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Resumen

En esta tesis nos concentraremos sobre Problemas de Programacion Lineal Entera (PPLE) vy,
en especial, sobre los métodos exactos utilizados para su resolucion.

Los PPLE son problemas de optimizacion con las siguientes caracteristicas distintivas: la funcién
que se pretende maximizar (o minimizar) es una funcién lineal; el dominio sobre el que se debe
trabajar queda determinado por la intersecciéon de un conjunto de desigualdades lineales; y, por
ultimo, al menos una de las variables en juego debe estar obligada a adquirir valores enteros.
El interés por estudiar estas estructuras surge como consecuencia del gran niimero de situaciones
reales que permiten representar. Tipicamente, los modelos de programacién lineal entera son
utilizados para describir procesos industriales y actividades del sector servicios con el fin de
minimizar los costos de produccién y logistica.

En cuanto a los métodos de resolucién, hasta el momento no se conoce ningin algoritmo eficiente
—de tiempo polinomial- que permita hallar la solucién 6ptima para cualquier instancia. Es decir,
los PPLE pertenecen a la clase NP-Hard [12]. Por dicho motivo, desde el surgimiento de esta rama
de la matematica en la década del 50’, se han ensayado distintas estrategias para abordar este tipo
de problemas. Podemos agruparlas en tres categorias: métodos exactos, métodos aproximados 'y
métodos heuristicos.

= Métodos exactos: son procedimientos que garantizan la obtencion del 6ptimo. Si bien la
pertenencia a la clase NP-Hard indica que el tiempo requerido para encontrar la solucién
optima puede resultar prohibitivo, los algoritmos exactos no son dejados de lado. La po-
sibilidad de resolver en forma exacta instancias cada vez mas grandes aumenta debido al
desarrollo de mejores algoritmos y a la apariciéon de nuevas tecnologias.

= Métodos aproximados: esta clase de procedimientos permite encontrar una solucion
factible del problema (es decir, una solucién que satisfaga el conjunto de restricciones li-
neales, aunque no sea la mejor) y, al mismo tiempo, estimar la brecha entre esa solucién y la
solucién éptima (certificado de optimalidad). Consumen menos recursos que los algoritmos
exactos.

= Métodos heuristicos: son procedimientos que permiten hallar una solucién factible del
problema, pero son incapaces de determinar cuan cerca esta esa solucién de la solucién
optima. Utilizan la menor cantidad de recursos y suelen ser una muy buena alternativa
para instancias donde los algoritmos exactos no son adecuados.

Dentro de la primera familia de métodos, las técnicas Branch-and-Bound y Branch-and-Cut —
basadas en la teoria poliedral- han demostrado ser una de las mejores herramientas para tratar
este tipo de problemas. Una de las caracteristicas mas destacables de estos algoritmos es su
flexibilidad, la cual les permite adaptarse a las distintas formulaciones y, de esa manera, explotar
caracteristicas propias de cada problema (ver por ejemplo: Problema del Viajante [1], Ruteo de
Vehiculos [14] y Orden Lineal [17]). En un contexto més general, podemos destacar a los solvers



CPLEX [20], XPRESS-MP [9] y GuroBi [16] como algunos de los paquetes académico-comerciales
que ofrecen las mejores implementaciones de las técnicas anteriormente citadas.

En esta tesis propondremos un nuevo método exacto que, utilizando proyecciones para deter-
minar la soluciéon 6ptima, pueda ser aplicado sobre cualquier PPLE. Si bien la actual imple-
mentacion del método puede considerarse un prototipo sobre el cual hay espacio para introducir
muchas mejoras, los resultados computacionales, comparados con aquellos obtenidos con pa-
quetes académico-comerciales, son altamente satisfactorios. La experiencia computacional nos
demuestra que la propuesta es vélida y que aporta una nueva visiéon dentro de la clase de métodos
exactos.

El trabajo estd organizado de la siguiente manera: en el capitulo 1, introducimos los conceptos
bésicos de la programacién lineal entera y describimos los principales algoritmos usados para
su resolucion. En el capitulo 2, presentamos dos casos particulares de problemas de programa-
cién lineal entera: el Problema de la Mochila No Acotado (UKP) y el Problema de la Mochila
Multidimensional (MKP). En el capitulo 3, motivamos el uso de proyecciones para determinar
soluciones enteras y proponemos nuestro algoritmo. El comportamiento del algoritmo es anali-
zado para los problemas UKP y MKP en los capitulos 4 y 5 respectivamente. Finalmente, en el
capitulo 6, formulamos nuestras conclusiones y futuras lineas de trabajo.
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Capitulo 1

Conceptos Basicos

La finalidad de este capitulo es hacer una repaso —sin entrar en detalles— de los principales
conceptos y herramientas asociados a programacién lineal entera. El lector interesado puede
consultar [37] y [29].

Comenzaremos el capitulo describiendo en qué consiste un problema de programacién lineal y
cémo podemos hallar su solucién a través del método Simplexr. A continuacion, explicaremos
qué es un problema de programacién lineal entera y cudl es la estrategia de los algoritmos de
Planos de Corte, Branch-and-Bound y Branch-and-Cut utilizados para su resolucion.

1.1. Programacion Lineal y el Método Simplex

Un Problema de Programacion Lineal (PPL) es un problema de optimizacién donde la funcién
que se pretende maximizar (o minimizar) es una funcién lineal y el dominio sobre el que se debe
trabajar queda determinado por la interseccién de un conjunto de desigualdades e igualdades
lineales. Luego, cualquier PPL siempre puede ser reformulado de la siguiente manera (forma
Standard):

maximizar f=cjx1+ -+ cpxy, — funcidén objetivo

sujeta a aj1x1 + -+ a1pxy < by
conjunto de restricciones lineales

Am1T1 + -+ Gy < by,

z; >0, z; eRVi=1,...,n

George B. Dantzig propuso el modelo de programacién lineal en junio de 1947. Su intencién
era representar, de una manera formal y unificada, un conjunto de problemas de planificacién
surgidos a partir de actividades militares. Por aquella época, Dantzig formaba parte de un
proyecto de investigacion destinado a mecanizar los procesos de planificacién de la Fuerza Aérea
estadounidense, el proyecto SCOOP (Scientific Computation of Optimum Programs). De esta
manera, se dio inicio a una de las ramas de la matematica con mayor nimero de aplicaciones
practicas.
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Pocos meses después de formular el modelo, Dantzig publicé un procedimiento para resolver
problemas de programacion lineal: el método Simpler. La idea que hay detrds del Simplex es
muy sencilla, se basa en la siguiente propiedad: en todos los PPL —cualquiera sea el nimero de
variables que estos contengan—, si existe el optimo, siempre se ubica en alguno de los vértices
de la region determinada por el conjunto de desigualdades lineales. Esta propiedad tiene dos
consecuencias: por un lado, reduce a un nimero finito la cantidad de puntos a analizar (a partir
de ahora sélo tenemos que comparar el valor de la funcién en los vértices de la regién) y, por
otro lado, nos indica dénde debemos buscar la solucién 6ptima.

El Simplex es un algoritmo que consta de dos etapas. En la primera, busca una solucién factible
coincidente con alguno de los vértices de la regién (si esto no fuese posible, el problema en
cuestién es infactible). En la etapa siguiente, y a partir de la solucién hallada en la fase anterior, el
algoritmo pasa, en cada iteracién, de un vértice del poliedro a otro vértice adyacente aumentando
el valor de la funcién. Una vez arribado al 6ptimo, como no puede alcanzar una ulterior mejora,
se detiene.

zZ Funcion objetivo.

(3) La solucién 6ptima se al-
canza en la segunda iteracion.

Region determinada por el conjunto
de desigualdades lineales.

T2

1 / N
(1) Supongamos que ésta es la solucién (2) Etapa d0§3 ésta.es la ?0111016](1 al
conseguida por el Simplex al término de cabo de la primera iteracion.

la primera etapa.

Figura 1.1: el método Simplez.

Si bien la cantidad de vértices de un poliedro es finita y, por lo tanto, el algoritmo de Dantzig
siempre termina después de un ntmero finito de pasos, la cantidad de iteraciones puede resultar
muy grande. En 1972, Klee y Minty [25] encontraron ejemplos de n variables y 2n restricciones
para los cuales el Simplex necesita 2™ iteraciones para hallar la solucién. Demostraron, de esta
manera, que no se trata de un algoritmo polinomial (si bien en la préctica su performance es
muy buena). Posteriormente, en 1979, Khachiyan [23] disenié un algoritmo que resuelve todos
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los PPL en tiempo polinomial; aunque en la practica resulta ser mas lento que el Simplezr. Kar-
markar [22], en 1985, combiné las caracteristicas de ambos métodos para crear un algoritmo
eficiente y de tiempo polinomial, dando origen a la familia de algoritmos de “Punto Interior’.
En la actualidad, todos los paquetes académico-comerciales cuentan con implementaciones muy
eficientes tanto de Simpler como de alguna variante de Punto Interior.

1.2. Programacion Lineal Entera

Después del trabajo inicial de Dantzig, y a medida que empezaron a surgir cada vez mas apli-
caciones (sobre todo fuera del &mbito militar), también comenzaron a aparecer extensiones de
la programacién lineal. Los Problemas de Programacion Lineal Entera (PPLE) son problemas
de programacién lineal en los cuales, al menos una de las variables incluidas en el modelo,
debe adquirir valores enteros. Mediante esta nueva estructura se pueden representar muchas
situaciones reales que hasta ese momento no podian ser abordadas por modelos de programa-
cién lineal. Por ejemplo, situaciones donde se involucran entidades indivisibles —como aviones,
barcos o personas— en las que no tendria sentido dar como respuesta una solucién con valores
fraccionarios.

Dentro de la programacion lineal entera se distinguen tres categorias de problemas; se agrupan
de acuerdo a la cantidad de variables enteras que contengan y a la libertad que se les otorga a
esas variables.

1. Problemas enteros puros: se trata de PPL donde todas las variables deben asumir
valores enteros. Su formulacién es la siguiente:

maximizar f =ciz1+ -+

sujeta a apT1 + -+ apey, < by

A1 T1 + -+ Qi Tn < by

z; >0, x;,€Z,¥Vi=1,...,n

2. Problemas enteros binarios: son PPL en los que todas las variables deben ser enteras
y, ademds, s6lo pueden valer 0 o 1. Su formulacién es la siguiente:

maximizar f =ciz1+ -+ cpn

sujeta a  a11x1 4+ -+ a1ty < by

Am1T1 + -+ Qi Tn < by

x; >0,2, €{0,1},Vi=1,...,n
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3. Problemas enteros mixtos: se trata de PPL en los cuales un grupo de variables —no
todas— deben asumir valores enteros. Su formulacion es la siguiente:
maximizar f =ciz1+ -+ cpn

sujeta a  a1171 + -+ + a1y, < by

121 + -+ G Tn < by,
x; >0, €Zsiielyx; e Rsiie R, IUR ={1,...,n}

donde I representa el conjunto de indices de las variables enteras y R el conjunto de indices
de las variables reales.

La diferencia sustancial entre un problema de programacién lineal y uno de programacion lineal
entera es que, salvo casos particulares, hasta el momento no se conoce ningin algoritmo capaz
de resolver la segunda clase de problemas en tiempo polinomial. Mas especificamente, los PPLE
son de tipo NP-Hard [12].

El primer intento razonable por atacar un PPLE consiste en resolver el PPL asociado (que se
obtiene de reemplazar la condicién de integridad “x; € Z” por la condicién relajada “z; € R”), y,
a continuacion, redondear la solucion obtenida a una solucién entera. Este procedimiento motiva
la siguiente definicion.

Definicion 1.2.1 Dado un PPLE, llamaremos relajacion lineal al PPL que resulta de eliminar
la condicion de integridad de todas aquellas variables que deban asumir valores enteros.

PROBLEMA ENTERO LC(’)MO CONSTRUIMOS LA RELAJACION LINEAL?

z
(1) Utilizamos la misma funcién objetivo.

|

T

—
T \°. - /xQ \-' -

Ahora debemos buscar la solucién éptima entre to- (2) Extendemos el dominio agregando todas
dos los puntos que cumplan con el conjunto de res- las soluciones fraccionarias que satisfagan el
tricciones y, ademads, satisfagan las condiciones de conjunto de restricciones del problema entero.
integridad.

Figura 1.2: problema entero y su relajacién lineal.
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Si bien en algunos casos es posible obtener la solucién 6ptima del problema entero redondeando
la solucién de la relajacién lineal, en general esta propiedad no es valida. Habitualmente este
procedimiento arroja soluciones sub-éptimas o infactibles. Sin embargo, dada la estrecha relacién
que existe entre ambos problemas, siempre podremos extraer la siguiente informacién al resolver
la relajacion lineal del PPLE:

1. 5% la relajacion lineal es infactible, como el dominio del problema entero estd incluido en
el de la relajacion, esto implica que el problema entero también es infactible.

2. Si el optimo de la relajacion lineal se alcanza en un punto de coordenadas enteras, como
el dominio del problema entero esta incluido en el de la relajacion lineal y la funcién es
la misma en ambos casos, entonces, la solucién hallada resulta 6ptima para el problema
entero.

3. Si el optimo de la relajacion lineal tiene al menos una coordenada fraccionaria que deberia
ser entera. En este caso, como el valor éptimo de la funcién objetivo del problema entero
siempre es menor o igual que el valor 6ptimo de la funcién objetivo de la relajacion lineal —
utilizando la justificacién de item anterior—, la relajacién lineal nos provee una cota superior
para el valor éptimo de la funcién objetivo del problema entero. Esta cota es de mucha
utilidad. Si tuviéramos una solucién factible del problema entero cuyo valor objetivo fuera
el valor de la cota superior, entonces, podriamos concluir que se trata de una solucién
optima. De lo contrario, al menos nos permitiria estimar cudn lejos estd nuestra solucién
de la solucién éptima.

1.2.1. Métodos de Resolucién

La mayoria de los métodos de resolucién exacta de un modelo de programacién lineal entera se
encuadran en alguno de los siguientes esquemas:

Método de Planos de Corte

La estrategia de un algoritmo de Planos de Corte consiste en modificar el dominio de la rela-
jacion lineal asociada al problema entero hasta obtener una solucién éptima que satisfaga las
condiciones de integridad requeridas. Para llevar a cabo esta operacién, se utilizan una serie de
desigualdades lineales, llamadas “planos de corte’, que, al ser agregadas a la formulacion del
problema, permiten eliminar soluciones fraccionarias de la relajacion y conservar el conjunto de
soluciones enteras del problema original.

El esquema general del algoritmo comienza calculando la solucién 6ptima de la relajacién li-
neal asociada al problema entero. Si la solucién 6ptima resulta entera, el algoritmo se detiene.
En caso contrario, si al menos una de las variables que debia ser entera resulté fraccionaria, se
busca identificar una desigualdad lineal que separe la actual solucion del conjunto de soluciones
factibles enteras. Al agregar esta desigualdad a la formulacion, se obtiene una nueva relajacién
del problema —maés ajustada— sobre la cual puede repetirse el procedimiento. El éxito de la me-
todologia depende, en gran medida, de la posibilidad y la eficiencia de encontrar planos de corte
que puedan ser agregados a la formulacidon para separar soluciones fraccionarias. Es decir, de
disponer de un buen algoritmo de separacion.
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(1) En un primer paso, el algoritmo calcula Curva de nivel donde se in- (2) Identifica una restriccién que ex-
el 6ptimo de la relajacién lineal. En este dica el sentido de crecimiento cluye a la solucién anterior y la agre-
caso, obtiene una solucién fraccionaria. de la funcién. ga a la formulacién del problema.

Cada punto marcado sobre el
dominio representa una solu-
ciéon factible de coordenadas
enteras.

(4) Identifica una nueva res-
triccién que deje afuera a la
dltima solucién fraccionaria.

(3) Vuelve a calcular el éptimo de
la relajacién lineal. Una vez més, se
alcanza en una solucion fraccionaria.

(5) Esta vez, el 6ptimo de la relajacién lineal
tiene coordenadas enteras. Fin del algoritmo.

Figura 1.3: algoritmo de Planos de Corte.

Los planos de corte pueden ser generados bajo dos enfoques:

= Con herramientas generales aplicables a cualquier PPLE.

A comienzos de los 60, Gomory [15] desarrollé un procedimiento de aplicacién general
para producir desigualdades validas que cortan la solucién éptima de la relajacién lineal.
En cada iteracién, la desigualdad es obtenida a partir de la solucién fraccionaria que
provee la relajacion lineal y utilizando exclusivamente argumentos de integrabilidad. Dicho
algoritmo es convergente bajo ciertas condiciones. Si bien hasta no hace mucho tiempo no
era un algoritmo usado en la practica —por las dificultades numéricas que envuelve— hoy
en dia existen implementaciones muy eficientes en varios paquetes académico-comerciales.
Dentro de este enfoque también estan incluidos los cortes disyuntivos, cortes cover y cortes
flow cover.

Un estudio més especifico del problema ayuda a obtener mejores procedimientos. Este es
el sentido del préximo abordaje.
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= Faplotando la estructura particular del problema.

Hay propiedades inherentes a cada problema que pueden ayudar a identificar mejores
planos de corte. Un trabajo pionero en esta direccién fue el de Dantzig et al [8], en 1954,
para el Problema del Viajante de Comercio. La técnica empleada permitié resolver una
instancia de 49 ciudades (grande para la época) y senté las bases de lo que hoy en dia es
una de las herramientas mas efectivas: las técnicas poliedrales.

Una propiedad deseada para un plano de corte es que elimine la mayor cantidad posible
de soluciones no enteras del poliedro asociado a la relajacién lineal. Un estudio poliedral
del conjunto de soluciones factibles enteras permite disponer de buenos planos de corte.
Los primeros estudios poliedrales fueron realizados a principios de la década de los 70 para
el Problema de Conjunto Independiente [30] y el Problema del Viajante [19]. Estos trabajos
significaron un importante progreso en la resolucion de dichos problemas.

Por supuesto, la aplicacion de esta clase de cortes esta limitada al problema particular.
Sin embargo, algunas desigualdades que han sido obtenidas a partir de problemas especifi-
cos, posteriormente pudieron ser empleadas en situaciones més complejas. Desigualdades
vélidas para el Problema de la Mochila [29], y generalizaciones de las mismas, estdn in-
cluidas como planos de corte en varios de los mas importantes paquetes comerciales, como
por ejemplo, CPLEX [20].

Método Branch-and-Bound

El método Branch-and-Bound es el resultado de una investigacion financiada por British Pe-
troleum para encontrar soluciones enteras a PPL. El método fue publicado por Ailsa Land y
Alison Doig en 1960 [26, 21].

La estrategia de un algoritmo Branch-and-Bound consiste en particionar el espacio de soluciones
con el objetivo de facilitar la busqueda del 6ptimo. Al aplicar este concepto recursivamente,
se genera un drbol cuya raiz corresponde al problema original y sus nodos tienen asociados
subproblemas que resultan de la division en partes del espacio de bisqueda. Debido al tamano
que puede alcanzar el arbol, es esencial disponer de herramientas eficientes que permitan eliminar
algunas de sus ramas. A cada nodo del drbol se le asocia la relajacién lineal del problema en el
subespacio de btisqueda correspondiente al nodo. En el caso que la solucién del problema relajado
satisfaga los requerimientos originales de integralidad, ésta es la solucién buscada en esa region
del espacio. Si el subproblema relajado no tiene solucién, o si su valor 6ptimo es peor que la mejor
solucion entera conocida hasta el momento, no hay necesidad de seguir explorando el subconjunto
de soluciones asociado a ese nodo. Por lo tanto, en cualquiera de los casos mencionados, la rama
del arbol que se genera a partir del mismo puede ser podada (proceso de bound). Por el contrario,
si al menos una variable de la solucion 6ptima relajada que debe ser entera resulté fraccionaria,
y si el valor éptimo de la relajacién es mayor que la mejor solucién entera que se dispone, no
hay razon para detener la busqueda en esa region del espacio. Para continuar con la misma, se
deben generar nuevos nodos (proceso de branching).

El Branch-and-Bound es el algoritmo tradicional para resolver PPLE. La implementacién méas
difundida, y que se utiliza en la mayoria de los paquetes comerciales, emplea la solucién de la
relajacion lineal para el proceso de branching y fundamentalmente para el de bound.
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El esquema bésico del algoritmo es el siguiente:

= Paso 1-Inicializacion: Crear una lista L con el nodo raiz y la relajacion lineal del problema.
Sea Zgyp = —00.

= Paso 2-FEleccion del nodo: Si L esta vacia, el algoritmo termina. Si no, elegir un nodo de
L y eliminarlo de la lista.

= Paso 3-Bound: Resolver la relajacién lineal asociada al nodo. Si no es factible, volver al
paso 2. Sea X la solucién éptima y Z el valor de la funcién objetivo.
e Si X es solucién factible del problema, sea Zsup = max(Zgup, Z). Volver al paso 2.
e SiZ< Zsup, €N €sa rama no existe ninguna solucién factible mejor que la actual.

Volver al paso 2.

= Paso 4-Branching: Generar subproblemas del nodo actual y agregarlos a la lista L. Volver
al paso 2.

En este esquema bésico no estd especificada la regla a seguir para la eleccion de un nodo de la
lista ni el proceso de generacién de los subproblemas.

Con respecto a la eleccion del nodo, las opciones mas usuales para los algoritmos enumerativos
son las siguientes: Busqueda en Profundidad (iltimo nodo de la lista), Bisqueda a lo Ancho
(primer nodo de la lista) o Mejor Cota Primero (el nodo con mejor valor 6ptimo de la relajacion).

Para generar los subproblemas suele usarse la clasica dicotomia en una variable x;. Del conjunto
de variables fraccionarias de la solucién éptima de la relajacién, X, que debian ser enteras, puede
elegirse z; como la variable tal que:

= I; tiene su parte fraccionaria mds cercana a 1/2.
» T; tiene su parte fraccionaria mds cercana a 0.
» T; tiene su parte fraccionaria mds cercana a 1.
= tiene el mayor coeficiente en la funcion objetivo.

= cumple alguna propiedad especifica del problema.

Los dos nuevos nodos que se generan, tienen asociada la regién del espacio del nodo padre con
el agregado de x; < |Z;] o x; > |Z;| + 1 respectivamente. Cualquier combinacién de estas reglas
da origen a un drbol distinto. En [27] se realiza un anélisis muy detallado sobre la performance
de las distintas estrategias, pero no se llega a una respuesta concluyente sobre la supremacia de
una sobre la otra aplicable a cualquier problema.
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Método Branch-and-Cut

A comienzos de los 80, Crowder et al [4] tuvieron un gran éxito al aplicar una metodologia mixta
para resolver problemas binarios. Trabajaron con un algoritmo Branch-and-Bound pero, antes
de comenzar la primera etapa de branching, aplicaron un algoritmo de Planos de Corte a la
relajacién lineal asociada a la raiz del arbol. De esta manera lograron mejorar la cota superior
brindada por la relajacién lineal y eso disminuyé el tamano del arbol explorado. A mediados
de la misma década aparecieron los primeros trabajos que extendieron la aplicacién de planos
de corte a otros nodos del arbol; Grétschel et al [18] presentan este enfoque en el Problema de
Ordenamiento Lineal y Padberg et al [31] en el Problema del Viajante de Comercio (donde fue
introducido el término “Branch-and-Cut”).

El esquema basico del algoritmo es:

» Paso 1-Inicializacion: Crear una lista L con el nodo raiz y la relajacién lineal del problema.
Sea Zgyp = —00.

= Paso 2-Fleccion de nodo: Si L esta vacia, el algoritmo termina. Si no, elegir un nodo de
L y eliminarlo de la lista.

= Paso 3-Bound: Resolver la relajacién lineal asociada al nodo. Si no es factible, volver al
paso 2. Sea X la solucién 6ptima y Z el valor de la funcién objetivo.

e Si X es solucién factible del problema, sea Z sup = MAx(Lsyp, Z). Volver al paso 2.

e SiZ< Zsup, 1O existe ninguna solucién factible mejor que la actual. Volver al paso 2.

= Paso 4-Branching vs Cutting: Decidir si se buscaran planos de corte.

No: ir al paso 6 (Branching). Si: ir al paso 5 (Separacion).

= Paso 5-Separacién: Buscar desigualdades vélidas violadas por X. Si no se encuentran, ir
al paso 6 (Branch). Si se encuentran, agregarlas a la formulacién e ir a paso 3 (Bound).

= Paso 6-Branching: Generar subproblemas del nodo actual y agregarlos a la lista L. Volver
al paso 2.

En la descripcion del algoritmo quedan muchos puntos sin especificar, por ejemplo: jcudntas
iteraciones realizar del algoritmo de Planos de Corte?, jcuantos cortes agregar por iteracién?,
.,qué hacer con los cortes generados en los distintos nodos del arbol? La performance del algoritmo
depende de estos factores y de muchos otros. En la practica, lograr un equilibrio entre ellos no
es tarea facil y depende, en gran medida, del problema particular que se quiere resolver.
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Por ultimo, vale la pena senalar dos caracteristicas que pueden ser explotadas al utilizar esta
técnica.

= Usar planos de corte que, a pesar de ser generados en un nodo del arbol, sean validos
para todo el arbol. Esto permite aprovechar el trabajo de identificacién de cortes y, de
esa manera, disminuir los requerimientos de memoria necesario para cada nodo. En la
practica, se dispone de un espacio de memoria comun “pool de cortes” donde se almacenan
las desigualdades y a las que se hace referencia desde cada subproblema.

= Realizar un estudio de la estructura poliedral del problema para generar desigualdes véalidas
especificas de cada situacion.

Los algoritmos descriptos en este capitulo se aplican actualmente en la resolucién de PPLE y
estan presentes en la mayoria de los paquetes comerciales. A su vez, continuamente aparecen en
la literatura del area, trabajos que aplican estas técnicas enriqueciendo la implementacion con
desigualdades vélidas provenientes de estudios poliedrales especificos del conjunto de soluciones
factibles.



Capitulo 2

Problemas de la Mochila

Dentro de los PPLE se destacan modelos conocidos bajo el nombre genérico de Problemas de
la Mochila. Si bien tienen importancia propia, ya que surgen de aplicaciones en la vida real y
como subproblemas de situaciones mas complejas, también juegan un rol clave en la derivacion
de propiedades que luego pueden ser extendidas a problemas més generales. La literatura al
respecto es muy vasta, lo que demuestra la importancia de estos problemas en el ambito de la
programacion lineal entera. De aqui la necesidad de poder resolverlos eficientemente y es por
eso que los utilizaremos para evaluar la performance de nuestro algoritmo. El objetivo de este
capitulo es presentar estos modelos y algunas propiedades tiles que seran usadas mas adelante.
Una muy buena presentacion de las distintas clases de problemas mochila, junto con resultados
computacionales de la aplicacién de diversas técnicas, puede ser consultada en [28] y [24].

2.1. Problema de la Mochila No Acotado (UKP)

[1P%))

Supongamos que disponemos de una mochila con capacidad de carga “c” y de una cantidad
no acotada de objetos, de “n” clases distintas, para llenarla. Todos los objetos de la clase “¢”
poseen un valor (profit) “p;” y un peso (weight) “w;”. El problema consiste en decidir cudntos
objetos poner de cada tipo para maximizar el valor de la carga sin sobrepasar la capacidad de

la mochila. Su formulacién es la siguiente:

n
maximizar f = Z pix; <+— Valor de la carga.

i=1

n
sujeta a Z w;r; < ¢ +— Restriccion de la capacidad de la mochila.
i=1
x; >0, x;,€Z, i=1,...,n <— Los objetos no se pueden fraccionar.
donde la variable x; representa la cantidad de objetos de clase ¢ que cargamos en la mochi-

la. Ademds, estamos suponiendo que todos los coeficientes del problema son nimeros enteros
positivos.

El UKP pertenece a la clase de problemas NP-Hard [12], sin embargo, puede resolverse en
tiempo pseudo-polinomial —~O(cn)— mediante Programacion Dindmica [24]. Sus aplicaciones més
reconocidas se describen a continuacion.
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= (Glestion Financiera: se desea invertir una cantidad de dinero ¢ —parcial o totalmente— en n
tipos de acciones. Cada accion tiene un costo w; y una retribucién esperada p;. El problema
que se plantea es como elegir la mejor inversién posible.

= Embarque de Cargas: dado un conjunto de objetos, se debe elegir un subconjunto de ellos
para cargar un avién, un barco, o un contenedor, maximizando el valor de la carga sin

sobrepasar la capacidad.

= Cutting Stock: a partir de bobinas de cartén de ancho ¢ se deben obtener n bobinas de
tamanos distintos. Cada bobina i tiene ancho w; y una demanda d;. El problema consiste
en decidir cémo cortar las bobinas madre (patrén de corte) de manera tal de minimizar el
desperdicio. La caracterizacion de un patrén de corte responde a un problema mochila.

2.1.1. Propiedades del UKP

= Relajacion lineal

La relajacion lineal del UKP (que notaremos “C(UKP)”) es, como dijimos, el PPL que

resulta al eliminar las restricciones de integridad del modelo entero:

n
maximizar f = E Di;
i=1

n
sujeta a Zwixi <c
=1
z; >0, 2, R, i=1,...,n <— Quitamos la restriccién de integridad,
ahora los objetos se pueden fraccionar.

Proposicién 2.1.1 La solucién éptima, X, del C(UKP) es

X :(0, ..., 0, L,O, ...,0), donde j es la clase mds valiosa: b > bi Yi#£j
wj Wy Wy

/[\

j-€sima coordenada

Demostracion:
Primero busquemos una cota superior para el valor de la funcién objetivo del C(UKP).
Si X = (x1,...,x,) es una solucién factible

n

n
_ _ _ p] j
- pix; = wzxz ’le T wzmz I C.
i—1 w 1
1=

= 1 i=1

/l\
X factible

. c
Luego, como nuestro candidato, X, realiza la cota ( f(X)=— pj) y es factible, conclui-
w;
mos que es 6ptimo W
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= Cotas superiores

Sean “f(UKP)” el valor 6ptimo de la funcién objetivo del UKP y “f(C(UKP))” el valor
6ptimo de la funcién objetivo del C(UKP). Busquemos, usando la relajacion lineal, cotas
superiores para f(UKP).

Supongamos, para simplificar la notacion, que las clases estan numeradas cumpliendo:

p71>p72>'”2p7n‘

wy T wa W,

1. Como f(UKP) < f(C(UKP)) y f(UKP) es un nimero entero —tanto p; como x; son
valores enteros—, entonces, la primera cota se obtiene de truncar el valor f(C(UKP)):

X=(£70,-~,0) = f(C(UKP)) = f(X) = — pi = U, = |f(C(UKP))| = [i plj.
w1 w1 w1

6ptimo de la relajacion evaluamos truncamos

c
2. Imponiendo la condiciéon “zy < L—J ” que debe valer para todas las soluciones fac-
w1
tibles del problema entero, la soluciéon continua resulta:

X:QLJ,L,O,...ﬁ), donde E:c—LiJ.
w1 w9 w1

Calculando f(X) y tomando parte entera, conseguimos la segunda cota superior:
c c c c

f(X) :L*J P+ —p2 = Uz ZL*J pHﬂf P2J-
wy w3 wy w3

Otras cotas més ajustadas —propuestas por Martello y Toth [28]- son las siguientes:

3. Us = maz(A, B), donde
A=7 + [C/ @J
w3

B=2+ LPQ_(UQ_C/) gJ
w1

d = ¢ (mod wo)

Se puede demostrar [28] que Uy < Uz < Uz < Uj.
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2.1.2. Estado del problema

El UKP es un problema sumamente estudiado en la literatura, se conocen algoritmos muy efi-
cientes que permiten resolver instancias de decenas de miles de variables en pocos segundos [28].
En la mayoria de los casos, estos métodos realizan una primera fase de “pre-solve” que consiste
en: 1) reducir el problema original a uno mucho més pequenio al que denominan core pro-
blem; 2) sobre el core problem aplican algun criterio de dominancia para simplificarlo atin més.
Una vez finalizada esta primera etapa, buscan la solucién del problema resultante empleando
un algoritmo de bisqueda como puede ser Branch-and-Bound o Programacion Dindmica.

2.2. Problema de la Mochila Multidimensional (MKP)

Consideremos ahora una mochila con “m” capacidades: “cy, ..., ¢” (peso, volumen, etc.) y
exactamente “n” objetos para llenarla. Cada objeto “i” tiene un valor “p;” y “m” caracteristicas:
“Wity « .., Wiy” (peso, volumen, etc.). El problema consiste en decidir qué objetos poner en la
mochila, con el fin de maximizar el valor de la carga sin sobrepasar ninguna de sus capacidades.
Formulacion:

n
maximizar f = g DT
i=1

n

sujeta a Zwijxi <c¢, 7=12,....m
i=1
x; €{0,1}Vi=1,...,n

donde x; es una variable binaria que vale 1 si el objeto i es cargado en la mochila y 0 si no.
Adem4s, estamos suponiendo que todos los coeficientes del problema son enteros positivos.

El MKP es el modelo més general con el que nos podemos enfrentar dentro de la familia de pro-
blemas mochila con variables binarias. Entre sus aplicaciones més reconocidas figuran: Inversion
de Capital, Seleccion de Proyectos, Cutting Stock y Embarque de Cargas.

2.2.1. Estado del problema

La descripcién mas detallada acerca del estado del MKP la encontramos en el articulo de Frévi-
lle [10]. Este articulo senala al Branch-and-Cut (bajo una primera fase de pre-procesamiento)
como el método exacto mas eficiente a la hora de resolver instancias del MKP, y a los sol-
vers comerciales CPLEX [20] y XPRESS-MP [9] como algunas de las mejores implementaciones
disponibles.

En el trabajo de Cherbaka [5], se puede encontrar una descripcién detallada de los distintos
métodos exactos utilizados en la resolucion del MKP junto con el tamano de las instancias
testeadas por parte de cada uno de los autores. A continuacién, copiamos el cuadro donde se
resume esta ultima informacién y una breve descripcién de cada uno de los métodos.
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Tabla 1. Tamano de las instancias resueltas de tipo MKP en la literatura [5].

Rango de variables Rango de restricciones
Autores min. max. min. max.
Balas (1965) 40 22
Soyster and Slivka (1977) 50 400 5 10
Shih (1979) 30 90 5
Gavish and Pirkul (1985) 20 500 3 5
Gabrel and Minoux (2002) 180 60

Balas [2] fue uno de los primeros en desarrollar un enfoque exacto para el MKP. Presenté un
algoritmo de tipo Branch-and-Bound en el cual todas las variables son inicializadas en 0 y se
incrementan a 1 basdndose en un algoritmo pseudo-dual. A cada paso, el algoritmo identifica
aquellas ramas que conducen a problemas infactibles y las poda. Un aspecto destacable del
algoritmo es que no requiere de la solucion de la relajacion lineal para su funcionamiento.

Soyster y Slivka [34] proporcionaron un algoritmo que mejora el nimero de iteraciones del
procedimiento propuesto por Balas. Este enfoque forma subproblemas usando la solucion de la
relajacién lineal y luego resuelve cada subproblema utilizando el algoritmo de Balas. El tamano
de los subproblemas depende del niimero de restricciones del problema original, por lo que este
algoritmo se comporta bien inicamente sobre modelos con pocas restricciones.

Shih [33] disené un procedimiento de tipo Branch-and-Bound definiendo sus propias estrategias
de poda y ramificacion. La cota superior correspondiente al nodo se calcula teniendo en cuenta
cada uno de los problemas mochila de forma independiente y luego resolviendo la relajacién lineal
de cada uno de ellos. La mas pequena de estas cotas se utiliza como limite superior del nodo
en cuestion. Para definir la estrategia de branching se utiliza la solucién éptima del problema
mochila cuya cota superior resulté minima. Sobre problemas con un maximo de 90 variables y
5 restricciones, el método demostrd ser superior al algoritmo de Balas en relacién al nimero de
iteraciones y a los tiempos de resolucion.

Gavish y Pirkul [13] desarrollaron distintos tipos de relajaciones lineales (Lagrangeana, surrogate
y composite) y reglas de branching que luego implementaron en un esquema de tipo Branch-
and-Bound. Como resultado de esto, obtuvieron un algoritmo que supera al propuesto por Shih
en lo que respecta al tiempo de CPU y al tamano de las instancias que pudieron ser resueltas.

Gabrel y Minoux [11] trabajaron sobre un procedimiento de separacién para identificar planos
de corte que puedan ser aplicados en la resolucién del MKP. En relacién a los experimentos
computacionales, mostraron una reduccién en los tiempos de CPU —en comparacion a la versién
CPLEX 6.5— sobre instancias de hasta 180 variables y 60 restricciones.

Por dltimo, el libro de Hans Kellerer [24] es otra buena referencia. Se trata de una recopilacién
de las publicaciones realizadas hasta el 2004 sobre los distintos problemas de tipo mochila. En
palabras del autor: “La dificultad del MKP se muestra en el hecho de que el tamano de las ins-
tancias que pueden ser resueltas en forma exacta estd acotado a 500 variables y 10 restricciones.
(...) Desde un punto de vista préactico, hay que tener en cuenta que la mayoria de los casos
involucran sélo un nimero pequeno de restricciones (m < 10) pero posiblemente un nimero
grande de variables.”






Capitulo 3

El Método PSA

En el capitulo 1, llevamos a cabo un repaso de los principales algoritmos empleados en la reso-
lucién de PPLE. En todos los casos, vimos que la estrategia para buscar el éptimo consistia en
modificar el dominio del problema —habiendo considerado previamente su relajacion— median-
te el agregado de nuevas desigualdades lineales. En el caso del algoritmo de Planos de Corte,
las nuevas desigualdades eran utilizadas para separar soluciones fraccionarias de la relajacion
y conservar el conjunto de soluciones enteras factibles del problema original. En el caso de los
métodos Branch-and-Bound y Branch-and-Cut, las desigualdades eran usadas para particionar
el dominio del problema y eliminar soluciones fraccionarias de la relajacién. Facilitando, de esa
manera, la bisqueda del 6ptimo. Con un enfoque distinto, en este capitulo vamos a presentar un
algoritmo que no altera el dominio del problema y, como consecuencia, evita agregar restricciones
adicionales a la formulacién.

3.1. Ideas Basicas y Motivacion

Consideremos un problema general de optimizacién entera-pura. Supongamos que la funcién a
maximizar “f” es una funcién continua y que el dominio sobre el que debemos trabajar es un
conjunto compacto y convexo. Podemos pensar en la situacién de la figura 3.1.

Conjunto de soluciones
factibles enteras.

()ptimo entero.

Figura 3.1: presentacién del problema.
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Nuestra propuesta para encontrar la solucién entera del problema planteado es la siguientes.
Supongamos que a partir de la funcién f fuéramos capaces de calcular las siguientes proyecciones:
z

S T T —
- £ s 8 9 10 x2

Figura 3.2: proyecciones.

Llamaremos “proyeccion sobre la variable 1", y la notaremos “Px,”, a la sombra que proyecta
la funcién sobre el plano x1z al ser iluminada desde la derecha. De la misma manera, llamaremos
“proyeccion sobre la variable 2”7, “Px,”, a la sombra que proyecta la funcién sobre el plano xzz
al ser iluminada desde la izquierda (figura 3.2). Podemos pensar que estas proyecciones son el
resultado de aplastar el grafico de la funcién contra esos planos.

Luego, si tuviéramos que proponer un candidato para la solucién entera del problema, usando
ezxclusivamente la informaciéon que aportan Px, y Px,, la opcién més razonable seria elegir
el valor entero 5 para la primera coordenada de nuestro candidato y el valor entero 8 para la
segunda coordenada. Esta eleccién estd basada en que, para esos valores enteros, las proyecciones
alcanzan su mayor altura. De esta manera, el candidato que resulta de examinar las proyecciones
—el punto (5,8)— coincide con la solucién 6ptima del problema.

Si bien el ejemplo que acabamos de exponer es muy limitado (posee tan solo dos variables), es
suficiente para mostrar la utilidad que podrian llegar a tener las proyecciones como herramientas
para localizar soluciones enteras. El algoritmo que presentaremos al final de este capitulo no es
otra cosa que una generalizacién —mas sofisticada— del procedimiento que acabamos de describir.
La estrategia del algoritmo PSA consiste en calcular las proyecciones del problema (tantas como
variables contenga el problema original), para luego, utilizando esa informacién, generar una a
una las coordenadas de la solucion entera. Con este objetivo en mente, dedicaremos algo mas de
la mitad de este capitulo a: 1°) definir formalmente qué entendemos por proyeccion 'y 2°) deducir
una serie de propiedades que nos seran utiles a la hora de construir el algoritmo.
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3.2. Modelado y Definiciones

A partir de la figura 3.2, observamos que cada proyeccién es un conjunto de puntos limitado entre
dos curvas. Llamaremos “proyeccion superior”, y la notaremos “P)S{pr (x;)”, ala curva que lo acota
1

por arriba, y “proyeccion inferior”, “P;Zf(xi)”, a la que lo acota por debajo (ver figura 3.3).
Por lo tanto, el problema de calcular Px; se reduce a encontrar Py (z;) y P)ig,f (z;) v luego
considerar la region encerrada entre ambas curvas.

psup

X1 (jl) \

Figura 3.3: modelado.

En base a la figura 3.3 definimos:

PP (1) := méx f(21,2), con 23 € Dom(f(xl, . ))
2
P;gf(xl) := min f(z1,22), con z3 € Dom(f(:nl, : ))
z2
Luego, Px, = {(a:l,z) :x1 € Dom(f) A P;?If(fm) << P)ngp(xl)}.

Anélogamente definimos Py.”(x2), P)ng (z2) y Px, intercambiando los roles de las variables x;
y X2 en las expresiones anteriores.
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La extension natural de estas definiciones para el caso general es la siguiente.

Definicién 3.2.1 Sea f : D C R" — R wuna funcion continua y D un dominio compacto y
convero, definimos:

PP (x) = max Fx1, oo @iy ), cOn (T1, e T 1, Tt 1y - - 5 Ty 6Dom<f(...,xi,...)>
v L1500y Ti—1,Ti4 15003 Tn

P)Z?f(xz) = min flzr, .o @iy my), con (1, ..oy Tim1, Tig1y - -+, Tny) GDom(f(...,a:i,...))
v L1y i—1,Li4 150000 Tn

Entonces la proyeccion sobre x; queda definida como

1

Px. ::{(xi,z) :x; € Dom(f) A P;gf(x,) <z< P;‘p(:c,)}

Ejemplo: consideremos una funcién de tres variables, f(x1,z2,23), definida sobre el intervalo
[2,12]%[2,12]%[1,4]. Por el momento no nos preocupemos por la férmula de f, simplemente
imaginemos una superficie en movimiento (figura 3.4). Si apliciramos la definicién anterior sobre
cada una de las variables para calcular Py (z;) y P;gf (x;), y luego considerdramos la regién
encerrada entre ambas curvas, obtendriamos las proyecciones Px,, Px, y Px; presentadas en
la figura 3.5.

Figura 3.4: f(x1,x2,x3).
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20 3 0 T TTTTTIT T T 20 3
007 2 4 6 8 10 12 ;4 007 2 4 6 8 10 12 £4 OO 1 2 3 4 5

Figura 3.5: proyecciones de una funcién de tres variables.

Algunas observaciones:

1.

3.3.

”

Las proyecciones “Px,” son siempre conjuntos de R? independientemente del nimero de
variables que contenga el problema. Cualquier punto dentro de este conjunto es de la
forma “(x;,2)”, la primera coordenada corresponde a la variable sobre la que estamos
proyectando y la segunda a la altura de la funcion.

. ¢ Qué informacién aportan las proyecciones? Nos muestran el comportamiento de la funcién

en términos de los valores de cada una de las variables de manera independiente. Esto nos
permite descomponer el problema original en subproblemas de una sola variable y, de esa
manera, reducir la dificultad del planteo inicial.

. En el caso en que f sea una funciéon de una sola variable, la proyeccién coincide con el

grafico de la funcién <p0rque PP (x1) = P;?lf(:vl) = f(:cl)).

Propiedades

Proposicion 3.3.1 Sea f una funcion continua definida sobre un dominio convexo y compacto.
Entonces, para cada punto (x;,z) € Px,, existe un punto X € Dom(f) tal que (X); = x; y

f(X)

=Zz.

Esta propiedad nos asegura que cada punto de la proyeccion es el reflejo, via f, de algin punto
del dominio.

Demostracion:

Sea (xj,z) € Px,. Primero veamos que los puntos (Xi, P)Sg:p (Xi)> y (xi, P)igf (xi)>, pertenecientes

a la proyeccién, son el reflejo de algin punto del dominio.
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Figura 3.6: demostracion.

Como f es continua sobre un dominio compacto y convexo, entonces la funcién “f|,,—x,” alcanza
su valor méximo. Es decir, existe X € Dom(f) tal que

(X)izxi y f(f():méx f(:cl,...,xi,...,a:n):P)Sgp(xi).

i

De esta manera, probamos que el punto (Xi, P)S(UP (Xi)> es la imagen de un punto del dominio.

Andlogamente, se puede demostrar esta misma propiedad para (xi, P)igf (xi)).

Ahora veamos que el punto (xj,z), con P;gf (x1) < z < Px’(x;), también es el reflejo de un
punto del dominio.

Como f es continua, se sigue que “f|;,=x,” también es una funcién continua. Ademds, el dominio
restringido a x; = x; sigue siendo convexo y compacto. Por lo tanto, f|;,—x, recorre todos los

valores entre P)igf (x1) y Px.”(x1) y, para cada uno de esos valores, existe un punto X € Dom(f)
tal que (X); = x; vy f(X) = z. Es decir, (xj,z) también es la imagen de un punto del dominio
|

Proposicion 3.3.2 Sea f un funcion lineal definida sobre un dominio compacto y convezo.
Luego, las proyecciones “Px,” son conjuntos compactos y convexos.

Demostracion:

Sean (Z;, Z) y (24, 2) dos puntos cualesquiera en Px,. Para ver que la proyeccién es un conjunto
convexo, debemos probar que todos los puntos de la forma a(Z;, 2) + (1 — ) (%4, 2), a € [0,1],
también pertenecen a Px;.

Por la proposicién anterior, existen X y Xe Dom(f) tales que
(X)i=2i y fX)=2 vy X)i=d& y f(X)=2
Luego, como el dominio de f es convexo, se sigue que:

aX +(1—a)X € Dom(f) ¥ acl0,1].
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Consideremos un punto genérico del segmento que va de (Z;,2) a (&, 2):

(Xi7Z> - 6('%172) + (1 - B)(ih’%)? con 6 € [07 1]
Debemos mostrar que para este punto existe X € Dom(f) tal que (X); = x3 vy f(X) = 2z
(es decir, (xj,2) € PXi>~

Sea X := X + (1-— B)X ; veamos que este punto verifica todas las condiciones.

1. X € Dom(f) pues pertenece al segmento aX + (1 —a)X, a € [0,1].
2. (X); :(55( r(1- 5)X>i = BFi + (1 — B)d: = x1.

3. Por la linealidad de f, f(X) = f(ﬁf( +(1- B)X) = BF(X) + (1 - B)f(X) =
BE+(1— p)z= =

Extendiendo este procedimiento para todos los puntos del segmento «(z;, 2)+(1—a) (24, 2), a € [0,1],
concluimos que Px, es un conjunto convexo.

Por ultimo, Px, es un conjunto compacto porque es la imagen de un compacto via la composicién
de dos funciones continuas (f y max) H

Proposicién 3.3.3 Bajo las hipdtesis de la propiedad anterior. Si Z; € R es el mdzimo de Px, y
la proyeccion estd definida en [a;, bi], entonces, Py (x;) es estrictamente creciente (o constante)
en [a;, ;) y estrictamente decreciente (o constante) en (Z;,b;].

Demostracion:

Consecuencia de la convexidad de Px, W

Definicion 3.3.4 Sea f : R™ — R. Llamaremos nivel o altura a cada uno de los valores que
puede alcanzar la funcion.

Definicién 3.3.5 Sea f : R" — R. Si X = (Z1,...,%,) es una solucion dptima de f tal que
f(X) = N, entonces diremos que N es el nivel éptimo de la funcion.

Proposicién 3.3.6 Sea f : D C R" — R continua, D un dominio convexo y compacto.
Si X = (Z1,...,%Tn) es una solucidn dptima del problema (vale tanto para problemas con-
tinuos, enteros-puros o enteros-mixtos) y N es el nivel dptimo de f, entonces, (Z;, N) € Px, Vi.

Demostracion:

Por definicién, debemos probar que P)ig, Nz) < N < PP ().

P)ng(:iz) :=min valor f(x1,..., %, &) < f(T1,.. ., Tiy. o, Tn) =N
P?:p(a_:i) = max valor f(z1,...,Z4...,2n) > f(Z1,...,Tiy...,Tp) =N B

Definicién 3.3.7 Fijado un nivel N, llamaremos Rangol := {x; € Z tales que (z;, N) € Px,}.

Es decir, al analizar la proyeccién Px, restringida al nivel N, Rangofv indica el conjunto de
valores enteros para los cuales la variable z; alcanza dicho nivel.
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Proposicion 3.3.8 Sea f : D C R™ — R continua, D un dominio convexo y compacto.
Si X = (%1,...,%,) es una solucidn dptima entera del problema (entera-pura o entera-mizta),
N es el nivel optimo de f y la coordenada i-ésima de la solucion debe ser entera, emtonces,
Zi € Rangof-v.

Demostracion:

Consecuencia de la proposicién 3.3.6 y de la definicién 3.3.7 B

3.4. El Método PSA-puro

Para introducir el método en el caso entero-puro, consideremos el ejemplo anterior de tres va-
riables —para el cual hemos calculado las proyecciones— y supongamos que los coeficientes de la
funcién son todos nimeros enteros. Luego, debido a que la solucién éptima debe tener todas sus
coordenadas enteras, se sigue que el valor éptimo de la funcién también serd un niimero entero.
Por lo tanto, de todos los niveles que puede alcanzar la funcién, solo nos interesardn aquellos
correspondientes a valores enteros.

Si estamos buscando el maximo del problema, en la figura 3.7 pueden observarse los primeros
cuatro niveles enteros candidatos a ser el nivel 6ptimo de la funcién.

20 1 20 1 i 20| |
15 15 15
10 10 10 |
5 5 5: _
00 2 4 6 8 10 12 14 00 2 4 6 8 10 12 14 OO 1 2 3 4 5

Figura 3.7: niveles 17, 16, 15 y 14.

Para buscar la solucién éptima entera del problema consideremos el conjunto de proyecciones
restringidas al primero de los posibles niveles éptimos (el 17). Si en efecto, 17 es la altura éptima
de la funcién, se sigue, por la proposicion 3.3.8, que cada una de las coordenadas de la solucién
6ptima deben formar parte de los conjuntos Rangoy. Por lo tanto, de existir una solucién en
este nivel, deberia poder formarse a partir de la informacién que aportan dichos conjuntos. En
este caso, Rangol” = {7}, Rangod” = () y Rangoi” = {3}. Con lo cual, deducimos que no puede
existir ninguna solucién entera tal que al ser evaluada en f de como resultado 17. Conclusion:
descartamos al nivel 17 como el nivel 6ptimo de la funcién y analizamos el siguiente de los
posibles valores.
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Repetimos el procedimiento sobre el nivel 16. En este caso, Rangoi® = {7}, Rangol® = 0 y
Rango%,6 = {3}. Al igual que en el nivel anterior, concluimos que no puede existir ninguna
solucion entera en este nivel.

Consideramos el nivel 15. Ahora Rangoi® = {7}, Rango® = {5,6} y Rangoi® = {2,3}. En este
caso, deberiamos calcular todos los posibles candidatos a solucién ( X = (7,5,2), X = (7,5, 3),
X =(7,6,2) y X = (7,6,3)) y verificar si alguno de ellos es factible y si al ser evaluado en f
da como resultado 15. De ser asi, estarfamos frente al 6ptimo del problema (porque ya vimos
que en los niveles superiores no existe ninguna solucién factible). Ahora bien, como en general el
numero de candidatos producidos de esta manera resulta exponencial, intentaremos simplificar
un poco el problema. De existir una soluciéon éptima en el nivel actual, como ]Rangoﬂ =1,
sabemos que debe ser de la forma “X = (7,—, —)”. Esto nos permite reemplazar el valor z1 =7
en la funcién original y obtener una nueva funcién, f(7,xs,x3), sobre la cual podemos volver
a calcular Px, y Px, (siempre mirando el nivel 15). Al actualizar los conjuntos Rangol® y
Rangol® para la nueva funcién, se da una de las siguientes alternativas:

(a) |Rango}®| = 1 parai = 2,3. Podemos completar nuestro candidato a solucién, X = (7, —, —),
con los valores que proveen los conjuntos Rangoi® y Rango§5 . Si el candidato asi generado
es factible y al ser evaluado en f da como resultado 15, entonces hallamos el éptimo del
problema. En caso contrario, como este candidato es el tinico posible, deducimos que 15
no es la altura 6ptima.

(b) 34 / |[Rango}®| = 0. Concluimos que el nivel 15 no es éptimo.

(¢) 3 i / |Rangol’| = 1. Reemplazamos en “f(7,29,23)" y en “X = (7,—,—)" el valor de
la variable cuyo rango tiene cardinal 1 y volvemos a calcular la proyeccién de la variable
restante.

(d) |Rango}®| > 1 Vi. En este caso, no hay ninguna variable que pueda asumir un tinico valor
entero; entonces trabajamos de la siguiente manera. Elegimos una de las dos variables bajo
algun criterio, por ejemplo x2. Reemplazamos en la funcién y en el candidato “X” que
estamos construyendo el dltimo (o el primero) de los valores del rango, resulta: f(7,6,x3),
X = (7,6,—). Y calculamos nuevamente Px, y Rangol®. Guardamos en el conjunto
“Pendientes” los datos de la funcién evaluada en el valor de x5 que no fue utilizado; esto
lo hacemos para analizar dicho problema si el espacio de soluciones generado por el primer
valor no arroja ninguna solucién éptima. En este caso, Pendientes = { f(7,5,x3)}.

De esta manera, el algoritmo recorre cada uno de los posibles niveles 6ptimos y genera, a partir
de la informacién que aportan las proyecciones, los distintos candidatos a solucién.

La primera diferencia que encontramos entre nuestro algoritmo y el resto de los algoritmos
utilizados para resolver PPLE, es que PSA genera los candidatos a solucién en términos del
valor de la funciéon. Recordemos que los algoritmos de tipo Branch-and-Bound y Branch-and-
Cut los fabrican en base a las coordenadas fraccionarias de la solucién 6ptima de la relajacién
lineal. Otra diferencia importante es que PSA no agrega restricciones adicionales a la formulacién
del problema. Por ultimo, al trabajar en base a la informaciéon que aportan las proyecciones,
PSA utiliza esa informacién para reducir, sisteméaticamente, el niimero de variables del problema.
Cosa que no sucede, como regla general, en el resto de los algoritmos.
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esquema del algoritmo es el siguiente:

Pendientes ={ }, X = (—,...,—).

0. Inicializacion. Calcular el conjunto de proyecciones del problema y el primer nivel entero
HN?’ .

1. Inspeccién. Analizar las proyecciones restringidas al nivel actual y calcular los conjuntos
Rangofv Vi=1,...,n.

(a) Si|Rangol| =1 Vi (todas las variables toman un inico valor entero), ir al Paso 2.

(b) Si 3 i/ |Rangol| = 0 (hay al menos una variable a la que no se le puede asignar
ningin valor entero), analizar el iltimo problema agregado en Pendientes —y quitarlo
del conjunto— o, si Pendientes = (), bajar un nivel: N = N — 1. Actualizar el vector
X eir al Paso 1.

(¢) Si 3i /|Rangol| = 1 (hay al menos una variable obligada a tomar un tnico valor
entero), ir al Paso 3.

(d) Si |Rango| > 1Vi (todas las variables pueden tomar al menos dos valores enteros),
ir al Paso 4.

2. Comprobacién. Completar el candidato “X” con los valores sugeridos por las proyeccio-
nes (definir z; = Rangol Vi / |Rango¥| = 1), y comprobar si es un punto factible y si al
evaluarlo en f coincide con el nivel actual.

(e) “Si el candidato es factible y al evaluarlo en f coincide con el nivel actual”, fin del
algoritmo (se alcanzé el éptimo del problema).

(f) “Si el candidato es factible, pero al ser evaluado en f estd por debajo de nivel actual”,
guardar esa solucion si supera la mejor solucién encontrada hasta el momento y, a
continuacién, analizar el Ultimo problema agregado en Pendientes —quitandolo del
conjunto— o, si Pendientes = (), bajar un nivel: N = N — 1. Actualizar X e ir al
Paso 1.

(g) “Si el candidato es infactible”, analizar el tltimo problema agregado en Pendientes
—y quitarlo del conjunto— o, en su defecto, bajar un nivel: N = N — 1. Actualizar X
e ir al Paso 1.

3. Reducciéon. Reemplazar las variables que toman un unico valor entero en el problema
actual y en el candidato a solucién “X” que se estd construyendo. Calcular las nuevas
proyecciones y regresar al Paso 1.

4. Eleccién. Escoger, bajo algin criterio, una de las variables del problema actual. Reem-
plazar cada uno de los valores del rango en dicho problema y guardar los subproblemas
generados de esta manera en el conjunto Pendientes. Considerar el ultimo subproblema
agregado en Pendientes, quitarlo del conjunto, y actualizar X. Calcular las proyecciones
y regresar al Paso 1.
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3.5. Validez del Algoritmo

Proposicién 3.5.1 Consideremos un problema general de programacidn lineal entera-pura (con
coeficientes enteros), llamémoslo “PLE”, y supongamos que las restricciones determinan una
region no vacia y acotada.

PLE:

mazimizar f =cir1+ -+ cpn

sujeta a a1+ -+ a, Ty < by

A1 21+ F Ty < by,

x>0, x,€Z,1=1,...,n

Veamos que el algoritmo “PSA-puro” converge a una solucion optima y ademds lo hace en un
numero finito de pasos.

Demostracion:
Por induccién en el niimero de variables.
Si n = 1, nuestro problema es

PLE:
maximizar f = cjx;

sujeta a aq1z < by

am121 < by

r1>0,21 €Z

Llamaremos [r, 2] al intervalo que queda determinado al intersecar el conjunto de restricciones
lineales y supondremos, sin pérdida de generalidad, que ¢; > 0. Luego, el éptimo del problema
se alcanza en el punto x1 = |r2] con nivel éptimo ¢ |rz].

Inicio del algoritmo, Paso 0.

En este caso, como el problema es unidimensional, la proyeccién coincide con el grafico de la
funcién: Px, es un segmento de recta de pendiente c;, con ordenada al origen 0, definida en el
intervalo [r1, 72]. Por lo tanto, el primer nivel entero que debemos analizar es |c172].

Observacién: siempre que el algoritmo examine un nivel superior a “cq|r2|” —el nivel éptimo—, a
lo sumo deberd probar un nimero finito de candidatos (ya que el rango de valores de cada una de
las variables es acotado) antes de concluir que el intervalo analizado no es 6ptimo. Por lo tanto,
podemos suponer que el algoritmo llega al nivel “ci|r2]” en un nimero finito de operaciones.
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Nivel ¢ |r2].

Paso 1. Dado que la proyeccién es un segmento de recta, a x1 le corresponde un tnico valor
entero para el nivel actual: Rangoy’ ra) _ {lr2]} (caso (a)).

Paso 2. x; = |ra] es un candidato factible y al ser evaluado en f coincide con el nivel actual.
Fin del algoritmo.

Conclusion: el método encuentra el 6ptimo del problema en un nimero finito de iteraciones.

Hipotesis inductiva: suponiendo que el algoritmo resuelve todas las instancias de hasta n — 1
variables en un ntimero finito de pasos, probemos el caso de n variables.

Ahora nuestro problema es

PLE:

maximizar f=cjx1+ -+ chn

sujeta a ap1x1 4+ -+ ap o, < by

121 + -+ ATy < by

x>0, x;,€Z,1=1,...,n
Sean X = (eq,...,e,) una solucién 6ptima entera de PLE y N el nivel éptimo de f.

Inicio del algoritmo, Paso 0.

Supongamos que el método calcula las n proyecciones del problema y el nivel inicial. Luego,
analiza uno a uno los niveles enteros —en orden descendente— empezando por el mas grande.

Observacion: al igual que en el problema anterior de una variable, podemos suponer que el al-
goritmo llega al nivel éptimo en un niimero finito de operaciones.

Nivel N.

Paso 1. Al examinar las proyecciones restringidas al nivel actual, ocurre una de las siguientes
alternativas.

(a) |Rangol¥| = 1 Vi. Por la proposicién 3.3.8, Rangol = {e;} Vi.
Paso 2. “X = (e1,...,e,)” es un candidato factible, y al ser evaluado en f coincide con

el nivel actual; hallamos el 6ptimo del problema. Fin del algoritmo.

(b) 3 i/ |Rango| = 0. Absurdo, la proposicién 3.3.8 nos asegura que, para este nivel, existe
al menos un valor para cada variable.
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(¢c) 34 / |Rango}| = 1. Supongamos, sin pérdida de generalidad, que esta variable es z,,.
Luego, por la proposicién 3.3.8, Rango = {e,}.

Paso 3. Actualizamos el candidato a solucién: X = (—,...,—,e,). Y reemplazamos el
valor de z, en PLE; como resultado obtenemos “PLE-reducido”, un problema de n — 1
variables.

PLE-reducido:
maximizar f* =cix1 + -+ cp_1Tn—1 + Cnén

sujeta a a1+ -+ a1p—1 Tn—1 < b1 — ape,

Am121 + -+ CGpp—1Zn—1 < by, — Amneén

z; >0,r;€Z,1=1,...,n—1

Observacién: si X = (ey, . .., ep) es una solucién 6ptima de PLE, entonces, X = (e1, ..., ep_1)
es una solucién 6ptima de PLE-reducido. En efecto, si (dy, . .., d,—1) fuera una solucién fac-
tible de PLE-reducido, tal que f*(dy,...,dn—1) > f*(€e1,...,€n—1), entonces, (di,...,dn—1,€p)
seria una solucién factible de PLE tal que f(dy,...,dp,—1,e,) > f(e1,...,en—1,€y), absurdo.

Paso 1. El problema que resulta de la operacién anterior posee n — 1 variables y nivel
6ptimo f*(e1,...,en—1) = N. Por HI, el algoritmo devuelve una solucién 6ptima del pro-
blema reducido en un nimero finito de pasos. Agregando el valor e, a dicha solucién,
conseguimos el éptimo de PLE. Fin del algoritmo.

(d) |Rangol¥| > 1 Vi.

Paso 4. Elegimos una de las variables de problema actual, por ejemplo x,,. Reemplazamos
cada uno de los valores del Rango? en dicho problema (entre estos valores debe figurar e,,),
y guardamos los subproblemas asi generados en el conjunto Pendientes. Consideramos
el ultimo problema agregado en Pendientes, lo quitamos del conjunto, y comenzamos a
analizarlo.

Podemos suponer, en el peor de los casos, que el algoritmo analiza todos los subproblemas
correspondientes a valores de x,, # e, sin hallar ninguna solucién éptima. Luego, después
de un numero finito de operaciones, el algoritmo analiza el subproblema correspondiente
al valor z,, = e,.

Paso 1. El subproblema generado a partir del valor “e,” posee n — 1 variables y nivel
optimo N. Por HI, el algoritmo encuentra una solucién éptima del problema reducido en
un numero finito de pasos. Agregando el valor e, a dicha solucién, conseguimos el 6ptimo
de PLE H
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3.6. El Método PSA-mixto

En esta seccién presentaremos una nueva versién del algoritmo PSA que nos permitira trabajar
sobre problemas enteros-mizxtos.

Al intentar reproducir las ideas utilizadas en el caso entero-puro para esta otra clase de proble-
mas, nos encontramos con la siguiente dificultad: sobre problemas mixtos ya no podemos suponer
que el optimo se ubique en un nivel entero. Con lo cual, el conjunto de posibles niveles 6ptimos
—que debemos analizar— est4 compuesto por infinitos elementos. Para solucionar este problema
incorporamos la siguiente definicidn.

Definicién 3.6.1 Diremos que dos niveles, N1 y No, forman parte del mismo intervalo de niveles,
st Rangoﬁv1 = Rcmgof-v2 para todas las variables x; enteras.

Esta definicién nos permitird trabajar con infinitos niveles de manera simultanea y, de esa ma-
nera, reducir nuestro problema a analizar un nimero finito de casos.

Notacién Notaremos “Rangojl- 7 al rango de valores enteros que puede asumir la variable x;
para cualquiera de los niveles que componen el intervalo de niveles “I”.

Para motivar el algoritmo en el caso entero-mizto, consideremos nuevamente el ejemplo de tres
variables y supongamos que estamos buscando una soluciéon mirta “X = (x1,xe,x3)” de la
forma: x1,x9 € Z y x3 € R. Como en este caso solo estamos interesados en buscar valores enteros
para las dos primeras coordenadas de la solucién, nos limitaremos a calcular, inicamente, las
proyecciones correspondientes a esas variables.

20 20

15 15 &

10 10

0
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Figura 3.8: intervalos de niveles I e I5.

En la figura 3.8, se exhiben los dos primeros intervalos de niveles en los que pueden ser descom-
puestas las proyecciones Px, y Px,. Observar que, para cualquiera de los niveles que componen
esos intervalos, el rango de valores de las variables enteras siempre es el mismo.
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Para todos los niveles “N” comprendidos en el primer intervalo: Rangol = {7} y Rango} = 0.
Con la nueva notacién: Rcmgo{1 ={T}y Rcmgoé1 = (). Luego, no puede existir ninguna solucién
mixta —cuya segunda coordenada sea entera— tal que al ser evaluada en f dé como resultado
alguno de los niveles comprendidos en el intervalo I7. Conclusién: I; no contiene al nivel 6ptimo
del problema. Analizamos el siguiente intervalo de niveles.

En el caso del intervalo Iy: Rangol2 = {7} y Rangoy = {5,6}. Luego, dentro de este intervalo
tenemos dos candidatos a solucién: X = (7,5,—) y X = (7,6, —). Evaluando ambos puntos en la
funcién original, resultan dos problemas de optimizacién continua de una variable cada uno (en
el caso de estar resolviendo un PPLE-miaxta, el problema resultante es de programacién lineal).
Si alguno de estos subproblemas alcanza su valor maximo dentro del intervalo I, entonces, com-
pletando el candidato “X” con el valor éptimo que provee el problema continuo, obtenemos el
6ptimo del problema mizto. Ahora bien, como en general el nimero de candidatos producidos
de esta manera resulta exponencial, volvemos a trabajar como lo hicimos en el caso entero-puro.
Consideramos aquellas variables que pueden asumir un tnico valor entero; reemplazamos dichos
valores en la funcién y en el candidato a solucién que estamos construyendo; y volvemos a cal-
cular las proyecciones de las variables restantes (s6lo de las variables enteras). En nuestro caso,
la dnica variable a la que se le puede asignar un unico valor entero es x1, con valor 7. Reempla-
zando este valor en la funcién y en el candidato a solucién que estamos construyendo, resulta:
f(7,29,23), x9 € Z, z3 € Ry X = (7,—,—). Calculando nuevamente Px,, y actualizando el
conjunto Rangog, se da una de las siguientes alternativas':

(a) |Rangot2| = 1. Podemos completar nuestro candidato a solucién, X = (7, —,—), con el
valor que provee el conjunto Rcmgof. De esta manera, logramos reducir el problema origi-
nal a un problema de optimizacién continua de una sola variable. Si este nuevo problema
alcanza su valor maximo en alguno de los niveles comprendidos en el intervalo I, entonces,
completando nuestro candidato “X” con el valor éptimo que provee el problema continuo,
obtenemos el éptimo del problema mixto. En caso contrario, como este candidato es el tini-
co posible, deducimos que el intervalo I3 no contiene al nivel 6ptimo (y, por consiguientes,
a la solucién 6ptima).

(b) |Rangot2| = 0. Concluimos que el intervalo I no contiene al nivel éptimo.

(d) |Rangol?] > 1. En esta situacién, no nos queda otra alternativa que analizar los dos
subproblemas “f(7,5,—)" y “f(7,6,—)". Al igual que en el caso entero-puro, comenzamos
trabajando con uno de los subproblemas y guardamos la informacién del problema restante
en el conjunto “Pendientes”. Si alguno de estos dos subproblemas alcanza su valor maximo
dentro del intervalo I», entonces estamos frente al 6ptimo del problema mizto?. En caso
contrario, concluimos que I no contiene al nivel éptimo.

De esta manera, el algoritmo recorre cada uno de los intervalos de niveles y genera, a partir de la
informacién que aportan las proyecciones, los distintos candidatos a solucién. El procedimiento
anterior se repite hasta alcanzar la solucién 6ptima del problema.

!Eventualmente, en esta operacién, el intervalo sobre el que estamos trabajando deberd ser dividido en interva-
los més pequeiios, “refinado”. Esto se debe a que el rango de valores de cada una de las variables enteras se puede
ver alterado al calcular el nuevo conjunto de proyecciones. En situaciones como éstas, descartamos el intervalo
que estamos analizando y continuamos trabajando con el subintervalo que contiene a los niveles de mayor altura.

2Observar que, llegado este punto, se deben analizar todos los subproblemas contenidos en el conjunto
“Pendientes” antes de hacer alguna afirmacién acerca de la optimalidad de una solucién encontrada.
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Esquema del algoritmo:

Pendientes ={ }, X = (—,...,—).

0. Informacién inicial. Calcular iinicamente las proyecciones de las variables enteras y el
primer intervalo de niveles “I”.

1. Inspeccién. Analizar las proyecciones restringidas al intervalo actual y calcular Rangof
para todas las variables enteras z;.

(a) Si |Rangol| =1 Vi, ir al Paso 2.
(b) Si3i/ |Rangol| =0, ir al Paso 3.
(¢) Si3i / |Rangol| =1, ir al Paso 4.
(d) Si |Rango!| > 1 Vi, ir al Paso 5.

2. Comprobacién. Completar el candidato “X” a partir de los valores sugeridos por las
proyecciones (definir #; = Rango! Vi / |Rangof| = 1). Evaluar este candidato en el
problema original y resolver el problema de optimizacién continua resultante (en el caso
de estar resolviendo un PPLE-miaxta, el problema resultante es de programacién lineal).

(e) “Si el dptimo del problema reducido se alcanza en uno de los niveles contenidos en el
intervalo actual”. Asignar a las variables no enteras del vector “X” las coordenadas
de la solucién éptima del problema de optimizacién continua. Guardar X si es factible
y supera la mejor solucién encontrada hasta ese momento. Ir al Paso 3.

(f) “Si el optimo del problema reducido no pertenece al intervalo actual”. Asignar a las
variables no enteras del vector “X” las coordenadas de la solucién éptima del pro-
blema de optimizacién continua. Guardar X si es factible y supera la mejor solucién
encontrada hasta el momento. Ir al Paso 3.

(9) “Si el problema reducido es infactible”, ir al Paso 3.
3. Pendientes. Analizando el conjunto Pendientes, se determina la accién a seguir.

» Si Pendientes # (), considerar el dltimo subproblema agregado a este conjunto y
quitarlo del mismo. Actualizar X e ir al Paso 1.

» Si Pendientes = () y ya se conoce una solucién factible cuyo valor objetivo pertenece
al intervalo actual, fin del algoritmo. El 6ptimo del problema mizto es la ultima
solucion factible guardada.

» En caso contrario, bajar al siguiente intervalo de niveles (por abuso de notacidn,
volveremos a llamarlo “I”). Actualizar X e ir al Paso 1.

4. Reduccion. Reemplazar las variables que toman un tnico valor entero en el problema
actual. Calcular las nuevas proyecciones (s6lo las proyecciones de las variables enteras) y
comprobar si el intervalo que estd siendo analizado debe ser refinado. Ir al Paso 1.

5. Eleccién. Escoger —bajo algin criterio— una de las variables enteras y reemplazar cada
uno de los valores del rango en el problema actual. Guardar los subproblemas generados
de esta manera en el conjunto Pendientes. Considerar el tltimo subproblema agregado
en Pendientes y quitarlo del conjunto. Actualizar el vector X, calcular las proyecciones,
refinar el intervalo de ser necesario, y regresar al Paso 1.




Capitulo 4

Problema de la Mochila No Acotado

A partir de este capitulo y en adelante, aplicaremos el método construido en el capitulo anterior
para resolver PPLE-pura. En esta tesis nos concentraremos sobre problemas del tipo mochila,
pero con algun esfuerzo adicional, nuestro desarrollo puede ser extendido a problemas mas ge-
nerales. Empecemos por un ejemplo de tipo Mochila No Acotado (UKP).

maximizar f = 2x1 4 5xe + x3 + 84
sujeta a  79x1 4 53xo + 4bx3 + 4bxy < 178

z;>0,x;,€Z,1=1,2,3,4

Inicio del algoritmo, Paso 0.

En este caso tenemos que calcular cuatro proyecciones (una por cada variable); para hacer
esto, recordemos, primero debemos encontrar las proyecciones superior “Py'”(z;)” e inferior
2

“Py ! (x;)” y después considerar la regién encerrada entre ambas curvas. A modo de ejemplo,
1
mostremos cémo se calcula Px; .

Por definicién, P)S;;p(xl) := méx valor 2x1 + 5xo + x3 + 814
sujeta a  79x1 + 53xo + 4bxs + 4514 < 178

;i >0, z; € R, i =1,2,3,4 <+— jAtencién! relajamos la
condicion de integridad.

donde estamos pensando que la variable x1 toma un valor fijo y que el resto de las variables
estan libres dentro del dominio de definicién de f(zy,...).

Z2 x3 T4

Si comparamos los cocientes Pi e cada variable:
w;
Pi 10,0943 | 0.0222 | 0.1778

41
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advertimos que el 6ptimo se alcanza en el punto (:cl, 0,0, 15
en la funcién, obtenemos el valor que estamos buscando:

De la misma manera averiguamos la proyeccién inferior sobre x:

Py P(x1) = —12,0444x; + 31,6444, con 21 € [0

Por definicién, P)i?lf(q:l) := min valor 2xz1 + 5xo + x3 + 814

178 — 79z

). Evaluando este punto

sujeta a  79x1 + 53xo + 45x3 + 45xy < 178

z; >0, x; €R :=1,2,3,4

Como a z7 la estamos pensando fija y los coeficientes de la funcién objetivo son todos valores

positivos, entonces, el minimo se alcanza en el punto (z1,0,0,0). Evaluando en f, obtenemos:

178]

P;?lf(xl) =2x1, conxp € [0, o

Repitiendo el procedimiento anterior se pueden calcular el resto de las proyecciones:

PYP (o) = - 4.422225 + 31.6444 y p;‘gf (z2) = bz, con as €
PP (xg) = - 7.000023 + 316444 y P (w3) = @3, con s €

PP (x4) = 3.754Txq + 167925y Py (24) = 8w4, con x4 €

_0,

_0’

_07

178,
53 |

175,
45 |

178,
45 |

A continuacion, graficamos el conjunto de proyecciones junto con los cuatro primeros niveles

enteros candidatos a ser el nivel éptimo del problema.

1 N\ /4
A VAT

-1 01 2 3 4

(@31

-1 01 2 3 4 5

Figura 4.1: niveles 31, 30, 29 y 28.

Ut

-1 01 2 3 4

ot
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A partir de la figura 4.1, el primer nivel entero que debemos analizar es el 31.

Nivel 31.

Paso 1. Observando las proyecciones “Px,” restringidas al nivel 31, advertimos que: Rango}! = {0},
Rango3' = {0}, Rango3' = {0} y Rango3' = 0 (caso (b)). Es decir, no puede existir ningtin
punto con todas sus coordenadas enteras tal que al ser evaluado en f de como resultado 31.
Conclusién: el 6ptimo no se ubica en esta altura. Dado que Pendientes = (), bajamos un nivel.

Niveles 30 y 29.

Paso 1. Los analizamos en conjunto porque en ambos casos ocurre exactamente lo mismo.
Al igual que en el nivel anterior, en este caso: Rango) = {0}, Rango) = {0}, Rango} = {0} y
Rangol = 0, para N = 30 y 29 (caso (b)). Luego, no existe ninguna solucién entera que alcance
los niveles 30 o 29 al ser evaluada en f. Como el conjunto Pendientes no sufrié modificaciones,
continuamos con el proximo nivel.

Nivel 28.

Paso 1. Recién en este nivel tenemos un primer candidato a solucién. Al analizar las proyec-
ciones restringidas al nivel actual, obtenemos: Rango?® = {0}, Rango3® = {0}, Rango3® = {0}
y Rango?® = {3} (caso (a)).

Paso 2. X =(0,0,0,3) es el unico candidato que resulta de analizar el conjunto de proyeccio-
nes; es una solucién factible, sin embargo, al ser evaluado en f da como resultado 24. Luego,
deducimos que 28 no es la altura éptima.

Antes de pasar al siguiente nivel (pues el conjunto Pendientes sigue siendo vacio), guardamos
la solucién encontrada por si no conseguimos una mejor antes de llegar al nivel 24.

A VAl
-1 01 2 3 4 5 -1 01 2 3 4 5 -1 01 2 3 4 5 101 2 3 4 5

Figura 4.2: niveles 27, 26 y 25.
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Nivel 27.

Paso 1. Observando el conjunto de proyecciones restringidas al nivel 27, tenemos: Rango?’ = {0},
Rango3” = {0,1}, Rango3” = {0} y Rango3” = {3} (caso(c)). Luego, sobre el nivel actual se
presentan dos candidatos a solucién: X = (0,0,0,3) y X = (0,1,0,3). Para no analizar uno
a uno estos candidatos —ya que, en general, vamos a tener una cantidad exponencial de ellos—
trabajamos como indica el Paso 3.

Paso 3. Actualizamos nuestro candidato a solucién: X = (0,—,0,3). Y reemplazamos en el
problema actual las variables que toman un tnico valor (para luego volver a calcular Px,).

Problema original:
maximizar f = 2x1 + 5xo + x3 + 814
sujeta a  79x1 + 53w + 4bxs + 4524 < 178
r; > 0,2, €Z,i=1,2,3,4
Reemplazando los valores z; = 0, x3 = 0 y x4 = 3, se deriva el siguiente problema reducido:
maximizar 5Hxg + 24
sujeta a H3xe < 43
9> 0,29 €EZ

Llegada esta instancia, hagamos un comentario antes de calcular la proyeccion: si el nuevo
problema tiene una solucién entera en el nivel 27, entonces el problema original también posee
una solucion factible en ese nivel. La solucién del problema original se obtiene completando la
solucién parcial, X = (0, —,0, 3), con el valor de x5 que proporciona el problema reducido.

Proyecciéon Px,:

30

20

10

0
-1 01 2 3 4 5

Figura 4.3: nivel 27, problema reducido.
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Paso 1. Examinando la figura 4.3, advertimos que: Rango3” = ) (caso(b)). Por lo tanto, no
existe ningin valor entero de x2 con el cual f pueda alcanzar el nivel 27. Luego, el problema
reducido no posee ninguna solucion entera en este nivel, por ende, tampoco la tiene el problema
original. Dado que Pendientes = (), bajamos un nivel.

Niveles 26 y 25.

Ocurre exactamente lo mismo que en el nivel 27. Continuamos.

Nivel 24.

No es necesario analizar este nivel, ya que: a) conocemos una solucién factible que llega a
esta altura y b) vimos que en los niveles superiores no hay ninguna otra solucién factible.
Conclusion: X = (0,0,0, 3) es una solucién 6ptima.

Sin embargo, y no obstante haber alcanzado una solucién 6ptima, analizaremos este nivel porque
aparece una situacién no contemplada hasta el momento (tendremos que aplicar el Paso 4 del
algoritmo).

30 | 1 30 1 30F 1 30F .
20 F 4 20¢F 1 20F 1 20F .
10 F 4 10F 1 10F 1 10F .
oL = oL R oL R oL =
-1 01 2 3 4 5 -1 01 2 3 4 5 -1 01 2 3 4 5 -1 01 2 3 4 5
Figura 4.4: nivel 24.
Paso 1. Observando las proyecciones restringidas al nivel 24: Rango?* = {0}, Rango3* = {0,1},
Rango3* = {0,1} y Rango3* = {2,3} (caso (c)).
Paso 3. Actualizamos el candidato a solucién: X = (0, —, —, —). Y reemplazamos el valor de

x1 en el problema original; obtenemos el siguiente problema reducido:
maximizar bxo + x3 + 814
sujeta a b3xo + 4513 + 4bxy < 178

2,20,z €Z,1=2,3,4
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Como achicamos el problema, podemos volver a calcular las proyecciones —siempre restringidas
al nivel actual-. En este caso, al calcular las proyecciones del problema reducido, nuevamente
obtenemos las proyecciones 2, 3 y 4 del problema original (figura 4.4).

Paso 1. Rango3* = {0,1}, Rango3* = {0,1} y Rango3* = {2,3} (caso (d)).

Paso 4. Elegimos una variable, por ejemplo x4 (es la de mayor relacién &>, y reemplazamos
Ws

cada uno de los valores del rango en el problema anterior. Guardamos el primero de los subpro-
blemas en el conjunto Pendientes y continuamos trabajando con el subproblema que resulta de
reemplazar el valor x4 = 3. Ahora X = (0,—, —, 3).

El subproblema que se deriva de elegir “x4 = 3”7 es el siguiente:
maximizar 95x9 + x3 + 24
sujeta a H3xo + 4513 < 43

xizo,xiez,i:2,3

Calculando las proyecciones Px, y Px, del problema reducido, obtenemos:

VNI
IR
-1 01 2 3 4 5 -1 01 2 3 4 5

Figura 4.5: nivel 24, problema dos veces reducido.

”. Examinando

Paso 1. Hasta el momento tenemos un candidato de la forma “X = (0, —, —, 3)
las nuevas proyecciones restringidas al nivel 24, obtenemos: Rango3* = {0} y Rango3* = {0}

(caso (a)).

Paso 2. El candidato que resulta de observar las proyecciones, el punto X = (0,0,0,3), es
un candidato factible y al evaluarlo en f coincide con el nivel actual. Hallamos el 6ptimo del
problema, fin del algoritmo.
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4.1. Numero de Operaciones

Consideremos el siguiente problema de tipo UKP y veamos cudntas operaciones son necesarias
para calcular el conjunto de proyecciones.

maximizar f=piz;+---+pp2n,
sujeta a wir) + - Fwpxry < C
x>0, x;,€Z,1=1,...,n

Para simplificar la notacién, supondremos que las clases estan numeradas cumpliendo:

Empecemos viendo cudntas operaciones son necesarias para calcular las n proyecciones inferiores:
in ’
PXjf(mj) :=min valor piz1+---+p;jz;+ -+ Duy
- P (2;) = 0, —
sujeta a w1z + -+ wix; 4+ Wy < C = Fx; (z;) = pjz;j, con x; € Yo
J

%207 $ZGR>Z#3

c :
“—7) para determinar las

Es decir: sélo debemos realizar n operaciones (calcular los cocientes
w
J

n proyecciones inferiores.

Para conocer las proyecciones superiores, separemos el problema en dos casos. Por un lado,

calculemos P)sgip (z1) (la proyeccién de la clase més valiosa), y, por otro, P)“?;p (x) para j > 2.

P;&p(:vl) = max valor pi1x1 + -+ puTn
. sup wy c c

sujeta a wiT1 + - +wpx, < c = Py, (z1) :<p1 — pg—)xl + —po, con x1 € [0, —}

() w3 w1

2;>0, 3, €R, i >2

P;(ip(flij) = max valor pix1+ -+ ppTn 3

W, c c
sujeta a wyixry + - +wpr, < C = P)Sg;p(xj) :<pj — plw—]>xj + wfph con x; € [0, —
1 1

2, >0, z, €R, i #] J

Con lo cual: primero debemos realizar O(n) operaciones para identificar las dos clases més
liosas. Y 1 leular los coeficientes Yy g« S py 1 i 1
valiosas. Y luego, calcular los coeficientes “p; — po y p2” para conocer la pendiente y la

w2 w2
Wy s c

13

ordenada de la recta P;;ip (x1), y, por otro lado, “p;j —p1—"y “— p1” para conocer la pendiente
w1 w1

y la ordenada de las rectas P)Sgp (z;) para j > 2.

Conclusion: son necesarias O(n) operaciones para averiguar el primer grupo de proyecciones
del problema.
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4.2. Experimentos Computacionales

Para medir la eficiencia de nuestro método, hemos utilizado —para ser consistentes con la mayoria
de los trabajos presentados en la literatura— una serie de instancias test generadas aleatoriamente
segun los procedimientos sugeridos por Martello & Toth [28] y David Pinsinger [32]. Cada una
de las instancias propuestas estd pensada para representar ciertos modelos de la realidad y para
revelar falencias de los distintos métodos.

4.2.1. Instancias Test

Instancias Uncorrelated: p; se genera aleatoriamente en el intervalo [1,R] y w; en el intervalo
[10,R]. Este tipo de instancias sirve para modelar situaciones en las que se puede suponer que
el valor y el peso de los objetos no guardan relacién, puede haber objetos con gran valor y poco
peso, y viceversa. En general son instancias faciles de resolver para todos los métodos.

Instancias Weakly Correlated: los pesos w; se generan aleatoriamente en el intervalo [10,R]
y los valores p; en [w; — 100, w; + 100]. En este caso, el valor y el peso si guardan cierta rela-
cion, tipicamente el valor sélo difiere del peso en un porcentaje pequeno. Instancias como éstas
modelan muy bien situaciones de gestion o administracién donde se dispone de cierto capital
y varias opciones de inversion. El valor de retorno de una inversién se supone proporcional al
capital invertido mas o menos alguna variacién.

Instancias Strongly Correlated: los w; se generan aleatoriamente en el intervalo [10,R] y
los p; = w; + 100. Estas instancias representan situaciones de la vida real donde el retorno es
proporcional a la inversién mas algiin cargo extra por cada proyecto. En general las instancias
de este tipo son dificiles de resolver.

Instancias Sub-set Sum: los w; se generan aleatoriamente en el intervalo [10,R] y los p; = w;.
Estas instancias reflejan situaciones donde el valor y el peso de cada objeto son iguales. Por lo
tanto, el problema es equivalente a llenar la mochila con la mayor cantidad de peso. En general,
son instancias dificiles de resolver para todos los métodos, porque todas las cotas superiores
resultan en el valor trivial ¢ (capacidad de la mochila).

4.2.2. Resultados y Conclusiones

Comparamos el rendimiento de nuestro método, PSA, contra el solver comercial CPLEX [20]
de IBM (versién 10.1.0). En una primera etapa, llevamos a cabo la comparacién sin mo-
dificar los pardmetros por default de CPLEX; es decir, con todas las herramientas activas:
pre-procesamiento, cortes, heuristicas, etc.. Trabajamos sobre instancias de tipo Uncorrelated,
Weakly Correlated, Strongly Correlated y Sub-set Sum con 5000, 20000, 50000 y 70000 varia-
bles. Luego, en una segunda etapa, repetimos las pruebas realizadas sobre las dos instancias
mas grandes —50000 y 70000 variables— desactivando las opciones de pre-solve: “set pre pre n”
y “set pre red 0”. Esto lo hicimos para determinar el grado de incidencia que tiene el sistema
de pre-procesamiento sobre el resultado final del solver. Todas las mediciones fueron realizadas
en una computadora SUN UltraSparc III workstation with a CPU running ot 1GHz and 2GB
of RAM memory. El limite de tiempo para cada corrida fue fijado en 200 segundos. A conti-
nuacién, se muestran los resultados computacionales de las pruebas mencionadas junto con las
conclusiones del experimento. Notaremos con la letra “n” a la cantidad de variables de cada una
de las instancias.
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Como leer las tablas: cada casillero de la tabla contiene 5 valores, por ejemplo

CPLEX

PSA

niveles

(10) 0.256 seg.

(1) 0.02 seg.

1
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En las columnas 1 y 2, se indica, entre paréntesis, el nimero de instancias resueltas en forma
6ptima por parte de cada uno de los métodos (sobre un total de 10 problemas test). Y, a la
derecha de ese valor, se muestra el tiempo promedio consumido por cada uno de los métodos
sobre las instancias que pudieron ser resueltas. En la columna 3, se exhibe la cantidad de niveles
(promedio) recorridos por PSA hasta alcanzar la solucién éptima.

Tabla 2. Instancias Uncorrelated.

w; = random(10,100)
p; = random(1,100)
=053 w;

w,; = random(10,1000)
p; = random(1,1000)
=053 ws

w,; = random(10,10000)
p; = random(1,10000)
c=05 37w

n CPLEX PSA niveles CPLEX PSA niveles CPLEX PSA niveles
5000 (10) 0.256 s. (1) 0.02 s. 1 (10) 0.083 s. (10) 0.021 s. 1 (10) 0.096 s. (10) 0.326 s. 109.1
20000 (10) 2.393 s. (1) 0.05 s. 1 (10) 0.455 s. (10) 0.051 s. 1 (10) 0.361 s. (10) 0.045 s. 1
50000 | (10) 8.442s.  (10) 0.124 s. 1 (10) 1.934s.  (10) 0.102 s. 1 (10) 1.012s.  (10) 0.094 s. 1
70000 | (10) 12.138s.  (10) 0.172 s. 1 (10) 3.409 s.  (10) 0.145 s. 1 (10) 1.489's.  (10) 0.120 s. 1
50000 (10) 10.062s. (10) 0.124 s. 1 (10) 76.8650s. (10) 0.102 s. 1 (10) 85.1430s. (10) 0.094 s. 1
70000 (10) 14.161s. (10) 0.172 s. 1 (10) 145.966s. (10) 0.145 s. 1 (10) 166.742s. (10) 0.120 s. 1

Tabla 3. Instancias Strongly Correlated.
w; = random(10,100) w; = random(10,1000) w; = random(10,10000)
p; = w; + 100 p; = w; + 100 p; = w; + 100
c=0.5 Y7 w; c =053 w; c =057 w;

n CPLEX PSA niveles CPLEX PSA niveles CPLEX PSA niveles
5000 | (10) 0.032 s. (1) 0.03 s. 1 (10) 0.038 s. (10) 0.02 s. 1 (10) 0.073 s. (9) 0.028 s. 1
20000 | (10) 0.128 s. (1) 0.05 s. 1 (10) 0.128 s.  (10) 0.051 s. 1 (10) 0.224 s. (10) 0.059 s. 1
50000 (10) 0.320 s. (10) 0.137 s. 1 (10) 0.333s.  (10) 0.126 s. 1 (10) 0.447 s. (10) 0.113 s. 1
70000 | (10) 0.464s.  (10) 0.189 s. 1 (10) 0.476 s.  (10) 0.174 s. 1 (10) 0.642 s. (10) 0.172 s. 1
50000 | (10) 10.056 s.  (10) 0.137 s. 1 (10) 49.251s.  (10) 0.126 s. 1 (10) 76.362 s.  (10) 0.113 s. 1
70000 | (10) 14.173s.  (10) 0.189 s. 1 (10) 84.433 5. (10) 0.174 s. 1 (10) 145.014 s.  (10) 0.172 s. 1

Tabla 4. Instancias Weakly Correlated.
w; = random(10,100) w,; = random(10,1000) w; = random(10,10000)
p; = w; + random(-100,100) p; = w; + random(-100,100) p; = w; + random(-100,100)
si p; < 10 ponemos: p; = 10 si p; < 10 ponemos: p; = 10 si p; < 10 ponemos: p; = 10
c=0.537" 4 w; c=0.5Y7" 1 w; c=0.537" 4 w;

n CPLEX PSA niveles CPLEX PSA niveles CPLEX PSA niveles
5000 (10) 0.226 s. (1) 0.020 s. 1 (10) 0.126 s. (10) 0.026 s. 1 (10) 0.093 s (10) 0.054 s 6.4
20000 | (10) 2.122 s. (1) 0.08 s. 1 (10) 1.069 s. (10) 0.053 s. 1 (10) 0.388 s (10) 0.055 s. 1
50000 | (10) 9.009s.  (10) 0.122 s. 1 (10) 5.761 s. (10) 0.118 s. 1 (10) 1.671 s (10) 0.091 s 1
70000 | (10) 16.471s.  (10) 0.164 s. 1 (10) 10.45 s. (10) 0.164 s. 1 (10) 2.655 s (10) 0.137 s 1
50000 (10) 13.241 s. (10) 0.122 s. 1 (10) 58.859 s. (10) 0.118 s. 1 (10) 79.589 s. (10) 0.091 s. 1
70000 (10) 19.277 s. (10) 0.164 s. 1 (10) 105.659 s. (10) 0.164 s. 1 (10) 153.278 s. (10) 0.137 s. 1

Tabla 5. Instancias Sub-set Sum.
w; = random(10,100) w,; = random(10,1000) w; = random(10,10000)
Pi = w; Pi = w; Pi = w;
c=0.537 1 w; c =057 w; c=0.537 1 w;

n CPLEX PSA niveles CPLEX PSA niveles CPLEX PSA niveles
5000 | (10) 0.078 s. (10) 0.097 s. 1 (10) 0.072 s. (10) 0.071 s. 1 (10) 0.061 s. (10) 0.081 s. 1
20000 (10) 0.476 s. (10) 0.220 s. 1 (10) 0.298 s. (10) 0.303 s. 1 (10) 0.280 s. (10) 0.265 s. 1
50000 | (10) 0.819 s.  (10) 0.850 s. 1 (10) 0.829's.  (10) 0.704 s. 1 (10) 0.822 5.  (10) 0.609 s. 1
70000 | (10) 1.187 s. (10) 1.288 s. 1 (10) 1.223 s. (10) 2.109 s. 1 (10) 1.211 s. (10) 1.239 s. 1
50000 (9) 11.418 s. (10) 0.850 s. 1 (10) 1.292 s. (10) 0.704 s. 1 (10) 2.388 s. (10) 0.609 s. 1
70000 (10) 82.89 s. (10) 1.288 s. 1 (10) 12.72 s. (10) 2.109 s. 1 (10) 6.635 s. (10) 1.239 s. 1
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A partir de las tablas presentadas en este capitulo, observamos que PSA es mas veloz que CPLEX
sobre la mayor parte de las instancias testeadas. Si comparamos los resultados obtenidos en la
primera etapa de nuestro experimento (utilizando CPLEX con pre-solve), advertimos que PSA
redujo los tiempos de resolucién en el 70 % de los casos estudiados. Mas marcada atin es la
diferencia obtenida al comparar los valores de la segunda etapa. En ese caso, el porcentaje de
las instancias sobre las que PSA logré mejorar el rendimiento de CPLEX alcanza el 100 % de
los casos examinados. En base a los resultados conseguidos en ambas etapas, concluimos que el
desempeno de CPLEX merma significativamente cuando se desactivan las opciones de pre-solve.
En esos casos, los tiempos de resolucién pueden pasar de “algunos segundos” —incluso décimas
de segundo— a “minutos”. Estos valores demuestran que la fase de pre-procesamiento desempena
un rol clave en la performance final del solver cuando se trabaja sobre problemas de tipo UKP.

También vale la pena comentar los requerimientos de memoria de cada uno de los métodos.
En instancias con 70000 variables, por ejemplo, el consumo de memoria de PSA oscila entre
800MB y 1.8GB; mientras que CPLEX utiliza tan sélo 50MB. El alto consumo de memoria
por parte de PSA es producto de almacenar, a lo largo de todo el proceso, la informacién
correspondiente a 70000 proyecciones inferiores y 70000 proyecciones superiores.

Sobre instancias de tamano pequeno y mediano (estos datos no figuran en las tablas), PSA
resulté muy ineficiente. En dichos casos, el 6ptimo se ubica profundo —por lo tanto, el algoritmo
debe recorrer una gran cantidad de niveles hasta alcanzarlo— y el rango de valores de cada una
de las variables suele ser grande. Para mejorar el rendimiento del método en situaciones de este
tipo, proponemos, para un futuro trabajo, llevar a cabo las siguientes operaciones:

» Implementar cotas superiores (por ejemplo, la cota Uy que presentamos en el capitulo 2)
para evitar el analisis de los primeros niveles del problema.

= Agrupar todos los niveles que tengan el mismo rango de valores para todas las variables y
analizarlos en conjunto. Asi podriamos aprovechar las operaciones realizadas en un nivel
para todos aquellos niveles que tengan las mismas caracteristicas.

= Implementar sistemas de pre-procesamiento para reducir el tamano del problema original.

El balance de este experimento es bueno. Logramos mejorar los tiempos de un solver comer-
cial con mas de 20 anos de desarrollo, empleando un procedimiento que no tiene implementado
ningin sistema de pre-solve. Vale recordar que, en la mayoria de los algoritmos disefiados es-
pecificamente para resolver problemas de tipo UKP, la esencia del algoritmo es, justamente, el
sistema de pre-procesamiento (ver capitulo 2).



Capitulo 5

Mochila Multidimensional

En este capitulo presentaremos detalles y resultados de la aplicacion del algoritmo PSA sobre
problemas de tipo Mochila Multidimensional (MKP). Comenzaremos con un ejemplo sencillo
para mostrar como se calculan las proyecciones en este caso y, posteriormente, expondremos
los resultados computacionales de la comparacion entre CPLEX y PSA sobre instancias de este
tipo.

maximizar f = 36x1 + 25x9 + 6x3
sujeta a 43x1 + 28z + 17x3 < 44
38xr1 + blxe + 43x3 < 66

z;€{0,1}, i=1,2,3

Inicio del algoritmo, Paso 0.

En problemas de clase MKP o, méas generalmente, en PPLE que contengan al menos dos restric-
ciones, dificilmente podamos deducir férmulas para Py " (z;) y Py, ! (x;) para valores genéricos
de z; (como si lo hicimos para el UKP). Por lo tanto, en situaciones de este tipo, nos limitaremos
a calcular los valores estrictamente necesarios para poder utilizar las proyecciones. Estos valores
son: Py?(ei) y P)igf (e;) para todos los valores enteros e; de x;. En el caso particular del MKP, el

problema de calcular las proyecciones se reduce, por ende, a encontrar P;{qu (1), P;gfp (0), P;Zf (1)

y P)igf (0) para cada una de las variables x;. Una vez conseguidas estas pseudo-proyecciones,
continuamos con el Paso 1 del algoritmo.

Veamos cémo se calcula Py P(1).
1
Por definicién, Py'"(1) := méx valor f =36 . 1+ 25z + 63
sujeta a 43 .14 28z9 + 1723 < 44
38 . 14 51lxg + 4323 < 66
0<z;<1,7=2,3 <— Relajamos esta condicién.

Resolviendo este PPL a través del método Simplex, obtenemos: P)S(ulp (1) = 36.8929.

o1
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Repitiendo el procedimiento anterior para cada uno de los valores enteros y para cada una de
las variables restantes, resulta:

PYP(1) = 36.8929  PyP(1) = 38.3953 PyP(1) = 27.7895

P)sgp(O) = 27.0930 P;ZP(O) = 36.3529 P)‘?;p(o) = 38.3953

Pyl (1) = 36 PYI(1) =25 PY(1) =6
Py (0) =0 Py (0) =0 Py (0) =0

A continuacién, graficamos el conjunto de proyecciones y analizamos los tres primeros niveles
enteros candidatos a ser el nivel 6ptimo de la funcién.

40 ‘ - 40 ‘ - 40

. ! . . . . .
30+ . 30 - 30+L 4
0 : | 0 : | 0 : |
-1 0 1 2 -1 0 1 2 -1 0 1 2

Figura 5.1: niveles 38, 37 y 36.

Niveles 38 y 37.

Paso 1. Examinando las proyecciones restringidas a cualquiera de estos dos niveles, obtene-
mos: RangoY = 0, Rango) = {1} y Rango) = {0} para N = 38 y 37 (caso (b)). Luego, no
puede existir ninguna soluciéon binaria tal que al ser evaluada en f alcance los niveles 38 o 37.
Como Pendientes = (), analizamos el préximo nivel.

Nivel 36.
Paso 1. Rangoi® = {1}, Rango3® = {0,1} y Rango3® = {0} (caso (c)).

Paso 3. Actualizamos nuestro candidato a solucién: X = (1, —,0). Y reemplazamos los valores
de x1 y =3 en el problema original; se deriva el siguiente problema reducido:

maximizar f = 25xo + 36
sujeta a 28x9 <1
5lxy < 28
xzg € {0,1}
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Como ahora el problema contiene una sola variable, la proyeccién coincide con el grafico de la
funcién: Px, es un segmento de recta de pendiente 25, con ordenada al origen 36, y estd definida

1
%)
Paso 1. Rango3® = {0} (caso(a)).

en el intervalo [O,

Paso 2. El candidato “X = (1,0,0)” es factible y al ser evaluado en f coincide con el nivel
actual (satisface las condiciones de optimalidad). Fin del algoritmo.

5.1. Detalles de Implementacién

Hagamos algunas precisiones acerca de la implementacién del método PSA en lo que se refiere
al calculo de proyecciones para problemas de tipo MKP.

En primer lugar, no es necesario realizar ninguna operacién para calcular las proyecmones in-
feriores. Dado que todos los coeficientes del problema son positivos, se sigue que: P ( i) = Di%;
V z; € [0, 1]. Con lo cual, calcular las proyecciones de un MKP se reduce a hallar Py ii) (0)y P)sg:p (1)
para cada variable x;.

En cuanto a las proyecciones superiores, en el ejemplo anterior utilizamos el método Simplez para
hallar la solucién exacta de cada uno de los PPL asociados a la definicién de Py " (e;), e; € {0,1}.
En la practica, resolver 2 PPL por cada variable incluida en el modelo resulta prohibitivo; con
lo cual, se torna necesario simplificar el nimero de operaciones. Con este objetivo en mente,
introdujimos dos modificaciones en la implementaciéon del método para reducir el nimero de
operaciones cada vez que calculamos las proyecciones superiores:

1. El algoritmo comienza resolviendo la relajacion lineal asociada al problema entero. Su-
pongamos que el éptimo de la relajacién se alcanza en el punto “X” con valor maximo
“frae’ . Si la coordenada j-ésima del vector “X” es un valor entero “e;” (0 o 1), enton-
ces, deducimos que P)sg;p (€j) = fmaz- Es decir, suponiendo que el problema que estemos
intentando resolver posea n variables, mediante esta primera operacién podemos calcular
—en el mejor de los casos— hasta n — 1 de las 2n proyecciones superiores. Y esto se logra
resolviendo un sélo PPL.

2. Para averiguar los restantes valores, utilizamos la tabla Simplex-final conseguida en el
paso anterior para, agregando una restriccién adicional a la formulacién del problema
(z; < 0o x; > 1), calcular cotas superiores para PSUP (1) y P)s(qu (0). Esta operacién nos
permite completar rdpidamente el conjunto de proyecmones y, de esa manera, asignar un
Unico valor entero a un gran porcentaje de variables en muy poco tiempo. En contraposi-
cion, este procedimiento puede incrementar el rango de valores de algunas de las variables.
Resta, para un futuro trabajo, estudiar en qué momento es conveniente reemplazar los
valores aproximados, obtenidos en esta etapa, por valores exactos.

Por lo tanto, las proyecciones superiores utilizadas en nuestra implementacion son una combi-
nacién entre valores exactos y aproximados. Lo cual no implica que las soluciones obtenidas a
través de este procedimiento no sean exactas.
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5.2. Experimentos Computacionales

En este caso, hemos trabajado en base a los articulos de Arnaud Freville [36, 10] para fabricar
las instancias test utilizadas para medir la perfomance de nuestro algoritmo. Las instancias de
tipo MKP son una generalizacién de las de tipo UKP adaptadas a problemas con numerosas
restricciones.

5.2.1. Instancias Test

Instancias Uncorrelated: los w;; se generan aleatoriamente en el intervalo [1,1000] y los
coeficientes c; y p; de la siguiente manera:

n
c;j:=0.5 Zwij y p;i := random|1, 1000].

i=1
Donde n indica la cantidad de variables del problema y m el nimero de restricciones.

Instancias Weakly Correlated: los w;; se generan aleatoriamente en el intervalo [1,1000] y
los coeficientes c¢;j y p; de la siguiente manera:
=05 ’ ===t Y dom[—100, 100).
cj wa y p - + random]| ]

i=1

5.2.2. Resultados y Conclusiones

Nuevamente, comparamos el rendimiento de PSA contra el solver comercial CPLEX [20] de IBM
(versién 10.1.0). En todos los casos, corrimos CPLEX sin modificar los pardmetros por default;
es decir, con todas las herramientas activas: pre-procesamiento, cortes, heuristicas, etc.. Traba-
jamos sobre instancias de tipo Uncorrelated y Weakly Correlated con 3000, 5000, 10000 y 20000
variables y 1, 2 y 3 restricciones. Todas las mediciones fueron realizadas en una computadora
SUN UltraSparc III workstation with a CPU running at 1GHz and 2GB of RAM memory. En
este caso, no impusimos ninguin limite de tiempo para las corridas, con lo cual, las instancias
que no pudieron ser resueltas corresponden a problemas donde se superaron los 2GB de me-
moria. A continuacion, exponemos los resultados obtenidos a través de estas pruebas junto con
W

las conclusiones del experimento. Notaremos con las letras “n” y “m” al nimero de variables y
restricciones, respectivamente, que contienen cada una de las instancias.

Coémo leer las tablas: cada casillero de la tabla contiene 7 valores, por ejemplo

CPLEX PSA niveles 12 iteracién
(10) 0.924 seg. (10) 0.153 seg. 4.6 2973.8 (99.12 %)

En las columnas 1 y 2 se indica, entre paréntesis, el nimero de instancias resueltas en forma
6ptima por parte de cada uno de los algoritmos (sobre un total de 10 problemas test). Y, a la
derecha de ese valor, se muestra el tiempo promedio consumido por cada uno de los métodos
sobre las instancias que pudieron ser resueltas. En la columna 3, se exhibe la cantidad de niveles
(promedio) recorridos por PSA hasta alcanzar la solucién éptima. Por tltimo, en la columna 4,
se indica el nimero de variables (promedio) a las que PSA le asigna un tnico valor entero en la
primera iteracion del nivel 6ptimo. A la derecha de este 1ltimo valor, figura el porcentaje que
representa sobre el total de variables.
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Tabla 6. Resultados computacionales sobre instancias Uncorrelated.

n m CPLEX PSA niveles 12 iteracion
3000 | 1 (10) 0.924 seg. (10) 0.153 seg. 4.6 2973.8 (99.12 %)
3000 | 2 | (10) 44.733 seg.  (10) 15.883 seg. 10.3 2936.7 (97.89 %)
3000 | 3 | (10) 25.84 min. (10) 10.652 min. 18.9 2888.1 (96.27 %)
3000 | 4 (9) 6.548 hs. (10) 6.63 hs.3 25.1 2842.6 (94.75%)
5000 | 1 (10) 1.733 seg. (10) 0.168 seg. 2.8 4977.6 (99.55 %)
5000 | 2 | (10) 2.612 min.  (10) 26.802 seg. 7.6 4925.2 (98.50 %)
5000 | 3 (10) 1.009 hs. (10) 12.38 min. 11.3 4882.6 (97.65 %)
10000 | 1 (10) 2.831 seg. (10) 0.254 seg. 1.8 9974.4 (99.74 %)
10000 | 2 | (10) 5.398 min.  (10) 47.414 seg. 4.3 9919.3 (99.19 %)
10000 | 3 (8) 3.42 hs. (10) 53.73 min. 6.9 9874.4 (98.74 %)
20000 | 1 (10) 7.373 seg. (10) 0.419 seg. 1.5 19961.2 (99.80 %)
20000 | 2 | (10) 24.953 min.  (10) 1.119 min. 2.8 19908.2 (99.54 %)
20000 | 3 (1) 17.148 hs.* (10) 4.387 hs. 4.6 19830.0 (99.15%)

Tabla 7. Resultados computacionales sobre instancias Weakly Correlated.

n m CPLEX PSA niveles 12 iteracién
3000 | 1 | (10) 0.873 seg. _ (10) 0.072 seg. 1.4 2075.0 (99.16 %)
3000 | 2 | (10)2.396 min. (10) 15.087 seg. 3.0  2904.3 (96.81 %)
3000 | 3 (5) 3.27 hs. (10) 1.096 hs. 4.6 2852.0 (95.06 %)
5000 | 1 | (10) 1.486 seg.  (10) 0.079 seg. 1.3 4953.4 (99.06 %)
5000 | 2 | (10) 3.731 min. (10) 26.631 seg. 2.1  4900.3 (98.00 %)
5000 | 3 | (1)11.27hs5  (10) 1.945 hs. 3.7 4812.4 (96.24%)
10000 | T | (10) 3.274 seg.  (10) 0.159 seg. 1.0 9941.7 (99.41%)
10000 | 2 | (10) 8.342 min.  (10) 16.414 seg. 2.0  9845.8 (98.45 %)
10000 | 3 0) —— (10) 4.73 hs. 2.0  9814.4 (98.14%)
20000 | 1 | (10) 10.511 seg.  (10) 0.308 seg. 1.0 19868.9 (99.34 %)
20000 | 2 | (10) 14.235 min. (10) 20.749 seg. 1.2 19839.0 (99.19 %)
20000 | 3 0) —— (10) 10.39 hs. 1.6 19720.6 (98.60 %)

3Sobre las 9 instancias resueltas por CPLEX, PSA consumié, en promedio, 4.518 horas.

1El tiempo consumido por PSA sobre esta misma instancia fue de 7.29 horas.

5El tiempo consumido por PSA sobre esta misma instancia fue de 1.87 horas.
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En base a los resultados computacionales presentados en este capitulo, concluimos:

= PSA es mas veloz que CPLEX en absolutamente todas las instancias testeadas.

= Sobre todas las instancias testeadas con dos o maés restricciones, el consumo de memoria
de PSA resulté inferior al de CPLEX. Por ejemplo, si consideramos las pruebas realizadas
sobre instancias Weakly Correlated con 10000 variables y 3 restricciones, PSA consumié un
promedio de 160.46MB de memoria (consumo méximo), mientras que CPLEX agotd, en
todos los casos, los 2GB disponibles. Es decir, PSA utilizé menos del 8.023 % de la memoria
requerida por CPLEX.

= Fsinteresante destacar el nimero de variables a las que PSA le asigna un 1tinico valor entero
en la primera iteracion del nivel 6ptimo. En todos los casos, este porcentaje asciende a mas
del 94 %. Con lo cual, luego de la primera iteracién, PSA reduce el problema original a un
nuevo problema que contiene menos del 6 % de las variables. De aqui los buenos resultados
obtenidos tanto en tiempos de resolucién como en consumo de memoria.

En este caso, el balance del experimento es muy bueno. Logramos mejorar los tiempos y los
requerimientos de memoria de CPLEX sobre instancias de tamano grande no publicadas en
la literatura del area. Resta evaluar, en un futuro trabajo, el comportamiento del algoritmo
sobre instancias de mayor tamafno (experimento que no podemos hacer con la computadora
actual debido al alto consumo de memoria —sobre todo por parte de CPLEX— y a los tiempos de
resolucién requeridos). Por dltimo, también seria interesante medir la performance del algoritmo
aplicando, previamente, algiin sistema de pre-procesamiento.



Capitulo 6

Conclusiones

Al comenzar esta tesis, hicimos un repaso (en el capitulo 1) de los principales métodos empleados
en la resolucién de PPLE en forma exacta: el algoritmo de Planos de Corte y los métodos
Branch-and-Bound y Branch-and-Cut. En todos los casos, vimos que la estrategia para buscar
el 6ptimo consistia en modificar el dominio del problema —habiendo considerado previamente su
relajacién lineal— mediante el agregado de nuevas desigualdades lineales. En el caso del algoritmo
de Planos de Corte, las nuevas desigualdades eran utilizadas para separar soluciones fraccionarias
de la relajacién lineal y conservar el conjunto de soluciones factibles enteras del problema original.
En el caso de los métodos Branch-and-Bound y Branch-and-Cut, las desigualdades eran usadas
para particionar el dominio del problema y eliminar soluciones fraccionarias de la relajacion.

Si bien la estrategia que acabamos de comentar es la mas difundida entre los algoritmos exactos;
es una forma de trabajar que presenta una contra importante: anadir restricciones adicionales
a la formulacion del problema, implica un aumento del nimero de operaciones realizadas cada
vez que se debe resolver una nueva relajacién lineal. El método que presentamos en el capitulo 3
evita, justamente, esta dificultad. Al tratarse de un algoritmo que no actta sobre el dominio
del problema, “PSA” no requiere del agregado de nuevas restricciones lineales para su funcio-
namientos. Ademds, podemos destacar otras dos caracteristicas que también lo distinguen de
los algoritmos mencionados anteriormente: 1°) genera los candidatos a solucién en términos del
valor de la funcién; y 2°) reduce sistematicamente el nimero de variables del problema.

A partir de los experimentos computacionales presentados en los capitulos 4 y 5 (producto de
comparar el rendimiento de nuestro método contra el solver comercial CPLEX de IBM sobre
instancias de tipo UKP y MKP), concluimos:

= Sobre instancias con mas de 3000 variables y una tnica restriccién, PSA es més veloz que
CPLEX (en la mayoria de los casos) pero el consumo de memoria es mucho més elevado.

= Fn instancias con al menos dos restricciones y 3000 variables, PSA es més veloz que CPLEX
en absolutamente todas las instancias testeadas. Y, ademas, reduce considerablemente el
consumo de memoria.
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Con respecto a las instancias de tamano pequeno (estos datos no figuran en las tablas), no
obtuvimos buenos resultados al aplicar el método PSA. En general, a medida que disminuye el
ntumero de variables del problema y/o aumenta la cantidad de restricciones, la distancia entre
el nivel éptimo del problema entero y el de la relajacién lineal es cada vez mayor. Esto se
traduce en un aumento del niimero de niveles analizados por parte de nuestro algoritmo y, como
consecuencia, de la cantidad de operaciones realizadas. Para mejorar la performace del método
para esta clase de problemas, proponemos, para un futuro trabajo, implementar las siguientes
herramientas:

= Implementar cotas superiores —siempre que la situacién lo permita— para evitar el analisis
de los primeros niveles del problema.

= Agrupar todos los niveles que tengan el mismo rango de valores para todas las variables y
analizarlos en conjunto. De esa manera, podriamos aprovechar las operaciones realizadas
en un nivel para todos aquellos niveles que tengan las mismas caracteristicas (es el caso de
los niveles 31, 30 y 29, por un lado, y de los niveles 27, 26 y 25, por otro, en la instancia
resuelta de tipo UKP en el capitulo 3).

= Implementar sistemas de pre-procesamiento para reducir el tamano del problema original.

Con todo lo expresado, pensamos que este trabajo aporta un nuevo enfoque en la resolucién
de problemas de programacion lineal entera. Resta, para un futuro trabajo, evaluar el compor-
tamiento del algoritmo sobre instancias de mayor tamano (principalmente, con mayor nimero
de restricciones); como asi también, sobre otra clase de problemas. Por iltimo, también seria
interesante medir la performance del algoritmo aplicando, previamente, algin sistema de pre-
procesamiento.
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