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0. Introduccion

A mediados de los afios 40, J. H. C. Whitehead define los complejos CW
([Whi49]), los cuales modelan el tipo homotopico de diferentes espacios topologi-
cos, contando entre ellos a los complejos simpliciales y las variedades diferen-
ciables. En este contexto caracteriza aquellas equivalencias homotopicas, entre
complejos CW finitos, que pueden realizarse por una sucesion de ciertas op-
eraciones -expansiones y colapsos elementales- como aquellas donde se anula
un invariante asociado: la Torsién de Whitehead de la equivalencia homotépica
([Whi50]).

Mas tarde, en la década del 60, esta construccién se aplicaria también a la
teoria de cobordismo. El teorema de s-cobordismo muestra que un h-cobordismo
es trivial si y solo si la Torsion de Whitehead asociada (a la inclusion de una de
las componentes del borde en el cobordismo) se anula.

Por otra parte, ante el interés por contar con un complejo CW finito ho-
motoépicamente equivalente a un espacio dado, C.T.C. Wall formula la Obstruc-
cion de Finitud, cuya anulaciéon da una condicién necesaria y suficiente para
contar con tal representante.

En esta tesis la exposiciéon comienza con las construcciones algebraicas,
pasando luego a la aplicacién topolégica. En el primer capitulo dado un anillo
con unidad R definimos grupos abelianos: Ko(R), K1(R), y cocientes de estos
objetos. Nuestros invariantes serdn elementos de tales grupos. En el segundo
capitulo se introducen los complejos de cadena de mddulos sobre un anillo R,
y se estudian invariantes homotopicos para estos objetos: la caracteristica de
Euler y la torsién de Whitehead. En el tercer capitulo repasamos nociones de
teoria de homotopia, e ilustraremos las anteriores construcciones aplicadas al
caso de CW-complejos.






1. K-Teoria
1.1. K,

Definiciones, ejemplos

Trabajaremos con médulos a izquierda sobre un anillo con unidad:
(R,+,0,-,1) =: R, no necesariamente conmutativo.

Definicién 1.1.1. Un R-moédulo P se dice proyectivo si todo epimorfismo se

retrae, i.e. dada una aplicacion M Lp 0, debe existir un morfismo de
R-moédulos r tal que:
for=Idp

T

M‘%"]’c P—0

Lema 1.1.2. P proyectivo equivale a que sea sumando directo de un R-mddulo
libre, o sea, que exista otro mddulo Q (un complemento proyectivo) tal que:

PoQ=~RD
para algin conjunto de indices 1.

Demo. (=) Si P es proyectivo tomamos un conjunto de generadores {z;}ics
de modo que las combinaciones lineales a coeficientes en R cubran todo P. En
particular tenemos un epimorfismo y una retraccion:

R ‘Hf - p

Notemos que P = Im(r o f) donde (r o f) es un endomorfismo idempotente de
M. Podemos definir @) como la imagen por Idy; — (r o f). Claramente:

(rof)y®(Idp—rof)

M Im(rof)@Im(Idy —rof)2P&Q

(<) Asumamos ahora que P®Q = R), y veamos cémo retraer un epimorfismo

dado: M L P — 0. Es claro que podemos retraer cualquier epimorfismo llegan-
do a un libre, eligiendo preiméagenes de una base y extendiendo por linealidad.
Entonces sumamos @Q 1d, Q@ a f y seguimos teniendo un epimorfismo (ahora
llegando a P & Q):

- R

Maa@f@IdQP@Q 0




Componiendo la retraccion desde el modulo libre, con la proyeccion a M ar-
mamos el siguiente diagrama conmutativo:

de modo que hemos encontrado una retraccion de f al tener que:
(m-7-i)o f=1Idp

O

Observacion 1.1.3. Si consideramos los R-mo6dulos proyectivos finitamente gen-
erados, podemos tomar como representantes salvo isomorfismo a los sumandos
directos de R™, con n € N (pues basta retraer un epimorfismo generador). El
conjunto de clases de isomorfismo de R-médulos proyectivos finitamente gener-
ados, Proj(R), posee estructura de monoide abeliano con la suma directa. O sea
que tenemos una operacién asociativa, con neutro, conmutativa, para la cual no
es necesariamente valida la ley de cancelacion. Nos preguntamos entonces qué
estructura surge si forzamos la ley cancelativa.

Definicién 1.1.4. (Completacion de Grothendieck)

Dado un semigrupo conmutativo .S, definimos su completacién como un grupo
G(S) y un morfismo j : S — G(S), por el cual se factoriza cualquier morfismo
de semigrupos ¢ : S — H, llegando a un grupo H.

O sea, pedimos que verifique la siguiente propiedad universal:

S TREN

J

S et G(S) (L.1.5)

N

H

Observacion 1.1.6. La imagen por cualquier morfismo de semigrupos que salga
de S resulta conmutativa, de modo que siempre podemos co-restringirnos al
subgrupo generado por la imagen, que resulta abeliano.

Aplicado a j en (1.1.5) tenemos el subgrupo < j(S) >C G(S) que por la
propiedad universal debe ser todo G(S) lo que prueba que es un grupo abeliano.

Observacion 1.1.7. Podemos construir G(S) de la siguiente forma:
Consideramos los pares (x1,22) € S X S con la suma coordenada a coorde-
nada, relacionados por:

(x1,22) ~ (y1,y2) <= Tt € S : t+x1+y2=t+y1 +a2



Podemos pensar que un par es una diferencia formal.

La aplicacion j asignard = — (z + p,p) € S x S/ ~ (tras fijar un elemento
cualquiera p € S, por ejemplo el neutro si lo hubiera), y en general no seré
inyectiva. El morfismo inducido no es otro que:

f(z1,22) = f(z1) — f(22)

Definicion 1.1.8. El K de un anillo R es la completacion de Grothendieck
del monoide abeliano de (las clases de isomorfismo de) R-médulos proyectivos
y finitamente generados:

Ko(R) = G(Proj(R)
Observacion 1.1.9. Insistimos en que dos mddulos proyectivos E y F' tales que:
[E] =[F] € Ko(R)

no seran necesariamente isomorfos, sino que debe existir un médulo proyectivo
y finitamente generado @ tal que E®Q = F®(Q € Proj(R). Observemos que @
se puede tomar libre y de rango finito (si no lo es basta sumar un complemento).
Asi,

[E]=[F] <= (3k) E@R*=FoR"

Observacion 1.1.10. Como alternativa a la descripcion anterior de Proj(R),
podemos recordar que todo moédulo proyectivo es isomorfo a la imagen por
un endomorfismo idempotente de R™ (si admite una presentacion en n gen-
eradores). Consideraremos entonces todas las matrices idempotentes para los
diferentes tamaifios posibles, actuando a derecha de vectores y caracterizaremos
cuando dos idempotentes definen modulos isomorfos.

Necesitamos algunas definiciones.

Definicién 1.1.11. Gl,(R) refiere al grupo lineal de matrices de tamafo n xn,
inversibles, a coeficientes en R. Tenemos un monomorfismo multiplicativo que
permite encajar estos grupos con n creciente, insertando un bloque y comple-
tando la diagonal con 1:

Gl (R) &> Gl,1(R)

A ( ol ) (1.1.12)

Asi conseguimos la version estable GI(R), como la unién de estos grupos bajo
las identificaciones anteriores, formalmente el colimite:

R*=GLH(R) — -+ = GlL(R) - G411 (R) —» --- — GI(R)

Notemos que es un grupo.
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Anéalogamente podemos encajar las matrices My, (R), agregando ceros, para
respetar la estructura aditiva, y conseguir la version estable: el anillo sin unidad
M(R).

M, (R) &> Mup1(R)

A ( o ) (1.1.13)

Si nos restringimos a matrices idempotentes en M(R) tendremos Idem, (R) C
Idem(R).

Lema 1.1.14. Si f € Idem(R) y g € Idem(R), entonces definirin mddulos
isomorfos Im(f) = Im(g) si y sdlo si existe a € GI(R) tal que afa™! =g.

Demo. (<) La vuelta es trivial, pues agregar ceros no altera la imagen de un
idempotente, y la conjugacion por u € Gly(R) da un isomorfismo de R-mo6dulos,
por multiplicaciéon a derecha si las matrices actuaban a derecha sobre vectores
fila.

(=) Reciprocamente, tenemos un isomorfismo de R-moédulos: ¢ : R*f — R™g
que podemos extender por cero al complemento de R"f en el dominio, y a
todo R™ en el codominio por la inclusiéon candnica. Asi, tendremos una matriz:
d € R™™, y lo mismo para: 6! =: ¢, recuperando una matriz e € R™*".
Notemos que:

(1.1.15)

Ademas (1 — f) sera idempotente si f lo era.
Tenemos una matriz inversible de tamano N =n + m:

1—f d \* (1, 0
€ 1—g L0 1,

Tal matriz conjuga nuestros idempotentes f y g, pues usando (1.1.15) resulta:
1-f d o fF 0N (1-f d _
e 1—g 0 0 e 1—g |
[ 1-F d (0 d\_(00
- e 1—g 00/ \O0 g

La estabilizacion anterior corresponde a ver los elementos en M(R), en par-
ticular en Idem(R), y considerar alli la accion de GI(R). Reformulando el Lema
1.1.14 tenemos el siguiente Corolario.

O
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Corolario 1.1.16. La aplicacion Idem(R) — Proj(R), dada por e — Im(e)
induce una biyeccion:
Idem(R)/GIl(R) = Proj(R)

Bajo esta biyeccion, la suma directa de mddulos corresponde a la suma di-
recta de matrices; si e € Idem,(R) y f € Idem,,(R) son los idempotentes que
corresponden a los mdodulos P y a Q, entonces

e 0
cor= 5}
corresponde a P ® Q.

Ejemplo 1.1.17. Si K es un cuerpo todo moédulo es un espacio vectorial, por lo
tanto libre y en particular proyectivo. La nocion de dimensién permite clasificar
salvo isomorfismo, mostrando que: Proj(K) = Ny. En consecuencia:

Ko(K) =7

Ejemplo 1.1.18. Lo mismo ocurre para un anillo R que sea dominio de ideales
principales (DIP). Por el teorema de estructura para tales anillos, un R-moédulo
finitamente generado M, debe ser isomorfo a una parte libre en suma directa
con una de torsién. Escribimos:

M = @ R/I,

n<N

para finitos ideales I, C R, donde los propios dan la parte de torsion y los
triviales la parte libre. Pero tal epimorfismo, RY — M no se retrae, en caso de
haber torsién no nula.
Asi un R-mo6dulo proyectivo finitamente generado solo puede ser libre.

Para un anillo local vale lo mismo, referimos al respecto a [Ros94, 1.3.11].

Veamos un ejemplo geométrico.

Proposicion 1.1.19. Sea A = C*(X) el anillo de funciones suaves en X a
valores reales, donde X es una variedad suave (ver 4.4.2). Podemos identificar
a los A-mddulos proyectivos finitamente generados con los fibrados vectoriales
reales O™ localmente triviales sobre X (ver 4.4.8). El isomorfismo asocia a un
fibrado E su mddulo de secciones.

(EL X)—T(X,E)={s: X - E/pos=Idx} € Proj(A) (1.1.20)

Demo. Fijado un fibrado E, las operaciones C'*°(X)-lineales entre las secciones
(suma y multiplicacion por escalares), son operaciones R-lineales en cada fibra,
mostrando que tenemos un A-moédulo. Para ver que es proyectivo y finitamente
generado basta construir un complemento a un moédulo libre de rango finito.
Usando 4.4.11 tenemos F' — X un fibrado vectorial sobre X tal que £ @ F =2
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X x RYM | cuya imagen por la aplicacién (1.1.20) da un complemento proyectivo,
pues:
INX,E)®eT(X,F)2T(X,E®F)=T'(X,X x RN) = AN

Un isomorfismo de fibrados sobre X induce un isomorfismo entre las fibras,
y -siendo una aplicaciéon C'°°- preserva secciones suaves. Reciprocamente, un
isomorfismo de A-modulos es lineal para cada = € X, i.e. actua respetando
las fibras, y es regular porque envia secciones suaves en secciones suaves. Esto
prueba la buena definicién y la inyectividad de (1.1.20).

Para la sobreyectividad, dado P un A-mo6dulo proyectivo, y un complemento
Q tal que: P® Q = AV, podemos ver los elementos de P C AN como funciones
f: X — RY y considerar:

{(z,v) e X xRV /3f € P f(z)=v} (1.1.21)

Este conjunto resulta un fibrado con la proyeccion en la primera coordena-
da. Para ver que es localmente trivial consideramos fi,..., fr € P tales que
fi(x), ..., fr(x) den una base de la fibra puntual de (1.1.21), y correspondientes
g1---gn—k € @ dando una base de la fibra asociada a @ en el punto z. Asi,
debe existir un menor de tamano k X k dentro de la matriz formada por los
vectores {f;(x)}; y un correspondiente menor de tamafio N — k x N — k aso-
ciada a los {g;(x)};, ambos de determinante no nulo, lo cual sera valido para
todo un entorno -por continuidad- probando que los mismos fi,..., fx dan la
trivializaciéon local. O

Definicion 1.1.22. El morfismo natural de los enteros en cualquier anillo con
unidad: Z — R, induce un morfismo a nivel Kj:

Ko(Z) = 7 5 Ko(R)
El cociente asociado es el K reducido asociado a R:
Ko(R) := Ko(R)/i.(Z)

Observacion 1.1.23. En los ejemplos 1.1.17 y 1.1.18 tenemos Ko(R) = 0.
El K reducido de un dominio de Dedekind coincide con el grupo de clases,
como desarrolla [Ros94, 1.4].

Volvemos a las propiedades generales.

Observacion 1.1.24. Dados R; anillos i = 1,2, el producto de anillos induce
productos en las matrices y construcciones asociadas: My (R), Idem, (R), Gl,(R),
y en particular:

Idem(Ry x Rg) = Idem(R2) x Idem(Rs)
Gl(Rl X RQ) = Gl(Rl) X GI(RQ)

de donde se deduce que:

K()(Rl X RQ) = Ko(Rl) X Ko(RQ) (1125)
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Observacion 1.1.26. Un morfismo de anillos con unidad f : Ry — Ry induce
un morfismo en las matrices, y asi en los idempotentes que definen un médulo
proyectivo, pasando al cociente resulta naturalmente un morfismo semigrupos y
por tanto uno de grupos abelianos:

Ko(Ry) £ Ko(Ry)

Esto convierte a K en un funtor covariante de la categoria de anillos en la de
grupos abelianos.

Escisién de K

Dado un anillo y un ideal bilatero, estudiamos el efecto a nivel K, del mor-
fismo de anillos dado por la proyecciéon al anillo cociente.

Definicion 1.1.27. Sea I C R, un ideal bilatero dentro de un anillo. Consid-
eramos el doble de R a lo largo de I como subanillo de R x R dado por:

DR, I)={(z,y) e RxR:x—yecl}

y observamos el morfismo inducido a nivel K por la proyeccién en la primera
coordenada, P, : D(R,I) — R. Definimos entonces el Ky de I relativo a R como
un nicleo:

Ko(R,I) := Ker{(P1), : Ko(D(R,I)) — Ko(R)}

Observacion 1.1.28. Otro morfismo candnico a considerar es la proyecciéon al
cociente 7 : R — R/I. Si a € R, o més en general, si a € M, (R), notamos la
imagen por 7 como a € M, (R/I).

Teorema 1.1.29. (Escision)
Tenemos la siguiente sucesion exacta:

Ps). Ta
Ko(R, 1) 22 Ko(R) =5 Ko(R/I)

Demo. Sea un elemento genérico:
le] = [f] € Ko(R,I) C Ko(R X R)

e = (61,62), f = (fl, fg) S Idem(D(R, I)) (1.1.30)
Usando la identificacion Ko(R x R) = Ko(R) @ Ko(R) (ver 1.1.25) tendremos

[e] = (feal, [e2])
(1= ([f1]; [£2])

Resulta entonces

le] = [f] = (lea] = [f1], [e2] = [fo]) € Ko(R x R)
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y por estar en Ko(R, I) vale:
(P1)s([e] = [f]) = [ed] = [/1] = 0 € Ko(R)

En particular al reducir médulo I vale:

[el] — [f1] =0
Y de (1.1.30) resulta:
€1 €y =
fi—f2=0
entonces:
2] = [f2] € Ko(R/I)
Y asi:

(P2)«(K(R, 1)) € Ker(m)

Verifiquemos la otra contencion considerando un elemento [e] — [f] € Ky(R) tal
que: B
0 = m([e] = [f]) = [e] =[]

Interpretando los elementos de Ky como matrices idempotentes, eso significa

que € y f son establemente equivalentes. Tras estabilizar, sumando matrices
identidad de tamano adecuado, e® 1, y f® 1., resultan conjugadas. Efectuando
eventualmente este reemplazo suponemos en adelante que € y f son conjugados.

39 € GL,(R/I)/ eé=gfg " € Idem(R/I)

Querriamos levantar esta situacién a R. Notemos que mientras es claro que
toda matriz sobre R/I tiene un representante a coeficientes en R, no vale en
general que podamos levantar una matriz inversible a otra matriz que también
sea inversible, pero sobre R. Podemos asegurar lo siguiente:

A e Gl (R/TI) = A+ A~ €7, (Glay(R))

lo cual serd probado en el Lema 1.1.31 a continuacién. B
Pero entonces basta considerar € + 0,, en lugar de é, lo mismo para f, y
g @ g~ ! en el lugar de g, levantando la conjugacién a R. O

Lema 1.1.31. Sea I un ideal de R y 7 la proyeccion al cociente R/I. Vale:
AcGlL(R/T) = Aa A c 7. (Cly(R))

Demo. Lo vemos por un cémputo directo:

<A ;1—1):<1 f><_(}1)—1 1><1 f><1 _1> 122

Levantando A a A y A~! a N una matriz no necesariamente inversible en
R, el producto de la derecha queda inversible por ser matrices triangulares. [J
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1.2. K,

Definicién 1.2.1. Definimos el K; de un anillo (con unidad) como la abelian-
izacion de la version estable de Gl,(R):

K;(R) := GI(R)/|GI(R), G1(R)]

Notacion. Indicamos por e;; a la matriz cuyo tGnico coeficiente no nulo es 1 en
el lugar (i, 7).

Definicién 1.2.2. Por E,(R) denotaremos al subgrupo de Gl,(R) generado
por las matrices: (Id, + « - e;;), con j # i. Siendo matrices triangulares son
todas inversibles.

E,(R) =< (Id,+a-€j)/ a€R, j#i>CGlL(R)
E(R) sera el generado por éstas dentro de GI(R):

E(R) := | J En(R) C GI(R)

Un elemento de E(R) es una matriz elemental.

Observacion 1.2.3. Veamos algunas matrices que siempre tenemos dentro de las
elementales:

1. Toda matriz triangular:

. € E(R) (1.2.4)
* 1
pues son generadas por las e;j(a) con a € R e ¢ > j. Y también las
1 *

correspondientes transpuestas, . € E(R)

< (1) _01 ) € E(R) (1.2.5)

Pues tenemos la descomposicién como producto de matrices triangulares,
por ende elementales:

()G )G NG
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3. Dada cualquier matriz A € Gl,(R), tenemos:

A 0
pues referimos a la descomposicion (1.1.32) en matrices elementales.
Lema 1.2.7. (Whitehead)
[GI(R), G(R)] = [E(R), E(R)] = E(R)

Demo. Todo generador de E(R) esta en [E(R), E(R)] como lo muestra el sigu-
iente computo:

eij(a) = [ei (), ex;(1)]

donde 14, j, k son todos distintos, y a € R. Asi,
E(R) C [E(R), E(R)] € [GI(R), GI(R)]

Veamos la otra contenciéon considerando A, B € Gl,(R), y factorizando:

ABA™'B™' 0\ [ AB 0 A7t o B~t 0

0 1/ 0 B 'A7! 0 A 0 B
La prueba concluye notando que los factores a la derecha son matrices ele-
mentales en Fs,(R), de acuerdo a lo observado en (1.2.6). O

Observacion 1.2.8. La suma directa de matrices (suma por bloques) coincide
con la multiplicaciéon en K;(R), pues:

A 0\ (AB 0 B~ 0
0 B ) 0 1 0 B
(estabilizando para considerar matrices del mismo tamano).

Notacion. Si R es un anillo, denotamos R* al grupo de unidades, y R}, a su
abelianizacion.

Definicion 1.2.9. El cociente del morfismo inducido por la inclusion:
R* =Gl (R) — GI(R)
Ry —— Ki(R)
define el K7 reducido asociado al anillo:
K\(R) := K1(R)/R}, = GI(R)/ < [GL(R), GI(R)],R* >

Proposicién 1.2.10. Si R es un anillo de division, Ki(R) = 1.
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Demo. Dada una matriz A € GI(R) debe ser A € Gl,(R) para algin n € N y
podemos proceder a triangularla por el método de Gauss. Esto no requiere de la
conmutatividad del anillo sino de la posibilidad de invertir elementos no nulos,
y asi generar suficientes unos. Las operaciones desarrolladas corresponden a la
multiplicacion a izquierda o derecha por matrices elementales, que no modifican
la clase en K. Esto lleva cualquier matriz inversible a una matriz triangular
con escalares no nulos en la diagonal. También podemos operar con matrices de

la forma:
1p 0
A
0 14

Gracias a (1.2.6) (1,, 14 son matrices identidad, con p 4+ ¢ = 2n — 2).
Ademas, por estar en el caso reducido tenemos las correspondientes a A € R}

A0
0 1n71

Lo cual lleva nuestra matriz original a una triangular inferior, igual a
1 € K;(R) por (1.2.4). O

Observacion 1.2.11. R es un anillo local si el subconjunto I := R — R* es un
ideal (a izquierda o a derecha) de R. Se prueba que si R es local, entonces I es
bilatero.

En tal caso se prueba que:

Ki(R) = Ry,
Nos referimos al respecto a [Ros94, 2.2].

Observacion 1.2.12. Para un anillo conmutativo R tenemos bien definido el
determinante desde K1 (R):

det : K1(R) — R*

pues esta definido en Gl,(R) y es compatible con la estabilizacion (al agregar

unos), y la abelianizacion, ya que es multiplicativo y devuelve escalares en R* =
X
ab*
Ademas, la inclusion natural de los escalares en K7 (R) hace que la aplicacion

anterior admita una retracciéon, permitiendo descomponer Ki(R).
Ki(R) = R* @ K\(R)

Observacion 1.2.13. En general los elementos provenientes de matrices de per-
mutaciones son no triviales en K;(R). Esto es cierto por ejemplo si hay nocién
de determinante en R, y la caracteristica no es 2, pues observamos que todas
las matrices elementales son de determinante 1, mientras que las permutaciones
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impares tienen determinante —1, y por lo tanto son no triviales en K;(R) (ver
1.2.7). i
En cambio, en K;(R) tenemos:

(1) 1) 3)ereram

Veamos ejemplos con anillos no conmutativos.

Observacion 1.2.14. (Equivalencia Morita)
Vale notar que My (My(R)) = Munk(R) y que con tal identificacion:

GI(R) = GI(M,(R))

pues una misma matriz inversible, estabilizada con 1’s en la diagonal, se puede
pensar en My(R) para cualquier valor de N € N suficientemente grande, en
particular para multiplos de n. En consecuencia coinciden también sus abelian-
izaciones resultando:

K\(R) = K (My(R))

Notacion. Dado un grupo G, Z[G] seré el anillo del grupo, i.e. el algebra de
polinomios a coeficientes enteros especializada en los elementos del grupo.

Observacion 1.2.15. En Z[G] encontramos unidades evidentes, a saber, todos
los elementos de la forma +g con g € G.

{£g9:9€ G} CZ[G)
Al ver la imagen en K;(Z[G]) notamos:
{£9:9 € G} CZ[G]), C K1(Z|G))

Definicién 1.2.16. Dado un grupo G definimos su grupo de Whitehead asoci-
ado como el cociente:

Wh(G) = Ki(Z[G])/{+7, g € G}

Observacion 1.2.17. Sitenemos un espacio arcoconexo X, tomamos G = 1 (X, )
el grupo fundamental de lazos en X basados en algin punto zy. Podemos no-
tar Wh(mi(X,z9)) = Wh(X), el grupo de Whitehead asociado al espacio pues
tenemos independencia del punto base. Si elegimos otro punto z; habra un
isomorfismo:

Wh(ﬂ'l (X, .To)) = Wh(ﬂ'l (X, fL‘l))

dado por conjugacién por un camino uniendo xy con x;. Este isomorfismo no
serd canonico necesariamente, dependiendo de la clase de homotopia del camino
elegido; pero dos elecciones distintas diferiran en un automorfismo interno, por
conjugacion de un lazo: v € (X, o). Esta operacion a nivel GI(R) se ve
como la conjugacién por una matriz diagonal de razén -y, que tras abelianizar
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resulta trivial en K (R), dando entonces grupos de Whitehead canénicamente
isomorfos.

En el caso de un espacio disconexo, podemos definir Wh(X) asociado al
grupoide fundamental como la suma directa de los anteriores grupos de White-
head, definidos en cada componente arcoconexa.

Wh(X):= @ Wh(m(X,p))

pETH(X)
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2. Invariantes de Algebra Homolégica

2.1. Complejos de cadenas y su homologia
Definiciones

Definicién 2.1.1. Dado un anillo R, un complejo de cadena (C,, ) es un R-
modulo Z-graduado con un endomorfismo homogéneo de grado —1, 2-nilpotente,
i.e.: O 0 0 = 0.

También lo podemos pensar como una sucesién de R-moédulos C,, con las
aplicaciones de borde, 0,:

On+1 On
e n+1_’Cn—) n—1 """

que verifican:

8n o 8n—l—l =0
Un morfismo de complejos (Cl, co) ELN (De,ds), €s un morfismo R-lineal
homogéneo de grado 0 que conmuta con los bordes. O sea que la sucesion de

morfismos {C,, ELN D,, : n € Z} verifica d, o f, = fn—1 0 ¢,,. En otras palabras,
el siguiente diagrama conmuta:

Cn ~n
i Oy ——> O — = Cy (2.1.2)
lfn#»l ifn \Lfnl
dng1 d

“*>Dn+1HDn*n>Dn71*>-“

Notacion. Notar que, en nuestra notacion, el subindice de un morfismo indica
la componente homogénea de su dominio. Por ejemplo:

Cn: Cp — Crga

A diferencia de una sucesion exacta, donde debe valer la igualdad, en un
complejo en principio sélo vale la contencion:

B, (C) :=Im(0p+1) C Ker(0,) =: Z,(C)
Los elementos de B,,(C) son llamados n-bordes, y n-ciclos los de Z,(C).

Definicion 2.1.3. Definimos la homologia n-ésima como el cociente asociado
a la contencién observada anteriormente:

Miés atn, si f es morfismo de complejos el diagrama (2.1.2) conmuta, induciendo
un morfismo f, en la homologia:

H,(C.) L H,(D.) (2.1.5)

Asi cada H,, resulta un funtor covariante de la categoria de complejos de
cadena en la de R-moédulos.
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Notacion. Procuramos que los indices indiquen la graduacién de los elementos o
sus representantes. Los elementos de Z,(C), y por abuso también los de H,,(C),
son llamados ciclos y los de B,,(C), bordes. Por eso, un complejo con homologia
nula H,(C) =0, Vn € Z, se dice aciclico (en tal caso el complejo es una sucesion
exacta).

Lema 2.1.6. (de la serpiente)
Dado el diagrama conmutativo de R-maodulos:

f g

M’ M M 0 (2.1.7)
la/ \LB la//
f g
0 N’ N N"
Tenemos una sucesion exacta
Ker(0) I Ker(d) —2— Ker (") (2.1.8)
S

Coker(9") — Coker(0) — Coker(9")

En la fila superior notamos f y g, a las aplicaciones inducidas por restric-
cion al nicleo (que se correstringen bien). En la otra fila, responden al paso al
cociente, dejando aplicaciones bien definidas entre los conucleos.

La aplicaciéon S es la llamada serpiente, o morfismo de conexiéon, definido -con
cierto abuso- por:
S=7"o(fodo(g7h) (2.1.9)

Estamos abusando de la notacién pues f y g no tienen inversos, pero debe leerse
como la eleccién de una preimagen. Notamos por 7’ a la proyeccion al conticleo
de '.

La buena definicién de las aplicaciones inducidas, del morfismo de conexién, y
la exactitud de la sucesién, se deducen por seguimiento del diagrama. Referimos
a [Lan02][IIL.9].

Teorema 2.1.10. (Teo. Fundamental del Algebra Homoldgica)
Una sucesion exacta corta de complejos induce una sucesion ezxacta larga en la
homologia. Concretamente si:

00, 1no 20l -0

., . 17}
es una sucesion exacta de complejos, tendremos morfismos H, 11(C") — H,(C),
que junto a las aplicaciones inducidas f. y g., completan la sucesion exacta:

s Hoyr (C) 25 B (0 L5 By (0) 25 =y (C7) = -
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Demo. Se trata de una aplicaciéon repetida del Lema de la Serpiente.
Contando con una sucesién exacta corta de R-modulos estamos en condiciones
de aplicar el Lema 2.1.7 para todo valor entero de k, pues tenemos:

0— — >Cllc fr Ch 9k Cl/cl 0
lag J{ak lag
’ Jr—1 k=1
0—=Chy Cr—1 = =>0

La inyectividad inicial en la fila k, junto a la sobreyectividad final en la fila k —1,
aparecen luego en la sucesion exacta:

0— — = Ker(d)) — = Ker(9,) — 2 Ker(d!!) (2.1.11)
Sk
Coker(0;,) — Coker(Ox) —;— Coker(0y) — — >0
Esto sucede a lo largo de todo el complejo, en particular tenemos otro diagrama

conmutativo, (entendiendo siempre que las aplicaciones son las inducidas por
las originales):

Coker(0y,) BN Coker(0) RN Coker(0)]) ——0

i81@1 J{akl lag1

0 — > Ker(9)_,) 2% Ker(dy_o) 2% Ker(d!_,)

y si aplicamos nuevamente el Lema 2.1.7, y observamos que:
Ker( Coker(9y) 2% Ker(y_2)) = Hy_1(C)

Coker( Coker(0y) Oect, Ker(0g—2)) = Hr—2(C)

recuperaremos la sucesion exacta larga de la homologia:

s Hy 1 (C) L5 Hy 1 (0) 25 Hy o (C7) 25 Hy_o(C7) — -+

Construcciones y propiedades basicas

La categoria de complejos de R-m6dulos con la suma directa y los morfismos
anteriormente descriptos, es una categoria abeliana, dentro de la cual podemos
hacer varias construcciones canénicas, como las que veremos a continuacion.
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Definicién 2.1.12. La suspension k-ésima de un complejo (C,,d), notada
¥*C,, es el mismo complejo como médulo, con un corrimiento en el grado k € Z
a la izquierda, y la misma aplicacién de borde, salvo un signo fijo (—1)*.

(Ekcn)n = Un—k

52kc. = (_1)k-ac‘.

Un cambio de signo constante, o en general, multiplicar 0, por una unidad
distinta en cada término, no altera la homologia del complejo. En este caso, la
homologia de la suspensién es la misma que antes salvo un corrimiento.

Definicién 2.1.13. El dual de un complejo de R-médulos de cadena lleva en
cada término el modulo dual respectivo: (Ce)p := Hompg(C—,, R), y el borde
inducido es —1(_"“)(8,”“)* =: 0.

< O—ni1)” N

Cy, := Hompg(C_,,R) Boni)”, Homp(C_py1,R) =: Cp—1
Notemos que debimos revertir la orientacién del complejo a fin de recuperar un
complejo de cadenas (y no un complejo de co-cadenas).

Combinando las definiciones anteriores tenemos la n-ésima suspension del
dual, que denotaremos “dual n-ésimo”.

E”(é.) = Co_p

Notemos que vale:

7 (Cy) = (5-1C), (2.1.14)
Definicién 2.1.15. Dados complejos de cadena (C,c) y (D,d) de Ry S-
modulos respectivamente, podemos construir el producto tensorial (C® D, d),
con la estructura natural de R ®z S-mo6dulo, con grado total y 9 conveniente.

(CeD), = @ Cr ®z Dp—y,
kez

On=> a®lp,_, +(-1)" lg, @dn_y
kez
Para verificar que es un complejo, veamos d, 0 9y = 0. Basta aplicar la composi-
cion sobre un sumando Cy ® D, _:

Op—100, =0p_10 {Ck oy lD,,L,k} + Op—10 {_1k le & dn—k}
= (k-1®1p, ,)o(ck®1p, )
+ (e ®1p,_, ) o ((-D)F - 1g, @ dp_4)
+ ( —1kt 1Ck—1 ® dp—k ) © (Ck ® 1Dn—k)
+( =111, ®@dy g )o( (1) 1o, @dn_t)

Las filas de los extremos se anulan por ser c, y de bordes, mientras que las
del medio se compensan, anulando la suma.
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Definiciéon 2.1.16. Dados dos complejos de cadena de R-moédulos (C,c) y
(D, d) definimos el complejo (Hom(C, D), d) como:

Hom(C,D),, := @ Homp(Cyx—n, D)
kEZ

Basta definir el operador de borde sobre una cadena elemental: f € Hompg(Ck—n, D).

On(f)=drof—(=1)"fo(ckont1)

En particular si D es el complejo cuyo tnico médulo no nulo es R en grado
0 recuperamos el dual de C.

Observacion 2.1.17. Dados C'y D R-moédulos, con D proyectivo y finitamente
generado, tenemos un isomorfismo:

D ®r Homg(C,R) — Hompg(C, D)

TR¢— (2@ )y = oY)

La aplicacion anterior es en general un monomorfismo, pero gracias a la hipotesis
podemos sumar un complemento proyectivo a D en la llegada y asignar una base
al modulo libre resultante D & @ = R™; que notamos {(d1,q1),- .., (dn,qn)}-
Asi, dada f € Hompg(C, D) tendremos funcionales ¢, de Cen R (k=1,...,n),
por proyecciéon a las coordenadas, y el elemento ), di ® ¢, se aplicard en el
morfismo original f, lo que prueba la sobreyectividad.

Proposicion 2.1.18. Si (C,¢) y (D,d) son complejos de R-mddulos, con D
formado por mddulos proyectivos y finitamente generados, recuperamos el Hom
del producto tensorial del dual de C' con D:

o

Hom(C, D) = (De @ Cs)
Demo. Expandimos las definiciones:

D.@é. = @ Dy ® (Cv'.)n_k = @ HomR(C'k_n, Dk) = Hom(C, D)n
keZ keZ

y el borde sobre una cadena elemental:

O(f) =drof+(=1)"1p (=1)F " (cxny1) o f
= (dp @ Lor 4+ (1) @ (¢ )n-r) (f)

recuperando al final el borde del producto tensorial. O

Observacion 2.1.19. Estudiemos la homologia del Hom y su relacién con la
homologia de los complejos involucrados.

Un 0O-ciclo: z € (Hom(C, D))o = @, Hompg(Cy, Dy), verifica la condicion:
0(z) =doz—zo0c¢=0, 0 sea que es un morfismo de complejos.
A su vez, cuando dos morfismos difieren por un borde f—g = 9(h), decimos
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que son equivalentes homotopicos, f = g, o, f =, g, si queremos remarcar
qué h € @),y Hom(Cyy1, Dy) establece una homotopia entre ellos. Notamos
[Ce, Ds] a las clases de homotopia de morfismos de complejos entre Cy y D,.
Asi,

Hy(Hom(C, D)) = [C,, D] (2.1.20)

De la definicion del Hom tenemos:

Hom(C, D), = @ Hom(Cy—n, Di) = @ Hom((2"C)y, Dx) = Hom(X"C, D)q
kEZ keZ

Notemos que también coincide el borde. Podriamos decir que, salvo un signo,
la suspension del Hom es el Hom de la suspension (del complejo de salida).
Resumimos en la siguiente formula:

H,(Hom(Cs, D,)) = [E"C,, D,]

Observacion 2.1.21. Dados f, g mapas de complejos tales que [f] = [g] €
[Ce, D], €l morfismo inducido en la homologia (2.1.5) debe coincidir. O sea
que tenemos una aplicacién bien definida:

[CM DO} - HomR(Hn(C)v Hn(D))

[f] = {Ho(C) L H, (D)}

su buena definicién se debe a que todo borde es nulo en la homologia.
Explicitamente tenemos:

fo—gn=0Mh)=hoc,+dyr10h (2.1.22)

La suma de los caminos aprovechando la homotopia he iguala la diferencia entre
fyy.

Cn
Cp——Ch

h'n/
lf J hn—1

dn+1
Dn+1 _— Dn

Y a nivel homologia:

d(h), =(dof—foc)=0
observando que el borde compuesto a la entrada anula cualquier ciclo, y a la
salida lo convierte en borde, dando nulo en H, (D). O

Si f 2 0 decimos que el mapa es homotopicamente nulo, y si el mapa en
cuestion es la identidad del complejo, decimos que éste es contractil.

Definicién 2.1.23. Decimos que un complejo (C, 9) esta acotado si Sop(C) :=
{n € Z/C, # 0} es un conjunto acotado (y por tanto finito) de Z.
Analogamente definimos un complejo acotado superior o inferiormente.
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Definicion 2.1.24. Decimos que un complejo de cadena de R-moédulos es finito
si es finitamente generado como R-moédulo. Equivalentemente, el complejo debe
ser acotado y cada sumando finitamente generado.

Proposicion 2.1.25. Todo complejo contrdctil es aciclico. Reciprocamente, si
tenemos un complejo de R-mddulos proyectivos acotado inferiormente, que sea
aciclico equivale a que sea contrdctil.

Demo. Por definicién, un complejo C' es contractil si Ide = 0. Por tanto
H,(C)=1d.(H,(C)) =0, y C es aciclico.
En general la reciproca es falsa como veremos en la observacion 2.1.29.
Para la reciproca en el caso de complejos proyectivos finitos, sin pérdida de
generalidad, consideramos un complejo positivo de R-moédulos proyectivos:

On 0
O, =0 S Cy—0

Siendo Hy(C) = 0 tenemos un epimorfismo a Cy que, como Cj es proyectivo
por hipotesis, admite una retracciéon. Asi tendremos ro tal que:
01019 =1¢,, 0 sea que rg 0 J; € Idem(Endgr(C1)) y asi:

Ker(al) D 7"0061(01) = Cl (2126)

De (2.1.26) se sigue que Ker(0;) es proyectivo. Y a su vez, J, es un epimorfismo
sobre el Ker(d;), pues Hy(C) = 0 (gracias a la aciclicidad). Esta es la situacion
inductiva.

Asi tendremos una retraccién r,, para la co-restriccién de 9,11 en cada paso, y
definimos la contracciéon § como:

Opn =1, B0 sobre Ker(0p) ® rp_100,(Cr) (2.1.27)

Notemos que (9,,+100,) es el proyector sobre Ker(9,), mientras que (6,,—100y,)
resulta un proyector sobre el complemento indicado en (2.1.27). Asi:

Idcn = 6n_1 9] 8n + 8n+1 o 6n

O

Definicion 2.1.28. Tenemos distintas nociones de equivalencia en relaciéon a
complejos de cadena de R-médulos.

Un isomorfismo de complejos fo : Co — D,y es un morfismo de complejos
estableciendo un isomorfismo en cada grado.

Un casi-isomorfismo es un morfismo de complejos f : Cy — D, tal que los
morfismos inducidos en la homologia sean todos isomorfismos:

(fe)n iSOVR EZ
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Una equivalencia homotdpica es una aplicacion graduada f, : Cy — D, junto
con una inversa homotopica g, : De — Cl, v sendas homotopias entre ellas, i.e.
aplicaciones de grado +1: he : Co — Cer1 v hl, : Dg — Dqy1 tales que:

gof—Idc=00oh+hod

fog—Idp=00h +h' 00

Una propiedad se diré invariante homotopica si es preservada por una equiva-
lencia homotépica. Un isomorfismo de complejos admite una inversa y resulta

por tanto una equivalencia homotépica, con homotopias nulas.
A su vez, una equivalencia homotopica es un casi-isomorfismo, analogamente
a lo observado en 2.1.21.

Observacion 2.1.29. Veamos entre cuales de las anteriores nociones de equiva-
lencia se preservan las propiedades introducidas.

1. La aciclicidad se preserva por la méas débil de las equivalencias, un mapa
f que sea un casi-isomorfismo.

2. Por definicién la contractibilidad es un invariante homotdpico.
Notemos que un casi-isomorfismo no tiene por qué ser una equivalencia
homotopica. Damos el ejemplo de un complejo aciclico y acotado inferi-
ormente de Z-moédulos que no es contractil (falta la proyectividad para
aplicar 2.1.25).

Consideramos el complejo formado por los enteros médulo p? en cada
término positivo, igual a Z,, en grado 0 y nulo en los negativos. El operador
de borde envia Z, en la copia dentro de Z,> (los multiplos de p), y luego
entre las copias de Z,2 es multiplicar por p.

0= Zy — Ly H—p>Zp2—>~-—>sz...

Si existiera una contraccién ¢ al considerar x € Z, en grado n alto,
tendriamos:
z = (pp ©0n + 0n—1 0 p1p)(2)
=p- (On +dn—1)(z)
Y al iterar:
z=p% (0p +6n_1)%(z) =0 Va

O

3. Un complejo no acotado y de tipo no finito puede ser homotépicamente
equivalente a uno que si sea acotado y finito. Por ejemplo tenemos el com-
plejo compuesto por un mismo médulo no trivial en cada grado, con borde
identidad, que resulta contractil (como contracciéon tomamos la identidad
en sentido inverso sobre grado par, y el morfismo nulo sobre los impares).
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El cono de un morfismo de complejos

Definicién 2.1.30. Dado un mapa de complejos C, ELN D,, construimos su
cono, A(f)n = Cpn—1 ® D, con el borde 0, = (—cp—1, fn_1 + dn)-

—cn_1 O T
On(z,y) = " .
n( y) ( fnfl dn ) ( Yy )
Observacion 2.1.31. El cono de una aplicacién Cl f—'> D, induce una sucesion
exacta corta de complejos:

0= (D,d)e 5 A(f)e B 0'Cy — 0 (2.1.32)

Esta sucesion exacta corta induce una sucesién exacta larga en la homologia:

= Hyl(A(f) — Ho(C) 25 Hy(D) — Hoy(A(f) — ... (2.1.33)

donde observamos que H,o(0'C) = He_1(C).

Veremos que el morfismo de conexién 0, es el inducido por f.

Sea [z] € H,(C), recordemos que el morfismo de conexion es la serpiente defini-
da en (2.1.9):

Entonces levantamos z:

(" H)(@) = (z,y)
Aplicamos 9,,:

On(z,y) = (—en-1(2), fn1(2) +dn(y) ) = (0, fao1(z) + dn(y) )

Y levantamos nuevamente y tomamos la proyeccién a la homologia correspon-
diente, recuperando:

On-1([z]) = [fn1(@) + dn(y)] = [fa-1(2)] = fua([z]) € Hn(D)
O
Proposicion 2.1.34. El cono de una aplicacion permite traducir propiedades
de mapas en propiedades de complejos.
1. f es un casi-isomorfismo si y sdlo si, su cono A(f) es aciclico.
2. f es una equivalencia homotdpica si y sélo si su cono A(f) es contrictil.

Demo. (1) Se sigue de la sucesion exacta (2.1.33) anterior y de la identificacion
Ox = fu.

(2) («=) Dados un mapa f y J una contraccion de A(f), construiremos un
mapa g : D — C y homotopias: h, h’ de modo que: go f =, 1cy fog = 1p.
Tenemos que

dod+00d=1c®1p
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Renotemos:
6(z,0) (h(z),s(z))
5(0,y) (9(y), =’ (y))

Reescribimos la condicién de contraccion con esta notacion:

(,0) =(do0d+ d00)(x,0)
= (—c(z), f(x)) + O(h(x),...)
=(—hoc(z)+gof—coh(z),...)

O sea que la primera coordenada dice que h estableci6 la homotopia entre (go f)
y la identidad de C. A su vez,

(0,y) =46(0,d(y)) +(g(y), —h'(y))
= (god(y),—h" og(y)) + (—cog(y), fogly) —doh'(y))
=(god(y) —cogly), —h'og(y)+ fogly) —doh'(y))

La primera coordenada dice que g es un mapa de complejos.

La segunda muestra como i’ establece una homotopia entre (fog) y la identidad
de D.

(=) Reciprocamente debemos verificar la construccion inversa, recuperando una
contraccién a partir de una equivalencia homotépica. Definimos:

8(x,y) = ((h(z)+g(y)+goh'o f(x)+gofoh(x), —=h'(y)+h o foh(x)—(I')*o f(x))

La prueba es parecida y sin dificultad, pero poco ilustrativa, referimos a [Ros94,
1.7.7]. O

Obs. Si C'y D son complejos de R-mddulos proyectivos, y ambos estédn acotados
inferiormente, entonces lo mismo es cierto para el cono de cualquier mapa entre
ellos.

Este hecho unido a las proposiciones anteriores establece el siguiente resultado:

Corolario 2.1.35. Sea f : C — D un morfismo de complejos de R-mddulos
proyectivos. Supongamos que C' y D son acotados inferiormente. Son equival-
ntes:

= f es casi-isomorfismo.
= f es una equivalencia homotdpica.

Observacion 2.1.36. Como aplicaciéon veamos que dados complejos homotoépica-
mente equivalentes C' =2 C2, y D' = D2, los respectivos productos tensoriales
C" ® D resultan también homotépicamente equivalentes.

Demo. Supondremos D' = D? = D. Luego podriamos fijar un C* y variar los
D?, con una prueba anéloga.
Sea (C,c) el cono asociado a la equivalencia C' 2, C?, el cual admite una
contraccion: “s*. Asi:
le=so0oc+cos
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La idea es probar que (s ® 1p) nos da una contraccion del cono del mapa
entre los productos tensoriales, mostrando que (¢ ® 1p) establece una equiva-
lencia homotoépica. La clave serd mostrar que el producto tensorial entre el cono
anterior y D, resulta isomorfo al cono de la siguiente aplicacion:

o pL2lin, 29 p

Claramente coinciden sus sumandos en grado n, gracias a la distributividad
entre la suma directa y el producto tensorial:

(C* @ D)1 @ (C*@ D) =Bz (Cr1_ ® Di) ® (Ch_j, @ Di)
= @yez(Ch 1, ®C ) ® Dy,

Veamos los bordes:
an@D =c®1p+ —lgrad(é) le® d
y por su parte:

On(p®@1y) =—(ct@1p+—1974C) 1, @ d)...
@ (p®1p) + (2@ 1p + —1974C) . 1, © d)
= (= ® (¢ +2) @ 1p + (—19medC)=1 . 11 @ —1979d(C*) . 1) @ d
=c®1p+—1940) 15 0d

Usando al final que en cada sumando del cono vale:
grad(C) = grad(C*) + 1 = grad(C?).

2.2. Caracteristica de Euler y Obstruccién de Wall

Al trabajar con complejos nos interesa contar con propiedades invariantes
por homotopias. Serd en tal direccién que pasaremos a considerar solamente
complejos formados por R-médulos proyectivos, para definir un invariante en
Ky(R).

A su vez, al considerar una propiedad que no sea invariante por homotopias,
nos interesard conocer la obstruccién a que exista un representante en la clase,
con tal propiedad.

Definicion 2.2.1. Dado un complejo finito de R-mo6dulos proyectivos, C, defin-
imos su Caracteristica de Euler, x(C), como la suma alternada de las clases en
Ko(R) de los modulos Cy:

X(C) =) (=1)"[Ca] € Ko(R) (2.2.2)

kEZ
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Observacion 2.2.3. Notemos que x es lineal por sumas directas, que una sus-
pensién a lo sumo afecta el signo, y que no hay abuso al referirnos al complejo
como C, en la usual omisiéon del borde, pues la definicién es independiente de
este, lo mismo daria cualquier aplicacién de borde que la nula.

X(C® D) = x(C) + x(D)
x(E"C) = (=1)" x(C)
X(Cna) :X(C.,O)

Proposicion 2.2.4. La caracteristica de Fuler es aditiva en sucesiones exactas
cortas de complejos finitos de R-mddulos proyectivos. O sea, dados complejos
en la siguiente situacion:

0—Ce —-De — FE¢ —0
Tendremos que:
x(D) = x(C) + x(E) (2.2.5)

Demo. Basta verificar la aditividad en sucesiones exactas cortas de los modulos,
i.e. término a término, y luego tomar la suma alternada.

Cada sucesion 0 — C,, — D, — E,, — 0 se parte, por ser E,, proyectivo, de
modo que:

Dn = On @En

y asi:

O

Proposicion 2.2.6. Si C' es un complejo finito de R-mddulos proyectivos y
ademds sus grupos de homologia H,(C) son todos proyectivos y finitamente
generados, vale que:

X(C) = (1" [Ha(C)] (2.2.7)

keZ

Demo. Para comenzar Zy = Cj es proyectivo. A su vez, By resulta proyectivo
y finitamente generado, observando la siguiente sucesién exacta con n = 0:

0—B,—Z, L H,—0 (2.2.8)

Luego Z; sera proyectivo y finitamente generado, pues basta observar la sigu-
iente sucesién exacta que se parte con n = 1:

0= Zy—Cp 2 Byy —0 (2.2.9)

Recursivamente volvemos a (2.2.8) y vemos que la siguiente imagen B, es
proyectiva y luego el niicleo Z,, 11 y asi siguiendo.
Tomando clases Ko(R) y usando (2.2.8) y (2.2.9) se obtiene:

[Cn] = [Zn] + [Bn—l]
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Lo cual finalmente implica:
(Cn] = [Hn] + ( [Bn-1] +[Ba] )

Y al considerar la suma alternada, los términos entre paréntesis se compensan
y resulta:

X(C) = (=1)"[Ha]

O

Corolario 2.2.10. Si C es un complejo finito de R-mddulos proyectivos aciclico
entonces x(C) = 0.

Observacion 2.2.11. En particular el cono de un casi-isomorfismo f : C' — D
entre complejos finitos de R-médulos proyectivos con homologia proyectiva, es
aciclico y consecuentemente tiene caracteristica de Euler nula.

Definiciéon 2.2.12. Dado un complejo Cy de R-mébdulos proyectivos homotdpi-
camente equivalente a un complejo finito de R-moddulos proyectivos, C’, defini-
mos la caracteristica de Euler de C como la de un representante:

X(C) = x(C")

La buena definicién surge de que y sea constante en clases de homotopia de
complejos finitos.

Teorema 2.2.13. Si R es un anillo Noetheriano y (C,9) un complejo acotado
de mddulos proyectivos, entonces es equivalente que la homologia H,(C) sea
finitamente generada para todo n € N, a que el complejo original sea homotdpico
a un complejo finito de mddulos proyectivos.

Demo. (<) La homologia es un invariante homotoépico, de modo que contando
con un representante de tipo finito podemos calcularla sobre éste.

Asi, si C), es finitamente generado, el submodulo Z,, también lo serd -por ser R
Noetheriano- y por lo tanto H,(C) = Z,,/B,, esta finitamente generada.

(=) Reciprocamente, si la homologia es finitamente generada, notemos que
Co=2Zyy Hy=Zy/By =< %1,...,2 >, 0 sea que podemos presentar a Hy en
k generadores con finitas relaciones, pues el niicleo de la aplicacién generado-
ra: R¥ — Hy es un submodulo de un moédulo Noetheriano. Luego Hy resulta
finitamente presentado. Por R-linealidad definimos un mapa a los levantados:
Z1,...,25 € Co:

R* 2 ¢, (2.2.14)

Al componerlo con la proyeccién a la homologia tenemos el mapa generador de
ésta, dejando la sucesién exacta corta asociada a la presentacion:

0 — Ker(¢) R~ H, 0
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Tomando generadores del niicleo tenemos el siguiente complejo:

R RE—2 H,§ 0 (2.2.15)

Queremos definir un nuevo complejo C, y un mapa de complejos ¢ hacia C,,
que establezca un casi-isomorfismo.
Partimos del morfismo nulo 0 — C'y en un primer paso modificamos el dominio
de ¢ : C, — C,. Ponemos:

C/O — Rk

¢’y =R?

Con el mapa ¢q := ¢ anterior, y redefiniendo ¢;:
¢ ' — G
via ¢1(e;) = u; para preimagenes adecuadas: u; € Cy tal que:
O(uj) = ¢o 0 9(e;) Vi<gq

Esto es posible gracias a que la imagen por ¢y se anula en la homologia de
C. Tenemos el siguiente diagrama conmutativo, mostrando que se establece un
isomorfismo en la homologia en grado 0, via (¢g)« -

%) 0

Cs o Co 0
T 1 T b0 T
0 c—2scy 0

Asi, teniendo definido un complejo que establece un isomorfismo en la homologia
en grado k < N — 1, proseguimos con esta definicién recursiva:

= Nuevamente damos una presentacion finita de Hy41(C). En analogia con
(2.2.14) tenemos un n = ny41 y un morfismo:

R" = Chin (2.2.16)

que compuesto con la proyecciéon a la homologia resulta sobreyectivo, y
cuyo nucleo -por ser finitamente generado- es cubierto por un morfismo
desde otro modulo libre de rango finito (n'), analogo a (2.2.15):

R 9 R™ Hy v 0

= Agregamos la aplicacién anterior R™ 9, R" en suma directa en grados
k+1y k+2 al complejo C".
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= Finalmente redefinimos ¢ por suma directa sobre los nuevos términos. En
grado k + 1 tomamos la aplicacién generadora (2.2.16); y en grado k + 2
definimos de modo que sea mapa de complejos.

- ——> Cpys —> Chys —2> Cria e Co 0
T ¢k+2T ¢k+1T ¢0T
)
0 ft2 1 T o 0

Hemos conseguido un complejo finito de moédulos libres, que establece el isomor-
fismo en la homologia hasta un grado més. Esta construccién la repetimos hasta
grado igual a N -la longitud del complejo original. Borrando el término C'y
tenemos un complejo de la misma longitud, y el mapa establece un isomorfismo
en la homologia hasta grado N — 1 y s6lo un epimorfismo en grado N.
Traducido al cono de ¢: A(¢) =: A, para todo k # N + 1:

Ho(A) =0

y siguiendo la demostracion de 2.1.25 construimos una retraccién de Oy,
mostrando que Hy1(A) es un proyectivo, sumando directo de Ay = Cl.

Justamente Hyy1(A) = Ker(0y,,) representa la parte sobrante de C;, que:
al ser nula por &’ no afecta la homologia del complejo C%, y es el nicleo de ¢y .
Quedarnos con un complento directo, en lugar de todo C';, redefine el complejo
C. dando un isomorfismo en la homologia con el complejo Co. Por finitudes,
estos son homotopicamente equivalentes. O

Teorema 2.2.17. (Wall)

Un complejo C' de R-mddulos proyectivos, homotdpicamente equivalente a un
complejo finito, serd homotdpico a un complejo finito, de R-mddulos libres, si
y solo si se anula su obstruccion de Wall, i.e. la proyeccion de la caracteristica
de Fuler al Ky reducido.

X(0):=(O)]=0 € Ko(R)

Demo. La condicién es claramente necesaria pues si fuera homotépico a un
complejo C' finito, formado por R-modulos libres, la clase en Ky(R) de cada
modulo serfa nula y asi:

keZ

Reciprocamente, veamos que podemos construir un representante homotopi-
co formado por moédulos libres a partir de un complejo C, acotado y finito, cuya
obstruccion es nula.

Sumar un complejo contrictil no altera la clase.
Sin pérdida de generalidad tomemos un complejo acotado positivo:

a"r a
= C s 50 S Cy—0
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y consideramos un complemento Q,, de C,, tal que C,, ® Q,, =: F,, & R™ libre.
Entonces sumamos el complejo contractil Q, ® X"A(Id : R — R), o sea:

.HOHQniQnHOH...

desarrollado en grados n y n—1, y nulo afuera.
Esto deja al altimo moédulo libre, y repetimos el argumento en el grado siguiente
sobre el nuevo complejo n veces méas. Asi

0—-F,—...Fh —>Qy—0

es exacto. Notar ademds que, por construccién, para cada i tenemos F; = C; @
Qi ® Qiy1.y se tiene )
[Qn] = *[Cn] € K()(R)
Q] =—(C;]+[Qj+1]) 7=0,...n—1

Luego Qg debe ser establemente equivalente a un libre pues:

[Qo] = —[Co] + (IC1] = [Q2]) + ... = = Y (=1)"[Ca] = 0 € Ko(R)

keZ

Asi para algin m € N, R™ @ Qo = R”, 1o que nos permite repetir el argumento
sumando

0= R" M gm0 ...
desarrollado en grados 0 y —1. O

Observacion 2.2.18. La construccién inductiva anterior termina gracias que la
obstrucciéon de Wall se anula. En general, podemos construir un complejo forma-
do por médulos libres finitamente generados, pero el complejo no queda acotado.

Observacion 2.2.19. También podriamos tener un complejo acotado de médulos
libres de rango no finito homotépicamente equivalente a un complejo finito de
R-mo6dulos proyectivos con obstruccion de Wall no nula.

Consideramos un R-médulo proyectivo finitamente generado, P, que no sea es-
tablemente equivalente a un libre, induciendo el complejo--+ —-0— P — 0 — ---
con obstrucciéon de Wall no trivial. Sin embargo éste serd homotdpicamente
equivalente al complejo:

s 0 FP S F—S0— -

donde si Q @ P es libre, F' es el moédulo libre de rango numerable dado por:
F=PoQePaeQo- -

y s viene dado por:

8(pO7Q17p17q27"°) = (thI»PQ?(]Q’---)

Notemos que s es suryectiva con Ker(s) = P; la inclusion es por tanto un casi-
isomorfismo, y por ende una equivalencia homotoépica, en virtud del Corolario
2.1.35.
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Veamos como se comporta el producto tensorial respecto de la obstruccion
de Wall.

Observacion 2.2.20. Sean R y S dos anillos, sobre los cuales tenemos respec-
tivos complejos de modulos proyectivos C'y D. Supongamos ademas que tienen
definida su caracteristica de Euler, i.e. admiten un representante finito (ho-
motoépicamente equivalente). Entonces su producto tensorial C' ®7 D también
tendra bien definida su caracteristica como complejo de R®yz S-mddulos proyec-
tivos, pues es homotopicamente equivalente (ver 2.1.36) al producto tensorial
de tales representantes, resultando éste un complejo finito por R ® S-mo6dulos
proyectivos.

Tenemos un producto bilineal a nivel K inducido por el producto tensorial
de médulos proyectivos:

([P, [Q]) — [P Q]

Con esta notacion la caracteristica de Euler resulta multiplicativa respecto del
producto tensorial.

x(CeD) =3 (-1 J @k(Cj_k ® Dy)] € Ko(R®z5S)

I
MMM

x(C ® D) = x(C) - x(D) (2.2.21)

En particular basta que se anule la caracteristica de Euler de uno de los
complejos para que se anule la caracteristica del producto tensorial.

Si D es un Z-complejo, x(D) es un entero (ya que Ko(Z) = Z), y podemos
proyectar (2.2.21) al Ky reducido para computar la obstruccion de Wall, de
donde resulta:

X(C®z D) =xX(C)-x(D) € Ko(R)

2.3. Torsi6én

Nos interesa construir un invariante secundario que requiere del desvanec-
imiento de la misma caracteristica de Euler. Intentaremos caracterizar el tipo
de equivalencia homotoépica que establece un mapa f entre complejos finitos
formados por médulos libres.

Definicién 2.3.1. (Torsion)
Dado un complejo finito y aciclico de R-moédulos libres con una elecciéon de
bases, (C,, ), sabemos que existe una contracciéon “¢” y podemos considerar
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el endomorfismo dado por (9 + §), que a nivel grado invierte la paridad.

Notamos:
Cpar = @ C2n
n

Cimpa'r - @ CQnJrl
n
En particular, siendo aciclico sabemos que x(C) = 0 (ver 2.2.10), y asi:

rg(cpar) = rg(cimpar)
Afirmamos que el morfismo:

(Oe+00)par
Cpar —

Cimpar

se representa (gracias a la eleccion de bases), como una matriz inversible a
coeficientes en R. Basta observar que:

(ao + 60)2 = (ao + 50)impar © (80 + 5o)par
=0?24+800+ 006+ (6)?
=1lc + (6)*

(0s+06.)2 =1 € K\(R)

En la segunda igualdad usamos que los bordes se anulan, y recuperamos la
identidad del complejo, por la definicién de la contraccion 4.

Observemos que 62 tiene grado +2 y asi se ubica debajo de la diagonal, dejando
a 1o + (0)? triangular inferior. En particular la clase de esta tltima matriz en
K1(R) es trivial, ya que resulta una matriz elemental. Asi:

[0+ O)par] = [(8 + O)impar] ™" € K1(R)

Definimos entonces la torsién, de tal complejo aciclico formado por finitos
R-moédulos libres con bases, como:

7(C) = [(0+ 8)par] € K1(R) (2.3.2)

Asi definida depende de la elecciéon de bases del complejo, pero no dependeré
de la eleccion de la contracciéon 6. Serd una consecuencia de la formulacion
equivalente que presentamos en la Proposicién 2.3.7.

Observacion 2.3.3. Dados dos endomorfismos de un médulo C' que verifican
f+g = 1¢ y tales que, digamos go f = 0, entonces resultan ambos idempotentes.

fH9=lc=(+9’=+fg+g9f+d=fo(f+9+5=f+7

= g=g° f=F

Esta es nuestra situaciéon al trabajar con un complejo contréctil:

lcn = (8n+1 o 671,) + (571—1 (¢] 87’L)
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En consecuencia: B;,, = Im(0p+1) serd un sumando directo de C,, siendo
la imagen por el proyector: p, = 0541 0 d,. Y también la imagen por el otro
idempotente: B, _1 = Im(dﬂ_l 0 0y), serd un sumando directo.

Notemos que: C,, = B, & B,_1 y que G(Bk) = By.
Se establece un isomorfismo:

(pn@an)
_

C B, ® Bn_y (2.3.4)

Su inversa estd dada por la inclusiéon de B,, en C, y la contraccién anterior,
ie. i, ®d,_1, pues una composicion devuelve la condicion de contraccion del
complejo C, y la otra resulta a partir de que cada idempotente actia como la
identidad sobre el B; correspondiente.

Lema 2.3.5. Dado C, un complejo finito aciclico, formado por R-mddulos libres
con bases, existe un complejo Co acotado, de libres con bases finitamente gener-

ados, homotépicamente equivalente a C' tal que los B son libres y 7(C) = 7(C).

Demo. Presentamos nuestro complejo:

OHCkH---HCza—%Cla—%C’OHO

Todos los C; son libres y en particular, siendo un complejo aciclico, By = Cy es
libre. Veamos que los B; son establemente equivalentes a un libre, computando
clases en el K reducido del anillo.
A partir de la observacion anterior:

0= [C1] = [Bo] + [B1] = [B1] € Ko(R)
Entonces debe existir F' (por ejemplo By), un R-mo6dulo libre, de modo que:
F& By =RY
Sumamos, sobre el complejo original, el siguiente complejo contractil :

-—>O—>FId—F>F—>O—>---

Recuperamos un complejo aciclico de R-modulos libres, Cl:

O21d 0100
~—
®ldr

(hemos indicado la modificacion de la contraccion)
Pero ahora el nuevo Bj es libre:

B = Ker(d1) = Im(d;) = B ® F = RV

Iteramos esta construccién a lo largo del complejo.
Finalmente considerando las anteriores bases para los médulos C; y una base fija
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para F' vemos que no hemos afectado la torsién. Basta notar que en cada paso
s6lo afectamos o el borde o la contraccién involucradas en (9 + §),q, -segtn la
paridad- y lo hicimos anadiendo en suma directa la identidad de un libre (trivial
a nivel K1), i.e

7(Ce) =[(0+d)par ]
= [(0+0)par © Idp]
[(6 + 5)par] ’ [IdF]
= [(8 + 6)par]
7(Co) = 7(C,) € Ki(R)

O

Observacion 2.3.6. Ahora suponemos que los B; son R-médulos libres y pode-
mos fijar bases, e interpretar el isomorfismo de (2.3.4), como una matriz a co-
eficientes en R. Tendremos: [p, ® 9,] € K;(R). Vale notar que la clase de este
mapa es independiente de la elecciéon del proyector (hasta aqui habiamos traba-
jado con un proyector en particular, dado por la contraccion).

Basta notar que si p’,, es otro proyector entonces:

O sea que se factoriza por 9,. Digamos p,, — p’,, = u o 0,. Matricialmente:

Py _(1 u Py
o, )\ 0 1 On
Y ( (1) 1; ) es nula en K;(R) siendo triangular. Concluimos

[pr ® O] = [P}, © O] € Ki(R)

En particular resulta independiente de la eleccién de proyectores la suma
alternada en K;(R):

I beoal D" eKi(r)
k

Mas adn, asi se neutraliza la arbitrariedad en la anterior eleccién de bases para
los B;, pues un cambio de base aparecera dos veces, en el morfismo p; & 9;_1 y
en el siguiente p; ®0;, pero al tomar la suma alternada se cancela el efecto en K.

Proposiciéon 2.3.7. (Caracterizacion de la torsion)
Dado un complejo aciclico finito, de R-mddulos libres con una eleccion de bases,
podemos computar su torsion como:

C)=]] lpn@0n """ € Ki(R) (2.3.8)
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Demo. Separamos por paridad las dos aplicaciones de las cuales proviene la
clase de la suma alternada:

Cpar w (Bk D Bk—l) (239)

k par

B (pr®) "

D (Br®Bi)

k impar

Cimpar (2.3.10)

Invirtiendo cada aplicacion, (pr ® 9)~! = ix @ d,_1, y corriendo los indices,
reecribimos la aplicacién (2.3.10) como:

@k(ék@ik—l)

@ (Bi, @ Bi—1)

k par

Cimpar (2.3.11)

Si ahora componemos (2.3.9) y (2.3.11), tendremos un mapa cuya clase en K;(R)
se corresponde con la anterior expresion de la torsién. Lo escribimos a contin-
uacion, eligiendo como proyectores py = Op+1 © Of:

P 6k 0 011 06x) € 0k) = (5000 0) & D),

k par

Obs. 6 := 60006 define una contracciéon en C, alternativa a o.

Asi, tenemos la aplicacién (57@ 0)par que coincide en K; con la definicion
original de la torsion: 7(C) = [(6 + O)par] € K1(R) (con 6 como contraccion)
pues verificamos que tienen la misma inversa:

(6 + D) impar © (6 & 0)par =82+0086®3500+ 02
=62+ Idg, @ IdB._
) ) =(62®0) + Idc,
[(6 + D)impar] - [(0® O)par] =1 € Ki(R)

1

O

Corolario 2.3.12. La torsion es independiente de la eleccion de los proyectores
pn 0 de la contraccion §.

Demo. Vimos la equivalencia entre las definiciones eligiendo una contraccién
particular y unos proyectores particulares, pero la formulacién de (2.3.8) no
depende de la elecciéon de los proyectores, sino sélo de la estructura del complejo.

O

Lema 2.3.13. Dado un isomorfismo entre complejos finitos, aciclicos de R-
mddulos libres con bases: Ao — B, podemos computar la diferencia entre las
respectivas torsiones de la siguiente forma:

T(A)-r(B) =] )" e Ki(R) (2.3.14)
k

41



Demo. La demostracién se basa en una elecciéon de contracciones compatibles
via ue. Asi, dada una contraccion ¢ para el primer complejo elegiremos la con-
jugaciéon por u de § como contraccién § de B:

O = Uet1 000 0 Uy |

0

...A.H"\?A....

"'B'+18T>B°"'

Verificamos la condicion de contraccion:
1p, =wup-1la, -y
=up(5-04 + 04 d)uy!
= (uy & u,;ll) (up_q 04 u;l) + -
B (uk aA uk+1’1)- (uk+1 1) U;l)
=0p_1 - 8kB + 0,§+1 - Ok
g, =6-0% + 9P .6 (2.3.15)
Aplicamos (2.3.15) en el computo de la torsion de B:
7(B) = [(0% + 0)par] = [ [ [warr1] - [uzs] ™" - [(0* + 6)par]
k

y concluimos:

m(A)-7(B)"t = H [ugk 1) ™" - [uak]

E
O

Definicion 2.3.16. Una sucesion exacta corta de mddulos libres con bases seré
una sucesiéon exacta corta usual de los médulos subyacentes:

0—(C;8") = (C;8) = (C";8") — 0
junto a condiciones de exactitud adicionales:
up)cp
g7 =m(B\uB))
Con la definicién anterior tenemos un Corolario al Lema 2.3.13.

Corolario 2.3.17. La torsion es multiplicativa en sucesiones exactas cortas de
complejos aciclicos de R-mddulos libres con bases. O sea que dada:

0 o, o, Lo, 0

resulta

7(C) - 7(C)t-7(C") =1 € Ki(R)
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Demo. Primero notemos que:
T(C'¢) - T(C") =7(C"® C"),

Luego, como tenemos una sucesion exacta de complejos con bases (definicion
2.3.16) resulta un isomorfismo de complejos que envia 3 en la yuxtaposiciéon de
las bases dadas, 3, 3".

c, 18T (¢ g ),
con [(j ®p)r] =1 € K1(R) y asi, del Lema 2.3.13 se deduce que:
T(C'® C")e = 7(C4)

O

Definicion 2.3.18. Dada f : C¢ — D, una equivalencia homotoépica entre
complejos finitos de R-modulos libres con bases, definimos la torsiéon asociada a
f como la torsion del cono.

7(f) == 7(A(f))

Lema 2.3.19. (Torsion y equivalencias homotdpicas)
Consideramos complejos finitos de R-mddulos libres con bases: Co, Do y Fo, 10
necesariamente aciclicos.

1. La torsion es multiplicativa para sucesiones exactas cortas de equivalen-
cias homotdpicas entre complejos libres con bases.
Dado un diagrama conmutativo con sucesiones exactas por filas, y equiv-
alencias homotopicas: f., g« y h«, por columnas:

0 Ce D, E, 0
0 C, D, E, 0
valdrd que:
7(fe) - 7(g) L -7(hy) =1 € Ki(R) (2.3.20)

2.5 f,g : C — D son equivalencias de homotopia de complejos de R-
mddulos y ademds [ = g (son aplicaciones homotdpicas entre si) entonces:

7(f+) = 7(9+) (2.3.21)

3. La torsion se multiplica con respecto a la composicion.

Dadas sendas equivalencias homotopicas: f.: Ce — Do Yy g+: De — E,,

7(ge 0 fo) = 7(g+) - 7(f2) (2.3.22)
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Demo. (1) Basta ver que las sucesiones exactas anteriores, superior e inferior,
inducen una tnica sucesién exacta corta entre los conos de las respectivas apli-
caciones. Estos resultan aciclicos por tratarse de equivalencias homotopicas, y
claramente son finitos, de R-modulos libres con bases. El resultado se sigue del
Corolario 2.3.17.

Obs. En la situacién anterior, basta pedir que cualesquiera dos de los mapas f,
g, o h, sean equivalencias homotoépicas para que lo sea el tercero. Pues basta ver
que inducen isomorfismos en la homologia y esto es una consecuencia directa
del Lema de los 5.

(2) Sean F, y G, los conos de las aplicaciones f. y g« (ver 2.1.30). Notemos
que los médulos subyacentes son los mismos: Ce_1 @ D,.
A su vez, partiendo de una equivalencia homotépica h entre los mapas (ver
2.1.22), tenemos el isomorfismo:
10
(1)

Una verificacién rapida muestra que es morfismo de complejos pues:

1 0Y ([ —0c 0 _( —0c O (10
h 1 f« —=0p )\ g¢. 9p h 1
(3) Debemos relacionar los conos asociados a f, y g«, para lo cual tenemos
un morfismo de complejos de cadena: h,: X"1A(g.) — A(f.) dada por:

0 0
( _Idp 0 ) : Dy ® Eyy1 — Cr—1 @ Dy

El signo es necesario por la conmutatividad con los bordes respectivos. Observe-

mos su cono:
A(hy)k = Di—1 @ Ey @ Cr—1 @ Dy,

Tenemos la sucesion exacta corta usual, respetando bases,
0— A(fx) = A(hy) = A(gs) — 0 (2.3.23)
Y también otra sucesién exacta que respeta bases:
0— Algeo fu) 5 A(hy) — A(Idp) — 0 (2.3.24)

donde el dltimo morfismo es la proyeccion sobre D, y el primero es casi una
inclusién, modificada para que sea mapa de complejos. Matricialmente:

f 0

- Id
[Z] = I((ZZ)C OE :00—1®Eo —>Do—1 @E.@Oo—l@Do

0 0
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Ademas todos los conos que provienen de una equivalencia homotopica dan
complejos aciclicos, y por su parte A(h.), es aciclico por ser el cono de un mapa
entre complejos aciclicos, lo cual se deduce de la sucesion exacta (2.1.33).

Para acabar esta demostraciéon basta considerar las torciones de las anteri-
ores sucesiones: 2.3.23 y 2.3.24, y aplicar el punto (1) de multiplicatividad por
sucesiones exactas cortas.

7(hy)
7(hs)

7(f+) - 7(9-)
(g« o f+) - 7(Idp)

7(gs 0 fi) = T(fs) 7(gs)
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3. Obstrucciones en topologia

3.1. Obstrucciéon de finitud
Homotopia

Definicién 3.1.1. Una funcién f : (X, A) — (Y, B) entre pares de espacios, es
una aplicacion f : X — Y que cuya restriccion a A se correstringe bien a B, i.e.
fla: A — B esta bien definida.

Definicién 3.1.2. Dos funciones continuas f, g : (X, A) — (Y, B) entre pares
de espacios topoldgicos, son homotodpicas si existe una aplicaciéon continua H tal
que:

H:XxI-—-Y (3.1.3)
H|X><{()}Ef
H|X><{1}Eg

y lo analogo para las restricciones:

H|axqo3=fla
Hl|sx(13=9la

Notamos [(X, A), (Y, B)] a las clases de homotopia de mapas de pares entre
(X,A) e (Y,B).

(X, A4), (Y, B)] :={7: (X,4) = (Y, B)}/ ~ (3.1.4)

Definicion 3.1.5. Decimos que dos espacios topolégicos X e Y son homotépi-
camente equivalentes si existen mapas continuos F' y G tales que:

GOF gh IdX
FOG %h/ Idy

o sea, pedimos que sean inversas respectivas salvo homotopias. El subindice
refiere a sendas homotopias en X y en Y.
Decimos que F' y G son equivalencias homotodpicas.

Notacion. Indicamos el intervalo unitario como I = [0, 1], de modo que I"™ sera
el n-cubo unitario (n > 1) y 0I" su frontera. A su vez, I denotard a un solo
punto, con 9I° =0, y I = 0 si n es negativo.

Podemos considerar I™ C I"™*! identificando I™ con la componente de 91"t de
ultima coordenada nula. Notamos J™ := 9I"+1\ I,
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Definicion 3.1.6. Definimos el n-ésimo grupo de homotopia de un espacio X
respecto de un punto base xy € X como:

(X, xg) = [(I™,0I™), (X, x0)]

El producto entre dos elementos f, g € 7, (X, zg) se define por:

f(2-51,.,80) s1<1/2
g(2-81—1,...,8,) s1>1/2

f : g(sla 7877,) = {

El primer grupo de homotopia, o grupo fundamental, no es abeliano en general,
a diferencia de los demés grupos de homotopia m, si n > 2. En tales casos
usaremos notacion aditiva f-g=: f +g.

Analogamente a lo desarrollado para pares podemos definir mapas de k-
uplas,

fo(xk xEt x2S vk vl yR2 )

verificando f|xq: X9 — Y?. Y a su vez, homotopias entre mapas de k-uplas.
Asi, definimos el n-ésimo grupo de homotopia relativa m, (X, A, xo) para x¢ €
A C X como:

(X, A, o) := [(I™, 01", J" 1), (X, A, x0)]

En verdad, para n = 1 no tenemos un grupo, y si para n > 2, siendo éstos
conmutativos cuando n > 3. Referimnos a [Hat02, 4.1] para un desarrollo sis-
tematico de grupos de homotopia.

Proposicion 3.1.7. Dados xg € B C A C X tenemos una sucesion exacta de
grupos de homotopia relativos:

- (A, B, 2g) 5 10 (X, B, o) L5 m(X, A, 20) 2 ma_1(A, B, ag) — - -
(3.1.8)
donde i, y j« son morfismos inducidos por la inclusion de los pares respectivos,
mientras que el morfismo de conexion O, estd dado por restriccion a I"'.

Demo. Referimos a [Hat02, Teorema 4.3].

Definicién 3.1.9. Dados (X, A) e (Y, B), una aplicacién de pares f : (X, A) —
(Y, B) induce un morfismo de grupos:

fo (X, A ag) — (Y, B, f(ao))
v € ma(X,A a9) — foryem(Y,B, f(ay))

Sif,g:(X,A,z,) — (Y, B,yo) son mapas homotopicos entre si, entonces las
aplicaciones inducidas a nivel homotopia f,, g, seran idénticas.

Definicion 3.1.10. Dados espacios topolégicos arcoconexos y una funcién con-
tinua entre ellos f : X — Y diremos que es una k-equivalencia si la aplicacién
inducida:

f* : 7-‘—n(—-)(, :EO) - Wn(}/a f(.%'o))
resulta un isomorfismo para todo n < k y es sobreyectiva para n = k.

Si es una k-equivalencia para todo k € Ny diremos que es una equivalencia
débil.
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Homotopia versus Homologia singular

Proposicion 3.1.11. Sea f : X — Y un mapa entre espacios topoldgicos. Vale:
1. Si f es una equivalencia homotdpica entonces es una equivalencia débil.
2. Si es una equivalencia débil entonces es una equivalencia en la homologia.

3. f es una equivalencia homoldgica si y solo si f. : Se(X) — Se(Y) es una
equivalencia homotdpica entre los complejos singulares.

Demo. 1) Si g es una inversa homotépica de f, bastara considerar las composi-
ciones fogy gof anivel homotopia. Vemos que f, debe ser un epimorfismo, pues
Id, = (f o g)s« = f« o g«. Por razones anélogas serd también un monomorfismo.
2) Referimos a [Hat02, Proposicion 4.21].
3) Toda equivalencia homotdpica entre complejos es un casi-isomorfismo.
Reciprocamente, siendo los grupos S, (X) libres -por tanto Z-proyectivos- y
nulos para n < 0, podemos aplicar el Corolario 2.1.35. O

Definicién 3.1.12. Dada f € m,(X, 4, x¢) = [(I", 01", J" 1), (X, A, z0)] con-
sideramos el mapa inducido en la homologia relativa:

fe: Hy(I™,0I") - H, (X, A)

y fijamos un generador a € H,,(I",0I") = Z.
Definimos entonces el mapa de Hurewicz, h, como:

h:mn(X, A xg) — Hy(X, A)

[f] = fela)

Su buena definicién se deduce de la invarianza de f, respecto de equivalencias
homotopicas entre mapas, lo cual fue comentado en la Definicién 4.1.8. Notemos
que depende de la eleccion del generador a.

Lema 3.1.13. Dado un par (X,A) y fijados respectivos generadores o, €
H,(I™,0I™), tenemos morfismos de grupos dados por el mapa de Hurewicz
fe o+ Hy(I™,0I™") — H,(X,A) para n > 1, estableciendo un morfismo entre
la sucesion exacta de la homotopia y la de la homologia asociadas al par (X, A).

s —— 7, (X, x0) I (X, A, xo) 9, Tn—1(A,xg) — -+ (3.1.14)

i i i

~~*>H"(X)$>HH(X,A)L> no1(A) —— -

En verdad, cada cuadrado es conmutativo salvo signo, lo cual puede ser corregido
cambiando la orientacion de los generadores o, n > 2.

Demo. Ver la prueba en [Hat02, Proposicion 4.36].
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Definicién 3.1.15. Decimos que un par (X, A) es n-conexo si my(X, A, zg) es
trivial para todo 1 < ¢ <ny zg € A, y si cada componente arcoconexa de X
tiene puntos de A.

Teorema 3.1.16. Si (X, A) es un par (n — 1)-conexo, de espacios arcoconeros
conn>2yA#D, entonces el mapa de Hurewicz da un isomorfismo

h:mn (X, A xg) — Hy(X, A)

H(X,A)=0
para todo i < n.

Demo. Nuestra referencia es [Hat02, Teorema 4.37.].

Teorema 3.1.17. (Whitehead, [Whi{9])

Una equivalencia débil entre CW complejos conexos es una equivalencia homotopi-
ca. Mds ain, sila equivalencia débil estd dada por una inclusionY C X entonces
el subcomplejo Y es un retracto por deformacion de X.

Notemos que estamos dando una reciproca a la primera afirmacion de la
Proposicion 3.1.11 en el caso particular de CW-complejos.

Demo. Nos referimos a [Hat02, Teorema 4.5].

Teorema 3.1.18. (Whitehead, [Whif9])

Un mapa f : X — 'Y entre espacios CW simplemente conezros es una equivalencia
homotdpica si y solo si, induce isomorfismos en la homologia, f. : H,(X) —
H,(Y) para todo n € N

Demo. Referimos a la prueba en [Hat02, Corolario 4.33], .

Proposicion 3.1.19. Una equivalencia homotdpica entre espacios arco-conexos

. . f .
y semi-localmente simplemente conexos: X ——=Y se levanta a una equiva-
lencia homotdpica f entre sus espacios recubridores universales:

S
X—>Y

~

Ademds, con la identificacion © = m(X) = 71 (Y), la aplicacion inducida f
resulta ™ equivariante.

Demo. Tenemos la composiciéon de f con la aplicacién recubridora de X:

foPx:(X,p)— (Y, f(p))
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donde elegimos un levantado p € Py 1(p). Este mapa verifica las hipotesis del
Lema 4.3.5, si recordamos que el espacio recubridor universal se distingue por
ser simplemente conexo. Asi, obtenemos un levantamiento:

- -
X——>Y
le lPY
XT>Y

fijando f(p) € Py ' (f(p)) C Y.

Notemos que un elemento v € 71(X) acttia en X (como transformacion del
recubrimiento), y lo mismo hace en }7, entendiendo -por abuso- que quien actia
es en realidad fo~en Y. Si:

v p=7
v-fp) = (fov) fp=F)

mostrando la m-equivarianza de f, gracias a que el levantamiento de f o~y es la
imagen por overlinef del levantamiento de ~.

Por otra parte, si g es una inversa homotépica de f también podemos levan-
tarla, asi como a las homotopias que establecen: go f 2y Idx v fog =gy Idy,
para acabar de probar que tenemos una equivalencia homotoépica entre los re-
cubridores.

Por ejemplo para H, fijados p € X y un levantado p € P~%(p), tenemos el
siguiente diagrama:

(5,0) EXXILXBf(p)

|

(p,0) € X x I —— X 5 f(p)

Usamos que X x I simplemente conexo.
Por unicidad del levantamiento (Lema 4.3.5) tenemos que:

FQ = Id)‘(

Hy=(gof)
Pues H, levanta a Hy = Idy, al igual que Idg, y Hy levanta a Hy = (g o f).
Por la misma razon,

gof=(gef)

Concluyendo que X y Y seran espacios homotopicamente equivalentes. O
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Corolario 3.1.20. Una equivalencia homotdpica F' : X — Y, entre espacios
conezos con grupo fundamental w induce una Z[r]-equivalencia homotdpica entre
los complejos singulares de los recubridores.

So(X) L5 5,(V)
Demo. Fijando puntos base podemos levantar F' estableciendo una equivalencia
homotoépica entre los recubridores de acuerdo a 3.1.19, consiguiendo asi una
aplicacion F' que establece una Z-equivalencia homotépica entre los complejos
singulares (segin vimos en 3.1.11). Esta F' es ademds m-equivariante (ver 3.1.19),
lo cual establece una Z[r]-equivalencia homotépica. 0

Complejos CW

Observacion 3.1.21. Dado X un CW -complejo conexo (ver 4.2.3), determinado
por la filtraciéon Xy C X; C X5 C -+ y coproductos de la forma:

UQGAI st W Xll
LlaEAn Dn E—— Xn

ud,

también su recubridor universal X tendra estructura de CW -complejo, levantan-
do el esqueleto X, al fijar (X),, := P~1(X,,).

Para levantar cada funcion caracteristica (®,,) debemos fijar un punto en el es-
pacio recubridor universal, y fijando un punto base en X hay tantas elecciones
como elementos en el grupo fundamental de X. Asi por cada celda original
de X tendremos | 7 | celdas del recubridor. Las correspondientes funciones de
adjuncién quedan determinadas por restricciéon de las funciones caracteristicas
levantadas a X.

Tenemos el siguiente diagrama, compatible con la accion de 7 (por traslaciones
en el grupo m y como transformaciones del recubrimiento X — X, respectiva-
mente).

Sn— 1
|—|a€A EX Uda X1 1
Loea, ™ D" X,

Notemos que el complejo celular asociado a X, esta formado por Z-mo6dulos
libres con el rango anterior (en X) multiplicado por el orden de 7 (que en caso
de ser infinito, se entiende como producto de cardinales).

Sin embargo, como modulo sobre Z[n] es un modulo libre del mismo rango que
antes (igual a la cantidad de n-celdas adjuntadas, | 4, |=: a,).

Co(X; Z[r]) = Z[n]*
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Observacion 3.1.22. Recordamos que el complejo celular de X (ver 4.2.11) es-
t4 formado por Z-moédulos libres, de modo que le podremos asociar una base
a H,(X,,X,—-1), con un elemento generador por cada celda. Observemos el
isomorfismo:

@ H,.(D 57 LBt (X, X
a€A,

Tomando un generador por celda, tenemos una base para el primer término, que
se aplica en una base para H,, (X, X,—1). Puede haber ambigiiedad en la mul-
tiplicacién de un generador por —1, o en el orden, y por lo tanto consideraremos
dos bases asi relacionadas como equivalentes.
De modo anéalogo, en el complejo del recubridor, tenemos un isomorfismo:
P Hu(x x (D7, 57h)) LCole), (X, X,y
a€A,

Notemos que si tomamos un generador de H, (D™, S"~!) y lo trasladamos por
7, generamos el complejo celular de todas las celdas relacionadas (en conjun-
to podriamos hablar de una m-celda). Asi, recorriendo @ € A,,, tenemos una
base como Z[r]-m6dulo del primer término que llevamos a una Z[r]-base de
H, (X, Xn1).

Para ganar independencia de las elecciones hechas, relacionamos bases permu-
tadas o con generadores multiplicados por +¢ € 7 (pues la eleccion inicial de
una celda usual en la 7-celda es arbitraria salvo la traslacién por un elemento
del grupo).

Definicion 3.1.23. Diremos que un espacio X estd dominado por W si es un
retracto salvo homotopia, o sea que deben existir aplicaciones f y g, completando
el siguiente diagrama, que conmuta salvo homotopias:

X —tow

17

X

Idx =5 gof

En particular nos interesa que X sea un espacio finitamente dominado, i.e. un
espacio dominado por un CW finito.

Observacion 3.1.24. Si X es efectivamente un retracto de W, entonces su com-
plejo singular asociado es un sumando directo del de W. Pues:



Siendo S un funtor recuperamos un epimorfismo:
Se(W) 15 Sg(X) — 0

el cual admite una retraccion probando que So(X) es isomorfo a un sumando
directo.

En particular, si el complejo asociado a W es acotado o de tipo finito, estas
propiedades pasan al complejo de X.

En principio esto puede no suceder si X es sélo un retracto salvo homotopia.

Definicion 3.1.25. Sean R un anillo y C un complejo de R-moédulos proyec-
tivos. Decimos que un complejo D de R-moédulos domina a C| si existen morfis-
mos f:C — Dyg:D — C tales que go f = 1¢. Decimos que C' es finitamente
dominado si es dominado por un complejo finito de médulos libres.

Observacion 3.1.26. En particular, si X esta finitamente dominado por W -como
espacios- entonces el complejo singular de W con los respectivos mapas con-
siderados en la homologia y la homotopia de complejos de cadena inducida:
(Se(W), fv, gs, h), establece una dominacion finita sobre S,(X) (como Z[r]-
complejos).

Lema 3.1.27. Un complejo de R-mddulos proyectivos estd finitamente domi-
nado si y sélo si es homotdpicamente equivalente a un complejo de tipo finito
de R-mddulos proyectivos.

Demo. Referimos a la detallada exposicion de [Ran85].

Del Lema se sigue que si C' es un complejo de R-médulos proyectivos,
finitamente dominado, entonces estd bien definida su caracteristica de Euler

x(C) € Ko(R).

Definicién 3.1.28. Dado un espacio topologico X consideramos el complejo
singular asociado Se(X) y, en caso que este sea homotdpicamente equivalente a
un complejo finito de Z[r]-modulos proyectivos, definimos su caracteristica de
Euler como:

N(X) = X(Sa(X)) € Ko(Z[r))

y la obstruccién de Wall:
X(X) = X(Se(X)) € Ko(Z[r])

En particular este es el caso de un espacio homotépicamente equivalente a
un CW finito, ver 4.2.12.

Finalmente tenemos el siguiente resultado para un espacio homotoépico a
algtin CW (no necesariamente finito), e hipotesis técnicas sobre el grupo funda-
mental.
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Teorema 3.1.29. (Wall)
Consideramos un espacio conexo X con grupo fundamental 7 finitamente pre-
sentado, homotdopicamente equivalente a un CW-complejo

= X es finitamente dominado si y sélo si el complejo del recubridor universal,
Se(X), estd finitamente dominado (como complejo de Z[r]-mddulos).

= X es homotdpicamente equivalente a un CW finito si y sélo si, Se (X') estd
finitamente dominado y se anula su obstruccion de Wall.

Esto_justifica referirnos a la obstruccion de Wall del Z[m (X)]-complejo
Se(X) como la obstruccion de finitud asociada al espacio X.

Demo. Si X esta finitamente dominado por un CW finito: Y, So(X) estara alge-
braicamente finitamente dominado por el complejo celular de Y, y asi (en vista
del lema 3.1.27) serd homotdpico a un complejo finito de Z[r]-modulos proyec-
tivos. En particular estara definida la caracteristica de Euler del complejo de
Z[n]-modulos Se(X).

A su vez, si X es homotopico a un tal Y, la obstruccion de Wall de X se
puede computar sobre el complejo celular de Y, donde es claramente nula, por
ser un complejo finito de Z[r]-modulos libres.

Esto prueba la necesidad de las condiciones sobre S,(X), referimos al trabajo
original para la suficiencia [Wal65, Wal66]. O

3.2. Torsién de Whitehead

Dada una equivalencia homotépica entre espacios podemos aplicar la defini-
cion 2.3.1 para calcular la torsiéon del mapa inducido al nivel del complejo del
recubridor universal, entre espacios que cuenten con estructura celular finita. En
particular necesitamos discutir una asignacién natural de bases para los médulos
libres involucrados, ya que este invariante de torsion es sensible a tal eleccién.

Definicion 3.2.1. Sean X e Y dos espacios con estructura CW finita y una
equivalencia homotopica entre ellos f : X — Y (que salvo homotopia pode-
mos elegir celular). Consideramos su levantamiento al nivel de los recubridores
universales:

f

—_—

R

f

<<
N<—=

A su vez, tenemos la aplicacion inducida entre los respectivos complejos celu-
lares, f*, una Z[r]-equivalencia homoto6pica (anilogo a 3.1.20) entre los com-
plejos. Su cono serd un Z[r]-complejo aciclico de tipo finito formado por mo-
dulos libres con una clase preferida de bases. Podemos computar su torsion:
7(f.) € K1(Z[r]) y proyectarla al grupo de Whitehead (ver 1.2.16), definiendo
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asi un invariante, la torsion de Whitehead de la equivalencia f, que por abuso
denotaremos:

7(f) € Wh(m)

Cuando sea trivial, 7(f) = 1, diremos que se trata de una equivalencia simple.

Demo. (buena definicion)

A la luz de lo discutido anteriormente respecto de la eleccion de bases para los
moédulos de la homologia celular (o la clase de bases), vemos que el paso de
K1(Z[r]) a Wh(r) anula las ambigiiedades, al trivializar permutaciones y mul-
tiplicaciones por elementos +¢g € m. Asi se define la torsién de una equivalencia
homotopica entre dos espacios CW de manera natural.

Indicamos el texto de Milnor [Mil66] como referencia clasica.

Definicion 3.2.2. Un coproducto celular es un coproducto usual:

f

A——B
il lj
X—>Y
formado por CW -complejos: A, By X, con f una aplicacion celular, e “4” una

inclusion de complejos. En particular queda determinada una estructura celular
en Y, tomando Y,, como la unién de j(B,) v g(X,).

Observacion 3.2.3. Un coproducto celular da lugar a una sucesién exacta corta
de la homologia celular, compatible con la eleccién de bases (como Z-modulos)
discutida en 3.1.22:

0— Co(A) L2 0y(B) @ Cu(X) 222 Cy(v) — 0 (3.2.4)
pues j LI g funciona como aplicacién cociente en la construccion de Y como:
Y (BUX)/(fUiA

A nivel de los recubridores universales también recuperamos un coproducto
celular.
f

A—B
| ]
XT>Y

Y tenemos condiciones de compatibilidad con las respectivas acciones de los
grupos fundamentales; por ejemplo la accién en A de un v € 71(A, ag) se traduce
via f a la accion de f.(y) € m1(B, f(ao)) en B.

La aplicacion j : B — Y induce un morfismo de anillos Z[m (B)] — Z[m1(Y)]
que nos permite ver a Z[r1(Y')] como Z[r1(B)]-mo6dulo; escribimos

C(B)zfr,(v) = C(B) @zpm, (5)) ZIm1 (V)]

39



por el producto tensorial con respecto a esa estructura de Z[m; (B)]-mo6dulo en
Z|m (Y)]. Analogamente se definen C(X)Z[m(y)], y C(A)Z[m(y)] usando respec-
tivemente g y goi = jo f.

Estaremos recuperando, a partir de la sucesion (3.2.4), una sucesion exacta
corta de Z[r(Y')]-complejos, con los mismos rangos, y compatible con las bases
preferenciales:

0= Co(A)zin(yy) = Co(B)zim(vy @ Co(X)zim(vy — Co(Y) =0 (3.25)

Proposiciéon 3.2.6. (Propiedades de la torsion de Whitehead)

1. Dados coproductos celulares entre CW complejos, y f; : X; — Y; equivalen-
cias homotdpicas de modo que fijoi; =k;f; (j=1,2). Sea f: X —Y la
aplicacion inducida y sea lg = l1ky = loks. Entonces f es una equivalencia
homotodpica y se tiene:

XO L> Xl }/0 L Y1
izi l]l kgl \Lll
Xo——X Yo ——=Y
J2 l2
7(f) = l.7(f1) - lout(f2) - louT(fo) ™" € Wh(Y) (3.2.7)

2. Si Ay B son CW complejos finitos, f,g: A — B es equivalencia homotdpi-
ca y f =g, entonces:

3. Composicion
Sif: X —->Y,g:Y — Z son equivalencias homotdpicas entre CW comple-
jos finitos entonces:

T(go f)=7(9) - 9«7(f) € Wh(Z)

4. Producto
Sean f : A’ - Ay g: B — B equivalencias homotdpicas de complejos
CW conexos y finitos. Sean ag € A y by € B, y seani: A — A x B,i(a) =
(a,bg), j: B— A x B, j(b) = (ag,b). Entonces:

7(f % g) = (i ()P - (Gur ()X

donde Wh(B) ELN Wh(Ax B) es inducida por la inclusion con algin punto
fijo ag € A, e i, estd definida andlogamente.

Aqui usamos que como A y B son CW complejos finitos, x(A) y x(B) son
numeros enteros.
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Demo. (1) Para comenzar debemos levantar coproductos, y todas las aplica-
ciones, a sus recubridores universales. Tenemos el siguiente diagrama conmuta-
tivo entre complejos de Z-modulos libres:

00— Cy(Xg) — Co(X1) ® Co(Xo) Co(X) 0
(fo)*i (fl)*ea(fg)*i f*l
0 ——=Co(Yo) — Cu(V1) © Ca(Y2) Co(Y) 0

Pero debemos tensorizar sobre Z[r(Y)], como en la definiciéon anterior de

coproductos celular, para observar la estructura en comun. Abreviemos m =
m(X).
Escribimos la sucesién exacta entre los conos de las aplicaciones verticales:

0 — A(fo)zim — D(f1)zm © Alf2.)z — Af) — 0

Tenemos varias cosas que observar:
Hay compatibilidad con las clases de bases preferenciales como Z[r]-médulos,
pues ya era asi en las respectivas sucesiones exactas cortas de la homologia celu-
lar (para los X’s del dominios o los Y’s en la llegada).
Ademas, f; es casi-isomorfismo, y por tanto f es equivalencia homotoépica (us-
ando el Teorema de Whitehead 3.1.17)

Por otra parte, conocemos la torsiéon de cada término, pues tensorizar del
modo anterior equivalia a aplicar (I;)«, 7 = 0,1,2 en los coeficientes del isomor-
fismo que define la torsion (segtn 2.3.2). Entonces:

T(A(fi)zm) = (i)«T(fi)

Siendo multiplicativa la torsion en filas exactas cortas de complejos de R-
modulos con bases (Corolario 2.3.17) deducimos que:

7(f) = (1)«7(f1) - (12)«7(f2) - ((l0)xT(fo)) ™" € Wh(Y)

(2) y (3) Son consecuencias directas de la Proposicién 2.3.19, items (2) y (3),
observando las aplicaciones inducidas al nivel de la homologia celular. En (3) se
aplica g, solo para traducir de Wh(Y) a Wh(Z).

(4) Factoricemos el producto como:

fXg:(fXIdy)O(IdX/Xg)

Aplicando el item anterior sabemos que:

T(fxg)=7(f xIdy) - (fxIdy)«T(Idx' X g)
Basta entonces probar que:

T(f x Idy) = i, (r(f)XY)) € Wh(X xY)
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Lo vemos por induccién en la cantidad de células del complejo Y:
Para comenzar, cuando Y es apenas un punto el enunciado es trivial. Incluso si
fuera un conjunto finito de puntos, X x Y = X .- U X y asi:

T(fxIdy) =7(f) @ @7(f) € Wh(X xY):=PWh(X)
yey

En el paso inductivo, para pegar una celda armamos el coproducto correspon-

diente.

Sk—l L> Y

|

k
DF =~V

Observemos que la adjuncién ¢ siempre es celular siendo Y un CW , y omitimos
notar la inclusiéon candnica.

Luego tomamos producto con: f: X' — X, obteniendo dos coproductos
celulares y aplicaciones entre ellos, como en (1).

Id, Id,
X/Xsk—l(i>xlxy XxSk_l(l>XXY
\L i(]d,i) l i(ld,i)
’ k / ’ k /
X' x D WX xY X xD WX xY

Interpretamos la ecuacion (3.2.7):
T(f x Idy+) = (Id,)«7(f x Idy)-(Id, ®)7(f x Idpr)-(Id,i0 )T (f x Idgr—1)""
Aplicando la hipétesis inductiva tenemos que:

T(f xIdy) = i (r(f)XY)
r(f x Idpe) = i (r(FPY)
T(f x Idgimr) = du(r(FE)

Estamos abusando de la notacion entre las diferentes inclusiones de X al pro-
ducto con partes de Y’. Pero en todos los casos, la composicién de esta inclusion

con las aplicaciones que aparecen en la ecuacién anterior, resultan en la misma
inclusion i, : Wh(X) — Wh(X xY’). Y asi:

7(f X Idy:) = i,r(fXOIHXPHXETH ey y)

Pero también la caracteristica de Y’ esta determinada por el coproducto, obser-
vando la fila exacta inducida en la homologia celular y aplicando la aditividad
de x.

T(f x Idy:) = i, 7 (/)XY € Wh(Y")
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Teorema 3.2.8. (Chapman)
Si f: X — Y es un homeomorfismo entre CW complejos conexos finitos, en-

tonces:
T(f)=1 & Wh(n)

donde m = m (X) =27 (V).
Demo. Referimos a [Cha74].

Homotopia Simple

Naturalmente nos preguntamos cémo son las equivalencias homotdpicas de
torsién trivial. Para espacios CW finitos podemos contestar la pregunta, carac-
terizandolas como homotopias simples.

Definicion 3.2.9. Decimos que X se obtiene por una expansion elemental de
Y, si resulta de la adjuncién de un par de celdas en dimensiones consecutivas:

X =Y uUeFuet!

donde la funcion caracteristica de eF+1, & : D**1 — X debe verificar que para
alguna eleccién de homeomorfismos estableciendo D**! ~ [F+1 DF ~ % la

restriccion:
o|: DF =~ I* c 91"t =~ D*1 - X

sea una funcion caracteristica de e*.
Ademés, recordando la notaciéon 3.1:

ol: JF —Y*

de modo que el borde de e*+! esta compuesto por e* y parte del k-esqueleto de
Y.

Observemos que la inclusion de Y en X induce una equivalencia homotopi-
ca, pues podemos colapsar e**! contra Y, dando lugar a una retraccién por
deformacion fuerte de X en Y (uanica salvo homotopia relativa a Y, [CohT73,
Proposicion 4.1]). Decimos que X es una expansion elemental de Y, y a su vez,
que Y es un colapso elemental de X.

Definicién 3.2.10. Una equivalencia homotépica f : X — Y serd una homo-
topia simple si es homotépica a una sucesion finita de equivalencias homotopi-
cas f = f,--- f1, donde cada f; es una inclusién o una retracciéon asociada
-respectivamente- a una expansion o colapso elemental.

Observacion 3.2.11. Dado Y un subcomplejo conexo de un complejo finito X,
que sea un retracto por deformaciéon de éste, hemos definido la torsién de la
equivalencia homotoépica dada por la inclusion de Y en X. Alternativamente, ya
que contamos con el complejo celular relativo C, (X' , )7) (con la clase de bases da-
da por la estructura CW relativa), y éste es un complejo aciclico, podriamos con-
siderar su torsion y proyectarla a Wh(X). Ambas nociones coinciden, seguimos
en esto a [Tur01, Capitulo II, Lema 8.6].
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Notemos ademés que tenemos una extension de la definiciéon de torsion aso-
ciada a un retracto por deformacion, para el caso dénde s6lo contemos con la
finitud de la estructura celular relativa al par, pero no a cada uno de los espacios.

Teorema 3.2.12. (Homotopia Simple)
Sea f: X — Y una equivalencia homotdpica entre complejos CW conexos finitos.
Esta equivalencia tendrd torsion trivial si y solo si es una homotopia simple.

Demo. (<) A partir de la observacion anterior es facil ver la condicion sobre
la torsion pues conocemos el complejo relativo. Conservando la notacion de la
definicion 3.2.9, vemos que Co(X,Y) tiene solo dos celdas, en grado k y k + 1.
A nivel de los recubridores, C.(f( ,Y) se ve como:

02 L 2] >0 — -

como el operador de borde envia la célula e**! -de mayor dimensiéon- a su
borde, formado por e pegada a una k-celda en Y, en la estructura relativa s6lo
sobrevive e*, y asi @ envia el 1 € Z[r] en grado (k + 1) a £g. Pero la clase de
esta aplicacion en Wh(r) es trivial.
Visto que la inclusién asociada a una expansion elemental es una equivalencia
simple, se deduce que también lo una retracciéon que provenga de un colapso
elemental (por ser su inversa) o cualquier sucesién de colapsos y expansiones
elementales. Recordamos en esto las propiedades multiplicativas de la torsién
por composicion de equivalencias (ver 3.2.6 ).

(=) Ver [Coh73, Apartado 22]. O

Finalmente mostramos cémo construir un par (X,Y) que realice una torsiéon
predeterminada.

Proposicion 3.2.13. (Realizacion)

Dado Y un complejo CW de grupo fundamental 7, y un elemento cualquiera
w € Wh(r), podemos construir otro complejo CW X, del cual Y sea subcomplejo
y tal que la torsion dada por la inclusion sea igual a w.

Demo. Primero representamos a w € Wh(m) por una matriz inversible:
M = (mij)i; € Glo(Z[m])

Tomamos n > 2 fijo, y pasamos a pegar por un punto y € Y ¢ esferas de
dimension n, formando:
Y =vv\/ S
i1<q

La notacion refiere a efectuar el pegado por un punto. La estructura celular
corresponde a g celdas de dimensién n cuyo borde se pega sobre y € Y.

Si consideramos el grupo de homotopia: m, (Y, y), ademés de ser abeliano
serd un Z[r]-moédulo, por la acciéon del grupo fundamental trasladando esferas
basadas en y € Y’. Notemos también que cada esfera pegada representa una
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clase distinta [S?'] € 7, (Y’,y) (lo cual es claro si cocientamos por Y y observa-
mos el “racimo” de esferas resultante). Tomamos entonces:

pi= Y mylSy] €m(Y',y)

1<j<q

Tales elementos corresponderan a mapas: f; : S® — Y’ parai =1,...,q. Los
usamos como funciones de adjuncién, que indican dénde pegar el borde de otras
q celdas de dimensién n + 1, recuperando un espacio X.

Observemos que siendo n > 2 no hemos afectado el grupo fundamental, y
asi 7 := 1 (Y, y) = m (X, y). Veamos la homologia celular del par (X,Y):

o~ Zr))? k= 1
0 k#n,n+1
Y ademaés, eligiendo orientaciones y levantados convenientes de las celdas de
los recubridores, tendremos que el mapa de borde 0:

0= (2) S (2T =0 (3.2.14)

coincide con nuestro elemento prescripto M € Gly(Z[n]) (para ello se debe
tomar como punto base siempre a un mismo § € P~!(y) y atender a que las
orientaciones de las células levantadas coincidan con las originales via P). En
particular es un isomorfismo lo cual muestra que la homologia relativa era nula:

H,(Y,X)=0

y asi por 3.1.16, siendo (Y, X) un par 1-conexo, todos los grupos relativos de
homotopia resultan triviales, y entonces debe ser un retracto por deformacion
gracias al teorema de Whitehead (3.1.17), siendo la inclusién una equivalencia
débil.
Asi podemos calcular la torsion del complejo aciclico Co(X,Y). De (3.2.14)
resulta que:
7(X,Y) = wEH"

Notemos que en Wh(w) las ambigiiedades acerca de las orientaciones y elec-
ciones de levantados desaparecen. En cambio, la cuestiéon del signo depende de
la definicion misma de la torsiéon. Asi bastaba elegir un n impar al comienzo
para recuperar la torsién deseada. O

Cobordismo

Definicion 3.2.15. Dos variedades C*° n-dimensionales, compactas y sin borde
(en el sentido de 4.4.2), My y M, se dicen cobordantes si su unién disjunta
My U M coincide con el borde de alguna variedad compacta W. O sea:

OW = oW uoh W
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GW =M, j=0,1
Pedimos que cada componente del borde sea difeomorfa a las variedades es-
pecificadas. Para dar cuento de esto, en vez de indicar la terna (W, My, M),
podemos agregar informacion dando: (W, My, fo, Mo, fo) donde para j = 0,1,
cada f; da un difeomorfismo:

M, s oW

Si ademas consideramos variedades orientadas, un cobordismo orientado W de-
ber verificar que 9yW = My ;W = M, lo cual significa que la orientacion
inducida en M; como borde de W es la opuesta a la dada (aqui importa el
orden).

Observacion 3.2.16. La relacion de cobordismo (orientado o no) es de equiva-
lencia. Tenemos el cobordismo trivial My x I para la reflexividad, la simetria se
deduce de invertir la orientacién de un cobordismo dado y, por tltimo, la transi-
tividad se obtiene pegando variedades, o sea que dados cobordismos (W, My, M)
y (W', My, M) tendremos el pegado a lo largo de My: (W Uy, W', My, Ms) es-
tableciendo un cobordismo entre My y Ms.

El conjunto de clases de cobordismo orientado de variedades n-dimensionales
tiene estructura de grupo abeliano con la unién disjunta, lo notamos: €2,

[Mo] + [M1] = [Mo L M;]

Vale notar que siempre tenemos un representante conexo de cada clase, con-
siderando la suma conexa. O sea, que dadas variedades n-dimensionales podemos
formar una nueva variedad, por pegado de un tubo entre ambas. Formalmente
necesitamos sendos embebimientos de D™ en cada variedad M; lo cual se puede
hacer sobre una carta cualquiera, y asi tendremos:

W:(M()uMl XI) U(anjﬁijl) D" x1 (3217)
W da un cobordismo entre My LI M; y la suma conexa:
Mo#M; == (Mo U M) Ugn-15 53 (8" x I)

En particular la suma conexa de una variedad M con una esfera de la misma
dimension, da una estructura difeomorfa a la original, mostrando que S™ es el
elemento neutro en 2,,.

Definicién 3.2.18. Dados dos cobordismos sobre My: (W, My, fo, M1, f1) vy
(W', My, f'o, M1, f1), diremos que son difeomorfos relativos al borde, si existe
un difeomorfismo F : W — W' que verifique F o fy = f{.

Notemos que en consecuencia F'(M;) = Mj.

Por eso nos interesa determinar cuando un cobordismo sobre M, es difeo-
morfo relativo al borde (difeomorfo rel. 9), a un cobordismo trivial. Pues en
tal caso tendriamos establecido un difeomorfismo entre My y M, resolviendo el
problema de clasificacion.

La siguiente condicién nos dara la clave.
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Definicién 3.2.19. Un h-cobordismo es un cobordismo (W, My, fo, M1, f1) tal
que cada inclusion M; — W (j = 0, 1) sea una equivalencia homotopica.

Teorema 3.2.20. (h-cobordismo; Smale)
Si M es una variedad simplemente conexa compacta de dimension mayor o igual
a 5, entonces todo h-cobordismo sobre ella es trivial.

Demo. Referimos a [Mil65].

Este resultado permiti6 resolver la conjetura de Poincaré para dimensiones
superiores, ver 3.2.23.

Observacion 3.2.21. Dado un Un h-cobordismo (W, My, M;) podemos computar
la torsién asociada a la inclusion My C M, que por hipdétesis es una equivalencia
homotopica.

T(I}V, Mo) S Wh(ﬁl (Mo))

Como las variedades compactas admiten una estructura de CW finito, tnica salvo
homeomorfismos, estara bien definida.

La torsién resulta ser el invariante clave en la generalizacion del teorema de
h-cobordismo sin imponer restricciones sobre el grupo fundamental.

Teorema 3.2.22. (s-cobordismo)
Sea My una variedad conexa compacta y orientada de dimension n > 5, con
grupo fundamental m := w1 (My). Vale que:

= Un h-cobordismo es difeomorfo rel. 0 a uno trivial, si y sélo si,

T(W,My) =1 € Wh(n)

= Mds aiun, cada elemento en el grupo de Whitehead tiene un h-cobordismo
sobre My que lo realiza, i.e.

V.TGWh(ﬂ') | (VV,M(),Ml) / T(VV,MQ):I

y asignar la torsion establece una biyeccion entre las clases de h-cobordismo
sobre My, salvo difeomorfismos relativos al borde, y el grupo de Whitehead
de Mo.

Demo. Pruebas independientes fueron provistas por Barden, Mazur y Stallings.
No demostraremos este resultado, referimos a [Ker65]. Vale notar que el segundo
punto es un refinamiento de la construccion 3.2.13.

Teorema 3.2.23. (ex Conjetura de Poincaré)

Una variedad compacta, sin borde, n-dimensional M que sea simplemente coneza,
y tenga la homologia de S™, i.e. “una esfera homotopica”, debe ser homeomorfa
a ésta.

La conjetura es vélida trivialmente para n = 1, al no alcanzarse las hipétesis,
y se deduce de la clasificacion de superficies para n = 2. Nosotros pasaremos a
demostrarla para n > 6, como corolario del teorema de h-cobordismo. Nuestro
argumento puede ser adaptado para n = 5, pero los casos n = 3,4 son consider-
ablemente mas dificiles, y en particular n = 3 fue el dltimo en ser probado, por
Gregori Perelman.
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Demo. Sea M una variedad de dimensién n > 6 con la homologia de S™, i.e.

Hy(M) {Z k=0,n

0 kK#0,n
Notemos que siendo 1-conexo es posible aplicar el teorema de Hurewicz (3.1.16)
reiteradas veces, mostrando que es n — 1 conexo y que m,(M,p) = H,(M,p)
(tomando un punto base p € M). Asi podemos tomar un elemento generador
de la homologia n-ésima proveniente de un mapa:

f:8"—-M

Esta aplicacion induce un isomorfismo en la homologia y resulta una equivalencia
homotoépica por 3.1.18, justificando que hablemos de una esfera homotopica.
Consideramos entonces g : M — S™ una inversa homotopica de f. Notemos
que si tenemos dos discos cerrados de dimensién n con embebimientos disjuntos
en M: D§ y D7, la imagen por g de cada uno de ellos serd homotépica a un
disco. O sea que podemos asumir que tenemos una equivalencia homotopica:

G:M\(DypuDy) — S"tx T

Observemos que W := M\(Dj U D7) es un cobordismo entre dos copias de
S"~1, mas atin es un h-cobordismo pues via § es claro que se contrae hacia
cualquiera de sus dos bordes. Asi W es un cobordismo sobre D} = S"~1 y
resulta difeomorfo relativo al borde a un cobordismo trivial, pues estamos en
condiciones de aplicar el teorema de h-cobordismo 3.2.20. Tenemos entonces un
difeomorfismo:

F: (W,0D},0D7) — (9D x I,0D} x 0,9D! x 1)

Podemos volver a pegar D{ pues su borde estd identificado, pero no sucede
lo mismo con DY pues tenemos un difeomorfismo: £ : 0D} — 9D§ x 1. Sin
embargo esta aplicacion puede ser extendida a un homeomorfismo entre discos,
con el siguiente truco debido a Alexander:

DY — D"
(Ta 9) = (7"77“ . Fl(lae))

La notacién usa una coordenada radial: r, y otra angular: § € S™~1.
Notemos que el centro 7 = 0 es un punto de no diferenciabilidad. Recuperamos
al menos un homeomorfismo:

M = WUDSUD? —" (8D6L X I)UDS UFl(aDI") D~ §gn
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4. Apéndice

4.1. Homologia singular

Definicion 4.1.1. Dado un espacio topologico X, definimos un n-cubo como
un mapa 7 : I" — X.

Decimos que un n-cubo T'(s1, ..., s,) es degenerado si es constante respecto
de alguna de sus variables.

Consideramos entonces el grupo abeliano libre generado por los n-cubos y
lo notamos @, (X), dentro del cual tenemos el subgrupo generado por todos
los n-cubos degenerados, D,,(X). El cociente seré el n-ésimo grupo de cadenas,
Sn(X).

A su vez, notemos que S, (X) es un grupo abeliano libre generado por el conjunto
de n-cubos modulo los cubos degenerados.

Definicion 4.1.2. Dada un n-cubo T : I™ — X definimos por restricciéon los
siguientes (n — 1)-cubos, y nos referimos a ellos como las caras de 7.
1<i<n

AiT(Sl, ey Snfl) = T‘(Sl7 ey si,hO, Siyenny Snfl)

B/I‘(S]_7 ey Snfl) = T(817 ey Si—1, 1, Siyenny Snfl)
Tenemos definidos morfismos 9, : @, (X) — Q,—1(X) dados por:

On(T) = zn:(—l)i[AiT — BT (4.1.3)

i=1
donde los corchetes indican el paso al cociente por los (n—1)-cubos degenerados.

Lema 4.1.4. Los morfismos O, : Qn(X) — Qn_1(X) verifican las siguientes
propiedades:

1. &ﬁn,l =0

Demo. 1) La primera afirmacion se prueba por un cémputo directo, aplicando
aditividad y las siguientes propiedades : Si 1 <i < j < n:

A Aj(T) = Aj1 A(T)
B;B;(T) = Bj—1B;(T)
AiB;j(T) = Aj 1 Bi(T)
B;A;(T) = Bj—1Ai(T)

2) Para la segunda notemos que si un cubo T es degenerado para la i-ésima
variable, entonces A;T = B; y se cancela el término correspondiente en la ex-
presion (4.1.3), dejando que los demés términos den cubos degenerados respecto
de esa variable (reindexada convenientemente). O
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Definicién 4.1.5. (Homologia Singular)
Dado un espacio X tenemos mapas inducidos:

On Sn(X) - n—l(X)

dando a (Se(X),d) estructura de complejo de cadenas de Z-modulos. Lo 1la-
mamos el complejo singular asociado a X.

Los grupos de homologia asociados al complejo (Se(X),d) (ver (2.1.4)) de-
finen la homologia del espacio:

H,(X) :== H,(Se(X))

Definicién 4.1.6. Si (X, A) es un par espacio-subespacio definimos el complejo
singular de X relativo a A como el cociente:

Sn(X, A) := 5,(X)/Sn(A)

La restriccion del operador de borde: 9, al espacio A, verifica: 9(S,(A4)) C
Sp—1(A) de modo que (So(X, A),d) resulta un complejo de cadenas (por abuso
0 es el morfismo inducido).

Observacion 4.1.7. Tenemos una fila exacta corta de complejos:
0 — Se(A) 5 Se(X) & Se(X,4) — 0
y la correspondiente fila exacta larga en la homologia (por 2.1.10):
L H,(A) 25 H(X) 25 Hy(X,A) S Hy 1 (A) — -

Notemos que la aplicacion de H,(X) en H,(X,A) es la inducida por la in-
clusion de aquellos ciclos (de borde nulo) en aquellas cadenas de X con borde

en A. Ademas, el morfismo de conexion H, (X, A) LR n—1(A) es literalmente
el borde.

Definicién 4.1.8. Dados (X, A) e (Y, B) una aplicacion f : (X,A) — (Y, B)
entre ellos induce una morfismo de grupos f. : Sy (X, A) — S, (Y, B) por com-
posicion de f, andloga a la definida para la homotopia en 3.1.9.

Diremos que f es una equivalencia homoldgica si f, es un casi-isomorfismo.

Se prueba que mapas homotoépicos f = g : X — Y inducen aplicaciones
fas gx 2 Sn(X) — S, (Y), anivel del complejo singular, que son homotopicamente
equivalentes entre si (i.e. elementos idénticos en el sentido de (2.1.20)). Nos
referimos a [Mas80, Teorema 4.1].

El siguiente resultado es de vital importancia para el computo de grupos de
homologia.

Proposicion 4.1.9. Sild y V son dos subconjuntos de un espacio X, tales que
sus interiores cubren X, entonces tenemos la siguiente sucesion exacta larga:

CCH,UNY) MY g @ Ha (V) Y g (X)) S Hy U Y) = -
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Obs. Los morfismos iz, e iy son las inclusiones desde la intersecciéon en comuin
UNYV en los respectivos U y V; v ju, jy son las inclusiones desde los subespacios
respectivos a X . El morfismo:

§:Hy(X)— Hypa(UNY)

estd dado tomar un ciclo z € H,(X), descomponerlo como suma de cadenas
en U y V (gracias a que forman un cubrimiento generalizado), de modo que:
z =u+ v, y en consecuencia:

0=0z=0u+0dv
y asignar:
0:z—0u=—-0v € H,_1(UNV)

No podemos asegurar que el ciclo z se descomponga como suma de ciclos, por lo
que la aplicacién no es necesariamente nula, y ademas, estd bien definida, pues
si descomponemos z = u’ + v’ con v’ CU, y v’ C V, entonces:

O=u—uv +v—17
u—u C UNY
Ou—u)=0 € H,_1,UNYV)

pues mostramos que es un borde.

Demo. (Proposicion 4.1.9)
Nuestra referencia es [Hat02, Pagina 149].

4.2. Complejos CW

Definicion 4.2.1. Dados dos espacios topologicos X, Y, y datos de pegado
a:7Z—Xyb:Z—Y,podemos definir su pegado como el espacio E (la clase
de homeomorfismo) resultante del siguiente push-out:

7 —sX
|
Y
Y-->F

En particular, tal espacio se puede construir como el cociente de la unién disjunta
por el dato, i.e.: E= (X UY)/a(z) ~ b(z)

Notacidn. La celda n-dimensional D™ es el disco cerrado y su borde usual, S™~!
es la esfera de una dimension menos.
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Observacion 4.2.2. Un caso particular es la adjuncién de n-celdas a un espacio
X, donde efectuamos el pegado sobre el borde.

|—|oz€A71 Sn_l — X

P

Dn
Usea, o Y

o4

Decimos que Y se obtiene de X por adjuncién de n-celdas.

Por abuso, también nos referiremos al mapa ¢ : D™ — X como una n-celda.
Tacitamente el morfismo S™~! — D", es la inclusién candnica.
Las funciones ¢, son las adjunciones, mientras que a las ¢, las llamamos car-
acteristicas. Notaremos a,, =| A, |, la cantidad de n-celdas.

Definicién 4.2.3. Resulta entonces natural definir un CW complejo, o sea, un
espacio topoldgico X con una filtracion:

g=X,CcXpCcXyC---CX,C---

donde X, se obtiene de X,,_; por adjuncién de n-celdas, y X es la unién resul-
tante, formalmente el colimite.

La topologia determinada admite como cerrados aquellos subconjuntos que
sean cerrados en su intersecciéon con el n-esqueleto: X,,, para cada n.

Definicion 4.2.4. Mas en general, podemos comenzar a adjuntar celdas des-
de un espacio topologico cualquiera A. Para ello pediremos que la filtraciéon
comience con X" := AU D, con D un conjunto discreto, y que el proceso con-
tinue con las condiciones anteriores.

En ese caso decimos que el par (X, A) tiene estructura de CW -complejo
relativo a A. Tal estructura pasa bien al cociente de X por A, y determina un
CW-complejo en X/A.

Recuperamos la nocién anterior, de estructuras de CW en el caso trivial:
X =X/0=(X,A).

Observacion 4.2.5. Un subcomplejo CW de X serd un subespacio A C X, con
estructura de CW complejo dada por una subcoleccion de las celdas de X. En
particular requerimos que las funciones de adjunciéon de k-celdas de A, que
corresponden a celdas de X con imagen en Xj_1, se correstringan bien, llegando
al (k — 1)-esqueleto de A.

Obtendremos que el par (X, A) conlleva naturalmente una estructura de
CW-complejo relativo a A.

Por ejemplo, el n-esqueleto X, tiene estructura de subcomplejo de X, dejan-
do al par (X, X,,) la estructura propia del trucamiento de la filtracién original.

Observacion 4.2.6. Volviendo a la estructura de CW -complejo relativo, dada por
un par (X, A), el paso al cociente que define X/A induce un isomorfismo a nivel
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homologia; reinterpretando la homologia relativa del par como la homologia
reducida del espacio cociente.

H, (X, A) = [,(X/A)
La fila exacta de la homologia asociada al par (X, A) resulta:
= Hy(A) = Hy(X) 5 Ho(X/A) % Hoor(A) = -

Proposicion 4.2.7. Caracterizacion de la homologia de un CW complejo X.

0 k#n
1. Hy(Xo, Xo_1) =
il v {Z“" k=n
2. Vk>n Hp(X,)=0
3. Yk <n Hp(X,)= Hi(X) con el isomorfismo inducido por la inclusion.

Demo. 1) Observemos que el cociente X,,/X,,_1 son n-esferas pegadas por un
punto en comiin, al colapsar sus bordes y toda estructura anterior. Notamos:

Xn/Xn—l = \/ S;L
aEA,
Usando 4.2.6 tenemos que:
Hy(Xn, Xp1) = He(\/ S™)
acA,

y podemos calcular la homologia de este ultimo espacio aplicando el teorema
4.1.9. Basta proceder de modo inductivo, tomando un abierto U que sea entorno
de una esfera y se retraiga sobre ésta, y otro abierto V cubriendo las demés
esferas. Observemos:

- HUNY) S5 H U)o H (V) 252 i\ S™) S HeaUnV) — -
a€An,
(4.2.8)
Notemos que la interseccion de tales abiertos se retrae sobre el punto en comtn
a todas las esferas, por lo cual:

H,UNV)=0
Observando (4.2.8) tenemos:

Hi(\/ S") = Hi(U) ® Hyi(V)

a€A,

A su vez, por definicion de U,

Hy,(U) = Hi,(S")
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donde Hy(S™) = Z solo si k = n'y de lo contrario es nula. O sea que, prosiguiendo
inductivamente al calculo de la homologia de V -correspondiente a las restantes
esferas- llegamos a que:
H,(\/ s")=z™
acA,
donde a,, =| A, |, y en otro grado la homologia resulta trivial.
2),3) Referimos a [Mas80, IV .4] O

Observacion 4.2.9. A partir de la filtracién de un complejo CW dado, tenemos,
por cada par consecutivo X, _1 C X,,, la parte no trivial de la fila exacta larga
de la homologia asociada al par, o sea:

0— Hp(X0) 25 Hp(Xo, Xno1) 25 Hy 1 (Xno1) 25 Hy 1 (X) — 0 (4.2.10)

Definicién 4.2.11. Definimos entonces el complejo celular de X como C,, (X)) :=
H,(X,,X,-1), con bordes d,, = jn,—1 00y

dn
A Hn(XnaXn—l) — n—l(Xn—17Xn—2) —

h \8: ~_ T‘jnl
A
Hn—l(Xn—l)
Notemos que efectivamente es un complejo pues:
dn o dnJrl = (jnfl o 8n) o (jn72 o anfl)
= jnfl o (an Ojn72) O 0Op—-1
- jn—l o (0) O 0np—1
dpodpt1r =0

Teorema 4.2.12. La homologia singular es isomorfa a la homologia del com-
plejo celular Co(X).

Demo. Arreglamos como filas o columnas, parte de las sucesiones exactas mostradas
anteriormente en (4.2.10). Podemos ver al complejo celular en la diagonal:

0
On J’ iw
s H1 (X1, X)) ———= Hy(X,) H,(X)—0
d71\+1\ =~ AL \Lj”
Hn (Xna anl)

~ d
~ n
o T
N

0— Hn—l(Xn—l) - n—l(Xn—laXn—Q)

In—1

Seguimos el diagrama.
De la primera fila notamos que:



Notemos también que las aplicaciones j, son monomorfismos. Asi:
Hp(X) = jn(Hn(X))
Im(jn) = Ker(0y,) = Ker(dy)
De doénde resulta que:

Ker(0y)

H(X) 2 o (Ho(Xa) [ Im(Dn) = 70025

=: Hp(Co(X))

4.3. El Recubridor universal

Definicion 4.3.1. X es un espacio localmente arco-conexo, si dado un punto
y un entorno arbitrario en X, x € U, existe a su vez otro entorno V' arcoconexo
tal quezx € V C U.

La oponemos a la condicién méas ligera, que solo pide la existencia de algin
entorno arcoconexo.

Definicion 4.3.2. Decimos que un espacio X es semi-localmente simplemente
conexo, si todo punto xy € X posee un entorno U tal que:

Wl(U,wo)(L)ﬂl(XJo)

1., =0

i.e. donde la aplicacién inducida por la inclusiéon resulta nula a nivel del grupo
fundamental.

Definicién 4.3.3. Dado X, un recubridor es un espacio F junto a una apli-
caciéon P,

P
E—X
admitiendo un cubrimiento por abiertos de X: {U; }; donde P establece un home-
omorfismo entre If; y cualquier componente de P~1(U;).

Proposicion 4.3.4. Si X es un espacio conexo, localmente arco-conexo y semi-
localmente simplemente conexo, entonces existe un espacio recubridor universal.
O sea, un espacio X y una aplicacion recubridora P,

X—X

con X simplemente conexo.

Demo. En estas cuestiones, asi como en el Lema a continuacién, seguimos a
[Mun75].
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Lema 4.3.5. Sean X un espacio arcoconezo, semi-localmente simplemente conezxo
y localmente arco-conexo, y sean f : X — B continua y p : E — B una apli-
cacion recubridora. Sea xg € X y sea eg € E tales que f(xo) = p(eg). Entonces
son equivalentes:

1. fi(m(X, z0)) C pu(mi(E, €9)).

2. Euiste un unico levantamiento f: X — FE tal que: po f = f:

4.4. Geometria Diferencial

Definicion 4.4.1. Una variedad topoldgica de dimension n es un espacio topoldgi-
co M, con base numerable de la topologia, Hausdorff y localmente euclideo de
dimension n.

Esta dltima condicién significa que Vo € M, 3 U C M abierto conteniéndo-
lo, homeomorfo a un abierto usual de R™, via ¢ : U — U C R™. En tal caso
decimos que U es un abierto coordenado, y ¢ una carta. Notemos que dadas
¢o:U—o(U)yp:V — (V) tendremos la funciéon de transicion:

poyy i p(UNV) = pUNV)
que resulta un homeomorfismo entre abiertos de R" (admitimos el caso vacio).

Definicién 4.4.2. Una variedad C* de dimensién n es una variedad topolégica
M™ con un atlas C*, i.e. una coleccién de cartas cuyos dominios cubren el espa-
cio, de modo que las funciones de transicion sean ademas k-veces diferenciables.
En particular si K = 0 no hemos agregado nada y si k = oo decimos que es una
variedad suave.

Definicion 4.4.3. Si permitimos coordenar abiertos del espacio M con abiertos
de R :={(21---xyn) : =, > 0} tendremos definida una variedad n-dimensional
con borde.

Observacion 4.4.4. Los morfismos de variedades topologicas son, simplemente,
funciones continuas.

Para variedades C*, pediremos que una funcién f : M™ — N™ tenga expresiones
locales C*, o sea que dadas respectivas cartas ¢ : U C M — ¢(U) C R™ y
¥ :V C N — (V) CR" la composiciéon resultante:

fe~t i o(fTHV)NU) CR™ — 9 (f(U)NV) C R" (4.4.5)
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sea k-veces diferenciable en el sentido usual.

Si la variedad tiene borde basta especificar qué es una funcién diferenciable en-
tre abiertos de R’} que no sean abiertos en I". Pediremos que las funciones
puedan extenderse a un abierto de R™ y tener alli una expresion diferenciable
en el sentido usual. En particular, se deduce de las definiciones que una funcién
entre variedades topolégicas con borde, debe enviar el borde en el borde.

Definicion 4.4.6. Decimos que un mapa f : M™ — N™ es una inmersion
si al diferenciar cualquier expresion local -de acuerdo a (4.4.5)- tenemos un
monomorfismo (lineal) para cada = € M, i.e.

DWfd ") g € Homr(R™,R™)

Sif: M — N es una inmersion y establece ademés un homeomorfismo con
la imagen decimos que f es un embebimiento.

Teorema 4.4.7. (Whitney)

1. Si M y N son variedades suaves tales que dim(N) > 2-dim(M)+1 y M es
compacta, entonces cualquier mapa continuo f : M — N es homotdpico a
un embebimiento de M en N.

2. Toda variedad suave n-dimensional M™ puede embeberse en el espacio eu-
clideo R2"+1,

Demo. Nos referimos a [Hir94, Teoremas 2.14, 2.13]

Dada una aplicacion p : E — X, decimos que p~!(z) es la fibra por p de
x € X. Asi, un fibrado sobre X se definird como un espacio F con una aplicacién
p: E — X, tal que todas las fibras sean esencialmente idénticas, junto a otras
condiciones de compatibilidad.

Definicién 4.4.8. Un K-fibrado vectorial de rango n sobre X, una variedad
C*k, es un espacio E con una aplicacion E & X, junto a un cubrimiento por
abiertos de X que de una trivializacién local de F, i.e. una coleccién de abiertos
de X y aplicaciones biyectivas: {(U;, ¢;)} tales que:

pNU) 2 Y X K

Ademés, si dos trivializaciones se solapan en una interseccién en comin: U; NU;,
la funcién de transicion:

od—1
UinUy x K" 222 yfntd; x K»
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(z,0) = (x,9i;,(0))

estard determinada por aplicaciones g;;,

tan regulares como se requiera, o sea, continuas en principio, y C'? en general
(0 < g <k < 0) segtn el tipo variedad que sea X y de fibrado que queramos
considerar, en analogia con las posibles definiciones de variedad (4.4.2).
Notemos que resulta inducida una estructura de variedad C* en E, con el
atlas dado por las trivializaciones.
Un morfismo de fibrados sera una aplicaciéon regular (C*) entre los espa-

cios totales E 2 F, respetando las fibras, de modo que el siguiente diagrama
conmute.

E——F

e

X
y actuando linealmente en éstas,

Oy By — F,

Ejemplo 4.4.10. Dada M™ una variedad C* (al menos k > 1) tenemos definido

su fibrado tangente TM. Consideramos un atlas para M™: {U; C M i, Z;Il C
R™};er y definimos nuestro espacio TM como un cociente:

| Ui xR™ / ~

donde (z,u) ~ (y,v) siz = yy v = D(djh; )o;(x) (). La proyeccion a la
primer coordenada da el mapa T'M — M. Tenemos el cubrimiento por abiertos
{U; x R"}; doénde naturalmente tenemos cartas ¢; x Id y una trivializacion
local del fibrado (con mapas identidad). Notemos que la funciéon de transicion
correspondiente a (4.4.9) asigna:

@ = D(6;¢; )giw) € Gln(R)
Como aplicacién de 4.4.7 podemos probar el siguiente resultado.

Proposicion 4.4.11. Dado p : E — X un fibrado de rango k sobre una variedad
suave X1, eviste un complemento p' : E' — X a un fibrado trivial:

EQFE =X xRY

para algin N € N.

INotemos que no requerimos compacidad a la variedad base.
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Demo. Considerando a E como espacio total podemos embeberlo en el espacio
euclideo RY para una dimensién suficientemente grande (ver 4.4.7). All{ tenemos
el fibrado tangente complementado por el fibrado normal a £ en RY.

TE®NE =~ E xRN (4.4.12)

La inclusion X C E se traduce a los fibrados tangentes, dejando a T'X
como subfibrado de T'x F -el tangente a F restringido a X. Ademaés, usando la
identificaciéon TR* = R* en cada fibra, tenemos: E, = TE,, lo cual también
permite pensar a F como un subfibrado de Tx E Tenemos un isomorfismo de
fibrados sobre X:

TxE=2TM®FE (4.4.13)

Basta verificarlo localmente. Notemos que las dimensiones son complementarias,
y que, localmente, las coordenadas de F son de la forma: (z,v) con z € X y
v € E, por lo que localmente las coordenadas de T'x E son del tipo ((z,0, u,v))
conzx € X,u€eTX,veTE, (el 0es para recordar que estamos sobre la seccion
cero de E correspondiente a X).

De la ecuacion (4.4.12) restringiendo los fibrados a X, y (4.4.13), hallamos
un complemento para E:

E®(TM ® NxE)=TxE® NxE =X xRV
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