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Tesis de Licenciatura

Estimación semiparamétrica del umbral en el análisis de valores
extremos

Juan D. González
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3.2.2. Estabilización del parámetro de escala y forma . . . . . . . . . . . . 35

3.3. Selección del umbral: nueva propuesta . . . . . . . . . . . . . . . . . . . . 35
3.3.1. El modelo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2. La propuesta de estimación . . . . . . . . . . . . . . . . . . . . . . 38

3.4. Resultados numéricos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1. Modelo uniforme - exponencial . . . . . . . . . . . . . . . . . . . . 39
3.4.2. Modelo normal - Pareto . . . . . . . . . . . . . . . . . . . . . . . . 44

A. Estimación no paramétrica de la densidad basada en núcleos 50
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Caṕıtulo 1

Introducción

En la teoŕıa de valores extremos el interés principal se encuentra en los valores más
bajos o más altos de la variable bajo estudio, es decir, el interés está en los eventos
asociados a la cola de la distribución. Por ejemplo, en oceanograf́ıa es necesario estudiar
el comportamiento de corrientes marinas extremas, en estad́ıstica ambiental es necesario
analizar niveles altos de ozono en determinada región, en climatoloǵıa es necesario
conocer el comportamiento de velocidades extremas de huracanes o valores extremos de
temperatura, etc.

Un enfoque al estudio de valores extremos es a partir del análisis de excedentes sobre
umbrales. Es decir, a partir de qué valor, por ejemplo, una temperatura puede considerarse
extrema. Por este motivo, es importante poder dar estimadores consistentes para los
umbrales. Existen diferentes métodos heuŕısticos y gráficos que proponen estimadores
para los umbrales. Elegir adecuadamente el umbral no es una tarea fácil, si el umbral
elegido es bastante alto esto implicará que sólo algunas pocas observaciones se utilicen
para estimar la cola de la distribución, aumentando aśı la varianza de los estimadores.
Diferentes autores han estudiado la influencia de la elección del umbral en la estimación
de los parámetros de la cola de la distribución (Smith (1987), Frigessi, et.al. (2003), Coles
y Tawn (1996), Coles y Powell (1996), Davison y Smith (1990) y Coles y Tawn (1994)).

La teoŕıa desarrollada para el estudio de estos conceptos está ı́ntimamente relacionada
con las leyes que rigen el comportamiento asintótico del máximo de n variables aleatorias,
apropiadamente reescalado.

En esta tésis desarrollaremos una propuesta de estimación del umbral a través de
un abordaje semiparamétrico. Para ello asumiremos que existe un umbral a partir del
cual la distribución excedente pertenece a la familia Pareto generalizada. Es decir el
modelo propuesto asume que la distribución por debajo del umbral pertenece a una
familia con densidades no especificadas mientras que la distribución por encima del umbral
pertenece a la familia Pareto Generalizada. Para cada valor de u calcularemos una pseudo-
verosimilitud indexada en el umbral, que combina la estimación no paramétrica de la
densidad para las observaciones menores a u, con la estimación de máxima verosimilitud
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para las observaciones excedentes al umbral. Estimaremos el parámetro de interés como
el menor valor a partir del cual se maximiza la pseudo-verisimilitud.

Esta tésis está conformada de la siguiente manera. En el Caṕıtulo 2 estudiaremos la
distribución asintótica del máximo, discutiremos la necesidad de rescalamiento, es decir
la corrección apropiada respecto a la posición y escala, y caracterizaremos las posibles
distribuciones ĺımite. Además presentaremos algunos resultados relativos a los dominios
de atracción de las posibles distribuciones ĺımite.

En el Caṕıtulo 3 daremos una introducción a la teoŕıa de excesos presentando el marco
teórico necesario para el desarrollo de nuestra propuesta de estimación del umbral. Por
otro lado, resumiremos los métodos mencionados en la literatura ( ver Coles (2001)) para
la selección del umbral. Finalmente, presentamos nuestra propuesta y desarrollamos un
estudio de simulación que permite evaluar el comportamiento de la misma.

Respecto de la bibliograf́ıa utilizada, los resultados de la sección 2.3 se basaron
principalmente en los libros de De Haan y Ferreira (2006), y Teugels et al.(2004). La
bibliograf́ıa no mencionada a lo largo del texto fue consultada para la elaboración de esta
tesis.



Caṕıtulo 2

Fundamentos probabiĺısticos de la
teoŕıa de valores extremos

2.1. Motivación

Sean X1, . . . , Xn variables aleatorias independientes e idénticamente distribúıdas con
distribución F , que asumiremos uniforme en el intervalo [0, 1]. Queremos inferir el
comportamiento de la variable suma Sn

Sn =
n∑

i=1

Xi.

Para esto, supongamos que tenemos m muestras aleatorias, cada una de ellas con
cien valores, podemos generar una nueva muestra aleatoria de la variable Sn, es decir
S1
n, S

2
n, . . . , S

m
n como indica el siguiente esquema:

X1
1 . . . X1

100 −→ S1
20, S1

40, S1
100

X2
1 . . . X2

100 −→ S2
20, S2

40, S2
100

...
...

...
...

...
Xm

1 . . . Xm
100 −→ Sm

20, Sm
40, Sm

100.

Donde Sk
n indica que realizamos la suma de los primeros n valores de la k−ésima muestra,

es decir Sk
n =

n∑

l=1

Xk
l . Si observamos las columnas derechas de este esquema, tenemos

que el conjunto {Sk
n}mk=1 , es una muestra aleatoria con n fijo (n = 20, 40, 100). Por

ejemplo, para n = 20, tenemos una m.a de S20, a saber, {S1
20, S

2
20, . . . , S

m
20} es dicha

muestra aleatoria. De ésta forma, podemos conseguir un histograma de Sn, con n fijo, y
una estimación de su densidad por núcleos1 como en la Figura 2.1.

1En el apéndice se puede encontrar un resumen del estimador no paramétrico de la densidad basado

en núcleos.
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Figura 2.1: Histograma y densidad estimada por núcleos de la variable S20.

Se realizó una simulación de este procedimiento para los distintos valores de n, con
n = 20, 40, 100, los resultados se muestran en la Figura 2.2, donde observamos que
a medida que n crece los estimadores de Sn se asemejan a campanas, cuya amplitud
σn y posición central µn es creciente con n. Esto sugiere que si quisieramos hallar el
comportamiento asintótico de Sn nos bastará conocer como es µn y σn y realizar la
transformación

Zn =
Sn − µn

σn

.

El “Teorema Central del Ĺımite”(TCL) establece cómo elegir éstos valores y cuál es
la curva de densidad asintótica que resulta de aplicar esta transformación. En efecto,
recordando que nuestra muestra es U(0, 1) con E(X) = µ = 1

2
y V ar(X) = σ2 = 1

12
,

tenemos que µn = nµ y σn = σ
√
n. En la Figura 2.3 se observa el efecto de esta

normalización, y la buena aproximación de la distribución Normal a las variables Zn.
El TCL puede entenderse como una manera de caracterizar el comportamiento asintótico
de la distribución de la variable aleatoria Sn mediante un cambio de escala y posición.

Aśı como resulta de interés la variable suma Sn podemos interesarnos en la variable
máximo Mn definida por:

Mn = máx{X1, X2, X3, ..., Xn}.

Para estudiar el comportamiento de Mn, empezaremos haciendo una simulación para
variables i.i.d ∼ E(1), con el mismo esquema utilizado anteriormente. Es decir, tenemos
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Figura 2.2: Histogramas y densidades estimadas por núcleos de las variables S20, S50 y
S100.

m muestras de tamaño 1000 y vamos tomando Mk
n = máx{Xk

1 , X
k
2 , X

k
3 , ..., X

k
n},

X1
1 . . . X1

1000 −→ M1
150, M1

600, M1
1000

X2
1 . . . X2

1000 −→ M2
150, M2

600, M2
1000

...
...

...
...

...
Xm

1 . . . Xm
1000 −→ Mm

150, Mm
600, Mm

1000.

Calculando estimaciones de densidad para distintos tamaños de muestra, análogos a los
exhibidos en la Figura 2.2. Obtenemos el gráfico a) de la Figura 2.4.

La Figura 2.4, hace plausible que las variables Mn, tengan forma definida mediante
reescalamiento, al igual que las variables Sn. Es decir, continuando con la analoǵıa de Sn,
quisieramos averiguar si existirán constantes an > 0, de escala, y bn ∈ R, de posición,
tales que la transformación de las variables M∗

n tengan una distribución ĺımite conocida,
a saber:

M∗
n =

Mn − bn
an

.

La Teoŕıa de los Valores Extremos (TVE) estudia este tipo de problemas. Los primeros
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Figura 2.3: Densidades estimadas por núcleos de las variables Z20, Z50, y Z100.

autores en abordar este tema fueron Fisher y Tippet (1928). Gumbel (1958) formalizó y
extendió sus ideas. Actualmente esta teoŕıa está en continuo desarrollo y mantiene un
alto interés. La cantidad de aplicaciones vinculadas a conocer el comportamiento del
máximo de un proceso aleatorio, tiene como consecuencia que la TVE interese no sólo a la
comunidad matemática, sino también a especialistas de las más diversas disciplinas. Para
adelantar el tipo de resultado que se busca, consideremos el siguiente ejemplo conocido.

Lema 2.1.1. Sean Xi ∼ E(1) i.i.d’s definimos la variable aleatoria M∗
n

M∗
n =

Mn − bn
an

con an = 1 y bn = ln(n) entonces,

M∗
n
D−→ W

donde W es una variable aleatoria cuya densidad es

g(x) = exp{−x− e−x}.

Demostración Lema 2.1.1. Llamemos FM∗
n
a la función de distribución de la variable

M∗
n y F (x) = 1 − e−x a la función de distribución correspondiente a E(1). Dado z ∈ R

hallemos FM∗
n
(z). Claramente

FM∗
n
(z) = P (M∗

n ≤ z) = P (Mn ≤ zan + bn) = P (Mn ≤ z + ln(n)) .

Como se verá en (2.2.2), FMn(x) = (F (x))n luego,

FM∗
n
(z) = (F (z + ln(n)))n =

(
1− e−(z+ln(n))

)n
.
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Reescribiendo la parte derecha de la igualdad tenemos que

FM∗
n
(z) =

(
1− e−z

n

)n

−−−→
n→∞

exp(−e−z),

por lo tanto

M∗
n
D−→ W

con FW (z) = exp(−e−z) y cuya función densidad de W está dada por fW (z) =
exp{−x− e−x}, que es lo que se queŕıa ver.

El lema recién probado, sugiere que para valores grandes de n, la distribución de M∗
n

podrá ser aproximada por la distribución deW . La Figura 2.4 da cuenta del reescalamiento
y de la efectividad de este ajuste para varios valores de n.

a) b)
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Figura 2.4: a) Densidades estimadas de M150, M400, y M1000 b) Densidades estimadas de
M∗

150, M
∗
400, y M∗

1000 y su comparación con g(x) = exp{−x− e−x}.

En este caso el conocimiento de la distribución subyacente (Xi ∼ E(1)), nos dice
exactamente que constantes an y bn tomar, y hacia que curva convergen las variables
M∗

n con esta normalización. Afortunadamente, bajo hipótesis razonables, la TVE es lo
suficientemente general como para prescindir del conocimiento exacto de la distribución
subyacente, proveyendo resultados de convergencia en distribución a familias de variables
aleatorias con distribución conocida. Esta es, quizá, su mayor fortaleza.
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2.2. Consideraciones generales y necesidad de

reescalamiento

Sean X1, X2, . . . , variables aleatorias independientes e idénticamente distribúıdas
(i.i.d’s) con distribución F : Xi ∼ F . Denotaremos con Mn a Mn = máx{X1, . . . , Xn} al
máximo de las primeras n variables aleatorias. Nos interesa describir el comportamiento
de Mn con n → ∞, para ello necesitaremos la siguiente definición.

Definición 2.2.1. Sea F una función de distribución acumulada. Se define el punto
derecho final x∗ como x∗ = ı́nf{x : F (x) = 1}, donde se adopta la convención ı́nf ∅ = ∞

Es importante notar que, cuando x∗ ∈ R, tenemos que P (Xi ≤ x∗) = 1. De hecho,
para todo x > x∗ se satisface que F (x) = 1 y siendo F cont́ınua a derecha, concluimos
que F (x∗) = 1. En tal caso, podemos también garantizar que P (Mn ≤ x∗) = 1.

Para poder estudiar la distribución de Mn notemos que

{Mn ≤ x} =
n⋂

i=1

{Xi ≤ x}. (2.2.1)

Bajo las hipótesis mencionadas, de independencia e idéntica distribución, al tomar
probabilidad a ambos miembros en la ecuación (2.2.1) se obtiene:

P ({Mn ≤ x}) = P

(
n⋂

i=1

{Xi ≤ x}
)

=
n∏

i=1

P ({Xi ≤ x})

=
n∏

i=1

FXi
(x) =

n∏

i=1

F (x) = (F (x))n .

Por lo tanto, la función de distribución de Mn es

P ({Mn ≤ x}) = (F (x))n , (2.2.2)

luego FMn(x) = (F (x))n, de modo que para cada x fijo, bastará con analizar el ĺımite de
F (x)n. Observando que F (x) ∈ [0, 1], trivialmente ocurre que

ĺım
n→∞

FMn(x) =

{
0 si F (x) < 1
1 si F (x) = 1.

Siguiendo esta idea, puede verse que, cuando x∗ ∈ R, Mn
D−→ x∗, es decir,

la convergencia de Mn en distribución es a una función de distribución degenerada
concentrada en x∗. Vamos a demostrar que, en realidad, Mn converge casi todo punto
a x∗, sea o no finito.
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Lema 2.2.1. Sean (Xi)i≥1 i.i.d., con distribución F : Xi ∼ F . Sea x∗ el punto derecho de
F , introducido en la Definición 2.2.1. Tenemos entonces que

P (Mn → x∗) = 1.

Demostración Lema 2.2.1. Notemos que P (Xi ≤ x∗) = 1, y por consiguiente,
P (Mn ≤ x∗) = 1, para todo n ≥ 1. Para hacer la demostración, debemos diferenciar
el caso x∗ ∈ R del caso x∗ = ∞. Cuando x∗ ∈ R, tenemos que

{Mn → x∗} = ∩M ∪n0 ∩n≥n0{|Mn − x∗| < 1/M}.

Luego, basta verificar que el complemento de {Mn → x∗} tiene probabilidad cero. Es decir
queremos ver que cualquiera sea M

P ((∩n0 ∪n≥n0 {|Mn − x∗| ≥ 1/M}) = 0. (2.2.3)

Denotemos con An = {|Mn − x∗| ≥ 1/M}, la ecuación 2.2.3 es equivalente a que

P (ĺım supAn) = 0.

Por Borel-Cantelli, bastará probar que
∑∞

n=1 P (An) < ∞ que se desprende del hecho que

P (An) = P (Mn ≤ x∗ − 1/M) = (F (x∗ − 1/M))n .

Por definición de x∗, cualquiera sea M , F (x∗ − 1/M) = r < 1, luego

∞∑

n=1

P (An) =
∞∑

n=1

rn < ∞.

Si x∗ = +∞, tenemos que {Mn → +∞} = ∩K ∪n0 ∩n≥n0 {Mn > K}, luego veremos que
este conjunto tiene probabilidad 1. Tomando complemento y haciendo un razonamiento
análogo al anterior, alcanzará con estudiar el conjunto

∩n0 ∪n>n0 {Mn ≤ K} .

Otra vez, por Borel-Canteli, llamamos A′n = {Mn ≤ K} y queremos ver que∑∞
n=1 P (A′n) =

∑∞
n=1(F (K))n < ∞. Donde al ser K un número fijo y x∗ = ∞,

F (K) = r < 1 pudiendo escribir
∑∞

n=1 P (A′n) =
∑∞

n=1 r
n < ∞.

El Lema precedente muestra que para hacer aproximaciones asintóticas de Mn a una
distribuciónG no degenerada, es decir que no esté concentrada en único punto, es necesario
realizar algún tipo de transformación. En vistas de resolver esto se plantea el estad́ıstico
M∗

n:

M∗
n =

Mn − bn
an
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donde bn ∈ R y an > 0, son sucesiones hipotéticas, que hacen que

M∗
n
D−→ W , (2.2.4)

con FW (x) = G(x) y G(x) una función de distribución no degenerada. La condición
(2.2.4), es equivalente a que existan an, bn y una función de distribución no degenerada
G, tal que para cada punto x de continuidad de G se satisfaga

ĺım
n→∞

(F (anx+ bn))
n = G(x) . (2.2.5)

En adelante, estudiaremos los siguiente dos puntos:

i) Suponiendo la existencia de sucesiones an y bn adecuadas, hallaremos cuáles son
las posibles distribuciones G a las que el máximo reescalado puede converger. Este
problema es nombrado por la literatura como el “Problema Ĺımite de Extremos” y
fue resuelto por Fisher y Tippett (1928), y Gnedenko (1943), y más tarde revivido y
perfeccionado por De Haan (1970).

ii) Dada una posible distribución ĺımite G, determinar cuáles son las condiciones que se
deben pedir sobre la distribución subyacente F de las variables Xi para que existan
an, bn de manera que valga la condición (2.2.5). En ese caso se dice que F está en el
dominio de atracción de G, y se denota F ∈ D(G).

2.3. Problema ĺımite de extremos

En esta Sección se caracterizará a las funciones de distribución G que cumplan con
la condición (2.2.5). Es decir, bajo el supuesto de que el ĺımite (2.2.5) existe para ciertas
sucesiones an y bn , se tratará de saber cómo es la función G.

Sea x un punto de continuidad de G, y además 0 < G(x) < 1. Tomando logaŕıtmo
natural en ambos lados de la igualdad en (2.2.5) tenemos que

ĺım
n→∞

n lnF (anx+ bn) = lnG(x). (2.3.1)

Por otro lado, sabemos que ĺımn→∞ F (anx+ bn) = 1, de lo contrario, como
{F (anx+ bn)}∞n=1 ⊆ [0, 1] compacto, existe a ∈ R tal que, F (ank

x+bnk
) −−−→

k→∞
a < 1 y en-

tonces, (F (ank
x+ bnk

))n −−−→
k→∞

0 = G(x) que contradice la hipótesis de que 0 < G(x) < 1.

Aśımismo, usando que ĺım
w→1

lnw

w − 1
= 1, haciendo la sustitución w = F (anx+bn) y operando

algebraicamente en la ecuación (2.3.1) se obtiene

ĺım
n→∞

n(1− F (anx+ bn)) = − lnG(x). (2.3.2)
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Invirtiendo la ecuación anterior queda

ĺım
n→∞

1

n(1− F (anx+ bn))
= − 1

lnG(x)
. (2.3.3)

Este ĺımite puede ser escrito en términos de la función inversa a izquierda. Para eso,
debemos recordar su definición y mencionar algunas de sus principales propiedades.

Definición 2.3.1 (Inversa a Izquierda). Dada una función f no decreciente, se define la
inversa a izquierda de f en y, f←(y), como aquella que cumple

f←(y) = ı́nf{x : f(x) ≥ y}.
Observemos que en el caso de que f = F sea una función de distribución, F←(p) =

Q(p), donde Q es usualmente conocido como el p-cuantil asociado a la distribución F . A
continuación enunciaremos algunas propiedades de la función inversa a izquierda.

Propiedades 2.3.1.

i) f← es no decreciente.

ii) Si f es continua, con f(x) = y f(f←(y)) = y.

La siguiente propiedad, cuya demostración puede verse en De Haan y Ferreira (2006),
establece que la inversa a izquierda, preserva convergencia, en el siguiente sentido:

Propiedades 2.3.2. Sean fn una sucesión de funciones no decrecientes convergiendo
puntualmente a una función no decreciente g, para cada punto de continuidad de g, i.e;

ĺım
n→∞

fn(x) = g(x).

Sean f←n y g← sus respectivas inversas a izquierda, entonces

ĺım
n→∞

f←n (x) = g←(x)

para cada x, punto de continuidad de g←.

Sean

fn(x) =
1

n(1− F (anx+ bn))
, g(x) = − 1

lnG(x)
,

aplicando los resultados presentados en 2.3.2 a la ecuación (2.3.3), obtenemos que para
todo x punto de continuidad de g←

ĺım
n→∞

f←n (x) = g←(x). (2.3.4)

El próximo objetivo es operar este ĺımite por medio de los “Cuantiles de Cola”,
un concepto clave para el desarrollo de la Teoŕıa de Valores Extremos. El mismo
está relacionado al comportamiento de los valores cercanos al punto derecho final x∗

de la distribución subyacente F .
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Definición 2.3.2 (Cuantil de cola). Dada una función de distribución F , y un valor
x ∈ (1,∞) se define el cuantil de cola U(x) = UF (x) como

U(x) = UF (x) = F←
(
1− 1

x

)
. (2.3.5)

Notemos que a medida que x crece, la probabilidad de encontrar un valor más alto
que U(x) decrece. Por ejemplo si x = 10n entonces P (X > U(x)) = 10−n. Aśı, los valores
que toma U(x), dan una idea de como se comporta la distribución para aquellos valores
altos que tienen baja probabilidad de ser superados. De esta forma U(x) indica cual es
el comportamiento de la cola. En la Figura 2.5 se observa, a modo de comparación, los
valores de U para dos distribuciones opuestas, la distribución Normal y la distribución
Cauchy. Se ve que U crece muy lentamente, de manera logaŕıtmica, para el caso Normal
(Cola Liviana), mientras que lo hace rápidamente, de manera ĺıneal, para el caso donde
la distribución es Cauchy (Colas Pesadas).

−5 0 5 10

0
.0

0
.8

Cuantil de cola U:Normal

F
D

A

U(10)U(10
3) U(10

10)

−5 0 5 10

0
.0

0
.8

Cuantil de cola U:Cauchy

F
D

A

U(10) U(20)U(25)

Figura 2.5: Función de distribución acumulada y comportamiento de Cuantiles de Cola.

A continuación probaremos que f←n (x) la función inversa de fn(x) =
1

n(1− F (anx+ bn))
que definimos anteriormente, puede expresarse en términos de la función U . Para x > 0,
tenemos que

f←n (x) = ı́nf{y : fn(y) ≥ x} = ı́nf

{
y :

1

n(1− F (any + bn))
≥ x

}
.
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Llamemos A al conjunto {y : 1
n(1−F (any+bn))

≥ x}. Utilizaremos la siguiente propiedad, sea
B un conjunto acotado inferiormente B ⊂ R, y valores α > 0 y β ∈ R

ı́nf{Bα + β} = ı́nf{B}α + β.

Luego tomando α = an > 0 y β = bn tenemos que f←n (x) =
ı́nf{Aan + bn} − bn

an
. Por

último observemos que

ı́nf{Aan + bn} = ı́nf

{
{y :

1

n(1− F (any + bn))
≥ x} an + bn

}

ı́nf{Aan + bn} = ı́nf

{
{y :

1

(1− F (any + bn))
≥ nx} an + bn

}

= ı́nf{any + bn :
1

(1− F (any + bn))
≥ nx}

= ı́nf{w :
1

(1− F (w))
≥ nx}

= ı́nf{w : F (w) ≥ 1− 1

nx
}

= U(nx)

de esta forma obtenemos la relación buscada que vincula a la función inversa generalizada
de fn con el cuantil de cola de la distribución F ,

f←n (x) =
U(nx)− bn

an
. (2.3.6)

A su vez, operando de manera análoga, el término derecho de (2.3.4), puede expresarse
como

g←(x) = G←(e−
1
x ) (2.3.7)

para x > 0. Observemos que g←(x) es no decreciente y cont́ınua a derecha. Esta propiedad
será muy útil más adelante.

Definición 2.3.3. Dada una función de distribución G, definimos D = DG : R>0 → R

mediante la fórmula
D(x) = g←(x) = G←(e−

1
x ) (2.3.8)

siendo G← la función inversa a izquierda de la distribución G.

En consecuencia, de (2.3.7), (2.3.6) y (2.3.4) hemos probado que para cada x punto
de continuidad de la función D,

ĺım
n→∞

U(nx)− bn
an

= D(x). (2.3.9)
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El desarrollo hecho hasta ahora puede resumirse en el siguiente teorema que relaciona
el ĺımite (2.2.5) puesto en términos de F , con el ĺımite (2.3.9) en términos de U .

Teorema 2.3.1. Sean an > 0 y bn suseciones de números reales y G una función de
distribución acumulada no degenerada. Las siguientes afirmaciones son equivalentes:

i) Para cada x, punto de continuidad de G con 0 < G(x) < 1

ĺım
n→∞

(F (anx+ bn))
n = G(x) (2.3.10)

ii) Para cada x > 0 punto de continuidad de D,

ĺım
n→∞

U(nx)− bn
an

= D(x) (2.3.11)

Demostración Teorema 2.3.1.

En vistas de caracterizar la función G, necesitamos modificar levemente este teorema
de manera de tener funciones de parámetro cont́ınuo a(t) y b(t) en lugar de sucesiones an
y bn.

Lema 2.3.1. Sean an > 0 y bn suseciones de números reales y G una función de
distribución acumulada no degenerada. Las siguientes afirmaciones son equivalentes:

i) Para cada x punto de continuidad de G, con 0 < G(x) < 1

ĺım
n→∞

(F (anx+ bn))
n = G(x) (2.3.12)

ii) Para cada x punto de continuidad de G, con 0 < G(x) < 1

ĺım
t→∞

t(1− F (a(t)x+ b(t))) = − lnG(x) (2.3.13)

siendo a(t) := a[t] y b(t) := b[t] (donde [t] es la parte entera de t).

iii) Para cada x > 0 punto de continuidad de D

ĺım
t→∞

U(tx)− b(t)

a(t)
= D(x) (2.3.14)

con a(t) := a[t] y b(t) := b[t]
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Demostración Lema 2.3.1. I) ⇒ II): Previamente se probó la equivalencia entre I)
y la ecuación (2.3.2), luego bastará ver la equivalencia entre (2.3.2) y II). La misma
se desprende en forma sencilla de la siguiente relación que permite cambiar la variable
discreta n por la continua t

− lnG(x) = ĺım
n→∞

n(1− F (anx+ bn)) = ĺım
t→∞

[t](1− F (a(t)x+ b(t)))

= ĺım
t→∞

[t]

t
· t(1− F (a(t)x+ b(t))) = ĺım

t→∞
t(1− F (a(t)x+ b(t))).

II) ⇒ III): Ya probamos que I) es equivalente a la ecuación (2.3.9), y el hecho que
I) ⇐⇒ II) implica que bastará con ver que (2.3.9) es equivalente a III). Para esto, dado
x > 0 y t > 1, entonces

[t]x ≤ tx ≤ ([t] + 1)x.

Al ser U no decreciente y a(t) positivo sucede que

U([t]x)− b(t)

a(t)
≤ U(tx)− b(t)

a(t)
≤ U(([t] + 1)x)− b(t)

a(t)
. (2.3.15)

Sea ahora x′ > x, entonces x′−x > 0, luego se puede tomar [t] > t0 ≥ máx{ x
x′−x , 1}. Para

este valor de t vale que [t] >
x

x′ − x
, que es equivalente a

[t]x′ > [t]x+ x = ([t] + 1)x.

Luego
U(([t] + 1)x)− b(t)

a(t)
≤ U([t]x′)− b(t)

a(t)
.

Combinando este último resultado con (2.3.15) se obtiene que para cualesquiera x y x′

puntos de continuidad, con x′ > x

U([t]x)− b(t)

a(t)
≤ U([t]x)− b(t)

a(t)
≤ U([t]x′)− b(t)

a(t)
.

Tomando ĺımite en esta última expresión y haciendo uso del resultado (2.3.9) tenemos
que

D(x) = ĺım
t→∞

U([t]x)− b(t)

a(t)
≤ ĺım

t→∞

U(tx)− b(t)

a(t)
≤ ĺım

t→∞

U(([t])x′)− b(t)

a(t)
= D(x′).

Como esto vale para todo x′ > x, tomando x′ = x+ ǫ, se tiene que ∀ ǫ > 0

D(x) ≤ ĺım
t→∞

U([t]x)− b(t)

a(t)
≤ D(x+ ǫ) (2.3.16)
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Por lo tanto, al ser D continua a derecha se obtiene

ĺım
t→∞

U([t]x)− b(t)

a(t)
= D(x)

que es la condición III) y a lo que se queŕıa llegar.

A continuación estudiaremos el principal resultado de esta Sección, la caracterización
de la función G(x). Para ello, introducimos la familia de valores extremos.

Definición 2.3.4. Consideremos la función

Gγ(x) = exp{−(1 + γx)−1/γ} para 1 + γx > 0 (2.3.17)

para γ 6= 0, mientras que para γ = 0, se define G0(x) = exp{−e−x}.
La clase de distribuciones de valores extremos está dada por

V E = {Gγ(ax+ b) : γ ∈ R, a > 0, b ∈ R} .

El parámetro γ de la ecuación (2.3.17) se denomina ı́ndice de valores extremos (IVE).

Teorema 2.3.2 (Fisher y Tippet(1928), Gnedenko(1943)). Sean (Xi)i≥1 i.i.d., con
distribución F , supongamos existen an y bn tal que

M∗
n =

máx{X1, . . . , Xn} − bn
an

D−→ W . (2.3.18)

con W ∼ G. Si G es no degenerada entonces G pertenece a la clase de distribuciones de
valores extremos. Es decir, existen γ, a y b tal que

G(x) = Gγ(ax+ b).

Demostración Teorema 2.3.2. Bajo el supuesto de que existen sucesiones an, bn
satisfaciendo (2.3.18), por el Teorema 2.3.1, para x > 0 punto de continuidad de la
función D definida en (2.3.8), se tiene que

D(x) = ĺım
t→∞

U(tx)− b(t)

a(t)
.

Supongamos además que 1 es punto de continuidad de la función D y sea E(x) :=
D(x) − D(1). E(x) puede ser expresada como el siguiente ĺımite para los puntos de
continuidad de D

E(x) = ĺım
t→∞

U(tx)− U(t)

a(t)
. (2.3.19)
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Notemos que

U(txy)− U(t)

a(t)
=

U(txy)− U(ty)

a(ty)

a(ty)

at
+

U(ty)− U(t)

a(t)
. (2.3.20)

Se afirma que a(ty)
a(t)

tiene ĺımite cuando t → ∞, para y > 0, punto de continuidad
de D. En efecto, siendo G no degenerada, existe x > 0 punto de continuidad de D con
E(x) 6= 0, y xy punto de continuidad de D. De la ecuación (2.3.20), obtenemos que

E(xy)− E(y)

E(x)
= ĺım

t→∞

a(ty)

a(t)
.

De ésta forma podemos definir, para y punto de continuidad de D la función A(y) :=

ĺım
t→∞

a(ty)

a(t)
. Notemos que, cualesquiera sean los puntos x, e y de continuidad de D, la

función A cumple
A(x · y) = A(x) · A(y). (2.3.21)

En efecto,

A(xy) = ĺım
t→∞

a(xyt)

a(t)
= ĺım

t→∞

a(xyt)

a(ty)

a(ty)

a(t)
= ĺım

t→∞

a(xyt)

a(ty)
ĺım
t→∞

a(ty)

a(t)
= A(x)A(y).

Además, puede probarse que si A satisface (2.3.21), necesariamente existe γ ∈ R

cumpliendo
A(y) = yγ. (2.3.22)

Luego, a partir de la ecuación (2.3.20) tenemos que

E(xy) = E(x)yγ + E(y), (2.3.23)

y por simetŕıa también tenemos

E(xy) = E(y)xγ + E(x).

Estudiemos primero el caso γ = 0. En este caso la ecuación (2.3.23) se simplifica en
E(xy) = E(x) + E(y) luego para algún λ > 0

E(x) = λ ln x

para x punto de continuidad de E. Luego las propiedades de monotońıa de E y la
continuidad de ln x garantizan que la igualdad se satisfaga para todo x > 0. Por lo
tanto, D(x) = λ ln(x) +D(1), aśı

G←(e−1/x) = λ ln(x) +D(1).
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Luego, tomando z = λ ln(x) + D(1) tenemos x = eaz+b y sustituyendo en la ecuación
anterior obtenemos que

G(z) = exp{−e−(az+b)}. (2.3.24)

En el caso γ 6= 0, operando con las ecuaciones obtenidas anteriormente se sigue que

E(x)yγ + E(y) = E(y)xγ + E(x)

E(x) (yγ − 1) = E(y) (xγ − 1)

fijando y = y0 6= 1,yγ0 − 1 6= 0, y renombrando K =
E(y0)

yγ0 − 1
, se llega a que

E(x) = K (xγ − 1)

para todo x > 0, usando nuevamente la monotońıa de la función E al igual que en el caso
γ = 0. Aśı, como E(x) = D(x)−D(1) y D(x) = G←(e−1/x) tenemos que

G←(e−1/x)(x) = K (xγ − 1) +D(1)

tomando h(x) = e−1/x

G←(h(x)) = K (xγ − 1) +D(1).

Como x es punto de continuidad de D(·), y la función h(t) = e−1/t es continua con inversa
continua em t > 0, G←(·) es continua en h(x). Luego aplicando G a ambos miembros se
obtiene:

h(x) = G(K (xγ − 1) +D(1))

e−1/x = G(K (xγ − 1) +D(1))

Escribiendo

K =
C

γ

e−1/x = G

(
C

γ
(xγ − 1) +D(1)

)

Tomando y =
1

γ
(xγ − 1), se tiene que x = (γy + 1)1/γ . Luego

e
1

−(γy+1)1/γ = e−(γy+1)−1/γ

= G (Ky +D(1)) .

Esto último implica que, para γ 6= 0, existen constantes a y b cumpliendo

Gγ(ax+ b) = exp{−(γx+ 1)
−1/γ
+ }. (2.3.25)

Los dos casos que se acaban de probar, (γ = 0 y γ 6= 0) pueden ser puestos en una
sola familia de funciones, a costa de adoptar la convención

{
(γx+ 1)

−1/γ
+

}
γ=0

= e−x.



20

Aśı, hemos probado que existen constantes γ, a y b

G(az + d) = e−(γy+1)
−1/γ
+

donde {A}+ = máx{0, A}.

En vistas de hacer una caracterización de las funciones para las cuales existe una ley
asintótica para el máximo. Enunciaremos un teorema que resume las propiedades vistas
en esta sección.

Teorema 2.3.3. Las siguientes sentencias son equivalentes.

1. Existen an > 0, y bn ∈ R tales que

ĺım
n→∞

F n(anx+ bn) = Gγ(x) = exp
(
−(1 + γx)−1/γ

)
(2.3.26)

para todo x tal que 1 + γx > 0.

2. Existe una función a(t) > 0 tal que para x > 0,

ĺım
t→∞

=
U(tx)− U(x)

a(t)
= Dγ(x) =

xγ − 1

γ
(2.3.27)

donde para γ = 0 y D0(x) := log(x).

3. Existe una función a(t) > 0 tal que para x > 0,

ĺım
t→∞

t (1− F (a(t)x+ U(t))) = (1 + γx)−1/γ

para todo x tal que 1 + γx > 0.

Además, (2.3.26) se satisface con bn := U(n) y an := a(n).

Demostración Teorema 2.3.3. LA PONGO SOLO POR NUMERACION AR-
REGLAR

2.3.1. Enfoque histórico

La parametrización dada en el Teorema anterior, se debe a Von Mises (1936) y
Jenkinson (1955). Historicamente se separó según el signo de γ en tres casos. Cada uno
de ellos correspondiente a una clase de distribuciones. Aśımismo observemos que según el
signo de γ la función Gγ tiene dominio diferente.
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Para γ > 0 (Tipo II)

La distribución de valores extremos se denomina de Tipo II, que es la clase de Frechet
y está asociada a la letra Φ. Es decir, si la ley de valores extremos de F converge a
una función de distribución Gγ, con γ > 0, entonces existen valores a > 0 y b ∈ R

que cumplen Gγ(az + b) = Φ1/γ(z) donde Φα(z) se define como

Φα(z) =

{
0 si z < 0

exp{−z−α} si z ≥ 0.

Mas aún las transformaciones correspondientes entre Φα y Gγ, son tomar α = 1/γ
y luego hacer Gγ(

z−1
γ
) = Φα(z).

Para γ = 0 (Tipo I)

En este caso, la distribución es de Tipo I y está asociada a la distribución de Gumbel
Λ(z). En este caso Λ(z) := G0(z) = exp(− exp{−x}).

Para γ < 0 (Tipo III)

En este caso, la distribución es de Tipo III y está asociada a la distribución de
Weibull Ψ(z).

Ψα(z) =

{
exp(−|z|α) si z < 0

1 si z ≥ 0.

Con α > 0 la relación de Gγ con Ψα es que Ψα = G−1/α(−α(z − 1)).

2.3.2. Dominios de atracción

En esta sección se establecerán condiciones que determinen cuando una función de
distribución F cumple con la ley asintótica del máximo que se trató en la subsección
anterior.

Lema 2.3.2. Supongamos que existen sucesiones an > 0, bn, satisfaciendo,

Mn − bn
an

D−→ W

con W ∼ Gγ(cx+ d) para c > 0 y d ∈ R. Entonces existen a′n > 0, b′n

Mn − b′n
a′n

D−→ W ′

donde W ′ ∼ Gγ(x).



22

Demostración Lema 2.3.2. La demostración se sigue faćılmente utilizando el Lema de
Slutsky, notando que

c · Mn − bn
an

+ d
D−→ W ′ = cW + d.

Luego, la función de distribución de la variable aleatoria W ′ es Gγ(z) y c · Mn−bn
an

+ d =
Mn−b′n

a′n
con a′n =

an
c

y b′n = bn − a′nd.

El lema precedente, indica que las sucesiones an y bn no son únicas y están asociadas a
los valores de posición d y escala c que eventualmente toma la función Gγ. De esta manera,
se puede pensar que las condiciones que hay que pedir a una función de distribución F
para que exista una ley ĺımite para el máximo, están dadas, no ya para una familia de
distribuciones G que incluye corrimientos de posición y escala, sino para la función Gγ

estandarizada con c = 1 y d = 0.

Definición 2.3.5. Sea F una función de distribución y γ ∈ R, se define que F está en el
dominio de atracción de Gγ, si vale que

ĺım
n→∞

F n (anx+ bn) = Gγ(x) = exp{−(1 + γx)1/γ}.

En este caso, se escribirá F ∈ D (Gγ).

Con el fin de analizar las hipótesis necesarias sobre la función de distribución F para
que se satisfaga la ley asintótica del máximo, separararemos el estudio en tres casos
dependiendo del signo de γ. El signo de este parámetro es el primer indicador de las
propiedades de la “cola”de la distribución. Si γ > 0 la función F tiene cola “pesada”y
x∗ = ∞; si γ < 0, x∗ < ∞; y si γ = 0 la cola es “liviana”y x∗ puede ser finito o
infinito. La mayoŕıa de las funciones de distribución cont́ınuas t́ıpicamente utilizadas en
estad́ıstica están en algún dominio de atracción. Por ejemplo, las distribuciones Normal
y Exponencial pertenecen a D(G0); la distribución uniforme a D(Gγ) con γ < 0; y la
distribución de Cauchy a γ > 0.

En esta tesis sólo estudiaremos el caso γ > 0. Las técnicas utilizadas para este caso,
pueden readaptarse al caso γ < 0, pero no para el caso γ = 0, este último puede consultarse
en De Haan y Ferreira (2006). Es oportuno aclarar que existen casos de distribuciones que
no están en ningún dominio de atracción, por ejemplo, la distribución discreta de Poisson
no pertenece a ningún dominio de atracción. La Tabla 2.1 resume algunas distribuciones
junto a los dominios de atracción al que pertenecen.

El caso de Fréchet-Pareto: γ > 0

Como primer ejemplo se tomará la función de distribución de Pareto estricta Pa(α),
es decir su función de distribución esta dada por, F (x) = 1− x−α con x ≥ 1 donde α se
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Distribución F (x) F ∈ D(Gγ)

N(µ, σ2) Φ
(
x−u
σ

)
G0

E(λ) F (x) = 1− e−λx G0

β(a, b)
∫ x

0
Γ(a+b)
Γ(a)Γ(b)

wa−1(1− w)b−1dw G−1/a

U(a, b) F (x) = x−a
b−a , x ∈ [a, b] G−1

Cauchy (a, b) F (x) = 1
π
arctan

(
x−a
b

)
+ 1

2
G1

|Tn| F (x) =
∫ x

−∞ 2
Γ(n+1

2
)√

nπΓ(n
2
)
(1 + n−1w2)

−(n+1)/2
dw G1/n

Cuadro 2.1: Distribuciones usuales junto a los dominios de atracción al que pertenecen.
Φ es la función de distribución respecto a una variable normal estandar.
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denomina el ı́ndice de Pareto. Para esta distribución tenemos que U(x) = xγ. Con γ = 1
α
.

Entonces planteando la condición sobre los cuantiles de cola, tenemos que

ĺım
x→∞

U(xt)− U(x)

a(x)
= ĺım

x→∞

(xt)γ − xγ

a(x)
= ĺım

x→∞

xγ

a(x)
(tγ − 1).

Tomando a(x) = γxγ obtenemos que

ĺım
x→∞

U(xt)− U(x)

a(x)
=

tγ − 1

γ
.

Luego si F ∼ Pa(α), entonces F ∈ D(Gγ). La ecuación anterior vale solo para un
caso particular. Pero la cuenta detallada da idea de como relajar las condiciones para
extender este resultado a funciones mas generales que aquellas asociadas a Pa(α). Antes
de comenzar definiremos las funciones de variación regular.

Definición 2.3.6. (Funciones de variación Regular) Una función g : A ⊆ R → B ⊆ R es
de variación regular de indice α si

ĺım
x→∞

g(xt)

g(x)
= tα.

Si α = 0, entonces g se dice de variación lenta, a las funciones de variación lenta las
notaremos con la letra ℓ.

Asintóticamente, si una función g es de variación regular de parámetro α, una
amplificación t en su argumento x, tiene como respuesta una amplificación en el valor de
la función de orden α, es decir, g(xt) ≈ g(x)tα. Por ello puede pensarse que las funciones
con α = 0, son insensibles a amplificaciones en el argumento pues vale g(xt) ≈ g(x).
Consecuencia de esto es que si α = 0, la función g vaŕıe muy lentamente, y de alĺı su
denominación como función de variación lenta. Un ejemplo de una función de variación
regular de orden α es xα y un ejemplo de función de variación lenta es log(x).

Proposición 2.3.1. g(x) es de variación regular de parámetro α ⇔ g(x) = xαℓ(x), donde
ℓ(x) es de variación lenta.

Demostración Proposición 2.3.1. (⇒): g(x) es de variación regular de parámetro α,
entonces vale

ĺım
x→∞

g(xt)

g(x)
= tα (2.3.28)

Luego, definimos ℓ(x) := g(x)
xα , entonces valen las siguientes dos afirmaciones,

g(x) = xαℓ(x)
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ℓ(x) es de variación lenta:

ℓ(xt)

ℓ(x)
=

g(xt)

(xt)α
xα

g(x)
(2.3.29)

=
1

tα
g(xt)

g(x)
(2.3.30)

ĺım
x→∞

ℓ(xt)

ℓ(x)
=

1

tα
ĺım
x→∞

g(xt)

g(x)
=

1

tα
tα = 1

De ésta forma, los dos ı́tems anteriores, concluyen la implicación en el sentido que se
queŕıa probar.

(⇐): Ahora, suponiendo que g(x) = xαℓ(x), con ℓ(x) de variación lenta, puede verse
directamente que g es de variación regular de parámetro α aplicando la definición.

ĺım
x→∞

g(xt)

g(x)
= ĺım

x→∞

(tx)αℓ(tx)

xαℓ(x)
= tα ĺım

x→∞

ℓ(xt)

ℓ(x)
= tα

El siguiente teorema impone condiciones de suficiencia sobre F de manera que
F ∈ D(Gγ).

Teorema 2.3.4. Sea F una función de distribución, tal que

UF (x) = U(x) = xγℓUF
(x) (2.3.31)

con γ > 0 y ℓUF
una función de variación lenta entonces F ∈ D(Gγ).

Demostración Teorema 2.3.4. Para probar el teorema, basta probar que se satisface
la condición dada en (2.3.27) que se desprende directamente del siguiente hecho

ĺım
x→∞

U(xt)− U(x)

a(x)
= ĺım

x→∞

(xt)γℓU(xt)− xγℓU(x)

a(x)

= ĺım
x→∞

ℓU(x)x
γ

a(x)

(
ℓU(xt)

ℓU(x)
tγ − 1

)

Sea a(x) = γℓU(x)x
γ obtenemos que

ĺım
x→∞

U(xt)− U(x)

a(x)
=

tγ − 1

γ

que es lo que queŕıamos ver.

Observación 2.3.1. La condición U(x) = xγℓU(x) implica que si U(x) es de variación
regular de parámetro γ > 0 entonces F ∈ D(Gγ).
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En adelante se probará que la condición suficiente (2.3.31) también es necesaria. Con
esto tendremos que para γ > 0 el dominio de atracción D(Gγ) quedará completamente
caracterizado por el comportamiento asintótico de las funciones cuantiles de cola UF de las
distribuciones F que están en dicho dominio. Antes de continuar enunciaremos el siguiente
resultado que probaremos más adelante y utilizaremos en la prueba de que la condición
suficiente también es necesaria.

Lema 2.3.3. Si F ∈ D (Gγ), con γ > 0, entonces

ĺım
t→∞

U(t) = ∞.

Observemos que este lema implica que si γ > 0, entonces x∗ = ∞. Ya que por las
definiciones de U y x∗ es fácil ver que

U(t) ≤ x∗.

Teorema 2.3.5. Sea F ∈ D (Gγ), con γ > 0, entonces

UF (x) = xγℓUF
(x)

Demostración Teorema 2.3.5. Como F ∈ D (Gγ) entonces existe a(t) > 0 tal que

ĺım
t→∞

U(xt)− U(t)

a(t)
=

xγ − 1

γ

y además en (2.3.22) vimos que

ĺım
t→∞

a(tx)

a(t)
= xγ .

Sea ahora z un número arbitrario tal que z > 1 para k ∈ N, se tiene que

U(zk+1)− U(zk)

U(zk)− U(zk−1)
=

U(zk+1)− U(zk)

a(zk)
·
(
U(zk)− U(zk−1)

a(zk−1)

)−1
· a(zk)

a(zk−1)
. (2.3.32)

En el término de la derecha, tomando ĺımite en k, reemplazando zk+1 por z · zk y que
haciendo la sustitución t = zk ( k → ∞ ⇒ t → ∞, por ser z > 1) tenemos

ĺım
k→∞

U(z · zk)− U(zk)

U(zk)
= ĺım

t→∞

U(z · t)− U(t)

U(t)
=

zγ − 1

γ
.

Análogamente ĺımk→∞
a(zk)

a(zk−1)
= ĺımk→∞

a(zk−1z)
a(zk−1)

= zγ . Luego tomando ĺımite en (2.3.32)
obtenemos

ĺım
k→∞

U(zk+1)− U(zk)

U(zk)− U(zk−1)
= zγ .
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Aśı, para ε > 0 se tiene que existe k0(ε) tal que:

∣∣∣∣∣

(
U(zk+1)− U(zk)

)
− zγ

(
U(zk)− U(zk−1)

)

U(zk)− U(zk−1)

∣∣∣∣∣ < ε.

Entonces,

−ε
(
U(zk)− U(zk−1)

)
<
(
U(zk+1)− U(zk)

)
−zγ

(
U(zk)− U(zk−1)

)
< ε

(
U(zk)− U(zk−1)

)

Reorganizando los términos

(
U(zk)− U(zk−1)

)
zγ(1− ε) < U(zk+1)− U(zk) <

(
U(zk)− U(zk−1)

)
zγ(1 + ε)

y sumando término a término cada miembro de la desiguadad desde k0 hasta N se obtiene

(
U(zN)− U(zk0−1)

)
zγ(1− ε) < U(zN+1)− U(zk0) <

(
U(zN)− U(zk0−1)

)
zγ(1 + ε).

Ahora dividiendo por U(zN) obtenemos

(
1− U(zk0−1)

U(zN)

)
zγ(1− ε) <

U(zN+1)

U(zN)
− U(zk0)

U(zN)
<

(
1− U(zk0−1)

U(zN)

)
zγ(1 + ε). (2.3.33)

Como k0 está fijo, utilizando el resultado del Lema 2.3.3 tenemos U(zN) −−−→
N→∞

∞ y por

lo tanto
U(zk0−1)

U(zN)
−−−→
N→∞

0. De este hecho y tomando ĺımite en N en (2.3.33) se obtiene

zγ(1− ε) < ĺım
N→∞

U(zN+1)

U(zN)
< zγ(1 + ε)

para todo ε. Luego

ĺım
N→∞

U(zN+1)

U(zN)
= zγ .

Un razonamiento inductivo generaliza la última expresión para l ∈ N

ĺım
N→∞

U(zN+l)

U(zN)
= zlγ. (2.3.34)

Ahora, para x > 1 definamos el número n(x) ∈ N como aquél que cumple

zn(x) < x ≤ zn(x)+1.

Para t, x > 1 se tiene que

zn(t)zn(x) < tx < zn(t)+1zn(x)+1,
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como U es no decreciente

U
(
zn(t)zn(x)

)
< U(tx) < U

(
zn(t)+1zn(x)+1

)

U
(
zn(t)zn(x)

)

U (zn(t)+1)
<

U(tx)

U(t)
<

U
(
zn(t)+1zn(x)+1

)

U (zn(t))
. (2.3.35)

Tomando la parte izquierda de la desigualdad, se tiene que

U
(
zn(t)zn(x)

)

U (zn(t)+1)
=

U
(
zn(t)zn(x)

)

U (zn(t))

U
(
zn(t)

)

U (zn(t)+1)
(2.3.36)

y aplicando (2.3.34) a (2.3.36)

ĺım
t→∞

U
(
zn(t)zn(x)

)

U (zn(t)+1)
= zγn(x)z−γ = (zn(x))

γ
z−γ ≥ xγz−2γ . (2.3.37)

Donde la última desigualdad vale por la definición de n(x)

zn(x)+1 ≥ x ⇒ zn(x) ≥ x/z ⇒ (zn(x))γ ≥ (x/z)γ ⇒ (zn(x))γz−γ ≥ xγz−2γ .

Análogamente se ve que la parte derecha de (2.3.35) satisface

ĺım
t→∞

U
(
zn(t)+1zn(x)+1

)

U (zn(t))
< xγz2γ . (2.3.38)

De esta forma utilizando (2.3.37) en (2.3.35), tomando ĺımite inferior en t tenemos

ĺım ı́nf
t

U(tx)

U(t)
≥ xγz−2γ

y cuando z ց 1 obtenemos

ĺım ı́nf
t

U(tx)

U(t)
≥ xγ.

De la misma manera usando (2.3.38) en (2.3.35),

ĺım
t
sup

U(tx)

U(t)
≤ xγz2γ ⇒ ĺım

t
sup

U(tx)

U(t)
≤ xγ .

Luego hemos probado que

ĺım
t→∞

U(tx)

U(t)
= xγ. (2.3.39)

La ecuación 2.3.39 implica que el cuantil de cola U es de variación regular de parámetro
γ, esto según la propiedad 2.3.1 es equivalente a la existencia de una función de variación
lenta ℓUF

cumpliendo

UF (x) = xγℓUF
(x) (2.3.40)

Que es lo que se queŕıa ver.
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Demostración Lema 2.3.3. En principio observemos que

U(zj)− U(zj−1) = U(zn0)− U(zn0−1)
U(zn0+1)− U(zn0)

U(zn0 )− U(zn0−1)
. . .

U(zj)− U(zj−1)

U(zj−1)− U(zj−2)
.

Es decir,

U(zj)− U(zj−1) = U(zn0 )− U(zn0−1)

j∏

k=n0

U(zk+1)− U(zk)

U(zk)− U(zk−1)
. (2.3.41)

Luego utilizando (2.3.33) de la demostración del teorema anterior dado 0 < ε < 1 − zγ

existe n0 tal que para todo k > n0

U(zk+1)− U(zk)

U(zk)− U(zk−1)
> (1− ε)zγ.

Por lo tanto en (2.3.41) si j ≥ n0

U(zj)− U(zj−1) > U(zn0 )− U(zn0−1)

j∏

k=n0

(1− ε)zγ

>
(
U(zn0 )− U(zn0−1)

)
((1− ε)zγ)j−n0+1.

Entonces

N∑

j=n0

U(zj)− U(zj−1) >
(
U(zn0 )− U(zn0−1)

) N∑

j=n0

((1− ε)zγ)j−n0+1

U(zN)− U(zn0−1) >
(
U(zn0 )− U(zn0−1)

) N∑

j=n0

((1− ε)zγ)j−n0+1.

Por la elección de ε efectuada, (1−ε)zγ > 1, entonces al tomar ĺımite enN , la parte derecha
de la última ecuación es ∞, por lo tanto también es ĺımN→∞ U(zN) = ∞. Finalmente, el
hecho de que U es no decreciente implica que ĺımt→∞ U(t) = ∞.

El teorema anterior establece que las funciones de distribución F que están en el
dominio de atracción D(Gγ), con γ > 0 son exactamente las mismas funciones cuyos
cuantiles de cola son de variación regular de parámetro γ. Intuitivamente la condición
F ∈ D(Gγ), es equivalente a que su función UF no crezca arbitrariamente, sino que este
controlada, por una función de tipo xγ

Es posible, a partir de la caracterización en términos de la función UF , dar una
caracterizacion en términos de la función F .
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Teorema 2.3.6. Sea F una función de distribución acumulada y F = 1− F entonces

F ∈ D (Gγ) con γ > 0 si y sólo si F (x) = x−1/γℓF (x)

donde ℓF (x) una función de variación lenta.

Demostración Teorema 2.3.6.

El teorema anterior es equivalente a pensar que las variables aleatorias que satisfacen
la ley del máximo para γ > 0, son aquellas que tienen una distribución tal que F , la cola
de la distribución, cae como 1/xα, para x suficientemente grande. La demostración de este
hecho puede consultarse en Teugels et al. (2004).

2.3.3. Una aplicación del Teorema de Fisher, Tippet y Gne-
denko

En esta sección mostraremos la importancia del Teorema 2.3.2 estudiado anteriormente
a fin de desarrollar un procedimiento de estimación. Consideremos una muestra aleatoria
de tamaño N fijo {X1, . . . , XN} y sea MN el máximo de las Xi . Estamos interesados
en dar una estimación de P (MN ≤ z) asumiendo que F está en D(Gγ), es decir, existen
sucesiones an > 0 y bn ∈ R tales que

ĺım
n→∞

P

(
Mn − bn

an
≤ z

)
= Gγ(cz + d)

para ciertos valores de posición d y escala c.
Este ĺımite brinda una potente idea para estimar P (MN ≤ z), una idea informal para

hacerlo es el siguiente hecho,

P (MN ≤ z) = P

(
MN − bN

aN
≤ z − bN

aN

)
≈ Gγ

(
c ·
(
z − bN
aN

)
+ d

)
.

El argumento de la parte derecha de la aproximación, cumple una relación lineal en z,
que puede ser escrito como σNz + uN , que olvidando la dependencia con N podemos
escribirlo de la forma σz+ u. Aśı tenemos que la parte derecha de la aproximación puede
ser expresada como Gγ,u,σ(z) = Gγ (σz + u). En definitiva

P (MN ≤ z) ≈ Gγ,u,σ(z)

La función Gγ,u,σ se denomina función de valores extremos generalizada. Y se concluye
que MN puede ser aproximada por una función de valores extremos generalizada. Es
importante recalcar que el procedimiento utilizado prescinde del conocimiento de los
valores de escala y posición aN y bN .



Caṕıtulo 3

Función de excesos

El tiempo de duración de un componente electrónico puede ser representado por una
variable aleatoria X con distribución F . Para una duración u, dada en d́ıas, interesa
saber cuál es la probabilidad de que el componente electrónico dure y d́ıas más. Dicha
probabilidad puede ser calculada de la siguiente manera

P (X ≥ u+ y|X ≥ u) =
1− F (u+ y)

1− F (u)
.

El término de la derecha está relacionado con la función de distribución de excesos Fu

Fu(y) = P (X − u ≤ y|X ≥ u) = 1− 1− F (u+ y)

1− F (u)
,

utilizando la notación F = 1− F tenemos,

F u(y) =
1− F (u+ y)

1− F (u)
.

Una propiedad conocida es que X ∼ E(λ) si y sólo si, Fu(x) no depende de u, esto
significa que Fu(x) = H(x), para alguna función H. Las distribuciones que cumplen con
esta propiedad son asociadas al desgaste cero.

En general las funciones de exceso cumplen una ley asintótica, para u → ∞. La teoŕıa
utilizada para obtenerla está extremadamente relacionada con las leyes para el máximo
de una muestra aleatoria. Aśı, resultados de la teoŕıa de valores extremos se utilizan para
estimaciones de funciones de excesos y viceversa. En la literatura, los primeros trabajos que
dan cuenta de una situación acabada de esta relación son de Pickands (1975) y Balkema y
de Haan (1974). Ambos obtuvieron sus resultados independientemente. Pickands trató de
estimar el parámetro γ de la distribución de valores extremos, para ello desarrolló las
principales propiedades asintóticas de la función de excedencias de una distribución F .
Balkema y De Haan estudiaron el problema de caracterizar directamente la función de

31
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excedencias por sobre un umbral, para valores altos de u, desarrollarondo la relación
existente entre la teoŕıa de valores extremos y la función de excedencias.

En el caṕıtulo anterior se probó que el máximo de una muestra converge en distribución
a una función en la familia Gγ(x), con γ ∈ R, donde Gγ quedó completamente
determinada, salvo valores de posición y escala. Análogamente, se verá que F u, con
u → ∞, puede ser aproximada por la función generalizada de Pareto.

3.1. Distribuciones ĺımites para la función de excesos

A continuación defineremos la familia de distribuciones Pareto. Esta familia cumple
un papel análogo a la función de valores extremos Gγ, vista en la sección anterior.
También presentaremos una serie de resultados que evidencian la analoǵıa mencionada. La
demostración de los mismos puede verse en Balkema, De Haan (1974) y Pickands (1975).

Definición 3.1.1. Decimos que una variable aleatoria es Pareto Hσ,γ , con σ > 0 y γ ∈ R

si su función de distribución está dada por

Hσ,γ(z) = 1−
(
1 +

zγ

σ

)−1/γ
+

,

para γ 6= 0, mientras que para γ = 0 se define Hσ,0(z) = 1− e−
z
σ .

Esta familia de distribuciones satisface las siguientes propiedades.

Propiedades 3.1.1.

1. Estabilidad. Si existe u0 de forma tal que Fu0 = Hσ(u0),γ, entonces, para todo u ≥ u0

se tiene que Fu = Hσ(u),γ con σ(u) = σ(u0) + γ(u− u0).

2. Si Y ∼ Hσ,γ con γ < 1, entonces E[Y ] = σ
1−γ .

Teorema 3.1.1.

1. Balkema, De Haan (1974). Supongamos que existen funciones a(u) > 0, b(u) ∈ R y
W tal que

ĺım
u→x∗

Fu (a(u)x+ b(u)) = W (x)

para todo x tal que 0 < W (x) < 1. Entonces, existen σ > 0, γ ∈ R para los cuales
W = Hσ,γ.

2. Pickands (1975). Si F ∈ D(Gγ) ĺımu→x∗ sup0≤x<∞
∣∣Fu(x)−H(σ(u),γ)(x)

∣∣ = 0.

Observación 3.1.1. El punto 1 del teorema anterior indica que la única posibilidad de
que haya una función ĺımite para Fu, con u → ∞ es que W sea Pareto, mientras que
el punto 2 da una idea de la relación existente entre la ley asintótica para el máximo y
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la ley asintótica para la función distribución de excesos. En primer lugar establece que
aquellas distribuciones que están en el dominio de atracción de Gγ, cumplen tener una
distribución ĺımite para la función Fu; y en segundo lugar, indica que el parámetro γ es
el mismo en la función Gγ y en la función Hσ,γ.

Cabe mencionar también que la propiedad de estabilidad es un concepto importante que
tiene la distribución Pareto. Coloquialmente significa que si la familia Pareto ajusta bien
a la función de excesos para un valor u0, lo mismo ocurrirá para todo u > u0. Finalmente
la segunda propiedad se utilizará más adelante para determinar el valor de u que mejor
ajusta a una muestra aleatoria dada.

En el caṕıtulo anterior vimos que la función de distribución del máximo puede
ser aproximada por la función de extremos generalizada Gγ,µ,σ. A continuación
desarrollaremos en forma heuŕıstica el teorema anterior que da una idea de porqué la
función generalizada Pareto es adecuada para estimar la función de excesos sobre un
umbral alto u.

Notemos que F n(z) ≈ Gγ,µ,σ(z) = e−(1+γ z−µ
σ

)
−1/γ

, luego tomando logaritmo tenemos

n lnF (z) ≈ −
(
1 + γ z−µ

σ

)−1/γ
. Ahora si z → x∗ entonces F (z) → 1 por lo tanto

ln(F (z)) ≈ F (z)− 1. De donde se obtiene

1− F (z) ≈ 1

n

(
1 + γ

z − µ

σ

)−1/γ
.

Aśı, para z suficientemente grande tenemos que

F u(z) =
1− F (u+ z)

1− F (u)
≈

(
1 + γ

z + u− µ

σ

)−1/γ

(
1 + γ

u− µ

σ

)−1/γ =

(
γ z
σ
+ 1 + γ u−µ

σ

1 + γ u−µ
σ

)−1/γ

≈
(
1 + γz · 1

σ(1 + γ u−µ
σ

)

)−1/γ
=

(
1 + γ · z

σ + γ(u− µ)

)−1/γ
.

Por lo tanto

F u(z) ≈
(
1 +

γz

σ̃(u)

)−1/γ
(3.1.1)

con σ̃(u) = σ + γ(u− µ).

3.2. Selección del umbral

En la ecuación (3.1.1) se muestra que para algún valor de u se tendrá la siguiente
aproximación Fu ≈ Hσ,γ. La pregunta natural es determinar el valor de u para el cuál esto
sucede en el caso en que la F es desconocida. Para resolver este problema se presentan
algunos métodos sugeridos por la bibliograf́ıa.
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3.2.1. Mean Residual Plot

Utilizando la Propiedad 3.1.1 se tiene que si Fu = Hσ(u),γ para algún u = u0, entonces

e(u) = E[X − u|X > u] =
σ(u0) + γu

1− γ
. ∀ u ≥ u0

Por lo tanto la esperanza del exceso debe ser una función lineal en u. Dada una muestra
aleatoria, la esperanza del exceso puede ser estimada, para cada u utilizando

ê(u) =

∑n
i=1 (Xi − u) I{Xi>u}

nu

donde nu =
∑n

i=1 I{Xi>u}. El gráfico mean residual plot está dado por el conjunto A ⊆ R
2

A =
{
(u, ê(u)) : u < X(n)

}
.

La idea del método es seleccionar el menor valor de u para el cual el gráfico del conjunto
A es aproximadamente lineal.

0 2 4 6 8

1
.0

1
.5

2
.0

2
.5

u

e
(u

)

u real

Figura 3.1: Ejemplo de Mean Residual Plot. Los datos fueron generados de manera que
sigan la distribución de un variable aleatoria X cumpliendo X − u0|X>u0 ∼ Hσ0,γ0 . Los
valores son u0 = 3.480633; σ0 = 1,1 y γ0 = 0,3. En rojo, el verdadero valor del umbral.
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3.2.2. Estabilización del parámetro de escala y forma

Por la misma Propiedad 3.1.1 utilizada anteriormente, si Fu0 = Hσ0,γ para algún
u = u0, entonces Fu = Hσ0+γ(u−u0),γ . Luego σu − γu = σ∗ para todo u ≥ u0, mientras
que el parámetro γ no se ve modificado. Esto sugiere que la estimación de σ∗ y γ debe
ser constante a partir de algún u donde Fu sea aproximadamente Pareto. De esta forma,
dado un valor de u pueden estimarse σ̂∗(u) y γ̂(u). Definamos los siguientes conjuntos
Bσ∗ , Bγ ⊆ R

2 dados por

Bσ∗ =
{(

u, σ̂∗(u)
)
: u < X(n)

}
Bγ =

{
(u, γ̂(u)) : u < X(n)

}

Aśı una buena elección de u consiste en elegir el menor valor de u para el cual los gráficos
son aproximadamente constantes.

3.3. Selección del umbral: nueva propuesta

En esta sección desarrollaremos un método de estimación del umbral basado en una
propuesta semiparamétrica. El nuevo método de estimación depende de la utilización de un
estimador no paramétrico de la densidad, razón por la cual hemos inclúıdo un apéndice que
resume el método de estimación de densidad basado en núcleos. Los enfoques anteriores
no son automáticos en el sentido que requieren de la elección y el criterio del usuario
para determinar el valor del umbral estimado. El método que proponemos depende de
la elección del parámetro de suavizado h del estimador por núcleos. Es plausible que
desarrollos futuros eliminen este requerimiento, siendo el valor de h calculado a partir de
los datos.

3.3.1. El modelo

A fin de proponer un nuevo criterio de selección del umbral supondremos que F
satisface la siguiente condición

∃ u tal que Fu(x) = Hσ,γ(x) para todo x ≥ u.

En otras palabras supondremos que F ∈ Υ donde Υ es la familia de distribuciones definida
por

Υ = {G : G es función de distribución ∧ ∃u tal que
G(y + u)

G(u)
= Hσ,γ(y)}.

Observación 3.3.1. Si X es v.a, y X ∼ G ∈ Υ, entonces debe existir un valor de u para
el cual X − u|X>u ∼ Hσ,γ
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En el caso de trabajar con datos emṕıricos, dif́ıcilmente valga esta hipótesis. No
obstante, al suponer que los datos reales satisfacen que Fu es aproximadamente como
Hσ,γ(x), se espera que el error cometido al hacer la suposición de igualdad sea pequeño
en comparación con la ventaja que representa hacer estimaciones en este caso.

En el marco en que F ∈ Υ, las funciones de distribución admiten una escritura
particular. Esta escritura permitirá luego deducir, naturalmente estimadores adecuados.

Sea X ∼ F notemos que F puede ser escrita de la siguiente forma,

P (X < x) = P (X < x|X ≤ u)P (X ≤ u)︸ ︷︷ ︸
A

+P (X < x|X > u)P (X > u)︸ ︷︷ ︸
B

.

Analizaremos dos casos x > u y x ≤ u.

(x ≤ u) En este caso solo quedará el término A = P (X < x) siendo el término B
igual a 0.

(x > u) En este caso el término A = P (X ≤ u) mientras que para el término B se
tiene que

B = P (X < x|X > u)P (X > u).

Restando u de ambos lados

B = P (X − u < x− u|X > u)P (X > u).

Del hecho que F ∈ Υ tenemos

B = Hσ,γ(x− u)P (X > u).

De esta forma F (x) puede escribirse como

F (x) = F (x)1{x≤u} + [P (X ≤ u) +Hσ,γ(x− u)P (X > u)]1{x>u}

llamando pu = P (X ≤ u)

F (x) = F (x)1{x≤u} + [pu +Hσ,γ(x− u)(1− pu)]1{x>u}.

Si F admite densidad (F )
′
= f y (Hσ,γ)

′
= hσ,γ obtenemos que

f(x) = f(x)1{x≤u} + [hσ,γ(x− u)(1− pu)]1{x>u},

que puede escribirse como

f(x) = pu
f(x)

pu
1{x≤u} + [hσ,γ(x− u)(1− pu)]1{x>u}.
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Observemos que f1(x) =
f(x)
pu
1{x≤u} es una función de densidad soportada en el conjunto

{x ∈ Sop(f) : x ≤ u}, de donde se obtiene

f(x) = puf1(x)1{x≤u} + (1− pu)hσ,γ(x− u)1{x>u}.

A su vez f2(x) = hσ,γ(x − u)1{x>u} también es una función de densidad soportada en
{x : x > u}

De esta manera, hemos caracterizado a las funciones de distribución F que pertenecen
a la familia Υ y que admiten densidad, escribiendolas como una combinación convexa
de dos densidades f1 y f2. Un punto importante es la información relativa a f2, que nos
permite garantizar que pertenece a una familia Pareto. En particular la función f2 esta
determinada salvo parámetros. En cambio, el conocimiento de f1 es nulo, sólo sabemos
que Sop(f1) ∩ Sop(f2) = ∅. Hecha la aclaración de los soportes podemos escribir

f(x) = puf1(x) + (1− pu)f2(x).

Es importante recalcar que el soporte de f1 y de f2 depende de u, de esta manera hemos
probado la siguiente propiedad.

Propiedades 3.3.1. Sea F una función de distribución admitiendo densidad f

F ∈ Υ ⇔ f(x, u) = puf1(x, u) + (1− pu)f2(x, u)

donde f1 y f2 son densidades tales que f2(x, u) = hσ,γ(x−u)1{x>u} y Sop(f1)∩Sop(f2) = ∅.

Notemos que si X ∼ F ∈ Υ, entonces existe un umbral u tal que X − u|X>u ∼ Hσ,γ ,
no obstante esta propiesdad no determina uńıvocamente el valor del umbral. Esto se debe
a que, bajo estas condiciones, para cualquier δ > 0 se tiene que X − (u+ δ)|X>u+δ ∼ Hσ̃,γ

como se prueba en el siguiente resultado.

Definición 3.3.1. Dada X ∼ F ∈ Υ se dice que u realiza el modelo si X−u|X>u ∼ Hσ̃,γ̃ ,
para algún σ̃, γ̃

Proposición 3.3.1. Sea X ∼ F ∈ Υ y supongamos que u realiza el modelo entonces para
todo δ > 0, u+ δ también realiza el modelo.

Demostración Proposición 3.3.1. Si u realiza el modelo, entonces para ciertos σ = σ0

y γ = γ0 se tiene que P (X − u > z|X > u) = 1 − Hσ0,γ0(z). Queremos ver que u + δ
también realiza el modelo, para esto veamos que

P (X − (u+ δ) > z|X > (u+ δ)) = 1−Hσ̃,γ̃(z).
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Notemos que

P (X − (u+ δ) > z|X > (u+ δ)) =
1− F (z + u+ δ)

1− F (u+ δ)

=
1− F (z + u+ δ)

1− F (u)

1− F (u)

1− F (u+ δ)

=
1− F (z + u+ δ)

1− F (u)

/
1− F (u+ δ)

1− F (u)
. (3.3.1)

Como u realiza el modelo, se tienen las siguientes identidades

1− F (z + u+ δ)

1− F (u)
= 1−Hσ0,γ0(z + δ)

y que
1− F (u+ δ)

1− F (u)
= 1−Hσ,γ(δ).

Entonces de (3.3.1) se desprende

P (X − (u+ δ) > z|X > (u+ δ)) =
1−Hσ0,γ0(z + δ)

1−Hσ0,γ0(u+ δ)
(3.3.2)

como 1−Hσ0,γ0(z) =
(
1 + zγ0

σ0

)−1/γ0
el lado derecho de la igualdad se traduce en

(
1 + (z+δ)γ0

σ0

)−1/γ0

(
1 + δγ0

σ0

)−1/γ0 =

(
1 + δγ0

σ0
+ zγ0

σ0

1 + δγ0
σ0

)−1/γ0
=

(
1 +

zγ0
σ0 + δγ0

)−1/γ0
= Hσ0+γ0δ,δ(z).

Por lo tanto de (3.3.2) tenemos P (X − (u+ δ) > z|X > (u+ δ)) = Hσ0+γ0δ,δ(z), luego
u+ δ realiza el modelo con σ̃ = σ0 + γ0δ y γ̃ = γ0.

La proposición anterior motiva la siguiente definición.

Definición 3.3.2. Dada X ∼ F ∈ Υ se dice que u0 es el umbral inicial de F si u0 es el
ı́nfimo de los valores u que realizan el modelo.

u0 = u0(F ) = ı́nf{u : X − u|X>u ∼ Hσ̃,γ̃}

3.3.2. La propuesta de estimación

En esta Sección daremos una propuesta para estimar el umbral inicial u0, basada en
una muestra aleatoria {X1, . . . , Xn} tal que Xi ∼ F ∈ Υ. La estimación “natural”que
surge de la sección anterior es considerar un estimador no paramétrico para f1 y un
estimador paramétrico para f2. Se elegirá el menor valor de u que ajuste a los datos basado
en una función de pseudoverosimilitud L(u) según se detalla en el siguiente procedimiento.
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Paso 1: Construcción de la función de pseudoverosimilitud L(u)

1.1: Consideremos f̂ un estimador no paramétrico de la densidad basado en
X1, . . . , Xn.

1.2: Para cada u sean

Cu =
∫ u

−∞ f̂(x)dx

nu =
∑n

i=1 1{Xi≤u} y p̂u = nu

n

f̂1u(x) =
f̂(x)1{x≤u}

Cu

γ̂0(u), σ̂0(u) los estimadores de los paramétros de la distribución Pareto
basados en las observaciones Xi − u tales que tales que Xi > u.

1.3: Para cada u, basados en los estimadores definidos anteriormente,
calculamos un estimador semiparamétrico la densidad f ,

f̂u(x) = p̂uf̂1u(x) + (1− p̂u)hσ̂0(u),γ̂0(u)(x− u).

1.4: Construimos la pseudoverosimilitud L(u) =
∏n

i=1 f̂u(Xi)

Paso 2: Finalmente calculamos un estimador de u0, û como el mı́nimo del conjunto
donde L se máximiza. Es decir,

û = mı́n{u : tal que L(u) = máx
z

L(z)}.

Observación 3.3.2. Notemos que en el paso 1.4 estamos evaluado f̂u en el punto
Xi y esto puede aumentar el sesgo en la estimación de la pseudo verosimilitud. Una
alternativa a ser considerada seŕıa calcular f̂u,i(Xi) en lugar f̂u(Xi) donde f̂u,i(·) se
construye excluyendo a la observación Xi tanto en la estimación paramétrica como en
la no paramétrica.

3.4. Resultados numéricos

En esta sección desarrollaremos un estudio de simulación con el objetivo de evaluar el
método propuesto en la sección anterior. El análisis de las propiedades de la función L(u)
y su comportamiento asintótico es objeto de trabajos en curso, pero su desarrollo excede
el alcance de esta tesis.

3.4.1. Modelo uniforme - exponencial

En el primer modelo que estudiaremos supondremos conocido el parámetro de forma
mas aún consideraremos γ = 0. En este caso, la función hσ,γ queda dentro de la familia
exponencial,

hσ,γ(x− u) =
1

σ
exp{−1

σ
(x− u)}1{x>u}.
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Además asumiremos que f1 pertenece a la familia uniforme en el intervalo [0, u0] con
u0 = 5 . De esta manera el modelo simplificado corresponde a

f(x) = pu0f1(x) + (1− pu0)λe
−λ(x−u0)1{x>u0}

con λ0 = 0,5 y pu0 = 0,95.
Se generaron 1000 muestras de tamaño n, con n = 500, 1000, 1500, 2000 para cada una

de las muestras se calculo la pseudoverosimilitud L(u) según el procedimiento descripto
en la sección anterior. Para ello en el Paso 1.1 consideramos un estimador noparamétrico
de la densidad basado en núcleos. En este caso utilizamos el núcleo Epanechnicov1, y
consideramos diferentes valores de ventana h (h=0.1, 0.25, 0.5, 0.75, 1). En el Paso 1.2
para estimar el paramétro λ0 de la cola de la distribución consideramos el estimador de
máxima verosimilitud basado en las observaciones mayores que el valor u. Es decir,

λ̂0(u) =

∑
1{Xi>u}∑

(Xi − u)1{Xi>u}
.

Aśı la función de pseudoverosimilitud queda definida por L(u) =
∏n

i=1 f̂u(Xi) donde

f̂u(x) = p̂uf̂1u(x) + (1− p̂u)λ̂0(u)e
−λ̂0(u)(x−u)1{x>u}.

Es importante aclarar que estamos suponiendo que el verdadero valor de u0

corresponde a un punto para el cual la distribución de la cola sigue aproximadamente
una distribución Pareto. Aśı, en el problema general esperaŕıamos que los valores de u0

considerados sean suficientemente grandes. En este sentido el valor 1− pu0 , el cual indica
qué proporción de datos siguen la distribución Pareto, debe ser chico. Esto se condice con
el hecho de generar modelos con valores de pu0 cercanos a 1, como consideramos en el
esquema de simulación. Por tal motivo, para optimizar la función L consideramos valores
de u entre los estad́ısticos de orden X([0,75n]) y X(n).

Se programó un algoritmo que compute la función L, es decir, dada una grilla
equiespaciada de t puntos, UUU = {X([0,75n]) = u1 < u2 < . . . < ut−1 < ut = X([n])}, se
computó el arreglo correspondiente a la función L,

LLL = (l1, . . . , lt) = (L(u1), . . . L(ut)) .

Cualitativamente, los posibles resultados de esta rutina se muestran gráficamente en
la Figura 3.2. Cada uno de los casos, puede corresponder al conjunto de datos generados
o a distintas elecciones del valor del parámetro de suavizado h utilizado en el estimador
de densidad por núcleos.

En el caso A) el valor u donde la función L alcanza su máximo es u = 4,971, éste da
una buena aproximación al valor verdadero u0(F ) (u0(F ) = 5), mientras que en el caso

1Ver Apéndice
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Figura 3.2: En rojo el valor máximo de L

B) no. En ambos casos hay un valor ū a partir del cual la función crece muy lentamente
respecto del crecimiento para valores anteriores a ū.

Esta lentitud de crecimiento, refleja la propiedad 3.3.1. Es decir, la función de
pseuoverosimilitud L evaluada en u, puede ser entendida como una medida de cuán bien se
ajustan los datos al modelo, suponiendo que el valor real es u. Dado u > u0(F ) esperamos
que un corrimento en u+ δ, no provoque grandes diferencias en el valor de L debido a que
los datos debieran ajustarse a los dos modelos (en virtud de la propiedad 3.3.1). Por ello
suponemos que L(u) ≈ L(u+ δ). Luego, el valor de ū será un buen estimador de umbral
inicial u0(F ).

Ante la necesidad de computar aproximadamente el valor de ū, se utilizó una
estrategia heuŕıstica, consistente en reconocer el valor de u para el cual la función es
aproximadamente constante por medio de la comparación con su valor medio parcial SSS.

Dado el arreglo LLL definimos un nuevo arreglo formado por el valor medio parcial
SSS = {SSSj : 1 ≤ j ≤ t}, donde SSSj es definido como

SSSj =
1

j

j∑

i=1

LLLi.

Llamamos DDD al arreglo diferencias que en la posición j, con 1 ≤ j ≤ t − 1 queda
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definido por,
DDDj = LLLj+1 −SSSj.

La idea es que la diferencia entre SSS y LLL se maximiza en los lugares donde L tiene un
máximo, o de lo contrario alĺı donde hay un cambio abrupto de crecimiento.

De esta forma, obtenemos dos posibles estimadores û0A y û0B para estimar u0(F ),
definidos de la siguiente manera.

a) En sintońıa con la definición 3.3.2 y el gráfico A) en la Figura 3.2 tomamos J0 como

J0A = mı́n{j : LLLj = máx
1≤k≤t

LLLk}

y definimos
û0A = UUUJ0A .

b) Alternativamente, utilizando la heuŕıstica propuesta, tomamos el argumento máximo
de D:

J0B = mı́n{j :DDDi ≤DDDj, 1 ≤ i ≤ t− 1}

y definimos
û0B = UUUJ0B .

La Figura 3.3 muestra como la heuŕıstica propuesta permite detectar sistemáticamente,
tanto en el caso A) como en el caso B) de la Figura 3.2, el valor donde la función de
pseudoverosimilitud L cambia de forma drástica su comportamiento.

Para resumir los resultados obtenidos presentamos en las tablas I) y II) el error
cuadrático medio (ECM) correspondiente a cada uno de los estimadores calculados en
las 1000 replicaciones.

Tabla I)

ECM (û0A) N=500 N=1000 N=1500 N=2000
h = 0,10 5,7592 14,0654 10,0045 14,0350
h = 0,25 0,7297 4,4454 7,8544 11,5357
h = 0,50 0,1674 0,7462 0,9716 1,0456
h = 0,75 0,0561 0,0492 0,0638 0,0415
h = 1 0,0129 0,0115 0,0020 0,0021

Tabla II)
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Figura 3.3: Comportamiento de la heuŕıstica utilizada.
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ECM (û0B) N=500 N=1000 N=1500 N=2000
h = 0,10 0,8095 0,1175 0,0148 0,0055
h = 0,25 0,0298 0,0101 0,0053 0,0063
h = 0,50 0,0173 0,0043 0,0054 0,0066
h = 0,75 0,0121 0,0043 0,0056 0,0068
h = 1,0 0,0148 0,0044 0,0056 0,0068

En la tabla I) podemos ver que el estimador û0A, se comporta mal para valores
pequeños de h. Esto se debe a que, en este caso, se producen grandes apartamientos del
valor real de u0(F ), arruinando el error cuadrático medio. Estos grandes apartamientos se
deben a que el caso B) de la Figura 3.2 ocurre con mayor frecuencia si tomamos valores
de h chicos a lo largo de las 1000 replicaciones. Este efecto no es subsanado al aumentar el
tamaño de muestra. Para valores de h grande (h = 1), la comparación entre las Tablas I) y
II), muestran que los estimadores û0A y û0B arrojan valores pequeños de ECM, resultando
comparables. Finalmente en la tabla II) observamos que para valores pequeños de ventana
el estimador û0B tiene un buen comportamiento.

En la Figura 3.4 se ve el comportamiento de la densidad estimada, suponiendo distintos
valores de u1 y un valor de h = 1. El gráfico correspondiente de la función L es el de la
parte A) de la Figura 3.2.

1. Caso u1 < u0(F ). Ejemplificamos con u1 = 3, aqúı el ajuste de los datos es
relativamente bueno si se observan valores de x ≤ 3, pero malo para x > 3. En
este caso el suponer que el modelo exponencial es válido, cuando en realidad vale el
modelo uniforme, provoca un gran desajuste que se ve reflejado en valores chicos de
la función de pseudoverosimilitud L, siendo L(u1) < L(u0(F )).

2. Caso u1 > u0(F ). Ejemplificamos con u1 = 7, donde el ajuste de los datos es
relativamente bueno para los valores de x ≥ 7, pero no tan bueno para valores de x
entre 5 y 7. Esto es debido a que un valor de h grande da un mal estimador en el
sector donde la densidad real de los datos cambia bruscamente. Paradojicamente,
usar un estimador no paramétrico que funcione defectuosamente de manera local,
colabora a que los datos no se ajusten bien al modelo suponiendo valores de u
mayores al verdadero umbral u0(F ), teniendo como consecuencia que la función
de pseudoverosimilitud en esos valores sea más chica que en el verdadero umbral.
Siendo tambien L(u1) < L(u0(F )).

3.4.2. Modelo normal - Pareto

Los datos fueron simulados con una distribución de probabilidad tal que su densidad
sea f(x) con

f(x) = puf1(x) + (1− pu)hσ,γ(x− u)1{x>u}
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Figura 3.4: En ĺınea punteada la densidad con que fue generada la muestra, en ĺınea sólida

la función f̂(x, u1) = p̂u1 f̂1(x, h)1{x≤u1}+(1− p̂u1)λ̂e
−λ̂(x−u1)1{x>u1}, el valor real es u = 5

y con f̂1(x, h) el estimador de densidad por núcleos, con h = 1.
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En este caso consideramos como f1 una función Normal truncada en el umbral u es
decir

f1(x, a, b) =
g(x, a, b)∫ u

−∞ g(s, a, b)ds
1{x≤u}

con g ∼ N(a, b2).
Los parámetros asignados fueron los consignados en la siguiente tabla:

u σ γ pu a b
3,480633 1,1 0,3 0,93 2,3 0,8

El valor de u asignado se hizo de manera que valga que P (Z u) = 1 − pu, donde
Z ∼ N(a, b2). Se generaron 1000 muestras de tamaño n, con n = 500, 1000, 1500, 2000 para
cada una de las muestras se calculo la pseudoverosimilitud L(u) según el procedimiento
descripto en la seccion 3.3.2. En el Paso 1.1 consideramos un estimador noparamétrico de
la densidad basado en núcleos al igual que en el caso anterior. En el Paso 1.2 para estimar
los paramétros γ0 y σ de la cola de la distribución, consideramos el estimador de máxima
verosimilitud basado en las observaciones mayores que el valor u. Para realizar el cálculo
de estos parámetros se utilizó el paquete evir, desarrollado por Mc Neil (2011), que incluye
una función para estimarlos. La misma se basa en maximizar la función de verosimilitud
utilizando algoritmos de optimización continua para funciones de varias variables. Este
paquete también fue utilizado para generar variables aleatorias cuya distribución sea
Pareto.

El caso considerado también tiene discontinuidades en la densidad, como puede
observarse en el gráfico de la misma en la Figura 3.5. En la figura también se observa
el histograma de una de las muestras generadas de tamaño n = 2000. Entendemos que
esta discontinuidad no es reconocible a simple vista, como ocurre en el caso Uniforme
- Exponencial. Afortunadamente, los resultados obtenidos son equivalentes a los de la
sección anterior. Obervamos que para û0A el error cuadrático medio es pequeño si el valor
de ventana h es grande, mientras que el estimador û0B se comporta satisfactoriamente
con anchos de banda h chicos.

La Figura 3.4.2 destaca que en este caso, y en general para muestras donde la
distribución es Pareto, la función de pseudoverosimilitud L tiende a ser más inestable
que en el modelo Uniforme - Exponencial.

Por último, la Figura 3.7 da cuenta del buen ajuste ofrecido por el modelo.

Tabla III)
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Figura 3.5: Histograma de la muestra generada y densidad real

ECM (û0A) n=500 n=1000 n=1500 n=2000
h = 0,10 0,3733 2,5130 5,0649 7,8893
h = 0,25 0,1926 1,6979 3,9043 6,2763
h = 0,5 0,0569 0,2759 0,3820 0,4942
h = 0,75 0,0374 0,0182 0,0070 0,0090
h = 1,0 0,0404 0,0215 0,0106 0,0076

Tabla IV)

ECM (û0B) n=500 n=1000 n=1500 n=2000
h = 0,10 0,1451 1,0510 1,8743 2,4655
h = 0,25 0,0858 0,2767 0,3065 0,3029
h = 0,5 0,0628 0,1215 0,0510 0,0631
h = 0,75 0,0540 0,0543 0,0389 0,0381
h = 1,0 0,0554 0,0516 0,0414 0,0387
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Figura 3.6: Inestabilidades en la función L
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Figura 3.7: Izquierda: Histograma de la muestra, u1 = û0A = 3,44862
(en rojo, linea sólida), siendo el verdadero valor u0(F ) = 3,480633 (en
verde, linea de puntos). No se muestra el valor de û0B. (û0B = 3,428449)
Derecha: Ajuste provisto por el estimador semiparamétrico: en ĺınea sólida la den-
sidad con que fue generada la muestra y en ĺınea punteada la función f̂(x, u1) =

p̂u1 f̂1(x, h)1{x≤u1}+(1−p̂u1)hσ̂(u1)γ̂(u1)(x−u1)1{x>u1}. El estimador de densidad por núcleos
es con h = 0,5.





Apéndice A

Estimación no paramétrica de la
densidad basada en núcleos

Sea X1, . . . , Xn una muestra aleatoria con función de densidad f(x) estamos
interesados en estimar f(x) a partir de las observaciones. Los métodos de estimación no
paramétricos han surgido con el objetivo de dar una respuesta a este problema y han sido
ampliamente estudiados. A continuación estudiaremos una propuesta para la estimación
de la función de densidad basada en núcleos que fue introducida por Rosenblatt (1956) y
Parzen (1962). Comenzaremos dando una idea intuitiva del estimador propuesto.

Si X es una variable aleatoria con densidad f , luego dado h > 0

1

2h
P (x− h < X < x+ h) =

1

2h

∫ x+h

x−h
f(x)dx → f(x)

si h → 0.
Un estimador natural de P (x−h < X < x+h) es simplemente considerar la proporción

de la muestra que cae en el intervalo (x−h, x+h) luego para un h suficientemente pequeño
podemos deducir el siguiente estimador de f(x),

f̃(x) =
1

2h

# {Xi : Xi ∈ (x− h, x+ h)}
n

.

Más formalmente, podemos escribir el estimador anterior de la siguiente manera,

f̃(x) =
n∑

i=1

1

hn
w
(x−Xi

h

)
(A.0.1)

donde w(x) = 1
2
I(|x|<1). Es conveniente observar que la función w satisface las siguientes

propiedades:

1. w ≥ 0
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2.
∫
w(s)ds = 1

3. Para cada 1 ≤ i ≤ n, w
(

x−Xi

h

)
= 1

2
si y solo si Xi ∈ (x− h, x+ h).

Observemos que la propiedad 3 nos indica que la función w le otorga un peso uniforme a
cada observación Xi en el entorno (x−h, x+h). De esta forma, una manera de generalizar
(A.0.1) seŕıa reemplazar la función de peso o núcleo w por una función K no negativa
que verifique la condición

∫
K(x)dx = 1. De esta forma, si consideramos una función de

pesos K con mayor suavidad obtendŕıamos un estimador más suave.
De esta manera obtenemos el estimador definido por Rosenblatt (1956) y Parzen (1962)

que definimos de la siguiente manera,

f̂(x) =
1

hn

n∑

i=1

K
(x−Xi

h

)
(A.0.2)

donde K es una función núcleo, h = hn es llamado paramétro de suavizado o ancho de
ventana y satisface hn → 0 si n → ∞.

Este estimador constituye uno de los estimadores no paramétricos más estudiados.
Dentro de sus propiedades más destacables podemos resaltar en primer lugar que el
estimador es efectivamente una densidad, por otro lado bajo ciertas condiciones se puede
obtener el desarrollo de su sesgo y varianza. Aśımismo, también se ha estudiado su
comportamiento asintótico obteniendo su consistencia y distribución asintótica. Todas
las demostraciones de estas propiedades no fueron objeto de estudio de esta tesis.

El proceso de cálculo de este estimador involucra la elección de dos paramétros, el
núcleo y el parámetro de suavizado. En general la función de pesos o núcleos utilizadas
decrecen de manera suave, dándole aśı menor pesos a las observaciones más alejadas del
punto x. Algunas opciones posibles de núcleos, podŕıan ser
Núcleo Gaussiano:

K(t) = e−
1
2
t2 .

Núcleo Epanechnicov:

K(t) =

{
3
4
(1− t2) |t| ≤ 1

0 |t| > 1.

Núcleo Tricúbico:

K(t) =

{
(1− |t|3)3 |t| ≤ 1
0 |t| > 1.

T́ıpicamente la elección de la función de pesos no suele involucra mayores problemas,
ni ser determinante en el proceso de estimación. Sin embargo, el paramétro de suavizado
suele ser un punto crucial en el procedimiento de estimación, ya que como su nombre lo
indica se encuentra altamente relacionado con el nivel de suavización que se introduce
en la estimación. Respecto a la selección de este parámetro existe una gran cantidad de
literatura que escapa al alcance de esta tésis.





Bibliograf́ıa

[1] Balkema, A. A., de Haan, L., (1974) Residual life time at great age. The Annals of
Probability. 2 , 792–804

[2] Beirlant, J., De Waal, D., Goegebeur Y.,Teugels, J., Segers, J. (2004). Statistics Of
Extremes, John Wiley & Sons Inc.

[3] Coles, S. G. and Tawn, J. A. (1994) Statistical methods for multivariate extremes:An
application to structural design. Applied Statistics, 43, 1-48.

[4] Coles, S. G. and Tawn, J. A. (1996) A Bayesian analysis of extreme rainfall
data.Applied Statistics, 45, (4), 463-478.

[5] Coles, S. G. and Powell, E. A. (1996) Bayesian methods in extreme value modelling:
a review and new developments. International Statistical Review, 64, (1), 119-136.

[6] Coles,S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer.

[7] Davison, A. C. and Smith, R. L. (1990) Models for excedances over high thresholds.
Journal of the Royal Statistical Society B, 52,393-442.

[8] De Haan, L. (1970), On regular variation and its application to the weak convergence
of sample extremes. Mathematical Centre tracts.32. Math. Centrum Amsterdam

[9] De Haan, L., Ferreira, A. (2006). Extreme Value Theory. Springer.

[10] Fisher, R. y Tippett, L., (1928). On the estimation of the frequency distribution
of the largest or smallest member of a sample. Proc. Cambridge Philos. Soc. 24,
180–190.

[11] Frigessi, A., Haug, O. and Rue, H. (2003) Tail estimation with Generalized Pareto
Distribution without threshold selection Extremes, 5 (3), 219 - 236, 2003.

[12] Gnedenko, B.V. (1943) Sur la distribution limite du terme maximum d une serie
aleatoire. Annals of Mathematics.44,423-453.

[13] Gumbel, E. (1958), Statistics of Extremes, Columbia University Press.

53



[14] Mc Neil, A., (2011). evir: Extreme values in R. S original (Evis) by Alexander Mc
Neil and R Port by Alec Stephenson

[15] Ortega, J. (2010). Notas del curso Valores Extremos.
Disponible en: http://www.cimat.mx/ jortega/extremos10.html

[16] Parzen, E. (1962). On estimation of a probability density function and mode. Ann.
Math. Statist. 33, 1065–1076.

[17] Pickands, J, (1975). Statistical Inference using extreme order statistics. The Annals
of Statistics. 3 119–131

[18] Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density
function. Ann. Math. Statist.27, 832–837

[19] Smith, R. (1987). Estimating Tails of Probability Distributions. The Annals of
Statistics. 15, 1174-1207.

[20] von Mises, R.(1936). La distribution de la plus grande de n valeurs. [Reprinted in
Selected Papers Vol. II, American Mathematical Society, Providence, R.I., 1954, 271-
294]

54


	Portada
	Indice general
	Agradecimientos
	1. Introducción
	2. Fundamentos probabilísticos de la teoría de valores extremos
	2.1. Motivación
	2.2. Consideraciones generales y necesidad de reescalamiento
	2.3. Problema límite de extremos
	2.3.1. Enfoque histórico
	2.3.2. Dominios de atracción
	2.3.3. Una aplicación del Teorema de Fisher, Tippet y Gnedenko


	3. Función de excesos
	3.1. Distribuciones límites para la función de excesos
	3.2. Selección del umbral
	3.2.1. Mean Residual Plot
	3.2.2. Estabilización del parámetro de escala y forma

	3.3. Selección del umbral: nueva propuesta
	3.3.1. El modelo
	3.3.2. La propuesta de estimación

	3.4. Resultados numéricos
	3.4.1. Modelo uniforme - exponencial
	3.4.2. Modelo normal - Pareto


	A. Estimación no paramétrica de la densidad basada en núcleos

	Bibliografía

