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Introduccién

Un problema de suma importancia para la teoria de niimeros clasica y moderna
es el de poder determinar el conjunto de soluciones racionales de una ecuacién con
coeficientes racionales. Un ejemplo de este problema es la determinacion de las ternas
pitagoricas, que se pueden pensar como soluciones racionales, o sea puntos cuyas
ambas coordenadas son racionales, en la circunferencia unitaria o soluciones enteras
de la ecuacién 22 +y? = 22. Las curvas pueden clasificarse por un invariante llamado
el género. La circunferencia es una curva de género 0, y a partir de un punto racional,
es facil encontrar todos ellos por el método de la tangente.

Mas generalmente, un resultado de Hasse-Minkowski nos dice que uno puede
determinar si cualquier curva de género 0 (por ejemplo las cénicas) tiene alguna
solucion entera fijandose si tiene solucion maédulo todos los primos y una solucién
real. Ademds, si la curva tiene una solucién racional, automéaticamente tiene infinitas,
pudiéndose parametrizar todas ellas.

En el otro extremo, se encuentran las curvas de género > 2. Faltings demostré que
estas curvas siempre tienen finitos puntos racionales aunque no se conoce un método
general para calcular efectivamente estos puntos, y tampoco se sabe si un tal proceso
existe o no.

El caso que nos interesa en este trabajo es el caso intermedio de curvas de género
1. Dada una curva de género 1, no se conoce un método que pueda decidir si tiene un
punto racional o no (aunque existen algoritmos que funcionan en muchos casos).Una
curva eliptica es una curva de género 1 con un punto racional distinguido. Estas cur-
vas tienen una estructura de grupo abeliano y el teorema de Mordelll-Weil nos dice
que dicho grupo es finitamente generado. La parte de torsién de la curva se puede
calcular usando el teorema de Nagell-Lutz. El problema mas interesante es como
calcular el rango de la curva, esto es la cantidad de puntos linealmente independien-
tes sobre Z. Claramente esto implica el poder calcular todos los puntos racionales
de la curva. Siguiendo la filosofia de Hasse-Minkowski, que nos dice que si una for-
ma cuadratica tiene soluciones locales entonces se pueden “pegar”para obtener una
solucion global uno podria esperar que esto valga en contextos mas generales. La-
mentablemente este teorema no es cierto para género mayor que 1, sin embargo los
principios locales - globales aparecen de otras maneras.

En el caso de las curvas elipticas existe una conjetura, de Birch y Swinnerton-
Dyer que relaciona el rango de la curva eliptica con el orden de anulacién de una
funcién de variable compleja en su centro de simetria. Esta funcién se obtiene mul-
tiplicando factores para cada primo y estos factores tienen que ver con la cantidad
de soluciones modulo p de la curva. O sea, lo que estamos diciendo es que la infor-



macién local (contar puntos médulo p) pegada de cierta forma deberia darnos una
informacién global (el rango de la curva). Esta conjetura todavia estd abierta pero
gracias a resultados de Gross-Zagier y Kolyvagin (entre otros) se puede probar para
ciertos casos particulares. La idea de la demostracion es utilizar los llamados puntos
de Heegner que dan lugar al titulo del presente trabajo y sobre los que discutiremos
varios aspectos. Estos puntos proveen una teoria rica que no sélo nos permite resolver
esta maravillosa conjetura para una gran cantidad de casos sino que también para
esos casos nos da un algoritmo efectivo para calcular todos los puntos de la curva
eliptica. Ademds los puntos tienen otras aplicaciones, por ejemplo relacionadas con
el antiguo problema de los nimeros congruentes que consiste en determinar que va-
lores enteros puede tomar el area de un triangulo rectangulo con lados de longitud
racional.

En la secciones 1, 2 y 3 explicaremos los preliminares necesarios acerca de curvas
elipticas, L-series y formas modulares. Estos conceptos no son solo centrales en nues-
tro trabajo sino que también forman una parte destacada del desarrollo de la teoria
de ntmeros moderna, famosos por ser una pieza clave en la resolucion del ltimo
teorema de Fermat.

En la seccion 4, la central de este trabajo, se explica que son los puntos de Heegner,
sus propiedades tedricas y también como se usan para calcular puntos racionales
mediante ejemplos explicitos.

Por 1ltimo en la seccién 5 se cuentan las distintas generalizaciones (conocidas y
por conocer) que tienen estos puntos a contextos mas generales y se plantean pro-
blemas abiertos respecto a los mismos que formaran parte del estudio e investigacién
durante el transcurso del doctorado.
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1. Curvas Elipticas

1.1. Definiciones y ley de grupo

Una curva eliptica sobre un cuerpo K es un curva proyectiva suave de género 1
con un punto racional distinguido. Por el teorema de Riemann-Roch una tal curva
se puede escribir en una ecuacion de Weierstrass de la forma

y2 + a1xy + azy = s+ a2x2 + aqx + ag,

con a; € Ky A # 0. Si la caracteristica de K es distinta de 2 y 3 se puede llevar la
ecuacion a la forma maés sencila

y: =23 4+ ax + b,

a,be Ky A= —-2%4a®+ 270%) #£ 0.
Dada E/K una curva eliptica definimos su j-invariante como

J(E) = —1722(4&) |

Es facil ver que dos curvas elipticas son isomorfas sobre K si y sélo si sus j-invariantes
coinciden. Ademds, dado j € K, podemos encontrar una curva con coeficientes en
K con ese invariante.

Para las definiciones y propiedades basicas de estos hechos se puede consultar
[17] (IIL.1).

Tomemos una ecuacién de Weierstrass como arriba; si la miramos en el plano
proyectivo (homogeneizando respecto de z) vemos que en z = 0 tenemos un tnico
punto, que llameremos punto del infinito, que es el O = [0 : 1 : 0]. Este serd nuestro
punto racional distinguido en la curva eliptica. La ventaja de trabajar con una curva
eliptica es que los puntos de la curva tienen una estructura de grupo, que se obtiene
de la manera siguiente: Sean P, € E y sea L la recta que los une (consideramos
la tangente en P si ocurre que P = Q). Por Bezout esta recta corta a la ciibica en
un tercer punto, digamos R. Analogamente la recta que pasa por Ry O corta a la
cubica en un tercer punto, que llamaremos P & (). Como estamos pidiendo que tres
puntos colineales sumen O, sabiendo que dos de esos puntos tienen coordenadas en
K el tercero también las tendra. En efecto, sean P;, P, dos puntos de la curva eliptica
definidos sobre K, y sea L la recta que los une que corta a la ctbica en un tercer
punto Pj. Sea

L:y=Xx+wv,



donde claramente z, v, A estan definidos sobre K. Llamando a P; = (z;,y;) tenemos
entonces que si evaluamos la ecuacién de la curva eliptica en (z, Az 4+ v) nos queda
de la forma c(z — z1)(z — z2)(z — 3). Finalmente igualando los coeficientes en 2% y
en 23 se obtiene que ¢ = —1 y que 23 = A\ + a1\ + as — x; — 22 y por lo tanto el
punto P3 esta definido sobre K como queriamos.

Se puede ver que este proceso dota a los puntos de la curva eliptica de una
estructura de grupo abeliano, y podemos dar férmulas explicitas para sumar puntos

en la curva. Para més detalles se puede consultar [17] (II1.2) 6 [12] (II1.4).
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1.2. Estructura analitica

Sea ahora E/C una curva eliptica. A la curva E se le puede asociar un reticulo
A C C de forma que los puntos complejos de la curva estan en biyeccién con los
puntos de C/A. Todo reticulo de C se puede escribir de la forma

<w17 w2>Z

donde w1, ws son R - linealmente independientes.
Si llamamos pj a la funcion o de Weierstrass asociada al reticulo A dada por

=+ X (e w)

AeA—{0}

entonces se tiene que las funciones A periddicas g (z) y @) (z) satisfacen la siguiente
relacién algebraica
E392:$3—92$—93,
donde
z = pa(2),y = P (2),



92:602%,

AEA-O0

=140 Y 5.
AEA-0
y la aplicacién ®,(z) = (pa(2), p\(2)) nos da un isomorfismo (de grupos y de varie-
dades analiticas) entre C/A y la curva eliptica E.
El libro [13] (cap. I) realiza el estudio acerca de las curvas elipticas desde es-
te punto de vista y es una buena referencia para estos resultados. También estan
explicados en [17] (cap.VI).

1.3. Isogenias

Sean F., F5 dos curvas elipticas. Una isogenia es un morfismo de curvas algebrai-
cas
¢: By — Es,

tal que ®(0O) = O. Si dos curvas estan relacionadas por una isogenia se dicen que
son iségenas. Una isogenia es o bien constante (en cuyo caso ¢ = 0y se dice que es
trivial) o es no constante y es un morfismo finito de curvas. En este tltimo caso, uno
tiene la inyeccién usual de cuerpos de funciones

¢ : K(By) — K(E).

Se dice que una isogenia tiene grado n, es separable, puramente inseparable, etc,
si la correspondiente extension de cuerpos goza tal propiedad.
Un ejemplo es la isogenia multiplicar por m que se define, si m > 0, como

[m]: E— E, m](P) =P+ P+ ---+ P (m veces).

Se puede ver que estas isogenias son no triviales. Podemos mirar el nicleo de
estas isogenias y definir el subgrupo de puntos de m-torsiéon como sigue:

Em|={P € E:|[m]P=0}.
También podemos definir el grupo de torsion como

[e.9]

Eiors = U E[m]

m=1
Vamos a destacar una serie de resultados ttiles acerca de las isogenias. Para las
demostraciones se puede consultar [17] (IIL1.4 y II1.6).
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Teorema 1.1. Si ¢ una isogenia separable entonces #ker¢p = degp y la extension
de cuerpos inducida por la isogenia es Galois.

Teorema 1.2. Sea E una curva eliptica y sea ® un subgrupo finito de E. Entonces
existe una unica curva eliptica E' y una isogenia separable

¢: B — F,
tal que kerp = P.

Teorema 1.3 (Isogenia Dual). Dada ¢ : Ey — Ey una isogenia no constante de
grado m existe una tunica isogenia (llamada isogenia dual)

~

(b : EQ — E17
tal que
b0 =m]
Ademds se tiene que [m] = [m] y que deg[m] = m?.

Como coralario uno obtiene lo siguiente:

Corolario 1.4. Sea K algebraicamente cerrado. Si car(K) = 0 o car(K) coprima
con m entonces se tiene que

E[m| =2 Z/mZ x Z./mZ.

Demostracién. Sabemos que [m] tiene grado m? y luego en las condiciones del coro-
lario nos queda que la isogenia es separable. Luego por lo visto antes

B ] = #therd = m?,
y méas aun para todo d | m se tiene que
H#E[d] = d.

Por el teorema de estructura para grupos abelianos finitos aplicado a E[m] , es-
cribiéndolo como producto de subgrupos ciclicos se ve rapidamente que la tnica
posibilidad es la que buscamos.

]

Volvamos a la estructura analitica por un momento y tratemos de entender como
son las isogenias en ese caso.
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Teorema 1.5. Sean Ey = C/Ay, Es = C/Ay dos curvas elipticas. Entonces tenemos

1. La funcion
{aeC:aN C A} {op:C/Ay — C/As : ¢(0) = 0, ¢ holomorfa}

dada por mandar
O —> Qg

donde
0o : C/Ay — C/Ay, 2 — az(modAs),

es una biyeccion.

2. La inclusion natural de {isogenias ¢ : By — FEy} en
{¢p:C/A; — C/Ay : ¢$(0) =0, ¢ holomorfa}
es una biyeccion.

Demostracion. La idea es levantar las funciones holomorfas a C que es el revesti-

miento universal de C/A. Para la demostracion ver [17] (VI.4).
UJ

Observacion 1.6. Podemos definir End(E) = {¢ : E — E isogenias} y se tiene que
si E = C/A entonces
End(E)={acC:al C A}

Siguiendo estas ideas se pueden obtener demostraciones sencillas de algunos he-
chos de curvas elipticas sobre C y usando el principio de Lefschetz que dice que hacer
geometria algebraica en C y en un cuerpo de K de caracteristica 0 algebraicamente
cerrado es lo mismo (més precisamente nos da una equivalencia de categorias), uno
puede probar tales afirmaciones para los cuerpos mencionados recién. Por ejemplo es
trivial ver que

1
E[m] = (C/A)[m] = —A/A = (Z/mZ)?.
m
También tenemos el siguiente resultado, que juega un rol crucial en este trabajo.
Teorema 1.7. Sea E una curva eliptica sobre C entonces

1. End(E) =17, ¢
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2. End(E) = O donde O es un orden en un cuerpo cuadrdtico imaginario.

Observacion 1.8. Un orden en un cuerpo cuadratico K es un subanillo de O (el
anillo de enteros de K), de rango 2 como Z- médulo, Si O = Z[a] existe un entero
¢, llamado conductor del orden tal que O = Zlca].

Demostracion. Sea E = C/A con A = (w;,ws). Sabemos por la observacién 8 que
End(E) ={a:aA C A}.

Entonces, podemos cambiar a A por un reticulo homotético de la forma Z+ 77 donde
T = wy /we. Como A es un reticulo 7 ¢ R pues sino esto nos diria que wy y wy son R-
linealmente dependientes, lo que es absurdo. Sea a tal que

{a(Z+72)CZ+ 71} .
Eso quiere decir que existen enteros a, b, ¢, d tales que
a=a+br,ar = c+dr.
Eliminando 7 obtenemos la siguiente ecuacion
o — (a+d)a+ ad — be = 0.

Luego End(FE) es una extension entera de Z. Si suponemos que es més grande que
Z entonces tomando un « ¢ Z tenemos que b # 0 ; eliminando ahora a a tenemos

br? + (a —d)T —c =0,

por lo tanto Q(7) es un cuerpo cuadratico imaginario y como End(FE) estd metido
ahi y es entero sobre Z se sigue que

End(E) = O,

como queriamos probar.

]

Cuando ocurre el caso 2 se dice que la curva eliptica tiene multiplicacion compleja
por O.
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1.4. El teorema de Mordellll-Weil

Sea F// K una curva eliptica sobre un cuerpo de nimeros K (es decir una extension
finita de Q). Entonces se tiene el siguiente teorema.

Teorema 1.9. (Mordellll-Weil): E(K) es finitamente generado, i.e.
E(K) 27" ® E(K)ors-
El nimero v > 0 se llama el rango de la curva eliptica sobre K y E(K)yrs €S €l
subgrupo finito de torsion.
La demostracion tiene dos ingredientes principales:

» La existencia de una altura h : F(K) — R satisfaciendo

1. Para todo Q € E(K) existe una constante C que depende sélo de @ y
una constante C' que depende sélo de la la curva tal que

h(P + Q) < 2h(P) + Cy,
y
h(mP) > m*h(P) + C,
para todo P € E(K)

2. Para todo B > 0
{P: h(P) < B},

es finito.

» (Teorema débil de Mordellll-Weil): Para todo n entero, el grupo E(K)/nE(K)
es finito.

Estas dos piezas se conectan con el siguiente lema para dar la demostracion del
teorema de Mordellll-Weil.

Lema 1.10. (Descenso de Fermat) Sea G un grupo abeliano equipado con una altura
que cumple las propiedades mencionadas arriba. Asumamos que para algin n > 1 el
grupo G/nG es finito. Entonces G es finitamente generado.

La demostracion del teorema débil empieza con la observaciéon que es trivialmente
cierto para cualquier clausura algebraica de K, ya que en ese caso multiplicar por n
es suryectivo. Tenemos la siguiente sucesién exacta

0 — E[n)(K) — E(K) - BE(K) — 0.
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Tenemos que también es una sucesion exacta de modulos equipada con la accién
continua de G = Gal(K/K). Tomando cohomologia se tiene la siguiente sucesion
exacta larga de cohomologia:

0 — E[n)(K) — E(K) - E(K) - H'(K, E[n]) — HY(K, E) - H'(K, E),
de la cual se puede extraer la llamada sucecion exacta de descenso
0 — BE(K)/nE(K) -2 H'(K, E[n]) — HY(K, E)[n] — 0.

Para cada lugar (primo) ya sea finito o infinito v podemos pensar a K metido en la
completaciéon K, y ese embbeding se extiende a uno de K en K,. Luego se induce
una inclusién G, C Gk v la sucesion exacta de descenso tiene su version local como
se puede apreciar en el siguiente diagrama conmutativo:

0—— E(K)/nE(K)——~ H'(K, E[n]) — H'(K, E)[n] —=0

| | |

0— E(K,)/nE(K,) ~*— H'(K,, Eln]) — H'(K,, E)[n] —>0

en donde del diagrama de arriba al de abajo tenemos las flechas verticales que co-
rresponden a las restricciones. Del diagrama nos surge una flecha

HY(K, E[n]) 2 H(K,, E)[n].

Como

(E(K)/nE(K)) C ker(d,),

para todo v, tenemos que E(K)/nFE(K) esta contenido en el grupo de Selmer, que
se define como sigue:

» El n-grupo de Selmer de E/K, denotado Sel,(E/K), es el conjunto de clases
c € H' (K, E[n]) que satisfacen d,(c) = 0 para todo v primo de K.

Lo que queremos probar es consecuencia del siguiente resultado general
Proposicién 1.11. El grupo Sel,(E/K) es finito.

Una pregunta a la que apuntamos responder es la siguiente: Dada una curva
eliptica sobre un cuerpo de nimeros K, ;existe un algoritmo para
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1. determinar si E(K) es infinito?
2. hallar el rango de la curva eliptica?

3. encontrar un sistema de generadores de E(K)/E(K )iors?
Para consultar las versiones mas accesibles de este teorema se puede consultar
[10] (cap. III) 6 [12] (cap. IV). También se puede ver [5] (1.2) y[17] (cap. VIII).

Observacion 1.12. Si bien el problema de calcular el rango y hallar generadores es
dificil, el problema de encontrar todos los puntos de torsién es sencillo. Se tiene el
siguiente resultado, cuya demostracién se puede consultar en [10] (IL.5).

Teorema 1.13 (Nagell-Lutz). Sea E una curva eliptica con coeficientes enteros de la
forma

y? = f(x) = 2° + ax® + bz + ¢,
y sea D el discriminante del polinomio f(x). Sea P = (w,z) un punto de torsidn.
Entonces w,z € Z y z = 0 (en cuyo caso tiene orden 2) ¢ z* | D. Por lo tanto hay
un algoritmo eficiente para calcular la torsion.

1.5. Ejemplos

Los siguientes 3 ejemplos nos serviran a lo largo de la tesis, para ilustrar los
distintos conceptos que vayamos aplicando. Los datos de las curvas elipticas son
extraidos de las tablas de Cremona, que se pueden consultar online en [3].

A Curva 11al.
E:y*+y=2a*—2*>—10x — 20,

Discriminante = A = —115,

—122023936

J-invariante = j = =555,

Rango =r =0,
Cantidad de puntos de torsion = ¢ = 5.

B Curva 37al.
E:y*+y=2a°—u,
Discriminante = A = 37,

110592

j-invariante = j = 5=,

Rango=r=1,
Cantidad de puntos de torsiéon =t = 1.
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C Curva 225al.
E:y’+y=2a>—1,
Discriminante = A = —3352,
j-invariante = 7 = 0,
Rango =r=1,
Cantidad de puntos de torsion =t = 1.
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2. L- series

2.1. Definiciones

Supongamos que K = Q. Se sabe que para cada curva eliptica existe una ecuacién
de Weierstrass minimal, que cumple que todos sus coeficientes son enteros y ademas
A es lo méas chico posible entre todos las posibles ecuaciones con coeficientes enteros
para esa curva. (Por ejemplo ver [12] (VIII.1) y [17] (VII.1) ). Si p es un primo que no
divide al discriminante, entonces la clase de isomorfismo de la curva reducida médulo
p no depende de la eleccién de la ecuaciéon minimal y uno puede definir NV, como la
cantidad de puntos de la curva E(F,). En este caso se dice que la curva tiene buena
reduccion en p. Un resultado muy importante de Hasse muestra que uno tiene un
cierto control de estos niimeros. Mas precisamente, si escribimos

N,=p+1—a,,

entonces
|ap| < 2+/p.
Este resultado se puede consultar en [12] (X.3) 6 [17] (V.1).
Vamos a extender la defincién de los a,, para los primos de mala reduccién médulo
p. (que en este caso también se obtienen contando puntos médulo p, ver por ejemplo
12] (I11.5) ).
Tenemos 3 tipos:

1. Reduccién aditiva: Esto ocurre si la curva reducida tiene una cispide. Ponemos
a, = 0.

2. Reduccion multiplicativa, caso split: La curva reducida tiene un nodo, y las
pendientes de las rectas tangentes estan definidas sobre F,,. Ponemos a, = 1.

3. Reduccion multiplicativa, caso non-split: La curva reducida tiene un nodo pero
las tangentes no estan definidas sobre F, pero si lo estan sobre una extensién
cuadratica de IF,,. Ponemos a, = —1.

Otro nimero importante es el conductor N de la curva eliptica. Cumple que
= ord,(N) =0 siy sélo si p tiene buena reduccion.
» ord,(N) =1 siy sélo si p tiene reduccién multiplicativa .

» ord,(N) = 2 si p tiene reduccién aditiva y p > 3.
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= Si p = 2,3 y hay reduccién aditiva hay un algoritmo de Tate que permite
calcular este nimero.

Estamos en condiciones de definir la funcién L asociada a la curva eliptica en
forma de producto de Euler de la siguiente forma:

L(E,s) = H(l —ap S +p' ) H(l —a,p )t = Z a,n”°.

ptN p|N

Esto nos define los a,, cuando n no es primo.

2.2. La conjetura de Birch y Swinnerton-Dyer

La conjetura de Birch y Swinnerton-Dyer (BSD) es una de las conjeturas abiertas
mas importantes en la teoria de nimeros. Vamos a motivarla de la siguiente forma:
Si el rango de la curva eliptica fuera grande, esto deberia verse reflejado en el hecho
que los numeros N, sean mas grandes que p + 1 en promedio. En cambio si los
nimeros fueran mas chicos que p + 1 uno esperaria que el rango sea pequeno. Mas
precisamente se tiene la siguiente conjetura.

Conjetura 2.1. (BSD-versién 1): Existe una constante Cg que depende sélo de E
tal que
N,
H —£ ~ CE(lOgX>T7
p<X

donde =~ significa que el cociente entre el miembro izquierdo y el derecho tiende a 1
cuando X — oo y 7 es el rango de la curva E(Q).

Esto es un ejemplo del principio local-global en teoria de niimeros, ya que a partir
de informacién local (contar puntos médulo p) estamos obteniendo un resultado
global como lo es el rango de la curva eliptica.

Tratemos de conectar esta conjetura con el objeto que definimos anteriormente,
la L-serie asociada a la curva eliptica. Evaluando formalmente en s = 1 nos queda

que
p

L(E,1 :”—

(1) N,

donde N, es el cardinal de los puntos no singulares de E(F,). De todos modos
no podemos hacer esta cuenta pues el producto de Euler en principio converge en
Re(s) > % Para poder evaluar en s = 1 habria que tratar de extender analiticamente
la funcién.
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Conjetura 2.2. ( Birch y Swinnerton-Dyer (BSD)) La funcién L(FE, s) se extiende
a una funcion entera en todo C y se tiene que el rango de la curva eliptica es igual al
orden de anulacién de L(E,s) en s = 1. En particular la curva tiene finitos puntos
racionales si y s6lo si L(F,1) # 0.

En vista de responder esta conjetura nombramos estos dos resultados que son
cruciales en intentar entender y demostrar la conjetura BSD. El primer resultado
importante es debido a Taylor-Wiles, en su famoso trabajo que termina de resolver
el ultimo teorema de Fermat.

Teorema 2.3. (Taylor-Wiles): L(E,s) se extiende de forma entera a todo C y sa-
tisface la ecuacion funcional

A(E,s) =signo(E)A(E,2 — s),
donde signo(E) = +1, se llama el signo de E,

A(E,s) = (2r)~*T'(s)N*/2L(E, s),

F(s):/ e ‘57 1dt.
0

El siguiente resultado, clave en éste trabajo, trata de responder la conjetura BDS,
al menos para un caso particular. Mas sobre esté teorema sera tratado en este trabajo
mas adelante.

Teorema 2.4. (Gross,Zagier,Kolyvagin): Sea E una curva eliptica sobre Q. Si
ords—1L(E,s) <1,

entonces el rango de E coincide con ords—1L(F,s) y hay un método eficiente para
calcular los puntos racionales de la curva.

2.3. Twists cuadraticos

Sea F : y* = 23 + az? + bz + ¢ = f(x) una curva eliptica sobre Q. Sea D un
entero, definimos el twist £ como la curva eliptica dada por la ecuacién

Dy? = 23 4+ ax® + bx + ¢,
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que puede ser llevada mediante un cambio de coordenadas a la ecuacion en forma de
Weierstrass
y* = 2 + Dax® + D*bx + D?c.

Bésicamente el twist cuadratico es una curva que es isomorfa a la original sobre
el cuerpo Q(v/D). Se puede dar una férmula para el twist cuadratico de la ecuacién
de Weierstass mas general o proceder como el método que se mostrara mas adelante
en la seccion de ejemplos.

Sea ahora K un cuerpo cuadratico de discriminante D. Definimos el twist de la
curva eliptica E por K como el twist por el discriminante D del cuerpo K (un tal D
se llama discriminante fundamental). Més precisamente tenemos que si K = Q[/d]
(con d libre de cuadrados) entonces los discriminantes fundamentales son:

m D=dsid=1méd4
» D=4dsid=2,3mdod4

Sea K un cuerpo cuadratico de discriminante D. Sea v un ideal y sea |v| su norma.

Si E/Q es una curva eliptica de conductor N, podemos pensarla que estd definida
sobre K y definir

L(E/K,s) H L,(E/K, s)
donde los factores locales vienen dados por

L,(E/K,s) = (1—apv| "+ |v|1 28)

sivtNy
Lo(E/K,s) = (1—aylv[~*)""

siv]|N.
Esta férmula es la analoga a la que definimos antes para una curva eliptica sobre

Q.

Proposicion 2.5. Si K es un cuerpo cuadrdtico tenemos la siguiente formula:
L(E/K,s) = L(E,s)L(E",s)

donde EP es el twist cuadrdtico de E sobre K.
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Demostracion. Tenemos las siguientes ecuaciones de las curvas, como en la introduc-
cién previa a esta proposicion:

E:y* =2+ ax’ +br +c= f(),

EP : Dy* = 2% + a2 + bz + .

Llamemos a, a los nimeros que nos sirven para formas las L -series como antes,
y llamemos b, a los correspondientes niimeros para E”.

Sea p ¥ DN, entonces ambas curvas tienen buena reduccién en p, por lo tanto
para calcular a, y b, vamos a contar la cantidad de soluciones de las curvas médulo
p, digamos que E tiene N, puntos y que su twist cuadratico tiene M, puntos. Veamos
dos casos

= p se parte como producto de dos primos en K, ie (%) =1 (D es un cuadrado
modulo p):

En ese caso fijado un valor de z existe una solucién médulo p en un caso si
y solo si existe en el otro, ya que lo que necesitamos en ambos casos es que
f(z) sea un cuadrado o que sea D por un cuadrado; al ser D un cuadrado
no nulo médulo p éstas nociones son equivalentes. Luego tenemos a, = b,.
Pero si nos fijamos el primo p se parte como producto de dos primos y por la
definicién dada arriba cada uno de estos primos contribuye a L-serie asociada
a la curva mirada con coeficientes en K con un factor igual al correspondiente
que contribuyen el factor local de E 6 EP en p. (observar que como se parte

Ip| = p).

= p es inerte (o sea sigue siendo primo) en K, ie <%> = —1 (D no es un cuadrado
modulo p):

En ese caso observemos que cada ecuacion tiene por un lado un punto en el
infinito. Por otro lado, si fijo un valor xy entonces tenemos tres posibilidades

1. f(xzo) = 0 méd p. Entonces cada ecuacién tiene un tnico valor de y que
funciona. En conjunto forman dos soluciones.

2. f(zo) # 0 méd p. En ese caso exactamente una de las dos ecuaciones tiene
dos soluciones médulo p (si f(z) es un cuadrado serd la primera, en caso
contrario serd la segunda).
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Entonces como x puede tomar p valores tenemos que

Ny+M,=1+1+p+p.
Recordando que
ap=p+1—N,,b,=p+1— DM,
concluimos que

a, + b, = 0.

Cuando multiplicamos los inversos de los correspondientes factores locales ob-
tenemos (usando la relacién expuesta arriba)

(1 - app_s + pl_QS)(l - bpp_s + pl_QS) =1+ 2101_28 + p2_48 + (ap)(bp)p_%-

Ahora recordando la definicién de la L-serie asociada a la curva mirada sobre
K, y como en este caso |p| = p?, tenemos que el inverso del factor local es

—2s 2—4s
I —apep™ +p .
Por ultimo recordando que podemos calcular a,: en términos de a, como
a2 = ap2 — 2p,
se ve que las dos expresiones que queremos resultan iguales.

Ahora si p | ND se puede chequear, con un poco mas de cuidado, que también
vale la igualdad que queremos. O
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2.4.
A

Ejemplos

Como el discriminante es solamente divisible por el primo 11, el resto de los
primos no contribuyen al conductor. Veamos que tipo de reduccion tiene la
curva médulo 11 para poder calcular el conductor. Mirando la ecuaciéon vemos
que el punto (3,5) es el tinico punto singular de la curva reducida. Haciendo el
desarrollo de Taylor para la parte de y alrededor de 5 y alrededor de 3 para la
parte de x obtenemos la ecuacién

(y—5)"=(z—3)"+8(z—3)",

que corresponde claramente a un nodo. Por lo tanto la curva tiene reducciéon
multiplicativa, y como 8 no es un cuadrado médulo 11 la reduccién es del tipo
non-split (luego a;; = —1). Por lo visto recién concluimos que el conductor de
la curva es 11.

Ahora calculemos, por ejemplo el as. Para ello contamos la cantidad de puntos
de la curva médulo 5 (ya que la curva tiene reduccién buena). Vemos que
tenemos 8 soluciones, mas el punto del infinito, por lo tanto N5 = 9 y a5 =
54 1—9 = —3. Observar que 3 = |as| < 24/5 verificando la cota de Hasse en
este ejemplo.

Para terminar el ejemplo calculemos el twist cuadratico de la curva por el
cuerpo cuadrético Q(v/—7) cuyo discriminante es —7. El problema es que esta
curva no esta en la forma que supusimos para definir el twist cuadratico en
la seccién 2,3. Lo que vamos a hacer es mediante un cambio de coordenadas
llevarla a la forma deseada y luego twistearla. Ahora nos aparece el problema
de que la ecuacién no es minimal, mas precisamente no es minimal en el primo
2. Pero si desahcemos el cambio de variables que hicimos si obtenemos una
ecuacién minimal. Veamos como hacer esto para este caso:

Multiplicamos la ecuacién por 2° y realizamos el cambio de coordenadas y' =
8y + 4, ' = 4x y obtenemos la ecuacién

y? =" — 42" — 1602" — 1264.

Ahora twisteamos por —7 y llevandola a un ecuacion de Weierstrass obtenemos
la ecuacion

y//2 _ x//3 N 4(—7).1‘”2 . 160(—72)$H + —1264(—73).
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Poniendo ahora (deshaciendo el cambio de variables del principio)

y dividiendo todo por 2° btenemos la ecuacién

v +y =2 + Ta* — 490z + 6744.

Esta ecuacién es un modelo minimal de la curva, mediante el cambio de varia-
bles  — x—2 obtenemos otra ecuaciéon en modelo minimal que corresponde a
la curva 539d2 de acuerdo a las tablas de Cremona. Esta curva tiene conductor
539 = 7211 y rango 1.

Como en el caso anterior, es facil ver que la curva tiene conductor 37. Podemos
calcular el twist de la curva por —3 y obtenemos, del mismo modo que antes,
la curva 33d1 de rango 0.

El discriminante de esta curva es divisible sélo por los primos 3 y 5. En el
primo 5 uno chequea que el punto singular médulo 5 es el (0,2) y la ecuacién
se puede reescribir moédulo 5 como

(y - 2)2 - IS?

Por lo que claramente hay una cuspide. Eso implica que la potencia de 5 que
aparece en el conductor es 2 y que a5 = 0. Por ltimo uno puede chequear que
3 tiene reduccion aditiva también y para calcular cuanto aporta al conductor
hay que usar el algoritmo de Tate. El conductor es 225 = 3252

Si twisteamos a la curva por —11 obtenemos la curva 27225b1, de rango 0.
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3. Formas Modulares

3.1. Generalidades

Sea H el semiplano complejo superior (o semiplano de Poincaré). El grupo SLy(R)

actua en él de la forma
a b _at+ b
cd)" T o+vd

Sea I' un subgrupo de SLy(Z) de indice finito. Decimos que una funcién

f:H—C
holomorfa es una forma modular de peso k para I' si cumple:

1. f(y7) = (et +d)*f(7) , para toda v € T.

2. Para toda 7 € SLy(Z) existe un nimero natural h tal que la funcién

Fly (7)) = (em + d)™" fy7)

admite una expansion de Fourier de la forma

o0

Z azqn/h

n=0

con q = 2™,

El entero h se llama el ancho de la ctispide v oo = %1 y la expresion > 7 alqh
sélo depende de vy~ too = _Td salvo multiplicar a ¢'/* por una raiz h-ésima de la unidad
y se llama la expansion de Fourier de f en la cuspide %d
Una forma modular que satisface que a) = 0 para todo v se llama una forma
cuspidal, y al espacio vectorial de todas las formas cuspidales de peso k para I' lo
denotamos Si(I"). Este espacio resulta de dimensién finita como C- espacio vectorial.
En nuestro caso particular estamos interesados en el caso k =2 y

I = Ty(N) ;:{(Z Z) ESLQ(Z):CEOméd(N)}.

Esto resulta un 6rden en el algebra My(R) y se llama el orden de Eichler o
subgrupo de congruencia de Hecke de nivel N y al espacio de las formas cuspidales
para tal grupo lo dentoamos Sy(N). El cociente H/I'g(NN) hereda una estructura
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de superficie de Riemann. Si N > 3 resulta 1util compactificarlo agregandole finitas
cuspides, que se corresponden con las T'o(NV)-6rbitas de P1(Q). Uno le puede dar una
estrctura topoldgica y compleja. Para referencias consultar [6] (cap. 2).

Sea Xo(NN) la curva algebraica proyectiva sobre C que corresponde a la superficie
de Riemann. La asignacién que a cada f € Sy(INV) le asigna

wyp = 2mif(7)dr,

identifica a S5(IV) con el espacio de formas diferenciales en Xo(N)(C). Por el teorema
de Riemann-Roch este espacio resulta de dimensién finita de dimensién igual al
género de Xo(V), y por lo tanto se pueden hallar férmulas explicitas para calcular su

dimensién. Esto se puede ver por ejemplo en [6] (II1.5) o de una forma més elemental
en [12] (IX.5) y [16] (VIL.3).

3.2. Operadores de Hecke

El espacio vectorial Sa(N) tiene un producto interno Hermitiano no degenerado,
conocido como el producto de Petersson dado por

i fo) = / £1(7) fo(7)dady.
H/To(N)

Posee ademds una accién de ciertos operadores, llamados operadores de Hecke T,
indexados en los primos p, definidos de la siguiente forma:

pf(pr) sipiN,
)+{O sip|N.

Tpf =T,(f) = lpiif
p
i=0

Estos operadores actian linealmente en Sy(N). Su accién en términos de las g-
expansiones de Fourier es la siguiente:

T4+1
p

T,(f) = Z ang"’” +

pln

Py ang™ sipfN,
0 sip|N.

Mirando la accién en las expansiones de Fourier es inmediato verificar que los ope-
radores de Hecke conmutan unos con otros.

Extendemos la definicion de los operadores de Hecke a todos los enteros positivos
igualando los coeficientes en n™° en la siguiente igualdad formal de las L-series de
Dirichlet

S T = -Tp+p ) [ - Tp) "
n=1

pIN p|NV
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Para otras definiciones de los operadores de Hecke se pueden consultar [15] (I1.8)

L [6] (V.2 v V.3), [12] (IX. 6) v [16](VIL 5).

Sea T la subélgebra conmutativa de Endc(S2(N)) generada sobre Z por los ope-
radores de Hecke T}, y sea T° la generada por los operadores T}, con (n : N) = 1.
Tenemos el siguiente resultado

Teorema 3.1. Las dlgebras de Hecke T y T° son finitamente generadas como Z
mddulos y el rango de T es g = dimc(S2(N)) = género Xo(N).

Teorema 3.2. Sy(N) tiene una base de formas modulares con coeficientes enteros.

Para estos resultados se puede consultar [6] (VL.5).

3.3. Formas nuevas y teoria de Atkin-Lehner

Lema 3.3. Si T estd en T° entonces es autoadjunta respecto al producto de Peters-
son.

Por el lema anterior mas el teorema de descomposicion para operadores autoad-
juntos tenemos que
Sy(N) = @,S,
donde la suma se toma sobre todos los morfismos de C-algebras A : T — C, y SY
es el autoespacio correspondiente en Sy(N). (o sea T,,f = N(T,,) f). Los autoespacios
no son necesariamente 1-dimensionales. En cambio si ahora miramos A : T — Cy
denotamos S al correspondiente autoespacio se tiene lo siguiente:

Lema 3.4. (Multiplicidad uno) El autoespacio Sy tiene dimension 1.

Demostracion. Esto es por que los coeficientes de Fourier quedan determinados por

a1 (f) por la férmula a,(f) = a1(f)ANT,).
[

El problema de mirar todo el algebra de Hecke es que, a pesar de que los auto-
espacios son de dimensién 1, no actia de forma semisimple en Sy(N). Sin embargo
tiene un subespacio distinguido, que llamaremos el espacio de las formas nuevas que
se descompone en suma directa de autoespacios de dimensién 1 para las acciones de
tanto T como T°. Una forma modular en Sy(NN) se dice vieja si es una combinacién
lineal de funciones de la forma f(d'z) con f € So(N/d) y d' | d con d > 1. Al subes-
pacio de las formas viejas lo denotamos S$'¢(N) y el espacio de formas nuevas, o el
subespacio nuevo S5°*(N) sera el complemento ortogonal del espacio de las formas
viejas respecto del producto de Petersson.
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Teorema 3.5. (Atkin-Lehner) Sea f € S3“(N) una autofuncion simultdnea para
todo el dlgebra T°. Sea S un conjunto finito de primos y g € So(N) una autofuncién
para todos los T, con p ¢ S.Si a,(f) = a,(g) para todo p ¢ S entonces g = \f para
algin A € C .

Para la demostracion ver [21].

Corolario 3.6. El dlgebra T actia de forma semisimple en S (N) con autoespacios
de dimension 1. Entonces tenemos una descomposicion ortogonal de la forma

Sy(N) = SJU(N) @) Cfy,

donde la suma se toma sobre todos los morfismos de C- dlgebras X : T — C corres-
pondientes a los autovectores en Sy (N) y fr(7) = >S.00  M(T;,)e*™ .

n=1

Un autovector simultdaneo se llama una autofuncién normalizada o una forma
nueva de nivel N. Notar que cumple que a1(f) =1 .

3.4. L-series asociadas a formas modulares

A una forma nueva de nivel N le podemos asignar una L-serie de la forma
L(f,s)= z:ann_S
n=1

donde a,, := a,(f) = A(T,,). Este funcién L tiene las siguientes propiedades:

1. Producto de Euler:

L(f,s) = H(l —app°+ p) H(l - appi‘S)il-

ptN p|N

2. Representacion Integral:
A(f,5) = (2m) T (s)N*2L(f, 5) = N*/2 / flityetat,
0

donde -
['(s) = / e ‘57 tdt.
0
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3. Ecuacién Funcional: En S7°“(N) hay una involucién (llamada involucién de
Atkin-Lehner) wy definida por

-1 -1
w T) = — .
W00 = ! ()
Esta involucién conmuta con los operadores de Hecke en T® y por lo tanto
preserva los autoespacios Sy. Luego para cada forma nueva de nivel N se tiene

que wy(f) = €f con e =1 6 —1. Se puede ver que la ecuacién funcional que
satisface L(f,s) es

A(f,s) = —Mwn(f),2—35) = —eA(f,2—s).

3.5. Espacios de modulii y teoria de Eichler-Shimura

Sea Yy(N) = H/T'o(N) la curva modular abierta sobre Q. Vamos a darle una
interpretaciéon de espacio de modulii, mas precisamente queremos que los puntos de
la curva clasifiquen clases de isomorfismos de objetos geométricos.

Mas precisamente Yy (V) clasifica pares de curvas elipticas (F, E') (mddulo iso-
morfismo) con una isogenia ciclica E — E’ de grado N. Esto es lo mismo que un par
(E,C) donde FE es una curva eliptica y C' es un subgrupo ciclico de orden N en E
(que se corresponde con el ntcleo de la isogenia anterior).

Para ver este isomorfismo, a cada punto y = (F, E’) la asociamos un par de toros
(o sea C médulo un reticulo) relacionados por una isogenia de grado N

C/M — C/M'".

Cambiando a M por una homotecia podemos suponer que M C M’ y que la isogenia
estd inducida por la identidad en los revestimientos de los toros.

Como M'/M es ciclico de orden N tenemos que hay una base orientada {w;, wo}
de M tal que (wi,w2/N) = M"y 7 =2 € H. Luego la I'o(IV) drbita del punto
y = (C/M,C/M’) esté bien definida.

Para ver que esto es suryectivo, a un punto 7 € H/I'g(N) le asociamos los reticulos
M = (1,7) y M'" = (1,7/N). Las curvas elipticas E = C/M y E' = C/M’ estén
relacionadas por la isogenia de grado N obvia.

También podemos considerar la curva modular Xy(N), que es la compactificacion
de la curva modular abierta, que ahora clasifica pares de curvas elipticas generalizadas
N-iségenas. Los puntos complejos de la curva modular se pueden identificar con el
cociente H*/To(N), donde H* = H UP(Q). Los finitos puntos de P'(Q)/T(N) se
llaman las cuspides de la curva modular.
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Este punto de vista nos permitird entender varias construcciones a lo largo de la
tesis.

Otro elemento importante es la ecuacién modular, que es un modelo (singular)
de la curva Xo(N) sobre Q. Para esto veamos que podemos definir la funcién

1 H—C,
tal que
() = J(C/(1,7)).
Observacion 3.7. Notar que esto nos permite definir para cualquier reticulo A C C
la funcién j(A) =: j(C/A). Esto serd usado més adelante para el caso donde A sea

un ideal en un cuerpo cuadratico imaginario, que es facil ver que en particular es un
reticulo.

Las funciones j(7) y j(IN7) estan relacionadas por una ecuacién fy(x,y) = 0
con coeficientes racionales que nos da un modelo de la curva. Para los detalles de

construccién y las propiedad mas importantes de la ecuacién modular una excelente
referencia es [2] (II1.11.C).

Teorema 3.8 (Eichler- Shimura). Sea f una autofuncion normalizada con coeficien-
tes de Fourier enteros. Entonces existe una curva eliptica Ey sobre Q tal que

L(f,s) = L(Ey,s).

Demostracion. (idea):
En el modelo dado por la ecuaciéon modular si 7 € H/To(N) corresponde a un
punto en Xo(N)(F') con F un subcuerpo de C entonces

(4(7),i(NT)) € F*.

Los operadores de Hecke que actian en Sy(N) surgen geométricamente de ciertas
correspondencias en Xy(V) X Xo(N). El problema es que un operador de Hecke le
asocia a un punto en Xy(/N) varios puntos de la misma curva, con lo cual no es una
funcién. A uno le gustaria “sumar” estos puntos, pero la curva Xy (V) no posee ley de
grupo y es por esto que aparece la nocién de correspondencia. Estas correspondencias
(denotadas por abuso de notacién como 7)) estdn dadas por los puntos en Xo(N) X
Xo (V) asociados a pares relacionados por una p-isogenia ciclica (una p isogenia ciclica
que es un isomorfismo entre las estructuras de nivel N). Sea Jy(N) la Jacobiana de
Xo(N) que es una variedad abeliana de dimensién g = dimc(S2(V)) = géneroXo(N)
definida sobre Q. Las correspondencias dan lugar a endomorfismos de la Jacobiana
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definidos sobre Q (porque Jo(/V) si tiene una estructura de grupo abeliano). Sea I
el nicleo del morfismo A : T — Z asociado a f. Luego el cociente Jo(N)/IfJo(N)
es la curva eliptica deseada Ej.

La clave para mostrar la igualdad de las L-series es relacionar el coeficiente a,(E)
que se obtiene contando puntos de la curva en F, (o mejor ain como la traza del
Frobenius en p actuando en los puntos de torsién de orden potencia de p) con el
autovalor del operador de Hecke T},. Esto se hace usando las relaciones de congruencia
de Eichler-Shimura en caracteristica p. Por ejemplo si p 1 N entonces la curva Xo(N)
tiene un modelo entero con buena reducciéon médulo p y uno tiene

T,= F + F'

en Xo(N)g,, donde F es el grifico del frobenius y F* su transpuesta. Para més
detalles de esta construccién se puede consultar [6] (VIIL.7 y VIIL8) y [12] (X.11).
Resultados de Deligne y Carayol ([1]) muestran que el conductor de la curva
eliptica ¢ coincide con el nivel N de la forma modular nueva f.
O

La curva Xy(N) se puede embeber en su jacobiana mandando un punto P a la
clase del divisor de grado cero (P)—(ico). Sea @ : Xo(N) — Ey la parametrizacion
modular que se obtiene componiendo el embedding de antes con la proyeccién que
nos da Eichler-Shimura. El pullback @} (w) del diferencial correspondiente a E; es
un multiplo distinto de cero de wy i.e.

Oy (w) = 2mif(r)dr. (1)

La constante ¢ se llama constante de Manin y (conjeturalmente) se espera que sea
siempre 1.

Para propdsitos computacionales la siguiente descripcién de la parametrizacion
modular es bastante 1til pues nos da un algoritmo para calcular explicitamente la
parametrizacion modular.

Proposicion 3.9. Sea Ag, el reticulo asociado a Ey y sea c la constante de Ma-
nin de Ey. Sea ®, : C/Ag, — E;(C). Entonces ®n(7) = Py(2;) donde z, =
c [l 2mif(z)dz =c)y 07| %2q" con g = e*™.

n=1 n
Demostracion. Por la defincién del mapa de Abel-Jacobi y la proyeccién Jo(N) —
Ey se tiene que la imagen del divisor (1) — (ioco) es

([0 (e

por la férmula de cambio de variables y por (1) obtenemos el resultado. O

32



3.6. Teorema de Wiles

Teorema 3.10. (Wiles et al) Sea E una curva eliptica sobre Q de conductor N.
Luego existe una forma nueva f € So(N) tal que L(f,s) = L(E,s) y ademds E es
iségena a la curva Ey obtenida mediante f por la construccion de Fichler-Shimura

Nota 3.11. Wiles de manera conjunta con Taylor demostraron este teorema para
curvas semiestables (es decir con buena reduccién o reduccién multiplicativa en to-
dos los primos). Luego Breuil-Conrad-Diamond-Taylor generalizaron los resultados
a todas las curvas elipticas.

Corolario 3.12. La funcién L(E, s) tiene una continuacion analitica a todo el plano
complejo y una representacion integral de la forma

A(f.5) = (2m)“T($)L(f. ) = / " patyet,

para alguna forma modular en So(N) con lo cual satisface una ecuacion funcional
como en (teorema 2.3).

Recordar que —e es el signo de la ecuacion funcional asociada a una forma nueva.

Si una curva eliptica tiene asociada una tal f definimos signo(F) = —e. Observar
que L(FE, s) se anula con orden par (respectivamente impar) en s = 1 si signo(F) = 1
(respectivamente signo(E) = —1).

Por 1ltimo como corolario también obtuvimos la uniformizacién compleja
Oy H /To(N) — E(C),

que se obtiene componiendo la aplicacién que ya teniamos con la isogenia racional
entre £y y E. Esta uniformizacién va a jugar un papel crucial en la seccién siguiente
ya que nos va a permitir calcular computacionalmente cierto puntos algebraicos en
curvas elipticas.
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4. Puntos de Heegner

4.1. Multiplicacién Compleja

Recordemos que podemos pensar a una curva eliptica sobre C de la forma C/A,
y con esta identificacion el anillo de endomorfismos de la curva eliptica se asocia
con {a € C/aA C A}. Este anillo es o bien Z o un orden O en un cuerpo cuadratico
imaginario. Cuando el anillo de endomorfismos es més grande que los enteros, es decir
es un orden O en un cuerpo cuadratico imaginario, decimos que la curva eliptica tiene
multiplicacién compleja por O. Definamos el grupo de clases (o grupo de Picard) del
orden O como el cociente entre los O-ideales fraccionales inversibles (o propios)
moédulo los O-ideales fraccionales inversibles principales. Lo notamos Pic(O).

Es facil ver que dos reticulos (en C) son homotéticos si y sélo si tienen el mismo
j- invariante, luego se obtiene de manera muy sencilla una biyeccién entre Pic(O) y
clases de homotecias de reticulos con anillo de multiplicacién O y esto es lo mismo
que curvas elipticas con multiplicaciéon compleja por O moédulo isomorfismos. A priori
estas curvas elipticas estan definidas sobre los complejos, pero en realidad estan
definidas sobre una extensién finita de Q. Mas atn,

Teorema 4.1 (Multiplicacién Compleja). Sea O un orden en un cuerpo cuadrdtico
imaginario K y sea a un O-ideal propio. Entonces j(a) es un entero algebraico y
K(j(a)) es el cuerpo de clases de O. Ademds para todo s ideal propio de O cuyo
simbolo de Artin es o tenemos que o(j(a)) = j((s~ 1 NO)a).

Para explicar un poco este teorema vamos a recordar un par de conceptos. Las
definiciones que siguen y la demostracién de la primer parte del teorema se puede
consultar en [2](XI) . Otra referencia, en donde tambien se demuestra la segunda
parte del teorema es [11] (IV). Esta demostracién es mas bien analitica. Una demos-
tracién mds algebraica se puede consultar en [18](II).

Dado un cuerpo de niimeros K, un médulo en K es un producto formal

m=]]»",
p
donde vale que

= n, > 0y alo sumo finitos son distintos de cero.

» n, = 0 sip es un primo infinito complejo (i.e una inmersiéon de K que no es
real).
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= n, < 1sipesun primo infinito real (i.e una inmersién real de K).

El médulo m se puede escribir de la forma mgm.,, donde mq es un O ideal y m,
es el producto de distintos primos del infinito reales. En nuestro caso de interés, que es
cuando K es un cuerpo cuadratico imaginario, no aparece la parte del infinito. Dado
un moédulo m podemos considerar I (m) como el grupo de Ok ideales fraccionarios de
norma coprima con m (i.e de norma coprima con mg). Ahora consideremos P 1(m)
como el subgrupo de Ix(m) generado por los ideales principales de la forma aOk
con a € Ok tal que

o = 1 mbéd myg,
» o(a) > 0 para todo primo infinito real o que divida a me,.

Vale que este subgrupo tiene indice finito en Ix(m).

Decimos que un subgrupo H de Ix(m) es un subgrupo de congruencia para el
moédulo m si cumple que Pk 1(m) C H C Ix(m). En ese caso decimos que Ix(m)/H
es un grupo de clases generalizado para m.

Por ejemplo si O es un orden en un cuerpo cuadratico imaginario de conductor
¢, entonces tomando el subgrupo de congruencia Pk z(c) como el generado por los
ideales principales aOk tales o = a mdéd cOg con a entero coprimo con ¢, se puede
ver que Ik(c)/Pgz(c) = Pic(O).

Sea L/K una extension abeliana de cuerpos de nimeros (o sea Galois y con grupo
de Galois abeliano). Sea m un moédulo divisible por todos los primos que ramifican
en la extensién L/K. Sabemos que para cada primo p que no ramifica existe un tnico
o € Gal(L/K), llamado Frobenius, que verifica que

o(a) = o? méd B,

para todo a € Oy, donde B es cualquier primo de L arriba de p (funciona cualquiera
pues la extensién es abeliana). Para ver las definiciones y propiedades usadas se

puede consultar [14], capitulos (3 y 4)

A esta aplicacién se la llama simbolo de Artin, y se nota (L/TK> € Gal(L/K).

Extendiendo multiplicativamente se obtiene un morfismo, llamado mapa de Artin

., - [x(m) — Gal(L/K).

Se tienen los siguientes resultados, cuyas demostraciones se pueden ver en [9]
capitulo V.
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Teorema 4.2. Sea K C L una extension abeliana. Existe un mddulo § = §(L/K) tal
que

1. Un primo de K ramifica en L si y solo si divide a f.

2. Sea m un mdodulo divisible por todos los primos de K que ramifican en L.
Entonces ker(®,,) es un subgrupo de congruencia para m si y sélo si f | m.

Un tal | se llama el conductor de la extension

Teorema 4.3. Sea m un maodulo para K y H un subgrupo de congruencia para m.
Entonces existe una unica extension abeliana L de K tal que los primos que ramifican
en L dividen a m y tal que ker(®,,) = H.

Ademds, como se puede ver que el mapa de artin es suryectivo se tiene

Ix(m)/H = Gal(L/K).

El caso que nos interesa principalmente es cuando O es un orden en un cuerpo
cuadratico imaginario de conductor c¢. Tomando como antes el subgrupo de congruen-
cia Pkz(c) se tiene que existe una extensién L/K abeliana (llamada el cuerpo de
clases de O) que cumple las propiedades del teorema anterior. En particular se tiene

Pic(O) = Gal(L/K).

Cuando ¢ = 1, o sea cuando O = Ok, la extensién que obtenemos se llama el cuerpo
de clases de Hilbert y es la méxima extension abeliana no ramificada de K.

Ademas por la descripciéon de los teoremas para el caso donde K es un cuerpo
cuadratico imaginario obtenemos una familia de ordenes que van creciendo. Mas
precisamente para cada ¢ natural tenemos el orden O, de conductor ¢ y tenemos que

0. COu<=c|.

Por ultimo, para la demostracién del teorema como estd explicada en [2] (Teo-
rema 11.1, capitulo 11) juega un rol crucial la ecuacién modular mencionada en el
capitulo 3 de este trabajo. En dicho libro se deduce la ecuacién y sus propiedades
mas importantes.

Para la demostracion de la segunda parte del teorema que se puede consultar en
[11] la clave es, en vez de estudiar las propiedades de la funcién j, es estudiar la
funciéon modular A y usando argumentos similares a los usados para la funciéon j uno
llega al resultado deseado.
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4.2. Puntos de Heegner

Definicién 4.4. Los puntos de Heegner son los puntos en Yy(N) que clasifican
pares de curvas elipticas N iségenas y que tienen el mismo anillo de endomorfismos
O moédulo isomorfismos.

Siy = (E, E') es un punto de Heegner con mutliplicacién compleja por O entonces
tiene asociado dos reticulos que son O-modulos proyectivos de rango 1. Cambiandolos
por homotecias podemos asumir que M = ay M’ = b, con a,b dos O-submdédulos
inversibles de K con a C b. El ideal n = ab™!, es un O-ideal propio (inversible) de
cociente ciclico O/n de orden N. Reciprocamente si un tal ideal existe, construimos
puntos de Heegner con anillo de endomorfismos O como sigue:

Sea a un O-submdédulo inversible y sea [a] su clase en Pic(OQ). Sea n un ideal
con cociente ciclico de orden N, y pongamos E = C/ay E' = C/an™!. Estas curvas
estan relacionadas por la isogenia obvia cuyo nicleo es isomorfo a

an'/a > a/an = Z/NZ.

Entonces hemos encontrado un punto en la curva modular abierta. Como las curvas
E y E’ sélo dependen de la clase de a en el grupo de Picard hemos probado:

Proposicion 4.5. Fijado el orden O, y una vez elegido el ideal n, los puntos de
Heegner con anillo de endomorfismos O estdn en correspondencia con Pic(O).

Luego recordando que hemos hecho una eleccion de tanto el orden como del ideal,
podemos notar a un punto de Heegner y mediante una terna de la forma

y = (O,n,[a]).
Tenemos la siguiente proposicion:

Proposicion 4.6. Sea O un orden de discriminante D y sea N € N. Las siguientes
son equivalentes:

1. Eziste un punto de Heegner en Xo(N) con anillo de endomorfismos O.
2. Existe un ideal n de O de norma N vy tal que O/n es ciclico.

3. Ezisten B,C enteros con med(B,C,N) =1 tales que

D = B2 —4NC.
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Demostracion. La equivalencia 1 <= 2 la probamos mas arriba. La equivalencia
2 <= 3 es consecuencia de la teoria de formas cuadraticas binarias, y se puede
consultar en [2] (VILB). O

De ahora en més supongamos que mecd(c, N) = 1 donde ¢ es el conductor del
orden O. Entonces la condicién 3 de la proposicién anterior (y por lo tanto todas)
es equivalente al hecho de que D sea un cuadrado médulo 4N. En efecto escribiendo
D = d.c? donde d es el discriminante del cuerpo K, si D es un cuadrado médulo 4N
entonces existen B, C tales que

D = B* - 4NC.

Si p es un primo que divide a med(B,C, N) entonces como (¢, N) = 1 se ve
facilmente que p? | d, y como d es un discriminante fundamental se sigue que p = 2.
Pero en ese caso se tiene facilmente que

D = 8,12 méd 16,

mientras que
B? —4NC = 0,4 méd 16,

lo que es absurdo y termina de probar nuestra afirmacion.

Hagamos una suposicién mds, que es que med(d, N) = 1. En ese caso tenemos

que si p | N entonces (%) = 1 y esto quiere decir que el ideal (p) se parte como
producto de dos primos en el cuerpo cuadratico K.

Definicién 4.7. Decimos que K satisface la hipotesis de Heegner respecto de NV
si (d,N) =1y D es un cuadrado médulo 4N. Equivalentemente todo p | N se parte
en K.

4.3. Ordenes en algebras de matrices

Sea Ms(Z) el algebra de matrices de 2 x 2. Dado un 7 € H definimos el orden

O, ={y € MyZ) |d6t’77’é0,’}/T:T}U{(8 8)}
Es claro que O, es un orden, y este orden se puede ver como las matrices en M(Z)

1
Luego tenemos una aplicacién (inyectiva) natural que a cada matriz en el orden le

que tienen a ( 71— ) y < i > como autovectores (digamos con autovalores A y \).
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; . De esta descrip-
ci6én resulta evidente que O, es un subanillo conmutativo de M(Z).

Esto nos permite ver a O, como un subanillo (discreto) de C, y ademés se ve
facilmente que el orden es isomorfo al anillo de endomofismos de la curva eliptica
C/(1,71).

Si O es un orden en un cuerpo cuadratico imaginario definimos

asocia A (el autovalor correspondiente al vector columna

OM(O) = {7 € H/SLs(Z) : O, = O}

Sea N un entero positivo fijo, y sea My(NV) el anillo de las matrices de 2 x 2 con
coeficientes enteros que son triangulares superiores médulo N. El grupo de unidades
de determinante 1 de este anillo es precisamente I'g(N). Dado 7 € H definimos el
orden asociado (relativo al nivel N) como:

05N>—{76M0(N):W—T}u{(8 8)}

Se ve facilmente que OSN) = O, N Oy, (pensados como subanillos de C). Tenemos
el siguiente teorema, clave para nuestro interés:

Teorema 4.8. Sea 7 € HNK y sea O = O su orden asociado en My(N) y sea
H/K el cuerpo de clases asociado a ese orden. Entonces (1) € E(H).

Demostracion. Sabemos por el teorema anterior que tanto j(7) y j(IN7) pertenecen
al cuerpo de clases H asociado a O,NOy. (la correspondencia entre ordenes y exten-
siones revierte las inclusiones). Luego ®y(7) es la imagen de un punto de Xo(N)(H)
(con coordenadas (j(7),j(NT)) dadas por el modelo de la curva modular dado por
el polinomio modular de orden N). Pero entonces ®x(7) € E(H) porque la funcién
Xo(N) — FE inducida por @y es una funcién entre curvas algebraicas definidas sobre

Q. ]

Podemos definir como antes
CMy(O) = {1 € H/Tx(N) tal que O = O}.

Proposicién 4.9. Sea O un orden en un cuerpo cuadrdtico K que satisface la hipdte-
sis de Heegner respecto de N. Entonces existe un punto de Heegner cuyo orden aso-
ciado OWN) es igual a O.
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Demostracion. Supongamos que
0= (lw).

Como en un orden siempre tenemos a la matriz identidad, bastara encontrar una
matriz que se comporte como w, mds precisamente una matriz M € My(N) que
cumpla que

M? — Traza(w)M + Norma(w) = 0

y esto es claramente equivalente a encontrar una matriz que cumpla que

Traza(M) = Traza(w), det(M) = Norma(w).

Afirmo que esto es equivalente a que el orden cumpla la hipétesis de Heegner. En

efecto sea 8
o
M= ( v 6 )

con N | 7. Separemos en dos casos:

= d=2,3mbd 4 por lo tanto w = ¢v/d y D = 4dc®. En ese caso Traza(w) = 0y
Norma(w) = —dc?.

Luego queremos que a + 6 = 0y ad — By = —d.c%. Entonces ponemos § = —a
y queremos que
dc® = a* + B.

Multiplicando la ecuacién por 4, vemos que
D = (20)* + 48BN/,

con Nv' = v y éste sistema se puede resolver por la condicion 3 de la existencia
de los puntos de Heegner.

1+vd

4) y D = dc*. En ese caso Traza(w) =1y

» d =1mdbd 4 por lo tanto w = ¢(
Norma(w) = (159)c?.

Luego queremos que a« +0 = 1y ad — fy = (1%1)02. Entonces ponemos
0 = —a + 1 y queremos que
d—1
(e
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Como antes, multiplicamos la ecuacién por 4, y sumamos uno a cada miembro
y obtenemos
D = (2a — 1)? + 4837,

que de vuelta es equivalente a la existencia de puntos de Heegner.

Por tltimo, una vez que ya construimos la matriz M, y por lo tanto el orden que

buscabamos, basta tomar un 7 € H tal que M7 = 7.
O]

4.4. Accién del grupo de Galois y los operadores de Hecke
sobre los puntos de Heegner

Resulta evidente que tenemos la siguiente féormula (de acuerdo al teorema funda-
mental de la multiplicacién compleja):

o((O,n, [a])) = (O, n, [s™"a)).
Claramente, la accion de la conjugacién compleja 7 actia de la siguiente forma
7(O,n,[a]) = (O, mn, [Ta])
Ademas si denotamos por wy a la involuciéon canodnica, tenemos que
wy (O, n,[a]) = (O, 1, [an™1]).

También las correspondencias de Hecke T}, para primos p { N actdan en los puntos
de Heegner de K de conductor coprimo con N (permitiendo cambiar el orden dentro
de O) de la siguiente manera

TP(O’n’ [aD = Z (Obvnhv [b])7

%%Z/p
donde
Ob = EHd(b),
n, = ﬂOb N Ob,

y la suma se realiza sobre los p + 1 subreticulos b de a de indice p. Estos resultados
se pueden ver en [7].
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4.5. Condiciones de Compatibilidad y sistemas de Heegner

Fijemos N (que seré el conductor de la curva eliptica) y sea K un cuerpo cuadrati-
co imaginario satisfaciendo la hipdtesis de Heegner. Si vamos tomando conductores
¢ coprimos con N obtenemos una familia de 6rdenes crecientes en donde hay inclu-
siones (mencionadas en la seccién 4.1). Luego los puntos de Heegner en cada uno
de éstos vienen acompananados por ciertas relaciones de compatiibilidad, forman-
do un sistema de puntos. Mas precisamente sea O,, el orden de conductor n en K.
Sea 7 € CM(O,); el punto ®x(7) se llama un punto de Heegner de conductor n.
Consideremos F(H,) donde H, es el cuerpo de clases asociado a O,,, y llamamos
a HP(n) C E(H,) al conjunto de puntos de Heegner de conductor n. Se tiene lo
siguiente:

Teorema 4.10. Sea n un entero y | un primo, ambos coprimos con N. Sea P, un
punto en HP(nl). Entonces existen P, € HP(n) y (sil | n) P,y € HP(n/l) tales
que se satisfacen las siguientes condiciones de compatibilidad

a P, sil es inerte en K y 11 n.

Trazan,, . (Pu) = (ay — oy — 0y ")P, sz: [ = /\2)\ se pgrte en K yltn.
(a; — o)) P, si 1 = A* ramifica en K.

(@ Py — Poy) sil | n.

Donde a; =1+ 1 — N; como en la seccion 1,5.

La demostracién se puede consultar [7] y [8].

Proposicién 4.11. Sea 7 € Gal(H/Q) la conjugacion compleja. Luego eziste o €
Gal(H/K) tal que

TP, = —signo(F,Q)oP, (méd E(H)iors)-

Demostracion. Sea x un punto de Heegner en Xo(N)(H) tal que ®,,(x) = P,. Por lo
visto en la Seccién 3.3 tenemos que existe un o € Gal(H/K) tal que

T = wy(ox)
Ahora, en Jy(N) tenemos la siguiente igualdad

7 (z — 00) = wy (0 — 00) + (Wwnoo — 0)
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Ahora, aplicando la parametrizacién modular y recordando que wy actiia por — signo(E, Q)
v que wyoo corresponde a la cuspide 0, que mediante la parametrizacion modular va
a parar a un punto de torsién obtenemos el resultado que queriamos.

O

Definicién 4.12. Un sistema de Heegner asociado a (F, K) es una coleccién de
puntos P,, € H P(n) indexados por n coprimos con N que satisfacen las condiciones de
compatibilidad de la proposicién anterior mas el comportamiento bajo las reflexiones
mencionado antes. Si alguno de los puntos no es de torsion decimos que el sistema
es no trivial.

Teorema 4.13. Si (F, K) satisface la hipdtesis de Heegner hay un sistema de Heeg-
ner no trivial asociado a (E, K)

Demostracion. La unién de los puntos C'M(n) es infinita en H siempre y cuando
se satisfaga la hipdtesis de Heegner que garantiza que los C'M(n) no son vacios. La
imagen de estos puntos en E(C) es infinita. Sea H,, la unién de todos los cuerpos
de clases de conductor coprimo con N. Veamos que E(H,) tiene torsién finita.

Un primo que es inerte en K se parte completamente o ramifica en todos los
cuerpos de clases. Luego el cuerpo resiudal en H,, de un tal primo g es el cuerpo [F .
Como la torsién coprima con ¢ se puede meter inyectivamente en E(F,2) se sigue
que todo el grupo de torsién se mete en E(F,2) ® E(F,2), donde p, ¢ son dos primos
distintos inertes en K. O

Definicién 4.14. Sea E/Q una curva eliptica. Sea K una extensién cuadratica de
Q. Luego podemos pensar a £/ K y como vimos en la proposicién 2.5, se tiene que

L(E/K,s) = L(E/Q,s)L(E”/Q, s)

Como tanto E como EP son modulares por el teorema 3.10 y la observacién 3.12
se tiene que las respectivas L-series satisfacen una cierta ecuacién funcional. Luego
L(FE/K, s) tiene una ecuacién funcional y su signo, signo(E, K), seré el producto de
los signos de las L-series de 'y EP.

Luego podemos enunciar la siguiente conjetura:

Conjetura 4.15. Si signo(E, K) = —1 entonces tenemos un sistema de Heegner no
trivial asociado a (E, K).

Definimos Sg x como el conjunto de lugares del infinito o lugares donde la curva
tiene reduccién split multiplicativa.
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Definicién 4.16. Si E/K es una curva eliptica, decimos que es semiestable si todo
primo de K tiene reduccion buena o multiplicativa.

En particular, si E/K es semiestable, el conductor de E es libre de cuadrados.

Proposicién 4.17. Si E/K es semiestable y modular, entonces
signo(B, K) = (—1)15zx].

Esto sale escribiendo al signo como producto de signos locales y viendo que con-
tribuye con —1 en los casos mencionados.

En el caso de K un cuerpo cuadratico imaginario que satisface la hipdtesis de
Heegner respecto de E (es decir de N = cond(E)) tenemos que Sg x consiste del
lugar del infinito y de los primos donde la curva tiene reduccion split multiplicativa,
pero como estos primos dividen necesariamente al conductor tenemos que se parten
en K y vienen de a pares entonces el signo da —1 y la construccion de los puntos de
Heegner responde la conjetura para este caso especial.

4.6. Teorema de Gross-Zagier-Kolyvagin

En esta seccién enunciamos los teoremas mas importantes que sirve para probar
el teorema de Gross-Zagier-Kolyvagin, enunciado en el capitulo 2.

Sea F'/Q una curva eliptica y sea K un cuerpo cuadrético imaginario que satisface
la hipétesis de Heegner respecto de E; sea {P,} = {®,(7,)} un sistema de Heegner.
Sea

Pg = trazam, /k(P1) € E(K)

la traza de un punto de Heegner de conductor 1 sobre el cuerpo de clases de Hilbert
de K. Més generalmente, sea y un caracter del cuerpo de clases de conductor n y
definimos

PX= Y X(o)P€E(H,)&C

oc€Gal(Hn/K)

Teorema 4.18 (Gross-Zagier-Zhang). : Sea (), la altura candnica de Neron-Tate
en E(H,) exstendida por linearidad al pairing en E(H,) ® C. Entonces:

1. (Pg,Px)=L(E/K,1) y
2. (PX,PX) = L'(E/K,x, 1) donde = significa igualdad salvo multiplicar un fac-

tor distinto de cero que en prinipcio puede hacerse explicito.
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Para la primer parte ver [20]. La segunda parte se puede ver en [23].

Observacion 4.19. La consecuencia de este teorema es que el punto de Heegner Py
no es de torsién y sélo L'(E/K, 1) # 0.

Teorema 4.20 (Kolyvagin). : Sea {P,}, un sistema de Heegner asociado o (E, K).
Si Pr mo es de torsion entonces vale:

El grupo de Mordellll-Weil E(K) es de rango 1, y entonces Py genera un subgrupo
de indice finito.

Para lo demostracién ver [5] capitulo 10 o [7].

Teorema 4.21 (Gross-Zagier-Kolyvagin). Sea E/Q una curva eliptica y
ords—1 L(E,s) <1
entonces rank(E(Q)) = ords—1 L(E, s).

Demostracion. Idea: si signo(F) = —1 por un resultado de Waldspurger ([19]) en-
tonces existen infinitos caracteres de Dirichlet cuadraticos € tales que:

L. e(l)=1sil|N;
2. e(—1) = —1
3. L(E,e,1) #0.

Las dos primeras hipdtesis garantizan que el cuerpo K cumpla la hipotesis de
Heegner. Sabemos que

L(E/K,s) = L(E,s)L(E,e, s).

Como K satisface la hipétesis de Heegner vimos que el orden de anulacion de
L(E/K,s) en s = 1 es impar. Como estamos en el caso que se cumple la tercera
condicién se tiene que L(E/K,1) =0y L'(E/K,1) # 0.

Si en cambio tomamos signo(F) = 1, por paridad tenemos que L(E, ¢, 1) =
0. Ademds unos resultados analiticos ([4] y [22]) nos muestran que hay infinitos
caracteres que satisfacen 1., 2. y L'(E,¢,1) # 0.

En ambos casos construimos un cuerpo K que satisface la hipotesis de Heegner
respecto de F'y tal que ords—1 L(F /K, s) = 1. Luego tomemos un sistema de Heegner
asociado a K. Por Gross-Zagier tenemos que Pk no es de torsion, y por Kolyvagin
esto nos dice que rank(E(K)) = 1. Por la proposicién 4.10 tenemos que Py pertenece
a E(Q) modulo torsién si y sélo si signo(E£) = —1, por lo tanto el rango de E(Q)
coincide con el orden de anulacién de la L-serie. [
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4.7.

Ejemplos

Calculo de puntos de Heegner

» Consideremos el orden maximal (anillo de enteros) O = Z [HTﬁ] de la

extension cuadrética K = Q(1/—7) ,que tiene como discriminante —7 y nimero

de clases 1. Tenemos que (77) =1 (22 = —7 méd 11). Por lo tanto 11 se parte
en el cuerpo K y tenemos que el orden cumple la hipétesis de Heegner. Como

en la proposicién 4.9 encontramos que la matriz en My(11) que cumple el rol

de HT\E, es
-4 -2
11 5 '

—9++/-7
T=—.

22
Ponemos g = ™" y calculamos la imagen de z = Ziffg g™ por la uniformi-

zacién de Weierstrass como en la proposicion 3.9 utilizando Pari/GP. Sabemos
que el punto obtenido debe tener coordenadas en el cuerpo de clases de K, que
al tener niimero de clases 1 es él mismo. Por lo tanto buscando un nimero que
aproxime al obtenido numéricamente en ese cuerpo encontramos el punto:

P=(zy) = (1_7\/__7»—2—2\/—_7)

Su punto fijo es el

2miT

Por 1ltimo, reemplazando en la ecuacién de la curva eliptica vemos que en
efecto este punto satisface la ecuacién. Por iltimo, tomando la traza de P
sobre Q en la curva eliptica obtenemos el punto

P+ P = (16,—61).

Como la curva tiene rango 0 este debe ser un punto de torsién, y de hecho tiene
orden 5.

Si llamamos E~7 al twist cuadrdtico de la curva por —7, tiene rango 1, y
tenemos la factorizacion

L(E/K,s) = L(E,s)L(E™",s).
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Esta cuenta refleja la demostracion del teorema de Gross-Zagier-Kolyvagin. Por
ejemplo, sabemos que P va a tener orden infinito en E(K).

Veamos ahora un ejemplo donde el grupo de clases no es trivial. Sea K =
Q(v/—6) cuyo anilo de enteros es O = Z[y/—6] y su discriminante —24. Tiene
nimero de clases 2. Luego, cuando hagamos la cuenta como en el ejemplo
anterior los puntos van a estar definidos, no sobre K, sino sobre su cuerpo de
clases de Hilbert H.

24

Este orden cumple la hipdtesis de Heegner ya que (_1—1) = 1. El truco para
este caso, para calcular los distintos puntos de Heegner asociados a los repre-
sentantes del grupo de clase, es pensarlo como elemento del grupo de las formas
cuadraticas primitivas, definidas positivas de discriminante —24. Como estas
formas van a representar al 11 (pues se satisface la condicién de Heegner) se

las puede llevar a respectivas formas equivalentes con A multiplo de 11 (ver [2]

(VIL.B)).

Dos de tales formas no equivalentes son:
1122 + Szy + 297,
222? 4 Sy + 1>

De acuerdo con la correspondencia dada en [2], una forma cuadratica de la
forma Axz? + Bxy + Cy? se corresponde al punto %ﬁ € H.

En este caso obtenemos los puntos

—4+ /=6

11 ’

Ty =

—4 4 /=6

= 22

Finalmente, calculamos, al igual que en el ejemplo anterior usando Pari/GP
los puntos
(I)H(Ti),i = 1, 2
y obtenemos aproximadamente
P =& (1) + P1(m) = (-2 - v—6,5) € E(K).

También se puede calcular



que al igual que antes sera un punto de torsién de la curva.

Tomemos K = Q(v/—3)y O = Z[%j?’] el anillo de enteros, que tiene niimero
de clases 1.

Cumple la hipétesis de Heegner ya que (g—?) =1 (o sea que 37 se parte en Ok ).
Ahora encontramos la matriz en My(37) como antes:

—-10 -3
37 11 )°
—21+v/-3
74

El punto fijo por este orden es 7 = . Usando Pari/GP como antes

obtenemos (aproximadamente) el punto

P =(-1,0).

Vemos reemplazando en la ecuacion, que de verdad esta en la curva. Ademas
este punto tiene orden infinito, resultado esperable de acuerdo a Gross-Zagier-
Kolyvagin ya que nuestra curva tiene rango (analitico) 1.

Se puede ver que —3(0,0) = P, donde (0,0) es un generador del grupo de
Mordelll-Weil.

Por tltimo si llamamos E~2 al twist cuadratico de la curva por —3, tiene rango

0, y obtenemos
L(E/K,s) = L(E,s)L(E,s).

El lado izquierdo tiene orden de anulacién exactamente 1 en s = 1, y P sera un
elemento de orden infinito en E(K) de acuerdo al Teorema 4.21.

Tomemos K = Q(v/—11) y Ox = Z[*4=1] el anillo de enteros, que tiene
numero de clases 1.

Cumple la hipétesis de Heegner ya que (‘TH) =1y (_TH) =1 (o sea que todo

primo que divide al conductor se parte en Q). Ahora encontramos la matriz

en My(225) como antes:
—-33 -5
225 34 )

El punto fijo por este orden es 7 = % 6_11. Haciendo exactamente lo mismo
que en el ejemplo anterior con Pari/GP obtenemos (aproximadamente) el punto

P=(~1,0).
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Este punto debe tener orden infinito por Teorema 4.21. No es un generador del
grupo, pero si cumple que 2(1,1) = P, donde (1, 1) es un generador del grupo
de puntos racionales de la curva eliptica.

Si llamamos E~!! al twist cuadratico de la curva por —11, tiene rango 0, y
tenemos

L(E/K,s) = L(E,s)L(E~,s).

De vuelta, como antes, tenemos que el lado izquierdo tiene orden de anulacion
exactamente 1 en s = 1 y P tiene orden infinito en E(K).
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5. Construccién de puntos de Heegner en otras
curvas

Sea F/Q una curva eliptica de conductor N y K un cuerpo cuadrético imaginario
tal que signo(E, K) = —1. El objetivo de este capitulo es el de poder producir un
sistema de Heegner, en condiciones donde todavia no sabemos hacerlo. Por ejemplo
supongamos que N = pq donde p y ¢ son dos primos inertes en K. Entonces tenemos
que S(E, K) = {p,q,o0} y por la Proposicién 4.17 el signo es —1. Sin embargo, al no
satisfacerse la hipotesis de Heegner los posibles érdenes de Eichler que construyamos
no nos van a servir. Otro caso que conviene tener en mente es que pasa si N = p?
donde p es un primo que no ramifica en K. En ese caso se puede ver que signo(F, K) =
—1 sin importar como se factorice el primo en K. Entonces apuntamos a construir
puntos de Heegner, atin cuando el primo sea inerte, en cuyo caso no podremos usar
los érdenes de Eichler.

Supongamos por el resto del capitulo que disc(K) y N son coprimos.

5.1. Algebras de cuaterniones y curvas de Shimura

La siguiente seccién sigue a [5](IV). Si N es libre de cuadrados entonces tenemos
que S(E, K) =2a+b+1 donde a son la cantidad de primos que dividen a N que se
parten en K y b son la cantidad de primos que son inertes en K (el 1 corresponde
al primo del infinito) . Para que signo(F, K) = —1 necesitamos que b sea par, es
decir que la cantidad de primos inertes sea par. Luego podemos factorizar a N como
N = NT*N~ donde Nt es el producto de los primos que se parten y N~ es el
producto de los primos inertes, que son una cantidad par. A una tal factorizacion de
N la llamaremos admisible.

Para buscar puntos de Heegner en estas condiciones vamos a necesitar otros
ordenes que los de Eichler. Més precisamente vamos a considerar ordenes en algebras
de cuaterniones.

Recordar que un algebra de cuaterniones B sobre Q es un agebra central simple
de dimensién 4. Si B es isomorfa como algebra a Ms(Q) se dice que es split. Si B es
un &dlgebra de cuaterniones y v es un primo de Q (ya sea finito o infinito), denotando
por Q, la completacién de QQ respecto a ese primo, podemos construir

Bv =B ®Q Qv-

Decimos que v se parte (resp. ramifica) si B, es un algebra de cuaterniones split
sobre @, (resp no es split).
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Proposicién 5.1. Sea S un conjunto finito de lugares de Q. Luego existe un dlgebra
de cuaterniones ramificada precisamente en los lugares de S si y solo si el cardinal
de S es par, y en ese caso el dlgebra es unica salvo isomorfismos.

Un orden & en B es un subanillo de B que es libre de rango 4 como Z madulo.
Un orden maximal es un orden que no esta contenido propiamente en ningin otro
orden. Un orden de Eichler es la interseccion de dos ordenes maximales. Si & es un
orden de Eichler, se obtiene como la interseccién de dos ordenes maximales 0 y 0.
Definimos el nivel de & como el indice de & en & (que es lo mismo que el indice en
05). Se puede probar que este indice no depende de la eleccién de los &;.

Proposicion 5.2. Si B no ramifica en el lugar del infinito, entonces cualesquiera dos
ordenes mazximales en B son conjugados. Del mismo modo, dos ordenes de Fichler
del mismo nivel son conjugados.

Cualquier algebra de cuaterniones admite una representaciéon lineal de dimension
4 al hacer actuar B sobre si mismo por multiplicacion a izquierda. Dado b € B el
endomorfismo Q-lineal correspondiente tiene un polinomio caracteristico de la forma

fo(x) = (2* — to +n))>

Los enteros t y n se llaman la traza y la norma reducida de b y los denotamos
por Traza(b) y Norma(b) respectivamente.

A cada factorizacién admisible de N le podemos asociar un subgrupo I'y+ - de
SLy(R) de la manera siguiente. Tomemos el algebra de cuaterniones B que ramifica
en exactamente los primos que dividen a N~. Este algebra es tinica salvo conjugacién
por la Proposicion 5.1. Como no ramifica en co podemos fijar una identificacién

t: B®gR = My(R).

Elijamos un orden maximal &, y como el B se parte en los primos que dividen a N+t
podemos fijar una identificaciéon

n: Oy (Z/NTZ) — My(Z/NTZ).

Sea O+ el subanillo de & que consiste en los = tales que n(z) es triangular superior.
El subanillo &+ es un orden de Eichler de nivel N en B. As{ como el orden maximal
lo era, es Unico salvo conjugacion de elementos de B*. Definimos

FNJF,N* = L(ﬁ]fpr)
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Para este tipo de subgrupos de SLy(R) se puede definir, andlogamente al caso clasico,
formas modulares invariantes por ellos. Las mismas tienen propiedades similares al
caso clasico (operadores de Hecke, producto de Petersson y una generalizacién de
Atkin Lehner). Sin embargo, cuando N~ # 1 uno no tiene una nocién de expansion
de Fourier en las cuspides porque el cociente del semiplano complejo superior por
estos grupos ya es compacto. Esto hace que la teoria se vuelva mas complicada.
Dada una curva eliptica de conductor N y una factorizacién admisible, median-
te una construccién andloga a Eichler-Shimura y la correspondencia de Jacquet-
Langlands uno puede construir una parametrizacién modular
Dy n- Div%/FN+,N— — E(C).
Similarmente a lo hecho en el Capitulo 4, dado 7 € H/I'y+ n-, el orden asociado a
T es

{0, .=~ € R:norm(y) =0,u(y)(1) =7} U{0}.

Podemos pensarlo como antes como un anillo discreto de C y es por lo tanto o Z o
un orden en un cuerpo cuadratico imaginario.

Un punto 7 € H/I' y+ n- se dice un punto de multiplicacién compleja (CM) si su
orden asociado es un orden en un cuerpo cuadratico imaginario. Definimos

CM(O) = {7’ S H/F}\H,Nf : 07— = O}

Teorema 5.3 (multiplicacién compleja para curvas de Shimura). Sea O un orden
en un cuerpo cuadrdtico imaginario de discriminante coprimo con N y sea H/K el
cuerpo de clases asociado a O. Entonces

P+ y- (Div’(CM(0))) C E(H).

Una pregunta interesante es la siguiente: ;Cémo se hace para calcular numéri-
camente la parametrizacién modular en este caso? Al no tener una expansién de
Fourier no podemos hacer lo mismo que con el caso cldsico. Una solucion parcial es
usar la idea de uniformizacién p-ddica ([5] (V, VI). Este método no permite construir
directamente los puntos globalmente, sino una aproximacién p-adica tan buena como
uno quiere. Conociendo el grado de la extensién que las coordenadas de los puntos
generan, se puede numéricamente calcular el polinomio minimal de ellos (que debe
tener coordenadas enteras), y asi poder hallarlos globalmente.

5.2. Curvas de Cartan

Ahora apuntamos a construir puntos de Heegner en el caso que N = p?. Para eso
introducimos el grupo de Cartan non split. Este es el subgrupo de Gly(F,) dado por
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o) ={ (1 &) tales que (a0) £ (0.0)}.

donde € es un no cuadrado en [F),. )
Dada una matriz A € SLy(Z), denotemos por A su reduccién médulo p. Llamemos
I',s(p) al subgrupo de Siy(Z) dado por

Toe(p) = {A € SLy(Z) = A € Coa(p) N Shy(F,)} .

Luego, al igual que para I'g(N) uno puede definir las curvas modulares de Cartan de
la siguiente forma

Xns(p) = H*/Ts(p),

Sea N = p* y sea K un cuerpo cuadritico imaginario donde p es inerte (si se
parte podemos usar la construccion de Heegner clasica). Vamos a hacer la misma
cuenta que en el caso cldsico (proposicién 4.9 de este trabajo). Sea O el anillo de
enteros de K.

Proposicién 5.4. Si N = p? y K es un cuerpo cuadrdtico imaginario donde p es
interte, entonces el anillo de enteros O se mete dentro de Cys(p).

Demostracion. Si Ok = (1,w), como 1 € Cy5(p), simplemente necesitamos encontrar
una matriz con coeficientes enteros, cuya reducciéon médulo p caiga en Cs(p) y que
se comporte igual que w. Mas precisamente, queremos encontrar M tal que:

= M = (O‘B) € My(Z) con a = ¢ (méd p), fe = v (mdd p) y («, B) # (0,0)

]
(méd p).

» Traza(M) = Traza(w).
» det(M) = Norma(w).

Una observacién importante es que podemos elegir convenientemente en € en la
definicion del grupo de Cartan non-split. Es facil ver que dos elecciones distintas
de los residuos no cuadraticos €, ¢’ dan lugar a grupos conjugados y si encontramos
una matriz para algun e, conjugandola vamos a obtener una matriz que cumpla las
mismas relaciones (ya que la traza y el determinante no cambian) y esté en el otro
grupo de Cartan correspondiente a €.

Separemos en dos casos:
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= Sid=23(méd4), w =+dy D = 4d. En este caso Traza(w) = 0 y
Norma(w) = —d.
Luego queremos que a + 9 =0y ad — By = —d. Entonces ponemos § = —a 'y

queremos que
d=a*+ By. (2)

Observemos que 6 = —a y @ = § (méd p) fuerza que a = 6 = 0 (mé6d p).
Como buscamos elementos en I',4(p), debe ser v = €f.

Tomemos a =6 = 0,5 = 1,y = d. La condicién que el primo sea inerte nos dice
que <g> = —1, con lo cual la matriz M estd en el Cartan non split asociado a

€ =d.

s Sid=1(méd4), w = (4) y D = d. En ese caso Traza(w) = 1y

Norma(w) = (159). i

Luego queremos que a4+ = 1y ad—pvy = (%i). Entonces ponemos § = —a+1

y nos queda
d—1 9
)= -a sy 3)

Multiplicando por 4 y sumando 1 obtenemos
d= (2a —1)* +4p7.

Como § = —a+1ya =0 (mdd p), 2a —1 = 0 méd p. Como buscamos
elementos en I',,5(p), debe ser v = €. Tomemos a = p%l, B=1v= W.
Observemos que como d = 1 méd 4, v es entero. Ademas es claro que v es un
no cuadrado maédulo p ya que d es un no cuadrado y 2a — 1 es muiltiplo de p ;

por lo tanto nos queda lo que queremos.

]

Por 1ltimo, una vez que ya construimos la matriz M, y por lo tanto el orden que
buscabamos, basta tomar un 7 € H tal que M7 = 7.

Luego en estas curvas uno espera poder construir sistemas de Heegner cuando p
sea inerte en K. Al igual que en el caso clésico, las curvas satisfacen una cierta inter-
pretacién de espacio de modulii (clasificando curvas elipticas con cierta estructura de
nivel). Entonces uno puede considerar las curvas con multiplicacion compleja y tratar
de construir puntos de Heegner como antes. Para poder realizar esta construccién
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necesitamos conocer una parametrizacién modular y poder calcular el desarrollo de
Fourier. Notemos que la matriz
Lp
(07

se encuentra en [',4(p) vy por lo tanto una forma modular para ese subgrupo va a
tener una g-expansion de Fourier en términos de ¢ = e

El estudio de esta g-expansion y de la parametrizacién modular para poder cal-
cular explicitamente los puntos de Heegner en este caso seran estudiados durante el

doctorado.
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