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Capitulo 1

Introduccion

En diferentes industrias surge la necesidad de pronosticar eventos con el objetivo
de poder planear de un modo mas eficiente las decisiones a tomar. En particular,
el sector aerocomercial ve esa necesidad con mayor avidez ya que presenta muchos
actores, escasos margenes de ganancias y altos costos, fundamentalmente los produci-
dos por el combustible. Por tal motivo, poder pronosticar la demanda de pasajeros
consiste en un trabajo fundamental. Este tipo de informacién permite tomar acer-
tadamente decisiones tales como aumento y/o disminucién de frecuencias, cambios
de equipos, inversién en equipos nuevos, aumento y/o disminucién de tarifas, entre
otros.

Es esta tesis abordaremos un tipo de modelo de prondstico elaborado por Box
y Jenkins denominado ARMA/ARIMA. Presentaremos la teoria correspondiente y
los pasos a seguir para identificar y pronosticar los modelos. Finalmente aplicaremos
la teoria para dos ejemplos reales, trataremos los casos de las rutas Aeroparque-
Corrientes-Aeroparque y Aeroparque-Formosa-Aeroparque, volados por la principal
linea aérea del pais.

Los principales materiales de referencia de donde se obtuvo la idea central de la
teoria fueron los libros “Times Series Analysis”de Wei (2006) y “Time Series Anal-
ysis: Forecasting and Control”de Box-Jenkins (1984). Otra bibliografia consultada e
importante a la hora de profundizar en algunos conceptos corresponden a los libros
de Cryer y Chang (2008), Greene (2008) y Brockwell y Davis (1996) entre otros.

En el capitulo 2 definiremos conceptos basicos necesarios para modelar, intro-
duciremos las series de tiempo estacionarias y no estacionarias y observaremos que
ocurre cuando hay estacionalidad. En el capitulo 3 presentaremos todos los pasos para
modelar una serie de datos. En particular veremos como identificar los parametros
del modelo, como estimar los coeficientes de este, que modelo elegir y como pronos-
ticar. Estudiaremos también los modelos RegARIMA, que combinan los modelos de
regresion lineal modelando los residuos como un proceso ARIMA. El iltimo capitulo



INTRODUCCION 3

contiene el andlisis y los resultados correspondientes para el modelado de las dos ru-
tas aereas, compararemos los modelos obtenidos y contrastaremos con los datos reales.






Capitulo 2

Modelos de Series de Tiempo

2.1. Modelos de Series de Tiempo Estacionarias

2.1.1. Definiciones

En este Capitulo presentaremos ciertas definiciones que nos serviran para el pos-
terior desarrollo de los temas. Sea Z(w,t) un proceso estocastico con w en algin
espacio muestral, en este trabajo consideraremos t € Z. Sean t1,...,t, € Z y llamem-
os Zy;, = Z(w,t;) con 1 < j < n variables aleatorias provenientes de un proceso
estocastico Z(w,t). Definimos su funcién de distribucién como:

Fy, ...z, (x1,..xy) = Plw: Zy <xy,...,7;, < ).
Un proceso se dice de primer orden estacionario en distribucion si:
Fy, (1) = Fz ., (21) Vk.
En general, se dice que es de orden n estacionario en distribucion si:

FZtl,...,Ztn(xlw--xn) = thﬁk,...,zt“k(%l,---JUn)-

A partir de ahora denotaremos Z(w, t) indistintamente como Z(t) o Z; e introducire-
mos también los siguientes conceptos:

i) Esperanza: py = E(Z;).

)
i) Varianza: 0> = E(Z, — ju)°.
)

iii) Covarianza: ~(ty,ta) = E(Zy, — pey)(Zey — pay)-

'\/(tlth)

iv) Funcion de Correlacion: p(ty,ts) = ===,
/2 2
Utlo't2

5
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Para procesos estacionarios tendremos que juy = py 0,2 = 02 y dados t y t + k
tenemos que (¢, t+k) y p(t,t+k) dependeran solo de k. Un proceso se definird como
de Sequndo Orden Débil o Covarianza Estacionaria si sus momentos de érden 1y 2
(su esperanza y varianza) no dependen de ¢. En muchas ocasiones se usa el término
estacionario para procesos que son de covarianza estacionaria. En el caso particular
de un proceso gaussiano, como su distribucién queda determinada por u y o2 se tiene
que orden fuerte es lo mismo que orden débil. Pero en general un proceso puede ser
fuertemente estacionario y no ser débilmente estacionario (como ejemplo podemos
pensar en la distribucién Cauchy).

Funciones de Autocorrelaciéon, Autocovarianza y de Autocorrelacion Par-
cial

Definicién 2.1.1. Dado un proceso estacionario Z; con F(Z;) = py V(Z;) = o?
constantes, se definen:

» Funcién de Autocovarianza: v, = Cov(Zy, Zy1y) = E(Zy — ) (Zesr — 1b).

Cov(Zt,Zeyk) _ _

» Funcién de Autocorrelacién (ACF): pp = N NG
t t+k

Para todo proceso estacionario se satisfacen las siguientes propiedades:

i) Para todo t, v = V(Z).

ii) Del hecho que |p| < 1 tenemos que |yx| < vy para todo k.

)

)
iii) v, y pr son simétricas con respecto a k, i.e. v = y_r v pr = p—x para todo k.
iv) v v pr son semidefinidas positivas. Es decir, valen las siguientes desigualdades

n n
Z Z @iV —t;) = 0,

i=1 j=1

n n
> aiaipy g, >0,

i=1 j=1
para todos ty,...,t, V ai, ..., ay.
Definiremos también la Funcidn de Autocorrelacion Parcial (PACF) como la cor-

relacion condicional
P, = COYT(Zt7 Zt+k|Zt+17 ) Zt+k—1)-
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Consideremos ahora la regresién con variable dependiente Z; ;. y covariables Z; ;. _1, ...

Es decir
Zivk = Q1 Ziyh—1 + oo + OpiZe + €1y

con ¢x; los parametros de la regresion y e;yy errores de media 0 y no correlacionados
con Zyyk—j; Vj. Supongamos sin pérdida de generalidad que E(Z;) = 0, luego multi-
plicando a ambos lados de la regresiéon por Zyj_; y tomando esperanza obtenemos:

Vi = Pr1Vj—1 e+ Ok Yj—ks

Pj = Or1pPj—1 + - + Okkpj—k-

Usando la Regla de Cramer, podemos despejar los coeficientes ¢p; en particular se
obtiene facilmente que ¢gr = Py, la autocorrelacion parcial entre Z; y Z; . Por otro
lado podemos determinar que la autocorrelacion parcial entre Z; y Z; ., se puede
obtener como los coeficientes de la regresién asociada a Z; de k pasos.

Un proceso estacionario particular es el denominado Ruido Blanco. Diremos que
un proceso a; es de Ruido Blanco si es una sucesion de variables aleatorias donde
E(a;) =0,V (a;) = 0%y e = Cov(ay, azyr) = 0si k # 0.

Estimaciéon de p, 02,7, y pr

Las definiciones introducidas anteriormente son referidas a momentos poblacionales
que no son observables. A continuacién, resumiremos algunos posibles estimadores de
los parametros definidos anteriormente, obtenidos a partir de una realizacién del pro-
ceso en n instantes de tiempo.

n
Resulta natural considerar Z = Z —t, como un estimador de la media poblacional

t=1
1. Se puede probar facilmente que el estimador resulta insesgado. Ademas podemos

ver que si pp — 0, Var(Z) — 0 y por lo tanto el estimador resulta débilmente
consistente.

Para estimar v, podemos considerar las siguientes alternativas

~ = (Z: — 7)(Zt+k - 7) _ ny
n n—=k

Desarrollando 7 podemos aproximar

05~ (Zo— 1) (Zosr — ) — (n— k) (Z — p)°.

t=1

En ese caso, E(7) ~ v — 2y — (ZE)WV(2) y E() ~ e~ V(2).
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Donde si se desprecia el termino V(Z), que representa el efecto de estimar la
varianza, V/A;c resulta un estimador con menor sesgo que k. Pero 4, al igual que
es semidefinida positiva, sin embargo 7, no necesariamente lo es. Es por ello que en
general se considera 7, para estimar 7.

Como estimador de py usaremos

~ n—k N2 2
TG = D=2
== = - — .
0 Zt:l (Zt - Z)
A partir de los datos de una series temporal se puede estimar un nimero finito de

autocorrelaciones. El grafico de las autocorrelaciones muestrales recibe el nombre de
correlograma.

Para estimar la funciéon de autocorrelacion parcial ¢, usaremos la siguiente re-
cursi6én definida por Durbin (1960),

on = i,
ngﬁ . Pr+1 — 25:1 ékjf’lwlfj
k41 k1 = 1_ Z?:l ngijj ,
¢Ek+1 i = ngj - ¢3k+1 k+1¢2k kt1—j-

2.1.2. Representaciones Autoregresivas y de Promedio Movil

En esta Seccién analizaremos los modelos estacionarios que pueden clasificarse
como autoregresivos (AR), de medias o promedios méviles (MA) o procesos mixtos
que se denominan ARMA. En el analisis de datos reales, se encuentran muy raramente
series generadas a partir de procesos estacionarios ya que generalmente las series
presentan algin tipo de tendencia que no se corresponde con procesos de un modelo
estacionario. Sin embargo esto no debe llevar a pensar que estos procesos no son
interesante de estudiar. Como veremos mas adelante, una gran cantidad de procesos
no estacionarios pueden ser facilmente transformados en estacionarios y a partir de
esta transformacion les son aplicables los métodos de identificacién y estimacion de
los modelos estacionarios.

Antes de continuar, definiremos los operadores de retardo y diferenciacién de una
serie. Mas precisamente, el operador de retardo B se define como

BY, =Y,

es decir el resultado de aplicar el operador B resulta la observacion del periodo ante-
rior, por lo tanto si aplicamos d veces el operador obtenemos BYY; = Y,_,.
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El operador diferencia de una serie se define como
AY, =Y, — Y1 = (1—- B)Y,,
en general AYY; = (1 — B)%Y,.

Consideremos ahora, un proceso de la forma
Zy =+ ap +Prae_g +Poap_o + ..o = 1+ Zqﬁjatij

y su respectivo proceso de media cero Z; = Z; —u, donde las a; son variables aleatorias
no correlacionadas de media 0, notemos que

E(Zt) = N?

Var(Z,) = 0“22%2’
=0

Ve = E(ZtZt—I—k ZZ@%@%%? it k— j = 0Oq Z¢z¢z+k7

7=0 =0
Z:io ¢zwz+k
—o 7 -
Zzo Y

Si observamos las funciones de autocorrelacion y autocovarianza, al solo depender
estas de k (y no de t) y ser sumas infinitas, para poder afirmar que el proceso es
realmente estacionario, es decir de covarianza estacionario, basta ver que 7, es finito
para cada k . Por lo tanto, como

Pk =

el = |E(Z:Ziir)| < (Var(Z)Var(Zew)Y? = o4 Z% . (2.1)

: 00 2 . ; . .
si ) ;2o ¥;~ < 0o (v en consecuencia 1(B) converge en en el cfrculo unitario) es una
condicién suficiente para que el proceso sea estacionario.

Otra forma 1til de escribir un proceso es a través de su representacion autoregre-
siva es decir _ . .
Zy =ML+ Toli_g+ ...+ ay,
o de manera equivalente .
T(B)Zt = Ay,
donde m(B) =1 -3, m;B/ y 1+ 372, |m| < o0.

Un proceso se dird invertible si puede ser representado de esta manera. Notemos
que dado un proceso de la forma de Z; = 1(B)dy, serd invertible si las raices de
¥ (B) = 0 se encuentran fuera del circulo unitario.
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Para comprender esto consideremos un ejemplo particular, sea un proceso de la
forma Z; = (1 — 0B)a, . Si expresamos a a; en funcién de los Z;, obtenemos que

a=(1—0B)"Z, = (1+0B+0B>+ ...+ 0B")(1— "' B 7,

es decir _ _ _ .
Zt = _QZt—l — 922}5—2 — . — eth_k + ar — 9k+1at_k_1. (22)

Luego, si |#] < 1, tendiendo k a infinito, obtenemos que
Zt = _QZt—l — 02Zt—2 — ...+ Q¢ (23)

que define un proceso estacionario. Ademds, 7 = ;. Luego, si |f| > 1, tenemos que
(2.2) se agranda a medidad que k se hace grande. Luego se pide |0| < 1 para que la
serie sea invertible y se satisfara si

7(B)=(1-6B)"' =) ¢'B

converge para todo |B| < 1, es decir dentro del circulo unitario.

En general tendremos que un proceso serd estacionario si ¥(B) converge dentro
del circulo unitario y sera invertible si w(B) converge dentro del circulo unitario.

Finalmente presentaremos el concepto de la funcién generatriz de autocovarianza
que denominaremos . En efecto, dada ~; definiremos ~ de la forma

v(B)= > wB". (2.4)

Utilizando (2.1) y la condicién de estacionariedad, reescribimos la funcién generatriz
de autocovarianza del siguiente modo

v(B) = 0, Z Z%%MB'“ 0a2zz¢iwj3j’i
k=—o00 1=0 =0 =0
= 0 Y 0B Y wiB T = 0, u(B)(B).
Jj=0 i=0

Este método ayuda a calcular de forma conveniente la autocovarianza de un proceso.
La correspondiente funcién generatriz de autocorrelacién se define como

p(B)= > V(f)-

k=—o00

(2.5)
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Modelos M A

Los procesos de orden g de medias méviles, MA(q), se definen de la siguiente forma

q
Zy=p+ar +Pra1 + Poapo + o+ Yya—g = p+ Z Yjai—; (2.6)

j=0
donde a; es un proceso de ruido blanco con las propiedades ya definidas.

Observemos que el proceso de medias moéviles corresponde a una combinacion
lineal de variables ruido blanco, siendo los coeficientes 1 los ponderadores de la com-
binacién lineal. Su nombre proviene del hecho que las variables forman parte de este
promedio, aunque los coeficientes no sumen uno, que varia a lo largo del tiempo. Los
modelos de infinitos términos los denotaremos con MA (00).

Como vimos anteriormente sus momentos pueden ser calculados facilmente, resul-
tando:

E(Z;) = V(Zy) = 04° 2%2

Jj=0

2izo Vitbiek
2 i>0

Tk = 0, YiYivk =" 3
’ ; Z Zizo %'2

Como su esperanza y su varianza son invariantes en el tiempo, este proceso sera esta-
cionario si > ;% < oco.

Por una cuestién de mera conveniencia el proceso se escribira con los coeficientes
precedidos por el signo negativo. Ademas si usamos el operador de retardo un proceso
MA(q) puede definirse de la siguiente manera.

Zt = Gq(B)at,
donde 6,(B) = (1 — 6,B — 6,B> — ... — 0,B9) y Z, = Z, — . El polinomio 6,(B) lo
llamaremos polinomio de medias méviles.

Luego tenemos,

(2.7)

_ 04*(=0k 4 010p41 + ... + 04_10,) si k=1,2,....q
e 0 si k>q

{ (010k+1+..404—10q) si k=1,2,....q
P =

(14012 4...4+6,42)
si k>q

Observando (2.7) notemos que la funcién v, es 0 después del paso ¢. Es decir,
en general, un proceso MA(q) tendrd una funcién de autocorrelacién que se corta
después del paso q.
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Analicemos en profundidad un proceso MA(1). En efecto, sea el proceso de la
forma

Zt = a; —Oia,
(1 — HlB)at,

Usando la funcién generatriz de autocovarianza, obtenemos para este caso la siguiente
expresion

’Y(B) = O'a2(1 — 913)(1 — 913_1) = 0a2(_913—1 -+ (1 + 612) — elB)

Luego, la funcién de autocovarianza es la siguiente

(146,02 si k=0
T = —010,° si k=1
0 si k> 1.

Una vez obtenida la funcién de autocovarianza podemos calcular la funciéon de auto-
correlacion. En este caso es

—01 : _
_ o7 si k=1 5
Pk { 01 si k>1, (2:8)

que se corta después de k=1. Notemos que el proceso es estacionario pues 146, < cc.
Para que sea invertible necesitamos que las raices de 1 — 61 B estén fuera del circulo
unitario. Para ello debe valer que |0;] < 1.

Calculemos ahora la funcién de autocorrelacion parcial. Para ello, utilizaremos (2.8)
y su definicion, luego la funcién es de la forma

B =t —01(1 — 612)
ou = =156 146"
& _ —012 _ —6’12
- 1—p2 14+6.>+6,"
3 -0 3
— P1 1

1—2p2 1+462+6, 46,5

En general,
—0,"(1 — 6,%)

Pk = EETECER (2.9)

Notemos asi que el PACF decae exponencialmente, la forma en la que decae depen-
dera del signo de 6. Si el signo alterna, empieza con valores positivos, si no, decae en
los valores negativos.
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Ejemplo:

Sea el modelo MA(1) de la forma Z; = (1 — 0,5B)a;. Segun lo que vimos an-
teriormente, el ACF se debe cortar después del lag 1 y el PACF debe decaer ex-
ponencialmente. Generamos una muestra de este proceso y obtuvimos las siguiente
estimaciones.

Series MA Series MA

1.0

0.1

08
1

08
L
00

04

-0.1

ACF
Partial ACF

0.2

-0.2

0.0

-0.2
-0.3

-04

Lag Lag

Figura 1: Proceso MA(1). Graficos de ACF y PACF

Wold(1938) prob6 que cualquier proceso estacionario puede representarse univo-
camente como la suma de dos procesos mutuamente no correlacionados

Zt:Dt+Xt

donde Dy es linealmente determinista y X; es un proceso MA(c0). La parte D; puede
ser una funcion exacta del tiempo, en el caso mas simple podria ser una constante.

Modelos AR

Un proceso se dird autoregresivo de orden p o AR(p) si podemos representar a la
serie de tiempo como: . . '
Zt = ¢IZt—1 + —|— gprt—p + Q. (210)

Es decir, si el valor de la variable Z; depende de sus valores pasados y de la innovaciéon
a tiempo t. Estos procesos sirven para describir fenomenos donde los eventos producen
un efecto inmediato que solo duran un periodo corto de tiempo.

Si definimos el operador ¢,(B) = (1—¢1B—...—¢,B?) podemos escribir el modelo
AR(p) como: '
¢p(B)Zt = Q.
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Es facil ver que

Ve = O1Vk-1+ o+ OpYrp
Pk = P1pr—1+ o+ Dpprp (2.11)
Y = 0 Vji>p.
Analizaremos en detalle el proceso AR(1), es decir,
Zy = $1 21 + .
La funcién de autocovarianza se puede calcular de la siguiente forma:

E(Zt—th) = E(¢IZt—th—1)+E<Zt—kat)a

Ve = P17k-1-
y iterando y usando que py = 1, obtenemos la funcién de autocorrelacion
Pk = Q11 =¢1" k> 1. (2.12)

Observemos que si |¢1] < 1 y el proceso es estacionario, la ACF decae exponen-
cialmente. Ademas, notemos que el PACF es de la forma:

¢ _ plz(bl si k=1
kk 0 i k>1

Luego, el PACF de un proceso AR(1) presenta un pico con lag 1 y se corta posteri-
ormente.

Ejemplo

Generamos el modelo AR(1) de la forma (1 — 0,5B)Z; = a; y obtuvimos las
siguientes funciones estimadas.

Series AR Series AR

ACF
06 08 1.0
Partial ACF
03 04 05

04
02

0.0

0.0

-01

Lag Lag
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Figura 2: Proceso AR(1). Graficos de ACF y PACF

Volviendo al modelo AR(p), notemos que podemos escribir a (2.11) como

¢p(B)Pk = 0

donde ¢,(B) =1— ¢ B — ... — ¢,B” y B estd operando sobre la autocorrelacién. Si
reescribimos la ecuacién en la forma

p

6p(B) =01 -G:B)

i=1
obtenemos que para ciertos A;

pr = A1GY + AsGh + ...+ A,Gh

Dado que el modelo es estacionario resulta |G;| < 1. Luego si la raiz fuese real, el
término A;G¥ decaera a 0 a medida que k crece. Es decir, la funcién de autocorrelacién
es una exponencial amortiguada. En el caso de que la raiz fuese compleja, tendriamos
el término d* sin(2rkf + F) en la funcién de autocorrelacién, lo que lleva a un seno
amortiguado. En general, la funcion de autocorrelacién de un proceso autoregresivo
serd una mezcla entre un seno amortiguado y una exponencial amortiguada.

Por otro lado, observemos que existe una relaciéon entre los procesos AR(p) y
MA(q). En efecto, dada un proceso estacionario AR(p)

(bp(B)Zt = Ay,
podemos escribirlo de la siguiente forma,
. 1
Zy = ———a; = Y(B)ay.
t qzﬁp(B)at Y(B)ay

luego 1 (B)¢,(B) = 1. Esto implica que un proceso estacionario AR(p) finito lo pode-
mos entender como un proceso MA(oo) y de manera equivalente, dado un proceso
invertible MA(q),

Zt = Hq(B)a/t,
podemos escribirlo como
. 1 .
T(B)Zs = ——== 7t = ay,
0,(B)

asi, un proceso invertible MA(q) puede ser explicado como un proceso AR(c0). Esta
analogia se ve también en las funciones de autocorrelacion y de autocorrelacion par-
cial. Las autocorrelaciones de un AR(p) disminuyen y las autocorrelaciones parciales
se cortan, mientras que las autocorrelaciones de un proceso MA(q) se cortan y las
autocorrelaciones parciales disminuyen.
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Modelos ARMA

La combinacion de los procesos AR(p) y MA(q) da lugar a los procesos mixtos
ARMA(p,q) que se definen de la siguiente manera.

Definicién 2.1.2. Diremos que Z; sigue un modelo ARMA (p,q) si
¢p(B)Zt = 04(B)ay,
donde ¢p(B) =1 — B — ... — $,B” y 0,(B) = 1 — 6,8 — ... — 0,B7.

Como discutimos anteriormente para los modelos AR y MA podemos ver que
el proceso sera invertible si las raices de ,(B) = 0 se encuentran fuera del circulo
unitario y el proceso serd estacionario si las raices de ¢,(B) = 0 toman valores
también fuera del circulo unitario.

Asimisimo notemos que un modelo ARMA puede escribirse como un modelo pu-
ramente AR o puramente MA, pues:

L 0B a(B)

¢p(B)

Por otro lado, a partir de calculos sencillos podemos obtener que:

e = GP1Ye—1 + oo + OpVh—ps
Pk = O1Pk—1 + . + PpPr—p.

Notemos que la funcién de autocorrelacién es similar a la del proceso AR(p). Enténces,
la funcién de autocorrelacion de un proceso ARMA(p,q) decae después del lag ¢ como
la de un proceso AR(p). De manera anéloga, como el ARMA contiene al proceso MA
como caso particular, la funcion de autocorrelaciéon parcial sera una combinacién de
un seno amortiguado con una exponencial amortiguada.

A modo de ejemplo, trabajaremos con el proceso ARMA(1,1)

Zt = ¢1Zt—1 +ay — a4 (2.13)

donde por las condiciones de invertibilidad y estacionaridad |¢:| < 1y |61 < 1. Para
obtener la funcién de autocovarianza, multiplicamos (2.13) por Z;_; a ambos lados y
tomamos esperanza, por lo que obtenemos

’yk = qbl’Yk_l ‘I— E(Zt_kat) — 91E(Zt_kat_1). <214)
En particular, si £ = 0, por la simetria de 7, obtenemos

Yo = o171 + E(Ztat) - 91(Ztat—1)a
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luego usando que E(Za;) = 0,2, multiplicando (2.13) por a,_; y tomando esperanza,
obtenemos que

E(Z.tatfl) = ¢1E(Z't71at71> + E(awai—1) — 91E<at712)

= (¢ — Ql)UQQ'
Por lo tanto,
Yo = 17 + 0" — 01 (P — b1)oa”. (2.15)
Si ahora reemplazamos k& = 1, tenemos que
M = b0 — bhoa>. (2.16)

Sustituyendo (2.16) en (2.15), obtenemos que
Yo = 01’ — ¢1610.° + 04 — $1b10.”° + 0107,

(1+6:> —24:161)

(1-a%) "

Yo

Y por lo tanto v, quedaré

Vo= ¢ — b0,
(1+ 0,> — 2¢161)

= ¢ (1 _ ¢12) 0a2 - 91%27
(1= 0)(1 — ¢101)
B (1—¢1%) .
Si k > 2, tenemos por (2.14) que
Vi = P1Vk-1-
Y asi obtenemos finalmente el ACF de un ARMA(1,1)
1 si k=0
e = | Gy 8 k=1
®1Pk-1 si k>2.

Para determinar el PACF de un proceso ARMA(1,1), basta notar que un proceso
MA(1) es un caso particular. Entonces, el PACF del ARMA(1,1) también decaerd ex-
ponencialmente pero la forma en que lo hard esta directamente relacionada con los
valores de ¢ y 6.

Ejemplo:

Si generamos un proceso ARMA(1,1) de la forma notada como en (2.13) con
¢ = 0,5y 0 = 0,5, obtenemos las siguientes funciones que reflejan lo estudiado
anteriormente.
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Series ARMA Series ARMA

1.0

06

06
0.2 04

ACF

04
Partial ACF

00

0.0
0.2
1

Lag Lag

Figura 3: Proceso ARMA(1,1). Graficos de ACF y PACF

2.2. Modelos de Series de Tiempo No Estacio—
narias

Los modelos de series de tiempo presentados en el capitulo anterior, suponen la
existencia de la propiedad de estacionariedad; sin embargo, muchas de las series que
observamos no cumplen con esta caracteristica presentando una tendencia creciente
a lo largo del tiempo o una clara inclinaciéon a permanecer durante largos periodos
por encima o por debajo de su media. Como veremos en el presente capitulo, la no
estacionariedad en las series de tiempo se puede deber a la presencia de una tendencia
deterministica, al problema de las raices unitarias o a la presencia de una varianza
heterocedéstica. Dependiendo del caso en que nos encontremos, la no estacionariedad
tendra determinadas implicancias tedricas y estadisticas, asi como determinados pro-
cedimientos para transformar las series en estacionarias.

2.2.1. No estacionariedad en media

Como mencionamos anteriormente las series pueden presentar una tendencia a
través del tiempo. Estas series con tendencia, claramente no son estacionarias, porque
su valor medio cambia con del tiempo. Esta tendencia puede ser deterministica. Es
decir, la media del proceso no estacionario puede ser determinada mediante un funcién
que depende del tiempo. Por ejemplo, la funcién p; puede seguir una tendencia lineal
en cuyo caso se podria modelar a partir del siguiente modelo u; = ag + a1t y luego
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utilizar un modelo para la serie temporal del tipo:
7y = ap+aqt + ay (2.17)

donde a; es ruido blanco. En general se puede proponer un polinomio de grado k para
ajustar la media del proceso o algin tipo de tendencia representada por ejemplo por
SEeNnos y Cosenos.

Otro tipo de tendencia en media es la tendencia estocédstica. Aunque una serie
sea estacionaria, algunas partes de esta se comportan de igual manera salvo una
diferencia a nivel local. Tomemos por ejemplo un paseo aleatorio, es decir, un proceso
estocastico de la forma

Zi = p+ Zi1 + ay,

donde y es un parametro y a; ~ N(0,0,2%) i.i.d.. Aplicando diferencias obtenemos que
AZy =2y — Zyy = pi+ ay.

Esto nos muestra que AZ; sigue un modelo ARMA(0,0) y que es estacionario.

Esta forma de convertir una serie no estacionaria en estacionaria lleva a la siguiente
definicion:

Definicién 2.2.1. Dada una diferenciacion de nivel d, se denomina al siguiente mod-
elo ARIMA (p,d,q):
¢p(B)(1 — B)'Z; = 0y + 0,(B)a; (2.18)

donde ¢,(B) es el operador estacionario AR y 6,(B) es el operador inversible MA.

2.2.2. No estacionaridad en varianza y autocovarianza

Un proceso que no es estacionario en esperanza, tampoco lo serd en varianza y
autocovarianza. Un ejemplo sencillo de esto son los modelos ARIMA introducidos
anteriormente, no estacionario en varianza y autocovarianza. Ilustremos esto en el
caso particular del modelo ARIMA(0,1,1), es decir

Zt = Zt—l +a; — 9at_1

(1-B)Z;=(1—-60B)a, (2.19)
Si fijamos ng, dado ¢t > ng, podemos hacer una recursién en (2.19) y obtenemos:
Zt = Zno + a; + (]_ — 0)043_1 + ...+ (1 — 9)@n0+1 — Qano
Haciendo lo mismo para t — k > ng tenemos,

Zigy=Lng+ar—p+ (1 —0)ar——1 + ... + (1 = 0)an,+1 — Oay,
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Luego, calculamos su varianza, covarianza y correlaciéon:
V(Z) = o021+ (t—no—1)(1—0)?),
V(Zi_) = 021+ (t—Fk—ng—1)(1—0)%),
cov(Zi 1, Z;) = 0 2(1—=0)+ (t—k—mno—1)(1—6)?),
) (1—0)+(t—k—no—1)(1—0)> ‘
VA+{E—ng—1)1 =021+ (t—k—ng—1)(1—6)?

De estas ecuaciones obtenemos lo siguiente:

corr(Zy_y, Z

» V(Z;) depende de t.
s La varianza no esta acotada cuando t — oo.
w Sit > ng, corr(Zy_y, Zy) ~ 1.

Si bien hay series no estacionarias en esperanza y por lo tanto en varianza, existen
series que son estacionarias en la esperanza pero no estacionarias en la varianza.
Este tipo de estacionaridad puede ser tratada con transformaciones de estabilizacién
de varianza. Mas precisamente, aplicaremos un transformacién sobre la serie con el
objetivo de que su varianza sea constante. Es decir, buscaremos 7" tal que V(T'(Z;))
sea constante.

En particular, vamos a considerar el caso en que la varianza cambie en funcion a
cambios en la esperanza, es decir: V(Z;) = cf (1)

Para ello aproximamos 7' por su polinomio de Taylor centrado en ;. Entonces,

T(Zy) == T(pe) + T (pe)(Ze — e,

y por lo tanto

V(T(Zy) = [T (1) "V (Ze) = [T (1) f (o)

De esta forma, eligiremos T tal que T"(y;) = ——, es decir:
) \/_)7

Flpe

T(u) = /M ;(S) ds.

Box y Cox (1964), propusieron usar transformaciones de potencias del tipo

Zr—1
A )
donde el pardmetro A puede ser agregado al modelo y estimado por el método de

cuadrados minimos. La siguiente tabla muestra valores de A comunes y sus respectivas
transformaciones.

T(Z) =




CAPITULO 2 21

’ Valores \ Transformacion ‘

-1 Z%
1
-0.5 N
0 log(Z:)
0.5 N

Es importante aclarar que estas transformaciones se aplican en series positivas y
que deben utilizarse antes del método de las diferencias. Esto no introduce restriccion
alguna ya que puede sumarse una constante a la serie en orden de hacerla positiva.

2.3. Series de Tiempo estacionales

Otro factor importante que pueden presentar las series de tiempo es la estacional-
idad. Es decir, ciclos u oscilaciones estrictamente periddicas debido principalmente a
las fluctuaciones en diferentes peridédos del ano. La presencia de esta componente se
explica por la existencia de estaciones y su impacto sobre la actividad econémica ya
sea en la produccién agropecuaria, el turismo, las costumbres como por ejemplo el fin
de ano que es estrictamente cultural o simplemente por procesos fisicos tal es el caso
de la temperatura o las lluvias.

Diremos que una serie exhibe un comportamiento estacional de periodo s si existen
similaridades en la serie cada s intervalos. Asi, el operador de retardo B*® jugara un
papel importante en la explicaciéon de la serie y la identificacién del modelo.
Conociendo la periodicidad de los datos, serd conveniente presentar la informacién
utilizando la tabla de Buys-Ballot. Esta consistira en una tabla de doble entrada con s
columnas (o0 sea, tantas como sea la periodicidad). De esta manera uno podra analizar
los datos por columnas (corresponden a los datos Z;, Zyys, Zyyas, ...) 0 por filas (cor-
responden a los datos Z;, Zyy1, ..., Zy1s—1 para la primera fila).

Si tomaramos por ejemplo datos mensuales a través de los anos, tendriamos los datos
por anos en las filas y por meses en las columnas. En este caso, si tuviesemos el dato
de Agosto, este dependeria de las observaciones de los meses anteriores como también
de los pasados Agostos.

Luego, para relacionar observaciones de anos distintos (los Agostos) podemos pro-
poner un modelo de la forma

®p(B*)(1 - BPZ, = 04(B%)a (2.20)

Como los «; pueden estar correlacionados, se introduce un segundo modelo de la
forma

s(B)oy = 0(B)ay (2.21)
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donde los a; son ruido blanco. Finalmente, si sustitimos (2.21) en (2.20), utilizando
las nociones de invertibilidad de los procesos obtenemos la férmula general del modelo
multiplicativo ARIMA(p,d,q)x ARIMA(P,D,Q)

©p(B°)dy(B)(1 = B)!(1 = B*)PZ, = Oq(B*)8,(B)as (2.22)

Este andlisis puede ser aplicado también para series con tres o mas componentes
periddicas.

Para identificar el modelo, sera necesario analizar la funcién de autocorrelacién
de la serie completa, la serie correspondiente a B*(Z;) y la correspondiente a B(Z;).
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Identificacion, Estimacion y
Pronéstico

Los modelos estadisticos en general requieren de tres estapas para su construccion:
Identificacién, Estimaciéon y Validacion. Si bien las diferentes estapas son sucesivas,
de acuerdo al resultado de cada etapa puede surgir una retro alimentacién. Donde por
ejemplo luego de la estimacién puede darse la necesidad de reespecificar el modelo, o
en el proceso de validacién puede dar como resultado un modelo insatisfactorio.

3.1. Identificacion del Modelo

En la etapa de identificacién el objetivo es definir si es necesario aplicar algun tipo
de transformacion, si el modelo debe incluir una media no nula y finalmente decidir
cual de los modelos es el indicado y con que parametros.

Comencemos identificando un modelo ARIMA(p,d,q). Es decir:

(1—¢B—...—¢,B")(1—-B)'Z,=(1—6B— ... —0,B%a,

Hemos visto que para un proceso ARMA(p,q), ¢,(B)Z; = 0,(B)as, la funcién de
autocorrelacion satisface

op(B)pr = 0 k>gq

Ademds, si ¢,(B) = [[_,(1 — G;B), la solucién de esta ecuacién para la k-ésima
autocorrelacién es

Pk = Alle + AQGQk + ...+ Apka k > q—p (31)

23
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Bajo el supuesto de que el modelo es estacionario, los ceros de ¢,(B) deben estar
fuera del circulo unitario. Esto implica que las raices G, Gs, ..., Gp son unitarias. Ob-
servando (3.1), tendremos que la funcién de autocorrelacién decae rapidamente para
valores grandes de k. Luego, si la funcién de autocorrelacion no decae rapidamente,
es signo de que es necesario cierto grado de diferenciacion.

Una vez determinado el érden de diferenciacion, se procedera a determinar los valores
py q del médelo.

Para determinar el modelo, utilizaremos principalmente las funciones de autocor-
relacion y de autocorrelacién parcial. Los pasos a seguir serdan los siguientes:

1) Graficar la serie y elegir las transformaciones apropiadas. Se suele aplicar la
transformacién de estabilizacién de varianza y usarla como serie original. De-
terminar si la serie necesita ser diferenciada para lograr estacionariedad.

2) Examinar las ACF y PACF. En el caso de que la ACF decaiga lento, estarfa im-
plicando que el proceso es no estacionario en Z; pero posiblemente estacionario
en alguna diferencia de Z;. Asi, deberiamos aplicar las diferencias correspondi-
entes.

3) Examinar las ACF y PACF de la serie diferenciada con el objetivo de determinar
los valores de p y ¢ correspondientes. Para ello, utilizamos la siguiente tabla:

’ Proceso \ ACF \ PACF ‘
AR(p) | Decae exponencialmente Se corta después de k=p
como una onda sinusoidal
amortiguada

MA(q) | Se corta después de k=q Decae exponencialmente
como una onda sinusoidal
amortiguada
ARMA(p,q) | Se corta después de k=q-p | Se corta después de k=p-q

Para el caso de las series estacionales, la identificacién del modelo constara de dos
partes. La primera, en la que identificaremos la componente periddica estacional de
la series y la segunda donde se determinaran los parametros no estacionales de ella.
En efecto, los pasos a seguir seran los siguientes:

1) Encontrar d y D tal que
Y, = (1-B)41 - B’z

pueda considerarse como un proceso estacionario. Es decir, calculo las diferen-
cias por ejemplo con lag=1 y lag=12
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2) Examinar las ACF y PACF de Y, en los lags s, 2s, 3s, .... Determinar P y () para
que el modelo ARMA(P,Q) sea compatible con las funciones de autocorrelacién
y autocorrelacion parcial observadas.

3) Examinar las ACF y PACF de Y; en los lags 1,2, ..., s— 1. Determinar p y g para
que el modelo ARMA(p,q) sea compatible con las funciones de autocorrelacion
y autocorrelacion parcial observadas.

3.2. Estimacion de Parametros

Luego de considerar el modelo a utilizar es necesario estimar los parametros. Si
elegimos un ARMA (p,q):

Zt = qﬁth_l + ...+ ¢pZt_p +ar — a1 — ... — Ogay—g

Deberemos estimar ¢, i, 0 v o,2. Utilizaremos dos posibles métodos de estimacién; el
de los momentos o el de maxima verosimilitud. Adem&s comentaremos la aplicacion
del estimador de minimos cuadrados en este contexto.

s Método de Momentos:

El estimador més simple de momentos para p, resulta i = Z; para estimar
¢ usaremos que pp = Q1pk—1 + ... + Pppr—p. Asi, obtenemos las ecuaciones de
Yule-Walker. Si reemplazamos py por

V(2 — 2)(Zoyy, — Z)
Z?:l (Zt - 7)2

y resolviendo el sistema podemos obtener (51’ e ¢Ap.

~

Pk =

Una vez obtenidos los estimadores de ¢, calculamos
Yo = E(ZtZt) = E((Zt)(¢1Zt._1+...—|—qprt'_p—|—at—91at_1—...—ant_q)) == ¢1’Y1+...+¢p’yp+0a2

y de esta forma estimamos o2

Go=Jo(1 = ¢1p1 — .. — Opp)-
Para calcular los estimadores 6 veamos como ejemplo un proceso MA(1), cal-
culamos
oy = 7 —b,
===
Y o 1+6:°

Si reemplazamos py por pg, resolvemos y obtenemos 6,
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s Estimadores de Maxima Verosimilitud:

Consideremos un modelo ARMA(p,q)
Zi =121+ oot 0pZip+ ar — Oras 1 — ... — Ogas,
como a; ~ N(0,02), si a = (ay, ..., a,) tenemos
P(alf, i, ¢, 042) = (2m0,2) 270" Bicalar)®,
Enténces, si escribimos a a; de la siguiente forma

ay = elat_l —+ ...+ ant_q + Zt — ¢1Zt‘_1 — ... gprt.—p

Sea entonces Z = (Zy,Zy,....2,) y Z* = (Zi1_p, ..., Z_1,Zy) las condiciones
iniciales conocidas, definimos la funciéon condicional de méaxima verosimilitud

como S(6.1.6)
2y 2 ) M
InL(p,p,0,0,°) = —n/21n2wo, “02
donde
S(6,11,0) =D a*(¢,1,0/2%,a%, Z). (3.2)

t=1

Las cantidades que maximizan la funcién condicional de maxima verosimilitud
n (¢, pu,0) seran los estimadores de maxima verosimilitud condicional. Notar
que basta minimizar (3.2) para encontrar estos estimadores.

Luego de estimar los parametros, computamos 0;2 = S((Z”Jf ) donde d.f corre-

sponde a la cantidad de términos usados en S menos el nimero de pardametros
estimados.

Estimacién por minimos cuadrados (OLS):

En general, dada una regresién lineal simple, Z, = ¢X; + ¢;, con E(e;) = 0,
E(e;?) = 0.2, E(erey) = 0 para t # qy E(X:er) =0, tenemos que el estimador
de cuadrados minimos ordinarios es gb Z“— que es consistente e insesgado.

Si ahora considero Z; = ¢Z;_1 + e;, tenemos que:

b= Dt ZnZi T 2@ te) _ Y e
Z?=2 thlg E?:z Zt712 Z?:z Zt712

Para determinar si el estimador sigue siendo consistente e insesgado debemos
analizar la naturaleza del error e;. Veamos las siguientes situaciones:

:¢+
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e Sie estal que E(e) =0y V(e) =042 Z esun AR(1). Asf, ¢ = fy y , si
ademds [¢| < 1 tenemos que la funcién de autocorrelacién es sumable por
lo que ¢ es consistente.

e Sie; = (1 —60B)ay, tenemos que e; es un proceso MA(1). Luego, Z; es un
ARMA(1,1) con Z; = ¢Z; 1+ a; — 6a;,_1. Notemos que si tomo esperanza,
obtengo que E(Z;_1e;) = E(Z;_1(a; — 0a;_1)) = —00,>; asi estarfa violan-
do las hipétesis E(eer) = 0y E(Xie;) = 0. Como ¢ = pi v, para un
ARMA(1,1), se tiene que p; = % # ¢ esto indica que el estimador
no es consistente.

3.3. Diagnéstico y Selecciéon del Modelo

Luego de estimar los parametros, sera necesario realizar el chequeo del modelo.
Esto consistird principalmente en determinar si los a; del modelo resultan realmente
ruido blanco, esto se llevara acabo a traves de los residuos dj.

~

a
Inicialmente podremos calcular —= y analizar si tiene distribucién N(0,1) realizan-
o

a
do un histograma o usando test de normalidad. Para determinar si tienen varianza
constante, observaremos los ACF y PACF de los residuos para ver si forman un patréon
y se encuentran o no correlacionados.

Supongamos ahora que al chequear el modelo, notamos por ejemplo que AR(1)
produce un MA(1). Es decir:

(1 — ¢1B)(Zy — p) = by

donde b; corresponde a un MA(1).

En ese caso, propondremos un ARMA(1,1) y volveremos a estimar y luego chequear
el modelo, de esta manera iteraremos este procedimiento hasta obtener ruido blanco.

Otra forma de determinar que modelo elegir es usando un criterio de seleccion
de modelos. Existen muchos de ellos, sin embargo, el criterio de seleccién de Akaike
(AIC) es el mas utilizado.

Rigurosamente, definimos AIC(M) como
AIC(M) = —2log(L) + 2M (3.3)

donde L correponde a la verosimilitud y M es la cantidad de parametros del modelo.

En particular, para un modelo ARMA, tenemos que

log(L) = _7” log 270, — %
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donde S es el definido en (3.2). Si maximizamos respecto a ¢, i1, 0 y 0,2 obtenemos
log L = _7” log 0,2 — g(l + log 2m)°.

Finalmente,
AIC(M) = nlog 0,2 + 2M,

el criterio consiste en seleccionar aquel modelo que tenga minima condiciéon de Akaike.

Otro criterio a utilizar es el Criterio de Informacién Bayesiano (BIC). Este criterio
penaliza también la cantidad de parametros introducidos al modelo pero, a diferencia
de Akaike, el BIC proviene de un marco bayesiano.

El BIC se define como
BIC = —2log(L) + M logn,

notando que solo se diferencia del AIC en que el segundo término aparece n. Se
elegiran los modelos que minimicen BIC. Desde una perspectiva bayesiana, BIC se
utiliza para encontrar el modelo mas probable dados los datos.

3.3.1. Algunas herramientas de validaciéon

En esta secciéon enumeraremos todos aquellos criterios o tests que utilizaremos
para determinar y diagnosticar el modelo elegido

Test de Raiz Unitaria:

Este test se utiliza para determinar si la serie es o no estacionaria. Como vimos
anteriormente, esto quedara determinado por el valor de las raices.

Por ejemplo, para un modelo AR(1) de la forma Z; = ¢Z;_1 + a;, planteo el test
Hy:9=1 vs Hi:9p<1

El test estd basado en gg un estimador de ¢ y se rechazara Hy si Qg— 1 < 0. Como el
estimador de cuadrados minimos de ¢ es

gg _ Z?:l Zt—lzt
Z?:l 2%
se puede probar que bajo Hy
. n S Ziar o 1/2w(1)? — 1]
n(o—1)=—= t7712t2 - — = 2
WYL [w@)de

donde w(t) es un proceso browniano , es decir,
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= w(0)=0
» w(t)~ N(0,t) para cada t

v [w(ty) —w(ty)] y [w(ts) — w(ts)] son independientes para cada (t1,t) y (t3,t4)

En general, el estadistico a utilizar bajo Hy es

h—1
r_¢-1

54

que converge en distribucién a
1/2[(w(1))’] -1
o (w(z))2da]'2

y rechazaremos H, para valores pequenos de T.

Test de Shapiro-Wilk:

El test de Shapiro-Wilk testea la hipdétesis nula de que X4, ..., X,, tienen una dis-
tribucion normal. En este caso, se utilizaremos este test para observar la normalidad
de los residuos. El estadistico utilizado es

(> ie a,»Xi?
Z?:l(Xi - Xi)2

W:

-1 . .
donde a = (ay, ...,a,) = (Wff“;—*lu)l/? , E(X;) =m; y V es la matrix de covarianzas.

Para este estadistico, rechazaremos la hipétesis nula para valores pequenos de W.

Test de Kolmogorov-Smirnov:

Este test sirve para comparar una muestra con una distribucién dada. La hipdtesis
nula serd que la muestra sigue esa distribucién. El test estd basado en la diferencia
entre la distribucién teodrica y la hipotética. Dados n datos Xj, ..., X,,, se define el test
estadistico

T = sup |F*(z) — F,(z)|, (3.4)

donde F* es la distribucion hipotética y F,, es la distribucion empirica basada en la
muestra. La distribucion del T, esta tabulada en tabla, luego si T excede el 1 — «
cuantil dado por la tabla de cuantiles para el Test de Kolmogorov, se rechaza la
hipo6tesis nula con un nivel de confianza «.
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Test de Dickey-Fuller

Este test chequea la hipotesis nula de que existe una raiz unitaria en una serie de
tiempo. No entraremos en detalle sobre el estadisticio que se construye en este caso.
A modo de ejemplo si consideramos un proceso AR(1),

Yy = PYp—1 + Ui,

este tendra una raiz unitaria si p = 1. Notemos que el proceso puede ser reescrito
como

By, = (P - 1)yt—1 + e = OYp—1 + e

Luego el test se concentrara en testear si § es 0 para comprobar si hay o no una raiz
unitaria.

3.4. Forecasting

Luego de identificar el modelo y confirmar los supuestos asumidos, llega el mo-
mento de pronosticar. Tomaremos como ejemplo un modelo ARIMA (p,d,q) con d =0
6 d # 0. Bs decir, ¢(B)(1 — B)*Z, = 0(B)a, donde ¢(B) es el operador AR y 0(B) es
el operador MA.

Reescribamos el modelo a tiempo ¢ + [ en su representacion AR.
W(B)Ztﬂ = Gty

donde 7(B) =1 -3, m;B/ = %}B_)B)d o equivalentemente

Zi = E TjZisi—j + Quyl-

jz1
Si aplicamos a ambos lados de la ecuacién el operador 1 4 1B + -+ + 1 B!
-1 I-1
0= Z Z Tk L1k + Z a1
§>0 k=0 k=0
donde my = —1 y ¢y = 1. Si elejimos ¢ tal que Y ", Tn—it; = 0 y llamamos ﬂj(l) =

I—i .
Y o TMi—14j—i¥; es facil ver

-1
iyl = Z Wj(l)Zt—jJrl + Z Vi
=0

7>1 %
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Entonces tomando esperanza condicional

Z(l) = E(Zyi Zit <n) = > w0 2,

Jj=1

pues E(an+j|Z:, t <n) = 0. Asi obtenemos que el error del forecast es:
. -1
ull) = Zuwt — o) = 3y (3.5)
=0

Cuando actualicemos el forecast, obtendremos un nuevo error. Si el error obtenido
viene dado por (3.5), tenemos que en particular e,(1) = a,i1. Entonces, Z, —
Zn-1(1) = a,. Usando (3.5) obtenemos que e, 1(I+1) = ey(l) + an, y en(l) =

~

1 — Zn(l). Luego,

A ~ ~

Zn(l) = Zy (1 4+ 1) +01(Z — Z, (1))

Lo que es lo mismo que:

~

Zn+1(l) = ZN(Z + 1) + Qﬁl(Zn—i-l - Zn(l)) (3'6)

En definitiva, el update del forecast se obtiene sumando al forecast anterior un mul-
tiplo del error del pronostico anterior. Ademds, se puede obtener un intervalo de
confianza de nivel 1 — a dado por

i—1

Zy(1) £ Napa[l + > 5°]%0,%,

j=1

donde Ny /s es tal que P(N > Ngyj2) = a/2 con N ~ N(0,1).

Ejemplo: Sea un proceso AR(1) de la forma

(1—=oB)(Z; —p) = a;

donde ¢ = 0,6, u = 9 y 0,2 = 0,1, supongamos que tenemos las siguientes observa-
ciones Zgy = 9,6, Zggs = 9, Zgg = 9, Z100 = 8,9 y buscamos el forecast de Z1p1 y Z1g2
con un nivel de confianza del 95 %. La forma en la que procederemos serd la siguiente:
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1) Si el modelo lo escribimos como

Zy — = (21 — ) + ay,

luego ™ = ¢ y por lo tanto ¥; = ¢ entonces el forecast correspondiente ven-
dra dado por

~

Zi(l) = i+ $(Zu(l = 1) = ).

Asi, obtenemos que

Z1oo(1) =94 0,6(8,9 — 9) = 8,94,
Z100(2) = 9+ 0,6%(8,9 — 9) = 8,964.

2) Para computar los limites de confianza del forecast del 95 %, aplicamos (3.4).
Asi, obtenemos que para Zo; los valores son

8,94 +1,964/0,1,

y para Zigy son

8,964 & 1,96+/1 + (0,6)2,/0,1.

3) Supongamos ahora que la observacién a t = 101 resulta ser 8,8. Usando (3.6),
actualizamos el forecast y obtenemos:

Z101(1) = Z100(2) + 0] Z1o1 — Z1oo(1)] = 8,964 + 0,6(8,8 — 8,94) = 8,88.

En definitiva, estos serian los pasos a seguir a la hora de utilizar el modelo propuesto
para pronosticar. Notemos que tomamos ¢, jy o2 como los valores poblacionales, sin
embargo cuando trabajamos con datos reales el mismo procedimiento deberia hacerse
con los estimadores de estos.

3.5. Modelos RegARIMA

Con el objetivo de poder pronosticar, hemos estudiado modelos que explican la
progresion de una variable en funcion de la variacién de la misma. Esta forma de
modelar no toma en cuenta los factores exdgenos. Asi, en el caso de pronosticar la
demanda de una ruta, los modelos ARIMA no se ven afectados explicitamente por la
variacion de la oferta, la tarifa, el contexto econémico, etc. Con este objetivo, intro-
ducimos los modelos RegARIMA. Estos consisten en modelar la variable dependiente
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con una regresion lineal y, los residuos obtenidos, con un modelo ARIMA. En efecto,
si y; es la variable que queremos pronosticar,

Y = P + ey,
donde z; es la variable independiente y los errores e; satisfacen
(1 — B)¢(B)e; = 0(B)uy,

donde d es el 6rden de diferenciacion, ¢ es el operador AR de 6rden p y 0 es el operador
MA de 6rden q.

Una posible estimacién para (3, ¢1, ..., ¢p, 01, ..., 8,) son los estimadores de maxima

verosimilitud (ML) con errores normales. El cémputo de estos errores ya fue estudiado
por Pesaran (1973), Pagan and Nicholls (1976), Harvey and Phillips (1979) y Otto,
Bell y Burman (1987).
Otra opcién consiste en un enfoque de cuadrados minimos condicionados, el cual
resulta en una aproximacion a los estimadores de maxima verosimilitud exactos. En
el caso de que los e; sigan un proceso autoregresivo dado por (1 — B)4¢(B)e; = uy,
este estimador sera el de minimos cuadrados.



Capitulo 4

Analisis de datos reales

El objetivo de este capitulo es aplicar la teoria presentada anteriormente utilizando
datos reales. Las series a modelar corresponden a la demanda de pasajeros de ciertas
rutas aéreas en el periodo enero de 2005 a mayo de 2012. Llamaremos demanda a los
pasajeros que efectivamente volaron esa ruta en un determinado mes. El objetivo de
generar estos modelos consiste en obtener funciones de demanda para poder realizar
un planeamiento mas preciso de la red. Decisiones tales como inversién en equipos,
aumento o disminucién de frecuencias e ingreso a determinados mercados pueden ser
sustentadas usando las predicciones obtenidas por estos modelos.

Como mencionamos anteriormente, utilizaremos los modelos ARIMA para la serie de
datos correspondiente al periodo 01/05- 05/12 y ademas consideraremos las siguientes
variables independientes ajustando los modelos RegARIMA

1) AKOS: Los akos son una métrica que se utiliza en la industria aerondutica.
Corresponde a Asientos por Kilémetro ofrecido; es decir, al producto de la
oferta en asientos por los kilometros que tiene la ruta. Mide la oferta.

2) EMAE: El emae es el Estimador Mensual de Actividad Econémica. Es un indice
que realiza el INDEC con el objetivo de medir la actividad econémica.

3) IPC: El ipc es el Indice de Precios al Consumidor. Es el indice que realiza el
INDEC con el objetivo de medir la inflacién.

4) ICC: El icc es el Indice de Confianza del Consumidor. Este indice es elaborado
por la Universidad Torcuato Di Tella y es un indicador que ”...permite anticipar
los cambios de tendencia de la actividad economica a lo largo del ciclo, a través
de sus puntos de giro. El indice se compone de diez series seleccionadas en base
a su conformidad, consistencia temporal, racionalidad econdmica, representa-
tividad y disponibilidad” .

34
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A la hora de realizar los modelos utilizamos el software R. A su vez, los principales
paquetes utilizados fueron forecast , graphics , Imtest , stats , tseries y TSP.

4.1. AEP-CNQ-AEP

El primer ejemplo a modelar consiste en la ruta Aeroparque-Corrientes-Aeroparque.
En un principio ajustaremos un modelo ARMA o ARIMA segin correspondiere. Los
principales estadisticos de la serie son los siguientes:

Media 3786.24
Mediana 3415
Desviacion Estandar | 12228.54
Curtosis -0.305
Minimo 1282
Méximo 7254
Nro. Observaciones 89

Figura 4.1: Estadisticos Principales .

Para comenzar con el analisis de la serie observamos su grafico en la figura 4.2. En
un principio, analizando los principales estadisticos y el grafico, podemos notar cierta
no estacionariedad en la media, mas precisamente una esperable tendencia creciente.
De todas maneras analizaremos la aplicaciéon de una Transformacién de Box-Cox a
los datos para obtener mas estacionariedad. La potencia elegida para transformar los
datos lo podemos obtener del gréfico 4.2.

Pasajeros AEP-CNQ-AEP 2005-2012

99%,

6000 7000

Pax
3000 4000 5000
log-Likelihood
-120 -110
|

2000
-130
1

T T T T
2006 2008 2010 2012 -2 -1 0 1 2

Afios R

Figura 4.2: Grafico Pax vs Mes y Grafico Box-Cox
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El grafico sugiere aplicar dos posibles transformaciones a los datos con los valores
A =0y A= —0,5. De esta manera, consideraremos dos posibles series para trabajar
el modelo; Y; = log(Z;) y Wy = %. Los graficos de las nuevas series obtenidas
vienen dados por la figura 4.3. ’

Pasajeros AEP-CNQ-AEP 2005-2012 Transformados Log Pasajeros AEP-CNQ-AEP 2005-2012 Transformada -0.5

85
1.970 1975

1965

Pax
8.0

Pax
1.955 1.960

b
1.950

1.945

T T
2006 2008 2010 2012 2008 2008 2010 2012

Afios Afios

Figura 4.3: Series Transformadas

Una vez transformada la serie, utilizamos el Test de Dickey-Fuller para determinar
si la serie es efectivamente estacionaria o no. En caso de ser necesario, aplicaremos
diferencias hasta lograr la efectiva estacionariedad. Aplicamos el test a la serie sin
diferenciar y a la serie diferenciada con d =1, D = 1.

Luego tendremos en cuenta 5 series de datos:

i) mengl: Es la serie sin diferenciar y sin transformacién Box-Cox,

i) meng2: Es la serie sin diferenciar con transformacién Box-Cox A = —0,5,
iii) mcng3: Es la serie sin diferenciar con transformacién Box-Cox A = 0,
iv) meng2d1si: Es la serie diferenciada con transformacién Box-Cox A = —0,5,

v) meng3dlsl: Es la serie diferenciada con transformacion Box-Cox A = 0,

Los estadisticos y p-valores obtenidos del Test de Dickey—Fuller se reportan en la
figura 4.4.
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’ Serie \ Estadistico p-valor ‘

meng 1 -3.30 0.0759

meng?2 -3.58 0.0394

menqg3 -3.46 0.04987
menqg2d1sl -5.82 0.01

mcnqg3d1sl -5.51 0.01
Figura 4.4: Test Dickey-Fuller

Observando los p-valores podemos rechazar con seguridad la hipdtesis nula en las
series con ambas diferencias; es decir, asegurar estacionariedad de los datos (notar
ademds que la serie sin diferenciar tiene un p-valor mayor a 0.05). Las series sin difer-
encias también presentan p-valores menores a 0.05 por lo que también rechazaremos
la hipotesis nula. En efecto, armaremos cuatro tipo de modelos; aquellos que combi-
nan los dos posibles lambda con las dos posibles series diferenciadas. Al momento de
seleccionar el modelo, notemos que en el caso de utilizar un criterio de informacién
(por ejemplo el AIC), el criterio penalizara la sobrediferenciacién. Asi, tendremos una
herramienta que nos permitira eliminar los modelos innecesariamente complejos. A
partir de ahora haremos los cuatro analisis por separado.

4.1.1. Caso A=-05byd=D=1

Calculamos las funciones de autocorrelacién y autocorrelacion parcial, obteniendo
la figura 4.5.

Funcion de Autocorrelacion Funcion de Autocorrelacion Parcial

1.0

08
02

0.1

06

-0.1

02
I

| o~
ST T

0.0

ACF
04
L
Partial ACF
0.0

-03

04

Lag Lag

Figura 4.5: Funcién de Autocorrelacién y Autocorrelacién Parcial
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A partir de estos gréficos, utilizando la teoria propuesta por Box-Jenkins, deter-
minamos los valores p, ¢, P, Q) del modelo ARIMA que vamos a elegir. Notemos que
dado que conocemos la estacionalidad de los datos (s=12), tendremos efectivamente
que encontrar los parametros P, () que modelan la estacionalidad. Una vez analizados
los gréficos, los modelos propuestos vienen dados por la figura 4.6, donde la columna
método se refiere al la estimacion empleada para los coeficientes, nos referiremos a
(ML) maxima verosimilitud o (CSS) méxima verosimilitud con utilizando como val-
ores iniciales cuadrados minimos condicionales. La columna “Modelos”les asigna un
nombre a estos y el resto de las columnas corresponden a los parametros de cada uno
de los modelos. Aquellos que no presentan parametros, son modelos generados por
la funcion auto.arima del paquete forecast. Esta funcion genera una cantidad fija de
modelos y elige segtn criterios de informacién. En particular, el modelo 3 usa el AIC
y el modelo 4 el BIC.

Modelo P d q P D Q Metodo
Modelol.1l L] 1 0 1 1 1 ML
Modelo2.1 2 1 Li] 1 1 1 ML
Modelo3

Modelod

Modelos.1 Li] 1 Li] 1 1 1 C55
Modelof.1 2 1 0 1 1 155

Figura 4.6: Pardametros de los modelos propuestos

Una vez ajustados los coeficientes mediante los métodos propuestos obtenemos
finalmente los modelos mostrados en la figura 4.7.
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Series: monoge
ARTMA(D,1,0) (1,1,11[12]

Coefficients:
sarl Stal
o.0z2% -1.00
=.e. 0O.128 0.15

gigmwaZz estimated as 0.0000Z5&: log likelihood=2Z352
ALIC=-558 AICc=-558 BIC=-551

Series: mongl
ARTMAL(Z,1,00i1,1,1)[12]

Coefficients:
arl arz saril smal
-0.3% -0.4 0.015% -1.00
S.e. 0.11 o.1 0.132 0.158

gigmwatZ estimated as 0.000019&6: log likelihood=292
AIC=-574 AICz=-573 BIC=-562

Series: mcnogs
ARIMA(1,0,0) (1,0,0)[12] with hon-zero meah

Coefficients:
arl sarl intercept
0.494 0.23 1.9668
s.e. 0.098 0.11 o.oo01

sigma™Z estimated as 0.0000211: log likelihood=352
AIC=-697 LICz=-696 BIC=-687

Series: mongl
ARIMA(1,0,0) with non-zZero mean

Coefficients:
arl intercept
0.55 1.9668
s.2. 0.09 o.o01

zigma™Z estimated as 0.000022%: log likelihood=350
AIC=-(95 AICo=-594 BIC=-687

Series: mondgs
ARIMA(O,1,0) (1,1,1)[12]

Coefficients:

zarl smal
-0.083 -0.787
s.e. 0.127 0.099

zigwa”? estimated a= 0.0000383: part log likelihood=279

Series: mondgz
ARTMAL{Z,1,00i1,1,1)[12]

Coefficients:

arl ars sarl smal
-0.38 -0.38 -D0.087 -0.76
S.e. 0.11 o.11 0.131 o.10

Sigma™z estimated as 0.0000295: part log likelihood=z288
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Figura 4.7: Estimacion de los coeficientes de los modelos.

Previa seleccién del modelo debemos ver que se cumplen los supuestos afirmados
en la teoria de Box-Jenkins. Principalmente debemos ver si los residuos tienen o no
una distribucién normal. Para ello vamos a utilizar el Test de Kolmogorov-Smirnov.
Este test compara cuan parecidos son los datos al de una distribucion dada. En nuestro
caso compararemos los residuos de los modelos con una distribucién normal de media
0. Los estadisticos y p-valores vienen dados por la figura 4.8

’ Modelo \ p-valor ‘
Modelol.1 | 0.1805
Modelo2.1 | 0.2545

Modelod | 0.3145

Modelo4 | 0.2901
Modelo5.1 | 0.0131
Modelo6.1 | 0.0028

Figura 4.8: Test Kolmogorov-Smirnov

Notemos que sacando los iltimos dos modelos, no es posible rechazar la hipdtesis
nula; es decir, afirmar que los residuos no cuentan con distribucién normal. Observe-
mos también que los ultimos dos modelos son justamente los ajustados por CSS. Una
vez observado que los supuestos no se violan podemos utilizar los criterios de infor-
macién para seleccionar el modelo. La figura 4.9 muestra los valores de AIC y BIC
de los modelos.

Modelo AIC BIC Método
Modelol.1|-558 -551 ML
Modelo2.1|-574 -562 ML
Modelo3 |-697 -687 ML
Modelod |-695 -687 ML

Figura 4.9: Valores de AIC y BIC

Efectivamente, la funcién auto.arima es la que encontré los modelos con AIC y
BIC mas bajos. Estos dos modelos tienen a la serie sin diferenciar, por lo que no
los tendremos en cuenta en este caso. Asi, usando las condiciones, obtenemos que el
modelo2.1 presenta el AIC y BIC mas bajo.

En la siguiente figura 4.10 presentaremos los graficos de los prondsticos de cada
modelo para los proximos 12 meses.
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Modelo1.1 Modelo2.1
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Figura 4.10: Forecast de los modelos

Finalmente, estos seran los dos modelos con los cuales nos quedaremos para este
caso.

4.1.2. Caso A=-05byd=D=0

La figura 4.11 muestra las funciones de autocorrelacion y autocorrelacion parcial
de las series.
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Funcién de Autocorrelacion Funcion de Autocorrelacion Parcial
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Figura 4.11: Funcién de Autocorrelacién y Autocorrelacién Parcial

Observando estos graficos, determinamos los parametros correspondientes de los
modelos ARIMA, asi proponemos un modelo que es estimado por los métodos de
ML y CSS y denominamos modelos 7.1 y 8.1. Por otro lado los modelos 3 y 4 son
sugeridos por la funcién auto.arima.

Modelo p d g P D Q| Método
Modelo7.1|1 0 0 ©0 0 1 ML
Modelo8.1| 1 0 0 ©0 0 1 CS5
Modelo3 1. 0 1 a a4 ML
Modelod 1 ¢ 0 0 o 0 ML

Figura: Pardmetros de los modelos

Una vez determinados los parametros, ajustamos los coeficientes usando los méto-
dos propuestos. La figura 4.12 muestra la informacién referida a cada modelo.
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Feries: mongl
ARIMA(1,O0,0)(0,0,11[12] with =zZero mean

Coefficients:
arl smal
le4+00 0.1254
S.e. le-04 0.1054

Sigma™Z estimated as Z.764e-05: log likelihood=340.19
ATC=-6/74.35 AICe=-674.1 EIC=-866.91

Jeries: mondgs
LARTMA(1,O0,0)(0,0,11[12] with =zero mwean

Coefficients:
aril smwal
1.0001 0O.1421
=.e. 00,0004 0.1149

Sigma™Z estimated as Z.795e-05: part log likelihood=340.3

Series: mongl
ARIMA(L,O0,0) (1,0,0)[12Z] with non-zero mean

Coefficients:

aril sarl intercept
0.4944 0.2272 1.9662
=z.e. 0.0932 0.1094 o.o0o01z2

gigma™Z estimated as Z.10%e-05: log likelihood=352.38
AIC=-gf96.77 AICz=-gf96.29 BIC=-£86.81

Jeries: mondgs
ARIMA(1,0,0) with non-zero mean

Coefficients:
arl intercept
O.5526 1.9661
=.e. 0.0895 0.0011

SigmatZ estimated as Z.ZZ3e-05: log likelihood=350.3
LIC=-694.8 AICe=-694.32 BEIC=-5587.14

Figura 4.12: Estimacién de los modelos propuestos

A continuacion testeamos si los residuos tienen una distribuciéon normal o no.
Para ello usamos el test de Kolmogorov-Smirnov. Los estadisticos y p-valores vienen
se presentan en la figura 4.13.
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’ Modelo \ p-valor ‘
Modelo7.1 | 0.4468
Modelo8.1 | 0.5422
Modelod | 0.3145
Modelo4 | 0.2901

Figura 4.13: Test Kolmogorov-Smirnov

Observando los p-valores correspondientes, notamos que no hay evidencia para
rechazar la hipdtesis nula. A continuacién, procedemos a la selecciéon del modelo. Ya
sabemos que los modelos 3 y 4 presentan los AIC y BIC mas bajos (se puede ver en
la figura 4.14).

Maodelo AIC BIC Método
Modelo7.l | -674 -674 ML
Modelo8.1 CsS
Modelo3 -696 -686 ML
Modelod -6594 -687 ML

Figura 4.14: Valores de AIC y BIC

Los valores pronosticados para los 12 meses siguientes vienen dados por la figura 4.15.
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Modelo7.1 Modelo8.1
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Figura 4.15: Forecast de los modelos

4.1.3. Caso A=0yd=D=1

Desde las figuras 4.16 hasta la figura 4.21 mostramos el andlisis hecho para este
caso, cuya procedimiento es andlogo a lo realizado anteriormente
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Funcion de Autocorrelacion Parcial Funcion de Autocorrelacion
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Figura 4.16: Funciones de Autocorrelacién y Autocorrelacién Parcial

Como procedimos anteriormente, del analisis de las ACF y PACF, proponemos los
modelos 1.2, 2.2, 5.2 y 6.2, ademas la funcién auto.arima sugiere otros dos modelos
que no tendremos en cuenta ya que se determinaron no incluyendo diferencias.

Modelo p d g P D Q |Método
Modelol.2( 0 1 0 1 1 1 ML
Modelo2.2| 2 1 0 1 1 1 ML
Modelo5.2( 0 1 0 1 1 1 C55
Modelog.2( 2 1 0 1 1 1 C55

Figura 4.17: Pardmetros de los modelos
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Series: monogd
ARIMA{O,1,0){1,1,1)[12]

Coefficients:
sarl smal
-0.0012 -1.0000
Sinet 0.1289 0.z01s
Zigmwa*s eatimated as 0.0806:
AIC=54.2 ATCe=54.53 BIC=51.19
Jeries: mengs
ARIMA(O,1,0) (1,1,1)[12]
Coefficients:
saril smal
-0.1233 -0.7718
S 0.1301 0.1023
gigma*:2 estimated as 0.1Z2:

Series: monogd
ARIMA{Z2,1,0)(1,1,1)[12]

Coefficients:
arl ara sarl
-0.3762 -0.4156 -0.0231
Sy 0.1042 0.101s 0.1301

Zigma*z eztimated a= 0.06038:

AIC=37.8 ATC=38.66 BIC=49,
Feries: mondgi
ARTIMA(2,1,0) (1,1,1)[12]
Coefficients:
arl arz zarl
-0.3726 -0.4013 -0.1399
s.e. 0.1043 0.1061 0.1333

Zigmwa™z estimated as 0.09319:

47

log likelihood=-24.1

part log likelihood=-27.-:8

smal

-1.0000
0.2085

log likelihood=-13.9

46

-0.
a.

part

=mal
7320
1086

log likelihood=-17.66

Figura 4.18: Valores de los coeficientes de los modelos.

Continuamos ahora con el analisis de los residuos, en la figura 4.19 observamos
que los modelos 5.2 y 6.2 (ambos ajustados por CCS) tienen residuos que no siguen
una distribucién normal. Asi, por violar los supuestos, los eliminamos de la eleccién.
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’ Modelo \ p-valor ‘

Modelol.2 | 0.1012
Modelo2.2 | 0.1689
Modelo5.2 | 0.0099
Modelo6.2 | 0.0088

Figura 4.19: Test Kolmogorov-Smirnov

Finalmente, calculamos los criterios de seleccién para los dos modelos, resultando
el modelo 2.2 més adecuado.

10.0

95

90

85

80

75

70

Modelo AlC BIC Método
Modelol.2 54,2 61,19 ML
Modelo2.2 37.8 4946 ML

Figura 4.20: Valores de AIC y BIC

Modelo1.2

2008

2008 2010 2012

95

9.0

385

8.0

Ta

Modelo2.2
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Figura 4.21: Forecast de los modelos propuestos

2012




SEccION: CAPITULO 4 49

4.14. CasoAN=0y d=D =0

Este caso comprende desde las figuras 4.22 a la 4.27. Observando las funciones
ACF y PACF elegimos cuatro posibles modelos. Luego, verificamos que los residuos
sean efectivamente normales usando el test de Kolmogorov-Smirnov. Notando que los
cuatro modelos cumplen los supuestos, realizamos el forecast correspondiente.

Funcion de Autocorrelacion Funcion de Autocorrelacion Parcial

1.0
0B

0.8

04

ACF
04
Partial ACF
02
L

02
I
00

0.0

-0.2

Lag Lag

Figura 4.22: Funciones de Autocorrelacién y Autocorrelacién Parcial

Modelo p d g P D Q |Método
Modelo7.2(1 0 0 0 0 1 ML
Modelo8.2| 1 0 0 0 0 1 C55
ModeloS 1 & 2 0 @G 14 ML
Modelolo ([0 0 1 0 0 O ML

Figura 4.23: Pardmetros de los modelos
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Zeries: mohnogl
ARIMA(1,0O,0) (0,0,1)[12] with =zZero mean

Coefficients:
arl smal
le4+00 0.0944
S.e. le-04 0.1103

gicma™2 estimated as 0.0B666: log likelihood=-15.01
AIC=42 .02 AICc=42.3 EIC=49.45

Series: mongd
ARTMA(L,OQ,0) (0,0,1)[12] with =Zero mean

Coefficients:
arl smal
1.0004 0.1009
s.e. 0.0042 0.1169

gicma™2 estimated as 0.08767: part log likelihood=-17.97

Series: mongd
ARTMA(1,0,2) with non-zero mean

Coefficients:

arl mal ma:s intercept
o.9877 -0.3041 -0.5030 S.2023
=.e. 0.0404 0.1069 0.1004 o.1307

gigma™Z estimated as 0.0637:
ATCz=19.13

ATC=15.41

Zeries: mohnogl

ARIMA (0,0, 1)

log likelihood=-4.2
BIC=30.85

with non-zero mean

Coefficients:
mal intercept
0.6452 5.1563
z.e. 0.0771 O.0450

gicma™2 estimated as 0.070Z6:
ATCe=23.05

ATC=2Z.76

log likelihood=-5.38
BIC=30.23

Figura 4.24: Valores de los coeficientes de los modelos

’ Modelo \ p-valor ‘

Modelo7.2 | 0.3693

Modelo8.2 | 0.43
Modelo9 | 0.2082

Modelo10 | 0.832

Figura 4.25: Test Kolmogorov-Smirnov
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Modelo AIC BIC Método
Modelo7.2| 42,02 49,48 ML
Modelos.2 55

Modelod 18,41 30,85 ML
Modelol0 | 22,76 30,23 ML

Figura 4.26: Valores de AIC y BIC

Modelo7.2 ModeloB.2
_ _
= =
o | = ]
(53] (53]
| g — R
_ _
o o
(= (=
[ [
[ [ I I [ [ I I
2006 2008 2010 2012 2006 2008 2010 2012
Modelo9 Modelo10
(=
[n)]
2 | = ] |
o o |
w [am]
| Lo
[ -
[ [ I I [ [ I I
2006 2008 2010 2012 2006 2008 2010 2012

Figura 4.27: Forecast de los modelos propuestos

4.1.5. Modelos regARIMA

En la seccién anterior solo buscamos explicar el comportamiento de la demanda
en funcién de procesos propios de la ruta. Al aplicar modelos RegARIMA, veremos
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como se relacionan la demanda con procesos exdgenos a esta y si la inclusién de
estas variables exogenas ayudan a explicar mejor la demanda. A su vez, cuando la
regresion se hace en base a los logaritmos de los datos, economistas suelen usar el
coeficiente que acompana a la variable independiente (el cual se llama elasticidad,
por ejemplo, elasticidad del precio con respecto a la demanda) para determinar cuan
sensible es el cambio de la variable dependiente (la demanda) cuando varia la variable
independiente ( el precio, algin indice, etc).

En primer lugar ajustaremos un modelo regARIMA para ello consideramos la
regresion

Y, = 01 + Balog(akos) + Bslog(emae_est) + By log(ipc_gba) + F5 log(icc_utdt) + ¢

donde &; sigue un proceso ARIMA. El ajuste de la regresion se presenta en la siguiente
figura.

Call:
lm{formula = log(Pax] ~ logi{akeos) + logiemas est)] + log(ipc gbha) +
log{iec utdt), data = mcng)

Feziduals=:
Min 10 Median a0 Max
—-0.37059 -0.0939¢ 0.01337 0.08575 0.273889

Coefficients:
Esztimate 2td. Error t wvalue Pri>|t]]

{Intercept]  -7.16252 0.83251 -5.604 3.73e—13 ##%
log {akos) 0.54570 0.05409 15.689 < Ze—16 #%*
log(ewmae est) 1.23607 0.25366 4.573 5.1Ze-06 *%%
log{ipe gha) -1.14595 0.20556 -5.575 2.94e—-07 **%
log{ice utdt) 0.40341 0.10513  3.585 0.000203 ***

Jigndit: eedes: O &t 000012358 000124 05050 2% Ol %

RFesidual standard error: 0.1325 on 84 degrees of freedom
Multiple R-sguared: 0.85435, bdjusted R-sguared: 0.8361
F-statistic: 113.2 on 4 and 854 DF, p-—value: < 2.2e-16

Figura 4.28: Valores de la regresion

Observando esta figura, notamos que en un principio los coeficientes obtenidos son
buenos. Al aplicarle el Test de normalidad de Shapiro-Wilk a los residuos, notamos
que el p-valor obtenido es mayor que 0.05 (es 0.2272); por lo tanto no hay evidencia
para rechazar la hipotesis nula y afirmar que los residuos no siguen una distribucién
normal.
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Una vez analizada la informacién de la regresion pasaremos a modelar los residuos
con un modelo ARIMA. Para eso, inicialmente le aplicaremos el Test Dickey-Fuller
para determinar si hay raices unitarias. EL p-value obtenido es de 0.02.

El test nos muestra que no es necesario diferenciar dado que la serie ya es esta-
cionaria. Asi, modelaremos los residuos de la regresién con un modelo ARMA.

anq ACF Residuos regARIMA PACF Residuos regARIMA

04

HCF

a
Partial ACF

1 B | ‘ | H\‘ ‘
< B ‘ ‘ T |HH‘ \‘
= | |‘| M | |H\ ‘\ ‘

T
0 20 an &0 i 0 10 20 30 40 0 10 20 a0 a0

02
i

Time. Lag Lag
Sin diferencias, regARA CNQ

Figura 4.29: Serie de residuos, funciones de Autocorrelacion y Autocorrelacién Parcial

Al observar los graficos de las correlaciones, elegimos los siguientes cuatro modelos,
uno de los cuales fue elegido automdticamente por la funcién auto.arima (la cual
selecciona el modelo que minimice el criterio de Akaike). (figura 4.30). Es decir, si
denotamos con Y; el logaritmodel proceso de demanda de pasajeros vamos a considerar
los siguientes modelos:

regenql: Y; = 31+, log(akos)+ 53 log(emae_est)+ B4 log(ipe_gba)+ 05 log(icc_utdt)+
¢; donde e2(B)Y; = 61(B)ay.

regenqg2: Y; = 1+ log(akos)+F5 log(emae_est)+ [y log(ipc-gba)+ 5 log(icc_utdt)+
¢; donde ¢o(B)ey = 019(B)ay.

regenqg3: Y; = 1+ log(akos)+ 05 log(emae_est)+ 04 log(ipc_gba)+ 05 log(icc_utdt)+
€t donde ¢g(B)€t = QIO(B)at.

regengd: Y; = (1402 log(akos)+ G log(emae_est)+ G4 log(ipc_gba)+ 55 log(icc_utdt)+
¢; donde ¢3(B)e; = 02(B)ay.
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> regengl
Series: regongiresiduals
ARTIMAL(Z,0,1) with zero mean

Coefficients:
arl arz mal
0.7961 -0.342%2 -0.2306
5.e. 0.2730 0.1482 0.2871

sicmwa”2 estimated as 0.01222: log likelihood=g5.54

AIC=-131.08 AICe=-130.6 BIC=-121.12
> regeongl
Zeries: regengiresiduals

ARIMA(Z,0,10) with =zero mwean

Coefficients:
arl arz mal mai mad mad mas mat  mad mas
0.7182 -0.2686 -0,2558 u] u] u] u] u] 0 -0,1094
s.e. 0.3758 0.2183 0.3787 u] a a a u] a 0.1233
gigma™2 estimated as 0.009963: log likelihood=77.4
AIC=-140.58 AICz=-135.94 BIC=-105.44
> regoncd
Zeries: regengiresiduals
ARIMA(S,0,10) with zZero wean
Coefficients:
arl arZ ar3d ard arS aré ar? ard mal maZ
0.4915 -0,1207 u] u] u] [u] 0 -0.324% -0.0453 n]
s.e. 0.2702 0.1541 a u] a a a 0.1566 0.2463 a
mall
-0,3401
- 0.1298

Zigma™2 estimated as 0.003513: log likelihood=72.25

ATC=-14Z2,49 AICe=-131.48 BIC=-95.21
> regcngd
Series: regongiresiduals
ARIMA(5,0,2) with zero mean
Coefficients:
arl ara arsd mal s
1.4765 -1.4533 0.4642 -0.9633 0.8834
=z.e, 0.1260 0.1286 0.1105 0.1008 0.1136

zicmwa®: estimated as 0.01066:
ATIC=-135.01 AICe=-136.95

log likelihood=75
BIC=-123.08

mas

-0.z2458
0.1033

ma3

Figura 4.30: Modelos ARMA para los residuos

Para estos cuatro modelos verificamos los supuestos de normalidad de sus residuos.
Usando el Test de Kolmogorov-Smirnov, notamos que los residuos de los modelos no

dan evidencia para rechazar la hipétesis nula (figura 4.31).

mad
u]
u]
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m=al0
=04 2507,
a.13z0

mas maf ma?
u] [n] u]
a a a

mas
0.,172%
0.1554

mad
-0.1738
0.1106
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’ Modelo \ p-valor ‘
regengl | 0.8469
regeng2 | 0.7088
regengd | 0.4601
regeng4 | 0.7939

Figura 4.31: Test Kolmogorov-Smirnov

4.1.6. Pronésticos y conclusiones

En la figura siguiente mostramos el prondstico obtenido para los siguientes 7 meses
usando los modelos ARIMA y RegARIMA y comparamos con sus correspondientes
valores reales. Antes de continuar, resumiremos los modelos que hemos analizado
hasta aqui, ademas de los modelos de regresién. Llamaremos Z; a la serie con A = —0,5
e Y, a la serie con A\ = 0, de esta forma los modelos obtenidos son los siguientes:

Modelol.1: ®;(B')¢o(B)(1 — B)(1 — B'*)Z, = ©,(B")8(B)a;
Modelol.2: ®,(B'?)¢o(B)(1 — B)(1 — B?)Y, = ©,(B")0,(B)a;
Modelo2.1: ®;(B*?)¢y(B)(1 — B)(1 — B'*)Z; = ©1(B*)6y(B)a,
Modelo2.2: ®;(B?)¢o(B)(1 — B)(1 — B®)Y, = ©:(B")0y(B)a;
Modelo3: (I)l(Bm) 1( )Zt @O(Blz)GO(B)at

Modelo4: ¢,(B)Z; = 6y(B)a;

Modelo7.1: ¢O(Blz)¢1(B)Z = @1(312)90(B)at

Modelo7.2: ®y(B*?)¢,(B)Y; = ©1(B"?)0y(B)a,

Modelo8.1: ¢1(B)Z; = 6y(B)ay

Modelo8.2: (I)()(Blg)(ﬁl(B)Y; @1(312)90(3)

Modelo9: ¢1(B)Y; = 65(B)a;
Modelol0: ¢y(B)Y; = 0,(B)a;

En la figura 4.32 observaremos los resultados obtenidos. La tabla muestra los
resultados por modelo para los siguientes 7 meses. Contiene los pardmetros (valores
p,d,q,P,D,Q), el lambda que se utiliz6 para transformar la serie y el método con el
cual se ajusto la serie. Debajo aparecen los errores de estimacion en valores absolutos.
Los colores varfan del verde (errores pequenos) al rojo (errores altos).

Nuestro objetivo final consiste en elegir el modelo con el cual explicar la serie de datos
original. Notemos en un principio que las regresiones muestran los errores mas altos.
Mas alla de presentar errores pequenos en el primer mes, se observa que en los meses
posteriores los valores llegan al 30%. Una posible explicacién es que las variables
independientes elegidas pueden no ser las correctas, en el sentido que indices como
el IPC o el ICC explican situaciones macro que pueden no influir directamente en la
demanda de pasajeros. Es asi que seria conveniente elegir variables que se relacionen
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exclusivamente con la demanda.

Con respecto a los modelos ARIMA, los nimeros 3,4,9 y 10 presentan altos errores.
Sorprendentente, estos son los modelos con condiciones AIC y BIC mas bajos para
cada transformacién (A = —0,5 y A = 0). Asi, redujimos la cantidad de modelos
elegibles a 8. Cabe notar que todos ellos presentar errores cercanos al 20 % en los
primeros dos meses de forecast. Sin embargo esto disminuye rotundamente para los
siguientes meses, llegando a tener medias de 5% de error.

Finalmente, privilegiaremos los modelos con menor cantidad de parametros. Es asi que
los modelos 8.1 (un proceso explicado como un AR(1)) y los 7.1,7.2 y 8.2 (procesos
ARIMA(1,0,0)*(0,0,1), con diferentes valores de A y métodos de ajuste) serian en ese
orden los modelos a seleccionar para explicar el comportamiento de la ruta.
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Figura 4.32: Modelos CNQ- Resultados - Error Absoluto

ARIMA

AEP-FMA-AEP

SECCION: CAPITULO 4
Nombre Modelo lambda|d|D|Metodo| 1 2 3 4 5 [ 7

Modelo 1.1 |{0,1,0)%(1,1,1}[12] -0,5| 1| 1ML 4400| 4408 | 5312| 5800| 5769 5334| 4467
Modelo 1.2 {0,1,0)%(1,1,1)[12] 01| 1ML 4529| 4537| 5255| 5735| 5636| 5330( 4501
Modelo 2.1 [(2,1,0)*(1,1,1)[12] -0,5| 1| 1|mL 4534| 4396| 5290| 5885| 5800| 5342 4468
Modelo 2.2 [{2,1,0)%(1,1,1)[12] 0 1f 1|ML 4765| 4557| 5243| 5847 5686( 53306| 4517
Modelo 3 |(1,0,0)%(1,0,0}[12] -0,5| 0] O|ML 371b| 3551 3865| 3746) 3850 3939( 3712
Modelo4 |{1,0,0) -0,5| 0] O|ML 4204| 3859| 3686| 3595| 3546| 3520( 3505
Modelo 7.1 |(1,0,0)*(0,0,1)[12] -0,5| 0| o|css 4483| 4520| 4841| 4790| 4904| 4981/ 4861
Modelo 7.2 [{1,0,0)%(0,0,1)[12] 0| 0f O|ML 4534 | 4654| 4874 | 4838| 4922( 4980| 4878
Modelo 8.1 ((1,0,0) -0,5| 0| O|CS5 4488| 4571 4986| 4981| 5173| 5324( 5243
Modelo 8.2 |(1,0,0)%(0,0,1)[12] 0f 0] ofCss 4626| 4661 | 4911 ABBT| 4922 5076( 4976
Modelo9 |{1,0,2) 0f 0] OfNL 4737 4364 | 4339 4315| 4292 4269( 4247
Modelo 10 |{0,0,1) 0| 0f O|ML 4234 3591| 3591 3591 3591 3591| 3591
regengl  |reg+(2,0,1) 5715| 4842| 3039| 3572| 4139| 4042| 2614
regeng2  |reg+(2,0,10) 5869| 5126| 3202 3590 4069| 3940| 2448
regecngd  |reg+(8,0,10) 5785| 5064 3155| 3524| 4039| 3927| 2375
regengd  |reg+(3,0,2) 5491| 4719| 3148| 3852| 4339| 3938 2428
Real L807| 5534| 5061| 5180 519%| 5520( 4421
Modelo 1.1 | 25% 20% 12% 11%
Modelo 1.2 23% 18% 11%
Modelo 2.1 22% 21% 14% 12%
Modelo 2.2 19% 18% 13% 9%
Madelo 3 24% 28% 26% . 16%
Modelo 4 _ 27% 21%
Modelo 7.1 24% 18% 10% 10%
Modelo 7.2 E T AT 21% 16% 10% 10%
Modelo 8.1 2% 17% 19%
Modelo 8.2 22% 16% 13%
Modelo 9 200 21% 14% 17% 17% 23%
Modelo 10 ! 19%
regcngl 13% 20% 27%
regcng 22%
regong3 22%
regcngd 15% 26% 16%

57

El segundo ejemplo a modelar consiste en la ruta Aeroparque-Formosa-Aeroparque.

Para este caso los estadisticos son los siguientes:
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Media 2760.56
Mediana 2559
Desviacién Estandar | 937.72
Curtosis -0.67
Minimo 1040
Maximo 4829
Nro. Observaciones 89

Figura 4.33: Estadisticos Principales .

El comportamiento de la ruta viene dado por el grifico de la serie, mostrado en
la figura 4.34. Al igual que en el analisis realizado para la otra ruta, el primer paso
consiste en transformar la serie para lograr estacionariedad. Para ello utilizamos la
Transformacion Box-Cox. La eleccién del mejor A viene dado por la figura 4.34.

Pasajeros AEP-FMA-AEP 2005-2012

95%

-90
L

4000
-100
I

-110

Pax
3000
log-Likelihood
-130 -120
I I

2000

-140
I

1000

T
2006 2008 2010 2012

Afios

Figura 4.34: Serie de Datos y Gréfico Box-Cox

Observando el grafico vamos a tomar A = —1, es decir, tomaremos la serie Z; =
1/Y;. Una vez transformada la serie vamos a diferenciar hasta lograr la estacionariedad
de la serie. Para determinar si se llego a esta, utilizaremos el Test de Dickey-Fuller.
Los valores obtenidos los encontramos en la figura 4.35.

’ Serie \ Estadistico p-valor ‘

mfma?2 -2.05 0.55
mima2d1 -4.80 0.01
mima2sl -1.78 0.66

mima2d1sl -5.01 0.01

Figura 4.35: Test Dickey-Fuller
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Observando la tabla, nos quedamos con la primera diferencia de lag 1. Una vez
determinado el érden de diferenciacion, vamos a calcular las funciones de autocor-

relacion y autocorrelacion parcial. Estas funciones se presentan en la figura 4.36.

Funcion de Autocorrelacion Serie d=1

Funcion de Autocorrelacion Parcial Serie d=1

1.0

08
0z
1

06
0.1

04
00

ACF
Partial ACF
-01

02
1

02
I

00

-03

04
04

Figura 4.36: Graficos ACF y PACF

El paso siguiente consiste en identificar el modelo analizando las dos funciones.

Los modelos propuestos vienen dados por la figura 4.37
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> modelol
Series: mfmaZ
ARIMA(3,1,2)(1,0,1) [12]

Coefficients:
arl ar2 ar3 mal maZ sarl smal
-0.2749 -0.4323 -0.2770 0.0452 -0.0400 0.919%1 -0.7625
= R 0.4580 0.1898 0.2098 0.4720 0.2491 0.7302 1.2108
sigma”™2 estimated as B.083e-09: log likelihnod=69%2.82
ATC=-1369.683 AICc——1367.81 BIC=-1349.81
> modelo2
Series: mfma2
ARIMA(2,1,2)(1,0,1)[12]
Coefficients:
arl ard mal maz sarl smal
0.3395 -D.5415 -0.5669 ©D.1898 0.9836 -0.8461
s.e. 0.2224 0.1678 0.2557 0.2323 0.4643 1.0150
sigma”™2 estimated as 7.94e-09: log likelihood=692.&61
AIC=-1371.22 ATCc=-1369.82 BIC=-1353.88
> modelo3
Series: mfma2
RARIMA (2,1,1) (1,0,0)[12]
Coefficients:
arl ar2 mal sarl
0.2180 -0.4120 -0.4172 0.2%20
s.e. 0.164% 0.1047 0.1703 0.0977
sigma”™2 estimated as 8.582e-09%: log likelihood=691.5&
ATC=1373.13 AICc=-1372.4 BIC=1360.74
> modelod
Series: mfmaZ
ARIMA(3,1,0)(1,0,0)[12]
Coefficients:
arl ar2 ar3 sarl
-0.2096 -D.4495 -D.2487 0.3010
S 0.1033 0.0927 0.1025% 0.0973
sigma”™2 estimated as B.469e-09: log likelihood=652.1
ATC=-1374.19 AICc=-1373.46 BIC=-1361.8
> modelos
Series: mfmaz
ARIMA(3,1,2) (1,0,1)[12]
Coefficients:
arl ar2 ar3 mal mazl sarl smal
-0.3236 -0.5167 -0.3184 0.0712 -0.0271 0.9561 -0.8741
SR 0.4387 D.1842 0.2154 0.4473 0.20864 0.0948 0.1550
gigma™2 estimated as 9.204e-09: part log likelihood=685.29
> modelod
Series: mfma2
ARTMA {2,1,2) {1,0,1)[12]
Coefficients:
arl ar2 mal maz zarl smal
D.2618 -0.5793 -0.5046 0.1424 0.9507 -0.86le
s.e. 0.193% 0.1415 0.2148 0.1808 0.1016 0.1655
sigma™? estimated as 9.171e-09: part log likelihood=685.45

CAPITULO 4
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Figura 4.37: Coeficientes de los modelos propuestos

Ya definidos los modelos vamos a determinar si el supuesto de normalidad de los
residuos es violado o no. Para ello vamos a utilizar el Test de Kolmogorov-Smirnov.
Los estadisticos y p-values encontrados aparecen en la figura

’ Modelo \ p-valor ‘
Modelol | 0.0561
Modelo2 | 0.05309
Modelod | 0.05742
Modelo4 | 0.05754
Modelo5 | 0.00676
Modelo6 | 0.00277

Figura 4.38: Test Kolmogorov-Smirnov

Observando los p-values dados por Kolmogorov-Smirnov, elegimos los modelos
que no violen el supuesto de normalidad de los residuos. Notemos los modelos del 1 al
4 presentan p-values cercanos a 0.05, a diferencia de los modelos 5 y 6 que permiten
rechazar la hipdtesis nula. Asi,seguimos con los modelos del 1 al 4. El forecast de se
muestran en la 4.39.

Forecasts from ARIMA(3,1,2){1,0,1)[12] Forecasts from ARIMA(2,1,2){1,0,1)[12]

Gie-04
Gie-04

Oe+00
|
Oe+00
|

T I I I I I I I
2008 2008 2010 212 2006 2008 2010 Mz

Forecasts from ARIMA{2,1,1){1,0,0)[12] Forecasts from ARIMA{3,1,2){(1,0,1)[12]

Ge-04
Fe-04

Da+00
|

Oe+00
|

T T T T T T | T
2006 2008 2010 2012 2008 2008 2010 202

Figura 4.39: Forecast de los modelos
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4.2.2. RegARIMA

A continuacién consideraremos los modelos RegARIMA de manera similar a la
empleada para el caso anterior.

Consideraremos la siguiente regresién
Y; = 01 + Balog(akos) + P5log(emae_est) + [y log(ipc_gba) + B5 log(icc_utdt) + €

donde ¢; sigue un proceso ARIMA. Los estadisticos se presentan en la figura 4.41.

> sumimary (regfma)

Call:
lmiforwmula = log(mfmal] ~ logiakos] + logiemae est] + log(ipc gha) +
logiice utdt), data = mfma)

Feziduals:
Hin 10 Hedian g Hax
-0.32a77 -0.05274 0.00123 0.06677 0.21695

Coefficients:

Eztimate 3td. Error € wvalue Pri>|t])
[Intercept) -5.67607 0.57453 -9.574 1.04e-15 #%+F
logiakos) o,.77339 0.03247 23.518 <« Ze—-16 #%+F
logemas est) 0.54155 0.159:20 4.450 Z.62e-05 #%+F
logiipc gba) -0.64263 0.16132 -3.984 0.000144 #*+
log{ice utdt) 0.16151 0.053555 1.591 0.062007

v o B o o o e B U 1 | e 5 A it o - s 1 s L

Fezidual standard error: 0.1012Z on 54 degrees of freedom
Multiple R-squared: 0.9233, Ldjusted R-squared: 0.9197
F-ztatistic: 252.8 on 4 and 54 DF, p-value: < 2.Ze-16

Figura 4.40: Coeficientes y estadisticos de la regresion

Para analizar la normalidad de los residuos vamos a aplicar nuevamente el Test
de Kolmogorov-Smirnov. El p-valor es de 0.84 por lo que podremos afirmar que no
hay evidencia para rechazar la hipétesis nula.

Para realizar el modelo ARIMA para sus residuos, aplicamos el Test de Dickey-
Fuller para determinar si estos tienen raices unitarias. El p-valor es de 0.01 por lo que
que podemos rechazar la hipotesis nula y suponer estacionariedad.

Para determinar como modelar la serie, observamos sus funciones de autocor-
relacion y autocorrelacién parcial en la figura 4.41.
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ACF Residuos regARINA PACF Residuos regARINA

. 5|
3 |
. ‘ AL NI

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Figura 4.41: Gréficos ACF y PACF

Los modelos determinados a partir del analisis de las funciones vienen dados por
la figura 4.42.

regfmal: Y; = 01+ log(akos)+ (5 log(emae_est)+ B4 log(ipc-gba)+ G5 log(icc_utdt)+
¢; donde e9(B)Y; = 01(B)ay.

regfma2: Y, = 8,40 log(akos)+F5 log(emae_est)+ B4 log(ipc-gba)+ 05 log(icc_utdt)+
¢; donde ¢1(B)Y; = 0y(B)ay..

regfma3: Y, = 0,40 log(akos)+F5 log(emae_est)+ B4 log(ipc-gba)+ 05 log(icc_utdt)+
€t donde 611(B)Y;g = 90<B>at..
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> modeloregl
deries: regfmajiresiduals
LETHMA(Z2,0,1) with zZero mean

Coefficients:

arl arz mal
136 S05957 =SR095536
s.e. 0.0919 o.0s3v o.0s70o

Sigmwa*Z estimated as 0.006053:
LIC=-192.76 AICc=-192 .28

log likelihood=100.38
BIC=-15Z.3

= modeloreg:d
Series: regfmafresiduals
ARTMA(1,0,0) with zero mean

Coefficients:
arl
0.5450

s.e. 0.0876
sigma®2 estimated as 0.006741:
AIC=-190.04 AICp=-189.9

log likelihood=96.02
BIC=-155.08

» modeloreg3
Series: regfmaliresiduals
ARTMA(11,0,0) with =zero mweah

Coefficients:

arl ar2 @ar3d ard4 ar5 are ar’? ars
0.4505 ] ] ] ] o -0.079 -—-0.2244
=.e. 0D.08&3 1] ] 1] ] 1] 0o.10z2 0.1044

Sigma®2 estimated as 0.005894:
ATC=-194.94 ATCo=-190.24

log likelihood=101.47
BIC=-165.08

ar9

Figura 4.42: Estimacién de los coeficientes de los modelos

CAPITULO 4

arl0 arll
0o -0.1094
] o.0szz

Una vez determinados los posibles modelos ARIMA vamos a utlizar el Test de
Shapiro-Wilk para observar normalidad de sus residuos. En la figura 4.43 podemos
observar que no hay evidencia para rechazar la hipétesis nula; es decir, no podemos

rechazar que los residuos sean normales.

’ Modelo \ p-valor ‘

Modelol | 0.1805
Modelo2 | 0.2545
Modelo3 | 0.3145

Figura 4.43: Test Shapiro-Wilk
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Dado que todos los modelos cumplen los supuestos, realizamos el pronéstico de la
ruta que detallaremos en la seccion siguiente.

4.2.3. Pronosticos y conclusiones.

Recordemos que notamos por Z; a la serie transformada con A = —1 y hemos
encontrado 4 diferentes modelos ademas de los de regresion:

Modelol: @1(312>¢3(B)Zt = @1(.812)02(3)(115
Modelo2: @1(B12>¢2<B)Zt = @1(312)92(B)at
Modelo3: ®,(B'?)py(B)Z; = O¢(B'?)6,(B)ay
Modelo4: ®,(B'?)¢3(B)Z; = O¢(B?)0y(B)ay

La tabla muestra los resultados por modelo para los siguientes 7 meses. Contiene

los pardmetros (valores p,d,q,P,D,Q), el A que se utiliz6 para transformar la serie
(que en este caso siempre fue -1) y el método con el cual se ajustd la serie. Debajo
aparecen los errores de estimacién en valores absolutos. Los colores varian del verde
(errores pequenos) al rojo (errores altos).
Para el caso de esta ruta tenemos idéntica situacion con las regresiones, tal es asi que
presentan los errores mas altos. El modelo 3 no solo presenta la menor cantidad de
pardametros si no que también es el que menor error posee (promedio y media de 7%).
Ademsds tiene los segundos menores condiciones AIC y BIC (solo superado por el
modelo 4). El modelo 4 presenta idéntica cantidad de pardmetros, menor condiciones
AIC y BIC y medias de error del 9 %. Amparados por esta informacién, elegimos estos
dos modelos como aquellos que explicaran la demanda de la ruta.
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Mombre Modelo lambda|d|D|Metodo| 1 2 3 4 5 [ 7
Modelol (3,1,2)%(1,0,1)[12] -1( 1] OfML 3819|4860( 4630) 39774131 3756|4125
Modelo2 (2,1,2)*{1,0,1)[12] -1 1) OjMIL 3845( 5042|4653 3912 4038| 3585|4098
Modelo3 (2,1,1)*%(1,0,0)[12] -1( 1] OfML 3545|3775 4129] 3947 3909 4052 | 4087
Modelod (3,1,0)*{1,0,0}[12] -1 1) O|MIL 3443 3742|4144 3910) 3896| 4008 | 4071
regfmal reg+2,0,1) 3447|3521 3414) 3265( 3557 3418| 3582
regfma2 reg+(1,0,0) 3485|3584 3477 3318) 3602| 3449 3002
regfma3s reg+{11,0,0) 3472|3492 ( 3388 3322( 3603 3367|3474
Real 3578|4553 36064 4035) 4426| 4184 | 4405
Modelol % 7% 7% 10% 6%
Modelo2 7% 11% 9% 14% 7%
Modelo3 13% 10% %
Modelod Error Absoluto 13% 12% 2%
regfmal T%

regfma2
regfma3 2%

Figura 4.44: Resultados Modelos - Error Absoluto
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