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Introduccién

El concepto de punto singular en una variedad tropical no ha sido
establecido claramente hasta ahora. Una definicién natural podria ser
la que sigue. Sea K un cuerpo algebraicamente cerrado de caracteristi-
ca 0, con una valuacién no Arquimediana, val : K* — R. Decimos que
un punto ¢ en una variedad tropical V' C R? es singular si existe una
subvariedad algebraica (cldsica) singular en el toro (K*)¢, con tropicali-
zacion V', con un punto singular de valuacion q. Esta definicion de sin-
gularidad en términos de la tropicalizacién de una variedad algebraica
clasica, ya fue considerada en [MIMS] en el caso d = 2 de curvas planas
y fue luego desarrollada para hipersuperficies de cualquier dimensiéon
en [DT]. Anteriormente habia sido considerada en forma indirecta en
[DFS] y en [Os]. Con esto en mente, en principio, uno deberfa estudiar
todas las preimagenes de V bajo la funcién de valuacion, para decidir
si V es singular. En el presente trabajo analizaremos dos enfoques para
resolver este problema cuando V' es una hipersuperficie definida por un
polinomio tropical con un soporte A fijo, y el cuerpo residual de K tam-
bién es de caracteristica 0 (pudiendo ser generalizado si esta hipdtesis
se hace mas laxa).

Consideraremos al semianillo tropical (T, ®,®), donde T = R U oo
y las operaciones tropicales @ y @, definidas por w & w' = min(w, w'’)
ywOw =w+w (donde + es la suma usual). Como ya mencionamos,
a lo largo del presente texto trabajaremos con polinomios F' con sopor-
te A fijo y coeficientes todos no nulos. Es decir, F(z) = Y., a;a"
donde F € K[z7!,... ,wf] con a; € K* para todo i € A. La tropicali-
zacion de un polinomio con estas caracteristicas es el polinomio tropical
[ = @,c val(a;) ©w', donde val(a;) € R para todo i € A.

La hipersuperficie tropical definida por un polinomio tropical no
nulo con soporte A es el conjunto

T(f)={we R? :3i +# j € A con f(w) = (1, w)+val(a;) = (j, w)+val(a;)}.

Las nociones basicas y conceptos necesarios sobre la geometria tropical
seran analizados en el Capitulo 1, donde presentaremos el Teorema
Fundamental de la Geometria Tropical (1.5.6).

El presente trabajo esta dividido, esencialemente, en tres partes:
En los Capitulos 1, 2 y 3 nos nutriremos de suficientes herramientas
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para poder abordar el problema de decidir si una curva tropical (una
hipersuperficie en dos dimensiones) es o no es singular. Tendremos un
primer acercamiento al problema por medio de técnicas combinatorias
y constructivas, lo que constituye la segunda parte de la tesis.

A lo largo de todo el texto se hard presente la tropicalizacién de
espacios lineales, por lo que el Capitulo 2 esta integramente dedicado
a este tema. En dicho capitulo abordaremos el problema desde las de-
finiciones basicas hasta llegar a la demostracién del Teorema 2.3.5 que
caracteriza la tropicalizacion de un espacio lineal, incorporando nocio-
nes de clases de peso. En el Capitulo 3 estudiaremos la relacién entre
el abanico secundario y la dimension del tipo de una curva. Todo el
contenido desde el Capitulo 3 al Capitulo 5 estd basado en [MIMS].

La tercera etapa de esta tesis la constituye el Capitulo 6, donde
atacamos al problema de decidir sobre la singularidad de una hiper-
superficie tropical (ya no sélo restringidos a curvas planas) desde un
punto de vista mas algebraico, incorporando la nocién de Derivadas
Tropicales de Euler. Este punto de vista abstrae y profundiza el cono-
cimiento sobre la singularidad de una hipersuperficie tropical, pues con
estas técnicas se puede recuperar la informacion obtenida por medios
exclusivamente combinatorios en los capitulos anteriores. Mas atn, con
estas herramientas se redemuestra el Teorema 1.1 de [DFS]| sobre la
tropicalizacion del A-discriminante, y se caracterizan explicitamente
todos los puntos singulares de una hipersuperficie tropical 7(f). Esta
caracterizacion permite esbozar un algoritmo para calcular todos los
puntos singulares de T (f). Para finalizar esta tesis, utilizamos dicha
caracterizacion para encontrar la dimension de las celdas singulares de
T(f), relaciondndola con la codimension en el abanico secundario del
vector de coeficientes del polinomio tropical f. Este Teorema (6.5.1) se
encuentra en [MMSZ2], que es la continuacién del trabajo en [MMS],
pero para superficies tropicales 7 (f) C R3.
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Capitulo 1
Geometria Tropical

1.1. El semianillo tropical

Definimos como semianillo tropical al conjunto T := RU{oc}, junto
a las operaciones suma y multiplicacién definidas como:

wy D wy = mz’n(wl, wg) y wy ® Wy = Wi + Wwe

El término semianillo se debe a que T satisface los siguientes axiomas:

1. (T, ,0r) es un monoide conmutativo con elemento identidad
O = oo:
a) (a®b)®c=a® (bPc)
b)) OrBa=a®0r=a
c)adb=>bDa
2. (T, ®, 17) es un grupo con elemento identidad 17 = 0:
a) (@a@b)©ec=a0 (bOc)
b) Ir©a=a® 1g
c)a®b=bGa
d) a® (—a) =1r, sia # 0
3. La multiplicacion cumple con la ley distributiva con respecta a
la adicién:
a) a®(bdc)=(a®b)®(a®c)
b) (a®b)©c=(a®c)d(bOc)
4. OTQGZGQO’E:O’H‘

A (T, ®,®) también se lo conoce como el semianillo min-plus.

En otros textos se utiliza otra definicion posible para la suma, to-
mando el maximo en vez del minimo.

Es importante notar que en este anillo todos los elementos resultan
idempotentes, ya que
whw=w VYweT
11



Esto simplifica mucho las operaciones. Por ejemplo,
(wl P w2>®n _ (U)l)@n D (w2)®n
(donde la notacién exponencial indica el producto tropical n veces)

Para tener una mayor comodidad en la escritura de ahora en ade-
lante notaremos a®™ simplemente a”.

Proposicion 1.1.1. Para cualquier entero positivo n vale la igual-
dad:

(w1 D U)Q)n = lU?f D wg
DEMOSTRACION.
(w1 ® we)" = n* (w; @ wy)
= nx* (min(wy,wy))
= min(n * wy,n * ws)
= min(wy, wy)

= wy D wy

1.2. Polinomios tropicales

Sean wy, wo, ..., w, variables que representan elementos en el semi-
anillo tropical (RU{oc}, ®, ®). Un monomio es un producto cualquiera
de estas variables, donde las repeticiones estan permitidas. Por la con-
mutatividad podemos ordenar el producto y escribir los monomios con
la notacién usual con las variables elevadas a exponentes:

w2®w1®w3®w1®w4®w2®w3®wg:wf®w§’®w§®w4.

Observemos que la evaluacion de un monomio tropical de n varia-
bles, es una funcion lineal afin definida de T™ en T. Por ejemplo,

a®w Ows®w; ®wy = a+ 2w + 3wy + 2ws +wy = a+ < w,i >

donde w = (wy, ..., wy) es el vector de las variables, e i = (2,3,2,1) es
el vector de sus respectivas potencias.
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Por simplicidad, escribiremos
w11®...®w;n :wl
Antes de definir a un polinomio tropical, recordemos la siguiente

Definicién 1.2.1. Sea A C R”. Diremos que A es un politopo
entero si A es la capsula convexa de finitos puntos con coordenadas
enteras.

Ahora si pasemos a la definicién de polinomio tropical.

Definicién 1.2.2. Un polinomio tropical es una combinacién lineal
finita de monomios tropicales:
f(w17 7wn) = @a’i O] wi
icA
donde los coeficientes a; € T para todo i € A, y A C Z" un conjunto
finito.

Sia; € RVi € A, decimos que A es el soporte del polinomio tropical
f. Ala cédpsula convexa de A, que es un politopoto entero, se la llama
politopo de Newton de f.

A lo largo del texto utilizaremos letras minisculas para referirnos
a un polinomio tropical, y reservaremos las mayusculas para los poli-
nomios en K[z, ..., 2.

Todo polinomio tropical representa una funcéon T" — T. Cuando
evaluamos estas funciones en la aritmética clasica, obtenemos el minimo

de una coleccién finita de funciones lineales:
p(wy, ..., wy) = minjea{a; + (w, 1)}

Si restringimos el dominio de esta funcion a R™ nos queda una fun-
cion p : R™ — R que es continua y lineal a trozos.

Ejemplo 1.2.3. Consideremos un polinomio genérico de grado tres
en una variable w.

pw)=acuw® ® bow? & cOow & d

Para graficar la funcién p que define, dibujamos cuatro lineas en
el plano de coordenadas (wy,ws) : we = 3wy + a, wy = 2wy + b,
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wy = wi + ¢y la linea horizontal wy = d. El valor de p(w) es el minimo
wy tal que (wy, ws) pertenece a alguna de estas lineas. Las cuatro lineas
contribuyen si

b—a<c—a<d-c

Estos tres valores de w son exactamente los puntos en los cuales el
grafico de p es singular. La Figura 1.1 ilustra esta situacion.

X

Ficura 1.1. Gréfico de la funcién definida por el poli-
nomio tropical del Ejemplo 1.2.3.

Observacién 1.2.4. Polinomios distintos pueden representar la
misma funcién.

Ejemplo 1.2.5. Consideremos un caso particular del Ejemplo 1.2.3
tomando p = 0©w?3® 3. Podemos ver el grafico de la funcién que define
este polinomio tropical en la Figura 1.2. Si sumamos a p cualquier
monomio del tipo a®w? con a > 1, o del tipo bOw con b > 2, la funcién
que definen sera la misma, pues estos monomios se corresponden con

14



rectas por encima del grafico de p , con lo que no aportan al minimo
que se alncaza en los monomios de p.

K
| ’
o" J
0 ’
y=2,5 +x,2 T/
l"
o ;
’l
K
/
l I'
’
l’
K
a 1 " I
[
I -2 / 0 2
& ’
y=2x+1,5

.
.
.
.
’

v

Ficura 1.2. Gréfico de la funcién definida por el poli-
nomio tropical del Ejemplo 1.2.5. Rectas punteadas co-
rresponden a moniomios que no aportan al minimo.

Ejemplo 1.2.6. Un caso particular de la Propiedad 1.1.1 es
w%@w% :wf@wl @wg@wg

Es claro que como objetos estos dos polinomios son distintos, sin em-
bargo definen la misma funcion.

w? @ w? = min(2wy, 2wy) = min(2wy, wi+ws, 2ws) = wW? G w © wy O w3
En general notaremos al polinomio tropical como f, indistintamente

si estamos viéndolo como polinomio tropical o como la funcion lineal a
trozos que define.
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1.3. Raices de un polinomio tropical

Dado un polinomio tropical f queremos definir sus raices.
Consideramos el polinomio en una variable:

flw):=a@uwdb

y observamos que la ecuacién a © w & b = Or no tiene solucién si
b # Or. Entonces tenemos que buscar otra definicion de los ceros de f.
La igualdad

aQuUWdb=a0 (wd (b—a))

sugiere definir, asi como en el caso clasico, el nimero b — a como cero

de f.

Ejemplo 1.3.1. Sea f := 2 ® w & 3, de acuerdo con la definicién
precedente, w = 1 es cero de f. El grafico de f(w) es singular para
este valor de w puesto que en ese punto el minimo entre 2 + w y 3 se
alcanza dos veces, Figura 1.3.

ple)

Ficura 1.3. Gréfico de la funcién definida por el poli-
nomio tropical del Ejemplo 1.3.1.

Esto nos motiva a dar la siguiente definicion:

Definicién 1.3.2. Llamamos conjunto de ceros de un polinomio
tropical f = @, 4 © w’ al conjunto Z(f) de todos los puntos w € R™
donde el valor f(w) = ml}ll{ci-f- < w,i >} se alcanza al menos dos veces.

1€
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Observacién 1.3.3. Notar que si f es un monomio tropical su
conjunto de ceros es vacio. Mas atn, vale:

Teorema 1.3.1. Z(f) =0 <= [ es un monomio

DEMOSTRACION. <=:es la observacién anterior.
=: Sea f = ®jcqa; © w' y notemos l;(w) = a; + (w,i) a la funcién
lineal asociada a cada monomio. Definamos, para cada i, el conjunto
A ={w e R" : [;(w) < lj(w) Vi # j}. Como las [; son continuas,
v |A| < o0, los A; resultan abiertos. Como Z(f) = (), también resulta
R" = UjeaAi, y A;NA; =0 sii# j. La tnica forma que puede pasar
esto es si existe ig € A con A;; = R" y A; = 0 si j # ip, ya que R" es
conexo. Con esto, si w € R" luego a;, + (w, o) < a; + (w, j) ¥j # i o,
equivalentemente, a;, —a; < (w, j —ip). Como ig # j, esto puede pasar
sélo si a; = 00, 0 sea a; = O Vj # 4. Y con esto vemos que f es un
monomio tropical. U

Observacién 1.3.4. Sean [y, ...,[l,, g1, ..., formas lineales en R".
Para todo z € R" vale que

min{ly(x), ..., l,(z)} + min{g:(z), ..., g-(z)} =
=min{l;(z) + gj(x):i=1,.n;5=1,...,7}

Proposicién 1.3.2. Sea p =P ., ao © w*. Para todo polinomio

a€A
tropical g = Pz bpw?, se cumple que Z(p) C Z(p ® g).

DEMOSTRACION. Sea w € Z(p). Por definicién sabemos que

pOgw) = GB o © bg © WP
acA, BeB

= minfa, +bg+ (o + B, w) : a« € A, € B}
= min{(a, + (@, w)) + (bg + (f,w)) - @€ A, f € B}.

Entonces por la observacion anterior obtenemos que
= mi el ) in{b ) .
p O g(w) = min{aa + (o w)} + min{bs + (B, w)}

Como w € Z(p), sabemos que el valor ml’gl{aa + (a,w)} se alcanza al
aE

menos dos veces, con lo cual w € Z(p ® g). O
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1.4. Valuaciones

Sea K un cuerpo. Denotaremos por K* al conjunto de elementos no
nulos de K. Una wvaluacion no arquimediana sobre K es una funcién
val : K — R U {oo} que satisface:

(1) val(a) = 0o siy sélosia=0
(2) val(ab) = val(a) 4 val(b)
(3) val(a + b) = min{val(a),val(b)} para todo a,b € K*

A lo largo de todo el texto denominaremos a una valuaciéon no
arquimediana simplemente valuacién.

Lema 1.4.1. Sean a,b € K con val(a) # val(b). Entonces

val(a + b) = min(val(a),val(b)).

DEMOSTRACION. Sin pérdida de generalidad podemos suponer que
val(b) > val(a). Como 1% = 1 tenemos que val(1) = 0. Por otra parte
como (—1)% = 1, resulta val(—1) = 0 también. Asi val(—b) = wval(b)
entonces val(a) > min(val(a+b),val(—b)) = min(val(a+b),val(b)), y
por lo tanto val(a) > val(a+0b). Pero val(a+b) > min(val(a),val(b)) =
val(a) entonces val(a + b) = val(a) O

Observacién 1.4.1. Si #K > 3 (por ejemplo car(K) = 0, o K
algebraicamente cerrado), podemos asumir siempre que 1 € I'm(val)
ya que (Aval) : K — R U oo es una valuacién para cualquier valuacion
val y A € Ry.

Ejemplo 1.4.2. Si K = k(x) es el anillo de funciones racionales,
podemos escribir cualquier funcién f/g € K como una serie de Laurent
h = Yh;z* donde h; = 0 para i < 0. Podemos definir una valuacién
como val(f/g) == min{i: h; # 0}. Si i es el menor exponente en f y j
es el menor exponente en g, entonces val(f/g) =i — j.

Ejemplo 1.4.3. Si K = Q , podemos definir val, : Q = R como
val,(q) = j cuando ¢ = p’a/b donde p no divide a a ni a b. Por ejemplo
valy(12/5) = 2, mientras que valy(1/10) = —1. A esta valuacién se la
denomina valuacién p-adica.
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Ejemplo 1.4.4. Series Formales de Laurent:

K((2)) = {>_ a2 a0 =0 si a < 0}
aEZ
Sif#0,f € K((2), f = D asa tar® definimos val(f) = aq si
Aoy 7# 0, 0 sea

val(f) = min{a : a, # 0}.

Notemos que K(z) C K((z)) y la valuacién que estamos conside-
rando, resulta una extension de la del Ejemplo 1.4.2.

Ejemplo 1.4.5. Se conocen con el nombre de Series de Puiseuxr al

conjunto:
K{{}} = [J K((="™)
neN

Notemos que existe una inyeccién natural de K((x'/")) — K((z'/"™))
Vm € N. Luego dadas dos series f,g € K{{z}} podemos suponer
que f,g € K((z'/")) para algin n € N. Por lo tanto tiene sentido
definir f + g € K((z'/™)) sumando témino a término y f.g € K((z'/™))
extendiendo la definicion usual de multiplicacion de series de Laurent.

Estas dos operaciones definen una estructura de cuerpo para K{{x}}.
Este cuerpo admite la siguiente valuacién no trivial val(f) := aq si

(ag # 0, siendo f =37 - aaz®/™ € K{{z}}.

De aqui en adelante notaremos con K al conjunto K{{z}}.

Teorema 1.4.2. Sea K algebraicamente cerrado, car(K) = 0, en-
tonces K es algebraicamente cerrado.

La demostracion de este Teorema es constructiva y se sigue del
Teorema de Newton-Puiseux [W]. (cf. Teorema 1.5.3, donde damos
una demostracion para el caso multidimensional, habiendo aceptado el
cason = 1).

Notemos que segin [AM, P4g. 104] un cuerpo K junto con una
valuacién resulta un anillo local de valoracion discreta, con ideal
maximal 9 = {f € K : val(f) > 0}. A k = K/ lo llamaremos su

cuerpo restdual.
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1.5. Tropicalizacién de un ideal

Para un cuerpo K y una funcién de valuacién val : K — R U {oo}
podemos extender la funcién de valuacién a su clausura algebraica K
(ver [EKL]) y a K™ definiendo

val : K" = R™ . (ay,...,a,) — (val(ay),...,val(a,))

Definicién 1.5.1. Para un polinomio F' = )" a,z® € K|z, ..., z,],

la tropicalizacion de F' es el polinomio tropical definido por:

f(w) = trop(F)(w) = @ val(ay) © w = mal'n{val(aa) + (a,w)}

y la hipersuperficie tropical de f es el conjunto de ceros T (f) del poli-
nomio tropical trop(f), o sea:

T(f) ={w € R": el minimo de trop(F) se alcanza al menos dos veces en w}.

Observacién 1.5.2. Para cualquier monomio z° € K[y, .., 24]
resulta

T (Trop(F)) = T(Trop(z°F))
ya que Trop(z° F)(w) = (w, B) + min,{val(a,) + (o, w)}.

Observacién 1.5.3. La Definicién 1.5.1 se puede extender natu-

ralmente a un polinomio de Laurent F = 3" a,2® € Kz, ..., 25"

(03
Mas atin, si 27 es el minimo comin multiplo de los denominadores del

polinomio F, tenemos que z°F = FconF e K[z1,...,x,], resultando
T (trop(F)) = T (trop(z®F)) = T (trop(F))

por la observacion anterior.

En adelante notaremos yt* := (y1t"', ..., Y, t*").

Lema 1.5.1. Sea F € Klzy,...,z,]|. Entonces Yw € Q" y para
v € C" genérico, tenemos que

trop(F)(w) = val(F(~t™)).

DEMOSTRACION. Sea F'(z) = > a,z®. Evaluando en & = vt* nos
acA

queda F(yt*) = 3 any*t™). Como 4* € K, claramente vale que
acA
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val(a, ') = val (a,) + (w, a). Llamando A’ al conjunto de todos
los o € A para los cuales trop (F)(w) = val (a,) + (w, ) resulta
F(yt") =) agy™t™ 4 O(tFe),
acA’
Luego, tomando v € C" genérico tal que ), agY“ti® £ 0, pode-
mos asegurar que trop (F)(w) = val (F(vt")). O

Corolario 1.5.2. Sean F,G € Klzy,...,z,|, F,G # 0 entonces
trop (FG) y trop (F) ® trop (G) definen la misma funcién. Es decir:

trop (FG) = trop (F) ® trop (G).

DEMOSTRACION. Por definicién sabemos que val ((FG)(yt%)) =
val (F(yt*)G(yt)) = wval (F(yt")) ® val (G(yt")). Por el Lema an-
terior tenemos que val (FG)(yt%)) = trop (FG)(w), val (F(yt*)) =
trop (F)(w) y val (G(11")) = trop (G)(w).

Luego, utilizando la Observacién 1.3.4, podemos concluir que
trop (FG)(w) = trop (F)(w) ® trop (G(w) = (trop (F') © trop (G))(w).

U

Seguiremos con unas definiciones necesarias para caracterizar los
ceros de un polinomio tropical:

Definicién 1.5.4. Sea F = Y a;x' € K[z] con z = (1, ..., Ty),
i = (i1, ..yin) y ACZ" un conjurll?(‘)l finito.
Notaremos ¢p (a;) = ¢; al coeficiente principal de a;, val(a;) = v;,
es decir
a; = ¢;t"" + términos de orden mayor que v;.
También notaremos f(w) = trop (F)(w) = mine4{v; + (i, w)}.
Siw = (wy, ..., w,) € R™ definimos

Fy,(x) = Z cr' € Klz] e
ic A’
ing(F)(x) = '’ € Kz
i€ A’
donde A’ es el conjunto de todos los vectores i € A donde se alcanza

7(’(1]1, ,wn)
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Observacién 1.5.5. Notar que si escribimos F'(zt") en potencias
de t tenemos que

F(xtw) — Z Cixit?(w) 4 O(t?(w)+e) —F, (x)t?(w) 4 O(t?(wH'E)
e A’

para algin € > 0, donde O(t?(“’)“) representa términos de orden ma-
yor o igual a f(w) + e en t. Con esta escritura, F,, queda univocamen-
te determinado. Es decir, si F(zt*) = P(x)t/® + O(t/@)+€), resulta
P(x) = Fy(x).

Observacién 1.5.6. Sea F' € K[zy,...,x,], K algebraicamente
cerrado, y f = Trop(F). Por su construccién, los monomios de f,
corresponden a los indices 4 donde se alcanza f(w). Luego las siguientes
afirmaciones son equivalentes:

() weT(f) (weQ).
(11) F, tiene al menos dos monomios.
(1m1) F, tiene una raiz en (K*)".

La equivalencia entre las dos primeras afirmaciones es clara por la
definicion de F,,, mientras que la equivalencia entre la segunda y tercera
afirmacién se puede deducir por induccién en la cantidad de variables
de F.

Teorema 1.5.3. (Newton-Puiseux en varias variables)
Sea K un cuerpo algebraicamente cerrado de caracteristica (. Sean
F € Klzy,...,z,), w € T(Trop(F)) N Q" y v € (K*)" tal que
Fu(y1,.s7) = 0. Entonces eziste z = (z1,...,2n) € Vi«(F) tal que
zi = Yit" + O(tVit<) para algin € > 0.

DEMOSTRACION. Seguiremos la demostracién de [T].

Aplicaremos induccién en n, siendo verdadera para el caso n = 1
por el Teorema de Newton- Puiseux clésico [W]. Notemos primero que
si F(vt"¥) = 0, ya tenemos una raiz. También, si alguna variable z;
no aparece en F,, especializar la misma en x; = ;" no modifica
las hipdtesis. Asi, sin pérdida de generalidad, podemos suponer que
las variables que aparecen en F,, son exactamente zq,...,z,. En esta
situacion hay dos casos posibles:
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e Sihay un j (1 < j < n) tal que F (21, ...,7;, ..., ) 7 0 entonces,
reordenando las variables de ser necesario, podemos suponer que j = 1.
Escribimos w = (wy,w’), * = (x1,2), v = (71,7). Las condiciones
necesarias para aplicar induccién sobre G(z') = F'(y,t**, z) son:

w' = (wa, ..., wy) € T(Trop(G)) v Guw (2, 7m) = 0.

Es posible que Trop(G) J(w') # Trop(F)(wl,w’) (ver Ejemplo 1.5.7)
pero como G(z') = F(yt*, 2'), trivialmente verificamos que

G(a't") = F(nt™,a't"") = F,(n,2)t!™) + O *)

donde, por hipétesis, F, (v, 2") # 0.

Por la Observacion 1.5.5, de la ecuacién anterior deducimos que
Gw(Y) = Fu(11,7) = 0, con lo cual se cumple la segunda condi-
cién. Y por la Observacién 1.5.6, como 7/ € (K*)""! tenemos que
(wa, ...,w,) € T(Trop(G)). Luego, por nuestra hipdtesis inductiva, sa-
besmos que 32" € Vi+(G) tal que 2, = /1% + O(t¥i*¢) con lo cual
z = (1t*, 2) es raiz de f y cumple todo lo que querfamos.

e Supongamos ahora que vale que F,(x, .. ,%, ey Tp) = 0 para todo
1 <i < n. Recordemos que F(ztV) = f,(2)t/®) + O/ W+e) v escri-

bamos F, = (21 —71)* (w2 —72) ... (2, —7,)Q(x1, ') con Q(71,2") # 0.
Notar que como n > 2, existe al menos un término de la forma (x; —;)
con i # 1.

Sustituir x; por v1t*! como antes romperia con la estructura desea-
da para la induccién. Sustituiremos z; por (y; 4 t2r )t** y aplicaremos
induccién sobre G(2') = F((y, +t25)t*1, 2'). Igual que en el caso ante-
rior debemos ver que

w' = (wy,...,w,) € T(Trop(G)) v Guw(y2,-.; 7n) = 0.
Tenemos que

Gty = F((y + 138, 2/t") = tT O By (yy + 13, 2') + O (T )+€) =

= IS (g — ) (20 — ) Q1 + 77, 27) + Ot )Fe),

donde @) es un polinomio con coeficientes en K, por lo tanto

Q(y1 + 7, 2') = Q(m, ) + O(t).
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Entonces de la igualdad anterior obtenemos que
G(a't"") = 15 (2y — o). (2 — 1) Q (1, ) + O WITE+3T),

de lo que se sigue que G = (3 — ¥2)...(Ty, — V) Q (71, T2, .., T,,) tie-
ne al menos dos monomios y Gw,,...w.) (72, ---s ) = 0. Por la Obser-
vacion 1.5.6 resulta (wsy, ...,w,) € T(Trop(G)), con lo cual podemos
aplicar el paso inductivo. ([l

Ejemplo 1.5.7. Esta demostraciéon nos brinda una herramienta
para poder encontrar raices de un polinomio.

Por ejemplo, sea F' = —3t2+ 3tz — 2y +tay — t3xy + (¢* +15)y* + 25,
f=min{2,1+2,2+y,1+x+y,3+x+4y,4+4y,0+52}. Tomemos
w = (1,0) € T(f), F(tz,y) = (=3 + 3z — y + zy)t*> + O(t*) y por lo
tanto F,, = =3+ 3z —y+xy, F,(1,—3) = 0. Entonces, por el Teorema
1.5.3, existe una raiz en (K*)? cuyo término principal es (¢, —3).

Como Fy,(l,y) = F,(z,—3) = 0 estamos en el segundo caso del
teorema. Realizamos la sustitucién = (1+t)t = t+t? en F, resultando
Ft+t2y) = G(y) = 3t3 + 5+ 5t5 + 10t7 + 10t + 5t° + 10 + 3y, v
9(y) = min{3,3 + y}. Notar que g(y) # f(1,5) = min{2,2 +y,4 + 4y}
pero, como se afirmoé en el teorema, 0 € T (trop(G)). Ahora, calculando
una raiz de G(y) cuyo término principal es —3, nos queda que

(7,y) = (t+ %, =3 — > — 5% — 10t* — 10" — 5t° — ¢7)
parametriza una curva de raices de F(z,y).

Comentario 1.5.8. Podemos realizar una demostracion del Teore-
ma 1.4.2 a partir del enunciado del Teorema 1.5.3. En este caso n = 1,
con lo que sea F(z) € K[z]. Si F # 0 es un monomio, luego = = 0 es
rafz. De no ser un monomio, tenemos que 7 (trop(F)) # 0 por el Teo-
rema 1.3.1. Sea ahora w € T (trop(F))NQ. Tenemos que F,, no resulta
monomio, por lo tanto existe una raiz de F,, y, por el Teorema 1.5.3,
podemos hallar una raiz z € K* C K de F.

Ahora definiremos la tropicalizacién de un ideal I C K|z, ..., z,],
con K cuerpo valuado, algebraicamente cerrado.

Definicién 1.5.9. Para un ideal I C K|zy,...,x,] y un cuerpo K
con una valuacién no arquimediana, algebraicamente cerrado, se define
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la variedad tropical de I como

= () T(Trop(F))

Fel
F#£0
Comentario 1.5.10. Teniendo en cuenta la Observacién 1.5.3, es
posible extender en forma natural la Definiciéon 1.5.9 para un ideal
IC K[yt 25t

Proposicién 1.5.4. Sean Iy, I, dos ideales en K[y, ..., 24| cuyos
ideales extendidos en K[xl oo, o3t resultan iguales Es decir, I e I
cumplen I ® K[z, ... 25! = L® K[z, ..., 25"]. Entonces resulta

T() =T(ls).

DEMOSTRACION. Sea I, = (Gy,...,G,). Supongamos F € I, lue-
go Fel,®Klrf o 13! = Lo K[zt ..., v5". Con esto podemos
escribir F' = 3 Hi o GZ, con H; € K[xy,...,x4) para todo i. Sacando
denominador comtn y operando, llegamos a z°F = ZﬁiGi, donde
también ﬁi € Klziy,...,x4) para todo i. O sea 2PF € I,. Y como
T (Trop(z°F)) = T (Trop(F)), resulta la inclusiéon T (1) 2 T (I).

Anélogamente se ve la otra inclusién, resultando la igualdad bus-

cada. O

Lema 1.5.5. Para un ideal principal I = (F) C Klzy,...,x,] se
tiene que

T(F)) = T(Trop(F)).

DEMOSTRACION. La inclusién “ C 7 es clara por definicién. Para
la otra inclusién, si w € T (Trop(F')) entonces el minimo de trop (F') se
alcanza al menos dos veces en w. Sea H € (F) y H = GF para algin
G € K|z, ..., z,). Sabemos que Trop (FG) = Trop (F) ® Trop (G), por
el Corolario 1.5.2 . Con lo cual el minimo en trop (FG)(w) se alcanza

al menos dos veces puesto que esto sucede en trop (F). O

El siguiente teorema nos da otra definicién posible para la tropica-
lizaciéon de un ideal si K es un cuerpo algebraicamente cerrado y de
caracteristica cero.
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Teorema 1.5.6 (Kapranov - Teorema Fundamental de la Geo-
metria Tropical). Sea K un cuerpo algebraicamente cerrado de carac-
teristica cero e I C Klxy, ..., z,| un ideal. Entonces

T(I) = {(val(z1),...,val(z,)) : z € Vi« (I)}.

DEMOSTRACION. Veremos C en el caso particular en el que I es un
ideal principal. Si I = (F), el Lema 1.5.5 afirma que 7 () = T (f), para
f=Trop(F). Con lo cual, si w € T(f) NQ", la Observacién 1.5.6 nos
dice que F, tiene una raiz en (K*)". Entonces, por el Teorema 1.5.3,
sabemos que existe z = (21, ..., z,) € Vi« (F) tal que val(z;) = w;. Por
lo tanto T(I) N Q™ C val(Vik+(I)). Con lo cual tenemos que

T =T{I)NQ" C{(val(z1),...,val(z,)) : z € V- (I)}.

D: Como T (I) es cerrado, basta ver que para todo z € Vi« (I) se
cumple que w = val(z) € T(I).

Sea F' € I, F # 0. Sabemos que F(z) = 0y que z € K* por lo tanto
F no puede ser un monomio. Si F' = )" ¢,z® tenemos que »_ ¢,2* = 0
entonces val(d c,z®) = o0o. Si existiera un dnico « tal que val(c,z®)
sea minimo entonces no podria haber cancelaciones de término inicial.
Como da oo, existe al menos otro fndice 3 con val(c,2®) = val(cz2?).

Por lo tanto existen al menos dos términos para los cuales es minimo
val(c,z®) = val(cy) + (o, val(z)). Es decir, w = val(z) € T(I). O

Comentario 1.5.11. Mas generalmente el Teorema 1.5.6 se apli-
ca a cualquier cuerpo K (no necesariamente algebraicamente cerrado)
provisto de una funcién de valuacién no trivial, y no arquimediana. En
ese caso, para un ideal I C K|z, ...,x,] se tiene que

T(I) =val(V(I)) = {(val(z),...,val(z,)) : 2z € V(I)} CR".

donde V(I) representa el conjunto de ceros de I en (K*)" siendo como
antes K la clausura algebraica de K [EKL].

Corolario 1.5.7. Sea I C K[x1,...,x,] y K un cuerpo algebraica-
mente cerrado. Entonces son equivalentes:

1.T(I) =0
2. existe un monomio x* € [
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4. I@ Ko, .. ot = K[z, ..., 2]

n n

DEMOSTRACION. Primero veamos 2 <— 3.

=) Si a = 0 entonces z* = 1 con lo cual V(I) = 0.
Si no, % = z*...x2* con «; > 0 para algin 1 < i < mn. Si z € V(I),
2% = (0 entonces z; = 0 para algin 1 <7 < n y por lo tanto I no tiene
ceros en (K*)".

<) Como Vi+(I) = 0 el ideal J C Klx1,...,2,,y] definido por
J =1IK[x1,....xn,y] + (x1..2,y — 1 : f € I) cumple que Vi (J) = 0.
Entonces por el teorema de los ceros de Hilbert (ver [CLO] pédgina
168) tenemos que J = K|z, ..., x,,y]. Por lo tanto existen polinomios
G,Gy,....,Gs € K|xy, ..., z,, y] tales que

i=1
1

T1...Tn

Reemplazando y = tenemos que

> 1
1= Gi(x1, ..., xp,
; ( ! xI1..

Sea N = maxj<i<s{deg,(G;)} entonces (z1..2,)NG; € Ky, ..., 2]
para todo 1 < i < s, conlo que (z1...z,)Y = 37 ((z1...2,) N G,) F; € I.

)E(.Tl, ,.Cl?n)

Ty

Para ver 1 < 2 observemos que existe un monomio en I C K|xy, ..., T,
& existe un monomio en I C K[z, ..., 2,], con lo cual Vi« (I) = 0 <
Vi« (1) = 0. Entonces por el Teorema 1.5.6 tenemos que

T) ={val(z), z € Vgn} =0 & Viey =0 & V(1) = 0.

Por 1ltimo, para ver 2 < 4 observemos que los monomios son

inversibles en K[zF' ... 25!, Y si exisite 2 € I, entonces existe

rn

€ I ® K[z, ...,z . Esto demuestra 2 = 4.

rn

Para la otra implicacion, sil = Y. ZLF, Fy € Iy H; € Klay, ..., 1,]

x%i
para todo i, sacando denominador comin y operando, nos queda que
2? =3 H;F; con H; € K[x1,...,x,] para todo i, es decir z° € I. O

Definicién 1.5.12. Dada una variedad algebraica V' C K" con K

un cuerpo valuado algebraicamente cerrado, definimos

Trop(V)=T(I(V))
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donde I(V) = {F € K[xy,...,z,)\ F(z) =0Vx € V} es el ideal de la
variedad V.

Observacién 1.5.13. Notar que Trop(V') depende de V N (K*)".
Si V es irreducible y V N (K*)™ # (), entonces V =V N (K*)".

SiV C K™\ (K*)", entonces Trop(V) = ) por 1.5.7, ya que I(V)
contiene un monomio.

Gracias al Teorema de Kapranov 1.5.6 estamos en condiciones de
definir una Hipersuperficie Tropical Singular.

Definicién 1.5.14. Sea A C Z% un conjunto finito, qu e genera un
espacio Z-lineal de dimensién d. Sea f = @;eap; ©@ w' € Rlwy, ..., wy].
Decimos que la hipersuperficie tropical T (f) es singular si podemos
encontrar ¢ € T(f), p € (K% y G € Klzf',..., 23] tales que
Trop(G) = f, val(p) = q y p es un punto singular de G. Es decir,
G(p) = gTCj_(p) =0 paratodo j=1,...,d.

A ese tal ¢ lo llamaremos punto singular de la hipersuperficie tro-
pical T(f).

Bajo estas mismas condiciones, diremos que 7 ({(G)) es una hiper-
superficie tropical singular con ¢ = val(p) un punto singular.

Ejemplo 1.5.15. Sean A = {0,...,m} un subconjunto de Z con
m 22y =&, 0®w’. Con esto, ¢ = 0 es siempre un punto singular
de T(f), por ejemplo tomando F' = (z — 1)™ € R[z] con p = 1.

Ejemplo 1.5.16. Consideremos el polinomio
F=ay’—te? — 24+ - ay+ (1 +2t+3) -2+ 3y — (t + %) € K[z, y].

Se puede facilmente verificar que p = (1,1) € (K*)? es un punto singu-
lar de la curva V' (F'). Y esta singularidad se tropicaliza a la singularidad
q = (val(1),val(1)) = (0,0) de la hipersuperficie tropical T ((F)).
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Capitulo 2

Matroides y su relacién con la Tropicalizacion de

Subespacios Lineales

2.1. Introduccién

Desde este capitulo, y por el resto del texto, fijaremos un conjunto
finito de puntos enteros A = {my,...,m,} C Z4, tal que Zm, + ... +
Zmg = Z%. A esta condicién la notaremos como ZA = Z¢.

Sea K un cuerpo valuado con caracteristica cero, algebraicamente
cerrado. Los polinomios de Laurent

S
F = g am, ™ € Klzfh, ... 2t
i=1

con soporte A y un punto singular en el (1,...,1) son los polinomios
cuyos coeficientes a = (G, - - ., am,) € K® pertenecen al nicleo de la
matriz

11 ... 1
my Mo ... Mg
Esto se debe a que los polinomios con soporte A y un punto singular
en el (1,...,1) cumplen F(1,...,1) =0y xj%(l,...,l) = 0, para

todo 1 < j < d. Estas ecuanciones (lineales en a) son representadas
por las filas de la matriz M.

En virtud de la Definicién 1.5.14, si a = (apmy, - - -, am,) € Ker(M)
y F = ZS: am,x™, la hipersuperficie tropical T (f) definida por el poli-
nomio f;(l)pical f =Trop(F) = ®;cqval(a;) ® w' resultara singular en
q=1(0,...,0).
Segtun el Teorema 1.5.6, nos interesa estudiar
val(ker(M) N (K*)*) = {val(a) : a € ker(M) N (K*)*}.
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En definitiva, por la Definicion 1.5.12, estamos interesados en co-
nocer la estructura de trop(ker(M)) = T(I), donde I C Clzy, ...,z
es el ideal generado por los polinomios homogéneos lineales inducidos
por las filas de la matriz M.

Veremos que dicha tropicalizacion sélo depende del matroide de
M, que a su vez depende de los menores no nulos de M. Referencias

introductorias a la teroria de matroides pueden encontrarse en [ BGW],
[Ox] y [Wh].

Observacién 2.1.1. Para estudiar la familia de polinomios con
soporte en A y todos sus coeficientes no nulos, y un punto singular en
p=(p1,...,pa) € (K*) (pfijo) lo que deberiamos estudiar es el nticleo
de la matriz M, = M D,,, donde D, € K**° es diagonal, con d;; = p"™.

Observemos que los menores de M, difieren de los de M en un
monomio en p (no nulo), con lo que los menores no nulos de M, resultan
exactamente los mismos que los de M. De hecho, como consecuencia
del Teorema 1.5.6, tenemos que la tropicalizacion de esta familia de
polinomios resulta una traslacion de val{Ker(M) N (K*)*}, ya que

a=(Qmy,-.-,am,) € Ker(M,) <= D,ya € Ker(M)

y val(Dya) = val(p™ Gy s - ., DO, ) = val(p™, ..., p™) + val(a).

2.2. Matroides

Definicién 2.2.1. Llamaremos a M un matroide sobre E, si es una
coleccién de subconjuntos de un conjunto finito £ tal que:

(1) beM

(2) Siaee M y  C a entonces € M

(3) Sia, B e My l|al > |f|, luego Iz € a . [ tal que {z} U S € M.
Esta condicion se conoce como propiedad de intercambio.

Los elementos de M se llaman conjuntos independientes, y las bases
son los elementos maximales de M con respecto a la inclusién. En virtud
de (3) de 2.2.1, resulta que todas las bases tienen la misma cantidad de
elementos. Es claro que puede concerse completamente a un matroide
conociendo sélo sus bases.
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Los subconjuntos de E que no son independientes se llaman depen-
dientes. Y a los conjuntos dependientes minimales, se los llama circui-
tos.

Un elemento i € M se llama un loop si {i} es un circuito (que es
equivalente a que ¢ no pertenezca a ninguna base). Por el contrario, al
elemento ¢ se lo llama coloop si pertenece a toda base.

Para un conjunto S C E definimos su clausura como

c(S) =S U{ie E tal que existe un circuito C' coni e C'y C C SU{i}}.

Un subconjunto S se dice cerrado sii S = ¢l(95).

A los subconjuntos cerrados de E se los denominan flats. Equiva-
lentemente, un flat es un conjunto F' C M tal que no existe ningin
circuito C' con |F — C| = 1.

El rango de un subconjunto S C E es el maximo de los cardinales
de los subconjuntos independientes contenidos en él.

Un hiperplano es un subconjunto cerrado H tal que si le agregamos
cualquier elemento i ¢ H, la clausura de {i} U H es todo E. Esto
implica que un hiperplano es un flat propio maximal.

Definimos al matroide dual M* de M (sobre el mismo conjunto E)
al matroide con bases igual al complemento (en E) de las bases de M.

Observemos las siguientes relaciones:

(1) C es un circuito en M <= E — C es un hiperplano en M*.

(2) i es un loop en M <= i es un coloop en M*.
(3) (M) = M.

2.3. Tropicalizacion de un Espacio Lineal

Asumamos que el espacio lineal a tropicalizar S viene dado como
el nicleo de una matriz A € C™*", con rango maximo m. Es decir,
m =n —k con k = dim(ker(A)).

Definimos un Gale dual de A (sobre C) a una matriz B € C™** tal
que sus columnas son una base de ker(A).

Observacién 2.3.1. B resulta un Gale dual de A sii AB =0y
rg(B) = k.
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Sea Mp el matroide asociado a las filas de una matriz B. Es decir,
las bases de Mp son los subconjuntos maximales de [n] = {1,...,n}
que corresponden a filas linealmente independientes de B.

Definiremos al abanico de Bergman de Mg, siguiendo los lineamien-
tos en el inicio de la segunda seccién de [FS].

Definicién 2.3.2. Sea w € R". Definimos a M,, como el matroide
cuyas bases son bases de Mp con w-peso maximo. Es decir, 8 base de
Mpg es base de M, sii Y w; es maximo.

i€p

Observemos que un elemento ¢ € [n] es un loop de M, si no esté con-

tenido en ninguna base con w-peso maximal.

Comentario 2.3.3. El conjunto M, definido anteriormente resulta
efectivamente un matroide como consecuencia de la definicién 2.1 de
[F'S].

Observacién 2.3.4. Segun [FS], podemos definir la siguiente re-
lacién de equivalencia en R™: w ~ w' sii M,, = M,,. Las clases de
equivalencia de esta relacion son conos poliedrales convexos relativa-
mente abiertos (es decir, cada cono es un conjunto abierto en el menor
subespacio afin que los contiene). Estos conos forman un abanico com-
pleto en R™, y dicho abanico se denomina el abanico normal de Mp.

Definicién 2.3.5. El abanico de Bergman de Mp se define como

B(Mg) ={w € R" : M,, no continene ningtn loop}.

La siguiente proposicién se puede encontrar, con su demostracion,
en [FS, 2.5].

Proposicién 2.3.1. El abanico de Bergman B(Mpg) es un abanico.
Mads ain, resulta un sub-abanico del abanico normal de Mpg.

Proposicién 2.3.2. Sea M el matroide asociado a las columnas
de A, y (M*)* su matroide dual. Luego, si B es un Gale dual de A y
Mp el matroide asociado a las filas de B, resulta Mp = (M#)*.

DEMOSTRACION. Sea {iy,...,i;} una base de Mp. Sin pérdida de
generalidad, podemos suponer que {iy,...,ix} = {n —k+1,...,n},
reordenando las columnas de A. Con esto, existe C' € C¥** inversible tal
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B
que BC = 1d . Observemos que A(BC) =0y que rg(BC) = k,
kxk
con lo que BC resulta un Gale dual para A. Como consecuencia de la
forma de BC, las primeras n — k columnas de A resultan linealmente
independientes. Esto se debe a que si una combinacion lineal de dichas
columnas es 0, luego existe v € ker(A) con sus ultimas k coordenadas

cero. Y por la forma de BC, esto solo puede pasar trivialmente.

Reciprocamente, sea {i1,...,i, r} una base en M4 con respecto a
las columnas de A. Supongamos que {iy,...,in—x} = {1,...,n — k},
eventualmente reordenando las filas de B. Con esto existe C' € C"™*™

inversible tal que C'A = <[dm><m {X).

Un Gale dual de CA es B’ = (I_A .Y como B también es un
kxk

Gale dual de C'A, podemos escribir B'C’' = B con C" € C*** inversible.
Y esta escritura nos muestra que las ultimas k filas de B resultan
linealmente independientes, o sea {n — k + 1,...,n} resulta una base
en Mp.

En conclusién, vimos que 3 es una base en Mp sii 3¢ es una base
en M4.Y, por definicién, esto tltimo sucede sélo sii B es una base en
(M#4)*, que es lo que querfamos demsotrar. O

A continuacion demostraremos un lema y una proposicién que nos
seran de utilidad para demostrar el teorema principal de esta seccion.

Lema 2.3.3. Los circuitos de Mp son exactamente los soportes
minimales de formas lineales que se anulan en ker(A).

DEMOSTRACION. Sea w = (wy,...,w,) # 0 en el subespacio ge-
nerado por las filas de A. Con esto, w induce una forma lineal que
se anula en ker(A). Si notamos por B; a la i-ésima fila de B, resulta
0 =wB = > w;B;. Si sop(w) = {i : w; # 0} = {iy,...,4} resulta

=1

1=
{Bi,, ..., B;} un conjunto linealmente dependiente, y sop(w) un con-

junto dependiente en Mp. Reciprocamente, si miramos un conjunto
dependiente en Mp, es el soporte de una forma lineal que se anula en
ker(A).
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Con esto, los soportes minimales de las formas lineales que se anulan
en ker(A) son exactamente los conjuntos dependientes minimales en
Mg, o sea sus circuitos, como queriamos ver. O

Para poder demostrar la siguiente proposicion, utilizaremos algunos
conceptos relacionados con bases de Grobner. Para una referencia, se

puede revisar [CLO)].

Dado w € R", definimos un orden monomial <, como o <,, 3 sii
(o, w) < (B,w) (e, B € (Ng)"), y resolvemos los empates con el orden
lexicografico usual. Para que este orden esté bien definido, necesitamos
que todas las componentes de w no sean negativas. Notaremos esto
como w > 0.

Para F' = > coz® € Clzy,...,2,), y un orden monomial <,,
acA
consideramos

Lte (F)=cga’ sia<,BYacAe

In,(F) = Z Cot®
a€A:(a,w) €S MAXimo
Observemos que Lt<, (F) = Lt<,(In,(F)), ya que el término de méxi-
mo peso de f se encuentra desempatando con el orden lexicografico
entre los términos donde (o, w) es maximo.

Definamos In,(I) := (In,(F) : F € I,F # 0) para un ideal
I € Clzy,...,x,]. Notemos que (Lt(In,(F)) : F € I,F # 0) =
(Lt(F) : f € I, F #0). Con todo esto, si {Gy,...,G;} es una base de
Grobner para I, el conjunto {In,(G1),...In,(G;)} resulta una base
de Grébner para In,(I) por la observacién del parrafo anterior.

Ahora bien, sea w; el valor de la méaxima coordenada de w. Con-
sideremos w' = —w + w;(1,...,1) > 0. Como val(c,) = 0 Va € A,
resulta in, (F) = In, (F). Con lo que {In, (G1),...In.,(Gt)} resulta
una base de Grébner (con respecto a <,s) para in,(l) = (in,(F) :
Fel f+#0).

Observemos que si [ esta generado por formas lineales homogéneas,
iny(I) también serda generado por formas lineales homogéneas. Mas
aun, in,, (1) resulta un ideal primo por [CLO, 4.5.3, pag 195].

Ahora estamos en condiciones de poder demostrar:
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Proposicién 2.3.4. Sea I C Clxy,...,x,] un ideal generado por
formas lineales homogéneas. Entonces w € T (I) sii in,(f) no es un
monomio ¥ € forma lineal en I.

DEMOSTRACION. =: Esta implicacién es trivial por la Observa-
cién 1.5.6, pues las formas lineales homogéneas son algunos de los po-
linomios en I, y resulta in, (¢)(x) = £,(z) ya que todos los coeficientes
en ¢ pertenecen a C.

<: Siw ¢ T(I), luego existe F' € I, F # 0 con in,(F) = z*. Por
las observaciones anteriores, in,,(I) resulta un ideal primo, con lo que
existe x; € in,(I). Més aiun, uno de los elementos de la base de Grobner
reducida de in,(I) debe de ser x;. También por las observaciones an-
teriores, los elementos de esta base estan formados por polinomios de
la forma In, (G;) = in,(G;), con los G, formas lineales en I. O sea
existe una forma lineal ¢ € I con in,(¢) = z;, lo que contradice nuestra
hipétesis. U

Comentario 2.3.6. La proposicién anterior nos dice que si I es un
ideal generado por formas lineales homogéneas, no es necesario saber
que w € T(Trop(F)) para todo F € I ~\ {0}, para que w € T (I). Sélo
es necesario chequear que w sea un cero tropical de las formas lineales
¢ € I~ 0. Esto es, que el minimo del conjunto {w; : i € sop(¢)} se
alcance al menos en dos lugares, para cualquier forma lineal no nula
¢ € I con soporte minimal. Si A es una matriz de rango maximo tal
que I es generado por las ecuaciones lineales inducidas por sus filas, y
B es un Gale dual de A, por 2.3.3, la afirmacion anterior es equivalente
a pedir que el minimo de {w; : ¢ € C circuito de Mp} se alcance al
menos dos elementos de cualquier circuito C € Mp.

Siguiendo el razonamiento del comentario anterior, podemos enun-
ciar y demostrar el principal teorema de este capitulo, segin las ideas
expresadas en [F'S].

Teorema 2.3.5. Sea I C Clzy,...,x,] el ideal generado por los
polinomios homogéneos lineales inducidos por las filas de la matriz A,
y la matriz B un Gale dual de A. Entonces

trop(Im(B)) = trop(Ker(A)) =T () = B(Mp)
donde B(Mpg) es el abanico de Bergman asociado a B.
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DEMOSTRACION. La demostracién de este teorema se basa en la
equivalencia de los siguientes enunciados, donde w es cualquier vector

de R":

(1) w es tal que VYC circuito de Mg, el minimo de {w; : i € C} se
alcanza al menos dos veces

(2) weT()

(3) w e B(Mp)

(4) Todo elemento i € {1,...,n} pertenece a alguna base de (Mp),,

Demostraremos (3) <= (4) <= (1) <= (2) para ver estas
equivalencias.

(3) <= (4): Por definicién, w € B(Mp) <= M, no contiene
ningun loop <= todo elemento ¢ € {1,...,n} pertenece a alguna
base de M,

(4) < (1): Demostraremos esta equivalencia por su negacion.

Sino vale (4), luego 3i € {1,...,n} loop en M,,. Tenemos dos casos
posibles:

e Si i no pertenece a ninguna base de Mp luego, por definicién, {i}
resulta un circuito. Tomando C = {i}, en dicho circuito el minimo se
alcanza sélo una vez, o sea no vale (1).

e Si tenemos que ¢ pertenece a alguna base de Mp, sea [ una
base de M,,, o sea con w-peso maximal, y consideremos el conjunto
B={j€p : w < w} Afirmamos que 3 U {i} es un conjunto
dependiente. De no serlo, podemos completar a SU {i} con un conjunto
w C [ (eventualmente vacio), para obtener una base. Como i pertenece
a esta base, su w-peso no resulta maximal. Con esto podemos ver que
existe s € B~ 3 tal que w; + 3 w; + S w; < w4+ 3wy + w, de

jep jew jep Jjew
donde obtenemos un absurdo (como s € B , tenemos que w; > wy).
Al ser AU {i} un conjunto dependiente, podemos encontrar un circuito
C coni € C C B3, donde por construccién w; < w; para todo j # i
en C'. Este circuito contradice el enunciado en (1).

Supongamos ahora que no vale (1), y sea C el circuito de Mp con
ieCyw; <w;Vje C—{i}, osea el circuito donde se alcanza sélo una
vez el minimo de {w; : i € C}. SiC = {i}, i no pertenece a ninguna base
de Mp y no puede pertencer a ninguna base de (Mp),,, contradiciendo
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(4). Supongamos ahora que C — {i} # (). Si i aparece en alguna base ¢
de Mpg, nos armaremos otra base #, con w—peso mayor que ¢, tal que
i ¢ 6. Con esto, ¢ no podra ser base de (Mp),, y se contradecira (4).

Al ser ¢ una base, ¢—{i} resulta independiente. Como |p—{i}| < |¢|
podemos completar a ¢ — {i} a una base . M4s atin, el elemento j que
le agregamos podemos elejirlo de forma tal que j € C' — {i}. Esto se
debe al hecho que como C' — {i} es independiente, existe un conjunto
w C ¢ — {i} (eventualmente vacio) con f = (C — {i}) Uw base. Si
consideramos ¢ — {i}, podemos elegir j € [ para completarlo a una
base. Como j ¢ ¢—{i} = j ¢ w, con lo que necesariamente j € C'—{i}.

Como w; < w; por hipédtesis, zs€¢_{i} ws +w; > ZS€¢_{i} Wy + wj.
O sea el w—peso de # es mayor al de ¢. Ademés ¢ ¢ 0, como queriamos.

(1) <= (2): Por el Lema 2.3.3, un circuito en Mp es un soporte
minimal de una forma lineal que se anula en ker(A). Por la Propiedad
2.3.4, w ¢ T(I) sii existe una forma lineal ¢ que se anula en ker(A),
con in,(¢) un monomio. Si pasa esto, tenemos que in,(f) = x; con
j € sop({). Podemos encontrar un circuito C con j € C C sop({).
Por construccién el minimo de {w; : i € C} se alcanza sélo en wj,
contradiciendo (1).

Reciprocamente, si w € T (I) tenemos que para toda forma lineal ¢
que se anula en ker(A), in,(¢) no es un monomio. En particular, esto
pasa para todas las formas lineales que se anulan en ker(A) con soporte
minimal. O sea que se cumple (1) en virtud del Lema 2.3.3. O

Como consecuencia de la Proposicion 2.3.2, podemos reformular el
enunciado de este teorema soélo en términos de la matriz A.

Teorema 2.3.6. Sea I C Clzy,...,x,] el ideal generado por los
polinomios homogéneos lineales inducidos por las filas de la matriz A.
Entonces

trop(Ker(A)) = T(I) = B((M*)*)

donde B(M*) es el abanico de Bergman asociado a A con respecto a
sus columnas.
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Fijado w € C", tenemos que Y w; es maximo sii Y w; es minimo
i€B i¢B
sii Y —w; es méximo. Con esto podemos enunciar el siguiente corola-
i¢B
rio, donde la tropicalizacion del ideal I generado por formas lineales
homogéneas se da directamente en términos de M, y no de su dual.

Corolario 2.3.7. En las condiciones del teorema anterior, tenemos
que
trop(Ker(A)) = T(I) = {w € C": (M*)_,, no tiene coloops}.
Definicién 2.3.7. Al conjunto
B*(A) = {w € C": (M*)_,, no tiene coloops}

se lo denomina el coabanico de Bergman de A.

2.4. Tropicalizacion de subespacios lineales y clases de peso

El objetivo de esta ultima seccién es dar una caracterizacion de
trop(Ker(A)) = T(I) en términos de clases de peso, donde el ideal [
cumple las mismas condiciones de la seccién anterior.

Para poder definir clase de peso, primero necesitamos una definicién
preliminar.

Definicién 2.4.1. Dado w € R", notamos con F(w) a la unica
bandera de conjuntos

0=1F,CH<C...CFC Foi=[n]

tal que
w; < w; <= Jmtal quej € F,,, pero i ¢ F,,

Observemos que si llamamos F,, = F,,—F,,_1, tenemos que w; = w;
sii existe m tal que i,7 € F .

Definicién 2.4.2. Llamamos clase de peso de la bandera F al con-
junto de todos los w € R™ tales que F(w) = F.

Podemos definir las clases de peso por las desigualdades e igualdades
que la definen. Por ejemplo, el conjunto de los vectores w € R* que
cumplen w; = w3 < wy < ws definen una clase de peso en R*. Su
bandera correspdondiente es F := {2} C {2,4} C {1,2,3,4}.
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Mas aun, tenemos que F(w) = F sii w € R(ey + €2 + e3 + e4) +
Rog(es + e4) + Rogea, donde {e1, e, e3,e4} es la base candénica de R%.
La clase de peso de F resulta un cono poliedral racional abierto, y si
consideramos su clausura nos queda el conjunto R(e; + ey + €3+ e4) +
Rso(e2 + e4) + Rxpeq. Notemos que en las caras de la frontera de este
conjunto se realizan los conos correspondientes a banderas refinadas
por {2} € {2,4} € {1,2,3,4}, es decir se permiten reemplazar algunas
desigualdades estrictas por igualdades.

Consideremos ahora las banderas donde cada conjunto F; es un flat
de un matroide M. Las llamaremos banderas de flats.

Si el matroide Mp es el asociado a las filas de una matriz B, un flat
F; de Mp resulta un subconjuto de subindices de [n] con la siguiente
propiedad: si j ¢ F; luego b; ¢ (b, : s € F;), donde notamos con b; a la
J-ésima fila de B.

Habiendo definido estos conceptos, podemos enunciar la caracteri-
zacién de trop(Ker(A)) = T(I) en términos de clases de peso.

Teorema 2.4.1. Sea I C Clzy,...,x,] el ideal generado por los
polinomios homogéneos lineales inducidos por las filas de la matriz A,
y la matriz B un Gale dual de A. Entonces trop(Ker(A)) = T(I) es
la union de las clases de peso de las banderas de flats de Mpg.

DEMOSTRACION. Comencemos por 2: Sea ) =: Fy C F; C ... C
F; C Fyi1 = [n] una bandera de flats, F su clase de peso, y w € F.

s =

Sea ¢ una forma lineal homogénea que se anula en ker(A).

Sea t = min{j : sop(¢) C F;}. Afirmamos que 2 < |sop(¢) N F{|, con
lo que in,(¢) no es un monomio, y por la Proposicién 2.3.4 nos queda
que w € T(I). Veamos esta afirmacién: Por construccién tenemos que
1 <|sop(l)NF}|. Sisolo vale la igualdad, sea sop(I)NF} = {a}. Podemos
encontrar un circuito C con a € C C sop(¢). Con esto nos queda que
C — F,_1 = {a}, lo que contradice por definicién que F;_; sea un flat.

Veamos la otra inclusién: Sea w € T (/). Miremos su clase de peso,
y su bandera asociada. Sea s = min{t : Fyno es un flat}. Luego existe
J € Fsiq tal que la j-ésima columna de B pertenece al subespacio
generado por las columnas de B correspondientes a F;. Con esto, el
conjunto generado por las columnnas de F; U {j} resulta linealmente
dependiente, o sea es un conjunto dependiente en el matroide Mpg. Por
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el Lema 2.3.3 podemos encontrar una forma lineal ¢ que cumpla con
la condicién que j € sop(f) C Fy U {j}. Pero por construccién resulta
w; < w; para todo ¢ € Fy, con lo que in,(¢) = ¢;jr; es un monomio,
contradiciendo nuestra hipétesis. O

Para finalizar este capitulo, y en virtud de las observaciones hechas
sobre las clausuras de las clases de peso, podemos expresar el siguiente
corolario.

Corolario 2.4.2. Sea I C Clzy,...,x,] el ideal generado por los
polinomios homogéneos lineales inducidos por las filas de la matriz A,
y la matriz B un Gale dual de A. Entonces trop(Ker(A)) = T(I) es
la union de la clausura de las clases de peso de las banderas de flats
mazimales de Mp.

Ejemplo 2.4.3. Si queremos tropicalizar el niicleo de la matriz

11000
A=1]10 11 00
00110
buscamos un Gale dual
10
-1 0
B = 10
-1 0
01

Las tnicas banderas de flats maximales de Mp son {5} C [5] y
{1,2,3,4} C [5], conlo que 7(I) = {R(1,1,1,1,1)+Rs0(1,1,1,1,0)} U
{R(1,1,1,1,1) +R>((0,0,0,0,1)}. Notemos que estos dos conos tienen
una cara en comun, con lo que nos queda

trop(ker(A)) =R(1,1,1,1,1) + R(0,0,0,0, 1)

Ejemplo 2.4.4. Si queremos tropicalizar el nicleo de la matriz

-1 2 0 0 0
A= 1 -2 1 1 0
2 -4 -3 -3 -1
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En este caso, como el (0,0,0) es una fila del Gale dual de A, nunca
podremos formar una bandera de flats de {1,2,3,4,5}. Con esto te-
nemos que trop(ker(A)) = 0, en concordancia con el Corolario 1.5.7
(pues 5 € I es un monomio).

Ejemplo 2.4.5. Si queremos tropicalizar el nicleo de la matriz

112100
A=lo001121][,
000011

tenemos que un Gale dual sera:

0 -1

-1 1 1

5_ 0 -1 O
1 1 0

-1 0 O

1 0 0

En este caso, todas la banderas de flats de Mp seréan:

L= {1y e {12} S 6] v {2} & {1,2} S [6]
2- {1} S {1,3} ¢ [6] vy {3} & {1,3} C [0]
3.— {1} G {14} S [6] y {4} & {1, 4}  [0]
4.— {1} g {1a5’6} g [6] y {576} -,C«- {17576} -,C«- [6]
5.— {2} S {231 S [6] v {3} & {2,3} & [6]
6.— {2} S {24} S [6] y {4} & {2,4} < [0]
8.— {3} £{3,4,5,6} C [6]
9.— {4} € {3,4,5,6} C [6]
10.— {5,6} € {3,4,5,6} C [6]
Resultando en R%/((1,...,1)):

Trop(ker(A)) = B*(A) = (Rsg-e1 + Rsg-e2) U (Rxp -1 + Ry - e3)U
Rsp-e1+Rsg-eq) U(Rsp-e1+Rxsg-(e5+€6)) U (Rsp-ea+Rxp - e3)U
Roo-e2+Rog-eq) U(Rsg-ea+Rsg- (€5 + e6))U
>0 (es+eqs+e5+eg) +Rsp- (64 + €5+ €g))U
>0 (e3+eqs+e5+eg) +Rog (e3+e5+e))U
>0 - (€3 +eq+es5+eg) +Ruo - (€5 +eg)).
41
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Notar que en la enumeracién de las clases de peso pusimos juntas
a aquellas que tienen una frontera en comuin, con lo que se pueden
expresar como un sélo cono. Por ejemplo, del caso 1.- resultan los conos

(Rxo - (€1 +e2) +Rxp-e1) U(Rxp - (e1+€2) + Rxyp-e2) =
= (R0 -1+ Rxp - e2).

Comentario 2.4.6. En [R] podemos encontrar la implementacién
de un algoritmo en C++ que calcula la tropicalizacién de espacios
lineales en forma eficiente. La impelemtacion, llamada TropLi, es tam-
bién una herramienta para calcular vértices del politopo de Newton de
A-discriminantes, que estudiaremos con mas precisién en el capitulo 6.
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Capitulo 3

El abanico secundario y su relacion con las curvas

tropicales

3.1. Introduccién

Para comenzar, recordaremos ciertas definiciones y relaciones entre
el grafico de una curva tropical 7(f) C R? y una subdivisién regu-
lar dual (en el espacio dual (R?)* ~ R?) del Poligono de Newton de

F, donde F = %aaxa € Klzi', ..., 23", trop(F) = f y todos los
ac
coeficientes de F' son no nulos.

Para profundizar sobre este tema, se puede consultar en [GKZ,
Capitulo 7] o [M].

Definicién 3.1.1. Un politopo entero marcado A es un politopo
convexo en R?, con vértices en Z¢, junto con un subconjunto A de los
puntos de A NZ<, que contenga a los vértices de A.

Definicién 3.1.2. Una subdivision marcada de un politopo A es
una coleccién de politopos marcados T' = {(Q1,.A1), ..., (Qk, Ax)} ta-
les que:

o A=Ui,Q

e ();N(Q); es una cara (posiblemente vacia) tanto de @); como de Q;,
para todo i, j.

e A, CANZiparai=1,....k

e AN (Q:NQ;) =AN(Q:iNQ,) para todo 1, j

Notar que no se pide que U¥_, A; = AN Z4.

Definicién 3.1.3. Llamamos el tipo de una subdivision marcada a
la subdivisién, o sea la coleccién de los @); sin las marcas de los A;.

Ejemplo 3.1.4. La Figura 3.1 muestra un ejemplo de una subdivi-
sién marcada y su tipo. El subconjunto de puntos marcados en cada @)
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estdn dibujados en negro. Los puntos de ANZ? que no estdn marcados,
estan dibujados en blanco. Usaremos esta convencién a lo largo de todo
el texto.

FiGuraA 3.1. Una subdivisiéon marcada y su tipo.

Observacién 3.1.5. Dado F = Y a,z® € K[z, ..., 25"], sean
acA
f=trop(F), co = val(a,),y y la forma lineal ¢, + (w, ). Recordemos

que w € T(f) sii f(w) = trop(F)(w) = min{l,(w)} se alcanza al
menos dos veces. Esto quiere decir que existen dos exponentes o # (3
tales que {,(w) = £g(w) < ,(w) para todo v € A. Podemos ver estas
desigualdades de la siguiente manera: fijemos w € R? y definamos
la forma lineal ¢ con coeficientes en R como ¢(x) := (x,w) + a. Nos
queda que w € T(f) y a = f(w) sii existen dos exponentes o #
con ¢(—a) = cq, ¢(—B) = cg y ¢(—7) < ¢, Vy € A. Més atin, como
lo(w) = L(w), tenemos que (o — f,w) = cg — ¢4, O S€a w pertence a
un hiperplano perpendicular a a — 3. Observemos que los coeficientes
de los monomios de grado uno de la forma lineal ¢ dan un punto en
este hiperplano, con lo cual dicho hiperplano queda completamente
determinado.

Notemos que si tenemos una forma lineal ¢ con ¢, < ¢(—7) para
algin v € A, esta forma lineal no nos aportara informacién sobre 7 (f).

Esto nos lleva a considerar la proyeccion de la capsula convexa
inferior de {(—a,c,) : @ € A} sobre R% Esta proyeccién nos pro-
duce una subdivision de A, el politopo de Newton asociado a f. Las
subdivisiones obtenidas de esta manera las denominaremos subdivisio-
nes requlares o coherentes. En estas subdivisiones estaran marcados los
puntos o € A sii (—a,c,) aparece en la capsula convexa inferior de
{(—a,a,) :a € A}
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Ejemplo 3.1.6. Si consideramos el polinomio F(z,y) = 1+ x +
222+ (243 2P+ 2y —zy +ty? + (3+t) w2+ 22y +3t2y3 € Klatt, yFl,
y la valuacién del Ejemplo 1.4.5, la subdivision regular inducida es la
de la Figura 3.1.

También podemos dibujar la curva tropical T (trop(F))=T (I), don-
de I = (F), (ver Figura 3.2). Las formas lineales que interpolan los
puntos (—a,c,) son: ¢ = x —y — 1 en Q, ¢ = —2x — 2 en Q9
y ¢3 = 0 en (J3. Con esto, los vértices de la curva tropical resultan:
v = (1,-1), vp = (=2,0) y v3 = (0,0).

FicuraA 3.2. Gréfico de la curva tropical definida por el
polinomio del Ejemplo 3.1.6.

Con todo esto, las subdivisiones regulares de A son duales a las
curvas tropicales en el siguiente sentido: cada celda de dimensién s de
la proyeccién de la cdpsula convexa inferior de {(—a,a,) : a € A}
sobre R, es dual a una celda de T (f) de dimensién d — s. Y ambas
celdas resultan ortogonales.

En particular, para curvas planas, tenemos que cada poligono mar-
cado de una subdivisién regular de A es dual a un vértice de T(f), y
dicho vértice tiene por coordenada i-ésima al coeficiente de z; de la for-
ma lineal que cumple ¢(—a) = ¢, para todo punto marcado « de dicho
poligono y ¢(—p3) < cg para cualquier otro punto § de la subdivision.
Cada lado e de un poligono de la subdivisiéon es dual a un eje E de
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T(f). Méas atn, el eje E es ortogonal a su lado dual e. Por tltimo, el
eje E no es acotado sii su eje dual e estd en la frontera del politopo de
Newton A. Llamaremos peso del eje E a la longitud entera de su lado
dual e, o sea |e N Z?| — 1. Observemos que a e lo podemos representar
como un vector a3 = B — a = (a,b) € Z?. Con esto, el peso de E es
igual al med(a : b).

Esta dualidad implica que, teniendo una curva tropical dada, po-
demos deducir el tipo de la subdivision marcada que la genera, pero
no saber qué vértices estaran marcados y cuales no. Para poder dedu-
cir esto, es indispensable contar con los coeficientes del polinomio en
cuestion.

Para profundizar sobre estos temas, se puede consultar [Mi|, en
particular la proposicién 3.11.

Definicién 3.1.7. Llamemos R* al conjunto de vectores indexados
por los puntos en A. Como vimos antes, un punto v € RA induce
una subdivisién regular de A. Decimos que dos puntos u y v en RA
son equivalentes sii inducen la misma subdivisién regular marcada de
A. Esto define una relaciéon de equivalencia sobre R4, v sus clases
de equivalencia resultan los interiores relativos de conos convexos. La
coleccién de dichos conos es el abanico secundario de A.

Notemos que u y u+ A(1,...,1) estdan simpre relacionados, con lo
que ((1,...,1)) siempre estd incluido en el espacio de linealidad del
abanico secundario. Con esto podemos trabajar médulo este vector, y
considerar en R*~! = R4/R - (1,...,1) el abanico resultante, donde
|A| = s. Mds atin, si consideramos a R®* como un espacio que parame-
trice a las curvas tropicales con soporte A, tenemos que si a un punto a
le sumamos un multiplo de (1,...,1), la curva tropical que define este
nuevo punto es la misma que la definida por a, con lo que resulta natu-
ral cocientar a R* por R-(1,...,1). Por abuso de notacién, llamaremos
también abanico secundario al abanico obtenido en R*~! al cocientar
en el abanico secundario por R- (1,...,1).
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3.2. Dimensién de los conos del abanico secundario

Desde esta seccion, y por el resto del capitulo, nos concentraremos
en estudiar curvas tropicales planas, es decir analizaremos las varieda-
des tropicales T (f) con f € T[z1", 23]

Sean T' = {(Qy, A;) : 1 <1 < k} una subdivisién marcada de A, y

L:= {(/\”) € R'A : Z)\U(Z)]) = Oaz)\ij = 0}

el espacio de relaciones afines entre los puntos enteros de A.

Y, dado 1 <1 <k,seaLy :={(\j;) € L:\; =0V(i,j) ¢ A} el
espacio de relaciones afines entre los elementos de A;. Sea Ly = Y L 4,.
1

Lema 3.2.1. La codimension del cono en el abanico secundario
correspondiente a la subdivision marcada T es dim(LLy). En particu-
lar, un cono en el abanico secundario correspondiente a una subdision
marcada tiene dimension mdxima si la subdivision marcada es una
triangulacién. O sea, cada poligono Q; es un tridngulo, y cada uno de
estos triangulos los unicos puntos marcados son los vértices.

Para una demostracién de este lema, se puede ver [GKZ, Corola-
rio 2.7].

Ejemplo 3.2.1. Siguiendo con el ejemplo de la subdivision de la
Figura 3.1, el espacio IL viene dado por el ntcleo de la matriz

11111111
01011003
001122320

que tiene por base a {(1,—1,-1,1,0,0,0,0),(2,-1,—2,0,1,0,0,0),
(1,0,-2,0,0,1,0,0),(2,0,-3,0,0,0,1,0),(2,-3,0,0,0,0,0,1)}

Tenemos que L 4, es el subespacio generado por estos vectores, con
primera, segunda, cuarta y octava coordenadas nulas. Con esto nos
queda L 4, = ((0,0,1,0,0,—-2,1,0)).

En L4, la primera, tercera, sexta y séptima coordenadas deben ser
cero, quedando L4, = ((0,—1,0,2,1,0,0,0)).

Por dltimo, Ly, = ((1,-1,-1,1,0,0,0,0),(2,—1,-2,0,1,0,0,0)
pues debe tener un cero en las ultimas tres coodenadas.
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Con esto Ly =L 4, + L4, + L4, resulta de dimensién 4, con lo que
la codimension del cono en el abanico secundario correspondiente a la
subdivisién T' de la Figura 3.1 resulta ser 4 por el Lema 3.2.1.

Observacién 3.2.2. Un cono en el abanico secundario es de codi-
mensién uno sii exactamente uno de los A; de la subdivisién marcada
contiene exactamente un circuito, o si varios de los A; contienen un
tnico circuito C;, dichos circuitos resultan iguales y este (inico) circui-
to estd incluido en un lado comun a esos A;. En este caso, un circuito es
un conjunto de puntos enteros que es afinmente dependiente, y tal que
extrayendo un punto cualquiera queda un conjunto afinmente indepen-
diente. La Figura 3.3 muestra todos los tipos de circuitos que pueden
aparecer en una configuracion de puntos en el plano, junto a algunas
subdivisiones marcadas de codimensién uno.

Ficura 3.3. Circuitos planares y subdivisiones de co-
dimensién uno.

3.3. Dimensién de los tipos de curvas tropicales

Dada una curva tropical C, hemos visto que es dual a un tipo
a={Q1,...,Qk} de una subdivisién marcada. También llamaremos a
a el tipo de la curva tropical C.

Podemos parametrizar a todas las curvas tropicales del mismo tipo,
con un poliedro no acotado en R***, donde b es el nimero de ejes
acotados de C. Esto es asi pues podemos mover la curva en el plano,
y cambiar la longitud de los lados acotados, sin cambiar el tipo de la
curva. Sin embargo, las longitudes de los lados acotados no pueden ser
cambiadas independientemente si la curva tropical tiene género g > 1.
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Seamos mas explicitos en este razonamiento. Supongamos que co-
nocemos un vértice de una curva tropical C'. Como conocemos al tipo
de esta curva, también conocemos las direcciones de los ejes que sa-
len de ese vértices. Con estas direcciones, podemos conocer todos los
vértices adyacentes al conocido (si los hubiere) dando sélo una de sus
coordenadas. Por ejemplo, la primera coordenada si el eje es horizontal,
o la segunda en cualquier otro caso. Por eso necesitamos 2 + b coorde-
nadas: 2 para fijar un vértice cualquiera, y b para definir los b vértices
restantes. Ahora bien, si la curva tiene género g > 1, resultara que la
curva tropical tiene poligonos cerrados, con lo que necesitaremos 2g
(no necesariamente independientes) ecuaciones en R*** para que cierre
cada poligono. Esto se debe a que en un poligono cerrado, si conside-
ramos los lados como vectores orientados todos en el mismo sentido,
la suma de los lados da el vector nulo como resultado. O sea, tenemos
que la suma de la primer coordenada de los vértices de cada poligono
es igual a cero, y lo mismo para la segunda coordenada.

Definimos como dimension del tipo «, y notamos dim(a), a la di-
mension del poliedro parametrizante de todas las curvas de tipo a.

Para el siguiente lema, recordemos que consideramos al abanico
secundario de A como un abanico en R4/R - (1,...,1).

Lema 3.3.1. Dada una subdivision marcada T' = {Q;, A;} de A de
tipo a, tenemos que
dim(a) < dim(Cr)
donde Cr es el cono del abanico secundario al que pertenece T.

La igualdad se alcanza si y solo st en T todos los puntos del reticu-
lado Z* de A estdn marcados.

DEMOSTRACION. Sea 7 € Cp un punto con representante v € RA.

A este punto le asociamos el polinomio tropical p = @ u, ® w*, y
acA
con esto le asignamos una curva tropical de tipo a. Como observamos

antes, si fijamos uno de los poligonos en 7' y el vértice correspondiente
a este poligono, dando, convenientemente, una de las dos coordenadas
de los otros b vértices, obtenemos una funcién

(I)T : CT — R2+b

que va de C7 al espacio que parametriza las curvas de tipo a.
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Observemos que si (x,y) es un vértice de T asociado a una celda
Ag, donde (7, 7), (k,1) y (m,n) son vértices de Ag, tenemos que (z,y)
cumple con la ecuacién

k—i —7 x Ugj — Up

Como dim(As) = 2, los tres vértices son afinmente independientes.
Con esto, la ecuacién matricial tiene solucién tnica, y el vértice (z,y)
resulta una combinacién lineal tinica de los coeficientes w;;, Ug Y U
O sea, &7 es una transformacién lineal del cono Cr en el espacio
parametrizante dentro de R?**. Y, por lo tanto, vale la desigualdad
dim(a) < dim(Cr).

Sea ahora S una subdivisién con todos los puntos marcados, y vea-
mos que ®g resulta un isomorfismo. Con esto se ve la igualdad buscada.

Cada curva tropical de tipo « viene de un punto u (o sea, es la curva

tropical asociada al polinomio p = @ u,©w®). Este punto u estd en un
ael
cono del abanico secundario, correspondiente a una subdivision mar-

cada de tipo a. Asumamos que hay un punto del reticulado que no
estd marcado en esta subdivisién. Entonces podemos “bajar” este pun-
to hasta que toque la cdpusula convexa inferior de {(—a,u,) : a € A}
sin que se modifique la curva tropical asociada a u. Con esto, toda
curva en el espacio de parametrizacion de las curvas de tipo « viene
de alguna subdivisién de tipo «, con todos sus puntos marcados. Esto
muestra que ®g es sobreyectiva.

Recordemos que todos los puntos del reticulado Z? en la subdivisién
S estdn marcados. Veamos ahora que ®g resulta inyectiva. Para esto

veamos que la curva tropical dada por p = € u, ® w* define univoca-
acl’
mente a la clase u de u en Cs. Sea v otro vector tal que p = @ v, ©w"
acl’
define la misma curva tropical que u. Como definen la misma curva, los

tipos de las divisiones coherentes que definen son trivialmente los mis-
mos. Y como estamos considerando las subvisiones con todos los puntos
marcados, dichas subdivisiones resultan las mismas. Ademas, los vérti-
ces de las curvas tropicales resultan duales a los mismos poligonos (con
todos sus puntos marcados) de la subdivisiéon S. Con esto, dado un

50



vértice (z,y) de la curva tropical, cumple que:

k—i l—7 z Ui —up \ [ Vi — Un

m—1 l_j Yy Uij — Umn Vij — Umn

para todos los vértices (i, 7) (k,1)y (m,n) en la celda dual correspon-
diente en S.

Con la tultima igualdad vemos que los tres coeficientes de u y v
correspondientes a los tres vértices en consideracion de dicha celda
deben diferir en una misma constante k = up — v = wi; — Vij
Umn — Umn-

Pero si miramos otro punto cualquiera marcado en la celda dual
al vértice (x,y) en la curva tropical, tenemos que los respectivos coefi-
cientes en u y v deben diferir en la misma constante, pues cumplen las

mismas ecuaciones.

Con este mismo analisis, llegamos a que todos coeficientes corres-
pondientes a los puntos marcados en una celda (fija) de dimensién 2
en S, difieren en una constante. Ahora bien, dos celdas de dimensién
2 en S con una arista en comun diferirdn en la misma constante (la
diferecia en los coeficientes correspondientes a dos puntos cualesquiera
de la arista en comin). Y con esto, las diferencias en todas las celdas
resulta la misma, pues S es conexo. O sea, resulta u = v+k-(1,...,1),
con lo que w = v en Cg, que es lo que queriamos ver. 0
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Capitulo 4

Tropicalizacion de la famila de curvas planas con

una singularidad en un punto fijo

4.1. Introduccién

En este capitulo vamos a desarrollar las herramientas necesarias
para caracterizar la tropicalizaciéon de la familia de curvas planas con
soporte fijo A = {my,...,m,} C Z? (cuya capsula convexa es de di-
mensién dos), y una singularidad en un punto fijo en (K*)2. Como
vimos en el comienzo del Capitulo 2, la tropicalizacion de dicha familia
se obtiene mediante una traslacion de la tropicalizacién del ntcleo de

1 1 ... 1
Az( )eZ?’XS.
my Mo ... Mg

En este capitulo atacaremos a este problema considerando el Teo-

la matriz

rema 2.4.1 y su corolario. Para esto tendremos que poder calcular las
banderas de flats de Mg, donde B es un Gale dual de la matriz A.

Dada la matriz A, construiremos un Gale dual B de ella de la
siguiente manera:

Observacién 4.1.1. Usaremos (t,z,y) para las coordenadas cand-
nicas de R3. Elijamos tres puntos en A que sean affnmente independien-
tes (que puede hacerse pues la capsula convexa de A es de dimensién
dos). Al levantar estos puntos al plano ¢ = 1 también resultan afinmente
independientes, pues la proyecciéon en el plano ¢ = 0 de una recta en
el plano t = 1 es otra recta. Supongamos, sin pérdida de generalidad,
que esos tres puntos son mq, ms y mg. Podemos realizar el proceso
de triangulacién de Gauss-Jordan con respecto a estas columnas, y
obtenemos una matriz A con mismo Gale dual (sobre Q) que A. La
forma de esta nueva matriz es

A= (1d3X3 | A1> c Q¥
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Como lo que efectuamos fue una transformaciéon afin sobre las co-
lumnas de A, que yacen en el plano ¢ = 1, tenemos que las columnas
de A ahora yacen en el plano t + z + y = 1, ya que las tres primeras
columnas son los vectores de la base canénica de R3.

Con esta matriz A es ficil obtener un Gale dual B (sobre Q) de A,

quedando:
— A,
B = c st(s—i’))
(I d(s—3)x (33))

donde |A| = s.

Observemos que, por construccion, las primeras tres coordenadas de
la i-ésima columna de B son las opuestas de los puntos transformados

Mit3.

Comentario 4.1.2. En un tal Gale dual, queremos encontrar ban-
deras de flats maximales, o sea banderas de s—3 subespacios V; C R*73:

{O}QWQ...QI@_g:RS—S

donde cada V; esta generado por el conjunto de filas {b; : j € F;}. En
particular, Fy 3 ={1,...,s}.

Definimos F} := F;\ F;_;. Con esto, cada F; debe de tener al menos
un elemento. Como en total tenemos s vectores filas, hay 3 vectores
“extras” que pueden a priori pertenecer a cualquiera de los F}. En el
préximo lema mostramos que, de hecho, no tenemos muchas opciones.

Lema 4.1.1. Con la notacion del Comentario 4.1.2, en cada ban-
dera mazximal de flats de un Gale dual B de A, podemos tener sélo dos
situaciones:

(a) |F/|=1paratodoi=1,...,s—4y|Fl_4]=4,0
(b) |Fi 3] =3y existeunj € {1,...,s —4} con |Fj| =2

En el primer caso, si F._y5 = {a,b,c,d}, cualquier subconjunto pro-
pio de los puntos mg, my, m. y my es afinmente independiente (o sea
{mg, my, me,mq} es un circuito de tipo (A) o (B) como los de la Figu-
ra 3.3).

En el sequndo caso, si F!_5 = {a,b,d}, los puntos mg, my y mg son
afinmente dependientes (o sea {mg, my, mg} es un circuito de tipo (C)
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como en la Figura 3.3). Mds ain, todos los puntosm, conr € F/, [ > j,
estan en la misma recta que mg, My Y My.

DEMOSTRACION. Durante toda la demostracién utilizaremos el he-
cho que la i-ésima fila del Gale dual B de A (con4 < i < s)esb; = ¢;_3,
donde {ey,...,e,_3} es la base candénica de R*73.

Para demostrar el teorema, primero probaremos que |F”_5| no puede
ser 2 (resp.1). Asumamos que asi lo es. Vale que dim(V;_4) = s —4 por
la maximalidad de la bandera de flats en consideracion. Y |Fs_4| = s—2
(resp. s — 1), con Vs_y = (b; : 1 € Fys_4). Tenemos dos opciones en este
caso:

(1) {b, : r € Fs_4} puede contener s — 4 de los vectores de la base
canénica de R*73 y dos de los vectores “especiales” by, by, bz, 0

(2) puede contener s — 5 (resp. s — 4) vectores de la base canénica
de R*73 y todos los vectores “especiales” by, by y bs.

Veamos el primer caso: en el conjunto {b, : r € F,_4} sélo nos falta un
vector candnico, digamos que es bj13 = e;. Con esto, los dos vectores
especiales en este conjunto, digamos by y b3, tendrdn un cero en su
j-ésima coordenada (si no, la dimension de V;_4 serfa s — 3). Estos
dos ceros son la segunda y tercera coordenada del punto m; (que es
el transformado de m; después de la realizar la construcciéon de B
como en 4.1.1). Con esto resulta m; = (a,0,0), pero como los puntos
transformados viven en el plano t + = + y = 1, vale que m; = (1,0, 0).
Asim; = my, pues la transformacion lineal afin es inyectiva, resultando
una contradiccion por como armamos la matriz A.

Consideremos ahora el segundo caso: Ahora faltan dos vectores
canodnicos en el conjunto {b, : r € F,_4}, digamos bj13 = €; y byy3 = e
(resp. le falta sélo un vector candnico). Con esto, si miramos la j-ésima
y la k-ésima columna de la matriz A;, deben de resultar 1.d. (respect. el
vector cero), pues esas columnas se arman con las j-ésimas y k-ésimas
coordenadas de los tres vectores especiales by, by v b3. Las columnas de
Ay cumplen la ecuacion t + x + y = 1; luego, si dos son l.d. deben ser
las mismas columnas, lo que es una contradiccion (resp. el vector cero
no cumple la ecuacién).
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Con esto podemos concluir que para cualquier bandera maximal
de flats de B (y también para cualquier Gale dual de A) tenemos que
Fl =364

Tomemos, entonces, una bandera de flats maximal cualquiera. Para
demostrar las afirmaciones sobre las dependencias afines vamos a utili-
zar otro Gale dual de A. Para esto, elijamos a y b cualesquiera en F)_,
y un ¢ que no pertenezca a este conjunto, tal que my,, my y m,. resulten
afinmente independientes. Usaremos estos puntos como los pivotes de
la Observacién 4.1.1. Sin pérdida de generalidad, podemos suponer que
a=1,b=2yc=3.

Sea d un tercer vértice en F._,, y supongamos que m, es afinmen-
te dependiente con m; y mo. Como la dependencia afin se conserva
al aplicar la transformaciéon de la Observacion 4.1.1, m; = (1,0,0),
me = (0,1,0) y my son afinmente dependientes. Con esto la tercera
coordenada de my resulta 0. O sea, b tiene un 0 en su (d — 3)-ésima
coordenada. Queremos probar que no puede haber un cuarto elemento
en F!_,. Para eso veremos que {1,...,s}\ {1,2,d,i} C F,_, implica
que i € Fy_4.

Primero asumamos que ¢ = 3. Pero b3 estd en el subespacio generado
por {b; = e;_3:4 < i <s,i# d}, pues bs tiene un 0 en su (d — 3)-
ésima coordenada. Con esto, si {1,...,s} \ {1,2,d,3} C F,_4 vale que
3eF, 4.

Ahora asumamos que i # 3, y supongamos que i ¢ F,_4. Con
esto, los s — 4 vectores {bs, by, ...,bs} \ {b;,bq} generan el subespacio
Vi_4 de dimensién s — 4, y los vectores de V,_4 tienen su (d — 3)-
ésima componente igual a 0 (by = e4_3). Con esto, la (i — 3)-ésima
coordena de b3 no puede ser cero también, pues en ese caso también
todos los vectores de V4 tendrian 0 en su (i — 3)-ésima coordenada
(pues b; = e;_3) y resultaria dim(V;_4) < s — 5 (pues tenemos que
dim({z4_3 = z;_3 = 0}) = s — 5). Pero con todo esto, resulta b; una
combinacion lineal de los vectores en el conjunto en consideracion, y por
lo tanto pertenece a Vi_4. Luego ¢« € F_4, lo que es una contradiccion
a lo que estdbamos suponiendo (que i ¢ Fy_4). En consecuencia, vimos
que {1,...,s}\ {1,2,d,i} C F,_4 implica que ¢ € F,_4. Para resumir,
hemos probado que si asumimos que 1,2 y d € F._; son afinmente
dependientes, luego F_4 = {1,...,s}\ {1, 2,d}, resultando |F!_,| = 3.
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Como consecuencia del parrafo anterior, si |F._;| = 4 tenemos un
conjunto tal que cualquier subconjunto de 3 elementos es afinmente
independiente, o sea un circuito de tipo (A) o (B) como en la Figura 3.3.
Y esta es la primera afirmacion de nuestro lema.

Veamos la segunda afirmacion, asumiendo F._, = {a,b,d}. Arme-
mos el Gale dual B de A como en 4.1.1, usando como pivotes m,, my
y m., donde los tres puntos son afinmente independientes. Ademas pi-
damos ¢ € Fj, con k maximal en el siguiente sentido: si i € F] con
k <l < s, m; resulta afinmente dependiente con m,, m;,. Nuevamente,
sin pérdida de generalidad, supondremos a = 1,b = 2 y ¢ = 3. Con
esto, Fy 4y = {3,...,s} \ {d}, con d > 3. Al igual que antes, b3 tiene
que tener un cero en su (d — 3)-ésima coordenada, que corresponde
a la tercera coordenada de mg4. O sea, my = (1,0,0),my = (0,1,0)
y myq son afinmenten independientes, por estar alineados en larecta
A(1,—1,0)4(1,0,0) pues 1y = (t,2,0) con t+z = 1. Como la transfor-
macién de 4.1.1 es inversible, y conserva la dependencia afin en ambos
sentidos, resultan m,, m, y my afinmente dependientes.

Por el mismo motivo del parrafo anterior, podemos afirmar que si
mg, my y m; son afinmente dependientes, bs tendra un cero en su i-ésima
coordenada. Sea entonces

B ={b; :i > 4,m; no estd en la recta que pasa por m; y ms}
= {e;_3 :i > 4,m,; es afinmente independiente con m; y ma},

luego bs resulta una combinacion lineal de los elementos de [, y nin-
guno de los coeficientes en esta combinacion lineal es cero. O sea que
cualquier subconjunto de S U {b3} con |3| elementos, resulta una base
del subespacio generado por los elementos de 5 U {b3}. Esto nos dice
que si un conjunto F; contiene |3| de los elementos de 8 U {bs}, tiene
que contener a todo U {b3}. Por la maximalidad que cumple el k de-
finido anteriormente, tenemos que S U {b3} C F}, pues si miramos los
valores que vamos agregando para formar la bandera, o sea los ¢ € F
con k < [, tenemos que mg,, my v m; son afinmente dependientes, con
lo que i ¢ . También por la maximalidad de k, tenemos que V;_; no
contiene a dos elementos de U {bs}, uno de los cuales debe ser bs.
Esto muestra que |F}| = 2. Luego, tomando j = k, este indice cumple
con todo lo enunciado en el punto (b) de la proposicién. U
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Comentario 4.1.3. La vuelta del lema anterior también vale, en
el siguiente sentido:

1. Dado un circuito {m,, my, m., mq} existen banderas de flats que
satisfacen [F}| = 1 para todo j # s =3y F{_3 = {a,b,c,d}

2. Dado un circuito {m,, my, mq} y cualquier eleccién de m, y myqy
que no sea colineales con m,, m; y my, existen banderas de flats
que satisfacen Fy 3 = {a,b,d}, Fj = {c,e} ysii € Fj conl > j
el punto m; pertenece a la recta que pasa por my, my y mq.

Esto se puede ver en forma similar a la demostracion del Lema 4.1.1,
utilizando un Gale dual apropiado. En el primer caso, se pueden tomar
todos los vectores b; con ¢ ¢ F!_, como vectores canénicos, y por lo tan-
to podemos armar cualquier bandera de flats con ellos. En el segundo
caso, podemos tomar a mg, my y m,. como pivotes, y luego escogemos
cualquier bandera de forma tal que ¢ y e aparezcan en ultimo lugar
entre todos los 7 tales que m; no pertenece a la recta que pasa por
My, My Y My.

4.2. Consideraciones para la clasificacion de las curvas
tropicales planas con una singularidad en un punto fijo

Como una consecuencia de la secciéon anterior, podemos intentar
clasificar todos los tipos de curvas tropicales con una singularidad en
un punto fijo. Para hacer esto, primero expresemos las afirmaciones so-
bre las banderas de flats del Lema 4.1.1 en términos de clases de peso
y subdivisiones marcadas. Mantendremos la notaciéon del Comentario
4.1.2. Por abuso de notacion, al referirnos a la subdivisién regular de
A nos estaremos refiriendo a la subdivisién inducida en —A segun la
Observacion 3.1.5, y al hablar de un punto m marcado en la subdivi-
sién inducida por u en A, nos estaremos refiriendo a si el punto —m
estd marcado en la subvisién inducida en —A por w.

La siguiente lista muestra las caracteristicas que nos interesan de
las diferentes clases de peso que obtenemos, y resume lo que podemos
decir sobre las subdivisiones marcadas y sus curvas tropicales duales.

(A) Asumamos que tenemos una bandera con |F!_4| = 4 y que el
circuito correspondiente es de tipo (A) o (B) como en la Fi-
gura 3.3. A los puntos de dicho circuito le corresponderan los
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menores coeficientes, por definicion de clase de peso. Con esto,
dicho tridangulo, o cuadrilatero, sera parte de la capsula convexa
inferior, y su proyeccion sera parte de la subdivisiéon marcada
para cualquier u en dicha clase de peso. Ademas, en el polinomio
tropical que tiene a u como coeficientes, los monomios corres-
pondientes a estos cuatro puntos tienen el mismo coeficiente. El
vértice dual a esta celda serd, entonces, el (0,0).

Por lo tanto, la curva tropical dual tiene al punto xy = (0, 0)
como un vértice de multiplicidad estrictamente mayor que uno
(si miramos al tridngulo con un punto interior, tiene drea mas
grande que 1/2), o tiene un vértice del que salen 4 ejes en dicho
punto, de ser un cuadrilatero esta cara. (Ver la Figura 4.1).

/7

Zo

Clase de Peso

Clase de Peso

Subdivision Marcada

Subdivision Marcada

Curva Tropical Dual

Zo

Curva Tropical Dual

FI1GURA 4.1. Clases de Peso de tipo (A) y sus curvas tropicales.

(B) Asumamos que tenemos F{ 3 = {a,b,d} y Fj = {c,e}. Los

coeficientes correspondientes a a,b y ¢ son los menores, y los
de ¢ y e son los menores del conjunto de puntos que no estan
alineados con my,, my v my. Notemos que pueden haber puntos
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en esta recta con coeficientes menores a los de m. y m,, pero no
a los de mg, my y my. En la Figura 4.2 los puntos myg, my y my
estan marcados en negro, mientras que m,. y m,. estan marcados

en gris.

[ ] [ ] [

[ ° [ ] ° [ ([ ]
LN [ [ ] ([ ]

Curva tropical dual

Subdivisién Marcada

F1auraA 4.2. Clases de Peso de tipo (B) y sus curvas tropicales.

Desafortunadamente, no podemos decir mucho sobre la sub-
division en este caso. Solo estamos seguros de que el eje formado
por mg, my y my sera parte de la subdivision. En el grafico dual,
esto significa que veremos un eje con peso al menos 2. Mas atn,
este eje debe pasar por el punto zy = (0,0). Para ver esto, cal-
culamos los vértices (z1,y1) v (22,92) de la curva tropical, que
son vértices del eje perpendicular al lado marcado que contie-
ne a mg,my y mg. Sean my, = (i,7) y my = (k,0), y (m,n) y
(0,p) otros vértices de los poligonos que contienen en comun al
eje con el circuito en consideracion. Por lo tanto, los vértices
(z1,y1) v (22,y2) cumplen las ecuaciones:

k—i l—j 1 0
m—i n—j Y1 o
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o) )= 0)

con «, > 0. Con esto, (x1,41) y (22, y2) pertenecen al subespa-
cio ortogonal a la primera fila de ambas matrices, con lo que re-
sultan multiplos. Tenemos que ((m —i,n—j), (z1,91)) = a >0
v (o —i,p— 7),ANx1,11)) = B > 0, con lo que A < 0 pues
((0—1i,p—17),(z1,1)) < 0 por estar los puntos (m,n) y (o,p)
en distintos lados de la recta de direcciéon my,—my, = (k—i,1—j).
Podemos concluir que (z1,y1) y (22, y2) resultan multiplos con
distinto sentido, y consecuentenemente el eje que los contiene
como vértices pasa por el origen. (Ver Figura 4.2).

Comentario 4.2.1. La razén porque no podemos decir mucho méas
que lo anterior es que no podemos predecir cémo seran los poligonos
adyacentes al lado que pasa por m,, m, y m. en la subdivisién. Es posi-
ble que los puntos m. y m, no sean puntos marcados en esos poligonos.
Aunque tienen el menor valor posible entre los puntos que no estan
alineados con mg, my, v m., podria ser que no estén marcados en la
subdivisién inducida. Por ejemplo, consideremos la siguiente configu-
racién de puntos, y sea el vector u como el grafico del medio.

mf Mg 153 0
L ] o ® L ]
Mp Me My Me 7T 4 0 4 \
[ ] [} [ ] [ ] [ ] [ ® ®
6 /
[ J [ ] [ ] [ ]
mg mq

Este vector esta en la clase de peso
Uy = Up = Ug < Ue = Ue < Ug < Up < Up,
que viene de la bandera indexada por
{hy CH{h f} CH{h f.9} S{h f.g,c.e} S H{h, f,g,¢,e,a,b,c}.

En el grafico podemos ver la subdivision marcada inducida por u. Notar
que el punto m, no es parte de un poligono adyacente al lado formado
POT Mg, My Y M.
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Un punto genérico en una clase de peso satisface solo las igualdades
dadas por su correspondiente bandera de flats, y estrictas desigualda-
des en los otros casos. Podemos describir los conos de dimensién menor
de la variedad tropical Trop(ker(A)) transformando algunas de las de-
sigualdades en igualdades. En esta parte, nos restringimos solamente a
la clasificacion de los conos de dimensién méxima (o sea los correspon-
dientes a banderas de flats maximales).

4.3. Trop(ker(A)) y el abanico secundario.

Hemos visto en las secciones anteriores que todas las subdivisiones
que obtenemos en nuestra familia de curvas singulares contienen un
circuito (ya sea como un poligono ); o como la cara de un poligono
Q). Consecuentemente, la variedad tropical Trop(ker(A)) vive dentro
del esqueleto de codimension uno del abanico secundario. Més atn,
ninguna clase de peso que corresponde a una bandera de flats del tipo
(A) de la Seccién 4.2, contiene el espacio de linealidad del abanico
secundario. El lema siguiente muestra que de cierta manera es el espacio
de linealidad lo que falta para pasar del cono de una clase de peso a
un cono de codimensiéon uno del abanico secundario.

Recordemos que el abanico secundario ya lo consideramos médulo
el vector (1,...,1). Pero el abanico secundario atin contiene un espacio
de linealidad S de dimensién 2, generado el vector v, (formado por
las z-coordenadas de los puntos m;), y el vector v, (formado por las
y-coordenadas de los puntos m;). Esto es asi pues, mirando las formas
lineales de la Observacion 3.1.5, si definimos q@(m, y) = é(z,y)—A\r—py,
resulta:

° &(—a) = Co + Aoy + pray,

o p(—B) =cs+ A3, + 1By ¥

e o(—) < ¢, + My + py, para todo v € A

O sea que las subdivisiones coherentes marcadas inducidas por un

vector u y u + Av, + pv, resultan las mismas, con v, y v, los vectores
generadores del subespacio S descriptos en el parrafo anterior.

Notemos que, segin la construccién, el espacio lineal R - (1,...,1)
esta siempre incluido en los conos asociados las clases de peso de las
banderas de flats. Con esto, podemos trabajar médulo este espacio en
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todos los conos. Y lo consideraremos de esta manera en el resto de esta
seccion.

Lema 4.3.1. Sea A un poligono convexo en el reticulado Z* con
matriz asociada A y B un Gale dual de A, y sea Z un circuito en A
de tipo (A) o (B) como en la Figura 3.3, o sea un circuito que consta
de 4 elementos, Z = {a,b,c,d}.

Con esto, la union de todas las clases de peso Cx de banderas de
flats F de B que terminan con F._; = {a,b,c,d} (donde usamos la no-
tacion del Comentario 4.1.2) mdas el espacio de linealidad S del abanico
secundario de A, es igual a la union de todos los conos de codimension
uno Cr del abanico secundario de A correspondientes a las subdivisio-
nes T que contienen este circuito, es decir:

F T

donde la union en la izquierda recorre todas las banderas de flats F de
B que terminan con F._5 = {a,b,c,d} y la unidn de la derecha recorre
todas las subdivisiones T' que contienen al circuito Z.

DEMOSTRACION. Ya vimos en la clasificacién de la seccién anterior
que la subdivision marcada de un vector u en cualquier clase de peso
correspondiente a tal bandera de flats contiene la circuito Z como un
poligono. Con esto, la inclusiéon C es clara.

Ahora tomemos cualquier u en Cp. La cara correspondiente al cir-
cuito Z esta incluida en un plano que interseca a la cdpsula inferior
considerada en 3.1.5 en esa cara. Podemos “inclinar” este plano su-
mando un vector en el espacio de linealidad .S, y obtenemos un vector
satisfaciendo que las coordenadas de los puntos my, my, m. y my sean
iguales, y las minimas entre todas. Esto muestra la otra inclusion. [J

Notemos ademas que el enunciado tiene sentido si pensamos en las
dimensiones: el abanico secundario es de dimension s — 1, con lo que el
cono Cr de codimension uno tiene dimension s — 2. Los conos definidos
por las clases de peso son de dimensién s — 4, pues si bien la bandera
tiene longitud s — 3 estamos considerandolos médulo (1,...,1), por
lo que la dimensiéon baja en uno. Y el espacio de linealidad S tiene
dimensién 2, resultando la igualdad dimensional (s —4) 42 = s — 2
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Observacién 4.3.1. En lo que sigue, queremos entender los conos
del abanico secundario de A que corresponden a banderas de flats (res-
pectivamente clases de peso) del tipo (B) de la clasificacién hecha en
la Seccion 4.2. Asumamos que tenemos una bandera F de ese tipo, con
F._3=1{a,b,d} y F; = {c,e} como en la demostracion del Lema 4.1.1.

El caso donde los puntos m. y m. definen una recta paralela la recta
que pasa por mg, my ¥ mg, como en la Figura 4.3, juega un rol especial.

mge
([ ] me
my
mge me

F1aURA 4.3. Una clase de peso de tipo (B) en la frontera
de otras.

Sean F = F(u), T la subdivisién de A tal que u € Cr, y Q el
poligono en T' que contiene al circuito Z = {mg,, my, my} y esta del
mismo lado de Z que los puntos m. y m, (ver Figura 4.4). Tenemos
que distinguir dos subcasos: en el primero, () contiene un vértice cuya
distancia a la recta que pasa por m,,my y mg es mas grande que la
distancia de m, y m. a dicha recta; y el segundo,donde () es el poligono
generado por los vértices en Z, m. y m.. Para convencernos que sélo
puede pasar alguna de estas dos situaciones, recordemos que u, = u, =
ug < u. = u, < u; para todo m; vértice que no esta sobre la recta
generada por Z.

Mg Mg
me
my e Me my

Me
my o M, mq

F1GURA 4.4. Dos posibilidades para clases de peso en la frontera.

Notemos que si @) estd determinado por mg, ..., m. luego el cono
Cr estd en la frontera del cono Cg para una subdivision S como la de

64



la Figura 4.5, donde cuatro de los cinco puntos del reticulado forman
un cuadrangulo. Estos cuadrangulos ya fueron considerados en el Lema
4.3.1, y junto con el cono C7r la clase de peso C'r C Cr esta contenido
en el borde de los conos del abanico secundario que corresponde a clases
de peso del tipo (A).

Mg

me
myp

Me
mq

F1GURA 4.5. Una subdivisiéon tal que Cg contiene a Cr
es su frontera.

Si en cambio () contiene un vértice mas alejado que los vértices m. y
m, de la recta que contiene a Z, tanto el cono Cr con el cono Cr C Cr
de la clase de peso F viven en el borde de conos del abanico secundario
que corresponden clases de peso de tipo (B), que se consideran en el
lema siguiente.

En cualquiera de los dos casos de esta observacién, no es necesario
considerar estas clases de peso para obtener una descripciéon completa
de los conos de codimension uno del abanico secundario de A fijados
por las clases de peso de tipo (A) o (B).

Lema 4.3.2. Sea A un poligono convexo en el reticulado Z* con
matriz asociada A y B un Gale dual de A, y sea Z un circuito en A
de tipo (C) como en la Figura 3.3, o sea un circuito que consta de tres
elementos, Z = {a,b,d}.

Luego

(U c?) +s=|Jon
F T
donde:

e S es el espacio de linealidad del abanico secundario de A;
e la union de la izquierda es la union de todas las clases de peso
Cx de banderas de flats F de B como las consideradas en (B)
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de 4.2, excepto por las consideradas en la Observacion 4.3.1;
esto es, consideramos solo las banderas de flats que terminan
en Fy_3 ={a,b,d}, tienen Fj = {c,d} con la recta que pasa por
me Yy mg no paralela a la que contiene los puntos mg, my y my,
mientras que todo punto m; pertenece a esta ultima recta para
todo i € F} conl > j;

e para la union de la derecha diferenciaremos dos casos:

— 81 Z no estd contenido en la frontera de A, la unidn de la
derecha es la union de todos los conos Cr de codimension
uno del abanico secundario de A que se corrresponden con
subdivisiones T que contienen a Z;

— st 4 estd contenido en la frontera de A, la union de la
derecha es la union de todos los conos Cr de codimension
uno del abanico secundario de A que se corrresponden con
subdivisiones T que contienen a Z, excepto por aquellas T
para las cuales el tridngulo que contiene a Z tiene su tercer
vértice en un punto a distancia minimal de Z.

La Figura 4.6 muestra parte de una triangulaciéon correspondiente
a uno de los conos de codimensién uno que desechamos en la uniéon de
la derecha, si Z estd contenido en la frontera de A.

\

Q? A

FiGuraA 4.6. Triangulaciones que debemos desechar.

DEMOSTRACION. Veamos C: Sea u en una de las clases de peso que
estamos considerando. Con esto, u induce una subdivision coherente de
A que contiene a Z. Si Z esta en la frontera de A, ambos puntos m. y
m. estan del mismo lado de la recta por Z, y sélo uno estd a distancia
minima de la misma (pues la recta por m. y m. no es paralela a 7).
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Sea m,. el punto mas lejano de la recta por Z. Tenemos que las tres
rectas que unen a (M., u.) con (Mg, ug), (Mp, up) y (Mg, ug), estan por
debajo que cualquier punto (m;, ;) tal que m; no esté en la recta por
Z (esto sucede pues, por construccién de u segun 4.1.1, u; < ue. = u,
implica que m; pertenece a la recta por Z). Con esto, el tridngulo en
consideracién forma parte de la subdivisién inducida en A por u, y su
vértice no se encuentra a distancia minimal de la recta por Z. Si Z no
esta en la frontera de A, la inclusién es trivial.

Veamos ahora DO: Para esto, podemos asumir sin pérdida de gene-
ralidad que Z estd incluido en la recta {z = 0}. Podemos escribir a u
como la suma de un multiplo del vector formada por las y-coordenadas
de los puntos m; mas un vector v’ con u, = uj = u),. Ahora bien, este
valor puede no ser el menor del vector u/, como muestra el Ejemplo
4.3.2.

Para lograr que este valor sea el minimo de un vector u” que defina
el mismo tipo de curva, y ademds obtener u! = uj = u); < u? = ull <}
para todo i ¢ {a,b,c,d, e}, miramos la proyeccién en el plano zz de la
capsula convexa de {(m;,u}) : i € A}, que llamaremos A,,. Notemos
que el punto (0,u)) = (0,u;) = (0,u.) es un vértice de ella. Esto se
debe a que si (0,7) pertenece a la subdivision marcada de A, con ]
la altura del punto (0,7), u; > u/ pues en otro caso alguna de las
rectas que une (0, j, u;) con el punto mas lejano entre (mg, ul,), (my, uj)
y (me,ul), estard por debajo de la recta que une estos tres puntos, y
por lo tanto Z no estaria marcado en la subdivisién, contradiciendo
lo que estamos suponiendo. Si Z no esta en el borde de A, el punto
(0,u!) estard por debajo de cualquier recta que pase por dos puntos
(k,ui) y (I,u}), con m; € {x =k}, m; € {x =1} y k <0 <[ Esto
es asi pues de otra manera habria dos puntos en Z, digamos m, y
my, que estan del mismo lado lado de la recta que pasa por m; y m;,
y uno de ellos, digmamos m,, se encuentra a la mayor distancia de
esta recta. Como consecuencia, el punto (my, u;) estard por arriba del
triangulo definidido por los vértices (m;, u;), (m;, u}) y (ma, ug,) . Como
este triangulo, junto con su interior relativo, se encuentra en la capsula
convexa en consideracién, el punto (mp,u;) no estaria en la capsula
convexa inferior, y por lo tanto no estaria marcado en la subdivisién
regular inducida, contradiciendo nuestra hipétesis.
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Elijamos una recta por dos puntos (k,u;) y (I, u}) como antes, pero
tal que (0,u,) sea el inico punto a un lado de ella. Tomemos como
m. y m, los puntos correspondientes a (k,u;) y (I,u}) en A. De esta
manera podemos obtener u” = u' 4+ Av,, con v, el vector formado por
las z—coordenadas de los m;, resultando u), = vy = u); < ul =ul <u}
para todo i ¢ {a,b,c,d,e}. Para que la clase de peso de u” resulte
como las consideradas en (b) de 4.2, s6lo nos resta chequear que la
recta por m. y m. no es paralela a la recta por Z. Esto es verificar
que ambos puntos tienen distintas sus primeras coordenadas. Pero si
estos puntos tuviesen la misma primera coordenada, Z formaria parte
de un tridngulo con vértice a distancia minimal de Z, y estos casos los
eliminamos. O

Ejemplo 4.3.2. Para ilustrar el procedimiento descripto en la se-
gunda parte de la demostracion anterior, tomemos por ejemplo el po-
linomio tropical f =3®20y®10Y* D20 ®r oy ® 22O Y2, que
define la siguiente subdivisién regular en su politopo de Newton:

v

Tenemos que u = (3,2,1,2,0,0) y los vectores que defiene el es-
pacio de linealidad resultan v, = (0,0,0,0,1,2) y v, = (0,1,2,3,3,2).
Primero obtenemos v = u + v, = (3,3,3,5,3,2) y observamos que
la minima coordenada no se alcanza en los puntos correspondietes al
circuito Z. La proyeccién A, nos queda:

En este ejemplo podemos considerar la recta L; por los puntos
(—2,2) y (—1,3), o la recta Ly por los puntos (—1,3) y el (0,5). En
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el primer caso, con A = 1, nos queda v” = v + v, = (3,3,3,5,4,4), y
resultan los puntos m. = (1,3) y m. = (2,2). En el segundo, con A = 2,
nos queda u” = u' + 2v, = (3,3,3,5,5,6), y m. = (1,3) y m. = (0,5).
En ambos casos, tanto u como u” inducen la misma subdivision en A.
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Capitulo 5

Clasificacién de curvas tropicales planas de
maximo tipo dimensional con una singularidad en

un punto fijo

5.1. Introduccion

Con lo visto hasta ahora, podemos ser mas especificos si nos res-
tringimos a las curvas tropicales con maximo tipo dimensional posible.

Vimos en el Lema 3.3.1 que la dimensién de un cono Cr del abanico
secundario es igual a la dimension de su tipo sii la subdivisién marcada
T tiene todos los puntos marcados. Con esto, podemos obtener curvas
tropicales maximo dimensionales s6lo si nos restringimos a las subdi-
visiones marcadas correspondientes a los conos de codimension mas
pequena posible (es decir, con la menor cantidad posible de circuitos),
y con todos los puntos marcados. En el caso de curvas tropicales sin-
gulares, deberemos restringirnos a las subdivisiones consideradas en la
clasificacién 4.2 con todos los puntos de A N Z? marcados.

En los casos cubiertos en la parte (A) de dicha clasificacion, los
conos del abanico secundario son de codimensiéon uno. Pero notemos
que en el caso (B), miramos conos que no estén en el interior relativo
de conos de dimensién maxima de la tropicalizacién del nucleo de A,
sino que viven dentro de conos de codimensién dos del abanico secun-
dario (ver la Observacién 4.3.1). Esto es asi pues, si los puntos m, y
m, estan del mismo lado que el circuito Z, al estar todos lo puntos de
A N Z? marcados en la subdivisién, deben estar en una recta paralela
a Z = {m,, my.m.}. Esta subdivisién pertenece a un cono del abanico
secundario de codimensién dos que yace en la frontera de un cono de
codimensién uno estudiado en la parte (A) de la clasificacién (ver Fi-
guras 4.4 y 4.5). Estos conos de codimension dos deben ser estudiados,
pues en lo que sigue caracterizamos explicitamente solo el interior de
los conos en consideracion.
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Podemos relacionar las clases de peso correspondientes a estas sub-
divisiones en una forma similar a los Lemas 4.3.1 y 4.3.2. En este caso
solo tenemos que agregar una parte del espacio de linealidad del abani-
co secundario. Tenemos que agregar el espacio generado por el vector
de las y-coordenadas de los m; (si asumimos, sin restriccion, que Z
estd sobre la recta {x = 0}. Y en la derecha de la igualdad (como en
los Lemas 4.3.1 y 4.3.2) tendremos la unién sobre todos los conos Cr
de codimensiéon 2 del abanico secundario, cuyas subdivisiones marca-
das inducidas contienen al poligono conv{m,, my, m., mg, m.} y tiene a
todos estos puntos marcados. Esto es asi porque para cualquier vector
u € Cp, podemos agregar un multiplo del vector de las y-coordenadas
de los m; para lograr que se satisfaga u) = u, = ul; y u, = ul.

Es decir, para estudiar curvas singulares de tipo méximo dimensio-
nal, tenemos que estudiar los conos de codimensién uno del abanico se-
cundario segun la clasificacion de 4.2, y los conos de codimensiéon 2 que
corresponden a una subdivision marcada que contiene a un poligono
conv{mg, my, me, Mg, me} con todos esos puntos marcados, y tales que
ma, My ¥ My estan sobre la misma recta, mientras que m. y m, perte-
necen a una recta paralela a la anterior. La subdivisiéon inducida por u
debe tener a todos los puntos m; marcados.

5.2. Clasificacién de las curvas tropicales planas de tipo
dimensional maximo con una singularidad en un punto
fijo en el toro

Seguiremos la clasificacion de la seccion 4.2 y veremos qué infor-
macién sobre la curva dual podemos deducir al asumir que todos los
puntos estan marcados en la subdivision.

(a) Como en la clasificacién de 4.2 (A), podemos obtener curvas
tropicales con un vértice en el punto zo = (0,0). Este vértice
puede ser dual a un triangulo con exactamente un un punto in-
terior de ANZ2. En este caso, dicho vértice posee multiplicidad
tres ya que cada lado del triangulo tiene longitud entera uno.
Esto se debe a que estéan todos los puntos de A N Z? marcados
en la subdivision.
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(b.1)

Otra opcién para el (0,0) es que de él salgan 4 ramas, cuyo
poligono dual es un cuadrangulo que no cubre a ningin otro
punto de Z?. En este caso, el vértice tiene multiplicidad cuatro.

Ahora consideremos una bandera de flats como en 4.2 (B). Co-
mo queremos que todos los puntos estén marcados, los dos pun-
tos m. y m. tienen que estar a distancia minimal del circuito Z
(por lo tanto a la misma distancia), y tienen que ser vértices de
poligonos de la subdivisién. Como todos los puntos de A N Z?2
estan marcados, esta distancia minimal es uno. En este caso
analizamos cuando ambos puntos se encuentran en lados dis-
tintos de Z. Resolvamos las ecuaciones que nos dan los vértices
(x1,21) ¥ (z2,v2), adyacentes al eje que pasa por el (0,0) de la
curva tropical. Estos puntos son duales a dos tridangulos con un
lado en comun, y su tercer vértice a la misma altura. Si asumi-
mos, sin pérdida de generalidad, que el circuito Z se encuentra
sobre la recta {x = 1} y el vértice del tridngulo izquierdo se
encuentra en m, = (0,0), las ecuaciones a resolver para hallar

(x1,71) ¥ (2,92), quedan:

A= =21+ (Mg)2y1 = 21 + (Mp) 241

A== =29+ ((Mq)2 — (Me)2)ya = —2 + ((Mp)2 — (Me)2)y2

(b.2)

donde A es la altura de los dos puntos m. y me, y p es la altura
del circuito Z. Sin pérdida de generalidad, podemos suponer
p =0 < A quedando (z1,91) = (N\,0) v (29,42) = (—=A,0).
En particular, la distancia de ambos vértices al punto singular
(0,0) sobre el eje de la curva tropical es la misma.

Sigamos considerando las banderas de flats como en 4.2 (B), pe-
ro ahora con los dos puntos m. y m. del mismo lado del circuito
Z. Nuevamente m. y m, tienen que estar a distancia minimal
de Z (con lo que se encuentran en una recta paralela a Z), y
tienen que estar marcados en la subdivisién. Con esto, vemos
un cuadrilatero con dos lados paralelos en la subdivisién. Si Z
no estda en el borde de A, debe haber un tridngulo con un vértice
a distancia minimal en la subdivisién, del otro lado de Z (ver
Figura 5.1). Como antes, resolvemos las ecuaciones para hallar
las coordenadas de los vértices correspondientes al tridangulo y
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al cuadrilatero. Nuevamente, sin pérdida de generalidad, asu-
mamos que el circuto se encuentra en la recta {x = 1}, y que
el tercer vértice del triangulo se encuentra en m. = (0,0). Las
ecuaciones quedan, respectivamente:

v—p=x1+ (mg)oy1 = x1 + (mp)ayn
A== =224 ((Ma)2 — (Me)2)y2 = —22 + ((Mp)2 — (Me)2)y2

Si suponemos g =0 < A < v, nos queda que (z1,y1) = (v,0) y
(z2,72) = (—A,0). En particular, la distancia del vértice del que
salen cuatro ejes (o sea (xg,y2)) se encuentra a una distancia
estrictamente menor al punto singular (0,0) que el vértice del
que salen 3 ejes. Si Z esta contenido en la frontera de A, sélo
vemos al vértice del que salen 4 ejes, uno de ellos horizontal y
no acotado, que pasa por el punto singular (0,0).

Observacién 5.2.1. La variedad tropical Trop(Ker(A)) es de di-
mension s — 4. En lo anterior, describimos (parte de) la variedad como
subconjuntos de conos del abanico secundario (que lo estamos conside-
rando en R*/R(1,...,1), o sea es de dimensién s—1). Los subconjuntos
son reducidos en el caso (a) por dos condiciones que representa que el
vértice 4-valente (resp. el vértice de multiplicidad 3) de la curva tropi-
cal tiene que ser el punto xo = (0,0). En los casos cubiertos en (b.1),
pedimos que un eje pase por el (0,0), y ademds que las longitudes de los
dos semiejes adyacentes al (0,0) sean iguales. En ambos casos, comen-
zamos con un cono de codimensiéon uno del abanico secundario y luego
quitamos un conjunto de codimensién dos. En el dltimo caso, (b.2),
comenzamos con un cono de codimensién dos del abanico secundario.
Pero en este caso solo extraemos un subconjunto de codimensién uno,
pues sblo requerimos que un eje pase por el (0,0). Las longitudes de
los semiejes adyacentes al (0,0) tienen que satisfacer una desigualdad,
pero esto no baja la dimension. De esta manera, también describimos
en el ultimo caso curvas tropicales de tipo maximo dimensional.
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Circuitos de tipo (a)

Circuitos de tipo (b.1) con m.y m. a ambos lados del circuito Z
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Circutitos de tipo (b.2) con m, y m. del mismo lado del circuito Z.

Ficura 5.1. Clasificacion de las curvas tropicales maxi-

mo dimensional con al menos una singularidad en el toro.
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Capitulo 6
Singularidades tropicales y derivadas de Euler

6.1. Introduccion

Hasta el capitulo anterior hemos estudiado una familia particular
de hipersuperficies tropicales singulares: las curvas planas, dadas por
polinomios en dos variables.

A partir de este capitulo estudiaremos las hipersuperficies tropi-
cales singulares dadas por una variedad tropical T(f) C RY, con d
cualquier ntimero natural, f = @;eap; © w' € Rlwy, ..., wy] y A C Z4
un conjunto finito de cardinal n, donde ZA = Z?. Lo desarrollado en
el resto del texto se basa en el trabajo de A. Dickenstein y L. Tabera
“Hipersuperficies tropicales singulares” [DT).

Recordemos de la Observacion 3.1.5 que cualquier hipersuperficie
tropical es un complejo poliedral racional. Dado un ¢ € 7(f), su celda
asociada o* es la clausura de todos los puntos ¢ € T(f) para los
cuales f(q) = f(¢') se alcanza en el mismo subconjunto o de A. Cada
celda ¢* viene con una marcacién, dada por el subconjunto o. Con
esto, una hipersuperficie tropical asociada a un polinomio tropical con
un soporte fijo A serd un complejo poliedral racional marcado. Esta
marcacién serd transparente en la notacién. Consultar el comienzo de
la Seccién 6.3 para detalles mas especificos.

Trabajaremos con polinomios de Laurent F' con suporte en A C Z¢
y coeficientes en un cuerpo algebraicamente cerrado K de caracteristica
0, es decir:

F(z) = Z a;rt € Klzyt, ... aF.
ieA

Asumiremos que el cuerpo K estd provisto de una valuacién no-

arquimediana de rango uno, val : (K)* — R, y que el cuerpo residual
k de K es también de caracteristica cero.
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Recordemos que segun la Definicion 1.5.1, definimos la tropicaliza-
cién de F como el polinomio tropical

f=trop(F) = @ val(a;) © w'.
icA
En lo que resta, para diferenciar a los contexto clasicos y tropicales,
los elementos de K, K¢, y K" seran sisteméticamente notados por las le-

tras a, b, ¢, z,y, 2 y los elementos de T, T¢ y T" por las letras p, ¢, w, v, [.
Los elementos de A C Z% serdn notados con la letra, .

Por 1ltimo, notemos que la Definicion 1.5.14 de hipersuperficie tro-
pical singular estd hecha para polinomios con cualquier cantidad de
variables, con lo que seguird siendo vélida por el resto del texto.

6.2. Derivadas de Euler y su tropicalizacién

Sea L una funcién afin entera en R?, es decir
L =jiw +...+ jawa+ 5,
donde (ji,...,j4) €Z%y B € Z.

Definiremos la derivada de Euler de un polinomio tropical f con
soporte en A con respecto a L como:

Definicién 6.2.1. Sea [ = @ieApi(Dwi y L = jiun+...4+jqwg+ 5
una funcién afin entera. La derivada de Euler de f con respecto a L es
el polinomio tropical

g—é: @ pi O w'.

i€A,L(i)#0

También tenemos las derivadas de Euler clasicas de un polinomio
F' con coeficientes en K.

Definicién 6.2.2. Sean F = Y, ,a;z' € K[z7,...,27"], y una
funcién entera afin L = jywy + ...+ jqwg+ 5 . Asociamos a L el campo
vectorial de Euler Lg = 7101 + ...+ 404 + 3, donde ©; = xj% para
todo j = 1,...,d. La deriwada de Euler de F' con respecto a L es el
polinomio

OF OF OF
— = Lo(F) = jjx1— + ... 1L —— F.
oL o(F) ]l$lax1 + +]dxdaxd + 5
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Es claro que para cualquier punto singular b € (K*)? de V(F), vale

que g—i(b) = 0 para cualquier funcién afin entera L. Y notemos que si
L es la funcién constante 1, vale que g—’z =F.

Observaciéon 6.2.3. Vale la igualdad

OF N
3= ZL(z)aix :

oF

S = >" jrira;z’ para cual-

icA
quier 1 < k < d. Sumando con respecto a k, y cambiando el orden de

pues si i = (i,...,iq) € A, vale que jpxy

las sumas, queda el resultado observado.

En el lema que sigue relacionamos la derivada de un polinomio
clasico F' con respecto a L, con la derivada con respecto a L de su
tropicalizacion, f = Trop(F).

Lema 6.2.1. Dado un polinomio tropical f con soporte en A y una

2 —
or — P\ oL

para cualquier polinomio F con soporte en A tal que Trop(F) = f.

funcion afin entera L,

DEMOSTRACION. Tomemos cualquier polinomio de Laurent F con
Trop(F) = f. Por la Observacién 6.2.3 vale que %& = > L(i)a;x".
Como estamos asumiendo que el cuerpo residual de K éSAde carac-
teristica cero, nos queda que val(L(i)) = 0 siempre que L(i) # 0y
val(L(i)) = oo siempre que L(i) = 0. El resultado del lema es una
consecuencia directa de la Definicién 6.2.1 de la derivada con respecto

a L en el contexto tropical. O

Notemos que como A es un conjunto finito, el conjunto g—ﬂL},
con L recorriendo todas las posibles funciones lineales afines enteras,
es finito para cualquier f con soporte en A.

Ejemplo 6.2.4. Consideremos la cénica tropical
f=1800w 00w e 00w Ouw, 10w & 106 w?,

y veamos si define una curva singular.
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Sea F' = a(0) + a(1,0% + a1y + aq,n2y + a@0® + ap2)y? cual-
quier polinomio con Trop(F) = f. Queremos ver si este polinomio
clasico puede tener un cero singular. Recordemos que para un polino-
mio homogéneo G € K[zy,...,x,] de grado d vale la férmula de Euler:
d-G =" OSUWG Con esto, si b € K® \ {0} y vale 8TGZ_(b) = 0 pa-
ra todo 1 < i < n, vale también que G(b) = 0 y b resulta un punto
singular de V(G). En nuestro caso, sea F" el polinomio homogeini-
zado con respecto a z de F. Luego existe b € K* ~ {(0,0,0)} con
F}(b) = F})(b) = F](b) = 0 sii

20(20) Q@) A,0)
det a(1,1) 2&(072) a(0,1) = 0.

a@o)  G0,1)  20(0,0)

En la expansion de este determinante, el inico término que aparece
con valuacion cero es 2a(1,0)a(1,1)0(o,1), con lo que nunca podrd anularse.
De esto resulta que cualquier polinomio F', con Trop(F) = f, nunca
tendrd un punto singular, pues si (xg,yo) es un cero singular de F,
(20, Y0, 1) lo serd de F"*. Con todo esto podemos concluir que 7 (f) no
es una hipersuperficie tropical singular.

Comentario 6.2.5. Si tomamos Ly, = w; vy Ly = wy, podemos

veriﬁcar directamente que g—LFl = x%—i = a(1,0)T + aq,1)Ty + 2a(270)x2 y
6852 = y9E ay a0y +a,nry+2a 0, 2)y2 En el contexto tropical resulta

T = 00w B00w, Ow, 1wl y F£ = 00w G00w; Ow, &1 W],

Notar que q = (0,0) € T(f) es no singular, y ademds ¢ es un cero
de 5 OF -y de 2 dT> es decir ¢ € 7’(;—51) N T(a%). Mas atin, si tomamos
Lg = w1 + wsy — 2, al calcular la derivada tropical de Euler con respecto
a Ls obtenemos 2 it = 1000w B0 ws, y también (0,0) € T < ) )
Notemos que esta ultima derivada de Euler es como derivar el poli-
nomio homogenizado, con respecto a la variable de homogenizacién (y
evaluando ésta en 1). Todo lo expresado nos muestra que para poder
detectar los puntos singulares de la hipersuperficie tropical, no basta
con mirar los ceros en comun del polinomio y las derivadas “respecto
de las variables”. En este ejemplo, si consideramos L, = w; — 1 nos
queda 57 df =1000w®10wid 00w, y resulta q ¢ T(%), pues el
minimo Valor de las formas lineales evaluadas en (0,0) se alcanza sélo
en el monomio ws. (Ver Figura 6.1).
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FIGURA 6.1. En amarillo T <§—LJ;>, en azul T (;—Z;) y
en rojo T <§—Lfl). Punteado T <§—Lf4) )

Comentario 6.2.6. En el Ejemplo 6.2.4 buscamos una condicién
para que V(F) tenga un punto singular. Esta condicién resulté polino-
mial en los coeficientes de F'. Recordemos que dado un conjunto finito
A C 72, Gel'fand, Kapranov y Zelevinsky [GKZ] definieron y estudia-
ron las propiedades principales del A-discriminante A 4 asociado a la
familia de hipersuperficies con soporte A. Sea V, la variedad de poli-
nomios de Laurent F' con coeficientes en K y soporte en A que definen
una hipersuperficie singular en el toro (K*)?. Si Vj tiene codimensién
uno, existe un tnico polinomio (salvo signo) A4 € Zla;|i € A] tal que si
F =", 4 a;2" tiene un punto singular en (K*)?, luego A 4((a;)ica) = 0.
Este polinomio se conoce como el A-discriminante. Si codim(Vy) > 1,
se dice que estamos en un caso defectivo y se define a A4 como el
polinomio constante 1.

Un polinomio tropical f = @;c4 p; ®w' con coeficientes en R define
una hipersuperficie tropical singular precisamente cuando su vector de
coeficientes p yace en la tropicalizacion T (Vo).

El principal teorema de este capitulo es el Teorema 6.2.4, que ca-
racteriza hipersuperficies tropicales singulares (dado un soporte fijo)
en términos de las derivadas tropicales de Euler. Como vimos en el
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Ejemplo 6.2.4, no es suficiente considerar las derivadas tropicales de
Euler con respecto a los d ejes coordenados. No es dificil salvar este
problema apelando a la nocién de base tropical [BJSST|, que damos
a continuacion.

Definicién 6.2.7. Sea I C K[z{',...,23'] un ideal. Recordemos

que segun la Definicién 1.5.9, T([) = () T (Trop(F)) y, segun el
Fel ,F#0

Teorema 1.5.6, resulta T (1) = {(val(z1), ...,val(z,)) : z € Vi=(I)}.

Una base tropical de I es un conjunto finito de polinomios Fi, ..., F,

que generan I, y ademds cumplen que T (1) = (| T (Trop(F;)).
i=1

Dado un conjunto finito en el reticulado Z? con n elementos, identi-
ficaremos en lo que sigue el espacio de polinomios con coeficientes en K
y soporte en A con (K*)", y notaremos por 1 al punto (1,...,1) € K%
Ya hemos discutido en la introduccion al Capitulo 2 como la subvarie-
dad

Hy = {F € (K")"| F es singular en 1}

es un espacio lineal generado por formas lineales homogéneas.

Definicién 6.2.8. Notemos con £ al conjunto de todas las fun-

ciones lineales afines enteras L = jiw; + ... + jqwg + 0, tales que
med(j1, ..., Ja, ) = 1, y que cumplan dim{({L =0} NA) =d — 1.

Proposicién 6.2.2. Sean (vq,...,v,) variables. El conjunto finito
de polinomios tropicales lineales

P1 = @ 0 © Uz‘L < »C
e A—{L=0}

es una base tropical de Trop(Hy).

£ ; +1 +1 :
DEMOSTRACION. Sea F' = > y;a' € K[z, ..., 27, v:(i € A)] un
icA
polinomio genérico con soporte en A. Notemos que si L recorre todas
las funciones lineales afines con coeficientes enteros, las derivadas de
Euler g_}; son precisamente todas las combinaciones lineales enteras de
F, xlg—F, o xq2E . Por lo visto en 2.1, Hy es un subespacio lineal de
1 Oxg
K" definido por las las ecuaciones lineales (en las variables (yi, ..., yn))
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Flx=1) =0,y xngFj(x =1)=0,1<j < d. Segin lo visto en la
Proposicién 2.3.4, las formas lineales que se anula en H; forman una
base tropical de Hy, y es suficiente considerar formas lineales con coe-
ficientes racionales (y a fortiori, enteros). Bajo estas consideraciones,
tenemos que Trop(%5) = @iea_(r—0} 0 ® v; forman una base tropical
de Trop(H;). Por el Teorema 2.3.5, segin [S] y [BJSST], podemos
considerar sélo las formas lineales con soportes minimales para ha-
llar una base tropical de Trop(H;). Este conjunto se corresponde con
las funciones lineales afines tales que {L = 0} N A genera un espacio
afin de dimensiéon maxima d — 1. Claramente, imponer la condicién
med(ja, - -, Ja, B) = 1 no restringe las posibles derivadas. O

Hemos definido un base tropical del conjunto de polinomios con
una singularidad en 1. Si tenemos otro punto b € (K*)¢, podemos facil-
mente dar una base tropical de la variedad H, de hipersuperficies con
un punto singular en b, considerando un cambio diagonal de coordena-
das (recordar lo observado en 2.1.1). Esto lo podemos expresar en la
siguiente proposicion.

Proposicion 6.2.3. Consideremos la variedad de incidencia

H = {(F,u) € (K)" x (K |F es singular en u}.
Sea F'= Y a;z* un polinomio genérico con soporte en A, donde (1, . ..,x4)

i€A
y (a;)iea son variables. Luego el conjunto finito

P:{Trop(g—i)\Leﬁ}

es una base tropical de H.

DEMOSTRACION. P es un conjunto finito que define una prevarie-
dad que contiene a Trop(H). Vamos a probar que si (p,q) pertenece
a la prevariedad definida por P, pertenece a la variedad de incidencia
definidida por H.

Sea (p,q) € NgepT (g9). Luego, para cada funcién lineal afin L € L,
el minimo de @®jea—fr—0y Pi © @e...0 qfid se alcanza al menos dos
veces. De esto se sigue que (p; ©@ ¢ © ... ® qzﬁ |i € A) es un punto de
T (®ica—{r=0yvi) para cualquier L € L. Por 6.2.2 tenemos que existe

un polinomio F = Y a;2%, singular en 1 y tal que val(a;) = p; + {q, ).
icA
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Con todo esto, el polinomio F; = > a;t~(@" 2" tiene una singulari-
icA

dad en (t%,... t%) y val(a;t~‘%") = p;. De esto resulta que el punto

(p, q) pertenece a Trop(H). d

En este punto del capitulo ya contamos con todas las herramientas
para demostrar la caracterizacion tropical de hipersuperficies tropicales
singulares (dado un soporte fijo), que damos a continuacién.

Teorema 6.2.4. Sea f = @ p; © w' un polinomio tropical con
i€ A

soporte en A. Sea q € T(f) un punto en la hipersuperficie definida

por f. Luego, q es un punto singular de T (f) sii q € T(%) para todo

LelL.

Es decir, f define una hipersuperficie tropical singular si y solo si

ﬂT(?—{) # 0,

LeLl

donde L es el conjunto de formas lineales afines de la Definicion 6.2.8.

DEMOSTRACION. Una implicacién es trivial. Si ¢ es un punto sin-

gular de T(f), existe un polinomio F = Y a;x" con val(a;) = p;, con
i€A
una singularidad en el punto b, y val(b) = ¢. Luego, g—f(b) = 0 para
toda L € L, y por lo tanto val(b) = q € T(%) para toda L € L.
Para la implicacion en el otro sentido, sea ¢ un punto en Ny gT(g—{).
En particular, ¢ € T(f). Ademés, para toda funcién lineal afin L € L,

el minimo ml(n) (pi+{(q, 1)) se alcanza al menos dos veces. Esto ocurre
i€ A,L(i)#0

sii para toda L € £ el punto (p,q) € T(Biea ruzoti @ w'). Se sigue
de la Proposicién 6.2.3 que (p, q) pertenece a la variedad de incidencia
Trop(H). Con esto, por el Teorema de Kapranov (1.5.6) existe un punto
(F,b) € V(H) tal que F es un polinomio algebraico con soporte en A
y una singularidad en b tal que Trop(F) = f y Trop(b) = q. O

Como Corolario de este teorema, con el siguiente ejemplo veremos
que podemos recuperar la informacion de la clasificacion de las curvas
tropicales singulares correspondientes al punto (B.1) de la Seccién 5.2
del capitulo anterior.
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Ejemplo 6.2.9. Sea f = a® 00w, ®0Ow; Owy; B0 w; Ow3i b
w} @ wy, que es el caso base de la clasificacién (B.1) de la Seccién 5.2
del capitulo anterior. Recordemos de la Observacién 3.1.5 que podemos
realizar el grafico de la curva tropical T (f) conociendo la subdivisién
coherente marcada en la cédpsula convexa de A (o sea, del politopo
de Newton A de A). Esto se debe a que cada celda de dimensién s
de la subdivisién coherente de A es dual a una celda de dimension
s —1de T(f), y dichas celdas resultan ortogonales. Una subdivisién
coherente en A proviene de la proyeccién en R? de la cédpsula convexa
de los puntos del conjunto {(—i,p;) : i € A}, donde (p;)ica es el
vector de coeficientes de f. Las coeficientes de las formas lineales que
definen las caras maximo dimensionales de la capsula convexa inferior
en consideracion, nos dan los vértices de T (f) correspondientes a las
celdas maximo dimensionales de la subdivision coherente marcada en

A.

En la Figura 6.2 podemos ver las subdivisiones inducidas (y mar-

cadas) tanto de f -a la izquierda- como de g—Lfl, con Ly = w; — 1, -a
la derecha-. En la misma figura podemos ver, con lineas punteadas, a

los gréficos duales a estas subdivisiones correspondientes a T (f) y a

T <§—Lfl>. Y también incluimos las formas lineales que definen las ca-
ras de dimension maxima de los levantados de los coeficientes i del
polinomio tropical, que nos dicen que los vértices del eje horizontal

de T(f) son los puntos (—b,0) y (a,0). Al considerar T (88—51), Vemos
que T(f)NT (;—Lfl> = (%52,0). Se puede comprobar que si tomamos

cualquier otra derivada tropical g—]{ como en el Teorema 6.2.4, siempre
quedardn dos puntos del circuito o = {(1,0),(1,1),(1,2)} en el borde
de la capsula convexa resultante y el eje que los une como parte de la
subdivisién inducida, quedando (%32,0) € T(%). Con esto, (%52,0)
resulta el tnico punto singular de 7 (f).

Observemos que (“T_b, 0) es el punto medio del segmento con vértices
en (—b,0) y (a,0), con lo cual recuperamos la condicién métrica del

capitulo anterior.

El préximo ejemplo nos muestra que si bien una curva tropical
T (f) puede tener dos puntos singulares distintos, puede no ser posible
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FIGURA 6.2. Graficos de T(f) y 7’(;—51).

encontrar un polinomio F' € Kz, ..., z4] con Trop(F) = f tal que F'
tenga dos puntos singulares que se tropicalicen en los puntos singulares
de f.

Ejemplo 6.2.10. Sean A = {(0,0),(0,1),(2,0),(1,1),(2,2),(0,2)},
f=0000w,®00wid00w; Qw,®00W? Qwid6Ow3 y L = w —w,.
Podemos calcular 7(f) N7 (ZL) = {(0,0), (2, —2)}. Si definimos el po-
linomio Fy := —1+ 4z + (=2 + t%)2? + (=2 — 2t5)zy + 2%y* + %,
verificamos facilmente que tiene soporte A, y define una curva singular
en (1,1). Y Fy := (1—2+t4) + (2= 2%z + 22+ (—2—2t*)wy + 2%y* + 159>
también tiene soporte A y define una curva singular en (¢2,¢72). Como
Trop(Fy) = Trop(Fy) = f, val(1,1) = (0,0) y val(t?,t72) = (2, —2),
los puntos (0,0) y (2, —2) resultan efectivamente los inicos puntos sin-
gulares de la curva tropical T (f), segin el Teorema 6.2.4.

Ahora bien, supongamos existe un polinomio F' € K[z, y| tal que
F = Y. ax', Trop(F) = fy V(F) posee dos puntos singula-
res by = (z1,51) ¥ b2 = (22,92) con val(by) = (0,0) y val(by) =
(2,—2). Con esto, tendremos que se cumplen las ecuaciones F(b) =
2 (%) b)) = y (%) (b)) = F(b) = 2 (%) () =y (%) (b2) = 0.
Mirando estas ecuaciones como ecuaciones lineales en los coeficientes
(a;)ica, tenemos que
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vt my rin o yi
xy 20 wyp 20y 0
0 0 zyyn ziyn 297
Ta Ty X2Y2 x%yQ Z/%
Ty 2x5 Toys 2x3ys 0

det

O O = O O =

0 0 oy z3ys 292

Calculando la expansién de dicho determinante, nos queda
—2ypmam Y (2321Y3 — 2Yeyn — 3r3aTys + 25yf — asyian + ajyies +
iy — w1y + 3uixsy; — alyizy — 22%wayeyr + 27123y0y1). Como
val(xy) = wval(yy) = 0,val(xg) = 2 y val(ys) = —2, vemos que el
Unico término de menor valuacién en la expansion del determinante
es —2x°y1y51, con lo que el determinante nunca podré ser cero, con-
tradiciendo la suposicién que estabamos haciendo sobre la existencia
de un polinomio F' levantado de f, tal que tenga dos singularidades
tropicalizandose en los puntos singulares de T (f).

Observacién 6.2.11. En el préximo ejemplo veremos que los pun-
tos singulares de una curva tropical dependen no sélo de dicha curva

sino, esencialmente, de la marcacién del politopo de Newton que la
define.

Ejemplo 6.2.12. Construyamos un ejemplo con mismo politopo
de Newton A del Ejemplo 6.2.10, pero con todos los puntos marcados.
Para esto, extrapolemos linealmente los coeficientes correspondientes
a los puntos de A N Z? que no estdn marcados. Podemos tomar f =
0D w; Bw? Pw, QW Bw? OWIB6O W Bw? Owy, P3O W, B3O W, Ow3.
Notemos que los tipos de las curvas tropicales definidas por f vy f son
los mismos. Mas aun, el grafico de ambas curvas es el mismo, ya que
al interpolar linealmente los coeficientes que faltaban, no cambiamos
la capsula convexa inferior de {(—a, py) : f = Baca Pa © w*}. Es facil

chequear que todos los puntos de 7 (f) son puntos singulares, ya que
f puede ser levantado al polinomio F' = (1 + z + zy + t3y)%.

Ahora veremos como funciona el Teorema 6.2.4 en un ejemplo de-
fectivo, donde el A-discriminante tropical puede ser explicitamente cal-
culado.
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Ejemplo 6.2.13. Sea A = {1, as, a3, ag, as, ag}, con ag = (0,0,0),
az = (1,0,0),a3 = (2,0,0), a4 = (0,0,1), a5 = (0,1,1) y ag = (0,2, 1).
Un polinomio clasico F' = 3 _,aq,7% € K[z,y, 2], con soporte A,
puede escribirse como F(x,y,z) = Fi(z) + zFy(y) con Fi(z) y Fa(y)
dos polinomios de grado 2 en una variable. Con esto, V(F) tendrd un
punto singular en el toro sii F} y F5 lo tienen. Como F} es un polinomio
en la variable x y F5 lo es en y, la superficie formada por los coeficien-
tes de F' que hacen de V' (F') una variedad singular, queda determinada
por dos ecuaciones en varibles distintas que se deben cumplir al mismo
tiempo. Esto nos muestra la naturaleza defectiva de este ejemplo. Mas
aun, las ecuaciones que determinan dicha superficie son

(6.2.14) aiz = 400,005 ¥ ai5 = 404, Qo

Pasemos ahora al andlisis de la singularidad de la hipersuperficie tro-
pical T (Trop(F)). Observemos que A es la unién de dos circuitos de
dimension uno, y la capsula convexa de A es el tetraedro con vérti-
ces en {ay, g, ay, agt. Notemos que A no contiene ningin circuito de
dimensiéon maxima, o sea tres. El conjunto de ceros de cualquier fun-
ci6n afin L tal que el espacio afin generado por {L = 0} N A tenga
dimension dos, consiste de uno de los circuitos mas un punto del otro.
Consideremos un polinomio tropical f = ®%_;p,, ® w* con soporte
en A. Luego, analizando cada una de las formas lineales que definen
las caras conteniendo los circuitos mencionados, tenemos que existe un
punto singular ¢ € T(f) sii

2Day = Pay T Pazs  2Pas = Pay + Dag-

Notemos que cada una de estas ecuaciones es exactamente la tro-
picalizacién de las condiciones encontradas en las Ecuaciones (6.2.14).

6.3. Hipersuperficies tropicales marcadas y singularidades
tropicales

Dado un polinomio tropical f = @;c4 p; ® w' con soporte A, la ma-
yoria de las (finitas) derivadas de Euler g—£ no proveen informacién rele-
vante para detectar puntos singulares de 7 (f). En esta seccién daremos
mas condiciones y caracterizaciones para detectar puntos singulares.
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Para seguir adelante, necesitamos profundizar los conceptos verti-
dos en la Observacion 3.1.5. Para esto, recordemos la siguiente dualidad
[GKZ]. El vector de coeficientes p = (p;)ie4 de f define una subdivision
coherente marcada 11, del politopo de Newton A, que es la capusula
convexa de A. Esto es, p define una coleccién de subconjuntos de A (las
celdas marcadas) que estdn en correspondencia uno a uno con los do-
minos de linealidad de la funcién afin que corta las caras de la capsula
convexa inferior del conjunto de puntos levantados {(—i,p;),? € A} en
R4, Asumamos que una cara inferior I', es el grifico de una funcién
afin o(wy, ..., wy,) = (g,, w) + B,. La celda marcada o, correspondien-
te a la subdivisién de A es el subconjunto de A de todos los indices i
para los cuales p; = (7).

La subdivisiéon marcadad II, es combinatoriamente dual a la varie-
dad tropical marcada T (f). Como vimos, esta variedad es un complejo
poliedral que es una unién de celdas duales o7, donde también guar-
damos la informacién de la marcacién de la celda dual o, y no sélo
la informacién geométrica de los vértices de o,. Mas explicitamente,
la celda dual ¢* en T(f) de una celda determinada o de I, es igual
a la clausura de la unién de puntos g, tales que o = o,. También
guardamos la informacién de todos los puntos marcados en o, es decir,
de todos los puntos correspondientes a los monomios en los cuales el
minimo f(q,) se alcanza para cualquier punto ¢, en el interior relativo
de o*. La suma de las dimensiones de un par de celdas duales es d. En
particular, los vértices de T(f) se corresponden con celdas marcadas
de II,, de dimensién maximal d.

Ahora probaremos que cuando todas las celdas (marcadas) en la
subdivisién coherente I, no continen ningin circuito (o sea, estan for-
madas por puntos afinmente independientes), la hipersuperficie tropi-
cal asociada a f es no singular, como se esperaria. Como veremos, la
reciproca de esta afirmacién no es verdadera y esta relacionada con un
estudio combinatario mas complicado.

Recordemos que una configuracion de puntos se dice una piramide si
todos sus puntos excepto uno pertenecen a un hiperplano afin. Observar
que en el caso de un conjunto de puntos afinmente independientes, se
cumple esta condicion.
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Lema 6.3.1. Sea g € T(f) un punto en el interior relativo de una
celda o* tal que la celda dual o en 11, es una pirdmide. Luego, q es
no singular. En particular, si II, es una triangulacion coherente, la
hipersuperficie tropical T (f) no es singular.

DEMOSTRACION. Si o es una piramide, sea L el funcional lineal tal
que {L = 0} interseca a o en una cara y deja fuera de esa interseccién
a solo uno punto. Esto significa que el minimo de g—{ en g se alcanza
s6lo en un monomio. Con esto, ¢ ¢ T(%) y por lo tanto ¢ no es un

punto singular. O

Corolario 6.3.2. Sea 0 una celda de Il, de dimension r. Una con-
dicion necesaria para que q € o* sea un punto singular es que el valor
de f(q) se alcance en, al menos, r + 2 monomios.

DEMOSTRACION. Si dim(o) = r, tenemos que o posee al menos
r+ 1 puntos. Si |o| = r + 1, la celda resulta un simplex de dimensién r
y, por lo tanto, una piramide, con lo que ¢ € ¢* no resultan un punto
singular por el lema anterior. O

Ejemplo 6.3.1. Sea f € T[w;, ws,ws] el polinomio tropical dado
por f=0000w @00 w B1OwsD0O W ©ws® 0O wy ® ws.
Podemos ver que el soporte de f es

A ={(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,0,1),(0,1,1)}.

Los coeficientes de f inducen la subdivisién coherente en A como en
la Figura 6.3, que tiene dos celdas de dimensién 3, y no es una trian-
gulacion. Una de esas celdas es un triangulo unimodular. La segunda
celda de dimensién maxima contiene al circuito Z = {(1,0,0), (0, 1,0),
(1,0,1),(0,1,1)} de dimensién d—1 = 2, y dicha celda es una pirdmide
sobre el punto (0, 0,0). Niguna celda de menor dimensién cumple con la
condicién necesaria del Corolario 6.3.2, salvo la que tiene por vértices
a los elementos del circuito Z. Pero esta cara no puede aportar ningin
punto singular, pues forma parte de la pirdmide anteriormente descrip-
ta. Explicitamente, si ¢ € T(f) pertenece a la celda dual a la celda con
el circuito Z, considerando el funcional afin L = 1 — w; — wy tenemos
que q ¢ T(g—{), ya que el (minimo) valor de f(gq) se sigue alcanzando
s6lo en el término independiente.
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FI1GURA 6.3. Subdivisiéon inducida por el polinomio f
del Ejemplo 6.3.1.

En la préctica, cuando buscamos puntos singulares en una hipersu-
perficie tropical, eliminamos todas las celdas de 7(f) que son duales a
un simplex en A. Este procedimiento elimina la mayoria de los casos.
Con las celdas restantes tenemos que chequear las derivadas parciales
de Euler con respecto a los hiperplanos L que contienen un circuito
de la subdivision. No hay una caracterizaciéon combinatoria elemental
para determinar si un punto es singular. En parte, esto se debe a que la
situacién no es completamente local. Ver [GKZ] y [DFS], y el concepto
de A-equivalencia.

Ahora analizaremos condiciones necesarias y suficientes para que
un punto ¢ € 7 (f) sea singular.

Teorema 6.3.3. Sea f = ®icap; ©w' un polinomio tropical, y sea
q € T(f) un punto en el interior relativo de una celda o*. Luego, q
es un punto singular si y solo si la celda dual o no es una piramide y
se tiene que q € T(%) para todas las funciones lineales afines L tales
que dim(({L =0} NA))=d—1yo C {L=0}. Con esto, en el caso
particular de un vértice q de T(f), q es singular si y sélo si o no es
una pirdmide.

DEMOSTRACION. Si ¢ es un punto singular, o no es una pirdmide
por el Lema 6.3.1. Como g € T (g%) para cualquier L, por ser singular,
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en particular también ocurre para las funciones lineales afines descrip-
tas en las hipotesis. Supongamos ahora que ¢ no es un punto singular, y
sea I/ una funcién lineal afin tal que g ¢ T (%). Seai € AN{L =0}
%) (q) se alcanza. Luego, si ¢ no

estd contenido en {L’ = 0}, tenemos que i € o y es el tnico punto de o

el tnico punto de A en el cual (

fuera de {L’ = 0}, con lo que o resulta una pirdmide. Si o C {L' = 0},
tomemos cualquier hiperplano con coeficientes enteros {L = 0} tal que
AN{L =0} CAN{L =0}, An{L = 0} genera un espacio afin de
dimensién d —1 e ¢ ¢ {L = 0}. Para cualquier L con estas propiedades
tenemos que q ¢ T (%), como queriamos. O

Corolario 6.3.4. Como consecuencia del Teorema 6.3.3, recupera-
mos la clasificacion correspondiente al punto (A) de la Seccion 5.2, ya
que un vértice en una curva tropical (o sea T(f) C R?) serd singular
si1 es un vértice del que salen 4 o mds ejes, o si es un vértice trivalente
de multiplicidad mayor a uno. El primer caso corresponde a celdas de
dimension 2 que son un poligono de 4 o mds lados (por lo tanto no es
una piramide), y en el sequndo caso el circuito es un tridangulo con al
menos un punto en su interior relativo en la marcacion de la subdivision
coherente.

Al igual que en el Ejemplo 6.2.9, donde recuperamos la informacion
correspondiente al punto (B.1) de la Seccién 5.2, podemos recuperar
la informacién correspondiente al punto (B.2) de la misma Seccidn,
como Corolario del Teorema 6.3.3. El siguiente ejemplo servird a este
proposito.

Ejemplo 6.3.2. Sea f = v 800w 00w Qws & 0O w; ©®
WO AOw!®AOw! ®ws, con 0 < A < v. Siguiendo la notacién de
la Figura 6.2 correspondiente al Ejemplo 6.2.9, en la parte superior de
la Figura 6.4 podemos ver la subdivision coherente (marcada) de A,
y la curva tropical dual a ésta, 7(f), en lineas punteadas. Como ya
planteamos en el Ejemplo 6.2.9, los coeficientes de las formas lineales
definiendo las caras de dimension maxima de la capsula inferior del
conjunto {(—i,a;) : i € A} nos dan las coordenadas de los vértices de
la curva tropical T(f).
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Por el Teorema 6.3.3, para encontrar todos los puntos singulares de
T (f) sélo tenemos que calcular 7 (f)NT (g—]{), con L = w;—1. Podemos
ver en la parte inferior de la Figura 6.4 a la subdivisién (marcada) re-
gular inducida en AN {L = 0} y su curva tropical dual T (%) en lineas
punteadas. En la Figura 6.5 podemos ver el grafico de T(f)N T (%),
y, por lo tanto, todos los puntos singulares de f.
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2
1 A
A
0 1 2 3
=vr+v
; ‘ =
1 i
1 i
) :L =w, —1
| |
1 2 X
J |
| 0, ! p 2
| 5; =Vid A O uw! ® A O wiwy
|
| 1 A
|
I
|
A I v
|
° M A >

|

1
]
]
|
| =
]
]
]
> ]
o ¢
Q. | v
=l
|
Ly
e
S, L
I
S
U U WO
g
A,

FIGURA 6.4. Subdivisién inducida, 7(f) y 7 (Z) del Ejemplo 6.3.2.
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Notemos que este ejemplo ya lo habiamos estudiado en la clasifica-
cién (B.2) de la Seccién 5.2. En dicha clasificacién reconociamos sélo
uno de los punto singulares de la curva tropical: zo = (0, 0), lo que bas-
taba para reconocer la curva como singular. Gracias al Teorema 6.3.3

encontramos todos los puntos singulares de la curva tropical: todos los

v—>A
2

condiciéon métrica encontrada en la clasificacién anterior: como v > A,

puntos en el segmento cerrado [(—)\,0); ( ,O)]. Y recuperamos la

(0,0) resulta un punto singular que se encuentra mas cerca del vértice

(=X, 0), del que salen cuatro ejes, que del vértice trivalente (”;’\, O).

(-1.0) ((=5)}0) (.0)

FIGURA 6.5. Puntos singulares de la curva tropical 7 (f)
del Ejemplo 6.3.2.

Como una consecuencia del Teorema 6.3.3, podemos facilmente des-
cribir los polinomios que definen hipersuperficies tropicales en el caso
de 1y 2 variables. Recordemos que, si A no es defectivo, T (Trop(Ax))
es un subabanico del abanico secundario de A. En el caso més simple
de una variable (o sea A C Z), vale que T (Trop(A4)) es la unién de los
conos en el abanico secundario que no sean de dimensién maxima (pues
las unicas caras propias de A son vértices). Con esto, un polinomio en
una variable es singular si y sélo si la subdivision marcada inducida
no es una triangulacion. Con nuestra notacién, esto es un caso simple
del Teorema 6.3.3, ya que todos los circuitos de A tienen dimensién
maxima 1.

El resultado que sigue, en el caso suave, aparece en [GKZ, Prop. 3.9,
Cap. 11].
94



Corolario 6.3.5. Sea A C Z? con n elementos. Supongamos que
p € R" induce una subdivision coherente marcada 11, en A que no
es una triangulacion. Luego p € T(Trop(Aa)) (equivalentemente, el
polinomio f = ®icaps ©w' define una hipersuperficie tropical singular)
en exactamente los siguientes casos:

i) Eziste una celda marcada de 11, que contiene un circuito de
dimension 2.

ii) Todos los circuitos contenidos en una celda de 11, tienen dimen-
sion afin 1, y existe una celda marcada o de 11, de dimension
1 con #0 > 3 con la siguiente propiedad: Sea L una funcion
lineal afin con coeficientes enteros tal que o C {L = 0}. Luego,

o NT(Z) #0.

Notar que si estamos en las condiciones del segundo caso del Co-
rolario anterior, o* N 7’(3—9 # ) si y s6lo si existe un celda o’ de
dimensién 2 que contenga a o, tal que ¢’ N {L = 0} = {i;} consiste de
un tnico punto i; € Ay, asumiendo que L(i1) > 0, existe otro punto
io € AN 0’ con L(ig) < L(i1). Esto es un caso particular del resultado
mas general que presentamos a continuacién. Tengamos presente que
siempre asumimos que la capsula convexa del conjunto de exponentes
A es de dimensién méxima.

Proposicién 6.3.6. Sea A C Z%. Sea p € R™ tal que 11, contiene
una celda o' de dimension d, y dicha celda contiene un circuito Z de
dimension d—1 y es una pirdmide sobre un punto 1. Sea L una funcion
afin con coeficientes enteros tal que Z C o' N{L = 0} y L(i;) > 0.
Luego, existe un punto singular q € T (Diea p; Ow')N{(c’N{L = 0})*}
con (q,11) > 0 sii existe i € A~ o' con L(iy) < L(iy). En particular,
si Z interseca el interior de la cdpsula convera de A, T (Dicap; © w')
resulta singular.

DEMOSTRACION. Podemos asumir que L = jjw; + jows + ... +
Jawg + B con todos los coeficientes coprimos. Para trabajar con una
notacién més transparente, aplicamos una transformacion lineal afin
inversible a nuestra configuracién de puntos A para lograr L(w) = wy.
Notemos con p(w) = 1w +. ..+ pqw, a la forma lineal que interpola p
sobre la celda o', es decir ¢(i) = p; para todos losi € o’y (i) < p; para
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todos los i ¢ o’. Con esto, p' := p; — (i) define la misma subdivisién
marcada, con lo que podemos asumir que p; = 0 para todos los i € ¢’
y p; > 0 en otro caso. De esta manera, ¢ = (0,...,0) es el vértice de
T(f) dual a o', y no es singular pues o’ es una pirdmide. Observemos
que si ¢ € (o' N{L = 0})* luego ¢ = (¢1,0,...,0). Con esto tenemos
que existird un punto singular en (¢’ N {L = 0})* con (g,i1) > 0 sii
existe ¢; > 0 y dos puntos i, 73 en A tales que

(@ i2) +pir = (¢,73) + Py < (¢, ) + pi
para todo i € A con L(i) # 0. Con nuestra notacién, esto se traduce a
Q1 L(iz) + pi, = @1 L(i3) + piy < 1 L(i) + p;

para todo ¢ € A con L(i) # 0. Notar que como ¢’ es una pirdmide
sobre iy, para cualquier punto iy € A para el cual L(iy) = L(iy) vale
que iy ¢ 0’ 0, equivalentemente, p;, > 0. Asumamos primero que existe
un punto i € A" := A~ ¢’ con L(i) < L(i). Tomemos iy con esa
propiedad, y tal que m
e 13 = 11. Reciprocamente, asumamos que existe

= min;e 4 m Luego es suficiente
T~ L)
un punto singular ¢ = (¢1,0,...,0) con ¢; > 0. Como g € T (g—i), exis-
ten dos puntos is # i3 tales que ¢ L(is) + pi, = 1 L(i3) + pis < 1 L(3).
Supongamos que iy # i;. Con esto 0 < p;, < q1(L(41) — L(iz)), resul-

tomar q; =

tando L(ia) < L(i1), como querfamos. La condiciéon que Z interseque

el interior la capsula convexa de A garantiza la existencia de un punto
ip € A’ con L(is) < L(11). O

Comentario 6.3.3. Notar que el punto i, en la Proposicion 6.3.6
no necesita pertenecer a una celda de la subdivisiéon marcada IL,.

6.4. Clases de peso y el co-abanico de Bergman de A.

En esta seccion relacionamos las definiciones vistas hasta aqui con
los resultados y definiciones en [DFS], [MMS] y [AK]. Como siempre,
f = ®icap; ®w' denota un polinomio tropical con soporte A.

Definicién 6.4.1. Sea ¢ en el interior de una celda o* C T(f).
Definimos en forma inductiva a la bandera de f (con respecto a q)

como la bandera de subconjuntos F(q) de A que cumple las condiciones
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Fo(q) =0 C Fi(q) € ... € F.(q), condim(F,.(¢q)) = d y para todo ¢
vale que Fyy1(q) ~ Fy(q) es el subconjunto de A \ (Fi(q)) donde el
polinomio tropical ®ic.a\(F,(q) Pi @ w' alcanza su minimo en ¢. La clase
de peso de la bandera F(q) son todos los puntos ¢’ € T(f) para los

cuales F(q) = F(q').

Observacién 6.4.2. En el caso de ¢ = (0,...,0), tenemos que las
banderas de f con respecto a ¢ coinciden con las banderas de flats
de la Definicion 2.4.1. Y las clases de peso coinciden con las de la
Definicién 2.4.2.

Los Teoremas 6.2.4 y 6.3.3 nos brindan un algoritmo para decidir
si un punto ¢ € T (f) es singular o no, que es similar al método presen-
tando en [T2] pero que funcionan sin hipdtesis restrictivas sobre A. El
algoritmo nos da como resultado un funcional afin L tal que g ¢ T (g—i)
0 “q es un punto singular”. Primero, calculamos Fy(q) = 0. Si o es una
pirdmide, existe i € Fy(q) tal que i ¢ (Fy(q) ~{i}) y podemos calcular
un L definiendo la cara (Fy(q) N {i}) de Fo(q), que verifica ¢ ¢ T (g—i).
Si dim((Fy(q)) < d, calculamos Fi(q) e iteramos el proceso. Paramos
cuando encontramos un L que certifique que ¢ es no singular o cuando
llegamos a calcular un F; con dimension afin d que no sea una piramide,
con lo que ¢ resulta singular.

Explicitamente, el algoritmo es como sigue:

Input: f un polinomio tropical con soporte A, ¢ € T(f)

o (=0
e Para ¢ desde 0 hasta d hacer
x Calcular F,(q) con los datos de f,qy Up<p<r—1Fr
*x Para cada = en F,(q) hacer
o Sizé¢ ({Folg)U...UF(q)} ~ {z}) Luego
— Calcular un L que defina la cara {Fy(q) U ...
Fi(q)} ~{z} en la cédpsula convexa de {Fy(¢q)U. ..U
Fu(q)}-
— SALIDA: L.
¢ Finalizar Si

C

* Finalizar Para
e Finalizar Para
e SALIDA: “q es un punto singular.”
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Enumeremos los elementos i, ...,%, de A, y sea A € Z%*" la ma-
triz con esas columnas, en el mismo orden. Llamemos A a la matriz
con columnas (1,7;), 1 < k < n. Recordemos de la Seccién 2.1 que
F= Y., az essingularen (1,...,1) sii (a;)ica € ker(A), y F tiene
un cero singular en otro punto p del toro (K*)¢ sii (a;)ieq € ker(AD,),
con D, la matriz diagonal inversible, con (D,);; = p%. Al estudiar si
una hipersuperficie tropical 7(f) es singular o no, debemos ver si el
vector de coeficientes de f pertenece a la tropicalizacion del nicleo de
alguna de estas matrices. Estas tropicalizaciones resultan una traslacion

de Trop(ker(A)). En el Capitulo 2, vimos que B*(A) = Trop(ker(A))
(Corolario 2.3.7).

Con las herramientas desarrolladas hasta aqui podemos redemostrar
el Teorema 1.1 de [DFS]. Enunciemos este teorema:

Teorema 6.4.1 (Dickenstein-Feichtner-Sturmfels). Sea A C Z4
un conjunto dado, con s elementos. Luego, la tropicalizacion del A-
discriminante Vg es igual a la suma de Minkowski del espacio fila de
la matriz A y del coabanico de Bergman B*(A). Es decir,

Trop(Ve) = B*(A) + ( filas de A).

DEMOSTRACION. Sean f = € p; ® w' un polinomio tropical, y
icA
¢(z) = > z; la forma lineal con todos sus coeficientes iguales a 1.
icA
Entonces ® := T (Trop(¢)) es el conjunto formado por todos los v en
R® tales que min{v; : i € A} se alcanza al menos dos veces. Con esto

tenemos que

T(f)=Aw e R? . w- A+ (p)ica € P}

Y, claramente, B*(A) C .
Sea ahora L(w) = jiwy + ... + jawg + B una forma lineal afin.
Podemos asociar a L la forma lineal ¢1(z,...,25) = > L(ix)xg. Con
i=1

esto, el soporte de ¢, es precisamente A~ {L = 0}. M4s aun, el vecor
de coeficientes (L(ig))ica vive en el subespacio generado por las filas de
la matriz A, ya que se obtiene haciendo el producto (8, ji, ..., ja) - fl,
y todas las formas lineales inducidadas por el espacio generado por las
filas de A (que generan el ideal de ker(A)) son de esta forma.
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Notemos por vy,...,vs a variables (tropicales). La tropicalizacién
Trop(€y) es

De esto obtenemos que ¢ € T(g—{) =T( P pi ©w') si pasa que
2

er}fio{pi + (g,)} se alcanza al menos dos veces o, equivalentemente, si

el vector (p; + (q,))iea € T(Trop(¢r)).

Si ¢ es un punto singular de T (f), por el Teorema 6.2.4 ¢ € T (g—i)
para toda L funcién lineal afin. Por las observaciones del parrafo ante-
rior, esto sucede sii (p; + (q,1))ica € T (Trop(fr)) para toda L. Como
todas las formas lineales inducidas por el espacio generado por las filas
de la matriz A son de la forma ¢, para alguna L, por la Proposi-
cién 2.3.4 nos queda que si I C K[zq,...,x,] es el ideal generado por

las formas lineales homogéneas inducidas por las filas de la matriz A

entonces (p; + (¢,%))ica € T(I) =T (ker(A)) = B*(A).

Resumiendo, (p);c4 define una hipersuperficie tropical sii existe un
punto ¢ € R? tal que (p)iea +q- A =u € B*(A), que es lo mismo que
pedir p=u+ (—q) - A con u € B*(zzl), 0 sea p es un punto en la suma
de Minkowski del espacio generado por las filas de A mas el coabanico
de Bergman de A. Como el subespacio ((1,...,1)) estd contenido en
Trop(ker(A)), y (1,...,1) es la fila que le agregamos a la matriz A
para obtener la matriz 4, podemos afirmar que p es un punto en el
A-discriminante tropical sii p se escribe como un punto en la suma de
Minkowski del espacio generado por las filas de A més un punto en el

coabanico de Bergman de A, que es lo que queriamos demostrar.  []

De la demostracién anterior se desprende una nueva caracterizacion del
conjunto de todos los puntos singulares de una hipersuperficie tropical.

Corolario 6.4.2. Sea f = ®icq piOw' un polinomio tropical. Luego
el conjunto de todos los puntos singulares de T (F') resulta ser

Sing(T(f)) ={g R : ¢- A+pe B(A)}.

Analicemos la implicancia de este teorema: La bandera de conjuntos
F(q) v las clases de peso de la Definicién 6.4.1 coinciden con los de
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[AK, Pag. 3]. Nuestro algoritmo puede ser modificado para decidir si
=2 eapi©® w' contiene un punto singular, es decir, si p estd en el
A-discriminante tropical. Mdas aun, es posible calcular todos los puntos
singulares. S6lo basta remarcar que como las clases de peso inducen
una subdivisién mas fina en el co-abanico de Bergman B*(A), también
inducen una subdivisién poliedral més fina de 7(f). Dos puntos ¢ y
¢ de T(f) pertenecen al interior relativo de la misma celda en esta
subdivisién més fina si y sélo si ¢, ¢’ pertenecen a la misma clase de
peso. Con esto, si o es una celda de la subdivision mas fina de T (f),
todos los puntos de o son singulares, o todos son regulares. Como el
niumero de celdas en esta subdivision es finita y dichas celdas se pueden
calcular, podemos usar un algoritmo para calcular todos los puntos
singulares de T (f) que use esta informacién.

Proposicién 6.4.3. Las (finitas) clases de peso asociadas al poli-
nomio tropical f = ®cap; ® w' con soporte A, son celdas poliedrales
relativamente abiertas que refinan la estructura poliedral de T (f) dual
a la subdivision coherente marcada 11,,. Si C' es una celda en esta nueva
subdivision, todos los puntos de C son singulares o todos son requla-
res. Bl algoritmo anterior aplicado a cualquiera de los puntos de C' nos
permite decidir si C' es un conjunto de puntos singulares o regulares.

Terminaremos esta seccion con algunos ejemplos interesantes.

Ejemplo 6.4.3. Consideremos al polinomio tropical f definido por
f=0000w ®00w, 0O w; Gwy® 1O w?®1Ews. Este polinomio
f define una cénica cuyo unico circuito en la subdivision dual es el
{(0,0),(1,0),(0,1),(1,1)}. Como estos puntos forman un circuito de
codimensién 2, el inico punto singular de f es el (0,0).

Nuestro proximo ejemplo muestra que dos vectores de coeficientes
que inducen la misma subdivisién coherente de la capsula convexa de
A, las banderas asociadas no necesariamente son coincidentes.

Ejemplo 6.4.4. Sean A = {ay, a, a3, ay, as, a5} con o = (0,0),
as = (1,0),a3 = (0,2),a4 = (2,0),a5 = (1,2) y ag = (=2,0), y
po = (0,0,0,0,v1,02), con v = (vy,v9) € RZ arbitrario. En este caso,
p, define la curva tropical dada por f = 000w, ®0OwW3 B0 WGV, ®
w, ® w3 ® vy ®w;?. La subdivisién marcada II inducida por cualquier
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Py tiene tres celdas maximales: o1 = {1, ag, as, as}, 09 = {ag, oy, oy}
y 03 = {1, as, as, ag}. Por la Proposicién 6.3.6 podemos afirmar que
todas las curvas inducidas por cualquier v son singulares, con un punto
singular en la celda dual al eje marcado {ay, a, as}. Esto se debe a que
el circuito Z = {a1, az, a3} es de codimension 1, e interseca el interior
del poligono de Newton de f. Sin embargo, como veremos, el niimero
y lugar de los puntos singulares varia.

La celda oy es dual al punto (0,0) en la curva T(f), y o3 es dual
al punto (%,0). Por el Corolario 6.3.5 tendremos una singularidad si
existe un punto en el segmento [(0,0), (*2,0)] que también pertenezca
a la derivada parcial de Euler g, = 8(3{”:0) =00 w!®v Ow Owsd
vy ® w; . En dicho segmento g, alcanza su minimo en el (0,0) en la

forma linear asociada a ay, y en (%,0) en la forma linear asociada a
ag. Como g, es una funcién continua, debe de haber un punto (g¢,0)
donde el minimo de g, se alcance dos veces, con lo que este punto
serd una singularidad de f (cf. [MMS]). Este razonamiento funciona
para cualquier hipersuperficie de dimensién d con un circuito en el
interior de A de dimensién d — 1.

Ahora bien, el grifico de T(g,) es una recta tropical con vértice

vy —4vi+vo
27 8

(0,1),(—1,—2) y (2, —3). Esto nos lleva a tres situaciones posibles (ver
Figura 6.6):

en el punto ( ) , con semiejes saliendo de él con direcciones

e Si —4v;+v, < 0, existe un punto singular en ¢ = (%,0). La ban-
dera con respecto a q es: {ay, a9, s} C {aq, ag, a3, ay, a6} T A.
e Si —4v; + vy = 0, existe un punto singular en ¢ = (%2,0). La
bandera con respecto a q es: {ay, ag, a3} C A
e Si —4v; + vy > 0, obtenemos dos puntos singulares distintos:
x Por el lado de la rama del semieje con direccién (—1,—2)
obtenemos el punto ¢ = (v1,0) con bandera con respecto a
¢ {an, a0, a3} CH{ ag, a0, a3, 04,05+ T A

x Por el lado de la rama del semieje con direccion (2, —3)
V2 —1
3

aqq{a,aas}l C{a,a 050506t CA

obtenemos el punto ¢ = ( ,0) con bandera con respecto

Con esto, podemos tomar valores distintos de v, v’ € R2 tales que se
tenga II = 1L, = I,y y que sea imposible de encontrar puntos singulares
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G, @ en T (f,), T(f!) para los cuales las banderas con respecto a ¢ y
¢’ coincidan para todo ¢. Es decir, que se cumpla Fy(q,) = Fo(q,) VL.

'
'
1
1
1
1
1
1
1
1

A

F1GURA 6.6. Casos del Ejemplo 6.4.4: —4v; + vy, < 0
(izq.), —4v1+vy = 0 (centro), y —4v;+ve > 0 (der.).Linea

llena grafico de T(f), y punteada T (%) .

El siguiente ejemplo muestra un polinomio tropical f tal que el
vector de coeficientes que lo define pertenecen a un cono de codimension
uno del abanico secundario de A, y T(f) tiene dos puntos singulares.

Ejemplo 6.4.5. Sea [ =00 w? ® 00 w? ®wy, 0O w? ® wi &
TOW PLdOwW QW BTE w‘f ® wsq. La subdivisiéon inducida por f es
su poligono de Newton es una triangulacion excepto por el circuito de
exponentes {w?, wiwy, wiw3}. El A- discrimiante del soporte de f, con
los significados obvios para las variables a;;, es
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6 2 2 3

65536a2, a5,a3,as, + 6553603, agyaz, + 216aS a3 asy — 2016ag,a1, a5,

as + 5632@01(111&31@41 — 4096@01a21a41 + 2592alla20a21a22a41 —
2073601071, a2005, A22041 + 286720303, az0as, Aoty + 16384a3,asay,
o041 + 4608ag1a1,a5003.a41 — 204800a5, a3, a30a21 055041 + 655360,
5005, A5504 — 26214403, aiaseaq + 72908, a5, — T776a01a8 az a3, +
27648a5,a1,a3,a3, — 38912a5,a3,a3,a3, + 24576a4,ay a5, — 55296a7,
a‘flagoaggail + 122880@010111@20@21@22@41 + 65536@01a20a§1a22ail +
393216ay,a5,a5,a3, — 13824a3,at, a3, + 73728ag,a3,as1a3, — 65536

ad a3 a3, — 262144a), asgaxnal, + 65536a5,a;; .

La minima valuaciéon de los términos en el A-discriminante se al-
canza para cualquier eleccién de coeficientes a;; (con las debidas va-
luaciones dados por los coeficientes de f), en los cinco monomios sub-
rayados del A-discriminante. Observemos que tres de esos monomios
ad a3,as,a3,, akaxaS axn vy ad as,a3 a3, pertenecen a la cépsula con-
vexa de los otros dos: a3,a8; y a3 a3,a3,. Con esto, los exponentes de
los monomios del A-discriminante donde el minimo se alcanza perte-
necen a un eje, y el vector de coeficientes de f pertenece a una cel-
da maximal de la tropicalizacién de la variedad del A-discriminante.
Los puntos singulares de esta curva son (3,0) y (—1,0) (ver la Fi-
gura 6.7). Dos levantamientos de la curva y los puntos singulares son:
tTxty+ iy + (=3Bt —2) 22y +2? + (2616 —2t4) 2y +t7y con una singula-
ridad en (£3, 1), y t"aty+22y? + (2 —3t° —2) 22y +22 + (=28 4+-2t ) vy +1t"y
con una singularidad en (1/t,1).

6.5. Dimensién de celdas de 7(f) con todos sus puntos
singulares

Para finalizar este capitulo, y el presente trabajo, enunciaremos (y
probaremos) el Teorema 1.1 de [MMS2], que relaciona la codimensién

103



N/
<t )+

F1GURA 6.7. Subdivisién marcada del poligono de New-

- e - -
[ P —

ton y curva singular del Ejemplo 6.4.5 (en trazo conti-
nuo), y T (%) (punteado).

del cono del abanico secundario a la que pertenece la subdivision de
una hipersuperficie tropical singular, con la dimensién de las celdas con
todos sus puntos singulares de la hipersuperficie. Los resultados de este
Teorema se basan en las implicancias del Terema 6.4.1 [DFS, 1.1].

Para esto vamos a necesitar ciertas definiciones previas, recordando
que consideramos al abanico secundario en el espacio R*/(1,...,1),
donde s = #A, y que notamos por A a la matriz que tiene por columnas
a los vectores (1,7) donde i € Ay por A a la matriz que tiene por
columnas a los vectores i € A.

Definicién 6.5.1. Para un punto v € R*/(1,..., 1), notaremos con
C'(u) al tnico cono del abanico secundario tal que u pertenece al interior
relativo de dicho cono. Observar que si S es el espacio de linealidad del
abanico secundario, luego C'(u + s) = C'(u) para todo s € S.

Llamaremos defectiva a una clase de peso C' C Trop(ker(A)) si
existe un punto v € C'+ S con dim(C + S) < dim(C(u)).

Observacién 6.5.2. Si C' es una clase de peso y u € C' es tal que
C(u) tiene codimensién uno en el abanico secundario, C' es defectiva
sii (C) NS # 0, donde (C) es el minimo espacio lineal que contiene a
la clase de peso C'.

Asumamos que C' es una clase de peso no-defectiva. Con esto, C+ S
esta contenido en conos del abanico secundario de dimensién menor o
igual a dim(C + S). El conjunto de todos los puntos u € C' tales que
dim(C'+5) > dim(C(u)) es claramente de dimensién menor a la de C.

Definicién 6.5.3. Un punto p € B*(A) +S CR°/(1,...,1) en el
A-discriminante tropical se dird genérico si no puede ser escrito co-

mo p = u + s donde s € S es un punto del espacio de linealidad del

104



abanico secundario, y u € C es un punto en una clase de peso en

B*(A) = Trop(ker(A)) tal que C es defectiva, o no es de maxima
dimensién en Trop(ker(A)), o dim(C' + S) > dim(C(u)). Una hiper-
superficie definida por un polinomio f tal que su vector de coeficentes
es un punto genérico, sera llamada una hipersuperficie tropical singular

geneérica.
Ahora estamos en condiciones de enunciar el Teorema 1.1 de [MMS2]:

Teorema 6.5.1. Sea f un polinomio tropical definiendo una hi-
persuperfice tropical singular genérica. Asumamos que la subdivision
marcada coherente inducida por f corresponde a un cono de dimension
c en el abanico secundario. Luego el conjunto de puntos singulares de
T(f) es una union de finitos poliedros de dimension ¢ — 1.

DEMOSTRACION. Sea p un punto genérico en el A-discriminante
tropical. Se sigue de la definicién de genericidad que podemos escribir

a p como una suma u + s con u € B*(A) = Trop(ker(A)) y s € S.
Podemos suponer que la clase de peso C' de Trop(ker(A)) que contiene
a u en su interior relativo es de dimension méxima y satisface que
dim(C+S) = dim(C(u)). Supongamos que C'(u) = C(p) es un cono de
codimensién ¢ del abanico secundario. Notemos que la representaciéon
de p como una suma como la anterior no es unica. Primero, podria haber
distintas clases de peso C' en Trop(ker(A)) con las que podamos escribir
a p como la suma de un vector en C' y un vector en S. Segundo, ain si
fijasemos un cono C, podria seguir habiendo distintas representaciones
de p como la suma de un vector en ese C' y un vector en S. Por ahora
fijemos una clase de peso C' que nos permita tener una representacion
depcomop=u+sconue(CyseSs.

Por el Teorema de Bieri-Groves (ver demostracién en [BGJ), pode-

mos afirmar que dim(7Trop(ker(A)) = dim(ker(A)) =s—1—(d+ 1)
por ser A de rango maximo. Como u € C pertenece a una clase de peso
maximo dimensional, tenemos que

dim(C'+5) = dim(C) + dim(S) — dim((C) N S)
= [s—1—(d+1)]+d—dim((C)NS)
= dim(C(u)) =s—1—c.
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Se sigue que dim({C)N.S) = ¢— 1. Con esto existe un poliedro H C C,
de dimensién c—1, tal que para todo h € H tenemos que u+h € C. De
esta manera podemos escribir a u también como u = (u+ h) — h, donde
el primer sumando esta en C'y el segundo estéd en S. Consecuentemente,
podemos escribir p = (u+h)+(s—h) y esas son las tinicas posibilidades
de representar a p como la suma de un vector en la clase de peso
C' C B*(A) y un vector en S. Esto se debe a que si tenemos otra forma
de escribir a p = ¢+ s = u + s bajo esas mismas condiciones, luego
c=u+(s—s)comnueCys—s €S (porser un espacio lineal).
Sis—s ¢ (C), resultaria dim(C' + 5) > dim(C(u)) = dim(C(c)),
contradiciendo que dim(C(u)) es maxima. Con todo esto nos queda
s—s € (C)NS, resultando s — s’ = h € H, como querfamos.

Por el Colorario 6.4.2 tenemos que si f = @;cap; © w', los puntos
singulares de 7(f) son los puntos ¢ € R? que cumplen la condicién
p+q-Ae€ B*(fl) Del parrafo anterior podemos inferir que f define una
hipersuperficie tropical que es singular en todos los puntos zy_g, donde
rH_s denota la preimagen del conjunto H — s por la transformaciéon
lineal biyectiva que asigna z € R? a v(x) = x - A. Como v~! manda al
poliedro H —s de dimensién c—1 a otro poliedro de la misma dimension,
se sigue que todos los puntos singulares de la hipersuperficie T (f) que
obtenemos descomponiendo a p como la suma de un vector en C' y
un vecotr en S pertenecen a un poliedro de dimension ¢ — 1. Como
vimos antes pueden haber distintas (pero finitas) clases de peso C' en
B*(A) = Trop(ker(A)) tales que podemos escribir a p como la suma de
un vector en C' y un vector en .S, y de todo esto se sigue que el conjunto
de puntos singulares de la hipersuperficie tropical 7 (f) es una unién

finita de poliedros de dimension ¢ — 1. O
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