
UNIVERSIDAD DE BUENOS AIRES

Facultad de Ciencias Exactas y Naturales

Departamento de Matemática

Tesis de Licenciatura

ALGORITMOS PROYECTIVOS DE SEPARACIÓN PARA PROBLEMAS
DE PROGRAMACIÓN LINEAL ENTERA

Federico Rodes

Directora: Paula Zabala
Co-directora: Isabel Méndez-Dı́az

Octubre de 2011

3

Agradecimientos

A mis directoras, Isabel y Paula, por la paciencia infinita durante estos dos años de trabajo.

A los jurados, Javier Echeverry y Guillermo Durán.

A Gabriel Acosta, Javier Marenco e Ignacio Ojea, por tomarse el tiempo de leer los primeros
bocetos de la tesis.

A toda mi familia (incluyendo a los adoptivos), sin la cual esto no hubiera sido posible.

A la familia Laborde por abrirme las puertas, y en especial a la señorita Cecilia por el aguante
(mutuo) incondicional.

A Bruno, Caro, Ceci Picchio, Cele, Croxy, Dardo, Dario, Delpe, Diego Castro, Droopy, El colo, El
Garza, El Pocho, Etchevarne, Eze Cura, Ciccioli, Florcita, Igna, Inés, Irina, JP, Juancito, Juan
Domingo, Lucas, Lucio, Luigi, Magui, Mariana, Maurette, Mauro, Nico Michan, Nico Sirolli,
Pedersen, René, Sasa, Tatiana, Topa, Valdettaro, Vicky, Zeque, más todos los que me olvido,
por hacer que el d́ıa a d́ıa en Ciudad fuera algo especial.

A Eduardo Palma, por las tardes y tardes ayudándome a corregir la tesis!

A todos los docentes y no docentes del departamento de matematica.

5

Resumen

En esta tesis nos concentraremos sobre Problemas de Programación Lineal Entera (PPLE) y,
en especial, sobre los métodos exactos utilizados para su resolución.

Los PPLE son problemas de optimización con las siguientes caracteŕısticas distintivas: la función
que se pretende maximizar (o minimizar) es una función lineal; el dominio sobre el que se debe
trabajar queda determinado por la intersección de un conjunto de desigualdades lineales; y, por
último, al menos una de las variables en juego debe estar obligada a adquirir valores enteros.
El interés por estudiar estas estructuras surge como consecuencia del gran número de situaciones
reales que permiten representar. T́ıpicamente, los modelos de programación lineal entera son
utilizados para describir procesos industriales y actividades del sector servicios con el fin de
minimizar los costos de producción y loǵıstica.

En cuanto a los métodos de resolución, hasta el momento no se conoce ningún algoritmo eficiente
–de tiempo polinomial– que permita hallar la solución óptima para cualquier instancia. Es decir,
los PPLE pertenecen a la clase NP-Hard [12]. Por dicho motivo, desde el surgimiento de esta rama
de la matemática en la década del 50’, se han ensayado distintas estrategias para abordar este tipo
de problemas. Podemos agruparlas en tres categorias: métodos exactos, métodos aproximados y
métodos heuŕısticos.

Métodos exactos: son procedimientos que garantizan la obtención del óptimo. Si bien la
pertenencia a la clase NP-Hard indica que el tiempo requerido para encontrar la solución
óptima puede resultar prohibitivo, los algoritmos exactos no son dejados de lado. La po-
sibilidad de resolver en forma exacta instancias cada vez más grandes aumenta debido al
desarrollo de mejores algoritmos y a la aparición de nuevas tecnoloǵıas.

Métodos aproximados: esta clase de procedimientos permite encontrar una solución
factible del problema (es decir, una solución que satisfaga el conjunto de restricciones li-
neales, aunque no sea la mejor) y, al mismo tiempo, estimar la brecha entre esa solución y la
solución óptima (certificado de optimalidad). Consumen menos recursos que los algoritmos
exactos.

Métodos heuŕısticos: son procedimientos que permiten hallar una solución factible del
problema, pero son incapaces de determinar cuán cerca está esa solución de la solución
óptima. Utilizan la menor cantidad de recursos y suelen ser una muy buena alternativa
para instancias donde los algoritmos exactos no son adecuados.

Dentro de la primera familia de métodos, las técnicas Branch-and-Bound y Branch-and-Cut –
basadas en la teoŕıa poliedral– han demostrado ser una de las mejores herramientas para tratar
este tipo de problemas. Una de las caracteŕısticas más destacables de estos algoritmos es su
flexibilidad, la cual les permite adaptarse a las distintas formulaciones y, de esa manera, explotar
caracteŕısticas propias de cada problema (ver por ejemplo: Problema del Viajante [1], Ruteo de
Veh́ıculos [14] y Orden Lineal [17]). En un contexto más general, podemos destacar a los solvers

6

CPLEX [20], XPRESS-MP [9] y GuroBi [16] como algunos de los paquetes académico-comerciales
que ofrecen las mejores implementaciones de las técnicas anteriormente citadas.

En esta tesis propondremos un nuevo método exacto que, utilizando proyecciones para deter-
minar la solución óptima, pueda ser aplicado sobre cualquier PPLE. Si bien la actual imple-
mentación del método puede considerarse un prototipo sobre el cual hay espacio para introducir
muchas mejoras, los resultados computacionales, comparados con aquellos obtenidos con pa-
quetes académico-comerciales, son altamente satisfactorios. La experiencia computacional nos
demuestra que la propuesta es válida y que aporta una nueva visión dentro de la clase de métodos
exactos.

El trabajo está organizado de la siguiente manera: en el caṕıtulo 1, introducimos los conceptos
básicos de la programación lineal entera y describimos los principales algoritmos usados para
su resolución. En el caṕıtulo 2, presentamos dos casos particulares de problemas de programa-
ción lineal entera: el Problema de la Mochila No Acotado (UKP) y el Problema de la Mochila
Multidimensional (MKP). En el caṕıtulo 3, motivamos el uso de proyecciones para determinar
soluciones enteras y proponemos nuestro algoritmo. El comportamiento del algoritmo es anali-
zado para los problemas UKP y MKP en los caṕıtulos 4 y 5 respectivamente. Finalmente, en el
caṕıtulo 6, formulamos nuestras conclusiones y futuras ĺıneas de trabajo.

Índice general

1. Conceptos Básicos 9

1.1. Programación Lineal y el Método Simplex . 9

1.2. Programación Lineal Entera . 11

1.2.1. Métodos de Resolución . 13

2. Problemas de la Mochila 19

2.1. Problema de la Mochila No Acotado (UKP) . 19

2.1.1. Propiedades del UKP . 20

2.1.2. Estado del problema . 22

2.2. Problema de la Mochila Multidimensional (MKP) 22

2.2.1. Estado del problema . 22

3. El Método PSA 25

3.1. Ideas Básicas y Motivación . 25

3.2. Modelado y Definiciones . 27

3.3. Propiedades . 29

3.4. El Método PSA-puro . 32

3.5. Validez del Algoritmo . 35

3.6. El Método PSA-mixto . 38

4. Problema de la Mochila No Acotado 41

4.1. Número de Operaciones . 47

4.2. Experimentos Computacionales . 48

4.2.1. Instancias Test . 48

7

8 ÍNDICE GENERAL

4.2.2. Resultados y Conclusiones . 48

5. Mochila Multidimensional 51

5.1. Detalles de Implementación . 53

5.2. Experimentos Computacionales . 54

5.2.1. Instancias Test . 54

5.2.2. Resultados y Conclusiones . 54

6. Conclusiones 57

Caṕıtulo 1

Conceptos Básicos

La finalidad de este caṕıtulo es hacer una repaso –sin entrar en detalles– de los principales
conceptos y herramientas asociados a programación lineal entera. El lector interesado puede
consultar [37] y [29].

Comenzaremos el caṕıtulo describiendo en qué consiste un problema de programación lineal y
cómo podemos hallar su solución a través del método Simplex. A continuación, explicaremos
qué es un problema de programación lineal entera y cuál es la estrategia de los algoritmos de
Planos de Corte, Branch-and-Bound y Branch-and-Cut utilizados para su resolución.

1.1. Programación Lineal y el Método Simplex

Un Problema de Programación Lineal (PPL) es un problema de optimización donde la función
que se pretende maximizar (o minimizar) es una función lineal y el dominio sobre el que se debe
trabajar queda determinado por la intersección de un conjunto de desigualdades e igualdades
lineales. Luego, cualquier PPL siempre puede ser reformulado de la siguiente manera (forma
Standard):

maximizar f = c1x1 + · · ·+ cnxn ←− función objetivo

sujeta a a11x1 + · · ·+ a1nxn ≤ b1

...

am1x1 + · · ·+ amnxn ≤ bm







conjunto de restricciones lineales

xi ≥ 0, xi ∈ R ∀i = 1, . . . , n

George B. Dantzig propuso el modelo de programación lineal en junio de 1947. Su intención
era representar, de una manera formal y unificada, un conjunto de problemas de planificación
surgidos a partir de actividades militares. Por aquella época, Dantzig formaba parte de un
proyecto de investigación destinado a mecanizar los procesos de planificación de la Fuerza Aérea
estadounidense, el proyecto SCOOP (Scientific Computation of Optimum Programs). De esta
manera, se dio inicio a una de las ramas de la matemática con mayor número de aplicaciones
prácticas.

9

10 CAPÍTULO 1. CONCEPTOS BÁSICOS

Pocos meses después de formular el modelo, Dantzig publicó un procedimiento para resolver
problemas de programación lineal: el método Simplex. La idea que hay detrás del Simplex es
muy sencilla, se basa en la siguiente propiedad: en todos los PPL –cualquiera sea el número de
variables que estos contengan–, si existe el óptimo, siempre se ubica en alguno de los vértices
de la región determinada por el conjunto de desigualdades lineales. Esta propiedad tiene dos
consecuencias: por un lado, reduce a un número finito la cantidad de puntos a analizar (a partir
de ahora sólo tenemos que comparar el valor de la función en los vértices de la región) y, por
otro lado, nos indica dónde debemos buscar la solución óptima.

El Simplex es un algoritmo que consta de dos etapas. En la primera, busca una solución factible
coincidente con alguno de los vértices de la región (si esto no fuese posible, el problema en
cuestión es infactible). En la etapa siguiente, y a partir de la solución hallada en la fase anterior, el
algoritmo pasa, en cada iteración, de un vértice del poliedro a otro vértice adyacente aumentando
el valor de la función. Una vez arribado al óptimo, como no puede alcanzar una ulterior mejora,
se detiene.

x1

x2

z

✲
✏✏✶

❄

Función objetivo.

❳❳❳❳❳❳❳③

Región determinada por el conjunto
de desigualdades lineales.

❅
❅■

(1) Supongamos que ésta es la solución
conseguida por el Simplex al término de
la primera etapa.

�
�✒

(2) Etapa dos: ésta es la solución al
cabo de la primera iteración.

✁
✁
✁

✁☛

(3) La solución óptima se al-
canza en la segunda iteración.

Figura 1.1: el método Simplex.

Si bien la cantidad de vértices de un poliedro es finita y, por lo tanto, el algoritmo de Dantzig
siempre termina después de un número finito de pasos, la cantidad de iteraciones puede resultar
muy grande. En 1972, Klee y Minty [25] encontraron ejemplos de n variables y 2n restricciones
para los cuales el Simplex necesita 2n iteraciones para hallar la solución. Demostraron, de esta
manera, que no se trata de un algoritmo polinomial (si bien en la práctica su performance es
muy buena). Posteriormente, en 1979, Khachiyan [23] diseñó un algoritmo que resuelve todos

1.2. PROGRAMACIÓN LINEAL ENTERA 11

los PPL en tiempo polinomial; aunque en la práctica resulta ser más lento que el Simplex. Kar-
markar [22], en 1985, combinó las caracteŕısticas de ambos métodos para crear un algoritmo
eficiente y de tiempo polinomial, dando origen a la familia de algoritmos de “Punto Interior”.
En la actualidad, todos los paquetes académico-comerciales cuentan con implementaciones muy
eficientes tanto de Simplex como de alguna variante de Punto Interior.

1.2. Programación Lineal Entera

Después del trabajo inicial de Dantzig, y a medida que empezaron a surgir cada vez más apli-
caciones (sobre todo fuera del ámbito militar), también comenzaron a aparecer extensiones de
la programación lineal. Los Problemas de Programación Lineal Entera (PPLE) son problemas
de programación lineal en los cuales, al menos una de las variables incluidas en el modelo,
debe adquirir valores enteros. Mediante esta nueva estructura se pueden representar muchas
situaciones reales que hasta ese momento no pod́ıan ser abordadas por modelos de programa-
ción lineal. Por ejemplo, situaciones donde se involucran entidades indivisibles –como aviones,
barcos o personas– en las que no tendŕıa sentido dar como respuesta una solución con valores
fraccionarios.

Dentro de la programación lineal entera se distinguen tres categoŕıas de problemas; se agrupan
de acuerdo a la cantidad de variables enteras que contengan y a la libertad que se les otorga a
esas variables.

1. Problemas enteros puros: se trata de PPL donde todas las variables deben asumir
valores enteros. Su formulación es la siguiente:

maximizar f = c1x1 + · · ·+ cnxn

sujeta a a11x1 + · · ·+ a1nxn ≤ b1
...

am1x1 + · · ·+ amnxn ≤ bm

xi ≥ 0, xi ∈ Z, ∀i = 1, . . . , n

2. Problemas enteros binarios: son PPL en los que todas las variables deben ser enteras
y, además, sólo pueden valer 0 o 1. Su formulación es la siguiente:

maximizar f = c1x1 + · · ·+ cnxn

sujeta a a11x1 + · · ·+ a1nxn ≤ b1
...

am1x1 + · · ·+ amnxn ≤ bm

xi ≥ 0, xi ∈ {0, 1}, ∀i = 1, . . . , n

12 CAPÍTULO 1. CONCEPTOS BÁSICOS

3. Problemas enteros mixtos: se trata de PPL en los cuales un grupo de variables –no
todas– deben asumir valores enteros. Su formulación es la siguiente:

maximizar f = c1x1 + · · ·+ cnxn

sujeta a a11x1 + · · ·+ a1nxn ≤ b1
...

am1x1 + · · ·+ amnxn ≤ bm

xi ≥ 0, xi ∈ Z si i ∈ I y xi ∈ R si i ∈ R, I∪R = {1, . . . , n}

donde I representa el conjunto de ı́ndices de las variables enteras y R el conjunto de ı́ndices
de las variables reales.

La diferencia sustancial entre un problema de programación lineal y uno de programación lineal
entera es que, salvo casos particulares, hasta el momento no se conoce ningún algoritmo capaz
de resolver la segunda clase de problemas en tiempo polinomial. Más espećıficamente, los PPLE
son de tipo NP-Hard [12].

El primer intento razonable por atacar un PPLE consiste en resolver el PPL asociado (que se
obtiene de reemplazar la condición de integridad “xi ∈ Z” por la condición relajada “xi ∈ R”), y,
a continuación, redondear la solución obtenida a una solución entera. Este procedimiento motiva
la siguiente definición.

Definición 1.2.1 Dado un PPLE, llamaremos relajación lineal al PPL que resulta de eliminar
la condición de integridad de todas aquellas variables que deban asumir valores enteros.

x1

x2

z

Ahora debemos buscar la solución óptima entre to-
dos los puntos que cumplan con el conjunto de res-
tricciones y, además, satisfagan las condiciones de
integridad.

❄

(1) Utilizamos la misma función objetivo.

✻
(2) Extendemos el dominio agregando todas
las soluciones fraccionarias que satisfagan el
conjunto de restricciones del problema entero.

PROBLEMA ENTERO ¿CÓMO CONSTRUIMOS LA RELAJACIÓN LINEAL?

Figura 1.2: problema entero y su relajación lineal.

1.2. PROGRAMACIÓN LINEAL ENTERA 13

Si bien en algunos casos es posible obtener la solución óptima del problema entero redondeando
la solución de la relajación lineal, en general esta propiedad no es válida. Habitualmente este
procedimiento arroja soluciones sub-óptimas o infactibles. Sin embargo, dada la estrecha relación
que existe entre ambos problemas, siempre podremos extraer la siguiente información al resolver
la relajación lineal del PPLE:

1. Si la relajación lineal es infactible, como el dominio del problema entero está incluido en
el de la relajación, esto implica que el problema entero también es infactible.

2. Si el óptimo de la relajación lineal se alcanza en un punto de coordenadas enteras, como
el dominio del problema entero está incluido en el de la relajación lineal y la función es
la misma en ambos casos, entonces, la solución hallada resulta óptima para el problema
entero.

3. Si el óptimo de la relajación lineal tiene al menos una coordenada fraccionaria que debeŕıa
ser entera. En este caso, como el valor óptimo de la función objetivo del problema entero
siempre es menor o igual que el valor óptimo de la función objetivo de la relajación lineal –
utilizando la justificación de item anterior–, la relajación lineal nos provee una cota superior
para el valor óptimo de la función objetivo del problema entero. Esta cota es de mucha
utilidad. Si tuviéramos una solución factible del problema entero cuyo valor objetivo fuera
el valor de la cota superior, entonces, podŕıamos concluir que se trata de una solución
óptima. De lo contrario, al menos nos permitiŕıa estimar cuán lejos está nuestra solución
de la solución óptima.

1.2.1. Métodos de Resolución

La mayoŕıa de los métodos de resolución exacta de un modelo de programación lineal entera se
encuadran en alguno de los siguientes esquemas:

Método de Planos de Corte

La estrategia de un algoritmo de Planos de Corte consiste en modificar el dominio de la rela-
jación lineal asociada al problema entero hasta obtener una solución óptima que satisfaga las
condiciones de integridad requeridas. Para llevar a cabo esta operación, se utilizan una serie de
desigualdades lineales, llamadas “planos de corte”, que, al ser agregadas a la formulación del
problema, permiten eliminar soluciones fraccionarias de la relajación y conservar el conjunto de
soluciones enteras del problema original.

El esquema general del algoritmo comienza calculando la solución óptima de la relajación li-
neal asociada al problema entero. Si la solución óptima resulta entera, el algoritmo se detiene.
En caso contrario, si al menos una de las variables que deb́ıa ser entera resultó fraccionaria, se
busca identificar una desigualdad lineal que separe la actual solución del conjunto de soluciones
factibles enteras. Al agregar esta desigualdad a la formulación, se obtiene una nueva relajación
del problema –más ajustada– sobre la cual puede repetirse el procedimiento. El éxito de la me-
todoloǵıa depende, en gran medida, de la posibilidad y la eficiencia de encontrar planos de corte
que puedan ser agregados a la formulación para separar soluciones fraccionarias. Es decir, de
disponer de un buen algoritmo de separación.

14 CAPÍTULO 1. CONCEPTOS BÁSICOS

✲
Cada punto marcado sobre el
dominio representa una solu-
ción factible de coordenadas
enteras.

❄

Curva de nivel donde se in-
dica el sentido de crecimiento
de la función.

Pq

Pq

X̄real1

❅
❅
❅
❅
❅
❅
❅
❅❘

(1) En un primer paso, el algoritmo calcula
el óptimo de la relajación lineal. En este
caso, obtiene una solución fraccionaria.

❄

X̄real1

X̄real2

(2) Identifica una restricción que ex-
cluye a la solución anterior y la agre-
ga a la formulación del problema.

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇❇▼

(3) Vuelve a calcular el óptimo de
la relajación lineal. Una vez más, se
alcanza en una solución fraccionaria.

❳❳❳③
(4) Identifica una nueva res-
tricción que deje afuera a la
última solución fraccionaria.

❇
❇
❇
❇▼

X̄real1

X̄real2

X̄entera

(5) Esta vez, el óptimo de la relajación lineal
tiene coordenadas enteras. Fin del algoritmo.

Figura 1.3: algoritmo de Planos de Corte.

Los planos de corte pueden ser generados bajo dos enfoques:

Con herramientas generales aplicables a cualquier PPLE.

A comienzos de los 60, Gomory [15] desarrolló un procedimiento de aplicación general
para producir desigualdades válidas que cortan la solución óptima de la relajación lineal.
En cada iteración, la desigualdad es obtenida a partir de la solución fraccionaria que
provee la relajación lineal y utilizando exclusivamente argumentos de integrabilidad. Dicho
algoritmo es convergente bajo ciertas condiciones. Si bien hasta no hace mucho tiempo no
era un algoritmo usado en la práctica –por las dificultades numéricas que envuelve– hoy
en d́ıa existen implementaciones muy eficientes en varios paquetes académico-comerciales.
Dentro de este enfoque también están incluidos los cortes disyuntivos, cortes cover y cortes
flow cover.

Un estudio más espećıfico del problema ayuda a obtener mejores procedimientos. Este es
el sentido del próximo abordaje.

1.2. PROGRAMACIÓN LINEAL ENTERA 15

Explotando la estructura particular del problema.

Hay propiedades inherentes a cada problema que pueden ayudar a identificar mejores
planos de corte. Un trabajo pionero en esta dirección fue el de Dantzig et al [8], en 1954,
para el Problema del Viajante de Comercio. La técnica empleada permitió resolver una
instancia de 49 ciudades (grande para la época) y sentó las bases de lo que hoy en d́ıa es
una de las herramientas más efectivas: las técnicas poliedrales.

Una propiedad deseada para un plano de corte es que elimine la mayor cantidad posible
de soluciones no enteras del poliedro asociado a la relajación lineal. Un estudio poliedral
del conjunto de soluciones factibles enteras permite disponer de buenos planos de corte.
Los primeros estudios poliedrales fueron realizados a principios de la década de los 70 para
el Problema de Conjunto Independiente [30] y el Problema del Viajante [19]. Estos trabajos
significaron un importante progreso en la resolución de dichos problemas.

Por supuesto, la aplicación de esta clase de cortes está limitada al problema particular.
Sin embargo, algunas desigualdades que han sido obtenidas a partir de problemas espećıfi-
cos, posteriormente pudieron ser empleadas en situaciones más complejas. Desigualdades
válidas para el Problema de la Mochila [29], y generalizaciones de las mismas, están in-
clúıdas como planos de corte en varios de los más importantes paquetes comerciales, como
por ejemplo, CPLEX [20].

Método Branch-and-Bound

El método Branch-and-Bound es el resultado de una investigación financiada por British Pe-
troleum para encontrar soluciones enteras a PPL. El método fue publicado por Ailsa Land y
Alison Doig en 1960 [26, 21].

La estrategia de un algoritmo Branch-and-Bound consiste en particionar el espacio de soluciones
con el objetivo de facilitar la búsqueda del óptimo. Al aplicar este concepto recursivamente,
se genera un árbol cuya ráız corresponde al problema original y sus nodos tienen asociados
subproblemas que resultan de la división en partes del espacio de búsqueda. Debido al tamaño
que puede alcanzar el árbol, es esencial disponer de herramientas eficientes que permitan eliminar
algunas de sus ramas. A cada nodo del árbol se le asocia la relajación lineal del problema en el
subespacio de búsqueda correspondiente al nodo. En el caso que la solución del problema relajado
satisfaga los requerimientos originales de integralidad, ésta es la solución buscada en esa región
del espacio. Si el subproblema relajado no tiene solución, o si su valor óptimo es peor que la mejor
solución entera conocida hasta el momento, no hay necesidad de seguir explorando el subconjunto
de soluciones asociado a ese nodo. Por lo tanto, en cualquiera de los casos mencionados, la rama
del árbol que se genera a partir del mismo puede ser podada (proceso de bound). Por el contrario,
si al menos una variable de la solución óptima relajada que debe ser entera resultó fraccionaria,
y si el valor óptimo de la relajación es mayor que la mejor solución entera que se dispone, no
hay razón para detener la búsqueda en esa región del espacio. Para continuar con la misma, se
deben generar nuevos nodos (proceso de branching).

El Branch-and-Bound es el algoritmo tradicional para resolver PPLE. La implementación más
difundida, y que se utiliza en la mayoŕıa de los paquetes comerciales, emplea la solución de la
relajación lineal para el proceso de branching y fundamentalmente para el de bound.

16 CAPÍTULO 1. CONCEPTOS BÁSICOS

El esquema básico del algoritmo es el siguiente:

Paso 1-Inicialización: Crear una lista L con el nodo ráız y la relajación lineal del problema.
Sea Zsup = −∞.

Paso 2-Elección del nodo: Si L esta vaćıa, el algoritmo termina. Si no, elegir un nodo de
L y eliminarlo de la lista.

Paso 3-Bound: Resolver la relajación lineal asociada al nodo. Si no es factible, volver al
paso 2. Sea X̄ la solución óptima y Z̄ el valor de la función objetivo.

• Si X̄ es solución factible del problema, sea Zsup = max(Zsup, Z̄). Volver al paso 2.

• Si Z̄ ≤ Zsup, en esa rama no existe ninguna solución factible mejor que la actual.
Volver al paso 2.

Paso 4-Branching: Generar subproblemas del nodo actual y agregarlos a la lista L. Volver
al paso 2.

En este esquema básico no está especificada la regla a seguir para la elección de un nodo de la
lista ni el proceso de generación de los subproblemas.

Con respecto a la elección del nodo, las opciones más usuales para los algoritmos enumerativos
son las siguientes: Búsqueda en Profundidad (último nodo de la lista), Búsqueda a lo Ancho
(primer nodo de la lista) oMejor Cota Primero (el nodo con mejor valor óptimo de la relajación).

Para generar los subproblemas suele usarse la clásica dicotomı́a en una variable xi. Del conjunto
de variables fraccionarias de la solución óptima de la relajación, X̄, que deb́ıan ser enteras, puede
elegirse xi como la variable tal que:

x̄i tiene su parte fraccionaria más cercana a 1/2.

x̄i tiene su parte fraccionaria más cercana a 0.

x̄i tiene su parte fraccionaria más cercana a 1.

tiene el mayor coeficiente en la función objetivo.

cumple alguna propiedad espećıfica del problema.

Los dos nuevos nodos que se generan, tienen asociada la región del espacio del nodo padre con
el agregado de xi ≤ ⌊x̄i⌋ o xi ≥ ⌊x̄i⌋+1 respectivamente. Cualquier combinación de estas reglas
da origen a un árbol distinto. En [27] se realiza un análisis muy detallado sobre la performance
de las distintas estrategias, pero no se llega a una respuesta concluyente sobre la supremaćıa de
una sobre la otra aplicable a cualquier problema.

1.2. PROGRAMACIÓN LINEAL ENTERA 17

Método Branch-and-Cut

A comienzos de los 80, Crowder et al [4] tuvieron un gran éxito al aplicar una metodoloǵıa mixta
para resolver problemas binarios. Trabajaron con un algoritmo Branch-and-Bound pero, antes
de comenzar la primera etapa de branching, aplicaron un algoritmo de Planos de Corte a la
relajación lineal asociada a la ráız del árbol. De esta manera lograron mejorar la cota superior
brindada por la relajación lineal y eso disminuyó el tamaño del árbol explorado. A mediados
de la misma década aparecieron los primeros trabajos que extendieron la aplicación de planos
de corte a otros nodos del árbol; Grötschel et al [18] presentan este enfoque en el Problema de
Ordenamiento Lineal y Padberg et al [31] en el Problema del Viajante de Comercio (donde fue
introducido el término “Branch-and-Cut”).

El esquema básico del algoritmo es:

Paso 1-Inicialización: Crear una lista L con el nodo ráız y la relajación lineal del problema.
Sea Zsup = −∞.

Paso 2-Elección de nodo: Si L esta vaćıa, el algoritmo termina. Si no, elegir un nodo de
L y eliminarlo de la lista.

Paso 3-Bound: Resolver la relajación lineal asociada al nodo. Si no es factible, volver al
paso 2. Sea X̄ la solución óptima y Z̄ el valor de la función objetivo.

• Si X̄ es solución factible del problema, sea Zsup = max(Zsup, Z̄). Volver al paso 2.

• Si Z̄ ≤ Zsup, no existe ninguna solución factible mejor que la actual. Volver al paso 2.

Paso 4-Branching vs Cutting: Decidir si se buscarán planos de corte.

No: ir al paso 6 (Branching). Si: ir al paso 5 (Separación).

Paso 5-Separación: Buscar desigualdades válidas violadas por X̄. Si no se encuentran, ir
al paso 6 (Branch). Si se encuentran, agregarlas a la formulación e ir a paso 3 (Bound).

Paso 6-Branching: Generar subproblemas del nodo actual y agregarlos a la lista L. Volver
al paso 2.

En la descripción del algoritmo quedan muchos puntos sin especificar, por ejemplo: ¿cuántas
iteraciones realizar del algoritmo de Planos de Corte?, ¿cuántos cortes agregar por iteración?,
¿qué hacer con los cortes generados en los distintos nodos del árbol? La performance del algoritmo
depende de estos factores y de muchos otros. En la práctica, lograr un equilibrio entre ellos no
es tarea fácil y depende, en gran medida, del problema particular que se quiere resolver.

18 CAPÍTULO 1. CONCEPTOS BÁSICOS

Por último, vale la pena señalar dos caracteŕısticas que pueden ser explotadas al utilizar esta
técnica.

Usar planos de corte que, a pesar de ser generados en un nodo del árbol, sean válidos
para todo el árbol. Esto permite aprovechar el trabajo de identificación de cortes y, de
esa manera, disminuir los requerimientos de memoria necesario para cada nodo. En la
práctica, se dispone de un espacio de memoria común “pool de cortes” donde se almacenan
las desigualdades y a las que se hace referencia desde cada subproblema.

Realizar un estudio de la estructura poliedral del problema para generar desigualdes válidas
espećıficas de cada situación.

Los algoritmos descriptos en este caṕıtulo se aplican actualmente en la resolución de PPLE y
están presentes en la mayoŕıa de los paquetes comerciales. A su vez, continuamente aparecen en
la literatura del área, trabajos que aplican estas técnicas enriqueciendo la implementación con
desigualdades válidas provenientes de estudios poliedrales espećıficos del conjunto de soluciones
factibles.

Caṕıtulo 2

Problemas de la Mochila

Dentro de los PPLE se destacan modelos conocidos bajo el nombre genérico de Problemas de
la Mochila. Si bien tienen importancia propia, ya que surgen de aplicaciones en la vida real y
como subproblemas de situaciones más complejas, también juegan un rol clave en la derivación
de propiedades que luego pueden ser extendidas a problemas más generales. La literatura al
respecto es muy vasta, lo que demuestra la importancia de estos problemas en el ámbito de la
programación lineal entera. De aqúı la necesidad de poder resolverlos eficientemente y es por
eso que los utilizaremos para evaluar la performance de nuestro algoritmo. El objetivo de este
caṕıtulo es presentar estos modelos y algunas propiedades útiles que serán usadas más adelante.
Una muy buena presentación de las distintas clases de problemas mochila, junto con resultados
computacionales de la aplicación de diversas técnicas, puede ser consultada en [28] y [24].

2.1. Problema de la Mochila No Acotado (UKP)

Supongamos que disponemos de una mochila con capacidad de carga “c” y de una cantidad
no acotada de objetos, de “n” clases distintas, para llenarla. Todos los objetos de la clase “i”
poseen un valor (profit) “pi” y un peso (weight) “wi”. El problema consiste en decidir cuántos
objetos poner de cada tipo para maximizar el valor de la carga sin sobrepasar la capacidad de
la mochila. Su formulación es la siguiente:

maximizar f =

n∑

i=1

pixi ←− Valor de la carga.

sujeta a
n∑

i=1

wixi ≤ c ←− Restricción de la capacidad de la mochila.

xi ≥ 0, xi ∈ Z, i = 1, . . . , n ←− Los objetos no se pueden fraccionar.

donde la variable xi representa la cantidad de objetos de clase i que cargamos en la mochi-
la. Además, estamos suponiendo que todos los coeficientes del problema son números enteros
positivos.

El UKP pertenece a la clase de problemas NP-Hard [12], sin embargo, puede resolverse en
tiempo pseudo-polinomial –O(cn)– mediante Programación Dinámica [24]. Sus aplicaciones más
reconocidas se describen a continuación.

19

20 CAPÍTULO 2. PROBLEMAS DE LA MOCHILA

Gestión Financiera: se desea invertir una cantidad de dinero c –parcial o totalmente– en n
tipos de acciones. Cada acción tiene un costo wi y una retribución esperada pi. El problema
que se plantea es cómo elegir la mejor inversión posible.

Embarque de Cargas: dado un conjunto de objetos, se debe elegir un subconjunto de ellos
para cargar un avión, un barco, o un contenedor, maximizando el valor de la carga sin
sobrepasar la capacidad.

Cutting Stock: a partir de bobinas de cartón de ancho c se deben obtener n bobinas de
tamaños distintos. Cada bobina i tiene ancho wi y una demanda di. El problema consiste
en decidir cómo cortar las bobinas madre (patrón de corte) de manera tal de minimizar el
desperdicio. La caracterización de un patrón de corte responde a un problema mochila.

2.1.1. Propiedades del UKP

Relajación lineal

La relajación lineal del UKP
(

que notaremos “C(UKP)”
)

es, como dijimos, el PPL que

resulta al eliminar las restricciones de integridad del modelo entero:

maximizar f =
n∑

i=1

pixi

sujeta a
n∑

i=1

wixi ≤ c

xi ≥ 0, xi ∈ R, i = 1, . . . , n ←− Quitamos la restricción de integridad,

ahora los objetos se pueden fraccionar.

Proposición 2.1.1 La solución óptima, X̄, del C(UKP) es

X̄ =
(

0, ..., 0,
c

wj

, 0, ..., 0
)

, donde j es la clase más valiosa:
pj
wj

≥
pi
wi

∀ i 6= j

↑
j-ésima coordenada

Demostración:

Primero busquemos una cota superior para el valor de la función objetivo del C(UKP).

Si X = (x1, ..., xn) es una solución factible

⇒ f(X) =

n∑

i=1

pixi =

n∑

i=1

pi
wi

wixi ≤
n∑

i=1

pj
wj

wixi =
pj
wj

n∑

i=1

wixi ≤
pj
wj

c.

↑
X factible

Luego, como nuestro candidato, X̄, realiza la cota
(

f(X̄) =
c

wj

pj

)

y es factible, conclui-

mos que es óptimo �

2.1. PROBLEMA DE LA MOCHILA NO ACOTADO (UKP) 21

Cotas superiores

Sean “f(UKP)” el valor óptimo de la función objetivo del UKP y “f(C(UKP))” el valor
óptimo de la función objetivo del C(UKP). Busquemos, usando la relajación lineal, cotas
superiores para f(UKP).

Supongamos, para simplificar la notación, que las clases están numeradas cumpliendo:

p1
w1

≥
p2
w2

≥ · · · ≥
pn
wn

.

1. Como f(UKP) ≤ f(C(UKP)) y f(UKP) es un número entero –tanto pi como xi son
valores enteros–, entonces, la primera cota se obtiene de truncar el valor f(C(UKP)):

X̄ =
(c

w1

, 0, . . . , 0
)

︸ ︷︷ ︸

óptimo de la relajación

⇒ f(C(UKP)) = f(X̄) =
c

w1

p1
︸ ︷︷ ︸

evaluamos

⇒ U1 = ⌊f(C(UKP))⌋ =
⌊ c

w1

p1

⌋

︸ ︷︷ ︸

truncamos

.

2. Imponiendo la condición “x̄1 ≤
⌊ c

w1

⌋

”, que debe valer para todas las soluciones fac-

tibles del problema entero, la solución continua resulta:

X̄ =
(⌊ c

w1

⌋

,
c̄

w2

, 0, . . . , 0
)

, donde c̄ = c−
⌊ c

w1

⌋

.

Calculando f(X̄) y tomando parte entera, conseguimos la segunda cota superior:

f(X̄) =
⌊ c

w1

⌋

p1 +
c̄

w2

p2 ⇒ U2 =
⌊ c

w1

⌋

p1+
⌊ c̄

w2

p2

⌋

.

Otras cotas más ajustadas –propuestas por Martello y Toth [28]– son las siguientes:

3. U3 = max(A,B), donde

A = z′ +
⌊

c′
p3
w3

⌋

B = z′ +
⌊

p2 − (w2 − c′)
p1
w1

⌋

z′ =
⌊ c

w1

⌋

p1 +
⌊ c̄

w2

⌋

p2

c′ = c̄ (mod w2)

4. U4 = max(A,C), donde

A = z′ +
⌊

c′
p3
w3

⌋

C = z′ +

⌊ (

c′ +
⌈(w2 − c′)

w1

⌉

w1

) p2
w2

−
⌈(w2 − c′)

w1

⌉

p1

⌋

z′ =
⌊ c

w1

⌋

p1 +
⌊ c̄

w2

⌋

p2

c′ = c̄ (mod w2)

Se puede demostrar [28] que U4 ≤ U3 ≤ U2 ≤ U1.

22 CAPÍTULO 2. PROBLEMAS DE LA MOCHILA

2.1.2. Estado del problema

El UKP es un problema sumamente estudiado en la literatura, se conocen algoritmos muy efi-
cientes que permiten resolver instancias de decenas de miles de variables en pocos segundos [28].
En la mayoŕıa de los casos, estos métodos realizan una primera fase de “pre-solve” que consiste
en: 1) reducir el problema original a uno mucho más pequeño al que denominan core pro-
blem; 2) sobre el core problem aplican algún criterio de dominancia para simplificarlo aún más.
Una vez finalizada esta primera etapa, buscan la solución del problema resultante empleando
un algoritmo de búsqueda como puede ser Branch-and-Bound o Programación Dinámica.

2.2. Problema de la Mochila Multidimensional (MKP)

Consideremos ahora una mochila con “m” capacidades: “c1, . . . , cm” (peso, volumen, etc.) y
exactamente “n” objetos para llenarla. Cada objeto “i” tiene un valor “pi” y “m” caracteŕısticas:
“wi1, . . . , wim” (peso, volumen, etc.). El problema consiste en decidir qué objetos poner en la
mochila, con el fin de maximizar el valor de la carga sin sobrepasar ninguna de sus capacidades.
Formulación:

maximizar f =
n∑

i=1

pixi

sujeta a
n∑

i=1

wijxi ≤ cj , j = 1, 2, . . . ,m

xi ∈ {0, 1} ∀i = 1, . . . , n

donde xi es una variable binaria que vale 1 si el objeto i es cargado en la mochila y 0 si no.
Además, estamos suponiendo que todos los coeficientes del problema son enteros positivos.

El MKP es el modelo más general con el que nos podemos enfrentar dentro de la familia de pro-
blemas mochila con variables binarias. Entre sus aplicaciones más reconocidas figuran: Inversión
de Capital, Selección de Proyectos, Cutting Stock y Embarque de Cargas.

2.2.1. Estado del problema

La descripción más detallada acerca del estado del MKP la encontramos en el art́ıculo de Frévi-
lle [10]. Este art́ıculo señala al Branch-and-Cut (bajo una primera fase de pre-procesamiento)
como el método exacto más eficiente a la hora de resolver instancias del MKP, y a los sol-
vers comerciales CPLEX [20] y XPRESS-MP [9] como algunas de las mejores implementaciones
disponibles.

En el trabajo de Cherbaka [5], se puede encontrar una descripción detallada de los distintos
métodos exactos utilizados en la resolución del MKP junto con el tamaño de las instancias
testeadas por parte de cada uno de los autores. A continuación, copiamos el cuadro donde se
resume esta última información y una breve descripción de cada uno de los métodos.

2.2. PROBLEMA DE LA MOCHILA MULTIDIMENSIONAL (MKP) 23

Tabla 1. Tamaño de las instancias resueltas de tipo MKP en la literatura [5].

Rango de variables Rango de restricciones
Autores min. max. min. max.

Balas (1965) 40 22
Soyster and Slivka (1977) 50 400 5 10
Shih (1979) 30 90 5
Gavish and Pirkul (1985) 20 500 3 5
Gabrel and Minoux (2002) 180 60

Balas [2] fue uno de los primeros en desarrollar un enfoque exacto para el MKP. Presentó un
algoritmo de tipo Branch-and-Bound en el cual todas las variables son inicializadas en 0 y se
incrementan a 1 basándose en un algoritmo pseudo-dual. A cada paso, el algoritmo identifica
aquellas ramas que conducen a problemas infactibles y las poda. Un aspecto destacable del
algoritmo es que no requiere de la solución de la relajación lineal para su funcionamiento.

Soyster y Slivka [34] proporcionaron un algoritmo que mejora el número de iteraciones del
procedimiento propuesto por Balas. Este enfoque forma subproblemas usando la solución de la
relajación lineal y luego resuelve cada subproblema utilizando el algoritmo de Balas. El tamaño
de los subproblemas depende del número de restricciones del problema original, por lo que este
algoritmo se comporta bien únicamente sobre modelos con pocas restricciones.

Shih [33] diseñó un procedimiento de tipo Branch-and-Bound definiendo sus propias estrategias
de poda y ramificación. La cota superior correspondiente al nodo se calcula teniendo en cuenta
cada uno de los problemas mochila de forma independiente y luego resolviendo la relajación lineal
de cada uno de ellos. La más pequeña de estas cotas se utiliza como ĺımite superior del nodo
en cuestión. Para definir la estrategia de branching se utiliza la solución óptima del problema
mochila cuya cota superior resultó mı́nima. Sobre problemas con un máximo de 90 variables y
5 restricciones, el método demostró ser superior al algoritmo de Balas en relación al número de
iteraciones y a los tiempos de resolución.

Gavish y Pirkul [13] desarrollaron distintos tipos de relajaciones lineales (Lagrangeana, surrogate
y composite) y reglas de branching que luego implementaron en un esquema de tipo Branch-
and-Bound. Como resultado de esto, obtuvieron un algoritmo que supera al propuesto por Shih
en lo que respecta al tiempo de CPU y al tamaño de las instancias que pudieron ser resueltas.

Gabrel y Minoux [11] trabajaron sobre un procedimiento de separación para identificar planos
de corte que puedan ser aplicados en la resolución del MKP. En relación a los experimentos
computacionales, mostraron una reducción en los tiempos de CPU –en comparación a la versión
CPLEX 6.5– sobre instancias de hasta 180 variables y 60 restricciones.

Por último, el libro de Hans Kellerer [24] es otra buena referencia. Se trata de una recopilación
de las publicaciones realizadas hasta el 2004 sobre los distintos problemas de tipo mochila. En
palabras del autor: “La dificultad del MKP se muestra en el hecho de que el tamaño de las ins-
tancias que pueden ser resueltas en forma exacta está acotado a 500 variables y 10 restricciones.
(. . .) Desde un punto de vista práctico, hay que tener en cuenta que la mayoŕıa de los casos
involucran sólo un número pequeño de restricciones (m < 10) pero posiblemente un número
grande de variables.”

Caṕıtulo 3

El Método PSA

En el caṕıtulo 1, llevamos a cabo un repaso de los principales algoritmos empleados en la reso-
lución de PPLE. En todos los casos, vimos que la estrategia para buscar el óptimo consist́ıa en
modificar el dominio del problema –habiendo considerado previamente su relajación– median-
te el agregado de nuevas desigualdades lineales. En el caso del algoritmo de Planos de Corte,
las nuevas desigualdades eran utilizadas para separar soluciones fraccionarias de la relajación
y conservar el conjunto de soluciones enteras factibles del problema original. En el caso de los
métodos Branch-and-Bound y Branch-and-Cut, las desigualdades eran usadas para particionar
el dominio del problema y eliminar soluciones fraccionarias de la relajación. Facilitando, de esa
manera, la búsqueda del óptimo. Con un enfoque distinto, en este caṕıtulo vamos a presentar un
algoritmo que no altera el dominio del problema y, como consecuencia, evita agregar restricciones
adicionales a la formulación.

3.1. Ideas Básicas y Motivación

Consideremos un problema general de optimización entera-pura. Supongamos que la función a
maximizar “f” es una función continua y que el dominio sobre el que debemos trabajar es un
conjunto compacto y convexo. Podemos pensar en la situación de la figura 3.1.

x1 x2

z

�
�

�
�

�✠

Óptimo entero.Conjunto de soluciones
factibles enteras. ❅

❅
❅
❅❅❘

Figura 3.1: presentación del problema.

25

26 CAPÍTULO 3. EL MÉTODO PSA

Nuestra propuesta para encontrar la solución entera del problema planteado es la siguientes.
Supongamos que a partir de la función f fuéramos capaces de calcular las siguientes proyecciones:

x1 x2

z

7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10

Figura 3.2: proyecciones.

Llamaremos “proyección sobre la variable x1”, y la notaremos “PX1”, a la sombra que proyecta
la función sobre el plano x1z al ser iluminada desde la derecha. De la misma manera, llamaremos
“proyección sobre la variable x2”, “PX2”, a la sombra que proyecta la función sobre el plano x2z
al ser iluminada desde la izquierda (figura 3.2). Podemos pensar que estas proyecciones son el
resultado de aplastar el gráfico de la función contra esos planos.

Luego, si tuviéramos que proponer un candidato para la solución entera del problema, usando
exclusivamente la información que aportan PX1 y PX2 , la opción más razonable seŕıa elegir
el valor entero 5 para la primera coordenada de nuestro candidato y el valor entero 8 para la
segunda coordenada. Esta elección está basada en que, para esos valores enteros, las proyecciones
alcanzan su mayor altura. De esta manera, el candidato que resulta de examinar las proyecciones
–el punto (5,8)– coincide con la solución óptima del problema.

Si bien el ejemplo que acabamos de exponer es muy limitado (posee tan solo dos variables), es
suficiente para mostrar la utilidad que podŕıan llegar a tener las proyecciones como herramientas
para localizar soluciones enteras. El algoritmo que presentaremos al final de este caṕıtulo no es
otra cosa que una generalización –más sofisticada– del procedimiento que acabamos de describir.
La estrategia del algoritmo PSA consiste en calcular las proyecciones del problema (tantas como
variables contenga el problema original), para luego, utilizando esa información, generar una a
una las coordenadas de la solución entera. Con este objetivo en mente, dedicaremos algo más de
la mitad de este caṕıtulo a: 1o) definir formalmente qué entendemos por proyección y 2o) deducir
una serie de propiedades que nos serán útiles a la hora de construir el algoritmo.

3.2. MODELADO Y DEFINICIONES 27

3.2. Modelado y Definiciones

A partir de la figura 3.2, observamos que cada proyección es un conjunto de puntos limitado entre
dos curvas. Llamaremos “proyección superior”, y la notaremos “P sup

Xi
(xi)”, a la curva que lo acota

por arriba, y “proyección inferior”, “P inf
Xi

(xi)”, a la que lo acota por debajo (ver figura 3.3).

Por lo tanto, el problema de calcular PXi
se reduce a encontrar P sup

Xi
(xi) y P inf

Xi
(xi) y luego

considerar la región encerrada entre ambas curvas.

x1
x2

z

✏✏✏✏✏✮

✲

✚
✚
✚✚❃

P sup
X1

(x̃1)

P inf
X1

(x̃1)

f(x̂1, x2)

P sup
X1

(x̂1) PPPPq

f(x̃1, x2)
❩

❩⑥

P inf
X1

(x̂1)
PPP✐

Figura 3.3: modelado.

En base a la figura 3.3 definimos:

P sup
X1

(x1) := máx
x2

f(x1, x2), con x2 ∈ Dom
(

f(x1, .)
)

P inf
X1

(x1) := mı́n
x2

f(x1, x2), con x2 ∈ Dom
(

f(x1, .)
)

.

Luego, PX1 :=
{

(x1, z) : x1 ∈ Dom(f) ∧ P inf
X1

(x1) ≤ z ≤ P sup
X1

(x1)
}

.

Análogamente definimos P sup
X2

(x2), P
inf
X2

(x2) y PX2 intercambiando los roles de las variables x1
y x2 en las expresiones anteriores.

28 CAPÍTULO 3. EL MÉTODO PSA

La extensión natural de estas definiciones para el caso general es la siguiente.

Definición 3.2.1 Sea f : D ⊆ R
n 7→ R una función continua y D un dominio compacto y

convexo, definimos:

P sup
Xi

(xi) := máx
x1,...,xi−1,xi+1,...,xn

f(x1, . . . , xi, . . . , xn), con (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Dom
(

f(. . . , xi, . . .)
)

P inf
Xi

(xi) := mı́n
x1,...,xi−1,xi+1,...,xn

f(x1, . . . , xi, . . . , xn), con (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Dom
(

f(. . . , xi, . . .)
)

Entonces la proyección sobre xi queda definida como

PXi
:=

{

(xi, z) : xi ∈ Dom(f) ∧ P inf
Xi

(xi) ≤ z ≤ P sup
Xi

(xi)
}

.

Ejemplo: consideremos una función de tres variables, f(x1, x2, x3), definida sobre el intervalo
[2,12]×[2,12]×[1,4]. Por el momento no nos preocupemos por la fórmula de f , simplemente
imaginemos una superficie en movimiento (figura 3.4). Si aplicáramos la definición anterior sobre

cada una de las variables para calcular P sup
Xi

(xi) y P inf
Xi

(xi), y luego consideráramos la región
encerrada entre ambas curvas, obtendŕıamos las proyecciones PX1 , PX2 y PX3 presentadas en
la figura 3.5.

x3 = 1 x3 = 2 x3 = 3 x3 = 4

Figura 3.4: f(x1, x2, x3).

3.3. PROPIEDADES 29

0

5

10

15

20

0 2 4 6 8 10 12 14
0

5

10

15

20

0 2 4 6 8 10 12 14
0

5

10

15

20

0 1 2 3 4 5

Figura 3.5: proyecciones de una función de tres variables.

Algunas observaciones:

1. Las proyecciones “PXi
” son siempre conjuntos de R

2 independientemente del número de
variables que contenga el problema. Cualquier punto dentro de este conjunto es de la
forma “(xi, z)”, la primera coordenada corresponde a la variable sobre la que estamos
proyectando y la segunda a la altura de la función.

2. ¿Qué información aportan las proyecciones? Nos muestran el comportamiento de la función
en términos de los valores de cada una de las variables de manera independiente. Esto nos
permite descomponer el problema original en subproblemas de una sola variable y, de esa
manera, reducir la dificultad del planteo inicial.

3. En el caso en que f sea una función de una sola variable, la proyección coincide con el

gráfico de la función
(

porque P sup
X1

(x1) = P inf
X1

(x1) = f(x1)
)

.

3.3. Propiedades

Proposición 3.3.1 Sea f una función continua definida sobre un dominio convexo y compacto.
Entonces, para cada punto (xi, z) ∈ PXi

, existe un punto X ∈ Dom(f) tal que (X)i = xi y
f(X) = z.

Esta propiedad nos asegura que cada punto de la proyección es el reflejo, v́ıa f , de algún punto
del dominio.

Demostración:

Sea (xi, z) ∈ PXi
. Primero veamos que los puntos

(

xi, P
sup
Xi

(xi)
)

y
(

xi, P
inf
Xi

(xi)
)

, pertenecientes

a la proyección, son el reflejo de algún punto del dominio.

30 CAPÍTULO 3. EL MÉTODO PSA

xi

z

(

xi, P
sup
Xi

(xi)
)

❄

(

xi, P
inf
Xi

(xi)
)

◗
◗◗s

(xi, z)✏
✏✏✶

Figura 3.6: demostración.

Como f es continua sobre un dominio compacto y convexo, entonces la función “f |xi=xi
” alcanza

su valor máximo. Es decir, existe X̂ ∈ Dom(f) tal que

(X̂)i = xi y f(X̂) = máx f(x1, . . . ,xi, . . . , xn) = P sup
Xi

(xi).

De esta manera, probamos que el punto
(

xi, P
sup
Xi

(xi)
)

es la imagen de un punto del dominio.

Análogamente, se puede demostrar esta misma propiedad para
(

xi, P
inf
Xi

(xi)
)

.

Ahora veamos que el punto (xi, z), con P inf
Xi

(xi) < z < P sup
Xi

(xi), también es el reflejo de un
punto del dominio.

Como f es continua, se sigue que “f |xi=xi
” también es una función continua. Además, el dominio

restringido a xi = xi sigue siendo convexo y compacto. Por lo tanto, f |xi=xi
recorre todos los

valores entre P inf
Xi

(xi) y P sup
Xi

(xi) y, para cada uno de esos valores, existe un punto X ∈ Dom(f)
tal que (X)i = xi y f(X) = z. Es decir, (xi, z) también es la imagen de un punto del dominio
�

Proposición 3.3.2 Sea f un función lineal definida sobre un dominio compacto y convexo.
Luego, las proyecciones “PXi

” son conjuntos compactos y convexos.

Demostración:

Sean (x̃i, z̃) y (x̂i, ẑ) dos puntos cualesquiera en PXi
. Para ver que la proyección es un conjunto

convexo, debemos probar que todos los puntos de la forma α(x̃i, z̃) + (1 − α)(x̂i, ẑ), α ∈ [0, 1],
también pertenecen a PXi

.

Por la proposición anterior, existen X̃ y X̂ ∈ Dom(f) tales que

(X̃)i = x̃i y f(X̃) = z̃ y (X̂)i = x̂i y f(X̂) = ẑ.

Luego, como el dominio de f es convexo, se sigue que:

αX̃ + (1− α)X̂ ∈ Dom(f) ∀ α ∈ [0, 1].

3.3. PROPIEDADES 31

Consideremos un punto genérico del segmento que va de (x̃i, z̃) a (x̂i, ẑ):

(xi, z) = β(x̃i, z̃) + (1− β)(x̂i, ẑ), con β ∈ [0, 1].

Debemos mostrar que para este punto existe X ∈ Dom(f) tal que (X)i = xi y f(X) = z
(

es decir, (xi, z) ∈ PXi

)

.

Sea X := βX̃ + (1− β)X̂; veamos que este punto verifica todas las condiciones.

1. X ∈ Dom(f) pues pertenece al segmento αX̃ + (1− α)X̂, α ∈ [0, 1].

2. (X)i =
(

βX̃ + (1− β)X̂
)

i
= βx̃i + (1− β)x̂i = xi.

3. Por la linealidad de f , f(X) = f
(

βX̃ + (1− β)X̂
)

= βf(X̃) + (1− β)f(X̂) =

βz̃ + (1− β)ẑ = z.

Extendiendo este procedimiento para todos los puntos del segmento α(x̃i, z̃)+(1−α)(x̂i, ẑ), α ∈ [0, 1],
concluimos que PXi

es un conjunto convexo.

Por último, PXi
es un conjunto compacto porque es la imagen de un compacto v́ıa la composición

de dos funciones continuas (f y max) �

Proposición 3.3.3 Bajo las hipótesis de la propiedad anterior. Si x̄i ∈ R es el máximo de PXi
y

la proyección está definida en [ai, bi], entonces, P
sup
Xi

(xi) es estrictamente creciente (o constante)
en [ai, x̄i) y estrictamente decreciente (o constante) en (x̄i, bi].

Demostración:

Consecuencia de la convexidad de PXi
�

Definición 3.3.4 Sea f : Rn 7→ R. Llamaremos nivel o altura a cada uno de los valores que
puede alcanzar la función.

Definición 3.3.5 Sea f : Rn 7→ R. Si X̄ = (x̄1, . . . , x̄n) es una solución óptima de f tal que
f(X̄) = N , entonces diremos que N es el nivel óptimo de la función.

Proposición 3.3.6 Sea f : D ⊆ R
n 7→ R continua, D un dominio convexo y compacto.

Si X̄ = (x̄1, . . . , x̄n) es una solución óptima del problema (vale tanto para problemas con-
tinuos, enteros-puros o enteros-mixtos) y N es el nivel óptimo de f , entonces, (x̄i, N) ∈ PXi

∀i.

Demostración:

Por definición, debemos probar que P inf
Xi

(x̄i) ≤ N ≤ P sup
Xi

(x̄i).

P inf
Xi

(x̄i) := mı́n valor f(x1, . . . , x̄i, . . . , xn) ≤ f(x̄1, . . . , x̄i, . . . , x̄n) = N

P sup
Xi

(x̄i) := máx valor f(x1, . . . , x̄i, . . . , xn) ≥ f(x̄1, . . . , x̄i, . . . , x̄n) = N �

Definición 3.3.7 Fijado un nivel N , llamaremos RangoNi := {xi ∈ Z tales que (xi, N) ∈ PXi
}.

Es decir, al analizar la proyección PXi
restringida al nivel N , RangoNi indica el conjunto de

valores enteros para los cuales la variable xi alcanza dicho nivel.

32 CAPÍTULO 3. EL MÉTODO PSA

Proposición 3.3.8 Sea f : D ⊆ R
n 7→ R continua, D un dominio convexo y compacto.

Si X̄ = (x̄1, . . . , x̄n) es una solución óptima entera del problema (entera-pura o entera-mixta),
N es el nivel óptimo de f y la coordenada i-ésima de la solución debe ser entera, entonces,
x̄i ∈ RangoNi .

Demostración:

Consecuencia de la proposición 3.3.6 y de la definición 3.3.7 �

3.4. El Método PSA-puro

Para introducir el método en el caso entero-puro, consideremos el ejemplo anterior de tres va-
riables –para el cual hemos calculado las proyecciones– y supongamos que los coeficientes de la
función son todos números enteros. Luego, debido a que la solución óptima debe tener todas sus
coordenadas enteras, se sigue que el valor óptimo de la función también será un número entero.
Por lo tanto, de todos los niveles que puede alcanzar la función, sólo nos interesarán aquellos
correspondientes a valores enteros.

Si estamos buscando el máximo del problema, en la figura 3.7 pueden observarse los primeros
cuatro niveles enteros candidatos a ser el nivel óptimo de la función.

0

5

10

15

20

0 2 4 6 8 10 12 14
0

5

10

15

20

0 2 4 6 8 10 12 14
0

5

10

15

20

0 1 2 3 4 5

Figura 3.7: niveles 17, 16, 15 y 14.

Para buscar la solución óptima entera del problema consideremos el conjunto de proyecciones
restringidas al primero de los posibles niveles óptimos (el 17). Si en efecto, 17 es la altura óptima
de la función, se sigue, por la proposición 3.3.8, que cada una de las coordenadas de la solución
óptima deben formar parte de los conjuntos Rango17i . Por lo tanto, de existir una solución en
este nivel, debeŕıa poder formarse a partir de la información que aportan dichos conjuntos. En
este caso, Rango171 = {7}, Rango172 = ∅ y Rango173 = {3}. Con lo cual, deducimos que no puede
existir ninguna solución entera tal que al ser evaluada en f de como resultado 17. Conclusión:
descartamos al nivel 17 como el nivel óptimo de la función y analizamos el siguiente de los
posibles valores.

3.4. EL MÉTODO PSA-PURO 33

Repetimos el procedimiento sobre el nivel 16. En este caso, Rango161 = {7}, Rango162 = ∅ y
Rango163 = {3}. Al igual que en el nivel anterior, concluimos que no puede existir ninguna
solución entera en este nivel.

Consideramos el nivel 15. Ahora Rango151 = {7}, Rango152 = {5, 6} y Rango153 = {2, 3}. En este
caso, debeŕıamos calcular todos los posibles candidatos a solución (X = (7, 5, 2), X = (7, 5, 3),
X = (7, 6, 2) y X = (7, 6, 3)) y verificar si alguno de ellos es factible y si al ser evaluado en f
da como resultado 15. De ser aśı, estaŕıamos frente al óptimo del problema (porque ya vimos
que en los niveles superiores no existe ninguna solución factible). Ahora bien, como en general el
número de candidatos producidos de esta manera resulta exponencial, intentaremos simplificar
un poco el problema. De existir una solución óptima en el nivel actual, como |Rango151 | = 1,
sabemos que debe ser de la forma “X = (7,−,−)”. Esto nos permite reemplazar el valor x1 = 7
en la función original y obtener una nueva función, f(7, x2, x3), sobre la cual podemos volver
a calcular PX2 y PX3 (siempre mirando el nivel 15). Al actualizar los conjuntos Rango152 y
Rango153 para la nueva función, se da una de las siguientes alternativas:

(a) |Rango15i | = 1 para i = 2, 3. Podemos completar nuestro candidato a solución,X = (7,−,−),
con los valores que proveen los conjuntos Rango152 y Rango153 . Si el candidato aśı generado
es factible y al ser evaluado en f da como resultado 15, entonces hallamos el óptimo del
problema. En caso contrario, como este candidato es el único posible, deducimos que 15
no es la altura óptima.

(b) ∃ i / |Rango15i | = 0. Concluimos que el nivel 15 no es óptimo.

(c) ∃ i / |Rango15i | = 1. Reemplazamos en “f(7, x2, x3)” y en “X = (7,−,−)” el valor de
la variable cuyo rango tiene cardinal 1 y volvemos a calcular la proyección de la variable
restante.

(d) |Rango15i | > 1 ∀i. En este caso, no hay ninguna variable que pueda asumir un único valor
entero; entonces trabajamos de la siguiente manera. Elegimos una de las dos variables bajo
algún criterio, por ejemplo x2. Reemplazamos en la función y en el candidato “X” que
estamos construyendo el último (o el primero) de los valores del rango, resulta: f(7, 6, x3),
X = (7, 6,−). Y calculamos nuevamente PX3 y Rango153 . Guardamos en el conjunto
“Pendientes” los datos de la función evaluada en el valor de x2 que no fue utilizado; esto
lo hacemos para analizar dicho problema si el espacio de soluciones generado por el primer
valor no arroja ninguna solución óptima. En este caso, Pendientes = {f(7, 5, x3)}.

De esta manera, el algoritmo recorre cada uno de los posibles niveles óptimos y genera, a partir
de la información que aportan las proyecciones, los distintos candidatos a solución.

La primera diferencia que encontramos entre nuestro algoritmo y el resto de los algoritmos
utilizados para resolver PPLE, es que PSA genera los candidatos a solución en términos del
valor de la función. Recordemos que los algoritmos de tipo Branch-and-Bound y Branch-and-
Cut los fabrican en base a las coordenadas fraccionarias de la solución óptima de la relajación
lineal. Otra diferencia importante es que PSA no agrega restricciones adicionales a la formulación
del problema. Por último, al trabajar en base a la información que aportan las proyecciones,
PSA utiliza esa información para reducir, sistemáticamente, el número de variables del problema.
Cosa que no sucede, como regla general, en el resto de los algoritmos.

34 CAPÍTULO 3. EL MÉTODO PSA

El esquema del algoritmo es el siguiente:

Pendientes = { }, X = (−, . . . ,−).

0. Inicialización. Calcular el conjunto de proyecciones del problema y el primer nivel entero
“N”.

1. Inspección. Analizar las proyecciones restringidas al nivel actual y calcular los conjuntos
RangoNi ∀i = 1, . . . , n.

(a) Si |RangoNi | = 1 ∀i (todas las variables toman un único valor entero), ir al Paso 2.

(b) Si ∃ i / |RangoNi | = 0 (hay al menos una variable a la que no se le puede asignar
ningún valor entero), analizar el último problema agregado en Pendientes –y quitarlo
del conjunto– o, si Pendientes = ∅, bajar un nivel: N = N − 1. Actualizar el vector
X e ir al Paso 1.

(c) Si ∃ i / |RangoNi | = 1 (hay al menos una variable obligada a tomar un único valor
entero), ir al Paso 3.

(d) Si |RangoNi | > 1 ∀i (todas las variables pueden tomar al menos dos valores enteros),
ir al Paso 4.

2. Comprobación. Completar el candidato “X” con los valores sugeridos por las proyeccio-
nes (definir xi = RangoNi ∀i / |RangoNi | = 1), y comprobar si es un punto factible y si al
evaluarlo en f coincide con el nivel actual.

(e) “Si el candidato es factible y al evaluarlo en f coincide con el nivel actual”, fin del
algoritmo (se alcanzó el óptimo del problema).

(f) “Si el candidato es factible, pero al ser evaluado en f está por debajo de nivel actual”,
guardar esa solución si supera la mejor solución encontrada hasta el momento y, a
continuación, analizar el último problema agregado en Pendientes –quitándolo del
conjunto– o, si Pendientes = ∅, bajar un nivel: N = N − 1. Actualizar X e ir al
Paso 1.

(g) “Si el candidato es infactible”, analizar el último problema agregado en Pendientes
–y quitarlo del conjunto– o, en su defecto, bajar un nivel: N = N − 1. Actualizar X
e ir al Paso 1.

3. Reducción. Reemplazar las variables que toman un único valor entero en el problema
actual y en el candidato a solución “X” que se está construyendo. Calcular las nuevas
proyecciones y regresar al Paso 1.

4. Elección. Escoger, bajo algún criterio, una de las variables del problema actual. Reem-
plazar cada uno de los valores del rango en dicho problema y guardar los subproblemas
generados de esta manera en el conjunto Pendientes. Considerar el último subproblema
agregado en Pendientes, quitarlo del conjunto, y actualizar X. Calcular las proyecciones
y regresar al Paso 1.

3.5. VALIDEZ DEL ALGORITMO 35

3.5. Validez del Algoritmo

Proposición 3.5.1 Consideremos un problema general de programación lineal entera-pura (con
coeficientes enteros), llamémoslo “PLE”, y supongamos que las restricciones determinan una
región no vaćıa y acotada.

PLE:
maximizar f = c1x1 + · · ·+ cnxn

sujeta a a11x1 + · · ·+ a1n xn ≤ b1
...

am1x1 + · · ·+ amnxn ≤ bm

xi ≥ 0, xi ∈ Z, i = 1, . . . , n

Veamos que el algoritmo “PSA-puro” converge a una solución óptima y además lo hace en un
número finito de pasos.

Demostración:

Por inducción en el número de variables.

Si n = 1, nuestro problema es

PLE:
maximizar f = c1x1

sujeta a a11x1 ≤ b1
...

am1x1 ≤ bm

x1 ≥ 0, x1 ∈ Z

Llamaremos [r1, r2] al intervalo que queda determinado al intersecar el conjunto de restricciones
lineales y supondremos, sin pérdida de generalidad, que c1 > 0. Luego, el óptimo del problema
se alcanza en el punto x1 = ⌊r2⌋ con nivel óptimo c1⌊r2⌋.

Inicio del algoritmo, Paso 0.

En este caso, como el problema es unidimensional, la proyección coincide con el gráfico de la
función: PX1 es un segmento de recta de pendiente c1, con ordenada al origen 0, definida en el
intervalo [r1, r2]. Por lo tanto, el primer nivel entero que debemos analizar es ⌊c1r2⌋.

Observación: siempre que el algoritmo examine un nivel superior a “c1⌊r2⌋” –el nivel óptimo–, a
lo sumo deberá probar un número finito de candidatos (ya que el rango de valores de cada una de
las variables es acotado) antes de concluir que el intervalo analizado no es óptimo. Por lo tanto,
podemos suponer que el algoritmo llega al nivel “c1⌊r2⌋” en un número finito de operaciones.

36 CAPÍTULO 3. EL MÉTODO PSA

Nivel c1⌊r2⌋.

Paso 1. Dado que la proyección es un segmento de recta, a x1 le corresponde un único valor

entero para el nivel actual: Rango
c1⌊r2⌋
1 = {⌊r2⌋} (caso (a)).

Paso 2. x1 = ⌊r2⌋ es un candidato factible y al ser evaluado en f coincide con el nivel actual.
Fin del algoritmo.

Conclusión: el método encuentra el óptimo del problema en un número finito de iteraciones.

Hipótesis inductiva: suponiendo que el algoritmo resuelve todas las instancias de hasta n − 1
variables en un número finito de pasos, probemos el caso de n variables.

Ahora nuestro problema es

PLE:
maximizar f = c1x1 + · · ·+ cnxn

sujeta a a11x1 + · · ·+ a1n xn ≤ b1
...

am1x1 + · · ·+ amnxn ≤ bm

xi ≥ 0, xi ∈ Z, i = 1, . . . , n

Sean X̄ = (e1, . . . , en) una solución óptima entera de PLE y N el nivel óptimo de f .

Inicio del algoritmo, Paso 0.

Supongamos que el método calcula las n proyecciones del problema y el nivel inicial. Luego,
analiza uno a uno los niveles enteros –en orden descendente– empezando por el más grande.

Observación: al igual que en el problema anterior de una variable, podemos suponer que el al-
goritmo llega al nivel óptimo en un número finito de operaciones.

Nivel N .

Paso 1. Al examinar las proyecciones restringidas al nivel actual, ocurre una de las siguientes
alternativas.

(a) |RangoNi | = 1 ∀i. Por la proposición 3.3.8, RangoNi = {ei} ∀i.

Paso 2. “X = (e1, . . . , en)” es un candidato factible, y al ser evaluado en f coincide con
el nivel actual; hallamos el óptimo del problema. Fin del algoritmo.

(b) ∃ i / |RangoNi | = 0. Absurdo, la proposición 3.3.8 nos asegura que, para este nivel, existe
al menos un valor para cada variable.

3.5. VALIDEZ DEL ALGORITMO 37

(c) ∃ i / |RangoNi | = 1. Supongamos, sin pérdida de generalidad, que esta variable es xn.
Luego, por la proposición 3.3.8, RangoNn = {en}.

Paso 3. Actualizamos el candidato a solución: X = (−, . . . ,−, en). Y reemplazamos el
valor de xn en PLE; como resultado obtenemos “PLE-reducido”, un problema de n − 1
variables.

PLE-reducido:
maximizar f∗ = c1x1 + · · ·+ cn−1xn−1 + cnen

sujeta a a11x1 + · · ·+ a1n−1 xn−1 ≤ b1 − a1nen
...

am1x1 + · · ·+ amn−1xn−1 ≤ bm − amnen

xi ≥ 0, xi ∈ Z, i = 1, . . . , n− 1

Observación: si X̄ = (e1, . . . , en) es una solución óptima de PLE, entonces, X̂ = (e1, . . . , en−1)
es una solución óptima de PLE-reducido. En efecto, si (d1, . . . , dn−1) fuera una solución fac-
tible de PLE-reducido, tal que f∗(d1, . . . , dn−1) > f∗(e1, . . . , en−1), entonces, (d1, . . . , dn−1, en)
seŕıa una solución factible de PLE tal que f(d1, . . . , dn−1, en) > f(e1, . . . , en−1, en), absurdo.

Paso 1. El problema que resulta de la operación anterior posee n − 1 variables y nivel
óptimo f∗(e1, . . . , en−1) = N . Por HI, el algoritmo devuelve una solución óptima del pro-
blema reducido en un número finito de pasos. Agregando el valor en a dicha solución,
conseguimos el óptimo de PLE. Fin del algoritmo.

(d) |RangoNi | > 1 ∀i.

Paso 4. Elegimos una de las variables de problema actual, por ejemplo xn. Reemplazamos
cada uno de los valores del RangoNn en dicho problema (entre estos valores debe figurar en),
y guardamos los subproblemas aśı generados en el conjunto Pendientes. Consideramos
el último problema agregado en Pendientes, lo quitamos del conjunto, y comenzamos a
analizarlo.

Podemos suponer, en el peor de los casos, que el algoritmo analiza todos los subproblemas
correspondientes a valores de xn 6= en sin hallar ninguna solución óptima. Luego, después
de un número finito de operaciones, el algoritmo analiza el subproblema correspondiente
al valor xn = en.

Paso 1. El subproblema generado a partir del valor “en” posee n − 1 variables y nivel
óptimo N . Por HI, el algoritmo encuentra una solución óptima del problema reducido en
un número finito de pasos. Agregando el valor en a dicha solución, conseguimos el óptimo
de PLE �

38 CAPÍTULO 3. EL MÉTODO PSA

3.6. El Método PSA-mixto

En esta sección presentaremos una nueva versión del algoritmo PSA que nos permitirá trabajar
sobre problemas enteros-mixtos.

Al intentar reproducir las ideas utilizadas en el caso entero-puro para esta otra clase de proble-
mas, nos encontramos con la siguiente dificultad: sobre problemas mixtos ya no podemos suponer
que el óptimo se ubique en un nivel entero. Con lo cual, el conjunto de posibles niveles óptimos
–que debemos analizar– está compuesto por infinitos elementos. Para solucionar este problema
incorporamos la siguiente definición.

Definición 3.6.1 Diremos que dos niveles, N1 y N2, forman parte del mismo intervalo de niveles,
si RangoN1

i = RangoN2
i para todas las variables xi enteras.

Esta definición nos permitirá trabajar con infinitos niveles de manera simultánea y, de esa ma-
nera, reducir nuestro problema a analizar un número finito de casos.

Notación Notaremos “RangoIj” al rango de valores enteros que puede asumir la variable xj
para cualquiera de los niveles que componen el intervalo de niveles “I”.

Para motivar el algoritmo en el caso entero-mixto, consideremos nuevamente el ejemplo de tres
variables y supongamos que estamos buscando una solución mixta “X = (x1, x2, x3)” de la
forma: x1, x2 ∈ Z y x3 ∈ R. Como en este caso solo estamos interesados en buscar valores enteros
para las dos primeras coordenadas de la solución, nos limitaremos a calcular, únicamente, las
proyecciones correspondientes a esas variables.

0

5

10

15

20

0 2 4 6 8 10 12 14
0

5

10

15

20

0 2 4 6 8 10 12 14

✛ I1

◗◗❦
I2

Figura 3.8: intervalos de niveles I1 e I2.

En la figura 3.8, se exhiben los dos primeros intervalos de niveles en los que pueden ser descom-
puestas las proyecciones PX1 y PX2 . Observar que, para cualquiera de los niveles que componen
esos intervalos, el rango de valores de las variables enteras siempre es el mismo.

3.6. EL MÉTODO PSA-MIXTO 39

Para todos los niveles “N” comprendidos en el primer intervalo: RangoN1 = {7} y RangoN2 = ∅.
Con la nueva notación: RangoI11 = {7} y RangoI12 = ∅. Luego, no puede existir ninguna solución
mixta –cuya segunda coordenada sea entera– tal que al ser evaluada en f dé como resultado
alguno de los niveles comprendidos en el intervalo I1. Conclusión: I1 no contiene al nivel óptimo
del problema. Analizamos el siguiente intervalo de niveles.

En el caso del intervalo I2: RangoI21 = {7} y RangoI22 = {5, 6}. Luego, dentro de este intervalo
tenemos dos candidatos a solución: X = (7, 5,−) y X = (7, 6,−). Evaluando ambos puntos en la
función original, resultan dos problemas de optimización continua de una variable cada uno (en
el caso de estar resolviendo un PPLE-mixta, el problema resultante es de programación lineal).
Si alguno de estos subproblemas alcanza su valor máximo dentro del intervalo I2, entonces, com-
pletando el candidato “X” con el valor óptimo que provee el problema continuo, obtenemos el
óptimo del problema mixto. Ahora bien, como en general el número de candidatos producidos
de esta manera resulta exponencial, volvemos a trabajar como lo hicimos en el caso entero-puro.
Consideramos aquellas variables que pueden asumir un único valor entero; reemplazamos dichos
valores en la función y en el candidato a solución que estamos construyendo; y volvemos a cal-
cular las proyecciones de las variables restantes (sólo de las variables enteras). En nuestro caso,
la única variable a la que se le puede asignar un único valor entero es x1, con valor 7. Reempla-
zando este valor en la función y en el candidato a solución que estamos construyendo, resulta:
f(7, x2, x3), x2 ∈ Z, x3 ∈ R y X = (7,−,−). Calculando nuevamente PX2 , y actualizando el
conjunto RangoI22 , se da una de las siguientes alternativas1:

(a) |RangoI22 | = 1. Podemos completar nuestro candidato a solución, X = (7,−,−), con el
valor que provee el conjunto RangoI22 . De esta manera, logramos reducir el problema origi-
nal a un problema de optimización continua de una sola variable. Si este nuevo problema
alcanza su valor máximo en alguno de los niveles comprendidos en el intervalo I2, entonces,
completando nuestro candidato “X” con el valor óptimo que provee el problema continuo,
obtenemos el óptimo del problema mixto. En caso contrario, como este candidato es el úni-
co posible, deducimos que el intervalo I2 no contiene al nivel óptimo (y, por consiguientes,
a la solución óptima).

(b) |RangoI22 | = 0. Concluimos que el intervalo I2 no contiene al nivel óptimo.

(d) |RangoI22 | > 1. En esta situación, no nos queda otra alternativa que analizar los dos
subproblemas “f(7, 5,−)” y “f(7, 6,−)”. Al igual que en el caso entero-puro, comenzamos
trabajando con uno de los subproblemas y guardamos la información del problema restante
en el conjunto “Pendientes”. Si alguno de estos dos subproblemas alcanza su valor máximo
dentro del intervalo I2, entonces estamos frente al óptimo del problema mixto2. En caso
contrario, concluimos que I2 no contiene al nivel óptimo.

De esta manera, el algoritmo recorre cada uno de los intervalos de niveles y genera, a partir de la
información que aportan las proyecciones, los distintos candidatos a solución. El procedimiento
anterior se repite hasta alcanzar la solución óptima del problema.

1Eventualmente, en esta operación, el intervalo sobre el que estamos trabajando deberá ser dividido en interva-

los más pequeños, “refinado”. Esto se debe a que el rango de valores de cada una de las variables enteras se puede

ver alterado al calcular el nuevo conjunto de proyecciones. En situaciones como éstas, descartamos el intervalo

que estamos analizando y continuamos trabajando con el subintervalo que contiene a los niveles de mayor altura.
2Observar que, llegado este punto, se deben analizar todos los subproblemas contenidos en el conjunto

“Pendientes” antes de hacer alguna afirmación acerca de la optimalidad de una solución encontrada.

40 CAPÍTULO 3. EL MÉTODO PSA

Esquema del algoritmo:

Pendientes = { }, X = (−, . . . ,−).

0. Información inicial. Calcular únicamente las proyecciones de las variables enteras y el
primer intervalo de niveles “I”.

1. Inspección. Analizar las proyecciones restringidas al intervalo actual y calcular RangoIi
para todas las variables enteras xi.

(a) Si |RangoIi | = 1 ∀i, ir al Paso 2.

(b) Si ∃ i / |RangoIi | = 0, ir al Paso 3.

(c) Si ∃ i / |RangoIi | = 1, ir al Paso 4.

(d) Si |RangoIi | > 1 ∀i, ir al Paso 5.

2. Comprobación. Completar el candidato “X” a partir de los valores sugeridos por las
proyecciones (definir xi = RangoIi ∀i / |RangoIi | = 1). Evaluar este candidato en el
problema original y resolver el problema de optimización continua resultante (en el caso
de estar resolviendo un PPLE-mixta, el problema resultante es de programación lineal).

(e) “Si el óptimo del problema reducido se alcanza en uno de los niveles contenidos en el
intervalo actual”. Asignar a las variables no enteras del vector “X” las coordenadas
de la solución óptima del problema de optimización continua. Guardar X si es factible
y supera la mejor solución encontrada hasta ese momento. Ir al Paso 3.

(f) “Si el óptimo del problema reducido no pertenece al intervalo actual”. Asignar a las
variables no enteras del vector “X” las coordenadas de la solución óptima del pro-
blema de optimización continua. Guardar X si es factible y supera la mejor solución
encontrada hasta el momento. Ir al Paso 3.

(g) “Si el problema reducido es infactible”, ir al Paso 3.

3. Pendientes. Analizando el conjunto Pendientes, se determina la acción a seguir.

Si Pendientes 6= ∅, considerar el último subproblema agregado a este conjunto y
quitarlo del mismo. Actualizar X e ir al Paso 1.

Si Pendientes = ∅ y ya se conoce una solución factible cuyo valor objetivo pertenece
al intervalo actual, fin del algoritmo. El óptimo del problema mixto es la última
solución factible guardada.

En caso contrario, bajar al siguiente intervalo de niveles (por abuso de notación,
volveremos a llamarlo “I”). Actualizar X e ir al Paso 1.

4. Reducción. Reemplazar las variables que toman un único valor entero en el problema
actual. Calcular las nuevas proyecciones (sólo las proyecciones de las variables enteras) y
comprobar si el intervalo que está siendo analizado debe ser refinado. Ir al Paso 1.

5. Elección. Escoger –bajo algún criterio– una de las variables enteras y reemplazar cada
uno de los valores del rango en el problema actual. Guardar los subproblemas generados
de esta manera en el conjunto Pendientes. Considerar el último subproblema agregado
en Pendientes y quitarlo del conjunto. Actualizar el vector X, calcular las proyecciones,
refinar el intervalo de ser necesario, y regresar al Paso 1.

Caṕıtulo 4

Problema de la Mochila No Acotado

A partir de este caṕıtulo y en adelante, aplicaremos el método construido en el caṕıtulo anterior
para resolver PPLE-pura. En esta tesis nos concentraremos sobre problemas del tipo mochila,
pero con algún esfuerzo adicional, nuestro desarrollo puede ser extendido a problemas más ge-
nerales. Empecemos por un ejemplo de tipo Mochila No Acotado (UKP).

maximizar f = 2x1 + 5x2 + x3 + 8x4

sujeta a 79x1 + 53x2 + 45x3 + 45x4 ≤ 178

xi ≥ 0, xi ∈ Z, i = 1, 2, 3, 4

Inicio del algoritmo, Paso 0.

En este caso tenemos que calcular cuatro proyecciones (una por cada variable); para hacer
esto, recordemos, primero debemos encontrar las proyecciones superior “P sup

Xi
(xi)” e inferior

“P inf
Xi

(xi)” y después considerar la región encerrada entre ambas curvas. A modo de ejemplo,
mostremos cómo se calcula PX1 .

Por definición, P sup
X1

(x1) := máx valor 2x1 + 5x2 + x3 + 8x4

sujeta a 79x1 + 53x2 + 45x3 + 45x4 ≤ 178

xi ≥ 0, xi ∈ R, i = 1, 2, 3, 4 ←− ¡Atención! relajamos la

condición de integridad.

donde estamos pensando que la variable x1 toma un valor fijo y que el resto de las variables
están libres dentro del dominio de definición de f(x1, . . .).

Si comparamos los cocientes
pi
wi

de cada variable:
x2 x3 x4

pi
wi

0.0943 0.0222 0.1778

41

42 CAPÍTULO 4. PROBLEMA DE LA MOCHILA NO ACOTADO

advertimos que el óptimo se alcanza en el punto
(

x1, 0, 0,
178− 79x1

45

)

. Evaluando este punto

en la función, obtenemos el valor que estamos buscando:

P sup
X1

(x1) = −12,0444x1 + 31,6444, con x1 ∈
[

0,
178

79

]

.

De la misma manera averiguamos la proyección inferior sobre x1:

Por definición, P inf
X1

(x1) := mı́n valor 2x1 + 5x2 + x3 + 8x4

sujeta a 79x1 + 53x2 + 45x3 + 45x4 ≤ 178

xi ≥ 0, xi ∈ R, i = 1, 2, 3, 4

Como a x1 la estamos pensando fija y los coeficientes de la función objetivo son todos valores
positivos, entonces, el mı́nimo se alcanza en el punto (x1, 0, 0, 0). Evaluando en f , obtenemos:

P inf
X1

(x1) = 2x1, con x1 ∈
[

0,
178

79

]

.

Repitiendo el procedimiento anterior se pueden calcular el resto de las proyecciones:

P sup
X2

(x2) = - 4.4222x2 + 31.6444 y P inf
X2

(x2) = 5x2, con x2 ∈
[

0,
178

53

]

P sup
X3

(x3) = - 7.0000x3 + 31.6444 y P inf
X3

(x3) = x3, con x3 ∈
[

0,
178

45

]

P sup
X4

(x4) = 3.7547x4 + 16.7925 y P inf
X4

(x4) = 8x4, con x4 ∈
[

0,
178

45

]

A continuación, graficamos el conjunto de proyecciones junto con los cuatro primeros niveles
enteros candidatos a ser el nivel óptimo del problema.

0

10

20

30

-1 0 1 2 3 4 5
0

10

20

30

-1 0 1 2 3 4 5
0

10

20

30

-1 0 1 2 3 4 5
0

10

20

30

-1 0 1 2 3 4 5

Figura 4.1: niveles 31, 30, 29 y 28.

43

A partir de la figura 4.1, el primer nivel entero que debemos analizar es el 31.

Nivel 31.

Paso 1.Observando las proyecciones “PXi
” restringidas al nivel 31, advertimos que:Rango311 = {0},

Rango312 = {0}, Rango313 = {0} y Rango314 = ∅ (caso (b)). Es decir, no puede existir ningún
punto con todas sus coordenadas enteras tal que al ser evaluado en f de como resultado 31.
Conclusión: el óptimo no se ubica en esta altura. Dado que Pendientes = ∅, bajamos un nivel.

Niveles 30 y 29.

Paso 1. Los analizamos en conjunto porque en ambos casos ocurre exactamente lo mismo.
Al igual que en el nivel anterior, en este caso: RangoN1 = {0}, RangoN2 = {0}, RangoN3 = {0} y
RangoN4 = ∅, para N = 30 y 29 (caso (b)). Luego, no existe ninguna solución entera que alcance
los niveles 30 o 29 al ser evaluada en f . Como el conjunto Pendientes no sufrió modificaciones,
continuamos con el próximo nivel.

Nivel 28.

Paso 1. Recién en este nivel tenemos un primer candidato a solución. Al analizar las proyec-
ciones restringidas al nivel actual, obtenemos: Rango281 = {0}, Rango282 = {0}, Rango283 = {0}
y Rango284 = {3} (caso (a)).

Paso 2. X = (0, 0, 0, 3) es el único candidato que resulta de analizar el conjunto de proyeccio-
nes; es una solución factible, sin embargo, al ser evaluado en f da como resultado 24. Luego,
deducimos que 28 no es la altura óptima.

Antes de pasar al siguiente nivel (pues el conjunto Pendientes sigue siendo vaćıo), guardamos
la solución encontrada por si no conseguimos una mejor antes de llegar al nivel 24.

0

10

20

30

-1 0 1 2 3 4 5
0

10

20

30

-1 0 1 2 3 4 5
0

10

20

30

-1 0 1 2 3 4 5
0

10

20

30

-1 0 1 2 3 4 5

Figura 4.2: niveles 27, 26 y 25.

44 CAPÍTULO 4. PROBLEMA DE LA MOCHILA NO ACOTADO

Nivel 27.

Paso 1.Observando el conjunto de proyecciones restringidas al nivel 27, tenemos:Rango271 = {0},
Rango272 = {0, 1}, Rango273 = {0} y Rango274 = {3} (caso(c)). Luego, sobre el nivel actual se
presentan dos candidatos a solución: X = (0, 0, 0, 3) y X = (0, 1, 0, 3). Para no analizar uno
a uno estos candidatos –ya que, en general, vamos a tener una cantidad exponencial de ellos–
trabajamos como indica el Paso 3.

Paso 3. Actualizamos nuestro candidato a solución: X = (0,−, 0, 3). Y reemplazamos en el
problema actual las variables que toman un único valor (para luego volver a calcular PX2).

Problema original:

maximizar f = 2x1 + 5x2 + x3 + 8x4

sujeta a 79x1 + 53x2 + 45x3 + 45x4 ≤ 178

xi ≥ 0, xi ∈ Z, i = 1, 2, 3, 4

Reemplazando los valores x1 = 0, x3 = 0 y x4 = 3, se deriva el siguiente problema reducido:

maximizar 5x2 + 24

sujeta a 53x2 ≤ 43

x2 ≥ 0, x2 ∈ Z

Llegada esta instancia, hagamos un comentario antes de calcular la proyección: si el nuevo
problema tiene una solución entera en el nivel 27, entonces el problema original también posee
una solución factible en ese nivel. La solución del problema original se obtiene completando la
solución parcial, X = (0,−, 0, 3), con el valor de x2 que proporciona el problema reducido.

Proyección PX2 :

0

10

20

30

-1 0 1 2 3 4 5

Figura 4.3: nivel 27, problema reducido.

45

Paso 1. Examinando la figura 4.3, advertimos que: Rango272 = ∅ (caso(b)). Por lo tanto, no
existe ningún valor entero de x2 con el cual f pueda alcanzar el nivel 27. Luego, el problema
reducido no posee ninguna solución entera en este nivel, por ende, tampoco la tiene el problema
original. Dado que Pendientes = ∅, bajamos un nivel.

Niveles 26 y 25.

Ocurre exactamente lo mismo que en el nivel 27. Continuamos.

Nivel 24.

No es necesario analizar este nivel, ya que: a) conocemos una solución factible que llega a
esta altura y b) vimos que en los niveles superiores no hay ninguna otra solución factible.
Conclusión: X = (0, 0, 0, 3) es una solución óptima.

Sin embargo, y no obstante haber alcanzado una solución óptima, analizaremos este nivel porque
aparece una situación no contemplada hasta el momento (tendremos que aplicar el Paso 4 del
algoritmo).

0

10

20

30

-1 0 1 2 3 4 5
0

10

20

30

-1 0 1 2 3 4 5
0

10

20

30

-1 0 1 2 3 4 5
0

10

20

30

-1 0 1 2 3 4 5

Figura 4.4: nivel 24.

Paso 1. Observando las proyecciones restringidas al nivel 24: Rango241 = {0}, Rango242 = {0, 1},
Rango243 = {0, 1} y Rango244 = {2, 3} (caso (c)).

Paso 3. Actualizamos el candidato a solución: X = (0,−,−,−). Y reemplazamos el valor de
x1 en el problema original; obtenemos el siguiente problema reducido:

maximizar 5x2 + x3 + 8x4

sujeta a 53x2 + 45x3 + 45x4 ≤ 178

xi ≥ 0, xi ∈ Z, i = 2, 3, 4

46 CAPÍTULO 4. PROBLEMA DE LA MOCHILA NO ACOTADO

Como achicamos el problema, podemos volver a calcular las proyecciones –siempre restringidas
al nivel actual–. En este caso, al calcular las proyecciones del problema reducido, nuevamente
obtenemos las proyecciones 2, 3 y 4 del problema original (figura 4.4).

Paso 1. Rango242 = {0, 1}, Rango243 = {0, 1} y Rango244 = {2, 3} (caso (d)).

Paso 4. Elegimos una variable, por ejemplo x4

(

es la de mayor relación
pi
wi

)

, y reemplazamos

cada uno de los valores del rango en el problema anterior. Guardamos el primero de los subpro-
blemas en el conjunto Pendientes y continuamos trabajando con el subproblema que resulta de
reemplazar el valor x4 = 3. Ahora X = (0,−,−, 3).

El subproblema que se deriva de elegir “x4 = 3” es el siguiente:

maximizar 5x2 + x3 + 24

sujeta a 53x2 + 45x3 ≤ 43

xi ≥ 0, xi ∈ Z, i = 2, 3

Calculando las proyecciones PX2 y PX3 del problema reducido, obtenemos:

0

10

20

30

-1 0 1 2 3 4 5
0

10

20

30

-1 0 1 2 3 4 5

Figura 4.5: nivel 24, problema dos veces reducido.

Paso 1. Hasta el momento tenemos un candidato de la forma “X = (0,−,−, 3)”. Examinando
las nuevas proyecciones restringidas al nivel 24, obtenemos: Rango242 = {0} y Rango243 = {0}
(caso (a)).

Paso 2. El candidato que resulta de observar las proyecciones, el punto X = (0, 0, 0, 3), es
un candidato factible y al evaluarlo en f coincide con el nivel actual. Hallamos el óptimo del
problema, fin del algoritmo.

4.1. NÚMERO DE OPERACIONES 47

4.1. Número de Operaciones

Consideremos el siguiente problema de tipo UKP y veamos cuántas operaciones son necesarias
para calcular el conjunto de proyecciones.

maximizar f = p1x1 + · · ·+ pnxn

sujeta a w1x1 + · · ·+ wnxn ≤ c

xi ≥ 0, xi ∈ Z, i = 1, . . . , n

Para simplificar la notación, supondremos que las clases están numeradas cumpliendo:

p1
w1

≥
p2
w2

≥ · · · ≥
pn
wn

.

Empecemos viendo cuántas operaciones son necesarias para calcular las n proyecciones inferiores:

P inf
Xj

(xj) := mı́n valor p1x1 + · · ·+ pjxj + · · ·+ pnxn

sujeta a w1x1 + · · ·+ wjxj + · · ·+ wnxn ≤ c

xi ≥ 0, xi ∈ R, i 6= j







⇒ P inf
Xj

(xj) = pjxj , con xj ∈
[

0,
c

wj

]

.

Es decir: sólo debemos realizar n operaciones (calcular los cocientes “
c

wj

”) para determinar las

n proyecciones inferiores.

Para conocer las proyecciones superiores, separemos el problema en dos casos. Por un lado,
calculemos P sup

X1
(x1) (la proyección de la clase más valiosa), y, por otro, P sup

Xj
(xj) para j ≥ 2.

P sup
X1

(x1) := máx valor p1x1 + · · ·+ pnxn

sujeta a w1x1 + · · ·+ wnxn ≤ c

xi ≥ 0, xi ∈ R, i ≥ 2







⇒ P sup
X1

(x1) =
(

p1 − p2
w1

w2

)

x1 +
c

w2

p2, con x1 ∈
[

0,
c

w1

]

.

P sup
Xj

(xj) := máx valor p1x1 + · · ·+ pnxn

sujeta a w1x1 + · · ·+ wnxn ≤ c

xi ≥ 0, xi ∈ R, i 6= j







⇒ P sup
Xj

(xj) =
(

pj − p1
wj

w1

)

xj +
c

w1

p1, con xj ∈
[

0,
c

wj

]

.

Con lo cual: primero debemos realizar O(n) operaciones para identificar las dos clases más

valiosas. Y luego, calcular los coeficientes “p1 − p2
w1

w2

” y “
c

w2

p2” para conocer la pendiente y la

ordenada de la recta P sup
X1

(x1), y, por otro lado, “pj−p1
wj

w1

” y “
c

w1

p1” para conocer la pendiente

y la ordenada de las rectas P sup
Xj

(xj) para j ≥ 2.

Conclusión: son necesarias O(n) operaciones para averiguar el primer grupo de proyecciones
del problema.

48 CAPÍTULO 4. PROBLEMA DE LA MOCHILA NO ACOTADO

4.2. Experimentos Computacionales

Para medir la eficiencia de nuestro método, hemos utilizado –para ser consistentes con la mayoŕıa
de los trabajos presentados en la literatura– una serie de instancias test generadas aleatoriamente
según los procedimientos sugeridos por Martello & Toth [28] y David Pinsinger [32]. Cada una
de las instancias propuestas está pensada para representar ciertos modelos de la realidad y para
revelar falencias de los distintos métodos.

4.2.1. Instancias Test

Instancias Uncorrelated: pi se genera aleatoriamente en el intervalo [1,R] y wi en el intervalo
[10,R]. Este tipo de instancias sirve para modelar situaciones en las que se puede suponer que
el valor y el peso de los objetos no guardan relación, puede haber objetos con gran valor y poco
peso, y viceversa. En general son instancias fáciles de resolver para todos los métodos.

Instancias Weakly Correlated: los pesos wi se generan aleatoriamente en el intervalo [10,R]
y los valores pi en [wi − 100, wi + 100]. En este caso, el valor y el peso śı guardan cierta rela-
ción, t́ıpicamente el valor sólo difiere del peso en un porcentaje pequeño. Instancias como éstas
modelan muy bien situaciones de gestión o administración donde se dispone de cierto capital
y varias opciones de inversión. El valor de retorno de una inversión se supone proporcional al
capital invertido más o menos alguna variación.

Instancias Strongly Correlated: los wi se generan aleatoriamente en el intervalo [10,R] y
los pi = wi + 100. Estas instancias representan situaciones de la vida real donde el retorno es
proporcional a la inversión más algún cargo extra por cada proyecto. En general las instancias
de este tipo son dif́ıciles de resolver.

Instancias Sub-set Sum: los wi se generan aleatoriamente en el intervalo [10,R] y los pi = wi.
Estas instancias reflejan situaciones donde el valor y el peso de cada objeto son iguales. Por lo
tanto, el problema es equivalente a llenar la mochila con la mayor cantidad de peso. En general,
son instancias dif́ıciles de resolver para todos los métodos, porque todas las cotas superiores
resultan en el valor trivial c (capacidad de la mochila).

4.2.2. Resultados y Conclusiones

Comparamos el rendimiento de nuestro método, PSA, contra el solver comercial CPLEX [20]
de IBM (versión 10.1.0). En una primera etapa, llevamos a cabo la comparación sin mo-
dificar los parámetros por default de CPLEX; es decir, con todas las herramientas activas:
pre-procesamiento, cortes, heuŕısticas, etc.. Trabajamos sobre instancias de tipo Uncorrelated,
Weakly Correlated, Strongly Correlated y Sub-set Sum con 5000, 20000, 50000 y 70000 varia-
bles. Luego, en una segunda etapa, repetimos las pruebas realizadas sobre las dos instancias
más grandes –50000 y 70000 variables– desactivando las opciones de pre-solve: “set pre pre n”
y “set pre red 0”. Esto lo hicimos para determinar el grado de incidencia que tiene el sistema
de pre-procesamiento sobre el resultado final del solver. Todas las mediciones fueron realizadas
en una computadora SUN UltraSparc III workstation with a CPU running at 1GHz and 2GB
of RAM memory. El ĺımite de tiempo para cada corrida fue fijado en 200 segundos. A conti-
nuación, se muestran los resultados computacionales de las pruebas mencionadas junto con las
conclusiones del experimento. Notaremos con la letra “n” a la cantidad de variables de cada una
de las instancias.

4.2. EXPERIMENTOS COMPUTACIONALES 49

Cómo leer las tablas: cada casillero de la tabla contiene 5 valores, por ejemplo

CPLEX PSA niveles

(10) 0.256 seg. (1) 0.02 seg. 1

En las columnas 1 y 2, se indica, entre paréntesis, el número de instancias resueltas en forma
óptima por parte de cada uno de los métodos (sobre un total de 10 problemas test). Y, a la
derecha de ese valor, se muestra el tiempo promedio consumido por cada uno de los métodos
sobre las instancias que pudieron ser resueltas. En la columna 3, se exhibe la cantidad de niveles
(promedio) recorridos por PSA hasta alcanzar la solución óptima.

Tabla 2. Instancias Uncorrelated.
wi = random(10,100) wi = random(10,1000) wi = random(10,10000)
pi = random(1,100) pi = random(1,1000) pi = random(1,10000)
c = 0.5

∑
n

i=1
wi c = 0.5

∑
n

i=1
wi c = 0.5

∑
n

i=1
wi

n CPLEX PSA niveles CPLEX PSA niveles CPLEX PSA niveles

5000 (10) 0.256 s. (1) 0.02 s. 1 (10) 0.083 s. (10) 0.021 s. 1 (10) 0.096 s. (10) 0.326 s. 109.1
20000 (10) 2.393 s. (1) 0.05 s. 1 (10) 0.455 s. (10) 0.051 s. 1 (10) 0.361 s. (10) 0.045 s. 1
50000 (10) 8.442 s. (10) 0.124 s. 1 (10) 1.934 s. (10) 0.102 s. 1 (10) 1.012 s. (10) 0.094 s. 1
70000 (10) 12.138 s. (10) 0.172 s. 1 (10) 3.409 s. (10) 0.145 s. 1 (10) 1.489 s. (10) 0.120 s. 1

50000 (10) 10.062s. (10) 0.124 s. 1 (10) 76.8650s. (10) 0.102 s. 1 (10) 85.1430s. (10) 0.094 s. 1
70000 (10) 14.161s. (10) 0.172 s. 1 (10) 145.966s. (10) 0.145 s. 1 (10) 166.742s. (10) 0.120 s. 1

Tabla 3. Instancias Strongly Correlated.
wi = random(10,100) wi = random(10,1000) wi = random(10,10000)
pi = wi + 100 pi = wi + 100 pi = wi + 100
c = 0.5

∑
n

i=1
wi c = 0.5

∑
n

i=1
wi c = 0.5

∑
n

i=1
wi

n CPLEX PSA niveles CPLEX PSA niveles CPLEX PSA niveles

5000 (10) 0.032 s. (1) 0.03 s. 1 (10) 0.038 s. (10) 0.02 s. 1 (10) 0.073 s. (9) 0.028 s. 1
20000 (10) 0.128 s. (1) 0.05 s. 1 (10) 0.128 s. (10) 0.051 s. 1 (10) 0.224 s. (10) 0.059 s. 1
50000 (10) 0.320 s. (10) 0.137 s. 1 (10) 0.333 s. (10) 0.126 s. 1 (10) 0.447 s. (10) 0.113 s. 1
70000 (10) 0.464 s. (10) 0.189 s. 1 (10) 0.476 s. (10) 0.174 s. 1 (10) 0.642 s. (10) 0.172 s. 1

50000 (10) 10.056 s. (10) 0.137 s. 1 (10) 49.251 s. (10) 0.126 s. 1 (10) 76.362 s. (10) 0.113 s. 1
70000 (10) 14.173 s. (10) 0.189 s. 1 (10) 84.433 s. (10) 0.174 s. 1 (10) 145.014 s. (10) 0.172 s. 1

Tabla 4. Instancias Weakly Correlated.
wi = random(10,100) wi = random(10,1000) wi = random(10,10000)
pi = wi + random(-100,100) pi = wi + random(-100,100) pi = wi + random(-100,100)
si pi ≤ 10 ponemos: pi = 10 si pi ≤ 10 ponemos: pi = 10 si pi ≤ 10 ponemos: pi = 10
c = 0.5

∑
n

i=1
wi c = 0.5

∑
n

i=1
wi c = 0.5

∑
n

i=1
wi

n CPLEX PSA niveles CPLEX PSA niveles CPLEX PSA niveles

5000 (10) 0.226 s. (1) 0.020 s. 1 (10) 0.126 s. (10) 0.026 s. 1 (10) 0.093 s. (10) 0.054 s. 6.4
20000 (10) 2.122 s. (1) 0.08 s. 1 (10) 1.069 s. (10) 0.053 s. 1 (10) 0.388 s. (10) 0.055 s. 1
50000 (10) 9.009 s. (10) 0.122 s. 1 (10) 5.761 s. (10) 0.118 s. 1 (10) 1.671 s. (10) 0.091 s. 1
70000 (10) 16.471 s. (10) 0.164 s. 1 (10) 10.45 s. (10) 0.164 s. 1 (10) 2.655 s. (10) 0.137 s. 1

50000 (10) 13.241 s. (10) 0.122 s. 1 (10) 58.859 s. (10) 0.118 s. 1 (10) 79.589 s. (10) 0.091 s. 1
70000 (10) 19.277 s. (10) 0.164 s. 1 (10) 105.659 s. (10) 0.164 s. 1 (10) 153.278 s. (10) 0.137 s. 1

Tabla 5. Instancias Sub-set Sum.
wi = random(10,100) wi = random(10,1000) wi = random(10,10000)
pi = wi pi = wi pi = wi

c = 0.5
∑

n

i=1
wi c = 0.5

∑
n

i=1
wi c = 0.5

∑
n

i=1
wi

n CPLEX PSA niveles CPLEX PSA niveles CPLEX PSA niveles

5000 (10) 0.078 s. (10) 0.097 s. 1 (10) 0.072 s. (10) 0.071 s. 1 (10) 0.061 s. (10) 0.081 s. 1
20000 (10) 0.476 s. (10) 0.220 s. 1 (10) 0.298 s. (10) 0.303 s. 1 (10) 0.280 s. (10) 0.265 s. 1
50000 (10) 0.819 s. (10) 0.850 s. 1 (10) 0.829 s. (10) 0.704 s. 1 (10) 0.822 s. (10) 0.609 s. 1
70000 (10) 1.187 s. (10) 1.288 s. 1 (10) 1.223 s. (10) 2.109 s. 1 (10) 1.211 s. (10) 1.239 s. 1

50000 (9) 11.418 s. (10) 0.850 s. 1 (10) 1.292 s. (10) 0.704 s. 1 (10) 2.388 s. (10) 0.609 s. 1
70000 (10) 82.89 s. (10) 1.288 s. 1 (10) 12.72 s. (10) 2.109 s. 1 (10) 6.635 s. (10) 1.239 s. 1

50 CAPÍTULO 4. PROBLEMA DE LA MOCHILA NO ACOTADO

A partir de las tablas presentadas en este caṕıtulo, observamos que PSA es más veloz que CPLEX
sobre la mayor parte de las instancias testeadas. Si comparamos los resultados obtenidos en la
primera etapa de nuestro experimento (utilizando CPLEX con pre-solve), advertimos que PSA
redujo los tiempos de resolución en el 70% de los casos estudiados. Más marcada aún es la
diferencia obtenida al comparar los valores de la segunda etapa. En ese caso, el porcentaje de
las instancias sobre las que PSA logró mejorar el rendimiento de CPLEX alcanza el 100% de
los casos examinados. En base a los resultados conseguidos en ambas etapas, concluimos que el
desempeño de CPLEX merma significativamente cuando se desactivan las opciones de pre-solve.
En esos casos, los tiempos de resolución pueden pasar de “algunos segundos” –incluso décimas
de segundo– a “minutos”. Estos valores demuestran que la fase de pre-procesamiento desempeña
un rol clave en la performance final del solver cuando se trabaja sobre problemas de tipo UKP.

También vale la pena comentar los requerimientos de memoria de cada uno de los métodos.
En instancias con 70000 variables, por ejemplo, el consumo de memoria de PSA oscila entre
800MB y 1.8GB; mientras que CPLEX utiliza tan sólo 50MB. El alto consumo de memoria
por parte de PSA es producto de almacenar, a lo largo de todo el proceso, la información
correspondiente a 70000 proyecciones inferiores y 70000 proyecciones superiores.

Sobre instancias de tamaño pequeño y mediano (estos datos no figuran en las tablas), PSA
resultó muy ineficiente. En dichos casos, el óptimo se ubica profundo –por lo tanto, el algoritmo
debe recorrer una gran cantidad de niveles hasta alcanzarlo– y el rango de valores de cada una
de las variables suele ser grande. Para mejorar el rendimiento del método en situaciones de este
tipo, proponemos, para un futuro trabajo, llevar a cabo las siguientes operaciones:

Implementar cotas superiores (por ejemplo, la cota U4 que presentamos en el caṕıtulo 2)
para evitar el análisis de los primeros niveles del problema.

Agrupar todos los niveles que tengan el mismo rango de valores para todas las variables y
analizarlos en conjunto. Aśı podŕıamos aprovechar las operaciones realizadas en un nivel
para todos aquellos niveles que tengan las mismas caracteŕısticas.

Implementar sistemas de pre-procesamiento para reducir el tamaño del problema original.

El balance de este experimento es bueno. Logramos mejorar los tiempos de un solver comer-
cial con más de 20 años de desarrollo, empleando un procedimiento que no tiene implementado
ningún sistema de pre-solve. Vale recordar que, en la mayoŕıa de los algoritmos diseñados es-
pećıficamente para resolver problemas de tipo UKP, la esencia del algoritmo es, justamente, el
sistema de pre-procesamiento (ver caṕıtulo 2).

Caṕıtulo 5

Mochila Multidimensional

En este caṕıtulo presentaremos detalles y resultados de la aplicación del algoritmo PSA sobre
problemas de tipo Mochila Multidimensional (MKP). Comenzaremos con un ejemplo sencillo
para mostrar cómo se calculan las proyecciones en este caso y, posteriormente, expondremos
los resultados computacionales de la comparación entre CPLEX y PSA sobre instancias de este
tipo.

maximizar f = 36x1 + 25x2 + 6x3

sujeta a 43x1 + 28x2 + 17x3 ≤ 44

38x1 + 51x2 + 43x3 ≤ 66

xi ∈ {0, 1}, i = 1, 2, 3

Inicio del algoritmo, Paso 0.

En problemas de clase MKP o, más generalmente, en PPLE que contengan al menos dos restric-
ciones, dif́ıcilmente podamos deducir fórmulas para P sup

Xi
(xi) y P inf

Xi
(xi) para valores genéricos

de xi (como śı lo hicimos para el UKP). Por lo tanto, en situaciones de este tipo, nos limitaremos
a calcular los valores estrictamente necesarios para poder utilizar las proyecciones. Estos valores
son: P sup

Xi
(ei) y P inf

Xi
(ei) para todos los valores enteros ei de xi. En el caso particular del MKP, el

problema de calcular las proyecciones se reduce, por ende, a encontrar P sup
Xi

(1), P sup
Xi

(0), P inf
Xi

(1)

y P inf
Xi

(0) para cada una de las variables xi. Una vez conseguidas estas pseudo-proyecciones,
continuamos con el Paso 1 del algoritmo.

Veamos cómo se calcula P sup
X1

(1).

Por definición, P sup
X1

(1) := máx valor f = 36 . 1 + 25x2 + 6x3

sujeta a 43 . 1 + 28x2 + 17x3 ≤ 44

38 . 1 + 51x2 + 43x3 ≤ 66

0 ≤ xi ≤ 1, i = 2, 3 ←− Relajamos esta condición.

Resolviendo este PPL a través del método Simplex, obtenemos: P sup
X1

(1) = 36.8929.

51

52 CAPÍTULO 5. MOCHILA MULTIDIMENSIONAL

Repitiendo el procedimiento anterior para cada uno de los valores enteros y para cada una de
las variables restantes, resulta:

P sup
X1

(1) = 36.8929 P sup
X2

(1) = 38.3953 P sup
X3

(1) = 27.7895

P sup
X1

(0) = 27.0930 P sup
X2

(0) = 36.3529 P sup
X3

(0) = 38.3953

P inf
X1

(1) = 36 P inf
X2

(1) = 25 P inf
X3

(1) = 6

P inf
X1

(0) = 0 P inf
X2

(0) = 0 P inf
X3

(0) = 0

A continuación, graficamos el conjunto de proyecciones y analizamos los tres primeros niveles
enteros candidatos a ser el nivel óptimo de la función.

0

10

20

30

40

-1 0 1 2
0

10

20

30

40

-1 0 1 2
0

10

20

30

40

-1 0 1 2

Figura 5.1: niveles 38, 37 y 36.

Niveles 38 y 37.

Paso 1. Examinando las proyecciones restringidas a cualquiera de estos dos niveles, obtene-
mos: RangoN1 = ∅, RangoN2 = {1} y RangoN3 = {0} para N = 38 y 37 (caso (b)). Luego, no
puede existir ninguna solución binaria tal que al ser evaluada en f alcance los niveles 38 o 37.
Como Pendientes = ∅, analizamos el próximo nivel.

Nivel 36.

Paso 1. Rango361 = {1}, Rango362 = {0, 1} y Rango363 = {0} (caso (c)).

Paso 3. Actualizamos nuestro candidato a solución: X = (1,−, 0). Y reemplazamos los valores
de x1 y x3 en el problema original; se deriva el siguiente problema reducido:

maximizar f = 25x2 + 36

sujeta a 28x2 ≤ 1

51x2 ≤ 28

x2 ∈ {0, 1}

5.1. DETALLES DE IMPLEMENTACIÓN 53

Como ahora el problema contiene una sola variable, la proyección coincide con el gráfico de la
función: PX2 es un segmento de recta de pendiente 25, con ordenada al origen 36, y está definida

en el intervalo
[

0,
1

28

]

.

Paso 1. Rango362 = {0} (caso(a)).

Paso 2. El candidato “X = (1, 0, 0)” es factible y al ser evaluado en f coincide con el nivel
actual (satisface las condiciones de optimalidad). Fin del algoritmo.

5.1. Detalles de Implementación

Hagamos algunas precisiones acerca de la implementación del método PSA en lo que se refiere
al cálculo de proyecciones para problemas de tipo MKP.

En primer lugar, no es necesario realizar ninguna operación para calcular las proyecciones in-
feriores. Dado que todos los coeficientes del problema son positivos, se sigue que: P inf

Xi
(xi) = pixi

∀ xi ∈ [0, 1]. Con lo cual, calcular las proyecciones de un MKP se reduce a hallar P sup
Xi

(0) y P sup
Xi

(1)
para cada variable xi.

En cuanto a las proyecciones superiores, en el ejemplo anterior utilizamos el método Simplex para
hallar la solución exacta de cada uno de los PPL asociados a la definición de P sup

Xi
(ei), ei ∈ {0, 1}.

En la práctica, resolver 2 PPL por cada variable incluida en el modelo resulta prohibitivo; con
lo cual, se torna necesario simplificar el número de operaciones. Con este objetivo en mente,
introdujimos dos modificaciones en la implementación del método para reducir el número de
operaciones cada vez que calculamos las proyecciones superiores:

1. El algoritmo comienza resolviendo la relajación lineal asociada al problema entero. Su-
pongamos que el óptimo de la relajación se alcanza en el punto “X̄” con valor máximo
“fmax”. Si la coordenada j-ésima del vector “X̄” es un valor entero “ej” (0 o 1), enton-
ces, deducimos que P sup

Xj
(ej) = fmax. Es decir, suponiendo que el problema que estemos

intentando resolver posea n variables, mediante esta primera operación podemos calcular
–en el mejor de los casos– hasta n − 1 de las 2n proyecciones superiores. Y esto se logra
resolviendo un sólo PPL.

2. Para averiguar los restantes valores, utilizamos la tabla Simplex-final conseguida en el
paso anterior para, agregando una restricción adicional a la formulación del problema
(xi ≤ 0 o xi ≥ 1), calcular cotas superiores para P sup

Xi
(1) y P sup

Xi
(0). Esta operación nos

permite completar rápidamente el conjunto de proyecciones y, de esa manera, asignar un
único valor entero a un gran porcentaje de variables en muy poco tiempo. En contraposi-
ción, este procedimiento puede incrementar el rango de valores de algunas de las variables.
Resta, para un futuro trabajo, estudiar en qué momento es conveniente reemplazar los
valores aproximados, obtenidos en esta etapa, por valores exactos.

Por lo tanto, las proyecciones superiores utilizadas en nuestra implementación son una combi-
nación entre valores exactos y aproximados. Lo cual no implica que las soluciones obtenidas a
través de este procedimiento no sean exactas.

54 CAPÍTULO 5. MOCHILA MULTIDIMENSIONAL

5.2. Experimentos Computacionales

En este caso, hemos trabajado en base a los art́ıculos de Arnaud Frèville [36, 10] para fabricar
las instancias test utilizadas para medir la perfomance de nuestro algoritmo. Las instancias de
tipo MKP son una generalización de las de tipo UKP adaptadas a problemas con numerosas
restricciones.

5.2.1. Instancias Test

Instancias Uncorrelated: los wij se generan aleatoriamente en el intervalo [1,1000] y los
coeficientes cj y pi de la siguiente manera:

cj := 0.5

n∑

i=1

wij y pi := random[1, 1000].

Donde n indica la cantidad de variables del problema y m el número de restricciones.

Instancias Weakly Correlated: los wij se generan aleatoriamente en el intervalo [1,1000] y
los coeficientes cj y pi de la siguiente manera:

cj := 0.5

n∑

i=1

wij y pi :=

∑m
j=1wij

m
+ random[−100, 100].

5.2.2. Resultados y Conclusiones

Nuevamente, comparamos el rendimiento de PSA contra el solver comercial CPLEX [20] de IBM
(versión 10.1.0). En todos los casos, corrimos CPLEX sin modificar los parámetros por default;
es decir, con todas las herramientas activas: pre-procesamiento, cortes, heuŕısticas, etc.. Traba-
jamos sobre instancias de tipo Uncorrelated y Weakly Correlated con 3000, 5000, 10000 y 20000
variables y 1, 2 y 3 restricciones. Todas las mediciones fueron realizadas en una computadora
SUN UltraSparc III workstation with a CPU running at 1GHz and 2GB of RAM memory. En
este caso, no impusimos ningún ĺımite de tiempo para las corridas, con lo cual, las instancias
que no pudieron ser resueltas corresponden a problemas donde se superaron los 2GB de me-
moria. A continuación, exponemos los resultados obtenidos a través de estas pruebas junto con
las conclusiones del experimento. Notaremos con las letras “n” y “m” al número de variables y
restricciones, respectivamente, que contienen cada una de las instancias.

Cómo leer las tablas: cada casillero de la tabla contiene 7 valores, por ejemplo

CPLEX PSA niveles 1a iteración

(10) 0.924 seg. (10) 0.153 seg. 4.6 2973.8 (99.12 %)

En las columnas 1 y 2 se indica, entre paréntesis, el número de instancias resueltas en forma
óptima por parte de cada uno de los algoritmos (sobre un total de 10 problemas test). Y, a la
derecha de ese valor, se muestra el tiempo promedio consumido por cada uno de los métodos
sobre las instancias que pudieron ser resueltas. En la columna 3, se exhibe la cantidad de niveles
(promedio) recorridos por PSA hasta alcanzar la solución óptima. Por último, en la columna 4,
se indica el número de variables (promedio) a las que PSA le asigna un único valor entero en la
primera iteración del nivel óptimo. A la derecha de este último valor, figura el porcentaje que
representa sobre el total de variables.

5.2. EXPERIMENTOS COMPUTACIONALES 55

Tabla 6. Resultados computacionales sobre instancias Uncorrelated.

n m CPLEX PSA niveles 1a iteración

3000 1 (10) 0.924 seg. (10) 0.153 seg. 4.6 2973.8 (99.12%)
3000 2 (10) 44.733 seg. (10) 15.883 seg. 10.3 2936.7 (97.89%)
3000 3 (10) 25.84 min. (10) 10.652 min. 18.9 2888.1 (96.27%)
3000 4 (9) 6.548 hs. (10) 6.63 hs.3 25.1 2842.6 (94.75%)

5000 1 (10) 1.733 seg. (10) 0.168 seg. 2.8 4977.6 (99.55%)
5000 2 (10) 2.612 min. (10) 26.802 seg. 7.6 4925.2 (98.50%)
5000 3 (10) 1.009 hs. (10) 12.38 min. 11.3 4882.6 (97.65%)

10000 1 (10) 2.831 seg. (10) 0.254 seg. 1.8 9974.4 (99.74%)
10000 2 (10) 5.398 min. (10) 47.414 seg. 4.3 9919.3 (99.19%)
10000 3 (8) 3.42 hs. (10) 53.73 min. 6.9 9874.4 (98.74%)

20000 1 (10) 7.373 seg. (10) 0.419 seg. 1.5 19961.2 (99.80%)
20000 2 (10) 24.953 min. (10) 1.119 min. 2.8 19908.2 (99.54%)
20000 3 (1) 17.148 hs.4 (10) 4.387 hs. 4.6 19830.0 (99.15%)

Tabla 7. Resultados computacionales sobre instancias Weakly Correlated.

n m CPLEX PSA niveles 1a iteración

3000 1 (10) 0.873 seg. (10) 0.072 seg. 1.4 2975.0 (99.16%)
3000 2 (10) 2.396 min. (10) 15.087 seg. 3.0 2904.3 (96.81%)
3000 3 (5) 3.27 hs. (10) 1.096 hs. 4.6 2852.0 (95.06%)

5000 1 (10) 1.486 seg. (10) 0.079 seg. 1.3 4953.4 (99.06%)
5000 2 (10) 3.731 min. (10) 26.631 seg. 2.1 4900.3 (98.00%)
5000 3 (1) 11.27 hs.5 (10) 1.945 hs. 3.7 4812.4 (96.24%)

10000 1 (10) 3.274 seg. (10) 0.159 seg. 1.0 9941.7 (99.41%)
10000 2 (10) 8.342 min. (10) 16.414 seg. 2.0 9845.8 (98.45%)
10000 3 (0) ——– (10) 4.73 hs. 2.0 9814.4 (98.14%)

20000 1 (10) 10.511 seg. (10) 0.308 seg. 1.0 19868.9 (99.34%)
20000 2 (10) 14.235 min. (10) 20.749 seg. 1.2 19839.0 (99.19%)
20000 3 (0) ——– (10) 10.39 hs. 1.6 19720.6 (98.60%)

3Sobre las 9 instancias resueltas por CPLEX, PSA consumió, en promedio, 4.518 horas.
4El tiempo consumido por PSA sobre esta misma instancia fue de 7.29 horas.
5El tiempo consumido por PSA sobre esta misma instancia fue de 1.87 horas.

56 CAPÍTULO 5. MOCHILA MULTIDIMENSIONAL

En base a los resultados computacionales presentados en este caṕıtulo, concluimos:

PSA es más veloz que CPLEX en absolutamente todas las instancias testeadas.

Sobre todas las instancias testeadas con dos o más restricciones, el consumo de memoria
de PSA resultó inferior al de CPLEX. Por ejemplo, si consideramos las pruebas realizadas
sobre instancias Weakly Correlated con 10000 variables y 3 restricciones, PSA consumió un
promedio de 160.46MB de memoria (consumo máximo), mientras que CPLEX agotó, en
todos los casos, los 2GB disponibles. Es decir, PSA utilizó menos del 8.023% de la memoria
requerida por CPLEX.

Es interesante destacar el número de variables a las que PSA le asigna un único valor entero
en la primera iteración del nivel óptimo. En todos los casos, este porcentaje asciende a más
del 94%. Con lo cual, luego de la primera iteración, PSA reduce el problema original a un
nuevo problema que contiene menos del 6% de las variables. De aqúı los buenos resultados
obtenidos tanto en tiempos de resolución como en consumo de memoria.

En este caso, el balance del experimento es muy bueno. Logramos mejorar los tiempos y los
requerimientos de memoria de CPLEX sobre instancias de tamaño grande no publicadas en
la literatura del área. Resta evaluar, en un futuro trabajo, el comportamiento del algoritmo
sobre instancias de mayor tamaño (experimento que no podemos hacer con la computadora
actual debido al alto consumo de memoria –sobre todo por parte de CPLEX– y a los tiempos de
resolución requeridos). Por último, también seŕıa interesante medir la performance del algoritmo
aplicando, previamente, algún sistema de pre-procesamiento.

Caṕıtulo 6

Conclusiones

Al comenzar esta tesis, hicimos un repaso (en el caṕıtulo 1) de los principales métodos empleados
en la resolución de PPLE en forma exacta: el algoritmo de Planos de Corte y los métodos
Branch-and-Bound y Branch-and-Cut. En todos los casos, vimos que la estrategia para buscar
el óptimo consist́ıa en modificar el dominio del problema –habiendo considerado previamente su
relajación lineal– mediante el agregado de nuevas desigualdades lineales. En el caso del algoritmo
de Planos de Corte, las nuevas desigualdades eran utilizadas para separar soluciones fraccionarias
de la relajación lineal y conservar el conjunto de soluciones factibles enteras del problema original.
En el caso de los métodos Branch-and-Bound y Branch-and-Cut, las desigualdades eran usadas
para particionar el dominio del problema y eliminar soluciones fraccionarias de la relajación.

Si bien la estrategia que acabamos de comentar es la más difundida entre los algoritmos exactos;
es una forma de trabajar que presenta una contra importante: añadir restricciones adicionales
a la formulación del problema, implica un aumento del número de operaciones realizadas cada
vez que se debe resolver una nueva relajación lineal. El método que presentamos en el caṕıtulo 3
evita, justamente, esta dificultad. Al tratarse de un algoritmo que no actúa sobre el dominio
del problema, “PSA” no requiere del agregado de nuevas restricciones lineales para su funcio-
namientos. Además, podemos destacar otras dos caracteŕısticas que también lo distinguen de
los algoritmos mencionados anteriormente: 1o) genera los candidatos a solución en términos del
valor de la función; y 2o) reduce sistemáticamente el número de variables del problema.

A partir de los experimentos computacionales presentados en los caṕıtulos 4 y 5 (producto de
comparar el rendimiento de nuestro método contra el solver comercial CPLEX de IBM sobre
instancias de tipo UKP y MKP), concluimos:

Sobre instancias con más de 3000 variables y una única restricción, PSA es más veloz que
CPLEX (en la mayoŕıa de los casos) pero el consumo de memoria es mucho más elevado.

En instancias con al menos dos restricciones y 3000 variables, PSA es más veloz que CPLEX
en absolutamente todas las instancias testeadas. Y, además, reduce considerablemente el
consumo de memoria.

57

58 CAPÍTULO 6. CONCLUSIONES

Con respecto a las instancias de tamaño pequeño (estos datos no figuran en las tablas), no
obtuvimos buenos resultados al aplicar el método PSA. En general, a medida que disminuye el
número de variables del problema y/o aumenta la cantidad de restricciones, la distancia entre
el nivel óptimo del problema entero y el de la relajación lineal es cada vez mayor. Esto se
traduce en un aumento del número de niveles analizados por parte de nuestro algoritmo y, como
consecuencia, de la cantidad de operaciones realizadas. Para mejorar la performace del método
para esta clase de problemas, proponemos, para un futuro trabajo, implementar las siguientes
herramientas:

Implementar cotas superiores –siempre que la situación lo permita– para evitar el análisis
de los primeros niveles del problema.

Agrupar todos los niveles que tengan el mismo rango de valores para todas las variables y
analizarlos en conjunto. De esa manera, podŕıamos aprovechar las operaciones realizadas
en un nivel para todos aquellos niveles que tengan las mismas caracteŕısticas (es el caso de
los niveles 31, 30 y 29, por un lado, y de los niveles 27, 26 y 25, por otro, en la instancia
resuelta de tipo UKP en el caṕıtulo 3).

Implementar sistemas de pre-procesamiento para reducir el tamaño del problema original.

Con todo lo expresado, pensamos que este trabajo aporta un nuevo enfoque en la resolución
de problemas de programación lineal entera. Resta, para un futuro trabajo, evaluar el compor-
tamiento del algoritmo sobre instancias de mayor tamaño (principalmente, con mayor número
de restricciones); como aśı también, sobre otra clase de problemas. Por último, también seŕıa
interesante medir la performance del algoritmo aplicando, previamente, algún sistema de pre-
procesamiento.

Bibliograf́ıa

[1] D. L. Applegate, R. E. Bixby, V. Chvatal and W. J. Cook. The Traveling Salesman Problem:
A Computational Study. Princenton University Press, 2006.

[2] Balas, E., An Additive Alogrithm for Solving Linear Programs with Zero-One Vari- ables,
Operations Research, 13, 4, 517-549 (1965).

[3] C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh and P. Vance. Branch-and-Price:
Column Generation for Solving Integer Programs. Operations Research 46, 316-329, 1998.

[4] H. Crowder, E. Johnson, and M. Padberg.Solving Large-Scale Zero-One Linear Program-
ming Problems. Operations Research 31, 803, 1983.

[5] N. S. Cherbaka. Solving Single and Multiple Plant Sourcing Problems with a Multidimen-
sional Knapsack Model. Ph.D thesis, Faculty of Virginia Polytechnic Institute, 2004.

[6] G.B. Dantzig. Linear Programming and Extensions. Elsevier, 2004.

[7] G.B. Dantzig and M. N. Thapa. Linear Programming, 1: Introduction. Princeton University
Press, 1963.

[8] G. Dantzig, R. Fulkerson and S. Johnson. Solution of a large-scale traveling salesman pro-
blem. Journal of Operation Research American Mathematical Society vol 2, nro. 4, 1954.

[9] FICOTM Xpress Optimization Suite, http://optimization.fico.com/, 2011.

[10] A. Fréville. The multidimensional 0–1 knapsack problem: an overview. Elsevier, 2004.

[11] Gabrel, V., and Minoux, M., A Scheme for Exact Separation of Extended Cover Inequalities
and Application to Multidimensional Knapsack Problems, Operations Re- search Letters,
30, 252-264 (2002).

[12] M. Garey and D. Johnson Computers and Intractability: A Guide to the Theory of NP-
Completeness.W. H. Freeman and Company, San Francisco, 1979.

[13] Gavish, B., and Pirkul, H., Eficient Algorithms for Solving Multiconstraint Zero-One Knap-
sack Problems to Optimality, Mathematical Programming, 31, 78-105 (1985).

[14] B.L. Golden, S. Raghawan and E.A. Wasil, The Vehicle Routing Problem. Springer, New
York, 2008.

[15] R.E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of
the American Mathematical Society 64, 275-278, 1958.

[16] Gurobi Optimizer, http://www.gurobi.com/, 2011.

59

60 BIBLIOGRAFÍA

[17] M. Grostschel, M. Junger and G. Reinelt. A cutting plane algorithm for the Linear Ordering
Problem. Operations Research, 32, 1195-1220, 1984.

[18] M.Grotschel, M. Junger and G. Reinelt.Facets of the linear ordering polytope. Mathematical
Programming 33, 43–60, 1985.

[19] M. Grotschel and M.W. Padberg. On the symmetric travelling salesman problem I: inequa-
lities. Mathematical Programming 16,265-280, 1979.

[20] IBM ILOG CPLEXOptimizer, http://www-01.ibm.com/software/integration/optimization/cplex-
optimizer/, 2011.

[21] M. Jünger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi
and L. Wolsey. 50 Years of Integer Programming 1958-2008. Springer, 2010.

[22] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica 4,
373-395, 1984.

[23] L.G. Khachiyan. A polynomial algorithm in linear programming. Soviet Mathematics Do-
klady 20, 191-194, 1979.

[24] H. Kellerer, U. Pferschy and D. Pisinger.Knapsack Problems. Springer, 2004.

[25] V. Klee and G.J. Minty. How good is the simplex algorithm?. Inequalities (O. Shisha, ed.),
vol. III, Academic Press, New York, 159-175, 1972.

[26] A.H. Land and A.G. Doig. An Automatic Method for Solving Discrete Programming Pro-
blems. Econometrica 28, 497-520, 1960.

[27] J. Linderoth and M. Savelsberg. A computational study of search strategies for mixed integer
programming. INFORMS Journal on Computing, 11(2), 173–187, 1999.

[28] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementations.
John Wiley and Sons, 1990.

[29] G. Nemhauser and L. Wolsey. Integer Programming and Combinatorial Optimization. Wiley,
1988.

[30] M. W. Padberg. On the facial structure of set packing polyhedra. Mathematical Program-
ming, 5: 199-215, 1973.

[31] M. Padberg and G. Rinaldi. Optimization of a 532-City Symmetric Traveling Salesman
Problem by Branch and Cut. Oper. Res. Letters, 6, 1-7, 1987.

[32] D. Pisinger. Algorithms for Knapsack Problems. Ph.D thesis, University of Copenhagen,
Denmark, 1995.

[33] Shih, W., A Branch and Bound Method for the Multiconstraint Zero-One Knapsack Pro-
blem, Journal of the Operational Research Society, 30, 369-378 (1979).

[34] Soyster, A.L. Lev, B., and Slivka, W., Zero-One Programming with many variables and few
constraints, European Journal of Operational Research, 2, 195-201 (1977).

[35] F. Vanderbeck and L. Wolsey. An Exact Algorithm for IP Column Generation. Operations
Research Letters 19, 151–160, 1996.

BIBLIOGRAFÍA 61

[36] C. Wilbaut, S. Hanafi, A. Fréville and S. Balev. Tabu search: global intensification using
dynamic programming. Université de Valenciennes, France, 2004.

[37] L. Wolsey. Integer Programming. Wiley, 1998.

	Portada
	Agradecimientos
	Resumen
	Índice general
	1. Conceptos Básicos
	1.1. Programación Lineal y el Método Simplex
	1.2. Programación Lineal Entera
	1.2.1. Métodos de Resolución

	2. Problemas de la Mochila
	2.1. Problema de la Mochila No Acotado (UKP)
	2.1.1. Propiedades del UKP
	2.1.2. Estado del problema

	2.2. Problema de la Mochila Multidimensional (MKP)
	2.2.1. Estado del problema

	3. El Método PSA
	3.1. Ideas Básicas y Motivación
	3.2. Modelado y Definiciones
	3.3. Propiedades
	3.4. El Método PSA-puro
	3.5. Validez del Algoritmo
	3.6. El Método PSA-mixto

	4. Problema de la Mochila No Acotado
	4.1. Número de Operaciones
	4.2. Experimentos Computacionales
	4.2.1. Instancias Test
	4.2.2. Resultados y Conclusiones

	5. Mochila Multidimensional
	5.1. Detalles de Implementaci�on
	5.2. Experimentos Computacionales
	5.2.1. Instancias Test
	5.2.2. Resultados y Conclusiones

	Conclusiones
	Bibliografía

