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Introducciéon

Consideremos una gran poblacién de jugadores en constante interaccion. Los
agentes pueden ser por ejemplo animales, hombres, agentes econémicos, otro,
que identificamos con un indice i € Z. Modelamos la interaccién entre dos o més
de ellos mediante un juego de caracter deterministico que sélo depende de las
acciones que realicen los jugadores.

Cada agente j se programa para usar una determinada estrategia que elige
entre un conjunto S; de estrategias posibles. El resultado de esta interaccién
entre el agente j y el resto de los jugadores lo representamos mediante una
funcién de pagos Ej : (S;)icz — R. Por ejemplo, en el caso de una poblacién de
dos jugadores i y j jugando con estrategias s; € S; y s; € S; respectivamente, la
funcién E;(s;, s;) representa el beneficio (pago) que obtiene el jugador j al optar
por s; cuando su oponente juega s;. También podemos notarlo E;(s;, s—;) para
abreviar la escritura cuando los agentes sean mds de dos, donde s_; representa
el vector de estrategias que emplean los otros agentes.

Estudiamos interacciones y modelos que permitan comprender la evolucién
en el tiempo del comportamiento de los jugadores, de manera que las estrategias
con mejores pagos se expandan y las que no obtengan buenos resultados se
reduzcan; representado en que hay menos jugadores que utilizan estas tltimas.
Ademas buscamos definiciones y estrategias que nos permitan dar una nocién
de estabilidad en el tiempo.

Para empezar consideremos un grupo de jugadores que elige jugar con una
determinada estrategia (podemos identificar a cada uno con su estrategia y pen-
sar que no es capaz de cambiarla) de tal forma que poblacién no se altera si
aparece otro grupo (pequeno) jugando una estrategia distinta. Podemos pen-
sarlo como una comunidad que se mantiene estable cuando es sometida a una
invasién de otros (pocos) individuos. Para esto debe suceder que si una pequeinia
fraccién de la poblacién original tiene descendencia que puede mutar a una nue-
va estrategia con probabilidad muy baja, los pagos esperados que recibiran los
mutantes seran menores que los de aquellos que copien a sus ascendientes sin
modificacién alguna y por lo tanto las nuevas estrategias no prosperaran.

Existe cierta dualidad entre las distribuciones de estrategias que son un
equilibrio del juego, situaciones donde a nadie le conviene modificar su manera de
jugar y los puntos de equilibrio para ciertos sistemas de ecuaciones diferenciales
ordinarias tipo Lotka-Volterra cuya dindmica se deriva de los pagos promedio
del juego.

Uno de los objetivos de la tesis es estudiar esta dualidad entre equilibrios
de juegos y estabilidad de poblaciones que evolucionan segin modelos discretos
de ecuaciones en diferencias o modelos continuos que involucran ecuaciones di-
ferenciales. En ambos casos la evolucién puede ser estocédstica o deterministica,
si bien en este trabajo nos limitaremos al caso deterministico.

Otro objetivo es estudiar un caso particular de subastas, las llamadas subas-
tas de menor oferta tinica (LUB). En estas cada participante ofrece de manera
privada un pago dentro de un conjunto discreto predeterminado (puede ser un
numero entero de pesos o multiplo de 1, 5 o 10 centavos) por un determinado



bien. De todas las ofertas recibidas se elige la menor entre todos los valores
que fueron ofrecidos por exactamente un unico jugador. Este juego ha sido
estudiado en los tltimos diez afios por distintos economistas (ver por ejemplo
[18, 19, 16, 17]) y no han podido modelar el comportamiento de los participantes
ni la estrategia utilizada. Recientemente, F. Radicchi, A. Baronchelli y L.A.N.
Amaral en [6] estudiaron un gran nimero de datos reales de sitios web donde
se realizan este tipo de subastas y encontraron que los participantes ofertan
desplazandose entre las ofertas siguiendo un proceso de vuelo de Lévy.

En un nuevo trabajo, F. Radicchi y A. Baronchelli [7] propusieron un modelo
evolutivo donde los agentes juegan con distribuciones de Lévy con diferentes ex-
ponentes (« entre 1 y 5, si bien a partir de 2 se tiene un movimiento Browniano
s6lo que con menor varianza) y cada cierto nimero de juegos, el jugador con
menor ganancia cambia su estrategia copiando la de uno de los jugadores con
mayor ganancia. En simulaciones numéricas obtuvieron que toda la poblacién
termina jugando con un proceso de Lévy de exponente a ~ 1,3. Ademads, in-
troduciendo ruido tal que los jugadores perturban su « con una distribucién
uniforme en el intervalo [—¢, €], obtuvieron resultados muy similares, lo cual
sugiere que el equilibrio al que se llega es estable.

Un problema natural es analizar la posibilidad de invasién a una poblacién
de oferentes que llegd a un equilibrio, vemos que esta es posible si los invasores
juegan con un proceso de Lévy con a > 1,3 pero realizan una cantidad diferen-
te de ofertas. Para esto, realizaremos modificaciones en el modelo de [7] para
introducir el costo de las apuestas y realizamos simulaciones que muestran la
invasién.

La tesis estd organizada de la siguiente manera; en el primer capitulo in-
troducimos algunas herramientas basicas de la teorfa de juegos. El segundo
estd dedicado a los juegos evolutivos. En el tercero y cuarto analizamos la posi-
bilidad de tener equilibrios puros o mixtos en juegos asimétricos. El ltimo
capitulo lo dedicamos a la subasta de menor oferta tnica.



Capitulo 1

Elementos de la teoria de
juegos

1.1. Equilibrio de Nash en estrategias puras

1.1.1. Definiciones basicas y nocion de mejor respuesta
Para definir un juego necesitamos tres elementos.
= Un conjunto de jugadores 7.
= Un conjunto de acciones o estrategias (puras) S; para cada jugador i € Z.

= Una funcién F; para cada jugador i € Z
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que determina el beneficio o pago que (segun las reglas del juego) obtiene
el jugador 1.

Notamos a un juego como (Z, (S;)iez, (Ei)icz) y una nocién fundamental es
la de equilibrio de Nash introducida por J.F. Nash en 1950.

Definicién 1.1.1 (Equilibrio de Nash). Un equilibrio de Nash puro es un con-
junto de estrategias s* € [[;c7 Si tal que para cada jugador i € T se tiene que

Ei(s;,s*;) > Ei(si,s*;) para cualquier s; € S;.
Si la desigualdad es estricta decimos que el equilibrio también lo es.

Intuitivamente, s* es un equilibrio de Nash si ningin jugador 4 tiene interés
en cambiar de estrategia sabiendo que los demaés jugadores usan las estrategias
s*,; (y permanecen en ellas).



También puede pensarse como una situacién en la cual el jugador opta por
la mejor respuesta que puede elegir considerando la eleccién de los demas par-
ticipantes. Formalicemos esta idea.

Definicién 1.1.2 (Mejor respuesta). Decimos que la estrategia s; € S; es una
mejor respuesta para el jugador i € L respecto de las estrategias s_; € Hj# S
St
Ei(Si, S_i) = max Ei(O', S_,L').
gEeS;
Notamos M R;(s—;) al conjunto de mejor respuesta para el jugador i cuando los
demds jugadores juegan s_;.

Podemos ahora reformular la definicién de equilibrio de Nash:

Proposicién 1.1.1. Un conjunto de estrategias s* € [[;c; Si es un equilibrio
de Nash si
sf € MR;(s*;)

para todo jugador i € T.

Veamos ahora algunos ejemplos clasicos que muestran que no siempre existe
un equilibrio de Nash (puro). O que si existe no tiene porqué ser dnico.

1.1.2. Algunos ejemplos
El juego de Halcones y Palomas

Introduzcamos un ejemplo tipico de la teoria de juegos. Consiste en que dos
jugadores elijan entre dos opciones posibles, ser halcones o palomas. Pueden
actuar agresivamente, la primer opcién, o no confrontar con el oponente, la
segunda. En caso de que ambos decidan confrontar, se produce una pérdida y el
beneficio social total se ve reducido, es decir, la suma de los pagos de todos los
jugadores devuelve un valor menor a cualqueir otra situaciéon. Podemos hacer
una analogia con la explotacién de un recurso. Actuar agresivamente es tratar de
hacerse por completo del bien a la fuerza. Si ambos deciden ser pacificos pueden
repartirse el recurso en partes iguales. Por tltimo, si tienen comportamientos
diferentes, el que actie como paloma se queda son las manos vacias.

Para modelar este juego consideremos el beneficio V' > 0 otorgado por el
recurso y el costo C' > 0 en caso de que lo repartan a la fuerza. Ademaés definamos
la matriz de pagos como en la figura 1.1.1.

Para analizar el problema usemos las definiciones recién vistas. Supongamos
primero que V' > 2C. Entonces existe un tnico equilibrio de Nash (estricto)
que es (halcon, halecén).t El equilibrio es tdnico y estricto porque no impor-
ta qué juegue el oponente, siempre resulta mas beneficioso comportarse como
halcon. Esto es en cierto punto paraddjico, pues si ambos colaboraran pacifica-
mente obtendrian un mayor beneficio social: V' contra (V' — 2C).

I Esta situacién es andloga al dilema del prisionero.



Jugador 2

Halcon Paloma
Halcon | (V/2-C,V/2-C) (V,0)
Jugador 1 (=5 7o 0,7) V/2,V/2)

Figura 1.1.1: Matriz de pagos del juego Halcones y palomas. Aqui identificamos
al jugador 1 como el «jugador columnas» y al 2, como el «jugador filas.

En el caso V' = 2C obtenemos tres equilibrios, pero ninguno estricto. Estos
son todos los pares de opciones menos el caso (paloma, paloma).

Por dltimo, si V' < 2C tenemos dos equilibrios: (halcdn, paloma), (paloma,
halcon).

El juego del penal

Ahora consideremos un juego que representa un tiro desde el punto de penal.
Aqui el jugador 1 debe decidir donde patear un penal, a la izquierda o a la
derecha. Y el jugador 2, el arquero, debe tratar de atajarlo desplazandose hacia
algun costado. Si los jugadores eligen lados opuestos el resultado es un gol y
gana el primer jugador. Y si optan por lo mismo, gana el segundo porque ataja
el penal. La matriz de pago se muestra en la figura 1.1.2.

Jugador 2
Izquierda | Derecha
Izquierda (0,1) (1,0)
Jugador 1 Derecha (1,0) (0,1)

Figura 1.1.2: Matriz de pagos que representa un tiro desde el punto de penal.

Este es un ejemplo de un juego de suma cero; el agregado de todos los pagos
es constantemente igual a cero, cuando uno obtiene un pago positivo es porque
el otro tuvo uno negativo, y viceversa.

Ademis, en este ejemplo, ningtin par de estrategia puras es un equilibrio de
Nash.

El juego de piedra, papel o tijera

Por dltimo consideremos el juego piedra, papel o tijera y representemos las
opciones con las letras R, P y S, respectivamente. La matriz del juego puede
escribirse como en la figura 1.1.3.

Nuevamente este juego no tiene ningin equilibrio de Nash en estrategias
puras.



Jugador 2
Piedra | Papel | Tijera
Piedra ('73 7) (*13 1) (L 71)
Jugador 1 | Papel | (1,—-1) | (v,7v) | (—1,1)
Tijera (-1,1) (1,-1) (v, )

Figura 1.1.3: Matriz de pagos del juego Piedra, papel o tijera.

1.2. Equilibrio de Nash en estrategias mixtas

1.2.1. Estrategias mixtas

Como vemos en los ultimos dos ejemplos, no siempre existe un equilibrio de
Nash (puro). Para obtener un resultado de existencia de equilibrio de Nash con-
viene volver converos a los conjuntos de estrategias S;. Entonces consideremos
que un jugador no elige una unica estrategia, sino que asigna una probabilidad
a cada una de ellas. Esto nos lleva a la nocién de estrategias mixtas.

Definicién 1.2.1. Una estrategia mizta o; para el jugador i es una medida de
probabilidad sobre su conjunto de estrategias S;.

Si el cardinal de las estrategias es finito, #5; = K;, decimos que el juego es
finito y llamamos

K;
Ei:{pERKi tal que p; > 0 para todo 1 <1 <n y Zpkzl}
k=1

al conjunto de estrategias mizrtas de i. Denotamos con ¥ al conjunto de todas
las combinaciones de estrategias que pueden emplear los jugadores,

D
ieT
Notemos que cada Y; es convexo y compacto si suponemos .S; finito. Ademas,
podemos representar o; € ¥; como
K,; Ki
oi = (pH,p3,..,p;’)  conp; +pi4 .. +pii =1,

donde p! es la probabilidad con que el jugador i juega la accién st € S;.

Algunas veces cuando queramos referirnos al peso p! que asigna la estrategia
o; ala accién st podemos usar o;(s!). Asi para cada accién st € S;, la estrategia
pura o} que representa a esta es aquella que tiene todos ceros salvo un 1 en el
lugar t-ésimo.

Extendemos ahora las funciones de pagos F; (i = 1,2,...) a ¥ mediante el
valor esperado de los pagos:

EZ'(O'i,O'_i) Z/ Ei(Sl,'-' ,S]\])dO’l(Sl)"'dO'N(SN)7 (1.2.1)
S1 S~



donde N = #7 es la cantidad de jugadores.
Entonces debemos extender la definicién de equilibrio de Nash.

1.2.2. Equilibrio de Nash
Definicién 1.2.2. Un equilibrio de Nash en un juego (Z,%, (F;)icz) €s un con-

junto de estrategias (o)icz € ¥ tal que para cada jugador i € T se tiene
Ei(o},0%,) > Ei(0;,0%;) para cualquier o; € ¥;.
Extendemos de la misma manera el concepto de mejor respuesta definido en
la seccién 1.1.2 al juego (Z, %, (E;)icz)-

Debido a que en un principio trabajamos con juegos en los cuales el conjunto
de acciones es el mismo para cada jugador y en pos de ahorrar notacién, no
indicamos el subindice en cada estrategia que usemos. También nos referiremos
al concepto de equilibrio de Nash diciendo simplemente equilibrio, ya que si bien
hay otros refinamientos, no los utilizamos en esta tesis.

Un resultado central en la teoria de juegos es que todo juego finito con una
cantidad finita de jugadores tiene, por lo menos, un equilibrio de Nash.

Teorema 1.2.1 (Teorema de Nash). Todo juego finito (Z,%,(E;);cz) con T
también finito tiene, al menos, un equilibrio de Nash.

Para probarlo usaremos el siguiente teorema.

Teorema 1.2.2 (Teorema del punto fijo de Brouwer). Sea F' : K — K continua
con K C R™ compacto y convexo. Entonces existe un punto fijo, es decir, existe
xo € K tal que F(xg) = xp.

Demostracion del Teorema de Nash. Supongamos que tenemos N jugadores. Ademas
sean m; = #S;con 1 <i< Ny

c{(ai,a_,-) = méX{O;Ei(sf,a_i) — Ei(0i,0-:)},

para reducir la notacién usaremos (:Z (dejando implicito (o4, 0_;)).
Definamos la funcién F; : ]_[kN:1 Y — X; como

gi(sh) e ai(sD) + 2 ai<s;”f>+c;"i>
1+> 0 1+ ¢ L+ e

F»L‘(Ul,O'Q’ ...,O’N) = (

para k=1,2,...,N.

Finalmente, sea F : Hff:l Sk — ngl Yk, de la forma F = (Fy,..., Fy).
Como H,ivzl Hszl Y es compacto y convexo, existe (07,03, ...,0%) tal que es
un punto fijo de F, el cual es un equilibrio de Nash. Si no lo fuese, alguno de
los ¢] serfa positivo, pero no pueden ser positivos para todo j, pues

s

EZ‘(Ui, U,i) = Z O'(Si)Ez(S“ 0'77;)
j=1
es un promedio de todos estos valores. O



En muchos casos vamos a estudiar juegos en los cuales todos los participantes
tengan las mismas opciones y los mismos pagos ante iguales situaciones. Para
eso introduzcamos la siguiente definicion.

Definicién 1.2.3. Sea (Z,%, (E;)icz) un juego. Si ¥; = ¥, y E; = E; para
todo i,j entonces decimos que el juego es simétrico.

En estos casos obviamos indicar los subindices.

1.2.3. Vuelta a los ejemplos
Juego de Halcones y Palomas

Retomemos el caso 0 < V < 2C en el juego de Halcones y Palomas. Ahora
podemos ver que tenemos un tercer equilibrio que viene representado por jugar
H con probabilidad V/2C. Veamos que este valor es un equilibrio mixto pues
deja indiferente al oponente. Para cumplir esto los pagos esperados para el opo-
nente jugando H o P deben ser iguales independientemente de la probabilidad
con que elija una u otra opcién.

Asi, sea p la probabilidad de jugar halcon. Buscamos p de manera que

p(iV—C)—f—(l—p)V:pO—%-(l—p)‘z/

es decir p = V/2C.

Juego del penal

Dijimos que este juego no tiene ningun equilibrio puro. Si buscamos equili-
brios mixtos, el Unico equilibrio es aquel en el cual ambos jugadores eligen cada
accion con igual probabilidad.

El juego de piedra, papel o tijera

Para cualquier v hay un equilibrio mixto que es o* = (1/3,1/3,1/3) ya que
el pago esperado en todas las situaciones es /3. Este ejemplo lo usamos en el
préximo capitulo cuando estudiamos equilibrios estables.

Referencias

Los resultados bésicos de teoria de juegos mencionados aqui pueden verse en
los libros de Binmore [22], Ferguson [23], Osborne y Rubinstein [24].



Capitulo 2

Juegos evolutivos

En este capitulo trabajamos con juegos simétricos, es decir, juegos en los
cuales todos los participantes tienen el mismo espacio de estrategias y los mismos
pagos ante iguales situaciones (ver definicién 1.2.3).

Nos interesa estudiar los equilibrios estables (si es que hay). Pero antes de
definirlos consideremos que tenemos una poblacién enorme de jugadores (infinita
a los fines précticos). El tamano importa porque queremos trabajar pensando
que cada individuo tiene medida cero. Por ejemplo consideremos un juego con
s6lo dos estrategias s y s’ y sea p el porcentaje que juega s. No importa que
jugador seleccionemos, suponemos que enfrenta con probabilidad p a jugadores
que utilizan s y con (1 — p) a jugadores que usan s’.

Hagamos la siguiente analogfa. Supongamos que tenemos s(1),s(2) . s
posibles acciones y que cada individuo juega solamente una de éstas. Llame-
mos ps a la proporcidon que juega s. Entonces, cada uno tiene probabilidad
ps de enfrentarse a cada entrategia s. Y si existe un vector de distribucién
de proporciones estable donde todos tienen el mismo pago esperado, es decir
E(s',Y " pss) = E(s",), pss) para todo s',s” con py y pgr positivos podemos
esperar que las futuras generaciones en esta poblacién mantengan la misma
proporcién de individuos (pues todos reproducen individuos con su misma es-
trategia).

Por otro lado, consideremos un juego simétrico de dos participantes con K
acciones (s, 52, s(K)) y una funcién de pagos E definida en cada s’ como
Ei(s',> > pss) = E(s',>°, pss) para i = 1,2. Supongamos que esta funcion es la
del juego del parrafo anterior donde enfrentar una poblacién lo evaluamos igual
a confrontar con un individuo que juega una estrategia mixta equivalente al vec-
tor de proporciones de estrategias en la poblacién (p5<j))(j:1,...,N)~ Si los agentes
se enfrentan con una misma estrategia 0* = (py1), Py, -, Ps(x) ) podemos pen-
sar que en realidad eligen con igual probabilidad un individuo de la poblacién
anterior y se fijan qué estrategia usa éste. Si volvemos a considerar el mismo
vector estable anterior vale que E;(s',>" pss) = E;(s”,) ., pss) (nuevamente
i = 1,2) para todas las acciones con py y pg~ positivas, lo cual es equivalente a
decir que ¢* resulta un equilibrio de Nash en el juego de dos participantes.

(K)



Por esto vamos a trabajar haciendo una semejanza entre una estrategia o
en un juego simétrico de dos participante y un vector (ps)(scs) que representa
las diferentes proporciones en una poblacién muy grande de individuos que sélo
pueden jugar una estrategia pura. Notemos que evitamos el superindice de cada
estrategia pura. Por dltimo aclaremos que esta idea puede extenderse a juegos
de mas de dos participantes.

2.1. Estrategias evolutivamente estables

2.1.1. Definiciones

Para relacionar esto con procesos evolutivos en grandes poblaciones, imagi-
nemos que llevamos el juego de Halcones y Palomas representado en la matriz
1.1.1 a varios agentes y que los pagos se relacionan con la descendencia que ten-
dran. Supongamos que tenemos a todos los individuos optando por paloma. Si
entonces alguno de ellos muta su comportamiento a halcon, empieza a dominar
la situacién pues produce una mayor descendencia. Esto genera una invasion
(total si V' > 2C) de halcones que reemplazan por completo a las palomas.

Con esto nos preguntamos ;bajo qué condiciones una estrategia puede ser es-
table? Es decir, si tuviéramos una poblacién jugando una estrategia o* jqué de-
beria suceder para que se mantenga en el tiempo si apareciera un pequeno grupo
eligiendo una nueva estategia ? ; Qué deberia pasar para que perdure si se pro-
ducen algunas mutaciones?

Consideremos una gran poblacién que juega ¢* y un pequeno grupo de in-
vasores que utiliza otra estrategia o. El pago esperado de un integrante de este
pequeno grupo invasor es de la forma

(1—¢e)E(o,0")+¢cE(0,0)

considerando 0 < £ << 1. Esto es ver el pago esperado como resultado de com-
petir con los jugadores ¢* en mayor medida y complementarlo con la pequena
proporcién de mutantes. De igual forma, el pago esperado para el resto de los
individuos de la poblacién original es

(1—¢)E(c*,0%) +eE(c",0).

Para que la poblacién original pueda perdurar ante estos mutantes, debe
mantener un mejor valor esperado de sus pagos sobre el de los mutantes, es
decir

(1-e)E(c*,0")+¢cE(0",0) > (1 —¢)E(0,0%) + cE(0,0),
lo que es equivalente a

E(o*,(1—¢€)o* 4+¢c0) > E(o,(1 —€)o* +¢c0)
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por la linealidad de la esperanza E. De hecho

(1-e)E(c*,0")+¢cE(c",0) = Z[(l —e)o*(s) +eo(s)|E(c",s)

S

=E(c*, (1 —¢e)o* +¢€0).
Por lo visto anteriormente, introducimos las siguientes definiciones:

Definicion 2.1.1. Una estrategia c* € ¥ es evolutivamente estable si existe
0 > 0 tal que para cada o # o* y 0 < e < 9 sucede que

E(o*,(1—¢)o* 4+¢e0) > E(0,(1 —¢e)o™* + €0). (2.1.1)
A este 6 lo llamaremos barrera de invasion.

En esta definicion, la barrera de invasion ¢ representa una defensa que preser-
va inmutable a la poblaciéon o* siempre que la proporcién de invasores no supere
este valor.

2.1.2. Una definicion equivalente

Otra formulacién mas facil de corroborar cuando analicemos casos particu-
lares la siguiente.

Proposicion 2.1.1. Si el juego es finito y simétrico entonces una estrategia
o* € X es evolutivamente estable si y solo si cumple las dos condiciones.

1. Equilibrio. Para cualquier o resulta que
E(c*,0") > E(0,0")
2. Estabilidad. Si vale que E(c*,0*) = E(0,0*) entonces
E(c*,0) > E(0,0)
para todo o # o*.

Recordemos que un juego finito es aquel que tiene finitas acciones posibles
para cada individuo, pero nada dice de la cantidad de jugadores.

Demostracion. Supongamos que la estrategia o* € X es evolutivamente estable
en el sentido de la definicion 2.1.1. Haciendo ¢ — 0 en (2.1.1) y usando la
continuidad de E obtenemos que ¢* cumple la condicién de equilibrio. Ademés,
si E(o*,0%) = E(0,0™), entonces de (2.1.1) se deduce

eE(c",0)+ (1 —¢)E(c",0") >eE(0,0)+ (1 —¢)E(0,07)
con lo cual

eE(c",0) > eE(o,0)
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para € # 0. Luego, la condicién de estabilidad también se verifica.

Para la vuelta supongamos que ¢* cumple las condiciones de equilibrio y
estabilidad. Como el juego es finito, si E(c*,0*) > FE(0,0*) entonces debe
necesariamente existir un ¢ tal que si 0 < € < § sucede que

E(o*,ec+ (1 —¢)o") > E(o,e0 + (1 —¢)o™).
Y si E(o*,0%) = E(0,0™) entonces
E(o*,0) > E(0,0)

implica que

eE(c*,0) > eE(0,0)
para € > 0. Sumando (1 — ¢)E(c*,0) de cada lado obtenemos (2.1.1). O

Es importante el suponer que el juego es finito, pues en caso contrario la
primer definicién es mas «fuerte». Consideremos un juego con infinitas estrate-
glas puras. Sea o* una estrategia que cumple la definicién 2.1.1 y sea (0,)nen
una sucesion de estrategias tales que para todo n

E(c*,0,) =0; E(on,0n) = 1;
1
E(a*vg*)zov y E(Unao.*):_i'
n
Estas estrategias cumplen que E(o*,0*) = 0 > —1/n = E(0o,,0%) pero si

fijamos 0 < § < 1 y elegimos un 0 < € < 4, siempre podemos encontrar ¢, con
n € N tal que e > 1/n y que
1
E(on,e0n+ (1 —¢e)o*) = eE(op,0n)+ (1 —¢e)E(op,0") =+ (e — 1)5
> e+ (e—1e=¢?
> 0=E(c"e0,+ (1 —¢)o").
Entonces ¢* no posee una barrera de invasién positiva, aunque es evolutivamente

estable segin la definicion de la proposicion 2.1.1.

2.1.3. Relaciéon entre estrategias evolutivamente estables
y equilibrios de Nash

A partir de ahora supondremos que los juegos son finitos. El siguiente lema
resume las relaciones entre las nociones de estrategias evolutivamente estables
y equilibrios de Nash:

Proposicién 2.1.2. Consideramos un juego simétrico. Dado o* € X2 consider-
amos las siguientes aserciones:

(i) o* es un equilibrio de Nash estricto,
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(i) o* es una estrategia evolutivamente estable,
(iii) o* es un equilibrio de Nash.
Entonces, valen las implicaciones
Las reciprocas no son ciertas en general.

La demostracién de las implicaciones (i) = (#¢) = (4i%) es inmediata usando
la proposicién 2.1.1.

Contruyamos un ejemplo que muestre que un equilibrio de Nash puede no ser
evolutivamente estable. Consideremos el juego piedra, papel o tijera cuya matriz
de pago se muestra en la figura 1.1.3. Para cualquier -, el tnico equilibrio es
o* =(1/3,1/3,1/3). Si v > 0 resulta que o* no es evolutivamente estable. De
hecho

E(c*,0%) = % =E(R,0")

pero

E(o",R) = % <~ =E(R,R).

Luego o* verifica la condicion de equilibrio pero no la de estabilidad en la
proposicion 2.1.1.

Este ejemplo muestra ademds que las estrategias evolutivamente estables no
siempre existen.

Veremos a continuacion que el juego de Halcones y Palomas da un ejemplo
de una estrategia evolutivamente estable que no es un equilibrio estricto.

2.1.4. Monomorfismos y polimorfismos

La siguiente definicién es clave para analizar el tipo de equilibrios evolutiva-
mente estables a los que se puede llegar.

Definicién 2.1.2. Una estategia evolutivamente estable se dice
= monomorfismo si todos los agentes usan la misma estrategia pura.

= polimorfismo cuando coexisten diferentes estrategias.

Veamos como ejemplo una aplicacién al juego de Halcones y Palomas. Como
dijimos antes, si V' > 2C' el tinico equilibrio es (halcdn, halcon)=(H,H) y al ser
estricto, también es evolutivamente estable. Ademé&s es un monomorfismo.

En cambio, si V' = 2C, este equilibrio ya no es mas estricto. Sin embargo
sigue siendo evolutivamente estable y monomorfismo. Si o0 = (p,1 —p) # H
siendo p # 1 la probabilidad de elegir H, tenemos

E(o,H) = pE(H,H)+ (1-p)E(P,H)=0=E(H, H),
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va que E(H,H) = E(P,H) = 0. Por otra parte, recordando que E(H,P) =V
y E(P,P) =¥, tenemos

E(0,0) = p°E(H,H)+p(1—p)E(H,P)+ (1—p)pE(P,H)+ (1—p)>E(P, P)]

= PPV +1-p)1-p)y
1. p
= (1—p)V(2+2>

Como p < 1 obtenemos

E(o,0) < (1-p)V =pE(H,H)+ (1-p)E(H,P)
= E(H,o0),

con lo cual se verifica la condicién de estabilidad.
Obtenemos asi un ejemplo que muestra que un equilibrio evolutivamente
estable no necesariamente es un equilibrio estricto.

Continuemos con el ultimo caso, 0 < V < 2C'. Como dijimos antes, tenemos
tres equilibrios. Estos son (H,P), (P,H) y uno mixto o* en el cual la pro-
babilidad de jugar H es V/2C'. Resulta que o* es evolutivamente estable. Sea
o = (q,1 — q) otra estrategia donde ¢ # p = V/2C es la probabilidad de elegir
H. Como ¢* es un equilibrio, tenemos E(c*,0*) > E(c,0*). Supongamos que
estas utilidades son iguales y verifiquemos que F(c*,0) > F(0,0). Tenemos

. vV [V 1%
E(o*,0) = q20<2—0)+(1—q)2CV

- D)o (- L) a0l

174 1%
E(o,0) = ¢ (2 - C) +q(1 =gV +q(1 —q)0+ (1~ (J)z?
Luego

. VY’
E(c*,0) — E(o,0)=C (q— 20) >0
pues C' > 0. Con lo cual o* es evolutivamente estable.

Ademis de mostrar que existen polimorfismos evolutivamente estables, este
ejemplo revela que existen equilibrios mixtos evolutivamente estables. Remar-
quemos que en este caso hay informacion simétrica en el sentido que ambos
jugadores se encuentran en la misma situacién de informacién. Al contrario, si
suponemos una situacién de informacién asimétrica, mostramos en el proximo
capitulo que no puede haber equilibrios mixtos evolutivamente estables.
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2.2. Ecuacién del replicador y dinamica evoluti-
va

2.2.1. Ecuacién del replicador

Consideremos que todos los jugadores tienen el mismo conjunto de estrate-
gias puras posibles S = (3(1), 52 .., s(5)). Notamos p, la fraccién de la poblacién
que juega con la estrategia s y

g = (ps(1)7"7ps(K))

la estrategia mixta que consiste en jugar s con probabilidad ps. Consideremos
en cada instante a cada agente interactuando aleatoriamente con otro agente de
una gran poblacion. Luego

E(S, U) = Z ps’E(Sa S/)

s'esS

es el pago esperado para los agentes que juegan s cuando se encuentran en un
ambiente compuesto por una proporcion o; = p,:) de agentes que usan la accion
s,

Queremos estudiar la interaccién entre todos ellos en el tiempo y definir una
forma en la cual crece o decrece la proporcion de jugadores que usan s respecto
a las proporciones que ocurren en la poblacién total. Para esto definamos como
crece ps(t). Usamos la ecuacion del replicador

po(t+7) = ps(t) = 704 (8) (E(s, 0 (1)) — B (1)) (2.2.1)
para cada s y para todo t y 7, donde

E(o(t)) = E(o(t),0(t)) = Y _ps(t)E(s,0(1))

es la ganancia promedio de toda la poblacién en el instante t y o(t) es el vector
de las proporciones p4(t) (en particular, ||o||; = >, ps(t) = 1 para todo t).

Intuitivamente, cuanto mayor o menor es la capacidad (de replicarse) de una
determinada estrategia en relacién al promedio de todas, se incrementa o dis-
minuye su participacién en la poblacién, respectivamente. Podemos interpretar
esta ecuacion desde un punto de vista biolégico. Imaginemos una especie defini-
da por una estrategia (puede ser un comportamiento determinado, un gen). Si
esta le proporciona una ventaja (o desventaja) con respecto al promedio de la
poblacién en su conjunto entonces puede reproducirse mds (o menos), con lo
cual ayuda a la diseminacién (o extincién) de esa estrategia al transmitirla (o
no) a sus descendientes.

Pasando al limite 7 — 0 en (2.2.1) obtenemos la ecuacién diferencial del
replicador.
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Definicién 2.2.1 (Ecuacién del replicador). La ecuacion diferencial del repli-
cador es

p(t) = pa(t) (E(s,0(t) = B0 (1)) (2:22)
para toda estrategia s € S.

Observemos que

Zps (t)=1 para todo ¢
ses

ya que, por definicién de E, la funcién ¢(t) := Y ¢ ps(t) verifica

¢'(t) = E(e(t))(1 - (1)),
¢(0)

por lo que ¢(t) = 1 para todo ¢ en vista del teorema de Cauchy-Lipschitz. En
particular la solucién p(t) existe para todo ¢ > 0.

Ademss si ps(0) = 0 para alguna estrategia s € S entonces ps(t) = 0 para
todo t (de nuevo por el teorema de Cauchy-Lipschitz). Volviendo a la analogfa,
si una estrategia no estd presente en la poblacién inicialmente, entonces nunca
puede aparecer.

Identifiquemos cada estrategia de S con un vértice del simplex canénico de
RE vemos que una solucién de (2.2.2) es una curva en este simplex y que
cualquier vértice o faceta es invariante por el flujo.

En la proxima seccién no interesa el comportamiento asintético del flujo y
su relacion con la nocién de equilibrio de Nash.

2.2.2. Dinamicas evolutivas

Pensemos que tenemos una poblacién con una distribucién aleatoria de es-
trategias. Hay dos preguntas naturales: jconvergera a una distribucion que se
mantenga estable? En caso de que asi sea, jserd un equilibrio de Nash del juego?

Para intentar contestarlas, veamos algunas definiciones.

Definicién 2.2.2. Un vector o* = p* es un punto fijo (o un equilibrio) para
la dindmica del replicador si para cualquier estrategia pura s del sistema de
ecuaciones (2.2.2) se tiene que pt’(t) =0 es decir

E(s,0") = E(c*,0%)  para toda estrategia s € S tal que pi > 0 (2.2.3)

Definicién 2.2.3. Un vector p* es un punto fijo estable (o un equilibrio estable)
para la dindmica del replicador si dado un entorno U de p* existe un entorno V.
de p* tal que si pg € V C U, la solucion p(t) del sistema de ecuaciones (2.2.2)
con condicion inicial p(tg) = po satisface p(t) € U para todo t > tg.

Definicién 2.2.4. Una distribucidn p* es un punto fijo (o un equilibrio) asintdtica-
mente estable para la dindmica del replicador si es estable y ademds existe un
entorno V' de p* tal que si p(ty) = po € V, entonces p(t) — p* cuando t tiende

a infinito.
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El siguiente teorema, conocido en la literatura como el «folk theorem», da las
relaciones existentes entre las nociénes de punto de equilibrio para la dinamica
del replicador y la de equilibrio de Nash para el juego.

Teorema 2.2.1. Valen las siguientes aserciones

(i) si o es un equilibrio de Nash entonces es un punto fijo para la dindmica
del replicador,

(ii) si o es un equilibrio de Nash estricto entonces o es un punto de equilibrio
asintoticamente estable,

(iii) si o* es estable entonces o* es un Nash,
(iv) si c* es limite de una drbita interior, es decir

o= lim o(t) con ps(0) >0 para toda s € S,

t——+o0
entonces o* es un equilibrio de Nash.

Demostracion. Prueba de (i). Si o Nash entonces E(s,0) < E(o,0) para toda
s € S. Luego

E(o,0) = ZpsE(s,a) < E(o,0) Zps = E(o,0)
ses ses

Deducimos que E(s,0) = E(o,0) para toda s € S tal que ps > 0, con lo cual o
es un equilibrio.

Prueba de (i4i). Supongamos que o* es estable pero que no es un equilibrio
de Nash. Luego existe una estrategia pura h € S y un § > 0 tal que

E(h,o") — E(c*,0%) > 2.
Por continuidad de E con respecto a ¢ obtenemos que existe g > 0 tal que
E(h,o0) — E(0,0)>¢ silo—o"| <. (2.2.4)
Como o* es estable, existe r; > 0 tal que para todo t > 0,
lo* —o(t)| <ro silo(0)—oc"| <ry.

Elegimos ¢(0) tal que |0(0) — o*| < 71 y pr(0) > 0. Luego usando (2.2.4) con
o(t) obtenemos que

Ph(t) = pr()[E(h,0(t)) — E(o(t),0(t))] > dpn(t)  con pp(0) >0
para todo t > 0 lo cual es absurdo.

Prueba de (iv) Supongamos que o* no es un equilibrio de Nash. Entonces
(2.2.4) vale. Como lim;_, ;o 0(t) = o* podemos aplicar (2.2.4) a o(t) para t
grande (digamos t > tg):

E(h,o(t)) — E(o(t),o(t)) > parat > to.
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Como pp,(0) > 0 por hipétesis, resulta py,(t) > 0 para todo ¢ > 0 y obtenemos
(1) = pr()[E(h,0(t)) — E(a(t),o(t))] > dpn(t) para todo t > tg

lo cual es absurdo.
O

Ninguna de las reciprocas es cierta en general. Para verlo examinemos los
ejemplos del juego de Halcones y palomas y de piedra, papel o tijera.

2.2.3. Ejemplos
Juego de Halcones y palomas

Notamos p = py la fracciéon de la poblacion que juega halcén y 1 —p = pp
la fraccién que juega Paloma. Luego la ecuacién del replicador para p es

P = plt) (pE(H, H)+(1-p)E(H,P)
—p°E(H,H) — p(1 —p)E(H,P) — p(1 —p)E(P,H)
—(1—p)’E(P,P)).

Después de simplificar obtenemos

(0 = o0t = 1 (pl0) — 5 ).

Vemos que los puntos de equilibrio son 0, 1 y % si % < 1.

Si % > 1 entonces 0 es inestable y 1 es asintdtica y globalemente estable.
Por otro lado si % > 1, 1 es el inico Nash lo cual muestra que un punto de
equilibrio (acd 0) no es necesariamente un equilibrio de Nash. Si % = 1 entonces
los Nash son 0 y 1 y no son estrictos. En particular un equilibrio asintéticamente
estable (acd 1) no es necesariamente un Nash estricto.

Finalmente en el caso % < 1 la dindmica tiene tres puntos de equilibrios: 0
y 1 (ambos inestables) y V/2C' (asintéticamente globalmente estable). Ademads
esos puntos son los equilibrios de Nash. En particular un Nash (acd 0 0 1) no es

necesariamente estable.

Juego de Papel-Piedra-Tijera

Otro ejemplo de interés es el de piedra, papel o tijera generalizado en el que
la matriz de pago tiene la forma

0 —as9 b3
A= bl 0 —as
—Qaq b2 O

con a;, b; > 0,7 =1,2,3. Se puede probar que la dindmica del replicador aso-
ciada a este juego tiene un tnico punto de equilibrio interior o* que es también
el inico Nash del juego. Ademas resulta que
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1. o* es globalmente estable si y sélo si es asintéticamente estable si sélo si
det A > 0;

2. si det A = 0 entonces las drbitas son ciclos alrededor de z;

3. si det A > 0 entonces z el conjunto w-limite de cualquier érbita distinta
de z es el borde del simplex.

En particular los casos det A < 0 muestran que un equilibrio de Nash no es

necesariamente limite de una orbita interior.

2.2.4. Dinamica del replicador y estrategias evolutivamente
estables

Hasta ahora consideramos que los agentes jugaban estrategias puras. Po-
driamos enriquecer el modelo suponiendo que juegan estrategias mixtas o1, ..,05 €
Y. Notamos p;(t) la fraccién de la poblacién jugando con la estrategia o;. La
estrategia promedio (¢) en la poblacién al tiempo ¢ es por lo tanto

N
a(t) = Zpi(t)ai.
i=1
Luego el pago de la estrategia o; contra la estrategia promedio es
N
E(04,5(t)) = Y _ pj(1)E(0i,0)
j=1
y el pago esperado es
N
E(@(1) = E(@(1),a(t)) = Y pi(t)pi(1) (05, 04).
j=1

Podemos entonces plantear la dindmica del replicador como

pL(E) = pilt) (E(a,;,&(t)),E(&(t))), i=1,.,N.

Supongamos ahora que se juegan unicamente dos estrategias: una estrategia
«residente» & jugada en un principio por la mayoria de la poblacién y otra
«invasora» o jugada por una minorfa. Notemos p(t) la fraccién jugando con o y
(1 —p(t)) la fraccién jugando con 6. Después de simplificar, obtenemos que

P = p())(1 = p() (Ap(t) + BO - p(t)))

con

A= FE(o,0)— E(6,0), y B=EFE(006)— FE@5,5).

Luego la estrategia invasora o tiende a desaparecer de la poblacién en el
sentido que lim;_, 4o p(t) = 0 cuando p(0) << 1siy solosi (Ap+ B(1—p)) <0
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para 0 < p << 1; es decir B < 0 o B = 0, A < B. Esas condiciones son
exactamente las condiciones de equilibrio y estabilidad de la Proposicién 2.1.1.
Luego la estrategia ¢ es evolutivamente estable si y solo si es asintéticamente
estable para la dindmica del replicador.

Nuevamente no vale la reciproca. Para verlo consideremos un juego donde
los jugadores reciben 1 cada uno si ambos juegan la estrategia A y 0 en cualquier
otro caso. Aqui que ambos jueguen la estrategia B es un equilibrio de Nash pero
no es estricto y cualquier perturbacion llevaria a los agentes a desplazarse a A.

2.3. Referencias

La nocién de estrategias evolutivamente estables se debe a Maynard Smith
y Price en [3]. Desde entonces numerosos trabajos explotaron la posibilidad
de llegar a los equilibrios de Nash via puntos fijos de ecuaciones diferenciales.
Recordemos que si bien la existencia de equilibrios se tiene asegurada, no existen
algoritmos que permitan obtenerlos.

Una referencia obligada es el muy completo [2] de Hofbauer y Sigmund.
Para una presentacién de las distintas ramas de la teoria de juegos evolutivos
(incluyendo entre otras los juegos estocdsticos y dindmicas discretas modeladas
con ecuaciones en diferencias, aplicaciones a problemas bioldgicos y sociales) se
puede ver los libros de Sandholm [8], Nowak [5] y los minicursos en [10].
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Capitulo 3

Inexistencia de equilibrios
mixtos en juegos
asimétricos

Un conflicto asimétrico (para nosotros un juego) entre animales es una
situacién donde los oponentes asumen diferentes roles en la disputa. Estos
pueden ser tales como «originario» o «intruso» en un conflicto territorial. Ademés
estos pueden definirse como una combinacién de varias variables; por ejemplo
tamano o edad. Consideramos informacién incompleta en el sentido de que el rol
del oponente no puede ser percibido de forma totalmente certera por el jugador.
En este capitulo asumimos que dos individuos nunca pueden encontrarse en un
ambito en el cual ambos tengan la misma de situacién de informaciéon. Esto
lo llamamos informacion asimétrica. Para satisfacer esta condicion bastara con
que los dos jugadores nunca tengan el mismo rol y serd una condicién esencial
en lo que sigue.

El objetivo es ver que en los modelos asimétricos considerados aqui las es-
trategias evolutivamente estables solamente pueden ser equilibrios puros. En esta
situacién, una vez que cada jugador sabe su rol y obtiene la informacién (inexac-
ta) de su rival, decide actuar siempre de igual forma. Es importante sefialar que
este resultado depende del supuesto de informacién incompleta. Como ya vimos
en el capitulo anterior, si existen estrategias mixtas evolutivamente estables,
como en el juego de Halcones y palomas cuando 0 <V < 2C.

La idea intuitiva de la inestabilidad de las estrategias mixtas en equilibrio
reside en el hecho de que siempre es posible encontrar otra estrategia éptima
variando el comportamiente en solamente una situacién de informacién (conjun-
to de informacion en juegos en forma extensiva). Asi, consideremos un mutante
que realiza una respuesta 6ptima alternativa con esta caracteristica. Entonces
el éxito de su estrategia es el mismo que el del resto en aquellas situaciones en
las cuales ambos se comportan de igual forma. Pero como suponemos informa-
cién asimétrica, tampoco hay diferencias en la situacién en la cual éste difiere
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de la poblacién original. Esto sucede porque siempre sus oponentes, ante esta
situacién de informacién, se comporta siguiendo la estrategia original, sean o no
mutantes. Haciendo una analogia con lo que vimos en el capitulo anterior, nada
impide la proliferacién del «gen» mutante en las futuras generaciones.

3.1. Juegos en poblaciones

Originalmente, se introdujo el concepto de estrategia evolutivamente estable
para juegos en forma normal. Otra forma de describir un juego es la forma ezten-
siva, donde el juego se representa con un arbol dirigido y cada nodo representa
una situacion donde el jugador debe tomar una decision; las aristas salientes
corresponden a las acciones que puede usar el jugador. Si bien el juego sigue un
recorrido desde el nodo raiz hasta uno de los nodos terminales donde cada par-
ticipante recibe su pago, es posible que un jugador no sepa en qué nodo esta y
no pueda distinguir entre dos o més a partir de la informacién que tiene. A este
conjunto de nodos lo llamaremos un conjunto de informaciony para prescindir
de la descripcién de la forma extensiva, y asumiendo que los jugadores even-
tualmente tomaran decisiones en mas de un caso, hablaremos de un situacion
de informacion.

Vamos a introducir las nociones necesarias para juegos de poblaciones con
informacién incompleta.

= Situacion de informacion. Como dijimos, se corresponde a un conjunto de
informacion. La nocién de juegos de informacién incompleta recae en la
idea de que los jugadores deben decidir en diferentes escenarios posibles de
datos. Cada situacién difiere para el jugador respecto de la informacién que
recibe. Al conjunto de todas las situaciones de informacién lo llamamos U
y asumimos que es finito y no vacio.

= Acciones. Para cada situacién de informacion u el jugador posee un con-
junto C,, (también finito y no vacio) de posibles acciones a realizar. Sea
C : U — {Cy}ucu la funcién que asigna a cada situacién de informacién
su conjunto de acciones.

» Fstrategia local. Una estrategia local o, : C,, — [0,1] C R para una
situacion de informacién u es una distribucién de probabilidad sobre el
conjunto de elecciones C,,. Notamos 7,,(s) a la probabilidad que le asigna
o, a cada accion s € Cy,. Al conjunto de todas las estrategias locales para
u lo llamamos 3,,.

= FEstrategia global. Una estrategia global o : U — U,cpy X, es una funcién
que asigna a cada situaciéon de informaciéon u una estrategia local oy,.
Llamamos ¥ al conjunto de todas las estrategias globales.

s Funcion de pagos. La funcién de pagos E : ¥ x ¥ — R asigna un valor a
cada par de estrategias globales. Este es el pago (esperado) que recibe el
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jugador uno. La forma de esta funcién dependera del modelo que estemos
estudiando.

s Juego de poblacidn. Un juego de poblacién G = (U, C, E) consiste en un
conjunto de situaciones de informacién U, una funcién de eleccién C' y
otra funcién de pagos E como las recién descriptas.

Podemos pensar el juego como si hubiera una eleccion aleatoria de un animal
(jugador). El pago E(p, q) es la aptitud esperada con la cual podra reproducirse
y tener descendencia si se comporta acorde a p, en un entorno de conflicto con
otros animales de su especie que actian segiin ¢q. Hay dos formas de interpretar
esto.

1. Primero imaginemos que la poblaciéon consta de N animales que tienen
diferentes roles. Cada jugador es asignado a un animal con igual probabi-
lidad. A esto lo llamamos estudio con muchos jugadores (y consideramos a
N muy grande). Entonces E es una funcién de pagos definida parcialmente
para un juego simétrico; el pago de un jugador sélo esta definido para los
casos en los cuales todos los demds jugadores usan la misma estrategia (g).
Para las restantes situaciones, los pagos no estan especificados. Pero esto
no nos preocupa ya que la teoria evolutiva estudia estrategias estables en
las cuales muy pocos individuos mutan, es decir, se desvian de la estategia
comun.

2. La segunda interpretacion posible es considerar que solo hay un pequeno
ntmero de jugadores, digamos n. En este modelo de asimetria en la infor-
macién consideramos que tenemos n = 2. Supongamos que una situacion
de conflicto es elegida al azar dentro de un universo de posibles conflictos,
que m de los n jugadores son elegidos aleatoriamente y asignados a los m
animales realmente involucrados en la disputa. Cada jugador tiene igual
probabilidad de ser asignado a cada animal. A este caso lo llamamos estu-
dio con pocos jugadores. En el caso n = 2 de esta interpretacién tenemos
la ventaja de que G = (U, C, E) se transforma en un juego simétrico de
dos personas con una matriz de pagos completa.

Parece natural adoptar la segunda interpretacién para retomar los juegos ya
estudiados. Sin embargo, para las definiciones formales no es necesario decidir
cudl de los dos caminos seguir. El analisis se focaliza en un solo jugador que
puede o no desviar su conducta de la estrategia usada. Como el nimero de
jugadores no importa realmente, no necesitamos especificarlo para un juego de
poblacién G.

3.2. Estrategias evolutivamente estables
Aunque vimos en el capitulo anterior la equivalencia de las dos definiciones,

en este caso trabajaremos con la segunda. Ademds consideremos las siguiente
definiciones.
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Definicién 3.2.1 (Mejor respuesta). Sean r y q dos estrategias globales para
un juego de poblacion G = (U,C, E). Decimos que r es la mejor respuesta para
q st vale

E(r,q) = max E(p, q). (3.2.1)
pEX

Definicién 3.2.2 (Estrategia en equilibrio). Decimos que una estrategia p
estd en equilibrio si es la mejor respuesta para p, es decir, verifica la primer
condicion de evolucion estable.

Esto es igual a pedir que (p, p) resulte un equilibrio de Nash.

Definicién 3.2.3 (Mejor respuesta alternativa). Sea p una estrategia en equi-
librio. A otra estrategia v que resulte mejor respuesta para p la llamamos mejor
respuesta alternativa.

Asi, una estrategia p es evolutivamente estable si y solo si esta en equilibrio
y ademsds si 7 es una mejor respuesta alternativa para p vale que

E(p,r) > E(r,r).

3.3. Modelos para conflictos asimétricos

Trabajamos ahora con un esquema de informacién asimétrica que modela
un conflicto entre animales. Tenemos un juego de poblaciones en el cual dos
animales estdn involucrados en cada conflicto. Podemos seguir interpretdandolo
como el caso de «estudio con pocos jugadores».

= Roles. Numeremos con 1,2, ..., I la cantidad de roles que pueden tocarle
a un jugador. Como antes, podemos pensarlos como caracteristicas fisicas
en una disputa por un territorio.

= Estimulo percibido. No necesitamos restringir el modelo a una situacién
en la cual el rol del oponente es conocido con total exactitud por cada
jugador. Asf asumimos que existen S estimulos percibidos. Nuevamente los
numeramos 1,2, ..., S. La probabilidad de recibir alguno de estos estimulos
depende del rol del oponente (le da una percepcién al jugador, pero no
con certeza absoluta). Podemos pensar cada estimulo como un imagen
imprecisa del rol del oponente.

= Situacidn de informacién. Un par (i,s) siendo 7 un rol y s un estimulo
aporta los datos que los jugadores utilizardn para elegir el curso de sus
acciones en cada juego. Este par usamos como la definida situacion de
informacion anterior y resulta la base por la cual cada jugador se guia
para saber en que contexto se encuentra. Entonces cada par (i,s) € U.
Pedimos que el conjunto sea no vacio, pero tampoco incluimos los pares
que sabemos que nunca ocurriran.
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s Competencia. Una competencia es un par (u,v) donde w y v son situa-
ciones de informacion. El conjunto de todos estos pares lo llamamos X.
Cada competencia describe la situacién de ambos jugadores al inicio de la
disputa.

= Distribucion basica. Con la interpretacion de pocos jugadores que esta-
mos usando, elegimos aleatoriamente una competencia y de igual forma
asignamos los dos jugadores. Asi sea w,, la probabilidad de que la com-
petencia sea con el par (u,v), es decir, que las situciones de informacién
para el primer y segundo jugador sean u y v, respectivamente. Asumimos
que wy, no depende de la estrategia utilizada.

Como (u,v) y (v,u) sélo difieren cuando formalizamos el modelo, pero en
la interpretacién son situaciones simétricas, pedimos que valga que

Wyy = Wy Para todo (u,v) € X.

Los modelos considerados tienen la propiedad poseer informacién asimétri-
ca; dos oponentes nunca pueden encontrase con la misma situacion de
informacion, es decir,

Wy = 0 para todo u € U.

Sin pérdida de generalidad podemos asumir que w,, > 0, eliminando de
U x U aquellos pares con probabilidad nula.

» Acciones.! Asumimos que un jugador con una situacién de informacién
u tiene K = K(u) € N acciones que elegir, s, s, ..., Sx. Notemos C,, =
(81, ..., SK) al conjunto de elecciones vélidas para la situacién u. Entonces
llamemos S al conjunto de todas las acciones posibles. Como antes, pode-
mos interpretarlas de acuerdo a un comportamiento animal de «ataque»,
«huida» o «exposicion».

= Funcion de pagos. Sea h : X x S x S — R la funciéon de pagos tal que
huv(s,s") sea el pago del jugador uno si con la informacién u juega la
accién s y el segundo jugador opta por s’ con informacién v. Debemos
interpretar a h,, como una matriz de pagos con K (u) filas y K(v) colum-
nas, dependiente de las acciones que decidan los jugadores una vez dadas
las situaciones de informacién. Asumimos que estas matrices existen para
todo par (u,v) tal que wy, > 0.

Podemos tener estrategias locales mixtas (algtin jugador no elije con certeza
una accién) con lo cual trabajamos con la funcién de pagos esperados
H: X X Uyeu Py X Uyey P, — R. Si tenemos la situacién de informacion
(u,v) y el primer jugador (I) usa o, y el segundo (II), &, la funcién de
pagos esperados resultante es

Hyy(0y,6,) = Z Z 0u(8)04(8") huw(s,s'). (3.3.1)

seCy s’'€Cy

ITambién podremos referirnos como «elecciones» indistintamente.
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= Pago local. Sean o,, una estrategia local y & una estrategia global. Defini-
mos el pago local del jugador I para (o, &) con informacién u de la forma

Hy(0u,6) =Y Wyy Huw(0w, 6) (3.3.2)
velU

donde &, es la estrategia local que asigna & a la informacién v.2

= Pago total. Ahora estamos en condiciones de definir la funcién E. Para
dos estrategias globales o y & definimos

E(0,6) = Y3 wuy Huy(ou,6v) (3.3.3)

uelU velU

> Hy(ou,6). (3.3.4)

uelU

Como senalamos, E(o, &) representa el valor esperado del pago del jugador
I si utiliza o y el jugador IT usa 6. También en este caso, el pago esperado
del jugador IT resulta E(5,0). Esto se debe a la simetria de la situacién.

= Modelos. Un modelo de la clase que estamos estudiando en este capitulo
puede caracterizarse como un quintuplo M = (@, S, U, w, h) donde @ es la
cantidad de roles, S el nimero de estimulos percibidos, U el conjunto de
situaciones de informacion, C el conjunto de funciones de eleccién, w la
distribuién de probabilidad de los sucesos de X y h una funcién que asigna
una matriz de pagos a cada par (u,v) de X con wy, > 0. No es necesario
mencionar C' ya que toda la informacién relevante estd contenida en h.
Con esto sea K la clase de todos los modelos descriptos aqui.

= Juegos de poblaciones de un modelo. Cada modelo M € K da lugar a un
juego de poblacién G = (U, C, E) con las U, C, E definidas igual que en el
modelo M. A este juego G lo llamamos el juego de poblacién del modelo
M.

3.4. Resultados

Sigamos trabajando con un juego G de un modelo M. Tenemos las siguientes
definiciones:

= FEstrategias puras y miztas . Una estrategia local o, es pura si asigna
probabilidad 1 a una sola eleccién s € C,, (y cero a las demés). Siguiendo
este criterio, una estrategia global o es pura si dada cualquier situacién
de informacién u, o, resulta pura. A cualquier estrategia que no cumple
alguna de estas caracteristicas la llamamos mizta. Si una eleccién s € C,,
aparece en el argumento de H,, o H, entendemos que hace referencia a
una estrategia pura que asigna probabilidad 1 a esta accion.

2A partir de ahora, siempre mantendremos la misma, letra para referirnos a las estrategia
locales de cada estrategia global con la que trabajemos.
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= Accion localmente dptima. Una accién s € C,, es localmente 6ptima contra
& si vale que

Hy(s,6) = mécx H,(s,5). (3.4.1)
s'eCly

= Mejor respuesta local. Una estrategia local 6, € ¥, es mejor respuesta
local para 6 € ¥ si vale que

H,(0,,6) = Ineé%( H,(04,0). (3.4.2)

Ya tenemos toda la construcciéon que necesitamos para probar el teorema
principal de esta parte.

Lema 3.4.1. Una estrategia local 6,, es mejor respuesta local para & si y solo
st cualquier eleccion s € C,, tal que 0,,(s) > 0 es localmente dptima para 6.

Demostracion. Por la definicién de la ecuacién (3.3.2) y el hecho de que todas
las sumatorias usadas son finitas, tenemos que

velU

= Zw“” Z Z 0.u(8)04 (8 ) huw (s, s') (3.4.4)
velU seCy s’'eC,y

= Z 0.(s) Zw’“’ Z G0(8 o (s,8") (3.4.5)
seCy velU s'eC,

= ) 0u(s)Hu(s,06). (3.4.6)
seCy

Para que 6, no sea mejor respuesta, debe existir una estrategia o, tal que
H,(0y,6) > Hy,(0y,05). Pero esto sucede si y solo si algin s con ,(s) > 0 no es
localmente 6ptimo para &; lo que prueba el lema. O

Lema 3.4.2. Una estrategia global 6 es mejor respuesta para & si y solo si cada
estrategia local 0, es mejor respuesta local para &.

Demostracion. Similar a lo anterior, § no es mejor respuesta si existe o tal que
E(0,6) > E(0,6). Entonces por ecuacién (3.3.4) esto sucede si y solo si alguna
estrategia local 6, no es mejor respuesta. O

Lema 3.4.3. Sea o una estrategia mizta en equilibrio. Entonces eziste otra
estrategia alternativa, pura, tal que es mejor respuesta para o.

Demostracion. Para cada u € U sea s(u) € C,, una accién localmente éptima
para o. Asi basta considerar la estrategia pura 6 que para todo u € U, su
estrategia local 0, elige s(u) con probabilidad 1. Por el lema 3.4.1 cada k,
es mejor respuesta local para o, entonces por el lema anterior, 8 resulta una
estrategia mejor respuesta para o. O
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Lema 3.4.4. Sean o una estrategia en equilibrio y & una mejor respuesta alter-
nativa para o. Luego existe una estrategia 6 que es mejor respuesta alternativa
para o Yy que sus estrategias locales 0, son iguales a las o, salvo en una unica
situacion de informacion.

Demostracion. Como 6 es distinta de o, existe una situcién de informacién v
tal que &, # 0,. Sea 0 la estrategia global tal que

0, = 0,
0, = oy paratodo u # v.
Por el lema 3.4.2; 6 resulta mejor respuesta alternativa para o. O

Lema 3.4.5. Sea o una estrategia evolutivamente estable, entonces no eziste
una estrategia tal que sea mejor respuesta alternativa para o.

Demostracion. Supongamos que existe una mejor respuesta alternativa para o.
Por el lema 3.4.4 existe una mejor respuesta alternativa 6 que difiere de o en una
Unica situacién de informacién v. Entonces E(o,0) = E(0,0). Ademds resulta
que para todo &, € X, vale que

Hy(50,0) = Y cr WouHuu(50,604)
= ZuerUUHUU((}’UaUu): H,(6y,0)

va que 0, = o, para cualquier u # v y w,, = 0 pues estamos trabajando con
informacion asimétrica.

Como o y 6 son mejores respuestas globales para o, por el lema 3.4.2 sabemos
que o, y 6, son mejores respuestas locales para o. Asi,

H,(cy,0) = H,(0,,0).

Y si en la primera igualdad reemplazamos &, por o, y luego por 6,,, obtenemos
que

Hy,(0,,0) = Hy(0y,0) = Hy(0y,0) = Hy(6,,0).

Ademés sabemos que o y 6 sélo difieren en la situacién de informacién v, es
decir,

H,(0,,0) = H,(0,,0) para todo u # v
y si combinamos ambas ecuaciones, resulta que
E0,0) = E(0,0).

Esto contradice la condicién de estabilidad de la estrategia o, lo cual niega que
sea una estrategia evolutivamente estable como pedimos en la hipdtesis. Por lo
tanto no puede existir una mejor respuesta alternativa para o. O
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Ahora estamos en condiciones de enunciar el teorema.

Teorema 3.4.1. Sean G = (U,C, E) un juego con un modelo K € M y o una
estrategia evolutivamente estable para G. Entonces o es una estrategia pura.
Ademds no existe una mejor respuesta alternativa para o.

Demostracion. Si o fuera una estrategia mixta, por el lema 3.4.3 deberia existir
una mejor respuesta alternativa para o. Pero si suponemos que es una estrategia
evolutivamente estable, por el lema 3.4.5 no existe una mejor respuesta alterna-
tiva. Por lo tanto o debe ser pura. O

3.5. Referencias

En este capitulo desarrollamos el trabajo [9] de Reinhard Selten, quien
ganoé el Premio Nobel de Economia de 1994 junto con John C. Harsanyi y J.
Nash. El estudio de conflictos entre animales fue el origen de la teoria de juegos
evolutiva, con el trabajo pionero de John Maynard Smith [4, 3].
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Capitulo 4

Juegos exteriores

Como hicimos varias veces, retomemos el juego de Halcones y palomas. Ob-
servemos la matriz de pagos de la figura 1.1.1 y consideremos una gran poblacién
de jugadores. Supongamos que juegan repetida y aleatoriamente un juego como
este. Nos referiremos al juego de Halcones y palomas en este contexto como un
juego exterior pues involucra a todos los miembros compitiendo entre ellos uno
a uno. Pero cuando los hacemos jugar debemos «ubicarlos» en filas o columnas.
En un comienzo consideramos que cualquier caracteristica usada para colocar a
un jugador en una fila o una columna no puede ser percibida por los participan-
tes. Asi no pueden condicionar su accionar al rol que se les asigna en el juego
exterior.

Un juego de evolucién como el planteado debe ser més interesante de lo
que puede observarse en el juego exterior. Consideremos la posibilidad de que
los jugadores sean capaces de usar la estructura del juego para condicionar su
comportamiento en el juego de Halcones y palomas dependiendo de su posiciéon
en una columna o en una fila. Interpretamos que el lugar de «jugador de fila»
o «jugador de columna» representa una asimetria observable por los agentes.
Podemos pensarlo como dos animales en disputa por un territorio, jugar en
la fila puede identificarse como ser oriundo del lugar y columna, ser el animal
invasor.

4.1. Juego completo

Con esta idea, si el comportamiento puede ser condicionado por el rol, te-
nemos cuatro estretegias puras: HH, HP, PH y PP, donde PH significa jugar
paloma si en el juego exterior tiene asignada una fila y halcdn si toca colum-
na. Entonces en lugar de tener una matriz de pagos de dos por dos, debemos
trabajar con una matriz de cuatro por cuatro. Observemos la figura 4.1.1, en
esta construccién suponemos que es equiprobable jugar en la posicién de fila o
columna. Por ejemplo, el pago esperado a un jugador que elige HH cuando el
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Jugador 2

PP PH HP HH
e 14 14 3y 1%
11 14 v v 0
| WY wl wv-o| w-c
A 4 oo | iv-jc
op v s(v=0) 14 v-c
W dv-o |y iV -30
- 0 iv-1c iv-1c v -c
1% 3y - ¢ 3y ¢ iv-c

Figura 4.1.1: Matriz de pagos del juego completo de Halcones y palomas.

oponente juega H P resulta

1/1 1 3

-V -=-C V=-V-C

2 (2 ) + 2 4

pues espera recibir (V/2 — C') la mitad de las veces (cuando juega H contra H)
y V en la otra mitad (H contra P). A este juego con una matriz de cuatro por
cuatro lo llamamos juego completo porque incorpora la posibilidad de que la
«Naturaleza» determine que rol ocupa cada jugador en el juego exterior.

Si queremos analizar una situacién con esta teoria, en general esta matriz re-
sulta poco practica; incluso es factible que no refleje de forma certera la situaciéon
a modelar. Mas adn, los pagos probablemente tengan pequenas variaciones que
dependan de los rasgos propios de cada jugador. Por ejemplo, si pensamos nue-
vamente en animales, aquel que esté hambriento le darda mayor valor a un ali-
mento que otro que encontré como suplir ese recurso. Nos preguntamos entonces
si conviene modelar esta situacién como un juegos simétrico o asimétrico.

4.2. ;Juegos simétricos o asimétricos?

Redefinamos y llamaremos juegos simétricos a aquellos en los cuales los
jugadores no puedan identificarse con distintos roles.

Si permitimos la identificacién en roles (y consideramos que nunca dos ju-
gadores pueden hallarse en la misma situacién) y no trabajamos con pertur-
baciones en los pagos vimos en el capitulo anterior que todos los equilibrios
estables son puros. jPero qué sucede si permitimos perturbaciones en los pa-
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gos? ;Puede haber equilibrios evolutivamente estables en el juego completo que
sean equilibrios mixtos en los juegos externos?

Construimos un juego completo que permita observar las perturbaciones y
asignar distintos roles a los jugadores. Un modelo de estas caracteristicas siempre
tiene una estrategia que aproxima el equilibrio mixto del juego externo y es su
mejor respuesta estricta, lo que lo hace evolutivamente estable. Llamamos a
esta estrategia equilibrio independiente de los roles de un juego completo; es
equivalente a un animal que condiciona su comportamiento a las perturbaciones
que tiene en sus pagos e ignora las asimetrias en la identificacién de los roles.

Pero antes debemos tener en consideracion ciertas cuestiones. Como ya vi-
mos, una estrategia ¢* es evolutivamente estable si una poblacién que juega o*
no puede ser invadida por un pequeno ntimero de mutantes que jueguen o. Pero
en el caso que los mutantes sean exitosos y logren generar una <masa critica»’
ya no podemos asegurar mejores pagos para la estrategia o*.

Para cada mutante o existe una barrera de invasidn 6(c) tal que mientras
no superen esta proporcién, obtienen menores pagos esperados que la estrategia
estable. Esta definicién permite diferentes barreras para las potenciales muta-
ciones que pueden surgir. Cuando el juego completo es finito, la dependencia
de barreras es insignificante: basta considerar la menor de todas las posibles
estrategias puras distintas para encontrar una barrera positiva que proteja a
la estrategia o¢* de cualquier invasién. Pero aparecen problemas interesantes
cuando trabajamos con juegos de infinitas estrategias.

4.3. El juego

Trabajemos con un juego externo de pagos simétricos representado por la
primer matriz de la figura 4.3.2 donde A < B y C' > D. Tenemos un equilibrio
mixto que viene dado por jugar X con probabilidad p = (C—D)/(B4+C—A—-D)
ya que

pA+(1—p)C = pB+(1—-p)D
C—D = pB—pD—pA+pC=p(B—D—-A+C)

y entonces
C-D

~ B+C—-A-D’
Ademds hay dos equilibrios puros; estos son (X,Y) e (Y, X).

Un ejemplo que debemos tener presente es el de Halcones y palomas con
0<V<2C,A=V/2,B=V,C =0y D =V/2—C valores de la matriz.2

Para introducir perturbaciones en el modelo, supongamos que los pagos A4,
B, C'y D son valores esperados y que cuando dos jugadores se enfrentan, en
realidad reciben los pagos de la segunda matriz de la figura 4.3.2.

p

11a definicién pedia que los pagos esperados fueran mejores para o* si los mutantes eran
una cantidad menor a 4.
2Notamos con C al costo de enfrentar halcén contra halcén.
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Jugador 2 Jugador 2
X Y X Y
i1 A B 71 A+ 3o B+ v
A c A+ B C+ B
C D C+ B D + o
B D B+ D+

Figura 4.3.2: Matrices de pagos del juego exterior y del juego exterior pertur-
bado.

Las perturbaciones 8; y v; (¢ = 1,2) son realizaciones de variables aleato-
rias independientes (entre animales y entre enfrentamientos) con media cero
y rango R. Suponemos que los jugadores conocen los valores de sus propias
perturbaciones, pero no las de sus oponentes. Para mantener el concepto de in-
dependencia en los pagos, suponemos que estas no dependen de que lugar ocupe
el jugador en el juego externo (fila o columna), con lo cual 8y y (B2 tienen la
misma distribucién de probabilidad; al igual que v1 y 2.

Ademsés en este modelo suponemos que las perturbaciones de cada jugador
dependen sélo de su propia estrategia y no de la del oponente. Haciendo una
analogia con el juego de Halcones y palomas, equivale a pensar que el valor del
recurso en disputa varia de animal en animal, pero el costo de pelear por él es
igual para todos.

Para trabajar con la identificacién en roles suponemos que cada participante
recibe una senal que llamaremos «rol 1» o «rol 2». Esta etiqueta representa la
asimetria entre los jugadores. Tenemos ejemplos como hombre o mujer, viejo
o joven, grande o pequeno, diferentes estatus sociales, comprador o vendedor,
empleado o empleador, etc. Aunque algunas de estas caracteristicas son de facil
e inconfundible observacién por parte de los participantes, debemos considerar
los casos en los cuales determinar qué rol ocupa cada jugador resulta ambiguo.
Podemos imaginar problemas al identificar roles como estatus, edad, riqueza, o
quien es el real duefio de un recurso.

1 2
1| 3¢ |30-9
2| 31-0 3¢

Figura 4.3.3: Matriz de distribucién de los roles.

Entonces asumimos que los dos senales de los roles son realizaciones de vari-
ables aleatorias relacionadas cuya distribucién de probabilidad conjunta viene
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Jugador 2 Jugador 2

X Y X Y
—1-ka+ 0 —(1—k)+ -1 0
X ( o+ 1o 11 x ( ) + haax
7(17]6)0[4’1/)1 k’Oz+’l/)1 7(17k)+¢10471 k+’l/)10£71
ka + 0 k+ oot 0
v a+ 1 v o
0 0 0 0

Figura 4.3.4: Matrices de pagos transformadas del juego exterior perturbado.

dada por la figura 4.3.3 donde 0 < { < 1/2.

El caso ¢ = 0 es aquel en el cual no hay errores en la identificacién. Las
sefiales se vuelven uniformes cuando ¢ tiende a 1/2. Y el caso ¢ > 0 significa
que los jugadores tienen problemas en identificar los roles. También asumimos
que estas senales son independientes de las perturbaciones de los pagos. Como
antes, los jugadores pueden aprender solo su propia senal y no la del oponente.
Si un agente descubre que ocupa el rol 2, entonces sabe que la probabilidad
condicional de que su oponente ocupe el rol 1 es (1 — ().

Al desarrollar el juego exterior de forma tal que incluya los diferentes pa-
gos por las perturbaciones y los roles asignados estamos construyendo lo que
llamamos el juego completo. Para esto es conveniente transformar la segunda
matriz de la figura 4.3.2 en una equivalente que ayude a analizar el juego. En
la nueva figura 4.3.4 tenemos la matriz transformada de forma tal que

@« = B+C—A—D>0,
i = Bi—viy

- D
k = ¢

[0

es la probabilidad asociada a la accién X en la estrategia mixta de equilibrio en
el juego externo.? Por lo anterior, ¢ v 1 resultan con la misma distribucién de
probabilidad, lo cual nos permite evitar diferencias y notarlas sin el subindice.
Finalmente consideremos a f y F como sus funciones de densidad y de dis-
tribucién de probabilidad, respectivamente; y supongamos que f es positiva y
diferenciable sobre R.

La matriz de pagos nueva permite tres interpretaciones diferentes de la va-
riable & como una medida de la importancia de la perturbaciones en los pagos
esperados.

= Primero podemos pensar que un incremento en « es proporcional a un au-
mento en cada pago A, B,C'y D manteniendo la distribucién F' constante.
Asi se eleva la proporcién de los valores esperados de pagos respecto de las
perturbaciones, quitandoles importancia a la hora de elegir una estrategia.

3Notemos que 0 < k < 1 pues B > A.
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= La segunda matriz muestra que a medida que aumenta « las perturba-
ciones se acercan a cero y los pagos esperados se mantienen constantes.

= Y por dltimo podemos expresar el pago de la forma A + \; + (1 — N)&;,
donde o=t = X € [0,1] y 95 v & son realizaciones de variables aleatorias
independientes de esperanza cero. En este caso debemos interpretar a ;
como un valor conocido por el jugador, mientras que desconoce §;. Cuando
A = 0 significa que no tiene informaciény si A = 1 esta es completa. En tal
caso, variar « da una medida de la informacién que posee el individuo.

4.4. Equilibrios de Nash

Una estrategia pura en un juego completo permite a un jugador elegir una
accion b o ¢ tal que dependa del valor de v y de la senal de su rol. Con esto, una
estrategia pura es una funcién medible o : R x {1,2} — {X,Y} cuyos valores
notamos como o (v, Z) donde Z € {1,2} significa la senal de rol que recibe el
jugador. Con esta definicién, construimos infinitas estrategias puras.

Ahora vemos la existencia de equilibrios para estrategias tanto dependientes
como independientes de los roles. Sin embargo como ¢ es una medida y queremos
ver la unicidad de equilibrios, trabajamos cocientando sobre las funciones de
medida nula. Es decir, si tenemos o y ¢’ tal que difieren en un conjunto de
medida cero, las consideramos iguales.

Lema 4.4.1. El juego completo posee un unico y estricto equilibrio de Nash
independiente de los roles. Este viene dado por

rwn={¥ SN0 (1.4.)

donde ¥* es la tinica solucion de la ecuacion (1 — k)a = ¢ + F(¢)a.

Lema 4.4.2. Existe una funcidn creciente a(¢) : [0,1/2) — Ry tal que para
todo o > «(C) hay dos equilibrios de Nash estrictos dependientes de los roles,
dado por

X si(Z=1AY >0V (Z=2A0 > )5)

"WZ){Y si(Z=1ng<gf)v(Z=2rp<yy) * 4D

donde YT y ¥5 son las soluciones complejas conjugadas de la ecuacion

(I—k)a = Y1+ a(F(1)+ (1 -¢)F(¢2))
= Yo+ a(CF (1) + (1 =) F(v2))

con 1y # .

Veamos la demostracion del primero.
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Demostracion. Dada la estructura del juego, el pago esperado de jugar X au-
menta cuando se incrementa 1, mientras que el de Y permanece constante e
igual a cero. Con esto, si un jugador elige X para un determinado valor ’t[) en-
tonces para todo ¢ > 1& el pago en X serd mayor y el de Y, igual. Y lo mismo
para el caso inverso. Asi la estrategia de equilibrio debe caracterizarse por un
valor ¢* con los jugadores eligiendo X si i) > ¢* e Y en caso contrario. Entonces
el equilibrio debe ser de la forma planteada en (4.4.1).

Sean o* tal estrategia y F(X|y,0*) el pago esperado para un agente que
elige X cuando observa v y su oponente juega con la estrategia ¢*. Ademds
sabemos

EXp,0") = [1=-F@)](-(1-kla+v¢)+F@")(ka+¢)y
E(Y|p,0") = 0.

Una estrategia como ésta esta en equilibrio si y solo si E(X|¢*,0*) = 0, es decir

0 = [L=FE)] (—(1-Ka+y7) + F@*)(ka +y*)
= —(= Ko+ v £ P = P ka = FOO (o
FF(Y*ha+ F(9° )0 .

= —(1-k)a+v* +F)a

entonces resulta

(1-ka=¢"+ F¥)a.

Como el lado derecho de la igualdad se incrementa monétonamente desde (—oo)
hasta oo cuando 9* va desde (—oo) hasta oo, existe una tnica solucién de la
ecuacién que devuelve el resultado buscado. Ademas, en la primera igualdad de
la ecuacién (4.4.3) el lado derecho se incrementa cuando aumenta t, con lo cual
si un jugador elige X para un ¢ < ¢*, el pago esperado serd menor a cero (que
es el pago por elegir V). O si para un ¢ > 9* juega Y, obtendra un pago menor
al pago de elegir X (que devuelve un valor esperado positivo). Esto muestra que
este equilibrio es estricto. O

Continuemos ahora con la prueba del lema 4.4.2.

Demostracion. Llamemos con 11 y ¥2 a las realizaciones de 1 recibidas por un
jugador si obseva que su rol es 1 o 2, respectivamente. El pago esperado por
elegir X se incrementa en v; si surol es i (i = 1,2). Asi el equilibrio debe estar
dado por la eleccién de X cuando ¥; > 9] e Y cuando 9¢; < 9. Por ejemplo,
si observa que su rol es 1, la probabilidad de que su oponente juegue X resulta
de la suma de la probabilidad de que posean el mismo rol ({) y su perturbacién
sea mayor a ¥} (1 — F(¢7)); més la probabilidad de que sea del rol 2 (1) y
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su perturbacién sea mayor a 5 (1 — F(¢3)). De esto obtenemos que

E(X[1,07) = (=1 =k)a+v1)[C(1=F(1)) + (1 -1 - F(y3))]
+(ka + 1) [CF(WT) + (1 = QO F (¥3)]

E(Y[¢1,0%) = 0

E(X[,0") = (—=(1=k)a+2) [(1 -1 —F(71)) + (1 - F(¥3))]
+(ka +2) [(1 = QO F (1) + CF(¥3)]

E(Y|te,0") = 0.

La condicién necesaria y suficiente para que resulte un equibrio resulta de
reemplazar 1; por ¢} e igualar a cero. Ademas si despejamos tenemos que

0 = (ma+ka+¢7)[—CF1)+1-¢—(1-QF(z))4.4.4)
F(ka +¢1) [CF (1) + (1 = O F (13)] (4.4.5)
(—a+ka+yp) +a[(FET)+1-OF@W)] y  (44.6)

(I-kla = ¢i+alCF@)+ 1 -F(@3)], (4.4.7)

y, andlogamente

(1-ka = ¢3+al(l=-QF(@7)+Fs)]. (4.4.8)

De forma similar a la anterior, dado que E(X|¢1,0%) y E(X|¢2,0%) au-
mentan cuando ¥ y o crecen (ver (4.4.6)), el equilibrio es estricto. De las
ecuaciones (4.4.7) y (4.4.8) podemos deducir otra dos implicitas: 1o = hy(t)1)
de la primera y 95 = ha(11) de la segunda. Como vimos antes, existe un solu-
cién que es 1 = Py = ¥*. Ademds si existe un par (¢1,12) que es solucién,
entonces el par (¢9, 1) también debe serlo. Con lo cual debemos ver que estas
ecuaciones tiene al menos dos soluciones.

La funcién h; puede definirse en el dominio (1;,%1) que viene dado por

lim hy(¢1) =00 y Um hy(¢r) = —oo.
P11, 1=

Y la funcién hy podemos definirla con dominio R, pero con imagen restringi-
da a (¥4,12), de forma que

o m ho(1) =2y Sm ha(P1) = .

Debido a la forma de estas funciones, como se intersecan en ¥*, si ho tiene
una derivada mds pronunciada en este punto (mds negativa) entonces necesa-
riamente h1 y ho deben tocarse en, al menos, otros dos puntos. Pues si efectiva-
mente la derivada de ho tiene mayor pendiente, sucede que en un entorno a la
izquierda de ¥*, hy debe ser méas grande que h;. Pero esta ultima funcién tiene
una asintota vertical hacia +oo a la izquierda de ¥*, por lo que necesariamente
deben intersecarse (al menos una vez). El caso a la derecha de 1* es el inverso.
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Con esto, usemos el teorema de la funcion implicita para calcular las derivadas.
Notemos G(z,y) =0=x+a[(F(z) + (1 — {)F(y)] — (1 —k)a siendo hy(z) =y,
obtenemos que

dhy
dx

(x) = (_l)dG(x,y) (dG(x,y)>_ :(_1)14'0‘7%

dz dy a(l—=¢)f(y)

si evaluamos en ¢* (recordemos que hq(¢)*) = ¢*), obtenemos

dhy
dzx

1+ adf(y*)

R TS TR}

Andlogamente, para hs resulta

dhy v _ el =0f()
@ = VTG
dha oy _ (@0 =S W7)
T il

Luego sucede que

_ Lf@/f"‘) _ed=0f)

(1) ol = OF (") > (=1) ) &

1+agf(” (1= ¢)f(¥7)

)<—<=>
*

a(l =) f(¥*) 1+ aCf(¥*)
2

1+aCf(®")” < (al—-Qf@") &
1+alf(¥) < al-QfW") &
1 < a(l—Qf@) —aCf*) = a(l —20)f(¢*)

pues tanto [1 4+ a( f(¥*)] como [a(l — ) f(¢*)] son positivos. Por lo tanto cuan-
do « (dependiente de () es suficientemente grande, la desigualdad es valida y
existen, al menos, dos soluciones. O

En el equilibrio dependiente de los roles los jugadores condicionan sus es-
trategias a las senales que reciben y tienden a especializarse en X en un rol y en
Y en el otro. Este equilibrio se corresponde con los dos equilibrios asimétricos
en el juego exterior. Aqui existen estos dos equilibrios porque es irrelevante si X
suele ser jugado por el agente 1 o 2. Si a es muy pequeno, el equilibrio depen-
diente de los roles puede no existir ya que las perturbaciones en los pagos son
muy significativas; asi condicionar las acciones a estas perturbaciones se torna
tan importante que vuelve irrelevante usar los equilibrios asimétricos del juego
exterior. Cuanto més «ruidosa» es la identificacién en roles (mayor (), menos
importante resulta condicionar las acciones en roles. Y por el contrario, cuanto
mayor sea «, mas fuerte se vuelve este equilibrio.
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En el equilibrio independiente de los roles los jugadores sélo condicionan
sus elecciones a las caracteristicas de los pagos dadas las perturbaciones. J. C.
Harsanyi mostr6 que cuando « tienda a oo (las perturbaciones se vuelven cada
vez mds insignificantes) la frecuencia con la cual se utilizan las acciones X e Y
tiende a las probabilidades con las cuales son usadas en la estrategia mixta del
juego exterior. La estrategia dada en la ecuacién (4.4.1) aproxima el equilibrio
mixto en el juego exterior, aunque en realidad es un equilibrio puro en el juego
completo en el cual los jugadores no condicionan sus acciones a los roles que
recibieron.

4.5. Barrera de invasién

Estudiemos los equilibrios mixtos en los juegos exteriores de la figura. Este
corresponde con los equilibrios independientes de los roles en el juego comple-
to, que satisface la definicién de equilibrio estable 2.1.1. Veamos cuidndo un
equilibrio admite una barrera de invasion global.

Teorema 4.5.1 (Barrera de invasién global). Los equilibrios independientes de
los roles en un juego completo dados en (4.4.1) admiten una barrera de invasion
global.

La demostracion de este teorema es extensa, hagamos antes algunas consi-
deraciones. Si el resto de la poblacién utiliza la estrategia de equilibrio indepen-
diente de los roles o* entonces el pago esperado F(X |y, 0*) en el juego completo
resulta

E(X|p,0%) = F@")(ka+¢)+[1-F@)](=(1-kla+v) (45.1)
= Y+alFE") - (1-k) (4.5.2)
= -1 (4.5.3)

Con lo cual resulta 6ptimo jugar X cuando ¥ > ™ e Y en el caso contrario.

Continuemos suponiendo que tenemos un mutante que usa la estrategia o
que condiciona sus acciones con el rol que observa, jugando X conelrol 1 eY con
el 2 cuando las perturbaciones de sus pagos se encuentran dentro de un conjunto
H (H pequeno y centrado en ¢*). El costo de este accionar resulta de ignorar las
perturbaciones en H, jugando X cuando ¢ es relativamente pequefio (cuando
serfa més beneficioso elegir Y) y jugando Y en el caso inverso. Como este costo
es mas chico cuanto més cerca esté i de *, la probabilidad del mutante de
tener éxito aumenta si condiciona su accionar a los roles en un conjunto como
H pues en los valores de ¢ € H el pago entre X e Y es casi igual. Pero este
mutante ha adquirido una importante ventaja. Como condiciona su accionar a
los roles puede coordinarse con los de su misma clase para utilizar una estrategia
pura que los coloque en un equilibrio asimétrico del juego exterior.

Sea L < 0 el pago esperado que pierde cada mutante al enfrentarse a un
jugador original, es decir, L = E(o,0%) — E(c*,0%). Y sea G > 0 el pago
esperado que gana cuando juega contra otro mutante, G = E(o,0) — E(c*,0).
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Con estas consideraciones, y si llamamos ¢ a la proporciéon de mutantes dentro
de la poblacién, la estrategia mutante serd incapaz de tener éxito si

(1—¢)L+eG<0.

. Cuéndo existe una barrera de invasién global (¢*) > 0 tal que la inecuacién
es vélida para todo € < e(¢*) independientemente de la estrategia mutante?

Cuando analizamos un equilibrio estricto en un juego finito dijimos que esta
barrera existia. Pero en el caso infinito, debemos concebir la posibilidad de
que haya una sucesién de mutantes que generen que L tienda a cero. Por esto
nos abocaremos a ver que L/G no puede acercarse a cero indefinidamente, sin
importar como elijamos a los mutantes. Teniendo presente estas observaciones,
veamos la demostracion.

Demostracion. Sea o : R x{1,2} — {X,Y} un mutante. Sea ¥;(X) el conjunto
medible de valores de v para los cuales el mutante juega X en el rol i (i =
1,2). Como los pagos de esta eleccién para ambos oponentes aumentan en 1,
mientras que los pagos en Y permanecen constantes, debe suceder que ¥ (X) y
U5 (X) contienen los valores suficientemente grandes de ¢y excluyen los valores
suficientemente chicos.

Sin pérdida de generalidad podemos suponer que existen 1[)1 y 1[)2 tales que
U,(X) = (1/31, 00) v que juega Y en el complemento. Para ver esto supongamos
que o no tiene esta estructura; entonces sea ¢’ otro mutante que se comporta
de la forma

X si(Z=1A)>d)V(Z=2N0 > )

Y si(Z=1A0 <)V (Z=2A1<1y) (4.5.4)

7(.2)={

siendo 7,/;Z tal que

(-FG) = [ s

para i = 1, 2. Si los mutantes compiten contra o* ambos juegan X con la misma
probabilidad en cada uno de los roles, s6lo que ¢’ concentra esta accién en
los valores més grandes de 1. Como vimos antes, el pago en X aumenta si
también 1) se comporta asi, mientras que en Y permanece constante, con lo
cual el mutante ¢’ tiene un mayor pago esperado contra o* que el que posee o.
De igual forma si a cada mutante lo hacemos jugar contra un jugador de igual
estrategia, sucederd que E(o’,0’) > FE(0,0) pues ambos mutantes juegan X
(y por lo tanto también Y') con la misma probabilidad. Ademé&s por lo mismo
tenemos que E(c*,0') = FE(0c*,0). Entonces o’ tiene una menor barrera de
invasién que o, de esto deducimos que el mutante de menor barrera debe ser de
esta forma.

También sin pérdida de generalidad podemos suponer que 1[11 < 1[12. Empece-
mos suponiendo que Y* < 1[}1. Entonces la estrategia de equilibrio ¢* es mejor
respuesta para si misma de lo que es el mutante pues este ultimo juega X en
ambos roles menos de lo que es éptimo: entre ¥* y 1@ jugar X contra ¢* tiene
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un valor esperado positivo, mientras que jugar Y, cero. Ademds la estrategia
en equilibrio ¢* es mejor respuesta contra el mutante o de lo que este es con-
tra si mismo. Para ver esto supongamos que el mutante recibe el rol 1. Como
P* < 1&1, resulta que juega X menos veces que la estrategia o*, entonces la mejor
respuesta contra el mutante es jugar X incluso mas veces que la estrategia o*
ya que

(1= F@)] (=1 —k)a+v¢)+ F")(ka+v)
= EBE(X,0"[¢) < E(X»UWJ)

= [1=FE)| (~(1 = Ba+ ) + F@) (ka + ).

Pero en particular ¢* es mejor respuesta contra el mutante que él mismo. Un
argumento similar se aplica si el mutante recibe el rol 2. Entonces las diferencias
entre el pago esperado de un mutante menos el de uno de la poblacién original
son negativas siempre (sin importar contra quien jueguen) y por lo tanto existe
una barrera de invasion.

Si tenemos el caso 1/;2 < ¢*, el mismo argumento (pero jugando mas veces
Y’) prueba que existe una barrera de invasién.

Concentrémonos en el caso ¢ < ¢* < 1. Sea H = [1/;1,1/;2]. El mutante
o juega igual que o* excepto cuando observa un valor de ¥ € H, donde elige
X si tiene el rol 1 e Y en el otro caso. Separemos el conjunto H de la forma
H = [¢p1,0*] y H = [¢*, 2] (alguno de los dos podria tener medida nula).
Vimos que

E(X[Y,0") = [ —-F@") (=1 —ka+y)+F@")(ka+ )
= —(1-ka+yv+F")a—-FW")ka
—F@" )+ F(")ka + F(y" )y

= ¢v-(1-k-F@))a

= ¢Y—v°
pues por el lema 4.4.1 sabemos que ¥* es solucién de (1 — k)a = ¢ + F(¢)a,
con lo que v* = (1 — k — F(¥*))a.

Calculemos la diferencia entre el pago esperado de un mutante y la estrategia

de equilibrio ¢* cuando se enfrentan a la poblacién original. El resultado es

E(o,0*) — E(c*,0") (4.5.5)
= [ (Blolb.0") = Bo* o) f(w)as (4.5.6)

B /H 30~ v + /H Sy (457)
=L <0. (4.5.8)

La primer integral vale para ¢ € H, donde la estrategia ¢* juega Y con pago
cero; mientras que o también recibe un pago de cero la mitad de las veces
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(cuando recibe el rol 2 y juega Y) y un pago de (¢ — ¢*) < 0 la otra mitad. En
la segunda integral, con ¢ € H, o* juega X con un pago esperado de ()—1*) > 0
y el mutante elige X la mitad de las veces, con lo cual recibe el mismo pago
esperado; e Y la otra mitad (con pago cero). Asi para ¢ € H tenemos

Bloli,0") — B(o"fb0") = (= *) — (& )
= W -9 <o

Sea S C R y notemos con E(c,c’|S) el pago esperado del mutante cuando
enfrenta a o', este tltimo condicionado con valores de 1 en S. Con esta escritura
y por el hecho de que tanto el mutante como ¢* se comportan igual en H€,
sabemos que

E(o,0|H®) = E(o,0"|H®)
E(o*,0|H®) = E(o",0%|H®)
Pero también vale
L = E(o,0%)—E(c*,0")
F(H)E(o,0"|H) +[1 = F(H)|E(0,07|H®)

—F(H)E(c*,0"|H) — [l — F(H)|E(c™,c*|H®).
Ahora podemos calcular
E(o,0) — E(0c*,0) = F(H)E(o,0|H)+[1— F(H)|E(o,0|H®)
—F(H)E(c*,0|H) —[1 — F(H)|E(c*,0|H®)

sumameos cero

|
S

(H)E(o,0|H) + [1 — F(H)|E(c,c|H®)
F(H)E(o,0*|H) — F(H)E(o,0*|H)
—F(H)E(c*,0|H) — 1 — F(H)|E(c*,0|H®)
F(H)E(c*,0*|H) — F(H)E(c*,0"|H)

+

+
reemplazando
= F(H)E(o,clH)+[1— F(H)|E(c,0*|H)
+F(H)E(o,0"|H) — F(H)E(0,0"|H)
—F(H)E(c",0|H) —[1— F(H)|E(c*,0"|H®)
+F(H)E(c*,0%|H) — F(H)E(c*,0*|H)
finalmente obtenemos
= F(H)E(o,0|H)— F(H)E(c,0"|H)

—F(H)E(o",0|H)+ F(H)E(c*,0"|H)+ L

Dado que ambas estrategias coinciden cuando i € H€ basta calcular E(o,o|H)—
E(o*,0|H)y E(0*,0*|H) — E(0,0*|H) condicionado a valores para ¢ € H. Si
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notamos E(o|H,o|H) al enfrentamiento de dos mutantes restringidos a valores
en H tenemos que

BlolHolh) = [ S(CBE.X) + (1= OB(X.Y)) f0)i:
sotioin) = [ 3(Fadece o+ S b)) s
B o) = [ 5(BXX)+ BX.Y) fde y
E(c*|H,c*|H) = A(Z};Eg;E(X’X)+FF((§))E(X’Y)> f)dy.

Ahora podemos retomar la cuenta anterior. Tengamos presente que
F(H) = F(H) + F(H).
Luego
E(o,0) — E(c*,0)

) *
(H) [ 3 (€=~ B+ )+ (1= Q) (ko + ) F()dy

!

H

(F(H)(—(1 = k)a+¢) + F(H) (ko + 1)) f()dip

|
:—q\ m\
N | =

H) (= =k)a+v) + (ka+ ) f(¥)dy

janl
| —

+ /H (F(H)(~(1 — k)or+ ) + F(H)(ka + ) f()di + L
_ F(H) —(C« _1 — [ [0
== H( Ca)f(¥)dy 2/H( F(H)a)f(y)dy

_EH) (_a)f(w)dw+/H(—F(H)a)f(w)dw+L

2 Jm
__FUHZ, FéHan(H) n @aF(H) ~F(AYa+ L

2

_ <F u < ey [pom - F(H)}) )

Entonces ahora estamos en condiciones de calcular la diferencia D entre el
pago esperado de un mutante y de un jugador original cuando la proporcién
invasora es igual a €. Para que pueda producirse la invasién en este caso debe
suceder que D > 0.

F(H)*C .

D = (15)L+6[a< 5 +F(H)[F(H)F(H)])+L]

= L+ea (F(I;I)ZC + F(H)F(H)>
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Como L es negativa, para que esta diferencia sea mayor a cero tanto F'(H) como
F(H) deben ser positivos, con lo cual 1/31 < Pr < 1/32. D es negativa cuando
¢ = 0. Una barrera global de invasién £* (con « fijo) es aquella tal que cualquier
€ positivo y menor que €* devuelve una D negativa, independientemente de
como sea el conjunto H. De todos los ¢ posibles en [0,1/2) aquel que maximiza
D es ( =0, con lo cual basta analizar este caso para cualquier (. Resulta que

D < L+eaF(H)F(H).

Acotemos inferiormente (recordemos que L < 0)

L gt - @)+ [ -0t )y
F(E)F(H) 2 [ T [y [(0)d0
S )+ [ = e ()
2 [2 F@)dY [ F()dep

Como f(¢*) # 0 y es continua existe un intervalo [b, ¢ tal que b < ¥* < cy
que acota a f inferiormente tal que 0 < m = min{f(¢) : ¢ € [b,c]}. Ademds
sea M = max{f(y) : ¥ € [b,c]}. Si 11 < b entonces

U@ =) F @)+ [ (0 — o) f)d
f f@W)dy fH
A F)d + [12 (0 — 4 F($)dy
- 2f F()dy f;, F()dy

Y

.
/b (6" — ) F()d > o

para algiin 3y > Oy de forma similar supongamos que 1 > 0 acota inferiormente
si ¥y > c.
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Consideremos el ultimo caso, es decir, b < 1/31 <Pt < 1/32 < c¢. Luego
2 @r = ) f)d + [ (0 — %) f () de

2 [, f(W)dy [ f(y)dy
2@ — )mai + [72 (6 — 0t ymdy

>

- 2 [V Mdyp [, Mdy

. om 01#*—% sds + fOAQ_W sds

TO2M (g — ) (hy — ¥%)

S £(¢*—1/31)f+£¢2—¢*)2

T AM (g — ) (2 — ¥%)

_ m(dj*_d}l_‘_'([&_ﬂi*)
AM \ g — g Y* — 1y

> Lo

- 4AM

Entonces, sea § = min{fy, 1, m/(4M)}. Resulta (-L/[F(H)F(H)]) > >0y
ademas

D<L+eaF(H)F(H) < L—l—sa% = (1 _ 50‘) ,

con lo cual existe un £* suficientemente pequeno tal que D < 0 para todo e < &*.
Lo cual prueba que existe una barrera global. U

4.6. Referencias

En este capitulo seguimos el trabajo de Binmore y Samuelson [1].
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Capitulo 5

Menor oferta unica

Menor oferta tinica (LUB!) es un juego de subasta on line en el cual el
ganador puede adquirir un bien de elevado valor a un precio muy inferior: autos
o incluso casas pueden adquirirse por decenas o cientos de délares (o euros)?.
Veamos el mecanismo de este tipo de remates.

En un comienzo, un bien valuado en miles de ddlares es puesto en subasta.
El tiempo que dura estd convenido desde el inicio; generalmente es un periodo
de dos o tres semanas. Cada jugador participa realizando una oferta que puede
ir desde un centavo hasta un valor méximo al cual llamamos M, siempre en
multiplos enteros de un centavo. Este debe ser un precio muy inferior al valor
real del bien en cuestién; M suele ser no mayor a cien délares. Por cada oferta
que realiza un participante, éste debe pagar una pequena cuota (por ejemplo, el
costo de un mensaje o una llamada de celular, que va de unos pocos centavos a
no més de diez ddlares). Ademds, los jugadores pueden ofertar mds de una vez
por el mismo bien. Finalizado el plazo de la subasta, resulta ganador aquel que
hizo la menor oferta dnica (LUB) y obtiene el derecho de comprar el bien por
ese precio ofertado (que es el menor precio que oferté de los que ningin otro
propuso).

Por ejemplo, si al terminar el juego la menor oferta fue hecha por dos ju-
gadores (n; = 2), mientras que la segunda menor fue hecha por tres jugadores
(ne = 3) vy, recursivamente, obtuvimos n3 = 1, ngy = 2, n5 = 1, ... entonces
el jugador ganador es aquel que oferté el tercer menor valor pues es la LUB
del juego, en el sentido de que fue hecha por un sélo participante. Es necesario
aclarar que durante el periodo en el cual se desarrolla este juego, cada partic-
ipante sabe si su estado es el de ganador o perdedor, pero no tiene acceso a
ningin otro dato. Ninguno conoce que ofertas hizo otro jugador hasta que el
juego finaliza.

F. Radicchi, A. Baronchelli y L.A.N. Amaral han estudiado en detalle los
rasgos de la dindmica de las ofertas hechas en juegos de LUB en subastas reales.
Observaron que la exploracién del espacio de posibles ofertas es explosivo: las

IPor sus siglas en inglés, the lowest unique bid.
2En nuestro pais este mercado tiene un desarrollo muy incipiente.
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ofertas hechas por un mismo jugador en forma consecutiva suelen ser cercanas
entre si. Pero cada tanto, los participantes realizan un «salto» de grandes dis-
tancias y luego vuelven a la conducta anterior de hacer ofertas consecutivas
cubriendo muchos valores en un pequeno espacio.

Entonces, la funcién de densidad de probabilidad (f.d.p.) P(d) de las distintas
ofertas depende de d, que representa la distancia entre dos valores. La densidad
de probabilidad es consistente con P(d) ~ d~¢. La exploracién del espacio de
apuestas resulta una version de vuelo de Lévy dicreto. Aun mas importante,
encontraron que la f.d.p. g(a) dependiente del exponente de P(d) utilizado en
estas subastas es de un valor que se acerca a 1,4 (< a >~ 1,4) con desvio
estdndar de 0,2 (< o >~ 0,2). Este desvio es el de la distribucién de los valores
medidos de « y no del vuelo de Lévy (que para a < 2 tiene varianza infinita).

5.1. Modelos de estrategias para ofertar

Veamos un modelo para LUB. Dada la evidencia suponemos que los ju-
gadores exploran el espacio de apuestas comportandose acorde a un modelo de
vuelo de Lévy. Elegimos los exponentes de la f.d.p. con una variable aleatoria
extraida de otra f.d.p. genérica y estudiamos una versién evolutiva del juego. In-
dependientemente de la f.d.p. inicial, ésta evoluciona a una distribucién estable
centrada en un valor muy cercano al exponente medido en las subastas reales.

Consideremos una poblacién de N jugadores cuyas estrategias quedan deter-
minadas por un « obtenido en forma aleatoria de una f.d.p. g(«). Sin pérdida
de generalidad consideramos que g(a) > 0 si « € (g, a2) y que vale 0 en otro
caso. Durante el juego, cada agente puede ofertar sélo valores enteros en el es-
pacio [1, M]. Como al principio del juego ninguno sabe qué valores ofertardn
los demés, es natural pensar que un jugador genérico (con estrategia P(«)) se
sitte lo més a la izquierda posible (que es la menor oferta posible). Asi, para la
posicién inicial, oferta el i-ésimo valor con probabilidad

s(i, ) = g(a), (5.1.1)

m(a)

siendo m(a) = Zf\il i~ % la normalizacién para que el espacio discreto sea de
probabilidad. Integrando podemos calcular la probabilidad de que un jugador
genérico oferte el valor i, asi

p(i) = /a2 s(i, a)da. (5.1.2)

Después de la primer oferta de cada agente, llamemos ny al nimero de ofertas
hechas en el k-ésimo valor. La probabilidad de que suceda una configuraciéon
{n} = (n1, na,..nps) particular estd dada por

M e
P({n}) = NM] p—(:z' : (5.1.3)
k=1 ’
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siendo N = 22/121 ny la cantidad de jugadores. En particular, la probabilidad
de que sélo una oferta sea realizada en el valor 7 es

u(@)= Y. P({n})=Np@[L-p@)]" "

Zk#i nk:Nfl

La probabilidad de que un valor i de oferta sea realizado por un sélo jugador y
que sea el menor con esta caracteristica podemos calcularlo sumando las proba-
bilidades de la ecuacién (5.1.3) sobre todas las {n} configuraciones que satisfacen
n; =1y n; # 1 para todo j < i. Pero como este calculo es muy complejo, una
buena aproximacion, valida para valores de p(i) y u(i) suficientemente pequenos,
es considerar la unicidad (en el sentido de LUB) del valor i-ésimo como inde-
pendiente de la unicidad de otros. Asi escribimos

l(z){ sit=1

N
% [I,<;[1 —u(k)] otro

como la probabilidad de que la oferta del valor i-ésimo sea la menor de todas las
apuestas tnicas. El resultado de esta ecuacién es el producto de dos términos,
u(i) es la probabilidad de que sélo haya una oferta en el valor ¢; mientras que
[1<:[1 —u(k)] es la probabilidad de que ninguno de los valores menores reciba
una unica oferta. Finalmente, la probabilidad w(a) de que un vuelo de Lévy
con exponente « sea la estrategia ganadora podemos inferirla por

w@)ZE:MMQW)ZE:ﬂﬁﬁﬂQ (5.1.4)

siendo v(«|i) = s(i, ) /p(i) la probabilidad condicional de que el coeficiente del
jugador que oferta el i-ésimo valor sea «.. En estas ecuaciones, si bien no aparece
en la notacién M ni N que son valores de los cuales depende w(«), los evitamos
para abreviar notacion.

5.2. Miuiltiples apuestas hechas por un mismo ju-
gador

El mismo anélisis puede aplicarse para determinar el mejor exponente en un
juego en el cual cada participante pueda realizar mas de una apuesta. Llamemos
T a la cantidad de ofertas que puede hacer un mismo jugador. Para resolver el
nuevo problema necesitamos calcular sp(i). Esta es la probabilidad de que un
jugador cualquiera oferte el valor ¢ en alguna de sus T ofertas. Dado un ju-
gador genérico fijemos de aqui en lo que queda de esta seccién, su exponente
(estrategia) en «. Su primer oferta puede ser realizada en el valor 4 con proba-
bilidad g1 (i]a) = i~%*/m(«a). Para las siguientes ofertas necesitamos definir una
matriz de transicién Q.. El escalar (Q4);; representa la probabilidad de que un
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juegador oferte el valor ¢ cuando su apuesta anterior fue j. Asi tenemos

=g
(Qa)jz mj(a) ) (5.2.1)

siendo el denominador nuevamente la normalizacién, es decir

M
mj(a) = Z ‘Z 7.7.‘70[3
=1

lo cual hace que @, sea una matriz de probabilidad. Entonces en un paso t
cualquiera®, la probabilidad de que un jugador oferte el valor i es

M

@(ila) = (Qa)jigr-1(ile). (5.2.2)

j=1

Y la probabilidad de que el jugador oferte el valor i en algin momento de la
subasta es

T

Sr(ila) =1-J] (1 - a(ile)). (5.2.3)

t=1

El término (1 — ¢;(¢|c)) representa la probabilidad de que el jugador no oferte
el valor 7 en el paso t, con lo cual el producto en todos los pasos resulta la
probabilidad de que no oferte en el valor . Es muy importante aclarar que los
jugadores aqui modelados no tienen memoria, pues pueden ofrecer el mismo
valor més de una vez ya que la matriz (Q, sélo tiene en cuenta la posicién actual
y no las pasadas.*

Asi llegamos a la probabilidad de que un jugador genérico en T' pasos oferte
el valor i, con lo cual

pﬂQZ/Mﬁﬁmmmﬂw (5.2.4)

Con esta nueva férmula podemos reemplazar (5.1.2) para calcular ur (i) y (i)
respectivamente. Y podemos obtener wr(a).

5.3. Modelo evolutivo

Para estudiar y entender como una estrategia 6ptima puede ser transmi-
tida entre individuos, trabajamos en un marco teérico evolutivo. Con esto, el
modelo puede implementarse en términos de individuos competitivos que se se-
leccionan en base a los sucesos que se producen en el proceso selectivo. Este es el

3Es la t-ésima oferta.

4Esto también afecta el hecho de que un jugador al ofertar dos veces el mismo valor pierde
la posibilidad de ganar él mismo aunque se el menor valor que nadie més ofrecié (en este caso
ya no serfa tunica la oferta).
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espiritu fundamental de un proceso de Moran. Al final de cada juego, el ganador
se «reproduce» transmitiendo su exponente a: un nuevo individuo ingresa a la
poblacién con una estrategia de igual exponente, mientras que de forma azarosa
otro jugador es removido para mantener constante la poblacién del sistema.
También es posible que el nuevo jugador tenga un exponente a + £, siendo &
una variable aleatoria que introduce una mutacién. Como en el capitulo 2 de
juegos evolutivos, la distribucién estacionaria en la que se estabilice este proce-
so, donde los exitosos se reproducen y los que no lo son desaparecen, deberia
corresponderse con un equilibrio del juego.

5.3.1. Modelo sin mutaciones aleatorias

Primero consideremos el caso en el cual los perdedores copian la estrategia
victoriosa sin error alguno (sin mutaciones). Supongamos que tenemos N ju-
gadores en cada generacion. Y participan realizando T pasos en cada subasta.
Denominemos con un ntmero e a cada generacién; entonces empezamos con
e = 1. Luego continuamos de la siguiente forma.

1. Los jugadores eligen aleatoriamente una estrategia o de una distribucion
de probabilidad ¢(®)(a).

2. Luego juegan la subasta. El resultado es una f.d.p. wgf)(oz) que devuelve
la probabilidad de que « sea la estrategia ganadora.

3. Entonces definimos ¢(¢*(a) = wgf )(a) y volvemos al primer punto.

Aqui hemos expresado la evolucién de una poblacién de jugadores que repiten
sistemdticamente una subasta de LUB. Haciendo ¢°*!(a) = wéf) () nos asegu-
ramos que las «nuevas generaciones» tiendan a elegir estrategias ganadoras en

lugar de perdedoras. Esto puede verse con la siguiente ecuacion maestra

9" (@) = g (@) = wi (@)(1 = g () = (1 = w(2))g (). (5.3.1)
de donde surge que ¢g(°tV(a) = wg)(a). Esta indica que la variacién de los
jugadores que usan « aumenta cuando crece la probabilidad de que sea la es-
trategia ganadora (wgf )) por la probabilidad de encontrar jugadores que no la
utilicen (1 —¢(®)(a)). Y decrece cuando se incrementa la probabilidad de que no
sea la estrategia ganadora (1 — wgf )) multiplicado por la de hallar jugadores que
la usen (9®)(a)). En otras palabras, estamos diciendo que la probabilidad de

replicarse de un jugador es proporcional a la probabilidad de que gane el juego.

5.3.2. Mutaciones aleatorias

Un supuesto mas natural es considerar que cada vez que un jugador perde-
dor cambia de estrategia, su nuevo exponente es igual al del ganador mas una
variaciéon aleatoria. Asumamos que la variacién £ es obtenida aleatoriamente
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de una f.d.p. y que (£, a, fi) depende de o y un conjunto de pardmetros fi. La
ecuacién maestra que ahora describe la evolucién resulta

91 (@)~ g(a) = [ B [ desta-5+6) (5.3.2)

siendo §(x) la funcién delta de Dirac, 6(z) = 1 si = Oy §(«) = 0 en otro caso.

5.4. Simulaciones numéricas

La formulacién analitica anterior permite plantear una ecuacién diferencial,
pero la dificultad de calcular las probabilidades wr(«) en forma explicita impide
obtener una expresion cerrada para la distribucién de las estrategias ganado-
ras. Las diversas ecuaciones s6lo pueden integrarse numéricamente para proveer
una soluciéon al modelo. Ademds algunas tienen aproximaciones, por lo cual
tiene sentido preguntarse si la solucién resultante de la integracién (el resultado
numérico) es ventajosa comparada con la alcanzada con una simulacién directa
del modelo.

La simulacion puede llevarse a cabo con el siguiente forma.

1. Utilizamos una f.d.p. g(«) para obtener la estrategia de cada uno de los
N jugadores;

2. simulamos el juego para cada participante, realizando T ofertas, basandonos
en una funcién de densidad y determinamos el ganador (aquel que realiza
la LUB).

En el caso de juegos evolutivos, al final de una serie de subastas debemos
cambiar el exponente de alguno de los jugadores derrotados. Esto lo hacemos
copiando el exponente de un ganador, con o sin una variable de mutacién y
reemplazando. Luego, con los «nuevos» jugadores repetimos el juego. Cuan-
do cambiamos N exponentes (un mismo jugador puede cambiar varias veces)
obtenemos una nueva «generacién». La f.d.p. de la estrategia ganadora de cada
generacioén la calculamos repitendo completamente todo el proceso varias veces.

5.5. Resultados

Los resultados a los que llegaron Radicchi y Baronchelli fueron obtenidos con
simulaciones para N = 100 jugadores y un valor méaximo del bien de M = 1000.
El orden de estos parametros es similar al observado en la realidad. En la primer
imagen de la figura 5.5.1 podemos observar el gréfico de la f.d.p. w(a) paraT = 1
y T = 10; en ambos casos la funcién para elegir las estrategias iniciales fue

Lsiae(0,5)
— 5 ’
g(a)—{ 0 si no

Los jugadores empezaron aleatoriamente con estrategias de movimiento ex-
citado (aquellos o menores a 1), difusivo (mayores a 3) y super difusivo o vuelos
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0,2
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Figura 5.5.1: El primer gréafico es de la funcién de densidad hallada por Radic-
chi y Baronchelli en [6] de la estrategia ganadora w(a) en el caso en que las
estrategias son elegidas con una funcién de probabilidad g(«) uniforme en (0,5).
T indica la cantidad de ofertas con las que cada jugador participé. El segundo
son simulaciones propias con 80 jugadores, 10 ofertas, 10 juegos (antes de ca-
da evolucién) y 300 evoluciones. Podemos observar que los valores exitosos se
concentran en la misma regién.

de Lévy (a entre 1 y 3). Una distribucién uniforme en el (0,5) es equivalente a
asumir que los participantes no conocen absolutamente nada sobre qué estrate-
gia es mejor para ganar el juego. Luego de las simulaciones podemos observar
que la situacion resulté mucho mas ventajosa para jugadores que usaron estrate-
gias entre 1,2 y 1,5 que es un rango dentro de los vuelos de Lévy.

En el primer grafico de la figura 5.5.2 los resultados son validos para T = 1,
mientras que en el segundo lo son para 7' = 10. Si bien las curvas parecen
mostrar resultados distintos, cuando hacemos e tender a infinito, la funcién
w(®) se acerca a una ¢ concentrada en un tnico punto, la estrategia 6ptima
o*. Es importante aclarar que este resultado es independiente de la funcién de
distribucién inicial g(a).

5.6. Una variante asimétrica

Modelemos nuevamente estas subastas LUB introduciendo un beneficio para
el jugador que dependa del nimero de apuestas. Sea

B(b,a)=M—-b—a-c

el beneficio del jugador ganador, siendo M el valor del bien, b el menor precio
que oferté y que nadie més propuso (LUB), a la candidad de ofertas hechas y
c el costo que debe pagar por cada una. Para acercar este modelo a la realidad
utilicemos como unidad de medida el signo de $, M cercano a $1000 y pense-
mos en un costo ¢ de aproximadamente $0,5. As{ por ejemplo si tenemos los
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p=10.0

30k ' —_— 4

Figura 5.5.2: (Figura de [6]) Funcién de distribucién de la estrategia ganadora
wl®) () en la generacién e. El primero simula una cantidad de ofertas por jugador
de T'=1y el segundo, de T = 10.

siquientes resultados

dos jugadores ofrecen $1
ninguno ofrece $2
un jugador ofrece $3
cuatro jugadores ofrecen  $4

el ganador es aquel que oferté $3 y gana $(M — 3 —a - ¢).

Este problema ha sido analizado desde el punto de vista de la teoria de juegos
en [18], [19] y se demostrd que para N jugadores y costos de participacién altos
¢ > M/2, existen N equilibrios de Nash en estrategias puras (un unico jugador
oferta $ 1y los demds no participan). Para costos menores, no existen equilibrios
en estrategias puras.

Determinar el equilibrio mixto implica hallar una distribucién de probabili-
dades sobre las (M — 1) ofertas posibles, que contemple ademds el niimero de
ofertas que cada jugador hard. Distintas propuestas (ver [16], [17]) mostraron
que las distribuciones uniformes y de Poisson, entre otras, no reproducen los
resultados observados en los sitios donde se puede participar de estas subastas.

Como ya mencionamos, se estudié en [6] las ofertas reales hechas en este
juego en distintos sitios de Internet. Recordemos que los jugadores saben si
alguna de sus ofertas estd momentaneamente ganando la subasta y se enteran
cuando dejan de tener la oferta ganadora (aunque no saben si otro oferté este
valor con el cual estaba ganando, o si alguien ofrecié un nimero menor que
estaba disponible). El apostador realiza entonces una busqueda de Lévy (ver
[20], [21]), donde la probabilidad de realizar la préxima busqueda a distancia d
es proporcional a d~¢, para cierto parametro o > 1. Encontraron, ademas, que
a ~ 1,3 para todos los jugadores, independiente de su experiencia.
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5.6.1. Invasiones

Los resultados anteriores sugieren que el juego se estabiliza en una situacién
donde todos juegan con un vuelo de Lévy con un mismo exponente. Cabe pre-
guntarse si este es un equilibrio de Nash y en caso de serlo, si es evolutivamente
estable.

Como vimos en el segundo capitulo, un juego simétrico con finitos jugadores
idénticos y un espacio de estrategias compacto posee un equilibrio de Nash
simétrico, con lo cual cabria suponer que efectivamente se obtuvo un equilibro
de Nash. Observemos que ningun jugador tiene incentivos para cambiar su «,
pero si ademads se le permitiese cambiar el nimero de apuestas, podria ser que
obtuviese una mayor ganancia esperada.

Para analizar esta posiblidad, tomamos los mismos pardmetros de [7], asu-
mimos el valor del bien M = 1000, una poblaciéon de 100 jugadores idénticos,
con un costo por apuesta de ¢ = 1 que utilizan un vuelo de Lévy con exponente
a = 1,3 y ofertan 10 veces cada uno. Observemos que la ganancia esperada de
un jugador ¢ es
B M
~ #{jugadores}

Ahora, modificamos el exponente « de un jugador y le permitimos realizar
mas apuestas. Si bien la dindmica que utilizamos es similar a la anterior, ahora
no permitimos que un jugador repita una misma oferta y si de las 10 ofertas
realizadas s6lo hay k diferentes, sélo pagara (k- ¢)$. Lo mismo ocurre con el
jugador invasor, sélo pagard por las ofertas diferentes que realice.

La figura 5.6.4 representa el pago esperado cuando aumenta el nimero de
ofertas que realiza el invasor. Claramente, la poblacién de agentes con oo = 1,3
se ve perjudicada con la apariciénde éste.

El mismo fenémeno observamos para diferentes valores de o mayores a 2,
variando el nimero de ofertas y en todos los casos, el invasor logra reproducirse
hasta que la poblacion se estabiliza en un nuevo estado, donde un porcentaje
corresponde a los invasores con diferente valor de a y realizando un mayor
numero de ofertas.

En la figura 5.6.4 observamos que dos invasores jugando con «« = 2 y rea-
lizando 90 ofertas, contra 98 jugadores que juegan con o = 1,3 y realizan 10
ofertas, logran reproducirse e invadir parcialmente a la poblacion original.

Lo mismo ocurre si se introducen 30 invasores jugando con o = 2 y realizan-
do 90 ofertas, contra 70 que juegan con o = 1,3 como puede verse en la figura
5.6.5. En ambos casos la poblacién final resulta mixta y se estabiliza (aproxi-
madamente) en un 93 % de jugadores que utilizan « = 1,3 y un 7% que juegan
con o = 2.

E(G)) 10-¢=0.

5.7. Referencias

Como mencionamos varias veces, en esta capitulo seguimos pricipalmente el
trabajo de F. Radicchi y A. Baronchelli en [7].
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Figura 5.6.3: Ganancia promedio de jugadores con o = 1,3 versus un invasor
con o = 6.
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Figura 5.6.4: Porcentaje de jugadores con a = 2, comenzando con 2% de inva-
sores.
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Figura 5.6.5: Porcentaje de jugadores con a = 2, comenzando con 30% de

invasores.

5.8. Comentarios finales

En los dos primeros capitulos estudiamos la relaciéon entre equilibrios de
Nash, equilibrios evolutivamente estables, y los puntos fijos para la dindmica del
replicador, si bien nos limitamos a juegos de s6lo dos jugadores. La extension a
més jugadores es sélo técnica (ver por ejemplo [11] o [15], donde el nimero de
jugadores es aleatorio).

Observemos que segun los resultados del capitulo 3 no deberian existir equili-
brios mixtos estables en juegos asimétricos. Una vez més, alli consideramos sélo
finitas estrategias, pero los resultados de este capitulo pueden replicarse toman-
do valores discretos de «, sin ninguna dificultad. Cuando no hay mutaciones
aleatorias, por ejemplo, sélo se juega con los valores de « iniciales.

En el capitulo 4 vimos para ciertos juegos, dentro de ciertas estrategias,
es posible tener equilibrios mixtos estables, si bien algunas variables aleatorias
introducian cierta asimetria. Aqui tenemos también esa asimetria en el nimero
de ofertas que efectivamente realizara un jugador, pues aunque dos de ellos
decidan realizar T ofertas (para un mismo exponente «) el «paseo» de Lévy
puede modificar el nimero de ofertas que cada uno hace.

Quedan pendientes una serie de problemas para profundizar. Aclaremos que
en realidad los resultados de los capitulos 2 y 3 no pueden aplicarse directamente
y su extensién a juegos con multiples jugadores ya ofrece una dificultad no
menor.

Adem3s en el problema de las subastas el espacio de estrategias es un con-
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tinuo, con lo cual el sistema de ecuaciones ordinarias del replicador debe ser
reemplazado por una ecuacién en derivadas parciales o un operador integral. En
estos casos la nocién de estabilidad cambia completamente ya que una dindmica
de imitacién como la utilizada debe modificarse por otra donde se cambie de
manera continua de estrategias (ver [13, 14, 12, 10]).

También la difusién espacial es un problema interesante para considerar y
en el cual se introducen nuevas dificultades. Ademas del término fuente de la
ecuaciéon del replicador, uno podria esperar cambios en la proporcién de indi-
viduos que usan una estrategia fija debido al movimiento de los jugadores.
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