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Caṕıtulo 1

Introducción

En esta tesis estudiaremos un problema de autovalores de la forma

(−1)m−1y(2m) + λp(t)y = 0 t ∈ (a,∞)
y(i)(a, λ) = 0 0 ≤ i ≤ m− 1

ĺım
t→∞

y(i)(t, λ) = 0 m ≤ i ≤ 2m− 1.
(1.1)

con λ un parámetro positivo y p una función continua no negativa que satisface
la condición de integrabilidad

∫ ∞

a

t2m−1p(t)dt < +∞.

En el caṕıtulo 2, siguiendo el trabajo de Naito [13], demostraremos mediante el
método de punto fijo que para todo λ > 0 existe una única solución no oscilatoria
y que tiende a una constante cuando t → ∞. Posteriormente, para estas soluciones
analizamos las propiedades de sus ceros.

Para finalizar, demostramos la existencia de una sucesión de autovalores {λk}k
simples, y una sucesión de autofunciones cada una con exactamente k ceros en
[a,∞).

En el caṕıtulo 3 estudiaremos el problema en un intervalo finito,

(−1)my(2m) − λp(t)y = 0 t ∈ (a, b)
y(a) = y′(a) = . . . = ym−1(a) = 0
y(b) = y′(b) = . . . = ym−1(b) = 0.

El objetivo es encontrar cotas inferiores para el primer autovalor para luego en-
contrar cotas para el primer autovalor de los problemas estudiados en el Caṕıtulo
2.

A partir de la caracterización variacional de los autovalores del problema en
el intervalo (a, b), las funciones test que utilicemos en la misma nos darán cotas
superiores para el primer autovalor. El objetivo de este caṕıtulo es lograr una
cota inferior para el primer autovalor del problema.

Para m = 1 y pesos p monótonos Z. Nehari obtuvo en [14] la cota integral

λ1/2
p

∫ b

a

p(t)dt ≥ π

2
,

1



2 CAPÍTULO 1. INTRODUCCIÓN

con λp el menor autovalor. Esta cota, para pesos monótonos, mejora las que se
obtienen con otras desigualdades.

Para el caso m > 1 extenderemos la cota encontrada por Nehari, para lo cual
nos conviene plantear la solución de nuestro problema en forma integral. Para
esto introducimos en el caṕıtulo la notación necesaria.

Luego, demostraremos un Lema principal, clave para lograr la desigualdad de
Nehari. El mismo garantiza que

ı́nf
g

{
λ1/2
g

∫ b

a

g(x)dx

}
= ı́nf

s

{
λ1/2
s

∫ b

a

s(x)dx

}
,

donde g ∈ L2([a, b]) es una función monótona y s es una función simple con una
sola discontinuidad.

En la última sección del caṕıtulo se extiende esta cota para el caso del p-
laplaciano.

En el caṕıtulo 4 volvemos al problema en la semirrecta y daremos una esti-
mación asintótica para el problema de autovalores

y′′ + λp(t)y = 0 t ∈ (a,∞)

y(a, λ) = 0

ĺım
t→∞

y′(t, λ) = 0.

Seguiremos parcialmente el trabajo de E. Hille [9]. Introduciremos la transforma-
da de Prüfer, analizaremos las coordenadas radiales y angulares para el problema,
y finalmente demostraremos que

λk =

(
πk

∫ b

a
p1/2(t)dt

)2

[1 + o(1)], n → ∞.

El objetivo del caṕıtulo 5 es estudiar el comportamiento asintótico de la su-
cesión de autovalores del problema (1.1) para los problemas de mayor orden.

Para esto definimos la función N(λ) que cuenta el número de autovalores
menores o iguales que λ:

N(λ) = #{k ∈ N : λk ≤ λ}.

En primer lugar estudiaremos el comportamiento de la función N(λ) para
problemas en intervalos acotados, donde podemos aplicar la teoŕıa de Sturm en
problemas de segundo orden, y para el caso de problemas de cuarto orden la
teoŕıa desarrollada por Leigthon y Nehari en [11].

Cuando el problema de autovalores se plantea sobre intervalos de la forma
(a,∞) buscaremos cotas superiores e inferiores para estimar N(λ). Las cotas
inferiores las lograremos utilizando información sobre problemas en intervalos
cerrados, y las cotas superiores haciendo uso de la cota de Nehari para los auto-
valores.

Por último, en el caṕıtulo 6 describimos algunas extensiones de estos resulta-
dos a distintos problemas.



Caṕıtulo 2

Un problema de autovalores

2.1. Introducción

En este caṕıtulo comenzaremos trabajando con ecuaciones de la forma

y(2m) + λp(t)y = 0, t ∈ (a,∞) (2.1)

donde m ≥ 1 es número natural, λ es un parámetro positivo, y p ∈ C([a,∞))
positiva, que satisface la condición

∫ ∞

a

t2m−1p(t)dt < +∞. (2.2)

Las soluciones de estas ecuaciones se pueden clasificar como oscilatorias o no
oscilatorias, según que tengan un número finito o infinito de ceros. Para m = 1,
la existencia de una solución de una clase u otra garantiza que todas las demás
son de la misma clase: o son todas oscilatorias, o son todas no oscilatorias. Para
m general, la situación es más complicada y dependerá de la función p.

El objetivo de este caṕıtulo es demostrar que si la función p satisface la con-
dición (2.2), entonces para cada λ > 0 existe una solución y(t, λ) de la ecuación
(2.1) no oscilatoria y acotada que cumple con la condición

ĺım
t→∞

y(t, λ) = 1. (2.3)

Posteriormente, analizaremos algunas propiedades de los ceros de las solucio-
nes y(t, λ). Para el caso m = 1 disponemos de la teoŕıa de Sturm Liouville y de
la transformada de Prüfer. Para el caso m ≥ 2 estos métodos no funcionan, y los
resultados son menos precisos.

Finalmente, estudiaremos el siguiente problema de autovalores singular

y(2m) + λp(t)y = 0 t ∈ (a,∞) (2.4)

y(a, λ) = 0

ĺım
t→∞

y(i)(t, λ) = 0 1 ≤ i ≤ 2m− 1

3



4 CAPÍTULO 2. UN PROBLEMA DE AUTOVALORES

y demostraremos que existe una sucesión de autovalores {λk}k, donde λk se define
como el ı́nfimo de los λ tales que hay una solución con k ceros en [a,∞).

Estos resultados se encuentran en el trabajo de M. Naito [13], y luego fueron
extendidos por U. Eĺıas en [4].

2.2. Existencia de soluciones

El primer paso será demostrar la existencia de soluciones del problema (2.1)
en (a,∞) cuando la función p(t) cumple con la condición (2.2).

Teorema 2.2.1. Supongamos que la función p(t) satisface la condición (2.2).
Entonces para cada λ > 0 la ecuación (2.1) tiene una única solución y(t, λ) tal
que

ĺım
t→∞

y(t, λ) = 1.

Demostración. La demostración se obtiene utilizando un argumento de punto
fijo. La dificultad principal es que la condición de borde está dada en infinito, y
conviene estudiar la ecuación integral equivalente a la ecuación (2.1):

y(t, λ) = 1− λ

∫ ∞

t

(s− t)2m−1

(2m− 1)!
p(s)y(s, λ)ds (2.5)

Veamos existencia local en infinito. Fijemos un valor Λ > 0 arbitrario. Como
la función p(t) satisface (2.2) podemos elegir T ≥ a de manera tal que

Λ

∫ ∞

T

s2m−1

(2m− 1)!
p(s)ds ≤ 1

2
. (2.6)

Sea C{T,Λ} al espacio de Banach formado por todas las funciones y continuas
y acotadas en [T,∞)× (0,Λ] con la norma

‖ y ‖= sup {|y(t, λ)| : (t, λ) ∈ [T,∞)× (0,Λ]} .

Definimos el subconjunto Y ⊆ C{T,Λ}

Y =

{
y(t, λ) ∈ C{T,Λ} :

1

2
≤ y(t, λ) ≤ 1 , (t, λ) ∈ [T,∞)× (0,Λ]

}

y el operador M

(My)(t, λ) = 1− λ

∫ ∞

t

(s− t)2m−1

(2m− 1)!
p(s)y(s, λ)ds, (2.7)

para (t, λ) ∈ [T,∞)× (0,Λ].

Veamos que este operador satisface M(Y ) ⊆ Y y es contractivo.
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i) M(Y ) ⊆ Y :

Tenemos que My es una función continua, veamos que

1

2
≤ (My)(t, λ) ≤ 1

si (t, λ) ∈ [T,∞)× (0,Λ].

Como y ∈ Y es positiva, entonces

λ

∫ ∞

t

(s− t)2m−1

(2m− 1)!
p(s)y(s, λ)ds ≥ 0.

Ahora,

(My)(t, λ) = 1− λ

∫ ∞

t

(s− t)2m−1

(2m− 1)!
p(s)y(s, λ)ds ≤ 1.

Para la otra cota, dado que t ≤ T , λ ≤ Λ y s − t < s, el término que
involucra la integral se puede acotar como

λ

∫ ∞

t

(s− t)2m−1

(2m− 1)!
p(s)y(s, λ)ds ≤ Λ

∫ ∞

T

s2m−1

(2m− 1)!
p(s)y(s, λ)ds

≤ Λ

∫ ∞

T

s2m−1

(2m− 1)!
p(s)ds

≤ 1

2
,

donde en las dos últimas desigualdades utilizamos que y(s, λ) ≤ 1 para todo
(s, λ) ∈ [T,∞)× (0,Λ] y la cota (2.6).

Por lo tanto,

(My)(t, λ) = 1− λ

∫ ∞

t

(s− t)2m−1

(2m− 1)!
p(s)y(s, λ)ds ≥ 1

2
.

ii) M es una contracción:

Basta probar que para todo x, y ∈ Y se tiene

‖ My −Mx ‖≤ 1

2
‖ y − x ‖ .

Tenemos

|(My)(t, λ)− (Mx)(t, λ)| =

∣∣∣∣λ
∫ ∞

t

(s− t)2m−1

(2m− 1)!
p(s)[y(s, λ)− x(s, λ)]ds

∣∣∣∣

≤ Λ

∫ ∞

T

s2m−1

(2m− 1)!
p(s) |y(s, λ)− x(s, λ)| ds

≤ 1

2
‖ y − x ‖,

utilizando igual que antes la cota (2.6) y que | y(s, λ)− x(s, λ) |≤ ‖y− x‖ .
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Luego, por el teorema de punto fijo de Banach, existe una única función ŷ ∈ Y
tal que (Mŷ)(t, λ) = ŷ(t, λ), con lo cual

ŷ(t, λ) = 1− λ

∫ ∞

t

(s− t)2m−1

(2m− 1)!
p(s)ŷ(s;λ)ds

y esta función ŷ(t, λ) es solución de la ecuación (2.1) para valores de λ ∈ (0,Λ) y
t en [T,∞).

Además, como ŷ(t, λ) está acotada,

ĺım
t→∞

∫ ∞

t

(s− t)2m−1

(2m− 1)!
p(s)ŷ(s, λ)ds = 0,

lo cual implica
ĺım
t→∞

ŷ(t, λ) = 1.

Para los valores de t ∈ [a, T ] podemos construirnos una solución y(t, λ) que
extienda a la otra en el [a,∞) de manera que y(t, λ) y sus derivadas se peguen
en t = T con la solución ŷ(t, λ).

Luego, hemos encontrado una solución para (2.1) definida para todo t ∈ [a,∞)
y que cumple con la condición (2.3). Como Λ > 0 era un número arbitrario, el
teorema queda demostrado.

2.3. Ceros de las soluciones

En esta sección cuando hablemos de la función y(t, λ) nos estaremos refiriendo
a la solución de la ecuación (2.1).

Nuestro objetivo es analizar las propiedades de los ceros de y(t, λ). Veremos
que la solución es no oscilatoria, tiene ceros simples, y un resultado de monotońıa
de los ceros dentro de cualquier intervalo fijo.

Las próximas dos proposiciones están contenidas en la demostración del Teo-
rema 2.2.1, pero conviene aislarlas pues las utilizaremos más adelante.

Proposición 2.3.1. Para todo Λ > 0 fijo, existe T = T (Λ) tal que y(t, λ) no
tiene ceros en el intervalo [T,∞) para todo λ ∈ (0,Λ).

Demostración. En la demostración del Teorema (2.2.1), fijado Λ, vimos que si

Λ

∫ ∞

T

s2m−1

(2m− 1)!
p(s)ds ≤ 1

2
,

la única solución de la ecuación (2.1) satisface

1

2
≤ y(t, λ) ≤ 1

para (t, λ) ∈ [T,∞)×(0,Λ]. Por lo tanto, no tiene ceros en el intervalo [T,∞).
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Proposición 2.3.2. Existe λ∗ > 0 tal que, para todo λ ∈ (0, λ∗), la solución
y(t, λ) no se anula en el intervalo [a,∞).

Demostración. Como la función p satisface la condición (2.2), podemos elegir λ∗
tal que

λ∗

∫ ∞

a

s2m−1

(2m− 1)!
p(s)ds ≤ 1

2

Luego, existe una solución de la ecuación (2.1) que pertenece al conjunto

Y =

{
y(t, λ) ∈ C{a,λ∗} :

1

2
≤ y(t, λ) ≤ 1 ∀(t, λ) ∈ [a,∞)× (0, λ∗]

}

y no se anula en [a,∞).

Proposición 2.3.3. Para cada λ > 0 la solución de la ecuación (2.1) es de la
forma

y(t, λ) = 1− λ

∫ ∞

t

(s− t)2m−1

(2m− 1)!
p(s)y(s, λ)ds t ≥ a.

La i−ésima derivada con 1 ≤ i ≤ (2m− 1) es de la forma

y(i)(t, λ) = (−1)i+1λ

∫ ∞

t

(s− t)2m−i−1

(2m− i− 1)!
p(s)y(s, λ)ds,

y satisface
ĺım
t→∞

y(i)(t, λ) = 0

Demostración. Se verifica directamente derivando.

El siguiente lema es una variante del Teorema del Valor Medio que lo re-
cordamos porque se utilizará para demostrar que los ceros de las soluciones son
simples.

Lema 2.3.1. Si f ∈ C1([t0,∞)) satisface f(t0) = 0 y ĺım
t→∞

f(t) = 0 entonces

f ′(ξ) = 0 para algún ξ ∈ (t0,∞)

Proposición 2.3.4. Para cada λ > 0, los ceros de y(t, λ) son simples.

Demostración. Vamos a demostrarlo por el absurdo. Supongamos que existe un
λ > 0 tal que la solución correspondiente y(t, λ) tiene al menos un cero múltiple
en [a,∞).

Sea tf ∈ [a,∞) el último cero de y(t, λ). Para los valores de t > tf la solución
y(t, λ) es positiva, porque

ĺım
t→∞

y(t, λ) = 1.

Por la Proposición (2.3.3) tenemos que

y′(t, λ) = λ

∫ ∞

t

(s− t)2m−2

(2m− 2)!
p(s)y(s, λ)ds,



8 CAPÍTULO 2. UN PROBLEMA DE AUTOVALORES

con lo cual en el intervalo [tf ,∞) esta derivada no se anula por ser positivo el
integrando. Entonces, tf es un cero simple de y(t, λ).

Supongamos que t0 es el último cero múltiple de y(t, λ). Entonces,

y(t0, λ) = y′(t0, λ) = 0.

Además, supongamos también que y(t, λ) tiene exactamente N ceros simples
{t1, t2, . . . , tN} en el intervalo (t0,∞), para cierto N > 1, donde tN = tf .

Consideremos los N intervalos [t0, t1], [t1, t2], . . ., [tN−1, tN ]. Como la función
y(t, λ) se anula en cada uno de los extremos de los intervalos, por el Teorema del
Valor Medio existe θi ∈ (ti−1, ti) para i = 1, . . . , N donde y′(θi, λ) = 0. Como t0
es un cero múltiple de y(t, λ), la función y′(t, λ) tiene al menos N + 1 ceros en el
intervalo [t0, tf ].

Sea t∗ el último cero de y′(t, λ) en el intervalo (t0, tf ). Como

ĺım
t→∞

y′(t, λ) = 0,

existe un punto t∗∗ ∈ [t′,∞) donde y′′(t∗∗, λ) = 0. Además, t∗∗ < tf , ya que por
la Proposición (2.3.3) tenemos que

y′′(t, λ) = (−1)λ

∫ ∞

t

(s− t)2m−3

(2m− 3)!
p(s)y(s, λ)ds,

y no se anula en [tf ,∞).
Entonces t∗∗ ∈ (t∗, tf ) y por lo tanto y′′(t, λ) tiene por lo menos N + 1 ceros

en (t0, tf ) (N corresponden a los que están entre los ceros de la primer derivada).
Repitiendo este argumento podemos concluir que cada una de las derivadas

y(i)(t, λ) con i = 1, 2, . . . , 2m − 1 tiene por lo menos N + 1 ceros en el intervalo
(t0, tf ).

Para la última derivada y(2m)(t, λ) podemos garantizar la existencia de al
menos N ceros en (t0, tf ). Como la condición dada por la Proposición (2.3.3) vale
hasta i = 2m − 1, no podemos asegurar la existencia de un cero de la derivada
2m posterior al último cero de la derivada 2m− 1.

Utilizando la ecuación (2.1) resulta que

y(2m)(t, λ) = −λp(t)y(t, λ)

y por lo tanto y(t, λ) tiene N ceros en el abierto (t0, tf ). Pero además y se anula en
tf , y esto contradice nuestra suposición de que y(t, λ) teńıa sólo N ceros simples
en el intervalo (t0,∞).

Proposición 2.3.5 (Eĺıas, [5]). Sea [α, β] ⊆ [a,∞] intervalo fijo. Entonces existe
un λ∗ > 0 tal que para todo λ ∈ (λ∗,∞) la solución y(t, λ) tiene al menos un cero
en el intervalo [α, β].

Observación 2.3.1. Si tomamos m intervalos disjuntos en [a,∞], existirá un
λ∗
max tal que para todo λ > λ∗

max la solución correspondiente y(t, λ) tendrá por lo
menos m ceros.
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2.4. Existencia de autovalores

Consideraremos ahora el problema de autovalores (2.4). En el siguiente teo-
rema demostraremos la existencia de una sucesión creciente y no acotada de au-
tovalores, y analizaremos los ceros de las autofunciones correspondientes a cada
uno.

Teorema 2.4.1. Si la función p(t) satisface la condición (2.2), entonces existe
una sucesión de números reales positivos {λk}k tales que el problema (2.4) tiene
una solución yk(t, λk) no trivial, y

(i) Los autovalores satisfacen 0 < λ1 < · · · < λk < · · · ր +∞.

(ii) La autofunción yk correspondiente a λk con k ≥ 1 tiene exactamente k − 1
ceros en el intervalo (a,∞), y además yk(a, λk) = 0.

(iii) Si λ ∈ (λk, λk+1) con k ≥ 1, la solución y(t, λ) tiene a lo sumo k ceros en
el intervalo (a,∞).

Demostración. Fijemos k ≥ 1, y definamos el conjunto

Λk = {λ ∈ (0,∞) : y(t, λ) tiene al menos k ceros en el intervalo [a,∞)},

donde y(t, λ) es la única solución de la ecuación (2.1) cuya existencia demostramos
en el Teorema 2.2.1.

Este conjunto tiene las siguientes propiedades:

El conjunto Λk es no vaćıo: para probar esto tomamos k intervalos dis-
juntos de la forma [αi, βi] ⊂ [a,∞) con 1 ≤ i ≤ k. Por la Proposición
(2.3.5) existe para cada intervalo un λ∗

i tal que para todo λ ∈ (λ∗
i ,∞)

la solución y(t, λ) tiene por lo menos un cero en dicho intervalo. Para
λ > λ∗ = máx{λ∗

1, . . . , λ
∗
k} tenemos por lo menos k ceros de la solución

y(t, λ) en [a,∞).

El conjunto Λk está acotado inferiormente: por la Proposición (2.3.2) existe
un λ∗ > 0 tal que para t ∈ [a,∞) y λ ∈ (0, λ∗) la solución y(t, λ) no tiene
ceros. Entonces para todo λ ∈ Λk tenemos que

0 < λ∗ < λ.

Existe el ı́nfimo de Λk: es directo, pues el conjunto Λk está acotado inferior-
mente y es no vaćıo.

Llamemos λk al ı́nfimo de Λk. Tenemos, para todo k,

0 < λ∗ ≤ λk ≤ λk+1,

la última desigualdad como consecuencia de Λk+1 ⊆ Λk.
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Analicemos ahora los ceros de la solución yk = y(t, λk). Podemos tomar una
sucesión decreciente {λj

k}j≥1, con λj
k ∈ Λk, tal que

ĺım
j→∞

λj
k = λk.

Para cada λj
k la solución y(t, λj

k) correspondiente tiene al menos k ceros en el
intervalo [a,∞), y consideremos los primeros k ceros de y(t, λj

k):

a ≤ tjk(1) < tjk(2) < . . . < tjk(k) < ∞.

Por la Proposición (2.3.1), para λ1
k existe un valor T tal que la solución corres-

pondiente no tiene ceros en el intervalo [T,∞). Como λj
k ≤ λ1

k, tenemos que los
ceros tjk(i) con i = 1, . . . , k están contenidos dentro del intervalo cerrado [a, T ], y
el extremo superior no depende de k.

Por estar cada tjk(i) en un compacto, tomando subsucesiones k veces, tenemos
una subsucesión {λjh

k }h≥1 tal que

ĺım
jh→∞

tjhk (i) = tk(i) para cada i = 1, 2, . . . , k.

Los elementos de esta subsucesión verifican que y(tjhk (i), λjh
k ) = 0 y se pueden

elegir de manera que tengan el mismo orden que los ceros de y(t, λj
k),

a < tjhk (1) < tjhk (2) < . . . < tjhk (k) < T.

Tomando ĺımite para jh → ∞,

a ≤ tk(1) ≤ tk(2) ≤ . . . ≤ tk(k) ≤ T.

La continuidad respecto de t y λ de la solución y(t, λ) implica

y(tk(i), λk) = ĺım
jh→∞

y(tjhk (i), λjh
k ) = 0,

es decir, tk(i) es un cero de y(t, λk) para i = 1, 2, . . . , k.

Demostraremos las siguientes afirmaciones:

Los ceros tk(i) son distintos.

El primer cero es tk(1) = a.

La solución y(t, λk) tiene exactamente k ceros en [a,∞).

Veamos que todos los ceros tk(i) son distintos. Supongamos que existe un
valor m = 1, 2, . . . , k − 1 tal que tk(m) = tk(m+ 1). Entonces

y(tjhk (m), λjh
k ) = y(tjhk (m+ 1), λjh

k ) = 0.

Por el Teorema del Valor Medio existe ξjh ∈ (tjhk (m), tjhk (m+1)) tal que y′(ξjh , λjh
k ) =

0.
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Como tjhk (m) < ξjh < tjhk (m+ 1)), cuando jh → ∞ resulta

ĺım
jh→∞

ξjh = tk(m),

y por dependencia continua de las soluciones,

y′(tk(m), λk) = ĺım
jh→∞

y′(ξjh , λjh
k ) = 0.

Luego, tk(m) es un cero doble de y(t, λk), pero por la Proposición (2.3.4) los
ceros de la solución y(t, λk) son simples, con lo cual

a ≤ tk(1) < tk(2) < · · · < tk(k) ≤ T.

Veamos ahora que el primer cero es tk(1) = a. Supongamos que no, y es
a < tk(1). Entonces la solución y(t, λk) tiene por lo menos k ceros tk(1), tk(2),
. . ., tk(k) en el intervalo abierto (a,∞). Por dependencia continua de la solución
y(t, λ) respecto de λ, para todo λ cercano a λk, la solución y(t, λ) tiene por lo
menos k ceros en (a,∞). Esto contradice la propiedad de ı́nfimo de λk, y por lo
tanto debe ser a = tk(1).

Veamos que y(t, λk) tiene exactamente k ceros en [a,∞). Por lo anterior, tiene
uno en a, y tiene al menos k − 1 ceros tk(2), . . ., tk(k) en el intervalo (a,∞). Si
tuviera k o más ceros en (a,∞), un argumento similar al anterior utilizando
dependencia continua nos dice que para λ < λk habŕıa una solución con k ceros
en (a,∞), que contradice la propiedad de ı́nfimo de Λk. Luego, y(t, λk) tiene
exactamente k − 1 ceros en el intervalo (a,∞).

Para completar la demostración del teorema, debemos demostrar las siguientes
afirmaciones:

Si λ ∈ (λk, λk+1) la solución y(t, λ) tiene a lo sumo k ceros en el intervalo
(a,∞).

Tenemos ĺımλk = ∞ cuando k → ∞.

Como y(t, λk) tiene exactamente k − 1 ceros en (a,∞), los autovalores son
distintos, y forman una sucesión monótona creciente

0 < λ1 < λ2 < · · · < λk < · · · .

Ahora, si λ ∈ (λk, λk+1) y la solución asociada y(t, λ) tuviera al menos k + 1
ceros, entonces λ ∈ Λk+1 y por lo tanto debeŕıa ser λk+1 ≤ λ. Entonces, y(t, λ) a
lo sumo puede tener k ceros.

Veamos que ĺımλk = ∞ cuando k → ∞. Si no fuera aśı existiŕıa λ0 finito tal
que

ĺım
k→∞

λk = λ0.

Como antes, utilizando la Proposición (2.3.1), para todo λ cercano a λ0 hay un
T0 > 0 tal que la solución y(t, λ) no tiene ceros en el intervalo [T0,∞).



12 CAPÍTULO 2. UN PROBLEMA DE AUTOVALORES

Sea N un entero positivo arbitrario. Para todo k ≥ N , la solución y(t, λk)
tiene por lo menos N ceros en el compacto [a, T0]. Entonces, por dependencia
continua igual que antes, encontramos que y(t, λ0) tiene por lo menos N ceros en
el intervalo [a, T0]. Ya que N es arbitrario, y(t, λ0) tiene un número infinito de
ceros en el intervalo compacto [a, T0]. Esto es una contradicción, y por lo tanto
debe ser

ĺım
k→∞

λk = ∞.

El teorema queda demostrado.

Observación 2.4.1. Observemos que para λ ∈ (λk, λk+1) no sabemos si la so-
lución y(t, λ) tiene necesariamente k ceros en el intervalo (a,∞). Esto es cierto
para problemas de segundo orden, pero no es cierto en general para problemas de
mayor orden.

Observación 2.4.2. Podemos extender el Teorema 2.4.1 a la siguiente familia
de problemas:

(−1)2m−j−1y(2m) + λp(t)y = 0 t ∈ (a,∞)

y(i)(a, λ) = 0 0 ≤ i ≤ j − 1

ĺım
t→∞

y(i)(t, λ) = 0 j ≤ i ≤ 2m− 1

La demostración es análoga y puede verse en [4].



Caṕıtulo 3

Una desigualdad de Nehari

3.1. Introducción

En este caṕıtulo vamos a estudiar una cota inferior del primer autovalor del
siguiente problema

(−1)my(2m) − λp(t)y = 0 t ∈ (a, b)
y(a) = y′(a) = . . . = ym−1(a) = 0
y(b) = y′(b) = . . . = ym−1(b) = 0,

(3.1)

donde el peso p ∈ L1([a, b]) es una función no negativa y λ es un parámetro.
En general, es dif́ıcil hallar cotas inferiores de autovalores pues en la caracte-

rización variacional mediante el cociente de Rayleigh

λ1 = mı́n
v∈H1

0 ([a,b])

∫ b

a
v′2dt

∫ b

a
pv2dt

,

cualquier función test que se utilice da cotas superiores para el primer autovalor.
Una primer cota inferior se obtiene utilizando teoremas tipo Sturm si el peso

p ∈ L∞. Aún para pesos acotados, perturbando localmente el peso, se obtienen
cotas muy diferentes y alejadas del autovalor. Por este motivo, es interesante con-
siderar cotas integrales. La primera de tales cotas fue obtenida con la desigualdad
de Lyapunov [12] en 1888, y para m = 1 se tiene

4

(b− a)
∫ b

a
p(t)dt

≤ λ1, (3.2)

donde λ1 es el primer autovalor con condición de borde Dirichlet. Esta desigualdad
se extiende a problemas de mayor orden, entre muchos otros, y a los autovalores
superiores. Lamentablemente, cuando se consideran intervalos de gran longitud,
la cota inferior tiende a cero, y no puede utilizarse para estimar los autovalores
de problemas como el que vimos en el Caṕıtulo 2.

En [14], para m = 1, Zeev Nehari obtuvo la siguiente cota para p monótona:

π/2
∫ b

a

√
p(t)dt

≤ λ
1/2
1 .

13
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Esta desigualdad se puede extender a m > 1, como veremos al final del caṕıtulo.
Observemos que, a partir de la desigualdad de Nehari y utilizando la desigual-

dad de Hölder, (∫ b

a

√
p(t)dt

)2

≤ (b− a)

∫ b

a

p(t)dt,

con lo cual tendŕıamos una cota mejor que la que se obtiene con la desigualdad
de Lyapunov para pesos monótonos.

Para obtener la desigualdad de Nehari conviene plantear el problema en forma
integral.

En primer lugar veamos como podemos expresar las soluciones de nuestro
problema en forma integral.

Consideramos el problema general

[Dy](t) = f(t) , t ∈ (a, b)
y(i)(a) = 0 , i = 0, · · · ,m− 1
y(i)(b) = 0,

(3.3)

con f ∈ C([a, b]) y D un operador diferencial.
El siguiente teorema nos asegura la existencia de una función G, conocida

como la Función de Green, para el operador diferenciación D tal que la solución
del problema (3.3) se puede expresar como

y(t) =

∫ b

a

G(t, x)f(x)dx.

Teorema 3.1.1. (Ver [2]) Para el problema (3.3) existe una única función G =
G(t, x) para a ≤ t, x ≤ b con las siguientes propiedades:

Para k = 0, · · · , 2m−2 existen las derivadas parciales
∂kG

∂kt
y son continuas

para todo (t, x) ∈ [a, b]× [a, b].

Para k = 2m− 1, 2m existen las derivadas paraciales
∂kG

∂kt
y son continuas

en (t, x) cuando a ≤ t ≤ x ≤ b y a ≤ x ≤ t ≤ b.

Para k = 2m− 1, y para x ∈ [a, b]

ĺım
t→x+

∂kG(t, x)

∂kt
− ĺım

t→x−

∂kG(t, x)

∂kt
= (−1)m.

Como función de t, G(t, x) satisface [DG](t, x) = 0 si t 6= x.

Como función de t, G(t, x) satisface las condiciones de borde del problema
(3.3) para a ≤ x ≤ b.

Observación 3.1.1. Si en el problema (3.3) tomamos Dy = (−1)my(2m) la fun-
cion de Green es simétrica.
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Ahora, si G(t, x) la función del Green correspondiente al operador Dy =
(−1)my(2m) podemos expresar la autofunción correspondiente al autovalor λ1 del
problema (3.1) como

y1(t) = λ1

∫ b

a

G(t, x)p(x)y1(x)dx,

y si multiplicamos la ecuación anterior por
√
p(t) , llamando u(x) = y(x)

√
p(x),

nos queda

u1(t) = λ1

∫ b

a

G(t, x)
√

p(t)
√
p(x)u1(x)dx. (3.4)

Los problemas (3.1) y (3.4) son equivalentes, y los utilizaremos indistintamente
según convenga.

En la Sección 2 introducimos la notación necesaria para demostrar, en la
Sección 3, el lema clave que permite probar la desigualdad de Nehari, que enun-
ciaremos directamente para ecuaciones integrales. En la Sección 4 veremos la
demostración para m = 1, y en la Sección 5, el caso general.

3.2. Una ecuación integral

Como primer paso vamos a estudiar un caso más general, del cual (3.4) es un
caso particular.

Sea g ∈ L2 una función no negativa y sea K ∈ L2([a, b] × [a, b]) acotada y
simétrica, tal que el operador lineal TK : L2 → L2,

[TKu](t) =

∫ b

a

K(t, x)g(t)g(x)u(x)dx

sea definido positivo. Esto es,

〈TKu, u〉 =
∫ b

a

∫ b

a

K(t, x)g(t)g(x)u(t)u(x)dxdt > 0.

Llamaremos a la función K el núcleo del operador T , y a la función g un peso.

Diremos que µ es un autovalor del operador integral TK y uµ ∈ L2([a, b]) con
‖uµ‖2 = 1 la autofunción correspondiente a µ, normalizada, si se cumple

∫ b

a

K(t, x)g(t)g(x)uµ(x)dx = µuµ(t).

El operador T es lineal, compacto, y simétrico. El teorema espectral de von
Neumann nos garantiza la existencia de una sucesión de autovalores reales y po-
sitivos {µj}j, ver Teorema 7 [6], pag. 645. Esta sucesión es monótona decreciente
y tiende a cero. Además, las autofunciones son una base ortogonal de L2.
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En la demostración del teorema espectral se observa que los autovalores se
caracterizan por el cociente de Rayleigh,

µ1 = sup
{u∈L2:‖u‖2=1}

∫ b

a

∫ b

a

K(t, x)g(t)g(x)u(t)u(x)dxdt.

Observemos que si G es la función de Green del Problema (3.1), entonces

K = G, y g =
√
p,

y tenemos además
µ1 = λ−1

1 .

3.2.1. Notación

Como sólo nos interesa acotar el primer autovalor del Problema (3.1) en fun-
ción de diferentes pesos, vamos a introducir una notación más conveniente para
los autovalores y autofunciones que refleje la dependencia respecto de los pesos.

Indicaremos con λp al primer autovalor del Problema (3.1), y up la autofunción
correspondiente, si el peso es p.

Dado un peso g, llamaremos

J(g, g; u) =

∫ b

a

∫ b

a

K(t, x)g(t)g(x)u(t)u(x)dxdt. (3.5)

Tenemos

µg =

∫ b

a

∫ b

a

K(t, x)g(t)g(x)ug(t)ug(x)dxdt,

y, si ‖u‖2 = 1,
J(g, g; u) ≤ J(g, g; ug) = µg. (3.6)

En particular, para K = G,

J(g, g; u) ≤ J(g, g; ug) = µg = λ−1
g .

Observación 3.2.1. En el caso de la ecuación diferencial sabemos que la auto-
función es positiva. Para una ecuación integral arbitraria, tenemos que

µg = sup
{u∈L2 : ‖u‖2=1}

∫ b

a

∫ b

a

K(t, x)g(t)g(x)u(t)u(x)dxdt

=

∫ b

a

∫ b

a

K(t, x)g(t)g(x)ug(t)ug(x)dxdt

≤
∣∣∣∣
∫ b

a

∫ b

a

K(t, x)g(t)g(x)ug(t)ug(x)dxdt

∣∣∣∣

≤
∫ b

a

∫ b

a

K(t, x)g(t)g(x)|ug(t)||ug(x)|dxdt,

con lo cual |ug| seŕıa autofunción del mismo autovalor.
Entonces, podemos suponer que ug es no negativa.
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Dada una autofunción ur no negativa correspondiente a un peso r ∈ L2, en-
tonces J(f, g; ur) es una forma bilineal, y define un producto escalar en L2([a, b]).
En particular, tenemos la desigualdad de Cauchy Schwartz,

J(f, g; ur) ≤ [J(f, f ; ur)J(g, g; ur)]
1/2.

Observación 3.2.2. Para ver que J(·, ·; ur) es definido positivo, observemos que

J(g, g; ur) = 〈TKur, ur〉 =
∫ b

a

∫ b

a

K(t, x)g(t)g(x)ur(t)ur(x)dxdt > 0

pues TK era un operador definido positivo, y estamos intercambiando los papeles
de g (que antes era no negativa, pero ahora sólo está en L2) y de u (que antes
era una función de L2 y ahora es no negativa).

3.3. El lema principal

Sea g ∈ L2([a, b]) monótona y no negativa, vamos a considerar el siguiente
problema de autovalores en L2([a, b]):

µu(t) =

∫ b

a

K(t, x)g(t)g(x)u(x)dx. (3.7)

Vamos a definir los siguientes conjuntos con los que vamos a trabajar:

A1 = {g : g ∈ L2([a, b]) no negativa y monótona}
A2 = {s : s ∈ L2([a, b]) simple, monótona, con una sola discontinuidad en [a, b]}.

El siguiente lema es clave para demostrar la desigualdad de Nehari:

Lema 3.3.1. Para el problema de autovalores (3.7), tenemos

ı́nf
g∈A1

{
µ−1/2
g

∫ b

a

g(x)dx

}
= ı́nf

s∈A2

{
µ−1/2
s

∫ b

a

s(x)dx

}
. (3.8)

Demostración. Para demostrar el lema, vamos a utilizar un conjunto auxiliar A,
definido como,

A = {r : r ∈ L2([a, b]) simples y monótonas},

y demostraremos primero que

ı́nf
g∈A1

{
µ−1/2
g

∫ b

a

g(x)dx

}
= ı́nf

r∈A

{
µ−1/2
r

∫ b

a

r(x)dx

}
.

Dada g ∈ A1, y ε > 0, existe una función simple r, con igual monotońıa que
g tal que ∫ b

a

[g(x)− r(x)]2 dx < ε2.
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Por Hölder,

∣∣∣
∫ b

a

g(x)dx−
∫ b

a

r(x)dx
∣∣∣
2

≤
∫ b

a

[g(x)− r(x)]2 dx

∫ b

a

dx < (b− a) · ε2,

con lo cual, ∣∣∣
∫ b

a

g(x)dx−
∫ b

a

r(x)dx
∣∣∣ = O(ε). (3.9)

Si reemplazamos g por r, tenemos por (3.5)

J(r, r; ur) = J(g + (r − g), g + (r − g); ur)
= J(g, g; ur) + J(r − g, r − g; ur) + 2J(g, r − g; ur).

Acotemos cada uno de los términos del lado derecho de la igualdad anterior.
Para el primero tenemos, por (3.6),

J(g, g; ur) ≤ µg.

Ahora,

J(r − g, r − g; ur) = J(g − r, g − r; ur)

=

∫ b

a

∫ b

a

K(t, x)[(g − r)(t)][(g − r)(x)]ur(t)ur(x)dxdt

≤
∫ b

a

∫ b

a

|K(t, x)ur(t)ur(x)||(g − r)(t)(g − r)(x)|dxdt

≤
[∫ b

a

∫ b

a

[K(t, x)ur(t)ur(x)]
2dxdt

]1/2

·
[∫ b

a

∫ b

a

[(g − r)(t)]2[(g − r)(x)]2dxdt

]1/2

=

[∫ b

a

∫ b

a

[K(t, x)ur(t)ur(x)]
2dxdt

]1/2
·
∫ b

a

[(g − r)(x)]2 dx

<

[∫ b

a

∫ b

a

[K(t, x)ur(t)ur(x)]
2dxdt

]1/2
· ε2 = M1 · ε2.

Entonces,

J(g − r, g − r; ur) = O(ε2).

Por último, como J define un producto escalar, por Cauchy Schwartz tenemos
que

J2(g, g − r; ur) ≤ J(g, g; ur) · J(g − r, g − r; ur)

≤ µg · J(g − r, g − r; ur)

= O(ε2),

y por lo tanto J(g, g − r; ur) = O(ε).
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Entonces,

µr ≤ µg +O(ε2) +O(ε).

Si intercambiamos el papel de g y r tenemos

µg ≤ µr +O(ε2) +O(ε).

Luego,

|µr − µg| = O(ε). (3.10)

Hasta ahora tenemos que si r y g están cerca en L2, también lo estarán sus
integrales y los primeros autovalores asociados a cada peso. Luego, demostramos
que

ı́nf
g∈A1

{
µ−1/2
g

∫ b

a

g(x)dx

}
= ı́nf

r∈A

{
µ−1/2
r

∫ b

a

r(x)dx

}
. (3.11)

Veamos ahora que podemos reemplazar A por A2, las funciones simples y
mónotonas, con una sola discontinuidad en [a, b].

Supongamos que r es creciente. Sean a = x1 < x2 < . . . < xm < b los puntos
de discontinuidad de la función r(x).

Sea rj el valor de la función r en el intervalo [xj, xj+1]. Definimos

C1 = r1
Cj = rj − rj−1 j = 2, . . . ,m

La función r la podemos expresar como combinación de funciones caracteŕısti-
cas:

r(x) =
m∑

j=1

Cjχ[xj ,b] =
m∑

j=1

Cj(b− xj)
χ[xj ,b]

b− xj

=
m∑

j=1

cjsj,

con cj = Cj(b − xj) y sj =
χ[xj,b]

b−xj
función simple con una sola discontinuidad y

con integral igual a 1.

Luego,

∫ b

a

r(x)dx =

∫ b

a

m∑

j=1

cjsj(x)dx =
m∑

j=1

cj

∫ b

a

sj(x)dx =
m∑

j=1

cj.

Sea µsj el mayor autovalor del problema (3.7) con peso p = sj. Podemos
relacionar estos autovalores con µr de la siguiente manera:
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µr = J(r, r; ur) =

∫ b

a

∫ b

a

K(t, x)

(
m∑

i=1

cisi(t)

)(
m∑

j=1

cjsj(x)

)
ur(t)ur(x)dxdt

=
m∑

i=1

m∑

j=1

cicj

∫ b

a

∫ b

a

K(t, x)si(t)sj(x)ur(t)ur(x)dxdt

=
m∑

i=1

m∑

j=1

cicjJ(si, sj; ur)

≤
m∑

i=1

m∑

j=1

cicj [J(si, si; ur)J(sj, sj; ur)]
1/2

=

(
m∑

j=1

cj [J(sj, sj; ur)]
1/2

)2

≤
(

m∑

j=1

cjµ
1/2
sj

)2

.

Si llamamos µs = máx[µs1 , . . . , µsm ],

m∑

j=1

cjµ
1/2
sj

≤
m∑

j=1

cjµ
1/2
s = µ1/2

s

m∑

j=1

cj = µ1/2
s

∫ b

a

r(x)dx.

Entonces

µ1/2
r ≤ µ1/2

s

∫ b

a

r(x)dx.

Finalmente, como
∫ b

a
s(x)dx = 1

µ−1/2
s

∫ b

a

s(x)dx ≤ µ−1/2
r

∫ b

a

r(x)dx.

Luego, nos queda

ı́nf
s∈A2

{
µ−1/2
s

∫ b

a

s(x)dx

}
≤ ı́nf

r∈A

{
µ−1/2
r

∫ b

a

r(x)dx

}
,

y como A2 ⊂ A, vale la igualdad. Junto con (3.11) obtenemos

ı́nf
s∈A2

{
µ−1/2
s

∫ b

a

s(x)dx

}
= ı́nf

g∈A1

{
µ−1/2
g

∫ b

a

g(x)dx

}
,

y el lema queda demostrado.
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3.4. Cota del menor autovalor para m=1

El lema de la sección anterior nos da una herramienta para poder encontrar
una cota inferior del autovalor, ya que cuando las funciones son simples podemos
calcular fácilmente una cota. Por eso, antes de demostrar el caso para m = 1
vamos a calcular la cota cuando consideramos una función simple con una sola
discontinuidad.

Lema 3.4.1. Sea s 6≡ 0 una función simple, no negativa, con una sola disconti-
nuidad en [a, b], y λs el menor autovalor del problema

y′′ + λs(t)y = 0
y(a) = 0
y(b) = 0.

(3.12)

Entonces,

λ1/2
s

∫ b

a

√
s(x)dx >

π

2
.

Demostración. Sea λs = η2. Sin perder generalidad podemos escribir la función
s como

s(x) =

{
α2 si x ∈ [a, t1]
β2 si x ∈ (t1, b]

para algún t1 ∈ (a, b), con α, β ≥ 0.
Dado que conocemos la expresión de la función s, podemos escribir especifi-

camente cuanto vale la expresión que queremos acotar inferiormente:

λ1/2
s

∫ b

a

√
s(x)dx = η

(∫ t1

a

√
s(x)dx+

∫ b

t1

√
s(x)dx

)

= η

∫ t1

a

αdx+ η

∫ b

t1

βdx

= ηα(t1 − a) + ηβ(b− t1).

Tenemos

ys(t) =

{
y1(t) si t ∈ [a, t1]
y2(t) si t ∈ (t1, b],

donde cada una es solución de los siguientes problemas,
Problema 1: si t ∈ [a, t1]

y′′ + η2α2y = 0
y(a) = 0,

Problema 2: si t ∈ (t1, b]

y′′ + η2β2y = 0
y(b) = 0,
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resolvamos expĺıcitamente cada uno.
Si α, β > 0, las soluciones para cada uno de los problemas son, respectiva-

mente, múltiplos de
y1(t) = sin[ηα(t− a)]
y2(t) = sin[ηβ(b− t)].

Para t = t1 se pegan en forma continua y diferenciable. Al ser restricciones de
la primer autofunción, tenemos:

y1(t1) = cy2(t1)
y′1(t1) = cy′2(t1).

(3.13)

para alguna constante c 6= 0.
Las condiciones pedidas en (3.13) son equivalentes a

sin[ηα(t1 − a)] = c sin[ηβ(b− t1)]
ηα cos[ηα(t1 − a)] = −ηcβ cos[ηβ(b− t1)].

Dividiendo miembro a miembro tenemos que

1

ηα
tan[ηα(t1 − a)] = − 1

ηβ
tan[ηβ(b− t1)],

y por lo tanto
β tan[ηα(t1 − a)] + α tan[ηβ(b− t1)] = 0. (3.14)

Por ser la autofunción del menor autovalor, ys(t1) > 0 en (a, b). Entonces, los
argumentos de los senos que la definen deben tomar valores en el intervalo (0, π).

Por otro lado, ya que α+β > 0, para que exista solución de la ecuación (3.14)
las tangentes deben tener signo opuesto.

La tangente es positiva en (0, π/2), y negativa en (π/2, π), entonces:

ηα(t1 − a) ∈ (0, π/2), y ηβ(b− t1) ∈ (π/2, π),

o si no,
ηα(t1 − a) ∈ (π/2, π), y ηβ(b− t1) ∈ (0, π/2).

En ambos casos,

λ1/2
s

∫ b

a

√
s(x)dx = ηα(t1 − a) + ηβ(b− t1) >

π

2
.

Si α = 0 y β > 0, las soluciones para cada uno de los problemas son, respec-
tivamente, múltiplos de

y1(t) = t− a
y2(t) = sin[ηβ(b− t)].

Como antes, llegamos a

t1 − a = − 1

ηβ
tan[ηβ(L− t1)],
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y por lo tanto,

ηβ(t1 − a) + tan[ηβ(b− t1)] = 0.

Como el primero es positivo, debe ser negativa la tangente, y por mismo
argumento de antes,

ηβ(b− t1) >
π

2
.

El mismo argumento vale si α > 0 y β = 0, con lo cual el lema queda
demostrado.

Observación 3.4.1. No es necesario considerar los casos t1 = a ó t1 = b. Si
fuera t1 = a tenemos que s(x) = β2 en [a, b] y una solución del problema (3.12)
es

y(t) = sen[ηβ(t− a)].

Como y(b) = 0, para algún k ∈ Z

ηβ(b− a) = kπ,

y el menor autovalor es igual a

λs =

(
π

(b− a)β

)2

.

Entonces, tenemos directamente que

λ1/2
s

∫ b

a

√
s(x)dx =

π

(b− a)β

∫ b

a

βdx = π >
π

2
.

El caso t1 = b es análogo.

Observación 3.4.2. Del Lema 3.4.1 se deduce que

ı́nf
s∈A2

λ1/2
s

∫ b

a

s(x)dx >
π

2
.

Ahora estamos en condiciones de probar la desigualdad de Nehari para pro-
blemas de segundo orden.

Teorema 3.4.1. Sea p ∈ L([a, b]) no negativa y mónotona. Sea λp el menor
autovalor del problema

y′′ + λp(t)y = 0
y(a) = 0
y(b) = 0.

(3.15)

Entonces

λ1/2
p

∫ b

a

√
p(x)dx >

π

2
.
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Demostración. Sea G(t, x) la función de Green del problema (3.15). Como antes,
con el cambio up(t) = yp(t)

√
p(t), la autofunción yp correspondiente a λp se puede

expresar de la forma

up(t) = λp

∫ b

a

G(t, x)
√

p(t)
√
p(x)up(x)dx. (3.16)

Como G es núcleo admisible para las hipótesis del Lema (3.3.1), tenemos

λ1/2
p

∫ b

a

√
p(t)dt ≥ ı́nf

s∈A2

{
λ1/2
s

∫ b

a

s(x)dx

}
.

Ahora, por el Lema 3.4.1,

ı́nf
s∈A2

{
λ1/2
s

∫ b

a

s(x)dx

}
>

π

2

y el teorema queda demostrado.

3.5. Nehari - Ecuacion de orden 2m

Para la demostración en el caso de mayor orden vamos a modificar la demos-
tración de Nehari. Como ninguno de los dos métodos nos da la constante expĺıcita,
no podemos asegurar que sea mejor que la propuesta por Nehari, si bien vere-
mos que en caso m = 1 coincide con π/2, y por lo tanto da una demostración
alternativa.

En el caso de Nehari, la constante inferior es solución de una ecuación tras-
cendente relacionada con las autofunciones (para m = 1 es la ecuación (3.14)),
mientras que en nuestro caso utilizaremos el primer autovalor de un problema
mixto.

Teorema 3.5.1. Sea p ∈ C([a, b]), no negativa y mónotona. Sea λp el menor
autovalor del problema (3.1). Entonces,

λ1/2m
p

∫ b

a

2m
√

p(x)dx ≥ Λ
1/2m
[0,1] , (3.17)

donde Λ[0,1] es el primer autovalor del problema

(−1)my(2m) − λp(t)y = 0
y(0) = y′(0) = . . . = ym−1(0) = 0

ym(1) = ym+1(1) = . . . = y2m−1(1) = 0.
(3.18)

Demostración. El caso m = 1 corresponde a lo demostrado en el teorema (3.4.1).
Vamos a suponer m > 1.

Sea G(x, t) la función de Green para el operador L(y) = (−1)my(2m). La
autofunción correspondiente la podemos escribir

up(t) = λp

∫ b

a

G(t, x)
√

p(t)
√
p(x)up(x)dx. (3.19)
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donde up(t) = yp(t)
√

p(t).
Vamos a verificar primero que

ı́nf
p∈A1

2m
√

λp

∫ b

a

2m
√
p(x)dx = ı́nf

s∈A2

2m
√

λs

∫ b

a

2m
√
s(x)dx.

Para esto, fijemos un ε > 0 arbitrario.
Ahora, reescribiendo

√
p(t)

√
p(x) =

[
2m
√
p(t) 2m

√
p(x)

]m−1
2m
√
p(t) 2m

√
p(x),

y llamando K1(t, x) = G(t, x)
[

2m
√

p(t) 2m
√

p(x)
]m−1

, la ecuación (3.19) nos queda

up(t) = λp

∫ b

a

K1(t, x)
2m
√

p(t) 2m
√

p(x)up(x)dx. (3.20)

La función K1 satisface las condiciones del Lema 3.4.1, y con g = 2m
√
p, que

es monótona, el primer autovalor µp del problema

µu(t) =

∫ b

a

K1(t, x)
2m
√
p(t) 2m

√
p(x)u(x)dx

verifica
1

µp

= λp

y además,

ı́nf
p∈A1

(
µ−1/2
p

∫ b

a

2m
√
p(x)dx

)
= ı́nf

s∈A2

(
µ−1/2
s

∫ b

a

2m
√
s(x)dx

)

donde µs es el mayor autovalor del problema

µu(t) =

∫ b

a

K1(t, x)
2m
√

s(t) 2m
√

s(x)u(x)dx, (3.21)

con s(t) una función simple, con igual monotońıa que p, con una sola disconti-
nuidad.

Fijemos una 2m
√
s1 tal que está a menos de ε/m de realizar el ı́nfimo,

∣∣∣∣µ
−1/2
s1

∫ b

a

2m
√
s1(x)dx− ı́nf

s∈A2

(
µ−1/2
s

∫ b

a

2m
√

s(x)dx

)∣∣∣∣ <
ε

m
.

La ecuación integral (3.21) la podemos reescribir de la siguiente manera:

µu(t) =

∫ b

a

G(t, x)
[

2m
√
p(t) 2m

√
p(x)

]m−1
2m
√

s1(x)
2m
√

s1(t))u(x)dx

=

∫ b

a

{
G(t, x)

[
2m
√
p(t) 2m

√
p(x)

]m−2
2m
√

s1(x)
2m
√
s1(t)

}

× 2m
√

p(t) 2m
√

p(x)u(x)dx

=

∫ b

a

K2(t, x)
2m
√

p(t) 2m
√

p(x)u(x)dx,
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con K2(t, x) = G(t, x)
[

2m
√

p(t) 2m
√

p(x)
]m−2

2m
√

s1(x)
2m
√
s1(t).

Volvemos a tener un problema similar al inicial donde lo que cambia es la
función que juega el papel del núcleo, e incorpora a s1 en lugar de una de las p.
Con el mismo argumento, utilizando el Lema (3.4.1), podemos hallar una función
simple 2m

√
s2 monótona y con una sola discontinuidad tal que está a menos de

ε/m de realizar el ı́nfimo.
Aplicando iterativamente este procedimiento, en el i-ésimo paso partimos del

problema

µu(t) =

∫ b

a

Ki(t, x)
2m
√

p(t) 2m
√
p(x)u(x)dx (3.22)

con

Ki(t, x) =
[

2m
√
p(t) 2m

√
p(x)

]m−i

·
i−1∏

k=1

2m
√

sk(t)
2m
√
sk(x),

donde para cada 1 ≤ k ≤ i− 1, sk es una función simple, monótona, con una sola
discontinuidad en [a, b], y con el Lema (3.4.1) obtenemos otra función sk.

En el m-ésimo paso tenemos el problema

µsmu(t) =

∫ b

a

Km(t, x)
2m
√

sm(t)
2m
√
sm(x)u(x)dt (3.23)

donde 2m
√
sm es una función con igual caracteŕısticas que cada una de las 2m

√
sk,

el núcleo es

Km(t, x) = G(t, x)
m−1∏

k=1

2m
√

sk(t)
2m
√

sk(x),

y está a menos de ε/m de realizar el ı́nfimo.
Entonces, intercalando los problemas auxiliares,

∣∣∣∣µ
−1/2
sm

∫ b

a

2m
√

sm(x)dx− ı́nf
p∈A1

(
µ−1/2
p

∫ b

a

2m
√

p(x)dx

)∣∣∣∣ < ε.

Tenemos que µsm es el primer autovalor del problema

µu(t) =

∫ b

a

G(t, x)
m∏

k=1

2m
√
sk(t)

2m
√

sk(x)u(x)dx, (3.24)

o, equivalentemente, del problema diferencial con p =
∏m

k=1 sk, con lo cual µ−1
sm =

λ∏m
k=1 sk

.
Sea µsm el mayor autovalor y usm y la autofunción normalizada correspon-

diente de la ecuación integral (3.24). Luego,

µsm =

∫ b

a

∫ b

a

G(t, x)
m∏

k=1

2m
√

sk(t)
2m
√

sk(x)usm(t)usm(x)dxdt. (3.25)

Como G y um son positivas,

G(x, t)usm(x)usm(t) = [G(x, t)usm(x)usm(t)]
1/m · · · [G(x, t)usm(x)usm(t)]

1/m ,
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entonces la ecuación (3.25) es igual a

µsm =

∫ b

a

∫ b

a

m∏

k=1

[
G(t, x)usm(t)usm(x)

√
sk(t)

√
sk(x)

]1/m
dxdt. (3.26)

Aplicando Hölder y elevando a la m,

µm
sm ≤

m∏

k=1

∫ b

a

∫ b

a

G(t, x)usm(t)usm(x)
√
sk(t)

√
sk(x)dxdt. (3.27)

Consideremos ahora el problema

µu(t) =

∫ b

a

G(t, x)
√
sk(t)

√
sk(x)u(x)dx

que sólo involucra al peso
√
sk.

Sea µk el primer autovalor y uk la autofunción correspondiente. Este problema
es equivalente a resolver

(−1)my(2m) − λsk(t)y = 0
y(a) = y′(a) = . . . = ym−1(a) = 0
y(b) = y′(b) = . . . = ym−1(b) = 0,

(3.28)

el primer autovalor es λsk = µ−1
k y la autofunción ysk está dada por uk =

√
skysk .

Como

µk = J(
√
sk,

√
sk; uk) ≥ J(

√
sk,

√
sk; usm),

volviendo a (3.27) podemos acotar superiormente µm
m por

µm
m ≤

m∏

k=1

µk ≤
m∏

k=1

máx {µ1, µ2, · · · , µm} .

Luego, µm ≤ µs = máx {µ1, µ2, · · · , µm} , y los autovalores del lado derecho
corresponden a pesos simples con una sola discontinuidad, sea s la que alcanza
este máximo. Para estimarlos, conviene considerar el problema diferencial (3.28).

La función s puede representarse como

s(t) =





α2m si t ∈ [a, t1]

β2m si t ∈ (t1, b],

con α, β ≥ 0.
En este caso, el problema diferencial nos queda

(−1)my(2m)
s − λss(t)ys = 0,
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y si multiplicamos por ys, e integramos por partes llegamos a

∫ b

a

[y(m)
s ]2dx− λsα

2m

∫ t1

a

y2sdx− λsβ
2m

∫ b

t1

y2sdx = 0.

Separando la primera integral,

∫ t1

a

[y(m)
s ]2 +

∫ b

t1

[y(m)
s ]2 − λs

[
α2m

∫ t1

a

y2sdx+ β2m

∫ b

t1

y2sdx

]
= 0.

Entonces, agrupando queda

[∫ t1

a

[y(m)
s ]2dx− λsα

2m

∫ t1

a

y2sdx

]
+

[∫ b

t1

[y(m)
s ]2dx− λsβ

2m

∫ b

t1

y2sdx

]
= 0,

y ambos términos deben ser nulos, o uno de ellos será negativo.
Supongamos que

∫ t1

a

[y(m)
s ]2dx− λsα

2m

∫ t1

a

y2sdx ≤ 0.

Entonces,

λsα
2m ≥

∫ t1

a

[y(m)
s ]2dx

∫ t1

a

y2sdx

.

Como la función ys pertenece al espacio de Sobolev

H = {y ∈ Hm,2([a, t1]) : y(j)(a) = 0, 0 ≤ j ≤ m− 1},

es admisible en la caracterización variacional del primer autovalor del problema

(−1)my(2m) − Λp(t)y = 0
y(a) = y′(a) = . . . = ym−1(a) = 0

ym(b) = ym+1(b) = . . . = y2m−1(b) = 0,

con lo cual,

λsα
2m ≥ ı́nf

y∈H

∫ t1

a

[y(m)]2dx

∫ t1

a

y2dx

= Λ[a,t1] =
Λ[0,1]

(t1 − a)2m
,

por cómo escala el autovalor respecto de la longitud del intervalo.
Ahora

λ1/2m
s

∫ b

a

2m
√

s(x)dx ≥ λ1/2m
s

∫ t1

a

αdx = λ1/2m
s α(t1 − a) ≥ Λ

1/2m
[0,1] .

El teorema queda entonces demostrado.
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3.6. Problema del p-Laplaciano

En esta sección vamos a buscar una cota inferior para el problema cuasilineal
del p-laplaciano,

−(|u′|p−2u′)′ = λg(t)|u|p−2u t ∈ (a, b)
u(a) = 0
u(b) = 0.

(3.29)

donde como antes, 1 < p < ∞, λ es un parámetro real, y g ∈ L1([a, b]) es una
función monótona.

Sea λg y ug el menor autovalor y la autofunción correspondiente del problema
(3.29).

Una extensión a este problema de lo visto en las secciones anteriores es el
siguiente teorema que es el punto principal de esta sección.

Teorema 3.6.1. Sea g ∈ L1([a, b]) una función monótona no negativa, y sea λg

el menor autovalor del problema (3.29). Entonces,

λ1/p
g

∫ b

a

p
√

g(t)dt ≥ πp

2
, (3.30)

donde πp se define a partir del primer cero positivo de la función generalizada
sinp.

Observación 3.6.1. Para mas detalles sobre πp puede verse [3] o [7].

La demostración del teorema la haremos en base a la caracterización varia-
cional [8] del primer autovalor del problema(3.29)

λ−1
g = máx

{u∈W 1,p
0 : ‖u′‖p=1}

∫ b

a

g(x)up(x)dx.

Como una consecuencia directa tenemos

λ−1
g =

∫ b

a

g(x)up
g(x)dx ≥

∫ b

a

g(x)up
r(x)dx (3.31)

para cualquier autofunción normalizada correspondiente a un peso diferente r.
Este argumento se utilizará muchas veces en la demostración del Teorema 3.6.1

Vamos a demostrar una serie de resultados que se utilizaran en la demostración
del Teorema (3.6.1)

Proposición 3.6.1. Sea {rj}j una sucesión de funciones de L2([a, b]). Suponga-
mos que rj → g in L1([a, b]) cuando j → ∞. Entonces,

(i) ĺım
j→∞

λrj = λg,

(ii) ĺım
j→∞

∫ b

a

r
1/p
j (x)dx =

∫ b

a

g1/p(x)dx.
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Demostración. Por definición del primer autovalor tenemos que

λ−1
g =

∫ b

a

g(x)up
g(x)dx =

∫ b

a

rj(x)u
p
g(x)dx+

∫ b

a

(g(x)− rj(x))u
p
g(x)dx.

La primer integral está acotada superiormente por λ−1
rj
, debido a la desigual-

dad (3.31).
Ya que las autofunciones se encuentran normalizadas de modo que

‖u′
g‖p = ‖u′

rj
‖p = 1,

por la desigualdad de Ponicaré y la inclusión deW 1,p
0 ([a, b]) en L∞([a, b]), tenemos

que las autofunciones están uniformemente acotadas en L∞ por cierta constante
positiva C.

Luego, la segunda integral se puede acotar por

∫ b

a

|g(x)− rj(x)|‖ug‖p∞dx ≤ C

∫ b

a

|g(x)− rj(x)|dx = O(‖g − rj‖1).

Intercambiando los roles de g y rj, tenemos que

∣∣∣λ−1
rj

− λ−1
g

∣∣∣ = O(‖g − rj‖1),

y (i) está probado, ya que ambas integrales están acotadas por debajo por cero.
Para demostrar (ii), por las desigualdades de Minkowski y Hölder tenemos

que:

∫ b

a

|r1/pj (x)− g1/p(x)|dx ≤
∫ b

a

|rj(x)− g(x)|1/pdx ≤ (b− a)1/p
′‖rj − g‖1/p1 ,

y la convergencia de las integrales está probada.

Lema 3.6.1. Dada r una función simple no negativa, existe una función simple
no negativa s con a lo sumo una discontinuidad tal que

∫ b

a

r1/p(x)dx =

∫ b

a

s1/p(x)dx, and λs ≤ λr.

Demostración. Tomemos r tal que
∫ b

a
r1/p(x)dx = 1 (el caso general se sigue

normalizando).
Escribimos r1/p =

∑n
i=1 ciσi, donde cada σi es una función simple con a lo

sumo una discontinuidad,
∫ b

a
σi(x)dx = 1, y

∑n
i ci = 1.

Entonces

λ−1
r =

∫ b

a

r(x)up
r(x)dx =

∫ b

a

(
n∑

i=1

ciσi(x)

)p

up
r(x)dx.
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Usando la desigualdad de Jensen,

∫ b

a

(
n∑

i=1

ciσi(x)

)p

up
r(x)dx ≤

∫ b

a

n∑

i=1

ciσ
p
i (x)u

p
r(x)dx,

obtenemos

λ−1
r ≤

n∑

i=1

ci

∫ b

a

σp
i (x)u

p
r(x)dx ≤

n∑

i=1

ciλ
−1
σi

≤ máx
1≤i≤n

{λ−1
σi
} = λ−1

σ ,

donde σ es la función que tiene el mayor autovalor entre las σi.
Aśı, para s = σp tenemos

λ1/p
s

∫ b

a

s1/p(x) ≤ λ1/p
r

∫ b

a

r1/p(x)dx,

y la demostración queda terminada.

Veamos como podemos acotar el primer autovalor del problema (3.29) cuando
la función g es reemplazada por función simple con a lo sumo una discontinuidad.

Lema 3.6.2. Sea s 6≡ 0 una función simple, no negativa, con una sola disconti-
nuidad en [a, b], y λs el menor autovalor del problema

(|u′|p−2u′)′ = λs(t)|u|p−2u t ∈ (a, b)
u(a) = 0
u(b) = 0.

(3.32)

Entonces,

λ1/p
s

∫ b

a

s1/p(x)dx >
πp

2
.

Demostración. Supongamos que s está dada por

s(t) =

{
αp if t ∈ [a, t1]
βp if t ∈ (t1, b],

con α, β constantes no negativas, con α + β > 0.
Sea us la autofunción correspondiente al primer autovalor λs del problema

(3.32). Multiplicando por us e integrando por partes tenemos que

∫ b

a

u′p
s (x)dx− λsα

p

∫ t1

a

up
s(x)dx− λsβ

p

∫ b

t1

up
s(x)dx = 0,

entonces

[∫ t1

a

u′p
s (x)dx− λsα

p

∫ t1

a

up
s(x)dx

]
+

[∫ b

t1

u′p
s (x)dx− λsβ

p

∫ b

t1

up
s(x)dx

]
= 0.
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Ahora, uno de los dos terminos debe ser no positivo. Supongamos que

∫ t1

a

u′p
s (x)dx− λsα

p

∫ t1

a

up
s(x)dx ≤ 0,

el otro caso es similar. Entonces,

λ−1
s α−p ≤

∫ t1
a

up
s(x)dx∫ t1

a
u′p
s (x)dx

.

Ya que us pertenece al espacio de Sobolev

W = {u ∈ W 1,p([a, t1]) : u(a) = 0},

es una función admisible en la caracterización variacional del primer autovalor
del siguiente problema mixto

−(|u′|p−2u′)′ = λg(x)|u|p−2u
u(a) = 0
u′(b) = 0,

y tenemos

λ−1
s α−p ≤ máx

u∈W

∫ t1
a

up(x)dx
∫ t1
a

u′p(x)dx
=

2p(t1 − a)p

πp
p

.

Finalmente,

λ1/p
s

∫ b

a

s1/p(x)dx ≥ λ1/p
s

∫ t1

a

αdx >
πp

2
,

y el Lema queda demostrado.

Demostración del Teorema (3.6.1). Por la Proposición (3.6.1) y el Lema (3.6.1) y
la densidad de las funciones simples en L1, dado cualquier ε > 0 arbitrariamente
pequeño, y una función monótona no negativa g ∈ L1([a, b]), existe una función
simple no negativa s con una sola discontinuidad tal que

λ1/p
s

∫ b

a

s1/p(x)dx ≤ λ1/p
g

∫ b

a

g1/p(x)dx+ ε,

y por la cota obtenida en el Lema (3.6.2) tenemos que

πp

2
≤ λ1/p

g

∫ b

a

g1/p(x)dx+ ε

lo que demuestra el teorema.



Caṕıtulo 4

Estimaciones para orden 2

4.1. Introducción

En el problema de segundo orden, los autovalores pueden estimarse asintótica-
mente utilizando el método de Prüfer. Veremos rápidamente aqúı en qué consiste.
Para eso, estudiemos primero el siguiente problema de valores iniciales,

y′′ + λp(t)y = 0 t ∈ (a,∞)
y(a, λ) = 0
y′(a, λ) = 1

(4.1)

donde p(t) es una función derivable en [a,∞) que podemos escribir de la forma

p(t) =
1

(t+ 1)2ω(t)
,

con ω(t) una función positiva, no acotada, y creciente en [a,∞) (se puede relajar
y pedir que sea creciente a partir de un t0 arbitrario).

Vamos a suponer, por ahora, que

I =

∫ ∞

a

[p(t)]1/2dt =

∫ ∞

a

1

(t+ 1)[ω(t)]1/2
dt < ∞ (4.2)

Observemos que la condición (2.2) del caṕıtulo 2 no garantiza que esta integral
converge, pero śı la condición

∫ ∞

a

t2p(t)dt < +∞, (4.3)

pues aplicando Holder se tiene

I =

∫ ∞

a

[p(t)]1/2dt =

∫ ∞

a

t[p(t)]1/2

t
dt <

(∫ ∞

a

t2p(t)dt

)1

/2

(∫ ∞

a

t−2dt

)1

/2 < ∞.

Los resultados del caṕıtulo 2 son válidos para el problema de autovalores sin-
gulares de segundo orden, y Einar Hille los hab́ıa obtenido antes en [9] utilizando

33
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la transformada de Prüfer. Además, estimó el comportamiento asintótico de los
autovalores. De todos modos, podemos ver que es más restrictiva la hipótesis de
derivabilidad del peso.

En este caṕıtulo seguiremos parcialmente su trabajo, y vamos a introducir la
transformada de Prüfer. Luego, analizaremos las coordenadas radiales y angulares
para el problema (4.1), y finalmente demostraremos el siguiente teorema:

Teorema 4.1.1. Sea {λn}n la sucesión de autovalores del problema

y′′ + λp(t)y = 0 t ∈ (a,∞)

y(a, λ) = 0

ĺım
t→∞

y′(t, λ) = 0.

Si la función p(t) cumple con la condición (4.2), entonces

λn =
(πn

I

)2
[1 + o(1)]

cuando n → ∞.

Observación 4.1.1. Observemos que este problema se incluye dentro del proble-
ma de autovalores singulares (2.4) estudiado en el Caṕıtulo 2, con lo cual tenemos
garantizada la existencia de la sucesión de autovalores.

Para m = 1 se puede demostrar la existencia de los autovalores utilizando la
transformada de Prüfer. Más aún, con muy pocas modificaciones se puede tratar
el problema no lineal para el p−laplaciano,

(|y′|p−2y′)′ + λp(t)|y|p−2y = 0 t ∈ (a,∞)

y(a, λ) = 0

ĺım
t→∞

y′(t, λ) = 0.

Este problema fue estudiado en [7], si bien no se consideró el comportamiento
asintótico de los autovalores.

4.2. La Transformada de Prüfer

Sea y(t, λ) solución del problema (4.1) con λ > 0. Queremos reescribirla en el
plano de fase y, y′ en coordenadas polares, y para esto introducimos las nuevas
coordenadas R(t), Θ(t).

Proponemos las siguientes ecuaciones para y, y′:

y(t, λ) = [p(t)]−
1
4R(t) sin[Θ(t)], (4.4)

y′(t, λ) = λ1/2[p(t)]
1
4R(t) cos[Θ(t)]. (4.5)

Operando con las ecuaciones anteriores obtendremos ecuaciones diferenciales
que deben satisfacer las funciones R(t) y Θ(t).
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Comenzamos derivando la ecuación (4.4)

y′(t, λ) = −1
4
[p(t)]−

5
4p′(t)R(t) sin[Θ(t)]

+[p(t)]−
1
4R′(t) sin[Θ(t)] + t)]−

1
4R(t) cos[Θ(t)]Θ′(t),

(4.6)

y la igualamos a la ecuación (4.5):

λ
1
2 [p(t)]

1
4R(t) cos[Θ(t)] =

1

4
[p(t)]−

5
4p′(t)R(t) sin[Θ(t)]

+[p(t)]−
1
4R′(t) sin[Θ(t)]

+[p(t)]−
1
4R(t) cos[Θ(t)]Θ′(t).

Multiplicando la ecuación anterior por
[p(t)]

1
4 cos[Θ(t)]

R(t)
nos queda

[λp(t)]1/2 cos2[Θ(t)] = −1

4
[p(t)]−1p′(t) sin[Θ(t)] cos[Θ(t)]

+
R′(t)

R(t)
sin[Θ(t)] cos[Θ(t)] + cos2[Θ(t)]Θ′(t)

con lo cual

cos2[Θ(t)]Θ′(t) = [λp(t)]1/2 cos2(Θ(t)) + 1
4
[p(t)]−1p′(t) sin[Θ(t)] cos[Θ(t)]

−R′(t)

R(t)
sin[Θ(t)] cos[Θ(t)],

y como sin[2Θ(t)] = 2 sin[Θ(t)] cos[Θ(t)] nos queda

cos2[Θ(t)]Θ′(t) = [λp(t)]1/2 cos2[Θ(t)] +

{
1

8
[p(t)]−1p′(t)− 1/2

R′(t)

R(t)

}
sin[2Θ(t)].

(4.7)
Si derivamos la expresión (4.5) (es decir, derivamos la expresión de la derivada

primera de la solución de nuestro problema), tenemos que y′′ se escribe en función
de las nuevas coordenadas como:

y′′(t, λ) = λ1/2
{1
4
[p(t)]−

3
4p′(t)R(t) cos[Θ(t)]

+[p(t)]
1
4R′(t) cos[Θ(t)]− [p(t)]

1
4R(t) sin[Θ(t)]Θ′(t)

}
.

(4.8)

Por ser y solución del problema (4.1) se cumple que y′′(t, λ) = −λp(t)y, y
utilizando la expresión (4.4) para y llegamos a

y′′(t, λ) = −λ[p(t)]
3
4R(t) sin[Θ(t)]. (4.9)
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Igualando las expresiones (4.8) y (4.9), tras simplificar en ambos miembros
λ1/2, obtenemos

−λ1/2[p(t)]
3
4R(t) sin[Θ(t)] =

1

4
[p(t)]−

3
4p′(t)R(t) cos[Θ(t)]

+[p(t)]
1
4R′(t) cos[Θ(t)]

−[p(t)]
1
4R(t) sin[Θ(t)]Θ′(t).

Multiplicando la ecuación anterior por

[p(t)]−
1
4 sin[Θ(t)]

R(t)

y usando nuevamente el hecho de que sin[2Θ(t)] = 2 sin[Θ(t)] cos[Θ(t)] nos queda

−[λp(t)]1/2 sin2[Θ(t)] =
1

8
[p(t)]−1p′(t) sin[2Θ(t)]

+1/2
R′(t)

R(t)
sin[2Θ(t)]− sin2[Θ(t)]Θ′(t)},

y entonces

sin2[Θ(t)]Θ′(t) = [λp(t)]1/2 sin2[Θ(t)] +

{
1

8
[p(t)]−1p′(t) + 1/2

R′(t)

R(t)

}
sin[2Θ(t)].

(4.10)
Sumando las ecuaciones (4.7) y (4.10) obtenemos una ecucación diferencial de

primer orden para la función Θ(t),

Θ′(t) = [λp(t)]1/2 +
1

4

p′(t)

p(t)
sin[2Θ(t)] (4.11)

que no involucra a R.
A la ecuación anterior le agregamos la siguiente condición inicial,

Θ(a, λ) = kπ

con k ∈ Z, pues
0 = y(a, λ) = [p(a)]−

1
4R(a) sin[Θ(a, λ)].

Observemos que si R(a) = 0, no se cumpliŕıa entonces que y′(a, λ) = 1.

Un cálculo similar nos permite hallar una ecuación diferencial para R. Igua-
lamos las ecuaciones (4.5) y (4.6), y las multiplicamos por

[p(t)]1/2 sin[Θ(t)]

R(t)
,
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y a la ecuación (4.10) la multiplicamos por

−λ−1/2 cos[Θ(t)]

R(t)
.

Aśı, obtenemos las siguientes expresiones:

λ1/2[p(t)]
3
4 sin[Θ(t)] cos[Θ(t)] = −1

4
[p(t)]−

3
4p′(t) sin2[Θ(t)]

+[p(t)]
1
4
R′(t)

R(t)
sin2[Θ(t)]

+[p(t)]
1
4 sin[Θ(t)] cos[Θ(t)]Θ′(t)

λ1/2[p(t)]
3
4 sin[Θ(t)] cos[Θ(t)] = −1

4
[p(t)]−

3
4p′(t) cos2[Θ(t)]

−[p(t)]
1
4
R′(t)

R(t)
cos2[Θ(t)]

+[p(t)]
1
4 sin[Θ(t)] cos[Θ(t)]Θ′(t)}

Restándolas,

0 = −1

4
p−

3
4 (t)p′(t)

{
cos2[Θ(t)]− sin2[Θ(t)]

}
− [p(t)]

1
4
R′(t)

R(t)

con lo cual obtenemos la ecuación diferencial

R′(t)

R(t)
= −1

4

p′(t)

p(t)
cos[2Θ(t)]. (4.12)

Obtuvimos una ecuación diferencial que nos permite encontrar quien es nues-
tra función R(t), y debemos agregarle una condición inicial. Si bien la ecuación
no depende de λ, la condición inicial śı, pues

1 = y′(a, λ) = λ1/2[p(a)]
1
4R(a) cos[Θ(a)] = λ1/2[p(a)]

1
4R(a),

ya que Θ(a) = 0. Entonces, la condición inicial es

R(a) = λ−1/2[p(a)]−
1
4 .

4.2.1. Estudio de la coordenada R(t)

Para obtener las ecuaciones diferenciales de R y Θ hemos dividido por R,
obtengamos cotas de la función y verifiquemos que esta función no se anula.

Proposición 4.2.1. Para todo t ≥ a, se tiene

[
p(t)

p(a)

] 1
4

≤
∣∣∣∣
R(t)

R(a)

∣∣∣∣ ≤
[
p(t)

p(a)

]− 1
4

.
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Demostración. Recordemos que la función p es de la forma

p(t) =
1

(t+ 1)2ω(t)
,

con lo cual
p′(t)

p(t)
=

−2(t+ 1)ω(t)− (t+ 1)2ω′(t)

(t+ 1)2ω(t)
.

Teniendo en cuenta que ω y ω′ son funciones positivas para todo valor de t, resulta
que

p′(t)

p(t)
< 0.

Como | cos(Θ)| ≤ 1, tenemos:

1

4

p′(t)

p(t)
≤ −1

4

p′(t)

p(t)
cos[Θ(t)] ≤ −1

4

p′(t)

p(t)

y nos queda
1

4

p′(t)

p(t)
≤ R′(t)

R(t)
≤ −1

4

p′(t)

p(t)
.

Integrando esta expresión entre a y t,

1

4

∫ t

a

p′(s)

p(s)
ds ≤

∫ t

a

R′(s)

R(s)
ds ≤ −1

4

∫ t

a

p′(s)

p(s)
ds

ln

[
p(t)

p(a)

] 1
4

≤ ln

∣∣∣∣
R(t)

R(a)

∣∣∣∣ ≤ ln

[
p(t)

p(a)

]− 1
4

y finalmente obtenemos la desigualdad deseada:

[
p(t)

p(a)

] 1
4

≤
∣∣∣∣
R(t)

R(a)

∣∣∣∣ ≤
[
p(t)

p(a)

]− 1
4

.

Proposición 4.2.2. Para todo t ≥ a, R(t) > 0.

Demostración. Como R(a) > 0, si hubiera algun punto donde la función tomara
un valor negativo, existiŕıa un valor t0 > a tal que R(t0) = 0, con lo cual, por la
Proposición 4.2.1, [

p(t0)

p(a)

] 1
4

≤
∣∣∣∣
R(t0)

R(a)

∣∣∣∣ = 0.

Esto es un absurdo ya que por definición la función p es estrictamente positiva.

Observación 4.2.1. Por la Proposición 4.2.1 y la condición inicial tenemos

[λp(a)]−1/2[p(t)]
1
4 ≤ R(t) ≤ λ−1/2[p(t)]−

1
4

La función R nos queda acotada inferioremente por una función que siempre toma
valores positivos.
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4.2.2. Estudio de la variable angular Θ(t)

Queremos estudiar ahora la variable angular Θ(t), pues el estudio del número
de ceros de y(t, λ) dependerá del crecimiento de esta función.

Consideremos el problema de valores iniciales que resuelve Θ(t):




Θ′(t) = [λp(t)]1/2 +
1

4

p′(t)

p(t)
sin[2Θ(t)]

Θ(a) = 0

Integrando la ecuación diferencial y utilizando la condición de borde nos queda

Θ(t) = λ1/2

∫ t

a

[p(s)]1/2 +
1

4

∫ t

a

p′(s)

p(s)
sin[2Θ(s)]ds. (4.13)

Lema 4.2.1. Sea λn el enésimo autovalor, y tk = tk(λn) el k-ésimo cero de la
autofunción asociada y(t, λn) en (a,∞). Entonces

Θ(tk, λn) = kπ

Demostración. Si tk es un cero de y(t, λn) en (a,∞)

0 = y(tk, λn) = [p(tk)]
− 1

4R(tk) sin[Θ(tk, λn)].

Como p y R toman valores positivos, y Θ(a, λn) = 0, para que se cumpla la
igualdad anterior debe valer sin[Θ(tk, λn)] = 0. Entonces, Θ(tk, λn) debe ser un
múltiplo positivo de π,

Θ(tk) = jπ, j ∈ Z.

Por otra parte, entre dos ceros consecutivos, Θ puede variar a lo sumo en π,
es decir,

|Θ(tk)−Θ(tk−1)| ≤ π,

de lo contrario, por la continuidad de Θ, habŕıa otro cero de la autofunción.
Si bien no podemos garantizar que Θ es creciente, cuando cruza por un múlti-

plo de π tiene derivada estrictamente positiva,

Θ′(kπ) = [λp(kπ)]1/2 ,

con lo cual de un cero a otro aumenta en π.

Lema 4.2.2. Sea λn el enésimo autovalor, y tn = tn(λn) el último cero de la
autofunción asociada y(t, λn). Entonces, Θ(tn) = nπ. Además, si t > tn,

nπ < Θ(t, λn) < (n+ 1/2)π

Demostración. Por el lema (4.2.1) sabemos que

Θ(tn) = nπ.

Veamos el caso t > tn:
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nπ < Θ(t, λn)

Ya que sin[2Θ(tn, λ)] = sin[2nπ] = 0, tenemos

Θ′(tn, λ) = [λp(t)]1/2 +
1

4

p′(t)

p(t)
sin[2Θ(tn, λ)] = [λp(t)]1/2 > 0.

Para t suficientemente cerca de tn tenemos que Θ′(t) > 0, por lo tanto Θ es
creciente en un entorno de tn y

nπ = Θ(tn, λ) < Θ(t, λ)

Para valores mayores a tn, la función Θ(t, λ) no puede ser menor a nπ.
Si hubiera un valor t donde la función Θ tomara un valor más chico que
nπ, existiŕıa t∗ > tn donde Θ(t∗, λ) = nπ. Pero esto es equivalente a decir
que y(t∗, λn) = 0, lo que es un absurdo, puesto que tn es el último cero de
y(t, λn).

Θ(t, λn) < (n+ 1/2)π.

Esta desigualdad es equivalente a probar que la derivada primera de la
solución y(t, λ) no cambia de signo en el intervalo [tn,∞). Supongamos que
existe t∗ > tn donde la solución toma un valor y(t∗, λn) > 0 y

0 = y′(t∗, λn) = λ1/2[p(t∗)]
1
4R(t∗) cos[Θ(t∗, λn)].

Por ser p y R funciones positivas, la igualdad anterior se satisface sólo
cuando

cos[Θ(t∗, λn)] = 0

y por lo tanto
Θ(t∗, λn) = (k + 1/2) π

para algún k entero. Como nπ < Θ(t, λn) para todo t > tn, el menor valor
de k que satisface lo anterior es

Θ(t∗, λ) = (n+ 1/2) π.

En el punto t∗ la solución y(t, λ) alcanza un máximo ya que

y′′(t∗, λ) = −λp(t∗)y(t∗, λ) < 0.

Para todo t > tn la solución no se anula, y como existe un punto donde
toma un valor positivo se deduce que y(t, λ) es positiva para todo t > tn, y
como consecuencia inmediata tenemos que y′′(t, λn) < 0 para todo t > tn.

Pero en el ĺımite, cuando t → ∞, la solución tiende a un valor finito,
teniendo que cambiar de concavidad en algún t. Esto es imposible ya que la
derivada segunda tiene el mismo signo para todo t ∈ (tn,∞). Conclúımos
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que la derivada de la solución y′ no se puede anular en [tn,∞), y entonces
Θ debe satisfacer

Θ(t, λn) < (n+ 1/2) π para t ∈ (tn,∞)

ya que el primer cero de y′ después de tn es t = (n+ 1/2) π.

Sabemos entonces que la función Θ(t, λ) está acotada para valores de t > tn,
veamos ahora que pasa en el ĺımite cuando t → ∞.

Lema 4.2.3. Si y(t, λn) es una autofunción asociada a λn del problema, entonces

ĺım
t→∞

Θ(t, λn) = (n+ 1/2) π.

Demostración. Por ser y(t, λn) una autofunción, está acotada y existe una cons-
tante C > 0 tal que |y(t, λn)| ≤ C para todo t, y además vale que

ĺım
t→∞

y′(t, λ) = 0. (4.14)

Despejando de la ecuación (4.1) y′′(t, λn) = −λp(t)y(t, λn) e integrando desde
t, obtenemos

y′(t, λn) = λn

∫ ∞

t

p(s)y(s, λn)ds

Luego,

|y′(t, λn)| = |λ
∫ ∞

t

p(s)y(s, λn)ds|

≤ λn

∫ ∞

t

p(s)|y(s, λn)|ds

≤ λn C

∫ ∞

t

p(s)ds

= λn C

∫ ∞

t

ds

(s+ 1)2w(s)

≤ λn C

∫ ∞

t

ds

(s+ 1)2w(t)

=
λn C

(t+ 1)w(t)
.
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Multiplicando por [p(t)]−1/2 nos queda

0 ≤ [p(t)]−1/2|y′(t, λn)|

= (t+ 1)[w(t)]1/2|y′(t, λn)|

≤ (t+ 1)[w(t)]1/2
λn C

(t+ 1)w(t)

=
λn C

[w(t)]1/2
.

Como la función w es positiva y no está acotada,

ĺım
t→∞

λn C

[w(t)]1/2
= 0,

y por lo tanto

ĺım
t→∞

[p(t)]−1/2|y′(t, λn)| = 0.

Por otra parte, de acuerdo a la expresión (4.5) para la derivada y′, tenemos

[p(t)]−1/2|y′(t, λn)| = λ1/2
n [p(t)]−

1
4R(t, λn) cos[Θ(t, λn)].

Si verificamos que el término que esta multiplicando al coseno está acotado,
como el lado izquierdo tiende a cero, será necesario que el coseno lo haga. Al
analizar la coordenada R obtuvimos la acotación de la Proposición (4.2.2),

[λnp(a)]
−1/2[p(t)]

1
4 ≤ R(t, λn) ≤ λ−1/2

n [p(t)]−
1
4 ,

y multiplicando las desigualdades anteriores por λ
1/2
n [p(t)]−

1
4 nos queda

[p(a)]−1/2 ≤ λ1/2
n [p(t)]−

1
4R(t, λn) ≤ [p(t)]−1/2,

y como p(a) > 0, tenemos que

ĺım
t→∞

cos[Θ(t, λn)] = 0.

Entonces, debe ser

ĺım
t→∞

Θ(t, λn) = (k + 1/2) π

para algún k, pero por el lema (4.2.2) la única posibilidad es que sea

ĺım
t→∞

Θ(t, λn) = (n+ 1/2) π,

y queda demostrado el lema.
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4.3. Estimación de los autovalores

En esta sección demostraremos el Teorema 4.1.1.
Para la demostración necesitamos el siguiente resultado auxiliar demostrado

por E. Hille en [10], pag 245.

Proposición 4.3.1. Sea a > 0. Dadas las ecuaciones diferenciales en [a,∞),

y′′ + F (t)y = 0, (4.15)

y′′ + f(t)y = 0, (4.16)

si para a suficientemente grande las soluciones de (4.15) tienen a lo sumo un
cero, y si para t ≥ a

t

∫ ∞

t

F (x)dx ≥ t

∫ ∞

t

f(x)dx,

las soluciones de la segunda ecuación también tendrán a lo sumo un cero en
[a,∞).

Observación 4.3.1. Si F (t) = 1
4
x−2, la solución general de la ecuación (4.15)

es
y(t) = x1/2 (A+B log x) ,

que tiene a lo sumo un cero en el intervalo (a,∞). Además,

t

∫ ∞

t

1

4
x−2dx =

1

4
.

Entonces, si f es una función tal que

t

∫ ∞

t

f(x)dx <
1

4

la solución general de la ecuación (4.16) tendrá a lo sumo un cero en (a,∞).

Lema 4.3.1. Sea ξ(λ) tal que

w(ξ(λ)) = 4λ.

Entonces, la solución del problema (4.1) tiene a lo sumo un cero en el intervalo
[ξ(λ),∞).

Demostración. Supongamos que ξ(λ) < t. Dado que w es una función creciente

t

∫ ∞

t

λp(x)dx = t

∫ ∞

t

λ

(x+ 1)2ω(x)
dx

≤ tλ

w(ξ(λ))

∫ ∞

t

1

(x+ 1)2
dx

=
tλ

4λ(t+ 1)

≤ 1

4
.
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Luego, por la Observación (4.3.1) la solución del problema (4.1) tiene a lo sumo
un cero en el intervalo [ξ(λ),∞).

Si elegimos ξ(λ) tal que w(ξ(λ)) = 4λ, aplicando el Lema (4.3.1), el penúltimo
cero de la autofunción y(t, λn) satisface

xn−1(λn) ≤ ξ(λn) = ω−1(4λn),

donde ω−1(·) es la inversa de la función ω(·).

Demostración del Teorema 4.1.1. Partiendo de la expresión (4.13) para la fun-
ción Θ,

Θ(t, λ) = λ1/2

∫ t

a

[p(s)]1/2ds+
1

4

∫ t

a

p′(s)

p(s)
sin[2Θ(s, λ)]ds,

la separamos de la siguiente manera:

Θ(t, λ) = λ1/2I(t) + S(t, λ)

donde

I(t) =

∫ t

a

[p(s)]1/2ds y S(t, λ) =
1

4

∫ t

a

p′(s)

p(s)
sin[2Θ(s, λ)]ds

Si evaluamos en λ = λn y t = tn−1 (el n-ésimo autovalor y el (n − 1)-ésimo
cero de la autofunción correspondiente) por el lema (4.2.1) tenemos que

(n− 1)π = Θ(tn−1, λn) = λ1/2
n I(tn−1) + S(tn−1, λn). (4.17)

Como

I(tn−1) =

∫ tn−1

a

[p(s)]1/2ds =

∫ ∞

a

[p(s)]1/2ds−
∫ ∞

tn−1

[p(s)]1/2ds

nos queda para λn grande

I(tn−1) = I[1 + o(1)].

Por otro lado,

|S(tn−1, λn)| =
∣∣∣∣
1

4

∫ tn−1

a

p′(s)

p(s)
sin[2Θ(s, λn)]ds

∣∣∣∣ ≤
1

4

∫ tn−1

a

∣∣∣∣
p′(s)

p(s)

∣∣∣∣ ds,

y esta integral podemos calcularla como sigue:

∫ tn−1

a

∣∣∣∣
p′(s)

p(s)

∣∣∣∣ ds =
∫ tn−1

a

−p′(s)

p(s)
ds = −[ln(p(tn−1))− ln(p(a))] = ln

(
p(a)

p(tn−1)

)
.

Entonces,

|S(tn−1, λn)| ≤
1

4
ln

(
p(a)

p(tn−1)

)
. (4.18)
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Veamos que este término es de orden o(λ
1/2
n ) cuando n → ∞.

Como tn−1 < ξ(λn) tenemos que p(ξ(λn)) < p(tn−1), y por lo tanto

ln

(
p(a)

p(tn−1)

)
< ln

(
p(a)

p(ξ(λn))

)
.

Entonces, es suficiente mostrar que

ln

(
p(a)

p(ξ(λn))

)
= o(λ1/2

n ). (4.19)

Como la función ω(t) es creciente,

∫ t

√
t

[p(s)]1/2ds =

∫ t

√
t

1

(s+ 1)
√

ω(s)
ds

>
1√
ω(t)

∫ t

√
t

1

(s+ 1)
ds

=
1√
ω(t)

ln
t+ 1√
t+ 1

>
1√
ω(t)

ln(t+ 1).

Cuando t → ∞, la primer integral tiende a cero ya que I es finita. En particular,
para t = ξ(λn) tenemos que

1√
ω(ξ(λn))

ln[ξ(λn) + 1] <

∫ ξ(λn)

√
ξ(λn)

[p(s)]1/2ds

y como ξ(λn) = ω−1(4λn), tenemos que

ĺım
n→∞

ξ(λn) = ∞.

Por lo tanto,

ĺım
n→∞

1

2
√
λn

ln[ξ(λn) + 1] = 0.

Volviendo a la expresión (4.19),

ln

(
p(a)

p(ξ(λn))

)
= ln p(a)− ln

1

p(ξ(λn))

= ln p(a)− ln
[
(ξ(λn) + 1)2ω(ξ(λn)

]

= ln p(a)− 2 ln[ξ(λn) + 1]− ln(4λn),
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y como

ĺım
n→∞

ln p(a)√
λn

= 0 y ĺım
n→∞

ln 4λn√
λn

= 0,

obtenemos que

ln

(
p(a)

p(tn−1)

)
= o(λ1/2

n ),

y por la cota (4.18)
|S(tn−1, λn)| = o(λ1/2

n ).

La ecuación (4.17) es equivalente entonces a

(n− 1)π = λ1/2
n

[
I(tn−1) +

S(tn−1, λn)

[λn]1/2

]
,

con lo cual
(n− 1)π = λ1/2

n [I(1 + o(1)) + Io(1)]

(n− 1)π

I
= λ1/2

n [1 + o(1)] .

Observando que n− 1 = n[1 + o(1)], el teorema queda demostrado.



Caṕıtulo 5

Distribución asintótica de los
autovalores

5.1. Introducción

En este caṕıtulo vamos a trabajar con el siguiente problema de autovalores

(−1)m−1y(2m) + λp(t)y = 0 t ∈ (a,∞)
y(i)(a, λ) = 0 0 ≤ i ≤ m− 1

ĺım
t→∞

y(i)(t, λ) = 0 m ≤ i ≤ 2m− 1.
(5.1)

donde m ≥ 1 es un número natural, λ parámetro positivo, y p ∈ C([a,∞)) no
negativa, monótona, que satisface la condición

∫ ∞

a

t2m−1+αp(t)dt < ∞, (5.2)

con α > 0.

Observación 5.1.1. La hipótesis en p garantiza que
∫ ∞

a

2m
√

p(t)dt < ∞,

pues aplicando Hölder se tiene

∫ ∞

a

2m
√
p(t)dt =

∫ ∞

a

t
2m−1+α

2m
2m
√
p(t) · 1

t
2m−1+α

2m

dt

≤
(∫ ∞

a

t2m−1+αp(t)dt

) 1
2m
(∫ ∞

a

1

t1+
α

2m−1

dt

) 2m−1
2m

.

Ambas integrales son finitas, la primera por hipótesis y la segunda por cálculo.

Si el peso p cumple con la condición (5.2), Elias en [4] demuestra la existencia
de una sucesión {λk}k de autovalores, con 0 < λ1 < · · · < λk < · · · ր ∞, tal que

47
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para cada λ = λk existe una única solución yk = yk(t, λk) con k− 1 ceros simples
en (a,∞).

El interés en este caṕıtulo es estudiar el comportamiento asintótico de los
autovalores de dicha sucesión. Para esto definimos la función N(λ) que cuenta el
número de autovalores menores o iguales que λ:

N(λ) = #{k ∈ N : λk ≤ λ}.

Nos interesa estudiar el crecimiento de N(λ), en particular, si existe una po-
tencia δ tal que

C1λ
δ ≤ N(λ) ≤ C2λ

δ,

para ciertas constanstes C1 y C2 a definir.
Para m = 1 Hille lo demostró utilizando la transformada de Prüfer como

vimos en el caṕıtulo anterior.
Para problemas de mayor orden no podemos aplicar el método de Prüfer. Por

este motivo nuestra demostración se basa en resultados conocidos para intervalos
acotados y en la desigualdad de Nehari del Caṕıtulo (3).

En un primer paso estudiaremos el problema de segundo orden en intervalos
acotados y no acotados.

Para los problemas de cuarto orden veremos que bajo ciertas condiciones
tenemos que

cλ1/4

∫ ∞

a

4
√
p(t)dt+ o(λ1/4) ≤ N(λ) ≤ Cλ1/4

∫ ∞

a

4
√

p(t)dt+ o(λ1/4)

cuando λ → ∞.

5.2. Problema general de segundo orden

5.2.1. Problema de segundo orden en un intervalo acotado
[a, b]

En un primer paso vamos a estudiar el problema

y′′ + λp(t)y = 0, t ∈ (a, b) (5.3)

con p ∈ C([a, b]) no negativa y condiciones de borde del tipo Dirichlet o Neumann.
Sea {λk}k la sucesión de autovalores del problema. Llamaremos ND(λ, (a, b)) y

NN(λ, (a, b)) las funciones que cuentan el número de autovalores menores o iguales
a λ del problema (5.3) cuando las condiciones de borde sean de tipo Dirichlet y
Neumann respectivamente.

Para el peso p ∈ C([a, b]) definimos

m = mı́n {p(x) : x ∈ [a, b]}
M = máx {p(x) : x ∈ [a, b]}.



5.2. PROBLEMA GENERAL DE SEGUNDO ORDEN 49

Proposición 5.2.1. Sea p ∈ C([a, b]). Sea {λk}k la sucesión de autovalores del
problema

y′′ + λp(t)y = 0, t ∈ (a, b).

Si las condiciones de borde son tipo Dirichlet tenemos que

ND(λ, (a, b)) ≥
λ1/2

π

√
m(b− a)− 1. (5.4)

Si las condiciones de borde son de tipo Neumann tenemos que

NN(λ, (a, b)) ≤
λ1/2

π

√
M(b− a). (5.5)

Demostración. Supongamos primero que las condiciones de borde de nuestro pro-
blema son de tipo Dirichlet.

Sea {γ∗
k}k la sucesión de autovalores del problema auxiliar

y′′ + γ∗my = 0 t ∈ (a, b)
y(a) = y(b) = 0.

Sabemos, por cálculo directo, que el k-ésimo autovalor es de la forma

γ∗
k =

π2k2

(b− a)2m
.

Como p(t) ≥ m para todo t ∈ [a, b], por el teorema de comparación de Sturm
tenemos que

λk ≤ γ∗
k .

Entonces,

ND(λ, (a, b)) = # {k : λk ≤ λ}

≥ # {k : γ∗
k ≤ λ}

= #

{
k :

π2k2

(b− a)2m
≤ λ

}

= #

{
k : k ≤ λ1/2

π

√
m(b− a)

}

=

[
λ1/2

π

√
m(b− a)

]

≥ λ1/2

π

√
m(b− a)− 1,

donde [.] representa la función parte entera.
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Luego, tenemos que

ND(λ, (a, b)) ≥
λ1/2

π

√
m(b− a)− 1.

Supongamos ahora que las condiciones de borde son de tipo Neumann.
Consideramos el siguiente problema auxiliar

y′′ + µ∗My = 0 t ∈ (a, b)
y′(a) = y′(b) = 0.

Sea {µ∗
k}k la sucesión de autovalores coorespondiente. El k-ésimo autovalor

de este problema es de la forma

µ∗
k =

π2k2

(b− a)2M
.

Como p(t) ≤ M para todo t ∈ [a, b], por el teorema de comparación de Sturm
tenemos que

µ∗
k ≤ λk.

Entonces,
NN(λ, (a, b)) = # {k : λk ≤ λ}

≤ # {k : µ∗
k ≤ λ}

= #

{
k :

π2k2

(b− a)2M
≤ λ

}

= #

{
k : k ≤ λ1/2

π

√
M(b− a)

}

≤ λ1/2

π

√
M(b− a).

como queŕıamos demostrar.

Supongamos ahora que nuestro problema se define de la siguiente manera

y′′ + λp(t)y = 0 t ∈ Ω (5.6)

con Ω ⊆ R conjunto abierto. Las condiciones que pediremos en la ∂Ω serán de
tipo Dirichlet o Neumann.

El procedimiento min-max de Courant nos da una caracterización del k-ésimo
autovalor, utilizando el cociente de Rayleigh, de la forma

λk = mı́n
Sk∈H

máx
v∈Sk

∫
Ω
v′2(t)dt∫

Ω
p(t)v2(t)dt
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donde Sk es un subespacio de dimensión k.
La elección del espacio H dependerá de las condiciones del problema en ∂Ω.

En el caso de condiciones de borde de tipo Dirichlet tomaremos H = H1
0 (Ω),

mientras que para condiciones de tipo Neumann tomaremos H = H1(Ω).
Ya que H1

0 (Ω) ⊂ H1(Ω), si λ0
k es el k-ésimo autovalor del problema (5.6) con

condiciones de borde Dirichlet y λ1
k es el correspondiente a condiciones de borde

Neumann tenemos que

λ1
k ≤ λ0

k

y por lo tanto

ND(λ,Ω) ≤ NN(λ,Ω).

Ahora, si tenemos ∪iIi ⊆ Ω con Ii intervalos abiertos disjuntos, nos interesa
saber que relación existe entre las funciones ND(λ, Ii), ND(λ,Ω), NN(λ, Ii) y
NN(λ,Ω).

Para esto necesitamos un resultado auxiliar que demostramos a continuación.

Proposición 5.2.2. Sea Ω = (a, b), y c ∈ (a, b). Entonces,

H1
0 (I1)⊕H1

0 (I2) ⊂ H1
0 (Ω) ⊂ H1(Ω) ⊂ H1(I1)⊕H1(I2)

donde I1 = (a, c) y I2 = (c, b).

Demostración. Demostramos cada una de las inclusiones:

• H1
0 (I1)⊕H1

0 (I2) ⊂ H1
0 (Ω)

Si v ∈ H1
0 (I1)⊕H1

0 (I2) existe vi ∈ H1
0 (Ii), con i = 1, 2, tal que

v(x) =

{
v1(x) si x ∈ I1
v2(x) si x ∈ I2.

Dada vi ∈ H1
0 (Ii) existe una sucesión {vin}n ∈ C∞

0 (Ii) tal que

‖vin − vi‖H1(Ii) → 0,

donde la norma esta definida como ‖v‖H1 = ‖v‖2 + ‖v′‖2 en el intervalo corres-
pondiente.

Si definimos

vn(x) =

{
vin(x) si x ∈ Ii

0 si x ∈ ∂(I1 ∪ I2)

tenemos que {vn}n ∈ C∞
0 (Ω) y vn → v en H1(Ω) ya que

‖vn − v‖H1(Ω) = ‖(v1n + v2n)− (v1 + v2)‖H1(Ω)

≤ ‖v1n − v1‖H1(Ω) + ‖v2n − v2‖H1(Ω)

= ‖v1n − v1‖H1(I1) + ‖v2n − v2‖H1(I2),
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donde la última igualdad vale por tener las funciones vin, vi soporte compacto en
Ii.

• H1
0 (Ω) ⊂ H1(Ω)

La inclusión es directa.

• H1(I) ⊂ H1(I1)⊕H1(I2).

Si v ∈ H1(Ω), entonces v ∈ L2(Ω) y existe g ∈ L2(Ω) tal que para toda
φ ∈ C∞

0 (Ω) ∫

Ω

v(t)φ′(t)dt = −
∫

Ω

g(t)φ(t)dt. (5.7)

Si definimos, para i = 1, 2,

vi(x) =

{
v(x) si x ∈ Ii

0 en otro caso,
gi(x) =

{
g(x) si x ∈ Ii

0 en otro caso,
(5.8)

tenemos que vi, gi ∈ L2(Ii).
Sea Ψ ∈ C∞

0 (Ii). Como Ii ⊂ Ω tenemos que Ψ ∈ C∞
0 (Ω) y por lo tanto

evaluando la ecuación (5.7) en Ψ llegamos a que
∫

Ii

v(t)Ψ′(t)dt = −
∫

Ii

g(t)Ψ(t)dt,

por ser Ψ de soporte compacto en Ii.
Luego, por (5.8)

∫

Ii

vi(t)Ψ
′(t)dt = −

∫

Ii

gi(t)Ψ(t)dt,

y por lo tanto vi ∈ H1(Ii).
Como los intervalos I1, I2 son disjuntos, si x ∈ I1 ∪ I2 tenemos que

v(x) =

{
v1(x) si x ∈ I1
v2(x) si x ∈ I2,

y por lo tanto v ∈ H1(I1)⊕H1(I2).

Proposición 5.2.3. Sea I = (a, b), y c ∈ (a, b). Entonces,

ND(λ, I1 ∪ I2) ≤ ND(λ, I) ≤ NN(λ, I) ≤ NN(λ, I1 ∪ I2)

donde I1 = (a, c) y I2 = (c, b).

Demostración. Sea Ω un conjunto abierto y H(Ω) un espacio de Hilbert.
Definimos para Sk, subespacio de dimensión k contenido en H(Ω),

M(Sk) = máx
v∈Sk

∫
Ω
v′2(t)dt∫

Ω
p(t)v2(t)dt

. (5.9)
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Dependiendo de las condiciones que demos al problema (5.6) tendremos que de-
mostrar las cosas para ND o NN .

Supongamos primero que la condición en ∂Ω del problema (5.6) es de tipo
Dirichlet.

Sean {λ1
k}k y {λ2

k}k las sucesiones de autovalores correspondiente al problema
(5.6) cuando Ω = I y Ω = I1 ∪ I2, respectivamente.

Utilizando la definición min-max de Courant y la definición (5.9), podemos
expresar los k-ésimos autovalores como

λ1
k = mı́n

Sk∈H
M(Sk) con H = H1

0 (I)

λ2
k = mı́n

Sk∈H
M(Sk) con H = H1

0 (I1)⊕H1
0 (I2).

Por la Proposición (5.2.2) sabemos que H1
0 (I1)⊕H1

0 (I2) ⊂ H1
0 (I), con lo cual

λ1
k ≤ λ2

k.

Luego, dado λ > 0 tenemos que

#
{
k : λ2

k ≤ λ
}
≤ #

{
k : λ1

k ≤ λ
}

y por lo tanto
ND(λ, I1 ∪ I2) ≤ ND(λ, I).

Supongamos ahora que la condición en ∂Ω del problema (5.6) es de tipo
Neumann.

Al igual que antes definimos dos suceciones de autovalores, {λ3
k}k y {λ4

k}k,
correspondientes al problema (5.6) cuando Ω = I y Ω = I1 ∪ I2 respectivamente.

Definimos

λ3
k = mı́n

Sk∈H
M(Sk) con H = H1(I)

λ4
k = mı́n

Sk∈H
M(Sk) con H = H1(I1)⊕H1(I2).

Entonces, por la Proposición (5.2.2) sabemos que H1(I) ⊂ H1(I1)⊕H1(I2) y
por lo tanto

λ4
k ≤ λ3

k.

Dado λ > 0 tenemos que

#
{
k : λ3

k ≤ λ
}
≤ #

{
k : λ4

k ≤ λ
}

y por lo tanto
NN(λ, I) ≤ NN(λ, I1 ∪ I2).

Observación 5.2.1. La Proposición anterior se puede extender, por inducción,
a una unión finita de intervalos abiertos disjuntos.
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Proposición 5.2.4. Sea Ii un intervalo abierto (1 ≤ i ≤ n), con Ii ∩ Ij = ∅ para
i 6= j. Entonces

N(λ,
n⋃

i=1

Ii) =
n∑

i=1

N(λ, Ii) (5.10)

Demostración. Sea yi una autofunción del problema (5.6) en Ω = Ii correspon-
diente al autovalor λi. Si la extendemos como cero por fuera de Ii, será autofun-
ción para el problema cuando Ω =

⋃n
i=1 Ii correspondiente a cierto autovalor λ.

Entonces,

N(λ,
n⋃

i=1

Ii) ≤
n∑

i=1

N(λ, Ii).

Por otra parte, si λ es un autovalor con autofunción y del problema (5.6)
cuando Ω =

⋃n
i=1 Ii, para toda función v ∈ H1

0 (Ω) tenemos que

∫

Ω

y′(t)v′(t)dt = λ

∫

Ω

p(t)y(t)v(t)dt.

Si v es de soporte compacto en Ii, la autofunción y |Ii es una solución débil
del problema cuando Ω = Ii.

Ya que la función y ∈ C2(Ω), se tiene y |Ii es una solución clásica de (5.6) en
Ω = Ii. Luego, si y |Ii no es identicamente nula, λ será autovalor del problema en
Ii y por lo tanto

N(λ,
n⋃

i=1

Ii) ≥
n∑

i=1

N(λ, Ii).

Ya tenemos las herramientas necesarias para poder ver cual es el comporta-
miento asintótico de la función N(λ) para el problema de segundo orden cuando
las condiciones de borde son de tipo Dirichlet o Neumann.

Teorema 5.2.1. Sea p ∈ C[a, b] no negativa. Sea {λk}k la sucesión de autovalores
del problema {

y′′ + λp(t)y = 0 t ∈ (a, b)
y(a) = y(b) = 0

(5.11)

Entonces

N(λ, (a, b)) =
λ1/2

π

∫ b

a

√
p(t)dt+ o(λ1/2) (5.12)

cuando λ → ∞.

Demostración. Sean a = t0 < t1 < t2 < · · · < tn = b puntos correspondientes a
una partición del intervalo [a, b].

Para 1 ≤ i ≤ n definimos los intervalos Ii = (ti−1, ti). En cada uno de ellos
consideramos los siguientes problemas auxiliares:
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(a) y′′ + γp(t)y = 0 t ∈ (ti−1, ti)
y(ti−1) = y(ti) = 0,

(b) y′′ + µp(t)y = 0 t ∈ (ti−1, ti)
y′(ti−1) = y′(ti) = 0.

Por la Proposición (5.2.1) tenemos que

NN(λ, (ti−1, ti)) ≤ λ1/2

π

√
Mi(ti − ti−1)

ND(λ, (ti−1, ti)) ≥ λ1/2

π

√
mi(ti − ti−1)− 1.

donde
Mi = máx {p(x) : x ∈ [ti−1, ti]}
mi = mı́n {p(x) : x ∈ [ti−1, ti]}.

Sea ε > 0 fijo.
Como

√
p es integrable, para n suficientemente grande tenemos que

n∑

i=1

√
Mi(ti − ti−1) ≤

∫ b

a

√
p(t)dt+ ε

n∑

i=1

√
mi(ti − ti−1) ≥

∫ b

a

√
p(t)dt− ε.

Entonces

n∑

i=1

NN(λ, (ti−1, ti)) ≤ λ1/2

π

(∫ b

a

√
p(t)dt+ ε

)

n∑

i=1

ND(λ, (ti−1, ti)) ≥ λ1/2

π

(∫ b

a

√
p(t)dt− ε

)
− n.

Ahora, por las Proposiciones (5.2.3) y (5.2.4) tenemos que

n∑

i=1

ND(λ, (ti−1, ti)) ≤ N(λ, (a, b)) ≤
n∑

i=1

NN(λ, (ti−1, ti)),

y finalmente

λ1/2

π

(∫ b

a

√
p(t)dt− ε

)
− n ≤ N(λ, (a, b)) ≤ λ1/2

π

(∫ b

a

√
p(t)dt+ ε

)
.

Luego

1

π

(∫ b

a

√
p(t)dt− ε

)
− n

λ1/2
≤ N(λ, (a, b))

λ1/2
≤ 1

π

(∫ b

a

√
p(t)dt+ ε

)
.
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Cuando λ → ∞ tenemos que
n

λ1/2
→ 0 y

N(λ, (a, b)) =
λ1/2

π

∫ b

a

√
p(t)dt+ o(λ1/2)

como queŕıamos demostrar.

Observación 5.2.2. Si consideramos el problema

y′′ + λp(t)y = 0 t ∈ (a, b)
y′(a) = y′(b) = 0

se puede demostrar, de igual manera que la Proposición (5.12), que el comporta-
miento asintótico de la función N(λ) también es de la forma

N(λ, (a, b)) =
λ1/2

π

∫ b

a

√
p(t)dt+ o(λ1/2)

cuando λ → ∞.

5.2.2. Problema de segundo orden en un intervalo no aco-
tado

Ahora vamos a estudiar el problema de segundo orden definido en un intervalo
no acotado. Seguimos las ideas de [15].

Definimos el problema

y′′ + λp(t)y = 0 t ∈ (a,∞)
y(a) = 0

ĺım
t→∞

y′(t) = 0,
(5.13)

donde λ parámetro positivo, y p ∈ C([a,∞)) no negativa y monótona, que satis-
face la condición (5.2).

Proposición 5.2.5. Sea p ∈ C([a,∞)) una función no negativa, monótona que
satisface la condición (5.2). Sea {λk}k la sucesión de autovalores del problema
(5.13) y sea N(λ) la función correspondiente al problema que cuenta el número
de autovalores menores o iguales a λ. Entonces

N(λ) ≥ λ1/2

π

∫ ∞

a

√
p(t)dt+ o(λ1/2)

cuando λ → ∞.

Demostración. Sea ε > 0 fijo.
Por la observación (5.1.1) existe Tε > a tal que

∫ ∞

Tε

√
p(t)dt <

ε

2
.
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Consideramos el problema auxiliar

v′′ + µp(t)v = 0, t ∈ (a, Tε)
v(a) = v(Tε) = 0

(5.14)

Para este problema existe una sucesión {µk}k de autovalores simples. Además,
la autofunción vk correspondiente al autovalor µk tiene (k−1) ceros en el intervalo
(a, Tε).

Sea yk la autofunción correspondiente al autovalor λk del problema (5.13).
Como vimos en el caṕıtulo (2) dicha autofunción tiene exactamente (k− 1) ceros
simples en el intervalo (a,∞).

Entonces

λk ≤ µk.

Si fuera µk < λk, por el Teorema de Separación de Sturm, entre dos ceros de
vk debeŕıa haber un cero de yk. Pero esto implica que yk tiene por lo menos k
ceros en el intervalo (a, Tε) ⊂ (a,∞) lo que es imposible ya que en dicho intervalo
puede tener a lo sumo (k − 1) ceros.

Luego, para λ > 0 tenemos

# {k : µk ≤ λ} ≤ # {k : λk ≤ λ} ,

lo que implica que

N(λ) ≥ N(λ, (a, Tε)) (5.15)

donde N(λ, (a, Tε)) es la función que cuenta el número de autovalores menores o
iguales a λ del problema (5.14).

El comportamiento asintótico deN(λ, (a, Tε)) está dado por el Teorema (5.2.1),
por lo tanto, para todo λ ≥ λ(ε) = λε

∣∣∣∣
N(λ, (a, Tε))

λ1/2
− 1

π

∫ Tε

a

√
p(t)dt

∣∣∣∣ ≤
ε

2
.

Por un lado tenemos que

N(λ, (a, Tε))

λ1/2
≥ 1

π

∫ Tε

a

√
p(t)dt− ε

2
. (5.16)
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Ahora, dividiendo (5.15) por λ1/2 y utilizando la cota (5.16)

N(λ)

λ1/2
≥ N(λ, (a, Tε))

λ1/2

≥ 1

π

∫ Tε

a

√
p(t)dt− ε

2

=
1

π

∫ ∞

a

√
p(t)dt−

∫ ∞

Tε

√
p(t)dt− ε

2

≥ 1

π

∫ ∞

a

√
p(t)dt− ε

2
− ε

2

=
1

π

∫ ∞

a

√
p(t)dt− ε

para todo λ ≥ λε. La otra desigualdad se prueba de forma similar quedando
demostrado lo que queŕıamos.

En una primera instancia vamos a tratar de encontrar una cota superior para
la función N(λ) del problema (5.13) aunque no sea la óptima.

Proposición 5.2.6. Sea p ∈ C([a,∞)) una función no negativa, monótona que
satisface la condición (5.2). Sea {λk}k la sucesión de autovalores del problema
(5.13) y sea N(λ) la función correspondiente al problema que cuenta el número
de autovalores menores o iguales a λ. Entonces

N(λ) ≤ 2λ1/2

π

∫ ∞

a

√
p(t)dt+ 1

para todo λ > 0.

Demostración. Sea yk la autofunción correspondiente al autovalor λk el k-ésimo
autovalor del problema (5.13). Sabemos que dicha función tiene k ceros en el
intervalo [a,∞). Sea t∗ el último cero de yk.

Definimos el siguiente problema auxiliar

v′′ + µp(t)v = 0, t ∈ (a, t∗)
v(a) = v(t∗) = 0.

Consideramos el autovalor µk−1 (k ≥ 2) de este problema. Como el peso p es
monótono, utilizando la cota de Nehari calculada en el caṕıtulo (3) tenemos que

µk−1 >
π2(k − 1)2

4
(∫ t∗

a

√
p(x)dx

)2 .
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Para este autovalor existe una única autofunción vk−1 con k ceros en el intervalo
[a, t∗]. Ya que la autofunción yk es solución del problema

y′′ + λkp(t)y = 0, t ∈ (a, t∗)

y(a) = y(t∗) = 0

con k ceros en el intervalo [a, t∗], tenemos que λk = µk−1 en dicho intervalo.
Entonces

λk >
π2(k − 1)2

4
(∫ t∗

a

√
p(x)dx

)2 >
π2(k − 1)2

4
(∫∞

a

√
p(x)dx

)2 .

y por lo tanto

N(λ) = # {k : λk ≤ λ}

≤ #




k :

π2(k − 1)2

4
(∫∞

a

√
p(t)dt

)2 ≤ λ





= #

{
k : k ≤ 2λ1/2

π

∫ ∞

a

√
p(t)dt+ 1

}

≤ 2λ1/2

π

∫ ∞

a

√
p(t)dt+ 1.

Ahora vamos a calcular una cota óptima por arriba de la función N(λ) del
problema (5.13).

Proposición 5.2.7. Sea p ∈ C([a,∞)) una función no negativa, monótona que
satisface la condición (5.2). Sea {λk}k la sucesión de autovalores del problema
(5.13) y sea N(λ) la función correspondiente al problema que cuenta el número
de autovalores menores a λ. Entonces Entonces

N(λ) ≤ λ1/2

π

∫ ∞

a

√
p(t)dt+ o(λ1/2)

para todo λ > 0.

Demostración. Sea Tε tal que

∫ ∞

Tε

√
p(t)dt <

ε

2
.

Fijamos λ > 0. Sea λn el mayor autovalor del problema (5.13) menor o igual
a λ.
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La autofunción yn correspondiente λn tiene exactamente n ceros en el intervalo
[a,∞). Por lo tanto nos basta con encontrar una cota para la cantidad de ceros
de la autofunción para obtener una cota para N(λ) = n.

Sea j el número de ceros de la autofunción yn en el intervalo [a, Tε] y (n−j) el
número de ceros en el intervalo (Tε,∞). Podemos suponer que la autofunción no
se anula en Tε, ya que de hacerlo nos basta con movernos a un punto T ′

ε = Tε + δ
con δ suficientemente pequeño y usar este punto como corte para el intervalo
[a,∞).

En primer lugar vamos a buscar una cota para la cantidad de ceros de la
autofunción en el intervalo [a, Tε].

Sea t∗ el último cero de yn en el intervalo (a, Tε].
Consideramos los siguientes problemas auxiliares

y′′ + µp(t)y = 0 t ∈ (a, t∗)
y(a) = 0
y(t∗) = 0

(5.17)

y′′ + νp(t)y = 0 t ∈ (a, Tε)
y(a) = 0
y(Tε) = 0

(5.18)

Sean {µk}k y {νk}k las sucesiones de autovalores correspondientes a los problemas
(5.17)-(5.18),

Llamaremos N(λ, (a, t∗)) y N(λ, (a, Tε)), respectivamente, las funciones que
cuentan los autovalores menores o iguales a λ de estos problemas.

Usando la caracterización min-max de Courant, los k-ésimos autovalores de
los problemas (5.17)-(5.18) se definen como

µk = mı́n
Sk∈H1

0 ([a,t
∗])

máx
v∈Sk

∫ t∗

a
v′2(t)dt

∫ t∗

a
p(t)v2(t)dt

,

νk = mı́n
Sk∈H1

0 ([a,Tε])
máx
v∈Sk

∫ Tε

a
v′2(t)dt

∫ Tε

a
p(t)v2(t)dt

.

donde Sk es un subespacio de dimensión k contenido enH1
0 ([a, t

∗]), o enH1
0 ([a, Tε])

según corresponda.
Ahora, como H1

0 ([a, Tε]) ⊂ H1
0 ([a, t

∗]) tenemos que

νk ≤ µk.

Por lo tanto
# {k : µk ≤ λ} ≤ # {k : νk ≤ λ}

y
N(λ, (a, t∗)) ≤ N(λ, (a, Tε)). (5.19)

La autofunción correspondiente al autovalor µj−1 tiene j ceros en el intervalo
[a, Tε]. Ya que la autofunción yn es solución de la ecuación y′′ + λnp(t)y = 0
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en [a, Tε] con la misma cantidad de ceros en dicho intervalo, por el teorema de
separación de Sturm tenemos que

µj−1 = λn ≤ λ.

Entonces
(j − 1) ≤ # {k : µk ≤ λ} = N(λ, (a, t∗)).

Luego, utilizando la cota (5.19) llegamos a que

j ≤ N(λ, (a, Tε)) + 1. (5.20)

Ahora, sabemos que cuando λ → ∞

N(λ, (a, Tε)) =
λ1/2

π

∫ Tε

a

√
p(t)dt+ o(λ1/2).

Entonces, dado ε existe un λε tal que para todo λ ≥ λε tenemos que

N(λ, (a, Tε)) ≤
λ1/2

π

∫ Tε

a

√
p(t)dt+ λ1/2ε. (5.21)

Por (5.20) y (5.21) tenemos que

j ≤ λ1/2

π

∫ Tε

a

√
p(t)dt+ λ1/2ε+ 1

≤ λ1/2

π

∫ ∞

a

√
p(t)dt+ λ1/2ε+ 1.

(5.22)

Consideramos ahora el siguiente problema auxiliar

y′′ + γp(t)y = 0, t ∈ (t∗∗,∞)
y(t∗∗) = 0

ĺım
t→∞

y′(t) = 0
(5.23)

donde t∗∗ es el primer cero de la autofunción yn en el intervalo (Tε,∞).
Sea {γk}k la sucesión de autovalores del problema y N(λ, (t∗∗,∞)) la función

que cuenta el número de autovalores menores o iguales a λ.
Según definimos en el caṕıtulo (2) tenemos que

γn−j = ı́nf
{
γ ∈ (0,∞) : y(t, γ) es la única solución

del problema (5.23) que tiene al menos
(n− j) ceros en el intervalo [t∗∗,∞)

}

λn = ı́nf
{
λ ∈ (0,∞) : y(t, λ) es la única solución

del problema (5.13) que tiene al menos
n ceros en el intervalo [a,∞)

}
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Como la autofunción yn se anula en t∗∗ y tiene (n−j) ceros en el intervalo [t∗∗,∞)

γn−j ≤ λn.

Ahora, como λn ≤ λ tenemos que

(n− j) ≤ #{k : γk ≤ λ} = N(λ, (t∗n,∞)). (5.24)

La Proposición (5.2.6) es aplicable al problema (5.23) y por lo tanto tenemos
que

N(λ, (t∗∗,∞)) ≤ 2λ1/2

π

∫ ∞

t∗∗

√
p(t)dt+ 1.

Como Tε < t∗∗, y por las hipótesis sobre
√
p

∫ ∞

t∗∗

√
p(t)dt ≤

∫ ∞

Tε

√
p(t)dt ≤ ε/2.

Entonces

(n− j) ≤ 2λ1/2

π

∫ ∞

Tε

√
p(t)dt+ 1 ≤ λ1/2ε

π
+ 1. (5.25)

Finalmente por (5.22) y (5.25) llegamos a que

N(λ) = n = j + (n− j)

≤
(
λ1/2

π

∫ ∞

a

√
p(t)dt+ λ1/2ε+ 1

)
+

(
λ1/2ε

π
+ 1

)

≤ λ1/2

π

∫ ∞

a

√
p(t)dt+ λ1/2

(
1 +

1

π

)
ε+ 2.

Como ε > 0 es arbitrariamente chico, y
2

λ1/2
→ 0 cuando λ → ∞

N(λ) ≤ λ1/2

π

∫ ∞

a

√
p(t)dt+ o(λ1/2).

El siguiente resultado es consecuencia de las Proposiciones anteriores.

Teorema 5.2.2. Sea {λk}k la sucesión de autovalores del problema (5.13). Sea
p(t) una función positiva, continua y monótona en [a,∞) satisfaciendo la condi-
ción (5.2). Entonces, el comportamiento asintótico de N(λ) está dado por

N(λ) =
λ1/2

π

∫ ∞

a

√
p(t)dt+ o(λ1/2) (5.26)

cuando λ → ∞.
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5.3. Análisis del problema de cuarto orden

5.3.1. Introducción al problema de cuarto orden

Cuando analizamos el problema de segundo orden la teoŕıa de Sturm fue
fundamental para poder analizar el comportamiento de la función N(λ).

En problemas de mayor orden nos encontramos con el incoveniente de no tener
una teoŕıa general, similar a la de Sturm.

El problema de cuarto orden fue abordado en detalle por Leighton y Nehari
en [11]. Estudiaron propiedades generales de las soluciones de ecuaciones del tipo

(y′′)′′ − q(t)y = 0, t ∈ [a,∞) (5.27)

con q ∈ C([a,∞)) no negativa y el problema asociado de autovalores.
Enunciaremos los conceptos fundamentales que necesitamos para el desarrollo

de nuestro problema de cuarto orden demostrados por Leighton y Nehari en dicho
trabajo.

Propiedades generales de las soluciones y teoremas de separación

El siguiente teorema que nos da una cota para la cantidad de ceros en los
cuales pueden diferir dos soluciones cualesquiera de (5.27).

Teorema 5.3.1. Sea y1(x) y y2(x) dos soluciones no triviales de la ecuación
(5.27) que cumplen y1(a) = y1(b) = y2(a

′) = y2(b
′) = 0, con 0 < a′ < a <

b < b′. Sean r y s la cantidad de ceros en el intervalo [a, b] de y1(x) y y2(x),
respectivamente. Entonces

r − 3 < s < r + 3.

Problema asociado de autovalores

Consideramos el problema de autovalores

(y′′)′′ − γp(t)y = 0 t ∈ (a, b)
y(a) = y′(a) = 0
y(b) = y′(b) = 0.

(5.28)

con γ parámetro positivo, y p ∈ C([a, b]) no negativa.
Para este problema existe una sucesión {γk}k de autovalores positivos que se

definen como

γk = mı́n
Sk∈H

máx
v∈Sk

∫ b

a
v′2(t)dt

∫ b

a
p(t)v2(t)dt

donde H = {v ∈ L2([a, b]) : v(a) = v′(a) = 0}.
Vamos a mencionar solo dos aspectos de interés para el resto del caṕıtulo que

se refieren a esta sucesión de autovalores. Estos fueron demostrados por Leigthon-
Nehari en [11].
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Teorema 5.3.2. Sea p ∈ C([a, b]) no negativa. Sea {γk}k la sucesión de autova-
lores del problema (5.28). Entonces:

(i) Todos los autovalores del problema (5.28) son simples.

(ii) La autofunción yk correspondiente al autovalor γk tiene k− 1 ceros simples
en (a, b).

Se tiene además el siguiente resultado análogo al de segundo orden:

Teorema 5.3.3. Sea p ∈ C([a, b]) una función monótona no negativa. Sea {γk}k
la sucesión de autovalores del problema (5.28). Entonces,

N(λ, (a, b)) =
λ1/4

π

∫ b

a

4
√

p(t)dt+ o(λ1/4)

cuando λ → ∞.

5.3.2. Puntos conjugados

Sea y(t) una solución de la ecuación (5.27) que tiene por lo menos j +3 ceros
en el intervalo [a, b] que cumplen

a = t1 ≤ t2 ≤ · · · ≤ tj+3 ≤ b

con j ≥ 1.

Definimos el j-ésimo punto conjugado de a como el mı́nimo valor posible c
tal que existe una solución de la ecuación (5.27) en [a, c] con j + 3 ceros en este
intervalo. Notaremos este punto como ηj(a).

Es decir, este punto define el intervalo [a, ηj(a)] más pequeño, en donde existe
una solución de la ecuación (5.27) que tiene exactamente j + 3 ceros (contando
las multiplicidades posibles).

A una solución de (5.27) que se anula en los puntos t = a, ηj(a), y tiene
exactamente (j+3) ceros en el intervalo [a, ηj(a)] la llamaremos solución extremal.

El siguiente Teorema fue demostrado por Leighton y Nehari en [11]. Dicho
teorema garantiza la existencia del punto conjudado y de la solución extremal.

Teorema 5.3.4. Sea j ≥ 1. Si existe una solución y(t) de (5.27) tal que y(a) = 0
y tiene por lo menos j + 3 ceros en [a,∞), entonces existe un punto ηj(a), con
ηj(a) > a, y una solución yj(t) de (5.27) con las siguientes propiedades:

1. Los ceros de la solución yj(t) en t = a y t = ηj(a) son dobles.

2. La solución yj(t) tiene exactamente j + 3 ceros en [a, ηj], donde los dos
ceros dobles son contados con su multiplicidad. Además, los ceros en (a, ηj)
son simples.
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5.3.3. Problema de autovalores de cuarto orden en [a,∞)

Vamos ahora a estudiar el problema

(y′′)′′ − λp(t)y = 0 t ∈ (a,∞)
y(a, λ) = y′(a, λ) = 0

ĺım
t→∞

y′′(t, λ) = ĺım
t→∞

y′′′(t, λ) = 0.
(5.29)

donde λ parámetro positivo, y p ∈ C([a,∞)) no negativa, monótona que satisface
la condición (5.2).

Sea {λk}k la sucesión de autovalores del problema (5.29). Sabemos que la
autofunción yk correspondiente al k-ésimo autovalor (k + 1) ceros en el intervalo
[a,∞).

Sea ε > 0. Por la Observación (5.1.1), la función 4
√
p es integrable y por lo

tanto existe Tε ≥ a tal que
∫ ∞

Tε

4
√

p(t)dt <
ε

2
.

El Teorema (5.3.3) nos garantiza la existencia de soluciones de la ecuación
del problema de cuarto orden con un número fijo de ceros, siempre y cuando
tengamos garantizada la existencia de una solución que se anule en el punto a
y tenga por lo menos 4 ceros en el intervalo [a,∞). Como vamos a hacer uso
de este teorema, necesitamos que los valores de λ sean tales que la autofunción
correspondiente tengan por lo menos cuatro ceros en [a,∞).

Para esto hacemos uso de la Observación (2.3.1) del caṕıtulo (2) que nos
garantiza la existencia de un valor λ0 tal que para todo λ > λ0 la solución
correspondiente y(t, λ) tiene por lo menos 4 ceros en el intervalo [Tε,∞), y en
consecuencia en [a,∞).

Sea λk, con k ≥ 5, el k-ésimo autovalor de nuestro problema que verifica

λk > λ0.

Por como elegimos el autovalor, la autofunción asociada yk tiene por lo menos
4 ceros en el intervalo [Tε,∞).

Entonces, tenemos una solución de la ecuación

(y′′)′′ − λkp(t)y = 0

que se anulta en a y tiene (k + 1) = (k − 2) + 3 ceros en el intervalo [a,∞).
Aplicando el Teorema (5.3.4) existe un punto ηk−2(a), y una solución extremal

ŷ con (k − 2) + 3 = k + 1 ceros del problema

(y′′)′′ − λkp(t)y = 0
y(a) = y′(a) = 0

y(ηk−2(a)) = y′(ηk−2(a)) = 0.
(5.30)

Sabemos además que los (k−3) ceros de la solución ŷ en (a, ηk−2(a)) son simples.
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El inconveniente con el problema (5.30) es que el intervalo en el cual esta
definido depende de k.

Vamos a buscar un problema me de información sobre (5.30) pero que no
dependa de k. Vamos a buscar una cota inferior para el punto ηk−2(a).

Lema 5.3.1. Sea ηk−2(a) el (k − 2)-ésimo punto conjugado de a. Entonces

ηk−2(a) > Tε.

Demostración. Supongamos que ηk−2(a) ≤ Tε.
Si h represnta la cantidad de ceros de la autofunción yk en el intervalo [Tε,∞),

tenemos (por como se eligió k) que h ≥ 4 y, en el intervalo [a, Tε) tendremos a lo
sumo (k + 1)− h ceros.

Sea s∗ el primer cero de ŷ en (a, ηk−2(a)] y t∗ el último cero de yk. Entonces,

a < s∗ < ηk−2(a) ≤ Tε < t∗.

Si analizamos lo que sucede en el intervalo [s∗, ηk−2(a)]

la autofunción yk tiene a lo sumo (k + 1− h)− 2 = (k − h− 1) ceros

La solución extremal ŷ tiene exactamente (k + 1)− 2 = k − 1 ceros.

En ambos casos, al contar la cantidad de ceros, estamos excluyendo el cero doble
que tienen en a.

El número de ceros en el que difieren ambas soluciones es h. Como las funciones
yk, ŷ son soluciones de la ecuación (y′′)′′ − λkp(t)y = 0, por el Teorema (5.3.1) la
cantidad de ceros de ambas soluciones en el intervalo [s∗, ηk−2(a)] puede diferir
en a lo sumo tres. Pero llegamos a un absurdo ya que h ≥ 4.

Vamos a hacer uso de la existencia del punto conjugado para encontrar una
cota inferior para la función N(λ) del problema (5.29).

Teorema 5.3.5. Sea N(λ) la función que cuenta el número de autovalores me-
nores o iguales a λ del problema (5.29). Entonces

N(λ) ≥ λ1/4

π

∫ ∞

a

4
√
p(t)dt+ o(λ1/4)

cuando λ → ∞.

Demostración. Consideramos el siguiente problema de autovalores

(v′′)′′ − γp(t)v = 0 t ∈ (a, ηk−2(a))
v(a) = v′(a) = 0

v(ηk−2(a)) = v′(ηk−2(a)) = 0.
(5.31)

Sea {γj}j la sucesión de autovalores de este problema. La autofunción corres-
pondiente al autovalor γk−2 tiene (k + 1) ceros en el intervalo [a, ηk−2(a)].
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Como la solución ŷ de la ecuación (y′′)′′ − λkp(t)y = 0 satisface las condicio-
nes de borde del problema (5.31) y también tiene (k + 1) ceros en el intervalo
[a, ηk−2(a)], tenemos que

λk ≤ γk−2. (5.32)

Sea {µj}j la sucesión de autovalores del problema

(w′′)′′ − µp(t)w = 0 t ∈ (a, Tε)
w(a) = w′(a) = 0

w(Tε) = w′(Tε) = 0.

Como H2
0 ([a, Tε]) ⊂ H2

0 ([a, ηk−2(a)] tenemos que

γk−2 ≤ µk−2. (5.33)

Por (5.32) y (5.33) tenemos
λk ≤ µk−2. (5.34)

Dado λ > 0, si N(λ, (a, Tε)) = #{j : µj ≤ λ}, tenemos que

#{j : µj ≤ λ} = 2 +# {j : µj−2 ≤ λ} ≤ 2 + # {k : λk ≤ λ} ,
y por lo tanto

N(λ) ≥ N(λ, (a, Tε))− 2.

Por el Teorema (5.3.3) sabemos que el comportamiento asintótico deN(λ, (a, Tε))
es

N(λ, (a, Tε)) =
λ1/4

π

∫ b

a

4
√

p(t)dt+ o(λ1/4).

Luego, para ε > 0 existe λ∗
ε > 0 tal que para todo λ ≥ λ∗

ε∣∣∣∣
N(λ, (a, Tε))

λ1/4
− 1

π

∫ Tε

a

4
√

p(t)dt

∣∣∣∣ ≤
ε

2
.

Entonces

N(λ)

λ1/4
≥ N(λ, (a, Tε))

λ1/4
− 2

λ1/4
≥ 1

π

∫ Tε

a

4
√
p(t)dt− ε

2
− 2

λ1/4

=
1

π

∫ ∞

a

4
√

p(t)dt− 1

π

∫ ∞

Tε

4
√

p(t)dt− ε

2
− 2

λ1/4

≥ 1

π

∫ ∞

a

4
√

p(t)dt− ε

2
− ε

2
− 2

λ1/4

=
1

π

∫ ∞

a

4
√

p(t)dt− ε− 2

λ1/4

Como ε > 0 es arbitrariamente chico, y
2

λ1/4
→ 0 cuando λ → ∞

N(λ) ≥ λ1/4

π

∫ ∞

a

√
p(t)dt+ o(λ1/4),

y el Teorema queda demostrado.
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Para la demostración del próximo teorema necesitamos el siguiente resultado
que nos da una cota inferior para k-ésimo autovalor del problema (5.29). Aplica-
remos la cota de Nehari calculada para el menor autovalor de problemas de orden
2m en un intervalo finito (a, b).

Proposición 5.3.1. Sea p ∈ C([a,∞)), no negativa y mónotona. Sea λk, (k ≥ 3),
el k-ésimo autovalor del problema (5.29). Entonces

λ
1/4
k

∫ ∞

a

4
√

p(t)dt ≥
[
k

3

]
Λ

1/4
[0,1], (5.35)

donde [.] indica la parte entera, y Λ[0,1] es el primer autovalor del problema

(y′′)′′ − λp(t)y = 0, t ∈ (0, 1)
y(0) = y′(0) = 0

y′′(1) = y′′′(1) = 0.

Demostración. Sea λk el k-ésimo autovalor del problema (5.29). Como k ≥ 3
tenemos que

k = 3m+ r con m ≥ 1 y 0 ≤ r ≤ 2.

Sean a = t1 < t2 < · · · < t3m los primeros 3m ceros de la autofunción yk
correspondiente a λk. Sabemos que el cero de esta autofunción en t1 es doble
mientras que el resto son ceros simples.

Definimos para 1 ≤ i ≤ m los intervalos

[ai, bi] =

{
[t1, t3] si i = 1
[t3(i−1), t3i] si 2 ≤ i ≤ m

Una primer cota que podemos encontrar para el lado izquierdo de la desigual-
dad (5.35) es la siguiente:

λ
1/4
k

∫ ∞

a

4
√

p(t)dt ≥ λ
1/4
k

∫ t3m

a

4
√
p(t)dt

=
m∑

i=1

λ
1/4
k

∫ bi

ai

4
√

p(t)dt

(5.36)

Cada uno de los términos de la sumatoria podemos asociarlo con un problema
conveniente en un intervalo finito. Buscaremos entonces una cota para cada uno
de los terminos de la sumatoria.

En el intervalo [ai, bi] la autofunción yk es solución de la ecuación

(y′′)′′ − λkp(t)y = 0

y tiene exactamente 4 ceros. Entonces, por el Teorema (5.3.4) para cada ai existe
el punto conjugado η1(ai) y una solución del problema

(y′′)′′ − λkp(t)y = 0 t ∈ (ai, η1(ai))
y(ai) = y′(ai) = 0

y(η1(ai)) = y′(η1(ai)) = 0.
(5.37)
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Ya que los ceros de la solución del problema (5.37) en ai y η1(ai) son dobles,
la solución es distinta de cero en el interior del intervalo. Luego, dicha solución
corresponderá a la autofunción asociada al menor autovalor γp del problema

(y′′)′′ − γp(t)y = 0 t ∈ (ai, η1(ai))
y(ai) = y′(ai) = 0

y(η1(ai)) = y′(η1(ai)) = 0.

Como los autovalores de este problema son simples, tenemos que λk = γp y
utilizando la cota de Nehari calculada en el Caṕıtulo (3)

λ
1/4
k

∫ η1(ai)

ai

4
√

p(t)dt ≥ Λ
1/4
[0,1] (5.38)

Por otro lado, el punto conjugado η1(ai) verifica que

η1(ai) ≤ bi.

Entonces,

λ
1/4
k

∫ bi

ai

4
√
p(t)dt ≥ λ

1/4
k

∫ η1(ai)

ai

4
√
p(t)dt ≥ Λ

1/4
[0,1].

Ahora, a partir de (5.36) tenemos que

λ
1/4
k

∫ ∞

a

4
√

p(t)dt ≥
m∑

i=1

Λ
1/4
[0,1] = m · Λ1/4

[0,1] =

[
k

3

]
· Λ1/4

[0,1],

y el Teorema queda demostrado.

Teorema 5.3.6. Sea N(λ) la función que cuenta el número de autovalores me-
nores o iguales a λ del problema (5.29). Entonces, cuando λ → ∞

N(λ) ≤ C λ1/4

∫ ∞

a

4
√

p(t)dt+ o(λ1/4)

con C =
3

Λ
1/4
[0,1]

.

Demostración. Sea {λk}k la sucesión de autovlaores del problema (5.29). La Pro-
posición (5.3.1) nos da la cota inferior para el k-ésimo autovalor

λk >

(
[k/3]∫∞

a
4
√

p(t)dt

)4

· Λ[0,1] >

(
(k/3− 1)∫∞
a

4
√

p(t)dt

)4

· Λ[0,1]
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Sea λ > 0. Entonces,

N(λ) = # {k : λk ≤ λ}

≤



k :

(
(k/3− 1)∫∞
a

4
√

p(t)dt

)4

· Λ[0,1] ≤ λ





=

{
k : k ≤ 3

Λ
1/4
[0,1]

λ1/4

∫ ∞

a

4
√

p(t)dt+ 3

}

≤ 3

Λ
1/4
[0,1]

λ1/4

∫ ∞

a

4
√

p(t)dt+ 3.

y el Teorema queda demostrado.



Caṕıtulo 6

Comentarios Finales

Los resultados del caṕıtulo anterior se pueden extender parcialmente a los
siguientes casos:

i) Ecuaciones lineales de orden 2m.

ii) Ecuaciones no lineales de tipo p−laplaciano de segundo orden.

iii) Problemas donde p1/2m /∈ L1(a,∞).

Mencionemos brevemente cada uno.

i) Ecuaciones lineales de orden 2m

Consideremos el problema

y(2m) + λp(t)y = 0, t ∈ (a,∞) (6.1)

donde m ≥ 3 es número natural, λ es un parámetro positivo, y p ∈ C([a,∞))
positiva.

En este caso la demostración es análoga, sólo que son necesarias ciertas mo-
dificaciones técnicas (por ejemplo, evitar los teoremas de Sturm). La desigualdad
de Nehari da una cota inferior de los autovalores.

Para una cota superior, se deben definir de manera análoga los puntos conju-
gados, y utilizar además el siguiente lema:

Lema Sea ηj(a) el j-ésimo punto conjugado, y la solución extremal yj con
j + 2m− 1 ceros. Entonces, para todo ε > 0, existe una solución z de

z(2m) + λp(t)z = 0, t ∈ (a, ηj(a) + ε)

que tiene j + 2m− 1 ceros simples.

Esto permite hallar cotas superiores de los autovalores del problema (6.1),
comparando con los de un intervalo fijo [a, Tε], y el resto de la demostración es
similar.

71
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ii) Ecuaciones de tipo p−laplaciano

Consideramos el siguiente problema en (a,∞), con a > 0

(|y′|p−2y′)′ + λg(t)|y|p−2y = 0, t ∈ (a,∞), (6.2)

con las condiciones de borde

y(a) = 0, ĺım
t→∞

y(t)√
t
= 0, (6.3)

donde 2 ≤ p < ∞ y el peso g es una función continua y positiva tal que

(H1)

∫ ∞

a

g(x)dx < ∞, ĺım
t→∞

tp−1

∫ ∞

t

g(x)dx = 0.

Kusano y Naito probaron en [7] la existencia de una sucesión {λk}k de au-
tovalores para el problema (6.2), con condiciones de borde (6.3), y donde g
es una función continua y positiva satisfaciendo (H1). Además, sabemos que
la autofunción yk correspondiente al autovalor λk tiene exactamente n ceros
a = t1 < t2 < · · · < tk.

Asumiendo que g1/p ∈ L1(a,∞) tenemos:

Teorema 6.1. Sea {λk}k la sucesión de autovalores del problema (6.2)-(6.3),
con g1/p ∈ L1(a,∞) satisfaciendo (H1). Entonces,

λ
1/p
k ≥ πp(k − 1)

2
∫∞
a

g1/p(x)dx
.

Demostración. Aunque para estos autovalores no tenemos la expresión en forma
varacional, para cualquier λk y autofunción yk, podemos utilizar la desigualdad
de Nehari (3.30).

Sean ti−1, ti, dos ceros consecutivos de la autofunción yk. La restricción de yk
en [ti−1, ti] es la primer autofunción del problema

(|y′|p−2y′)′ + µg(t)|y|p−2y = 0, t ∈ (ti−1, ti)
y(ti−1) = 0
y(ti) = 0

y µ1 = λk, ya que yk es una solución que no cambia de signo.
Ahora, para 2 ≤ i ≤ k tenemos por la desigualdad (3.30) del Caṕıtulo (3)

λ
1/p
k

∫ ti

ti−1

g1/p(x)dx ≥ πp

2
,

lo cual da

λ
1/p
k

∫ ∞

a

g1/p(x)dx >

k∑

i=2

λ
1/p
k

∫ ti

ti−1

g1/p(x)dx ≥ πp(k − 1)

2
,

y el teorema está probado.
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Como los teoremas de comparación y oscilación de Sturm son válidos para el
p-laplaciano, se puede seguir como en la demostración del problema de segundo
orden.

iii) Problemas singulares

Recordemos que el peso en el problema (2.1) satisface la condición

∫ ∞

a

t2m−1p(t)dt < +∞.

Es posible, entonces, que ∫ ∞

a

2m
√
pdt = ∞.

Por ejemplo, para m = 1, la familia de funciones

p(t) = t−2 log−α(t), 0 < α < 2

cumple la primera condición pero su ráız cuadrada no es integrable.
Este caso permanece abierto aún para el problema lineal de segundo orden,

y sólo se conocen algunas estimaciones de los autovalores para estas funciones
obtenidas por Hille en [9].

Con diferentes constantes, se obtienen estimaciones similares a las de Hille
utilizando las ideas del caṕıtulo anterior.

Una diferencia importante es que en este caso la función N(λ) crece más
rápido que antes, y tenemos

Teorema 6.2. Sea N(λ) la función que cuenta la cantidad de autovalores
menores o iguales a λ correspondiente al problema

y(2m) + λg(t)y = 0 t ∈ (a,∞) (6.4)

y(a, λ) = 0

ĺım
t→∞

y(i)(t, λ) = 0 1 ≤ i ≤ 2m− 1,

con ∫ ∞

a

t2m−1g(t)dt < ∞ ,

∫ ∞

a

2m
√

g(t)dt = ∞.

Entonces,

ĺım
λ→∞

N(λ)

λ1/2
= ∞.

Vamos a demostrarlo solo para segundo orden.

Demostración. Consideramos el problema

y′′ + µg(t)y = 0 t ∈ (a, b)
y(a) = 0
y(b) = 0

(6.5)
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Sabemos que

ND(λ, (a, b)) =
λ1/2

π

∫ b

a

√
g(t)dt+ o(λ1/2).

Aplicando el mismo razonamiento en la demostración de la Proposición (5.2.5)
en el Caṕıtulo (5) tenemos que para cada valor de b

N(λ) ≥ ND(λ, (a, b)).

Entonces,

ĺım
λ→∞

N(λ)

πλ1/2
≥ ĺım

λ→∞

ND(λ, (a, b))

πλ1/2
=

∫ b

a

g1/2(t)dt,

la cual tiende a infinito cuando b → ∞, y la demostración está completa.

Lema 6.1. Sea λ > 0 tal que

e[λ
∫

∞

a tg(t)dt]λ

∫ ∞

a

tg(t)dt < 1.

Entonces, la solución de la ecuación y′′ + λg(t)y = 0 con t ∈ (a,∞) no se anula
en (a,∞).

Observación 6.1. Si consideramos la función f(t) = t.et, con t ∈ R, tenemos
que:

es una función estrictamente creciente.

f(1/2) < 1.

ya que
∫∞
a

tg(t)dt < ∞, para cada λ > 0 existe aλ > a tal que

λ

∫ ∞

aλ

tg(t)dt = 1/2.

Teorema 6.3. Sea N(λ) la función que cuenta la cantidad de autovalores
menores o iguales a λ correspondiente al problema

y′′ + λg(t)y = 0 t ∈ (a,∞) (6.6)

y(a, λ) = 0

ĺım
t→∞

y′(t, λ) = 0.

Let aλ tal que

λ

∫ ∞

aλ

tg(t)dt = 1/2. (6.7)

Entonces,

N(λ) ≤ 4

π
λ1/2

∫ aλ

a

√
g(t)dt+ 1.
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Demostración. Fijado λ > 0, existe aλ que cumple (6.7). Sea λn el mayor auto-
valor del problema (5.13) menor o igual a λ.

Sea yn la autofunción correspondiente a λn de la cual sabemos tiene exacta-
mente n ceros en el intervalo [a,∞).

Como λn ≤ λ, por la Observación A tenemos que

e

[

λn
∫

∞

aλ
tg(t)dt

]

λn

∫ ∞

aλ

tg(t)dt < 1,

y por lo tanto yn no tiene ceros en [aλ,∞).
Como contar autovalores es equivalente a contar ceros, por la definición de aλ

tenemos N(λ, (aλ,+∞)) ≤ 1, con lo cual, para λ → ∞, tenemos que:

N(λ) ∼ N(λ, (a, aλ)) +N(λ, (aλ,∞)).

Consideramos el problema

y′′ + µg(t)y = 0
y(a) = 0
y(aλ) = 0.

Utilizando la desigualdad de Nehari tenemos que

µk

(∫ aλ

a

√
g(t)dt

)2

≥ π2 k2

4
.

Entonces,

N(λ, (a, aλ)) = #{k : µk ≤ λ}

≤ #{k : k2π2

4(
∫ aλ
a

√
g(t)dt)2

≤ λ}

≤ #{k : k ≤ 2λ1/2

π

∫ aλ
a

√
g(t)dt}

≤ 2λ1/2

π

∫ aλ
a

√
g(t)dt

y el teorema está demostrado

Observación 6.2. Sea g(t) = t−2 log−2(t). Un simple cálculo muestra que
para aλ = e2λ,

λ

∫ ∞

aλ

t−1 log−2 dt =
λ

log(aλ)
= 1/2.

Entonces,

N(λ) ≤ 2

π
λ1/2

∫ e2λ

a

t−1 log−1 dt+ 1 ≤ 2

π
λ1/2 log(λ) + 1.

Como N(λ)/λ1/2 → ∞, el término principal de la función que cuenta el núme-
ro de autovalores no es una potencia de λ.
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[4] U. Eĺıas, Singular Eigenvalue Problems for the Equation y(n) +λp(x)y = 0,
Monatsh. Math. 142, 205-225 (2004).

[5] U. Elias, Eigenvalue Problems for the Equation Ly + λp(x)y = 0, Journal
of Differential Equations 29, 28-58 (1978)

[6] L.C. Evans, Partial Differential Equations. American Math Society, 1998.

[7] T. Kusano, M. Naito,On the Number of Zeros of Nonoscillatory Solutions to
Half-Linear Ordinary Differential Equations Involving a Parameter, Tran-
sactions of the American Mathematical Society 354, 4751-4767 (2002).
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