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Introduccién

La propiedad de aproximacion juega un rol fundamental en la teoria de estructuras
de espacios de Banach. El primer estudio sistematico sobre esta propiedad y algunas de
sus variantes puede adjudicarse a Grothendieck y su trabajo de 1955. La idea subyacente
radica en la relacién existente entre los conceptos de compacidad y dimensién finita. La
mayoria de los resultados acerca de transformaciones lineales entre espacios de dimension
finita se pueden generalizar a ciertas clases de operadores en espacios infinitos dimensio-
nales, estos son los operadores compactos.

Para ciertos espacios, los operadores compactos pueden aproximarse por operadores
de rango finito, que sucede por ejemplo para espacios de Hilbert separables o en espacios
de Banach con base de Schauder. En ambos casos, esto es posible gracias a la existencia
de proyecciones finitas uniformemente acotadas. En [11] Grothendieck establece que todo
operador lineal y compacto de un espacio F con valores en F' se aproxima por operadores
de rango finito si y sélo si F' tiene la siguiente propiedad: Dado ¢ > 0, 8 seminorma
continua de F' 'y K C F compacto, existe un operador lineal T de rango finito tal que
sup,cx A(T(x) - 2) < e.

La propiedad de aproximacion mostré valiosas aplicaciones al campo del estudio de
espacios de funciones. Si un espacio de funciones tiene la propiedad de aproximacién, hay
ciertas férmulas que sirven para describirlo. Y, como no todo espacio E tiene la propiedad
de aproximacién, resulta 1til encontrar condiciones necesarias y suficientes para que un
espacio de funciones definidas sobre E tenga la propiedad de aproximaciéon. En 1976,
R.Aron y M. Schottenloher en [4] estudiaron cudndo el espacio de funciones holomorfas
con dominio en un espacio de Banach, H(E), tiene la propiedad de aproximacién.

Dado FE un espacio de Banach, H(F) no resulta un espacio de Banach, sino que, por lo
general, resulta ser un espacio de Fréchet. Es por eso que en la primera seccién estudiare-
mos algunos resultados elementales sobre espacios localmente convexos y la estructura de
ellos. La topologia de un espacio localmente convexo queda determinada por sus entornos
del origen. Aqui veremos de que manera se le puede dar distintas topologias al espacio
dual de un espacio localmente convexo. Es conocido que, si I/ es un espacio de Banach,
al espacio dual, E’, se lo puede dotar de la topologia dada por los entornos del origen de
la forma B = {2’ € E": [{xz,2")| < 1 Vx € E,||z|]| < 1}. Estos conjuntos proporcionan una
buena topologia para el dual de £ y hacen a £’ un espacio normado. Esta manera de
dar una topologia al dual de un espacio se extiende cuando E es un espacio localmente
convexo. Para ello se introduce la nocién de lo conjunto polares y topologias polares,
haciendo a E’ un espacio localmete convexo. Usando técnicas similares, se le dard una
topologia al espacio vectorial formado por los operadores lineales entre dos espacios local-

mente convexos. Finalmente presentaremos el e-Producto entre dos espacios localmente



convexos, estudiado por L. Schwartz en 1957.
La importancia del e-Producto se vera en la segunda seccion, ya que se estudiara la

relacion que tiene con la propiedad de aproximacion, estableciendo la equivalencia
(a) E tiene la propiedad de aproximacion.
(b) E® F es denso en EeF para todo F espacio de Banach.

En esta seccién también se estudiaran las propiedades mas importantes de un espacio
localmente convexo E cuando tiene la propiedad de aproximacién.

En la seccién 3 veremos las definiciones y generalidades de las funciones holomorfas
con dominio en un espacio de Banach FE, asi como tambien las distintas topologias con
las que se lo puede dotar al espacio H(FE). Introduciremos tanto las topologias compacto-
abierta, 79, y la topologia de Nachbin, 7,. Debido a que 79 no es tan fuerte como se
espera, se introducen las topologias 7., (de convergencia uniforme sobre compactos de
las derivadas) y la topologia bornoldgica asociada a 7y, 75. Debido a la relacién que hay
entre la propiedad de aproximacién y los operadores lineales compactos, definiremos el
concepto de funcién holomorfa compacta entre espacios de Banach F y F, Hg(FE; F),
asi como también veremos sus propiedades. Finalizando esta seccién, veremos que si E es

un espacio metrizable y £’ es un espacio localmente convexo, entonces se tiene la férmula
Fe(H(E),70) = (H(E; F), 7o) (1)
y si /'y F son espacio de Banach, entonces
Fe(H(E), 1) = (Hk(E; F),7) (2)

Estas dos relaciones, junto a la equivalencia anterior son claves para la seccién 4, en
la cual veremos que (H(E), 1) tiene la propiedad de aproximacién si y sélo si E' la tiene.
También estudiaremos condiciones necesarias y suficientes para que (H(F), ) tenga la
propiedad de aproximacion cuando 7 = 74,7, 0 7s5. Estos resultados los ejemplificare-
mos usando los espacios £; y ¢. Veremos que H(¢;) tiene la propiedad de aproximacién
cuando al espacio se lo dota de cualquiera de las topologias mencionadas anteriormente,
mientras que (H(¢3), ) no tiene la propiedad de aproximacién para 7 = 74,7, 0 T5. Por
ultimo, comentaremos brevemente el trabajo de J. Mujica, [15], que estudia la propiedad
de aproximacion en H*®(U), el espacio de funciones holomorfas acotadas sobre un con-
junto U C E abierto. Este trabajo nos resulta de interés ya que utiliza un métodos de
linealizacion para estudiar la propiedad de aproximacion. Se mostraran condiciones nece-
sarias para que H*™(U) tenga la propiedad de aproximacién. Hoy en dia, las condiciones
suficientes no son conocidas. Es mds, si A es el disco de C, es desconocido si H*(A) tiene

la propiedad de aproximacion.

I1



1. Espacios localmente convexos

En este trabajo estamos interesados en ciertas topologias definidas sobre espacios de
funciones que respeten la estructura algebraica. Mds precisamente, nos enfocaremos en
espacios de funciones holomorfas definidas sobre un espacio de Banach. La necesidad de
trabajar con estas topologias surge del hecho de que el espacio de funciones holomorfas
con las topologias cldsicas no resulta ser un espacio de Banach, pero suele constituir un
espacio de Fréchet.

En lo que sigue, salvo que se aclare lo contrario, / denotard un espacio vectorial sobre

un cuerpo K, donde K sera el cuerpo de niimeros reales o complejos.

1.1. Topologias en espacios vectoriales

Para un espacio vectorial F, es de esperar que los entornos de un punto x € F estén
determinados por los entornos del origen via la traslacion en x. Una de las clases mas
importantes y ttiles de este tipo de topologias son las localmente convexas, que son
aquellas que tienen una base de entornos convexos y que describiremos con detalle en esta
seccion. Un ejemplo clasico de topologia localmente convexa sobre un espacio vectorial
normado es la topologia débil.

Un espacio puede admitir diferentes toplogias. Si 7, y 7, definen dos topologias para F,
diremos que 7 es mds fina que T si todos los abiertos de 75 son también abiertos de 7.
Esto es, 71 tiene “mads” abiertos que 7, admitiendo que puedan tener los mismos abiertos.
En términos de bases de abiertos, 71 es mas fina que 7, si para cada x € E todo abierto
de una base de entornos de x de 75, es un entorno de x para la topologia 7,. Para destacar
que 7o tiene “menos” abiertos que 7 diremos que Ty es mds gruesa que 1. Asi como es
posible que dos toplogias comparables sean idénticas, también es posible tener sobre F
dos topologia no comparables. En este caso, cada una tendra un abierto que no lo es para

la otra. Es momento oportuno introducir algunas definiciones.

Definicién 1.1.1 Sea E un espacio vectorial. Una topologia T en E se dice compatible
con la estructura algebraica de E si las operaciones «suma» y «producto por escalar» son
continuas con esta topologia. Un espacio vectorial topoldgico (F,T) es un espacio vectorial

E con una topologia compatible 7.

Observacién En este caso, si v € E y U es un entorno del origen, x + U resulta
un entorno de z. Reciprocamente, todo entorno de x produce un entorno del origen al
trasladarlo en —z. Luego, para definir una base de entornos de una topologia de un espacio
vectorial topolégico, basta definir una base de entornos del origen, a los que llamaremos,

simplemente, entornos a menos que otra aclaracién sea necesaria.



Definicién 1.1.2 Un espacio localmente convezo (E,T) es un espacio vectorial topoldgico

que tiene una base de entornos del origen convexos.

Definicion 1.1.3 Sea E un espacio vectorial y A C E un subconjunto. A se dice absolu-
tamente convexo si para todo par de puntos x,y € A se cumple que A\x + py € A cuando
Al + |p| < 1.

De la definicién se deduce que un conjunto es absolutamente convexo si y sélo si es

convexo y equilibrado.

Definicién 1.1.4 Sea E un espacio vectorial. Un subconjunto A de E se dice absorbente

si para todo x € E existe A > 0 tal que © € pA para todo p tal que || > A.

Si sobre un espacio vectorial E estd definida una norma |||, el conjunto By definido
por Bg = {x € E:||z|| < 1} es absolutamente convexo y absorbente.

El siguiente teorema da una caracterizacion de los entornos de un espacio local-
mente convexo. También muestra como dada una familia de subconjuntos con ciertas
propiedades, podemos hacer de un espacio vectorial, un espacio localmente convexo. Una

demostracién puede verse en [18].

Teorema 1.1.5 Todo espacio localmente convexo tiene una base de entornos U con las

stguientes propiedades:
(a) SiU e U,V €U, entonces existe W € U tal que W CUNV;
(b)y SiU eU y \#0, entonces \U € U;
(¢) Cada U € U es absolutamente convezo y absorbente.

Reciprocamente, dada una coleccion U no vacia de subconjuntos de un espacio vectorial
E con las propiedades (a), (b) v (c), existe una topologia T tal que (E,T) es un espacio

localmente convexo con U una base de entornos.

Cuando no haya confusion, al espacio localmente convexo (F,7) lo notaremos simple-
mente por F.
El siguiente resultado, cuya demostarcién puede verse en [16], formaliza la manera de

comparar dos topologias a partir de sus bases de entornos.

Lema 1.1.6 Sea E un espacio vectorial y sean 71 y o dos topologias sobre E que lo hacen
un espacio vectorial topoldgico. St By y By son bases de entornos de 1 y 1o respectivamente,

entonces son equivalentes:



(a) 7o es mas fina que 1.
(b) Para cada Vi € By existe Vy € By tal que Vo C V7.

Ahora podemos establecer el siguiente resultado que nos permitird definir distintas

topologias sobre un espacio vectorial.

Corolario 1.1.7 Sea V una coleccion de conjuntos absolutamente converos y absorbentes
de un espacio vectorial E. Entonces, existe una topologia en E compatible con la estructura
algebraica tal que cada conjunto de V es un entorno. La topologia mds gruesa que cumple

esta propiedad, a la que llamaremos n, viene dada por una base de entornos de la forma

U={e [| Vi:e>0,V;eV,i=1,...,n}.

1<i<n

En particular, (E,n) resulta un espacio localmente convexo.

Demostracién: La existencia de una topologia compatible con la estructura algebraica
de E para la cual cada conjunto en V es un entorno estd asegurada ya que los conjuntos
U cumplen con las propiedades (a), (b) y (¢) del Teorema 1.1.5. Veamos que resulta ser la
menor topologia que hace que los conjuntos de V sean entornos. Sea 7 una topologia con
base de entornos B tal que cada elemento de V es un entorno. Si Vi,...,V,, € V entonces

existe U € B tal que U C (),,<,, Vi- Por el lema anterior 1 es mas gruesa que 7. [

En particular, si se cumple que [),o, V' = {0}, la topologia resulta Hausdorff. Esto
es, dados dos puntos x1, xo distintos del espacio, existen dos abiertos Vi, V5 de la base de
entornos que los separa, es decir, (x1 + V1) N (22 4+ V3) = 0. De ahora en més, cada vez que
hablemos de un espacio localmente convexo, asumimiremos que el espacio es Hausdorff.
En lo que sigue enunciaremos los ejemplos mas conocidos de espacios localmente convexos.
Si E es un espacio localmente convexo, notaremos con E* al dual algebraico de E, el
conjunto de todas las funciones lineales de F en el cuerpo K. El espacio dual de F,

denotado E’, es el subconjunto de E* de todas las funciones lineales y continuas.
Ejemplos 1.1.8

1. Si sobre el espacio vectorial E estd definida una distancia d invariante por trasla-
ciones, esto es d(x + y,z + y) = d(x, z) para todo z,y,z € E, y consideramos los
conjuntos V, = {z € E:d(z,0) < r}, la familia ¥V = {V, : » € Q} cumple con
las propiedades del Corolario 1.1.7. La topologia generada por esta familia tiene
una base de entornos numerable y hace de F un espacio localmente convexo. Estos
espacios son los espacios metrizables y si resultan completos con esta topologia se

denominan espacios de Frechét.



2. Si sobre el espacio vectorial E estd definida una norma ||.||, el conjunto By cumple
las hipétesis del corolario anterior. Los conjuntos ABg con A > 0 forman una base
de entornos y define sobre E un espacio localmente convexo. Estos son los espacios
normados y los notaremos por (F,||.]|). Si (E,||.]|) es completo, es decir, que toda

sucesion de Cauchy es convergente, se llaman espacios de Banach.

3. Si E es un espacio localmente convexo y la familia V esta formada por todos los
conjuntos de la forma V,, = {z € E:|2'(z)| < 1} con 2’ € E', los conjuntos de la
forma

U={reE: sup |v}(r)] <L;a),...,2, € E'}

Jj=1,...,n
forman una base de entornos de una topologia que hace a E un espacio localmente
convexo. A esta topologia la denominamos topologia débil y la notamos o(F, E') y,

en general, al espacio E con esta topologia lo notamos (E, w).

4. Si F’ es el dual de un espacio localmente convexo F, la familia ¥V C E’ formada por
los conjnutos V, = {2’ € E’:|z'(z)| < 1} cumplen las condiciones del Corolario 1.1.7.

Los conjuntos de la forma

U={z"€ E" sup |2'(z;)| <1l;z4,...,2, € E}
7j=1,...,n

forman una base de entornos de una topologia, haciendo de E’ un espacio localmente
convexo. Esta topologia se denomina topologia débil* y la notamos como o(E', E).

A E' con esta topologia lo notamos (E', w*).

Los entornos de un espacio localmente convexo vienen dados por seminormas. En efec-
to, veremos que para definir una topologia de un espacio localmente convexo es equivalente
dar una base de entornos que dar una familia de seminormas continuas. Recordemos la

definicién de seminormas:

Definicion 1.1.9 Sea E un espacio vectorial. Una funcion p: E — R se la llama semi-

norma si satisface:
(a) p(z) > 0 para todo © € E;
(b) p(Az) = |Ap(x) para todo A € K,z € E;

(c) plz+y) < p(x) +ply) para todo z,y € E.

Proposicion 1.1.10 Sea E un espacio vectorial. Entonces:



(a) Sip es una seminorma de E y A > 0, los conjuntos {z:p(x) < A\} y {z:p(z) < A}

son absolutamnete converos y absorbentes.

(b) Cada conjunto A C E absolutamente convezo y absorbente estd asociado a la semi-
norma p, definida por

p(x) =inf{\: A >0,z € AA}

y con la propiedad
{z:p(zx) <1} CAC {a:p(z) < 1}.

Esta seminorma p se la llama la funcional de Minkowski de A.

Demostracién:

(a) Veamos primero que {z:p(z) < A} es absolutamente convexo. Tomemos z1, x5 en

{z:p(x) <A}y p, pe € Kcon ||+ |po| < 1. Luego,

Py + powa) < [ |p(o1) + |p2lp(z2) < Alp] + [pa]) <A

Para ver que {z:p(x) < A} es absorbente, tomemos z € E. Si p(x) = 0 no hay nada
que probar, si p(x) > 0, para todo p > A7'p(z), se tiene que p(p~'z) = = 'p(z) < A
Luego p 'z € {z:p(z) < A}, es decir z € p{z:p(z) < A}

(b) Como A es absorbente, p(x) esta bien definida para todo z € E. Las demostraciones

de que p es una seminorma y que valen las inclusiones son standard.

Con lo hecho, se obtiene en forma inmediata la siguiente proposicion.

Proposicién 1.1.11 Sea E un espacio localmente convexo y U C E un conjunto abso-
lutamente convexo y abosrbente. Si p es la funcional de Minkowski de U, entonces p es

continua st y solo st U es un entorno de F.

Finalmente podemos asociar familias de seminormas con topologias localmente con-

vexas.

Proposiciéon 1.1.12 Sea E espacio vectorial, entonces:

(a) Dada P una familia de seminormas, existe una topologia sobre E para la cudl cada
seminorma de P es continua. Ademds, E resulta un espacio localmente convexo con

los entornos asociados a las seminormas de P.



(b) Si (E,T) es un espacio localmente convezo y P es el conjunto de todas las seminor-

mas continuas para T, los conjuntos {x:p(z) < 1} con p € P definen a 7.

Demostracién:

(a) Por la Proposicién 1.1.10, dado A > 0, los conjuntos {z:p(z) < A} y {z:p(z) < A}
son absolutamente convexos y absorbentes para toda p € P. La existencia de la

topologia se deduce del Corolario 1.1.7.

(b) Si(F,7) es un espacio localmente convexo y P es el conjunto de todas las seminormas
continuas, de la Proposiciones 1.1.10 y 1.1.11 se deduce que P es el conjunto de las
funcionales de Minkowski de cada entorno de E. La topologia generada por los
conjuntos {x:p(x) < 1} y la generada por {z:p(z) < 1} con p € P coinciden
ya que cada seminorma p es continua. Luego, por la Proposicién 1.1.10, resulta
que para cada entorno U de 7, y p la funcional de Minkowski de U, se cumple
que {z:p(x) < 1} C U C {x:p(xr) < 1}. Aplicando el Lema 1.1.6 queda que los
conjuntos {z:p(x) < 1} con p € P generan la topologia 7.

1.2. Topologias polares

En esta seccion vamos a ver distintas topologias que se le pueden dar al dual de un
espacio localmente convexo, denominadas topologias polares. Veremos también que todo
espacio localmente convexo es el dual de otro y la topologia que lo hace localmente con-

vexo en una topologia polar.

En lo que sigue, mostraremos que todo espacio localmente convexo E admite una
topologia mas gruesa que la original para la cudl el dual de E con esta nueva topologia

es un subespacio F* donde F* C E*, para esto usaremos el siguiente resultado elemental:

Lema 1.2.1 Sea E un espacio vectorial y @, p1,...,0, € E*. Si keryp D ﬂ1<j<n ker ¢,
entonces existen Ay, ..., A\, € K tal que p = Z?Zl Ajp;.

Proposicion 1.2.2 Sea E un espacio localmente convexo y sea F* subespacio de E* que

contiene a E'.

(a) Para cada ¢ € F*, la funcion dada por p(x) = |p(x)| define una seminorma en E y

Vo, ={z € E:|p(x)| <1} es un conjunto absolutamente convero y absorbente.



(b)

(c)

Existe una topologia que hace de E un espacio localmente convezxo, para la cual
los conjuntos Vi, son entornos. La base de entornos de la topologia mds gruesa que

cumple esta propiedad viene dada por los conjuntos

U={z€E: sup |p;(z)| <Ligr,...,0n € F'}

1=1,....,n

Esta topologia serd notada o(E, F*) y hace de E un espacio localmente convezxo.

El dual de E bajo la topologia o(E, F*) es F* y esta es la topologia mds gruesa que

se le puede dar a E para que el dual sea ™.

Demostracién:

(a)

(b)

La linealidad de ¢ muestra que p es una seminorma. Luego V,, es absolutamente

convexo y absorbente gracias a la Proposicion 1.1.10.

Aplicando el Corolario 1.1.7 a la familia V = {V,,: ¢ € F*} obtenemos la existencia

de la topologia o(F, F*) y la descripcién de su base de entornos.

Es claro que si ¢ € F™*, entonces ¢ es o(F, F*)-continua. Reciprocamente, si ¢ es
una funcional de E o(E, F*)-continua, entonces existe un o(E, F'*)-entorno

U={ze€E: sup |pi(z)] <1ipr,...on € F'},

i=1,...,n

tal que |[¢(U)| < 1. Si € (., ker ¢;, entonces Az € U para todo A > 0, luego
l(Az)| < 1 para todo A > 0, es decir |[¢(z)] < § para todo A > 0. Se sigue
que ker¢p D (i, kerg; y por el Lema 1.2.1 existen Aj,..., A, € K tal que ¢ =
> Aiws. Por lo tanto ¢ € F*.

Falta ver que esta es la topologia mas gruesa para la cudl F* es el dual de E. Sea
@ € F*, sl @ es continua bajo una topologia 7 de E, entonces existe U entorno de la
topologia 7 tal que |¢(U)| < 1. Luego U C V,, y por la Proposiciéon 1.1.6 7 es maés
fina que o(E, F*).

Observaciones

1.

La proposicién anterior generaliza la definicion de topologia débil. En efecto, si
tomamos F* = E’', obtenemos o(E, E') y de la proposicién se deduce también que

es la topologia més gruesa para la cudl el dual de (E,0(E,E")) es E'.



2. Dado un espacio localmente convexo £ con dual E’, consideramos la forma bilineal

(-,): E x E' = K dada por (z,2') = 2'(z) paraz € E y 2’ € E'. Se cumple que:

e Si (z,z'y = 0 para todo x € E, entonces z' = (.

e Si (z,2') = 0 para todo 2z’ € E', entonces z = 0.

Estas son las propiedades que satisface un par dual. La primera propiedad es trivial,
mientras que la segunda se debe al Teorena de Hahn-Banach. Asi, E resulta alge-
braicamente isomorfo a un subespacio de E™* via la aplicacién .J : E — E"™ dada por
J(xz) =< x,- >. De esta manera, a E’ se le puede dar una topologia que lo convierte
en un espacio localmente convexo y cuyo dual es J(FE) y, de esta forma, se obtiene
la topologia o(E', E).

Segun la Proposicién 1.2.2 y la observacién 2, a £’ se le puede dar una topologia
localmente convexa a partir de una colecciéon de conjuntos de E. Mdas auin, distintas
colecciones de conjuntos de E producen en E' distintas topologias localmente convexas.

Para ver esto con mas detalle, necesitamos la nocién de conjunto polar.

Definiciéon 1.2.3 Sea E un espacio localmente convexo y sea F* un subespacio de E*
que contiene a E'. Si A C E, el polar de A tomado en F* serd el conjunto de F* dado
por Ay, ={p € F*:[(z,p)| <1 Vz € A}

Notar que Af. es o(F™*, E)-cerrado, puesto que A%. = [\, ca{e € F*: |(z,¢)| < 1}
Ademds Aj. es un conjunto absolutamente convexo, aun cuando A no lo sea. El menor
conjunto absolutamente convexo que contiene a A es su cdpsula convexa equilibrada que
notaremos por coe(A). En particular, si E' es un espacio normado y (,)nen €s una sucesion
acotada entonces se tiene que coe ((Tn),en) = {25701 Tn; Ay [+ +[Am| <1, m € N}y
su clausura coe ((2,),cn) = { Dot Tndns [A1]+[Ao|+- -+ < 1}. En la siguiente proposicién
damos las propiedades elementales relacionadas con el polar de un conjunto asociado a
F* un subespacio de E*. Las demostraciones correspondientes son sencillas y vamos a

omitirlas.

Proposicion 1.2.4 Sea E un espacio localmente convexo con dual E', sea F* un subespa-

cio de E* que contiene a E' y sea A C E. Entonces se satisfacen las siguientes propiedades:
(a) A%. es absolutamente convexo y o(F*, E)-cerrado.
(b) Si A C B, entonces B3 C A%..

(¢) Si A#0, entonces (AA)% = (ﬁ)A}*



(d) Si(An)aer C E, entonces (Uyer Aa)ie = Naer (Aa) i -

(e) A%. = (coe(A))5-.

(f) A% = (A)5-.
En general, cuando hablemos del polar de un conjunto A C E, nos referimos al polar
tomado en E’, en tal caso notamos a Aj, como A°.
Hay una manera tutil de describir el dual de un espacio localmente convexo F a partir

de los conjuntos polares de una base de entornos de FE.

Proposicién 1.2.5 Sea (E,T) un espacio localmente convexo y sea U una base de en-

tornos de 7. Entonces (E,7)" = Uyey Up-

Demostracién: Sea z* € E*, 2* es continua si y sélo si existe U € U tal que |{(x,z*)| <1

para todo x € U. Es decir, si y solo si z* € Up.. O

Para los subconjuntos A C FE absorbentes, el siguiente resultado da una forma de

caracterizar su polar via la funcional de Minkowski de A.

Proposicién 1.2.6 Sea E un espacio localmente convero y sea A C E absorbente. FEn-
tonces A° = {2’ € E": |(x,2")| < p(x), Yo € E}, donde p es la funcional de Minkowski de
A.

Demostracién: Si 2’ € E' es tal que |[(x,2')| < p(x) para todo x € E, entonces se cumple
que |{(z,z"y| <1 Vx € A, puesto que p(z) < 1siz € A. Luego 2’ € A°.
Siaz’ € A°y x € F, al ser A absorbente, p(z) esta bien definido y por lo tanto para

todo & > 0, ;5= € A. Luego |<p(x”§+€,x’>| < 1. Se sigue que |[(z,2')| < p(x) + € para

todo € > 0. Es decir, A° C {2’ € E": |{z,2)| < p(z) Vz € E}. O
De esta manera, cada elemento de A° estd acotado por la funcional de Minkowski de
A. Esta estrecha relaciéon que percibimos entre un conjunto de un espacio y su polar en
el espacio dual nos permitird, un poco mas adelante, dar una topolgia convexa en £’ por
medio de ciertos entornos de la topologia de F.
Como vimos, toda familia V de conjuntos absolutamente convexos y absorbentes de un
espacio vectorial, tiene asociada una topologia localmente convexa. La menor de estas
topologias tiene una base de entornos como se describe en el Colorario 1.1.7. Ahora bien,
si el espacio vectorial es E', se tiene que A° es absolutamente convexo en E’ cualquiera
sea A C FE. Queremos ver qué propiedad debe cumplir A para que su polar sea ab-
sorbente y asi podremos definir una topologia en E’ que lo hace localmente convexo. En
la Proposicion 1.2.8 caracterizaremos a los conjuntos de £ con la propiedad deseada. Para

eso necesitaremos la siguiente definicion:



Definicién 1.2.7 Sea E un espacio localmente convero y U una base de entornos de E.
Un conjunto A C E se dice acotado si para cada U € U existe A > 0 tal que A C pU para
todo || > A.

Proposicion 1.2.8 Sea E un espacio localmente convero con dual E' y sea A C E. Son

equivalentes:
(a) A eso(E,E")-acotado;
(b) p'(a') = sup{|[{x,2")|:x € A} es una seminorma en E';
(c) A° es un conjunto absorbente en E'.

Demostracién:

(a)=-(b) Basta ver la buena definiciéon de p'. Si 2’ € E', V ={z € E : |(z,2")| < 1} es un
o(E, E")-entorno y, como A es o(F, E')-acotado, existe A > 0 tal que A C pV para

todo |u| > A. Luego, fijando p = [A| + 1, para todo = € A, [(},2')] < 1y, por lo
tanto, el conjunto {|(z,z')|,x € A} esta acotado por |A| + 1y p’ estd bien definida.

(b)=(c) Sea ' € E'. Si 2’ € A° no hay nada que probar. Si &’ ¢ A°, tomemos z € A

m/
R ACH)
para todo |u| > p'(z') y A° es absorbente.

arbitrario. Se tiene |(x ) < 1y por tanto ,f”',) € A°. Se sigue que z' € pA°

p'(x

(c)=-(a) Veamos que dado un o(E, E')-entorno U, existe un A > 0 tal que A C pU para todo
|| > A. Basta probarlo para una base de entornos de o(E, E'). Sean 2, ...,z € £
tales que U = {z € F : [(z,2)| < 1,j =1,...,n}. Como A° es absorbente, existe
A > 0 tal que zf,... 2], € pA° para todo |u| > A. Por lo tanto si x € A resulta
que \(x,%)\ <1 para todo j = 1,...,n. Luego \(%,xé)] <1 paratodo j=1,...,n.
Asi se ve que A C pU para todo [p| > .

O

Vimos que, dada A una familia de conjuntos de E o(FE, E')-acotados, las Proposi-
ciones 1.2.4 y 1.2.8 garantizan la existencia de una familia de conjuntos absolutamente
convexos y absorbentes en E’, A°, formada por los conjuntos A°, con A € A. Esta familia
permite definir, por el Corolario 1.1.7, una topologia 7’ sobre E’ para la cual los conjuntos
A° con A € A son entornos del origen. Visto esto y usando la misma notacién, podemos

dar las topologias polares:

Definicién 1.2.9 Sea E un espacio localmente convexo con dual E' y sea A una familia
de conjuntos de E, o(E, E')-acotados. Llamamos topologia polar asociada a A a la menor

topologia en E' que contiene a todos los conjuntos de A°.
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Cada familia A de conjuntos o(FE, E')-acotados, define una una topologéa polar, que
también llamaremos topologia de la convergencia uniforme sobre los conjuntos de A o la

topologia de la A-convergencia. Una base de entornos de esta topologia viene dada por

e[ A4=E" 1 4), e>04¢cA

1<i<n 1<i<n
Observaciones

1. Sea (2!,)aecr en E' una red que converge a un punto z’ en la topologia de la A- con-
vergencia. Luego, dado A € Ay e > 0, existe ap € I" tal que si a > o, l, —2' € € A°.
Es decir [(z, 2], — z')| < ¢ para todo z € A. Resulta que si una red en £’ converge
en la topologia de la A-convergencia, converge uniformemente sobre cada A € A.
Por eso la topologia polar asociada a A recibe el nombre de convergencia uniforme

sobre los conjuntos de A.
2. Generalmente, la familia A cumple las propiedades:

Bl: SiAe Ay B € A, entonces existe C' € A tal que AUB C C.
B2: Si A€ Ay A esun escalar, entonces \A € A.

B3: Span |J,.4A4 = E. Es decir, si # € I, entonces existen Ay,..., 4, € Ay

A, ..., A, escalares tal que x = Z?Zl Ajz; para algunos z; € A;,j =1,...,n.

Las propiedades Bl y B2 nos aseguran que los polares de A forman una base de
entornos de la topologfa de la A-convergencia. En efecto, sie [, ..., A7 es un entorno
de la topologia de la A-convergencia, luego existe C' € A tal quieies_1 Uicic, 4i CC
y por la Proposicién 1.2.4, C° C (), ,,, A. Aplicando el Lema 1.1.6 se ve que A°

es una base de entornos de la topologia.

La propiedad B3 es condicién suficiente para que la topologia de la A-convergencia
sea mas fina que la débil*. Llamemos 7 a la topologia de la A-convergenica y veamos
que E estd incluido en el dual de (E’,7). Como la topologia débil* es las més
gruesa para la cudl E estd incluido en el dual de E', resulta que a topologia de

A-convergencia es mas fina que la topologia débil*.

Sea x = 2?21 Ajzj con x; € A5 = 1,...,n. Dado £ > 0, consideremos el con-
junto U = 6(,¢jc, A5, con 6 > 0 a determinar. Si 2’ € U se tiene la desigualdad
(S Ay )] < S Il ) < 630, [l Basta tomar 6 < 5ot
que |(z,z")| < e para todo 2’ € U. Luego F C (E',7)". En particular, como la

para

topologia débil* es Hausdorff, la topologia de la A-convergencia resulta Hausdorff.
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3. Sin pérdida de generalidad, podemos asumir que los conjutos A € A son absoluta-
mente convexos y o(E, E')-cerrados ya que, por la Proposiciéon 1.2.4, A y coe(A)

tienen los mismos polares.

4. La topologia de la A-convergencia se puede describir mediante seminormas. Si el
conjunto A cumple con las propiedades B1, B2 y B3, una base de entornos de la
topologia de la A-convergencia son los conjuntos A° con A € A y sus funcionales
de Minkowski pueden expresarse en términos de A. En efecto, si p/; es la funcional
de Minkowski de A° se tiene que

Pa(’) = inf{A\:A>0,2" € \A°}
= inf{\:X>0,2' € (A)°}
= Inf{A:A>0,[(,2")| <1Ve e A}
= nf{\:A>0,[{(z,2")| <\, Vo € A}
= sup{|(z,2)]:2 € A}

Por la Proposicién 1.1.10 p', es seminorma y A° = {z' € E":p/,(¢') < 1} y por
la Proposicién 1.1.12 la familia de seminormas {p';} ac4 definen la topologia de la

A-convergencia.

Ejemplos 1.2.10 Los siguientes ejemplos muestran las topologias polares mds distin-

guidas.

1. En el caso que la familia A es la familia de todos los conjuntos finitos de F, la
topologia de la A-convergencia es la topologia débil* debido a que ambas estan

definida por los mismos entornos:

{x' € E' : sup [{z;,2")| < 1,21,...,2, € E}.

Bajo esta topologia una red (z)).cr converge a z' si y sélo si (z,x]) converge a

(x,2') para todo x € E.

2. Si A; es una familia de conjuntos débil acotados de F' y A, es una sub-familia de
Aj, la topologia de la A;- convergencia es mas fina que la topologia de la As- con-
vergencia. Por esto, la topologia polar mas fina se obtiene cuando A es la familia de
todos los conjuntos débil acotados de E. A esta topologia se la denomina topologia
fuerte y se denota con S(E', E).

3. Si A esta formado por todos los conjuntos absolutamente convexos y compactos, A
cumple las propiedades B1, B2 y B3. Es claro que cumplen B2 y B3. La propiedad
B1 se cumple ya que si A y B son conjuntos absolutamente convexos y compactos,
m es un subconjunto cerrado de A 4+ B que es compacto. Esta topologia

es una topologia intermedia entre la débil* y la fuerte.
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En general, no es cierto que en todo espacio localmente convexo la capsula absoluta-
mente convexa cerrada de un conjunto compacto sea compacta. Si esto ocurre, la topologia
polar de la convergencia sobre los compactos coincide con la topologia polar de la conver-
gencia sobre los absolutamente convexos y compactos. Nosotros usaremos en particular
el dual de un espacio localmente convexo E dotado con la topologia de la convergencia
uniforme sobre conjuntos absolutamente convexos y compactos que notaremos por E!.

El siguiente teorema permitird calcular mas adelante el dual de un espacio localmente

convexo cuando tiene una topologia polar.

Teorema 1.2.11 Sea E un espacio localmente convexo con dual E', A C E y sea F' un

subespacio de E™ que contiene a E. Entonces el bipolar de A tomado en F, Ay = (A°)%,

es la clausura en o(F, E') de coe(A) (el primer polar se toma en E').

Demostracién: Sea B = coe(A) donde la clausura se toma en o(F, E'). Por la Proposi-
cién 1.2.4, A C AY. Ademads, AY es o(F, E')-cerrado y absolutamente convexo. Luego
B C A¥. Sia ¢ B, por el Teorema de Hahn-Banach, existe 2’ € E’ tal que {(a,z') > 1y
|{(z,2")| <1 para todo z € B. Como A C B, entonces ' € A° y, por lo tanto, a ¢ A%. Se
concluye que Ay C B, de donde A} = B. O

Como aplicacién del resultado anterior, podremos describir el dual de E!. Para ello

necesitaremos el siguiente lema.

Lema 1.2.12 Sea E un espacio localmente convexo con dual E'. Si K C E es absoluta-

mente convexo y compacto, entonces K°° = K.

Demostracion: Por el Teorema 1.2.11, como K es absolutamente convexo, K°° es la
o(E™, E')-clausura de K. Dado que K es compacto en E, es o(E, E')-compacto. Como
o(E™, E') induce en FE la topologia o(FE, E'), resulta que K es o(E"™, E')-compacto. Por
lo tanto o(E"™, E')-cerrado. Luego K°*° = K. O

Proposiciéon 1.2.13 Sea E un espacio localmente convexo con dual E'. Entonces se tiene
la igualdad (E.)' = E.

Demostraciéon: Sea K la familia de todos los conjuntos absolutamente convexos y com-
pactos de E. Los entornos en E! son los conjuntos K° donde K € K . Entonces por
la Proposicion 1.2.5 (E])" = e K°°. Por el lema anterior, (E]) = |Jycc K. Por la
propiedad B3, sabemos que 2 = Span |J K. Entonces si x € F, existe Ky,..., K,
tal que x € K; 4+ --- + K, y, como la suma de conjuntos absolutamente convexos y com-
pactos es absolutamente convexo y compacto, resulta que K;+---+ K,, € K. Por lo tanto

E = Span Ugexe K = Uger K = (£))', como se queria ver. O
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Usando técnicas similares a las de la proposicién anterior, veremos que si (E,7) es

un espacio localmente convexo, entonces 7 es una topologia polar. Antes necesitaremos la

siguiente definicién.

Definicién 1.2.14 Sea E un espacio localmente convexo con dual E'. Un conjunto A" de

E' se dice equicontinuo si para cada X > 0 existe un entorno U C E tal que (U, 2")| < A

para todo x' € A’.

Proposicién 1.2.15 Sea (F, ) un espacio localmente convero con dual E' y sea U una

base de entornos cerrados absolutamente convezos de 7. Entonces,

(a)
(b)
(c)

Si tomamos U = (U°)%,, se tiene U = U para todo U € Y.
Si A" C E' es equicontinuo, entonces existe U € U tal que A" C U°.

7 es la topologia de la convergencia uniforme sobre los conjuntos equicontinuos de
EI

Demostracién:

(a)

Dado U € U, U C U*°. Veamos la otra inclusién. Si y ¢ U, por el Teorema de
Hahn-Banach, existe 2’ € E’ tal que (y,2") > 1y |[(z,2")] < 1 para todo x € U.
Luego z' € U°, implicando que y ¢ U®°. Asi, U C U y vale U*° = U.

Si A’ C E es equicontinuo, existe U € U tal que |(U,z")| < 1 para todo 2’ € A'.
Luego A" C U°.

Por el item (a), 7 es la topologia de la convergecia uniforme sobre los conjuntos U°
con U € U. Como cada conjunto U° es equicontinuo, 7 es mds gruesa que la topologia
de la convergencia uniforme sobre los conjuntos equicontinuos de E’. Veamos que
ambas topologias coinciden. Por el item (b), si A" es equicontinuo, existe U € U tal
que A" C U°. Por la Proposicién 1.2.4 y el item (a), U C A’ y, por el Corolario
1.1.6, la topologia de la convergencia uniforme sobre los conjuntos equicontinuos de

E' es mas gruesa que 7, de donde se sigue el resultado.

U

Es posible calcular la funcional de Minkowski de un entorno en E en términos de ele-

mentos de E'. Usaremos esta caracterizacion mas adelante, cuando hablemos de topologias

localmente convexas en el espacio de operadores continuos. Cuando =’ € E’ y p una semi-

norma en E cumplan que |(z,z')| < p(z) para todo = € E usaremos la notacién |z'| < p,

con desigualdad estricta cuando sea el caso.

14



Proposicion 1.2.16 Sea E un espacio localmente convexo y sea U C E wun entorno
absolutamente convezo, cerrado y absorbente. Entonces si p es la funcional de Minkowsk:
de U se tiene p(x) = sup{|{z, 2")|: |2'| < p}.
Demostracién: Sea » € E y pongamos a = p(z). Dado € > 0, ;= € U = U* por la
Proposicién 1.2.15. Entonces, (-7, 2")| < 1 para todo 2’ € U® y, por la Proposicién 1.2.6,
obtenemos que |[(z,z')| < a + € para todo |2/| < p. Haciendo tender € a 0, tenemos que
sup{|(z, 2)|: |2'| < p} < p(z).

Ahora, si b = sup{[(z,2)|:[2| < p}, dado € > 0, [(;;,2)| < 1 para todo z' € U”.

Luego 3= € U*® = U, por la Proposicién 1.2.6. Queda asi que p(z) < b+ e para todo

e > 0y, por lo tanto, p(z) < sup{|(z,2')|: |2'| < p}; de donde se sigue la ignaldad. O

1.3. Topologias en el espacio de operadores lineales

El conjunto de operadores lineales entre espacios vectoriales es en si mismo un espacio

vectorial. Si consideramos operadores entre espacios localmente convexos F vy F', tenemos
naturalmente asociada una nocién de continuidad. Diferentes topologias sobre E'y F' dan
diferentes conjuntos de operadores lineales continuos. En esta seccién vamos a estudiar
espacios de operadores asociados a topologias polares. Como es usual, notaremos por
L(E; F) al conjunto de los operadores lineales de E en F''y por L(E; F') al subconjunto
de operadores continuos.
Nuestro primer paso va a ser poder definir sobre L(E; F') una seminorma que involucre
conjuntos de las topologias de E' y de F' o seminormas asociadas. Siguiendo la literatura
tradicional en el tema, vamos a considerar conjuntos de E y seminormas sobre F' con la
menor cantidad de requisitos posible.

Dado A C F acotado y S una seminorma continua de F', vamos a dar una seminorma
Ba: L(E; F) — R. Estas seminormas son las que nos permitiran definir distintas topologias

localmente convexas en L(E; F).

Proposicion 1.3.1 Sean E y I’ espacios localmente converos, A C E acotado, sea 5 una

seminorma de F y sea T € L(E; F). Entonces:
(a) T(A) es acotado en F.
(b) B(T(A)) es acotado en K.

(c) Ba(T) =sup{B(T(z)):x € A} es una seminorma en L(F; F).

Demostracién:
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(a) Sea V un entorno de F', queremos ver que existe A > 0 tal que si |u| > )\, entonces
T(A) C uV. Como T es continuo, exite U entorno de £ tal que T(U) C V' y como
A C E es acotado, luego existe A > 0 tal que A C pU para todo |u| > A. Por ser T
lineal, T(A) C T(pU) = uT(U) C pV para todo |p| > A.

(b) SeaV ={x € F:p(x) < 1}. Como T(A) es acotado, existe A > 0 tal que T(A) C puV
para todo |u| > A. Por la Proposicién 1.1.10, 8(u~'T(A)) < 1 luego B(T(A)) < |ul.

(c) Por el item anterior, S4(T) estd bien definido, entonces es una seminorma.

O

Definicién 1.3.2 Sean E y I espacios localmente convexos, A una familia de conjuntos
acotados en E, y sea Q el conjuntos de todas las seminormas continuas en F'. Se define
en L(E; F) la topologia de la convergencia uniforme sobre A como la topologia generada

por las seminormas {fa: A € A, € Q}.

Observaciones

1. Si(T,)aer esunared en L(E; F') que converge a T con la topologia de la convergencia
uniforme sobre A, entonces [4(T, — T') converge a 0 para toda seminorma [,.
Resulta que, fijado A € A, T, (x) a converge T'(x) uniformemente para z € A. Esto

justifica el nombre de la topologia.

2. Si E'y F son espacios de Banach entonces la topologia de la convergencia uniforme

sobre A en L(FE; F) es la topologia usual de operadores entre espacios de Banach.

Si F y F son espacios localmente convexos con duales E' y F' respectivamente y T €
L(E; F) se tiene definida la forma bilineal en E x F' dada por (z,y') — (T'(x),y'). Esta
forma bilineal tiene asociada la funcional sobre E definida por x —— fr,(z) = (T'(z),y").

Esta funcional es unica ya que (E, E') y (F, F") son pares duales.

Definicién 1.3.3 Sean E y F espacios localmente convexos con dual E' y F' respecti-
vamente y sea T un operador lineal entre F y F. La traspuesta de T es un operador
T F'— E* tal que T'(y') = fr,y, es decir:

(@, T'(y")) = (T(x),y)

Si E'y F son espacios localmente convexos y T es un operador lineal entre E y F' nos

interesa saber cuando T'(F') C E' y, en ese caso, cudando T": F' — E' es continua.
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Proposicion 1.3.4 Sean E y I espacios localmente convexos con dual E' y F' respecti-

vamente y sea T € L(E; F). Son equivalentes:
(a) T es w-w continuo, esto es T: (E,0(E,E'") — (F,o(F, F")) es continuo.
(b) T'(F") C E".

Demostracién:

(a)=(b) Sea y' € F'. La composicién y' o T : (E,o(FE,E")) — K resulta continua. Para

y € F' se tiene,

y oT(z) = (T(x),y) = (&, T'(y)) = T'y)(x).

Entonces T'(y') es una funcional continua de E con la topologia débil, es decir
T'(y') € E.
(b)=-(a) Veamos que dado V' C F un o(F, F')-entorno, existe U C E un o(FE, E')-entorno tal
que T(U) CV.Sea V= {y € F: sup [{y,4.)| <1} con y},...,y., € F" un entorno
1<i<n

bésico. Como suponemos que T"(F') C E', podemos tomar el o(E, E')-entorno U

definido por U = {x € E: sup [{z,T'(y;))| < 1}. Si € U luego se tiene que

1<i<n
sup [(T(z),y)| = sup [{x,T'(y)))] < 1, concluyendo que T(U) € V y asi, T es
1<i<n 1<i<n
w — w continuo.

O

Proposicion 1.3.5 Sean E y I espacios localmente convexos con dual E' y F' respecti-

vamente y sea T € L(F; F) w-w continuo. Se tiene que:
(a) Si A C E, entonces T(A)° = (T")"1(A°).

(b) Si E' tiene la topologia de la A-convergencia y F' tiene la topologia de la T(A)-

convergencia, entonces 1" es continua.

Demostracion:

(a) La primera afirmacién es inmediata. En efecto, se tiene que

{y' e F':[(T(z),y)| <1V e A}
{y' € F':[{2,T"(y))] < 1 Va € A}
= {y e " T'(y) € A%} = (I") 1(A°).

T(A)
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(b) Como A € A es o(E, E')-acotado y T" w — w continuo, entonces T(A) o(F, F')-

acotado y, por lo tanto, la topologia en F' esta bien definida.

Sea U C E' el entorno U = e[ )., A7 con A;,..., A, € A. Luego si un entorno

de F' es V =¢(),c;<n I'(A:)°, por el item anterior se tiene que

T'V)ce [ T(T(A))=¢ () T'(T) (4) = [] 4 =U

1<i<n 1<i<n 1<i<n

y, por lo tanto, 7" es continua.

1.4. El e-Producto

El e-Producto entre dos espacios localmente convexos fue introducido por L. Schwartz
en 1957. Es una extension del producto tensorial entre espacios localmente convexos con
la topologia tensorial € y tiene una estrecha relacién con la propiedad de aproximacion,
como veremos en la Seccién 2. Mas aun, cuando uno de los espacios tiene la propiedad de
aproximacion, el e-producto entre dos espacios coincide con el producto tensorial de ellos.

Antes de dar la definicién y ver propiedades, vamos a necesitar el siguiente resultado

que, en el contexto de espacios localmente convexos, es equivalente al Teorema de Alaoglu.

Teorema 1.4.1 Sea E un espacio localmente convexo con dual E' y U C E un entorno.

Entonces, U° es o(FE', E)-compacto.

Demostracién: Consideremos F el conjunto de todas las funciones de E en el cuerpo K
yseaY =K¥ =[], . K= {w = (wg)ser:ws € K} dotado con la topologia producto.

Definimos ¥: F — Y por ¥(f) = (f(z)),. Afirmamos que ¥ es un isomorfismo alge-
braico. Claramente ¥ es lineal. Por otra parte, si definimos U: Y — F como ¥(w)(z) = w,
la coordenada x — ésima, resulta que Vol = Idr y Vo U = Idy. De donde ¥ es iso-
morfismo algebraico.

Para ver que U° es compacto, veremos que ¥(U®) es compacto y que U es abierta,
esto es W es continua.

Veamos primero que W(E*) es cerrado en Y. Para eso, consideremos para cada z,y € F

y cada A, p € K fijos, la funcién g, .5, Y — K dada por

giﬂ’%)\,u (CU) = w>\$+ﬂy - w}\m‘ - wuy.

Si mostramos que g, »,, €s continua para cada x,y € F'y para cada A, p € K, tendremos

que U(E*) es cerrado en Y puesto que podemos escribir ¥(FE*) = m g;’;,)\’u(O).
Ty B pelk
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Ahora bien, una red (w®),er converge a w en Y, que tiene la topologia producto,
si y solo si wl converge a w, para todo x € E. Por lo tanto, si z,y € E'y A\, u € K,
Gy (W) = WSty — AWE — [ CONVETEe A Wizt yy — AWz — fWy = Gz yau(w). De donde
se obtiene la continuidad de g, , para todo x,y € E, para todo A, u € K.

Como U es absorbente, por la Proposicién 1.2.6, si p es la funcional de Minkowski de
U tenemos que U° = {2’ € E": |{z,2")| < p(x) Yz € E}, luego

VY(U°) C{w € Y:|w,| <p(z), Vo€ E}.

Este ultimo conjunto es compacto por el Teorema de Tychonoff. Asi tenemos la igualdad
U(U°) =0 (E*)N{w e Y:|w| <p(z), Ve E}, con lo cual ¥(U°) es compacto.
Falta ver que U: E' — W(E') es abierta cuando E' tiene la topologia débil*. El teorema
queda demostrado, ya que U° es la imagen por una funcién continua de un compacto.
Sea V un o(E’, E) entorno basicode E', V = {2’ € E":sup |(z;,2")| <1, i=1,...,n}
con xy,...,x, € B Ast, U(V) =[], {c € Kife| <1} X [ epusa,. o, K que es un

abierto en la topologia producto. Luego ¥ es abierta, como queriamos demostrar. [

Proposicion 1.4.2 Sea E un espacio localmente convexo con dual E' y sea U C E
un entorno de E. Entonces U° es compacto en E!, el dual de E con la topologia de la

convergencia uniforme sobre los conjuntos absolutamente converos y compactos de FE.

Demostracién:

Como U° C E’ es equicontinuo, la topologia de la convergencia uniforme sobre conjun-
tos absolutamente convexos y compactos y la topologia o(E’, E) coinciden sobre U°. Por
el Teorema de Tychonoff, U° C (E',o(E', E)) es compacto, luego U°® C E! es compacto.

0

Observacién En la demostracién anterior comparamos la topologia o(E’, E) con la
de la convergencia uniforme sobre conjuntos absolutamente convexos y compactos. Este
resultado puede verse como una consecuencia del siguiente teorema mas general. Ver por
ejemplo [16].

Teorema 1.4.3 Sea X un espacio topoldgico e Y un espacio uniforme. Si A C C(X,Y)
es equicontinuo, entonces la topologia de la convergencia puntual y la topologia de la

convergencia sobre compactos coinciden.
Ahora tenemos todo listo para poder definir el e-producto.

Definicién 1.4.4 Sean E y F' espacios localmente converos con duales E' y F'. Se define
el e-producto de F' y E como el conjuto de todos los operadores lineales continuos de E.. en
F, dotado de la topologia de la convergencia uniforme sobre los conjuntos equicontinuos

de E'. FEste espacio serd notado por FeE o L (E!; F) indistintamente.
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Observaciones

1. Por la Proposicién 1.2.15, si A’ es equicontinuo, existe U entorno de E tal que
A" C U° y por la Proposicién 1.4.2, U° es compacto en E. y, por lo tanto, acotado.
Resulta que A’ es acotado en E!, luego la Definicién 1.3.2 asegura que la topologia

estd bien definida.

2. Haciendo la misma demostracién que se hizo en la Proposicién 1.2.15, item (c), se
ve que la definiciéon de FeE es equivalente si se toma la topologia de la convergen-
cia uniforme sobre los conjuntos U°, donde U varia sobre los entornos cerrados y

absolutamente convexos de E.

3. Hay una forma de describir las seminormas del e-producto. De la observacién anterior
y la Proposicién 1.3.2, las seminormas en EeF son fyo (1) = supycpo (1'(2')), con
B seminorma en F y U entorno absolutamente convexo y cerrado en FE. Por la
Proposicion 1.2.6, fyo(T) = sup{B(T(z')):|2'| < a}, donde « es la funcional de
Minkowski de U. Por la Proposicién 1.2.16, g(T(z")) = {|{T'(z"),v")|:|¥'| < B}.
Luego Bye(T) = sup{|{T(z"),y)|: |y'| < B,|z'| < a}. Debido a esta tltima igualdad,
las seminormas de F'eF las notamos aef. En resimen, las seminormas que generan

la topologia en FeFE son de la forma aef3, donde

aeB(T) = sup{[{T(2"),y)|: [y'| < B, ]| < a}
con « una seminorma continua de £ y [ una seminorma continua de F'

4. Un entorno W de FeE es de la forma W = {T" € L(E.; F):By-(T) < 1} con
U C E entorno absolutamente convexo y cerrado y # seminorma continua de F'.
El conjunto V' = {y € F:5(y) < 1} C F es un entorno absolutamente convexo y
cerradoy W ={T € L(E.; F): T(U°) C V}. Por lo tanto, una base de entornos de

FeFE viene dada por los conjuntos
W(U°,V)={T € L(E.; F): T(U°) C V'},

donde U y V varian sobre los entornos absolutamente convexos y cerrados de E y

F respectivamente.

5. En particular, por el Lema 1.2.12, usando que los entornos de E’ son los conjuntos K°
con K C F absolutamente convexo y compacto y que K°° = K, un entorno en FleF
es de la forma W(K,V) ={T € L(E;F): T(K) C V} con K C E absolutmente
convexo y compacto y V' C F' entorno en F' absolutamente convexo y cerrado.

De la misma forma que en el item anterior, se ve que EleF’, es el conjunto de los
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operadores lineales de E en F' dotado de la convergencia uniforme sobre los conjuntos

absolutamente convexos y compactos, que notaremos por L.(E; F')

6. Si 'y F son espacios normados, entonces FeFE es normado. En efecto, veamos que
Wi (U7, V1) un entorno en FeFE con U; entorno absolutamente convexo y cerrado
en F y V) entorno absolutamente convexo en F', es acotado. Esto es equivalente a
que F'eE es normado [18, Cap 3]. Tomemos Wy(Us, V3) otro entorno en FeE con
U, C Ey Vy C F entornos absolutamente convexos y cerrados. Al ser £ y F
normados, existen A\g > 0y ug > 0 tales que Uy C AU y Vi C uV, para todo
IAl > Xo y |pt| > po. Por la Proposicién 1.2.4, 1Us C U7y, por lo tanto se tiene

WUy, Vi) = {T € L(E;F):T(UY) C Vi)
c {T eL(E;F):T(Us) C Vi}
C {T € L(E; F):T(5U3)uVa}
= {T € L(E; F):5,T(U3) C Va}

Luego Wi (Up, Vi) C [Au|Wo(Us, V3) para todo A > Agpo, es decir Wi (U, V7)) es

acotado, como se queria ver.

Veamos ahora que F'eE es topoldgicamente isomorfo a FeF'.

Proposicién 1.4.5 (Schwartz) Sean E y F espacios localmente convezos y sea T € FeE.
Luego T'" € EeF'. Mas atn, al aplicacion V:T —— T" establece un isomorfismo topoldgico
entre FeFE y FeF'.

Demostracién:

SeaT € L(E!; F).Siy' € F',la aplicacién 2’ — (T'(z'), ') es una funcional continua
sobre E!. Debido a que (T(z'),y") = (', T'(y')), resulta que T'(y') € (E.)". Como, por la
Proposicién 1.2.13, (E!) = E, resulta que 7" € L(F', E). Por la Proposicién 1.2.15, si U
es una base de entornos absolutamente convexos y cerrados de £, F tiene la topologia de
la U°-convergencia. Por la Proposicién 1.3.5, 1" es continua si F” tiene la topologia de la
convergencia uniforme sobre los T(U?) con U € U. Por la Proposicién 1.4.2, U° es absolu-
tamente convexo y compacto en E! y, al ser T' continuo, T(U®) es absolutamente convexo
y compacto en F. Por lo tanto, como la topologia de la convergencia uniforme sobre los
conjuntos 7"(U°) con U € U en F’ es mds gruesa que la topologia de la convergencia
uniforme sobre los absolutamente convexos y compactos, se concluye que 7" € L(F., E).

La aplicacion ¥: FeEl — EeF dada por ¥(T) = T" es lineal y como T" = T, U es
isomofismo algebraico. Para ver que es un isomorfismo topolégico notemos que

pea(T") = sup{|(«", T"(y" )| |y'| < B, || < o}
= sup{[(T(),y"):ly'] < B, | < a}
= aef(T).
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Por lo tanto, si U = {T" € FeE:aef(T) < 1} vy V = {T € Eel": Bea(T) < 1} son
entornos de FeE y FeF respectivamente, entonces W(U) =V y (V) = U, de donde

se sigue el resultado. U
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2. Propiedad de aproximacion

La propiedad de aproximacién juega un rol fundamental en la teoria de estructuras
de espacios de Banach. El primer estudio sistemédtico sobre el tema puede adjudicarse a
Grothendieck y su trabajo de 1955, [11]. Esta propiedad surge relacionada con el con-
cepto de base de Schauder. Si un espacio de Banach E tiene base de Schauder entonces,
los operadores compactos a valores en F se pueden aproximar por operadores rango fini-
to, que son, de alguna manera, los operadores con propiedades mas cercanas a las de
las trasformaciones lineales entre espacios finito dimensionales. La pregunta reciproca,
conocida como el problema de aproximacion, motivé los avances de esta teorfa. En [11],
Grothendieck relaciona el problema de aproximacion con la topologia de la convergencia
uniforme sobre compactos. Establece que el problema de aproximacién es equivalente a
poder aproximar uniformemente la identidad sobre ciertos conjuntos compactos del espa-
cio por operadores de rango finito, lo que se conoce como propiedad de aproximacion. El
problema de aproximacion, estuvo abierto por varias décadas hasta que en 1972, P. Enflo
dio una respuesta en forma negativa. A partir de entonces se sabe que existen espacios
sin propiedad de aproximacion.

Esta seccién esta dedicada a la propiedad de aproximacién. Expondremos aquellos
resultados que usaremos mas adelante para estudiar aproximacién en espacios de fun-
ciones. Incluiremos algunas demostraciones con la intencién de proporcionar elementos

que ayuden a esclarecer el alcance y la profundidad de esta propiedad.

2.1. La propiedad de aproximacién

Definiciéon 2.1.1 Un espacio localmente convero E se dice que tiene la propiedad de
aprorimacion st la identidad puede ser aprorimada por operadores de rango finito sobre
los conjuntos absolutamente converos y compactos de E. FEs decir, si para toda seminorma
B continua de E, para todo € > 0 y para todo K C E absolutamente convexo y compacto,
existe un operador lineal S: E — E, con dim S(E) finita, tal que f(x — S(x)) < € para
todo rz € K.

Los operadores continuos de rango finito entre espacios localmente convexos E y F
pueden describirse, aunque no en forma tnica, a través de finitos elementos de F' y de
E'. Esto es, si T € L(E;F) es un operador de rango finito, existen y,...,y, € F'y
Ty, ...y, € B tales que T(x) = Y7, }(z)y;, para todo x € E. Una forma usual de
escribir esto, omitiendo la evaluacion, es a través de la notacion de producto tensorial.
Asi, T = Z;Ll 7’ ® y;. Por tanto, usaremos E' ®@ F' para notar el espacio de operadores

de rago finito (continuos) de E en F.
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El siguiente resultado se debe tanto a Grothendieck como a Schwartz. En [9] puede

encontrarse una demostracion.
Teorema 2.1.2 Sea E espacio localmente convexo. Son equivalentes:
(a) E tiene la propiedad de aproximacion.
(b) E'® E es denso en L.(E; E).
(¢) E'"®F es denso en L.(E; F) para todo espacio localmente convexo F'.
(d) F'® E es denso en L.(F; E) para todo espacio localmente convezo F.

Aqui L.(E; F) denota al espacio L(E; F) dotado de la convergencia uniforme sobre los

compactos absolutamente converos de L.

Para E y F espacios de Banach, es posible caracterizar L.(F; F)'. Este resultado
permite establecer cuando un espacio F tiene propiedad de aproximacion en términos de
pares de sucesiones en F y E’. También permite ver que un espacio E tiene propiedad de

aproximacién si su espcio dual £’ la tiene.

Lema 2.1.3 Sean FE y F espacios de Banach. Una funcion lineal ¢ pertenece a L.(F; F)'
si y sdlo si existen sucesiones (Y, )nen C F' y (Tn)nen C E tales que Y o |yh||l|za]| < oo
y o(T) =>" y(T(x,)) para todo T € L(E; F).

Demostracion: Sea ¢ una funcién que admite tal representacién. Podemos suponer

sin pérdida de generalidad que x, # 0 para todo n € N. Sea (a,)neny C Ry tal que
0

limy, 400 an, =00y Zan||y,'1||||:cn|| = M < oo. El conjunto K = {z"—:n € N} U{0} es

n=1
compacto y
o¢] o $n
(D) <D Myl ()] = ZanllyzllllanllT(W)ll < Msup |[Ta)]l
n=1 n=1 nin z

Por lo tanto ¢ € L.(E; F)'. Reciprocamente si ¢ € L.(F;F)', existe K C F compacto
tal que |¢(T)| < Msup,cx ||T(2)|| para todo T € L(E;F). Al ser K compacto y E

espacio de Banach, existe (x,)neny C F tal que lim, o ||2,|| = 0y K = coe{zx,:n € N},

[13, Proposicién 1.e.2]. Luego, si € K, existe (Ay)pen € €1 con ||(A,)n|| = 1 tal que
r = > Ay ¥, por lo tanto, [|T(x)]] < Y20 | Mlllzall < suppen ||zn||- Tomando

supremo sobre K se tiene la desigualdad

[¢(T)] < M sup |[T(z)]]. (3)

neN
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Consideremos el espacio ¢o(F) = {(y1,Y2,...):yn € F, lim, o ||lyn]| = 0} dotado de la
topologia generada por la norma ||(y1, 42, ...)|| = Sup,ex|ynl| ¥ sea Z C ¢o(F) el sube-
spacio definido por Z = {(T(21), T(x2),...): T € L(E; F)}. La aplicacién lineal ¢: Z — C
definida por ¢(T(z1), T(x3),...) = ¢(T) esta bien definida por (3) y

B(T(@). T@2)....)| < Msup [T ()| < M sup |[T(a,)].

Por Hahn-Banach, existe 1 € co(F) tal que 1|, = ¢. Como co(F)' = ,(F"), luego existe
(Yl )nen C F' tal que > 7 ||yhl] < ooy ¢ = (41,5, ...). Por lo tanto obtenemos que
Y onet wnllllenll < 0oy

S(T) = (T(21), T(w2)...) = Y yn(T(wn))
como queriamos ver. O

Proposicion 2.1.4 Sea E un espacio de Banach. Entonces E tiene la propiedad de apro-
zimacion si y solo si para todo par de sucesiones (x])pen C E' y (xn)nen C E que cumplen

S @b enll < ooy oot (x)x, =0 para todo x € E, se tiene Y oo xl (x,) = 0.

Demostracién: Visto desde otro punto de vista, que E tenga la propiedad de aproxima-
cién es decir que la identidad esté en la clausura del subespacio E' @ E C L.(F; E). Por
Hahn-Banach, esto es equivalente a que toda funcional en (L.(F; E))’ tal que, restringida
a ' ® E es nula, entonces aplicada a la identidad es nula. Como es equivalente que una
funcional en (L.(E; E))" se anule en E'® E a que se anule en todos los operadores lineales
de rango 1, llegamos a la conclusién de que es equivalente que E tenga la propiedad de

" se anula en los operadores de rango 1, denotado

aproximacién a que si ¢ € (L.(E; F))
F(E), entonces se anula en la identidad. Esto tltimo es exactamente lo que dice la segunda
parte de la proposicion. En efecto sea ¢ € (L.(F; F))' tal que ¢|rm = 0. Por el lema an-
terior, existen (2}, )pen C E' v (2, )nen C E dos sucesiones tales que >~ ||z} ||||z,|| < oo
tales que ¢(T") =", 2 (T (z,)) paratodo T' € L(E; E). Asi, paratodoz’ € E'y z € E,

¥’ ®@x € F(E) y se tiene que

o2’ @ x) = Za:; (2 (z,)x) = Zx%(m)x'(mn) =2 (Z :E;Z(x)xn) =0.

Como E’ separa puntos de E, luego > °° 2! (z)x, = 0. Esto implica que

n=0"n
S () = 6(Idg) = 0
n=0

como queriamos ver. O
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Proposicion 2.1.5 Sea E un espacio de Banach. Si E' tiene la propiedad de aproxima-

cion, entonces E la tiene.

Demostracién: Sean (2} ),eny C E'y (2n)ney C E dos sucesiones tales que cumplan
S @ znll < coy D07 @l (x)x, = 0 para todo x € E. Sea J: E — E" la inclusién
candnica. Como J es isometria, se tiene que Y~ ||z} |[||J(zn)|| < ooy, ademads, para todo

ekl yreFl

> a2z, (2) = Y@l (wn)al (@) = 2 (Y ap(0)2,) = 0.

Por lo tanto (3 ., J(z,)(a")z],) (x) = 0 para todo © € E y, como (E, E') es un par
dual, tenemos que Y > J(x,)(z")z), = 0. Como E' tiene la propiedad de aproximacién,
por la Proposicién 2.1.4 se tiene que 0 =Y > J(x,)(z},) = > o0 @l (z,) v, aplicando la

n=1 n

misma proposicion otra vez, resulta que £ tiene la propiedad de aproximacién. O

La reciproca a esta proposicion no es cierta. Es decir, existe un espacio de Banach F
separable con base de Schauder y, por lo tanto, con propiedad de aproximacién, tal que su
dual E' es separable y sin propiedad de aproximacién, ver [13, Teorema 1.e.7], donde se
construye un ejemplo, usando el hecho de que existe un espacio de Banach sin propiedad
de aproximaciéon. Mas aun, este mismo ejemplo muestra que existe un espacio de Banach
con la propiedad de aproximacién que contiene un subespacio que no tiene la propiedad
de aproximacion. Esto es, la propiedad de aproximacion no es hereditaria.

Si E es un espacio de Banach con la propiedad de aproximacién y F' es un espacio
de Banach cualquiera, para T' € L(F, E) compacto y ¢ > 0, existe S € E' @ E tal que
€ > sUPyer(pp |1SY — yll = sup,ep,. [|S o T (x) — T(z)||. Es decir, todo operador compacto
de F'en F se aproxima por operadores de rango finito. La reciproca es cierta como veremos

en la siguiente proposicién. Antes necesitaremos un lema.

Lema 2.1.6 Sea E un espacio de Banach y sea (x,)nen una sucesion tal que x, # 0 y

1My, o0 ||2n|] = 0. Sea U = coe{z,/||zal|2} y consideremos al conjunto Y = Uken kU
dotado con la topologia generada por la funcional de Minkowski de U que notaremos por

I|[-]||. Entonces:
(a) (Y, ||I-l]) es un espacio de Banach.

(b) Para todo y' € Y' ye > 0 existe 2’ € E' tal que |y (z,) — 2'(x,)| < € para todo
n € N.

Demostracién:
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(a)

Como U es absolutamente convexo y absorbente en Y, por la Proposicién 1.1.10,

llly]|]] = inf{A > 0:y € AU} es una seminorma en Y. Si 0 # y € Y, entonces
y = 3% Mn/||zal|2 con 0 < 2 [A| < N para algin N € N. Si § > 0 es
tal que 0 < >>>°  |\,] — ¢ luego m ¢ U y por lo tanto |||y||| > m,
mostrando que |||.||| es una norma. Para ver que (Y |[|.|||) es completo tomemos
una sucesion |||.|||-Cauchy (Ym)men, Um = Do Az /|22, ¥ veamos que es

convergente. Si dado ¢ > 0 existe my tal que para todo my, my > my,

o]

1
Yoy = Uy = D (NI = M)z /|l € €T,

n=0

m)mEN C C

o0 mi __ \M2 : .
luego >, |AT — A™?| < g, con lo que se tiene que las sucesiones (A

son de Cauchy para cada n € N y, por lo tanto, convergentes. Es facil mostrar

que si lim,, . A" = A, para todo n € N, entonces la sucesion (yy,)men converge a
1
Y= ZZO:() Ao /||zall2 €Y.

Seay' €Y'y e > 0. Como z,/||xa]|z € U, entonces |||z,|]] < ||z.||2 y por lo tanto

limy, o |||2,]|| = 0. Luego, existe ng € N tal que para todo n > ng [y (2,)] < 5.
Sea Ky = 2coe{z,:n>ng+ 1}y F = {x:z € Span {z,:n =1,...n}, y'(x) = 1}.

Como F es ||.||-cerrado, Kj es ||.||-compacto y FN Ky = @), por Hahn-Banach, existe
' € E' tal que 2'|p = 1y 2'|g, < 1. Por lo tanto, 2'(x,) = y/'(z,) paran < ngy

|2’ (zn)| < § para n > ng, obteniendo que |y'(z,) — 2'(2,)| < € para todo n € N.

O

En lo que sigue, si 'y F' son espacios de Banach, notaremos por K(E; F') al conjunto

de los operadores compactos de F en F' dotado con la topologia de la norma usual de

operadores.

Proposicion 2.1.7 Sea E espacio de Banach. Entonces E tiene la propiedad de aprozi-

macion si y solo si F' @ E es denso K(F, E) para todo espacio de Banach F'.

Demostracién: Sean K C E compacto y € > 0. Sea (z,)peny C E una sucesién de

elementos no nulos tal que ||z,]] — 0y K = coe{zn:n € N}. Sea U = coe{z,/||za|[2} ¥

sea Y = (J,on kU dotado de la topologia generada por la funcional de Minkowski de U,

Por la parte (a) del lema anterior, (Y, |[|.|||) es un espacio normado y completo y su

bola unidad es By = {y € Y:|||y||| < 1} = U. Como U C E es compacto, Id|y:Y — E

es compacta y, por hipétesis, existen ¢i,...,y.. € Y y,...,yn € Y tales que

1D v5(@)y; — |l < e/2
j=1
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para todo z € U vy, por lo tanto, para todo € K. Por la parte (b) del lema anterior,
existen ', ..., x,, € E' tal que [y;(z,) — 2 (2,)| < smmaxy Para todon € N.Siz € K,
T =3 Ay, con Y o0 A, | < 1, entonces

m

m m
1) @)y —ll < 1) a(@)y; — gyl +11 ) 2(x)y; — =]
j=1 j=1 J=1

0 m m
< > (|)‘n| |2 () y; — y}(:rn)yjH) HID @)y — |
n=1 7j=1 7=1
< DS 2+ 11D S l(a)y —al| < e/2+¢/2=¢,
n=1 j=1
con lo cudl F tiene la propiedad de aproximacion. O

En vistas de las equivalencias (c¢) y (d) del Teorema 2.1.2, donde el rol de los espacios E'y F'
es simétrico, es natural preguntarse si podemos intercambiar E'y F en (b) de la proposicion
anterior. El resultado que sigue asegura que no, dado que se obtiene la equivalencia para
E' con propiedad de aproximacién; condicién que, como ya mencionamos, es mas fuerte.

Una demostracién de la siguiente proposicién puede verse en [13, Teorema 1.e.5].

Proposiciéon 2.1.8 Sea E espacio de Banach. Son equivalentes:
(a) E' tiene la propiedad de aprozimacidn.

(b) E'® F es denso en K(E; F) para todo espacio de Banach F.

Como observamos antes, si M C F es un subespacio y £ tiene la propiedad de aproxi-
macion, en general no es cierto que M tenga la propiedad de aproximacién. Sin embargo,

si M es complementado en E la situacion es diferente.

Proposicion 2.1.9 Sea E un espacio localmente convexo y sea M C E un subespacio
complementado. Si E tiene la propiedad de aproximacion, entonces M tiene la propiedad

de aproximacion.

Demostracién: Sea P: E — E un proyector continuo tal que P(E) = M. Como E tiene
la propiedad de aproximacién, por el Teorema 2.1.2 existe una red (Sy)aer € Lo(E; E)
de operadores de rango finito tales que S, — P uniformemente sobre los conjuntos ab-
solutamente convexos y compactos. Luego Po S, — Py como Po S € L.(E, M),
PoS, € LM, M) son de rango finito y P|y = Idy; se tiene el resultado. O
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2.2. La propiedad de aproximacion y el e-producto

Tanto el Teorema 2.1.2 como en la Proposiciénes 2.1.7 y 2.1.8, muestran que hay una
estrecha relacién entre la propiedad de aproximacién y el espacio de operadores. El primer
resultado caracteriza esta propiedad teniendo en cuenta cierta densidad en el espacio de
operadores considerado con una topologia particular, mientras que los otros dos involu-
cran la subclase particular de operadores compactos. En esta seccién estudiaremos la
importante relaciéon entre la propiedad de aproximacién y el e-producto. Para esto nece-
sitaremos algo mas de informacién sobre EV.

Como vimos en la Proposicion 1.2.13, el dual de (E!) es E. Al considerar (E) con la
topologia de la convergencia uniforme sobre conjuntos absolutamente convexos y com-
pactos de E’ tenemos sobre E una topologia mds fina que la original. El siguiente lema

establece la continuidad de esta inclusion.
Lema 2.2.1 Sea E un espacio localmente convexo. Entonces Idg: (E!), — E es continua.

Demostracién: Para ver la continuidad consideremos U una base de entornos cerrados
y absolutamente convexos de E y tomemos U € U. Basta ver que U es entorno en (E)..
Por la Proposicién 1.4.2, U° es absolutamente convexo y compacto en E!  luego U°° es
un entorno de (E!). v debido a la Proposicién 1.2.15 resulta que U®® = U, con lo cual U

es un entorno en (E.). O

Ahora estamos en condiciones de caracterizar la propiedad de aproximacién via el

espacio de operadores dado por el e-producto.

Proposicion 2.2.2 Sea E un espacio localmente convexo. Son equivalentes:
(a) E tiene la propiedad de aproximacion.

(b) E® F es denso en EeF para todo espacio localmente convezo F.

Demostracién: Para ver que (b) implica (a), como E ® F' es denso en EeF' para todo
F' espacio localmente convexo, en particular se cumple si F' = E!. Por lo tanto tenemos
que F' ® E es denso en EeE! = L ((FE))., E). Si K C E es absolutamente convexo y
compacto, K° es un entorno de E. y como K = K, las seminormas en FeFE! son de
la forma sup,cx (1(z)), donde § es una seminorma continua de £. Por el Lema 2.2.1,
Idp € EeL!, asi dados K C FE absolutamente convexo y compacto, 4 seminorma continua
de E'y e >0 existe S € £'® E tal que sup,c, B(Idg(x) — S(x)) < e. Luego E tiene la
propiedad de aproximacion.

Reciprocamente, sean 1" € Eel' = L (F!, E), U C F un entorno,  seminorma con-

tinua de F' y ¢ > 0. Como U° es absolutamente convexo y compacto en F! y T es lineal
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y continuo, se tiene que T'(U°) es absolutamete convexo y compacto en E. Ya que, por
hipétesis, F tiene la propiedad de aproximacién, existe S € E'®Q F tal que S(x —S(x)) <
para todo x € T(U®). Como SoT € F® F, resulta que sup B(T(y)—SoT(y')) <e.Se
concluye que £ ® F' es denso en EcF'. e O

El siguiente resultado muestra que es suficiente reemplazar F' [ocalmente convero por
F Banach en (b) de la proposicién anterior. Esta reformulacién, se debe a Bierstrad y

Meise [5].
Proposicion 2.2.3 Sea E un espacio localmente convexo. Son equivalentes:

(a) E tiene la propiedad de aproximacion.

(b) E® F es denso en FeF para todo espacio de Banach F.

Terminaremos esta seccion dando el resultado analogo al Corolario 2.1.5 cuando se
considera E’ con la topologia de la convergencia uniforme sobre los conjuntos absoluta-
mente convexos y compactos de E. Usaremos este resultado en los préximos capitulos
para hablar de propiedad de aproximacion para espacios de funciones no lineales, como

son los polinomios y las funciones holomorfas.

Corolario 2.2.4 Sea E un espacio localmente convexo. Entonces E! tiene la propiedad

de aproximacion si y solo st E tiene la propiedad de aproximacion.

Demostracién: Si . tiene la propiedad de aproximacion, por la Proposicién 2.2.2, E.@ F
es denso en FeFE! para todo espacio localmente convexo F. Por la Observacién 5 de la
Definicién 1.4.4, se tiene que E! ® F' es denso en L.(E; F') para todo espacio localmente
convexo F' que, otra vez por la Proposicién 2.2.2, es equivalente a que F tenga la propiedad

de aproximacion. 0
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3. Funciones holomorfas

Una funcién f:C — C es holomorfa en a € C cuando tiene un desarrollo en serie de
potencias alrededor de ese punto. Resulta que, sobre C, los inicos polinémios homogéneos
son de la forma 2", con n € N que, desarrollados en un entorno de un punto a son de
la forma p,(z) = (¢ — a)”. Luego, la definicién de una funcién holomorfa en a € C es
equivalente a que admita un desarrollo en serie de polinomios homogéneos alrededor de
a.

Las funciones holomorfas en espacios de dimensién finita, C*, también pueden carac-
terizarse por la convergencia de expansiones monomiales de orden n que, en un entorno

a1 02

del origen, son de la forma 27252 --- 2"

con oj € Ngy o + -+ o = n. Este fue el
primer acercamiento de Hilbert (1909) al tema de holomorfia infinito-dimensional, para
funciones definidas en espacios de sucesiones, es decir, con variable z = (z1, 29, 23,...). En
los afios siguientes los trabajos de Fréchet y Gateaux mostraron que la expansion en serie
de polinomios homogéneos proporcionaba una definiciéon mas adecuada. Ademas, permite
el concepto de funciéon holomorfa para cualquier espacio vectorial con alguna estructura
topoldgica.

En este capitulo, introduciremos el concepto de funcién holomorfa sobre espacios local-
mente convexos y estudiaremos las propiedades del espacio formado por esta clase de
funciones que serd denotado H(E; F'). Cuando F es Banach, veremos que hay distintas
topologias naturales que hacen de H(E; F) un espacio localmente convexo. Vale aclarar
que el espacio de funciones holomorfas como tal, rara vez resulta un Banach, ain cuando
E'y F lo son; de ahi la necesidad de estudiar espacios localmente convexos. Para empezar
serd necesario especificar a qué nos referimos con polinomio homogéneo en un espacio de

dimensién infinita. Esto es lo que haremos en la secciéon que sigue.

3.1. Definiciones y generalidades

Antes de comenzar estableceremos algo de notacién. El espacio de las aplicaciones
n- lineales de E en F serd notado por L("E; F'), pondremos L("E; F') para las aplicaciones
n-lineales continuas y L£L°("E; F') serd el espacio de las aplicaciones n-lineales continuas
y simétricas, esto es B(z1,...,%,) = B(%,q),--.,To(n)) para toda o permutacion de n

elementos. Cuando F' = C, estos espacios seran notados simplemente por
L"E),L("E),L°("E),

respectivamente.

Si®e L("E,F)y xz,11,...,2; € E, denotamos



Q(zy, "M, xy, ., T, M x) = Q2] L k)

con ny,...,ng € Ng, ny +---+n, =n.
Si E y F son espacios localmente convexos, A C E es un conjuto, # es una seminorma

continua de F'y h: E — F' es una funcién, usaremos la notacién
1] 4,: = sup S(h(x)).
€A
En particular, cuando F' es normado, notaremos
|7l 42 = sup [|A(z)]-
€A
Empecemos viendo la definicién de polinomio n-homogéneo.

Definicion 3.1.1 Sean F y F espacios localmente convexos. Una aplicacion P: E — F
se dice polindmio homogéneo de grado n si existe ® € L("E; F) tal que P(x) = ®(z").
En este caso diremos que la aplicacion ® esta asociada al polinomio P y lo notamos
P=3a. Al conjunto de los polinomios n-homogéneos de E en F lo notamos P("E; F) y al
subconjunto de los polinomios n-homogéneos continuos lo notamos P("E; F). En el caso
en que F' = C, entonces notamos P("E) en lugar de P("E;C).

Observacién Si P € P("E; F), entonces existe ® € £5("E; F) tal que P = ®. En

efecto, si P e L("FE; F) esta asociada a P, entonces la aplicaciéon n-lineal

1 ~
D(zy,...,2,) = ] Z Q(2o(1); - To(n))

) €Sy
es simétrica y cumple que ®(z") = (™).
Ejemplos 3.1.2
1. Si E esun espacio localmente convexoy i, ..., z), € E', entonces P(z) = 2?21 ()"

es un polinomio n-homogéneo a valores escalares. Una aplicacién n-lineal asociada

€S

Q(x1,...,2,) = Zx}(zl)x;(xg) cee ().

En particular, si 2* € E*, la aplicacién P(x) = 2*(x)™ es un polinomio n-homogéneo

que resulta continuo si y soélo si z* lo es.
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2. La aplicacién P: E x E' — C dada por P ((z,z')) = 2'(x) es un polinomio 2- ho-

mogéneo donde la aplicacién bilineal asociada es

1

® ((z,27), (1,9) = 5 (2'(y) + ' («)).

Este ejemplo de polinomio 2-homogéneo permite mostrar que no todos los poli-
nomios vienen dados por combinaciones lineales de productos de funcionales. Veamos
esto para el caso particular en que E = f{,. Consideremos en ¢ X {5 la norma
definida por ||(a,b)|| = (||all2 + Hb||2)%. La aplicacién ¢: 0y x 0o — {5 dada por
¥ ((an)nen, (bn)nen) = D rey €2n—1an + €2,, es un isomorfismo isométrico. Se tiene
que (ej,ej) — 0,7 — oo pues 1 ((e,), (€n))) = €an_1 + €2,. Ahora, si el polinomio
definido por P((an)nen, (bn)nen) = Y oo | anby, fuera una combinacién lineal de pro-

ducto de funcionales lineales se tendria que P(e;,e;) — 0,7 — oo, pero P(ej,e;) =1

para todo 57 € N.

3. El operador T:L(*E) — L(F; E') definido por T(®)(x)(y) = ®(x,y) es un iso-
morfismo algebraico. En particular muestra que hay tantas aplicaciones bilineales
como operadores de E en E’' y, por lo tanto, tantos polinémios 2-homogéneos como

operadores de E en E'.

En la seccién 3.2 veremos una forma de dar a P("E; F') una topologia natural. All{ ve-
remos mas ejemplos de polinomios n-homogéneos.

Veamos ahora la definicién de funcién holomorfa.

Definicién 3.1.3 Sean E y F' espacios localmente convexos, U C E un abierto. Decimos
que una funcion f:U — F es holomorfa si para todo a € U existe una sucesion de

polinomios n-homogeneos, P, f(a) € P("E; F) yV C U un entorno tal que

f@) =Y "P.f(a)(z - a),

donde la convergencia es uniforme para todo x € a+ V. Es decir, dado 5 una seminorma
continua en F ye > 0, existe a una seminorma continua de E, r > 0 y mg € N tal que

para todo m > mgy se cumple

afz)<r n—0

sup (f(a+a:)—ZPnf(a)(x)) <e.

Al conjunto de funciones holomorfas de U a valores en F' lo denotamos H(U; F). En

el caso que F' = C, notamos H(U) en lugar de H(U;C).
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Observaciones

1. H(U; F) es un espacio vectorial. Si f,g € H(U; F) y a € U luego, al igual que en el
caso finito dimensional, se cumple la igualdad P,(f + g)(a) = P, f(a) + P,g(a).

2. Si E'y F son espacios localmente convexos y U C E abierto, se tiene que P("E; F)
es un subespacio de H(U; F'). En efecto, sea ® una aplicacién n-lineal simétrica tal

que P = ®. Sean a,r € U. Utilizando la férmula binomial de Newton obtenemos

n

Pa) = 0(a") = @ ((a+z—a)") = 3 o (", (z — a)).

| — !
= it =)

Como la aplicacién x — ® (a™ 7, 27) es un polinomio j- homogéneo, se tiene el
resultado. En particular, se obtienen las ecuaciones P, P(a)(z) = ®(a" ™, 2™) si
m <n, P,P(a) =Py P,P(a) =0sin>m.

3. Notemos por P(F; F) = Span {P("E; F):n € N}. De las dos observaciones anterio-
res se deduce que P(F; F') es un subespacio de H(U; F).

4. Si f € H(U; F) entonces f es continua ya que f es localmente el limite uniforme de

funciones continuas.

5. Al igual que en el caso finito dimensional, si f(z) = > >, P.f(a)(z — a), entonces

la sucesién P, f(a) es Gnica. Una demostracién puede verse en [14, Cap. 1].
Ejemplo 3.1.4

Sea E un espacio de Banach y sea (2]),en € E’ una sucesién que converge puntual-
mente a 0. Luego, la funcién f: £ — C definida por f(z) = Y - ) (x)" es holomor-
fa. Veamos cémo es el desarrollo de Taylor alrededor de un punto. Por el Principio de
Acotacién Uniforme, existe ¢ > 0 tal que ||z],|| < ¢ para todo n € N. Por lo tanto, para

cadaa € E'y 0<r < 1/cse tiene que

Zzw @WWW—ZZ AOIPAEE

7=0 n=j TLO_]O
00

=Ewwwmw
< 3 (b a)] + ey

Luego, >27%, 2207 7w ,\x (a)|"=7||2} |[?r? converge ya que cr < 1y ! (a) — 0.
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De la desigualdad anterior obtenemos que la aplicaciéon Q;: £ — C definida por

Qilr) =Y ﬂ(%j)!rx:xa)r”x;(x)f

estd bien definida. Mas ain, Q; € P(E) y la aplicacion j-lineal que define a Q; es

- n! _
Dj(z1, ..., 2) :ZWWL(GH Tan (@) .. (@)
= !

Por la convergencia absoluta, tenemos que

o

fla) = Z<'<>+x'<x—a>>"=
= ZZ @) e — o) =

nOJO

- ZZ @@ — ) =

JOnJ

= ZQj (z —a).
=0

Notar que la convergencia es uniforme para x € B,(a). Luego f € H(E).
Varias de las propiedades que se tienen para funciones holomorfas definidas sobre
C se mantienen para funciones en H(U; F'). En lo que sigue veremos algunas de estas

propiedades que usaremos a lo largo del trabajo.

Proposicion 3.1.5 Sean E, F, G espacios localmente convexos, U C E abierto. Entonces
si feHU;F)yT € L(F;G) se tiene que T o f € H(U;G).

Demostracion:

Sea T € L(F;G). Como T es continuo, dada « una seminorma continua de G y
e > 0, existe J una seminorma continua de F tal que si y € F'y B(y) < 1, entonces
a(T(y) <e. Paraac Uy feH(U;F), existe M € Ny V C U un entorno de a tal que
sup,ey B (e p Puf(a)(z —a)) < 1. Por lo tanto se tiene que

M
T (f(x) =) P.f(a)(z — a)) <e.
n=0 V,a
ComoT( pr ) ZTon )y ToP,f(a) € P("E; F), se obtiene
que T'o f es holomorfa en a € U para todo a€U. Luego T o f € H(U; Q). O
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Una funcién holomorfa f:U C C — C admite una representacién integral mediante
la férmula de Cauchy. Esto es, dado a € U, z € Cy r > 0 tal que a + £z € U para todo
£ € A(0,r), para todo A € A(0,7) se tiene:

L[ flatér)

fla+Az) = 2 Jy, v

d.

Las funciones holomorfas entre espacios localmente convexos también admiten una rep-
resenacion similar, donde las integrales son integrales de Bochner (a valores vectoriales).
De esta representacion se pueden deducir los siguientes resultados, cuyas demostraciones

pueden encontrarse en [14, Cap. 2] o [17].

Proposicién 3.1.6 (Desigualdades de Cauchy) Sean E y I espacios localmente convexos
y U C E abierto. Sean a € U, v € E yr > 0 tal que a + £x € U para todo £ € A0, 7).

Si B es una seminorma continua de F' entonces, para todo n € N se cumple que

B (Puf(a)(z)) <r" sup B((a+&x)).
El=r
Proposicién 3.1.7 Sean E y F espacios localmente convezos y sea f € H(E; F). En-
tonces, para todo x € E, existe V,, entorno de x tal que la serie Y - P,(0)(y) converge

uniformemente para todo y € V.

El siguiente teorema que enunciaremos nos da una serie de equivalencias utiles para

ver cuando una funcién es holomorfa. Para ello veamos algunas definiciones.

Definicién 3.1.8 Sean E y F' espacios localmente converos y sea U C E un abierto. Una
funcion f:U — F es G-holomorfa si para todo a € U, x € E, la aplicacion A — f(a+\x)
es holomorfa sobre el conjunto {\ € C:a+ \x € U}.

Definicién 3.1.9 Sean E y F' espacios localmente converos y sea U C E un abierto. Una
funcion f:U — F es débil holomorfa si para todo ' € F' la composicion x' o f:U — C

es holomorfa.

Definicién 3.1.10 Sean E y F' espacios localmente converos y sea U C E un abierto.
Una funcion f:U — F se dice débil G-holomorfa si para todo a €e U, x € E ey € F', la
aplicacion A — y' o f(a + Ax) es holomorfa sobre el conjunto {\ € C:a + \x € U}.

Una demostracién del siguiente teorema puede encontrarse en [14, Cap. 2].

Teorema 3.1.11 Sean E y F' espacios localmente converos y sea U C E abierto y con-

sideremos f:U — F una funcion. Son equivalentes:
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(a) feH(U;F).
(b) f es continua y G-holomorfa.
(c) [ es débil holomorfa.

(d) f es continua y débil G-holomorfa.

Como una aplicacion directa de este teorema, se extiende el principio de identidad.

Una demostracién puede verse en [14, Cap. 2].

Proposicién 3.1.12 (Principio de identidad) Sea E un espacio localmente convexo, U C
E un abierto conexo y sea f € H(U; F). Si existe un abierto V-.C U tal que fly = 0,

entonces f = 0.

3.2. Topologias en H(U; F)

En esta parte estudiaremos varias topologias naturales sobre H(U; F') cuando I es
un espacio normado y U es un abierto de un espacio localmente convexo. Los resultados
mds importantes los daremos para U un abierto de un espacio de Banach. Sin pérdida
de generalidad, vamos a suponer que 0 € U ya que si f € H(U;F) y a € U, luego la
funcién f,(z) = f(x —a) € H(U —a, F) y se cumple que P, f,(b) = P, f(b—a) para todo
b € U — a. Una demostracion de esto puede verse en [14, Cap. 2.

Empecemos viendo una topologia en P("F; F). Para ello, de manera aniloga a como
definimos la topologia fuerte para operadores lineales en el segundo ejemplo de 1.2.10,

veremos la definicon de topologia fuerte para aplicaciones n-lineales.

Definiciéon 3.2.1 Sean E y F espacios localmente converos. Llamaremos topologia fuerte
en L("E,F) a la topologia mas gruesa en la cudl todas las seminormas definidas por

Pao(®) =  sup  a(®(zy,...,3,)) son continuas, donde A C E es acotado y « es
L1yeeyn €

seminorma continua de F. Esta topologia la notaremos por . En particular, st E y F
son espacios normados, luego (L("E, F), B) resulta un espacio normado, cuya norma es
1Rl = $uD)gy <1, . flwn <2 1R (@ 15 s 20 || para & € LOMESF).

De la misma forma se tiene para el espacio de polinomios n-homogéneos la siguiente

topologia fuerte.

Definicién 3.2.2 Sean FE y F espacios localmente convezos. Sobre P("E; F) se tiene la
topologia fuerte, que es la topologia mas gruesa en la cudl todas las seminormas definidas
por Pao(P) = [|P|laa son continuas, en donde A C E es acotado y o es una seminorma

continua de F'. Al espacio de los polinomios n-homogéneos dotado de esta topologia lo
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notamos P("E; F) . En particular, si E y F' son espacios normados, se tiene la igualdad

P("E;F)g = (P("E,F),||.||), donde ||.|| es la norma usual de polinomios, es decir ||P|| =
1Pl

En la siguiente proposiciéon veremos que P("E; F)g es topolégicamente isomorfo a
(L5(™E; F), ). Antes recordaremos la férmula de polarizacién cuya demostracién puede

verse en [14, Cap. 1].

Teorema 3.2.3 (Fdrmula de polarizacion) Sean E y F espacios localmente convexos y

sea B € L5("E, F). Entonces, para todo x1,...,x, € E se tiene

1
B(zy,...,2,) = —ion Z er...epBlerxy + ...+ epxy)”
) e;j==x1

Proposicién 3.2.4 P("E, F); es topoldgicamente isomorfo a (L*("E, F), ).

Demostracién: La aplicacién ¥ : L*("E, ') — P("E, F) definida por V(B)(z) = B(z")

establece un isomorfismo algebraico entre P("E, F)z y (L*("E, F), 3) con inversa

1
nlan

U HP)(xy,...,2,) = Z er...epPleixy + ...+ epxy,).

ej==%1
¥ es continua ya que, si A C E es acotado y o es una seminorma continua de F,

entonces
19(B)||aa =supa(B(a") < sup  a(B(xy,..., ).

reA L], Xn €A

Para ver que es un isomorfismo topolégico, notemos que si A C FE es acotado, luego

coe{A} es acotado. Por la férmula de polarizacién, para todo z1,...,x, € A se tiene
1
a(Bley,..,20)) £ > a(Blewws + ...+ eqay)") =
n: e;j==x1
1
= o Z a(Plejxy + ...+ epxy)).

e;j==x1

Tomando supremo en ambos miembros, queda que
,],LTL
sup  a(B(xy,...,12,)) < ﬁHPHcoe{A},a-

L1, EnEA

como queriamos mostrar. O
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Observaciones

1. La proposicién anterior muestra en particular quesi P € P("E; F)y B € L*("E; F)
es tal que P = B, entonces P € P("E; F) si y sélo si B € L5("E; F).

2. Si E y F son espacios normados, P € P("E; F)y B € L5("FE; F) tal que P = E,

luego se tienen la desigualdades
~ n"
I1PII < 11B]l = —IPll.

Las constantes de ambas desigualdades son 6ptimas. En efecto, si E es un espacio

de Banach y ' € E' la aplicacién P(x) = 2'(z)" es un polinémio n-homogéneo

y se tiene que P = B donde B(z1,...,x,) = a/(21)--2'(z,). Es claro que, en
este caso, |[|P|| = ||A]]. Si E = ¢, la aplicacién B(z',z?) = 1/2(z]x3 + ziz?) es
bilineal y se tiene que ||B|| = 1/2. Mas aun, ||B|| = ||B(ey,e2)||. El polinomio

definido por P(z) = B(z,z) cumple que P = B y ||P|| = 1/4. Luego se tiene que
I|1B|| = 1/2 = %% = 22—2,||P|| Este ejemplo se generaliza a grado n y se debe a Y.

Sarantopoulos.

Veremos ahora distintas topologias definidas sobre H(U; F') y c6mo se relacionan con
las propiedades de los polinomio de la expansién de Taylor de cada funcion holomorfa. La
primera topologia que introduciremos es la mas natural, es la topologia de la convergencia

uniforme sobre compactos.

Definicién 3.2.5 Sean E y F' dos espacios localmente convexos y sea U C E abierto. La
topologia de la convergenica uniforme sobre compactos en H(U; F) es la generada por las

SEMINOTMAs

ps.x(f) = /]

donde K C U es compacto y B es una seminorma continua de F. Al espacio de las

B?K

funciones holomorfas dotado de esta topologia lo notamos (H(U; F), ). Notaremos al
espacio de los polindomios n-homogéneos con la topologia inducida de la convergenica uni-

forme sobre conjuntos compactos por P("E, F)..

Observacién Sea U C C? es un abierto y consideremos en H(U) una sucesion (f;,)nen
tal que converge a f € H(U) con la topologia de la convergencia uniforme sobre compactos.
Afirmamos que la sucesion de derivadas cualquier orden converge uniformemente sobre
compactos a la derivada correspondiente de f, es decir ||f7(Lm) — fM||x =% 0 para todo
compacto K C U. Daremos una idea de esto para U C C abierto. Sea K C U es compacto

y dist(K,CU) = r > 0, donde CU es el complemento de U. Existen zy,...,2, € K tales
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que K C Uj_, Brj2(2;) v, por lo tanto, B,js(z) C Uj_, Bi(z;) para todo z € K. Si
B = U;.LZI B, (#;), entonces B C U es compacto y si z € K, por el Teorema integral de

representacion de Cauchy se tiene

[(F3m) = f)(2)] =

1 (fn_f)(/\) _
/A Un = D) 5 it = Fls

2mi Calery2 (A= z)mHt

para alguna constante C' = C(r,m,d) > 0. Al ser z € K arbitrario tenemos la afirma-
cion.

Por lo general, esta propiedad no es cierta si el espacio es de dimensién infinita. En
efecto, sean E es un espacio de Banach y (2]),ey una sucesiéon en E’ tal que ||z} || =1y
x 2 0. Notemos que x; tiende a 0 uniformemente sobre compactos ya que, si K C E es
compacto, dado ¢ > 0, existen xy,...,,, € E tal que K C U;nzl B.(z;). Como zJ, =0,
existe ng € N tal que |2} (2;)| < e paratodon >ngyj=1,...,m. Siz € K, luego existe

Jo tal que ||z — z;,|| < ey, por lo tanto, se tiene que
|27, ()| < |7 (@ — 2j0)| + |2 (20)] < 2¢

Si fn = !, luego (fn)neny C H(E) y tiende a 0 uniformemente sobre compactos. Si
consideramos el operador df: E — E' dado por c?f(a) = P, f(a), luego c?fn(a) = x!, para
todo a € F y, por lo tanto, (c?fn)neN no converge uniformemente sobre compactos a 0 = do
va que [|dfullx = ||| = 1.

La siguiente topologia que veremos es mas fina que 7y y asegura que si f,, tiende uni-
formemente sobre compactos a f, entonces P;(f,,) tiende uniformemente sobre compactos
a P;(f) para todo j € N.

De ahora en mas, a los fines de este trabajo, describiremos las distintas topologias en

H(U; F) cuando F' es un espacio normado.

Definiciéon 3.2.6 Sea E un espacio localmente convero, U C E abierto y sea F' un espa-
cio normado. Notaremos por T« a la topologia en H(U; F') generada por las seminormas

pr(f) = Ifllx con K C U compacto y las seminormas definidas por
Pnx.A(f) =sup{||P.f(a)(2)||: a € K, z € A}
con K C U compacto, A C E acotado, n € N.

La topologia 7 induce en P("E, F) la topologia fuerte como veremos en la siguiente

proposicion.

Proposicion 3.2.7 Sea E un espacio localmente convexo, U C E abierto y ' un espacio
normado. Entonces (H(U; F'), Too) induce la topologia § en P("E, F).
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Demostracién: Sea P € P("E, F'). Por la observacién hecha al pie de la Definicién 3.1.3
se tiene que P,P(z) = P para todo x € E. Por lo tanto, si A C E acotado se tiene
que ||P||a = pn.x.a(P) para todo K C E compacto, luego  es més gruesa que 7, sobre
P("E, F). Consideremos la seminorma p,, x4 con K C U compacto y A C E acotado y
sea P € P("E,F). Sim > n luego pmxa(P) =0.Sim < n, tomandoy P = B, por la
observacion hecha en la Definicién 3.1.3 y la Proposicién 3.2.4, sia € K y x € A se tiene

1PnP(a) (@) = [[B(a"™, (@ —2)™)|| <

< sup || B(x1,...,2,)|]
ml,...,mn€coe{2A+K}

< %||P||coe{2A+K}~
Tomando supremo sobre K y A, se tiene que pp, .4(P) < %HPHW{Q,HK} obteniendo el
resultado. O

Si U € C" es un abierto y T € H(U)" es 1 continua, luego existe K C U compacto
y ¢ > 0 tal que |T(f)| < ¢||f||x. Como el conjunto {f|x:f € H(U)} es un subespacio
de C(K), el espacio de funciones continuas sobre K con la topologia dada por la norma
supremo, resulta que T es continua cuando H(U) hereda la topologia de C(K) y, por el
Teorema de Hahn-Banach y el Teorema de representacién de Riesz, existe u, medida de

Borel finita sobre K, ||| < ¢ tal que

T(f) = /K F (@) du(a)

para toda f € H(U). Debido a que K no es dnico y, mas aun, las extensiones por Hahn-
Banach no son 1nicas, 1" tiene varias medidas que lo representan. Mientras Nachbin es-
tudiaba como es el soporte de T', noté que existe una funcional S sobre H(U) y K C U
compacto tal que S no se representa bajo el signo integral por una medida finita Borel
con soporte en K, pero que para todo abierto V tal que K C V C U existe tal repre-
sentacion. Esto es, por el Teorema de representacién de Riesz, para todo V' abierto tal
que K C V C U, existe ¢(V) > 0 tal que [S(f)] < e(V)||f||v para toda f € H(U), pero
no existe ¢ > 0 tal que |T(f)| < ¢||f||x. Motivado por esto, Nachbin define la topologia

que veremos a continuacion.

Definicién 3.2.8 Sea E un espacio localmente convero, U C FE abierto y sea F un
espacio normado. Una seminorma p en H(U; F) se dice que es K-portada si existe K C U

compacto tal que para todo abierto V incluido en U con K C 'V, existe una constante
C(V) > 0 tal que p(f) < CV)||f|lv para todo f € H(U;F).

Definicién 3.2.9 Sea E un espacio localmente convero, U C E abierto y sea F un
espacio normado. La topologia en H(U; F) generada por las seminormas K-portadas la

denominamos la topologia portada o de Nachbin y la notamos 7.
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La tltima topologia que veremos sobre H(U; F') es la denominada 75. Esta topologia
es de interés ya que tiene mejores propiedades que 7, y muchas veces se usa como una

topologia auxiliar para estudiar propiedades de 7,,.

Definicién 3.2.10 Sea E espacio localmente convexo, U C E abierto y sea F un espacio
normado. Una seminorma p en H(U; F) se dice que es 15 continua si para cada cubri-
miento por abiertos numerable (Vy,)nen de U tal que Vi C Vo C ..., existenng € Nyc >0
tales que p(f) < c[|fllv,, para toda f € H(U; F).

Definiciéon 3.2.11 Sea E espacio localmente convexo, U C E abierto y sea F' un espacio
normado. La topologia en H(U; F) generada por las seminormas 1s-continuas serd notada

por Ts.

En la siguiente proposicion veremos la relaciéon que hay entre estas cuatro topologias.

Para simplificar la escritura, notaremos 7 < ¢ si 7 es una topologia mas gruesa que o.

Proposicion 3.2.12 Sea E un espacio de localmente convexo, U C E abierto y sea F

un espacio normado. Entonces, sobre H(U; F') se tiene
TOSTOOSTUJST(S'

Demostracion: La relacién 7y < 7, se desprende de la definicién y de la observacién
hecha al pie de la Definicion 3.2.5. Consideremos la seminorma p, x4 con K C U
compacto y A C FE acotado y veamos que es K-portada. Si V' es un entorno FE tal
que K C V, como A+ K es acotado, existe A > 0 tal que A + K C AV. Como
Pui,A(f) =supyerc{||Pnf(a)||a}, por la desigualdad de Cauchy se tiene que

Pri,A(f) < /\anH§(K+A) < N[ flv

Asi obtenemos que la seminorma p, i 4 es portada por el compacto K y, por lo tanto,
T, continua, con lo que se tiene que 7, < 7,. Resta ver que 7, < 75. Supongamos que p
es una seminorma portada por un compacto K C U. Si (V,,)nen s un cubrimiento por
abiertos numerable y creciente de U, al ser K compacto, existe ngy tal que K C V,,,. Por

lo tanto, existe C' > 0 tal que p(f) < c||f]|]v,,, es decir, p es 75-continua. O

Como vimos anteriormente, P("E; F') es un subespacio de H(U; F). Si al espacio de
polinomios lo dotamos con alguna de las topologias mencionadas, podremos ver que la

inclusién estd complementada, como muestra el siguiente resultado.

Proposicion 3.2.13 Sea E un espacio localmente convexo, U C E abierto y sea F' un

espacio normado. Entonces, para todo n € N se cumple:
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(a)
(b)
(c)
(d)

P("E; F). es un subespacio complementado de (H(U; F), o).
P("E; F)s es un subespacio complementado de (H(U; F), Teo)-
(P("E; F),7,) es un subespacio complementado de (H(U; F),7,).

(P("E; F),1,) es un subespacio complementado de (H(U; F),s).

Demostracién: Consideremos la aplicacién Dj: H(U; F) — H(U; F), conocida como la

derivada de Frechét, definida por Dy (f) = P,f(0) y veamos que es un proyector. Es claro

que (D¥)* = Dp. Faltarfa ver que D? es continua con las respectivas topologias:

()

Al ser E completo, basta tomar seminormas definidas sobre conjuntos absolutamente
convexos y compactos. Sea K C E absolutamente convexo y compacto y tomemos
en P("E, F). un entorno V dado por V.= {P € P("E, F):||P||x < 1}. El conjunto
W ={f € H(U;F):||f|lx <1} es un entorno de (H(U; F), ) v, si f € W, por la
desigualdad de Cauchy se tiene que

DG (e = 1P f(O)]lx < [Ifllx < 1.

Luego DJ(W) C V' y, por lo tanto, D es continua como se querfa ver.

Tomemos A C E acotado y f € H(U; F'). Para cualquier K C U compacto tal que
0 € K, la desigualdad

sup [[Dg (1) @) = 11Paf ()[4 < sup[[Pof(@)l[4 = Prsc.a(f)

muestra la continuidad de D{. Aplicando la Proposicion 3.2.7 se obtiene el resultado.

Sea p una seminorma portada por un compacto K C U. Luego, si V C U es un
entorno, existe A > 0 tal que K C AV. Por lo tanto, por la desigualdad de Cauchy

se tiene

p(Dg([f) = p(Puf(0)) < CAV)[[P,f(0)]|xv
= ACAV)[[Pf(0)[[v < A*CAV)[f]lv

Esta desigualdad muestra que D{ es continuo. En efecto, al ser Df lineal, luego
po D{ es una seminorma 7,-continua. Si W = {f € H(U; F):p(f) < 1} es un 7,
entorno, entonces (DJ) (W) = (D§ o p)~ ([0,1)) es 7,-entorno.

Veamos que (H(U; F'), 75) induce en la topologia 7, en P("E, F'). Sea p una semi-
norma en (H(U; F),7;) continua y sea V un entorno abierto de E. Como V es
absorbente, luego V = {UNnV:n € N} es un cubrimiento creciente por abiertos de

U. Luego existe nyp € Ny C' > 0 tal que
p(Dg(f)) = p(Pf(0)) < ClPLf(0)lunney < Cn™ [P f(0)][v < Cn™|[f]]v.
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Usando el mismo argumento que en el item (c), la desigualdad anterior muestra
que la seminorma p definida por p(f) = p(P,f(0)) es 7,-continua. Como se cumple
que plpmp;ry = Dlp(re;r), obtenemos que 75 es mds gruesa que 7, sobre P("E; F').
Aplicando la Proposicién 3.2.12, tenemos que (P("E; F),7,) = (P("E; F), 75). Por

el item (c) se obtiene el el resultado.

De la demostracion anterior se desprende el siguiente corolario.

Corolario 3.2.14 Sea E un espacio localmente convero U C E un abierto y sea F un
espacio normado. Si a € U, la aplicacién D*: (H(U; F),7) — (H(U;F),7) dada por

D(f) = P,f(a) es continua cuando T = Ty, Teo, Ty O Ts.

Si 'y I son espacios de Banach, se puede decir mas sobre la relaciéon entre estas

cuatro topologias. Empecemos viendo como se relacionan en P("E, ).

Proposicion 3.2.15 Sean E y F espacios de Banach. Entonces, para todo n € N, se
tiene que (P("E,F),15) = P("E, F).

Demostracién: Es claro que [ es mas gruesa que 75 puesto que, si A C E es acotado
v (Vp)nen es un cubrimiento por abiertos creciente de E, existen V,, vy A > 0 tal que
A C AV, Luego, si P € P("E,F), se tiene que ||[P|la < A"||P|]y,, . Ahora, si p es
seminorma Ts-continua, la sucesion (nBg),cn es creciente y cubre a F, luego existe ng y

C > 0 tal que p(P) < C||P||nesz = Cn§l|P||B,, con lo que se tiene que 75 < f. O

De las Proposiciones 3.2.7, 3.2.12 y 3.2.15 se deduce el siguiente corolario.

Corolario 3.2.16 Sean FE y F espacios de Banach. Entonces, para todon € N, se cumple

(P(HEJ F)aTé) = (P(HEJ F)aTw) = (P(nE7 F)7TOO) = Pﬁ(nEv F)

Observacién En general, estas igualdades no se cumplen cuando F no es un espacio
de Banach. En [1] podemos ver un ejemplo de esto para F cierto espacio de Fréchet para
el cual, sobre P("E), se tiene que 79 < f < 7,. Mds ejemplos donde se verifican las

inclusiones estrictas pueden encontrarse en [8, Secc 1.2].

El siguiente teorema nos da una caracterizacion de mucha utilidad de la topologia 7,

cuando F y F' son espacios de Banach.

Teorema 3.2.17 Sean E y F espacios de Banach. Entonces
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(a) La topologia 1, en H(E; I') estd generada por las seminormas

0(f) = p(Paf(0)),

n=0

donde p es una seminorma K-portada.

(b) La topologia 1, en H(E; F) estd generada por las seminormas

n=0

donde K C E es absolutamente convero y compacto y (an)nen € Co-

Demostracién:

(a) Sip es una seminorma portada por el compacto K C E, entonces p es 7, continua y

se tiene que p(f) = p(> ey Puf(0)) < D p(Pnf(0)) = g,(f). Resta ver que g, es
una seminorma IC-portada. Sea V' C FE abierto tal que K C V. Como p es portada

por K, existe C(V') > 0 tal que p(h) < C(V)||h||v para todo h € H(F; F). Luego,
por la desigualdad de Cauchy se tiene

Zpr <Zc )| P f (0)|]y =
C(V) Z —HP FO)]|2v < 20(V)||f]]ov-

n=0
Como K C V, 2K C 2V, por lo tanto g, es portada por el compacto 2K, como se

queria ver.

Sea K C FE absolutamente convexo y compacto y sea (an)nen € ¢o. Afirmamos que
Prc(an)(f) = D 0r o 1P f(0)|| K+, Bs €8 Portada por el compacto 2. En efecto, sea
V' C FE abierto tal que K C V. Sid = dist(K,CV) > 0, donde CV es el complemento
de V', entonces existe ng € N tal que a,, < d para todo n > ny. Por lo tanto, sin > ny,
K + a,Bg C V. Ademsds, al ser V' abierto, V' es absorbente y, por lo tanto, existe
A > 0 tal que K + a,Br C AV, para todo n € N. Utilizando esto y la desigualdad
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de Cauchy se tiene
Pictan)(f) = D NPufO)lktanns =
n=0

=Y WP F Ol kctanss + Y NPaf(O)lksanns <
n=0

n=nog+1

< PO+ D 1P O)ly <
n=0

n=ng+1
no A n 0.9} 1 n
§Z<§> 1Paf O)ll2v + > (5> 1P f(0)]|2v <
n=0 n=no+1
[N )\ n [e’e}
<(3()+ 3 5 i
n=0 n=ngp+1

v, de la misma forma que en el item anterior, concluimos que pg (4, s portada por
2K. Veamos ahora que estas seminormas generan 7,,. Sea p una seminorma portada
por K compacto. Sea (am)men € ¢o y consideremos el conjunto W, = m +
a4y Br. Como W, es abierto y K C W, para cada m € N, luego p(P) < ¢,||Pl|w,,
para todo P € P("E, F).

Para m = 1, existe n; € N tal que c}/" < 2 para todo n > ny. Luego, tomando
Vi = 2W, se tiene

p(P) < ail[Pllw, = I[Pl army, < |IPllvs

para todo P € P("E; F) y para todo n > ny. Si m = 2, luego existe ny > n; tal que
cé/" < 2 para todo n > nsy. Luego, tomando V, = 2Wj, se tiene que si P € P("E; F),
entonces

p(P) < & |Pllw, = |IPl] grmyy, < [IPllvs

para todo P € P("E, F) y para todo n > ny. Inductivamente, definimos los con-

juntos V,,,n € N. Por lo tanto, como K C V) abierto y p es K-portada tenemos

que
ni—1 oo Mj+1—1
S p(Pf(0) = D pPuf(0)+ > Y p(Paf(0) <
n=0 j=1 n=n;
ni—1 00 7’Lj+1—1

< () Y IPTOl + >0 3 1ROy <

j=1 n=n;

ni—1 00 nj+1—1

C{ D NPSO)hs +D > RSOy,

j=1 n=n;

VAN

donde C' = méax{c;(11),1}.
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Ahora, usando el item (a), 7, esta generada por las seminormas de la forma g,(f) =
Yoo o P(Paf(0)) donde p es una seminorma K-portada. Si p esta portada por K y
(@n)nen € co, luego g, esta dominada por la seminorma 7,,-continua PR (bn)nen donde

K = coe{K} y b, = 2a; si nj <n < nj;q. Esto prueba el resultado.

O

Utilizando la proposicién anterior podremos caracterizar a los conjuntos acotados de

(H(E; F),1,) como veremos en la siguiente proposicién.

Proposicién 3.2.18 Sean E y F espacios de Banach y sea A C H(E; F). Entonces, A

es To-acotado si y solo si A es 1,-acotado.

Demostracién: Si A es 7,-acotado, como la seminorma f —— ||f||x con K C E com-
pacto es portada por K, existe C' > 0 tal que supyc4||f]|lx < C. Por lo tanto A es
To-acotado. Reciprocamente, supongamos que A es mp-acotado y sea p una seminorma por-
tada por K compacto. Afirmamos que existe d > 0y C' > 0 tal que sup 4 || f||x raBr < C.
Supongamos que no, luego si d = 1 existen f; € A, 1 € K ey, € E, ||yn]| = 1 tales
que ||fi(z1 +y1)|| > 1. Para d = 27! existen fo € A, 290 € K ey € E, ||o]| = 1
tales que ||fo(za + 3y2)|| > 2. Siguiendo asi, existen (fy)nen C A, (@n)nen C K e
(Yn)new C E con ||y,|| = 1 tales que |[fu(xn + +yn)|| > n para todo n € N. Por lo
tanto sup 4 HfH{(zTA»%yn):neN} = 00, lo cudl es una contradiccién ya que el conjunto A
es mo-acotado y el conjunto {(z, + Ly,):n € N} es relativamente compacto. Obtenemos
asi las constantes C' y d como mencionamos. Ahora, como p es portada por el compacto K
y K C K + dBg es abierto, sup ;e p(f) < Crsupgey ||fl|xraBy < C1C, como queriamos
probar. O

Corolario 3.2.19 Sean E y F espacios de Banach y sea A C H(E; F). Son equivalentes
(a) A es my-acotado.

(b) A es To-acotado.

(c) A es 1,-acotado.
Demostracién: De la Proposicién 3.2.12, 7y < 7 < 7, con lo que se tiene (¢)=(b)=(a).
Vale la implicacion (a)=-(c) por la Proposicién 3.2.18. O

Por ultimo, para ver cémo se relacionan las topologias mencionadas anteriormente
con Tg, necesitaremos la definiciéon de espacio bornolégico. Si E es un espacio localmente

convexo y U C FE es un entorno absolutamente convexo, luego U absorbe todo conjunto
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acotado de E. 51V C E es un conjuto absolutamente convexo que absorbe todo conjunto
acotado de E, V no es necesariamente un entorno de E. Por ejemplo, si £ es un espacio
de Banach de dimension infinita y dotamos a E con la topologia débil, luego Bg absorbe
todo conjuto débil acotado, pero Bg no es un entorno débil. Inspirado en esto, se tiene la

siguiente definicion.

Definiciéon 3.2.20 Sea E un espacio localmente convexo. Decimos que E es bornoldgico
st todo conjunto absolutamente convero W C E tal que absorbe todo conjunto acotado en

E es un entorno de E.

La siguiente proposicion, nos da distintas carecterizaciones de un espacio bornolégico.

Una demostracion puede encontrarse en [8, Pag. 25].

Proposicién 3.2.21 Sea (E,7) un espacio localmente convexo. Son equivalentes :
(a) (E,T) es bornoldgico.

(b) Si v es una seminorma en E tal que supzeac(z) < oo para todo conjunto A C E

acotado, entonces o es una seminorma continua.

(c) Si F es un espacio localmente convexo y T: E — F es un operador lineal que aplica

acotados en acotados, entonces 1’ es continuo.

(d) Si 7' es una topologia localmente convexa sobre E que tiene los mismos acotados

que T, entonces T > T'.

Los espacios bornoldgicos son espacios bastantes generales como muestra la siguiente

proposicion.
Proposicion 3.2.22 Todo espacio metrizable es bornoldgico.

Demostracién: Sea E un espacio metrizable y supongamos que no es bornolégico. En-
tonces por la Proposicién 3.2.21 (c), existe un espacio localmente convexo F'y un operador
lineal T: F — F que aplica acotados en acotados que no es continuo. Sea (Up,)nen una
base de entornos de E, con U, .; C U, para todo n. Como T no es continuo en el origen,
entonces existe ¥V C F un entorno tal que 7-(V) no es un entorno de E. Por lo tanto,
existe (Z,)nen tal que z, € U, v T(z,) ¢ nV. Entonces, como (z,)nen es acotada y

(T(x))nen 10 lo es, se llega a una contradiccion. O

Si (E,7) es un espacio localmente convexo, utilizando el Lema de Zorn, existe una

topologia localmente convexa sobre E que tiene los mismos acotados que (F,T) y que es
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la més fina que cumple esta propiedad. En particular, esta la topologia es bornoldgica, la
denominaremos topologia bornolégica asociada a 7 y notaremos 7.
Para comparar los conjuntos acotados entre las distintas topologias necesitaremos tam-

bién el concepto de un conjunto localmente acotado, cuya definicion damos a continuacion.

Definicién 3.2.23 Sea E un espacio localmente convexo, U C E abierto y sea ' un
espacio normado. Una familia F de funciones definidas sobre U con valores en F' se dice
localmente acotada si para todo x € U existe V, C U entorno de x tal que sup ez ||f|lv,

es finito.

Notemos que para que un conjunto A C H(FE; F) sea localmente acotado sélo nece-
sitamos conocer las topologias de £ y F'. Este hecho es clave para las siguientes tres

proposiciones.

Proposicion 3.2.24 Sea E un espacio localmente convexo, U C E abierto y sea F' un

espacio normado. Si A C H(U; F) es localmente acotado, entonces A es Ts-acotado.

Demostracién: Sea W,, = {z € U:||f(z)|| < n, Vf € A} y consideremos int(W,,) el
interior de W,,. Fijo x € U, como A es localmente acotado, existe V, C U entorno de x y
no € N tal que sup ;e [|f||v, < no, por lo tanto V,, C int(W,,). Asi, int(W,) es no vacio
para todo n > ny. Mas aun, (int(W,,))y>n, es un cubrimiento por abiertos creciente de U.

Si p es una seminorma Ts-continua, entonces existe N y C > 0 tal que

supp(f) < Csup||fllwy <CN
feA feEA

de donde se deduce el resultado. O

Proposicién 3.2.25 Sean E y F espacios de Banach y sea A C H(FE; F). Si A es 1o~ aco-
tado, entonces A es localmente acotado.
Mas ain, A es localmente acotado si y solo si A es T-acotado cuando T es alguna de

las topologias 1o, Too, Toy O Ts.

Demostracién: Sea A C H(E; F) rp-acotado y supongamos que no es localmente aco-
tado. Luego existe x € FE tal que para todo entorno V' de x se tiene que el conjunto
{IIfllv: f € A} no es acotado. Si V,, = B(xz, 1), entonces para cada n € N existe z,, € V,,
y fn € A tales que || f,(x,)|| > n. Esto es una contradiccién ya que, si K = {(z,)nen Uz},

entonces K es compacto y se tendria que

sup||fllg > [|fu(zn)|| > VneN.
FEA
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Luego, A no es 1p-acotado. Al ser 75 es mas fina que 7y, entonces todo 75-acotado es 7y-
acotado. Como acabamos de ver, si A es 1p-acotado, entonces A es localmente acotado.
Aplicando la Proposicion 3.2.24, A es 15-acotado, con lo que se tiene que los conjuntos
acotados en 7y y 75 coinciden. Aplicando la Proposicion 3.2.19, obtenemos la segunda

afirmacién. O

De la definicién de topologfa bornoldgica asociada se tiene que 727 > 75 Por la
Proposicién 3.2.25, H(E; F') tiene los mismos conjuntos acotados para cualquiera de las
cuatro topologias vistas. Por la Proposicion 3.2.21, cada una de las topologias bornologicas
asociadas a cada una de estas cuatro topologias tienen los mismos conjuntos acotados y

cada una es la mas fina que cumple esto, por lo tanto se tienen las igualdades

bor __ __bor — bor — Tbor

0 T o w 4 -

En particular, A C H(FE; F) es localmente acotado si y sélo si A C (H(E; F), ) es
acotado.

Como veremos en la siguiente proposicién, 75 es una topologia bornolégica y, con
este resultado, tendremos la relacién que necesitaremos mas adelante entre las cuatro

topologias.

Proposicién 3.2.26 Sean E y F' espacios de Banach. Entonces la topologia bornoldgica

asociada a 19 en H(E; F) es 5. Mas atn, se tienen las igualdades

bor __ _bor __ _bor __ _bor __
0 T TTy, =T =175

En particular, (H(E; F), 15) es un espacio bornoldgico.

Demostracién: Para probar el resultado, mostraremos que 72" < 75.

Para cada cubrimiento por abiertos creciente de E, V = (V}),en consideremos el
conjunto Hy(E; F) = {f € H(E; F):||f|lv, < oo, Vn € N} dotado con la topologia
generada por las seminormas p, = ||f||v,. Hy(E; F) es un espacio localmente convexo
con una base de entornos numerable y, por lo tanto, bornolégico. Si A C Hy(E; F) es

acotado, luego es localmente acotado. Asi la inclusion

iviHy(E; F) — (H(E; F), 72)

manda conjuntos acotados en acotados y resulta continua. Entonces dado un 72" entorno

W existe Uy entorno en Hy(E; F) tal que iy(Uy) C W.
Veamos que si para cada cubrimiento por abiertos creciente de £, V, Uy, es un entorno

en Hy(E; F), entonces el conjunto U = U Uy es un entorno en (H(E; F),15) donde la
v
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union se toma sobre todos los cubrimientos por abiertos creciente de E. Si esto fuese

cierto, entonces la identidad
Ldyy(p.ry: (H(E; F),75) = (H(E; F), 77

resulta continua ya que Idy g,y (U) = Uy, iv(Uy) C Wy por lo tanto 707" < 7.

El conjunto U = U Uy, donde Uy es un entorno en Hy(FE; F) es absolutamente con-

V
vexo ya que es union de conjuntos absolutamente convexos. Veamos que es absorbente. Si

f € H(E; F), consideremos los conjuntos V,, = {z € E:||f(x)|| < n}. Al ser f continua,
V,, es abierto y por lo tanto Vs = (V},)nen €s un cubrimiento por abiertos creciente de E.
Como f € Hy,(E; F) y Uy, es un entorno en Hy, (E; I), existe A > 0 tal que f € ulUy,
para todo |u| > A. Luego se tiene que

f € nUy, < p((JUv) = nt
%

para todo |u| > .

Consideremos la funcional de Minkowski de U, definida por p(f) = inf{\A > 0: f €
AU} que, por la Proposicién 1.1.10, es una seminorma y veamos que es 7; continua.
Supongamos que no. Entonces existe W = (W, ),en un cubrimiento por abiertos creciente
de E y una sucesion (fp)nen C H(E; F) tales que p(f,) > nl|fallw, para todo n € N. En
particular, se tiene que, como p(f,) > 0, entonces f,, # 0y, por el principio de identidad,
|| fullw, > 0 para todo n € N. Tomando g,, = anf#]n se tiene que p(gn) > 1y ||gnllw, < 1.
Consideremos los conjuntos V,, = {x € E: ||gm(2)|| < n, Ym € N}. Es claro que Wy C V7.
En efecto, si € Wy, luego z € W, para todo n € N. Por lo tanto ||g,(x)|| < ||gnllw, <1
para todo n € N, luego = € V;. En particular, 17 es no vacio. Veamos que int(V},)nen €8
un cubrimiento por abiertos creciente de E. Si x € E entonces existe ny tal que x € W,
luego ||gm ()|l < |lgmllw,, < 1 para todo y € W,,, m > ng. Por otra parte, al ser
g1, -+, ne—1 continuas, existe N € N y un entorno U, de z tal que ||g;(y)|| < N para
todo y € @;, j=1,...,ng. Por lo tanto, z € U, N Wy, C Vi, obteniendo que = € int(V},).

Si V = (int(V,))nen entonces la sucesion (gm)men € Hy(E; F) es acotada, ya que
||gm||v;, < n para todo m € N. Por lo tanto, como Uy C U es un entorno en Hy;(E; F),
existe A > 0 tal que (gm)men C AUy C AU y resutla p(g,,) < A para todo m € N. Esto es

una contradiccién, ya que p(g,) > n para todo n € N. a

Observaciones (de la demostracién de la Proposicién 3.2.26)

1. Utilizamos que el espacio Hy(E; F') es un espacio localmente convexo con una base

de entornos numerable y por lo tanto bornolégico. Esto se debe a que cualquier
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espacio localmente convexo (FE,7) que tiene una base de entornos numerable es
metrizable. En efecto, si (Uy, )nen es una base de entornos de 7y p,, son sus respectivas
funcionales de Minkowski, la funcién

o0

h(z) =Y 27" inf{p,(z),1}

n=1
esta bien definida y si d(z,y) = h(z — y) resulta una distancia que define la misma
topologia 7. Més atn, si consideramos los conjuntos V,, = {z € E:d(0,x) < 27"},
(Vi)nen es una base de entornos de la topologia 7 y se cumple que V,,,; C Vj,. Una

demostracién puede verse en [18, Cap. 1].

2. La demostracién resulta mas sencilla si se conoce el concepto de limite inductivo,
concepto que no utilizamos ya que excede el interés de este trabajo. La primera
parte muestra que (H(E; F'), 75) es el limite inductivo de los espacios Hy(E; F) y se
obtiene la proposicién sabiendo que el limite inductivo de espacios bornolégicos es

bornolégico . Una demostracién de este tltimo resultado puede encontrarse en [18,
Cap. 5].

3. Notemos que no usamos la hipétesis de que F sea un espacio de Banach. La afir-
macion (H(E; F),7s) es un espacio bornoldgico es cierta cuando E es un espacio

localmente convexo y F' normado.

3.3. Polinomios compactos y funciones holomorfas compactas

Como vimos en la Seccién 2, hay una estrecha relacién entre la propiedad de aproxi-
macién, los operadores lineales compactos y el e-producto. Estas relaciones nos motivan
a introducir y estudiar polinomios y funciones holomorfas compactas. Veremos como se
relaciona el espacio de funciones holomorfas con el e-producto.

Las funciones compactas (polinomios y funciones holomorfas) entre espacios de Ba-
nach, pueden verse como una extensién a la teoria no lineal del concepto de operadores
lineales compactos. En particular, con las Proposiciones 3.3.4 y 3.3.11 se generaliza el
Teorema de Schauder para operadores lineales compactos. En esta parte, £ y F' seran

espacios de Banach.

Definicién 3.3.1 Sean E y F espacios de Banach. Un polinomio P € P("E; F) se dice
compacto si para cada © € E existe un entorno V de x tal que P(V) es relativamente

compacto. Al conjunto de los polinomios n-homogéneos compactos de E con valores en F
lo denotamos Py ("E; F).

La siguiente proposicion es consecuencia directa de la definicién.
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Proposicién 3.3.2 Sean E y F espacios de Banach y sea P € P("E; F). Son equiva-

lentes:
(a) P e Pkg("E;F).
(b) Si A C E es acotado, entonces P(A) es relativamente compacto.
(¢c) Eziste x € E y V, entorno de x tal que P(Vy) es relativamente compacto.

Empezaremos viendo alguna caracterizacion de los polinomios compactos en términos
de su traspuesta. El resultado que veremos, que generaliza Teorema de Schauder para
operadores lineales compactos, lo utilizaremos maés adelante para caracterizar las funciones

holomorfas compactas. Antes recordemos el siguiente resultado:

Teorema 3.3.3 (Ascoli) Sea X un espacio topoldgico y sea (Y,d) un espacio métrico.
Sea (C(X;Y),m0) el conjunto de funciones continuas dotado de la topologia de la conver-
gencia compacto abierta. Si F C C(X;Y) es equicontinuo con respecto a d y el conjunto
Fo ={fla): f € F} C Y es relativamente compacto para todo a € X, entonces F es

relativamente compacto en (C(X;Y), 7).

Proposicién 3.3.4 Sea E y I espacio de Banach y sea P € P("E; F). Consideremos la
aplicacion lineal P*: F' — P("E) definida por P*(y')(z) = y' o P(x) paray € F' yx € E.

Son equivalentes:
(a) P e Pgk("E,F).
(b) P*:F! — P("E). es compacta.
(¢) P*:F. — P("E)s es continua.
(d) P*:Fy —P("E)s es compacta.

Demostracién:

(a)=(b) Sea B = {x € E:||z|| < 1}, la bola unidad de E. Al ser P compacto, P(Bg) C F
es compacto y, por lo tanto, V' = (@)O, el polar de m, es un entorno de
F!. Veamos que P*(V) es compacto en P("E).. Por el Teorema de Ascoli, basta con
ver que P*(V') es equicontinuo y que, para todo x € F, el conjunto {P*(¢/)(x):y’ €
V} € C es acotado. Si iy € V, luego para todo = € B se tiene que

[P*(y) ()] = ly' o P(z)] < 1.

Como y' € V es arbitraria, se tiene que P*(V) C P("E) es equicontinuo. De la
misma forma, se ve que para cada z € E, el conjunto {P*(y)(z):y € V} esta

acotado y una cota es [|z[|".
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(b)=-(c) Por hipétesis, existe K C F compacto tal que P*(K°) es relativamente compacto en
P("E)., luego P*(K°) es acotado en P("E).. Por el Corolario 3.2.16, como P("E).
y P("E)s tienen los mismos conjuntos acotados, existe W un entorno de P("E)g
tal que P*(K°) C W. Se sigue que P*: F] — P("E)z es continua.

(c)=(d) Como By = B% la Proposicién 1.4.2 asegura que By es relativamente compacto
en F/. Al estar suponiendo que P*: F] — P("E)s es continua, resulta que P*(By)
es compacto en P("E)g.

(d)=(a) Como P*: Fg — P("E)g es lineal y compacto entre espacios de Banach, el Teorema
de Schauder asegura que P**: (P("E)s); — (I3)}s es compacto. Siz € E ey € I,
se tiene P**(z)(y') = P*(v')(z) = (¢, P(x)). Como F’ separa puntos, se tiene que
P**|g = Py, por lo tanto se obtiene (a).

O

Asi como la definicion de polinomio compacto se inspira en la de operador lineal

compacto, para funciones holomorfas tenemos:

Definicién 3.3.5 Sea f € H(E; F), f se dice compacta si para todo x € E existe un

abierto U C E, x € U tal que f(U) es compacto. El conjunto de las funciones holomorfas

compactas de E con valores en F serd notado por Hy(E; F).

Notar que como cualquier acotado de C™ es relativamente compacto, se tiene que
H(E;C™) = Hi(F;C™), para todo E espacio localmente convexo, para todo m € N.

Sobre un espacio de Banach, la definicién de funciéon holomorfa compacta, verifica
la misma propiedad que los polinomios compactos. Es decir, si F y F' son espacios de
Banach y f € H(FE; F), para que f sea compacta basta con verificar que la imagen de un
solo entorno de cada punto x € E es relativamente compacto en F. Como primer paso,
veamos que alcanza con verificar que una funcién holomorfa manda un entorno del origen
a un conjunto relativamente compacto para que sea compacta. Para esto, necesitaremos

un lema cuya demostracién puede encontrarse en [18, Cap. 3].

Lema 3.3.6 Sea E un espacio de Banach, L C E un conjunto relativamente compacto.

Entonces, la capsula convexa equilibrada de L, coe{L}, es relativamente compacta.

Proposicién 3.3.7 Sean E y F espacios de Banach, f € H(E;F) y sea V entorno de 0

con f(V') relativamente compacto. Entonces f es compacta.

Demostracién: Sean § > 0 tal que Bs(0) C V y n € N, afirmamos que se tiene la
inclusion {P, f(0)(x): ||z|| < 0} C coe{f(V)}. En efecto, si b = P,f(0)(z) para algin
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z € E, ||z]| < pero b ¢ coe{f(V)}, por el Teorema de Hahn-Banach existe ¢ € F' tal
que |¢(b)| > 1y |¢(y)| < 1 para todo y € coef(Bs(0)). Entonces, la funcién g:C — C
definida por g(A) = ¢ o f(Az) resulta entera y por la desigualdad de Cauchy obtenemos
que 1 < |p(b)| = |¢™(0)/n!| < sup{|g(A)| : |A\| = 1} < 1, lo cudl es una contradiccion.
Luego, {P,f(0)(x) : [|z[| < 6} C coe{f(V)}.

Sea x € E. Como f es entera, es decir su dominio es £, por la Proposicion 3.1.7, existe
e >0 tal que f(y) = > 2, P.f(0)(y), donde la convergencia es uniforme para y € B.(z).
Por el Lema 3.3.6, para cada n € N, {P,f(0)(y):y € B.(z)} es relativamente compacto
en F'y, por lo tanto, para cada M € N, el conjunto Cyy = {3 P, £(0)(y):y € B.(z)}
es relativamente compacto en F. Veamos que f(B.(x)) es totalmente acotado en F'y, al
ser F' completo, serd relativamente compacto.

Dado § > 0, existe M € N tal que ||f(y) — 32, Puf(0)(y)|| < /3 para y € B.(x).
Por la compacidad de Cyy, existe un conjunto {yi,...,yx} C B.(z) tal que para cada
y € B.(z) existe y; con || 0L, Pof(0)(y) — M P f(0)(w)]| < 6/3. Por lo tanto,

1 (wa) = Pl < N1 () =D Paf(0)(wa) |+
HID P FO) () = Y Paf O+ 11D Paf(0)(y) = fw)ll < 6.

Concluimos que f(B.(z)) € UL, Bs(f(:)) v, por lo tanto, f(B.(z)) es totalmente

acotado como queriamos ver. Al ser x € E arbitrario, f resulta compacta. O

Corolario 3.3.8 Sean F y F espacios de Banach y sea f € H(E;F). Seaa € E y'V un

entorno de 0 tal que f(a+ V) C F es relativamente compacto. Entonces f es compacta.

Demostracién: Sea g(z) = f(z + a), luego g(V) = f(V + a) es relativamente compacto

y, por la Proposicién 3.3.7, g es compacta. Se deduce que f es compacta. 0

Notemos que en la Proposicion 3.3.7 para concluir que f es compacta utilizamos que

P, f(0) es compacto. Hecha esta observacién, junto con el corolario anterior obtenemos.

Corolario 3.3.9 Sean E y F espacios de Banach. Son equivalentes:
(a) f€Hr(EF)
(b) P.f(a) es compacto para todo a € E y para todo n € N,

Demostracién:
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(a)=(b)

Sea a € E, V entorno del 0 tal que f(a+ V') es compacta. Luego g(z) = f(z —a) es
compacta y, por la demostracién de la Proposicién 3.3.7, P,¢(0) es compacto para
todo n € N. Como P,g(0) = P,f(a), resulta que P,f(a) es compacto para todo
n € N.

Si g(x) = f(z — a), entonces P,g(0) = P,f(a). Por lo tanto P,g(0) es compacto
para todo n € N y, otra vez usando la Proposcién 3.3.7, g es compacta. Luego f es

compacta.

Observaciones

1.

En la Proposicién 3.3.2 vimos que la imagen por un polinomio compacto de un con-
junto acotado es compacta. En general esto no es cierto para una funciéon holomorfa
compacta. En efecto, sea f:cy — C definida por f(z) = > >7 2. Si (en)nen es la
base usual de ¢g y, para cadan € N, (e],) son las funcionales tales que e/,(e;) = d,,;, se
tiene que f(z) = >~ €/, (z)" y, de la misma forma que en el Ejemplo 3.1.4 se ve que
f es holomorfa. f(B%(O)) es acotado en C y por lo tanto es relativamente compacto,
pero f(B.(0)) no es compacto. En efecto, para todon € N, si x = Z?ill ej(1—-L),

n+1
se tiene que & € By, y f(2) =00 (1 = A5) > (n+1)(1 = o47) = n.

.Sif € Hg(E;F), a € E'yV es un entorno de 0 tal que f(V') es compacto, por

lo general no es cierto que f(a + V') sea compacto. Més atin, para cada espacio de

Banach de dimensién finita E existe una clase extensa de funciones en H(FE) y, por

lo tanto compactas, tales que para e > 0, existe z. € E tal que ||f||p.(.) = 00. Una

demostracién de esto puede encontrarse en [2].

En las siguientes proposiciones, trataremos de caracterizar a las funciones holomorfas

compactas en términos de su conjunto imagen.

Proposiciéon 3.3.10 Sean E y F espacios de Banach y sea f: E — F. Son equivalentes

(a)
(b)

(c)

f S ,HK(E, F)

Existe L C F absolutamente convexro y compacto tal que f: E — F, es holomorfa,

donde Iy, = |, eyl es normado por la funcional de Minkowski de L.

f:E — F es holomorfa y existe L C F compacto tal que f(E) C Span L.
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Demostracién:
(a)=(b) Sea f € Hk(E;F). Para M € Ny x € E, definimos los conjuntos

1

Ay (z) = { y:y € B(z, i

AeC A <2}y

Une = 0BG, 3 lall < M1l sy < M),
Para cada x € F, al ser f continua y {\z: A € C,|A| < 2} compacto, existe un abierto
V tal que {Az: A € C,|A| < 2} C V y flv es acotada. Luego existe M € N tal que
[ fllay@ < M. Con lo cual se tiene que £ = J;;cny Un. Afirmamos ahora que f(Un)
es relativamente compacto. En efecto, si y € Uy, con y € B(z,1/M), entonces, por la

desigualdad de Cauchy, para n € N, se tiene que
1B fO) ()] <277 Sup FEDI < 27" f [l ans (@) < 27" M.

Por lo tanto, dado € > 0 existe £ € N tal que

k

1F@®) =D Pt @@l < D [PfO)W)I < 275M <,

n=0 n=k+1

luego Y °>°  P,(0)(y) converge uniformemente para y € Uys. Por otra parte, como Uy, es
acotado, {Zi:o P,f(0)(y):y € Up} es compacto. Al igual que en la Proposiciéon 3.3.7,

concluimos que f(Uys) es relativamente compacto. Sea

) f(Um)
K ={0}u U {MSUpa:GUM ||f(x)||}’

MeN

luego K es compacto y f(E) C Span K. Sea L = m, la clausura de la cdpsula con-
vexa equilibrada de K. Faltaria ver que f: F — F}, es holomorfa. Sea x € F, por la cons-
truccidn, existe e > 0y M € N tal que f(B(x,2¢)) C MLy f(x+a) =" P.f(x)(a)
converge uniformemente para ||a|| < 2¢. De la misma forma que en la Proposicién 3.3.7,

P,f(z)(a) € coe(ML) = ML para todo n € Ny todo a € E,||a|]| < 2¢. En particular,
para cada k € Ny a € E,||a|| < ¢, se tiene

k o0
flwt+a) = Puf(@)(a)=2"% " P.f(x)(2a)2 .
n=0 n=k+1
Como L es absolutamente convexo, compacto y 0 € L, >>° | P, f(z)(2a)27"*k ¢ ML,

por lo tanto
0

fla+a)=> Puf(x)(a) € 27* ML

n=0
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que es equivalente a decir

/(2 +a) - ZPf ()] <275 M

para todo a € B(0,¢), en donde |||.||| es la norma de Fj,. Por lo tanto f: E — Fy, es
holomorfa.

La implicacién (b) = (c) es clara por la definicién de Fy. Para probar (c¢)=(a), como
Span {coe(L)} = Span L, podemos asumir que f(E) C Span L para algin conjunto
L absolutamente convexo y compacto. Luego E = |J, o f ' (nL) y, por el Teorema de
Baire, existe un abierto V' C E tal que f(V) C nL para algin n € N. Aplicando la

Proposicién 3.3.7 se obtiene que f es compacta. 0]

Observaciones

1. En el caso de ser K separable, para ver que existe un compacto L C [ tal que
f(E) C Span L, es suficiente que f: E — I sea sélo continua, compacta, es decir,
podemos prescindir de la hipétesis de holomorfia. En efecto, para cada x € F,
sea V, abierto, x € V, tal que m es compacto en F'. Luego se tiene que ' =
User Ve v como E es separable, existe V = {V,, }nen subcubrimiento numerable
de E. Tomando 7, = n||f[ly,, }, entonces L = 0U U;Z, ;- L £(V,,) es compacto. Por
lo tanto, si « € F, existe n € N tal que f(z) € f(V,,), luego f(x) = rn%f(x) y
if(:v) € L. Asi se obtiene que f(z) € Span {L} para todo x € E.

2. Por lo general, no existe una buena descripcién del compacto L de la Proposi-
cién 3.3.10. Para ver esto, consideremos la funcién f:C — ¢ dada por f(z2) =

2,3
z¢ oz
(Z,g,g,..

de Representacién de Riesz, existe x = (z,)nep € fo tal que z'(y) = (z,y) para todo

.). Afirmamos que f es holomorfa. En efecto, si 2’ € £, por el Teorema

& € ly. Luego, la aplicacién 2’ o f: C — C queda definida por 2’ o f(z) =Y, xn%
y resulta ser holomorfa. Luego, f es débil holomorfa y, por el Teorema 3.1.11,
f resulta holomorfa. Si A es la bola unitaria en C, f(A) es relativamente com-
pacto, luego f es compacta. Pero si z ¢ A, entonces f(z) ¢ Span {f(A)}, ya que
{f(z) € by : z € C,z # 0} es linealmente independiente. Por lo tanto para ningin
compacto L C f5 de la forma L = {f(z):|z| < R} es cierto que f(C) C Span L ya

que, si |A| > R, f(A) es linealmente independiente en L.

Veamos ahora una caracterizacion de las funciones holomorfas compactas en términos
de su traspuesta. Recordamos que si f € H(E; F), la aplicacién lineal f*: H(F) — H(E)
definida por f*(g) = gof es la traspuesta de f. La restriccién de f* a F' define un operador
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lineal inyectivo en H(E), que también lo denotaremos f*. La siguiente proposicién es el

analogo holomorfo al Teorema de Schauder para operadores lineales compactos.

Proposicién 3.3.11 Sean E, F espacios de Banach y sea f € H(FE; F). Son equivalentes:

(a) feHk(E;F).

(b) f*:(H(F),10) = (H(E),T,) es continua.

(¢) f**F.— (H(E),1,) es continua.

(d) f*F — (H(E), 1) es compacta.

(e) f5Fy — (H(E),7,) es compacta.

(f) Para todo n € N y todo v € E, la aplicacion P, f(x)*: Fy — P("E)g es compacta.
Demostracioén:

(a)=(b) Sea p una seminorma 7,, continua en H(FE) portada por K C E compacto. Por la

Proposicién 3.3.10, podemos suponer que existe V' entorno de E tal que K C V' y

L = f(V) C F es compacto. Como p es portada por K, existe C'(V') > 0 tal que

p(f*(h)) = p(ho f) < C(V) sup [lho f(x)]] = C(V)sup [|h(y)]]

yel
para todo h € H(F). Luego f* es continua.

(b)=(c) Esta implicacién es clara ya que se restringe el operador de (b) a F” considerada

con la topologia 7y, que resulta ser F..

(c)=(e) Consideremos B' = {y' € F":||y'|| < 1} = Bj. Como B’ es equicontinuo, por
el Teorema de Ascoli, es relativamente compacto en F!. Luego, por (c), f*(B’) es

compacto en (H(F),7,), obteniendo asi el resultado.

(e) = (f) Para cada n € Ny z € F, del Corolario 3.2.14, obtenemos que la aplicacién
D!:(H(E),1,) — P("E)s dada por D}(g) = P,g(x) es continua. Por lo tanto
P.f(z)* = D! o f* es compacta.

(f) = (a) Por la Proposicién 3.3.4 P, f(a) es compacto para todo n € Ny para todo a € E.

Luego, por la Proposicion 3.3.9, resulta que f es compacta.
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(a) = (d) Por la Proposicién 3.3.10, si f € Hg(E; F), existe L C I absolutamente convexo
y compacto tal que f(F) C Span L. Mas atn, de la demostracién se tiene que
para cada zo € E existe un entorno U de xy tal que F(U) C nlL, para algin
n € N. Tomando el entorno de F. dado por L°, para todo x € U se tiene que
|f*(y')(x)] = |y o f(z)| < n para todo y' € L°. Por lo tanto, el conjunto { f*(y'):y/ €
L°} acotado sobre U y por tanto es localmente acotado. Por el Teorema de Ascoli,

{f*(y/):y € L°} C (H(F), o) es relativamente compacto.

(d) = (a) Por el Corolario 3.2.14, para todo ¢ € E y n € N, la aplicacién definida por
D (H(FE; F), 1) — P("E). es continua. Luego D" o f*: F! — P("E). es com-
pacta. Como D o f* = (P, f(a))*, por la Proposicién 3.3.4 (P,f(a)) es compacto
para todo a € E y n € N. El resultado se obtiene aplicando la Proposicién 3.3.9

OJ

3.4. El e-producto y el espacio de funciones holomorfas

En lo que sigue, estudiaremos bajo que hipdtesis se cumple la igualdad topolégica
FG(%(U)7TO) = (H(Ua F)770)7 (4)

donde U es un abierto de un espacio localmente convexo £ y F' es un espacio localmente

convexo. Veremos también que, cuando F y F' son espacios de Banach, se cumple
Fe(H(E), ) = (Hk(E; F), 7). (5)

Estas igualdades las utilizaremos en la seccion 4 para estudiar la propiedad de aproxima-
cién en H(E).
Empecemos por ver (4). Una de las hipdtesis que necesitaremos es que el espacio

localmente convexo F' sea cuasicompleto.

Definicion 3.4.1 Un espacio localmente convexo E se dice cuasicompleto si todo subcon-

Junto acotado y cerrado es completo.

Es claro que todo espacio localmente convexo completo es cuasicompleto. La recipro-
ca no es cierta ya que, si E es un espacio de Banach reflexivo, luego (F,o(E, E')) es
cuasicompleto y no completo pues, si (Z4)zca €s una red o(F, E')-acotada y o(E, E") de
Cauchy, al ser o(F, E')-acotada, luego es acotada en norma y, por lo tanto x, C nBg para
algin n € N. Como E es reflexivo nBg es o(E, E')-compacta y, por lo tanto, existe sub-
red o(E, E')-convergente. Como z,, es o(E, E')- de Cauchy y tiene una subred o(E, E')-

convergente, luego (z4)zeca €s o(E, E')-convergente. Con esto vemos que (E,0(E, E')) es
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cuasicompleto. Es conocido que si E es un espacio de Banach entonces (E,o(E, E")) es
completo si y solo si la dimensiéon de E es finita.

Como observamos anteriormente, si £ es un espacio localmente convexo y K C F es
precompacto, por lo general W no es compacto. Una hipdtesis para que W sea,

compacto es que el espacio sea cuasicompleto.

Lema 3.4.2 Sea E un espacio localmente convexo cuasicompleto y sea K C E precom-

pacto. Entonces coe(K) es absolutamente convezo y compacto.

Demostracién: Es claro que coe(K) es absolutamente convexo. Como K es precompacto,
luego coe(K) es precompacto y acotado [18, Cap. 3]. Al ser E cuasicompleto, coe(K) es

precompacto y completo, luego es compacto. O

La siguiente proposicion nos da un primer acercamiento a la igualdad buscada.

Proposicién 3.4.3 Sea E un espacio localmente convexo, U C E abierto y sea F' un espa-
cio localmente convero cuasicompleto. La aplicacion 0: (H(U; F),10) — L(F!; (H(U), 7))
dada por O(f) = f* donde f*(y') = y' o f esta bien definida.

Mas ain, 6: (H(U; F), 1) — (H(U), 10)eF resulta una inmersion.

Demostracién:

Es claro que 6 es lineal. Por la Proposicién 3.1.5, 0(f) = f* € L(F';H(U)). Veamos
que f* es continua, es decir, 6(f) € L(F’; (H(U), 7)).

Sea f € H(U;F), K C E compactoy sea W = {g € H(U):||g||lx < 1} un entorno
de (H(U), 7). Como f es continua, f(K) C F es compacto. Si L = coe(f(K)), por el
Lema 3.4.2, al ser F' cuasicompleto, L resulta absolutamente convexo y compacto y, por
lo tanto, L° es un entorno de F.. Ahora, para cualquier x € K, y' € L°, se cumple
que [f*(y") ()| = [(f(z),y)| < 1. Asi f*(y') € W, concluyendo que f*(L°) C W'y, por
tanto, # esta bien definida. Para ver que 6 es inyectiva tomemos fi, fo € H(U; F) tal que
0(f1) = 0(f2), entonces 3’ o f1(x) = y' o fo(x) para todo ' € F' y para todo z € U. Como
F' separa puntos, luego fi(z) = fo(x) para todo z € U, es decir f; = fo.

Veamos ahora que 6 es inmersion. Sea K C U compacto y # seminorma continua de
F'y consideremos V = {f € H(U; F):sup,cx B(f(x)) < 1} un entonrno de (H(U; F), 7).
Si f € W, aplicando la Proposicién 1.2.16, se tiene que sup,cx S(f(x)) < 1 siy sélo si
sup,ex |(f(x), y)| = sup,ck 10(f)(¥')(z)| < 1 para todo |¢'| < f. Tomando « la seminor-
ma en (H(U), 1p) dada por a(g) = sup,cx |g(x)], resulta que [(6(f)(v'), ¢)| < 1 para todo
ly'| < By para todo ¢ € (H(U), 1)’ con |p| < a. Luego fea(f(f)) < 1. Concluimos que
O(V)={T € (H(U),m0)eF: Bea(T) <1} NO(H(U; F)), es decir, # es inmersion. [
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En la proposicién anterior, vimos que si /' es cuasicompleto, entonces se tiene que
(H(U; F),70) C (H(U),70)eF, donde la inclusién es una inmersién. En lo que sigue

analizaremos que hipdtesis son necesarias para obtener la otra inclusion.

Definiciéon 3.4.4 Un espacio topologico X es un k-espacio cada vez que ANK es abierto

en K para cada K C X compacto, entonces A es abierto con A C X.
En particular, todo espacio metrizable en un k-espacio.

Lema 3.4.5 Sea X un k-espacio y sea Y un espacio topoldgico. Una funcion h: X — Y

es continua si y solo si h|g: K — Y es continua para cada conjunto K C X compacto.

Demostracién:

Es claro que h|k, la restriccién de h a un subconjunto de X, es continua si h: X — Y
lo es. Reciprocamente, si V C Y es abierto, h™1(V) N K = h|;' (V) es abierto para todo
K C X compacto. Como X es k-espacio h™'(V) es abierto en X y h resulta continua.

O

El espacio dual de #(U) contiene naturalmente a los morfismos que resultan de evaluar
en elementos de U. Es decir, fijo x € U, la aplicacién f — f(x) es una funcién lineal
sobre H(U). La aplicacion 6:U — (H(U))" definida por 6(x)(g) = g(z) serd de mucha
utilidad. En lo que sigue, estudiaremos su continuidad. Antes necesitaremos del siguiente

lema cuya demostracién puede encontrarse en [14, Cap. 2].

Lema 3.4.6 Sea FE un espacio localmente convero, U C E abierto y k-espacio. Entonces
(H(U; F), 1) es completo.

Proposicion 3.4.7 Sean E espacio localmente convexo, U C E abierto y k-espacio. En-

tonces § € H(U; (H(U), 10)L).

Demostracién: Si z,y € Uy g € H(U), entonces
S+ M) (g) =g(z+My) = Pag(ax)(My) =D A"Pog(a)(y),
n=0 n=0

donde la convergencia es uniforme para A en A(0,e) C C para algiin ¢ > 0. Por lo tanto,
la aplicacién A — §(z + Ay)(g) es una funcién holomorfa en A(0,¢), es decir, § es G-
holomorfa (ver la Definicién 3.1.8). Si vemos que § es continua, por el Teorema 3.1.11
se tiene el resultado. Tomemos por K C U compacto arbitrario y veamos que 0|x es
continua. Sea (Z4)aca C K una red tal que z, tiende a © € K. Como U es k-espacio

por el Lema 3.4.6, (H(U), 1) es completo. Luego, por el Ejemplo 1.2.10 (3) una base de
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entornos de ((H(U), 7))’ viene dado por los conjuntos M° con M C (H(U), 7o) compacto.
Tomamos entonces el entorno de ((#(U), 7))’ dado por M°® y, para K C U compacto,
sea V = {g € H(U):||lg]lx < 1} un entorno de (H(U), 7). Al ser M compacto, existen
g1...9n € H(U) tal que M C U?Zl g; + 3V. Como g; es continua para j = 1,...,n
V To — T, existe ap € A tal que si a« > ag entonces |g(zq) — g(z)| < 1/2 para todo
Jj = 1,...,n. Obtenemos asi que, si ¢ € M entonces g = ¢g; + h para algin j = 1,...,n
con h € }1‘/ y

(0(za) = 6(x))gl = 1g;(wa) = gj(x) + h(xa) — h(z)]
< gi(wa) = g5(2)| + ()] + [g(2)]
< s+i+ i 1,

para « > ag. Concluimos que si a > «, entonces 6(x,) — 6(x) € M°, por lo tanto
§(xq) — O(x) en ((H(U),7))". Luego |k es continua y, como K C U es arbitrario,
aplicando el Lema 3.4.5, § es continua. Luego, por el Teorema 3.1.11, 6: U — (H(U))' es

holomorfa. [

En particular, la imagen de d es densa, como veremos a continuacion.

Proposicion 3.4.8 Sea E espacio localmente convexo y sea U C E abierto. Entonces

Span {6(U)} = (H(U), )., donde §(U) = {6(x):x € U}.

Demostracién: Supongamos que existe ¢ € (H(U), 7). tal que ¢ ¢ Span {6(U)}.
Como Span {§(U)} es absolutamente convexo, por el Teorema de Hahn-Banach existe
w € (H(U), 1)) tal que ¢(¢) > 1y sup,ey ¢(d(x)) < 1. Como, de la Proposicién 1.2.13,
obtenemos que ((H(U), 7).) = H(U), entonces existe f € H(U) tal que o(¢) = ¥(f) v
si z € U entonces ¢(6(x)) = 6(z)(f) = f(x). Por otra parte, 1 € (H(U), 1), luego existe
K C U compacto tal que (f) < sup,cx |f(2)| y por lo tanto se obtiene que

L<fe()| =[] < sg}g\f(x)\ < sgg\f(ﬂﬂ)l = Sgghﬂ@(%)ﬂ <1,

llegando a una contradiccion. U

Proposicién 3.4.9 Sean E y F' espacios localmente convexos y sea U C E abierto y k-
espacio. Si 6:U — (H(U))" es la evaluacion, entonces 6*: L(H(U);10)., F) — H(U; F),
la aplicacion dada por 6*(T) = T o 4§, estd bien definida, es lineal e inyectiva. Mds ain,
8 Fe(H(U), 1) = (H(U; F),10) es una inmersion.

Demostracién: La buena definicién de 6* se deduce del Lema 3.4.7 y de la Proposi-
cién 3.1.5. Es claro que ¢* es lineal. Para ver la inyectividad de ¢*, tomemos S,T €
L(HU), 1), F) tal que 6*(T) = 6*(S). Luego T o §(x) = S o 6(x) para todo z € U,
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de la Proposicién 3.4.8 se deduce que el conjunto {é6(z):z € U} C (H(U), 7). separa
puntos, luego obtenemos que 7' = S. Para ver la continuidad, basta con ver que dado
un entorno V. C (H(U; F),19), existe W entorno de Fe(H(U),7y) tal que 6*(W) C V.
Sea [ una seminorma continua de F, K C U compacto y consideremos el conjunto
V= {f € H(U; F):sup,eg 5(f(x))}. Sea « la seminorma en (H(U), 1) definida por
a(f) = supyex |f(2)] v tomemos W = {I' € Fe(H(U),1): fea(T’) < 1} entorno de
Fe(H(U), ).

Notemos que |0(z)| < «, para todo x € K. Por la Proposicién 1.2.16, si T € W, se

tiene que
sup (5" (7)(x)) = sup { (T 0 8(x). ) : || < B0 € K} < fea(T) <1,
ze

con lo que obtenemos la continuidad de ¢*.

Restaria ver que es una inmersion. Sea  una seminorma continua de F'y « una semi-
norma continua de (H(U), 7o) definida por a(f) = sup,cx |f(z)| con K C U compacto. Si
W C Fe(H(U), 1) es el entorno definido por W = {T" € Fe(H(U), 1): fea(T) < 1},sea V/
el entorno en (H(U; F), 79) dado por V = {f € H(U; F):sup,cx B(f(x)) < 1}. Usando los
mismos argumentos que en la Proposicién 3.4.3, se tiene que 6*(W) = VN§*(Fe(H(U), 1))

con lo cual * es inmersion como queriamos ver. 0]

Ahora podemos enunciar la descomposicién de (H(U; F'), 79) como el e-producto de
los espacios F'y (H(U),10): Fe(H(U), 7).

Corolario 3.4.10 Sean E, F' espacios localmente convexos y sea U C E abierto. St E es
metrizable y ' completo, entonces Fe(H(U), 1) = (H(U; F), ).

Demostracién: Es una aplicacién directa de las Proposiciones 3.4.3 y 3.4.9. ([

Un resultado andlogo se obtiene para P("E, F).

Corolario 3.4.11 Sean E, F' espacios localmente convexos. Si E es metrizable y F' com-
pleto, entonces FeP("E), = P("E; F),.

En general, las formulas obtenidas anteriormente no son ciertas si consideramos a H (U )
con alguna topologia més fina que 7g. Sin embargo, al considerar Hx (U) con la topolgia
T, se pueden obtener resultados andlogos a los visto en esta parte. Las proposiciones que

siguen las veremos cuando F es un espacio de Banach. Empecemos estudiando al espacio
P("E; F).

Proposicién 3.4.12 Sean E y F espacios de Banach y 0: Px("E; F)g — L(F.,P("E)p)
la aplicacion traspuesta, O(P) = P*. Entonces 0 es un isomorfismo algebraico. Mds ain,

6 establece un isomorfismo topoldgico entre P("E)gel y Px("E; F)g.

64



Demostracion:

Por la Proposicion 3.3.4, 6: P ("E; F)s — L(F!,P("E)s) estd bien definida. Es claro
que es lineal y es inyectiva ya que si P* = Q*, luego (P(x),y) = (Q(x),y') para todo
x € E, y € F'. Como F' separa puntos, se tiene que P = (). Veamos ahora que es
sobreyectiva. Si T € L(F.,P("E)p), luego T' € L(F!,P("E),). Por el Colorario 3.4.11,
existe P € P("E; F') tal que P* =Ty como T € L(F.,P("E)z), por la Proposicién 3.3.4,
se tiene que tal P es compacto. Como P("E)z y F son espacios normados, luego, por la
observacién 6 al pie de la Definicién 1.4.4, P("E)geF es normado y, por el Teorema de
Hahn-Banach, se tiene

1P |lpmyper = sup{[(P*(y'), 2")|:4/ € F' ||y|| < 1,2" € E', ||2"]| <1}

= sup {||P*(¥)lpemy:y € F', ||| <1}
= sup{|[(P(),y):y € I, ||y'|| < Lo € E'[|z]| < 1}
= sup{[|P(z)|[:z € E,[|z]| < 1}

)s

“(y
“(y

| P|p( s

con lo que se ve que 6 es isomorfismo topolégico. Mds ain, es una isometria. 0]
Para funciones holomorfas se obtiene un resultado analogo.

Teorema 3.4.13 Sean E y F espacios de Banach. Entonces (Hg(E; F),1,) es topoldgi-

camente isomorfo a (H(E), 1,)eF .

Demostraciéon: Al igual que en la proposicién anterior, el isomorfismo viene dado por la
aplicaciéon f —— f*. Por la Proposicién 3.3.11 estd bien definida, es inyectiva y como 7
es mas gruesa que 7, se tiene que si T € (H(E), 7,)eF entonces T € (H(E), 1p)eF. Por
la Proposicién 3.4.10, T = f* para alguna f € H(FE; F'). Aplicando la Proposicién 3.3.11,
se tiene que f € Hx(FE; F), con lo que se ve la sobreyectividad.

Resta ver que el isomorfismo es topolégico. Tomemos a,z € E'y f € H(FE; F). Por el
Teorema de Hahn-Banach || P, f(a)(z)|| = sup{|{P.f(a)(x),y"):v" € F',||y|| < 1} ¥, por
la Proposicién 3.1.5, ¢/ o f € H(FE). Més atn, se tiene que P,(y' o f)(a) = y' o P, f(a). Por

lo tanto, si K C E compacto y (an)nen € co, se tiene la igualdad

Sup{HPnf(O)(xl + aan)H:xl € K, T9 € BE} =
= sup{|P.(y' o f)(0)(z1 + anz2)|: 21 € K, 73 € Bg, Y € Bpi} = (6)
= sup{| P (f*y)(0)(z1 + apxo)|: 21 € K,29 € B, y € Bp}.

Por el Teorema 3.2.17, la topologia en (H(FE; F), 1,,) estd dada por las seminormas de

la forma
p f)= E sup ln 0)(x s
( ) " 01‘6K+anBE H f( )( )H

por observacién 3 hecha al pie de la Definicion 1.4.4, las seminormas

p(f) =Y sup{|Pa(y’ o )(0)(@)|: € K + auBg, |ly'l| < 1}
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determinan la topologia de (H(E), 7,)eF, por la igualdad 6 se obtiene el resultado. O
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4. Propiedad de aproximacién holomorfa

El propoésito de est Seccion es estudiar la propiedad de aproximacion en conexién con
la clase de funciones holomorfas (compactas). Una manera de abordar este objetivo es
vincular el espacio H(F) con las topologias vistas en el capitulo anterior y determinar
bajo qué condiciones, el espacio tiene la propiedad deseada. Seguiremos la linea de trabajo
desarrollada por R. Aron y M. Schottenloher en [4], articulo que origina este tema de
estudio.

Veremos que es equivalente que H(F), dotado de la topologia de la convergencia uni-
forme sobre compactos, tenga propiedad de aproximacion a que el propio espacio F la
tenga. Asimismo, mostraremos que el operador identidad se puede aproximar por oper-
adores lineales de rango finito si y sélo si se puede aproximar por funciones holomorfas
de rango finito. Esta relacién propone estudiar los resultados andlogos holomorfos a los
vistos en el Capitulo 2. La nocién de funcién holomorfa compacta, vista en el Capitulo 3,
fue introducida para estudiar la propiedad de aproximacién sobre H(F) si se consideran
las topologias 7o, T ¥ Ts.

Para E' y F dos espacios localmente convexos, consideramos f € H(E; F) de rango
finito. Tomamos {yi,...,y,}, una base de f(E) y su base dual {y|,...,y.}. Al ser f de
rango finito, existen ¢4, ..., ¢, funciones, ¢;: E — C, tales que f(z) = 2?21 ©i(x)y;.
Luego y; o f = ; y, por la Proposicién 3.1.5, p; € H(FE) para j = 1,...,n. Es decir, si
f es de rango finito, luego existen yi,...,y, € F'y f1,..., fn € H(E) tales que f(z) =
2?21 fj(x)y;. Por esta propiedad, notamos a las funciones holomorfas de £ en F' de rango
finito como H(E) ® F. De la misma forma, el conjunto de polinomios n-homogéneos de
E en F de rango finito serd notado por P("E) ® F.

Definicién: Sea E un espacio de Banach. Decimos que E tiene la propiedad de apro-
zimacion holomorfa si la identidad puede ser aprorimada por funciones holomorfas de
rango finito sobre los conjuntos compactos de E. Es decir, dado e > 0y K C E compacto,
existe f € H(E) @ E tal que sup,eg ||f(x) — z|| < e.

4.1. La propiedad de aproximacién en (H(E), 1)

Consideremos E un espacio de Banach, U C E un abierto y F' un espacio localmente
convexo. Si f € H(U; F) luego f es continua y para K C U compacto, la restriccién
de f a K, f|k, es uniformemente continua. Es decir, dados ¢ > 0 y S una seminorma
continua de F, existe 0 > 0 tal que para todo z,y € K tales que ||z — y|| < ¢ se tiene
B(f(z) — f(y)) < e. El siguiente resultado muestra que esta acotacién permanece valida

si movemos y adecuadamente en un entorno de K.
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Lema 4.1.1 Sean E un espacio de Banach, U C E abierto y K C U compacto y sea
F un espacio localmente convero. Entonces dado € > 0, 8 seminorma continua de F' vy
f e HU;F), existe 6 >0, 6 < dist(K,CU), donde CU denota el complemento de U, tal
que B(f(xz) — f(y)) < € para todo v € K, ||z —y|| < 0.

Demostracién: Sean K C U compacto y f € H(U; F). Para cada x € K, existe ¢, > 0,
8, < dist(K,CU) tal que S(f(x) — f(y)) < €/2 para todo y € B, (x). Al ser K compacto,
existen zy,...7, € K tales que K C U Bs, (;). Tomemos la funcién v: K — R definida
por v(x) = sup{dy, — ||z — z;|[:i = 1,...,n}. Sea § = inf,cx{y(x)}. Para todo z € K ¢
y € Bs(r) se cumple que

i = yll < lJzi — [ + [|lz — yl| < o — 2|[ +v(2) < |z — z]| + 00, — ||z — 2| = ba
para algin i = 1,...,n. Entonces B;(z) C Bs, (x;) v, por lo tanto,

B(f(x) = f(y) < B(f(x) = fm:)) + B(f (=) — fy)) <e.

O

Veamos bajo qué condiciones el espacio (H(F), 7o) tiene la propiedad de aproximacién,
para F un espacio de Banach. Los resultados de [4] se dan para (H(U),7y) cuando U es

un abierto finitamente Runge. Introducimos aqui la correspondiente definicion.

Definiciéon 4.1.2 Sea E espacio de Banach y U C E abierto. Se dice que U es Runge
en E si P(E) es denso en (H(U), 7). Se dice que U es finitamente Runge en E si para
cada subespacio By C E de dimension finita, U N Ey es Runge en Ejy.

Por ejemplo, un conjunto abierto y balanceado U C E es Runge y finitamente Runge.

Cuando Uy es un abierto de Ejy, espacio de Banach de dimensién finita y F' es un espacio
localmente convexo completo, los espacios H(Uy) @ F y H(Uy; F') estén estrechamente rela-
cionados. De hecho se tiene que H(Uy) ® F es denso en (H(Uy, F'), 75). Una demostracion
de este resultado no es inmediata y requiere de la definicién de espacio localmente convexo
nuclear. Ademas apela a topologias definidas sobre el producto tensorial de espacios local-
mente convexos, con lo cual omitimos la prueba. Este resultado se debe a Grothendieck,
ver [10].

Teorema 4.1.3 Sea E un espacio de Banach y sea U C E un abierto no vacio finitamente

Runge. Entonces son equivalentes:
(a) E tiene la propiedad de aproximacion.
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(b) E tiene la propiedad de aproximacion holomorfa.
(c) H(U)® F es denso en (H(U; F), 1), para todo F espacio localmente convezo.

(d) H(V)®E es denso en (H(V, E), 1), para todo V C F abierto no vacio y para todo

I espacio localmente convexo.
(e) (H(U),m) tiene la propiedad de aprozimacion.
Demostracién:

(b)=(c) Sean f € H(U;F), K C U compacto,  una seminorma continua de F'y ¢ > 0. Por
hipétesis, existe g € H(F) ® F tal que ||g(z) — z||x < J, donde § > 0 se obtiene por
el Lema 4.1.1. Luego, z € K, implica g(z) € K y se tiene que

B(f(x) = foglz)) <e. (7)

Llamemos FEy = Span {¢(F)} vy Uy = U N Ey. Al ser Ey de dimensién finita, por
[10], H(Us) es nuclear y H(Us, F) = H(Uy) ® F, donde F es el completado de F
y la clausura se toma segin la topologia 7. Luego, existe f; € ”H(UO,F\) tal que

B(flue(y) — fily)) < € para y € g(K). Por lo tanto, si x € K se tiene que
B(fog(x) = frog(r)) <e (8)

Como f, € ’H(Uo,ﬁ), existen ¢; € H(Up) v z; € Fconj =1,...,m tales que
fi= Z;":l ©;®z;. Al ser Fel completado de F', existen z; € F tales que, si llamamos
C; = sup,e{p; o g(x)}, tenemos C;3(z; — z;) < £/2m para todo j =1,...m. Por
hipétesis, Uy es Runge en Ey, entonces para cada ;, existe p; € H(E)p) tal que, si
Dj =sup,cx |pog(x) —pog(x)|, se tiene D;B(Z;) < ¢/2m para todo j =1,...,m.
Sifo =37, ¥, ® 2 se tiene que fo € H(Ey) ® F'y, para x € K, obtenemos

ﬁ(flog( )—fgog( ))_5(

||‘MS

Z
Z%Og Zw;og )%;) +62%09 ngog r)7;)
< chﬂ(zj - zj) + ZDJ'B(%) <e
=1 =1
(9)

Tomando h = f;0g|y, tenemos h € H(U)® F y para todo z € K, por las desigual-
dades (7), (8) v (9), se tiene que

B(f(x)=h(x)) < B(f(z)=fog(x))+5(fog(x)—fiog(x))+5(fio9(z) = frog(x)) < 3e.
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(c)=(e)

(d)=(b)

Como U es metrizable, aplicando la Proposicién 3.4.9 obtenemos que, para todo
espacio localmente convexo F', (H(U),m0)eF C (H(U; F),7y) . Por hipétesis, como
H(U) ® F es denso en (H(U; F), o), se tiene que H(U) ® F es denso en (H(U))eF
que, por la Proposicién 2.2.2, es equivalente a que (H(U), 79) tenga la propiedad de

aproximacion.

Por la Proposicién 3.2.13, P(*E), = E’ es subespacio complementado de (H (U), 7).
Luego, por la Proposicién 2.1.9, E! tiene la propiedad de aproximacion y, por el

Corolario 2.2.4, E tiene la propiedad de aproximacion.

Sea F' un espacio localmente convexo y V' C F un abierto no vacio. Como E es
completo, por la Proposicién 3.4.3 se tiene que (H(V; E), 79) C (H(V)71)eE. Como
F tiene la propiedad de aproximacion, por la Proposicién 2.2.2, (H(V),70) ® E es
denso en (H(V'), 7p)eE. Luego H(V) @ E es denso en (H(V; E), 7).

Tomemos V = F = E, como Idy € H(E; E), dadoe > 0y K C E compacto, existe
f € HE)QEFE tal que sup,c i ||f(z) —Idg(z)|| < €, con lo que se tiene el resultado.

U

Observaciéon La equivalencia entre (a) y (b) muestra que es lo mismo aproximar la

identidad sobre un conjunto compacto por operadores lineales de rango finito que aproxi-

marla por funciones holomorfas de rango finito. En particular, las equivalencias entre (b),

(¢) y (d) dan un resultado andlogo (holomorfo) a la Proposicién 2.1.2.

En la Proposicién 3.2.13 obtuvimos que P("E). es un subespacio complementado de

(H(E), ) para todo n € N. Aplicando la Proposicién 2.1.9 obtenemos que si (H(E), 1)

tiene la propiedad de aproximacién, entonces P("F). la tiene para todo n € N. En par-

ticular cuando n = 1 tenemos que P('F). = E’ tiene la propiedad de aproximacién. De

la Proposicion 2.2.4, junto al Teorema 4.1.3, obtenemos el siguiente resultado.

Corolario 4.1.4 Sea E espacio de Banach, entonces son equivalentes:

1.

2.

3.

E tiene la propiedad de aproximacion.
(H(FE), 1) tiene la propiedad de aproximacidn.

P("E). tiene la propiedad de aproximacion para todo n € N
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4.2. La propiedad de aproximacién en (H(E),,)

Al igual que en el caso lineal, que un espacio de Banach E tenga la propiedad de apro-
ximacién holomorfa (que, por el Teorema 4.1.3, es equivalente a que tenga la propiedad de
aproximacion) esta intimamente ligado a la relacién que hay entre funciones holomorfas

de rango finito y funciones holomorfas compactas. Empecemos viendo esto en P("E).

Proposicién 4.2.1 Sea E un espacio de Banach. Entonces P("E)s tiene la propiedad
de aprozimacion si y sélo si P("E) @ F es denso en Pr("E; F)g para todo espacio de
Banach F'.

Demostracién: De la Proposicién 3.4.12 se tiene que P("E)geF = Pr("E; F)s. Apli-

cando la Proposicién 2.2.2 se obtiene el resultado. O

En la Proposicién 2.1.7 vimos la equivalencia: F tiene la propiedad de aproximacién si
y s6lo si los operadores lineales compactos con rango en F son aproximables por operadores

de rango finito. La siguiente proposicién muestra el andlogo (holomorfo) a este resultado.

Proposicion 4.2.2 Sea E un espacio de Banach. Entonces, E tiene la propiedad de
aprozimacion si y solo si H(F) ® E es denso en (Hg(F,FE),1,) para todo espacio de
Banach F.

Demostracién: Si E tiene la propiedad de aproximacién, en particular, por la Proposi-
cién 2.2.2, EQ(H(F), 1,) es denso en Ee(H(F'),7,) v, aplicando el Teorema 3.4.13 se tiene
que H(F)®FE es denso en (Hk(F; E),1,). Reciprocamente, sea F' un espacio de Banach y
sea T € K(F; E). Tomemos la seminorma p en Hg (E; F') definida por p(f) = ||P.f(0)|| ¥
veamos que es K-portada. Si K C E es un compacto tal que 0 € K y V es un abierto que
contiene a K, en particular 0 € V' y, por lo tanto, existe d > 0 tal que dBr C V. Luego,
para toda f € Hy (E; ) se tiene que p(f) = [|P1f(0)]] = z||Pf(0)|lass < glIPf(O)]]v.
Con esto tenemos que p es K-portada y, por lo tanto, dado ¢ > 0 existen fi, ..., f, € H(F)
y x1,...,x, € I tales que

T Zfz@)xz = Ssup {HT Zplfz $Z||}

ll2f|<1

Como Y7 | P fi(0) ® x; € F' ® E, entonces F' ® E es denso en K(F, E). Luego, por la

Proposicién 2.1.7, F tiene la propiedad de aproximacion. 0]

En la Proposicién 2.1.8 vimos que para intercambiar los roles de E/'y F' en la Proposi-
cion 2.1.7 se necesita una hipotesis mas fuerte. Sucede lo mismo si queremos intercambiar

los roles de F' y F' en la Proposicion 4.2.2, como se ve en el siguiente resultado.
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Proposicién 4.2.3 Sea E un espacio de Banach. Entonces, (H(E), 1,,) tiene la propiedad
de aprozimacidn si y sdlo si H(E) @ F es denso en (Hg(E; F),1,) para todo espacio de
Banach F.

Demostracion: Por la Proposicion 3.4.13, para todo espacio de Banach F', los espa-

cios (Hx(E; F),1,) v (H(E),7,)eF son topolégicamente isomorfos. Luego, aplicando la

Proposicién 2.2.2, se tiene que (H(E),7,) tiene la propiedad de aproximacién si y sélo si

H(E) ® F es denso en (H(E),7,)eF = (Hk(E; F),1,), para todo espacio de Banach F.
[

Si E es un espacio de Banach, de las Proposiciones 3.2.13 y 3.2.12 se obtiene que
P("E)p es un subespacio complementado de (#(E),7) para todo n € N, donde 7 es
cualquiera de las topologias 7, 7,, 0 75. Aplicando la Proposicién 2.1.9, si (H(E), ) tiene
la propiedad de aproximacion, entonces P("E)z tiene la propiedad de aproximacién para
todo n € N. La reciproca es también cierta como se verd en el Teorema 4.2.5. Ademas, este
teorema mostrara que es equivalente que H(FE) tenga la propiedad de aproximacién con
una de estas topologias a que la tenga con cualquiera de las otras dos. Antes necesitaremos

el siguiente lema.

Lema 4.2.4 Sea E un espacio de Banach, F C H(E) un conjunto y sea T alguna de
las topologias To, T, 0 T5. Entonces dado € > 0 y p una seminorma T-continua, st F es

T-compacto, entonces existe M € N tal que p(f — 224:0 P,f(0)) < € para toda f € F.

Demostracién: Sea F C H(F) 7 compacto y p una seminorma 7 continua. Por las
caracteristicas propias de cada una de las topologias 7., 7., v 75, haremos una demostracion

en cada caso.

Para 7: De la Definicién 3.2.6, basta con mostrar el resultado para las seminormas p definidas
por p(f) =sup{||P;f(z)(a)||:x € K,a € E,||a|]| < 1} donde K C E es compacto y
Jj € N. Sea F C (H(E), 7o) compacto y € > 0. Afirmamos que existe > 0, C' > 0
tal que, si a € E, ||a|| < 1, sup{|f(2z + 2ra)|: f € K,z € K} < C. En efecto, al
ser F compacto, por la Proposicion 3.2.25, F es localmente acotado, entonces, para
cada z € %K, existen &, > 0y Cp > 0 tal que sup;cr || fl|B;, @) < Ca- Al ser %K
compacto, existen xi,...,x, € %K tal que %K - U?Zl Bs,,; (z;). Luego, tomando
6 = min{dy,,...,0,,}, si z € 3K, B%(a:) C Bs, (x;) para ;lgl'mj =1,...,ny,si
C = max{Cy,,...,Cy, }, se tiene que sup{||f||p, @):f € F} < C. La afirmacién se
obtiene tomando r = §/4. Si x € K y ||a|| < i, para todo M € N, aplicando la
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Para 7,:

Para 75:

desigualdad de Cauchy se tiene para cada j € N

15 ( > Pnf(O)) (@)(a)l] =775 ( > Pnf(0)> (z)(ra)]]

n=M+1 n=M+1
%9

<7 Y Paf(0)(z +ra)l]

n=M+1

<l S 2R ()20 + 20a)|

n=M+1
0

< Yy 27| (20 + 2ra) |

n=M+1
X0

<yl Z 27 "C.

n=M+1

Luego, tomando supremo sobre K y sobre Bg, para toda f € F se tiene que

p(f =D Puf(O) <17 Y 27mC

n=M+1

Tomando un M adecuado se obtiene el resultado.

Podemos suponer que p es una seminorma portada por el conjunto &', donde K C F
es compacto. Como F es compacto para la topologia 7, es equicontinuo. Entonces
existe & > 0 tal que sup{||f(z)||:z € Kqs, f € F} = C < o0, donde K, = {x €
E:dist(z, K) < r}. Tomando r > 1 tal que rK5 C Koy, para toda f € Fy M € N,
por la desigualdad de Cauchy se tiene

o0

p(f =Y Puf(0) <KDl D Puf(0)llx,

n=M-+1
oo

< O(Kg) Z T_nHPnf(O)HTK&

n=M+1
xO

<C(Ks) Y, " ek

n=M+1

SC(K(;)C i r ",

n=M+1

Por lo tanto, tomando un M adecuado, se obtiene que p(f — ZQ/LO P,f(0)) < e para
toda f € F.

Al ser F compacto, por la Proposicion 3.2.25, F es localmente acotado y por lo
tanto, si W,, = {z € E:|f(z)| < n, Vf € F}, parar > 1, (int(r~'W,,))n>n, €s un

cubrimiento por abiertos creciente de E para algiun ny € N. Luego, para para toda
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feFy M e N, usando la desigualdad de Cauchy, se obtiene

M
p(f =) Puf(0)) <C(r'Wy,)ll Z Pof (0)||r-1w,.,
n=0

n=M+1
<CE'Wa) Y T [Paf(0)]lw,,
n=M+1
<CEr'Wa) Y I fllw,
n= M+1
S 71Wn1 Z r —n
n=M-+1

para algin n; € Ny C(r~'W,,) > 0. Por lo tanto, tomando un M adecuado, se
obtiene que p(f — ZQ/LO P,f(0)) < e para toda f € F.

O

Teorema 4.2.5 Sea E espacio de Banach. Son equivalentes

(a) P("E)s tiene la propiedad de aprozimacion para todo n € N
(b) (H(E),T) tiene la propiedad de aproximacion para T = Teo, Ty O Ts

(c) H(E) ® F es denso en (Hk(E; F),T) para todo espacio de Banach F y para T =

Toos TwOTs.
Demostracién:

(b)= (a) Se debe a que P("E)s es un subespacio complementado de (H(E), ) para todo

n € N, donde 7 = 7, 7,,, O T;.

(a)= (b) Sea F C (H(E), ) compacto, € > 0 y p una seminorma 7-continua para 7 = T, 7,
o 75 y sea € > 0. Por el lema anterior, existe M > 0 tal que p(f — 22/1:0 P.f(0)) < ¢
para toda f € F. Por las Proposiciones 3.2.12 y 3.2.13, el operador definido por
Dy: (H(E),7) = P("E)s es continuo, con lo que tenemos que la imagen por Dy de
F, Dy(F)={P.f(0): f € K} C P("E)s, es compacto para todo n € N.

Como P("E)s tiene la propiedad de aproximacién para todo n € N, para cada
n =0,1,..., M, existe un operador lineal de rango finito T,,: P("E)s — P("E)s
tal que para toda f € F se tiene que p(T,(P,f(0)) — P,f(0)) < ¢/(M + 1). El
operador T:H(E) — H(E) definido por T(f) = M T,(P.f(0)) es de rango
finito, 7 continuo y, para toda f € K se tiene que

p(T(f) = ) < p(T(F) = 02 Paf(0)) +p(3 020 Puf(0) = f)
< Yato PTa(Puf (0)) = Puf(0) + p(X0tg Puf (0) = f)

< 2e.

Al ser p y F arbitrarios, se tiene el resultado.

74



(a) = (c) Seapseminorma 7 continuaen H(E; F), f € Hx(E; F)ye > 0. Por el lema anterior,
p(f—ZQ/[:O P,f(0)) < e paraalgin M € N. Al ser f compacta, por el Corolario 3.3.9,
P,.f(0) € Px("E; F) y, por la Proposicién 4.2.1, para cada n = 0,1,..., M existe
Q. € P("E)®F tal que P(Q, — P.f(0)) < 1==. Por lo tanto, - @, € H(E)®F

M+41-°

y se tiene que

p(f =D Qu) <p(f =Y Puf(0) +p(Y_ Puf(0) = Y Quf(0)) < 2.

(c) = (a) Sea P € Px("E; F) para algin espacio de Banach F'. Sea e > 0 y sea p la seminorma
en H(E; F) definida por p(f) = ||P,f(0)||. Esta seminorma es 7-continua para
T = Too, Tw O Tg. Por hipétesis, como Px("E; F) C Hg(FE; F), existe f € H(E) @ F
tal que p(P — f) = ||P — P,f(0)|| < ey P.,f(0) € P("E) ® F. Luego, P("E) @ F
es denso en Pk ("E; F')z que, por la Proposicién 3.4.12 es topolégicamente isomorfo

a P("E)gel. Aplicando la Proposicién 2.2.2 se obtiene el resultado.

O

El siguiente corolario muestra como se relacionan 7y y 7, con respecto a la propiedad

de aproximacion.

Corolario 4.2.6 Sea E espacio de Banach. Si (H(E),1,) tiene la propiedad de aproxi-

macion, entonces (H(FE), 7o) tiene la propiedad de aprorimacion.

Demostracién: Supongamos que (H(E),7,) tiene la propiedad de aproximacién, en-
tonces por la proposicién anterior E' = P(*E)z tiene la propiedad de aproximacion. Esto
implica que F tiene la propiedad de aproximacion que, por el Teorema 4.1.3 es equivalente

a que (H(FE), ) tenga la propiedad de aproximacion. a

Observacién Cabe sefalar, sin embargo que (H(E),7,) v (H(E), ) no siempre com-
parten la propiedad de aproximacién. Como mencionamos anteriormente, en [13, Teorema
1.e.7] se muestra la existencia de un espacio de Banach E con la propiedad de aproximacién
tal que E’ no la tiene. Para este espacio (H(E), 1) tiene la propiedad de aproximacion,
pero (H(FE),1,) no.

4.3. La propiedad de aproximacion en (H(¢1),7,) y en (H(fs), 7,)

En el Teorema 4.2.5 vimos que si E es un espacio de Banach, H(FE) tiene la propiedad
de aproximacién para alguna de las topologias 7o, 7, 0 75 si y sélo si P("E)s tiene la

propiedad de aproximacién para todo n € N. Usaremos este resultado para mostrar que
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(H(¢y),7,) tiene la propiedad de aproximacién (y por lo tanto (H(¢1),7e) v (H(¢1), 75)

también). Por el contrario, mostraremos que (#(¢3), 7,,) no tiene dicha propiedad.

Empecemos viendo que, para cualquier espacio de Banach E, P("FE) es topologica-

mente isomorfo a un subespacio complementado de L("E).

Proposicién 4.3.1 Sea E un espacio de Banach. Entonces P("E) es isomorfo a un

subespacio complementado de L("E).

Demostracién: En la Proposicién 3.2.4 vimos que P("E) es isomorfo a L*("E). Para
ver que L°("E) es un subespacio complementado de £(™F), consideremos el operador de
simetrizacién s : L("E) — L*("E) definido por

1
S(@)(w1, o w0) = — > BTy, To(m)

oeS,
donde S, es el conjunto de las permutaciones de n elementos. Es claro que s es un proyector

continuo y que s(®) = & para ¢ simétrica, con lo que se tiene el resultado. 0]

La siguiente proposicién nos muestra que L£(™¢1) con la topologia de la norma es
isométricamente isomorfo a /. Usando este resultado, sumado a la Proposicion 4.3.1

obtendremos que (H(¢1),7,) tiene la propiedad de aproximacion.

Proposicién 4.3.2 Para todo n € N, L("¢;) es isométricamente isomorfo a ly. Por lo
tanto, L("ly) tiene la propiedad de aproximacion. En particular P(™{y) tiene la propiedad

de aproximacion.

Demostracién: Sea ® € L("(;). Si 2,22, ...,2" € {1, 2™ = Y ;7 21", en donde

(er)ren es la base canénica de ¢;. Se tiene

Ozt 2" = Z Z Dlejy, ... e,)a;, . 2] (10)

Llamemos a; = ®(e;,,...,¢e;,) donde j = (ji,...,7n) € N". Luego
o5 = |®(ej,, - e5,) | < |2
y, por lo tanto, (aj)jenn € oo(N"™). Mas atin, de (10) se tiene que

®(z', ... 2" < ,sgwp{!aﬂ}z:--- > Jwga| =
J n

J1EN Jn€N

= sup |agf[|="]] ... [|2"|]-
jeNn
Asi, ||®]] < supjeye |a], obteniendo que ||®]] = supjeya |y,
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Reciprocamente, cada (a;j)jenn € loo(N") define una funcién n-lineal ® € £("¢;) como
en (10). Luego L£("¢;) es isométricamente isomorfo a o (N™), y como £o(N") es isométri-
camente isomorfo a .., se tiene el primer resultado.

Como, por la Proposicién 4.3.1, P("¢;) es un subespacio complementado de L£("¢;),

P (™) tiene la propiedad de aproximacién para todo n € N. O

Teorema 4.3.3 El espacio (H((1),1,) tiene la propiedad de aprozimacion.

Demostracién: De la proposicién anterior, P("¢;) tiene la propiedad de aproximacién

para todo n € N. Aplicando el Teorema 4.2.5 se tiene el resultado. U

En el teorema anterior, el rol que juega el espacio ¢; es crucial. Veremos que hay espa-
cios para los que (H(E), 7,) no tiene propiedad de aproximacién. R. Aron y M. Schotten-
loher construyen en [4] un espacio de Banach F tal que (H(FE), 7,,) no tiene la propiedad de
aproximacién. Gracias a los trabajos de J. C. Diaz y S. Dineen de 1998 y el de A. Szankows-

ki en 1981 podremos mostrar que la misma situaciéon se tiene para E = /5.
Teorema 4.3.4 El espacio (H(l3),T,) no tiene la propiedad de aprozimacion.

Demostracién: Por el Teorema 4.2.5, basta ver que existe n € N tal que P("l3) no
tiene la propiedad de aproximacién. Mds atn, para n = 2, se tiene que P(*/y) no tiene la

propiedad de aproximacién. En efecto, de [7, Proposicién 1] se tiene el isomorfismo
L (%) = L5(%0y)

yva que /5 es estable, es decir £y =2 {9 X £5. Luego, como la Proposicién 4.3.1 asegura que
P(%ly) =2 L5(*4y), tenemos que si P(*(y) tiene la propiedad de aproximacién entonces
L(%(;) tiene la propiedad de aproximacién. Esto contradice el resultado de A. Szankowski
en [19] que asegura que L(H, H) no tiene la propiedad de aproximacién para cualquier H
espacio de Hilbert. Como L(H, H) = L(*H), para H Hilbert, se sigue el resultado. [

Més atn, el hecho que P(?¢s) carece de la propiedad de aproximacién, nos permite, me-
diante la siguiente proposicién, mostrar que P (™) no tiene la propiedad de aproximacién

para n > 2.

Proposicion 4.3.5 Sea E un espacio de Banach y sean m,n € N, m < n. Entonces

P(™E) es topoldgicamente isomorfo a un subespacio complementado de P("E).

Demostracion:
Es suficiente ver el cason = m+1.Seany € E ey’ € E' talesque y/(y) =1 =||¢/||. Sea
p:P(™E) — P(™E) la aplicacién definida por p(Q)(z) = y(2)Q(z) para Q € P(™E)
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v x € E. Se tiene que p es lineal, inyectivo y que ||p(Q)]| < ||y]|||Q] = [|@]]- Entonces
lpll < 1. Como p(y™) = y™* y [ly™*!|| = 1, lnego ||p|| = 1. Sea m: P("*'E) — P("F'E)
definido por 7(P)(x) = P(z) — P(z — y'(x)y) para P € P(""'E) y x € E. Se tiene
que 7 es lineal. Llamemos a: E — E al operador o(z) =  — y'(z)y. « es lineal y como
ledl < L+ llllyll = 1+ [lyll, luego [lx(P)|| = |1P = Poal <[P+ |[P[l[lef™, con lo
que se tiene que 7 es continuo. Ademds o® = a. En efecto, como ¢/(y) = 1, se tiene que
y'(a(z)) = y'(z) —y'(z) = 0, luego o*(z) = a(a(r)) = a(z) — y'(a(r))y = a(z). Por lo
tanto, se tiene que
7(P)= #(P—Poa)

= P—Poa—(Poa—Poa?)

= P—Pou«a

= w(P).
Asi, 7 es un proyector. Veamos que la imagen de 7 es igual a la imagen de p. SiQ € P("E),
luego 7(¥'Q) = ¥'Q — (¥ o) (Q o) =1y'Q. Por lo tanto, tenemos que la imagen de p

estd incluida en la imagen de w. Reciprocamente, si P € P(""E)y P = ®, obtenemos

que
P(z) — Poa(z) =19y (x) (Z j!(ilm_:-ll_)!j)! (—1)j+1yl(x)j_1<1>(yj7xm+1_j)> '

Tomando @ = Z;’:{l %(—1)%@’(@%1@@%xm+1_j) resulta que Q € P(™E) y
p(Q) = w(P). Al ser P arbitrario se tiene que la imédgenes de p y 7 coinciden.
Como P(™E) es topoldgicamente isomorfo a p(P(™E)) y p(P("E)) = n(P(™E)),

al ser m un proyector se tiene el resultado. O

Teorema 4.3.6 (#H((2),7,) y P("la) paran > 2 no tienen la propiedad de aprozimacion.

4.4. La propiedad de aproximacién en H>(U)

Las funciones holomorfas definidas sobre un abierto U, en general, no mandan acotados
del dominio en acotados de la imagen. Aunque esto si sucede para funciones enteras (en
particular continuas) sobre C", la propiedad de mandar acotados en acotados no es cierta
en general, atin, para funciones enteras sobre un espacio de Banach infinito dimensional.
Es por esto que el subespacio de funciones holomorfas que son acotadas sobre los acotados
del dominio cobra especial interés. Para finalizar, presentaremos brevemente cuando este
espacio tiene la propiedad de aproximacién. Esto fué estudiado por J.Mujica en [15], quién
utiliza un método de linearizacién del espacio de las funciones holomorfas acotadas sobre

un espacio de Banach, cuyas ideas contaremos.
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Definicién 4.4.1 Sean E y F espacios de Banach y sea U C E un abierto. H*(U; F) es
el subespacio vectorial de H(U; F) formado por las f € H(U; F) que son acotadas sobre
U. Cuando F = C, notamos H*(U) en lugar de H>*(U;C).

Los espacios H(U) y H*(U) en general difieren. Esto es puede existir f € H(U) tal
que ||f|lo = oo. Veamos esto en el siguiente ejemplo, U = B,(a), la bola de centro a y
radio 7 en un espacio de Banach E. Si 2’ € E' es tal que ||2'|| =1,a € E'y r > 0, luego
flx) =37 r "2 (xr —a)" € H(B,(a)). Sie >0,z € Etal que ||[z|]| =1y 2'(z)=1—¢
yre€Rcon7=r—c¢, setiene que 7x +a € B.(a) y fTz +a) = > 2 (wy =

n=1 r
oo Al ser e arbitrario se tiene que f ¢ H>®(B,(a)).

El espacio H*(U; F') tiene propiedades especiales, entre las que se destaca que este

espacio se lo puede dotar de una norma que lo hace un espacio de Banach.

Proposiciéon 4.4.2 Sean E y F espacios de Banach y sea U C E un abierto. Sobre
H>®(U; F), la funcion ||f]| = ||fllu es una norma y la topologia generada por |.|| es

completa. Es decir (H>®(U; F),||.||) es un espacio de Banach.

Otra de las propiedades espciales de H*(U) es que es un espacio dual de Banach, lo
que veremos a continuacion.

Si notamos con Byee(.y a la bola unidad de H*(U; F'), Byso(u,r) €s localmente aco-
tado y, por la Proposicion 3.2.25, By ;) es Tg-acotado. Resulta que el clasico Teorema
de Montel para funciones holomorfas en C también vale para funciones holomorfas en
un espacio de Banach. El teorema se enuncia a continuacién. Una demostracién puede

encontrarse en [14].

Proposicién 4.4.3 Sea U C E abierto. Entonces cada conjunto acotado de (H(U), 1)

es relativamente compacto. En particular By .py es To-relalivamente compacto.

Si E es un espacio de Banach, el Teorema de Alaoglu afirma que Bg es o(E', E)-
relativamente compacta. También sabemos que para que E sea reflexivo (y, por lo tanto
E es el dual de E'), es necesario y suficiente que Bg sea o(FE, E')-relativamente compacta.
De esto se observa que si F es el dual de algin espacio de Banach, entonces Bg es
relativamente compacto para alguna topologia localmente convexa. La reciproca también

es cierta y fué demostrada en 1971 por Ng.

Teorema 4.4.4 Sea FE un espacio de Banach. Si existe una topologia localmente convexa
7 en F tal que Bg es T-compacta, entonces E es isométricamente isomorfo al espacio

dual de un espacio de Banach. Mas aun, si F' es el espacio

F={p€ FE:¢|p, es T — continua},
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dotado con la norma ||| = ||¢llB,, entonces la evaluacion J: E — F' es un isomorfismo

1someétrico.
Usando los dos ultimos resultados obtenemos la siguiente proposicién.

Proposicién 4.4.5 H>®(U) es isométricamente isomorfo al dual de un espacio de Ba-
nach. Mas ain, si G*(U) = {p € H*(U)": 9|0, €8 To — continua} dotado por la nor-
ma ||¢|l = ¢l Byoew,, entonces la evaluacion J: H*(U) — G=(U)" es un isomorfismo

1sométrico.

La Proposicién 4.4.5 es vista como un teorema de linealizaciéon. A las funciones en
H>(U) se las puede ver como funciones lineales sobre G®(U). Esta linealizacién es 1til
para poder decidir si H*(U) tiene la propiedad de aproximacién o no ya que J. Mujica

en [15] prueba los 3 siguientes teoremas:

Teorema 4.4.6 Sea E un espacio de Banach y sea U C E un conjunto abierto. Si dy:x €
U— 6, € G*U), en donde 6,(f) = f(x) para toda x € U y f € H*(U). Entonces:

(a) 8 € Ho(U,G=(U)).

(b) Para cada espacio de Banach F y cada f € H*®(U;F), existe un unico Ty €
L(G®(U),F) tal que Ty oy = f.

(c) La aplicacion f € H*(U; F) = Ty € LIG™®(U), F) es un isomorfismo isométrico.
(d) f es de rango finito si y sélo si Ty es de rango finito.

(e) f compacta siy solo si Ty es compacto.
Usando el teorema anterior junto al Teorema 2.1.7 se obtiene:

Teorema 4.4.7 Si U C E es abierto, entonces H*(U) tiene la propiedad de aproxima-
cion si y solo si para cualquier espacio de Banach F, dados f € H*®(U; F) compacta y

e > 0, existe g € H*®(U; F') de rango finito tal que ||g — f|| < e.

Teorema 4.4.8 Si U C E es abierto y balanceado, entonces G®(U) tiene la propiedad

de aproximacion si y solo st E tiene la propiedad de aproximacion.

El Teorema anterior nos da una condicién necesaria para saber si H*®(U) tiene la
propiedad de aproximacion. Si E no tiene la propiedad de aproximacion y si U C E es
abierto, balanceado y abierto, entonces G®(U) no la tiene, lo cual implica que G*®(U)’

no tiene la propiedad de aproximacién y, por la Proposicién 4.4.5, H*°(U) no tiene la
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propiedad de aproximacién. La condiciéon suficiente para resolver el problema de que
H>®(U) tenga la propiedad de aproximacién, segin sabemos, no esta resuelto todavia. Es
mads, sigue abierto el problema para H*(A), en donde A es el disco abierto de C. Es decir,
no se sabe si H>°(A) tiene la propiedad de aproximacion o no. Por el Teorema 4.4.7 esta
pregunta es equivalente a:

Dado un espacio de Banach F, f € H®(A, F) compactaye > 0, sexiste g € HX(A, F)
de rango finito tal que ||g — f|| < &7

Con este ejemplo quisimos mostrar que el problema de aproximacion para subespacios
de H(U) tiene vigencia hoy en dia. Que un espacio tenga la propiedad de aproximacién
facilita el estudio de otras propiedades relacionadas con el espacio, ver por ejemplo [9],
[13, Seccién 2.d], [14, Capitulo 6] entre otros. Ademds, como no todos los espacios tienen
propiedad de aproximacion, varios autores definieron y estudiaron varias propiedades rela-
cionadas a la propiedad de aproximacién. Por ejemplo, R. Aron, M. Maestre y P. Rueda
recientemente estudiaron las funciones holomorfas p-compactas, que se relacionan con la

p-propiedad de aproximacién [3].
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