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Ecuaciones de la mecanica clasica

Marcos Cossarini

1. Comentario preliminar

Este texto fue pensado para ser escrito por su autor, con el fin de fami-
liarizarse con las distintas formulaciones de las leyes de la mecanica clasica.
Se desarrolla en tres actos.

FEn el primero se presentan los hechos empiricos a estudiar y se desarrolla
la teoria mecéanica de Newton, que estudia sistemas de particulas que se
mueven en un espacio euclideo. La notacién usada busca lograr el look casual
de un libro de mecéanica elemental.

FEn el segundo se desarrolla la mecénica analftica de Lagrange, que repre-
senta al sistema de particulas como un punto que se mueve en una variedad
riemanniana. Aqui se ve como transformar problemas de dindmica en proble-
mas variacionales y viceversa, y explotar sus simetrias para hallar soluciones.
La notacién retro usada en los calculos mas extensos, con abundantes sub-
indices y superindices, evoca el look vintage de un libro de anélisis tensorial.

En el tercero se describe la formulacion de Hamilton, segin la cual el
estado del sistema mecénico es un punto que se mueve en una variedad
simpléctica. Esto permite encontrar més simetrias y resolver explicitamente
més problemas, pero no quedé tiempo para eso. Aqui usamos la notaciéon
moderna de geometria diferencial.

Los ejemplos elegidos fueron s6lamente los necesarios para desarrollar la
teoria bésica. Si bien los comentarios histéricos fueron limitados cobarde-
mente por el autor, que no quiso meter la pata, se traté de presentar las
ideas en un orden natural y pedagdgicamente aceptable. Como si alguien
que no sabe del tema eventualmente lo fuera a leer, lo cual es siempre una
ficcion util.

El autor es un férreo defensor de la simetria, y arrastra a lo largo de la
obra la tara de no poder aceptar un sistema de referencia elegido arbitraria-
mente. Esto lo conduce a traducir las ideas béasicas de la teorfa a un lenguaje
no estandar, tarea que finalmente insume todo su esfuerzo. Si bien el for-
malismo mas pedante esta concentrado en las primeras secciones (y algunos
exabruptos posteriores), la terminologia usada en general pretende disuadir
al lector ocasional, que de otro modo podria leer el texto y llevarse un fiasco.



1.1. Advertencia acerca de notacién y convenciones

Numeros naturales e indices numéricos El conjunto de los ntimeros
naturales incluye al cero y es N = {0, 1,... }. En particular, si n es un nimero
natural, cuando mencionemos una coleccion finita {z; };<, de objetos, se debe
entender que ¢ toma valores naturales, desde 0 hasta n — 1, y por lo tanto la
coleccién tiene n elementos.

Positividad Cuando decimos “positivo”, queremos decir mayor o igual a
cero. Los nimeros reales positivos forman un semianillo que denotamos P.
Para indicar que algo es mayor que cero, diremos “estrictamente positivo”.

Espacios afines En fisica aparecen muchos espacios que no son vectoriales
sino afines, es decir, no tienen un punto distinguido de referencia que sirva
como origen. Por ejemplo, el espacio euclideo tridimensional es un espacio
afin (real). La categoria de espacios afines se puede definir sencillamente
a partir de la de espacios vectoriales. Un espacio afin es un conjunto A,
provisto de un espacio vectorial AA cuyos elementos se llaman diferencias
entre puntos de A (o traslaciones en A), y una accién simplemente transitiva
del grupo AA en A: para cualesquiera puntos z e y de A existe un unico
vector v € AA tal que y = x + v. A este vector = lo llamamos y — z. Una
funcion T : A — B entre espacios afines se llama transformacion afin cuando
existe una transformacion lineal F' : AA — AB tal que para cualesquiera
puntos z, y en A se tiene T'(y) —T'(z) = F(y — ). Esta transformacion lineal
es necesariamente tnica y se la denota AT, la parte lineal de T

Diferenciabilidad Cuando decimos que una funcion F: X — Y (con X e
Y subconjuntos abiertos de espacios afines normados F y F') es diferenciable
en un punto xzg € X, estamos hablando de diferenciabilidad fuerte. Es
decir, la diferencial de F' en xg es una transformacién lineal T tal que

i LW - F@) -T(y —2)

(@)~ (z0,0) ly —

=0.

Esta nocion de diferenciabilidad difiere de la usual, a la que llamaremos
diferenciabilidad débil, en la que se fija x = zg y s6lo se le permite a y
moverse.! Diremos que F es derivable cuando tiene derivada, es decir, hay
una funcion continua F' : U — L(E, F) que da para cada x¢ una (la tinica
posible) diferencial de F' en xp. Una funciéon que es diferenciable en todo su
dominio, es automéaticamente derivable porque estamos usando la nocién de

!No hay que confundir este concepto (local) con el concepto (global) de derivada débil,
que se aplica a funciones que suelen no ser siquiera débilmente diferenciables en todo su
dominio.



diferenciabilidad fuerte. El espacio de funciones derivables sera denotado con
su nombre usual €1(X,Y).

Expresiones indeterminadas Si S es un conjunto, cuando decimos que
v es un elemento indeterminado de S o variable indeterminada en S,
o cuando escribimos “v €€ §”, estamos introduciendo un ente matemético
(representado en este caso por el simbolo “v”) que mas tarde podra ser re-
emplazado por cualquier elemento de S, o por otra indeterminada. A partir
de una indeterminada v podemos construir expresiones que incluyan a v,
que son, a fin de cuentas, funciones definidas en S, que ademés tienen un
simbolo predeterminado v ocupando desde el principio el lugar de la varia-
ble independiente. Por eso las llamamos también v-funciones. Por ejemplo,
si s €€ R, la expresién f = sins es una s-funcién, y la podemos evaluar
en s = m obteniendo f|s—r = 0. También escribimos “=" en lugar de “:=’
si es claro en qué direccion se hace el reemplazo, y usamos el simbolo f ()
para representar a f|s—r si es claro cudl es la indeterminada que estamos
reemplazando, y asi una s-funcién puede usarse del mismo modo que una
funcion. Notese que en el ejemplo se tiene f(s) = fls=s = f-
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Si la indeterminada es real (o vectorial), como en nuestro ejemplo, pode-
mos definir la derivada %, que serd una nueva s-funcién (en este caso igual
a cos s) definida en un dominio posiblemente més chico. También podemos
construir expresiones con varias indeterminadas, y sus derivadas parciales.
Por ejemplo, si x,y €€ Ry f = f(x,y) toma valores reales, podemos permu-
tar las variables definiendo f(y, ) (que es igual a f|(;.).—(y2)) ¥ se cumple

que 3L (y, ) = 20Lp2)),

Indices abstractos Si V es un espacio vectorial y ¢ un covector de V
(es decir, un elemento de V*), podemos usar una indeterminada o €€ V
de intermediario para evaluar ¢ en un vector v € V, escribiendo ¢(a)|n:=0,
cuyo valor es simplemente ¢(v). Esto lo escribiremos usualmente en la nota-
cibn mas compacta ¢,v* (y el simbolo v*, cuando esté solo, representa a un
co-covector). Esta es la notacion de indices abstractos de Penrose [9], y per-
mite operar sin coordenadas, teniendo a la vez la flexibilidad de los indices
numeéricos. Por ejemplo, para simetrizar una funcién bilineal B escribimos
B, g+ Bg,o. En general los vectores tendran un indice arriba y los covecto-
res tendran un indice abajo. Por otra parte, los covectores de V son a la vez
vectores de V*, y entonces no siempre es posible establecer una distincion
consistentemente.



2. Magnitudes y espacios de la mecanica clasica

A continuacion daremos una descripcion (matematica) de las nociones
de magnitud escalar, tiempo, espacio euclideo y mundo galileano. En esta
ocasién no intentaremos definir los conceptos por medio de experimentos,
de modo que el lector tendra que recurrir a sus propios preconceptos para
comprobar que estas descripciones se adectian a la realidad fisica (o no).
El contenido observable de estos conceptos se especificara (en parte) més
adelante, a partir de la seccion 3. Si la terminologia resulta muy espesa, toda
esta seccion puede saltearse.

2.1. Magnitudes escalares y tiempo

En este texto distinguiremos entre distintos tipos de magnitudes escala-
res. Por ejemplo, la masa de un objeto y su volumen no son nidmeros, sino
que son puntos de distintos espacios, y en principio no se pueden comparar.
Para convertir una magnitud escalar en un ntimero real hay que elegir una
unidad de medida, y a veces también un valor de referencia.

El espacio de los posibles valores de la masa de un objeto es una semi-
rrecta real. Una semirrecta estd ordenada: Si z e y son las masas de distintos
objetos, tiene sentido preguntar si x es mayor, menor, o igual que y (y esto
se puede determinar, con cierto margen de error, por medio de experimentos
que indicaremos mas adelante). Ademés, si x es la masa de un objeto y r es
un nimero real positivo, podemos multiplicar  por r obteniendo un nuevo
valor de masa rx. Si x no es nula, al variar r, el valor recorre todas los po-
sibles valores de masa. Esto permite tomar a x como unidad de medida, y
describir luego todas las posibles masas como miultiplos positivos de x. En
términos técnicos:

Definiciéon 2.1.1. Una semirrecta (real) es un modulo libre, de rango 1,
sobre el semianillo P de los ntmeros reales positivos, y hereda el orden de
los niimeros.

Denotamos Pkg a la semirrecta de los valores de masa, pues todas las
masas son multiplos positivos de cierta masa kg que se suele usar de referen-
cia.

Las posibles longitudes de una curva en el espacio euclideo forman otra
semirrecta Pm. Las areas de las superficies forman una semirrecta Pm? =
(Pm)? (y se puede multiplicar dos longitudes para obtener un area). También
los volamenes de los cuerpos forman una semirrecta Pm?®, y asi se puede
seguir imaginando medidas de cualquier dimensién.

Las duraciones de los intervalos de tiempo forman un semirrecta Ps.
Las frecuencias forman otra recta (Ps)* = Ps~!, cuyos elementos son los



inversos de las duraciones, y se puede multiplicar una frecuencia por una
duracién, obteniendo un niimero positivo.

Un lapso de tiempo Ps se puede multiplicar también por un nimero real
cualquiera (no positivo), pero el resultado ya no esta en Ps si no en Rs = +Ps,
la recta vectorial de los lapsos.

El algebra de escalares se puede describir en términos méas precisos (y
técnicos) del siguiente modo: Sea IP el semianillo de los nimeros reales po-
sitivos. Una semirrecta S es un P-moédulo libre de rango 1. Se puede definir
su dual S* (al cual también llamaremos S~1!), y si T es otra semirrecta,
el producto tensorial S ®p T también es una semirrecta. En particular, el
producto S™! ®p S es naturalmente isomorfo a P. Como el anillo R de los
niimeros reales es también un P-mo6dulo, dada una semirrecta S se puede de-
finir £5 = R®p S, que es una recta vectorial, es decir, un R-espacio vectorial
real de dimension 1.

La linea de tiempo T es un espacio afin real de dimension 1. Es decir,
no s6lo no tiene una unidad de medida predeterminada, sino que tampoco
tiene un punto de referencia. Sus puntos se llaman instantes. Si a partir de
un instante A dejamos transcurrir un lapso [ € Rs, llegamos a otro instante
al que denotamos A + [. Cualquier instante B se puede obtener a partir de
A sumando un [ adecuado, al que denotamos B — A.

Un intervalo de tiempo es un intervalo contenido en la linea de tiempo.

2.2. Espacio euclideo

Un espacio euclideo n-dimensional es un espacio afin £ de dimensién
n con una norma, a valores en Pm, que proviene de un producto interno.
Digamoslo menos resumidamente.

Si A y B son puntos en el espacio E, tenemos la distancia d(A, B) €
Pm. Esta distancia es de hecho una norma, es decir, es compatible con la
estructura afin (invariante por traslaciones y homogénea). Si v € AE es un
vector traslacion, sabemos que d(A + v, B + v) = d(A, B), de aqui que la
distancia d(A, B) depende solo de cudl es el vector B — A. Existe entonces
una funcion | — | : AE — Pm que determina la distancia: para cualesquiera
A, B € E se tiene d(A, B) = |B — A|. Ademads | — | es homogénea, es decir,
para cualquier vector v € AFE y cualquier nimero positivo r € P se tiene
|rv| = r|v|. Por lo tanto, | — | es una norma en AFE.

Por otra parte, sabemos que si dos figuras A y A’ en un espacio euclideo
E son semejantes (siendo el tamaiio de A igual a r veces el tamano de A),
entonces hay una transformacién del espacio completo en si mismo que lleva
A a A’. Esto implica que el espacio es isétropo, lo cual permite demostrar?

*Ver http://mathoverflow.net/questions/41211/easy-proof-of-the-fact-that-
isotropic-spaces-are-euclidean.



(por medio del teorema del elipsoide de John) que la norma proviene de un
producto interno (—, =) : AE x AE — Pm? (para cualquier vector v € AE

se tiene |v| =/ (v,v)).

Comentario 2.2.1. Mas precisamente, si r € P, una r-dilatacién en un espacio
meétrico F es una funcion £ — E que multiplica todas las distancias por r. El
espacio se dice completamente transitivo (por dilataciones) si toda dilatacion
parcialmente definida f : A — E (donde A C E) se puede extender a una
dilataciéon E — FE. Los espacios euclideos son completamente transitivos, y
esto distingue a los espacios euclideos entre los espacios normados, y de hecho
aparentemente los distingue entre todos los espacios métricos localmente
compactos y de métrica interior.3

Un espacio euclideo de dimensién n tiene un grupo de isometrias (bi-
yecciones que preservan la métrica, necesariamente afines) de dimension
n-+ n(n2_1) = n(n;l), pues una isometria S queda determinada por la imagen
de un punto A y una isometria de AFE, y el grupo de isometrias de AF
tiene dimension "(n{l). Las traslaciones forman un subgrupo normal. Las
isometrias que preservan la orientacién forman otro subgrupo normal. Una
similaridad euclidea es una transformacién que no preserva las distancias
sino que las multiplica por un factor estrictamente positivo, y tiene asociado

un automorfismo de Pm.

El espacio en donde usualmente estdn las cosas tiene dimension n = 3.

2.3. Mundo galileano

(En esta seccién seguiremos aproximadamente la exposicion de [1].)

Un principio fundamental de la mecénica clasica, que s6lo es aproxima-
damente cierto, afirma que es posible la comunicacién instantanea a lo largo
del espacio (por ejemplo, usando senales luminosas), lo cual permite sincro-
nizar los relojes entre observadores que se encuentran alejados, permitiendo
tener una nocion de tiempo universal (valida en todo el mundo).

Fijada la linea de tiempo T y la semirrecta de longitudes Pm, se puede de-
finir el concepto de mundo galileano. Un mundo galileano 14n-dimensional
(G,tg,| — |g) estd compuesto por un espacio afin G de dimensiéon n+ 1 (cu-
yos puntos se llaman eventos), un morfismo afin (no singular) tg : G — T
(el tiempo) y una norma euclidea | — |g a valores en Pm, definida en el es-
pacio vectorial tridimensional Spa Vec G := Ker(At) C AG de los vectores
espaciales (que unen eventos denominados simultaneos, por ocurrir en el
mismo instante de tiempo). Otra forma de decir esto es la siguiente: un mun-
do galileano n-dimensional es un fibrado afin (sobre T') de espacios euclideos

3Ver discusiéon en http://mathoverflow.net/questions/64269/towards-a-metric-
characterization-of-euclidean-spaces.



n-dimensionales, con estructura euclidea invariante por las traslaciones de

G.

Para cada instante t, el espacio afin tridimensional Gy = t71(t) es en-
tonces un espacio euclideo, el espacio de posiciones en el instante ¢. Un
evento tiene entonces asociado un par (¢,x), en donde ¢ es un instante en el
tiempo y x es un punto de G;. Notese que si dos instantes ¢ y s son distintos,
en principio no hay una manera natural de identificar los puntos de G; con
los de Gg, de modo que no tiene sentido decir que un mévil estd quieto: lo
mas parecido a la quietud que se puede definir es el movimiento unifor-
me. Un movimiento uniforme en G es una funcién afin m : 7 — G tal que
tom =idy.

Una simetria de G esta compuesta por una traslacion del tiempo S y una
biyeccion afin G — G, ala cual también llamamos S, que respeta la traslaciéon
temporal (es decir, para cada evento (t,z) se cumple que tg(S(t,x)) = S(¢))
y preserva las distancias. Las simetrias (o automorfismos) de un mundo ga-
lileano 1 4 n-dimensional forman un grupo de dimensiéon 1 +n+n+ @,
pues si eg y e1 son eventos no simultaneos, una simetria S esta determinada
por una traslacién en el tiempo, las imagenes de ey y e;, y una isometria
que deja fijos a S(eg) y S(ep). Las traslaciones son simetrias, y forman un
subgrupo normal: el grupo de las simetrias S tales que el vector que une
un evento e con su imagen S(e) es el mismo para todos los eventos e (es-
to se puede definir en cualquier espacio afin). Obsérvese que la componente
espacial de una traslacién sélo estd definida para traslaciones con compo-
nente temporal nula, pues es el Gnico caso en el que e y S(e) estan unidos
por un vector espacial. Tomar la componente de traslacién temporal y la
componente de isometria determina dos morfismos, a partir de los cuales se
pueden definir otros subgrupos normales. Uno de ellos es el de los boosts
galileanos: simetrias cuya traslacion temporal y cuya isometria asociada son
nulas. Un boost tiene asociada una velocidad relativa (magnitud que defini-
remos precisamente en la seccion de cinemética), pero no tiene asociada una
componente de traslacién, a menos que la velocidad relativa sea nula, pues
solo entonces el vector que une e con S(e) es igual para todos los eventos e.
Fijado un movimiento uniforme, podemos hablar del grupo de simetrias que
dejan sus eventos fijos, y es isomorfo al grupo de rotaciones de un espacio
euclideo n-dimensional que dejan cierto punto fijo. El grupo de simetrias
es a su vez subgrupo normal del grupo de las similaridades, que incluye
transformaciones que dilatan uniformemente el tiempo, e independientemen-
te dilatan uniformemente las distancias (pero preservando la simultaneidad
entre eventos).

Si F es un espacio euclideo de dimensién n, el producto de espacios afi-
nes 7 x E adquiere naturalmente estructura de mundo galileano, y si G es
un mundo galileano, un sistema de referencia inercial para G es un iso-
morfismo entre G y un mundo producto. Al especificar en G un movimiento



rectilineo uniforme ¢, como nulo, podemos identificar eventos de distintos
instantes entre si: se piensa que dos eventos ocurren en la misma posiciéon
del espacio si estan unidos por una recta paralela a c,. Entonces, si £ es un
instante cualquiera, el mundo galileano queda identificado con el produc-
to T x Gy, lo cual establece un sistema de referencia inercial. Siempre que
decimos que un punto esta fijo en el espacio estamos aludiendo implicita-
mente a un sistema de referencia. El principio de relatividad afirma que
todos los sistemas de referencia son equivalentes fisicamente, es decir, indis-
tinguibles por medio de experimentos. La descripcién galileana del mundo
se ajusta a este principio con bastante exactitud si s6lo se tienen en cuenta
los fenémenos que estudia la mecanica clasica. Este hecho es conocido como
principio de relatividad galileana.

La descripcién galileana deja de ser compatible con el principio de relati-
vidad cuando se tiene en cuenta que la luz se propaga a una velocidad finita,
pues un movimiento rectilineo uniforme a la velocidad de la luz resultaria
distinguido de otros movimientos a otras velocidades. Las concepciones del
mundo que compatibilizan el principio de relatividad con la finitud de la ve-
locidad de la luz se suelen llamar relativistas, y son necesarias también para
describir experimentos mecénicos que involucran movimientos relativos a ve-
locidades comparables con la de la luz, e incluso para describir movimientos
més lentos en presencia de objetos muy masivos.

2.4. Cineméitica en mundos galileanos

Si G es un mundo galileano con t: G — T la funcién tiempo, un movi-
miento (de una particula) en G durante un intervalo Z C 7 es una funcién
continua ¢ : Z — G tal que to ¢ = idz. El movimiento queda determinado
por su trayectoria H = Imc C G, y tiene estructura de fibrado de pun-
tos sobre 7. Si ¢ es un movimiento diferenciable que en cierto instante ¢
incide en el evento (tg,x0) = c(zp), su velocidad ¢/(tg) = de(tp) en dicho
instante es una transformacion lineal Rs — AG (recordando que AT = Rs).
Esta transformacién lineal es seccion de At : AG — Rs, es decir, se cumple
A’t (¢] dC(to) = idRS.

Las posibles velocidades en G, (las secciones de At) forman un espacio
afin G. El espacio vectorial AG de las velocidades relativas (diferencias
entre velocidades) contiene a las transformaciones lineales Rs — AG que
compuestas con At dan cero, es decir, cuya imagen contiene s6lo vectores es-
paciales. Las velocidades relativas son entonces las transformaciones lineales
Rs — Spa Vec G, y entonces AG = (Rs)* ®g Spa Vec G hereda de Spa Vec G

una norma euclidea, que toma valores en P**.

Sic:Z — G es un movimiento diferenciable, tenemos su funcién deri-
vada ¢ : T — @G, y si esta funcion es diferenciable en cierto instante tg, la
diferencial es lo que llamamos aceleraciéon del movimiento en ¢y, y es una
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transformacion lineal Rs — AG. Las aceleraciones en G forman un espacio
vectorial G, (el espacio de las transformaciones lineales Rs — AG), que he-
reda de G una norma a valores en P7. Un movimiento es rectilineo uniforme
cuando tiene aceleracién nula en todo instante.

Las simetrias del espacio euclideo actiian naturalmente sobre sus espacios
de velocidades, velocidades relativas y aceleraciones.

Para describir el movimiento de un sistema (digamos, finito) I" de particu-
las ¢ en un mundo galileano G de dimensién 1+4n, debemos definir el espacio
afin de configuraciones G' de dicho sistema, de dimensién 1 + n|T'|, al cual
llamaremos mundo producto o mundo de configuraciones del sistema,
v tiene la propiedad de que para cada instante ¢, a cada ['-upla de posiciones
(x; € Gi)ier o configuracién del sistema en el instante ¢t le corresponde
un punto z en el espacio G} . El mundo G' no es el producto cartesiano de
los espacios afines GG, sino un subconjunto del mismo, ya que sélo considera-
mos las [-uplas de eventos simultaneos. Noétese que el mundo que estamos
definiendo si es un producto en la categoria de fibrados afines de espacios
afines sobre 7. El mundo producto G' tiene un tiempo tor : GU' — 7T al
cual usualmente llamaremos simplemente t. Un movimiento del sistema es
una curva ¢ = ¢(t), seccién de t, definida en un intervalo de tiempo Z C T,
que describe el movimiento de todas las particulas durante dicho intervalo.

. AT
El espacio afin de velocidades (GT') es isomorfo a (G) , v lo mismo suce-

de con el espacio vectorial de aceleraciones (GV). Si T es finito y todas las
particulas son iguales, puede darsele al producto una norma euclidea, pero
conviene esperar hasta haber introducido el concepto de masa, para poder
en general darle a cada particula la importancia que le corresponde.
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3. Dinamica en mundos galileanos: mecinica de New-
ton

3.1. Ecuacién de Newton

(En esta seccion introduciremos la ecuacion de Newton, siguiendo apro-
ximadamente la exposicion de [1].)

La mecénica estudia el movimiento de un sistema (digamos, finito) de
particulas en un mundo galileano G (de dimensiéon 3). Un hecho empirico
es que la aceleracion de todas las particulas queda determinada, en cada
sistema de particulas, por las posiciones y velocidades de las particulas en
cualquier instante inicial. Es decir, cada sistema I" tiene asociada una I'-upla
(Aj)ier de funciones continuas

Ai(t,z,2) : G" x G" — G,
v evoluciona de acuerdo con el sistema de ecuaciones
Vi l‘z = Ai(t,l‘,i’),

llamadas ecuaciones de Newton, en honor a ISAAC NEWTON (1642-1727),
que las estudi6 en su obra [8]. Esto se puede expresar en una so6la ecuacion

i=A(t,z, ) (1)

(a la cual llamaremos ecuaciéon de Newton), en donde A = (A4;);er actta
como una funcién a valores en G", llamada funciéon de aceleraciones del
sistema. La ecuacion de Newton es una ecuaciéon de movimiento o ecua-
ciéon dinamica, pues a partir de cada configuracién y velocidad iniciales
determina un movimiento (al menos durante un intervalo de tiempo, si A es
localmente Lipschitz respecto de la configuracion z). Las ternas (¢, z, &) (en
donde t es un instante, x es una configuracién del sistema en el instante t,
y & es una velocidad en el mundo de configuraciones) son los estados del
sistema. El hecho de que a partir de un estado inicial del sistema en cierto
instante se pueda determinar el estado en los otros instantes se conoce como
principio de determinismo de la fisica clasica.

La funcion A de un sistema aislado de particulas es invariante por sime-
trias galileanas: Si S es una simetria, entonces para cada estado (¢,x, %) se
cumple la relacién

A(S(t,z,x)) = S(A(t, z, 1)), (2)

a la cual podemos llamar ecuacién de Galileo. De la misma se deduce in-
mediatamente (usando simetrias de traslacion) que para un sistema aislado
de particulas, la funcién A no puede depender del tiempo ni de las posiciones
absolutas x; de las particulas, sino s6lo de las posiciones relativas x; — x;.
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Usando simetrias boost vemos que tampoco puede depender de las veloci-
dades absolutas, sino que sblo depende de las velocidades relativas @; — @;.
Pero este razonamiento no se aplica a un sistema no aislado de particulas que
interactian con agentes externos, pues al aplicarle una simetria galileana al
conjunto de particulas, su situacién respecto de los agentes externos cambia.
Asi es posible obtener funciones que dependan de la posicion absoluta, y atn

del tiempo (si el estado de los agentes externos no es constante en el tiempo).

Empecemos estudiando algunos sistemas de una séla particula.

Ejemplo 3.1.1. En el caso de una séla particula moviéndose en un mun-
do vacio, la aceleracion debe ser nula, pues si en algiin instante tuviera una
direccién en particular, esto permitirfa establecer una direccién especial, rom-
piendo el principio de relatividad. Para demostrar esto a partir de la ecuacién
de Galileo, en cada estado (t,x, %) se puede concluir que A(t,x,4) = 0 apli-
cando la ecuacién de Galileo al grupo de rotaciones que dejan fijo el estado
(t,z,%), que no deja ninguna direccion espacial fija. Asi obtenemos la pri-
mera ley de Newton o ley de inercia: una particula aislada describe un
movimiento rectilineo uniforme. Explicitamente, la solucién general de esta
ecuacion de movimiento con condicion inicial (tg, 2o, Zo) es

xr =x9+ :i‘o(t — to).
Notese que la curva propuesta es un movimiento, pues es seccién de t.

Los movimientos uniformes permiten experimentar la estructura afin del
mundo, y dan un método sencillo de comprobar que un sistema de referencia
(sistema de coordenadas para el mundo) es inercial (respeta la estructu-
ra afin del mundo), pues en un sistema de referencia (aproximadamente)
inercial es posible observar que las particulas que estan (aproximadamente)
aisladas describen movimientos (aproximadamente) uniformes. Estos movi-
mientos fueron estudiados por Galilei.

Para que el movimiento de una particula sea no uniforme, tiene que inter-
ectuar con otras particulas (o algin otro agente externo). Para poder estudiar
nuestra particula (o sistema no aislado) por separado, debemos suponer que
el comportamiento de los agentes externos ya estd predeterminado. Como
veremos mas adelante, esto no es posible, pues siempre que dos particulas
interactian, se afectan mutuamente. Pero en la practica, la independencia
de los agentes externos respecto del sistema se da aproximadamente, por
ejemplo, si son cuerpos mucho mas grandes que las particulas que estamos
estudiando. Los movimientos uniformes y el principio de relatividad fueron
estudiados por GALILEO GALILEI (1564-1632).

Ejemplo 3.1.2. El movimiento de una particula cerca de la superficie te-
rrestre se describe aproximadamente por la ecuaciéon & = g, donde g es un
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vector espacial constante, vertical y hacia abajo. La solucién con estado ini-
cial (to, g, 2o) se obtiene integrando una vez para calcular la velocidad & =
£0+g(t—to) y otra vez para hallar la posicion = = xg+do(t—to)+59(t—to)>.
Notese que la velocidad propuesta es vélida, pues siendo g una aceleracién
(necesariamente espacial), difiere en un vector espacial g(t —tg) de una velo-
cidad constante. Por lo tanto, el término % g(t —tg)? de diferencia entre este
movimiento uniformemente variado y un movimiento uniforme es un
desplazamiento espacial, de modo que la curva propuesta es efectivamente
un movimiento. Este tipo de movimiento también fue estudiado Galilei.

Ejemplo 3.1.3. El movimiento de una particula en un fluido viscoso quieto
se describe aproximadamente? por la ecuaciéon # = —k7, donde 7 es la po-
sicion de la particula relativa a algin punto fijo respecto del fluido y k& > 0
es un escalar. La solucién se obtiene integrando una vez para obtener la
velocidad 7 = rge k(t—t0) y otra vez para obtener la posicion.

Ejemplo 3.1.4. Consideremos en un mundo galileano orientado G de di-
mensiéon 1 + 2, una particula ¢ en movimiento circular uniforme con
velocidad angular w € Ps~! alrededor de un punto fijo o, es decir, segiin
la ecuacién de primer orden

7 =wl(r),

donde r = x; —x, es el vector de posicion relativa de i respecto de o y T'(r) es
el tinico vector tal que (7, T(r)) es una base ortonormal® de Spa Vec G orien-
tada positivamente (esto garantiza que se mueva a distancia fija de o, y que
la norma de la velocidad del movimiento sea |wl||r|, lo cual explica el nom-
bre). Como T es la transformacion lineal dada en cualquier base ortonormal
B orientada positivamente por la matriz

M= (7 ).

P =wTr = w?T?*r = —w?r.

la aceleraciéon estd dada por

Este tipo de movimiento fue estudiado por CHRISTIAAN HUYGENS (1629
1695).

Comentario 3.1.5. La posicién r en el instante ¢ no se puede describir por
medio de funciones algebraicas, pero depende linealmente de la posiciéon rg en

*Esta aproximacién puede no ser buena (ver comentario de [10] sobre el segundo libro
de los Principia), pero tiene la ventaja de depender linealmente de la velocidad, lo cual
facilita los calculos.

5Una base ortogonal se dice ortonormal si y s6lo si estd compuesta por vectores de la
misma norma.
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el instante ¢o segun la féormula r = S, ; 4,70, y puede probarse usando simila-
ridades que en realidad r = S, + +, solo depende del angulo ¢ = w(t—1ty) € R,
de modo que S, ¢4, = R,. Usando simetrias puede ademés probarse que R
es un morfismo suave de R al grupo de rotaciones de Spa Vec G. Su nucleo
es Z(2m), donde 7 es cierto niimero positivo. Por lo tanto, el movimiento es
perfodico, y la duraciéon de cada perfodo es %” La transformaciéon R, es-

ta dada en cualquier base ortonormal B orientada positivamente por cierta,

matriz
cosp —sing
[Belp = (sin > ’
©  Ccosp

donde sin y cos son funciones suaves R — R.

Ejemplo 3.1.6. Si unimos una particula ¢ por medio de un resorte a un
punto fijo, y la apartamos de su posicién de equilibrio x4, ésta comienza a
oscilar alrededor de dicha posicién segiin la ecuacién

7= —wr,

dosde 1 = ; — x4 €s la posicion de la particula relativa al punto de equilibrio
(que se supone fijo) y w? € P(s~2) es un escalar positivo constante. Introdu-
ciendo la variable v = r, la dindmica se describe por medio del sistema de
ecuaciones

o matricialmente en la forma

vy (0 —w? v

r) \1 0 r)’
donde podemos multiplicar la variable r por w para homogeneizar (siendo
ahora v y wr dos vectores velocidad). Entonces queda la ecuacion

?'J (0 —w v
wr) \w 0 wr )’
cuya solucién general es
v\ _ [cos(w(t—tp)) —sin(w(t—1tp)) Vo
wr ) \sin(w(t —tg)) cos(w(t —tp)) wrg)’
donde rg y vg son la posicién y velocidad inicial en un instante ty. Este

movimiento se llama movimiento armonico simple. Nétese que el par
(v,wr) se mueve en un circulo, conservandose la cantidad |v|? 4+ w?|r|2.
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3.2. Movimiento planetario y campos centrales

Un gran triunfo de la mecéanica de Newton fue lograr explicar con gran
precision el movimiento de los astros de nuestro Sistema Solar. En una prime-
ra aproximacion, se observa que cada planeta i ejecuta alrededor del Sol un
movimiento circular uniforme de radio p y perfodo 7. Los planetas se mueven
independientemente, siendo el periodo de revolucién mayor mientras mayor
es el radio de la o6rbita.

Més precisamente, haciendo un gréfico logaritmico del periodo en funciéon
del radio, se observa que la magnitud f—; tiene el mismo valor para todos los
planetas. Este hecho empirico es conocido como tercera ley de Kepler, en
honor al astronomo JOHANNES KEPPLER (1571-1630) que estudi6 el movi-
miento de los planetas a partir de las observaciones sistematicas de TYCHO
BRAHE (1546-1601). En términos de la velocidad angular w, que es inversa-
mente proporcional al radio, la ley dice que el nimero k = w?p? es igual para
todos los planetas. Segun lo calculado en 3.1.4, si r es el vector de posicidon

relativa de un planeta respecto del Sol (fijo), la aceleracion # = —w?r del
. . . 1 f . 1 _w2|7‘|3 _ k A ,
movimiento circular uniforme es en este caso igual a == z-r = —57r. Asf,

los planetas estan sometidos a un campo de aceleraciones dirigido hacia el
Sol y de intensidad #, es decir, inversamente proporcional al cuadrado de
la distancia al mismo.

Cuando el campo de aceleraciones al que estd sometido una particula
depende s6lamente de su posicion (siendo independiente de la velocidad de
la particula, y del tiempo) y tiene simetria alrededor de un centro fijo, se
dice que es un campo central de aceleraciones, y puede probarse (usando la
simetria) que la aceleracion tiene la direccion del vector posicion r (relativa
al centro), y su sentido e intensidad dependen solamente de la distancia
p = |r|, por lo que esta dada por la forma 7 = a(|r\)|:—|, siendo a = a(|p|) una
funcién continua y a valores escalares, que depende del campo en cuestion.
Aqui consideraremos que el campo no esté definido en el centro, por lo que
interrumpiremos cualquier movimiento que llegue hasta alli.

Observaciéon 3.2.1. En cualquier campo central dado por una funcién a =
a(p), el movimiento circular uniforme de radio p serd posible para cualquier
valor de p > 0 para el cual el campo resulte atractivo, es decir, para el cual
se tenga a(p) < 0.

Comentario 3.2.2. Cuando a = a(p) es de la forma a = kp®, decimos que
es un campo central homogéneo, pues son los tinicos campos centrales que
admiten simetrias de similaridad (que dilatan las distancias y el tiempo), lo
cual implica que todos los puntos (distintos del centro) resultan equivalentes,
no habiendo un experimento que permita distinguir un radio positivo de otro
(asumiendo que no hay unidades de medida distinguidas para medir tiempo
o distancia). Notar que, en el caso de « = 0, ni siquiera es posible distinguir
un radio de otro disponiendo de una unidad de tiempo distinguida.
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3.3. Conservacion de la velocidad areolar en campos centra-
les

Cuando se analiza mas detenidamente el movimiento de un planeta alre-
dedor del Sol, se nota que su 6érbita en general no es exactamente un circulo
centrado en el mismo, sino que parece estar descentrada, y ademés se obser-
va que el movimiento del planeta es més lento cuando el planeta estd méas
alejado del Sol.5” Mas precisamente, la segunda ley de Kepler, también
de caricter empirico, afirma que el area barrida en un intervalo de tiempo
por el vector posicién de un planeta es proporcional al tiempo transcurrido, o
dicho de otra manera, la velocidad areolar del movimiento de cada planeta
es constante. Esto ocurre con cualquier particula ¢ moviéndose en un campo
central alrededor de un punto fijo o.

Para empezar, puede probarse que se conserva el plano de vectores es-
paciales generado por la posicién relativa r = x; — x, y la velocidad relativa
P = @ — 2o, es decir, el plano determinado por el bivector 7 A7 (o cualquiera
de sus multiplos). Mas aun, el bivector r A 7 es constante, y para probarlo
basta con ver que

d i L .
—(rAT)=7FATH+1r AT
:0+T/\(ii—i0)
=0.

pues el sol tiene aceleracién nula y Z; es paralelo a 7.

Reciprocamente, puede probarse que si el (bi)vector r A 7 (que es la
velocidad areolar, si entendemos el area como una magnitud vectorial, y no
so6lo consideramos su medida absoluta) es constante, entonces el movimiento
transcurre en un plano que pasa por el centro, y la aceleracién esta dirigida
hacia el centro.

5Se puede ver una animacion del movimiento de los planetas —desde el punto de vista
de la Tierra— en http://jove.geol.niu.edu/faculty/stoddard/JAVA/ptolemy.html.

"Un modelo propuesto para describir el movimiento proponia una oérbita circular, con
el Sol S desplazado del centro C' (pero situado en el mismo plano del circulo). Ademés
habia otro punto E llamado ecuante con un desplazamiento (respecto del centro) opuesto
al del Sol, de modo que C era el punto medio entre S y E. El movimiento propuesto del
planeta P en su orbita era uniforme respecto de E, es decir, con el angulo entre EP y ES
variando con rapidez constante. Se puede ver un dibujo de esto en [2].

8Esto se puede demostrar, en general, para un sistema aislado compuesto por dos
particulas: la recta que une sus posiciones en cierto instante, y las velocidades de las dos
particulas en dicho instante, generan un submundo galileano de H C G de dimension 3 (o
menor), y usando las simetrias que lo dejan fijo (por ejemplo, si dim(G) = 1 + 3 usamos
isometrias de espejo) encontramos que las aceleraciones tienen que estar dirigidas a lo
largo de H, por lo que todo el movimiento debe transcurrir en H, o dicho de otra manera,
(existe un sistema de referencia inercial en el que) las dos particulas permanecen en un
plano constante.
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3.4. Orbitas en campos centrales

En esta seccién desarrollaremos, usando notacién moderna, los puntos
centrales del analisis de Newton de las orbitas en campos centrales, que
puede verse con mas detalle en [11].

Una consecuencia de la conservacién del impulso angular en un campo
central es que, conocida la érbita que recorre la particula (es decir, el con-
junto de puntos del espacio que visita, medidas respecto del centro) y el valor
del impulso angular (el cual se puede calcular conociendo la velocidad en un
punto de la érbita), el movimiento a lo largo de la orbita a partir de un
instante y posicion inicial ya queda determinado, atin sin conocer la funcién
a(p) que determina el campo central. La funciéon a(p) se puede determinar
después, a partir del movimiento de la particula, al menos para el intervalo
de valores de p = |r| que visita la particula.

En efecto, si H C G es una trayectoria en un campo central y s es
un parametro regular en H (lo cual hace que t y s estén relacionados por
un difeomorfismo, con lo que % vy 9 son escalares no nulos, y en general

’ dt Y ds ’
podemos derivar cualquier expresion E (a valores en un espacio afin) definida

en H respecto de s (obteniendo E' := %) o respecto de t (obteniendo
E = %). A lo largo de H tenemos
d drd
)\:T/\’["‘:’]"/\d—r:’r/\ <d’;‘di> :TA(T/5)=(TAT/)S,

con lo que podemos usar la parametrizaciéon s — r para calcular la relacién
entre los diferenciales de las variables:

Adt = (r Ar')ds.

Esta relacion permite, para cualquier cantidad E definida en H, calcular E
a partir de E’ (y viceversa), pues tenemos

d nd
)\% = (7" AT )%,
es decir, .

AE' = (r AT)E.

En particular, podemos calcular

- - dr ds
= OB BB D (i - s 09

"T Wt T dsdt | ds dt

que se puede calcular en términos de s (recordando que § = ﬁ) Para ob-
tener la funcién a = a(p) que define la intensidad del campo de aceleraciones
segtin la formula |7| = a(|r|), solo hace falta calcular |r| en funcién de s e
invertir para escribir s en funcion de |r| y poder usar el calculo anterior (que

da 7 en funcién de s).
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Comentario 3.4.1. A partir de una funcién a = a(p) y un estado inicial
con momento angular no nulo, se genera un tramo de 6rbita plano, dos
veces derivable, cuyo vector tangente nunca es paralelo al vector posiciéon, y
que no repite valores de |r| (pues si repitiera, podriamos quedarnos con un
intervalo de tiempo en el que |r| crezca o decrezca monotonamente, cortando
el movimiento en cualquier pericentro (punto en el que |r| es minimo) o
apocentro (punto en el que |r| es maximo) que aparezca).’ Esta asignacion
es inyectiva, pues a partir del tramo de 6rbita podemos calcular la intensidad
del campo de aceleraciones, como indicamos atras, al menos para los valores
de |r| que recorre la particula. Ademas es sobreyectiva: Si tenemos un tramo
de curva dos veces derivable, con vector tangente nunca paralelo al vector
posicién, contenido en un plano que pasa por el centro, y que no repite valores
de |r|, podemos parametrizarlo con A = r A 7 constante, y la aceleracion
resultaré dirigida hacia el centro, por lo cual el movimiento podra explicarse
como generado por un campo central.

Comentario 3.4.2. Teniendo esta correspondencia entre orbitas y campos
centrales, cabe preguntarse cémo son los movimientos no circulares que co-
rresponden al campo de atraccién del Sol, de intensidad a = ﬁ, con cierto
k > 0. Una conclusién sorprendente es que las érbitas son siempre cerradas,
y de hecho, son secciones conicas (elipses, parabolas o hipérbolas), con el Sol
en uno de sus focos. Para probar esto basta con mostrar que todas las sec-
ciones cénicas, parametrizadas adecuadamente, tienen aceleracién ¥ = ﬁr,
y ademdas mostrar que para cualquier condicién inicial existe una seccién
cénica adecuada. No conociendo una demostracion facil y elegante de estos
hechos, me limito a esbozar una demostracion, que consiste en aplicar el
método anterior de reconstruccién de campos a partir de érbitas.

Para probar que las cénicas son soluciones usando coordenadas carte-

_ )2 2
sianas, se puede partir (en el caso de una elipse (maf) + ?;—2 = 1, con
a>c>0yb =a?-c?) de la parametrizacion usual r = r(s), dada
por 7 = (acoss — ¢,bsins), y calcular el radio |r| = a — ccoss y el valor

que debe tener $ para que el momento angular (r A r’)$ tenga cierto valor
constante A, que estd dado por rs = W. A partir de acéa es posible

071)
. . . Sd(rs
calcular 7, usando el valor de § que se obtiene de la ecuacién % =0,y
. NE
llegar finalmente a que ¥ = — L‘ngr.

Alternativamente, se puede usar la ecuacion polar r = conp >0

p
14+€ecos B’

9El movimiento en un campo central (como la mayoria de los movimientos que estudia-
remos), admite simetrias que invierten el tiempo. Es decir, cualquier movimiento, recorrido
hacia atréas, es solucién a las ecuaciones dinamicas. Usando este tipo de simetrias, se puede
probar que si el radio crece (o decrece) hasta alcanzar un valor estacionario en un punto
E del plano, entonces a partir de ahi va a trazar un tramo que es imagen especular del
anterior, respecto de la recta que une el centro con E. Esto implica que los puntos de ra-
dio estacionario son necesariamente maximos o minimos, y que todo el movimiento queda
determinado a partir de lo que pasa en un periodo maximal de monotonia.
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y € € R (que sirve para elipses, parabolas e hipérbolas), parametrizando la
curva por medio de 0. En este caso hay que elegir 0 = m para obtener

r A 7 constante, y después calcular la componente radial de la velocidad

(la inica componente no nula), cuya intensidad en coordenadas polares es
A2
2 .

Ir| — |r|62, y concluir que es igual a — o]

Finalmente, para obtener secciones cénicas que se ajusten a cualquier
condicién inicial y cualquier valor de k, hay que resolver el problema de
trazar una conica a partir de un foco F (el centro del campo), un punto
P de la curva (la posicion inicial), la recta R tangente a la curva en P (la
direccion inicial de movimiento), y la curvatura en dicho punto (determinada
por Ay k). Para eso debemos ubicar el segundo foco F’. Pero como las rectas
PF y PF’ tienen a la tangente R como bisectriz, queda determinada una
recta de valores posibles para F’, y hay que elegir uno de ellos para darle a
la seccién conica la curvatura en P deseada.

Comentario 3.4.3. La primera ley de Kepler afirma que las 6rbitas de
los planetas son elipses con el Sol en uno de sus focos. Sin embargo, en la
practica fue dificil de establecer, pues una érbita eliptica de eccentricidad € y
semididmetro mayor a coincide aproximadamente (para valores de e cercanos
a cero, a primer orden en €) con una circunferencia de radio a y con el centro
desplazado una distancia ea respecto del Sol. Por lo tanto, no fue tan sencillo
para Newton establecer su teorfa. Para tener un vistazo del contexto histérico
en el que publico su obra, ver [10].

3.5. Masa inercial y fuerzas

Ahora estudiaremos sistemas de mas de una particula.

En el caso de dos particulas 7 y 7, que inicialmente tienen velocidad rela-
tiva nula, aplicando en cierto estado (¢, (x;, z;), (;,4;)) las rotaciones que lo
dejan fijo, puede verse que la aceleracion de cada particula tiene la direccién
de la recta que une a ambas. Ademds, si las dos particulas son semejantes,
aplicando la simetria del sistema que las permuta (que no es una simetria
galileana, sino una simetria del sistema mecanico producto), notamos que
las aceleraciones de ambas particulas deben ser vectores opuestos, de modo
que si promediamos las posiciones de las dos particulas, obtenemos un punto
cuyo movimiento es uniforme.

Si las dos particulas son distintas, la naturaleza también provee una forma
de promediarlas. Empiricamente se observa que todas las particulas parecen
ser multiplos positivos de una misma cosa: ain si en el experimento anterior
usamos dos particulas distintas, las aceleraciones también son opuestas, de
modo que ——J es un namero positivo, que ademas resulta constante durante
el mov1m1ento de las dos particulas, y persiste al repetir el experimento par-
tiendo de otro estado inicial, y atn al cambiar el mecanismo de interaccién
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(por ejemplo, si estaban unidas por una cuerda o resorte, se lo cambia por
otra cuerda o resorte distinto, en cuyo caso cambia la funcion A que determi-
na el movimiento). Este ntumero constante se llama masa de i relativa a j, y
lo denotamos provisoriamente con el simbolo m; ;. Ademaés, al experimentar
con varias particulas de a pares, se observa que para cualesquiera particulas

. . ., ., m; /e . .
i, j v k se cumple la relacion de cancelacion —4% = m, ., la cual nos indica
’ ™/ i/39

que en realidad cada particula 7 tiene una masa m; > 0, de modo que la
masa, de i relativa a j es en realidad el cociente 2. Las masas estdn en una

J
nueva semirrecta Pkg (que también incluye un valor nulo).

Si durante el movimiento de una particula ¢ multiplicamos su masa m;
por su aceleracién &;, obtenemos una magnitud

fi = midi,
a la cual llamamos fuerza efectiva sobre la particula . Las ecuaciones de
Newton (1) se pueden reescribir en la forma
Vi m;i; = Fi(t,x, &),
donde F;(t,x,4) = m;A;(t,z, ), o en la forma
mi = F(t,x, ), (3)

donde m = (my)ier es la masa del sistema (que en este caso estamos
multiplicando componente a componente por la aceleracién del sistema x =
(zi)ier), y F = (F})ier es la funcién de fuerzas del sistema, a determinar
para cada sistema en particular.

Ejemplo 3.5.1. Si en los dos extremos de un resorte, de longitud inicial
nula, fijamos dos particulas a y b, éstas se mueven segtn las ecuaciones

i‘a - _wa(xa - l’b)

Ep = —wp(xp — Ta),

(con wg,wp > 0) que, introduciendo las masas de las particulas, se reescriben
en la forma

MaEeq = —k(zq — xp)

mbi“b = —k(wb — :Ca),

siendo k = mew, = mpwp una constante elastica que de hecho depende
s6lo del resorte, lo cual se puede comprobar repitiendo el experimento con
otras particulas. Sumando estas ecuaciones y dividiendo por mg, + mp nota-
mos que el punto Teny = %ﬂ:%, del cual hablaremos en general més
adelante, se mueve uniformemente. Para terminar de describir el movimiento,
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bastaria con calcular la evolucion del vector espacial r = xp — x,. Sumando
las ecuaciones originales obtenemos

7= ——T,
en donde p es la masa reducida del sistema, dada por la ecuaciéon % =
1
ma +
en la forma 7 = —w
la solucién

. Definiendo w € Ps™! segtn la formula w? = %, la ecuacion queda
2

1
mp
r, que se resuelve como en el ejemplo 3.1.6, obteniendo

v\  [cos(w(t—tp)) —sin(w(t—to)) Vo
wr)  \sin(w(t —tg)) cos(w(t —tg)) wrg )’
donde v = i, — #,. En este caso se conserva la cantidad |v|? + %Mz, que

multiplicando por 4 da la energia mecanica E = 4|v|? + £|r|?, de la cual
hablaremos en general mas adelante.

En este ejemplo vimos que un resorte de constante elastica k y longi-
tud inicial nula actta sobre las particulas a y b sujetas sobre sus extremos
ejerciendo sobre a una fuerza —k(x, — xp) y sobre b una fuerza opuesta
—k(xp — x4). Estas formulas definen una funcion de fuerzas. Haciendo expe-
rimentos similares se puede asociar a cada mecanismo de interaccion (gravi-
tacional, electromagnético, rozamiento, etc.) una funcion de fuerzas. Cuando
en un sistema coexisten varios mecanismos de interaccién, el movimiento es
descrito satisfactoriamente por la funcién de fuerzas resultantes que se
obtiene sumando las funciones que corresponden a todos los mecanismos de
interacciéon presentes. En adelante entenderemos la palabra fuerza en este
sentido: como una funcién de fuerza que contribuye como sumando a la fun-
cion de fuerzas de un sistema (llamada fuerza resultante), y es debida a
la presencia de un mecanismo de interacciéon concreto. La ley de Newton se
enuncia en palabras diciendo que el sistema se mueve de modo que la fuerza
efectiva f = m& es igual a la fuerza resultante F'(¢,x, ).

Observacion 3.5.2. En el ejemplo 3.1.2, y también en el caso del movimiento
de los planetas alrededor del sol, la aceleracién g que experimenta cualquier
particula es independiente de su masa m. Para que eso ocurra, la fuerza que
actia sobre él (llamada fuerza peso, y debida a la presencia de la Tierra)
debe ser igual a mg, es decir, proporcional a la masa. El vector aceleracién
g = ¢g(t,x), que puede variar entre un evento y otro, es llamado campo
gravitatorio.

Ejemplo 3.5.3. Un péndulo simple es una particula inmersa en un campo
gravitatorio uniforme g y sujeta de un punto fijo por medio de una cuerda fina
y liviana de longitud [. El péndulo tiene una posicion de equilibrio (punto
del mundo de configuraciones en el que si el sistema se queda quieto, cumple
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la ecuacién de movimiento) situado debajo del punto de sujecion (siendo
abajo la direccion a donde apunta g). Al apartar levemente la particula de
esta posicién de equilibrio y soltarla (con velocidad inicial nula), notamos
que comienza a oscilar periédicamente en un plano vertical,'® pudiendo su
posicién describirse en coordenadas polares p, 6, donde p es la distancia al
punto de sujecion (de valor fijo 1) v 6 es el dngulo de apartamiento de la
cuerda respecto de la direccion vertical (con un signo que depende de la
direccion de apartamiento). La aceleracion de la particula es

i=(p— p02)§p + (296 + p9)§9 = —lezaap - 19889
y las fuerzas a las que esta sometida son la tension de la cuerda (cuya direc-
cion, suponemos,'! es paralela a la cuerda, y por lo tanto, perpendicular a la
direccion de movimiento del péndulo) y la fuerza peso m|g|(cos 98% —sin 9%)
(donde m es la masa de la particula). Para calcular la evolucion de 6 basta
con analizar la componente tangencial mlf = —m|g|sin @ de la ecuacion de

Newton, que definiendo w = 4/ M, se reescribe como
0 = —w?siné.

Observacion 3.5.4. Para calcular el movimiento no hace falta conocer la
tensién de la cuerda. Una vez conocido el movimiento, la tensién puede cal-
cularse usando la componente de la ecuacién de Newton que es perpendicular
al movimiento de la particula.

Observacion 3.5.5. Aplicando una simetria que invierte el orden del tiempo,
en el instante en el que la particula estid en el punto 8 = 0, vemos que
el movimiento debe ser simétrico respecto de este punto, de modo que la
oscilacion va a ser entre el angulo inicial 6y (en el instante inicial ¢y) y su
opuesto —6y.

Comentario 3.5.6. La ecuacion de movimiento § = —w?sin @ se parece a la
ecuacion lineal 6 = —w20 del movimiento armoénico simple, y de hecho, la
duracién de una oscilacién del péndulo tiende a la duracién %’r del oscilador
lineal, a medida que la amplitud de oscilacion (determinada por el angulo
inicial ) tiende a cero. En efecto usando el valor inicial 6y (que también
es el valor maximo de 6), podemos describir la posicién por medio de una
variable auxiliar ¢ definiendo 6 = 6yq. Entonces el movimiento esta descrito
por la ecuacion 0§ = —w? sin(fpq) con condiciones iniciales gg = 1y go = 0.

10F] plano de oscilaciéon en realidad gira lentamente con una velocidad angular menor que
la velocidad de rotacion de la Tierra. Este experimento, llamado péndulo de Foucault,
permite comprobar la rotacion de nuestro planeta respecto de las estrellas, mostrando que
un sistema de referencia fijo a la Tierra no es inercial.

" Esto se puede explicar a partir de la delgadez de la cuerda si suponemos que las fuerzas
internas entre sus particulas cumplen la ley fuerte de interaccion, a explicar mas adelante.
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Como la solucién de la ecuacion debe depender suavemente del pardametro 6y
(pues la funciéon a(q) = —w?sin(fpq) depende analiticamente de ), vemos
que el movimiento de ¢ tiende a la solucion g = cosw(t — tg) de la ecuacion
lineal. Mas atin, como cualquier valor de 6y equivale (a los efectos de calcular
el periodo de oscilacién) a su opuesto —6y, sospechamos que el periodo debe
depender suavemente de 63.12

Observacion 3.5.7. El estado (6,6) del péndulo se mueve en curvas cerradas
alrededor del punto (0,0), que deben ser curvas de nivel de una funcion
e = e(f,6) que alcanza su valor minimo en (0,0). En efecto, la derivada
temporal de e en una curva solucién es

%. %9.: %9.— Q?Msinﬁ,

00 96 o0 00 1

que se anula si tomamos una e tal que g—g = |li| sinf y % = 6. Por ejemplo,
podemos tomar e = %92 — @ cos 6. Multiplicando por ml? obtenemos E =

16)? ik ] (o
m% —mlgl|lcosf = m% —m{g,r), que es la energia mecénica, de la cual

hablaremos en general més adelante.

3.6. Ley de interaccién

El hecho observado en los experimentos con dos particulas queda ex-
presado en la ecuacion f; = —f;, y recibe el nombre de ley (débil) de
interaccion. Escrita en la forma f; + f; = 0, se extiende de hecho a sis-
temas de més particulas: la suma ), - f; de las fuerzas que acttian sobre
todas las particulas de un sistema aislado I'" es nula. Este hecho equivale a
que la fuerza resultante sobre cada particula i se pueda descomponer como

fi=> fig

J#i

donde f;; es la fuerza de interaccion que j ejerce sobre i, y se cumple
que f;; = —fji- Esta descomposicién no es tinica, pero en muchos casos
concretos, se puede descomponer de modo que f; ; dependa solamente del
estado de las particula ¢ y 7, lo cual muestra que en realidad cada par de
particulas interactia independientemente. Estas fuerzas que se presentan de
a pares de vectores opuestos actuando en distintas particulas se denominan
fuerzas de interaccion o pares de accién y reaccion.

12Segiin la Wikipedia (http://en.wikipedia.org/wiki/Pendulum), el periodo es
l

1 o
2 — 1+ —6
s \g|<+160+

1, 173
0 0
30727° T 73728070 T

22931 s
1321205760 ° '
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Por ejemplo, la ley de gravitaciéon universal postulada por Newton
afirma que entre cada par de particulas ¢, j hay una fuerza atractiva, en
la direccion de 7;; = x; — x;, y de intensidad %, donde k, es una
constante universal, valida para todos los pares de cuerpos.!® Esto permite
explicar con gran precisiéon el movimiento de los cuerpos del sistema solar.
La fuerza predominante sobre cada planeta, asteroide, u otro cuerpo es la de
interaccion con el Sol, pero también hay fuerzas mas débiles'? de interaccion
entre los demés cuerpos, que son especialmente notorias entre cada planeta
y sus satélites (lunas).

Muchas fuerzas de interaccién entre particulas, como la gravitacional y
la elastica ya vistas, cumplen la ley fuerte de interaccion, que requiere
que la fuerza con la que j atrae a ¢ tenga la direccion del vector r; j. Siempre
que la fuerza dependa sélo de la configuracion de las dos particulas, se puede
probar usando simetrias (como en el analisis de campos centrales) que es de

r .
la forma f; ; = a(]r; ;|) =L, con « escalar. Decimos entonces que se trata de
[2¥) 2¥) ‘7‘7;’ | ?

J
una fuerza de interacciéon central.

Comentario 3.6.1. Entre dos particulas con carga eléctrica aparece una fuer-
za electrostatica, dada por una férmula similar a la de la atraccién gravita-
toria, y una fuerza magnética mas débil, que depende de la velocidad, y no
cumple la ley de interaccién, ni respeta el principio de relatividad galileano,
pues la formula que se obtiene para calcularla en términos de las posiciones
y velocidades de las particulas (respecto de un sistema de referencia iner-
cial) da valores distintos al cambiar de sistema de referencia. Esto impide
tratarlas satisfactoriamente usando el modelo galileano del mundo. Al pasar
al modelo relativista, en el que la simultaneidad no est4 definida, la accién
a distancia instantdnea deja de ser posible, y se considera que las particulas
interacttian localmente con ciertos campos, generando una perturbacion
que se propaga por el mundo. Sin embargo, fijado un sistema de referencia y
conocido el campo electromagnético al que estara sometida una particula, es
posible estudiar su movimiento en el modelo galileano (ver p. 26-29 de [5]).

3.7. Cantidad de movimiento y centro de masas

La fuerza efectiva f; = m;Z; que actta sobre una particula ¢ es la veloci-
dad con la que varia la magnitud

Di = M;T;,

13Newton obtuvo una confirmacion de esta ley al explicar el movimiento orbital de la
Luna alrededor de la tierra por el mismo mecanismo que hace que los objetos caigan sobre
la Tierra.

1E] planeta Neptuno fue descubierto por anomalias detectadas en la érbita de Urano.
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denominada cantidad de movimiento de la particula. La ley de interaccion
equivale al hecho de que la cantidad total de movimiento

Ptot = sz‘

el
de un sistema aislado se mantiene constante. Las ecuaciones de Newton se
pueden reescribir nuevamente, en términos de la cantidad de movimiento,

como

que es la forma que él les dio originalmente. Definiendo la cantidad de
movimiento del sistema como p = (p;)icr, podemos combinarlas en una
ecuacion

p=F(t,x, o). (4)

La funcién de fuerzas F' indica como las particulas van intercambiando can-
tidad de movimiento.

Ademas de la masa del sistema m = (m;);er, podemos definir la masa
total del sistema como la suma

Mtot = g my.

el
Si un sistema de particulas estd compuesto por varios cuerpos (subsiste-
mas), su masa total es la suma de las masas totales de todos los cuerpos que
lo componen. Asi, la masa total es una medida positiva (a valores en Pkg),
definida en el conjunto de todas los sistemas de particulas que se mueven en
G. La masa provee una forma de promediar posiciones de varias particulas:
se define el centro de masas x.yn de I' mediante la férmula

MtotLem = g m;x;.
[

La fuerza es aditiva en el siguiente sentido: si combinamos varias parti-
culas formando un cuerpo, y definimos la fuerza total que actiia sobre el
cuerpo como la rapidez con la que varia su cantidad total de movimiento,
la fuerza total sera la suma de las fuerzas sobre todas las particulas (pues
la cantidad total de movimiento es aditiva). Esto se puede repetir, uniendo
cuerpos para formar nuevos cuerpos. La fuerza es una medida (a valores vec-
toriales) en el conjunto de todos los cuerpos que se mueven en G. La ley de
interaccion se cumple para sistemas de varios cuerpos: la suma de las fuerzas
que acttian sobre las partes de un sistema aislado (que son los cuerpos que
lo componen) es nula.

La cantidad total de movimiento de un cuerpo puede expresarse en tér-
minos del movimiento del centro de masas segin la férmula

Ptot = MtotLcm,
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por lo que la fuerza que acttia sobre el cuerpo serd igual a

ftot = MtotLcem-

La ley de interaccién equivale, entonces, al hecho de que el centro de masas
de un sistema aislado se mueve uniformemente.

El espacio de todas las posibles cantidades totales de movimiento de los
sistemas de particulas que se mueven en un mundo galileano G es un P-
mo6dulo Mov G = Pkg @p G, que tiene sumas formales de productos entre
masas y velocidades. Asi como el mundo G esté estratificado por el tiempo,
el espacio Mov G esté estratificado por la masa total: fijada un valor de masa
miot > 0, las posibles cantidades de movimiento de un sistema de masa total
Myt forman un subespacio afin Mov,,,,, G. La masa total es un P-morfismo
de Mov G a Pkg. Las posibles diferencias entre dos cantidades de movimiento
de igual masa total m forman el espacio vectorial Imp G = A(Mov,,,,, G)
de los impulsos en G, que no depende de my,,.,, v de hecho es igual a
Pkg @p AG.

3.8. Impulso angular y torque

Asi como las particulas, al interactuar entre si, experimentan variaciones
en su velocidad, intercambiando cantidad de movimiento (que es el producto
entre la masa y la velocidad), se observa que la velocidad areolar de los
planetas alrededor del Sol no es constante, sino que entre ellos intercambian
una magnitud denominada impulso angular, que es el producto de la masa
por la velocidad areolar. Mas precisamente, si o es un punto cualquiera que
se mueve uniformemente (por ejemplo, el centro de masas del sistema), se
define impulso angular de una particula i respecto de o como

li,o = Ti,0 N\ Dio-
Su derivada temporal es
lio="TioN fi

y recibe el nombre de torque o momento de la fuerza f; respecto del punto
o.

Observacion 3.8.1. El torque de la fuerza f; que actiia sobre una particula ¢
depende no sé6lamente del vector f;, sino que también depende de cuél es la
recta a lo largo de la cual actia la fuerza.

El impulso angular total del sistema se define como la suma
lo = Z li,o
el
de los impulsos de todas sus particulas. Es posible probar que esta magnitud
se conserva en un sistema aislado, suponiendo que las fuerzas de interaccién
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entre sus particulas satisfacen la ley fuerte de interaccién. En efecto, su
derivada temporal es

d
%(lo) = Zri,o A fz
el

= > oA

i,j€L, i#]

pero cada término r;, A f; j correspondiente a un par (4, j) se cancela con el
término correspondiente a (7,4), pues

Tio N fij + 750 N fii = (Tio = Tjo) A fij = Tij A fig = 0.

Observacion 3.8.2. Esta conservacion se da atn si agregamos a cada particula
i una fuerza f;, que tenga la direcciéon de r; — r,. Por ejemplo, el impulso
angular total de un sistema de planetas moviéndose cerca de un sol fijo que
los atrae se conserva.

3.9. Sistemas de referencia no inerciales

Un sistema de referencia no inercial o sistema de referencia ace-
lerado en G (de dimensién 14n) es una funcién €2 biyectiva S : Tx X — G
(donde X es un espacio euclideo de dimension n), que respeta el tiempo y
la estructura métrica (de modo que para cada instante ¢ da una biyeccion
isométrica S; : X — (), pero no necesariamente respeta la estructura afin
de G. Por ejemplo, como el planeta Tierra es un cuerpo aproximadamente
rigido, hay un sistema de referencia no inercial en el que todos los puntos de
la Tierra estan quietos.

Cuando calculamos la fuerza efectiva sobre una particula ¢ en un sistema
de referencia no inercial segin la formula f; = mig—;(S*I(mi)) (medido en el
mundo 7 x X), obtenemos un vector espacial que difiere de la imagen S; ' (f;)
de la fuerza efectiva real f; = m;&;. La diferencia finery = fz — fi es llamada
fuerza inercial o fuerza ficticia sobre . Por lo tanto, para poder estudiar
el movimiento por medio de la ecuacién de Newton, hay que sumar a las
fuerzas reales (que provienen de los mecanismos de interaccion) las fuerzas
ficticias, que en general no tienen un par de interaccion (es decir no existe
otra particula en donde esté actuando una fuerza opuesta, satisfaciendo la
ley de interaccion). La fuerza inercial sobre i es proporcional a la masa, més
precisamente, es el producto entre la masa y una expresion que depende del
movimiento de la particula en relacion al sistema de referencia no inercial, y
del movimiento del sistema de referencia no inercial en el mundo.
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Ejemplo 3.9.1. Si un disco rigido gira a velocidad angular constante w (en
algun sistema inercial), cada particula j del mismo tiene una aceleracion
centripeta de valor w?|r;| (donde r; es la posicién de j relativa al centro del
disco). Esta aceleracion es lograda por fuerzas internas entre las particulas
del disco, que aseguran su rigidez. En un sistema fijo al disco, cada particula
J que lo compone esta quieta, y la fuerza (nula) que actia sobre ella es
suma de la fuerza centripeta que ya calculamos, y una fuerza centrifuga
(ficticia) opuesta.

Observacion 3.9.2. Para cualquier particula moviéndose en G existe un sis-
tema de referencia acelerado S tal que la imagen de la particula en X es un
punto fijo. Ademas, el sistema puede elegirse de modo que la parte lineal de
la isometria Sy : Gy — X sea la misma para todos los ¢, en cuyo caso se
dice que el sistema estd uniformemente acelerado, y su aceleracion en el
instante ¢ es la aceleracién del movimiento en ¢.

Comentario 3.9.3. La fuerza peso es proporcional a la masa de los objetos
sobre los que actua, lo cual lo hace similar a una fuerza ficticia. De hecho,
si en una region pequenia del mundo (donde la aceleracion de caida de los
objetos sea aproximadamente constante) tomamos un sistema uniformemen-
te acelerado con aceleracion g (llamado sistema en caida libre), entonces
los cuerpos que caen libremente por su peso (segin un sistema inercial) se
ven moverse uniformemente en el sistema acelerado, lo cual muestra que la
fuerza inercial asociada al sistema acelerado esta cancelando a la fuerza peso.
Segiin la teoria general de la relatividad, que no trataremos acé, las fuerzas
ficticias y las fuerzas peso son, bajo ciertas condiciones, indistinguibles entre
Si.

3.10. Energia cinética

La masa también permite obtener una magnitud escalar que indica cuén-
to se estan moviendo las particulas de un sistema I'. Pero para eso hace falta
definir un sistema de referencia. Si #, es una velocidad fija (la cual determina
un sistema de referencia inercial, y permite asociarle a cada velocidad &; una
vector velocidad relativa v; , = &; — &,), podemos definir en cada instante la
energia cinética (o energia de movimiento) de I' (respecto de i,) como

-2
0
K, = E mzl 2’20‘ .
el

Comentario 3.10.1. Parece inevitable que la nocién de energia cinética de-
penda de un sistema de referencia. Como la velocidad #; de una particula
es un vector espaciotemporal, no podemos medir su norma, pues sélo tie-
nen norma los vectores espaciales. En la teoria relativista, hay una norma
para vectores espaciotemporales, cuyo célculo depende de la posibilidad de
determinar a cuantos metros de distancia equivale un segundo de tiempo.
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Observacion 3.10.2. Sin embargo, cuando la cantidad total de movimiento
de un sistema se conserva (por ejemplo, porque el sistema es aislado), la va-
riaciéon de la energia cinética entre dos instantes es independiente del sistema
de referencia. En efecto, si &, es otra velocidad, tenemos

2
Vi A
K, _—§ m,-‘ 2'

iel
Z | (i (Vo,0)
= m;
; 2
el
v, v
—Z ‘ZO| Zmz Vi,05 Vo,o! +Z ’00’
el el el
_ |Vo,0r |2
=K, + mtot<vcm,o; Uo,o’> + mtotTv

y siendo los dos tltimos términos constantes, la variacién de K, sera igual
ala de K,. Sila cantidad total de movimiento no se conserva, es porque hay
alguna asimetria, que en algunos casos permite elegir el sistema de referencia
segun el cual calcular la energia cinética.

3.11. Sistemas conservativos, trabajo y energia

(En esta seccion consideremos una velocidad #, de referencia fija, y de-
notamos K a la energfa cinética del sistema I' respecto de esa velocidad de
referencia, y v; = &; — I, las velocidades relativas de las particulas. El sistema
de referencia permite identificar configuraciones en distintos instantes.)

En muchos sistemas fisicos ideales, como el oscilador eléstico, el péndulo,
v el movimiento de los planetas, se observa que la energia cinética que tiene
el sistema cada vez que pasa por una misma configuracién es la misma. Un
sistema asi se dice conservativo.

La rapidez con la que varfa la energfa cinética es
K = g mi(Z;, vi) = g (firvi),
icl iel
por lo que su variacién entre ty y t; es igual a

K1—K0—Z/ (fi,vi)d

el

Denominando trabajo de la fuerza f; entre tg y t1 a la integral ft? (fi,vi)dt,
resulta que la variacion (entre dos instantes) de la energia cinética del sistema
es igual a la suma de los trabajos (entre los mismos instantes) de las fuerzas
que acttian sobre sus particulas. El trabajo de una suma de fuerzas que
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actia sobre un misma particula es igual a la suma de los trabajos de las
fuerzas individuales, y en general se define el trabajo de una fuerza aplicada
al sistema (es decir, una I'-upla de fuerzas, una aplicada a cada particula)
como la suma de los trabajos de las fuerzas individuales.

Para que un sistema sea conservativo, la fuerza resultante que actta so-
bre el sistema debe ser tal que su trabajo entre dos instantes dependa sélo
de la configuracién inicial y final, y es independiente del movimiento del
sistema entre dichos instantes. Una fuerza con esta propiedad se dice con-
servativa. Por ejemplo, las fuerzas gravitatiorias, elasticas y electrostaticas
son conservativas.

Cuando una fuerza que actiia sobre un sistema es conservativa, se puede
definir una funcion —V = —V (¢, z), llamada funcién de trabajo, tal que el
trabajo de dicha fuerza entre una configuracién y otra sea igual a la variacion
de —V. Cuando todas las fuerzas son conservativas, se observa que la energia
mecanica

E=K+V

se conserva en cualquier movimiento del sistema, y la magnitud V recibe el
nombre de energia potencial, por la posibilidad que tiene de transformarse
en energia de movimiento. La conservaciéon de la energia permite, a partir de
la energia Fy del estado inicial de un movimiento, calcular cuanta energia
cinética tendra el movimiento cuando pase por cada configuracion, lo cual
restringe las posibles soluciones a la ecuacion de movimiento (més precisa-
mente, para cada curva en el espacio de configuraciones (formada por puntos
donde V' < Ej) queda determinada una unica parametrizacion posible, pues
la norma de la velocidad esta determinada por la energia cinética).

Para que una fuerza f que no depende de la velocidad'® sea conservativa,
debe no depender del tiempo (pues el trabajo en un movimiento rapido
seguido de una espera debe ser igual al trabajo en la misma espera seguida
del mismo movimiento rapido). Esto implica que la funcion de trabajo —V
tampoco depende del tiempo. Ademas, calculando el diferencial de trabajo
de f = (fi)ier en un movimiento cualquiera como

d(=V) = "(fiviydt = > (fi, dw),
i€l i€l
notamos que la fuerza f es el gradiente de —V, es decir, se tiene
ov
<fi7 _> - _6761-'

Reciprocamente, cualquier funcién que sea gradiente de una funciéon —V =
—V (x) es conservativa.

!5Esta hipotesis es necesaria, pues por ejemplo la fuerza magnética, que depende de la
velocidad, nunca realiza trabajo, y sin embargo el razonamiento que sigue no se le aplica.
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Un campo central es necesariamente conservativo, pues es el gradiente
de una funcién que depende de la distancia al centro. En particular, la fuer-
za elastica —kr producida por un resorte de constante k£ que conecta una

particula con un soporte fijo es el gradiente de la funcion —V = —%\rilz, y
una, fuerza gravitacional —%r es el gradiente de la funcion —V = ﬁ En
general, todo par de fuerzas de interaccién central, de la forma f; ; = —f;; =
a(|r;; )‘Zi—;' (con « escalar), es el gradiente de una funcion —V(|r; ;|) dada

por =V = [a(p)dp, y por lo tanto, es conservativa.

Ejemplos 3.11.1. En un oscilador arménico simple (como el del ejemplo
3.1.6), se conserva la energia
2 Il
E=m— +k—.
ma TR
En un péndulo (como el del ejemplo 3.5.3) se conserva la energia

72
E = me = m{g,r).

Esta féormula también vale en el caso del péndulo cicloidal ideado por
Huygens, en el que la particula es restringida a moverse en una curva que no
es un circulo, sino una cicloide (y de hecho, la formula se aplica a cualquier
curva regular).

En el caso de un planeta moviéndose alrededor del Sol, se conserva la
energia )
E= mﬂ — mﬁ.
2 7|
Comentario 3.11.2. A veces una fuerza no es conservativa, pero si es gradien-
te de una funcién —V (¢, x). Se dice que la fuerza deriva de un potencial
(dependiente del tiempo). Por ejemplo si estudiamos el movimiento de
una particula a unida por un resorte a otra particula b cuyo movimiento
xp = xp(t) ya esta determinado, la fuerza eléstica a la que esta sometida a
setd fop = —k(rq — xp), que es el gradiente de —V (t,x,) = —kl|zg — 13|?,
que depende del tiempo. Noétese que si agregamos la particula b al siste-
ma, entonces también estamos incluyendo la fuerza fp,, v el par de fuerzas
elasticas pasa a ser congervativo. Pero la otra fuerza que estd moviendo a b
probablemente no lo sea.

Observacion 3.11.3. Ya vimos que el valor de la energia cinética depende del
sistema de referencia que estemos usando, y sélo se puede definir natural-
mente su variacion entre dos estados (si el sistema es aislado). Similarmente,
la energia potencial (y por lo tanto, la energia mecanica), estan definidas a
menos de una consgtante aditiva, lo que significa que no son funciones defi-
nidas naturalmente en el mundo de estados, sino que se aplican a pares de
estados. La informacién que nos proporciona la energia no estd en su valor
absoluto, sino en su variacién.
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Comentario 3.11.4. En general, la variacion de la energia mecéanica es igual
al trabajo de las fuerzas que no estédn incluidas en el calculo de —V, y se
considera que la energia mecénica faltante se convirtié en energia no me-
cénica, que suelen hallarse en forma de energia mecanica fuera del sistema,
energia térmica, energia electromagnética, etc.. En particular, se sabe que la
energia térmica estd asociada al movimiento de particulas muy pequenas que
componen la materia. Las fuerzas fundamentales son conservativas, y la no
conservacion de la energfa mecanica es evidencia de que estamos haciendo
un anélisis incompleto, sea porque el sistema que estamos estudiando no es
aislado, o porque las variables que estamos analizando no describen comple-
tamente el estado del sistema (por ejemplo, al no incluir la temperatura de
las partes, que cuantifica el movimiento a nivel molecular).
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4. Dinamica en variedades riemannianas: mecanica
de Lagrange

La mecénica analitica de Lagrange permite estudiar sisteméaticamente el
movimiento de un sistema I de particulas en un mundo galileano G, cuando
éste se halla restringido a un submundo M de G'. El método consiste en
parametrizar M con la cantidad adecuada de variables, y escribir ecuaciones
de movimiento que describan la evolucién de esas variables.

4.1. Vectores y covectores en mecanica

Antes de desarrollar la mecénica de Lagrange, vamos a revisar algunos
aspectos formales de la mecénica de Newton.

Cuando una particula ¢ se mueve en un mundo galileano G, una fuerza
F; que actta sobre la misma es tradicionalmente considerada un vector, pero
el hecho de que a veces es el gradiente de una funcion —V (¢, z) (es decir, se
tiene (F;, —) = %—‘;) sugiere que quizas sea mas sencillo pensar a la fuerza
en términos del covector (F;)g = (F;,—). ;Coémo se reconcilia esto con la
ecuacion de Newton p; = F;? Aplicando el producto interno a la ecuacion de

Newton, obtenemos
(Bi, —) = (Fi)s,

por lo que también podemos pensar a la fuerza efectiva f; = p; como un
covector (fi)g = (fi, —) = m;(&;, —). Definiendo un nuevo producto interno
gi = mi{—, —), la ecuacion de Newton queda en la forma g;(Z;, —) = (Fi)g-
En adelante, escribiremos a las fuerzas con superindice para indicar que
estan en forma vectorial y con subindice para indicar que estan en forma
covectorial. En caso de hablar de fuerza sin aclarar ni escribir un indice, se
debe entender que por defecto hablamos de un covector.

En el caso de un sistema I' de particulas ¢ que se mueven en el mismo
mundo galileano G, la fuerza resultante F' = (F;); sera una I'-upla de covec-
tores (es decir, un covector de G'), y la ecuacién de Newton se escribird en
la forma

g(&,—) = F(t,x, o)

donde g = Y .cr gi = > ;er Mi{—, —)g. Podemos definir entonces la fuerza
efectiva f = g(Z, —), que es igual a m(Z, —), si m es la masa del sistema, que
acé opera multiplicando la componente i-ésima (Z;, —)g del covector (&, —)
por la correspondiente masa m;. El espacio G puede entonces considerarse
un espacio galileano en el que se mueve la configuracién del sistema, pe-
ro la masa m de la configuracién no es un escalar, sino un operador més

complicado.
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Usando indices abstractos, la ecuacién de Newton se escribe como

GapZ® = Fjg.

4.2. Sistemas restringidos por fuerzas de vinculo

A veces, sobre un sistema I' de particulas que se mueven en un mundo
galileano G, actian fuerzas de vinculo que obligan al sistema a moverse
bajo cierta restriccion (holénoma) conocida, es decir, a moverse en un
mundo de configuraciones M C GT. Por ejemplo, una barra rigida de longi-
tud [ que une dos particulas a y b restringe el movimiento del sistema de dos
particulas a configuraciones en las que |z, — xp| = [.

Comentario 4.2.1. Las fuerzas de vinculo a veces provienen en la préctica de
un potencial definido en G, que crece mucho al alejarse levemente de M, lo-
grando que los movimientos (de energia suficientemente baja) se mantengan
aproximadamente restringidos a M.

Comentario 4.2.2. También existen restricciones de la forma U(t,z) > q, vy
restricciones anholénonomas que involucran a &, que no trataremos aquf
porque la vida es corta. Por ejemplo, una esfera que rueda sin deslizar sobre
un plano estd sujeta a una restriccion diferencial dada por una ecuacion
& € S(t,z), donde S(t,z) es un submundo de AG. Para estudiar esta clase
de vinculos, ver p. 451-455 de [11].

Decimos que la fuerza de vinculo es ideal o pura cuando su valor es
tal que hace trabajo nulo en cualquier desplazamiento virtual del sistema
(que es un desplazamiento instantaneo compatible con las restricciones, es
decir, una curva en M;). Por ejemplo, la cuerda del péndulo en el ejemplo
3.5.3 es un vinculo ideal, pues la tensién de la cuerda es perpendicular al
movimiento (y esto también vale si se le da una velocidad inicial no nula,
en cuyo caso el movimiento queda restringido a una esfera, en vez de a un
circulo). El par de fuerzas de contacto entre dos cuerpos que no deslizan entre
si es un vinculo ideal. Notese que en general, un par de fuerzas de interaccion
es ideal sin que cada una de ellas lo sea. Por ejemplo, el par de fuerzas de
contacto entre un ascensor y su carga es ideal, pues se trata de dos fuerzas
opuestas aplicadas a objetos que se mueven a la misma velocidad.

El par de fuerzas internas entre dos particulas ¢, j de un cuerpo rigido,
que obliga a mantener las distancia entre ellas constante, es una fuerza de
vinculo ideal (lo cual se puede demostrar suponiendo que cumple la ley fuerte
de interaccién, y esto a su vez queda evidenciado por la conservacién del
impulso angular).

Observacion 4.2.3. Si bien la definicién de vinculo ideal menciona al trabajo,
se trata de un trabajo a tiempo constante, por lo cual no hace falta un sistema
de referencia para definirlo.
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Cuando una fuerza de vinculo no es ideal, se la puede descomponer en
una parte ideal y otra no ideal. Por ejemplo, la fuerza de contacto entre
una superficie y una particula que desliza sobre ella se descompone en una
componente ideal que es perpendicular a la superficie y una componente
no ideal tangencial (que incluye al rozamiento, si existiera). Por lo tanto,
en adelante vamos a suponer que todos los vinculos son ideales. Ademaés
supondremos que la fuerza de vinculo puede tomar cualquier valor (ideal)
que haga falta para restringir el movimiento del sistema al mundo M. El
significado preciso de esta ultima afirmacién quedard claro méas adelante,
cuando expliquemos cémo se define la funcién de fuerza de la cual proviene
la fuerza de vinculo.

A las fuerzas que actian sobre el sistema y no estamos considerando
como fuerzas de vinculo las llamaremos fuerzas aplicadas. La ventaja de
identificar y apartar fuerzas de vinculo ideales es que méas adelante podremos
ignorarlas, y estudiar el movimiento restringido del sistema a partir de las
fuerzas aplicadas.

4.3. Cinematica de sistemas restringidos

Un mundo de configuraciones (de dimension 1 + n) es un fibrado
suave, de variedades suaves (de dimension n), sobre 7. Es decir, es un par
(M, tpr), donde M es una variedad suave (de dimension 1+n) y tpr : M — T
es una funcién regular. Un movimiento en M es una seccion de tp;. Un
morfismo de mundos de configuracién es una funciéon suave F': M — N que
respeta el tiempo, es decir, tal que ty o F' = tj;. Cuando dimN < dimM, se
dice que F es regular en un punto (¢, z) de M cuando la funciéon F es regular
en dicho punto, y ademas el Ker d; ;) F' no esta contenido en el Ker d; ;)tar.
O equivalente, tys x F' es regular en (¢, ).

Por ejemplo, G es un mundo de configuraciones, y dado un morfismo
F : GI' = N y un movimiento ¢ en N, el conjunto M = {(t,z) € G' :
F(t,x) = c(t)} es un submundo de configuraciones de G' (si F' es regular en
M). Los mundos que nos interesan son de este tipo.

En cada punto (¢,2) de un mundo de configuraciones M se pueden de-
finir, como en un mundo galileano, el espacio vectorial SpaVec .y M =
Ker(d(; z)trr) = T My de vectores tangentes espaciales, el espacio afin M(t,a:)
de velocidades (secciones de d ytar) y el espacio vectorial AM(M) = (Rs)*®@r
Spa Vec(, ) M de velocidades relativas. A los vectores tangentes espacia-
les también se los llama desplazamientos virtuales infinitesimales. Un
morfismo F' : M — N que manda (¢,x) a (t,y) convierte movimientos en
M en movimientos en N, y transforma las velocidades segin la férmula
Y= %—If + %i’o‘, estableciendo un morfismo F : M — N.

La aceleracién de un movimiento en M no se puede definir como un vector
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espacial sin recurrir a la estructura afin y métrica de un mundo galileano G
que contenga a M. Para calcular la aceleracién de un movimiento en M, hay
que medir su aceleracion en G (usando la estructura afin de G), y proyectar
el vector & € G obtenido (que tiene direccion espacial) ortogonalmente sobre
M = R(s™2) @p TuM; C G, usando la métrica de Gy.

4.4. Dinamica de sistemas restringidos:
principio de D’Alembert

6 Consideremos un sistema restringido a un mundo de configuraciones
M C G (donde G es un producto de mundos galileanos), con fuerza resul-
tante Fg = Fiy + Fg/nr, donde F)y es la fuerza aplicada y Fg/py es la fuerza
de vinculo, ambas dependiendo del estado (¢,z, ) (y en forma covectorial).
El movimiento que va a tener el sistema estd determinado por la ecuacién de
Newton g(&, —) = Fg. Se ve entonces que el covector g(&,—) — Fg debe ser
nulo, en particular, es nula su restriccion T, M;. O para decirlo de la forma
tradicional, la fuerza g(&, —) — Fg realiza trabajo nulo en cualquier despla-
zamiento virtual. Pero las fuerzas de vinculo de por si realizan trabajo nulo,
por lo cual no aportan nada a esta ecuacion. Entonces la fuerza g(&, —) — Fis
no realiza trabajo en ningtin desplazamiento virtual.

Esta ecuacion
(9(&, =) = Fau)lrom, =0
es conocida como principio (o ecuacion) de D’Alembert, y determi-
na un tnico movimiento posible del sistema (que no se sale de M), como
calcularemos préximamente.

En efecto, sea X : U — M una parametrizacion local de M, con U C
T x @ abierto y @ espacio afin formado por puntos q. Esto permite escribir
la configuracion x en funcion de (¢, q), segin la ecuacion x = X(t,q), y da
una biyeccion entre los estados (t, ¢, ¢) de los movimientos en U y los estados
(t,z, %) de los movimientos en el conjunto X (U) abierto de M. Al hacer esto,
el simbolo x, que representaba un punto indeterminado e independiente en
Gy, se vuelve un poco menos indeterminado (pues queda restringido a M) y
mas dependiente (porque = = x(t,q)). El simbolo & es ahora una velocidad

indeterminada de un movimiento en M, y se tiene & = % + g—gq', donde %

y g—gq” son transformaciones lineales (que dependen de (¢,¢)). Lo mismo pasa
con Z. En fin. La ecuacion de D’Alembert dice que el covector

9a,52" = Fp
es nulo en T, My, es decir, el covector

OxP
G F
(9a,p% ﬁ)aqy

1 IATEX issue: “’m happy but DAlembert is not”. Workaround: “D’{ } Alembert”.
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es nulo (en AQ), o lo que es lo mismo,

o 0P P

(La operacion (—) de derivada total respecto del tiempo ¢ debe hacerse en

una curva solucién ¢ = ¢(t)). Ahora, como % = %”—: + %CTZQ“, tenemos

7Y = @ + @ '#+%"#
~\ o agr )T T et

que podemos reemplazar en la ecuaciéon de D’Alembert, obteniendo

%awﬁ"u_paiwﬁ, % + % 0| 02’
IoB g o = Pogr I\ an og )T | g

. . s
Definiendo el producto interno hy,, = gaﬁ%g@' ’

queda en la forma

notamos que la ecuacién

hu,uq.u = H,y,

donde H = H(t,q,q) es un covector de Q. Por lo tanto, quedé una ecuacion
de Newton en U, que es determinista porque se puede invertir h, , para ob-
tener una ecuacion explicita de orden 2 (aunque U no es un espacio galileano
tradicional, pues el producto interno h = h(t,q) no es constante).!”

Comentario 4.4.1. Mas adelante vamos a escribir la ecuaciéon de Lagran-
ge, que es mas facil de usar, y también permite resolver la ecuacion de
D’Alembert.

El razonamiento anterior parte de la restriccion M y la fuerza aplicada
(que es la tnica que importa en la ecuacion de D’Alembert) y logra escribir
Z en funcion del estado (t,z,4) (que debe ser un estado de movimiento en
M, es decir, (t,x) debe estar en M y & debe estar contenido en Ty ;) M). En
un movimiento solucion, se ve que el covector g(&, —) — Fas, que no realiza
trabajo en ningin desplazamiento virtual, es un posible valor de la fuerza de
vinculo. Este procedimiento determina la fuerza de vinculo Fg /= g(%, —)—
Fyy en cualquier estado de movimiento (t,x,4) en M, lo cual muestra que

17E] autor no sabe como definir un mundo de configuraciones abstracto que incluya la
posibilidad de calcular aceleraciones. Es una variedad riemanniana que cambia al trans-
currir el tiempo, pero esta estructura no es suficiente para calcular la aceleracién de una
curva, como lo demuestran los sistemas no inerciales (en los que la variedad riemanniana
es siempre la misma (el espacio euclideo)) pero la aceleracién no se calcula simplemente
derivando dos veces). La definicién deberia abarcar a los espacios 7 X R, con R variedad
riemanniana, en cuyo caso se puede calcular la aceleracién usando la conexién de Levi-
Civita. En un mundo de este tipo se podria aplicar una fuerza (campo de covectores) y
estudiar la ecuacion de D’Alembert, interpretada como una ecuacién de Newton en un
espacio curvado.
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estd dada por una funcion de fuerzas, como debe ser. Agrupando las funciones
de fuerza de un lado, vemos que el movimiento calculado cumple la ecuacién
de Newton g(i,—) = Fa + Fg/ar- Por lo tanto, la ecuacion de D’Alembert
equivale, para movimientos restringidos, a la ley de Newton (tiene a los
mismos movimientos en M como soluciones).

Observacion 4.4.2. La funcion Fg )y se construye a partir de la funcion Fiy
(restringida a M).

Se puede ver como funciona la restriccién en un ejemplo concreto:

Ejemplo 4.4.3. Sea S una superficie en un espacio euclideo X de dimension
3. Consideremos una particula que se mueve en 7 x .S, por la acciéon de una
fuerza de vinculo ideal, es decir, perpendicular a la superficie. Esto significa
que la componente tangencial de la aceleracién de la particula es nula. Por
otra parte, la componente de la aceleracién que es normal a la superficie
estd determinada en cada instante por la velocidad del movimiento en dicha
direccion y la curvatura normal de la superficie en el espacio (teorema de
Meusnier, ver p. 149 de [3]. Por lo tanto, la aceleracion se puede escribir en
funcién de la posicion y velocidad, quedando determinado el movimiento.

4.5. Estatica: Principio de los trabajos virtuales

Antes de estudiarse la dinamica de sistemas restringidos, se conocia la
version de la ecuacion de D’Alembert para el caso estatico. Consideremos un
sistema con mundo de configuraciones M C T x X constante en el tiempo,
y una fuerza aplicada que no depende del tiempo ni de la velocidad. Segtun
el principio de los trabajos virtuales, las configuraciones de equilibrio
son aquellas en las que el valor de la fuerza aplicada es tal que no realiza
trabajo en ningtn desplazamiento virtual infinitesimal. En el caso de fuerzas
que provienen de un potencial, los puntos de equilibrio son aquellos donde
el potencial es estacionario, y eso incluye a todos los puntos en donde es
maximo o minimo. Por ejemplo, en una montana rusa, las posiciones de
equilibrio son los puntos en donde la recta tangente es horizontal, que son
los lugares en donde la fuerza gravitatoria no hace trabajo, porque la energia
potencial gravitacional es estacionaria.

Los problemas de estatica que involucran sistemas de infinitas particulas,
y en los cuales la fuerza proviene de un potencial, conducen a problemas
clasicos del calculo de variaciones, cuya teorfa no desarrollaremos por ahora,
sino que nos limitaremos a hacer calculos ingenuos en algin ejemplo.

Ejemplo 4.5.1. Consideremos un resorte masivo de longitud inicial nula,
con constante elastica k y masa m, sujeto en sus extremos a dos puntos A
y B fijos en un espacio euclideo X, en el que hay un campo gravitatorio
uniforme g. Su espacio de configuraciones es el conjunto de curvas r = ¢(s)
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definidas para s € [0, 1], dos veces diferenciables, con ¢(0) = Ay ¢(1) = B.
La energia potencial £ = F(c) de una configuracion es

E = Eelastica + Egravitacional

1 ‘$/’2 1
:/ kds—/ m(g,x)ds
o 2 0

= /01 (kw;;/) - m<g,x>> ds,

donde la (=)’ denota derivada respecto de s. Esto estd mal definido porque
como x no es un vector sino un punto, no se lo puede multiplicar escalarmente
contra g. Pero si esta bien definida su variacién

1
OFE = /0 (k(a', 62"y — m(g, 6z)) ds

en una perturbacion arbitraria dx = (dc)(s) de la curva. Si pudiéramos sacar
a dx de factor comun en el integrando, tendriamos que concluir que el otro
factor es una funcién nula, pues el producto de esa funcién por una funcién
arbitraria integra cero. Como las perturbaciones de z y de 2’ no son inde-
pendientes, sino que §(z') = (dz)’, para poder sacar dx de factor comin en
el integrando, debemos integrar por partes el primer término (suponiendo
que la curva es dos veces diferenciable), obteniendo

1
6E:/0 (k:(;r’,éw))/ds

1
:/ (k(z",6z) +m(g, ox)) ds

0

1
= [k:(ac’,c?xﬂzj) —/0 (k2" + mg, dx)ds.
El primer término es nulo, y en el segundo, el factor kz” +mg debe ser nulo,
por lo que la configuracion de equilibrio serd una parabola con z” = —-7g.
Notese que si g = 0, la curva que queda es una recta, que es el camino
mas corto posible entre a y b. Un problema clasico relacionado es el de la
catenaria, en el que se sustituye el resorte por una cuerda de masa m y
longitud [, que puede pensarse como un resorte con longitud inicial no nula
v constante eldstica infinita.

4.6. Calculo de variaciones

Un problema clésico del calculo de variaciones es el de descubrir la forma
que debe tener un tobogan (sin friccion) que une dos puntos predeterminados
para que el descenso a lo largo del mismo sea el mas rapido posible. Esta curva
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se llama braquistdcrona. El desafio fue planteado por JOHANN BERNOULLI
a sus contemporaneos en 1696, y resuelto por varios de ellos. Para enfrentarlo,
desarrollaremos a continuacién el método usado en el ejemplo 4.5.1, que
permite en general traducir un problema de calculo de variaciones a una
ecuacién diferencial. Esta técnica es méas relevante para la mecanica de lo
que puede parecer en este momento.

4.6.1. Problemas variacionales

Consideremos un sistema lagrangiano (M, L), es decir, un mundo M
junto con una funcién lagrangiana (dos veces derivable) L = L(t, q, ¢), que
para cada instante, posicién y velocidad en M da un valor escalar, en una
recta afin A. Sea F el espacio de los movimientos C' = C(t) que van de cierta
configuracion inicial (to, go) a cierta configuracion final (¢1, ¢1). Consideremos
el funcional de accion I definido en E, que a cada movimiento C' = C(t) le
asigna el valor escalar

1C) = /ttl L(n.e.¢)ar

0

(Esta integral estd mal definida porque L toma valores en una recta afin,
no vectorial. Pero en realidad nos interesa la variacién de I entre distintas
curvas, que si se puede definir, y toma valores en Rs x AA.)

Queremos hallar los movimientos C donde el valor de I es estacionario
al variar la curva, a primer orden en la variacién §C. Una forma de precisar
esto parte de considerar variaciones uniparamétricas del movimiento. Una
variaciéon uniparameétrica de C es una curva I’ de elementos de F, definida
en un entorno de 0, y tal que F(0) = C.

4.6.2. Nota sobre espacios de curvas

Sean X, Y y Z espacios topolégicos y x €€ X y y €€ Y puntos inde-
terminados. Cuando decimos que una funcién F' : X — (Y, Z) es conti-
nua, eso equivale a afirmar que la correspondiente funcién de dos variables
F(x)(y): X xY — Z resulta continua.

Si los espacios son afines normados y F : X — (Y, Z), decimos que
F' es continua, o que F(x) depende continuamente de x como elemento
de €1(Y,Z) cuando F(x) depende continuamente de z (como elemento de
€¢(Y,Z) y su derivada (respecto de y) depende continuamente de x (como
elemento de ¢ (Y, L(AY,AZ)), o lo que es lo mismo, la derivada parcial de
F(x)(y) respecto de y esta en € (X x Y, L(AY,AZ)).

También tiene sentido preguntarse si una F': X — € (Y, Z) es diferencia-
ble. En un punto xy € X, el diferencial d,, F' debe ser una funcién (continua)
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que para cada valor yg € Y nos dé la diferencial de F'(x)(yp) en z = xg, que
es un elemento de L(AX,AZ). Por lo tanto, d,,F € €(Y,L(AX,AZ)).
Cuando decimos que F' es derivable, queremos decir que hay una funcion
continua F’ : X — € (Y, L(AX,AZ)) que en cada zp nos da d,,F. Es de-
cr, F/ € €(X,¢(Y,L(AX,AZ)))=¢ (X x Y,L(AX,AY)). Entonces F es
derivable cuando F(x)(y) tiene derivada parcial (continua) respecto de z.

Observacion 4.6.1. Los dos parrafos anteriores prueban que
CHX xY,Z) =¢ (X, 6(Y,2) N (X, ¢ (Y, Z)).

Curiosamente, €1(X, €YY, 2))=¢ (Y, ¢ (X, Z)), pues una funcion F =
F(z,y) del primer espacio tiene F, %—];, %—5 y g;é; continuas, y esto permite
. 2 . 2 . .

probar facilmente que gyg; esigual a gxé; (y por lo tanto, también continua).

4.6.3. Ecuaciéon de Euler-Lagrange

Volvamos al célculo de variaciones. Diremos que I es estacionario en
C, o que C es movimiento extremal de I, cuando %]5:0 = 0 para
cualquier F' variacion diferenciable de C'. (Notar que F' es una curva diferen-
ciable de curvas diferenciables). Calculemos esta derivada. Sea F = F(s,t)
una variaciéon de C. Como

I(F) = /ttl L (t, F, F) dt

0

(que es una s-funcion), podemos calcular

d(I(F)):/tl oL (t,F,F) ort | oL (t,F,F> @ dt.

ds ) 95 | dg° D5

0

Ahora bien, cuando evaluamos esto en s = 0, notamos que como la variacion
es arbitraria, podemos hacer que la t-funcién %—5(0, t) sea cualquier funcion
diferenciable v = v(t) a valores vectoriales que se anule en to y en ¢;. Si
lograramos, como en el ejemplo 4.5.1, expresar el integrando (para s = 0) en
la forma gba%—fa (con ¢ = ¢(t) construida a partir de C' y sus derivadas, e
independiente de la variacion), sabriamos que I es estacionaria (es decir, la
integral se anula en cualquier variacion F') si y so6lo si ¢ es la funcion nula.
Y entonces el problema variacional se reduciria a buscar las C que cumplen
la ecuacion diferencial ¢(t) = 0.

Entonces debemos sacar de factor comin a %—f en el integrando. Para eso

: 52 .
necesitamos deshacernos del factor % en el segundo término. Recordan-

- o : i 0’°F _ 9%°F
do que, segin la observacion 4.6.1, en esta situacion tenemos 75, = 5,
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podemos integrar el segundo término por partes obteniendo
oL N\ OPFY 9 (0L -\ OF
a o~ t7F7F> == f(t7F7F>7
04¢~ ( 0sot Ot (8q0‘ Os )
0 (0L . oF“
—— | == [t F, F) —_— .
ot (8q‘a ( ) Os
Nuestro integrando queda expresado entonces como

s (70) 50+ g1 (o (P 0) 50 ) = 31 (e (61))

que para s = 0 se convierte en

i (100) v+ (g7 (100)w) - (5 (ve0) ) o

Transformado asi el integrando, podemos volver a a la integral, obteniendo

U 0= [ (2% (10.¢) - 4 (2 (n:0)) ) o

+ [qu (t c, C) Ytl, (6)

t=to

en donde el segundo término es nulo porque v(a) = 0 y v(b) = 0. Como

%(O) = 0 para cualquier variacion (es decir, para cualquier funcion v(t),

concluimos que la curva diferenciable C' = C(t) estaciona el valor del funcio-
nal I si y s6lo si satisface

i (a7 (10.0)) - 35 (n0:0) =0

que se conoce como ecuacion de Fuler-Lagrange. Es una ecuacién diferencial
implicita de segundo orden para C'.

La ecuaciéon de Fuler-Lagrange se suele escribir en la forma

d ([ OL oL
o)~ =0 (7
dt \ 0¢% 0q“
entendiéndose que L y sus derivadas se evaltian en el movimiento C', y tam-
bién la ecuacion de variacion (6) se escribe mas sintéticamente en la forma

h/oL d (0L oL _ 1"
0= [ (2 () s [P
(0) to \0q* dt \ 0¢* ol =t (8)
donde § representa la diferenciacién de funciones definidas en el espacio de
curvas, y asf la ecuacién es una igualdad entre vectores duales tangentes a
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este espacio. El vector en el que estuvimos evaluandolas al hacer la variacién
determinada por la funcion F' = F(s,t) es la t-funciéon %—f]szo, que es un
campo continuo de vectores definido a lo largo de C.

Para hacer explicita la ecuacién de FKuler-Lagrange, debemos calcular la
derivada temporal que aparece en el primer término, a saber,
d (0L 0L 0’L . 0’L .
“Naa ) =a750at —C%+ ————C.
dt \ 0¢“ otoq™  9qoq™ 04o¢«

Para que se pueda despejar C en funcion de (t, C, C) basta con que, para

cualquier estado (¢, q, g, ), la funcion bilineal %(t, q,q) sea no degenerada.

Decimos entonces que la funcién lagrangiana L es regular.

Comentario 4.6.2. En este procedimiento quedan varios cabos sueltos. Por
ejemplo, al alterar el integrando original por medio de la integracién por
partes, estamos suponiendo que existe la derivada % (%—S (t, F, F)), lo cual
es cierto si F' es dos veces derivable respecto de ¢, pero en otro caso podria no
serlo. Por lo tanto, la ecuacién de Lagrange para hallar movimentos extre-
males podria no detectar aquellos que no tienen derivada segunda, mientras
que la integral original en los casos que nos interesan va a estar dado por una
funcion suave en (¢,q) y cuadratica en ¢, que se puede evaluar en cualquier
curva de clase H'. Estas dificultades pueden resolverse probando que las
curvas extremales son dos veces diferenciables.'® Pero en realidad podemos
no preocuparnos por estas cuestiones, porque nuestro objetivo verdadero no
es resolver problemas de célculo de variaciones, sino aplicar el procedimiento
formal anterior para manipular ecuaciones.

4.6.4. Problemas variacionales restringidos

Supongamos que la funcion lagrangiana L = L(t,q,q) de un sistema
(M, L) proviene de la funcion lagrangiana K = K(t,x,2) de otro sistema
(N, K) via un morfismo lagrangiano H = H(t,q) : (M, L) — (N, K), que

N

es un morfismo de mundos (dos veces diferenciable) tal que L = <H ) (K),

es decir, L = K (t, H, H) Por ejemplo, M podria ser un submundo de N,

v H el morfismo de inclusién. Escribamos la ecuacién de Euler-Lagrange
del sistema (M, L), que permite buscar las curvas en M cuya imagen via H
extremiza la integral de K. Por un lado, a partir de

. B B .
oL ok oib ok (% + %) ok oms

8¢” ~ 0P v~ 0iB dg” ~ 938 dgv

18Mirando fugazmente las p.40-41 de [4], parece que la ecuacion de Euler-Lagrange es
adecuada para encontrar todos las curvas extremales en los casos que nos van a interesar,
en los que L = a,q)(G), donde a4y es una funciéon cuadratica estrictamente positiva en
el espacio afin de las velocidades ¢, que depende diferenciablemente de (¢, q).
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podemos calcular

d (OL\ d (0K 8H5+8K1 oH"
dt \o¢qv) dt \oiP) oqv ~ 0iPdt \ Oqv )’

Por otro lado tenemos

oL 0K 9H® L OK il
dqv 0xP oqv  0iP Ogqv

Entonces la ecuaciéon de Euler-Lagrange es

d(9LY oL
at \oqv )~ oqr ~

d (OK\OoH® OK d (OHP\ OKOH® 0K OH" _
dt \ 0P ) dqv = 9P dt \ Og” oxP Oqv 0P Oqv

d (0K 0K aH/3+aK d (9H®\ 0OH” 0
dt \ 0iP oxP ) dqv  0iP \ dt \ dq” ogr |

en donde el altimo término es nulo pues

d (oHPN _*HP - HP
dt \8qv ) ~ dtag " agrog?

B 52 HPB 92 HPB 0 8K0<83Lt6—|—%];jq'#> a(H/3>.

= ogot T ogogr? T 9P 9" 0"

La ecuaciéon de Fuler-Lagrange se simplifica entonces a

d (0K 0K\ 9H” 0
dt \ 918 ozP ) ogv

( d (6[( > oK >

dt \o8 ) 028 )|, (32)

Esta ecuacién también se puede obtener directamente por el mismo pro-
cedimiento que usamos en primer lugar para obtener la ecuaciéon de Euler-
Lagrange. Al expresar la variacion de la integral de K, integrando por partes,
obtenemos una expresion similar a la ecuacion (8), que se anula en cualquier
variacion de la curva que provenga via H de una variaciéon en M, es decir,
en cualquier variaciéon en N que sea tangente a la imagen de H. Esto es
equivalente a que el covector % (687]2) — % sea nulo en el espacio tangente
a la imagen de H.

es decir,

46



4.6.5. Curvas geodésicas

Un problema tipico de calculo de variaciones es el de encontrar el camino
mas corto para ir de un punto de una superficie a otro, viajando sin salir de la
misma. En general, sean X un espacio euclideo con métrica g, M C T x X
una restriccion (que puede variar con el tiempo), tg < t; dos instantes y
xo € My, y 1 € My, dos puntos. Consideremos el espacio E' de movimientos
que van de (tg,xo) a (t1,21), sin salir de M. Buscamos aquel que minimice

la integral
~ tl
I:/ \/ Go gt @B dt.
to

Este problema es patolégico en el caso en el que la restricciéon no dependa
del tiempo, porque entonces cualquier reparametrizacién de una solucién va
a ser también una solucion. La ecuacién diferencial asociada debe ser no
determinista.

Una alternativa es tender un “resorte” a lo largo de M, que una (to,x)
con (t1,21) minimizando su “energia elastica”

f—/tll i d
= Ja,pxx" dt.
2

0

Este problema es equivalente al problema del camino corto, al menos si la
restriccién M no depende del tiempo. En efecto, al minimizar la energia I,
el resorte encuentra una curva C' que, en particular, minimiza I dentro del
espacio de las reparametrizaciones de C, es decir, los movimientos contenidos
en [to, t1] x Im(C') (que estan en M porque M; no depende de t). Pero Im(C)
es una variedad riemanniana de dimensién 1, que es isomorfa a un segmento
de recta euclidea, y ahi el problema es trivial: como vimos en el ejemplo 4.5.1
(que ahora debemos restringir al caso de dimension 1 y gravedad nula), la
solucién es una parametrizaciéon con velocidad constante. Esto muestra que
el movimiento que minimiza I tiene velocidad de norma constante. Pero si
nos restringimos a los movimientos con velocidad de norma constante, las
integrales I y I son equivalentes, y luego el resorte encuentra la curva que
minimiza I y ademas tiene velocidad de norma constante.

Estudiemos entonces el problema de minimizar la integral de

1
L= -gapi®i”,

2

restringida a movimientos contenidos en M. Segin el resultado de la seccién
anterior, las curvas que buscamos son las que cumplen la ecuacién

a(ony on
dt \ 0&P ozh
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que sencillamente equivale a

o -
a8 1,0, = 0,
es decir, la aceleracién del movimiento debe ser ortogonal a M;.

Observacion 4.6.3. La ecuacion obtenida es la ecuacion de D’Alembert (5)
que describe el movimiento restringido a M por medio de un vinculo ideal,
y con fuerza aplicada nula.

4.7. Ecuaciones de Lagrange para la mecanica

Los célculos de la seccién anterior muestran que la ecuacién de D’Alembert

oo 5 Oz _
C\{,ﬂ 8qy

de un movimiento libre (sin fuerzas aplicadas) en M C T x X es equivalente
a la ecuacién de Euler-Lagrange para hallar caminos en donde

t1
I:/ L(t, z, &)dt
t

0

es estacionaria, siendo L igual a la energia cinética K dada por

K = lga,ﬁjz%ﬁ.
2
(Notese que L esta bien definido pues estando en un espacio producto, los
puntos & del espacio afin M(t,x) pueden considerarse vectores, existiendo
una velocidad nula de referencia.) Esto da un método sencillo para hallar
las ecuaciones de movimiento de un tal sistema mecanico, a partir de una
expresion de L en términos de (¢, q, ).

Pero los movimientos libres no son los tinicos que responden a un proble-
ma variacional. En el ejemplo 4.5.1 vimos que la ecuacién de Euler-Lagrange
de un resorte masivo y de longitud inicial nula, que cuelga sujeto de sus extre-
mos en un campo gravitatorio uniforme g, es la misma ecuacion que describe
el movimiento uniformemente variado que experimente una particula sobre la,
que actta el campo gravitatorio opuesto —g (si multiplicamos por un factor
constante para que coincidan los tipos de magnitud). De hecho, siempre que
una fuerza Fg definida en un mundo galileano G sea el diferencial (espacial)
de una funcion de trabajo —V (¢, x), la ecuacién de Newton

Ga,pt% = Fj

serd equivalente a la ecuacién de Euler-Lagrange asociada al integrando L =
K — V. Esta posibilidad se extiende a cualquier fuerza que pueda obtenerse
de un potencial generalizado V (¢, z, %) segun la formula

g 4 (OVY OV
B~ \oiB )~ 0z8
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(como es el caso de la fuerza electromagnética, tratado en las p.26-29 de [5]).

El caso en el que actuan fuerzas se puede combinar con un vinculo ideal.
En general, consideremos un mundo galileano G con métrica g, en el que un
punto (que podria representar un sistema de particulas) se mueve restringido
a un submundo M por una fuerza de vinculo ideal, y con una fuerza aplicada

d(oVY oV
Fo— = (22 ) - 2%
T (aﬂ) 928 T 9P

que incluye en el término Qg la parte de la fuerza que no pudimos (o no
quisimos) derivar de un potencial. Entonces la ecuacién de D’Alembert

9o, 35 |10ty = FplTonty

que describe los movimientos del sistema es equivalente a la ecuacion (di-
namica) de Lagrange

da(oLy oL

dt \ 0P o0xP
donde L = K — V es la funcion lagrangiana del sistema, que involucra a
la energia cinética

= Qs ’Tth )
Tw My

1
K = —gopi%i°
2 I
FEn la practica, se suele escribir la ecuacién de Lagrange a partir de una
parametrizacion de M que determina z = x(t¢,q) (con ¢ en un espacio afin).
La funcién lagrangiana L queda también en funcién de (¢, q, ¢) y la ecuacion

queda en la forma

d (0L oL o
N v ] v Qﬁiy’
dt \ 0q dq dq
donde L =K —V, con

1 ox® Oz¢ oz8 9P
= — T STl
K 29a’6<8t +8qﬂq><8t +8q“q>'

La cantidad p, = gTLU, que queda expresada en términos del estado de movi-
miento (t,q,q), es el impulso del sistema, y se la puede definir en cualquier
sistema lagrangiano, por més que no esté asociado a un sistema mecéanico.
Llamaremos sistema mecéanico lagrangiano a cualquier sistema mecani-
co cuya ecuacion de movimiento pueda derivarse de una funcién lagrangiana
adecuada, es decir, un sistema en el que la fuerza aplicada pueda derivarse
completamente de un potencial (generalizado).

Como vimos al analizar la ecuacion de Fuler-Lagrange, la ecuacion di-
namica de Lagrange se puede usar para obtener una ecuaciéon diferencial de

. : o 2
segundo orden y explicita que describe el movimiento, al menos cuando %

49



es no degenerada. Esto se cumple en todos los problemas mecénicos que
tengan V' = V/(t, q), pues entonces se tiene

PL  0*K 0z 9aP

960G 0G9q %P aq Bq’

que es positiva (y por lo tanto, no degenerada).

Ejemplo 4.7.1. Consideremos el movimiento de una particula en un campo
de fuerzas central que deriva de un potencial V' = V(p), con p la distancia
al centro. Segiin ya sabemos, este movimiento transcurre en un plano, que
podemos parametrizar usando coordenadas polares p y 6. El lagrangiano en
este caso es )
# (o)
L:K—V:m5+mT—V(p).

La ecuacién de Lagrange es una igualdad entre dos covectores. Evaluando
en % obtenemos

da(oLy _oL

dt \a9d) 00

) .

por lo que el escalar [ = mp29 (que representa al impulso angular) es cons-

tante a lo largo del movimiento. Evaluando en a% obtenemos

d(oLy oL
dat\op) Op

d N ‘9
ar (mp) = med” =5,

en donde podemos reemplazar 6 = mLpQ, obteniendo la ecuacién

. 12 av
mp = 7mp3 - ch (9)

que describe la evolucién de p en el tiempo. Pero nosotros sabemos que en
este sistema se conserva la energia

N 2

2. ()
E:K+V:m?+mT+V(p)
2 2
l
:mg—i-

2mp? +V,
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lo cual debe poder deducirse de las ecuaciones de Lagrange (que describen
completamente el movimiento). Y en efecto, multiplicando la ecuacion (9)
por p, obtenemos

.. Pp o av,
mpp — —=+ —p=0,
mp dp
es decir, ‘% = 0. La conservacién de la energia, escrita en términos de p y p,

permite escribir a p? en funciéon de p, con lo que p queda determinado por
una, ecuacion diferencial de primer orden.

Observacion 4.7.2. La ecuacion (9) describe también el movimiento unidi-

2
mensional de una particula de masa m sujeta a una fuerza aphcada ——— ‘fl—v,
mp3  dp

que, podemos considerar, proviene del potencial Vyectivo = V + 5= 2mp En este
movimiento se conserva la energia

2 2

(») !
Eefectiva = Kefectiva + V;afectiva = V 2
2 2mp

que, por supuesto, es la misma energia del sistema original.

Observacion 4.7.3. En el ejemplo se observa que si alguna coordenada ¢; (que
en el ejemplo fue §) no aparece en la formula que define a L, o dicho de otra
manera, si % = 0, entonces la cantidad escalar gL se conserva en cualquier
movimiento solucién. Esto se obtiene mmedlatamente al aplicar la ecuacién
de Lagrange al vector 8— Se dice entonces que ¢; es una coordenada ci-
clica. Otra instancia de este fendmeno se obtiene al analizar el lagrangiano
L = go3i%? (con g, constante) de una particula moviéndose libremente
por el espacio euclideo. En este caso se conserva el covector deL = §a,817,

que es la cantidad de movimiento.

4.8. Simetrias y cantidades conservadas: teorema de Nother

Una simetria de un sistema lagrangiano (M, L) es un automorfismo de
dicho sistema, es decir, un isomorfismo S del mundo M en si mismo tal que
el isomorfismo S de M en si mismo preserva el lagrangiano. Una simetria S
preserva la dindmica del sistema, es decir, es tal que si un movimiento ¢ =
C(t) es solucion de las ecuaciones de Euler-Lagrange, entonces el movimiento
g = S(C(t)) es también solucion. (Notar que en el problema del movimiento
libre en el espacio galileano, los automorfismos afines del espacio (incluyendo
dilataciones) llevan soluciones a soluciones, pero no son simetrias del sistema
lagrangiano por alterar el valor de la funcién lagrangiana.)'®

Un grupo uniparamétrico de simetrias siempre es de la forma (w®)scg, es
decir, esta generado por un campo w = w(t, s) de vectores tangentes a M, que
son de direccién espacial porque sélo admitimos morfismos que preserven el

19, Sirven para algo las simetrias de dilatacién?
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tiempo. El campo w,, tangente a T'M y dado por la relacion (wy)® = (w®),,
también es de direccion espacial, es decir, tangente a Kerd ,t en cada
espacio 1(; 4y M. Por lo tanto w, da un grupo de difeomorfismos del espacio de
velocidades M(tyq) CRs1x TM ) (que contiene a las seciones de d(tyq)t), al
cual también vamos a llamar w,. Este campo preserva L, es decir, la derivada
de L en la direccién de w, se anula. Y reciprocamente, un campo w tangente
a M y de direccion espacial, tal que w,(L) = 0, genera necesariamente un
grupo uniparamétrico de simetrias w® (quizéas definidas solo localmente en
M y para s cercano a cero, si M no es compacta). Se dice entonces que w es
una simetria infinitesimal del sistema lagrangiano.

Toda coordenada ciclica evidencia la existencia de un grupo uniparamé-
trico de simetrias del sistema lagrangiano. En el caso del movimiento en un
campo central, el hecho de que la coordenada angular sea ciclica muestra que
las rotaciones alrededor del centro son simetrias (automorfismos) del siste-
ma lagrangiano. En el caso del movimiento libre en el espacio euclideo (en
coordenadas cartesianas), todas las coordenadas son ciclicas, pues las tras-
laciones del plano en cualquier direccién son simetrias. Ademas vimos que si
¢" es una coordenada ciclica, la cantidad asociada qui es una constante de
movimiento del sistema lagrangiano, es decir, una funcién escalar definida
en M que resulta constante a lo largo de cualquier movimiento solucién de
la ecuacion de Euler-Lagrange del sistema.

Este fen6meno se puede describir sin usar coordenadas. Supongamos que
w es un grupo uniparamétrico de simetrias de un sistema lagrangiano. El
campo de vectores w estd asociado a una coordenada ciclica ¢* en cierto
sistema de coordenadas apropiado ¢ (al menos localmente en torno a cada

punto donde w sea no nulo), teniéndose w = 8%- , por lo que puede usarse para

L = ~ .

aéi donde L(taQa Q) = L(t’ Q7q) es el
lagrangiano escrito en funcion de las nuevas coordenadas. Pero la hipotesis de
que w sea no nulo es superflua, y la constante de movimiento aLgi = 8% B%i =
#wo‘ puede hallarse directamente, sin usar coordenadas. En esto consiste,

obtener una constante de movimiento

para nosotros, el teorema de Nother.?0

En efecto, sea w una simetria infinitesimal del sistema lagrangiano. Con-
sideremos un movimiento C' = C(t) que sea solucién a la ecuacion de Euler-
Lagrange del sistema, y apliquémosle el campo w, obteniendo una funcion
de dos variables F' = F(t,s) (definida en un abierto que incluye a la curva
original, situada en s = 0), de modo que para cualquier valor fijo de s, la
t-funcién F' es un movimiento solucién. Por lo tanto, tenemos

Z(%ﬁ <t,F,F>) _gqﬁ(t,p,p).

2 . . . 2
9Hay quienes dicen que el teorema es en realidad mas general.
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Por otra parte, como el valor del lagrangiano L(t, F, F) se conserva al variar

s, tenemos
s

= qua (t,F,F) 8;; + qua (t,F,F) (Zgj.

Ma3s sintéticamente, escribamos

OL oF® OL *F~
dq* Os 9¢> 9sot

entendiéndose que L y sus derivadas parciales siempre estan evaluadas en

(t, F, F) .

La cantidad conservada que buscamos serd un escalar cuya derivada res-
pecto de t sea cero. Arriba solo aparece la derivada respecto de t en un factor
del altimo término, por lo que debemos integrar dicho término por partes
respecto de t para obtener una derivada temporal. Al hacerlo queda

OLOF® | d (OLOF™\ d (OL)oF" _
0q* 0Os dt \ 0¢® Os dt \9g® ) 0s

Teniendo en cuenta que primero y el dltimo término se cancelan por satisfa-
cerse la ecuacion de Lagrange, y recordando que %—I; = w, concluimos que el

escalar oL
f = g
g
definido en todo M a partir de la funcién lagrangiana y el campo vectorial
w, es una constante de movimiento.

4.9. Conservacién de la energia

Ademads de las constantes de movimiento que se pueden hallar en cual-
quier problema variacional a partir de las simetrias infinitesimales, sabemos
que en algunos sistemas mecanicos se conserva la energia mecanica.

Por ejemplo, consideremos una particula que se mueve en una subvarie-
dad S de un espacio euclideo X, sometida a una fuerza aplicada que deriva
de un potencial V = V(z). En esta situacion se conserva la energia mecanica,
pues la fuerza aplicada es conservativa, y la fuerza de vinculo, que suponemos
ideal, no trabaja en ningin desplazamiento virtual (y como la restriccion es
constante, tampoco trabaja en un movimiento del sistema). (Notese que el
sistema de referencia hace falta en este caso para poder definir la energia.)
Un sistema mecéanico de estas caracteristicas se llama sistema lagrangiano
natural.
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El espacio de configuraciones del sistema es M =T x S, con S variedad
riemanniana (con métrica igual al doble de la energia cinética), y ademas
hay definida en S una funcién potencial V. En realidad, esta estructura
de variedad riemanniana con un potencial es todo lo que hace falta en lo
que sigue, y por lo tanto es otra posible definicién de “sistema lagrangiano
natural”, que aparece en la p.84 de [1].2!

El movimiento de la particula cumplird la ecuaciéon de Lagrange que
deriva del lagrangiano L. = K—V, donde K es la energia cinética. Dado que el
sistema lagrangiano (M, L) describe completamente la dindmica, es saludable
intentar probar que se conserva la energia partiendo de las ecuaciones de
Lagrange. Esto involucra, en primer término, expresar la energia £ = K +V
en términos del lagrangiano L, lo cual requiere separar los dos términos K
y V. Parametricemos S escribiendo x = x(q), con ¢ en un espacio afin A.
Entonces podemos expresar V = V(q) y K = g,,4"¢", con g = g(q), de
modo que el lagrangiano es

1 e
L= §gu,uq"q -V

El potencial V' no depende de ¢, por lo que al derivar respecto de ¢ obtenemos

oL y
Py = Tqy = 9urvq

de donde podemos recuperar la energia cinética (duplicada) si aplicamos este
covector a ¢, pues

puqu = gu,yqﬂq'y =2K.

Para obtener la energia mecanica, basta con restar K — V, que es el la-
grangiano. Entonces la energia se puede expresar en funcién del lagrangiano
usando la formula

H=p,¢" — L.

Esta cantidad, definida en funcion de (¢, ¢, ¢) para cualquier sistema lagran-
giano segun la tltima férmula, es llamada hamiltoniano. Lo denotamos con
la letra H porque en algunos sistemas mecénicos, no es igual a la energia, y
ademas se lo puede definir en otros problemas variacionales no mecanicos.

21La definicién aqui presentada asegura que haya un grupo uniparamétrico de simetrias
de la inclusion de M en el espacio galileano G = T x X con potencial V (si admitimos
simetrias que trasladan el tiempo).
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Veamos que H es una constante de movimiento.

. d
H=2"(p,q — L
dt(pq )

oL oL, L,
“ar o T gt

— . oL 'V_|_ aiL vV aj
= | Pv dq” q Pv 9" q ot

El primer término se anula porque se satisface la ecuacion de Euler Lagrange.
El segundo se anula por la definiciéon de p,. Entonces E = — 50 L hero esta
derivada también es nula porque el lagrangiano sélo depende de qy q. Un
sistema lagrangiano en el que ocurre esto se dice auténomo, y en todo
sistema auténomo se conserva el hamiltoniano.

= pl/q + puq

Ejemplo 4.9.1. Consideremos una particula de masa m que se mueve en el
plano euclideo, restringida por un vinculo ideal a mantenerse en una recta
que gira con velocidad constante w alrededor de un centro fijo. Como no hay
fuerza aplicada, el lagrangiano del sistema es simplemente la energia cinética:

-2
L= mp2 +m 2/) ,
donde p es la distancia al centro (con un signo que cambia al cruzar el
centro) Como el lagrangiano es auténomo, se conserva el hamiltoniano H =
m% —-m 22p 2, que en este caso se puede calcular simplemente cambiandole
el signo a la parte que depende de la posicién. Pero la energia verdadera es
el lagrangiano, que no es una constante de movimiento porque la fuerza de
vinculo esté realizando trabajo. La ecuacién de Lagrange es mp = nszp, v p
mese

evoluciona como en el problema unidimensional de potencial —m=5-, en el
2
cual se conserva la energia m% — m—p que es el hamiltoniano del problema

original.

Comentario 4.9.2. La definiciéon de sistema auténomo requiere un sistema
de referencia, es decir, una foliaciéon del mundo de configuraciones M por
movimientos cuya velocidad pueda considerarse nula. Esta foliacién se puede
describir por medio de un campo de vectores cuya proyeccién en Rs via dt
es constante, y determina un grupo uniparamétrico de difeomorfismos de M
que traslada el tiempo uniformemente. A estos difeomorfismos no podemos
llamarlos “simetrias” porque trasladan el tiempo. Pero en caso de preservar a
L, también van a preservar los movimientos solucion. Las transformaciones
de este tipo pueden usarse también para hallar cantidades conservadas, que
van a ser analogas al hamiltoniano, por medio de un procedimiento similar
al que usamos para demostrar el teorema de Nother. 22

22Ver el ultimo ejercicio de la p. 90 de [1]. Aca no voy a desarrollar esta técnica, porque

95



Comentario 4.9.3. Al elegir un sistema de referencia, podemos definir una
energia, cinética, que usamos para construir una funcién lagrangiana. Pero
inversamente, en muchos sistemas mecdanicos el lagrangiano depende cuadra-
ticamente de la velocidad (con hessiano positivo, y coeficientes dependientes
del tiempo y la posicion), lo cual permite en cada punto del sistema de-
terminar una velocidad especial: la que minimiza L (donde p = 0). Por lo
tanto, queda determinado un sistema de referencia. Segiin ese sistema, el
lagrangiano, que sigue dependiendo cuadraticamente de la velocidad, tiene
término lineal nulo, y esta propiedad caracteriza a la parametrizacién natural
asociada al lagrangiano.

En el caso de un sistema lagrangiano natural, la parametrizacién natural
es la original, que ya tiene término lineal nulo, pero en otros sistemas puede
no serlo.

4.10. Solucién al problema de la braquisté6crona

Volvamos al problema de la braquistécrona. Sean Py y P, puntos de un
espacio euclideo con campo gravitatorio uniforme de norma g, sea m una
masa y sea F una energia. Para cada curva C que une Py con P; podemos
calcular el tiempo que tarda una particula de masa m y con energia E en
llegar de Py a Pp, bajo el efecto de su peso y una fuerza de vinculo ideal que
la obliga a mantenerse en C. Estamos buscando la curva que minimiza este
tiempo. Dicho movimiento seguramente estard contenido en el plano vertical
que une ambos puntos, porque cualquier otra curva puede ser proyectada
sobre este plano, reduciendo su tiempo.

Eligiendo coordenadas x e y adecuadas, la energfa mecanica F = K4V =
mﬁ-;y? —mgy de la particula resulta nula, y entonces durante el movimiento
de la particula se tiene

i? 4y =29y
(Notar que y dice qué tan abajo esté la particula del mayor nivel de altura al
que puede llegar, y es siempre positiva.) La integral que queremos minimizar

es
dt 1 1 1 di?
dt:/dl:/dl:/dl:/dl:/ —
/ dl a Va2 + g2 V29y 29y

Pero ésta es la longitud de curva determinada por la métrica riemanniana

2 . . ) .
dt? = %, definida en el semiplano y > 0. Obtenemos la misma curva si
intentamos minimizar la integral de la “energia cinética”

/dtz_/dZQ_/xQ‘i‘y/ZdS
2 4gy dgy

la demostracion que conozco es desprolija. Quizas sea porque estoy usando una definicién
restrictiva de “morfismo”, que impide trasladar (y dilatar) el tiempo. En otra edicion de este
texto, cada mundo tendrd su propia linea de tiempo y su propia semirrecta de longitudes.
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donde s es un nuevo parametro y (=) = %. Ademaés, al minimizar esta

integral, la parametrizacion que obtenemos es afinmente equivalente al tiem-
po, que es la “longitud” asociada a la métrica dt?. Esto es una consecuencia
de la conservacion del hamiltoniano, que en este caso es igual a la funcion
lagrangiana, porque s6lo hay “energia cinética’.

Debemos resolver la ecuacién de Euler-Lagrange con el lagrangiano

2 2
o 4y?
4gy
Como % = 0, la ecuacion asociada a la coordenada x dice que la cantidad
oL o
Pe =55 = 2gy

es una constante de movimiento. La ecuaciéon asociada a y no es necesaria,
pues seguramente va a ser equivalente a la conservacién del hamiltoniano

22 +y? _ (2gp.)* +y?
49y 49y
que ya es suficiente para determinar la curva. Despejando obtenemos

L:

)

L
y”? =4gLy — 4g°p3y* = 49°p; <2y - y2> :
g2

LQ se convierte en
29p3

2 12 2

Yo =k (2ay —y7).
Esta ecuacién de primer orden determina y en funciéon de s, pero también
determina s en funcién de y, y como no depende de s, se resuelve entonces

simplemente integrando. En efecto, suponiendo que y vale cero cuando s = 0
v a partir de ahi ambas variables aumentan, tenemos

dy = k/2ay — y3ds

que definiendo k = 2¢gp, v a =

dy dy 1 dy
de == = — ,
V2ay =2 a2 —(a—y? @ 11—y
e integrando, ks = arccos (1 — %), de donde despejamos

y = a(1l — cos(ks)).
Para calcular x, suponiendo que vale cero para s = 0, partimos de que

d
d—m = 2gp,y = ky = ka(l — cos(ks))
s
e integrando obtenemos
x = a(ks — sin(ks)).

La curva obtenida es una cicloide.
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5. Dinamica en una variedad simpléctica: mecanica
de Hamilton

WILLIAM ROWAN HAMILTON (1805-1865) habia estudiado 6ptica y des-
cubierto las ventajas de pasar de pensar en rayos a pensar en frentes de onda.
Empiricamente se observan mas facilmente los rayos: un rayo es un camino
a lo largo del cual se propaga la luz, es decir, tal que si lo interrumpimos, la
luz no llega. El resultado fundamental de Hamilton, que ya habia sido pro-
bado en un caso particular por Malus ([11], p. 499), decia que si un sistema
de rayos (que es una foliacion del espacio euclideo por rectas) admitia una
superficie ortogonal (esto pasa siempre en dimension 2, pero no siempre en
dimension 3), entonces también debia admitir toda una foliacién ortogonal
de superficies. Esto se cumple en general para sistemas de rayos opticos que
provienen de un foco, por mas que en el camino se reflejen en espejos o re-
fracten al cambiar de medio, y atn cuando hay refraccién atmosférica, que
hace que se curven de a poco al viajar, como geodésicas en una variedad
riemanniana (esto ocurre cuando la métrica que define la ecuaciéon de onda
no es la misma en todos los puntos del espacio).

Una idea béasica para Hamilton era pensar en la longitud 6ptica de un
rayo. Cuando Hamilton escribié sus primeros trabajos (|6],|7]) todavia no es-
taba claro que la luz fuera un fenémeno ondulatorio. Newton habia postulado
su teoria corpuscular, segiin la cual los rayos eran haces de particulas que
al pasar a un medio 6ptico de mayor indice de refraccion (por ejemplo,
del aire al agua) eran aceleradas en la direccién perpendicular a la superficie
de transicion (como si estuvieran bajando por una rampa), y por eso el rayo
se curvaba en direccién hacia el medio de mayor indice. La velocidad debia
ser directamente proporcional al indice de refraccién para explicar la ley de
refraccion empirica: el producto entre el indice de refracciéon y el seno del
angulo de incidencia (que es el angulo entre el rayo y la recta normal a la
superficie) se conserva durante la refracciéon. También se conocia la teoria
ondulatoria de Huygens, segtin la cual la luz era una perturbacién que se
propagaba como una onda mecéanica o una ola en el agua, y los rayos de luz
eran conjuntos de caminos vecinos a lo largo de las cuales las perturbaciones
se propagaban en el mismo tiempo, produciendo interferencia constructiva.
En este modelo, la refraccion al pasar a un medio de mayor indice se explica
diciendo que la velocidad de propagaciéon es inversamente proporcional al
indice de refraccion, lo cual implica que la luz viaja méas despacio en el agua
que en el aire.

Una forma de hablar sin despertar controversia (p. 497 de [11]) era de-
cir que la luz se propagaba por un camino extremal de la longitud 6ptica
(también llamada mas vagamente “accion”, que es el término que usaba Ha-
milton), que era la integral del diferencial de longitud multiplicado por el
indice de refraccion (que en general depende del lugar y la direccion: hay
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cristales homogéneos aniso6tropos, y también medios no homogéneos, como
la atmosfera, pero aparentemente siempre es una forma cuadratica que varia
en el espacio). El hecho de que el problema de determinar los rayos fuera
equivalente a un problema de céalculo de variaciones ya habia sido explotado,
en sentido inverso, por Johann Bernoulli, al establecer una analogia éptica
para dar su solucién al problema de la braquistécrona.

Las superficies ortogonales de un sistema de rayos proveniente de un foco
eran simplemente superficies de nivel de la longitud 6ptica. Pensando de esta
manera, es facil probar el teorema de Hamilton de las foliaciones. Ademis,
también se puede partir de un sistema de rayos que no provienen necesaria-
mente de un foco. De hecho, la condicion de integrabilidad de la distribucion
de planos ortogonales a los rayos equivale a que el sistema se pueda hacer
converger a un foco usando un espejo o lente. Hamilton entendié que el com-
portamiento de los rayos estaba determinado completamente por la funcién
de distancia 6ptica entre puntos (llamada “funcion caracteristica” por Ha-
milton), que es la longitud optica de un rayo (curva extremal de la longitud
optica) que los une. (Si hay varios extremales, la distancia 6ptica puede ser
una funcién multivaluada.) Conocida la funciéon caracteristica, los rayos se
pueden calcular facilmente por medio de una ecuacién diferencial de primer
orden, como veremos proximamente.

5.1. Funcibén caracteristica y ecuacién de Hamilton-Jacobi

Volvamos a la mecénica. O en general, pensemos en un problema varia-
cional, dado por un sistema lagrangiano (M, L), con L = L(t, q, ¢). Queremos
buscar t-movimientos C' = C(t) que extremicen (a bordes (to,q0) v (t1,41)
fijos) la accion I = I(C') dada por L, que es la integral

t1 .
15/L@amw

to

Su variacion estd dada por la formula (8), que recordamos:

b oL d (0L oL t=t1
SI1(0) = 2= 2 ) ) Sq%dt + | =6 .
© /t <6qa dt <0qa>> ! +[8qa “’Lto

Un movimiento es extremal si y s6lo si cumple la ecuacion de Fuler-Lagrange

(7)
dfory o
dt \ 9¢> dgx
Nos proponemos hallar la funciéon caracteristica S = S(to, qo, t1,q1), que

asigna a cada par de eventos el valor de la accién I en un t-movimiento ex-
tremal C' = C(4; g0,t1,q1) Que los une. Este movimiento es tnico si los eventos
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estédn suficientemente cerca y el lagrangiano es regular, pero finalmente vere-
mos que no necesitamos probar esto. Para determinar S, empezaremos por
calcular sus derivadas parciales. Supongamos, para simplificar los calculos,
que el evento inicial (o, qo) esta fijo, y estudiemos la dependencia respecto
del evento final, que ahora puede llamarse (¢, q).

Al perturbar la posicién final ¢, varia el movimiento extremal C, y en-
tonces la accion, que es la integral de L en dicho movimiento, varia segin
la féormula (8), en la cual en este caso se anula el término integral porque
los movimientos que estamos considerando son extremales, y por lo tanto
cumplen la ecuacién de Euler-Lagrange. Entonces sélo queda el término de
borde, que nos dice que

05 _ oL (t.c.c).
dq 94

En palabras, la derivada de S respecto de la posicion en un evento (¢, q)
es el impulso del movimiento extremal C' que llega hasta ahi. La férmula
de variacién no nos dice la derivada parcial de S respecto de ¢t porque de
hecho no estd definida tal cosa: como no tenemos un sistema de referencia,
no hay una direccién determinada a lo largo de la cual derivar S. Lo que si
es sencillo es calcular la derivada temporal de S a lo largo de C, pues como
S es la integral de L a lo largo del mismo, se tiene

d(st,C .
45, ©)) Eﬁ Ny (o).

Para continuar, supongamos que si tenemos un sistema de referencia, de
modo que es posible identificar posiciones ¢ a distintos tiempos, y derivar .S
respecto de t con ¢ fijo, obteniendo 22. Como a lo largo de C ya sabemos

ot °
calcular 4(5(t.C)) e Py
t, _ 05 o

que resulta igual a L (t, C, C’), despejando concluimos que

8 N 98 o
S(tC) =1L (t, c, c) ~ 5 (100

Ahora viene la idea de Hamilton. El problema de hallar los movimientos
extremales puede separarse en dos partes. En primer lugar, debemos deter-
minar la funcién caracteristica S. Una vez obtenida esta funcion, veremos
como hallar los movimientos extremales. Para poder calcular S en todo el
mundo conociendo cuanto vale en cierto instante inicial, bastaria con tener
expresada %—f en funcion de S y su derivada espacial %. Eso se puede ob-

tener a partir de la tltima ecuacion, pues la velocidad C' del movimiento
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extremal que llega a (¢, q) se puede determinar a partir de S'y g—‘g. En efecto,

en este caso conocemos el impulso p, = % = %, y suele pasar que fijado

un evento (t,q), la funcion L = L(§) es cuadratica y con hessiano positivo,
y en ese caso la funcion adTLa = adTLa(q‘) es un isomorfismo afin. (En gene-
ral, podemos restringirnos a lagrangianos hiperregulares, que son aquellos
L tales que para cada evento (t,q), la funcion % = gqu (¢) es un difeo-
morfismo.) Recordando, ademas, que habiamos definido el hamiltoniano de

un sistema lagrangiano como H = p,¢®* — L, llegamos a la ecuacién de

Hamilton-Jacobi e Y
— =—-H|(tq — 10

81: < ) q? 8q ) ) ( )
donde H = H(t,q,p) es la funciéon hamiltoniana del sistema, que es el ha-

miltoniano pero ahora escrito en funcidn del impulso segun el procedimiento
anterior.

5.2. Ecuacién de Clairaut y transformada de Legendre

A continuaciéon nos ocuparemos de un problema geométrico con el fin de
familiarizarnos con la transformada de Legendre, que es relevante para lo
que veremos a continuacién. Durante esta seccién, E es una recta afin real
ordenada en donde estan los escalares, AFE es la recta vectorial ordenada
de las traslaciones de F, y para cada espacio vectorial real V' (de dimension
finita) definimos su dual V* := L(V, AFE). Observar que hay un morfismo
ev:V — V** que es ademds un isomorfismo.

Sea V un espacio vectorial real de dimensién finita y X un subconjunto
abierto en V.?3 Consideremos el problema de reconstruir una funcién diferen-
ciable f : X — FE a partir del conjunto de hiperplanos tangentes a su grafico.
Si la funcion derivada df : X — V* es inyectiva con imagen P (lo cual ocu-
rre cuando f es una forma cuadratica definida positiva),?* una manera de
describir el conjunto de planos tangentes al gréafico de f es por medio de la
funcién g : P — E que da, para cada posible pendiente p € V*, la ordenada
al origen —g(p) del tnico plano tangente al grafico de f que tiene pendiente
p. Esta funcién g recibe el nombre de transformada de Legendre de f, y
se denota con el simbolo f*.

No es dificil obtener una férmula para g en términos de f y (df)™! : X —
P.Sip € P es una pendiente y z € V es el punto de X donde df(z) = p,
como la ecuacion del plano tangente al grafico de f en x es

Y = f(x) +p(x — ),

23;Se puede cambiar a V por un espacio afin?

2"Mas generalmente, podemos considerar cualquier funcién derivable estrictamente con-
vexa (definida en un conjunto convexo). Generalizando en otra direccién, podemos consi-
derar cualquier forma cuadratica no degenerada.
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la ordenada al origen de dicho plano sera f(x) = f(x) — pz, y concluimos
que

9(p) = pz — f(z), donde z = (df) " (p).
%5 La funcién g sera derivable si f es dos veces derivable.

.. Como se recupera f a partir de g7 Reordenando la formula que define
g v escribiendo df (z) en lugar de p, obtenemos la expresion

f(@) = df (x)z + g(df (2)),

que, interpretada como ecuaciéon diferencial para f, recibe el nombre de
ecuacion de Clairaut. Esta ecuacién implicita de primer orden permite
especificar la funcién a partir del conjunto de sus planos tangentes. Notemos
que no sblo admite a la funcién que buscamos como solucién, sino también a
cualquier funcién lineal cuyo grafico sea tangente al de f. Debemos resolverla,
deshaciéndonos de estas soluciones triviales.

Para tener una imagen concreta, pensemos primero en una f de una
variable tal que f” > 0. En este caso, f’ es autométicamente inyectiva, y su
imagen P es un intervalo. Dado un punto z € X, para hallar f(x) bastaria
con hallar la pendiente p = f/(z) de la recta tangente, pues entonces g
nos dirfa la ordenada al origen de dicha recta, y conociendo la recta y la
abscisa de tangencia podriamos conocer la ordenada de tangencia. Entonces
debemos hallar la relacion (biyectiva) entre el punto de tangencia z € X y la
pendiente p € P. Una buena idea es perturbar x suméandole un pequeio Ax,
y ubicar la nueva recta tangente, cuya pendiente serd p + Ap. Al variar la
recta tangente, también se modificara la ordenada al origen, y su variacién
serd aproximadamente —zAp. Este cdlculo no es exacto por haber variado
también el punto de tangencia, pero es correcto a primer orden en Ap porque,
al estar el nuevo punto de tangencia en el grafico de f, la variacion del punto
de tangencia es paralela a la recta tangente, y entonces no afecta (a primer
orden) al célculo de la ordenada al origen. Como por otra parte conocemos
la nueva ordenada al origen, que es g(p + Ap), tenemos

g(p + Ap) — g(p)=zAp

v podemos conjeturar entonces la relacién infinitesimal dg = zdp, es decir,
J'(p) = —x, y como la relacion entre x y p es biyectiva, ¢’ es inversible, y se
puede despejar p = (¢') ().

Vedmoslo rigurosamente. Nuestro punto de partida es la ecuacién de Clai-
raut

fla) =zf'(x) — g(f'(x)),

%La transformada de Legendre se puede definir también cuando f es una funcion
convexa (no necesariamente diferenciable) definida en un conjunto convexo, definiendo
g(p) = infzex pr — f(z) . En tal caso conviene admitir los valores infinitos co y —oco como
posibles escalares. (Lo que no sé es si hay una generalizacién que abarque tanto a las
funciones convexas no diferenciables como a las formas cuadraticas no degeneradas.)
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y como queremos analizar lo que pasa al variar x, debemos derivar ambos
miembros de la ecuacién respecto de . Obtenemos

fl@) = f'(x) + f(@)x = o' (f () f" (z)

y luego
f'(@)(x —g'(f'(x))) = 0.

Como sabemos que f”(x) no es cero (esto corresponde a las rectas tangen-
tes, que también son soluciones a la ecuaciéon de Clairaut), concluimos que
g (f'(xz)) = x. Como f’ es biyeccion de X a P,y ¢’ esta definida en el do-
minio de g, que es P, concluimos que ¢’ es biyectiva y que para cada z se
tiene f'(x) = (¢')~'(z). Esto significa que ¢’ es la funcién inversa de f’. Esta
relacion entre f y su transformada de Legendre g es simétrica, de modo que
para obtener f, entonces, basta con transformar nuevamente a g.26

En general, si f estd definida en un subconjunto X de un espacio de
dimensién finita, y su derivada df : X — V™ es inyectiva con imagen P,
podemos proceder andlogamente. En la ecuacion de Clairaut

f(@) = dof(z)x® — g(df (),

que es una igualdad entre funciones de X a F, podemos derivar ambos
miembros respecto de x obteniendo la ecuacién de funciones de X a V*
siguiente:

daf(z) = dgda f(x)x® + do f(x) idg —d%g(df (x))dgda f(x)

(v aqui la diferencial de g lleva un superindice en lugar de un subindice porque
el dominio de g es un conjunto de covectores). Cancelando, obtenemos

dsdaf(2)2% = dg(df (2))dgdaf ().

Si sabemos que para cada x la diferencial segunda de f es no degenerada,
llegamos a que

& = dg(df (z)),

en donde £ € V** es la evaluacién en x. Entonces podemos concluir que
dg=—'(2) = df (x), y que f = g* como antes. Resumiendo, tenemos

Definiciéon 5.2.1. Sea X un subconjunto abierto de un espacio vectorial
real de dimension finita V', sea F una recta afin real, y sea f : X — E una
funcién derivable tal que df : X — V* es inversible con imagen P. FEntonces
se define la transformada de Legendre de f, que es la funcién f*: P - FE
dada por

f*(p) =pr — f(z), dondez =df(p).

26Pyede probarse que si f es convexa, entonces f* también lo es.
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Teorema 5.2.2. Si ademds f es dos veces derivable, y para cada x se tiene
d’f(x) : V — V* inversible, entonces df : X — P es un difeomorfismo, y
P es abierto. Entonces g := f* es diferenciable, dg : P — V** tiene por
imagen a X, y para cada x € X se tiene df (x) = (¢/) "' (2). Ademds, g tiene
transformada de Legendre g*, que resulta igual a f.

Observacion 5.2.3. Si el dominio de f es convexo, entonces basta con saber
que en todo punto x tenemos d2f(x) no degenerada (que es casi lo mismo
que decir que f es estrictamente convexa), para concluir que df tiene imagen
abierta y es difeomorfismo, y se puede aplicar el teorema. Si f es una forma
cuadratica no degenerada, entonces también se puede aplicar el teorema.

5.3. Dinamica en el espacio cotangente: ecuaciones de Ha-
milton

Asi como la funcién L encierra en sus derivadas parciales el problema
dindmico, la funcion H = H(t,q,p), que es la transformada Legendre de L,
también tiene esta informacién, y podemos reconstruir la dindmica a partir
de sus derivadas parciales. La funcién H esta definida como

H(t7q7p) = paq.a —L (ta Q7q) ’

donde ¢ esta en funcion de (¢, q, p) segun la relacion p, = 8q (t,q,q), o mas

explicitamente, ¢* = (W(t,q)> (pa). Diferenciando,

oL oL oL
dH = dpai® + padi® — —dt — —dq® — =—dg"
Pag® +padi® — & 9 a2
oL oL oL
= ——dt — ——d¢® + ®dpa o — o | d®
5 aaq+qp+( aqa)q
0L oL
= dt——d “dp,.

De aquf obtenemos las derivadas parciales de H, que son

OH 0L
ot ot
OH 0L
dq  0g*
oH .,
opa

Observacion 5.3.1. Como p, = gTLa y H es la transformada de Legendre de

L respecto de ¢, se tiene B = q~.
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Teniendo en cuenta que en un movimiento solucién se satisface la ecuaciéon
de Euler-Lagrange p, = gTLa, podemos reescribir la segunda ecuacién, y
entonces el movimiento queda descripto segtin las ecuaciones de Hamilton
B = — o« OH
oy = ———
0

7 _ o7 11
o = o (11)

Observacion 5.3.2. La segunda ecuacion se cumple a lo largo de cualquier
movimiento en el mundo de impulsos (¢,¢,p) que sea imagen de un mo-
vimiento en el mundo de velocidades (¢, ¢, ¢) via la asignacién p = %—5, y
no sélo en los movimientos solucién. Es decir, conocida la evolucién de las
coordenadas (t,q) de un movimiento C' = C(t) en M, quedan determinadas
su velocidad C, su impulso p = %S (t,q,4) vy %—g (t,q,p), que resulta igual a

C. Pero como %—Ig(t, q,p) depende biyectivamente de p (lo cual es necesario

para poder antitransformar H y obtener L, y se da siempre que L sea hi-
perregular), un t-movimiento (C, D) en el mundo de impulsos que cumpla la
ecuacion %—g(t, C,D) = C es un movimiento cuyo D tiene el valor correcto

p = g—g (t, C, C) para su velocidad C. En conclusion, la ecuacién %—g =g

caracteriza a los movimientos en el mundo de impulsos que son imagen de

un movimiento en el mundo de velocidades via la asignacién p = % (t,q,q).

5.4. Principio variacional fuerte

Sabemos que un movimiento C' = C(t) en M que satisface la ecuacion
de Euler-Lagrange es un extremal de la accién

t1
I:/ L (t,q,q)dt,
t

0

que se puede escribir en términos del impulso p = % del movimiento como

t1
I= / (pad® — H) dt.
t

0

Aqui vemos que la accion I(C) es la integral del campo de covectores 6 =
Padq® — Hdt en la imagen del movimiento C' en el mundo de impulsos
(t,q,p). El campo 6 evaluado en un movimiento se puede escribir como
6 = (pag® — H)dt, dado que la componente temporal del vector tangente
a un movimiento es no nula. Los movimientos solucién en M son entonces
aquellos que extremizan, a eventos de borde (to, qo) y (t1,q1) fijos, la integral
de 6 (evaluada en la imagen del movimiento en el mundo de impulsos). Por
la observacion 5.3.2, el problema es equivalente al de buscar un movimiento
en el mundo de impulsos que empiece con (t,q) = (to,qo) y termine con

(t,q) = (t1,q1) (y cualquier impulso), que en todo punto tenga el valor de
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impulso p determinado implicitamente por la ecuacion %—Ig(t, q,p) = ¢,y que

ademés extremice la integral de 6 dentro del espacio de movimientos que
cumplen estas restricciones.

Ahora bien, al buscar un tal movimiento extremal en el mundo de im-
pulsos, notamos que la tltima restriccion es superflua, pues para cualquier
evento (t, q), el valor de p que extremiza 6 = p,dq®— Hdt es aquél que cumple

%—IZ = ¢. Para probar esto rigurosamente, basta con notar que si buscamos

un movimiento que extremice la integral de 6 (ahora con p independiente de
lo que haga ¢), al hacer variaciones de la componente p del movimiento (con
q fijo) notamos que la variacion del integrando 6 esta dada por

60 = (qa(spa - iiépa) dt,
por lo que un movimiento extremal necesariamente satisface la ecuacién
%—IZ = ¢. Asi llegamos al principio variacional fuerte, segin el cuél un mo-
vimiento en el mundo de velocidades satisface la ecuacién de Euler-Lagrange
si y s6lo si su imagen en el mundo de impulsos es movimiento extremal de
la integral de 6 = pdq — Hdt, sin restricciones para p, y con condiciones de

borde (to,qo0) y (t1,q1)-

5.5. Dinamica en variedades simplécticas

Como ahora las variables t, ¢ y p son componentes independientes de un
evento z = (¢, ¢, p) en el mundo de impulsos, la accion I, definida ahora para
cualquier movimiento C' = C(t) en el mundo de impulsos, puede escribirse

Ccomo '
~ l ~
1(C) = / b= / b.icdt,
Graf C to

donde la ultima integral esta evaluada a lo largo de x = C'(¢). Ahora bien,
la variacion de I respecto del movimiento puede escribirse en términos de la
2-forma exterior @y . = d[,\0q (la diferencial exterior de 6) como

~ - t1
51 = / Sinbq = / 0 02 = / Wpe 62 = / Wxe 62 i€dt.
Graf C Graf C Graf C to

En efecto, si F' = F(s,t) es una familia s-paramétrica de ¢t-movimientos
definidos en [to, 1] que van de qo a g1, tenemos por el teorema de Stokes que

I(Fsl)—I(Fso):/[s - t](F* (dé))(dsAdt)

~ OF» OF¢
= din0g(F) —— )(ds/\dt)
/[So,sllx[to,tl] < AT ds Ot
Lt s OF) OF
- /0 </to d[/\ae](F) % It dt) ds
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y entonces

d(I(F)) _ /tl ~ OF¢ OFA Ut
t

)2
ds . dxfq(F) ot Os

que también se puede escribir como

11 _
oI = / dp0q i€ S dt.
t

0

Entonces un movimiento serd solucioén si y sélo si el covector wy (¢ es nulo
durante todo el movimiento. Como

©=df =d(pdq— Hdt) = dp A dq — dH A dt,
definiendo w = dp A dg, tenemos la ecuacién de movimiento

WH e ¢ =dyHd.tz —dytd.H z°
A(H (@)

=dyH — dyt
A A L

Al desarrollar esta expresion en términos de las componentes (¢, q, p) se ob-
tienen, por supuesto, las ecuaciones de Hamilton, que no repetiremos. En
sistema auténomos, en los que % = 0, el hamiltoniano es una constante de
movimiento, y por lo tanto el dltimo término se anula, quedando la ecuaciéon

de movimiento en la forma
wy &€ =dyH,

0 escrita sin indices

w(—, &) =dH.

Aqui puede ignorarse la coordena t y pensarse que el movimiento transcu-
rre en la variedad espacial de los pares (¢q,p), que junto con la 2-forma no
degenerada w tiene estructura de variedad simpléctica.
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