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1. Introducciéon

El presente trabajo trata de un problema con condiciones de Neumann que tiene
la particularidad de poseer, en su ecuacion, los valores desconocidos de la funcion
en el borde. Mas precisamente, se tiene la ecuacién

"no__ vy v / y_3 1 2 2
/= (T )+ 0 [N 500 = 570 o

-[E2 w0 - an| . e

sujeta a las condiciones de contorno

donde vy, v_ € Z, v,v_ <0y ALy D son constantes.

Esta mencionada particularidad lleva a la imposibilidad de tratar este problema
con los métodos habituales del analisis y surge la necesidad de abordar su estudio
con otras herramientas. El método propuesto a tal efecto en los trabajos [5] y
[9], con antecedentes en [2|, es un Método de Disparo o Shooting bidimensional.

El problema en cuestion surge de la teoria de electrodifusion de iones a través
de una barrera de material, con vastos antecedentes de estudio, y maltiples apli-
caciones especialmente en el campo de la Biologia, con importantes implicancias
en fenomenos fisiologicos, especialmente en el campo de la Neurologia.

Este trabajo de Licenciatura comienza con la descripcion del paper de H. R.
Leuchtag [1], en el cual se deduce la familia de ecuaciones diferenciales a la cual
pertenece la ecuacion diferencial arriba mencionada, a partir del sistema de ecua-
ciones de Nernst-Planck y la Ley de Gauss, que describe una mezcla arbitraria de
iones en estado estacionario. Contintia con los trabajos de H. B. Thompson [2] y
[3], en los cuales se centra el estudio en la ecuacion para el caso de dos iones de la
misma valencia y se arriba a la prueba de la existencia de solucion estableciendo
una condicion para los parametros fisicos involucrados, y culmina con los tra-
bajos de P.Amster, M.K.Kwong y C.Rogers [5] y [9], en los que esta restriccion
es eliminada mediante la aplicacion del mencionado Shooting bidimensional con
un argumento de indice topologico, estableciéndose los resultados de existencia
de solucién para los casos de valencias iguales, en el primer trabajo, y para el
caso general de valencias distintas, en el segundo, en donde ademas se deduce la



ecuacion del modelo.

Se presenta también aqui, una secciéon dedicada a comentar dicho método de dis-
paro en una y dos dimensiones, que se usa en la prueba principal de la existencia,
con la finalidad de facilitar la comprension del mismo aplicado a este novedoso
problema. Se muestran ejemplos del caso unidimensional, y luego su extension
al caso bidimensional, el cual se trata, ademas, con herramientas bésicas del
Analisis Complejo, que es como se utiliza en las demostraciones.



2. El proceso de electrodifusion

2.1. Introduccién

El trabajo de H. R. Leuchtag [1] trata de la electrodifusion unidimensional en
régimen estacionario sin restriccion en el ntimero de iones presentes. Como alli
se menciona, la teoria de electrodifusion es una descripcion macroscopica del
transporte de particulas cargadas a través de barreras de material, por una com-
binacion de flujos migratorios y difusion, que tiene su origen en la teoria de la
juntura liquida de Nernst y Planck, la cual se convierte en la base de la teoria de
la membrana de Bernstein de los potenciales nerviosos. Como mencionan los au-
tores en [15], con sus estudios se inicio la electrofisiologia moderna. El determind
las bases electroquimicas de los fenémenos bioeléctricos y desde sus trabajos se
ha reconocido el papel fundamental de la concentraciéon del potasio intracelular
en la generacion de los potenciales de reposo y de lesion en misculo y nervio.
Bernstein desarrolld su teoria para explicar los biopotenciales de membrana a
consecuencia de la hipétesis de du Bois-Reymond, quien habia postulado la exis-
tencia de particulas eléctricas regularmente ordenadas a lo largo de la superficie
del misculo y del nervio. Lo hizo sobre la base de los trabajos de Ostwald y de
Nernst sobre la diferencia de potencial eléctrico entre dos soluciones del mismo
electrolito a dos concentraciones diferentes, separadas por una membrana selec-
tivamente permeable. El electrolito de mayor movilidad tendera a avanzar més
rapidamente que los demés. Creard pues un frente eléctrico de su mismo signo,
manifiesto como una diferencia de potencial eléctrico entre las dos soluciones.
La diferencia de potencial generada se puede calcular mediante la ecuacion de-
rivada por Nernst. Ha sido usada extensamente en la descripcion de membranas
biologicas y las membranas artificiales disenadas para modelarlas. Aplicaciones
en sistemas de materia condensada incluyen las corrientes limitadas de carga
espacial (Space Charge Limited Currents) en dieléctricos solidos. Formulas vin-
culadas aparecen en el estudio de la inestabilidad de corrientes disipativas en la
fisica del plasma.

Se relata, en la referencia [1], la existencia de una familia de ecuaciones dife-
renciales no lineales que surgen de su formulaciéon y que describen regimenes
estacionarios de electrodifusion de arbitraria complejidad, siendo el orden de la
ecuacion igual al namero de diferentes cargas presentes en el sistema.

Como se menciona en 2], en referencia a su trabajo de 1988 [3], el problema de
valores de contorno surge naturalmente del estudio de la conducciéon nerviosa,
del cual el problema fisico es, basicamente, el estudio de dos iones con la misma
valencia difundiéndose y migrando a través de una juntura liquida tal como una
membrana. La juntura separa dos comparativamente grandes reservorios eléc-



tricamente neutros cada uno de ellos compuesto de electrolitos que contienen
especies de iones tales como sodio y cloruro. Los depdsitos son agitados para
mantener constantes las diferentes concentraciones de los iones de distintas es-
pecies que tienen, a su vez, distintas constantes de difusion. Como la constante
de difusion y el gradiente de concentracion determinan la velocidad de difusion
de una dada especie a través de la juntura, aparece un campo eléctrico £. Por
la Ley de Gauss, este campo eléctrico varia en proporcion a las diferentes con-
centraciones locales de las especies de iones. El campo eléctrico ejerce una fuerza
equilibrante sobre los iones. Para reservorios grandes, se alcanza un estado esta-
cionario en el que macroscopicamente hay transferencia neta de masa pero no de
carga y por lo tanto no hay corriente eléctrica a través de la juntura. El ntimero
de iones se conserva. Con dos especies de iones este modelo de estado estacio-
nario da lugar a un sistema de ecuaciones diferenciales para las concentraciones
ionicas y la intensidad del campo eléctrico.

2.2. Una familia de ecuaciones diferenciales surgida de la
electrodifusiéon multiiénica.

Aqui abordamos el analisis del trabajo de Leuchtag [1]|, que describe, somera-
mente, el proceso de difusion y arrastre de una mezcla de iones arbitraria en
régimen de estado estacionario en la juntura, mediante el sistema de ecuaciones
de Nernst-Planck y la Ley de Gauss, que culmina mostrando su equivalencia con
una simple ecuacion diferencial ordinaria cuyo orden es igual al nimero de las
distintas cargas idnicas presentes en el sistema.

2.2.1. Descripcién del proceso

Como se cita en el mencionado trabajo, es conveniente dividir los iones presentes
en el sistema de difusion-arrastre, en clases de la misma carga ¢;. Las diferentes
especies pertenecientes a una dada clase de carga se indexan por j.

Las dos ecuaciones que describen el sistema de electrodifusion en estado estacio-
nario son la ecuacion de Nernst-Planck

dNj;
Jij = —qiuif—=F + ugi ENy,  1<i<m (2.2.1)

la cual establece que la densidad de corriente J;; debida al i6n ij se compone
de un término debido a la difusion y otro debido a la migracion por efecto de



arrastre del campo eléctrico F, y la Ley de Gauss

i=1 j=1
En éstas hemos llamado X a la coordenada normal al borde plano, NV;; es la
densidad de iones ij (o sea, la cantidad de iones por unidad de volumen), u;;
es la mouwilidad de los iones ij, € es la constante dieléctrica y 0 la temperatura
expresada en unidades de energia (o sea, § = kgT, donde kg es la constante de
Boltzmann, y T la temperatura absoluta medida en grados Kelvin). Estas tres
ultimas magnitudes se suponen constantes a lo largo de la membrana.
En régimen estacionario, y en ausencia de fuentes o sumideros, se supone que las
densidades de corrientes J;; son también independientes de X.
Implicita en la ecuacion (2.2.1) esta la ecuacion de Einstein D;; = u;;0, la cual
relaciona la movilidad wu;; con el coeficiente de difusion D;;.
El numero total de especies ionicas es Y k; (por cada carga ¢; hay k; especies
i=1
diferentes de iones con esa carga).
Las interacciones entre los iones de diferentes especies no estd presente en la
ecuacion (2.2.1), pero surge del acoplamiento electrostatico, a través de la ley de
Gauss.
En el estudio de las membranas, las cantidades de interés a observar en los datos
experimentales son la diferencia de potencial eléctrico

L
- —/de, (2.2.3)

0

donde L es el espesor de la membrana, y por otro lado, la corriente neta a través
de la membrana (relacionada con la magnitud microscopica J).

En este estudio se muestra que el sistema de m ecuaciones diferenciales acopladas
de (2.2.1), méas la ecuacion (2.2.2) se pueden reducir a una ecuacion diferencial
simple de orden m dependiente de la variable E. Las ecuaciones (2.2.1) y (2.2.2)
constituyen un sistema no lineal, asi que las soluciones no estan sujetas a super-
posicién ni a multiplicacion por una constante. Sin embargo, para un arbitrario
a # 0, si se define la transformacion T, por

X —a'X
V —V

E— aF
N — o’N
J—a®J



se puede ver facilmente que el sistema definido por las ecuaciones (2.2.1) a (2.2.3)
es invariante para 7y, asi es que de cualquier soluciéon dada pueden generarse una
infinidad de soluciones adicionales. El conjunto de transformaciones T, forma un
grupo abeliano, donde T, T = Ty, T} es la identidad y Ti la inversa de T,.

2.2.2. Forma adimensional

Las ecuaciones (2.2.1) y (2.2.2) se pueden escribir, de manera equivalente, en
forma adimensional, suprimiendo simultaneamente el subindice j (lo cual muestra
que el comportamiento del sistema refleja las clases de cargas presentes mas que
las especies de iones diferentes, aunque esto debe ser justificado en las condiciones
de borde). En efecto, si qq es el quantum de carga eléctrica (go = 1,6 107190,
entonces v; = ¢;/qo es la valencia con signo del i6n (siendo ¢; # g y por lo tanto
Vi # Vg, Si @ # k). Para una unidad de densidad de iones arbitraria Ny, se define

la Longitud de Debye X\, como
R
4mqsNo

1 &
T xNp Ni'v

es decir, se suman las densidades de concentraciones de las distintas especies de
iones de carga ¢; (de las que hay k;) y se obtiene una cantidad relativa de iones
de carga ¢; respecto de la unidad de densidad N.

Sean ahora,

Y sean
NP ¥
' Nog;t 1 uij’
b= @E’ (2.2.4)

6

T = b\ x1,

donde x; es una constante a definir.
En estas unidades adimensionales, las ecuaciones (2.2.1) y (2.2.2) se vuelven

dni
dx

d m
£ = ; ving;.

= Vipn; — G, I<i<m
(2.2.5)



2.2.3. Los casos de una y dos cargas

El caso de un solo ion fue resuelto por F. Borgnis en 1936, en [10|, y H. Y. Fan
en [11], introdujo la mas conveniente forma de funcion de Airy de la solucion en
1948. H. R. Leuchtag y J. C. Swihart en [12| senalaron que la soluciéon para un
tnico ion se puede generalizar al caso de los iones de una sola carga, llamado
el caso homouvalente. Las densidades de iones individuales puede ser recuperadas
mediante el uso de una féormula obtenida por R. Schlégl en [13].

Con m = 1, las ecuaciones (2.2.5) se vuelven

n' = vpn —c,
P (2.2.6)
p =uvn,

donde los apostrofos denotan las derivadas respecto de x. Despejando n de la
segunda y reemplazando en la primera da n’ = pp’ — ¢, e integrando se tiene
Ly
n=gp" -z, (2.2.7)
en donde se ha usado la constante x; de la dltima ecuacion de las (2.2.4) para
absorber la constante de integracion. Luego, la ecuacion diferencial equivalente
al sistema de ecuaciones de (2.2.6) nos queda
/ 1 2
p=gupT - ve. (2.2.8)
Esta ecuacién es el primer miembro de la familia de ecuaciones diferenciales que
se describe en este trabajo citado ([1]), donde se omite la reconversion a variables
fisicas.

Para un sistema que contiene iones de dos diferentes valencias, m = 2, y las
ecuaciones (2.2.5) se vuelven

ny = vipng — ¢, (2.2.9)
Nby = Vapny — Ca, (2.2.10)
P = ving + vans. (2.2.11)

Sumando las ecuaciones (2.2.9) y (2.2.10), obtenemos
ny 4+ nhy = (ing + vang)p — (¢1 + c2),

con lo que tenemos que

1
ving + veng = —(n} + nh + ¢), donde ¢ =ci+ cy.
p



Reemplazando en la ecuacion (2.2.11), multiplicando por p, tenemos
pp=mny+ny+c

la cual, integrando nos da
1

5p2 = ny + ng + cr, (2.2.12)
con lo cual, despejando ny y sustituyéndola en (2.2.11), nos da
p = §V2p2 + (11 — vo)ng — acx

De esta ultima ecuacioén, obtenemos, por un lado,

/ 1 2
— 5Up° + Vocx
ny = L2l TR (2.2.13)

vy — V2

y por otro lado, derivandola,
P’ =vepp’ + (11 — o)n} — e (2.2.14)

Reemplazando ahora el valor de ny, obtenido en la ecuacion (2.2.13), en la ecua-
cién (2.2.9), tenemos
, vpp — %V1V2p3 + VlpCxp

TLIZ )
vV — U2

la cual, reemplazada en la ecuacion (2.2.14), nos da la deseada ecuacion diferen-
cial en p,

1
P — (v +ve)pp + §V1V2p3 — U eTp + Vi) + vacy = 0 (2.2.15)

Este es el segundo miembro de la familia de ecuaciones diferenciales , la cual fue
derivada por L. J. Bruner en 1965 para un ién positivo y otro negativo. Con
iones de iguales cargas y signos opuestos, el segundo término, que contiene a
V1 + s, se anula, version que (para +1) fue obtenida por L. Bass en 1964 y por
H. Cohen y L. W. Cooley en 1965.

2.2.4. Generalizacion a un sistema de iones

El procedimiento para un sistema de iones con un nimero arbitrario de cargas
diferentes es una generalizacion directa de estos casos especiales, como puede
verse en |1, donde se observa que la complejidad del comportamiento del sistema
en régimen estacionario depende de este nimero de distintas cargas. El sistema
de ecuaciones (2.2.1) y (2.2.2), para m cargas, se describe por una ecuacion
diferencial de orden m, deducida en [1], donde ademéas se muestran la tercera y
cuarta ecuaciones de la familia.



2.3. Existencia para problemas de valores de contorno en
electrodifusion de dos iones

En el trabajo de H. B. Thompson [2], que en esta parte de esta seccion se analiza,
que extiende y unifica el anterior propio del ano 1988 [3], se considera el problema
de valores de borde

2 2
- [M + M] D, zel0,1], (2.3.1)
y'(0) =0, y'(1) = 0. (2.3.2)

el cual surge cuando dos iones de la misma valencia migran y se difunden a
través de una juntura liquida bajo la influencia de un campo eléctrico E. Aqui
y es proporcional al campo eléctrico F y, después de reescalar, la juntura ocupa
la region 0 < x < 1. Los pardmetros [, A y D, son funciones de las constantes
fisicas del problema, siendo el rango de interés fisico [, A >0y —1 < D < 1.

2.3.1. El problema de valores de borde

Como se menciona en [2], en el trabajo anterior [3], se muestra que si y es solucion
para los parametros [, D, A\, entonces —y lo es para parametros [, —D, A. Luego,
aqui se considera el caso [, A\, D > 0. Para este caso, se prob6 que si existe una
constante positiva m que cumple

m? m2D

m(A — ) —IAD

> 0, (2.3.3)

entonces existe al menos una y, solucién del problema dado por las ecuaciones
(2.3.1)-(2.3.2), que cumple 0 < y < m y que es estrictamente decreciente.

La prueba de existencia usa super y sub soluciones junto con el principio del
maximo para obtener una cota a priori necesaria para aplicar la teoria de grado,
lo cual requiere que

l
m(1+§)—ZD>O.

También en otro resultado del mismo trabajo (Teorema 4.2 de [3]), se probo la
existencia de soluciones cuando al menos uno de los parametros [ o D son peque-
nios, usando método de disparo (shooting) y el teorema de la funcién implicita.

9



Asi, la existencia fue establecida para un gran rango de valores de los parametros
de interés fisico.

En |2], se considera el problema so6lo en el caso [, D, A > 0. Usando el principio
del maximo se obtiene el siguiente resultado:

Teorema 2.3.1 Sean [, D, \ > 0. El problema de valores de contorno (2.3.1)-
(2.3.2) no tiene soluciones negativas y las soluciones positivas son estrictamente
decrecientes y satisfacen

0<y(l) <y(0) < (1+Dy(1). (2.3.4)

Dem. Teorema 2.3.1 Si llamamos

2 _ .2 2,2
7=M+y02y1 y  Bay)=r- L e

reemplazando en (2.3.1), tenemos que

i

y'= yh(x,y) —D,
y'(0) = yoA—~D,
y'(1) = pA1+1)—~D

llamando yo a y(0), y1 a y(1), y usando que h(0,yo) = X y h(1,y1) = A(1 +1).

Sea y una solucion. Como y'(0) = 0 = y/(1), si y tiene un mdzimo local en t y
un minimo local en u,

y'(t)=0 y y'(u) =0, mientras que y"(t) <0 <y"(u).

Supongamos que existe y(x), una solucion negativa, y consideremos primero que
v > 0. Entonces,

y"(0) = yoA — D < 0, dado que o < 0.

Como y'(0) = 0, la solucion y tiene un minimo negativo en u > 0 (pues y”(0) <
0), con y(u) < yo < 0.

Entonces, h(u,y(u)) > h(0,y9) = A, dado que h es una funcion decreciente en y,
pues

oh . oh .
— =2y <0, st y<O0, Y — <0, s y<O.
Ay Ay

Por lo tanto, se tiene que

0 <y"(u) = y(u)h(u,y(w)) —vD < yoA —vD <0,

10



una contradiccion.

Supongamos entonces que v < 0. Entonces es

Y

2 _ .2 2 .2
02?J1§O:>yo ylg

I\
" 2

—IN<0 = yi <,

luego, dado que y es negativa,
y1 < yo < 0. (2.3.5)

Como y alcanza un mdzimo en t, se tiene que y"(t) <0, y como 0 > y(t) > yo,
se tiene que h(t,y(t)) < h(0,y0) = A, asi que

yor =D < y(H)h(t,y(t)) —7D = y"(t) < 0.
Entonces,
Yo < vD. (2.3.6)
Ahora, y tiene su minimo en u, con y(u) <y, <0, con y"(u) > 0.
Como 0 > y; > y(u), h(u,y(u)) > h(1,y1) = M1 +1) —vD., entonces
YA +1) > D > yoA,
y entonces de (2.3.6), se tiene que
02wy (1+1) 2> o,

en contradiccion con (2.3.5).

Luego, no existen soluciones negativas. Por lo tanto, podemos tener o bien solu-
ctones positivas, o bien soluciones que inicialmente lo son y que luego se vuelven
neqgativas.

Para demostrar la sequnda parte del teorema, supongamos entonces que tenemos

una solucion y > 0, y, nuevamente, supongamos primero que v < 0. Entonces,

0 <y < y1, y consideremos una vez mas que y tiene un mdxrimo en t. Entonces,

y"(t) Sa 0, y y(t) > y1. Luego, h(t,y(t)) > h(l,y1) = M1 +1) > 0 (dado que
h

ahora o = 2y > 0), y por lo tanto,

0> y(Oh(t,y(t)) — D > yA(1 + 1) — 4D.

Similarmente, consideramos un minimo de y en u, con 0 < y(u) < yo y y"(u) >
0. Entonces acd tenemos que h(u,y(u)) < h(0,y0) = A, asi que

0 < y(wh(u,y(u)) = vD < yoA =D,

11



y por lo tanto,
Yo > (1 +1) >0,

en contradiccion con lo supuesto.

Ast, arribamos a que v > 0 y sequidamente mostremos que la solucion es estric-
tamente decreciente.

Supongamos que no lo es. Entonces y tiene un minimo local en u y un mdzrimo
local en t, cont > u, y(t) > y(u) >0, y con y"(u) = y(uw)h(u,y(u)) —vD >0 >
y"(t). Entonces, h(t,y(t)) > h(u,y(u)) > 0, asi que

0= y(®)h(t,y(t)) =D > y(u)h(u,y(u)) =D =0,

una contradiccion.
Por lo tanto, y es estrictamente decreciente.

Para mostrar que 0 < y(1) < y(0) < (1 +1)y(l), es suficiente mostrar que
y(0) <y(1)(1+1), dado que y es estrictamente decreciente.
Como y tiene su mdximo en 0 y su minimo en 1,

y"(0) = yoA =D <y A1 +1) —vD = y"(1),
y el resultado es inmediato.[]

También se tiene el resultado siguiente para la existencia de solucién, cuya de-
mostracion no incluimos, que puede verse en [2]:

Teorema 2.3.2 Si m es una solucion positiva de

mA — [M + m; (1 _ ﬁ)] D=0, (2.3.7)

entonces el problema (2.3.1)-(2.5.2) tiene una solucion estrictamente decreciente
satisfaciendo 0 <y <m y (2.5.4).

Nota. Observamos que (2.3.7) se cumple si y sélo si

A > 21 (1 o l>2> D?. (2.3.8)

En efecto, escribiendo la desigualdad (2.3.7) en la forma am?+bm+c > 0, donde
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0= — (1+1)2 D
2

b=\

c=—I\D,

vemos que a < 0, y por lo tanto el conjunto solucion sera el intervalo [mq, ms],
donde my y ms son los ceros de la parabola dados por la conocida formula

2 e
At /A2 —-4 —T'D (—l)\D)
miyo = 1 I
9 (_ _<12+z>2 D)

los cuales existirén si el radicando es no negativo, es decir

1
N> 200D% (1 - ——o
200 (1 i)

lo que equivale, dado que A > 0, a la ecuacion (2.3.8).

Observacion. Las soluciones positivas m de (2.3.7), satisfacen m_ < m < m,,
donde

A VAN =201 = i) D?

my = 1 )
(1= )P

y las soluciones positivas y, obtenidas en el teorema 2.3.2 anterior, satisfacen que
0 <y < m_, lo cual puede verse con un argumento de contradicciéon, utilizando
la demostracion del teorema 2.3.1. Si ademés se hace la suposicion adicional
citada: m(1 +{/2) — [D > 0, se puede usar la teoria de grado para probar
existencia de soluciones. También la demostracion del teorema 2.3.1 se utiliza
en la inmediata demostracion del siguiente lema, que se usa en el resultado de
la existencia usando el método de disparo (shooting), obtenido en el trabajo
precedente 3], que establece que, para determinados valores de los parametros,
las soluciones no cambian de signo.

Lema 2.3.1 Sea D = 0, y [,A > 0. Entonces y = 0 es la unica solucion del
problema dado por (2.3.1) - (2.8.2). Si D,A > 0 y I = 0, entonces y = 0 es
la dnica solucion. St A = 0, y [, D > 0, entonces las unicas soluciones son las
constantes.
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En este trabajo se muestra que las soluciones obtenidas en el trabajo anterior
por método de disparo y el teorema de la funciéon implicita, son positivas para [
o D pequenos, con \,ly D > 0.

Los resultados de existencia mejorados derivan de mejores cotas a priori esta-
blecidas por el principio del méximo, el uso de super y sub soluciones, y el uso
de la teoria de grado de Leray-Schauder, en un dominio en un espacio diferente,
que permite una mayor independencia y control en el borde del dominio, sobre
los valores de una solucion en comparacion con sus valores de borde.

Aunque no se tienen aqui resultados de existencia para soluciones que cambian
de signo, se puede demostrar que, si existen, estidn acotadas en término de sus
valores de borde, en particular, si v > 0, entonces y(0) > 0, y la solucion y esta
acotada en términos de y(0), y si 7 < 0, entonces y(1) < 0, y la solucién esta
acotada en términos de y(1). También se puede mostrar que si existen soluciones
positivas grandes, son asintoticamente lineales, lo cual se puede usar para mostrar
que no hay soluciones positivas grandes en al menos casos muy especiales. Usando
el principio del maximo, es posible mostrar que si soluciones de este tipo existen,
tienen la forma asintotica

c(x,y)
Yo+ Y1’

y=y(l—2)+pzr+

donde ¢(z,y) esta acotada independientemente de z y y.

2.3.2. Existencia de soluciones

Para establecer la existencia se usa el grado de Leray-Schauder el cual se calcula
usando homotopias. Asi se integra el problema a una familia paramétrica de
problemas para los cuales se necesita una cota a priori, y para los que hay
que poder calcular el grado para un valor del pardmetro. Para llevar a cabo
esto se modifica la ecuacion diferencial para valores de y, 4o, v y1 fuera de una
cierta region y se construye la familia paramétrica de la ecuacion modificada y
las condiciones de frontera. Por la teoria de grado de Leray-Schauder, hay una
solucion de la ecuacion diferencial modificada y se muestra que esta solucion se
encuentra en la region donde la ecuaciéon no fue modificada.

2.3.3. Soluciones por Shooting

Se tratan en [2| los siguientes resultados de existencia, obtenidos en [3| por shoo-
ting, y sus relaciones con el teorema 2.3.2.
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Teorema 4.2 de [3] Sean loDy = 0 y N\g > 0, entonces hay una 6 > 0 tal
que para |l — lo| + |D — Do| + |A — Xo| < 0 existe una solucion y del problema
(2.8.1)-(2.3.2), con y(i) = y;(I, D, \), |y(i)| < 6,1 =0, 1.

Teorema 4.3 de [3] SilgDg # 0 y \g = 0 existe una solucion y del problema
(2.3.1)-(2.3.2), con y(0) = yo(y(1),l, D), A = MNy(1),l, D), continuamente dife-
renciable en un entorno de (0, ly, Do), con yo(0,ly, Do) = 0 = A(0, 1y, Dy). Ademds
esta es la dnica solucion en un entorno de (y(0),y(1),l, D, ) = (0,0,ly, Dy, 0).

Se observa que, en el teorema 4.2 de [3], las soluciones obtenidas son A = 0, e
y constante, en un entorno de y(0) = y(1) = A\g = 0. Ademas, por una técnica
similar, se puede ver que A = 0 e y constante son las tinicas soluciones en un
entorno de y(0) = ¢ = y(1), (¢ = constante), y Ay = 0.

Del lema 2.3.1 se ve que las constantes son las tinicas soluciones del problema
(2.3.1)-(2.3.2), las cuales no cambian de signo por lo que no podemos obtener
soluciones adicionales por este enfoque.

También por el mismo lema 2.3.1, en el caso [D = 0, y = 0 es la tinica solucion del
problema (2.3.1)-(2.3.2), la cual no cambia de signo, asi que tampoco se puede
tener soluciones positivas adicionales por este enfoque.

Se tiene también en [2] el siguiente resultado cuya prueba alli se realiza:

Teorema 2.3.3 Paral, D, )\ > 0 las soluciones obtenidas del teorema 4.2 de [3]
son positivas.

2.3.4. Iones de diferentes valencias

Por ultimo se obtiene la ecuacion diferencial méas general, de la cual la ecuacion
en estudio es un caso particular.

Siguiendo la notacion de Leuchtag [1], procediendo de forma enteramente similar
aunque con ligeras modificaciones, la juntura liquida ocupa la region 0 <t < 9,
€ es la constante dieléctrica, k la constante de Boltzmann, T la temperatura, E
el campo eléctrico, Ny una arbitraria unidad de densidad ionica, qo la carga del
proton, q+ la carga de los iones, N1 sus densidades, us sus movilidades, y, de
acuerdo a las relaciones de Finstein, Di = uikT sus coeficientes de difusion.
Poniendo vy = ¢+ /qo, n+ = N1 /Ny, ahora la longitud de Debye queda expresada
como

kT

ArggNo’
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y ademas

A
p:%E Y n=ny+n_.

Integrando las ecuaciones de estado estacionario para la conservacion de los iones
se obtienen las ecuaciones de Nernst-Planck

/

n_ =v_pn_—c_ (2.3.9)
n', =vipny —cy (2.3.10)

y las corrientes inducidas por los iones estdn dadas por

_ qoNo

Jy 3

ViDiCi-
La ecuacion de Gauss tiene la forma
p=vin,+v.n_. (2.3.11)

Sumando las ecuaciones (2.3.9) y (2.3.10), usando (2.3.11) para sustituir a
p(vyny + v_n_), e integrando, se obtiene, poniendo ¢ = ¢, + c_,

_ = p*(0)

ny +n_ —n(0) 5

—ct, (2.3.12)
que corrige la ecuacion (20) de [1], la cual hemos utilizado en una expresion
equivalente en la seccion anterior (ecuacion (2.2.12)). Usando ahora esta ecuacion
(2.3.12) para sustituir por n, en la ecuacion (2.3.11), se obtiene

p* —p*(0)

pr=(v-—vi)n_ + vy

—vyct +vin(0). (2.3.13)
Diferenciando, usando la ecuacion (2.3.9) para sustituir por n’_, y la (2.3.13) para
sustituir por n_, se tiene

//

P = (ve +v_)pp' -

oo {p o) + =20

—ct| +

Dy —D_ (2.3.14)
veD, — v D_ [

ecuacion equivalente a la (21) de [1], tratada en la subseccion anterior como
ecuacion (2.2.15), el segundo miembro de la familia de ecuaciones diferenciales
alli tratada.

Usando el hecho de que no hay corriente neta a través de la juntura se obtiene que
v_-D_c_ +viDic; = 0. Resolviendo (2.3.12) para ¢, cuando ¢ = 0 y notando
que la agitacion de los reservorios resulta en n, y n_ constantes en 0 y 9, se
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elimina ¢ de (2.3.14). También la neutralidad eléctrica en el reservorio junto con
la ecuacion (2.3.11) da que p'(0) = 0 = p/(9).
Poniendo dz =t, y

D, —D_ n(1) —n(0) 9
D=\/—-v_ | = ——F—=, A=—-01_
v V+V+D+ — w0y v_vn(0),
Vo + vy

se obtiene

Y :ny,er{A_ v -y [MJF y*(0) —y2(1)] x}

— ll)\ + M} D, para x € [0,1].

Nota. Observamos que v, v_ < 0,y para el caso n(1) > n(0) y v— +v; =0 se
obtiene la ecuaciéon (2.3.1).

2.4. Ecuaciones del problema con condiciones de Neumann
de electrodifusion

Consideramos aqui el trabajo realizado en [9], en donde, como comentamos en
la introduccion, se deduce la ecuacion diferencial objeto de analisis, basado en
la deduccién anterior de [2]. Aqui se investiga el problema con condiciones de
Neumann en el caso general en el que v, + v # 0, novedoso en que, como
mencionaramos en la introduccion, la ecuacion del modelo para el campo eléctrico
contiene los valores de borde de la solucién atin no determinada. También alli
en la referencia, se obtiene una reduccion del problema en términos de funciones
elipticas para relaciones privilegiadas de las valencias.
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2.4.1. Ecuacién del modelo

Se retoma el analisis de Thompson |2], restringido al caso de dos iones, utilizan-
dose la misma notacién, con un tratamiento ligeramente diferente, en donde

n', =vinip—cy, (2.4.1)
n_ =v_n_p—-c_, (2.4.2)
p=vin +v.on_. (2.4.3)

Procediendo como en [2], sumando (2.4.1) y (2.4.2), usando la (2.4.3) e integran-
do, da

ny+n_= % —cx —k, (2.4.4)

donde ¢ = ¢y + c_ y k es una arbitraria constante de integracion.

Eliminando n entre las ecuaciones (2.4.3) y (2.4.4), se tiene

2
p=n_(v_—vy)+ Uy T VT = vk

de donde, derivando respecto de x,

/!

P = (v —v)(vnp—c ) +vipl — v
2

asi que

Viv_
2

p'= vy +vo)pp — ( ) PP+ (cx + kv p— (vyey +voc). (2.4.5)

La condicion considerada en [2], de que no hay corriente neta a través de la

juntura, da
vidicy +v_D_c_ =0, (2.4.6)

donde, como vimos, Dy = ui kT, asi que

viugcy +v_u_c_ =0 (2.4.7)
de donde
(viuper +v_u_c_)(vy —v_) =0. (2.4.8)
Como consecuencia,
(Dy — D_)eviv-
vicy +r_c_ = V:D+ — V_l;_ ) (2.4.9)
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y entonces (2.4.5) se vuelve

3
p Dy —D_ )evyv_
p' = vy +vo)pp + v {5 — (cx + k)p} + ( ViD_._ — 3/_5_ =0. (2.4.10)
Si la juntura tiene bordes x = 0 y = 9, entonces, reescalando con
v=062", p=-—b—, (2.4.11)
0N/ —Viv_
la ecuacion (2.4.10) nos da
Y’ = ety yy' + v + v v_(cdz* + k)y — c6®*Dvv_ (2.4.12)
N 2N/ 2
donde el apostrofo denota la derivada con respecto a z*, y donde
1
= —n(1) + ——[%(0) — v*(1 2.4.1
¢ = n(0)—n(l)+ 5 [y"(0) —y~(1)], (2.4.13)
2
y*(0)
k = —————n(0 2.4.14
5% n(0), ( )
v—viv_(Dy — D_
p = YomrWe=D) (2.4.15)
viDy —v_D_

Se observa que las ecuaciones (2.4.10) y (2.4.12) incorporan a través de ¢ y k los
valores de borde n(0) = n(0) + n_(0), n(1) = ny(1) + n_(1), junto con y(0) y
y(1). Esta previsto que las concentraciones de la interfase n (0),n_(0),n4 (1), n_(1),
sean conocidas. Sin embargo, los términos de borde y(0) y y(1) que permanecen
en la ecuacion, dependen de la solucion todavia no determinada.

Utilizando las ecuaciones (2.4.13) y (2.4.14) en (2.4.12), nos da

B {zﬁ(o)

~—
|
<
[N}
—~
—_
~—
~—
| I
8
*
<

LR Bn(0)] 5= | 00) = n(1) + 5020) - 20| D,
y poniendo A = —6%v,v_n(0) y I = [n(1) — n(0)]/n(0), se tiene
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/= (S )+ v’y N 50700 - )y

N 2 :
- [féo) - A] y—6 {Al F5020) - y2(1))} D (2:4.16)

La participacion de los términos de borde y(0) y y(1) en (2.4.16) representa un
impedimento extraordinario para su anéalisis y motiva la adopcién de métodos no
tradicionales para lograrlo. En la seccion 3 de [9], se aplica un método exacto de
shooting a esta ecuacion (2.4.16), con condiciones de Neumann, que reproducimos
en la seccion 4, para el caso de v, +v_ < 0, luego de considerar el caso v, +v_ = 0,
tratado en [5], con anterioridad, y que resulta contenido en aquel.
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Figura 1: Una solucién con cada A

3. Meétodo de disparo

Sintéticamente, el Método de Disparo o Shooting aplicado a un problema de
valores de contorno dado, consiste en solucionar primeramente un problema de
valores iniciales con un parametro libre A y luego tratar de hallar un valor apro-
piado de este A tal que la solucion obtenida satisfaga la deseada condicion de
borde del problema original en cuestion.

Mas precisamente hablando, tenemos, en general, un problema de valores de
contorno de orden n:

d'y f( dy d*y d" 1y

dzn e T dan T

) , con x € [a,b],

con r condiciones de contorno en x = a

dy d2y
y(a> — Al; %(CL) = AQ, ﬁ((l) = Ag, ey W(a) = AT?
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y con s condiciones de contorno en x = b

dy dQQ
=B, — =B, — =B, ..., — =B 0.1
y(b) 1, dx (b) 2 dr2? (b) 35 " ds—1 (b) ER (3 0 )

donde r + s = n.

La idea del método de disparo (shooting) es sustituir las s condiciones de contorno
en x = b, por s condiciones iniciales en x = a, planteando el siguiente Problema
de Valores Iniciales

(" d d2 dn—l
—y:f( vy y)’ con x € |a,b,

dy d2y drfly
y(CL) = Al, %(a) = AQ, @(CL) = A37 e F(Q) = ,47,7
d’”y dr+1y dr+2y dnily

(a) = A1, W(G) = Mg, W(Q) = A3, . 7W(a> = A,

\ dx”

donde A1, Mg, ..., A\, son pardametros desconocidos a determinar, de los cuales de-
pende la solucion de este problema de valores iniciales. Para un dado conjunto de
valores de estos Aq, A, ..., Ag, Obtendremos una solucién del problema de valores
iniciales. El problema original de valores de contorno estara resuelto si la solu-
ci6n obtenida para este conjunto de parametros también cumple las s condiciones
(3.0.1).

Para el caso de un problema de segundo orden como el que nos ocupa, tenemos

d*y dy

@_f<xaya%)a con 33’6[0,5], 209
y(0) = A, (30.2)
y(6) = B,

que transformamos en el problema de valores iniciales

d*y dy
@_f<xaya%)a con T € [075]a
y(0) = A,

dy

~2(0) =

dx( )

El método de disparo consiste en determinar la condicion inicial A para que se
verifiquen las condiciones de contorno del problema original (3.0.2).

Esta tarea requiere algtin andlisis cualitativo. En algunos casos, se recurre a
métodos numeéricos para evaluar cada solucién obtenida correspondiente a cada
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valor del A, de tal modo que dicha soluciéon satisfaga la condicién de borde del
problema original, hasta una determinada cota de error preestablecida. En otros
casos, es posible conocer anticipadamente el comportamiento de la solucion del
problema de valores iniciales con la variacién del pardmetro A. En el trabajo
realizado en [5] primero, y en [9] después, el analisis del comportamiento de la
solucién lleva a una adecuada eleccién de los parametros de tal modo de obtener
el resultado deseado, como veremos en la seccion 4.

3.1. Problema unidimensional

Consideremos los siguientes problemas en una dimension, tomados de [4], a modo
de ejemplos.

3.1.1. Ecuacién con condiciones Dirichlet homogéneas

Consideremos la siguiente ecuacion de segundo orden

u"(t) = f(t,ult)), (3.1.1)
con las condiciones Dirichlet

w(0) = u(1) = 0. (3.1.2)

La idea del método de disparo es la siguiente: para un A € R, resolvemos la
ecuacion (3.1.1), con las condiciones iniciales

w(0)=0,  u'(0) =\ (3.1.3)

Si f satisface los requisitos estandar de la teoria de problemas de valores iniciales,
esto es, continua y localmente Lipschitz en u, entonces la solucion u, estd bien
definida y es unica. Luego, es suficiente hallar algin valor del parametro de
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disparo A tal que uy(1) = 0.
En forma equivalente, buscamos un cero de la funciéon @, definida por

B(N\) = ur(1).

Luego, con una analogia mecénica, podemos explicar el nombre del método: el
procedimiento consiste en el ajuste del valor del parametro A hasta que un angulo
de disparo apropiado sea obtenido, para asi alcanzar a golpear el punto (1,0).

Como consecuencia del andlisis del procedimiento, se suscita el problema de con-
siderar si las soluciones del nuevo problema de valores iniciales estan definidas
hasta el valor ¢ = 1. Si esto no ocurre, o sea, no estan definidas hasta ese valor,
entonces tampoco la funciéon ® lo esta para todos los valores de .

Sin embargo, no obstante tal posibilidad, la funciéon ® tiene una destacable pro-
piedad : ¢ es continua.

En algunos casos, podemos asegurar que dom(®) = R. Por ejemplo, este es el
caso cuando f crece a lo sumo linealmente en su segunda variable, es decir

|[f(tu)] < alu] + b,

para algunas constantes a y b.
En particular, si f es acotada, el método de disparo funciona muy bien como se
muestra en el siguiente ejemplo.

3.1.2. Ecuacién del péndulo

Se examina la bien conocida ecuacion del péndulo ideal, en régimen forzado por
una perturbacion p :

u”(t) + senu(t) = p(t), te(0,1).

en donde consideramos que la fuerza p : [0, 1] — R, es continua.

Esta ecuacion es muy famosa y ha sido el tema de muchas obras importantes y,
ademas, hay problemas todavia abiertos interesantes referidos a las condiciones
periodicas. Sin embargo, la situacion es completamente diferente cuando se trata
de las condiciones de Dirichlet (3.1.2). La existencia de soluciones puede ser
facilmente comprobada por el método de disparo:

consideramos las condiciones iniciales (3.1.3)



Si uy es la tinica solucion satisfaciendo estas condiciones, entonces, integrando se

tiene
t

uh(t) = A + /[p(s) — senuy(s)]ds

1
y poniendo, R := [ |p(t)|dt + 1, se deduce que uy es monotona para |A| > R.
0

Mas precisamente,

A>R = u\(t)
A< —R =u\(t)

> para todo t
<

0,
0, paratodot.

En particular, dado que u/z(t) > 0, entonces ug es no decreciente, y dado que
u_p(t) <0, u_g es no creciente . Como u,(0) = 0, para todo A, implica que

O(R) > 0> &(—R).
Entonces, por el teorema de Bolzano, ® se anula en [—R, R].

Evidentemente el mismo procedimiento se puede aplicar a ecuaciones méas ge-
nerales del tipo de la (3.1.1), para f arbitraria acotada. Pero esta condicion de
ser acotada es muy restrictiva. Desearfamos demostrar que el método de disparo
puede ser aplicado a situaciones mas generales, en las cuales no se exija esta
restriccion para la funcién f.

3.1.3. Cotas a priori

Del ejemplo anterior se puede inferir que el éxito del método de disparo en la
prueba de existencia de soluciones, depende fuertemente del conocimiento de
algunas propiedades del flujo asociado a la ecuacion diferencial. Por lo menos
necesitamos estar seguros de que las soluciones del problema de valores inicia-
les, para un apropiado conjunto de pardmetros, estan definidas hasta el fin del
intervalo. Como se menciona maés arriba, de los resultados estandar de la teoria
de ecuaciones diferenciales ordinarias, esto estd garantizado para todo A, cuan-
do la no linealidad tiene crecimiento, como maximo, lineal. Sin embargo, hay
una cantidad de casos en los que esta restriccion no se cumple, y el método de
disparo es todavia aplicable en la determinaciéon de la existencia de soluciones.
En algunos casos, puede ser de mucha ayuda contar con cotas preestablecidas, o
cotas a priori, de las soluciones.

La idea esencial es la siguiente: si se sabe de antemano que las soluciones de
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un cierto problema estdn acotadas por alguna constante R, entonces se puede
reemplazar la funcién no lineal f por por otra funciéon acotada, digamos f, tal
que f(t,u) = f(t,u), para |u| < R. Obviamente, esto se debe hacer de tal modo
que las soluciones del problema modificado, u” = f(t,u), sean también acotadas
por R, de modo que ellas también sean soluciones del problema original (3.1.1).
En los siguientes ejemplos, se aplica esta metodologia, que extiende la utilidad

del shooting, a més casos.

Ejemplo 3.1 Sea f:[0,1] x R — R, continua y localmente Lipschitz en su
segunda variable y supongamos que existe una constante R > 0, que cumple la
siguiente condicidon

ft,—R) <0< f(t,R) paratodo t € [0,1]. (3.1.4)

lamada condicion de Hartman.

Entonces el problema Dirichlet (3.1.1)-(3.1.2) tiene al menos una soluciéon u, que
cumple que || u [|oo< R.

Para verlo, se define

f(t,u) silul <R
ft,u) =< f(t,R) si u>R
f(t,—R) si u< —R.

Esta funcion asi definida, f, mantiene las propiedades de f de continuidad y es
también localmente Lipschitz en u, pero ademas es acotada. Luego, el método
de disparo provee de una solucién u del problema

{ u"(t) = f(t,u)
u(0) = u(1) = 0.

Por lo tanto, s6lo resta probar que esta soluciéon esti acotada por R para todo ¢
(0 sea |u| < R, Vt), dado que entonces se tiene que f(t,u) = f(t,u),Vt y estamos,
por ello, en el problema original.

Para verlo, supongamos que u alcanza su valor méximo en algin t¢, siendo u(ty) >
R. Entonces tenemos que to € (0,1) y u”(to) = f(to, u(to)) = f(to, R) > 0, de la
definicion de f, lo cual contradice el hecho de que en ¢, v alcanza su maximo vy,
por lo tanto, u”(ty) < 0. De modo analogo se prueba que u(t) > —R para todo t.
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Se observa que, en este caso, no es necesariamente cierto que todas las solucio-
nes del problema original estén acotadas por R. Para el propodsito de establecer
existencia de solucion fue suficiente probarlo para la funcion truncada f.

En el siguiente problema, otra caracteristica de la funcion, la monotonia, permite
obtener ademés unicidad de solucion.

Ejemplo 3.2 Sea f :[0,1] x R — R, continua y localmente Lipschitz en su
segunda variable y supongamos que f es no decreciente con respecto a u, a saber

ft,u) < f(t,v), paratodot € [0,1], wu,v € Rju<w.

Entonces el problema Dirichlet (3.1.1)-(3.1.2), tiene una tnica solucion.

Es digno de observarse una notable novedad con respecto a los ejemplos anterio-
res: la solucion es tinica, lo cual nos permite comprender el papel de la monotonia
en la obtenciéon de unicidad. Para ello, notemos que si u y v son soluciones del
problema, entonces la funcién w := u — v satisface

w'(t) = u(t) —"(t) = f(t,u) = f(t,0),

y entonces

w'(Hw(t) = [f (¢, u) = f(E,0)](u(t) —v(t)) 20, (3.1.5)

dado que si u > v entonces f(t,u) > f(t,v), y viceversa, por la monotonia, y se
tiene que los dos factores de la desigualdad anterior son ambos no negativos o
bien no positivos simultaneamente. Ademas, integrando la (3.1.5) por partes, se

tiene
1 1

0< / w” (H)w(t)dt = w(t)w'(t)]; — / w(t)dt,

0 0

en donde el primer término se anula pues w(0) = 0 = w(1). Todo lo cual implica
1

que [w?(t)dt =0, y entonces w' = 0, lo que a su vez nos dice que w = 0 y por
0

lo tanto se obtiene la deseada condicion de unicidad: v = v.

Resta entonces probar la existencia de solucion del problema. Al respecto pode-
mos mencionar que este es un caso particular de una clase bastante general de
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problemas en los cuales decimos que unicidad implica existencia. Aqui reempla-
zaremos nuevamente la funciéon dada f por otra funcién truncada f, como en
el ejemplo anterior, con la diferencia que en el presente problema no tenemos
una cota R dada por anticipado, como la que surgia de la condicion de Hart-
man vista. Por lo tanto debemos elegirla de un modo conveniente. Esta es la
idea fundamental de una cota a priori: a veces es posible, antes de saber si el
problema tiene o no soluciéon, demostrar que la imagen de tal solucion, si existe,
se encuentra en un cierto conjunto acotado.

A tal efecto observamos que si u(t) es solucion del problema dado por las ecua-
ciones (3.1.1)-(3.1.2), entonces podemos escribir

u(t) = f(t u(t) — f(t,0) + f(£,0),
y, como u(0) = 0, tenemos que
u(Hult) = [fEut) — f(E0)]ult) + f(£,0)u(t) = f(¢,0)ult), (3.1

.6)
donde nuevamente usamos la monotonia de f respecto de u, dado que si u(t) >
0=u(0) = ft,u(t)) > f(£,0) y si ut) < 0= u0) = ft,u(t)) < f(£,0),
con lo que [f(t,u(t)) = f(Z,0)](u(t) = 0) > 0.

Como, integrando por partes, tenemos que

1

/u”(t)u(t)dt =u(t)u'(t)]§ — /1u’2(t)dt = —/u”"(t)dt

0 0

pues u(0) = u(l) = 0 (por (3.1.2)), integrando en ambos miembros de la de-
sigualdad (3.1.6) tenemos

u(t)dt < f&,0)u)dt <||u |l [ |f(t,0)|de. (3.1.7)
[rom=-] /

Por otra parte, podemos escribir

t t 1
lu(t)| = /u’(s)ds < /\u’(s)]ds < /|u’(s)\ds, para todot.
0 0 0

Entonces, tomando el maximo de |u(t)| y aplicando la desigualdad de Cauchy-
Schwarz al miembro derecho, llegamos a que

1
1 2

il / POdt | =] o o

0
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Luego, combinando esta tltima desigualdad con la (3.1.7), tenemos que

|t oo / (. 0)dt = R
0

Si ponemos ahora f exactamente como en el ejemplo anterior, entonces el pro-
blema modificado -
u’(t) = f(t,u)
{ u(0) = u(1) = 0.

tiene una solucion u. La cota R fue obtenida usando s6lo la monotonia de f.
Como f es también no decreciente en su segunda variable y es f(¢,0) = f(¢,0),
deducimos que || u || esta acotada por la misma R, y entonces es una solucion
del problema original.

Ejemplo 3.3 Sea f :[0,1] x R — R, continua y localmente Lipschitz en su
segunda variable y supongamos que f tiene crecimiento lineal en u, esto es

|[F(tu)] < cful +d,

para algunas constantes c¢,d > 0.
Si ¢ < 1, entonces el problema con condiciones Dirichlet (3.1.1)-(3.1.2) tiene una
solucion.

Siguiendo la misma idea, buscamos una cota a priori para la f. Procedemos,
buscando una cota para una solucién, nuevamente multiplicando la ecuaciéon
diferencial (3.1.1) por u e integrando. Obtenemos

/u”(t)u(t)dt = u(t)u'(t)|§ — /u’2(t)dt = —/u’2(t)dt,

por lo cual

1

/1u’2(t)dt = —jf(t,u(t))u(t)dt < c/luz(t)dt+d/\u(t)\dt,

0

1 1 1
puesto que - [ fudt < ’f fudt' < [|f||u|dt, de donde se obtiene lo anterior dado
0 0

0
que | f| < clu| + d.
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Luego, otra vez tomando el maximo como en la cuenta anterior, llegamos a
Tulfe<cllulli +dll vl

y entonces
d

1—c¢
Se fija entonces R > ﬁ, suficientemente grande, y, definiendo la funcién trun-
cada f como antes, se tiene que |f(t,u)| < clu| +d < R, y las soluciones del

problema truncado son, en particular, soluciones del problema original, dado que
| U ]| oo< li_c < Ry, por lo tanto, f(t,u(t)) = f(t,u(t)).

[ [loo<

Nota. Se observa en [4] (Observacion 2.1) que la condicion ¢ < 1 puede mejo-
rarse usando la desigualdad de Poincaré

1 1
1
/uQ(t)dt < F/u’Q(t)dzt,
0 0

con la cual se verifica que una condicion suficiente para la existencia de solucion
es que ¢ < 72, la cual podemos ver que es una cota 6ptima. Efectivamente
observemos que si ¢ = 72, si, por ejemplo, f(t,u) = sen(wt) — 7u, no existe
solucion:

si suponemos que u(t) es una solucion, multiplicando ambos miembros de la
ecuacion diferencial (3.1.1), e integrando, se tiene que

1 1

/sen2(7rt)dt = /[u”(t) + 72u(t)]sen(rt)dt = 0,

0 0

lo cual es absurdo.

3.2. Problema bidimensional

Consideramos ahora, siguiendo a [4], la extension del método a un problema de
mayores dimensiones que uno, en particular, a dos dimensiones. El objetivo con-
siste en resolver, en lugar de una ecuacién escalar, un sistema de dos ecuaciones.
Esto es, se considera una ecuacion diferencial como la (3.1.1), pero ahora con,
por ejemplo, f: [0,1] x R? — R?, y se busca una solucion v : [0, 1] — R?, que
satisfaga las condiciones de Dirichlet (3.1.2).

Como se menciona en la referencia, los resultados del caso de dos dimensiones
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pueden ser extendidos a més dimensiones ya que aquel contiene los elementos
principales del andlisis, como el argumento que utiliza la generalizacion del Teo-
rema de Bolzano, a la vez que permite mayor simplicidad en el mismo, usando
s6lo el Teorema de Green, generalizandose luego a mayores dimensiones que dos.
Por otra parte, es como sera utilizado en el presente trabajo. También en funcion
de su utilizacién, consideraremos méas detenidamente el empleo de los elementos
béasicos del anélisis complejo del indice de una curva cerrada y su invariancia por
homotopias.

3.2.1. Extension a un sistema de ecuaciones

Analogamente al caso escalar, sea ahora f : [0,1] x R* — R2? continua y
localmente Lipschitz en u, y definamos para A € R?, uy(t) € R? como la tnica
solucion del problema de valores iniciales (3.1.1)-(3.1.3)

{ u"(t) = f(t,u)
u(0) = (0,0),u'(0) = \.

Entonces, como antes,

e integrando nuevamente,

t

zMﬂ:M+/ ]ﬂ&mm@ dr.

0

Si u)y estd definida hasta ¢ = 1, podemos una vez mas definir

D(N) :=wuy(1),

y por lo tanto,
SN =2+ 5,

donde las sumas anteriores se realizan en R?, cumpliéndose que || S ||<]| f ||oo-

En este contexto, no podemos aplicar el teorema de Bolzano tal y como se realizo
en los ejemplos en R, dado que estamos tratando con un problema en R2. Por lo
tanto, para probar la existencia de un cero de la funciéon ® € R? no aparece el
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camino seguido antes como obvio.

El procedimiento, que se sigue en [4], para tal fin, comienza considerando el
siguiente argumento: en primer lugar, es claro que si R >|| f ||«, entonces
| (A) — A ||< R, para todo A.

Entonces,
A =20(A) A+ || 2(N) < R?

y, en particular, cuando || A ||= R, se deduce que
1
DN\ > 5 | @A) ||*> 0 = ®(\).A > 0.

Recordando que ®(A).A =|| ®(A) || . || A || cosa, donde « es el angulo entre
D)y A el calculo anterior implica que cuando || A ||= R, el cosa > 0, siendo
entonces —4 < a < 7, y por lo tanto el vector ® apunta hacia afuera de la bola
Bg(0).

Se plantea la pregunta de si esta condicion es suficiente para concluir que @ se
anula en Bg(0). De suponer lo contrario, se deduce que para cada A € Br(0), el
vector Ly := A + 0P()\) interseca la circunferencia 0Bg(0) en un tunico valor de
d = 0(A) > 0. Mas precisamente, de la ecuacion

I A+d0(N) [I*= R?,

desarrollando el cuadrado y hallando la raiz positiva, se tiene que

) A+ 2+ R2— || N
50— VRS Ry
| ‘I’( ) ||
(el signo negativo corresponde a una raiz 6 < 0), en donde se puede ver que el
radicando, para | A [|[= R, es positivo, con lo que la funcién 0 es tan regular

como O.
Luego, se concluye que la aplicacion r : Br(0) — R?, definida por

r(A) = A+ 0(AN)P(N)
es tan suave como P y tiene las dos propiedades siguientes:

1. (Ba(0)) € 9B(0)
2. X € 0BR(0) = r()\)

A

Es decir, r es una retraccion, que aplica una bola cerrada en su borde y deja los
puntos del borde fijos.
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El siguiente teorema (Teorema 2.1 de [4]) que enunciamos sin demostracion (en
la cual se procede por un argumento de contradiccion y se usa el Teorema de
Green), afirma que una tal aplicacion C? no puede existir.

Teorema 3.2.1 No eziste una aplicacion C?, r : By(0) — 0B1(0), tal que
o8, (0) = id-

Como consecuencia de esta version del teorema de la no retraccion se deduce, de
los calculos previos, que si ® es una aplicacion C? de la bola cerrada unitaria, que
apunta hacia afuera en el borde, es decir ®(z).x > 0 para = € 9B;(0), entonces
necesariamente se anula en el interior de la bola (Teorema 2.2 de [4]):

Teorema 3.2.2 Supongamos que ® : Br(0) — R? es una aplicacion C? y
satisface que ®(x).x > 0 para x € 0B(0).
Entonces ® tiene un cero en By(0).

Ademaés, también se obtiene una version C? del Teorema de Brouwer (Teorema
2.3 de [4)):

Teorema 3.2.3 Sea f : B;(0) — B1(0) una aplicacion C*. Entonces f tiene al
menos un punto fijo, o sea, existe v € By(0) tal que f(x) = x.

Dem.Teorema 3.2.1 Si f(x) = x para algin x € 0B1(0), se cumple. Entonces
supongamos que no. Luego definimos la aplicacion ® := x — f(x). Por lo tanto,
para x € 0B1(0),

O(x)r=|z|*—fx)r=1- f(x).z >0

puesto que f(x).x =|| f(x) ] .| = | cos(m) < 1, dado que f(z) # x. Por lo
tanto ® se anula en B1(0). O

El tratamiento del tema en [4] ahora continta con el resultado siguiente (Teorema
2.4), que puede ser considerado como una generalizacion del teorema de Bolzano
para campos vectoriales en R?, también conocido como el Teorema del valor
intermedio generalizado que en la referencia se prueba:

Teorema 3.2.4 (Poincaré-Miranda, version C?) .
Sea f:]—1,1] x [-1,1] — R? una aplicacion C? tal que

fl(—l,fﬂg) <0< fl(l,mg) Vl’z € [—1, 1]

y  fa(r,—1) <0< folzy, 1) Va, € [~1,1], (3.2.1)

Entonces existe v € (—1,1) x (—1,1) tal que f(x) = (0,0).
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Se observa, ademas, que tanto este teorema como el anterior Teorema 3.2.2 siguen
siendo validos si cualquiera de las desigualdades (3.2.1) y ®(z).z > 0 se invierten
o si dejan de ser estrictas.

Esta parte concluye probando que los resultados precedentes son topologicos, es
decir, que contindan valiendo sin la exigencia de regularidad, o sea, si las aplica-
ciones son solo continuas. Para tal fin se utiliza el Teorema de Stone- Weierstrass
para demostrar los siguientes teoremas (Teoremas 2.5, 2.6, 2.7 y 2.8 de [4]), ver-
siones de los teoremas anteriores en los que la @ (y por lo tanto también la r) es
s6lo continua, que enunciamos sin demostracion, las que pueden verse en [4]:

Teorema 3.2.5 No existe una aplicacion continua, v : B1(0) — 9B4(0), tal
que o, (0) = td-

Teorema 3.2.6 Supongamos que ® : B1(0) — R? es una aplicacion continua
y satisface que ®(x).x > 0 para v € IB;(0).
Entonces ® tiene un cero en By(0).

Teorema 3.2.7 (Teorema de Brouwer, version continua) .
Cualquier aplicacion continua f : B1(0) — B1(0) tiene al menos un punto fijo.

Teorema 3.2.8 (Teorema de Poincaré-Miranda) .
Sea f:[—1,1] x [=1,1] — R? una aplicacion continua tal que

fl(—L.CEQ) <0< fl(l,.lfg) vafg € [—1, 1]

y  falwy, —1) <0< fo(zy,1)  Vay € [-1,1], (3.2.2)

Entonces existe x € (—1,1) x (=1,1) tal que f(x) = (0,0).

Se observa ademés en [4], la equivalencia de estos teoremas, pese al orden es-
pecifico en el que fueron presentados, es decir, cualquiera de ellos se puede usar
para probar otro de ellos, y su validez en dimensiones mayores a dos. Ademas,
cualquiera de ellos implica el Azioma de completitud de los niimeros reales.

En sintesis, contando con estos resultados, podemos contestar afirmativamente la
pregunta formulada al principio y concluir que efectivamente la funcion & tiene
un cero en la bola Bg(0), lo cual equivale a la existencia de solucion en todo el
intervalo [0, 1], extendiendo el método utilizado para el caso de una dimension
al caso de dos dimensiones.
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3.2.2. Utilizando Analisis Complejo

Comentamos aqui el tratamiento del caso de dos dimensiones mediante la utili-
zacion de herramientas del Analisis Complejo.
Repasamos los siguientes conceptos basicos muy difundidos.

Indice o Nimero de vueltas: sea v : [a, 3] — C\ {a}, una curva cerrada
continua, que no pasa por el punto a.
Se define el Indice de la curva v con respecto al punto a por la ecuacion

e

omi | z—a’
v

también llamado Nimero de vueltas de v con respecto al punto a.

Curvas homotdpicas: interesa el comportamiento de un arco bajo deforma-
ciones continuas. Intuitivamente hablando, surge la pregunta de si es posible
deformarse de manera continua un arco 7; en otro arco 7., teniendo ambos arcos
sus extremos comunes, estando ambos contenidos en una regién {2 y mantenién-
dose fijos los extremos y los arcos intermedios dentro de €2. Dos tales arcos que
puedan deformarse uno en el otro se dicen homotdpicos con respecto a €2, y es-
ta es una clase de equivalencia. Este concepto fisico de deformacion tiene una
interpretacion casi inmediata en términos matematicos:

se dice que dos arcos y; y 79, definidos por las ecuaciones z = z1(t) y z = 23(t)
sobre el mismo intervalo paramétrico a <t < 3, son homotdpicos en €2, si existe
una funcion continua h : o, 8] x [0,1] — €2, con las siguientes propiedades:

,s) € Q para todo (t,s) € [a, ] x [0,1],
,0) = z1(t) y h(t,1) = 29(t), para todo t € [a, ],
3h(a, s) = z1(a) = za(a) y h(B,s) = z1(B) = z2(5), para todo s € [0, 1].

Se pueden efectuar con facilidad las demostraciones que muestran que la relacion
de homotopia, como esta definida aqui, es una relaciéon de equivalencia, siendo
posible, por lo tanto, agrupar todos los arcos en clases de equivalencia llamadas
clases de homotopia. Los arcos en una clase de homotopia tienen extremos comu-
nes y pueden deformarse unos en otros dentro de €. Como se puede ver en [14],
si se trazan sucesivamente dos arcos y; y 72 empezando 7, en el punto terminal
de 1, forman un nuevo arco I'jy (cuya parametrizacigon no esta determinada
de manera tnica). Un razonamiento sencillo muestra que la clase de homotopia
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de I';5 depende sélo de las clases de v; v 7, por lo cual se la puede considerar
como una multiplicaciéon de clases de homotopia, la que estd definida tnicamen-
te cuando coinciden el punto inicial de 7 con el inicial de ;. Limitandonos a
las clases de homotopia de curvas cerradas, el producto esta siempre definido y
forman un grupo.

Invariancia del Indice por homotopias: si i, v, : [a, ] — C\ {a} son
curvas cerradas, y h : [, 8] x [0,1] — C\ {a}, es continua y satisface que
h(t,0) = v (t), h(t,1) = 72(t) para todo t € [, 5], v h(a, s) = h(S,s) para todo
s € [0, 1], entonces

I, a) = I(72,a).

Se considera ahora el siguiente lema (Lema 2.1 de [4]), que serd de gran impor-
tancia en la prueba del resultado principal en la préxima seccion.

Lema 3.2.1 Sea f : B;(0) — C\{0}, continua, y sea v(t) = € parat € [0,27].
Entonces
I(fov,0)=0.

Dem.Lema 3.2.1 Es suficiente considerar la homotopia h(t,s) = f(sy(t)).

En efecto, dado que h(t,0) = f(0) y h(t,1) = f(y(t)), se tiene que f o~ es
homotdpica al punto f(0). Como I(f(0),0) =0, por la invariancia del indice por
la homotopia se tiene el resultado.l]

Utilizacién en la prueba del resultado principal de la Seccién 4

Como consecuencia de este Lema 3.2.1, cuya validez se mantiene en un dominio
homeomorfo al disco, como el dominio £ que definiremos en el problema espe-
cifico que se trata en el proximo capitulo, si consideramos que I(f o,0) # 0,
entonces la funcién continua f debe anularse. En la prueba del resultado princi-
pal de la proxima seccion, basada en los trabajos [5] y [9], se prueba que el indice
de la imagen por una transformacion continua 7' del borde de este adecuado
dominio €2 respecto de un punto determinado, no se anula, con lo cual, el uso de
este Lema 3.2.1 permite obtener el resultado deseado.
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Nota. Vemos también otra demostracion del teorema de Brouwer, para apli-
caciones continuas, mencionado en el punto anterior, utilizando estos elementos
del Analisis Complejo.

Suponemos que f : B;(0) — B;(0) es continua y que f(z) # z para todo
z € By1(0). Luego definimos g(z) = z — f(2). Como f no tiene puntos fijos, g
no se anula. Por un lado, consideramos la homotopia h(t,s) = v(t) — sf(y(t)).
Luego, g o« es homotopica a v , pues h(t,0) = v(t) y h(t,1) = g(y(t)) y por lo
tanto I(go~y,0) = I(v,0) = 1. Por otra parte, el lema previo nos dice que , dado
que g no se anula, I(go~,0) =0, en contradicciéon con lo anterior. [J
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4. Aplicacion al problema con condiciones de
Neumann para un modelo de electrodifusiéon
de dos iones

Analizamos en esta seccion los trabajos [5] y [9], en los cuales se aplica el método
de disparo explicado a este problema particular considerado, para los casos de
valencias iguales v, +v_ = 0, y el mas general de v, +v_ < 0, respectivamente.

4.1. Elcasov, +v_=0

La eliminacion de las concentraciones i6nicas en el problema de dos iones conduce
a una ecuacion no lineal en la variable y , proporcional al campo eléctrico E, a
saber:

y'(x) = f(2,y(2);y(0),y(1),  z€(0,1) (4.1.1)

donde
flz,y;9(0),y(1) ==y | A — w + Az| — AD (4.1.2)
Ay YOy (4.1.3)

2 )

y la juntura liquida ocupa la region 0 < z < 1. Las cantidades [ > 0,A > 0y
D, con —1 < D < 1 son parametros como se describen en [2], en donde notamos
que si y es una solucion de (4.1.1) para los parametros [, A y D , entonces —y
es una solucién para los pardmetros [,A y —D. Es inmediato ver que cuando
D =0 la tnica solucién es y = 0. Por lo tanto podemos suponer, sin pérdida de
generalidad, que D > 0. La neutralidad eléctrica en los reservorios impone las
condiciones de contorno de Neumann

y'(0) =y'(1) =0 (4.1.4)
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Como comentaramos en la introduccion, el problema determinado por las ecua-
ciones (4.1.1) - (4.1.4) es no convencional en el sentido que la ecuacion no lineal
del modelo (4.1.1) incluye las cantidades dependientes de la solucion y(0) e y(1).
Como vimos en la primera seccion, Thompson en |2| utiliza la teoria de grado y
el método bien establecido de super soluciones y subsoluciones (ver por ejemplo
[6]) para probar la existencia de una solucion positiva al problema de contorno
(4.1.1)-(4.1.4) cuando D>0 y sujeto a la ya explicada restriccion

A > 21 [1 — ﬁ} D?. (4.1.5)

Con el método adoptado, que consiste en la reduccién del problema original a
uno equivalente, susceptible de aplicarsele un método de disparo bidimensional,
el cual, como vimos, es una extension del unidimensional conocido, se elimina la
restriccion mencionada.

4.1.1. Una reduccién a Painlevé 11

Las ecuaciones de Painlevé

Las seis Transcendentes cldsicas de Painlevé se introdujeron a comienzos del
siglo XX por Paul Painlevé y su escuela, como la solucion de un tipo especifico
de problemas para Ecuaciones Diferenciales de segundo orden no lineales, en el
plano complejo, de la forma

Ugy = F(ZL‘,U,UZ)
donde F' es una funciéon meromorfa en x y racional en u v u,.

El problema era encontrar todas las ecuaciones de esta forma, que tienen la pro-
piedad de que sus soluciones son libres de puntos criticos moviles, es decir, la
ubicacion de las singularidades de la solucién no depende de los datos iniciales.
A fines del Siglo XIX y principios del XX, Painlevé y sus discipulos mostraron
que existe una clase de ecuaciones diferenciales ordinarias de segundo orden no
lineales que poseen la propiedad, originalmente propuesta por Picard, llamada
luego la Propiedad de Painlevé, de que pueden ser siempre transformadas en una
de las cincuenta formas candnicas posibles, determinadas por ellos mismos. Seis
de estas cincuenta ecuaciones requieren nuevas funciones trascendentes para ex-
presar su solucién. Estas funciones especiales que resuelven las seis ecuaciones
referidas, son llamadas las Trascendentes de Painlevé, y sus tinicas singularidades
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moviles son polos, esto es que las singularidades dependen solo de la ecuacion en
estudio y no de las condiciones iniciales del problema en cuestion.

Painlevé y Gambier mostraron a principios del siglo XX, mediante una transfor-
maciéon de Mobius,

a(x)u + p(x)

r— (), U — @)+ (D)

donde «, 5,7,0 y ¢ son funciones meromorfas en x, que existen sélo cincuenta de
tales ecuaciones, cada una de las cuales o bien puede ser integrada en términos de
funciones conocidas, o se puede asignar a un conjunto de seis ecuaciones que no
pueden ser integradas en términos de funciones conocidas. Estas seis ecuaciones
son llamadas Ecuaciones de Painlevé, y sus soluciones generales son llamadas
Trascendentes de Painlevé.

Las formas canénicas de las Ecuaciones de Painlevé son:

1. Uyy = 6U% + 2

2. Upe = zu + 2u° — @

1 L1
3 uxx:—ui—u—+—(au2+ﬁ)+7u3+—

u x u

1 3
4 Uy = —ufc+—u3+4xu2~l—2(a:2—a)u+§

2u 2 u

3u—1 1 —1)2 ) 1

2u(u — 1) x x? u T u—1

1/1 1 1 9 1 1 1
6. Upe = = | — + + u, — | —+ + Ug+
2\u u—-1 wu-—z r x—1 wu—zx
w(u —1)(u — x) r—1 x(:r—l))

- 5
?(z — 1)? (a—i_ﬁu? +7(u—1)2 i (u—x)?

en donde, «, 5,7 y 0 son parametros complejos.

Desde entonces hasta hoy, una gran cantidad de hechos acerca de estas ecuacio-
nes fueron descubiertos: la estructura de las singularidades méviles, familias de
soluciones explicitas, sus propiedades de transformacion, etc.

La reduccién en nuestro caso

Observamos que la ecuacion (4.1.1) adopta la forma

40



,yQ
y//:y(<+5+um)+y

donde

C=A— YO =y M@ — D

y, haciendo los cambios de variables

y=¢&U, xz=nX+9
se obtiene la reduccién a la ecuacion candnica

22U , i

con

nl=2, §=—C/p, n=p'?

y donde el parametro & esta dado por

ul/?’D
§

_ n*
a=-—=—
3

Como p = I\ + @ = I\ + 2u?3(U% — U?), donde usamos la notaciony(0) =
vo,y(1) = v, U(0) = Uy y U(1) = Uy, obtenemos una ecuacion del pardme-
tro @ en funcion de los pardmetros fisicos [, A\, D y de los valores de borde
Uo = Ulx=—s/n: U1 = Ulx=@1-5)/n- En general, entonces, el estudio de la exis-
tencia para el problema de borde original bajo esta reduccion de Painlevé II no
es abordable en vista de esta complicada dependencia de & de los valores de
borde.

Notemos que si 6 = 1,7 = —1 y por lo tanto ( = 1,4 = —1 entonces z = 0 =
X=1lLzx=1= X =0y a= D/, bajo la reducciéon canonica. Por lo tanto,
obtenemos un problema de Neumann para la ecuaciéon de Painlevé II conven-
cional, donde & es independiente de las condiciones de contorno. Resultados de
existencia para la ecuacion de Painlevé II bajo condiciones Dirichlet y condicio-
nes de borde periddicas han sido investigadas en [7], mientras que la aplicacion
de problemas de contorno se ha realizado en [8].
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4.1.2. Un Problema Equivalente

Aqui, en vista de la naturaleza intratable del problema con condiciones de Neu-
mann (4.1.1) - (4.1.4) bajo la reduccién anterior, se adopta una formulacion
alternativa que permite una novedosa aplicacion de un método de disparo exac-
to.

Counsideramos el cambio de variable

z(r) = —= 4.1.6
que introducida en (4.1.1) da
) = glo, 2(@), 7, 2(1), x € (0,1) (4.1.7)
donde
g(l’, 20 Zl) =
2 2 IN+2(1—22)]D
z(x){k—l(l—z(x)2)+ [M—l—%(l—zf)] x} _l 71— 2)]
~y
(4.1.8)
Y=g =) >0 ¥ =)
Si ponemos
IN+2Z(1— 22
S 1 Gl (4.1.9)
g
entonces la ecuacion adopta la forma compacta
2
2(x) = |\ — 7(1 — 2(2)?) + yax | 2(x) — aD (4.1.10)
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donde, si « es conocida, entonces [ puede ser obtenida de

2
_ra— 51—z

[ 4.1.11
; (1111)
y z ahora satisface las condiciones
2(0) =1, Z(0)=0 (4.1.12)
y
Z(1)=0 (4.1.13)

En el problema original, dados los parametros fisicos A\, > 0 y D, buscamos
una funcion y(z) que satisfaga (4.1.1) - (4.1.4). Esto es equivalente a hallar una
adecuada v > 0y una funciéon z(x) que satisface (4.1.10), (4.1.12), y (4.1.13). Tal
como estd, el altimo problema tiene la misma dificultad que el original ya que la
ecuacion diferencial (4.1.10) contiene el parametro indeterminado 7 tanto como
el parametro o dependiente del valor a ser determinado z;. El procedimiento
consiste en modificar el problema no especificando el valor de [ al principio,
arrancando con dos valores dados de las constantes o > 0y v > 0 (Notar
que permitimos v = 0 por conveniencia, ya que v > 0 en el problema (4.1.6)-
(4.1.8)). Aqui procedemos sin el requisito de la condicion de borde (4.1.13). En
consonancia, en lugar de un problema de valores de contorno estamos tratando
con un problema de valores iniciales, o sea (4.1.10) - (4.1.12).

El Método de Disparo

Supongamos que existe una soluciéon positiva en todo el intervalo [0,1]. Entonces
podemos calcular el par de valores 2/(1),1 (obtenida de (4.1.11)). Esto define un
operador continuo T : R? — R? T'(«a,~y) = (2/(1),1). El problema de valores
de contorno original tendra una solucion si y so6lo si la ecuacion del operador T,
T(a,v) = (0,1), con a > 0y~ > 0, donde el valor de [ es el fijado en el problema
original, tiene solucion.

Llamamos a esta técnica el método de disparo ("shooting") bidimensional.
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Se presenta el siguiente problema: es sabido que una solucion del problema de
valores iniciales siempre existe en un entorno del origen, pero ésta puede no ser
una solucion positiva definida en todo el [0,1|. En primer lugar, la solucion puede
anularse en algtin punto del [0,1] y volverse negativa méas alla de él. En segundo
lugar, debido a la existencia del término cuadrético z? en el miembro derecho
de la ecuacion (4.1.10) , la solucion puede ezplotar en algin punto del [0,1] y
entonces z'(1) no estara definida. (En efecto, una cuenta sencilla muestra que
la incidencia del término de grado 3 que resulta en el miembro derecho de la
ecuacion (4.1.10), produce una dependencia cuadratica de 2z’ con z).

Mas adelante se muestra que estas circunstancias no pueden ocurrir definiendo
adecuadamente el operador 7' y un conveniente dominio €2, que sera un subcon-
junto abierto de R?, con borde 9. Si (¢,d) € R? es un punto que no pertenece
a la imagen de 0€2 por Ty notamos por A un punto cualquiera del borde 0€2,
como A recorre el borde (en un sentido dado, por ejemplo antihorario) su imagen
T(A) traza una curva cerrada que no pasa por el punto (¢, d). Podemos entonces
definir el "mimero de vueltas” o "Indice de la curva” de esta curva T(92) con
respecto a (¢, d). Es 1til recalcar que si 7" es homotopica a otra aplicacion 17 y
el punto (¢, d) no esté en la imagen de 9€2 bajo la homotopia, entonces el indice
de T con respecto a (¢, d) es el mismo que el de Tj.

El Lema 3.2.1 de la seccion anterior nos permite establecer que si el indice del
punto (¢, d) respecto de la curva no es cero, entonces la ecuacion T'(«,y) = (¢, d)
tiene una solucion («, ) en €.

Para aplicar este resultado a nuestro problema, ponemos (¢, d) = (0,1) y busca-
mos una adecuada region Q tal que el nimero de vueltas de T(02) con respecto
a (0,1) no sea cero.

En lo que sigue, se muestra que si se eligen dos ntimeros suficientemente gran-
des a* y v* entonces el interior del rectangulo con vértices P = (A\/D,0),Q =
(*,0), R = (a*,7*) y S = (\/D,~*) servird como el €.

Lemas de utilidad:

El primer lema tratado en [5], se usa en la demostracion de un lema posterior.
Aqui consideramos adicionalmente que z(xg) > 0y que 2”(xg) > 0, que es como
se utiliza.

Lema 4.1.1 Sean xo < z1 dos puntos del intervalo [0,1], tales que cumplen que
0 < z(zo) < z(x1), y supongamos ademds que z"(xq) > 0.

Entonces 2" (xg) < 2"(x1).

Dem.Lema 4.1.1 Si derivamos el miembro derecho de la ecuacion diferencial

44



(4.1.10) respecto de z, para x = xg, fijo, tenemos

8 Z// 72

55 Jea—@osm) = V2 (x0)? + (A -5 - 2(20)%) + Wm) '

Como suponemos 2" (xg) > 0, la ecuacion (4.1.10) nos dice que

[A — 7;(1 — z(w0)?) + Vozxo} z(wo) > aD >0,

lo cual, dado que z(xo) > 0 (de ser z(x¢) > 0), nos muestra que
~?
{/\ — ?(1 — z(w0)?) + ’}/OZZL'O:| > 0,

y entonces, stendo 722(%)2 > 0, tenemos que

azl/

gJ z=z(x0) > 0.

Por otro lado, derivando la ecuacidn ahora respecto de x, para un z = z(xq) fijo,
también tenemos

aZ//
55 J@a—@os@) = 702(20) > 0

Por lo tanto, como xo < x1 y 0 < z(zo) < z(x1), tenemos el resultado buscado.C]

El lema siguiente en [5], también es utilizado en demostraciones posteriores

Lema 4.1.2 Supongamos que Z(x) y U(x) son funciones definidas en el inter-
valo [0,x1] y que ellas satisfacen

Z"(z) > F(z, Z(x)), (4.1.14)
U'(z) = F(x,U(z)), (4.1.15)

donde la funcion continua F(z,7) es creciente en Z para cada x € [0, 24| fijo. Si
ademds se supone que

Z(0) > U(0), Z'(0) > U(0), (4.1.16)
entonces
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Z(x) > U(x), Z'(x)>U'(z), Va € [0, xq].

Dem.Lema 4.1.2 Primeramente se prueba en la suposicion mds fuerte de que las
desigualdades en (4.1.14) y (4.1.16) son estrictas, para obtener la conclusion de
que Z(x) > U(x) para todo x € [0, x,].

Suponiendo que la conclusion es falsa, ecriste un punto & € (0,x1] en el cual
Z(&) =U(§), mientras Z(x) > U(z) para todo x < . Por lo tanto debe ser

Z'(§) <U'(E) (4.1.17)

Por otro lado, como F es una funcion creciente de Z, Z"(x) > F(x,Z(z)) >
F(z,U(x)) =U"(x) Vx <&, dado que Z(x) > U(x) Vo < €. Luego Z"(x) >
U"(z) que juntamente con la sequnda desigualdad de (4.1.16) implica que Z'(&) >
U'(&) lo cual contradice (4.1.17). Esto prueba la proposicion en el caso de de-
stgualdades estrictas.

Al caso general llegamos utilizando el siguiente argumento de continuidad:

definimos, para cada n € N, y para cada x € [0, 2]

1
F.(z,t) = F(z,t) — —,
n

(z+1)°

Un(z) =U(x) — 5

Entonces, F,(x,t) es continua y creciente en t para todo x € [0,z41], fijo, y
tenemos que

Z"(x) > F,(z,t),Yn € N, dado que F,(z,t) < F(z,t),Yn € N,

1
Ul(z)=U'(z) — (x;li— ), y por lo tanto, Ul'(x)=U"(z) —

1
n’

con lo cual también se cumple que U/ (x) = F,(x,t), para todo n € N, y, ademds,
se verifican las condiciones iniciales

2(0) > U, (0), dado que U, (0) = U(0) — % <U(0), y
Z/(0) > U(0), puesto que U'(0) = U'(0) — % < U'(0).

Entonces tenemos

~— -

Z"(x) > Fu(x, Z(x))
U'(x,Uy(x)) = F,(z,Uy,(x)
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con las condiciones iniciales
Z(0)>U,(0) vy  Z'(0) > U, 0),

con lo cual estamos en las condiciones mds estrictas para las cuales ya hemos
demostrado que

Z(x) > Uy,(z) Yy Z'(z) > U, (z), Va € [0, zq].

Por lo tanto, tomando limite de ambas desigualdades para n tendiendo a infinito,
dado que
lim F,(z,Z(z)) = F(z,Z(x)) y lim F,(z,U,(z)) = F(z,U(z)),

n—oo n—o0

por la continuidad de F, puesto que U,(x) —— U(x), se tiene que Z(x) > U(x)
n—oo

y Z'(x) > U'(x) para cada x € [0, 2], como queriamos demostrar.C]

Como mencionamos anteriormente, se considera el problema (4.1.10) - (4.1.12),
sin considerar la condicion (4.1.13). Se busca extender la soluciéon a un méaximo
intervalo de definicién (comenzando con un subconjunto del [0, 1]) con el requisito
de que la solucién permanezca positiva y acotada por un adecuado valor (por
ejemplo 2). Existen tres posibilidades, esquematizadas en la figura 2 :

1°*caso(C1): La solucion no alcanza el valor z = 2y, eventualmente, dobla hacia
abajo hasta intersecar el eje "z". Sea entonces oy < 1 el primer valor en el [0, 1]
donde z(op) = 0.

29°caso(C2): La solucion eventualmente se incrementa hasta alcanzar el valor
z = 2. Sea 01 < 1 el primer punto en el [0, 1] donde z(oy) = 2.

3°"caso(C3): La solucion satisface 0 < z(x) <2 Va € [0,1].

En consecuencia se define el punto final de la solucion z como los puntos (09, 0),
(01,2), (1,2(1)) y se denota por o los valores oq, 01, 1 de acuerdo a los casos (C1)
a (C3) respectivamente.

Una vez que el punto final de la soluciéon esta determinado, se define

§=2'(0) (4.1.18)
y, teniendo presente (4.1.11), se pone

_qa=Z(1 -0
A

L (4.1.19)

El punto final varia segtin varian los parametros A\, « y 7, no necesariamente en
forma continua. Tal situaciéon puede ocurrir, por ejemplo, cuando una solucién
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Caso (C3)

X

o, o, 1

Caso (C1)

Figura 2: Casos posibles

z(x) es no negativa y tangente el eje x en oy < 1, pero por lo demas se puede
extender a todo el intervalo [0, 1]. Al variar los parametros ligeramente, puede
ser posible elevar el grafico de la solucion de modo que no toque el eje "z". De tal
manera, el punto final salta discontinuamente desde el punto (og,0) a un punto
situado en la linea vertical x = 1. En la figura 3 se esquematiza esta posibilidad.

El Lema siguiente muestra que esto no puede suceder con nuestra ecuaciéon
(4.1.10).

Lema 4.1.3 Para los casos (C1) y (C2), la solucidn z satisface:
1. Z/(Uo) <0
2. Z/(O'l) >0

Como consecuencia, el punto final, la derivada 2'(0) en el punto final, y el valor
L son todas funciones continuas de los pardmetros \,a y 7.

Dem.Lema 4.1.3 Caso (C1): como sabemos que 2'(0g) < 0 (puesto que z(oy) =0
y z(og—h) > 0 para h > 0 (suficientemente chica)) basta mostrar que z'(cg) # 0.
Suponemos que 2'(0¢) = 0, entonces z(og) es un minimo local (considerando el
entorno a izquierda de 0y) ), y por lo tanto z"(og) > 0. Pero de la ecuacion (4.1.7)
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Solucion
modificada
(0=1)

1
vx

! |

(o)) 1

Figura 3: Salto discontinuo

(y la ecuacion (4.1.8)) se tiene que 2"(00) = —aD < 0, una contradiccion. Caso
(C2): sea xy € [0,01] donde z(x) alcanza su minimo. Es claro que xo no puede
ser o1, asi que debe ser vo < o1. En xg, 2’ (x9) =0 y 2"(x0) > 0. En [z, 01], 2(2)
es creciente. Por el Lema 4.1.1, 2"(x) > 2"(x¢) > 0 para todo x € (xo,01] ¥y
entonces implica que 2'(o1) > 0.

Como se establece la dependencia del punto final respecto de o y v: para el caso
(C8)es el resultado clasico de dependencia continua de una solucion respecto de
los pardmetros. Para el caso (C1), z(0¢) = 0 y 2'(009) < 0. La solucion puede
entonces ser continuada en un pequeno entorno de og, con z(x) < 0 para x > oy.
Tomemos dos puntos muy cercanos a o, &1 y &o, tales que & < 0g < &. Entonces
z2(&) > 0 y 2(&) < 0. Si se varian A\, «, y/o v muy ligeramente, se puede
asequrar que Z(&1) es todavia mayor a cero y Z(&) es todavia menor a cero,
donde Z llamamos a la solucion del problema de valores iniciales con los valores
de los parametros ligeramente cambiados. Luego, por el Teorema de los Valores
Intermedios, Z tiene un cero en el intervalo [£1, &) y, por lo tanto, muy cerca del
cero original oy de z.

La dependencia continua respecto de los pardmetros para el caso (C2) la podemos
ver de modo similar. [

Lema 4.1.4 Para los casos (C2) o (C3), z no puede tener mds que un minimo
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local en el intervalo [0,1).
Si se supone que aD > X\ y z tiene un minimo local en [0,1], entonces § > 0 y
L>0.

Dem.Lema 4.1.4 Si z tiene un minimo local en el punto xq, entonces, por el Lema
4.1.1, 2"(x) > 0 para x > xo (pues z(xg) < z(x) y 2"(x9) > 0). Entonces § > 0
(pues en ambos casos o > xq y por lo tanto también 2" (o) > 2"(x0)) y 2 no puede
tener otro minimo local mds alld de xg.

Para el caso (C2), z(o) = 2 y de la ecuacion (4.1.19) podemos ver que L > 0.
En el caso (C3) tenemos que 0 = 1 y si es z(1) > 1 nuevamente la (4.1.19) nos
da L > 0. Supongamos entonces que z(1) < 1, considerando la ecuacion original
(4.1.7) y (4.1.8) en el valor x =1, obtenemos

Z"(1) = z(1)(A+ LX) — aD (4.1.20)
y como z"(1) > 0, tenemos que
2(1)(A+ LX) > aD, (4.1.21)

y por lo tanto

D
IA>22 Ax>aD-A>0 (4.1.22)
z(1)

(pues z(1) < 1). Asi que entonces tenemos que L >0 (pues A > 0). O

Definiendo el operador T

Se puede ahora definir el operador continuo 7' :  — R2, donde 2 C R2, por

T(a,v):= (6, L) = ((0), L). (4.1.23)

En la Figura 4 vemos que T aplica el plano (a, ) en el plano (d, L). Se puede
ver que aunque en la reducciéon del problema de valores de borde original al
nuevo problema de valores iniciales so6lo se permite v > 0, el nuevo problema del
operador T puede ser estudiado para v € (—o0,+00). O sea, T puede definirse
para v < 0.

El Resultado Principal

Teorema 4.1.1 dados cualesquiera A\, >0 y D € (0,1], el problema de valores
de contorno (4.1.1) - (4.1.4) tiene una solucidn positiva.
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~n

4
Q
h
o1

Figura 4: Operador T

Si Z/(0) = 0 entonces, por el Lema 4.1.3, debemos tener el caso (C3) y por lo
tanto o = 1. Si, ademés, L = [, entonces (4.1.19) coincide con (4.1.11) y z es una
solucion del problema de valores de contorno original. Por lo tanto, la validez del
Teorema 4.1.1 es equivalente a la afirmacion de que la ecuacion del operador

T(Oé, '7) = (07 l)

tiene una soluciéon con a > 0y v > 0.
En lo que sigue, esta afirmacion se prueba usando el método descripto. Elegimos
cualquier niimero

A+ 1A

D )
y otro niimero suficientemente grande y* cuyo valor se determina a posteriori. Sea
PQRS el rectangulo cuyos vértices son P = (A/D,0),Q = (a*,0), R = (a*,7*)
y S = (A/D,~*), como antes mencionamos. En los siguientes lemas se estudia la
imagen de cada lado de este rectangulo bajo el operador T

*

o >

(4.1.24)

Lema 4.1.5 T(A) = (6,0), con 6 < 0 para cada punto A = («,0) en la linea
PQ. En particular, el punto P se aplica a P' = (0,0) y P'Q’, la imagen de PQ,
es un segmento contenido en la parte negativa del eje ¢ (ver Figura /).

Dem.Lema 4.1.5 Si v = 0 entonces L = 0 (haciendo v = 0 en la ecuacidn
(4.1.19)), mientras que la ecuacion diferencial (4.1.10) se reduce a z"(x) = Az —
aD, por lo cual 2" disminuye con el aumento de o y por lo tanto disminuye z'.
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Para el punto P, « = A/ D y por lo tanto (2"(x) = Xz — X)) z =1 el la solucidn
del problema de valores iniciales y entonces es 2/ = 0. Luego (0 =1) 2/(1) =0y
entonces T(P) = T(\/D,0) = (0,0). Cuando « se incrementa al ir de P a @, el
correspondiente valor de 2’ (o) decrece desde cero, por lo que es negativo (6 < 0).
En concordancia con esto el punto T(A) se encuentra en el semieje negativo del

eje 6.0J

El siguiente Lema muestra que si z(z) satisface también la condicion de borde
(4.1.13) (o sea en x = 1), entonces z debe ser una funcion decreciente y los tinicos
puntos criticos son x = 0 y « = 1. Notar que, por el Lema 4.1.3, la condicién
(4.1.13) implica que estamos en el caso (C3).

Lema 4.1.6 Supongamos que v > 0. Si la funcion positiva z(x) también satis-
face (4.1.13), entonces 2'(x) < 0 Vz € [0,1], 2”(0) <0y z"(1) > 0.

Dem.Lema 4.1.6 Si v = 0, z solo puede satisfacer la condicion (4.1.18) cuando
a = M\/D siendo z = 1, con lo que cumple trivialmente. Asi que podemos suponer
que v > 0. Dado que 6 =0 y o> \/D, por el Lema 4.1.4, z no tiene un minimo
local en [0,1), de otro modo seria § > 0 contradiciendo la hipdtesis (4.1.13).
Por lo tanto x = 1 es el unico minimo local. Como consecuencia, z(x) es una
funcion decreciente en el intervalo [0,1], y por lo tanto 2'(x) < 0,Yx € [0, 1].
Las conclusiones 2"(0) < 0 y 2"(1) > 0 se siguen del hecho de que v =0 es un
mdzimo local (2/(0) =0) y x =1 es un minimo local (2'(1) =0). O

Los siguientes lemas nos muestran dénde se encuentran las imagenes de los lados
@Ry RS para una adecuada eleccién del parametro v, v*.

Lema 4.1.7 Sea A = (a,7) un punto del lado QR y T(A) = (6,L). Si 6 =0,

entonces L > [.

Dem.Lema 4.1.7 Como A se encuentra en QR, o = «o*. §i 6 = 0, entonces
tenemos el caso (C3) y el punto final debe ser (1,2(1)). Por el Lema 4.1.6, 2"(1) >
0y=2(1) <1 (pues 2/(x) <0y 2(0)=1). Por el mismo argumento usado en la
demostracion del Lema 4.1.4 (considerando la ecuacion original (4.1.7) y (4.1.8)
en el valorx =1), enx =1,

Z'(1) = 2(1)(A+ LX) —a*D >0 (4.1.25)

y entonces, de la definicion de a (4.1.9)

*

oa*D
z(1)

y entonces tenemos que L > [. [

L\ > —A>a"D—-A> 1\ (pues z(1) <1) (4.1.26)
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Geométricamente, la importante conclusion de este Lema 4.1.7 es que la curva
Q'R’, imagen por T del lado QR del rectangulo, interseca al eje L del plano
imagen (0, L) en uno o mas puntos, que se encuentran, todos ellos, por encima
del punto (0,7). Como se ve en los Lemas siguientes, una vez que v* se elige
lo suficientemente grande, la imagen del punto R, R’, se encuentra en el primer
cuadrante del plano (6, L), y por lo tanto, el punto (0, 1) se encuentra en el interior
de la imagen del rectangulo PQRS (o sea (0,1) € T(€2)) (Ver Figura (4) en la que
estas curvas se dibujan de manera arbitraria, sélo para ilustrar las afirmaciones
de los distintos lemas).

Lema 4.1.8 La imagen del lado SP, T(SP) = S'P’, se encuentra en el primer
cuadrante del plano (6,L). Ademds, excepto el punto P' = T(P), no hay otro
punto de la curva S'P’ que se encuentre sobre el eje L.

Dem.Lema 4.1.8 En los puntos de la linea SP, o = \/D y z(z) satisface la
inecuacion diferencial

2

OE {/\ . %(1 - z(x)2)} 2(x) — A

pues yoxr = v%x >0 en (4.1.10). Si se considera la ecuacion diferencial

2

W (x) = (/\ - %(1 - W(a:)Z)) W(x) — A, (4.1.27)

entonces, W(x) =1 es solucion y
~2
W (z) = (A—?(l—ﬁ)) IAN=XA-A=0

y usando el Lema 4.1.2 (tomando como la F(x,.) el sequndo miembro de (4.1.27),
y siendo z(0) > 1 = W(0) y 2/(0) =0 > 0 = W'(0)), concluimos que z(x) >
W(z) = 1. Entonces, x = 0 es un minimo local (z2(0) = 1). Luego, por el Lema
4.1.4 (como o > % < aD > \) y dado que z tiene un minimo local en [0,1)
se sigue que 0 > 0 y L > 0, por lo tanto sdlo P’ tiene su imagen sobre el eje
L. En efecto, si v = 0 (pues P = (\/D,0)), estamos en que z = 1 y entonces
Z'(1) =0 =14, como vemos en la demostracion del Lema 4.1.6. O]

El proximo Lema trata del restante lado del rectangulo: el lado RS.

Lema 4.1.9 Con tal que v* se elija suficientemente grande, la imagen del lado
RS estd contenida en el primer cuadrante del plano (6, L).

93



Dem.Lema 4.1.9 De acuerdo al Lema 4.1.4, sélo basta mostrar que z tiene un
minimo local en algin xo < 1, o equivalentemente, que 2'(xq) = 0. Por el Lema
4.1.8 ya sabemos que S’ estd en el primer cuadrante, de modo que podemos con-
siderar un punto A en RS diferente de S. O sea, podemos suponer que o« > \/D,
lo cual implica que z es inicialmente decreciente cerca de x = 0 (reemplazando en
la ecuacion diferencial (4.1.10) z por 0y z(0) por 1 obtenemos 2"(0) = X\ — aD,
que con o > \/D nos da 2"(0) < 0). Si z(§) = 1 para algin £ > 0, entonces z
debe tener un minimo local en el intervalo (0,€) y entonces ya estamos en las
hipdtesis del Lema 4.1.4. Entonces supongamos que z(x) < 1 para todo x € [0, 1].
Seguidamente se muestra que esto no puede suceder si se elige v* suficientemen-
te grande. Supongamos que si ocurre y que podemos tener z(x) < 1, para todo
x € (0,1]. Para puntos de RS, v = ~*, y entonces,

'V; (1— 2(2)%)2(x) < v*2(1 - 2(x)) (4.1.28)
Yy como entonces,
1= () < -1 - 2(w))2(),

z satisface la desigualdad diferencial
S(@) = =171 2(@)?) + (A +7"az)(x) — aD
> (1 - 2(2)) + A+~ ax)z(z) — a (4.1.29)
dado que D < 1.

Supongamos ahora que

2(x) >m = 22(2* i i), (4.1.30)
Entonces de (4.1.29) tenemos que
2(x) > =21 — 2(x)) + (A +7*az)m — « (4.1.31)
Sea ahora W(z) la solucion del problema de valores iniciales
W"(x) = —y2(1 = W(z)) + A+~ az)m — (4.1.32)
W(0) =1, W' (0) =0 (4.1.33)
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Entonces, por el Lema 4.1.2, tomando como la F(x,.) el miembro derecho de
(4.1.81) o (4.1.32), y entonces cumpliéndose las condiciones (4.1.14) y (4.1.15),
con z(0)=1>1=W(0) y 2/(0) =0>0=W0), se tiene que z(x) > W(z) y
2'(x) > W'(x). Si mostramos que W (x) > m, entonces (4.1.30) se verificard, y si
podemos mostrar que W (1) > 1, entonces tendremos (evaluando z(x) > W(z) en
x=1), que z(1) > 1 y obtendremos, por lo tanto, la contradiccion a lo supuesto
de que z(x) < 1 para todo x € [0,1].

Resolviendo la ecuacion diferencial (4.1.32) con las condiciones iniciales (4.1.33),
por el método de variacion de pardmetros, obtenemos una expresion para W(x)
m Am — «

W(z) = Cie"® + Coe™ " + 1 — 0‘7 - (4.1.34)

donde Cy y Cy son las constantes de integracion que calculamos por medio de las
condiciones iniciales (4.1.33), las cuales nos dan

W(0) = Cy + Cy — Am; G (4.1.35)
Y
W'(0) = 7*(Cy — Cy) — = =0 (4.1.36)
Yy entonces
1
C, = W(m(/\ +a) —a)

con lo que reemplazando m por su expresion en (4.1.30), tenemos que

A2 + X —a)

C, = 4.1.37
! Ay (a* + ) ( )
Y
Co= L (m(A—a) —a) (1.1.38)
2= 5o m a) —« 1.
Por la aparicion de v* en sus denominadores, |Cy| y -t — ’\Tga‘ en (4.1.34)

pueden hacerse arbitrariamente pequenos eligiendo v* suficientemente grande.
Por lo tanto, los dos dltimos términos en el lado derecho de (4.1.84), asi como
el término que contiene a Co pueden hacerse tan pequenos como sea necesario.

* 20+ -«
Por otro lado, como a < o* (y entonces =75 > 1),

>0 (4.1.39)



entonces el término e7'® en el miembro derecho de (4.1.84) es positivo. Por lo
tanto, se puede hacer que W(x) > m para todo x eligiendo v* lo suficientemente
grande y entonces se justifica (4.1.30) como habiamos supuesto ad hoc.
Ademds, en x =1

* A *
Cie" > e’
4,}/*2
y como
’ —y* —
7112100 47*26 00 (4.1.40)

tenemos que W (1) — oo, cuando v* — oo, por lo tanto existe un [ > 0 tal
que v* > [ implica que W (1) > 1, y por lo tanto z(1) > 1 contradiciendo la
suposicion de que z(x) < 1 para todo x € (0,1] Por lo tanto existe un punto
€ €10,1] tal que z(&) = 1, y entonces z tiene un minimo local en algin xo < 1 y
estamos en las hipdtesis del Lema 4.1.4. Esto implica que 6 > 0 y L > 0 y por lo
tanto R'S’ estd contenida en el primer cuadrante del plano (9, L). O

Conclusiéon. Los lemas 4.1.5, 4.1.7, 4.1.9 y 4.1.8 nos posibilitan conocer co6-
mo es la imagen del borde del rectangulo PQRS, donde P = (\/D,0),Q =
(a*,0),R = (a*,7v*) y S = (A D,~*), con las constantes a* y 7* elegidas del
modo descripto, lo cual nos permite arribar a la conclusién de que el nimero de
vueltas de la curva cerrada imagen P'Q)'R'S’ P’ con respecto al punto (0,1) es —1
(lo que puede demostrarse rigurosamente usando deformacion homotopica de la
imagen del borde de PQRS bajo T). Entonces, por lo anterior, la ecuacion del
operador T, T'(«,y) = (0,1) tiene una solucion (v, y) en el interior del rectangu-
lo PQRS, lo cual es equivalente a la existencia de solucion para el problema de
valores en la frontera original, lo cual prueba el resultado principal, enunciado
en el Teorema 4.1.1.

Observacion. Procediendo mas cuidadosamente con los célculos de D se puede
mostrar que el Lema 4.1.9 se mantiene para valores de D escasamente mayores a
1. Se puede probar que el Lema 4.1.9 y entonces el Teorema 4.1.1 siguen valiendo
cuando D < \/(I+1)2+1—1.

4.2. Elcasov, +v_ <0

Abordamos ahora el caso mas general tratado en el trabajo [9], en el cual ademés,
como mostramos en el apartado 2.4 de la seccion 2, se deduce la ecuacion del
modelo. Se extiende el método empleado en [5] para el caso de valencias iguales,

26



incluyéndolo. La consideracion del caso estricto, es decir, el caso vy +v_ < 0,
conlleva una dificultad mucho mayor, lo cual justifica la realizacion de este caso,
como una generalizacion de la misma idea empleada para el caso anterior de
vy +v_=0.

Aqui se considera (2.4.16) bajo condiciones de Neumann, a saber, el problema

y' = (%) yy' + y; +6 [Al + %(?ﬁ(o) - yz(l))] y
—[wf)—ﬁy—5kv+%@%®—y%DﬂD (4.2.1)
y'(0) = y'(1) =0, (4.2.2)

sin asumir ninguna relacion privilegiada de valencias, excepto que sea vy +v_ < 0,
y donde se observa que A = —§%v,v_n(0) > 0.

Observacion. Sien (4.2.1) hacemos vy +v_ =0y 0 = 1, entonces tenemos

v =0 [ 50 - |- |2 -

_(M+%@%m—fﬂD)D

—y </\ - —(y2(0)2— V), Ax) — AD

Es decir, tenemos la ecuacion dada por (4.1.1) y (4.1.2), donde A esta dado por
(4.1.3), o sea el caso tratado en [5], que mostramos en 4.1. El resultado por probar
ahora extiende este ultimo, al que incluye como caso particular.

El Resultado Principal

Teorema 4.2.1 Suponiendo que v,+v_ <0,0 <1yl >0, entonces el problema
(4.2.1)-(4.2.2) admite al menos una solucidn, con tal que 0 < D <1+ 1.
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Nota. Este valor de D mejora el valor obtenido para el caso anterior tratado
de valencias iguales.

En la prueba de este resultado, primeramente procedemos analogamente al caso
anterior poniendo z = y /v, donde v = y(0), con lo que entonces (4.2.1) y (4.2.2)
son equivalentes a

2'(x) — Cyz(x) (z) = [)\ — %(1 —z(2)?) + *yax] z(z) —aD (4.2.3)

con condiciones

2(0)=1,  2(0)=2(1)=0, (4.2.4)
donde llamamos
o= ° (l)\ + 12(1 - 2(1)2)> (4.2.5)
vy 2
y tomamos
Ci= Bt (4.2.6)

N7

En el problema original, vienen dados los parametros [, A\, D, y § y se busca una
solucion y de (4.2.1) la cual satisface las condiciones de borde dadas en (4.2.2).
Como vimos anteriormente, el hecho de que la ecuacion diferencial (4.2.1) con-
tenga los desconocidos valores y(0) y y(1) dependientes de la soluciéon y, hace al
problema no convencional y no puede ser abordado por métodos tradicionales.
Para sortear esta dificultad, se considera el nuevo problema dado por las ecuacio-
nes (4.2.3) y (4.2.4) donde el parametro | no estd dado de antemano. En cambio
se fijan los valores v y v y se procede a resolver el problema de valores iniciales
(4.2.3) con las primeras dos condiciones de (4.2.4) (2(0) = 1,2(0) = 0). Ajus-
tando adecuadamente el parametro o podemos forzar la ocurrencia de la tercera
de las condiciones de (4.2.4), 2’(1) = 0, y luego obtener el valor de [ desde la
ecuacion (4.2.5):

20y = 21— 2(1)?)

l
20\

(4.2.7)

Si de este calculo obtenemos el valor coincidente al especificado inicialmente para
[, entonces tenemos la solucién deseada.

Asi, como antes, s6lo basta con encontrar un par de valores («,7) tal que la
solucion correspondiente del problema de valores iniciales satisfaga z/(1) = 0y
calcular [ de (4.2.7). Sin embargo se observa que un obstaculo surge en el hecho
de que z puede no estar propiamente definida a lo largo de todo el intervalo [0, 1].
Una situacion que puede ocurrir es que z puede ezplotar hasta infinito antes de
que z alcance el valor 1 en el intervalo [0, 1]. Otra posibilidad es que z pueda
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alcanzar al eje x y se vuelva negativa mas alla de ahi.
Del mismo modo que antes, se adopta la definicion del punto final o € (0,1]
como:

Casol (C1):Si0<z<2en [0,29) C [0,1] y 2(z0) = 0, entonces o := x.
Caso2(C2):Si0 < z<2en [0,z9) C[0,1] y 2(xp) = 2, entonces o := x.
Caso3(C3):Si0 < z<2en [0,1] entonces o := 1.

Asi, somos capaces de definir a un operador de disparo bidimensional T dado
por

T(a,y) = (¢(0), L),
donde L esta dado por

2ay — 69%(1 — 2(0)?)
L=1L =
Aunque fisicamente solo interesan aquellos puntos (a, ) ubicados en el primer

cuadrante (excluyendo los ejes donde alguno de ellos se anula) notamos que T
también esté definido para v = 0. Buscamos, nuevamente, un par («, ) tal que

T(a,v) = (0,1).

En ese caso se verd que 0 = 1y v > 0, y por lo tanto la z correspondiente es
una solucion positiva de (4.2.3)-(4.2.4) con « como en (4.2.5).

(4.2.8)

En la prueba del resultado principal, se utilizan dos lemas de comparacion; se
vuelve a usar el Lema 4.1.2 de la secciéon anterior, y el siguiente lema.

Lema 4.2.1 Sea z una solucion de (4.2.3) con a > 0 y o bien v > 0 o bien
v =0, pero A # aD.
Supongamos que 0 < z(xo) < z(x1) y 2" (x0) > Cyz(x0)2 (x0) para algin xy < .
Entonces,

2" (w0) — Cyz(x0)2' (w0) < 2"(21) — Cyz(21)2' (1),

Nota. Siy =0y A= aD, entonces (4.2.3) tiene solucion z(z) = 1 (la ecuacion
(4.2.3) se convierte en 2"(z) = Az(z) — aD que z(z) = 1 cumple trivialmente
siendo A = aD), y no se cumple la afirmacion del lema.

Dem.Lema 4 2.1 Supongamos primero quey > 0. Como 2" (xg) > Cyz(xg)Z (x0),
entonces, Z"(xg) — Cyz(xo)z'(zo) > 0, y por lo tanto, el miembro derecho de la
ecuacion diferencial (4.2.3) es no negativo. O sea, tenemos que

A %(1 — 2(w0)?) + yamo| 2(z0) > aD > 0
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FEsto implica que, dado que z(xy) > 0, z(xg) > 0, y entonces

[A - 7;(1 — 2(0)?) + mxo] > 0.

Si derivamos el miembro derecho de (4.2.3) respecto de z (tomando x = xy, fijo),

da
2
2% () {)\ — %(1 — z(w0)?) + ’yoz:co} > 0

pues todos los factores son positivos. Si derivamos ahora respecto de x con z fijo
en xg, da
yaz(xg) > 0, pues z(xg) > 0 (siendoy > 0).

Luego,
xo < 11 = 2"(x0) — Cyz(x0)7 (x0) < 2"(21) — Cyz(x1)2 (21),

pues z(xg) < z(x1), como quertamos demostrar.

Si ahora consideramos v =0 y X\ # aD, (4.2.3) se convierte en
2"(x) = Az(z) — aD, (4.2.9)

una ecuacion diferencial cuya resolucion directa nos da

D
z(z) = CreV™ 4 Coe VM + ozT. (4.2.10)
y entonces
Z(x) = VA (Cle\&r — Cge’ﬁx)
De las condiciones de contorno (4.2.4)
D
2(0):1:@1+CQ+O‘T y  2(0)=0=vVX(C; —Cy),
con lo cual se deduce que Ci=Cy=1(1-2R)
Yy entonces
1 D D
2(z) =5 <1 - %) (em + e*m) —- QT (4.2.11)

Como v = 0, la tesis equivale a probar que 2"(xo) < 2"(x1), lo cual equivale a su
vez, como vemos de (4.2.9), a mostrar que z(xo) < z(x1), pero esto es inmediato
de la ecuacion (4.2.11) obtenida para z. En efecto, dado que \ # aD, entonces
(1—2B) £ 0, y como por hipdtesis es z(xg) < z(x1), debe ser z(xg) < z(x1),
como queriamos probar.[]
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El Lema 4.2.1 nos permite establecer dos hechos fundamentales sobre el operador
de disparo T. Estos estdn establecidos a continuacién.

Lema 4.2.2 T es continuo. Por otra parte, si T(«,v) = (0,1) cony > 0, enton-
ces y := vz es una solucidn del problema original (4.2.1)-(4.2.2).

Dem.Lema 4.2.2 Comenzamos probando la afirmacion siguiente:
Si Z(o)=0 = 0<z<2 en [0,1].

En otras palabras, z'(c) = 0 se opone a los casos (C1) y (C2) y debemos tener
o=1 (Caso (C3)).

Supongamos que ocurre el Caso (C1). Entonces x = o es el minimo global de z
en el intervalo (0,0, lo cual implica que 2"(0) > 0 (dado que 2'(c) = 0). Pero,
de la ecuacion diferencial (4.2.3) (con x = 0,2z(c) =0 y 2/(0) = 0) tenemos que
2"(0) = —aD < 0 lo cual es una contradiccion.

Supongamos entonces que ocurre el Caso (C2). Sea x = xy el minimo global de z
en [0, 0]. Entonces 0 < z(zg) < z(0) y 2" (x¢) > 0. Como 2'(xo) = 2'(c) = 0, por
el Lema 4.2.1 (dado que z'(xo) = 0 y por lo tanto estamos en las condiciones del
lema), obtenemos que 2" () > 0 (pues 2" (o) > 2"(x¢) > 0), que no puede ocurrir
dado que 2'(0) = 0, excepto en el caso en el que v =0 y A = aD, en cuyo caso
, excepcional, la afirmacion se cumple trivialmente (dado que tenemos 2" (x) =
Az(z) — aD en (4.2.3) con la solucion z(x) =1 como ya menciondramos).

La continuidad de T se deduce a partir del resultado estindar de la dependencia
continua para ecuaciones diferenciales ordinarias de la solucion respecto de los
parametros.

Por dltimo, si T(«,y) = (0,1), entonces, por la afirmacion que probamos, debe
ser o =1y porlotanto L=1 (0 =1 en (4.2.8) nos da (4.2.7)), y esto implica
que « satisface la ecuacion (4.2.5), y por lo tanto z es solucion de (4.2.3) con
las condiciones (4.2.4) donde ademds cumple 2'(1) = 0, y entonces y = vz es
una solucion del problema original (4.2.1)-(4.2.2).0

Con el fin de probar la existencia de un par (a,7) tal que T'(a,vy) = (0,1),
encontraremos un dominio acotado © C (0,+00) x [0,+00) tal que el indice
topologico I de la curva T o 92, la cual es la imagen de la frontera de €2 por T,
satisface

I(T 0 0%, (0,1)) # 0.

De la teoria estandar del indice topologico, esto implica que la ecuacion T = (0, 1)
tiene al menos una solucién en 2. Mas especificamente, 2 se definird como el
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rectangulo PQ RS dado por los vertices

S = (%,7*) : R := (", ")

A )
P = (5,0), QZ: (CY ,O)
donde a* y v* son constantes que se eligen adecuadamente a posteriori.

Lema 4.2.3 Sea v > 0. St z alcanza un minimo local en xy < o, entonces
Z'(x) > 0 para x > xoy (y por lo tanto 2'(c) > 0). Si ademds oD > 0, entonces
L > 0.

Dem.Lema 4.2.3 Si Z'(x1) = 0 para algin x, > xo, entonces o bien z(x1) < z(xo)
o bien del Lema 4.2.1 obtenemos que 2"(x1) > 0 (pues 1 > xo y z(xy) >
2(xg) = 2"(x1) > 2"(x9) > 0 por el Lema) y x1 es un minimo local. En ambos
casos, z alcanza un mdzximo local en algin xo € (xg,x1) (y por lo tanto con
2"(x9) < 0) y nuevamente obtenemos de la aplicacion del Lema 4.2.1, z(x9) >
z(xg) >0, que lo contradice. Es asi entonces que z' no se anula después de g y
por lo tanto 2'(x) > 0, Vx> xo. Luego, observamos también que el Caso (C1)
no puede ocurrir.

Si ocurre el Caso (C2), o si ocurre el caso (C3) con z(1) > 1, entonces, de la
definicion de L (ecuacion (4.2.8)), L > 0 independientemente de si aD # X\ o
no. Para el restante caso, Caso (C3) con z(1) <1 (o =1), tenemos que

0<2"(1) = Cvz(1)2'(1)

(1) ()\(1+L)+7a (1-%)) —aD
<A1 +L)—A=AL

en donde la primera desigualdad es consecuencia de aplicar el Lema 4.2.1 (xg < 1
y z(zg) < z(1) = Z"(1) — Cvz(1)2'(1) > 2"(xg) — Cyz(x)2' (x0) > 0 (con
2'(x9) = 0)), la igualdad en la sequnda linea proviene de la ecuacion diferencial
(4.2.3) y la definicion (4.2.8), y la desigualdad en la tercera linea, de la suposicidn
de que 6 <1,z(1) <1, y aD > \. Luego, tenemos que L > 0. O

Los siguientes lemas proporcionan una idea del aspecto de la imagen de 0€2 bajo
el operador T'.

Lema 4.2.4 El segmento PQ se aplica uno a uno sobre el segmento P'(Q)’, donde
P '=(0,0) y @ = (—7,0), para algin r > 0.
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Dem.Lema 4.2.4 A lo largo del segmento PQ, se tiene v = 0 y entonces z(x) estd
dada por la ecuacion (4.2.11), es decir

1 D D
) =3 (1 - aT) (P e ) + =5

Entonces,

Z(z) = g (1 - %) (em - e*m) . (4.2.12)

que, como o = %, se anula (y entonces 2'(x) = 0, con z(x) = 1,Vz, en particular

2'(1) =0, siendo 0 = 1). Como ademds, de su ecuacion de definicion (4.2.8) se
tiene que L =0 (dado que v =10), obtenemos que P' = T(P) = (0,0).

Vemos la inyectividad de T sobre el segmento PQ (aunque no se necesite en la
demostracion del Teorema 4.2.1): de P a Q, o se incrementa desde el valor 3.
Inicialmente tenemos Caso(C3), en el que o = 1. Podemos entonces derivar la
ecuacion (4.2.11) de 2'(x), evaluada en x =1, respecto del parametro «, lo cual
nos da

d / D VA VA
(1) = = _
80/2() 2\/X<€ ‘ ><O’

que nos permite ver que, inicialmente, 2'(o) es decreciente en a. Sin embargo,

después, o alcanza un valor critico ay, es decir, para o > o, el Caso(C1) pre-

valece.

En efecto, si a > & (siendo v = 0), si hacemos en (4.2.11) x = o e igualamos
s D ’

a cero (Caso(C1)), obtenemos, (usando que et+2_e*t = cosh(t) ),

2(0) = % + (1 - %) cosh(Vao) =0,

y entonces debe ser
D/X 1
cosh(V o) = oD/ =

aD A
A 1 aD

Como Z(0) = (1-29) VA senh(v/Ao), (donde senh(t) = €=),

2

usando la conocida relacion — cosh?(t) — senh®(t) = 1, una cuenta sencilla nos
lleva a




dado que o > % (y por lo tanto el radicando es positivo).

Si hacemos ahora, Z(0) = (1 = 22) senh(v/Ao) = 0, vemos que esto ocurre
en el caso %2 =1 (el Caso(C3), con o = 1), o cuando senh(v/Ao) = 0, que da

o =0, que no corresponde a un valor posible del punto final (estamos en x =0
con 2'(0) =0y z(0) =1).

Otra manera de verlo (la mostrada en [9]), es multiplicar la ecuacion diferencial
que se obtiene con v =0, 2" = z —aD, por 2, e integrar desde x =0 a x = 0,
para obtener

2?(0)  A\*(o)

A A
5 5 aDz(o) 24—04 2+04

De donde se ve que z(c) es una funcidn creciente de «, lo que nos permite
establecer, dado que z'(0) es negativa, que ésta es una funcion decreciente de c.
Luego, 2'(0) es negativa para la imagen por T, que resulta asi inyectiva, de todo
punto que se encuentra en el segmento PQ), con o > %. 0]

El siguiente lema muestra que , excepto para el punto P, la imagen del segmento
PS se encuentra en el primer cuadrante del plano (2/'(0), L).

Lema 4.2.5 Sia=\/D y~v >0, entonces z'(c) >0y L > 0.

Dem.Lema 4.2.5 Si suponemos que z es inicialmente creciente, entonces x = 0
es un minimo local, y entonces, por el Lema 4.2.3, cuyas hipolesis se cumplen,
tenemos que z'(c) > 0 y como ademds a > \/D se tiene que L > 0.

Luego, consideramos que z es inicialmente decreciente. En ese caso, como la
constante C, definida en (4.2.6) cumple C < 0 (dado que estamos en el caso
vy +v_<0), ypara algin e > 0 se cumple que 2'(x) < 0 para x € [0, €], tenemos
que

2

Aplicando entonces nuevamente el Lema 4.1.2 con W = 1, andlogamente a como
lo hiciéramos en la demostracion del Lema 4.1.8, se deduce que z(x) > 1 para
x € [0, €], contradiciendo la suposicion.

Por iltimo, si ninguna de las condiciones anteriores ocurre, z tendria mds de un
minimo local, y esto contradice el Lema 4.2.3. [

z”z{)\—f(l—f)}z—)\ en [0, €

Los siguientes dos lemas restantes se refieren a la conveniente eleccion de las
constantes a* y v*.

Lema 4.2.6 Sean o > @ yv>0.82(0) =0, entonces L > 1.

64



Dem.Lema 4.2.6 Como 2'(0) = 0, entonces estamos en el Caso(C3)(Lema 4.2.2),
siendo facil ver que v > 0:

si suponemos que v = 0, de la ecuacion (4.2.12) (de la demostracion del Lema
4.2.4), tenemos que

2 (z) = Q <1 - %) (eﬁz — e‘ﬁ’”) # 0, Va,

(dado que o #\/D y x #0), lo cual contradice z'(c) = 0.

Por el lema 4.2.3, z no puede tener un minimo local en el intervalo [0,1) . Por
consiguiente, el minimo global de z se alcanza en el punto final o0 = 1, con lo que
se deduce que Z"(1) > 0 y que z es no creciente.

Luego, de la ecuacion diferencial (4.2.3) también se puede ver que z # 1, y por
lo tanto, z(1) < 1 y entonces, evualando en x = 1 y nuevamente de la definicion
de L (ecuacion (4.1.19)) (similarmente como procedimos en la demostracion del
Lema 4.2.3), podemos establecer

0<2"(1)

— (1) <)\(1+L)+7a (1-%)) —aD
AU+ L) = A1 +1) = ML —1)

lo cual tmplica que L > [. [J

En vista del resultado anterior, se fija una constante a* tal que

A1+1)
* _ 4213
o > S ( )

y se procede de acuerdo al lema siguiente, en la determinacion de ~*.

Lema 4.2.7 Si~v* es suficientemente grande, entonces la imagen del segmento
RS se encuentra en el primer cuadrante.

Dem.Lema 4.2.7 Del Lema 4.2.5 ya sabemos que la imagen del punto S, S' =
T(S), se encuentra en el primer cuadrante, asi que podemos considerar los puntos
del segmento RS con o > A/D. Entonces 2" < 0 en un entorno de 0 (en la
ecuacion diferencial (4.2.8), conx =0, y z2(0) =1 y 2/(0) = 0, de las condiciones
(4.2.4)), y z es entonces inicialmente decreciente. Si z alcanza un minimo local
en algin punto xoy < o, entonces, por el Lema 4.2.3, Z'(0) > 0 y ademds, como
a > \/D, se tiene que L > 0. De modo que entonces es suficiente probar que z
no puede ser estrictamente decreciente en todo el [0, ol.

Supongamos que st lo es. O sea que z decrece estrictamente hasta alcanzar el
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punto final o. Como C' < 0, z > 0y 2’ <0, el término Cyz(x)z'(z) > 0, y
siendo z < 1, lo que implica que (1 — 2%)z < 2(1 — z), entonces, de la ecuacion
diferencial (4.2.8), se obtiene

2(x) > =y (1 — 2(z)) + (A +y%ax)z(x) — aD, (4.2.14)

(donde usamos el valor de v, v* ). Sequidamente, fijamos una constante m tal que
a*D/(a*+ X)) <m <1, lo cual es posible ya que D < 1+ % En efecto,

@D <1 <= < A
(8]
af + A\ D—1

entonces, de (4.2.13), debe ser

lo que equivale a que D <1+ %
A continuacion, andlogamente a lo realizado en la demostracion del Lema 4.1.9
del caso vy +v_ = 0, definimos W como la solucion del problema de valores
iniciales
W"(z) = —v*2(1 = W(z)) + (A + v ax)m — aD
W(0) =1, wW'(0) =0,

cuyo cdilculo directo nos da

* * - D
W(z) = CyeV® 4 Coe™® + 1 — <Am 4 O‘mx) , (4.2.15)
Y Y
donde 0 ) 5 o ) 5
+a)m—« —a)m—«
Cl = 2,}/*2 Y Cz = 2,}/*2 :

Dado que a < o*, como elegimos m tal que m > o*D/(a* + \), y entonces
(a* + N)m > a*D > aD, se tiene que C; > 0. Eligiendo v* suficientemente
grande, podemos hacer

. m —aD
‘(Cge_” v ( m *204 N omix)
v g

<1-—m,

para cada x € [0,1], lo cual implica, a su vez, que W > m en el [0,1] (dado que
en (4.2.15), tenemos 1 sumado al término Cie'®, que es positivo). Supongamos
ahora que z alcanza el valor m en algin punto xq, o sea, z(xo) = m. Entonces,
tenemos de (4.2.14) que

(2) > =1 — 2(x)) + (A +~v*ax)m — aD (4.2.16)
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en [0,xo]. Del Lema 4.1.2 de la seccion anterior, tenemos que z > W > m en
0, z0], contrario a lo supuesto de que z(xy) = m. Por lo tanto, z > m y la de-
sigualdad (4.2.16) ocurre en todo el [0,1]. Podemos aplicar entonces nuevamente
el Lema 4.1.2 para concluir que = > W en todo el [0,1]. Como Cie”® — oo
cuando v* — oo, entonces, para v* sufientemente grande, tenemos que W (1) >
1, y por consiguiente, z(1) > 1, contradiciendo la suposicion de que z < 1. O

Demostraciéon del Resultado Principal: Teorema 4.2.1

De los lemas anteriores se concluye que el indice de la curva T o OS2 con respecto
al punto (0,1) es —1, y por lo tanto T(«,7y) = (0,1) para algin (co,7y) € Q (en
particular, el Lema 4.2.6 nos asegqura que (0,1) € T o §2). Por lo tanto existe
solucion para el problema de valores de contorno (4.2.1)-(4.2.2). O
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Figura 5: a en funcion de ~

5. Conclusiones y aspectos pendientes

Hemos podido ver con estas aplicaciones del método, en estos trabajos [5] y [9],
su eficacia en el cometido propuesto de demostrar existencia de soluciones, en
particular eliminando la restriccion que se impone en [2] respecto de los parame-
tros fisicos (ecuacion (2.3.8) de la seccion 2.3).

En ese mismo sentido podemos observar, en el trabajo |5], varias conclusiones de
la implementacion de experimentos numéricos alli realizados en los Apéndices del
final. Como mencionan los autores, ningin tratamiento numérico del problema
con condiciones de Neumann (4.1.1)-(4.1.4) ha sido emprendido en la literatura
y la prueba de existencia topologica no conduce directamente a un algoritmo
practico.

En el Apéndice I se presentan estudios numéricos preliminares del problema, con
D =1, realizados mediante un algoritmo puesto en practica en MATLAB. Los
resultados numeéricos indican que la dependencia de « con + es siempre monotona
y por lo tanto la asignacion correspondiente es uno a uno, y la aplicaciéon inversa
existe y es continua. Sin embargo, no se estd en capacidad de confirmarse esta
teoria y se prefiere plantear esto como una conjetura, del modo siguiente:
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Figura 6: L en funcion de v

Para cada v > 0, dada, existe una y sélo una «, tal que la solucidn z(x) del pro-
blema de valores iniciales asociado (4.1.10)-(4.1.12), también satisface la condi-
cion de frontera (4.1.13). La dependencia de o con vy es continua. El valor de L
obtenido de a es también una funcion mondtona de . FEsta dltima afirmacion
es equivalente a la afirmacion de que el problema de valores de contorno original
tiene una solucion unica.

Si esta conjetura es cierta, entonces en el paso 4 del algoritmo alli expuesto, se
puede afirmar que L es una funcion continua de 7 y la existencia de un adecuado
v que da L = [ estd garantizada. Esto equivale a una prueba alternativa del
resultado principal sin recurrir a la teoria de grado topolégico.

Las figuras 5 y 6 muestran el resultado numérico de uno de los experimentos,
con A = 1. La figura 5 muestra el grafico de a como una funciéon de v, que es
monotona y en el que se puede apreciar que &« — 0o, cuando v — oo. La figura
6 muestra el grafico de L en funcion de ~, que de nuevo parece ser monotona.
También se ve que L — 0, cuando v — 0 y L — o0, cuando v — oo. Por
lo tanto, L toma cada valor posible de [.

En el Apéndice II se muestran resultados de experimentos similares para D > 1.
Las figuras 7 y 8 representan los resultados para D = 2 correspondientes a los de
las Figuras 5 y 6, respectivamente, donde se ha mantenido A = 1. Se aprecia que
a todavia depende de v de forma continua y monétona. Sin embargo, la Figura 8
muestra que L ya no es monétona en «. Existe un valor maximo L* = M(l) que
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Figura 7: a en funcion de v para D = 2

L puede alcanzar. En otras palabras, no habra ninguna solucién para el problema
de contorno si L > L*. Esto es equivalente a decir que una condiciéon del tipo
de la establecida en el trabajo de Thompson [2] tiene que ser impuesta para
asegurar la existencia de una soluciéon. Otra consecuencia de la forma de la curva
es que, en general, para algunos valores dados de [ puede haber dos soluciones
diferentes.

La pregunta que se plantea es porqué no sigue valiendo la demostracion del
Teorema 4.1.1 para este caso de D > 1, dado que todos lo lemas en la seccion
4.1 siguen valiendo, excepto el Lema 4.1.9, aunque es importante notar que para
D > 1, se observa que el Lema 4.1.7 se cumple en un contexto vacio, es decir, en
realidad no se cumple la condicion de que la curva 'R’ interseca al eje §. En el
Lema 4.1.9, no se pueden establecer las desigualdades W(x) > m y W(1) > 1.
En la Figura 8 vemos que para un [* suficientemente grande, no hay solucion. La
condicion respecto a D establecida en el resultado principal (Teorema 4.2.1) de
la seccién 4.2,

1
D<1—|—j,

implica que si D = 2, debe ser [ < ﬁ = 1.

En el trabajo [9] para ayudar a visualizar la demostracion, se muestra el dibujo
de la imagen P'QR'S" del rectangulo PQRS bajo la aplicacion T' (Figura 9),
correspondiente a un ejemplo numeérico, realizado con la ayuda de MATLAB,
para el caso especial en el cual los pardmetros fisicos han sido elegidos A =
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Figura 8: L en funciéon de v para D = 2

1,D =1, =1, y las constantes a* y 7*, en la definicién del rectangulo PQRS
elegidas 6 y 4 respectivamente. Si llamamos O al origen de coordenadas, y A al
punto donde la curva Q' R’ interseca el eje L (eje de ordenadas), entonces el indice
topologico de P'QQ’R'S" es —1 por cada punto que se encuentra en el segmento
de linea OA. Por lo tanto, el problema de Neumann original tiene una solucién
para estos valores de L. Mediante el aumento de a* y v*, se abarcan mas valores
de L (Lemas 4.2.6 y 4.2.7).

Si se reduce v* a 3, la imagen del lado RS se vuelve el R"S”, que, como se
muestra en la Figura 9, no se encuentra enteramente en el primer cuadrante, lo
cual da cuenta de que el Lema 4.2.7 so6lo tiene validez si v* es suficientemente
grande.

71



40 T

asE-

25—

201~

Figura 9: Imagen de PQRS por T

72



6. Bibliografia

Referencias

]

2]

13l

4]

5]

[6]

|7l

18]

19]

[10]
[11]

H.R.Leuchtag, A family of differential equations arising from
multi-ion electrodiffusion, J. Math. Phys. 22(6) (1981).

H.B.Thompson, Ezistence for two-point boundary value problems
in two ion electrodiffusion, J. Math. Anal. Appl. 184, 82-94
(1994).

H.B.Thompson, Fzxistence of solutions for a two point boun-
dary value problem arising in electro-diffusion, Acta Math. Sci.
8 (1988), 373-387.

P.Amster, Métodos topoldgicos en el Andlisis no lineal,Libro de la
serie Publicacoes Matemaéticas del Instituto de Matematica Pura
y Aplicada,Brasil(2009).

P.Amster,M.K.Kwong,C.Rogers,On a Neumann Boundary Value
Problem for Painlevé IT in Two Ion FElectro-Diffusion, Nonlinear
Analysis (2010)doi:10.1016/j.na.2010.06.063

C.De Coster and P.Habets, Upper and lower solutions in the
theory of ode boundary value problems: classical and recent re-
sults, Nonlinear Analysis and Boundary Value Problems for
ODES CISM Courses and Lectures, 371, Springer (1997).

M.C. Mariani, P. Amster and C. Rogers, Dirichlet and periodic-
type boundary wvalue problems for Painlevé ILJ. Math. Anal.
Appl, 265, 1-11 (2002).

C.Rogers, A.Bassom and W.K.Schief, On a Painlevé II model in
steady electrolysis: application of a Backlund transformation, J.
Math. Anal. Appl, 240, 367-381 (1999)

P.Amster, M.K.Kwong, C.Rogers, A Neumann Boundary Value
Problem in Two-Ion Electro-diffusion with Unequal Valencies,
Discrete and Continuous Dynamical Systems, Series B Vol. 17
No 7 (2012), 2299-2311.

F.Borgnis, Z.Physik, 100-117; 478 (1936).
H.Y.Fan, Physical Review; 74; 1505 (1948).

73



[12] H.R.Leuchtag y J.C.Swihart, Biophys.J. 1, 27 (1977).
[13] R. Schlogl, Z. Physik. Chem., N F 1, 30

[14] L.V.Ahlfors COMPLEX ANALYSIS. An Introduction to the
Theory of Analytic Functions of One Complexr Variable.
McGraw-Hill Book Company, Inc. (1953).

[15] P.W.Lamberti, V.Rodriguez, Desarrollo del modelo matemd-
tico de Hodgkin y Huzley en neurociencias, FElectroneuro-
biologia 2007, 15 (4), pp. 31-60, URL http: //electroneu-
bio.secyt.gov.ar/index2.htm.

74



	Portada
	Índice
	1. Introducción
	2. El proceso de electrodifusión
	2.1. Introducción
	2.2. Una familia de ecuaciones diferenciales surgida de laelectrodifusión multiiónica.
	2.2.1. Descripción del proceso
	2.2.2. Forma adimensional
	2.2.3. Los casos de una y dos cargas
	2.2.4. Generalización a un sistema de iones

	2.3. Existencia para problemas de valores de contorno enelectrodifusión de dos iones
	2.3.1. El problema de valores de borde
	2.3.2. Existencia de soluciones
	2.3.3. Soluciones por Shooting
	2.3.4. Iones de diferentes valencias

	2.4. Ecuaciones del problema con condiciones de Neumannde electrodifusión
	2.4.1. Ecuación del modelo


	3. Método de disparo
	3.1. Problema unidimensional
	3.1.1. Ecuación con condiciones Dirichlet homogéneas
	3.1.2. Ecuación del péndulo
	3.1.3. Cotas a priori

	3.2. Problema bidimensional
	3.2.1. Extensión a un sistema de ecuaciones
	3.2.2. Utilizando Análisis Complejo


	4. Aplicación al problema con condiciones deNeumann para un modelo de electrodifusiónde dos iones
	4.1. El caso ν+ + ν- = 0
	4.1.1. Una reducción a Painlevé II
	4.1.2. Un Problema Equivalente

	4.2. El caso v+ + v- = 0

	5. Conclusiones y aspectos pendientes
	6. Bibliografía


