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café, una charla sobre matemática o de fútbol , una mesa de estudio o un partido de
Tute. O simplemente por estar ah́ı y hacerme sentir bien.

Gracias! :)

4



Introducción

Un problema de suma importancia para la teoŕıa de números clásica y moderna
es el de poder determinar el conjunto de soluciones racionales de una ecuación con
coeficientes racionales. Un ejemplo de este problema es la determinación de las ternas
pitagóricas, que se pueden pensar como soluciones racionales, o sea puntos cuyas
ambas coordenadas son racionales, en la circunferencia unitaria o soluciones enteras
de la ecuación x2+ y2 = z2. Las curvas pueden clasificarse por un invariante llamado
el género. La circunferencia es una curva de género 0, y a partir de un punto racional,
es fácil encontrar todos ellos por el método de la tangente.

Más generalmente, un resultado de Hasse-Minkowski nos dice que uno puede
determinar si cualquier curva de género 0 (por ejemplo las cónicas) tiene alguna
solución entera fijándose si tiene solución módulo todos los primos y una solución
real. Además, si la curva tiene una solución racional, automáticamente tiene infinitas,
pudiéndose parametrizar todas ellas.

En el otro extremo, se encuentran las curvas de género ≥ 2. Faltings demostró que
estas curvas siempre tienen finitos puntos racionales aunque no se conoce un método
general para calcular efectivamente estos puntos, y tampoco se sabe si un tal proceso
existe o no.

El caso que nos interesa en este trabajo es el caso intermedio de curvas de género
1. Dada una curva de género 1, no se conoce un método que pueda decidir si tiene un
punto racional o no (aunque existen algoritmos que funcionan en muchos casos).Una
curva eĺıptica es una curva de género 1 con un punto racional distinguido. Estas cur-
vas tienen una estructura de grupo abeliano y el teorema de Mordelll-Weil nos dice
que dicho grupo es finitamente generado. La parte de torsión de la curva se puede
calcular usando el teorema de Nagell-Lutz. El problema más interesante es como
calcular el rango de la curva, esto es la cantidad de puntos linealmente independien-
tes sobre Z. Claramente esto implica el poder calcular todos los puntos racionales
de la curva. Siguiendo la filosof́ıa de Hasse-Minkowski, que nos dice que si una for-
ma cuadrática tiene soluciones locales entonces se pueden “pegar”para obtener una
solución global uno podŕıa esperar que esto valga en contextos más generales. La-
mentablemente este teorema no es cierto para género mayor que 1, sin embargo los
principios locales - globales aparecen de otras maneras.

En el caso de las curvas eĺıpticas existe una conjetura, de Birch y Swinnerton-
Dyer que relaciona el rango de la curva eĺıptica con el orden de anulación de una
función de variable compleja en su centro de simetŕıa. Esta función se obtiene mul-
tiplicando factores para cada primo y estos factores tienen que ver con la cantidad
de soluciones módulo p de la curva. O sea, lo que estamos diciendo es que la infor-
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mación local (contar puntos módulo p) pegada de cierta forma debeŕıa darnos una
información global (el rango de la curva). Esta conjetura todav́ıa está abierta pero
gracias a resultados de Gross-Zagier y Kolyvagin (entre otros) se puede probar para
ciertos casos particulares. La idea de la demostración es utilizar los llamados puntos
de Heegner que dan lugar al t́ıtulo del presente trabajo y sobre los que discutiremos
varios aspectos. Estos puntos proveen una teoŕıa rica que no sólo nos permite resolver
esta maravillosa conjetura para una gran cantidad de casos sino que también para
esos casos nos da un algoritmo efectivo para calcular todos los puntos de la curva
eĺıptica. Además los puntos tienen otras aplicaciones, por ejemplo relacionadas con
el antiguo problema de los números congruentes que consiste en determinar que va-
lores enteros puede tomar el área de un triángulo rectángulo con lados de longitud
racional.

En la secciones 1, 2 y 3 explicaremos los preliminares necesarios acerca de curvas
eĺıpticas, L-series y formas modulares. Estos conceptos no son solo centrales en nues-
tro trabajo sino que también forman una parte destacada del desarrollo de la teoŕıa
de números moderna, famosos por ser una pieza clave en la resolución del último
teorema de Fermat.

En la sección 4, la central de este trabajo, se explica que son los puntos de Heegner,
sus propiedades teóricas y también como se usan para calcular puntos racionales
mediante ejemplos expĺıcitos.

Por último en la sección 5 se cuentan las distintas generalizaciones (conocidas y
por conocer) que tienen estos puntos a contextos más generales y se plantean pro-
blemas abiertos respecto a los mismos que formarán parte del estudio e investigación
durante el transcurso del doctorado.
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1. Curvas Eĺıpticas

1.1. Definiciones y ley de grupo

Una curva eĺıptica sobre un cuerpo K es un curva proyectiva suave de género 1
con un punto racional distinguido. Por el teorema de Riemann-Roch una tal curva
se puede escribir en una ecuación de Weierstrass de la forma

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

con ai ∈ K y ∆ 6= 0. Si la caracteŕıstica de K es distinta de 2 y 3 se puede llevar la
ecuación a la forma más sencila

y2 = x3 + ax+ b,

a, b ∈ K y ∆ = −24(4a3 + 27b2) 6= 0.
Dada E/K una curva eĺıptica definimos su j-invariante como

j(E) =
−1728(4a)3

∆
.

Es fácil ver que dos curvas eĺıpticas son isomorfas sobre K̄ si y sólo si sus j-invariantes
coinciden. Además, dado j ∈ K, podemos encontrar una curva con coeficientes en
K con ese invariante.

Para las definiciones y propiedades básicas de estos hechos se puede consultar
[17] (III.1).

Tomemos una ecuación de Weierstrass como arriba; si la miramos en el plano
proyectivo (homogeneizando respecto de z) vemos que en z = 0 tenemos un único
punto, que llameremos punto del infinito, que es el O = [0 : 1 : 0]. Este será nuestro
punto racional distinguido en la curva eĺıptica. La ventaja de trabajar con una curva
eĺıptica es que los puntos de la curva tienen una estructura de grupo, que se obtiene
de la manera siguiente: Sean P,Q ∈ E y sea L la recta que los une (consideramos
la tangente en P si ocurre que P = Q). Por Bezout esta recta corta a la cúbica en
un tercer punto, digamos R. Análogamente la recta que pasa por R y O corta a la
cúbica en un tercer punto, que llamaremos P ⊕Q. Como estamos pidiendo que tres
puntos colineales sumen O, sabiendo que dos de esos puntos tienen coordenadas en
K el tercero también las tendrá. En efecto, sean P1, P2 dos puntos de la curva eĺıptica
definidos sobre K, y sea L la recta que los une que corta a la cúbica en un tercer
punto P3. Sea

L : y = λx+ v,
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donde claramente x, v, λ están definidos sobre K. Llamando a Pi = (xi, yi) tenemos
entonces que si evaluamos la ecuación de la curva eĺıptica en (x, λx + v) nos queda
de la forma c(x− x1)(x− x2)(x− x3). Finalmente igualando los coeficientes en x2 y
en x3 se obtiene que c = −1 y que x3 = λ2 + a1λ + a2 − x1 − x2 y por lo tanto el
punto P3 está definido sobre K como queŕıamos.

Se puede ver que este proceso dota a los puntos de la curva eĺıptica de una
estructura de grupo abeliano, y podemos dar fórmulas expĺıcitas para sumar puntos
en la curva. Para más detalles se puede consultar [17] (III.2) ó [12] (III.4).

1.2. Estructura anaĺıtica

Sea ahora E/C una curva eĺıptica. A la curva E se le puede asociar un ret́ıculo
Λ ⊂ C de forma que los puntos complejos de la curva están en biyección con los
puntos de C/Λ. Todo ret́ıculo de C se puede escribir de la forma

〈ω1, ω2〉Z

donde ω1, ω2 son R - linealmente independientes.
Si llamamos ℘Λ a la función ℘ de Weierstrass asociada al ret́ıculo Λ dada por

℘Λ(z) =
1

z2
+

∑

λ∈Λ−{0}

(

1

(z − λ)2
− 1

λ2

)

,

entonces se tiene que las funciones Λ periódicas ℘Λ(z) y ℘′
Λ(z) satisfacen la siguiente

relación algebraica
E : y2 = x3 − g2x− g3,

donde
x = ℘Λ(z), y = ℘′

Λ(z),
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g2 = 60
∑

λ∈Λ−0

1

λ4
,

g3 = 140
∑

λ∈Λ−0

1

λ6
,

y la aplicación Φw(z) = (ρΛ(z), ρ
′
Λ(z)) nos da un isomorfismo (de grupos y de varie-

dades anaĺıticas) entre C/Λ y la curva eĺıptica E.
El libro [13] (cap. I) realiza el estudio acerca de las curvas eĺıpticas desde es-

te punto de vista y es una buena referencia para estos resultados. También están
explicados en [17] (cap.VI).

1.3. Isogeńıas

Sean E1, E2 dos curvas eĺıpticas. Una isogeńıa es un morfismo de curvas algebrai-
cas

φ : E1 −→ E2,

tal que Φ(O) = O. Si dos curvas están relacionadas por una isogeńıa se dicen que
son isógenas. Una isogeńıa es o bien constante (en cuyo caso φ ≡ 0 y se dice que es
trivial) o es no constante y es un morfismo finito de curvas. En este último caso, uno
tiene la inyección usual de cuerpos de funciones

φ∗ : K̄(E2) −→ K̄(E1).

Se dice que una isogeńıa tiene grado n, es separable, puramente inseparable, etc,
si la correspondiente extensión de cuerpos goza tal propiedad.

Un ejemplo es la isogeńıa multiplicar por m que se define, si m > 0, como

[m] : E −→ E, [m] (P ) = P + P + · · ·+ P (m veces).

Se puede ver que estas isogeńıas son no triviales. Podemos mirar el núcleo de
estas isogeńıas y definir el subgrupo de puntos de m-torsión como sigue:

E[m] = {P ∈ E : [m]P = O} .
También podemos definir el grupo de torsión como

Etors =
∞
⋃

m=1

E[m].

Vamos a destacar una serie de resultados útiles acerca de las isogeńıas. Para las
demostraciones se puede consultar [17] (III.4 y III.6).
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Teorema 1.1. Si φ una isogeńıa separable entonces #kerφ = degφ y la extensión
de cuerpos inducida por la isogeńıa es Galois.

Teorema 1.2. Sea E una curva eĺıptica y sea Φ un subgrupo finito de E. Entonces
existe una única curva eĺıptica E ′ y una isogeńıa separable

φ : E −→ E ′,

tal que kerφ = Φ.

Teorema 1.3 (Isogeńıa Dual). Dada φ : E1 −→ E2 una isogeńıa no constante de
grado m existe una única isogeńıa (llamada isogeńıa dual)

φ̂ : E2 −→ E1,

tal que

φ̂ ◦ φ = [m].

Además se tiene que [m] = ˆ[m] y que deg [m] = m2.

Como coralario uno obtiene lo siguiente:

Corolario 1.4. Sea K algebraicamente cerrado. Si car(K) = 0 o car(K) coprima
con m entonces se tiene que

E[m] ∼= Z/mZ× Z/mZ.

Demostración. Sabemos que [m] tiene grado m2 y luego en las condiciones del coro-
lario nos queda que la isogeńıa es separable. Luego por lo visto antes

#E [m] = #kerφ = m2,

y más aún para todo d | m se tiene que

#E [d] = d2.

Por el teorema de estructura para grupos abelianos finitos aplicado a E [m] , es-
cribiéndolo como producto de subgrupos ćıclicos se ve rápidamente que la única
posibilidad es la que buscamos.

Volvamos a la estructura anaĺıtica por un momento y tratemos de entender como
son las isogeńıas en ese caso.
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Teorema 1.5. Sean E1 = C/Λ1, E2 = C/Λ2 dos curvas eĺıpticas. Entonces tenemos

1. La función

{α ∈ C : αΛ1 ⊂ Λ2} 7→ {φ : C/Λ1 −→ C/Λ2 : φ(0) = 0, φ holomorfa}

dada por mandar
α −→ φα

donde
φα : C/Λ1 −→ C/Λ2, z −→ αz(modΛ2),

es una biyección.

2. La inclusión natural de {isogeńıas φ : E1 −→ E2} en

{φ : C/Λ1 −→ C/Λ2 : φ(0) = 0, φ holomorfa}

es una biyección.

Demostración. La idea es levantar las funciones holomorfas a C que es el revesti-
miento universal de C/Λ. Para la demostración ver [17] (VI.4).

Observación 1.6. Podemos definir End(E) = {φ : E −→ E isogeńıas} y se tiene que
si E ∼= C/Λ entonces

End(E) ∼= {α ∈ C : αΛ ⊂ Λ}
Siguiendo estas ideas se pueden obtener demostraciones sencillas de algunos he-

chos de curvas eĺıpticas sobre C y usando el principio de Lefschetz que dice que hacer
geometŕıa algebraica en C y en un cuerpo de K de caracteŕıstica 0 algebraicamente
cerrado es lo mismo (más precisamente nos da una equivalencia de categoŕıas), uno
puede probar tales afirmaciones para los cuerpos mencionados recién. Por ejemplo es
trivial ver que

E[m] ∼= (C/Λ)[m] ∼= 1

m
Λ/Λ ∼= (Z/mZ)2.

También tenemos el siguiente resultado, que juega un rol crucial en este trabajo.

Teorema 1.7. Sea E una curva eĺıptica sobre C entonces

1. End(E) ∼= Z, ó
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2. End(E) ∼= O donde O es un orden en un cuerpo cuadrático imaginario.

Observación 1.8. Un orden en un cuerpo cuadrático K es un subanillo de OK (el
anillo de enteros de K), de rango 2 como Z- módulo, Si OK = Z[α] existe un entero
c, llamado conductor del orden tal que O = Z[cα].

Demostración. Sea E ∼= C/Λ con Λ = 〈ω1, ω2〉. Sabemos por la observación 8 que

End(E) = {α : αΛ ⊂ Λ} .

Entonces, podemos cambiar a Λ por un ret́ıculo homotético de la forma Z+τZ donde
τ = ω1/ω2. Como Λ es un ret́ıculo τ /∈ R pues sino esto nos diŕıa que ω1 y ω2 son R-
linealmente dependientes, lo que es absurdo. Sea α tal que

{α(Z+ τZ) ⊂ Z+ τZ} .

Eso quiere decir que existen enteros a, b, c, d tales que

α = a+ bτ, ατ = c+ dτ.

Eliminando τ obtenemos la siguiente ecuación

α2 − (a+ d)α + ad− bc = 0.

Luego End(E) es una extensión entera de Z. Si suponemos que es más grande que
Z entonces tomando un α /∈ Z tenemos que b 6= 0 ; eliminando ahora a α tenemos

bτ 2 + (a− d)τ − c = 0,

por lo tanto Q(τ) es un cuerpo cuadrático imaginario y como End(E) está metido
ah́ı y es entero sobre Z se sigue que

End(E) ∼= O,

como queŕıamos probar.

Cuando ocurre el caso 2 se dice que la curva eĺıptica tiene multiplicación compleja
por O.
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1.4. El teorema de Mordellll-Weil

Sea E/K una curva eĺıptica sobre un cuerpo de númerosK (es decir una extensión
finita de Q). Entonces se tiene el siguiente teorema.

Teorema 1.9. (Mordellll-Weil): E(K) es finitamente generado, i.e.

E(K) ∼= Zr ⊕ E(K)tors.

El número r ≥ 0 se llama el rango de la curva eĺıptica sobre K y E(K)tors es el
subgrupo finito de torsión.

La demostración tiene dos ingredientes principales:

La existencia de una altura h : E(K) −→ R satisfaciendo

1. Para todo Q ∈ E(K) existe una constante CQ que depende sólo de Q y
una constante C que depende sólo de la la curva tal que

h(P +Q) ≤ 2h(P ) + CQ,

y
h(mP ) ≥ m2h(P ) + C,

para todo P ∈ E(K)

2. Para todo B > 0
{P : h(P ) < B} ,

es finito.

(Teorema débil de Mordellll-Weil): Para todo n entero, el grupo E(K)/nE(K)
es finito.

Estas dos piezas se conectan con el siguiente lema para dar la demostración del
teorema de Mordellll-Weil.

Lema 1.10. (Descenso de Fermat) Sea G un grupo abeliano equipado con una altura
que cumple las propiedades mencionadas arriba. Asumamos que para algún n > 1 el
grupo G/nG es finito. Entonces G es finitamente generado.

La demostración del teorema débil empieza con la observación que es trivialmente
cierto para cualquier clausura algebraica de K, ya que en ese caso multiplicar por n
es suryectivo. Tenemos la siguiente sucesión exacta

0 −→ E[n](K̄) −→ E(K̄)
n−→ E(K̄) −→ 0.
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Tenemos que también es una sucesión exacta de módulos equipada con la acción
continua de GK = Gal(K̄/K). Tomando cohomoloǵıa se tiene la siguiente sucesión
exacta larga de cohomoloǵıa:

0 −→ E[n](K) −→ E(K)
n−→ E(K)

δ−→ H1(K,E[n]) −→ H1(K,E)
n−→ H1(K,E),

de la cual se puede extraer la llamada suceción exacta de descenso

0 −→ E(K)/nE(K)
δ−→ H1(K,E[n]) −→ H1(K,E)[n] −→ 0.

Para cada lugar (primo) ya sea finito o infinito v podemos pensar a K metido en la
completación Kv y ese embbeding se extiende a uno de K̄ en K̄v. Luego se induce
una inclusión GKv

⊂ GK y la sucesión exacta de descenso tiene su versión local como
se puede apreciar en el siguiente diagrama conmutativo:

0 // E(K)/nE(K)

��

δ
// H1(K,E[n])

��

// H1(K,E)[n]

��

// 0

0 // E(Kv)/nE(Kv)
δ

// H1(Kv, E[n]) // H1(Kv, E)[n] // 0

en donde del diagrama de arriba al de abajo tenemos las flechas verticales que co-
rresponden a las restricciones. Del diagrama nos surge una flecha

H1(K,E[n])
δv−→ H1(Kv, E)[n].

Como
δ(E(K)/nE(K)) ⊂ ker(δv),

para todo v, tenemos que E(K)/nE(K) está contenido en el grupo de Selmer, que
se define como sigue:

El n-grupo de Selmer de E/K, denotado Seln(E/K), es el conjunto de clases
c ∈ H1(K,E[n]) que satisfacen δv(c) = 0 para todo v primo de K.

Lo que queremos probar es consecuencia del siguiente resultado general

Proposición 1.11. El grupo Seln(E/K) es finito.

Una pregunta a la que apuntamos responder es la siguiente: Dada una curva
eĺıptica sobre un cuerpo de números K, ¿existe un algoritmo para
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1. determinar si E(K) es infinito?

2. hallar el rango de la curva eĺıptica?

3. encontrar un sistema de generadores de E(K)/E(K)tors?

Para consultar las versiones más accesibles de este teorema se puede consultar
[10] (cap. III) ó [12] (cap. IV). También se puede ver [5] (I.2) y[17] (cap. VIII).

Observación 1.12. Si bien el problema de calcular el rango y hallar generadores es
d́ıficil, el problema de encontrar todos los puntos de torsión es sencillo. Se tiene el
siguiente resultado, cuya demostración se puede consultar en [10] (II.5).

Teorema 1.13 (Nagell-Lutz). Sea E una curva eĺıptica con coeficientes enteros de la
forma

y2 = f(x) = x3 + ax2 + bx+ c,

y sea D el discriminante del polinomio f(x). Sea P = (w, z) un punto de torsión.
Entonces w, z ∈ Z y z = 0 (en cuyo caso tiene orden 2) ó z2 | D. Por lo tanto hay
un algoritmo eficiente para calcular la torsión.

1.5. Ejemplos

Los siguientes 3 ejemplos nos servirán a lo largo de la tesis, para ilustrar los
distintos conceptos que vayamos aplicando. Los datos de las curvas eĺıpticas son
extráıdos de las tablas de Cremona, que se pueden consultar online en [3].

A Curva 11a1.

E : y2 + y = x3 − x2 − 10x− 20,

Discriminante = ∆ = −115,

j-invariante = j = −122023936
161051

,

Rango = r = 0 ,

Cantidad de puntos de torsión = t = 5.

B Curva 37a1.

E : y2 + y = x3 − x,

Discriminante = ∆ = 37,

j-invariante = j = 110592
37

,

Rango = r = 1 ,

Cantidad de puntos de torsión = t = 1.
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C Curva 225a1.

E : y2 + y = x3 − 1,

Discriminante = ∆ = −3352,

j-invariante = j = 0,

Rango = r = 1 ,

Cantidad de puntos de torsión = t = 1.
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2. L- series

2.1. Definiciones

Supongamos queK = Q. Se sabe que para cada curva eĺıptica existe una ecuación
de Weierstrass minimal, que cumple que todos sus coeficientes son enteros y ademas
∆ es lo más chico posible entre todos las posibles ecuaciones con coeficientes enteros
para esa curva. (Por ejemplo ver [12] (VIII.1) y [17] (VII.1) ). Si p es un primo que no
divide al discriminante, entonces la clase de isomorfismo de la curva reducida módulo
p no depende de la elección de la ecuación minimal y uno puede definir Np como la
cantidad de puntos de la curva E(Fp). En este caso se dice que la curva tiene buena
reducción en p. Un resultado muy importante de Hasse muestra que uno tiene un
cierto control de estos números. Mas precisamente, si escribimos

Np = p+ 1− ap,

entonces
|ap| ≤ 2

√
p.

Este resultado se puede consultar en [12] (X.3) ó [17] (V.1).
Vamos a extender la definción de los ap para los primos de mala reducción módulo

p. (que en este caso también se obtienen contando puntos módulo p, ver por ejemplo
[12] (III.5) ).

Tenemos 3 tipos:

1. Reducción aditiva: Esto ocurre si la curva reducida tiene una cúspide. Ponemos
ap = 0.

2. Reducción multiplicativa, caso split: La curva reducida tiene un nodo, y las
pendientes de las rectas tangentes están definidas sobre Fp. Ponemos ap = 1.

3. Reducción multiplicativa, caso non-split: La curva reducida tiene un nodo pero
las tangentes no están definidas sobre Fp pero si lo están sobre una extensión
cuadrática de Fp. Ponemos ap = −1.

Otro número importante es el conductor N de la curva eĺıptica. Cumple que

ordp(N) = 0 si y sólo si p tiene buena reducción.

ordp(N) = 1 si y sólo si p tiene reducción multiplicativa .

ordp(N) = 2 si p tiene reducción aditiva y p > 3.
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Si p = 2, 3 y hay reducción aditiva hay un algoritmo de Tate que permite
calcular este número.

Estamos en condiciones de definir la función L asociada a la curva eĺıptica en
forma de producto de Euler de la siguiente forma:

L(E, s) =
∏

p∤N

(1− app
−s + p1−2s)−1

∏

p|N
(1− app

−s)−1 =:
∑

ann
−s.

Esto nos define los an cuando n no es primo.

2.2. La conjetura de Birch y Swinnerton-Dyer

La conjetura de Birch y Swinnerton-Dyer (BSD) es una de las conjeturas abiertas
más importantes en la teoŕıa de números. Vamos a motivarla de la siguiente forma:
Si el rango de la curva eĺıptica fuera grande, esto debeŕıa verse reflejado en el hecho
que los números Np sean más grandes que p + 1 en promedio. En cambio si los
números fueran más chicos que p + 1 uno esperaŕıa que el rango sea pequeño. Más
precisamente se tiene la siguiente conjetura.

Conjetura 2.1. (BSD-versión 1): Existe una constante CE que depende sólo de E
tal que

∏

p<X

Np

p
≈ CE(logX)r,

donde ≈ significa que el cociente entre el miembro izquierdo y el derecho tiende a 1
cuando X −→ ∞ y r es el rango de la curva E(Q).

Esto es un ejemplo del principio local-global en teoŕıa de números, ya que a partir
de información local (contar puntos módulo p) estamos obteniendo un resultado
global como lo es el rango de la curva eĺıptica.

Tratemos de conectar esta conjetura con el objeto que definimos anteriormente,
la L-serie asociada a la curva eĺıptica. Evaluando formalmente en s = 1 nos queda
que

L(E, 1) =
∏ p

Np

,

donde Np es el cardinal de los puntos no singulares de E(Fp). De todos modos
no podemos hacer esta cuenta pues el producto de Euler en principio converge en
Re(s) > 3

2
. Para poder evaluar en s = 1 habŕıa que tratar de extender anaĺıticamente

la función.
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Conjetura 2.2. ( Birch y Swinnerton-Dyer (BSD)) La función L(E, s) se extiende
a una función entera en todo C y se tiene que el rango de la curva eĺıptica es igual al
orden de anulación de L(E, s) en s = 1. En particular la curva tiene finitos puntos
racionales si y sólo si L(E, 1) 6= 0.

En vista de responder esta conjetura nombramos estos dos resultados que son
cruciales en intentar entender y demostrar la conjetura BSD. El primer resultado
importante es debido a Taylor-Wiles, en su famoso trabajo que termina de resolver
el último teorema de Fermat.

Teorema 2.3. (Taylor-Wiles): L(E, s) se extiende de forma entera a todo C y sa-
tisface la ecuación funcional

Λ(E, s) = signo(E)Λ(E, 2− s),

donde signo(E) = ±1, se llama el signo de E,

Λ(E, s) = (2π)−sΓ(s)N s/2L(E, s),

y

Γ(s) =

∫ ∞

0

e−tts−1dt.

El siguiente resultado, clave en éste trabajo, trata de responder la conjetura BDS,
al menos para un caso particular. Más sobre esté teorema será tratado en este trabajo
más adelante.

Teorema 2.4. (Gross,Zagier,Kolyvagin): Sea E una curva eĺıptica sobre Q. Si

ords=1L(E, s) ≤ 1,

entonces el rango de E coincide con ords=1L(E, s) y hay un método eficiente para
calcular los puntos racionales de la curva.

2.3. Twists cuadráticos

Sea E : y2 = x3 + ax2 + bx + c = f(x) una curva eĺıptica sobre Q. Sea D un
entero, definimos el twist ED como la curva eĺıptica dada por la ecuación

Dy2 = x3 + ax2 + bx+ c,

20



que puede ser llevada mediante un cambio de coordenadas a la ecuaćıon en forma de
Weierstrass

y2 = x3 +Dax2 +D2bx+D3c.

Básicamente el twist cuadrático es una curva que es isomorfa a la original sobre
el cuerpo Q(

√
D). Se puede dar una fórmula para el twist cuadrático de la ecuación

de Weierstass más general o proceder como el método que se mostrará más adelante
en la sección de ejemplos.

Sea ahora K un cuerpo cuadrático de discriminante D. Definimos el twist de la
curva eĺıptica E por K como el twist por el discriminante D del cuerpo K (un tal D
se llama discriminante fundamental). Más precisamente tenemos que si K = Q[

√
d]

(con d libre de cuadrados) entonces los discriminantes fundamentales son:

D = d si d ≡ 1 mód 4

D = 4d si d ≡ 2, 3 mód 4

SeaK un cuerpo cuadrático de discriminanteD. Sea v un ideal y sea |v| su norma.
Si E/Q es una curva eĺıptica de conductor N , podemos pensarla que está definida
sobre K y definir

L(E/K, s) =
∏

v

Lv(E/K, s)

donde los factores locales vienen dados por

Lv(E/K, s) = (1− a|v||v|−s + |v|1−2s)−1

si v ∤ N y
Lv(E/K, s) = (1− a|v||v|−s)−1

si v | N .
Esta fórmula es la análoga a la que definimos antes para una curva eĺıptica sobre

Q.

Proposición 2.5. Si K es un cuerpo cuadrático tenemos la siguiente fórmula:

L(E/K, s) = L(E, s)L(ED, s)

donde ED es el twist cuadrático de E sobre K.
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Demostración. Tenemos las siguientes ecuaciones de las curvas, como en la introduc-
ción previa a esta proposición:

E : y2 = x3 + ax2 + bx+ c = f(x),

ED : Dy2 = x3 + ax2 + bx+ c.

Llamemos ap a los números que nos sirven para formas las L -series como antes,
y llamemos bp a los correspondientes números para ED.

Sea p ∤ DN , entonces ambas curvas tienen buena reducción en p, por lo tanto
para calcular ap y bp vamos a contar la cantidad de soluciones de las curvas módulo
p, digamos que E tiene Np puntos y que su twist cuadrático tiene Mp puntos. Veamos
dos casos

p se parte como producto de dos primos en K, ie
(

D
p

)

= 1 (D es un cuadrado

módulo p):

En ese caso fijado un valor de x existe una solución módulo p en un caso si
y sólo si existe en el otro, ya que lo que necesitamos en ambos casos es que
f(x) sea un cuadrado o que sea D por un cuadrado; al ser D un cuadrado
no nulo módulo p éstas nociones son equivalentes. Luego tenemos ap = bp.
Pero si nos fijamos el primo p se parte como producto de dos primos y por la
definición dada arriba cada uno de estos primos contribuye a L-serie asociada
a la curva mirada con coeficientes en K con un factor igual al correspondiente
que contribuyen el factor local de E ó ED en p. (observar que como se parte
|p| = p).

p es inerte (o sea sigue siendo primo) en K, ie
(

D
p

)

= −1 (D no es un cuadrado

módulo p):

En ese caso observemos que cada ecuación tiene por un lado un punto en el
infinito. Por otro lado, si fijo un valor x0 entonces tenemos tres posibilidades

1. f(x0) = 0 mód p. Entonces cada ecuación tiene un único valor de y que
funciona. En conjunto forman dos soluciones.

2. f(x0) 6= 0 mód p. En ese caso exactamente una de las dos ecuaciones tiene
dos soluciones módulo p (si f(x) es un cuadrado será la primera, en caso
contrario será la segunda).
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Entonces como x puede tomar p valores tenemos que

Np +Mp = 1 + 1 + p+ p.

Recordando que

ap = p+ 1−Np, bp = p+ 1−Mp,

concluimos que

ap + bp = 0.

Cuando multiplicamos los inversos de los correspondientes factores locales ob-
tenemos (usando la relación expuesta arriba)

(1− app
−s + p1−2s)(1− bpp

−s + p1−2s) = 1 + 2p1−2s + p2−4s + (ap)(bp)p
−2s.

Ahora recordando la definición de la L-serie asociada a la curva mirada sobre
K, y como en este caso |p| = p2, tenemos que el inverso del factor local es

1− ap2p
−2s + p2−4s.

Por último recordando que podemos calcular ap2 en términos de ap como

ap2 = ap
2 − 2p,

se ve que las dos expresiones que queremos resultan iguales.

Ahora si p | ND se puede chequear, con un poco más de cuidado, que también
vale la igualdad que queremos.
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2.4. Ejemplos

A Como el discriminante es solamente divisible por el primo 11, el resto de los
primos no contribuyen al conductor. Veamos que tipo de reducción tiene la
curva módulo 11 para poder calcular el conductor. Mirando la ecuación vemos
que el punto (3, 5) es el único punto singular de la curva reducida. Haciendo el
desarrollo de Taylor para la parte de y alrededor de 5 y alrededor de 3 para la
parte de x obtenemos la ecuación

(y − 5)2 = (x− 3)3 + 8(x− 3)2,

que corresponde claramente a un nodo. Por lo tanto la curva tiene reducción
multiplicativa, y como 8 no es un cuadrado módulo 11 la reducción es del tipo
non-split (luego a11 = −1). Por lo visto recién conclúımos que el conductor de
la curva es 11.

Ahora calculemos, por ejemplo el a5. Para ello contamos la cantidad de puntos
de la curva módulo 5 (ya que la curva tiene reducción buena). Vemos que
tenemos 8 soluciones, más el punto del infinito, por lo tanto N5 = 9 y a5 =
5 + 1 − 9 = −3. Observar que 3 = |a5| ≤ 2

√
5 verificando la cota de Hasse en

este ejemplo.

Para terminar el ejemplo calculemos el twist cuadrático de la curva por el
cuerpo cuadrático Q(

√
−7) cuyo discriminante es −7. El problema es que esta

curva no está en la forma que supusimos para definir el twist cuadrático en
la sección 2,3. Lo que vamos a hacer es mediante un cambio de coordenadas
llevarla a la forma deseada y luego twistearla. Ahora nos aparece el problema
de que la ecuación no es minimal, más precisamente no es minimal en el primo
2. Pero si desahcemos el cambio de variables que hicimos si obtenemos una
ecuación minimal. Veamos como hacer esto para este caso:

Multiplicamos la ecuación por 26 y realizamos el cambio de coordenadas y′ =
8y + 4, x′ = 4x y obtenemos la ecuación

y′
2
= x′3 − 4x′2 − 160x′ − 1264.

Ahora twisteamos por −7 y llevándola a un ecuación de Weierstrass obtenemos
la ecuación

y′′
2
= x′′3 − 4(−7)x′′2 − 160(−72)x′′ +−1264(−73).
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Poniendo ahora (deshaciendo el cambio de variables del principio)

y =
y′′ − 4

8
, x =

x′′

4
,

y dividiendo todo por 26 btenemos la ecuación

y2 + y = x3 + 7x2 − 490x+ 6744.

Esta ecuación es un modelo minimal de la curva, mediante el cambio de varia-
bles x −→ x−2 obtenemos otra ecuación en modelo minimal que corresponde a
la curva 539d2 de acuerdo a las tablas de Cremona. Esta curva tiene conductor
539 = 7211 y rango 1.

B Como en el caso anterior, es fácil ver que la curva tiene conductor 37. Podemos
calcular el twist de la curva por −3 y obtenemos, del mismo modo que antes,
la curva 33d1 de rango 0.

C El discriminante de esta curva es divisible sólo por los primos 3 y 5. En el
primo 5 uno chequea que el punto singular módulo 5 es el (0, 2) y la ecuación
se puede reescribir módulo 5 como

(y − 2)2 = x3,

Por lo que claramente hay una cúspide. Eso implica que la potencia de 5 que
aparece en el conductor es 2 y que a5 = 0. Por último uno puede chequear que
3 tiene reducción aditiva también y para calcular cuanto aporta al conductor
hay que usar el algoritmo de Tate. El conductor es 225 = 3252.

Si twisteamos a la curva por −11 obtenemos la curva 27225b1, de rango 0.
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3. Formas Modulares

3.1. Generalidades

SeaH el semiplano complejo superior (o semiplano de Poincaré). El grupo SL2(R)
actúa en él de la forma

(

a b
c d

)

τ =
aτ + b

cτ + d
.

Sea Γ un subgrupo de SL2(Z) de ı́ndice finito. Decimos que una función

f : H −→ C

holomorfa es una forma modular de peso k para Γ si cumple:

1. f(γτ) = (cτ + d)kf(τ) , para toda γ ∈ Γ.

2. Para toda γ ∈ SL2(Z) existe un número natural h tal que la función

f |γ (τ) =: (cτ + d)−kf(γτ)

admite una expansión de Fourier de la forma

∞
∑

n=0

aγnq
n/h

con q = e2πiτ .

El entero h se llama el ancho de la cúspide γ−1∞ = −d
c
y la expresión

∑∞
n=0 a

γ
nq

n/h

sólo depende de γ−1∞ = −d
c
salvo multiplicar a q1/h por una raiz h-ésima de la unidad

y se llama la expansión de Fourier de f en la cúspide −d
c

Una forma modular que satisface que aγ0 = 0 para todo γ se llama una forma
cuspidal, y al espacio vectorial de todas las formas cuspidales de peso k para Γ lo
denotamos Sk(Γ). Este espacio resulta de dimensión finita como C- espacio vectorial.

En nuestro caso particular estamos interesados en el caso k = 2 y

Γ = Γ0(N) :=

{(

a b
c d

)

∈ SL2(Z) : c ≡ 0 mód (N)

}

.

Esto resulta un órden en el algebra M2(R) y se llama el orden de Eichler o
subgrupo de congruencia de Hecke de nivel N y al espacio de las formas cuspidales
para tal grupo lo dentoamos S2(N). El cociente H/Γ0(N) hereda una estructura
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de superficie de Riemann. Si N ≥ 3 resulta útil compactificarlo agregándole finitas
cúspides, que se corresponden con las Γ0(N)-órbitas de P1(Q). Uno le puede dar una
estrctura topológica y compleja. Para referencias consultar [6] (cap. 2).

Sea X0(N) la curva algebraica proyectiva sobre C que corresponde a la superficie
de Riemann. La asignación que a cada f ∈ S2(N) le asigna

ωf = 2πif(τ)dτ,

identifica a S2(N) con el espacio de formas diferenciales en X0(N)(C). Por el teorema
de Riemann-Roch este espacio resulta de dimensión finita de dimensión igual al
género de X0(N), y por lo tanto se pueden hallar fórmulas expĺıcitas para calcular su
dimensión. Esto se puede ver por ejemplo en [6] (III.5) o de una forma más elemental
en [12] (IX.5) y [16] (VII.3).

3.2. Operadores de Hecke

El espacio vectorial S2(N) tiene un producto interno Hermitiano no degenerado,
conocido como el producto de Petersson dado por

〈f1, f2〉 =
∫

H/Γ0(N)

f1(τ)f2(τ̄)dxdy.

Posee además una acción de ciertos operadores, llamados operadores de Hecke Tp

indexados en los primos p, definidos de la siguiente forma:

Tpf := Tp(f) =
1

p

p−1
∑

i=0

f

(

τ + i

p

)

+

{

pf(pτ) si p ∤ N,

0 si p | N.

Estos operadores actúan linealmente en S2(N). Su acción en términos de las q-
expansiones de Fourier es la siguiente:

Tp(f) =
∑

p|n
anq

n/p +

{

p
∑

anq
pn si p ∤ N,

0 si p | N.

Mirando la acción en las expansiones de Fourier es inmediato verificar que los ope-
radores de Hecke conmutan unos con otros.

Extendemos la definición de los operadores de Hecke a todos los enteros positivos
igualando los coeficientes en n−s en la siguiente igualdad formal de las L-series de
Dirichlet ∞

∑

n=1

Tnn
−s =

∏

p∤N

(1− Tpp
−s + p1−2s)−1

∏

p|N
(1− Tpp

−s)−1.
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Para otras definiciones de los operadores de Hecke se pueden consultar [15] (II.8)
, [6] (V.2 y V.3) , [12] (IX. 6) y [16](VII. 5).

Sea T la subálgebra conmutativa de EndC(S2(N)) generada sobre Z por los ope-
radores de Hecke Tn y sea T0 la generada por los operadores Tn con (n : N) = 1.
Tenemos el siguiente resultado

Teorema 3.1. Las álgebras de Hecke T y T0 son finitamente generadas como Z
módulos y el rango de T es g = dimC(S2(N)) = género X0(N).

Teorema 3.2. S2(N) tiene una base de formas modulares con coeficientes enteros.

Para estos resultados se puede consultar [6] (VI.5).

3.3. Formas nuevas y teoŕıa de Atkin-Lehner

Lema 3.3. Si T está en T0 entonces es autoadjunta respecto al producto de Peters-
son.

Por el lema anterior más el teorema de descomposición para operadores autoad-
juntos tenemos que

S2(N) = ⊕λS
0
λ,

donde la suma se toma sobre todos los morfismos de C-álgebras λ : T0 −→ C, y S0
λ

es el autoespacio correspondiente en S2(N). (o sea Tnf = λ(Tn)f). Los autoespacios
no son necesariamente 1-dimensionales. En cambio si ahora miramos λ : T −→ C y
denotamos Sλ al correspondiente autoespacio se tiene lo siguiente:

Lema 3.4. (Multiplicidad uno) El autoespacio Sλ tiene dimensión 1.

Demostración. Esto es por que los coeficientes de Fourier quedan determinados por
a1(f) por la fórmula an(f) = a1(f)λ(Tn).

El problema de mirar todo el álgebra de Hecke es que, a pesar de que los auto-
espacios son de dimensión 1, no actúa de forma semisimple en S2(N). Sin embargo
tiene un subespacio distinguido, que llamaremos el espacio de las formas nuevas que
se descompone en suma directa de autoespacios de dimensión 1 para las acciones de
tanto T como T0. Una forma modular en S2(N) se dice vieja si es una combinación
lineal de funciones de la forma f(d′z) con f ∈ S2(N/d) y d′ | d con d > 1. Al subes-
pacio de las formas viejas lo denotamos Sold

2 (N) y el espacio de formas nuevas, o el
subespacio nuevo Snew

2 (N) será el complemento ortogonal del espacio de las formas
viejas respecto del producto de Petersson.
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Teorema 3.5. (Atkin-Lehner) Sea f ∈ Snew
2 (N) una autofunción simultánea para

todo el álgebra T0. Sea S un conjunto finito de primos y g ∈ S2(N) una autofunción
para todos los Tp con p /∈ S.Si ap(f) = ap(g) para todo p /∈ S entonces g = λf para
algún λ ∈ C .

Para la demostración ver [21].

Corolario 3.6. El álgebra T actúa de forma semisimple en Snew
2 (N) con autoespacios

de dimensión 1. Entonces tenemos una descomposición ortogonal de la forma

S2(N) = Sold
2 (N)⊕λ Cfλ,

donde la suma se toma sobre todos los morfismos de C- álgebras λ : T −→ C corres-
pondientes a los autovectores en Snew

2 (N) y fλ(τ) =
∑∞

n=1 λ(Tn)e
2πinτ .

Un autovector simultáneo se llama una autofunción normalizada o una forma
nueva de nivel N . Notar que cumple que a1(f) = 1 .

3.4. L-series asociadas a formas modulares

A una forma nueva de nivel N le podemos asignar una L-serie de la forma

L(f, s) =
∞
∑

n=1

ann
−s

donde an := an(f) = λ(Tn). Este función L tiene las siguientes propiedades:

1. Producto de Euler:

L(f, s) =
∏

p∤N

(1− app
−s + p1−2s)−1

∏

p|N
(1− app

−s)−1.

2. Representación Integral:

Λ(f, s) := (2π)−sΓ(s)N s/2L(f, s) = N s/2

∫ ∞

0

f(it)ts−1dt,

donde

Γ(s) =

∫ ∞

0

e−tts−1dt.
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3. Ecuación Funcional: En Snew
2 (N) hay una involución (llamada involución de

Atkin-Lehner) ωN definida por

ωN(f)(τ) =
−1

Nτ 2
f

(−1

Nτ

)

.

Esta involución conmuta con los operadores de Hecke en T0 y por lo tanto
preserva los autoespacios Sλ. Luego para cada forma nueva de nivel N se tiene
que ωN(f) = ǫf con ǫ = 1 ó −1. Se puede ver que la ecuación funcional que
satisface L(f, s) es

Λ(f, s) = −Λ(ωN(f), 2− s) = −ǫΛ(f, 2− s).

3.5. Espacios de modulii y teoŕıa de Eichler-Shimura

Sea Y0(N) = H/Γ0(N) la curva modular abierta sobre Q. Vamos a darle una
interpretación de espacio de modulii, más precisamente queremos que los puntos de
la curva clasifiquen clases de isomorfismos de objetos geométricos.

Más precisamente Y0(N) clasifica pares de curvas eĺıpticas (E,E ′) (módulo iso-
morfismo) con una isogeńıa ćıclica E → E ′ de grado N . Esto es lo mismo que un par
(E,C) donde E es una curva eĺıptica y C es un subgrupo ćıclico de orden N en E
(que se corresponde con el núcleo de la isogeńıa anterior).

Para ver este isomorfismo, a cada punto y = (E,E ′) la asociamos un par de toros
(o sea C módulo un ret́ıculo) relacionados por una isogeńıa de grado N

C/M → C/M ′.

Cambiando a M por una homotecia podemos suponer que M ⊂ M ′ y que la isogeńıa
está inducida por la identidad en los revestimientos de los toros.

Como M ′/M es ćıclico de orden N tenemos que hay una base orientada {ω1, ω2}
de M tal que 〈ω1, ω2/N〉 = M ′ y τ = ω1

ω2
∈ H. Luego la Γ0(N) órbita del punto

y = (C/M,C/M ′) está bien definida.
Para ver que esto es suryectivo, a un punto τ ∈ H/Γ0(N) le asociamos los ret́ıculos

M = 〈1, τ〉 y M ′ = 〈1, τ/N〉. Las curvas eĺıpticas E = C/M y E ′ = C/M ′ están
relacionadas por la isogeńıa de grado N obvia.

También podemos considerar la curva modular X0(N), que es la compactificación
de la curva modular abierta, que ahora clasifica pares de curvas eĺıpticas generalizadas
N -isógenas. Los puntos complejos de la curva modular se pueden identificar con el
cociente H∗/Γ0(N), donde H∗ = H ∪ P1(Q). Los finitos puntos de P1(Q)/Γ0(N) se
llaman las cúspides de la curva modular.
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Este punto de vista nos permitirá entender varias construcciones a lo largo de la
tesis.

Otro elemento importante es la ecuación modular, que es un modelo (singular)
de la curva X0(N) sobre Q. Para esto veamos que podemos definir la función

j : H −→ C,

tal que
j(τ) =: j(C/〈1, τ〉).

Observación 3.7. Notar que esto nos permite definir para cualquier ret́ıculo Λ ⊂ C
la función j(Λ) =: j(C/Λ). Esto será usado más adelante para el caso donde Λ sea
un ideal en un cuerpo cuadrático imaginario, que es fácil ver que en particular es un
ret́ıculo.

Las funciones j(τ) y j(Nτ) están relacionadas por una ecuación fN(x, y) = 0
con coeficientes racionales que nos da un modelo de la curva. Para los detalles de
construcción y las propiedad más importantes de la ecuación modular una excelente
referencia es [2] (III.11.C).

Teorema 3.8 (Eichler- Shimura). Sea f una autofunción normalizada con coeficien-
tes de Fourier enteros. Entonces existe una curva eĺıptica Ef sobre Q tal que

L(f, s) = L(Ef , s).

Demostración. (idea):
En el modelo dado por la ecuación modular si τ ∈ H/Γ0(N) corresponde a un

punto en X0(N)(F ) con F un subcuerpo de C entonces

(j(τ), j(Nτ)) ∈ F 2.

Los operadores de Hecke que actúan en S2(N) surgen geométricamente de ciertas
correspondencias en X0(N) × X0(N). El problema es que un operador de Hecke le
asocia a un punto en X0(N) varios puntos de la misma curva, con lo cual no es una
función. A uno le gustaŕıa “sumar” estos puntos, pero la curva X0(N) no posee ley de
grupo y es por esto que aparece la noción de correspondencia. Estas correspondencias
(denotadas por abuso de notación como Tp) están dadas por los puntos en X0(N)×
X0(N) asociados a pares relacionados por una p-isogeńıa ćıclica (una p isogeńıa ćıclica
que es un isomorfismo entre las estructuras de nivel N). Sea J0(N) la Jacobiana de
X0(N) que es una variedad abeliana de dimensión g = dimC(S2(N)) = géneroX0(N)
definida sobre Q. Las correspondencias dan lugar a endomorfismos de la Jacobiana
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definidos sobre Q (porque J0(N) si tiene una estructura de grupo abeliano). Sea If
el núcleo del morfismo λ : T −→ Z asociado a f . Luego el cociente J0(N)/IfJ0(N)
es la curva eĺıptica deseada Ef .

La clave para mostrar la igualdad de las L-series es relacionar el coeficiente ap(E)
que se obtiene contando puntos de la curva en Fp (o mejor aún como la traza del
Frobenius en p actuando en los puntos de torsión de orden potencia de p) con el
autovalor del operador de Hecke Tp. Esto se hace usando las relaciones de congruencia
de Eichler-Shimura en caracteŕıstica p. Por ejemplo si p ∤ N entonces la curva X0(N)
tiene un modelo entero con buena reducción módulo p y uno tiene

Tp = F + F t

en X0(N)Fp
, donde F es el gráfico del frobenius y F t su transpuesta. Para más

detalles de esta construcción se puede consultar [6] (VIII.7 y VIII.8) y [12] (X.11).
Resultados de Deligne y Carayol ([1]) muestran que el conductor de la curva

eĺıptica Ef coincide con el nivel N de la forma modular nueva f .

La curva X0(N) se puede embeber en su jacobiana mandando un punto P a la
clase del divisor de grado cero (P )−(i∞). Sea ΦN : X0(N) −→ Ef la parametrización
modular que se obtiene componiendo el embedding de antes con la proyección que
nos da Eichler-Shimura. El pullback Φ∗

N(ω) del diferencial correspondiente a Ef es
un múltiplo distinto de cero de ωf i.e.

Φ∗
N(ω) = c2πif(τ)dτ. (1)

La constante c se llama constante de Manin y (conjeturalmente) se espera que sea
siempre 1.

Para propósitos computacionales la siguiente descripción de la parametrización
modular es bastante útil pues nos da un algoritmo para calcular expĺıcitamente la
parametrización modular.

Proposición 3.9. Sea ΛEf
el ret́ıculo asociado a Ef y sea c la constante de Ma-

nin de Ef . Sea Φw : C/ΛEf
−→ Ef (C). Entonces ΦN(τ) = Φw(zτ ) donde zτ =

c
∫ τ

i∞ 2πif(z)dz = c
∑∞

n=1
an
n
qn con q = e2πiτ .

Demostración. Por la definción del mapa de Abel-Jacobi y la proyección J0(N) −→
Ef se tiene que la imagen del divisor (τ)− (i∞) es

Φw

(

∫ ΦN (τ)

ΦN (i∞)

ω

)

= Φw

(
∫ τ

i∞
Φ∗

N(ω)

)

por la fórmula de cambio de variables y por (1) obtenemos el resultado.
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3.6. Teorema de Wiles

Teorema 3.10. (Wiles et al) Sea E una curva eĺıptica sobre Q de conductor N .
Luego existe una forma nueva f ∈ S2(N) tal que L(f, s) = L(E, s) y además E es
isógena a la curva Ef obtenida mediante f por la construcción de Eichler-Shimura

Nota 3.11. Wiles de manera conjunta con Taylor demostraron este teorema para
curvas semiestables (es decir con buena reducción o reducción multiplicativa en to-
dos los primos). Luego Breuil-Conrad-Diamond-Taylor generalizaron los resultados
a todas las curvas eĺıpticas.

Corolario 3.12. La función L(E, s) tiene una continuación anaĺıtica a todo el plano
complejo y una representación integral de la forma

Λ(f, s) := (2π)−sΓ(s)L(f, s) =

∫ ∞

0

f(it)ts−1dt,

para alguna forma modular en S2(N) con lo cual satisface una ecuación funcional
como en (teorema 2.3).

Recordar que −ǫ es el signo de la ecuaćıon funcional asociada a una forma nueva.
Si una curva eĺıptica tiene asociada una tal f definimos signo(E) = −ǫ. Observar
que L(E, s) se anula con orden par (respectivamente impar) en s = 1 si signo(E) = 1
(respectivamente signo(E) = −1).

Por último como corolario también obtuvimos la uniformización compleja

ΦN : H∗/Γ0(N) −→ E(C),

que se obtiene componiendo la aplicación que ya teńıamos con la isogeńıa racional
entre Ef y E. Esta uniformización va a jugar un papel crucial en la sección siguiente
ya que nos va a permitir calcular computacionalmente cierto puntos algebraicos en
curvas eĺıpticas.
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4. Puntos de Heegner

4.1. Multiplicación Compleja

Recordemos que podemos pensar a una curva eĺıptica sobre C de la forma C/Λ,
y con esta identificación el anillo de endomorfismos de la curva eĺıptica se asocia
con {α ∈ C/αΛ ⊆ Λ}. Este anillo es o bien Z o un orden O en un cuerpo cuadrático
imaginario. Cuando el anillo de endomorfismos es más grande que los enteros, es decir
es un orden O en un cuerpo cuadrático imaginario, decimos que la curva eĺıptica tiene
multiplicación compleja por O. Definamos el grupo de clases (o grupo de Picard) del
orden O como el cociente entre los O-ideales fraccionales inversibles (o propios)
módulo los O-ideales fraccionales inversibles principales. Lo notamos Pic(O).

Es fácil ver que dos ret́ıculos (en C) son homotéticos si y sólo si tienen el mismo
j- invariante, luego se obtiene de manera muy sencilla una biyección entre Pic(O) y
clases de homotecias de ret́ıculos con anillo de multiplicación O y esto es lo mismo
que curvas eĺıpticas con multiplicación compleja por O módulo isomorfismos. A priori
estas curvas eĺıpticas están definidas sobre los complejos, pero en realidad están
definidas sobre una extensión finita de Q. Mas aún,

Teorema 4.1 (Multiplicación Compleja). Sea O un orden en un cuerpo cuadrático
imaginario K y sea a un O-ideal propio. Entonces j(a) es un entero algebraico y
K(j(a)) es el cuerpo de clases de O. Además para todo s ideal propio de OK cuyo
śımbolo de Artin es σ tenemos que σ(j(a)) = j((s−1 ∩ O)a).

Para explicar un poco este teorema vamos a recordar un par de conceptos. Las
definiciones que siguen y la demostración de la primer parte del teorema se puede
consultar en [2](XI) . Otra referencia, en donde tamb́ıen se demuestra la segunda
parte del teorema es [11] (IV). Esta demostración es más bien anaĺıtica. Una demos-
tración más algebraica se puede consultar en [18](II).

Dado un cuerpo de números K, un módulo en K es un producto formal

m =
∏

p

pnp ,

donde vale que

np ≥ 0 y a lo sumo finitos son distintos de cero.

np = 0 si p es un primo infinito complejo (i.e una inmersión de K que no es
real).
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np ≤ 1 si p es un primo infinito real (i.e una inmersión real de K).

El módulo m se puede escribir de la forma m0m∞, donde m0 es un OK ideal y m∞
es el producto de distintos primos del infinito reales. En nuestro caso de interés, que es
cuando K es un cuerpo cuadrático imaginario, no aparece la parte del infinito. Dado
un módulom podemos considerar IK(m) como el grupo deOK ideales fraccionarios de
norma coprima con m (i.e de norma coprima con m0). Ahora consideremos PK,1(m)
como el subgrupo de IK(m) generado por los ideales principales de la forma αOK

con α ∈ OK tal que

α ≡ 1 mód m0,

σ(α) > 0 para todo primo infinito real σ que divida a m∞.

Vale que este subgrupo tiene ı́ndice finito en IK(m).
Decimos que un subgrupo H de IK(m) es un subgrupo de congruencia para el

módulo m si cumple que PK,1(m) ⊂ H ⊂ IK(m). En ese caso decimos que IK(m)/H
es un grupo de clases generalizado para m.

Por ejemplo si O es un orden en un cuerpo cuadrático imaginario de conductor
c, entonces tomando el subgrupo de congruencia PK,Z(c) como el generado por los
ideales principales αOK tales α ≡ a mód cOK con a entero coprimo con c, se puede
ver que IK(c)/PK,Z(c) ∼= Pic(O).

Sea L/K una extensión abeliana de cuerpos de números (o sea Galois y con grupo
de Galois abeliano). Sea m un módulo divisible por todos los primos que ramifican
en la extensión L/K. Sabemos que para cada primo p que no ramifica existe un único
σ ∈ Gal(L/K), llamado Frobenius, que verifica que

σ(α) ≡ αNp mód B,

para todo α ∈ OL donde B es cualquier primo de L arriba de p (funciona cualquiera
pues la extensión es abeliana). Para ver las definiciones y propiedades usadas se
puede consultar [14], caṕıtulos (3 y 4)

A esta aplicación se la llama śımbolo de Artin, y se nota
(

L/K
p

)

∈ Gal(L/K).

Extendiendo multiplicativamente se obtiene un morfismo, llamado mapa de Artin

Φm : IK(m) −→ Gal(L/K).

Se tienen los siguientes resultados, cuyas demostraciones se pueden ver en [9]
caṕıtulo V.
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Teorema 4.2. Sea K ⊂ L una extensión abeliana. Existe un módulo f = f(L/K) tal
que

1. Un primo de K ramifica en L si y sólo si divide a f.

2. Sea m un módulo divisible por todos los primos de K que ramifican en L.
Entonces ker(Φm) es un subgrupo de congruencia para m si y sólo si f | m.

Un tal f se llama el conductor de la extensión

Teorema 4.3. Sea m un módulo para K y H un subgrupo de congruencia para m.
Entonces existe una única extensión abeliana L de K tal que los primos que ramifican
en L dividen a m y tal que ker(Φm) = H.

Además, como se puede ver que el mapa de artin es suryectivo se tiene

IK(m)/H ∼= Gal(L/K).

El caso que nos interesa principalmente es cuando O es un orden en un cuerpo
cuadrático imaginario de conductor c. Tomando como antes el subgrupo de congruen-
cia PK,Z(c) se tiene que existe una extensión L/K abeliana (llamada el cuerpo de
clases de O) que cumple las propiedades del teorema anterior. En particular se tiene

Pic(O) ∼= Gal(L/K).

Cuando c = 1, o sea cuando O = OK , la extensión que obtenemos se llama el cuerpo
de clases de Hilbert y es la máxima extensión abeliana no ramificada de K.

Además por la descripción de los teoremas para el caso donde K es un cuerpo
cuadrático imaginario obtenemos una familia de ordenes que van creciendo. Más
precisamente para cada c natural tenemos el orden Oc de conductor c y tenemos que

Oc ⊂ Oc′ ⇐⇒ c | c′.

Por último, para la demostración del teorema como está explicada en [2] (Teo-
rema 11.1, caṕıtulo 11) juega un rol crucial la ecuación modular mencionada en el
caṕıtulo 3 de este trabajo. En dicho libro se deduce la ecuación y sus propiedades
más importantes.

Para la demostración de la segunda parte del teorema que se puede consultar en
[11] la clave es, en vez de estudiar las propiedades de la función j, es estudiar la
función modular ∆ y usando argumentos similares a los usados para la función j uno
llega al resultado deseado.
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4.2. Puntos de Heegner

Definición 4.4. Los puntos de Heegner son los puntos en Y0(N) que clasifican
pares de curvas eĺıpticas N isógenas y que tienen el mismo anillo de endomorfismos
O módulo isomorfismos.

Si y = (E,E ′) es un punto de Heegner con mutliplicación compleja porO entonces
tiene asociado dos ret́ıculos que sonO-módulos proyectivos de rango 1. Cambiándolos
por homotecias podemos asumir que M = a y M ′ = b, con a, b dos O-submódulos
inversibles de K con a ⊂ b. El ideal n = ab−1, es un O-ideal propio (inversible) de
cociente ćıclico O/n de orden N . Rećıprocamente si un tal ideal existe, construimos
puntos de Heegner con anillo de endomorfismos O como sigue:

Sea a un O-submódulo inversible y sea [a] su clase en Pic(O). Sea n un ideal
con cociente ćıclico de orden N , y pongamos E = C/a y E ′ = C/an−1. Estas curvas
están relacionadas por la isogeńıa obvia cuyo núcleo es isomorfo a

an−1/a ∼= a/an ∼= Z/NZ.

Entonces hemos encontrado un punto en la curva modular abierta. Como las curvas
E y E ′ sólo dependen de la clase de a en el grupo de Picard hemos probado:

Proposición 4.5. Fijado el orden O, y una vez elegido el ideal n, los puntos de
Heegner con anillo de endomorfismos O están en correspondencia con Pic(O).

Luego recordando que hemos hecho una elección de tanto el orden como del ideal,
podemos notar a un punto de Heegner y mediante una terna de la forma

y = (O, n, [a]).

Tenemos la siguiente proposición:

Proposición 4.6. Sea O un orden de discriminante D y sea N ∈ N. Las siguientes
son equivalentes:

1. Existe un punto de Heegner en X0(N) con anillo de endomorfismos O.

2. Existe un ideal n de O de norma N y tal que O/n es ćıclico.

3. Existen B,C enteros con mcd(B,C,N) = 1 tales que

D = B2 − 4NC.
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Demostración. La equivalencia 1 ⇐⇒ 2 la probamos más arriba. La equivalencia
2 ⇐⇒ 3 es consecuencia de la teoŕıa de formas cuadráticas binarias, y se puede
consultar en [2] (VII.B).

De ahora en más supongamos que mcd(c,N) = 1 donde c es el conductor del
orden O. Entonces la condición 3 de la proposición anterior (y por lo tanto todas)
es equivalente al hecho de que D sea un cuadrado módulo 4N . En efecto escribiendo
D = d.c2 donde d es el discriminante del cuerpo K, si D es un cuadrado módulo 4N
entonces existen B,C tales que

D = B2 − 4NC.

Si p es un primo que divide a mcd(B,C,N) entonces como (c,N) = 1 se ve
fácilmente que p2 | d, y como d es un discriminante fundamental se sigue que p = 2.
Pero en ese caso se tiene fácilmente que

D ≡ 8, 12 mód 16,

mientras que
B2 − 4NC ≡ 0, 4 mód 16,

lo que es absurdo y termina de probar nuestra afirmación.
Hagamos una suposición más, que es que mcd(d,N) = 1. En ese caso tenemos

que si p | N entonces
(

D
p

)

= 1 y esto quiere decir que el ideal (p) se parte como

producto de dos primos en el cuerpo cuadrático K.

Definición 4.7. Decimos que K satisface la hipótesis de Heegner respecto de N
si (d,N) = 1 y D es un cuadrado módulo 4N . Equivalentemente todo p | N se parte
en K.

4.3. Órdenes en álgebras de matrices

Sea M2(Z) el álgebra de matrices de 2× 2. Dado un τ ∈ H definimos el orden

Oτ = {γ ∈ M2(Z) | detγ 6= 0, γτ = τ} ∪
{(

0 0
0 0

)}

.

Es claro que Oτ es un orden, y este orden se puede ver como las matrices en M2(Z)

que tienen a

(

τ
1

)

y

(

τ̄
1

)

como autovectores (digamos con autovalores λ y λ̄).

Luego tenemos una aplicación (inyectiva) natural que a cada matriz en el orden le
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asocia λ

(

el autovalor correspondiente al vector columna

(

τ
1

))

. De esta descrip-

ción resulta evidente que Oτ es un subanillo conmutativo de M2(Z).
Esto nos permite ver a Oτ como un subanillo (discreto) de C, y además se ve

fácilmente que el orden es isomorfo al anillo de endomofismos de la curva eĺıptica
C/ 〈1, τ〉.

Si O es un orden en un cuerpo cuadrático imaginario definimos

CM(O) = {τ ∈ H/ SL2(Z) : Oτ = O} .

Sea N un entero positivo fijo, y sea M0(N) el anillo de las matrices de 2× 2 con
coeficientes enteros que son triangulares superiores módulo N . El grupo de unidades
de determinante 1 de este anillo es precisamente Γ0(N). Dado τ ∈ H definimos el
orden asociado (relativo al nivel N) como:

O(N)
τ = {γ ∈ M0(N) : γτ = τ} ∪

{(

0 0
0 0

)}

.

Se ve fácilmente que O(N)
τ = Oτ ∩ ONτ (pensados como subanillos de C). Tenemos

el siguiente teorema, clave para nuestro interés:

Teorema 4.8. Sea τ ∈ H ∩K y sea O = O(N)
τ su orden asociado en M0(N) y sea

H/K el cuerpo de clases asociado a ese orden. Entonces ΦN(τ) ∈ E(H).

Demostración. Sabemos por el teorema anterior que tanto j(τ) y j(Nτ) pertenecen
al cuerpo de clases H asociado a Oτ ∩ONτ (la correspondencia entre ordenes y exten-
siones revierte las inclusiones). Luego ΦN(τ) es la imagen de un punto de X0(N)(H)
(con coordenadas (j(τ), j(Nτ)) dadas por el modelo de la curva modular dado por
el polinomio modular de orden N). Pero entonces ΦN(τ) ∈ E(H) porque la función
X0(N) → E inducida por ΦN es una función entre curvas algebraicas definidas sobre
Q.

Podemos definir como antes

CMN(O) = {τ ∈ H/Γ0(N) tal que O(N)
τ = O}.

Proposición 4.9. Sea O un orden en un cuerpo cuadrático K que satisface la hipóte-
sis de Heegner respecto de N . Entonces existe un punto de Heegner cuyo orden aso-
ciado O(N) es igual a O.
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Demostración. Supongamos que

O = 〈1, ω〉 .

Como en un orden siempre tenemos a la matriz identidad, bastará encontrar una
matriz que se comporte como ω, más precisamente una matriz M ∈ M0(N) que
cumpla que

M2 − Traza(ω)M +Norma(ω) = 0

y esto es claramente equivalente a encontrar una matriz que cumpla que

Traza(M) = Traza(ω), det(M) = Norma(ω).

Afirmo que esto es equivalente a que el orden cumpla la hipótesis de Heegner. En
efecto sea

M =

(

α β
γ δ

)

,

con N | γ. Separemos en dos casos:

d ≡ 2, 3 mód 4 por lo tanto ω = c
√
d y D = 4dc2. En ese caso Traza(ω) = 0 y

Norma(ω) = −dc2.

Luego queremos que α+ δ = 0 y αδ − βγ = −d.c2. Entonces ponemos δ = −α
y queremos que

dc2 = α2 + βγ.

Multiplicando la ecuación por 4, vemos que

D = (2α)2 + 4βNγ′,

con Nγ′ = γ y éste sistema se puede resolver por la condicion 3 de la existencia
de los puntos de Heegner.

d ≡ 1 mód 4 por lo tanto ω = c(1+
√
d

2
) y D = dc2. En ese caso Traza(ω) = 1 y

Norma(ω) = (1−d
4
)c2.

Luego queremos que α + δ = 1 y αδ − βγ = (1−d
4
)c2. Entonces ponemos

δ = −α + 1 y queremos que

(

d− 1

4

)

c2 = α2 − α + βγ.
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Como antes, multiplicamos la ecuación por 4, y sumamos uno a cada miembro
y obtenemos

D = (2α− 1)2 + 4βγ,

que de vuelta es equivalente a la existencia de puntos de Heegner.

Por último, una vez que ya construimos la matriz M , y por lo tanto el orden que
buscábamos, basta tomar un τ ∈ H tal que Mτ = τ .

4.4. Acción del grupo de Galois y los operadores de Hecke

sobre los puntos de Heegner

Resulta evidente que tenemos la siguiente fórmula (de acuerdo al teorema funda-
mental de la multiplicación compleja):

σ((O, n, [a])) = (O, n, [s−1a]).

Claramente, la acción de la conjugación compleja τ actúa de la siguiente forma

τ(O, n, [a]) = (O, τn, [τa])

Además si denotamos por wN a la involución canónica, tenemos que

wN(O, n, [a]) = (O, n̄, [an−1]).

También las correspondencias de Hecke Tp para primos p ∤ N actúan en los puntos
de Heegner de K de conductor coprimo con N (permitiendo cambiar el orden dentro
de OK) de la siguiente manera

Tp(O, n, [a]) =
∑

a
b
∼=Z/p

(Ob, nb, [b]),

donde
Ob = End(b),

nb = nOb ∩ Ob,

y la suma se realiza sobre los p+ 1 subret́ıculos b de a de ı́ndice p. Estos resultados
se pueden ver en [7].
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4.5. Condiciones de Compatibilidad y sistemas de Heegner

Fijemos N (que será el conductor de la curva eĺıptica) y seaK un cuerpo cuadráti-
co imaginario satisfaciendo la hipótesis de Heegner. Si vamos tomando conductores
c coprimos con N obtenemos una familia de órdenes crecientes en donde hay inclu-
siones (mencionadas en la sección 4.1). Luego los puntos de Heegner en cada uno
de éstos vienen acompañanados por ciertas relaciones de compatiibilidad, forman-
do un sistema de puntos. Más precisamente sea On el orden de conductor n en K.
Sea τ ∈ CM(On); el punto ΦN(τ) se llama un punto de Heegner de conductor n.
Consideremos E(Hn) donde Hn es el cuerpo de clases asociado a On, y llamamos
a HP (n) ⊂ E(Hn) al conjunto de puntos de Heegner de conductor n. Se tiene lo
siguiente:

Teorema 4.10. Sea n un entero y l un primo, ambos coprimos con N . Sea Pnl un
punto en HP (nl). Entonces existen Pn ∈ HP (n) y (si l | n) Pn/l ∈ HP (n/l) tales
que se satisfacen las siguientes condiciones de compatibilidad

TrazaHnl/Hn
(Pnl) =



















alPn si l es inerte en K y l ∤ n.

(al − σλ − σ−1
λ )Pn si l = λλ̄ se parte en K y l ∤ n.

(al − σλ)Pn si l = λ2 ramifica en K.

(alPn − Pn/l) si l | n.

Donde al = l + 1−Nl como en la sección 1,5.

La demostración se puede consultar [7] y [8].

Proposición 4.11. Sea τ ∈ Gal(H/Q) la conjugación compleja. Luego existe σ ∈
Gal(H/K) tal que

τPn ≡ − signo(E,Q)σPn (mód E(H)tors).

Demostración. Sea x un punto de Heegner en X0(N)(H) tal que Φn(x) = Pn. Por lo
visto en la Sección 3.3 tenemos que existe un σ ∈ Gal(H/K) tal que

τx = ωN(σx)

Ahora, en J0(N) tenemos la siguiente igualdad

τ (x−∞) = ωN (σx−∞) + (ωN∞−∞)
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Ahora, aplicando la parametrización modular y recordando que ωN actúa por− signo(E,Q)
y que ωN∞ corresponde a la cúspide 0, que mediante la parametrización modular va
a parar a un punto de torsión obtenemos el resultado que queŕıamos.

Definición 4.12. Un sistema de Heegner asociado a (E,K) es una colección de
puntos Pn ∈ HP (n) indexados por n coprimos conN que satisfacen las condiciones de
compatibilidad de la proposición anterior más el comportamiento bajo las reflexiones
mencionado antes. Si alguno de los puntos no es de torsión decimos que el sistema
es no trivial.

Teorema 4.13. Si (E,K) satisface la hipótesis de Heegner hay un sistema de Heeg-
ner no trivial asociado a (E,K)

Demostración. La unión de los puntos CM(n) es infinita en H siempre y cuando
se satisfaga la hipótesis de Heegner que garantiza que los CM(n) no son vaćıos. La
imagen de estos puntos en E(C) es infinita. Sea H∞ la unión de todos los cuerpos
de clases de conductor coprimo con N . Veamos que E(H∞) tiene torsión finita.

Un primo que es inerte en K se parte completamente o ramifica en todos los
cuerpos de clases. Luego el cuerpo resiudal en H∞ de un tal primo q es el cuerpo Fq2 .
Como la torsión coprima con q se puede meter inyectivamente en E(Fq2) se sigue
que todo el grupo de torsión se mete en E(Fq2)⊕E(Fp2), donde p, q son dos primos
distintos inertes en K.

Definición 4.14. Sea E/Q una curva eĺıptica. Sea K una extensión cuadrática de
Q. Luego podemos pensar a E/K y como vimos en la proposición 2.5, se tiene que

L(E/K, s) = L(E/Q, s)L(ED/Q, s)

Como tanto E como ED son modulares por el teorema 3.10 y la observación 3.12
se tiene que las respectivas L-series satisfacen una cierta ecuación funcional. Luego
L(E/K, s) tiene una ecuación funcional y su signo, signo(E,K), será el producto de
los signos de las L-series de E y ED.

Luego podemos enunciar la siguiente conjetura:

Conjetura 4.15. Si signo(E,K) = −1 entonces tenemos un sistema de Heegner no
trivial asociado a (E,K).

Definimos SE,K como el conjunto de lugares del infinito o lugares donde la curva
tiene reducción split multiplicativa.
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Definición 4.16. Si E/K es una curva eĺıptica, decimos que es semiestable si todo
primo de K tiene reducćıon buena o multiplicativa.

En particular, si E/K es semiestable, el conductor de E es libre de cuadrados.

Proposición 4.17. Si E/K es semiestable y modular, entonces

signo(E,K) = (−1)|SE,K|.

Esto sale escribiendo al signo como producto de signos locales y viendo que con-
tribuye con −1 en los casos mencionados.

En el caso de K un cuerpo cuadrático imaginario que satisface la hipótesis de
Heegner respecto de E (es decir de N = cond(E)) tenemos que SE.K consiste del
lugar del infinito y de los primos donde la curva tiene reducción split multiplicativa,
pero como estos primos dividen necesariamente al conductor tenemos que se parten
en K y vienen de a pares entonces el signo da −1 y la construcción de los puntos de
Heegner responde la conjetura para este caso especial.

4.6. Teorema de Gross-Zagier-Kolyvagin

En esta sección enunciamos los teoremas más importantes que sirve para probar
el teorema de Gross-Zagier-Kolyvagin, enunciado en el caṕıtulo 2.

Sea E/Q una curva eĺıptica y seaK un cuerpo cuadrático imaginario que satisface
la hipótesis de Heegner respecto de E; sea {Pn} = {Φn(τn)} un sistema de Heegner.
Sea

PK = trazaH1/K(P1) ∈ E(K)

la traza de un punto de Heegner de conductor 1 sobre el cuerpo de clases de Hilbert
de K. Más generalmente, sea χ un caracter del cuerpo de clases de conductor n y
definimos

P χ
n =

∑

σ∈Gal(Hn/K)

χ̄(σ)P σ
n ∈ E(Hn)⊗ C

Teorema 4.18 (Gross-Zagier-Zhang). : Sea 〈, 〉n la altura canónica de Nerón-Tate
en E(Hn) extendida por linearidad al pairing en E(Hn)⊗ C. Entonces:

1. 〈PK , PK〉 =. L′(E/K, 1) y

2. 〈P χ
n , P

χ̄
n 〉 =. L′(E/K, χ, 1) donde =. significa igualdad salvo multiplicar un fac-

tor distinto de cero que en prinipcio puede hacerse expĺıcito.
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Para la primer parte ver [20]. La segunda parte se puede ver en [23].

Observación 4.19. La consecuencia de este teorema es que el punto de Heegner PK

no es de torsión y sólo L′(E/K, 1) 6= 0.

Teorema 4.20 (Kolyvagin). : Sea {Pn}n un sistema de Heegner asociado a (E,K).
Si PK no es de torsión entonces vale:

El grupo de Mordellll-Weil E(K) es de rango 1, y entonces PK genera un subgrupo
de ı́ndice finito.

Para lo demostración ver [5] caṕıtulo 10 o [7].

Teorema 4.21 (Gross-Zagier-Kolyvagin). Sea E/Q una curva eĺıptica y

ords=1L(E, s) ≤ 1

entonces rank(E(Q)) = ords=1L(E, s).

Demostración. Idea: si signo(E) = −1 por un resultado de Waldspurger ([19]) en-
tonces existen infinitos caracteres de Dirichlet cuadráticos ǫ tales que:

1. ǫ(l) = 1 si l | N ;

2. ǫ(−1) = −1

3. L(E, ǫ, 1) 6= 0.

Las dos primeras hipótesis garantizan que el cuerpo K cumpla la hipótesis de
Heegner. Sabemos que

L(E/K, s) = L(E, s)L(E, ǫ, s).

Como K satisface la hipótesis de Heegner vimos que el orden de anulación de
L(E/K, s) en s = 1 es impar. Como estamos en el caso que se cumple la tercera
condición se tiene que L(E/K, 1) = 0 y L′(E/K, 1) 6= 0.

Si en cambio tomamos signo(E) = 1, por paridad tenemos que L(E, ǫ, 1) =
0. Además unos resultados anaĺıticos ([4] y [22]) nos muestran que hay infinitos
caracteres que satisfacen 1., 2. y L′(E, ǫ, 1) 6= 0.

En ambos casos construimos un cuerpo K que satisface la hipótesis de Heegner
respecto de E y tal que ords=1L(E/K, s) = 1. Luego tomemos un sistema de Heegner
asociado a K. Por Gross-Zagier tenemos que PK no es de torsión, y por Kolyvagin
esto nos dice que rank(E(K)) = 1. Por la proposición 4.10 tenemos que PK pertenece
a E(Q) modulo torsión si y sólo si signo(E) = −1, por lo tanto el rango de E(Q)
coincide con el orden de anulación de la L-serie.
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4.7. Ejemplos

Cálculo de puntos de Heegner

Consideremos el orden maximal (anillo de enteros) OK = Z
[

1+
√
−7

2

]

de la

extensión cuadrática K = Q(
√
−7) ,que tiene como discriminante −7 y número

de clases 1. Tenemos que
(−7
11

)

= 1 (22 ≡ −7 mód 11). Por lo tanto 11 se parte
en el cuerpo K y tenemos que el orden cumple la hipótesis de Heegner. Como
en la proposición 4.9 encontramos que la matriz en M0(11) que cumple el rol

de 1+
√
−7

2
, es

(

−4 −2
11 5

)

.

Su punto fijo es el

τ =
−9 +

√
−7

22
.

Ponemos q = e2πiτ y calculamos la imagen de z =
∑1000

n=1
an
n
qn por la uniformi-

zación de Weierstrass como en la proposićıon 3.9 utilizando Pari/GP. Sabemos
que el punto obtenido debe tener coordenadas en el cuerpo de clases de K, que
al tener número de clases 1 es él mismo. Por lo tanto buscando un número que
aproxime al obtenido numéricamente en ese cuerpo encontramos el punto:

P = (x, y) =

(

1−
√
−7

2
,−2− 2

√
−7

)

.

Por último, reemplazando en la ecuación de la curva eĺıptica vemos que en
efecto este punto satisface la ecuación. Por último, tomando la traza de P
sobre Q en la curva eĺıptica obtenemos el punto

P + P̄ = (16,−61).

Como la curva tiene rango 0 este debe ser un punto de torsión, y de hecho tiene
orden 5.

Si llamamos E−7 al twist cuadrático de la curva por −7, tiene rango 1, y
tenemos la factorización

L(E/K, s) = L(E, s)L(E−7, s).
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Esta cuenta refleja la demostración del teorema de Gross-Zagier-Kolyvagin. Por
ejemplo, sabemos que P va a tener orden infinito en E(K).

Veamos ahora un ejemplo donde el grupo de clases no es trivial. Sea K =
Q(

√
−6) cuyo anilo de enteros es OK = Z[

√
−6] y su discriminante −24. Tiene

número de clases 2. Luego, cuando hagamos la cuenta como en el ejemplo
anterior los puntos van a estar definidos, no sobre K, sino sobre su cuerpo de
clases de Hilbert H.

Este orden cumple la hipótesis de Heegner ya que
(−24

11

)

= 1. El truco para
este caso, para calcular los distintos puntos de Heegner asociados a los repre-
sentantes del grupo de clase, es pensarlo como elemento del grupo de las formas
cuadráticas primitivas, definidas positivas de discriminante −24. Como estas
formas van a representar al 11 (pues se satisface la condición de Heegner) se
las puede llevar a respectivas formas equivalentes con A múltiplo de 11 (ver [2]
(VII.B)).

Dos de tales formas no equivalentes son:

11x2 + 8xy + 2y2,

22x2 + 8xy + y2.

De acuerdo con la correspondencia dada en [2], una forma cuadrática de la

forma Ax2 +Bxy + Cy2 se corresponde al punto −B+
√
D

2A
∈ H.

En este caso obtenemos los puntos

τ1 =
−4 +

√
−6

11
, τ2 =

−4 +
√
−6

22
.

Finalmente, calculamos, al igual que en el ejemplo anterior usando Pari/GP
los puntos

Φ11(τi), i = 1, 2

y obtenemos aproximadamente

P = Φ11(τ1) + Φ11(τ2) = (−2−
√
−6, 5) ∈ E(K).

También se puede calcular

P + P̄ = (5,−6),
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que al igual que antes será un punto de torsión de la curva.

TomemosK = Q(
√
−3) yOK = Z[1+

√
−3

2
] el anillo de enteros, que tiene número

de clases 1.

Cumple la hipótesis de Heegner ya que
(−3
37

)

= 1 (o sea que 37 se parte en OK).
Ahora encontramos la matriz en M0(37) como antes:

(

−10 −3
37 11

)

.

El punto fijo por este orden es τ = −21+
√
−3

74
. Usando Pari/GP como antes

obtenemos (aproximadamente) el punto

P = (−1, 0).

Vemos reemplazando en la ecuación, que de verdad está en la curva. Además
este punto tiene orden infinito, resultado esperable de acuerdo a Gross-Zagier-
Kolyvagin ya que nuestra curva tiene rango (anaĺıtico) 1.

Se puede ver que −3(0, 0) = P , donde (0, 0) es un generador del grupo de
Mordelll-Weil.

Por último si llamamos E−3 al twist cuadrático de la curva por −3, tiene rango
0, y obtenemos

L(E/K, s) = L(E, s)L(E−3, s).

El lado izquierdo tiene orden de anulación exactamente 1 en s = 1, y P será un
elemento de orden infinito en E(K) de acuerdo al Teorema 4.21.

Tomemos K = Q(
√
−11) y OK = Z[1+

√
−11
2

] el anillo de enteros, que tiene
número de clases 1.

Cumple la hipótesis de Heegner ya que
(−11

3

)

= 1 y
(−11

5

)

= 1 (o sea que todo
primo que divide al conductor se parte en OK). Ahora encontramos la matriz
en M0(225) como antes:

(

−33 −5
225 34

)

.

El punto fijo por este orden es τ = −67+
√
−11

450
. Haciendo exactamente lo mismo

que en el ejemplo anterior con Pari/GP obtenemos (aproximadamente) el punto

P = (−1, 0).
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Este punto debe tener orden infinito por Teorema 4.21. No es un generador del
grupo, pero si cumple que 2(1, 1) = P , donde (1, 1) es un generador del grupo
de puntos racionales de la curva eĺıptica.

Si llamamos E−11 al twist cuadrático de la curva por −11, tiene rango 0, y
tenemos

L(E/K, s) = L(E, s)L(E−11, s).

De vuelta, como antes, tenemos que el lado izquierdo tiene orden de anulación
exactamente 1 en s = 1 y P tiene orden infinito en E(K).
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5. Construcción de puntos de Heegner en otras

curvas

Sea E/Q una curva eĺıptica de conductor N y K un cuerpo cuadrático imaginario
tal que signo(E,K) = −1. El objetivo de este caṕıtulo es el de poder producir un
sistema de Heegner, en condiciones donde todav́ıa no sabemos hacerlo. Por ejemplo
supongamos que N = pq donde p y q son dos primos inertes en K. Entonces tenemos
que S(E,K) = {p, q,∞} y por la Proposición 4.17 el signo es −1. Sin embargo, al no
satisfacerse la hipótesis de Heegner los posibles órdenes de Eichler que construyamos
no nos van a servir. Otro caso que conviene tener en mente es que pasa si N = p2

donde p es un primo que no ramifica enK. En ese caso se puede ver que signo(E,K) =
−1 sin importar como se factorice el primo en K. Entonces apuntamos a construir
puntos de Heegner, aún cuando el primo sea inerte, en cuyo caso no podremos usar
los órdenes de Eichler.

Supongamos por el resto del caṕıtulo que disc(K) y N son coprimos.

5.1. Álgebras de cuaterniones y curvas de Shimura

La siguiente sección sigue a [5](IV). Si N es libre de cuadrados entonces tenemos
que S(E,K) = 2a+ b+1 donde a son la cantidad de primos que dividen a N que se
parten en K y b son la cantidad de primos que son inertes en K (el 1 corresponde
al primo del infinito) . Para que signo(E,K) = −1 necesitamos que b sea par, es
decir que la cantidad de primos inertes sea par. Luego podemos factorizar a N como
N = N+N− donde N+ es el producto de los primos que se parten y N− es el
producto de los primos inertes, que son una cantidad par. A una tal factorización de
N la llamaremos admisible.

Para buscar puntos de Heegner en estas condiciones vamos a necesitar otros
ordenes que los de Eichler. Más precisamente vamos a considerar ordenes en álgebras
de cuaterniones.

Recordar que un álgebra de cuaterniones B sobre Q es un ágebra central simple
de dimensión 4. Si B es isomorfa como álgebra a M2(Q) se dice que es split. Si B es
un álgebra de cuaterniones y v es un primo de Q (ya sea finito o infinito), denotando
por Qv la completación de Q respecto a ese primo, podemos construir

Bv =: B ⊗Q Qv.

Decimos que v se parte (resp. ramifica) si Bv es un álgebra de cuaterniones split
sobre Qv (resp no es split).
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Proposición 5.1. Sea S un conjunto finito de lugares de Q. Luego existe un álgebra
de cuaterniones ramificada precisamente en los lugares de S si y solo si el cardinal
de S es par, y en ese caso el álgebra es única salvo isomorfismos.

Un orden O en B es un subanillo de B que es libre de rango 4 como Z módulo.
Un orden maximal es un orden que no está contenido propiamente en ningún otro
orden. Un orden de Eichler es la intersección de dos ordenes maximales. Si O es un
orden de Eichler, se obtiene como la intersección de dos ordenes maximales O1 y O2.
Definimos el nivel de O como el ı́ndice de O en O1 (que es lo mismo que el ı́ndice en
O2). Se puede probar que este ı́ndice no depende de la elección de los Oi.

Proposición 5.2. Si B no ramifica en el lugar del infinito, entonces cualesquiera dos
ordenes maximales en B son conjugados. Del mismo modo, dos ordenes de Eichler
del mismo nivel son conjugados.

Cualquier álgebra de cuaterniones admite una representación lineal de dimensión
4 al hacer actuar B sobre si mismo por multiplicación a izquierda. Dado b ∈ B el
endomorfismo Q-lineal correspondiente tiene un polinomio caracteŕıstico de la forma

fb(x) = (x2 − tx+ n))2.

Los enteros t y n se llaman la traza y la norma reducida de b y los denotamos
por Traza(b) y Norma(b) respectivamente.

A cada factorización admisible de N le podemos asociar un subgrupo ΓN+,N− de
SL2(R) de la manera siguiente. Tomemos el álgebra de cuaterniones B que ramifica
en exactamente los primos que dividen a N−. Este álgebra es única salvo conjugación
por la Proposición 5.1. Como no ramifica en ∞ podemos fijar una identificación

ι : B ⊗Q R ∼= M2(R).

Elijamos un orden maximal O0 y como el B se parte en los primos que dividen a N+

podemos fijar una identificación

η : O0 ⊗ (Z/N+Z) −→ M2(Z/N
+Z).

Sea ON+ el subanillo de O0 que consiste en los x tales que η(x) es triangular superior.
El subanillo ON+ es un orden de Eichler de nivel N+ en B. Aśı como el orden maximal
lo era, es único salvo conjugación de elementos de B×. Definimos

ΓN+,N− = ι(O×
N+).
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Para este tipo de subgrupos de SL2(R) se puede definir, análogamente al caso clásico,
formas modulares invariantes por ellos. Las mismas tienen propiedades similares al
caso clásico (operadores de Hecke, producto de Petersson y una generalización de
Atkin Lehner). Sin embargo, cuando N− 6= 1 uno no tiene una noción de expansión
de Fourier en las cúspides porque el cociente del semiplano complejo superior por
estos grupos ya es compacto. Esto hace que la teoŕıa se vuelva más complicada.

Dada una curva eĺıptica de conductor N y una factorización admisible, median-
te una construcción análoga a Eichler-Shimura y la correspondencia de Jacquet-
Langlands uno puede construir una parametrización modular

Φ
′

N+,N− : Div0H/Γ
N+,N−

−→ E(C).

Similarmente a lo hecho en el Caṕıtulo 4, dado τ ∈ H/ΓN+,N− , el orden asociado a
τ es

{Oτ := γ ∈ R : norm(γ) = 0, ι(γ)(τ) = τ} ∪ {0} .
Podemos pensarlo como antes como un anillo discreto de C y es por lo tanto o Z o
un orden en un cuerpo cuadrático imaginario.

Un punto τ ∈ H/ΓN+,N− se dice un punto de multiplicación compleja (CM) si su
orden asociado es un orden en un cuerpo cuadrático imaginario. Definimos

CM(O) = {τ ∈ H/ΓN+,N− : Oτ = O} .
Teorema 5.3 (multiplicación compleja para curvas de Shimura). Sea O un orden
en un cuerpo cuadrático imaginario de discriminante coprimo con N y sea H/K el
cuerpo de clases asociado a O. Entonces

ΦN+,N−(Div0(CM(O))) ⊂ E(H).

Una pregunta interesante es la siguiente: ¿Cómo se hace para calcular numéri-
camente la parametrización modular en este caso? Al no tener una expansión de
Fourier no podemos hacer lo mismo que con el caso clásico. Una solución parcial es
usar la idea de uniformización p-ádica ([5] (V, VI). Este método no permite construir
directamente los puntos globalmente, sino una aproximación p-ádica tan buena como
uno quiere. Conociendo el grado de la extensión que las coordenadas de los puntos
generan, se puede numéricamente calcular el polinomio minimal de ellos (que debe
tener coordenadas enteras), y aśı poder hallarlos globalmente.

5.2. Curvas de Cartan

Ahora apuntamos a construir puntos de Heegner en el caso que N = p2. Para eso
introducimos el grupo de Cartan non split. Este es el subgrupo de Gl2(Fp) dado por
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Cns(p) =

{(

a b
bǫ a

)

tales que (a, b) 6= (0, 0)

}

,

donde ǫ es un no cuadrado en Fp.
Dada una matriz A ∈ SL2(Z), denotemos por Ā su reducción módulo p. Llamemos

Γns(p) al subgrupo de Sl2(Z) dado por

Γns(p) =
{

A ∈ SL2(Z) : Ā ∈ Cns(p) ∩ Sl2(Fp)
}

.

Luego, al igual que para Γ0(N) uno puede definir las curvas modulares de Cartan de
la siguiente forma

Xns(p) = H∗/Γns(p),

Sea N = p2 y sea K un cuerpo cuadrático imaginario donde p es inerte (si se
parte podemos usar la construcción de Heegner clásica). Vamos a hacer la misma
cuenta que en el caso clásico (proposición 4.9 de este trabajo). Sea OK el anillo de
enteros de K.

Proposición 5.4. Si N = p2 y K es un cuerpo cuadrático imaginario donde p es
interte, entonces el anillo de enteros OK se mete dentro de Cns(p).

Demostración. Si OK = 〈1, ω〉, como 1 ∈ Cns(p), simplemente necesitamos encontrar
una matriz con coeficientes enteros, cuya reducción módulo p caiga en Cns(p) y que
se comporte igual que ω. Más precisamente, queremos encontrar M tal que:

M =
(

α β
γ δ

)

∈ M2(Z) con α ≡ δ (mód p), βǫ ≡ γ (mód p) y (α, β) 6≡ (0, 0)
(mód p).

Traza(M) = Traza(ω).

det(M) = Norma(ω).

Una observación importante es que podemos elegir convenientemente en ǫ en la
definición del grupo de Cartan non-split. Es fácil ver que dos elecciones distintas
de los residuos no cuadráticos ǫ, ǫ′ dan lugar a grupos conjugados y si encontramos
una matriz para algun ǫ, conjugándola vamos a obtener una matriz que cumpla las
mismas relaciones (ya que la traza y el determinante no cambian) y esté en el otro
grupo de Cartan correspondiente a ǫ′.

Separemos en dos casos:
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Si d ≡ 2, 3 (mód 4), ω =
√
d y D = 4d. En este caso Traza(ω) = 0 y

Norma(ω) = −d.

Luego queremos que α + δ = 0 y αδ − βγ = −d. Entonces ponemos δ = −α y
queremos que

d = α2 + βγ. (2)

Observemos que δ = −α y α ≡ δ (mód p) fuerza que α ≡ δ ≡ 0 (mód p).
Como buscamos elementos en Γns(p), debe ser γ ≡ ǫβ.

Tomemos α = δ = 0, β = 1, γ = d. La condición que el primo sea inerte nos dice

que
(

d
p

)

= −1, con lo cual la matriz M está en el Cartan non split asociado a

ǫ = d.

Si d ≡ 1 (mód 4), ω = (1+
√
d

2
) y D = d. En ese caso Traza(ω) = 1 y

Norma(ω) = (1−d
4
).

Luego queremos que α+δ = 1 y αδ−βγ = (1−d
4
). Entonces ponemos δ = −α+1

y nos queda
(

d− 1

4

)

= α2 − α + βγ. (3)

Multiplicando por 4 y sumando 1 obtenemos

d = (2α− 1)2 + 4βγ.

Como δ = −α + 1 y α ≡ δ (mód p), 2α − 1 ≡ 0 mód p. Como buscamos

elementos en Γns(p), debe ser γ ≡ ǫβ. Tomemos α = p−1
2
, β = 1, γ = d−(2α−1)2

4
.

Observemos que como d ≡ 1 mód 4, γ es entero. Además es claro que γ es un
no cuadrado módulo p ya que d es un no cuadrado y 2α− 1 es múltiplo de p ;
por lo tanto nos queda lo que queremos.

Por último, una vez que ya construimos la matriz M , y por lo tanto el orden que
buscábamos, basta tomar un τ ∈ H tal que Mτ = τ .

Luego en estas curvas uno espera poder construir sistemas de Heegner cuando p
sea inerte en K. Al igual que en el caso clásico, las curvas satisfacen una cierta inter-
pretación de espacio de modulii (clasificando curvas eĺıpticas con cierta estructura de
nivel). Entonces uno puede considerar las curvas con multiplicaćıon compleja y tratar
de construir puntos de Heegner como antes. Para poder realizar esta construcción
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necesitamos conocer una parametrización modular y poder calcular el desarrollo de
Fourier. Notemos que la matriz

(

1 p
0 1

)

se encuentra en Γns(p) y por lo tanto una forma modular para ese subgrupo va a

tener una q-expansión de Fourier en términos de q = e
2πiτ
p .

El estudio de está q-expansión y de la parametrización modular para poder cal-
cular expĺıcitamente los puntos de Heegner en este caso serán estudiados durante el
doctorado.
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