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Introducción: La teoría de Ramsey 

 
La teoría de Ramsey obtiene su nombre en honor a Frank Plumptom Ramsey 
(1903-1930) y a su célebre teorema, que demostró en 1928. 
Sin haber llegado a sus 27 años, Ramsey hizo grandes contribuciones a la lógica, la 
filosofía, la economía y la matemática. Trabajó en el King´s College de Cambridge, y 
en 1928, a la edad de 25 años realizó su paper titulado “On a problem of formal 
logic” (Un problema de lógica formal) que fue publicado póstumamente en 1930. 
Este contenía las versiones finita e infinita de lo que se conoce como teorema de 
Ramsey o principio de Ramsey, que incluimos más adelante. 
Pero, ¿Qué es la teoría de Ramsey? Aunque no hay una definición universal 
podríamos decir que la teoría de Ramsey es una arista de la combinatoria que 
estudia la preservación de propiedades bajo particiones de conjuntos. En  otras 
palabras, dado un conjunto > con una propiedad ?, intenta responder preguntas 
del tipo: ¿Es cierto que cuando > es partido en finitos subconjuntos, uno de esos 
subconjuntos debe tener también la propiedad ?? [[[[10101010]]]] 
 
Algunos ejemplos de este tipo de problemas son:  
 

(i) Dada alguna partición de los enteros en finitas clases, siempre hay 
alguna clase que contiene progresiones aritméticas arbitrariamente 
largas (Teorema de Van der Waerden).  

(ii) Dado un conjunto ℱ formado por los subconjuntos de cardinal G de un 
conjunto infinito >, y una partición de ℱ en finitas clases, entonces existe 
un subconjunto infinito de > para el cual todos sus subconjuntos de 
cardinal G pertenecen a una misma clase. (Teorema de Ramsey).  

(iii) Para alguna partición del conjunto de puntos en el plano en finitas 
clases, alguna clase siempre contiene tres puntos formando un triángulo 
recto de área 1. 

Para un tratamiento más detallado de estos problemas, ver [5][5][5][5].... 
 
Antes de describir el contenido a desarrollar, veamos un resultado básico asociado 
a la teoría de Ramsey: 
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Principio del palomar:  Si un conjunto de cardinal I es partido en J 
subconjuntos disjuntos, donde I > J, entonces al menos uno de los subconjuntos 
tiene más de un elemento. 
 
Este principio se puede generalizar: 
 
Principio del palomar generalizado: Si más de LJ elementos son divididos 
en J conjuntos, entonces algún conjunto contiene más de L elementos.  
 
El teorema de Ramsey podría ser considerado como un refinamiento del principio 
del palomar, donde no solo se garantiza un cierto número de elementos en un 
conjunto sino que además se garantiza cierta relación entre estos elementos. 
 
A continuación incluimos los teoremas o principios de Ramsey: 
 
Principio infinito de Ramsey:  
Para G y J números enteros positivos, si la colección de todos los subconjuntos de J 
elementos de un subconjunto infinito > es coloreada con G colores, es decir que se 
le asigna un mismo color dentro de los G posibles a todos los elementos de un 
mismo conjunto, entonces > contiene un subconjunto infinito >N tal que todos los 
subconjuntos de >N de  J elementos tienen asignado el mismo color. [[[[5555]]]] 
 
Principio finito de Ramsey:  
Dados 3 enteros positivos J, I y G existe un entero LO = Q(J , I, G) tal que es el 
mínimo entero L que cumple que si la colección de todos los subconjuntos de J 
elementos de un conjunto >R de L elementos es coloreada con G colores, entonces 
>R contiene un subconjunto >S de I elementos tal que todos sus subconjuntos de J 
elementos tienen asignado el mismo color. En el caso en que G = 2, podemos 
escribir Q(J , I, G) = Q(J, I). [[[[5555]]]] 
 
Más adelante veremos una demostración del principio finito de Ramsey para el 
caso en que se colorean las aristas de un grafo con 2 colores (G = 2).  
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En esta tesis nos centramos en los números de Ramsey aplicados a la teoría de 
grafos.  
Para eso comenzamos, en el capítulo 2, con algunas definiciones útiles en 
referencia a los grafos y a la teoría de Ramsey que serán necesarias para el 
desarrollo de la misma.  
En el capítulo 3 veremos algunos resultados generales sobre números de Ramsey, 
así como la demostración del valor de todos aquellos números de dos colores, 
hallados de manera exacta. Este capítulo se divide en los números de la forma 
Q(3, I), con 3 ≤ I ≤ 9, y los números de la forma Q(4, I), con I = 4 y I = 5.  
En el capítulo 4 se encuentran las demostraciones de 5 cotas, 4 inferiores y una 
superior, a modo de ejemplificar los métodos que podrían utilizarse para el cálculo 
de las mismas.  
Finalmente, el capítulo 5 incluye las conclusiones, así como un vistazo general a los 
problemas que se encuentran abiertos y en los que están trabajando los 
matemáticos hoy en día en términos de números de Ramsey. También se exponen 
algunas posibles aplicaciones a problemas cotidianos de los números de Ramsey.  
Además, se incluyen 2 apéndices, el primero con programas de Matlab utilizados 
para comprobar las cotas inferiores de ciertos números, y que fueron aplicados a 
las matrices de adyacencia de los grafos construidos como contraejemplo para 
corroborar la no existencia de ciertos WS. El segundo apéndice incluye las 
demostraciones de 2 lemas utilizados en la demostración de la igualdad 
Q(3,7) = 23.  
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Definiciones útiles 

 
En esta tesis nos enfocaremos en los números de Ramsey con k=2  y utilizaremos 
la formulación de estos problemas mediante teoría de grafos. Para esto, 
comenzaremos por dar algunas definiciones que nos serán de utilidad. 
 
DEFINICIÓN 1: Un grafo [ es un par (\, ]) donde \ es un conjunto finito y ] es un 
conjunto de pares de elementos distintos en \. Llamamos a \el conjunto de nodos 
o vértices, y a ] el conjunto de aristas. 
 
DEFINICIÓN 2: Un conjunto ^ ⊆ \, es llamado un conjunto independiente si para 
ningún conjunto de 2 nodos de ^, {a, b} se cumple que (a, b) ∈ ].  
 
DEFINICIÓN 3: Una clique e ⊆ \ es un conjunto de nodos tal que para todo 
subconjunto de 2 nodos de e, {a, b} se cumple que (a, b)  ∈ ]. 
 
DEFINICIÓN 4: Se denota WS  al grafo completo de I nodos. Un grafo es completo si 
contiene todas las aristas posibles, es decir, que dado cualquier nodo a éste está 
unido por una arista a todos los demás nodos del grafo. 
 
DEFINICIÓN 5: Dado un grafo [ = (\, ]) se define su complemento como el grafo 
[f = (\, ]f), es decir el grafo formado por los mismos nodos y las aristas que no se 
encuentran en el grafo original. 
 
DEFINICIÓN 6: La definición de los números de Ramsey para teoría de grafos sería la 
siguiente: 
R(n, m)=β sii i es el mínimo número de nodos que debe tener un grafo completo 
de manera que coloreamos sus aristas con 2 colores, digamos rojo y verde,  
entonces, o bien tiene incluido un  WS  rojo o bien tiene incluido un WR   verde.  
Análogamente, podemos decir que i es el mínimo número de nodos que debe 
tener un grafo para que o bien el grafo incluya un WS   o bien su complemento 
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incluya un WR. Lo que a su vez es análogo a decir que o bien el grafo incluye una 
clique de tamaño I o bien incluye un conjunto independiente de tamaño L. 
 
DEFINICIÓN 7: Dado un nodo a de un grafo [, definimos su grado en [, notamos 
j(a), como las cantidad de nodos que están unidos a a mediante una arista en 
]([). 

 
DEFINICIÓN 8: Decimos que un grafo [ es G −regular, para G entero, si cada nodo de 
[ tiene grado G. 

 

DEFINICIÓN 9: dados los enteros G, l, I, m, n, definimos los (G, l, I, m, n) −grafos  
como el conjunto de todos los grafos simples, sin cliques de tamaño G, sin 
conjuntos independientes de tamaño l , de orden I, con m aristas, y grado mínimo 
n.  

Podríamos no incluir alguno de los argumentos si quisiéramos que el mismo sea 
libre. Tenemos que (G, l, I, m) =  ⋃ (l, I, m) p  y  (G, l, I) =  ⋃ (G, l, I, m)q . 

 

DEFINICIÓN 10: Si [ es un grafo, \([) es el conjunto de nodos de [, r(a) denota el 
vecindario abierto de a, es decir aquellos nodos que son adyacentes a a, y r[a] es 
el vecindario cerrado de a, compuesto por los nodos adyacentes y por a. En esta 
tesis, por motivos de practicidad, usaremos la notación sN(a) como el conjunto de 
los vecinos de a en [, sin incluir a a, y st(a)  =  \([) – sN(a) – {a}. 

 

DEFINICIÓN 11: Dado [ = (\, ]) se define un subgrafo de [ como un grafo 
s = (v, w) donde v ⊆ \ e w ⊆ ].  

Si x está incluido en \([), [[x] denota el subgrafo de [ inducido por x, es decir, 
el grafo que tiene los nodos de x y las aristas de [ que hay entre los mismos. 
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DEFINICIÓN 12: El número m(G, l, I, n) es el mínimo numero de aristas en cualquier 
(G, l, I, n)-grafo. 
 
DEFINICIÓN 13: Sea [ un (3, y) −grafo. Sea \z = y − 1 − {, y definimos |z como el 
número de nodos de [ de grado \z. 
En un (3, y)-grafo, sN(a) es un conjunto independiente del vértice a. Por lo tanto el 
grado máximo en un (3, y) −grafo es y − 1, así que en la definición anterior, { ≥ 0. 
Luego el numero { es la diferencia entre el grado del vértice y el mayor grado 
posible en [. Notemos que el valor de \z depende de y tanto como de {. 
Dado un (G, y, I)-grafo, y un vértice a de grado j, sabemos que st(a) es un 
(G, y − 1, I − j − 1) −grafo. Luego, debemos tener que                                            
 |st(a)|  ≥  m(G, y − 1, I − j − 1). 
 
DEFINICIÓN 14: Un vértice a de grado j en un (G, y, I) −grafo se llama completo si 
|st(a)| = m(G, y − 1, I − j − 1) 
En un (3, y) −grafo, si tomamos un vértice a, entonces cada arista está en st(a) o 
es adyacente a exactamente un vértice en sN(a), ya que sN(a) es un conjunto 
independiente. 
Un grafo [ es regular de grado j o j −regular si todos los nodos de [ tienen grado 
j. 
 
DEFINICIÓN 15: A un nodo a se lo llama preferido cuando se divide el conjunto de los 
nodos del grafo en dos subconjuntos complementarios, el de sus vecinos, sN(a), y 
el de sus no vecinos, st(a). 
 
DEFINICIÓN 16: Si un vértice a es preferido en un (G, y)-grafo, se define �(a) como la 
suma de los grados de los vecinos de a. Si �(a) = |, se dice que a tiene � −suma |.  
 
DEFINICIÓN 17: Dado un grafo [, si a es un vértice de grado j, decimos que a es 
un j −vértice. El subgrafo de [ generado por todos los j −nodos se llama un 
j −subgrafo. 
 

DEFINICIÓN 18:  ^([) es el cardinal del mayor conjunto independiente de [. 
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DEFINICIÓN 19:  e([) es el cardinal del mayor clique de [. 
 
DEFINICIÓN 20:  [ es un (�, �)-grafo si � > e([) e � > ^([). 
 
DEFINICIÓN 21:  Q’(�, �) es el mayor entero tal que existe un (�, �)-grafo con 
Q’(�, �) nodos. Definido de esta forma, Q’(�, �) =  Q(�, �) − 1. 
 
DEFINICIÓN 22:  Sea [ un (�, �) −grafo y sea a el grado mínimo entre los nodos de 
[; definimos 

�([) = Q(� − 1, �) − a. 
 
DEFINICIÓN 23: Se entiende por un conjunto independiente máximo en [ a un 
conjunto independiente en [ que contenga ^([) nodos. Un nodo � de un grafo [ se 
llamará esencial si pertenece a todo conjunto independiente máximo de [. 
  
DEFINICIÓN 24: Un grafo [ de I nodos es cíclico si existen enteros       
1 ≤ {N < {t < ⋯ < {� ≤ [I 2],⁄   de manera que los nodos de [ pueden ser 
identificados con los enteros módulo I (� = �(I), es decir que � es igual a a 
módulo I si � es el resto de dividir � por I) y dos nodos J y | de [ están unidos por 
una arista si y sólo si |J − || = {�  para algún � = 1, 2, … , G. 
 
DEFINICIÓN 25: Un grafo se dice conexo si partiendo de un nodo cualquiera del grafo 
siempre existe un camino que va desde ese nodo hacia cualquier otro nodo del 
grafo. 
 
DEFINICIÓN 26: Un circuito en un grafo es un camino cerrado (camino que comienza 
y termina en el mismo nodo). 
 
DEFINICIÓN 27: La circunferencia de un grafo es la longitud del ciclo más corto 
contenido en el mismo. Si el grafo es acíclico, se dice que su circunferencia es ∞.
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Números exactos 

 
Hasta el momento se conoce con exactitud el valor de pocos números de Ramsey.  
Para dos colores y valores de r y s a lo sumo 10 se conocen los siguientes valores 
exactos y cotas: 
 
r, s 1 2 3 4 5 6 7 8 9 10 

1 1 1 1 1 1 1 1 1 1 1 

2 1 2 3 4 5 6 7 8 9 10 

3 1 3 6 9 14 18 23 28 36 40–43 

4 1 4 9 18 25 36–41 49–61 56–84 73–115 92–149 

5 1 5 14 25 43–49 58–87 80–143 101–216 126–316 144–442 

6 1 6 18 36–41 58–87 102–165 113–298 132–495 169–780 179–1171 

7 1 7 23 49–61 80–143 113–298 205–540 217–1031 241–1713 289–2826 

8 1 8 28 56–84 101–216 132–495 217–1031 282–1870 317–3583 331-6090 

9 1 9 36 73–115 126–316 169–780 241–1713 317–3583 565–6588 581–12677 

10 1 10 40–43 92–149 144–442 179–1171 289–2826 331-6090 581–12677 798–23556 

 
A continuación veremos las demostraciones de todos aquellos números para los 
cuales se conoce su valor exacto. 
 
Primero veamos un par de resultados generales que nos serán útiles para la 
demostración de números concretos. 
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Observación 1: Q(I, L) = Q(L, I) 
 
Teorema 1: Q(I, 2) = I  [14][14][14][14] 
Dem: 

Si coloreamos las aristas de WS de rojo y verde entonces o bien todas las aristas son 
verdes o bien al menos una arista es roja. En el primer caso, hay un WS verde y en el 
segundo caso, hay un Wt rojo. Luego,  Q(I, 2) ≤ I. Veamos que vale el igual. Si 
Q(I, 2) =  J < I, la coloración rojo-verde que consiste en pintar todas las aristas 
con verde no contiene ningún WS verde ni ningún Wt rojo. □ 

    

Teorema 2: Q(I, L) ≤ Q(I − 1, L) + Q(I, L − 1) para todo I, L ≥ 3 [[[[10101010]]]] 
Dem: 

Por inducción en I + L: 

Q(2, L) = L ≤ Q(1, L) + Q(2, L − 1) = 1 + (L − 1) = L   

lo  cual vale para L ≥ 1 

Supongamos ahora que existen Q(I − 1, L) y Q(I, L − 1) y que cumplen la 
desigualdad y veamos que Q(I, L) cumple  con la desigualdad. 

Supongamos que tenemos una coloración rojo-verde de las aristas del grafo 
completo de  Q(I − 1, L) + Q(I, L − 1) nodos, llamémoslo [, y sea a un nodo 
cualquiera de [. Entonces de las Q(I − 1, L) + Q(I, L − 1) − 1 aristas que inciden 
en a hay al menos Q(I − 1, L) que son verdes o al menos Q(I, L − 1) que son 
rojas (ya que si ninguna de estas dos opciones se cumpliera, entonces la cantidad 
de aristas que inciden en a sería menor a Q(I − 1, L) + Q(I − L − 1) − 1). 

Si hay al menos Q(I − 1, L) aristas verdes que inciden en a, elijamos Q(I − 1, L) 
nodos en el conjunto {b/ (a, b) m|lá �{Il�j� jm amJjm} y consideramos el 
subgrafo completo de [ que tiene esos Q(I − 1, L) nodos, con la coloración 
inducida. Entonces, por hipótesis inductiva, este subgrafo contiene un WS�N verde o 
un WR rojo. En el segundo caso, claramente [ contiene un WR rojo. En el primer 
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caso, agregando a ese WS�N el nodo a y todas las aristas de a a cada uno de esos 
nodos del WS�N (que sabemos que son verdes) se obtiene un WS verde. 

De manera análoga se ve que si en a inciden al menos Q(I, L − 1) aristas rojas, 
entonces hay en [ un WR rojo o un WS verde. □ 

 

Números de la forma R(3, n) 

 

Ahora comencemos con los números de la forma Q(3, G). Se conocen los valores 
para 3 ≤ G ≤ 9. Daremos previamente un par de lemas útiles. 
 
LEMA 1: Q(3, G)  ≤ I si para cada grafo [ libre de triángulos con I nodos existe un 
conjunto independiente ^ tal que |^| ≥ G. [1[1[1[16666]]]] 

 

LEMA 2: Q(3, G) > I si existe un grafo [ libre de triángulos con I nodos que no 
contiene un conjunto independiente ^ tal que |^| ≥ G. [1[1[1[16666]]]] 

Para la demostración de ciertas cotas inferiores de los números de Ramsey 
utilizamos unos algoritmos en Matlab para corroborar que ciertos grafos no 
contengan una estructura particular (triángulos, K4, K5, K6). Estos algoritmos que 
sólo serán nombrados en este capítulo, pueden verse en el Apéndice A: Algoritmos.  
 

R(3, 3)=6 [1[1[1[10000]]]] 
 
Teorema 1:  R(3,3)=6 
Dem:  

Supongamos que hay una fiesta con 6 personas. Quiero ver que hay 3 personas que 
son desconocidos entres sí o 3 personas que se conocen todas entre sí. La arista 
entre 2 personas es roja si las personas se conocen y verde si no se conocen.  
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Sea X una persona cualquiera. Entonces conoce al menos a 3 personas o hay 3 
personas que no conoce. Supongamos que hay 3 personas que conoce, llamémosla 
A, B y C. Entonces tenemos: 

 
Si existe alguna arista roja entre A, B y C, obtenemos un triángulo rojo. Si no, deben 
ser todas las aristas entre A, B y C verdes, por lo tanto tenemos un triángulo verde.  

El caso en que X tiene 3 personas a las que no conoce es análogo. 

 

Luego, obtuvimos Q(3,3)  ≤ 6. 

La siguiente coloración de K5 demuestra que Q(3,3) > 5, ya que es una coloración 
con 2 colores en donde no hay ningún triángulo monocromático. 

 
Ver Apéndice A. En matlab aplicamos: triangulos(M1)=0, triangulos(M2)=0, 
donde M1 es la matriz de adyacencia del grafo dado por las aristas rojas, con línea 
completa, y M2 la del grafo dado por las aristas verdes, con línea punteada (ambos 
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son complementarios). El programa triángulos, que se aplica a matrices de 
adyacencia de grafos, da 1 si existe un triángulo en ese grafo y 0 sino. 

Por lo tanto, Q(3,3) = 6. □ 

 

R(3, 4)=9 [1][1][1][1] 
 

Teorema 1 (Hand Shaking’s Theorem o Teorema del apretón de manos):   
∑ �(�) = �.�∈�(�) |]|   para todo grafo G=(V, E)     [[[[EulerEulerEulerEuler,,,,     1736173617361736]]]] 
Dem: 

Lo haremos por inducción en L = |]|.  

Para L = 0: En este caso, la parte izquierda de la igualdad es 0, pues |]| = 0, y la 
parte derecha es 0 pues, al no haber aristas, j(�) = 0 para todo nodo �.   

Para L = 1: Hay por lo menos 2 nodos aNy  at con j(aN) = 1 y j(at) = 1, y si hay 
más nodos, j(az) = 0, { ≥ 3. Entonces:  ∑ d(a) = 2 = 2.1 = 2. |]|�∈� , demostrando 
la afirmación en este caso. 

Supongamos que el resultado vale para L, queremos ver que esto implica que el 
resultado vale para L + 1: Tengo un grafo [ con L + 1 aristas. Dada una arista 
cualquiera de [, mN, considero el grafo s = [ − {mN}. Entonces por hipótesis 
inductiva,  ∑ d(a) = 2. |](s)| = 2. L�∈�  

Como saqué una arista, hay 2 nodos az  y a�  cuyo grado disminuyó en uno, 
suponiendo mN = (az , a�). Luego,  ∑ d(a) + 2 =�∈�( ) ∑ d(a)�∈�  y  ∑ d(a) +�∈�( )
2 = 2. L + 2  por lo tanto ∑ d(a) = 2. (L + 1)�∈�   lo que demuestra el teorema. □ 

 

Teorema 2:  R(3,4)=9 
Dem:  

Por teorema:  
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Q(3,4)  ≤  Q(2,4) + Q(3,3) = 4 + 6 = 10 

Veamos que toda coloración rojo-verde de W¡ tiene un triángulo verde o un W¢ rojo, 
y que esto no vale para W£. 

Supongo que existe una coloración R-V de W¡ tal que no contiene ningún W¤ verde y 
ningún W¢ rojo. 

 Entonces en cada nodo inciden a lo sumo 3 aristas verdes. Esto es porque si en 
algún nodo � incidieran 4 aristas verdes (�, aN), (�, at), (�, a¤), (�, a¢). Como no 
hay ningún W¤ verde, ninguna arista (az , a�) puede ser verde, luego todas son rojas, 
pero entonces existiría un W¢ rojo, lo cual es absurdo pues supusimos que no.  

En cada nodo inciden a lo sumo 5 aristas rojas, pues si en algún nodo b incidieran 
6 aristas rojas (b, aN), … , (b, a¥), entonces como Q(3,3) = 6 el grafo completo con 
nodos aN, . . , a¥ contendría un triángulo monocromático, que debe ser rojo (pues 
supuse que no había ningún W¤ verde). Si az , a� , a�  son los nodos del triángulo 
rojo, entonces el subgrafo completo b, az, a� , a�  es un W¢ rojo, lo cual es un 
absurdo. 

Por lo tanto, en cada nodos inciden exactamente 3 aristas verdes y 5 aristas rojas. 

Si consideramos el subgrafo [ de W¡ formado por todos los nodos y todas las 
aristas verdes, entonces cada nodo de [ tiene grado 3, luego tenemos que: 

∑ d(�) = 3.9 = 27 ≠ I. 2 §∈�(¨)          I ∈ ℕ 

Lo cual contradice el lema anterior. 

 

Veamos que Q(3,4) > 8, exhibiendo un grafo de 8 nodos que no contenga ningún 
W¤ y cuyo complemento no contenga ningún W¢.  
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Ver Apéndice A: En matlab aplicamos: triangulos(M3)=0, k4(M4)=0, donde M3 es 
la matriz de adyacencia del grafo de arriba y M4 la de su complemento. El 
programa k4 recibe una matriz de adyacencia de un grafo y devuelve un 1 si existe 
un W¢ dentro de ese grafo y o sino.  

De cualquier manera, en este caso, debido a la simetría del grafo podemos ver de 
manera directa que no posee ni triángulos ni 4-CI.  Tomemos un nodo cualquiera, 
que llamaremos 1, ese nodo está unido entonces con los nodos 2, 5 y 8. Ahora, si 
existiera un triángulo debería estar formado por el nodo 1 y 2 nodos más de entre 
sus vecinos. Hay ª¤

t« = 3 posibilidades: {1, 2, 5} (el cual no puede ser un triángulo 
pues no hay una arista entre 2 y 5); {1, 2, 8} (que no puede ser porque no hay una 
arista entre 2 y 8) o el {1, 5, 8} (que tampoco puede ser porque no hay una arista 
entre 5 y 8). Por lo tanto, el grafo es libre de triángulos. Ahora veamos que no 
posee ningún 4-CI: el nodo 1 no está unido con los nodos 3, 4, 6 y 7. Por lo tanto las 
posibilidades de que haya un 4-CI que incluya al nodo 1 son ª¢

¤« = 4. El hecho de 
que haya una arista entre 3 y 4, implica que {1, 3, 4, 7} y {1, 3, 4, 6} no pueden ser 
4-CI, y el hecho de que exista una arista entre 6 y 7 implica que {1, 3, 6, 7} y {1, 4, 6, 
7} tampoco pueden serlo. Luego el grafo tampoco posee 4-CI. □ 
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R(3, 5)=14 [1][1][1][1] 
 

Teorema 1:   Q(3,5) = 14 
Dem: 

Por la desigualdad del teorema,  

Q(3,5)  ≤ Q(2,5) + Q(3,4) = 5 + 9 = 14 

Luego, exhibiendo un grafo con 13 nodos que no contenga ningún W¤ y cuyo 
complemento no contenga ningún W¬ obtenemos el resultado deseado. En este 
grafo, cada nodo está unido con el primer y quinto vecinos. El grafo es libre de 
triángulos. 

 
Ver Apéndice A. En matlab aplicamos: triangulos(M5)=0, donde M5 es la matriz de 
adyacencia del grafo mostrado arriba.  

También comprobamos que su complemento, dado por el siguiente grafo, no 
contiene ningún W¬. 
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Ver Apéndice A. En matlab aplicamos: k5(M6)=0, donde M6 es la matriz de 
adyacencia del grafo de arriba. El programa k5 recibe una matriz de adyacencia de 
un grafo y devuelve 1 si existe un W¬ en el grafo y 0 sino. □ 

 

R(3, 6)=18 [[[[2222]]]] 
 

Teorema 1:   Q(3,6) = 18 
Dem: 

Dado que el número de Ramsey R(3,6) es el mínimo número de nodos que debe 
tener un grafo para que o contenga un triángulo o su complemento contenga un W¥, 
la existencia de un grafo G de 17 nodos, en el cual no haya triángulos y en cuyo 
complemento no existan W¥ implicaría que 17 no puede ser el mínimo número de 
nodos para que eso pase, por lo tanto eso demostraría que Q(3,6)  ≥ 18.   

A continuación damos un grafo de 17 nodos sin triángulos y cuyo complemento no 
contiene ningún W¥ para así demostrar la cota inferior antes nombrada. 
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Ver Apéndice A. En matlab aplicamos: triangulos(M7)=0, y k6(M8)=0, donde M7 
es la matriz de adyacencia del grafo de arriba y M8 es la matriz de adyacencia de su 
complemento. El programa k6, dada una matriz de adyacencia de un grafo da 1 si 
existe un W¥ en el grafo y 0 sino. 

 

Queremos ver entonces que Q(3,6)  ≤ 18.  

Sea [ un grafo libre de triángulos de 18 nodos. Probaremos por el absurdo que [ 
contiene un conjunto independiente de 6 nodos. Para ello suponemos que [ no 
tiene ningún conjunto independiente de tamaño 6. Primero demostramos las 
siguientes afirmaciones: 

1) [ es 5-regular: 
 
Como [ es libre de triángulos, para cualquier nodo a, r(a) es un conjunto 
independiente (sino, habría un triángulo). Entonces |r(a)|  ≤ 5, es decir, 
j(a)  ≤ 5. Supongamos que j(a) < 5, sea s = [ − I[a]. Claramente 
|s| ≥ 13, pues si |s| ≥ 14 = Q(3,5), entonces s tiene un conjunto 
independiente de 5 nodos que junto con a forma un CI de 6 nodos, lo cual es 
absurdo. Luego |s| = 13 y por lo tanto j(a) = 4, entonces s es el único 
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Q(3,5) −crítico (grafo con Q(3, 5) − 1 nodos libre de triángulos y sin 
conjuntos independientes de cardinal 5) y es en particular 4-regular [[[[17171717]]]]. 
Sea l en r(a), entonces l tiene 3 nodos  lN, lt, l¤ en s cada uno 
independiente de r(a) − {l} (porque lN, lt, l¤ tienen 4 vecinos en s y uno 
más en {l}). Luego, (r(a) − {l})­{lN, lt, l¤} es un conjunto independiente 
de cardinal 6, lo cual es un absurdo. Luego, |r(a)| = 5. 
 

2) Para cualquier nodo a hay exactamente 4 no vecinos �z  de a tal que 
|r(a)  ∩ r(�z)| = 1 y 8 no vecinos ¯z de a tal que |r(a) ∩ r(¯z)| = 2. Más 
aún, los �z  comparten 4 vecinos distintos con a y los ¯z comparten 8 pares 
de vecinos distintos con a.  
 
Sean � y a no adyacentes. Probemos que 1 ≤ |r(�)  ∩ r(a)|  ≤ 2.  
Si |r(�)  ∩ r(a)| = 0 entonces en particular, a es independiente de r(�) de 
tal manera que el conjunto {a} ∪ r(�) es un conjunto independiente de 
cardinal 6. Lo cual es un absurdo. Luego, |r(a)  ∩ r(�)|  ≥ 1. Ahora 
supongamos que |r(a)  ∩ r(�)|  ≥ 3. Sea s = [ − r[�] ∪ r[a], entonces 
|s| ≥ 9 = Q(3,4), por lo tanto, como s es libre de triángulos existe en s un 
conjunto independiente de cardinal 4. Este conjunto junto con � y a dan un 
conjunto independiente de cardinal 6. Lo cual es un absurdo. 
Sea ahora s = [ − r[a], es fácil ver que hay exactamente 20 aristas entre s 
y r[a]. Esto es así pues, por (1) cada nodo del grafo tiene grado 5 y por lo 
tanto los 5 nodos de r[a] distintos de v deben tener 4 vecinos más, pero 
ninguno puede estar en r[a] o sino se formaría un triángulo. Ahora, 
simplemente contando esos nodos en s que mandan 2 aristas a r[a] y 
aquellos que mandan sólo 1 tenemos la primera parte de nuestra 
afirmación. Para la segunda parte, supongamos que los nodos �N y �t son 
adyacentes al mismo nodo � en r(a), entonces en particular el conjunto 
{�N, �t}­(r(a) − {�}) es un conjunto independiente de tamaño 6, lo cual es 
un absurdo. Luego, cada uno de �N, �t, �¤, �¢  está unido con un nodo 
distinto de r(a).  Por último, supongamos que ¯N, ¯t perteneciente a \(s) 
están unidas con el mismo par {�, �} incluido en r(a), entonces en 
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particular los nodos no adyacentes �, � tienen los vecinos comunes 
{a, ¯N, ¯t}, lo cual es absurdo (por la primera parte). 
 

3) Con la notación de (2), {�N, �t, �¤, �¢} induce un 4-ciclo en [.  
 
Nombremos los nodos de [ tal que r(a) = {l, |N, |t, |¤, |¢} donde usando 
(2) asumimos que |N�N, |t�t, |¤�¤, |¢�¢ son las aristas entre los �z  y r(a). 
Notemos que ningún �z  es vecino de l porque los �z  (por (2)) comparten un 
único vecino con a. Renombremos los ¯z  de la siguiente manera: sea 
r(l) − {a} = {lN, lt, l¤, l¢} y sean los ¯z que quedan: bN, bt, b¤, b¢. Luego, 
\([) = {a, l, |N, |t, |¤, |¢, lN, lt, l¤, l¢, �N, �t, �¤, �¢, bN, bt, b¤, b¢}, cada uno de 
los |z manda exactamente una arista a a, una arista a los �z , una a los 
lz (pues lz  es uno de los ¯z y por lo tanto debe compartir 2 vecinos con a, 
uno de ellos es l y el otro debe ser uno de los |z), y por lo tanto 2 aristas a 
los bz . Más aún, no pueden haber 2 |z , digamos |N y |t que se unan con el 
mismo par, digamos {bN, bt} de los bz , de otra manera |N, |t compartirían 3 
vecinos {a, bN, bt} lo que es un absurdo (por (2)). Similarmente, ningún wi 
es adyacente a más de dos si ya que sino el par {a, bz} compartiría más 
vecinos de los permitidos.  
Ahora, supongamos que 2 de los |z, digamos |N, |t son adyacentes al mismo 
bz , supongamos que es bN. Ninguno de los nodos �N, �t, |N, |t , bN está unido 
a ninguno de los 3 nodos independientes {|¤, |¢, l}, de tal manera que para 
evitar un conjunto independiente de tamaño 6, el subgrafo inducido por 
{�N, �t, |N, |t , bN} no contiene un conjunto independiente de tamaño 3 y por 
lo tanto (para evitar triángulos) debe haber un 5-ciclo. 
Luego, en particular, �N y �t son adyacentes. Un argumento similar puede 
usarse para cualquier par en {|N, |t, |¤, |¢} que tienen a un bz  como vecino 
en común y como hay exactamente 4 pares, hay exactamente 4 aristas en el 
subgrafo inducido por {�N, �t, �¤, �¢} y por lo tanto (para evitar triángulos) 
ese subgrafo es un 4-ciclo, lo que demuestra este punto. 
 

4) Sin pérdida de generalidad, supongo que �N�t�¤�¢�N es el 4-ciclo inducido 
por {�N, �t, �¤, �¢}  en [. Cada pi comparte por lo menos un vecino con l (por 



Capítulo 3: Números exactos 

22 
 

el ítem (2)). Además, también por (2) junto con el hecho de que [ es libre 
de triángulos, los �z  no tienen vecinos comunes excepto en {�N, �t, �¤, �¢}. 
Entonces cada uno de los �z  está unido a un único lz, y asumimos (quizás 
con un renombramiento de los lz) que �zlz  pertenece a ]([) para { = 1, … ,4. 
Hay exactamente 4 nodos entre los �z  y los bz  y (quizás renombrando los 
bz) podemos asumir que son los nodos �zbz , { = 1, … ,4. 
Los nodos a y bN comparten exactamente 2 vecinos y los únicos candidatos 
posibles están en el conjunto {|t, |¤, |¢}. Análogamente, l y bN comparten 
exactamente 2 vecinos y los únicos candidatos posibles están en {lt, l¤, l¢}. 
Entonces, hay un { distinto de 1 tal que el nodo bN está unido a |z  y lz. Si 
{ = 2 o { = 4, los nodos �z  y bN tienen 3 vecinos en común, lo cual 
contradice (2). Luego, { = 3. Por simetría, podemos asumir que bN|t 
pertenece a ]([). Luego, como vimos arriba que bN no puede estar unido a 
|t y lt a la vez, tenemos que bNl¢ pertenece a ]([). 
Consideremos el nodo |t. Arriba vimos que cada |z es adyacente a 
exactamente un lz. No puede ser que |tl¤ pertenezca a ]([) para evitar el 
triángulo |tbNl¤, tampoco puede ser que |tlt pertenezca a ]([) para evitar 
el triángulo |t�tlt,  y por último, no puede ser que |tl¢  pertenezca a ]([) 
para evitar el triángulo |tbNl¢. Luego, la única posibilidad es que |tlN 
pertenezca a ]([), pero ahora |t y �N tienen 3 vecinos comunes {�t, bN, lN} 
lo que contradice (2). Esta última contradicción finaliza la demostración del 
teorema. □ 

 

R(3, 7)=23 [[[[6666]]]] 
 
En este caso la demostración, que incluye numerosos resultados teóricos, tiene 
como objetivo llegar a que (3,7,23) = ∅, con lo cual tendríamos que no existen 
grafos de 23 nodos que no posean ni triángulos ni 7-conjuntos independientes. De 
esta manera obtendríamos la cota superior. Para la cota inferior se exhibirá un 
grafo de 22 nodos sin triángulos y sin conjuntos independientes de tamaño 7.  
 
Lema 1:  Sea [̅  el complemento de [, entonces ^([̅) =  e([) y e([̅) = ^([). Por lo 
tanto, [ es un (�, �) −grafo sii [̅ es un (�, �) −grafo. 
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Lema 2:  Si [ es un (�, �) −grafo con n nodos entonces Q’(� − 1, �) es el grado 
máximo posible para un nodo de [ y (I − 1) − Q’(� − 1, �) es el grado mínimo 
posible para un nodo de [. 
Dem:  
Sea j(�) el grado de � y sea sN el subgrafo de [ generado por los nodos de [ que 
están unidos a � por una arista. Claramente, ^(sN) ≤ ^([) < �, ya que cualquier 
conjunto de nodos independiente en sN lo es en [. Ahora, si W es un subgrafo 
completo de sN con G nodos, el grafo generado por W y � en [ es un subgrafo 
completo de [ con G + 1 nodos. Por lo tanto, 

e(sN) ≤ e([) − 1 < � − 1. 
Tenemos luego que sN es un (� − 1, �) −grafo. Por lo tanto,  

j(�) ≤ Q’(� − 1, �). 
Usando el argumento de arriba junto con el lema 1, mostramos que j̅(�), el grado 
de � en [̅, es menor o igual a Q’(�, � − 1). Pero j(�) + j̅(�) = I − 1. Por lo tanto,  

j(�) ≥ (I − 1) − Q′(�, � − 1). □ 
 
Proposición 1: Si [ es un (�, �) −grafo con I nodos,  

a) I ≤ Q′(� − 1, �) + Q′(�, � − 1) + 1 − �([), 
b) �([) ≤ Q′(� − 1, �) + Q′(�, � − 1) + 1 − I. 

Dem: 
Del lema 2 tenemos que (I − 1) − Q′(�, � − 1) ≤ j(�) para todos los nodos � de [. 
Elegimos � de manera que j(�) = Q′(� − 1, �) − �([). Combinando esos dos 
hechos, se obtienen a) y b). □ 
 
Obs: Los grados de los nodos de un grafo [ van desde Q’(� − 1, �) −  �([) hasta 
Q’(� − 1, �). 
 
Proposición 2: Sea [ un (�, �) −grafo con I nodos y m aristas. Sea m� el número 
de aristas en s�  (para G = 1,2). Finalmente, sea az = Q′(� − 1, �) − {  y sea |z el 
número de nodos en [ con grado az . Ahora supongamos que un nodo � con grado 
az  es el nodo preferido y notemos l�  el número de nodos en sN que tienen grado a�  
en [. Entonces: 
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mt − mN = Q′(� − 1, �) µI
2 − Q(� − 1, �) + {¶ + · � ¸l� − |�

2¹ .
º(¨)

�»N
 

Dem: 
Vamos a contar el número de aristas en [ de dos maneras diferentes: 

1) La suma de los grados de los nodos en sN menos el número de aristas en sN 
(que han sido contadas 2 veces) más el número de aristas en st (que no 
han sido contadas antes). 

m = · l�a� − mN + mt

º(¨)

�»O
. 

2) La suma de los grados de todos los nodos de [ dividido 2 (se debe al 
teorema del apretón de manos). 

m = 1
2 · |�a�

º(¨)

�»O
. 

Igualando obtenemos: 

mt − mN = · (|�
2 − l�)a�

º(¨)

�»O
. 

Luego, 

mt − mN = · ¸|�
2 − l�¹ (Q′(� − 1, �) − �)

º(¨)

�»O
. 

Como  ∑ |� = I º(¨)
�»O  y  ∑ l� = az

º(¨)
�»O  , obtenemos: 

mt − mN = ¸I
2 − az¹ Q′(� − 1, �) + · �(l� − |�

2)
º(¨)

�»O
. 

Lo que concluye la demostración. □ 
 
Corolario 1: Si [ es un (3, �) −grafo con I nodos, � es un nodo preferido de grado 
az , entonces: 

mt = (� − 1) ¸I
2 − � + 1 + {¹ + · �(l� − |�

2)
º(¨)

�»N
. 
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Dem: 
En este caso mN = 0 (pues los vecinos de un nodo con grado � − 1 − {  en un 
(3, �) −grafo forman un conjunto independiente) y Q′(2, �) = � − 1. □ 
 
Proposición 3: Sea [ un (3, �) −grafo con dos nodos de grado az  unidos por una 
arista. Entonces prefiriendo uno de esos nodos podemos obtener: 

mt ≤ (� − 1) ¸I
2 − � + 1 + {¹. 

Dem: 
Usaremos la notación de la proposición 2, donde � es uno de los dos nodos dados. 
Sea �’ el otro nodo y sea l′�  el número de nodos de grado a�  en sN cuando �’ es 
preferido.  
Como � y �’ están unidos por una arista, no pueden tener aristas a un punto en 
común. Luego, l� + l′� ≤ |�  para todo �. Por lo tanto,  

· �(l� − |�
2)

º(¨)

�»N
+ · �(l′� − |�

2)
º(¨)

�»N
= · �(l� + l′� − |�)

º(¨)

�»N
≤ 0. 

Lo cual demuestra la proposición, pues por el corolario 1 tendríamos: 
 mt = (� − 1) ¸S

t − � + 1 + {¹ + ∑ �(l� − ¼½
t )º(¨)

�»N    y vimos que el segundo sumando 
es menor o igual a 0.  □ 
 
Corolario 2: Si �([) = 1 para un (3, �) −grafo [, existe algún nodo de grado aN 
para el cual 

mt ≤ (� − 1) ¸I
2 − � + 2¹. 

Más aún, la desigualdad estricta va a valer para algún nodo a menos que los nodos 
de grado aN pueden dividirse en dos clases, cada una con |N 2¾  nodos de manera tal 
que cada nodo de una clase tenga una arista a cada uno de los nodos de la otra 
clase.  
Dem: 
Si hay dos nodos de grado aN unidos por una arista, la proposición 3 nos dará la 
desigualdad. Si, en cambio, todos los nodos de grado aN están desconectados entre 
sí, tenemos: 
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mt = (� − 1) ¸I
2 − � + 2¹ − |N

2 . 

Ahora supongamos que mt = (� − 1) ¸S
t − � + 2¹ para todos los nodos de grado aN. 

En este caso, lN = |N 2¾  para todos los nodos de grado aN. Como no hay triángulos, 
el grafo bipartito descrito anteriormente resulta. □ 
 
Proposición 4: Si [ es un (3, �) −grafo de I nodos con m aristas, entonces 
 Im ≥ ∑ m(3, y − 1, I − az − 1)|{ +z¿O (az)t|z 
Donde az  y |z son los definidos en la proposición 2. 
Dem: 
Se verá más adelante en el lema 1 de la demostración de que Q(3, 9) = 36. □ 
 
En vista de las proposiciones anteriores es claro que la cantidad de aristas de un 
(�, �) −grafo es información útil. Por ejemplo, se podría ver que m(�, �, I) ≥ ¯  lo 
cual ayudaría en la demostración de que (�, �) = ∅ y por lo tanto, en la 
demostración de que Q(�, �) ≥ I. 
 
Lema 3:  Sea [ un grafo y [’ un grafo obtenido de [ a partir de la remoción de una 
arista (digamos la arista entre los nodos � y ¯). Entonces: 

(1) Cualquier conjunto independiente en [ es independiente en [’. 
(2) Si � y ¯ son esenciales en [’, entonces  ^([´) = ^([) + 1. 
(3) Si � o ¯ no son esenciales en [’, ^([´) = ^([). 
(4) Si � es esencial en [, � es esencial en [’ y ¯ no es esencial en [’. 

Dem: 
El punto (1) sale del hecho de que [’ se obtuvo removiendo una arista de [. De 
este hecho se desprende que ^([) ≤ ^([′). Ahora, si � no es esencial en [’ existe 
un conjunto independiente máximo en [’ que no contiene a �; claramente este 
conjunto es también independiente en [; luego se obtuvo (3). También se 
obtiene que � no es esencial en [, lo que demuestra la primera parte de (4). Si 
^([) = ^([’) entonces cualquier conjunto independiente máximo en [ es 
también un conjunto independiente máximo en [’ y este conjunto no debe 
contener o a � o a ¯. Luego, si � y ¯ son ambos esenciales en [’, ^([) < ^([’); sin 
embargo la remoción de � o ¯ de un conjunto independiente en [’ produce un 
conjunto independiente en [; y se demuestra  de esta forma (2). También se 
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obtiene de esto, que si � y ¯ son esenciales en [’ ninguno de los dos es esencial 
en [, lo que completa la demostración de (4). □ 

 
Proposición 5:  Sea [ un grafo con circunferencia À y sea Ázel número de 
subgrafos de [ conexos con { aristas. Entonces para todo entero 0 ≤ b < À,  

(−1)Â^([) ≤ (−1)Â ·(−1)zÁz.
Â

z»O
 

Se da la igualdad si [ es libre de circuitos y la sumatoria es sobre todos los 
subgrafos conexos. 
Dem: 
La haremos por inducción en el número de aristas en el grafo. 
Hipótesis inductiva (HI): Sea [ un grafo con circunferencia mayor a b, y sea � un 
nodo de [. Existe una partición de los subgrafos conexos de [ con b o menos 
aristas entre dos clases, los subgrafos de una clase serán llamados positivos y los 
de la otra clase negativos. Para { = 0, 1, … , b − 1 existen funciones Ãz: >zÄ → >zÄN�  
(donde >�Ä es el conjunto de subgrafos positivos con j aristas y >�� es el conjunto de 
subgrafos negativos con j aristas). Además, se satisfacen las siguientes 
condiciones: 

(1) >O� es un conjunto independiente máximo; 
(2) si el nodo � pertenece a >O� entonces � es esencial en [; 
(3) Ãz  es biyectiva para { = 0, 2, … , b − 1; 
(4) Para todos los subgrafos positivos s con menos de b aristas, � es un nodo 

de s sii � es un nodo de Ãz(s); 
(5) Si [ tiene b o menos aristas entonces >ÂÄ = ∅. 
 

Observemos primero que, si la HI es satisfecha por el grafo [, entonces 
∑ (−1)zÁz = ^([) + (−1)ÂÂz»O |>ÂÄ| , 
(pues |>zÄ| cancela  |>zÄN� | para { = 0, 1, … , b − 1 por la biyección) y por lo tanto la 
proposición vale para [, ya que multiplicando ambos lados por (−1)Â: 
(−1)Â ∑ (−1)zÁz = (−1)Â^([) + (−1)tÂÂz»O |>ÂÄ| = (−1)Â^([) + |>ÂÄ|, en donde 
|>ÂÄ| ≥ 0 lo cual nos da la desigualdad buscada. 
En segundo lugar, notamos que la HI es satisfecha por todos los grafos que no 
tienen aristas. Finalmente, si [ es un grafo que satisface la HI para algún nodo �, 
entonces [ unido con cualquier nodo aislado también va a satisfacer la hipótesis 
(condiciones (2) y (4) son satisfechas trivialmente por cualquier nodo aislado). 
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Ahora, supongamos que la HI es satisfecha por todos los grafos con menos de I 
aristas. Sea [ un grafo con I aristas y � un nodo de [ que no es aislado. 
Caso 1: � es esencial en [. 
Elijamos cualquier arista de [ que tenga a � como un extremo; llamemos ¯ al otro 
extremo. Sea [’ el grafo obtenido removiendo la arista que une � con ¯ del grafo [. 
Aplicamos la HI a [’ usando el nodo �. Sea la partición de los subgrafos conexos 
denotada por Æ′ y las funciones Ãz′. Usamos la HI de nuevo para el grafo [’ y el 
nodo ¯. Llamemos a la partición Æ′′ y a las funciones ÃzÇ′ en este caso. 
Dado un subgrafo conexo s de [ teniendo b o menos aristas, notemos que es libre 
de circuitos (pues la circunferencia de [ es más grande que b), por lo tanto no 
podemos tener circuitos. Luego, si s contiene una arista entre � y ¯, la remoción de 
una arista desconecta s. Llamaremos a la componente que contiene a � la �-
componente de s y a la otra componente la ¯-componente de s. 
Los subgrafos conexos de [ con b o menos aristas son ahora partidos en las clases 
positivas y negativas de la siguiente manera; si s ⊂ [′, entonces s conserva el 
signo de la clase dada por la partición Æ′, si s ⊄ [′, H tiene el signo de su ¯-
componente bajo la partición Æ′′. La asignación de los subgrafos positivo es 
especificado de la siguiente manera: si s es positivo y tiene { < b aristas y s ⊂ [′, 
definimos Ãz(s) = ÃzÇ(s); pero si s es positivo y tiene { < b aristas y s ⊄ [′, 
entonces Ãz(s) va a ser igual al grafo conexo con �-componente de la misma forma 
que en s y ¯-componente igual a Ãz′′ aplicada a la ¯-componente de s. Notemos 
que este será un subgrafo conexo de [ ya que (4) de la HI asegura que ¯ es un 
nodo de Ãz′′ aplicado a la ¯-componente de s. 
Por el lema 3, ^([) = ^([Ç) y p es esencial en [’, por lo tanto (1) y (2) de la HI son 
satisfechas (notemos que todos los nodos con partidos por  Æ′). Para demostrar 
(3), elegimos un subgrafo s de la clase negativa con { + 1 aristas donde { ≥ 0. 
Primero supongamos que s ⊂ [Ç; como ÃzÇ satisface (3) existe uno y sólo un grafo 
s’ con { aristas para el cual Ãz(sÇ) = s. Ahora, supongamos que s ⊄ [′; entonces 
vemos que la ¯-componente de s contiene por lo menos una arista (ya que ¯ ∈ >OÄ, 
cualquier s ⊄ [′ cuyo q componente es el nodo aislado ¯ debe ser la clase 
positiva). Como Ãz′′ satisface las condiciones (3) y (4) existe un subgrafo W ⊂ [Ç tal 
que q es un nodo de K y  ÃzÇÇ(W) equivale al ¯ componente de s. Luego, el único 
subgrafo conectado s’ con ¯ componente W y � componente al igual que el de s es 
asignado en s por Ãz  y es el único. La condicion (4) se sigue directamente del hecho 
de que Ãz′ satisface (4), y todos los subgrafos no mapeados por el Ãz′ contienen la 
arista entre � y ¯, por lo tanto contienen a � de cualquier manera. 
Finalmente, consideramos el caso en que [ tiene b o menos aristas. Claramente, 
>ÂÄ = ∅ si hay menos de b aristas o si [ no es conectado (conexo). Ahora, si [ es 
conexo y tiene b aristas hay un solo grafo conexo con b aristas, llamemoslo [. La 
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¯-componente de [ es el máximo subgrafo conexo de [’ que contiene a ¯; además 
observamos que tiene menos de b aristas. El hecho de que Ãz ′′ debe satisfacer (4) 
requiere que el ¯-componente de [ y en consecuencia [ sean la clase negativa; por 
lo tanto >ÂÄ es vacío. 
Caso 2: � no es esencial en [. 
Elijamos cualquier arista con � como uno de los extremos y sean ¯ y [´como arriba. 
Caso 2a: ^([) = ^([Ç). 
Por el lema 3 sabemos que � no es esencial en [’. En este caso simplemente 
aplicamos la HI al grafo [’ con � como el nodo y usamos solo las funciones Ãz′ para 
definir Ãz  (los subgrafos no contenidos en [’ son partidos y mapeados por sus � 
componentes). La verificación de las condiciones (1), (2), (3), (4), y (5) es igual 
que en el caso 1. 
Caso 2b: ^([) = ^([Ç) − 1. 
De nuevo, por el lema 3, � y ¯ son eseciales en [’. Como en el caso 1, aplicamos la 
HI a [’ con � como el nodo y a [’ con ¯ como el nodo, realizando los 
procedimientos del caso 1 con una excepción. Como ¯ es esencial,  ¯ ∈ >O�, pero 
cada subgrafo conexo s ⊄ [′ cuyo ¯ componente consiste en el nodo aislado ¯ 
seria de signo negativo aun sin ser la imagen de algún subgrafo bajo la función Ãz , 
por lo tanto los subgrafos que contienen a la arista entre � y ¯ van a ser 
clasificados y mapeados de acuerdo a sus ¯ componentes a menos que sus ¯ 
componentes consistan en un único nodo. En este último caso vamos a partirlos y 
asignarlos de acuerdo a sus � componentes. 
Aun quedan 2 detalles menores. Primero, la arista entre � y ¯ tiene signo negativo 
pero no es la imagen de Ãz . En segundo lugar, >O� es independiente en [’ pero no en 
[. Ambos detalles se corrigen removiendo � de >O� (ver lema 3), esto es, poniendo 
en >OÄ y asignando � en la arista entre � y ¯. La verificación de las condiciones (1), 
(2), (3), (4) y (5) son rutinarios. Por lo tanto la proposición ha sido demostrada. □ 
 
OBSERVACIÓN 1: Este teorema da estimaciones y en algunos casos el valor exacto del 
tamaño del máximo clique del grafo. 
Usamos esta proposición para estudiar ciertos subgrafos de (�, �) −grafos. Estos 
subgrafos son descritos a continuación. 
Consideremos un conjunto independiente sN en un (3, �) −grafo y sea st el 
subgrafo generado por los nodos restantes o si sN es el conjunto de nodos unidos a 
un nodo � tomamos sN y st los usuales cuando � es preferido. Para indicar la 
primera situación diremos que sN es preferido y para indicar lo último decimos 
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que � es preferido. Un nodo � de st se dice que esta sobre un conjunto de nodos > 
de sN si todas las aristas de � hacia sN tienen el otro extremo en >. Cualquier 
subgrafo de st se dice que está sobre > si todos sus nodos están sobre >. 
Finalmente, definimos el grafo con soporte > como el subgrafo en st generado por 
los nodos de st que están sobre >. 
 
OBSERVACIÓN 2: Supongamos que sN contiene À nodos y > contiene b nodos. Sea W el 
subgrafo soportado por >. Un conjunto independiente de W junto con los nodos de 
sN pero no de > forman un conjunto independiente de [. Se puede ver que W es un 
(3, � − (À − b)) −grafo. En general W tendrá pocas aristas, y por lo tanto pocos 
circuitos y por eso la proposición 5 dará una buena aproximación al máximo 
conjunto independiente de W, ^(W). 
 
Proposición 6: Sea [ un (3, �) −grafo con un nodo preferido � o un conjunto 
independiente preferido sN. En cualquier caso, sN contiene a nodos y sea Jz(�) el 
número de subgrafos conexos de st con � aristas y teniendo un total de { aristas 
desde esos nodos de st hacia los nodos de sN. Además, sea Êz  el conjunto de grafos 
conexos de st con � aristas. Para W un subgrafo de st, sea Ë(W) el número de 
nodos de sN que están unidos a W por una arista y Ì(W) el número de aristas de 
W hacia sN. Entonces: 

[G + � − 1 − a] ¸a
G¹ ≥ ·(−1)�(· Ía − {

G − {Î Jz(�)) + Ï(�, G, �),
Ð

z»O

Ñ

�»O
 

Donde � es impar y todos los subgrafos de [ con un G −conjunto como soporte 
tiene circunferencia más grande que �, y donde: 

Ï(�, G, �) = ·(−1)�{ · [Ía − Ë(W)
G − Ë(W)Î − Ía − Ì(W)

G − Ì(W)Î]}.
¨∈ÒÓ

Ñ

�»O
 

Dem: 
Sea > un conjunto de G nodos en sN, entonces pueden haber a lo sumo 
[(� − 1) − (a − G)] nodos independientes en W (el subgrafo de st soportado por 
>). Tenemos entonces [G + � − 1 − a] ≥ ^(W); y por la proposición 5, 

^(W) ≥ ·(−1)z
Ñ

z»O
Áz 

Donde Áz es el número de subgrafos conexos de W que tiene � aristas. 
Por lo tanto, 
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[G + � − 1 − a] ≥ ·(−1)z
Ñ

z»O
Áz. 

Ahora, suponiendo esta desigualdad sobre todos los subconjuntos de sN que 
contienen G nodos, el lado izquierdo es [G + � − 1 − a]ª�

�«. 
Para escribir el lado derecho consideremos un grafo conexo W con � aristas (W ∈
Êz). W va a estar sobre exactamente ¸��Ô(Ð)

��Ô(Ð)¹ G −conjuntos de sN y por lo tanto va a 
aparecer en la sumatoria esa misma cantidad de veces con (−1)z como coeficiente 
cada vez. Luego, 

[G + � − 1 − a] ¸a
G¹ ≥ ·(−1)�{

Ñ

�»O
· Ía − Ë(W)

G − Ë(W)Î}.
¨∈ÒÓ

 

Y el lado derecho también puede escribirse de esta forma: 

·(−1)z{
Ñ

z»O
· Ía − Ì(W)

G − Ì(W)Î + · [Ía − Ë(W)
G − Ë(W)Î − Ía − Ì(W)

G − Ì(W)Î]}.
¨∈ÒÓ¨∈ÒÓ

 

O simplemente, 

·(−1)z(· Ía − {
G − {Î Jz(�)) + Ï(�, G, �).

�

z»O

Ñ

z»O
 

Lo cual concluye la demostración. □ 
 
Para poder discutir las consecuencias de la proposición 6 introducimos la siguiente 
terminología. Un nodo de st que tiene exactamente � nodos se llamará un � −nodo, 
y la arista entre un { −nodo y un � −nodo se llamará una {, � −arista. 
 
OBSERVACIÓN 1: El número � de la proposición 6 se puede elegir igual a 1 o 3 en todos 
los casos en que [ es un (3, �) −grafo ya que un (3, �) −grafo y por lo tanto sus 
subgrafos tienen circunferencia por lo menos 4. 
 
OBSERVACIÓN 2: Si [ es un (3, �) −grafo y sN tiene � − 1 nodos, entonces: 

(1) JO(0) = 0; 
(2) Hay a lo sumo un 1-nodo sobre cualquier 1-conjunto de sN; 
(3) Puede haber a lo sumo tres nodos sobre un 2-conjunto de sN; 



Capítulo 3: Números exactos 

32 
 

(4) Si hay tres nodos sobre un 2-conjunto de sN, dos de ellos deben ser 1-nodos 
unidos por una arista y el tercero un 2-nodo; 

(5) Puede haber a lo sumo (Q(3, G + 1) − G) nodos sobre un G −conjunto de sN. 
Dem: 
(1) Cualquier 0-nodo junto con sN da un conjunto independiente de [. 
(2) Dos 1-nodos sobre un 1-conjunto junto con los otros � − 2 nodos de sN 

forman un conjunto independiente de [. 
(3) Es un caso especial de (5). 
(4) Dados tres nodos sobre un 2-conjunto, notamos que estos tres nodos junto 

con el nodo en el 2-conjunto deben formar un (3, 3) −grafo de 5 nodos y 
por dado que el único (3, 3) −grafo con 5 nodos en donde cada nodo tiene 
grado 2 es el pentágono, este es un pentágono. Esto requiere la descripción 
dada. 

(5) Consideremos el grafo W dado por un G −conjunto de sN y los nodos sobre 
este conjunto. Los nodos de W no tienen aristas hacia los otros � − 1 − G 
nodos de sN, por lo tanto si W contenía G + 1 nodos independientes vamos a 
producir de nuevo un � −conjunto independiente. Luego, W puede contener 
a lo sumo Q(3, G + 1) nodos y de ellos a lo sumo Q(3, G + 1) − G pueden 
estar sobre el G −conjunto de sN.  □ 

 
Proposición 7: Si [ es un (3, �) −grafo, a = � − 1, G = 3, entonces podemos elegir 
� = ∞ y  

Ï(∞, 3, �) = · Öz
¢

z»N
 

Donde Öz es el número de configuraciones posibles del tipo ez (ver FIGURA 1) que 
están contenidas en [ (por contenidas se entiende que hay un 3-conjunto de sN tal 
que el grafo dado por ese 3-conjunto y los nodos sobre él es de tipo ez). 
Dem: 
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FIGURA 1 

 
Notemos primero que los extremos de una arista en st tiene un soporte distinto 
para evitar la formación de un triángulo por lo tanto Ë(W) = Ì(W) si W consiste de 
sólo una arista y dos nodos (o si W es un único nodo). 
Consideremos un grafo conexo W con al menos 2 aristas que este sobre un 3-
conjunto. Sea � un nodo que tiene dos aristas adyacentes en W y denotemos por 
¯N, ¯t los otros extremos de esas aristas. Entonces ninguno de los nodos, �, ¯N, ¯t 
pueden ser � −nodos para � > 2 y si � fuera un 2-nodo necesariamente tendríamos 
¯N y ¯t ambos 1-nodos sobre el mismo nodo en sN, y esto no es posible. 
Concluimos entonces, que � es un 1-nodo. Esto excluye la posibilidad de un circuito 
sobre un 3-conjunto, ya que un circuito debe contener más de tres nodos de los 
cuales todos tendrían que ser 1-nodos y sabemos que ℎ 1-nodos deben tener un 
ℎ −conjunto como soporte. 
Consideremos ahora todos los posibles subgrafos conexos de st que tiene dos 
aristas sobre un 3-conjunto. Manteniendo la notación que usamos antes, ¯N y ¯t 
son ambos 1-nodos, o ¯N es un 1-nodo y ¯t es un 2-nodo, o ambos son 2-nodos. 
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Si ambos son 1-nodos, Ë(W) = Ì(W) y no hay contribución a Ï(∞, 3, �), el término 
del error. En el segundo caso, de las configuraciones et es posible y habría una 
contribución de 1 a Ï(∞, 3, �) en ese caso. Finalmente, si ambos ¯N y ¯t son 2-
nodos, debemos tener eN y de nuevo hay una contribución de 1 a Ï(∞, 3, �). 
A continuación consideramos los posibles subgrafos conexos que tengan tres 
aristas y como soporte a un 3-conjunto de sN. Primero consideramos tres aristas 
adyacentes a un nodo �. Si esto fuera posible entonces � sería un 1-nodo y los otros 
3 extremos de esas tres aristas estarían sobre un 2-conjunto de  sN, pero esos tres 
nodos son independientes de manera que podríamos producir un � −conjunto 
independiente con esos tres nodos y los nodos restantes de sN. Luego, el único 
subgrafo conexo con tres aristas sobre un 3-conjunto es un camino simple de 
longitud 3. Sea ¯N un nodo unido por una arista a �N que está unido con �t que a su 
vez esta unido con ¯t. Hemos mostrado que �N y �t deben ser 1-nodos, ¯N y ¯t no 
pueden ser ambos 1-nodos ya que cuatro 1-nodos deben estar sobre un 4-
conjunto. Si ¯N es un 1-nodo y ¯t es un 2-nodo tenemos la configuración e¬. El 
grafo generado por �N, �t y ¯N no contribuye con nada en Ï(∞, 3, �). El grafo dado 
por �N, �t y ¯t contribuye en 1 y todo el grafo en e¬ contribuye -1 de manera tal 
que la contribución neta es 0. Si ¯N y ¯t son 2-nodos tenemos la configuración e¤ y 
se puede ver que esto contribuye 1 en Ï(∞, 3, �).  
Finalmente, consideramos los subgrafos sobre un 3-conjunto que tienen más de 
tres aristas. Al igual que antes, ningún nodo puede ser adyacente a tres aristas, 
todos los 2-nodos en el subgrafo deben tener grado 1 en el subgrafo, y puede haber 
más de tres 1-nodos. La única configuración posible es un camino de cuatro aristas 
con los dos nodos de grado uno en el subgrafo siendo 2-nodos. Esto solo puede 
darnos la configuración e¢. Notando los nodos por ¯N, �N, �t, �¤, ¯t, en el orden en 
que están en el camino, vemos que los caminos  ¯N, �N, �t; �t, �¤, ¯t; y 
¯N, �N, �t, �¤, ¯t cada uno contribuye con 1 a Ï(∞, 3, �) mientras que ¯N, �N, �t, �¤ y 
�N, �t, �¤, ¯t cada uno contribuye con -1 y �N, �t, �¤ contribuye con nada, de manera 
que la contribución de la red de configuración e¢ es +1. □ 
 
Proposición 8: m(3, 5, 13) = 40;  m(4, 4, 17) = 40;  m(4, 4, 16) ≥ 40. 
Dem:  
Las primeras dos se siguen del hecho de que �([) = 0 para cada grafo. En la 
tercera, �([) ≤ 1 y si todos los nodos son de grado 7 (el mínimo grado posible), 
tenemos 56 aristas. □ 
 
Proposición 9: m(3, 6, 17) ≥ 38. 
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Dem: 
La proposición 4 junto con el lema anterior nos da el sistema: 

17m ≥ (15 + 25)|O + (20 + 16)|N + (26 + 9)|t, 
2m = 5|O + 4|N + 3|t, 

17 = |O + |N + |t. 
La solución que minimiza m es |O = 8, |N = 9, |t = 0, � m = 38. □ 
 
Proposición 10:  m(3, 6, 17) ≥ 40. 
Dem: 
Sea � el nodo preferido de grado 3 en un (3, 6) −grafo [ de 17 nodos. Como había 
sólo una solución en el sistema de la proposición 9 teniendo el valor mínimo en 38 
para m(3, 6, 17) y como |t = 0 en esta solución, podemos concluir que [ tiene 39 o 
más aristas. Notemos que st es un (3, 5) −grafo de 13 nodos, por lo tanto tiene 26 
aristas. Esto implica que sN contiene por lo menos un nodos ¯ de grado 5 (la suma 
de los grados de los nodos en sN es 13 o más). Sin embargo, los nodos de st son 
todos de grado 4 en st y por lo tanto sólo pueden existir 0-nodos o 1-nodos. Los 
cuatro 1-nodos sobre ¯, y los dos nodos de sN diferentes de ¯, forman un conjunto 
independiente de tamaño 6 en [. Luego, un (3, 6) −grafo de 17 nodos nunca puede 
tener un nodo de grado 3. 
Ahora, sea [ un (3, 6) −grafo de 17 nodos con 38 aristas. Es fácil mostrar que si � 
es un nodo preferido de grado 4 entonces st debe contener un 0-nodo, llamémoslo 
¯. Podríamos entonces unir � con ¯ por una arista, de esta manera extendemos [ a 
un (3, 6) −grafo de 17 nodos con 39 aristas. Por lo tanto, si demostramos la no 
existencia de un (3, 6) −grafo de 17 nodos con 39 aristas, la no existencia de un 
(3, 6) −grafo con 17 nodos y 38 aristas se demuestra simultáneamente.  
Sea [ un (3, 6) −grafo con 17 nodos y 39 aristas; [ debe entonces contener 7 
nodos de grado 4 y 10 nodos de grado 5. Si existe un nodo � de grado 4 adyacente 
con 3 nodos de grado 5, st (cuando � es preferido) es un (3, 5) −grafo con 12 
nodos y 20 aristas. Este grafo es único y está dado a continuación: 
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Usando la proposición 6 y el alto grado de simetría de sNt, uno podría mostrar sin 
mayor dificultad que es imposible poner las aristas entre sN y st=sNt de tal 
manera de producir un (3, 6) −grafo. Por lo tanto concluimos que cada nodo de 
grado 4 en [ es adyacente a dos o más nodos de grado 4. De este hecho se 
desprende que algún nodo de grado 5 debe ser adyacente a 4 otros nodos de grado 
5. Prefiriendo este nodo encontramos que st es un (3, 5) −grafo de 11 nodos y 15 
aristas. Este grafo es único y es el siguiente: 
 

 
 
Como antes se puede mostrar que es imposible poner aristas entre sN y st = sNN 
de manera tal que se forme un (3, 6) −grafo. Se sigue entonces que cualquier 
(3, 6) −grafo debe tener 40 aristas o más. □ 
 
Teorema 1: Q′(3, 7) ≤ 22. 
Dem: 
Sea [ un (3, 7) −grafo de 23 nodos y sea � un nodo de grado 5, st es un (3, 6)-
grafo de 17 nodos y por lo tanto de 40 o más aristas.  
Aplicando el corolario de la proposición 3 obtenemos 



Capítulo 3: Números exactos 

37 
 

40 ≤ 6Ø23 2¾ − 7 + 2Ù = 39. 
Por lo tanto, [ contiene sólo nodos de grado 6. 
 
Vamos a dividir el resto de la demostración en diferentes lemas, ya que es 
demasiado extensa.  
 
LEMA 4: Para cualquier nodo preferido �,  Jz(0) = 0 cuando { ≥ 4. 
Dem: 
 Sea �’ un { −nodo. Sea WN el subgrafo de [ formado por los nodos que son 
adyacentes a � o �’ o a ambos; sea Wt el subgrafo de [ formado por los nodos de 
[ distintos de � y �’ y de los puntos en WN. Como cualquier conjunto independiente 
en  Wt puede ser extendido (incluyendo � y �’) a un conjunto independiente en [, 
vemos que  Wt debes ser un (3, 5)-grafo. Como WN tiene (12 − {) nodos, K2 tiene 
(9 + {) nodos. En vista del hecho de que Q(3, 5) ≤ 13, concluimos que { ≤ 4. 
Supongamos que { = 4. Todos los 13 nodos en  Wt tienen grado 4 en  Wt, por lo 
tanto existen exactamente 26 aristas entre WN y  Wt. La suma de los grados de los 
nodos de WN es 48. Doce de este total corresponden a las aristas que va a � y �’, 26 
corresponden a las aristas a  Wt, y los 10 restantes deben corresponder a las 5 
aristas en WN. Sin embargo, WN puede tener a lo sumo 4 aristas (las únicas aristas 
posibles en WN son entre dos nodos adyacentes a � pero no a �’ y los dos nodos 
adyacentes a �’ pero no a �). Con esto concluimos la demostración.  
 
LEMA 5: Para cualquier nodo p,  JN(0) = 2 + J¤(0) y Jt(0) = 14 − 2J¤(0).          (1) 
Más aún, si À es el número de aristas entre 1-nodos y 3-nodos y Ï = Ï(∞, 3, �), 
entonces: 
2Jt(1) ≥ [6 − 2J¤(0)] + J¤(2) + (À + Ï).     (2) 
Dem: 
Recordemos que JO(0) = 0 y que  Jz(0) = 0  cuando { ≥ 4 de tal manera que 
 JN(0) + Jt(0) + J¤(0) = 16 (el número de nodos en st). Cada nodo en sN tiene 5 
aristas hacia st, por lo tanto tenemos: 

JN(0) + 2Jt(0) + 3J¤(0) = 30. 
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Resolviendo esta ecuación obtenemos (1). Aplicando la proposición 6  con 
� = ∞, G = 3 tenemos: 

3 ¸6
3¹ ≥ ¸5

2¹ JN(0) + ¸4
1¹ Jt(0) + ¸3

0¹ J¤(0) − ¸4
1¹ Jt(0) − ¸3

0¹ J¤(1) + ¸3
0¹ J¤(2) + Ï.    

(3) 
La suma de los grados de los 1-nodos en st está dada por 2Jt(0) + J¤(1) + À y a su 
vez por 5JN(0). Por lo tanto,  J¤(0) = 5JN(0) − À − 2Jt(1). 
Y usando esto y las ecuaciones en (1) para eliminar J¤(1), JN(0), � Jt(0) de (3) 
obtenemos (2).  
 
LEMA 6: Para cualquier nodo �, 2 ≤ J¤(0) ≤ 4. 
Dem: 
Recordemos que puede haber a lo sumo seis 1-nodos en st (por la observación 
luego de la proposición 6). Este hecho junto con (1) en Lema 4 muestran que 
J¤(0) ≤ 4.  Ahora, si J¤(0) = 0 entonces JN(0) = 2, de manera tal que Jt(1) ≤ 1. Si 
las sustituimos en (2) del lema 4 vemos que 2 ≥ 6 + J¤(2) + (À + Ï). 
Por la proposición 7, Ï ≥ 0 de manera tal que la desigualdad no se cumple y por lo 
tanto la suposición de que J¤(0) = 0 lleva a una contradicción. Si suponemos que 
J¤(0) = 1 entonces JN(0) = 3, de manera tal que Jt(1) ≤ 2.  Pero si Jt(1) = 2 
entonces J¤(2) = 1.  Entonces (2) nos da 2Jt(1) ≥ 4 + Jt(2) + (À + Ï) ≥ 4 + J¤(2). 
Lo cual no se puede cumplir. Por lo tanto concluimos la demostración 
del lema. 
 
LEMA 7:  Para cualquier nodo �, J¤(0) ≠ 2. 
Dem:  
Ver apéndice B. 
 
LEMA 8: Para cualquier nodo �, J¤(0) ≠ 3. 
Dem: 
Ver apéndice B. 
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LEMA 9: Para cualquier nodo �, J¤(0) ≠ 4. 
Dem: 
Sea p un nodo cualquiera de [, por los lemas 6, 7 y 8,  J¤(0) = 4 y por lo 
tanto, por el lema 5, Jt(0) = 6. Cualquier cuadrilátero que contenga a � 
contiene exactamente un nodo de st. Los 1-nodos no pertenecen a 
ninguno de esos cuadriláteros, los 2-nodos están contenidos en 
exactamente uno cada uno, y cada 3-nodo está contenido en 
exactamente 3 cuadriláteros. Por lo tanto, hay 18 cuadriláteros en [ que 
contienen � y (18.23)/4 cuadriláteros en total en [, lo cual es imposible.  
 
Por lo tanto, vimos que J¤(0) no puede tomar ninguno de los valores 
posibles, lo cual es un absurdo. Luego, (3,7,22) = ∅, lo cual implica el 
resultado del teorema. □ 
 
Proposición 11:  Q′(3, 7) ≥ 21. 
Dem: 
En la definición de grafo cíclico, tomamos G = 3, {N = 1, {t = 3, {¤ = 8. □ 
 
Teorema 2:  Q′(3, 7) ≥ 22. 
Dem: 
Sea � un nodo con aristas hacia los nodos �N, �t, … , �¥. Sean �z� los nodos 
para 1 ≤ { < � ≤ 6 y digamos que �z�  tiene una arista hacia �z  y hacia ��  
(las mismas serán aristas entre sN y st cuando � sea preferido). 
Finalmente, unimos �z�  con ��Ú si {, �, G y ℎ son todos distintos entre sí. El 
grafo producido de esta manera tiene 22 nodos, no tiene conjuntos 
independientes de tamaño 7, pero sí triángulos. Es fácil ver que todos 
los triángulos están en st. Ahora, st  tiene un circuito Hamiltoniano e 
(el orden de los nodos en e es 
�Nt, �¤¬, �N¥, �t¤, �¬¥, �t¢, �¤¥, �¢¬, �N¤, �¢¥, �N¬, �t¥, �N¢, �t¬, �¤¢) pasando por cada 
triángulo exactamente una vez. Sea [ el grafo obtenido borrando las 
aristas de e del grafo descrito anteriormente. Entonces [ es un 
(3, 7) −grafo. 
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Se puede ver sin demasiada dificultad que el nuevo st es un 
(3, 6) −grafo. Asumiendo esto, cualquier conjunto independiente de 
tamaño 7 debería contener 2 o más nodos entre los de �N, �t, … , �¥. 
Primero elegimos dos nodos cualesquiera entre los �N, �t, … , �¥ y 
llamemos a los nodos restantes �Ñ, �Û , �f , �Ü . 
Si los dos nodos elegidos pertenecen a un conjunto independiente de 
tamaño 7 entonces los 5 nodos restantes deben estar sobre {�Ñ , �Û ,
�f , �Ü}. Los nodos sobre estos 4 nodos son �ÑÛ , �fÜ , �Ñf, �ÛÜ , �ÑÜ , �Ûf, y fueron 
unidos de a pares por las 3 aristas de la construcción original. Luego, 
tendremos 5 nodos independientes entre ellos en [ si la remoción de las 
aristas de e sacó 2 o más de estas aristas. Ahora, es fácil chequear que 
cada arista de C esta sobre un 4-conjunto distinto de sN  de tal manera 
que haya a lo sumo 4 nodos independientes sobre { �Ñ , �Û , �f , �Ü}.  
Si elegimos un 3-conjunto de �N, … , �¥ entonces el 3-conjunto 
complementario tiene sólo 3 nodos de st  sobre él, por lo tanto ningún 
3-conjunto de �N, … , �¥ puede ser extendido a un 7-conjunto 
independiente eligiendo nodos de st. De manera análoga no se puede 
extender  4-conjuntos y 5-conjuntos de �N, … , �¥ a 7-conjuntos 
independientes. De manera que tenemos un (3, 7) −grafo de 22 nodos, de 
lo cual se desprende el resultado. □ 
 
Teorema 3:  Q(3,7) = 23 
Dem: 
Sale inmediatamente de unir las proposiciones que nos dan las dos desigualdades. 
Tenemos que Q’(3, 7) = 22, por lo tanto,  Q(3, 7) = 23. □ 
 

R(3, 8)=28 [1[1[1[12222]]]] 
    
A lo largo de esta demostración escribiremos (l, I) al referirnos a un 
(3, l, I) −grafo. Una herramienta para la construcción de los (l, I)-grafos  es la 
siguiente: 

 

Lema 1:Lema 1:Lema 1:Lema 1: para l ≥ 2, sea G en (l, I, n, m) y sea a en \([) con grado n. Luego,  
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a) I − Q(3, l − 1)  ≤  n ≤  L{I{l − 1, I/2} 
b) [[st(a)] pertenece a (l − 1, I −  n − 1, n ´, m´) para algunos n ´y m´ que 

cumplen: 
n ´(I −  n ´ − 1) −  n ´(l − 2)  ≤  2m´ ≤  (l − 1)(I −  n ´ − 1) −  n ´( n ´ –  1) 

Dem: 

a) Si n fuera mayor o igual a l, los vecinos de a serían un conjunto 
independiente de tamaño mayor o igual a  l, lo cual es absurdo, pues [ no 
puede tener conjuntos independientes de tamaño mayor o igual a l por 
definición.  Son un conjunto independiente pues como [ es libre de 
triángulos si dos de ellos estuvieran unidos entre ellos, junto con a 
formarían un triángulo.  
 Además, ningún grafo libre de triángulos de I vértices tiene más de It/4 
ramas, por lo tanto, n es menor o igual a I/2. 
Antes de seguir, veamos un resultado: si [ es un (G, y) −grafo y a es un 
vértice de [, entonces sN(a) es un (G − 1, y) −grafo y st(a) es un 
(G, y − 1) −grafo. Esto es así pues cualquier clique de tamaño � en sN(a) se 
convierte en una clique de tamaño � + 1 cuando agregamos a, y cualquier 
conjunto independiente de tamaño y en st(a)se convierte en un conjunto 
independiente de tamaño � + 1 cuando agregamos a.  
Si n fuera menor que I − Q(3, l − 1) la existencia de [[st(a)] contradice la 
definición de Q(3, l − 1). Si valiera que n > I − Q(3, l), entonces 
Q(3, l − 1) > I − n, pero [[st(a)] es un grafo libre de triángulos y cuyo 
mayor conjunto independiente tiene tamaño menor que l − 1. El tamaño de 
[[st(a)] es I −  n − 1, lo cual lleva a un absurdo. 
 

b) Sea Ý la suma de los grados en [ de los vértices de st(a), entonces,  
n (I −  n − 1)  ≤  Ý ≤  (l − 1) (I −  n − 1) 

En efecto: |[[st(a)]| = |\([)| − |sN(a)| − 1 = I − n − 1 

Pues la cantidad de nodos es I, la cantidad de vecinos de a es n y el uno que resta 
es debido a a. Luego, en Ý hay por lo menos I − n − 1 sumandos.  

Sea b ∈ st(a), veamos que n ≤ j(b) ≤ l − 1.  
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Supongamos que j(b) > l − 1, entonces  j(b) ≥ l, por lo tanto existe un conjunto 
independiente de tamaño l o más (ya que las ramas adyacentes a b no pueden 
estar unidas entre sí pues el grafo es libre de triángulos), lo cual es absurdo. 

Ahora supongamos que n > j(b). Esto también es absurdo pues n era el grado 
mínimo en G. 

Análogamente, si E es la suma de las ramas en G entre sN(a) y st(a), entonces 

n ( n − 1)  ≤  ] ≤  n (l − 2) . 

El resultado sale de notar que 2m´ = Ý − ]. 

 

Sea s un (l − 1, I −  n − 1) −grafo  y sea [ un grafo de orden I  y grado mínimo 
n ≤ l − 1 tal que [[st(a)] = s para algún a en \([) de grado n. En estas 
circunstancias decimos que [ es una extensión de de s.  

Sea sN(a) = {aN, at, … , ap} y para 1 ≤ { ≤  n, defino vz = sN(az) ∩ st(a). Notemos 
que |vz| = j(az) − 1 para 1 ≤ { ≤  n. □ 

 

Lema 2:Lema 2:Lema 2:Lema 2: Sea [ una extensión de s, con s = [[st(a)] perteneciente a                           
(l − 1, I − n − 1). Luego, [ pertenece a (l, I) si y solo si se cumplen: 

a) sN(a) es un conjunto independiente de [ 
b) Cada vzes un conjunto independiente de s 
c) Para cada ^ incluido en {1,2, … , n}, ningún conjunto independiente de 

tamaño l − |^| está contenido en \(s) − ∐ v{z∈ß  
Dem: 

Como las condiciones a) y b) juntas equivalen a requerir que [ sea libre de 
triángulos, es suficiente considerar la existencia de conjuntos independientes de 
tamaño l.  

Como H es un (l − 1, I −  n − 1) −grafo no puede haber conjuntos independientes 
de tamaño l que incluyan a a.  
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Por otro lado, un conjunto de esa forma que no incluye a a existe si y solo si no se 
cumple la condición  c).  □ 

 

Como cualquier [ en (l, I, n) puede tener más de un vértice de grado n, puede ser 
construido a través de varios s en (l − 1, I − n − 1) distintos.  

Para reducir el número de veces que cada [ fue construido, se emplean diferentes 
técnicas. 

Consideramos una función à([) definida para cualquier grafo G y que cumple las 
siguientes propiedades: 

1) à([) es una órbita de la acción del grupo de automorfismos á�l([) en \([) 
2) Los vértices en à([) tienen grado mínimo en [ 
3)  Para cualquier permutación â de \([) vale àªâ([)« = â(à([)) 

 

El programa nauty computa una permutación G = G([) de \([) tal que         
Gªâ([)« = G([) para cualquier permutación â de \([). Una permutación así se 
llama nombramiento canónico (canonical labelling) de [. 

Nauty  también puede computar órbitas de á�l([). 

Supongo \([) = {1,2, … , I}. Si defino à([) como la órbita que contiene el vértice 
de mínimo grado que aparece en la primera secuencia G − 1(1), G − 1(2), . . , G −
1(I). Luego, se ve que à cumple los requerimientos 1), 2) y 3) de antes.  

 

Para l ≤ 7, restringimos [ a ser solo construida a través de s = [[st(a)] para 
algún a en à([). Los requerimientos de à implican que isomorfismos de [ pueden 
solo aparecer dentro de las extensiones del mismo s, lo que simplifica en gran 
medida el rechazo por isomorfismos. 

Para l = 8, no había tanto interés en el rechazo de isomorfismos pues se esperaba 
hallar pocos o ningún grafo. Por lo tanto no se usó à([) como arriba sino que 
aceptamos cualquier grafo producido. En ese caso construimos [ solo por algunos 
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s en (l − 1, I −  n − 1, n ´) con n ´ tan pequeño como se pueda, con la ayuda del 
siguiente lema. 

 

Lema 3:Lema 3:Lema 3:Lema 3: Sean a y b distintos vértices de un grafo [ en (l, I), entonces el mínimo 
grado de [[st(a)] es a lo sumo l − 1 − |[(a) ∩ [(b)| 

Dem: 

Si a y b son adyacentes, entonces |[(a) ∩ [(b)| = 1 y por lo tanto quisiera ver 
que el mínimo grado de los nodos en st(a) es a lo sumo l − 2. Supongamos que no. 
Entonces:  

LíI{j(�): � ∈ st(a)} > l − 2 

Lo que es equivalente a  
LíI{j(�): � ∈ st(a)} ≥ l − 1 

Pero entonces dado un nodo � en st(a), sus vecinos (que serían por lo menos 
l − 1) junto con a formarían un conjunto independiente de tamaño l, lo cual es un 
absurdo.  

Si a y b no son adyacentes, entonces |[(a) ∩ [(b)| = 0 y por lo tanto quisiera ver 
que el mínimo grado de los nodos en st(a) es a lo sumo l − 1. Supongamos que no. 
Entonces:  

LíI{j(�): � ∈ st(a)} > l − 1 

Entonces  
LíI{j(�): � ∈ st(a)} ≥ l 

Por lo tanto existiría un conjunto independiente de tamaño l o más dado por los 
nodos adyacentes a �. Los mismo no están conectados entre sí pues sino se 
formaría un triángulo. Pero no es posible que existan conjuntos independientes de 
tamaño l o más.  □ 
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EEEEL MÉTODO COMPUTACIONL MÉTODO COMPUTACIONL MÉTODO COMPUTACIONL MÉTODO COMPUTACIONALALALAL::::            

    

Los subconjuntos de {1, 2, … , I} fueron representados como arreglos de bits en una 
maquina de 32-bits. Esto permite realizar operaciones de conjuntos tales como 
unión, intersección y contención con solo un par de instrucciones en la maquina.  

Supongamos que tenemos algún s en (l − 1, I −  n − 1) y queremos encontrar las 
extensiones [ en (l, I, n ) de H. Sean  >N, >t, … , >ä una lista de conjuntos 
independientes de H con cardinalidad entre n − 1 y l − 2 inclusive.  

Para cada b en \([) y vN, vt, … , vz incluidos en \([), definimos: 

jz(b) =  jz(b, vN, vt, … , vz)  =  j (b) + |{vz/ b �mJlmImÖm � v�, 1 ≤ � ≤ {} 

Ahora, consideramos el siguiente procedimiento: 

Procedimiento make X  Procedimiento make X  Procedimiento make X  Procedimiento make X  (k, (X1, …, Xk-1), (Y1, …, YK)) 

# k y K son enteros, cada Xi y cada Yi son subconjuntos de V(G) 

 Si  k> n entonces  process ((vN, … , vp)) 

 Sino   

  Construir la lista (Z1,…, ZL) de todos los elementos Z de (Y1,…, YK) 
tales que: 

i) Para cada w en V(H), si dk-1(w)<k-1, entonces w esta en Z 
ii)  Para cada w en V(H), si dk-1(w)=t-1, entonces w no está en Z 
iii) H no tiene ningún conjunto independiente  de tamaño t-1-|I| 

disjunto de Z∪ ∐ v{z∈ß  para algún I en {1,2,---,k-1} 
Para i desde 1 hasta L hacer   

make X(k+1, (X1, …, Xk-1, Zi), (Zi, Zi+1, …, ZL)) 

 fin si 

fin make X. 
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Lema 4:Lema 4:Lema 4:Lema 4: Supongamos que en el procedimiento make X están invocados los 
argumentos (0, ( ), (S1, …, SN)). Luego, el procedimiento process va a ser invocado 
exactamente una vez por cada secuencia vN = >zç ,  vt = >zè , … , vp = >zé ,  tal que 
1 ≤ {N ≤ {t ≤ ⋯ ≤ {p ≤ r y se cumplan las condiciones del lema 2 y para ninguna 
otra secuencia. 

Dem: 

El procedimiento make X tiene la forma general de un procedimiento de 
backtracking para este problema. Los argumentos de un procedimiento recursivo 
general representan el índice k del conjunto v�, que va  a determinarse en este 
nivel por los valores de  vN, … , v��N, determinados hasta el momento, y por una 
lista de posibilidades para v�. Las condiciones i) y ii) respectivamente aseguran 
que el grafo final [ va a tener mínimo grado delta y máximo grado a lo sumo l − 1. 
La condición iii) asegura que el requerimiento c) del lema 2 se cumpla. □ 

 

Usando la representación descrita anteriormente, los tests i) y ii) son 
implementados en unidad de tiempo por cada conjunto �. La parte que mas tiempo 
toma del procedimiento es iii) y se usaron 2 métodos para implementarla.  

 

Supongamos que tenemos un conjunto > en \(s) y queremos determinar si s 
tiene un conjunto independiente de tamaño ¯ disjunto de >.  

 

El primer método era simplemente recorrer una lista de todos los conjuntos 
independientes de tamaño ¯. Solo se necesitan unas pocas instrucciones por cada 
conjunto independiente, pero la cantidad de conjuntos independientes puede ser 
muy grande.  

 

Para entender el segundo método, admitamos que los subconjuntos de 
\(s) pueden ser identificados con los enteros 1, 2, … , ê, donde ê = 2|�( )|�N, 



Capítulo 3: Números exactos 

47 
 

interpretando la representación binaria de un entero como el vector característico 
de un conjunto. Podemos construir previamente un vector de bits (ëO, ëN, … , ëì), 
tal que ëz = 1 si y solo si el conjunto representado por { es disjunto con algún 
conjunto independiente de tamaño ¯. Este vector permite que el test iii) se ejecute 
con costo uno. La construcción del vector en sí es costosa, pero se halló una técnica 
basada en Códigos Gray que resultaba suficientemente eficiente. Después de 
muchos experimentos, se halló que los mejores resultados se obtenían utilizando el 
segundo método para ¯ grande, digamos mayor o igual que l − 3, y utilizando el 
primer método para ¯ pequeño.  

 

Para l ≤ 7, el procedimiento process computa la función à([) definida antes. Si a 
no pertenece a à([), [ es automáticamente rechazado, en otro caso es escrito en 
un archivo de manera canónica. El nombramiento canónico se realizó por el 
programa nauty. El rechazo  a isomorfismos fue hecho usando el sorting del 
sistema nauty. 

Dados cada  uno de los conjuntos (l, I, n) producidos de esta manera, por el lema 1, 
cada conjunto de esta forma con 4 ≤ l ≤ 7 puede ser obtenido extendiendo 
miembros de otros conjuntos.  

 

Para el caso (7, 20), no se generaron todos los conjuntos de grafos, ya que nuestro 
interés principal radicaba en extenderlos a (8, 28, 7). Para (7, 20, 2) y (7, 20, 3), se 
genero el conjunto completo con 49 vértices. En el caso de (7, 20, 4) se restringió la 
generación a aquellos grafos de 49 ramas que no tienen ningún par de vértices 
distintos con 4 o más vecinos comunes.. Este fue el cálculo computacional más 
costoso de realizar. La aplicación directa del procedimiento make X a (6, 15) 
produjo casi 695 millones de grafos, entre  los cuales había 2820645 grafos no 
isomorfos del subconjunto recién definido. 
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En el proceso de extender (7, I) a (8, 28) se evitó el uso de la función à pero en 
cambio se aceptó cualquier grafo [ generado por el procedure make X.  Los pasos 
se detallan a continuación, notando que por el lema 1, (8,28) = ⋃ (8,28, n).íp»¬   

a) (8,28,5) fue encontrado vacío aplicando make X a los 191 miembros de 
(7,22) 

b) (8,28,6) fue encontrado vacío aplicando make X a cada uno de los grafos en 
⋃ (7,21, n).¬p»¤  Esos valores de n son suficientes por el lema 1. 

c) (8,28,7) puede encontrarse extendiendo todos los miembros de 
⋃ (7,20, n´, 49).¢p»t  Esto se hizo simplemente aplicando make X para 
n´ = 2 � n´ = 3. Para n´ = 4, este enfoque parecía ser de una enorme 
dificultad, así que se modificó el algoritmo para usar el lema 3. Como ya se 
habían computado todas las extensiones para n´ < 4, se pudo evitar la 
construcción de grafos que se sabe que  contienen 2 vértices con 4 vecinos 
comunes. Esta prueba se realizó en 3 días. En primer lugar, cualquier grafo 
s que falle este test se puede ignorar. En segundo lugar, ningún vz puede 
contener 4 vértices adyacentes a algún b en \(s), ni ningún par de vértices 
b, � en \(s) puede tener 3 vecinos comunes en s. Por último, vz ∩ v� debe 
tener cardinal a lo sumo 2 para { ≠ �. Se obtuvo que (8, 28, 7) = ∅. 

d) Finalmente, uniendo a), b) y c) obtenemos que (8, 28) = ∅. 
 

 

Teorema: 28Teorema: 28Teorema: 28Teorema: 28≤R(3,8)R(3,8)R(3,8)R(3,8)    [[[[7777]]]]     
Dem: 

Dando un grafo de 27 nodos libre de triángulos y sin conjuntos independientes de 
tamaño 8, obtendremos que 28 ≤ Q(3,8).  

 

El grafo que cumple lo requerido, al que llamaremos îtíÑ, esta definido en la 
siguiente tabla: 
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Grafo  Parámetros Vecinos de vértices en 
sN(a) 

st(a) 

îtíÑ (3, 8, 27, 87) 26 – 1, 5, 7, 11, 20  
25 – 1, 3, 6, 9, 13, 18 
24 – 2, 4, 6, 12, 17, 21 
23 – 2, 5, 8, 10, 14, 19 

stt 

stt (3, 7, 22, 60) 21 – 5, 11, 13, 14 
20 – 6, 12, 13, 14 
19 – 1, 3, 7, 12, 15 
18 – 2, 4, 7,  11, 15 
17 – 3, 5, 8, 10, 15 
16 – 4, 6, 8, 9, 15 

îN¬Ñ 

îN¬Ñ (3, 6, 15, 26) 14 – 1, 9 
13 – 2, 10 

sNt 

 

 

Y sNt, es el siguiente grafo de 12 vértices: 
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En la tabla, el subíndice del grafo determina cuál es el nodo preferido, por ejemplo 
en îtíÑ el nodo preferido es el 27. En la tercera columna están los vecinos de este 
nodo y luego del guión, aquellos nodos adyacentes al primer nodo dado.  □ 

 

Teorema: Teorema: Teorema: Teorema: ï(ð, ñ) = �ñ    
Dem: 

En el paso previo al anterior se vio que mediante un método computacional se 
obtuvo que (8,28) = ∅, es decir que no existen grafos libres de triángulos de 28 
vértices tales que el mayor conjunto independiente tenga tamaño menor que 8. 
Luego, si un grafo tiene 28 nodos y es libre de triángulos, entonces deberá tener un 
conjunto independiente de tamaño mayor o igual a 8. Esto implica que su 
complemento tiene un K8, por lo tanto obtuvimos que Q(3,8)  ≤ 28. 

Esto unido al hecho de que Q(3,8) ≥ 28, dado por el teorema anterior, nos da el 
resultado.  □ 

 
R(3,9)=36 [[[[7777]]]] 
 
Lema 1:  Sea [ un (G, y, I, m) −grafo.            
Sea ∆= Im − ∑ {m(3, y − 1, I − az − 1) + azt}|zz¿O . Entonces, ∆≥ 0, y hay por lo 
menos I − ∆ nodos completos en [. 
Dem:  
Para todos los { y �, definimos  

iz�(a) =  ó my IúLmJô jm aéJl{Öm| mI sN(a)jm ÁJ�jô a�                    |{ j(a) = az
0                                                                                                        mI ôlJô Ö�|ô

õ 

Notemos que ∑ iz��  es el número de ramas entre los nodos de grado az   y los de 
grado a�  , luego se obtiene que  ∑ iz�� = ∑ i�z� . Si a es de grado az  , y es preferido, 
entonces 
m = |st(a)| + (az )t + ∑ ({ − �)iz�(a)�¿O . 
Si sumamos esto para todos los nodos de [, obtenemos 
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Im = ∑|st(a)| + (az )t + · · ·({ − �)iz�(a).
�¿O�

ö÷ø(�)»zz¿O
                                              (1) 

En todos los casos se tiene que  
|st(a)|≥ m(3, y − 1, I − az  − 1),                               (2) 
Y si a es un vértice completo, se cumple la igualdad. 
Si { y � están unidos, la suma ∑ iz�(a)�  ocurre en (1) con un coeficiente de ({ − �) y 
la suma de ∑ i�z(a)�  ocurre con un coeficiente de (� − {). 
Por la afirmación del principio de la demostración se ve que las dos sumas se 
cancelan en (1).  
Por lo tanto, usando (1) y (2) tenemos  

Im ≥ · m(3, y − 1, I − az  − 1)|z  +
z¿O

(az)t|z  

= ·{m(3, y − 1, I − az  − 1) + (az  )t}|z  
z¿O

 

Lo cual es equivalente a que ∆≥ 0, y se ve fácilmente que cada vértice que no sea 
completo contribuye con al menos 1 a ∆, luego, debe haber por lo menos (I − ∆) 
nodos completos. □ 
 
Teorema 1:Teorema 1:Teorema 1:Teorema 1:  (i) 36≤ Q(3,9) [[[[6666]]]] 
(ii) Si [ es un (3, 9, 36)-grafo entonces es un grafo regular de grado 8. Si algún 
vértice en [ es preferido, entonces st(a) es un (3, 8, 27, 80)-grafo. 
Dem: 

(i) Veamos que QÇ(3, 9) ≥ 35, lo que es equivalente a ver que Q(3, 9) ≥ 36. 
En la definición de grafo cíclico tomamos: G = 4, {N = 1, {t = 7, {¤ = 11, {¢ = 16. 

(ii) Ahora, dado un (3, 9, 36) −grafo, queremos ver que es un grafo regular 
de grado 8. Sea a un nodo en [, queremos ver que j(a) = 8. 

Supongamos que j(a) > 8. Preferimos a y separamos en sN(a)  y st(a). Entonces, 
|sN(a)| > 8, entonces existe un conjunto independiente de tamaño 9 o más, lo cual 
es absurdo.  
Por otro lado, debido a un resultado visto en la demostración del valor de R(3, 8), 
sabemos que j(a) ≥ QÇ(3 − 1, 9) = 8. 
Por lo tanto,  j(a) = 8. 
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Finalmente, veamos que si un nodo a es preferido, entonces st(a) es un                       
(3, 8, 27, 80)-grafo. El grafo no tiene triángulos pues st(a) ⊂ [ y tampoco tiene 
conjuntos independientes de tamaño 8, ya que si tuviera alguno, entonces ese 
conjunto unido a a daría un conjunto independiente de tamaño 9 en [, lo cual es 
absurdo. Como j(a) = 8, tenemos que |st(a)| =36-8=27. Y vimos antes que 
m(3, 8, 27) = 80, lo que completa la demostración. □ 
 
Lema 2:Lema 2:Lema 2:Lema 2:  Si [ es un (3, 7, 19, 36)-grafo, entonces [ contiene un W¤ o un W¢. 
Dem:  
Si a es un 2, 3 o 4-nodo completo, entonces �(a) = 4, 11 ô 16 respectivamente. No 
hay 1-nodos  ya que e(3, 6, 17) = 40. Si [ contiene algún 2-nodo entonces el 2-
nodo forma una componente de [, ya que ningún a 2-nodo puede tener ningún 
vecino que no sea 2-nodo, pues �(a) ≤ 4. 
Sea el 2-subgrafo [t. Entonces tenemos ^([) = ^([t) + ^([ − [t).  
Pero [ tiene 19 nodos y es fácil chequear que para todas las particiones posibles 
de 19 en dos enteros L y I, en donde |\([t)| = L y |\([ − [t)| = I, debemos 
tener ^([) ≥ 7. Luego, no hay 2-nodos. 
Ahora aplicamos el lema 1. Tenemos el siguiente sistema  (1): 

∆= 648 − 34|¤ − 36|t − 40|N − 47|O ≥ 0, 
72 = 3|¤ + 4|t + 5|N + 6|O, 

19 = |¤ + |t + |N + |O. 
Ahora suponemos que no hay 3 o 4-nodos completos. Por el lema 1, se obtiene que  

19 − ∆= |O + |N, ô         ∆≥ |t + |¤. 
Esta relación, junto con (1) implica que  

|O = 2|¤ + |t − 23,          (2) 
85 ≥ 9|¤ + 4|t.                  (3) 

De (2) obtenemos que 
2|¤ + |t ≥ 23 

Lo que implica que 
8|¤ + 4|t ≥ 92 

Esto contradice (3), lo que completa la demostración. □ 
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Lema 3:Lema 3:Lema 3:Lema 3:  m(3, 7, 19) = 37. 
Dem:  
Antes se vio que 36 ≤ m(3, 7, 19) ≤ 37. Mediante algoritmos de computación se 
observa que la situación descrita en el lema anterior no puede ocurrir, luego, 
m(3, 7, 19) ≥ 37. Luego, se cumple lo buscado. □ 
 
Lema 4:Lema 4:Lema 4:Lema 4:  Si [ es un (3, 7, 21, 50) −grafo, entonces [ contiene un W¢ con 2 4-nodos y 
dos 5-nodos como vecinos. 
Dem: 
Recordemos que m(3, 6, 27) = 40, por lo tanto, si algún 3-nodos a en [ es 
preferido, entonces �(a) ≤ 10, lo que implica que a debe tener por lo menos 2 3-
nodos, llamémoslos bN y bt, como vecinos. Si bN es preferido, entonces bt tiene 
por lo menos 2 ramas hacia otros nodos de en st(bN). Pero st(aN) es un 
(3, 6, 17) −grafo, y como Q(3, 5) = 14,  st(bN) no puede tener nodos de grado 2 o 
menos. Luego, [ no contiene 3-nodos.  
Ahora aplicamos lema 1 para obtener el siguiente  sistema: 

∆= 1050 − 56|O − 50|N − 48|t ≥ 0, 
100 = 6|O + 5|N + 4|t, 

21 = |O + |N + |t. 
Resolviendo este sistema, se obtiene 

|t = 5 + |O 
|N = 16 − |O 
∆= 10 − 4|O 

Como ∆≥ 0, debemos tener |O ≤ 2. 
Para establecer el lema, solo debemos mostrar que algún 4-nodos a tiene como 
máximo 2 4-nodos como vecinos. Para ver por que esto es suficiente, notemos que 
como m(3, 6, 16) = 32, debemos tener que �(a) ≤ 18. Si a tiene como mucho 2 4-
nodos como vecinos, luego �(a) ≥ 4 + 4 + 5 + 5, por lo tanto la igualdad debe 
valer, y por lo tanto a tiene exactamente 2 4-nodos y 2 5-nodos como vecinos. 
Ahora, asumimos que cada 4-nodos tiene por lo menos 3 4-nodos como vecinos. 
Luego, el 4-subgrafo es un grafo libre de triángulos en el cual cada vértice tiene 
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grado por lo menos 3. No hay grafos de esta forma con menos de 6 nodos, y los 
únicos grafos de esta forma con 6 y 7 nodos respectivamente son W¤,¤y W¤,¢. Como 
|t = 5 + |O, solo necesitamos considerar esos 2 casos. 
En el primer caso, partimos el 4-nodos en conjuntos ùN y ùt tales que |ùN| = |ùt| =
3, y tal que cada vértice en ùN es adyacente a cada uno de los nodos de ùt. Hay 3 
ramas que van de nodos de ùN a nodos en [ − (ùN­ùt), luego hay por lo menos 12 
nodos en [ − (ùN­ùt) que no son adyacentes a ningún vértice en ùN. De este 
conjunto de 12 nodos, podemos elegir un conjunto independiente ù¤ de tamaño 4, 
pues Q(3, 4) = 9. Luego, ùN­ùt es un conjunto independiente de tamaño 7 en G, lo 
cual es imposible. 
En el segundo caso, si el 4-subgrafo es partido en dos conjuntos ùN y ùt, al igual que 
antes, con |ùN| = 3 y |ùt| = 4, usando un argumento similar se puede ver que ùN es 
parte de un conjunto independiente de tamaño 7.  □ 
 
Lema 5:Lema 5:Lema 5:Lema 5:  m(3, 7, 21) = 51. 
Dem: 
Antes se vio que 50 ≤ m(3, 7, 21) ≤ 51. Mediante algoritmos de computación se 
observa que lo descrito en el lema anterior no puede ocurrir, luego m(3, 7, 21) ≥
51. Lo que completa la demostración. □ 
 
Lema 6: Si G es un (3, 7, 22, m) −grafo y m ≤ 62, entonces [ no contiene nodos de grado 
menor a 5. 
Dem: 
Si a es un 4-nodo, entonces st(a) es un (3, 6, 17) −grafo. Todos los grafos de esta forma 
son conocidos.  Los algoritmos utilizados para descartar los valores de m ≤ 61 se 
describen a continuación.  
Supongamos que [ es un (3, 7, 22, 59) −grafo y que a es un 5-nodo completo. Por el lema 
4, [ no tiene 4-nodos, y como �(a) = 27, a debe tener tres 5-nodos, llamémoslos 
b1, b2, b3, y dos 6-nodos, digamos b4,  b5, como vecinos. Queremos ver que es 
imposible unir nodos de s1(a) con nodos de s2(a) de manera que el grafo resultante sea 
un (3, 7) −grafo. Notemos que dado un nodo preferido a, una lista de los grados de los 
nodos en s1(a)  y el grafo s2(a), el siguiente algoritmo generará, si existe alguno, todos 
los grafos posibles con esta estructura. En nuestro caso, notemos que s2(a)  es un 
(3, 6, 16, 32) −grafo. Todos los grafos de esta forma están listados. Elegimos uno de esos 
grafos, digamos s16� y procedemos.  La descripción del grafo s16� es la siguiente: 
 



Capítulo 3: Números exactos 

55 
 

Parámetros Vecinos de nodos en s1 s2 
(3, 6, 16, 32) 15 – 4, 7 

14 – 3, 5, 10 
13 – 4, 6, 8, 9 

s12 

 
Donde: 

 
 
Para evitar triángulos durante la construcción de [, es suficiente unir cada nodo b{ en s1 
con un conjunto independiente >{ en s16�. Si b{ es un L −nodo en [, entonces >{ es un 
conjunto independiente de tamaño (L − 1). 
Dados dos nodos b{ y b� en s1 es usualmente imposible tener >{ = >�, y la condicion que 
asegura esto es fácil de chequear a mano. Procedemos como sigue: si >{ = >�, entonces b{ y 
b� tienen los mismos vecinos. Si b{ y b� son preferidos simultáneamente entonces [ es 
partido en 3 grafos: {bz , b�}, s1(b{) = s1(b�) y s2(b{) − b� = s2(b�) − b{. A este 
último grafo lo llamaremos s2(b{, b�). Es fácil ver que como bN y bt no son adyacentes, 
s2(b{, b�) debe ser un (3, 5) −grafo. Más aún, s1(b{) tiene por lo menos seis nodos, de 
manera que s2(b{, b�) tiene por lo menos 22-6-2=14 nodos. Pero no existe ningún 
(3, 5, 14) −grafo, pues Q(3, 5) = 14. 
Para construir [, debemos elegir tres 4-conjuntos independientes distintos >1, >2 � >3, y 
dos 5-conjuntos independientes distintos, >4 y >5, unir b{ con cada nodo en >{ y luego 
chequear para ver si el grafo resultante tiene algún 7-conjunto independiente. Si no hay 7-
conjuntos independientes, entonces [ es un (3, 7, 22, 59) −grafo. 
Dada una selección de conjuntos >{, donde pueden los 7-conjuntos independientes estar en 
el grafo [. Si ù es un 7-CI en [, y ù contiene a a, entonces ù no contiene a ninguno de los 
nodos en s1(a). Entonces, ù − {a} es un 6-CI en s2(a), lo cual es imposible. Si ù contiene 
menos de 2 nodos en s1(a), el mismo problema ocurre. Luego, l debe contener al menos 
dos nodos en s1(a). 
Ahora, supongamos que ù es un 7-conjunto independiente en [, como antes, y 
supongamos que ù contiene exactamente G nodos b{1 , b{2 , … , b{G  en s1(a), donde G ≥ 2.  
Sea                     \2 = \(s2(a)). Entonces ù − {bzç , bzè , … , bzú} es un (7 − G) −conjunto 
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independiente en \2 − (>{1 ∪ … ∪ >{G  ). Recíprocamente, si los G conjuntos >{1 , … , >{G  
tienen la propiedad de que cuando son removidos de \2, un (7 − G) −conjunto 
independiente > queda, entonces > ∪ {bzç , bzè , … , bzú} es un 7-conjunto independiente en 
[. Por lo tanto, una condición necesaria y suficiente para que la selección {>zç , … , >zú} 
represente un (3, 7) −grafo es que para cada subselección {>zç , … , >zú} con G ≥ 2, tenemos 
que el conjunto  \2 − (>{1 ∪  … ∪ >{G  ) no contiene ningún  (7 − G) −conjunto 
independiente.  
Decimos que los conjuntos >{ y >� forman un “buen” par si \2 − ª>{ ∪ >�« no tiene 5-
conjuntos independientes. De lo anterior, vemos que si la selección {>N, … , >¤} representa 
un (3, 7) −grafo, entonces es necesario, pero no suficiente, que cada par de conjuntos 
>{ , >�  sea un buen par. La propiedad de ser un buen par depende solo de s2(a), que en 
este caso es s16�. 
Construimos ahora tres matrices ê44, ê45 y ê55. El primer algoritmo nos da listas de 4- y 
5-conjuntos independientes. Los llamaremos {>z¢: { ≤ j¢} y {>z¬: { ≤ j¬}, donde [ contiene 
j4 4-conjuntos independientes y j5 5-conjuntos independientes. Si { < � entonces 
definimos la entrada {� de la matriz ê44 como 1 si >{4 y >�4 forman un buen par y 0 sino. La 
matriz ê55  se define de la misma manera. Para todos los { y � definimos la entrada {� de 
ê45  como 1 si >{4 y >�5 son un buen par y 0 sino. Una manera eficiente de generar estas 
matrices es descrita a continuación.  
Para estas matrices generamos una lista de todos los conjuntos de la forma á =
{>Ñ¢, >Û¢, >f¢, >Ü¬, >q¬} en donde cada par en el conjunto es un buen par. Para obtener todos los 
conjuntos de esta forma, tomamos la primera fila ê44

(1) en la matriz ê44  y elegimos la 
primera columna � para la cual la entrada {� es un 1. Hemos ahora elegido los conjuntos >14 
y >�4. A continuación, la operación “&” es aplicada a la primera y la � −esima filas y la 
primera entrada distinta de cero, digamos en la G −esima columna, es elegida. Esto 
corresponde a elegir >G4. Notemos que en el conjunto {>N¢, >�¢, >�¢} todos los pares son un 
buen par. Debemos ahora elegir dos 5-conjuntos independientes. De la matriz ê45 , 
elegimos la primera, la � −esima y la G −esima filas y tomamos sus “&”. Supongamos que 
en el resultado el primer 1 ocurre en la y −esima columna. Entonces los 5-conjuntos 
independientes >y5 forman un buen par con cada uno de los tres 4-conjuntos 
independientes que ya han sido elegidos. Finalmente, el resultado de la ultima “&” 
operación es “&-ada” con la y −esima columna de ê55 . Si la L −esima columna en el 
resultado es 1 entonces el conjunto >L5  puede ser adjuntado para completar el conjunto A. 
Los 10 pares en A son buenos pares. Entonces hacemos backtrack. 
Si algún conjunto de la forma A existe, entonces chequeamos cada conjunto para ver si 
para todas las elecciones de G conjuntos de A,  G ≥ 3, cuando esos G conjuntos son 
removidos de \2, no queda ningún (7 − G) −conjuntos independientes. Si ese es el caso, 
entonces el conjunto A representa un (3, 7, 22, 59) −grafo. 
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Ahora describimos como las matrices ê{�  son construidas. Primero construimos la matriz 
r4 ( y de manera similar, r5). La matriz r4 es una matriz de tamaño j4 × j5. Se pone un 1 
en la posición ëÖ de r4 si y solo si >ë5 ∩ >Ö5  = ∅. 

Llamemos r{
(G) a la G −esima fila de r{. Para encontrar la entrada Gy de la matriz ê44 , 

donde G < y, miramos las filas de r4
(G) y r4

(y). Si r¢
(�)&r¢

(ý) tiene unos en ella, entonces la 
entrada Gy de ê44  recibe el valor 1. Para ver porque esto funciona, notemos que no hay 
unos en r4

(G)&r4
(y) si y solo si cada 5-conjunto independiente >�5 interseca a >4

(G) o a >4
(y). 

Esto pasa si y solo si el par (>¢
(�), >¢

(ý)) es un buen par, lo cual es cierto si y solo si la entrada 
Gy de ê44  es un 1.  □ 
 
Lema 7:Lema 7:Lema 7:Lema 7:  Si [ es un (3, 8, 27, 80) −grafo entonces [ no tiene nodos de grado menor 
a 5. 
Dem: 
En esta demostración usamos que m(3, 7, 19) = 37, m(3, 7, 20) = 44, m(3, 7, 21) =
51  y m(3, 7, 22) = 60. Las primeras 3 igualdades fueron demostradas 
anteriormente y la ultima se encuentra en el lema anterior. 
Si [ contiene un vértice a de grado menor a 4, luego st(a) sería un (3, 7, I) −grafo, 
donde I ≥ 23, lo cual es imposible pues Q(3, 7) = 23.  
Si a es un 4-nodo con 2 4-nodos, digamos bN y bt, como vecinos, entonces bt está 
en st(bN) y bt tiene grado por lo menos 3 en este subgrafo. Pero st(bN) es un 
(3, 7, 22) −grafo, y Q(3, 6) = 18, por lo tanto sN(bN) no puede tener 3-nodos. 
Por lo tanto, cada 4-nodo en [ tiene por lo menos un 4-nodo como vecino. Luego, si 
a es un 4-nodo, entonces �(a) ≥ 19. Por lo tanto, |st(bN)|≤61. El lema anterior 
implica que st(a) no contiene 4-nodos, por lo cual [ tiene a lo sumo 2 4-nodos, a y 
quizás alguno de sus vecinos. 
Usando el lema 1 tenemos el siguiente sistema: 

∆= 2160 − 86|O − 80|N − 76|t − 76|¤ ≥ 0, 
160 = 7|O + 6|N + 5|t + 4|¤, 

27 = |O + |N + |t + |¤. 
Para resolver el sistema, podemos tomar 2 casos: 
Caso 1: |¤ = 2. 

∆= 2008 − 86|O − 80|N − 76|t ≥ 0, 
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152 = 7|O + 6|N + 5|t, 
25 = |O + |N + |t. 

Caso 2: |¤ = 1. 
Resolviendo el sistema obtenemos que |t ≤ 2. Luego, el 4-nodos v tiene Z-suma 
por lo menos 5+5+6+6=22, por lo tanto, |st(a)|≤58. Pero st(a) es un (3, 7, 22)-
grafo, y m(3, 7, 22) = 60, lo que nos da una contradicción.  
Esto completa la demostración. □ 
 
Lema 8:Lema 8:Lema 8:Lema 8:  Si [ es un (3, 8, 27, 80) −grafo, entonces o [ contiene un W¥ con seis 6-
nodos como vecinos , o un W¬ con un 5-nodo como vecino. 
Dem: 
Vamos a usar el sistema de desigualdades planteado en el lema anterior, pero 
tomando |¤ = 0. De esto obtenemos: 

|t = |O + 2, 
|N = 25 − |O, 

∆= 8 − 2|O ≥ 0. 
Por lo tanto, |O ≤ 4, y 2 ≤ |t ≤ 6. Notemos que como m(3, 7, 20) = 44 y       
m(3, 7, 21) = 51, si a es un 5-nodos, entonces �(a) ≤ 29, y si a es un 6-nodos, 
entonces �(a)  ≤ 36. En particular, el número de (5, 6) −ramas es por lo menos 
tan grande como el de (6, 7) −ramas, pues de otro modo algún 6-nodo a tendría 
más 7-nodos que 5-nodos como vecinos, lo que forzaría �(a) > 36.  
Caso1: |t ≤ 4. 
Cada 5-nodos tiene por lo menos 4 6-nodos como vecinos, y ningún 6-nodos es 
adyacente a ningún 7-nodos ni a ningún 5-nodos, por lo tanto hay como máximo 16 
6-nodos adyacentes a un 5-nodos o a un 7-nodos. Pero hay por lo menos 21 6-
nodos, luego, hay un 6-nodos con 6 6-nodos como vecinos. 
Caso 2: |t = 5. 
Si no existe ningún 6-nodo con 6 6-nodos como vecinos, entonces cada 6-nodo es 
adyacente a por lo menos un 5-nodos, y como hay 19 6-nodos, debe haber por lo 
menos 19 (5, 6)-ramas. Pero hay solo 5 5-nodos, entonces algún l −nodo a tiene 
por lo menos 4 6-nodos como vecinos. Como �(a) ≤ 29, v debe tener exactamente 
4 6-nodos y un 5-nodos como vecinos. 
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Caso 3: |t = 6. 
En este caso, ∆= 0, por lo tanto el lema 1 implica que todos los nodos son 
completos. Si a es un 7-nodos, entonces �(a) = 43, luego a debe tener por lo 
menos un 7-nodo como vecino. Por lo tanto, solo hay  4 posibilidades para el 7-
subgrafo y son las siguientes: 

 
Si a es un 7-nodo que tiene { 7-nodos como vecinos, entonces a tiene ({ − 1) 5-
nodos como vecinos, pues �(a) = 43. Luego, en cualquiera de los 4 casos, hay 
como máximo 4 (5,7) −ramas. Teniendo en cuenta que hay 6 5-nodos, debe haber 
un 5-nodo b con ningún 7-nodo como vecino. Dado que �(b) = 29, b debe tener 4 
6-nodos y un 5-nodo como vecinos. 
Esto completa la demostración. □ 
 
Lema 9:Lema 9:Lema 9:Lema 9:  m(3, 8, 27) ≥ 81. 
Dem: 
Antes se vio que m(3, 8, 27) ≥ 80. Mediante algoritmos computacionales se observa 
que las condiciones dadas en el lema anterior no pueden ocurrir, luego,  
m(3, 8, 27) ≥ 81. □ 
    
Teorema 2:Teorema 2:Teorema 2:Teorema 2:  Q(3, 9) = 36. 
Dem: 
La no existencia de un (3, 8, 27, 80) −grafo implica el resultado. Habíamos visto 
que si [ es un (3, 9, 36) −grafo entonces es un grafo regular de grado 8; y que si 
algún vértice en [ es preferido, entonces st(a)  es un (3, 8, 27, 80) −grafo. Luego, 
como no existe ningún (3,8,27,80) −grafo, tampoco puede existir ningún 
(3,9,36) −grafo.  □ 
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Números de la forma R(4, n) 

 

R(4, 4)=18 [[[[4444]]]] 
 

Teorema:   Q(4,4) = 18 
Veremos que para todo grafo [ con por lo menos 18 nodos, o [ o su complemento 
[̅  contiene un subgrafo W¢.  

Elijamos un nodo b cualquiera. Los nodos de [ se dividen en 2 grupos, los que 
están unidos con b, grupo >,  y los que no, grupo ù. Tenemos que |>|  ≥ 9 o |ù|  ≥
9, pues sino |> ∪ ù| es menor a 18, lo cual es absurdo. 

Si |ù|  ≥ 9, entonces, como Q(4,3) = 9, o hay un W¢ en ù o hay un conjunto 
independiente de 3 nodos. En el primer caso, ya obtenemos un W¢. En el segundo 
caso, juntando w con los 3 nodos del conjunto independiente tenemos un W¢ en [̅. 

Si |S| ≥9, usamos el hecho de que Q(3,4) = 9 (como vimos antes) para afirmar que 
o existe un W¤ en > o existe un conjunto independiente de 4 nodos. En el segundo 
caso, inmediatamente tenemos un W¢ en [̅. En el primer caso, juntando b con el W¤ 
en > tenemos un W¢ en [. 

Finalmente, para probar que Q(4,4) = 18, mostramos un grafo de 17 nodos en el 
cual ni G ni [̅ tienen un W¢. 
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En este grafo cada nodo está unido con su primer, segundo, cuarto y octavo 
vecinos hacia la derecha y hacia la izquierda. El grafo que se encuentra a 
continuación es su complemento. 

 
Ver Apéndice A. En matlab aplicamos: k4(M9)=0 y k4(M10)=0, donde M9 y 
M10 son las matrices de adyacencia de los grafos descritos arriba. □ 
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R(4, 5)=25 [1[1[1[13333]]]] 
 
Para esta demostración se intentará construir una familia de (4, 5, 24) −grafos, 
definida de tal manera que cada (4, 5, 25) −grafo debe ser una extensión de un 
nodo a por lo menos uno de los grafos de nuestra familia. 
Para G = 7, 8, 9, 10, sea ℛ′(3, 5, G) el conjunto de (3, 5) −grafos de orden menor o 
igual a G, tal que cada (3, 5, G) −grafo contiene por lo menos uno de ellos. De 
manera similar, para G = 11, 12, sea ℛ′(4, 4, G) el conjunto de los (4, 4) −grafos de 
orden menor o igual a G, tal que cada (4, 4) −grafo contiene por lo menos uno de 
ellos.  
Supongamos que ��  es un (4, 5, 25) −grafo. Elegimos un nodo � de ��  tal que: 

(i) Si � es un nodo de ��  de grado j ≤ 10, sea a un nodo de sN(�) tal que 
sN(�) − a contiene algún miembro de ℛ′(3, 5, j).  

(ii) Si � tiene grado j ≥ 12, sea a el nodo de st(�) tal que st(�) − a 
contiene algún miembro de ℛ′(4, 4, 24 − j). 

 
Como ��  no puede ser regular de grado 11, teniendo orden impar, por lo menos una 
elección de a es posible. Por lo tanto, al menos un subgrafo de ��  ocurre en el 
conjunto de todos los (4, 5, 24) −grafos F de manera tal que para algún �,  sN(�) y 
st(�) están representados por alguna fila de la siguiente tabla: 

sN(�) st(�) 
ℛ’(3, 5, 7) ℛ (4, 4, 17) 
ℛ’(3, 5, 8) ℛ (4, 4, 16) 
ℛ’(3, 5, 9) ℛ (4, 4, 15) 

ℛ’(3, 5, 10) ℛ (4, 4, 14) 
ℛ (3, 5, 12) ℛ’ (4, 4, 12) 
ℛ (3, 5, 13) ℛ’ (4, 4, 11) 

 
El proceso de construir F de un par (sN(�), st(�)) se llamará “pegado”. La cantidad 
de pegados requeridos en la tabla anterior es demasiado grande para métodos 
comunes. Más adelante se describirá un algoritmo de eficiencia suficiente tal que 
todos los pegados requeridos se puedan hacer en un tiempo razonable. 
 
Para G = 7, 8, 9 tomamos ℛ’(3, 5, G) = ℛ(3, 5, G − 1). Pese a que conjuntos más 
pequeños hubieran sido más eficientes, se quería computar el conjunto completo 
de (4, 5, 24) −grafos teniendo un nodo de grado 8 o menos. Para ℛ’(3, 5, 10) 



Capítulo 3: Números exactos 

63 
 

tomamos un conjunto de 53 (3, 5, 9) −grafos elegidos, de acuerdo con la 
experiencia, lo menos denso posibles. 
Supongamos que [ y s son un (3, 5) −grafo y (4, 4) −grafo respectivamente. 
Definimos �([, s) como el conjunto de todos los (4, 5) −grafos � tales que para 
algún nodo � en \�, sN(�) = [ y st(�) = s. Vamos a utilizar � como un 
representante de �([, s). Vamos a suponer que los nodos de [ son nombrados con 
enteros continuos 0, 1, 2, … y que los subgrafos inducidos de [ también son 
nombrados de esta manera 0, 1, 2, … en el orden inducido por el nombramiento de 
[. 
Definimos un cono factible como un subconjunto de \s que no cubre ninguna 
clique de tamaño 3. Si H es un (4, 4, 14) −grafo, hay generalmente alrededor de 
4000 conos factibles. La relevancia de los mismos es que r�(a, \s) debe ser un 
cono factible para cada nodo a de \[. Nuestro problema es elegir conos factibles 
eO, eN, … ., uno para cada nodo de [, tal que ningún clique de orden 4 ni ningún 
conjunto independiente de tamaño 5 aparezca en �. Las diversas posiciones en las 
cuales estos subgrafos prohibidos podrían ocurrir son las siguientes: 
Wt: Dos nodos adyacentes a, b en \[ tienen e� ∩ eÂ  que cubre alguna arista de s. 
]�: Para algún conjunto independiente bO, . . . , b��N  de [, existe un conjunto 
independiente de orden 5 − l en s que no se encuentra en eÂ� ∪ eÂç ∪ … ∪
eÂ��ç   (l = 2, 3, 4). 
La operación de pegado puede ser lograda por una búsqueda regresiva de 
profundidad |\[|, pero esto es insuficientemente eficiente debido al gran número 
de conos factibles. En lugar de eso, vamos a partir el conjunto de conos factibles en 
familias bien estructuradas que pueden ser procesadas en paralelo. Un intervalo de 
conos factibles, que de ahora en adelante llamaremos intervalo, es un conjunto de 
conos factibles de la forma {v:� ⊆ v ⊆ ù} para algunos conos factibles � ⊆ ù. Este 
intervalo lo vamos a notar por [�, ù], y llamaremos a � y ù su ínfimo y supremo 
respectivamente. Obviamente, [�, ù] contiene 2|	|�|
| conos factibles. Usando una 
búsqueda heurística, el típico conjunto de 4000 conos factibles cuando s es un 
(4, 4, 14) −grafo puede ser escrito como la unión disjunta de aproximadamente 
100 intervalos. Las dimensiones |ù| − |�| van desde 0 hasta 8.  
Supongamos L = |\[|. Si eO, … , eR�N son conos factibles, entonces �([, s, eO, … , eR�N) denota el grafo � con nodo � tal que sN(�) = [,  st(�) = s, y 
ez = r�({, \s) para 0 ≤ { ≤ L − 1. Claramente, este es un (4, 5, 25) −grafo si y 
sólo si las condiciones Wt, ]t, ]¤, ]¢ son evitadas. Similarmente, si ^O, N̂, … , ^R�N son 
intervalos, entonces �([, s, ^O, N̂, … , ^R�N) representa el conjunto de todos los 
(4, 5, 25) −grafos �([, s, eO, … , eR�N) tales que ez ∈ ẑ  para 0 ≤ { ≤ L − 1. 
Dado s, definimos 3 funciones sN, st, s¤: 2�  → 2� . Para v ⊆ \s sean 
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sN(v) = {b ∈ \s: ab ∈ ]s ��J� �yÁúI a ∈ v}; 
st(v) = {b ∈ \s: ab ∉ ]s ��J� �yÁúI a ∉ v}; 

s¤(v) = {b ∈ \s: {�, a, b}m| �I ÖôI��Ilô {Ijm�mIj{mIlm jm s ��J� �yÁúI �, a∉ v}. 
Estas funciones pueden ser calculadas por recursiones. Usando las mismas, 
podemos definir algunas “reglas de colapso” que se aplican a las secuencias 
^O, N̂, … , ^R�N de intervalos. Las reglas dependen de los grafos [ y s. En cada caso, 
o un intervalo es remplazado por un intervalo contenido en el, o el evento especial 
FALLA ocurre. Supongamos ẑ = [�z, ùz] para cada {, y definimos las reglas de 
colapso (a)-(d) como siguen: 

(a) Supongamos {�, a} ∈ ][. 
Si �§ ∩ �� ∩ sN(�§ ∩ ��) ≠ ∅ entonces FALLA 
Sino ù§ ≔ ù§ − (sN(�§ ∩ ��) ∩ ��) 

(b) Supongamos {�, a} ∉ ][, donde u, v son nodos distintos de G. 
Si s¤(ù§ ∪ ù�) ∉ ù§ ∪ ù� entonces FALLA 
Sino �§ ≔ �§ ∪ (s¤(ù§ ∪ ù�) − ù�) 

(c) Supongamos {�, a, b} es un conjunto independiente de tamaño 3 de G. 
Si st(ù§ ∪ ù� ∪ ùÂ) ∉ ù§ ∪ ù� ∪ ùÂ entonces FALLA 
Sino �§ ≔ �§ ∪ (st(ù§ ∪ ù� ∪ ùÂ) − (ù� ∪ ùÂ)) 

(d) Supongamos que {�, a, b, À} es un conjunto independiente de tamaño 4 de 
G. 
Si ù§ ∪ ù� ∪ ùÂ ∪ ù
 ≠ \s entonces FALLA 
Sino �§ ≔ �� ∪ ª\s − (ù§ ∪ ùÂ ∪ ù
)«. 

 
Notemos que, por ejemplo en la regla (c) el papel que juega � podría jugarlo a o b.  
La razón por la que se usan estas reglas de colapso esta dada por el siguiente lema. 
 
Lema 1: Supongamos que unas reglas de colapso se aplican a ^O, N̂, … , ^R�N. 
Si FALLA ocurre, entonces �([, s, ^O, N̂, … , ^R�N) = ∅. 
De otra manera, �([, s, ^O, N̂, … , ^R�N) = �([, s, ^O′, N̂′, … , ^R�N′) donde 
^O′, N̂′, … , ^R�N′ es una secuencia de intervalos luego de aplicar la regla. 
Dem: 
Consideremos la regla (a), por ejemplo. Sea {�, À} en EH una arista tal que � está en �§ ∩ �� y À está en ù§ ∩ ��. Claramente u no puede ser adyacente a À, ya que eso 
implicaría la formación de una 4-clique {�, a, b, À} (condición Wt). Por lo tanto, 
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�([, s, ^O, N̂, … , ^R�N)=∅ si À está en �§; de otra forma À puede ser removida de ù§. 
La aplicación de esta regla simultáneamente a todas las aristas {�, À} es 
precisamente la regla (a). 
Las reglas (b)-(d) salen de aplicar ideas similares para evitar 5-conjuntos 
(condiciones ]t − ]¢ respectivamente). □ 
 
Si las reglas de colapso se aplican reiteradamente, eventualmente encontraremos o 
una condición de FALLA o una situación estable donde ninguna regla de colapso 
puede dar FALLA o reducir un intervalo estrictamente. Resulta que la etapa final es 
independiente del orden de la aplicación de las reglas de colapso. Este es un caso 
especial del siguiente resultado elemental. 
Sea (v, ≤) un conjunto parcialmente ordenado, y sea Φ una familia de funciones de 
v en v. Supongamos que para �, �’ en v y � en Φ tenemos que �(�) ≤ � y 
� ≤ �Ç  ⟹�(�) ≤ �(�Ç). Llamamos a � en v  Φ-estable si �(�) = � para todo � ∈  Φ. Sea �∗(�) la clausura de {�} bajo �. 
 

Lema 2: Para cada � en v, �∗(�) contiene como mucho un elemento Φ-estable. 
Dem: 
Supongamos que para �N, . . ., ��,  �N′, . . ., �¼′ ∈ Φ, ambos � = ��(…�N(�) … ) y 
�′ = �¼′(…�N′(�) … ) son Φ-estables. Entonces � = �¼′(…�N′(��(…�N(�) … ) … )) 
ya que y es Φ-estable, y por lo tanto � ≤ �′ por las condiciones establecidas en Φ. 
Similarmente �′ ≤ � y por lo tanto � = �′. □ 
 
Para aplicar el lema 2 para [ y s dados, sea v el conjunto de las L −uplas 
(^O, N̂, … , ^R�N) de intervalos, junto con el valor especial FALLA. Definimos � ≤ �′ si 
o � = �á��á o � = (^O, N̂, … , ^R�N), �´ = (^O′, N̂′, … , ^R�N′) y ẑ ⊆ ẑÇ, 0 ≤ { ≤ L. Sea Φ el conjunto de todas las reglas de colapso disponibles, extendido a asignar 
FALLA con FALLA siempre. Los requerimientos del lema 2 se chequean fácilmente, 
notando que las funciones sN, st, s¤ son monótonas no decrecientes, no 
decrecientes y no crecientes respectivamente, y que la finitud de �∗(�) garantiza 
que contiene por lo menos un elemento Φ-estable. 
El resultado de aplicar reglas de colapso hasta que una condición FALLA o una 
estabilidad ocurran va a ser llamado colapso, reemplaza  (^O, N̂, … , ^R�N) con              
C(G, H, ^O, N̂, … , ^R�N), donde la última es o FALLA o existe una secuencia 
(^OÇ , N̂Ç , … , ^R�NÇ ) tal que ẑ´ ⊆ ẑ   0 ≤ { ≤ L − 1. La última secuencia estable se dice 
que es totalmente colapsada (para [ y s). 
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El teorema fundamental sobre colapsos es el siguiente: 
 
Teorema 1: Si e([, s, ^O, N̂, … , ^R�N) = �á��á, entonces �([, s, ^O, N̂, … , ^R�N) =
∅. De otra manera, definimos (^OÇ , N̂Ç , … , ^R�NÇ ) = e([, s, ^O, N̂, … , ^R�N). Entonces �([, s, ^O′, N̂′, … , ^R�N′) = �([, s, ^O, N̂, … , ^R�N) y si, además, |^O| = | N̂| = ⋯ =
|^R�N| = 1 entonces �([, s, ^O′, N̂′, … , ^R�N′) consiste en un único (4, 5) −grafo. 
Dem: 
Todas las afirmaciones, a excepción de la última, salen de la aplicación reiterada 
del lema 1. Para la última parte, notemos que la existencia de algún 4-ciclo o un 
conjunto independiente de tamaño 5 llevarían a que la correspondiente regla de 
colapso cause la condición FALLA. □ 
 
Notemos que cada vez que una regla de colapso modifica un intervalo, el número 
de conos factibles que representa es dividido por una potencia de 2. Esta habilidad 
de colapsar para descartar muchas configuraciones no factibles al mismo tiempo 
es la principal razón del éxito de este algoritmo. 
Ahora podremos ver el procedimiento de pegado usando intervalos. Supongamos 
inductivamente que tenemos secuencias totalmente colapsadas de intervalos 
(^OÇ , N̂Ç , … , �̂�NÇ ) para [[{0, 1, … , J − 1}]. Aquellos para los cuales [[{0, 1, … , J −
1}] tiene la forma e([[{0, 1, … , J − 1}], s, ^OÇ , N̂Ç , … , �̂�NÇ , �̂), donde �̂  es algún 
intervalo y las elecciones que causan FALLA son rechazadas. 
Dadas unas secuencias totalmente colapsadas (^OÇ , N̂Ç , … , ^R�NÇ ) para G, podemos 
encontrar �([, s).  Secuencias con |^OÇ | = ⋯ = |^R�NÇ | = 1 llevan a una única 
solución como vimos en el teorema 1. Aquellas que tienen algún ẑÇ = [�zÇ, ùz′] con �z′ ≠ ùz′ pueden ser partidas recursivamente en las configuraciones disjuntas 
e([, s, ^OÇ , … , [�zÇ ∪ {b}, ùzÇ], … , ^R�NÇ ) y e([, s, ^OÇ , … , [�zÇ, ùzÇ − {b}], … , ^R�NÇ )  para 
algún b ∈ ùzÇ − �z′, con valores que causan FALLA siendo rechazados de la manera 
usual. 
Una fuente de ineficiencia de este algoritmo es que hay generalmente 100 
intervalos que podrían ser elegidos para �̂ , y la mayoría de ellos llevan a 
condiciones de FALLA para un r módico. Podemos reducir el número de 
operaciones de colapso requeridas. Esto se logra con la ayuda de una estructura de 
datos que tiene una gran ventaja: muchos G´s pueden ser procesados 
simultáneamente. 
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Supongamos que 1 ≤ �t ≤ �¤ ≤ ⋯ son enteros tales que �z < { para { ≥ 2. Vamos 
a definir dos relaciones en el conjunto de grafos nombrados donde los nombres 
son los enteros {0, 1, … . , L − 1} si el orden es L. Supongamos que î es un tal grafo 
con L ≥ 2 nodos. Entonces: 
 ��jJm(î) = î[{0, 1, … , L − 2}] �  �j��Ilô(î) = î[{0, 1, … , �R − 2, L − 1}],  
Donde el nodo final de �j��Ilô(î) tiene el nombre �R − 1 de acuerdo con nuestra 
convención para nombrar subgrafos. Se sigue de las definiciones que ��jJm(î) y 
�j��Ilô(î) tienen L − 1 y  �R nodos respectivamente. 
A partir del lema 2 tenemos lo siguiente: 
 
Lema 3: Sean ^O, N̂, … , ^R�N intervalos. Si e(��jJm(î), s, ^O, N̂, … , ^R�t) da FALLA o 
si e(�j��Ilô(î), s, ^O, N̂, … ,  ^Ñ��t, ^R�N) da FALLA, entonces e(î, s, ^O, N̂, … , ^R�N) 
da FALLA. De otra manera, supongamos que 
(^O′, N̂′, … , ^R�t′) = e(��jJm(î), s, ^O, N̂, … , ^R�t)  y (^O′′, N̂′′, … , ^R�t′′) =
e(�j��Ilô(î), s, ^O, N̂, … ,  ^Ñ��t, ^R�N). Entonces, e(î, s, ^O, N̂, … , ^R�N) =
e(î, s, ^O′ ∩ ^O′′, … , ^Ñ��t′ ∩ ^Ñ��t′′, ^Ñ��N′, … . , ^R�tÇ , ^Ñ��N′′), 
Donde el valor se toma como FALLA si alguna de las intersecciones es vacía. 
 
La principal razón para usar el lema 3 es reducir el número de operaciones de 
colapso necesarias para deducir las configuraciones completamente colapsadas de J de aquellas de ��jJm(î). En lugar de quizás 100 posibilidades para ^R�N vamos a 
tener típicamente unas pocas, las otras van a causar una FALLA cuando se las 
pruebe para �j��Ilô(î). Más aún, las operaciones de colapso requeridas por 
�j��Ilô(î) son independientes de ^R�t y por lo tanto no necesitan ser repetidas, 
se realizan a lo sumo ^R�t cambios. 
Para implementar estas ideas eficientemente se construyo un objeto que consiste 
en un par de arboles con raíces superpuestas. Lo llamaremos un árbol doble. Por 
definición, supongamos que queremos unir un solo H a una familia ℛ’ = ℛ’(3, 5, G). 
Los nodos de un árbol doble son grafos nombrados, los miembros de ℛ’ y 
recursivamente los ��jJm| y �j��Ilô| de cada nodo. El grafo WN no tiene ��jJm ni 
�j��Ilô; lo llamaremos la raíz. Las aristas (î, ��jJm(î)) forman un árbol con raíz 
llamado árbol ��jJm, en el cual esos nodos y aristas en un camino de un miembro 
de ℛ’ a la raíz constituyen las ramas principales (un subárbol del árbol ��jJm). Las 
aristas (J, �j��Ilô(î)) forman otro árbol, llamado el árbol �j��Ilô. Como 
��jJm(�j��Ilô(î)) = ��jJmR�Ñ�ÄN(î), donde L = |\î| y �R ≥ 2, el número total 
de nodos en el árbol doble es a lo sumo G − 1 veces el número de ramas. 
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Ahora, se puede describir el principal algoritmo de pegado. Comenzando por la 
raíz, las ramas principales del árbol doble son recorridas en profundidad. Para la 
raíz, todos los intervalos son colapsados. Para otros nodos, las configuraciones 
colapsadas por el ��jJm y el �j��Ilô son combinadas como describe el lema 3. El 
cálculo de �j��Ilô puede requerir recursivamente computaciones del �j��Ilô del 
�j��Ilô, y asi sucesivamente. Típicamente, la experiencia mostró que cuando las 
configuraciones del conjunto �j��Ilô fueron requeridas ya eran validas 
aproximadamente un 90% de las veces. 
Aun más rapidez se logró empleando las simetrías de los nodos de orden bajo en el 
árbol doble. Se encontró útil usar todas las simetrías de nodos de orden 4 o menos. 
Para las últimas dos filas de la tabla, un algoritmo similar es utilizado. En lugar de 
buscar en una estructura espacial derivada de un conjunto de probabilidades para 
[, usando intervalos en s, los roles de [ y s se intercambian. Los intervalos fueron 
definidos en el conjunto VG, y la búsqueda derivaba del conjunto de posibilidades 
de s. Como s es un (4, 4) −grafo, la regla de colapso (d) no es necesaria, pero se 
necesita una nueva regla de colapso para triángulos en H. La cantidad de 
(4, 4) −grafos, que es mucho mayor comparada con la de (3, 5) −grafos nos lleva a 
elegir ℛ’(4, 4, G) como grafos con menos de G − 1 nodos. Para G = 12 se usaron 23 
(4, 4, 7) −grafos y 51 (4, 4, 8) −grafos. Para G = 11 se usaron 28 (4, 4, 8) −grafos y 
113 (4, 4, 9) −grafos. La experiencia llevo a que se prefirieran grafos densos y los 
nombramos con sus subgrafos mas densos primero. En cada caso, la operación de 
pegado descrita antes nos lleva a grafos de 21 o 22 nodos. Esos fueron extendidos 
en todas las maneras posibles a 24 nodos usando un método que aplica reglas de 
colapso para determinar aristas que inciden en los nodos remanentes de s asi 
como aquellas entre [ y s. 
 
Extensiones de un nodo 

 

El requerimiento final es un algoritmo para extender (4, 5) −grafos por un solo 
nodo. Supongamos que � es un (4, 5, I) −grafo. Queremos encontrar todas las 
maneras en las que un nuevo nodo a puede ser unido con � para formar un 
(4, 5, I + 1) −grafo. Claramente, es necesario y suficiente que r(a, \�) no cubra 
ningún triángulo de � y que se dirija a cada conjunto independiente de tamaño 4 
de �. 
Sean vN, vt, … , v� una lista que contiene todos los triángulos y los 4-conjuntos 
independientes de � en algún orden. Al igual que en el algoritmo de pegado vamos 
a considerar intervalos [�, ù] de subconjuntos de \�. El algoritmo de extensión usa 
un conjunto ^ de dichos intervalos. 



Capítulo 3: Números exactos 

69 
 

^ ≔ {|∅, \�|} 
��J� { = 1 ℎ�|l� J  
 |{ vz m| �I lJ{áIÁ�yô mIlôIÖm| 
  ��J� Ö�j� [�, ù] mI ^ l�y ¯�m vz ⊆ ù 
   |{ vz ⊆ � mIlôIÖm| 
   ëôJJ�J [�, ù] jm ^ 
   |{Iô JmmL�y�À�J [�, ù] ÖôI Ø� ∪ ��N, … , ���N�, ù − ����Ù 

 ��J� � = 1, … , G jôIjm vz − � = {�N, … , ��}. 
   �{I |{ 
  �{I ��J� 
 �{I |{ 
             >{Iô [|{ vz m| �I 4 − ÖôI��Ilô {Ijm�mIj{mIlm] 
  ?�J� Ö�j� [�, ù] mI ^ l�y ¯�m vz ∩ � = ∅ 
            |{ vz ∩ ù = ∅ mIlôIÖm| 
    ëôJJ�J [�, ù] jm ^. 
   |{Iô JmmL�y�À�J [�, ù] �ôJ Ø� ∪ ����, ù − ��N, … , ���N�Ù  

  ��J� � = 1, … , G jôIjm vz ∩ ù = {�N, … , ��}. 
   �{I |{ 
  �{I ��J� 
 �{I |{Iô 
�{I ��J� 
 
Al completarse el algoritmo ^ va a contener un conjunto de intervalos disjuntos 
cuya unión es el conjunto de posibles vecindades r(a, \�).  
La eficiencia del algoritmo depende considerablemente del orden de los elementos 
en la lista vN, vt, … , v�. Un método razonablemente bueno es ordenar el mayor 
elemento, luego el segundo mayor, y así sucesivamente con los triángulos y los 
conjuntos independientes ordenados todos juntos. Con una buena implementación 



Capítulo 3: Números exactos 

70 
 

este algoritmo puede llegar a extensiones de 24 a 25 nodos en aproximadamente 
10 milisegundos. 
 
La estructura general de ambas implementaciones era similar, pero algunos 
detalles eran diferentes. Por ejemplo, distintas particiones del conjunto de conos 
factibles en intervalos, y se utilizaron diferentes ordenes �j��Ilô| �z . Los 
(4, 5, 24) −grafos generados fueron comparados para cada operación de pegado 
individual, o a veces en pequeños grupos, sin encontrar ninguna discrepancia. 
Algunos pegados representativos fueron hechos usando búsquedas diferentes, de 
nuevo con los mismos resultados. El testeo de isomorfismos se hizo utilizando el 
programa I��l� de McKay. 
Las dos implementaciones requirieron 3.2 años y 6 años de tiempo de CPU en 
computadoras de Sun Microsystems (mayormente Sparcstation SLC). Esto se logro 
sin mayor demora utilizando un gran número de computadoras a la vez (hasta 
110).  
Como resultado de las computaciones, aproximadamente 25000 (4, 5, 24) −grafos 
fueron hallados. Estos, se vio que no son subgrafos inducidos de (4, 5, 25) −grafos 
usando dos programas independientes para extender (4, 5, I) −grafos a            
(4, 5, I + 1) −grafos. Por lo tanto tenemos el teorema principal: 
 
 
Teorema 2: Q(4,5) ≥ 25. [[[[9999]]]] 
Dem:  
Espaciamos los nodos de WS de manera equidistante alrededor de la circunferencia 
de un círculo de manera tal que todas las aristas del grafo se convierten en cuerdas 
del círculo. Una s-línea, o una arista de longitud s, es una arista del grafo que corta 
un arco del círculo que contiene s-1 nodos interiores. Un (4,5)-coloreo regular, es 
un 2-coloreo en el cual no existen W¢ del primer color ni W¬ del segundo color y en 
el cual, para cada s, todas las aristas de longitud s tienen el mismo color. Dando un 
coloreo de esta forma, obtendremos que existe un grafo de 24 nodos en el cual no 
hay contenido ni un W¢ del color 1 ni un W¬ del color 2, lo que implica el resultado 
del teorema. Se puede ver que si coloreamos las 1-, 2-, 4-, 8- y 9-líneas del primer 
color obtenemos un (4,5)-coloreo regular. □ 
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Teorema 3: Q(4, 5) = 25. 
Dem:  
Antes se vió que ninguno de los (4,5,24) −grafos obtenidos eran subgrafos 
inducidos de (4,5,25) −grafos. Como un (4,5,25) −grafo debía ser una extensión a 
un nodo de un (4,5,24) −grafo de la familia definida, al ver que esto no es posible, 
concluimos que (4,5,25) = ∅, es decir, que no existe ningún grafo de 25 nodos tal 
que no contenga ni una 4-clique ni un 5-conjunto independiente, lo que nos da la 
cota superior: Q(4,5) ≤ 25. 
Este hecho, unido al resultado del teorema 2, nos da el resultado principal, la 
igualdad Q(4,5) = 25. □ 
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Cotas para números de Ramsey 

 
A continuación mostraremos algunos resultados sobre cotas a modo de ejemplificar 
algunos  métodos que se utilizan. 
 

Cota inferior para R(4, 6) [[[[3333]]]] 

 
Ya que el número R(4,6) es el mínimo número de nodos que debe tener un grafo completo 
para que, dado un 2-coloreo, o el grafo incluya un W¢ del primer color o un W¥ del segundo 
color, al dar un coloreo de esa forma del grafo completo de 35, W¤¬, vemos que el mínimo 
número de nodos no puede ser 35 y por lo tanto se obtiene la cota Q(4, 6) ≥ 36. Más abajo 
se ve en la tabla 1 una lista de adyacencia para el grafo de color uno de un  2-coloreo de 
W¤¬. Todos los demás nodos tienen asignado color 2.  

 
Tabla 1: Un (4, 6)-coloreo de W¤¬ 
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Una gran cantidad de cotas inferiores fueron obtenidas mediante algoritmos 
computacionales de búsqueda. Tres de ellos, Q(4, 6), Q(3, 10) y Q(5, 5) son los casos más 
pequeños para los cuales se desconoce el valor exacto y sus cotas fueron obtenidas usando 
uno (o más) de los algoritmos descritos más abajo. El objetivo del método es producir 
coloreos sin subgrafos monocromáticos de orden | en el color 1 y sin subgrafos 
monocromáticos de orden t del color 2. Dichos grafos monocromáticos serán llamados 
subgrafos ‘malos’.  
Método A: Se comienza con un coloreo de nodos generado aleatoriamente de un grafo 
completo cuyo orden I es lo suficientemente pequeño para que un buen coloreo se pueda 
obtener fácilmente. Entonces, usando el método de recocido simulado o una síntesis de 
recocido simulado y luego búsqueda tabú, el coloreo es transformado en un buen coloreo 
mirando nodos individuales y eligiendo el color que minimice el número de subgrafos 
malos. Cuando todos los subgrafos malos hayan sido eliminados, se incrementa I y se 
repite el proceso.  
Método B: Es diferente del método anterior en dos aspectos. En lugar de comenzar con un 
grafo de orden pequeño, se comienza con un grafo completo del tamaño deseado. Pero la 
diferencia más importante se debe a la función objetivo. En lugar de recolorear nodos de 
manera tal de minimizar el número de subgrafos malos, agregamos un término al objetivo 
que intenta a maximizar el número de copias monocromáticas de ?¢ (el camino de 4 
nodos) inducidas. La importancia de la cuenta de  ?¢ en el objetivo puede ser mayor o igual 
a la cuenta de subgrafos malos.  
Método C: Se comienza buscando coloreos altamente simétricos, por ejemplo coloreos 
cíclicos (coloreos de Cayley), que tengan relativamente pocos subgrafos malos y que 
tengan una propiedad adicional. Deben tener nodos individuales (en lugar de órbitas) que, 
al ser recoloreados, reduzcan el número de subgrafos monocromáticos. Una vez hallado 
ese coloreo, se procede con el método A. 
 
Un comentario acerca del método B, generalmente se utiliza una variación más detallada 
del método. Hay 11 clases de isomorfismos de grafos de orden 4, y por lo tanto 
esencialmente 11 maneras diferentes de 2-colorear los nodos de un subgrafo de orden 4 
en un 2-coloreo de WS. Si contamos el número de de conjuntos de nodos de tamaño 4 que 
induce cada uno de esos 11 coloreos posibles, producimos un vector de tamaño 11. Los 
nodos pueden ser por lo tanto coloreados de manera tal de minimizar la distancia entre el 
vector calculado y un vector objetivo postulado. El vector objetivo se puede determinar 
mirando coloreos buenos ya obtenidos por un proceso de optimización de alto nivel o por 
mera especulación. Según la experiencia se vio que maximizar el número de ?¢´s inducidos 
es el elemento clave.  
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Tabla 2: Cantidad de subgrafos inducidos en 5 (4, 6)-coloreos de W¤¬  
 
Se utilizo el método B para mejorar la cota previa del Q(4, 6). En la tabla 2 se presentan 
datos sobre los subgrafos de color 2 de 5 nuevos (4, 6) −coloreos de W¤¢ que fueron 
obtenidos simultáneamente. Esta tabla lista las cuentas para cada uno de los 11 tipos de 
subgrafos inducidos de orden 4. La columna más importante es la de [N, el resto están a 
modo de ejemplo. Los coloreos fueron obtenidos usando una variedad de vectores objetivo 
(para cuentas de coloreos inducidos de orden 4), creados más o menos ad hoc. Notemos 
que en la tabla el grafo descrito es el grafo de 2 colores. 
Observemos que la cantidad de subgrafos inducidos es aproximadamente la misma en 
cada caso, a excepción de [N. Los otros 4 tienen una cantidad de subgrafos que es 
substancialmente la misma que la de los cientos de otros (4, 6) −coloreos. El coloreo [N 
diferente de todos ellos. La cantidad de W¢ es 1586, mientras que en ningún otro caso se 
encontró un coloreo con menos de 1780 W¢´s monocromáticos (en el color libre de W¥´s). 
Además, el número de ?¢´s inducidos es significativamente más grande que en cualquiera 
de los otros coloreos. Una vez que se descubrieron esas diferencias, se intentó extender el 
coloreo a 35 nodos y se tuvo éxito inmediatamente. Todos los 37 coloreos hallados están 
altamente relacionados con [N.  
El coloreo de la tabla 1 es el más simétrico de los 37 coloreos obtenidos. Tiene un 
automorfismo de orden 4. Hay 6 órbitas  de tamaño 4, que consisten de los nodos 
{, { + 1, { + 2 e { + 3 para { = 0, 4, 8, 12, 16, 20. Hay 5 órbitas de tamaño 2, que consisten  de 
los nodos � y � + 1 para � = 24, 26, 28, 30, 32. El nodo 34 es un punto fijo. Notemos que el 
mínimo grado en color 1 es 11 y por lo tanto el máximo grado en color 2 es 23, que es uno 
menos que el  máximo posible, en vistas del hecho de que Q(4, 5) = 25. De manera similar, 
el mínimo grado en color 2 es 18 y por lo tanto el máximo grado en color 1 es 16, el cual es 
también uno menos que el máximo posible, pues Q(3, 6) = 18. 
Hay dos coloreos que son adyacentes al coloreo dado arriba. Pueden ser obtenidos del 
original recoloreando la arista 1-3 y recoloreando las arista 1-3 y 29-33. En ambos casos, 
el coloreo resultante tiene un grupo de automorfismos de orden 2. En adición a estos 3 
coloreos, otro grupo de 34 buenos coloreos fue hallado revirtiendo los colores de entre 20 
y 25 aristas. Este grupo de 34 coloreos fue originalmente hallado por un programa que 
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busca sistemáticamente nuevos coloreos cambiando los colores de pequeños grupos de 
aristas. Algunos de estos coloreos fueron hallados también por el método B. El programa 
del método B que encontró esos coloreos llegó a una conclusión exitosa (buscando 
(4, 6) −coloreos de W¤¬) cerca de 1000 veces. En casi todos los casos el coloreo hallado era 
uno de los 3 coloreos mencionados en el párrafo anterior. Sólo 5 veces se halló un coloreo 
en el grupo de 34.  
 

Cotas inferiores para R(6,12), R(6,14) y R(6,15)    [[[[8888]]]]  

 
Para un número dado �, sea ℤ� = {0, 1, 2, … , � − 1}. Se elije un conjunto                                      
> ⊂ {1, 2, … , (� − 1)/2}. Sea [ el grafo cuyos nodos son el conjunto \̈ = ℤ� y una arista se 
define de la siguiente manera: dos nodos � e � se conectan si y solo si                               
L{I{|� − �|, � − |� − �|} pertenece a >. El grafo [ es llamado el grafo cíclico de orden � 
con respecto al conjunto de parámetros > y se lo denota [�(>). Se construyen 3 grafos 
cíclicos de orden primo de la siguiente manera: 
 

1) �N = 223 y el conjunto de parámetros del grafo [ 
>N = {1, 2, 4, 7, 8, 13, 14, 15, 16, 17, 26, 27, 28, 30, 32, 33, 34, 41, 49, 52, 54, 56, 59, 60,
64, 66, 68, 82, 87, 91, 95, 98, 103, 104, 105, 108, 111} 

2) �t = 257 y 
>t =
{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 16, 24, 27, 28, 32, 33, 36, 42, 44, 48, 56, 62, 65, 66, 67,
71, 81,82, 89, 90, 96, 99, 102, 103, 106, 108, 112, 113, 118, 125, 127, 128} 

3) �¤ = 337 y 
>¤ = {1, 5, 6, 7, 8, 11, 17, 25, 27, 30, 35, 36, 39, 40, 42, 43, 47, 48, 49, 52, 55, 56,
57, 58, 59, 62, 64, 66, 69, 76, 77, 79, 85, 88, 92, 97, 102, 103, 111, 119, 121, 122, 123, 125,
127,135, 136, 137, 142, 146, 148, 150, 157, 159, 162, 164} 

 
Se verifico por computadora que: el grafo cíclico [tt¤(>N) en 1) no contiene ni una 
clique de tamaño 6 ni un conjunto independiente de tamaño 12, el grafo cíclico  
[t¬í(>t) en 2) no contiene ni una clique de tamaño 6 ni un conjunto independiente de 
tamaño 14 y que el grafo cíclico  [¤¤í(>¤) en 3) no contiene ni una clique de tamaño 6 
ni un conjunto independiente de tamaño 15. Lo cual nos da los siguientes resultados: 
Q(6, 12) ≥ 224, Q(6, 14) ≥ 258 � Q(6, 15) ≥ 338. 
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Cota superior para R(5, 5) [[[[11111111]]]] 

 
Para dos grafos î y [, se define |(î, [) como el número de subgrafos inducidos de [ 
que son isomorfos a î. Se define |(WO, [) = 1 (donde WO es el grafo sin nodos) para 
todo [ y |(î, WO) = 0 para todo î distinto de WO. 
 

Teorema 1:  
a) Para cada grafo no conexo î existe una secuencia de grafos conexos îN, ît, … , î� y un 

polimonio ��  con coeficientes racionales tal que 
|(î, [) = �î(|(îN, [), |(ît, [), … , |(î�, [)) para todo grafo [. 

b) No existe una secuencia de grafos conexos isomorfos îN, ît, … , î� y un polinomio no 
nulo tales que �(|(îN, [), |(ît, [), … , |(î�, [)) = 0 para todo grafo [.  

Para L ≥ 0 y 0 ≤ � ≤ L se definen los ùR,� grafos de la siguiente manera: para L = 0 se 
define ùO,O = WN. Para L > 0   ùR,O es el grafo no conexo WR ∪ WN, y para � ≥ 0,   ùR,�ÄN se 
forma añadiendo una arista a ùR,� . Esto de fine ùR,� de manera única salvo isomorfismos 
y ùR,R = WRÄN. 
 
Lema 1:  Sea [ un grafo con I nodos. Entonces para L ≥ 0, 
 (I − L)|(WR, [) = ∑ iR,�|ªùR,� , [«,R�»O  

Donde      iR,� = � L + 1   |{ � = L
2   |{ � = L − 1

  1   |{ 0 ≤ � ≤ L − 2
õ 

Dem: 
Como I = |(WN, [) y ùR,O es el único grafo disconexo que aparece esta es una instancia 
especial del teorema 1.  
Los casos L = 0, 1 son fáciles de chequear, así que podemos asumir L ≥ 2. Ambos lados 
de la ecuación cuentan el número de subgrafos de la forma WR ∪ WN, inducidos o no. El 
lado izquierdo es obvio en este contexto. Para el lado derecho, consideremos el número � 
de aristas que unen WR con WN. Esas L + 1 aristas inducen un subgrafo ùR,� . Finalmente, 
notemos que cada subgrafo ùR,� puede aparecer en |(WR, ù�,R) = iR,� de tal manera.  
Para L = 2, el lema se convierte en 

(I − 2)|(Wt, [) = |ªùt,O, [« + 2|ªùt,N, [« + 3|(W¤, [), 
Que es la Identidad de Goodman.  □ 
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Lema 2:  Sean î y [ grafos.  
a) Si î tiene G ≥ 1 nodos de grado |\î| − 1, entonces 

G|(î, [) = ∑ |(îÇ, [�Ä�∈�¨ ),  donde î’ es el resultado de remover de î un nodo de 
grado |\î| − 1. 

b) Si î tiene G ≥ 1 nodos de grado 0, entonces 
G|(î, [) = · |(îÇÇ, [��

�∈�¨
), 

Donde î’’ es el resultado de remover de î un nodo de grado 0.                       [�Ä =
[[r¨(a, \[)],  [�� = [[\[ − r¨(a, \[) − {a}] 
Dem:  
En el caso de (a) cada subgrafo isomorfo a î yace en {a} ∪ r[(a, \[) para exactamente G 
nodos a, de manera que los dos lados de la identidad cuentan subgrafos inducidos 
isomorfos a î con un nodo de grado máximo distinguido. El caso en (b) es similar.  □ 
 
Teorema 2:  Para L ≥ 1, cada grafo [ satisface 

· |(WR, [��) = · (( I
L − |(WN, [�Ä

�∈�¨�∈�¨
)|(WR�N, [�Ä) + (L − 1)|(WR, [�Ä)

+ · ª1 + n�,R�t«�|(ùR�N,� , [�Ä))
� + 1

R�t

�»O
 

Donde nz,� es la función delta de Kronecker.  
Dem: 
El caso L = 1 se puede corroborar de manera directa, así que suponemos L > 1. Del lema 
2, usando (b) para � = 0 y (a) para � > 0, obtenemos 

|(ùR, [) =
�� 
�! 1

1 + nR,N
· |(WR, [��)     ��J� � = 0

�∈�¨1
� + n�,R

· |ªùR�N,��N, [�Ä«     ��J� 1 ≤ � ≤ L
�∈�¨

õ 

Aplicando el lema 2 (a) para î = WR podemos sustituir en lema 1 para obtener 
S�R

R ∑ |(WR�N, [�Ä) = ∑ |(WR, [��) + ∑ "�,½
NÄp½,� ∑ |ªùR�N,��N, [�Ä«.�∈�¨R�»N  �∈�¨�∈�¨  (2) 

Todos los subgrafos que aparecen en el primer argumento de |() en la ecuación anterior 
son conexos a excepción de ùR�N,O. Usando el lema 1 de nuevo, tenemos que 

|ªùR�N,O, [�Ä« = 1
iR�N,O

((|(WN, [�Ä) − L + 1)|(WR�N, [�Ä) − · iR�N,�|(ùR�N,� , [�Ä))
R�N

�»N
. 
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Reemplazando en (2) y juntando los términos similares obtenemos la igualdad deseada.  □ 
 
Consideremos la identidad de la forma: ∑ �([�Ä, [��) = 0.�∈�¨   Donde � es un polinomio de 
la formas |(î, [�Ä)  y |(î, [��). para alguna familia de grafos conexos î. Los coeficientes 
pueden ser funciones arbitrarias de I = |(WN, [). La restricción a î conexos se justifica por 
el teorema 2.1. De ahora en adelante no utilizaremos más el término |(WN, [ − a) ya que 
puede ser reemplazado por I − 1 −  |(WN, [ + a).  
Definimos el grado de � como el máximo número total de nodos que aparecen (como el 
primer argumento de |) en un término de �. El experimento consistió en tomar un número 
grande de grafos aleatorios del mismo orden, y contar los números |(î, [ + a) y |(î, [ − a) 
para cada nodo a y subgrafo pequeño conexo î. Luego se formó una matriz cuyos valores 
son los posibles términos de �, hasta cierto grado fijo con una fila por grafo y una columna 
por término. El rango de esta matriz y relaciones lineales entre columnas nos llevan a 
identidades que satisface el conjunto de grafos elegidos. En particular, utilizando la 
independencia lineal se puede probar la no existencia de tipos particulares de identidad 
para esos grafos y por lo tanto, para todos los grafos.  
Por ejemplo, se estableció: 
 
Lema 2.3:  Las únicas identidades de grado a lo sumo 6, en las cuales � se puede separar 
como �([ + a, [ − a) = �N([ + a) + �t([ − a), son aquellas del teorema 2.2 y sus 
combinaciones lineales.  
 
Si � no se separa como en el lema anterior, se cree que hay más identidades.  
 
El teorema que demuestra que Q(4, 5) = 25 implica que Q(5, 5) ≤ 50. Más aún, se deduce 
del mismo que cualquier (5, 5, 49) −grafo [ debe ser regular de grado 24, con cada [ + a 
un (4, 5, 24) −grafo y cada [ − a el complemento de un (4, 5, 24) −grafo.  
Aplicando el caso L = 2 del teorema 2.2, hallamos que  
∑ |(Wt, [ − a)�∈�¨ = 588 + ∑ |(Wt, [ + a)�∈�¨ . 
Como también se tiene que |(Wt, [ − a) = ªt¢

t « − |(Wt, [ + a#######), tenemos que  
∑ |(Wt, [ + a)�∈�¨ + |(Wt, [ + a#######) = 12936. 
Sin embargo, de la demostración de Q(4, 5) = 25 se sabe que los (4, 5, 24) −grafos tienen a 
lo sumo 132 aristas y que no hay grafos de esa forma cuyo grado máximo sea mayor a 11. 
Esto deja solamente grafos regulares de grado 11, lo cual nos lleva al siguiente lema: 
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Lema 3.1:  Sea [ un (5, 5, 49) −grafo. Entonces, para cada nodo a, [ + a  y  [ + a####### son 
(4, 5, 24, 132) −grafos que son regulares de grado 11.  
Vamos a hallar todos los (4, 5, 24, 132) −grafos. Los siguientes grafos sN y st fueron 
hallados por Thomason () bajo las condiciones de regularidad y cantidad constante de 
triángulos en cada arista.  

 
Matrices de adyacencia de sN y st 
 
De ahora en más, s será un (4, 5, 24, 132) −grafo. Como s es 11-regular se puede ver que 
|(Wt, s − a) = |(Wt, s + a)  + 11 para cada nodo a. Por lo tanto se puede hallar s por el 
proceso de “pegado” entre algún v en Q(3, 15, 11, m) y un w en Q(4, 4, 12, m + 11) para 
algún m. El número de posibilidades se puede observar en la siguiente tabla: 

 
m |Q(3, 5, 11, m)| |Q(4, 4, 12, m + 11)| 

15 1 8 
16 6 177 
17 19 1906 
18 31 13332 
19 30 58131 
20 13 163757 
21 4 302088 
22 1 370368 
 
El teorema 2.2 nos ayudará a reducir posibilidades. 
 
Lema 3.2:  Para algún a,  |(Wt, s + a) ≥ 19.  
Dem: 
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Para 15 ≤ m ≤ 18, el lado derecho del teorema 2.2 es a lo sumo 9 para cada grafo en 
Q(3, 5, 11, m), pero el lado izquierdo es por lo menos 10 para cada grafo en Q(4, 4, 12, m +
11). Por lo tanto, no hay combinación posible de estos grafos que pueda satisfacer la 
identidad.  
 
Dado este teorema, podemos construir todos los grafos de Q(4, 5, 24, 132) usando los 
métodos utilizados en Q(4, 5) = 25, pero hay muchos más casos que procesar y por lo 
tanto más dificultad computacional. Así que se hace uso de la regularidad para mejorar la 
eficiencia de la búsqueda.  
En Q(4, 5) = 25 se utilizaron 4 reglas de colapso. Si tenemos restricciones en el tamaño de 
los conos factibles se pueden agregar más reglas de colapso.  
Se definen 2 funciones W, �: 2�	 → 2�$ de manera que x ⊂ \w,  

W(x) =∩ {{�, �}| �, � ∈  x � {�, �}  ∈  ]s} 
�(x)  =∩ {{b, �, �, À}| b, �, �, À ∈  x |ôI j{|l{Ilô| � {b, �}, {�, À}  ∈ ]s}  

Con la aceptación de que el valor de interseccion es \w si no tiene argumentos.  
Supongamos que para cada � en \v, e§ se requiere que satisfaga y§ ≤ |e§| ≤ ℎ§. Sea el 
intervalo correspondiente ^§ = [�§, ù§]. Definimos las siguientes reglas: 

(a) Supongamos � en \v. 
   Si |�§| > ℎ§ , entonces FALLA. 
  Si |�§| = ℎ§ , entonces ù§ = �§. 
(b) Supongamos que � está en \v. 

Si |ù§| < y§ , entonces FALLA. 
Si |ù§| = y§ , entonces �§ = ù§ . 

(c) Supongamos {�, a} está en ]v y |ù§| = y§ + 1 
Si W(��  ∩  ù§) = ∅, entonces FALLA 
Sino �§ = �§ ­ (ù§ − W(��  ∩  ù§)) 

(d) Supongamos que {�, a} esta en ]v, |ù§| = y§ + 1 y |ù�| = y� + 1. 
Si |�(ù§  ∩ ù�)| ≤ 1, entonces FALLA 
Sino �§ = �§ ­ (ù§ − �(ù§  ∩  ù�)) 

 
Lema 3.3:  Las reglas (a)-(d) son reglas de colapso válidas.  
Dem: 
Las reglas (a) y (b) salen de la aplicación de las restricciones de tamaño.  □ 
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Supongamos que {�, �} está en ]w, �, �, están en ��  ∩  ù§ y |ù§| = y§ + 1. Nos puede ser 
que �, � estén en e§ porque entonces {�, a, �, �} sería una clique, por lo tanto debe ser que 
alguno de los dos � o � no está en e§ y todo el resto de ù§ es igual a e§ (o si no tendríamos 
que |e§| < y§).  
Extendiendo este mismo argumento vemos que exactamente un elemento de W(��  ∩  ù§) 
debe ser evitado y el resto de ù§  incluido, lo cual es la regla (c). 
Supongamos que {b, �}, {À, �} están en ]w, donde b, �, À, � son distintos elementos de 
ù§  ∩ ù� , |ù§| = y§ + 1 y |ù�| = y� + 1. Al igual que antes, exactamente uno de b y � y 
exactamente uno de À e � no están en e§  ∩ e� . Las restricciones en cuanto al tamaño de 
ù§  y  ù� implican que cada e§ y e�  tiene uno menos de {b, �, À, �} (pero no el mismo) de 
manera que deben igualar al resto de ù§ y ù�  respectivamente. Aplicando esta misma idea 
simultáneamente a todos los pares de aristas {b, �}, {�, À} obtenemos la regla (d).  
 
Teorema 3.1:  Los únicos dos (4, 5, 24, 132) −grafos son sN y st. 
Dem: 
Se obtiene de la implementación de lo descrito anteriormente.  □ 
 
Teorema 3.2:  Q(5, 5) ≤ 49. 
Dem: 
Si existiera un (5, 5, 49) −grafo, entonces por lema 3.1 y teorema 3.1 sabríamos que [ + a 
y [ − a son uno de sN y st. Consideramos la identidad del teorema 2.2 aplicada a [ 
cuando L = 4. 
Las cuentas relevantes de subgrafos son las siguientes: 

|(Wt, sN) = |(Wt, st) = 132, 
|(W¤, sN) = |(W¤, st) = 176, 

|(W¢, sN) = |(W¢, st) = 0, 
|(ù¤,N, sN) = |(ù¤,N, st) = 1584, 
|(ù¤,t, sN) = |(ù¤,N, st) = 792, 

|(W¢, sN####) = 144, 
|(W¢, st####) = 138. 

Los términos en el lado derecho de la identidad son 132 para ambos sN y st, pero los 
términos en el lado izquierdo son 144 y 138 para los dos posibles subgrafos. Luego, la 
identidad no puede ser satisfecha, lo cual nos lleva a un absurdo. Como el absurdo provino 
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de suponer que existía un (5, 5, 49) −grafo, obtenemos que no puede existir uno, lo cual 
nos indica que Q(5, 5) ≤ 49.   □



Conclusiones 

 

Una de las principales conclusiones que se pueden extraer sobre la teoría de 
Ramsey es que el desorden absoluto no existe. La teoría de Ramsey afirma que, en 
sistemas suficientemente grandes siempre existen subsistemas con una estructura 
ordenada. Según la misma, si observamos la totalidad de estrellas del cielo 
nocturno siempre podremos seleccionar un conjunto de las mismas para formar 
un triángulo, un cuadrilátero o cualquier figura de nuestra elección, como un 
paraguas o un león.  
A lo largo de esta tesis hemos dado una introducción a los números de Ramsey 
aplicados a la teoría de grafos, se han expuesto ciertos resultados teóricos de 
utilidad y hemos visto en detalle las demostraciones de todos los números exactos 
conocidos hasta el momento, así como las demostraciones de algunas cotas 
seleccionadas para ilustrar los métodos más comúnmente utilizados para el cálculo 
de las mismas.  
Como hemos visto, Q(I, L) ≤ J si para cada grafo [ de J nodos, o existe una 
I −clique o un L −conjunto independiente.  
Básicamente los métodos para obtener cotas superiores son de desarrollo teórico 
directo, haciendo uso de la cota general y de ciertos resultados teóricos de grafos, 
en el caso de números lo suficientemente pequeños.  
En cambio se suelen utilizar métodos computacionales cuando los números son 
más grandes. En este caso, una idea que se repite es la de ver que el conjunto de los 
(I, L, J) −grafos, es decir aquellos grafos de J nodos que no poseen una clique de 
tamaño I y cuyo menor conjunto independiente no puede ser de tamaño L o 
menor, es vacío, lo que nos indicaría que dado un grafo de J nodos, el mismo 
siempre posee o una I −clique o un L −conjunto independiente, con lo cual el 
mínimo número de nodos que debe tener un grafo para que o contenga una 
I −clique o un L −conjunto independiente, es decir Q(I, L), debe ser menor o 
igual que J.  De todas maneras, las demostraciones normalmente no dan una receta 
o procedimiento general para hallar los resultados. Además, a medida que 
aumentamos los números, la complejidad de las soluciones crece de manera 
sorprendente. De hecho, Paul Erdös dijo que suponiendo que los alienígenas 
invadieran la tierra y amenazaran con destruirla si en el curso de un año los seres 
humanos no hallaran el número de Ramsey Q(5,5) podríamos poner a trabajar a 
las mejores mentes y las computadoras más rápidas y obtener el número a tiempo, 
pero que si nos exigieran el número Q(6,6) deberíamos atacarlos de manera 
preventiva.  
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Por otro lado, vimos que Q(I, L) > J si existe un grafo [ que no incluye una 
I −clique y tampoco un L −conjunto independiente. 
Para las cotas inferiores siempre es necesario exhibir un grafo de Q(I, L) − 1 
nodos que no posea ni una clique de tamaño I ni un conjunto independiente de 
tamaño L, lo que indicaría que Q(I, L) debe ser mayor a Q(I, L) − 1. Dichos 
grafos contraejemplo pueden generarse intuitivamente en el caso de los valores 
pequeños, y mediante la definición de grafos cíclicos o utilizando métodos 
computacionales en el caso de números más grandes. Hemos visto también que es 
posible utilizar metaheurísticas para la generación de estos grafos.  
Actualmente, matemáticos como Exoo, Radziszowski, Nesetril, Graham o Soifer, 
entre otros, se encuentran trabajando en la realización de más cotas superiores e 
inferiores. Hay una investigación dinámica titulada “Small Ramsey numbers” en el 
Electronic Journal of Combinatorics, donde los últimos adelantos sobre cotas son 
publicados periódicamente.  
Por el momento el principal problema que se encuentra abierto es el de hallar el 
valor exacto de Q(3, 10), acotado inferiormente por 40 y superiormente por 43 por 
lo que se sabe hasta el momento, que es el primer caso abierto de números de la 
forma Q(3, I). Soifer cree que el valor verdadero será 40. Según él, para poder 
determinar el mayor (3,10) −grafo, se necesita saber más sobre los              
(3,9, I ≤ 35) −grafos, lo que a su vez requiere conocimiento sobre los                
(3,8, I ≤ 22) −grafos, problemas que también se encuentran abiertos. 
De ser hallados, los números de Ramsey podrían poseer una variedad de 
aplicaciones, en campos tales como teoría de la comunicación, diseño de redes, 
recuperación de la información o teoría de decisiones. 
Dentro del campo de la teoría de la comunicación, por ejemplo, pueden crearse ‘grafos de confusión’, donde sus nodos son elementos de un alfabeto de 
transmisión y existe una arista entre dos elementos si y solo si al enviar un 
mensaje los dos elementos pueden ser recibidos como el mismo. El problema 
consiste en conseguir un conjunto de señales, de mayor tamaño posible, que no 
sean confundibles entre si para evitar que haya errores en la recepción de un 
mensaje, lo cual corresponde a un conjunto independiente del grafo de confusión. 
Para hallar la solución pueden utilizarse números de Ramsey. [1[1[1[15555]]]] 
Otro ejemplo, en este caso dentro del área de diseño de redes, es el siguiente: 
podemos tomar un grafo completo donde los nodos representen equipos de 
comunicación unidos por líneas de comunicación (aristas). En algunas aplicaciones 
se toman pares de nodos y se quiere garantizar que en el caso de que falle alguna 
de las dos líneas siempre haya por lo menos una línea que una todos los pares de 
vértices. Para hallar la solución son útiles los números de Ramsey. [1[1[1[15555]]]] 
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Estos son sólo algunos casos en los cuáles los números de Ramsey serían de mucha 
utilidad para la resolución de problemas de la vida cotidiana. Es por esto que la 
investigación sobre los mismos dentro del marco de teoría de grafos sigue vigente 
y de hecho, en los últimos años ha habido una cantidad considerable de resultados. 
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Apéndice A: Algoritmos 

 

Para poder comprobar la no existencia de ciertos WS dentro de ciertos grafos, hemos usado 

estos  programas en Matlab, que, dada una matriz de adyacencia determinan, dando como 

resultado 1 si las respuesta es sí y 0 si la respuesta es no, si un grafo posee o no alguna de 

estas cliques de tamaño I.  

A continuación se pueden ver las matrices de adyacencia para las cuales los programas fueron 

corridos.  

 

Matrices de adyacencia: 

 

Para R(3, 3): 

M1=[0 1 0 0 1; 1 0 1 0 0; 0 1 0 1 0; 0 0 1 0 1; 1 0 0 1 0] 

 

  
M2=[0 0 1 1 0;0 0 0 1 1; 1 0 0 0 1; 1 1 0 0 0;0 1 1 0 0 ]   

 

 

 

Para R(3,4): 

 

M3=[0 1 0 0 1 0 0 1; 
    1 0 1 0 0 1 0 0;  
    0 1 0 1 0 0 1 0;  
    0 0 1 0 1 0 0 1; 
    1 0 0 1 0 1 0 0; 
    0 1 0 0 1 0 1 0; 
    0 0 1 0 0 1 0 1; 
    1 0 0 1 0 0 1 0] 
  

 
M4=[0 0 1 1 0 1 1 0; 
    0 0 0 1 1 0 1 1; 
    1 0 0 0 1 1 0 1; 
    1 1 0 0 0 1 1 0; 
    0 1 1 0 0 0 1 1; 
    1 0 1 1 0 0 0 1; 
    1 1 0 1 1 0 0 0; 
    0 1 1 0 1 1 0 0] 
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Para R(3, 5): 

 

M6=[0 0 0 1 1 0 1 1 0 1 1 0 0; 
    0 0 0 0 1 1 0 1 1 0 1 1 0; 
    0 0 0 0 0 1 1 0 1 1 0 1 1; 
    1 0 0 0 0 0 1 1 0 1 1 0 1; 
    1 1 0 0 0 0 0 1 1 0 1 1 0; 
    0 1 1 0 0 0 0 0 1 1 0 1 1; 
    1 0 1 1 0 0 0 0 0 1 1 0 1; 
    1 1 0 1 1 0 0 0 0 0 1 1 0; 
    0 1 1 0 1 1 0 0 0 0 0 1 1; 
    1 0 1 1 0 1 1 0 0 0 0 0 1; 
    1 1 0 1 1 0 1 1 0 0 0 0 0; 
    0 1 1 0 1 1 0 1 1 0 0 0 0; 
    0 0 1 1 0 1 1 0 1 1 0 0 0] 
      

 
M5=[0 1 1 0 0 1 0 0 1 0 0 1 1; 
    1 0 1 1 0 0 1 0 0 1 0 0 1; 
    1 1 0 1 1 0 0 1 0 0 1 0 0; 
    0 1 1 0 1 1 0 0 1 0 0 1 0; 
    0 0 1 1 0 1 1 0 0 1 0 0 1; 
    1 0 0 1 1 0 1 1 0 0 1 0 0; 
    0 1 0 0 1 1 0 1 1 0 0 1 0; 
    0 0 1 0 0 1 1 0 1 1 0 0 1; 
    1 0 0 1 0 0 1 1 0 1 1 0 0; 
    0 1 0 0 1 0 0 1 1 0 1 1 0; 
    0 0 1 0 0 1 0 0 1 1 0 1 1; 
    1 0 0 1 0 0 1 0 0 1 1 0 1; 
    1 1 0 0 1 0 0 1 0 0 1 1 0] 

 

 

Para R(3, 6): 

 

M7=[0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0; 
    1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0; 
    0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0; 
    1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0; 
    0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0; 
    0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0; 
    1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0; 
    0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0; 
    0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0; 
    0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1; 
    1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0; 
    0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1; 
    0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0; 
    0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 1; 
    0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0; 
    1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1; 
    0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0] 
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 M8=[0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1; 
     0 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1; 
     1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1; 
     0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1; 
     1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 0 1; 
     1 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1; 
     1 1 1 1 1 0 0 0 1 1 1 0 1 1 0 1 1; 
     1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1; 
     1 1 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1; 
     1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0; 
     0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1; 
     1 1 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0; 
     1 0 1 1 1 0 1 1 0 1 1 0 0 0 1 1 1; 
     1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0; 
     1 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1; 
     0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0; 
     1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0] 

 

 

Para R(4,4): 

M9=[0 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1; 
    1 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1; 
    1 1 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0; 
    0 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0 1; 
    1 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0; 
    0 1 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0; 
    0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 1 0; 
    0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 1; 
    1 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1; 
    1 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0; 
    0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0; 
    0 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 0; 
    0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1; 
    1 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 0; 
    0 1 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1; 
    1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 0 1; 
    1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 0] 

  
 M10=[0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 0 0; 
      0 0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 0; 
      0 0 0 0 0 1 0 1 1 1 0 0 1 1 1 0 1; 
      1 0 0 0 0 0 1 0 1 1 1 0 0 1 1 1 0; 
      0 1 0 0 0 0 0 1 0 1 1 1 0 0 1 1 1; 
      1 0 1 0 0 0 0 0 1 0 1 1 1 0 0 1 1; 
      1 1 0 1 0 0 0 0 0 1 0 1 1 1 0 0 1; 
      1 1 1 0 1 0 0 0 0 0 1 0 1 1 1 0 0; 
      0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 1 0; 
      0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 1; 
      1 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1; 
      1 1 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1; 
      1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 1 0; 
      0 1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 1; 
      1 0 1 1 1 0 0 1 1 1 0 1 0 0 0 0 0; 
      0 1 0 1 1 1 0 0 1 1 1 0 1 0 0 0 0; 
      0 0 1 0 1 1 1 0 0 1 1 1 0 1 0 0 0] 
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Algoritmos: 

 

Para determinar la existencia o no de triángulos: 
 
function triangulos(M) 

n=length(M); 

R=0; 

for i=1:n 

    for j=1:n 

        if M(i,j)==1 

                for k=j+1:n 

                 if M(i,k)==1 

                     if M(j,k)==1 

                         R=1; 

                     end 

                end 

            end 

        end 

    end 

end 

R 

 

 

 

Para determinar la existencia o no de algún W¢: 
 

function k4(M) 

n=length(M); 

R=0; 

for i=1:n 

    for j=1:n 

        if M(i,j)==1 

            for k= j+1:n 

                if M(i,k)==1 

                    for h= k+1:n 

                        if M(i,h)==1 

                            if M(j,k)==1 

                                if M(j,h)==1 

                                    if M(k,h)==1 

                                        R=1; 

                                    end 

                                end 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

R 
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Para determinar la existencia o no de algún W¬: 

 

 

 

 

 

 

 

function k5(M) 

n=length(M); 

R=0; 

for i=1:n 

    for j=i+1:n 

        if M(i,j)==1 

            for k=j+1:n 

                if M(i,k)==1 

                    for l=k+1:n 

                        if M(i,l)==1 

                            for s=l+1:n 

                                if M(i,s)==1 

                                    if M(j,k)==1 

                                        if M(k,l)==1 

                                            if M(l,s)==1 

                                                if M(j,l)==1 

                                                    if M(j,s)==1 

                                                        if M(k,s)==1 

                                                            R=1; 

                                                        end 

                                                    end 

                                                end 

                                            end 

                                        end 

                                    end 

                                end 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

R 
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Para determinar la existencia o no de algún  W¥: 
 

 

 

 

function k6(M) 

n=length(M); 

R=0; 

for i=1:n 

    for j=i+1:n 

        if M(i,j)==1 

            for k=j+1:n 

                if M(i,k)==1 

                    for l=k+1:n 

                        if M(i,l)==1 

                            for s=l+1:n 

                                if M(i,s)==1 

                                    for t=s+1:n 

                                        if M(i,t)==1 

                                            if M(j,k)==1 

                                                if M(j,l)==1 

                                                    if M(j,s)==1  

                                                        if M(j,t)==1  

                                                            if M(k,l)==1  

                                                                if M(k,s)==1  

                                                                    if M(k,t)==1  

                                                                        if M(l,s)==1  

                                                                            if M(l,t)==1  

                                                                                if M(s,t)==1 

                                                                                    R=1; 

                                                                                end 

                                                                            end 

                                                                        end 

                                                                    end 

                                                                end 

                                                            end 

                                                        end 

                                                    end 

                                                end 

                                            end 

                                        end 

                                    end 

                                end 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

R



Apéndice B: Demostraciones de lemas de R(3,7) 

94 
 

Apéndice B: Demostraciones de lemas de R(3,7) [[[[6666]]]] 

 
Durante este apéndice vamos a asumir que un nodo � fijo de grado 6 en un 
(3, 7) −grafo de 23 nodos ha sido preferido. Denotamos los nodos de sN por 
�, ë, Ö, j, m, Ã y los nodos de st de acuerdo a su soporte. Por ejemplo, un 1-nodo 
sobre {ë} sería notado por < ë > y un 2-nodo sobre {ë, m} sería notado 
por < ë, m >. Por la observación 2 luego de la Proposición 6, dos 1-nodos no 
pueden tener el mismo soporte, y dos 2-nodos y un 1-nodo no pueden ser 
soportados por un 2-conjunto de sN. En el caso de 2-nodos la única ambigüedad 
puede surgir en un caso del Lema 7. Finalmente ya que 3-nodos juegan un rol 
menor, no se generara confusión en referencia a este sistema. 
 
Lema A: Sean �, �, À, b nodos distintos arbitrarios de sN y consideremos los 
siguientes patrones: 

(i) Si  < � >, < �, � >, < �, À >, < �, À > están en st entonces hay una arista 
entre < � > y < �, À >. 

(ii) Si < � >, < � >, < �, � >, < �, À >, < �, À > están en st entonces hay 
aristas entre < � > y < � >, entre < � > y < �, À >, y entre < � > y 
< �, À >, de manera que se produce la configuración C3 de la 
proposición 7. 

(iii) < � >, < � >, < À >, < �, � >, < �, À >, < �, b >, < �, b >, < À, b > no 
pueden ocurrir en st. 

(iv) < � >, < � >, < À, b >, < �, À >, < �, b >, < �, À >, < �, b >, < �, � > no 
pueden ocurrir en st. 

(v) < � >, < �, � >, < �, À >, < �, �, À > no pueden ocurrir en st. 
Dem: 
(i) Este es la única arista que no puede ocurrir entre esos nodos en  st sin 

formar un triángulo pero como esos 4 nodos tienen un 3-conjunto de 
soporte debe haber por lo menos una arista para evitar la formación de 
un 4-conjunto independiente, luego el eje < � > −< �, À >. 

(ii) En este caso el patrón (i) aparece dos veces: 
< � >, < �, � >, < �, À >, < �, À > 

e 
< � >, < �, � >, < �, À >, < �, À >, 

Ya que las aristas < � > −< �, À > e < � > −< �, À> y finalmente la 
arista < � > −< � > es requerida (ver observación 2 luego de la 
proposición 6). 

(iii) Aquí el patrón (ii) aparece dos veces: 
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< � >, < � >, < �, � >, < �, b >, < �, b > 
e 

< � >, < À >, < �, À >, < �, b >, < À, b >, 
De manera que, entre otros, las aristas < � > −< �, b > e < � > −<
À, b > son requeridas. Entonces <� >, < � >, < �, b >  � < À, b > son 
un 4-conjunto independiente sobre {�, À, b} (cada uno tiene una arista 
sobre < � >). 

(iv) El patrón (i) aparece dos veces como: 
< � >, < �, À >, < �, b >, < À, b > 

e 
< � >, < �, À >, < �, b >, < À, b >, 

De manera tal que las aristas < � > −< À, b > e < � > −< À, b > son 
requeridas. Entonces la arista < � > −< � >, que es necesaria debido a 
<x, y>, completa un triángulo. 

(v) < � >, < �, � >, < �, À >, < �, �, À > forman un 4-conjunto 
independiente sobre {�, �, À} y no es posible que existan aristas entre 
ellos.  □ 
 

 
Lema 7: J¤(0) ≠ 2. 
Dem: 
Asumimos que J¤(0) = 2, y por lo tanto que JN(0) = 4 y que Jt(0) = 10 (ver 
las ecuaciones (1) del lema 5). Sin pérdida de generalidad podemos 
llamar a los 1-nodos < � >, < ë >, < Ö >, < j>. Consideramos primero el 
caso en el que {m, Ã} soporta dos 2-nodos; llamémoslos < m, Ã > y < m, Ã > ’. 
Tenemos que < m, � > y < Ã, � > son imposibles para � = �, ë, Ö, j ya que 
< m, Ã >, < m, Ã > ’, < m, � >, < Ã, � > serían un 4-conjunto independiente con 
un 3-conjunto como soporte. Eso significa que por lo menos cuatro de 
los diez 2-nodos tienen soporte en {�, ë, Ö, j}. Pero como cada 2-nodo con 
soporte {�, ë, Ö, j} requiere una 1-arista, una arista entre 1-nodos (ver 
observación 2 luego de la proposición 6), y como los cuatro 1-nodos 
pueden tener a lo sumo cuatro aristas entre ellos y eso sólo puede 
ocurrir en el caso en que formen un cuadrilátero, podemos asumir sin 
pérdida de generalidad < �, ë >, < ë, Ö >, < Ö, j >, < j, � >, y por lo tanto 
las aristas correspondientes < � > −< ë >, < ë > −< Ö >, < Ö > −< j > y 
< j > −< � >. Como tres 2-nodos de la forma < m, � > (para � = �, ë, Ö, j) 
llevarían al patrón (iii) del lema A, vemos que entre los 2-nodos  < �, � >
, < ë, � >, < Ö, � > y < j, � > (donde � = m, Ã), � debe tomar los valores m y Ã 
exactamente dos veces cada uno. Ahora observemos que cada nodo en sN 
tiene exactamente cuatro aristas hacia 1-nodos y 2-nodos en st de 
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manera tal que los 3-nodos tengan un soporte disjunto. Pero cualquier 
3-nodo con soporte {�, ë, Ö, j} (digamos < �, ë, Ö >) involucraría al patrón 
(v) (< �, ë >, < ë >, < ë, Ö >, < �, ë, Ö >) y eso no es posible. Esto nos deja 
con < �, ë, m > y < Ö, j, Ã > o con < �, Ö, m > y < ë, j, Ã >. 
En la primera alternativa, para evitar el patrón (v) debemos  tener 
< �, Ã > y < ë, Ã >, pero entonces < �, Ã >, < ë, Ã >, < m, Ã >, < m, Ã > ’ y <
�, ë, m > es un conjunto independiente de tamaño 5 con un 4-conjunto 
como soporte. La segunda alternativa lleva a < �, Ö, m >, < m, Ã >, < m, Ã >
’, < �, � >, < Ö, � >, todos sobre el conjunto {�, Ö, m, Ã} y, |{ � = � = m o 
� = � = Ã, entonces habría un 5-conjunto independiente, asi que 
asumimos < �, m > y < Ö, Ã > y por simetría también < ë, m > y < j, Ã >
. Sobre {�, Ö, m} están < �, Ö, m >, < � >, < Ö >, < �, m >, de manera que la 
arista  < Ö > −< �, m >, y sobre {�, ë, m} están < �, ë >, < �, m >, < ë, m >, < � >
, < ë > (que es el patrón (ii)), por lo tanto la arista < ë > −< �, m >, que 
completa el triángulo < ë >, < Ö >, < �, m >. 
Luego, todos los 2-nodos tienen un soporte distinto. Vamos a considerar 
los distintos casos de 2-nodos soportados sobre {�, ë, Ö, j}. Como notamos 
arriba, como mucho cuatro 2-nodos tiene soporte en {�, ë, Ö, j}, 
comenzamos con:  
Caso 1: Cuatro 2-nodos tienen soporte en {�, ë, Ö, j}. 
Podemos asumir sin pérdida de generalidad < �, ë >, < ë, Ö >, < Ö, j >, <
j, � >. Ahora, como tenemos a lo sumo un 2-nodo sobre {m, Ã} hay por lo 
menos cinco 2-nodos con una arista hacia {�, ë, Ö, j} y la otra arista hacia 
{m, Ã}. Esto nos lleva al patrón (iii) con cualquier asignación de soporte 
de esos 2-nodos. 
Caso 2: Ningún 2-nodo con soporte en {�, ë, Ö, j}. 
Como pueden haber como mucho ocho 2-nodos con una arista hacia 
{�, ë, Ö, j} y una arista hacia {m, Ã} y a lo sumo un 2-nodo sobre  {m, Ã} debe 
haber al menos un 2-nodo sobre {�, ë, Ö, j}. 
Caso 3: Exactamente un 2-nodo sobre {�, ë, Ö, j}. 
En este caso el patrón (iv) no se puede evitar (podemos asumir < �, ë >, 
y también debe tener < � >, < ë >, < �, m >, < �, Ã >, < ë, m >, < ë, Ã >, <
m, Ã >). 
Caso 4: Dos 2-nodos sobre {�, ë, Ö, j}. 
Si esos 2-nodos tienen soporte disjunto (digamos < �, ë >, < Ö, j >) 
podemos asignar los restantes ocho 2-nodos de dos maneras: 
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< �, m >, < �, Ã >, < ë, m >, < ë, Ã >, < Ö, m >, < Ö, Ã >, < j, m >, < m, Ã > o igual 
sólo modificando  < m, Ã > por < j, Ã >.  
En el primer caso el patrón (iv) aparece sobre {�, ë, m, Ã}, por lo tanto esto 
no es posible. En el segundo caso, se ve el patrón (ii) cuatro veces 
(sobre {�, ë, Ö}, {�, ë, Ã}, {Ö, j, m} y {Ö, j, Ã}) de manera que la configuración 
e¤   aparece por lo menos cuatro veces y por lo tanto Ï ≥ e¤ ≥ 4. Además, 
en este caso Jt(1) = 2,  J¤(2) = 0 (las 1-aristas < � > −< ë > y < Ö > −<
j > son forzados) o tendríamos Jt(1) = 3. J¤(2) = 2 (sumando la 
arista  < ë > −< Ö >) o Jt(1) = 4, J¤(2) = 4 (sumando otra arista 
< � > −< j >). Pero 2Jt(1) − J¤(2) = 4 y la ecuación (2) del lema 4 se 
convierte en 4 = 2Jt(1) − J¤(2) ≥ 2 + À + Ï ≥ 6. 
Este absurdo reduce este caso a la posibilidad de < �, ë > y < ë, Ö > como 
los dos 2-nodos; de todas formas el patrón (iii) no puede ser evitado, 
por lo tanto excluimos el caso 4.  
Caso 5: Tres 2-nodos con soporte en {�, ë, Ö, j}. 
Podemos asumir < �, ë > y < Ö, j > sin pérdida de generalidad. Ahora, si 
también tenemos < ë, j > entonces  < �, m > y < �, Ã > pueden ser 
asumidos. También, si < m, Ã > entonces el patrón (i) y por lo tanto la 
arista < � > −< m, Ã > aparecen. Notemos que en esta situación la arista 
< ë > −< m, Ã > no es permitida. El 1-nodo < ë > tiene tres aristas en st 
ya asignadas, por lo tanto tiene 2 aristas más. Estas aristas pueden ser 
de dos formas, una arista de < ë > podría ir a un 3-nodo o a un 2-nodo 
entre < �, m >, < �, Ã >, < Ö, m >, < Ö, Ã >, < j, m >, < j, Ã >: una arista de la 
primera forma incrementa À en uno y una arista de la segunda forma 
forma la configuración et, incrementando Ï en uno. Por lo tanto, las dos 
aristas restantes de < ë > implican (À + Ï) ≥ 2. Como J¤(2) = 3 esta 
asignación es imposible.  
Podemos entonces asumir < �, ë >, < ë, Ö >, < Ö, j > y para evitar el 
patrón (iii) < �, m >, < �, Ã >, < ë, m >, < Ö, Ã >, < j, m >, < j, Ã >, < m, Ã > son 
necesarias. Ahora el patrón (ii) aparece dos veces (sobre {�, ë, m} y 
{Ö, j, Ã})  por lo tanto tenemos aristas < � > −< ë, m >, < ë > −< �, m >, <
Ö > −< j, Ã >, < j > −< Ö, Ã > lo que implica que e¤ ≥ 2. Además, el patrón 
(i) aparece sobre {�, m, Ã} y {j, m, Ã}, requiriendo aristas  < � > −< m, Ã > y 
< j > −< m, Ã >. Como ya  hemos mostrado que Ï ≥ 2, y como  J¤(2) = 2, 
debemos tener À = 0 y Ï = 2, es decir que ningún 1-nodo puede tener 
aristas hacia 3-nodos y debemos evitar cualquier configuración que 
incremente Ï. 
Ahora consideramos de nuevo las dos aristas restantes de < ë > en st. 
Aristas hacia < m, Ã > o < j, Ã > formarían triángulos (< � >, < ë >, <
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m, Ã > o < ë >, < Ö >, < j, Ã >) y aristas hacia < �, Ã > o < Ö, Ã > 
completarían la configuración et, lo que incrementaría Ï; mientras que 
aristas hacia < �, ë >, < ë, m >, < ë, Ö > no son permitidas (todas tienen a 
{ë} en común) la arista < ë > −< �, m > ya ha sido contada, asi que la 
única posibilidad es tener aristas < ë > −< Ö, j > y < ë > −< j, m >. Por 
simetría, también tenemos las aristas < Ö > −< �, ë > y < Ö > −< �, Ã >. 
Ahora consideremos las dos aristas no asignadas de < � >. Aristas hacia 
< �, ë >, < �, m >, < �, Ã >, < Ö, j > formarían triángulos (recordemos que 
tenemos la arista < � > −< ë >) mientras que la arista < � > −< ë, Ö > 
completaría la configuración e¢ e incrementaría Ï. Con aristas ya 
asignadas nos queda (y es requerido que tengamos) aristas < � > −<
j, Ã > y < � > −< Ö, Ã > y de nuevo por simetría  < j > −< �, m > y 
< j > −< ë, m >. A continuación observamos que a cada nodo en sN le han 
sido asignadas cuatro aristas hacia 1-nodos y 2-nodos dejando los dos 3-
nodos para tener soporte disjunto, y para evitar el patrón (v) esos 3-
nodos son < �, ë, j > y < Ö, m, Ã > o < �, Ö, j > y < ë, m, Ã > o < �, Ö, m > y  <
ë, j, Ã > o < �, Ö, Ã > y  < ë, j, m >. 
La primera elección es descartada considerando {Ö, m, Ã} y notando que 
< Ö >, < Ö, Ã >, < m, Ã > y  < Ö, m, Ã > no pueden tener aristas debido a la 
existencia de las aristas < Ö > −< j > y < j > −< m, Ã >; por lo tanto esos 
cuatro nodos son independientes y están sobre un 3-conjunto. 
Similarmente, el 3-conjunto {ë, m, Ã} muestra que la segunda opción es 
imposible. El 3-conjunto {�, Ö, m} y las aristas < ë > −< �, m > y 
< ë > −< Ö > muestran que la tercera elección no es posible. Finalmente, 
los nodos soportados por {�, Ö, m, Ã}, y en particular < �, Ö, Ã >, < �, Ã >, <
Ö, Ã >, < m, Ã >, < �, m > por el momento no tienen aristas entre ellos por lo 
cual la arista < �, m > −< Ö, Ã > es requerida (todas las demás aristas 
formarían un triángulo). Pero entonces esta arista y las aristas 
< j > −< �, m > y < j > −< Ö, Ã > forman un triángulo, lo cual es absurdo. 
Luego, hemos demostrado que todas las posibilidades en las cuales 
J¤(2) = 0 son imposibles. □ 
 
Lema 8: J¤(0) ≠ 3. 
Dem: 
Supongamos que J¤(0) = 3, entonces Jt(0) = 8 y JN(0) = 5. Vamos a notar a 
los 1-nodos por < � >, < ë >, < Ö >, < j >, < m >. Si 5 de los 2-nodos 
tienen a f en su soporte entonces los tres 2-nodos están soportados en 
{�, ë, Ö, j, m} y por lo tanto al menos dos de ellos tienen un punto en 
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común en su soporte; esto necesita la ocurrencia del patrón (iii). Puede 
haber entonces como mucho cuatro 2-nodos soportados en {�, ë, Ö, j, m}. 
Supongamos ahora que exactamente cuatro 2-nodos están sobre 
{�, ë, Ö, j, m}. Hay solamente tres asignaciones de 2-nodos (con 
permutación de índices) que evitan el patrón (iii) y triángulos entre las 
aristas requeridas entre 1-nodos. Esas son < �, Ö >, < ë, Ö >, < Ö, j >, <
Ö, m >, < �, Ã >, < ë, Ã >, < j, Ã >, < m, Ã >, o la misma pero cambiando 
< Ö, m > por < j, m >, o la misma que la primera pero cambiando < �, Ö > 
por < �, ë > y < Ö, m > por < j, m >. En todos los casos f esta en el soporte 
de sólo uno de los 3-nodos de manera que dos 3-nodos tienen soporte 
en {�, ë, Ö, j, m}. En la primera asignación un 3-nodo con c pero no f en su 
soporte produciría el patrón (v) asi que podemos asumir < �, ë, j >. Pero 
entonces < � >, < ë >, < j > y < �, ë, j > son un conjunto independiente 
de tamaño 4 soportado por {�, ë, j} y no hay ninguna arista posible 
(< � >, < ë >, < j > están unidos a < Ö > por aristas). 
Supongamos entonces la segunda asignación de arriba. El patrón (ii) 
aparece sobre {j, m, Ã} dando aristas < j > −< m, Ã > y < m > −< j, Ã >. 
Como Ö esta en el soporte de tres 2-nodos y un 1-nodo debe estar en el 
soporte de un 3-nodo. < Ö, m, Ã > no es posible pues < Ö >, < m >, < m, Ã >, <
Ö, m, Ã > son independientes (las aristas < Ö > −< j > y < j > −< m, Ã > 
excluyendo la arista < Ö > −< m, Ã >). Las únicas posibilidades que evitan 
el patrón (v) son < �, Ö, m > y < ë, Ö, m >. Por simetría elegimos < �, Ö, m >.  ë 
debe estar en el soporte de ambos 3-nodos remanentes. < �, ë, j > 
produciría un 4-conjunto independiente sobre {�, ë, j} de manera que 
debemos tener < �, ë, m > y < ë, j, Ã > o < �, ë, Ã > y < ë, j, m >. 
Supongamos primero < �, ë, m > y < ë, j, Ã >; entonces consideremos los 
nodos soportados por {ë, j, Ã}. Deben estar las aristas < ë > −< ë, j > y 
< j > −< ë, Ã > (la arista < ë > −< j > no puede ocurrir debido a 
< Ö > −< ë > y < Ö > −< j >). Entonces < m >, < �, Ã >, < ë, Ã >, < m, Ã >, <
�, ë, m > están sobre {�, ë, m, Ã}, requiriendo la arista < m > −< �, Ã > (las 
aristas < j > −< m > y < j > −< ë, Ã > excluyen a < m > −< ë, Ã >). Ahora, 
los nodos sobre {�, j, Ã}, debido a la arista <m > −< �, Ã > que excluye a 
< j > −< �, Ã >, requieren la arista < � > −< j, Ã >. Finalmente 
< � >, < ë >, < m > cada uno tiene una arista hacia < j, Ã > de manera que 
son independientes y con < �, ë, m > forman un 4-conjunto independiente 
soportado por un 3-conjunto en sN. 
Esto nos deja < �, ë, m >, < �, ë, Ã > y < ë, j, m > como nuestra elección de 
3-nodos. Un argumento similar (pero más extenso) muestra la 
contradicción. Vamos a dar únicamente la lista de conjuntos a 
considerar y las aristas relevantes a ser forzadas; el orden en que 
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consideramos los conjuntos es importante ya que cada paso se basa en 
el anterior:  
{�, Ö, m} implica la arista < m > −< �, Ö >. 
{�, Ö, j}  implica la arista < � > −< Ö, j >. 
{�, ë, Ã}  implica las aristas < � > −< ë, Ã > y < ë > −< �, Ã >. 
{ë, j, m}  implica la arista < ë > −< j, m >. 
{�, Ö, j, m}  implica la arista < �, Ö > −< j, m >. 
Notemos que entre < Ö >, < Ö, j >, < �, Ö >, < �, Ö, m >, < j, m > la única 
posible arista es < �, Ö > −< j, m >. 
{�, ë, Ö}  implica la arista < � > −< ë, Ö >. 
{�, Ö, m, Ã}  implica la arista < m > −< �, Ã >. 
Notemos que < m >, < Ö >, < �, Ã >, < m, Ã >, < �, Ö, m > permiten únicamente 
la arista < m > −< �, Ã >. Más aún, {�, j, Ã} implica la arista < � > −<
j, Ã >. Ahora tenemos < � >, con aristas asignadas hacia < Ö >, < Ö, j >, <
j, Ã >, < ë, Ö > y < ë, Ã >, por lo tanto son independientes pero su soporte 
es un 4-conjunto. 
Finalmente, tenemos la asignación < �, ë >, < ë, Ö >, < Ö, j >, < j, m >, <
�, Ã >, < ë, Ã >, < j, Ã >, < m, Ã > como los 2-nodos. El patrón (ii) aparece 
sobre {�, ë, Ã} y sobre {j, m, Ã}; por lo tanto tenemos aristas < � > −<
ë, Ã >, < ë > −< �, Ã >, < j > −< m, Ã >, < m > −< j, Ã > junto con las aristas 
< � > −< ë >, < ë > −< Ö >, < Ö > −< j > y < j > −< m >. Entonces �, Ö y 
m están cada una en el soporte de dos 3-nodos mientras que  ë, j, y Ã 
están cada una en el soporte de un 3-nodo.  
A continuación consideramos cinco 2-nodos soportados por {�, ë, Ö, j, m}.  
Sólo pueden existir dos configuraciones que no formen triángulos entre 
los 1-nodos; y ellas son: < �, ë >, < ë, Ö >, < Ö, j >, < j, m >, < m, � > y 
< �, ë >, < ë, Ö >, < Ö, j >, < j, m >, < m, ë >. En la primera asignación para 
evitar el patrón (iii) debemos tener < �, Ã >, < ë, Ã > y < j, Ã >. Entonces 
el patrón (ii) aparece sobre {�, ë, Ã} dando las aristas < � > −< ë, Ã > y 
< ë > −< �, Ã >. Los 3-nodos < �, �, Ã > donde < �, � > es un 2-nodo nos 
darán el patrón (v). Además, < �, Ö, Ã > es imposible pues < �, Ö, Ã >, < � >
, < Ö >, < �, Ã > deben ser independientes (< Ö > −< �, Ã > no es 
permitida y la arista < ë > −< �, Ã > excluye a las otras). Esto nos deja 
solamente con < �, j, Ã >, < ë, j, Ã > y < Ö, m, Ã > como posibles 3-nodos 
con f en su soporte y debemos tener dos de dichos 3-nodos. Por simetría 
podemos elegir < �, j, Ã >. Entonces sobre < �, j, Ã > tenemos 



Apéndice B: Demostraciones de lemas de R(3,7) 

101 
 

< � > −< j, Ã > y < j > −< �, Ã >. Entonces si también tenemos < ë, j, Ã > 
la arista < ë > −< j, Ã > completaría un triángulo, de manera que 
debemos tener < Ö, j, Ã > y < ë, Ö, m >. Entonces sobre {ë, j, Ã} la arista 
< j > −< ë, Ã > se necesita y en consecuencia < Ö, m, Ã >, < ë, Ö, m >, < ë, Ã >
, < ë, Ö >, < Ö > son independientes sobre {ë, Ö, m, Ã}.  
Consideremos la segunda asignación dada arriba. Los tres 2-nodos con f 
en su soporte pueden ser asignados en una de tres maneras (sin contra 
permutaciones) para evitar el patrón (iii). Debemos tener < �, Ã > y 
entonces tenemos la elección entre < ë, Ã > y < j, Ã > o < Ö, Ã > y < m, Ã > 
o < Ö, Ã > y < j, Ã >. En la primera asignación �, Ö, m y Ã están cada una en 
el soporte de dos 3-nodos y d en el soporte de uno. Como m y Ö están 
cada una en el soporte de dos de los tres 3-nodos que hay debemos 
tener < Ö, m, � >. Ahora, < Ö, m, j > lleva al patrón (v) y < �, Ö, m > lleva a 
tener un 4-conjunto independiente sobre {�, Ö, m}.  
Por lo tanto tenemos < Ö, m, Ã > y < �, Ö, Ã >, < �, m, j > o < �, m, Ã >, <
�, Ö, j>. El patrón (ii) aparece sobre {�, ë, Ã} de manera que tenemos las 
aristas  < � > −< ë, Ã > y < ë > −< �, Ã >, pero entonces < � >, < Ö >, <
�, Ã >, < �, Ö, Ã > forman un 4-conjunto independiente sobre {�, Ö, Ã} 
(< � >, < m >, < �, Ã >, < �, m, Ã > sobre {�, m, Ã}). Luego, la primera 
asignación es imposible.  
En la segunda asignación, < �, Ã >, < Ö, Ã > y < m, Ã >, tenemos un 3-nodo 
soportado por {�, ë, Ö, j, m}. Como antes, < �, Ö, m > nos da un conjunto 
independiente de tamaño 4 sobre {�, Ö, m}, y ya que debemos evitar el 
patrón (v) las únicas opciones posibles son < �, Ö, j > o < �, m, j > o 
< �, ë, j >. Como las primeras dos son simétricas vamos a considerar 
sólo las últimas dos. Completaríamos la asignación usando < �, m, j > de 
sólo una manera posible para evitar el patrón (v), y esto es usando 
< �, Ö, Ã > y < ë, j, Ã >. Similarmente, < �, ë, j > puede ser completado con 
< �, j, Ã > y < Ö, m, Ã >. En el último caso < �, ë, j >, < �, j, Ã >, < �, Ã >, <
�, ë >, y < � > dan un 5-conjunto independiente sobre {�, ë, j, Ã}. Por lo 
tanto el único caso a considerar es el primero. De nuevo vamos a dar 
sólo la secuencia de pasos ya que el argumento es demasiado largo. 
{�, m, Ã}  implica las aristas < m > −< �, Ã > y < � > −< m, Ã >. 
{�, m, j}  implica la arista < � > −< m, j >. 
{ë, j, m}  implica la arista < j > −< ë, m >. 
{ë, Ö, m}  implica la arista < m > −< ë, Ö >. 
{ë, Ö, j}  implica la arista < ë > −< Ö, j >. 
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{Ö, j, m}  implica la arista < Ö > −< j, m >. 
{ë, Ö, j, Ã}  implica la arista < j > −< Ö, Ã >. 
{Ö, m, Ã}  implica la arista < Ö > −< m, Ã >. 
Ahora el conjunto {ë, j, m, Ã} tiene < ë >, < j >, < j, m >, < m, Ã > y < ë, j, Ã > 
como un conjunto independiente de tamaño 5 sobre él.  
Debemos considerar ahora el arreglo con < �, Ã >, < Ö, Ã > y < j, Ã >. De 
nuevo, un 3-nodo tiene soporte en {�, ë, Ö, j, m} y de nuevo para evitar 
< �, Ö, m > y la aparición del patrón (v) debemos tener < �, ë, j > o 
< �, Ö, j > o < �, j, m >. Cada uno fuerza el resto de la asignación. Como el 
patrón (ii) aparece en {Ö, j, Ã} debemos tener aristas < Ö > −< j, Ã > y 
< j > −< Ö, Ã >. Entonces en la primera asignación de 3-nodos 
< �, ë, j >, < �, m, Ã >, < Ö, m, Ã > obtenemos < Ö >, < m >, < Ö, m, Ã >, < Ö, Ã > 
como conjunto independiente sobre {Ö, m, Ã}. La segunda asignación, 
< �, Ö, j >, < �, m, Ã >, < ë, m, Ã > lleva a la siguiente secuencia de pasos:  
{�, m, Ã}  requiere < m > −< �, Ã >. 
{�, Ö, j}  requiere < � > −< Ö, j >. 
{ë, Ö, j}  requiere < j > −< ë, Ö >. 
{ë, Ö, m}  requiere < Ö > −< ë, m >. 
{ë, j, m}  requiere < ë > −< j, m >. 
{Ö, j, m}  requiere < m > −< Ö, j >. 
Ahora, tanto < Ö, j > como < �, Ã > tienen aristas hacia < m > de manera 
que < Ö, j >, < �, Ã >, < j, Ã >, < Ö, Ã >, < �, Ö, j > son cinco nodos 
independientes sobre un 4-conjunto. 
En el último caso los 3-nodos son < �, j, m >, < �, Ö, Ã > y < ë, m, Ã > y los 
pasos son los que siguen:  
{�, Ö, Ã}  implica las aristas < Ö > −< �, Ã > y < � > −< Ö, Ã >. 
{�, j, m} implica la arista < � > −< j, m >. 
{ë, j, m}  implica la arista < j > −< ë, m >. 
{ë, Ö, m}  implica la arista < m > −< ë, Ö >. 
{ë, Ö, j}  implica la arista < ë > −< Ö, j >. 
{Ö, j, m}  implica la arista < Ö > −< j, m >. 
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Entonces, < �, Ã >, < m, j > y < j > todos tienen una arista hacia < Ö > y 
por lo tanto < m, j >, < �, Ã >, < j >, < �, j, m >, < j, Ã > es un conjunto 
independiente sobre {�, j, m, Ã} de manera que esta asignación no puede 
funcionar.  
El caso que queda ocurre cuando seis 2-nodos están soportados por 
{�, ë, Ö, j, m}. Para evitar triángulos entre los 1-nodos tenemos 
(considerando permutaciones) los 2-nodos < �, Ö >, < ë, Ö >, < �, j >, <
ë, j >, < �, m >, < ë, m >. Consideremos entonces los 3-conjuntos de sN, 
{�, ë, �} donde  � = Ö, j, m; cada caso requiere la arista < � > −< ë, � > o una 
arista < ë > −< �, � >. Podemos entonces asumir sin pérdida de 
generalidad que tenemos las aristas < ë > −< �, Ö > y < ë > −< �, j >. 
Entonces < ë > y los cinco nodos con Ã en su soporte (los tres 3-nodos y 
los dos 2-nodos) son un 6-conjunto independiente en st, de manera que 
st no es un (3, 5) −grafo en este caso y por lo tanto la demostración del 
lema está completa. □ 
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