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Caṕıtulo 1

Introducción

En diferentes industrias surge la necesidad de pronosticar eventos con el objetivo
de poder planear de un modo más eficiente las decisiones a tomar. En particular,
el sector aerocomercial ve esa necesidad con mayor avidez ya que presenta muchos
actores, escasos márgenes de ganancias y altos costos, fundamentalmente los produci-
dos por el combustible. Por tal motivo, poder pronosticar la demanda de pasajeros
consiste en un trabajo fundamental. Este tipo de información permite tomar acer-
tadamente decisiones tales como aumento y/o disminución de frecuencias, cambios
de equipos, inversión en equipos nuevos, aumento y/o disminución de tarifas, entre
otros.

Es esta tesis abordaremos un tipo de modelo de pronóstico elaborado por Box
y Jenkins denominado ARMA/ARIMA. Presentaremos la teoŕıa correspondiente y
los pasos a seguir para identificar y pronosticar los modelos. Finalmente aplicaremos
la teoŕıa para dos ejemplos reales, trataremos los casos de las rutas Aeroparque-
Corrientes-Aeroparque y Aeroparque-Formosa-Aeroparque, volados por la principal
linea aérea del páıs.

Los principales materiales de referencia de donde se obtuvo la idea central de la
teoŕıa fueron los libros “Times Series Analysis”de Wei (2006) y “Time Series Anal-
ysis: Forecasting and Control”de Box-Jenkins (1984). Otra bibliograf́ıa consultada e
importante a la hora de profundizar en algunos conceptos corresponden a los libros
de Cryer y Chang (2008), Greene (2008) y Brockwell y Davis (1996) entre otros.

En el caṕıtulo 2 definiremos conceptos básicos necesarios para modelar, intro-
duciremos las series de tiempo estacionarias y no estacionarias y observaremos que
ocurre cuando hay estacionalidad. En el caṕıtulo 3 presentaremos todos los pasos para
modelar una serie de datos. En particular veremos como identificar los parámetros
del modelo, como estimar los coeficientes de este, que modelo elegir y como pronos-
ticar. Estudiaremos también los modelos RegARIMA, que combinan los modelos de
regresión lineal modelando los residuos como un proceso ARIMA. El último caṕıtulo
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introducción 3

contiene el análisis y los resultados correspondientes para el modelado de las dos ru-
tas aereas, compararemos los modelos obtenidos y contrastaremos con los datos reales.





Caṕıtulo 2

Modelos de Series de Tiempo

2.1. Modelos de Series de Tiempo Estacionarias

2.1.1. Definiciones

En este Caṕıtulo presentaremos ciertas definiciones que nos servirán para el pos-
terior desarrollo de los temas. Sea Z(w, t) un proceso estocástico con w en algún
espacio muestral, en este trabajo consideraremos t ∈ Z. Sean t1, . . . , tn ∈ Z y llamem-
os Ztj = Z(w, tj) con 1 ≤ j ≤ n variables aleatorias provenientes de un proceso
estocástico Z(w, t). Definimos su función de distribución como:

FZt1 ,...,Ztn
(x1, ...xn) = P (w : Zt1 ≤ x1, ..., Ztn ≤ xn).

Un proceso se dice de primer orden estacionario en distribución si:

FZt1
(x1) = FZt1+k

(x1) ∀k.

En general, se dice que es de orden n estacionario en distribución si:

FZt1 ,...,Ztn
(x1, ...xn) = FZt1+k,...,Ztn+k

(x1, ...xn).

A partir de ahora denotaremos Z(w, t) indistintamente como Z(t) o Zt e introducire-
mos también los siguientes conceptos:

i) Esperanza: µt = E(Zt).

ii) Varianza: σt
2 = E(Zt − µt)

2.

iii) Covarianza: γ(t1, t2) = E(Zt1 − µt1)(Zt2 − µt2).

iv) Función de Correlación: ρ(t1, t2) = γ(t1,t2)√
σ2

t1
σ2

t2

.
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6 caṕıtulo 2

Para procesos estacionarios tendremos que µt = µ y σt
2 = σ2 y dados t y t + k

tenemos que γ(t, t+k) y ρ(t, t+k) dependerán solo de k. Un proceso se definirá como
de Segundo Orden Débil o Covarianza Estacionaria si sus momentos de órden 1 y 2
(su esperanza y varianza) no dependen de t. En muchas ocasiones se usa el término
estacionario para procesos que son de covarianza estacionaria. En el caso particular
de un proceso gaussiano, como su distribución queda determinada por µ y σ2 se tiene
que orden fuerte es lo mismo que orden débil. Pero en general un proceso puede ser
fuertemente estacionario y no ser débilmente estacionario (como ejemplo podemos
pensar en la distribución Cauchy).

Funciones de Autocorrelación, Autocovarianza y de Autocorrelación Par-

cial

Definición 2.1.1. Dado un proceso estacionario Zt con E(Zt) = µ y V (Zt) = σ2

constantes, se definen:

Función de Autocovarianza: γk = Cov(Zt, Zt+k) = E(Zt − µ)(Zt+k − µ).

Función de Autocorrelación (ACF): ρk = Cov(Zt,Zt+k)√
V (Zt)

√
V (Zt+k)

= γk

γ0
.

Para todo proceso estacionario se satisfacen las siguientes propiedades:

i) Para todo t, γ0 = V (Zt).

ii) Del hecho que |ρk| ≤ 1 tenemos que |γk| ≤ γ0 para todo k.

iii) γk y ρk son simétricas con respecto a k, i.e. γk = γ−k y ρk = ρ−k para todo k.

iv) γk y ρk son semidefinidas positivas. Es decir, valen las siguientes desigualdades

n∑

i=1

n∑

j=1

aiajγ|ti−tj | ≥ 0,

y
n∑

i=1

n∑

j=1

aiajρ|ti−tj | ≥ 0,

para todos t1, ..., tn y a1, ..., an.

Definiremos también la Función de Autocorrelación Parcial (PACF) como la cor-
relación condicional

Pk = Corr(Zt, Zt+k|Zt+1, ..., Zt+k−1).
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Consideremos ahora la regresión con variable dependiente Zt+k y covariables Zt+k−1, ..., Zt.
Es decir

Zt+k = φk1Zt+k−1 + ...+ φkkZt + et+k

con φki los parámetros de la regresión y et+k errores de media 0 y no correlacionados
con Zt+k−j ∀j. Supongamos sin pérdida de generalidad que E(Zt) = 0, luego multi-
plicando a ambos lados de la regresión por Zt+k−j y tomando esperanza obtenemos:

γj = φk1γj−1 + ...+ φkkγj−k,

ρj = φk1ρj−1 + ...+ φkkρj−k.

Usando la Regla de Cramer, podemos despejar los coeficientes φki en particular se
obtiene faćılmente que φkk = Pk, la autocorrelación parcial entre Zt y Zt+k. Por otro
lado podemos determinar que la autocorrelación parcial entre Zt y Zt+k se puede
obtener como los coeficientes de la regresión asociada a Zt de k pasos.

Un proceso estacionario particular es el denominado Ruido Blanco. Diremos que
un proceso at es de Ruido Blanco si es una sucesión de variables aleatorias donde
E(at) = 0, V (at) = σ2 y γk = Cov(at, at+k) = 0 si k 6= 0.

Estimación de µ, σ2, γk y ρk

Las definiciones introducidas anteriormente son referidas a momentos poblacionales
que no son observables. A continuación, resumiremos algunos posibles estimadores de
los parámetros definidos anteriormente, obtenidos a partir de una realización del pro-
ceso en n instantes de tiempo.

Resulta natural considerar Z =
n∑

t=1

Zt

n
, como un estimador de la media poblacional

µ. Se puede probar fácilmente que el estimador resulta insesgado. Ademas podemos
ver que si ρk → 0, V ar(Z) → 0 y por lo tanto el estimador resulta débilmente
consistente.

Para estimar γk podemos considerar las siguientes alternativas

γ̂k =
n−k∑

t=1

(Zt − Z)(Zt+k − Z)

n
o ̂̂γk =

nγ̂k

n− k
.

Desarrollando γ̂k podemos aproximar

nγ̂k ∼
n−k∑

t=1

(Zt − µ)(Zt+k − µ) − (n− k)(Z − µ)
2
.

En ese caso, E(γ̂k) ∼ γk − k
n
γk − (n−k

n
)V (Z) y E( ̂̂γk) ∼ γk − V (Z).
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Donde si se desprecia el termino V (Z), que representa el efecto de estimar la

varianza, ̂̂γk resulta un estimador con menor sesgo que γ̂k. Pero γ̂k al igual que γk

es semidefinida positiva, sin embargo ̂̂γk no necesariamente lo es. Es por ello que en
general se considera γ̂k para estimar γk.

Como estimador de ρk usaremos

ρ̂k =
γ̂k

γ̂0

=

∑n−k
t=1 (Zt − Z)(Zt+k − Z)

∑n
t=1 (Zt − Z)

2 .

A partir de los datos de una series temporal se puede estimar un número finito de
autocorrelaciones. El gráfico de las autocorrelaciones muestrales recibe el nombre de
correlograma.

Para estimar la función de autocorrelación parcial φkk usaremos la siguiente re-
cursión definida por Durbin (1960),

φ̂11 = ρ̂1,

φ̂k+1 k+1 =
ρ̂k+1 −

∑k
j=1 φ̂kj ρ̂k+1−j

1 −
∑k

j=1 φ̂kj ρ̂j

,

φ̂k+1 j = φ̂kj − φ̂k+1 k+1φ̂k k+1−j.

2.1.2. Representaciones Autoregresivas y de Promedio Movil

En esta Sección analizaremos los modelos estacionarios que pueden clasificarse
como autoregresivos (AR), de medias o promedios móviles (MA) o procesos mixtos
que se denominan ARMA. En el análisis de datos reales, se encuentran muy raramente
series generadas a partir de procesos estacionarios ya que generalmente las series
presentan algún tipo de tendencia que no se corresponde con procesos de un modelo
estacionario. Sin embargo esto no debe llevar a pensar que estos procesos no son
interesante de estudiar. Como veremos más adelante, una gran cantidad de procesos
no estacionarios pueden ser fácilmente transformados en estacionarios y a partir de
esta transformación les son aplicables los métodos de identificación y estimación de
los modelos estacionarios.

Antes de continuar, definiremos los operadores de retardo y diferenciación de una
serie. Más precisamente, el operador de retardo B se define como

BYt = Yt−1,

es decir el resultado de aplicar el operador B resulta la observación del peŕıodo ante-
rior, por lo tanto si aplicamos d veces el operador obtenemos BdYt = Yt−d.
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El operador diferencia de una serie se define como

∆Yt = Yt − Yt−1 = (1 −B)Yt,

en general ∆dYt = (1 −B)dYt.

Consideremos ahora, un proceso de la forma

Zt = µ+ at + ψ1at−1 + ψ2at−2 + ... = µ+
∞∑

j=0

ψjat−j,

y su respectivo proceso de media cero Żt = Zt−µ, donde las at son variables aleatorias
no correlacionadas de media 0, notemos que

E(Zt) = µ,

V ar(Zt) = σa
2

∞∑

j=0

ψj
2,

γk = E(Żt
˙Zt+k) = E(

∞∑

j=0

∞∑

i=0

ψiψjat−iat+k−j) = σa
2

∞∑

i=0

ψiψi+k,

ρk =

∑∞
i=0 ψiψi+k∑∞

i=0 ψi
2 .

Si observamos las funciones de autocorrelación y autocovarianza, al solo depender
estas de k (y no de t) y ser sumas infinitas, para poder afirmar que el proceso es
realmente estacionario, es decir de covarianza estacionario, basta ver que γk es finito
para cada k . Por lo tanto, como

|γk| = |E(Żt
˙Zt+k)| ≤ (V ar(Zt)V ar(Zt+k))

1/2 = σa
2

∞∑

j=0

ψj
2. (2.1)

si
∑∞

j=0 ψj
2 < ∞ (y en consecuencia ψ(B) converge en en el ćırculo unitario) es una

condición suficiente para que el proceso sea estacionario.

Otra forma útil de escribir un proceso es a través de su representación autoregre-
siva es decir

Żt = π1Żt−1 + π2Żt−2 + ...+ at,

o de manera equivalente
π(B)Żt = at,

donde π(B) = 1 −
∑∞

j=1 πjB
j y 1 +

∑∞
j=1 |πj| <∞.

Un proceso se dirá invertible si puede ser representado de esta manera. Notemos
que dado un proceso de la forma de Żt = ψ(B)ȧt, será invertible si las ráıces de
ψ(B) = 0 se encuentran fuera del ćırculo unitario.
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Para comprender esto consideremos un ejemplo particular, sea un proceso de la
forma Żt = (1 − θB)at . Si expresamos a at en función de los Żt, obtenemos que

at = (1 − θB)−1Żt = (1 + θB + θB2 + ...+ θBk)(1 − θk+1Bk+1)
−1
Żt,

es decir
Żt = −θŻt−1 − θ2Żt−2 − ...− θkŻt−k + at − θk+1at−k−1. (2.2)

Luego, si |θ| < 1, tendiendo k a infinito, obtenemos que

Żt = −θŻt−1 − θ2Żt−2 − ...+ at (2.3)

que define un proceso estacionario. Además, θj = πj. Luego, si |θ| ≥ 1, tenemos que
(2.2) se agranda a medidad que k se hace grande. Luego se pide |θ| < 1 para que la
serie sea invertible y se satisfará si

π(B) = (1 − θB)−1 =
∑

j=0

θjBj

converge para todo |B| ≤ 1, es decir dentro del ćırculo unitario.

En general tendremos que un proceso será estacionario si ψ(B) converge dentro
del ćırculo unitario y sera invertible si π(B) converge dentro del ćırculo unitario.

Finalmente presentaremos el concepto de la función generatriz de autocovarianza
que denominaremos γ. En efecto, dada γk definiremos γ de la forma

γ(B) =
∞∑

k=−∞
γkB

k. (2.4)

Utilizando (2.1) y la condición de estacionariedad, reescribimos la función generatriz
de autocovarianza del siguiente modo

γ(B) = σa
2

∞∑

k=−∞

∞∑

i=0

ψiψi+kB
k = σa

2

∞∑

j=0

∞∑

i=0

ψiψjB
j−i

= σa
2

∞∑

j=0

ψjB
j

∞∑

i=0

ψiB
−i = σa

2ψ(B)ψ(B−1).

Este método ayuda a calcular de forma conveniente la autocovarianza de un proceso.
La correspondiente función generatriz de autocorrelación se define como

ρ(B) =
∞∑

k=−∞

γ(B)

γ0

. (2.5)
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Modelos MA

Los procesos de orden q de medias móviles, MA(q), se definen de la siguiente forma

Zt = µ+ at + ψ1at−1 + ψ2at−2 + ...+ ψqat−q = µ+

q∑

j≥0

ψjat−j (2.6)

donde at es un proceso de ruido blanco con las propiedades ya definidas.

Observemos que el proceso de medias móviles corresponde a una combinación
lineal de variables ruido blanco, siendo los coeficientes ψ los ponderadores de la com-
binación lineal. Su nombre proviene del hecho que las variables forman parte de este
promedio, aunque los coeficientes no sumen uno, que varia a lo largo del tiempo. Los
modelos de infinitos términos los denotaremos con MA(∞).

Como vimos anteriormente sus momentos pueden ser calculados fácilmente, resul-
tando:

E(Zt) = µ V (Zt) = σa
2
∑

j≥0

ψj
2

γk = σa
2
∑

i≥0

ψiψi+k ρk =

∑
i≥0 ψiψi+k∑

i≥0 ψi
2 .

Como su esperanza y su varianza son invariantes en el tiempo, este proceso será esta-
cionario si

∑
ψj

2 <∞.

Por una cuestión de mera conveniencia el proceso se escribirá con los coeficientes
precedidos por el signo negativo. Además si usamos el operador de retardo un proceso
MA(q) puede definirse de la siguiente manera.

Żt = θq(B)at,

donde θq(B) = (1 − θ1B − θ2B
2 − ... − θqB

q) y Żt = Zt − µ. El polinomio θq(B) lo
llamaremos polinomio de medias móviles.

Luego tenemos,

γk =

{
σa

2(−θk + θ1θk+1 + ...+ θq−kθq) si k = 1, 2, ..., q
0 si k > q

(2.7)

y

ρk =

{
(θ1θk+1+...+θq−kθq)

(1+θ1
2+...+θq

2)
si k = 1, 2, ..., q

0 si k > q

Observando (2.7) notemos que la función γk es 0 después del paso q. Es decir,
en general, un proceso MA(q) tendrá una función de autocorrelación que se corta
después del paso q.
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Analicemos en profundidad un proceso MA(1). En efecto, sea el proceso de la
forma

Żt = at − θ1at−1

= (1 − θ1B)at,

Usando la función generatriz de autocovarianza, obtenemos para este caso la siguiente
expresión

γ(B) = σa
2(1 − θ1B)(1 − θ1B

−1) = σa
2(−θ1B

−1 + (1 + θ1
2) − θ1B).

Luego, la función de autocovarianza es la siguiente

γk =






(1 + θ1
2)σa

2 si k = 0
−θ1σa

2 si k = 1
0 si k > 1.

Una vez obtenida la función de autocovarianza podemos calcular la función de auto-
correlación. En este caso es

ρk =

{ −θ1

1+θ1
2 si k = 1

0 si k > 1,
(2.8)

que se corta después de k=1. Notemos que el proceso es estacionario pues 1+θ1
2 <∞.

Para que sea invertible necesitamos que las raices de 1 − θ1B estén fuera del ćırculo
unitario. Para ello debe valer que |θ1| < 1.
Calculemos ahora la función de autocorrelación parcial. Para ello, utilizaremos (2.8)
y su definición, luego la función es de la forma

φ11 = ρ1 =
−θ1

1 + θ1
2 =

−θ1(1 − θ1
2)

1 + θ1
4

φ22 =
−ρ1

2

1 − ρ1
2

=
−θ1

2

1 + θ1
2 + θ1

4

φ33 =
ρ1

3

1 − 2ρ1
2

=
−θ1

3

1 + θ1
2 + θ1

4 + θ1
6 .

En general,

φkk =
−θ1

k(1 − θ1
2)

1 − θ1
2(k+1)

. (2.9)

Notemos aśı que el PACF decae exponencialmente, la forma en la que decae depen-
derá del signo de θ1. Si el signo alterna, empieza con valores positivos, si no, decae en
los valores negativos.
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Ejemplo:

Sea el modelo MA(1) de la forma Zt = (1 − 0,5B)at. Según lo que vimos an-
teriormente, el ACF se debe cortar después del lag 1 y el PACF debe decaer ex-
ponencialmente. Generamos una muestra de este proceso y obtuvimos las siguiente
estimaciones.

Figura 1: Proceso MA(1). Gráficos de ACF y PACF

Wold(1938) probó que cualquier proceso estacionario puede representarse univo-
camente como la suma de dos procesos mutuamente no correlacionados

Zt = Dt +Xt

donde Dt es linealmente determinista y Xt es un proceso MA(∞). La parte Dt puede
ser una función exacta del tiempo, en el caso más simple podŕıa ser una constante.

Modelos AR

Un proceso se dirá autoregresivo de orden p o AR(p) si podemos representar a la
serie de tiempo como:

Żt = φ1Żt−1 + ...+ φpŻt−p + at. (2.10)

Es decir, si el valor de la variable Zt depende de sus valores pasados y de la innovación
a tiempo t. Estos procesos sirven para describir fenómenos donde los eventos producen
un efecto inmediato que solo duran un peŕıodo corto de tiempo.

Si definimos el operador φp(B) = (1−φ1B−...−φpB
p) podemos escribir el modelo

AR(p) como:
φp(B)Żt = at.
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Es fácil ver que

γk = φ1γk−1 + ...+ φpγk−p

ρk = φ1ρk−1 + ...+ φpρk−p (2.11)

ψkk = 0 ∀j > p.

Analizaremos en detalle el proceso AR(1), es decir,

Żt = φ1Żt−1 + at.

La función de autocovarianza se puede calcular de la siguiente forma:

E(Żt−kŻt) = E(φ1Żt−kŻt−1) + E(Żt−kat),

γk = φ1γk−1.

y iterando y usando que ρ0 = 1, obtenemos la función de autocorrelación

ρk = φ1ρk−1 = φ1
k k ≥ 1. (2.12)

Observemos que si |φ1| < 1 y el proceso es estacionario, la ACF decae exponen-
cialmente. Ademas, notemos que el PACF es de la forma:

φkk =

{
ρ1 = φ1 si k = 1

0 si k > 1

Luego, el PACF de un proceso AR(1) presenta un pico con lag 1 y se corta posteri-
ormente.

Ejemplo

Generamos el modelo AR(1) de la forma (1 − 0,5B)Zt = at y obtuvimos las
siguientes funciones estimadas.
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Figura 2: Proceso AR(1). Gráficos de ACF y PACF

Volviendo al modelo AR(p), notemos que podemos escribir a (2.11) como

φp(B)ρk = 0

donde φp(B) = 1 − φ1B − ... − φpB
p y B está operando sobre la autocorrelación. Si

reescribimos la ecuación en la forma

φp(B) =

p∏

i=1

(1 −GiB)

obtenemos que para ciertos Aj

ρk = A1G
k
1 + A2G

k
2 + ...+ ApG

k
p

Dado que el modelo es estacionario resulta |Gi| < 1. Luego si la raiz fuese real, el
término AiG

k
i decaerá a 0 a medida que k crece. Es decir, la función de autocorrelación

es una exponencial amortiguada. En el caso de que la raiz fuese compleja, tendŕıamos
el término dk sin(2πkf + F ) en la función de autocorrelación, lo que lleva a un seno
amortiguado. En general, la función de autocorrelación de un proceso autoregresivo
será una mezcla entre un seno amortiguado y una exponencial amortiguada.

Por otro lado, observemos que existe una relación entre los procesos AR(p) y
MA(q). En efecto, dada un proceso estacionario AR(p)

φp(B)Żt = at,

podemos escribirlo de la siguiente forma,

Żt =
1

φp(B)
at = ψ(B)at.

luego ψ(B)φp(B) = 1. Esto implica que un proceso estacionario AR(p) finito lo pode-
mos entender como un proceso MA(∞) y de manera equivalente, dado un proceso
invertible MA(q),

Żt = θq(B)at,

podemos escribirlo como

π(B)Żt =
1

θq(B)
Żt = at,

aśı, un proceso invertible MA(q) puede ser explicado como un proceso AR(∞). Esta
analoǵıa se ve también en las funciones de autocorrelación y de autocorrelación par-
cial. Las autocorrelaciones de un AR(p) disminuyen y las autocorrelaciones parciales
se cortan, mientras que las autocorrelaciones de un proceso MA(q) se cortan y las
autocorrelaciones parciales disminuyen.
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Modelos ARMA

La combinación de los procesos AR(p) y MA(q) da lugar a los procesos mixtos
ARMA(p,q) que se definen de la siguiente manera.

Definición 2.1.2. Diremos que Zt sigue un modelo ARMA(p,q) si

φp(B)Żt = θq(B)at,

donde φp(B) = 1 − φ1B − ...− φpB
p y θq(B) = 1 − θ1B − ...− θqB

q.

Como discutimos anteriormente para los modelos AR y MA podemos ver que
el proceso será invertible si las raices de θq(B) = 0 se encuentran fuera del ćırculo
unitario y el proceso será estacionario si las raices de φp(B) = 0 toman valores
también fuera del ćırculo unitario.

Asimisimo notemos que un modelo ARMA puede escribirse como un modelo pu-
ramente AR o puramente MA, pues:

Żt =
θq(B)

φp(B)
at ó at =

φp(B)

θq(B)
Żt.

Por otro lado, a partir de calculos sencillos podemos obtener que:

γk = φ1γk−1 + ...+ φpγk−p,

ρk = φ1ρk−1 + ...+ φpρk−p.

Notemos que la función de autocorrelación es similar a la del proceso AR(p). Entónces,
la función de autocorrelación de un proceso ARMA(p,q) decae después del lag q como
la de un proceso AR(p). De manera análoga, como el ARMA contiene al proceso MA
como caso particular, la función de autocorrelación parcial será una combinación de
un seno amortiguado con una exponencial amortiguada.

A modo de ejemplo, trabajaremos con el proceso ARMA(1,1)

Żt = φ1Żt−1 + at − θ1at−1 (2.13)

donde por las condiciones de invertibilidad y estacionaridad |φ1| < 1 y |θ1| < 1. Para
obtener la función de autocovarianza, multiplicamos (2.13) por Żt−k a ambos lados y
tomamos esperanza, por lo que obtenemos

γk = φ1γk−1 + E(Żt−kat) − θ1E(Żt−kat−1). (2.14)

En particular, si k = 0, por la simetŕıa de γk obtenemos

γ0 = φ1γ1 + E(Żtat) − θ1(Żtat−1),
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luego usando que E(Żtat) = σa
2, multiplicando (2.13) por at−1 y tomando esperanza,

obtenemos que

E(Żtat−1) = φ1E(Żt−1at−1) + E(atat−1) − θ1E(at−1
2)

= (φ1 − θ1)σa
2.

Por lo tanto,
γ0 = φ1γ1 + σa

2 − θ1(φ1 − θ1)σa
2. (2.15)

Si ahora reemplazamos k = 1, tenemos que

γ1 = φ1γ0 − θ1σa
2. (2.16)

Sustituyendo (2.16) en (2.15), obtenemos que

γ0 = φ1
2γ0 − φ1θ1σa

2 + σa
2 − φ1θ1σa

2 + θ1
2σa

2,

γ0 =
(1 + θ1

2 − 2φ1θ1)

(1 − φ1
2)

σa
2.

Y por lo tanto γ1 quedará

γ1 = φ1γ0 − θ1σa
2,

= φ1
(1 + θ1

2 − 2φ1θ1)

(1 − φ1
2)

σa
2 − θ1σa

2,

=
(φ1 − θ1)(1 − φ1θ1)

(1 − φ1
2)

.

Si k ≥ 2, tenemos por (2.14) que

γk = φ1γk−1.

Y aśı obtenemos finalmente el ACF de un ARMA(1,1)

ρk =






1 si k = 0
(φ1−θ1)(1−φ1θ1)

(1+θ1
2−2φ1θ1)

si k = 1

φ1ρk−1 si k ≥ 2.

Para determinar el PACF de un proceso ARMA(1,1), basta notar que un proceso
MA(1) es un caso particular. Entonces, el PACF del ARMA(1,1) también decaerá ex-
ponencialmente pero la forma en que lo hará esta directamente relacionada con los
valores de φ1 y θ1.

Ejemplo:

Si generamos un proceso ARMA(1,1) de la forma notada como en (2.13) con
φ1 = 0,5 y θ1 = 0,5, obtenemos las siguientes funciones que reflejan lo estudiado
anteriormente.
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Figura 3: Proceso ARMA(1,1). Gráficos de ACF y PACF

2.2. Modelos de Series de Tiempo No Estacio–

narias

Los modelos de series de tiempo presentados en el caṕıtulo anterior, suponen la
existencia de la propiedad de estacionariedad; sin embargo, muchas de las series que
observamos no cumplen con esta caracteŕıstica presentando una tendencia creciente
a lo largo del tiempo o una clara inclinación a permanecer durante largos periodos
por encima o por debajo de su media. Como veremos en el presente caṕıtulo, la no
estacionariedad en las series de tiempo se puede deber a la presencia de una tendencia
determińıstica, al problema de las ráıces unitarias o a la presencia de una varianza
heterocedástica. Dependiendo del caso en que nos encontremos, la no estacionariedad
tendrá determinadas implicancias teóricas y estad́ısticas, aśı como determinados pro-
cedimientos para transformar las series en estacionarias.

2.2.1. No estacionariedad en media

Como mencionamos anteriormente las series pueden presentar una tendencia a
través del tiempo. Estas series con tendencia, claramente no son estacionarias, porque
su valor medio cambia con del tiempo. Esta tendencia puede ser determińıstica. Es
decir, la media del proceso no estacionario puede ser determinada mediante un función
que depende del tiempo. Por ejemplo, la función µt puede seguir una tendencia lineal
en cuyo caso se podŕıa modelar a partir del siguiente modelo µt = α0 + α1t y luego
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utilizar un modelo para la serie temporal del tipo:

Zt = α0 + α1t+ at (2.17)

donde at es ruido blanco. En general se puede proponer un polinomio de grado k para
ajustar la media del proceso o algún tipo de tendencia representada por ejemplo por
senos y cosenos.

Otro tipo de tendencia en media es la tendencia estocástica. Aunque una serie
sea estacionaria, algunas partes de esta se comportan de igual manera salvo una
diferencia a nivel local. Tomemos por ejemplo un paseo aleatorio, es decir, un proceso
estocástico de la forma

Zt = µ+ Zt−1 + at,

donde µ es un parámetro y at ∼ N(0, σa
2) i.i.d.. Aplicando diferencias obtenemos que

∆Zt = Zt − Zt−1 = µ+ at.

Esto nos muestra que ∆Zt sigue un modelo ARMA(0,0) y que es estacionario.

Esta forma de convertir una serie no estacionaria en estacionaria lleva a la siguiente
definición:

Definición 2.2.1. Dada una diferenciación de nivel d, se denomina al siguiente mod-
elo ARIMA(p,d,q):

φp(B)(1 −B)dZt = θ0 + θq(B)at (2.18)

donde φp(B) es el operador estacionario AR y θq(B) es el operador inversible MA.

2.2.2. No estacionaridad en varianza y autocovarianza

Un proceso que no es estacionario en esperanza, tampoco lo será en varianza y
autocovarianza. Un ejemplo sencillo de esto son los modelos ARIMA introducidos
anteriormente, no estacionario en varianza y autocovarianza. Ilustremos esto en el
caso particular del modelo ARIMA(0,1,1), es decir

Zt = Zt−1 + at − θat−1

o
(1 −B)Zt = (1 − θB)at (2.19)

Si fijamos n0, dado t > n0, podemos hacer una recursión en (2.19) y obtenemos:

Zt = Zn0
+ at + (1 − θ)at−1 + ...+ (1 − θ)an0+1 − θan0

Haciendo lo mismo para t− k > n0 tenemos,

Zt−k = Zn0
+ at−k + (1 − θ)at−k−1 + ...+ (1 − θ)an0+1 − θan0
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Luego, calculamos su varianza, covarianza y correlación:

V (Zt) = σa
2(1 + (t− n0 − 1)(1 − θ)2),

V (Zt−k) = σa
2(1 + (t− k − n0 − 1)(1 − θ)2),

cov(Zt−k, Zt) = σa
2((1 − θ) + (t− k − n0 − 1)(1 − θ)2),

corr(Zt−k, Zt) =
(1 − θ) + (t− k − n0 − 1)(1 − θ)2

√
(1 + (t− n0 − 1)(1 − θ)2(1 + (t− k − n0 − 1)(1 − θ)2)

.

De estas ecuaciones obtenemos lo siguiente:

V (Zt) depende de t.

La varianza no está acotada cuando t→ ∞.

Si t > n0, corr(Zt−k, Zt) ∼ 1.

Si bien hay series no estacionarias en esperanza y por lo tanto en varianza, existen
series que son estacionarias en la esperanza pero no estacionarias en la varianza.
Este tipo de estacionaridad puede ser tratada con transformaciones de estabilización
de varianza. Más precisamente, aplicaremos un transformación sobre la serie con el
objetivo de que su varianza sea constante. Es decir, buscaremos T tal que V (T (Zt))
sea constante.

En particular, vamos a considerar el caso en que la varianza cambie en función a
cambios en la esperanza, es decir: V (Zt) = cf(µt).

Para ello aproximamos T por su polinomio de Taylor centrado en µt. Entonces,

T (Zt) ≃ T (µt) + T ′(µt)(Zt − µt),

y por lo tanto

V (T (Zt)) = [T ′(µt)]
2V (Zt) = c[T ′(µt)]

2f(µt).

De esta forma, eligiremos T tal que T ′(µt) = 1√
f(µt)

, es decir:

T (µt) =

∫ µt 1√
f(s)

ds.

Box y Cox (1964), propusieron usar transformaciones de potencias del tipo

T (Zt) =
Zt

λ − 1

λ
,

donde el parámetro λ puede ser agregado al modelo y estimado por el método de
cuadrados mı́nimos. La siguiente tabla muestra valores de λ comunes y sus respectivas
transformaciones.
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Valores Transformación

-1 1
Zt

-0.5 1√
Zt

0 log(Zt)
0.5

√
Zt

Es importante aclarar que estas transformaciones se aplican en series positivas y
que deben utilizarse antes del método de las diferencias. Esto no introduce restricción
alguna ya que puede sumarse una constante a la serie en orden de hacerla positiva.

2.3. Series de Tiempo estacionales

Otro factor importante que pueden presentar las series de tiempo es la estacional-
idad. Es decir, ciclos u oscilaciones estrictamente periódicas debido principalmente a
las fluctuaciones en diferentes periódos del año. La presencia de esta componente se
explica por la existencia de estaciones y su impacto sobre la actividad económica ya
sea en la producción agropecuaria, el turismo, las costumbres como por ejemplo el fin
de año que es estrictamente cultural o simplemente por procesos f́ısicos tal es el caso
de la temperatura o las lluvias.

Diremos que una serie exhibe un comportamiento estacional de peŕıodo s si existen
similaridades en la serie cada s intervalos. Aśı, el operador de retardo Bs jugará un
papel importante en la explicación de la serie y la identificación del modelo.
Conociendo la periodicidad de los datos, será conveniente presentar la información
utilizando la tabla de Buys-Ballot. Esta consistirá en una tabla de doble entrada con s
columnas (o sea, tantas como sea la periodicidad). De esta manera uno podrá analizar
los datos por columnas (corresponden a los datos Zt, Zt+s, Zt+2s, ...) o por filas (cor-
responden a los datos Zt, Zt+1, ..., Zt+s−1 para la primera fila).
Si tomáramos por ejemplo datos mensuales a través de los años, tendŕıamos los datos
por años en las filas y por meses en las columnas. En este caso, si tuviesemos el dato
de Agosto, este dependeŕıa de las observaciones de los meses anteriores como también
de los pasados Agostos.
Luego, para relacionar observaciones de años distintos (los Agostos) podemos pro-
poner un modelo de la forma

ΦP (Bs)(1 −Bs)DZt = ΘQ(Bs)αt (2.20)

Como los αt pueden estar correlacionados, se introduce un segundo modelo de la
forma

φ(B)αt = θ(B)at (2.21)
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donde los at son ruido blanco. Finalmente, si sustitimos (2.21) en (2.20), utilizando
las nociones de invertibilidad de los procesos obtenemos la fórmula general del modelo
multiplicativo ARIMA(p,d,q)× ARIMA(P ,D,Q)s

ΦP (Bs)φp(B)(1 −B)d(1 −Bs)DŻt = ΘQ(Bs)θq(B)at (2.22)

Este análisis puede ser aplicado también para series con tres o más componentes
periódicas.

Para identificar el modelo, será necesario analizar la función de autocorrelación
de la serie completa, la serie correspondiente a Bs(Zt) y la correspondiente a B(Zt).
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Identificación, Estimación y

Pronóstico

Los modelos estad́ısticos en general requieren de tres estapas para su construcción:
Identificación, Estimación y Validación. Si bien las diferentes estapas son sucesivas,
de acuerdo al resultado de cada etapa puede surgir una retro alimentación. Donde por
ejemplo luego de la estimación puede darse la necesidad de reespecificar el modelo, o
en el proceso de validación puede dar como resultado un modelo insatisfactorio.

3.1. Identificación del Modelo

En la etapa de identificación el objetivo es definir si es necesario aplicar algun tipo
de transformación, si el modelo debe incluir una media no nula y finalmente decidir
cual de los modelos es el indicado y con que parámetros.

Comencemos identificando un modelo ARIMA(p,d,q). Es decir:

(1 − φ1B − ...− φpB
p)(1 −B)dZt = (1 − θ1B − ...− θqB

q)at

Hemos visto que para un proceso ARMA(p,q), φp(B)Zt = θq(B)at, la función de
autocorrelación satisface

φp(B)ρk = 0 k > q

Además, si φp(B) =
∏p

i=1(1 − GiB), la solución de esta ecuación para la k-ésima
autocorrelación es

ρk = A1G1
k + A2G2

k + ...+ ApGP
k k > q − p (3.1)

23
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Bajo el supuesto de que el modelo es estacionario, los ceros de φp(B) deben estar
fuera del ćırculo unitario. Esto implica que las raices G1, G2, ..., GP son unitarias. Ob-
servando (3.1), tendremos que la función de autocorrelación decae rápidamente para
valores grandes de k. Luego, si la función de autocorrelación no decae rápidamente,
es signo de que es necesario cierto grado de diferenciación.
Una vez determinado el órden de diferenciación, se procederá a determinar los valores
p y q del módelo.

Para determinar el modelo, utilizaremos principalmente las funciones de autocor-
relación y de autocorrelación parcial. Los pasos a seguir serán los siguientes:

1) Graficar la serie y elegir las transformaciones apropiadas. Se suele aplicar la
transformación de estabilización de varianza y usarla como serie original. De-
terminar si la serie necesita ser diferenciada para lograr estacionariedad.

2) Examinar las ACF y PACF. En el caso de que la ACF decaiga lento, estaŕıa im-
plicando que el proceso es no estacionario en Zt pero posiblemente estacionario
en alguna diferencia de Zt. Aśı, deberiamos aplicar las diferencias correspondi-
entes.

3) Examinar las ACF y PACF de la serie diferenciada con el objetivo de determinar
los valores de p y q correspondientes. Para ello, utilizamos la siguiente tabla:

Proceso ACF PACF

AR(p) Decae exponencialmente Se corta después de k=p
como una onda sinusoidal

amortiguada
MA(q) Se corta después de k=q Decae exponencialmente

como una onda sinusoidal
amortiguada

ARMA(p,q) Se corta después de k=q-p Se corta después de k=p-q

Para el caso de las series estacionales, la identificación del modelo constará de dos
partes. La primera, en la que identificaremos la componente periódica estacional de
la series y la segunda donde se determinaran los parámetros no estacionales de ella.
En efecto, los pasos a seguir serán los siguientes:

1) Encontrar d y D tal que

Yt = (1 −B)d(1 −Bs)DZt

pueda considerarse como un proceso estacionario. Es decir, calculo las diferen-
cias por ejemplo con lag=1 y lag=12
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2) Examinar las ACF y PACF de Yt en los lags s, 2s, 3s, .... Determinar P y Q para
que el modelo ARMA(P ,Q) sea compatible con las funciones de autocorrelación
y autocorrelación parcial observadas.

3) Examinar las ACF y PACF de Yt en los lags 1, 2, ..., s−1. Determinar p y q para
que el modelo ARMA(p,q) sea compatible con las funciones de autocorrelación
y autocorrelación parcial observadas.

3.2. Estimación de Parámetros

Luego de considerar el modelo a utilizar es necesario estimar los parámetros. Si
elegimos un ARMA(p,q):

Żt = φ1Żt−1 + ...+ φpŻt−p + at − θ1at−1 − ...− θqat−q

Deberemos estimar φ, µ, θ y σa
2. Utilizaremos dos posibles métodos de estimación; el

de los momentos o el de máxima verosimilitud. Además comentaremos la aplicación
del estimador de mı́nimos cuadrados en este contexto.

Método de Momentos:

El estimador más simple de momentos para µ, resulta µ̂ = Z; para estimar
φ usaremos que ρk = φ1ρk−1 + ... + φpρk−p. Aśı, obtenemos las ecuaciones de
Yule-Walker. Si reemplazamos ρk por

ρ̂k =

∑n−k
t=1 (Zt − Z)(Zt+k − Z)∑n

t=1(Zt − Z)2

y resolviendo el sistema podemos obtener φ̂1, ..., φ̂p.

Una vez obtenidos los estimadores de φ, calculamos

γ0 = E(ŻtŻt) = E((Żt)(φ1
˙Zt−1+...+φp

˙Zt−p+at−θ1at−1−...−θqat−q)) = φ1γ1+...+φpγp+σa
2

y de esta forma estimamos σ2
a

σ̂2
a = γ̂0(1 − φ̂1ρ̂1 − ...− φ̂pρ̂p).

Para calcular los estimadores θ veamos como ejemplo un proceso MA(1), cal-
culamos

ρ1 =
γ1

γ0

=
−θ1

1 + θ1
2

Si reemplazamos ρk por ρ̂k, resolvemos y obtenemos θ̂1
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Estimadores de Máxima Verosimilitud:
Consideremos un modelo ARMA(p,q)

Żt = φ1
˙Zt−1 + ...+ φp

˙Zt−p + at − θ1at−1 − ...− θqat−q

como at ∼ N(0, σ2
a), si a = (a1, ..., an) tenemos

P (a|θ, µ, φ, σa
2) = (2πσa

2)−n/2e−1/σa
2

∑n
t=1

(at)2 .

Entónces, si escribimos a at de la siguiente forma

at = θ1at−1 + ...+ θqat−q + Żt − φ1
˙Zt−1 − ...− φp

˙Zt−p

Sea entonces Z = (Z1, Z2, ..., Zn) y Z∗ = (Z1−p, ..., Z−1, Z0) las condiciones
iniciales conocidas, definimos la función condicional de máxima verosimilitud
como

lnL(φ, µ, θ, σa
2) = −n/2 ln 2πσa

2 − S(φ, µ, θ)

2σa
2

,

donde

S(φ, µ, θ) =
n∑

t=1

at
2(φ, µ, θ|Z∗, a∗, Z). (3.2)

Las cantidades que maximizan la función condicional de máxima verosimilitud
en (φ, µ, θ) serán los estimadores de máxima verosimilitud condicional. Notar
que basta minimizar (3.2) para encontrar estos estimadores.

Luego de estimar los parámetros, computamos σ̂a
2 = S(φ̂,µ̂,θ̂)

d.f
, donde d.f corre-

sponde a la cantidad de términos usados en S menos el número de parámetros
estimados.

Estimación por mı́nimos cuadrados (OLS):

En general, dada una regresión lineal simple, Zt = φXt + et, con E(et) = 0,
E(et

2) = σe
2, E(etek) = 0 para t 6= q y E(Xtet) = 0 , tenemos que el estimador

de cuadrados mı́nimos ordinarios es φ̂ =
∑n

t=1
XtZt∑n

t=1
Xt

2 que es consistente e insesgado.

Si ahora considero Zt = φZt−1 + et, tenemos que:

φ̂ =

∑n
t=2 Zt−1Zt∑n
t=2 Zt−1

2 =

∑n
t=2 Zt−1(φZt−1 + et)∑n

t=2 Zt−1
2 = φ+

∑n
t=2 Zt−1et∑n
t=2 Zt−1

2

Para determinar si el estimador sigue siendo consistente e insesgado debemos
analizar la naturaleza del error et. Veamos las siguientes situaciones:
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• Si et es tal que E(et) = 0 y V (et) = σa
2, Zt es un AR(1). Aśı, φ̂ = ρ̂1 y , si

además |φ| < 1 tenemos que la función de autocorrelación es sumable por
lo que φ̂ es consistente.

• Si et = (1 − θB)at, tenemos que et es un proceso MA(1). Luego, Zt es un
ARMA(1,1) con Zt = φZt−1 + at − θat−1. Notemos que si tomo esperanza,
obtengo que E(Zt−1et) = E(Zt−1(at − θat−1)) = −θσa

2; aśı estaŕıa violan-
do las hipótesis E(etek) = 0 y E(Xtet) = 0. Como φ̂ ⋍ ρ̂1 y , para un

ARMA(1,1), se tiene que ρ1 = (φ−θ)(1−φθ)
1+θ2−2φθ

6= φ esto indica que el estimador
no es consistente.

3.3. Diagnóstico y Selección del Modelo

Luego de estimar los parámetros, será necesario realizar el chequeo del modelo.
Esto consistirá principalmente en determinar si los at del modelo resultan realmente
ruido blanco, esto se llevará acabo a traves de los residuos ât.

Inicialmente podremos calcular
ât

σ̂a

y analizar si tiene distribución N(0,1) realizan-

do un histograma o usando test de normalidad. Para determinar si tienen varianza
constante, observaremos los ACF y PACF de los residuos para ver si forman un patrón
y se encuentran o no correlacionados.

Supongamos ahora que al chequear el modelo, notamos por ejemplo que AR(1)
produce un MA(1). Es decir:

(1 − φ1B)(Zt − µ) = bt

donde bt corresponde a un MA(1).

En ese caso, propondremos un ARMA(1,1) y volveremos a estimar y luego chequear
el modelo, de esta manera iteraremos este procedimiento hasta obtener ruido blanco.

Otra forma de determinar que modelo elegir es usando un criterio de selección
de modelos. Existen muchos de ellos, sin embargo, el criterio de selección de Akaike
(AIC) es el más utilizado.

Rigurosamente, definimos AIC(M) como

AIC(M) = −2 log(L) + 2M (3.3)

donde L correponde a la verosimilitud y M es la cantidad de parámetros del modelo.

En particular, para un modelo ARMA, tenemos que

log(L) =
−n
2

log 2πσa
2 − S(φ, µ, θ)

2σa
2



28 Caṕıtulo 3

donde S es el definido en (3.2). Si maximizamos respecto a φ, µ, θ y σa
2 obtenemos

log L̂ =
−n
2

log σ̂a
2 − n

2
(1 + log 2π)2.

Finalmente,

AIC(M) = n log σ̂a
2 + 2M,

el criterio consiste en seleccionar aquel modelo que tenga mı́nima condición de Akaike.

Otro criterio a utilizar es el Criterio de Información Bayesiano (BIC). Este criterio
penaliza también la cantidad de parámetros introducidos al modelo pero, a diferencia
de Akaike, el BIC proviene de un marco bayesiano.
El BIC se define como

BIC = −2 log(L) +M log n,

notando que solo se diferencia del AIC en que el segundo término aparece n. Se
elegirán los modelos que minimicen BIC. Desde una perspectiva bayesiana, BIC se
utiliza para encontrar el modelo mas probable dados los datos.

3.3.1. Algunas herramientas de validación

En esta sección enumeraremos todos aquellos criterios o tests que utilizaremos
para determinar y diagnosticar el modelo elegido

Test de Raiz Unitaria:

Este test se utiliza para determinar si la serie es o no estacionaria. Como vimos
anteriormente, esto quedará determinado por el valor de las raices.

Por ejemplo, para un modelo AR(1) de la forma Zt = φZt−1 + at, planteo el test

H0 : φ = 1 vs H1 : φ < 1

El test está basado en φ̂ un estimador de φ y se rechazará H0 si φ̂− 1 < 0. Como el
estimador de cuadrados mı́nimos de φ es

φ̂ =

∑n
t=1 Zt−1Zt∑n
t=1 Z

2
t−1

se puede probar que bajo H0

n(φ̂− 1) =
n−1

∑n
t=1 Zt−1at

n−2
∑n

t=1 Z
2
t−1

D−→ 1/2[w(1)2 − 1]
∫ 1

0
[w(x)]2dx

donde w(t) es un proceso browniano , es decir,
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w(0)=0

w(t)∼ N(0,t) para cada t

[w(t2) − w(t1)] y [w(t4) − w(t3)] son independientes para cada (t1, t2) y (t3, t4)

En general, el estad́ıstico a utilizar bajo H0 es

T =
φ̂− 1

Sφ̂

que converge en distribución a

1/2[(w(1))2] − 1

[
∫ 1

0
(w(x))2dx]1/2

y rechazaremos H0 para valores pequeños de T.

Test de Shapiro-Wilk:

El test de Shapiro-Wilk testea la hipótesis nula de que X1, ..., Xn tienen una dis-
tribución normal. En este caso, se utilizaremos este test para observar la normalidad
de los residuos. El estad́ıstico utilizado es

W =
(
∑n

i=1 aiXi)
2

∑n
i=1(Xi −Xi)2

donde a = (a1, ..., an) = µV −1

(µV −1V −1µ)1/2 , E(Xi) = mi y V es la matrix de covarianzas.

Para este estad́ıstico, rechazaremos la hipótesis nula para valores pequeños de W .

Test de Kolmogorov-Smirnov:

Este test sirve para comparar una muestra con una distribución dada. La hipótesis
nula será que la muestra sigue esa distribución. El test está basado en la diferencia
entre la distribución teórica y la hipotética. Dados n datos X1, ..., Xn, se define el test
estad́ıstico

T = sup |F ∗(x) − Fn(x)|, (3.4)

donde F ∗ es la distribución hipotética y Fn es la distribución emṕırica basada en la
muestra. La distribución del T , esta tabulada en tabla, luego si T excede el 1 − α
cuantil dado por la tabla de cuantiles para el Test de Kolmogorov, se rechaza la
hipótesis nula con un nivel de confianza α.
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Test de Dickey-Fuller

Este test chequea la hipótesis nula de que existe una ráız unitaria en una serie de
tiempo. No entraremos en detalle sobre el estad́ısticio que se construye en este caso.
A modo de ejemplo si consideramos un proceso AR(1),

yt = ρyt−1 + µt,

este tendrá una ráız unitaria si ρ = 1. Notemos que el proceso puede ser reescrito
como

Byt = (ρ− 1)yt−1 + µt = δyt−1 + µt.

Luego el test se concentrará en testear si δ es 0 para comprobar si hay o no una ráız
unitaria.

3.4. Forecasting

Luego de identificar el modelo y confirmar los supuestos asumidos, llega el mo-
mento de pronosticar. Tomaremos como ejemplo un modelo ARIMA(p,d,q) con d = 0
ó d 6= 0. Es decir, φ(B)(1 −B)dZt = θ(B)at donde φ(B) es el operador AR y θ(B) es
el operador MA.

Reescribamos el modelo a tiempo t+ l en su representación AR.

π(B)Zt+l = at+l

donde π(B) = 1 −
∑∞

j=1 πjB
j = φ(B)(1−B)d

θ(B)
o equivalentemente

Zt+l =
∑

j≥1

πjZt+l−j + at+l.

Si aplicamos a ambos lados de la ecuación el operador 1 + ψ1B + · · · + ψl−1B
l−1:

0 =
∑

j≥0

l−1∑

k=0

πjψkZt+l−j−k +
l−1∑

k=0

ψkat+l−k

donde π0 = −1 y ψ0 = 1. Si elejimos ψ tal que
∑m

i=0 πm−iψi = 0 y llamamos πj
(l) =∑l−i

i=0 πl−1+j−iψi es fácil ver

Zt+l =
∑

j≥1

πj
(l)Zt−j+1 +

l−1∑

i=0

ψiat+l−i
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Entonces tomando esperanza condicional

Ẑn(l) = E(Zn+l|Zt, t ≤ n) =
∑

j≥1

πj
(l)Zn−j+1

pues E(an+j|Zt, t ≤ n) = 0. Aśı obtenemos que el error del forecast es:

en(l) = Zn+l − Ẑn(l) =
l−1∑

j=0

ψjan+l−j (3.5)

Cuando actualicemos el forecast, obtendremos un nuevo error. Si el error obtenido
viene dado por (3.5), tenemos que en particular en(1) = an+1. Entonces, Zn −
Ẑn−1(1) = an. Usando (3.5) obtenemos que en−1(l + 1) = en(l) + ψlan y en(l) =
Zn+l − Ẑn(l). Luego,

Ẑn(l) = ˆZn−1(l + 1) + ψl(Zn − Ẑn(1))

Lo que es lo mismo que:

ˆZn+1(l) = Ẑn(l + 1) + ψl(Zn+1 − Ẑn(1)). (3.6)

En definitiva, el update del forecast se obtiene sumando al forecast anterior un mul-
tiplo del error del pronostico anterior. Además, se puede obtener un intervalo de
confianza de nivel 1 − α dado por

Ẑt(l) ±Nα/2[1 +
i−1∑

j=1

ψj
2]1/2σa

2,

donde Nα/2 es tal que P (N > Nα/2) = α/2 con N ∼ N(0, 1).

Ejemplo: Sea un proceso AR(1) de la forma

(1 − φB)(Zt − µ) = at

donde φ = 0,6, µ = 9 y σa
2 = 0,1, supongamos que tenemos las siguientes observa-

ciones Z97 = 9,6, Z98 = 9, Z99 = 9, Z100 = 8,9 y buscamos el forecast de Z101 y Z102

con un nivel de confianza del 95 %. La forma en la que procederemos será la siguiente:
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1) Si el modelo lo escribimos como

Zt − µ = φ(Zt−1 − µ) + at,

luego π1 = φ y por lo tanto ψ1 = φ entonces el forecast correspondiente ven-
drá dado por

Ẑt(l) = µ+ φ(Ẑt(l − 1) − µ).

Aśı, obtenemos que

Ẑ100(1) = 9 + 0,6(8,9 − 9) = 8,94,

Ẑ100(2) = 9 + 0,62(8,9 − 9) = 8,964.

2) Para computar los limites de confianza del forecast del 95 %, aplicamos (3.4).
Aśı, obtenemos que para Z101 los valores son

8,94 ± 1,96
√

0,1,

y para Z102 son

8,964 ± 1,96
√

1 + (0,6)2
√

0,1.

3) Supongamos ahora que la observación a t = 101 resulta ser 8,8. Usando (3.6),
actualizamos el forecast y obtenemos:

Ẑ101(1) = Ẑ100(2) + φ[Z101 − ˆZ100(1)] = 8,964 + 0,6(8,8 − 8,94) = 8,88.

En definitiva, estos seŕıan los pasos a seguir a la hora de utilizar el modelo propuesto
para pronosticar. Notemos que tomamos φ, µ y σ2

a como los valores poblacionales, sin
embargo cuando trabajamos con datos reales el mismo procedimiento debeŕıa hacerse
con los estimadores de estos.

3.5. Modelos RegARIMA

Con el objetivo de poder pronosticar, hemos estudiado modelos que explican la
progresión de una variable en función de la variación de la misma. Esta forma de
modelar no toma en cuenta los factores exógenos. Aśı, en el caso de pronosticar la
demanda de una ruta, los modelos ARIMA no se ven afectados explicitamente por la
variación de la oferta, la tarifa, el contexto económico, etc. Con este objetivo, intro-
ducimos los modelos RegARIMA. Estos consisten en modelar la variable dependiente
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con una regresión lineal y, los residuos obtenidos, con un modelo ARIMA. En efecto,
si yt es la variable que queremos pronosticar,

yt = βxt + et,

donde xt es la variable independiente y los errores et satisfacen

(1 −B)dφ(B)et = θ(B)ut,

donde d es el órden de diferenciación, φ es el operador AR de órden p y θ es el operador
MA de órden q.

Una posible estimación para (β, φ1, ..., φp, θ1, ..., θq) son los estimadores de máxima
verosimilitud (ML) con errores normales. El cómputo de estos errores ya fue estudiado
por Pesaran (1973), Pagan and Nicholls (1976), Harvey and Phillips (1979) y Otto,
Bell y Burman (1987).
Otra opción consiste en un enfoque de cuadrados mı́nimos condicionados, el cual
resulta en una aproximación a los estimadores de máxima verosimilitud exactos. En
el caso de que los et sigan un proceso autoregresivo dado por (1 − B)dφ(B)et = ut,
este estimador será el de mı́nimos cuadrados.
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Analisis de datos reales

El objetivo de este caṕıtulo es aplicar la teoŕıa presentada anteriormente utilizando
datos reales. Las series a modelar corresponden a la demanda de pasajeros de ciertas
rutas aéreas en el peŕıodo enero de 2005 a mayo de 2012. Llamaremos demanda a los
pasajeros que efectivamente volaron esa ruta en un determinado mes. El objetivo de
generar estos modelos consiste en obtener funciones de demanda para poder realizar
un planeamiento mas preciso de la red. Decisiones tales como inversión en equipos,
aumento o disminución de frecuencias e ingreso a determinados mercados pueden ser
sustentadas usando las predicciones obtenidas por estos modelos.
Como mencionamos anteriormente, utilizaremos los modelos ARIMA para la serie de
datos correspondiente al peŕıodo 01/05- 05/12 y ademas consideraremos las siguientes
variables independientes ajustando los modelos RegARIMA

1) AKOS: Los akos son una métrica que se utiliza en la industria aeronáutica.
Corresponde a Asientos por Kilómetro ofrecido; es decir, al producto de la
oferta en asientos por los kilometros que tiene la ruta. Mide la oferta.

2) EMAE: El emae es el Estimador Mensual de Actividad Económica. Es un ı́ndice
que realiza el INDEC con el objetivo de medir la actividad económica.

3) IPC: El ipc es el Índice de Precios al Consumidor. Es el ı́ndice que realiza el
INDEC con el objetivo de medir la inflación.

4) ICC: El icc es el Índice de Confianza del Consumidor. Este ı́ndice es elaborado
por la Universidad Torcuato Di Tella y es un indicador que ”...permite anticipar
los cambios de tendencia de la actividad económica a lo largo del ciclo, a través
de sus puntos de giro. El ı́ndice se compone de diez series seleccionadas en base
a su conformidad, consistencia temporal, racionalidad económica, representa-
tividad y disponibilidad”.

34
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A la hora de realizar los modelos utilizamos el software R. A su vez, los principales
paquetes utilizados fueron forecast , graphics , lmtest , stats , tseries y TSP.

4.1. AEP-CNQ-AEP

El primer ejemplo a modelar consiste en la ruta Aeroparque-Corrientes-Aeroparque.
En un principio ajustaremos un modelo ARMA o ARIMA según correspondiere. Los
principales estad́ısticos de la serie son los siguientes:

Media 3786.24
Mediana 3415

Desviaćıon Estandar 12228.54
Curtosis -0.305
Mı́nimo 1282
Máximo 7254

Nro. Observaciones 89

Figura 4.1: Estad́ısticos Principales .

Para comenzar con el análisis de la serie observamos su gráfico en la figura 4.2. En
un principio, analizando los principales estad́ısticos y el gráfico, podemos notar cierta
no estacionariedad en la media, mas precisamente una esperable tendencia creciente.
De todas maneras analizaremos la aplicación de una Transformación de Box-Cox a
los datos para obtener más estacionariedad. La potencia elegida para transformar los
datos lo podemos obtener del gráfico 4.2.

Figura 4.2: Gráfico Pax vs Mes y Gráfico Box-Cox
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El gráfico sugiere aplicar dos posibles transformaciones a los datos con los valores
λ = 0 y λ = −0,5. De esta manera, consideraremos dos posibles series para trabajar
el modelo; Yt = log(Zt) y Wt = Zt

−0,5−1
−0,5

. Los gráficos de las nuevas series obtenidas
vienen dados por la figura 4.3.

Figura 4.3: Series Transformadas

Una vez transformada la serie, utilizamos el Test de Dickey-Fuller para determinar
si la serie es efectivamente estacionaria o no. En caso de ser necesario, aplicaremos
diferencias hasta lograr la efectiva estacionariedad. Aplicamos el test a la serie sin
diferenciar y a la serie diferenciada con d = 1, D = 1.

Luego tendremos en cuenta 5 series de datos:

i) mcnq1 : Es la serie sin diferenciar y sin transformación Box-Cox,

ii) mcnq2 : Es la serie sin diferenciar con transformación Box-Cox λ = −0,5,

iii) mcnq3 : Es la serie sin diferenciar con transformación Box-Cox λ = 0,

iv) mcnq2d1s1 : Es la serie diferenciada con transformación Box-Cox λ = −0,5,

v) mcnq3d1s1 : Es la serie diferenciada con transformación Box-Cox λ = 0,

Los estad́ısticos y p-valores obtenidos del Test de Dickey–Fuller se reportan en la
figura 4.4.
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Serie Estad́ıstico p-valor

mcnq1 -3.30 0.0759
mcnq2 -3.58 0.0394
mcnq3 -3.46 0.04987

mcnq2d1s1 -5.82 0.01
mcnq3d1s1 -5.51 0.01

Figura 4.4: Test Dickey-Fuller

Observando los p-valores podemos rechazar con seguridad la hipótesis nula en las
series con ambas diferencias; es decir, asegurar estacionariedad de los datos (notar
además que la serie sin diferenciar tiene un p-valor mayor a 0.05). Las series sin difer-
encias también presentan p-valores menores a 0.05 por lo que también rechazaremos
la hipótesis nula. En efecto, armaremos cuatro tipo de modelos; aquellos que combi-
nan los dos posibles lambda con las dos posibles series diferenciadas. Al momento de
seleccionar el modelo, notemos que en el caso de utilizar un criterio de información
(por ejemplo el AIC), el criterio penalizará la sobrediferenciación. Aśı, tendremos una
herramienta que nos permitirá eliminar los modelos innecesariamente complejos. A
partir de ahora haremos los cuatro análisis por separado.

4.1.1. Caso λ = −0,5 y d = D = 1

Calculamos las funciones de autocorrelación y autocorrelación parcial, obteniendo
la figura 4.5.

Figura 4.5: Función de Autocorrelación y Autocorrelación Parcial
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A partir de estos gráficos, utilizando la teoŕıa propuesta por Box-Jenkins, deter-
minamos los valores p, q, P,Q del modelo ARIMA que vamos a elegir. Notemos que
dado que conocemos la estacionalidad de los datos (s=12), tendremos efectivamente
que encontrar los parámetros P,Q que modelan la estacionalidad. Una vez analizados
los gráficos, los modelos propuestos vienen dados por la figura 4.6, donde la columna
método se refiere al la estimación empleada para los coeficientes, nos referiremos a
(ML) máxima verosimilitud o (CSS) máxima verosimilitud con utilizando como val-
ores iniciales cuadrados mı́nimos condicionales. La columna “Modelos”les asigna un
nombre a estos y el resto de las columnas corresponden a los parámetros de cada uno
de los modelos. Aquellos que no presentan parámetros, son modelos generados por
la función auto.arima del paquete forecast. Esta función genera una cantidad fija de
modelos y elige según criterios de información. En particular, el modelo 3 usa el AIC
y el modelo 4 el BIC.

Figura 4.6: Parámetros de los modelos propuestos

Una vez ajustados los coeficientes mediante los métodos propuestos obtenemos
finalmente los modelos mostrados en la figura 4.7.



  

  Series: meng2 
ARIMA(O,1,0) (1,1,1) [12] 

Coefficients: 
sari sal 

0.029 -1.00 
s.e. 0.128 0.18 

sigma*2 estimated as 0.0000258: 

  

AIC==558  AIce==558  BIC=-551 

Series: meng2 
ARIMA(2,1,0) (1,1,1) [12] 

Coefficients: 
ari arz  sari  smal 

-0.39 -0.4 0.018 -1.00 
s.e. 0.11 0.1 0.132 0.18 

sigma*2 estimated as 0.0000196: 
AIC==574  AICO==573 — BIc=-S62    

Serie   meng2 

  

log likelihood 

log likelihood 

  

ARIMA(1,0,0) (1,0,0)[12] with non-zero mean 

Coefficients: 
arl sarl intercept 

0.494 0.23 1.966 
s.e. 0.098 0.11 0.001 

sigma*2 estimated as 0.0000211: 
AIC==697 AICe=-696  BIC=-687   

Series: meng2 
ARIMA(1,0,0) with non-zero mean 

  Coefficient: 
ari intercept 

0.55 1.966 
s.e. 0.09 0.001 

sigma*2 estimated as 0.0000222: 
AIC==695 AICc=-694  BIC=-687     

Series: meng2 
ARIMA(O,1,0) (1,1,1) [12] 

  

Coefficients: 
sari smal 

-0.083 -0.787 
s.e. 0.127 0.099 

sigma*2 estimated as 0.0000383: 

Series: meng2 
ARIMA(2,1,0) (1,1,1) [12] 

Coefficients: 
ario arz  sari 

-0.38 -0.38 -0.087 -0.76 
s.e. 0.11 0.11 0.131 

sigma*2 estimated as 0.0000298: 

part log likelihooe* 

smal 

0.10 

log likelihoo 

    

log likelihoo 

    

part log likelihooe*
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Figura 4.7: Estimación de los coeficientes de los modelos.

Previa selección del modelo debemos ver que se cumplen los supuestos afirmados
en la teoŕıa de Box-Jenkins. Principalmente debemos ver si los residuos tienen o no
una distribución normal. Para ello vamos a utilizar el Test de Kolmogorov-Smirnov.
Este test compara cuan parecidos son los datos al de una distribución dada. En nuestro
caso compararemos los residuos de los modelos con una distribución normal de media
0. Los estad́ısticos y p-valores vienen dados por la figura 4.8

Modelo p-valor

Modelo1.1 0.1805
Modelo2.1 0.2545

Modelo3 0.3145
Modelo4 0.2901

Modelo5.1 0.0131
Modelo6.1 0.0028

Figura 4.8: Test Kolmogorov-Smirnov

Notemos que sacando los últimos dos modelos, no es posible rechazar la hipótesis
nula; es decir, afirmar que los residuos no cuentan con distribución normal. Observe-
mos también que los últimos dos modelos son justamente los ajustados por CSS. Una
vez observado que los supuestos no se violan podemos utilizar los criterios de infor-
mación para seleccionar el modelo. La figura 4.9 muestra los valores de AIC y BIC
de los modelos.

Figura 4.9: Valores de AIC y BIC

Efectivamente, la función auto.arima es la que encontró los modelos con AIC y
BIC mas bajos. Estos dos modelos tienen a la serie sin diferenciar, por lo que no
los tendremos en cuenta en este caso. Aśı, usando las condiciones, obtenemos que el
modelo2.1 presenta el AIC y BIC mas bajo.

En la siguiente figura 4.10 presentaremos los gráficos de los pronósticos de cada
modelo para los próximos 12 meses.
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Figura 4.10: Forecast de los modelos

Finalmente, estos serán los dos modelos con los cuales nos quedaremos para este
caso.

4.1.2. Caso λ = −0,5 y d = D = 0

La figura 4.11 muestra las funciones de autocorrelación y autocorrelación parcial
de las series.
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Figura 4.11: Función de Autocorrelación y Autocorrelación Parcial

Observando estos gráficos, determinamos los parámetros correspondientes de los
modelos ARIMA, aśı proponemos un modelo que es estimado por los métodos de
ML y CSS y denominamos modelos 7.1 y 8.1. Por otro lado los modelos 3 y 4 son
sugeridos por la función auto.arima.

Figura: Parámetros de los modelos

Una vez determinados los parámetros, ajustamos los coeficientes usando los méto-
dos propuestos. La figura 4.12 muestra la información referida a cada modelo.
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Figura 4.12: Estimación de los modelos propuestos

A continuación testeamos si los residuos tienen una distribución normal o no.
Para ello usamos el test de Kolmogorov-Smirnov. Los estad́ısticos y p-valores vienen
se presentan en la figura 4.13.
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Modelo p-valor

Modelo7.1 0.4468
Modelo8.1 0.5422

Modelo3 0.3145
Modelo4 0.2901

Figura 4.13: Test Kolmogorov-Smirnov

Observando los p-valores correspondientes, notamos que no hay evidencia para
rechazar la hipótesis nula. A continuación, procedemos a la selección del modelo. Ya
sabemos que los modelos 3 y 4 presentan los AIC y BIC mas bajos (se puede ver en
la figura 4.14).

Figura 4.14: Valores de AIC y BIC

Los valores pronosticados para los 12 meses siguientes vienen dados por la figura 4.15.
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Figura 4.15: Forecast de los modelos

4.1.3. Caso λ = 0 y d = D = 1

Desde las figuras 4.16 hasta la figura 4.21 mostramos el análisis hecho para este
caso, cuya procedimiento es análogo a lo realizado anteriormente
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Figura 4.16: Funciones de Autocorrelación y Autocorrelación Parcial

Como procedimos anteriormente, del análisis de las ACF y PACF, proponemos los
modelos 1.2, 2.2, 5.2 y 6.2, ademas la función auto.arima sugiere otros dos modelos
que no tendremos en cuenta ya que se determinaron no incluyendo diferencias.

Figura 4.17: Parámetros de los modelos
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Figura 4.18: Valores de los coeficientes de los modelos.

Continuamos ahora con el análisis de los residuos, en la figura 4.19 observamos
que los modelos 5.2 y 6.2 (ambos ajustados por CCS) tienen residuos que no siguen
una distribución normal. Aśı, por violar los supuestos, los eliminamos de la elección.
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Modelo p-valor

Modelo1.2 0.1012
Modelo2.2 0.1689
Modelo5.2 0.0099
Modelo6.2 0.0088

Figura 4.19: Test Kolmogorov-Smirnov

Finalmente, calculamos los criterios de selección para los dos modelos, resultando
el modelo 2.2 más adecuado.

Figura 4.20: Valores de AIC y BIC

Figura 4.21: Forecast de los modelos propuestos
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4.1.4. Caso λ = 0 y d = D = 0

Este caso comprende desde las figuras 4.22 a la 4.27. Observando las funciones
ACF y PACF elegimos cuatro posibles modelos. Luego, verificamos que los residuos
sean efectivamente normales usando el test de Kolmogorov-Smirnov. Notando que los
cuatro modelos cumplen los supuestos, realizamos el forecast correspondiente.

Figura 4.22: Funciones de Autocorrelación y Autocorrelación Parcial

Figura 4.23: Parámetros de los modelos
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Figura 4.24: Valores de los coeficientes de los modelos

Modelo p-valor

Modelo7.2 0.3693
Modelo8.2 0.43

Modelo9 0.2082
Modelo10 0.832

Figura 4.25: Test Kolmogorov-Smirnov



Sección: Caṕıtulo 4 51

Figura 4.26: Valores de AIC y BIC

Figura 4.27: Forecast de los modelos propuestos

4.1.5. Modelos regARIMA

En la sección anterior solo buscamos explicar el comportamiento de la demanda
en función de procesos propios de la ruta. Al aplicar modelos RegARIMA, veremos
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como se relacionan la demanda con procesos exógenos a esta y si la inclusión de
estas variables exogenas ayudan a explicar mejor la demanda. A su vez, cuando la
regresión se hace en base a los logaritmos de los datos, economistas suelen usar el
coeficiente que acompaña a la variable independiente (el cual se llama elasticidad,
por ejemplo, elasticidad del precio con respecto a la demanda) para determinar cuan
sensible es el cambio de la variable dependiente (la demanda) cuando vaŕıa la variable
independiente ( el precio, algún ı́ndice, etc).

En primer lugar ajustaremos un modelo regARIMA para ello consideramos la
regresión

Yt = β1 + β2 log(akos) + β3 log(emae est) + β4 log(ipc gba) + β5 log(icc utdt) + ǫt

donde εt sigue un proceso ARIMA. El ajuste de la regresion se presenta en la siguiente
figura.

Figura 4.28: Valores de la regresión

Observando esta figura, notamos que en un principio los coeficientes obtenidos son
buenos. Al aplicarle el Test de normalidad de Shapiro-Wilk a los residuos, notamos
que el p-valor obtenido es mayor que 0.05 (es 0.2272); por lo tanto no hay evidencia
para rechazar la hipótesis nula y afirmar que los residuos no siguen una distribución
normal.
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Una vez analizada la información de la regresión pasaremos a modelar los residuos
con un modelo ARIMA. Para eso, inicialmente le aplicaremos el Test Dickey-Fuller
para determinar si hay ráıces unitarias. EL p-value obtenido es de 0.02.

El test nos muestra que no es necesario diferenciar dado que la serie ya es esta-
cionaria. Aśı, modelaremos los residuos de la regresión con un modelo ARMA.

Figura 4.29: Serie de residuos, funciones de Autocorrelación y Autocorrelación Parcial

Al observar los gráficos de las correlaciones, elegimos los siguientes cuatro modelos,
uno de los cuales fue elegido automáticamente por la función auto.arima (la cual
selecciona el modelo que minimice el criterio de Akaike). (figura 4.30). Es decir, si
denotamos con Yt el logaritmodel proceso de demanda de pasajeros vamos a considerar
los siguientes modelos:

regcnq1: Yt = β1+β2 log(akos)+β3 log(emae est)+β4 log(ipc gba)+β5 log(icc utdt)+
ǫt donde ε2(B)Yt = θ1(B)at.

regcnq2: Yt = β1+β2 log(akos)+β3 log(emae est)+β4 log(ipc gba)+β5 log(icc utdt)+
ǫt donde φ2(B)εt = θ10(B)at.

regcnq3: Yt = β1+β2 log(akos)+β3 log(emae est)+β4 log(ipc gba)+β5 log(icc utdt)+
ǫt donde φ8(B)εt = θ10(B)at.

regcnq4: Yt = β1+β2 log(akos)+β3 log(emae est)+β4 log(ipc gba)+β5 log(icc utdt)+
ǫt donde φ3(B)εt = θ2(B)at.
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Figura 4.30: Modelos ARMA para los residuos

Para estos cuatro modelos verificamos los supuestos de normalidad de sus residuos.
Usando el Test de Kolmogorov-Smirnov, notamos que los residuos de los modelos no
dan evidencia para rechazar la hipótesis nula (figura 4.31).
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Modelo p-valor

regcnq1 0.8469
regcnq2 0.7088
regcnq3 0.4601
regcnq4 0.7939

Figura 4.31: Test Kolmogorov-Smirnov

4.1.6. Pronósticos y conclusiones

En la figura siguiente mostramos el pronóstico obtenido para los siguientes 7 meses
usando los modelos ARIMA y RegARIMA y comparamos con sus correspondientes
valores reales. Antes de continuar, resumiremos los modelos que hemos analizado
hasta aqúı, ádemas de los modelos de regresión. Llamaremos Zt a la serie con λ = −0,5
e Yt a la serie con λ = 0, de esta forma los modelos obtenidos son los siguientes:

Modelo1.1: Φ1(B
12)φ0(B)(1 −B)(1 −B12)Zt = Θ1(B

12)θ0(B)at

Modelo1.2: Φ1(B
12)φ0(B)(1 −B)(1 −B12)Yt = Θ1(B

12)θ0(B)at

Modelo2.1: Φ1(B
12)φ2(B)(1 −B)(1 −B12)Zt = Θ1(B

12)θ0(B)at

Modelo2.2: Φ1(B
12)φ2(B)(1 −B)(1 −B12)Yt = Θ1(B

12)θ0(B)at

Modelo3: Φ1(B
12)φ1(B)Zt = Θ0(B

12)θ0(B)at

Modelo4: φ1(B)Zt = θ0(B)at

Modelo7.1: Φ0(B
12)φ1(B)Zt = Θ1(B

12)θ0(B)at

Modelo7.2: Φ0(B
12)φ1(B)Yt = Θ1(B

12)θ0(B)at

Modelo8.1: φ1(B)Zt = θ0(B)at

Modelo8.2: Φ0(B
12)φ1(B)Yt = Θ1(B

12)θ0(B)at

Modelo9: φ1(B)Yt = θ2(B)at

Modelo10: φ0(B)Yt = θ1(B)at

En la figura 4.32 observaremos los resultados obtenidos. La tabla muestra los
resultados por modelo para los siguientes 7 meses. Contiene los parámetros (valores
p,d,q,P ,D,Q), el lambda que se utilizó para transformar la serie y el método con el
cual se ajustó la serie. Debajo aparecen los errores de estimación en valores absolutos.
Los colores vaŕıan del verde (errores pequeños) al rojo (errores altos).
Nuestro objetivo final consiste en elegir el modelo con el cual explicar la serie de datos
original. Notemos en un principio que las regresiones muestran los errores mas altos.
Mas allá de presentar errores pequeños en el primer mes, se observa que en los meses
posteriores los valores llegan al 30 %. Una posible explicación es que las variables
independientes elegidas pueden no ser las correctas, en el sentido que ı́ndices como
el IPC o el ICC explican situaciones macro que pueden no influir directamente en la
demanda de pasajeros. Es aśı que seŕıa conveniente elegir variables que se relacionen



56 caṕıtulo 4

exclusivamente con la demanda.
Con respecto a los modelos ARIMA, los números 3,4,9 y 10 presentan altos errores.
Sorprendentente, estos son los modelos con condiciones AIC y BIC mas bajos para
cada transformación (λ = −0, 5 y λ = 0). Aśı, redujimos la cantidad de modelos
elegibles a 8. Cabe notar que todos ellos presentar errores cercanos al 20 % en los
primeros dos meses de forecast. Sin embargo esto disminuye rotundamente para los
siguientes meses, llegando a tener medias de 5 % de error.
Finalmente, privilegiaremos los modelos con menor cantidad de parámetros. Es aśı que
los modelos 8.1 (un proceso explicado como un AR(1)) y los 7.1,7.2 y 8.2 (procesos
ARIMA(1,0,0)*(0,0,1), con diferentes valores de λ y métodos de ajuste) seŕıan en ese
órden los modelos a seleccionar para explicar el comportamiento de la ruta.
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Figura 4.32: Modelos CNQ- Resultados - Error Absoluto

4.2. AEP-FMA-AEP

4.2.1. ARIMA

El segundo ejemplo a modelar consiste en la ruta Aeroparque-Formosa-Aeroparque.
Para este caso los estad́ısticos son los siguientes:
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Media 2760.56
Mediana 2559

Desviación Estandar 937.72
Curtosis -0.67
Mı́nimo 1040
Máximo 4829

Nro. Observaciones 89

Figura 4.33: Estad́ısticos Principales .

El comportamiento de la ruta viene dado por el gráfico de la serie, mostrado en
la figura 4.34. Al igual que en el analisis realizado para la otra ruta, el primer paso
consiste en transformar la serie para lograr estacionariedad. Para ello utilizamos la
Transformación Box-Cox. La elección del mejor λ viene dado por la figura 4.34.

Figura 4.34: Serie de Datos y Gráfico Box-Cox

Observando el gráfico vamos a tomar λ = −1, es decir, tomaremos la serie Zt =
1/Yt. Una vez transformada la serie vamos a diferenciar hasta lograr la estacionariedad
de la serie. Para determinar si se llego a esta, utilizaremos el Test de Dickey-Fuller.
Los valores obtenidos los encontramos en la figura 4.35.

Serie Estad́ıstico p-valor

mfma2 -2.05 0.55
mfma2d1 -4.80 0.01
mfma2s1 -1.78 0.66

mfma2d1s1 -5.01 0.01
Figura 4.35: Test Dickey-Fuller



Sección: Caṕıtulo 4 59

Observando la tabla, nos quedamos con la primera diferencia de lag 1. Una vez
determinado el órden de diferenciación, vamos a calcular las funciones de autocor-
relación y autocorrelación parcial. Estas funciones se presentan en la figura 4.36.

Figura 4.36: Gráficos ACF y PACF

El paso siguiente consiste en identificar el modelo analizando las dos funciones.
Los modelos propuestos vienen dados por la figura 4.37
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Series: mfma2 

ARIMA(3,1,2) (1,0,1) (12 

  

  

  

  

  

  

   

   

Coefficient: 
ari arz ars mal maz sari smal 

0.2749 -0.4323 -0.2770 0.0492 -0.0400 0.9191 -0.7625 
s.€. 0.4590 0.1898 0.2098 0.4720 0.2491 0.7302 1.2108 

sigma“2 estimated as 8.083e-09: log likelihoo: 
AIC=-1369.63 AICc=-1367.81  BIC=-1349.81 
> modelo2 
Series: mfma2 

ARIMA(2,1,2) (1,0,1) [12 

Coefficients: 
ari ar2 mal maz sari smal 

0.3395 -0.5415 -0.5669 0.1898 0.9636 -0.8461 
S.e. 0.2224 0.1678 0.2587 0.2323 0.4643 1.0190 

sigma“2 estimated as 7.9te-09: log likelihood=692.61 
AIC=-1371.22  AICc=-1369.82  BIC=-1353.88 
> modelos 
Series: mfma2 
ARIMA(2,1,1) (1,0, 0) [12: 

Coefficient: 
ari arz mal sari 

0.2180 -0.4120 -0.4172 0.2920 
S.€. 0.1646 0.1047 0.1703 0.0977 

sigma"2 estimated as 8.582e-09: log likelihood=691.56 
AIC=-1373.13  AICo=-1372.4  BIC=-1360.74 
> modelos 
Series: mfma2 

ARIMA (3,1, 0) (1,0, 0) [12 

Coefficient: 
ari arz ars sari 

-0.2096 -0.4495 -0.2467 0.3010 
s.e. 0.1033 0.0927 0.1029 0.0973 

sigma“2 estimated as 8.469e-09: log likelihood=692.1 
AIC=-1374.19 AICo=-1373.46  BIC=-1361.8 
> modelos 
Series: mfma2 

ARIMA(S,1,2) (1,0,1) [12 

Coefficients: 
ari arz ars mal maz sari smal 

-0.3236 -0.5167 -0.3184 0.0712 -0.0271 0.9561 -0.8741 
S.e. 0.4387 0.1642 0.2154 0.4473 0.2064 0.0948 0.1550 

sigma"2 estimated as 9.2048-09 
> modelos 
Series: mfma2 

ARIMA(2,1,2) (1,0,1) [12 

Coefficients: 
ari arz mal 

0.2618 -0.5793 -0.5046 
s.e. 0.1939 0.1415 0.2146 

sigma"2 estimated as 9.1718-09: 

  

part log likelihood=689. 

maz sari smal 
0.1424 0.9507 -0.8616 
0.1808 0.1016 0.1655 

part log likelihood=689.45
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Figura 4.37: Coeficientes de los modelos propuestos

Ya definidos los modelos vamos a determinar si el supuesto de normalidad de los
residuos es violado o no. Para ello vamos a utilizar el Test de Kolmogorov-Smirnov.
Los estad́ısticos y p-values encontrados aparecen en la figura

Modelo p-valor

Modelo1 0.0561
Modelo2 0.05309
Modelo3 0.05742
Modelo4 0.05754
Modelo5 0.00676
Modelo6 0.00277

Figura 4.38: Test Kolmogorov-Smirnov

Observando los p-values dados por Kolmogorov-Smirnov, elegimos los modelos
que no violen el supuesto de normalidad de los residuos. Notemos los modelos del 1 al
4 presentan p-values cercanos a 0.05, a diferencia de los modelos 5 y 6 que permiten
rechazar la hipótesis nula. Aśı,seguimos con los modelos del 1 al 4. El forecast de se
muestran en la 4.39.

Figura 4.39: Forecast de los modelos



62 caṕıtulo 4

4.2.2. RegARIMA

A continuación consideraremos los modelos RegARIMA de manera similar a la
empleada para el caso anterior.

Consideraremos la siguiente regresión

Yt = β1 + β2 log(akos) + β3 log(emae est) + β4 log(ipc gba) + β5 log(icc utdt) + ǫt

donde εt sigue un proceso ARIMA. Los estad́ısticos se presentan en la figura 4.41.

Figura 4.40: Coeficientes y estad́ısticos de la regresión

Para analizar la normalidad de los residuos vamos a aplicar nuevamente el Test
de Kolmogorov-Smirnov. El p-valor es de 0.84 por lo que podremos afirmar que no
hay evidencia para rechazar la hipótesis nula.

Para realizar el modelo ARIMA para sus residuos, aplicamos el Test de Dickey-
Fuller para determinar si estos tienen raices unitarias. El p-valor es de 0.01 por lo que
que podemos rechazar la hipótesis nula y suponer estacionariedad.

Para determinar como modelar la serie, observamos sus funciones de autocor-
relación y autocorrelación parcial en la figura 4.41.
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Figura 4.41: Gráficos ACF y PACF

Los modelos determinados a partir del análisis de las funciones vienen dados por
la figura 4.42.

regfma1: Yt = β1+β2 log(akos)+β3 log(emae est)+β4 log(ipc gba)+β5 log(icc utdt)+
ǫt donde ε2(B)Yt = θ1(B)at.

regfma2: Yt = β1+β2 log(akos)+β3 log(emae est)+β4 log(ipc gba)+β5 log(icc utdt)+
ǫt donde ε1(B)Yt = θ0(B)at..

regfma3: Yt = β1+β2 log(akos)+β3 log(emae est)+β4 log(ipc gba)+β5 log(icc utdt)+
ǫt donde ε11(B)Yt = θ0(B)at..
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Figura 4.42: Estimación de los coeficientes de los modelos

Una vez determinados los posibles modelos ARIMA vamos a utlizar el Test de
Shapiro-Wilk para observar normalidad de sus residuos. En la figura 4.43 podemos
observar que no hay evidencia para rechazar la hipótesis nula; es decir, no podemos
rechazar que los residuos sean normales.

Modelo p-valor

Modelo1 0.1805
Modelo2 0.2545
Modelo3 0.3145

Figura 4.43: Test Shapiro-Wilk
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Dado que todos los modelos cumplen los supuestos, realizamos el pronóstico de la
ruta que detallaremos en la sección siguiente.

4.2.3. Pronosticos y conclusiones.

Recordemos que notamos por Zt a la serie transformada con λ = −1 y hemos
encontrado 4 diferentes modelos ademas de los de regresión:

Modelo1: Φ1(B
12)φ3(B)Zt = Θ1(B

12)θ2(B)at

Modelo2: Φ1(B
12)φ2(B)Zt = Θ1(B

12)θ2(B)at

Modelo3: Φ1(B
12)φ2(B)Zt = Θ0(B

12)θ1(B)at

Modelo4: Φ1(B
12)φ3(B)Zt = Θ0(B

12)θ0(B)at

La tabla muestra los resultados por modelo para los siguientes 7 meses. Contiene
los parámetros (valores p,d,q,P ,D,Q), el λ que se utilizó para transformar la serie
(que en este caso siempre fue -1) y el método con el cual se ajustó la serie. Debajo
aparecen los errores de estimación en valores absolutos. Los colores vaŕıan del verde
(errores pequeños) al rojo (errores altos).
Para el caso de esta ruta tenemos idéntica situación con las regresiones, tal es aśı que
presentan los errores mas altos. El modelo 3 no solo presenta la menor cantidad de
parámetros si no que también es el que menor error posee (promedio y media de 7 %).
Además tiene los segundos menores condiciones AIC y BIC (solo superado por el
modelo 4). El modelo 4 presenta idéntica cantidad de parámetros, menor condiciones
AIC y BIC y medias de error del 9 %. Amparados por esta información, elegimos estos
dos modelos como aquellos que explicarán la demanda de la ruta.
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Figura 4.44: Resultados Modelos - Error Absoluto
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