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Tesis de Licenciatura
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Introducción

Consideremos una gran población de jugadores en constante interacción. Los
agentes pueden ser por ejemplo animales, hombres, agentes económicos, otro,
que identificamos con un ı́ndice i ∈ I. Modelamos la interacción entre dos o más
de ellos mediante un juego de caracter determińıstico que sólo depende de las
acciones que realicen los jugadores.

Cada agente j se programa para usar una determinada estrategia que elige
entre un conjunto Sj de estrategias posibles. El resultado de esta interacción
entre el agente j y el resto de los jugadores lo representamos mediante una
función de pagos Ej : (Si)i∈I → R. Por ejemplo, en el caso de una población de
dos jugadores i y j jugando con estrategias si ∈ Si y sj ∈ Sj respectivamente, la
función Ej(sj , si) representa el beneficio (pago) que obtiene el jugador j al optar
por sj cuando su oponente juega si. También podemos notarlo Ej(sj , s−j) para
abreviar la escritura cuando los agentes sean más de dos, donde s−j representa
el vector de estrategias que emplean los otros agentes.

Estudiamos interacciones y modelos que permitan comprender la evolución
en el tiempo del comportamiento de los jugadores, de manera que las estrategias
con mejores pagos se expandan y las que no obtengan buenos resultados se
reduzcan; representado en que hay menos jugadores que utilizan estas últimas.
Además buscamos definiciones y estrategias que nos permitan dar una noción
de estabilidad en el tiempo.

Para empezar consideremos un grupo de jugadores que elige jugar con una
determinada estrategia (podemos identificar a cada uno con su estrategia y pen-
sar que no es capaz de cambiarla) de tal forma que población no se altera si
aparece otro grupo (pequeño) jugando una estrategia distinta. Podemos pen-
sarlo como una comunidad que se mantiene estable cuando es sometida a una
invasión de otros (pocos) individuos. Para esto debe suceder que si una pequeña
fracción de la población original tiene descendencia que puede mutar a una nue-
va estrategia con probabilidad muy baja, los pagos esperados que recibirán los
mutantes serán menores que los de aquellos que copien a sus ascendientes sin
modificación alguna y por lo tanto las nuevas estrategias no prosperarán.

Existe cierta dualidad entre las distribuciones de estrategias que son un
equilibrio del juego, situaciones donde a nadie le conviene modificar su manera de
jugar y los puntos de equilibrio para ciertos sistemas de ecuaciones diferenciales
ordinarias tipo Lotka-Volterra cuya dinámica se deriva de los pagos promedio
del juego.

Uno de los objetivos de la tesis es estudiar esta dualidad entre equilibrios
de juegos y estabilidad de poblaciones que evolucionan según modelos discretos
de ecuaciones en diferencias o modelos continuos que involucran ecuaciones di-
ferenciales. En ambos casos la evolución puede ser estocástica o determińıstica,
si bien en este trabajo nos limitaremos al caso determińıstico.

Otro objetivo es estudiar un caso particular de subastas, las llamadas subas-
tas de menor oferta única (LUB). En estas cada participante ofrece de manera
privada un pago dentro de un conjunto discreto predeterminado (puede ser un
número entero de pesos o múltiplo de 1, 5 o 10 centavos) por un determinado
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bien. De todas las ofertas recibidas se elige la menor entre todos los valores
que fueron ofrecidos por exactamente un único jugador. Este juego ha sido
estudiado en los últimos diez años por distintos economistas (ver por ejemplo
[18, 19, 16, 17]) y no han podido modelar el comportamiento de los participantes
ni la estrategia utilizada. Recientemente, F. Radicchi, A. Baronchelli y L.A.N.
Amaral en [6] estudiaron un gran número de datos reales de sitios web donde
se realizan este tipo de subastas y encontraron que los participantes ofertan
desplazándose entre las ofertas siguiendo un proceso de vuelo de Lévy.

En un nuevo trabajo, F. Radicchi y A. Baronchelli [7] propusieron un modelo
evolutivo donde los agentes juegan con distribuciones de Lévy con diferentes ex-
ponentes (α entre 1 y 5, si bien a partir de 2 se tiene un movimiento Browniano
sólo que con menor varianza) y cada cierto número de juegos, el jugador con
menor ganancia cambia su estrategia copiando la de uno de los jugadores con
mayor ganancia. En simulaciones numéricas obtuvieron que toda la población
termina jugando con un proceso de Lévy de exponente α ≈ 1, 3. Además, in-
troduciendo ruido tal que los jugadores perturban su α con una distribución
uniforme en el intervalo [−ε, ε], obtuvieron resultados muy similares, lo cual
sugiere que el equilibrio al que se llega es estable.

Un problema natural es analizar la posibilidad de invasión a una población
de oferentes que llegó a un equilibrio, vemos que esta es posible si los invasores
juegan con un proceso de Lévy con α > 1,3 pero realizan una cantidad diferen-
te de ofertas. Para esto, realizaremos modificaciones en el modelo de [7] para
introducir el costo de las apuestas y realizamos simulaciones que muestran la
invasión.

La tesis está organizada de la siguiente manera; en el primer caṕıtulo in-
troducimos algunas herramientas básicas de la teoŕıa de juegos. El segundo
está dedicado a los juegos evolutivos. En el tercero y cuarto analizamos la posi-
bilidad de tener equilibrios puros o mixtos en juegos asimétricos. El último
caṕıtulo lo dedicamos a la subasta de menor oferta única.
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Caṕıtulo 1

Elementos de la teoŕıa de

juegos

1.1. Equilibrio de Nash en estrategias puras

1.1.1. Definiciones básicas y noción de mejor respuesta

Para definir un juego necesitamos tres elementos.

Un conjunto de jugadores I.

Un conjunto de acciones o estrategias (puras) Si para cada jugador i ∈ I.

Una función Ei para cada jugador i ∈ I

Ei :
∏

j∈I

Sj → R

que determina el beneficio o pago que (según las reglas del juego) obtiene
el jugador i.

Notamos a un juego como 〈I, (Si)i∈I , (Ei)i∈I〉 y una noción fundamental es
la de equilibrio de Nash introducida por J.F. Nash en 1950.

Definición 1.1.1 (Equilibrio de Nash). Un equilibrio de Nash puro es un con-
junto de estrategias s∗ ∈

∏

i∈I Si tal que para cada jugador i ∈ I se tiene que

Ei(s
∗
i , s

∗
−i) ≥ Ei(si, s

∗
−i) para cualquier si ∈ Si.

Si la desigualdad es estricta decimos que el equilibrio también lo es.

Intuitivamente, s∗ es un equilibrio de Nash si ningún jugador i tiene interés
en cambiar de estrategia sabiendo que los demás jugadores usan las estrategias
s∗−i (y permanecen en ellas).
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También puede pensarse como una situación en la cual el jugador opta por
la mejor respuesta que puede elegir considerando la elección de los demás par-
ticipantes. Formalicemos esta idea.

Definición 1.1.2 (Mejor respuesta). Decimos que la estrategia si ∈ Si es una
mejor respuesta para el jugador i ∈ I respecto de las estrategias s−i ∈

∏

j 6=i Sj
si

Ei(si, s−i) = máx
σ∈Si

Ei(σ, s−i).

Notamos MRi(s−i) al conjunto de mejor respuesta para el jugador i cuando los
demás jugadores juegan s−i.

Podemos ahora reformular la definición de equilibrio de Nash:

Proposición 1.1.1. Un conjunto de estrategias s∗ ∈
∏

i∈I Si es un equilibrio
de Nash si

s∗i ∈MRi(s
∗
−i)

para todo jugador i ∈ I.

Veamos ahora algunos ejemplos clásicos que muestran que no siempre existe
un equilibrio de Nash (puro). O que si existe no tiene porqué ser único.

1.1.2. Algunos ejemplos

El juego de Halcones y Palomas

Introduzcamos un ejemplo t́ıpico de la teoŕıa de juegos. Consiste en que dos
jugadores elijan entre dos opciones posibles, ser halcones o palomas. Pueden
actuar agresivamente, la primer opción, o no confrontar con el oponente, la
segunda. En caso de que ambos decidan confrontar, se produce una pérdida y el
beneficio social total se ve reducido, es decir, la suma de los pagos de todos los
jugadores devuelve un valor menor a cualqueir otra situación. Podemos hacer
una analoǵıa con la explotación de un recurso. Actuar agresivamente es tratar de
hacerse por completo del bien a la fuerza. Si ambos deciden ser paćıficos pueden
repartirse el recurso en partes iguales. Por último, si tienen comportamientos
diferentes, el que actúe como paloma se queda son las manos vaćıas.

Para modelar este juego consideremos el beneficio V > 0 otorgado por el
recurso y el costo C > 0 en caso de que lo repartan a la fuerza. Además definamos
la matriz de pagos como en la figura 1.1.1.

Para analizar el problema usemos las definiciones recién vistas. Supongamos
primero que V > 2C. Entonces existe un único equilibrio de Nash (estricto)
que es (halcón, halcón).1 El equilibrio es único y estricto porque no impor-
ta qué juegue el oponente, siempre resulta más beneficioso comportarse como
halcón. Esto es en cierto punto paradójico, pues si ambos colaboraran paćıfica-
mente obtendŕıan un mayor beneficio social: V contra (V − 2C).

1Esta situación es análoga al dilema del prisionero.
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Jugador 2
Halcón Paloma

Jugador 1
Halcón (V/2− C, V/2− C) (V, 0)
Paloma (0, V ) (V/2, V/2)

Figura 1.1.1: Matriz de pagos del juego Halcones y palomas. Aqúı identificamos
al jugador 1 como el ✭✭jugador columna✮✮ y al 2, como el ✭✭jugador fila✮✮.

En el caso V = 2C obtenemos tres equilibrios, pero ninguno estricto. Estos
son todos los pares de opciones menos el caso (paloma, paloma).

Por último, si V < 2C tenemos dos equilibrios: (halcón, paloma), (paloma,
halcón).

El juego del penal

Ahora consideremos un juego que representa un tiro desde el punto de penal.
Aqúı el jugador 1 debe decidir donde patear un penal, a la izquierda o a la
derecha. Y el jugador 2, el arquero, debe tratar de atajarlo desplazándose hacia
algún costado. Si los jugadores eligen lados opuestos el resultado es un gol y
gana el primer jugador. Y si optan por lo mismo, gana el segundo porque ataja
el penal. La matriz de pago se muestra en la figura 1.1.2.

Jugador 2
Izquierda Derecha

Jugador 1
Izquierda (0, 1) (1, 0)
Derecha (1, 0) (0, 1)

Figura 1.1.2: Matriz de pagos que representa un tiro desde el punto de penal.

Este es un ejemplo de un juego de suma cero; el agregado de todos los pagos
es constantemente igual a cero, cuando uno obtiene un pago positivo es porque
el otro tuvo uno negativo, y viceversa.

Además, en este ejemplo, ningún par de estrategia puras es un equilibrio de
Nash.

El juego de piedra, papel o tijera

Por último consideremos el juego piedra, papel o tijera y representemos las
opciones con las letras R,P y S, respectivamente. La matriz del juego puede
escribirse como en la figura 1.1.3.

Nuevamente este juego no tiene ningún equilibrio de Nash en estrategias
puras.
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Jugador 2
Piedra Papel Tijera

Jugador 1
Piedra (γ, γ) (−1, 1) (1,−1)
Papel (1,−1) (γ, γ) (−1, 1)
Tijera (-1,1) (1,-1) (γ, γ)

Figura 1.1.3: Matriz de pagos del juego Piedra, papel o tijera.

1.2. Equilibrio de Nash en estrategias mixtas

1.2.1. Estrategias mixtas

Como vemos en los últimos dos ejemplos, no siempre existe un equilibrio de
Nash (puro). Para obtener un resultado de existencia de equilibrio de Nash con-
viene volver convexos a los conjuntos de estrategias Si. Entonces consideremos
que un jugador no elige una única estrategia, sino que asigna una probabilidad
a cada una de ellas. Esto nos lleva a la noción de estrategias mixtas.

Definición 1.2.1. Una estrategia mixta σi para el jugador i es una medida de
probabilidad sobre su conjunto de estrategias Si.

Si el cardinal de las estrategias es finito, #Si = Ki, decimos que el juego es
finito y llamamos

Σi = {p ∈ R
Ki tal que pi ≥ 0 para todo 1 ≤ i ≤ n y

Ki
∑

k=1

pk = 1}

al conjunto de estrategias mixtas de i. Denotamos con Σ al conjunto de todas
las combinaciones de estrategias que pueden emplear los jugadores,

Σ :=
∏

i∈I

Σi.

Notemos que cada Σi es convexo y compacto si suponemos Si finito. Además,
podemos representar σi ∈ Σi como

σi = (p1i , p
2
i , ..., p

Ki

i ) con p1i + p2i + ...+ pKi

i = 1,

donde pti es la probabilidad con que el jugador i juega la acción sti ∈ Si.
Algunas veces cuando queramos referirnos al peso pti que asigna la estrategia

σi a la acción sti podemos usar σi(s
t
i). Aśı para cada acción sti ∈ Si, la estrategia

pura σ′
i que representa a esta es aquella que tiene todos ceros salvo un 1 en el

lugar t-ésimo.

Extendemos ahora las funciones de pagos Ei (i = 1, 2, ...) a Σ mediante el
valor esperado de los pagos:

Ei(σi, σ−i) =

∫

S1

· · ·

∫

SN

Ei(s1, · · · , sN ) dσ1(s1) · · · dσN (sN ), (1.2.1)
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donde N = #I es la cantidad de jugadores.
Entonces debemos extender la definición de equilibrio de Nash.

1.2.2. Equilibrio de Nash

Definición 1.2.2. Un equilibrio de Nash en un juego 〈I,Σ, (Ei)i∈I〉 es un con-
junto de estrategias (σ∗

i )i∈I ∈ Σ tal que para cada jugador i ∈ I se tiene

Ei(σ
∗
i , σ

∗
−i) ≥ Ei(σi, σ

∗
−i) para cualquier σi ∈ Σi.

Extendemos de la misma manera el concepto de mejor respuesta definido en
la sección 1.1.2 al juego 〈I,Σ, (Ei)i∈I〉.

Debido a que en un principio trabajamos con juegos en los cuales el conjunto
de acciones es el mismo para cada jugador y en pos de ahorrar notación, no
indicamos el sub́ındice en cada estrategia que usemos. También nos referiremos
al concepto de equilibrio de Nash diciendo simplemente equilibrio, ya que si bien
hay otros refinamientos, no los utilizamos en esta tesis.

Un resultado central en la teoŕıa de juegos es que todo juego finito con una
cantidad finita de jugadores tiene, por lo menos, un equilibrio de Nash.

Teorema 1.2.1 (Teorema de Nash). Todo juego finito 〈I,Σ, (Ei)i∈I〉 con I
también finito tiene, al menos, un equilibrio de Nash.

Para probarlo usaremos el siguiente teorema.

Teorema 1.2.2 (Teorema del punto fijo de Brouwer). Sea F : K → K continua
con K ⊂ R

n compacto y convexo. Entonces existe un punto fijo, es decir, existe
x0 ∈ K tal que F (x0) = x0.

Demostración del Teorema de Nash. Supongamos que tenemosN jugadores. Además
sean mi = #Si con 1 ≤ i ≤ N y

cji (σi, σ−i) = máx{0;Ei(s
j
i , σ−i)− Ei(σi, σ−i)},

para reducir la notación usaremos cji (dejando impĺıcito (σi, σ−i)).

Definamos la función Fi :
∏N

k=1 Σk → Σi como

Fi(σ1, σ2, ..., σN ) =

(

σi(s
1
i ) + c1i

1 +
∑Ki

k=1 c
j
k

,
σi(s

2
i ) + c2i

1 +
∑mi

k=1 c
j
k

, . . . ,
σi(s

mi

i ) + cmi

i

1 +
∑mk

k=1 c
j
k

)

para k = 1, 2, . . . , N .
Finalmente, sea F :

∏N

k=1 Σk →
∏N

k=1 Σk, de la forma F = (F1, . . . , FN ).

Como
∏N

k=1

∏N

k=1 Σk es compacto y convexo, existe (σ∗
1 , σ

∗
2 , ..., σ

∗
N ) tal que es

un punto fijo de F , el cual es un equilibrio de Nash. Si no lo fuese, alguno de
los cji seŕıa positivo, pero no pueden ser positivos para todo j, pues

Ei(σi, σ−i) =

mi
∑

j=1

σ(sji )Ei(si, σ−i)

es un promedio de todos estos valores.
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En muchos casos vamos a estudiar juegos en los cuales todos los participantes
tengan las mismas opciones y los mismos pagos ante iguales situaciones. Para
eso introduzcamos la siguiente definición.

Definición 1.2.3. Sea 〈I,Σ, (Ei)i∈I〉 un juego. Si Σi = Σj y Ei ≡ Ej para
todo i, j entonces decimos que el juego es simétrico.

En estos casos obviamos indicar los sub́ındices.

1.2.3. Vuelta a los ejemplos

Juego de Halcones y Palomas

Retomemos el caso 0 < V < 2C en el juego de Halcones y Palomas. Ahora
podemos ver que tenemos un tercer equilibrio que viene representado por jugar
H con probabilidad V/2C. Veamos que este valor es un equilibrio mixto pues
deja indiferente al oponente. Para cumplir esto los pagos esperados para el opo-
nente jugando H o P deben ser iguales independientemente de la probabilidad
con que elija una u otra opción.

Aśı, sea p la probabilidad de jugar halcón. Buscamos p de manera que

p

(

1

2
V − C

)

+ (1− p)V = p0 + (1− p)
V

2

es decir p = V/2C.

Juego del penal

Dijimos que este juego no tiene ningún equilibrio puro. Si buscamos equili-
brios mixtos, el único equilibrio es aquel en el cual ambos jugadores eligen cada
acción con igual probabilidad.

El juego de piedra, papel o tijera

Para cualquier γ hay un equilibrio mixto que es σ∗ = (1/3, 1/3, 1/3) ya que
el pago esperado en todas las situaciones es γ/3. Este ejemplo lo usamos en el
próximo caṕıtulo cuando estudiamos equilibrios estables.

Referencias

Los resultados básicos de teoŕıa de juegos mencionados aqúı pueden verse en
los libros de Binmore [22], Ferguson [23], Osborne y Rubinstein [24].
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Caṕıtulo 2

Juegos evolutivos

En este caṕıtulo trabajamos con juegos simétricos, es decir, juegos en los
cuales todos los participantes tienen el mismo espacio de estrategias y los mismos
pagos ante iguales situaciones (ver definición 1.2.3).

Nos interesa estudiar los equilibrios estables (si es que hay). Pero antes de
definirlos consideremos que tenemos una población enorme de jugadores (infinita
a los fines prácticos). El tamaño importa porque queremos trabajar pensando
que cada individuo tiene medida cero. Por ejemplo consideremos un juego con
sólo dos estrategias s y s′ y sea p el porcentaje que juega s. No importa que
jugador seleccionemos, suponemos que enfrenta con probabilidad p a jugadores
que utilizan s y con (1− p) a jugadores que usan s′.

Hagamos la siguiente analoǵıa. Supongamos que tenemos s(1), s(2), ..., s(K)

posibles acciones y que cada individuo juega solamente una de éstas. Llame-
mos ps a la proporción que juega s. Entonces, cada uno tiene probabilidad
ps de enfrentarse a cada entrategia s. Y si existe un vector de distribución
de proporciones estable donde todos tienen el mismo pago esperado, es decir
E(s′,

∑

s pss) = E(s′′,
∑

s pss) para todo s′, s′′ con ps′ y ps′′ positivos podemos
esperar que las futuras generaciones en esta población mantengan la misma
proporción de individuos (pues todos reproducen individuos con su misma es-
trategia).

Por otro lado, consideremos un juego simétrico de dos participantes con K
acciones (s(1), s(2), ..., s(K)) y una función de pagos E definida en cada s′ como
Ei(s

′,
∑

s pss) = E(s′,
∑

s pss) para i = 1, 2. Supongamos que esta función es la
del juego del párrafo anterior donde enfrentar una población lo evaluamos igual
a confrontar con un individuo que juega una estrategia mixta equivalente al vec-
tor de proporciones de estrategias en la población (ps(j))(j=1,...,N). Si los agentes
se enfrentan con una misma estrategia σ∗ = (ps(1) , ps(2) , ..., ps(K)) podemos pen-
sar que en realidad eligen con igual probabilidad un individuo de la población
anterior y se fijan qué estrategia usa éste. Si volvemos a considerar el mismo
vector estable anterior vale que Ei(s

′,
∑

s pss) = Ei(s
′′,
∑

s pss) (nuevamente
i = 1, 2) para todas las acciones con ps′ y ps′′ positivas, lo cual es equivalente a
decir que σ∗ resulta un equilibrio de Nash en el juego de dos participantes.
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Por esto vamos a trabajar haciendo una semejanza entre una estrategia σ
en un juego simétrico de dos participante y un vector (ps)(s∈S) que representa
las diferentes proporciones en una población muy grande de individuos que sólo
pueden jugar una estrategia pura. Notemos que evitamos el supeŕındice de cada
estrategia pura. Por último aclaremos que esta idea puede extenderse a juegos
de más de dos participantes.

2.1. Estrategias evolutivamente estables

2.1.1. Definiciones

Para relacionar esto con procesos evolutivos en grandes poblaciones, imagi-
nemos que llevamos el juego de Halcones y Palomas representado en la matriz
1.1.1 a varios agentes y que los pagos se relacionan con la descendencia que ten-
drán. Supongamos que tenemos a todos los individuos optando por paloma. Si
entonces alguno de ellos muta su comportamiento a halcón, empieza a dominar
la situación pues produce una mayor descendencia. Esto genera una invasión
(total si V > 2C) de halcones que reemplazan por completo a las palomas.

Con esto nos preguntamos ¿bajo qué condiciones una estrategia puede ser es-
table? Es decir, si tuviéramos una población jugando una estrategia σ∗ ¿qué de-
beŕıa suceder para que se mantenga en el tiempo si apareciera un pequeño grupo
eligiendo una nueva estategia σ? ¿Qué debeŕıa pasar para que perdure si se pro-
ducen algunas mutaciones?

Consideremos una gran población que juega σ∗ y un pequeño grupo de in-
vasores que utiliza otra estrategia σ. El pago esperado de un integrante de este
pequeño grupo invasor es de la forma

(1− ε)E(σ, σ∗) + εE(σ, σ)

considerando 0 < ε << 1. Esto es ver el pago esperado como resultado de com-
petir con los jugadores σ∗ en mayor medida y complementarlo con la pequeña
proporción de mutantes. De igual forma, el pago esperado para el resto de los
individuos de la población original es

(1− ε)E(σ∗, σ∗) + εE(σ∗, σ).

Para que la población original pueda perdurar ante estos mutantes, debe
mantener un mejor valor esperado de sus pagos sobre el de los mutantes, es
decir

(1− ε)E(σ∗, σ∗) + εE(σ∗, σ) > (1− ε)E(σ, σ∗) + εE(σ, σ),

lo que es equivalente a

E(σ∗, (1− ε)σ∗ + εσ) > E(σ, (1− ε)σ∗ + εσ)
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por la linealidad de la esperanza E. De hecho

(1− ε)E(σ∗, σ∗) + εE(σ∗, σ) =
∑

s

[(1− ε)σ∗(s) + εσ(s)]E(σ∗, s)

= E(σ∗, (1− ε)σ∗ + εσ).

Por lo visto anteriormente, introducimos las siguientes definiciones:

Definición 2.1.1. Una estrategia σ∗ ∈ Σ es evolutivamente estable si existe
δ > 0 tal que para cada σ 6= σ∗ y 0 < ε < δ sucede que

E(σ∗, (1− ε)σ∗ + εσ) > E(σ, (1− ε)σ∗ + εσ). (2.1.1)

A este δ lo llamaremos barrera de invasión.

En esta definición, la barrera de invasión δ representa una defensa que preser-
va inmutable a la población σ∗ siempre que la proporción de invasores no supere
este valor.

2.1.2. Una definición equivalente

Otra formulación más fácil de corroborar cuando analicemos casos particu-
lares la siguiente.

Proposición 2.1.1. Si el juego es finito y simétrico entonces una estrategia
σ∗ ∈ Σ es evolutivamente estable si y solo si cumple las dos condiciones.

1. Equilibrio. Para cualquier σ resulta que

E(σ∗, σ∗) ≥ E(σ, σ∗)

2. Estabilidad. Si vale que E(σ∗, σ∗) = E(σ, σ∗) entonces

E(σ∗, σ) > E(σ, σ)

para todo σ 6= σ∗.

Recordemos que un juego finito es aquel que tiene finitas acciones posibles
para cada individuo, pero nada dice de la cantidad de jugadores.

Demostración. Supongamos que la estrategia σ∗ ∈ Σ es evolutivamente estable
en el sentido de la definicion 2.1.1. Haciendo ε → 0 en (2.1.1) y usando la
continuidad de E obtenemos que σ∗ cumple la condición de equilibrio. Además,
si E(σ∗, σ∗) = E(σ, σ∗), entonces de (2.1.1) se deduce

εE(σ∗, σ) + (1− ε)E(σ∗, σ∗) > εE(σ, σ) + (1− ε)E(σ, σ∗)

con lo cual
εE(σ∗, σ) > εE(σ, σ)
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para ε 6= 0. Luego, la condición de estabilidad también se verifica.

Para la vuelta supongamos que σ∗ cumple las condiciones de equilibrio y
estabilidad. Como el juego es finito, si E(σ∗, σ∗) > E(σ, σ∗) entonces debe
necesariamente existir un δ tal que si 0 < ε < δ sucede que

E(σ∗, εσ + (1− ε)σ∗) > E(σ, εσ + (1− ε)σ∗).

Y si E(σ∗, σ∗) = E(σ, σ∗) entonces

E(σ∗, σ) > E(σ, σ)

implica que
εE(σ∗, σ) > εE(σ, σ)

para ε > 0. Sumando (1− ε)E(σ∗, σ) de cada lado obtenemos (2.1.1).

Es importante el suponer que el juego es finito, pues en caso contrario la
primer definición es más ✭✭fuerte✮✮. Consideremos un juego con infinitas estrate-
gias puras. Sea σ∗ una estrategia que cumple la definición 2.1.1 y sea (σn)n∈N

una sucesión de estrategias tales que para todo n

E(σ∗, σn) = 0; E(σn, σn) = 1;

E(σ∗, σ∗) = 0, y E(σn, σ
∗) = −

1

n
.

Estas estrategias cumplen que E(σ∗, σ∗) = 0 > −1/n = E(σn, σ
∗) pero si

fijamos 0 < δ < 1 y elegimos un 0 < ε < δ, siempre podemos encontrar σn con
n ∈ N tal que ε > 1/n y que

E(σn, εσn + (1− ε)σ∗) = εE(σn, σn) + (1− ε)E(σn, σ
∗) = ε+ (ε− 1)

1

n

> ε+ (ε− 1)ε = ε2

> 0 = E(σ∗, εσn + (1− ε)σ∗).

Entonces σ∗ no posee una barrera de invasión positiva, aunque es evolutivamente
estable según la definición de la proposición 2.1.1.

2.1.3. Relación entre estrategias evolutivamente estables

y equilibrios de Nash

A partir de ahora supondremos que los juegos son finitos. El siguiente lema
resume las relaciones entre las nociones de estrategias evolutivamente estables
y equilibrios de Nash:

Proposición 2.1.2. Consideramos un juego simétrico. Dado σ∗ ∈ Σ consider-
amos las siguientes aserciones:

(i) σ∗ es un equilibrio de Nash estricto,
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(ii) σ∗ es una estrategia evolutivamente estable,

(iii) σ∗ es un equilibrio de Nash.

Entonces, valen las implicaciones

(i) ⇒ (ii) ⇒ (iii)

Las rećıprocas no son ciertas en general.

La demostración de las implicaciones (i) ⇒ (ii) ⇒ (iii) es inmediata usando
la proposición 2.1.1.

Contruyamos un ejemplo que muestre que un equilibrio de Nash puede no ser
evolutivamente estable. Consideremos el juego piedra, papel o tijera cuya matriz
de pago se muestra en la figura 1.1.3. Para cualquier γ, el único equilibrio es
σ∗ = (1/3, 1/3, 1/3). Si γ > 0 resulta que σ∗ no es evolutivamente estable. De
hecho

E(σ∗, σ∗) =
γ

3
= E(R, σ∗)

pero

E(σ∗, R) =
γ

3
< γ = E(R,R).

Luego σ∗ verifica la condicion de equilibrio pero no la de estabilidad en la
proposicion 2.1.1.

Este ejemplo muestra además que las estrategias evolutivamente estables no
siempre existen.

Veremos a continuacion que el juego de Halcones y Palomas da un ejemplo
de una estrategia evolutivamente estable que no es un equilibrio estricto.

2.1.4. Monomorfismos y polimorfismos

La siguiente definición es clave para analizar el tipo de equilibrios evolutiva-
mente estables a los que se puede llegar.

Definición 2.1.2. Una estategia evolutivamente estable se dice

monomorfismo si todos los agentes usan la misma estrategia pura.

polimorfismo cuando coexisten diferentes estrategias.

Veamos como ejemplo una aplicación al juego de Halcones y Palomas. Como
dijimos antes, si V > 2C el único equilibrio es (halcón, halcón)=(H,H) y al ser
estricto, también es evolutivamente estable. Además es un monomorfismo.

En cambio, si V = 2C, este equilibrio ya no es más estricto. Sin embargo
sigue siendo evolutivamente estable y monomorfismo. Si σ = (p, 1 − p) 6= H
siendo p 6= 1 la probabilidad de elegir H, tenemos

E(σ,H) = pE(H,H) + (1− p)E(P,H) = 0 = E(H,H),
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ya que E(H,H) = E(P,H) = 0. Por otra parte, recordando que E(H,P ) = V
y E(P, P ) = V

2 , tenemos

E(σ, σ) = p2E(H,H) + p(1− p)E(H,P ) + (1− p)pE(P,H) + (1− p)2E(P, P )]

= p(1− p)V + (1− p)(1− p)
V

2

= (1− p)V

(

1

2
+
p

2

)

Como p < 1 obtenemos

E(σ, σ) < (1− p)V = pE(H,H) + (1− p)E(H,P )

= E(H,σ),

con lo cual se verifica la condición de estabilidad.
Obtenemos aśı un ejemplo que muestra que un equilibrio evolutivamente

estable no necesariamente es un equilibrio estricto.

Continuemos con el último caso, 0 < V < 2C. Como dijimos antes, tenemos
tres equilibrios. Estos son (H,P ), (P,H) y uno mixto σ∗ en el cual la pro-
babilidad de jugar H es V/2C. Resulta que σ∗ es evolutivamente estable. Sea
σ = (q, 1 − q) otra estrategia donde q 6= p = V/2C es la probabilidad de elegir
H. Como σ∗ es un equilibrio, tenemos E(σ∗, σ∗) ≥ E(σ, σ∗). Supongamos que
estas utilidades son iguales y verifiquemos que E(σ∗, σ) > E(σ, σ). Tenemos

E(σ∗, σ) = q
V

2C

(

V

2
− C

)

+ (1− q)
V

2C
V

+q

(

1−
V

2C

)

0 +

(

1−
V

2C

)

(1− q)
V

2

y

E(σ, σ) = q2
(

V

2
− C

)

+ q(1− q)V + q(1− q)0 + (1− q)2
V

2
.

Luego

E(σ∗, σ)− E(σ, σ) = C

(

q −
V

2C

)2

> 0

pues C > 0. Con lo cual σ∗ es evolutivamente estable.
Además de mostrar que existen polimorfismos evolutivamente estables, este

ejemplo revela que existen equilibrios mixtos evolutivamente estables. Remar-
quemos que en este caso hay información simétrica en el sentido que ambos
jugadores se encuentran en la misma situación de información. Al contrario, si
suponemos una situación de información asimétrica, mostramos en el próximo
caṕıtulo que no puede haber equilibrios mixtos evolutivamente estables.
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2.2. Ecuación del replicador y dinámica evoluti-

va

2.2.1. Ecuación del replicador

Consideremos que todos los jugadores tienen el mismo conjunto de estrate-
gias puras posibles S = (s(1), s(2), ..., s(K)). Notamos ps la fracción de la población
que juega con la estrategia s y

σ = (ps(1) , .., ps(K))

la estrategia mixta que consiste en jugar s con probabilidad ps. Consideremos
en cada instante a cada agente interactuando aleatoriamente con otro agente de
una gran población. Luego

E(s, σ) =
∑

s′∈S

ps′E(s, s′)

es el pago esperado para los agentes que juegan s cuando se encuentran en un
ambiente compuesto por una proporción σi = ps(i) de agentes que usan la acción
s(i).

Queremos estudiar la interacción entre todos ellos en el tiempo y definir una
forma en la cual crece o decrece la proporción de jugadores que usan s respecto
a las proporciones que ocurren en la población total. Para esto definamos como
crece ps(t). Usamos la ecuación del replicador

ps(t+ τ)− ps(t) = τps(t)
(

E(s, σ(t))− E(σ(t))
)

(2.2.1)

para cada s y para todo t y τ , donde

E(σ(t)) := E(σ(t), σ(t)) =
∑

s

ps(t)E(s, σ(t))

es la ganancia promedio de toda la población en el instante t y σ(t) es el vector
de las proporciones ps(t) (en particular, ‖σ‖1 =

∑

s ps(t) = 1 para todo t).
Intuitivamente, cuanto mayor o menor es la capacidad (de replicarse) de una

determinada estrategia en relación al promedio de todas, se incrementa o dis-
minuye su participación en la población, respectivamente. Podemos interpretar
esta ecuación desde un punto de vista biológico. Imaginemos una especie defini-
da por una estrategia (puede ser un comportamiento determinado, un gen). Si
esta le proporciona una ventaja (o desventaja) con respecto al promedio de la
población en su conjunto entonces puede reproducirse más (o menos), con lo
cual ayuda a la diseminación (o extinción) de esa estrategia al transmitirla (o
no) a sus descendientes.

Pasando al ĺımite τ → 0 en (2.2.1) obtenemos la ecuación diferencial del
replicador.
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Definición 2.2.1 (Ecuación del replicador). La ecuación diferencial del repli-
cador es

p′s(t) = ps(t)
(

E(s, σ(t))− E(σ(t))
)

(2.2.2)

para toda estrategia s ∈ S.

Observemos que
∑

s∈S

ps(t) = 1 para todo t

ya que, por definición de Ē, la función φ(t) :=
∑

s∈S ps(t) verifica

φ′(t) = Ē(σ(t))(1− φ(t)),

φ(0) = 1

por lo que φ(t) = 1 para todo t en vista del teorema de Cauchy-Lipschitz. En
particular la solución p(t) existe para todo t ≥ 0.

Además si ps(0) = 0 para alguna estrategia s ∈ S entonces ps(t) = 0 para
todo t (de nuevo por el teorema de Cauchy-Lipschitz). Volviendo a la analoǵıa,
si una estrategia no está presente en la población inicialmente, entonces nunca
puede aparecer.

Identifiquemos cada estrategia de S con un vértice del simplex canónico de
R
K , vemos que una solución de (2.2.2) es una curva en este simplex y que

cualquier vértice o faceta es invariante por el flujo.

En la próxima sección no interesa el comportamiento asintótico del flujo y
su relación con la noción de equilibrio de Nash.

2.2.2. Dinámicas evolutivas

Pensemos que tenemos una población con una distribución aleatoria de es-
trategias. Hay dos preguntas naturales: ¿convergerá a una distribución que se
mantenga estable? En caso de que aśı sea, ¿será un equilibrio de Nash del juego?

Para intentar contestarlas, veamos algunas definiciones.

Definición 2.2.2. Un vector σ∗ = p∗ es un punto fijo (o un equilibrio) para
la dinámica del replicador si para cualquier estrategia pura s del sistema de
ecuaciones (2.2.2) se tiene que p∗ ′

s (t) = 0 es decir

E(s, σ∗) = E(σ∗, σ∗) para toda estrategia s ∈ S tal que p∗s > 0 (2.2.3)

Definición 2.2.3. Un vector p∗ es un punto fijo estable (o un equilibrio estable)
para la dinámica del replicador si dado un entorno U de p∗ existe un entorno V
de p∗ tal que si p0 ∈ V ⊂ U , la solución p(t) del sistema de ecuaciones (2.2.2)
con condición inicial p(t0) = p0 satisface p(t) ∈ U para todo t ≥ t0.

Definición 2.2.4. Una distribución p∗ es un punto fijo (o un equilibrio) asintótica-
mente estable para la dinámica del replicador si es estable y además existe un
entorno V de p∗ tal que si p(t0) = p0 ∈ V , entonces p(t) → p∗ cuando t tiende
a infinito.
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El siguiente teorema, conocido en la literatura como el ✭✭folk theorem✮✮, da las
relaciones existentes entre las nociónes de punto de equilibrio para la dinámica
del replicador y la de equilibrio de Nash para el juego.

Teorema 2.2.1. Valen las siguientes aserciones

(i) si σ es un equilibrio de Nash entonces es un punto fijo para la dinámica
del replicador,

(ii) si σ es un equilibrio de Nash estricto entonces σ es un punto de equilibrio
asintóticamente estable,

(iii) si σ∗ es estable entonces σ∗ es un Nash,

(iv) si σ∗ es ĺımite de una órbita interior, es decir

σ∗ = ĺım
t→+∞

σ(t) con ps(0) > 0 para toda s ∈ S,

entonces σ∗ es un equilibrio de Nash.

Demostración. Prueba de (i). Si σ Nash entonces E(s, σ) ≤ E(σ, σ) para toda
s ∈ S. Luego

E(σ, σ) =
∑

s∈S

psE(s, σ) ≤ E(σ, σ)
∑

s∈S

ps = E(σ, σ)

Deducimos que E(s, σ) = E(σ, σ) para toda s ∈ S tal que ps > 0, con lo cual σ
es un equilibrio.

Prueba de (iii). Supongamos que σ∗ es estable pero que no es un equilibrio
de Nash. Luego existe una estrategia pura h ∈ S y un δ > 0 tal que

E(h, σ∗)− E(σ∗, σ∗) ≥ 2δ.

Por continuidad de E con respecto a σ obtenemos que existe r0 > 0 tal que

E(h, σ)− E(σ, σ) ≥ δ si |σ − σ∗| ≤ r0. (2.2.4)

Como σ∗ es estable, existe r1 > 0 tal que para todo t > 0,

|σ∗ − σ(t)| ≤ r0 si |σ(0)− σ∗| ≤ r1.

Elegimos σ(0) tal que |σ(0) − σ∗| ≤ r1 y ph(0) > 0. Luego usando (2.2.4) con
σ(t) obtenemos que

p′h(t) = ph(t)[E(h, σ(t))− E(σ(t), σ(t))] ≥ δph(t) con ph(0) > 0

para todo t > 0 lo cual es absurdo.

Prueba de (iv) Supongamos que σ∗ no es un equilibrio de Nash. Entonces
(2.2.4) vale. Como ĺımt→+∞ σ(t) = σ∗ podemos aplicar (2.2.4) a σ(t) para t
grande (digamos t ≥ t0):

E(h, σ(t))− E(σ(t), σ(t)) ≥ δ para t ≥ t0.
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Como ph(0) > 0 por hipótesis, resulta ph(t) > 0 para todo t > 0 y obtenemos

p′h(t) = ph(t)[E(h, σ(t))− E(σ(t), σ(t))] ≥ δph(t) para todo t ≥ t0

lo cual es absurdo.

Ninguna de las rećıprocas es cierta en general. Para verlo examinemos los
ejemplos del juego de Halcones y palomas y de piedra, papel o tijera.

2.2.3. Ejemplos

Juego de Halcones y palomas

Notamos p = pH la fracción de la población que juega halcón y 1− p = pP
la fracción que juega Paloma. Luego la ecuación del replicador para p es

p′(t) = p(t)
(

pE(H,H) + (1− p)E(H,P )

−p2E(H,H)− p(1− p)E(H,P )− p(1− p)E(P,H)

−(1− p)2E(P, P )
)

.

Después de simplificar obtenemos

p′(t) = Cp(t)(p(t)− 1)
(

p(t)−
V

2C

)

.

Vemos que los puntos de equilibrio son 0, 1 y V
2C si V

2C < 1.

Si V
2C ≥ 1 entonces 0 es inestable y 1 es asintótica y globalemente estable.

Por otro lado si V
2C > 1, 1 es el único Nash lo cual muestra que un punto de

equilibrio (acá 0) no es necesariamente un equilibrio de Nash. Si V
2C = 1 entonces

los Nash son 0 y 1 y no son estrictos. En particular un equilibrio asintóticamente
estable (acá 1) no es necesariamente un Nash estricto.

Finalmente en el caso V
2C < 1 la dinámica tiene tres puntos de equilibrios: 0

y 1 (ambos inestables) y V/2C (asintóticamente globalmente estable). Además
esos puntos son los equilibrios de Nash. En particular un Nash (acá 0 o 1) no es
necesariamente estable.

Juego de Papel-Piedra-Tijera

Otro ejemplo de interés es el de piedra, papel o tijera generalizado en el que
la matriz de pago tiene la forma

A =





0 −a2 b3
b1 0 −a3
−a1 b2 0





con ai, bi > 0, i = 1, 2, 3. Se puede probar que la dinámica del replicador aso-
ciada a este juego tiene un único punto de equilibrio interior σ∗ que es también
el único Nash del juego. Además resulta que
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1. σ∗ es globalmente estable si y sólo si es asintóticamente estable si sólo si
detA > 0;

2. si detA = 0 entonces las órbitas son ciclos alrededor de z;

3. si det A > 0 entonces z el conjunto ω-ĺımite de cualquier órbita distinta
de z es el borde del simplex.

En particular los casos det A ≤ 0 muestran que un equilibrio de Nash no es
necesariamente ĺımite de una órbita interior.

2.2.4. Dinámica del replicador y estrategias evolutivamente

estables

Hasta ahora consideramos que los agentes jugaban estrategias puras. Po-
dŕıamos enriquecer el modelo suponiendo que juegan estrategias mixtas σ1, .., σN ∈
Σ. Notamos pi(t) la fracción de la población jugando con la estrategia σi. La
estrategia promedio σ̄(t) en la población al tiempo t es por lo tanto

σ̄(t) =

N
∑

i=1

pi(t)σi.

Luego el pago de la estrategia σi contra la estrategia promedio es

E(σi, σ̄(t)) =

N
∑

j=1

pj(t)E(σi, σj)

y el pago esperado es

Ē(σ̄(t)) = E(σ̄(t), σ̄(t)) =
N
∑

j=1

pj(t)pi(t)E(σj , σi).

Podemos entonces plantear la dinámica del replicador como

p′i(t) = pi(t)
(

E(σi, σ̄(t)), Ē(σ̄(t))
)

, i = 1, .., N.

Supongamos ahora que se juegan únicamente dos estrategias: una estrategia
✭✭residente✮✮ σ̂ jugada en un principio por la mayoŕıa de la población y otra
✭✭invasora✮✮ σ jugada por una minoŕıa. Notemos p(t) la fracción jugando con σ y
(1− p(t)) la fracción jugando con σ̂. Después de simplificar, obtenemos que

p′(t) = p(t)(1− p(t))
(

Ap(t) +B(1− p(t))
)

con
A = E(σ, σ)− E(σ̂, σ), y B = E(σ, σ̂)− E(σ̂, σ̂).

Luego la estrategia invasora σ tiende a desaparecer de la población en el
sentido que ĺımt→+∞ p(t) = 0 cuando p(0) << 1 si y solo si (Ap+B(1−p)) < 0

19



para 0 < p << 1; es decir B < 0 o B = 0, A < B. Esas condiciones son
exactamente las condiciones de equilibrio y estabilidad de la Proposición 2.1.1.
Luego la estrategia σ̂ es evolutivamente estable si y solo si es asintóticamente
estable para la dinámica del replicador.

Nuevamente no vale la rećıproca. Para verlo consideremos un juego donde
los jugadores reciben 1 cada uno si ambos juegan la estrategia A y 0 en cualquier
otro caso. Aqúı que ambos jueguen la estrategia B es un equilibrio de Nash pero
no es estricto y cualquier perturbación llevaŕıa a los agentes a desplazarse a A.

2.3. Referencias

La noción de estrategias evolutivamente estables se debe a Maynard Smith
y Price en [3]. Desde entonces numerosos trabajos explotaron la posibilidad
de llegar a los equilibrios de Nash v́ıa puntos fijos de ecuaciones diferenciales.
Recordemos que si bien la existencia de equilibrios se tiene asegurada, no existen
algoritmos que permitan obtenerlos.

Una referencia obligada es el muy completo [2] de Hofbauer y Sigmund.
Para una presentación de las distintas ramas de la teoŕıa de juegos evolutivos
(incluyendo entre otras los juegos estocásticos y dinámicas discretas modeladas
con ecuaciones en diferencias, aplicaciones a problemas biológicos y sociales) se
puede ver los libros de Sandholm [8], Nowak [5] y los minicursos en [10].

20



Caṕıtulo 3

Inexistencia de equilibrios

mixtos en juegos

asimétricos

Un conflicto asimétrico (para nosotros un juego) entre animales es una
situación donde los oponentes asumen diferentes roles en la disputa. Estos
pueden ser tales como ✭✭originario✮✮ o ✭✭intruso✮✮ en un conflicto territorial. Además
estos pueden definirse como una combinación de varias variables; por ejemplo
tamaño o edad. Consideramos información incompleta en el sentido de que el rol
del oponente no puede ser percibido de forma totalmente certera por el jugador.
En este caṕıtulo asumimos que dos individuos nunca pueden encontrarse en un
ámbito en el cual ambos tengan la misma de situación de información. Esto
lo llamamos información asimétrica. Para satisfacer esta condición bastará con
que los dos jugadores nunca tengan el mismo rol y será una condición esencial
en lo que sigue.

El objetivo es ver que en los modelos asimétricos considerados aqúı las es-
trategias evolutivamente estables solamente pueden ser equilibrios puros. En esta
situación, una vez que cada jugador sabe su rol y obtiene la información (inexac-
ta) de su rival, decide actuar siempre de igual forma. Es importante señalar que
este resultado depende del supuesto de información incompleta. Como ya vimos
en el caṕıtulo anterior, śı existen estrategias mixtas evolutivamente estables,
como en el juego de Halcones y palomas cuando 0 < V < 2C.

La idea intuitiva de la inestabilidad de las estrategias mixtas en equilibrio
reside en el hecho de que siempre es posible encontrar otra estrategia óptima
variando el comportamiente en solamente una situación de información (conjun-
to de información en juegos en forma extensiva). Aśı, consideremos un mutante
que realiza una respuesta óptima alternativa con esta caracteŕıstica. Entonces
el éxito de su estrategia es el mismo que el del resto en aquellas situaciones en
las cuales ambos se comportan de igual forma. Pero como suponemos informa-
ción asimétrica, tampoco hay diferencias en la situación en la cual éste difiere
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de la población original. Esto sucede porque siempre sus oponentes, ante esta
situación de información, se comporta siguiendo la estrategia original, sean o no
mutantes. Haciendo una analoǵıa con lo que vimos en el caṕıtulo anterior, nada
impide la proliferación del ✭✭gen✮✮ mutante en las futuras generaciones.

3.1. Juegos en poblaciones

Originalmente, se introdujo el concepto de estrategia evolutivamente estable
para juegos en forma normal. Otra forma de describir un juego es la forma exten-
siva, donde el juego se representa con un árbol dirigido y cada nodo representa
una situación donde el jugador debe tomar una decisión; las aristas salientes
corresponden a las acciones que puede usar el jugador. Si bien el juego sigue un
recorrido desde el nodo ráız hasta uno de los nodos terminales donde cada par-
ticipante recibe su pago, es posible que un jugador no sepa en qué nodo está y
no pueda distinguir entre dos o más a partir de la información que tiene. A este
conjunto de nodos lo llamaremos un conjunto de informacióny para prescindir
de la descripción de la forma extensiva, y asumiendo que los jugadores even-
tualmente tomarán decisiones en más de un caso, hablaremos de un situación
de información.

Vamos a introducir las nociones necesarias para juegos de poblaciones con
información incompleta.

Situación de información. Como dijimos, se corresponde a un conjunto de
información. La noción de juegos de información incompleta recae en la
idea de que los jugadores deben decidir en diferentes escenarios posibles de
datos. Cada situación difiere para el jugador respecto de la información que
recibe. Al conjunto de todas las situaciones de información lo llamamos U
y asumimos que es finito y no vaćıo.

Acciones. Para cada situación de información u el jugador posee un con-
junto Cu (también finito y no vaćıo) de posibles acciones a realizar. Sea
C : U → {Cu}u∈U la función que asigna a cada situación de información
su conjunto de acciones.

Estrategia local. Una estrategia local σu : Cu → [0, 1] ⊂ R para una
situación de información u es una distribución de probabilidad sobre el
conjunto de elecciones Cu. Notamos σu(s) a la probabilidad que le asigna
σu a cada acción s ∈ Cu. Al conjunto de todas las estrategias locales para
u lo llamamos Σu.

Estrategia global. Una estrategia global σ : U → ∪v∈UΣv es una función
que asigna a cada situación de información u una estrategia local σu.
Llamamos Σ al conjunto de todas las estrategias globales.

Función de pagos. La función de pagos E : Σ × Σ → R asigna un valor a
cada par de estrategias globales. Este es el pago (esperado) que recibe el
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jugador uno. La forma de esta función dependerá del modelo que estemos
estudiando.

Juego de población. Un juego de población G = (U,C,E) consiste en un
conjunto de situaciones de información U , una función de elección C y
otra función de pagos E como las recién descriptas.

Podemos pensar el juego como si hubiera una elección aleatoria de un animal
(jugador). El pago E(p, q) es la aptitud esperada con la cual podrá reproducirse
y tener descendencia si se comporta acorde a p, en un entorno de conflicto con
otros animales de su especie que actúan según q. Hay dos formas de interpretar
esto.

1. Primero imaginemos que la población consta de N animales que tienen
diferentes roles. Cada jugador es asignado a un animal con igual probabi-
lidad. A esto lo llamamos estudio con muchos jugadores (y consideramos a
N muy grande). Entonces E es una función de pagos definida parcialmente
para un juego simétrico; el pago de un jugador sólo está definido para los
casos en los cuales todos los demás jugadores usan la misma estrategia (q).
Para las restantes situaciones, los pagos no están especificados. Pero esto
no nos preocupa ya que la teoŕıa evolutiva estudia estrategias estables en
las cuales muy pocos individuos mutan, es decir, se desv́ıan de la estategia
común.

2. La segunda interpretación posible es considerar que sólo hay un pequeño
número de jugadores, digamos n. En este modelo de asimetŕıa en la infor-
mación consideramos que tenemos n = 2. Supongamos que una situación
de conflicto es elegida al azar dentro de un universo de posibles conflictos,
que m de los n jugadores son elegidos aleatoriamente y asignados a los m
animales realmente involucrados en la disputa. Cada jugador tiene igual
probabilidad de ser asignado a cada animal. A este caso lo llamamos estu-
dio con pocos jugadores. En el caso n = 2 de esta interpretación tenemos
la ventaja de que G = (U,C,E) se transforma en un juego simétrico de
dos personas con una matriz de pagos completa.

Parece natural adoptar la segunda interpretación para retomar los juegos ya
estudiados. Sin embargo, para las definiciones formales no es necesario decidir
cuál de los dos caminos seguir. El análisis se focaliza en un solo jugador que
puede o no desviar su conducta de la estrategia usada. Como el número de
jugadores no importa realmente, no necesitamos especificarlo para un juego de
población G.

3.2. Estrategias evolutivamente estables

Aunque vimos en el caṕıtulo anterior la equivalencia de las dos definiciones,
en este caso trabajaremos con la segunda. Además consideremos las siguiente
definiciones.
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Definición 3.2.1 (Mejor respuesta). Sean r y q dos estrategias globales para
un juego de población G = (U,C,E). Decimos que r es la mejor respuesta para
q si vale

E(r, q) = máx
p∈Σ

E(p, q). (3.2.1)

Definición 3.2.2 (Estrategia en equilibrio). Decimos que una estrategia p
está en equilibrio si es la mejor respuesta para p, es decir, verifica la primer
condición de evolución estable.

Esto es igual a pedir que (p, p) resulte un equilibrio de Nash.

Definición 3.2.3 (Mejor respuesta alternativa). Sea p una estrategia en equi-
librio. A otra estrategia r que resulte mejor respuesta para p la llamamos mejor
respuesta alternativa.

Aśı, una estrategia p es evolutivamente estable si y solo si está en equilibrio
y además si r es una mejor respuesta alternativa para p vale que

E(p, r) > E(r, r).

3.3. Modelos para conflictos asimétricos

Trabajamos ahora con un esquema de información asimétrica que modela
un conflicto entre animales. Tenemos un juego de poblaciones en el cual dos
animales están involucrados en cada conflicto. Podemos seguir interpretándolo
como el caso de ✭✭estudio con pocos jugadores✮✮.

Roles. Numeremos con 1, 2, ..., I la cantidad de roles que pueden tocarle
a un jugador. Como antes, podemos pensarlos como caracteŕısticas f́ısicas
en una disputa por un territorio.

Est́ımulo percibido. No necesitamos restringir el modelo a una situación
en la cual el rol del oponente es conocido con total exactitud por cada
jugador. Aśı asumimos que existen S est́ımulos percibidos. Nuevamente los
numeramos 1, 2, ..., S. La probabilidad de recibir alguno de estos est́ımulos
depende del rol del oponente (le da una percepción al jugador, pero no
con certeza absoluta). Podemos pensar cada est́ımulo como un imagen
imprecisa del rol del oponente.

Situación de información. Un par (i, s) siendo i un rol y s un est́ımulo
aporta los datos que los jugadores utilizarán para elegir el curso de sus
acciones en cada juego. Este par usamos como la definida situación de
información anterior y resulta la base por la cual cada jugador se gúıa
para saber en que contexto se encuentra. Entonces cada par (i, s) ∈ U .
Pedimos que el conjunto sea no vaćıo, pero tampoco inclúımos los pares
que sabemos que nunca ocurrirán.

24



Competencia. Una competencia es un par (u, v) donde u y v son situa-
ciones de información. El conjunto de todos estos pares lo llamamos X.
Cada competencia describe la situación de ambos jugadores al inicio de la
disputa.

Distribución básica. Con la interpretación de pocos jugadores que esta-
mos usando, elegimos aleatoriamente una competencia y de igual forma
asignamos los dos jugadores. Aśı sea wuv la probabilidad de que la com-
petencia sea con el par (u, v), es decir, que las situciones de información
para el primer y segundo jugador sean u y v, respectivamente. Asumimos
que wuv no depende de la estrategia utilizada.

Como (u, v) y (v, u) sólo difieren cuando formalizamos el modelo, pero en
la interpretación son situaciones simétricas, pedimos que valga que

wuv = wvu para todo (u, v) ∈ X.

Los modelos considerados tienen la propiedad poseer información asimétri-
ca; dos oponentes nunca pueden encontrase con la misma situación de
información, es decir,

wuu = 0 para todo u ∈ U.

Sin pérdida de generalidad podemos asumir que wuv > 0, eliminando de
U × U aquellos pares con probabilidad nula.

Acciones.1 Asumimos que un jugador con una situación de información
u tiene K = K(u) ∈ N acciones que elegir, s1, s2, ..., sK . Notemos Cu =
(s1, ..., sK) al conjunto de elecciones válidas para la situación u. Entonces
llamemos S al conjunto de todas las acciones posibles. Como antes, pode-
mos interpretarlas de acuerdo a un comportamiento animal de ✭✭ataque✮✮,
✭✭huida✮✮ o ✭✭exposición✮✮.

Función de pagos. Sea h : X × S × S → R la función de pagos tal que
huv(s, s

′) sea el pago del jugador uno si con la información u juega la
acción s y el segundo jugador opta por s′ con información v. Debemos
interpretar a huv como una matriz de pagos con K(u) filas y K(v) colum-
nas, dependiente de las acciones que decidan los jugadores una vez dadas
las situaciones de información. Asumimos que estas matrices existen para
todo par (u, v) tal que wuv > 0.

Podemos tener estrategias locales mixtas (algún jugador no elije con certeza
una acción) con lo cual trabajamos con la función de pagos esperados
H : X × ∪v∈UPv × ∪v∈UPv → R. Si tenemos la situación de información
(u, v) y el primer jugador (I) usa σu y el segundo (II), σ̂v, la función de
pagos esperados resultante es

Huv(σu, σ̂v) =
∑

s∈Cu

∑

s′∈Cv

σu(s)σ̂v(s
′) huv(s, s

′). (3.3.1)

1También podremos referirnos como ✭✭elecciones✮✮ indistintamente.

25



Pago local. Sean σu una estrategia local y σ̂ una estrategia global. Defini-
mos el pago local del jugador I para (σu, σ̂) con información u de la forma

Hu(σu, σ̂) =
∑

v∈U

wuv Huv(σu, σ̂v) (3.3.2)

donde σ̂v es la estrategia local que asigna σ̂ a la información v.2

Pago total. Ahora estamos en condiciones de definir la función E. Para
dos estrategias globales σ y σ̂ definimos

E(σ, σ̂) =
∑

u∈U

∑

v∈U

wuv Huv(σu, σ̂v) (3.3.3)

=
∑

u∈U

Hu(σu, σ̂). (3.3.4)

Como señalamos, E(σ, σ̂) representa el valor esperado del pago del jugador
I si utiliza σ y el jugador II usa σ̂. También en este caso, el pago esperado
del jugador II resulta E(σ̂, σ). Esto se debe a la simetŕıa de la situación.

Modelos. Un modelo de la clase que estamos estudiando en este caṕıtulo
puede caracterizarse como un qúıntuploM = (Q,S, U,w, h) donde Q es la
cantidad de roles, S el número de est́ımulos percibidos, U el conjunto de
situaciones de información, C el conjunto de funciones de elección, w la
distribuión de probabilidad de los sucesos de X y h una función que asigna
una matriz de pagos a cada par (u, v) de X con wuv > 0. No es necesario
mencionar C ya que toda la información relevante está contenida en h.
Con esto sea K la clase de todos los modelos descriptos aqúı.

Juegos de poblaciones de un modelo. Cada modelo M ∈ K da lugar a un
juego de población G = (U,C,E) con las U,C,E definidas igual que en el
modelo M . A este juego G lo llamamos el juego de población del modelo
M .

3.4. Resultados

Sigamos trabajando con un juego G de un modeloM . Tenemos las siguientes
definiciones:

Estrategias puras y mixtas . Una estrategia local σu es pura si asigna
probabilidad 1 a una sola elección s ∈ Cu (y cero a las demás). Siguiendo
este criterio, una estrategia global σ es pura si dada cualquier situación
de información u, σu resulta pura. A cualquier estrategia que no cumple
alguna de estas caracteŕısticas la llamamos mixta. Si una elección s ∈ Cu
aparece en el argumento de Huv o Hu entendemos que hace referencia a
una estrategia pura que asigna probabilidad 1 a esta acción.

2A partir de ahora, siempre mantendremos la misma letra para referirnos a las estrategia
locales de cada estrategia global con la que trabajemos.
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Acción localmente óptima. Una acción s ∈ Cu es localmente óptima contra
σ̂ si vale que

Hu(s, σ̂) = máx
s′∈Cu

Hu(s
′, σ̂). (3.4.1)

Mejor respuesta local. Una estrategia local θu ∈ Σu es mejor respuesta
local para σ̂ ∈ Σ si vale que

Hu(θu, σ̂) = máx
σu∈Σu

Hu(σu, σ̂). (3.4.2)

Ya tenemos toda la construcción que necesitamos para probar el teorema
principal de esta parte.

Lema 3.4.1. Una estrategia local θu es mejor respuesta local para σ̂ si y solo
si cualquier elección s ∈ Cu tal que θu(s) > 0 es localmente óptima para σ̂.

Demostración. Por la definición de la ecuación (3.3.2) y el hecho de que todas
las sumatorias usadas son finitas, tenemos que

Hu(θu, σ̂) =
∑

v∈U

wuvHuv(θu, σ̂v) (3.4.3)

=
∑

v∈U

wuv
∑

s∈Cu

∑

s′∈Cv

θu(s)σ̂v(s
′)huv(s, s

′) (3.4.4)

=
∑

s∈Cu

θu(s)
∑

v∈U

wuv
∑

s′∈Cv

σ̂v(s
′)huv(s, s

′) (3.4.5)

=
∑

s∈Cu

θu(s)Hu(s, σ̂). (3.4.6)

Para que θu no sea mejor respuesta, debe existir una estrategia σu tal que
Hu(σu, σ̂) > Hu(θu, σ̂). Pero esto sucede si y solo si algún s con θu(s) > 0 no es
localmente óptimo para σ̂; lo que prueba el lema.

Lema 3.4.2. Una estrategia global θ es mejor respuesta para σ̂ si y solo si cada
estrategia local θu es mejor respuesta local para σ̂.

Demostración. Similar a lo anterior, θ no es mejor respuesta si existe σ tal que
E(σ, σ̂) > E(θ, σ̂). Entonces por ecuación (3.3.4) esto sucede si y solo si alguna
estrategia local θu no es mejor respuesta.

Lema 3.4.3. Sea σ una estrategia mixta en equilibrio. Entonces existe otra
estrategia alternativa, pura, tal que es mejor respuesta para σ.

Demostración. Para cada u ∈ U sea s(u) ∈ Cu una acción localmente óptima
para σ. Aśı basta considerar la estrategia pura θ que para todo u ∈ U , su
estrategia local θu elige s(u) con probabilidad 1. Por el lema 3.4.1 cada ku
es mejor respuesta local para σ, entonces por el lema anterior, θ resulta una
estrategia mejor respuesta para σ.
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Lema 3.4.4. Sean σ una estrategia en equilibrio y σ̂ una mejor respuesta alter-
nativa para σ. Luego existe una estrategia θ que es mejor respuesta alternativa
para σ y que sus estrategias locales θu son iguales a las σu salvo en una única
situación de información.

Demostración. Como θ es distinta de σ, existe una situción de información v
tal que σ̂v 6= σv. Sea θ la estrategia global tal que

θv = σ̂v

θu = σu para todo u 6= v.

Por el lema 3.4.2, θ resulta mejor respuesta alternativa para σ.

Lema 3.4.5. Sea σ una estrategia evolutivamente estable, entonces no existe
una estrategia tal que sea mejor respuesta alternativa para σ.

Demostración. Supongamos que existe una mejor respuesta alternativa para σ.
Por el lema 3.4.4 existe una mejor respuesta alternativa θ que difiere de σ en una
única situación de información v. Entonces E(σ, σ) = E(θ, σ). Además resulta
que para todo σ̂v ∈ Σv vale que

Hv(σ̂v, θ) =
∑

u∈U wvuHvu(σ̂v, θu)

=
∑

u∈U wvuHvu(σ̂v, σu) = Hv(σ̂v, σ)

ya que θu = σu para cualquier u 6= v y wvv = 0 pues estamos trabajando con
información asimétrica.

Como σ y θ son mejores respuestas globales para σ, por el lema 3.4.2 sabemos
que σv y θv son mejores respuestas locales para σ. Aśı,

Hv(σv, σ) = Hv(θv, σ).

Y si en la primera igualdad reemplazamos σ̂v por σv y luego por θv, obtenemos
que

Hv(σv, θ) = Hv(σv, σ) = Hv(θv, σ) = Hv(θv, θ).

Además sabemos que σ y θ sólo difieren en la situación de información v, es
decir,

Hu(θu, θ) = Hu(σu, θ) para todo u 6= v

y si combinamos ambas ecuaciones, resulta que

E(θ, θ) = E(σ, θ).

Esto contradice la condición de estabilidad de la estrategia σ, lo cual niega que
sea una estrategia evolutivamente estable como pedimos en la hipótesis. Por lo
tanto no puede existir una mejor respuesta alternativa para σ.
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Ahora estamos en condiciones de enunciar el teorema.

Teorema 3.4.1. Sean G = (U,C,E) un juego con un modelo K ∈ M y σ una
estrategia evolutivamente estable para G. Entonces σ es una estrategia pura.
Además no existe una mejor respuesta alternativa para σ.

Demostración. Si σ fuera una estrategia mixta, por el lema 3.4.3 debeŕıa existir
una mejor respuesta alternativa para σ. Pero si suponemos que es una estrategia
evolutivamente estable, por el lema 3.4.5 no existe una mejor respuesta alterna-
tiva. Por lo tanto σ debe ser pura.

3.5. Referencias

En este caṕıtulo desarrollamos el trabajo [9] de Reinhard Selten, quien
ganó el Premio Nobel de Economı́a de 1994 junto con John C. Harsanyi y J.
Nash. El estudio de conflictos entre animales fue el origen de la teoŕıa de juegos
evolutiva, con el trabajo pionero de John Maynard Smith [4, 3].
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Caṕıtulo 4

Juegos exteriores

Como hicimos varias veces, retomemos el juego de Halcones y palomas. Ob-
servemos la matriz de pagos de la figura 1.1.1 y consideremos una gran población
de jugadores. Supongamos que juegan repetida y aleatoriamente un juego como
este. Nos referiremos al juego de Halcones y palomas en este contexto como un
juego exterior pues involucra a todos los miembros compitiendo entre ellos uno
a uno. Pero cuando los hacemos jugar debemos ✭✭ubicarlos✮✮ en filas o columnas.
En un comienzo consideramos que cualquier caracteŕıstica usada para colocar a
un jugador en una fila o una columna no puede ser percibida por los participan-
tes. Aśı no pueden condicionar su accionar al rol que se les asigna en el juego
exterior.

Un juego de evolución como el planteado debe ser más interesante de lo
que puede observarse en el juego exterior. Consideremos la posibilidad de que
los jugadores sean capaces de usar la estructura del juego para condicionar su
comportamiento en el juego de Halcones y palomas dependiendo de su posición
en una columna o en una fila. Interpretamos que el lugar de ✭✭jugador de fila✮✮
o ✭✭jugador de columna✮✮ representa una asimetŕıa observable por los agentes.
Podemos pensarlo como dos animales en disputa por un territorio, jugar en
la fila puede identificarse como ser oriundo del lugar y columna, ser el animal
invasor.

4.1. Juego completo

Con esta idea, si el comportamiento puede ser condicionado por el rol, te-
nemos cuatro estretegias puras: HH, HP, PH y PP , donde PH significa jugar
paloma si en el juego exterior tiene asignada una fila y halcón si toca colum-
na. Entonces en lugar de tener una matriz de pagos de dos por dos, debemos
trabajar con una matriz de cuatro por cuatro. Observemos la figura 4.1.1, en
esta construcción suponemos que es equiprobable jugar en la posición de fila o
columna. Por ejemplo, el pago esperado a un jugador que elige HH cuando el
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Jugador 2

PP PH HP HH

J 1

PP
1
2V

3
4V

3
4V V

1
2V

1
4V

1
4V 0

PH
1
4V

1
2V

1
2 (V − C) 3

4V − C

3
4V

1
2V

1
2 (V − C) 1

4V − 1
2C

HP
1
4V

1
2 (V − C) 1

2V
3
4V − C

3
4V

1
2 (V − C) 1

2V
1
4V − 1

2C

HH
0 1

4V − 1
2C

1
4V − 1

2C
1
2V − C

V 3
4V − C 3

4V − C 1
2V − C

Figura 4.1.1: Matriz de pagos del juego completo de Halcones y palomas.

oponente juega HP resulta

1

2

(

1

2
V − C

)

+
1

2
V =

3

4
V − C

pues espera recibir (V/2− C) la mitad de las veces (cuando juega H contra H)
y V en la otra mitad (H contra P ). A este juego con una matriz de cuatro por
cuatro lo llamamos juego completo porque incorpora la posibilidad de que la
✭✭Naturaleza✮✮ determine que rol ocupa cada jugador en el juego exterior.

Si queremos analizar una situación con esta teoŕıa, en general esta matriz re-
sulta poco práctica; incluso es factible que no refleje de forma certera la situación
a modelar. Más aún, los pagos probablemente tengan pequeñas variaciones que
dependan de los rasgos propios de cada jugador. Por ejemplo, si pensamos nue-
vamente en animales, aquel que esté hambriento le dará mayor valor a un ali-
mento que otro que encontró como suplir ese recurso. Nos preguntamos entonces
si conviene modelar esta situación como un juegos simétrico o asimétrico.

4.2. ¿Juegos simétricos o asimétricos?

Redefinamos y llamaremos juegos simétricos a aquellos en los cuales los
jugadores no puedan identificarse con distintos roles.

Si permitimos la identificación en roles (y consideramos que nunca dos ju-
gadores pueden hallarse en la misma situación) y no trabajamos con pertur-
baciones en los pagos vimos en el caṕıtulo anterior que todos los equilibrios
estables son puros. ¿Pero qué sucede si permitimos perturbaciones en los pa-
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gos? ¿Puede haber equilibrios evolutivamente estables en el juego completo que
sean equilibrios mixtos en los juegos externos?

Construimos un juego completo que permita observar las perturbaciones y
asignar distintos roles a los jugadores. Un modelo de estas caracteŕısticas siempre
tiene una estrategia que aproxima el equilibrio mixto del juego externo y es su
mejor respuesta estricta, lo que lo hace evolutivamente estable. Llamamos a
esta estrategia equilibrio independiente de los roles de un juego completo; es
equivalente a un animal que condiciona su comportamiento a las perturbaciones
que tiene en sus pagos e ignora las asimetŕıas en la identificación de los roles.

Pero antes debemos tener en consideración ciertas cuestiones. Como ya vi-
mos, una estrategia σ∗ es evolutivamente estable si una población que juega σ∗

no puede ser invadida por un pequeño número de mutantes que jueguen σ. Pero
en el caso que los mutantes sean exitosos y logren generar una ✭✭masa cŕıtica✮✮1

ya no podemos asegurar mejores pagos para la estrategia σ∗.
Para cada mutante σ existe una barrera de invasión δ(σ) tal que mientras

no superen esta proporción, obtienen menores pagos esperados que la estrategia
estable. Esta definición permite diferentes barreras para las potenciales muta-
ciones que pueden surgir. Cuando el juego completo es finito, la dependencia
de barreras es insignificante: basta considerar la menor de todas las posibles
estrategias puras distintas para encontrar una barrera positiva que proteja a
la estrategia σ∗ de cualquier invasión. Pero aparecen problemas interesantes
cuando trabajamos con juegos de infinitas estrategias.

4.3. El juego

Trabajemos con un juego externo de pagos simétricos representado por la
primer matriz de la figura 4.3.2 donde A < B y C > D. Tenemos un equilibrio
mixto que viene dado por jugarX con probabilidad p = (C−D)/(B+C−A−D)
ya que

pA+ (1− p)C = pB + (1− p)D

C −D = pB − pD − pA+ pC = p(B −D −A+ C)

y entonces

p =
C −D

B + C −A−D
.

Además hay dos equilibrios puros; estos son (X,Y ) e (Y,X).
Un ejemplo que debemos tener presente es el de Halcones y palomas con

0 < V < 2Ĉ, A = V/2, B = V , C = 0 y D = V/2− Ĉ valores de la matriz.2

Para introducir perturbaciones en el modelo, supongamos que los pagos A,
B, C y D son valores esperados y que cuando dos jugadores se enfrentan, en
realidad reciben los pagos de la segunda matriz de la figura 4.3.2.

1La definición ped́ıa que los pagos esperados fueran mejores para σ∗ si los mutantes eran
una cantidad menor a δ.

2Notamos con Ĉ al costo de enfrentar halcón contra halcón.
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Jugador 2

X Y

J 1 X
A B

A C

Y
C D

B D

Jugador 2

X Y

J 1 X
A+ β2 B + γ2

A+ β1 C + β1

Y
C + β2 D + γ2

B + γ1 D + γ1

Figura 4.3.2: Matrices de pagos del juego exterior y del juego exterior pertur-
bado.

Las perturbaciones βi y γi (i = 1, 2) son realizaciones de variables aleato-
rias independientes (entre animales y entre enfrentamientos) con media cero
y rango R. Suponemos que los jugadores conocen los valores de sus propias
perturbaciones, pero no las de sus oponentes. Para mantener el concepto de in-
dependencia en los pagos, suponemos que estas no dependen de que lugar ocupe
el jugador en el juego externo (fila o columna), con lo cual β1 y β2 tienen la
misma distribución de probabilidad; al igual que γ1 y γ2.

Además en este modelo suponemos que las perturbaciones de cada jugador
dependen sólo de su propia estrategia y no de la del oponente. Haciendo una
analoǵıa con el juego de Halcones y palomas, equivale a pensar que el valor del
recurso en disputa vaŕıa de animal en animal, pero el costo de pelear por él es
igual para todos.

Para trabajar con la identificación en roles suponemos que cada participante
recibe una señal que llamaremos ✭✭rol 1✮✮ o ✭✭rol 2✮✮. Esta etiqueta representa la
asimetŕıa entre los jugadores. Tenemos ejemplos como hombre o mujer, viejo
o joven, grande o pequeño, diferentes estatus sociales, comprador o vendedor,
empleado o empleador, etc. Aunque algunas de estas caracteŕısticas son de fácil
e inconfundible observación por parte de los participantes, debemos considerar
los casos en los cuales determinar qué rol ocupa cada jugador resulta ambiguo.
Podemos imaginar problemas al identificar roles como estatus, edad, riqueza, o
quien es el real dueño de un recurso.

1 2

1 1
2ζ

1
2 (1− ζ)

2 1
2 (1− ζ) 1

2ζ

Figura 4.3.3: Matriz de distribución de los roles.

Entonces asumimos que los dos señales de los roles son realizaciones de vari-
ables aleatorias relacionadas cuya distribución de probabilidad conjunta viene
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Jugador 2

X Y

X
−(1− k)α+ ψ2 0

−(1− k)α+ ψ1 kα+ ψ1

Y
kα+ ψ2 0

0 0

Jugador 2

X Y

J 1 X
−(1− k) + ψ2α

−1 0

−(1− k) + ψ1α
−1 k + ψ1α

−1

Y
k + ψ2α

−1 0

0 0

Figura 4.3.4: Matrices de pagos transformadas del juego exterior perturbado.

dada por la figura 4.3.3 donde 0 ≤ ζ < 1/2.
El caso ζ = 0 es aquel en el cual no hay errores en la identificación. Las

señales se vuelven uniformes cuando ζ tiende a 1/2. Y el caso ζ > 0 significa
que los jugadores tienen problemas en identificar los roles. También asumimos
que estas señales son independientes de las perturbaciones de los pagos. Como
antes, los jugadores pueden aprender sólo su propia señal y no la del oponente.
Si un agente descubre que ocupa el rol 2, entonces sabe que la probabilidad
condicional de que su oponente ocupe el rol 1 es (1− ζ).

Al desarrollar el juego exterior de forma tal que incluya los diferentes pa-
gos por las perturbaciones y los roles asignados estamos construyendo lo que
llamamos el juego completo. Para esto es conveniente transformar la segunda
matriz de la figura 4.3.2 en una equivalente que ayude a analizar el juego. En
la nueva figura 4.3.4 tenemos la matriz transformada de forma tal que

α = B + C −A−D > 0,

ψi = βi − γi y

k =
C −D

α

es la probabilidad asociada a la acción X en la estrategia mixta de equilibrio en
el juego externo.3 Por lo anterior, ψ1 y ψ2 resultan con la misma distribución de
probabilidad, lo cual nos permite evitar diferencias y notarlas sin el sub́ındice.
Finalmente consideremos a f y F como sus funciones de densidad y de dis-
tribución de probabilidad, respectivamente; y supongamos que f es positiva y
diferenciable sobre R.

La matriz de pagos nueva permite tres interpretaciones diferentes de la va-
riable α como una medida de la importancia de la perturbaciones en los pagos
esperados.

Primero podemos pensar que un incremento en α es proporcional a un au-
mento en cada pago A,B,C y D manteniendo la distribución F constante.
Aśı se eleva la proporción de los valores esperados de pagos respecto de las
perturbaciones, quitándoles importancia a la hora de elegir una estrategia.

3Notemos que 0 < k < 1 pues B > A.
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La segunda matriz muestra que a medida que aumenta α las perturba-
ciones se acercan a cero y los pagos esperados se mantienen constantes.

Y por último podemos expresar el pago de la forma A+ λψi + (1− λ)ξi,
donde α−1 = λ ∈ [0, 1] y ψi y ξi son realizaciones de variables aleatorias
independientes de esperanza cero. En este caso debemos interpretar a ψi
como un valor conocido por el jugador, mientras que desconoce ξi. Cuando
λ = 0 significa que no tiene informacióny si λ = 1 esta es completa. En tal
caso, variar α da una medida de la información que posee el individuo.

4.4. Equilibrios de Nash

Una estrategia pura en un juego completo permite a un jugador elegir una
acción b o c tal que dependa del valor de ψ y de la señal de su rol. Con esto, una
estrategia pura es una función medible σ : R × {1, 2} → {X,Y } cuyos valores
notamos como σ(ψ,Z) donde Z ∈ {1, 2} significa la señal de rol que recibe el
jugador. Con esta definición, construimos infinitas estrategias puras.

Ahora vemos la existencia de equilibrios para estrategias tanto dependientes
como independientes de los roles. Sin embargo como σ es una medida y queremos
ver la unicidad de equilibrios, trabajamos cocientando sobre las funciones de
medida nula. Es decir, si tenemos σ y σ′ tal que difieren en un conjunto de
medida cero, las consideramos iguales.

Lema 4.4.1. El juego completo posee un único y estricto equilibrio de Nash
independiente de los roles. Este viene dado por

σ∗(ψ,Z) =

{

X si ψ > ψ∗

Y si ψ < ψ∗ , (4.4.1)

donde ψ∗ es la única solución de la ecuación (1− k)α = ψ + F (ψ)α.

Lema 4.4.2. Existe una función creciente α(ζ) : [0, 1/2) → R+ tal que para
todo α > α(ζ) hay dos equilibrios de Nash estrictos dependientes de los roles,
dado por

σ(ψ,Z) =

{

X si (Z = 1 ∧ ψ > ψ∗
1) ∨ (Z = 2 ∧ ψ > ψ∗

2)
Y si (Z = 1 ∧ ψ < ψ∗

1) ∨ (Z = 2 ∧ ψ < ψ∗
2)

, (4.4.2)

donde ψ∗
1 y ψ∗

2 son las soluciones complejas conjugadas de la ecuación

(1− k)α = ψ1 + α(ζF (ψ1) + (1− ζ)F (ψ2))

= ψ2 + α(ζF (ψ1) + (1− ζ)F (ψ2))

con ψ1 6= ψ2.

Veamos la demostración del primero.
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Demostración. Dada la estructura del juego, el pago esperado de jugar X au-
menta cuando se incrementa ψ, mientras que el de Y permanece constante e
igual a cero. Con esto, si un jugador elige X para un determinado valor ψ̂ en-
tonces para todo ψ > ψ̂ el pago en X será mayor y el de Y , igual. Y lo mismo
para el caso inverso. Aśı la estrategia de equilibrio debe caracterizarse por un
valor ψ∗ con los jugadores eligiendo X si ψ > ψ∗ e Y en caso contrario. Entonces
el equilibrio debe ser de la forma planteada en (4.4.1).

Sean σ∗ tal estrategia y E(X|ψ, σ∗) el pago esperado para un agente que
elige X cuando observa ψ y su oponente juega con la estrategia σ∗. Además
sabemos

E(X|ψ, σ∗) = [1− F (ψ∗)] (−(1− k)α+ ψ) + F (ψ∗)(kα+ ψ) y

E(Y |ψ, σ∗) = 0.

Una estrategia como ésta está en equilibrio si y solo si E(X|ψ∗, σ∗) = 0, es decir

0 = [1− F (ψ∗)] (−(1− k)α+ ψ∗) + F (ψ∗)(kα+ ψ∗)
= −(1− k)α+ ψ∗ + F (ψ∗)α− F (ψ∗)kα− F (ψ∗)ψ∗

+F (ψ∗)kα+ F (ψ∗)ψ∗

= −(1− k)α+ ψ∗ + F (ψ∗)α

(4.4.3)

entonces resulta
(1− k)α = ψ∗ + F (ψ∗)α.

Como el lado derecho de la igualdad se incrementa monótonamente desde (−∞)
hasta ∞ cuando ψ∗ va desde (−∞) hasta ∞, existe una única solución de la
ecuación que devuelve el resultado buscado. Además, en la primera igualdad de
la ecuación (4.4.3) el lado derecho se incrementa cuando aumenta ψ, con lo cual
si un jugador elige X para un ψ < ψ∗, el pago esperado será menor a cero (que
es el pago por elegir Y ). O si para un ψ > ψ∗ juega Y , obtendrá un pago menor
al pago de elegir X (que devuelve un valor esperado positivo). Esto muestra que
este equilibrio es estricto.

Continuemos ahora con la prueba del lema 4.4.2.

Demostración. Llamemos con ψ1 y ψ2 a las realizaciones de ψ recibidas por un
jugador si obseva que su rol es 1 o 2, respectivamente. El pago esperado por
elegir X se incrementa en ψi si su rol es i (i = 1, 2). Aśı el equilibrio debe estar
dado por la elección de X cuando ψi > ψ∗

i e Y cuando ψi < ψ∗
i . Por ejemplo,

si observa que su rol es 1, la probabilidad de que su oponente juegue X resulta
de la suma de la probabilidad de que posean el mismo rol (ζ) y su perturbación
sea mayor a ψ∗

1 (1 − F (ψ∗
1)); más la probabilidad de que sea del rol 2 (1−ζ) y
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su perturbación sea mayor a ψ∗
2 (1− F (ψ∗

2)). De esto obtenemos que

E(X|ψ1, σ
∗) = (−(1− k)α+ ψ1) [ζ(1− F (ψ∗

1)) + (1− ζ)(1− F (ψ∗
2))]

+(kα+ ψ1) [ζF (ψ
∗
1) + (1− ζ)F (ψ∗

2)]

E(Y |ψ1, σ
∗) = 0

E(X|ψ2, σ
∗) = (−(1− k)α+ ψ2) [(1− ζ)(1− F (ψ∗

1)) + ζ(1− F (ψ∗
2))]

+(kα+ ψ2) [(1− ζ)F (ψ∗
1) + ζF (ψ∗

2)]

E(Y |ψ2, σ
∗) = 0.

La condición necesaria y suficiente para que resulte un equibrio resulta de
reemplazar ψi por ψ

∗
i e igualar a cero. Además si despejamos tenemos que

0 = (−α+ kα+ ψ∗
1) [ζ − ζF (ψ∗

1) + 1− ζ − (1− ζ)F (ψ∗
2))](4.4.4)

+(kα+ ψ∗
1) [ζF (ψ

∗
1) + (1− ζ)F (ψ∗

2)] (4.4.5)

= (−α+ kα+ ψ∗
1) + α [ζF (ψ∗

1) + (1− ζ)F (ψ∗
2)] y (4.4.6)

(1− k)α = ψ∗
1 + α [ζF (ψ∗

1) + (1− ζ)F (ψ∗
2)] , (4.4.7)

y, análogamente

(1− k)α = ψ∗
2 + α [(1− ζ)F (ψ∗

1) + ζF (ψ∗
2)] . (4.4.8)

De forma similar a la anterior, dado que E(X|ψ1, σ
∗) y E(X|ψ2, σ

∗) au-
mentan cuando ψ1 y ψ2 crecen (ver (4.4.6)), el equilibrio es estricto. De las
ecuaciones (4.4.7) y (4.4.8) podemos deducir otra dos impĺıcitas: ψ2 = h1(ψ1)
de la primera y ψ2 = h2(ψ1) de la segunda. Como vimos antes, existe un solu-
ción que es ψ1 = ψ2 = ψ∗. Además si existe un par (ψ1, ψ2) que es solución,
entonces el par (ψ2, ψ1) también debe serlo. Con lo cual debemos ver que estas
ecuaciones tiene al menos dos soluciones.

La función h1 puede definirse en el dominio (ψ1, ψ̄1) que viene dado por

ĺım
ψ1→ψ1

h1(ψ1) = ∞ y ĺım
ψ1→ψ̄1

h1(ψ1) = −∞.

Y la función h2 podemos definirla con dominio R, pero con imagen restringi-
da a (ψ2, ψ̄2), de forma que

ĺım
ψ1→−∞

h2(ψ1) = ψ̄2 y ĺım
ψ1→∞

h2(ψ1) = ψ2.

Debido a la forma de estas funciones, como se intersecan en ψ∗, si h2 tiene
una derivada más pronunciada en este punto (más negativa) entonces necesa-
riamente h1 y h2 deben tocarse en, al menos, otros dos puntos. Pues si efectiva-
mente la derivada de h2 tiene mayor pendiente, sucede que en un entorno a la
izquierda de ψ∗, h2 debe ser más grande que h1. Pero esta última función tiene
una aśıntota vertical hacia +∞ a la izquierda de ψ∗, por lo que necesariamente
deben intersecarse (al menos una vez). El caso a la derecha de ψ∗ es el inverso.
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Con esto, usemos el teorema de la función impĺıcita para calcular las derivadas.
Notemos G(x, y) = 0 = x+α [ζF (x) + (1− ζ)F (y)]−(1−k)α siendo h1(x) = y,
obtenemos que

dh1
dx

(x) = (−1)
dG(x, y)

dx

(

dG(x, y)

dy

)−1

= (−1)
1 + αζf(x)

α(1− ζ)f(y)

si evaluamos en ψ∗ (recordemos que h1(ψ
∗) = ψ∗), obtenemos

dh1
dx

(ψ∗) = (−1)
1 + αζf(ψ∗)

α(1− ζ)f(ψ∗)
.

Análogamente, para h2 resulta

dh2
dx

(x) = (−1)
α(1− ζ)f(x)

1 + αζf(y)

dh2
dx

(ψ∗) = (−1)
α(1− ζ)f(ψ∗)

1 + αζf(ψ∗)
.

Luego sucede que

dh1
dx

(ψ∗) >
dh2
dx

(ψ∗) ⇔

(−1)
1 + αζf(ψ∗)

α(1− ζ)f(ψ∗)
> (−1)

α(1− ζ)f(ψ∗)

1 + αζf(ψ∗)
⇔

1 + αζf(ψ∗)

α(1− ζ)f(ψ∗)
<

α(1− ζ)f(ψ∗)

1 + αζf(ψ∗)
⇔

(1 + αζf(ψ∗))
2

< (α(1− ζ)f(ψ∗))
2
⇔

1 + αζf(ψ∗) < α(1− ζ)f(ψ∗) ⇔

1 < α(1− ζ)f(ψ∗)− αζf(ψ∗) = α(1− 2ζ)f(ψ∗)

pues tanto [1+αζf(ψ∗)] como [α(1− ζ)f(ψ∗)] son positivos. Por lo tanto cuan-
do α (dependiente de ζ) es suficientemente grande, la desigualdad es válida y
existen, al menos, dos soluciones.

En el equilibrio dependiente de los roles los jugadores condicionan sus es-
trategias a las señales que reciben y tienden a especializarse en X en un rol y en
Y en el otro. Este equilibrio se corresponde con los dos equilibrios asimétricos
en el juego exterior. Aqúı existen estos dos equilibrios porque es irrelevante si X
suele ser jugado por el agente 1 o 2. Si α es muy pequeño, el equilibrio depen-
diente de los roles puede no existir ya que las perturbaciones en los pagos son
muy significativas; aśı condicionar las acciones a estas perturbaciones se torna
tan importante que vuelve irrelevante usar los equilibrios asimétricos del juego
exterior. Cuanto más ✭✭ruidosa✮✮ es la identificación en roles (mayor ζ), menos
importante resulta condicionar las acciones en roles. Y por el contrario, cuanto
mayor sea α, más fuerte se vuelve este equilibrio.
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En el equilibrio independiente de los roles los jugadores sólo condicionan
sus elecciones a las caracteŕısticas de los pagos dadas las perturbaciones. J. C.
Harsanyi mostró que cuando α tienda a ∞ (las perturbaciones se vuelven cada
vez más insignificantes) la frecuencia con la cual se utilizan las acciones X e Y
tiende a las probabilidades con las cuales son usadas en la estrategia mixta del
juego exterior. La estrategia dada en la ecuación (4.4.1) aproxima el equilibrio
mixto en el juego exterior, aunque en realidad es un equilibrio puro en el juego
completo en el cual los jugadores no condicionan sus acciones a los roles que
recibieron.

4.5. Barrera de invasión

Estudiemos los equilibrios mixtos en los juegos exteriores de la figura. Este
corresponde con los equilibrios independientes de los roles en el juego comple-
to, que satisface la definición de equilibrio estable 2.1.1. Veamos cuándo un
equilibrio admite una barrera de invasión global.

Teorema 4.5.1 (Barrera de invasión global). Los equilibrios independientes de
los roles en un juego completo dados en (4.4.1) admiten una barrera de invasión
global.

La demostración de este teorema es extensa, hagamos antes algunas consi-
deraciones. Si el resto de la población utiliza la estrategia de equilibrio indepen-
diente de los roles σ∗ entonces el pago esperado E(X|ψ, σ∗) en el juego completo
resulta

E(X|ψ, σ∗) = F (ψ∗)(kα+ ψ) + [1− F (ψ∗)] (−(1− k)α+ ψ) (4.5.1)

= ψ + α [F (ψ∗)− (1− k)] (4.5.2)

= ψ − ψ∗. (4.5.3)

Con lo cual resulta óptimo jugar X cuando ψ > ψ∗ e Y en el caso contrario.
Continuemos suponiendo que tenemos un mutante que usa la estrategia σ

que condiciona sus acciones con el rol que observa, jugandoX con el rol 1 e Y con
el 2 cuando las perturbaciones de sus pagos se encuentran dentro de un conjunto
H (H pequeño y centrado en ψ∗). El costo de este accionar resulta de ignorar las
perturbaciones en H, jugando X cuando ψ es relativamente pequeño (cuando
seŕıa más beneficioso elegir Y ) y jugando Y en el caso inverso. Como este costo
es más chico cuanto más cerca esté ψ de ψ∗, la probabilidad del mutante de
tener éxito aumenta si condiciona su accionar a los roles en un conjunto como
H pues en los valores de ψ ∈ H el pago entre X e Y es casi igual. Pero este
mutante ha adquirido una importante ventaja. Como condiciona su accionar a
los roles puede coordinarse con los de su misma clase para utilizar una estrategia
pura que los coloque en un equilibrio asimétrico del juego exterior.

Sea L < 0 el pago esperado que pierde cada mutante al enfrentarse a un
jugador original, es decir, L = E(σ, σ∗) − E(σ∗, σ∗). Y sea G > 0 el pago
esperado que gana cuando juega contra otro mutante, G = E(σ, σ)− E(σ∗, σ).
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Con estas consideraciones, y si llamamos ε a la proporción de mutantes dentro
de la población, la estrategia mutante será incapaz de tener éxito si

(1− ε)L+ εG < 0.

¿Cuándo existe una barrera de invasión global ε(σ∗) > 0 tal que la inecuación
es válida para todo ε < ε(σ∗) independientemente de la estrategia mutante?

Cuando analizamos un equilibrio estricto en un juego finito dijimos que esta
barrera exist́ıa. Pero en el caso infinito, debemos concebir la posibilidad de
que haya una sucesión de mutantes que generen que L tienda a cero. Por esto
nos abocaremos a ver que L/G no puede acercarse a cero indefinidamente, sin
importar como elijamos a los mutantes. Teniendo presente estas observaciones,
veamos la demostración.

Demostración. Sea σ : R×{1, 2} → {X,Y } un mutante. Sea Ψi(X) el conjunto
medible de valores de ψ para los cuales el mutante juega X en el rol i (i =
1, 2). Como los pagos de esta elección para ambos oponentes aumentan en ψ,
mientras que los pagos en Y permanecen constantes, debe suceder que Ψ1(X) y
Ψ2(X) contienen los valores suficientemente grandes de ψy excluyen los valores
suficientemente chicos.

Sin pérdida de generalidad podemos suponer que existen ψ̂1 y ψ̂2 tales que
Ψi(X) = (ψ̂i,∞) y que juega Y en el complemento. Para ver esto supongamos
que σ no tiene esta estructura; entonces sea σ′ otro mutante que se comporta
de la forma

σ′(ψ,Z) =

{

X si (Z = 1 ∧ ψ > ψ̂1) ∨ (Z = 2 ∧ ψ > ψ̂2)

Y si (Z = 1 ∧ ψ < ψ̂1) ∨ (Z = 2 ∧ ψ < ψ̂2)
, (4.5.4)

siendo ψ̂i tal que

(1− F (ψ̂i)) =

∫

Ψi(X)

f(ψ)dψ

para i = 1, 2. Si los mutantes compiten contra σ∗ ambos juegan X con la misma
probabilidad en cada uno de los roles, sólo que σ′ concentra esta acción en
los valores más grandes de ψ. Como vimos antes, el pago en X aumenta si
también ψ se comporta aśı, mientras que en Y permanece constante, con lo
cual el mutante σ′ tiene un mayor pago esperado contra σ∗ que el que posee σ.
De igual forma si a cada mutante lo hacemos jugar contra un jugador de igual
estrategia, sucederá que E(σ′, σ′) ≥ E(σ, σ) pues ambos mutantes juegan X
(y por lo tanto también Y ) con la misma probabilidad. Además por lo mismo
tenemos que E(σ∗, σ′) = E(σ∗, σ). Entonces σ′ tiene una menor barrera de
invasión que σ, de esto deducimos que el mutante de menor barrera debe ser de
esta forma.

También sin pérdida de generalidad podemos suponer que ψ̂1 ≤ ψ̂2. Empece-
mos suponiendo que ψ∗ < ψ̂1. Entonces la estrategia de equilibrio σ∗ es mejor
respuesta para śı misma de lo que es el mutante pues este último juega X en
ambos roles menos de lo que es óptimo: entre ψ∗ y ψ̂i jugar X contra σ∗ tiene
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un valor esperado positivo, mientras que jugar Y , cero. Además la estrategia
en equilibrio σ∗ es mejor respuesta contra el mutante σ de lo que este es con-
tra śı mismo. Para ver esto supongamos que el mutante recibe el rol 1. Como
ψ∗ < ψ̂1, resulta que juegaX menos veces que la estrategia σ∗, entonces la mejor
respuesta contra el mutante es jugar X incluso más veces que la estrategia σ∗

ya que

[1− F (ψ∗)] (−(1− k)α+ ψ) + F (ψ∗)(kα+ ψ)

= E(X,σ∗|ψ) < E(X,σ|ψ)

=
[

1− F (ψ̂1)
]

(−(1− k)α+ ψ) + F (ψ̂1)(kα+ ψ).

Pero en particular σ∗ es mejor respuesta contra el mutante que él mismo. Un
argumento similar se aplica si el mutante recibe el rol 2. Entonces las diferencias
entre el pago esperado de un mutante menos el de uno de la población original
son negativas siempre (sin importar contra quien jueguen) y por lo tanto existe
una barrera de invasión.

Si tenemos el caso ψ̂2 < ψ∗, el mismo argumento (pero jugando más veces
Y ) prueba que existe una barrera de invasión.

Concentrémonos en el caso ψ̂1 ≤ ψ∗ ≤ ψ̂2. Sea H = [ψ̂1, ψ̂2]. El mutante
σ juega igual que σ∗ excepto cuando observa un valor de ψ ∈ H, donde elige
X si tiene el rol 1 e Y en el otro caso. Separemos el conjunto H de la forma
H = [ψ̂1, ψ

∗] y H̄ = [ψ∗, ψ̂2] (alguno de los dos podŕıa tener medida nula).
Vimos que

E(X|ψ, σ∗) = [1− F (ψ∗)] (−(1− k)α+ ψ) + F (ψ∗)(kα+ ψ)

= −(1− k)α+ ψ + F (ψ∗)α− F (ψ∗)kα

−F (ψ∗)ψ + F (ψ∗)kα+ F (ψ∗)ψ

= ψ − (1− k − F (ψ∗))α

= ψ − ψ∗

pues por el lema 4.4.1 sabemos que ψ∗ es solución de (1 − k)α = ψ + F (ψ)α,
con lo que ψ∗ = (1− k − F (ψ∗))α.

Calculemos la diferencia entre el pago esperado de un mutante y la estrategia
de equilibrio σ∗ cuando se enfrentan a la población original. El resultado es

E(σ, σ∗)− E(σ∗, σ∗) (4.5.5)

=

∫

R

(E(σ|ψ, σ∗)− E(σ∗|ψ, σ∗))f(ψ)dψ (4.5.6)

=

∫

H

1

2
(ψ − ψ∗)f(ψ)dψ +

∫

H̄

1

2
(ψ∗ − ψ)f(ψ)dψ (4.5.7)

= L < 0. (4.5.8)

La primer integral vale para ψ ∈ H, donde la estrategia σ∗ juega Y con pago
cero; mientras que σ también recibe un pago de cero la mitad de las veces
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(cuando recibe el rol 2 y juega Y ) y un pago de (ψ−ψ∗) < 0 la otra mitad. En
la segunda integral, con ψ ∈ H̄, σ∗ juegaX con un pago esperado de (ψ−ψ∗) > 0
y el mutante elige X la mitad de las veces, con lo cual recibe el mismo pago
esperado; e Y la otra mitad (con pago cero). Aśı para ψ ∈ H̄ tenemos

E(σ|ψ, σ∗)− E(σ∗|ψ, σ∗) =
1

2
(ψ − ψ∗)− (ψ − ψ∗)

=
1

2
(ψ∗ − ψ) < 0.

Sea S ⊂ R y notemos con E(σ, σ′|S) el pago esperado del mutante cuando
enfrenta a σ′, este último condicionado con valores de ψ en S. Con esta escritura
y por el hecho de que tanto el mutante como σ∗ se comportan igual en Hc,
sabemos que

E(σ, σ|Hc) = E(σ, σ∗|Hc)

E(σ∗, σ|Hc) = E(σ∗, σ∗|Hc)

Pero también vale

L = E(σ, σ∗)− E(σ∗, σ∗)

= F (H)E(σ, σ∗|H) + [1− F (H)]E(σ, σ∗|Hc)

−F (H)E(σ∗, σ∗|H)− [1− F (H)]E(σ∗, σ∗|Hc).

Ahora podemos calcular

E(σ, σ)− E(σ∗, σ) = F (H)E(σ, σ|H) + [1− F (H)]E(σ, σ|Hc)

−F (H)E(σ∗, σ|H)− [1− F (H)]E(σ∗, σ|Hc)

sumamos cero

= F (H)E(σ, σ|H) + [1− F (H)]E(σ, σ|Hc)

+F (H)E(σ, σ∗|H)− F (H)E(σ, σ∗|H)

−F (H)E(σ∗, σ|H)− [1− F (H)]E(σ∗, σ|Hc)

+F (H)E(σ∗, σ∗|H)− F (H)E(σ∗, σ∗|H)

reemplazando

= F (H)E(σ, σ|H) + [1− F (H)]E(σ, σ∗|Hc)

+F (H)E(σ, σ∗|H)− F (H)E(σ, σ∗|H)

−F (H)E(σ∗, σ|H)− [1− F (H)]E(σ∗, σ∗|Hc)

+F (H)E(σ∗, σ∗|H)− F (H)E(σ∗, σ∗|H)

finalmente obtenemos

= F (H)E(σ, σ|H)− F (H)E(σ, σ∗|H)

−F (H)E(σ∗, σ|H) + F (H)E(σ∗, σ∗|H) + L

Dado que ambas estrategias coinciden cuando ψ ∈ Hc basta calcular E(σ, σ|H)−
E(σ∗, σ|H) y E(σ∗, σ∗|H)− E(σ, σ∗|H) condicionado a valores para ψ ∈ H. Si
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notamos E(σ|H,σ|H) al enfrentamiento de dos mutantes restringidos a valores
en H tenemos que

E(σ|H,σ|H) =

∫

H

1

2
(ζE(X,X) + (1− ζ)E(X,Y )) f(ψ)dψ;

E(σ|H,σ∗|H) =

∫

H

1

2

(

F (H̄)

F (H)
E(X,X) +

F ( H)

F (H)
E(X,Y )

)

f(ψ)dψ;

E(σ∗|H,σ|H) =

∫

H̄

1

2
(E(X,X) + E(X,Y )) f(ψ)dψ y

E(σ∗|H,σ∗|H) =

∫

H̄

(

F (H̄)

F (H)
E(X,X) +

F ( H)

F (H)
E(X,Y )

)

f(ψ)dψ.

Ahora podemos retomar la cuenta anterior. Tengamos presente que

F (H) = F (H) + F (H̄).

Luego

E(σ, σ)− E(σ∗, σ)

= F (H)

∫

H

1

2
(ζ(−(1− k)α+ ψ) + (1− ζ)(kα+ ψ)) f(ψ)dψ

−

∫

H

1

2

(

F (H̄)(−(1− k)α+ ψ) + F ( H)(kα+ ψ)
)

f(ψ)dψ

−F (H)

∫

H̄

1

2
((−(1− k)α+ ψ) + (kα+ ψ)) f(ψ)dψ

+

∫

H̄

(

F (H̄)(−(1− k)α+ ψ) + F ( H)(kα+ ψ)
)

f(ψ)dψ + L

=
F (H)

2

∫

H

(−ζα)f(ψ)dψ −
1

2

∫

H

(−F (H̄)α)f(ψ)dψ

−
F (H)

2

∫

H̄

(−α)f(ψ)dψ +

∫

H̄

(−F (H̄)α)f(ψ)dψ + L

= −
F (H)2

2
ζα+

F (H̄

2
αF (H) +

F (H)

2
αF (H̄)− F (H̄2)α+ L

= α

(

−
F (H)2ζ

2
+ F (H̄)

[

F (H)− F (H̄)
]

)

+ L

Entonces ahora estamos en condiciones de calcular la diferencia D entre el
pago esperado de un mutante y de un jugador original cuando la proporción
invasora es igual a ε. Para que pueda producirse la invasión en este caso debe
suceder que D > 0.

D = (1− ε)L+ ε

[

α

(

−
F (H)2ζ

2
+ F (H̄)

[

F (H)− F (H̄)
]

)

+ L

]

= L+ εα

(

−
F (H)2ζ

2
+ F (H̄)F (H)

)

43



Como L es negativa, para que esta diferencia sea mayor a cero tanto F (H) como

F (H̄) deben ser positivos, con lo cual ψ̂1 < ψ∗ < ψ̂2. D es negativa cuando
ε = 0. Una barrera global de invasión ε∗ (con α fijo) es aquella tal que cualquier
ε positivo y menor que ε∗ devuelve una D negativa, independientemente de
como sea el conjunto H. De todos los ζ posibles en [0, 1/2) aquel que maximiza
D es ζ = 0, con lo cual basta analizar este caso para cualquier ζ. Resulta que

D ≤ L+ εαF (H̄)F (H).

Acotemos inferiormente (recordemos que L < 0)

−L

F (H̄)F (H)
=

∫

H (ψ∗ − ψ)f(ψ)dψ +
∫

H̄
(ψ − ψ∗)f(ψ)dψ

2
∫

H f(ψ)dψ
∫

H̄
f(ψ)dψ

=

∫ ψ∗

ψ̂1
(ψ∗ − ψ)f(ψ)dψ +

∫ ψ̂2

ψ∗ (ψ − ψ∗)f(ψ)dψ

2
∫ ψ̂2

ψ∗ f(ψ)dψ
∫

H̄
f(ψ)dψ

.

Como f(ψ∗) 6= 0 y es continua existe un intervalo [b, c] tal que b < ψ∗ < c y
que acota a f inferiormente tal que 0 < m = mı́n{f(ψ) : ψ ∈ [b, c]}. Además

sea M = máx{f(ψ) : ψ ∈ [b, c]}. Si ψ̂1 < b entonces

∫ ψ∗

ψ̂1
(ψ∗ − ψ)f(ψ)dψ +

∫ ψ̂2

ψ∗ (ψ − ψ∗)f(ψ)dψ

2
∫ ψ̂2

ψ∗ f(ψ)dψ
∫

H̄
f(ψ)dψ

≥

∫ ψ∗

b
(ψ∗ − ψ)f(ψ)dψ +

∫ ψ̂2

ψ∗ (ψ − ψ∗)f(ψ)dψ

2
∫ ψ̂2

ψ∗ f(ψ)dψ
∫

H̄
f(ψ)dψ

≥

∫ ψ∗

b

(ψ∗ − ψ)f(ψ)dψ ≥ β0

para algún β0 > 0y de forma similar supongamos que β1 > 0 acota inferiormente
si ψ̂2 > c.
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Consideremos el último caso, es decir, b < ψ̂1 < ψ∗ < ψ̂2 < c. Luego

∫ ψ∗

ψ̂1
(ψ∗ − ψ)f(ψ)dψ +

∫ ψ̂2

ψ∗ (ψ − ψ∗)f(ψ)dψ

2
∫ ψ̂2

ψ∗ f(ψ)dψ
∫

H̄
f(ψ)dψ

≥

∫ ψ∗

ψ̂1
(ψ∗ − ψ)mdψ +

∫ ψ̂2

ψ∗ (ψ − ψ∗)mdψ

2
∫ ψ̂2

ψ∗ Mdψ
∫

H̄
Mdψ

≥
m

2M

∫ ψ∗−ψ̂1

0
sds+

∫ ψ̂2−ψ
∗

0
sds

(ψ∗ − ψ̂1)(ψ̂2 − ψ∗)

≥
m

4M

(ψ∗ − ψ̂1)
2 + (ψ̂2 − ψ∗)2

(ψ∗ − ψ̂1)(ψ̂2 − ψ∗)

=
m

4M

(

ψ∗ − ψ̂1

ψ̂2 − ψ∗
+
ψ̂2 − ψ∗

ψ∗ − ψ̂1

)

≥
m

4M
> 0.

Entonces, sea β = mı́n{β0, β1,m/(4M)}. Resulta (−L/[F (H̄)F (H)]) ≥ β > 0 y
además

D ≤ L+ εαF (H̄)F (H) ≤ L+ εα
−L

β
= L

(

1−
εα

β

)

,

con lo cual existe un ε∗ suficientemente pequeño tal que D < 0 para todo ε < ε∗.
Lo cual prueba que existe una barrera global.

4.6. Referencias

En este caṕıtulo seguimos el trabajo de Binmore y Samuelson [1].
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Caṕıtulo 5

Menor oferta única

Menor oferta única (LUB1) es un juego de subasta on line en el cual el
ganador puede adquirir un bien de elevado valor a un precio muy inferior: autos
o incluso casas pueden adquirirse por decenas o cientos de dólares (o euros)2.
Veamos el mecanismo de este tipo de remates.

En un comienzo, un bien valuado en miles de dólares es puesto en subasta.
El tiempo que dura está convenido desde el inicio; generalmente es un peŕıodo
de dos o tres semanas. Cada jugador participa realizando una oferta que puede
ir desde un centavo hasta un valor máximo al cual llamamos M, siempre en
múltiplos enteros de un centavo. Este debe ser un precio muy inferior al valor
real del bien en cuestión; M suele ser no mayor a cien dólares. Por cada oferta
que realiza un participante, éste debe pagar una pequeña cuota (por ejemplo, el
costo de un mensaje o una llamada de celular, que va de unos pocos centavos a
no más de diez dólares). Además, los jugadores pueden ofertar más de una vez
por el mismo bien. Finalizado el plazo de la subasta, resulta ganador aquel que
hizo la menor oferta única (LUB) y obtiene el derecho de comprar el bien por
ese precio ofertado (que es el menor precio que ofertó de los que ningún otro
propuso).

Por ejemplo, si al terminar el juego la menor oferta fue hecha por dos ju-
gadores (n1 = 2), mientras que la segunda menor fue hecha por tres jugadores
(n2 = 3) y, recursivamente, obtuvimos n3 = 1, n4 = 2, n5 = 1, ... entonces
el jugador ganador es aquel que ofertó el tercer menor valor pues es la LUB
del juego, en el sentido de que fue hecha por un sólo participante. Es necesario
aclarar que durante el peŕıodo en el cual se desarrolla este juego, cada partic-
ipante sabe si su estado es el de ganador o perdedor, pero no tiene acceso a
ningún otro dato. Ninguno conoce que ofertas hizo otro jugador hasta que el
juego finaliza.

F. Radicchi, A. Baronchelli y L.A.N. Amaral han estudiado en detalle los
rasgos de la dinámica de las ofertas hechas en juegos de LUB en subastas reales.
Observaron que la exploración del espacio de posibles ofertas es explosivo: las

1Por sus siglas en inglés, the lowest unique bid.
2En nuestro páıs este mercado tiene un desarrollo muy incipiente.
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ofertas hechas por un mismo jugador en forma consecutiva suelen ser cercanas
entre śı. Pero cada tanto, los participantes realizan un ✭✭salto✮✮ de grandes dis-
tancias y luego vuelven a la conducta anterior de hacer ofertas consecutivas
cubriendo muchos valores en un pequeño espacio.

Entonces, la función de densidad de probabilidad (f.d.p.) P (d) de las distintas
ofertas depende de d, que representa la distancia entre dos valores. La densidad
de probabilidad es consistente con P (d) ∼ d−α. La exploración del espacio de
apuestas resulta una versión de vuelo de Lévy dicreto. Aún más importante,
encontraron que la f.d.p. g(α) dependiente del exponente de P (d) utilizado en
estas subastas es de un valor que se acerca a 1,4 (< α >≃ 1, 4) con desv́ıo
estándar de 0,2 (< σ >≃ 0, 2). Este desv́ıo es el de la distribución de los valores
medidos de α y no del vuelo de Lévy (que para α < 2 tiene varianza infinita).

5.1. Modelos de estrategias para ofertar

Veamos un modelo para LUB. Dada la evidencia suponemos que los ju-
gadores exploran el espacio de apuestas comportándose acorde a un modelo de
vuelo de Lévy. Elegimos los exponentes de la f.d.p. con una variable aleatoria
extráıda de otra f.d.p. genérica y estudiamos una versión evolutiva del juego. In-
dependientemente de la f.d.p. inicial, ésta evoluciona a una distribución estable
centrada en un valor muy cercano al exponente medido en las subastas reales.

Consideremos una población de N jugadores cuyas estrategias quedan deter-
minadas por un α obtenido en forma aleatoria de una f.d.p. g(α). Sin pérdida
de generalidad consideramos que g(α) ≥ 0 si α ∈ (α1, α2) y que vale 0 en otro
caso. Durante el juego, cada agente puede ofertar sólo valores enteros en el es-
pacio [1,M ]. Como al principio del juego ninguno sabe qué valores ofertarán
los demás, es natural pensar que un jugador genérico (con estrategia P (α)) se
sitúe lo más a la izquierda posible (que es la menor oferta posible). Aśı, para la
posición inicial, oferta el i-ésimo valor con probabilidad

s(i, α) =
i−α

m(α)
g(α), (5.1.1)

siendo m(α) =
∑M

i=1 i
−α la normalización para que el espacio discreto sea de

probabilidad. Integrando podemos calcular la probabilidad de que un jugador
genérico oferte el valor i, aśı

p(i) =

∫ α2

α1

s(i, α)dα. (5.1.2)

Después de la primer oferta de cada agente, llamemos nk al número de ofertas
hechas en el k-ésimo valor. La probabilidad de que suceda una configuración
{n} = (n1, n2, ...nM ) particular está dada por

P ({n}) = N !

M
∏

k=1

p(k)nk

nk!
, (5.1.3)
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siendo N =
∑M

k=1 nk la cantidad de jugadores. En particular, la probabilidad
de que sólo una oferta sea realizada en el valor i es

u(i) =
∑

∑
k 6=i

nk=N−1

P ({n}) = Np(i)[1− p(i)]N−1.

La probabilidad de que un valor i de oferta sea realizado por un sólo jugador y
que sea el menor con esta caracteŕıstica podemos calcularlo sumando las proba-
bilidades de la ecuación (5.1.3) sobre todas las {n} configuraciones que satisfacen
ni = 1 y nj 6= 1 para todo j < i. Pero como este cálculo es muy complejo, una
buena aproximación, válida para valores de p(i) y u(i) suficientemente pequeños,
es considerar la unicidad (en el sentido de LUB) del valor i-ésimo como inde-
pendiente de la unicidad de otros. Aśı escribimos

l(i) =

{

u(i)
N

si i = 1
u(i)
N

∏

k<i[1− u(k)] otro
,

como la probabilidad de que la oferta del valor i-ésimo sea la menor de todas las
apuestas únicas. El resultado de esta ecuación es el producto de dos términos,
u(i) es la probabilidad de que sólo haya una oferta en el valor i; mientras que
∏

k<i[1− u(k)] es la probabilidad de que ninguno de los valores menores reciba
una única oferta. Finalmente, la probabilidad w(α) de que un vuelo de Lévy
con exponente α sea la estrategia ganadora podemos inferirla por

w(α) =

M
∑

i=1

v(α|i)l(i) =

M
∑

i=1

s(i, α)l(i)

p(i)
(5.1.4)

siendo v(α|i) = s(i, α)/p(i) la probabilidad condicional de que el coeficiente del
jugador que oferta el i-ésimo valor sea α. En estas ecuaciones, si bien no aparece
en la notación M ni N que son valores de los cuales depende w(α), los evitamos
para abreviar notación.

5.2. Múltiples apuestas hechas por un mismo ju-

gador

El mismo análisis puede aplicarse para determinar el mejor exponente en un
juego en el cual cada participante pueda realizar más de una apuesta. Llamemos
T a la cantidad de ofertas que puede hacer un mismo jugador. Para resolver el
nuevo problema necesitamos calcular sT (i). Esta es la probabilidad de que un
jugador cualquiera oferte el valor i en alguna de sus T ofertas. Dado un ju-
gador genérico fijemos de aqúı en lo que queda de esta sección, su exponente
(estrategia) en α. Su primer oferta puede ser realizada en el valor i con proba-
bilidad q1(i|α) = i−α/m(α). Para las siguientes ofertas necesitamos definir una
matriz de transición Qα. El escalar (Qα)ji representa la probabilidad de que un
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juegador oferte el valor i cuando su apuesta anterior fue j. Aśı tenemos

(Qα)ji =
|i− j|−α

mj(α)
, (5.2.1)

siendo el denominador nuevamente la normalización, es decir

mj(α) =

M
∑

i=1

|i− j|−α,

lo cual hace que Qα sea una matriz de probabilidad. Entonces en un paso t
cualquiera3, la probabilidad de que un jugador oferte el valor i es

qt(i|α) =

M
∑

j=1

(Qα)jiqt−1(j|α). (5.2.2)

Y la probabilidad de que el jugador oferte el valor i en algún momento de la
subasta es

ST (i|α) = 1−
T
∏

t=1

(1− qt(i|α)) . (5.2.3)

El término (1 − qt(i|α)) representa la probabilidad de que el jugador no oferte
el valor i en el paso t, con lo cual el producto en todos los pasos resulta la
probabilidad de que no oferte en el valor i. Es muy importante aclarar que los
jugadores aqúı modelados no tienen memoria, pues pueden ofrecer el mismo
valor más de una vez ya que la matriz Qα sólo tiene en cuenta la posición actual
y no las pasadas.4

Aśı llegamos a la probabilidad de que un jugador genérico en T pasos oferte
el valor i, con lo cual

pT (i) =

∫ α2

α1

sT (i|α)g(α)dα. (5.2.4)

Con esta nueva fórmula podemos reemplazar (5.1.2) para calcular uT (i) y lT (i)
respectivamente. Y podemos obtener wT (α).

5.3. Modelo evolutivo

Para estudiar y entender como una estrategia óptima puede ser transmi-
tida entre individuos, trabajamos en un marco teórico evolutivo. Con esto, el
modelo puede implementarse en términos de individuos competitivos que se se-
leccionan en base a los sucesos que se producen en el proceso selectivo. Este es el

3Es la t-ésima oferta.
4Esto también afecta el hecho de que un jugador al ofertar dos veces el mismo valor pierde

la posibilidad de ganar él mismo aunque se el menor valor que nadie más ofreció (en este caso
ya no seŕıa única la oferta).
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esṕıritu fundamental de un proceso de Moran. Al final de cada juego, el ganador
se ✭✭reproduce✮✮ transmitiendo su exponente α: un nuevo individuo ingresa a la
población con una estrategia de igual exponente, mientras que de forma azarosa
otro jugador es removido para mantener constante la población del sistema.
También es posible que el nuevo jugador tenga un exponente α + ξ, siendo ξ
una variable aleatoria que introduce una mutación. Como en el caṕıtulo 2 de
juegos evolutivos, la distribución estacionaria en la que se estabilice este proce-
so, donde los exitosos se reproducen y los que no lo son desaparecen, debeŕıa
corresponderse con un equilibrio del juego.

5.3.1. Modelo sin mutaciones aleatorias

Primero consideremos el caso en el cual los perdedores copian la estrategia
victoriosa sin error alguno (sin mutaciones). Supongamos que tenemos N ju-
gadores en cada generación. Y participan realizando T pasos en cada subasta.
Denominemos con un número e a cada generación; entonces empezamos con
e = 1. Luego continuamos de la siguiente forma.

1. Los jugadores eligen aleatoriamente una estrategia α de una distribución
de probabilidad g(e)(α).

2. Luego juegan la subasta. El resultado es una f.d.p. w
(e)
T (α) que devuelve

la probabilidad de que α sea la estrategia ganadora.

3. Entonces definimos g(e+1)(α) = w
(e)
T (α) y volvemos al primer punto.

Aqúı hemos expresado la evolución de una población de jugadores que repiten

sistemáticamente una subasta de LUB. Haciendo ge+1(α) = w
(e)
T (α) nos asegu-

ramos que las ✭✭nuevas generaciones✮✮ tiendan a elegir estrategias ganadoras en
lugar de perdedoras. Esto puede verse con la siguiente ecuación maestra

ge+1(α)− g(e)(α) = w
(e)
T (α)(1− g(e)(α))− (1− w

(e)
T (α))g(e)(α). (5.3.1)

de donde surge que g(e+1)(α) = w
(e)
T (α). Esta indica que la variación de los

jugadores que usan α aumenta cuando crece la probabilidad de que sea la es-

trategia ganadora (w
(e)
T ) por la probabilidad de encontrar jugadores que no la

utilicen (1−g(e)(α)). Y decrece cuando se incrementa la probabilidad de que no

sea la estrategia ganadora (1−w
(e)
T ) multiplicado por la de hallar jugadores que

la usen (g(e)(α)). En otras palabras, estamos diciendo que la probabilidad de
replicarse de un jugador es proporcional a la probabilidad de que gane el juego.

5.3.2. Mutaciones aleatorias

Un supuesto más natural es considerar que cada vez que un jugador perde-
dor cambia de estrategia, su nuevo exponente es igual al del ganador más una
variación aleatoria. Asumamos que la variación ξ es obtenida aleatoriamente
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de una f.d.p. y que (ξ, α, ~µ) depende de α y un conjunto de parámetros ~µ. La
ecuación maestra que ahora describe la evolución resulta

ge+1(α)− ge(α) =

∫

dβ

∫

dξδ(α− β + ξ) (5.3.2)

siendo δ(x) la función delta de Dirac, δ(x) = 1 si x = 0y δ(x) = 0 en otro caso.

5.4. Simulaciones numéricas

La formulación anaĺıtica anterior permite plantear una ecuación diferencial,
pero la dificultad de calcular las probabilidades wT (α) en forma expĺıcita impide
obtener una expresión cerrada para la distribución de las estrategias ganado-
ras. Las diversas ecuaciones sólo pueden integrarse numéricamente para proveer
una solución al modelo. Además algunas tienen aproximaciones, por lo cual
tiene sentido preguntarse si la solución resultante de la integración (el resultado
numérico) es ventajosa comparada con la alcanzada con una simulación directa
del modelo.

La simulación puede llevarse a cabo con el siguiente forma.

1. Utilizamos una f.d.p. g(α) para obtener la estrategia de cada uno de los
N jugadores;

2. simulamos el juego para cada participante, realizando T ofertas, basándonos
en una función de densidad y determinamos el ganador (aquel que realiza
la LUB).

En el caso de juegos evolutivos, al final de una serie de subastas debemos
cambiar el exponente de alguno de los jugadores derrotados. Esto lo hacemos
copiando el exponente de un ganador, con o sin una variable de mutación y
reemplazando. Luego, con los ✭✭nuevos✮✮ jugadores repetimos el juego. Cuan-
do cambiamos N exponentes (un mismo jugador puede cambiar varias veces)
obtenemos una nueva ✭✭generación✮✮. La f.d.p. de la estrategia ganadora de cada
generación la calculamos repitendo completamente todo el proceso varias veces.

5.5. Resultados

Los resultados a los que llegaron Radicchi y Baronchelli fueron obtenidos con
simulaciones para N = 100 jugadores y un valor máximo del bien de M = 1000.
El orden de estos parámetros es similar al observado en la realidad. En la primer
imagen de la figura 5.5.1 podemos observar el gráfico de la f.d.p. w(α) para T = 1
y T = 10; en ambos casos la función para elegir las estrategias iniciales fue

g(α) =

{

1
5 si α ∈ (0, 5)
0 si no

.

Los jugadores empezaron aleatoriamente con estrategias de movimiento ex-
citado (aquellos α menores a 1), difusivo (mayores a 3) y super difusivo o vuelos
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Figura 5.5.1: El primer gráfico es de la función de densidad hallada por Radic-
chi y Baronchelli en [6] de la estrategia ganadora w(α) en el caso en que las
estrategias son elegidas con una función de probabilidad g(α) uniforme en (0,5).
T indica la cantidad de ofertas con las que cada jugador participó. El segundo
son simulaciones propias con 80 jugadores, 10 ofertas, 10 juegos (antes de ca-
da evolución) y 300 evoluciones. Podemos observar que los valores exitosos se
concentran en la misma región.

de Lévy (α entre 1 y 3). Una distribución uniforme en el (0, 5) es equivalente a
asumir que los participantes no conocen absolutamente nada sobre qué estrate-
gia es mejor para ganar el juego. Luego de las simulaciones podemos observar
que la situación resultó mucho más ventajosa para jugadores que usaron estrate-
gias entre 1,2 y 1,5 que es un rango dentro de los vuelos de Lévy.

En el primer gráfico de la figura 5.5.2 los resultados son válidos para T = 1,
mientras que en el segundo lo son para T = 10. Si bien las curvas parecen
mostrar resultados distintos, cuando hacemos e tender a infinito, la función
w(e) se acerca a una δ concentrada en un único punto, la estrategia óptima
α∗. Es importante aclarar que este resultado es independiente de la función de
distribución inicial g(α).

5.6. Una variante asimétrica

Modelemos nuevamente estas subastas LUB introduciendo un beneficio para
el jugador que dependa del número de apuestas. Sea

B(b, a) =M − b− a · c

el beneficio del jugador ganador, siendo M el valor del bien, b el menor precio
que ofertó y que nadie más propuso (LUB), a la candidad de ofertas hechas y
c el costo que debe pagar por cada una. Para acercar este modelo a la realidad
utilicemos como unidad de medida el signo de $, M cercano a $1000 y pense-
mos en un costo c de aproximadamente $0, 5. Aśı por ejemplo si tenemos los
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Figura 5.5.2: (Figura de [6]) Función de distribución de la estrategia ganadora
w(e)(α) en la generación e. El primero simula una cantidad de ofertas por jugador
de T = 1 y el segundo, de T = 10.

siquientes resultados

dos jugadores ofrecen $1
ninguno ofrece $2
un jugador ofrece $3
cuatro jugadores ofrecen $4
... ...

el ganador es aquel que ofertó $3 y gana $(M − 3− a · c).
Este problema ha sido analizado desde el punto de vista de la teoŕıa de juegos

en [18], [19] y se demostró que para N jugadores y costos de participación altos
c > M/2, existen N equilibrios de Nash en estrategias puras (un único jugador
oferta $ 1y los demás no participan). Para costos menores, no existen equilibrios
en estrategias puras.

Determinar el equilibrio mixto implica hallar una distribución de probabili-
dades sobre las (M − 1) ofertas posibles, que contemple además el número de
ofertas que cada jugador hará. Distintas propuestas (ver [16], [17]) mostraron
que las distribuciones uniformes y de Poisson, entre otras, no reproducen los
resultados observados en los sitios donde se puede participar de estas subastas.

Como ya mencionamos, se estudió en [6] las ofertas reales hechas en este
juego en distintos sitios de Internet. Recordemos que los jugadores saben si
alguna de sus ofertas está momentáneamente ganando la subasta y se enteran
cuando dejan de tener la oferta ganadora (aunque no saben si otro ofertó este
valor con el cual estaba ganando, o si alguien ofreció un número menor que
estaba disponible). El apostador realiza entonces una búsqueda de Lévy (ver
[20], [21]), donde la probabilidad de realizar la próxima búsqueda a distancia d
es proporcional a d−α, para cierto parámetro α > 1. Encontraron, además, que
α ≈ 1,3 para todos los jugadores, independiente de su experiencia.
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5.6.1. Invasiones

Los resultados anteriores sugieren que el juego se estabiliza en una situación
donde todos juegan con un vuelo de Lévy con un mismo exponente. Cabe pre-
guntarse si este es un equilibrio de Nash y en caso de serlo, si es evolutivamente
estable.

Como vimos en el segundo caṕıtulo, un juego simétrico con finitos jugadores
idénticos y un espacio de estrategias compacto posee un equilibrio de Nash
simétrico, con lo cual cabŕıa suponer que efectivamente se obtuvo un equilibro
de Nash. Observemos que ningún jugador tiene incentivos para cambiar su α,
pero si además se le permitiese cambiar el número de apuestas, podŕıa ser que
obtuviese una mayor ganancia esperada.

Para analizar esta posiblidad, tomamos los mismos parámetros de [7], asu-
mimos el valor del bien M = 1000, una población de 100 jugadores idénticos,
con un costo por apuesta de c = 1 que utilizan un vuelo de Lévy con exponente
α = 1, 3 y ofertan 10 veces cada uno. Observemos que la ganancia esperada de
un jugador i es

E(Gi) =
M

#{jugadores}
− 10 · c = 0.

Ahora, modificamos el exponente α de un jugador y le permitimos realizar
más apuestas. Si bien la dinámica que utilizamos es similar a la anterior, ahora
no permitimos que un jugador repita una misma oferta y si de las 10 ofertas
realizadas sólo hay k diferentes, sólo pagará (k · c)$. Lo mismo ocurre con el
jugador invasor, sólo pagará por las ofertas diferentes que realice.

La figura 5.6.4 representa el pago esperado cuando aumenta el número de
ofertas que realiza el invasor. Claramente, la población de agentes con α = 1,3
se ve perjudicada con la apariciónde éste.

El mismo fenómeno observamos para diferentes valores de α mayores a 2,
variando el número de ofertas y en todos los casos, el invasor logra reproducirse
hasta que la población se estabiliza en un nuevo estado, donde un porcentaje
corresponde a los invasores con diferente valor de α y realizando un mayor
número de ofertas.

En la figura 5.6.4 observamos que dos invasores jugando con α = 2 y rea-
lizando 90 ofertas, contra 98 jugadores que juegan con α = 1,3 y realizan 10
ofertas, logran reproducirse e invadir parcialmente a la población original.

Lo mismo ocurre si se introducen 30 invasores jugando con α = 2 y realizan-
do 90 ofertas, contra 70 que juegan con α = 1,3 como puede verse en la figura
5.6.5. En ambos casos la población final resulta mixta y se estabiliza (aproxi-
madamente) en un 93% de jugadores que utilizan α = 1,3 y un 7% que juegan
con α = 2.

5.7. Referencias

Como mencionamos varias veces, en esta caṕıtulo seguimos pricipalmente el
trabajo de F. Radicchi y A. Baronchelli en [7].
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Figura 5.6.5: Porcentaje de jugadores con α = 2, comenzando con 30% de
invasores.

5.8. Comentarios finales

En los dos primeros caṕıtulos estudiamos la relación entre equilibrios de
Nash, equilibrios evolutivamente estables, y los puntos fijos para la dinámica del
replicador, si bien nos limitamos a juegos de sólo dos jugadores. La extensión a
más jugadores es sólo técnica (ver por ejemplo [11] o [15], donde el número de
jugadores es aleatorio).

Observemos que según los resultados del caṕıtulo 3 no debeŕıan existir equili-
brios mixtos estables en juegos asimétricos. Una vez más, alĺı consideramos sólo
finitas estrategias, pero los resultados de este caṕıtulo pueden replicarse toman-
do valores discretos de α, sin ninguna dificultad. Cuando no hay mutaciones
aleatorias, por ejemplo, sólo se juega con los valores de α iniciales.

En el caṕıtulo 4 vimos para ciertos juegos, dentro de ciertas estrategias,
es posible tener equilibrios mixtos estables, si bien algunas variables aleatorias
introdućıan cierta asimetŕıa. Aqúı tenemos también esa asimetŕıa en el número
de ofertas que efectivamente realizará un jugador, pues aunque dos de ellos
decidan realizar T ofertas (para un mismo exponente α) el ✭✭paseo✮✮ de Lévy
puede modificar el número de ofertas que cada uno hace.

Quedan pendientes una serie de problemas para profundizar. Aclaremos que
en realidad los resultados de los caṕıtulos 2 y 3 no pueden aplicarse directamente
y su extensión a juegos con múltiples jugadores ya ofrece una dificultad no
menor.

Además en el problema de las subastas el espacio de estrategias es un con-
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tinuo, con lo cual el sistema de ecuaciones ordinarias del replicador debe ser
reemplazado por una ecuación en derivadas parciales o un operador integral. En
estos casos la noción de estabilidad cambia completamente ya que una dinámica
de imitación como la utilizada debe modificarse por otra donde se cambie de
manera continua de estrategias (ver [13, 14, 12, 10]).

También la difusión espacial es un problema interesante para considerar y
en el cual se introducen nuevas dificultades. Además del término fuente de la
ecuación del replicador, uno podŕıa esperar cambios en la proporción de indi-
viduos que usan una estrategia fija debido al movimiento de los jugadores.
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