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Capitulo 1

Introduccion

En esta tesis estudiaremos un problema de autovalores de la forma

(=L)"Y 4 Ap(t)y = 0t € (a,00)
yDa ) =0 0<i<m-1 (1.1)
lim yP(t,N) = 0 m<i<2m-—1.
—00

con A un parametro positivo y p una funcién continua no negativa que satisface
la condicion de integrabilidad

/ 2 Ip(t)dt < +o0.

En el capitulo 2, siguiendo el trabajo de Naito [13], demostraremos mediante el
método de punto fijo que para todo A > 0 existe una tnica soluciéon no oscilatoria
y que tiende a una constante cuando ¢ — oo. Posteriormente, para estas soluciones
analizamos las propiedades de sus ceros.

Para finalizar, demostramos la existencia de una sucesién de autovalores { A }
simples, y una sucesién de autofunciones cada una con exactamente k ceros en
la, 00).

En el capitulo 3 estudiaremos el problema en un intervalo finito,

(=1)myPm — Xp(t)y = 0 t€(a,b)
y(a) =y (a)=...=y™ a) = 0
yb) =y'(b) =...=y"(b) = 0.

El objetivo es encontrar cotas inferiores para el primer autovalor para luego en-
contrar cotas para el primer autovalor de los problemas estudiados en el Capitulo
2.

A partir de la caracterizacion variacional de los autovalores del problema en
el intervalo (a,b), las funciones test que utilicemos en la misma nos dardn cotas
superiores para el primer autovalor. El objetivo de este capitulo es lograr una
cota inferior para el primer autovalor del problema.

Para m = 1 y pesos p mondtonos Z. Nehari obtuvo en [14] la cota integral

1/2 ’ m
AL /ap(t)dt2§,

1



2 CAPITULO 1. INTRODUCCION

con A, el menor autovalor. Esta cota, para pesos mondtonos, mejora las que se
obtienen con otras desigualdades.

Para el caso m > 1 extenderemos la cota encontrada por Nehari, para lo cual
nos conviene plantear la solucion de nuestro problema en forma integral. Para
esto introducimos en el capitulo la notacién necesaria.

Luego, demostraremos un Lema principal, clave para lograr la desigualdad de
Nehari. El mismo garantiza que

b b
fnf{A;ﬂ/ g(x)dx} :fnf{A;ﬁ/ s(x)dx},
g a s a

donde g € L?([a,b]) es una funcién monétona y s es una funcién simple con una
sola discontinuidad.

En la dltima seccién del capitulo se extiende esta cota para el caso del p-
laplaciano.

En el capitulo 4 volvemos al problema en la semirrecta y daremos una esti-
macion asintotica para el problema de autovalores

y' +Ap(t)y = 0 t € (a,00)
0
= 0.

Seguiremos parcialmente el trabajo de E. Hille [9]. Introduciremos la transforma-
da de Priifer, analizaremos las coordenadas radiales y angulares para el problema,
y finalmente demostraremos que

A = (fbplﬂ/—f(tw> [1+0(1)], n— oo

El objetivo del capitulo 5 es estudiar el comportamiento asintético de la su-
cesién de autovalores del problema (1.1) para los problemas de mayor orden.

Para esto definimos la funciéon N(A) que cuenta el nimero de autovalores
menores o iguales que A:

N\ = #{k € N: X\ < A}

En primer lugar estudiaremos el comportamiento de la funcién N(\) para
problemas en intervalos acotados, donde podemos aplicar la teoria de Sturm en
problemas de segundo orden, y para el caso de problemas de cuarto orden la
teorfa desarrollada por Leigthon y Nehari en [11].

Cuando el problema de autovalores se plantea sobre intervalos de la forma
(a,00) buscaremos cotas superiores e inferiores para estimar N(A). Las cotas
inferiores las lograremos utilizando informaciéon sobre problemas en intervalos
cerrados, y las cotas superiores haciendo uso de la cota de Nehari para los auto-
valores.

Por tltimo, en el capitulo 6 describimos algunas extensiones de estos resulta-
dos a distintos problemas.



Capitulo 2

Un problema de autovalores

2.1. Introducciéon
En este capitulo comenzaremos trabajando con ecuaciones de la forma
ye™ + Ap(t)y =0,  t € (a,00) (2.1)

donde m > 1 es ntimero natural, A es un pardmetro positivo, y p € C([a,>0))
positiva, que satisface la condicién

/ ™ p(t)dt < +-o0. (2.2)

Las soluciones de estas ecuaciones se pueden clasificar como oscilatorias o no
oscilatorias, segin que tengan un numero finito o infinito de ceros. Para m = 1,
la existencia de una solucién de una clase u otra garantiza que todas las demas
son de la misma clase: o son todas oscilatorias, o son todas no oscilatorias. Para
m general, la situacion es mas complicada y dependerd de la funcion p.

El objetivo de este capitulo es demostrar que si la funcién p satisface la con-
dicién (2.2), entonces para cada A > 0 existe una solucién y(t, \) de la ecuacién
(2.1) no oscilatoria y acotada que cumple con la condicién

tlim y(t,\) = 1. (2.3)

Posteriormente, analizaremos algunas propiedades de los ceros de las solucio-
nes y(t,\). Para el caso m = 1 disponemos de la teoria de Sturm Liouville y de
la transformada de Priifer. Para el caso m > 2 estos métodos no funcionan, y los
resultados son menos precisos.

Finalmente, estudiaremos el siguiente problema de autovalores singular

Yy Lty = 0 te (a,00) (2.4)
yla,\) =
lim yD(t,N) = 0 1<i<2m—1
—00
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y demostraremos que existe una sucesién de autovalores {\; }1, donde \;, se define
como el infimo de los A tales que hay una solucién con k ceros en [a, 00).

Estos resultados se encuentran en el trabajo de M. Naito [13], y luego fueron
extendidos por U. Elias en [4].

2.2. Existencia de soluciones

El primer paso serda demostrar la existencia de soluciones del problema (2.1)
en (a,00) cuando la funcién p(t) cumple con la condicién (2.2).

Teorema 2.2.1. Supongamos que la funcion p(t) satisface la condicion (2.2).
Entonces para cada X\ > 0 la ecuacion (2.1) tiene una unica solucion y(t, \) tal
que

lim y(t, \) = 1.

t—o00

Demostracion. La demostracién se obtiene utilizando un argumento de punto
fijo. La dificultad principal es que la condicién de borde esta dada en infinito, y
conviene estudiar la ecuacién integral equivalente a la ecuacién (2.1):

y(tA) =1 — A /t h %p(s)y(s, A)ds (2.5)

Veamos existencia local en infinito. Fijemos un valor A > 0 arbitrario. Como
la funcién p(t) satisface (2.2) podemos elegir 7" > a de manera tal que

A /T h %p(s)ds < % (2.6)

Sea Cyr,ay al espacio de Banach formado por todas las funciones y continuas
y acotadas en [T, 00) x (0, A] con la norma

Iy [l= sup {[y (&, M) = (£, A) € [T, 00) x (0, A]}-

Definimos el subconjunto Y C Cyr ay

V= {tn € Can p a1 (03 € Too) x 0.

y el operador M

s — t)?mfl

(My)(£,A) =1 A / ) <(2m—_1)!p<s>y<s, A)ds, (2.7)

para (t,\) € [T,00) x (0, A].
Veamos que este operador satisface M (Y) C Y y es contractivo.
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) M(Y)CY:

Tenemos que My es una funciéon continua, veamos que
1
5 < Myt <1

si (t,A) € [T, 00) x (0,A].

Como y € Y es positiva, entonces
[e'e] st om—1
A/ ﬁp(sw(s, A)ds > 0.
t .
Ahora,
00 (S o t)2m—1
(My)(t,A) /t @m = 1) p(s)y(s, \)ds <

Para la otra cota, dado que t < T, A < Ay s —t < s, el término que
involucra la integral se puede acotar como

T

e8] S2m—1
< A — d

1
< )
- 2
donde en las dos tltimas desigualdades utilizamos que y(s, ) < 1 para todo
(s,\) € [T,00) x (0,A] y la cota (2.6).

Por lo tanto,
S — t)2m—1

) =1 [ sy s >

DO | —

ii) M es una contraccion:

Basta probar que para todo x,y € Y se tiene
1
I My —Mz< 5 lly—z].
Tenemos

(My) (. 3) — (M)(t, )] = ' | bt ) — (s Vs
<[ @mL_D, () (.3) — (s, )| s

< 2 I
= -
= 5y )

utilizando igual que antes la cota (2.6) y que | y(s,\) —z(s,A) |[< |ly —z]| .
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Luego, por el teorema de punto fijo de Banach, existe una tnica funciéon iy € Y
tal que (M7y)(t,\) = y(t, A), con lo cual

gt =1 [0t s

y esta funcién y(¢, \) es solucién de la ecuacién (2.1) para valores de A € (0,A) y
ten [T, 00).
Ademads, como (¢, A) estd acotada,

00 (S - t)?mfl

—p(s)ii(s, A)ds = 0,

I
%), (@m—1)
lo cual implica
lim y(t,\) = 1.
t—o0

Para los valores de t € [a,T] podemos construirnos una solucién y(t, ) que
extienda a la otra en el [a,00) de manera que y(t,\) y sus derivadas se peguen
en t =T con la solucién y(¢, A).

Luego, hemos encontrado una solucién para (2.1) definida para todo ¢ € [a, 00)
y que cumple con la condicién (2.3). Como A > 0 era un nimero arbitrario, el
teorema queda demostrado. O

2.3. Ceros de las soluciones

En esta seccién cuando hablemos de la funcién y(t, ) nos estaremos refiriendo
a la solucién de la ecuacién (2.1).

Nuestro objetivo es analizar las propiedades de los ceros de y(t, A). Veremos
que la solucién es no oscilatoria, tiene ceros simples, y un resultado de monotonia
de los ceros dentro de cualquier intervalo fijo.

Las proximas dos proposiciones estan contenidas en la demostracion del Teo-
rema 2.2.1, pero conviene aislarlas pues las utilizaremos mas adelante.

Proposicién 2.3.1. Para todo A > 0 fijo, existe T = T(A) tal que y(t,\) no
tiene ceros en el intervalo [T, 00) para todo A € (0, A).

Demostracion. En la demostracién del Teorema (2.2.1), fijado A, vimos que si

00 SQm—l 1
A\/T ﬁP(S)dS S 5,

la inica solucién de la ecuacién (2.1) satisface

<y(t,\) <1

N | —

para (t,\) € [T, 00) x (0, A]. Por lo tanto, no tiene ceros en el intervalo [T, 00). [
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Proposicién 2.3.2. Existe A, > 0 tal que, para todo X € (0,\,), la solucion
y(t,\) no se anula en el intervalo [a,c0).

Demostracion. Como la funcién p satisface la condicion (2.2), podemos elegir A,
tal que

00 32m71 1
2 < =
Ail Gm P = 3

Luego, existe una solucién de la ecuacién (2.1) que pertenece al conjunto
1
Y = {y(t,/\) € Clany 3 <y(t,\) <1 VY(t,\) € la,00) X (O,)\*]}

y no se anula en [a, 00). [

Proposicién 2.3.3. Para cada X\ > 0 la solucidn de la ecuacion (2.1) es de la
forma

y(t,\)=1-— )\/too %p(s)y(s, A)ds t>a.

La i—ésima derivada con 1 <1i < (2m — 1) es de la forma

/e = (0 [ s 0

(2m—i—1)
y satisface .
lim 3@ (¢, \) = 0

t—o00

Demostracion. Se verifica directamente derivando. O

El siguiente lema es una variante del Teorema del Valor Medio que lo re-
cordamos porque se utilizara para demostrar que los ceros de las soluciones son
simples.

Lema 2.3.1. Si f € C'([tg,0)) satisface f(ty) = 0 y th f(t) = 0 entonces
—00

(&) =0 para algin & € (ty,o0)

Proposicién 2.3.4. Para cada A > 0, los ceros de y(t,\) son simples.

Demostracion. Vamos a demostrarlo por el absurdo. Supongamos que existe un
A > 0 tal que la solucién correspondiente y(t, ) tiene al menos un cero miltiple
en [a, 00).
Sea t; € [a,00) el ultimo cero de y(t, ). Para los valores de ¢t > t; la solucién
y(t,\) es positiva, porque
tli)rglo y(t,\) = 1.

Por la Proposicién (2.3.3) tenemos que

VN = [ sl s
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con lo cual en el intervalo [tf, 00) esta derivada no se anula por ser positivo el
integrando. Entonces, t; es un cero simple de y(t, A).
Supongamos que t, es el ultimo cero multiple de y(¢, \). Entonces,

y(to, )\) = ’y/(to, )\) =0.

Ademds, supongamos también que y(t, \) tiene exactamente N ceros simples
{t1,t2,...,tn} en el intervalo (ty, 00), para cierto N > 1, donde ty = t;.

Consideremos los N intervalos [tg,t1], [t1,t2], ..., [tn—1,tn]. Como la funcién
y(t,\) se anula en cada uno de los extremos de los intervalos, por el Teorema del
Valor Medio existe 6; € (t;_1,t;) parai = 1,..., N donde ¢/(6;, \) = 0. Como ¢,
es un cero miltiple de y(t, \), la funcién y/(¢, \) tiene al menos N + 1 ceros en el
intervalo [to, tf].

Sea t* el dltimo cero de y/(¢, ) en el intervalo (o, ;). Como

’ / .
Jim y'(¢,A) =0,

existe un punto t** € [t', 00) donde y"(t**, ) = 0. Ademas, t** < t;, ya que por
la Proposicién (2.3.3) tenemos que

S — t)Qm—3

O e e

y no se anula en [ts, 00).

Entonces t** € (t*,t;) y por lo tanto y”(¢, \) tiene por lo menos N + 1 ceros
en (to,ts) (IV corresponden a los que estén entre los ceros de la primer derivada).

Repitiendo este argumento podemos concluir que cada una de las derivadas
y@(t,\) con i =1,2,...,2m — 1 tiene por lo menos N + 1 ceros en el intervalo
(tOu ty )

Para la tltima derivada y®™ (¢, \) podemos garantizar la existencia de al
menos N ceros en (t,ts). Como la condicién dada por la Proposicién (2.3.3) vale
hasta ¢+ = 2m — 1, no podemos asegurar la existencia de un cero de la derivada
2m posterior al ultimo cero de la derivada 2m — 1.

Utilizando la ecuacién (2.1) resulta que

y(Zm) (tv )‘) = —/\p(t)y(t, )‘)

y por lo tanto y(t, ) tiene N ceros en el abierto (¢, ts). Pero ademas y se anula en
tr, v esto contradice nuestra suposicién de que y(¢, A) tenia sélo N ceros simples
en el intervalo (g, 00). O

Proposicién 2.3.5 (Elias, [5]). Sea [a, 8] C [a, o0] intervalo fijo. Entonces eziste
un \* > 0 tal que para todo A € (\*,00) la solucion y(t, \) tiene al menos un cero
en el intervalo [, f3].

Observacion 2.3.1. Si tomamos m intervalos disjuntos en [a, 0], existird un

N az tal que para todo A > A, la solucion correspondiente y(t, X) tendrd por lo

menos m ceros.
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2.4. Existencia de autovalores

Consideraremos ahora el problema de autovalores (2.4). En el siguiente teo-
rema demostraremos la existencia de una sucesion creciente y no acotada de au-
tovalores, y analizaremos los ceros de las autofunciones correspondientes a cada
uno.

Teorema 2.4.1. Si la funcion p(t) satisface la condicion (2.2), entonces eziste
una sucesion de nimeros reales positivos {\x}r tales que el problema (2.4) tiene
una solucion yx(t, \y) no trivial, y

(i) Los autovalores satisfacen 0 < Ay < --- < A\ < -+ +00.

(i) La autofuncion yy correspondiente a N\, con k > 1 tiene exactamente k — 1
ceros en el intervalo (a,00), y ademds yx(a, \x) = 0.

(11i) Si N € (Mg, Aex1) con k > 1, la solucion y(t, \) tiene a lo sumo k ceros en
el intervalo (a, c0).

Demostracion. Fijemos k > 1, y definamos el conjunto
A ={\ € (0,00) : y(t, \) tiene al menos k ceros en el intervalo [a,c0)},

donde y(t, A) es la tinica solucién de la ecuacion (2.1) cuya existencia demostramos
en el Teorema 2.2.1.
Este conjunto tiene las siguientes propiedades:

= FEl conjunto Aj es no vacio: para probar esto tomamos k intervalos dis-
juntos de la forma [ay, 5] C [a,00) con 1 < i < k. Por la Proposicién
(2.3.5) existe para cada intervalo un Af tal que para todo A € (A}, 00)
la solucién y(¢, A) tiene por lo menos un cero en dicho intervalo. Para
A > A = méax{A},..., A\;} tenemos por lo menos k ceros de la solucién
y(t,\) en [a,00).

» El conjunto Ay, estd acotado inferiormente: por la Proposicién (2.3.2) existe
un A\, > 0 tal que para t € [a,00) y A € (0,\,) la solucién y(¢, ) no tiene
ceros. Entonces para todo A\ € A, tenemos que

0< A <A

» Fuxiste el infimo de Ay: es directo, pues el conjunto A, estd acotado inferior-
mente y es no vacio.

Llamemos A, al infimo de Aj. Tenemos, para todo k,
0 <A <A < A

la ultima desigualdad como consecuencia de Ay 1 C Ay.
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Analicemos ahora los ceros de la solucién y = y(t, \x). Podemos tomar una
sucesion decreciente {A] };>1, con A, € Ay, tal que

lm A = Xy
Jj—0o0

Para cada )\i la solucién y(t,)\i) correspondiente tiene al menos k ceros en el
intervalo [a, 00), y consideremos los primeros k ceros de y(t, \7.):

a<tl(1) <t(2) <...<t (k)< oo

Por la Proposicién (2.3.1), para AL existe un valor 7" tal que la solucién corres-
pondiente no tiene ceros en el intervalo [T, 00). Como )\i < A}, tenemos que los
ceros t4(i) con i = 1,..., k estan contenidos dentro del intervalo cerrado [a, T), y
el extremo superior no depende de k.

Por estar cada ti(z) en un compacto, tomando subsucesiones k veces, tenemos
una subsucesién {\" },>1 tal que

lim (i) = tx(i) para cada i =1,2,...,k.

Jp—00

Los elementos de esta subsucesién verifican que y(tih(i),)\i”) = 0 y se pueden
elegir de manera que tengan el mismo orden que los ceros de y(t, A7),

a<th(1)<th2)<..<thk)<T.
Tomando limite para j, — oo,
a<tr(1) <tp(2) <...<tx(k) <T.
La continuidad respecto de ¢ y A de la solucién y(¢, \) implica

y<tk<i)7 )‘k) = lim y(t? (2)7 )‘?ch) =0,

Jh—00

es decir, t;(i) es un cero de y(t, \x) parai=1,2,... k.

Demostraremos las siguientes afirmaciones:
= Los ceros t;(i) son distintos.
» El primer cero es tx(1) = a.

» La solucién y(t, \) tiene exactamente k ceros en [a, 00).

Veamos que todos los ceros t;(7) son distintos. Supongamos que existe un
valorm = 1,2,...,k — 1 tal que tx(m) = tx(m + 1). Entonces

y(tr (m), \*) = y(t" (m + 1), \") = 0.

Por el Teorema del Valor Medio existe & € (3" (m), t}* (m~+1)) tal que y/ (&7, Xi*) =
0.
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Como t*(m) < & < tI"(m + 1)), cuando j;, — oo resulta

lim gjh = tk(m),
Jh—00

y por dependencia continua de las soluciones,
y (t(m), \p) = lim ¢/ (&0 \F) = 0.
Jh—00

Luego, tx(m) es un cero doble de y(t, \i), pero por la Proposicién (2.3.4) los
ceros de la solucién y(t, \x) son simples, con lo cual

Veamos ahora que el primer cero es tx(1) = a. Supongamos que no, y es
a < tr(1). Entonces la solucién y(t, Ag) tiene por lo menos k ceros tx(1), tx(2),
..., tg(k) en el intervalo abierto (a,oc). Por dependencia continua de la solucién
y(t,\) respecto de A, para todo A cercano a A, la solucién y(¢,\) tiene por lo
menos k ceros en (a,o0). Esto contradice la propiedad de infimo de A, y por lo
tanto debe ser a = t(1).

Veamos que y(t, \i) tiene exactamente k ceros en [a, 00). Por lo anterior, tiene
uno en a, y tiene al menos k — 1 ceros t;(2), ..., ty(k) en el intervalo (a,00). Si
tuviera k o mds ceros en (a,00), un argumento similar al anterior utilizando
dependencia continua nos dice que para A < A\, habria una solucién con k ceros
en (a,00), que contradice la propiedad de infimo de Ay. Luego, y(t, \;) tiene
exactamente k — 1 ceros en el intervalo (a, 00).

Para completar la demostracién del teorema, debemos demostrar las siguientes
afirmaciones:

» Si A€ (Mg, Aps1) la solucion y(t, \) tiene a lo sumo k ceros en el intervalo
(@, 00).

s Tenemos lim A\, = oo cuando k — oo.

Como y(t, \g) tiene exactamente k — 1 ceros en (a,00), los autovalores son
distintos, y forman una sucesion mondtona creciente

O<)\1</\2<"'<)\]€<"'.

Ahora, si A € (A\g, \g+1) v la solucién asociada y(t, A) tuviera al menos k + 1
ceros, entonces A € Agi 1 y por lo tanto deberfa ser A\g; < A. Entonces, y(t, \) a
lo sumo puede tener k£ ceros.

Veamos que lim A\, = oo cuando k — oo. Si no fuera asi existiria Ay finito tal
que

lim A\, = Ao.
k—o00

Como antes, utilizando la Proposicién (2.3.1), para todo A cercano a Ay hay un
Ty > 0 tal que la solucién y(, ) no tiene ceros en el intervalo [T, 00).
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Sea N un entero positivo arbitrario. Para todo k > N, la solucion y(t, A)
tiene por lo menos N ceros en el compacto [a,Tp]. Entonces, por dependencia
continua igual que antes, encontramos que y(t, Ao) tiene por lo menos N ceros en
el intervalo [a,Tp]. Ya que N es arbitrario, y(t, Ag) tiene un nimero infinito de
ceros en el intervalo compacto [a, Tp]. Esto es una contradiccion, y por lo tanto
debe ser

lim A\, = oc.
k—o00

El teorema queda demostrado. ]

Observacion 2.4.1. Observemos que para X € (Ag, \gtr1) no sabemos si la so-
lucion y(t, \) tiene necesariamente k ceros en el intervalo (a,00). Esto es cierto
para problemas de sequndo orden, pero no es cierto en general para problemas de
mayor orden.

Observacion 2.4.2. Podemos extender el Teorema 2.4.1 a la siguiente familia
de problemas:

(—1)Pm= 7 1yCm L Ap(t)y = 0 t € (a,00)
yD(a,\) = 0 0<i<j—1
) = 0 j<i<2m-—1

La demostracion es andloga y puede verse en []].



Capitulo 3
Una desigualdad de Nehari

3.1. Introduccion

En este capitulo vamos a estudiar una cota inferior del primer autovalor del
siguiente problema

(=D)my®™ —Ap(t)y = 0 te(a,b)
yla)=y'(a@)=...=y" '(a) = 0 (3.1)
y(b) =y'(b) =...=y"(b) = 0,

donde el peso p € L'([a, b]) es una funcién no negativa y A es un pardmetro.

En general, es dificil hallar cotas inferiores de autovalores pues en la caracte-
rizacion variacional mediante el cociente de Rayleigh
/ b o2t

a

A= mi —,
veH;(lat)) [ pu2dt

cualquier funcién test que se utilice da cotas superiores para el primer autovalor.

Una primer cota inferior se obtiene utilizando teoremas tipo Sturm si el peso
p € L. Aun para pesos acotados, perturbando localmente el peso, se obtienen
cotas muy diferentes y alejadas del autovalor. Por este motivo, es interesante con-
siderar cotas integrales. La primera de tales cotas fue obtenida con la desigualdad
de Lyapunov [12] en 1888, y para m = 1 se tiene

4
; <
(b—a) [, p(t)dt

donde \; es el primer autovalor con condicién de borde Dirichlet. Esta desigualdad
se extiende a problemas de mayor orden, entre muchos otros, y a los autovalores
superiores. Lamentablemente, cuando se consideran intervalos de gran longitud,
la cota inferior tiende a cero, y no puede utilizarse para estimar los autovalores
de problemas como el que vimos en el Capitulo 2.

En [14], para m = 1, Zeev Nehari obtuvo la siguiente cota para p monétona:

7T/2 <>\1/2

JP/pltydt

13

Aty (3.2)
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Esta desigualdad se puede extender a m > 1, como veremos al final del capitulo.
Observemos que, a partir de la desigualdad de Nehari y utilizando la desigual-
dad de Holder,

( / b Mdt)Q <6-a [ o,

con lo cual tendriamos una cota mejor que la que se obtiene con la desigualdad
de Lyapunov para pesos mondtonos.

Para obtener la desigualdad de Nehari conviene plantear el problema en forma
integral.

En primer lugar veamos como podemos expresar las soluciones de nuestro
problema en forma integral.

Consideramos el problema general

D) = SO . teb)
yD(a) = 0 . i=0,---,m—1 (3.3)
y(b) = 0,

con f € C([a,b]) y D un operador diferencial.

El siguiente teorema nos asegura la existencia de una funcién G, conocida
como la Funcion de Green, para el operador diferenciacion D tal que la solucion
del problema (3.3) se puede expresar como

y(t) = / Gt 2) f(x)dz.

Teorema 3.1.1. (Ver [2]) Para el problema (3.3) existe una unica funcion G =
G(t,z) para a < t,z < b con las siguientes propiedades:

k

= Para k=0, ---,2m—2 existen las derivadas parciales T y son continuas
para todo (t,x) € [a,b] X [a,b].
8k
s Para k =2m — 1,2m existen las derivadas paraciales T y son continuas
en (t,z) cuando a <t <z <bya<z <t<hb.
» Para k=2m — 1, y para x € [a, D]
I*G(t O*G(t
lim M_ lim M =(=1)™.
toat  OFt toz—  OFt

» Como funcion de t, G(t,x) satisface [DG|(t,x) =0 si t # x.

» Como funcion de t, G(t,z) satisface las condiciones de borde del problema
(3.3) para a < x <b.

Observacién 3.1.1. Si en el problema (3.3) tomamos Dy = (—1)"y®*™ la fun-
cion de Green es simétrica.
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Ahora, si G(t,x) la funcién del Green correspondiente al operador Dy =
(—1)"y®™) podemos expresar la autofuncién correspondiente al autovalor A; del
problema (3.1) como

u(t) = M / G(t, 2)p(z)y (z)dz,

y si multiplicamos la ecuacion anterior por /p(t) , llamando u(z) = y(x)\/p(x),
nos queda

b
uy(t) = )\1/ G(t,x)\/p(t)/p(x)uy(z)dz. (3.4)

Los problemas (3.1) y (3.4) son equivalentes, y los utilizaremos indistintamente
seglin convenga.

En la Seccién 2 introducimos la notacion necesaria para demostrar, en la
Seccién 3, el lema clave que permite probar la desigualdad de Nehari, que enun-
ciaremos directamente para ecuaciones integrales. En la Seccién 4 veremos la
demostracion para m = 1, y en la Seccion 5, el caso general.

3.2. Una ecuacion integral

Como primer paso vamos a estudiar un caso mas general, del cual (3.4) es un
caso particular.

Sea g € L? una funcién no negativa y sea K € L*([a,b] X [a,b]) acotada y
simétrica, tal que el operador lineal Ty : L? — L?,

(Teal) = [ K (t.0)g(t)g(a)u(r)ds

sea definido positivo. Esto es,

(Tru,u) :/ / K(t,z)g(t)g(z)u(t)u(z)dzdt > 0.

Llamaremos a la funcion K el nicleo del operador T, y a la funciéon g un peso.
Diremos que p es un autovalor del operador integral Tk y u, € L*([a, b]) con
|luulle =1 la autofuncion correspondiente a j, normalizada, si se cumple

b
[ 0909t = ),

El operador T es lineal, compacto, y simétrico. El teorema espectral de von
Neumann nos garantiza la existencia de una sucesion de autovalores reales y po-
sitivos {f;};, ver Teorema 7 [6], pag. 645. Esta sucesiéon es mondtona decreciente
y tiende a cero. Ademds, las autofunciones son una base ortogonal de L?.
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En la demostracién del teorema espectral se observa que los autovalores se
caracterizan por el cociente de Rayleigh,

b= sup / / K (1, 2)g(0)g(@)u(t)u(z)dzdt.

{uel?:||ull2=1}

Observemos que si G es la funcién de Green del Problema (3.1), entonces

K=0G,yg=+p,

y tenemos ademas

3.2.1. Notacion

Como sélo nos interesa acotar el primer autovalor del Problema (3.1) en fun-
cién de diferentes pesos, vamos a introducir una notacién mas conveniente para
los autovalores y autofunciones que refleje la dependencia respecto de los pesos.

Indicaremos con A, al primer autovalor del Problema (3.1), y u, la autofuncién
correspondiente, si el peso es p.

Dado un peso g, llamaremos

J(g.g:u / / K (t, 2)g(t)g(x)u(t)u(z)dzdt. (3.5)

:/ / K(t,x)g(t)g(z)uy(t)uy(x)dzdt,

J(g,9;u) < J(g,9;uq) = py. (3.6)
En particular, para K = G,
J(g,g5u) < J(g,95ug) = g = A, .

Observacion 3.2.1. En el caso de la ecuacion diferencial sabemos que la auto-
funcion es positiva. Para una ecuacion integral arbitraria, tenemos que

Tenemos

v st [lull2 =1,

py = {uELQSIﬁI;HQ 1}/ / K(t,x)g(t)g(z)u(t)u(x)dxdt
= [ [ K
b/bK t,2)g(t)g(x)uy(t)u,(x)dzdt

< / / K (£, 2)9(8)g()]ug (1) g () ddt,

IN

con lo cual |uy| seria autofuncion del mismo autovalor.
Entonces, podemos suponer que ug, es no negativa.
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Dada una autofuncién wu, no negativa correspondiente a un peso r € L?, en-
tonces J(f, g;u,) es una forma bilineal, y define un producto escalar en L?([a, b]).
En particular, tenemos la desigualdad de Cauchy Schwartz,

J(f,g5ur) < [I(f, f5u,) T (g, g5 ur)] 2.

Observacién 3.2.2. Para ver que J(-,-;u,) es definido positivo, observemos que

b b
J(g,9:ur) = (Tigtty, ) = / / Kt 2)9(t)g(2)ur (¢)ur (2)dadt > 0

pues Ty era un operador definido positivo, y estamos intercambiando los papeles
de g (que antes era no negativa, pero ahora sélo estd en L?) y de u (que antes
era una funcion de L* y ahora es no negativa,).

3.3. El lema principal

Sea g € L?*([a,b]) mondtona y no negativa, vamos a considerar el siguiente
problema de autovalores en L?([a, b]):

() = / K (t, 2)g(t)g(x)u(x)d. (3.7)

Vamos a definir los siguientes conjuntos con los que vamos a trabajar:

A, = {g:g € L*(a,b]) no negativa y mondtona}

Ay = {s:s e L*]a,b]) simple, monétona, con una sola discontinuidad en [a, b]}.
El siguiente lema es clave para demostrar la desigualdad de Nehari:

Lema 3.3.1. Para el problema de autovalores (3.7), tenemos

b b
’ ~1/2 _ ~1/2
glenj1 {ug /a g(x)dx} SlenAf2 {us /a s(x)dx} : (3.8)

Demostracion. Para demostrar el lema, vamos a utilizar un conjunto auxiliar A,
definido como,

A={r:r e L*(a,b]) simples y monétonas},

y demostraremos primero que

b b
y ~1/2 _ ~1/2
glenjl {Mg /a g($)dx} %gff‘ {MT /a r(x)d$} .

Dada g € Ay, y € > 0, existe una funcién simple 7, con igual monotonia que
g tal que

/ (@) — r(2)]P da < 22
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Por Hoélder,

/abg(x)dx - /abr(a:)da:

con Io cual,
‘/ dm—/ r(a)ds] = O(e). (3.9)

Si reemplazamos g por r, tenemos por (3.5)

i g/ab[g(:c)—r(x)]gdx/abdx< (b—a)-&

J(r,ru,) = Jg+(r—g),9+(r—g);u)
= J(g,g;u) +J(r—g,r —giu,) +2J (9,7 — g;up).

Acotemos cada uno de los términos del lado derecho de la igualdad anterior.
Para el primero tenemos, por (3.6),

J(g,9:ur) < pg.
Ahora,

Jr—g,r—gu)= Jg—r,g—riu)

_ / K(t,2)[(g — r)(O)](g — ) (@))ur (t)ur (z)dadt
g/ K (1, @) (8 (2)]] (g — ) (B)(g — 7) ()| dacdlt

b b 1/2
< {/ [K(t,x)u,(t r(x)]Qdmdt}

[ / / _ ) )(x)mdt]l/?

_ [/ 'Kt 2 (o >J2d:cdt]1/2- g — ) (@) dr

a
1/2

b b
< [/ K(t,z)u,(t r(l‘)]zdl'dt] g2 = M, -2
Entonces,
J(g—r,g—r;u.) = 0.

Por tltimo, como J define un producto escalar, por Cauchy Schwartz tenemos
que
S (g,9 —riu) < J(g,gu,) - J(g =719 =7 u)

< pg-Jg—r,9—"15U)

= 0(g?),
y por lo tanto J(g,g — r;u,) = O(e).
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Entonces,
fr < pig +O(%) + O(e).

Si intercambiamos el papel de g y r tenemos
tg < pr + O(e?) + O(e).

Luego,
e — gl = 0(c). (3.10)

Hasta ahora tenemos que si r v g estdn cerca en L?, también lo estaran sus
integrales y los primeros autovalores asociados a cada peso. Luego, demostramos

que
b b
1’611; {,ugl/Q/ g(x)da:} II€1£{ 1/2/ r(x)d:z:}. (3.11)
geAl a T a

Veamos ahora que podemos reemplazar A por A, las funciones simples y
monotonas, con una sola discontinuidad en [a, b].

Supongamos que 7 es creciente. Sean a = x1 < Ty < ... < Ty < b los puntos
de discontinuidad de la funcién r(z).

Sea r; el valor de la funcién r en el intervalo [z}, z,41]. Definimos

Cl =
Oj Ty —Tj—1 j:2,...,m

La funcién r la podemos expresar como combinacion de funciones caracteristi-
cas:

m

= ZICjX[wj,b] Z C;(b iy, _w];]] = chsj,
-

J=1

conc; =Ci(b—1z;) y s; =
con integral igual a 1.

Xzj.b S . L
b[f]x A] funcion simple con una sola discontinuidad y
J

Luego,

/abr(x)dx = /bi ¢;8;(x)dr = 27; ¢ /ab sj(z)dz = i%v

=1

Sea ,; el mayor autovalor del problema (3.7) con peso p = s;. Podemos
relacionar estos autovalores con pu, de la siguiente manera:
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pr = J(r,ru,) = / / K(t,x) (Z c,-si(t)> (Z cjsj(a:)> u(t)u, (z)dzdt

:chc]//Ktxsl s;(@)ur (t)u, (z)dzdt
= ZZCCJJ(S“S],UT)

cici [J (51 813 u0)J (5, 555 1))

Ms

2
1/2
CJ (55,853 ur)]

2
< ( cj,uij/Q) .
j=1

Si llamamos 15 = Mmax|fis,, .. ., fhs,, ],
m m m b
e <N el = pl?Y e = ui/g/ r(z)da.
j=1 j=1 j=1 a
Entonces

b
W2 < b2 / r(@)da.

Finalmente, como fab s(x)dr =1

b b
b / s(@)de < / r(@)de.

Luego, nos queda

b b
~1/2 < ~1/2
Slenji{ /a s(x)dx} < 711251 {ur /a r(x)dx},

y como Ay C A, vale la igualdad. Junto con (3.11) obtenemos

b b
; -1/2 _ —1/2
SlenAf2 {MS /a s(a:)dx} glenjl {Mg /a g(x)dx} ’

y el lema queda demostrado. O
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3.4. Cota del menor autovalor para m=1

El lema de la seccion anterior nos da una herramienta para poder encontrar
una cota inferior del autovalor, ya que cuando las funciones son simples podemos
calcular facilmente una cota. Por eso, antes de demostrar el caso para m = 1
vamos a calcular la cota cuando consideramos una funcién simple con una sola
discontinuidad.

Lema 3.4.1. Sea s # 0 una funcion simple, no negativa, con una sola disconti-
nuidad en [a,b], y As el menor autovalor del problema

v+ As(t)y = 0
y(a) = 0 (3.12)
y(b) = 0.

Entonces,
b
)\;/2/ Vv s(z)dx > g
Demostracion. Sea Ay = n%. Sin perder generalidad podemos escribir la funcién
5 como
s(z) = a? si oz € la,t]
T B% stz e (g, 0]

para algin t; € (a,b), con «, 5 > 0.
Dado que conocemos la expresion de la funcién s, podemos escribir especifi-
camente cuanto vale la expresién que queremos acotar inferiormente:

A;/Q/ab\/@dx = n(/atl Md:ﬁ/tlb\/%dx)

t1 b
= 77/ ozda:—l—n/ Bdzx
a t1

= na(ty —a) +nBb—t).
Tenemos © 0.t
. Y1 t si te a, tl
ys(t) N { yg(t) si te (tl,b],
donde cada una es solucién de los siguientes problemas,
Problema 1:sit € [a,t]

y”+n2a2y = 0
yla) =0,

Problema 2: si t € (t1, ]
y'+n’fy = 0

y(b) = 0,
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resolvamos explicitamente cada uno.
Si a, > 0, las soluciones para cada uno de los problemas son, respectiva-

mente, multiplos de
yi(t) = sinfpa(t —a)
ya(t) = sin[nB(b—1t)].

Para t = t; se pegan en forma continua y diferenciable. Al ser restricciones de
la primer autofuncion, tenemos:

1(t1) = CQ(tl)
A (313

para alguna constante ¢ # 0.
Las condiciones pedidas en (3.13) son equivalentes a

sinfna(ty —a)] = esinnB(b—t1)]
nacosna(ty —a)] = —ncBcosnB(b—t1)].
Dividiendo miembro a miembro tenemos que
L ot — a)] = ——= tannAb — 4],
no np

y por lo tanto
ptan[na(t; — a)] + atan[ns(b —t1)] = 0. (3.14)

Por ser la autofuncién del menor autovalor, y,(t1) > 0 en (a, b). Entonces, los
argumentos de los senos que la definen deben tomar valores en el intervalo (0, 7).

Por otro lado, ya que v+ 3 > 0, para que exista solucién de la ecuacién (3.14)
las tangentes deben tener signo opuesto.

La tangente es positiva en (0,7/2), y negativa en (7/2, ), entonces:

7704(?51 - CL) € (07 7T/2)7 y Uﬁ(b - tl) € (7T/27 7T),

| nalt —a) € (/2,7), ¥ nBb—h) € (0,7/2).

En ambos casos,

b 7r
)\;/2/ Vs(x)dr =na(ty —a) +nBb—t1) > 7

Sia=0y [ >0, las soluciones para cada uno de los problemas son, respec-
tivamente, multiplos de

yi(t) = t—a
yo(t) = sin[nB(b—1)].

Como antes, llegamos a

h—a= —niﬁtanw(L — 1),
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y por lo tanto,
nB(t1 — a) + tan[nB(b — ¢,)] = 0.

Como el primero es positivo, debe ser negativa la tangente, y por mismo
argumento de antes,

nBb—t1) >

El mismo argumento vale si « > 0 y g = 0, con lo cual el lema queda
demostrado. 0

N3

Observacion 3.4.1. No es necesario considerar los casos t; = a ¢ t; = b. St
fuera t, = a tenemos que s(x) = B* en [a,b] y una solucién del problema (5.12)
es

y(t) = sen[nf(t — a)].
Como y(b) = 0, para algin k € Z
np(b —a) = km,

y el menor autovalor es igual a

Entonces, tenemos directamente que

Ai/Z/b‘/s(x)dx:m/bﬁdx:w> g

El caso t; = b es andlogo.

Observacion 3.4.2. Del Lema 3.4.1 se deduce que

b
inf )\;/2/ s(z)dx > us

s€As 2

Ahora estamos en condiciones de probar la desigualdad de Nehari para pro-
blemas de segundo orden.

Teorema 3.4.1. Sea p € L([a,b]) no negativa y monotona. Sea A, el menor
autovalor del problema

y' +Ap(t)y = 0
y(a) = 0 (3.15)
y(b) = 0

Entonces
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Demostracion. Sea G(t,z) la funciéon de Green del problema (3.15). Como antes,
con el cambio u,(t) = y,(t)\/p(t), la autofuncién y, correspondiente a A, se puede
expresar de la forma

=, / G(t, 2)/pl)/p(@)y () dz. (3.16)

Como G es ntcleo admisible para las hipétesis del Lema (3.3.1), tenemos

b
A}D/?/ Vp(t)dt > inf {A;ﬂ/ s(x)d:c}.

s€A2

Ahora, por el Lema 3.4.1,

b
ienj {)\;/2/ s(m)dm} >
S€Ag a

y el teorema queda demostrado. O

ol

3.5. Nehari - Ecuacion de orden 2m

Para la demostracion en el caso de mayor orden vamos a modificar la demos-
tracién de Nehari. Como ninguno de los dos métodos nos da la constante explicita,
no podemos asegurar que sea mejor que la propuesta por Nehari, si bien vere-
mos que en caso m = 1 coincide con 7/2, y por lo tanto da una demostracion
alternativa.

En el caso de Nehari, la constante inferior es solucién de una ecuacién tras-
cendente relacionada con las autofunciones (para m = 1 es la ecuacién (3.14)),
mientras que en nuestro caso utilizaremos el primer autovalor de un problema
mixto.

Teorema 3.5.1. Sea p € C([a,b]), no negativa y monotona. Sea N, el menor
autovalor del problema (3.1). Entonces,

Al/Qm/ {/p(x)dz > A", (3.17)
donde Aoy es el primer autovalor del problema

(1) =y = 0
40) =(0) =-.. =} (0) = 0 (3.18)
) =y = =) = 0

Demostracion. El caso m = 1 corresponde a lo demostrado en el teorema (3.4.1).
Vamos a suponer m > 1.

Sea G(z,t) la funcién de Green para el operador L(y) = (—1)™y®™). La
autofuncion correspondiente la podemos escribir

=, / Gt 2)/pO /Pl () dz. (3.19)
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donde wu,(t) = y,(t)\/p(t).
Vamos a verificar primero que

b b
inf 2“\“//\_p/ Y/ p(x)dx = inf 2"(/)\_5/ Y/ s(x)dx.

pEAL s€As

Para esto, fijemos un ¢ > 0 arbitrario.
Ahora, reescribiendo

Vo) = [ /0 /o) /o) /),

m—1
y llamando K (t,x) = G(t,x) [ /p(t) 2m\/p(a:)} , la ecuacion (3.19) nos queda

wlt) = Ay [ Ealt,2) /500 /oy o) (3.20)

La funcién K, satisface las condiciones del Lema 3.4.1, y con g = /p, que
es monotona, el primer autovalor i, del problema

() = / K (£, 2) *%/p(0) X/ p(a)u(z) dz

verifica

— =)

y ademas,

b b
inf (upl/Q/ 2’\”/p(w)dx) = inf (usl/Q/ 2’\"/3(:C)d:v)

peEAL s€As

donde u4 es el mayor autovalor del problema

Ju(t) = / Kt 2) /500 /5@ u(z)de. (3.21)

con s(t) una funcién simple, con igual monotonia que p, con una sola disconti-
nuidad.
Fijemos una 2¢/s; tal que estd a menos de €/m de realizar el infimo,

b b
o [ -t (i [ /s )
a SE€A2 a

La ecuacién integral (3.21) la podemos reescribir de la siguiente manera:

i) = [ 6 [V ] e e
= [Hewn [vp@im] " vawrvam)
< =0/p() /@) ule)dz
_ /:KQ@,;C) 0 /p(0) %/ p(@)u(z)de,

€
< —.
m
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m—2
con Ky(t, ) = G(t,z) [ /ot R /p(x)} 2w /s1(@) 2%/51(0).

Volvemos a tener un problema similar al inicial donde lo que cambia es la
funcién que juega el papel del nicleo, e incorpora a s; en lugar de una de las p.
Con el mismo argumento, utilizando el Lema (3.4.1), podemos hallar una funcién
simple 2t/s; mondtona y con una sola discontinuidad tal que estd a menos de
e/m de realizar el infimo.

Aplicando iterativamente este procedimiento, en el i-ésimo paso partimos del
problema

pu(t) = / Ki(t,z) 2%/p(t) 2%/ p(x)u(z)dx (3.22)

Ki(t, x) = [va p(t) ¥ P(x)]mi ' 1:[ R si(t) X/ s(2),
k=1

donde para cada 1 < k <i—1, s; es una funcién simple, mondtona, con una sola
discontinuidad en [a, b], y con el Lema (3.4.1) obtenemos otra funcién sy.
En el m-ésimo paso tenemos el problema

b
s, u(t) = / Kot 2) 2/ 8m (1) 2R/ 8 (2)u(z)dt (3.23)

donde 2%/s,, es una funcién con igual caracteristicas que cada una de las 2¢/sy,
el nicleo es

K, (t,z) = G(t,x) 1__[ sk (t) N/ sk(x),
k=

y estd a menos de £/m de realizar el infimo.
Entonces, intercalando los problemas auxiliares,

b b
,us_wl/2/ R/ sm(x)dr — inf (M;I/Q/ 2m\/p(x)dx>

pEA;

<E&.

Tenemos que s, es el primer autovalor del problema

m

pu(t) = / G(t,x) [T *%/sk(t) X/su(z)u(z)da, (3.24)
a k=1

0, equivalentemente, del problema diferencial con p = [],-, sk, con lo cual ,u;i =

AT, si-
Sea 15, el mayor autovalor y u,, y la autofuncién normalizada correspon-

diente de la ecuacion integral (3.24). Luego,
b b m
e = / / G(t, 2) ] /550 /58 @)t, (£, (). (3.25)
a wa k=1

Como G y u,, son positivas,

G, )u,,, (2)us,, (1) = (G, D, ()us, (O] - [Glz, D, (2)us,, (O]
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entonces la ecuacién (3.25) es igual a

27

e, = / b / bﬁ (Gt 2 (1), ()55 DV 350 U dt. (3.26)

Aplicando Hoélder y elevando a la m,

py < ]}_[1/(1 /a G(t, x)us,, (t)us,, (£)\/sk(t)\/ sk(z)dzdt. (3.27)

Consideremos ahora el problema

,uu(t):/ G(t,x)\/sk(t)\/ sk(x)u(

que soélo involucra al peso /si.

x)dx

Sea . el primer autovalor y u; la autofuncion correspondiente. Este problema

es equivalente a resolver

(—=1)my@m) — As(t)y =
y(a)=y'(a)=...=y"™ Ha) =
W) = y/(6) = .. = ) =

0
0 (3.28)
0,

el primer autovalor es \;, = u,;l y la autofuncién y,, estd dada por u, = \/5kYs, -

Como

e = J(V/sks /Skiuk) 2= T (V/5k, V585 s, )

volviendo a (3.27) podemos acotar superiormente p7 por

My < Hﬂk < HméX{M17M27"' b} -
k=1 k=1

Luego, fm < pis = max {p, o, -+, m}, y los autovalores del lado derecho
corresponden a pesos simples con una sola discontinuidad, sea s la que alcanza
este maximo. Para estimarlos, conviene considerar el problema diferencial (3.28).

La funcién s puede representarse como

a®™ si t € |a,ty]

s(t) =

pFm si t e (ty, b,

con o, f > 0.
En este caso, el problema diferencial nos queda

(—1)myP™ — Ays(t)ys = 0,
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y si multiplicamos por ys, e integramos por partes llegamos a

b t1 b
[upas s [ yzae o [ <o
a a t

Separando la primera integral,

t1 b t1 b
[ e [ oo [Cgde s [ <o
a t1 a t1

Entonces, agrupando queda

t1 t1 b
V [yS™Pdx — Asan/ yﬁdw} + U [y P da 3627”/ yfdaf} =0,
a a tl tl

y ambos términos deben ser nulos, o uno de ellos sera negativo.

Supongamos que
t1 t1
/ [y{™)2dx — /\Sa2m/ y2dr < 0.

t1
/ ™ P de
)\Soazm >=c

t1
/ y?dx

Como la funcién y, pertenece al espacio de Sobolev

Entonces,

H={yeH"(a,t]) : y(a) =0,0 < j <m —1},
es admisible en la caracterizacion variacional del primer autovalor del problema

—-1)" y@m)—/\p( )y = 0
jy(a)zy’(a)z —y (ag = 0

ym(b — ym+1(b) = .. 2m 1(b o O,
con lo cual,
)
m)12
Y dzx
T yeH 1 5 1 (t _a>2m’
yedx

por céomo escala el autovalor respecto de la longitud del intervalo.
Ahora

b 1
/\;/Qm/ R/ s(x)dx > )\i/Qm/ adz = \/?™a(t; —a) > A[lo/i"

El teorema queda entonces demostrado. O
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3.6. Problema del p-Laplaciano

En esta seccién vamos a buscar una cota inferior para el problema cuasilineal
del p-laplaciano,

—(w P2y = Ag@O)ulPu € (a,b)
u(a) = 0 (3.29)
u(b) = 0.

donde como antes, 1 < p < 0o, A es un pardmetro real, y g € L'([a,b]) es una
funciéon mondtona.

Sea A\, y u, el menor autovalor y la autofuncion correspondiente del problema
(3.29).

Una extension a este problema de lo visto en las secciones anteriores es el
siguiente teorema que es el punto principal de esta seccion.

Teorema 3.6.1. Sea g € L'([a,b]) una funcién mondtona no negativa, y sea A,
el menor autovalor del problema (3.29). Entonces,

b
AlLp / Sg(ydt > % (3.30)

donde T, se define a partir del primer cero positivo de la funcion generalizada
sin,,.

Observacion 3.6.1. Para mas detalles sobre m, puede verse [3] o [7].

La demostracion del teorema la haremos en base a la caracterizacién varia-
cional [8] del primer autovalor del problema(3.29)

b
1 ,
A, = mMAax /a g(x)uP(z)dx.

1, —
{ueWy ™ lu =1}

Como una consecuencia directa tenemos

)\91:/ g(x)uf,(x)dxz/ g(x)ul(z)dz (3.31)

para cualquier autofuncién normalizada correspondiente a un peso diferente r.
Este argumento se utilizara muchas veces en la demostracién del Teorema 3.6.1

Vamos a demostrar una serie de resultados que se utilizaran en la demostracién
del Teorema (3.6.1)

Proposicién 3.6.1. Sea {r;}; una sucesion de funciones de L*(|a,b]). Suponga-
mos que r; — g in L*([a,b]) cuando j — co. Entonces,

(i) Hm A, = A,

J—00

b b
(#7) lim rjl./p(x)dx—/ g7 (z)dz.

J]—00 a
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Demostracion. Por definicién del primer autovalor tenemos que

)\;1 = /ab g(x)ub(z)dr = /ab rj(w)ul (v)dr + /ab(g(x) —rj(z))ub(z)dx.

La primer integral esta acotada superiormente por )\;j 1 debido a la desigual-
dad (3.31).
Ya que las autofunciones se encuentran normalizadas de modo que

gl = N1l =1

por la desigualdad de Ponicaré y la inclusién de W, ?([a, b]) en L>([a, b]), tenemos
que las autofunciones estan uniformemente acotadas en L por cierta constante
positiva C'.

Luego, la segunda integral se puede acotar por

b b
/ 9(2) — 15(2) [Jug|Zudz < © / 9(x) — r(@)ldz = O(lg — 5]1).
Intercambiando los roles de g y r;, tenemos que

A_l . )\—1

Tj g

= O(llg = 7;ll),

y (i) esta probado, ya que ambas integrales estdn acotadas por debajo por cero.
Para demostrar (ii), por las desigualdades de Minkowski y Holder tenemos
que:

b b
/ /7 () — gM7(2)|dw < / rj(@) — g(@)[YPdz < (b— ) |r; — g|}/”

y la convergencia de las integrales esté probada. O]

Lema 3.6.1. Dada v una funcion simple no negativa, existe una funcion simple
no negativa s con a lo sumo una discontinuidad tal que

b b

. b :
Demostracion. Tomemos r tal que [ r'/P(z)dx = 1 (el caso general se sigue
normalizando).

Escribimos r/? = 2?21 c;0;, donde cada o; es una funcién simple con a lo

. N b n
sumo una discontinuidad, [/ o;(z)de =1,y > " ¢; = 1.

Entonces

A= / br(m)uf(:v)dx: / b (icpi(x})puﬁ(z)dw.

=1
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Usando la desigualdad de Jensen,
b [ P b_n
/ Z cioi(z) | ub(x)dx < / Z cior (x)ub(x)de,
a i=1 @ =1

obtenemos

n b n
A< Z ci/ o (z)ub(x)dx < Zci)\;il < méax {)\;1} =1
i=1 a i=1

1<i<n

donde o es la funcién que tiene el mayor autovalor entre las o;.
Asi, para s = 0P tenemos

b b
)\i/p/ sl/p(:v) < )\i/p/ rl/p(x)dx,

y la demostracion queda terminada. O]

Veamos como podemos acotar el primer autovalor del problema (3.29) cuando
la funcién g es reemplazada por funcién simple con a lo sumo una discontinuidad.

Lema 3.6.2. Sea s # 0 una funcion simple, no negativa, con una sola disconti-
nuidad en [a,b], y As el menor autovalor del problema

(Ju'|P~2") = As(t)ulP™?u  t € (a,b)
u(a) = 0 (3.32)
u(b) = 0.

Entonces,

b s
)\i/p/ sVP(z)dx > Ep'

Demostracion. Supongamos que s esta dada por

| oaP it tea,ty]
S(t)_{ gr o if te(tl,é],

con «, 3 constantes no negativas, con a + 8 > 0.

Sea ug la autofuncion correspondiente al primer autovalor Ay del problema
(3.32). Multiplicando por ug e integrando por partes tenemos que

b 31 b
/ u?(x)dx — )\Sap/ ub (v)dw — )\sﬁp/ uf(x)dr =0,
a a t1

entonces

{ / ! uP(z)dr — Nsa? / ! uﬁ(m)dm] + { /t ’ WP () dar — NP /: () dx} o
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Ahora, uno de los dos terminos debe ser no positivo. Supongamos que

t1 t1
/ u?(x)dx — )\socp/ uP(z)dx <0,

el otro caso es similar. Entonces,

Ya que u, pertenece al espacio de Sobolev
W = {uecW"([a,t1]) : u(a) =0},

es una funcion admisible en la caracterizacion variacional del primer autovalor
del siguiente problema mixto

—(W'P?u) = Agl@)|ulP~?u
u(a) = 0
w'(b) = 0,
y tenemos
o (e)d P(t, — q)P
)\s—la—p S méx Ctl u (l’) T _ 2 (tl p CL)
weW [ u/p(x)dx Tp
Finalmente,
b t1 T
)\;/”/ s (z)dx > )\i/p/ adzr > Ep’
y el Lema queda demostrado. O

Demostracion del Teorema (3.6.1). Por la Proposicién (3.6.1) y el Lema (3.6.1) y
la densidad de las funciones simples en L', dado cualquier € > 0 arbitrariamente
pequenio, y una funcién mondétona no negativa g € L'([a,b]), existe una funcién
simple no negativa s con una sola discontinuidad tal que

b b
)\i/p/ sUP(x)dx < )\fl/p/ g"P(z)dx + ¢,
y por la cota obtenida en el Lema (3.6.2) tenemos que

T

b
7 < Agl/p/ 9" (x)dx + ¢

lo que demuestra el teorema. O



Capitulo 4

Estimaciones para orden 2

4.1. Introducciéon

En el problema de segundo orden, los autovalores pueden estimarse asintotica-
mente utilizando el método de Priifer. Veremos rapidamente aqui en qué consiste.
Para eso, estudiemos primero el siguiente problema de valores iniciales,

Y+ p(t)y = 0 t € (a,00)
yla,A) = 0 (4.1)
y'(a,\) = 1

donde p(t) es una funcién derivable en [a, 00) que podemos escribir de la forma

1

p(t) = T+ 1)Pw(t)

con w(t) una funcién positiva, no acotada, y creciente en [a, c0) (se puede relajar
y pedir que sea creciente a partir de un ¢, arbitrario).
Vamos a suponer, por ahora, que

I= /aoo[p(t)]l/zdt = /aoo o 1)[i)(t)]1/2dt < 00 (4.2)

Observemos que la condicién (2.2) del capitulo 2 no garantiza que esta integral
converge, pero si la condicion

/Oo t*p(t)dt < +o0, (4.3)

pues aplicando Holder se tiene

I = /:o[p(t)]l/th = /aoo wcﬁ < (/:OtQp(t)dt)l/Q (/aoo t—Zdt)l/z < 0.

Los resultados del capitulo 2 son validos para el problema de autovalores sin-
gulares de segundo orden, y Einar Hille los habia obtenido antes en [9] utilizando

33
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la transformada de Priifer. Ademds, estim6 el comportamiento asintotico de los
autovalores. De todos modos, podemos ver que es mas restrictiva la hipotesis de
derivabilidad del peso.

En este capitulo seguiremos parcialmente su trabajo, y vamos a introducir la
transformada de Priifer. Luego, analizaremos las coordenadas radiales y angulares
para el problema (4.1), y finalmente demostraremos el siguiente teorema:

Teorema 4.1.1. Sea {\,}, la sucesion de autovalores del problema

y' +Ap(t)y = 0 t € (a,00)

) =
) =
Si la funcion p(t) cumple con la condicion (4.2), entonces

™n

My = (7)2 [+ o(1)]
cuando n — o0.

Observacion 4.1.1. Observemos que este problema se incluye dentro del proble-
ma de autovalores singulares (2.4) estudiado en el Capitulo 2, con lo cual tenemos
garantizada la existencia de la sucesion de autovalores.

Para m =1 se puede demostrar la existencia de los autovalores utilizando la
transformada de Prifer. Mds aun, con muy pocas modificaciones se puede tratar
el problema no lineal para el p—Ilaplaciano,

(1Y P2y") + Ap(t) |y P2y
y(a, \)
lim ¢/ (t,\) =

t—o0

I
o

t € (a,00)

I
o o

Este problema fue estudiado en [7], si bien no se considerd el comportamiento
asintotico de los autovalores.

4.2. La Transformada de Prifer

Sea y(t, ) solucién del problema (4.1) con A > 0. Queremos reescribirla en el
plano de fase y,1y en coordenadas polares, y para esto introducimos las nuevas
coordenadas R(t), ©(t).

Proponemos las siguientes ecuaciones para y, y':

y(t,\) = [p(t)] 1 R(t)sin[O(t)], (4.4)

Y (1, ) = \2[p(1)] 1 R(t) cos[O (1)) (4.5)

Operando con las ecuaciones anteriores obtendremos ecuaciones diferenciales
que deben satisfacer las funciones R(t) y O(t).
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Comenzamos derivando la ecuacién (4.4)

V(A = —ip@®)] 1P (t)R(t) sin[O(1)]
(4.6)

+p(1)] TR/ (1) sin[O(t)] + 1)] 75 R(t) cos[O(t)]© (1),

y la igualamos a la ecuacién (4.5):

D=

A2 [p(D]FR(t) cos|O(t)] = <[p(t)] 1P () R(t) sin[O(1)]

+[p(t)] 75 R/ (¢) sin[O(1)

+p(t)] 75 R(t) cos[O(1)]©/(2).

[p(8)]7 cos[O(?)]

RO nos queda

Multiplicando la ecuacién anterior por

()] 2 cos?[(H] =~ p(0)] /(1) sim[O(0)] cos[()

R) o()e
+ 0 sin[O(t)] cos[O(t)] 4 cos”[O(1)]O(1)

con lo cual

cos?[O(1)]O'(t) = [Ap(t)]'/ cos®(O(t)) + 1lp(t)] '/ (1) sin[O(t)] cos[O(t)]

R'(t) .
RO sin[O(t)] cos[O(1)],
y como sin[20(t)] = 2sin[O(t)] cos[O(t)] nos queda
o O] = (o) col(e)] + { (el #0) - /25 1 fsnize0)]),
(4.7)

Si derivamos la expresién (4.5) (es decir, derivamos la expresion de la derivada
primera de la solucién de nuestro problema), tenemos que y” se escribe en funcién

de las nuevas coordenadas como:
1 3,
YY) = AP (R coslO()
(4.8)

+lp(t)]3 R() cos[O(1)] — [p(t)]3 R(1) Sin[@(t)]@’(t)}‘

Por ser y solucién del problema (4.1) se cumple que y"(t,\) = —Ap(t)y, v
utilizando la expresién (4.4) para y llegamos a

y'(8,A) = =Ap(t)] R(1) sin[© (1)), (4.9)
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Igualando las expresiones (4.8) y (4.9), tras simplificar en ambos miembros
A2 obtenemos

—NZp)]FR() sin[O@®)] = <[p(6)] "5 (£ R(t) cos[O(1)]

Multiplicando la ecuacién anterior por

y usando nuevamente el hecho de que sin[20(¢)] = 2sin[O(t)] cos[O(t)] nos queda

D) 2sinO] = (0] (1) sin20(1)
R() oo
+1/2 D) sin[20(t)] — sin“[O(t)]O'(¢)},
y entonces
sn(0]6/(0) = D] s O(0)] + { O] 9(0) + 1275 | sinl2e(0)]

(4.10)
Sumando las ecuaciones (4.7) y (4.10) obtenemos una ecucacién diferencial de
primer orden para la funcién O(t),

o) = o] + 2 Grpe ) (4.11)

que no involucra a R.
A la ecuacién anterior le agregamos la siguiente condicién inicial,

O(a,\) = kr

con k € Z, pues )
0=1y(a,\) = [p(a)]"1R(a)sin[O(a, \)].

Observemos que si R(a) = 0, no se cumpliria entonces que y'(a, \) = 1.

Un célculo similar nos permite hallar una ecuacién diferencial para R. Igua-
lamos las ecuaciones (4.5) y (4.6), y las multiplicamos por

[p()]"? sin[O(t)]
R(t) ’
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y a la ecuacion (4.10) la multiplicamos por

A2 cos[O(t)]
R()

Asi, obtenemos las siguientes expresiones:

N2[p(t)] 7 sin[©(t)] cos[O(1)] = —;l[p(t)]_%p’(t) sin”[O()]
HpO]H ) sino(0)]
+[p()]7 sin[O(t)] cos[O(t)] O (t)
N2[p(t)] sin[O(t)] cos[O(1)] = —%l[p(t)] ip/(t) cos?[O(1)]
(0]} g oo )
+[p(#)]# sin[O(#)] cos[O (1)) (1)}
Restandolas,
0= =37 HOp0) {cosO(0)] ~ snl(0)]} - (o)t T
con lo cual obtenemos la ecuacion diferencial
B _ _1p() cos[20(t)]. (4.12)

R(t) — 4p(t)

Obtuvimos una ecuaciéon diferencial que nos permite encontrar quien es nues-
tra funcién R(t), y debemos agregarle una condicién inicial. Si bien la ecuacién
no depende de A, la condicién inicial si, pues

1=y/(a,)) = X2[p(a)]* R(a) cos[O(a)] = \*[p(a))* R(a),
ya que ©(a) = 0. Entonces, la condicién inicial es

R(a) = A" 2[p(a)] 1.

4.2.1. Estudio de la coordenada R(t)

Para obtener las ecuaciones diferenciales de R y © hemos dividido por R,
obtengamos cotas de la funcién y verifiquemos que esta funcién no se anula.

Proposicion 4.2.1. Para todo t > a, se tiene

) < el <
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Demostracion. Recordemos que la funcién p es de la forma

1

PO = e

con lo cual

pt) =20t + Dw(t) — (t+1)%(t)

p(t) (t+1)%w(t)
Teniendo en cuenta que w y w’ son funciones positivas para todo valor de ¢, resulta
que

(1)
o =
Como | cos(0)| < 1, tenemos:
WO 100 g - 0
a0 = apn O E T
nos queda
e L) _ R _ 190
4p(t) = R(t) = 4p(t)

Integrando esta expresion entre a y t,

s g o
w[5o] = [mal <= o]
y finalmente obtenemos la desigualdad deseada:
o) = lmal= el

Proposicién 4.2.2. Para todo t > a, R(t) > 0.

Demostracion. Como R(a) > 0, si hubiera algun punto donde la funcién tomara
un valor negativo, existiria un valor ¢y > a tal que R(ty) = 0, con lo cual, por la

Proposicién 4.2.1,
R
p(a) R(a)

Esto es un absurdo ya que por definicion la funcion p es estrictamente positiva.
]

R(to)

Observacion 4.2.1. Por la Proposicion 4.2.1 y la condicion inicial tenemos
()] 2 p(0)]F < R(t) < ATV p(n)]

La funcion R nos queda acotada inferioremente por una funcion que siempre toma
valores positivos.
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4.2.2. Estudio de la variable angular O(t)

Queremos estudiar ahora la variable angular ©(t), pues el estudio del nimero
de ceros de y(t, \) dependerd del crecimiento de esta funcién.
Consideremos el problema de valores iniciales que resuelve O(¢):
L)
Q'(t) = [Mp)]Y?+ -—=sin[20(t
0 = Do)+ 35 e
©(a) = 0

Integrando la ecuacién diferencial y utilizando la condicién de borde nos queda

o(t) = )\1/2/ [p(s)]"/? —I—i/ ];,((::)) sin[20(s)]ds. (4.13)

Lema 4.2.1. Sea \, el enésimo autovalor, y ty, = tr.(\,) el k-ésimo cero de la
autofuncion asociada y(t, \,) en (a,00). Entonces

@(tk7 /\n) =kr

Demostracion. Si ty es un cero de y(t, A,) en (a, 00)

0 = y(tr, An) = [p(te)] "3 R () sin[O (£, A)].

)
Como p y R toman valores positivos, y O(a,\,) = 0, para que se cumpla la
igualdad anterior debe valer sin[O(tx, \,,)] = 0. Entonces, ©(t, A,) debe ser un
multiplo positivo de 7,

@(tk) =jm, j €.

Por otra parte, entre dos ceros consecutivos, © puede variar a lo sumo en ,
es decir,
©(tk) — O(ty—1)| <,

de lo contrario, por la continuidad de ©, habria otro cero de la autofuncion.
Si bien no podemos garantizar que © es creciente, cuando cruza por un multi-
plo de 7 tiene derivada estrictamente positiva,

O'(km) = [Ap(km)]"/?,
con lo cual de un cero a otro aumenta en 7. O

Lema 4.2.2. Sea \, el enésimo autovalor, y t, = t,(\,) el dltimo cero de la
autofuncion asociada y(t, \,). Entonces, O(t,) = nw. Ademds, sit > t,,

nt < O(t,\,) < (n+1/2)m
Demostracion. Por el lema (4.2.1) sabemos que
O(t,) = nm.

Veamos el caso t > t,,:
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» < Ot \,)

Ya que sin[20(t,, A)] = sin[2n7] = 0, tenemos

O'(tn, A) = [Ap()]'/* + i]; ((;)) sin[20(t,,, \)] = ()2 > 0.

Para t suficientemente cerca de t,, tenemos que ©'(t) > 0, por lo tanto © es
creciente en un entorno de t, y

nm = O(t,, \) < O(t, \)

Para valores mayores a t,, la funcién (¢, A) no puede ser menor a nr.
Si hubiera un valor ¢ donde la funcién © tomara un valor mas chico que
nr, existirfa t* > ¢, donde O(t*, \) = nw. Pero esto es equivalente a decir
que y(t*, ;) = 0, lo que es un absurdo, puesto que t, es el dltimo cero de

y(t, \n).
O(t,\,) < (n+1/2)7.

Esta desigualdad es equivalente a probar que la derivada primera de la
solucién y(t, A) no cambia de signo en el intervalo [t,,, c0). Supongamos que
existe t* > t,, donde la solucién toma un valor y(t*, A,) > 0y

0= ¢/ (t", \) = AV2[p(t")] 1 R(t*) cos[O(*, ).

Por ser p y R funciones positivas, la igualdad anterior se satisface sélo
cuando

cos[O(t", \,)] =0

y por lo tanto
Ot \,) =(k+1/2)7

para algin k entero. Como nm < ©(t, \,) para todo t > t,, el menor valor
de k que satisface lo anterior es
Ot \)=(n+1/2)r.

En el punto ¢* la solucién y(t, A) alcanza un maximo ya que

y' (", ) = =p(t)y(t, \) < 0.

Para todo t > t, la solucién no se anula, y como existe un punto donde
toma un valor positivo se deduce que y(t, A) es positiva para todo t > t,,, y
como consecuencia inmediata tenemos que y” (¢, \,) < 0 para todo t > t,.

Pero en el limite, cuando t — oo, la solucién tiende a un valor finito,
teniendo que cambiar de concavidad en algin ¢. Esto es imposible ya que la
derivada segunda tiene el mismo signo para todo t € (t,,00). Concluimos
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que la derivada de la solucién ¢’ no se puede anular en [t,,c0), y entonces
© debe satisfacer

O(t,\) < (n+1/2)m para t € (t,,o0)

ya que el primer cero de y' después de ¢, est = (n+1/2) 7.
]

Sabemos entonces que la funcién ©(¢, \) esta acotada para valores de t > ¢,
veamos ahora que pasa en el limite cuando t — oo.

Lema 4.2.3. Siy(t, \,) es una autofuncion asociada a X\, del problema, entonces

lim O(t, \,) = (n+1/2) 7.

t—o00

Demostracion. Por ser y(t, \,) una autofuncion, estd acotada y existe una cons-
tante C' > 0 tal que |y(¢, \,)| < C para todo ¢, y ademds vale que

’ / o
tligloy (t,A\) =0. (4.14)

Despejando de la ecuacion (4.1) y” (¢, A\,) = —Ap(t)y(t, \,) e integrando desde
t, obtenemos

V(M) = A / T p(8)y(s. An)ds

Luego,

WA = A / T (8)y(s An)ds

IN

A / " ()l (s, An)lds

IN

/\nC/ p(s)ds
¢

o0 ds
B A"O/t (s + 1)2w(s)

o ds
An C/t (s + 1)%w(t)

An C
(t+ Dw(t)

IN



42 CAPITULO 4. ESTIMACIONES PARA ORDEN 2

Multiplicando por [p(t)]~'/? nos queda
0 < [p(O)] 2y (8, A)l

= (t+ DOl )]

12 MG
< (4 Dw()]" (t+ Dyw(t)
_ M
ERCORS

Como la funcién w es positiva y no esta acotada,

i A C
lim

t—)ooW =0,

y por lo tanto
lim [p(t)] /2|y (¢, Aa)| = 0.

t—o00

Por otra parte, de acuerdo a la expresion (4.5) para la derivada 3/, tenemos
[p(O] 1y (8. M) = A (O] R (8 ) cos[O(E, A,

Si verificamos que el término que esta multiplicando al coseno esta acotado,
como el lado izquierdo tiende a cero, serd necesario que el coseno lo haga. Al
analizar la coordenada R obtuvimos la acotacién de la Proposicion (4.2.2),

Pap(@)] ™ p(8)]F < R(t, M) < A [p(0)] 7%,
y multiplicando las desigualdades anteriores por A2 [p(t)]

[p(a) ™2 < XM TR M) < ()72,
y como p(a) > 0, tenemos que

lim cos[O(t, A\,,)] = 0.

t—o00

Entonces, debe ser
lim O(t, \,) = (k+1/2) 7

t—o00

para alguin k, pero por el lema (4.2.2) la tinica posibilidad es que sea

lim O(t, \,) = (n+1/2) 7,

t—o0

y queda demostrado el lema. O
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4.3. Estimacion de los autovalores

En esta seccion demostraremos el Teorema 4.1.1.
Para la demostracion necesitamos el siguiente resultado auxiliar demostrado
por E. Hille en [10], pag 245.

Proposicién 4.3.1. Sea a > 0. Dadas las ecuaciones diferenciales en [a,o0),
'+ F(t)y =0, (4.15)
y' + f(t)y =0, (4.16)

si para a suficientemente grande las soluciones de (4.15) tienen a lo sumo un

cero, y st parat > a
t/ F(z)dx > t/ f(z)dz
t t

las soluciones de la sequnda ecuacion también tendrdn a lo sumo un cero en
[a, 00).

Observacién 4.3.1. Si F(t) =
es

1272, la solucidn general de la ecuacidn (4.15)
y(t) = 272 (A + Bloga),

que tiene a lo sumo un cero en el intervalo (a,00). Ademds,

| 1
t —x %dx =
/t 4x T = 1

Entonces, si f es una funcion tal que

/ f(z d:z:<—

la solucidn general de la ecuacion (4.16) tendrd a lo sumo un cero en (a, o).

Lema 4.3.1. Sea £(N) tal que
wlE(N) = A\

Entonces, la solucion del problema (4.1) tiene a lo sumo un cero en el intervalo
[£(A), 00).

Demostracion. Supongamos que {(\) < t. Dado que w es una funcién creciente

t/too)\p(x)dx = t/tmmdx

tA © 1
. w<§<A>>/t CES
)
AN+
1
< —.
- 4
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Luego, por la Observacion (4.3.1) la solucién del problema (4.1) tiene a lo sumo
un cero en el intervalo [£()), 00). O

Si elegimos () tal que w(£(A)) = 4\, aplicando el Lema (4.3.1), el pentltimo
cero de la autofuncién y(t, \,,) satisface

xnfl()\n) < 5()\71) = w71(4)\n)7
donde w™!(+) es la inversa de la funcién w(-).

Demostracion del Teorema 4.1.1. Partiendo de la expresiéon (4.13) para la fun-
cién O,

Ot \) = AI/2 / [p(s)]l/zds—l—i / ’; ((j)) §in[20(s, \)ds,

la separamos de la siguiente manera:
O(t, \) = A\V2I(t) 4+ S(t, )

donde

1) = / p(s)]2ds v S(t,/\):i / 7;’ ((j)) §in[20(s, \)]ds

Si evaluamos en A = A, y t = ¢, (el n-ésimo autovalor y el (n — 1)-ésimo
cero de la autofuncién correspondiente) por el lema (4.2.1) tenemos que

(n— 1)1 = O(tn_1, \n) = A2 (tp_1) + S(tn_1, \n). (4.17)

Como
It = [ " (e s = |t as - /OO [p(s)]1/2ds

nos queda para A, grande
I(tn-1) = I[L + o(1)].

Por otro lado,

1 tn—1
< = LA
<1/

St 1 M) = E / 1;/ ((j)) §in[20(s, A, )|ds

y esta integral podemos calcularla como sigue:

tn—1 p'(s) B ln—1 _p/(8> o~ W . o p(a)
[ as= [ s = fiott-a) - mipta)] = (SH ).
Entonces,
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Veamos que este término es de orden 0()\711/ 2) cuando n — oo.
Como t,-1 < &(\,) tenemos que p(&(N,)) < p(t,—1), y por lo tanto

" (pgfﬂ)) < <p(§831))) '

Entonces, es suficiente mostrar que

I p(a) — o(\}/2
(p@(w) O (4.19)

Como la funcién w(t) es creciente,

/;[p<s>1l/2ds - /f et

S

1 to1
NED /\/E G+

1 t+1
= n

Vw(t)  Vi+1

In(t+1).

>

w(t)

Cuando t — oo, la primer integral tiende a cero ya que [ es finita. En particular,
para t = £(\,) tenemos que

£(An)

In[é(N,) +1] < / [p(s)]/%ds

£(An)

I
w(€(An))

y como £(\,) = w1(4)\,), tenemos que

lim &(\,) = 0.

n—oo

Por lo tanto,

lim ! In[¢(\,) +1] =0.

Volviendo a la expresion (4.19),

—p(a) = Inp(a) —In !
n (p@w))) = Inpla) =y

= Inp(a) — In [(€() + 12w (E(A)]

= Inp(a) — 2InE(A,) + 1] — In(4),),
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y como
. Inp(a) . Indn,
A =0y i T =0
obtenemos que
in (A ) = o),
p(tn—l)

y por la cota (4.18)
1S (tn—1, An)| = 0(/\111/2)'

La ecuacion (4.17) es equivalente entonces a

S(tn—la )\n)

(n — 1)7’(’ = )\111/2 |:I(tn_1) + W 5

con lo cual
(n—1)m = A1+ 0(1)) + To(1)]

(n—1)m
I
Observando que n — 1 = n[l 4 o(1)], el teorema queda demostrado. O

A2 1+ 0(1)].



Capitulo 5

Distribucion asintotica de los
autovalores

5.1. Introducciéon

En este capitulo vamos a trabajar con el siguiente problema de autovalores

(=1)m-ty@m +Ap(t) = 0 te(a00)
(a,)\) =0 0<i<m-—1 (5.1)
thmy J(t,\) = 0 m<1i<2m — 1.
—00

donde m > 1 es un numero natural, A\ parametro positivo, y p € C([a,0)) no
negativa, mondtona, que satisface la condicion

/ 2ty dt < oo, (5.2)

con o > 0.

Observacion 5.1.1. La hipdtesis en p garantiza que

/ R/ p(t)dt < oo,

pues aplicando Hélder se tiene
/ 2m /p(t)dt — / tiz 27711+ 2m /p<t) . mdt
a a t 2m

1 00 2m—1
([ 2t () dt " )T
a a b a t1+2m ‘

Ambas integrales son finitas, la primera por hipotesis y la sequnda por cdlculo.

Si el peso p cumple con la condicién (5.2), Elias en [4] demuestra la existencia
de una sucesién {\;} de autovalores, con 0 < Ay < --- < A\ < -+ 7 00, tal que

47
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para cada A = \j existe una tunica solucién yi = yx(f, A\x) con k — 1 ceros simples
en (a,00).

El interés en este capitulo es estudiar el comportamiento asintético de los
autovalores de dicha sucesién. Para esto definimos la funciéon N () que cuenta el
nimero de autovalores menores o iguales que A:

N(A) = #{k € N: )\ <A}

Nos interesa estudiar el crecimiento de N (A), en particular, si existe una po-
tencia J tal que
O\ < N(X) < Co)°,

para ciertas constanstes C7 y Cy a definir.

Para m = 1 Hille lo demostré utilizando la transformada de Priifer como
vimos en el capitulo anterior.

Para problemas de mayor orden no podemos aplicar el método de Priifer. Por
este motivo nuestra demostracion se basa en resultados conocidos para intervalos
acotados y en la desigualdad de Nehari del Capitulo (3).

En un primer paso estudiaremos el problema de segundo orden en intervalos
acotados y no acotados.

Para los problemas de cuarto orden veremos que bajo ciertas condiciones
tenemos que

A /Oo Vp()dt + o(A1) < N(X) < AV /OO Vp()dt + o(AV*)

cuando A — 00.

5.2. Problema general de segundo orden

5.2.1. Problema de segundo orden en un intervalo acotado
[a, 0]

En un primer paso vamos a estudiar el problema
y'+ap(t)y =0,  te(ab) (5.3)

con p € C([a, b]) no negativa y condiciones de borde del tipo Dirichlet o Neumann.
Sea { A}« la sucesién de autovalores del problema. Llamaremos Np (A, (a,b)) y
Ny (A, (a, b)) las funciones que cuentan el nimero de autovalores menores o iguales
a A del problema (5.3) cuando las condiciones de borde sean de tipo Dirichlet y
Neumann respectivamente.
Para el peso p € C([a, b]) definimos

m = min {p(z):z € [a,b]}
M = méx {p(z):z € [a,b]}.
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Proposicién 5.2.1. Sea p € C([a,b]). Sea { M}k la sucesion de autovalores del
problema
v+ Mp(t)y =0, te€(a,b).

Si las condiciones de borde son tipo Dirichlet tenemos que

)\1/2
Np(X, (a,b)) > —+/m(b—a) — 1. (5.4)
s
Si las condiciones de borde son de tipo Neumann tenemos que
)\1/2
NN()‘7 (a7b>> < — M(b-(l) (55)

T

Demostracion. Supongamos primero que las condiciones de borde de nuestro pro-
blema son de tipo Dirichlet.
Sea {7} }x la sucesién de autovalores del problema auxiliar

v +yv'my = 0  te(ab)
y(a) =y(b) = 0.

Sabemos, por cdlculo directo, que el k-ésimo autovalor es de la forma

. Tk
T = (b—a)®>m

Como p(t) > m para todo t € [a,b], por el teorema de comparacién de Sturm
tenemos que
A < ’YZ~

Entonces,

Np(A, (a,0)) = #{k: A <A

> #A{k: <A}

k2
- e =

1/2

= #{k:ké%\/ﬁ(b—a)}

- [Py

)\1/2

Z T\/E(b_co - 17

donde [.] representa la funcién parte entera.



50 CAPITULO 5. DISTRIBUCION ASINTOTICA DE LOS AUTOVALORES

Luego, tenemos que

1/2
N (a,0) = (b —a) 1.

Supongamos ahora que las condiciones de borde son de tipo Neumann.
Consideramos el siguiente problema auxiliar

v '+ My = 0 t € (a,b)
y'(a)=y'(b) = 0.

Sea {u;}r la sucesion de autovalores coorespondiente. El k-ésimo autovalor
de este problema es de la forma

. 2 k>
M= 0 —a2M

Como p(t) < M para todo t € [a,b], por el teorema de comparacién de Sturm
tenemos que

Entonces,
Ny(A, (a, b)) = #{k: X\ <A}

< #{k:pp <A}

m2k?
- #{e =)

= #{k;k§¥m(b—@)}

AL /2
< —VM((Ob-a).
T
como queriamos demostrar.
m
Supongamos ahora que nuestro problema se define de la siguiente manera
v+ p(t)y = 0 te (5.6)

con 2 C R conjunto abierto. Las condiciones que pediremos en la 02 seran de
tipo Dirichlet o Neumann.

El procedimiento min-max de Courant nos da una caracterizacion del k-ésimo
autovalor, utilizando el cociente de Rayleigh, de la forma

12
t)dt
M — min mix _Jo ¥ (Dt
sker vest [ p(t)v3(t)dt
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donde S* es un subespacio de dimensién k.

La eleccién del espacio H dependera de las condiciones del problema en 0f).
En el caso de condiciones de borde de tipo Dirichlet tomaremos H = H}(1),
mientras que para condiciones de tipo Neumann tomaremos H = H*(Q).

Ya que Hj(Q2) € HY(Q), si A es el k-ésimo autovalor del problema (5.6) con
condiciones de borde Dirichlet y A} es el correspondiente a condiciones de borde
Neumann tenemos que

Ay < AD

y por lo tanto
Np(A, Q) < Ny(A, Q).

Ahora, si tenemos U;I; C € con I; intervalos abiertos disjuntos, nos interesa
saber que relacién existe entre las funciones Np(A,1;), Np(A,Q), Nyv(A\, L) y
Ny (A, Q).

Para esto necesitamos un resultado auxiliar que demostramos a continuacion.
Proposicién 5.2.2. Sea Q = (a,b), y ¢ € (a,b). Entonces,
Hy (1) ® Hy(I) € Hy(Q) € HY(Q) C H'(I,) ® H'(I,)
donde Iy = (a,c) y Iy = (¢, b).
Demostracion. Demostramos cada una de las inclusiones:

o Hy(I) & Hy(I2) C Hy(Q)
Sive H) (1) & Hy (1) existe v; € HY(I;), con ¢ = 1,2, tal que

vi(x) st xzel

v(z) = { vo(x) si x € L.
Dada v; € Hj(I;) existe una sucesién {v;, },, € C5°(I;) tal que
| vin, — UiHHl(Ii) — 0,

donde la norma esta definida como [|v||g1 = ||v]|2 + ||v'[|2 en el intervalo corres-
pondiente.
Si definimos

on(z) = vin(z) st x €,
e 0 si ze€d(l1Ul)

tenemos que {v,}, € C°(Q) y v, — v en H(Q) ya que
lvn = vl = [[(vin +v2) = (V1 + v2) [0
< v = villa@) + |[van — vall a1

= |lvin = villmry + vz — V2|l 51 (1)
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donde la iltima igualdad vale por tener las funciones v;,, v; soporte compacto en
I;.

o H(Q) € H'(Q)
La inclusion es directa.
o HY(I) Cc HY(I,) ® H'(I,).

Si v € HY(Q), entonces v € L*(Q) y existe g € L*(Q) tal que para toda
¢ € C5°(Q)

/Qv(t)gb’(t)dt = —/Qg(t)QS(t)dt. (5.7)
Si definimos, para i = 1,2,
oy Jou(e) st wel oy Joekx) st zel
vi() = { 0 en otro caso, gi(x) = { 0 en otro caso, (5-8)

tenemos que v;, g; € L*(I;).
Sea U € Cf°(I;). Como I; C 2 tenemos que ¥ € C§°(Q2) y por lo tanto
evaluando la ecuacion (5.7) en ¥ llegamos a que

[p@v@ﬁ:—lp@W@%

por ser W de soporte compacto en I;.
Luego, por (5.8)

lw@vwﬁz—l%@wmm

y por lo tanto v; € H'(I;).
Como los intervalos I, Iy son disjuntos, si x € I; U I, tenemos que

{vl(:v) si €l

v(z) = ve(x) si x € Iy,

y por lo tanto v € H'(I;) ® H'(I3).

Proposicién 5.2.3. Sea I = (a,b), y ¢ € (a,b). Entonces,
Np(A L U L) < Np(A I) < Ny(\ I) < Ny(A, I U L)
donde I} = (a,c) y I, = (¢, b).

Demostracion. Sea €2 un conjunto abierto y H(€2) un espacio de Hilbert.
Definimos para S*, subespacio de dimensién k contenido en H(SQ),

M(S¥) = mix -2 v (e

vest [o, p(t)v?(t)dt (5.9)
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Dependiendo de las condiciones que demos al problema (5.6) tendremos que de-
mostrar las cosas para Np o Ny.

Supongamos primero que la condicién en 92 del problema (5.6) es de tipo
Dirichlet.

Sean {A\; }x v {\?} las sucesiones de autovalores correspondiente al problema
(5.6) cuando Q = Iy Q = I, U I, respectivamente.

Utilizando la definicién min-max de Courant y la definicién (5.9), podemos
expresar los k-éstmos autovalores como

AL = min M(S*) con H = Hi(I)
SkeH
A2 = min M(S*) con H=Hj(L)® H(I).

SkeH
Por la Proposicién (5.2.2) sabemos que H} (1) ® Hy(Iz) € H(I), con lo cual
AL <AL
Luego, dado A > 0 tenemos que
# kX <A < {k N <A
y por lo tanto

Np(A\, 1 UL) < Np(A, ).

Supongamos ahora que la condicién en 9 del problema (5.6) es de tipo
Neumann.
Al igual que antes definimos dos suceciones de autovalores, {3}, v {A\%},
correspondientes al problema (5.6) cuando Q2 = I y Q = I; U I, respectivamente.
Definimos
A} = min M(S*) con H=H(I)
SkeH
A= min M(S*) con H=H'(L)® HY(L).
SkeH
Entonces, por la Proposicién (5.2.2) sabemos que H'(I) C H(I) ® H' () y
por lo tanto
A <AL

Dado A > 0 tenemos que
#{k:AigA}g#{kz:)\ﬁgA}

y por lo tanto
Ny(M\T) < Ny(A\ LU D).
]

Observacion 5.2.1. La Proposicion anterior se puede extender, por induccion,
a una union finita de intervalos abiertos disjuntos.
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Proposicién 5.2.4. Sea I; un intervalo abierto (1 <i<n), con ;NI; =0 para
i # j. Entonces

n

N L) = iN()\,Ii) (5.10)

i=1

Demostracidén. Sea y' una autofuncién del problema (5.6) en Q = I; correspon-
diente al autovalor \’. Si la extendemos como cero por fuera de I;, serd autofun-
cién para el problema cuando = J_, I; correspondiente a cierto autovalor A.

Entonces,
n

i=1 i=1
Por otra parte, si A es un autovalor con autofuncién y del problema (5.6)
cuando Q = |JI, I;, para toda funcién v € Hj(§2) tenemos que

/Qy’(t)v’(t)dtz /\/p(t)y(t)v(t)dt.

Q

Si v es de soporte compacto en I;, la autofuncién y |;, es una solucién débil
del problema cuando 2 = I;.

Ya que la funcién y € C?*(2), se tiene y |7, es una solucién clésica de (5.6) en
2 = I;. Luego, si y |1, no es identicamente nula, A sera autovalor del problema en
I; y por lo tanto

N(A, U ) > Z N\ T).

]

Ya tenemos las herramientas necesarias para poder ver cual es el comporta-
miento asintético de la funcién N () para el problema de segundo orden cuando
las condiciones de borde son de tipo Dirichlet o Neumann.

Teorema 5.2.1. Seap € C|a, b] no negativa. Sea { A} la sucesion de autovalores
del problema
v+ Ap(t)y = 0 t € (a,b)
5.11
b 2 = 6 o1y

Entonces

1/2 b
N (a,b) = 2 / Vp)dt + o(AV?) (5.12)

™

cuando A — 0.

Demostracion. Sean a =ty < t; < ty < --- < t,, = b puntos correspondientes a
una particién del intervalo [a, b].

Para 1 < i < n definimos los intervalos I; = (t;_1,t;). En cada uno de ellos
consideramos los siguientes problemas auxiliares:
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(a) y' +apt)y = 0 te (i)

y(tia) =y(t) = 0,

(b) y' +upp(t)y = 0 t e (tio1, t;)
y(tia)=y'(t) = 0.

Por la Proposicién (5.2.1) tenemos que

Ny(A, (tica,t:)) < %ﬂ\/ﬁi(ti_ti—l)
)\1/2
Np(A, (ti-1,t:)) > —\/_'( — 1) — L.
donde
M; =méx {p(x): x € [ti-1, ]}
m; =min {p(z):z € [ti1,t:]}.
Sea ¢ > 0 fijo.

Como +/p es integrable, para n suficientemente grande tenemos que

zn:\/ﬁi(ti—ti—l) < /b\/p(t)dtJrg
me—ti_l) > / Vp)dt — e.

Entonces

)\1/2

ZNN (i, t) < T(/ab\/gﬁdwe)

)\1/2

ZND (i t) > T(/:Mdt—e)—n.

Ahora, por las Proposiciones (5.2.3) y (5.2.4) tenemos que

ZND ) z 17 ) ZNN ) Z 17 )7

y finalmente

A (/ \/_dt—s>—n<N()\ () <20 (/ \/_dt+€)-

Luego

3 |
"

(/ Vp(t)dt — ) AWSN(AAU{ZZ} %(/ \/_dt+€)
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Cuando A — oo tenemos que )\?/2 —0y
)\1/2
N\ (a / Vot)dt + o(A\V?)
como queriamos demostrar. O

Observacion 5.2.2. Si consideramos el problema

YV +Ap(t)y = 0 t € (a,b)
y(a)=y'() = 0

se puede demostrar, de igual manera que la Proposicion (5.12), que el comporta-
miento asintdtico de la funcion N(X) también es de la forma

)\1/2

N\ (a /\/ (t)dt + o(A/?)

cuando A\ — 00.

5.2.2. Problema de segundo orden en un intervalo no aco-
tado

Ahora vamos a estudiar el problema de segundo orden definido en un intervalo
no acotado. Seguimos las ideas de [15].
Definimos el problema

Y +Apt)y = 0 te(a,00)
y(a ; 0 (5.13)

lim ¢/(t) = 0,

t—o00

donde A pardmetro positivo, y p € C([a, o0)) no negativa y mondtona, que satis-
face la condicion (5.2).

Proposicién 5.2.5. Sea p € C([a,0)) una funcién no negativa, mondtona que
satisface la condicion (5.2). Sea {\}r la sucesion de autovalores del problema
(5.13) y sea N(\) la funcion correspondiente al problema que cuenta el nimero
de autovalores menores o iguales a \. Entonces

/ Vp(t)dt + o(\Y?)

/\1/2

cuando A — 0.

Demostracion. Sea € > 0 fijo.
Por la observacién (5.1.1) existe T. > a tal que

/TOO\/Mdt<§.
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Consideramos el problema auxiliar

V' +ppt)y = 0, te(a,T1y)

@) =v(T) = 0 (5.14)

Para este problema existe una sucesién {ju }r de autovalores simples. Ademés,
la autofuncion vy correspondiente al autovalor py, tiene (k—1) ceros en el intervalo
(a,T%).

Sea yi la autofuncién correspondiente al autovalor A, del problema (5.13).
Como vimos en el capitulo (2) dicha autofuncién tiene exactamente (k — 1) ceros
simples en el intervalo (a, c0).

Entonces

Ak < g

Si fuera u < Ak, por el Teorema de Separacion de Sturm, entre dos ceros de
vk deberia haber un cero de y. Pero esto implica que y; tiene por lo menos k
ceros en el intervalo (a,T.) C (a,o0) lo que es imposible ya que en dicho intervalo
puede tener a lo sumo (k — 1) ceros.

Luego, para A > 0 tenemos

# ke <A} <F#F{k A <A

lo que implica que

N\ > N, (a,T2)) (5.15)

donde N (A, (a,T:)) es la funcién que cuenta el nimero de autovalores menores o
iguales a A del problema (5.14).

El comportamiento asintético de N(A, (a, T:)) estd dado por el Teorema (5.2.1),
por lo tanto, para todo A > A(e) = A,

\L/2 T

N0 T) 11" i <

a

Por un lado tenemos que

N(/\;\(IC/LQ,TE)) > %/ pdt— (5.16)
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Ahora, dividiendo (5.15) por A2 y utilizando la cota (5.16)

N(A) N(A, (a, 1))
N A\L/2

[V

| =
o3

=

=

QU

~

|

DO ™

(AV4
3 |
N

8

3
=

QU

~

|
N |

|
N | ™M

para todo A > A.. La otra desigualdad se prueba de forma similar quedando
demostrado lo que queriamos. O

En una primera instancia vamos a tratar de encontrar una cota superior para
la funcién N(A) del problema (5.13) aunque no sea la éptima.

Proposicién 5.2.6. Sea p € C([a,0)) una funcion no negativa, mondtona que
satisface la condicion (5.2). Sea {\}r la sucesion de autovalores del problema
(5.13) y sea N(A) la funcion correspondiente al problema que cuenta el nimero
de autovalores menores o iguales a \. Entonces

N()) < 2\ /Oo Vp(t)dt +1

™

para todo A > 0.

Demostracion. Sea y, la autofuncién correspondiente al autovalor A\g el k-ésimo
autovalor del problema (5.13). Sabemos que dicha funcién tiene k ceros en el
intervalo [a, 00). Sea t, el tltimo cero de yj.

Definimos el siguiente problema auxiliar

V' +ppt)v = 0, te€(a,ty)
v(a) =v(t,) = 0.

Consideramos el autovalor py—1 (k > 2) de este problema. Como el peso p es
mondtono, utilizando la cota de Nehari calculada en el capitulo (3) tenemos que

w2 (k —1)?

1 (J Vo)

HUk—1 >
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Para este autovalor existe una unica autofuncion v,_; con k ceros en el intervalo
la,t.]. Ya que la autofuncién yy es solucién del problema

Y+ Xp(t)y =0, te(ats)
y(a) = y(t.) =0

con k ceros en el intervalo [a, t.], tenemos que A\, = p_1 en dicho intervalo.
Entonces

2k —1)? - w2k —1)?

L(f0 Vatan) A ([ Vetds)

Ap >

y por lo tanto

N = #{k:\ <\

2 _12

(Ve

™

- #{k:ngAl/Q/am\/@dt+1}

2A1/2 9]
< / Vp(t)dt + 1.

7r
[

Ahora vamos a calcular una cota éptima por arriba de la funcién N(X) del
problema (5.13).

Proposicién 5.2.7. Sea p € C([a,0)) una funcion no negativa, mondtona que
satisface la condicion (5.2). Sea {\}r la sucesion de autovalores del problema
(5.13) y sea N(A) la funcion correspondiente al problema que cuenta el nimero
de autovalores menores a A. Entonces Entonces

/Oo Vp(t)dt + o(AY?)

/\1/2

N\ < —

<™
para todo A > 0.

Demostracion. Sea T tal que

/Tw\/@dt<§.

Fijamos A > 0. Sea A, el mayor autovalor del problema (5.13) menor o igual
a A
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La autofuncion y,, correspondiente A, tiene exactamente n ceros en el intervalo
[a, 00). Por lo tanto nos basta con encontrar una cota para la cantidad de ceros
de la autofuncién para obtener una cota para N(\) = n.

Sea j el nimero de ceros de la autofuncién y,, en el intervalo [a,T.] y (n—j) el
nimero de ceros en el intervalo (7;, 00). Podemos suponer que la autofuncién no
se anula en 77, ya que de hacerlo nos basta con movernos a un punto 7, = 7. + 6
con ¢ suficientemente pequeno y usar este punto como corte para el intervalo
la, 00).

En primer lugar vamos a buscar una cota para la cantidad de ceros de la
autofuncién en el intervalo [a, T¢].

Sea t* el ultimo cero de y,, en el intervalo (a, T|.

Consideramos los siguientes problemas auxiliares

y' +up(t)y = 0 te(ath)

y(a) = 0 (5.17)
y(tr) = 0

y' +uvplt)ly = 0 t € (a,T2)
y(a) = 0 (5.18)
y(1:) = 0

Sean {pu }r v {vk }x las sucesiones de autovalores correspondientes a los problemas
(5.17)-(5.18),

Llamaremos N (A, (a,t)) v N(A, (a,T.)), respectivamente, las funciones que
cuentan los autovalores menores o iguales a A de estos problemas.

Usando la caracterizacién min-max de Courant, los k-ésimos autovalores de
los problemas (5.17)-(5.18) se definen como
, [Tt
pr = min  mix —St———,

skeHg (lat*]) vest [ p(t)v?(t)dt

[T (t)dt

a

v = min max - .
SheHy (o To]) vest [ p(t)v(t)dt

donde S* es un subespacio de dimensién k contenido en Hg ([a, t*]), 0 en H}([a, T])
segun corresponda.
Ahora, como H{([a,T.]) C H{([a,t*]) tenemos que

Vg < k-
Por lo tanto

#k e <A <F kv <A}

N\ (a,£)) < N\, (0, T0)). (5.19)

La autofuncién correspondiente al autovalor p;_; tiene j ceros en el intervalo
[a,T.]. Ya que la autofuncién y, es solucién de la ecuacién y” + \,p(t)y = 0
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n [a,T.] con la misma cantidad de ceros en dicho intervalo, por el teorema de
separacién de Sturm tenemos que

fi—1 = Ap <A

Entonces
=1 <#A{k:p <A} =N (a, 1))

Luego, utilizando la cota (5.19) llegamos a que
J< N\ (a,T:)) + 1. (5.20)
Ahora, sabemos que cuando A — oo

1/2
N\, (a,T.)) AT \/ t)dt + o(AY?).

Entonces, dado ¢ existe un \. tal que para todo A > A, tenemos que

1/2
N, (a,T7)) < A \/ t)dt + \Y%e. (5.21)

Por (5.20) y (5.21) tenemos que

/\1/2
PR I
N (5.22)
< / Vp(t)dt + N + 1.
Consideramos ahora el siguiente problema auxiliar
y' +p(t)y = 0, te(t™, 00)
y(t=) = 0 (5.23)
0

’ / o
Jmy ® =

donde t** es el primer cero de la autofuncién y, en el intervalo (7%, c0).

Sea {7V}« la sucesién de autovalores del problema y N (A, (t**,00)) la funcién
que cuenta el numero de autovalores menores o iguales a \.

Segun definimos en el capitulo (2) tenemos que

Yn—j =1inf {7 € (0,00) : y(t,7) es la tinica solucién
del problema (5.23) que tiene al menos
(n — j) ceros en el intervalo [t**, o) }

A =1nf  {X € (0,00) : y(t,\) es la tnica solucién
del problema (5.13) que tiene al menos
n ceros en el intervalo [a,00) }
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Como la autofuncion y,, se anula en t** y tiene (n—j) ceros en el intervalo [t**, c0)

’7ng<>\

Ahora, como A, < A tenemos que

(n—j) < #{k : % < A} = N, (£, 9)). (5.24)

La Proposicion (5.2.6) es aplicable al problema (5.23) y por lo tanto tenemos

que
/ Vp(t)dt + 1.

Como T, < t**, y por las hipétesis sobre ,/p

/too Vp(t)dt < /Too Vp)dt < e/2.

1/2 A2z
(n—j) < 22 / (5.25)

Finalmente por (5.22) y (5.25) llegamos a que

)\1/2

N\, (£, 00

Entonces

NA)=n = j+(n—j)

/\1/2 )\1/2
< ( / N dt+>\1/25+1) ( 6+1)
T
/\1/2
< / Vp( dt+A1/2(1+ )€+2
) ) . 2
Como € > 0 es arbitrariamente chico, y — 0 cuando A — o

)\1/2

)\1/2
N(\) < / Vpt)dt + o(AV?).

El siguiente resultado es consecuencia de las Proposiciones anteriores.

Teorema 5.2.2. Sea {\;}r la sucesion de autovalores del problema (5.13). Sea
p(t) una funcion positiva, continua y mondtona en |a,00) satisfaciendo la condi-
cion (5.2). Entonces, el comportamiento asintotico de N(\) estd dado por

/ Vp(t)dt + o(\?) (5.26)

)\1/2

cuando A — 0.
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5.3. Analisis del problema de cuarto orden

5.3.1. Introducciéon al problema de cuarto orden

Cuando analizamos el problema de segundo orden la teoria de Sturm fue
fundamental para poder analizar el comportamiento de la funcién N(X).

En problemas de mayor orden nos encontramos con el incoveniente de no tener
una teoria general, similar a la de Sturm.

El problema de cuarto orden fue abordado en detalle por Leighton y Nehari
en [11]. Estudiaron propiedades generales de las soluciones de ecuaciones del tipo

(y")" —q(t)y =0, tela,00) (5.27)

con q € C([a,00)) no negativa y el problema asociado de autovalores.

Enunciaremos los conceptos fundamentales que necesitamos para el desarrollo
de nuestro problema de cuarto orden demostrados por Leighton y Nehari en dicho
trabajo.

Propiedades generales de las soluciones y teoremas de separacion

El siguiente teorema que nos da una cota para la cantidad de ceros en los
cuales pueden diferir dos soluciones cualesquiera de (5.27).

Teorema 5.3.1. Sea y1(z) y yo(x) dos soluciones no triviales de la ecuacion
(5.27) que cumplen yi(a) = y1(b) = yo(a’) = y2(V/) =0, con 0 < ¢ < a <
b <l. Sean r y s la cantidad de ceros en el intervalo [a,b] de y1(z) y ya(2x),
respectivamente. Entonces

r—3<s<r+3.

Problema asociado de autovalores

Consideramos el problema de autovalores

)" =p(t)y = 0 t€(ab)
yla) =y'(a) = 0 (5.28)
y'(b) = 0.

con v parametro positivo, y p € C([a, b]) no negativa.
Para este problema existe una sucesion {7}, de autovalores positivos que se
definen como

[P (t)dt

r = min mix —2

SkeH veSk fabp(t)v2(t)dt
donde H = {v € L*([a,t]) : v(a) = v/(a) = 0},
Vamos a mencionar solo dos aspectos de interés para el resto del capitulo que

se refieren a esta sucesién de autovalores. Estos fueron demostrados por Leigthon-
Nehari en [11].
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Teorema 5.3.2. Sea p € C([a,b]) no negativa. Sea {x}r la sucesion de autova-
lores del problema (5.28). Entonces:

(i) Todos los autovalores del problema (5.28) son simples.

(i) La autofuncion yy correspondiente al autovalor ~y tiene k — 1 ceros simples

en (a,b).
Se tiene ademads el siguiente resultado andlogo al de segundo orden:

Teorema 5.3.3. Sea p € C([a,b]) una funcion mondtona no negativa. Sea {7y}
la sucesion de autovalores del problema (5.28). Entonces,

1/4 pb
N(\, (a,b)) = A / V/p(t)dt + o( A

™

cuando A\ — o0.

5.3.2. Puntos conjugados

Sea y(t) una solucién de la ecuacién (5.27) que tiene por lo menos j + 3 ceros
en el intervalo [a, b] que cumplen

a=1t <ty <---<tj3<b

con j > 1.

Definimos el j-ésimo punto conjugado de a como el minimo valor posible ¢
tal que existe una solucién de la ecuacién (5.27) en [a,c| con j + 3 ceros en este
intervalo. Notaremos este punto como 7;(a).

Es decir, este punto define el intervalo [a, n;(a)] més pequefio, en donde existe
una solucién de la ecuacion (5.27) que tiene exactamente j + 3 ceros (contando
las multiplicidades posibles).

A una solucién de (5.27) que se anula en los puntos t = a,n;(a), y tiene
exactamente (j+3) ceros en el intervalo [a, n;(a)] la llamaremos solucidn extremal.

El siguiente Teorema fue demostrado por Leighton y Nehari en [11]. Dicho
teorema garantiza la existencia del punto conjudado y de la solucién extremal.

Teorema 5.3.4. Sea j > 1. Si existe una solucion y(t) de (5.27) tal que y(a) =0
y tiene por lo menos j + 3 ceros en |a,00), entonces existe un punto n;(a), con
nj(a) > a, y una solucion y;(t) de (5.27) con las siguientes propiedades:

1. Los ceros de la solucion y;(t) ent =a yt =mn;(a) son dobles.

2. La solucion y;(t) tiene exactamente j + 3 ceros en [a,n;], donde los dos
ceros dobles son contados con su multiplicidad. Ademds, los ceros en (a,n;)
son simples.
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5.3.3. Problema de autovalores de cuarto orden en [a, o)

Vamos ahora a estudiar el problema

@) = )y = 0  te(a,00)

y(a,A) =y'(a,A) = 0 (5.29)
thmy( )\):th'm y”’(t,)\) = 0.

donde A\ pardmetro positivo, y p € C([a, 00)) no negativa, mondtona que satisface
la condicién (5.2).

Sea {Ar}r la sucesién de autovalores del problema (5.29). Sabemos que la
autofuncién yy, correspondiente al k-ésimo autovalor (k + 1) ceros en el intervalo
[a, 00).

Sea £ > 0. Por la Observacién (5.1.1), la funcién p es integrable y por lo
tanto existe T, > a tal que

/Too%dt<§.

El Teorema (5.3.3) nos garantiza la existencia de soluciones de la ecuacién
del problema de cuarto orden con un numero fijo de ceros, siempre y cuando
tengamos garantizada la existencia de una soluciéon que se anule en el punto a
y tenga por lo menos 4 ceros en el intervalo [a,00). Como vamos a hacer uso
de este teorema, necesitamos que los valores de A\ sean tales que la autofuncion
correspondiente tengan por lo menos cuatro ceros en [a, 00).

Para esto hacemos uso de la Observacion (2.3.1) del capitulo (2) que nos
garantiza la existencia de un valor Ay tal que para todo A > Ag la solucion
correspondiente y(¢, A) tiene por lo menos 4 ceros en el intervalo [T, 00), y en
consecuencia en [a, 00).

Sea A\, con k > 5, el k-ésimo autovalor de nuestro problema que verifica

)\k > )\0.

Por como elegimos el autovalor, la autofuncion asociada y;, tiene por lo menos
4 ceros en el intervalo [T, 00).
Entonces, tenemos una solucién de la ecuaciéon

(") = Mp(t)y =0

que se anulta en a y tiene (k + 1) = (k — 2) + 3 ceros en el intervalo [a, 00).
Aplicando el Teorema (5.3.4) existe un punto 7;_s(a), y una solucién extremal
y con (k—2)+3 =k +1 ceros del problema

(y//)// )\p(t) — O
y(a) =y'(a) = 0 (5.30)
Yy(Me—2(a)) =y (Me—2(a)) = 0.

Sabemos ademéds que los (k — 3) ceros de la solucién y en (a, nx—2(a)) son simples.
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El inconveniente con el problema (5.30) es que el intervalo en el cual esta
definido depende de k.

Vamos a buscar un problema me de informacién sobre (5.30) pero que no
dependa de k. Vamos a buscar una cota inferior para el punto ng_o(a).

Lema 5.3.1. Sea ny_s(a) el (k — 2)-ésimo punto conjugado de a. Entonces
Me—2(a) > 1.

Demostracion. Supongamos que n_a(a) < T..

Si h represnta la cantidad de ceros de la autofuncién yy en el intervalo [T, 00),
tenemos (por como se eligi6é k) que h > 4 y, en el intervalo [a, T.) tendremos a lo
sumo (k + 1) — h ceros.

Sea s* el primer cero de ¥ en (a,ng_2(a)] y t* el dltimo cero de y;. Entonces,

a< s <mpola) <T. <t
Si analizamos lo que sucede en el intervalo [s*, nx_o(a)]
» la autofuncién yy tiene a lo sumo (k+1—h) —2 = (k— h — 1) ceros
» La solucién extremal ¥ tiene exactamente (k+ 1) — 2 = k — 1 ceros.

En ambos casos, al contar la cantidad de ceros, estamos excluyendo el cero doble
que tienen en a.

El nimero de ceros en el que difieren ambas soluciones es h. Como las funciones
Yk, Y son soluciones de la ecuacién (y”)” — A\ep(t)y = 0, por el Teorema (5.3.1) la
cantidad de ceros de ambas soluciones en el intervalo [s*, n_o(a)] puede diferir
en a lo sumo tres. Pero llegamos a un absurdo ya que h > 4.

]

Vamos a hacer uso de la existencia del punto conjugado para encontrar una
cota inferior para la funcién N () del problema (5.29).

Teorema 5.3.5. Sea N(A) la funcion que cuenta el nimero de autovalores me-
nores o iguales a A del problema (5.29). Entonces

/\1/4
/\/ (t)dt + o(AV/4)

cuando A — 0.

Demostracion. Consideramos el siguiente problema de autovalores
)" =pt)v = 0 t € (a,m-2(a))
v(a) =0(a) = 0 (5.31)
v(mk—2(a)) = v'(ne—2(a)) = 0

Sea {7,}; la sucesién de autovalores de este problema. La autofuncién corres-
pondiente al autovalor v,_» tiene (k4 1) ceros en el intervalo [a, 75_2(a)].



5.3. ANALISIS DEL PROBLEMA DE CUARTO ORDEN 67

Como la solucién y de la ecuacién (y”)” — \gp(t)y = 0 satisface las condicio-
nes de borde del problema (5.31) y también tiene (k + 1) ceros en el intervalo

[a, nk—2(a)], tenemos que

Sea {f1;}; la sucesién de autovalores del problema

(W —ppt)w = 0 te(a,T:)
w(a) =w'(a) = 0
w(T,) =w'(T.) = 0.

Como HZ([a,T.]) C H([a,nr—2(a)] tenemos que
V-2 < fhi—2- (5.33)

Por (5.32) y (5.33) tenemos
/\k S Me—2- (534)

Dado A > 0, si N(A, (a,T:)) = #{j : u;j < A}, tenemos que
# o KA =2+ #{7 2 KA <2+ #{k N <A

y por lo tanto
N(A) =2 N(A, (a,T)) — 2.

Por el Teorema (5.3.3) sabemos que el comportamiento asintético de N(A, (a, 1))

es )\1/4
N, (a, / Vpt)dt + oAV
Luego, para € > 0 existe A\l > 0 tal que para todo A > \!
N, (a,T.)) I 5
L—jm—— ’ @MWﬂﬁé
Entonces
N _ N (a,Ty)) 2 I e 2
U U VR MR CAUE A R O

1 [, 1 [~ £ 2
= = Ypydt—= [ Vpl)dt—=———
ﬂ_/c; p() T T, p() 2 A1/4

v

1 [>, e € 2

;l Vet =5 =5 =5
1 [, 2

— ;/a \/p(t)dt—€—m

Como € > 0 es arbitrariamente chico — 0 cuando A —

2
Y \1/a

)\1/4
N(\) > / Vp(t)dt + oAV,

y el Teorema queda demostrado. O]
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Para la demostracion del préximo teorema necesitamos el siguiente resultado
que nos da una cota inferior para k-ésimo autovalor del problema (5.29). Aplica-
remos la cota de Nehari calculada para el menor autovalor de problemas de orden
2m en un intervalo finito (a, b).

Proposicién 5.3.1. Seap € C([a,>)), no negativa y monotona. Sea Ay, (k > 3),
el k-ésimo autovalor del problema (5.29). Entonces

4 o 4 k 4
/[ iz (5] aif (5.35)
donde [.] indica la parte entera, y Ajqy es el primer autovalor del problema

(Y)Y = Ap(t)y = 0, te(0,1)
y(0)=y'(0) = 0
y//(1> — y”/(l) — O

Demostracion. Sea Ay el k-ésimo autovalor del problema (5.29). Como k > 3
tenemos que
k=3m+r con m>1 y 0<r<2

Sean a = t; < ty < --- < t3,, los primeros 3m ceros de la autofuncion y;
correspondiente a \,. Sabemos que el cero de esta autofuncién en t; es doble
mientras que el resto son ceros simples.

Definimos para 1 < ¢ < m los intervalos

[a;, b;] = [t1, 3] sioi=1
v tag-1).tz] si 2<i<m

Una primer cota que podemos encontrar para el lado izquierdo de la desigual-
dad (5.35) es la siguiente:

(e e] t3m
A/ / Vpitydt > n/* / Vp)dt
(5.36)

m b;
~ Yo / oL
i=1 ai

Cada uno de los términos de la sumatoria podemos asociarlo con un problema
conveniente en un intervalo finito. Buscaremos entonces una cota para cada uno
de los terminos de la sumatoria.

En el intervalo [a;, b;] la autofuncion y; es solucién de la ecuacién

(y//)// _ )\kp(t)y — O

y tiene exactamente 4 ceros. Entonces, por el Teorema (5.3.4) para cada a; existe
el punto conjugado 7;(a;) y una solucién del problema

") = Mp(t)y = 0 te (a,mla))
y(a;) =y'(a;) = 0 (5.37)
y(m(ai) =y (m(a;)) = 0.
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Ya que los ceros de la solucion del problema (5.37) en a; y m1(a;) son dobles,
la solucion es distinta de cero en el interior del intervalo. Luego, dicha solucién
corresponderd a la autofuncién asociada al menor autovalor v, del problema

()" —p(t)y = 0 t € (ai,m(a;))
( )— '(az) = 0
) = o.

Como los autovalores de este problema son simples, tenemos que A\, = 7, ¥
utilizando la cota de Nehari calculada en el Capitulo (3)

1/4/ Vpt)dt > Ay (5.38)

7

Por otro lado, el punto conjugado 7;(a;) verifica que
m(a;) < b;.

Entonces,

(ai

b; m(a
A / Vp(t)dt > A}/‘* \/ Bt > A,
Ahora, a partir de (5.36) tenemos que
A 14 AL k 1/4
/ Vp(t)dt = ZA[O p=m-Agy = H Apap

y el Teorema queda demostrado. O

Teorema 5.3.6. Sea N(\) la funcion que cuenta el nimero de autovalores me-
nores o iquales a A del problema (5.29). Entonces, cuando A — oo

A) < ONVA / h Vp(t)dt + o( A4

3
1/4 "
[0,1]

con C =

Demostracion. Sea { g} la sucesion de autovlaores del problema (5.29). La Pro-
posicién (5.3.1) nos da la cota inferior para el k-ésimo autovalor

[k /3] ) k/3-1)
V! (f \/_dt> -A[O,l} > (W) -A[o,l}
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Sea A > 0. Entonces,

NO) = #{k: X\ <A}

{k' (faoo Wc&) A[0,1]<)\}

3 0o
= {/{Z k S WA1/4/ \4/ p(t)dt+ 3}

[0,1]

IN

3 00
S W)\l/4 / \4/ p(t)dt + 3

Aoy

y el Teorema queda demostrado. 0



Capitulo 6

Comentarios Finales

Los resultados del capitulo anterior se pueden extender parcialmente a los
siguientes casos:

i) Ecuaciones lineales de orden 2m.

ii) Ecuaciones no lineales de tipo p—laplaciano de segundo orden.

iii) Problemas donde p'/?™ ¢ L(a,c0).

Mencionemos brevemente cada uno.

i) Ecuaciones lineales de orden 2m

Consideremos el problema
y™) + Ap(t)y = 0, t € (a,00) (6.1)

donde m > 3 es ntimero natural, A es un pardmetro positivo, y p € C([a,>0))
positiva.

En este caso la demostracion es analoga, sélo que son necesarias ciertas mo-
dificaciones técnicas (por ejemplo, evitar los teoremas de Sturm). La desigualdad
de Nehari da una cota inferior de los autovalores.

Para una cota superior, se deben definir de manera analoga los puntos conju-
gados, y utilizar ademas el siguiente lema:

Lema Sea n;(a) el j-ésimo punto conjugado, y la solucion extremal y; con
J+2m — 1 ceros. Entonces, para todo € > 0, existe una solucion z de

2™ 4 Ap(t)z = 0, t€ (am;(a) +e)

que tiene j + 2m — 1 ceros simples.

Esto permite hallar cotas superiores de los autovalores del problema (6.1),
comparando con los de un intervalo fijo [a,T%], y el resto de la demostracion es
similar.
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ii) Ecuaciones de tipo p—laplaciano

Consideramos el siguiente problema en (a,c0), con a > 0
(19'1"72) + Ag(@)lyl" 2y = 0, t € (a,00), (6.2)

con las condiciones de borde

_ o YO
y(a) =0, tlggo i 0, (6.3)

donde 2 < p < 0 y el peso g es una funciéon continua y positiva tal que

(H1) / g(z)dr < o0, tlim t”l/ g(x)dz = 0.
a —oo t

Kusano y Naito probaron en [7] la existencia de una sucesién {\;}x de au-
tovalores para el problema (6.2), con condiciones de borde (6.3), y donde g
es una funcién continua y positiva satisfaciendo (H1). Ademds, sabemos que
la autofuncién y; correspondiente al autovalor A\, tiene exactamente n ceros
a=1 <ty < <t

Asumiendo que ¢g*/? € L(a,c0) tenemos:

Teorema 6.1. Sea {\}x la sucesion de autovalores del problema (6.2)-(6.3),
con g''? € L'(a, o0) satisfaciendo (H1). Entonces,

k1)
AP > 7;5( :
b2 g r(a)da

Demostracion. Aunque para estos autovalores no tenemos la expresion en forma
varacional, para cualquier A, y autofuncién y;, podemos utilizar la desigualdad
de Nehari (3.30).

Sean t;_1, t;, dos ceros consecutivos de la autofuncion y;. La restriccion de y;
en [t;_1,t;] es la primer autofuncién del problema

(1Y'1P2) + pg@)yl—2y = 0, t€ (tis,t)
y(ti-)) = 0
y(t:) = 0
y p1 = Ak, ya que y, es una soluciéon que no cambia de signo.
Ahora, para 2 < i < k tenemos por la desigualdad (3.30) del Capitulo (3)

1/p ; 1/p T
ti—1

lo cual da
] k t;
i k—1
N[ e SN [ e > EZD
a i=2 ti-1 2

y el teorema esta probado. O]
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Como los teoremas de comparacién y oscilacién de Sturm son validos para el
p-laplaciano, se puede seguir como en la demostracion del problema de segundo
orden.

iii) Problemas singulares

Recordemos que el peso en el problema (2.1) satisface la condicién

/ " p(t)dt < +o0.

Es posible, entonces, que
/ 2/pdt = o0.

Por ejemplo, para m = 1, la familia de funciones
p(t) =t log™ (), 0<a<?2

cumple la primera condiciéon pero su raiz cuadrada no es integrable.

Este caso permanece abierto ain para el problema lineal de segundo orden,
y s0lo se conocen algunas estimaciones de los autovalores para estas funciones
obtenidas por Hille en [9].

Con diferentes constantes, se obtienen estimaciones similares a las de Hille
utilizando las ideas del capitulo anterior.

Una diferencia importante es que en este caso la funciéon N(\) crece més
rapido que antes, y tenemos

Teorema 6.2. Sea N(A) la funcion que cuenta la cantidad de autovalores
menores o iquales a A correspondiente al problema

Yy L gty = 0 te (a,00) (6.4)
yla,A) =
lim 9 (¢, \) 0 1<i<2m-—1,
t—
con - -
/ " g(t)dt < 0o / R/g(t)dt = oo
Entonces,
- N
S

Vamos a demostrarlo solo para segundo orden.

Demostracion. Consideramos el problema

y' +pgt)y = 0 te(a,b)
y(a) = 0 (6.5)
y(b) = 0
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Sabemos que
A\l /2 b
No(n (a.0) = 2= [ Vol + o(a?),
Aplicando el mismo razonamiento en la demostracion de la Proposicion (5.2.5)
en el Capitulo (5) tenemos que para cada valor de b

™

N(A) = Np(A, (a,b)).

Entonces,
. N()\) . Np(A,(a,b)) ’ 1/2
Yo 25 > i SR = [ o
la cual tiende a infinito cuando b — oo, y la demostracion esta completa. O

Lema 6.1. Sea A > 0 tal que
[N tatat] \ / tg(t)dt < 1.

Entonces, la solucion de la ecuacion y” 4+ Ag(t)y = 0 con t € (a,00) no se anula
en (a,00).

Observacion 6.1. Si consideramos la funcidn f(t) = t.e', cont € R, tenemos
que:

= es una funcion estrictamente creciente.

" ya que faoo tg(t)dt < oo, para cada A > 0 existe ay > a tal que

)\/OO tg(t)dt = 1/2.

ax

Teorema 6.3. Sea N (M) la funcion que cuenta la cantidad de autovalores
menores o iguales a A correspondiente al problema

v+ Xg(t)y = 0 t € (a,00) (6.6)
yla,A) =0
th'rn y'(t,A) = 0

Let a) tal que
A / tg(t)dt = 1/2. (6.7)

Entonces,



)

Demostracion. Fijado A > 0, existe a), que cumple (6.7). Sea A, el mayor auto-
valor del problema (5.13) menor o igual a A.

Sea ¥, la autofuncién correspondiente a A, de la cual sabemos tiene exacta-
mente n ceros en el intervalo [a, 00).

Como A, < A, por la Observacion A tenemos que

G[An Sy tg(t)dt] >\n/ to(t)dt < 1,
ay

y por lo tanto y, no tiene ceros en |ay, 00).
Como contar autovalores es equivalente a contar ceros, por la definicién de ay
tenemos N (), (ay, +00)) < 1, con lo cual, para A — oo, tenemos que:

N(A) ~ N(A, (a,ax)) + N(A, (ax, 00)).
Consideramos el problema
y' +ugt)y = 0
yla) = 0
) = 0.

Utilizando la desigualdad de Nehari tenemos que

N ( /aaA \/@dt)z . 7r24/€2‘

Entonces,
N (a,ay)) = #{k:pu < A}
< ki— K <)\
= # A(f; 9)dt)? }
< ko k< 2E 0 /g(t)dt)
< B ot
y el teorema esta demostrado O

Observacién 6.2. Sea g(t) = t~2log™(t). Un simple cdlculo muestra que

para ay = e”,
/\/ ttlog?dt = =1/2.
A = ety Y
Entonces,
2 62)\ 2
N(\) < —)\1/2/ t™ log™tdt +1 < =\ log(\) + 1.
™ a 7

Como N(\) /A% — oo, el término principal de la funcién que cuenta el niime-
ro de autovalores no es una potencia de \.
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