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Introducción

El concepto de punto singular en una variedad tropical no ha sido

establecido claramente hasta ahora. Una definición natural podŕıa ser

la que sigue. Sea K un cuerpo algebraicamente cerrado de caracteŕısti-

ca 0, con una valuación no Arquimediana, val : K∗ → R. Decimos que

un punto q en una variedad tropical V ⊂ Rd es singular si existe una

subvariedad algebraica (clásica) singular en el toro (K∗)d, con tropicali-

zación V , con un punto singular de valuación q. Esta definición de sin-

gularidad en términos de la tropicalización de una variedad algebraica

clásica, ya fue considerada en [MMS] en el caso d = 2 de curvas planas

y fue luego desarrollada para hipersuperficies de cualquier dimensión

en [DT]. Anteriormente hab́ıa sido considerada en forma indirecta en

[DFS] y en [Os]. Con esto en mente, en principio, uno debeŕıa estudiar

todas las preimágenes de V bajo la función de valuación, para decidir

si V es singular. En el presente trabajo analizaremos dos enfoques para

resolver este problema cuando V es una hipersuperficie definida por un

polinomio tropical con un soporte A fijo, y el cuerpo residual de K tam-

bién es de caracteŕıstica 0 (pudiendo ser generalizado si esta hipótesis

se hace más laxa).

Consideraremos al semianillo tropical (T,⊕,⊙), donde T = R ∪∞

y las operaciones tropicales ⊕ y ⊙, definidas por w ⊕ w′ = min(w,w′)

y w⊙w′ = w+w′ (donde + es la suma usual). Como ya mencionamos,

a lo largo del presente texto trabajaremos con polinomios F con sopor-

te A fijo y coeficientes todos no nulos. Es decir, F (x) =
∑

i∈A aix
i

donde F ∈ K[x±1
1 , . . . , x±1

d ] con ai ∈ K∗ para todo i ∈ A. La tropicali-

zación de un polinomio con estas caracteŕısticas es el polinomio tropical

f =
⊕

i∈A val(ai)⊙ wi, donde val(ai) ∈ R para todo i ∈ A.

La hipersuperficie tropical definida por un polinomio tropical no
nulo con soporte A es el conjunto

T (f) = {w ∈ Rd : ∃i 6= j ∈ A con f(w) = 〈i, w〉+val(ai) = 〈j, w〉+val(aj)}.

Las nociones básicas y conceptos necesarios sobre la geometŕıa tropical

serán analizados en el Caṕıtulo 1, donde presentaremos el Teorema

Fundamental de la Geometŕıa Tropical (1.5.6).

El presente trabajo está dividido, esencialemente, en tres partes:

En los Caṕıtulos 1, 2 y 3 nos nutriremos de suficientes herramientas
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para poder abordar el problema de decidir si una curva tropical (una

hipersuperficie en dos dimensiones) es o no es singular. Tendremos un

primer acercamiento al problema por medio de técnicas combinatorias

y constructivas, lo que constituye la segunda parte de la tesis.

A lo largo de todo el texto se hará presente la tropicalización de

espacios lineales, por lo que el Caṕıtulo 2 está ı́ntegramente dedicado

a este tema. En dicho caṕıtulo abordaremos el problema desde las de-

finiciones básicas hasta llegar a la demostración del Teorema 2.3.5 que

caracteriza la tropicalización de un espacio lineal, incorporando nocio-

nes de clases de peso. En el Caṕıtulo 3 estudiaremos la relación entre

el abanico secundario y la dimensión del tipo de una curva. Todo el

contenido desde el Caṕıtulo 3 al Caṕıtulo 5 está basado en [MMS].

La tercera etapa de esta tesis la constituye el Caṕıtulo 6, donde

atacamos al problema de decidir sobre la singularidad de una hiper-

superficie tropical (ya no sólo restringidos a curvas planas) desde un

punto de vista más algebraico, incorporando la noción de Derivadas

Tropicales de Euler. Este punto de vista abstrae y profundiza el cono-

cimiento sobre la singularidad de una hipersuperficie tropical, pues con

estas técnicas se puede recuperar la información obtenida por medios

exclusivamente combinatorios en los caṕıtulos anteriores. Más aún, con

estas herramientas se redemuestra el Teorema 1.1 de [DFS] sobre la

tropicalización del A-discriminante, y se caracterizan expĺıcitamente

todos los puntos singulares de una hipersuperficie tropical T (f). Esta

caracterización permite esbozar un algoritmo para calcular todos los

puntos singulares de T (f). Para finalizar esta tesis, utilizamos dicha

caracterización para encontrar la dimensión de las celdas singulares de

T (f), relacionándola con la codimensión en el abanico secundario del

vector de coeficientes del polinomio tropical f . Este Teorema (6.5.1) se

encuentra en [MMS2], que es la continuación del trabajo en [MMS],

pero para superficies tropicales T (f) ⊂ R3.
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Caṕıtulo 1

Geometŕıa Tropical

1.1. El semianillo tropical

Definimos como semianillo tropical al conjunto T := R∪{∞}, junto

a las operaciones suma y multiplicación definidas como:

w1 ⊕ w2 := min(w1, w2) y w1 ⊙ w2 := w1 + w2

El término semianillo se debe a que T satisface los siguientes axiomas:

1. (T,⊕, 0T) es un monoide conmutativo con elemento identidad

0T = ∞:

a) (a⊕ b)⊕ c = a⊕ (b⊕ c)

b) 0T ⊕ a = a⊕ 0T = a

c) a⊕ b = b⊕ a

2. (T,⊙, 1T) es un grupo con elemento identidad 1T = 0:

a) (a⊙ b)⊙ c = a⊙ (b⊙ c)

b) 1T ⊙ a = a⊙ 1T
c) a⊙ b = b⊙ a

d) a⊙ (−a) = 1T, si a 6= 0T
3. La multiplicación cumple con la ley distributiva con respecta a

la adición:

a) a⊙ (b⊕ c) = (a⊙ b)⊕ (a⊙ c)

b) (a⊕ b)⊙ c = (a⊙ c)⊕ (b⊙ c)

4. 0T ⊙ a = a⊙ 0T = 0T

A (T,⊕,⊙) también se lo conoce como el semianillo min-plus.

En otros textos se utiliza otra definición posible para la suma, to-

mando el máximo en vez del mı́nimo.

Es importante notar que en este anillo todos los elementos resultan

idempotentes, ya que

w ⊕ w = w ∀w ∈ T
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Esto simplifica mucho las operaciones. Por ejemplo,

(w1 ⊕ w2)
⊙n = (w1)

⊙n ⊕ (w2)
⊙n

(donde la notación exponencial indica el producto tropical n veces)

Para tener una mayor comodidad en la escritura de ahora en ade-

lante notaremos a⊙n simplemente an.

Proposición 1.1.1. Para cualquier entero positivo n vale la igual-

dad:

(w1 ⊕ w2)
n = wn

1 ⊕ wn
2

Demostración.

(w1 ⊕ w2)
n = n ∗ (w1 ⊕ w2)

= n ∗ (min(w1, w2))

= min(n ∗ w1, n ∗ w2)

= min(wn
1 , w

n
2 )

= wn
1 ⊕ wn

2

�

1.2. Polinomios tropicales

Sean w1, w2, ..., wn variables que representan elementos en el semi-

anillo tropical (R∪{∞},⊕,⊙). Un monomio es un producto cualquiera

de estas variables, donde las repeticiones están permitidas. Por la con-

mutatividad podemos ordenar el producto y escribir los monomios con

la notación usual con las variables elevadas a exponentes:

w2 ⊙ w1 ⊙ w3 ⊙ w1 ⊙ w4 ⊙ w2 ⊙ w3 ⊙ w2 = w2
1 ⊙ w3

2 ⊙ w2
3 ⊙ w4.

Observemos que la evaluación de un monomio tropical de n varia-

bles, es una función lineal af́ın definida de Tn en T. Por ejemplo,

a⊙ w2
1 ⊙ w3

2 ⊙ w2
3 ⊙ w4 = a+ 2w1 + 3w2 + 2w3 + w4 = a+ < w, i >

donde w = (w1, . . . , w4) es el vector de las variables, e i = (2, 3, 2, 1) es

el vector de sus respectivas potencias.
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Por simplicidad, escribiremos

wi1
1 ⊙ · · · ⊙ win

n = wi

Antes de definir a un polinomio tropical, recordemos la siguiente

Definición 1.2.1. Sea ∆ ⊂ Rn. Diremos que ∆ es un poĺıtopo

entero si ∆ es la cápsula convexa de finitos puntos con coordenadas

enteras.

Ahora śı pasemos a la definición de polinomio tropical.

Definición 1.2.2. Un polinomio tropical es una combinación lineal

finita de monomios tropicales:

f(w1, ..., wn) =
⊕

i∈A

ai ⊙ wi

donde los coeficientes ai ∈ T para todo i ∈ A, y A ⊂ Zn un conjunto

finito.

Si ai ∈ R ∀i ∈ A, decimos que A es el soporte del polinomio tropical

f . A la cápsula convexa de A, que es un poĺıtopoto entero, se la llama

poĺıtopo de Newton de f .

A lo largo del texto utilizaremos letras minúsculas para referirnos

a un polinomio tropical, y reservaremos las mayúsculas para los poli-

nomios en K[x±1
1 , . . . , x±1

d ].

Todo polinomio tropical representa una funcón Tn → T. Cuando

evaluamos estas funciones en la aritmética clásica, obtenemos el mı́nimo

de una colección finita de funciones lineales:

p(w1, ..., wn) = mini∈A{ai + 〈w, i〉}

Si restringimos el dominio de esta funcion a Rn nos queda una fun-

cion p : Rn → R que es continua y lineal a trozos.

Ejemplo 1.2.3. Consideremos un polinomio genérico de grado tres

en una variable w.

p(w) = a⊙ w3 ⊕ b⊙ w2 ⊕ c⊙ w ⊕ d

Para graficar la función p que define, dibujamos cuatro ĺıneas en

el plano de coordenadas (w1, w2) : w2 = 3w1 + a, w2 = 2w1 + b,
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w2 = w1+ c y la ĺınea horizontal w2 = d. El valor de p(w) es el mı́nimo

w2 tal que (w1, w2) pertenece a alguna de estas ĺıneas. Las cuatro ĺıneas

contribuyen si

b− a ≤ c− a ≤ d− c

Estos tres valores de w son exactamente los puntos en los cuales el

gráfico de p es singular. La Figura 1.1 ilustra esta situación.

Figura 1.1. Gráfico de la función definida por el poli-

nomio tropical del Ejemplo 1.2.3.

Observación 1.2.4. Polinomios distintos pueden representar la

misma función.

Ejemplo 1.2.5. Consideremos un caso particular del Ejemplo 1.2.3

tomando p = 0⊙w3⊕3. Podemos ver el gráfico de la función que define

este polinomio tropical en la Figura 1.2. Si sumamos a p cualquier

monomio del tipo a⊙w2 con a > 1, o del tipo b⊙w con b > 2, la función

que definen será la misma, pues estos monomios se corresponden con
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rectas por encima del gráfico de p , con lo que no aportan al mı́nimo

que se alncaza en los monomios de p.

Figura 1.2. Gráfico de la función definida por el poli-

nomio tropical del Ejemplo 1.2.5. Rectas punteadas co-

rresponden a moniomios que no aportan al mı́nimo.

Ejemplo 1.2.6. Un caso particular de la Propiedad 1.1.1 es

w2
1 ⊕ w2

2 = w2
1 ⊕ w1 ⊙ w2 ⊕ w2

2

Es claro que como objetos estos dos polinomios son distintos, sin em-

bargo definen la misma función.

w2
1 ⊕ w2

2 = min(2w1, 2w2) = min(2w1, w1+w2, 2w2) = w2
1 ⊕ w1 ⊙ w2 ⊕ w2

2

En general notaremos al polinomio tropical como f , indistintamente

si estamos viéndolo como polinomio tropical o como la función lineal a

trozos que define.
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1.3. Ráıces de un polinomio tropical

Dado un polinomio tropical f queremos definir sus ráıces.

Consideramos el polinomio en una variable:

f(w) := a⊙ w ⊕ b

y observamos que la ecuación a ⊙ w ⊕ b = 0T no tiene solución si

b 6= 0T. Entonces tenemos que buscar otra definición de los ceros de f .

La igualdad

a⊙ w ⊕ b = a⊙ (w ⊕ (b− a))

sugiere definir, aśı como en el caso clásico, el número b− a como cero

de f .

Ejemplo 1.3.1. Sea f := 2 ⊙ w ⊕ 3, de acuerdo con la definición

precedente, w = 1 es cero de f . El gráfico de f(w) es singular para

este valor de w puesto que en ese punto el mı́nimo entre 2 + w y 3 se

alcanza dos veces, Figura 1.3.

Figura 1.3. Gráfico de la función definida por el poli-

nomio tropical del Ejemplo 1.3.1.

Esto nos motiva a dar la siguiente definición:

Definición 1.3.2. Llamamos conjunto de ceros de un polinomio

tropical f =
⊕

i∈A ci ⊙ wi al conjunto Z(f) de todos los puntos w ∈ Rn

donde el valor f(w) = mı́n
i∈A

{ci+ < w, i >} se alcanza al menos dos veces.
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Observación 1.3.3. Notar que si f es un monomio tropical su

conjunto de ceros es vaćıo. Más aún, vale:

Teorema 1.3.1. Z(f) = ∅ ⇐⇒ f es un monomio

Demostración. ⇐:es la observación anterior.

⇒: Sea f = ⊕i∈Aai ⊙ wi y notemos li(w) = ai + 〈w, i〉 a la función

lineal asociada a cada monomio. Definamos, para cada i, el conjunto

Ai = {w ∈ Rn : li(w) < lj(w) ∀i 6= j}. Como las li son continuas,

y |A| < ∞, los Ai resultan abiertos. Como Z(f) = ∅, también resulta

Rn = ∪i∈AAi, y Ai ∩ Aj = ∅ si i 6= j. La única forma que puede pasar

esto es si existe i0 ∈ A con Ai0 = Rn y Aj = ∅ si j 6= i0, ya que Rn es

conexo. Con esto, si w ∈ Rn luego ai0 + 〈w, i0〉 < aj + 〈w, j〉 ∀j 6= i0 o,

equivalentemente, ai0 −aj < 〈w, j− i0〉. Como i0 6= j, esto puede pasar

sólo si aj = ∞, o sea aj = 0T ∀j 6= i0. Y con esto vemos que f es un

monomio tropical. �

Observación 1.3.4. Sean l1, ..., ln, g1, ...gr formas lineales en Rn.

Para todo x ∈ Rn vale que

mı́n{l1(x), ..., ln(x)}+mı́n{g1(x), ..., gr(x)} =

= mı́n{li(x) + gj(x) : i = 1, ..n; j = 1, ..., r}.

Proposición 1.3.2. Sea p =
⊕

α∈A aα ⊙ wα. Para todo polinomio

tropical g =
⊕

β∈B bβw
β, se cumple que Z(p) ⊆ Z(p⊙ g).

Demostración. Sea w ∈ Z(p). Por definición sabemos que

p⊙ g(w) =
⊕

α∈A, β∈B

aα ⊙ bβ ⊙ wα+β

= mı́n{aα + bβ + 〈α + β, w〉 : α ∈ A, β ∈ B}

= mı́n{(aα + 〈α,w〉) + (bβ + 〈β, w〉) : α ∈ A, β ∈ B}.

Entonces por la observación anterior obtenemos que

p⊙ g(w) = mı́n
α∈A

{aα + 〈α,w〉}+mı́n
β∈B

{bβ + 〈β, w〉}.

Como w ∈ Z(p), sabemos que el valor mı́n
α∈A

{aα + 〈α,w〉} se alcanza al

menos dos veces, con lo cual w ∈ Z(p⊙ g). �
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1.4. Valuaciones

Sea K un cuerpo. Denotaremos por K∗ al conjunto de elementos no

nulos de K. Una valuación no arquimediana sobre K es una función

val : K → R ∪ {∞} que satisface:

(1) val(a) = ∞ si y sólo si a = 0

(2) val(ab) = val(a) + val(b)

(3) val(a+ b) > mı́n{val(a), val(b)} para todo a, b ∈ K∗

A lo largo de todo el texto denominaremos a una valuación no

arquimediana simplemente valuación.

Lema 1.4.1. Sean a, b ∈ K con val(a) 6= val(b). Entonces

val(a+ b) = min(val(a), val(b)).

Demostración. Sin pérdida de generalidad podemos suponer que

val(b) > val(a). Como 12 = 1 tenemos que val(1) = 0. Por otra parte

como (−1)2 = 1, resulta val(−1) = 0 también. Aśı val(−b) = val(b)

entonces val(a) ≥ min(val(a+b), val(−b)) = min(val(a+b), val(b)), y

por lo tanto val(a) ≥ val(a+b). Pero val(a+b) ≥ min(val(a), val(b)) =

val(a) entonces val(a+ b) = val(a) �

Observación 1.4.1. Si #K > 3 (por ejemplo car(K) = 0, o K

algebraicamente cerrado), podemos asumir siempre que 1 ∈ Im(val)

ya que (λ val) : K → R ∪∞ es una valuación para cualquier valuación

val y λ ∈ R>0.

Ejemplo 1.4.2. Si K = k(x) es el anillo de funciones racionales,

podemos escribir cualquier función f/g ∈ K como una serie de Laurent

h = Σhix
i donde hi = 0 para i ≪ 0. Podemos definir una valuación

como val(f/g) := min{i : hi 6= 0}. Si i es el menor exponente en f y j

es el menor exponente en g, entonces val(f/g) = i− j.

Ejemplo 1.4.3. Si K = Q , podemos definir valp : Q → R como

valp(q) = j cuando q = pja/b donde p no divide a a ni a b. Por ejemplo

val2(12/5) = 2, mientras que val2(1/10) = −1. A esta valuación se la

denomina valuación p-ádica.
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Ejemplo 1.4.4. Series Formales de Laurent:

K((x)) = {
∑

α∈Z

aαx
α, aα = 0 si α ≪ 0}

Si f 6= 0, f ∈ K((x)), f =
∑

α≥α0
aαx

α definimos val(f) := α0 si

aα0
6= 0, o sea

val(f) = mı́n{α : aα 6= 0}.

Notemos que K(x) ⊆ K((x)) y la valuación que estamos conside-

rando, resulta una extensión de la del Ejemplo 1.4.2.

Ejemplo 1.4.5. Se conocen con el nombre de Series de Puiseux al

conjunto:

K{{x}} =
⋃

n∈N

K((x1/n))

Notemos que existe una inyección natural de K((x1/n)) →֒ K((x1/nm))

∀m ∈ N. Luego dadas dos series f, g ∈ K{{x}} podemos suponer

que f, g ∈ K((x1/n)) para algún n ∈ N. Por lo tanto tiene sentido

definir f + g ∈ K((x1/n)) sumando témino a término y f.g ∈ K((x1/n))

extendiendo la definición usual de multiplicacion de series de Laurent.

Estas dos operaciones definen una estructura de cuerpo para K{{x}}.

Este cuerpo admite la siguiente valuación no trivial val(f) := α0 si

aα0
6= 0, siendo f =

∑

α≥α0
aαx

α/n ∈ K{{x}}.

De aqúı en adelante notaremos con K al conjunto K{{x}}.

Teorema 1.4.2. Sea K algebraicamente cerrado, car(K) = 0, en-

tonces K es algebraicamente cerrado.

La demostración de este Teorema es constructiva y se sigue del

Teorema de Newton-Puiseux [W]. (cf. Teorema 1.5.3, donde damos

una demostración para el caso multidimensional, habiendo aceptado el

caso n = 1).

Notemos que según [AM, Pág. 104] un cuerpo K junto con una

valuación resulta un anillo local de valoracion discreta, con ideal

maximal M = {f ∈ K : val(f) > 0}. A k = K/M lo llamaremos su

cuerpo residual.
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1.5. Tropicalización de un ideal

Para un cuerpo K y una función de valuación val : K → R ∪ {∞}

podemos extender la función de valuación a su clausura algebraica K̄

(ver [EKL]) y a K̄n definiendo

val : K̄n → Rn
∞, (a1, ..., an) 7→ (val(a1), . . . , val(an))

Definición 1.5.1. Para un polinomio F =
∑

α

aαx
α ∈ K[x1, ..., xn],

la tropicalización de F es el polinomio tropical definido por:

f(w) = trop(F )(w) :=
⊕

α

val(aα)⊙ wα = mı́n
α

{val(aα) + 〈α,w〉}

y la hipersuperficie tropical de f es el conjunto de ceros T (f) del poli-

nomio tropical trop(f), o sea:

T (f) = {w ∈ Rn : el mı́nimo de trop(F ) se alcanza al menos dos veces en w}.

Observación 1.5.2. Para cualquier monomio xβ ∈ K[x1, . . . , xd]

resulta

T (Trop(F )) = T (Trop(xβF ))

ya que Trop(xβF )(w) = 〈w, β〉+mı́nα{val(aα) + 〈α,w〉}.

Observación 1.5.3. La Definición 1.5.1 se puede extender natu-

ralmente a un polinomio de Laurent F =
∑

α

aαx
α ∈ K[x±1

1 , . . . , x±1
d ].

Más aún, si xβ es el mı́nimo común múltiplo de los denominadores del

polinomio F , tenemos que xβF = F̃ con F̃ ∈ K[x1, . . . , xn], resultando

T (trop(F )) = T (trop(xβF )) = T (trop(F̃ ))

por la observación anterior.

En adelante notaremos γtw := (γ1t
w1 , ..., γnt

wn).

Lema 1.5.1. Sea F ∈ K[x1, ..., xn]. Entonces ∀w ∈ Qn y para

γ ∈ Cn genérico, tenemos que

trop(F )(w) = val(F (γtw)).

Demostración. Sea F (x) =
∑

α∈A

aαx
α. Evaluando en x = γtw nos

queda F (γtw) =
∑

α∈A

aαγ
αt〈w,α〉. Como γα ∈ K, claramente vale que
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val(aαγ
αt〈w,α〉) = val (aα) + 〈w, α〉. Llamando A′ al conjunto de todos

los α ∈ A para los cuales trop (F )(w) = val (aα) + 〈w, α〉 resulta

F (γtw) =
∑

α∈A′

aαγ
αt〈w,α〉 +O(t〈w,α〉+ǫ).

Luego, tomando γ ∈ Cn genérico tal que
∑

α∈A′ aαγ
αt〈w,α〉 6= 0, pode-

mos asegurar que trop (F )(w) = val (F (γtw)). �

Corolario 1.5.2. Sean F,G ∈ K[x1, ..., xn], F,G 6= 0 entonces

trop (FG) y trop (F )⊙ trop (G) definen la misma función. Es decir:

trop (FG) = trop (F )⊙ trop (G).

Demostración. Por definición sabemos que val ((FG)(γtw)) =

val (F (γtw)G(γtw)) = val (F (γtw)) ⊙ val (G(γtw)). Por el Lema an-

terior tenemos que val ((FG)(γtw)) = trop (FG)(w), val (F (γtw)) =

trop (F )(w) y val (G(γtw)) = trop (G)(w).

Luego, utilizando la Observación 1.3.4, podemos concluir que

trop (FG)(w) = trop (F )(w)⊙ trop (G(w) = (trop (F )⊙ trop (G))(w).

�

Seguiremos con unas definiciones necesarias para caracterizar los

ceros de un polinomio tropical:

Definición 1.5.4. Sea F =
∑

i∈A

aix
i ∈ K[x] con x = (x1, ..., xn),

i = (i1, ..., in) y A ⊂ Zn un conjunto finito.

Notaremos cp (ai) = ci al coeficiente principal de ai, val(ai) = vi,

es decir

ai = cit
vi + términos de orden mayor que vi.

También notaremos f(w) = trop (F )(w) = mı́ni∈A{vi + 〈i, w〉}.

Si w = (w1, ..., wn) ∈ Rn definimos

Fw(x) =
∑

i∈A′

cix
i ∈ K[x] e

inw(F )(x) =
∑

i∈A′

aix
i ∈ K[x]

donde A′ es el conjunto de todos los vectores i ∈ A donde se alcanza

f(w1, ..., wn).
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Observación 1.5.5. Notar que si escribimos F (xtw) en potencias

de t tenemos que

F (xtw) =
∑

i∈A′

cix
itf(w) +O(tf(w)+ǫ) = Fw(x)t

f(w) +O(tf(w)+ǫ)

para algún ǫ > 0, donde O(tf(w)+ǫ) representa términos de orden ma-

yor o igual a f(w) + ǫ en t. Con esta escritura, Fw queda uńıvocamen-

te determinado. Es decir, si F (xtw) = P (x)tf(w) + O(tf(w)+ǫ), resulta

P (x) = Fw(x).

Observación 1.5.6. Sea F ∈ K[x1, . . . , xn], K algebraicamente

cerrado, y f = Trop(F ). Por su construcción, los monomios de fw
corresponden a los ı́ndices i donde se alcanza f(w). Luego las siguientes

afirmaciones son equivalentes:

(i) w ∈ T (f) (w ∈ Qn).

(ii) Fw tiene al menos dos monomios.

(iii) Fw tiene una ráız en (K∗)n.

La equivalencia entre las dos primeras afirmaciones es clara por la

definición de Fw, mientras que la equivalencia entre la segunda y tercera

afirmación se puede deducir por inducción en la cantidad de variables

de F .

Teorema 1.5.3. (Newton-Puiseux en varias variables)

Sea K un cuerpo algebraicamente cerrado de caracteŕıstica 0. Sean

F ∈ K[x1, . . . , xn], w ∈ T (Trop(F )) ∩ Qn y γ ∈ (K∗)n tal que

Fw(γ1, ..., γn) = 0. Entonces existe z = (z1, ..., zn) ∈ VK∗(F ) tal que

zi = γit
wi +O(twi+ǫi) para algún ǫi > 0.

Demostración. Seguiremos la demostración de [T].

Aplicaremos inducción en n, siendo verdadera para el caso n = 1

por el Teorema de Newton- Puiseux clásico [W]. Notemos primero que

si F (γtw) = 0, ya tenemos una ráız. También, si alguna variable xj

no aparece en Fw, especializar la misma en xj = γjt
wj no modifica

las hipótesis. Aśı, sin pérdida de generalidad, podemos suponer que

las variables que aparecen en Fw son exactamente x1, ..., xn. En esta

situación hay dos casos posibles:
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• Si hay un j (1 ≤ j ≤ n) tal que Fw(x1, ..., γj, ..., xn) 6= 0 entonces,

reordenando las variables de ser necesario, podemos suponer que j = 1.

Escribimos w = (w1, w
′), x = (x1, x

′), γ = (γ1, γ
′). Las condiciones

necesarias para aplicar inducción sobre G(x′) = F (γ1t
w1 , x′) son:

w′ = (w2, ..., wn) ∈ T (Trop(G)) y gw′(γ2, ..., γn) = 0.

Es posible que Trop(G)(w′) 6= Trop(F )(w1, w
′) (ver Ejemplo 1.5.7)

pero como G(x′) = F (γ1t
w1 , x′), trivialmente verificamos que

G(x′tw
′

) = F (γ1t
w1 , x′tw

′

) = Fw(γ1, x
′)tf(w) +O(tf(w)+ǫ)

donde, por hipótesis, Fw(γ1, x
′) 6= 0.

Por la Observación 1.5.5, de la ecuación anterior deducimos que

Gw′(γ′) = Fw(γ1, γ
′) = 0, con lo cual se cumple la segunda condi-

ción. Y por la Observación 1.5.6, como γ′ ∈ (K∗)n−1 tenemos que

(w2, ..., wn) ∈ T (Trop(G)). Luego, por nuestra hipótesis inductiva, sa-

besmos que ∃ z′ ∈ VK∗(G) tal que z′i = γ′
it
w′

i + O(tw
′

i+ǫ) con lo cual

z = (γ1t
w1 , z′) es ráız de f y cumple todo lo que queŕıamos.

• Supongamos ahora que vale que Fw(x1, ..., γi, ..., xn) = 0 para todo

1 ≤ i ≤ n. Recordemos que F (xtw) = fw(x)t
f(w) + O(tf(w)+ǫ), y escri-

bamos Fw = (x1−γ1)
k(x2−γ2) . . . (xn−γn)Q(x1, x

′) con Q(γ1, x
′) 6= 0.

Notar que como n ≥ 2, existe al menos un término de la forma (xi−γi)

con i 6= 1.

Sustituir x1 por γ1t
w1 como antes rompeŕıa con la estructura desea-

da para la inducción. Sustituiremos x1 por (γ1 + t
ǫ
2k )tw1 y aplicaremos

inducción sobre G(x′) = F ((γ1 + t
ǫ
2k )tw1 , x′). Igual que en el caso ante-

rior debemos ver que

w′ = (w2, ..., wn) ∈ T (Trop(G)) y Gw′(γ2, ..., γn) = 0.

Tenemos que

G(x′tw
′

) = F ((γ1 + t
ǫ
2k )tw1 , x′tw

′

) = tf(w)Fw(γ1 + t
ǫ
2k , x′) +O(tf(w)+ǫ) =

= tf(w)+ ǫ
2 (x2 − γ2)...(xn − γn)Q(γ1 + t

ǫ
2k , x′) +O(tf(w)+ǫ).

donde Q es un polinomio con coeficientes en K, por lo tanto

Q(γ1 + t
ǫ
2k , x′) = Q(γ1, x

′) +O(t
ǫ
2k ).
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Entonces de la igualdad anterior obtenemos que

G(x′tw
′

) = tf(w)+ ǫ
2 (x2 − γ2)...(xn − γn)Q(γ1, x

′) +O(tf(w)+ ǫ
2
+ ǫ

2k ).

de lo que se sigue que Gw′ = (x2 − γ2)...(xn − γn)Q(γ1, x2, ..., xn) tie-

ne al menos dos monomios y G(w2,...,wn)(γ2, ..., γn) = 0. Por la Obser-

vacion 1.5.6 resulta (w2, ..., wn) ∈ T (Trop(G)), con lo cual podemos

aplicar el paso inductivo. �

Ejemplo 1.5.7. Esta demostración nos brinda una herramienta

para poder encontrar ráıces de un polinomio.

Por ejemplo, sea F = −3t2+3tx−t2y+txy−t3xy4+(t4+t5)y4+x5,

f = mı́n{2, 1+ x, 2+ y, 1+ x+ y, 3+ x+4y, 4+ 4y, 0+ 5x}. Tomemos

w = (1, 0) ∈ T (f), F (tx, y) = (−3 + 3x − y + xy)t2 + O(t4) y por lo

tanto Fw = −3+3x−y+xy, Fw(1,−3) = 0. Entonces, por el Teorema

1.5.3, existe una ráız en (K∗)2 cuyo término principal es (t,−3).

Como Fw(1, y) = Fw(x,−3) = 0 estamos en el segundo caso del

teorema. Realizamos la sustitución x = (1+t)t = t+t2 en F , resultando

F (t + t2, y) = G(y) = 3t3 + t5 + 5t6 + 10t7 + 10t8 + 5t9 + t10 + t3y, y

g(y) = mı́n{3, 3 + y}. Notar que g(y) 6= f(1, y) = mı́n{2, 2 + y, 4 + 4y}

pero, como se afirmó en el teorema, 0 ∈ T (trop(G)). Ahora, calculando

una ráız de G(y) cuyo término principal es −3, nos queda que

(x, y) = (t+ t2,−3− t2 − 5t3 − 10t4 − 10t5 − 5t6 − t7)

parametriza una curva de ráıces de F (x, y).

Comentario 1.5.8. Podemos realizar una demostración del Teore-

ma 1.4.2 a partir del enunciado del Teorema 1.5.3. En este caso n = 1,

con lo que sea F (x) ∈ K[x]. Si F 6= 0 es un monomio, luego x = 0 es

ráız. De no ser un monomio, tenemos que T (trop(F )) 6= ∅ por el Teo-

rema 1.3.1. Sea ahora w ∈ T (trop(F ))∩Q. Tenemos que Fw no resulta

monomio, por lo tanto existe una ráız de Fw y, por el Teorema 1.5.3,

podemos hallar una ráız z ∈ K∗ ⊂ K de F .

Ahora definiremos la tropicalización de un ideal I ⊆ K[x1, . . . , xn],

con K cuerpo valuado, algebraicamente cerrado.

Definición 1.5.9. Para un ideal I ⊆ K[x1, ..., xn] y un cuerpo K

con una valuación no arquimediana, algebraicamente cerrado, se define
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la variedad tropical de I como

T (I) =
⋂

F∈I
F 6=0

T (Trop(F ))

Comentario 1.5.10. Teniendo en cuenta la Observación 1.5.3, es

posible extender en forma natural la Definición 1.5.9 para un ideal

I ⊆ K[x±1
1 , . . . , x±1

d ].

Proposición 1.5.4. Sean I1, I2 dos ideales en K[x1, . . . , xd] cuyos

ideales extendidos en K[x±1
1 , . . . , x±1

d ] resultan iguales. Es decir, I1 e I2
cumplen I1 ⊗K[x±1

1 , . . . , x±1
d ] = I2 ⊗K[x±1

1 , . . . , x±1
d ]. Entonces resulta

T (I1) = T (I2).

Demostración. Sea I2 = 〈G1, . . . , Gr〉. Supongamos F ∈ I1, lue-

go F ∈ I1⊗K[x±1
1 , . . . , x±1

d ] = I2⊗K[x±1
1 , . . . , x±1

d ]. Con esto podemos

escribir F =
∑

Hi

xαi
Gi, con Hi ∈ K[x1, . . . , xd] para todo i. Sacando

denominador común y operando, llegamos a xβF =
∑

H̃iGi, donde

también H̃i ∈ K[x1, . . . , xd] para todo i. O sea xβF ∈ I2. Y como

T (Trop(xβF )) = T (Trop(F )), resulta la inclusión T (I1) ⊇ T (I2).

Análogamente se ve la otra inclusión, resultando la igualdad bus-

cada. �

Lema 1.5.5. Para un ideal principal I = 〈F 〉 ⊆ K[x1, ..., xn] se

tiene que

T (〈F 〉) = T (Trop(F )).

Demostración. La inclusión “ ⊆ ” es clara por definición. Para

la otra inclusión, si w ∈ T (Trop(F )) entonces el mı́nimo de trop (F ) se

alcanza al menos dos veces en w. Sea H ∈ 〈F 〉 y H = GF para algún

G ∈ K[x1, ..., xn]. Sabemos que Trop (FG) = Trop (F )⊙ Trop (G), por

el Corolario 1.5.2 . Con lo cual el mı́nimo en trop (FG)(w) se alcanza

al menos dos veces puesto que esto sucede en trop (F ). �

El siguiente teorema nos da otra definición posible para la tropica-

lización de un ideal si K es un cuerpo algebraicamente cerrado y de

caracteŕıstica cero.
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Teorema 1.5.6 (Kapranov - Teorema Fundamental de la Geo-

metŕıa Tropical). Sea K un cuerpo algebraicamente cerrado de carac-

teŕıstica cero e I ⊆ K[x1, ..., xn] un ideal. Entonces

T (I) = {(val(z1), ..., val(zn)) : z ∈ VK∗(I)}.

Demostración. Veremos ⊆ en el caso particular en el que I es un

ideal principal. Si I = 〈F 〉, el Lema 1.5.5 afirma que T (I) = T (f), para

f = Trop(F ). Con lo cual, si w ∈ T (f) ∩Qn, la Observación 1.5.6 nos

dice que Fw tiene una ráız en (K∗)n. Entonces, por el Teorema 1.5.3,

sabemos que existe z = (z1, ..., zn) ∈ VK∗(F ) tal que val(zi) = wi. Por

lo tanto T (I) ∩Qn ⊆ val(VK∗(I)). Con lo cual tenemos que

T (I) = T (I) ∩Qn ⊆ {(val(z1), ..., val(zn)) : z ∈ VK∗(I)}.

⊇: Como T (I) es cerrado, basta ver que para todo z ∈ VK∗(I) se

cumple que w = val(z) ∈ T (I).

Sea F ∈ I, F 6= 0. Sabemos que F (z) = 0 y que z ∈ K∗ por lo tanto

F no puede ser un monomio. Si F =
∑

cαx
α tenemos que

∑

cαz
α = 0

entonces val(
∑

cαz
α) = ∞. Si existiera un único α tal que val(cαz

α)

sea mı́nimo entonces no podŕıa haber cancelaciones de término inicial.

Como da ∞, existe al menos otro ı́ndice β con val(cαz
α) = val(cβz

β).

Por lo tanto existen al menos dos términos para los cuales es mı́nimo

val(cαz
α) = val(cα) + 〈α, val(z)〉. Es decir, w = val(z) ∈ T (I). �

Comentario 1.5.11. Más generalmente el Teorema 1.5.6 se apli-

ca a cualquier cuerpo K (no necesariamente algebraicamente cerrado)

provisto de una función de valuación no trivial, y no arquimediana. En

ese caso, para un ideal I ⊂ K[x1, ..., xn] se tiene que

T (I) = val(V(I)) = {(val(z1), ..., val(zn)) : z ∈ V(I)} ⊆ Rn.

donde V(I) representa el conjunto de ceros de I en (K̄∗)n siendo como

antes K̄ la clausura algebraica de K [EKL].

Corolario 1.5.7. Sea I ⊆ K[x1, ..., xn] y K un cuerpo algebraica-

mente cerrado. Entonces son equivalentes:

1. T (I) = ∅

2. existe un monomio xα ∈ I

3. VK∗(I) = ∅
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4. I ⊗K[x±1
1 , . . . , x±1

n ] = K[x±1
1 , . . . , x±1

n ]

Demostración. Primero veamos 2 ⇐⇒ 3.

⇒) Si α = 0 entonces xα = 1 con lo cual V (I) = ∅.

Si no, xα = xα1 ...xαn con αi > 0 para algún 1 ≤ i ≤ n. Si z ∈ V (I),

zα = 0 entonces zi = 0 para algún 1 ≤ i ≤ n y por lo tanto I no tiene

ceros en (K∗)n.

⇐) Como VK∗(I) = ∅ el ideal J ⊆ K[x1, ..., xn, y] definido por

J = IK[x1, ..., xn, y] + 〈x1...xny − 1 : f ∈ I〉 cumple que VK(J) = ∅.

Entonces por el teorema de los ceros de Hilbert (ver [CLO] página

168) tenemos que J = K[x1, ..., xn, y]. Por lo tanto existen polinomios

G,G1, ..., Gs ∈ K[x1, ..., xn, y] tales que

1 =
s
∑

i=1

GiFi +G · (x1...xny − 1).

Reemplazando y = 1
x1...xn

tenemos que

1 =
s
∑

i=1

Gi(x1, ..., xn,
1

x1...xn

)Fi(x1, ..., xn).

Sea N = máx1≤i≤s{degy(Gi)} entonces (x1...xn)
NGi ∈ K[x1, ..., xn]

para todo 1 ≤ i ≤ s, con lo que (x1...xn)
N =

∑s
i=1((x1...xn)

NGi)Fi ∈ I.

Para ver 1 ⇔ 2 observemos que existe un monomio en I ⊆ K[x1, ..., xn]

⇔ existe un monomio en I ⊆ K[x1, ..., xn], con lo cual VK∗(I) = ∅ ⇔

VK∗(I) = ∅. Entonces por el Teorema 1.5.6 tenemos que

T (I) = {val(z), z ∈ VK∗(I)} = ∅ ⇔ VK∗(I) = ∅ ⇔ VK∗(I) = ∅.

Por último, para ver 2 ⇔ 4 observemos que los monomios son

inversibles en K[x±1
1 , . . . , x±1

n ]. Y si exisite xα ∈ I, entonces existe

xα ∈ I ⊗K[x±1
1 , . . . , x±1

n ] . Esto demuestra 2 ⇒ 4.

Para la otra implicación, si 1 =
∑

Hi

xαi
Fi, Fi ∈ I yHi ∈ K[x1, . . . , xn]

para todo i, sacando denominador común y operando, nos queda que

xβ =
∑

H̃iFi con H̃i ∈ K[x1, . . . , xn] para todo i, es decir xβ ∈ I. �

Definición 1.5.12. Dada una variedad algebraica V ⊆ Kn con K

un cuerpo valuado algebraicamente cerrado, definimos

Trop(V ) = T (I(V ))
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donde I(V ) = {F ∈ K[x1, . . . , xn]\F (x) = 0 ∀ x ∈ V } es el ideal de la

variedad V .

Observación 1.5.13. Notar que Trop(V ) depende de V ∩ (K∗)n.

Si V es irreducible y V ∩ (K∗)n 6= ∅, entonces V = V ∩ (K∗)n.

Si V ⊆ Kn \ (K∗)n, entonces Trop(V ) = ∅ por 1.5.7, ya que I(V )

contiene un monomio.

Gracias al Teorema de Kapranov 1.5.6 estamos en condiciones de

definir una Hipersuperficie Tropical Singular.

Definición 1.5.14. Sea A ⊂ Zd un conjunto finito, qu e genera un

espacio Z-lineal de dimensión d. Sea f = ⊕i∈A pi ⊙wi ∈ R[w1, . . . , wd].

Decimos que la hipersuperficie tropical T (f) es singular si podemos

encontrar q ∈ T (f), p ∈ (K∗)d y G ∈ K[x±1
1 , . . . , x±1

d ] tales que

Trop(G) = f , val(p) = q y p es un punto singular de G. Es decir,

G(p) = ∂G
∂xj

(p) = 0 para todo j = 1, . . . , d.

A ese tal q lo llamaremos punto singular de la hipersuperficie tro-

pical T (f).

Bajo estas mismas condiciones, diremos que T (〈G〉) es una hiper-

superficie tropical singular con q = val(p) un punto singular.

Ejemplo 1.5.15. Sean A = {0, . . . ,m} un subconjunto de Z con

m ≥ 2, y f = ⊕m
j=0 0⊙wj. Con esto, q = 0 es siempre un punto singular

de T (f), por ejemplo tomando F = (x− 1)m ∈ R[x] con p = 1.

Ejemplo 1.5.16. Consideremos el polinomio

F = xy2 − tx2 − (2+ t3) · xy+ (1+ 2t+ t3) · x+ t3y− (t+ t3) ∈ K[x, y].

Se puede fácilmente verificar que p = (1, 1) ∈ (K∗)2 es un punto singu-

lar de la curva V (F ). Y esta singularidad se tropicaliza a la singularidad

q = (val(1), val(1)) = (0, 0) de la hipersuperficie tropical T (〈F 〉).
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Caṕıtulo 2

Matroides y su relación con la Tropicalización de

Subespacios Lineales

2.1. Introducción

Desde este caṕıtulo, y por el resto del texto, fijaremos un conjunto

finito de puntos enteros A = {m1, . . . ,ms} ⊂ Zd, tal que Zm1 + . . . +

Zmd = Zd. A esta condición la notaremos como ZA = Zd.

Sea K un cuerpo valuado con caracteŕıstica cero, algebraicamente

cerrado. Los polinomios de Laurent

F =
s
∑

i=1

ami
xmi ∈ K[x±1

1 , . . . , x±1
d ]

con soporte A y un punto singular en el (1, . . . , 1) son los polinomios

cuyos coeficientes a = (am1
, . . . , ams

) ∈ Ks pertenecen al núcleo de la

matriz

M =

(

1 1 . . . 1

m1 m2 . . . ms

)

Esto se debe a que los polinomios con soporte A y un punto singular

en el (1, . . . , 1) cumplen F (1, . . . , 1) = 0 y xj
∂F
∂xj

(1, . . . , 1) = 0, para

todo 1 ≤ j ≤ d. Estas ecuanciones (lineales en a) son representadas

por las filas de la matriz M .

En virtud de la Definición 1.5.14, si a = (am1
, . . . , amd

) ∈ Ker(M)

y F =
s
∑

i=1

ami
xmi , la hipersuperficie tropical T (f) definida por el poli-

nomio tropical f = Trop(F ) = ⊕i∈Aval(ai) ⊙ wi resultará singular en

q = (0, . . . , 0).

Según el Teorema 1.5.6, nos interesa estudiar

val(ker(M) ∩ (K∗)s) = {val(a) : a ∈ ker(M) ∩ (K∗)s}.
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En definitiva, por la Definición 1.5.12, estamos interesados en co-

nocer la estructura de trop(ker(M)) = T (I), donde I ⊂ C[x1, . . . , xs]

es el ideal generado por los polinomios homogéneos lineales inducidos

por las filas de la matriz M .

Veremos que dicha tropicalización sólo depende del matroide de

M , que a su vez depende de los menores no nulos de M . Referencias

introductorias a la teroria de matroides pueden encontrarse en [BGW],

[Ox] y [Wh].

Observación 2.1.1. Para estudiar la familia de polinomios con

soporte en A y todos sus coeficientes no nulos, y un punto singular en

p = (p1, . . . , pd) ∈ (K∗)d (p fijo) lo que debeŕıamos estudiar es el núcleo

de la matriz Mp = MDp, donde Dp ∈ Ks×s es diagonal, con dii = pmi .

Observemos que los menores de Mp difieren de los de M en un

monomio en p (no nulo), con lo que los menores no nulos deMp resultan

exactamente los mismos que los de M . De hecho, como consecuencia

del Teorema 1.5.6, tenemos que la tropicalización de esta familia de

polinomios resulta una traslación de val{Ker(M) ∩ (K∗)s}, ya que

a = (am1
, . . . , ams

) ∈ Ker(Mp) ⇐⇒ Dpa ∈ Ker(M)

y val(Dpa) = val(pm1am1
, . . . , pmsams

) = val(pm1 , . . . , pms) + val(a).

2.2. Matroides

Definición 2.2.1. Llamaremos a M un matroide sobre E, si es una

colección de subconjuntos de un conjunto finito E tal que:

(1) ∅ ∈ M

(2) Si α ∈ M y β ⊂ α entonces β ∈ M

(3) Si α, β ∈ M y |α| > |β|, luego ∃x ∈ αrβ tal que {x}∪β ∈ M .

Esta condición se conoce como propiedad de intercambio.

Los elementos de M se llaman conjuntos independientes, y las bases

son los elementos maximales deM con respecto a la inclusión. En virtud

de (3) de 2.2.1, resulta que todas las bases tienen la misma cantidad de

elementos. Es claro que puede concerse completamente a un matroide

conociendo sólo sus bases.
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Los subconjuntos de E que no son independientes se llaman depen-

dientes. Y a los conjuntos dependientes minimales, se los llama circui-

tos.

Un elemento i ∈ M se llama un loop si {i} es un circuito (que es

equivalente a que i no pertenezca a ninguna base). Por el contrario, al

elemento i se lo llama coloop si pertenece a toda base.

Para un conjunto S ⊂ E definimos su clausura como

cl(S) = S ∪ {i ∈ E tal que existe un circuito C con i ∈ C y C ⊂ S ∪ {i}}.

Un subconjunto S se dice cerrado sii S = cl(S).

A los subconjuntos cerrados de E se los denominan flats. Equiva-

lentemente, un flat es un conjunto F ⊂ M tal que no existe ningún

circuito C con |F − C| = 1.

El rango de un subconjunto S ⊂ E es el máximo de los cardinales

de los subconjuntos independientes contenidos en él.

Un hiperplano es un subconjunto cerrado H tal que si le agregamos

cualquier elemento i /∈ H, la clausura de {i} ∪ H es todo E. Esto

implica que un hiperplano es un flat propio maximal.

Definimos al matroide dual M∗ de M (sobre el mismo conjunto E)

al matroide con bases igual al complemento (en E) de las bases de M.

Observemos las siguientes relaciones:

(1) C es un circuito en M ⇐⇒ E − C es un hiperplano en M∗.

(2) i es un loop en M ⇐⇒ i es un coloop en M∗.

(3) (M∗)∗ = M .

2.3. Tropicalización de un Espacio Lineal

Asumamos que el espacio lineal a tropicalizar S viene dado como

el núcleo de una matriz A ∈ Cm×n, con rango máximo m. Es decir,

m = n− k con k = dim(ker(A)).

Definimos un Gale dual de A (sobre C) a una matriz B ∈ Cn×k tal

que sus columnas son una base de ker(A).

Observación 2.3.1. B resulta un Gale dual de A sii AB = 0 y

rg(B) = k.
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Sea MB el matroide asociado a las filas de una matriz B. Es decir,

las bases de MB son los subconjuntos maximales de [n] = {1, . . . , n}

que corresponden a filas linealmente independientes de B.

Definiremos al abanico de Bergman de MB, siguiendo los lineamien-

tos en el inicio de la segunda sección de [FS].

Definición 2.3.2. Sea w ∈ Rn. Definimos a Mw como el matroide

cuyas bases son bases de MB con w-peso máximo. Es decir, β base de

MB es base de Mw sii
∑

i∈β

wi es máximo.

Observemos que un elemento i ∈ [n] es un loop deMw si no está con-

tenido en ninguna base con w-peso maximal.

Comentario 2.3.3. El conjuntoMw definido anteriormente resulta

efectivamente un matroide como consecuencia de la definición 2.1 de

[FS].

Observación 2.3.4. Según [FS], podemos definir la siguiente re-

lación de equivalencia en Rn: w ∼ w′ sii Mw = Mw′ . Las clases de

equivalencia de esta relación son conos poliedrales convexos relativa-

mente abiertos (es decir, cada cono es un conjunto abierto en el menor

subespacio af́ın que los contiene). Estos conos forman un abanico com-

pleto en Rn, y dicho abanico se denomina el abanico normal de MB.

Definición 2.3.5. El abanico de Bergman de MB se define como

B(MB) = {w ∈ Rn : Mw no continene ningún loop}.

La siguiente proposición se puede encontrar, con su demostración,

en [FS, 2.5].

Proposición 2.3.1. El abanico de Bergman B(MB) es un abanico.

Más aún, resulta un sub-abanico del abanico normal de MB.

Proposición 2.3.2. Sea MA el matroide asociado a las columnas

de A, y (MA)∗ su matroide dual. Luego, si B es un Gale dual de A y

MB el matroide asociado a las filas de B, resulta MB = (MA)∗.

Demostración. Sea {i1, . . . , ik} una base de MB. Sin pérdida de

generalidad, podemos suponer que {i1, . . . , ik} = {n − k + 1, . . . , n},

reordenando las columnas de A. Con esto, existe C ∈ Ck×k inversible tal
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que BC =

(

B

Idk×k

)

. Observemos que A(BC) = 0 y que rg(BC) = k,

con lo que BC resulta un Gale dual para A. Como consecuencia de la

forma de BC, las primeras n − k columnas de A resultan linealmente

independientes. Esto se debe a que si una combinación lineal de dichas

columnas es 0, luego existe v ∈ ker(A) con sus últimas k coordenadas

cero. Y por la forma de BC, esto sólo puede pasar trivialmente.

Rećıprocamente, sea {i1, . . . , in−k} una base en MA con respecto a

las columnas de A. Supongamos que {i1, . . . , in−k} = {1, . . . , n − k},

eventualmente reordenando las filas de B. Con esto existe C ∈ Cm×m

inversible tal que CA =
(

Idm×m
...A

)

.

Un Gale dual de CA es B′ =

(

−A

Idk×k

)

. Y como B también es un

Gale dual de CA, podemos escribir B′C ′ = B con C ′ ∈ Ck×k inversible.

Y esta escritura nos muestra que las últimas k filas de B resultan

linealmente independientes, o sea {n − k + 1, . . . , n} resulta una base

en MB.

En conclusión, vimos que β es una base en MB sii βc es una base

en MA. Y, por definición, esto último sucede sólo sii β es una base en

(MA)∗, que es lo que queŕıamos demsotrar. �

A continuación demostraremos un lema y una proposición que nos

serán de utilidad para demostrar el teorema principal de esta sección.

Lema 2.3.3. Los circuitos de MB son exactamente los soportes

minimales de formas lineales que se anulan en ker(A).

Demostración. Sea w = (w1, . . . , wn) 6= 0 en el subespacio ge-

nerado por las filas de A. Con esto, w induce una forma lineal que

se anula en ker(A). Si notamos por Bi a la i-ésima fila de B, resulta

0 = wB =
n
∑

i=1

wiBi. Si sop(w) = {i : wi 6= 0} = {i1, . . . , it} resulta

{Bi1 , . . . , Bit} un conjunto linealmente dependiente, y sop(w) un con-

junto dependiente en MB. Rećıprocamente, si miramos un conjunto

dependiente en MB, es el soporte de una forma lineal que se anula en

ker(A).
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Con esto, los soportes minimales de las formas lineales que se anulan

en ker(A) son exactamente los conjuntos dependientes minimales en

MB, o sea sus circuitos, como queŕıamos ver. �

Para poder demostrar la siguiente proposición, utilizaremos algunos

conceptos relacionados con bases de Gröbner. Para una referencia, se

puede revisar [CLO].

Dado w ∈ Rn, definimos un orden monomial ≤w como α ≤w β sii

〈α,w〉 ≤ 〈β, w〉 (α, β ∈ (N0)
n), y resolvemos los empates con el orden

lexicográfico usual. Para que este orden esté bien definido, necesitamos

que todas las componentes de w no sean negativas. Notaremos esto

como w ≥ 0.

Para F =
∑

α∈A

cαx
α ∈ C[x1, . . . , xn], y un orden monomial ≤w,

consideramos

Lt≤w
(F ) = cβx

β si α ≤w β ∀ α ∈ A, e

Inw(F ) =
∑

α∈A:〈α,w〉 es máximo

cαx
α

Observemos que Lt≤w
(F ) = Lt≤w

(Inw(F )), ya que el término de máxi-

mo peso de f se encuentra desempatando con el orden lexicográfico

entre los términos donde 〈α,w〉 es máximo.

Definamos Inw(I) := 〈Inw(F ) : F ∈ I, F 6= 0〉 para un ideal

I ⊆ C[x1, . . . , xn]. Notemos que 〈Lt(Inw(F )) : F ∈ I, F 6= 0〉 =

〈Lt(F ) : f ∈ I, F 6= 0〉. Con todo esto, si {G1, . . . , Gt} es una base de

Gröbner para I, el conjunto {Inw(G1), . . . Inw(Gt)} resulta una base

de Gröbner para Inw(I) por la observación del párrafo anterior.

Ahora bien, sea wi el valor de la máxima coordenada de w. Con-

sideremos w′ = −w + wi(1, . . . , 1) ≥ 0. Como val(cα) = 0 ∀α ∈ A,

resulta inw(F ) = Inw′(F ). Con lo que {Inw′(G1), . . . Inw′(Gt)} resulta

una base de Gröbner (con respecto a ≤w′) para inw(I) = 〈inw(F ) :

F ∈ I, f 6= 0〉.

Observemos que si I está generado por formas lineales homogéneas,

inw(I) también será generado por formas lineales homogéneas. Más

aún, inw(I) resulta un ideal primo por [CLO, 4.5.3, pág 195].

Ahora estamos en condiciones de poder demostrar:

34



Proposición 2.3.4. Sea I ⊂ C[x1, . . . , xn] un ideal generado por

formas lineales homogéneas. Entonces w ∈ T (I) sii inw(ℓ) no es un

monomio ∀ ℓ forma lineal en I.

Demostración. ⇒: Esta implicación es trivial por la Observa-

ción 1.5.6, pues las formas lineales homogéneas son algunos de los po-

linomios en I, y resulta inw(ℓ)(x) = ℓw(x) ya que todos los coeficientes

en ℓ pertenecen a C.

⇐: Si w /∈ T (I), luego existe F ∈ I, F 6= 0 con inw(F ) = xα. Por

las observaciones anteriores, inw(I) resulta un ideal primo, con lo que

existe xi ∈ inw(I). Más aún, uno de los elementos de la base de Gröbner

reducida de inw(I) debe de ser xi. También por las observaciones an-

teriores, los elementos de esta base están formados por polinomios de

la forma Inw′(Gj) = inw(Gj), con los Gj formas lineales en I. O sea

existe una forma lineal ℓ ∈ I con inw(ℓ) = xi, lo que contradice nuestra

hipótesis. �

Comentario 2.3.6. La proposición anterior nos dice que si I es un

ideal generado por formas lineales homogéneas, no es necesario saber

que w ∈ T (Trop(F )) para todo F ∈ I r {0}, para que w ∈ T (I). Sólo

es necesario chequear que w sea un cero tropical de las formas lineales

ℓ ∈ I r 0. Esto es, que el mı́nimo del conjunto {wi : i ∈ sop(ℓ)} se

alcance al menos en dos lugares, para cualquier forma lineal no nula

ℓ ∈ I con soporte minimal. Si A es una matriz de rango máximo tal

que I es generado por las ecuaciones lineales inducidas por sus filas, y

B es un Gale dual de A, por 2.3.3, la afirmación anterior es equivalente

a pedir que el mı́nimo de {wi : i ∈ C circuito de MB} se alcance al

menos dos elementos de cualquier circuito C ∈ MB.

Siguiendo el razonamiento del comentario anterior, podemos enun-

ciar y demostrar el principal teorema de este caṕıtulo, según las ideas

expresadas en [FS].

Teorema 2.3.5. Sea I ⊂ C[x1, . . . , xn] el ideal generado por los

polinomios homogéneos lineales inducidos por las filas de la matriz A,

y la matriz B un Gale dual de A. Entonces

trop(Im(B)) = trop(Ker(A)) = T (I) = B(MB)

donde B(MB) es el abanico de Bergman asociado a B.
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Demostración. La demostración de este teorema se basa en la

equivalencia de los siguientes enunciados, donde w es cualquier vector

de Rn:

(1) w es tal que ∀ C circuito de MB, el mı́nimo de {wi : i ∈ C} se

alcanza al menos dos veces

(2) w ∈ T (I)

(3) w ∈ B(MB)

(4) Todo elemento i ∈ {1, . . . , n} pertenece a alguna base de (MB)w

Demostraremos (3) ⇐⇒ (4) ⇐⇒ (1) ⇐⇒ (2) para ver estas

equivalencias.

(3) ⇐⇒ (4): Por definición, w ∈ B(MB) ⇐⇒ Mw no contiene

ningún loop ⇐⇒ todo elemento i ∈ {1, . . . , n} pertenece a alguna

base de Mw

(4) ⇐⇒ (1): Demostraremos esta equivalencia por su negación.

Si no vale (4), luego ∃i ∈ {1, . . . , n} loop en Mw. Tenemos dos casos

posibles:

• Si i no pertenece a ninguna base de MB luego, por definición, {i}

resulta un circuito. Tomando C = {i}, en dicho circuito el mı́nimo se

alcanza sólo una vez, o sea no vale (1).

• Si tenemos que i pertenece a alguna base de MB, sea β una

base de Mw, o sea con w-peso maximal, y consideremos el conjunto

β̃ = {j ∈ β : wi < wj}. Afirmamos que β̃ ∪ {i} es un conjunto

dependiente. De no serlo, podemos completar a β̃∪{i} con un conjunto

ω ⊂ β (eventualmente vaćıo), para obtener una base. Como i pertenece

a esta base, su w-peso no resulta maximal. Con esto podemos ver que

existe s ∈ β r β̃ tal que wi +
∑

j∈β̃

wj +
∑

j∈ω

wj <
∑

j∈β̃

wj +
∑

j∈ω

wj +ws, de

donde obtenemos un absurdo (como s ∈ β r β̃, tenemos que wi ≥ ws).

Al ser β̃ ∪{i} un conjunto dependiente, podemos encontrar un circuito

C con i ∈ C ⊂ β̃, donde por construcción wi < wj para todo j 6= i

en C. Este circuito contradice el enunciado en (1).

Supongamos ahora que no vale (1), y sea C el circuito de MB con

i ∈ C y wi < wj ∀j ∈ C−{i}, o sea el circuito donde se alcanza sólo una

vez el mı́nimo de {wi : i ∈ C}. Si C = {i}, i no pertenece a ninguna base

de MB y no puede pertencer a ninguna base de (MB)w, contradiciendo
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(4). Supongamos ahora que C − {i} 6= ∅. Si i aparece en alguna base φ

de MB, nos armaremos otra base θ, con w−peso mayor que φ, tal que

i /∈ θ. Con esto, φ no podrá ser base de (MB)w y se contradecirá (4).

Al ser φ una base, φ−{i} resulta independiente. Como |φ−{i}| < |φ|

podemos completar a φ−{i} a una base θ. Más aún, el elemento j que

le agregamos podemos elejirlo de forma tal que j ∈ C − {i}. Esto se

debe al hecho que como C − {i} es independiente, existe un conjunto

ω ⊂ φ − {i} (eventualmente vaćıo) con β = (C − {i}) ∪ ω base. Si

consideramos φ − {i}, podemos elegir j ∈ β para completarlo a una

base. Como j /∈ φ−{i} ⇒ j /∈ ω, con lo que necesariamente j ∈ C−{i}.

Como wi < wj por hipótesis,
∑

s∈φ−{i} ws +wj >
∑

s∈φ−{i} ws +wi.

O sea el w−peso de θ es mayor al de φ. Además i /∈ θ, como queŕıamos.

(1) ⇐⇒ (2): Por el Lema 2.3.3, un circuito en MB es un soporte

minimal de una forma lineal que se anula en ker(A). Por la Propiedad

2.3.4, w /∈ T (I) sii existe una forma lineal ℓ que se anula en ker(A),

con inw(ℓ) un monomio. Si pasa esto, tenemos que inw(ℓ) = xj con

j ∈ sop(ℓ). Podemos encontrar un circuito C con j ∈ C ⊂ sop(ℓ).

Por construcción el mı́nimo de {wi : i ∈ C} se alcanza sólo en wj,

contradiciendo (1).

Rećıprocamente, si w ∈ T (I) tenemos que para toda forma lineal ℓ

que se anula en ker(A), inw(ℓ) no es un monomio. En particular, esto

pasa para todas las formas lineales que se anulan en ker(A) con soporte

minimal. O sea que se cumple (1) en virtud del Lema 2.3.3. �

Como consecuencia de la Proposición 2.3.2, podemos reformular el

enunciado de este teorema sólo en términos de la matriz A.

Teorema 2.3.6. Sea I ⊂ C[x1, . . . , xn] el ideal generado por los

polinomios homogéneos lineales inducidos por las filas de la matriz A.

Entonces

trop(Ker(A)) = T (I) = B((MA)∗)

donde B(MA) es el abanico de Bergman asociado a A con respecto a

sus columnas.
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Fijado w ∈ Cn, tenemos que
∑

i∈β

wi es máximo sii
∑

i/∈β

wi es mı́nimo

sii
∑

i/∈β

−wi es máximo. Con esto podemos enunciar el siguiente corola-

rio, donde la tropicalización del ideal I generado por formas lineales

homogéneas se da directamente en términos de MA, y no de su dual.

Corolario 2.3.7. En las condiciones del teorema anterior, tenemos

que

trop(Ker(A)) = T (I) = {w ∈ Cn : (MA)−w no tiene coloops}.

Definición 2.3.7. Al conjunto

B∗(A) = {w ∈ Cn : (MA)−w no tiene coloops}

se lo denomina el coabanico de Bergman de A.

2.4. Tropicalización de subespacios lineales y clases de peso

El objetivo de esta última sección es dar una caracterización de

trop(Ker(A)) = T (I) en términos de clases de peso, donde el ideal I

cumple las mismas condiciones de la sección anterior.

Para poder definir clase de peso, primero necesitamos una definición

preliminar.

Definición 2.4.1. Dado w ∈ Rn, notamos con F(w) a la única

bandera de conjuntos

∅ =: F0 ( F1 ( . . . ( Fs ( Fs+1 := [n]

tal que

wi < wj ⇐⇒ ∃m tal que j ∈ Fm pero i /∈ Fm

Observemos que si llamamos F ′
m = Fm−Fm−1, tenemos que wi = wj

sii existe m tal que i, j ∈ F ′
m .

Definición 2.4.2. Llamamos clase de peso de la bandera F al con-

junto de todos los w ∈ Rn tales que F(w) = F .

Podemos definir las clases de peso por las desigualdades e igualdades

que la definen. Por ejemplo, el conjunto de los vectores w ∈ R4 que

cumplen w1 = w3 < w4 < w2 definen una clase de peso en R4. Su

bandera correspdondiente es F := {2} ( {2, 4} ( {1, 2, 3, 4}.
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Más aún, tenemos que F(w) = F sii w ∈ R(e1 + e2 + e3 + e4) +

R>0(e2 + e4) + R>0e2, donde {e1, e2, e3, e4} es la base canónica de R4.

La clase de peso de F resulta un cono poliedral racional abierto, y si

consideramos su clausura nos queda el conjunto R(e1 + e2 + e3 + e4) +

R≥0(e2 + e4) + R≥0e2. Notemos que en las caras de la frontera de este

conjunto se realizan los conos correspondientes a banderas refinadas

por {2} ( {2, 4} ( {1, 2, 3, 4}, es decir se permiten reemplazar algunas

desigualdades estrictas por igualdades.

Consideremos ahora las banderas donde cada conjunto Fi es un flat

de un matroide M . Las llamaremos banderas de flats.

Si el matroide MB es el asociado a las filas de una matriz B, un flat

Fi de MB resulta un subconjuto de sub́ındices de [n] con la siguiente

propiedad: si j /∈ Fi luego bj /∈ 〈bs : s ∈ Fi〉, donde notamos con bj a la

j-ésima fila de B.

Habiendo definido estos conceptos, podemos enunciar la caracteri-

zación de trop(Ker(A)) = T (I) en términos de clases de peso.

Teorema 2.4.1. Sea I ⊂ C[x1, . . . , xn] el ideal generado por los

polinomios homogéneos lineales inducidos por las filas de la matriz A,

y la matriz B un Gale dual de A. Entonces trop(Ker(A)) = T (I) es

la unión de las clases de peso de las banderas de flats de MB.

Demostración. Comencemos por ⊇: Sea ∅ =: F0 ( F1 ( . . . (

Fs ( Fs+1 := [n] una bandera de flats, F su clase de peso, y w ∈ F .

Sea ℓ una forma lineal homogénea que se anula en ker(A).

Sea t = mı́n{j : sop(ℓ) ⊂ Fj}. Afirmamos que 2 ≤ |sop(ℓ)∩F ′
t |, con

lo que inw(ℓ) no es un monomio, y por la Proposición 2.3.4 nos queda

que w ∈ T (I). Veamos esta afirmación: Por construcción tenemos que

1 ≤ |sop(l)∩Ft|. Si sólo vale la igualdad, sea sop(l)∩F
′
t = {a}. Podemos

encontrar un circuito C con a ∈ C ⊂ sop(ℓ). Con esto nos queda que

C − Ft−1 = {a}, lo que contradice por definición que Ft−1 sea un flat.

Veamos la otra inclusión: Sea w ∈ T (I). Miremos su clase de peso,

y su bandera asociada. Sea s = mı́n{t : Ft no es un flat}. Luego existe

j ∈ Fs+1 tal que la j-ésima columna de B pertenece al subespacio

generado por las columnas de B correspondientes a Fs. Con esto, el

conjunto generado por las columnnas de Fs ∪ {j} resulta linealmente

dependiente, o sea es un conjunto dependiente en el matroide MB. Por
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el Lema 2.3.3 podemos encontrar una forma lineal ℓ que cumpla con

la condición que j ∈ sop(ℓ) ⊂ Fs ∪ {j}. Pero por construcción resulta

wj < wi para todo i ∈ Fs, con lo que inw(ℓ) = cjxj es un monomio,

contradiciendo nuestra hipótesis. �

Para finalizar este caṕıtulo, y en virtud de las observaciones hechas

sobre las clausuras de las clases de peso, podemos expresar el siguiente

corolario.

Corolario 2.4.2. Sea I ⊂ C[x1, . . . , xn] el ideal generado por los

polinomios homogéneos lineales inducidos por las filas de la matriz A,

y la matriz B un Gale dual de A. Entonces trop(Ker(A)) = T (I) es

la unión de la clausura de las clases de peso de las banderas de flats

maximales de MB.

Ejemplo 2.4.3. Si queremos tropicalizar el núcleo de la matriz

A =







1 1 0 0 0

0 1 1 0 0

0 0 1 1 0







buscamos un Gale dual

B =















1 0

−1 0

1 0

−1 0

0 1















Las únicas banderas de flats maximales de MB son {5} ( [5] y

{1, 2, 3, 4} ( [5], con lo que T (I) = {R(1, 1, 1, 1, 1)+R≥0(1, 1, 1, 1, 0)} ∪

{R(1, 1, 1, 1, 1)+R≥0(0, 0, 0, 0, 1)}. Notemos que estos dos conos tienen

una cara en común, con lo que nos queda

trop(ker(A)) = R(1, 1, 1, 1, 1) + R(0, 0, 0, 0, 1)

.

Ejemplo 2.4.4. Si queremos tropicalizar el núcleo de la matriz

A =







−1 2 0 0 0

1 −2 1 1 0

2 −4 −3 −3 −1






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En este caso, como el (0, 0, 0) es una fila del Gale dual de A, nunca

podremos formar una bandera de flats de {1, 2, 3, 4, 5}. Con esto te-

nemos que trop(ker(A)) = ∅, en concordancia con el Corolario 1.5.7

(pues x5 ∈ I es un monomio).

Ejemplo 2.4.5. Si queremos tropicalizar el núcleo de la matriz

A =







1 1 2 1 0 0

0 0 1 1 2 1

0 0 0 0 1 1






,

tenemos que un Gale dual será:

B =



















0 0 −1

−1 1 1

0 −1 0

1 1 0

−1 0 0

1 0 0



















.

En este caso, todas la banderas de flats de MB serán:

1.− {1} ( {1, 2} ( [6] y {2} ( {1, 2} ( [6]

2.− {1} ( {1, 3} ( [6] y {3} ( {1, 3} ( [6]

3.− {1} ( {1, 4} ( [6] y {4} ( {1, 4} ( [6]

4.− {1} ( {1, 5, 6} ( [6] y {5, 6} ( {1, 5, 6} ( [6]

5.− {2} ( {2, 3} ( [6] y {3} ( {2, 3} ( [6]

6.− {2} ( {2, 4} ( [6] y {4} ( {2, 4} ( [6]

7.− {2} ( {2, 5, 6} ( [6] y {5, 6} ( {2, 5, 6} ( [6]

8.− {3} ( {3, 4, 5, 6} ( [6]

9.− {4} ( {3, 4, 5, 6} ( [6]

10.− {5, 6} ( {3, 4, 5, 6} ( [6]

Resultando en R6/〈(1, . . . , 1)〉:

Trop(ker(A)) = B∗(A) = (R≥0 · e1 + R≥0 · e2) ∪ (R≥0 · e1 + R≥0 · e3)∪

(R≥0 · e1 + R≥0 · e4) ∪ (R≥0 · e1 + R≥0 · (e5 + e6)) ∪ (R≥0 · e2 + R≥0 · e3)∪

(R≥0 · e2 + R≥0 · e4) ∪ (R≥0 · e2 + R≥0 · (e5 + e6))∪

(R≥0 · (e3 + e4 + e5 + e6) + R≥0 · (e4 + e5 + e6))∪

(R≥0 · (e3 + e4 + e5 + e6) + R≥0 · (e3 + e5 + e6))∪

(R≥0 · (e3 + e4 + e5 + e6) + R≥0 · (e5 + e6)).
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Notar que en la enumeración de las clases de peso pusimos juntas

a aquellas que tienen una frontera en común, con lo que se pueden

expresar como un sólo cono. Por ejemplo, del caso 1.- resultan los conos

(R≥0 · (e1 + e2) + R≥0 · e1) ∪ (R≥0 · (e1 + e2) + R≥0 · e2) =

= (R≥0 · e1 + R≥0 · e2).

Comentario 2.4.6. En [R] podemos encontrar la implementación

de un algoritmo en C++ que calcula la tropicalización de espacios

lineales en forma eficiente. La impelemtación, llamada TropLi, es tam-

bién una herramienta para calcular vértices del poĺıtopo de Newton de

A-discriminantes, que estudiaremos con más precisión en el caṕıtulo 6.
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Caṕıtulo 3

El abanico secundario y su relación con las curvas

tropicales

3.1. Introducción

Para comenzar, recordaremos ciertas definiciones y relaciones entre

el gráfico de una curva tropical T (f) ⊆ R2 y una subdivisión regu-

lar dual (en el espacio dual (R2)∗ ≃ R2) del Poĺıgono de Newton de

F , donde F =
∑

α∈A

aαx
α ∈ K[x±1

1 , . . . , x±1
d ], trop(F ) = f y todos los

coeficientes de F son no nulos.

Para profundizar sobre este tema, se puede consultar en [GKZ,

Caṕıtulo 7] o [M].

Definición 3.1.1. Un poĺıtopo entero marcado ∆ es un poĺıtopo

convexo en Rd, con vértices en Zd, junto con un subconjunto A de los

puntos de ∆ ∩ Zd, que contenga a los vértices de ∆.

Definición 3.1.2. Una subdivisión marcada de un poĺıtopo ∆ es

una colección de poĺıtopos marcados T = {(Q1,A1), . . . , (Qk,Ak)} ta-

les que:

• ∆ = ∪k
i=1Qi

• Qi∩Qj es una cara (posiblemente vaćıa) tanto de Qi como de Qj,

para todo i, j.

• Ai ⊂ ∆ ∩ Zd para i = 1, . . . , k

• Ai ∩ (Qi ∩Qj) = Aj ∩ (Qi ∩Qj) para todo i, j

Notar que no se pide que ∪k
i=1Ai = ∆ ∩ Zd.

Definición 3.1.3. Llamamos el tipo de una subdivisión marcada a

la subdivisión, o sea la colección de los Qi sin las marcas de los Ai.

Ejemplo 3.1.4. La Figura 3.1 muestra un ejemplo de una subdivi-

sión marcada y su tipo. El subconjunto de puntos marcados en cada Q
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están dibujados en negro. Los puntos de ∆∩Z2 que no están marcados,

están dibujados en blanco. Usaremos esta convención a lo largo de todo

el texto.

Figura 3.1. Una subdivisión marcada y su tipo.

Observación 3.1.5. Dado F =
∑

α∈A

aαx
α ∈ K[x±1

1 , . . . , x±1
d ], sean

f = trop(F ), cα = val(aα), y ℓα la forma lineal cα+〈w, α〉. Recordemos

que w ∈ T (f) sii f(w) = trop(F )(w) = mı́n{ℓα(w)} se alcanza al

menos dos veces. Esto quiere decir que existen dos exponentes α 6= β

tales que ℓα(w) = ℓβ(w) ≤ ℓγ(w) para todo γ ∈ A. Podemos ver estas

desigualdades de la siguiente manera: fijemos w ∈ Rd, y definamos

la forma lineal φ con coeficientes en R como φ(∗) := 〈∗, w〉 + a. Nos

queda que w ∈ T (f) y a = f(w) sii existen dos exponentes α 6= β

con φ(−α) = cα, φ(−β) = cβ y φ(−γ) ≤ cγ ∀γ ∈ A. Más aún, como

ℓα(w) = ℓβ(w), tenemos que 〈α − β, w〉 = cβ − cα, o sea w pertence a

un hiperplano perpendicular a α − β. Observemos que los coeficientes

de los monomios de grado uno de la forma lineal φ dan un punto en

este hiperplano, con lo cual dicho hiperplano queda completamente

determinado.

Notemos que si tenemos una forma lineal φ con cγ < φ(−γ) para

algún γ ∈ A, esta forma lineal no nos aportará información sobre T (f).

Esto nos lleva a considerar la proyección de la cápsula convexa

inferior de {(−α, cα) : α ∈ A} sobre Rd. Esta proyección nos pro-

duce una subdivisión de ∆, el poĺıtopo de Newton asociado a f . Las

subdivisiones obtenidas de esta manera las denominaremos subdivisio-

nes regulares o coherentes. En estas subdivisiones estarán marcados los

puntos α ∈ A sii (−α, cα) aparece en la cápsula convexa inferior de

{(−α, aα) : α ∈ A}
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Ejemplo 3.1.6. Si consideramos el polinomio F (x, y) = 1 + x +

t2x2+(−t2+t3)x3+2y−xy+ty2+(3+t)xy2+t2xy2+3t2y3 ∈ K[x±1, y±1],

y la valuación del Ejemplo 1.4.5, la subdivisión regular inducida es la

de la Figura 3.1.

También podemos dibujar la curva tropical T (trop(F ))=T (I), don-

de I = 〈F 〉, (ver Figura 3.2). Las formas lineales que interpolan los

puntos (−α, cα) son: φ1 = x − y − 1 en Q1, φ2 = −2x − 2 en Q2

y φ3 = 0 en Q3. Con esto, los vértices de la curva tropical resultan:

v1 = (1,−1), v2 = (−2, 0) y v3 = (0, 0).

Figura 3.2. Gráfico de la curva tropical definida por el

polinomio del Ejemplo 3.1.6.

Con todo esto, las subdivisiones regulares de ∆ son duales a las

curvas tropicales en el siguiente sentido: cada celda de dimensión s de

la proyección de la cápsula convexa inferior de {(−α, aα) : α ∈ A}

sobre Rd, es dual a una celda de T (f) de dimensión d − s. Y ambas

celdas resultan ortogonales.

En particular, para curvas planas, tenemos que cada poĺıgono mar-

cado de una subdivisión regular de ∆ es dual a un vértice de T (f), y

dicho vértice tiene por coordenada i-ésima al coeficiente de xi de la for-

ma lineal que cumple φ(−α) = cα para todo punto marcado α de dicho

poĺıgono y φ(−β) < cβ para cualquier otro punto β de la subdivisión.

Cada lado e de un poĺıgono de la subdivisión es dual a un eje E de
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T (f). Más aún, el eje E es ortogonal a su lado dual e. Por último, el

eje E no es acotado sii su eje dual e está en la frontera del poĺıtopo de

Newton ∆. Llamaremos peso del eje E a la longitud entera de su lado

dual e, o sea |e ∩ Z2| − 1. Observemos que a e lo podemos representar

como un vector αβ = β − α = (a, b) ∈ Z2. Con esto, el peso de E es

igual al mcd(a : b).

Esta dualidad implica que, teniendo una curva tropical dada, po-

demos deducir el tipo de la subdivisión marcada que la genera, pero

no saber qué vértices estarán marcados y cuáles no. Para poder dedu-

cir esto, es indispensable contar con los coeficientes del polinomio en

cuestión.

Para profundizar sobre estos temas, se puede consultar [Mi], en

particular la proposición 3.11.

Definición 3.1.7. Llamemos RA al conjunto de vectores indexados

por los puntos en A. Como vimos antes, un punto u ∈ RA induce

una subdivisión regular de ∆. Decimos que dos puntos u y v en RA

son equivalentes sii inducen la misma subdivisión regular marcada de

∆. Esto define una relación de equivalencia sobre RA, y sus clases

de equivalencia resultan los interiores relativos de conos convexos. La

colección de dichos conos es el abanico secundario de ∆.

Notemos que u y u + λ(1, . . . , 1) están simpre relacionados, con lo

que 〈(1, . . . , 1)〉 siempre está incluido en el espacio de linealidad del

abanico secundario. Con esto podemos trabajar módulo este vector, y

considerar en Rs−1 = RA/R · (1, . . . , 1) el abanico resultante, donde

|A| = s. Más aún, si consideramos a Rs como un espacio que parame-

trice a las curvas tropicales con soporte A, tenemos que si a un punto a

le sumamos un múltiplo de (1, . . . , 1), la curva tropical que define este

nuevo punto es la misma que la definida por a, con lo que resulta natu-

ral cocientar a Rs por R · (1, . . . , 1). Por abuso de notación, llamaremos

también abanico secundario al abanico obtenido en Rs−1 al cocientar

en el abanico secundario por R · (1, . . . , 1).
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3.2. Dimensión de los conos del abanico secundario

Desde esta sección, y por el resto del caṕıtulo, nos concentraremos

en estudiar curvas tropicales planas, es decir analizaremos las varieda-

des tropicales T (f) con f ∈ T[x±1
1 , x±1

2 ].

Sean T = {(Ql,Al) : 1 ≤ l ≤ k} una subdivisión marcada de ∆, y

L := {(λij) ∈ RA :
∑

ij

λij(i, j) = 0,
∑

ij

λij = 0}

el espacio de relaciones afines entre los puntos enteros de ∆.

Y, dado 1 ≤ l ≤ k, sea LAl
:= {(λij) ∈ L : λij = 0 ∀(i, j) /∈ Al} el

espacio de relaciones afines entre los elementos de Al. Sea LT =
∑

l

LAl
.

Lema 3.2.1. La codimensión del cono en el abanico secundario

correspondiente a la subdivisión marcada T es dim(LT ). En particu-

lar, un cono en el abanico secundario correspondiente a una subdisión

marcada tiene dimensión máxima sii la subdivisión marcada es una

triangulación. O sea, cada poĺıgono Qi es un triángulo, y cada uno de

estos triángulos los únicos puntos marcados son los vértices.

Para una demostración de este lema, se puede ver [GKZ, Corola-

rio 2.7].

Ejemplo 3.2.1. Siguiendo con el ejemplo de la subdivisión de la

Figura 3.1, el espacio L viene dado por el núcleo de la matriz






1 1 1 1 1 1 1 1

0 1 0 1 1 0 0 3

0 0 1 1 2 2 3 0







que tiene por base a {(1,−1,−1, 1, 0, 0, 0, 0), (2,−1,−2, 0, 1, 0, 0, 0),

(1, 0,−2, 0, 0, 1, 0, 0), (2, 0,−3, 0, 0, 0, 1, 0), (2,−3, 0, 0, 0, 0, 0, 1)}

Tenemos que LA1
es el subespacio generado por estos vectores, con

primera, segunda, cuarta y octava coordenadas nulas. Con esto nos

queda LA1
= 〈(0, 0, 1, 0, 0,−2, 1, 0)〉.

En LA2
la primera, tercera, sexta y séptima coordenadas deben ser

cero, quedando LA2
= 〈(0,−1, 0, 2, 1, 0, 0, 0)〉.

Por último, LA3
= 〈(1,−1,−1, 1, 0, 0, 0, 0), (2,−1,−2, 0, 1, 0, 0, 0〉

pues debe tener un cero en las últimas tres coodenadas.
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Con esto LT = LA1
+LA2

+LA3
resulta de dimensión 4, con lo que

la codimensión del cono en el abanico secundario correspondiente a la

subdivisión T de la Figura 3.1 resulta ser 4 por el Lema 3.2.1.

Observación 3.2.2. Un cono en el abanico secundario es de codi-

mensión uno sii exactamente uno de los Ai de la subdivisión marcada

contiene exactamente un circuito, o si varios de los Ai contienen un

único circuito Ci, dichos circuitos resultan iguales y este (único) circui-

to está incluido en un lado común a esos Ai. En este caso, un circuito es

un conjunto de puntos enteros que es afinmente dependiente, y tal que

extrayendo un punto cualquiera queda un conjunto afinmente indepen-

diente. La Figura 3.3 muestra todos los tipos de circuitos que pueden

aparecer en una configuración de puntos en el plano, junto a algunas

subdivisiones marcadas de codimensión uno.

Figura 3.3. Circuitos planares y subdivisiones de co-

dimensión uno.

3.3. Dimensión de los tipos de curvas tropicales

Dada una curva tropical C, hemos visto que es dual a un tipo

α = {Q1, . . . , Qk} de una subdivisión marcada. También llamaremos a

α el tipo de la curva tropical C.

Podemos parametrizar a todas las curvas tropicales del mismo tipo,

con un poliedro no acotado en R2+b, donde b es el número de ejes

acotados de C. Esto es aśı pues podemos mover la curva en el plano,

y cambiar la longitud de los lados acotados, sin cambiar el tipo de la

curva. Sin embargo, las longitudes de los lados acotados no pueden ser

cambiadas independientemente si la curva tropical tiene género g ≥ 1.
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Seamos más expĺıcitos en este razonamiento. Supongamos que co-

nocemos un vértice de una curva tropical C. Como conocemos al tipo

de esta curva, también conocemos las direcciones de los ejes que sa-

len de ese vértices. Con estas direcciones, podemos conocer todos los

vértices adyacentes al conocido (si los hubiere) dando sólo una de sus

coordenadas. Por ejemplo, la primera coordenada si el eje es horizontal,

o la segunda en cualquier otro caso. Por eso necesitamos 2 + b coorde-

nadas: 2 para fijar un vértice cualquiera, y b para definir los b vértices

restantes. Ahora bien, si la curva tiene género g ≥ 1, resultará que la

curva tropical tiene poĺıgonos cerrados, con lo que necesitaremos 2g

(no necesariamente independientes) ecuaciones en R2+b para que cierre

cada poĺıgono. Esto se debe a que en un poĺıgono cerrado, si conside-

ramos los lados como vectores orientados todos en el mismo sentido,

la suma de los lados da el vector nulo como resultado. O sea, tenemos

que la suma de la primer coordenada de los vértices de cada poĺıgono

es igual a cero, y lo mismo para la segunda coordenada.

Definimos como dimensión del tipo α, y notamos dim(α), a la di-

mensión del poliedro parametrizante de todas las curvas de tipo α.

Para el siguiente lema, recordemos que consideramos al abanico

secundario de ∆ como un abanico en RA/R · (1, . . . , 1).

Lema 3.3.1. Dada una subdivisión marcada T = {Qi,Ai} de ∆ de

tipo α, tenemos que

dim(α) ≤ dim(CT )

donde CT es el cono del abanico secundario al que pertenece T .

La igualdad se alcanza śı y sólo si en T todos los puntos del reticu-

lado Z2 de ∆ están marcados.

Demostración. Sea u ∈ CT un punto con representante u ∈ RA.

A este punto le asociamos el polinomio tropical p =
⊕

α∈A

uα ⊙ wα, y

con esto le asignamos una curva tropical de tipo α. Como observamos

antes, si fijamos uno de los poĺıgonos en T y el vértice correspondiente

a este poĺıgono, dando, convenientemente, una de las dos coordenadas

de los otros b vértices, obtenemos una función

ΦT : CT → R2+b

que va de CT al espacio que parametriza las curvas de tipo α.
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Observemos que si (x, y) es un vértice de T asociado a una celda

AS, donde (i, j), (k, l) y (m,n) son vértices de AS, tenemos que (x, y)

cumple con la ecuación

(

k − i l − j

m− i l − j

)(

x

y

)

=

(

uij − ukl

uij − umn

)

Como dim(AS) = 2, los tres vértices son af́ınmente independientes.

Con esto, la ecuación matricial tiene solución única, y el vértice (x, y)

resulta una combinación lineal única de los coeficientes uij, ukl y umn.

O sea, ΦT es una transformación lineal del cono CT en el espacio

parametrizante dentro de R2+b. Y, por lo tanto, vale la desigualdad

dim(α) ≤ dim(CT ).

Sea ahora S una subdivisión con todos los puntos marcados, y vea-

mos que ΦS resulta un isomorfismo. Con esto se ve la igualdad buscada.

Cada curva tropical de tipo α viene de un punto u (o sea, es la curva

tropical asociada al polinomio p =
⊕

α∈Γ

uα⊙wα). Este punto u está en un

cono del abanico secundario, correspondiente a una subdivisión mar-

cada de tipo α. Asumamos que hay un punto del reticulado que no

está marcado en esta subdivisión. Entonces podemos “bajar” este pun-

to hasta que toque la cápusula convexa inferior de {(−α, uα) : α ∈ A}

sin que se modifique la curva tropical asociada a u. Con esto, toda

curva en el espacio de parametrización de las curvas de tipo α viene

de alguna subdivisión de tipo α, con todos sus puntos marcados. Esto

muestra que ΦS es sobreyectiva.

Recordemos que todos los puntos del reticulado Z2 en la subdivisión

S están marcados. Veamos ahora que ΦS resulta inyectiva. Para esto

veamos que la curva tropical dada por p =
⊕

α∈Γ

uα ⊙wα define uńıvoca-

mente a la clase u de u en CS. Sea v otro vector tal que p =
⊕

α∈Γ

vα⊙wα

define la misma curva tropical que u. Como definen la misma curva, los

tipos de las divisiones coherentes que definen son trivialmente los mis-

mos. Y como estamos considerando las subvisiones con todos los puntos

marcados, dichas subdivisiones resultan las mismas. Además, los vérti-

ces de las curvas tropicales resultan duales a los mismos poĺıgonos (con

todos sus puntos marcados) de la subdivisión S. Con esto, dado un
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vértice (x, y) de la curva tropical, cumple que:
(

k − i l − j

m− i l − j

)(

x

y

)

=

(

uij − ukl

uij − umn

)

=

(

vij − vkl
vij − vmn

)

para todos los vértices (i, j) (k, l) y (m,n) en la celda dual correspon-

diente en S.

Con la última igualdad vemos que los tres coeficientes de u y v

correspondientes a los tres vértices en consideración de dicha celda

deben diferir en una misma constante k = ukl − vkl = uij − vij =

umn − vmn.

Pero si miramos otro punto cualquiera marcado en la celda dual

al vértice (x, y) en la curva tropical, tenemos que los respectivos coefi-

cientes en u y v deben diferir en la misma constante, pues cumplen las

mismas ecuaciones.

Con este mismo análisis, llegamos a que todos coeficientes corres-

pondientes a los puntos marcados en una celda (fija) de dimensión 2

en S, difieren en una constante. Ahora bien, dos celdas de dimensión

2 en S con una arista en común diferirán en la misma constante (la

diferecia en los coeficientes correspondientes a dos puntos cualesquiera

de la arista en común). Y con esto, las diferencias en todas las celdas

resulta la misma, pues S es conexo. O sea, resulta u = v+k · (1, . . . , 1),

con lo que u = v en CS, que es lo que queŕıamos ver. �
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Caṕıtulo 4

Tropicalización de la famila de curvas planas con

una singularidad en un punto fijo

4.1. Introducción

En este caṕıtulo vamos a desarrollar las herramientas necesarias

para caracterizar la tropicalización de la familia de curvas planas con

soporte fijo A = {m1, . . . ,ms} ⊆ Z2 (cuya cápsula convexa es de di-

mensión dos), y una singularidad en un punto fijo en (K∗)2. Como

vimos en el comienzo del Caṕıtulo 2, la tropicalización de dicha familia

se obtiene mediante una traslación de la tropicalización del núcleo de

la matriz

A =

(

1 1 . . . 1

m1 m2 . . . ms

)

∈ Z3×s.

En este caṕıtulo atacaremos a este problema considerando el Teo-

rema 2.4.1 y su corolario. Para esto tendremos que poder calcular las

banderas de flats de MB, donde B es un Gale dual de la matriz A.

Dada la matriz A, construiremos un Gale dual B de ella de la

siguiente manera:

Observación 4.1.1. Usaremos (t, x, y) para las coordenadas canó-

nicas de R3. Elijamos tres puntos enA que sean af́ınmente independien-

tes (que puede hacerse pues la cápsula convexa de A es de dimensión

dos). Al levantar estos puntos al plano t = 1 también resultan af́ınmente

independientes, pues la proyección en el plano t = 0 de una recta en

el plano t = 1 es otra recta. Supongamos, sin pérdida de generalidad,

que esos tres puntos son m1, m2 y m3. Podemos realizar el proceso

de triangulación de Gauss-Jordan con respecto a estas columnas, y

obtenemos una matriz Ã con mismo Gale dual (sobre Q) que A. La

forma de esta nueva matriz es

Ã =
(

Id3×3 | A1

)

∈ Q3×s.
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Como lo que efectuamos fue una transformación af́ın sobre las co-

lumnas de A, que yacen en el plano t = 1, tenemos que las columnas

de Ã ahora yacen en el plano t + x + y = 1, ya que las tres primeras

columnas son los vectores de la base canónica de R3.

Con esta matriz Ã es fácil obtener un Gale dual B (sobre Q) de A,

quedando:

B =

(

−A1

Id(s−3)×(s−3)

)

∈ Qs×(s−3)

donde |A| = s.

Observemos que, por construcción, las primeras tres coordenadas de

la i-ésima columna de B son las opuestas de los puntos transformados

m̃i+3.

Comentario 4.1.2. En un tal Gale dual, queremos encontrar ban-

deras de flats maximales, o sea banderas de s−3 subespacios Vi ⊂ Rs−3:

{0} ( V1 ( . . . ( Vs−3 = Rs−3

donde cada Vi está generado por el conjunto de filas {bj : j ∈ Fi}. En

particular, Fs−3 = {1, . . . , s}.

Definimos F ′
i := Fi \Fi−1. Con esto, cada F ′

i debe de tener al menos

un elemento. Como en total tenemos s vectores filas, hay 3 vectores

“extras” que pueden a priori pertenecer a cualquiera de los F ′
i . En el

próximo lema mostramos que, de hecho, no tenemos muchas opciones.

Lema 4.1.1. Con la notación del Comentario 4.1.2, en cada ban-

dera maximal de flats de un Gale dual B de A, podemos tener sólo dos

situaciones:

(a) |F ′
i | = 1 para todo i = 1, . . . , s− 4 y |F ′

s−3| = 4, ó

(b) |F ′
s−3| = 3 y existe un j ∈ {1, . . . , s− 4} con |F ′

j | = 2

En el primer caso, si F ′
s−3 = {a, b, c, d}, cualquier subconjunto pro-

pio de los puntos ma,mb,mc y md es af́ınmente independiente (o sea

{ma,mb,mc,md} es un circuito de tipo (A) o (B) como los de la Figu-

ra 3.3).

En el segundo caso, si F ′
s−3 = {a, b, d}, los puntos ma,mb y md son

af́ınmente dependientes (o sea {ma,mb,md} es un circuito de tipo (C)
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como en la Figura 3.3). Más aún, todos los puntos mr con r ∈ F ′
l , l > j,

están en la misma recta que ma,mb y md.

Demostración. Durante toda la demostración utilizaremos el he-

cho que la i-ésima fila del Gale dual B de A (con 4 ≤ i ≤ s) es bi = ei−3,

donde {e1, . . . , es−3} es la base canónica de Rs−3.

Para demostrar el teorema, primero probaremos que |F ′
s−3| no puede

ser 2 (resp.1). Asumamos que aśı lo es. Vale que dim(Vs−4) = s−4 por

la maximalidad de la bandera de flats en consideración. Y |Fs−4| = s−2

(resp. s− 1), con Vs−4 = 〈bi : i ∈ Fs−4〉. Tenemos dos opciones en este

caso:

(1) {br : r ∈ Fs−4} puede contener s− 4 de los vectores de la base

canónica de Rs−3 y dos de los vectores “especiales” b1, b2, b3, o

(2) puede contener s− 5 (resp. s− 4) vectores de la base canónica

de Rs−3 y todos los vectores “especiales” b1, b2 y b3.

Veamos el primer caso: en el conjunto {br : r ∈ Fs−4} sólo nos falta un

vector canónico, digamos que es bj+3 = ej. Con esto, los dos vectores

especiales en este conjunto, digamos b2 y b3, tendrán un cero en su

j-ésima coordenada (si no, la dimensión de Vs−4 seŕıa s − 3). Estos

dos ceros son la segunda y tercera coordenada del punto m̃j (que es

el transformado de mj después de la realizar la construcción de B

como en 4.1.1). Con esto resulta m̃j = (a, 0, 0), pero como los puntos

transformados viven en el plano t+ x+ y = 1, vale que m̃j = (1, 0, 0).

Aśı mj = m1, pues la transformación lineal af́ın es inyectiva, resultando

una contradicción por como armamos la matriz A.

Consideremos ahora el segundo caso: Ahora faltan dos vectores

canónicos en el conjunto {br : r ∈ Fs−4}, digamos bj+3 = ej y bk+3 = ek
(resp. le falta sólo un vector canónico). Con esto, si miramos la j-ésima

y la k-ésima columna de la matriz A1, deben de resultar l.d. (respect. el

vector cero), pues esas columnas se arman con las j-ésimas y k-ésimas

coordenadas de los tres vectores especiales b1, b2 y b3. Las columnas de

A1 cumplen la ecuación t + x + y = 1; luego, si dos son l.d. deben ser

las mismas columnas, lo que es una contradicción (resp. el vector cero

no cumple la ecuación).
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Con esto podemos concluir que para cualquier bandera maximal

de flats de B (y también para cualquier Gale dual de A) tenemos que

F ′
s−3 = 3 ó 4.

Tomemos, entonces, una bandera de flats maximal cualquiera. Para

demostrar las afirmaciones sobre las dependencias afines vamos a utili-

zar otro Gale dual de A. Para esto, elijamos a y b cualesquiera en F ′
s−3

y un c que no pertenezca a este conjunto, tal que ma,mb y mc resulten

af́ınmente independientes. Usaremos estos puntos como los pivotes de

la Observación 4.1.1. Sin pérdida de generalidad, podemos suponer que

a = 1, b = 2 y c = 3.

Sea d un tercer vértice en F ′
s−3, y supongamos que md es af́ınmen-

te dependiente con m1 y m2. Como la dependencia af́ın se conserva

al aplicar la transformación de la Observación 4.1.1, m̃1 = (1, 0, 0),

m̃2 = (0, 1, 0) y m̃d son af́ınmente dependientes. Con esto la tercera

coordenada de m̃d resulta 0. O sea, b3 tiene un 0 en su (d − 3)-ésima

coordenada. Queremos probar que no puede haber un cuarto elemento

en F ′
s−3. Para eso veremos que {1, . . . , s} \ {1, 2, d, i} ⊂ Fs−4 implica

que i ∈ Fs−4.

Primero asumamos que i = 3. Pero b3 está en el subespacio generado

por {bi = ei−3 : 4 ≤ i ≤ s, i 6= d}, pues b3 tiene un 0 en su (d − 3)-

ésima coordenada. Con esto, si {1, . . . , s} \ {1, 2, d, 3} ⊂ Fs−4 vale que

3 ∈ Fs−4.

Ahora asumamos que i 6= 3, y supongamos que i /∈ Fs−4. Con

esto, los s − 4 vectores {b3, b4, . . . , bs} \ {bi, bd} generan el subespacio

Vs−4 de dimensión s − 4, y los vectores de Vs−4 tienen su (d − 3)-

ésima componente igual a 0 (bd = ed−3). Con esto, la (i − 3)-ésima

coordena de b3 no puede ser cero también, pues en ese caso también

todos los vectores de Vs−4 tendŕıan 0 en su (i − 3)-ésima coordenada

(pues bi = ei−3) y resultaŕıa dim(Vs−4) ≤ s − 5 (pues tenemos que

dim({xd−3 = xi−3 = 0}) = s − 5). Pero con todo esto, resulta bi una

combinación lineal de los vectores en el conjunto en consideración, y por

lo tanto pertenece a Vs−4. Luego i ∈ Fs−4, lo que es una contradicción

a lo que estábamos suponiendo (que i /∈ Fs−4). En consecuencia, vimos

que {1, . . . , s} \ {1, 2, d, i} ⊂ Fs−4 implica que i ∈ Fs−4. Para resumir,

hemos probado que si asumimos que 1, 2 y d ∈ F ′
s−3 son af́ınmente

dependientes, luego Fs−4 = {1, . . . , s} \ {1, 2, d}, resultando |F ′
s−3| = 3.
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Como consecuencia del párrafo anterior, si |F ′
s−3| = 4 tenemos un

conjunto tal que cualquier subconjunto de 3 elementos es af́ınmente

independiente, o sea un circuito de tipo (A) o (B) como en la Figura 3.3.

Y esta es la primera afirmación de nuestro lema.

Veamos la segunda afirmación, asumiendo F ′
s−3 = {a, b, d}. Arme-

mos el Gale dual B de A como en 4.1.1, usando como pivotes ma,mb

y mc, donde los tres puntos son af́ınmente independientes. Además pi-

damos c ∈ F ′
k, con k maximal en el siguiente sentido: si i ∈ F ′

l con

k < l < s, mi resulta af́ınmente dependiente con ma,mb. Nuevamente,

sin pérdida de generalidad, supondremos a = 1, b = 2 y c = 3. Con

esto, Fs−4 = {3, . . . , s} \ {d}, con d > 3. Al igual que antes, b3 tiene

que tener un cero en su (d − 3)-ésima coordenada, que corresponde

a la tercera coordenada de m̃d. O sea, m̃1 = (1, 0, 0), m̃2 = (0, 1, 0)

y m̃d son af́ınmenten independientes, por estar alineados en larecta

λ(1,−1, 0)+(1, 0, 0) pues m̃d = (t, x, 0) con t+x = 1. Como la transfor-

mación de 4.1.1 es inversible, y conserva la dependencia af́ın en ambos

sentidos, resultan ma,mb y md af́ınmente dependientes.

Por el mismo motivo del párrafo anterior, podemos afirmar que si

ma,mb ymi son af́ınmente dependientes, b3 tendrá un cero en su i-ésima

coordenada. Sea entonces

β = {bi : i ≥ 4,mi no está en la recta que pasa por m1 y m2}

= {ei−3 : i ≥ 4,mi es af́ınmente independiente con m1 y m2},

luego b3 resulta una combinación lineal de los elementos de β, y nin-

guno de los coeficientes en esta combinación lineal es cero. O sea que

cualquier subconjunto de β ∪ {b3} con |β| elementos, resulta una base

del subespacio generado por los elementos de β ∪ {b3}. Esto nos dice

que si un conjunto Fl contiene |β| de los elementos de β ∪ {b3}, tiene

que contener a todo β ∪ {b3}. Por la maximalidad que cumple el k de-

finido anteriormente, tenemos que β ∪ {b3} ⊂ Fk, pues si miramos los

valores que vamos agregando para formar la bandera, o sea los i ∈ F ′
l

con k < l, tenemos que ma,mb y mi son af́ınmente dependientes, con

lo que i /∈ β. También por la maximalidad de k, tenemos que Vk−1 no

contiene a dos elementos de β ∪ {b3}, uno de los cuales debe ser b3.

Esto muestra que |F ′
k| = 2. Luego, tomando j = k, este ı́ndice cumple

con todo lo enunciado en el punto (b) de la proposición. �
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Comentario 4.1.3. La vuelta del lema anterior también vale, en

el siguiente sentido:

1. Dado un circuito {ma,mb,mc,md} existen banderas de flats que

satisfacen |F ′
j | = 1 para todo j 6= s− 3 y F ′

s−3 = {a, b, c, d}

2. Dado un circuito {ma,mb,md} y cualquier elección de mc y md

que no sea colineales con ma,mb y md, existen banderas de flats

que satisfacen F ′
s−3 = {a, b, d}, F ′

j = {c, e} y si i ∈ F ′
l con l > j

el punto mi pertenece a la recta que pasa por ma,mb y md.

Esto se puede ver en forma similar a la demostración del Lema 4.1.1,

utilizando un Gale dual apropiado. En el primer caso, se pueden tomar

todos los vectores bi con i /∈ F ′
s−3 como vectores canónicos, y por lo tan-

to podemos armar cualquier bandera de flats con ellos. En el segundo

caso, podemos tomar a ma,mb y mc como pivotes, y luego escogemos

cualquier bandera de forma tal que c y e aparezcan en último lugar

entre todos los i tales que mi no pertenece a la recta que pasa por

ma,mb y md.

4.2. Consideraciones para la clasificación de las curvas

tropicales planas con una singularidad en un punto fijo

Como una consecuencia de la sección anterior, podemos intentar

clasificar todos los tipos de curvas tropicales con una singularidad en

un punto fijo. Para hacer esto, primero expresemos las afirmaciones so-

bre las banderas de flats del Lema 4.1.1 en términos de clases de peso

y subdivisiones marcadas. Mantendremos la notación del Comentario

4.1.2. Por abuso de notación, al referirnos a la subdivisión regular de

∆ nos estaremos refiriendo a la subdivisión inducida en −∆ según la

Observación 3.1.5, y al hablar de un punto m marcado en la subdivi-

sión inducida por u en ∆, nos estaremos refiriendo a si el punto −m

está marcado en la subvisión inducida en −∆ por u.

La siguiente lista muestra las caracteŕısticas que nos interesan de

las diferentes clases de peso que obtenemos, y resume lo que podemos

decir sobre las subdivisiones marcadas y sus curvas tropicales duales.

(A) Asumamos que tenemos una bandera con |F ′
s−3| = 4 y que el

circuito correspondiente es de tipo (A) o (B) como en la Fi-

gura 3.3. A los puntos de dicho circuito le corresponderán los

58



menores coeficientes, por definición de clase de peso. Con esto,

dicho triángulo, o cuadrilátero, será parte de la cápsula convexa

inferior, y su proyección será parte de la subdivisión marcada

para cualquier u en dicha clase de peso. Además, en el polinomio

tropical que tiene a u como coeficientes, los monomios corres-

pondientes a estos cuatro puntos tienen el mismo coeficiente. El

vértice dual a esta celda será, entonces, el (0, 0).

Por lo tanto, la curva tropical dual tiene al punto x0 = (0, 0)

como un vértice de multiplicidad estrictamente mayor que uno

(si miramos al triángulo con un punto interior, tiene área más

grande que 1/2), o tiene un vértice del que salen 4 ejes en dicho

punto, de ser un cuadrilátero esta cara. (Ver la Figura 4.1).

Figura 4.1. Clases de Peso de tipo (A) y sus curvas tropicales.

(B) Asumamos que tenemos F ′
s−3 = {a, b, d} y F ′

j = {c, e}. Los

coeficientes correspondientes a a, b y c son los menores, y los

de c y e son los menores del conjunto de puntos que no están

alineados con ma,mb y md. Notemos que pueden haber puntos
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en esta recta con coeficientes menores a los de mc y me, pero no

a los de ma,mb y md. En la Figura 4.2 los puntos ma,mb y md

están marcados en negro, mientras que mc y me están marcados

en gris.

Figura 4.2. Clases de Peso de tipo (B) y sus curvas tropicales.

Desafortunadamente, no podemos decir mucho sobre la sub-

división en este caso. Sólo estamos seguros de que el eje formado

por ma,mb y md será parte de la subdivisión. En el gráfico dual,

esto significa que veremos un eje con peso al menos 2. Más aún,

este eje debe pasar por el punto x0 = (0, 0). Para ver esto, cal-

culamos los vértices (x1, y1) y (x2, y2) de la curva tropical, que

son vértices del eje perpendicular al lado marcado que contie-

ne a ma,mb y md. Sean ma = (i, j) y mb = (k, l), y (m,n) y

(o, p) otros vértices de los poĺıgonos que contienen en común al

eje con el circuito en consideración. Por lo tanto, los vértices

(x1, y1) y (x2, y2) cumplen las ecuaciones:
(

k − i l − j

m− i n− j

)(

x1

y1

)

=

(

0

α

)

60



y
(

k − i l − j

o− i p− j

)(

x2

y2

)

=

(

0

β

)

con α, β > 0. Con esto, (x1, y1) y (x2, y2) pertenecen al subespa-

cio ortogonal a la primera fila de ambas matrices, con lo que re-

sultan múltiplos. Tenemos que 〈(m− i, n− j), (x1, y1)〉 = α > 0

y 〈(o − i, p − j), λ(x1, y1)〉 = β > 0, con lo que λ < 0 pues

〈(o − i, p − j), (x1, y1)〉 < 0 por estar los puntos (m,n) y (o, p)

en distintos lados de la recta de direcciónma−mb = (k−i, l−j).

Podemos concluir que (x1, y1) y (x2, y2) resultan múltiplos con

distinto sentido, y consecuentenemente el eje que los contiene

como vértices pasa por el origen. (Ver Figura 4.2).

Comentario 4.2.1. La razón porque no podemos decir mucho más

que lo anterior es que no podemos predecir cómo serán los poĺıgonos

adyacentes al lado que pasa por ma,mb y mc en la subdivisión. Es posi-

ble que los puntos mc y me no sean puntos marcados en esos poĺıgonos.

Aunque tienen el menor valor posible entre los puntos que no están

alineados con ma,mb y mc, podŕıa ser que no estén marcados en la

subdivisión inducida. Por ejemplo, consideremos la siguiente configu-

ración de puntos, y sea el vector u como el gráfico del medio.

Este vector está en la clase de peso

ua = ub = ud < uc = ue < ug < uf < uh

que viene de la bandera indexada por

{h} ( {h, f} ( {h, f, g} ( {h, f, g, c, e} ( {h, f, g, c, e, a, b, c}.

En el gráfico podemos ver la subdivisión marcada inducida por u. Notar

que el punto mc no es parte de un poĺıgono adyacente al lado formado

por ma,mb y md.
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Un punto genérico en una clase de peso satisface sólo las igualdades

dadas por su correspondiente bandera de flats, y estrictas desigualda-

des en los otros casos. Podemos describir los conos de dimensión menor

de la variedad tropical Trop(ker(A)) transformando algunas de las de-

sigualdades en igualdades. En esta parte, nos restringimos solamente a

la clasificación de los conos de dimensión máxima (o sea los correspon-

dientes a banderas de flats maximales).

4.3. Trop(ker(A)) y el abanico secundario.

Hemos visto en las secciones anteriores que todas las subdivisiones

que obtenemos en nuestra familia de curvas singulares contienen un

circuito (ya sea como un poĺıgono Qi o como la cara de un poĺıgono

Qi). Consecuentemente, la variedad tropical Trop(ker(A)) vive dentro

del esqueleto de codimensión uno del abanico secundario. Más aún,

ninguna clase de peso que corresponde a una bandera de flats del tipo

(A) de la Sección 4.2, contiene el espacio de linealidad del abanico

secundario. El lema siguiente muestra que de cierta manera es el espacio

de linealidad lo que falta para pasar del cono de una clase de peso a

un cono de codimensión uno del abanico secundario.

Recordemos que el abanico secundario ya lo consideramos módulo

el vector (1, . . . , 1). Pero el abanico secundario aún contiene un espacio

de linealidad S de dimensión 2, generado el vector vx (formado por

las x-coordenadas de los puntos mi), y el vector vy (formado por las

y-coordenadas de los puntos mi). Esto es aśı pues, mirando las formas

lineales de la Observación 3.1.5, si definimos φ̃(x, y) := φ(x, y)−λx−µy,

resulta:

• φ̃(−α) = cα + λαx + µαy,

• φ̃(−β) = cβ + λβx + µβy y

• φ̃(−γ) ≤ cγ + λγx + µγy para todo γ ∈ A

O sea que las subdivisiones coherentes marcadas inducidas por un

vector u y u+ λvx + µvy resultan las mismas, con vx y vy los vectores

generadores del subespacio S descriptos en el párrafo anterior.

Notemos que, según la construcción, el espacio lineal R · (1, . . . , 1)

está siempre incluido en los conos asociados las clases de peso de las

banderas de flats. Con esto, podemos trabajar módulo este espacio en
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todos los conos. Y lo consideraremos de esta manera en el resto de esta

sección.

Lema 4.3.1. Sea ∆ un poĺıgono convexo en el reticulado Z2 con

matriz asociada A y B un Gale dual de A, y sea Z un circuito en ∆

de tipo (A) o (B) como en la Figura 3.3, o sea un circuito que consta

de 4 elementos, Z = {a, b, c, d}.

Con esto, la unión de todas las clases de peso CF de banderas de

flats F de B que terminan con F ′
s−3 = {a, b, c, d} (donde usamos la no-

tación del Comentario 4.1.2) más el espacio de linealidad S del abanico

secundario de ∆, es igual a la unión de todos los conos de codimensión

uno CT del abanico secundario de ∆ correspondientes a las subdivisio-

nes T que contienen este circuito, es decir:
(

⋃

F

CF

)

+ S =
⋃

T

CT ,

donde la unión en la izquierda recorre todas las banderas de flats F de

B que terminan con F ′
s−3 = {a, b, c, d} y la unión de la derecha recorre

todas las subdivisiones T que contienen al circuito Z.

Demostración. Ya vimos en la clasificación de la sección anterior

que la subdivisión marcada de un vector u en cualquier clase de peso

correspondiente a tal bandera de flats contiene la circuito Z como un

poĺıgono. Con esto, la inclusión ⊆ es clara.

Ahora tomemos cualquier u en CT . La cara correspondiente al cir-

cuito Z está incluida en un plano que interseca a la cápsula inferior

considerada en 3.1.5 en esa cara. Podemos “inclinar” este plano su-

mando un vector en el espacio de linealidad S, y obtenemos un vector

satisfaciendo que las coordenadas de los puntos ma,mb,mc y md sean

iguales, y las mı́nimas entre todas. Esto muestra la otra inclusión. �

Notemos además que el enunciado tiene sentido si pensamos en las

dimensiones: el abanico secundario es de dimensión s− 1, con lo que el

cono CT de codimensión uno tiene dimensión s−2. Los conos definidos

por las clases de peso son de dimensión s− 4, pues si bien la bandera

tiene longitud s − 3 estamos considerándolos módulo (1, . . . , 1), por

lo que la dimensión baja en uno. Y el espacio de linealidad S tiene

dimensión 2, resultando la igualdad dimensional (s− 4) + 2 = s− 2
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Observación 4.3.1. En lo que sigue, queremos entender los conos

del abanico secundario de ∆ que corresponden a banderas de flats (res-

pectivamente clases de peso) del tipo (B) de la clasificación hecha en

la Sección 4.2. Asumamos que tenemos una bandera F de ese tipo, con

F ′
s−3 = {a, b, d} y F ′

j = {c, e} como en la demostración del Lema 4.1.1.

El caso donde los puntos mc y me definen una recta paralela la recta

que pasa por ma,mb y md, como en la Figura 4.3, juega un rol especial.

Figura 4.3. Una clase de peso de tipo (B) en la frontera

de otras.

Sean F = F(u), T la subdivisión de ∆ tal que u ∈ CT , y Q el

poĺıgono en T que contiene al circuito Z = {ma,mb,md} y está del

mismo lado de Z que los puntos mc y me (ver Figura 4.4). Tenemos

que distinguir dos subcasos: en el primero, Q contiene un vértice cuya

distancia a la recta que pasa por ma,mb y md es más grande que la

distancia de mc y me a dicha recta; y el segundo,donde Q es el poĺıgono

generado por los vértices en Z, mc y me. Para convencernos que sólo

puede pasar alguna de estas dos situaciones, recordemos que ua = ub =

ud < uc = ue < ui para todo mi vértice que no está sobre la recta

generada por Z.

Figura 4.4. Dos posibilidades para clases de peso en la frontera.

Notemos que si Q está determinado por ma, . . . ,me luego el cono

CT está en la frontera del cono CS para una subdivisión S como la de

64



la Figura 4.5, donde cuatro de los cinco puntos del reticulado forman

un cuadrángulo. Estos cuadrángulos ya fueron considerados en el Lema

4.3.1, y junto con el cono CT la clase de peso CF ⊂ CT está contenido

en el borde de los conos del abanico secundario que corresponde a clases

de peso del tipo (A).

Figura 4.5. Una subdivisión tal que CS contiene a CT

es su frontera.

Si en cambio Q contiene un vértice más alejado que los vérticesmc y

me de la recta que contiene a Z, tanto el cono CT con el cono CF ⊂ CT

de la clase de peso F viven en el borde de conos del abanico secundario

que corresponden clases de peso de tipo (B), que se consideran en el

lema siguiente.

En cualquiera de los dos casos de esta observación, no es necesario

considerar estas clases de peso para obtener una descripción completa

de los conos de codimensión uno del abanico secundario de ∆ fijados

por las clases de peso de tipo (A) o (B).

Lema 4.3.2. Sea ∆ un poĺıgono convexo en el reticulado Z2 con

matriz asociada A y B un Gale dual de A, y sea Z un circuito en ∆

de tipo (C) como en la Figura 3.3, o sea un circuito que consta de tres

elementos, Z = {a, b, d}.

Luego
(

⋃

F

CF

)

+ S =
⋃

T

CT ,

donde:

• S es el espacio de linealidad del abanico secundario de ∆;

• la unión de la izquierda es la unión de todas las clases de peso

CF de banderas de flats F de B como las consideradas en (B)
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de 4.2, excepto por las consideradas en la Observación 4.3.1;

esto es, consideramos sólo las banderas de flats que terminan

en F ′
s−3 = {a, b, d}, tienen F ′

j = {c, d} con la recta que pasa por

mc y md no paralela a la que contiene los puntos ma,mb y md,

mientras que todo punto mi pertenece a esta última recta para

todo i ∈ F ′
l con l > j;

• para la unión de la derecha diferenciaremos dos casos:

− si Z no está contenido en la frontera de ∆, la unión de la

derecha es la unión de todos los conos CT de codimensión

uno del abanico secundario de ∆ que se corrresponden con

subdivisiones T que contienen a Z;

− si Z está contenido en la frontera de ∆, la unión de la

derecha es la unión de todos los conos CT de codimensión

uno del abanico secundario de ∆ que se corrresponden con

subdivisiones T que contienen a Z, excepto por aquellas T

para las cuales el triángulo que contiene a Z tiene su tercer

vértice en un punto a distancia minimal de Z.

La Figura 4.6 muestra parte de una triangulación correspondiente

a uno de los conos de codimensión uno que desechamos en la unión de

la derecha, si Z está contenido en la frontera de ∆.

Figura 4.6. Triangulaciones que debemos desechar.

Demostración. Veamos ⊆: Sea u en una de las clases de peso que

estamos considerando. Con esto, u induce una subdivisión coherente de

∆ que contiene a Z. Si Z está en la frontera de ∆, ambos puntos mc y

me están del mismo lado de la recta por Z, y sólo uno está a distancia

mı́nima de la misma (pues la recta por mc y me no es paralela a Z).
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Sea mc el punto más lejano de la recta por Z. Tenemos que las tres

rectas que unen a (mc, uc) con (ma, ua), (mb, ub) y (md, ud), están por

debajo que cualquier punto (mi, ui) tal que mi no esté en la recta por

Z (esto sucede pues, por construcción de u según 4.1.1, ui < uc = ue

implica que mi pertenece a la recta por Z). Con esto, el triángulo en

consideración forma parte de la subdivisión inducida en ∆ por u, y su

vértice no se encuentra a distancia minimal de la recta por Z. Si Z no

está en la frontera de ∆, la inclusión es trivial.

Veamos ahora ⊇: Para esto, podemos asumir sin pérdida de gene-

ralidad que Z está incluido en la recta {x = 0}. Podemos escribir a u

como la suma de un múltiplo del vector formada por las y-coordenadas

de los puntos mi mas un vector u′ con u′
a = u′

b = u′
d. Ahora bien, este

valor puede no ser el menor del vector u′, como muestra el Ejemplo

4.3.2.

Para lograr que este valor sea el mı́nimo de un vector u′′ que defina

el mismo tipo de curva, y además obtener u′′
a = u′′

b = u′′
d < u′′

c = u′′
e < u′′

i

para todo i /∈ {a, b, c, d, e}, miramos la proyección en el plano xz de la

cápsula convexa de {(mi, u
′
i) : i ∈ A}, que llamaremos ∆xz. Notemos

que el punto (0, u′
a) = (0, u′

b) = (0, u′
c) es un vértice de ella. Esto se

debe a que si (0, j) pertenece a la subdivisión marcada de ∆, con u′
i

la altura del punto (0, j), u′
i ≥ u′

a pues en otro caso alguna de las

rectas que une (0, j, u′
i) con el punto más lejano entre (ma, u

′
a), (mb, u

′
b)

y (mc, u
′
c), estará por debajo de la recta que une estos tres puntos, y

por lo tanto Z no estaŕıa marcado en la subdivisión, contradiciendo

lo que estamos suponiendo. Si Z no está en el borde de ∆, el punto

(0, u′
a) estará por debajo de cualquier recta que pase por dos puntos

(k, u′
i) y (l, u′

j), con mi ∈ {x = k}, mj ∈ {x = l} y k < 0 < l. Esto

es aśı pues de otra manera habŕıa dos puntos en Z, digamos ma y

mb, que están del mismo lado lado de la recta que pasa por mi y mj,

y uno de ellos, digmamos ma, se encuentra a la mayor distancia de

esta recta. Como consecuencia, el punto (mb, u
′
b) estará por arriba del

triángulo definidido por los vértices (mi, u
′
i), (mj, u

′
j) y (ma, u

′
a) . Como

este triángulo, junto con su interior relativo, se encuentra en la cápsula

convexa en consideración, el punto (mb, u
′
b) no estaŕıa en la cápsula

convexa inferior, y por lo tanto no estaŕıa marcado en la subdivisión

regular inducida, contradiciendo nuestra hipótesis.
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Elijamos una recta por dos puntos (k, u′
i) y (l, u′

j) como antes, pero

tal que (0, ua) sea el único punto a un lado de ella. Tomemos como

mc y me los puntos correspondientes a (k, u′
i) y (l, u′

j) en ∆. De esta

manera podemos obtener u′′ = u′ + λvx, con vx el vector formado por

las x−coordenadas de los mi, resultando u′′
a = u′′

b = u′′
d < u′′

c = u′′
e < u′′

i

para todo i /∈ {a, b, c, d, e}. Para que la clase de peso de u′′ resulte

como las consideradas en (b) de 4.2, sólo nos resta chequear que la

recta por mc y me no es paralela a la recta por Z. Esto es verificar

que ambos puntos tienen distintas sus primeras coordenadas. Pero si

estos puntos tuviesen la misma primera coordenada, Z formaŕıa parte

de un triángulo con vértice a distancia minimal de Z, y estos casos los

eliminamos. �

Ejemplo 4.3.2. Para ilustrar el procedimiento descripto en la se-

gunda parte de la demostración anterior, tomemos por ejemplo el po-

linomio tropical f = 3⊕ 2⊙ y⊕ 1⊙ y2 ⊕ 2⊙ y3 ⊕ x⊙ y3 ⊕ x2 ⊙ y2, que

define la siguiente subdivisión regular en su poĺıtopo de Newton:

Tenemos que u = (3, 2, 1, 2, 0, 0) y los vectores que defiene el es-

pacio de linealidad resultan vx = (0, 0, 0, 0, 1, 2) y vy = (0, 1, 2, 3, 3, 2).

Primero obtenemos u′ = u + vy = (3, 3, 3, 5, 3, 2) y observamos que

la mı́nima coordenada no se alcanza en los puntos correspondietes al

circuito Z. La proyección ∆xz nos queda:

En este ejemplo podemos considerar la recta L1 por los puntos

(−2, 2) y (−1, 3), o la recta L2 por los puntos (−1, 3) y el (0, 5). En
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el primer caso, con λ = 1, nos queda u′′ = u′ + vx = (3, 3, 3, 5, 4, 4), y

resultan los puntos mc = (1, 3) y me = (2, 2). En el segundo, con λ = 2,

nos queda u′′ = u′ + 2vx = (3, 3, 3, 5, 5, 6), y mc = (1, 3) y me = (0, 5).

En ambos casos, tanto u como u′′ inducen la misma subdivisión en ∆.
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Caṕıtulo 5

Clasificación de curvas tropicales planas de

máximo tipo dimensional con una singularidad en

un punto fijo

5.1. Introducción

Con lo visto hasta ahora, podemos ser más espećıficos si nos res-

tringimos a las curvas tropicales con máximo tipo dimensional posible.

Vimos en el Lema 3.3.1 que la dimensión de un cono CT del abanico

secundario es igual a la dimensión de su tipo sii la subdivisión marcada

T tiene todos los puntos marcados. Con esto, podemos obtener curvas

tropicales máximo dimensionales sólo si nos restringimos a las subdi-

visiones marcadas correspondientes a los conos de codimensión más

pequeña posible (es decir, con la menor cantidad posible de circuitos),

y con todos los puntos marcados. En el caso de curvas tropicales sin-

gulares, deberemos restringirnos a las subdivisiones consideradas en la

clasificación 4.2 con todos los puntos de ∆ ∩ Z2 marcados.

En los casos cubiertos en la parte (A) de dicha clasificación, los

conos del abanico secundario son de codimensión uno. Pero notemos

que en el caso (B), miramos conos que no están en el interior relativo

de conos de dimensión máxima de la tropicalización del núcleo de A,

sino que viven dentro de conos de codimensión dos del abanico secun-

dario (ver la Observación 4.3.1). Esto es aśı pues, si los puntos mc y

me están del mismo lado que el circuito Z, al estar todos lo puntos de

∆ ∩ Z2 marcados en la subdivisión, deben estar en una recta paralela

a Z = {ma,mb.mc}. Esta subdivisión pertenece a un cono del abanico

secundario de codimensión dos que yace en la frontera de un cono de

codimensión uno estudiado en la parte (A) de la clasificación (ver Fi-

guras 4.4 y 4.5). Estos conos de codimensión dos deben ser estudiados,

pues en lo que sigue caracterizamos expĺıcitamente sólo el interior de

los conos en consideración.
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Podemos relacionar las clases de peso correspondientes a estas sub-

divisiones en una forma similar a los Lemas 4.3.1 y 4.3.2. En este caso

sólo tenemos que agregar una parte del espacio de linealidad del abani-

co secundario. Tenemos que agregar el espacio generado por el vector

de las y-coordenadas de los mi (si asumimos, sin restricción, que Z

está sobre la recta {x = 0}. Y en la derecha de la igualdad (como en

los Lemas 4.3.1 y 4.3.2) tendremos la unión sobre todos los conos CT

de codimensión 2 del abanico secundario, cuyas subdivisiones marca-

das inducidas contienen al poĺıgono conv{ma,mb,mc,md,me} y tiene a

todos estos puntos marcados. Esto es aśı porque para cualquier vector

u ∈ CT , podemos agregar un múltiplo del vector de las y-coordenadas

de los mi para lograr que se satisfaga u′
a = u′

b = u′
d y u′

c = u′
e.

Es decir, para estudiar curvas singulares de tipo máximo dimensio-

nal, tenemos que estudiar los conos de codimensión uno del abanico se-

cundario según la clasificación de 4.2, y los conos de codimensión 2 que

corresponden a una subdivisión marcada que contiene a un poĺıgono

conv{ma,mb,mc,md,me} con todos esos puntos marcados, y tales que

ma,mb y md están sobre la misma recta, mientras que mc y me perte-

necen a una recta paralela a la anterior. La subdivisión inducida por u

debe tener a todos los puntos mi marcados.

5.2. Clasificación de las curvas tropicales planas de tipo

dimensional máximo con una singularidad en un punto

fijo en el toro

Seguiremos la clasificación de la sección 4.2 y veremos qué infor-

mación sobre la curva dual podemos deducir al asumir que todos los

puntos están marcados en la subdivisión.

(a) Como en la clasificación de 4.2 (A), podemos obtener curvas

tropicales con un vértice en el punto x0 = (0, 0). Este vértice

puede ser dual a un triángulo con exactamente un un punto in-

terior de ∆∩Z2. En este caso, dicho vértice posee multiplicidad

tres ya que cada lado del triángulo tiene longitud entera uno.

Esto se debe a que están todos los puntos de ∆ ∩ Z2 marcados

en la subdivisión.
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Otra opción para el (0, 0) es que de él salgan 4 ramas, cuyo

poĺıgono dual es un cuadrángulo que no cubre a ningún otro

punto de Z2. En este caso, el vértice tiene multiplicidad cuatro.

(b.1) Ahora consideremos una bandera de flats como en 4.2 (B). Co-

mo queremos que todos los puntos estén marcados, los dos pun-

tos mc y me tienen que estar a distancia minimal del circuito Z

(por lo tanto a la misma distancia), y tienen que ser vértices de

poĺıgonos de la subdivisión. Como todos los puntos de ∆ ∩ Z2

están marcados, esta distancia minimal es uno. En este caso

analizamos cuando ambos puntos se encuentran en lados dis-

tintos de Z. Resolvamos las ecuaciones que nos dan los vértices

(x1, y1) y (x2, y2), adyacentes al eje que pasa por el (0, 0) de la

curva tropical. Estos puntos son duales a dos triángulos con un

lado en común, y su tercer vértice a la misma altura. Si asumi-

mos, sin pérdida de generalidad, que el circuito Z se encuentra

sobre la recta {x = 1} y el vértice del triángulo izquierdo se

encuentra en mc = (0, 0), las ecuaciones a resolver para hallar

(x1, y1) y (x2, y2), quedan:

λ− µ = x1 + (ma)2y1 = x1 + (mb)2y1

λ− µ = −x2 + ((ma)2 − (me)2)y2 = −x2 + ((mb)2 − (me)2)y2

donde λ es la altura de los dos puntos mc y me, y µ es la altura

del circuito Z. Sin pérdida de generalidad, podemos suponer

µ = 0 < λ, quedando (x1, y1) = (λ, 0) y (x2, y2) = (−λ, 0).

En particular, la distancia de ambos vértices al punto singular

(0, 0) sobre el eje de la curva tropical es la misma.

(b.2) Sigamos considerando las banderas de flats como en 4.2 (B), pe-

ro ahora con los dos puntos mc y me del mismo lado del circuito

Z. Nuevamente mc y me tienen que estar a distancia mı́nimal

de Z (con lo que se encuentran en una recta paralela a Z), y

tienen que estar marcados en la subdivisión. Con esto, vemos

un cuadrilátero con dos lados paralelos en la subdivisión. Si Z

no está en el borde de ∆, debe haber un triángulo con un vértice

a distancia mı́nimal en la subdivisión, del otro lado de Z (ver

Figura 5.1). Como antes, resolvemos las ecuaciones para hallar

las coordenadas de los vértices correspondientes al triángulo y
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al cuadrilátero. Nuevamente, sin pérdida de generalidad, asu-

mamos que el circuto se encuentra en la recta {x = 1}, y que

el tercer vértice del triángulo se encuentra en mc = (0, 0). Las

ecuaciones quedan, respectivamente:

ν − µ = x1 + (ma)2y1 = x1 + (mb)2y1

λ− µ = −x2 + ((ma)2 − (me)2)y2 = −x2 + ((mb)2 − (me)2)y2

Si suponemos µ = 0 < λ < ν, nos queda que (x1, y1) = (ν, 0) y

(x2, y2) = (−λ, 0). En particular, la distancia del vértice del que

salen cuatro ejes (o sea (x2, y2)) se encuentra a una distancia

estrictamente menor al punto singular (0, 0) que el vértice del

que salen 3 ejes. Si Z está contenido en la frontera de ∆, sólo

vemos al vértice del que salen 4 ejes, uno de ellos horizontal y

no acotado, que pasa por el punto singular (0, 0).

Observación 5.2.1. La variedad tropical Trop(Ker(A)) es de di-

mensión s− 4. En lo anterior, describimos (parte de) la variedad como

subconjuntos de conos del abanico secundario (que lo estamos conside-

rando en Rs/R(1, . . . , 1), o sea es de dimensión s−1). Los subconjuntos

son reducidos en el caso (a) por dos condiciones que representa que el

vértice 4-valente (resp. el vértice de multiplicidad 3) de la curva tropi-

cal tiene que ser el punto x0 = (0,0). En los casos cubiertos en (b.1),

pedimos que un eje pase por el (0,0), y además que las longitudes de los

dos semiejes adyacentes al (0, 0) sean iguales. En ambos casos, comen-

zamos con un cono de codimensión uno del abanico secundario y luego

quitamos un conjunto de codimensión dos. En el último caso, (b.2),

comenzamos con un cono de codimensión dos del abanico secundario.

Pero en este caso solo extraemos un subconjunto de codimensión uno,

pues sólo requerimos que un eje pase por el (0, 0). Las longitudes de

los semiejes adyacentes al (0, 0) tienen que satisfacer una desigualdad,

pero esto no baja la dimensión. De esta manera, también describimos

en el último caso curvas tropicales de tipo máximo dimensional.
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Figura 5.1. Clasificación de las curvas tropicales máxi-

mo dimensional con al menos una singularidad en el toro.
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Caṕıtulo 6

Singularidades tropicales y derivadas de Euler

6.1. Introducción

Hasta el caṕıtulo anterior hemos estudiado una familia particular

de hipersuperficies tropicales singulares: las curvas planas, dadas por

polinomios en dos variables.

A partir de este caṕıtulo estudiaremos las hipersuperficies tropi-

cales singulares dadas por una variedad tropical T (f) ⊆ Rd, con d

cualquier número natural, f = ⊕i∈A pi ⊙ wi ∈ R[w1, . . . , wd] y A ⊂ Zd

un conjunto finito de cardinal n, donde ZA = Zd. Lo desarrollado en

el resto del texto se basa en el trabajo de A. Dickenstein y L. Tabera

“Hipersuperficies tropicales singulares”[DT].

Recordemos de la Observación 3.1.5 que cualquier hipersuperficie

tropical es un complejo poliedral racional. Dado un q ∈ T (f), su celda

asociada σ∗ es la clausura de todos los puntos q′ ∈ T (f) para los

cuales f(q) = f(q′) se alcanza en el mismo subconjunto σ de A. Cada

celda σ∗ viene con una marcación, dada por el subconjunto σ. Con

esto, una hipersuperficie tropical asociada a un polinomio tropical con

un soporte fijo A será un complejo poliedral racional marcado. Esta

marcación será transparente en la notación. Consultar el comienzo de

la Sección 6.3 para detalles más espećıficos.

Trabajaremos con polinomios de Laurent F con suporte en A ⊂ Zd

y coeficientes en un cuerpo algebraicamente cerrado K de caracteŕıstica

0, es decir:

F (x) =
∑

i∈A

aix
i ∈ K[x±1

1 , . . . , x±1
d ].

Asumiremos que el cuerpo K está provisto de una valuación no-

arquimediana de rango uno, val : (K)∗ → R, y que el cuerpo residual

k de K es también de caracteŕıstica cero.
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Recordemos que según la Definición 1.5.1, definimos la tropicaliza-

ción de F como el polinomio tropical

f = trop(F ) =
⊕

i∈A

val(ai)⊙ wi.

En lo que resta, para diferenciar a los contexto clásicos y tropicales,

los elementos de K,Kd, y Kn serán sistemáticamente notados por las le-

tras a, b, c, x, y, z y los elementos de T,Td y Tn por las letras p, q, w, v, l.

Los elementos de A ⊂ Zd serán notados con la letra i.

Por último, notemos que la Definición 1.5.14 de hipersuperficie tro-

pical singular está hecha para polinomios con cualquier cantidad de

variables, con lo que seguirá siendo válida por el resto del texto.

6.2. Derivadas de Euler y su tropicalización

Sea L una función af́ın entera en Rd, es decir

L = j1w1 + . . .+ jdwd + β,

donde (j1, . . . , jd) ∈ Zd y β ∈ Z.

Definiremos la derivada de Euler de un polinomio tropical f con

soporte en A con respecto a L como:

Definición 6.2.1. Sea f =
⊕

i∈A pi⊙wi y L = j1w1+ . . .+jdwd+β

una función af́ın entera. La derivada de Euler de f con respecto a L es

el polinomio tropical

∂f

∂L
=

⊕

i∈A,L(i) 6=0

pi ⊙ wi.

También tenemos las derivadas de Euler clásicas de un polinomio

F con coeficientes en K.

Definición 6.2.2. Sean F =
∑

i∈A aix
i ∈ K[x±1

1 , . . . , x±1
d ], y una

función entera af́ın L = j1w1+ . . .+ jdwd+β . Asociamos a L el campo

vectorial de Euler LΘ = j1Θ1 + . . .+ jdΘd + β, donde Θj = xj
∂

∂xj
para

todo j = 1, . . . , d. La derivada de Euler de F con respecto a L es el

polinomio

∂F

∂L
:= LΘ(F ) = j1x1

∂F

∂x1

+ . . .+ jdxd
∂F

∂xd

+ βF.
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Es claro que para cualquier punto singular b ∈ (K∗)d de V (F ), vale

que ∂F
∂L

(b) = 0 para cualquier función af́ın entera L. Y notemos que si

L es la función constante 1, vale que ∂F
∂L

= F .

Observación 6.2.3. Vale la igualdad

∂F

∂L
=
∑

i∈A

L(i)aix
i,

pues si i = (i1, . . . , id) ∈ A, vale que jkxk
∂F
∂xk

=
∑

i∈A

jkikaix
i para cual-

quier 1 ≤ k ≤ d. Sumando con respecto a k, y cambiando el orden de

las sumas, queda el resultado observado.

En el lema que sigue relacionamos la derivada de un polinomio

clásico F con respecto a L, con la derivada con respecto a L de su

tropicalización, f = Trop(F ).

Lema 6.2.1. Dado un polinomio tropical f con soporte en A y una

función af́ın entera L,

∂f

∂L
= Trop

(

∂F

∂L

)

para cualquier polinomio F con soporte en A tal que Trop(F ) = f .

Demostración. Tomemos cualquier polinomio de Laurent F con

Trop(F ) = f . Por la Observación 6.2.3 vale que ∂F
∂L

=
∑

i∈A

L(i)aix
i.

Como estamos asumiendo que el cuerpo residual de K es de carac-

teŕıstica cero, nos queda que val(L(i)) = 0 siempre que L(i) 6= 0 y

val(L(i)) = ∞ siempre que L(i) = 0. El resultado del lema es una

consecuencia directa de la Definición 6.2.1 de la derivada con respecto

a L en el contexto tropical. �

Notemos que como A es un conjunto finito, el conjunto
{

∂f
∂L
|L
}

,

con L recorriendo todas las posibles funciones lineales afines enteras,

es finito para cualquier f con soporte en A.

Ejemplo 6.2.4. Consideremos la cónica tropical

f = 1⊕ 0⊙ w1 ⊕ 0⊙ w2 ⊕ 0⊙ w1 ⊙ w2 ⊕ 1⊙ w2
1 ⊕ 1⊙ w2

2,

y veamos si define una curva singular.
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Sea F = a(0,0) + a(1,0)x + a(0,1)y + a(1,1)xy + a(2,0)x
2 + a(0,2)y

2 cual-

quier polinomio con Trop(F ) = f . Queremos ver si este polinomio

clásico puede tener un cero singular. Recordemos que para un polino-

mio homogéneo G ∈ K[x1, . . . , xn] de grado d vale la fórmula de Euler:

d · G =
∑n

i=0 xi
∂G
∂xi

. Con esto, si b ∈ Kn r {0} y vale ∂G
∂xi

(b) = 0 pa-

ra todo 1 ≤ i ≤ n, vale también que G(b) = 0 y b resulta un punto

singular de V (G). En nuestro caso, sea F h el polinomio homogeini-

zado con respecto a z de F . Luego existe b ∈ K3 r {(0, 0, 0)} con

F h
x (b) = F h

y (b) = F h
z (b) = 0 sii

det







2a(2,0) a(1,1) a(1,0)
a(1,1) 2a(0,2) a(0,1)
a(1,0) a(0,1) 2a(0,0)






= 0.

En la expansión de este determinante, el único término que aparece

con valuación cero es 2a(1,0)a(1,1)a(0,1), con lo que nunca podrá anularse.

De esto resulta que cualquier polinomio F , con Trop(F ) = f , nunca

tendrá un punto singular, pues si (x0, y0) es un cero singular de F ,

(x0, y0, 1) lo será de F h. Con todo esto podemos concluir que T (f) no

es una hipersuperficie tropical singular.

Comentario 6.2.5. Si tomamos L1 = w1 y L2 = w2, podemos

verificar directamente que ∂F
∂L1

= x∂F
∂x

= a(1,0)x + a(1,1)xy + 2a(2,0)x
2 y

∂F
∂L2

= y ∂F
∂y

= a(0,1)y+a(1,1)xy+2a(0,2)y
2. En el contexto tropical resulta

∂f
∂L1

= 0⊙w1⊕0⊙w1⊙w2⊕1⊙w2
1 y

∂f
∂L2

= 0⊙w2⊕0⊙w1⊙w2⊕1⊙w2
2.

Notar que q = (0, 0) ∈ T (f) es no singular, y además q es un cero

de ∂f
∂L1

y de ∂f
∂L2

, es decir q ∈ T ( ∂f
∂L1

) ∩ T ( ∂f
∂L2

). Más aún, si tomamos

L3 = w1+w2−2, al calcular la derivada tropical de Euler con respecto

a L3 obtenemos ∂f
∂L3

= 1⊕0⊙w1⊕0⊙w2, y también (0, 0) ∈ T
(

∂f
∂L3

)

.

Notemos que esta última derivada de Euler es como derivar el poli-

nomio homogenizado, con respecto a la variable de homogenización (y

evaluando ésta en 1). Todo lo expresado nos muestra que para poder

detectar los puntos singulares de la hipersuperficie tropical, no basta

con mirar los ceros en común del polinomio y las derivadas “respecto

de las variables”. En este ejemplo, si consideramos L4 = w1 − 1 nos

queda ∂f
∂L4

= 1⊕0⊙w2⊕ 1⊙w2
1 ⊕ 0⊙w2

2, y resulta q /∈ T ( ∂f
∂L4

), pues el

mı́nimo valor de las formas lineales evaluadas en (0, 0) se alcanza sólo

en el monomio w2. (Ver Figura 6.1).
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Figura 6.1. En amarillo T
(

∂f
∂L3

)

, en azul T
(

∂f
∂L2

)

y

en rojo T
(

∂f
∂L1

)

. Punteado T
(

∂f
∂L4

)

.

Comentario 6.2.6. En el Ejemplo 6.2.4 buscamos una condición

para que V (F ) tenga un punto singular. Esta condición resultó polino-

mial en los coeficientes de F . Recordemos que dado un conjunto finito

A ⊂ Zd, Gel’fand, Kapranov y Zelevinsky [GKZ] definieron y estudia-

ron las propiedades principales del A-discriminante ∆A asociado a la

familia de hipersuperficies con soporte A. Sea ∇0 la variedad de poli-

nomios de Laurent F con coeficientes en K y soporte en A que definen

una hipersuperficie singular en el toro (K∗)d. Si ∇0 tiene codimensión

uno, existe un único polinomio (salvo signo) ∆A ∈ Z[ai|i ∈ A] tal que si

F =
∑

i∈A aix
i tiene un punto singular en (K∗)d, luego ∆A((ai)i∈A) = 0.

Este polinomio se conoce como el A-discriminante. Si codim(∇0) > 1,

se dice que estamos en un caso defectivo y se define a ∆A como el

polinomio constante 1.

Un polinomio tropical f = ⊕i∈A pi⊙wi con coeficientes en R define

una hipersuperficie tropical singular precisamente cuando su vector de

coeficientes p yace en la tropicalización T (∇0).

El principal teorema de este caṕıtulo es el Teorema 6.2.4, que ca-

racteriza hipersuperficies tropicales singulares (dado un soporte fijo)

en términos de las derivadas tropicales de Euler. Como vimos en el
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Ejemplo 6.2.4, no es suficiente considerar las derivadas tropicales de

Euler con respecto a los d ejes coordenados. No es dif́ıcil salvar este

problema apelando a la noción de base tropical [BJSST], que damos

a continuación.

Definición 6.2.7. Sea I ⊂ K[x±1
1 , . . . , x±1

d ] un ideal. Recordemos

que según la Definición 1.5.9, T (I) =
⋂

F∈I ,F 6=0

T (Trop(F )) y, según el

Teorema 1.5.6, resulta T (I) = {(val(z1), ..., val(zn)) : z ∈ VK∗(I)}.

Una base tropical de I es un conjunto finito de polinomios F1, . . . , Fr

que generan I, y además cumplen que T (I) =
r
⋂

i=1

T (Trop(Fi)).

Dado un conjunto finito en el reticulado Zd con n elementos, identi-

ficaremos en lo que sigue el espacio de polinomios con coeficientes en K

y soporte en A con (K∗)n, y notaremos por 1 al punto (1, . . . , 1) ∈ Kd.

Ya hemos discutido en la introducción al Caṕıtulo 2 como la subvarie-

dad

H1 = {F ∈ (K∗)n|F es singular en 1}

es un espacio lineal generado por formas lineales homogéneas.

Definición 6.2.8. Notemos con L al conjunto de todas las fun-

ciones lineales afines enteras L = j1w1 + . . . + jdwd + β, tales que

mcd(j1, . . . , jd, β) = 1, y que cumplan dim〈{L = 0} ∩ A〉 = d− 1.

Proposición 6.2.2. Sean (v1, . . . , vn) variables. El conjunto finito

de polinomios tropicales lineales

P1 :=







⊕

i∈A−{L=0}

0⊙ vi|L ∈ L







es una base tropical de Trop(H1).

Demostración. Sea F =
∑

i∈A

yix
i ∈ K[x±1

1 , . . . , x±1
d , yi(i ∈ A)] un

polinomio genérico con soporte en A. Notemos que si L recorre todas

las funciones lineales afines con coeficientes enteros, las derivadas de

Euler ∂F
∂L

son precisamente todas las combinaciones lineales enteras de

F, x1
∂F
∂x1

, . . . , xd
∂F
∂xd

. Por lo visto en 2.1, H1 es un subespacio lineal de

Kn definido por las las ecuaciones lineales (en las variables (y1, . . . , yn))
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F (x = 1) = 0, y xj
∂F
∂xj

(x = 1) = 0, 1 ≤ j ≤ d. Según lo visto en la

Proposición 2.3.4, las formas lineales que se anula en H1 forman una

base tropical de H1, y es suficiente considerar formas lineales con coe-

ficientes racionales (y a fortiori, enteros). Bajo estas consideraciones,

tenemos que Trop(∂F
∂L

) = ⊕i∈A−{L=0} 0 ⊙ vi forman una base tropical

de Trop(H1). Por el Teorema 2.3.5, según [S] y [BJSST], podemos

considerar sólo las formas lineales con soportes minimales para ha-

llar una base tropical de Trop(H1). Este conjunto se corresponde con

las funciones lineales afines tales que {L = 0} ∩ A genera un espacio

af́ın de dimensión máxima d − 1. Claramente, imponer la condición

mcd(j1, . . . , jd, β) = 1 no restringe las posibles derivadas. �

Hemos definido un base tropical del conjunto de polinomios con

una singularidad en 1. Si tenemos otro punto b ∈ (K∗)d, podemos fácil-

mente dar una base tropical de la variedad Hb de hipersuperficies con

un punto singular en b, considerando un cambio diagonal de coordena-

das (recordar lo observado en 2.1.1). Esto lo podemos expresar en la

siguiente proposición.

Proposición 6.2.3. Consideremos la variedad de incidencia

H = {(F, u) ∈ (K∗)n × (K∗)d |F es singular en u}.

Sea F =
∑

i∈A

aix
i un polinomio genérico con soporte en A, donde (x1, . . . , xd)

y (ai)i∈A son variables. Luego el conjunto finito

P =

{

Trop

(

∂F

∂L

)

|L ∈ L

}

es una base tropical de H.

Demostración. P es un conjunto finito que define una prevarie-

dad que contiene a Trop(H). Vamos a probar que si (p, q) pertenece

a la prevariedad definida por P , pertenece a la variedad de incidencia

definidida por H.

Sea (p, q) ∈ ∩g∈PT (g). Luego, para cada función lineal af́ın L ∈ L,

el mı́nimo de ⊕i∈A−{L=0} pi ⊙ qi11 ⊙ . . . ⊙ qidd se alcanza al menos dos

veces. De esto se sigue que (pi ⊙ qi11 ⊙ . . .⊙ qidd | i ∈ A) es un punto de

T (⊕i∈A−{L=0}vi) para cualquier L ∈ L. Por 6.2.2 tenemos que existe

un polinomio F =
∑

i∈A

aix
i, singular en 1 y tal que val(ai) = pi + 〈q, i〉.
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Con todo esto, el polinomio F1 =
∑

i∈A

ait
−〈q,i〉xi tiene una singulari-

dad en (tq1 , . . . , tqd) y val(ait
−〈q,i〉) = pi. De esto resulta que el punto

(p, q) pertenece a Trop(H). �

En este punto del caṕıtulo ya contamos con todas las herramientas

para demostrar la caracterización tropical de hipersuperficies tropicales

singulares (dado un soporte fijo), que damos a continuación.

Teorema 6.2.4. Sea f =
⊕

i∈A

pi ⊙ wi un polinomio tropical con

soporte en A. Sea q ∈ T (f) un punto en la hipersuperficie definida

por f . Luego, q es un punto singular de T (f) sii q ∈ T ( ∂f
∂L
) para todo

L ∈ L.

Es decir, f define una hipersuperficie tropical singular si y sólo si

⋂

L∈L

T

(

∂f

∂L

)

6= ∅,

donde L es el conjunto de formas lineales afines de la Definición 6.2.8.

Demostración. Una implicación es trivial. Si q es un punto sin-

gular de T (f), existe un polinomio F =
∑

i∈A

aix
i con val(ai) = pi, con

una singularidad en el punto b, y val(b) = q. Luego, ∂F
∂L

(b) = 0 para

toda L ∈ L, y por lo tanto val(b) = q ∈ T ( ∂f
∂L
) para toda L ∈ L.

Para la implicación en el otro sentido, sea q un punto en ∩L∈LT ( ∂f
∂L
).

En particular, q ∈ T (f). Además, para toda función lineal af́ın L ∈ L,

el mı́nimo mı́n
i∈A,L(i) 6=0

(pi+〈q, i〉) se alcanza al menos dos veces. Esto ocurre

sii para toda L ∈ L el punto (p, q) ∈ T (⊕i∈A,L(i) 6=0vi ⊙ wi). Se sigue

de la Proposición 6.2.3 que (p, q) pertenece a la variedad de incidencia

Trop(H). Con esto, por el Teorema de Kapranov (1.5.6) existe un punto

(F, b) ∈ V (H) tal que F es un polinomio algebraico con soporte en A

y una singularidad en b tal que Trop(F ) = f y Trop(b) = q. �

Como Corolario de este teorema, con el siguiente ejemplo veremos

que podemos recuperar la información de la clasificación de las curvas

tropicales singulares correspondientes al punto (B.1) de la Sección 5.2

del caṕıtulo anterior.
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Ejemplo 6.2.9. Sea f = a⊕0⊙w1⊕0⊙w1⊙w2⊕0⊙w1⊙w2
2⊕b⊙

w2
1 ⊙ w2, que es el caso base de la clasificación (B.1) de la Sección 5.2

del caṕıtulo anterior. Recordemos de la Observación 3.1.5 que podemos

realizar el gráfico de la curva tropical T (f) conociendo la subdivisión

coherente marcada en la cápsula convexa de A (o sea, del poĺıtopo

de Newton ∆ de A). Esto se debe a que cada celda de dimensión s

de la subdivisión coherente de ∆ es dual a una celda de dimensión

s − 1 de T (f), y dichas celdas resultan ortogonales. Una subdivisión

coherente en ∆ proviene de la proyección en Rd de la cápsula convexa

de los puntos del conjunto {(−i, pi) : i ∈ A}, donde (pi)i∈A es el

vector de coeficientes de f . Las coeficientes de las formas lineales que

definen las caras máximo dimensionales de la cápsula convexa inferior

en consideración, nos dan los vértices de T (f) correspondientes a las

celdas máximo dimensionales de la subdivisión coherente marcada en

∆.

En la Figura 6.2 podemos ver las subdivisiones inducidas (y mar-

cadas) tanto de f -a la izquierda- como de ∂f
∂L1

, con L1 = w1 − 1, -a

la derecha-. En la misma figura podemos ver, con ĺıneas punteadas, a

los gráficos duales a estas subdivisiones correspondientes a T (f) y a

T
(

∂f
∂L1

)

. Y también incluimos las formas lineales que definen las ca-

ras de dimensión máxima de los levantados de los coeficientes i del

polinomio tropical, que nos dicen que los vértices del eje horizontal

de T (f) son los puntos (−b, 0) y (a, 0). Al considerar T
(

∂f
∂L1

)

, vemos

que T (f) ∩ T
(

∂f
∂L1

)

= (a−b
2
, 0). Se puede comprobar que si tomamos

cualquier otra derivada tropical ∂f
∂L

como en el Teorema 6.2.4, siempre

quedarán dos puntos del circuito σ = {(1, 0), (1, 1), (1, 2)} en el borde

de la cápsula convexa resultante y el eje que los une como parte de la

subdivisión inducida, quedando (a−b
2
, 0) ∈ T

(

∂f
∂L

)

. Con esto, (a−b
2
, 0)

resulta el único punto singular de T (f).

Observemos que (a−b
2
, 0) es el punto medio del segmento con vértices

en (−b, 0) y (a, 0), con lo cual recuperamos la condición métrica del

caṕıtulo anterior.

El próximo ejemplo nos muestra que si bien una curva tropical

T (f) puede tener dos puntos singulares distintos, puede no ser posible
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Figura 6.2. Gráficos de T (f) y T ( ∂f
∂L1

).

encontrar un polinomio F ∈ K[x1 . . . , xd] con Trop(F ) = f tal que F

tenga dos puntos singulares que se tropicalicen en los puntos singulares

de f .

Ejemplo 6.2.10. SeanA = {(0, 0), (0, 1), (2, 0), (1, 1), (2, 2), (0, 2)},

f = 0⊕0⊙w1⊕0⊙w2
1⊕0⊙w1⊙w2⊕0⊙w2

1⊙w2
2⊕6⊙w2

2 y L = w1−w2.

Podemos calcular T (f)∩ T ( ∂f
∂L
) = {(0, 0), (2,−2)}. Si definimos el po-

linomio F1 := −1 + 4x + (−2 + t6)x2 + (−2 − 2t6)xy + x2y2 + t6y2,

verificamos fácilmente que tiene soporte A, y define una curva singular

en (1,1). Y F2 := (1−t2+t4)+(2−2t2)x+x2+(−2−2t2)xy+x2y2+t6y2

también tiene soporte A y define una curva singular en (t2, t−2). Como

Trop(F1) = Trop(F2) = f , val(1, 1) = (0, 0) y val(t2, t−2) = (2,−2),

los puntos (0, 0) y (2,−2) resultan efectivamente los únicos puntos sin-

gulares de la curva tropical T (f), según el Teorema 6.2.4.

Ahora bien, supongamos existe un polinomio F ∈ K[x, y] tal que

F =
∑

i∈A aix
i, Trop(F ) = f y V (F ) posee dos puntos singula-

res b1 = (x1, y1) y b2 = (x2, y2) con val(b1) = (0, 0) y val(b2) =

(2,−2). Con esto, tendremos que se cumplen las ecuaciones F (b1) =

x
(

∂F
∂x

)

(b1) = y
(

∂F
∂y

)

(b1) = F (b2) = x
(

∂F
∂x

)

(b2) = y
(

∂F
∂y

)

(b2) = 0.

Mirando estas ecuaciones como ecuaciones lineales en los coeficientes

(ai)i∈A, tenemos que
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det



















1 x1 x2
1 x1y1 x2

1y1 y21
0 x1 2x2

1 x1y1 2x2
1y1 0

0 0 0 x1y1 x2
1y1 2y21

1 x2 x2
2 x2y2 x2

2y2 y22
0 x2 2x2

2 x2y2 2x2
2y2 0

0 0 0 x2y2 x2
2y2 2y22



















= 0.

Calculando la expansión de dicho determinante, nos queda

−2y2x2x1y1(x
3
2x1y

2
2 − x4

2y2y1 − 3x2
2x

2
1y

2
2 + x4

2y
2
1 − 3x3

2y
2
1x1 + 3x3

1y
2
2x2 +

x4
1y2y1 − x4

1y
2
2 + 3x2

1x
2
2y

2
1 − x3

1y
2
1x2 − 2x3

1x2y2y1 + 2x1x
3
2y2y1). Como

val(x1) = val(y1) = 0, val(x2) = 2 y val(y2) = −2, vemos que el

único término de menor valuación en la expansión del determinante

es −2x5
1y1y

3
2x2, con lo que el determinante nunca podrá ser cero, con-

tradiciendo la suposición que estábamos haciendo sobre la existencia

de un polinomio F levantado de f , tal que tenga dos singularidades

tropicalizándose en los puntos singulares de T (f).

Observación 6.2.11. En el próximo ejemplo veremos que los pun-

tos singulares de una curva tropical dependen no sólo de dicha curva

sino, esencialmente, de la marcación del poĺıtopo de Newton que la

define.

Ejemplo 6.2.12. Construyamos un ejemplo con mismo poĺıtopo

de Newton ∆ del Ejemplo 6.2.10, pero con todos los puntos marcados.

Para esto, extrapolemos linealmente los coeficientes correspondientes

a los puntos de ∆ ∩ Z2 que no están marcados. Podemos tomar f̃ =

0⊕w1⊕w2
1⊕w1⊙w2⊕w2

1⊙w2
2⊕6⊙w2

2⊕w2
1⊙w2⊕3⊙w2⊕3⊙w1⊙w2

2.

Notemos que los tipos de las curvas tropicales definidas por f y f̃ son

los mismos. Más aún, el gráfico de ambas curvas es el mismo, ya que

al interpolar linealmente los coeficientes que faltaban, no cambiamos

la cápsula convexa inferior de {(−α, pa) : f = ⊕α∈A pα ⊙ wα}. Es fácil

chequear que todos los puntos de T (f̃) son puntos singulares, ya que

f̃ puede ser levantado al polinomio F = (1 + x+ xy + t3y)2.

Ahora veremos cómo funciona el Teorema 6.2.4 en un ejemplo de-

fectivo, donde el A-discriminante tropical puede ser expĺıcitamente cal-

culado.
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Ejemplo 6.2.13. SeaA = {α1, α2, α3, α4, α5, α6}, con α1 = (0, 0, 0),

α2 = (1, 0, 0), α3 = (2, 0, 0), α4 = (0, 0, 1), α5 = (0, 1, 1) y α6 = (0, 2, 1).

Un polinomio clásico F =
∑

αi∈A
aαi

xαi ∈ K[x, y, z], con soporte A,

puede escribirse como F (x, y, z) = F1(x) + zF2(y) con F1(x) y F2(y)

dos polinomios de grado 2 en una variable. Con esto, V (F ) tendrá un

punto singular en el toro sii F1 y F2 lo tienen. Como F1 es un polinomio

en la variable x y F2 lo es en y, la superficie formada por los coeficien-

tes de F que hacen de V (F ) una variedad singular, queda determinada

por dos ecuaciones en varibles distintas que se deben cumplir al mismo

tiempo. Esto nos muestra la naturaleza defectiva de este ejemplo. Más

aún, las ecuaciones que determinan dicha superficie son

(6.2.14) a2α2
= 4aα1

aα3
y a2α5

= 4aα4
aα6

.

Pasemos ahora al análisis de la singularidad de la hipersuperficie tro-

pical T (Trop(F )). Observemos que A es la unión de dos circuitos de

dimensión uno, y la cápsula convexa de A es el tetraedro con vérti-

ces en {α1, α3, α4, α6}. Notemos que A no contiene ningún circuito de

dimensión máxima, o sea tres. El conjunto de ceros de cualquier fun-

ción af́ın L tal que el espacio af́ın generado por {L = 0} ∩ A tenga

dimensión dos, consiste de uno de los circuitos más un punto del otro.

Consideremos un polinomio tropical f = ⊕6
ℓ=1pαℓ

⊙ wαℓ con soporte

en A. Luego, analizando cada una de las formas lineales que definen

las caras conteniendo los circuitos mencionados, tenemos que existe un

punto singular q ∈ T (f) sii

2pα2
= pα1

+ pα3
, 2pα5

= pα4
+ pα6

.

Notemos que cada una de estas ecuaciones es exactamente la tro-

picalización de las condiciones encontradas en las Ecuaciones (6.2.14).

6.3. Hipersuperficies tropicales marcadas y singularidades

tropicales

Dado un polinomio tropical f = ⊕i∈A pi⊙wi con soporte A, la ma-

yoŕıa de las (finitas) derivadas de Euler ∂f
∂L

no proveen información rele-

vante para detectar puntos singulares de T (f). En esta sección daremos

más condiciones y caracterizaciones para detectar puntos singulares.
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Para seguir adelante, necesitamos profundizar los conceptos verti-

dos en la Observación 3.1.5. Para esto, recordemos la siguiente dualidad

[GKZ]. El vector de coeficientes p = (pi)i∈A de f define una subdivisión

coherente marcada Πp del poĺıtopo de Newton ∆, que es la cápusula

convexa de A. Esto es, p define una colección de subconjuntos de A (las

celdas marcadas) que están en correspondencia uno a uno con los do-

minos de linealidad de la función af́ın que corta las caras de la cápsula

convexa inferior del conjunto de puntos levantados {(−i, pi), i ∈ A} en

Rd+1. Asumamos que una cara inferior Γϕ es el gráfico de una función

af́ın ϕ(w1, . . . , wn) = 〈qϕ, w〉+βϕ. La celda marcada σϕ correspondien-

te a la subdivisión de ∆ es el subconjunto de A de todos los ı́ndices i

para los cuales pi = ϕ(i).

La subdivisión marcadad Πp es combinatoriamente dual a la varie-

dad tropical marcada T (f). Como vimos, esta variedad es un complejo

poliedral que es una unión de celdas duales σ∗
ϕ, donde también guar-

damos la información de la marcación de la celda dual σϕ, y no sólo

la información geométrica de los vértices de σϕ. Más expĺıcitamente,

la celda dual σ∗ en T (f) de una celda determinada σ de Πp es igual

a la clausura de la unión de puntos qϕ tales que σ = σϕ. También

guardamos la información de todos los puntos marcados en σ, es decir,

de todos los puntos correspondientes a los monomios en los cuales el

mı́nimo f(qϕ) se alcanza para cualquier punto qϕ en el interior relativo

de σ∗. La suma de las dimensiones de un par de celdas duales es d. En

particular, los vértices de T (f) se corresponden con celdas marcadas

de Πp de dimensión maximal d.

Ahora probaremos que cuando todas las celdas (marcadas) en la

subdivisión coherente Πp no continen ningún circuito (o sea, están for-

madas por puntos af́ınmente independientes), la hipersuperficie tropi-

cal asociada a f es no singular, como se esperaŕıa. Como veremos, la

rećıproca de esta afirmación no es verdadera y está relacionada con un

estudio combinatario más complicado.

Recordemos que una configuración de puntos se dice una pirámide si

todos sus puntos excepto uno pertenecen a un hiperplano af́ın. Observar

que en el caso de un conjunto de puntos af́ınmente independientes, se

cumple esta condición.
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Lema 6.3.1. Sea q ∈ T (f) un punto en el interior relativo de una

celda σ∗ tal que la celda dual σ en Πp es una pirámide. Luego, q es

no singular. En particular, si Πp es una triangulación coherente, la

hipersuperficie tropical T (f) no es singular.

Demostración. Si σ es una pirámide, sea L el funcional lineal tal

que {L = 0} interseca a σ en una cara y deja fuera de esa intersección

a sólo uno punto. Esto significa que el mı́nimo de ∂f
∂L

en q se alcanza

sólo en un monomio. Con esto, q /∈ T ( ∂f
∂L
) y por lo tanto q no es un

punto singular. �

Corolario 6.3.2. Sea σ una celda de Πp de dimensión r. Una con-

dición necesaria para que q ∈ σ∗ sea un punto singular es que el valor

de f(q) se alcance en, al menos, r + 2 monomios.

Demostración. Si dim(σ) = r, tenemos que σ posee al menos

r+1 puntos. Si |σ| = r+1, la celda resulta un simplex de dimensión r

y, por lo tanto, una pirámide, con lo que q ∈ σ∗ no resultan un punto

singular por el lema anterior. �

Ejemplo 6.3.1. Sea f ∈ T[w1, w2, w3] el polinomio tropical dado

por f = 0 ⊕ 0 ⊙ w1 ⊕ 0 ⊙ w2 ⊕ 1 ⊙ w3 ⊕ 0 ⊙ w1 ⊙ w3 ⊕ 0 ⊙ w2 ⊙ w3.

Podemos ver que el soporte de f es

A = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)}.

Los coeficientes de f inducen la subdivisión coherente en ∆ como en

la Figura 6.3, que tiene dos celdas de dimensión 3, y no es una trian-

gulación. Una de esas celdas es un triángulo unimodular. La segunda

celda de dimensión máxima contiene al circuito Z = {(1, 0, 0), (0, 1, 0),

(1, 0, 1), (0, 1, 1)} de dimensión d−1 = 2, y dicha celda es una pirámide

sobre el punto (0, 0, 0). Niguna celda de menor dimensión cumple con la

condición necesaria del Corolario 6.3.2, salvo la que tiene por vértices

a los elementos del circuito Z. Pero esta cara no puede aportar ningún

punto singular, pues forma parte de la pirámide anteriormente descrip-

ta. Expĺıcitamente, si q ∈ T (f) pertenece a la celda dual a la celda con

el circuito Z, considerando el funcional af́ın L = 1− w1 − w2 tenemos

que q /∈ T ( ∂f
∂L
), ya que el (mı́nimo) valor de f(q) se sigue alcanzando

sólo en el término independiente.
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Figura 6.3. Subdivisión inducida por el polinomio f

del Ejemplo 6.3.1.

En la práctica, cuando buscamos puntos singulares en una hipersu-

perficie tropical, eliminamos todas las celdas de T (f) que son duales a

un simplex en ∆. Este procedimiento elimina la mayoŕıa de los casos.

Con las celdas restantes tenemos que chequear las derivadas parciales

de Euler con respecto a los hiperplanos L que contienen un circuito

de la subdivisión. No hay una caracterización combinatoria elemental

para determinar si un punto es singular. En parte, esto se debe a que la

situación no es completamente local. Ver [GKZ] y [DFS], y el concepto

de ∆-equivalencia.

Ahora analizaremos condiciones necesarias y suficientes para que

un punto q ∈ T (f) sea singular.

Teorema 6.3.3. Sea f = ⊕i∈A pi ⊙wi un polinomio tropical, y sea

q ∈ T (f) un punto en el interior relativo de una celda σ∗. Luego, q

es un punto singular si y sólo si la celda dual σ no es una pirámide y

se tiene que q ∈ T ( ∂f
∂L
) para todas las funciones lineales afines L tales

que dim(〈{L = 0} ∩ A〉) = d− 1 y σ ⊂ {L = 0}. Con esto, en el caso

particular de un vértice q de T (f), q es singular śı y sólo si σ no es

una pirámide.

Demostración. Si q es un punto singular, σ no es una pirámide

por el Lema 6.3.1. Como q ∈ T
(

∂f
∂L

)

para cualquier L, por ser singular,
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en particular también ocurre para las funciones lineales afines descrip-

tas en las hipótesis. Supongamos ahora que q no es un punto singular, y

sea L′ una función lineal af́ın tal que q /∈ T
(

∂f
∂L′

)

. Sea i ∈ Ar{L′ = 0}

el único punto de A en el cual
(

∂f
∂L′

)

(q) se alcanza. Luego, si σ no

está contenido en {L′ = 0}, tenemos que i ∈ σ y es el único punto de σ

fuera de {L′ = 0}, con lo que σ resulta una pirámide. Si σ ⊂ {L′ = 0},

tomemos cualquier hiperplano con coeficientes enteros {L = 0} tal que

A ∩ {L′ = 0} ⊆ A ∩ {L = 0}, A ∩ {L = 0} genera un espacio af́ın de

dimensión d− 1 e i /∈ {L = 0}. Para cualquier L con estas propiedades

tenemos que q /∈ T
(

∂f
∂L

)

, como queŕıamos. �

Corolario 6.3.4. Como consecuencia del Teorema 6.3.3, recupera-

mos la clasificación correspondiente al punto (A) de la Sección 5.2, ya

que un vértice en una curva tropical (o sea T (f) ⊂ R2) será singular

sii es un vértice del que salen 4 o más ejes, o si es un vértice trivalente

de multiplicidad mayor a uno. El primer caso corresponde a celdas de

dimensión 2 que son un poĺıgono de 4 o más lados (por lo tanto no es

una pirámide), y en el segundo caso el circuito es un triángulo con al

menos un punto en su interior relativo en la marcación de la subdivisión

coherente.

Al igual que en el Ejemplo 6.2.9, donde recuperamos la información

correspondiente al punto (B.1) de la Sección 5.2, podemos recuperar

la información correspondiente al punto (B.2) de la misma Sección,

como Corolario del Teorema 6.3.3. El siguiente ejemplo servirá a este

propósito.

Ejemplo 6.3.2. Sea f = ν ⊕ 0 ⊙ w1 ⊕ 0 ⊙ w1 ⊙ w2 ⊕ 0 ⊙ w1 ⊙

w2
2 ⊕ λ ⊙ w2

1 ⊕ λ ⊙ w2
1 ⊙ w2, con 0 < λ < ν. Siguiendo la notación de

la Figura 6.2 correspondiente al Ejemplo 6.2.9, en la parte superior de

la Figura 6.4 podemos ver la subdivisión coherente (marcada) de ∆,

y la curva tropical dual a ésta, T (f), en ĺıneas punteadas. Como ya

planteamos en el Ejemplo 6.2.9, los coeficientes de las formas lineales

definiendo las caras de dimensión máxima de la cápsula inferior del

conjunto {(−i, ai) : i ∈ A} nos dan las coordenadas de los vértices de

la curva tropical T (f).
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Por el Teorema 6.3.3, para encontrar todos los puntos singulares de

T (f) sólo tenemos que calcular T (f)∩T
(

∂f
∂L

)

, con L = w1−1. Podemos

ver en la parte inferior de la Figura 6.4 a la subdivisión (marcada) re-

gular inducida en Ar{L = 0} y su curva tropical dual T
(

∂f
∂L

)

en ĺıneas

punteadas. En la Figura 6.5 podemos ver el gráfico de T (f)∩ T
(

∂f
∂L

)

,

y, por lo tanto, todos los puntos singulares de f .

Figura 6.4. Subdivisión inducida, T (f) y T
(

∂f
∂L

)

del Ejemplo 6.3.2.
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Notemos que este ejemplo ya lo hab́ıamos estudiado en la clasifica-

ción (B.2) de la Sección 5.2. En dicha clasificación reconoćıamos sólo

uno de los punto singulares de la curva tropical: x0 = (0, 0), lo que bas-

taba para reconocer la curva como singular. Gracias al Teorema 6.3.3

encontramos todos los puntos singulares de la curva tropical: todos los

puntos en el segmento cerrado
[

(−λ, 0);
(

ν−λ
2
, 0
)]

. Y recuperamos la

condición métrica encontrada en la clasificación anterior: como ν > λ,

(0, 0) resulta un punto singular que se encuentra más cerca del vértice

(−λ, 0), del que salen cuatro ejes, que del vértice trivalente
(

ν−λ
2
, 0
)

.

Figura 6.5. Puntos singulares de la curva tropical T (f)

del Ejemplo 6.3.2.

Como una consecuencia del Teorema 6.3.3, podemos fácilmente des-

cribir los polinomios que definen hipersuperficies tropicales en el caso

de 1 y 2 variables. Recordemos que, si A no es defectivo, T (Trop(∆A))

es un subabanico del abanico secundario de A. En el caso más simple

de una variable (o sea A ⊂ Z), vale que T (Trop(∆A)) es la unión de los

conos en el abanico secundario que no sean de dimensión máxima (pues

las únicas caras propias de A son vértices). Con esto, un polinomio en

una variable es singular si y sólo si la subdivisión marcada inducida

no es una triangulación. Con nuestra notación, esto es un caso simple

del Teorema 6.3.3, ya que todos los circuitos de A tienen dimensión

máxima 1.

El resultado que sigue, en el caso suave, aparece en [GKZ, Prop. 3.9,

Cap. 11].
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Corolario 6.3.5. Sea A ⊂ Z2 con n elementos. Supongamos que

p ∈ Rn induce una subdivisión coherente marcada Πp en A que no

es una triangulación. Luego p ∈ T (Trop(∆A)) (equivalentemente, el

polinomio f = ⊕i∈A pi⊙wi define una hipersuperficie tropical singular)

en exactamente los siguientes casos:

i) Existe una celda marcada de Πp que contiene un circuito de

dimensión 2.

ii) Todos los circuitos contenidos en una celda de Πp tienen dimen-

sión af́ın 1, y existe una celda marcada σ de Πp de dimensión

1 con #σ ≥ 3 con la siguiente propiedad: Sea L una función

lineal af́ın con coeficientes enteros tal que σ ⊂ {L = 0}. Luego,

σ∗ ∩ T
(

∂f
∂L

)

6= ∅.

Notar que si estamos en las condiciones del segundo caso del Co-

rolario anterior, σ∗ ∩ T
(

∂f
∂L

)

6= ∅ si y sólo si existe un celda σ′ de

dimensión 2 que contenga a σ, tal que σ′ ∩ {L = 0} = {i1} consiste de

un único punto i1 ∈ A y, asumiendo que L(i1) > 0, existe otro punto

i2 ∈ Ar σ′ con L(i2) < L(i1). Esto es un caso particular del resultado

más general que presentamos a continuación. Tengamos presente que

siempre asumimos que la cápsula convexa del conjunto de exponentes

A es de dimensión máxima.

Proposición 6.3.6. Sea A ⊂ Zd. Sea p ∈ Rn tal que Πp contiene

una celda σ′ de dimensión d, y dicha celda contiene un circuito Z de

dimensión d−1 y es una pirámide sobre un punto i1. Sea L una función

af́ın con coeficientes enteros tal que Z ⊂ σ′ ∩ {L = 0} y L(i1) > 0.

Luego, existe un punto singular q ∈ T (⊕i∈A pi⊙wi)∩{(σ′∩{L = 0})∗}

con 〈q, i1〉 > 0 sii existe i2 ∈ A r σ′ con L(i2) < L(i1). En particular,

si Z interseca el interior de la cápsula convexa de A, T (⊕i∈A pi ⊙ wi)

resulta singular.

Demostración. Podemos asumir que L = j1w1 + j2w2 + . . . +

jdwd + β con todos los coeficientes coprimos. Para trabajar con una

notación más transparente, aplicamos una transformación lineal af́ın

inversible a nuestra configuración de puntos A para lograr L(w) = w1.

Notemos con ϕ(w) = ϕ1w1+. . .+ϕdwd a la forma lineal que interpola p

sobre la celda σ′, es decir ϕ(i) = pi para todos los i ∈ σ′ y ϕ(i) < pi para
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todos los i /∈ σ′. Con esto, p′ := pi − ϕ(i) define la misma subdivisión

marcada, con lo que podemos asumir que pi = 0 para todos los i ∈ σ′

y pi > 0 en otro caso. De esta manera, q = (0, . . . , 0) es el vértice de

T (f) dual a σ′, y no es singular pues σ′ es una pirámide. Observemos

que si q ∈ (σ′ ∩ {L = 0})∗ luego q = (q1, 0, . . . , 0). Con esto tenemos

que existirá un punto singular en (σ′ ∩ {L = 0})∗ con 〈q, i1〉 > 0 sii

existe q1 > 0 y dos puntos i2, i3 en A tales que

〈q, i2〉+ pi2 = 〈q, i3〉+ pi3 ≤ 〈q, i〉+ pi

para todo i ∈ A con L(i) 6= 0. Con nuestra notación, esto se traduce a

q1L(i2) + pi2 = q1L(i3) + pi3 ≤ q1L(i) + pi

para todo i ∈ A con L(i) 6= 0. Notar que como σ′ es una pirámide

sobre i1, para cualquier punto i2 ∈ A para el cual L(i1) = L(i2) vale

que i2 /∈ σ′ o, equivalentemente, pi2 > 0. Asumamos primero que existe

un punto i ∈ A′ := A r σ′ con L(i) < L(i1). Tomemos i2 con esa

propiedad, y tal que
pi2

L(i1)−L(i2)
= mı́ni∈A′

pi
L(i1)−L(i)

. Luego es suficiente

tomar q1 =
pi2

L(i1)−L(i2)
e i3 = i1. Rećıprocamente, asumamos que existe

un punto singular q = (q1, 0, . . . , 0) con q1 > 0. Como q ∈ T
(

∂f
∂L

)

, exis-

ten dos puntos i2 6= i3 tales que q1L(i2) + pi2 = q1L(i3) + pi3 ≤ q1L(i).

Supongamos que i2 6= i1. Con esto 0 < pi2 ≤ q1(L(i1) − L(i2)), resul-

tando L(i2) < L(i1), como queŕıamos. La condición que Z interseque

el interior la cápsula convexa de A garantiza la existencia de un punto

i2 ∈ A′ con L(i2) < L(i1). �

Comentario 6.3.3. Notar que el punto i2 en la Proposición 6.3.6

no necesita pertenecer a una celda de la subdivisión marcada Πp.

6.4. Clases de peso y el co-abanico de Bergman de Ã.

En esta sección relacionamos las definiciones vistas hasta aqúı con

los resultados y definiciones en [DFS], [MMS] y [AK]. Como siempre,

f = ⊕i∈A pi ⊙ wi denota un polinomio tropical con soporte A.

Definición 6.4.1. Sea q en el interior de una celda σ∗ ⊂ T (f).

Definimos en forma inductiva a la bandera de f (con respecto a q)

como la bandera de subconjuntos F(q) de A que cumple las condiciones
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F0(q) := σ ( F1(q) ( . . . ( Fr(q), con dim〈Fr(q)〉 = d y para todo ℓ

vale que Fℓ+1(q) r Fℓ(q) es el subconjunto de A \ 〈Fℓ(q)〉 donde el

polinomio tropical ⊕i∈A\〈Fℓ(q)〉 pi⊙wi alcanza su mı́nimo en q. La clase

de peso de la bandera F(q) son todos los puntos q′ ∈ T (f) para los

cuales F(q) = F(q′).

Observación 6.4.2. En el caso de q = (0, . . . , 0), tenemos que las

banderas de f con respecto a q coinciden con las banderas de flats

de la Definición 2.4.1. Y las clases de peso coinciden con las de la

Definición 2.4.2.

Los Teoremas 6.2.4 y 6.3.3 nos brindan un algoritmo para decidir

si un punto q ∈ T (f) es singular o no, que es similar al método presen-

tando en [T2] pero que funcionan sin hipótesis restrictivas sobre A. El

algoritmo nos da como resultado un funcional af́ın L tal que q /∈ T
(

∂f
∂L

)

o “q es un punto singular”. Primero, calculamos F0(q) = σ. Si σ es una

pirámide, existe i ∈ F0(q) tal que i /∈ 〈F0(q)r {i}〉 y podemos calcular

un L definiendo la cara 〈F0(q)r{i}〉 de F0(q), que verifica q /∈ T
(

∂f
∂L

)

.

Si dim(〈F0(q)) < d, calculamos F1(q) e iteramos el proceso. Paramos

cuando encontramos un L que certifique que q es no singular o cuando

llegamos a calcular un Fℓ con dimensión af́ın d que no sea una pirámide,

con lo que q resulta singular.

Expĺıcitamente, el algoritmo es como sigue:

Input: f un polinomio tropical con soporte A, q ∈ T (f)

• ℓ = 0

• Para ℓ desde 0 hasta d hacer

⋆ Calcular Fℓ(q) con los datos de f, q y ∪0≤r<ℓ−1Fr

⋆ Para cada x en Fℓ(q) hacer

⋄ Si x /∈ 〈{F0(q) ∪ . . . ∪ Fℓ(q)}r {x}〉 Luego

− Calcular un L que defina la cara {F0(q) ∪ . . . ∪

Fℓ(q)}r{x} en la cápsula convexa de {F0(q)∪ . . .∪

Fℓ(q)}.

− SALIDA: L.

⋄ Finalizar Si

⋆ Finalizar Para

• Finalizar Para

• SALIDA: “q es un punto singular.”
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Enumeremos los elementos i1, . . . , in de A, y sea A ∈ Zd×n la ma-

triz con esas columnas, en el mismo orden. Llamemos Ã a la matriz

con columnas (1, ik), 1 ≤ k ≤ n. Recordemos de la Sección 2.1 que

F =
∑

i∈A aix
i es singular en (1, . . . , 1) sii (ai)i∈A ∈ ker(Ã), y F tiene

un cero singular en otro punto p del toro (K∗)d sii (ai)i∈A ∈ ker(ÃDp),

con Dp la matriz diagonal inversible, con (Dp)jj = pij . Al estudiar si

una hipersuperficie tropical T (f) es singular o no, debemos ver si el

vector de coeficientes de f pertenece a la tropicalización del núcleo de

alguna de estas matrices. Estas tropicalizaciones resultan una traslación

de Trop(ker(Ã)). En el Caṕıtulo 2, vimos que B∗(Ã) = Trop(ker(Ã))

(Corolario 2.3.7).

Con las herramientas desarrolladas hasta aqúı podemos redemostrar

el Teorema 1.1 de [DFS]. Enunciemos este teorema:

Teorema 6.4.1 (Dickenstein-Feichtner-Sturmfels). Sea A ⊂ Zd

un conjunto dado, con s elementos. Luego, la tropicalización del A-

discriminante ∇0 es igual a la suma de Minkowski del espacio fila de

la matriz Ã y del coabanico de Bergman B∗(Ã). Es decir,

Trop(∇0) = B∗(Ã) + 〈 filas de Ã 〉.

Demostración. Sean f =
⊕

i∈A

pi ⊙ wi un polinomio tropical, y

φ(x) =
∑

i∈A

xi la forma lineal con todos sus coeficientes iguales a 1.

Entonces Φ := T (Trop(φ)) es el conjunto formado por todos los v en

Rs tales que mı́n{vi : i ∈ A} se alcanza al menos dos veces. Con esto

tenemos que

T (f) = {w ∈ Rd : w · A+ (p)i∈A ∈ Φ}.

Y, claramente, B∗(Ã) ⊆ Φ.

Sea ahora L(w) = j1w1 + . . . + jdwd + β una forma lineal af́ın.

Podemos asociar a L la forma lineal ℓL(x1, . . . , xs) =
n
∑

i=1

L(ik)xk. Con

esto, el soporte de ℓL es precisamente Ar {L = 0}. Más aún, el vecor

de coeficientes (L(ik))i∈A vive en el subespacio generado por las filas de

la matriz Ã, ya que se obtiene haciendo el producto (β, j1, . . . , jd) · Ã,

y todas las formas lineales inducidadas por el espacio generado por las

filas de Ã (que generan el ideal de ker(Ã)) son de esta forma.
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Notemos por v1, . . . , vs a variables (tropicales). La tropicalización

Trop(ℓL) es

Trop(ℓL)(v) =
⊕

L(ik) 6=0

0⊙ vk.

De esto obtenemos que q ∈ T
(

∂f
∂L

)

= T (
⊕

L(i) 6=0
i∈A

pi ⊙ wi) si pasa que

mı́n
L(i) 6=0

{pi + 〈q, i〉} se alcanza al menos dos veces o, equivalentemente, si

el vector (pi + 〈q, i〉)i∈A ∈ T (Trop(ℓL)).

Si q es un punto singular de T (f), por el Teorema 6.2.4 q ∈ T
(

∂f
∂L

)

para toda L función lineal af́ın. Por las observaciones del párrafo ante-

rior, esto sucede sii (pi + 〈q, i〉)i∈A ∈ T (Trop(ℓL)) para toda L. Como

todas las formas lineales inducidas por el espacio generado por las filas

de la matriz Ã son de la forma ℓL para alguna L, por la Proposi-

ción 2.3.4 nos queda que si I ⊂ K[x1, . . . , xs] es el ideal generado por

las formas lineales homogéneas inducidas por las filas de la matriz Ã

entonces (pi + 〈q, i〉)i∈A ∈ T (I) = T (ker(Ã)) = B∗(Ã).

Resumiendo, (p)i∈A define una hipersuperficie tropical sii existe un

punto q ∈ Rd tal que (p)i∈A + q · A = u ∈ B∗(Ã), que es lo mismo que

pedir p = u+ (−q) · A con u ∈ B∗(Ã), o sea p es un punto en la suma

de Minkowski del espacio generado por las filas de A mas el coabanico

de Bergman de Ã. Como el subespacio 〈(1, . . . , 1)〉 está contenido en

Trop(ker(Ã)), y (1, . . . , 1) es la fila que le agregamos a la matriz A

para obtener la matriz Ã, podemos afirmar que p es un punto en el

A-discriminante tropical sii p se escribe como un punto en la suma de

Minkowski del espacio generado por las filas de Ã más un punto en el

coabanico de Bergman de Ã, que es lo que queŕıamos demostrar. �

De la demostración anterior se desprende una nueva caracterización del

conjunto de todos los puntos singulares de una hipersuperficie tropical.

Corolario 6.4.2. Sea f = ⊕i∈A pi⊙wi un polinomio tropical. Luego

el conjunto de todos los puntos singulares de T (F ) resulta ser

Sing(T (f)) = {q ∈ Rd : q · A+ p ∈ B∗(Ã)}.

Analicemos la implicancia de este teorema: La bandera de conjuntos

F(q) y las clases de peso de la Definición 6.4.1 coinciden con los de
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[AK, Pág. 3]. Nuestro algoritmo puede ser modificado para decidir si

f =
∑

i∈A pi ⊙ wi contiene un punto singular, es decir, si p está en el

A-discriminante tropical. Más aún, es posible calcular todos los puntos

singulares. Sólo basta remarcar que como las clases de peso inducen

una subdivisión más fina en el co-abanico de Bergman B∗(Ã), también

inducen una subdivisión poliedral más fina de T (f). Dos puntos q y

q′ de T (f) pertenecen al interior relativo de la misma celda en esta

subdivisión más fina si y sólo si q, q′ pertenecen a la misma clase de

peso. Con esto, si σ es una celda de la subdivisión más fina de T (f),

todos los puntos de σ son singulares, o todos son regulares. Como el

número de celdas en esta subdivisión es finita y dichas celdas se pueden

calcular, podemos usar un algoritmo para calcular todos los puntos

singulares de T (f) que use esta información.

Proposición 6.4.3. Las (finitas) clases de peso asociadas al poli-

nomio tropical f = ⊕i∈A pi ⊙ wi con soporte A, son celdas poliedrales

relativamente abiertas que refinan la estructura poliedral de T (f) dual

a la subdivisión coherente marcada Πp. Si C es una celda en esta nueva

subdivisión, todos los puntos de C son singulares o todos son regula-

res. El algoritmo anterior aplicado a cualquiera de los puntos de C nos

permite decidir si C es un conjunto de puntos singulares o regulares.

Terminaremos esta sección con algunos ejemplos interesantes.

Ejemplo 6.4.3. Consideremos al polinomio tropical f definido por

f = 0⊕0⊙w1⊕0⊙w2⊕0⊙w1⊙w2⊕1⊙w2
1⊕1⊙w2

2. Este polinomio

f define una cónica cuyo único circuito en la subdivisión dual es el

{(0, 0), (1, 0), (0, 1), (1, 1)}. Como estos puntos forman un circuito de

codimensión 2, el único punto singular de f es el (0, 0).

Nuestro próximo ejemplo muestra que dos vectores de coeficientes

que inducen la misma subdivisión coherente de la cápsula convexa de

A, las banderas asociadas no necesariamente son coincidentes.

Ejemplo 6.4.4. Sean A = {α1, α2, α3, α4, α5, α6} con α1 = (0, 0),

α2 = (1, 0), α3 = (0, 2), α4 = (2, 0), α5 = (1, 2) y α6 = (−2, 0), y

pv = (0, 0, 0, 0, v1, v2), con v = (v1, v2) ∈ R2
>0 arbitrario. En este caso,

pv define la curva tropical dada por f = 0⊕0⊙w2⊕0⊙w2
2⊕0⊙w2

1⊕v1⊙

w1 ⊙w2
2 ⊕ v2 ⊙w−2

1 . La subdivisión marcada Π inducida por cualquier
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pv tiene tres celdas maximales: σ1 = {α1, α2, α3, α4}, σ2 = {α3, α4, α4}

y σ3 = {α1, α2, α3, α6}. Por la Proposición 6.3.6 podemos afirmar que

todas las curvas inducidas por cualquier v son singulares, con un punto

singular en la celda dual al eje marcado {α1, α2, α3}. Esto se debe a que

el circuito Z = {α1, α2, α3} es de codimensión 1, e interseca el interior

del poĺıgono de Newton de f . Sin embargo, como veremos, el número

y lugar de los puntos singulares vaŕıa.

La celda σ1 es dual al punto (0, 0) en la curva T (f), y σ3 es dual

al punto (v2
2
, 0). Por el Corolario 6.3.5 tendremos una singularidad si

existe un punto en el segmento [(0, 0), (v2
2
, 0)] que también pertenezca

a la derivada parcial de Euler gv =
∂fv

∂(w1=0)
= 0⊙ w2

1 ⊕ v1 ⊙ w1 ⊙ w2
2 ⊕

v2 ⊙ w−2
1 . En dicho segmento gv alcanza su mı́nimo en el (0, 0) en la

forma linear asociada a α4, y en (v2
2
, 0) en la forma linear asociada a

α6. Como gv es una función continua, debe de haber un punto (q, 0)

donde el mı́nimo de gv se alcance dos veces, con lo que este punto

será una singularidad de f (cf. [MMS]). Este razonamiento funciona

para cualquier hipersuperficie de dimensión d con un circuito en el

interior de A de dimensión d− 1.

Ahora bien, el gráfico de T (gv) es una recta tropical con vértice

en el punto
(

v2
2
, −4v1+v2

8

)

, con semiejes saliendo de él con direcciones

(0, 1), (−1,−2) y (2,−3). Esto nos lleva a tres situaciones posibles (ver

Figura 6.6):

• Si −4v1+v2 < 0, existe un punto singular en q = (v2
4
, 0). La ban-

dera con respecto a q es: {α1, α2, α3} ( {α1, α2, α3, α4, α6} ( A.

• Si −4v1 + v2 = 0, existe un punto singular en q = (v2
4
, 0). La

bandera con respecto a q es: {α1, α2, α3} ( A

• Si −4v1 + v2 > 0, obtenemos dos puntos singulares distintos:

∗ Por el lado de la rama del semieje con dirección (−1,−2)

obtenemos el punto q = (v1, 0) con bandera con respecto a

q: {α1, α2, α3} ( { α1, α2, α3, α4, α5} ( A

∗ Por el lado de la rama del semieje con dirección (2,−3)

obtenemos el punto q = (v2−v1
3

, 0) con bandera con respecto

a q: { α1, α2, α3} ( { α1, α2, α3, α5, α6} ( A

Con esto, podemos tomar valores distintos de v, v′ ∈ R2
>0 tales que se

tenga Π = Πv = Πv′ y que sea imposible de encontrar puntos singulares
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qv, qv′ en T (fv), T (f ′
v) para los cuales las banderas con respecto a q y

q′ coincidan para todo ℓ. Es decir, que se cumpla Fℓ(qv) = Fℓ(qv′) ∀ ℓ.

Figura 6.6. Casos del Ejemplo 6.4.4: −4v1 + v2 < 0

(izq.),−4v1+v2 = 0 (centro), y−4v1+v2 > 0 (der.).Ĺınea

llena gráfico de T (f), y punteada T
(

∂f
∂(w1=0)

)

.

El siguiente ejemplo muestra un polinomio tropical f tal que el

vector de coeficientes que lo define pertenecen a un cono de codimensión

uno del abanico secundario de A, y T (f) tiene dos puntos singulares.

Ejemplo 6.4.5. Sea f = 0 ⊙ w2
1 ⊕ 0 ⊙ w2

1 ⊙ w2 ⊕ 0 ⊙ w2
1 ⊙ w2

2 ⊕

7⊙ w2 ⊕ 4⊙ w1 ⊙ w2 ⊕ 7⊙ w4
1 ⊙ w2. La subdivisión inducida por f es

su poĺıgono de Newton es una triangulación excepto por el circuito de

exponentes {w2
1, w

2
1w2, w

2
1w

2
2}. El A- discrimiante del soporte de f , con

los significados obvios para las variables aij, es
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16a411a
6
21 − 128a01a

2
11a

7
21 + 256a201a

8
21 − 192a411a20a

4
21a22 + 1536a01a

2
11

a20a
5
21a22 − 4096a201a20a

6
21a22 + 768a411a

2
20a

2
21a

2
22 − 6144a01a

2
11a

2
20a

3
21

a222 + 24576a201a
2
20a

4
21a

2
22 − 1024a411a

3
20a

3
22 + 8192a01a

2
11a

3
20a21a

3
22 −

65536a201a
3
20a

2
21a

3
22 + 65536a201a

4
20a

4
22 + 216a611a

3
21a41 − 2016a01a

4
11a

4
21

a41 + 5632a201a
2
11a

5
21a41 − 4096a301a

6
21a41 + 2592a611a20a21a22a41 −

20736a01a
4
11a20a

2
21a22a41 + 28672a201a

2
11a20a

3
21a22a41 + 16384a301a20a

4
21

a22a41 + 4608a01a
4
11a

2
20a

2
22a41 − 204800a201a

2
11a

2
20a21a

2
22a41 + 65536a301

a220a
2
21a

2
22a41 − 262144a301a

3
20a

3
22a41 + 729a811a

2
41 − 7776a01a

6
11a21a

2
41 +

27648a201a
4
11a

2
21a

2
41 − 38912a301a

2
11a

3
21a

2
41 + 24576a401a

4
21a

2
41 − 55296a201

a411a20a22a
2
41 + 122880a301a

2
11a20a21a22a

2
41 + 65536a401a20a

2
21a22a

2
41 +

393216a401a
2
20a

2
22a

2
41 − 13824a301a

4
11a

3
41 + 73728a401a

2
11a21a

3
41 − 65536

a501a
2
21a

3
41 − 262144a501a20a22a

3
41 + 65536a601a

4
41.

La mı́nima valuación de los términos en el A-discriminante se al-

canza para cualquier elección de coeficientes aij (con las debidas va-

luaciones dados por los coeficientes de f), en los cinco monomios sub-

rayados del A-discriminante. Observemos que tres de esos monomios

a201a
2
20a

4
21a

2
22, a

2
01a20a

6
21a22 y a201a

3
20a

2
21a

3
22 pertenecen a la cápsula con-

vexa de los otros dos: a201a
8
21 y a201a

2
20a

4
22. Con esto, los exponentes de

los monomios del A-discriminante donde el mı́nimo se alcanza perte-

necen a un eje, y el vector de coeficientes de f pertenece a una cel-

da maximal de la tropicalización de la variedad del A-discriminante.

Los puntos singulares de esta curva son (3, 0) y (−1, 0) (ver la Fi-

gura 6.7). Dos levantamientos de la curva y los puntos singulares son:

t7x4y+x2y2+(−3t13+t−2)x2y+x2+(2t16−2t4)xy+t7y con una singula-

ridad en (t3, 1), y t7x4y+x2y2+(t9−3t5−2)x2y+x2+(−2t8+2t4)xy+t7y

con una singularidad en (1/t, 1).

6.5. Dimensión de celdas de T (f) con todos sus puntos

singulares

Para finalizar este caṕıtulo, y el presente trabajo, enunciaremos (y

probaremos) el Teorema 1.1 de [MMS2], que relaciona la codimensión
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Figura 6.7. Subdivisión marcada del poĺıgono de New-

ton y curva singular del Ejemplo 6.4.5 (en trazo conti-

nuo), y T
(

∂f
∂(w1−2)

)

(punteado).

del cono del abanico secundario a la que pertenece la subdivisión de

una hipersuperficie tropical singular, con la dimensión de las celdas con

todos sus puntos singulares de la hipersuperficie. Los resultados de este

Teorema se basan en las implicancias del Terema 6.4.1 [DFS, 1.1].

Para esto vamos a necesitar ciertas definiciones previas, recordando

que consideramos al abanico secundario en el espacio Rs/(1, . . . , 1),

donde s = #A, y que notamos por Ã a la matriz que tiene por columnas

a los vectores (1, i) donde i ∈ A y por A a la matriz que tiene por

columnas a los vectores i ∈ A.

Definición 6.5.1. Para un punto u ∈ Rs/(1, . . . , 1), notaremos con

C(u) al único cono del abanico secundario tal que u pertenece al interior

relativo de dicho cono. Observar que si S es el espacio de linealidad del

abanico secundario, luego C(u+ s) = C(u) para todo s ∈ S.

Llamaremos defectiva a una clase de peso C ⊆ Trop(ker(Ã)) si

existe un punto u ∈ C + S con dim(C + S) < dim(C(u)).

Observación 6.5.2. Si C es una clase de peso y u ∈ C es tal que

C(u) tiene codimensión uno en el abanico secundario, C es defectiva

sii 〈C〉 ∩ S 6= 0, donde 〈C〉 es el mı́nimo espacio lineal que contiene a

la clase de peso C.

Asumamos que C es una clase de peso no-defectiva. Con esto, C+S

está contenido en conos del abanico secundario de dimensión menor o

igual a dim(C + S). El conjunto de todos los puntos u ∈ C tales que

dim(C+S) > dim(C(u)) es claramente de dimensión menor a la de C.

Definición 6.5.3. Un punto p ∈ B∗(Ã) + S ⊆ Rs/(1, . . . , 1) en el

A-discriminante tropical se dirá genérico si no puede ser escrito co-

mo p = u + s donde s ∈ S es un punto del espacio de linealidad del
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abanico secundario, y u ∈ C es un punto en una clase de peso en

B∗(Ã) = Trop(ker(Ã)) tal que C es defectiva, o no es de máxima

dimensión en Trop(ker(Ã)), o dim(C + S) > dim(C(u)). Una hiper-

superficie definida por un polinomio f tal que su vector de coeficentes

es un punto genérico, será llamada una hipersuperficie tropical singular

genérica.

Ahora estamos en condiciones de enunciar el Teorema 1.1 de [MMS2]:

Teorema 6.5.1. Sea f un polinomio tropical definiendo una hi-

persuperfice tropical singular genérica. Asumamos que la subdivisión

marcada coherente inducida por f corresponde a un cono de dimensión

c en el abanico secundario. Luego el conjunto de puntos singulares de

T (f) es una unión de finitos poliedros de dimensión c− 1.

Demostración. Sea p un punto genérico en el A-discriminante

tropical. Se sigue de la definición de genericidad que podemos escribir

a p como una suma u + s con u ∈ B∗(Ã) = Trop(ker(Ã)) y s ∈ S.

Podemos suponer que la clase de peso C de Trop(ker(Ã)) que contiene

a u en su interior relativo es de dimensión máxima y satisface que

dim(C+S) = dim(C(u)). Supongamos que C(u) = C(p) es un cono de

codimensión c del abanico secundario. Notemos que la representación

de p como una suma como la anterior no es única. Primero, podŕıa haber

distintas clases de peso C en Trop(ker(Ã)) con las que podamos escribir

a p como la suma de un vector en C y un vector en S. Segundo, aún si

fijásemos un cono C, podŕıa seguir habiendo distintas representaciones

de p como la suma de un vector en ese C y un vector en S. Por ahora

fijemos una clase de peso C que nos permita tener una representación

de p como p = u+ s con u ∈ C y s ∈ S.

Por el Teorema de Bieri-Groves (ver demostración en [BG]), pode-

mos afirmar que dim(Trop(ker(Ã)) = dim(ker(Ã)) = s − 1 − (d + 1)

por ser Ã de rango máximo. Como u ∈ C pertenece a una clase de peso

máximo dimensional, tenemos que

dim(C + S) = dim(C) + dim(S)− dim(〈C〉 ∩ S)

= [s− 1− (d+ 1)] + d− dim(〈C〉 ∩ S)

= dim(C(u)) = s− 1− c.
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Se sigue que dim(〈C〉∩S) = c−1. Con esto existe un poliedro H ⊂ C,

de dimensión c−1, tal que para todo h ∈ H tenemos que u+h ∈ C. De

esta manera podemos escribir a u también como u = (u+h)−h, donde

el primer sumando está en C y el segundo está en S. Consecuentemente,

podemos escribir p = (u+h)+(s−h) y esas son las únicas posibilidades

de representar a p como la suma de un vector en la clase de peso

C ⊆ B∗(Ã) y un vector en S. Esto se debe a que si tenemos otra forma

de escribir a p = c + s′ = u + s bajo esas mismas condiciones, luego

c = u + (s − s′) con u ∈ C y s − s′ ∈ S (por ser un espacio lineal).

Si s − s′ /∈ 〈C〉, resultaŕıa dim(C + S) > dim(C(u)) = dim(C(c)),

contradiciendo que dim(C(u)) es máxima. Con todo esto nos queda

s− s′ ∈ 〈C〉 ∩ S, resultando s− s′ = h ∈ H, como queŕıamos.

Por el Colorario 6.4.2 tenemos que si f = ⊕i∈A pi ⊙ wi, los puntos

singulares de T (f) son los puntos q ∈ Rd que cumplen la condición

p+q ·A ∈ B∗(Ã). Del párrafo anterior podemos inferir que f define una

hipersuperficie tropical que es singular en todos los puntos xH−s, donde

xH−s denota la preimagen del conjunto H − s por la transformación

lineal biyectiva que asigna x ∈ Rd a v(x) = x · A. Como v−1 manda al

poliedroH−s de dimensión c−1 a otro poliedro de la misma dimensión,

se sigue que todos los puntos singulares de la hipersuperficie T (f) que

obtenemos descomponiendo a p como la suma de un vector en C y

un vecotr en S pertenecen a un poliedro de dimensión c − 1. Como

vimos antes pueden haber distintas (pero finitas) clases de peso C en

B∗(Ã) = Trop(ker(Ã)) tales que podemos escribir a p como la suma de

un vector en C y un vector en S, y de todo esto se sigue que el conjunto

de puntos singulares de la hipersuperficie tropical T (f) es una unión

finita de poliedros de dimensión c− 1. �
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