, quedd completamente
determinada, salvo valores de posicién y escala. Andlogamente, se verd que F,, con
u — 00, puede ser aproximada por la funciéon generalizada de Pareto.

3.1. Distribuciones limites para la funcién de excesos

A continuacién defineremos la familia de distribuciones Pareto. Esta familia cumple
un papel andlogo a la funcién de valores extremos G, vista en la secciéon anterior.
También presentaremos una serie de resultados que evidencian la analogia mencionada. La
demostracion de los mismos puede verse en Balkema, De Haan (1974) y Pickands (1975).

Definicién 3.1.1. Decimos que una variable aleatoria es Pareto H,,, cono >0y vy € R
si su funcién de distribucion estd dada por

—1/y
Hopn(z) =1— <1 + ﬁ) ;
o/+

para v # 0, mientras que para vy = 0 se define H,o(2) =1 — e 7.

Esta familia de distribuciones satisface las siguientes propiedades.
Propiedades 3.1.1.

1. Estabilidad. Si existe ug de forma tal que Fy = Hy(yy),, entonces, para todo u > ug
se tiene que F, = Hy(u) con o(u) = o(ug) + v(u — uo).

2. 8iY ~ Hyy cony <1, entonces E[Y] = 7.

Teorema 3.1.1.
1. Balkema, De Haan (1974). Supongamos que existen funciones a(u) > 0, b(u) € R y

W tal que
lim F, (a(u)z +b(u)) = W(z)

para todo x tal que 0 < W(z) < 1. Entonces, existen o > 0,7 € R para los cuales
W =H,,.

2. Pickands (1975). Si F € D(G,) My SUPg<yeng | Ful(2) = Higu),y) ()| = 0.

Observacion 3.1.1. El punto 1 del teorema anterior indica que la unica posibilidad de
que haya una funcion limite para F,, con u — oo es que W sea Pareto, mientras que
el punto 2 da una idea de la relacion existente entre la ley asintotica para el maximo y
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la ley asintotica para la funcion distribucion de excesos. En primer lugar establece que
aquellas distribuciones que estdn en el dominio de atraccion de G., cumplen tener una
distribucion limite para la funcion F,; y en sequndo lugar, indica que el parametro ~y es
el mismo en la funcion G, y en la funcion H, ..

Cabe mencionar también que la propiedad de estabilidad es un concepto importante que
tiene la distribucion Pareto. Coloquialmente significa que si la familia Pareto ajusta bien
a la funcion de excesos para un valor ug, lo mismo ocurrird para todo u > ugy. Finalmente
la sequnda propiedad se utilizara mas adelante para determinar el valor de u que mejor
ajusta a una muestra aleatoria dada.

En el capitulo anterior vimos que la funcién de distribucién del méaximo puede
ser aproximada por la funcién de extremos generalizada G, ,,. A continuacién
desarrollaremos en forma heuristica el teorema anterior que da una idea de porqué la
funcién generalizada Pareto es adecuada para estimar la funcién de excesos sobre un
umbral alto u. T

Notemos que F™(z) ~ G, ,,(2) = e #7555 7 luego tomando logaritmo tenemos

nlnF(z) =~ —(1+~=4)" Y7 Ahora si z — z* entonces F(z) — 1 por lo tanto
In(F(z)) =~ F(z) — 1. De donde se obtiene

1 s\
1—F(z)zﬁ(1+’y J“) .

Asi, para z suficientemente grande tenemos que
—1/y

z+u—p

1 S
Fo(e) = Lo Flut ) <+7 o ) 724+ 14 N T
u Z) = = —
1—F('LL) U — [ =1/ 1+'YUT'U
(1 + v )

Q

1 —1/y > =1/~
~ (1472 —— = (14+y —= .
( ! 0(1+v%)) < ! 0+7(u—u))

Fu(z) ~ (1+~7—’2))1M (3.1.1)

Por lo tanto

con ¢(u) =0+ y(u— p).

3.2. Seleccion del umbral

En la ecuacién (3.1.1) se muestra que para algin valor de u se tendré la siguiente
aproximacién Fy, ~ H, .. La pregunta natural es determinar el valor de u para el cual esto
sucede en el caso en que la F' es desconocida. Para resolver este problema se presentan
algunos métodos sugeridos por la bibliografia.
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3.2.1. Mean Residual Plot

Utilizando la Propiedad 3.1.1 se tiene que si F, = Hy(y) para algun u = ug, entonces

et
Por lo tanto la esperanza del exceso debe ser una funcién lineal en u. Dada una muestra
aleatoria, la esperanza del exceso puede ser estimada, para cada u utilizando

"X — ) [y
é(u) _ Zz:l( u) {Xi>u}

nu
donde n, = > | Itx,>u}- El gréfico mean residual plot esta dado por el conjunto A C R?

A={(u,é(u) :u<Xm}-

Laidea del método es seleccionar el menor valor de u para el cual el grafico del conjunto
A es aproximadamente lineal.

o °
v _|
o ° B ureal
o
o
3 ° o
(0]
v | ° o
(o]
o |
[ [ [ [ [
0 2 4 6 8

Figura 3.1: Ejemplo de Mean Residual Plot. Los datos fueron generados de manera que
sigan la distribucién de un variable aleatoria X cumpliendo X — ug|xsuy ~ Hogqo- LOS
valores son u0 = 3.480633; 09 = 1,1 y 79 = 0,3. En rojo, el verdadero valor del umbral.
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3.2.2. Estabilizacion del parametro de escala y forma

Por la misma Propiedad 3.1.1 utilizada anteriormente, si F,, = H,,, para algun
u = ug, entonces Fyy, = Hy i (u—ug)y- Lu€O 0, — yu = o* para todo u > ug, mientras
que el pardmetro v no se ve modificado. Esto sugiere que la estimacién de ¢* y v debe
ser constante a partir de algiin u donde F, sea aproximadamente Pareto. De esta forma,

dado un valor de u pueden estimarse o*(u) y 4(u). Definamos los siguientes conjuntos
B,+, B, C R? dados por

By = {(u,0"(u)) :u < Xon} By = {(u,4(w) s u < Xy}

Asf una buena eleccion de u consiste en elegir el menor valor de u para el cual los graficos
son aproximadamente constantes.

3.3. Seleccién del umbral: nueva propuesta

En esta seccion desarrollaremos un método de estimacién del umbral basado en una
propuesta semiparamétrica. El nuevo método de estimacién depende de la utilizacién de un
estimador no paramétrico de la densidad, razon por la cual hemos incluido un apéndice que
resume el método de estimacion de densidad basado en nicleos. Los enfoques anteriores
no son automaticos en el sentido que requieren de la eleccién y el criterio del usuario
para determinar el valor del umbral estimado. El método que proponemos depende de
la eleccion del parametro de suavizado h del estimador por ntcleos. Es plausible que
desarrollos futuros eliminen este requerimiento, siendo el valor de h calculado a partir de
los datos.

3.3.1. El modelo

A fin de proponer un nuevo criterio de seleccion del umbral supondremos que F
satisface la siguiente condicién

d u tal que F,(x) = H,.(x) para todo z > u.

En otras palabras supondremos que F' € T donde T es la familia de distribuciones definida
por

T = {G : G es funcion de distribucion A Ju tal que % =H,(y)}.

Observaciéon 3.3.1. 5i X esv.a, y X ~ G € T, entonces debe existir un valor de u para
el cual X — u|xsy ~ Hy
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En el caso de trabajar con datos empiricos, dificilmente valga esta hipdtesis. No
obstante, al suponer que los datos reales satisfacen que F, es aproximadamente como
H,.(x), se espera que el error cometido al hacer la suposicién de igualdad sea pequeno
en comparacion con la ventaja que representa hacer estimaciones en este caso.

En el marco en que F' € 7T, las funciones de distribucién admiten una escritura
particular. Esta escritura permitira luego deducir, naturalmente estimadores adecuados.

Sea X ~ F notemos que F puede ser escrita de la siguiente forma,

P(X <z)=PX <z|X <u)P(X <u)+P(X <z|X >u)P(X > u).
A B

Analizaremos dos casos * > uy = < u.

» (z < u) En este caso solo quedard el término A = P(X < z) siendo el término B
igual a 0.

» (z > u) En este caso el término A = P(X < u) mientras que para el término B se
tiene que
B=P(X <z|X >u)P(X > u).

Restando u de ambos lados
B=P(X —u<z—ulX>u)P(X >u).
Del hecho que F' € T tenemos

B=H, (v —u)P(X > u).

De esta forma F(x) puede escribirse como
F(z) = F(z)lg<y + [P(X <u)+ Hoqp(z —u)P(X > u)] Lian
llamando p, = P(X < u)
F(z) = F(2)la<uy + [pu + Hopy(x — u)(1 = pu)] Lizsuy-
Si F admite densidad (F) = fy (H,,) = h,, obtenemos que
f@) = f(@)Lazuy + [hon (@ = 0)(1 = pu)] Liasuy,
que puede escribirse como

f(z)

u

f(x) = pu 1{:c§u} + [haﬁ(x —u)(1 = pu)] 1{:C>U}-
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Observemos que fi(z) = %1{1Su} es una funcion de densidad soportada en el conjunto
{z € Sop(f) : © < u}, de donde se obtiene

f(z) = puf1($)1{z§u} + (1 = pu)hoy(z — “>1{x>u}-

A su vez fo(z) = hoq(x — u)lgy~,y también es una funcién de densidad soportada en
{z:2>u}

De esta manera, hemos caracterizado a las funciones de distribucién F' que pertenecen
a la familia T y que admiten densidad, escribiendolas como una combinacion convexa
de dos densidades f; y fo. Un punto importante es la informacién relativa a f5, que nos
permite garantizar que pertenece a una familia Pareto. En particular la funcion fy esta
determinada salvo parametros. En cambio, el conocimiento de f; es nulo, sélo sabemos
que Sop(f1) N Sop(f2) = (). Hecha la aclaracién de los soportes podemos escribir

f(@) = pufi(z) + (1 = pu) fo(2).
Es importante recalcar que el soporte de f; y de fy depende de u, de esta manera hemos

probado la siguiente propiedad.

Propiedades 3.3.1. Sea F' una funcion de distribucion admitiendo densidad f
FeYT < flr,u) =pufi(z,u) + (1 = py,) falz,u)
donde f1 y fo son densidades tales que fo(x,u) = ho~(x—0) L suy y Sop(f1)NSop(f) = 0.

Notemos que si X ~ F € T, entonces existe un umbral u tal que X — u|x=y ~ Hy -,
no obstante esta propiesdad no determina univocamente el valor del umbral. Esto se debe
a que, bajo estas condiciones, para cualquier 6 > 0 se tiene que X — (u+6)|x>uts ~ Hs~
como se prueba en el siguiente resultado.

Definicién 3.3.1. Dada X ~ F' € T se dice que u realiza el modelo si X —u|x=, ~ Hs 5,
para algin 7,7

Proposicion 3.3.1. Sea X ~ F € YT y supongamos que u realiza el modelo entonces para
todo 0 > 0, u+ 0 también realiza el modelo.

Demostracién Proposicion 3.3.1. Si u realiza el modelo, entonces para ciertos o = o
y 7 = 7 se tiene que P(X —u > z|X > u) = 1 — H,,,(2). Queremos ver que u + ¢
también realiza el modelo, para esto veamos que

P(X— (U—l-(S) > Z’X > (u+5)) =1 —Hg,:y(Z).
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Notemos que
1-F(z+u+9)
1—F(u+9)
1—F(z4+u+96) 1—F(u)
1 — F(u) 1—F(u+9)

P(X —(u+0)>zX > (u+9))

1 -F(z4+u+9) /1—F(u+9d) (33.1)
B 1— F(u) 1= F(u)
Como u realiza el modelo, se tienen las siguientes identidades
1-F(z+u+59)
=1-H, )
1 . F(U) O/YO(Z_F )
y que
1—F(u+9)
-~ =1-H )
1— F(u) 7+(9)
Entonces de (3.3.1) se desprende
1 — Hyyro(240)
P(X —(u+06)>z2X > (u+t+d)) = L (3.3.2)
- HUO"YO (u + 5)

=1/
como 1 — Hy,+,(2) = (1 + %) " el lado derecho de la igualdad se traduce en

—1/70

(Z-‘r(s)’)/() ) z 71/7 —

<1+ 70 ) (N (e N

(1 . m)‘l/”o S\ 14 BT = Hoginas(2)-
Ean o

00

Por lo tanto de (3.3.2) tenemos P (X — (u+0) > z|X > (u+0)) = Hyyiy55(2), luego
u + 0 realiza el modelo con ¢ = g9 + Y90 v 7 = 7.0

La proposicion anterior motiva la siguiente definicion.

Definicién 3.3.2. Dada X ~ F' € T se dice que uq es el umbral inicial de F' si ug es el
infimo de los valores u que realizan el modelo.

Uy = UO(F) = l/nf{u . X — U/|X>’u, ~ 5-,7)/}

3.3.2. La propuesta de estimacion

En esta Seccién daremos una propuesta para estimar el umbral inicial ug, basada en
una muestra aleatoria {Xj,..., X} tal que X; ~ F € T. La estimacién “natural”que
surge de la secciéon anterior es considerar un estimador no paramétrico para f; y un
estimador paramétrico para fs. Se elegira el menor valor de u que ajuste a los datos basado
en una funcién de pseudoverosimilitud L(u) segun se detalla en el siguiente procedimiento.
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Paso 1: Construccion de la funcién de pseudoverosimilitud L(u)

1.1: Consideremos f un estimador no paramétrico de la densidad basado en
X1y, X
1.2: Para cada u sean

=y, = Nxi<u) ¥ Dy =
r fx 1 xT u
= flu(a:) = ( )C{ <u}

u

» Yo(u),d0(u) los estimadores de los paramétros de la distribucién Pareto
basados en las observaciones X; — u tales que tales que X; > u.

1.3: Para cada wu, basados en los estimadores definidos anteriormente,
calculamos un estimador semiparamétrico la densidad f,

Ful@) = Pufra(@) + (1 = Du) Ao ot (& — 1)-
1.4: Construimos la pseudoverosimilitud L(u) =[]}, Fu( X))

Paso 2: Finalmente calculamos un estimador de ug, & como el minimo del conjunto
donde L se maximiza. Es decir,
@ = min{u : tal que L(u) = max L(2)}.
z

Observacion 3.3.2. Notemos que en el paso 1.4 estamos evaluado fu en el punto
Xi y esto puede aumentar el sesgo en la estimacion de la pseudo verosimilitud. Una
alternativa o ser considerada seria calcular f,;(X;) en lugar f,(X;) donde f,(-) se
construye excluyendo a la observacion X; tanto en la estimacion paramétrica como en
la no paramétrica.

3.4. Resultados numeéricos

En esta seccién desarrollaremos un estudio de simulacion con el objetivo de evaluar el
método propuesto en la seccién anterior. El andlisis de las propiedades de la funcién L(u)
y su comportamiento asintotico es objeto de trabajos en curso, pero su desarrollo excede
el alcance de esta tesis.

3.4.1. Modelo uniforme - exponencial

En el primer modelo que estudiaremos supondremos conocido el parametro de forma
mas aun consideraremos v = 0. En este caso, la funcién h,, queda dentro de la familia

exponencial,
1 —1
ha - = - - - 1 z>u}-
Ao =) =~ exp{— (e = ) H g
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Ademds asumiremos que f; pertenece a la familia uniforme en el intervalo [0, ug] con
up = 5 . De esta manera el modelo simplificado corresponde a

f(fl)) = puofl (.T) + (1 - puo))\e_/\(x_m))l{x>uo}

con A\g = 0,5y py, = 0,95.

Se generaron 1000 muestras de tamano n, con n = 500, 1000, 1500, 2000 para cada una
de las muestras se calculo la pseudoverosimilitud L(u) segin el procedimiento descripto
en la seccion anterior. Para ello en el Paso 1.1 consideramos un estimador noparamétrico
de la densidad basado en ntcleos. En este caso utilizamos el niicleo Epanechnicov!, y
consideramos diferentes valores de ventana h (h=0.1, 0.25, 0.5, 0.75, 1). En el Paso 1.2
para estimar el paramétro Ay de la cola de la distribucion consideramos el estimador de
maxima verosimilitud basado en las observaciones mayores que el valor u. Es decir,

" (X —u)lixsuy

Asi la funcién de pseudoverosimilitud queda definida por L(u) = []r, fu(X;) donde

~

Fu(®) = Pufra(@) + (1 = p)Ao(u)e M@0 o

Es importante aclarar que estamos suponiendo que el verdadero valor de wg
corresponde a un punto para el cual la distribucion de la cola sigue aproximadamente
una distribuciéon Pareto. Asi, en el problema general esperariamos que los valores de wuyg
considerados sean suficientemente grandes. En este sentido el valor 1 — p,,,, el cual indica
qué proporcion de datos siguen la distribucion Pareto, debe ser chico. Esto se condice con
el hecho de generar modelos con valores de p,, cercanos a 1, como consideramos en el
esquema de simulacién. Por tal motivo, para optimizar la funcién L consideramos valores
de u entre los estadisticos de orden X (07" y X,

Se programé un algoritmo que compute la funcién L, es decir, dada una grilla
equiespaciada de t puntos, U = {XO™) = 4 < uy < ... < uey < up = XY se
computo el arreglo correspondiente a la funcion L,

L=(,....1,) = (L(w),...L(u)).

Cualitativamente, los posibles resultados de esta rutina se muestran graficamente en
la Figura 3.2. Cada uno de los casos, puede corresponder al conjunto de datos generados
o a distintas elecciones del valor del parametro de suavizado h utilizado en el estimador
de densidad por ntcleos.

En el caso A) el valor u donde la funcién L alcanza su maximo es v = 4,971, éste da
una buena aproximacion al valor verdadero ug(F') (ug(F) = 5), mientras que en el caso

Wer Apéndice
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Figura 3.2: En rojo el valor maximo de L

B) no. En ambos casos hay un valor u a partir del cual la funcién crece muy lentamente
respecto del crecimiento para valores anteriores a .

Esta lentitud de crecimiento, refleja la propiedad 3.3.1. Es decir, la funcion de
pseuoverosimilitud L evaluada en u, puede ser entendida como una medida de cuan bien se
ajustan los datos al modelo, suponiendo que el valor real es u. Dado u > ug(F’) esperamos
que un corrimento en u+ ¢, no provoque grandes diferencias en el valor de L debido a que
los datos debieran ajustarse a los dos modelos (en virtud de la propiedad 3.3.1). Por ello
suponemos que L(u) ~ L(u+ §). Luego, el valor de u serd un buen estimador de umbral
inicial uy(F).

Ante la necesidad de computar aproximadamente el valor de u, se utiliz6 una
estrategia heuristica, consistente en reconocer el valor de u para el cual la funcién es
aproximadamente constante por medio de la comparacién con su valor medio parcial S.

Dado el arreglo L definimos un nuevo arreglo formado por el valor medio parcial
S ={S;:1<j<t}, donde S, es definido como

1 J
t;j - :; E Ili.
=1

Llamamos D al arreglo diferencias que en la posicién 7, con 1 < 7 < t — 1 queda
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definido por,
Dj = Lj+1 — Sj.
La idea es que la diferencia entre S y L se maximiza en los lugares donde L tiene un

maximo, o de lo contrario alli donde hay un cambio abrupto de crecimiento.

De esta forma, obtenemos dos posibles estimadores iy, y Upp para estimar ug(F),
definidos de la siguiente manera.

a) En sintonia con la definicién 3.3.2 y el grafico A) en la Figura 3.2 tomamos Jy como

Joa =min{j: L; = %E]iii(th}

y definimos

tUoa = Uy,

b) Alternativamente, utilizando la heuristica propuesta, tomamos el argumento méaximo
de D:

y definimos

Uop = UJQB .

La Figura 3.3 muestra como la heuristica propuesta permite detectar sisteméaticamente,
tanto en el caso A) como en el caso B) de la Figura 3.2, el valor donde la funcién de
pseudoverosimilitud L cambia de forma drastica su comportamiento.

Para resumir los resultados obtenidos presentamos en las tablas I) y II) el error

cuadrético medio (ECM) correspondiente a cada uno de los estimadores calculados en
las 1000 replicaciones.

Tabla I)
ECM (ig4) | N=500 | N=1000 | N=1500 | N=2000
=010 | 57592 | 14,0654 | 10,0045 | 14,0350
h =025 | 07207 | 44454 | 7.8544 | 11,5357
h = 0,50 0,1674 | 0,7462 0,9716 1,0456
h =0,75 0,0561 | 0,0492 0,0638 0,0415
h=1 0,0129 | 0,0115 0,0020 0,0021

Tabla II)
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Figura 3.3: Comportamiento de la heuristica utilizada.
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ECM (dog) | N=500 | N=1000 | N=1500 | N=2000
h=0,10 | 08095 | 0,1175 | 0,0148 | 0,0055
h=025 | 00298 | 0,010l | 0,0053 | 0,0063
h=050 | 00173 | 0,0043 | 0,0054 | 0,0066
h=0,75 | 00121 | 0,0043 | 0,0056 | 0,0068
h=10 | 0,048 | 0,0044 | 0,0056 | 0,0068

En la tabla I) podemos ver que el estimador tg,, se comporta mal para valores
pequenos de h. Esto se debe a que, en este caso, se producen grandes apartamientos del
valor real de ug(F), arruinando el error cuadratico medio. Estos grandes apartamientos se
deben a que el caso B) de la Figura 3.2 ocurre con mayor frecuencia si tomamos valores
de h chicos a lo largo de las 1000 replicaciones. Este efecto no es subsanado al aumentar el
tamano de muestra. Para valores de h grande (h = 1), la comparacion entre las Tablas I) y
IT), muestran que los estimadores g4 y U arrojan valores pequenios de ECM, resultando
comparables. Finalmente en la tabla IT) observamos que para valores pequenos de ventana
el estimador g tiene un buen comportamiento.

En la Figura 3.4 se ve el comportamiento de la densidad estimada, suponiendo distintos
valores de u; y un valor de h = 1. El gréfico correspondiente de la funcion L es el de la
parte A) de la Figura 3.2.

1. Caso u; < wo(F). Ejemplificamos con u; = 3, aqui el ajuste de los datos es
relativamente bueno si se observan valores de x < 3, pero malo para x > 3. En
este caso el suponer que el modelo exponencial es valido, cuando en realidad vale el
modelo uniforme, provoca un gran desajuste que se ve reflejado en valores chicos de
la funcién de pseudoverosimilitud L, siendo L(uy) < L(ug(F)).

2. Caso u; > ug(F). Ejemplificamos con u; = 7, donde el ajuste de los datos es
relativamente bueno para los valores de x > 7, pero no tan bueno para valores de x
entre 5 y 7. Esto es debido a que un valor de h grande da un mal estimador en el
sector donde la densidad real de los datos cambia bruscamente. Paradojicamente,
usar un estimador no paramétrico que funcione defectuosamente de manera local,
colabora a que los datos no se ajusten bien al modelo suponiendo valores de u
mayores al verdadero umbral ug(F'), teniendo como consecuencia que la funcién
de pseudoverosimilitud en esos valores sea mas chica que en el verdadero umbral.
Siendo tambien L(u1) < L(ug(F)).

3.4.2. Modelo normal - Pareto

Los datos fueron simulados con una distribucién de probabilidad tal que su densidad
sea f(z) con

f@) = pufi(@) + (1 = pu)hoy(z = u)l gy
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Figura 3.4: En linea punteada la densidad con que fue generada la muestra, en linea sélida
la funcién f (2, u1) = Dy, f1(2, ) Lpcuy + (1= Duy)Ae @)1 1y, el valor real es u =5
y con fl(w, h) el estimador de densidad por nicleos, con h = 1.
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En este caso consideramos como f; una funcion Normal truncada en el umbral u es

decir

g(z,a,b)
[ _g(s,a,b)ds

fl(xaaa b) - 1{x§u}

con g ~ N(a,b?).
Los parametros asignados fueron los consignados en la siguiente tabla:

u ol 7| pu a b
3,480633 | 1,1 [ 0,3 10,93 | 2,3 | 0,8

El valor de u asignado se hizo de manera que valga que P(Z u) = 1 — p,, donde
Z ~ N(a,b?). Se generaron 1000 muestras de tamaiio n, con n = 500, 1000, 1500, 2000 para
cada una de las muestras se calculo la pseudoverosimilitud L(u) segin el procedimiento
descripto en la seccion 3.3.2. En el Paso 1.1 consideramos un estimador noparamétrico de
la densidad basado en nicleos al igual que en el caso anterior. En el Paso 1.2 para estimar
los paramétros vy v o de la cola de la distribucién, consideramos el estimador de maxima
verosimilitud basado en las observaciones mayores que el valor u. Para realizar el calculo
de estos parametros se utilizé el paquete evir, desarrollado por Mc Neil (2011), que incluye
una funcién para estimarlos. La misma se basa en maximizar la funcién de verosimilitud
utilizando algoritmos de optimizacion continua para funciones de varias variables. Este
paquete también fue utilizado para generar variables aleatorias cuya distribucion sea
Pareto.

El caso considerado también tiene discontinuidades en la densidad, como puede
observarse en el grafico de la misma en la Figura 3.5. En la figura también se observa
el histograma de una de las muestras generadas de tamano n = 2000. Entendemos que
esta discontinuidad no es reconocible a simple vista, como ocurre en el caso Uniforme
- Exponencial. Afortunadamente, los resultados obtenidos son equivalentes a los de la
seccion anterior. Obervamos que para g4 €l error cuadratico medio es pequeno si el valor
de ventana h es grande, mientras que el estimador uyp se comporta satisfactoriamente
con anchos de banda h chicos.

La Figura 3.4.2 destaca que en este caso, y en general para muestras donde la
distribucién es Pareto, la funcion de pseudoverosimilitud L tiende a ser mas inestable
que en el modelo Uniforme - Exponencial.

Por tltimo, la Figura 3.7 da cuenta del buen ajuste ofrecido por el modelo.

Tabla IIT)



03 04

Density

0.2

0.1

0.0

Figura 3.5: Histograma de la muestra generada y densidad real

Tabla IV)

ECM (tig4) | 1=500 [ n1=1000 | n=1500 | n=2000
h=0,10 [0,3733 2,5130 | 5,0649 | 7,8893
h=025 |0,1926 | 1,6979 | 3,9043 | 6,2763
h=05 |0,0569 | 02759 | 0,3820 | 0,4942
h=0,75 |0,0374 0,0182 | 0,0070 | 0,0090
h=10 |0,0404 | 0,0215 | 0,0106 | 0,0076

ECM (o) | 1=500 | n=1000 [ n=1500 | n=2000
h=0,10 |0,1451 | 1,0510 | 1,8743 | 2,4655
h=025 |0,0858 | 02767 | 0,3065 | 0,3029
h=05 |0,0628 ] 0,1215 | 0,0510 | 0,0631
h=0,75 |0,0540 | 0,0543 | 0,0339 | 0,0381
h=10 |0,0554 | 0,0516 | 0,0414 | 0,0387
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L(u)

Figura 3.6: Inestabilidades en la funcién L
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Figura 3.7: Izquierda: Histograma de la muestra, u; = Tpa = 3,44862
(en rojo, linea sdlida), siendo el verdadero valor wuo(F) = 3,480633 (en
verde, linea de puntos). No se muestra el valor de ugp. (ugp = 3,428449)

Derecha: Ajuste provisto por el estimador semiparamétrico: en linea sélida la den-
sidad con que fue generada la muestra y en linea punteada la funcién f(x,u;) =
PurJ1(z, h) L o<y +(1=Duy ) o un)5(un) (€ —u1 ) L {z50p3 - El estimador de densidad por nicleos

es con h =0,5.






Apéndice A

Estimacion no paramétrica de la
densidad basada en nucleos

Sea Xi,...,X, una muestra aleatoria con funcién de densidad f(z) estamos
interesados en estimar f(z) a partir de las observaciones. Los métodos de estimacién no
paramétricos han surgido con el objetivo de dar una respuesta a este problema y han sido
ampliamente estudiados. A continuacion estudiaremos una propuesta para la estimacion
de la funcién de densidad basada en nicleos que fue introducida por Rosenblatt (1956) y
Parzen (1962). Comenzaremos dando una idea intuitiva del estimador propuesto.

Si X es una variable aleatoria con densidad f, luego dado h > 0

1 1 z+h
ﬁP(x—h<X<x+h):ﬁ/x_h f(z)dz — f(x)
si h — 0.

Un estimador natural de P(z—h < X < z+h) es simplemente considerar la proporcién
de la muestra que cae en el intervalo (x —h, z+h) luego para un h suficientemente pequeno
podemos deducir el siguiente estimador de f(x),

~ 1 #{X;: X; € (x—hx+h)}

fla) =5, " :

Maés formalmente, podemos escribir el estimador anterior de la siguiente manera,

flz) = g%w(:ﬁ _hX> (A.0.1)

donde w(x) = %I(\x|<l)- Es conveniente observar que la funcién w satisface las siguientes
propiedades:

1. w>0

20
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2. [w(s)ds =1

3. Para cada 1 <i <n, w(%) = 1siysolosi X; € (x—h,z+h).

Observemos que la propiedad 3 nos indica que la funcién w le otorga un peso uniforme a
cada observacién X; en el entorno (z — h, x+h). De esta forma, una manera de generalizar
(A.0.1) serfa reemplazar la funcién de peso o nticleo w por una funcién K no negativa
que verifique la condicién [ K(z)dx = 1. De esta forma, si consideramos una funcién de
pesos K con mayor suavidad obtendriamos un estimador mas suave.

De esta manera obtenemos el estimador definido por Rosenblatt (1956) y Parzen (1962)
que definimos de la siguiente manera,

flz) = % Zn: K<$ _hX) (A.0.2)

i=1

donde K es una funcién ntucleo, h = h,, es llamado paramétro de suavizado o ancho de
ventana y satisface h, — 0 si n — oo.

Este estimador constituye uno de los estimadores no paramétricos méas estudiados.
Dentro de sus propiedades méas destacables podemos resaltar en primer lugar que el
estimador es efectivamente una densidad, por otro lado bajo ciertas condiciones se puede
obtener el desarrollo de su sesgo y varianza. Asimismo, también se ha estudiado su
comportamiento asintético obteniendo su consistencia y distribucion asintotica. Todas
las demostraciones de estas propiedades no fueron objeto de estudio de esta tesis.

El proceso de calculo de este estimador involucra la eleccién de dos paramétros, el
nucleo y el parametro de suavizado. En general la funciéon de pesos o ntcleos utilizadas
decrecen de manera suave, dandole asi menor pesos a las observaciones mas alejadas del
punto x. Algunas opciones posibles de nucleos, podrian ser
Nucleo Gaussiano:

K(t) = e 2
Ntcleo Epanechnicov:
3(1 —1¢2) it <1
— 4 —
K“)—{o 1 > 1.
Ntcleo Tricubico:
_J A=tPy it <1
K(t){o 1 > 1.

Tipicamente la eleccién de la funciéon de pesos no suele involucra mayores problemas,
ni ser determinante en el proceso de estimacién. Sin embargo, el paramétro de suavizado
suele ser un punto crucial en el procedimiento de estimacién, ya que como su nombre lo
indica se encuentra altamente relacionado con el nivel de suavizacion que se introduce
en la estimacion. Respecto a la seleccién de este parametro existe una gran cantidad de
literatura que escapa al alcance de esta tésis.
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