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Capitulo 1: Introduccidn — La teoria de Ramsey

Introduccion: La teoria de Ramsey

La teoria de Ramsey obtiene su nombre en honor a Frank Plumptom Ramsey
(1903-1930) y a su célebre teorema, que demostré en 1928.

Sin haber llegado a sus 27 afios, Ramsey hizo grandes contribuciones a la 16gica, la
filosofia, la economia y la matematica. Trabajé en el King’s College de Cambridge, y
en 1928, ala edad de 25 afios realizé su paper titulado “On a problem of formal
logic” (Un problema de légica formal) que fue publicado pdstumamente en 1930.
Este contenia las versiones finita e infinita de lo que se conoce como teorema de
Ramsey o principio de Ramsey, que incluimos mas adelante.

Pero, ;Qué es la teoria de Ramsey? Aunque no hay una definicién universal
podriamos decir que la teoria de Ramsey es una arista de la combinatoria que
estudia la preservacion de propiedades bajo particiones de conjuntos. En otras
palabras, dado un conjunto S con una propiedad P, intenta responder preguntas
del tipo: ;Es cierto que cuando S es partido en finitos subconjuntos, uno de esos
subconjuntos debe tener también la propiedad P? [10]

Algunos ejemplos de este tipo de problemas son:

(1) Dada alguna particion de los enteros en finitas clases, siempre hay
alguna clase que contiene progresiones aritméticas arbitrariamente
largas (Teorema de Van der Waerden).

(ii)  Dado un conjunto F formado por los subconjuntos de cardinal k de un
conjunto infinito S, y una particiéon de F en finitas clases, entonces existe
un subconjunto infinito de S para el cual todos sus subconjuntos de
cardinal k pertenecen a una misma clase. (Teorema de Ramsey).

(iii)  Paraalguna particién del conjunto de puntos en el plano en finitas
clases, alguna clase siempre contiene tres puntos formando un tridngulo
recto de area 1.

Para un tratamiento mas detallado de estos problemas, ver [5].

Antes de describir el contenido a desarrollar, veamos un resultado basico asociado
a la teoria de Ramsey:
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Principio del palomar: Siun conjunto de cardinal n es partido en r
subconjuntos disjuntos, donde n > r, entonces al menos uno de los subconjuntos
tiene mas de un elemento.

Este principio se puede generalizar:

Principio del palomar generalizado: Si mas de mr elementos son divididos
en r conjuntos, entonces algiin conjunto contiene mas de m elementos.

El teorema de Ramsey podria ser considerado como un refinamiento del principio
del palomar, donde no solo se garantiza un cierto nimero de elementos en un
conjunto sino que ademas se garantiza cierta relacién entre estos elementos.

A continuacion incluimos los teoremas o principios de Ramsey:

Principio infinito de Ramsey:

Para k y r nimeros enteros positivos, si la coleccién de todos los subconjuntos de r
elementos de un subconjunto infinito S es coloreada con k colores, es decir que se
le asigna un mismo color dentro de los k posibles a todos los elementos de un
mismo conjunto, entonces S contiene un subconjunto infinito S; tal que todos los
subconjuntos de S; de r elementos tienen asignado el mismo color. [5]

Principio finito de Ramsey:

Dados 3 enteros positivos r,n y k existe un entero my = R(r,n, k) tal que es el
minimo entero m que cumple que si la coleccion de todos los subconjuntos de r
elementos de un conjunto S,,, de m elementos es coloreada con k colores, entonces
S contiene un subconjunto S, de n elementos tal que todos sus subconjuntos de r
elementos tienen asignado el mismo color. En el caso en que k = 2, podemos
escribir R(r ,n, k) = R(r,n). [5]

Mas adelante veremos una demostracion del principio finito de Ramsey para el
caso en que se colorean las aristas de un grafo con 2 colores (k = 2).
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En esta tesis nos centramos en los nimeros de Ramsey aplicados a la teoria de
grafos.

Para eso comenzamos, en el capitulo 2, con algunas definiciones utiles en
referencia a los grafos y a la teoria de Ramsey que serdn necesarias para el
desarrollo de 1a misma.

En el capitulo 3 veremos algunos resultados generales sobre niimeros de Ramsey,
asi como la demostracion del valor de todos aquellos nimeros de dos colores,
hallados de manera exacta. Este capitulo se divide en los nimeros de la forma
R(3,n),con 3 <n <9,ylos numeros de la forma R(4,n),conn =4yn =5.

En el capitulo 4 se encuentran las demostraciones de 5 cotas, 4 inferiores y una
superior, a modo de ejemplificar los métodos que podrian utilizarse para el calculo
de las mismas.

Finalmente, el capitulo 5 incluye las conclusiones, asi como un vistazo general a los
problemas que se encuentran abiertos y en los que estan trabajando los
matematicos hoy en dia en términos de nlimeros de Ramsey. También se exponen
algunas posibles aplicaciones a problemas cotidianos de los nimeros de Ramsey.

Ademas, se incluyen 2 apéndices, el primero con programas de Matlab utilizados
para comprobar las cotas inferiores de ciertos nimeros, y que fueron aplicados a
las matrices de adyacencia de los grafos construidos como contraejemplo para
corroborar la no existencia de ciertos K,,. El segundo apéndice incluye las
demostraciones de 2 lemas utilizados en la demostracion de la igualdad

R(3,7) = 23.
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Definiciones utiles

En esta tesis nos enfocaremos en los niimeros de Ramsey con k=2 y utilizaremos
la formulacion de estos problemas mediante teoria de grafos. Para esto,
comenzaremos por dar algunas definiciones que nos serdn de utilidad.

DEFINICION 1: Un grafo G es un par (V, E) donde V es un conjunto finito y E es un
conjunto de pares de elementos distintos en V. Llamamos a Vel conjunto de nodos
o vértices, y a E el conjunto de aristas.

DEFINICION 2: Un conjunto I € V, es llamado un conjunto independiente si para
ningdn conjunto de 2 nodos de I, {v, w} se cumple que (v,w) € E.

DEFINICION 3: Una clique € € V es un conjunto de nodos tal que para todo
subconjunto de 2 nodos de C, {v, w} se cumple que (v,w) € E.

DEFINICION 4: Se denota K, al grafo completo de n nodos. Un grafo es completo si
contiene todas las aristas posibles, es decir, que dado cualquier nodo v éste esta
unido por una arista a todos los demas nodos del grafo.

DEFINICION 5: Dado un grafo G = (V, E) se define su complemento como el grafo
G¢ = (V,E®), es decir el grafo formado por los mismos nodos y las aristas que no se
encuentran en el grafo original.

DEFINICION 6: La definicion de los niimeros de Ramsey para teoria de grafos seria la
siguiente:

R(n, m)=Fsii B es el minimo nimero de nodos que debe tener un grafo completo
de manera que coloreamos sus aristas con 2 colores, digamos rojo y verde,
entonces, o bien tiene incluido un K,, rojo o bien tiene incluido un K, verde.

Andlogamente, podemos decir que [ es el minimo niimero de nodos que debe
tener un grafo para que o bien el grafo incluya un K,, o bien su complemento
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incluya un K,,. Lo que a su vez es andlogo a decir que o bien el grafo incluye una
clique de tamarfion o bien incluye un conjunto independiente de tamafio m.

DEFINICION 7: Dado un nodo v de un grafo G, definimos su grado en G, notamos
d(v), como las cantidad de nodos que estan unidos a v mediante una arista en

E(G).

DEFINICION 8: Decimos que un grafo G es k —regular, para k entero, si cada nodo de

G tiene grado k.

DEFINICION 9: dados los enteros k, t, n, e, §, definimos los (k, t,n, e, §) —grafos
como el conjunto de todos los grafos simples, sin cliques de tamano k, sin

conjuntos independientes de tamafio t, de orden n, con e aristas, y grado minimo

d.

Podriamos no incluir alguno de los argumentos si quisiéramos que el mismo sea

libre. Tenemos que (k,t,n,e) = Us(t,n,e) y (k,t,n) = U.(k, t,n,e).

DEFINICION 10: Si G es un grafo, V(G) es el conjunto de nodos de G, N(v) denota el
vecindario abierto de v, es decir aquellos nodos que son adyacentes a v,y N[v] es
el vecindario cerrado de v, compuesto por los nodos adyacentes y por v. En esta

tesis, por motivos de practicidad, usaremos la notacién H, (v) como el conjunto de

los vecinos de v en G, sin incluira v,y H,(v) = V(G) - H,(v) - {v}.

DEFINICION 11: Dado G = (V, E) se define un subgrafo de G como un grafo

H=(X,Y)dondeX S VeYCE.

Si W estd incluido en V(G), G[W] denota el subgrafo de G inducido por W, es decir,

el grafo que tiene los nodos de W y las aristas de G que hay entre los mismos.
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DEFINICION 12: El nimero e(k, t,n, §) es el minimo numero de aristas en cualquier
(k, t,n, §)-grafo.

DEFINICION 13: Sea G un (3,1) —grafo.SeaV; =1 — 1 — i, y definimos s; como el
numero de nodos de G de grado V.

En un (3, 1)-grafo, H; (v) es un conjunto independiente del vértice v. Por lo tanto el
grado maximo en un (3,1) —grafo es | — 1, asi que en la definicién anterior, i = 0.
Luego el numero i es la diferencia entre el grado del vértice y el mayor grado
posible en G. Notemos que el valor de V; depende de [ tanto como de i.

Dado un (k, [, n)-grafo, y un vértice v de grado d, sabemos que H,(v) es un
(k,l —1,n —d — 1) —grafo. Luego, debemos tener que
|[H,(v)| = e(k,l—1,n—d—1).

DEFINICION 14: Un vértice v de grado d en un (k, [, n) —grafo se llama completo si
|H,(v)|=ek,l—1,n—d—1)

En un (3,1) —grafo, si tomamos un vértice v, entonces cada arista esta en H,(v) o
es adyacente a exactamente un vértice en H; (v), ya que H; (v) es un conjunto
independiente.

Un grafo G es regular de grado d o d —regular si todos los nodos de G tienen grado
d.

DEFINICION 15: A un nodo v se lo llama preferido cuando se divide el conjunto de los
nodos del grafo en dos subconjuntos complementarios, el de sus vecinos, H; (v), y
el de sus no vecinos, H, (v).

DEFINICION 16: Si un vértice v es preferido en un (k, l)-grafo, se define Z(v) como la
suma de los grados de los vecinos de v. Si Z(v) = s, se dice que v tiene Z —suma s.

DEFINICION 17: Dado un grafo G, si v es un vértice de grado d, decimos que v es
un d —vértice. El subgrafo de G generado por todos los d —nodos se llama un
d —subgrafo.

DEFINICION 18: I(G) es el cardinal del mayor conjunto independiente de G.
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DEFINICION 19: C(G) es el cardinal del mayor clique de G.

DEFINICION 20: G esun (x,y)-grafosix > C(G) ey > I(G).

DEFINICION 21: R’(x,y) es el mayor entero tal que existe un (x, y)-grafo con
R’(x,y) nodos. Definido de esta forma, R’(x,y) = R(x,y) — 1.

DEFINICION 22: Sea G un (x,y) —grafo y sea v el grado minimo entre los nodos de
G; definimos

0(G) =R(x—1,y) —v.

DEFINICION 23: Se entiende por un conjunto independiente maximo en G a un
conjunto independiente en G que contenga I(G) nodos. Un nodo p de un grafo G se
llamara esencial si pertenece a todo conjunto independiente maximo de G.

DEFINICION 24: Un grafo G de n nodos es ciclico si existen enteros

1<i;<i, <--<ig<[n/2], de manera que los nodos de G pueden ser
identificados con los enteros médulo n (x = a(n), es decir que x es igual aa
modulo n si a es el resto de dividir x por n) y dos nodos r y s de G estan unidos por
una arista si y sélosi |r —s| = i; paraalgunj = 1,2, ..., k.

DEFINICION 25: Un grafo se dice conexo si partiendo de un nodo cualquiera del grafo
siempre existe un camino que va desde ese nodo hacia cualquier otro nodo del
grafo.

DEFINICION 26: Un circuito en un grafo es un camino cerrado (camino que comienza
y termina en el mismo nodo).

DEFINICION 27: La circunferencia de un grafo es la longitud del ciclo mas corto
contenido en el mismo. Si el grafo es aciclico, se dice que su circunferencia es co.



Capitulo 3: NUmeros exactos

Numeros exactos

Hasta el momento se conoce con exactitud el valor de pocos niimeros de Ramsey.

Para dos colores y valores de r y s a lo sumo 10 se conocen los siguientes valores

exactos y cotas:

rs1 2 3 4 5
101/1] 1 1 1

2 12 3 4 5

3 13| 6 9 14
4 14 9 18 25
5 15| 14 25 | 43-49
6 16| 18 | 36-41 58-87
7 17 23  49-61 80-143
8 18| 28 | 56-84 101-216
9 19| 36 73-115 126-316
10 110 40-43 92-149 144-442

3641

58-87

102-165

113-298

132-495

169-780

1791171

7 8
1 1
7 8
23 28

49-61 56-84

80-143 | 101-216

113-298 | 132-495

205-540 217-1031

217-1031 282-1870

241-1713 317-3583

289-2826  331-6090

36

73-115

126-316

169-780

241-1713

317-3583

565-6588

581-12677

10

10

40-43

92-149

144-442

179-1171

289-2826

331-6090

581-12677

798-23556

A continuacion veremos las demostraciones de todos aquellos niimeros para los
cuales se conoce su valor exacto.

Primero veamos un par de resultados generales que nos serdn ttiles para la
demostracion de niimeros concretos.

10
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Observacion 1: R(n,m) = R(m,n)

Teorema 1:R(n,2) =n [14]

Dem:

Si coloreamos las aristas de K,, de rojo y verde entonces o bien todas las aristas son
verdes o bien al menos una arista es roja. En el primer caso, hay un K,, verde y en el
segundo caso, hay un K, rojo. Luego, R(n, 2) < n. Veamos que vale el igual. Si
R(n,2) = r < n,lacoloracién rojo-verde que consiste en pintar todas las aristas

con verde no contiene ningin K,, verde ni ningin K, rojo. O

Teorema 2: R(m,m) < R(n—1,m) + R(n,m — 1) para todon,m = 3 [10]

Dem:

Por inducciéon enn + m:
R2Zm)=m<RA,m)+R2m—-1)=1+(m—-1)=m
lo cual vale param > 1

Supongamos ahora que existen R(n — 1,m) y R(n,m — 1) y que cumplen la

desigualdad y veamos que R(n, m) cumple con la desigualdad.

Supongamos que tenemos una coloraciéon rojo-verde de las aristas del grafo
completode R(n — 1,m) + R(n,m — 1) nodos, llamémoslo G, y sea v un nodo
cualquiera de G. Entonces de las R(n — 1,m) + R(n,m — 1) — 1 aristas que inciden
en v hay al menos R(n — 1, m) que son verdes o al menos R(n,m — 1) que son
rojas (ya que si ninguna de estas dos opciones se cumpliera, entonces la cantidad

de aristas que inciden en v seria menora R(n —1,m) + Rln —m —1) — 1).

Si hay al menos R(n — 1, m) aristas verdes que inciden en v, elijamos R(n — 1, m)
nodos en el conjunto {w/ (v, w) estd pintada de verde}y consideramos el
subgrafo completo de G que tiene esos R(n — 1, m) nodos, con la coloracion
inducida. Entonces, por hipétesis inductiva, este subgrafo contiene un K,,_; verde o

un K, rojo. En el segundo caso, claramente G contiene un K, rojo. En el primer

11
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caso, agregando a ese K,,_; el nodo v y todas las aristas de v a cada uno de esos

nodos del K,,_; (que sabemos que son verdes) se obtiene un K,, verde.

De manera analoga se ve que si en v inciden al menos R(n, m — 1) aristas rojas,

entonces hay en G un K,,, rojo o un K, verde. 00

Numeros de la forma R(3, n)

Ahora comencemos con los niimeros de la formaR (3, k). Se conocen los valores

para3 < k < 9. Daremos previamente un par de lemas titiles.

LEMA 1: R(3,k) < nsipara cada grafo G libre de tridngulos con n nodos existe un

conjunto independiente I tal que |I| = k.[16]

LEMA 2: R(3,k) > n si existe un grafo G libre de triangulos con n nodos que no

contiene un conjunto independiente / tal que |I| > k.[16]

Para la demostracion de ciertas cotas inferiores de los niimeros de Ramsey
utilizamos unos algoritmos en Matlab para corroborar que ciertos grafos no
contengan una estructura particular (tridngulos, K4, Ks, Ks). Estos algoritmos que
solo serdn nombrados en este capitulo, pueden verse en el Apéndice A: Algoritmos.

R(3, 3)=6[10]

Teorema 1: R(3,3)=6

Dem:

Supongamos que hay una fiesta con 6 personas. Quiero ver que hay 3 personas que
son desconocidos entres si o 3 personas que se conocen todas entre si. La arista

entre 2 personas es roja si las personas se conocen y verde si no se conocen.

12
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Sea X una persona cualquiera. Entonces conoce al menos a 3 personas o hay 3
personas que no conoce. Supongamos que hay 3 personas que conoce, llamémosla

A, By C. Entonces tenemos:

Si existe alguna arista roja entre A, B y C, obtenemos un triangulo rojo. Si no, deben

ser todas las aristas entre A, B y C verdes, por lo tanto tenemos un tridngulo verde.

El caso en que X tiene 3 personas a las que no conoce es analogo.

Luego, obtuvimos R(3,3) < 6.

La siguiente coloracion de Ks demuestra que R(3,3) > 5, ya que es una coloraciéon

con 2 colores en donde no hay ningtn tridngulo monocromatico.

Ver Apéndice A. En matlab aplicamos: triangulos(M1)=0, triangulos(M2)=0,
donde M1 es la matriz de adyacencia del grafo dado por las aristas rojas, con linea

completa, y M2 la del grafo dado por las aristas verdes, con linea punteada (ambos

13
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son complementarios). El programa triangulos, que se aplica a matrices de

adyacencia de grafos, da 1 si existe un tridngulo en ese grafo y 0 sino.

Por lo tanto, R(3,3) = 6.0

R(3, 4)=9 [1]

Teorema 1 (Hand Shaking’s Theorem o Teorema del apreton de manos):
Ywevie) dw) = 2.|E|  para todo grafo G=(V, E) [Euler, 1736]

Dem:
Lo haremos por induccién en m = |E]|.

Param = 0: En este caso, la parte izquierda de la igualdad es 0, pues |E| = 0,y la

parte derecha es 0 pues, al no haber aristas, d(u) = 0 para todo nodo u.

Param = 1: Hay por lo menos 2 nodos v,y v, cond(v;) = 1y d(v,) = 1,y si hay
mas nodos, d(v;) = 0, i = 3.Entonces: Y,y d(v) = 2 = 2.1 = 2. |E|, demostrando

la afirmacion en este caso.

Supongamos que el resultado vale para m, queremos ver que esto implica que el
resultado vale param + 1: Tengo un grafo G con m + 1 aristas. Dada una arista
cualquiera de G, e, considero el grafo H = G — {e,}. Entonces por hipdtesis

inductiva, Y,y d(v) = 2. |[E(H)| = 2.m

Como saqué una arista, hay 2 nodos v; y v; cuyo grado disminuy6 en uno,
suponiendo e; = (v;, v;). Luego, Ypev)d(W) +2 =Xpey dW) y Xpev(my d(v) +

2 =2.m+ 2 porlo tanto Y,y d(v) = 2.(m + 1) lo que demuestra el teorema. O

Teorema 2: R(3,4)=9

Dem:

Por teorema:

14
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R(34) < R(24)+R(3B3)=4+6=10

Veamos que toda coloracion rojo-verde de Ky tiene un tridngulo verde o un K, rojo,

y que esto no vale para Kg.

Supongo que existe una coloracion R-V de K, tal que no contiene ningin K5 verde y

ningin K, rojo.

Entonces en cada nodo inciden a lo sumo 3 aristas verdes. Esto es porque si en
algiin nodo u incidieran 4 aristas verdes (u, v;), (u, v;), (u, v3), (u, v,). Como no

hay ningtn K; verde, ninguna arista (v;, v;) puede ser verde, luego todas son rojas,

pero entonces existiria un K, rojo, lo cual es absurdo pues supusimos que no.

En cada nodo inciden a lo sumo 5 aristas rojas, pues si en algiin nodo w incidieran
6 aristas rojas (w, v;), ..., (W, vg), entonces como R(3,3) = 6 el grafo completo con
nodos vy, .., Vg contendria un tridngulo monocromatico, que debe ser rojo (pues
supuse que no habia ningtn K3 verde). Si v;, v;, vy son los nodos del tridngulo
rojo, entonces el subgrafo completo w, v;, v;, v, es un K, rojo, lo cual es un

absurdo.
Por lo tanto, en cada nodos inciden exactamente 3 aristas verdes y 5 aristas rojas.

Si consideramos el subgrafo G de K, formado por todos los nodos y todas las

aristas verdes, entonces cada nodo de G tiene grado 3, luego tenemos que:
Yueve) dw) =39 =27 #n.2 neN

Lo cual contradice el lema anterior.

Veamos que R(3,4) > 8, exhibiendo un grafo de 8 nodos que no contenga ningin

K3y cuyo complemento no contenga ningin K.

15
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Ver Apéndice A: En matlab aplicamos: triangulos(M3)=0, k4(M4)=0, donde M3 es
la matriz de adyacencia del grafo de arriba y M4 la de su complemento. El
programa k4 recibe una matriz de adyacencia de un grafo y devuelve un 1 si existe

un K, dentro de ese grafo y o sino.

De cualquier manera, en este caso, debido a la simetria del grafo podemos ver de
manera directa que no posee ni triangulos ni 4-CI. Tomemos un nodo cualquiera,
que llamaremos 1, ese nodo esta unido entonces con los nodos 2, 5y 8. Ahora, si
existiera un triangulo deberia estar formado por el nodo 1 y 2 nodos mas de entre
sus vecinos. Hay (;) = 3 posibilidades: {1, 2, 5} (el cual no puede ser un tridngulo
pues no hay una arista entre 2 y 5); {1, 2, 8} (que no puede ser porque no hay una
arista entre 2y 8) o el {1, 5, 8} (que tampoco puede ser porque no hay una arista
entre 5y 8). Por lo tanto, el grafo es libre de tridngulos. Ahora veamos que no
posee ningln 4-Cl: el nodo 1 no esta unido con los nodos 3, 4, 6 y 7. Por lo tanto las
posibilidades de que haya un 4-CI que incluya al nodo 1 son (‘;) = 4. El hecho de
que haya una arista entre 3 y 4, implica que {1, 3,4, 7} y {1, 3, 4, 6} no pueden ser
4-Cl, y el hecho de que exista una arista entre 6 y 7 implica que {1, 3,6, 7}y {1, 4, 6,

7} tampoco pueden serlo. Luego el grafo tampoco posee 4-Cl. O
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R(3,5)=14[1]

Teorema 1: R(3,5) =14

Dem:
Por la desigualdad del teorema,
R(3,5) <R(25)+R(B4)=5+9=14

Luego, exhibiendo un grafo con 13 nodos que no contenga ningtin K3 y cuyo
complemento no contenga ningin K5 obtenemos el resultado deseado. En este
grafo, cada nodo esta unido con el primer y quinto vecinos. El grafo es libre de

tridngulos.

Ver Apéndice A. En matlab aplicamos: triangulos(M5)=0, donde M5 es la matriz de

adyacencia del grafo mostrado arriba.

También comprobamos que su complemento, dado por el siguiente grafo, no

contiene ningln Ks.
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Ver Apéndice A. En matlab aplicamos: k5(M6)=0, donde M6 es la matriz de
adyacencia del grafo de arriba. El programa k5 recibe una matriz de adyacencia de

un grafo y devuelve 1 si existe un K5 en el grafo y 0 sino. O

R(3, 6)=18 [2]

Teorema 1: R(3,6) =18

Dem:

Dado que el nimero de Ramsey R(3,6) es el minimo niimero de nodos que debe
tener un grafo para que o contenga un tridngulo o su complemento contenga un K,
la existencia de un grafo G de 17 nodos, en el cual no haya tridngulos y en cuyo
complemento no existan Ky implicaria que 17 no puede ser el minimo ntimero de

nodos para que eso pase, por lo tanto eso demostraria que R(3,6) > 18.

A continuacion damos un grafo de 17 nodos sin tridngulos y cuyo complemento no

contiene ningln K, para asi demostrar la cota inferior antes nombrada.
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Ver Apéndice A. En matlab aplicamos: triangulos(M7)=0, y k6(M8)=0, donde M7
es la matriz de adyacencia del grafo de arriba y M8 es la matriz de adyacencia de su
complemento. El programa k6, dada una matriz de adyacencia de un grafo da 1 si

existe un K en el grafo y 0 sino.

Queremos ver entonces que R(3,6) < 18.

Sea G un grafo libre de tridngulos de 18 nodos. Probaremos por el absurdo que G
contiene un conjunto independiente de 6 nodos. Para ello suponemos que G no
tiene ninglin conjunto independiente de tamafio 6. Primero demostramos las

siguientes afirmaciones:

1) G es 5-regular:

Como G es libre de tridngulos, para cualquier nodo v, N(v) es un conjunto
independiente (sino, habria un tridngulo). Entonces |N(v)| <5, es decir,
d(v) < 5.Supongamos que d(v) < 5,sea H = G — n[v]. Claramente

|H| = 13, puessi |H| = 14 = R(3,5), entonces H tiene un conjunto
independiente de 5 nodos que junto con v forma un CI de 6 nodos, lo cual es

absurdo. Luego |H| = 13 y por lo tanto d(v) = 4, entonces H es el Uinico
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2)

R(3,5) —critico (grafo con R(3,5) — 1 nodos libre de triangulos y sin
conjuntos independientes de cardinal 5) y es en particular 4-regular [17].
Seat en N(v), entonces t tiene 3 nodos t;, t,, t; en H cada uno
independiente de N(v) — {t} (porque t;, t,, t; tienen 4 vecinos en H y uno
mas en {t}). Luego, (N(v) — {t})U{t;, t,, t3} es un conjunto independiente

de cardinal 6, lo cual es un absurdo. Luego, |[N(v)| = 5.

Para cualquier nodo v hay exactamente 4 no vecinos p; de v tal que
IN(v) N N(p;)| = 1y8no vecinos g; de v tal que |[N(v) N N(q;)| = 2. Mas
aun, los p; comparten 4 vecinos distintos con v y los q; comparten 8 pares

de vecinos distintos con v.

Sean u y v no adyacentes. Probemos que 1 < |[N(u) N N(v)| < 2.

Si |[N(u) N N(v)| = 0 entonces en particular, v es independiente de N (u) de
tal manera que el conjunto {v} U N(u) es un conjunto independiente de
cardinal 6. Lo cual es un absurdo. Luego, |[N(v) N N(u)| = 1. Ahora
supongamos que [N(v) N N(u)| = 3.SeaH = G — N[u] U N[v], entonces
|H| = 9 = R(3,4), por lo tanto, como H es libre de tridngulos existe en H un
conjunto independiente de cardinal 4. Este conjunto junto con u y v dan un
conjunto independiente de cardinal 6. Lo cual es un absurdo.

Seaahora H = G — N|[v], es facil ver que hay exactamente 20 aristas entre H
y N[v]. Esto es asi pues, por (1) cada nodo del grafo tiene grado 5y por lo
tanto los 5 nodos de N[v] distintos de v deben tener 4 vecinos mas, pero
ninguno puede estar en N[v] o sino se formaria un triangulo. Ahora,
simplemente contando esos nodos en H que mandan 2 aristasa N[v] y
aquellos que mandan sélo 1 tenemos la primera parte de nuestra
afirmacion. Para la segunda parte, supongamos que los nodos p; y p, son
adyacentes al mismo nodo u en N(v), entonces en particular el conjunto
{p1, p2}U(N (v) — {u}) es un conjunto independiente de tamafio 6, lo cual es
un absurdo. Luego, cada uno de p,, p,, p3, P4 estad unido con un nodo
distinto de N(v). Por ultimo, supongamos que q;, g, perteneciente a V (H)

estan unidas con el mismo par {x, y} incluido en N(v), entonces en
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3)

4)

particular los nodos no adyacentes x, y tienen los vecinos comunes

{v,q1,q,} 1o cual es absurdo (por la primera parte).

Con la notaciéon de (2), {p1, p2, P3, P4} induce un 4-ciclo en G.

Nombremos los nodos de G tal que N(v) = {t, s1, S,, S3, S,} donde usando
(2) asumimos que s1p1, S22, S3P3, S4P4 Son las aristas entre los p; y N (v).
Notemos que ningln p; es vecino de t porque los p; (por (2)) comparten un
Unico vecino con v. Renombremos los g; de la siguiente manera: sea

N(t) — {v} = {t1, t5, t3, t,} y sean los q; que quedan: wy, w,, w3, w,. Luego,
V(G) = {v,t,S1,52, 53, S4, t1, t2, t3, t4, D1, P2, D3, Pa W1, W2, W3, W, }, cada uno de
los s; manda exactamente una arista a v, una arista a los p;, una a los

t; (pues t; esuno de los g; y por lo tanto debe compartir 2 vecinos con v,
uno de ellos es t y el otro debe ser uno de los s;), y por lo tanto 2 aristas a
los w;. Mas aun, no pueden haber 2 s;, digamos s; y s, que se unan con el
mismo par, digamos {w;, w,} de los w;, de otra manera s4, s, compartirian 3
vecinos {v, w;, w,} lo que es un absurdo (por (2)). Similarmente, ningin w;
es adyacente a mas de dos si ya que sino el par {v, w;} compartiria mas
vecinos de los permitidos.

Ahora, supongamos que 2 de los s;, digamos s;, s, son adyacentes al mismo
w;, supongamos que es w;. Ninguno de los nodos p4, p3, S1,S2 , w; esta unido
a ninguno de los 3 nodos independientes {s3, 54, t}, de tal manera que para
evitar un conjunto independiente de tamano 6, el subgrafo inducido por
{p1,p2,51,S2 , W, } no contiene un conjunto independiente de tamafio 3 y por
lo tanto (para evitar tridngulos) debe haber un 5-ciclo.

Luego, en particular, p; y p, son adyacentes. Un argumento similar puede
usarse para cualquier par en {sy, S, S3, S4} que tienen a un w; como vecino
en comun y como hay exactamente 4 pares, hay exactamente 4 aristas en el
subgrafo inducido por {p;, p,, P3, P4} ¥ por lo tanto (para evitar tridngulos)

ese subgrafo es un 4-ciclo, lo que demuestra este punto.

Sin pérdida de generalidad, supongo que p;p,p3p.p; €s el 4-ciclo inducido

por {p1, P2, 03, P4} en G.Cada p; comparte por lo menos un vecino con t (por
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el item (2)). Ademas, también por (2) junto con el hecho de que G es libre
de tridngulos, los p; no tienen vecinos comunes excepto en {p;, P2, 3, P4}
Entonces cada uno de los p; estd unido a un dnico ¢;, y asumimos (quizas
con un renombramiento de los t;) que p;t; pertenece a E(G) parai =1, ... 4.
Hay exactamente 4 nodos entre los p; y los w; y (quizas renombrando los
w;) podemos asumir que son los nodos p;w;, i =1, ...,4.

Los nodos v y w; comparten exactamente 2 vecinos y los Uinicos candidatos
posibles estan en el conjunto {s,, s3, s, }. Andlogamente, t y w; comparten
exactamente 2 vecinos y los Uinicos candidatos posibles estan en {t,, t3, t,}.
Entonces, hay un i distinto de 1 tal que el nodo w; estd unido a s; y ¢t;. Si

i =201 =4,1osnodos p; y w; tienen 3 vecinos en comun, lo cual
contradice (2). Luego, i = 3. Por simetria, podemos asumir que w; s,
pertenece a E(G). Luego, como vimos arriba que w; no puede estar unido a
s, y t, alavez, tenemos que w; t, pertenece a E(G).

Consideremos el nodo s,. Arriba vimos que cada s; es adyacente a
exactamente un t;. No puede ser que s,t; pertenezca a E(G) para evitar el
tridngulo s,w; t;, tampoco puede ser que s,t, pertenezca a E(G) para evitar
el tridngulo s,p,t,, y por dltimo, no puede ser que s,t, pertenezcaa E(G)
para evitar el tridngulo s,w; t,. Luego, la Uinica posibilidad es que s,t;
pertenezca a E(G), pero ahora s, y p; tienen 3 vecinos comunes {p,, wy, t;}
lo que contradice (2). Esta ultima contradicciéon finaliza la demostracién del

teorema. O

R(3, 7)=23 [6]

En este caso la demostracion, que incluye numerosos resultados tedricos, tiene
como objetivo llegar a que (3,7,23) = @, con lo cual tendriamos que no existen
grafos de 23 nodos que no posean ni tridngulos ni 7-conjuntos independientes. De
esta manera obtendriamos la cota superior. Para la cota inferior se exhibira un
grafo de 22 nodos sin tridngulos y sin conjuntos independientes de tamafio 7.

Lema 1:Sea G el complemento de G, entonces I(G) = C(G)y C(G) = I(G).Porlo
tanto, G es un (x,y) —grafo sii G es un (y, x) —grafo.
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Lema 2:SiG esun (x,y) —grafo con n nodos entonces R’(x — 1,y) es el grado
maximo posible paraun nodode Gy (n — 1) — R’(x — 1, y) es el grado minimo
posible para un nodo de G.

Dem:

Sea d(p) el grado de p y sea H; el subgrafo de G generado por los nodos de G que
estan unidos a p por una arista. Claramente, I (H;) < I(G) < y, ya que cualquier
conjunto de nodos independiente en H; lo es en G. Ahora, si K es un subgrafo
completo de H; con k nodos, el grafo generado por Ky p en G es un subgrafo
completo de G con k + 1 nodos. Por lo tanto,

C(H)<CG)-1<x-1.
Tenemos luego que H; es un (x — 1,y) —grafo. Por lo tanto,

dlp) <R (x—-1,y).

Usando el argumento de arriba junto con el lema 1, mostramos que d(p), el grado
de p en G, es menor o igual a R'(x,y — 1). Pero d(p) + d(p) = n — 1. Por lo tanto,

dp)=(n—1)—R'(x,y—1).0

Proposicion 1:SiG esun (x,y) —grafo con n nodos,

a) n<Rx-1,y)+R(x,y—1)+1-0(G),
b) 0(G) <R'(x—1,y)+R(x,y—1)+1—n.
Dem:

Del lema 2 tenemos que (n — 1) — R'(x,y — 1) < d(p) para todos los nodos p de G.
Elegimos p de manera que d(p) = R'(x — 1,y) — 0(G). Combinando esos dos
hechos, se obtienen a) y b). O

Obs: Los grados de los nodos de un grafo G van desde R'(x — 1,y) — ¢(G) hasta
R'(x—1,y).

Proposicion 2:Sea G un (x,y) —grafo con n nodos y e aristas. Sea ej, el nimero
de aristas en H), (para k = 1,2). Finalmente,seav; = R'(x — 1,y) — i yseas; el
numero de nodos en G con grado v;. Ahora supongamos que un nodo p con grado
v; es el nodo preferido y notemos t; el nimero de nodos en H; que tienen grado v;

en G. Entonces:
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a(G
n s
ez_el:R’(x_1'y)[§_R(x_1'Y)+i]+Z t _51)
j=1

Dem:
Vamos a contar el nimero de aristas en G de dos maneras diferentes:

1) Lasuma de los grados de los nodos en H; menos el niimero de aristas en H;
(que han sido contadas 2 veces) mas el nimero de aristas en H, (que no

han sido contadas antes).
a(G)

e=thvj—el+e2.

j=0
2) Lasuma de los grados de todos los nodos de G dividido 2 (se debe al
teorema del apretén de manos).

Igualando obtenemos:

Luego,
a(G)
—el—z (Z-g)®RE-1.9-).

o(6) tj = v; , obtenemos:

ComoZ sj—nyz

a(G)

n , _ Sj
€ — e = (E‘W)R(x—l,J’)"' Z](tj_fj)-
=0

Lo que concluye la demostracion. O

Corolario 1:SiG esun (3,y) —grafo con n nodos, p es un nodo preferido de grado
v;, entonces:

a(G)

ez=(y—l)(%—y+1+i)+2j(tj—%).
j=1
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Dem:

En este caso e; = 0 (pues los vecinos de un nodo con gradoy —1 —i enun
(3,y) —grafo forman un conjunto independiente) y R'(2,y) =y — 1.0

Proposicion 3:Sea G un (3,y) —grafo con dos nodos de grado v; unidos por una
arista. Entonces prefiriendo uno de esos nodos podemos obtener:

ezs(y—l)(%—y+1+i).

Dem:

Usaremos la notacién de la proposicion 2, donde p es uno de los dos nodos dados.
Seap’ el otronodo y sea t’j el nimero de nodos de grado v; en H; cuando p’ es

preferido.

Como p y p’ estan unidos por una arista, no pueden tener aristas a un punto en
comtn. Luego, t; + t'; < s; para todo j. Por lo tanto,

a(G) a(G) a(G)

. Sj 0 S . ,
Z](tj—g)'l'Z](tj—E) = Z](tj+tj_5j)30-
j=1 j=1 j=1

Lo cual demuestra la proposicidn, pues por el corolario 1 tendriamos:

e;=(—1) (g -y+1+ i) + Z;’g)j(tj - %) y vimos que el segundo sumando

esmenor oiguala 0. O

Corolario 2:Sio(G) = 1 paraun (3,y) —grafo G, existe algiin nodo de grado v,
para el cual

eZS(y—l)(g—y+2).

Mas aun, la desigualdad estricta va a valer para algiin nodo a menos que los nodos
L s
de grado v; pueden dividirse en dos clases, cada una con 1/2 nodos de manera tal

que cada nodo de una clase tenga una arista a cada uno de los nodos de la otra
clase.

Dem:

Si hay dos nodos de grado v; unidos por una arista, la proposicién 3 nos dara la
desigualdad. Si, en cambio, todos los nodos de grado v, estan desconectados entre
si, tenemos:
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e=0-D(5-v+2)-3

Ahora supongamos que e, = (y — 1) (g -y+ 2) para todos los nodos de grado v;.

En este caso, t; = 51/2 para todos los nodos de grado v;. Como no hay triangulos,

el grafo bipartito descrito anteriormente resulta. O

Proposicion 4: Si G es un (3,y) —grafo de n nodos con e aristas, entonces
ne >Y0e(3,1—1,n—v;, — Dsi + (v;)2s;

Donde v; y s; son los definidos en la proposicién 2.

Dem:

Se verd mas adelante en el lema 1 de la demostracion de que R(3,9) = 36.O

En vista de las proposiciones anteriores es claro que la cantidad de aristas de un
(x,y) —grafo es informacion util. Por ejemplo, se podria ver que e(x,y,n) = q lo
cual ayudaria en la demostracion de que (x,y) = @ y por lo tanto, en la
demostracion de que R(x,y) = n.

Lema 3:Sea G un grafoy G’ un grafo obtenido de G a partir de la remocién de una
arista (digamos la arista entre los nodos p y q). Entonces:

(1) Cualquier conjunto independiente en G es independiente en G’.

(2)Sipy q son esenciales en G’, entonces I(G") = I(G) + 1.

(3)Sip o g nosonesencialesen G, I1(G") = I(G).

(4)Sip es esencial en G, p es esencial en G’y g no es esencial en G’.
Dem:

El punto (1) sale del hecho de que G’ se obtuvo removiendo una arista de G. De
este hecho se desprende que I(G) < I(G"). Ahora, si p no es esencial en G’ existe
un conjunto independiente maximo en G’ que no contiene a p; claramente este
conjunto es también independiente en G; luego se obtuvo (3). También se
obtiene que p no es esencial en G, lo que demuestra la primera parte de (4). Si
I(G) = I(G") entonces cualquier conjunto independiente maximo en G es
también un conjunto independiente maximo en G’y este conjunto no debe
contener o ap o a q. Luego, si p y q son ambos esenciales en ¢’,I(G) < I(G’); sin
embargo la remocién de p o q de un conjunto independiente en G’ produce un
conjunto independiente en G; y se demuestra de esta forma (2). También se
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obtiene de esto, que si p y g son esenciales en G’ ninguno de los dos es esencial
en G, lo que completa la demostracion de (4). O

Proposicion 5: Sea G un grafo con circunferencia z y sea g;el nimero de
subgrafos de G conexos con i aristas. Entonces para todo entero 0 < w < z,

(~DI6) < (-1D” Y (~1'g;
i=0

Se da la igualdad si G es libre de circuitos y la sumatoria es sobre todos los
subgrafos conexos.

Dem:
La haremos por induccién en el nimero de aristas en el grafo.

Hipétesis inductiva (HI): Sea G un grafo con circunferencia mayor a w, y sea p un
nodo de G. Existe una particion de los subgrafos conexos de G con w o menos
aristas entre dos clases, los subgrafos de una clase seran llamados positivos y los
de la otra clase negativos. Parai = 0,1, ..., w — 1 existen funciones f;: Si+ - Sitq1
(donde Sj+ es el conjunto de subgrafos positivos con j aristas y S es el conjunto de
subgrafos negativos con j aristas). Ademas, se satisfacen las siguientes
condiciones:

(1) Sy es un conjunto independiente maximo;

(2)si el nodo p pertenece a S; entonces p es esencial en G;

(3) f; es biyectivaparai =0,2,..,w —1;

(4) Para todos los subgrafos positivos H con menos de w aristas, p es un nodo
de H sii p es un nodo de f;(H);

(5)Si G tiene w 0 menos aristas entonces S, = @.

Observemos primero que, si la HI es satisfecha por el grafo G, entonces
Lo(=Dig; = 1(G) + (D™ |SH],

(pues |S;| cancela |S;;,| parai =0,1,...,w — 1 por la biyeccién) y por lo tanto la
proposicién vale para G, ya que multiplicando ambos lados por (—1)":

(DY ILo(=D'gi = CDYIG) + (=D ISF| = (=1)¥I(G) + 1S}, en donde
|S;5| = 0lo cual nos da la desigualdad buscada.

En segundo lugar, notamos que la HI es satisfecha por todos los grafos que no
tienen aristas. Finalmente, si G es un grafo que satisface la HI para algin nodo p,
entonces G unido con cualquier nodo aislado también va a satisfacer la hipotesis
(condiciones (2) y (4) son satisfechas trivialmente por cualquier nodo aislado).
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Ahora, supongamos que la HI es satisfecha por todos los grafos con menos de n
aristas. Sea G un grafo con n aristas y p un nodo de G que no es aislado.

Caso 1: p es esencial en G.

Elijamos cualquier arista de G que tenga a p como un extremo; llamemos q al otro
extremo. Sea G’ el grafo obtenido removiendo la arista que une p con q del grafo G.
Aplicamos la HI a G’ usando el nodo p. Sea la particion de los subgrafos conexos
denotada por 7' y las funciones f;'. Usamos la HI de nuevo para el grafo G’ y el
nodo gq. Llamemos a la particién 7"’ y a las funciones f;'’ en este caso.

Dado un subgrafo conexo H de G teniendo w o menos aristas, notemos que es libre
de circuitos (pues la circunferencia de G es mas grande que w), por lo tanto no
podemos tener circuitos. Luego, si H contiene una arista entre p y q, la remocién de
una arista desconecta H. Llamaremos a la componente que contiene a p la p-
componente de H y a la otra componente la g-componente de H.

Los subgrafos conexos de G con w o menos aristas son ahora partidos en las clases
positivas y negativas de la siguiente manera; si H € G, entonces H conserva el
signo de la clase dada por la particion 7', si H ¢ G, H tiene el signo de su g-
componente bajo la particién ", La asignacion de los subgrafos positivo es
especificado de la siguiente manera: si H es positivo y tiene i < w aristasy H c G,
definimos f;(H) = f{ (H); pero si H es positivo y tiene i < w aristasy H ¢ (',
entonces f;(H) va a ser igual al grafo conexo con p-componente de la misma forma
que en H y g-componente igual a f;"" aplicada a la g-componente de H. Notemos
que este sera un subgrafo conexo de G ya que (4) de la HI asegura que g es un
nodo de f;"" aplicado a la g-componente de H.

Porellema 3,1(G) = I(G") y p es esencial en G’, por lo tanto (1) y (2) de la HI son
satisfechas (notemos que todos los nodos con partidos por 7"). Para demostrar
(3), elegimos un subgrafo H de la clase negativa con i + 1 aristas donde i > 0.
Primero supongamos que H € G'; como f; satisface (3) existe uno y sélo un grafo
H’ con i aristas para el cual f;(H') = H. Ahora, supongamos que H ¢ G'; entonces
vemos que la g-componente de H contiene por lo menos una arista (ya que q € Sg,
cualquier H ¢ G' cuyo q componente es el nodo aislado g debe ser la clase
positiva). Como f;"’ satisface las condiciones (3) y (4) existe un subgrafo K c G' tal
que g es unnodo de Ky f;" (K) equivale al ¢ componente de H. Luego, el Gnico
subgrafo conectado H’ con g componente K y p componente al igual que el de H es
asignado en H por f; y es el Unico. La condicion (4) se sigue directamente del hecho
de que f; satisface (4), y todos los subgrafos no mapeados por el f;’ contienen la
arista entre p y g, por lo tanto contienen a p de cualquier manera.

Finalmente, consideramos el caso en que G tiene w o menos aristas. Claramente,
S.t = @ si hay menos de w aristas o si G no es conectado (conexo). Ahora, si G es
conexo y tiene w aristas hay un solo grafo conexo con w aristas, llamemoslo G. La
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q-componente de G es el maximo subgrafo conexo de G’ que contiene a q; ademas
observamos que tiene menos de w aristas. El hecho de que f;"’ debe satisfacer (4)
requiere que el g-componente de G y en consecuencia G sean la clase negativa; por
lo tanto S;} es vacio.

Caso 2: p no es esencial en G.
Elijamos cualquier arista con p como uno de los extremos y sean q y G'como arriba.
Caso 2a: I(G) = I(G").

Por el lema 3 sabemos que p no es esencial en G’. En este caso simplemente
aplicamos la HI al grafo G’ con p como el nodo y usamos solo las funciones f;' para
definir f; (los subgrafos no contenidos en G’ son partidos y mapeados por sus p
componentes). La verificacion de las condiciones (1), (2), (3), (4), y (5) es igual
que en el caso 1.

Caso 2b: I(G) = I(G") — 1.

De nuevo, por el lema 3, p y q son eseciales en G’. Como en el caso 1, aplicamos la
HIa G’ con p como el nodo y a G’ con g como el nodo, realizando los
procedimientos del caso 1 con una excepcion. Como q es esencial, g € Sg, pero
cada subgrafo conexo H ¢ G’ cuyo q componente consiste en el nodo aislado ¢
seria de signo negativo aun sin ser la imagen de algin subgrafo bajo la funcion f;,
por lo tanto los subgrafos que contienen a la arista entre p y g van a ser
clasificados y mapeados de acuerdo a sus ¢ componentes a menos que sus q
componentes consistan en un tinico nodo. En este tltimo caso vamos a partirlos y
asignarlos de acuerdo a sus p componentes.

Aun quedan 2 detalles menores. Primero, la arista entre p y g tiene signo negativo
pero no es la imagen de f;. En segundo lugar, S; es independiente en G’ pero no en
G. Ambos detalles se corrigen removiendo p de S5 (ver lema 3), esto es, poniendo
en Sy y asignando p en la arista entre p y q. La verificacion de las condiciones (1),
(2), (3), (4) y (5) son rutinarios. Por lo tanto la proposicién ha sido demostrada. O

OBseRVACION 1: Este teorema da estimaciones y en algunos casos el valor exacto del
tamafio del maximo clique del grafo.

Usamos esta proposiciéon para estudiar ciertos subgrafos de (x, y) —grafos. Estos
subgrafos son descritos a continuacidn.

Consideremos un conjunto independiente H; en un (3,y) —grafo y sea H, el
subgrafo generado por los nodos restantes o si H; es el conjunto de nodos unidos a
un nodo p tomamos H; y H, los usuales cuando p es preferido. Para indicar la
primera situacion diremos que H; es preferido y para indicar lo tltimo decimos
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que p es preferido. Un nodo p de H, se dice que esta sobre un conjunto de nodos S
de H, si todas las aristas de p hacia H; tienen el otro extremo en S. Cualquier
subgrafo de H, se dice que esta sobre S si todos sus nodos estan sobre S.
Finalmente, definimos el grafo con soporte S como el subgrafo en H, generado por
los nodos de H, que estan sobre S.

OBSERVACION 2: Supongamos que H; contiene z nodos y S contiene w nodos. Sea K el
subgrafo soportado por S. Un conjunto independiente de K junto con los nodos de
H; pero no de S forman un conjunto independiente de G. Se puede ver que K es un
(3,y — (z — w)) —grafo. En general K tendra pocas aristas, y por lo tanto pocos
circuitos y por eso la proposicion 5 dara una buena aproximacion al maximo
conjunto independiente de K, I(K).

Proposicion 6: Sea G un (3,y) —grafo con un nodo preferido p o un conjunto
independiente preferido H;. En cualquier caso, H; contiene v nodos y sea r;(j) el
numero de subgrafos conexos de H, con j aristas y teniendo un total de i aristas
desde esos nodos de H, hacia los nodos de H;. Ademas, sea 9; el conjunto de grafos
conexos de H, con j aristas. Para K un subgrafo de H,, sea w(K) el nimero de
nodos de H; que estan unidos a K por una arista y 4(K) el nimero de aristas de

K hacia H;. Entonces:

a K )
ety =1-v1(}) 2 Y /O (7~ )0 +e@ ke,
=0 i=0

Donde a es impar y todos los subgrafos de G con un k —conjunto como soporte
tiene circunferencia mas grande que a, y donde:

e(a,k,p) = Z(—l)]‘{;i[(: o) ﬁ;)”

Dem:

Sea S un conjunto de k nodos en Hy, entonces pueden haber a lo sumo
[(y = 1) — (v — k)] nodos independientes en K (el subgrafo de H, soportado por
S). Tenemos entonces [k + y — 1 — v] = I(K); y por la proposicién 5,

a

1002 ) (-D'g,

i=0
Donde g; es el nimero de subgrafos conexos de K que tiene j aristas.

Por lo tanto,
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k+y—1-v]=> Z(—l)igi.
i=0

Ahora, suponiendo esta desigualdad sobre todos los subconjuntos de H; que
contienen k nodos, el lado izquierdoes [k +y — 1 — V] (Z)

Para escribir el lado derecho consideremos un grafo conexo K con j aristas (K €

v—w(K)

k—w(K)) k —conjuntos de H; y por lo tanto va a

9J;). K va a estar sobre exactamente (

aparecer en la sumatoria esa misma cantidad de veces con (—1)* como coeficiente
cada vez. Luego,

oy () S Y (70

Y el lado derecho también puede escribirse de esta forma:
— u(K) v—w(K)) (v—uK)
Z( D' Z (k u(K)) Z_[(k - w(K)) Bl (k - M(K)>]}'
0 simplemente,

Z( D (Z( )70 + (@ ko).

Lo cual concluye la demostracién. o

Para poder discutir las consecuencias de la proposicién 6 introducimos la siguiente
terminologia. Un nodo de H, que tiene exactamente j nodos se llamara un j —nodo,
y la arista entre un i —nodo y un j —nodo se llamara una i, j —arista.

OsservACION 1: El nimero a de la proposiciéon 6 se puede elegir igual a 1 o 3 en todos
los casos en que G es un (3,y) —grafo ya que un (3, y) —grafo y por lo tanto sus
subgrafos tienen circunferencia por lo menos 4.

OBSERVACION 2: Si G es un (3,y) —grafo y H; tiene y — 1 nodos, entonces:

(1)7(0) = 0;
(2)Hay a lo sumo un 1-nodo sobre cualquier 1-conjunto de H;;
(3) Puede haber a lo sumo tres nodos sobre un 2-conjunto de Hy;
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(4) Si hay tres nodos sobre un 2-conjunto de H;, dos de ellos deben ser 1-nodos
unidos por una arista y el tercero un 2-nodo;

(5) Puede haber alo sumo (R(3,k + 1) — k) nodos sobre un k —conjunto de H;.

Dem:

(1) Cualquier 0-nodo junto con H; da un conjunto independiente de G.

(2) Dos 1-nodos sobre un 1-conjunto junto con los otros y — 2 nodos de H;
forman un conjunto independiente de G.

(3) Es un caso especial de (5).

(4) Dados tres nodos sobre un 2-conjunto, notamos que estos tres nodos junto
con el nodo en el 2-conjunto deben formar un (3, 3) —grafo de 5 nodos y
por dado que el tinico (3, 3) —grafo con 5 nodos en donde cada nodo tiene
grado 2 es el pentagono, este es un pentagono. Esto requiere la descripcion
dada.

(5) Consideremos el grafo K dado por un k —conjunto de H; y los nodos sobre
este conjunto. Los nodos de K no tienen aristas hacialos otrosy — 1 — k
nodos de Hy, por lo tanto si K contenia k + 1 nodos independientes vamos a
producir de nuevo un y —conjunto independiente. Luego, K puede contener
alosumo R(3,k + 1) nodos y de ellos alo sumo R(3,k + 1) — k pueden
estar sobre el k —conjunto de H;. O

Proposiciéon 7: SiG esun (3,y) —grafo, v =y — 1,k = 3, entonces podemos elegir
a=oy

4

€(,3,p) = Zci

i=1

Donde c; es el numero de configuraciones posibles del tipo C; (ver FIGURA 1) que
estan contenidas en G (por contenidas se entiende que hay un 3-conjunto de H; tal
que el grafo dado por ese 3-conjunto y los nodos sobre él es de tipo C;).

Dem:
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3 _ 333
%332

FIGURA 1

Notemos primero que los extremos de una arista en H, tiene un soporte distinto
para evitar la formacién de un tridngulo por lo tanto w(K) = u(K) si K consiste de
s6lo una arista y dos nodos (o si K es un tinico nodo).

Consideremos un grafo conexo K con al menos 2 aristas que este sobre un 3-
conjunto. Sea p un nodo que tiene dos aristas adyacentes en K y denotemos por

q1, q» los otros extremos de esas aristas. Entonces ninguno de los nodos, p, g4, q»
pueden ser j —nodos para j > 2y si p fuera un 2-nodo necesariamente tendriamos
g1y 92 ambos 1-nodos sobre el mismo nodo en H;, y esto no es posible.
Concluimos entonces, que p es un 1-nodo. Esto excluye la posibilidad de un circuito
sobre un 3-conjunto, ya que un circuito debe contener mas de tres nodos de los
cuales todos tendrian que ser 1-nodos y sabemos que h 1-nodos deben tener un

h —conjunto como soporte.

Consideremos ahora todos los posibles subgrafos conexos de H, que tiene dos
aristas sobre un 3-conjunto. Manteniendo la notacién que usamos antes, q; y g,
son ambos 1-nodos, 0 q; es un 1-nodo y g, es un 2-nodo, 0 ambos son 2-nodos.
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Si ambos son 1-nodos, w(K) = u(K) y no hay contribucién a e(oo, 3, p), el término
del error. En el segundo caso, de las configuraciones C, es posible y habria una
contribucion de 1 a €(oo, 3, p) en ese caso. Finalmente, si ambos q; y g, son 2-
nodos, debemos tener C; y de nuevo hay una contribucién de 1 a €(oo, 3, p).

A continuacion consideramos los posibles subgrafos conexos que tengan tres
aristas y como soporte a un 3-conjunto de H;. Primero consideramos tres aristas
adyacentes a un nodo p. Si esto fuera posible entonces p seria un 1-nodo y los otros
3 extremos de esas tres aristas estarian sobre un 2-conjunto de Hy, pero esos tres
nodos son independientes de manera que podriamos producir un y —conjunto
independiente con esos tres nodos y los nodos restantes de H;. Luego, el inico
subgrafo conexo con tres aristas sobre un 3-conjunto es un camino simple de
longitud 3. Sea g; un nodo unido por una arista a p; que estd unido con p, que a su
vez esta unido con gq,. Hemos mostrado que p; y p, deben ser 1-nodos, q; y g, no
pueden ser ambos 1-nodos ya que cuatro 1-nodos deben estar sobre un 4-
conjunto. Si q; es un 1-nodo y g, es un 2-nodo tenemos la configuracién Cs. El
grafo generado por py, p, ¥ g1 no contribuye con nada en €(o, 3, p). El grafo dado
por p1, P2 V q, contribuye en 1 y todo el grafo en C5 contribuye -1 de manera tal
que la contribucién neta es 0. Si g; y g, son 2-nodos tenemos la configuracién C; y
se puede ver que esto contribuye 1 en €(o, 3, p).

Finalmente, consideramos los subgrafos sobre un 3-conjunto que tienen mas de
tres aristas. Al igual que antes, ninglin nodo puede ser adyacente a tres aristas,
todos los 2-nodos en el subgrafo deben tener grado 1 en el subgrafo, y puede haber
mas de tres 1-nodos. La Uinica configuracién posible es un camino de cuatro aristas
con los dos nodos de grado uno en el subgrafo siendo 2-nodos. Esto solo puede
darnos la configuracion C,. Notando los nodos por g4, p1, P2, P3, 42, en el orden en
que estan en el camino, vemos que los caminos qq, p1, P2; P2, 03, 92; Y

q1, P1, P2, D3, 42 cada uno contribuye con 1 a e(, 3, p) mientras que g, p1, P2, P3 ¥
P1, P2, P3,q2 cada uno contribuye con -1y py, p2, p3 contribuye con nada, de manera
que la contribucién de la red de configuracion C, es +1. O

Proposicion 8:e(3,5,13) = 40; e(4,4,17) = 40; e(4,4,16) = 40.
Dem:

Las primeras dos se siguen del hecho de que o(G) = 0 para cada grafo. En la
tercera, 0(G) < 1y sitodos los nodos son de grado 7 (el minimo grado posible),
tenemos 56 aristas. O

Proposicion 9:e(3,6,17) = 38.
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Dem:
La proposicion 4 junto con el lema anterior nos da el sistema:
17e = (15 + 25)sy + (20 + 16)s; + (26 + 9)s,,
2e = 555 + 4s, + 3s,,
17 = sg + 51 + 55.

La solucién que minimiza e es sy, = 8,5, = 9,5, =0,ye = 38.0

Proposicion 10: e(3,6,17) = 40.
Dem:

Sea p el nodo preferido de grado 3 en un (3, 6) —grafo G de 17 nodos. Como habia
s6lo una solucion en el sistema de la proposicion 9 teniendo el valor minimo en 38
parae(3,6,17) y como s, = 0 en esta solucion, podemos concluir que G tiene 39 o
mas aristas. Notemos que H, es un (3,5) —grafo de 13 nodos, por lo tanto tiene 26
aristas. Esto implica que H; contiene por lo menos un nodos q de grado 5 (la suma
de los grados de los nodos en H; es 13 o mas). Sin embargo, los nodos de H, son
todos de grado 4 en H, y por lo tanto sélo pueden existir 0-nodos o 1-nodos. Los
cuatro 1-nodos sobre g, y los dos nodos de H; diferentes de g, forman un conjunto
independiente de tamafio 6 en G. Luego, un (3, 6) —grafo de 17 nodos nunca puede
tener un nodo de grado 3.

Ahora, sea G un (3, 6) —grafo de 17 nodos con 38 aristas. Es facil mostrar que si p
es un nodo preferido de grado 4 entonces H, debe contener un 0-nodo, llamémoslo
q. Podriamos entonces unir p con q por una arista, de esta manera extendemos G a
un (3,6) —grafo de 17 nodos con 39 aristas. Por lo tanto, si demostramos la no
existencia de un (3, 6) —grafo de 17 nodos con 39 aristas, la no existencia de un
(3,6) —grafo con 17 nodos y 38 aristas se demuestra simultaneamente.

Sea G un (3,6) —grafo con 17 nodos y 39 aristas; G debe entonces contener 7
nodos de grado 4 y 10 nodos de grado 5. Si existe un nodo p de grado 4 adyacente
con 3 nodos de grado 5, H, (cuando p es preferido) es un (3,5) —grafo con 12
nodos y 20 aristas. Este grafo es tinico y estd dado a continuacién:
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12 11

Usando la proposicion 6 y el alto grado de simetria de H,,, uno podria mostrar sin
mayor dificultad que es imposible poner las aristas entre H; y H,=H;, de tal
manera de producir un (3, 6) —grafo. Por lo tanto concluimos que cada nodo de
grado 4 en G es adyacente a dos o mas nodos de grado 4. De este hecho se
desprende que algin nodo de grado 5 debe ser adyacente a 4 otros nodos de grado
5. Prefiriendo este nodo encontramos que H, es un (3,5) —grafo de 11 nodosy 15
aristas. Este grafo es tinico y es el siguiente:

11

Como antes se puede mostrar que es imposible poner aristas entre H, y H, = H{;
de manera tal que se forme un (3, 6) —grafo. Se sigue entonces que cualquier
(3,6) —grafo debe tener 40 aristas o mas. O

Teorema 1:R'(3,7) < 22.
Dem:

Sea G un (3,7) —grafo de 23 nodos y sea p un nodo de grado 5, H, es un (3, 6)-
grafo de 17 nodos y por lo tanto de 40 o mas aristas.

Aplicando el corolario de la proposiciéon 3 obtenemos
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40 < 6[23/, -7+ 2] = 30.

Por lo tanto, G contiene sélo nodos de grado 6.

Vamos a dividir el resto de la demostracion en diferentes lemas, ya que es
demasiado extensa.

LEMA 4: Para cualquier nodo preferido p, 7;(0) = 0 cuando i = 4.
Dem:

Seap’ un i —nodo. Sea K; el subgrafo de G formado por los nodos que son
adyacentes a p o p’ 0 a ambos; sea K, el subgrafo de G formado por los nodos de

G distintos de p y p’ y de los puntos en K;. Como cualquier conjunto independiente
en K, puede ser extendido (incluyendo p y p’) a un conjunto independiente en G,
vemos que K, debes ser un (3, 5)-grafo. Como K; tiene (12 — i) nodos, K2 tiene

(9 + i) nodos. En vista del hecho de que R(3,5) < 13, concluimos que i < 4.

Supongamos que i = 4. Todos los 13 nodos en K, tienen grado 4 en K,, por lo
tanto existen exactamente 26 aristas entre K; y K,. La suma de los grados de los
nodos de K; es 48. Doce de este total corresponden a las aristas que vaap y p’, 26
corresponden a las aristas a K,, y los 10 restantes deben corresponder a las 5
aristas en K;. Sin embargo, K; puede tener a lo sumo 4 aristas (las unicas aristas
posibles en K; son entre dos nodos adyacentes a p pero no a p’ y los dos nodos
adyacentes a p’ pero no a p). Con esto concluimos la demostracion.

LEMA 5: Para cualquier nodo p, 11(0) = 2 + r3(0) y r,(0) = 14 — 213(0). (D

Mas aun, si z es el nimero de aristas entre 1-nodos y 3-nodos y € = €(0, 3, p),
entonces:

2r,(1D) =2 [6 = 2r3(0)] + () + (z +€). (2)
Dem:
Recordemos que 1,(0) = 0 y que 7;(0) = 0 cuando i > 4 de tal manera que

71(0) + 1,(0) + r3(0) = 16 (el nimero de nodos en H,). Cada nodo en H, tiene 5
aristas hacia H,, por lo tanto tenemos:

11(0) + 27,(0) + 313(0) = 30.
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Resolviendo esta ecuacion obtenemos (1). Aplicando la proposicién 6 con
a = o,k = 3 tenemos:

3(9) 2 Q)@+ (D) + ()@ - (D) ro-)rnm + () n@ +e
(3)

La suma de los grados de los 1-nodos en H, esta dada por 2r,(0) + r3(1) + zy a su
vez por 577(0). Por lo tanto, r3(0) = 5r,(0) — z — 2r,(1).

Y usando esto y las ecuaciones en (1) para eliminar r5(1), 7, (0),y r,(0) de (3)
obtenemos (2).

LEMA 6: Para cualquier nodo p, 2 < r3(0) < 4.

Dem:

Recordemos que puede haber a lo sumo seis 1-nodos en H, (por la observacién
luego de la proposicién 6). Este hecho junto con (1) en Lema 4 muestran que
r3(0) < 4. Ahora, sir3(0) = 0 entonces r;(0) = 2, de manera tal que r,(1) < 1. Si
las sustituimos en (2) del lema 4 vemos que 2 = 6 + 13(2) + (z + €).

Por la proposicién 7, € = 0 de manera tal que la desigualdad no se cumple y por lo
tanto la suposicion de que r3(0) = 0 lleva a una contradiccién. Si suponemos que
r3(0) = 1 entonces r;(0) = 3, de manera tal que r,(1) < 2. Perosir,(1) = 2
entonces r3(2) = 1. Entonces (2) nosda 2r,(1) 24+ r,(2) + (z+€) = 4 + 1r3(2).

Lo cual no se puede cumplir. Por lo tanto concluimos la demostracion
del lema.

LEMA 7: Para cualquier nodo p, r3(0) # 2.
Dem:

Ver apéndice B.

LEMA 8: Para cualquier nodo p, r3(0) # 3.
Dem:

Ver apéndice B.
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LEMA 9: Para cualquier nodo p, r5(0) # 4.
Dem:

Sea p un nodo cualquiera de G, por los lemas 6, 7 y 8, 13(0) = 4 y por lo
tanto, por el lema 5, r,(0) = 6. Cualquier cuadrildtero que contenga a p
contiene exactamente un nodo de H,. Los 1-nodos no pertenecen a
ninguno de esos cuadrildteros, los 2-nodos estdn contenidos en
exactamente uno cada uno, y cada 3-nodo estd contenido en
exactamente 3 cuadrildteros. Por lo tanto, hay 18 cuadrildteros en G que
contienenp y (18.23)/4 cuadrildteros en total en G, lo cual es imposible.

Por lo tanto, vimos que 7r3(0) no puede tomar ninguno de los valores
posibles, lo cual es un absurdo. Luego, (3,7,22) = @, lo cual implica el
resultado del teorema. 0O

Proposicion 11: R'(3,7) = 21.
Dem:

En la definicion de grafo ciclico, tomamosk =3,i; =1,i, =3,i3=8.0

Teorema 2: R'(3,7) = 22.
Dem:

Seap un nodo con aristas hacia los nodos p,,p,, ..., pe- Sean p;; los nodos
paral <i<j<6ydigamos que p;; tiene una arista hacia p; y hacia p;
(las mismas serdn aristas entre H, y H, cuando p sea preferido).
Finalmente, unimos p;j con py, sii,j,k y h son todos distintos entre si. El
grafo producido de esta manera tiene 22 nodos, no tiene conjuntos
independientes de tamario 7, pero si tridngulos. Fs fdcil ver que todos
los tridngulos estdn en H,. Ahora, H, tiene un circuito Hamiltoniano C
(el orden de los nodos en C es

P12, P35, P16» P23 Pser P24, P36r Pas P13) Pass P15, P26r P1as P2s) P34) pasando por cada
tridngulo exactamente una vez. Sea G el grafo obtenido borrando las
aristas de C del grafo descrito anteriormente. Entonces G es un

(3,7) —grafo.
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Se puede ver sin demasiada dificultad que el nuevo H, es un
(3,6) —grafo. Asumiendo esto, cualquier conjunto independiente de
tamano 7 deberia contener 2 o mds nodos entre los de py,p,, ..., Ps-

Primero elegimos dos nodos cualesquiera entre 10s py,p03, ..., 06 V
llamemos a los nodos restantes pg, Py, PerPa-

Silos dos nodos elegidos pertenecen a un conjunto independiente de
tamafio 7 entonces los 5 nodos restantes deben estar sobre {pg, vy,
PePajf- Los nodos sobre estos 4 nodos son pap, Pear Pacr Pod» Pad» Poer YV fUErOn
unidos de a pares por las 3 aristas de la construccion original. Luego,
tendremos 5 nodos independientes entre ellos en G si la remocion de las
aristas de C saco 2 o mds de estas aristas. Ahora, es fdcil chequear que
cada arista de C esta sobre un 4-conjunto distinto de H; de tal manera
que haya a lo sumo 4 nodos independientes sobre { vq, Py, Ve)Paj-

ST elegimos un 3-conjunto de p4, ..., pg entonces el 3-conjunto
complementario tiene sélo 3 nodos de H, sobre él, por lo tanto ningin
3-conjunto de p, ..., pg puede ser extendido a un 7-conjunto
independiente eligiendo nodos de H,. De manera andloga no se puede
extender 4-conjuntos y 5-conjuntos de p,, ...,p¢ @ 7-conjuntos
independientes. De manera que tenemos un (3,7) —grafo de 22 nodos, de
lo cual se desprende el resultado. O

Teorema 3: R(3,7) = 23
Dem:

Sale inmediatamente de unir las proposiciones que nos dan las dos desigualdades.
Tenemos que R’'(3,7) = 22, por lo tanto, R(3,7) = 23.O

R(3, 8)=28[12]

Alo largo de esta demostracion escribiremos (t, n) al referirnos a un
(3,t,n) —grafo. Una herramienta para la construccion de los (t,n)-grafos es la

siguiente:

Lema 1:parat > 2,seaGen (t,n, §,e)yseavenV(G) congrado §. Luego,
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a)

n—R@B,t—1) < § < min{t —1,n/2}

b) G[H,(v)] pertenecea(t—1,n— 6 — 1,8 ’,e") paraalgunos § 'y e’ que

Dem:

b)

cumplen:

-8 -1)—8'(t-2) <2< (t—-1DMn-6—-1)—8(5 -1)

Si 6 fuera mayor o igual a t, los vecinos de v serian un conjunto
independiente de tamafio mayor o igual a ¢, lo cual es absurdo, pues G no
puede tener conjuntos independientes de tamafio mayor o igual a t por
definicién. Son un conjunto independiente pues como G es libre de
tridngulos si dos de ellos estuvieran unidos entre ellos, junto con v
formarian un triangulo.

Ademas, ningtin grafo libre de tridngulos de n vértices tiene mas de n?/4
ramas, por lo tanto, § es menor o igual an/2.

Antes de seguir, veamos un resultado: si G es un (k, ) —grafo y v es un
vértice de G, entonces H;(v) esun (k — 1,1) —grafoy H,(v) es un

(k,1 — 1) —grafo. Esto es asi pues cualquier clique de tamafio x en H; (v) se
convierte en una clique de tamafio x + 1 cuando agregamos v, y cualquier
conjunto independiente de tamafio y en H,(v)se convierte en un conjunto
independiente de tamafio y + 1 cuando agregamos v.

Si § fuera menor que n — R(3,t — 1) la existencia de G[H,(v)] contradice la
definicion de R(3,t — 1). Si valiera que § > n — R(3,t), entonces

R(3,t —1) > n—§, pero G[H,(v)] es un grafo libre de tridngulos y cuyo
mayor conjunto independiente tiene tamafio menor que t — 1. El tamafio de

G[Hy(v)]esn— & —1,lo cuallleva a un absurdo.

Sea D la suma de los grados en G de los vértices de H,(v), entonces,

Sn—6—-1) <D< (t—-1)(n—6—-1)

En efecto: |G[H,(v)]| = [V(G)| - |[HH(v)|-1=n—-8§ -1

Pues la cantidad de nodos es n, la cantidad de vecinos de v es § y el uno que resta

es debido a v. Luego, en D hay por lo menos n — § — 1 sumandos.

Seaw € H,(v),veamos que § < d(w) <t —1.
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Supongamos que d(w) >t — 1, entonces d(w) = t, por lo tanto existe un conjunto
independiente de tamafio t 0 mas (ya que las ramas adyacentes a w no pueden

estar unidas entre si pues el grafo es libre de tridngulos), lo cual es absurdo.

Ahora supongamos que § > d(w). Esto también es absurdo pues § era el grado

minimo en G.
Andlogamente, si E es la suma de las ramas en G entre H, (v) y H,(v), entonces
6(6—-1) < E<6(t-2).

El resultado sale de notar que 2e" = D — E.

SeaHun (t —1,n— § —1) —grafo y sea G un grafo de orden n y grado minimo
6 <t-—1talqueG[H,(v)] = H paraalgin v enV(G) de grado 6. En estas

circunstancias decimos que G es una extension de de H.

SeaH (V) = {vy,v,,..,vs}yparal <i < §,defino X; = H;(v;) N H,(v). Notemos
que |X;| =d(w;) —1paral <i< 6.0

Lema 2:Sea G una extension de H, con H = G[H,(v)] perteneciente a

(t—1,n— 6 — 1). Luego, G pertenece a (t,n) siy solo si se cumplen:

a) H;(v) esun conjunto independiente de G

b) Cada X;es un conjunto independiente de H

c) Paracadal incluido en {1,2, ..., §}, ninglin conjunto independiente de
tamarfio t — |I| estd contenido en V(H) — [1;¢; Xi

Dem:

Como las condiciones a) y b) juntas equivalen a requerir que G sea libre de
triangulos, es suficiente considerar la existencia de conjuntos independientes de

tamaiio t.

ComoHesun (t —1,n — § — 1) —grafo no puede haber conjuntos independientes

de tamafo t que incluyan a v.
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Por otro lado, un conjunto de esa forma que no incluye a v existe si y solo si no se

cumple la condicién c). O

Como cualquier G en (t,n, §) puede tener mas de un vértice de grado §, puede ser

construido a través de varios H en (t — 1,n — § — 1) distintos.

Para reducir el niumero de veces que cada G fue construido, se emplean diferentes

técnicas.

Consideramos una funcién 6(G) definida para cualquier grafo G y que cumple las

siguientes propiedades:

1) 6(G) es una drbita de la accién del grupo de automorfismos Aut(G) en V(G)
2) Los vértices en 8(G) tienen grado minimo en G

3) Para cualquier permutacién y de V(G) vale 8(y(G)) = y(6(G))

El programa nauty computa una permutaciéon k = k(G) de V(G) tal que
k(y(G)) = k(@) para cualquier permutacion y de VV(G). Una permutacion asi se

llama nombramiento canénico (canonical labelling) de G.
Nauty también puede computar 6rbitas de Aut(G).

Supongo V(G) = {1,2, ...,n}. Si defino 8(G) como la 6rbita que contiene el vértice
de minimo grado que aparece en la primera secuencia k — 1(1),k — 1(2),.., k —

1(n). Luego, se ve que 8 cumple los requerimientos 1), 2) y 3) de antes.

Parat < 7, restringimos G a ser solo construida a través de H = G[H,(v)] para
algin v en 6(G). Los requerimientos de 8 implican que isomorfismos de G pueden
solo aparecer dentro de las extensiones del mismo H, lo que simplifica en gran

medida el rechazo por isomorfismos.

Para t = 8, no habia tanto interés en el rechazo de isomorfismos pues se esperaba
hallar pocos o ningiin grafo. Por lo tanto no se usé 6(G) como arriba sino que

aceptamos cualquier grafo producido. En ese caso construimos G solo por algunos
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Hen(t—1,n— 6 —1,6 ") con§ " tan pequeilo como se pueda, con la ayuda del

siguiente lema.

Lema 3:Sean v y w distintos vértices de un grafo G en (t,n), entonces el minimo

grado de G[H,(v)] esalosumot —1—|G(v) N G(w)|
Dem:

Si vy w son adyacentes, entonces |G(v) N G(w)| = 1y por lo tanto quisiera ver
que el minimo grado de los nodos en H,(v) es alo sumo t — 2. Supongamos que no.

Entonces:
min{d(p):p € H,(v)} >t —2

Lo que es equivalente a

min{d(p):p e H,(v)} =t -1

Pero entonces dado un nodo p en H,(v), sus vecinos (que serian por lo menos
t — 1) junto con v formarian un conjunto independiente de tamafio ¢, lo cual es un

absurdo.

Si vy w no son adyacentes, entonces |G(v) N G(w)| = 0y por lo tanto quisiera ver
que el minimo grado de los nodos en H,(v) es alo sumo t — 1. Supongamos que no.

Entonces:
min{d(p):p e H,(v)} >t -1

Entonces

min{d(p):p € H,(v)} >t

Por lo tanto existiria un conjunto independiente de tamafio t o mas dado por los
nodos adyacentes a p. Los mismo no estan conectados entre si pues sino se
formaria un tridngulo. Pero no es posible que existan conjuntos independientes de

tamafio t o mas. O
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EL METODO COMPUTACIONAL:

Los subconjuntos de {1, 2, ..., n} fueron representados como arreglos de bits en una
maquina de 32-bits. Esto permite realizar operaciones de conjuntos tales como

union, interseccién y contencion con solo un par de instrucciones en la maquina.

Supongamos que tenemos algin H en (t —1,n — § — 1) y queremos encontrar las
extensiones G en (t,n,d ) de H. Sean §;,S,, ..., Sy una lista de conjuntos

independientes de H con cardinalidad entre § — 1y t — 2 inclusive.
ParacadawenV(G)y Xy, X5, ..., X; incluidos en V (@), definimos:
di(w) = di(w, X1, X3, ..., X;) = dy(w) + |{X;/ w pertenece a X;,1 < j < i}

Ahora, consideramos el siguiente procedimiento:
Procedimiento make X (k, (Xy, ..., Xk-1), (Y1, ..., Yx))
# k y K son enteros, cada X y cada Yi son subconjuntos de V(G)

Si k> § entonces process ((Xi, ..., X5))

Sino

Construir la lista (Zy,..., Z1) de todos los elementos Z de (Y4,..., Yk)

tales que:
i) Para cada w en V(H), si dk-1(w)<k-1, entonces w esta en Z
ii) Para cada w en V(H), si dx-1(w)=t-1, entonces w no estd en Z
iii) H no tiene ningtn conjunto independiente de tamafio t-1-|]|
disjunto de ZU [];¢; Xi para algiin I en {1,2,--- k-1}
Para i desde 1 hasta L hacer
make X(k+1, (X1, ..., Xk-1, Zi), (Zi, Zi+1, .., Z1))
fin si
fin make X.
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Lema 4: Supongamos que en el procedimiento make X estan invocados los
argumentos (0, (), (S4, ..., Sn)). Luego, el procedimiento process va a ser invocado

exactamente una vez por cada secuencia X, = §; , X, = S;,, ..., Xs = §j;, tal que

is’
1<i;<i, <--<isg < Nysecumplanlas condiciones del lema 2 y para ninguna

otra secuencia.
Dem:

El procedimiento make X tiene la forma general de un procedimiento de
backtracking para este problema. Los argumentos de un procedimiento recursivo
general representan el indice k del conjunto X;, que va a determinarse en este
nivel por los valores de Xj, ..., X_;, determinados hasta el momento, y por una
lista de posibilidades para X;. Las condiciones i) y ii) respectivamente aseguran
que el grafo final G va a tener minimo grado delta y maximo grado a lo sumo t — 1.

La condicidn iii) asegura que el requerimiento c) del lema 2 se cumpla. O

Usando la representacion descrita anteriormente, los tests i) y ii) son
implementados en unidad de tiempo por cada conjunto Z. La parte que mas tiempo

toma del procedimiento es iii) y se usaron 2 métodos para implementarla.

Supongamos que tenemos un conjunto S en V(H) y queremos determinar si H

tiene un conjunto independiente de tamano g disjunto de S.

El primer método era simplemente recorrer una lista de todos los conjuntos
independientes de tamafo g. Solo se necesitan unas pocas instrucciones por cada
conjunto independiente, pero la cantidad de conjuntos independientes puede ser

muy grande.

Para entender el segundo método, admitamos que los subconjuntos de

V(H) pueden ser identificados con los enteros 1,2, ..., M, donde M = 2IV(DI-1,
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interpretando la representacion binaria de un entero como el vector caracteristico
de un conjunto. Podemos construir previamente un vector de bits (by, by, ..., by),
tal que b; = 1 si y solo si el conjunto representado por i es disjunto con algiin
conjunto independiente de tamafo q. Este vector permite que el test iii) se ejecute
con costo uno. La construccién del vector en si es costosa, pero se hall6 una técnica
basada en Codigos Gray que resultaba suficientemente eficiente. Después de
muchos experimentos, se hallé que los mejores resultados se obtenian utilizando el
segundo método para q grande, digamos mayor o igual que t — 3, y utilizando el

primer método para q pequeiio.

Parat < 7, el procedimiento process computa la funcion 6(G) definida antes. Si v
no pertenece a B(G), G es automaticamente rechazado, en otro caso es escrito en
un archivo de manera canénica. El nombramiento canoénico se realiz6 por el
programa nauty. El rechazo a isomorfismos fue hecho usando el sorting del

sistema nauty.

Dados cada uno de los conjuntos (t,n, §) producidos de esta manera, por el lema 1,
cada conjunto de esta forma con 4 < t < 7 puede ser obtenido extendiendo

miembros de otros conjuntos.

Para el caso (7, 20), no se generaron todos los conjuntos de grafos, ya que nuestro
interés principal radicaba en extenderlos a (8, 28, 7). Para (7, 20, 2) y (7, 20, 3), se
genero el conjunto completo con 49 vértices. En el caso de (7, 20, 4) se restringi6 la
generacion a aquellos grafos de 49 ramas que no tienen ningtn par de vértices
distintos con 4 o mas vecinos comunes.. Este fue el calculo computacional mas
costoso de realizar. La aplicacion directa del procedimiento make X a (6, 15)
produjo casi 695 millones de grafos, entre los cuales habia 2820645 grafos no

isomorfos del subconjunto recién definido.
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En el proceso de extender (7,n) a (8, 28) se evitd el uso de la funcién 8 pero en

cambio se acepto cualquier grafo G generado por el procedure make X. Los pasos

se detallan a continuacién, notando que por el lema 1, (8,28) = U§=5(8,28, 0).

a)

b)

(8,28,5) fue encontrado vacio aplicando make X a los 191 miembros de
(7,22)

(8,28,6) fue encontrado vacio aplicando make X a cada uno de los grafos en
U§=3(7,21, 6). Esos valores de 6 son suficientes por el lema 1.

(8,28,7) puede encontrarse extendiendo todos los miembros de
U3-,(7,20,8°,49). Esto se hizo simplemente aplicando make X para

6" =2y 6 = 3.Parad” = 4, este enfoque parecia ser de una enorme
dificultad, asi que se modifico el algoritmo para usar el lema 3. Como ya se
habian computado todas las extensiones para §” < 4, se pudo evitar la
construccion de grafos que se sabe que contienen 2 vértices con 4 vecinos
comunes. Esta prueba se realiz6 en 3 dias. En primer lugar, cualquier grafo
H que falle este test se puede ignorar. En segundo lugar, ningiin X; puede
contener 4 vértices adyacentes a algin w en V(H), ni ningtin par de vértices

w, x en V(H) puede tener 3 vecinos comunes en H. Por ultimo, X; N X; debe

tener cardinal a lo sumo 2 para i # j. Se obtuvo que (8,28,7) = @.

d) Finalmente, uniendo a), b) y ¢) obtenemos que (8,28) = @.

Teorema: 28<R(3,8)[7]

Dem:

Dando un grafo de 27 nodos libre de tridngulos y sin conjuntos independientes de

tamafio 8, obtendremos que 28 < R(3,8).

El grafo que cumple lo requerido, al que llamaremos /,,, esta definido en la

siguiente tabla:
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Grafo Parametros | Vecinos de vértices en

H,(v)

H,(v)

Jara | (3,8,27,87) | 26-1,5,7,11, 20

25-1,3,6,9,13,18
24-2,4,6,12,17,21
23-2,5,8,10,14, 19

Hy, |(3,7,22,60) | 21-5,11,13,14
20-6,12,13,14
19-1,3,7,12,15
18-2,4,7, 11,15
17-3,5,8,10,15
16-4,6,8,9,15

]15a

Jisa |(3,6,15,26) |14-1,9
13-2,10

Y H;,, es el siguiente grafo de 12 vértices:

12 11

12
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En la tabla, el subindice del grafo determina cudl es el nodo preferido, por ejemplo
en J,-, el nodo preferido es el 27. En la tercera columna estan los vecinos de este

nodo y luego del guidn, aquellos nodos adyacentes al primer nodo dado. O

Teorema:R(3,8) = 28
Dem:

En el paso previo al anterior se vio que mediante un método computacional se
obtuvo que (8,28) = @, es decir que no existen grafos libres de tridngulos de 28
vértices tales que el mayor conjunto independiente tenga tamafio menor que 8.
Luego, si un grafo tiene 28 nodos y es libre de tridngulos, entonces debera tener un
conjunto independiente de tamafo mayor o igual a 8. Esto implica que su

complemento tiene un Ksg, por lo tanto obtuvimos que R(3,8) < 28.

Esto unido al hecho de que R(3,8) = 28, dado por el teorema anterior, nos da el

resultado. O

R(3,9)=36 7]

Lema 1:Sea G un (k,l,n,e) —grafo.
Sea A= ne — Y;50{e(3,1 — 1,n — v; — 1) + v?}s;. Entonces, A> 0, y hay por lo
menos n — A nodos completos en G.

Dem:
Para todos los i y j, definimos

B.i(v) = { el nimero de vértices en H;(v)de grado v; sid(v) =v;
) 0 en otro caso

Notemos que Y., §;; es el nimero de ramas entre los nodos de grado v; y los de
grado v; , luego se obtiene que Y, 5;; = X, Bj;- Si v es de grado v; , y es preferido,
entonces

e=|H,w)|+ (v;)*+ ijo(i _j)ﬁij(v)-

Si sumamos esto para todos los nodos de G, obtenemos
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ne = S + @2+ ) > > (1= D). &
=0 7 30

=0 =
deg(v)=i

En todos los casos se tiene que
|H,(W)|=eB,l-1,n—v; —1), (2)

Y si v es un vértice completo, se cumple la igualdad.

Siiy j estan unidos, la suma Y, §;;(v) ocurre en (1) con un coeficiente de (i — j) y

la suma de Y., B;(v) ocurre con un coeficiente de (j — i).

Por la afirmacién del principio de la demostracién se ve que las dos sumas se
cancelan en (1).

Por lo tanto, usando (1) y (2) tenemos

ne > z e(3,l—1,n—v;, —1)s; +v)32s;
i=0
= Z{e(S,l —Ln—v; —1)+ [ )?}s;

i=0

Lo cual es equivalente a que A> 0, y se ve facilmente que cada vértice que no sea
completo contribuye con al menos 1 a A, luego, debe haber por lo menos (n — A)
nodos completos. O

Teorema 1: (i) 36< R(3,9) [6]

(ii)) Si G esun (3,9, 36)-grafo entonces es un grafo regular de grado 8. Si algin
vértice en G es preferido, entonces H,(v) es un (3, 8, 27, 80)-grafo.

Dem:

(i) Veamos que R'(3,9) > 35, lo que es equivalente a ver que R(3,9) > 36.
En la definicién de grafo ciclico tomamos: k = 4,i; = 1,i, = 7,i3 = 11,i, = 16.

(i)  Ahora, dadoun (3,9, 36) —grafo, queremos ver que es un grafo regular
de grado 8. Sea v un nodo en G, queremos ver que d(v) = 8.
Supongamos que d(v) > 8. Preferimos v y separamos en H; (v) y H,(v). Entonces,
|H,(v)| > 8, entonces existe un conjunto independiente de tamafio 9 o mas, lo cual
es absurdo.

Por otro lado, debido a un resultado visto en la demostracién del valor de R(3, 8),
sabemos que d(v) = R'(3—-1,9) = 8.

Por lo tanto, d(v) = 8.
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Finalmente, veamos que si un nodo v es preferido, entonces H,(v) es un

(3, 8, 27, 80)-grafo. El grafo no tiene tridngulos pues H,(v) c G y tampoco tiene
conjuntos independientes de tamafio 8, ya que si tuviera alguno, entonces ese
conjunto unido a v daria un conjunto independiente de tamafio 9 en G, lo cual es
absurdo. Como d(v) = 8, tenemos que |H,(v)| =36-8=27.Y vimos antes que
e(3,8,27) = 80, lo que completa la demostracion. O

Lema 2: SiG esun (3, 7,19, 36)-grafo, entonces G contiene un K3 o un K.
Dem:

Sivesun 2,3 0 4-nodo completo, entonces Z(v) = 4,11 o 16 respectivamente. No
hay 1-nodos ya que e(3,6,17) = 40. Si G contiene algin 2-nodo entonces el 2-
nodo forma una componente de G, ya que ninglin v 2-nodo puede tener ningiin
vecino que no sea 2-nodo, pues Z(v) < 4.

Sea el 2-subgrafo G,. Entonces tenemos [(G) = I(G,) + (G — G,).

Pero G tiene 19 nodos y es facil chequear que para todas las particiones posibles
de 19 en dos enteros m y n, en donde |V (G,)| = my |V(G — G;)| = n, debemos
tener I(G) = 7. Luego, no hay 2-nodos.

Ahora aplicamos el lema 1. Tenemos el siguiente sistema (1):
A= 648 — 34s; — 365, —40s; — 4755 = 0,
72 = 3s3 + 4s, + 551 + 65,
19 = 53 + 55 + 51 + Sp.
Ahora suponemos que no hay 3 o0 4-nodos completos. Por el lema 1, se obtiene que
19 — A= sy + 54, 0 A= s, + s3.
Esta relacion, junto con (1) implica que
So = 253 + 5, — 23, (2)
85 = 9s3 + 4s5,. 3)
De (2) obtenemos que
253 + 55 = 23
Lo que implica que
8s3 +4s, =92

Esto contradice (3), lo que completa la demostracion. O
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Lema 3: e(3,7,19) = 37.
Dem:

Antes se vio que 36 < e(3,7,19) < 37. Mediante algoritmos de computacion se
observa que la situacion descrita en el lema anterior no puede ocurrir, luego,
e(3,7,19) = 37. Luego, se cumple lo buscado. O

Lema 4: SiG esun (3,7,21,50) —grafo, entonces G contiene un K, con 2 4-nodos y
dos 5-nodos como vecinos.

Dem:

Recordemos que e(3, 6,27) = 40, por lo tanto, si algin 3-nodos v en G es
preferido, entonces Z(v) < 10, lo que implica que v debe tener por lo menos 2 3-
nodos, llamémoslos w; y w,, como vecinos. Si w; es preferido, entonces w, tiene
por lo menos 2 ramas hacia otros nodos de en H,(w;). Pero H,(v;) es un
(3,6,17) —grafo, y como R(3,5) = 14, H,(w;) no puede tener nodos de grado 2 o
menos. Luego, G no contiene 3-nodos.

Ahora aplicamos lema 1 para obtener el siguiente sistema:
A= 1050 — 565y — 50s; —48s, > 0,
100 = 65 + 551 + 4s,,
21 = sy + 51+ 5,.

Resolviendo este sistema, se obtiene

S; =545,

s =16 — s,

A= 10 — 4s,
Como A= 0, debemos tener sy < 2.

Para establecer el lema, solo debemos mostrar que algin 4-nodos v tiene como
maximo 2 4-nodos como vecinos. Para ver por que esto es suficiente, notemos que
como e(3,6,16) = 32, debemos tener que Z(v) < 18. Si v tiene como mucho 2 4-
nodos como vecinos, luego Z(v) > 4 + 4 + 5 + 5, por lo tanto la igualdad debe
valer, y por lo tanto v tiene exactamente 2 4-nodos y 2 5-nodos como vecinos.

Ahora, asumimos que cada 4-nodos tiene por lo menos 3 4-nodos como vecinos.
Luego, el 4-subgrafo es un grafo libre de tridngulos en el cual cada vértice tiene
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grado por lo menos 3. No hay grafos de esta forma con menos de 6 nodos, y los
unicos grafos de esta forma con 6 y 7 nodos respectivamente son K3 3y K3 4. Como
s, =5 + 54, solo necesitamos considerar esos 2 casos.

En el primer caso, partimos el 4-nodos en conjuntos T; y T, tales que |T; | = |T,| =
3, y tal que cada vértice en T; es adyacente a cada uno de los nodos de T,. Hay 3
ramas que van de nodos de T; anodos en G — (T;UT5,), luego hay por lo menos 12
nodos en G — (T, UT,) que no son adyacentes a ningun vértice en T;. De este
conjunto de 12 nodos, podemos elegir un conjunto independiente T; de tamafio 4,
pues R(3,4) = 9. Luego, T, UT, es un conjunto independiente de tamafio 7 en G, lo
cual es imposible.

En el segundo caso, si el 4-subgrafo es partido en dos conjuntos T; y T, al igual que
antes, con |T;| = 3y |T2| = 4, usando un argumento similar se puede ver que T; es
parte de un conjunto independiente de tamafio 7. O

Lema 5: e(3,7,21) = 51.
Dem:

Antes se vio que 50 < e(3,7,21) < 51. Mediante algoritmos de computacién se
observa que lo descrito en el lema anterior no puede ocurrir, luego e(3,7,21) >
51. Lo que completa la demostracion. O

Lema 6:SiGesun (3,7,22,e) —grafoy e < 62, entonces G no contiene nodos de grado
menor a 5.

Dem:

Si v es un 4-nodo, entonces H, (V) es un (3, 6,17) —grafo. Todos los grafos de esta forma
son conocidos. Los algoritmos utilizados para descartar los valores de e < 61 se
describen a continuacién.

Supongamos que G esun (3,7,22,59) —grafo y que v es un 5-nodo completo. Por el lema
4, G no tiene 4-nodos, y como Z(v) = 27, v debe tener tres 5-nodos, llamémoslos

Wy, W,, ws,ydos 6-nodos, digamos w,, ws, como vecinos. Queremos ver que es
imposible unir nodos de H;(v) con nodos de H,(v) de manera que el grafo resultante sea
un (3, 7) —grafo. Notemos que dado un nodo preferido v, una lista de los grados de los
nodos en H{(v) y el grafo H,(v), el siguiente algoritmo generar4, si existe alguno, todos
los grafos posibles con esta estructura. En nuestro caso, notemos que H,(v) es un
(3,6,16,32) —grafo. Todos los grafos de esta forma estan listados. Elegimos uno de esos
grafos, digamos Hq4, y procedemos. La descripcidn del grafo H¢, es la siguiente:
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Parametros Vecinos de nodos en H; H,
(3,6,16,32) 15-4,7 Hq;
14-3,5,10
13-4,6,8,9
Donde:

Para evitar tridngulos durante la construccién de G, es suficiente unir cada nodo w; en H;
con un conjunto independiente S; en H4,. Si w; es un m —nodo en G, entonces S; es un
conjunto independiente de tamafio (m — 1).

Dados dos nodos w; y w; en H; es usualmente imposible tener S; = §;, y la condicion que
asegura esto es facil de chequear a mano. Procedemos como sigue: si §; = §;, entonces w; y
w; tienen los mismos vecinos. Si w; y w; son preferidos simultdneamente entonces G es
partido en 3 grafos: {w;, w;}, Hi(w;) = Hi(w;) y Hy(W;) —w; = Hy(w;) — w;. Aeste
Gltimo grafo lo llamaremos H,(w;, w;). Es facil ver que como w; y w; no son adyacentes,
H,(w;, w)) debe ser un (3, 5) —grafo. Mas aun, H(w;) tiene por lo menos seis nodos, de
manera que H,(w;, w) tiene por lo menos 22-6-2=14 nodos. Pero no existe ningtin

(3,5, 14) —grafo, pues R(3,5) = 14.

Para construir G, debemos elegir tres 4-conjuntos independientes distintos S1, S, ¥ S3,¥
dos 5-conjuntos independientes distintos, S y S5, unir w; con cada nodo en S; y luego
chequear para ver si el grafo resultante tiene algiin 7-conjunto independiente. Si no hay 7-
conjuntos independientes, entonces G es un (3,7, 22,59) —grafo.

Dada una seleccion de conjuntos S;, donde pueden los 7-conjuntos independientes estar en
elgrafo G.SiT esun 7-Clen G,y T contiene a v, entonces T no contiene a ninguno de los
nodos en H{ (v). Entonces, T — {v} es un 6-Cl en H,(v), lo cual es imposible. Si T contiene
menos de 2 nodos en H{(v), el mismo problema ocurre. Luego, t debe contener al menos
dos nodos en Hq (v).

Ahora, supongamos que T es un 7-conjunto independiente en G, como antes, y
supongamos que T contiene exactamente k nodos w; , w;,, ..., w;,_en H;(v), donde k = 2.

Sea V, = V(H,(v)). Entonces T — {w; ,w;,, ..., w;, } esun (7 — k) —conjunto
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independiente en V, — (§;, U ...U S; ). Reciprocamente, silos k conjuntos S; , ..., S;

k
tienen la propiedad de que cuando son removidos de V;, un (7 — k) —conjunto
independiente S queda, entonces S U {w; ,w;,, ..., w;, } es un 7-conjunto independiente en
G. Por lo tanto, una condicion necesaria y suficiente para que la seleccion {S; , ..., S, }
represente un (3,7) —grafo es que para cada subseleccion {S; , ..., S, } con k = 2, tenemos
que el conjunto V, — (S, U ..U S; ) no contiene ningin (7 — k) —conjunto

independiente.

Decimos que los conjuntos S; y S; forman un “buen” parsiV, — (Sl- u S]-) no tiene 5-
conjuntos independientes. De lo anterior, vemos que si la seleccién {S, ..., S3} representa
un (3, 7) —grafo, entonces es necesario, pero no suficiente, que cada par de conjuntos
S;,S; seaunbuen par. La propiedad de ser un buen par depende solo de H,(v), que en
este caso es Hyg,.

Construimos ahora tres matrices M4, M 45 y Mss. El primer algoritmo nos da listas de 4-y
5-conjuntos independientes. Los llamaremos {Si*: i < d,}y {S?: i < ds}, donde G contiene
d4 4-conjuntos independientes y ds 5-conjuntos independientes. Si i < j entonces
definimos la entrada ij de la matriz M4 como 1 si St y S;-t forman un buen pary 0 sino. La
matriz M5 se define de la misma manera. Para todos los i y j definimos la entrada ij de
M,s como 1 si Sf yS]5 son un buen par y 0 sino. Una manera eficiente de generar estas

matrices es descrita a continuacion.

Para estas matrices generamos una lista de todos los conjuntos de la forma A =

{S& Spt, 5% 55,55} en donde cada par en el conjunto es un buen par. Para obtener todos los
conjuntos de esta forma, tomamos la primera fila Mi? en la matriz M4, y elegimos la
primera columna j para la cual la entrada ij es un 1. Hemos ahora elegido los conjuntos S‘f
y S;-*. A continuacion, la operacion “&” es aplicada a la primera y la j —esima filas y la
primera entrada distinta de cero, digamos en la k —esima columna, es elegida. Esto
corresponde a elegir Si. Notemos que en el conjunto {Sf,Sf,S,ﬁ‘} todos los pares son un
buen par. Debemos ahora elegir dos 5-conjuntos independientes. De la matriz Mys ,
elegimos la primera, la j —esima y la k —esima filas y tomamos sus “&”. Supongamos que
en el resultado el primer 1 ocurre en la [ —esima columna. Entonces los 5-conjuntos
independientes Sls forman un buen par con cada uno de los tres 4-conjuntos
independientes que ya han sido elegidos. Finalmente, el resultado de la ultima “&”
operacion es “&-ada” con la [ —esima columna de M5 . Sila m —esima columna en el
resultado es 1 entonces el conjunto S,Sn puede ser adjuntado para completar el conjunto A.
Los 10 pares en A son buenos pares. Entonces hacemos backtrack.

Si algdn conjunto de la forma A existe, entonces chequeamos cada conjunto para ver si
para todas las elecciones de k conjuntos de A, k > 3, cuando esos k conjuntos son
removidos de V5, no queda ningtn (7 — k) —conjuntos independientes. Si ese es el caso,
entonces el conjunto A representa un (3, 7,22,59) —grafo.
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Ahora describimos como las matrices M;; son construidas. Primero construimos la matriz
N, (y de manera similar, Nx). La matriz N, es una matriz de tamafo d4 X ds. Se pone un 1

en la posicion bc de Ny si y solo si 515, nss =g.

Llamemos Nl.(k) ala k —esima fila de N;. Para encontrar la entrada k! de la matriz My, ,

donde k < [, miramos las filas de Nik) y Nil). Si Nik)&Nf) tiene unos en ella, entonces la

entrada kl de M4, recibe el valor 1. Para ver porque esto funciona, notemos que no hay
unos en Nik)&Nil) si y solo si cada 5-conjunto independiente S]5 interseca a Sik) oa Sil).

Esto pasa si y solo si el par (Sik), Sil)) es un buen par, lo cual es cierto si y solo si la entrada
klde My, esunl. O

Lema 7: SiG esun (3,8,27,80) —grafo entonces G no tiene nodos de grado menor
abs.

Dem:

En esta demostracién usamos que e(3,7,19) = 37,e(3,7,20) = 44,e(3,7,21) =
51 ye(3,7,22) = 60. Las primeras 3 igualdades fueron demostradas
anteriormente y la ultima se encuentra en el lema anterior.

Si G contiene un vértice v de grado menor a 4, luego H,(v) seria un (3, 7, n) —grafo,
donde n > 23, lo cual es imposible pues R(3,7) = 23.

Si v es un 4-nodo con 2 4-nodos, digamos w; y w,, como vecinos, entonces w, esta
en H,(w;) y w, tiene grado por lo menos 3 en este subgrafo. Pero H, (w;) es un
(3,7,22) —grafo,y R(3,6) = 18, por lo tanto H;(w;) no puede tener 3-nodos.

Por lo tanto, cada 4-nodo en G tiene por lo menos un 4-nodo como vecino. Luego, si
v es un 4-nodo, entonces Z(v) = 19. Por lo tanto, |H,(w;)|<61. El lema anterior
implica que H,(v) no contiene 4-nodos, por lo cual G tiene a lo sumo 2 4-nodos, vy
quizas alguno de sus vecinos.

Usando el lema 1 tenemos el siguiente sistema:
A= 2160 — 86sy — 80s; — 765, — 7653 = 0,
160 = 75y + 651 + 55, + 453,
27 =59+ 51+ S, +53.
Para resolver el sistema, podemos tomar 2 casos:
Caso1:s3 = 2.

A= 2008 — 865, — 80s; — 765, > 0,
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152 = 750 + 651 + 552,
25 =55 + 51 + 5.
Caso 2:s; = 1.

Resolviendo el sistema obtenemos que s, < 2. Luego, el 4-nodos v tiene Z-suma
por lo menos 5+5+6+6=22, por lo tanto, |H,(v)|<58. Pero H,(v) es un (3, 7, 22)-
grafo, y e(3,7,22) = 60, lo que nos da una contradiccion.

Esto completa la demostracion. O

Lema 8: SiG es un (3,8,27,80) —grafo, entonces o G contiene un K¢ con seis 6-
nodos como vecinos, o un Ks con un 5-nodo como vecino.

Dem:

Vamos a usar el sistema de desigualdades planteado en el lema anterior, pero
tomando s; = 0. De esto obtenemos:

SZ=SO+2'
51:25_50,
A= 8 — 254 = 0.

Porlo tanto, sg < 4,y 2 < s, < 6. Notemos que como e(3,7,20) = 44y
e(3,7,21) = 51, si v es un 5-nodos, entonces Z(v) < 29, y si v es un 6-nodos,
entonces Z(v) < 36. En particular, el nimero de (5, 6) —ramas es por lo menos
tan grande como el de (6, 7) —ramas, pues de otro modo algin 6-nodo v tendria
mas 7-nodos que 5-nodos como vecinos, lo que forzaria Z(v) > 36.

Casol:s, < 4.

Cada 5-nodos tiene por lo menos 4 6-nodos como vecinos, y ningin 6-nodos es
adyacente a ninglin 7-nodos ni a ningin 5-nodos, por lo tanto hay como maximo 16
6-nodos adyacentes a un 5-nodos o a un 7-nodos. Pero hay por lo menos 21 6-
nodos, luego, hay un 6-nodos con 6 6-nodos como vecinos.

Caso 2: s, = 5.

Si no existe ningin 6-nodo con 6 6-nodos como vecinos, entonces cada 6-nodo es
adyacente a por lo menos un 5-nodos, y como hay 19 6-nodos, debe haber por lo
menos 19 (5, 6)-ramas. Pero hay solo 5 5-nodos, entonces algiin t —nodo v tiene
por lo menos 4 6-nodos como vecinos. Como Z(v) < 29, v debe tener exactamente
4 6-nodos y un 5-nodos como vecinos.
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Caso 3: s, = 6.

En este caso, A= 0, por lo tanto el lema 1 implica que todos los nodos son
completos. Si v es un 7-nodos, entonces Z(v) = 43, luego v debe tener por lo
menos un 7-nodo como vecino. Por lo tanto, solo hay 4 posibilidades para el 7-
subgrafo y son las siguientes:

Si v es un 7-nodo que tiene i 7-nodos como vecinos, entonces v tiene (i — 1) 5-
nodos como vecinos, pues Z(v) = 43. Luego, en cualquiera de los 4 casos, hay
como maximo 4 (5,7) —ramas. Teniendo en cuenta que hay 6 5-nodos, debe haber
un 5-nodo w con ningin 7-nodo como vecino. Dado que Z(w) = 29, w debe tener 4
6-nodos y un 5-nodo como vecinos.

Esto completa la demostracion. O

Lema 9: e(3,8,27) = 81.
Dem:

Antes se vio que e(3,8,27) > 80. Mediante algoritmos computacionales se observa
que las condiciones dadas en el lema anterior no pueden ocurrir, luego,
e(3,8,27) = 81.0

Teorema 2: R(3,9) = 36.
Dem:

La no existencia de un (3, 8,27,80) —grafo implica el resultado. Habiamos visto
que si G esun (3,9,36) —grafo entonces es un grafo regular de grado 8; y que si
algun vértice en G es preferido, entonces H,(v) esun (3,8,27,80) —grafo. Luego,
como no existe ningun (3,8,27,80) —grafo, tampoco puede existir ningin

(3,9,36) —grafo. O
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Numeros de la forma R(4, n)

R(4, 4)=18 [4]

Teorema: R(4,4) =18

Veremos que para todo grafo G con por lo menos 18 nodos, o G 0 su complemento

G contiene un subgrafo Kj,.

Elijamos un nodo w cualquiera. Los nodos de G se dividen en 2 grupos, los que
estan unidos con w, grupo S, y los que no, grupo T. Tenemos que |S| =90 |T| =

9, pues sino |S U T| es menor a 18, lo cual es absurdo.

Si|T| =9, entonces, como R(4,3) = 9,0hayun K, en T o hay un conjunto
independiente de 3 nodos. En el primer caso, ya obtenemos un K,. En el segundo

caso, juntando w con los 3 nodos del conjunto independiente tenemos un K, en G.

Si |S| =9, usamos el hecho de que R(3,4) = 9 (como vimos antes) para afirmar que
o0 existe un K3 en S o existe un conjunto independiente de 4 nodos. En el segundo
caso, inmediatamente tenemos un K, en G. En el primer caso, juntando w con el K3

en S tenemos un K, en G.

Finalmente, para probar que R(4,4) = 18, mostramos un grafo de 17 nodos en el

cual ni G ni G tienen un K.
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En este grafo cada nodo esta unido con su primer, segundo, cuarto y octavo
vecinos hacia la derecha y hacia la izquierda. El grafo que se encuentra a

continuacién es su complemento.
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R(4, 5)=25 [13]

Para esta demostracion se intentara construir una familia de (4, 5, 24) —grafos,
definida de tal manera que cada (4, 5, 25) —grafo debe ser una extension de un
nodo a por lo menos uno de los grafos de nuestra familia.

Parak = 7,8,9,10,sea R'(3,5, k) el conjunto de (3,5) —grafos de orden menor o
igual a k, tal que cada (3,5, k) —grafo contiene por lo menos uno de ellos. De
manera similar, para k = 11,12, sea R'(4, 4, k) el conjunto de los (4, 4) —grafos de
orden menor o igual a k, tal que cada (4, 4) —grafo contiene por lo menos uno de
ellos.

Supongamos que F es un (4,5, 25) —grafo. Elegimos un nodo x de F tal que:

() Si x es un nodo de F de grado d < 10, sea v un nodo de H; (x) tal que
H, (x) — v contiene algiin miembro de R'(3,5, d).

(ii)  Sixtiene grado d > 12, sea v el nodo de H,(x) tal que H,(x) — v
contiene algiin miembro de R'(4, 4, 24 — d).

Como F no puede ser regular de grado 11, teniendo orden impar, por lo menos una
eleccion de v es posible. Por lo tanto, al menos un subgrafo de F ocurre en el
conjunto de todos los (4, 5, 24) —grafos F de manera tal que para algin x, H;(x) y
H,(x) estan representados por alguna fila de la siguiente tabla:

H, (x) H,(x)
R'(3,5,7) R (4,4,17)
R'(3,5,8) R (4,4,16)
R'(3,5,9) R (4,4,15)
R’(3,5,10) R (4,4,14)
R (3,5,12) R (4,4,12)
R (3,5,13) R (4,4,11)

El proceso de construir F de un par (H,(x), H,(x)) se llamara “pegado”. La cantidad
de pegados requeridos en la tabla anterior es demasiado grande para métodos
comunes. Mas adelante se describira un algoritmo de eficiencia suficiente tal que
todos los pegados requeridos se puedan hacer en un tiempo razonable.

Para k = 7,8,9 tomamos R'(3,5,k) = R(3,5,k — 1). Pese a que conjuntos mas
pequefios hubieran sido mas eficientes, se queria computar el conjunto completo
de (4,5, 24) —grafos teniendo un nodo de grado 8 o menos. Para R'(3, 5, 10)
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tomamos un conjunto de 53 (3,5,9) —grafos elegidos, de acuerdo con la
experiencia, lo menos denso posibles.

Supongamos que G y H son un (3,5) —grafo y (4, 4) —grafo respectivamente.
Definimos F (G, H) como el conjunto de todos los (4, 5) —grafos F tales que para
algin nodo x en VF, H,(x) = G y H,(x) = H. Vamos a utilizar F como un
representante de F (G, H). Vamos a suponer que los nodos de G son nombrados con
enteros continuos 0, 1, 2, ... y que los subgrafos inducidos de G también son
nombrados de esta manera 0, 1, 2, ... en el orden inducido por el nombramiento de
G.

Definimos un cono factible como un subconjunto de VH que no cubre ninguna
clique de tamaiio 3. Si H es un (4, 4, 14) —grafo, hay generalmente alrededor de
4000 conos factibles. La relevancia de los mismos es que Nz (v, VH) debe ser un
cono factible para cada nodo v de VG. Nuestro problema es elegir conos factibles
Cy, Cy, ..., uno para cada nodo de G, tal que ningtn clique de orden 4 ni ningiin
conjunto independiente de tamafio 5 aparezca en F. Las diversas posiciones en las
cuales estos subgrafos prohibidos podrian ocurrir son las siguientes:

K,: Dos nodos adyacentes v,w en VG tienen C, N C,, que cubre alguna arista de H.

E;: Para algtiin conjunto independiente wy, ...,w;_; de G, existe un conjunto
independiente de orden 5 — t en H que no se encuentraen C,, U C, U ..U

Cu,y (t=2,3,4).

La operacion de pegado puede ser lograda por una busqueda regresiva de
profundidad |V G|, pero esto es insuficientemente eficiente debido al gran ntimero
de conos factibles. En lugar de eso, vamos a partir el conjunto de conos factibles en
familias bien estructuradas que pueden ser procesadas en paralelo. Un intervalo de
conos factibles, que de ahora en adelante llamaremos intervalo, es un conjunto de
conos factibles de la forma {X: B € X C T} para algunos conos factibles B € T. Este
intervalo lo vamos a notar por [B,T], y llamaremos a By T su infimo y supremo
respectivamente. Obviamente, [B, T] contiene 2IT1=IBl conos factibles. Usando una
busqueda heuristica, el tipico conjunto de 4000 conos factibles cuando H es un
(4,4, 14) —grafo puede ser escrito como la union disjunta de aproximadamente
100 intervalos. Las dimensiones |T| — |B| van desde 0 hasta 8.

Supongamos m = |V G]|. Si Cy, ..., C,,—1 son conos factibles, entonces

F(G,H,C,, ...,Cp_1) denota el grafo F con nodo x tal que H,(x) = G, H,(x) =H,y
C; = Np(i,VH) para 0 < i < m — 1. Claramente, este es un (4, 5, 25) —grafo siy
solo si las condiciones K, E,, E5, E, son evitadas. Similarmente, si I, I, ..., [,,_1 son
intervalos, entonces F(G,H, Iy, 1, ..., I,,_1) representa el conjunto de todos los
(4,5, 25) —grafos F(G,H, Cy, ...,Cpy_1) talesque C; E [ para0 < i <m — 1.

Dado H, definimos 3 funciones Hy, H,, Hy: 2V¥ — 2VH Para X € VH sean
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H;(X) ={w € VH:vw € EH para algin v € X};
H,(X) ={w € VH:vw ¢ EH para alginv ¢ X};

H;(X) = {w € VH: {u, v, w}es un conjunto independiente de H para algin u, v

¢ X).

Estas funciones pueden ser calculadas por recursiones. Usando las mismas,
podemos definir algunas “reglas de colapso” que se aplican a las secuencias

Iy, 14, ..., I;,—1 de intervalos. Las reglas dependen de los grafos G y H. En cada caso,
o un intervalo es remplazado por un intervalo contenido en el, o el evento especial
FALLA ocurre. Supongamos I; = [B;, T;] para cada i, y definimos las reglas de
colapso (a)-(d) como siguen:

(a) Supongamos {u, v} € EG.
Si B, N B, N H;(B, N B,) # @ entonces FALLA
Sino T, =T, — (H,(By " B,) N B,)

(b) Supongamos {u, v} € EG, donde u, v son nodos distintos de G.
SiH;(T,UT,) &T, VT, entonces FALLA
Sino B, :== B, U (H;(T,UT,) —T,)

(c) Supongamos {u, v, w} es un conjunto independiente de tamafio 3 de G.
SiH,(T,uT,UT,)€T,UT,UT, entonces FALLA
Sino B, :== B, U (H,(T,UT,UT,)— (T, UT,))

(d) Supongamos que {u, v, w, z} es un conjunto independiente de tamafio 4 de
G.
SiT,uT,UT, UT, # VH entonces FALLA
Sino B, =B, U (VH — (T,UT, UT,)).

Notemos que, por ejemplo en la regla (c) el papel que juega u podria jugarlo v o w.

La razon por la que se usan estas reglas de colapso esta dada por el siguiente lema.

Lema 1: Supongamos que unas reglas de colapso se aplican a I, I, ..., I;—1-
Si FALLA ocurre, entonces F(G,H, Iy, I, ..., I,_1) = ©.

De otra manera, F(G,H, Iy, I, ..., I,—1) = F(G,H,1,,1,, ...,I,,_;") donde
I, 1,', ..., L,_1' es una secuencia de intervalos luego de aplicar la regla.

Dem:

Consideremos la regla (a), por ejemplo. Sea {y, z} en EH una arista tal que y esta en
B, N B,y zestaen T, N B,. Claramente u no puede ser adyacente a z, ya que eso
implicaria la formacién de una 4-clique {u, v,w, z} (condicién K,). Por lo tanto,
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F(G,H, Iy 14, ..., I,,_1)=0 si z estd en B,;; de otra forma z puede ser removida de T,,.
La aplicacién de esta regla simultdneamente a todas las aristas {y, z} es
precisamente la regla (a).

Las reglas (b)-(d) salen de aplicar ideas similares para evitar 5-conjuntos
(condiciones E, — E, respectivamente). O

Si las reglas de colapso se aplican reiteradamente, eventualmente encontraremos o
una condicion de FALLA o una situacion estable donde ninguna regla de colapso
puede dar FALLA o reducir un intervalo estrictamente. Resulta que la etapa final es
independiente del orden de la aplicacion de las reglas de colapso. Este es un caso
especial del siguiente resultado elemental.

Sea (X, <) un conjunto parcialmente ordenado, y sea ® una familia de funciones de
X en X. Supongamos que para x,x’ en X y ¢ en ® tenemos que ¢p(x) < xy

x<x' = ¢(x) < p(x"). Llamamos a x en X d-estable si p(x) = x para todo

¢ € d.Sea ¢p*(x) la clausura de {x} bajo ¢.

Lema 2: Para cada x en X, ¢*(x) contiene como mucho un elemento ®-estable.

Dem:

Supongamos que para ¢4,..., ¢, ¢1,..., ¢;' € ®,ambosy = ¢,.(...p;(x) ...) y
y' = ¢s'(... 1 (x) ...) son P-estables. Entonces y = ¢’ (... 1" (¢ (.o 1 () ...) ...))
ya que y es ®-estable, y por lo tanto y < y' por las condiciones establecidas en ®.

Similarmente y' < y yporlotantoy = y'.O

Para aplicar el lema 2 para G y H dados, sea X el conjunto de las m —uplas

(Iy, I, ..., I,_4) de intervalos, junto con el valor especial FALLA. Definimos x < x’ si
ox=FALLAox = (I, Iy, ., I;m_1), x' = (o, I/, ., I;m_1 )y € I}, 0 <i < m.Sea
@ el conjunto de todas las reglas de colapso disponibles, extendido a asignar
FALLA con FALLA siempre. Los requerimientos del lema 2 se chequean facilmente,
notando que las funciones H;, H,, H; son mondtonas no decrecientes, no
decrecientes y no crecientes respectivamente, y que la finitud de ¢*(x) garantiza
que contiene por lo menos un elemento ®-estable.

El resultado de aplicar reglas de colapso hasta que una condicién FALLA o una
estabilidad ocurran va a ser llamado colapso, reemplaza (I, I, ..., I,—1) con
C(G,H, Iy, 14, ..., I,,_1), donde la Gltima es o FALLA o existe una secuencia

(Iy, L4, ..., Ij,_q) talque ;" € I; 0 < i <m — 1. La tltima secuencia estable se dice
que es totalmente colapsada (para G y H).
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El teorema fundamental sobre colapsos es el siguiente:

Teorema 1:SiC(G,H, 1y, 14, ..., 1,_1) = FALLA, entonces F(G,H, Iy, I3, ..., I;,_1) =
@. De otra manera, definimos (I, I, ..., I;,_1) = C(G,H, Iy, I, ..., I;,_1). Entonces
F(G,H 1), 1,',..., I,_1") =F(G,H,Iy 1, ..., I;,_1) y si,ademas, |[| = |[;| = -+ =
|I,—1]| = 1 entonces F(G,H, 1,1’ ..., I,,_1") consiste en un unico (4, 5) —grafo.

Dem:

Todas las afirmaciones, a excepcion de la ultima, salen de la aplicacion reiterada
del lema 1. Para la dltima parte, notemos que la existencia de algin 4-ciclo o un
conjunto independiente de tamafo 5 llevarian a que la correspondiente regla de
colapso cause la condicién FALLA. O

Notemos que cada vez que una regla de colapso modifica un intervalo, el nimero
de conos factibles que representa es dividido por una potencia de 2. Esta habilidad
de colapsar para descartar muchas configuraciones no factibles al mismo tiempo
es la principal razén del éxito de este algoritmo.

Ahora podremos ver el procedimiento de pegado usando intervalos. Supongamos
inductivamente que tenemos secuencias totalmente colapsadas de intervalos

Iy, 11, ..., I}_;) para G[{0, 1, ..., — 1}]. Aquellos paralos cuales G[{0, 1, ..., —

1}] tiene la forma C(G[{0, 1, ...,r — 1}],H, Iy, I3, ..., I;_4, 1), donde I, es alglin
intervalo y las elecciones que causan FALLA son rechazadas.

Dadas unas secuencias totalmente colapsadas (Iy, I, ..., I;,_;) para G, podemos
encontrar F(G, H). Secuencias con |Ij| = -+ = |I,,_;| = 1 llevan a una tinica
solucién como vimos en el teorema 1. Aquellas que tienen algun I; = [B;,T;'] con
B;" # T;' pueden ser partidas recursivamente en las configuraciones disjuntas
C(G,H, Iy, ..., [B; U{w}, T/, ..., I;,,_1) yC(G,H, Iy, ..., [B;, T{ —{w}], ..., I;,_,) para
alginw € T/ — B;’, con valores que causan FALLA siendo rechazados de la manera
usual.

Una fuente de ineficiencia de este algoritmo es que hay generalmente 100
intervalos que podrian ser elegidos para I, y la mayoria de ellos llevan a
condiciones de FALLA para un r médico. Podemos reducir el nimero de
operaciones de colapso requeridas. Esto se logra con la ayuda de una estructura de
datos que tiene una gran ventaja: muchos G’s pueden ser procesados
simultaneamente.
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Supongamos que 1 < a, < a3 < --- son enteros tales que a@; < i parai = 2. Vamos
a definir dos relaciones en el conjunto de grafos nombrados donde los nombres
son los enteros {0, 1, ....,m — 1} si el orden es m. Supongamos que J es un tal grafo
conm = 2 nodos. Entonces:

padre(J) =J[{0,1,...,m — 2}] y adjunto(J) =J[{0,1, ...,a,, —2,m — 1}],

Donde el nodo final de adjunto(J) tiene el nombre a,, — 1 de acuerdo con nuestra
convencion para nombrar subgrafos. Se sigue de las definiciones que padre(J) y
adjunto(J) tienenm — 1y a,, nodos respectivamente.

A partir del lema 2 tenemos lo siguiente:

Lema 3: Sean Iy, I, ..., I, intervalos. Si C (padre(J),H, Iy, I, ..., I,,_,) da FALLA o
si C(adjunto()),H, Iy, Iy, ..., 1q,,—2, Im—1) da FALLA, entonces C(J, H, Iy, I, .., ljp—1)
da FALLA. De otra manera, supongamos que

(", L', .., I2") = C(padre(J), H, Iy, Iy, ..., I;n—3) y Uy, L") oo L") =
C(adjunto(J),H, 1o, 14, ..., I _3, I;y—1). Entonces, C(J,H, Iy, Iy, ..., Iy_1) =

li r ! rn ! I rr
CUH I 01"y o' 0 2" a1y I Ia 1),

Donde el valor se toma como FALLA si alguna de las intersecciones es vacia.

La principal razén para usar el lema 3 es reducir el nimero de operaciones de
colapso necesarias para deducir las configuraciones completamente colapsadas de
] de aquellas de padre(J). En lugar de quizas 100 posibilidades para I,,,_; vamos a
tener tipicamente unas pocas, las otras van a causar una FALLA cuando se las
pruebe para adjunto(J). Mas aun, las operaciones de colapso requeridas por
adjunto(J) son independientes de I,,,_, y por lo tanto no necesitan ser repetidas,
se realizan a lo sumo I,,,_, cambios.

Para implementar estas ideas eficientemente se construyo un objeto que consiste
en un par de arboles con raices superpuestas. Lo llamaremos un arbol doble. Por
definicidn, supongamos que queremos unir un solo H a una familia R’ = R’(3, 5, k).
Los nodos de un arbol doble son grafos nombrados, los miembros de R’y
recursivamente los padres y adjuntos de cada nodo. El grafo K; no tiene padre ni
adjunto; lo llamaremos la raiz. Las aristas (J, padre(J)) forman un arbol con raiz
llamado arbol padre, en el cual esos nodos y aristas en un camino de un miembro
de R’ alaraiz constituyen las ramas principales (un subarbol del arbol padre). Las
aristas (J, adjunto(J)) forman otro arbol, llamado el arbol adjunto. Como
padre(adjunto(J)) = padre™ %m*1(J), donde m = |V]| y a,, = 2, el nimero total
de nodos en el arbol doble es alo sumo k — 1 veces el nimero de ramas.
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Ahora, se puede describir el principal algoritmo de pegado. Comenzando por la
raiz, las ramas principales del arbol doble son recorridas en profundidad. Para la
raiz, todos los intervalos son colapsados. Para otros nodos, las configuraciones
colapsadas por el padre y el adjunto son combinadas como describe el lema 3. El
calculo de adjunto puede requerir recursivamente computaciones del adjunto del
adjunto, y asi sucesivamente. Tipicamente, la experiencia mostr6 que cuando las
configuraciones del conjunto adjunto fueron requeridas ya eran validas
aproximadamente un 90% de las veces.

Aun mas rapidez se logré empleando las simetrias de los nodos de orden bajo en el
arbol doble. Se encontrd util usar todas las simetrias de nodos de orden 4 o0 menos.

Para las ultimas dos filas de la tabla, un algoritmo similar es utilizado. En lugar de
buscar en una estructura espacial derivada de un conjunto de probabilidades para
G, usando intervalos en H, los roles de G y H se intercambian. Los intervalos fueron
definidos en el conjunto VG, y la busqueda derivaba del conjunto de posibilidades
de H. Como H es un (4,4) —grafo, la regla de colapso (d) no es necesaria, pero se
necesita una nueva regla de colapso para tridangulos en H. La cantidad de

(4,4) —grafos, que es mucho mayor comparada con la de (3,5) —grafos nos lleva a
elegir R’(4, 4, k) como grafos con menos de k — 1 nodos. Para k = 12 se usaron 23
(4,4,7) —grafosy 51 (4, 4,8) —grafos. Para k = 11 se usaron 28 (4, 4, 8) —grafos y
113 (4,4,9) —grafos. La experiencia llevo a que se prefirieran grafos densos y los
nombramos con sus subgrafos mas densos primero. En cada caso, la operacion de
pegado descrita antes nos lleva a grafos de 21 o 22 nodos. Esos fueron extendidos
en todas las maneras posibles a 24 nodos usando un método que aplica reglas de
colapso para determinar aristas que inciden en los nodos remanentes de H asi
como aquellas entre G y H.

Extensiones de un nodo

El requerimiento final es un algoritmo para extender (4, 5) —grafos por un solo
nodo. Supongamos que F es un (4, 5,n) —grafo. Queremos encontrar todas las
maneras en las que un nuevo nodo v puede ser unido con F para formar un
(4,5,n + 1) —grafo. Claramente, es necesario y suficiente que N (v, VF) no cubra
ninguln tridngulo de F y que se dirija a cada conjunto independiente de tamafio 4
de F.

Sean X3, X5, ..., X,- una lista que contiene todos los tridngulos y los 4-conjuntos
independientes de F en algin orden. Al igual que en el algoritmo de pegado vamos
a considerar intervalos [B, T] de subconjuntos de VF. El algoritmo de extension usa
un conjunto / de dichos intervalos.
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I={|@,VF|}
parai =1 hastar
si X; es un triangulo entonces
paracada [B,T]enl tal que X; € T
si X; € B entonces
borrar [B,T] de I
sino reemplazar [B,T] con [B U {yl, ...,yj_l}, T — {yj}]
paraj =1,..,kdonde X; — B = {yy, ..., Vi }.
Fin si
Finpara
Fin si
Sino [si X; es un 4 — conjunto independiente]
Para cada [B,T]enl talque X;,NB =0
siX;NT = @ entonces
borrar [B,T] de I.
sino reemplazar [B,T] por [B U {y]-},T - {yl, ...,yj_l}]
paraj =1,..,kdonde X; N T = {y;, ..., Vi }.
Fin si
Fin para
Fin sino

Fin para

Al completarse el algoritmo I va a contener un conjunto de intervalos disjuntos
cuya union es el conjunto de posibles vecindades N (v, VF).

La eficiencia del algoritmo depende considerablemente del orden de los elementos
en la lista X3, X5, ..., X,. Un método razonablemente bueno es ordenar el mayor
elemento, luego el segundo mayor, y asi sucesivamente con los triangulos y los
conjuntos independientes ordenados todos juntos. Con una buena implementacién
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este algoritmo puede llegar a extensiones de 24 a 25 nodos en aproximadamente
10 milisegundos.

La estructura general de ambas implementaciones era similar, pero algunos
detalles eran diferentes. Por ejemplo, distintas particiones del conjunto de conos
factibles en intervalos, y se utilizaron diferentes ordenes adjuntos a;. Los

(4,5, 24) —grafos generados fueron comparados para cada operacién de pegado
individual, o a veces en pequefios grupos, sin encontrar ninguna discrepancia.
Algunos pegados representativos fueron hechos usando buisquedas diferentes, de
nuevo con los mismos resultados. El testeo de isomorfismos se hizo utilizando el
programa nauty de McKay.

Las dos implementaciones requirieron 3.2 afios y 6 afios de tiempo de CPU en
computadoras de Sun Microsystems (mayormente Sparcstation SLC). Esto se logro
sin mayor demora utilizando un gran nimero de computadoras a la vez (hasta
110).

Como resultado de las computaciones, aproximadamente 25000 (4, 5, 24) —grafos
fueron hallados. Estos, se vio que no son subgrafos inducidos de (4, 5, 25) —grafos
usando dos programas independientes para extender (4, 5,n) —grafos a

(4,5,n + 1) —grafos. Por lo tanto tenemos el teorema principal:

Teorema 2: R(4,5) = 25.[9]
Dem:

Espaciamos los nodos de K,, de manera equidistante alrededor de la circunferencia
de un circulo de manera tal que todas las aristas del grafo se convierten en cuerdas
del circulo. Una s-linea, o una arista de longitud s, es una arista del grafo que corta
un arco del circulo que contiene s-1 nodos interiores. Un (4,5)-coloreo regular, es
un 2-coloreo en el cual no existen K, del primer color ni K5 del segundo colory en
el cual, para cada s, todas las aristas de longitud s tienen el mismo color. Dando un
coloreo de esta forma, obtendremos que existe un grafo de 24 nodos en el cual no
hay contenido ni un K, del color 1 ni un K del color 2, 1o que implica el resultado
del teorema. Se puede ver que si coloreamos las 1-, 2-, 4-, 8- y 9-lineas del primer
color obtenemos un (4,5)-coloreo regular. O
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Teorema 3: R(4,5) = 25.
Dem:

Antes se vi6 que ninguno de los (4,5,24) —grafos obtenidos eran subgrafos
inducidos de (4,5,25) —grafos. Como un (4,5,25) —grafo debia ser una extensién a
un nodo de un (4,5,24) —grafo de la familia definida, al ver que esto no es posible,
concluimos que (4,5,25) = @, es decir, que no existe ningiin grafo de 25 nodos tal
que no contenga ni una 4-clique ni un 5-conjunto independiente, lo que nos da la
cota superior: R(4,5) < 25.

Este hecho, unido al resultado del teorema 2, nos da el resultado principal, la
igualdad R(4,5) = 25.0
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Cotas para numeros de Ramsey

A continuacidén mostraremos algunos resultados sobre cotas a modo de ejemplificar

algunos métodos que se utilizan.

Cota inferior para R(4, 6) [3]

Ya que el nimero R(4,6) es el minimo nimero de nodos que debe tener un grafo completo
para que, dado un 2-coloreo, o el grafo incluya un K, del primer color o un K¢ del segundo
color, al dar un coloreo de esa forma del grafo completo de 35, K35, vemos que el minimo
numero de nodos no puede ser 35 y por lo tanto se obtiene la cota R(4, 6) = 36. Mas abajo
se ve en la tabla 1 una lista de adyacencia para el grafo de color uno de un 2-coloreo de
K;s. Todos los demds nodos tienen asignado color 2.
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Tabla 1: Un (4, 6) -coloreo de K35
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Una gran cantidad de cotas inferiores fueron obtenidas mediante algoritmos
computacionales de busqueda. Tres de ellos, R(4,6), R(3,10) y R(5,5) son los casos mas
pequefios para los cuales se desconoce el valor exacto y sus cotas fueron obtenidas usando
uno (o mas) de los algoritmos descritos mas abajo. El objetivo del método es producir
coloreos sin subgrafos monocromaticos de orden s en el color 1 y sin subgrafos
monocromaticos de orden t del color 2. Dichos grafos monocromaticos seran llamados
subgrafos ‘malos’.

Método A: Se comienza con un coloreo de nodos generado aleatoriamente de un grafo
completo cuyo orden n es lo suficientemente pequefio para que un buen coloreo se pueda
obtener facilmente. Entonces, usando el método de recocido simulado o una sintesis de
recocido simulado y luego buisqueda tabuj, el coloreo es transformado en un buen coloreo
mirando nodos individuales y eligiendo el color que minimice el nimero de subgrafos
malos. Cuando todos los subgrafos malos hayan sido eliminados, se incrementa n y se
repite el proceso.

Método B: Es diferente del método anterior en dos aspectos. En lugar de comenzar con un
grafo de orden pequefio, se comienza con un grafo completo del tamafo deseado. Pero la
diferencia mas importante se debe a la funcion objetivo. En lugar de recolorear nodos de
manera tal de minimizar el nimero de subgrafos malos, agregamos un término al objetivo
que intenta a maximizar el nimero de copias monocromaticas de P, (el camino de 4
nodos) inducidas. La importancia de la cuenta de P, en el objetivo puede ser mayor o igual
a la cuenta de subgrafos malos.

Método C: Se comienza buscando coloreos altamente simétricos, por ejemplo coloreos
ciclicos (coloreos de Cayley), que tengan relativamente pocos subgrafos malos y que
tengan una propiedad adicional. Deben tener nodos individuales (en lugar de drbitas) que,
al ser recoloreados, reduzcan el nimero de subgrafos monocromaticos. Una vez hallado
ese coloreo, se procede con el método A.

Un comentario acerca del método B, generalmente se utiliza una variacién mas detallada
del método. Hay 11 clases de isomorfismos de grafos de orden 4, y por lo tanto
esencialmente 11 maneras diferentes de 2-colorear los nodos de un subgrafo de orden 4
en un 2-coloreo de K,,. Si contamos el nimero de de conjuntos de nodos de tamaiio 4 que
induce cada uno de esos 11 coloreos posibles, producimos un vector de tamafio 11. Los
nodos pueden ser por lo tanto coloreados de manera tal de minimizar la distancia entre el
vector calculado y un vector objetivo postulado. El vector objetivo se puede determinar
mirando coloreos buenos ya obtenidos por un proceso de optimizacién de alto nivel o por
mera especulacién. Segin la experiencia se vio que maximizar el nimero de P,’s inducidos
es el elemento clave.
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4-subgrafo Gl G2 GS G’4 G5
By 0 0 0 0 0
Ky 1886 1464 1475 1484 1500
2K, 1640 1311 1303 1427 1273
Py 4880 4204 4228 4364 4208
Kis 2167 2199 2215 2092 2247
Py 0553 9190 9138 9359 9152
K3 3204 2856 2834 3027 2804
Ks;+e 11268 11776 11784 11589 11770
Cy 2558 2900 2920 2687 2936
Ks—e 7634 8645 8644 8534  B667
Ky 1586 1831 1835 1813 1819

Tabla 2: Cantidad de subgrafos inducidos en5 (4, 6) -coloreos de K3

Se utilizo el método B para mejorar la cota previa del R(4, 6). En la tabla 2 se presentan
datos sobre los subgrafos de color 2 de 5 nuevos (4, 6) —coloreos de K3, que fueron
obtenidos simultaneamente. Esta tabla lista las cuentas para cada uno de los 11 tipos de
subgrafos inducidos de orden 4. La columna mas importante es la de G, el resto estan a
modo de ejemplo. Los coloreos fueron obtenidos usando una variedad de vectores objetivo
(para cuentas de coloreos inducidos de orden 4), creados mas o menos ad hoc. Notemos
que en la tabla el grafo descrito es el grafo de 2 colores.

Observemos que la cantidad de subgrafos inducidos es aproximadamente la misma en
cada caso, a excepcidn de G;. Los otros 4 tienen una cantidad de subgrafos que es
substancialmente la misma que la de los cientos de otros (4, 6) —coloreos. El coloreo G;
diferente de todos ellos. La cantidad de K, es 1586, mientras que en ningin otro caso se
encontr6 un coloreo con menos de 1780 K,’s monocromaticos (en el color libre de K's).
Ademas, el nimero de P,’s inducidos es significativamente mas grande que en cualquiera
de los otros coloreos. Una vez que se descubrieron esas diferencias, se intent6 extender el
coloreo a 35 nodos y se tuvo éxito inmediatamente. Todos los 37 coloreos hallados estan
altamente relacionados con G;.

El coloreo de la tabla 1 es el méas simétrico de los 37 coloreos obtenidos. Tiene un
automorfismo de orden 4. Hay 6 érbitas de tamafio 4, que consisten de los nodos
i,i+1,i+2ei+3parai=0,4,8,12,16,20. Hay 5 6rbitas de tamafio 2, que consisten de
losnodos jyj + 1paraj = 24,26,28,30,32. Elnodo 34 es un punto fijo. Notemos que el
minimo grado en color 1 es 11 y por lo tanto el maximo grado en color 2 es 23, que es uno
menos que el maximo posible, en vistas del hecho de que R(4,5) = 25. De manera similar,
el minimo grado en color 2 es 18 y por lo tanto el maximo grado en color 1 es 16, el cual es
también uno menos que el maximo posible, pues R(3, 6) = 18.

Hay dos coloreos que son adyacentes al coloreo dado arriba. Pueden ser obtenidos del
original recoloreando la arista 1-3 y recoloreando las arista 1-3 y 29-33. En ambos casos,
el coloreo resultante tiene un grupo de automorfismos de orden 2. En adicion a estos 3
coloreos, otro grupo de 34 buenos coloreos fue hallado revirtiendo los colores de entre 20
y 25 aristas. Este grupo de 34 coloreos fue originalmente hallado por un programa que
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busca sistematicamente nuevos coloreos cambiando los colores de pequefios grupos de
aristas. Algunos de estos coloreos fueron hallados también por el método B. El programa
del método B que encontrd esos coloreos llegd a una conclusion exitosa (buscando

(4,6) —coloreos de K35) cerca de 1000 veces. En casi todos los casos el coloreo hallado era
uno de los 3 coloreos mencionados en el parrafo anterior. Sélo 5 veces se hallé un coloreo
en el grupo de 34.

Cotas inferiores para R(6,12), R(6,14) y R(6,15) [8]

Para un nimero dado p, sea Z, = {0, 1, 2, ...,p — 1}. Se elije un conjunto
Sc{l,2,..,(p—1)/2}.Sea G el grafo cuyos nodos son el conjunto V; = Z, y una arista se
define de la siguiente manera: dos nodos x e y se conectan si y solo si

min{|x — y|,p — |x — y|} pertenece a S. El grafo G es llamado el grafo ciclico de orden p
con respecto al conjunto de parametros Sy se lo denota G, (). Se construyen 3 grafos
ciclicos de orden primo de la siguiente manera:

1) p; = 223y el conjunto de parametros del grafo G
S1=1{1,2,4,7,8,13,14,15,16,17, 26,27, 28,30, 32, 33,34,41,49,52, 54,56, 59, 60,
64, 66,68,82,87,91,95,98,103,104,105,108,111}

2) py =257y
S, =
{1,2,3,4,6,7,8,9,11,12,14, 16, 24,27,28,32,33,36,42,44,48,56,62, 65, 66,67,
71,81,82,89,90,96,99,102,103,106,108,112,113,118,125,127,128}

3) p3 =337y
S;=1{1,5,6,7,8,11,17,25,27,30, 35,36,39,40,42,43,47, 48,49, 52,55, 56,
57,58,59,62,64,66,69,76,77,79,85,88,92,97,102,103,111,119,121,122,123,125,
127,135,136,137,142,146,148,150,157,159,162, 164}

Se verifico por computadora que: el grafo ciclico G,,3(S;) en 1) no contiene ni una
clique de tamafio 6 ni un conjunto independiente de tamafo 12, el grafo ciclico
G,57(S,) en 2) no contiene ni una clique de tamafio 6 ni un conjunto independiente de
tamafio 14 y que el grafo ciclico G33-(S3) en 3) no contiene ni una clique de tamafio 6
ni un conjunto independiente de tamafio 15. Lo cual nos da los siguientes resultados:

R(6,12) = 224,R(6,14) > 258 y R(6,15) = 338.
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Cota superior para R(5, 5) [11]

Para dos grafos ] y G, se define s(J, G) como el nimero de subgrafos inducidos de G
que son isomorfos a J. Se define s(Ky, G) = 1 (donde K, es el grafo sin nodos) para
todo G y s(J, Ky) = 0 para todo J distinto de Kj,.

Teorema 1:

a) Para cada grafo no conexo J existe una secuencia de grafos conexos J;, /5, .., Jr y un
polimonio p; con coeficientes racionales tal que

s(J,G) =pJ(s(J1,G),s(,, G), ...,s(Jx, G)) para todo grafo G.
b) No existe una secuencia de grafos conexos isomorfos /3, /5, ..., Jy y un polinomio no
nulo tales que p(s(J1, G), s(J3, G), ...,s(Jx, G)) = 0 para todo grafo G.
Param = 0y 0 < j < m se definen los T, ; grafos de la siguiente manera: param = 0 se
define T o = K;. Param > 0 Ty, ¢ es el grafo no conexo K, U Ky, yparaj =0, Ty jiq se
forma afiadiendo una arista a Ty, ;. Esto de fine T}, ; de manera tnica salvo isomorfismos

mi,m = Bm+1-

Lema 1:Sea G un grafo con n nodos. Entonces param > 0,

(n = m)s(Km, G) = X0 Bm,jS(Tin,j, G),
m+1 sij=m

Donde ;=] 2 sij=m-—1
1si0<j<m-2

Dem:

Comon = s(Ky,G) y Ty es el inico grafo disconexo que aparece esta es una instancia
especial del teorema 1.

Los casos m = 0, 1 son faciles de chequear, asi que podemos asumir m > 2. Ambos lados
de la ecuacion cuentan el numero de subgrafos de la forma K,,, U K;, inducidos o no. El

lado izquierdo es obvio en este contexto. Para el lado derecho, consideremos el nimero j
de aristas que unen K;;, con K;. Esas m + 1 aristas inducen un subgrafo T, ;. Finalmente,

notemos que cada subgrafo T, ; puede aparecer en s(Kp,, Tj ;n) = B, j de tal manera.

Param = 2, el lema se convierte en
(n —2)s(Ky, G) = s(Tyy0,G) + 25(Ty,1,G) + 35(K3, G),

Que es la Identidad de Goodman. O
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Lema Z2:Sean ]y G grafos.

a) Sijtiene k = 1 nodos de grado |V]| — 1, entonces
ks(J,G) = Ypeves(', GF), donde J’ es el resultado de remover de J un nodo de
grado V]| — 1.
b) SiJ tiene k = 1 nodos de grado 0, entonces
ks(,6) = Y sU"6),
VEVG
Donde J” es el resultado de remover de / un nodo de grado 0. Gt =

GIN; (v, V&), G; = G[VG — N;(v,VG) — {v}]

Dem:

En el caso de (a) cada subgrafo isomorfo a J yace en {v} U NG (v, VG) para exactamente k

nodos v, de manera que los dos lados de la identidad cuentan subgrafos inducidos
isomorfos a J con un nodo de grado maximo distinguido. El caso en (b) es similar. O

Teorema Z:Param = 1, cada grafo G satisface

D W 6 = Y (= 5K, G5 (K1, G + (m = D (Ko, G

veEVG veEVG
m-2 .
+ Z (1 + 6j,m—2)]S(Tm—1,j' GJ))
L j+1
j=0

Donde §; ; es la funcion delta de Kronecker.

Dem:

El caso m = 1 se puede corroborar de manera directa, asi que suponemos m > 1. Del lema

2,usando (b) paraj = 0y (a) paraj > 0, obtenemos

1
T‘Sm.l Z s(Km,G,) paraj=0
S(Tm, G) — 1 veEVG
- Z $(Tm-1j-1,GF) paral<j<m
J + Ojm VEVG

Aplicando el lema 2 (a) paraJ = K,,, podemos sustituir en lema 1 para obtener

— - ﬂm,'
%Zveva s(Kim-1,G) = Zveve S(Km, Gy) + Z}nﬂmz:ueva $(Tm-1,j-1,G)- (2)

Todos los subgrafos que aparecen en el primer argumento de s() en la ecuacién anterior
son conexos a excepcion de Ty, _ o. Usando el lema 1 de nuevo, tenemos que

m-—1

1
((S(Klr GJ—) —m+ 1)S(Km—1r Gv+) - Z Bm—l,jS(Tm—l,j' GJ—))
j=1

S(Tm—l,Or G‘J—) = ﬁ 10
m-—1,
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Reemplazando en (2) y juntando los términos similares obtenemos la igualdad deseada. O

Consideremos la identidad de la forma: Y,,,cy ¢ p (G, G, ) = 0. Donde p es un polinomio de
la formas s(J,G}) y s(J, G, ). para alguna familia de grafos conexos J. Los coeficientes
pueden ser funciones arbitrarias de n = s(Kj, G). La restriccion a J/ conexos se justifica por
el teorema 2.1. De ahora en adelante no utilizaremos mas el término s(K;, G — v) ya que
puede ser reemplazado porn — 1 — s(Ky,G + v).

Definimos el grado de p como el maximo niimero total de nodos que aparecen (como el
primer argumento de s) en un término de p. El experimento consistié en tomar un ndmero
grande de grafos aleatorios del mismo orden, y contar los niimeros s(J,G + v) y s(J, G — v)
para cada nodo v y subgrafo pequefio conexo J. Luego se form6 una matriz cuyos valores
son los posibles términos de p, hasta cierto grado fijo con una fila por grafo y una columna
por término. El rango de esta matriz y relaciones lineales entre columnas nos llevan a
identidades que satisface el conjunto de grafos elegidos. En particular, utilizando la
independencia lineal se puede probar la no existencia de tipos particulares de identidad
para esos grafos y por lo tanto, para todos los grafos.

Por ejemplo, se estableci6:

Lema Z2.3: Las Gnicas identidades de grado a lo sumo 6, en las cuales p se puede separar
como p(G +v,G —v) = p1(G + v) + p,(G — v), son aquellas del teorema 2.2 y sus
combinaciones lineales.

Si p no se separa como en el lema anterior, se cree que hay mas identidades.

El teorema que demuestra que R(4,5) = 25 implica que R(5,5) < 50. Mas aun, se deduce
del mismo que cualquier (5, 5,49) —grafo G debe ser regular de grado 24, con cada G + v
un (4,5, 24) —grafo y cada G — v el complemento de un (4, 5, 24) —grafo.

Aplicando el caso m = 2 del teorema 2.2, hallamos que

2veve S(K2, G —v) = 588 + Yyeyg s(Kz, G + v).

Como también se tiene que s(K,, G — v) = (224) — 5(K,, G + v), tenemos que
Yoeve S(Ky, G +v) +s(K,, G+ v) = 12936.

Sin embargo, de la demostracion de R(4,5) = 25 se sabe que los (4, 5, 24) —grafos tienen a
lo sumo 132 aristas y que no hay grafos de esa forma cuyo grado maximo sea mayor a 11.
Esto deja solamente grafos regulares de grado 11, lo cual nos lleva al siguiente lema:
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Lema 3.1:SeaG un (5,5,49) —grafo. Entonces, para cadanodov,G + v y G + v son

(4,5, 24,132) —grafos que son regulares de grado 11.

Vamos a hallar todos los (4, 5, 24, 132) —grafos. Los siguientes grafos H; y H, fueron

hallados por Thomason () bajo las condiciones de regularidad y cantidad constante de

triangulos en cada arista.

¥
HOHOQOOOM-OOO-
OmHOOO OO~
OO HHOOO =D
COOHOOO O~
CON™MOCOH OO
LCHHOOOHAO-HOO
HHOOOHAHOHOOO
HOOO™-HOHOOO ™
COOHMMHMO-OOO
OCHHONHOOO—-D
O —HOHOOOH™OO
HEHOHOOOH™MOOS

HrEHOHOOO™O W=D
HOHOOOHO O
OO0 HO M= O
HOOCSHOM-O--HO
COCHAOH-HO O™
COMHOA-HOH OO
CHOE—O M=o OO
THOHHOW=O-OOO
OO HO-HOOO™
HHOHHAOOOOO
HOMNHOHOOOHO
OO OO O ™ O e vl
L

1
THEHOEHOOOHO H-HO
HOrOOOHOH™HO
OrOOO™O v vl O vl
HOOOrOrrOr-O
COO—OHHO=H-HOH
OOHOAAHOH-OHO
O™HOH=AO-H-O-HOC
HOHMEHOHHO-OOO
CHHOMNHOHOOO
HrHOHAHOHOOOHO
THOMHOHOOOHO ™
OrrHONOOO O~ v

COOH-HOOOHO
VOHHOOOHO O
OO0 FHOm~OO
HHOOOHOHMOOO
HOCOHO=-OOO™
COOHOHHOOO
OOHOH-HOOO - —O
OHOmHOOQH-HOO
HOHM=OOO™HOOO
Or=HOO0Om-OOO~
HEHOOOHHOOOHO
HOCO™=HOOOHO
J

HOOHAAAHO OO
OO = e OO = O -
O A -HOOHO O
HAHAA A A OO HOHOO
A —H OO —HOHOO
T A OO OO O
OO HO OO v i
HOOHOHOO v i
DO Owr OO vl vl vl vl =1
OO OOl et O
HOMOOHHHH-NOO
CHOOHHH OO

—HOOHOOO-HOO™O
COrHO0OHOO O
O=-HOOO-HOO-O-O
HMOOOHOOO™MOO
COOHOO™O™OO™
OOHOOHO-OO-HS
CrHOQOHO-HOOHOO
HOOHO-OO™-OOO
OOHOHOO=HOOO -
OHOHOOHOOO~O
HOHQO-HOOOWOO
OHOOOQOwWOO

]

1
COOHHOHAHOOOD
OCOHHO--HOOOOO
OrHHORH-OOOOOO
HHOHHOOOOOOO
THOHHQOOOOCO ™
OHHOOCOOOOO™ ™
HEHOOOO0OOOWHOD
HOOOOOOO O™
CO0OCOO O™
COOCOOOHHOHHO
OO0 HOH-HOO
COoOCOHHOHHOOO

OO - -HOO O
OO OO O
Ot —HOO0-HO O
Tl - OO -HO-HO O
FHEH A OO HOHOO ™
HHAAOO O OO
HHOOHOAOO
HOOHO —HOQ v
OCOHO OO et
OHOAC O =i
HOHOOHAHHAHOO
OHOOHH A OO

Matrices de adyacencia de H; y H,

De ahora en mas, H sera un (4, 5, 24, 132) —grafo. Como H es 11-regular se puede ver que
s(K,,H —v) = s(K5,H + v) + 11 para cada nodo v. Por lo tanto se puede hallar H por el
proceso de “pegado” entre algin X en R(3,15,11,e) yunY en R(4,4,12,e + 11) para

algtn e. El nimero de posibilidades se puede observar en la siguiente tabla:

|IR(4,4,12,e + 11)|

177
1906
13332
58131
163757
302088
370368

|R(3,5,11,e)]

19
31

30
13

15
16
17
18
19
20
21

22

El teorema 2.2 nos ayudara a reducir posibilidades.

Lema 3.2:Paraalginv, s(K,,H + v) = 19.

Dem:
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Para 15 < e < 18, el lado derecho del teorema 2.2 es a lo sumo 9 para cada grafo en
R(3,5,11,¢e), pero el lado izquierdo es por lo menos 10 para cada grafo en R(4,4,12,e +
11). Por lo tanto, no hay combinacién posible de estos grafos que pueda satisfacer la
identidad.

Dado este teorema, podemos construir todos los grafos de R(4, 5, 24, 132) usando los
métodos utilizados en R(4,5) = 25, pero hay muchos mas casos que procesar y por lo
tanto mas dificultad computacional. Asi que se hace uso de la regularidad para mejorar la
eficiencia de la busqueda.

En R(4,5) = 25 se utilizaron 4 reglas de colapso. Si tenemos restricciones en el tamafio de
los conos factibles se pueden agregar mas reglas de colapso.

Se definen 2 funciones K, L: 2"T — 2"Y de manera que W c V'Y,
K(W) =n {{x,y}| x,y € Wy {x,y} € EH}
LW) =n{{w,x,y,z}|w,x,y,z € W sondistintos y {w,x},{y,z} € EH}
Con la aceptacién de que el valor de interseccion es VY si no tiene argumentos.

Supongamos que para cada u en VX, C,, se requiere que satisfaga [, < |C,| < h,,. Seael
intervalo correspondiente I,, = [B,, T;,]. Definimos las siguientes reglas:

(a) Supongamosu en VX.
Si |By| > h,, entonces FALLA.

Si |B,| = h, , entonces T, = B,,.

(b) Supongamos que u esta en VX.
Si|T,| < l,, entonces FALLA.

Si|T,| =, ,entonces B, = T,.

(c) Supongamos {u,v}estden EXy|T,| =1, +1
SiK(B, n T,) = @, entonces FALLA

SinoB, =B, U (T, —K(B, N T,))

(d) Supongamos que {u,v}estaen EX, |T,| =, + 1y |T,| =L, + 1.
Si|L(T, n T,)| £ 1, entonces FALLA

SinoB, = B, U (T, — L(T, N T,))

Lema 3.3: Las reglas (a)-(d) son reglas de colapso validas.
Dem:

Las reglas (a) y (b) salen de la aplicacion de las restricciones de tamafo. O
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Supongamos que {x,y}estden EY,x,y,estdinen B, N T,y |T,| = [, + 1. Nos puede ser
que x, y estén en C,, porque entonces {u, v, x, y} seria una clique, por lo tanto debe ser que
alguno de los dos x o0 y no esta en C, y todo el resto de T, es igual a C,, (0 si no tendriamos
que |Cy| <L)

Extendiendo este mismo argumento vemos que exactamente un elemento de K(B, N T,)
debe ser evitado y el resto de T, incluido, lo cual es la regla (c).

Supongamos que {w, x},{z, y} estdn en EY, donde w, x, z, y son distintos elementos de

T, N T, |T,| =L, +1y|T,| =, + 1. Aligual que antes, exactamente unodew y x y
exactamente uno de z e y no estan en C;,, N C,. Las restricciones en cuanto al tamafio de
T, y T, implican que cada C, y C,, tiene uno menos de {w, x, z, y} (pero no el mismo) de
manera que deben igualar al resto de T,, y T,, respectivamente. Aplicando esta misma idea
simultaneamente a todos los pares de aristas {w, x}, {y, z} obtenemos la regla (d).

Teorema 3.1:Los unicos dos (4,5, 24,132) —grafos son H; y H,.
Dem:

Se obtiene de la implementacion de lo descrito anteriormente. O

Teorema 3.2:R(5,5) < 49.
Dem:

Si existiera un (5, 5,49) —grafo, entonces por lema 3.1 y teorema 3.1 sabriamos que G + v
y G — v sonuno de H; y H,. Consideramos la identidad del teorema 2.2 aplicadaa G
cuandom = 4.

Las cuentas relevantes de subgrafos son las siguientes:
s(Kz, Hy) = s(K;, Hy) = 132,
s(K3, Hy) = s(K3, Hy) = 176,
S(Ky Hy) = s(Ky, Hz) = 0,
S(T3,1,Hy) = s(T31, Hy) = 1584,
$(T32,Hy) = s(T31,Hy) =792,
s(Ky, Hy) = 144,
s(K,, Hy) = 138.

Los términos en el lado derecho de la identidad son 132 para ambos H; y H,, pero los
términos en el lado izquierdo son 144 y 138 para los dos posibles subgrafos. Luego, la
identidad no puede ser satisfecha, lo cual nos lleva a un absurdo. Como el absurdo provino
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de suponer que existia un (5, 5,49) —grafo, obtenemos que no puede existir uno, lo cual
nos indica que R(5,5) <49. O
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Conclusiones

Una de las principales conclusiones que se pueden extraer sobre la teoria de
Ramsey es que el desorden absoluto no existe. La teoria de Ramsey afirma que, en
sistemas suficientemente grandes siempre existen subsistemas con una estructura
ordenada. Segun la misma, si observamos la totalidad de estrellas del cielo
nocturno siempre podremos seleccionar un conjunto de las mismas para formar
un triangulo, un cuadrilatero o cualquier figura de nuestra eleccién, como un
paraguas o un leon.

Alo largo de esta tesis hemos dado una introduccidén a los nimeros de Ramsey
aplicados a la teoria de grafos, se han expuesto ciertos resultados tedricos de
utilidad y hemos visto en detalle las demostraciones de todos los nimeros exactos
conocidos hasta el momento, asi como las demostraciones de algunas cotas
seleccionadas para ilustrar los métodos mas comuinmente utilizados para el calculo
de las mismas.

Como hemos visto, R(n,m) < r si para cada grafo G de r nodos, o existe una
n —clique o un m —conjunto independiente.

Basicamente los métodos para obtener cotas superiores son de desarrollo tedrico
directo, haciendo uso de la cota general y de ciertos resultados teéricos de grafos,
en el caso de ndmeros lo suficientemente pequefios.

En cambio se suelen utilizar métodos computacionales cuando los nimeros son
mas grandes. En este caso, una idea que se repite es la de ver que el conjunto de los
(n,m,r) —grafos, es decir aquellos grafos de r nodos que no poseen una clique de
tamafio n y cuyo menor conjunto independiente no puede ser de tamafio m o
menor, es vacio, lo que nos indicaria que dado un grafo de r nodos, el mismo
siempre posee o una n —clique o un m —conjunto independiente, con lo cual el
minimo nimero de nodos que debe tener un grafo para que o contenga una

n —clique o un m —conjunto independiente, es decir R(n, m), debe ser menor o
igual que r. De todas maneras, las demostraciones normalmente no dan una receta
o procedimiento general para hallar los resultados. Ademas, a medida que
aumentamos los nimeros, la complejidad de las soluciones crece de manera
sorprendente. De hecho, Paul Erdos dijo que suponiendo que los alienigenas
invadieran la tierra y amenazaran con destruirla si en el curso de un afio los seres
humanos no hallaran el nimero de Ramsey R(5,5) podriamos poner a trabajar a
las mejores mentes y las computadoras mas rapidas y obtener el niimero a tiempo,
pero que si nos exigieran el nimero R(6,6) deberiamos atacarlos de manera
preventiva.
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Por otro lado, vimos que R(n,m) > r si existe un grafo G que no incluye una
n —clique y tampoco un m —conjunto independiente.

Para las cotas inferiores siempre es necesario exhibir un grafo de R(n,m) — 1
nodos que no posea ni una clique de tamafio n ni un conjunto independiente de
tamafio m, lo que indicaria que R(n, m) debe ser mayor a R(n, m) — 1. Dichos
grafos contraejemplo pueden generarse intuitivamente en el caso de los valores
pequefios, y mediante la definicién de grafos ciclicos o utilizando métodos
computacionales en el caso de nimeros mas grandes. Hemos visto también que es
posible utilizar metaheuristicas para la generacién de estos grafos.

Actualmente, matematicos como Exoo, Radziszowski, Nesetril, Graham o Soifer,
entre otros, se encuentran trabajando en la realizacién de mas cotas superiores e
inferiores. Hay una investigacion dinamica titulada “Small Ramsey numbers”en el
Electronic Journal of Combinatorics, donde los ultimos adelantos sobre cotas son
publicados peridodicamente.

Por el momento el principal problema que se encuentra abierto es el de hallar el
valor exacto de R(3, 10), acotado inferiormente por 40 y superiormente por 43 por
lo que se sabe hasta el momento, que es el primer caso abierto de nimeros de la
forma R(3,n). Soifer cree que el valor verdadero sera 40. Segun él, para poder
determinar el mayor (3,10) —grafo, se necesita saber mas sobre los

(3,9,n < 35) —grafos, lo que a su vez requiere conocimiento sobre los

(3,8,n < 22) —grafos, problemas que también se encuentran abiertos.

De ser hallados, los nimeros de Ramsey podrian poseer una variedad de
aplicaciones, en campos tales como teoria de la comunicacion, disefio de redes,
recuperacion de la informacion o teoria de decisiones.

Dentro del campo de la teoria de la comunicacién, por ejemplo, pueden crearse
‘grafos de confusiéon’, donde sus nodos son elementos de un alfabeto de
transmision y existe una arista entre dos elementos si y solo si al enviar un
mensaje los dos elementos pueden ser recibidos como el mismo. El problema
consiste en conseguir un conjunto de sefiales, de mayor tamafio posible, que no
sean confundibles entre si para evitar que haya errores en la recepciéon de un
mensaje, lo cual corresponde a un conjunto independiente del grafo de confusion.
Para hallar la solucién pueden utilizarse nimeros de Ramsey. [15]

Otro ejemplo, en este caso dentro del area de disefio de redes, es el siguiente:
podemos tomar un grafo completo donde los nodos representen equipos de
comunicaciéon unidos por lineas de comunicacién (aristas). En algunas aplicaciones
se toman pares de nodos y se quiere garantizar que en el caso de que falle alguna
de las dos lineas siempre haya por lo menos una linea que una todos los pares de
vértices. Para hallar la solucién son utiles los nimeros de Ramsey. [15]
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Estos son sélo algunos casos en los cudles los nimeros de Ramsey serian de mucha
utilidad para la resolucién de problemas de la vida cotidiana. Es por esto que la
investigacion sobre los mismos dentro del marco de teoria de grafos sigue vigente
y de hecho, en los tltimos afios ha habido una cantidad considerable de resultados.
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Apéndice A: Algoritmos

Para poder comprobar la no existencia de ciertos K;, dentro de ciertos grafos, hemos usado
estos programas en Matlab, que, dada una matriz de adyacencia determinan, dando como
resultado 1 silas respuesta es siy 0 si la respuesta es no, si un grafo posee o no alguna de
estas cliques de tamafio n.

A continuacion se pueden ver las matrices de adyacencia para las cuales los programas fueron
corridos.

Matrices de adyacencia:

Para R(3, 3):

M1={0 1 0O01l; 1 0100; 01010, 00101; 1001 0]

M2=[0 0 1 10;00011; 100O01; 11 000;01100]]

Para R(3,4):

M3=[

~Ne Ne N

P OORr O OoORr O
OO OO o
ORFrr OOFr OFr O
R OORr ORFr OoOOo
OO ORFr OO
O O O ORFr O
HORFr OORKr OO
OPFrr OOFr OO
LN Ne Ne N

M4=[

~e Ne

o N

O ORFrEFE OO
PR ORFRRFEOOO
PO EFEOOO-R
O P OOORr K
B OOORrRKFEO
P OOORr R OoOR
OO Ok ORrRK
OO rRFrPrORKrREO
L Ne Ne Ne N
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Para R(3, 5):

M6=[0 0 0110110110 0;

000011011011 0;

0000011011011,

100000110110 1;

110000011011 0;

0110000011011,

101100000110 1;

110110000011 0;

0110110000011,

101101100000 1;

110110110000 0;

011011011000 0;

001101101100 0]

M5=[01 1001001001 1;

101100100100 1;

110110010010 0;

011011001001 0;

001101100100 1;

100110110010 0;

010011011001 0;

001001101100 1;

100100110110 0;

010010011011 0;

0010010011011,

100100100110 1;

110010010011 0]

Para R(3, 6):

M7=[0 1 01 001000100001 0;

10100001010010000;

010110000001001CO00;

1010010010000100 0;

00100101001000010;

000110100100100¢00;

100001010001 001CO00;

0100101010000100 0;

0001000101 0010010;

010001001010000¢01;

100010000101001CO00;

00100010001010001;

0100010010010100 0;

0001000100001 O01CO01;

00100010001001010;

1000100010000O01CO01;

000000O0COO0101010T10]
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M8=[0 0O1 0111111011110 1;

00011111101 101111;

1000111111101 1011;

010011110111 10111;

111100101101 11101;

11110001101 101111;

1111100011101 1011;

111101000111 10111;

11101110001 101101;

101110110001 11110;

01110111100011011;

11011101110001110;

10111011011000111;

1110111011110¢0010;

1101110111011000 1;

0111011101111100 0;

1111111110101010 0]

Para R(4,4):

M9=[01101000110001011;

10110100011000101;

11011010001 100010;

0110110100011000 1;

1011011010001100 0;

010110110100011C00;

00101101101000110;

00010110110100011;

1000101101101000 1;

1100010110110100 0;

011000101 10110100;

0011000101101 1010;

00011000101101101;

100011000101 10110;

0100011000101 1011;

10100011000101101;

1101000110001 0110]

M10=[0 0 01 01 1 100111010 0;

0000101110011 1010;

0000010111001 1101;

100000101 11001110;

01000001011 100111;

101000001011 10011;

1101000001011 100 1;

1110100000101 1100;

01110100000101110;

0011101000001 0111;

10011101000001011;

110011101000001O01;

11100111010000010;

01110011101000001;

10111001110100000;

0101110011101000 0;

0010111001110100 0]
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Algoritmos:

Para determinar la existencia o no de tridngulos:

function triangulos (M)
n=length (M) ;

R=0;
for i=1:n
for j=1:n
if M(i,3j)==1
for k=j+l:n
if M(i,k)==1
if M(j,k)==1
R=1;
end
end
end
end
end
end
R

Para determinar la existencia o no de algin Kj:

function k4 (M)
n=length (M) ;
R=0;
for i=1:n

for j=1:n

if M(i,3)==1
for k= j+l:n
if M(i,k)==1
for h= k+l:n
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Para determinar la existencia o no de algin Ks:

function k5 (M)
n=length (M) ;
R=0;
for i=1:n
for j=i+l:n
if M(i,3)==1
for k=j+l:n
if M(i,k)==1
for 1=k+l:n
if M(i,1)==1
for s=1+1:n
if M(i,s)==1
if M(3,k)==1
if M(k,1)==1
if M(1,s)==1

if M(j,s)==1
if M(k,s)==1
R=1;
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
R
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Para determinar la existencia o no de algin Kg:

function k6 (M)
n=length (M) ;

R=0;

for i=1:

for

n

j=i+l:n

if M(i,j)==1

for k=j+l:n
if M(i,k)==1
for 1=k+1l:n
if M(i,1)==
for s=1+1:n
if M(i,s)==1
for t=s+l:n
if M(i,t)==1

if M(3,k)==
if M(3,1)==
if M(j,s)==1
if M(3,t)==
if M(k,1)==
if M(k,s)==1
if M(k,t)==
if M(1,s)==1
if M(1,t)==1
if M(s,t)==
R=1;
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
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Apéndice B: Demostraciones de lemas de R(3,7) [6]

Durante este apéndice vamos a asumir que un nodo p fijo de grado 6 en un
(3,7) —grafo de 23 nodos ha sido preferido. Denotamos los nodos de H; por
a,b,c,d,e, f ylosnodos de H, de acuerdo a su soporte. Por ejemplo, un 1-nodo
sobre {b} seria notado por < b >y un 2-nodo sobre {b, e} seria notado

por < b,e >. Por la observacién 2 luego de la Proposicién 6, dos 1-nodos no
pueden tener el mismo soporte, y dos 2-nodos y un 1-nodo no pueden ser
soportados por un 2-conjunto de H;. En el caso de 2-nodos la inica ambigiiedad
puede surgir en un caso del Lema 7. Finalmente ya que 3-nodos juegan un rol
menor, no se generara confusion en referencia a este sistema.

Lema A: Sean x,y, z, w nodos distintos arbitrarios de H; y consideremos los
siguientes patrones:

() Si <x><x,y><x,2z><Yy,z>estan en H, entonces hay una arista
entre<x>y<y,z>.

(i) Si<x><y><xy><x2z><Yy,z>estan en H, entonces hay
aristasentre< x >y<y >, entre<x >y<y,z > yentre<y>y
< x,z >, de manera que se produce la configuracién C3 de la
proposicién 7.

(i) <x><y><z><xy><y,z><x,w><yw><ZzZWw>no
pueden ocurrir en H,.

(iv) <x><y><zw><xz><xw><y,z><yw><XYy>no
pueden ocurrir en H,.

) <x><xy><x1z><Xx,7y,Z>nopueden ocurrir en H,.

Dem:

() Este es la Uinica arista que no puede ocurrir entre esos nodos en H, sin
formar un tridngulo pero como esos 4 nodos tienen un 3-conjunto de
soporte debe haber por lo menos una arista para evitar la formacién de
un 4-conjunto independiente, luego el eje < x > —< y,z >.

(ii)  Eneste caso el patrén (i) aparece dos veces:

<x>,<xy><xz2><Yyz>

<y>,<xy><xz><Yy2zZ>,
Yaquelasaristas< x > —< y,z >e <y > —< x,z>y finalmente la
arista < x > —< y > esrequerida (ver observacion 2 luego de la
proposicién 6).
(iii) Aqui el patron (ii) aparece dos veces:
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<x>,<y><xy><6w><yw>

<y><z><yz><yw><z,w>,
De manera que, entre otros, las aristas < y> —<x,w>e<y>—-—<
z,w > sonrequeridas. Entonces <x >, <y >,<x,w > y < z,w >son
un 4-conjunto independiente sobre {x, z, w} (cada uno tiene una arista
sobre < y >).
(iv)  El patrén (i) aparece dos veces como:
<x>,<xz><x,w><zw?>

<y><y,z><yw><z,w>,
De manera tal que lasaristas < x > —< z,w >e<y > —< z,w >son
requeridas. Entonces la arista < x > —< y >, que es necesaria debido a
<x, y>, completa un triangulo.

) <x><xy><xz><Xx,7y,z > forman un 4-conjunto
independiente sobre {x, y, z} y no es posible que existan aristas entre
ellos. O

Lema 7:13(0) # 2.
Dem:

Asumimos que r5(0) = 2, y por lo tanto que r;(0) = 4 y que r,(0) = 10 (ver
las ecuaciones (1) del lema 5). Sin pérdida de generalidad podemos
llamar a los 1-nodos < a >,< b >,<c¢ >,<d>. Consideramos primero el
caso en el que {e, f} soporta dos 2-nodos; llamémoslos <e,f >y<e,f >"

Tenemos que < e,x > y< f,x > son imposibles parax = a,b,c,d ya que
<ef><ef>"'<ex><f,x>serian un 4-conjunto independiente con
un 3-conjunto como soporte. Eso significa que por lo menos cuatro de
los diez 2-nodos tienen soporte en {a,b,c,d}. Pero como cada 2-nodo con
soporte{a,b,c,d} requiere una 1-arista, una arista entre 1-nodos (ver
observacion 2 luego de la proposicion 6), y como los cuatro 1-nodos
pueden tener a lo sumo cuatro aristas entre ellos y eso sélo puede
ocurrir en el caso en que formen un cuadrilitero, podemos asumir sin
pérdida de generalidad< a,b >,<b,c >,<c,d >,<d,a >, y por lo tanto
las aristas correspondientes < a>—-<b><b>—-<c><c>—-<d>y
<d>-—-<a> Como tres 2-nodos de la forma < e,x > (parax =a,b,c,d)
llevarian al patron (iii) del lema A, vemos que entre los 2-nodos < a,x >
,<b,x><c,x>y<d,x>(dondex=e,f) x debe tomar los valorese y f
exactamente dos veces cada uno. Ahora observemos que cada nodo en H;
tiene exactamente cuatro aristas hacia 1-nodos y 2-nodos en H, de
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manera tal que los 3-nodos tengan un soporte disjunto. Pero cualquier
3-nodo con soporte {a,b,c,d} (digamos < a,b,c >) involucraria al patron
(v) (<a,b><b><b,c><ab,c>)yesonoesposible. Esto nos deja
con<abe>y<cd f>o0ocon<a,ce>y<bd,f >

En la primera alternativa, para evitar el patron (v) debemos tener
<af>y<b,f > peroentonces<a,f ><b,f><ef><ef>y<
a,b,e > es un conjunto independiente de tamafio 5 con un 4-conjunto
como soporte. La segunda alternativa lleva a < a,c,e >,<e,f >,<e,f >
"<ax><cy>, todos sobre el conjunto{a,c,e,f}y, six=y=eo

x =y =f, entonces habria un 5-conjunto independiente, asi que
asumimos < a,e >y <c,f > y por simetria también < b,e > y<d,f >
.Sobre{a,c,e} estin< a,c,e >,<a><c><a,e> de manera que la
arista<c>—-<a,e >, ysobre{a,b,e} estin<a,b >,<a,e > <b,e><a>
,<b> (que es el patron (ii)), por lo tanto la arista< b > —< a,e >, que
completa el tridngulo <b >,<c><a,e >.

Luego, todos los 2-nodos tienen un soporte distinto. Vamos a considerar
los distintos casos de 2-nodos soportados sobre {a,b,c,d}. Como notamos
arriba, como mucho cuatro 2-nodos tiene soporte en {a,b,c,d},
comenzamos con:

Caso 1: Cuatro 2-nodos tienen soporte en {a,b,c,d}.

Podemos asumir sin pérdida de generalidad < a,b >,< b,c >, < c,d >,<
d,a >. Ahora, como tenemos a lo sumo un 2-nodo sobre {e, f} hay por lo
menos cinco 2-nodos con una arista hacia {a,b,c,d} y la otra arista hacia
{e,f}. Esto nos lleva al patron (iii) con cualquier asignacion de soporte
de esos 2-nodos.

Caso 2: Ningin 2-nodo con soporte en{a,b,c,d}.

Como pueden haber como mucho ocho 2-nodos con una arista hacia
{a,b,c,d} y una arista hacia{e,f}y a lo sumo un 2-nodo sobre{e, f} debe
haber al menos un 2-nodo sobre {a, b, c,d}.

Caso 3: Exactamente un 2-nodo sobre {a,b, c,d}.

En este caso el patron (iv) no se puede evitar (podemos asumir < a,b >,
y también debe tener < a >,<b >,<a,e><a,f ><be><bf><

e, f>).
Caso 4: Dos 2-nodos sobre {a,b,c,d}.

Si esos 2-nodos tienen soporte disjunto (digamos < a,b >, < c,d >)
podemos asignar los restantes ocho 2-nodos de dos maneras:
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<ae><af><be><bf><ce><cf><de><ef>oigual
solo modificando<e,f > por<d,f >.

En el primer caso el patron (iv) aparece sobre {a,b,e, f}, por lo tanto esto
no es posible. Fn el segundo caso, se ve el patron (ii) cuatro veces
(sobre{a,b,c},{a,b,f}{c,d,e}y{cd, f}) de manera que la configuracion

C3; aparece por lo menos cuatro veces y por lo tanto € =2 C3 = 4. Ademds,
en este casor,(1) =2, r3(2) =0 (las 1-aristas<a>—-<b>y<c>—-<

d > son forzados) o tendriamos r,(1) = 3.13(2) = 2 (sumando la

arista< b >—-<c¢>) ory,(1) =4, r3(2) =4 (sumando otra arista
<a>-<d >). Pero2r,(1) —r3(2) = 4 y la ecuacion (2) del lema 4 se
convierte en 4 =2r,(1) —13(2) =2 2+z+€ > 6.

Este absurdo reduce este caso a la posibilidad de < a,b > y < b,c > como
los dos 2-nodos; de todas formas el patron (iii) no puede ser evitado,
por lo tanto excluimos el caso 4.

Caso 5: Tres 2-nodos con soporte en {a,b,c,d}.

Podemos asumir < a,b > y < c,d > sin pérdida de generalidad. Ahora, si
también tenemos < b,d > entonces< a,e > y < a,f > pueden ser
asumidos. También, si < e,f > entonces el patron (i) y por lo tanto la
arista<a > —<e,f > aparecen. Notemos que en esta situacion la arista
<b>-—-<e,f >noes permitida. Fl 1-nodo < b > tiene tres aristas en H,
ya asignadas, por lo tanto tiene 2 aristas mds. Estas aristas pueden ser
de dos formas, una arista de < b > podria ir a un 3-nodo o a un 2-nodo
entre<a,e >,<a,f ><ce><cf><de><d,f >runaarista de la
primera forma incrementa z en uno y una arista de la segunda forma
forma la configuracion C,, incrementando € en uno. Por lo tanto, las dos
aristas restantes de < b > implican (z + €) = 2. Como r3(2) = 3 esta
asignacion es imposible.

Podemos entonces asumir < a,b >,< b,c >,< c,d > y para evitar el
patron (iii) < a,e >,< a,f >, <b,e >, <c,f ><d,e><d,f ><e,f > son
necesarias. Ahora el patron (ii) aparece dos veces (sobre {a,b,e}y
{c,d,f}) porlo tanto tenemos aristas<a > —<b,e >,<b>-<a,e > <
c>—-<d,f><d>—-<c,f>1loqueimplica que C3 > 2. Ademds, el patron
(1) aparece sobre{a,e,f} y{d,e, [}, requiriendo aristas<a > —-<e,f >y
<d>-<e,f> Comoya hemos mostrado que € = 2, y como r3;(2) = 2,
debemos tenerz =0 ye =2, es decir que ningtn 1-nodo puede tener
aristas hacia 3-nodos y debemos evitar cualquier configuracion que
incremente e.

Ahora consideramos de nuevo las dos aristas restantes de < b > en H,.
Aristas hacia<e,f >o0<d,f > formarian tridngulos (< a >,<b >,<

97



Apéndice B: Demostraciones de lemas de R(3,7)

e,f>0<b><c><d,f >)yaristas hacia<a,f >o0<c,f >
completarian la configuracion C,, lo que incrementaria €; mientras que
aristas hacia < a,b >,<b,e >,< b,c > no son permitidas (todas tienen a
{b} en comiin) la arista < b > —< a,e > ya ha sido contada, asi que la
linica posibilidad es tener aristas <b >—-<c¢,d > y<b>—-<d,e >. Por
simetria, también tenemos las aristas <c>—-<ab>y<c>-<a,f >.

Ahora consideremos las dos aristas no asignadas de < a >. Aristas hacia
<ab><ae><a,f><cd>formarian tridngulos (recordemos que
tenemos la arista < a > —< b >) mientras que la arista<a > —<b,c >
completaria la configuracion C, e incrementaria €. Con aristas ya
asignadas nos queda (y es requerido que tengamos) aristas < a > —<
df>y<a>-<c,f >ydenuevo por simetria<d >—-<a,e>y
<d>—-<b,e> A continuacion observamos que a cada nodo en H,; le han
sido asignadas cuatro aristas hacia 1-nodos y 2-nodos dejando los dos 3-
nodos para tener soporte disjunto, y para evitar el patréon (v) esos 3-
nodos son<a,b,d>y<c,e,f>0<a,c,d>y<bef>0<ace>y<
bd f>o0<a,cf>y<b,de>

La primera eleccion es descartada considerando {c,e, f} y notando que
<c><cf><ef>y<cef>nopueden tener aristas debido a la
existencia de las aristas < c>—-<d>y<d>—<e,f >; porlo tanto esos
cuatro nodos son independientes y estin sobre un 3-conjunto.
Similarmente, el 3-conjunto {b,e, f} muestra que la segunda opcidn es
imposible. El 3-conjunto {a,c,e} y las aristas <b > —-<a,e >y

< b > —<c¢ > muestran que la tercera eleccion no es posible. Finalmente,
los nodos soportados por{a,c,e, f}, y en particular < a,c,f >,<a,f ><
¢,f ><ef><ae>porel momento no tienen aristas entre ellos por lo
cual la arista < a,e > —<c,f > es requerida (todas las demds aristas
formarian un tridngulo). Pero entonces esta arista y las aristas
<d>-<ae>y<d>—-<c,f > forman un tridngulo, lo cual es absurdo.
Luego, hemos demostrado que todas las posibilidades en las cuales

r3(2) = 0 son imposibles. O

Lema 8: r3(0) # 3.
Dem:

Supongamos que r3(0) = 3, entonces r,(0) =8 yr;(0) =5. Vamos a notar a
los 1-nodos por<a>,<b><c><d><e> Sib5delos2-nodos
tienen a f en su soporte entonces los tres 2-nodos estdn soportados en
{a,b,c,d,e} y porlo tanto al menos dos de ellos tienen un punto en
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comiin en su soporte; esto necesita la ocurrencia del patron (iii). Puede
haber entonces como mucho cuatro 2-nodos soportados en {a,b,c,d,e}.

Supongamos ahora que exactamente cuatro 2-nodos estdn sobre
{a,b,c,d,e}. Hay solamente tres asignaciones de 2-nodos (con
permutacion de indices) que evitan el patron (iii) y tridngulos entre las
aristas requeridas entre 1-nodos. Fsas son < a,c >,<b,c >,<c,d >,<
ce><af><bf><df><ef > o0lamismaperocambiando
<c,e>por<d,e>, 0lamisma que la primera pero cambiando < a,c >
por<a,b>y<ce>por<d,e>. Entodos los casos f esta en el soporte
de sélo uno de los 3-nodos de manera que dos 3-nodos tienen soporte
en{a,b,c,d,e}. En la primera asignacion un 3-nodo con c pero no fen su
soporte produciria el patron (v) asi que podemos asumir < a,b,d >. Pero
entonces < a>,<b><d>y<a,b,d > son un conjunto independiente
de tamafio 4 soportado por{a,b,d} y no hay ninguna arista posible
(<a><b><d>estdn unidos a < c > por aristas).

Supongamos entonces la segunda asignacion de arriba. Fl patron (ii)
aparece sobre {d,e, f} dando aristas <d > —<e,f > y<e>-—-<d,f >.
Como c esta en el soporte de tres 2-nodos y un 1-nodo debe estar en el
soporte de un 3-nodo. < c,e,f > no es posible pues <c><e><e,f ><
c,e,f > sonindependientes (las aristas<c>—-<d>y<d>—-<e,f >
excluyendo la arista < c > —<e,f >). Las unicas posibilidades que evitan
el patron (v) son< a,c,e > y<b,c,e >. Por simetria elegimos < a,c,e >. b
debe estar en el soporte de ambos 3-nodos remanentes. < a,b,d >
produciria un 4-conjunto independiente sobre {a,b,d} de manera que
debemos tener < a,b,e > y<b,d,f >0<a,b,f >y<b,d,e>.

Supongamos primero < a,b,e > y < b,d,f >; entonces consideremos los
nodos soportados por{b,d, }. Deben estar las aristas < b >—<b,d > y
<d>—-<b,f > (laarista<b>—<d > no puede ocurrir debido a
<c>—<b>y<c>-<d>). Entonces<e><a,f><b,f><ef><
a,b,e > estdn sobre {a,b, e, f}, requiriendo la arista<e > —<a,f > (las
aristas<d>—-<e>y<d>-<b,f > exclupena<e>—-<b,f >). Ahora,
los nodos sobre {a,d, f}, debido a la arista <e > —< a,f > que excluye a
<d>-—-<a,f >, requieren la arista<a > —<d,f >. Finalmente
<a><b><e>cadauno tiene una arista hacia<d,f > de manera que
son independientes y con < a,b,e > forman un 4-conjunto independiente
soportado por un 3-conjunto en H;.

Esto nos deja < a,b,e >,<a,b,f > y<b,d,e > como nuestra eleccion de
3-nodos. Un argumento similar (pero mds extenso) muestra la
contradiccion. Vamos a dar unicamente la lista de conjuntos a
considerar y las aristas relevantes a ser forzadas; el orden en que
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consideramos los conjuntos es importante ya que cada paso se basa en
el anterior:

{a,c,e} implica la arista <e > —< a,c >.
{a,c,d} implica la arista < a > —<c,d >.
{a,b,f} implica las aristas <a>—<b,f >y<b>-<a,f >.
{b,d, e} implica la arista < b > —<d,e >.

{a,c,d, e} implica la arista < a,c > —<d,e >.

Notemos que entre < ¢ >,<c,d >,<a,c><a,c,e><d,e> lainica
posible arista es < a,c > —<d,e >,

{a,b,c} implica la arista < a > —<b,c >.
{a,c,e, f} implica la arista <e > —<a,f >.

Notemos que <e >,<c>,<a,f ><e,f ><a,ce>permiten tinicamente
la arista<e > —<a,f > Mds aiin, {a,d, f} implica la arista < a > —<

d,f >. Ahora tenemos < a >, con aristas asignadas hacia<c >,<c,d >,<
d,f > <b,c>y<b,f > porlotanto son independientes pero su soporte
es un 4-conjunto.

Finalmente, tenemos la asignacion < a,b >,< b,c >,<c,d >,<d,e >, <
af><bf><df><ef>comolos2-nodos. El patron (ii) aparece
sobre{a,b,f} y sobre{d,e, f}; porlo tanto tenemos aristas < a > —<

b,f ><b>—-<a,f><d>—-<ef><e>-<d,f>junto con las aristas
<a>—-<b><b>—-<c><c>-<d>y<d>—-<e> Entoncesa,cy

e estdn cada una en el soporte de dos 3-nodos mientras queb,d, y f
estdn cada una en el soporte de un 3-nodo.

A continuacion consideramos cinco 2-nodos soportados por{a,b,c,d,e}.
Solo pueden existir dos configuraciones que no formen tridngulos entre
los 1-nodos; y ellas son: < a,b >,<b,c >,<c,d><d,e><ea>y
<ab><b,c><cd><de><eb> Enlaprimera asignacion para
evitar el patron (iii) debemos tener< a,f >,<b,f > y<d,f >. Entonces
el patron (ii) aparece sobre {a,b,f} dando las aristas<a >—<b,f >y
<b>-<a,f > Los 3-nodos< x,y,f >donde<x,y > esun2-nodo nos
dardn el patron (v). Ademds, < a,c,f > es imposible pues < a,c,f >,<a >
,<c><a,f >deben serindependientes (< c>—<a,f > noes
permitida y la arista< b > —<a,f > excluye a las otras). Esto nos deja
solamente con< a,d,f >,<b,d,f >y <c,e, f > como posibles 3-nodos
con fen su soporte y debemos tener dos de dichos 3-nodos. Por simetria
podemos elegir < a,d, f >. Entonces sobre < a,d, f > tenemos
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<a>-<d,f>y<d>-—-<a,f > Entonces si también tenemos < b,d, f >
la arista< b > —<d,f > completaria un tridngulo, de manera que
debemos tener<c,d,f > y<b,c,e >. Entonces sobre {b,d, f} la arista
<d>—-<b,f > se necesita y en consecuencia<c,e,f >,<b,c,e ><b,f >
,<b,c>,<c>sonindependientes sobre {b,c,e, f}.

Consideremos la segunda asignacion dada arriba. Los tres 2-nodos con
en su soporte pueden ser asignados en una de tres maneras (sin contra
permutaciones) para evitar el patron (iii). Debemos tener < a,f > y
entonces tenemos la eleccion entre< b, f > y<d,f >o<c,f>y<e f>
o<cf>y<d,f > Fnlaprimeraasignacion a,c,e y f estdn cada una en
el soporte de dos 3-nodos y d en el soporte de uno. Como e y c estdn
cada una en el soporte de dos de los tres 3-nodos que hay debemos
tener<c,e,x >. Ahora, < c,e,d > lleva al patron (v) y<a,c,e > lleva a
tener un 4-conjunto independiente sobre {a,c,e}.

Por lo tanto tenemos < c,e,f > y<a,c,f > <aed>o0<a,ef ><
a,c,d>. El patron (ii) aparece sobre {a,b, f} de manera que tenemos las
aristas<a>—<b,f >y<b>—-<a,f >, pero entonces<a><c><
af ><a,cf > forman un 4-conjunto independiente sobre {a,c, f}
(Ka><e><a,f><a,e f>sobre{ae, f}) Luego, la primera
asignacion es imposible.

En la segunda asignacion, < a,f >, <c,f>y<e,f >, tenemos un 3-nodo
soportado por{a,b,c,d,e}. Como antes, < a,c,e > nos da un conjunto
independiente de tamafio 4 sobre {a,c,e}, y ya que debemos evitar el
patron (v) las iinicas opciones posibles son < a,c,d > o0<a,e,d> o

< a,b,d >. Como las primeras dos son simétricas vamos a considerar
sdlo las ultimas dos. Completariamos la asignacion usando < a,e,d > de
solo una manera posible para evitar el patron (v), y esto es usando
<a,cf>y<b,d,f > Similarmente, < a,b,d > puede ser completado con
<adf>y<cef > Eneliltimo caso<a,b,d><a,df><af><
a,b >, y<a>dan un 5-conjunto independiente sobre {a,b,d, f}. Por lo
tanto el unico caso a considerar es el primero. De nuevo vamos a dar
solo la secuencia de pasos ya que el argumento es demasiado largo.

{a,e, [} implica las aristas <e>—<a,f >y<a>—-<e,f >
{a,e,d} implica la arista < a > —<e,d >.
{b,d, e} implica la arista <d > —<b,e >.
{b,c,e} implica la arista < e > —< b,c >.
{b,c,d} implica la arista < b > —<c,d >.
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{c,d, e} implica la arista < ¢ > —<d,e >.
{b,c,d,f} implica la arista <d > —<c, f >.
{c,e, f} implica la arista <c > —<e, f >.

Ahora el conjunto {b,d,e, f} tiene<b >,<d >,<d,e >,<e,f >y<b,d,f >
como un conjunto independiente de tamafio 5 sobre €l

Debemos considerar ahora el arreglo con<a,f >,<c,f >y<d,f >. De
nuevo, un 3-nodo tiene soporte en {a,b,c,d,e} y de nuevo para evitar
<a,c,e>ylaaparicion del patron (v) debemos tener < a,b,d > o
<a,c,d>o<a,d,e> Cadauno fuerza el resto de la asignacion. Como el
patron (ii) aparece en{c,d, f} debemos tener aristas <c > —<d,f >y
<d>—<c,f > Entonces en la primera asignacion de 3-nodos
<ab,d><aef><cef>obtenemos<c><e><cef><cf>
como conjunto independiente sobre {c,e,f}. La segunda asignacion,
<a,cd><a,ef><b,e f >llevaalasiguiente secuencia de pasos:

{a,e, f} requiere<e > —<a,f >.
{a,c,d} requiere < a > —<c,d >.
{b,c,d} requiere < d > —<b,c >.
{b,c,e} requiere < ¢ > —<b,e >.
{b,d, e} requiere < b > —<d,e >.
{c,d, e} requiere < e > —<c,d >.

Ahora, tanto < c,d > como < a,f > tienen aristas hacia < e > de manera
qgue<c,d><af><df><cf><acd>soncinco nodos
independientes sobre un 4-conjunto.

En el tltimo caso los 3-nodos son < a,d,e >,<a,c,f >y<b,e,f>ylos
pasos son los que siguen:

{a,c,f} implica las aristas<c>—-<a,f >y<a>-<cf >
{a,d, e} implica la arista < a > —<d,e >.
{b,d, e} implica la arista <d > —<b, e >.
{b,c,e} implica la arista < e > —< b,c >.
{b,c,d} implica la arista < b > —<c,d >.
{c,d, e} implica la arista < c > —<d, e >.
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Entonces, < a,f >,<e,d>y<d > todos tienen una arista hacia<c >y
porlo tanto<e,d><a,f><d><a,de><d,f >esunconjunto
independiente sobre {a,d,e,f} de manera que esta asignacion no puede
funcionar.

El caso que queda ocurre cuando seis 2-nodos estdn soportados por
{a,b,c,d,e}. Para evitar tridngulos entre los 1-nodos tenemos
(considerando permutaciones) los 2-nodos < a,c >,< b,c >, < a,d >, <
b,d >,<a,e><b,e> Consideremos entonces los 3-conjuntos de H,,
{a,b,x} donde x = c,d,e; cada caso requiere la arista < a > —<b,x > o una
arista < b > —< a,x >. Podemos entonces asumir sin pérdida de
generalidad que tenemos las aristas < b > —-<a,c>y<b>—-<a,d >.
Entonces < b > y los cinco nodos con f en su soporte (los tres 3-nodos y
los dos 2-nodos) son un 6-conjunto independiente en H,, de manera que
H, no es un (3,5) —grafo en este caso y por lo tanto la demostracion del
lema estd completa. 0O
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